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CHAPTER I 

INTRODUCTION 

Within the last twenty-eight years, the development of capillary gas 

chromatography columns has enriched gas chromatography technology with a 

powerful tool which has vastly improved the resolution and separation 

capability of gas chromatography. Benefits of this increase in column 

resolving and separating ability are best utilized when capillary columns 

are applied to situations where difficult sample analyses exist. The 

majority of capillary column usage occurs in separating components of 

complex mixtures which are present in samples derived from the environ­

ment, foods and flavors, clinical/ specimens, smoke and exhaust gases. 

The primary goal here is the determination of the qualitative and quanti­

tative nature of the important components which are present. This 

necessitates the separation of as many components as possible. The high 

resolution obtainable with capillary columns is also desirable when the 

separation of closely related substances such as isomers and the trace 

analysis of minor comp~nents are required. As these benefits are due to 

the capillary column, a study on the preparation and characterization of 

glass capillary columns containing crown ether stationary phases is of 

relevance. 

Chapter II of this thesis provides a review of literature which is 

concerned with capillary column chromatography, column preparation, 

stationary phases used for capillary chromatography and column evalua-

1 
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tion. The section which describes column evaluation was presented as a 

doctoral qualifier and contains more detail than other sections. Chapter 

III describes the intention of this thesis and states rationale for 

choosing crown ethers as stationary phases. This part of the thesis out­

lines the crown ether synthesis, column preparation and characterization. 

The chapter on experimental methods, Chapter IV, describes in detail the 

instrumentation, reagents and synthesis of the crown ether which was used 

as a stationary phase. The remaining sections of this chapter deal with 

the step-by-step preparation of eight capillary columns. Chapter V pro­

vides discussion on the characterization of each column. The discussion 

includes comparisons of chromatograms of alkanes and alcohols, retention­

temperature plots, efficiency determinations, polarity data, scanning 

electron micrographs and thermal analysis data. The final chapter, 

Chapter VI, sununarizes the thesis and reconnnends several crown ether 

stationary phases for further research. 



CHAPTER II 

REVIEW OF LITERATURE 

Capillary Column Gas Chromatography 

When the first capillary open tubular gas chromatography column was 

invented by M. J.E. Golay (1) in 1956, gas chromatography started <level-

oping into a science which was to provide methods to separate components 

of very complex mixtures such as tobacco smoke as well as very similar 

mixtures such as deuterated and nondeuterated hydrocarbons. Golay's 

original column consisted of an open steel tube which was 12 ft in length 

and had an inner diameter of 0.055 inches. This first capillary column 

was coated by pulling a cotton swab through a column which had been 

filled with ethylene glycol. Within two years of this work he also de-

veloped the theoretical expression which described the band broadening 

of solutes as they passed through the coated capillary column (2). This 

expression, Equation 1, relates the solute band broadening to the time 

the solute stays in the column (v and k'), the dimensions of the column 

(r ), the movement of the solute within the liquid and mobile phase 
c 

(DL and DG) and the physico-chemical interactions between the solute and 

the stationary phase (Kand k'). 

H 
2DG (1+6k' +llk 12) r 2 v k' 3 r 2 v 
~ + ~~~~~~~~~-c~ + c 

v 24 (1 + k' / DG 6 (1 + k' / K2 DL 
(1) 

3 
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where 

H plate height (cm) 

DG solute diffusion coefficient in the mobile phase (cm2ls) 

v mobile phase linear velocity (cm/s) 

k' = partition ratio 

r radius of the column (cm) 
c 

K partition coefficient 

DL solute diffusion coefficient in the liquid phase (cm2/s) 

Many of these parameters are also found in the extended rate theory 

(van Deemter) equation for packed columns (3). In Equation 2 

2yDG 
H = 2>..d + --- + q 

p v 

k'd!v 
~~~~~ + w ~~~---~ 
(1 + k' /nL (1 + k') 2nG 

(2) 

besides the additional parameters 

d 
p 

y 

packing irregularity factor 

particle diameter 

tortuosity factor 

q liquid phase configuration 

factor 

w radial diffusion packing 

factor 

an additional term, 2>..d occurs. The difference between these two 
p 

equations, which gives the capillary column the advantage in efficiency, 

results from the random paths that the solute takes around the packing 

particles (eddy diffusion) and the extent of irregularity of packing. 

The most significant effect of this difference results in a decreased 

band broadening of the solute band for the capillary colunn. This de-
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crease in band broadening allows many more peaks to elute within the same 

period with greater resolution. Table I lists comparisons of various 

parameters ,,.;hich are typical for capillary and packed columns. The ad­

vantages that capillary columns provide include higher efficiency, 

greater resolution between peaks and shorter retention times. The great­

est disadvantage that capillary columns possess is the decreased sample 

capacity which is caused by the large phase ratio of the capillary column. 

The presence of small amounts of stationary phase means that much smaller 

sample sizes must be introduced onto the capillary column and that 

special injection systems must be utilized. Such systems include split 

injections where a calculated proportion of the vaporized sample is in­

troduced onto the column and splitless injection where small sample 

volumes are allowed to vaporize and then reconcentrate on the head of the 

column in the condensed solvent (4,5). A third sampling system which 

introduces the smallest quantitative error is on-column injection where 

syringes with small outer diameter fused silica needles introduce the 

sample directly onto the column (6). Comparison of the accuracy and 

precision of these three techniques shows that split and splitless in­

jection introduce more error than on-column injection techniques (7). 

Large quantitative errors also occur when high boiling compounds are 

injected in the split mode (8). This is due to low efficiency of the 

split injection for transferring these compounds onto the column. 

Additional equipment is also required in that carrier flow must be 

added at the end of the capillary to obtain ·the necessary flow through 

the detector. This requirement allows the use of capillary columns in 

packed column gas chromatographs and has been eliminated where detectors 

designed for capillaries are used. 



Length 

Inner Diameter 

Particle Size 

Film Thickness 

% Load 

v 
Phase Ratio (..1!_) 

VL 

Sample Capacity/ 
Component 

Sample Size 

TABLE I 

COMPARISON OF PACKED AND CAPILLARY 
GAS CHROMATOGRAPHY COLUMNS 

Packed 

0. 5 - 20 m 

2-6 nnn 

80 - 100 mesh (177-149 µm) 
100 - 120 mesh (149-125 µm) 

5 - 10 µm 

2 - 20% 

5 - 100 

< 20 µg 

0.04 - 20 µ.Q, 

Capillary 

10 - 100 m 

0.15 - 0.50 nnn 

0.05 - 5.0 µm 

50 - 500 

< 50 ng - 500 ng 

0. 004 - 1. 0 µt (split) 

Theoretical Plates 5,000- 20,000 50,000 - 150,000 

Column Linear 
Velocity 

Flow Rate 

7 - 10 cm/s 16-60 cm/s 

10 - 20 mt/min 1 - 15 mt/min 

The disadvantage of low capacity in capillary columns has been 

lessened recently with the introduction of capillaries with film thick-

nesses up to 6 µm and wide bore capillaries with inner diameters up to 

0.75 nnn (9,10). These columns, while having lower efficiencies than 

narrow bore, thin film capillaries, still possess more efficiency than 

6 
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packed columns. The thicker films which are stabilized by in situ free 

radical crosslinking·of the coated film provide column capacities which 

approach that of packed columns. These columns also can withstand larger 

solvent sample"sizes since the stationary phase is nonextractable. 

Capillary Column Preparation 

Column Materials 

Capillary columns have been made from various materials. Early 

materials include Tygon and Teflon, borosilicate or soda-lime glass, 

aluminum, nickel, gold, copper, stainless steel, and a stainless steel­

nickel alloy (11,12). Of these, borosilicate and soda-lime glass have 

until recently been the most widely used column materials. Plastics 

possessed low operating temperatures or as in the case of Teflon possess­

ed a surface that was not wettable by most stationary phases. Metal 

columns of gold showed excellent efficiency but cost precluded their use. 

Although metals such as aluminum, copper and nickel gave support surfaces 

which were wettable by stationary phases, chemical treatment of the metal 

surface was required to reduce adsorption of solute molecules and decom­

position of the stationary phase. 

The availability and low cost of borosilicate and soda-lime glass 

tubing along with the invention of a glass capillary drawing machine by. 

Desty, Haresnape and Whyman (13) in 1960 resulted in the use of glass for 

the preparation of the majority of capillary columns until recently. The 

introduction of fused silica capillaries in 1979 provided chromatograph­

ers with a fle~ible column which was easily handled and provided less 

surface activity than borosilicate or soft glass capillaries (14). This 



flexibility was the one feature of fused silica columns that has been 

responsible for converting packed column users over to capillary columns 

users. 

Much of the literature concerned with the development and prepara­

tion of capillary columns can be related to the study of the physical 

8 

and chemical nature of the glass surface inside the capillary. Desirable 

properties which are necessary for good columns are wettability of the 

glass surface by the stationary phase and chemical inertness of the sur­

face toward the stationary phase ~nd solutes injected onto the column. 

Wettability by the stationary phase can be related to the critical sur­

face tension of the surface and the surface tension of the stationary 

phase. Stable films of stationary phase are obtained when the surface 

tension of the solution or stationary phase used to coat the capillary 

is smaller than the critical surface tension of the glass surface. This 

criteria has been used to explain why nonpolar stationary phases such as 

squalane or polydimethylsiloxane are more stable than polar stationary 

phases when coated on the same unroughened support. Columns containing 

polar stationary phases have additional requirements of a roughened cap­

illary surface before stable films result. By increasing the surface 

area of the glass surface, its effective surface tension is increased to 

a value larger than the surface tension of the polar stationary base. 

Methods for surface roughening will be covered later. 

Chemical inertness of the support material is necessary to prevent 

chemical or physical adsorption of solutes and for thermal stability of 

the stationary phases. Inertness of a borosilicate or soda-lime glass 

surface can be increased by removing metals which are present in the 

bulk of the glass and chemically deactivating the glass surface. The 
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bulk of borosilicate glass is composed of 2.5% sodium, 0.2%·calcium, 

7.0% boron, and 0.8% aluminum (15). These metal oxides act as Lewis 

acids on the glass surface and must be removed or covered up so that they 

do not cause adsorption of lone-pair electron donor molecules such as 

alcohols, ketones or amines and ~-bond containing molecules such as 

aromatic or olefin compounds. The introduction of fused silica glass 

has eliminated these problems because fused silica contains very low 

amounts of these metals. 

A characteristic of both borosilicate and fused silica glasses is 

the presence of silanol groups. Silicon-hydroxyl groups are present on 

the glass surface in different concentrations depending on the thermal 

treatment of the glass. Geometrical considerations show about eight 

02 
silanol groups per 100 A of glass while experimental determinations show 

oz. 
about five groups per 100 A (16). Thermal treatment of·the glass under 

02 
vacuum causes the silanol concentration to decrease from 4.8 per 100 A 

02 
at 200°C to 0.7 groups per 100 A at 900°C (17). These silanol groups 

provide proton donor sites which can cause adsorption of molecules which 

are capable of hydrogen bonding. This means that compounds with ~-elec-

trons such as aromatics or unsaturated compounds and free electron pairs 

on oxygen or nitrogen such as alcohols, amines, carbonyls, and ether 

compounds are susceptible to adsorption by the silanols. Removal of 

these silanol groups by high temperature dehydroxylation does not de-

crease the surface activity since the siloxane bridges, which result 

after the heat treatment, are more reactive than the free silanol group 

(18). 
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Predrawing Treatments 

The preparation of glass capillary columns starts with cleaning the 

glass tube prior to drawing. Among the methods of solvent, chromic acid 

and hydroflouric acid washing, Onuska, Afghan and Wilkinson (19) has 

shown that allowing 10% HF to remain in the tube overnight gives the 

better deactivated column when it is deactivated and coated with Carbowax 

20M. This technique serves to remove a layer of the silica from the 

glass surface and also organic material that is adsorbed to that layer. 

Capillary Drawing 

Fabrication of capillaries from the cleaned glass tubing is done 

with a capillary drawing machine. The ratio of SP,eeds of rollers on each 

side of the drawing oven controls the inner diameter of the drawn capil­

lary. After exiting the drawing oven, the capillary is pushed through a 

heated coiling tube which forms the capillary into its helical shape. 

Chemical treatment during the capillary drawing operation has included 

purging the capillary with oxygen or with very dry argon (15,20). The 

purge with oxygen was used to oxidize any adsorbed carbon on·the surface. 

The dry argon was used to dehydrate the glass surface and prevent mois­

ture from rehydrating the glass before the capillary was coated with the 

stationary phase. 

Roughening 

After the pretreatment and drawing operation, the next step in the 

preparation depends on the type of stationary phase used. If nonpolar 

stationary phases are to be coated, then a deactivation step must be in-



eluded before phase coating. When a polar stationary phase is to be 

coated, a roughening step is required before deactivation. Surface 

roughening can be accomplished by two approaches. The first involves 

corrosion of the glass surface with acids such as HF or HCl or bases 

11 

such as NH3 or NaOH (21-24). Both of these cause roughening by breaking 

the Si-0-Si bond in the glass framework. Salts of HF such as KHF2 and 

NH4FHF also can cause corrosion (21,25). In the case of NH4FHF, silica 

whisker formation can occur when the salt coated capillary is heated at 

high temperatures (26). This whisker formation can also be accomplished 

by fluoroether liquids which decompose at high temperatures and release 

HF (27). The drawback to these whisker columns is the high surface 

activity which requires extensive deactivation treatments. One addition-

al type of roughening uses plasma etching where radio frequency discharge 

causes fluoro compounds to form a plasma (28). The etching of the glass 

surface by this method is thought to be caused by free radicals which are 

present in the plasma. 

The second type of roughening involves covering the glass surface 

with a material that increases the inner surface area. This can be 

accomplished by passing HCl gas through unleached soda-lime capillaries 

(29). At high temperatures sodium ions migrate to the glass surface, 

react with HCl, and form NaCl crystals. In addition to surface roughen-

ing, silanol groups are also covered and some deactivation occurs. NaCl 

deposits can also be obtained by coating the capillary with a 10% or 

saturated solution of NaCl (30,31). Barium carbonate has also been de­

posited (32). Here a plug of Ba(OH) 2 solutio~ was pushed through the 

capillary with carbon dioxide. Instead of plugging the capillary with 

barium carbonate, a film and crystals of Baco3 formed on the capillary 
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inner wall. This roughening technique caused an increase in surface area 

and hence good thermal stability of stationary phases, although the basic 

nature of the carbonate deposit caused adsorption of acidic compounds. 

Removal of this activity could not be accomplished with Carbowax 20M de­

activation as was determined by the adsorption of propionic acid. Other 

methods of surface roughening include coating the capillary with solid 

materials such as carbon black, Silanox 101 (a trimethylsilylated fumed 

silica), Cab-0-Sil (unsilylated fumed silica), amorphous silica, colloid­

al silicic acid and quartz (33-38). These materials serve only to pro­

vide a roughened surface and do not affect the active sites of the glass. 

Deactivation and·Chemical Modification 

Following the roughening step when a polar stationary phase is to be 

coated or after the capillary drawing for a nonpolar phase, some type of 

deactivation or chemical modification must be used. For nonpolar phases 

the first step of deactivation involves acid leaching of the metals from 

the glass. Grob, Grob and Grob's technique (39) which uses a static 

leach with 20% HCl at 180°C has been used extensively. Lee, Vassilaros, 

Phillips, Hercules, Azumaya, Jorgenson, Maskarinec and Novotny (40) have 

shown that a dynamic leach with a continuous flow of HCl through the 

capillary at 110°C with intermediate drying steps gives surfaces which 

are free not only of metals but also of adsorbed carbon. Lee's results 

revealed that the statically leached glass surface had a carbon contam­

ination of 25%. 

After the initial HCl treatment the column should be rinsed with 

deionized water to remove all traces of HCl and then dehydrated to remove 

adsorbed water. Removal of the water by carrier flow or vacuum and 
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heating at 220-250°C for 30-90 min (depending on the glass type) facili­

tates coating of the capillary by increasing the wettability of the 

surface and reactivity of the surface toward silylation. 

Further deactivation after leaching can be accomplished by coating 

materials which adsorb on the glass surface, form polymeric.coatings over 

the surface or bond directly to the silanol groups in the glass. Many 

surfactants have been used where the polar portion of these molecules 

adsorb to the glass surface of the capillary and deactivate the surface 

silanol. Examples of these surfactants are trioctadecylmethylammonium 

bromide, sodium tetraphenylborate and triethanolamine (41-43). Although 

these surface modifiers have shown good deactivation character, there are 

drawbacks in the stability of the monolayer of surfactant formed. Since 

these surfactants are not bonded to the glass surface, thermal stability 

is poor and replacement of these surfactants by solute molecules can 

occur. 

Polymeric coatings have found wide usage especially for a pretreat­

ment with Carbowax 20M (CW20M) (44,45). When a 2% w/v solution of CW20M 

in CH2c12 is dynamically coated in the capillary, the capillary heated 

at 280°C for 16 hours, and the column exhaustively extracted with sol­

vent, a nonextractable layer of CW20M coats the capillary surface. A 

thicker film of CW20M or other polar stationary phase can then be coated 

over this polymeric surface. Though the mechanism for the bonding of the 

nonextractable Carbowax film has not been determined, the necessity for 

silanol groups on the glass surface suggests that a chemical bond is 

formed or that the cumulative effect of hydrogen and Van der Waals bonds 

between the Carbowax polymer and silanols approaches chemical bond 

strength. A possible chemical reaction for the deactivation could be the 
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decomposition of Carbowax into oxirane which reacts with two adjacent 

silanol groups (46). Surfaces which are deactivateg with Carbowax can 

be coated with thicker films of Carbowax ZOM or with nonpolar polydi­

methylsiloxanes such as OVlOl or SP2100. Polymer deactivated surfaces 

have also been obtained using squalane, ethoxycarbonylpolyphenylene and 

alkypolysiloxanes. An advantage of polymeric films is the enhanced 

thermal stability of the coated stationary phase. When alkylpolysilox­

anes such as OVl and OV101 are heated at high temperatures in sealed 

capillaries and then recoated with the same stationary phase, higher 

maximum operating temperatures are obtained (47). One disadvantage of 

these column types is that the underlying polymer film can contribute to 

retention and effect a change in column polarity different from that 

expected for the stationary phase. 

Deactivation can also be accomplished by chemical bonding groups to 

the glass surface. Trimethylchlorosilane (TMCS), dichlorodimethylsilane 

(DCDMS), hexamethyldisilazane (HMDS), diphenyltetramethyldisilazane 

(DPTMS) and dichlorooctamethyltetrasiloxane are examples of deactivating 

reagents which react with silanol groups to form bonded silyl ligands on 

the glass surface. Because different types of silanol groups are present 

in silica, that is, free, hydrogen bounded, vicinal and geminal, these 

silanes have different reactivitie.s to each type of silanol group. TMCS 

reacts with surface silanols in a first order reaction which requires a 

bimolecular transition state. This mechanism excludes reaction with hy­

drogen bonded silanols. DMCS which is a bifunctional silane can react 

with hydrogen bound silanols. HMDS is considerably more reactive towards 

silanols than either of the chlorosilanes. Novotny, Blomberg and Bartle 

(48) have shown that improved nonpolar columns can be obtained if gaseous 
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5:1 mixtures of HMDS and TMCS are used to silanize etched capillary col­

umns. Rutten and Luyten (42) also applied mixtures of HMDS and TMCS but 

used a coated liquid and heated the sealed capillary at 200°C for several 

days instead of at 150°C as described by Novotny. This higher tempera­

ture silanization gave nonpolar columns which were stable for several 

months while those treated at 150°C deteriorated rapidly. This trent in 

high temperature silanization was continued by Welsch, Engewald and 

Klaucke (49) with silanization temperatures of 300°C for pure HMDS, 

Grob, Grob and Grob (50) with temperatures of 400°C for diphenyltetra­

methyldisilazane, and Lee, Wright, Graham and Hercules (51) with tempera­

tures at 400°C for 5:1 mixtures of HMDS and TMCS. The procedure of 

dynamic chemical treatment using silylating vapors which pass through 

the heated column has provided better column deactivation than static 

treatment of sealed capillaries containing films of silylated reagents. 

Dynamic treatment allows flushing of NH3 byproducts of disilazanes which 

can cause regeneration of silanol groups on the silica and HCl byproducts 

of disilazanes which can cause regeneration of silanol groups on the 

silica and HCl byproducts of chlorosilanes which can react with metal 

oxides and also generate silanol groups. One additional chlorosilane, 

dichlorooctamethyltetrasiloxane, deactivates the column surface by bond­

ing at the two ends of its short siloxane oligomer (51). Heat treatment 

at 400°C of the sealed capillary provides surfaces which are similar to 

high ~olecular polysiloxane deactivated surfaces. 

Dynamic and Static Coating 

After the surface deactivation step, the column can be coated by a 

dynamic or static method. Dynamic coating which was first applied by 
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Dijkstra and De Goey (52) requires that a solution of 2 to 15% v/v sta-

tionary phase in volatile solvent be pushed through the capillary column 

at a constant linear velocity of 1-2 cm/s with helium or nitrogen pres-

sure. The uniformity of the film left inside the column is dependent on 

many variables, and close attention to detail is required in order to 

obtain good columns. Since the plug velocity increases as it exits the 

column and causes thicker films to deposit, buffer columns are attached 

to the column end. Flow restrictors and syringe pumps functioning as 

liquid brakes at the end of the column have been used to ensure constant 

exit of the coating solution (53-54). Even with buffer columns, compres-

sion of the pushing gas causes a gradual decrease in coating velocity. 

Mercury plugs have also been introduced after the coating solution to 

act as wipers which leave thin films of coating solution (55). Here 

higher concentrations of coating solution having higher viscosities can 

be used to obtain thicker films. During the coating operation the align-

ment of the coils should be vertical so that the coating solution does 

not collect on the lower portion of each loop. Temperature fluctuations 

along the column should be minimized to ensure uniform evaporation of 

solvent and prevent recondensation. 

The prevention of droplet or lense formation after the coating has 

occurred is dependent on the wettability of the surface by the stationary 

phase and the solution film thickness left after the plug passes through 

the column. The wettability of the surface can be ensured if the surface 

tension of the stationary phase is lower than that of the surface. The 

thickness of the film left on the surface is affected by the column 

radius (r ), velocity (v), concentration (C), surface tension (y), and 
c 

viscosity (n) of the solvent, volatility and rate of solvent evaporation. 
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Although Equation 3 which ~tilizes several of these variables is used to 

predict the film thickness, other methods are used to calculate the 

(3) 

actual film thickness (56). Examples include determining the volume of 

coating solution consumed after coating, relating the column radius and 

partition ratio for a probe on a.dynamically coated column to the phase 

ratio and partition ratio of the same probe on a statically coated column 

containing the same stationary phase and measuring the weight of station-

ary phase that can be washed out of the column (57-59). 

The method of statically coating capillary columns which was first 

described by Golay (60) has been shown to produce more efficient columns 

than the dynamic method and provides a ready determination of film thick-

ness {Equation 4) which is based on the inner diameter and solution con-

centration (% v/v) (61). 

r C 
c 

200 
(4) 

Since a vacuum is applied to one end of the capillary, the solution must 

be free of dust and degassed so that air or vapor bubbles are not present 

or do not form later. If an air bubble is formed at the end of the cap-

illary, the coating solution is evacuated instead of the solvent evapor-

ated. A constant column temperature must be maintained during the 

evacuation if uniform films are to be obtained. A constant room or water 

bath temperature is sufficient although baths within thermostated baths 
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for higher temperature evacuation and shorter evacuation times have been 

described (61). Solvents of low volatility such as methylene chloride, 

pentane and diethyl ether are recommended so that coating times can be 

minimized. Typical coating times for solutions in pentane and methylene 

chloride in a 20 m x 0.3 mm I.D. column are 8 hand 15 h, respectively 

(62). 

The greatest difficulty in static coating is sealing one end of the 

capillary when the coating solution is present. Simple microtorch seal­

ing of the end cannot be used since vapor bubbles are formed from the 

flame. Of the various methods including sodium silicate, cements, ad­

hesives, and waxes, a mechanical seal obtained by crimping a copper tube 

over a piece of heat shrink tubing attached to the column end has been 

described as the simplest (63). Pressurizing the liquid in the capillary 

against this seal at 50 psi overnight ensures that vapor bubbles and 

static coating failures are minimized. In several variations of the 

static coating method the open end of the capillary is _fed into a heated 

oven or liquid bath where the solvent rapidly evaporates forcing the 

stationary phase to the column wall (64,65). The pressure of the evapor­

ated solvent which approaches 300 psi produces intimate contact between 

the glass and stationary phase and more stable columns result. A method 

of static coating where the coating solution is freeze dried has also 

been introduced although the method is limited to low viscosity or non­

solid stationary phases (66). 

Stationary Phase Immobilization 

Chemical immobilization of the stationary phase inside the capillary 

has been accomplished by bonding the phase to the silica surface and/or 
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crosslinking the molecules of the stationary phase to each other. When 

the stationary phase is immobilized by either.method, the stability of 

the film increases and the phase becomes nonextractable. As such, phase 

stripping by large solvent injections is eliminated. Column efficiency 

which is lessened by non-volatile samples injected onto the-column or 

formed as byproducts from sample decomposition can be restored by rins­

ing the capillary with solvent. 

Though several methods of phase immobilization were introduced from 

1966 to 1978 which involved in situ polymerizations of polyolefins and 

prepolymers, these methods were sophisticated and laborious. In 1981, 

K. Grob (67) developed an immobilization method whic~ utilized free 

radical initiators to induce crosslinking in polysi~oxane stationary 

phases. Both the initiator, dibenzoylperoxide, and a low polarity poly­

siloxane were statically coated in the column and crosslinking induced 

with temperature programming. After conditioning at 200°C, the column 

was evaluated, rinsed with two column volumes of methylene chloride and 

one column volume of pentane and reevaluated to show that only 5% of the 

stationary phase was lost. The incorporation of surface bonded vinyl­

silanes has introduced additional phase stability especially when low 

percentages of vinyl groups are incorporated in the stationary phase. 

Independent systematic examination of initiators by Grob and Grob (68), 

Wright, Peaden, Lee and Stark (69), and Richter, Kuel, Park, Crowley, 

Bradshaw and Lee (70) has shown that dicurnyl peroxide, dibenzoyl peroxide 

and azo-t-butane are initiators that give columns that are highly resis­

tant to phase loss during column washing. One drawback to using di­

benzoyl peroxide is the increased column activity (tailing) which is 

caused by adsorption of initiator decomposition products. Although 
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dicumyl peroxide has been shown to.give less active columns, it and di­

benzoyl peroxide are limited to stationary phases which do not have 

oxidizable groups such as cyanopropyl or tolyl groups. For such station­

ary phases, azo-t-butane was the initiator of choice. 

Crosslinking can also be accomplished by exposing the coated capil­

lary toy-radiation. Schomburg, Husmann, Ruthe and Herraiz (71) and 

Bertsch, Pretorius, Pierce, Thompson and Schnautz (72) have described 

simple methods of effecting immobilization using a cobalt 60 gamma 

source. This technique has advantages over azo or peroxide initiators 

in that no functional groups are added to the stationary phase. This 

ensures no change in polarity or loss in efficiency due to activity of 

initiator byproducts. 

Column Conditioning 

The final step in column preparation involves temperature condition­

ing the column under carrier flow. This removes any solvent left in the 

column after coating. Since gas chromatographic grade stationary phases 

have very narrow ranges of high molecular weight, the capillary column 

needs to be conditioned only for one to two hours at temperatures slight­

ly above the desired operating temperature (73). The practical operating 

temperature limit for stationary phases used in capillary columns is 

about 50°C lower than the supplier's recommended temperature limit (74). 

This difference in temperature limit is due to the lower thermal stabil­

ity of the coated film on the capillary wall as compared to the film on 

the support particle in the packed column. 
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Materials which are used as stationary phases in capillary chroma­

tography must have good thermal stability and low vapor pressure, a wide 

working temperature range, high permeability to solute vapors, high 

viscosity and especially be able to form stable, uniform films on the 

capillary wall. Of the many types of stationary phases that have been 

evaluated, polysiloxanes which are available in~ wide range of polar­

ities and polyethylene glycols provide these characteristics. The wide 

range of polarity for polysiloxanes is obtained by attaching different 

functional groups such as methyl, phenyl, tolyl, vinyl, trifluoropropyl, 

cyanopropyl or cyanoethy~ groups to the silicon of the siloxane polymer 

(75). A wide range of operating temperatures for polysiloxanes which 

can extend from 30 to 350°C for polydimethylsiloxanes is due to the 

polymeric chain flexibility and thermal stability of the Si-0-Si and 

Si-C bonds. As more polar groups are attached to the siloxane, the 

lower working temperature increases to 100°C for 100% cyanopropyl or 

cyanoethyl silicone oils. Polyethylene glycols have working ranges of 

50 to 280°C and are medium to high polarity. The structures of poly­

siloxanes and polyethylene glycol are given in Figure 1. 

Column Evaluation 

After a capillary column has been prepared or purchased it should 

be characterized to determine the column efficiency, resolving ability, 

adsorption character and thermal stability. Once an initial evaluation 

has been determined, changes in column or instrument performance can be 
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diagnosed by additional evaluation. 

(The following section on column evaluation was presented in 1979 

as a critical review to fulfill requirements for doctoral candidacy. 
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This qualifier is included with moderate changes and contains more detail 

than other parts of the introduction.) 

Column Efficiency 

The measurement of the efficiency of a gas chromatography column 

involves a relationship between the peak broadening tendency of the 

eluted solute and the retention of this peak in the column. When two 

columns of similar type and length are compared, the highly efficient 

column would elute peaks with smaller widths. 

Theoretical Plate Number. The first measure of column efficiency 
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in gas chromatography, the number of theoretical plates, was suggested by 

Martin and Synge (76) in 1941 when they realized the similarity between 

distillation and gas chromatography. In the distillation column the num-

ber of theoretical plates corresponds to the number of separate equil-

ibrations which the solute experiences between the liquid and vapor 

phases. Each of the plates in the distillation column consists of a 

physically separate condensation and vaporization step. Borrowing·this 

concept from distillation, they derived a theoretical plate number ex-

pression for the chromatography column. Their derived expression, 

(where ht is the peak height, tR is the time of the peak maximum and A 

is the peak area) assumed linear, ideal chromatography, in other words 

(5) 

1) that the partition coefficient, K, was constant throughout the column 

and independent of concentration, 2) that rapid equilibration of the 

solute occurred between phases, 3) that longitudinal diffusion was neg-

ligible in the column, 4) that the column consisted of a number of 

identical column elements where equilibration occurred and 5) that the 

flow of the mobile phase was considered to be discontinuous, that is, 

the mobile phase was added in stepwise sequence. This last assumption 

was considered unsatisfactory by Glueckauf (77) who derived a plate 

number expression based on a continuous flow model. His assumptions 

were similar to Martin and Synge's in that he also assumed linear ideal 

chromatography. The difference in Glueckauf's model was that he assumed 

zero volume increments of flowing mobile phase or continuous flow of the 

mobile phase. Solution of the material balance differential equation 



that results from this continuous flow situation.using boundary condi-

tions specified by Glueckauf results in the following expression: 

c 
m 

-n' (V -V) t 2j 
cm (max) •exp zv:v · 

24 

(6) 

(where C is the concentration of solute when a volume of mobile phase, 
m 

V, is eluted from the column, C (max) is the maximum C value, VR is the 
m m 

total retention volume and n' is the difference between the true number 

of theoretical plates and the number of plates in the original band 

width). An expression for n' 

n' 

is obtained by considering that when C /C (max)= 1/e, the exponential 
m m 

term equals -1 and V becomes the retention volume corresponding to the 

point along the elution curve located at 1/e times the peak height, V 
e 

(7) 

(See Figure 2). By replacing (VR - Ve) with one-half of the width of the 

peak at 1/e times the peak height, S'/2, and assuming that n' ~ n (n is 

the number of theoretical plates) and VR ~ Ve'' Equation 7 becomes 

n (8) 

This expression can be changed di.rectly into 

(9) 
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where tR is the retention time and we is the width of the peak at 1/e 

times the height •. Modification of this equation into more easily calcu-

lable expressions occurs when the elution curve has the form of a 

Gaussian distribution.(provided n is large). With this assumption, the 

widths of the eluted peak at different peak heights can then be expre~sed 

in terms of the standard deviation of the peak, cr. 

where w = 2cr/2 results in 
e 

n = 

Substitution of w 
e 

(10) 

Substituting cr in Equation 10 with expressions containing the peak widths 

at half height (cr =: wh/ (2h in 2)), at the inflection point (cr = w/2), 

and at the intersection of the tangents at the inflection points and the 

base of the elution curve (cr = wb/4) results in the following: 

[wthiJ_ 2 n = 8 in 2 C J 

n = 

(11) 

(12) 

(13) 

It should also be noted that when the expression for the standard devia-

tion of a Gaussian peak expressed in terms of peak area and height, 

(14)" 
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is substituted into Equation 10, Martin and Synge's original plate number 

expression, Equation 5, is obtained. This shows that althoug~ the as-

sumptions of Glueckauf and Martin and Synge differed, both theories give 

equivalent mathematical expressions when the number of theoretical plates 

is large. 

Purnell (78,79) has shown that two limiting situations should be 

considered before the.number of theoretical plates can be used to measure 

the efficiency of a gas chromatography column. The first requires that 

the feed volume, or the initial volume of the vaporized sample, be less 

than one-quarter of the average band width of the solute peak as it 

leaves the column. Approximations in Glueckauf's derivation require 

this. Based on an average band widtq of 2cr at the inflection point, the 

maximum feed volume, VF, is given by 

V < _S_ = VR 
F· 4.fi. 21n 

(15) 

From this equation we see that 1) the more efficient column, that is, 

the one with the larger n value, requires a smaller feed volume and that 

2) as the retention volume increases, the acceptable feed volume can 

also increase. The second limiting situation set by Purnell (78) main-

tains that the size of the retention volume must be much greater than 

the free column volume in order for the number of theoretical plates to 

be a true measure of the column's separating efficiency. This implies 

that the theoretical plate number should be determined for components 

whose retention time is much larger than the gas hold-up time. Besides 

these two limiting situations, the number of theoretical plates should 

only be calculated when band spreading is not dominated by non-equilib-
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rium conditions between the solute and the stationary phase or solid 

support. According to Glueckauf (77), this occurs in gas-liquid chroma-

tography when the height equivalent to one theoretical plate is deter-

mined enti~ely by gas-phase diffusion along the column length or by 

channeling effects in the column, and/or when equilibrium is established 

by use of very small particles and low flow rates. 

Although there is a tendency to apply the theoretical plate number 

expression directly to real chromatography columns, the theoretical col-

umn that was discussed by Glueckauf and others does not consider the band 

broadening by extra column components. Extra column effects due to the 

injector, column connections and detector contribute to the retention 

time and peak width of the eluted peak and should be quantitated and 

subtracted from the actual peak parameters if a true efficiency indicator 

is to be obtained. Guiochon (80) has suggested a means of accounting for 

these extra column contributions by replacing the column to be evaluated 

with a short capillary column which has a very small inner diameter. An 

expression for the theoretical plate number corrected for the retention 

time and peak width of the component on the "null" volume column with 

pressure corrections is shown below: 

(j 0 and jc are the values of the correction coefficient of James and 

Martin (81J for the column of null gas volume and the column studied, 

(16) 

g0 and gc are the values of correction coefficient of Giddings, Seager, 
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Stucki and St.ewart (82) for the column of null gas volume and the column 

studied, ·TR O is the retention time in the column of null gas volume and 
' 

wb,O is the width at the base of the peak recorded at the outlet of the 

null volume column). The underlying assumption in the use of this expres-

sion is that the contributions of the short, small inner diameter column 

to the retention time and peak width be negligible compared to the extra 

column contributions. A requirement of identical gas flow rates in the 

two columns actuates this assumption because of the high linear velocity 

present in the small column. Though simple in concept, actual matching 

of gas flow rates through the two columns is difficult since comparable 

pressure drops are required. 

Effective Plate Number. In 1960 Purnell (79) first demonstrated a 

modification of the theoretical plate number expression when he defined 

the separation factor, S 

s or. (17) 

where ti_ is the adjusted retention time (ti_ = tR - tM , tM is the gas hold­

up time). This equation not only corrects for the gas hold-up time in 

Equation 13 but also eliminates the extra column dead time. It provides 

a measure of the column efficiency which Purnell prefers instead of the 

theoretical plate number. His preference for S arises because large un-

realistic theoretical plate numbers occur for peaks which elute early. 

This effect is more strongly evident in capillary columns where longer 

gas hold-up times exist than in packed columns. 

Desty, Goldup and Swanton (83) defined an expression identical to 
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Purnell's equation which they called .the effective plate number, N. They 

also defined the effective plate number as Equation 18. 

N = n [1 ~ 'k ,j 2 (18) 

where k' is defined as 

k' (19) 

Real Plate Number. Another modification to the theoretical plate 

number expression occurred in 1976 when Kaiser (84-89) defined his real 

plate number, n 1 , as 
rea 

(20) 

where a is the slope of the linear expression that describes the increase 

of the peak width, wh, at one-half peak height with respect to the par-

titian ratio, k'. This linear equation is expressed as 

ak' + who (21) 

where wh is the peak width at half height for a peak with partition 

ratio, k', and who is the starting peak width at k' = O. We can see the 

relationship between n 1 and the theoretical plate number, n, by ex-
rea 

pressing the tR and wh terms that are found in Equation 11 in terms of k'. 

From Equation 19 we obtain 

(22) 
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Substituting Equations 21 and 22 into Equation 11, the following results: 

n B<n 2 [:f • 8 £n 2 (23) 

By comparing this equation to Equation 20, it becomes evident that 

Kaiser's equation is obtained by subtracting tM from the numerator and 

who from the denominator in the squared term whereby the partition ratio 

cancels. By eliminating tM as was done in the effective plate number 

equation and who' the extrapolated peak width at k' = 0, Kaiser obtained 

a measure of the column efficiency which is relatively independent of the 

nature of the substance, the injection technique and the connection de-

tails. He claims that this expression measures the actual peak broaden-

ing due to the column alone. This concept is based on the experimental 

fact that peak widths at half height increase with almost complete lin-

earity as the partition ratio increases. Kaiser claims that this obser-

vation occurs if isothermal, isobaric and non-overloaded gas chroma-

tographic analysis occurs under optimum conditions. Hence when non-

stabilized temperature conditions, non-constant gas flow, overloading 

of the column or the detector, too low a temperature for sampling and 

separation or too widely differing chemical classes are used as probes 

for column testing, non-linearity in Equation 21 occurs. 

The measurement of a.and who is accomplished by linear regression 

analysis of the peak width and partition ratio for a number of compounds 

(usually more than five from a series of homologs) that exhibit syrn-

metrical profiles. Appropriate measures of the quality of the linear 

regression, that is, the regression coefficient, r 2 , the regression 



32 

angle, aR, and the standard deviations of a and who are necessary before 

realistic wh, a, n 1 and other resulting column characteristics should . o rea 

be calculated. If r 2 values significantly less than 1.000 and aR values 

greater than 0.000° are obtained, then linearity of Equation 21 is lack-

ing and application to real plate number calculations and other column 

evaluation characteristics, which will be covered in later sections, 

become complex. 

Plate Number Comparison. Comparison of the three plate number ex-

pressions presented in the preceeding sections, theoretical, effective, 

and real, is best seen by expressing each plate number equation in terms 

of the partition ratio, k' (88). Each corresponding plate number equa-

tion is then defined as 

(24) 

N (25) 

8'n 2 t:k';<r " 8 tn 2 (26) 

In Equation (24) we see that ask' approaches zero, the expression takes 

on the following form: 

n • 8'n2 [~J (27) 



Also ask' approaches 00 , the theoretical plate number, the effective 

plate number, and the real plate number all become equal (90,29). The 

tendency for the theoretical plate number to decrease as the partition 

ratio increases has been graphicalTy demonstrated as in Figure 3a by 

several sourc~s (85,92). Figures 3b and 3c show new theoretical rela-

tionships between n and k' which result in an increasing and constant 

theoretical plate number. The tendency for n to increase, decrease or 

remain constant depends upon the respective sizes of the ratios, tM/who 

and tM/a. If the value of who is larger than a, then the number of 
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theoretical plates will increase ask increases until it becomes as large 

as n 1 (Figure 3b). As Figures 3a, 3b and 3c show and as Equation 25 
rea 

predicts, the effective plate number equals zero at k' = 0 and approaches 

the number of real plates ask' approaches infinity. The relationship 

between N and n is governed by Equation 18. Figure 3a shows the special 

case where the number of theoretical plates equals the number of real 

plates. This independence of k' which has been observed by Nilsson (91) 

occurs when who and a are equal. It should be noted that even though 

the theoretical plate number is constant, the effective plate number 

still asymptotically approaches n 1 as is predicted by Equation 18. 
rea 

Figures 3a, 3b and 3c were constructed to show the converging tendency 

of the three plate number expressions. It should be noted that the high 

values of the partition ratio represented in these graphs are seldom if 

ever approached in actual chromatography and that realistic k' values 

range from Oto 10. 

Criticism of Real Plate Number. The reliability and applicability 

of Kaiser's real plate concept has been challenged by several authors. 
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In 1977 Franken (93) pointed out that the peak width due to extra column 

contributions, cr (expressed as a standard deviation), and the peak 
ex 

width due solely to the separation processes, cr, are related quadrat­
c 

ically to the square of the experimentally observed total peak width, crT. 

2 
cr 

ex 
+ cr2 

c 
(28) 

It is assumed that this quadratic expression, an example of the variance 

additivity principle, is valid because the processes which cause broaden-

ing of the peak width, extra column contributions and column separation 

processes, are statistically independent of each other (94). When 

Gaussian shaped peaks are assumed, this equation can be converted readily 

into Equation 29. 

(29) 

It is easily seen that the contribution of whex to wh becomes more im­

portant as whc becomes small. Franken demonstrated that Kaiser's 

Equation 25 does not produce constant n 1 values for the same column 
. r~ . 

and column conditions when wh values are increased by using slower ex· 

injection rates and decreased injection depths. 

Kaiser's reply (86) revealed that Franken's data failed to fulfill 

the basic requirement of linearity between peak widths and partition 

ratios which must be qualified by regression coefficients, regression 

angles and standard deviations of who and a values. Kaiser was convinced 

that the excellent long range linearity that he had found in hundreds of 

analyses provided a practical evaluation for this column efficiency 

method even though the concept was not theoretically complete. Apparent-
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ly, the extra column contributions to broadening which were present in 

Kaiser's data were small enough so that a linear relationship between 

whc and k' occurred within Kaiser's limits. 

Guiochon (95) also has attacked Kaiser's concept in that he took 

Kaiser's experimental observation and placed it in the theoretical realm. 

Beginning with the Golay equation, Equation 30, and an expression of the 

theoretical plate height in terms of base line peak width, Equation 30, 

Guiochon derived Equation 33. 

2 -d v 2DG 1 + 6k I + llk I 2 2k'd! v 
h c = --=- + • 96D + 

3(1+k 1 /n (l+k 1 / 

where 

and 

v G 

h 
2DG 

f (k I ) C V + g (k I ) C'v = --=- + 
v 

h B -=-+c v + CL v v G 

h = height of a theoretical plate 

v average mobile phase velocity 

k' partition ratio 

d = column inner diameter 
c 

L 

df average film thickness of the liquid phase 

DG = diffusion coefficient of the vapor of the solute in the 

carrier gas 

DL diffusion coefficient of the solute in the stationary phase 

(30) 

(31) 

(32) 
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1 + 6k' + llk12 
d2 

f (k I) c c B 2DG. 
(l+k 1 )

2 
= 

96DG 

CG f (k I )C 

2 

g(k') 
k' 

C' 
2 df 

CL g(k I )C' = 
(1 + k I) 2 

= 
3 DL 

From Equations 13. and 30 he obtained 

[2D_G + l+ 6k' + llk12 
2 -

r2 
d v 2k'v 

4tR 
c (33) wb 

(l+k 1 / 
• 96DGL + 

3(1+k 1 / 
Lv DLL 

Using this equation Guiochon stated that he had found no theoretical 

basis for an exact linear relationship between the peak width at the base 

and the partition ratio, although linearity could occur when the diffu-

sion coefficients in the gas phase, DG, were identical for all components. 

He also showed that linearity is possible when the diffusion coefficients 

for a series of components, DG and DL, varied regularly with k' and/or 

when the band broadening due to resistance to mass transfer in the liquid 

phase was negligible. By plotting theoretical values of wb (calculated 

from the Golay equation) and k' for data given by Kaiser (88), he showed 

that linearity was found to hold in practice fork' values greater than 

0.30. Although Guiochon admitted that the determination of n 1 at an rea 

optimum flow rate might provide the best characterization of a column, 

he claimed that Kaiser's method was useless because of the inaccurate 

determination of a and who" He stated that positive deviations from 

linearity due to ubiquitous extra column contributions occur ask' 



approaches zero and that the linear extrapolated who value would under­

estimate the true who value. Guiochon's incorrect interpretation of 

Kaiser's definition of who also contributed to his criticism of the 
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n 1 concept. Guiochon believed that Kaiser attributed only extra col­rea 

umn effects to who and not peak broadening due to the intracolumn longi­

tudinal diffusion of the non-retained peak. 

Kaiser (89) has responded to Guiochon by reiterating his confidence 

in his concept and by re-explaining his theory. He stated that linearity 

must occur before conclusions about his efficiency measure can be ob-

tained. 

Several authors have continued the discussion of the experimental 

results of linear wh versus k' plots and have extended their concern to 

the measurement of wh and its effect on linearity (96-100). Several 
ex 

opposing views of wh 's effect are presented. Although determination ex 

of wh is a critical parameter for correction of the peak width, the ex 

methods used by the authors are theoretical and experimentally determined 

wh values at low k' were not provided. ex 

Plate Height. Three ralated parameters which follow from each type 

of plate number previously discussed are the height equivalent to a 

theoretical plate (h), effective plate (H), and a real plate (h 1). rea 

These parameters, defined as 

h 
1 

= 
n 

H 
1 

= 
N 

h 
1 

~~-

real n real 

(34) 

(35) 

(36) 
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are traditional measures of column efficiency. The theoretical plate 

height concept allows compatison of columns based on relative peak 

broadening which is independent of column length. 

By taking the expression for the number of theoretical plates ex-

pressed in units of time (Equation 10) and converting it into units of 

column length, the following equation results. 

(37) 

Substituting this into Equation 34, an expression for plate height in 

terms of the variance of the peak and the column length is obtained. 

h (38) 

Because of the statistical property of additivity of variances, a plate 

height equation can be expressed as the summation of all the independent 

processes which contribute to peak broadening, provided the column acts 

as a Gaussian operator on the processes (94,100,101). Equation 38 can 

then be expressed as 

h (39) 

Golay (102) has used this equation as the basis for his derivation of the 

theoretical plate height expression for the capillary column which was 

presented earlier in Equations 30 and 31. Each of the three terms in 

this expression correspond to one of the peak broadening processes that 

occur in the column. The first term, B, is due to static or longitudinal 
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molecular diffusion of the solute zone in the mobile phase. As can be 

seen from the plate height expressions, this peak broadening term de-

creases with increase of the average mobile phase velocity. The second 

term, dynamic diffusion or resistance to mass transfer in the gas phase, 

CG, is due to the distribution of the molecules across. the laminar flow 

profile. Those molecules which are located near the center of the capil-

lary move ahead in the band while those located near the capillary wall 

lag behind. The third term, resistance to mass transfer in the liquid 

phase, CL, is the zone broadening which is due to wandering of molecules 

in the stationary phase without instantaneous movement into the mobile 

phase. Both of these last two peak broadening terms decrease with de-

creasing average mobile phase velocity. Becau~e of the two opposing 

effects which the average mobile phase velocity has on the plate height, 

a minimum plate height, h. , occurs at the optimum average mobile phase 
min 

velocity, v for each solute that elutes from the column. Experiment-opt' 

al determination of these minimum plate heights, h ( . )' which re-expt min 

fleet optimum peak efficiency for the column with regard to a particular 

solute, is accomplished by plotting experimental plate height values 

versus their corresponding average mobile phase velocities. Obviously, 

h t( . ) occurs at the minimum h value obtainable from the h versus exp min 

v curve. The discussion of plate height versus linear mobile phase 

velocity curves presented so far has been concerned with theoretical 

plate heights. This does not mean that the effective plate height or 

real plate height cannot be plotted versus;. Desty and Goldup (103) 

have discussed such H versus v plots and also have modified the Golay 

equation so that it contains the effective plate height instead of the 

theoretical plate height. Plots of h 1 versus v have not been dis­
rea 
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cussed by Kaiser. 

When Equation 32 is differentiated with respect to v, an expression 

for the minimum theoretical plate height, Equation 40, is obtained. 

h = 2 [B(CG + CL)]l/ 2 
theo(min) (40) 

Assuming that the CL term and peak broadening due to pressure gradients 

are negligible, Ettre (12,104) has shown that 

htheo(min) 
t jl/2 
1+ 6k' + llk12 

3(1+ k 1 / 

(41) 

This equation provides a means of determining the minimum plate height 

and maximum plate number for each of the three plate.concepts for a 

specific partition ratio, column length and inner diameter. 

Coating Efficiency. The coating efficiency (CE%) or utilization of 

the theoretical efficiency (UTE%) incorporates the h h ( . ) and the tear min 

h values which were discussed earlier into the following ex-expt(min) 

press ion 

CE% (UTE%) = [htheo] x 100 
hexptjmin 

(42) 

This expression was originally proposed by Ettre for use in measuring 

the column quality by comparing the experimental plate height with the 

theoretically predicted value, but Cramers, Wijnheijmer and Rijks (105, 

106) have demonstrat~d that this expression fails to measure the column 

quality in many practical situations. They have revealed that the fol-
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lowing observations account for this failure. 

1) The CE% as calculated by Equation 41 is not independent of the 

carrier gas type or the ratio of the inlet to outlet pressures. 

2) The predicted effect of the partition coefficient, K, of the 

solute on the CE% is different from the experimental results. 

3) CE%'s for columns of large radius are higher than for small 

columns. 

Cramers et al (106) have used the Golay equation which was extended by 

Giddings (107) for pressure drop across the 'column, Equation 43, 

l+ 6k' + llk12 + ~~~---,,--~ 
24 (1 + k I) 2 

f = 2_ (P4 - l)(P2 :.. 1) 
1 8 (P3 _ l) 2 

2 
k' df VO 

----·---f 
(l+k 1 / DL 2 

PI 
p =­

p 
0 

(43) 

(where PI is the inlet pressure, P0 is the outlet pressure, and terms 

which have a subscript o are determined at the column outlet) to arrive 

at a new hth ( . ) expression. eo min 

htheo(min) 

Cramer et al used this new expression which accounts for the pressure 

drop and CL term to show that coating efficiencies calculated with it 

are always higher than those calculated with Equation 41. Due to the 

(44) 

lack of tabulated values of the molecular diffusion coefficients of the 

solute in the stationary phase, DL, the calculation of the theoretical 

CL term becomes limited. When such DL values are tabulated in the 
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literature or are determined by the chromatographer, then deviations from 

a 100% coating efficiency can be obtained using Equation 44, but if such 

DL values are not obtainable, then errors associated with the original 

CE% expression must be accepted. 

Efficiency Comparison. Of the three plate numbers, theoretical, 

effective and real, the real plate number in operational use best de­

scribes the efficiency of the capillary column because it reflects the 

number of plates available in the column which are due only to the par­

tition processes of the column. In the theoretical plate number expres­

sion, the non-partition contributions, that is, the dead time, the width 

of the non-retained air peak and any extra-column effects are included in 

the retention time and peak width ratio. These non-partition effects 

contribute most to the value of n when the eluted peak has a small re­

tention time. The attempt to correct these contributions by simply 

eliminating the dead time in the effective plate number expression failed 

to consider those contributions which cause the low N values when k' de­

creases. As these contributions to the peak width become smaller in 

comparison to the peak width contributions due to the partition pro­

cesses, N tends toward the value of the real plate number. 

The criticisms of the real plate number do not provide strong 

enough evidence to lessen the reliability or applicability of this con­

cept. Linearity in the relationship between the peak width and partition 

ratio does occur in reality. The theoretical explanation for this occur­

ance has been demonstrated using the rate theory expression for the plate 

height. Theory predicts that linearity will occur when the ratio of the 

diffusion coefficients of the solute in the gas and stationary phase for 
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a homolog series varies regularly with the partition ratio. Though evi-

dence of this relation has not been presented in the articles reviewed, 

Kaiser's requirement that the efficiency probes be homolog series such 

as alkanes and his observance of linearity with these probes alone, in-

creases the likelihood of such a relationship. 

Although extra column contributions to band broadening do not con-

tribute significantly to the peak width at large retention times, their 

effect on the slope between the peak width and partition ratio for peaks 

with low retention times is important. 

The plate height expressions which have been presented are intended 

to provide a comparison of column efficiency between columns of different 

length. From this efficiency measure it could be surmised that if a 

column containing 3000 plates per meter was doubled in length, twice as 

many plates would be present. In reality this does not occur because 

the increased pressure drop in the longer column causes a larger devia-

tion from the optimum carrier gas velocity across the column. Although 

plate height Equation 43 shows the correction for this pressure drop, the 

calculation of plate height is not usually determined with this expres-

sion because of the difficulty in determining the diffusion coefficients 

of the solute in the gas and stationary phase. Accurate determination 

of the h h ( . ) used in the coating efficiency expression also requires 
t eo min 

these coefficients. 

For the efficiency measures which have been presented to be valid 

it is required that the concentration profile of the elution curve follow 

the distribution set by Glueckauf in Equation 6 and that this distribu-

tion also be Gaussian. All the derived expressions presented after 

Glueckauf's distribution require this assumption. The applicability of 
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these expressions rests first on the positive correlation between the 

concentration distribution of the experimental peak and Glueckauf's con-

centration distribution and then between the actual peak distribution 

and a Gaussian distribution. 

Resolution, Separating Power and Performance 

The combination of column-resolution, resolving power and perform-

ance into one section is done for convenience's sake because of the 

various inter-relationships between the six column evaluation parameters 

which are to be presented. Column resolution and resolving power are 

related in that a measure of the resolution between peaks is usually re-

quired before the resolving power of the column can be determined. The 

resolving power provides information on the column's ability to separate 

one component from another. The performance of the column relates a 

desired quantity such as resolution or the number of effective plates to 

a quantity which the chromatographer "trades in" such as the retention 

time. 

Resolution. The measure of the separation which occurs between two 

adjacent peaks which elute from the column is expressed by the resolu-

tion, R. One resolution expression which is shown below and was estab-

lished at the 1958 Amsterdam Symposium (108) is calculated from the 

retention time of the peaks and the average peak width at the base ex-

pressed in time units. 

R = 
Z(tR2 - tRl) 

wb2 + wbl 
(45) 

For practical purposes exact separation of the adjacent peaks, implying 
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a complete baseline separation with a cross contamination of less than 

1.5%, occurs when R > 1.5. Other expressions for R have been presented 

which make the approximation that the width of the first peak (Equation 

46) or the width of the second peak (Equation 47) is equal to the aver-

age base width. 

R (46) 

R (47) 

Resolution equations which allow the calculation of the maximum possible 

resolution using a given number of theoretical plates, separation factor, 

a, and partition ra~ios, k1 and k2, were derived for each of the three 

equations above by Said (109), Knox (110), and Purnell (79). For Said: 

from Equation 45 

[et - lJ I. k I j 
La+ 1 L1+ k'] 

For Knox: from Equation 47 

For Purnell: from Equation 47 

where k' = 
k' + k' 

1 2 
2 

(48) 

(49) 

(50) 
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The expression derived by Said, Equation 45, is an exact equation in that 

the approximation mentioned above is not involved in its derivation. 

Said (111,112) has also introduced another exact resolution Equation 51. 

(51) 

which is derived from a resolution definition which accounts for the in-

crease in peak width with increase of retention volume or time. He has 

h b . R 1 1 1 d f 1 . E . 48 49 sown y comparing lnva ues ca cu ate rom reso ut1on quat1ons , , 

50 and 51 for different values of a. and ki (k2 = aki) that the exact 

Equations 48 and 51 lead to almost identical ~values while values cal­

culated from Equations 49 and 50 give increasingly larger absolute devi-

ations as a and k' increase. 
1 

Separation Number. A characteristic of the column, called the sep-

aration number (SN) or Trennzahl (TZ), which is related to the resolution 

of the column has been developed by Kaiser in several articles since 1962 

(113,84-89). This separation number is defined as the number of base to 

base peaks with resolution equal to 1.0 which can be placed between two 

chromatographed peaks. The first expression introduced by Kaiser (113), 

denoted as TZ, 

TZ = 1 (52) 

is an approximate expression. Kaiser later presented three correct SN 

equations which involve logarithms and the a, wh, and n 1 concepts. o rea 

These equations which are listed below provide separation numbers for 
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homolog pairs (SNhomolog), for a range of partition ratios, k' = 0 to 

k' =lO(SN ) and for the complete chromatogram with a partition ratio 
real 

range of k' =Oto k', where k' is the partition ratio for the last chrom-
e e 

atographed peak (SNO-k'). 
e 

SN homo log 

SN real 

SNO-k' 
e 

wh2 
log --

whl 
- 1 

~+ 1 
log 8 in 2 

~-8 Q,n 2 
1 

lOa + whO 
log----­

who 
--------- - 1 

log 

. rrr;:;;, + 
"~ 1 

~:Q,n2-l 

k~a + whO 
log----­

whO 
--------- - 1 

log 

rn::= + ~~ 1 

. rn:::::;- - 1 ,~ 
The introduction of a and wh into the SN 1 and SN0 k' expressions o rea -

e 

(53) 

(54) 

(55) 

permits the calculation of substance independent separation numbers. The 

tR and wh parameters which are present in the TZ and SN expressions im­

part on these expressions a dependence on the polarity of the column and 

the selection of the substance pair. 



49 

Resolution Versus Retention Time Plots. In 1974 Ettre and March 

(114) developed three methods of comparing columns which involve the res­

olution between a pair of peaks and the retention time of the second 

peak. They felt that these methods provide a true measure of the perform­

ance of a column and applied the method by comparing wall-coated open 

tubular (WCOT), surface-coated open tubular (SCOT), and packed columns 

containing the same stationary phase. They suggested 1) comparison of 

the retention time of each column that corresponds to the same resolu­

tion, 2) comparison of the resolution of each column that corresponds 

to the same retention time and 3) comparison of plots of resolution 

versus retention time. The third method provided a visual comparison 

of the resolution and retention time and is considered by Ettre and March 

to be the best way to compare the performance of different columns. In 

this method the gas holdup time, tM, the retention times, tRZ and tRl' 

and the peak widths at half height, wh2 and Whl are obtained at different 

column flow rates. From this data Ettre and March calculated the resolu­

tion between two peaks using Equation SO for the different flow rates and 

then plotted each resolution against its corresponding retention time. 

Plots of resolution versus retention time for methyl stearate and methyl 

oleate on packed and wall coated capillary columns containing the same 

stationary phase showed that the best performance that the packed column 

could attain was baseline resolution within 27 to 30 minutes. The capil­

lary column provided much better resolution in much less time. 

Separating Power. Kaiser (84-89) has introduced a measure of the 

resolving power of the capillary column, SNt' which is obtained when the 

separation number fork' =Oto 10 (Equation 54) is divided by the re­

tention time of the k' = 10 peak. Since tR = (k' + l)tM, this retention 
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time equals lltM. Therefore: 

SN 
real 

11 tM 
(56) 

SNt provides the chromatographer with the number of totally separated 

peaks that elute from the column per unit time with a resolution of 

R=l.O. By adjusting the temperature and gas flow of the column, this 

column quality indicator can be optimized so that maximum separation 

power of the column is obtained. It should be noted that the optimum 

average mobile velocity for SNt can be different from the one obtained 

from the hNersus v plot discussed earlier. The h versus v plot optimum 

velocity is found for one solute and provides a ratio of the smallest 

peak spread relative to the distance migrated for this solute. The SNt 

optimum velocity provides the largest number of resolved peaks per unit 

time that the column can attain. This information is very useful when 

the mixture to be analyzed consists of many components which elute over 

the partition ratio of k' = 0 "to k' = 10. 

Ratio of Effective Plate Number to Retention Time. A measure of the 

column performance which follows directly from the effective plate number 

is presented by Desty et al (83) as the rate of production of effective 

plates, N/tR. The maximum value of the ratio occurs when the average 

mobile phase velocity is the optimum value obtainable from the H versus 

v plot. While this ratio provides a means for optimizing a column's per-

formance, comparison of the maximum N/tR values between columns for the 

same solute requires that some column conditions between columns be iden-

tical. Ettre and March (114) have shown that N/tR can be expressed as 
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N v k2 
.. -=-·----
tR h (1 + k)3 

(57) 

This expression shows a dependence of N/tR upon the partition ratio of 

the solute. Because of this dependence, Ettre and March maintain that 

the partition ratio of the solute be identical on both columns in order 

for the comparison to be of value. This criterion requires that the 

inner radius of the capillary and the film thickness of the stationary 

phase be the same. If these criteria are met, the column that exhibits 

the larger N/tR or v/h ratio according to Desty et al (83) has the better 

performance. 

Performance Index. When Golay (102) derived his plate height equa-

tion for the wall-coated open tubular column, he also developed an equa-

tion for measuring the performance of the column. The following expres-

si9n which he calle.d the performance index, PI, 

PI f [( (59) 

requires·that the four parameters, wh, tR, tM and Lip, be obtained at the 

optimum carrier gas velocity. This expression which has the dimension 

of viscosity consists of three terms which affect the value of PI. The 

first term contains the reciprocal of the ratio found in the effective 

plate number equation. This expression and the third one, which con-

tains the product of the retention time and the pressure drop, should 

decrease if the desired low performance index value is to be obtained. 

The middle term which is dimensionless will increase in value when the 



first and third terms decrease. Ettre (12) gives a value of PI of 0.1 

as the value expected for open tubular columns. 

Comparison. In summarizing the merits of the equations which have 

been presented to calculate column resolution, resolving power and per­

formance, it must be said that all of the resolving power and perform­

ance equations are of value and each provides different information 

regarding the column separation and performance capabilities. With 

regard to the resolution equations, Equation 45 is an exact equation 

which involves no approximations. When the maximum possible resolution 

for a given number of theoretical plates is required, Equations 48 or 

51 give the most accurate results. 
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With regard to each resolving power and performance determination, 

one feels a need to ask, "How does this column quality indicator, this 

separation number, or this performance index compare to values obtained 

from other columns or to the optimum value?" Each of the five resolving 

power and performance qualities provides a means for comparison of col­

umns. When the TZ or SN parameter is calculated, the number of resolved 

peaks which can be placed between·two reference peaks is obtained. This 

powerful column quality indicator speaks loudly to someone who has many 

components in his sample. When SN real 
is divided by a retention time 

element or the "waiting time", SNt or the rate of peak production is ob-

tained. When resolution between two peaks which elute close to one 

another is important, R versus tR plots can show the resolution which is 

obtainable and the "waiting time" required to obtain it. Although N/tR 

ratios also include this time element, this quality measure speaks of 

efficiency and is not as practical as the number of peaks separated per 
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unit time or resolution attained at a certain retention time. Golay's 

performance index presents a unique measure of column performance in 

that the pressure drop is included. The dimension of his column param­

eter, viscosity, whlch is expressed in dynes•sec/cm2 , is quite different 

from other resolving power or performance dimensions such as number of 

peaks separated per second. 

Peak Shape 

One assumption which is present in almost all of the theoretical 

expressions presented so far has been that the shape of each peak be 

Gaussian. For a peak to be Gaussian, its concentration distribution with 

time must fit the Gaussian distribution described by (94) .• 

C(t) (59) 

When non-Gaussian peaks occur, equations which are used to calculate 

plate numbers, plate heights, resolution, and so on, become invalid 

simply because within their derivation, Gaussian shaped peaks are assumed. 

In each equation where a Gaussian shaped peak is assumed, measurement of 

a peak width at the base, 1/e times the peak height, half height, or the 

inflection point is required. These widths are related to each other 

through the standard deviation, cr, of the peak. Equations which show 

this relation were presented earlier. Kaiser (115) has demonstrated that 

errors of approximately 16% can occur when measured peak widths are used 

to determine the standard deviation, cr, of a skewed HPLC peak which was 

recorded under opti;11um technical conditions. 
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Tailing Factor. A simple measure of the peak symmetry called the 

tailing factor, TF%, is defined below for the peak in Figure 4 (116,117). 

TF% 
a =-x 
b 

100 

Measured at 10% of the peak height, a and b provide a ratio which is 

unity when the investigated peak is symmetrical. Said (118) has also 

provided three measures of asymmetry called asymmetry indexes which 

provide information which is similar to the_ tailing factor. 

Figure 4. 

c:0.1 ht 

Definition of Tailing Factor 
(TF%) 

(60) 
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Moment Analysis. Since the elution curve can be considered· to be a 

probability distribution, the shape of the chromatographed peak can be 

described statistically by determining its statistical moments (119). 

The first statistical moment, M1 , represents the center of gravity or 

mean of the distribution curve and is defined by 

I; t C(t) dt 

I; C(t) dt 
(61) 

where C(t) is the concentration at time t. The center of gravity car-

responds to the peak maximum when the distribution is symmetrical. The 

second, third, and fourth statistical moments, M2, M3 , and M4 , respec­

tively, are defined by: 

r+a> k Jo C(t) (t-M1) dt 

I;' C(t) dt 
(62) 

When k= 2 as is the case for M2 , the variance of the probability density 

distribution curve is determined. The standard deviation, cr, is easily 

determined from the square root of the variance. The third statistical 

moment, M3 , provides curve asymmetry information. The skewness, S, 

indicates leading or trailing edge tailing according to the sign of 

(63) 

skewness. Positive skewness implies tailing away from Gaussian symmetry 

toward positive values of time with respect to the center of gravity, M1 . 

The fourth statistical moment enables the calculation of the excess, E. 
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(64) 

-This result allows the comparison of the pointedness or flatness of the 

elution curve with that of the Gaussian distribution with the same stan-

dard deviation. Excess values which are larger than zero predict chroma-

tographic peaks which are sharper than Gaussian distribution.peaks. This 

concept is important in that it points out that the tailing factor and 

asymmetry indexes can determine if a peak is symmetrical but each fails. 

to indicate if the symmetrical peak is Gaussian. Only an accurate ex-

cess calculation can distinguish between the two. 

Exact determination of the moments described by the integral Equa-

tions 62 and 63 require that the distribution function·of the concentra-

tion profile, C(t) be known. If such a situation exists, the integration 

can usually be calculated by formula or by numerical methods. Knowledge 

of the mathematical description of the elution curve is usually the ex-

ception and moment analysis involving analog to digital conversion of 

the peak profile data and computer computation is necessary. Grubner 

(120) and Gruska, Myers, Schettler and Giddings (121) have provided 

summation approximations of Equations 61 and 62 that can be used to 

arrive at .the moments, skewness and excess from data points generated in 

the digital form. These approximations require that the detector output 

be divided into finite intervals artd digitized. 

Chesler and Cram (122,123) have reported on the accuracy of the 

generated statistical moments. They have shown that significant errors 

in the skew and excess can occur as a result of errors in the lower 

moments and the limits of integration. The rate of data acquisition and 



number of data points stored also affect the precision of the moment 

calculatton and are especially important in calculating the skew and 

excess. 
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Cram, Yang and Brown (124) have applied computerized data handling 

to moment analysis of capillary peaks and have reported that the analog 

to digital converter clock rate which regulates the number of data points 

collected per peak must be at least 50 in order that the peak shape be 

characterized accurately. They see this to be critical especially for 

peaks which elute early (k' < 5) with small peak widths. 

Adsorption Indicators. Although moment analysis can provide a very 

sensitive, descriptive charact~rization of the chromatographic and physi­

cochemical processes occurring in the column, Grob, Grob and Grob, (125) 

have chosen not to use moment analysis for evaluation of peak distortions 

that can occur in the glass capillary column. Of the four types of peak 

distortions, namely, 1) broadened peaks of Gaussian shape, 2) tailing 

peaks of constant area, 3) reasonably shaped peaks of reduced area and 

4) misshapen peaks of correct area but increased retention, Grob et al 

(125) state that moment analysis fails to observe irreversible adsorption 

in the Case 3 situation where part of the component doesn't elute from 

the column but the peak shape looks Gaussian. Instead of calculating a 

parameter related to peak shape, Grob et al (125) determine an adsorption 

indicator by measuring the height of the eluted peak and comparing this 

height to the height which is expected for a complete undistorted elu­

tion. To simplify the height observation, a test mixture is prepared so 

that the peak areas of all the components are identical'. Since their 

testing procedure employs linear temperature programming with standard-
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ized program rates, most of the eluted peaks will have widths which are 

approximately equal. Since the areas are equal, the peak heights for non­

adsorbed components are also equal. A 100% line is drawn by connecting 

all the non-adsorbing peaks (n-alkanes and methyl esters). When the height 

of the adsorbed peak is expressed as a percentage of the distance between 

the baseline and the 100% line, a measure of the adsorption is obtained. 

Column Character Probes 

Column character testing of the capillary column requires a myriad 

of probing components. From the interaction of the functional groups 

present on these different solutes with the stationary phase and inner 

surface of the capillary, indications of the adsorption, polarity, acid­

ity and basicity of the column can be observed. Quantitative measurement 

of the peak shape by methods provided previously indicate the presence 

or absence of these interaction sites in the column when the functional 

group of the probe is specific. Often adsorption of a probe can indicate 

that several active sites are present. Table II lists many of these 

probes and includes the expected interactions and purposes (125-127). 

One test to be noted which determines the acidity-basicity of the 

column, requires that the test mixture contain 1:1 by weight 2,6-di­

methylaniline (or 2,4-dimethylaniline) and 2,6-dimethylphenol (124-

126). Comparison of the peak heights of these components with the 

heights expected for complete elution provides acid-base adsorption 

information of the column. 

Because the solid support of the capillary column, the glass capil­

lary wall, is the chief contributor to the quality of the column, evalu­

ation of its surface activity-adsorption characterisitcs are necessary 



TABLE II 

COLUMN CHA~CTER PROBES AND 
EXPECTED INTERACTIONS 

Component 

Alkanes ( c10 - c18) 

Methyl esters (c10 - c18) 

Naphthalene 

Alcohol (1-octanol, 2,3-butanediol 
2-propyl cyclohexanol) 

Aldehydes (n-nonanal) 

Ketones (2-octanone, 5-nonanone, 
dibutylketone) 

Acids (propionic acid, 
2-ethyl hexanoic acid) 

Amines (2,6-dimethylaniline, 
2,4-dimethylaniline, 
dicyclohexylamine) 

Phenol (2,6-dimethylphenol) 

Interaction/Purpose 

Instrumental effects, 
separation efficiency, 
adsorption 

Metal adsorptive sites 

Hydrogen bonding, 
basicity, adsorption, 
senses active silanol 
groups 

Hydrogen bonding, 
adsorption independent 

Adsorption to surfaces that 
act as Lewis acids 

Adsorption-chemisorption 

Basicity 

Acidity 
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if improvement is expected. Schomburg, Husmann and Weeke (128) have 

reported on a method of tes_ting the uncoated capillary column. When a 

precolumn of high quality is placed between the injector and the column 

to be tested, perfect~y shaped, separated elution bands are allowed to 

pass into the uncoated column. Comparison of the chromatograms of the 

components eluted from the precolumn and the precolumn-test column pair 

permit quality control of the uncoated capillary prior to coating with 

the stationary phase. 
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The influence of the activity of the inner wall of the coated capil­

lary on column performance can be measured by calculating the relative 

retention, a, for a pair of components. Hartigan and Ettre (130) and 

Hartigan, Billieb and Ettre (131) have shown that when compounds of 

different polarity such as 1-hexanol and n-nonane or 1-hexanol and iso­

propylbenzene are used as probes, the relative retention of these probes 

will change between columns if the surface activity in one of the columns 

is greater. The difference arises because the polar compound is retarded 

more on the active column while the retention of the nonpolar compound 

remains unchanged. 

Conclusion 

From the chromatogram which occurs as a result of testing the newly 

purchased or produced capi~lary gas chromatography column, information 

is available which can be used to determine the efficiency, resolving 

power and performance of the column. This information consists of the 

ret.ention time, gas hold-up time, width, area, shape, and concentration 

profile of the peak or peaks eluted from the column. The applicability 

of this peak information to the determination of efficiency, resolving 



power and performance depends upon the column's adsorption character. 

When distorted, asymmetric peaks are obtained, the functional groups on 

the probe can suggest possible interaction sites that might be present 

in the colUllln. If Gaussian shaped peaks are determined as a result of 

peak moment analysis, meaningful efficiency information is obtained. 

The efficiency measures which have been presented use the peak width, 

retention time, adjusted retention time and gas hold-up time to deter­

mine how the peak broadens. This broadening which is described by 

Kaiser's a and who values can be used along with the gas hold-up time 
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to describe completely the three plate number efficiencies. The resolv­

ing power of the column provides information on how well the column 

separates peaks or how many resolved peaks can be separated between two 

reference peaks. The performance relates resolving power to how long 

each peak is retained. This information is the most useful aspect of 

the column evaluation procedures discussed and answers two essential 

questions of chromatography: How well does the column separate the 

components in the mixture and how long will it take for elution to occur? 

A summary table of the column evaluation techniques (Table III) 

which have been presented is provided on the following pages. This 

summary considers each technique and attempts to evaluate each with re­

gard to parameter and chromatographic requirements, assumptions, appli­

cations, advantages and disadvantages. 

Stationary Phase Evaluation 

The previous sections have dealt with evaluation techniques which 

are applied to columns where the stationary phase has been well charac­

terized. When new stationary phases are prepared, characterization should 
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be done so that the material can be compared with existing stationary 

phases. These characterizations should include determination of minimum 

and maximum allowable operating temperatures, phase transition studies, 

retention indices and McReynolds' constants. The minimum allowable aper-

ating temperature occurs at the temperature where the efficiency of 

eluted peaks starts to decrease and adsorption causes retention to change 

with sample size. These effects usually occur at the melting point of 

the stationary phase. Differential scanning calorimetry can provide 

melting and glass transition temperatures of bulk stationary phases. If 

the stationary phases are prepared inside the column, the gas chromate-

graph can give this information. This technique, called inverse phase 

gas chromatography, determines the properties of the stationary phase 

using known molecular probes whereas conventional chromatography utilizes 

a well characterized stationary phase to determine properties of unknown 

solutes. When the logarithm of the partition ratio, k', or the specific 

retention volume, V, for a molecular probe is plotted versus inverse 
g 

temperature (1/T(K)), a linear relationship results as long as no change 

in phase occurs (132-134). When the temperature of the column increases 

and a melting transition occurs, a decrease in slope results because the 

stationary phase becomes more liquid and partitioning increases. Along 

with the change in trend of retention, an increase in efficiency results 

because band broadening due to adsorption is reduced and more efficient 

partitioning processes occur. Maximum operating temperatures are temper-

atures above which column bleed becomes excessive or where continued use 

causes large decreases in retention. Such temperatures are determined 

from temperature retention studies or by following baseline shifts during 

temperature programming and setting temperature limits where bleed becomes 
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excessive. 

Stationary phase polarity can be compared with other stationary 

phases by calculating the McReynolds' constants and comparing them with 

published values (135-137). To calculate McReynolds' constants, retention 

indices for the McReynolds' probes: benzene, 1-butanol, 2-pentanone, 

pyridine and 1-nitropropane are first calculated by 

phase 
IlZO"C(Probe) 

log k~robe - log kb(z) 
100 ---'-~------'--'-..._ 

log kbcz+l) - log kbcz). 
(65) 

Here kb(z) and kb(z+l) are the partition ratios for the homologous n­

alkanes with carbon number Zand Z+l which elute before and after each 

probe. This equation which is based on the partition ratio instead of 

the net retention volume can be derived from Kovat's retention index 

equation (138). McReynolds' constants, 61,were calculated using.Equa-

tion 66, 

AI= 1phase(P b) _ 1squalane(P b) 
u 12ooc roe 12ooc roe (66) 

squalane where r1200 C was the absolute value of the retention index of each 

probe on squalane as reported by McReynolds (139). Comparison of the 

average value of the McReynolds' constants and the retention sequence of 

the five probes with the values for other stationary phases in 

McReynolds' table gives information about the average polarity and se-

lectivity of the stationary phase. 



CHAPTER III 

DIRECTION OF RESEARCH 

Crown Ethers as Stationary Phases 

Crown ethers have been used in analytical chemistry as solvent 

extractions reagents for alkali and alkaline earth metal ions, the basis 

for ion selective electrodes and stationary phases or mobile phase com­

plexing agents in liquid chromatography (140-142). · In each of the 

analytical applications of crown ethers which were found in the liter­

ature, it was the cation complexing ability of the crown ether that was 

utilized. As a gas chromatography phase, crown ethers could provide a 

unique phase where the polarity would be localized within the center of 

the ring formed by the crown ether oxygens. Instead of metal cations, 

polar compounds such as alcohols,.amines and carboxylic acids and com­

pounds with methyl groups attached to electron withdrawing substituents 

such as acetonitrile or nitromethane should interact with the localized 

polarity that a crown ether would provide. Such interactions have been 

observed in the stable nonionic host-guest complexes that have been pre­

pared from organic molecules such as acetonit~ile, nitromethane, dimethyl­

carbonate, dimethylsulfate, aniline, cyanamide and malonitrile and the 

crown ether, 18-crown-6 (143-145). The polarity of a stationary phase 

containing crown ethers should be similar to polyethylene glycol because 

of the similar -cH2-cH2-o- units, although crown ethers should be more 
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selective toward polar molecules due to the localized polarity. 

The selection·of suitable crown ethers for this study was limited 

to those crown ethers which were commercially available or whose synthe-

sis was published. Two sila crown ethers available from Petrarch 

Systems, Inc. (Bristol, Pennsylvania), vinylmethylsila-17-crown-6 and 

vinylmethylsila-14-crown-5, were selected because of the polymerizable 

vinyl groups which were present in each compound. Poly(vinylbenzo-15-

crown-5) whose synthetic route was published by Kopolow, Hogen Esch and 

Smid (146) was selected for its similarities to polystyrene and relative 

ease in systhesis. The structures of these crown ethers are given below 

in Figure 5. 

v1:mMETHYLSILA-17-CROWN-6 VINYU1ETHYLSILA-14-CROWN-5 POLYVINYLBENZ0-15-CROWN-5 

Figure 5. Crown Ether Structures 

Although the polymeric backbone of these crown ethers, polyethylene 

and polystyrene, would have glass and melting transitions well above the 

lower operating temperatures of typical stationary phases (See Table IV), 

chromatographic characterization of columns prepared with these crown 

ethers could provide rationale for synthetic work on more promising crown 

ether stationary phases. 



Polymer 

TABLE IV 

GLASS AND MELTING TRANSITION TEMPERATURES AND 
COLUMN OPERATING TEMPERATURE RANGES 

OF FOUR POLYMERS 

Glass Melting 
Transition Transition 

Temperature (T) Temperature (TM) 
(148) g (148) 

Polydimethyl- -127°C -40°C 
siloxane 

Polyethylene -41°C 66°C 
glycol 

Polyethylene -125°C 137°C 

Polystyrene 100°C 240°C 
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Column 
Operating 

Temperature 
Range (76) 

0 - 200°C 

80 - 250°C 

The experimental studies which will be discussed involve the synthe-

sis of poly(vinylbenzo-lS~crown-5), the preparation of glass capillary 

columns containing polystyrene, vinylmethylsila-17-crown-6, vinylmethyl-

sila-14-crown-5, and poly(vinylbenzo-15-crown-5) and the characterization 

of these capillary columns. The synthesis of polyvinylbenzo-15-crown-5 

involves the four steps shown in Figure 6. Reaction 1 which was de-

scribed by Parish, Stott, McCausland and Bradshaw (148) is an acylation 

of benzo-15-crown-5 with acetic acid using Eaton's reagent (phosphorous 

pentoxide dissolved in anhydrous methanesulfonic acid). Reactions 2, 3 

and 4 were described by Kopolow et al (146) and involve a reduction of 

the ketone using sodium borohydride, a dehydration using p-toluene 

sulfonic acid and finally polymerization of vinylbenzo-15-crown-5 to 
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1. 

?igure 6. Reaction Steps for Synthesis of PVB15C5 
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poly(vinylbenzo-15-crown-5). 

Column Preparation 

Glass capillary columns were prepared in two ways. The first in­

volved a polymerization of the vinyl crown ether inside the capillary. 

Before this in situ polymerization, the HCl leached capillaries were 

treated with y-methyacryloxypropyltrimethoxysilane (MAPTMS). This silane 

provided methacryloxy groups which can copolymerize with the vinyl crown 

ethers (149,150). Hydrolysis of the methoxy groups on the silane provide 

silanols which bond to the glass surface. Figure 7 shows this silane as 

it is bonded to the glass surface. Figure 8 shows how the vinyl sila­

crown ethers might be crosslinked to the MAPTMS surface and crosslinked 

with divinylbenzene. Preliminary studies involving in situ bonding, 

crosslinking and polymerization of styrene in capillary columns was done 

before attempting polymerization with vinyl crown ethers. 

The second method of capillary preparation involved statically 

coating poly(vinylbenzo-15-crown-5) inside a roughened, deactivated 

capillary. The roughening was achieved by a NH4FHF etch (25). This was 

followed by deactivation of the capillary with a thin nonextractable film 

of Carbowax 20M (45). 

Cqlumn Characterization 

Chromatographic characterization was done by comparing the separa­

tion of mixtures of alcohols, aromatics and alkanes on each column. 

Various sample sizes and isothermal column temperatures or temperature 

programs were utilized. Phase transitions for each column were studied 

by inverse phase gas chromatography. Differential scanning calorimetry 



o'H 
I I 

I-Si-0-Si-J 
I, I 

I I 

[-Si-0-Si-J 
I . I 

+ 
SURFACE SILICA 

Figure 7. Surface Silanization with 
y-(Methacryloxy)propyl­
trimethoxysilane 

Figure 8. Copolymerization of Surface Bonded Grcups 
with Vinylmethylsila-14-crown-5 and 
Divinylbenzene 
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was used to confirm phase transitions of PVBlSCS which were determined 

by gas chromatography. Thermogravimetric analysis of this polymer was 

also obtained and was compared with that of Carbowax 20M. Minimum and 

maximum operating temperatures, column efficiencies and McReynolds' 

constants were also compared on several of the columns. In addition, 

differences in efficiency and retention of homologous series of alkanes, 

alcohols and diols on the PVBlSCS column were compared. Scanning elec­

tron micrographs of the inner surface of the polystyrene columns showed 

the effect of column treatments and allowed measurements of film thick­

ness of deposited films. 



CHAPTER IV 

EXPERIMENTAL METHODS 

Instrumentation 

A Hewlett Packard 5880A gas chromatograph equipped with Level 4 

integrator and computer system, capillary split injection and a flame 

ionization detector was used. Pyrex glass capillaries were drawn on a 

Hewlett Packard 1045A capillary drawing machine. A Shimadzu MCT-lA 

micro-co~umn treating stand was used to prepare the glass capillary 

columns. Verification and purity of the crown ethers were determined 

with Varian XL-100 and XL-300 NMR spectrometers and with a Perkin Elmer 

681 IR spectrophotometer. A DuPont differential scanning calorimeter 

with a single crucible cell and a scanning rate of 10°C/min was used to 

determine phase transitions of poly(vinylbenzo-15-crown-5). Thermo­

gravimetric analysis of the PVB15C5 and Carbowax 20M samples was done on 

a DuPont 951 thermogravimetric analyzer. Micrographs of the inner 

capillary surface was done on a JEOL JSM-35, a Camb~idge 250 and an 

AMR lOOA. 

Reagents 

Vinylmethylsila-17-crown-6 (VMSi17C6) and vinylmethylsila-14-crown-

5 (VMSil4C5) were obtained from Petrarch Systems, Inc. (Bristol, Pa.) and 

were used without further purification. NMR and IR spectroscopy showed 
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that impurities were present in both samples. The VMSil7C6 sample was 

~80% pure. NMR spectroscopy showed that the impurity which was present 

contained methylsilyl groups. The VMSil4C5 samples was ~60% pure with 

tetraethylene glycol as the predominate impurity. Benzo-15-crown-5 was 

obtained from Parish Chemical Co. (Orem, Utah) and Chemalog, Chemical 

Dynamics Corporation (South Plainfield, N.J.). y-Methacryloxypropyltri­

methoxysilane (MAPTMS) was obtained from Dow Corning (Midland, Michigan). 

All other chemicals used for column preparation and characterization 

were analytical reagent grade. 

Synthesis 

4'-Acetobenzo-15-crown-5 

For the synthesis of 4'-acetobenzo-15-crown-5, a mixture of 15.1 g 

(0.056 mol) of benzo-15-crown-5 and 3.6 ml (0.082 mol) glacial acetic 

acid was added to a stirring mixture of. 70 g of distilled methane sulfonic 

acid and 5.6 g of phosphorus pentoxide. After stirring for 6 hours, the 

mixture was poured into 280 ml of distilled water, neutralized with sodium 

bicarbonate and then extracted four times with 80 ml portions of methyl­

ene chloride. When the combined extract was washed with water, dried 

with anhydrous sodium sulfate and its solvent removed, a reddish brown 

oil was obtained. Extraction with hot hexane and crystallization yielded 

4.2 g (24%) of 4'-acetobenzo-15-crown-5, m.p. 96-97°C (lit. (148) mp 96-

970C). 

4'-(l"-Hydroxyethyl)benzo-15-crown-5 

To a stirring solution of 27.6 g of 4'-acetobenzo-15-crown-5 was 
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slowly added 4.9 g of sodium borohydride. After stirring for 24 hours, 

the solution was poured into 540 ml of water, neutralized with acetic 

acid, and extracted four times with 500 ml portions of chloroform. This 

extract was washed with water, dried with sodium sulfate and the chloro­

form evaporated. To the gold brown oil that resulted a minimum amount of 

diethyl ether was added. Crystallization of this solution in a salt-ice 

water bath yielded 8.76 g of 4'-(l"-hydroxyethyl)benzo-15-crown-5, m.p. 

63-65°C (lit. (146) 65~66°C). 

4'-Vinylbenzo-15-crown-5 

To a 250 ml round bottom flask containing 200 ml of benzene and a 

trace of p-toluene sulfonic acid was added 1.0 g of 4'-(1"-hydroxyethyl) 

benzo-15-crown-5. The benzene was refluxed through a Soxhlet extractor 

which contained a thimble of calcium chloride for removal of water. 

After 24 hours, the benzene was removed and the oily residue that resulted 

was placed on top of a column that contained 50 ml of acidic alumina in 

benzene. 4'-Vinylbenzo-15-crown-5 was eluted with acetone and was re­

crystallized with petroleum ether to give 0.65 g, m.p. 42-43.5°C (lit. 

(146) 43-44°C). 

Poly(vinylbenzo-15-crown-5) 

To a solution of 0.75 g of VB15C5 in toluene was added 1.0 ml of 

0.5% w/v 2,2 azobis(isobutyronitrile) (AIBN) in toluene. Ater toluene 

was added so that the total volume was 15 ml, the solution was placed 

in a Pyrex ampule. The ampule was degassed using a mechanical pump and 

ultrasonic bath, cooled in a dry ice/acetone bath and then sealed under 

vacuum. After the ampule was heated at 70°C for 24 hours, the solution 
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was slowly poured into 300 ml of petroleum ether. The white precipitate 

was filtered off and reprecipitated to give 0;29 g of material after 

vacuum drying. 

Capillary Column Preparation 

The following section describes the preparation of eight capillary 

columns. Table V outlines the treatments which each capillary received 

and gives the stationary phase present in each column. 

Column 

1 

2 

3 

4 

5 

6 

7 

8 

TABLE V 

STATIONARY PHASES AND TREATMENTS USED 
FOR COLUMN PREPARATION 

Stationary Treatment Phase 

HCl Surface Deactivation/ 
leached Roughening Bonded Silane 

Styrene Yes NH4FHF(450°C) MAPTMS 

Styrene Yes NH4FHF(450°C) MAPTMS 

VB15C5 Yes None MAPTMS 

None Yes None None 

None Yes None MAPTMS 

VMSil7C6 Yes None MAPTMS 

VMSil4C5 Yes None MAPTMS 

PVB15C5 Yes NH4FHF(RT) Carbowax 20M 

Coating 

In Situ 
Polymerization 

In Situ 
Polymerization 

In Situ 
Polymerization 

None 

None 

In Situ 
Polymerization 

In Situ 
Polymerization 

Static 
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Column 1: In Situ Polymerization of Styrene 

Thirty-one meters of capillary with an inner diameter of 0.41 mm 

was rinsed with one column volume of concentrated HCl. The column was 

then filled with the concentrated HCl and the open end of the capillary 

sealed. A vacuum applied to the open end aspirated the HCl out of the 

column until 8% of the sealed portion of the coil was empty. The end 

attached to the vacuum was then sealed and the coil placed in an oven. 

After heating overnight at 80°C, the leaching solution was aspirated out 

and the column rinsed with 10 ml each of deionized water, acetone, and 

diethyl ether. The capillary was then attached to a nitrogen regulator 

set at 15'psi and the capillary was flushed overnight. A 5% w/v NH4FHF 

solution in methanol was then aspirated into the column (26). The solu­

tion was allowed to remain in the capillary one hour before being pushed 

out at a linear velocity of 6 cm/min. This linear velocity was obtained 

by using a piece of crimped 0.01" inner diameter stainless steel tubing 

and a nitrogen pressure of 31 psi. A buffer column which was longer than 

the coil containing the NH4FHF solution was attached to the end of the 

column so that a uniform linear velocity could be maintained. When the 

NH4FHF plug exited the coil, the restrictor was removed-and nitrogen 

flow continued at a pressure of 10 psi. After 15 min the coil turned 

milky white throughout. Both ends of the coil were then sealed and the 

coil was placed on a mandril. The coil and mandril were placed in an 

annealing furnace and the temperature of the furnace set at 450°C. When 

this temperature was reached, the coil remained in the furnace for 3 h. 

The coil ends were then broken open in a fume hood and 20 ml of methanol 

aspirated through the coil. The coil was then connected to a nitrogen 
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regulator set at 10 psi and dried overnight. The column was then filled 

with an aqueous solution of 0.1% v/v MAPTMS and 0.1% v/v acetic acid. 

After this solution remained in the column for one hour, the column was 

washed with 20 m1 of distilled water. A monomer solution of 5% v/v 

distilled styrene, 0.8% v/v distilled divinylbenzene and 0.8% w/v AIBN 

in toluene was placed in an ultrasonic bath and vacuum deaerated before 

being introduced into the capillary. When the ends were sealed, the 

capillary was placed in an oven and heated at 70°C for 24 hand then 90°C 

for 48 h. A buffer column was attached to the column and the solvent was 

slowly removed. A crimped restrictor and a nitrogen pressure of 14 psi 

maintained a constant linear velocity. After the solvent exited the 

column, the nitrogen flow continued until the next day. Before attaching 

the column to the gas chromatograph for conditioning, 20 ml of methylene 

chloride was aspirated through the column. The capillary was conditioned 

at 200°C with a helium flow rate of 8.1 ml/min for 3 h. 

Column 2: In Situ Polymerization of Styrene 

This column was leached and treated with NH4FHF in a manner similar 

to the treatment of column 1 except that the NH4FHF solution was pushed 

through the column at a linear velocity of 12 cm/min instead of 6 cm/min. 

After the whisker growth treatment and solvent rinse, the column was 

heated at 200°C for 3 h with nitrogen flowing through the column at a 

regulator pressure of 20 psi. A 0.1% v/v MAPTMS solution was prepared 

by first adding enough glacial acetic acid to 50 ml of deionized water 

so that a pH between 3.5 and 4.5 was obtained. A volume of 0.05 ml of 

MAPTMS was added and the solution was stirred for 15 min before introduc­

tion into the capillary column. The MAPTMS plug was pushed out of the 
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column through a buffer column at a linear velocity of 3 cm/s. · After 

the plug exited, the coil was placed in an oven with nitrogen passing 

through the coil at 2 psi. The initial oven temperature, 60°C, was slow-

ly increased to 106°C. After this temperature was maintained for 15 min, 

the oven was turned off and nitrogen flow continued overnight. A monomer 

solution of 48% v/v styrene, 1% v/v divinylbenzene and 0.09% w/v AIBN 

in toluene was ultrasonicated and vacuum deaerated before the solution 

was introduced into the capillary. The ends of the capillary were then 

sealed and the capillary placed in an ov~n set at 60°C. A vial which 

contained several milliliters of the monomer solution was also placed in 

the oven. After approximately four hours, the monomer in the vial started 

to become viscous. This indicated that the monomer solution in the capil-

lary should be pushed out as plugging of the column due to gelation would 

soon occur. A nitrogen pressure of 50 psi was required for a slow flow 

of the monomer solution out of the capillary. After the monomer solution 

exited, the column was conditioned with a helium pressure at the head of 

the column of 2 psi and a temperature which increased from 40°C to 162°C 

at 5°C/min. The oven temperature was then lowered to 100°C and condition-

ing continued overnight. Before evaluation, the column was conditioned 

at 200°C for 2 h. 

Column 3: In Situ Polymerization of Vinylbenzo-

15-crown-5 

Following an HCl leach and dehydration as described earlier, the 

column was filled with 5% w/v NH4FHF using a syringe pump at a coating 

2 
velocity of 4.4 cm/sand emptied using N2 pressure at 3.0 kg/cm. After 

evaporating the solvent from the capillary, the column ends were switched 
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and the NH4FHF coating was repeated in the opposite direction. After 

solvent evaporation, the ends were sealed and the column was heated using 

the following temperature program: 50°C to 200°C at 5°C/min; hold iso-

thermal for 2 h; 200°C to 350°C at 1°C/min; hold isothermal for 12 h; 

then cool oven at 5°C/min to 50°C. The column was again HCl leached and 

dehydrated before it was silylated with MAPTMS. After drying, the column 

was filled with a 10% w/v VB15C5, 0.2% v/v DVB~ and 0.07% w/v AIBN solu-

tion in benzene, its ends sealed and then heated at 70°C for 24 h. After 

the solution was emptied through a buffer column at 0.1 cm/s, the col~mn 

was conditioned as in earlier columns. 

Column 4: HCl Leached, 5: HCl Leached and 

MAPTMS Treated, 6: In Situ Polymerization 

of Vinylmethylsila-17-crown-6 and 7: In 

Situ Polymerization of Vinylmethyl-

sila-14-crown-5 

The capillaries containing the two silacrown ethers were prepared 

in the same manner. Pyrex capillaries were first leached with 20% HCl 

at 180°C for 16 h. After flushing with one column volume of distilled 

water, the capillary was dehydrated at 300°C for 1 h with a helium flow 

f 5 3/ . o cm min. The capillary was then dynamically coated at 3 cm/min 

with a 0.5% v/v MAPTMS solution. After the solution exited, the column 

was dried at 115°C for 15 min with a helium flow of 1 cm3/min. A solu-

tion of 20% v/v VMSil7C6 (column 6) or VMSil4C5 (column 7), 0.5% v/v 

divinylbenzene and 0.1% w/v 2,2 azobis(isobutyronitrile) in benzene was 

degassed using a water aspirator and a sonic bath. After filling all 

but 8% of the capillary with this solution, the sealed capillary was 
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heated at 60°C for 72 h. The capillary was then attached to a buffer 

column and the liquid was pushed out at a linear velocity of 5 cm/min. 

Conditioning of the capillary was accomplished by a temperature program 

up to 200°C with an isothermal hold for 3 h. Helium flow was maintained 

at 5 cm3/min. In addition to these silacrown ether colum~s, two capil­

laries were prepared at different stages of completion. The treatment 

of column 4 was stopped after the HCL leach and dehydration. Column 5 

was stopped after the MAPTMS coating and drying. 

Column 8: Static Coating of Poly(Vinylbenzo-

15-crown-5) 

This column was HCl leached and dehydrated as described for column 

6. Roughening of the capillary was done by a room temperature etch with 

5% w/v NH4FHF in methanol. Ten ml of this solution was pushed through 

the capillary at 0.5 cm/s. After all the solution exited, the capillary 

was rinsed with 10 ml of methanol, a gradient of methanol to water over 

20 ml total volume and then 10 ml of water. After a second HCl leach and 

dehydration, the capillary was deactivated with Carbowax 20M (CW20M). 

The capillary was dynamically coated by pushing four column loops of 5% 

w/v CW20M in CH2c12 through the capillary at 2 cm/s. After the solvent 

was evaporated, the ends were sealed and the capillary was heated at 

280°C for 24 h. The capillary ~as then rinsed with 15 ml of CH2c12 and 

15 ml CH30H. For static coating, a solution. of 0.020 g PVB15C5 in 3.0 ml 

of CH2c12 was degassed over an ultrasonic bath using a water aspirator 

until a final volume of 2.0 ml (1.2% w/v PVB15C5) was reached. The cap­

illary with open Teflon heat shrink tubing attached to one end was filled 

with coating solution. After the solution began to empty out the column, 
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the column was sealed by crimping a piece of copper tubing around the 

Teflon tubing. A nitrogen pressure of 3.7 kg/cm2 was maintained on the 

column overnight. The column was then placed in a water bath and attach­

ed to a vacuum pump (vac. 0.35 mm Hg). The solution meniscus evaporated 

smoothly when the vacuum was applied, and the solvent was evacuated from 

the column by the next day. Initial column conditioning consisted of a 

temperature program up to 150°C at 5°C/min with an isothermal hold for 

3 h. Helium flow was set at 3 ml/min before temperature programming 

started. 



CHAPTER V 

RESULTS AND DISCUSSION 

Column 1 and 2: In Situ 

Polymerization of 

Styrene 

Characterization of Column 1 consisted of carbon analysis and 

scanning electron microscopy of capillary sections taken from the column 

after each of the six steps in the capillary preparation. The column 

treatment, carbon analysis in ppm and corresponding micrograph figure 

numbers are given in Table VI. Carbon analysis showed an increase in 

total carbon content after the HCl leach which remained essentially the 

same after the NH4FHF treatment and MAPTMS silanization. Although the 

carbon content increased as expected after the styrene and divinylben­

zene polymerization, it fell below previous levels after the column was 

washed with 20 ml of methylene chloride. This showed that the film of 

polystyrene-divinylbenzene was not bound to the glass surface. Visual 

observation of the surface with scanning electron microscopy confirmed 

this in Figures 9, 10, 11, 12, 13 and 14. Figures 12, 13 and 14 show the 

buildup and subsequent loss of the polymer on the NH4FHF roughened sur­

face. The film thickness of the polymer can be measured from the micro­

graph and is estimated to be between 0.2 and 0.5 µm. Figure 9 and 10 

show that the HCl leach treatment gives an additional benefit in that 

86 



1. 

2. 
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4. 

5. 

6. 

TABLE VI 

CARBON ANALYSIS AND CORRESPONDING SCANNING 
ELEX:TRON MICROGRAPHS FOR TREATED 

SEX:TIONS OF COLUMN 11 IN 
SITU POLYMERIZATION 

OF STRYENE 

Treatments Carbon Content 
(PPM) 

Bare Pyrex capillary after 5 
drawing 

After HCl leaching, water rinse 20 

After NH4FHF treatment, methanol, 26 
acetone and diethyl ether rinse 

After MAPTMS treatment, water rinse 25 

After styrene-d.ivinylbenzene · 112 
polymerization 

After methylene chloride rinse 8 
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SEM 
Figure Number 

9 

10 

11 

12 

13 

14 



a. F.dge View of Inner Surface and Fractured 
Glass Wall. Magnif'icati~n X2400. 

b. Inner Surface Viewed From Above. 
Magnification X2400. 

Figure 9. Scanning Electron Micrograph of 
Column 1 After Drawing 
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a.. 'Edge View o£ Inner Surface a.nd Fractured 
Glass Wall. Magnification X2400. 

-l. 

10 um L ... --·.- . ilii..- _:.__, - .....-...--.::- . 

b. Inner Surface Viewed From Above. 
Magnification X2400. 

Figure 10. Scanning Electron Microg:i:a.ph of 
Column 1 After HCl Leach 
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a. Edge View of Inner Surface and Fractured. 
Glass Wall. Magnification X2400. 
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b. Inner Surface Viewed From Above. 
Magnification XZ400 . 

Figure 11, Scanning Electron Micrograph of 
Column 1 After ~H4FHF Treatment 
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a. Inner Surface and Fractured 
Magnification X2400. 

b. Inner Surface Viewed From Above. 
Magnification X2400. 

Figure 12. Scanning Electron Microgr~ph of 
Column 1 After MAPI'MS 
Silanization 
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Figure 13. Scanning El C ectro olumn 1 Aft n Micrograph 
Divinylb er Styrene- of 

enzene Pol ymerization 
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a. Edge View o£ Inner Surface and Fractured 
Glass Wall. Magnification X24-00. 

b. Inner Surface Viewed From Above. 
Magnifiaation X2400. 

Figure 14. Scanning Electron Micrograph of 
Column 1 After Methylene 
Chloride Rinse 
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it cleans the glass surface of small particles. The effect of the NH4FHF 

treatment is seen in Figure 11 and 12. Instead of the expected silica 

whiskers with heights of 8 to 10 µmas reported by Onuska (26), short 

stubs of about 2 µm were obtained. 

Column 2 was evaluated by SEM to observe NH4FHF roughening effects 

and polymer film thicknesses and by gas chromatography to determine the 

phase transition temperature and column efficiency. Scanning electron 

micrographs were taken of capillary sections after the NH4FHF treatment 

and also after the polymerization. Figure 15 shows that silica whisker 

growth can vary within the same section of capillary. Non-uniformity of 

the NH4FHF which was coated inside the capillary and of the temper­

ature within the furnace used to heat the capillary can cause this vari­

ation. Figure 16 shows silica whiskers which are 3.5 µmin height at a 

magnification of x5000. SEM of the glass wall and polymer interface 

allowed the determination of the film thickness and also shows evidence 

of film stability. The calculated film thickness for Figures 17 and 18 

ranged from 4.2 to 4.4 µm. Figure 19 shows whiskers protruding slightly 

into the polymer surface. Scanning electron micrographs in Figures 20 

and 21 show the polymer and glass interface before and after the capil­

lary was washed with 20 ml of methylene chloride over 3 1/2 hours. The 

micrographs in Figures 20 and 21 were taken of the same end of the col­

umn. The film thicknesses measured from the micrographs are 1.9 ± 0.1 

µm (n=5) before washing and 1.7 ± 0.1 µm (n=5) after washing. Though the 

difference in the film thicknesses may not be considered significant, a 

0.014 g weight loss in the 8.4 m capillary showed that some of the sta­

tionary phase was lost. The difference in film thickness measurements, 

~ 4 µm for Figures 17 and 18 and~ 2 µm for Figure 20 was due to a 



Inner Surface of Pyrex Capillary Tube. Side View 
Magnification X2500. 

Figure·lS. Scanning Electron Micrograph of 
Column 2 After NH4FHF Treatment 
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Side View. 

Figure 16. Scanning Electron Micrograph of 
Column 2 After NH4FHF Treatment 
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Edge View of Polymer-Glass Interface. 
Magnification x46oo. 

Figure 17. Scanning Electron Micrograph 
of Column 2 After 
Styrene-Di vinyl benzene 
Polymerization -

r 

Edge View of Polymer-Glass Interface. 
Magnification x5000. 

Figure 18. Scanning Electron Micrograph 
of Column 2 After 
Styrene-Di vinyl benzene 
Polymerization 
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Inner Surface of Polymer-Glass Interface. 
Magnification XlOOO. 

Figure 19. Scanning Electron Micrograph 
of Column 2 After 
Styrene-Di vinyl benzene 
Polymerization 
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Glass Wall ! 

Edge View of Polymer-Glass Interface, 
Magnification XiOOOO , 

Figure 20, Scanning Electron Micrograph 
of Column 2 Before Methylene 
Chloride Rinse. 
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Edge View of Polymer-Glass Interface, 
Magnification XlOOOO. 

Figure 21, Scanning Electron Micrograph 
of Column 2 After Methylene 
Chloride Rinse. 
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thicker film of polymer on one end of the capillary compared to the other. 

The greater stability of the polystyrene-divinylbenzene film-in 

Column 2 can be attributed to the increased silica whisker height and the 

lower initiator to monomer ratio. From the monomer solution compositions, 

5% v/v styrene, 0.8% v/v divinylbenzene and 0.8% w/v AIBN for Column 1 

and 48% v/v styrene, 1% v/v divinylbenzene and 0.09% w/v AIBN for Column 

2, the crosslink percentage of 14% for Column 1 and 2% for Column 2 can 

be determined. This indicates that both films would be insoluble in the 

methylene chloride rinse. However, because the initiator to monomer ratio 

for Column 2, 1/544, is lower than for Column 1, 1/7, the polymer in Col­

umn 1 would have much shorter chain lengths and would be more soluble in 

the solvent used for the column rinse. 

Chromatographic evaluation of Column 2 included the determination 

of the phase transition of the polymer from the partition ratio (k') of 

methylene chloride at temperatures that ranged from 50°C to 170°C. The 

discontinuity between the two linear portions of Figure 22 corresponds 

to the second order glass phase transition of polystyrene. The tempera­

ture of this transition, 93°C, was determined at the point where the 

first deviation from linearity (as temperature increased) occurred (133). 

The HETP plot in Figure 23 shows that a minimum theoretical plate 

height for methylene chloride of 1.9 cm occurs at an optimum linear 

velocity of about 5 to 8 cm/s. This corresponds to 568 theoretical 

plates or 28 effective plates. When compared to the calculated minimum 

theoretical plate height, 0.18 mm, for a capillary with the same inner 

diameter and solute partition ratio, a difference of two orders of mag­

nitude between these plate heights results. 

This poor efficiency is due to the thick film of polystyrene which 
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causes excessive band broadening due to resistance to mass transfer in 

the stationary phase. The poor correlation between measured and calcula­

ted minimum plate heights occurs because Equation 41 assumes that this 

band broadening is negligible. 

Column 3: In Situ Polymerization 

of Vinylbenzo-15-crown-5 

Chromatographic characterization of Column 3 included alcohol and 

alkane chromatograms, an HETP plot of n-c32 and determination of 

McReynolds' constants. Figure 24 (a, band c) shows chromatograms of a 

0.2% v/v mixture of n-pentanol, n-hexanol n-heptanol and n-octanol in 

n-pen~ane. Improvements in this alcohol separation will be seen later 

for a statically coated PVB15C5 column which contains a thicker film. 

These effects are diminished when higher column temperatures are utilized 

to separate components which have higher boiling points. Figure 25 shows 

baseline separation of a mixture of six alkanes from n-c20 to n-c36 at 

a column temperature of 150°C. An HETP plot (Figure 26) for n-c32 gives 

a minimum theoretical plate height of 0.18 cm. This corresponds to a 

column efficiency of 9100 theoretical plates or 5100 effective plates. 

The% utilization of theoretical efficiency (%UTE) for this 0.30 mm I.D. 

column was 13%. 

The McReynolds' constants, retention indices and partition ratios 

for the McReynolds' probes are given in Table VII. While the McReynolds' 

constants for column 3 are similar to those obtained for the statically 

coated PVB15C5 column (See Table XII), the partition ratios for the 

McReynolds' p·robes in column 3 are "-' 14 times smaller than those calcu­

lated for the statically coated PVB15C5 column. This means that the film 
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Tc: 60°C Tc:80°C Tc:100°C 
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Column length: 16.4 m; I. D, 1 0.30 mm; Sample: nc1 to nc8oH, 0.2i v/v in pentane 
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Figure 24. Chromatograms of Alcohol Mixture on In Situ Polymerized VB15C5 Capillary (Column 3) 
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Tc: 150°C 

0 2 4 6 8 10 12 14 16 mm. 

Alkane mixture: 0.2% v/v nc20 , 22 , 24 ,28 , 32 , 36 in pentane 

Attenuation: 21 Sample size: o.4 µl 

Split ratio: 1/26 v: 20.2 cm/s 

Figure 25. Chromatogram of Six Alkanes on In Situ Polymerized 
VB15C5 Capillary (Column 3) 
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thickness in column 3 is smaller than the 1 µm film thickness in column 

8. From the average ratio of the partition ratios of these two columns 

(k8/k3), the calculated film thickness of the PVB15C5 column (dfB) and 

the inner radius of the two columns (rcB and rc3), an estimated film 

thickness of 0.08 µm can be calculated for column 3 using Equation 67. 

Benzene 

~I 287 

I 940 

k' 0.014 

k' 
8 16.1 k' 
3 

TABLE VII 

PARTITION RATIOS (k'), RETENTION INDICES (I), 
MCREYNOLDS' CONSTANTS (~I), AND 

AVERAGE POLARITY FOR COLUMN 3 
AND RATIO OF PARTITION 

RATIOS FOR COLUMN 3 
AND COLUMN 8 

n-Butanol 2-Pentanone Nitropropane Pyridine 

499 379 558 523 

1089 1006 1210 1222 

0.035 0.021 0.068 0.073 

12.2 12.5 14.1 12.6 

(67) 

Average 

449 

13.5±1.4 



Columns 4: HCl Leached, 5: HCl Leached and 

MAPTMS Treated, and 6: In Situ Poly­

merization of Vinylmethylsila-

17-crown-6 
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Initial column characterization was done by injecting a mixture of 

fourteen alcohols onto each column. (See the legend of Figure 28 for.the 

alcohols and column conditions.) Comparison of the alcohol chromatograms 

obtained from the HCl leached and the HCl leached and MAPTMS silanized 

columns (Figure 27 (a) and (b)) with the chromatogram from the vinyl­

methylsila-17-crown-6 column (Figure 28) shows that it is the silacrown 

ether that allows the separation of the alcohols. The severe adsorption 

which results after the HCl leach and MAPTMS silanization is reduced 

after the silacrown ether treatment. Besides increa~ing the efficiency 

and column capacity, the silacrown ether may also deactivate the surface 

silanols left on the capillary wall after the MAPTMS treatment. Collar­

ing of the silanol by the crown ether ring could prevent polar solutes 

from interacting with the surface silanol and thereby reduce tailing. 

Evaluation of the VMSil7C6 column included determination of the 

effect of sample size on the partition ratio for 1-octanol at an oven 

temperature of 60°C. The first attempt at this evalu~tion gave very 

poor reproducibility in peak areas for each sample size. Relative 

standard deviations in peak area were decreased from ~10% to ~2% by 

changing solvent from methanol to pentane, improving the injection tech­

nique and repacking the injection port with silanized glass wool. 

Figure 29 shows that as the sample size increased, a slight decrease 

in partition ratio occurred. This decrease ink' can be attributed to 



a. HCI LEACHED 

b. HCI LEACHED+ MAPTMS TAT. 

I I I I I I I I I I I 

0.0 2.0 4.0 6.0 8.0 10.0 1 2.0 
TIME,MINUTES 

For temperature program and components of alcohol mixture see Figure 28. 

Figure 27. Chromatogram of an Alcohol Mixture on HCl Leached 
Capillary (Column 4) and HCl Leached and MAPTMS 
Treated Capillary (Column 5) 
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loss of stationary phase during the period of the experiment. This 

apparent dependence occurs because the sample size was increased as the 

experiment progressed. ·Figure 30 shows that the partition ratio of 1-

octanol determined over a period of _ten days decreased from one day to 

the next and that the change ink' was independent of sample size when 

the sample weight was below 5 ng. (During this period, the column tem­

perature was not taken above 100°C.) Figure 29 also shows that when the 

amount of 1-octanol injected on the column exceeded 50 ng, the partition 

ratio started to increase. The peak shape of 1-octanol above this sample 

size exhibited fronting which can be attributed to overload of the column. 

This column overload was also confirmed in Figure 31. Deviation from 

lineariti in each of these plots started at ~pproximately 50 ng of 1-

octanol. The linearity of the plot of log(area) versus log(weight), 

Figure 31, shows that over the sample size range of 0.4 to 500 ng ir­

reversible adsorption of 1-octanol does not occur. If this type of 

adsorption occurred the peak area would decrease at lower sample sizes. 

Such adsorption might be occuring at sample sizes less than 0.4 ng. 

Comparison of the plots in Figure 31 shows that the two slopes are 

approximately equal for sample weights below 50 ng. This implies that 

the area of each peak is proportional to the peak height or that the 

width of each peak is constant. The relation between these two plots 

can then be expressed as 

log(area) = log(height) + log(width at half height). (68) 

The efficiency of column 6 was determined by constructing van Deemter 

plots for n-dodecane, n-undecane and n-decane. Figure 32 shows the plot 

of HETP versus linear velocity for these alkanes at a column temperature 
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of 35°C. The minimum HETP value for decane, 0.48 mm, occurred at an 

optimum linear velocity of 23.4 cm/s. Figure 33 shows the separation of 

these alkanes at this optimum linear velocity. The %UTE for n-decane, 

36%, was considerably better than for the styrene columns. Figure 34 

shows the plots of the theoretical and effective plate numbers versus 

the partition ratio for the three alkanes. These plate numbers were 

calculated at the optimum linear velocity for n-decane. As the carbon 

number in each alkane increased, the number of plates (ho.th theoretical 

and effective) converge to the value of the real plate number (84). This 

value, 15,700 plates, was calculated from Equation 20. 

In order to further characterize the column, plots of log k' versus 

1/T for n-dodecane, n-butylbenzene, n-amyl acetate, 1-pentanol, and 

2-octanone were constructed. Figures 35a through 35e were obtained by 

determining partition ratios at column temperatures which decreased from 

100°C to 10°C. The five log k' versus 1/T plots revealed that each probe 

interacts differently with the stationary phase as phase changes occur on 

the capillary surface. Instead of linear plots.which cha~ge slope at the 

temperature which would be characteristic of a glass, melting or liquid 

transition of a thin film, the plots exhibit change with the functional 

group on each probe. Such behavior could be due to the presence of two 

transition temperatures in the polymer which are indicated according to 

the polarity of the probe or to differences in the solubility of each 

probe in the silacrown ether. 

Additional evaluation of the VMSil7C6 column including the 

McReynolds' constants, column bleed and column efficiency will be con­

sidered later in the section which compares the three different crown 

ether columns. 
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Column 7: In Situ Polymerization of 

Vinylmethylsila-14-crown-5 
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Column·7 was evaluated by following the changes in p~rtition ratio, 

peak shape, effective plate number and slope of log k' versus 1/T plots 

before and after the column was rinsed with two solvents and conditioned 

three times at 160°C. Table VIII indicates when column evaluation was 

done and gives details about the column rinse and temperature condition­

ings. 

Figure 36 shows the chromatogram of a mixture of fourteen alcohols 

which was obtained after the initial column conditioning. Comparison of 

this chromatogram with the one obtained from VMSil7C6, Figure 28, shows 

that the VMSil4CS column causes more broadening of the early eluting al­

cohols. As the retention of the alcohols increased the difference in 

broadening decreased until the last peak in each chromatogram had com­

parable peak shape. Several factors concerning these two columns make it 

difficult to determine the cause for this difference in band broadening. 

Since the carrier linear velocities for each column were different, 

37.4 cm/s for Column 6 and 26.2 cm/s for Column 7, each alcohol experi­

enced different temperature ranges in the multilevel temperature-program. 

Also, the difference in phase transition temperatures, 40°C and 80°C for 

Column 7 (See Page 127) and 70°C for Column 6 (See Figure 35d), and col­

umn efficiency as will be seen later make rationalization of the band 

broadening even more difficult. 

Table VIII shows how the partition ratios for n-dodecane, n-undecane, 

n-decane, n-butylbenzene and n-pentanol changed after each of the column 

treatments. Column conditions were maintained throughout each evaluation 

with an oven temperature of 60°C and the linear velocity varying slightly 
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TABLE VIII 

PARTITION RATIOS FOR FIVE PROBES BEFORE AND 
AFTER EACH OF FOUR COLUMN TREATMENTS 

Column TempArature: 6o0 c 

Solvent Jash fi'irst Condition ·3econd Condition 

uafore After Before After Before After 

2 ,11-5 2.57 2.13 2.9f 2. J[< 3,69 

1.06 1.11 0.93 1, 211 1. OJ 1.52 

0 ,L1,i; 0 ,l~P o.41 0.52 o.h4 o.GJ 

1, (:7 1, 69 1.57 1. ?CJ 1.67 2 .·05 

0.65 0.67 o.f4 o. 67 0.65 0.69 

'.olvent .'a sh: 10 ml oci,ch of methanol and methylene chloride 
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2.9e 
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1.92 

0.67 
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from 28.5 to 30.0 cm/s. The partition ratios show the same pattern of 

change for each probe with an increase after each treatment and a de-

crease upon reevaluation. It can also be seen that there is an overall 

increase above the original k' value. From the definition of k' 

(69) 

it appears that the solvent rinse and temperature conditionings have 

caused an increase in the stationary phase volume, VL' and/or the par­

tition coefficient. The partition coefficient would increase if a 

chemical change occurred in the stationary phase or if after some of the 

stationary phase was rinsed off the column, adsorption processes caused 

an increase in solute retention. An increase in the stationary phase 

volume could be due to swelling of the stationary phase after the-solvent 

rinse. An additional increase in the stationary phase volume due to ther-

mal expansion could occur at the high conditioning temperatures. If the 

return to the equilibrium volume at 60°C was slow, larger k' values 

would first be observed. Decreases ink' would then occur upon reevalu-

ation. This physical behavior could also effect the chemical nature of 

the column by causing an increase in the partition coefficient. With 

increased stationary phase volume, more sites of the. crown ether would 

be available for partitioning or adsorption. 

Additional information regarding the increase in retention is pro-

vided from. the log k' versus 1/T plots (Figures 37 through 41) for the 

probes: n-dodecane, amyl acetate, n-butylbenzene, n-pentanol and 2-

octanone. These plots show the log k' versus 1/T response obtained be-

fore the solvent rinse and after the third conditioning. All the probes 
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except n-pentanol exhibited an increase in retention after the column 

treatments for each temperature evaluated. In addition, a phase trans-

ition temperature at approximately 70°C occurs on each plot. The trans-

ition temperature for each probe and an estimate of the enthalpy for each 

solute/stationary phase interaction are given in Table IX. These enthal-

pies are obtained from the slopes of log k' versus 1/T on each side of 

the phase transition. The theoretical expression used to calculate tH0 

from these slopes is derived below (152,153). 

k' 
VL VL tG 0 VL -tS 0 tH0 

= -K = - exp --= - exp exp 
VM VM RT VM RT RT (70) 

log k' 
VL tS 0 tH0 

= log - - -- + 
VM R RT 

(71) 

tH0 is the heat of evaporation of the dilute solute from the solution 

and can be expressed as (152) 

(72) 

where tH 0 is the enthalpy of vaporization of the pure liquid probe, 
vap 

tH;dsl is the enthalpy of adsorption of the probe at the stationary 

phase-support. interface, tH:ds2 is the enthalpy of adsorption of the 

probe at the gas-stationary phase interface, tH0 • is the enthalpy of 
mix 

mixing of the probe with the stationary phase, and b1 and b2 are con­

stants related to the surface to volume ratio of the stationary phase 

at the two interfaces. 

Since tH0 is a characteristic quantity of each probe, an increase 
vap 

in tH0 would occur if the value of tH0 d or tH0 • decreased. The effect as mix 
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of b1 or b2 on 6H0 depends on the sign of 6H;ds If 6H0 d is negatiye, 
a s 

an increase in b would cause 6H0 to increase. If 6H 0 is positive 
ads 

then a decrease in b1 or b2 would cause 6H 0 to increase. Decreases in 

6H0 or 6H0 • would mean that the stationary phase has changed in a way 
ads mix 

such that less energy is required for the probe to be adsorbed onto the 

surface or mixed into the bulk of the stationary phase. 6H0 would also 

decrease if additional adsorption processes occurred in the column. The 

most significant increases in slope occurred for n-dodecane, amyl acetate 

and 2-octanone on both sides of the transition temperature. 

This increased adsorption or mixing above and below the transition 

temperature may result from two possible sources. The temperature con-

ditioning of the stationary phase may have caused re-orientation of the 

crown ether so that more sites were available for interaction with the 

probes. Since n-dodecane, z~octanone and amyl acetate show more signif-

icant changes in 6H0 , it could be.suggested that the temperature condi-

tioning caused the ethylene groups of the crown ether or polymer back-

bone to become more available for interaction with the alkyl substituents 

of these probes. The small change in slope for n-pentanol might imply 

that there is little change in the hydrogen bonding character of the 

stationary phase. 

Besides changes in orientation of the crown ether, increased poly-

merization of the vinyl groups on the VMSil4C5 could be occurring. This 

rationale does not appear possible since the transition temperature would 

be expected to increase as the chain length and average molecular weight 

of the stationary phase increased. Table IX shows that four of the 

probes detect identical transition temperatures before and after the 

treatments. 
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By expressing Equation 72 in the form below 

log k' 
liH0 • mix 

RT 
(73) 

and making several reasonable assumptions, the change in slope and in-

tercept of the log k' versus 1/T plots for n-dodecane, amyl acetate, 

n-butylbenzene and 2-octanone can be explained (154). The first assump-

tion is that liH0 d does not change at the phase transition temperature. 
a s 

This is reasonable if the surface area does not change within the time 

required for the log k' versus 1/T plot. The contribution of adsorption 

to log k' would then be linear with respect to 1/T over the entire tern-

perature. The second assumption is that tiH0 • changes at the transition 
mix 

temperature. This is possible since a solid-liquid or liquid-liquid 

transition would cause the solute to have different solubilities in each 

of the different phases. This contribution, that due to adsorption, and 

their combined effect would give Figure 42. The log k' versus 1/T plots 

exhibit this adsorption-mixing combination. Before conditioning, Figures 

37, 38, 39 and 41 resemble plot B. As a result of the solvent wash and 

temperature conditioning, an adsorption or mixing process not effected by 

the transition was initiated or increased and a plot resembling C results. 

When log k' values before and after conditioning were subtracted and the 

difference subtracted from B, a linear plot across the transition temper-

ature resulted. A least square fit of each line labelled C gives a de-

termination of correlation which is greater than 0.998 for each case. 

The log k' versus 1/T plot for n-pentanol does not show the same 

character as the plots for the other four probes. Instead of an increase 

in retention after the solvent wash and temperature conditionings, a de-
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crease in the retention of 1-pentanol occurs above the transition temper-

ature at 80°C. The plot also reveals a transition temperature at 40°C. 

From these plots it is seen that the change in the column which was 

caused by the solvent wash and ~emperature conditioning does not effect 

the retention of 1-pentanol as much as it effects the other probes. This 

is also evident from Table VIII where the partition ratio of 1-pentanol 

changes only slightly after each treatment. 

~ 
C" 
0 
....I 

B<Mixing 
alone) 

~A (Ads.alone) 

1/T 
Figure 42. Theoretical Relationship of 

log k' and 1/T Showing the 
Effect of Increased Adsorp­
tion 

Figures 43, 44 and 45 show the chromatograms of an alkane mixture, 

an aromatic mixture and n-pentanol. These chromatograms were obtained 

before and after the solvent rinse and after the third temperature condi~ 

tioning. Comparison of the alkane and aromatic separations show that 
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along with increased retention, an increase in. tailing has occurred. 

This would be expected if increased adsorption was present. 1-Pentanol 

shows only slight peak broadening after the temperature conditioning. 

Table X provides the number of effective plates for each probe at 

60°C. After each of the treatments, a decrease in the efficiency occur­

red as would be expected if adsorption processes increased. The increase 

in efficiency upon reevaluation follows the same pattern as was observed 

for the partition ratios with the' exception of 1-pentanol. The efficiency 

of 1-pentanol increased after the solvent wash and first conditioning but 

decreased when the heat treatment was maintained for longer periods of 

time. 

Comparison of the behavior of 1-pentanol with the four other probes 

shows that after the column treatments 1-pentanol exhibited less change 

in retention over the temperature range, higher efficiency and less tail­

ing than alkanes with the same retention. This difference in behavior 

may be due to the higher solubility of 1-pentanol in the crown ether 

stationary phase. Since the column temperature at which the chromato­

grams and efficiency measurements were obtained, 60°C, was below the 

phase transition temperature at 70-80°C, the tailing of nonpolar probes 

would be due to adsorption on the stationary phase surface. The alcohol 

which has higher solubility in the polar crown ether stationary phase 

would not exhibit adsorption as its retention would still be due to par­

titioning. 

Column 8: Statically Coated PVB15C5 

A temperature program of the fourteen component alcohol mixture on 

the PVB15C5 column over the temperature range used in the silacrown ether 
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columns was not possible due to the severe broadening and tailing that 

occurred at low temperatures. Isothermal chromatograms at 130°C and 

180°C (Figure 46) showed that column temperatures above 130°C are re-

quired to obtain efficient peaks. Possible reasons for this temperature 

effect can be found in the phase transitions observed in the column. 

Figure 47 shows the log k' versus 1/T plot for acetonitrile on the 

PVB15C5 column. Acetonitrile was chosen as a phase transition probe 

because it is soluble in polystyrene and polyethylene glycol. It also 

provides acidic methyl protons which can interact with several of the 

crown ether oxygens at the same time (145). Changes in retention be-

havior of acetonitrile on PVB15C5 occur at 75°C, 110°C and 150°C. These 

changes occur at temperatures which may correspond to a glass phase 

transition and two liquid-liquid transitions. The transition at 75°C 

may be related to the softening (glass transition) temperatures for two 

PVB15C5 polymers prepared by Kopolow (146). The gl.ass transition temper-

atures for his polymers occurred at 113-117°C and 122-128°C for polymers 

with number-average molecular weights (M) of ~28,000 and ~113,000, re­
n 

spectively. Differences in the glass transition temperatures are due to 

a dependence on the inverse of the M (155). 
n 

00 

Equation 74 where T is the 
g 

glass transition temperature at infinite molecular weight and k is a con-

stant, shows this relationship. 

T 
g 

00 = T 
g 

k 

~ 
(74) 

Since the T of the polymer prepared here was lower than the T of the 
g g 

polymers prepared by Kopolow, it might be assumed that its M was also 
n 

lower. From the T and M values provided by Kopolow and the transition 
g n 

temperature determined from column 8, an estimate of 7000 for M was 
n 
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calculated. 

The transitions at 110°C and 150°C may correspond to liquid-liquid 

transitions which have been designated as T22 and T~i (156,157). Such 

transitions which have been observed in atatic polymers including poly-

styrene by fourier transform infrared spectroscopy and differential 

scanning calorimetry may be related to temperatures where the liquid of 

fixed structure becomes a true liquid, T22 , and where barriers to confor­

mation become negligible, T~2 . General values of T22 for many atatic 

polymers occur in the range of 1.1 to 1.3 Tg. The Tg and T22 of PVB15C5 

at 75°C and 110°C occur near this range. 

The transition at 150°C was also confirmed with plots of log k' 

versus 1/T (Figure 48) and real plate numbers versus column temperature 

(Figure 49) for four linear alcohols. These figures show transitions 

which occur at 145°C and 150°C. A log k' versus 1/T plot for acetonitrile 

on a second PVB15C5 column confirmed the three transition temperatures 

(Figure 50). 

Differential scanning calorimetry (DSC) of the PVB15C5 polymer 

(Figures 51, 52, 53 and 54) shows evidence of the glass transition temper-

ature. Figure 52 shows an endothermic change in the polymer with an ex­

trapolated onset temperature at 67°C and a minimum of the endotherm at 

80°C. Although endotherms are not characteristic of glass transitions, 

Wunderlich (158) and Gillham (159) have reported that polymers which 

have experienced fast heating and slow cooling rates show endotherms 

which contain first and second order transition character. DSC tracings 

which were reported by Gillham for heat treated polystyrene show glass 

transitions which resemble the tracings in Figure 52. Before the DSC 

in Figure 52 was obtained, the polymer was heated to remove solvents used 
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for reprecipitation and may not have reached thermal equilibrium before 

the DSC experiment was started. The DSC tracing in Figure 54 was ob­

tained five months later and shows no evidence of thermal history. Here 

a second order phase transition which is characteristic of a glass trans­

ition was observed which had an onset temperature of 73°C and a midpoint 

temperature of 83°C. The glass phase temperatures from the two DSC ex­

periments correlates well with the phase transition temperature, 75°C, 

which was determined by gas chromatography. The DSC did not reveal, 

however, a transition at 110°C and 150°C. A possible explanation for 

the absenc.e of the transition could be that the change in heat capacity 

of the polymer that occurs at these transitions was too small to be de­

tected by DSC. The gas chromatographic experiment used changes in re­

tention of a chemical probe to detect changes in the physicochemical 

nature of the polymer. Transitions in the polymer that result in small 

changes in heat capacity could cause changes in the solubility of the 

probe in the polymer. These changes would be detected by changes in 

retention. 

In addition to the DSC of PVB15C5, thermogravimetric analysis (TGA) 

of PVB15C5 and DSC and TGA of Carbowax 20M were also performed. Compari­

son of the DSC of Carbowax 20M (Figure 55) with PVB15C5 (Figure 52) shows 

that the Carbowax 20M endotherm at -66°C absorbs about 40 times more en­

ergy per gram than PVB15C5. This difference in energy absorption prob­

ably occurs because more energy is absorbed by the Carbowax 20M polymer 

as it goes through its melting transition. For PVB15C5, only part of the 

polymer, the ethyleneoxy groups of the crown ether gain energy. The 

endotherms at 370°C which are followed by exotherms are due to absorption 

of energy before the polymers start to decompose. 
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To determine how oxygen affects the DSC of Carbowax 20M, the nitro­

gen atmosphere in the DSC cell which contained 1-2 ppm oxygen was re­

placed with air. Figure 56 shows that an increasing exotherm which is 

due to oxidation started at 171°C. 

Thermogravimetric analysis of PVB15C5 and Carbowax 20M (Figures 57 

and 58) reveal similar results with discernable weight losses beginning 

at 360°C for PVB15C5 and 330°C for Carbowax 20M. Although these temper­

atures might be taken as maximum operating temperatures in gas chroma­

tography, it has been recommended that capillary columns containing 

Carbowax 20M not be used at temperatures above 280 to 300°C (75). This 

difference could be due to the gas chromatography detectors responding 

to much lower amounts of stationary phase bleed, or catalytically in­

duced decomposition of the stationary phase by the glass or fused silica 

capillary. 

Comparisons of Columns 6, 7 and 8 

Tables XI and XII show comparisons of various column parameters. 

The inner diameter and column lengths of the two silacrown ether columns 

are approximately the same while the PVB15C5 column has a smaller inner 

diameter. The minimum operating temperature for each of the three col­

umns was determined at the highest phase transition temperature. While 

this temperature provides a good lower limit for the PVB15C5 column as 

shown in Figure 46, the silacrown ether columns exhibit reasonable 

chromatography below the observed transition temperature. This is evi­

dent from the alcohol chromatograms in Figures 28 and 36. For each of 

these columns, the lower limit is therefore less than the observed trans­

ition temperature. 
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TABLE XI 

COMPARISON OF COLUMN DIMENSIONS, PHASE TRANSITION TEMPERATURES, 
MINIMUM AND HAXTMUM OPERATING TEMPERATURES, % UTILIZATION 

OF THEORETICAL EFFICIENCY AND :NUMBER OF THEORETICAL 
PLATES PER METER FOR THE CROWN 

ETHER CAPILLARY COLUMNS 

I.D. (mm)/ 
Stationary Phase · Length (m) 

Vinylmethylsila-17-crown-6 0.42/18 

Vinylmethylsila-14-crown-5 0.40/16 

Poly(vinylbenzo-15-crown-5) 0.32/20 

* Phase transition determined by DSC. 

Phase 
Transition 
Temp~ratures 

4o0c-70°c 

4o0c, 
70°c-so0c 

Min./Max. 
Operating 
Temperatures 

. >70°C/100°C 

>70 °C/ 154 °C 

75°C(67°C,73°C)* 150°C/220°C 
;no0c ,·150°c 

% U.T.E./ 
Plates per meter 
(Column temperatures) 

20%/941_ (75°C) 

16%/79i(109°C) 

13%/661.(180°C) 



TABLE XII 

PARTITION RATIOS (k I) I RETENTION LJDICES (I), ECR2YFGLDS' CO?STANTS (AI) AED 
AVERAGE POLARITY FOR THE MCREYNOLDS' PROBES ON EACH OF THE CROWN 

ETHER CAPILLARY COLUMNS ALONG WITH THE RETENTION INDICES AND 
MCREYNOLDS' CON"STAKTS FOR CARBOWAX 20M (139} 

Average 
Benzene n-Butanol 2-Pentanone Nitropropane Pyridine Polarity 

/:,.I 347 553 373 491 477 448 

VMSil 7C6 I . 1000 1143 1000 1143 1176 

k' 0.008 0.030 0.008 0.030 0.038 

tn 243 398 280 378 359 327 

VMSil4C5 I 896 988 907 1030 1058 

k' 0.019 0.036 0.020 0.048 0.056 

/:,.I 382 564 439 648 595 526 

PVB15C5 I 1035 1154 1066 1300 1294 

k' 0.225 0.426 0.264 0.959 0.923 

/:,.I 322 536 368 572 510 462 

Carbowax I 975 1126 995 1224 1209 
20M ..... 

v, 
--.J 
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The maximum allowable operating temperature (MAOT) of each column 

was determined during a temperature program where a shift in baseline of 

12 picoamps occurred. For the flame ionization detector of the Hewlett 

Packard 5880A gas chromatograph this corresponds to a 10% baseline shift 

at an attenuation of 23 where the sensitivity is 1.2 x 10-lO amps full 

scale. A carrier linear velocity of 25 cm/sand temperature program 

starting at 60°C with a 5°C/min temperature ramp were used for each col­

umn. This method is based on an arbitrary baseline shift which is set 

as a minimum of acceptable bleed. The MAOT for the silacrown ether col­

muns at 100°C and 154°C were lower than expected. This could be due to 

incomplete polymerization of the vinyl groups in the silacrown ether. 

Thus the low MAOT results from bleed of the unpolymerized silacrown 

ether. Although NMR spectroscopy of the monomer solution emptied from 

the VMSil7C6 column after heat treatment showed no evidence of a poly­

ethylene backbone, this, however, does not preclude copolymerization 

with MAPTMS on the column wall. The PVB15C5 coiumn showed a much higher 

MAOT due to the polystyrene backbone which was confirmed by NMR spectre-

scopy. 

To determine the utilization of theoretical efficiency and the 

number of plates per meter, van Deemter plots using 1-octanol as a probe 

were constructed (Figure 59). For each column, the oven temperature was 

adjusted so that the partition ratio of 1-octanol was as close as possi­

ble to 0.5. In each case this temperature was above the highest phase 

transition temperature. The values determined for the %UTE and the 

number of plates per meter were low when compared to values typical for 

commercially available polar columns. One possible cause for this low 

efficiency could be the numerous interaction sites present in the columns. 
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PVB15C5 has aromatic, aliphatic and polar sites which can interact with 

the probe used for the efficiency evaluation .. In the silacrown ether 

columns, MAPTMS was added to copolymerize with the silacrown ether and 

bond it to the glass surface. From the adsorption of alcohols shown in 

Figure 27, this silane may have contributed more to band broadening and 

tailing than to stationary phase stability. 

The choice of probe to evaluate efficiency can also be important. 

Figure 60 shows that on the PVB15C5 column, alkanes, the usual probe se­

lected for column efficiency evaluation, did not exhibit the highest 

number of plates. For both theoretical and effective plate numbers, the 

more polar compounds, dials, provided higher numbers of plates than al­

cohols or alkanes. The column efficiency for each homologous series 

increased with each addition of a hydroxy group. This behavior could be 

due to the hydroxy groups interacting with the flexible crown ether which 

is located on the outside of the polymer and the methyl groups interact­

ing with the more rigid aliphatic backbone within the polymer. This 

difference in flexibility at different sites and preference of sites by 

hydroxy or methyl groups could result in lower diffusion coefficients in 

the stationary phase for molecules containing methyl groups. If the dif­

fusion coefficients for alkanes in PVB15C5 is lower than alcohols and 

diols, nonpolar solutes would exhibit lower efficiencies due to an in­

crease in resistance to mass transfer in the liquid phase. 

Measures of selectivity and polarity of the crown ether columns 

are given by the McReynolds' constants (~I), retention indices (I), par­

tition ratios (k'), and average polarity in Table XII. The column temper­

ature for these retention parameters was 120°C for the VMSil4C5 and 

PVB15C5 columns and 100°C for the VMSil7C6 column. The lower column 
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temperature was necessary in order to obtain a measurable partition ratio 

for the McReynolds' probes. Calculation of the McReynolds' constants for 

this column using the absolute retention indices of squalane at 120°C 

instead of 100°C should introduce errors of only 1-3% in each ~I value 

(135-138). While the temperature for the retention indices determination 

of VMSil7C6 and VMSil4C5 columns were above their transition temperatures, 

the temperature for the indices determination of PVB15C5 was between the 

phase transition temperature at 110°C and 150°C. This means that the 

McReynolds' constants were determined when PVB15C5 was in a semi-liquid 

state which lacked the rapid backbone motion of the Ti2 , state. The 

determination of McReynolds' constants for PVB15C5 at temperatures above 

the phase transition at 150°C requires retention indices for the probes 

from a squalane column at this temperature. This may not be possible as 

the recommended maximum operating temperature for squalane is 150°C on 

a packed column and 100°C on a capillary column. 

Comparison of the values of the McReynolds' constants and the aver­

age polarity for the three crown ether columns with other stationary 

phases in McReynolds' table (139) shows that the crown ether phases have 

an average polarity which is similar to that of Carbowax 20M. The 

McReynolds' constants, retention indices and average polarity of Carbo­

wax 20M are given in Table XII for comparison. Of the three crown ether 

columns, the PVB15C5 column has the highest .polarity. This is due to 

the induced dipole interactions which the aromatic ring contributes to 

the overall polarity. The lower polarity of the silacrown ether columns 

is due to the weaker induction interactions of any nonpolymerized vinyl 

groups which may be present and weak dispersion interactions of the methyl 

groups. The higher polarity of the VMSil7C6 column over the VMSil4C5 is 
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due to the increased number of ethyleneoxy linkages in the crown r~ng. 

The retention indices also indicate that the PVB15C5 column elutes 

the McReynolds' probes in the same sequence as Carbowax 20M. The sila­

crown ether columns differ from this sequence in that 1-nitropropane and 

pyridine switch elution order. The polarity and selectivity of the 

PVB15C5 column is also evident in Figure 61 where log k' versus boiling 

point is plotted for homologous series of diols, alcohols, and alkanes. 

In addition to the expected linearity within each homologous series, the 

plot shows selective retention of compounds which have the same boiling 

point but differ in increasing polarity. This behavior is typical of 

polar columns where retention of compounds is determined more by their 

polarity than by their boiling point. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The preparation and characterization of glass capillary columns 

containing polystyrene, vinylmethylsila-17-crown-6, vinylmethylsila-

14-crown-5 and polyvinylbenzo-15-crown-5 has been presented. The 

characterization of the crown ether columns using McReynolds' constants 

and retention indices revealed that the crown ether columns had an 

average polarity which was similar to Carbowax 20M. The polarity of 

PVBlSCS was also evident in the comparison of partition ratios and 

boiling points of different classes of compounds. Here, diols, alcohols 

and alkanes which had similar boiling points exhibited different reten­

tion with the more polar compounds having the higher retention. Although 

the diols and alcohols had higher retention than the alkanes, the effic­

iency of the diols and alcohols was higher than the alkanes. This be­

havior which was also observed in the VMSil4C5 column·can be attributed 

to the difference in solubility of the probes in the crown ether sta­

tionary phase. When the solubility is high as in the case of the diols, 

retention is dominated by partitioning. With low solubility, adsorption 

at the gas-liquid interface occurs and increased band broadening results. 

Characterization of the capillaries using log k' versus 1/T plots 

revealed much about the temperatures of the phase changes in the crown 

ethers. The transitions for VMSil7C6 and VMSil4C5 which occurred at 

temperatures between 30°C and 70°C were probably liquid-liquid transi-

165 
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tions of the ethyleneoxy linkages in the crown ether. The first transi­

tion in PVB15C5 at 75°C may be due to a second order glass phase transi~ 

tion. The transition at 110°C and 145-150°C could be due to liquid­

liquid transitions of the polystyrene backbone of the polymer. 

Differential scanning calorimetry of PVB15C5 confirmed only one of 

the three phase transitions which were observed during the gas chroma­

tography experiment. This showed that gas chromatography could be used 

not only as a complimentary technique to determine phase transitions 

but also to reveal phase changes which were not observable with DSC. 

Although the crown ethers which were chosen were less than ideal, 

the separation of alcohols and alkanes which were obtained from capil­

laries containing these phases showed that crown ethers do have potential 

as stationary phases in gas chromatography. Liabilities which were 

observed could be eliminated by incorporating crown ethers into polymers 

which have low melting points such as polysiloxanes or polyethylene 

glycols. Structures of these polymers and a linear polymeric crown 

ether which may have potential are given in Figure 62. 



Figure 62. Proposed Crown Ether 
Stationary Phases 
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