This dissertation has been 65-9750 microfilmed exactly as received

MANLEY, Jr., Frederick Harrison, 1931-CLAY MINERALOGY AND CLAY-MINERAL FACIES OF THE LOWER CRETACEOUS TRINITY GROUP, SOUTHERN OKLAHOMA.

The University of Oklahoma, Ph.D., 1965 Geology

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

CLAY MINERALOGY AND CLAY-MINERAL FACIES OF THE LOWER CRETACEOUS TRINITY GROUP, SOUTHERN OKLAHOMA

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY FREDERICK H. MANLEY, JR. Norman, Oklahoma

1965

.

CLAY MINERALOGY AND CLAY-MINERAL FACIES OF THE LOWER CRETACEOUS TRINITY GROUP, SOUTHERN OKLAHOMA

APPROVED BY

б Ann

DISSERTATION COMMITTEE

ACKNOWLEDGEMENTS

The invaluable advice, assistance, encouragement and direction of Dr. Charles J. Mankin are responsible for any value this study may have as a worthwhile contribution. His continuing and enthusiastic efforts in the direction of this study are deeply appreciated.

Members of the writer's doctorial committee who read the manuscript and made available their advice and guidance are: Dr. C. C. Branson, Dr. F. A. Melton and Dr. E. C. Stoever. To these men the writer is grateful.

Particularly the writer is grateful to Peter Blau, Dr. P. K. Sutherland and Dwight Waddell for enlightening discussions of the field problem; to Dr. W. E. Ham who examined the plates and offered many valuable suggestions; to David Hunt and Her Yue Wong for field assistance; and to William Bellis and Raymond Kerns for lucid discussions of clay mineralogy which were always associated with contagious enthusiasm.

Portions of the study were supported by the Oklahoma Geological Survey and by means of a research fellowship made available by the Humble Oil and Refining Company. The writer is grateful to these organizations.

Lastly to my mother and sisters and especially my wife Victoria, I gratefully acknowledge benefits from constant encouragement and moral and financial support.

iii

TABLE OF CONTENTS

	Page
ILLUSTRATIONS	vi
Figures Tables	vi vi
INTRODUCTION	
Location and Description of Area	3
LITHOSTRATIGRAPHY	
Formations of the Trinity Group Holly Creek Formation DeQueen Limestone Antlers Sand	11 11 14 18
CLAY-MINERAL ZONATION OF THE TRINITY GROUP	
Clay-Mineral Suites Clay-Mineral Zonation Depositional History	32 34 35
SUMMARY	45
REFERENCES	48
APPENDIX	56
CLAY MINERALOGY	57
Identification of Clay Minerals Montmorillonite Kaolinite Illite Mixed-layer illite-montmorillonite Chlorite	60 60 65 67 68 70
LOCATION OF SAMPLES	
DESCRIPTIONS OF SELECTED SAMPLES	

iv

		Page
EXPLANATION OF PLATE	1	Pocket
EXPLANATION OF PLATE	2	Pocket
EXPLANATION OF PLATE	3	7
EXPLANATION OF PLATE	4	9
EXPLANATION OF PLATE	5	16
EXPLANATION OF PLATE	6	20
EXPLANATION OF PLATE	7	23
EXPLANATION OF PLATE	8	25
EXPLANATION OF PLATE	9	29

v

. . . .

.

. • •

ILLUSTRATIONS

Page

.

Figure		
1	Distribution of Lower Cretaceous, Gulf Coast Province	2
2	Location Map of Area Studied	4
3	Diagrammatic Representation of the Succession of Layers in some Layer Lattice Silicates	61
4	X-ray Diffraction Patterns of Selected Minerals	62
5	Representative Thermograms of Nontronite-like Montmorillonite	64
6	X-ray Diffraction Patterns of the Clay-Mineral Zones, Trinity Group	72
Table		

1	Relation Between Clay Minerals in Recent Marine Muds and Source Material	36
2	Differences in Chemical Composition Between Shoreward and Seaward Clays	37

r

CLAY MINERALOGY AND CLAY-MINERAL FACIES OF THE LOWER CRETACEOUS TRINITY GROUP, SOUTHERN OKLAHOMA

INTRODUCTION

In the past, established principles of stratigraphy, paleontology, and other geologic disciplines have been applied to correlation and zonation of the Lower Cretaceous Trinity Group in southern Oklahoma with limited success. This study of the clay mineralogy of the section was undertaken to assess the potential of clay minerals in solving stratigraphic problems. The results have demonstrated that clay-mineral assemblages can provide effective and reliable zonations. In conjunction with other studies, the assemblages can be used reliably to help correlate and interpret the depositional history of a section even where sediments contain no persistent units and only poorly preserved or non-diagnostic fossils.

The sediments of the Trinity Group of southern Oklahoma are heterogeneous over a wide area. They represent shelf deposits laid down by a northwestward transgressing sea on the northwestern side of the Cretaceous Gulf of Mexico (Figure 1). The sediments strike northeastward and dip east-southeastward at less than 50 feet per mile. Field and laboratory examinations show that lithology and chemical

.

•

FIGURE I DISTRIBUTION OF LOWER CRETACEOUS, GULF COAST PROVINCE

:

character of the sediments vary widely both laterally and vertically. The Trinity rock units consist of poorly indurated clays, fine to coarse sands, and conglomerates, and locally marl and limestone.

Location and Description of Area

Figure 2 shows the geographic location of the area studied and the generalized outcrop of the Trinity Group sediments in southern Oklahoma. The major outcrop is a broad sinuous band extending from the Red River south of Ardmore in Love County, Oklahoma, northward through Carter County, thence eastward through Johnston, Marshall, Atoka, Bryan, Pushmataha, Choctaw, and McCurtain Counties into Arkansas. The length of the outcrop in Oklahoma is slightly more than 210 miles. The width varies from about 8 to 20 miles (Plate 1).

The outcrop area has a surface relief of 150 to 200 feet forming a gently rolling topography covered by an exceptionally thick growth of deciduous and coniferous trees. The sediments are best exposed along banks of large rivers, in quarries, and in road cuts. Plates 3 to 9 show some of these typical exposures. Most areas are either intensely weathered (Plate 3), covered with alluvium, and/or masked by thick vegetation.

FIGURE 2 LOCATION MAP OF AREA STUDIED

LITHOSTRATIGRAPHY

The Lower Cretaceous sedimentary rocks of southern Oklahoma are divided into three rock units or groups. The principal subdivisions of the Lower Cretaceous, in ascending order, are the Trinity, Fredericksburg, and Washita Groups. All are considered to be Comanchean in age (Imlay, 1945).

The strata considered in this study include only those of the Trinity Group. The Trinity Group includes (ascending) the Holly Creek Formation, the DeQueen Limestone, the Antlers Sand, and the Baum Limestone Member.

The Holly Creek Formation is composed of gravels interbedded with fine sand, silt, and clay. The DeQueen Limestone consists of argillaceous and pelletiferous biomicrudites and biomicrites interbedded with varicolored silty clays, silt, and very fine sands. The Holly Creek and DeQueen Formations are exposed only in the eastern portion of the study area in southern McCurtain county.

The Antlers Sand, consisting of silty to sandy clays, fineto coarse-grained, loosely consolidated orthoquartzites, with argillaceous cement, and local gravels and conglomerates, is exposed across the entire study area (Plate 1).

The Baum Limestone Member, composed of basal red clay, limestone conglomerate, algal limestone, and arkosic limestone, has its maximum development in an area about 15 miles long and 10 miles wide that borders the southern part of the Arbuckle Mountain region in eastern Carter and Western Johnston Counties. Only the clays that interfinger with the Baum member of the Antlers and the beds of Pre-Baum age that underlie it were studied. For complete details on the general geology, petrology, and economic geology of this limestone, the reader is referred to Wayland and Ham (1955). Other than this limestone facies, and the DeQueen and Holly Creek Formations of southern McCurtain County, the Antlers Sand comprises the entire Trinity Group of southern Oklahoma (Plate 1).

Prior to the present study, only three workers have studied one or more Lower Cretaceous rock units across the entire length of outcrop in southern Oklahoma. Forgotson (1957, 1963) published subsurface stratigraphic information on the entire Trinity Group; Prewitt (1961) studied the subsurface beds of the Cretaceous Coastal Plain of southern Oklahoma; and Blau (1961) completed the first petrologic study of the Goodland Limestone, overlying the Trinity Group, along its entire outcrop in southern Oklahoma.

Only isolated segments of the Trinity Group, however, were examined petrographically or mineralogically prior to this investigation. No study of the clay minerals of any portion of the Lower Cretaceous sediments of southern Oklahoma has ever been published.

PLATE 3

Typical exposures of the Antlers Sand (A and B) showing extensive oxidized zone (A).

x

PLATE 3

В

A. Outcrop of conglomerate and lenses of laminated sand at base of Trinity Group. NEL/4, SEL/4, SEL/4, Sec. 2, T5S, R3W.

PLATE 4

•.

B. Close-up view of carbonate- and argillaceouscemented laminated sand lens.

A

В

The top of the Trinity Group is here defined as the top of the Antlers Sand. The base of the Trinity Group, in the eastern portion of the area of investigation, is defined as the base of the Holly Creek Formation. In the western portion of the area, from western McCurtain County to the Red River, Love County, the base of the surface exposures of the Trinity Group is the base of the Antlers which onlaps the underlying Holly Creek Formation and DeQueen Limestone.

Formations of the Trinity Group

Holly Creek Formation: From exposures near Little Holly and Holly Creeks southeast of Dierks in Howard County, Arkansas, Vanderpool (1928) derived the name "Holly Creek clay".

In Oklahoma, the name "Holly Creek" is applied, according to Davis (1960), to the Cretaceous stratum below the DeQueen Formation.

The Holly Creek Formation in Oklahoma ranges from 30 to 100 feet in thickness in its outcrop area (Honess, 1923), but thickens to as much as 1,070 feet (Davis, 1960) in subsurface in the southern part of McCurtain County. The outcrop area in eastern McCurtain County at the Arkansas State line is about two and one-half miles wide. From this area westward, it occurs as an irregular band and narrows to about one-fourth mile in width in sec. 36, T. 5 S., R. 23 E., and to a few hundred feet in width in sec. 1, T. 6 S., R. 23 E., where it is conformably overlapped by the DeQueen and Antlers Formations.

At the few surface exposures where it can be observed, the Holly Creek Formation consists of discontinuous layers and irregular lenses of poorly indurated and/or poorly sorted gravels, sands, siltstones, and clays. The gravel particles (from granules to boulders) are surrounded by a matrix of all possible combinations of clay, silt, and sand. Locally, the gravels are asphaltic or may contain thin lenses of asphalt.

The majority of gravel-size particles are of two grades pebbles and cobbles. Examination of both fresh and weathered surfaces of these pebbles and cobbles indicates that they were derived entirely from the Paleozoic rocks of the Ouachita Mountain System. The percentage composition of the gravel is approximately 25 sandstone and shale, 25 chert, and 50 vein quartz. Commonly the chert content is about 35 percent near the Arkansas State line and the sandstone and shale content is about 10 percent. Vein quartz is dominant throughout the formation, but increases from about 55 percent near the eastern edge of the outcrop area to 60-65 percent in the western area of the outcrop. The amount of chert decreases towards the western portion of the outcrop to about 15-25 percent.

Few, if any, of the layers and lenses within the Holly Creek Formation can be traced for distances much greater than a few miles. During the field season of 1960, the writer and Peter E. Blau traced a thin, 0.4 to 0.5 foot, asphaltic layer from north of Broken Bow for five miles to the east. This layer may persist farther eastward, but because of the scarcity of exposures, as a result of both the flatness

of the stream valleys and the extensive alluvial cover, farther tracing was not attempted.

In order to determine shore-line trends, gravel orientation studies of the Holly Creek Formation were conducted in the standard manner (Krumbein, 1939). Examination of 1,600 field-oriented cobbles from 16 stations, using the standard technique of reorientation in the laboratory (Krumbein, 1939) resulted in obtaining preferred orientation diagrams of the long axes of the cobbles (Plate 1). Numerous quarries and road cuts within the Holly Creek Formation were examined and combined into sixteen stations which in turn were plotted as composite orientation plots on Plate 1. This combining and compositing was necessary because of the unequal distribution of quarries, gravel pits, and road cuts along the base of both the Holly Creek and Antlers Formations.

Where exposed, the Holly Creek-DeQueen boundary is gradational. There is a pronounced westward thinning and, at each successive outcrop from east to west, the Holly Creek is in contact with a thin (less than one foot) basal limestone bed of the DeQueen. This lowest limestone layer appears to lap onto, grade into and/or interfinger with, the uppermost gravel of the Holly Creek. Thus, going west, each basal limestone layer is stratigraphically higher than the preceding one, resulting in a contact that does not rise, but remains at about the same elevation due to the concomitant thinning of the Holly Creek and overlying DeQueen.

No paleontologic study has been made of the Holly Creek Formation. According to Davis (1960) it is the oldest formation of the Trinity Group cropping out in Oklahoma and is of Early Cretaceous age. According to Imlay (1945) the Holly Creek is equivalent to the Holly Creek of Arkansas, which is equivalent to a part of the Rodessa Formation of Arkansas, Louisiana, and east Texas, and to the basal sand of the north-central Texas Trinity Group. No basal sands are present in the outcrops of the Holly Creek in McCurtain County where it lies with angular unconformity upon the rocks of Paleozoic age.

<u>DeQueen Limestone</u>: In 1918, Miser and Purdue applied the name "DeQueen" to fossiliferous limestone and an equal or greater amount of green clay with gypsum and celestite near the base, for exposures at and near the town of DeQueen, Sevier County, Arkansas.

The DeQueen Limestone was mapped in Oklahoma by May (1950) and by Davis and Fair (1957). It crops out in McCurtain County as a narrow sinuous band ranging in width from several hundred feet to more than one-half mile. The outcrop band is only exposed in road cuts or in a few streams, such as along the Mountain Fork River and Yanubbee, Yashau, and some branches of Lukfata and Boktukla Creeks. These sections are small and incomplete and it is difficult to locate stratigraphically these isolated segments within the DeQueen. Even the large exposed section along the banks of the Mountain Fork is not complete. The best exposure of the DeQueen in McCurtain County is along State Highway 21 from 1.5 to 2 miles north of its intersection with U. S. Highway 70 at Broken Bow. At this locality, and in the area about 500

feet east and west of the highway, the DeQueen Limestone is from 35 to 40 feet thick. The variation in thickness is due to both the irregular surface of the underlying Holly Creek Formation and to slumping of thin (0.3 to 0.5 feet) layers of limestone occurring between beds of clay.

The DeQueen Limestone ranges in thickness from 40 to 45 feet in the eastern part of McCurtain County to less than a foot at the western extremity of its outcrop. Downdip it attains a maximum thickness of 190 feet at the southeastern edge of the county (Davis, 1960).

The general lithology of the DeQueen varies (ascending) from a 0.5 to 1.5 foot limestone conglomerate at its base to overlying layers of varying thicknesses of sandy micrites, sandy argillaceous micrite, sandy argillaceous biomicrudites, and argillaceous and pellitiferous biomicrudites all separated by layers of silty to sandy, varicolored clay (Plate 5). No one layer, except for a 2.5 to 3.0 foot thick unit, 10 feet below the base of the Antlers, is physically and petrographically persistent across the outcrop area. The amount of clay, sand, pellets, and fossils varies both vertically and laterally. Even the exception mentioned above is not completely uniform in petrology. In general, the grain size of the terrigenous material present in each limestone layer tends to decrease upward (Plate 5). The terrigenous material is everywhere present laterally, but there is a slight increase in amount and in size, towards the west. This is perhaps a function of the nearness to shore at the time of deposition.

PLATE 5

Representative photomicrographs of the DeQueen Limestone from exposures along State Highway 21 from 1.5 to 2 miles north of its intersection with U. S. Highway 70 at Broken Bow. Plate 5 depicts the general decrease in size and amount of terrigenous material (ascending) and the increase in fossil and carbonate material in the middle of the exposure trend. The sequence of photomicrographs (ascending) is as follows: A-B-C-D-E (C_1 is an enlargement of C).

- A. Coarse sandy micrudite; 12x.
- B. Sandy argillaceous micrudite; 12x.
- C. Argillaceous and pellitiferous biomicrite; 12x.
- C1. Enlargement of argillaceous and pellitiferous biomicrite showing recrystallization of mollusk shells, replacement by sparry calcite, and presence of scattered pellets; 29x.
- D. Sandy and pellitiferous biomicrudite; 12x.
- E. Sparse biomicrudite. All fossil fragments are well-rounded; 12x.

B

۰. ۱

c₁

D

PLATE 5

The DeQueen Limestone is of Early Cretaceous age and is the middle formation of the Trinity Group of the Comanche Series in Mc-Curtain County (Davis, 1960). The limestone is fossiliferous, the most common Early Cretaceous fossils, according to May (1950, p. 39), being <u>Cassiope branneri</u> and <u>Ostrea franklini</u>. The DeQueen Limestone is regarded as being equivalent to a part of the Glen Rose Formation of Texas according to Vanderpool (1928), Stanton (1928), Imlay (1945), May (1950), and Davis (1960).

Antlers Sand: Hill (1901), used the term "Antlers sands" for the supposed clastic equivalent of all the Trinity formations north of Parker County, Texas. Adkins (in Sellards et al., 1932) used the name "Antlers sand" when he proposed that the Oklahoma sand was the marginal equivalent of the entire Trinity Group. In a summary of the Stratigraphy of Oklahoma, Gould (1925) stated that the name "Antlers sand" held priority as the name for the Trinity correlative in Oklahoma.

In southern McCurtain County, the Antlers Sand is conformable with the underlying DeQueen Limestone. Where the DeQueen is absent, the Antlers lies unconformably upon the underlying rocks of Paleozoic age. This unconformable relationship extends from R. 23 E. in McCurtain County nearly 200 miles to southern Love County near the Red River (Plate 1). Due to extremely poor exposures in the area where the Antlers conformably overlaps the older rocks of Cretaceous age, it may be that the Holly Creek gravels reappear west of sec. 1, T. 6 S., R. 23 E.; but in this study, all basal gravels or conglomerates west of this point are considered basal Antlers.

The Antlers is conformable to the overlying Goodland (Goodland-Walnut) Limestone. This Antlers-Goodland contact is placed at the base of the lowest bed of sparse biomicrite or biomicrudite (Comanche Peak facies of Blau, 1961) of the Goodland in the eastern portion of the dissertation area. Elsewhere, the contact is located at the base of the lowest "Exogyra shell agglomerate" (Blau, 1961), the sandy biomicrudite Walnut facies of the Goodland Limestone (Plate 6). Both types of the Antlers-Goodland contact are regular and sharp. Some of the best exposures of the Antlers-Exogyra shell agglomerate (Walnut facies) contact are found in the western portion of the area, especially in the SW 1/4 sec. 32, T. 6 S., R. 2 E., (Plate 6), in the SE 1/4 sec. 13, T. 7 S., R. 1 W., and in the NW 1/4 sec. 1, T. 7 S., R. 1 W., all in Love County, and in SE 1/b sec. 20, T. 5 S., R. 4 W., (Plate 7). At some localities the development of the Exogyra shell agglomerate is so pronounced, especially in sec. 13, that it forms a prominent "bench" that can be traced for several miles. This agglomerate bed is in contact with the Goodland in eastern Love County and is 20 feet below the Goodland at the Red River in Cooke County, Texas. The bench expression was found no farther north than sec. 22, T. 6 S., R. 1 E. (Plate 1).

The sediments, here considered as the Walnut facies of the Fredericksburg Group, between the agglomerate bed and the overlying Goodland Limestone vary from black clay to crossbedded buff sand. In general, these sediments consist predominantly of black to olive clay occurring both as laminae in masses of crossbedded sand and as structureless deposits with laminae of silt and sand (Plate 8). At a few

A. Exposure of Goodland Limestone and Walnut facies (Exogyra shell agglomerate) conformably overlying the Antlers Sand. Antlers-Goodland contact placed at base of lowest bed of biomicrudite (left side of photo); elsewhere the contact is located at the base of the lowest Exogyra shell agglomerate of the Goodland Limestone (right side of photograph); Antlers-Goodland contact rising to the north. "Bench" expression of the Exogyra shell agglomerate can be seen on the right half of the outcrop. SW1/4 sec. 32, T6S, R2E.

B. Exposure of Goodland Limestone and the Walnut facies overlying the Antlers Sand 18 miles ENE of 10-A, 1.5 miles SE of Madill at junction of State Highway 99 and U.S. Highway 70. Walnut facies shows development of clay and silt between the Exogyra shell agglomerate and the massive portion of the Goodland Limestone (compare with 6-A). Contact rising to northeast; no bench expression found because exposure is in fresh road cut.

plate 6

plate 6

Α

ł.

Antlers Sand

В

localities the beds consist of both lithic types intercalated. Some form or expression of this lithology is found everywhere beneath the Goodland, but in the eastern portion of the area the <u>Exogyra</u> shell agglomerate either does not crop out or is not separated from the overlying Goodland.

The base of the Antlers, except in the Baum limestone-facies area, is characterized by the presence of unindurated gravel or conglomerate, which is locally carbonate-, clay-, or silica-cemented. Conglomerates in the western portion are siliceous whereas those in the eastern portion of the area locally contain clay-carbonate cement. Locally, arkosic limestones are found in the Baum area. In general, the gravels and conglomerates decrease in thickness and in grade-size towards the west. One notable exception to this fact is found in the N 1/2 sec. 24, T. 6 S., R. 2 E., Love County, where the basal conglomerate consists of clay- to boulder-size material. In the eastern portion the basal conglomerates consist of material similar to the previously described Holly Creek gravel. There is also an increase in the amount of vein quartz or quartzite pebbles in the vicinity of Antlers in Pushmataha County and in Bruno in Atoka County.

West of these villages, the percentage of chert varies, but there is a general increase, with a corresponding decrease in gradesize. The majority of fragments are sub-angular to sub-rounded and persist westward, interrupted only in the area around Tishomingo and in the area where the Baum lies directly upon rocks of Paleozoic age.

A. Exposure of Goodland Limestone-Walnut facies-<u>Exogyra</u> shell agglomerate sequence overlying the Antlers Sand. SE1/4 Sec. 20, T5S, R4E. Clay facies between Goodland Limestone and <u>Exogyra</u> shell agglomerate is at its maximum development along the exposure trend.

B. Close-up view of Exogyra shell agglomerate-Antlers Sand contact, located by arrow in 7-A. Black units on Jacob's Staff = 0.2 feet.

PLATE 7

PLATE 7

Covered slope Walnut facies

Exogyra aggl. Antlers Sand

А

В

A. Where the Exogyra shell agglomerate is not exposed, a fine white clean kaolinite-rich sand is found. The resistance of the normally poorly-consolidated sand is due to locally restricted carbonate cementation. SW1/4, SW1/4, SW1/4, Sec. 22, T6S, R1E.

B. Typical exposure of Exogyra shell agglomerate; black unit on staff = 0.2 feet. SW1/4, SW1/4, SW1/4, Sec. 36, T6S, R1W.

. ..

PLATE 8

plate 8

В

The Baum has a local conglomeratic facies consisting of rubble of cobble and pebble size.

In the area around Lone Grove, Carter County, the conglomerate is locally of pebble- to cobble-size. In the area south and southwest of Wilson, and south and southeast of Reck, Love County, the conglomerates are of two grade-sizes. One, near Reck, consists of coarse sands, "shale" fragments, and limestone, mainly of granule size, locally siliceous. The "shale" fragments are weathered and soft, and are composed entirely of kaolinite. The other conglomerates occur only locally, are essentially of the same composition, but normally consist of carbonate-cemented material of pebble size.

In order to determine the shoreline trends during the deposition of the Antlers, gravel orientation studies were conducted in the standard manner (Krumbein, 1939). Examination of 1,100 fieldoriented pebbles, cobbles, and boulders representing 11 stations from 6 localities (Plate 1), using the standard technique of reorientation in the laboratory (Krumbein, 1939), resulted in obtaining the gravel orientation trends which are plotted on Plate 1. These plots are parallel to the shoreline at the time of deposition of that respective portion of the Antlers.

The Antlers Sand, in McCurtain County, ranges in thickness from a few feet at the north edge of its outcrop to more than 880 feet in subsurface (Davis, 1960). Towards the west, the Antlers thins to around 500 feet in eastern Choctaw County, 300 feet in western Choctaw County, and 200 feet along the southern Atoka-northern Bryan County

line. West of the central portion of Bryan County, the thickness varies reflecting the subsurface structure present in the Marshalleastern Carter-eastern Love County area. In western Love County, the thickness of the unit ranges from a feather edge to 300-400 feet.

The lithology of the Antlers is variable. With the exception of the upper 40 to 50 feet of the formation, every outcrop encountered is characterized by a minimum of two or three types of lithology, none of which seem to persist for more than a mile. The sediments that crop out in the area of study are composed of very fine- to coarse-grained, moderately to poorly sorted, unindurated to clayey to locally carbonate-cemented, irregularly crossbedded, ferruginous sand (Plate 9). They are locally intercalated with clays and gravel lenses. The sands are varicolored and are composed almost entirely of compact quartz sand with accessory zircon, tourmaline, rutile, pyrite, leucoxene, and magnetite. At some localities there are flood amounts of leucoxene, at others, the sands are virtually devoid of heavy minerals.

The upper portion of the formation is characterized by the predominance of white to light-yellow compact quartz sand with little crossbedding. No gravel lenses were noted in the upper 50 feet of the sands which are commonly very fine to fine in size and associated with laminae of clay and/or clay fragments. In almost every case, the clays associated with these upper sands are monomineralic and consist either entirely, or dominantly, of kaolinite. Localized occurrences of asphaltic sand are found throughout the area, the largest single

A. Typical exposures of Antlers Sand with irregular lenses of clay, ironstone layers, and concretions. SE1/4, SW1/4, SW1/4, Sec. 22, T6S, R2E.

B. Exposure of Antlers Sand containing typical development of laminated sand lenses; black unit on Jacob's Staff = 0.2 feet. Same locality as 9-A.

PLATE 9

А

В

occurrence is in the SE 1/4 sec. 22, T. 6 S., R. 21 E., north of Valliant, McCurtain County.

The Antlers Sand is Early Cretaceous in age and is the uppermost formation of the Trinity Group in McCurtain County (Davis, 1960; Imlay, 1940). West of McCurtain County, its age has been placed by Forgotson (1957) in the uppermost Trinity and/or lowermost Fredericksburg.

CLAY-MINERAL ZONATION OF THE TRINITY GROUP

Clay-Mineral Suites

Mineralogic identification of the clay-mineral content of clays, sands, conglomerates, and insoluble residues of limestones from the Trinity Group was determined by means of x-ray diffraction and differential thermal analysis. The clay-mineral content of each lithology change encountered was extracted, identified, and plotted (Plate 2).

The Holly Creek Formation, composed of gravels interbedded with fine sands, silt, and clay, has a clay suite consisting of predominately mixed-layer illite-montmorillonite with lesser amounts of kaolinite and illite and trace to minor amounts of chlorite.

The DeQueen Limestone, consisting of argillaceous and pellitiferous sparse biomicrudites and biomicrites interbedded with varicolored silty clays, silt, and very fine sands has a clay suite identical to the Holly Creek Formation.

The Antlers Sand, consisting of silty to sandy clays, fineto coarse-grained, loosely consolidated orthoquartzites, with argillaceous cement, and local gravels and conglomerates contain various clay-mineral suites. Mixed-layer illite-montmorillonite predominates in the basal and eastern portions of its exposure trend, followed higher stratigraphically and farther west geographically by a transition zone containing more illite and kaolinite and trace amounts of chlorite. This suite is succeeded by a zone of montmorillonite, illite, and kaolinite with minor amounts of chlorite. Next, a suite stratigraphically higher and located in the western portion of the exposure trend consisting predominantly of montmorillonite. The final suite is at the top of the Trinity Group and consists predominantly of kaolinite with minor to trace amounts of illite and sometimes montmorillonite.

The clay minerals of each change in lithology encountered in the sediments of the Trinity Group were extracted and identified in order to determine the influence of lithology, sorting and sedimentary environment. Because no variation was encountered in the numerous lithologies of the Holly Creek, DeQueen and Antlers Formations, it was concluded that (1) there are no recognizable clay minerallithology relationships within the Trinity Group, (2) size sorting or alteration in different sedimentary environments were not important processes during the deposition of the clay minerals of the Trinity Group, and that (3) the areal distribution of the clay minerals is related to their paleogeographic position in the original basin of deposition and reflects variations in contributions from various source areas.

Clay-Mineral Zonation

The clay-mineral suites of the Antlers, DeQueen, and Holly Creek Formations were grouped into four major clay-mineral zones (Figure 6): (1) a mixed-layer zone consisting of the clay-mineral suite of the Holly Creek and DeQueen Formations and the basal claymineral suite of the Antlers Sand, (2) a transition zone lying upon the mixed-layer zone and consisting of the clay-mineral suite of the middle of the Antlers, (3) a montmorillonite zone lying above the transition zone and consisting of the upper Antlers clay-mineral suite, and (4) a kaolinite zone consisting of the clay-mineral suite of the uppermost Trinity Group. The kaolinite zone lies discordantly upon the lower three clay-mineral zones (Plate 2).

It is important to note that this uppermost (kaolinitic) zone lies discordantly upon the lower three clay-mineral zones. The lower clay-mineral zones are not gradational facies of one another but are in stratigraphic sequence. The lowest (mixed-layer) zone is everywhere found beneath the middle (montmorillonite-illite-kaolinite) zone and this middle zone, in turn, lies beneath the upper (montmorillonitic) zone. The uppermost kaolinitic zone lies in contact with each subjacent zone. In the eastern portion of the area the kaolinitic zone is in contact with the mixed-layer zone, in the central portion it lies above the transition (montmorillonite-illite-kaolinite) zone. This stratigraphic sequence is illustrated in a series of cross sections (Plate 2).

Depositional History

Published reviews of recent American literature on clay mineralogy and clay petrology of sediments (Grim, 1953, Weaver, 1959, 1960) indicate that in the nearshore site of active sedimentation there is a good relation between the geographic distribution of the clay-mineral suites of Recent shallow marine muds and source areas (Table 1). The listing of examples in Table 1 indicates that the bulk character of the marine clay suite is determined by the source material and that even the character of the dominant clay-mineral is apparently controlled by the detrital clay material derived from the land areas. These same reviews indicate that the majority of the clay minerals are not altered to any extent in a marine environment. Table 2 contains chemical data of some Recent clay fractions which indicate how relatively small the chemical modifications are between the inland or near continental (Chesapeake Bay), the nearshore, and the open marine clays. Most of this alteration is in the form of cation adsorption with little evidence of alteration of the basic lattice of the detrital clay mineral. As a result of the preceding observations, it has been assumed that the clay minerals are (1) primarily detrital in origin, (2) reflect the composition of the source area, and (3) reflect variations in contributions from various source areas.

During the early phases of deposition of the Trinity Group, the Ouachita Mountain area was the dominant feature of the sedimentsource area (Pitt, 1956). In McCurtain County a considerable amount

	DOMINANT CLAY MINERAL					
LOCALITY	RECENT Marine Muds	CLAY DETRITUS CARRIED BY RIVERS	SOURCE Material			
EASTERN ATLANTIC COAST	ILLITE ^{1,2}	ILLITE ^{1,3}	ILLITE ^{1,3,10}			
EASTERN GULF Coast	MONTMORILLONITE ^{1,4,5}	MONTMORILLONITE ^{1,4,5}	MONTMORILLONITE ^{5,6}			
WESTERN GULF Coast	MONTMORILLONITE 7	MONTMORILLONITE	MONTMORILLONITE ^{8,10}			
Southern California Coast	MONTMORILLONITE - 9 ILLITE-KAOLINITE	MONTMORILLONITE - 9 ILLITE-KAOLINITE	MONTMORILLONITE - 10			
¹ Powers (195 ² Murray and	4,1957). Sayyab (1955).	⁶ Ross, Miser ⁷ Grim and Joh	AND STEPHENSON (1929). INS (1954).			
³ WEAVER (195	8B).	8 Kunze (perso	NAL COMMUNICATION).			

10. WEAVER (1959).

⁵MILNE AND EARLEY (1958).

TABLE 1. - RELATION BETWEEN CLAY MINERALS IN RECENT MARINEMUDS AND SOURCE MATERIAL (after Weaver, 1959)

	M _G O			к ₂ 0			AL203			FE203				
	1	2	3	4	1	2	3	4	2	3	4	2	3	4
Shore- ward	2.02	2.45	2.90	3.38	0.84	1.51	2.36	2.52	18,05	22.62	22.31	6.35	8.79	6.70
SEAWARD	9.04	3.37	4.16	2.11	0.84	2.36	2.51	3.43	19.02	18.14	19.98	7.07	9.89	5.56

_

TABLE 2. - DIFFERENCES IN CHEMICAL COMPOSITION BETWEENSHOREWARD AND SEAWARD CLAYS (after Weaver, 1959)

		SHOREWARD	SEAWARD		
1. CHESAPEAKE BAY	Powers (1957)	SALINITY 1 PART/ THOUSAND	22-25 parts/thousand		
2. W. GULF OF MEXICO	GRIM AND JOHNS (1954)	DELTA	OPEN GULF		
3. PACIFIC OCEAN	GRIM, DIETZ AND BRADLEY (1949)	BAY	13 ABYSSAL, SLOPE, AND CANYON SAMPLES		
4. GULF OF CALIFORNIA	GRIM, DIETZ AND Bradley (1949)	RIVER	LOWER GULF OF California		

of truncation of the Ouachita Mountains has occurred, removing several thousand feet of Mississippian Jackfork Sandstone and even exposing the Cambrian core of this complex (Pitt, 1956). The denuding of thousands of feet of Jackfork Sandstone from the Ouachitas would seem to have yielded adequate amounts of quartz sand for the Trinity Group clastics.

The clay suite of the Holly Creek, DeQueen and Antlers Formations of McCurtain County is mainly mixed-layer illitemontmorillonite and kaolinite along with smaller amounts of chlorite. The predominance of mixed-layer minerals with some kaolinite and chlorite reflects both the type of clay being supplied by the Ouachita sediments and the degree of weathering in the source area during the deposition of the lower Trinity Group.

After deposition of the lower portion of the Trinity Group in the McCurtain County area, the Lower Cretaceous shoreline or nearshore site of active sedimentation advanced north and northwestward as the Ouachitas became less dominant as a positive area by continued and extensive denudation.

This can be supported by (1) the presence of basal Cretaceous gravels on some of the higher levels of the Ouachita Mountains (L. M. Cline, personal communication), (2) the feasibility of the projection of present (less than 1° dip) datum planes of the Lower Cretaceous to the tops of the higher mountain peaks and above many of the others (Pitt, personal communication; Melton and McGuigan, 1928), (3) the progressive onlapping of the Trinity clastics upon the under-

lying DeQueen and Holly Creek sediments in a westward and northwestward direction, (4) the shoreline during the time of deposition of the Holly Creek trended in an east-northeast by west-southwest direction whereas in the younger Antlers west of the outcropping Holly Creek the shoreline trended in a northeast by southwest direction (Plate 1). The positive Ouachita salient appeared to act as a buttress or node to the northwestwardly advancing shoreline causing a slight clockwise rotation of the shoreline trend during deposition of the Holly Creek. As the Ouachita Mountain salient was reduced in effectiveness as a positive area the shoreline was no longer effected by a high or positive area and was not refracted to any great degree as indicated by the northeast-southwest trend west of McCurtain County (Plate 1), and (5) the clay-mineral suite that is presumed to be derived from the Ouachita Mountain source area and is dominant in McCurtain County becomes gradually less abundant to the west reflecting the decreasing influence of the Ouachita Mountain core area of Mc-Curtain County by erosion and denudation or by partial burial in its own detritus.

The site of active sedimentation shifted to the west with the northwestward advancing shoreline which was still trending northeast-southwest near Antlers. The clay suite deposited was influenced by the type of clay locally available from the now less positive western portion of the Ouachita Mountain province, from some reworking of the eastern clay-mineral suite brought westward possibly by longshore drifting, and from the sediments from the McAlester Basin area. These

factors combined to form a transitional zone which is less a mixedlayer and more an illitic, montmorillonitic, and kaolinitic claymineral suite. Farther west near the Pushmataha-Atoka County line the shoreline continued to have a northeast-southwest trend and the clay suite became less transitional as the McAlester Basin sediments, rich in illite, kaolinite, and montmorillonite, became the more dominant source area. Also during this period of sedimentation chlorite, in trace to minor amounts, perhaps derived from the Stanley and Atoka Formations of the Ouachita Mountains was being deposited along with the McAlester Basin and Arbuckle Mountain sediments. The chlorite was probably being supplied from the Ouachitas in larger amounts than is evident in the surface samples. This effect is due to the masking and diluting effects of the clay suite derived from the more dominant source areas.

Active sedimentation of the Trinity Group continued to shift northwestward, and as far west as Lane, Atoka County the shoreline maintained its northeast-southwest trend. When active sedimentation reached the area near Bruno and Atoka in Atoka County both a salient or positive area and a wide low area west of Atoka was encountered. The combined effects of the extreme western portion of the Ouachitas plus the presence of the relatively lower southern portion of the Mc-Alester Basin resulted in a slight shift of the shoreline trend in a clockwise direction as evidenced in gravel orientation plots (Plate 1). The clay suite of this central portion of the exposure trend was influenced more by the McAlester Basin and Arbuckle Mountain source area

than by the Ouachitas to the east. The basal sediments in this area contain some mixed-layer illite-montmorillonite and chlorite indicative of both Ouachita Mountain and McAlester Basin sediments. The middle portion is predominantly a mixture of montmorillonite, illite and kaolinite. The upper Trinity Group (those sediments high in elevation and apparently high in stratigraphic sequence) is characterized by a similar, but highly and even dominantly montmorillonitic, suite. This clay suite was no doubt derived from both the McAlester Basin and Arbuckle Mountain sediments, especially the richly montmorillonitic Pennsylvanian Vanoss Formation, and the Permian sediments to the west.

From Atoka County to the west edge of the exposure trend the clay suite is essentially similar to that encountered in Atoka County except that montmorillonite becomes increasingly dominant towards the west. The clay suite in this western portion was influenced more by the Arbuckle Mountain-Ardmore Basin and Red Bed Plains (undifferentiated Permian strata) sediments than by any source to the east. The Arbuckle Mountain-Ardmore Basin positive area caused the shoreline trend to regain its northeast-southwest trend. As the shoreline continued advancing northwestward this source area supplied major amounts of montmorillonite especially in the Tishomingo, Baum, and Madill areas (Plate 1), as well as illite (for example from the Ordovician Sylvan Formation) and minor amounts of kaolinite and chlorite.

As the shoreline continued its northwest advance the Criner Hills and Ardmore Basin sediments contributed dominantly mixed-layer

illite-montmorillonite and illite to the lowest or basal Trinity Group sediments in some amounts, particularly in the Lone Grove and Ardmore areas of Carter County (Plate 1). Once again after encountering the Criner Hills area of the Ardmore Basin the shoreline trend was rotated slightly clockwise (from N4OE-S4OW to N55E-S55W). The bulk of the clastics in the west contain montmorillonite, illite, and kaolinite with montmorillonite so dominant that the clay suite consisted entirely of montmorillonite in much of the western area.

Eventually the site of active sedimentation reached the area of what is now the western and northwestern most extent of the present day Trinity Group exposure trend. The dominant source area at this time was the Red Bed Plains consisting predominantly of Permian strata ---- about 4,000 feet of essentially flat-lying red and gray shale, mudstone, siltstone, sandstone, and extensive evaporites. The results of clay-mineral analyses of 45 four-inch cores and numerous outcrop samples enabled Mankin, Bellis and Kerns (1963) to subdivide these Permian strata into two mineralogic units; a lower unit characterized by illite and an upper unit whose clay suite consisted of large amounts of montmorillonite. Apparently enough montmorillonite was contributed by the Permian sediments to the site of deposition of the Trinity Group that even the basal beds, usually high in reworked and weathered material characterized by a predominance of mixed-layer illite-montmorillonite to the east, here consisted entirely of montmorillonite in much of the northwest portion of the exposure trend. Finally, the active site of sedimentation, no longer having any prominent salient or positive area

in its path extended northwest up the broad low-lying freeway of the Red Bed Plains. The last measured orientation plots indicate that the trends of the shoreline shifted from N4OE-S4OW in Section 26, T4S, R2E (3 miles east of Ardmore) to N5OE-S5OW in Section 2, T5S, R3W (20 miles west of Ardmore (Plate 1).

The final clay-mineral suite encountered was a kaoliniterich suite occurring at the top of the Trinity Group, associated with clean white fine sand. In all cases where the Exogyra shell agglomerate was encountered the kaolinite zone was beneath this Walnut facies. Where the agglomerate bed was missing due to erosion or nondeposition the kaolinite zone was beneath the Goodland Limestone and enriched in minor amounts of illite and at places montmorillonite. An examination of this fine white sand at many outcrops revealed that this facies is highly porous and permeable. It is reasonable that kaolinite was present in the sand prior to removal of the overlying protective covering of the Walnut facies and/or the Goodland Limestone. After exposure, ground water could have leached most of the minerals and aided, along with the permeability of the sand body, in the formation of authigenic kaolinite. Another alternative process is the transportation of kaolinite or longshore drifting of clay from either the more kaolinitic eastern Gulf Coastal province or the Wichita Mountains west of study area, or both. In view of the fact that other areas within the Trinity Group exposure trend have been exposed to similar leaching and alteration and no extensive kaolinite-rich clay suites have been found elsewhere, it is felt that the major influence was longshore current

action and drifting from the eastern and western source areas. Recent studies of the Gulf of Mexico sediments have shown that longshore currents are capable of transporting clays and sands hundreds of miles (Grim and Johns, 1954).

SUMMARY

The sediments of the Trinity Group of southern Oklahoma are heterogeneous over a wide area. They represent shelf deposits laid down by a northwestward transgressing sea on the northwestern side of the Cretaceous Gulf of Mexico. The sediments strike northeastward and dip east-southeastward at less than 50 feet per mile. Field and laboratory examinations show that lithology and chemical character of the sediments vary widely both laterally and vertically. The Trinity rock units consist of poorly indurated clays, fine to coarse sands, and conglomerates, and locally marl and limestone. Approximately 95 percent of the 200-mile exposure trend is the Antlers Formation which contains no persistent marker units or diagnostic fossils.

Selected samples were analyzed using standard techniques of sieving and heavy-mineral analysis. The results yielded inconclusive correlative information. Generally, correlative data were unobtainable because (1) the majority of the sediments in the area of study are not sufficiently lithified to resist erosion and thereby provided no traceable units across the area, (2) the low (0.5-0.75°) dip of the sediments prevents exposure of basal, middle, and upper portions of the rock unit at every north-south traverse, and (3) a stable consistent

suite of heavy minerals was encountered which was not diagnostic for subdivision of the Trinity Group sediments.

Mineralogic identification of the clay-mineral content of clays, sands, conglomerates, and insoluble residues of limestones from the Trinity Group was determined by means of x-ray diffraction and differential thermal analysis. The clay-mineral content of each lithology change encountered was extracted, identified, and plotted in order to determine the influence of lithology, sorting and sedimentary environment. Because no variation was encountered in the numerous lithologies of the Holly Creek, DeQueen and Antlers Formations, it was concluded that (1) there are no recognizable clay mineral-lithology relationships within the Trinity Group, (2) size sorting or alteration in different sedimentary environments were not important processes during the deposition of the clay minerals of the Trinity Group, and that (3) the areal distribution of the clay minerals is related to their paleogeographic position in the original basin of deposition and reflects variations in contributions from various source areas.

Clay mineral analyses of 600 Trinity samples indicate four major mineral zones: a lower, mixed-layer illite-montmorillonite zone derived from the Ouachita Mountains; a middle montmorillonite-illitekaolinite zone derived from the Ouachita and Arbuckle Mountains and the McAlester Basin; and an upper montmorillonite zone derived from the Anadarko Basin. Discordantly overlying the lower three zones is an uppermost kaolinite-rich zone possibly derived from the Appalachian and Wichita Mountains.

Interpretation of clay-mineral assemblage, provenance clay petrology, and gravel orientation studies indicate: (1) the site of active sedimentation of the Trinity Group transgressed northwestward with a northwestward sea advance, (2) the rocks of the Trinity Group become younger toward the northwest by successive onlap, (3) the general shoreline trend during deposition of the Trinity Group was southwest-northeast, not east-west as generally considered, and that (4) clay-mineral assemblages can provide effective and reliable zonations, and, in conjunction with other studies the assemblages can be used reliably to help correlate and interpret the depositional history of a section even where sediments contain no persistent units and only poorly preserved or nondiagnostic fossils.

REFERENCES

Blau, P. E., 1961, Petrology of the Goodland Limestone (Lower Cretaceous) southeastern Oklahoma: Unpublished Master of Science thesis, University of Oklahoma.

Bradley, W. F., 1945, Diagnostic criteria for clay minerals: Am. Mineralogist, v. 30, p. 704-713.

> , and Grim, R. E., 1951, High temperature thermal effects of clay and related materials: Am. Mineralogist, v. 36, p. 182-201.

Brindley, G. W., 1951, x-ray identification and crystal structure of clay minerals: Mineralogical Society (Clay Minerals Group), London, 345 p.

____, and Gillery, F. H., 1954, Mixed-layer kaolin-chlorite structure: Clays and Clay Minerals, v. 2, p. 349-353.

____, and Gillery, F. H., 1956, X-ray identification of chlorite species: Am. Mineralogist, v. 41, p. 169-186.

_____, and McEvan, D. M. C., 1953, Structural mineralogy of clays; ceramics (symposium): British Ceramic Soc. p. 15-59.

_____, Oughton, B. M., and Robinson, K., 1950, Polymorphism of the chlorites: Acta Cryst. v. 3, p. 408-416.

Brown, G., editore, 1961, The x-ray identification and crystal structures of clay minerals (symposium): Mineralogical Society (Clay Minerals Group), London, 544 p.

, and MacEwan, D. M. C., 1951, X-ray diffraction by structures with random interstratification in Brindley, G. W., X-ray identification and structures of clay minerals: Mineralogical Society, London, p. 266-284.

Brunton, G., 1955, Vapor-pressure glycolation of oriented clay minerals: Am. Mineralogist, v. 40, p. 124-126.

Bullard, F. M., 1923, Notes on the paleontology of the Comanchean of Love County, Oklahoma: Okla. Acad. Sci. Proc., v. 3, p. 88-91.

> _, 1925, Geology of Love County, Oklahoma: Okla. Geol. Survey Bull. 33, 77 p.

_____, 1926, Geology of Marshall County, Oklahoma: Okla. Geol. Survey Bull. 39, 101 p.

_____, 1928, Lower Cretaceous of western Oklahoma: Okla. Geol. Survey Bull. 47, 116 p.

_____, 1931, The geology of Grayson County, Texas: Univ. Texas Bull. 3125, 72 p.

Davis, L. V., 1953, Oil possibilities near Idabel, McCurtain County, Oklahoma: Okla. Geol. Survey Mineral Rept. 23, 26 p.

_____, 1960, Geology and ground-water resources of southern McCurtain County, Oklahoma: Okla. Geol. Survey Bull. 86, 108 p.

- Dumble, E. T., 1918, The geology of East Texas: Univ. Texas Bull. 1869, p. 14.
- Early, J. W., Milne, I. H., and McVeagh, W. J., 1953, Dehydration of montmorillonite: Am. Mineralogist, v. 38, p. 770-783.
- Forgotson, J. M., 1957, Stratigraphy of the Comanchean Cretaceous Trinity Group: Am. Assoc. Petroleum Geologists Bull., v. 41, p. 2328-2363.

_____, 1963, Depositional history and paleotectonic framework of Comanchean Cretaceous Trinity Stage, Gulf Coast area: Am. Assoc. Petroleum Geologists Bull., v. 47, p. 69-103.

- Fraser, H. J., 1953, Experimental study of the porosity and permeability of clastic sediments: Jour. Geology, v. 43, p. 910-1010.
- Friedman, G. M., 1958, Determination of sieve-size distribution from thin section data for sedimentary petrological studies: Jour. Geology, v. 66, p. 394-416.
- Gibbs, H. D., 1950, A field study of the Goodland Limestone and the Washita Group in southeastern Choctaw County, Oklahoma: Unpublished Master of Science thesis, University of Oklahoma.
- Goldstein, A., Jr., 1959, Petrography of Paleozoic sandstones from the Ouachita Mountains of Oklahoma and Arkansas: in Geology of the Ouachita Mountains (symposium), Dallas Geol. Soc. and Ardmore Geol. Soc., p. 97-117.

_____, 1.961, The Ouachita Mountains of Oklahoma and Arkansas: in Ouachita System, Bureau of Econ. Geol., Univ. of Texas, p. 21-48.

Gould, C. N., and Decker, C. E., 1925, Index to the stratigraphy of Oklahoma: Okla. Geol. Survey Bull. 35, 115 p.

Grim, R. E., 1953, Clay Mineralogy: McGraw-Hill Book Co., Inc., New York, 384 p.

____, and Bradley, W. F., 1948, Rehydration and dehydration of clay minerals: Am. Mineralogist, v. 33, p. 50-54.

______, and Johns, W. D., 1954, Clay mineral investigation of sediments in the northern Gulf of Mexico: in Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Pub. 327, p. 81-103.

Ham, William E., 1954, Algal origin of the "Birdseye" limestone in the McLish formation: Okla. Acad. Sci. Proc., v. 33 (1952), p. 200-203.

, and McKinley, Myron E., 1954 (1955), Geologic map and sections of the Arbuckle Mountains, Oklahoma: Okla. Geol. Survey, Norman, Okla.

Hazzard, R. T., 1939, Notes on the Comanche and pre-Comanche? Mesozoic formations of the Ark-La-Tex area, and suggested correlation with northern Mexico: Guide Book 14th Ann. Field Trip, Shreveport Geol. Soc.

Hill, R. T., 1887a, Texas section of the American Cretaceous: Amer. Jour. Sci., 3rd Ser., v. 34, p. 287-309.

, 1887b, The topography and geology of the Cross Timbers and surrounding regions in northern Texas: Amer. Jour. Sci. and Arts, 3rd Ser., v. 33, p. 291-303.

____, 1888a, The Neozoic geology of southwestern Arkansas: Ann. Report for the Geol. Survey of Arkansas for 1888, v. 2, p. 116-120.

_____, 1888b, The Trinity Formation of Arkansas, Indian Territory and Texas: Science, v. 11, p. 21.

, 1889a, Events in North American Cretaceous history illustrated in the Arkansas-Texas division of the southwestern region of the United States: Amer. Jour. Sci. Ser. 3, v. 37, p. 282-290. _, 1889b, A preliminary annotated check list of the Cretaceous invertebrate fossils of Texas, accompanied by a short description of the lithology and stratigraphy of the system: Tex. Geol. Survey Bull. 2, p. 13-14.

_____, 1890, A brief description of the Cretaceous rocks of Texas and their economic value: Tex. Geol. Survey 1st Ann. Report, p. 103-141.

_____, 1891a, The Comanche series of the Texas-Arkansas region: Geol. Soc. America Bull., v. 2, p. 503-528.

____, 1891b, Notes on the Texas-New Mexico region: Geol. Soc. America Bull., v. 3, p. 85-100.

____, 1894, Geology of parts of Texas, Indian Territory and Arkansas adjacent to Red River: Geol. Soc. America Bull., v. 5, p. 317-319.

____, 1901, Geography and geology of the Black and Grand Prairies, Texas: 21st Ann. Report of the U.S.G.S. to the Secretary of the Interior, in seven parts, part 7, p. 128-197.

_____, 1936, Paluxy sands, with further notes on the Comanche series: Geol. Soc. America Pr. 1936, p. 79-80.

Honess, C. W., 1923, Geology of the southern Ouachita Mountains of Oklahoma; Part I. Stratigraphy, structure, and physiographic history: Okla. Geol. Survey Bull. 32, 278 p.

, 1927, Oil and gas in Oklahoma; geology of Atoka, Pushmataha, McCurtain, Bryan, and Choctaw counties: Okla. Geol. Survey Bull. 40-R, 32 pl.

Imlay, R. W., 1940, Lower Cretaceous and Jurassic formations of southern Arkansas and their oil and gas possibilities: Ark. Geol. Survey, Information Circular 12, 64 p., 26 plates.

, 1945, Ammonites from the Dierks limestone of southern Arkansas: Jour. Paleontology, v. 19, plates 42, 43, 4 text figures, p. 277-281.

Kerr, P. F., Kulp, J. L., and Hamilton, P. K., 1951, Differential thermal analysis of reference clay mineral specimens: Reference Clay Minerals, American Petroleum Institute Research Project 49, Preliminary report no. 3, 48 p.

Krumbein, W. C., 1939, Preferred orientation of pebbles in sedimentary deposits: Jour. Geology, v. 47, p. 673-706.

, W. C., and Griffith, J. S., 1938, Beach environments in Little Bay, Wisconsin: Geol. Soc. America Bull., v. 49, p. 629-652.

- Larkin, Pierce, 1909, A preliminary report on the Cretaceous of Oklahoma: Unpublished Bachelor of Arts Thesis, University of Oklahoma.
- Mankin, C. J., and Dodd, C. G., 1962, Proposed reference illite from the Ouachita Mountains of southeastern Oklahoma: Clays and Clay Minerals, v. 10, p. 372-379.

______, Bellis, W. H., and Kerns, R. L., Jr., 1963, Clay petrology of Permian red bed-evaporite deposits, western Oklahoma: Abs. Twelth National Clay Minerals Conf., Atlanta, Ga.

- Marcou, J., 1858, Geology of North America: Amer. Jour. Sci. (2nd ser.), v. 26, p. 323-333.
- May, M. E., 1950, DeQueen limestone formation of the Trinity group in McCurtain County, Oklahoma: Unpublished Master of Science thesis, University of Oklahoma.
- Melton, F. A., and McGuigan, F. H., 1928, The depth of the base of the Trinity sandstone and the present attitude of the Jurassic peneplain in southern Oklahoma and southwestern Arkansas: Am. Assoc. Petroleum Geologists Bull., v. 12, no. 10, p. 1005-1014.
- Miser, H. D., and Purdue, A. H., 1918a, Gravel deposits of the Caddo Gap and DeQueen Quadrangles, Arkansas: U. S. Geol. Survey Bull. 690-B.

_____, 1918b, Asphalt deposits and oil conditions in southwestern Arkansas: U. S. Geol. Survey Bull. 691-J, p. 271-292.

_____, 1926, Geologic map of Oklahoma: U. S. Geol. Survey, Geological Atlas of the United States, State of Oklahoma.

1927, Lower Cretaceous rocks of southeastern Oklahoma and southwestern Arkansas: Am. Assoc. Petroleum Geologists Bull., v. 11, p. 443-453.

_____, and Purdue, A. H., 1929, Geology of the DeQueen and Caddo Gap quadrangles: U. S. Geol. Survey Bull. 808, 195.

_____, 1954, Geologic map of Oklahoma: Okla. Geol. Survey and U. S. Geol. Survey.

_, 1959, Structure and vein quartz of the Ouachita Mountains of Oklahoma and Arkansas: <u>in</u> the Geology of the Ouachita Mountains (symposium), Dallas Geol. Soc. and Ardmore Geol. Soc., p. 30-43.

- Pauling, Linus, 1930, The structure of the micas and related minerals: Natl. Acad. Sci. Proc., v. 16, p. 123-129.
- Pitt, W. D., 1956, Stratigraphy of the core area of the Ouachita Mountains, Oklahoma: Ouachita Mountain field conference, Ardmore Geol. Soc., p. 34-42.
- Prewit, B. N., 1961, Subsurface geology of the Cretaceous Coastal Plain, southern Oklahoma: Unpublished Master of Science thesis, University of Oklahoma.
- Ray, G. C., 1960, Areal geology of Farris quadrangle, Pushmataha and Atoka counties, Oklahoma: Unpublished Master of Science thesis, University of Oklahoma.
- Roemer, F., 1846, A sketch of the geology of Texas: Amer. Jour. Sci. (2nd ser.), v. 6, p. 358-365.
 - _____, 1848, Contributions to the geology of Texas: Amer. Jour. Sci. (2nd ser.), v. 6, p. 21-28.
- Stanton, T. W., 1928, The Lower Cretaceous or Comanche series: Amer. Jour. Sci. (5th ser.), v. 16, p. 399-409.
- Stephenson, L. W., 1918, A contribution to the geology of northeastern Texas and southern Oklahoma: U. S. Geol. Survey Prof. Paper 120-H, p. 129-163.
 - _____, Monroe, W. H., and Imlay, R. W., 1942, Correlation of the outcropping Cretaceous formations of the Atlantic and Gulf Coastal Plain and Trans-Pecos Texas: Geol. Soc. America Bull., v. 53, p. 435-448.
- Sellards, E. H., Adkins, W. S., and Plummber, F. B., 1932, The geology of Texas, Vol. 1, Stratigraphy, Univ. Texas Bull. 3232, p. 284-327.
- Taff, J. A., 1892, Reports of the Cretaceous area north of the Colorado River: Texas Geol. Survey, Third Ann. Rept., p. 267-379.

____, 1893, Report on the Cretaceous area north of the Colorado River: Texas Geol. Survey, Fourth Ann. Rept. pt. 1, p. 241-354.

54
, 1902, U. S. Geol. Survey, Geol. Atlas, Atoka folio (no. 79)
, 1903, U. S. Geol. Survey, Geol. Atlas, Tishomingo folio (no. 98).
, and Reed, W. J., 1908, The Madill oil pool: U. S. Geol. Survey Bull. 381, p. 507.
Thompson, S. A., 1935, Fredericksburg group of Lower Cretaceous with special reference to north-central Texas: Am. Assoc. Petroleum Geologists Bull., v. 19, p. 1508-1537.
Tomlinson, C. W., 1926, Buried hills near Mannsville, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 10, p. 138-143.
, 1952, Guidebook, Ardmore Geol. Soc. Field Trip, April 25 and 26, 7 p.
Todd, H. W., 1960, Areal geology of the Moyers quadrangle, Pushmataha County, Oklahoma: Unpublished Master of Science thesis, University of Oklahoma.
Twenhofel, W. H., 1932, A treatise on sedimentation: Baltimore, Williams and Wilkins Co.
, 1947, The environmental significance of conglomerates: Jour. Sedimentary Petrology, v. 17, p. 119-128.
Vanderpool, H. C., 1928a, A preliminary study of the Trinity group in southwestern Arkansas, southeastern Oklahoma, and northern Texas: Am. Assoc. Petroleum Geologists Bull., v. 12, p. 1069-1080.
, 1928b, Fossils from the Trinity group (Lower Comanchean), Jour. Paleontology, v. 2, p. 95-107.
, 1933, Upper Trinity microfossils from southern Oklahoma: Jour. Paleontology, v. 7, p. 406-411.
Veatch, A. C., 1906, Geology and underground water resources of northern Louisiana and southern Arkansas: U. S. Geol. Survey Prof. Paper 46, 422 p.
Warshaw, C. M., Rosenberg, P. E., and Roy, Rustum, 1960, Changes effected in layer silicates by heating below 550° C: Clay Minerals Bull., v. 4, p. 113-126.

Wayland, J. R., 1954, Baum limestone member of Paluxy formation, Lower Cretaceous, southern Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 38, p. 2400-2406.

, and Ham, W. E., 1955, General and economic geology of the Baum limestone, Ravia-Mannsville area, Oklahoma: Okla. Geol. Survey Cir. 33, 44 p.

Weaver, C. E., 1953, Mineralogy and petrology of some Ordovician K-bentonites and related limestones: Geol. Soc. America Bull., v. 64, p. 921-944.

_____, 1956, The distribution and identification of mixed-layer clays in sedimentary rocks: Am. Mineralogist, v. 41, p. 202-221.

_____, 1958a, Geologic interpretation of argillaceous sediments: Part 1: Origin and significance of clay minerals in sedimentary rocks: Am. Assoc. Petroleum Geologists Bull., v. 42, p. 254-271.

, 1958b, The effects and geologic significance of potassium "fixation" by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material: Am. Mineralogist, v. 43, p. 839-861.

_____, 1959, The clay petrology of sediments, p. 154-187, <u>in</u> Swineford, Ada, editor, Clays and clay minerals, proceedings of the Sixth National Conf., London, Pergamon Press, 411 p.

Wilmarth, M. G., 1937, Lexicon of geologic names of the United States: U. S. Geol. Survey Bull. 896, v. 1, 1244 p.

Wilson, D., 1959, Index to the geologic names of North America: U. S. Geol. Survey Bull. 1056-B.

APPENDIX

CLAY MINERALOGY

Mineralogic identification of the clay-mineral content of more than 600 samples of clays, sands, gravels, conglomerates, and insoluble residues of limestones from the Trinity Group was determined by means of x-ray diffraction and differential thermal analysis.

Slight variations of the standard preparation techniques were employed before studying the clay mineralogy of such diversified material. The clay samples offered no difficulties other than the flocculation of some samples. Some of the sands that were strongly indurated were first crushed to granule-size fragments before further treatment was attempted. Unindurated gravel samples were wet-sieved using distilled water, and the less than 4 \emptyset fraction collected for further treatment. The indurated gravels or conglomerates were crushed only enough to expose the matrix, and the individual "shale" or clay fragments present were then separated from the matrix. Clay fragments were commonly found interbedded with clay-cemented, crossbedded, and lenticular sands. These fragments were separated from the enclosing sands, split apart with a knife, and the center portion was collected and identified. This was done in order to compare the mineralogy of the clay fragment with the mineralogy of the clay cement surrounding the sand grains. The insoluble residues of the limestones were obtainusing standard laboratory procedures.

Following these preliminary treatments, all material to be studied, regardless of character, was subjected to the same standard preparation for x-ray diffraction analysis. The clay minerals were separated from all samples by dispersing the clay fraction in a beaker of distilled water with the aid of an Ultrasonic transducer-tank. Flocculated samples were washed with distilled water until complete dispersion was obtained. The dispersed less-than 8 \not material was sedimented upon glass slides. This allowed the clay particles to orient with their "c" crystallographic axes perpendicular to the glass slide and thus enhanced the 00 \pounds reflections. The clay-water mixture was then dried in an oven at 68° to 70° C.

The dried slides were then mounted in a wide-angle North American Phillips (Norelco) x-ray diffraction goniometer with Krypton proportional counter and exposed to nickel-filtered Cu K α radiation at 35 KV and 18 MA using a 1° slit system. The scanning speed of the goniometer was 1° 20 per minute and rate-meter settings were varied according to the diffraction intensity. The patterns were run at a chart speed of one-half inch per minute on a Brown recording unit. Some slides were run on a Siemens-Holske horizontal x-ray diffraction goniometer using Cu K α radiation generated by a Siemens 5 KVA constant potential unit.

Subsequent to initial x-ray analysis the slide containing the oriented clay material was then subjected to one, or several, of the following additional treatments prior to being x-rayed again: (1) the slide was placed in an ethylene glycol vapor bath $(68^{\circ}-72^{\circ} \text{ C})$ for a

minimum of 4 and as much as 25 hours, (2) the slide was heated to 270° C for 1 hours, (3) the slide was heated to 300° C for 1 hours, (4) the heat-treated samples were placed in an ethylene glycol vapor bath, and (5) if the presence of kaolinite was suspected, the sample was sedimented on a porcelain slide, x-rayed, then heated to 550° C for a minimum of 0.5 hours and then x-rayed again (Figure 2).

Some samples of clay-size material were dried and ground with an agate mortar and pestle to about 80 mesh. A portion of each of these samples was subjected to differential thermal analysis using a Robert L. Stone Model DTA-13M furnace and recorder. Each sample was heated from room temperature to 1000° C at the rate of about 10° C per minute. An Inconel sample holder was used with alpha Alumina as the standard. Nitrogen was commonly employed as the purging medium, but in several instances, helium was used.

Another portion of each of these ground samples was used to prepare slides with random crystallographic orientation of the clay minerals. The slide was prepared either by packing into an aluminum sample holder or sifted through an 80-mesh sieve upon a vaselinecoated glass slide.

By a combination of these techniques, the main clay-mineral groups found to be present in the Trinity Group were montmorillonite, kaolinite, chlorite, illite, and mixed-layer clays (Figure 4).

Identification of Clay Minerals

Montmorillonite: The term montmorillonite is used in this study as a group term for those three-layer clay minerals (Figure 3) which swell to approximately 17 Å after being subjected to an ethylene glycol-saturated atmosphere at 70° C for 1 hour (Bradley, 1945). The montmorillonite lattice will collapse from 12-15 Å if heated at 270° C for about 1 hour. This is shown by a decrease in both the intensity and spacing of the (001) reflection (Figure 4). In this study, almost every sample that swelled to 17 Å upon glycolation was originally 15.2-15.4 Å material. Mering in 1946 (Brown, 1961, p. 172) found that Ca-montmorillonite in later stages of hydration gives a 15.4 ${
m \AA}$ spacing which corresponds to the interlamellar water being arranged in two sheets of water molecules. With Na-montmorillonite, stationary spacings are not obtained, and the basal reflection tends to be diffuse at moderate humidities. Other than recognizing the dominance of montmorillonites with exchangeable divalent cations (predominantly Ca⁺⁺) and the presence of nontronite-like montmorillonite (Figure 5), no attempt was made to analyze the clays chemically in order to distinguish between individual minerals of the montmorillonite group.

Thermograms of montmorillonite subjected to differential thermal analysis are shown in Figure 5. These thermograms show three endothermic regions and an exothermic region. The first endotherm is typically in the form of a broad doublet or an asymmetrical single peak in the range from 100°-300° C. According to Kerr et al. (1951), in

FICURE 3

the low humidity of the laboratory a doublet is characteristic of divalent interlayer ions rather than univalent ions such as sodium. The endotherm in the $100^{\circ}-300^{\circ}$ C range represents dehydration of sorbed water; the interlayer cations determine its shape. Montmorillonites with Li⁺, Ba⁺⁺, Sr⁺⁺, Mg⁺⁺, or Ca⁺⁺ as an exchangeable cation give a double endotherm in this range and montmorillonites with Cs⁺, K⁺, or Na⁺ as exchangeable cations give a single peak in this range (Hendricks et al., 1940). In this same range, the amplitude of the peak or peaks is dependent on the humidity in which the specimens have been maintained prior to heating.

A second endothermic region, which represents decomposition due to the loss of the hydroxyl groups in the form of water, occurs in the $500^{\circ}-800^{\circ}$ C range (Kerr et al., 1951). The decomposition reaches a maximum for montmorillonite at about 700° C (Figure 5), but it varies with amount and type of substitution. In nontronite, the decomposition temperature range is 100 to 200 degrees lower ($500^{\circ}-600^{\circ}$ C) (Figure 5); in hectorite the range is about 100 degrees higher. Kerr et al. (1951) feel that this is related directly to the strength of the chemical bonds with the hydroxyl, that is, it is almost exclusively a function of the octahedral cation-hydroxyl bond. As the concentration of ferric ions in aluminum positions increases, the decomposition temperature seems to decrease.

The third endothermic region ranging from 700° to 900° C (Bradley and Grim, 1951), corresponds to the final breakdown of the montmorillonite lattice and is characteristic of the montmorillonite

REPRESENTATIVE THERMOGRAMS OF NONTRONITE-LIKE MONTMORILLONITE

group (Kerr et al., 1951). Bradley and Grim (1951) and Early et al. (1953) think that this high temperature endotherm is due to the absorption of heat accompanying the change from anhydrous montmorillonite to amorphous material. In typical montmorillonite the high temperature range is from 850° to 900° C and is followed by a sharp exothermic peak which varies in temperature and shape. This high temperature endotherm representing destruction of the lattice should be affected by substitution in either the octahedral or the tetrahedral layers. The particle size and the concentration and type of interlayer cations are significant in this temperature range, but to what degree is still undetermined. The exothermic peak occurring after the last endothermic reaction is dependent upon the substitution of Al⁺⁺⁺ for Si⁺⁺⁺ in the tetrahedral layer (Bradley and Grim, 1951). Low octahedral Mg⁺⁺ content tends to cause the exothermic reaction to take place immediately; high magnesium and low iron contents raise the temperature of the exothermic peak (Kerr et al., 1951). Low iron content broadens the peak; narrow particle size distribution yields an extremely sharp peak.

<u>Kaolinite</u>: The group name kaolinite is used here for clay minerals which exhibit a regular basal sequence of 7.2-Å, 3.56-Å, and 2.38-Å (OOL) spacing, plus a collapse to a nondiffracting state after heating to 550°-600° C for one hour (Brindley, 1951, see also Figure 4).

This commonly suffices for the determination of kaolinite as long as no chlorite-kaolinite mixtures are encountered. Difficulties
arise with chlorite-kaolinite mixtures because the basal sequence and collapse temperature of kaolinite are similar to those of many chlorites. However, in the majority of the samples studied, the kaolinite (003) peak at 2.38-Å was more intense than the peak of the same spacing would have been if chlorite were present. Also, in the majority of the samples the splitting of the 3.53-3.60-Å peak was not observed, which indicates that there was not both kaolinite and chlorite present throughout the area. In the majority of samples exhibiting both 14-15and 7-Å (001) reflections, the 14-15-Å peak collapsed to a nondiffracting state after heating to 270° C for 30 minutes, and the 7-Å reflection collapsed after heating to 550° C for 30 minutes (Figure 4). For the majority of samples, these results ruled out the presence of chlorite and indicated the presence of a mechanical mixture of montmorillonite and kaolinite. A discussion of the identification procedures for samples that contained mixtures of chlorite and kaolinite is found in the section on Chlorite.

Nearly every sample contained some kaolinite; many samples had only trace amounts. When bulk samples were subjected to differential thermal analysis the presence of trace quantities of clay minerals tended to mask or alter the reactions of the dominant clay mineral that was present. It is realized that the clay fraction of the samples studied should be separated into monomineralic fractions before thermal analysis is undertaken. Because of the scope of the study only selected samples were size-fractioned by centrifugation to remove the trace amounts of minerals other than kaolinite; the remaining

samples, when studied, were analyzed in bulk. No attempt was made to determine the structural type of kaolinite.

Illite: Illite is used here as a group term for the clay minerals which contain less potassium and more water than a wellcrystallized mica (Figure 3) and which have an integral sequence of basal reflections at approximately 10, 5, and 3.33-Å. Heat treatment to 600° C produces a slight sharpening of the (OOl reflection and a decrease in spacing from 10.1-10.5-Å to 10.0-Å. Treatment of samples by exposure to an ethylene glycol atmosphere did not result in expansion of the lattice.

The majority of samples had some representation of illite present, mostly in trace amounts. The illite was extremely fine-sized and persisted in small amounts even when samples were size-fractioned in an attempt to obtain monomineralic fractions of kaolinite and montmorillonite. In a few instances, in and around the area of Hugo, and the bluffs along the Little River, north of Idabel, illite and kaolinite composed the entire clay-mineral assemblage.

In these localities the illite was characterized by a 10-Å reflection with a broad base or shoulder, with broadening toward the low-angle (high d-spacing) side and a steep high-angle side. In none of these instances was there any apparent indication of the presence of clay minerals with an (OOL) reflection higher than illite (Figure 4). Illites presenting this kind of reflection are known as degraded- or stripped-illite and are the result of the removal or stripping of potassium from the interlayer position in the illite lattice. It has open

thought (Weaver, 1959) that when degraded illite is placed in a potassium-saturated solution it absorbs potassium and reacts as if it reconstitutes as illite. In order to substantiate the presence of degraded illite, several samples were dispersed in a 0.1 N potassium chloride solution and agitated for 4 hours. The excess potassium was removed by dialysis treatment and the samples were then prepared in the standard manner for subsequent x-ray analysis. X-ray diffraction of the treated samples showed reduction of the ragged shoulder or basal broadening on the high d-spacing side; it was concluded that the material was degraded illite.

Because nearly all of the 600 samples analyzed showed illite present in only small to trace amounts no differential thermal analysis of the illite was carried out. As previously stated, illite was present, with the exception of the samples that were dominantly montmorillonite in the western portion of the area, in all samples and in all size-fractions.

<u>Mixed-layer illite-montmorillonite</u>: Clay minerals may be composed of a single mineral species (Grim, 1953), a mechanical mixture of two or more species, or an interstratification (mixed-layer) of two or more species (Pauling, 1930). Weaver (1956) has stated that from an examination of more than 6,000 sedimentary rock samples, ranging in age from Cambrian to Recent, that more than 70 percent of the samples contain some variety of mixed-layer clay. These so-called mixed-layer clays are the consequence of the similarity of the basic

clay mineral lattices consisting of silica tetrahedral layers and octahedral layers of oxygens and hydroxyl groups.

A mixed-layer clay can be a regular or a random interstratified mineral (Weaver, 1956). A regular mixed-layer mineral is such that the stacking along the c-axis is a regular repetition of the different layers; in random (irregular) mixed-layer minerals there is no uniform repetition of layers (Grim, 1953) (Figure 4). The mixed-layer clays of the Trinity Group are random mixed-layer minerals.

As noted in the discussion of other clay minerals, monomineralic clays exhibit a regular (00l) series of x-ray reflections which are integral sequences of the (001) reflection. Random mixedlayer clays do not exhibit an integral sequence of the (00l) series (Weaver, 1956), but rather average values resulting from the simultaneous scattering by both types of layers (Figure 4).

The components of the regular mixed-layer clays are determined by interpretation of the c-axis thicknesses normally after solvation. A mixing of components with c-axis thicknesses of 10 and 17-Å (after solvation) is called an illite-montmorillonite because illite has a c-axis thickness of 10-Å and montmorillonite a c-axis thickness of 17-Å. In random mixed-layer illite-montmorillonite there are no distinctive 17-Å x-ray reflections (Figure 4). The reflections are commonly broad or irregular and fall somewhere between the basal (00*L*) sequences of each respective mineral at each successive (00*f*) reflection position. The position of the reflection depends upon the amount of each component present (Brown and MacEwan, 1950). The randomly

interstratified expanded and nonexpanded layers of the Trinity Group mixed-layer illite-montmorillonite occur in all possible ratios.

It should be pointed out that even though mixed-layer clays can form in all possible combinations of different layers (illitechlorite, chlorite-montmorillonite, etc.) (Weaver, 1956) only mixedlayer illite-montmorillonite was found to be present in the samples chosen for study.

According to Weaver (1956) mixed-layer clays in most cases are derived from some form of degradation or aggradation of preexisting clay minerals during weathering. It is not known, at the present time, if a mixed-layer clay in a sediment was formed by diagenesis in the basin of deposition, by weathering in the source area, or to what part each method plays by a combination of both factors.

<u>Chlorite</u>: The structure of the chlorite group of clay minerals consists of an alternating series of mica-like layers and brucitelike hydroxide layers (Bindley and Gillery, 1956) (Figure 3). Members or species of the chlorite family have the same type of structure but exceedingly varied isomorphous substitution. Al ions in tetrahedral coordination and divalent Fe ions in octahedral coordination result in species which are difficult to identify by routine x-ray diffraction procedures. The identification of particular species must proceed from a consideration of the precise lattice dimensions and the intensities of reflections or structure factors (Bindley and Gillery, 1956) and, in most cases, by chemical analysis.

Chlorites have a well defined layer structure parallel to (001) (Figure 3). The (00ℓ) reflections based on a periodicity of approximately 14-Å serve for identification. Heating to 550° C for one-half hour results in the loss of all the basal peaks with the exception of the (001). This reflection is at 13.5-13.8-Å and has increased intensity (Warshaw, Rosenberg, and Roy, 1960) (Figure 4). Glycolation (Brunton, 1955) causes no change.

Chlorite is found in the Trinity Group sediments in only minor to trace amounts, is poorly crystalline, and always associated with kaolinite. This mixture caused some difficulty in identification because of similarity of the basal sequence of (OOL) reflections; no attempt was made to identify separate species. Chlorite was identified when splitting of the 3.53-3.60-Å peak was observed and when the 14-Å peak persisted after heating to 550° C for one-half hour (Figure 4).

The clay-mineral suites of the Antlers, DeQueen, and Holly Creek Formations were grouped into four major clay-mineral zones (Figure 6): (1) a mixed-layer zone consisting of the clay-mineral suite of the Holly Creek and DeQueen Formations and the basal claymineral suite of the Antlers Sand, (2) a transition zone lying upon the mixed-layer zone and consisting of the clay-mineral suite of the middle of the Antlers, (3) a montmorillonite zone lying above the transition zone and consisting of the upper Antlers clay-mineral suite, and (4) a kaolinite zone consisting of the clay-mineral suite of the uppermost Trinity Group. The kaolinite zone lies discordantly upon the lower three clay-mineral zones (Plate 2).

LOCATION OF SAMPLES

Listed in the following pages are the locations of more than 800 samples collected for this study. The samples are listed by Ranges from R3W to R27E all of which are in Oklahoma. An area outside of Oklahoma is included: R33W, Townships 8S and 9S, in the southwestern part of Arkansas.

The listing of samples begins in section 1 of the northernmost township of the western-most range and continues to the southernmost township within the same range. The process is repeated for each successive range from the western portion of the study area to the eastern portion. Within each township the numbering sequence follows the section-numbering sequence. With each section the numbering sequence proceeds in a counter-clockwise direction (NE to NW to SE to SE).

Using Plate 1 with the above system it is possible to locate every sample locality to the nearest one-quarter section.

Rng. Sec.	- Twp. Smpl.	Rng Sec. Si	Twp. mpl.	Rng. Sec.	- Twp. Smpl.	Rng Sec	Twp. . Smpl.
<u>3W</u>	<u>- 55</u>	32	34 35	12	59 60		89 90
Т	2	<u>2w -</u>	<u>65</u>	13	61 62		91 92
2	3 4	8 16 17	36 37 38	15	63	<u>1E</u>	<u>- 5</u> 5
9 11 12 13	5 6 7	<u>2</u> W -	7 <u>5</u>	23	64 65 66	18 19	94 95 96
L)	9 10	18 1 <u>W</u>	40 45	27	68 69		97 98 99 100
15 23 25	11 12 13	28 29	41 42		70 71		101 102
26 32 33	14 15 16	32 36	43 44 45	<u>1</u> W 29	<u>- 68</u> 72	20 34	103 104
34 3W	17 - 79		46 47	<u>1</u> W	<u>- 78</u>	<u>1E</u>	<u>- 65</u>
<u> </u>	18	<u>1W -</u>	58	l	73 74	3 9 11	105 106 107
2W	<u>- 58</u>	l	48 49		75 76	13 17	108 109
4 7	19 20		50 51	11 13	77 78	22	110 111 112
	21 22 23	2 3	52 53 54	23 27 28	79 80 81		113 114
	24 25	4	55	<u>1E</u>	<u>- 45</u>	<u>1E</u>	<u>- 75</u>
9 16	26 27 28	7	57 58	31	82 83	10	115
21 29	29 30 31	10	58a 58b 58c		85 86	<u>26</u> 24	- 45 117
	32 33		58a	32.	87 88		119

75
1/

Rng. Sec.	- Twp. Smpl.	Rng Sec. 1	Twp. Smpl.	Rng Sec.	- Twp. Smpl.	Rng. Sec.	- Twp. Smpl.	
26	120 120a 120b 120c		150 151 152 153	26 28	184 185 186	36 <u>3</u> E ·	218 - 65	
27	121 122		154 155 156 157	29 35	187 188 189	1 2 3 6	219 220 221 222	
34	123 124 125	<u>3</u> E -	35	<u>3E -</u> 1	<u>58</u> 190	8	 223 224	
36	126	35 36	158 159 160	2 3	191 192 193	17 20 26	225 226 227	
<u>2E</u> 8	<u>- 55</u> 127	<u>3E -</u>	45	4	194 195	27	227a 228 229	
9 10	128	8	161 162 163	5 8	196 197	36	230	
1	130	9 10	164 165	9 13 15	198 199 200	<u>3E</u> -	- <u>78</u> 231	
19 22 24	132 133 134	15	167 168 169	18 20	201 202 203	5 7 17	232 233 234 235	
25	135 136		170 171 172	22 23	204 205 206	<u>4</u> E -	- 45	
	137 138 139	16	173 174 175	24	207 208 209	36 <u>4</u> E -	236 - 5 8	
27 28 30 32	140 141 142 143	18 19 21	176 177 178	25	210 211	9 12	237 238 239	
20	144 145 146	22	179 180	28 30	212 213 214	13 19 20	240 241 242	
33	148 149	24	182 183	35	215 216 217	23	243 244 245	

•

.

Rng.	- Twp.	Rng.	- Twp.	Rng.	- Twp.	Rng.	- Twp.
Sec.	Smpl.	Sec.	Smpl.	Sec.	Smpl.	Sec.	Smpl.
	246	18	274 275	23	307 308	11	329 330
24	247 248	19 20	276	26	309	12 23	331 332
<u>4</u> E	<u>- 65</u>	23	278 279	27	311	26	333
9	249 250		280	- (312	<u>7</u> E	<u>- 45</u>
	251	29	281 282	32	313 313a	5 6	334 335
16	252 253 254		283 284	35	314 215	16 17	336 337 228
	255	33	285 286	55 55	- 8s	10	339
18 19	256 257		287 288	1	316	21 33	340 341
26	258 259 260	34	289 290	<u>6</u> E	<u>- 4s</u>	<u>7</u> E	<u>- 58</u>
27	261 262		291 293 294	13 20 30	317 318 319	3	342 343 344
31 32	263 264	<u>5</u> E -	<u>- 65</u>	<u>6e</u>	<u>- 58</u>	5	345 346
34	265	4 13	295 296	4	320	8E	- 3S
<u>4</u> E	<u>- 75</u>	28 30	297 298	<u>6</u> E	<u>- 78</u>	18	347
1 8	266 267		299 300	20	321 322	22 26	348 349
10 14	268 2 69		301		323 324	28 30	350 351
<u>5e</u>	<u>- 45</u>	- <u>عر</u>	<u>- 78</u>	20	325	35	352
34	270	10	302 303 304	30 31	320 327	<u>OE</u>	<u>- 45</u>
<u>5e</u>	- 58		305	<u>6</u> E	<u>- 8s</u>	14 24	323 354 355
6 8	271 272	22	306 306a	6	328	24 9E	- 3 S
	273			<u>7</u> E	<u>- 35</u>		

1000	- 1wp.	Rng.	- Twp.	Rng.	- Twp.	Rng.	- Twp.
bec.	Smbr.	Sec.	Smpr.	bec.	enbr.	bec.	Smbr.
12 25	356 357 358	36	388 389	21 24 27	421 422 423	6	452 453 454
	359	10E	<u>- 35</u>	·	424		455 456
32 36 9E	360 361 - 45	1	390 391 392	30	425 426 427 428		457 458 459 460
1	362	2	393 394		429 430	8	461
5	363 364 365	3 4	395 396	31	431	·	462 463
	366	7 10	397 398	<u>11E</u>	- 25	11 12	464 465
6	367 368	19	399 400	20	432 433	18	466 467 468
8 11	369 370	24 25	401 402	23	434 435		469
20	371	31	403 404	25	436	19	470 471
20	373 374 375	33 34 35	405 406 407	27 28	438 439	20 24 28	472 473 474
22	376 377	<u>10</u> E	<u>- 45</u>	29 32	440 441 1110	34	475 475a
23 27	378 379	1 2	408 409	20	442	35	476 477
31	381	5	410 411	34 36	444 445	36	478 479
10E	- 25	6 11	412 413	<u>11E</u>	<u>- 35</u>	1.1E	- <u>4</u> S
26	382	10	414 415 416	2	446 447	1	480
<i>c</i> (384	13 14	410 417 418	3	448 440	Q	481 280
28 34	385 386 387	15 19	419	4	450 451	34	483 484 485

Rng. Sec.	- Twp. Smpl.	Rng. Sec.	- Twp. Smpl.		Rng. Sec.	- Twp. Smpl.	Rng. Sec.	- Twp. Smpl.
7 16 17	486 487 488 489 490	14	520 521 522 523		<u>13E</u> 22 14E	<u>- 55</u> 548 <u>- 35</u>		578 579 580 581
٦٩	491	18	524		19	549	34	582
20 21 26	492 493 494 495	20 30 31	525 526 527		27 28 29	550 551 552 553	<u>14</u> E 10	<u>- 583</u> 584
27	498 497 498	<u>126</u> 17	- 45 528 528a		35 36	554 555 556	11	585 586 587
<u>12E</u> 33	<u>- 25</u> 499	18 19 20	529 530 531		<u>14E</u> 3	<u>- 48</u> 557 558	12 22	588 589 590
34	500 501 502 503	28	532 533 534	·	4	559 560	23 33	591 592
	504 505	29	535		F	560	15E	<u>- 45</u>
35	506 507	<u>12E</u> 2	<u>- 58</u> 536		7 8	563 564 565	6	593 594
12 E	<u>- 38</u>	4	537 538		10	566 567	7 19	595 596 597
٤	509 510	। अस	540		11 15	568 569	20	590 599 600
3 5 8	511 512 513	18 20	<u>54</u> 541 542		17 23	570 571 572		601 602
9	514 515 516	22	543 544 545		26	573 574	21	603 604 605
11	517 518 519	23	546 547		27	575 576 577	24 26 29	60 6 607 608

Rng.	- Twp.	Rng Twp.	Rng.	- Twp.	Rng	- Twp.
Sec.	Smpl.	Sec. Smpl.	Sec.	Smpl.	Sec	. Smpl.
<u>15E</u>	<u>- 58</u>	<u> 17e - 4s</u>	6	660	<u>20E</u>	<u>- 58</u>
-	600		.9	661	10	(00
1	610	13 637	12	662	15	690
	010	030	10	664		091
18	611	15 639			20E	<u>- 68</u>
	612	17 640	17	665		
	613		18	666	24	692
ז 4 דפ	20	<u>17E - 5S</u>	19	667	01.0	60
TOP	- 35	05 6)11	24	660	516	- 28
35	614	25 041	2)	670	8	603
57	615	20 042 27 643		010	Ũ	694
	616	35 644	30	671		695
		36 645		672		696
16E	<u>- 45</u>			·		
		17E - 6S	31	673	17	697
10	617		34	674	18	698
11	618	1 646		675		699
12	619	647		676 (77		=
	620			0((20	·/00
	021	<u> 10E - 55</u>	36	678	21	702
15	622	2 6h8	50	010		IVE
20	623	17 649	1 9E	- 6s	27	703
22	624	31 650			28	704
27	635	<u> </u>	l	679	33	705
	626	18 E - 6S		680 _.	34	706
~						707
28	627	7 651	3	681		•
34	628	8 652	5	682	35	708
	029	653	07	00j 69)	36	709
1 6 R	- 55	074 655	ł	685	סוס	69
<u></u>		075		686		- 03
3	630	9 656			3	710
•	631	<i>y</i> - <i>y</i> -	12	687	15	711
	632	19 E - 4S			19	712
			20E	<u>- 45</u>		713
9	633	23 657				
	634	24 658	20	688	22	714
	035		30	009	23	715
10	626	<u> 195 - 58</u>				(TO
TO	030	E 650				
		ענס כ				

80	

Rng Twp. Sec. Smpl.	Rng Twp. Sec. Smpl.	Rng Twp. Sec. Smpl.	Rng Twp. Sec. Smpl.
<u> 22E - 5S</u>	24 E - 6 S	774	812
34 717	1 742	776	013
<u>22e - 6s</u>	743	777 778	31 814 36 815
20 718	5 744 745	779 780	816
719	6 746	781 782	26 E - 6S
21 720 721	747	783 784	3 817 5 818
72-	10 748	785	7 819
26 723	(49	787 787	820
27 724 28 725	12 750 751	788 789	10 821 11 822
726 727	752 753	790 791	823 824
728	754 755	10 700	
29 729	756	19 (92	14 826
30 730 34 731	13 757	<u>25E - 6S</u>	827
732 733	19 758 24 759	6 793 794	18 828 829
734	26 760 28 761	795	830 831
23 E - 5S	29 762	7 796	832
34 735		10 798	834 834
35 (30 36 737	30 764 765	799	835 836
738	24 E - 7S	13 800 14 801	23 837
<u>23E - 6S</u>	1 766	16 802 17 803	26 838 36 839
13 739 33 740	767	804	96F 75
	8 768		
<u>246 - 75</u>	נס) 770	19 806 23 807	6 840
31 741	771	28 808 30 809	
	12 772 14 773	810	

Rng. Sec.	- Twp. Smpl.	Rng Sec.	Twp. Smpl.	Rng Tw Sec. Smp	<u>p.</u> 1.	Rng. Sec.	- Twp. Smpl.
<u>27</u> E	<u>- 65</u>						
5	841 842						
7	854 844 845						
8	846 847 848						
9 16 18 20	849 850 851 852 853						
22	854						
27E	- 75						
7 9	855 856						
<u>33</u> W	<u>- 8s</u>						
	857						
<u>33</u> W	<u>- 95</u>						
10	858						

.

: ...

DESCRIPTIONS OF SELECTED SAMPLES

Included below are field descriptions of selected samples of the various lithologies found in the Trinity Group sediments. All of the samples were analyzed for their clay-mineral content. To avoid repetition, not all of the samples whose mineralogy was determined are listed below.

The descriptive terminology follows that suggested in the Oklahoma Geological Survey Guidebook XIV (Table 6, p. 43) and the AAPG Committee on Stratigraphic Correlations.

The following abbreviations have been used:

abnt	 abundant
ang	 angular
aprox	 approximately
aren	 arenaceous
bdd	 bedded
blk	 black
blky	 blocky
brn	 brown
calc	 calcareous
cht	 chert
cly	 clay, clayey
clg	 conglomerate
xlyn	 crystalline
dk	 dark
fld	 feldspar
Fe	 ferruginous
frags	 fragments
gу	 gray
ireg	 irregular
lam	 laminated
lrg	 large
1t	 light

ls	 limestone
micxl	 microcrystalline
mod	 moderate
olv	 olive
orng	 orange
pbl, pbls	 <pre>pebble(s)</pre>
pk	 pink
pos	 possible
purp	 purple
qtzt	 quartzite
rd	 round, rounded
scat	 scattered
sil	 siliceous
sbang	 subangular
sltst	 siltstone
sbrd	 subrounded
sh	 shale
SS	 sandstone
/	 with
vel	 vellow

Other words or symbols used that require explanation are:

few	 less than 5%
some	 10 - 20%
much or many	 25 - 40%
/	 In some cases " / " not followed
	by an adverb, such as "/some ",
	or " / few ", is interpreted as
	" with " meaning an occurrence
	of, or presence of, some material
	or color such as pigment or stain.

Unless otherwise stated, all samples were collected from the center of each change in lithology less than 6 inches thick at any given outcrop. Units from 0.5 - 5.0 feet thick were channel sampled, whereas, thicker units were sampled at the base, middle, and top. All samples were taken from pits or trenches from 0.5 - 2.0 feet deep in order to obtain fresh material. At some localities both weathered and/or soil samples were collected along with the fresh material. The samples were placed into polyethylene freezer bags, sealed, and returned to the laboratory.

In the description of each sample the following order is used:

Sample No.

Description

1000 Rock type; Wentworth size scale, phi size (ϕ) , color (after Rock-Color Chart, Goddard, <u>et al.</u>, 1948), chemical content or stain, included terriginous material, shape of detritals, cement or matrix, field characteristics, location to the nearest one-sixty-fourth of a section (the section, township, and range of each sample is in numerical order under "Location of Samples".).

An example would be:

1000 ss; vf-f, 2.5-3.5, /some 1.5-2.0, gy-orng, Fe, /few ireg frags of gy cly, sbang, cly, bdd. NE NW SE

Sample	Number		Description
1		cly;	dk red-brn, Fe. SW NW SW
2		ss;	vf-f, 2.0-4.0, few 1.5, yel-gy/some gy-orng, Fe stain, cly, silty, bdd. SE SE SW
4		88;	f-med, 1.0-3.0, lt-brn, Fe, sbang, bdd. NE SE SE
10		SS ;	f-cse, 0.5-3.0, some 3.5-4.0, dk yel-orng, Fe, sbang, silty, cly, bdd. SE SE SE
11		cly;	gy-red, Fe. NW NW NE
12		SS;	f-med, 1.0-2.5, some 3.0-3.5, gy-orng-pk, sbang, cly, bdd. SW SW SW
19		ss;	f-med, 1.5-3.0, gy-orng-pk & yel-gy, Fe, sbang, cly, bdd. SW SW SW
20		ss;	f-med, 1.5-3.0, gy-orng, sbang, cly, bdd. NW NW NW
21		ss;	f-med, 1.0-2.5, few 3.0, mod red-brn & lt-brn, Fe, sbang, bdd. NW NW NW
23		SS;	vf-f, 2.0-3.0, some 1.0-1.5, 1t-brn, cly, conglomeratic/sbrd qtzt pbls, 6.0 mm across, lrg frags of clay, Fe, bbd. NW SW SW
24		SS;	f-cse, 0.5-2.5, some 3.0-3.5, dk yel-orng, Fe, sbang, cly, contains pbls of qtzt up to 1.0 cm across, bdd. NW SW SW
25		cg1;	v pale-orng, qtzt pbls up to 6.0 cm across make up 40-50% or rock, pbls cemented in matrix of f-med ss, bdd. NW SW SW

26	cly; gy-red, Fe. SW NW NW
27	ss; v-f, 3.0-4.0, v pale-orng/gy-orng & dk yel-orang, Fe stain, bdd. SW NW NW
28	ss; cse, 0.0-1.0, lt-brn, Fe, rd, some frags of qtz & cht up to 1.0 cm across, bdd. SE NE NE
29	ss; vf-med, 1.5-4.0, yel-gy/some lt-brn Fe stain, cly, silty, bdd. SW SW NW
30	ss; vf, 3.0-4.0, few 2.5, v pale-orng/some dk yel- orng Fe stain, cly, bdd. SE NE NE
31	ss; cse, 0.0-1.0, pk-gy, sil, rd/few rd granules & pbls, bdd. SE NE SE
32	ss; vf-cse, 0.5-4.0, yel-gy, rd, slty, cly, bdd. 2.0' bel W-S9. SE SE SE
33	ss; f, 2.0-3.0, few 1.0-1.5, v pale-orng, sbang, cly, bdd. SE SE SE
34	ss; vf, 3.0-3.5, v pale-orng, bdd. SE SE SE
35	sltst; pale grn-yel/some dk yel-orng Fe stain, cly, bdd. SE SE SE
36	ss; f-med, 1.0-2.5, some 3.0, 1t-brn, Fe, bdd. SE SE NE
37	cly; gy-red, Fe. SW SW SW
38	ss; vf, 3.5-4.0, v pale-orng, silty, cly, bdd. SE SE SE

_

40	ss;	f, 2.0-2.5, yel-gy/some dk yel-orng stain, Fe, slty, cly, bdd. NW SE NW
48	85;	cse-v cse, -1.0-0.5, some 1.0-2.5, dk yel-brn, cly, contains granules of pbls of cht, qtz & qtzt up to 10.0 mm across, bdd. NW SW NW
49	slts	t; gy-orng, contains vf-vcse qtz grains, Fe, bdd. SW SE SE
50	ss;	f-med, 1.5-3.0, some 3.5-4.0, gy-yel, Fe, sbang, cly, bdd. SE NE SE
52	SS;	med-cse, 0.5-2.0, some 2.5-3.5, gy-orng, Fe, cly, few qtz grains up to 4.0 mm across, bdd. SW NE NE
55	88;	f-med, 1.5-3.0, few 3.5-4.0, dk yel-orng, Fe, sbang, cly, bdd. SW NW NW
56	88;	f, 2.5-3.0, few 3.5-4.0, gy-orng/spots of pale- brn, cly, bdd. NW SW NW
58	sltst	; yel-gy, some vf qtz grains, cly, bdd. NE NE SE
58a	cly;	pale-olv. NE NE SE
58c	cly;	yel-gy, some dk yel-orng Fe stain. NE NE SE
58d	c1 y;	gy-red, Fe. NE NE SE
64	ss;	f, 2.0-3.0, v pale-orng & lt-brn, Fe, sil, bdd. NW NE NE
65	ls;	v pale-orng, vf xlyn, few scat vf-f qtz grains. NW NE NE

.

66	ss;	vf-f, 2.5-3.5, yel-gy/spots dk yel-orng Fe stain, cly, slty, sbang, bdd. NW NW NW
70	ss;	vf, 3.0-3.5, lt brn, Fe, cly, bdd. SW SW SW
83	SS;	vf, 3.5-4.0, v pale-orng/some gy-orng Fe stain, silty, cly, bdd. SE SW SE
98	cly;	wh/much gy-orng Fe stain. SW NW NE
105	88;	f-med, 1.0-2.5, v pale-orng, Fe, cly, contains irreg beds of vf-f yel-gy Fe ss bdd. SW NW SW
106	slts	t; pale red-brn, Fe, many vf qtz grains, cly, bdd. NE NE SE
107	cly;	pale red-brn, Fe, some vf qtz grains. SE SE SW
108	SS;	f-med, 1.0-2.5, some 3.0-3.5, gy-orng, Fe, silty, bdd. NW NW NE
117	cly;	pale red-brn, Fe. SW SW NW
119	88;	f, 2.5-3.0, lt-brn, Fe, bdd. SW SW SW
120Ъ	cly;	gy-red, Fe. NW NE NW
120c	SS;	cse-vcse, -0.5-1.0, yel-gy, 40% of rock is clay matrix, fld grains, some f-med qtz grains, bdd. NW NE NW
123	ss;	vf, 3.0-4.0, pale grn-yel/some gy-orng Fe stain, silty, cly, bdd. NW NE NE

124	S 8;	f-med, 2.0, some 2.5-3.0, lt-brn, Fe, locally contains many v cse qtz grains. SW SW SW
125	ss;	f, 2.5, some vf & med, 1.0-3.5, lt-brn, Fe, cly, slty, bdd. SW SW SE
126	SS;	f-med, 1.5-2.5, v pale-orng, sbang, bdd. SE SW SW
128	88;	f-cse, 0.5-3.0, gy-orng, few v cse qtz grains, contains some frags of yel-gy sltst, Fe, bdd. NE NE NE
130	S8;	vf, 3.0-4.0, some 2.5, pale grn-yel/some mod- yel Fe stain, silty, cly, bdd. NW NE NW
131	s s;	vf-f, 2.5-3.5, lt-brn, Fe, cly, bdd. SW NW NW
133	88;	f-med, 1.0-2.5, few 3.0, 1t-brn, Fe, bdd. SW NW NE
134	85;	vf-med, 1.5-3.5, few 0.5-1.0, yel-gy/few spots of pale yel-orng Fe stain, bdd. NW SW NE
139	cly;	lt olv-gy, many vf-med qtz grains. SE SW NW
140	88;	f, 2.5-3.0, many med qtz-grains, yel-gy, sbang, bdd. NE NW NW
144	cly;	gy-orng, Fe, calc, some vf-f qtz grains. NW SW SW
165	cly;	pale-olv/some gy orng-pk, Fe, some vf-f qtz grains. SE SE SW
173	88;	vf, 4.0, yel-gy, cly, slty, bdd. SW SW SW

174	cly;	yel-gy, some dk yel-orng Fe stain. SW SW SW
178	SS;	vf, 3.5-4.0, yel-gy/few spots of dk yel-orng Fe stain, sbang, cly, bdd. SW SW NW
180	ss;	vf-f, 2.5-4.0, yel-gy, slty, cly, bdd. SE SE SW
181	ss;	vf, 4.0, pk-gy, sbang, cly, bdd. SW SE SW
182	cly;	dusky-yel, few vf qtz grains. SW SE SW
183	cly;	dusky-red, Fe. SW SE SW
184	sltst	; dusky-yel, cly, Fe. SE NE NE
185	SS;	vf, 4.0, gy-orng, Fe, cly, slty, bdd. SE NE NE
186	ss;	vf, 3.5-4.0, yel-gy, sbang, cly, bdd. NE SE SE
188	sltst	; dusky-yel, cly, few vf qtz grains, bdd. NW NE SW
189	ss;	f, 2.0-3.0, gy-orng, Fe, bdd. NE NE SW
190	sltst	; v pale-orng/some lt-brn Fe stain, cly, some vf qtz grains, bdd. NW NE NE
191	cly;	lt olv-gy/some dk yel-orng Fe stain, calc, some vf-f qtz grains. SE SE SE
192	sltst	; lt olv-gy, cly, some vf qtz grains. SW SE SW

193	cly;	lt olv-gy/some dk yel-orng Fe stain. SW SE SW
195	ss;	f-med, 1.5-3.0, v pale-orng, sbang, bdd. SE SE SE
196	SS ;	f, 2.0-3.0, yel-gy, cly, slty, bdd. SW SW SE
199	cly;	lt olv-gy/dk yel-orng Fe stain, some vf-f qtz grains. NE NE SE
202	85;	vf, 3.5-4.0, wh, slty, bdd. NE NE NE
205	ss;	vf, 3.5, wh/spots of pale brn, sbang, bdd. SE SE SE
206	88;	vf-f, 2.5-3.5, v pale-orng, Fe, cly, bdd. SE SW SW
207	88;	med-cse, 0.5-2.0, few 2.5-3.0, few -1.0-0.0, gy orng-pk/some pale yel-orng Fe stain, bdd. SW SW SE
208	s s;	f-med, 1.5-2.5, some 3.0, v pale-orng, sbang, cly, silty, bdd. SE NE NE
209	s s;	vf, 3.0-4.0, few 2.5, pale red-purp, Fe, sbang, cly, bdd. SW SE SW
211	ss;	f-med, 1.0-2.5, lt-brn, sbang, Fe, cly, bdd. SW SE SE
216	ss;	f, 2.5-3.0, few 3.5, pale yel-orng, Fe, sbang, bdd. SW SE SW
218	sltst	; yel-gy, few vf qtz grains, cly, bdd. SE SE NE

219	ss;	vf, 3.5-4.0, pale grn-yel/some dk yel-orng Fe stain, cly, bdd. NE NW NW
230	ss;	f-med, 1.5-2.5, yel-gy/dk red-brn Fe stain, silty, cly, bdd. SW SW SW
222	ss;	vf, 3.0-3.5, v pale-orng, sbang, bdd. SE SE SE
223	ss;	vf-f, 2.0-3.5, v pale-orng, sbang, bdd. SE SE NE
224	ss;	f-med, 1.5-3.0, dk yel-orng, Fe, silty, cly, bdd. SE SE SE
225	ss;	vf, 3.0-4.0, gy-orng/some dk-yel-brn Fe stain, cly, bdd. NE SE SE
226	ss;	vf, 3.0-3.5, few 2.5, lt-brn/some gy-orng, Fe, bdd. NE SE SE
227a	ss;	vf, 3.5-4.0, lt-brn, Fe, sbang, cly, bdd. SE NE NE
228	cly;	gy-red, Fe. NW NW NE
229	cly;	lt olv-gy, some vf qtz grains, Fe. SW NE NW
231	ss;	vf-f, 2.5-3.5, few 2.0 & 4.0, v pale-orng, sbang, cly, bdd. SE NW SE
238	sltst	; yel-gy, cly, some vf qtz-grains, bdd. NW NW SE
239	cly;	pale-olv/dk yel-orng Fe stain. NW NW SE

240	SS;	f, 2.0-3.0, olb-gy, much cly, in part an aren cly, calc, bdd. NW NE NE
241	SS;	vf, 3.0-4.0, few 2.5, gy-yel, Fe, cly, bdd. SW SE SW
243	ss;	f-med, 1.0-2.5, few 3.0-3.5, gy-pk, sbang, bdd. SW SE SW
244	slts	t; med lt-gy, vf silt. SE SW SE
245	ss;	f-med, 1.5-3.0, some 3.5, few 1.0, dk yel- orng, Fe, cly, bdd. NE NE NE
246	cly;	dusky-yel, Fe, some vf-f qtz grains, includes irreg lenses of vf-med ss. NE NE NE
247	ss;	vf-f, 2.5-4.0, few 2.0, pale yel-brn cly, silty, bdd. SE NE NE
249	ss;	vf-f, 2.0-3.5, pale yel-brn/dusky-yel Fe stain, cly, bdd. NW NW NW
250	cly;	pale red-purp, some Fe stain, some vf qtz grains. NW SW NW
251	sltst	; v pale-orng, many vf-f qtz grains, cly, bdd. SW SW NW
252	ss;	vf, 3.0-4.0, some 2.5, pale yel-orng, Fe, sbang, bdd. SW NW SE
253	ss;	vf-f, 2.0-3.5, some 4.0, v pale-orng, bdd. SE NE SE
254	cly;	olv-gy, many vf-f qtz grains. SE NE SE

.

256	ss;	vf, 4.0, yel-gy, cly, slty, sbang, bdd. SE SW SE
257	slts	t; lt-brn, Fe, contains some vf-med qtz-grains, cly, bdd. NW NW NW
264	ss;	vf, 3.5-4.0, v pale-orng, bdd, contains irreg frags of yel-gy sltst. SE SE SE
265	ss;	vf-f, 3.0, pk-gy, sbang, cly, bdd. NW NE NE
266	cly;	pale-brn, some vf qtz-grains. SW SW NW
267	cly;	yel-gy, some vf qtz-grains. NW NE NE
268	ss;	vf-f, 2.5-4.0, lt-brn, Fe, cly, slty, bdd. SE SE SE
269	sltst	t; lt-brn & gy-orng, Fe, many vf-med qtz-grains, much cly. NW NW SW
270	cly;	lt olv-gy/some pale yel-orng Fe stain. SE SE SE
272	cly;	lt olv-gy, much silt, lam. C
273	cly;	med dk-gy, contains irreg lenses of lt olv-gy f-grained ss. C
274	ss;	vf, 3.0-4.0, lt olv-gy/some dk yel-orng Fe stain, much cly, in part an arch cly, bdd. SW SW NW
275	ss;	vf-f, 2.0-4.0, few 1.0-1.5, v pale-orng cly, bdd. SW SW NW
276	cly;	olv-gy/some pale yel-orng Fe stain. SW SW SE

277	cly;	pale yel-brn, Fe. NW NW SW
279	ss;	f-med, 1.5-2.5, some 3.0-3.5, v pale-orng, cly, bdd. SW SE NW
280	ss;	vf-med, l.5-3.5, yel-gy, cly, slty, bdd. SW SE NW
281	SS;	vf, 3.0-4.0, pale yel-brn, cly, silty, irreg masses of vf xlyn calcite (caliche?) bdd. SE NE NE
282	cly;	pale yel-brn. SE NE NE
283	ss;	med, 1.0-2.0, few 2.5-3.0, pale-brn, cly, bdd. SW NW NE
284	ss;	vf-f, 2.0-4.0, yel-gy/few streaks gy-orng Fe stain, cly, slty, bdd. SW NW NE
287	ss;	vf-f, 2.5-4.0, yel-gy/dk yel-orng Fe stain, cly, bdd, interbdd/med-gy aren sltst. SW NE NE
290	sltst	; yel-gy, some vf qtz grains, bdd. NW SW NE
306	ss;	med, 1.0-1.5, some 2.0, yel-gy, bdd. NW SW NW
306a	ss;	vf-f, 2.5-4.0, few 2.0, mod yel-brn, Fe, calc, cly, bdd. NW SW NW
307	sltst	; pale-olv/some lt-brn Fe stain, cly, many vf qtz grains, bdd. SW NW SW
308	ss;	vf-med, 1.5-3.5, gy-orng/some lt-brn stain, Fe, sbang, cly, slty, bdd. SW SW SW

309	86;	f-med, 1.5-3.0, some 3.5-4.0, v pale-orng, Fe, bdd. NW NW NW
311	85;	med, l.O-2.O, much 4.O, yel-gy/some lt-brn Fe stain, slty, cly, bdd. NW SW NW
312	cly;	lt olv-gy/some mod yel-brn Fe stain, locally contains irreg masses of f-med grained ss & is in part a ss/cly matrix. NW NW SW
313	88;	vf, 4.0, yel-gy, much slt, cly, bdd. NE SE NW
313a	cly;	dusky yel-brn & dusky-brn, few vf qtz grains, calc/irreg masses of powdery wh calcite. NE SE NW
314	88;	vf, 3.5-4.0, dk yel-orng, Fe, slty, cly, bdd. SW NE SW
315	88;	vf, 3.5-4.0, lt-brn & yel-gy, cly, slty, Fe, bdd. NE SE SE
316	98;	f, 2.0-2.5, some 1.0-1.5 and 3.0-3.5, dk yel- orng, Fe, sbang, cly, bdd. NE NE NW
317	88;	vf-f, 2.0-4.0, gy-orng, Fe, slty, cly, bdd. SE SE NW
321	cly;	mod yel-brn, irreg masses of vf xlyn calcite (caliche?). SE SE SW
324	sltst	; pale yel-brn, v cly, blky. SE SE SW
326	sd;	f-med, 1.5-3.0, few 3.5-4.0, gy-orng, Fe, sbang, dune sand. SW SW SW
327	88;	f-cse, 0.5-2.5, some 3.0-3.5, lt-brn, Fe, sbang, cly, bdd. SW SW NW

328	sd;	f-med, 1.0-3.0, some 3.5-4.0, lt-brn & pale yel-brn, Fe, slty, cly. NW NW NE
329	cly;	lt-brn, Fe. NW NE NE
330	weat	hered granite; gy-orng, cly & slt matrix/v cse grains of qtz, altered fld & mica, some dusky- brn asphaltic or carbonaceous matter. NW NW SW
331	88;	f-med, 1.5-3.0, few 3.5, yel-gy/much pale red- brn Fe stain, slty, cly, bdd. SW NW SW
332	sltsi	t; yel-gy/some dk yel-orng Fe stain, some vf qtz grains, cly. SW NW NW
333	sltsi	t; gy-orng/some dk yel-orng, Fe, some vf-f qtz grains, cly, bdd. NW SW SW
334	85;	vf, 3.0-4.0, gy orng-pk, bdd. SE SW NE
335	cly;	pale olv, some vf qtz grains. NE NE SW
337	88;	vf-f, 2.5-4.0, yel-gy, sbang, cly, bdd. SE SW NE
338	sltst	; mod-brn, vf slt, Fe, few vf qtz grains. NE NE SE
339	88;	f, 2.5-3.0, some 2.0 & 3.5, v pale-orng/some pale yel-orng Fe stain, sbang bdd. NW NW SE
340	88;	f, 2.0-3.0, some 3.5-4.0, 1t olv-gy/lt-brn Fe stain, slty, cly, bdd. NE SE NW
341	88;	vf, 3.5-4.0, lt olv-gy/dk yel-orng Fe stain, cly, bdd. SW SW SW

342	cly; mod yel-brn, some vf-f qtz grains, Fe, calc, irreg masses of wh powdery calcite. NE NW NW
343	ss; vf, 3.5-4.0, yel-gy/dk yel-orng Fe stain cly, bdd. NE NW NW
344	cly; mod yel-brn, Fe, few scat vf qtz grains. NE NW NW
345	ss; vf-med, 1.5-4.0, dk yel-orng, Fe, cly, bdd. NE NW NW
346	ss; f, 2.0-3.0, few 3.5-4.0, v pale-orng/some pale yel-orng Fe stain, sbang, bdd. NW NE NE
348	cly; mod-brn, Fe, locally contains some vf qtz grains. SE SW SW
349	ss; vf, 3.0-4.0, gy orng-pk, silty, some mod red- orng Fe stain, bdd. NE NE SE
350	ss; vf, 3.5-4.0, v pale-orng/much pale yel-orng Fe stain, locally contains qtz & fld grains up to 1.0 cm across, bdd. NW NE NE
352	sltst; gy-yel, Fe, cly, lam. NE NE SE
353	ss; vf, 3.0-4.0, wh/some lt-brn Fe stain, slty, cly, bdd. SE SE NE
354	ss; vf-f, 2.5-3.5, yel-gy/some lt-brn Fe stain, sbang, bdd. SW SE SE
355	cly; yel-gy/some dk yel-orng Fe stain. NE SW NW
362	sltst; dk yel-orng, Fe, cly/some irreg masses of yel-gy vf-f ss, bdd. NE NW NE

•

. ·

97

363	88;	vf-f, 2.0-3.5, pale yel-brn/some mod yel-brn Fe stain, much cly, bdd. NW NW NW
370	88;	vf, 3.0-4.0, pale yel-brn & gy-orng, Fe, sbang, cly, bdd. NW NW NW
371	88;	f-med, 1.5-2.5, few 3.0, v pale-orng & gy-orng, Fe, sbang, cly, bdd. NW SW SW
377	88;	vf-f, 2.5-4.0, v pale-orng/gy-orng Fe stain, sbang, cly, slty, bdd. NE NE SE
378	88;	f-med, 1.5-3.0, v pale-orng/much dk yel-orng Fe stain, cly, bdd. SW NW SW
379	88;	f, 2.5-3.0, some 3.5, v pale-orng, sbang, cly, bdd. SE NW NE
380	cly;	lt olv-gy, few vf qtz grains. SW NW NE
381	88;	vf-f, 2.5-4.0, few 2.0, olv-gy, sbang, cly, bdd. SW SE NW
382	ls;	mixcl, yel-gy, slty, few f-med qtz grains. SW SW SE
399	88;	vf-f, 2.0-4.0, some -0.5-1.5, yel-gy/dk yel- orng Fe stain, cly, bdd. NE NW NW
401	88;	f, 2.0-3.0, few 1.5, lt-brn, Fe, sbang, cly, bdd. SE NE NE
405	SS;	f-med, 1.5-2-5, some 3.0-4.0, mod yel-brn, Fe, cly, bdd. SW SE SE
406	sltst	; yel-gy/some dk yel-orng Fe stain, cly. SW SE SE

407	cly;	pale-re/some dk-yel-orng, Fe. SE SW SW
408	ss;	f, 2.0-3.0, few 3.5, dk yel-orng & lt-brn, Fe, sbang, cly, bdd. SE SW SE
409	slts	t; v pale-orng/gy-orng Fe stain, many vf-f qtz grains, cly, bdd. NE SW SE
410	ss;	f-med, 1.5-3.0, few 3.5-4.0, lt-brn, Fe, cly, slty, bdd. NE SW SE
411	cly;	lt olv-gy, many vf-f qtz grains, some Fe stain. NW NE NW
412	cly;	gy-red, Fe. NW NE NE
420	ss;	vf, 3.0-4.0, some 2.0-2.5, yel-gy/spots of lt- brn Fe stain, cly, bdd. SE NE NE
425	ss;	f-med, 1.0-3.0, gy-orng, Fe, bdd. SE NE NE
426	cly;	lt olv-gy/dk yel-orng Fe stain, locally con- tains many vf-f qtz grains. SE SE NE
427	ss;	vf-f, 2.0-4.0, yel-gy, sbang, cly, bdd. SE SE NE
428	cly;	dk yel-brn/many vf-f qtz grains. SE SE NE
429	sltst	; yel-gy, some vf qtz grains, cly, bdd. SE SE NE
430	ss;	f, 2.0-3.0, some 3.5-4.0, v pale-orng, sbang, cly, bdd. SE SE NE
431	cly;	blk. SW SE SE

432	ss;	f-cse, 1.5-3.0, some 3.5-4.0, gy-orng, Fe, slty, cly, pos worm burrows, bdd. SW SW SW
435	ss;	med-cse, 0.5-1.5, some 2.0-4.0, yel-gy/much lt- brn Fe stain, cly, bdd. SE SE SE
451	ss;	vf-f, 2.0-4.0, yel-gy/dk yel-orng Fe stain, sbang, cly, bdd. SW SW SW
452	ss;	vf-med, 1.0-4.0, dk yel-orng, Fe, cly, slty, bdd. SE SE SE
458	ss;	f, 2.0-3.0, some 3.5, v pale-orng/some dk yel- orng Fe stain, bdd. SW SE SE
459	ss;	f-cse, 0.5-3.0, gy-orng, Fe, cly, bdd. SW SE SE
466	cly;	gy-red/pale yel-orng, Fe, some vf-f qtz grains. NW SW NE
467	sltst	; yel-gy, some vf qtz grains,much cly, bdd, weathers to dusky-yell & gy-orng. SE SW SW
469	ss;	vf, 3.5-4.0, pale yel-brn, slty, cly, contains irreg frags of olv-gy cly, bdd. SW SW SW
474	cly;	mod-brn, Fe, some vf-f qtz grains. SW SW NW
475	sltst	; lt olv-gy/some dk yel-orng Fe stain, cly. SW SE SE
478	ss;	f, 2.0-3.0, few 3.5, yel-gy/dk yel orn g F e stain, sbang, cly, bdd. NW NW NW
479	ss;	vf-f, 2.5-3.5, few 4.0, pale yel-orng, Fe, sbang, cly, bdd. SW SE SW

480	ss;	vf, 3.0, some 3.0-3.5, yel-gy/lt-brn & gy-orng Fe stain, slty, cly, bdd. NE NW SW
481	ss;	f, 2.0-3.0, yel-gy/some gy-orng Fe stain, cly, slty, bdd. SW SW SE
482	ss;	f, 2.5-3.0, some 3.5, gy orng-pk, sbang, cly, bdd. NE NW NW
483	ss;	vf, 3.0-4.0, mod-brn, Fe/thin layers of mod-brn cly, cly, bdd. NE NW NW
484	ss;	vf-f, 2.0-4.0, lt-brn, Fe, cly, bdd. NE NW NE
485	ss;	f-med, 1.0-2.5, gy-orng/much dusky-brn stain, Fe in part, cly, bdd. SW SE SE
486	ss;	med, 1.5-2.0, some 2.5-3.0, dusky yel-brn, cly, bdd. SW SE SE
488	98;	f, 2.0-3.0, few 3.5, dk yel-orng & gy-orng, Fe, sbang, interbdd/v pale-orng slty vf-f grained ss, bdd. SW SE SE
489	ss;	vf, 3.0-4.0, v pale-orng/some pale yel-orng Fe stain/irreg frags of sltst, cly, bdd. NW NW NW
492	ss;	vf, 3.0-4.0, mod-brn/some gy-orng, Fe, cly, bdd. SE SE NE
493	88;	vf-med, 1.5-3.5, few 4.0, v pale-orng/dk yel- orng & mod-brn Fe stain, cly, bdd. NW SW SW
494	88;	vf, 3.5-4.0, wh, slty, cly, bdd. NE NW NW
495	cly;	dk red-brn, Fe. NW SW NW
497	slts	t; mod-brn/some dusky-yel, Fe, few vf qtz grains, cly, bdd. SW NW NW
-----	-------------	---
498	ss;	f-cse, 0.5-2.5, few 3.0-4.0, dk yel-orng, Fe, bdd. SE SW SE
499	ss;	f, 2.0-3.0, few 3.5-4.0, gy-orng & dk yel-orng, Fe, sbang, cly, bdd. SW SW SW
501	ss;	f, 2.0-3.0, few 1.5 & 3.5, gy-orng/some dk yel- orng, Fe, sbang, bdd. SW NW NW
502	s s;	f-med, 1.0-2.5, few 0.5 & 3.0, dk yel-orng Fe, slty, cly, few granules of qtzt, bdd. SW NW NW
504	SS;	f-med, 1.0-2.5, some 3.0-3.5, lt-brn/some yel- gy, Fe, few cse qtz grains, cly, bdd. SW SW NW
506	cly;	lt olv-gy/some lt-brn Fe stain, some vf qtz grains. NW SW SW
507	ss;	f, 2.0-2.5, some 3.0-3.5, dk yel-orng & gy red- purp, Fe, sbang, cly, bdd. NW SW SW
508	sltst	; pale-olv/some pale yel-orng Fe stain, v cly, bdd. SW NW SW
510	ss;	vf-f, 2.5-4.0, v pale-orng, slty, cly, bdd. NW SW SW
511	85;	f-med, 1.5-2.5, dk yel-orng, Fe, cly, bdd. NW NW NE
512	ss;	vf-f, 2.5-4.0, yel-gy, slty, cly, bdd. SE SE NE
514	S8;	vf~f, 2.5-4.0, pale yel-brn/dk yel-orng Fe stain, much cly, bdd. SW SE SW

•

515	88;	vf-f, 2.0-4.0, yel-gy/some dk yel-orng Fe stain, sbang, cly, weathers to mod red-brn Fe stain, bdd. SE SE SE
518	slts	t; yel-gy, some vf qtz grains, cly, bdd. SE SW NW
520	cly;	pale red-brn, Fe. SW NW SE
522	cly;	mod-brn, Fe. NW NE NE
523	ss;	f, 2.0-3.0, some 3.5, gy-orng, Fe, sbang, cly, bdd. NE NW NW
525	ss;	f, 2.5-3.0, v pale-orng, cly, slty, Fe, bdd. SW SW NW
526	s s;	f-med, 1.5-2.5, few 3.0-4.0, dk yel-orng, Fe, cly, bdd. NE NE SE
527	SS;	vf-f, 3.0, some 2.5, gy-orng, Fe, cly, bdd. SW SW SE
528	ss;	f, 2.0-3.0, few 3.5-4.0, gy-orng, Fe, sbang, cly, bdd. SW NW NW
528a	s s;	med, 1.0-2.0, sk yel-orng, Fe, sbang, bdd. SW NW NW
529	88;	vf-f, 2.0-3.5, gy-orng, Fe, sbang, cly, bdd. NE NW NW
530	88;	vf-f, 2.5-3.5, mod yel-brn, Fe, much cly, in part an aren cly, bdd. SE NE NE
531	ss;	vf-f, 2.5-4.0, lt-brn & dk yel-brn, Fe, cly, bdd. SW NW SW

533	cly;	lt-brn & gy-orng, Fe, many vf-f qtz grains. NW SE NW
534	cly;	pale yel-brn, some vf-f qtz grains. NW SE SW
535	cly;	mod yel-brn, Fe, some vf-f qtz grains. NE NE NW
536	cly;	dk-gy. SE SE SE
537	S8;	f-med, 1.5-2.5, dk yel-orng, Fe, sbang, cly, bdd. NW SE SE
538	ss;	f, 2.0-2.5, few 3.0-3.5, v pale-orng, sbang, cly, bdd. SW SW SW
539	ss;	vf-f, 2.5-4.0, yel-gy, slty, cly, bdd. SW SW SW
540	cly;	dusky-brn, calc, irreg masses of powdery wh calcite. SW SW SW
541	ss;	vf-med, 1.5-4.0, dk yel-orng & pale yel-brn, Fe, slty, cly, bdd. NW NW SE
542	88;	vf-f, 2.5-4.0, gy-orng & dk yel-orng, Fe, much silt, cly, bdd. NW NW NE
543	88;	vf, 3.0-4.0, few 2.0-2.5, yel-gy, slty, cly/ lrg irreg lenses of aren yel-gy cly, bdd. NW SE SE
544	88;	f-med, 1.0-2.5, few 3.0-3.5, lt-brn, Fe, locally contains much cse-v cse qtz grains, few pbls up to 1.5 cm across, bdd. NW SE SE
545	88;	f-med, 1.5-2.5, some 3.0, v pale-orng/some dk yel-orng Fe stain, sbang, bdd. NW SE SE

.

546	cly;	mod red-brn/some dk yel-orng stain, Fe. NW SE SW
547	slts	t; yel-gy, bdd, interbdd/gy-red cly. NW SE SW
548	ss;	vf, 3.0-4.0, lt olv-brn, Fe cly, bdd. SW SW NW
549	cgl;	lt-brn, Fe, pbls up to 3.0 cm across make up 50-60% of rock, matrix is sltst/some vf-cse qtz grains, bdd. SE NE SW
550	slts	t; v pale-orng/some dk yel-orng Fe stain, some vf qtz grains, cly, bdd. SW SE SW
551	cly;	lt olv-gy/some dk yel-orng Fe stain. SW SE SW
552	88;	f-med, 1.0-2.5, lt-brn and gy-orng, Fe, rd, cly, bdd. SE SW SE
553	55;	f-med, 1.5.3.5, few 3.0-4.0, yel-gy/dk yel- orng Fe stain, much cly, bdd. SE NW SE
554	cly;	yel-gy/some dk yel-orng Fe stain. NE SW NE
555	56;	vf, 3.5-4.0, dk yel-orng, slty, v cly, Fe, bdd. NW SW SW
556	85;	vf-f, 3.5-4.0, few 2.0, v pale-orng and gy- orng, Fe, cly, bdd. SW NE SE
557	cly;	mod olv-brn. SW SW SW
558	sltst	; yel-gy/some dk yel-orng Fe stain, cly, some vf qtz grains. SE SW SW

559	ss;	f, 2.0-2.5, few 3.0, dk yel-orng, Fe, sbang, bdd. SE SW SW
560	SS;	vf-f, 2.0-3.5, lt-brn/some v pale-orng, Fe, cly, bdd. SW SE SW
561	cly;	yel-gy/much gy-red Fe stain, some vf-f qtz grains, calc. SE SW SE
562	85;	f-med, 1.0-2.5, lt-brn, Fe, cly, bdd. SE SE SW
563	cly;	lt-brn, Fe. NE NE SE
564	85;	vf-f, 2.0-4.0, pale yel-brn/mod-brn and dk yel-orng Fe stain, slty, much cly, in part an aren cly, bdd. SW NW NW
565	ss;	f-med, 1.5-2.5, lt-brn, Fe, sbang, cly, bdd. SE SW SW
566	85;	- vf-f, 2.5-4.0, lt-brn, few med qtz grains, cly, slty, Fe, bdd. NW SW SW
567	55;	f, 2.0-2.5, dk yel-orng, Fe, sbang, cly, bdd. SE SW SE
567a	88;	vf, 3.0-4.0, few 2.5, pk-gy, much silt, cly, bdd. SE SE SE
568	sltst	; yel-gy/some dk yel-orng Fe stain, many vf qtz grains, cly, bdd. SW SE SW
569	cly;	dusky-yel, Fe, few vf-f qtz grains. NW NE NW
570	88;	vf, 3.0-4.0, few 2.0-2.5, gy-orng, Fe, much slt, cly, bdd. NE SW NW

571	ss;	f, 2.5-3.0, few 3.5, lt-brn, Fe, cly, bdd. SE NW NW
572	SS;	vf, 3.0-3.5, some 4.0, gy-yel, Fe, contains irreg frags of vf ss (see 573), bdd. NW NW SW
573	ss;	vf, 3.0-4.0, yel-gy, slty, cly, occurs as irreg frags in 572. NW NW SW
57 ⁴	ss;	vf-f, 2.5-3.5, some 1.5-2.0, gy-orng, Fe, sbang, cly, bdd. NW NW SW
576	ss;	f, 2.0-2.5, some 3.0-3.5, gy-orng, sbang, cly, bdd. NE NE NE
577	slts	t; yel-gy, cly, some vf qtz grains, bdd. SE SE SE
579	cly;	pale yel-brn, some vf-f qtz grains. SE SE SE
580	ss;	vf, 3.0-4.0, some 2.5, yel-gy/dk yel-orng Fe stain, slty, cly, bdd. SE SE SE
581	ss;	f-med, 1.5-2.5, few 3.0-3.5, dk yel-orng, Fe, cly, bdd. SE SE SE
582	ss;	f-med, 1.5-2.5, few 3.0, lt brn, Fe, slty, cly, bdd. SW SW SE
583	SS;	vf-med, 1.5-4.0, dk yel-orng, Fe, cly, bdd. NE NE NE
584	55;	f-med, 1.0-3.0, few 3.5-4.0, dk yel-orng, Fe, cly, bdd. NE NE SE
585	cly;	pale-brn, Fe. SW SE SW

.

586	ss;	med-cse, 0.0-2.0, some 2.5-3.0, gy-orng, Fe, contains few irreg frags of dk yel-orng cly and sltst, bdd. SW SW SE
588	55;	med-cse, 0.5-1.5, dk yel-orng, Fe, cly, bdd. SW SW SE
589	ss;	f, 2.0-3.0, few 1.5, brn-gy, sbang, cly, bdd. SW SE SE
590	SS;	vf, 3.0-4.0, dk yel-orng, Fe, cly, bdd. SW SE SE
591	ss;	vf-f, 2.5-4.0, few 2.0, dk yel-orng, Fe, much slt, cly, bdd. NE NE NE
592	ss;	vf-med, 1.5-4.0, dk yel-orng, Fe, slty, cly, bdd. NW NW NE
593	slts	t; yel-gy and pale red-brn, cly, few vf qtz grains, Fe, bdd. SW NW NW
594	S8;	f-med, 1.5-2.5, gy-orng, Fe, sbang, bdd. NW SW SW
596	ss;	med, 1.5-2.0, few 2.5, v pale-orng/some gy- orng Fe stain, sbang, slty, cly, bdd. SW NW NW
597	ss;	med, 1.0-2.0, few 2.5-3.0, dk yel-orng/some gy-brn stain, Fe, cly, bdd. NW SW SW
598	ss;	vf, 4.0, v pale-orng/much gy-yel Fe stain, much slt, cly, bdd. SE SW SE
599	ss;	vf, 3.5-4.0, some 3.0, dk yel-orng, cly, Fe, bdd. SW SE SE

600	cly;	yel-gy/some dusky-yel Fe stain, few vf qtz grains. SW SE SE
601	cly;	mod-brn/some pale yel-brn, some vf qtz grains, Fe. SW SE SE
602	ss;	vf, 3.5-4.0, dk yel-orng, slty, cly, Fe, few f qtz grains, bdd. SW SE SE
603	SS;	f, 2.0-3.0, lt-brn, many frags of yel-gy cly and cly ss, few med qtz grains, cly, Fe, bdd. SE SW SW
605	88;	f, 2.0-3.0, dk yel-orng and lt-brn, Fe, sbang, cly, bdd. SE SE SE
606	58;	f, 2.0-3.0, few 3.5-4.0, dk yel-orng, Fe, much slt, cly, bdd. SE SE SE
607	ss;	vf, 4.0, yel-gy, much slt,cly, bdd. NE NW NW
608	ss;	f, 2.0-3.0, gy-brn, asph, sbang, bdd. NE NW NW
609	ss;	f-cse, 0.5-2.5, few -2.0-0.0, dk yel-orng, Fe, cly, bdd. SE SW SW
610	cly;	lt olv-gy/much mod-brn Fe stain, locally con- tains many f-med qtz grains. SE SW SW
611	ss;	vf-f, 2.0-3.5, v pale-orng, sbang, sdd. NE NW NE
612	ss;	vf, 3.5-4.0, yel-gy, slty, cly, bdd. NE NW NE
613	cly;	lt olv-gy/dk yel-orng Fe stain, some vf qtz grains. NE NW NE

.

616	ss;	f-med, 1.5-2.5, yel-gy, cly, NW NW SW
617	ss;	f, 2.0-3.0, gy-orng, Fe, cly, bdd. NW SW SW
618	8S;	f-med, 1.0-2.5, v pale-orng/some lt-brn Fe stain, cly, slty, bdd. NE NW NE
622	cly;	yel-gy and dk yel-orng, Fe, many vf qtz grains. SW NW SW
623	ss;	f, 2.0-3.0, yel-gy/dk yel-brn Fe stain, sbang, cly in part, thin lenses of pal-olv cly, bdd. SW SE SW
628	ss;	vf, 3.0-4.0, few 2.5, dk yel-orng, Fe, cly, bdd. SW NW SW
630	ss;	f-med, 1.5-2.5, lt-brn, Fe, few frags of yel- gy aren cly, bdd. NW NW SW
631	ss;	f-med, 1.5-2.5, few 3.0-3.5, dk yel-orng, Fe, sbang, bdd. NW NW SW
633	ss;	med, 1.0-2.0, lt-brn, Fe, cly, bdd. SE SE NE
634	ss;	med, 1.0-1.5, some 2.0, lt-brn, Fe, rd, bdd. SE SE NE
635	ss;	med, 1.5-2.0, few 2.5, lt-brn, Fe, cly, bdd. SE SE NE
636	SS;	f-med, 1.0-2.5, some 3.0-4.0, dk yel-orng, Fe, cly, slty, bdd. SW NW SW
637	ss;	f-med, 1.5-3.0, few 3.5-4.0, v pale-orng, cly, bdd. SW SW SW

640	ss;	f-cse, 0.5-2.5, dk yel-orng, Fe, cly, bdd. NE NW SW
646	ss;	f, 2.5-3.0, some 3.5-4.0, gy-yel, Fe, slty, bdd. SE NE SE
647	ss;	vf, 4.0, yel-gy/mod-yel Fe stain, much silt, cly, bdd. SE NE SE
651	ss;	med-cse, 0.0-2.0, v pale-orng/much dk yel-orng Fe stain, rd, much cly, few granules to 4.0 mm, bdd. NW NE NE
652	ss;	f, 2.0-2.5, some 3.0, lt-brn, Fe, cly, bdd. SW NW NW
653	ss;	f, 2.0-2.5, v lt-gy, some gy-orng Fe stain coating, calc, cly, bdd. SW NW NW
654	ss;	vf-f, 2.5-4.0, yel-gy, cly, slty, bdd. SW NW NW
655	SS;	vf-f, 2.0-4.0, lt-brn, Fe, slty, cly, bdd. SW NW NW
658	58;	f-med, 1.0-2.5, lt-brn, Fe, sbang, cly, bdd. SW SW SE
663	ss;	med, 1.0-2.0, some 2.5, gy orng-pk, bdd. NW SW NW
666	SS;	f, 2.0-3.0, few 1.5, gy-orng/some dk yel-orng, Fe, cly, bdd. SE SE SW
674	cgl;	-3.0-0.0, some 0.5-1.0, sk yel-orng, Fe, cly, bdd. SW NW NW
675	ss;	med, 1.0-1.5, lt-brn, Fe, cly, bdd. SW NW NW

676	SS;	med, 1.0-2.0, few 0.5 and 2.5-3.0, lt-brn and gy-orng, Fe, cly in part, bdd. SW SW NW
681	ss;	f-med, 1.0-3.0, dk yel-orng, Fe, cly, bdd. NE NE NE
684	55;	med, 1.0-2.0, few 0.0-0.5, gy orng-pk/much dk- yel-orng Fe stain, cly, bdd. NW NE NW
692	SS;	f, 2.0-3.0, v pale-orng/pale yel-orng Fe stain, cly, bdd. C SE
699	ss;	vf, 3.5-4.0, few 3.0, v pale-orng/few spots of dk yel-orng Fe stain, cly, bdd. NE NW SE
704	ss;	med, 1.0-2.0, lt-brn, Fe, cly, bdd. SE SE SE
710	ss;	f, 2.0-2.5, some 1.5, gy-orng, Fe, cly, bdd. NW NW SW
711	S S;	f, 2.0-3.0, some 3.5, gy-orng, Fe, cly, bdd. SW SW NW
712	88 ;	f, 2.0-3.0, some 3.5, dk yel-orng and lt-brn, Fe, cly, bdd. NE NE NE
713	ss;	f, 2.0-3.0, some 1.5, gy-orng, Fe, sbang, cly, bdd. SE SE SE
717	BS;	f, 2.5-3.0, lt-brn, Fe, bdd. SW SW SW
719	88 ;	f, 2.0-2.5, pale yel-brn, sbang. SE SW SE
720	88;	vf-f, 2.5-4.0, dk yel-orng, Fe, v slty, cly, bdd. NW SE NE
723	sltst	; v pale-orng/some dk yel-orng Fe stain, some vf-med qtz grains, cly, bdd. SW SW SW

724	88;	f-med, 1.5-2.5, lt-brn, Fe, slty, cly, bdd. SE SW SE
725	slts	t; v pale-orng/some gy-orng Fe stain, cly, bdd. NW SW SW
726	cly;	med-gy/some dk yel-orng Fe stain. NW SW SW
727	slts	t; v pale-orng/gy-orng and dk red-brn Fe stain, some vf qtz grains, cly, bdd. NW SW SW
729	SS;	f, 2.5-3.0, few 3.5, gy-orng, Fe, sbang, bdd. SE SE NE
730	S6;	f-med, 1.5-2.5, dk yel-orng, Fe, sbang, cly, bdd. C
732	slts	t; dk yel-orng/some gy-blk, Fe, cly, bdd. SW SW NW
733	ss;	f, 2.5-3.0, v pale-orng, sbang, slty, cly, bdd. SE NE SE
734	ss;	vf-f, 2.5-3.5, dk yel-orng, cly, Fe, bdd. SE NE SE
737	sltst	; yel-gy, v cse-grained slt, some vf qtz grains, cly, bdd. NW SE SE
740	ss;	vf-f, 2.5-4.0, dk yel-orng, Fe, cly, slty, bdd. SE SW SE
742	weath	ered Paleozoic sh; wh and yel-gy, flaky. SE NE SE
743	cgl;	v lt-gy/dk yel-orng Fe stain, qtzt pbls up to 5.0 cm across make up 60-70% of rock, pbls cemented in matrix of vf ss. bdd. SE SE SE

746	SS;	f, 2.0-3.0, gy-orng and gy orng-pk, Fe, sbang, bdd. SE SE NE
757	S 8;	vf-f, 2.0-4.0, v pale-orng/some lt-brn Fe stain, cly, slty, bdd. NE SW SE
758	SS;	f-med, 1.5-2.5, lt-brn, Fe, sbang, cly, bdd. SW NE NE
760	ss;	med-cse, 0.0-1.5, lt-brn, Fe, few granules and pbls up to 1.0 cm across, cly, bdd. C
761	SS;	f, 2.0-3.0, v pale-orng/some dk yel-orng Fe stain, sbang, slty, bdd. NE SE NE
762	SS;	vf-med, 1.5-3.5, dk yel-orng, Fe, slty, cly, pos worm burrows(?), bdd. SW SW SW
764	ss;	f, 1.5-2.0, lt-brn, Fe, slty, bdd. NE SE NE
765	ss;	f-med, 1.0-3.0, dk yel-orng, Fe, sbang, cly, bdd. NE SE NE
769	SS;	vf, 3.0-4.0, dk yel-orng, slty, cly, Fe, bdd. SW SW NE
774	ss;	vf, 3.0-4.0, dk yel-orng, Fe, cly, slty, bdd. SE SE SE
776	35;	f-med, 1.5-2.5, gy-orng, sbang, Fe, bdd. SE SE SE
778	s <u></u> s;	vf-f, 2.0-4.0, v pale-orng/few small spots of gy-orng Fe stain, cly, slty, bdd. SE SE SE
783	ss;	f-med, 1.5-2.5, few 3.0, v pale-orng, cly, bdd. SE SE SE

•

788	88;	f, 3.5-3.0, yel-gy/few spots of dk yel-orng Fe stain, sbang, cly, bdd. SE SE SE
791	56;	vf, 3.0-4.0, gy-orng, Fe, cly, slty, bdd. SE SE SE
796	S8;	vf-f, 2.5-4.0, v pale-orng, Fe, cly, bdd. SW SW NW
809	cly;	pale red-brn/dk yel-orng stain, Fe, many vf-f qtz grains. SW NW NW
811	ss;	vf-f, 2.0.4.0, yel-gy/dusky-red and dk yel-orng Fe stain, slty, cly, bdd. SW NW SW
812	s8;	f-med, 1.5-2.5, few 3.0, lt-brn, Fe, sbang, cly, bdd. NW NW SW
813	88;	f-med, 1.5-3.0, lt-brn, Fe, cly, bdd. SW SW SW
819	88;	vf-med, 1.5-4.0, v pale-orng/much lt-brn Fe stain, much cly, slty, bdd. NE SW NW
821	88;	vf, 3.0-4.0, dk yel-orng, Fe, cly, slty, bdd. NW SW NW
830	sltst	; yel-gy, cse slt, few spots gy-orng Fe stain, some vf qtz grains, bdd. El/2 NE
833	sltst	; lt olv-gy, v cse-grained slt, cly, bdd. El/2 NE
835	sltst	; yel-gy, v cse-grained slt, cly, bdd. El/2 NE
836	sltst	; yel-gy, v cse-grained slt, cly, bdd. El/2 NE

846	ss;	vf, 3.5-4.0, some 1.5-3.0, wh, cly, bdd. SE NE NE
847	slts	t; v pale-orng and gy-orng, Fe, cly, bdd. SE NE NE
848	ss;	f, 3.0-3.5, yel-gy, cly, bdd. SE NE NE
852	SS;	f, 2.5-3.0, some 3.5-4.0, v pale-orng/some dk yel-orng Fe stain, slty, cly, bdd. SE NE NW
854	slts	t; v pale-orng/lt-brn Fe stain, many vf qtz grains, cly, bdd. SE NE SW
857	weat)	hered Paleozoic ss; vf-med, 1.0-4.0, mod orng- pk, Fe, slty, cly, bdd. C
858	ss;	f-med, 1.5-3.0, few 3.5-4.0, gy-orng, Fe, slty, cly, bdd. SE SE NE

.

.

