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PREFACE 

We deal in this thesis with the isometries and e:-near isometries 

(Definition 2.2) of analytic function spaces. The spaces we consider 

here are Hp spaces (1..::_p ..::_ 00) and the disc algebra A (see 1.1 for defin

itions). We deal specifically with two questions: (1) Is every linear 

operator on Hp or A, which is "nearly" an isometry, close to an isometry? 

and (2) What are the isometries of the disc algebra A? 

Question (1) will be formalized more precisely in 2.1. Those "near

ly" isometries are the ones we call e:-near isometries. Question (1) was 

answered affirmatively for a number of well known Banach spaces. D. Amir 

and M. Cambern [2,8] worked out (independently) the case of e:-near iso

metries on C(K) onto C(S), the Banach spaces of continuous functions on 

Kand S, respectively, where Kand Sare compact Hausdorff spaces. Y. 

Benyamini [4] dealt with the into case with K metrizable. He gave a 

counter example for a nonmetrizable K. D. Alspach [1] worked out the 

case of e:-near isometries on LP(µ) into Lp(v) whereµ and v are regular 

Borel measures and (1 ~p ,f, 2 < oo). 

In Chapter II of this thesis we give examples to show that e:-near 

isometries on Hp spaces (1 ~p < 00 ) and the disc algebra A are not always 

close to isometries on the same spaces. These results are interesting 

because it is known (see Boas [7]) that Hp spaces are isomorphic to LP 

spaces (1 ~ p < oo) • In other words, Hp spaces are "renormings" of LP 

spaces. Now while e:-near isometries on LP spaces are close to isometries, 
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that is not the case with Hp spaces. This shows that the "renorming" 

process destroys this property. Of course, this was expected but no 

specific counter examples were given up to this point so the examples 

given in Chapter II serve that purpose. Question (2) is a natural ques-

tion to ask about Banach spaces. Isometries of most of the well-known 

Banach spaces have beeh characterized. The onto isometries of C(K) 

spaces (for a compact Hausdorff K) were characterized by Banach and Stone. 

The into case was worked out by Holsztynski [17]. Isometries of LP(µ) 

and Hp spaces were worked out by Lamperti [21] and Forelli [13], respec-

00 

tively. The onto isometries of the disc algebra A and H were determined 

by de-1-euw, Rudin and Wermer [22]. As for the disc algebra, partial 

results were obtained by McDonald [24] and Rochberg [31,32]. The ques-

tion of characterizing the into isometries of the disc algebra was raised 

by Phelps [5]. 

In Chapter III of this thesis we give a complete characterization 

of the isometries of the disc algebra A. 

Chapter I in this thesis will be devoted to setting up notation and 

listing some of the theorems, propositions, definitions, etc., that will 

be used in later chapters. Chapter II deals with the question of E-near 

isometries (Definition 2.2) while Chapter III deals with the question of 

characterizing the isometries of the disc algebra A. Chapter IV contains 

some comments and open questions. In the Bibliography, references that 

were used in this thesis are listed as well as a few others which are of 

related interest. However, the listing does not exhaust all possible 

references related to this research. 

A study like this could not have been completed without the good 

will and help of my major advisor, Professor John Wolfe, whose wise 
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comments helped to clarify my thinking on many points in this study and 

who was always ready to come to the rescue when things seemed to come to 

a standstill. Special thankfulness from my heart goes to him for his 

patient guidance and assistance throughout my study at this institution. 

It has been a great privilege and pleasure to study under him, whose 

combination of fine scholarship and tutorship will be a guideline for my 

future career. A deeply felt gratitude goes to Professor D. Alspach for 

showing great interest and support in my work from the beginning till the 

end. 

I acknowledge my obligation to Professor M. Keener and Yarlagada as 

my teachers and as members of my advisory committee for their time and 

effort on my behalf. Finally, special thanks goes to Barbara Newport 

for her long hours at the typewriter under the pressure of a deadline. 
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CHAPTER I 

PRELIMINARIES AND NOTATION 

The notation in this thesis follows Rudin [34] and Hoffman [16]. 

D is used for the open unit disc in the complex plane, D = { z: I z I .:::_ l} 

and T = {z: lzl =!}. C(T), C(D) and C(K) are used to denote the supnorm 

Banach spaces of continuous complex-valued functions on T, D, or a 

general compact Hausdorff space K, respectively. Lebesgue measure on T 

is denoted by m. Occasionally the letter Tis also used to denote a 

linear operator where no confusion will occur. H(D) denotes the set of 

analytic functions on D. 

1.1 Hp Spaces 

Among the numerous definitions of Hp spaces we will give the ones 

that are going to be used throughout this thesis. Proofs of the equiv-

alence of these definitions can be found in Hoffman [16] and Rudin [34]. 

If O < p .:::_ 00 we denote by Hp the class of analytic functions f in D 

for which f (8) = f (rei8) are bounded in LP (m)-norm as r + 1. If l .:::_p .:::_ 00 , 

r 

then Hp is a Banach space under the norm 

lifll = lim I If I IP· 
r+l r 

For l .:::_ p .:::_ 00 we shall identify Hp with the closed subspace of LP (T) con-

sisting of functions f such that 
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t2x f(6)ein6 d6 = O, n = 1,2,3, •••. 

For 1 ~p ~ 00 we can also define HP to be the class of functions f which 

have power series representations 

00 

f (z) = I: 
n=O 

n a z 
n 

such that lim f(rei6) exists for almost all e and 
~1 

00 

H is also defined to be the space of bounded analytic functions. The 

disc algebra is the space of functions continuous on D, and analytic on 

D. 

Functions in LP (T) (1 ~p ~ 00) are actually equivalence classes where 

we identify two functions f 1 , f 2 if the set 

has Lebesgue measure zero. The same identification is made with Hp 

spaces (l~p ~ 00), i.e., the elements of an Hp space are actually classes 

of functions. 

1.2 Some Important Lemmas and Theorems 

We list here--for ease of reference--the most important lemmas and 

theorems that will be used throughout this thesis. 

Lemma 1.1 

The conjugate space of the disc algebra A (denoted by A*) is iso-
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metric to the space M(T)IH5 where M(T) ={µ:µis a regular Borel measure 

on T} (M(T) is a representation of C(T)* with I jµj I= total variation of 

µ on T) and 

H~ {f E Hl: f (O) = O}. 

Proof 

The proof of this lemma can be found in many standard text books, e.g., 

Garnett [15]. 

Theorem 1.2 

Leth be a non-negativ- Lebesgue integrable function on the circle. 

Then there exists a function f E H1 such that h = If I if and only if log h 

is integrable. If h E L 00
, then h = I g I for some g E H00 if and only if log h 

is integrable. 

Proof 

See Hoffman [16], p. 53. 

Theorem 1. 3 ( de-Leeuw, Rudin and Wermer) 

00 00 00 

Let T:·H + H be a bounded linear operator which is onto H. Then 

Tis an isometry if and only if 

(Tf)(z) = af(T(z) 

00 

for all f E H and all z E D, where T is a complex member of modulus one 

00 

and Tis a conformal map on D. The result also holds if we replace H 

by the disc algebra everywhere. 

Proof 

See Hoffman [16], p. 147. 



Theorem 1.4 (F. Forelli) 

Let T: Hp+ Hp be a bounded linear operator which is onto Hp 

(l .::_p < 00 , p ,f,. 2), then T is an isometry if and only if 

1/p 
(Tf)(z) = a(¢'(z)) f(¢(z)) 

for all f E Hp and all z E D, where a is a modulus one constant, ¢ is a 

conformal map on D (¢(z) = At--a with j">..j=l, !al <l), and¢' is the 
- az 

complex derivative of¢(¢'= ">..(l- lal 2)/(l-az) 2). 

Proof 

See Forelli [13]. 

Note that the pth root of¢' is well defined on D since¢' has no zeros 

there and therefore can be represented as expg(z) for some analytic 

function g on D. 

Definition 1.5 

A boundary point Sofa simply connected plane region Q will be 

called a simple boundary point of B._ if S has the following property: 

To every sequence {a} in Q such that a +Sas n + 00 there corresponds 
n n 

a curve y with parameter interval [O,l] and a sequence {t} such that 
n 

O<t1 <t2 < ..• , lim t =l, such that y(t) = a (n=l,2,3, .•. ). In n n n n+oo 
other words, there is a curve in Q which passes through the points 1 a n 

and which ends at S 

The last definition is only needed to state a form of the Riemann 

mapping theorem which will be used in Chapter II. 

Theorem 1.6 (The Riemann Mapping Theorem) 
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If Q is a bounded simply connected region in the plane and if every 

boundary point of Q is simple, then every conformal mapping of Q onto D 

extends to a homeomorphism of~ onto D. 

Proof 

See Rudin [34], p. 281. 

The following theorem, due to Rudin, will be used in Chapter III. 

Theorem 1.7 (Rudin) 

Let K be a closed set of Lebesque measure zero on the unit circle, 

and let F be any complex valued function in C(K). Then there exists a 

function in A whose restriction to K is F. 

Proof 

See Hoffman [16], p. 81. 
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CHAPTER II 

OPERATORS APPROXIMABLE BY ISOMETRIES 

2.0 Introduction 

D. Amir and M. Cambern [2,8] proved independently that C(K) and 

C(S) are isomorphic with an isomorphism T satisfying I jTj I I jT-1 1 I < 2, 

then Kand Sare homeomorphic. Hence C(K) and C(S) are isometric. Their 

proofs (especially in [8]) gives, in fact, more: If I !Tl I 2_ l+ E:, 

j jT-1 11 2_ l+ E:, and I ITI I I IT-1 11 .::_ l+ E: (with O < E: < 1), then an isometry 

W can be chosen close to T, with !IT-WI! < 2r::. In [4] Y. Benyamini 

showed that if K is a compact metric space and if T: C(K) + C(S) is an 

onto isomorphism satisfying 11 f 11 2_ 11 Tf 11 2_ (1 + E:) 11 f 11 , then there is 

an isometry W of C (K) into C (S) satisfying 11 T - W 11 2_ 3r::. He also showed 

that the result is false if the assumption of metrizability of K is 

dropped. 

In [1] D. Alspach proved a similar result for the case of 1 spaces. 
p 

He showed that for each p, l .::_p "f 2 < 00 there exists E: > 0 and a function 

T: [O,r::) + [O,o), lim T(s) = 0, such that if Tis an isomorphism of L (µ) 
s+O p 

into Lp(v) such that ilfllp 2- l!Tfllp 2_ (l+s)!lfllp for some sE [O,r::) 

then there exists an isometry S: 1 (µ) + 1 (v) such that 11 S - T 11 < T (s). 
p p 

In this chapter we study the same problem for the case of the disc alge-

bra and Hp spaces l .::_p < 00 • The question we are trying to answer can be 

formulated as follows: 

6 



7 

2.1 Statement of the Problem 

Given a Banach space X and O < E < y < 1. Is there a function g: [O,y) 

-+ [O,o) with lim g(E) = 0 such that if T: X-+X is a linear isomorphism 
E-+0 

satisfying (1- E) 11 x 11 .::_ 11 Tx 11 .::_ (1 + E) 11 x 11 we can find an isometry 

W: X-+X such that I IT-Wj I.::. g(E)? 

The main results of this chapter will show that the answer to 

question 2.1 is negative in both the cases of the disc algebra A and the 

case of the Hp spaces l .::_ p < 00 • We begin by defining an E-near isometry, 

a term which will be used throughout this chapter. 

Definition 2.2 

Let X, Y be Banach spaces, and let T: X-+ Y be an into-isomorphism 

such that (1- E) 11~11 .::. I IT~! I .::. (1+ E) I !xi I (0 < E < 1), then T is said 

to be an E-near isometry. 

We now state our main results for this chapter. 

Theorem 2.3 

Given E > 0, there exists a linear operator S on the disc algebra A 

onto itself satisfying 

(1-E)llfll < llsfll < (l+E)llfll 

such that if U: A-+ A is an isometry and if g EA, then 

11 S - gU 11 > 1 - E. 

Theorem 2.4 

Given E > 0, there exists a linear opera tor S on Hp onto its elf 

(1.::_p < 00 ) satisfying 
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such that if Tis an isometry on HP, then 

lls-TII > 1-s. 

2 . .2 Proofs of the Results 

Note that the statement of Theorem 2.3 is stronger than the state-

ment of the problem 2.1. In fact Theorem 2.3 states that there exists-

near isometries on A which are not even close to an isometry followed by 

a multiplication operator. The statement of the problem (2.1) follows 

from Theorem 2. 3 if we take g = 1. The reason for stating Theorem 2. 3 

as we have will be clear from the discussion after Theorem 2.6 below. 

We begin with a lemma. 

Lemma 2.6 

Let X, Y be Banach spaces. Let T: X-+ Y be an invertible operator 

and let W: X-+Y be a bounded linear operator which does not have a dense 

range, then: 

Proof 

Let O < s < 1. Let Z = Range of W. Since Z is a closed proper subspace of 

Y, we can apply Riesz' s Lemma to get an element y E Y with 11 y 11 = 1 
E E 

such that 

11 Y s - z 11 ..::._ 1 - s for all z E Z. 

In particular Thus 
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lll-WT-1 11 ~ ll(l-WT-1 )YE:II = IIYE:-W(T-lyE:)11 ~1-E:. 

But lll-WT-1 11 = ll<T-W)T-1 112.. IIT-wll IIT-1 11, so 

and since E: is arbitrary, we get 

For g E A the operator Tg: A+ A defined by Tg (f) = g • f is called a multi-

plication operator. It can be easily shown that 11 Tg 11 = 11g11 00 , 

Theorem 2.7 

Given O < E: < 1 there exists a function g E A such that Tg is an e:-near 

isometry of the disc algebra A and, if Wis any isometry on A, then 

11 Tg - W 11 > 1 - E:, 

Proof 

Let g be a function in the disc algebra A such that g maps the unit disc 

D to the slit annular region g(D) shown in Figure 1 • 

. 
,(. 

-L -1 1 

Figure 1. The Function gin Theorem 2.7 
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The region g(D) is chosen as shown to satisfy the requirement that every 

point of the boundary of g(D) is a simple boundary point (see definition 

1.5) and therfore guaranteeing the existence of such a g (Theorem 1.6). 

It is easy to check that the multiplication operator Tg corresponding to 

1 g is an e:-near isometry. I I - -1 Since g(O ~ 1- e: for all , ED, then g = -

is in A. Thus (Tg)-l = 

11 Tg 11 11 Tg - 1 11 ~ 1 = e:. 

-1 Tg exists and therefore Tg is onto. 

g 

Also 

Now let W be an isometry on A. If Wis into, then Lemma 2.6 implies 

11 Tg - w 11 > 1 > 1 - e: 
I ITg-1 11 

and there is nothing to prove. If Wis onto, then by Theorem 1.3 W has 

the form Wf = a.f o ,: where I a. I = i and ,: is a conformal map on D. 

Claim 

If ,: is not the identity map on D, then I ITg -WI I > 2 - e:. 

Proof of the Claim: 

If not, then there exists a point 'o E T such that ,: c,0) -::/: 'o. Let f be 

-1 -1 any function in A such that f(,:(, 0)) = a. and f(, 0) = -g c,0)(1- e:) and 

such that I lfl I= 1 (a linear fractional transformation will do). Then 

11 Tg - w 11 ~ 11 Tgf - Wf 11 

I -1 . -11 = gC,0> (-g c,0)) c1- e> - a.a. = 2 - e:. 

This proves the claim, and the theorem for,:-::/: z. On the other hand if 

,: = z, then 

Wf = a.f. 
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But the choice of g implies that for each a. E T there exists a I; E T such 
a. 

Jg(l;a.) - a.J ~ 2- s. Thus if f = 1, we get 

11 Tg - w 11 > 11 Tgf - Wf 11 JJg-aJJ > Jg(!; )-a.I> 2-s > 1-s. a. 

Q.E.D. 

Some remarks on Theorem 2.7 are due 

1. The quantifier (1- s) is not the sharpest possible result. For 

example, if Wis onto then the proof of the theorem shows that this esti-

mate can be improved to 2 - s. It is suspected that the same estimate 

holds when Wis into. In order to get such an estimate one would use 

the characterization of the into isometries of the disc algebra given in 

Chapter III of this thesis. However, the estimate we used in Theorem 

2.7 is good enough for our purposes. 

2. Instead of using the Riemann mapping theorem in the proof of 

Theorem 2.7 one could actually give an explicit formula for g with the 

aid of region transformation maps. The Riemann mapping theorem was pre-

ferred because such formulas are not easy to manipulate. 

3. Theorem 2.7 shows that the multiplication operator as ans-near 

isometry is not always close to an isometry. Thus it seems natural to 

try to approximate the s-near isometry by operators of the form gW where 

g EA and W is an isometry on A since in this case the class of multipli-

cations-near isometries will be approximated by operators of the same 

kind. However, Theorem 2.3 says that approximating s-near isometries by 

operators of the form gW is still impossible. 

Before proving Theorem 2.3 we need two lemmas. 

Lemma 2.8 

Let T1 and T2 be two operators defined on A into C(T) by 



T.f = a..f o $., l. l. l. 
i = 1,2 

where a.. is a constant of modulus one and$. is a continuous unimodular l. l. 

function of Tonto itself. If $1 # $2 , then for any nonzero function 

gEA 

I IT1 - gT2 I I > 1 + inf 
0<8<21T 

In particular 

Proof 

. e 
lg(el. )I. 

Since $1 # $2 , there exists a point i;: 0 ET such that 

and by the continuity of $1 and $2 , there exists an interval Ii; such 
. 0 

that $1 (1;) # $2 (1;) for all 1; E Ii; • Now let g EA be a nonzero function. 
0 

Pick a i;:1 E Ii; such that g(1;1 ) # O. (If g(Ii; ) = {O}, then g = 0.) 
0 0 

Choose f EA such that 

(i) 11 f 11 = 1 

(ii) p($1 (i;:1)) = a.2 , and 

(iii) f($2 (i;1)) = -a.1/sgn(g(1;1)) 

1;/l1;I 
where sgn(i;) = { 0 , 

1; 'F O 

1; = 0 
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I ( )I 1 lg(ei8)1 = 1 + g sl > + min 
0<8<27T 

Q.E.D. 

Lemma 2.9 

Let 0 < a < 1. Let¢ be the conformal map s-a 
¢(O = 1- as for s ED, 

F(O 
i8 1/2 i8/2 f 

21T' Let = F(re ) = r e or o < e < a branch of the square 

root function. Then there exists a function w C(T) with T = w(T) such 

that i (0 = s¢ (s) for all s ET and 

llw-zll = h-2h-a2. 

Proof 

13 

Note first that according to the polar representation chosen for complex 

numbers in this lemma we have: for each s E T 

and 

Thus 

e 

-arg s 21r - e 

o < e < 21r 

1 
args 

s - a - s - a i8 i (21r-8) s - a 
s 1 - as= ss s - a = e e s - a 

s - a for all s E T. 
=s-a 

Let arg(s - a) = Y, then 

Thus 

arg --1-- = arg --1-- = 21r - arg(i:" - a) ( i:"-a) c, "' (l;-a) 

i: - "' arg~= 
I; - a 

{ 
2y 02_y<1r 

2y - 27T 1T.::.. y < 21T 

Therefore 

21T - (21T - y) y. 



F(s f - a) = 
s-a 

iy 
e 

{ iy 
-e 

0 ~arg s < 'IT 

(refer to Figure 2) 
'IT ~ arg s < 21T 

Figure 2. The Relation Between Is - a I , y and 6 

Define 

F(sc/>(s) > 
Hs> = { 

-F(sc/>(0) 

0 < 6 < 'IT 

for s ET 
'IT < 6 < 21T 

Then t/J(s) = eiy for O < 6 < 21T. Since y depends continuously on 6 (shown 

by Figure 2 or can be proved analytically) and since y takes on every 

14 

value in [0,21T) as 6 changes between O and 21T, it follows that tjJ is con-

tinuous and onto. 2 Clearly tjJ (s) = s$(s) as asserted. Now we consider 

sup 
0<6<21T 

I iy i61 e - e = sup 
0<6<21T 

I e i < r-e > - i 1 • 

Using Figure 3 it is clear that I ei(y-S) - 11 is maximum when (y - 6) is 



Figure 3. The Maximum of y - 8 

maximum. Using the triangle OA~ in Figure 2 we get 

sin(y - 8) 
a 

sin y 
1 

15 

I I (y_ SJ 
e - l. / 

.i 

Thus, sin ( y - 8) = a sin y. Since the maximum value of sin y = 1, we have 

that (y - 8) is maximum when sin(y - 8) = a. In this case, with the help 

of figure (3), we get 

maxjei(y-8) -112 12 + 12 - 2/:t.-a2 = 2 - 2/1-a2 . 

Therefore 

h - 2/~-a2 . 

Note that~ cannot be extended analytically to being the square root of 

an analytic function which has a simple zero at O. Q.E.D. 

The following corollary will be used in the proof of Theorem 2.4. 
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Corollary 2.10 

If wand a are as defined in Lemma 2.9 and if, in addition, a < 
1 

fi' 
then w has a continuous derivative with respect to 8, bounded away from 

zero on T. 

Proof 

Using the notation of the previous argument, since w(O = 
iy 

e , and since 

sin(y- 8) = a sin y, then 

and 

dw = . iy dy 
d8 ie d8 

dy = 
d8 

cos (y - 8) 
cos ( y - 8) - a cos y 

' 2 
Now since cos ( y - 8) .::._ /1 - a , then 

~ 
cos(y - 8) - a cosy > /1- a - a 

B r--7i"l 2 0 . l Th dw . d . . T ut /1- a- - a > since a < fi. us de exists an is continuous on • 

Q.E.D. 

Proof of Theorem 2.3 

Given O < E < 1. 
/2 4 

Choose a E (O, /E - E4 ) • z-a Let~= 1 (z is the 
- az 

identity function z(~) = ~). Let w be the map defined in Lemma 2.9. 

Then 

2 /--2 I 2 E4 2 
11 w - z 11 00 = 2 (1 - Ii - a ) < 2 (1 - /1 - E + 4 ) = E • 

11 11 . ,,.2 2 l Therefore w - z < E and since "' = z~, w extends to an ana ytic 
00 

function on D. 

Let JP be the algebra of complex polynomials on D viewed as a sub-
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algebra of the disc algebra A. Define an operator S: JP + JP by 

Sf (*) 

where f 

Claim 1: 

S has the following properties: 

(i) s is linear 

(ii) s is an s-near isometry 

(iii) s is onto. 

Proof of Claim 1: 

(i) is easy to check. To prove (ii), let p: A+ A be the projection 

1 (pf)(s) = 2(f(s) + f(-s)). 

Then we can check that Pis a norm one projection on A. Define 

W: C(T) + C(T) by 

(Wf) (s) = f(i/J(s)) for all f E C(T) and s ET. 

Then W is an isometry since i/J is onto (by Lemma 2. 9) • Now let f E JP • 

then 

[ .!!.] [n+l] 
2 

lk + 
2 2k-2 n 

i/Ji II 11 Sf - Wf 11 = II E a2k z E a2k-l i/J - E a. 
k=O k=l i=l l 

[n+l] [n+l] 
2 2k-2 2 

2k-ll I = II z E a2k-l i/J - E a2k-l i/J 
k=l k=l 



[n+11 

11 ; 2k-2 I I 
= (z-1/>) t... a2k-11/> 

k=l 

[n+11 

11 11 11 2 2k-2 11 < z - iµ ( E ~ 2_1 z ) o 1/> 

k=l 

[n+l] 
2 

= I lz-1/>I I 11 E a 2k-l z2k-2 1 I (since Wis an 
k=l 

isometry). And since 11 z - 1/J 11 < e:, we have 

The last equality holds because I z (I;) I = 1 for all E,; ET. Thus 

18 

Note that (I-P)f(E,;) =t[f(l;)-f(-1;)] is also a norm one projection on A. 

Now since Wis an isometry, it follows that 

Thus S is an e:-near isometry on JP • This proves (ii) • 

To prove (iii), we show by induction that for each k ~ O, zk is in 

the range of S. In this proof the reader should recall that 

2 z-a 
1/J = z~, and that~= 1 • 

- az 

Claim 2: 

(a) zk 1/J 2 is in the range of S fork~ 0 

(b) k · · h f S f k O z is int e range o or > • 
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Proof 

Fork= 0,1, we have 

Sz2 = $ 2 , Sl 1 

and 

2 
z$ , Sz z. 

Fork= 2, we have 

S(az 
2 3 2 

(which (b) fork 2) + z - az) = z proves 

and since 
2 

+ l 2 
then z az az$, 

/l 2 4 4 3 4 5 
az$ + $ - az$ = S(az + z - az) 

(which proves (a) fork= 2). Now suppose that the hypotheses are true 

for all k ..::_ n, and n > 2. Notice that 

n n-1 2 n 2 
az + z $ - az $ 

n n-1 
= az + z 

z-a n z-a 
z 1 - az - az z 1 - az 

n+l n n+2 2 n+l 
= azn + a - az 

1- az 
az - a z 

1- az 

azn + n+l 1- az n 1- az n+l 
= z az = z 

1- az 1- az 

That is, fork= n+l, we have 

k k-1 
+ 

k-2 $2 k-1 l z az z - az 

Therefore, 

(1) 

(2) 



Claim 3: 

4 
If g E J> is in the range of S, then s0 is giµ • 

Proof 

If g is in the range of S, then g = Sf for some f E J> • Write 

f = 

then 

and 

!l 
E a!l z 

!l=O 

m 

m 
" !l+4 
'" a!l z 

!l=O 

2t+4 
E a2!l 1/J + z E 

!l=O t=O 

4 
= l/J g. 

This proves Claim 3. 

,,,2t+2 
a2!l-l 't' 

2!l-2 
a2!l-l 1/J ) 
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Now using the induction hypothesis, the first term of the right-hand 

side of equation (2) is in the range of S by part (a) of the hypothesis. 

Part (b) of the induction hypothesis together with Claim 3 imply that the 

second and third terms of the right-hand side of equation (2) are in the 

range of S. 
k 2 

Therefore, z 1/J is in the range of S for all k > 0. And 

thus part (b) of Claim 2 is proved. Part (a) follows by induction from 

part (b) together with equation (1). This proves Claim 2. In particular, 

Claim 2 shows that zk is in the range of S, k= 0,1,2.... Therefore S is 

onto. This proves (iii) and completes the proof of Claim 1. 
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Since JP is dense in A (in the sup norm), S extends to an £-near 

isometry Son the disc algebra A. Sf is given by formula(*) for every 

f EA (with n replaced by co). Since S has closed range, the range of S 

contains the closure of the range of S, i.e., contains the closure of JP 

which is the disc algebra A. Thus Sis also onto. 

Now let U: A -+ A be an isometry and let g E A. If U is not onto, 

then so is gU. But Lemma 2.6 gives: 

11 S - gU 11 > l > 1 - £ • 

11 s-1 11 

On the other hand if U is onto, then Uhas the form: 

Uf = a.f o T where I a. I = 1 and T is a conformal map on D (by Theorem 

1.3). Since~ cannot be extended analytically to D (being a square root 

of the analytic function z¢ which has only a simple zero in D), then 

TI~- Therefore Lemma 2.8 gives: 

II S - gU II > 11 gU - W II - II W - S 11 > 1 - £. 

This completes the proof of Theorem 2.3. Q.E.D. 

To prove Theorem 2.4, we need a Lemma similar to Lemma 2.7 in the 

Hp case. 

Lemma 2.11 

If T1 , T2 are two operators defined on Hp space (1 ~ p < co) by 

T. (£) ( ')1/p f a..¢. oc/>. 
1 1 1 

i = 1,2 
1 

where: a.. is a modulus one complex constant 
1 

cp.: T-+ Tis an onto continuously differentiable function. 
1 



If 1¢~1 is bounded away from zero on T and if ¢1 # ¢2 , then 

Proof 

Since ¢1 # ¢2 , then there exists a point 1; 0 E T and an interval Ii; such 
0 

that 

(ii) either ¢1 or ¢2 is not constant on Ii; • 
0 

i81 
(To get Ii; let 1;1 = e be any point in T such that ¢1<1;1) # ¢2(!;1). 

0 
Increase or decrease e1 till either ¢1 or ¢2 starts to change while 

Now choose 1; 0 , Ii; to satisfy (i), (ii).) 
0 

Assume without loss of generality that ¢1 is not constant on Ii; • 
0 

Since ¢1 is continuous, then ¢1 (11;) is an interval I of positive 
0 

Lebesgue measure t. Let O < o < 1. Since¢'. is continuous and bounded 
1 

away from zero, there exists a positive constant M > 1 such that 

i = 1,2. 

Choose an E > 0 such that 

E < 

co 
Let g E H be such that 

where: 

x1 is the characteristic function of the interval I= ¢1 (11;) 
0 

X1c is the characteristic function of the interval le, the comple-
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ment of I. 

and 

We can check that I jgj I = 1. Note that such a choice of g is possible 
p 

by Theorem 1.2. Now 

11 T T 11 p 1 J,2 I a (,1,') 1/p g o ,i, - a (,1,') 1/p g o ,i, IP de 1 g - 2g p = 2,r O 1 't'l 't'l 2 '!'2 '!'2 

> l r 11 qi' I 11P s - I qi' I 11P e: IP de. 
- 2,r -'I~ 1 2 

0 

Since M-l < jqi~ I..::_ M, we have 
- 1 
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I lqiil 11P s - lqiil 11P e:I ~ lqiill/p s - lqiil 11P E ~ lqiill/p s - Ml/p E 

~ jqiill/p (S-M2/p e:) ~ lqiill/p (s-f). 

Thus 

I qi, 11/p de = l(s - i) I de 
1 21r 2 qi(I~ ) 

0 

So 



0 
> 1-E--> 1-o. - 2-

Q.E.D. 

Now we turn to the proof of Theorem 2.4 

Proof of Theorem 2.4 

1 Let O < E < 4. Let~ and¢ be as defined in Lelilllla 2.9. Then 

d¢ _ l = d¢ d8 _ l 
dz de dz 

1 . iy 
= --.- 1.e 

• 1.8 
l.e 

cos(y- 8) _ 1 
cos ( y - e) - a sin e 

(by the proof of Corollary 2.10). Using Figure 4 we can estimate 

11 !! - 1 j j 8 as follows 

cos(y-8) 1 
( ) < i 2 COS )' - 8 - a Sin 8 - / 

vl-a -a 

Then 

i(y-8) 
e 

cos(y-8) 
cos ( y - e) - a sin e 

is no farther from 1 than£ as shown in Figure 4, where cosy0 

(This was proved in Lelilllla 2. 9.) Here y O = max ( y - e) . Thus 

;--z 
i 2 = 1 + (li-a2 - a)-2 - 2 /~ 

/1- a2 - a 

---· 
1-2all-a2 

Therefore 

(where w' = d¢) 
dz 

Note that the right-hand side of the last inequality tends to zero as 

+ a-+ 0 • Thus we can choose a value a for which 
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Figure 4. The Maximum of I :z -11 

E: 
< -

4 
and llw-zll(X)<f. 

Since s <%-,then 1 < 211/1' I on T. 

25 

Now let JP be the subspace of polynomials considered as a subspace 

of Hp. Define S: JP + JP by 

where 

S(f) 

[E.] 
2 
I: 

k=O 

n k 
f = I: ak z E JP. 

k=O 

(*) 

We can easily check that Sis linear. 

Claim 

(i) S is an s-near isometry (i.e., (1- s) 11 f I Ip 2 11 Sf I Ip .2. (1 + s) • 

11 f I IP) 
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(ii) Sis onto. 

Proof 

To prove (i) define W: Hp+ Lp(T) by 

(Wf)(~) = ($'(~))l/p f($(~)), 

then W is an isometry. Now let f E lP, then 

Since p ~ 1, 

So 

and since 1 ~ 2j$' I, then 

(since Wis an isometry). Therefore 

also 



[!!.] [n+l] 
1 n k z Zk z Zk-2 Ip 

= ~ J I I a w - I a 2k w - z I aZk-l w de 
Zn- k=O K k=O k=O 

(since 11 w - z 11 00 < f and I w I = 1 on T). 

then 

Define they operators A: Hp+ Hp by 

Af(i;) = f(-i;) 

Af=fow, 

= 11 f 11 for all f E Hp 
p 

so that I 11 ;AI I= 1. Also, 

for f E Hp so that 11 C 11 ~ Zl/p. 

Now 
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Thus 

n+l 
2 

( [ 
k=O 

2k-l 
a2k-l 1jJ ) = 

I-A 
(Co - 2 -) (f). 

This means that 

Therefore 11 Sf - Wf I Ip ~ e: 11 f I Ip and since W is an isometry, we get 

(1-e:)llfllp ~ llsfllp ~ (l+e:)llfllp for all fEJP. 

This proves (i). The proof of (ii) is exactly the same as in the proof 

of Theorem 2.3. Thus the claim is proved. 

Since the closure of JP in LP norm is Hp itself, then the operator 

S extends to an e:-near isometry Son HP. And since S has closed range, 

then S is onto. Sf is given by formula (*) for every f E Hp. Now let 

T: Hp-+ Hp be an isometry. If Tis into then Lemma 2.5 implies that 

lls-TII > \ > 1-e: 
- I ls- 11 -

and we are done. If Tis onto, then T has the form 

Tf = a.(-r' )l/p f o -r 

where la.I= 1 and -r is a conformal map (by Theorem 1.4). Since -r is 

analytic and 1jJ is not (Lemma 2.9), then -r 1' ljJ. And since -r' and ljJ' 

satisfy the requirements of Lemma 2.11, then 

28 
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llw-TII ~1. 

Thus 

lls-TII ~ llw-TII - lls-wll 2: 1-£. 

Q.E.D. 



CHAPTER III 

INTO ISOMETRIES OF THE DISC ALGEBRA 

3.0 Introduction 

In his paper published in 1963 Frank Forelli [13] characterized 

the into isometries of Hp spaces for l.::_p "f 2 < oo, In [5], p. 354, Phelps 

raised the question of characterizing the into isometries of the disc 

algebra. Rochberg [31] and McDonald [24] worked independently on that 

problem and obtained partial results. Their work amounts to describing 

into isometries of the type given in part (a) of Theorem 3.4 below. In 

this chapter we give a complete characterization of the into isometries 

of the disc algebra. The following two examples illustrate two different 

types of isometries of the disc algebra. 

3.1 Examples 

Example (1) 

Let qi: D -+ D be given by 

4>(0 = ~2 

and let e: D-+ D be given by 

e (~) ~. 

Define a linear operator U: A-+ A by 
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(Uf) (s) 8 (s)f (cp (s)). 

Then U is an into isometry. Indeed, for every f E A, there is an s0 E T 

such that 11 f 11 = If (s0) j. Since cp is onto, there exists an s1 E T such 

that cj>(t;1 ) = t; 0 . Therefore 

11 Uf 11 = 11 e, f O cp 11 = sup 
E;ET 

le(t;)f(cj>(E;))I = sup 
E;ET 

Thus 11 Uf 11 = 11 f 11 for all f E A. 

Example (2) 

lf<cp<o) I = 

Let !J. be the cantor set of Lebesgue measure zero (embedded in T). 

There is a continuous surjection cp of !J. onto T (see Dugundji [10], p. 

108). A theorem by Pelczynski [28] asserts the existence of a norm 1 

linear operator E of C(!J.) into A such that Ef = f on !J.. Define the lin-

ear operator U: A+ A by 

(Uf) (E;) E(f(cj>)) (E;). 

Then U is an into isometry: I lufj I = I IE(f(cj>)) 11 = I If O cpl I I !fl I 

since cp is onto. 

The question now is: are there other into isometries of the disc 

31 

algebra? The results of this chapter will show that the answer is nega-

tive. In other words, the above two kinds are essentially the only ones, 

although the functions 8 and cp defined in Example (1) will belong to 

larger classes of functions. 
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3.2 Statement of the Results 

We begin with the following definitions. 

Definition 3.1 

co 
Let B denote the subalgebra of H consisting of functions which are 

quotients of two functions with disc algebra, i.e., 

Definition 3.2 

Let B1 be the subclass of B with the following properties: 

(i) for each f EB, there exists a closed subset Sf c T such that 

Tcf(Sf) 

(ii) lhz<s>I = 1 for all s E Sf and all representations f = h1/h2 

(iii) I lfl I ~ 1. 

Definition 3.3 

Let S be a subset of T of Lebesgue measure zero. For each e ,1/J E C(S) 

Y(8,1/J) = {8f(l/J): f EA} 

Let L[Y(8,1/J),A] denote the class of norm one linear extensions from 

Y(S,1/J) to A, i.e., the class of operators E: Y(S,1/J) + A such that I IEfl I= 

11 f 11 and Ef = f on S for all f E Y ( e , 1/J) • 

With the above definitions we can now state the main theorem of this 

chapter. 

Theorem 3.4 

(i) Let U: A+ A be an into isometry from the disc algebra A into 
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itself, i.e., j juf 11 00 = 11 f 11 00 for all f EA, then either 

(a) there exist norm one functions e EA and 1jJ EB, such that 

Uf ef CiJJ) (1) 

for each f EA, or: 

(b) there exists a closed subset Sc T with Lebesgue measure 

zero and functions e, 1jJ E C (S) where qi maps S onto T and e 

is unimodular on Sand there exists an EE L[Y(8,1jJ),A] 

such that 

Uf E(8f(1jJ)) 

for each f E A. 

(ii) If U is the map defined by (1) (with 1jJ E B, and e = h 2 where 
h 

1jJ = h 1 ) or the map defined by (2), then U is an isometry of A 
2 

into itself. 

3.3 Proof of the Results 

The proof of Theorem 3.4 will follow from a string of lemmas and 

propositions which will be given now. 

Lemma 3.5 

(2) 

f EB if and only if there exists a closed subset K of T with m(K) = 

Osuch that f is continuous outside of K. 

Proof 

Suppose f = h/h2 • Let K = {~ET: h 2 (~) = O}. Then K is closed and 1 has 

Lebesque measure zero (since otherwize h 2 = 0). If E;, i K, then ther~ ex

ists an interval Ic;,CT such that r~nK = {qi} and ih2 (s)j~M for some M>O 
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and all s E Ii;. Since h1 is continuous on T, it follows that f is contin

uous at i;. Therefore f is continuous outside of K. 

On the other hand, suppose f is continuous outside a set K of Le-

besque measure zero. By Rudin's Theorem (Theorem 1.7) there exists a 

00 

function h 2 EA such that h 2 vanishes on K. Since it is bounded (f EH ) , 

then hl is continuous on T. Thus h 2f E A, i.e. , hl = h 1 , or f = h/h2 . 

Therefore f EB. Q.E.D. 

In the following lemmas A* denotes the conjugate space of A, BA* de

notes the unit ball of A*, and ext (BA*) = { µ E BA*: µ is extreme}. We 

note in passing that ext(BA*) is the set of measures of the form AOi; 

where I A I = 1 and oi; is the Dirac a-measure associated with i; ET. 

Lemma 3.6 

Let U: A -+ A be an into isometry. Fix i; E T, then 

Proof 

Since U* is onto, then Ki; is not the empty 

set. Since Ki; is W*-compact, and convex, then Ki; contains and extreme 

point µ ( the Krien-Millman Theorem). We . claim that µ E ext (BA*). Indeed 

if µ is not an extreme point of BA*, then we can find a nonzero v E A* 

such that µ + v EBA* and µ - v EBA*' i.e., 

and (1) 

then 
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But U*(µ±v) = c\±U*(v). This means that <\+U*(v) BA* and o~-U*(v) E 

BA*" But since ~ET, then o~ E ext(BA*). This implies that U*(v) = 0. 

Thus U* (µ + v) o~ and U* (µ - v) = o~. This together with inequalities 

(1) show that µ + v EK~ and µ - v EK~. But since µ is extreme in K~ it 

follows that v = 0, which is a contradition. Therefore µ E ext(BA*). 

(Note: µ = Ht for some jAj = 1 and t ET.) Q.E.D. 

Note that the results in the above lemma can be generalized to 

function algebras following the same proof. We preferred to state it 

for the disc algebra in order to use it directly below. The following 

proposition is similar to that in Pelczynski [30). 

Proposition 3.7 

Let U: A+ A be an into isometry, then there exists a closed sub-

set Q c T, a continuous function E:: Q + T and a map qi of Q onto T such that 

E:(q) (Ug) (q) = g (qi(q)) for all q E Q. 

Proof 

In the following proof we identify T with its embedding in BA* (i.e., 

t f-r o ) and we let AT = { AO : t E T} where I A I = 1. For each A E T, let 
t t 

and let 

Define E:: Q + T by 

(1) 



and define~: Q + T by 

~(q) = E(q)U*(o ). 
q 

Then for q E Q and g EA, we have 

E(q)(Ug)(q) = E(q)[U*(oq)](g) = [ocr(q)](g) = g(~(q)). 

36 

By Lemma 3.6, ~ is onto. Thus we need to show that Q is closed and Eis 

continuous: Let F be a closed subset of T, then: 

U QA-1 = U [ (U*)-l()..-lT) n T] = 
AEF AEF 

(U*)-l[ U (A-lT)] n T. 
)..EF 

Since the map (A,s) + A-ls is a homeomorphism, then U ()..-lT) is W*
AEF 

closed. And since U* is W*-continuous, then E-l(F) is closed and thus E 

is continuous. -1 Now since Q = E (T), then Q is closed. Q.E.D. 

Proof of Theorem 3.4 

Let E,~ be the maps associated with U in proposition 3.7 and let Q be the 

set associated with E,~. We have two cases: 

Case (1): m(Q), > 0 

Case (2) m(Q) = 0 

Suppose Case (1) holds, then we have: 

Proof of Part (a) 

Claim (1) 

For f, g E A, and n ,:.1, we have; 

(i) (Ul)(Ufg) = Uf Ug 

(ii) (Ul)n-1 U(fn) = (Uf)n. 
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Proof 

To prove (i) notice that the same identity holds on Q. Indeed, if q E Q, 

then by proposition 3.7: 

e(q) (Ug) (q) = g (<p (q)) for all g EA. 

Then 

e:(q) (Ul) (q) = 1. 

Therefore 

1 
(Ul) (q) = i:: (q) 

Thus for any f E A, 

(Uf)(q) = (Ul)(q)f(<p(q)). 

And for f ,g EA, we have 

(Ufg)(q) = (Ul)(q)(fg)(<p(q)) 

so 

(Ul)(q)f(<p(q))g(<p(q)) 

(Ul) (q) (Ufg) (q) [(Ul)(q)f(<p(q))][(Ul)(q)g(<p(q))] 

= (Uf)(q)(Ug)(q). 

Now (i) follows since m(Q) > 0. Part (ii) of the claim follows from 

part (i) by taking f = g and using induction. Q.E.D. 

Claim (2) 

k 
If Ul(I;) has a zero of order n at a point i; 0 ED, then (Uz ) (0 has a 

zero of order at least n at i;0 , k=l,2,3, •.. (here z is the identity func-



tion z (cJ = ~). 

Proof 

By Claim (1), we have 

therefore, 

i.e., (Uzk)(~0) = 0 for all k. Since (Ul) has a zero of order n at ~O' 

we have 

From (ii) of Claim (1) we have: 

Then 

= C(Uzkn)(~) = O. 
0 
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k Therefore Uz has a zero of order at least n at ~0• Q.E.D. 

Claim (3) 

Proof 

Define 

cp (~) = (Uz) (~) 
1 (Ul) (0 

First note that Claim (2) implies cp1 is analytic on D. To show that 
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I lcp1 [ [ ~ 1, assume there is an~ ED such that [cp 1 (0 [ > 1. If (Ul)(~) 'f 

O, then 

n=l,2,3, ••• 

and since I [uzn[ [ = [ lznl I = 1, we have 

< 00 for all n 

which is a contradiction since lim lcp~(~)I = 00 • Now since 1 is anal
n-+oo 

ytic on D and the zeros of Ul(~) are isolated in D we must have that 

lcp1 (~) I ~ 1 for all ~ED. Thus cp1 E H00 and I lcp1 1 I = 1 (since !cp1 <~11 = 1 

for ~ED. Q.E.D. 

Finally, to prove part (a) of Theorem 3.4 note that since 

Uz (q) = Ul(q)cp (q) for q E Q 
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then cp 1 = <P on Q. So for any f EA 

Uf(q) = Ul(q)f(<P(q)) = Ul(q)f(cp1 (q)) for all q E Q 

and since n(Q) > O, then 

Uf = Ulf(cp1 ) on D. 

Thus, if we take 8 = Ul, 1jJ = cp 1 , h1 = uz and h 2 = Ul it follows that 1jJ E B1 

and (Uf) (0 = 8 (0 f (ijJ (0) for all f E A and I; E i5. This finishes Case (1). 

Now suppose that Case (2) holds (i.e., m(Q) = O). Then we have 

Proof of Part (b) 

1 
Let S = Q, 8 = e, and 1jJ = cf> where Q, 8, 1jJ are as defined in proposition 

3.7. Then we have: 

(Ug) (q) = 8(q)g(cp(q)) for all q ES and g EA. 

Let Y(8,1jJ) be as given by Definition 3.3. Note that if gEY(8,1jJ), then 

g has a unique representation as g = 8f(ijJ) for a unique f EA. Indeed, 

assume that g = 8f (ijJ) = 8h(ijJ) for f ,h EA. Since 

le(s) I = le:fs) I = 1 for each s ES, 

then 

f (ijJ) = h(ijJ) 

and since 1jJ is onto, it follows that f = h on T and therefore f = h. 

Now define a linear operator E: Y(8,1jJ) + A by 

E(8f(ijJ)) Uf. 
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It follows by the above discussion that Eis well defined. We need to 

check that I JEI I= 1. But this is true since iµ maps S onto T and le(s)I = 

1 for s E S. Hence for any f EA, If (iµ) I attains its maximum on S. There-

fore given f EA, let i; ET be a point such that Jf(i;) I = I If! I • Let g ES 
00 

be such that iµ(q) =!;,then 

j (Uf)(q)J = l(E(8f(iµ)))(q)j lef(ip)(q)j = je(q)I if(¢)(q)j 

lf<O I = llfl I = I iufi 1. 

Hence if g E Y, then g = Sf (<f,) for a unique f EA. Then 

IJEgJI = IIE8f(1/!)II liufil = j(ef(ip))(q)I = jg(q)j < JJgJJ. 

But since E is an extension operator, then 11 Eg 11 ~ 11 g 11, Thus 11 Eg 11 = 

I Jgj j. This shows that E has norm one. This finishes Case (2) and com-

pletes part (i) of Theorem 3.4. 

Proof of Part (ii) of Theorem 3.4 

Suppose a linear operator U: A-+ A is given by 

Uf = 8f(iµ). 

In the case iµ = h/h2 E B1 and 8 = h2 , we can show that Uf EA for every 

f EA. It suffices to show that Uzn EA for n = 0,1,2,.... Let K = {s ET: 

h 2 (s) = O}. Lennna 3.5 implies that iµn is continuous on T- K. Since 

iµn E H00
, then iµn is bounded. Since 8 = h 2 then 8 (K) = {O}. Therefore 

81/Jn is continuous on T. 
n n 

Thus Siµ =Uz EAforn=0,1,2 ••.. Now if 

f EA, then there exists a point 1; 0 E T such that If (1; 0) I = 11f11 00 • And 

since iµ E B1 , there exists a point 1;1 E T such that iµ (1;1 ) = 1;0 • Now 



(since le(s)I = 1 for sESi/J). Therefore llufll 00 = llfll 00 and U is an 

isometry. In the case 6, 1/J satisfy (b), then for each f EA we have 

I lufl I = I IE(6f(i/J)) 11 = 1 lef(i/!) 11 = sup !e(q)f(i/J(q)) I 
qES 

= sup I f ( 1/J ( q) ) I = 11 f 11 00 • 

qES 

The last equality holds because 1/J is onto. Therefore U is an isometry. 

This concludes the proof of Theorem 3.4. 
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CHAPTER IV 

SOME COMMENTS .AND FURTHER QUESTIONS 

The operator S defined in the proofs of Theorems 2.3 and 2.4 is a 

member of a class of i:::-near isometries. Sis "almost" a composition 

operator with the function* which has the property that *2n is analytic 

2n+l . 
but* is not. Similar i:::-near isometries can be constructed using 

this periodicity feature of 1/J with periods 3, 4, etc. For example iµ can 

3n ,,,3n+l and ,,,3n+2 be chosen such that * is analytic while 'I' 'I' are not, n = 0, 

1,2, •••. One can then define the operator 

00 

for each holomorphic function f where we write f = E 
n=O 

a 
n 

n z . With the 

proper choice of*• Scan be made to define an E:-near isometry. This 

leads us to the following question: 

Question (1) 

Are there any other E-near isometries (aside from the perturbation 

of isometries)? 

00 

Although the E-near isometries on L have not been studied yet, it is 

felt that a result similar to the results in Theorems 2.3 and 2.4 is true. 

We believe that the operator S defined in Theorem 2.3 extends to an i:::-

00 

near isometry of H onto itself. If that is the case, then Theorem 2.3 
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ex, 

extends to H. Thus we ask: 

Question (2) 
ex, 

Are the same results true for H? 

Theorem 3.4 describes the isometries of the disc algebra A. The iso

metries of Hp spaces were described--as pointed out earlier--by Forelli 

[13] for 12,_p :/, 2 < oo. 
00 

The onto isometries of H were described by Dr. 

de Leeuw, Rudin and Wermer (see [22]). The problem of describing the 
ex, 

into isometries of H seems to still be open. Thus, we have: 

Question (3) 
ex, 

What are the into isometries of H? 

We close with the following remark about "extending" linear extensions. 

The linear extension operator defined in part (b) of Theorem 3.4 is de-

fined only on the subspace Y c C (Q). Can this operator E be extended to 
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an operator Eon C(Q). More generally, one can put the question as fol-

lows: 

Let Q be a closed subset of T of Lebesque measure zero,¢: Q + T be 

an onto continuous map and ijJ E C (Q) satisfy I ijJ (q) I = 1 for each q E Q. 

Let Y(ijJ,ijJ) = {ijJf(<j>): f EA}. Then if E: Y(iµ,<j>) + A is a norm one linear 

extension operator, does there exist an extension operator E': C(Q) + A 

such that E' =Eon Y(iµ,<j>)? 

The answer to the above question is negative. We construct here a 

counter example. The idea of the counter example is based on the fact 

that no linear extension operator E: C(Q) + A is such that El= 1. The 

proof of this fact is given in Michael and Pelczynski [25]. 
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Proposition 4.1 

If T: A+ A is an isometry such that Tl= 1, and Tis not multipli-

cative, then Tis an isometry of the type (b) in Theorem 3.4. 

Proof 

This is an immediate consequence of Theorem 3.4 since all type (a) iso-

metries which take 1 to 1 are multiplicative (being of the form Tf 

f(i}J)). Q.E.D. 

Now let ti. be the Cantor set of Lebesque measure zero, as a subset 

of T, let i}J: ti. + T be continuous and onto. By Rudin's Theorem (see 

Hoffman [16] ijJ extends to a function h1 EA such that I lh1 II = 1 and 

1/J (~) = bl(~) for ~ E ti.. By adjoining a point to ti. and applying Rudin's 

Theorem again we can find h2 EA of norm one such that ijJ (0 = h2 (~) and 

h1 'F h2 • Let U: A + A be the isometry: (Uf) (~) = t(f (h1 (O) + f (h2 (~))). 

It can be easily checked that U is not multiplicative and Ul 1. It 

follows by proposition 4.1 that u is a type (b) isometry. Thus Uf 

E(6f(i}J)), where E, e, ijJ satisfy the requirements of Theorem 3.4. 

Since Ul = 1 and since Eis a norm one extension operator it fol-

lows that e = 1. Thus E: Y(l,ijJ) + A is an extension operator of norm 

one such that E(l) = 1. If this operator can be extended to an exten-

sion operator E1 : C(ti.) + A, then E1 (1) = 1 which is impossible. There

fore the extension operator E cannot be extended to all of C(ti.). 

We note here that the above construction is due to Ryff and Forelli. 

(see Rochberg [31]). 
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