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CHAPTER I 

INTRODUCTION AND SUMMARY 

The Pareto distribution was first proposed by Vilfredo Pareto around 

1897. This law as formulated by him dealt with the distribution of in-

come in a population, and this is given by N=Ax-a, where N is the number 

of persons having income.::_ x, with A and a being positive parameters (a 

is known as Pareto's constant and also as a shape parameter. See Johnson 

and Kotz (1970), p. 233). We have considered the Pareto distribution in 

this study because of its wide applicability in the area of social sci-

ences and especially in economics. 

Over the years, several authors have rediscovered this distribution 

to provide a reasonably good fit for the distributions of firms, number 

of firms in various industries, sizes of cities, word frequencies and 

incomes. See, for example, Bhattacharya (1963), Krishnaji (1969), 

Mandelbrot (1960), Johnson (1958), Simon and Bonini (1958), Champernowne 

(1953), and Fisk (1961). This distribution has been particularly noted 

to fit very well in the upper tail of observed incomes. 

In this study we consider a family of distributions having the den-

sity function 

f(x;8,cr) (1.1) 

where x .::._ 8 > 0, cr > O. This is known as the "Pareto distribution of the 

first kind", where 8 and cr are known as the scale and shape parameters 

1 
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respectively. We assume that both 6 and a are unknown. Throughout this 

study, we write [u] for the largest integer smaller than u, and [a,b] for 

the closed intervals. We also write I(A) for the indicator function of 

the event A. 

In this study, we consider two different problems in sequential es

timation. These are one- and two-sample problems. Whenever necessary, 

the relevant literature has been reviewed, and in our derivations 

credits are given to the original authors accordingly. Our study is 

presented in four chapters. 

In Chapter II, we consider a sequential procedure for estimating the 

scale parameter 6 pointwise, such that it is asymptotically risk effi

cient, assuming a general loss function. The exact distribution of N, 

our stopping variable, is to be derived using Robbins' (1959) algorithm. 

Simulations on the computer have been carried out to study the behavior 

of our procedure for moderate sample sizes, and these results are re

ported in the form of several tables. Next, we consider a sequential 

procedure to construct a fixed-ratio confidence interval for 6, and we 

show that this procedure is "asymptotically consistent" and "asymptoti

cally efficient" in the Chow-Robbins (1965) sense. We also propose a 

two-stage procedure and a modified two-stage procedure for the fixed

ratio confidence interval along the lines of Stein (1945, 1949) and 

Mukhopadhyay (1982a). As far as we know, the concepts of fixed-ratio 

confidence intervals have not been proposed earlier in related contexts. 

Chapter III deals with the problem of estimating the shape param

eter cr. We propose a purely sequential procedure for estimating the 

shape parameter assuming a loss function of the form of squared error 

plus linear cost. We show that the "regret" is bounded by exploiting the 



tools from Starr and Woodroofe (1972). Simulation studies have been 

carried out to examine the behavior of the "regret" for a few choices of 

moderate sample sizes. 

In Chapter IV, we consider the problem of estimating the ratio of 

scale parameters of two Pareto distributions. We consider two cases 

separately: 

1. the shape parameters are unknown but equal, and then 

2. the shape parameters are unknown and unequal. 

In either case, we propose several two-stage and purely sequential pro

cedures to examine various asymptotic properties as we have done in 

other chapters. 

3 

Chapter V contains a summary of our findings, together with comments 

and some suggestions towards implementation of our procedures in prac

tice. 



CHAPTER II 

ESTIMATION OF THE SCALE PARAMETER 

2.1 Introduction 

Several authors have considered different methods for estimating the 

parameters of the distribution in (1.1) when the sample size is fixed. 

Quandt (1966), for example, described some of these methods of estima

tion. Malik (1970) obtained the maximum likelihood estimators of the 

parameters. Kulldorff and Vannman (1973) estimated the scale and 

shape parameters through linear functions of order statistics. Aigner 

and Goldberger (1970) considered estimating the scale parameter in the 

Pareto distribution from grouped observations. Baxter (1980) derived 

the minimum variance unbiased estimators of the parameters. 

A sequential procedure for estimating the scale parameter was con

sidered only in Wang (1973). Wang's work has very little theoretical 

discussion, and also its mathematical and statistical analyses are at 

best incomplete. This chapter will fill some of the very important gaps 

present in Wang's (1973) research effort through a comprehensive study. 

The present chapter deals with both the point and fixed-ratio con

fidence interval estimation problems for the scale parameter 8. In sec

tion 2.2, we consider the point estimation problem for 8. We propose a 

sequential procedure for estimating 8 and show that our procedure is 

asymptotically risk efficient in the sense of Robbins (1959) and Starr 

4 
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(1966). We also study the asymptotic behavior of the "regret" and more 

specifically show that the "regret" tends to zero at a very fast rate. 

It is worth noting that neither of these asymptotic results were consid-

ered in Wang's (1973) work. Next, in section 2.3, we compute the exact 

distribution of our stopping time Nin order to evaluate the expected 

sample size (and its other characteristics) necessary to terminate 

sampling, and to obtain the corresponding exact values of the achieved 

risk and regret. We do so by using Robbins' (1959) algorithm. We also 

present a few descriptive statistics based on the exact distribution of 

N. 

In section 2.4, we present some numerical results obtained through 

simulation studies for examining the moderate sample size behavior of 

our procedure considered in section 2.2. 

In section 2.5, we address the problem of constructing a fixed-ratio 

confidence interval for 8. Here, we discuss both the sequential and 

two-stage procedures. We discuss the sequential procedure along the 

lines of Chow and Robbins (1965) and Mukhopadhyay (1974), while the two-

stage procedure is developed along the lines of Mukhopadhyay (1980, 

1982a), and Ghosh and Mukhopadhyay (1981). 

Section 2.6 contains a few comments and suggestions related to the 

numerical results obtained from studying the moderate sample size per-

formance of our procedures considered in section 2.5. 

2.2 Point Estimation 

Let x1 ,x2, .•• be a sequence of independent and identically distribu

ted (Li.d.) random variables with the p.d.f. as in (1.1). Having observed 

x1 ,x2 , ••• ,Xn' we consider the following transformation. Let Y. = tn (X.) , 
1. 1. 
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i=l,2, ... ,n. This transformation gives the random variables 

Y1 ,Y2 , ••• ,Yn which are i.i.d. with the p.d.f. 

1 y- tn e 
g (y ; tn ( e) 'a) = cr exp { - ( a ) } ' (2.1) 

for y > tn(8). Let Xn(l) =min(X1 ,x2, .•. ,Xn) and Yn(l) =min(Y1 ,Y2 , ... ,Yn). 

We propose to estimate 8 by Xn(l) which may be considered as equivalent 

to estimating tn(8) by Yn(l)" Consider the loss incurred in estimating 8 

by Xn(l) to be 

x 
L* = A{ n(l) - l}s + 

n e 
t 

en, 

A, s, c, t being all known positive numbers. Note that 

{tn(Xn(l)) - tn(e)} 1 
lim ~~~~~~~~~-
n+oo (Xn(l) - e) e 

with probability 1, which implies that 

s 
{tn(Xn(l)) - tn(e)} 

x 
{ n(l) _ l}s. 

e 

(2.2) 

Thus, our assumed loss (2.2) incurred in estimating e by Xn(l)' can be 

approximated by 

t 
en, (2.3) 

where A, s, c, tare positive known constants. Wang (1973) considered a 

similar loss function with s = 1, c = 1, and t = 1 without giving any rea-

sons towards that. Here, we have at least attempted to rationalize the 

loss function (2.3). Throughout section 2.2, we are going to work with 

the loss function (2.3). The risk associated with (2.3) is 



s t 
E(Ln) = AE{Yn(l) - £n(8)} +en. 

7 

. n(Yn(l) - tne) 
Since is distributed as an exponential random variable with cr 

mean one, we get 

s cr s 
E(Yn(l) - £n8) = <;-) r(s + 1). 

Therefore, the risk associated with (2.3) becomes 

E(L) 
n 

= A(:!..) s r (s + 1) + 
n 

t en. (2.4) 

Now, treating n as a continuous variable, we differentiate (2.4) with 

respect ton and set the derivative equal to zero, obtaining the result 

that (2.4) is minimum when, 

1 
s 

n = n* = {Acr s~~s + 1)} (s+t) . 

Thus the corresponding minimum risk is given by 

( ) E ( ) en* t ( t + s) . l;. c = Ln* = s 

(2.5) 

(2.6) 

Since n* depends on the unknown cr, no fixed sample size procedure 

will solve our problem, which is to minimize the risk uniformly in cr. In 

section 2.2.1, we propose a purely sequential procedure as a solution. 

2.2.1 Purely Sequential Procedure 

" Let cr 
n 

(n - 1)-l Z (Y Y ) for n > 2. The stopping time 
i=l i - n(l) ' 

N= N(c) is defined as follows: 

A&s sr (s + 1) +l 
N . f{ 2 ( n ) s t} = in n: n > m > , n > 

ct 
(2. 7) 

oo if no such n, 



m being the starting sample size. When we stop, we estimate 8 by ~(l)" 

In the following theorem, we study some properties of N. 

Theorem 2.1: For the sequential procedure (2.7), we have: 

(i) N is well defined and non-increasing as~ function of c, 

(ii) E(N) < oo, 

(iii) lim c.B...) = 1 
c-+O n* 

(iv) lim N = 00 a.s., and lim E(N) 00 

c-+O -- -- c-+O 

Proof: 

Property (iii) can be verified by noting the following basic in-

equality: 

( As 1 ( As 1 
Asr s + l)crN +t Asr s + l)crN 1 + 

{. . }s < N < m + { - }s t. 
ct ct 

Parts (i), (ii) and (iv) are easy to verify along the lines of Chow and 

Robbins (1965) and Mukhopadhyay (1974). Further details are omitted. 

The loss associated with (2.7) is given by 

8 

s t 
LN = A{YN(l) - £n(8)} + cN, (2.8) 

and the corresponding achieved risk is 

Now, 

s t 
AE{YN(l) - £n(8)} + cE(N ). 

s 
E(YN(l) - in 8) 

00 

E{ E (Yn(l) - in 8)s!N=n}P(N=n) 
n=m 

oo n s (Y - in 8 ) s s 
E{ E { n (l) 5!_ I N=n]} P (N=n) . 

s s 
n=m a n 
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For every fixed n.:::_m, by Basu's (1955) theorem, the events {N=n} and 

Yn(l) are independent. 

E(YN(l) - 2n 8) 
s 

Thus, 

s(Y 2 8) 8 s oo n (l) - n 
= E { I ( n ) } E_ P (N=n) 

s s n=m cr n 

s r(s+l)cr 

s r(s+l)cr 

00 

I _..!..._ P (N=n) 
s n=m n 

The risk associated with (2.8) is given by 

s 1 t · 
~ ( c) = E (L ) = Ar ( s + 1) cr E (-) + cE (N ) • 

N Ns 
(2.9) 

We define the "risk efficiency" and "regret" of our procedure as 

n(c) .•. (2.10) 

and 

W(c) = E(LN) - E(Ln*) = ~(c) - ~(c) 

tn*(s+t) 1 1 
c{ E(- - -) + E(Nt - n*t) }, 

s Ns n*s 
••• (2.11) 

respectively, where ~(c) comes from (2.6). Now, we state and prove the 

following theorem. 

Theorem 2.2: For the procedure (2.7), we have: 

2 

lim n ( c) = 1 if m > 1 + ( ss+t) 
c-+O 

2 

1 + y if m = 1 + (ss+t) 



= 00 

2 
ifm<l+(s) - s+t 

where y(>O) can be determined explicitly. 

10 

Remark 2.1: The constant y is actually o(s) where o(•) is defined in the 

proof of Lemma 2.2. 

To prove Theorem 2.2, we need the following LeIIm1as. 

Lemma 2.1: For the procedure (2.7), we have: 

ll·m E(..B._)w 1 f f" d ( 0) , or any 1xe w > • 
c+O n* 

Proof: The proof of this LeIIm1a will be complete if we show that 

lim inf E (! ) w > 1 and lim sup E (.!'!n*) w < 1. For the lim inf part, we 
c+O n* - c+O 

use Fatou's Lemma and part (iii) of Theorem 2.1, and thus we note that 

N w · N w 
lim inf E(-*) > E{lim inf(-) } = 1. 
c+O n - c+O n* 

For the lim sup part, we proceed as in Starr (1966) and Mukhopadhyay 
1 

(1974). Let O < E: < 1 and 8= (1+ 1::)w n* 

00 

E(Nw) = E nwP(N=n) < (8+l)wP(N.:::_8+1) + T(8), 
n=m 

where T(8) = E nwP(N=n). Thus we have 
n~8+1 

E(..B._)w < {(8+1)}wP(N<S+l) + T(8) 
n* - n* - (n*)w 

We will now prove that, 

T(8) < A, where A is a constant independent of c. 

2(n- l)cr 
Define G = ~~~~-n 

n cr 



h(n,c) 

1 
s 

= c h(n), say. 

11 

For n>m, from (2.7) it follows that the event {N=n}c {G 1 >h(n-1,c)}. 
n-

Thus, 

T(i3) = 
w E n P(N=n) 

n~i3+1 

E (n+ l)wP(N=n+l) 
n~i3 

w 
< E (n+l) P(G >h(n,c)). 
- n 

n~i3 

The remainder of the proof follows along the lines of Mukhopadhyay's 

(1974) Lemma 2, with the modification that we substitute 

s+w 1 
T = 

(w+ s) 
SW 

a(n) tn }s 1" 
{Asr(s+l) 2 <n-l)(l+i::) ' 

in that proof. The following Lemma gives explicit conditions on m which 

-w -w allow us to study the extent of closeness between E(N ) and n* as 

c-+ 0, for every fixed w > 0. 

Lemma 2.2: For the procedure (2.7), we have: 

E(n*)w = 
2 

lim 1 if m>1 +-w-
c-+O N w+ t ' 

2 
1+ o(w,m) if m= 1 + ....!!...._ 

w+t 

2 
00 if m<1 + ....!!...._ 

w+t 



Proof: 

Define 
1 21-m 

d(m,w) = 
w (m-1) ! ' m 

b(w) 

w w--
= {kcr }w+t 

t ' 
where k = {Awr (w+ l)} 

c 

o(w) = o(m,w) = d(m,w)b(w)hm-l(m), 

1 
w 

a.= (1-c:) n*, 

1 
w S = (1 + £) n*, where O < £ < 1. 

12 

Our G is as defined in Lennna 2.1. The proof now follows from Theorem 3 
n 

of Starr (1966), noting that this Gn ~ x;(n-l)' while Starr's Gn was 

2 
X(n-1)· 

Proof of Theorem 2.2: From (2.9) and (2.10), we get 

n(c) 

Thus Lemmas 2.1 and 2.2 with w replaced by t ands respectively prove 

Theorem 2.2. Here, we note that y is the same as o(s). The following 

result is a much stronger assertion than Theorem 2. 2 for s = t = 1. 

Theorem 2.3: For the procedure (2.7), we have: 

W(c) = c+o(c) as c+O for s= 1, t= 1. 

Proof: 

From (2.11), it is easily seen that, 

2 
W(c) = cE{ (N - Nn*) } , 

for s=l, t=l. 
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Let us now indicate a few steps in order to verify Theorem 2.3. Let us 

define a new stopping variable N' as 

N' = inf{n: n .::_ m .::_ 2, 
n 
E 

i=2 

c 1 3 Z. < -(1--)n } 
1 - A n ' 

•.. (2.12) 

1 -cr 
where z2 ,z3 , ... ,zn are i.i.d. with the p.d.f. cr e I(z>O). As in 

Swanepoel and van Wyk (1982), it can be shown that N and N' have exactly 

the same probability distribution. Note that (2.12) has the same form 

as Mukhopadhyay's (1982b) equation (2.2) and this also is of the same 

1 
form as in Woodroofe's (1977) equation (1.1) with his Ln= (1 - -;-), 

c 
L0 = -1, a= 3 and c =A. Following Ghosh and Mukhopadhyay (1975), it 

can be shown that, 

as c + 0, 

2 2 1 Acr ~ where T = cr , 8 = 72, A = (-) . 
c 

2 
(N' - n*) 

Also noting that N' is uni-

formly integrable inc, it can be shown that 

1 + o(l), 

and eventually this leads to the proof of Theorem 2.3. 

Theorem 2.4: For the procedure (2.7), we have: 

W(c) O(c) as c+O 

if and only if m~ s + 1 where s ,f: 1 and t 1. 

Proof: 

First note that from (2.11), 

W(c) = c{ln*s+l E(-1... - ~) + E(N- n*)}, 
s s *s N n 



for t = 1. Now for s > 0, 

1 1 ----= -s (N- n*) + 
n*s+l 

2 
(N-n*) (s+l)s 

where n1 lies between n* and N. Thus, 

s+l · (N- n*) 2 
W(c) = lac (s + l)n* E{ s+2 } • 

nl 

2 s+2 
nl 

14 

. •. (2.13) 

Our (2.13) is of the same form as Mukhopadhyay's (1982b) equation (3.1). 

Hence our Theorem 2.4 follows from Mukhopadhyay's (1982b) Theorem 2. 

Remark 2. 2 : Theorems 2 .1 - 2 • 4 are all new, and they generalize 

and strengthen the structure of Wang's (1973) problem and give solid 

foundations. 

In what follows, we review Robbins' (1959) algorithm as we have 

used this to obtain the exact probability distribution of the stopping 

time N. 

2.3 The Exact Distribution of N and Applica-

tion of Robbins' Algorithm 

We need the probability distribution of N given by (2.7) to evaluate 

the expected sample size necessary to terminate sampling, and to obtain 

the corresponding values of the risk and regret. Basu (1971) and Wang 

(1973) carried out similar computations but their tabled values did dif-

fer for s = 1 and t = 1. We intend to see which of these tables are accu-

rate, and then we will also give more elaborate tables. 

For the procedure (2.7), the stopping time N is a random variable. 

In this section, we obtain the exact probability distribution of the 



2Z. 
stopping time N. From (2 .12), we see that V. = --1 , i 

]. CJ 
2,3, ... ,n are 

i. i. d. random variables with p. d. f. e -v I (v > 0). 
s+t 

2(n - l)b 
n 

CJ 
Then 

Let S l = n-

= P [ sl > a2, s2 > a3, .•. , S 2 > a 1' S l < a ] . n- n- n- - n 

Now, let us review Robbins' (1959) algorithm. Let 

(s+t) 

a 
m 

Define h1 (·) 

m= 1,2, •••• 

1. We compute recursively, 

m-1 (a - a )j 
h (a) 

m n E n. ' m h . (a ) ' 
J m-J m 

c 
m 

j=l . 

-a m-1 
= e m{ E 

j=l 
h . (a ) } , 

m-J m 
m=2,3, ... 

n=m+l,m+2, •.•. 

Then, according to the algorithm, we obtain P[N= m+l] = p 
m 

where m = 1, 2, 3, .•.. 

n 
E 

i=2 
v.' ]. 

Using the algorithm described above, we have computed the exact 

15 

probability distribution of our stopping time N for n*=5(5)55 and these 

are shown in Tables I and IV. All computations were carried out on an 

IBM 3081D system with the help of FORTRAN language and WATFIV compiler. 

Tables I - VI correspond to the sequential procedure (2. 7). We fix 

A= 1, c = 1, t = 1. For Tables I - III, we fix s = 1, while in Tables IV -

VI, we fix s = 2. The latter value of s is being used in order to make 
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our tables comparable with those of Basu (1971) and Wang (1973). In 

Tables II and V, we present the expected sample size (and the standard 

deviation) necessary to terminate sampling, as well as the "risk" and "re

gret" associated with the sequential procedure (2.7). Tables III and VI 

contain the values of the mode, median and 99th percentiles of the stop

ping time N for n* = 5 (5)55. 

2.3.1 Summary of Our Findings 

In Tables I and IV, for each column, the minimum value of n such 

that P[N=n] =O always exceeds n*. Also, the sum of the probabilities 

for each column gets closer to one and is exactly one for n*=50 and 55 

in Table I. 

In Tables II and V, we present the values of n*, E(N), STD(N), E(LN), 

E(Ln*), n, and W. In each table the expected sample size necessary toter

minate sampling is a little smaller than the corresponding optimal sample 

size n*. However, the "regret" W increases at a much faster rate when 

s = 2 in Table V than when s = 1 in Table II. This finding is similar to 

that of Basu (1971). On the other hand, for s = 2 in Table V the "risk" 

n increases at a slower rate; while for s = 1 in Table II the "risk" 

approaches one from the right as n* gets larger. This latter behavior 

of the "risk" agrees with our results in Theorem 2.2. 

Tables III and VI present purely descriptive statistics, the modes, 

medians, and 99th percentiles of the stopping time N. We notice that the 

modes and medians are all less than the corresponding n* and 99th percen

tiles are also less than n*, and except in few cases they are equal. 

In conclusion, a comparison of our findings with those of Basu 

(1971) and Wang (1973) indicates that our tabled values are exactly 



n 

2 
3 
4 
5 

6 
7 
8 
9 

10 

1 1 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 

TABLE I 

PROBABILITY DISTRIBUTION OF THE STOPPING TIME N FOR 
THE SEQUENTIAL PROCEDURE ( 2 . 7) ; s = 1 

n* 

5 10 15 20 25 

0.27385090 0.07688367 0.03493088 0.01980132 0.01271844 
0.22386220 0.03009123 0.00688118 0.00229257 0.00096178 
0.28545930 0.03993976 0.00537056 0.00111115 0.00031310 
o. 18221980 0.07500321 0.00738603 0.00102705 0.00020039 

0.03350292 o. 14249620 0.01358932 0.00140291 0.00019974 
0. 00110062 0.21897380 0.02829325 0.00245583 0.00026965 
0.00000383 0.22823720 0.05898809 0.00496560 0.00045174 
0.00000000 o. 13889620 0. 11148260 0.01074648 0.00087214 

0.04312814 0.17533910 0.02329248 0.00184417 

0.00601257 0.21263430 0.04781681 0.00407541 
0.00033129 0."18542210 0.08835870 0.00903308 
0.00000633 o. 10893980 0. 14034930 0.01936120 
0.00000004 0.04053971 o. 18356250 0.03880322 
0.00000000 0.00900119 o. 18985920 0.07049710 

0.00112450 o. 14945010 o. 11276320 
0.00007455 0.08630115 o. 15447640 
0.00000247 0.03528415 o. 17652600 
0.00000004 0.00986649 o. 16407190 
0.00000000 0.00182393 o. 12104850 

0.00021552 0.06923288 
0.00001574 0.02999893 
0.00000069 0.00962773 
0.00000002 0.00223844 
0.00000000 0.00036884 

0.00004215 
0.00000327 
0.00000017 
0.00000001 
0.00000000 

0.99999980 0.99999980 0.99999970 0.99999970 0.99999970 

17 

30 

0.00884950 
0.00047016 
0.00010872 
0.00005060 

0.00003749 
0.00003952 
0.00005186 
0.00008476 
0.00015581 

0.00031728 
0.00068980 
0.00154585 
0.00347865 
0.00765383 

0.01608896 
0.03157747 
0.05667663 
0.09115732 
0. 12888160 

o. 15722940 
o. 16258440 
o. 14005790 
0.09882236 
0.05618071 

0.02532133 
0.00890577 
0.00240629 
0.00049184 
0.00007489 

0.00000837 
0.00000068 
0.00000004 
0.00000000 

0.99999970 
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TABLE I (Continued) 

n* 

n 35 40 45 50 55 

2 0.00650936 0.00498754 0.00394285 0.00319493 0.00264114 
3 0.00025600 0.00015068 0.00009513 0.00006211 0.00004327 
4 0.00004452 0.00002003 0.00000978 0.00000596 0.00000298 
5 0.00001526 0.00000620 0.00000256 0.00000119 0.00000000 

6 0.00000894 0.00000209 0.00000030 0.00000000 0.00000012 
7 0.00000697 0.00000173 0.00000030 0.00000012 0.00000054 
8 0.00000757 0.00000143 0.00000048 0.00000000 0.00000000 
9 0.00001138 0.00000137 0.00000024 0.00000000 0.00000030 

10 0.00001514 0.00000256 0.00000024 0.00000036 0.00000000 

11 0.00002843 0.00000286 0.00000161 0.00000000 0.00000024 
12 0.00005585 0.00000566 0.00000000 0.00000066 0.00000077 
13 0.00011742 0.00000954 0.00000095 0.00000095 0.00000000 
14 0.00025851 0.00002086 0.00000191 0.00000000 0.00000000 
15 0.00058770 0.00004363 0.00000477 0.00000000 0.00000000 

16 0.00133693 0.00009769 0.00000662 0.00000191 0.00000000 
17 0.00299251 0.00022477 0.00001615 0.00000095 0.00000095 
18 0.00649053 0.00051296 0.00003707 0.00000286 0.00000000 
19 0.01337421 0.00116426 0.00008643 0.00000566 0.00000095 
20 0.02581233 0.00258124 0.00019652 0.00001520 0.00000095 

21 0.04590958 0.00549752 0.00045472 0.00003237 0.00000376 
22 0.07416046 0.01113933 0.00101686 0.00007504 0.00000477 
23 o. 10727810 0.02119672 0.00222355 0.00017774 0.00001144 
24 o. 13706070 0.03743207 0.00465542 0.00039810 0.00003135 
25 0.15263610 0.06068671 0.00929672 0.00088960 0.00006658 

26 0.14624010 0.08931857 0.01749009 0.00190860 0.00015974 
27 o. 11902670 0. 11809950 0.03068590 0.00394863 0.00035083 
28 0.08128780 o. 13887900 0.04989791 0.00778103 0.00077623 
29 0.04601780 0.14374790 0.07446200 0.01446444 0.00163800 
30 0.02133991 o. 12970160 o. 10111610 0.02529401 0.00334907 
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TABLE I (Continued) 

n* 

n 35 40 45 50 55 

31 0.00801107 0.10102510 o. 12392280 0.04121739 0.00651044 
32 0.00240664 0.06729490 o. 13603030 0.06216711 0.01201785 
33 0.00057193 0.03797976 o. 13263290 0.08622736 0.02092969 
34 0.00010631 0.01799479 o. 11402820 0.10921070 0.03415722 
35 0.00001528 0.00709323 0.08575904 o. 12549780 0.05199254 

36 0.00000168 0.00230536 0.05601361 o. 13001970 0.07337433 
37 0.00000000 0.00061237 0.031537"41 o. 12065140 0.09542882 
38 0.00013178 0.01519596 0.09967548 0.11379800 
39 0.00002277 0.00622109 0.07285941 o. 12372720 
40 0.00000313 0.00214860 0.04683461 o. 12204370 

41 0.00000034 0.00062165 0.02632044 o. 10862320 
42 0.00000000 0.00000000 0.01285440 0.08680761 
43 0.00542395 0.06196219 
44 0.00196605 0.03931095 
45 0.00060866 0.02205771 

46 0.00016002 0.01089281 
47 0.00003553 0.00471133 
48 0.00000662 0.00177617 
49 0.00000103 0.00058091 
50 0.00000013 0.00016404 

51 0.00000001 0.00003981 
52 0.00000000 0.00000826 
53 0.00000146 
54 0.00000022 
55 0.00000003 

56 0.00000000 
57 
58 
59 
60 

0.99999950 0.99999950 0.99981480 1.00000000 1.00000000 



n* 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

TABLE II 

OPTIMAL SAMPLE SIZE AND EXACT VALUES OF RISK AND 
EXPECTED SAMPLE SIZE AND SEQUENTIAL RISK FOR 

THE SEQUENTIAL PROCEDURE (2.7), BASED ON 
EXACT DISTRIBUTION OF N; s = 1 

E(N) STD(N) E(LN) E(Ln*) n(c) 

3.48098 1 . 1731 11.60838 10.00000 1. 16084 

6.74405 2. 1016 24.47794 20.00000 1.22390 

10.35928 2:5483 35.76460 29.99998 1.19215 

14.00189 2.7804 46.46208 39.99997 1.16155 

17.61467 2.9460 57.05821 49.99997 1.14116 

21. 20158 3.0941 67.66019 59.99997 1.12767 

24.77229 3.2359 78.27480 69.99997 1.11821 

28.33327 3.3722 88.89522 79.99997 1.11119 

31.88025 3.5278 99.50078 89.99997 1. 10556 

35.43875 3.6310 110. 13890 99.99997 1.10139 

38.98660 3.7534 120.75950 110.00000 1.09781 

W(c) 

1. 60838 

4.47794 

5.76462 

6.46211 

7.05824 

7.66022 

8.27483 

8.89525 

9.50081 

10. 13901 

10.75955 

N 
0 



TABLE III 

MODES, MEDIANS AND 99TH PERCENTILES OF THE STOPPING 
TIME N FOR THE SEQUENTIAL PROCEDURE (2. 7); s = 1 

n* Mode Median 99th Per-
centile 

5 4 4 6 

10 8 7 10 

15 1 1 11 15 

20 15 14 19 

25 18 18 23 

30 22 21 27 

35 25 25 31 

40 29 29 35 

45 32 32 38 

50 39 39 42 

55 36 36 46 

N 
f-' 



n 

2 
3 
4 
5 

E 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 ·-'I 

18 
19 
2C 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

TABLE IV 

PROBABILITY DISTRIBUTION OF THE STOPPING TIME N 
FOR THE SEQUENTIAL PROCEDURE (2. 7); s = 2 

n* 

5 10 15 20 25 

0. 39707600 0. 16379820 0.09278238 0.06128699 0.04424614 
0.23626040 0.07000726 0.02590603 0.01200461 0.00645983 
0.21580180 0.08214337 0.02317846 0.00804734 0.00334197 
0.11954360 o. 11692790 0.03037995 0.00856525 0.00286490 

0.02883972 o. 15665190 0.04637241 0.01163560 0.00329328 
0.00241946 0. 17047940 0.07265526 0.01794815 0.00453305 
0.00005819 0. 13592850 0. 10733590 0 02912933 0.00696403 
0.00000034 0.07330382 0. 14035850 0.04705364 0.01133984 
0.00000000 0.02502473 0. 15447080 0.07244831 0.01881373 

0.00510550 0.13718980 o. 10261480 0.03081834 
0.00059093 0.09483415 0. 12976980 0.04852527 
0.00003696 0.04942061 o. 14276180 0.07181162 
0.00000119 0.01886581 0 13351760 0.09789699 
0.00000002 0.00513823 010398720 0. 12079500 

C 00000000 0.00097433 0 06618'60 0.13276010 
0.00012570 0 03382964 0 12808410 
0.00001079 0 01366573 0. 10703080 
0.00000060 0 00429712 0.07650310 
0.00000002 o. 00103688 C.04623634 

0.00000000 O.Q0018939 C.02336875 
0.00002585 0.00977564 
0.00000260 0.00335160 
0.00000019 0.00093295 
0.00000001 0.00020897 

0 00000000 0.00003734 
0.00000528 
0.00000059 
0 00000005 
0.00000000 

0.99999980 0.99999980 0.99999980 0.99999970 0.99999970 

22 

30 

0.03384072 
0 00385219 
0.00158668 
0.00111169 

0 00107521 
0.00128812 
0.00178123 
0.00271606 
0.00439298 

0.00732094 
0.01227254 
0.02026278 
0.03236932 
0.04924268 

0. 07033283 
0.09309739 
0.11288380 
0. 12402050 
0. 12220630 

0. 10700700 
0.08251977 
0.05557708 
0.03243293 
0.01627674 

0.00697388 
0.00253356 
0.00077528 
0.00019854 
0.00004229 

0.00000745 
0.00000108 
0.00000013 
0.00000001 
0.00000000 

0.99999970 
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TABLE IV (Continued) 

n* 

n 35 40 45 50 55 

2 0.02694970 0.02211255 0.01856494 0.01587272 0.01377285 
3 0.00247443 0.00168055 0.00119281 0.00087577 0.00066203 
4 0.00083345 0.00047302 0.00028527 0.00018138 0.00011992 
5 0.00048548 0.00023341 0.00012076 0.00006652 0.00003839 

6 0.00039840 0.00016373 0.00007379 0.00003594 0.00001854 
7 0.00041348 0.00014836 0.00005829 0.00002503 0.00001132 
8 0.00050783 0.00016177 0.00005639 0.00002098 0.00000876 
9 0.00070405 0. 0002008 '1 0.00006354 0.00002289 0.00000858 

10 0.00106299 0.00027889 0.00008035 0.00002533 0.00000846 

1 1 0.00170493 0.00041908 0.00011021 0.00003088 0.00001031 
12 0.00282788 0.00066215 0.00016528 0.00004411 0.00001222 
13 0.00477076 0.00109208 0.00025868 0.00006557 0.00001788 
14 0.00804287 0.00183898 0.00042188 0.00010121 0.00002629 
15 0.01335067 0.00312525 0.00070804 0.00016397 0.00003946 

16 0.02154994 0.00528491 0.00120413 0.00027263 0.00006390 
17 0.03341442 0.00881469 0.00205249 0.00046355 0.00010520 
18 0.04925740 0.01433563 0.00348562 0.00078988 0.00017852 
19 0.06834817 0.02255136 0.00582713 0.00135553 0.00030333 
20 0.08846492 0.03400415 0.00954282 0.00229919 0.00052100 

21 o. 10590600 0.04879600 0.01516891 0.00386024 0.00089586 
22 o. 11635720 0.06614697 0.02328157 0.00635588 0.00152153 
23 0. 11645970 0.08412874 0.03424817 0.01019138 0.00256455 
24 o. 10543530 0.09975833 0.04805845 0.01585418 0.00423372 
25 0.08578026 o. 10964080 0.06389117 0.02379370 0.00684816 

26 0.06231683 0. 11105790 0.08014137 0.03424978 0.01076931 
27 0.04018480 o. 10310040 0.09432983 0.04713172 0.01639235 
28 0.02286732 0.08728588 0. 10372780 0.06169373 0. 02411973 
29 0.01142139 0.06705570 0. 10606710 0.07650173 0.03406936 
30 0.00497995 0.04652470 0. 10041300 0.08952075 0.04613221 
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TABLE IV (Continued) 

n* 

n 35 40 45 50 55 

31 0.00188594 0.02902158 0.08766806 0.09848934 0.05957717 
32 0.00061727 0.01620537 0.07030141 0.10148100 0.07318950 
33 0.00017378 0.00806588 0.05158299 0.09760165 0.08523792 
34 0.00004189 0.00356404 0.03450586 0.08731920 0.09381336 
35 0.00000861 0.00139261 0.02096917 0.07244241 0.09728301 

36 0.00000150 0.00047933 0.01153663 0.05555224 0.09477466 
37 0.00000000 0.00014480 0.00572731 0.03925709 0.08649957 
38 0.00003825 0.00255741 0.02549286 0.07376635 
39 0.00000880 0.00102391 0.01516798 0.05861908 
40 0.00000176 0.00036646 0.00824629 0.04330140 

41 0.00000030 0. 00011689 0.00408556 0.02965712 
42 0.00000005 0.00003314 0.00183981 0.01879065 
43 0.00000001 0.00000832 0.00075112 0.01098688 
44 0.00000000 0.00000185 0.00027733 0.00591506 
45 0.00000036 0.00009238 0.00292586 

46 0.00000006 0.00002770 0.00132676 
47 0.00000000 0.00000746 0.00055040 
48 0.00000180 0.00020845 
49 0.00000039 0.00007193 
50 0.00000007 0.00002257 

51 0.00000001 0.00000643 
52 0.00000000 0.00000166 
53 0.00000039 
54 0.00000008 
55 0.00000002 

56 0.00000000 
57 
58 
59 
60 

0.99999940 0.99999950 0.99999970 0.99999950 0.99999950 



n* 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

TABLE V 

OPTIMAL SAMPLE SIZE AND EXACT VALUES OF RISK AND 
EXPECTED SAMPLE SIZE AND SEQUENTIAL RISK FOR 

THE SEQUENTIAL PROCEDURE (2.7), BASED ON 
EXACT DISTRIBUTION OF N; s = 2 

E(N) STD(N) E(LN) E(Ln*) n(c) 

3.15430 1.1692 12.19435 7.50000 i.62591 

5.64525 2.3443 40.49281 15.00000 2.69952 

8 .61003 3.2045 73.86827 22.49998 3.28304 

11.76799 3.7995 108.25280 29.99997 3.60844 

14.98837 4.2208 143.72090 37.49997 3.83256 

18.21750 4.5416 180.93060 44.99997 4.02068 

21.43750 4.8077 220.26100 52.49997 4. 19545 

24.64505 5.0428 261.80760 59.99997 4.36346 

27.84134 5.2597 305.51830 67.49997 4.52620 

31.02881 5.4642 351. 28170 74.99997 4.68376 

34.20956 5.6586 398.99160 82.50000 4.83626 

W(c) 

4.69435 

25.49281 

51.36829 

78.25302 

106. 22090 

135.93060 

167.76100 

201.80760 

238.01820 

276.28170 

316.49160 

N 
l.n 



TABLE VI 

MODES, MEDIANS AND 99TH PERCENTILES OF THE STOPPING 
TIME N FOR THE SEQUENTIAL PROCEDURE (2. 7); s = 2 

n* Mode 

5 2 

10 7 

15 10 

20 13 

25 16 

30 19 

35 23 

40 26 

45 29 

50 32 

55 35 

Median 99th Per
centile 

3 6 

6 10 

9 14 

12 18 

16 22 

19 26 

22 29 

25 33 

28 36 

32 40 

35 44 

N 
CJ'\ 
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the same as in Basu (1971) for s = 1, 2 and t = 1 but these differ from 

Wang's (1973) computations for s = 1 and t = 1. Wang's (1973) "regret" W 

increases at a much faster rate than ours, because Wang's (1973) computa-

tions are possibly faulty. 

2.4 Moderate Sample Size Behavior of the 

Sequential Procedure (2.7) 

In this section we present simulation results carried out on an IBM 

3081D computer system using the FORTRAN language and the WATFIV compiler. 

For each row in Tables VII - IX, we repeat the sequential rule 

(2.7) 500 times. For a particular row, each time we first generate 

pseudo-random samples from a uniform (0,1) population. 

We then transform the generated uniform random variable U to a two 

parameter negative exponential variable Y through the relationship 

Y = in(6) - cr in (U). We fix Q.n(6) = 1, cr = 1, s = 2, A= 1, t = 1 and 

n* = 5, 25, 45, 70, 100 (50) 200. 

Tables VII - IX correspond to the sequential procedure (2. 7) with 

m= 3,5,10. For each value of n*, we start with m samples from the 

population with the p.d.f. f(y;l,1) and we compute 8. Next we check 
m 

with the rule (2.7) to see whether we stop or observe the next sample. 

When we stop, we record the value n(i) of N together with the observed 

value en(i) of the smallest order statistic for the ith repetition in 

each row, i = 1, ••• ,500. Now, we write 

1 J 2 - 1 J - 2 
e=- E e n(i)' s (e) = J(J-1) E (en(i) - e) ' 

J i=l i=l 

1 J 
s 2 (N) 

1 J - 2 
N = - E ri(i)' = J(J::-1) 

E (n(i) -N) , 
J i=l i=l 

where J = 500, e = Q.n(6). In Tables VII - IX, we report s (e) and s (N) as 



n* NxlO 

5 43.7800 

25 238.4198 

45 437.1396 

70 692.3198 

100 986.8997 

150 1491 . 1180 

200 1990.6580 

TABLE VII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (2. 7): m = 3 

SE(N)xl02 exl02 SE(e)x102 E(Ln*)x102 E(LN)x102 

6.4236 123.4702 1.1216 24.0000 27.7123 

18.7227 104.0596 0.2382 0.9600 1.1458 

22.7291 102. 1880 0. 1107 0.2983 0.3445 

28.9622 101.5946 0.0848 0. 1224 0. 1676 

29.4248 100.9708 0.0432 0.0600 0.0603 

35.7451 100.6864 0.0310 0.0267 0.0267 

44.7508 100.5068 0. 0211 0.0150 0.0150 

n(c)x102 

115.4678 

119.3543 

116.2791 

136.8363 

100.4932 

100.0000 

100.0000 

A 5 
W(c)xlO 

3712.2820 

185.8015 

48.2345 

45. 1058 

0. 2960 

0.0000 

0.0000 

N 
00 



n* NxlO 

5 53.2200 

25 239.7998 

45 443.0396 

70 688.0396 

100 992.7195 

150 1489.2780 

200 1990.6980 

TABLE VIII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE ( 2 . 7) : rn = 5 

SE(N)x102 ex102 . - 2 2 A 2 
SE(e)xlO E(Ln*)xlO E(LN)xlO 

2.9907 119.7643 0.8524 24.0000 24.3409 

16.3275 104.3359 0.1905 0.9600 0.9985 

"20.1728 102.3287 0.0991 0.2963 0.2997 

24.5978 101. 3544 0.0623 o. 1224 0.1233 

31.6508 101.0427 0.0460 0.0600 0.0603 

36.2493 100.6605 0.0278 0.0627 0.0267 

42.3714 100.5344 0.0238 0.0150 0.0150 

n(c)x102 

101.4202 

104 .0144 

101. 1578 

100.7305 

100.5379 

100.0000 

100.0000 

W(c)x105 

340.8606 

38.5385 

3.4305 

0.8945 

0.3228 

0.0000 

0.0000 

N 
\.0 



n* NxlO 

5 100.0000 

25 239.3597 

45 · 438.2197 

70 693. 1396 

100 986.6597 

150 1491. 9980 

200 1990.9780 

TABLE IX 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SE
QUENTIAL PROCEDURE (2. 7): m= 10 

SE(N)xl02 ex102 - 2 2A 2 A 2 
SE(e)xlO E(Ln*)xlO E(LN)xlO n(c)xlO 

0.0000 110. 1964 0.4648 24.0000 33.9999 141.6661 

17.3649 103.7890 0. 1869 0.9600 0.9994 104. 1087 

20.7480 102. 1967 0.0992 0.2963 0.3003 101.3638 

25.5465 101. 5355 0.0653 0. 1224 o. 1233 100.7290 

29.4140 100.9700 0.0403 0.0600 0.0603 100.4963 

36.2298 100.6793 0.0304 0.0267 0.0267 100.0000 

43. 1344 100.5027 0.0209 0.0150 0.0150 100.0000 

W(c)xlOS 

9999.8780 

39.4441 

4.0410 

0.8926 

0.2978 

0.0000 

0.0000 

l,,.) 

0 



31 

the corresponding standard errors (SE). 

2.4.1 Summary of Numerical Findings 

We notice that in Tables VII - IX, the estimated values e are very 

close to 1, as they are expected to be. Our numerical results for the 

sequential rule (2.7) agree reasonably well with the asymptotic results 

of Theorems 2. 2 - 2. 4 even for moderate values of n*. For example, 

estimated values N are very close to the corresponding values of n*, 

the optimal fixed-sample size required had a been known. As expected, 

there is a considerable improvement in the performance of our procedure 

(2. 7) when the starting sample size m increased from m = 3 to m = 5 or 10. 

2.5 Fixed-Ratio Confidence Interval for 8 

Suppose x1 ,x2 , •.• ,Xn are i.i.d. random variables having the p.d.f. 

as in (1.1). Here, we estimate 8 by a confidence interval with a pre-

scribed ratio and having a preassigned coverage probability, and along 

that line we propose to consider the interval 

I 
n 

8n " 
[a' 8nl' (2 .14) 

for 8, where en= Xn(l) and d(>l) being specified in advance. We require 

that P{ 8 E I } is at least (1- a.) or asymptotically (as d + l+) near (1- a.). 
n 

Here, 0 <a.< 1 is also fixed in advance. 

Fixed-ratio confidence interval problems have not been considered 

before. At the least, we have not found any such reference in this 

literature. However, fixed-width confidence interval problems for param-

eters of many other distributions have been considered. For example, we 

can cite Ray (1957), Starr (1966), Chow and Robbins (1965), Simons (1968), 

Khan (1969), Mukhopadhyay (1974). The "proportional closeness" criterion 
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was considered in Nadas (1969). 

To achieve a confidence coefficient at least (1- a) associated with 

the interval I, we require 
n 

" 6 
P{6 E In} = P{ dn ~ 6 < en} > 1 - a. 

e 
. .. (2.15) 

From (2.14) we note that 6n is bounded below by 1 and also that n needs 

to be the smallest integer such that 

n > 
cr tn(l) cr tn(l) 

a a 
-in--( d"""'):-- = __ d_* __ = c' say' ..• (2.16) 

with d* = tn(d). 

Notice that C, as given in (2.16), depends on cr which is actually unknown. 

In order to obtain the random sample size Nin a very close proximity of 

C, we now propose a few purely sequential, two-stage and modified two-

stage procedures. 

2.5.1 Purely Sequential Procedure 

Towards the end of achieving a suitable sequential procedure, the 

stopping time N= N(d) is defined as 

cr tn(l) 
= f{ 2 n a } N in n: n ~ m ~ , n > tn(d) 

... (2.17) 
oo if no such n, 

" where cr 
n 

When we stop, we propose the interval 

~(1) 
= [ d 'XN(l)]. 

for 6. 



Remark 2.3: In estimating cr, we now take the divisor as n instead 

of (n - 1). This is just to get rid of botherations of working with ra

tios like (N~l) in the technical proofs. Theorems 2. 5 - 2. 7 still hold 
A 

with the earlier cr. 
n 
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Theorem 2.5: The stopping time N from (2.17) satisfies the follow-

ing properties: 

(i) N is well defined, non-increasing as a function of d with 

E (N) < oo, 

(ii) lim N = 00 

d+l+ 
a.s.; lim E(N) 

d+l+ 
00' 

(iii) lim 
d+l+ 

(~) = 1 c 

(iv) lim P{ 8 E IN} 
d+l+ 

(v) lim E(%) = 1. 
d+l+ 

a. s. , 

1- a.' (asymptotic consistency) 

(asymptotic efficiency) 

Proof: 

First note that as d + l+, tn(d) + 0. The fact that N is well defined 

follows from the definition (2.17) of N. Now, we verify that E(N) < 00 • 

We get 

E(N) - 1 

But 2 

00 

Z: P(N > n) 
n=l 

00 

< 1 + Z: P{n < 
n=2 

A 1 
cr in(-) 

n a. } 
tn(d) · 

Thus, 



E(N) - 2 < 

< 

00 2 
E inf exp{- 2d*n1h}(l-2h)-(n-l) 

n=2 O<h<~ atn(-) a 

00 

E 
n=2 

exp{-
2a 

2 
d*n · .} n-1 

1 . 2 ' 
tn(-) 

a 

where h=~. This infinite series is convergent and this leads to (i). 

Part (ii) is obvious. To verify (iii), we use the following basic in-

equality: 
" (1 aN tn 0) 
tn(d) 

" 1 
aN-1 tn(a) 

< N < m + tn(d) 

tn(d) Now, multiplying throughout by 1 
tn(-) 

a 

and taking limits yield the de-

sired result. We turn now to prove (iv). We have 

= ; P{O < tn(Xn!l)) ~ tn(d) I N=n}P(N=n). 
n=m 
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Using Basu's (1955) theorem, it can be shown that I(N=n) and Xn(l) are 

independent for every n > m. Here I ( •) stands for the indicator function 

of(•). Hence, 

co 

{l - exp(-N tn(d))}P(N=n) 
a 

= E{l - exp (-N tn(d))}. 
a 

.•• (2.18) 

From part (iii) it follows that exp(-N tn(d)) + a a.s •• Thus, utilizing 
a 

(2.18) and the dominated convergence theorem, we can conclude (iv). For 

the proof of part (v), let us write 



Then 

Y* 
n 

NY* 
N 

crn 1 n 
=cr=- E (Yi -Yn(l)), n=2,3, .... 

ncr i=l 

1 N 
E (Yi - YN(l)) 

O i=l 
< 

N 
1 E 
O i=l 

(Y. - tn e) 
1. 

a. s .. 

Using Wald's 1st equation, we get E(NY~) ~ E(N), since E(N) < 00 • This 

E <NYm E (NYN) 
gives E(N) ~ 1. Thus, ~!f+ sup E(N) < 1. Now, we can 

use Lemma 3 of Chow and Robbins (1965), having taken their f(n) n, 

g(n) = (n-l) c = t and y = Y* Hence we obtain 
n ' n n 

lim 
d-+l+ 

E(!!_) c 1. 

2.5.2 Two-Stage Procedure 

In order to propose a two-stage procedure, let us start with a 

sample of size m(2:_2). Now we define 

a & 
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N = max{m, [ :* m] + l}, ... (2.19) 

where d* = tn(d), and a is the upper 100a% point of the F-distribution 
m 

with 2, 2 (m - 1) degrees of freedom. We write [x] for the largest integer 

< x. When we stop, we propose the interval 

~(l) 
IN = [ d ' ~ (1)], 

for e. 

Theorem 2.6: For the procedure in (2.19), we have: 

(i) P{ e E IN} > 1 - a, 



a cr a cr 
(ii) 

m m 
_d_*_ .::_ E (N) ~ m + _d_*_ 

(iii) lim P{8 E IN} = 1- a., 
d-+l+ 

(iv) 

Proof: 

lim 
d-+l+ 

E(B_) c 
a 

m 
a 

( > 1). 

Parts (ii) and (iv) can be verified by using the basic in-

equality: 

1 A 1 A 

tn(-)cr tn(-)cr 
a. m<N<m+ a. m 

tn(d) tn(d) 

We now verify that a > a. Using an .approximation by Scheffe and Tukey 
m 

(see Johnson and Kotz (1970), p. 84) we can write 

2 

am= a+ (:--1) + O(~). 
m 

Now, dividing throughout by a, yields 

a 
m -= 
a 

1 + a + 0(...!_2) 
(m- 1) 

m 

> 1. 

The proof of part (iii) follows in a similar way as in part (iv) of 

Theorem 2.5. To verify (i) first notice that 

2n c.!.) a 
a. m 

N .:.. tn(d) • 

Now, we can write 
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,.. 
1 crm 

~ E{l - exp{- in(-)~}} 
0. O' 

= E(l-o.) 

= 1- a.. 

2.5.3 Modified Two-Stage Procedure 

The two-stage procedure of this section is motivated by the works 
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of Mukhopadhyay (1980, 1982a) and Ghosh and Mukhopadhyay (1981). We de-

fine, 

1 

m = max{2,[(;*)(y+l)] + 1}, (2.20) 

where y > 0 is fixed in advance. We will have more to say about y while 

implementing this procedure for moderate sample sizes. Now, let 
,.. 

a cr 
N = max{m,[ :*m] + l}. (2.21) 

If necessary, we extend x1 , ••• ,Xm to x1 , ... ,~ when we stop, and we pro-

pose the interval 

- ~(1) 
IN-[ d '~(1)]' 

fore. 

Theorem 2.7: For the modified two-stage procedure (2.21), we have 

the following: 

(ii) lim 
d+l+ 

(N) = 1 c a.s., 
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(a cr) (a cr) 1 

(iii) m 2. E(N) < 
m + (~) (y+l) + 4, d* - d* d* 

(iv) lim P{8 E IN} = 1 - a. ' 
d+l+ 

(v) lim E(~) 1. 
d+l+ c 

Proof: 

We start with the basic inequality: 

A A 

a cr a a 
mm mm 

~2._N2._m+~+l 

1 A 

a a 
< N < 2 + [(da*)l+y] + 1 + [ :*m] + 1. 

This implies 

1 

:: E(&m) 2. E(N) ~ :: E(crm) + (;*>1+y + 4. 

This gives us part (iii). Parts (i), (ii) and (iv) can be verified by 

using the same basic inequality given above. Proof of part (v) is ex-

actly the same as the proof of part (iv) in Theorem 2.6. 

2.6 Moderate Sample Size Behavior 

of Our Procedures 

In this section, we present numerical results in order to study 

moderate sample size performances of the procedures considered in 

sections 2.3- 2.5. All computations were carried out on an IBM 3081D 

computer system, using the SAS (1982) version. For each row in Tables 

X - XIX, we repeat either the purely sequential, two-stage or modified 



two-stage procedure 500 times as the case may be. For each particular 

row, we generated pseudo-random samples Y from a negative exponential 

population and then transformed into Pareto variables X through X = 

exp(Y). We fixed tn(6) = 1, cr = 1. 

Tables X- XII correspond to the sequential procedure (2.17) with 

m = 3, 5 , 10; a. = 0. 05 and C 10, 25, 50(50)200. For each value of C, 

we start with m samples and compute & . We check with the rule (2.17) 
m 

to see whether we stop or observe one more sample from the population. 

For each repetition we check whether tn(6) = 1 belongs to the actually 
A 

constructed interval, and write P for the relative frequency of e be-
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longing to our actually constructed intervals out of 500 such intervals. 

Tables XIII-XV present numerical results for the two-stage proce-

dure (2.19). The first 5 columns are to be interpreted in exactly the 

same way as in the case of the first five columns in Tables X - XII. 
a 

In addition, we also give~ to compare with : . 

In Tables XVI - XIX, we present the results for our modified two-

stage procedure (2.21). We choose y = .01, .05, 0.1, 0.2, for 
a 

a.= 0.05. These tables contain values of C, N, SE(N), m, d, P, :, 
N 
c· 

2.6.1 Summary of Numerical Findings 

A 

In Tables X - XII, we notice that the estimated value P is very close 

to (1-a.). Also, the estimated values of N are very close to the corres-

ponding values of C, the optimal fixed-sample size, had cr been known. 

These results substantiate that the purely sequential procedure (2.17) 

is nearly asymptotically efficient even for moderate C. As expected, 

there is improvement in the performance when the starting sample size m 



TABLE X 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (2.17): m= 3, a= 0.05 

c N SE(N) d 
A 

p 

10 7.700 0.1662145 1.349283 0.816 

25 22.350 0.3292047 1. 127304 0.886 

50 47.962 0.4414236 1.061746 0.904 

100 99.329 0.4891234 1 .030411 0.944 

150 149.026 0. 5354176 1 .020172 0.956 

200 198.464 0.6362539 1.015091 0.946 

+"" 
0 



TABLE XI 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (2.17): m= 5, a.= 0.05 

c N SE(N) d 
A 

p 

10 8.578 0. 1368696 1.349283 0.892 

25 23. 196 0.2757449 1 . 127304 0.918 

50 48.542 0.2893154 1.061746 0.908 

100 99.510 0.4470565 1. 030411 0.950 

150 148.966 0.5585209 1 .020172 0.960 

200 198.436 0.6400618 1 .015091 0.948 

+"' 
I-' 



TABLE XII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (2.17): m= 10, a.= 0.05 

c N SE(N) d 
A 

p 

10 10.760 0.0647858 1.349283 0.952 

25 23.600 0.2447362 1.127304 0.916 

50 48.804 0.3397676 1.061746 0.924 

100 99.412 0.4451256 1. 030411 0.952 

150 149.010 0.5555439 1.020172 0.946 

200 198.386 0.6418239 1. 015091 0.946 

.i:
N 



c 

10 

15 

25 

50 

100 

150 

200 

TABLE XIII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE TWO-STAGE 
PROCEDURE (2.19): m=3, a.=0.05 

N SE(N) d 
A 

p 8m -a 

24.022 0.7353 1.3493 0.962 2.3181 

34.550 1 .0402 1 . 2211 0.946 2.3181 

58.652 1. 8938 1.1273 0.936 2.3181 

109.584 3.2318 1.0617 0.946 2.3181 

229.870 6.9105 1 .0304 0.954 2.3181 

350.602 10.9192 1.0202 0.946 2.3181 

489.864 15.0220 1.0151 0.960 2.3181 

N 
c 

2.4022 

2.0303 

2.3461 

2. 1917 

2.2987 

2.3373 

2.4493 

~ 
l,J 



c 

10 

15 

25 

50 

100 

150 

200 

TABLE XIV 

MODERATE SAMPLE SIZE BEHAVIOR OF THE TWO-STAGE 
PROCEDURE (2.19): m=5, a.=0.05 

N SE(N) 

15. 198 0.3366 

22.898 0.5006 

39 .022 0. 8391 

72.454 1. 6436 

148.334 3.3462 

234.516 5. 1022 

290. 486 6. 1678 

A 

d p 

1 . 3493 0.948 

1 . 22 11 0.952 

1. 1273 0.950 

1 .0617 0.944 

1 .0304 0.958 

1 .0202 0.946 

1.0151 0.958 

a 
m 
a 

1.4884 

1.4884 

1.4884 

1.4884 

1.4884 

1. 4884 

1. 4884 

N 
c 

1 . 5198 

1 . 5265 

1. 5609 

1.4431 

1 . 4833 

1 . 5634 

1. 4525 

.i::

.i::-



TABLE XV 

MODERATE SAMPLE SIZE BEHAVIOR OF THE TWO-STAGE 
PROCEDURE (2.19): m = 10, a= 0. OS 

SE(N) 
a 

c N d p m 
a 

10 12.988 0. 1500 1. 3493 0.966 1.1865 

15 18.514 0.2528 1. 2211 0.932 1 . 1865 

25 29.720 0.4392 1 . 1273 0.938 1 . 1865 

50 58.776 0.8677 1.0617 0.938 1 . 1865 

100 12 1 . 888 1. 7668 1 .0304 0.948 1.1865 

150 174.362 2.6317 1. 0202 0.938 1.1865 

200 241. 244 3.4373 1.0151 0.958 1 . 1865 

N 
c 

1.2988 

1. 2343 

1 . 1888 

1.1755 

1.2189 

1 . 1624 

1. 2062 

~ 
\J1 



y m 

0.01 10 

15 

25 

49 

96 

143 

190 

TABLE XVI 

MODERATE SAMPLE SIZE BEHAVIOR OF THE MODIFIED TWO
STAGE PROCEDURE (2. 21): a.= 0. 05 

c N SE(N) 

10 12.988 0. 1500 

15 18.048 0. 1607 

25 28.342 0. 1761 

50 53.816 0.2530 

100 103.394 0.3574 

150 153.364 0.4515 

200 204.408 0.5857 

A 

d p 

1 . 3493 0.966 

1 . 22 11 0.968 

1 . 1273 0.940 

1. 0617 0.952 

1. 0304 0.938 

1 .0202 0.950 

1.0151 0.944 

a 
m 

a 

1 . 1865 

1 . 1150 

1 . 0651 

1. 0319 

1 . 0159 

1.0106 

1.0080 

N 
c 

1.2988 

1.2032 

1 . 1337 

1 .0763 

1 .0340 

1 .0224 

1. 0220 

.i::-
0\ 



y m 

0.05 9 

14 

22 

42 

81 

119 

156 

TABLE XVII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE MODIFIED TWO
STAGE PROCEDURE (2. 21): ct= 0. 05 

c N SE(N) 

10 13.074 o. 1805 

15 18. 124 o. 1840 

25 27.918 0.2338 

50 52.712 0.3391 

100 101. 804 0.4922 

150 151.910 0.6112 

200 203.082 0.7317 

d p 

1. 3493 0.976 

1. 2211 0.958 

1.1273 0.944 

1.0617 0.942 

1. 0304 0.950 

1 .0202 0.940 

1.0151 0.938 

a 
m 
a 

1. 2130 

1.1246 

1.0748 

1.0374 

1.0190 

1 .0128 

1. 0097 

N 
c 

1. 3074 

1. 2083 

1. 1167 

1.0542 

1 .0180 

1.0127 

1.0154 

~ 
-...J 



y m 

0.10 9 

12 

19 

36 

66 

96 

124 

TABLE XVIII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE MODIFIED TWO
STAGE PROCEDURE (2.21): a= 0.05 

c N SE(N) 

1.0 13.074 0.1805 

15 17.998 0.2158 

25 27.886 0.2576 

50 52.654 0.3940 

100 102. 192 0.5657 

150 153.024 0.6627 

200 203.408 0.8103 

A 

d p 

1.3493 0.976 

1. 2211 0.954 

1 . 1273 0.942 

1 .0440 0.934 

1.0304 0.940 

1 .0202 0.958 

1.0151 0.946 

a 
m 
a 

1.2130 

1.1494 

1.0880 

1. 0440 

1. 0234 

1 .0159 

1 .0123 

N 
c 

1.3074 

1. 1999 

1 . 1154 

1 .0531 

1 .0219 

1 .0202 

1.0104 

.i,-
00 



y m 

0.20 7 

10 

15 

27 

47 

66 

83 

TABLE XIX 

MODERATE SAMPLE SIZE BEHAVIOR OF THE MODIFIED TWO
STAGE PROCEDURE (2.20): a= 0.05 

c N SE(N) 

10 13.622 0.2350 

15 18.454 0.2493 

25 28.714 0.3434 

50 53.296 0.4793 

100 103.818 0.6663 

150 154.624 0.8347 

200 204.228 1 .0293 

"' d p 

1. 3493 0.960 

1 . 2211 0.934 

1 . 1273 0.938 

1 .0617 0.932 

1.0304 0.942 

1 .0202 0.950 

1.0151 0.946 

a 
m 
a 

1.2969 

1.1865 

1. 1150 

1 .0599 

1 .0325 

1 .0234 

1.0185 

N 
c 

1. 3622 

1.2303 

1.1486 

1 .0659 

1 .0382 

1 .0308 

1 . 0211 

.i::
\0 
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A 

increases. More specifically, P gets closer and closer to (1-a) as m 

increases. 

Tables XIII-XV present results for the two-stage procedure (2.19). 

The last column in Tables XIII-XV correspond to part (v) of Theorem 2.6. 

N Our results show that the values of Care close to the corresponding 
a 

values of....!!!.. This is consistently the case in these tables. 
a 

Similar results from the modified two-stage procedure (2.21) are 

contained in Tables XVI-XIX. As we may expect, m increases as y keeps 

on decreasing, thus our procedure performs better for smaller values of 

y. For a= 0.05, we present tables for y = 0.01, 0.05, 0.1, 0.2. The 

A N 
results indicate that N, P and Care very close to the true C, (1-a) 

a 
and....!!!. respectively. 

a 

a 
m Quite impressively,~ converges to 1 as C 

a 

gets larger and the estimated values of~ do have the same feature. 

This result is very much on line with the asymptotic first-order effi-

ciency property of the modified two-stage procedure. Another important 

feature coming out of this numerical study is that the pattern of re-

sults does indicate strongly that we choose y = 0.05 in the absence of 

any other information. 



CHAPTER III 

ESTIMATION OF THE SHAPE PARAMETER 

3.1 Introduction 

In this chapter, our goal is to estimate a, the shape parameter of 

the distribution given by (1.1). The problem of estimating the shape 

parameter has been addressed earlier in the fixed sample size case as 

cited before. While reviewing the literature for this study, we found 

that sequential estimation problems for the shape parameter have not 

been considered before. Therefore, it has become necessary to develop 

new tools for solving a problem of this nature, and our study has 

accomplished this task. In what follows, we address specifically the 

point estimation problem for the shape parameter a. 

In section 3.2, a formulation of the problem and some notations are 

presented. Section 3.3 deals with sequential estimation of the shape 

parameter. We assume a loss function of the form of squared error plus 

linear cost. The main result is presented in Theorem 3.1, where we de

rive the order of the "regret" associated with our proposed procedure. 

In section 3.4, we study the moderate sample size performances of 

the procedure introduced in section 3.3. 

3.2 Formulation of the Problem 

Suppose we have x1 ,x2 , ..• as i.i.d. random variables with the p.d.f. 

51 
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given by (1.1). Let Y. = tn(X.), i= 1,2, •.•• 
1. 1. 

i.i.d. random variables having the p.d.f. as in (2.1). Our goal is to 

estimate cr. 
" " 1 n 

The proposed estimator is cr , where cr = ( l) I: (Y. - Y (l)) 
n n n - i=l 1. n 

with n > 2. Suppose the loss incurred in estimating cr by & is given by 
n 

L 
n 

" 2 A(cr - cr) + en, 
n 

A and c being known positive numbers. The associated risk is, 

E(L) 
n 

2 
AE(cr - cr) + cE(n), 

n 

Acr2 
= + en (n-1) 

(3 .1) 

(3.2) 

(3 .3) 

With the usual techniques of calculus, we obtain the value of n which 

minimizes (3.3) to be 

2 1 

n* =(Ao)~+ 1. 
c 

Thus our optimal risk becomes, 

(3 .4) 

E(Ln*) = c(2n* - 1). (3.5) 

But n* in (3.4) depends on cr which is unknown. In the next section, we 

propose a suitable sequential procedure for estimating cr by updating 

estimates of n* at every stage. 

3.3 Purely Sequential Procedure 

Define the stopping variable N* = N*(c) as follows: 

N* = inf{n: 
Ak 

n _> m _> 2, n > & (-) 2 + l}, 
- n c 

oo if no such n. 
(3. 6) 

" When we stop, we estimate cr by crN*" The associated loss function thus 



becomes 

the 

Let z2,z3 ,;·· be a sequence of i.i.d. random variables with 

1 -a 
p.d.f. -e I(z>O). cr 

n - 1 
Define S ~ E Z., Z = ( l) S and a stop-n i=2 1 n n- n 

ping variable N as 

N = inf{n: 
- A k 

n _> m _> 2, n > Z (-) 2 + l}, 
- n c 

= oo if no such n. 
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(3. 7) 

(3. 8) 

Along the lines of Swanepoel and van Wyk (1982), it can be shown that N* 

and N are identically distributed random variables. Now, let the loss 

associated with (3.8), be given by 

- 2 
LN = A(ZN - cr) + cN. (3. 9) 

We now claim- that E(LN) = E(LN*). 

To ascertain this claim, we need the following two Le111Illas. 

Lemma 3.1: 

2 
E{ (crN* - cr) IN*= n} 

2 
= E{(ZN - cr) !N=n}. 

This result follows from Le111Illa 3.2 which we state and prove below. 

Le111Illa 3. 2: For each x > 0, 

2(n-l)cr 
P{ n ~ x I N*=n} cr 

n z. 
P{ 2 E _...!:. < x I N=n}. 

i=2 cr -

Proof: 

To prove Le111Illa 3. 2, it suffices to show that for each x > 0, 

2(n-l)cr 
P{ . n 

cr 2 x, N*=n} = 
n Z. 

P{2 E _...!:. < x, N=n}, 
i=2 cr -

.•• (3.10) 



for n = m,m+l, .•.. 

Consider the left hand side of (3.10). 

2(n-l)cr 
P{ n 2. x, 

CJ 

A XCJ 

p{crn 2- 2(n-l) 

N*=n} 

Defined 
n 

xcr ck 
c = (i-1) (-A) 2, for i - m n Let S* 2(n-l)' i - , ... , · n 

n 
i:l (Yi -Yn(l)) and Sn be as defined previously. Thus, 

P{(JA < XO A 

n - 2(n-l) 'cri > 
c k 

(i-l)(A-) 2, i = m, ... ,n-1, & < n-
c !2 

(n-1)(-) } 
A 

P{cr 
A 

= > c m' crm+l > cm+l' m 

S* S*+l 
p{__!!_ > _m_> c m' cm+l' m-1 m 

s s +l m P{- > c m' 
_m_> 

cm+l' m-1 m 

P{-1-
n 
I: z. XCJ 

< 2(n-l) ' n-1 J -
j=2 

1 
n c k 

n-1 I: z. < (n-1) (-) 2 } 
J - A j=2 

n z. 
= P{2 I: _J_ < x N=n} 

CJ - ' j=2 

R.H.S. of (3.10). 

... ' & < min(d ,c )} n - n n 

S* S* n-1 n < min(d ,c )} ... ' --> c 
n-1' n-1 n-2 - n n 

s s n-1 n ... , --> c 
n-1' n-1 < min(d ,c )} n-2 - n n 

i 1 c k 
. 1 I: ZJ. > ( i -1) ( p) 2, i = m , . . . , n -1 , 
1- j=2 

Thus, Lemma 3.2 leads to Lemma 3.1 which in turn proves our claim that 

E (LN) = E (LN*). With c = 1, our (3. 9) is the same as that proposed by 

Starr and Woodroofe (1972). Thus our sequential risk becomes 
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.•• (3.11) 

In part (b) of the following theorem, we show that the "regret" has 

the order O(c) as c-+ 0. 

Theorem 3.1: For the sequential procedure in (3.6), ~ have: 

(a) 

(b) 

E(LN*) . 
lim n(c) = 1, where n(c) = ~~~ 
c-+O E(Ln*) ' 

W(c) ~ O(c) as c+O, where W(c) = E(LN*) - E(Ln*). 

To prove Theorem 3.1, .we require the following lemmas. In view of 

Lemma 3.1 we keep on working with N and E(LN) instead of N* and E(LN*). 

Lemma 3.3: 

E(N) - (n*- 1) ~ 0(1) as c-+ 0. 

Lemma 3.4: 

2 E(N) ~ {(n*-1) + m}E(N). 

Lemma 3. 5: Let p _:: m be an integer. Then 

P{p~N~ (n*; l)} < O{ 1 } as c-+O. 
(n* - l)p 

Lemma 3. 6 : For k _:: 1, 

E{ (N - n* + 1) Zk} = o{ (n* - 1) k} as c-+ 0. 

z. 
Lemma 3. 7: Let ei = 0

1 , i = 1, 2,. • . • The ei' s are independent, 

and exponentially distributed with~ unity. Let 

Then 
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(i) 
2 

E(qN) = (n* - 1) + 0(1), 

(ii) 

(iii) 
4 2 

E(qN) ~ O(n* - 1) , 

as c + 0. 

Lemma 3.8: 

(n*-1) 2 E{(e -1) 2} < (n*-1) + 0(1). 
N 

To prove Lemmas 3. 3 - 3. 8, we use basically the tools from Starr and 

Woodroofe (1972). We omit the details. Now we return to the proof of 

Theorem 3.1. 

Proof of Theorem 3.1: To prove part (a), we first assume part (b). From 

(3.11), we can write 

2 ZN 2 
E(L ) = c{ (n* - 1) E(-- 1) + E(N)}. 

N a 

Thus, 

n(c) 

2 ZN 2 
E(LN) c{ (n* - 1) E(-0 - 1) + E(N)} 

= = ----~---,------E ( L n *) c(2n* - 1) 

which implies that 

( ) _ 1 = W(c) o(c) 
n c 2n* - 1 = 

o(v'c) 

as c+ O. Hence, 

lim n(c) = 1. 
c+O 
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Now, in proving part (b), we first notice from (3.5) and (3.11) that 

W(c) 
2 - 2 

= c(n*-1) E{(eN-1)} - en*+ cE(N) - en*+ c 

2 - 2 
- n* + E(N) - n* + l} = c{ (n* - 1) E{ (eN - 1) } 

2 - 2 
(n*-1) + E(N) - n*}. = c{ (n* - 1) E{ (eN - 1) } -

From Lennna 3. 3, we have E (N) - n* .::_ O (1) and by Lemma 3. 8, we get 

2 - 2 
(n* - 1) E{ (eN- 1) } - (n* - 1) .::_ 0(1). Thus, 

2 - 2 
(n*-1) E{(eN-1)} - (n*-1) + E(N) - n* ,2.0(l). 

This completes the proof of Theorem 3.1. 

3.4 Moderate Sample Size Behavior of 

the Sequential Procedure 

We have studied extensively the moderate sample size behavior of 

the procedure (3.6) proposed in section 3.3. The results reported were 

carried out on an IBM 3081D computer system with the help of the FORTRAN 

language and the WATFIV compiler. 

For each row in Tables XX - XXV, we repeat the sequential rule (3. 6) 

500 times. We fix tn(8) = 1, cr= 1 and consider starting sample sizes 

m= 2(1)5(5)15. For each value of m, we taken*= 10,25,50(50)200. We 

start with m samples from the population f(y; 1,1), for each row and 

A 

compute cr. Next we check with the rule in (3.6) to see whether we 
m 

stop or observe one more sample. When we stop, we record the observed 

value n(i) of N* together with the value Gn(i)' the observed value of 

&n(i)' for the ith repetition in each row, i=l,2, •.. ,500. Let us write 
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1 J 
/(c) 1 J 

- 2 G 
J E G n(i)' J(J-1) E (Gn(i) - G) ' 

i=l i=l 

1 J 
/ (N*) 

1 J 
- 2 N* = E n(i), E (n(i) - N*) , J i=l J(J-1) i=l 

where J = 500, G cr. In the following tables we write SE(N*) and SE(G) 

for the standard errors s(N*) and s(G) respectively. 

3.4.1 Summary of Numerical Findings 

With the exception of the case where m = 2, the estimated values N* 

of E(N*) are very close to the corresponding values of n*, the optimal 

fixed-sample size. As m increases, we can see that the "risk-efficiency" 

and the "regret" both approach the right limit, namely, one and zero re-

spectively. This is in agreement with the conclusions in Theorem 3.1. 

The estimated values of cr are very close to one, the fixed-value of the 

shape parameter. In the absence of any prior information, a starting 

sample size of at least three seems to be a good choice. 



n* cx103 

10 12.346 

25 1. 736 

50 0.416 

100 0.102 

150 0.045 

200 0.025 

TABLE XX 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE ( 3 • 6) : m = 2 

N*xlO SE(N*)x102 cx102 - 2 A 2 2 A 2 
SE(G)xlO E(LN*)xlO E(Ln*)xlO n(c)xlO 

74.5200 17.4684 73.7770 1.9810 20.3111 23.4568 86.5895 

216.0198 36.2605 86.7266 1. 5181 7.9170 8.5069 93.0653 

463.0999 53.7442 92.9450 1. 1401 3.9696 4. 1233 96.2727 

969.2197 75.5594 97 .1621 0.7639 1.9990 2.0304 98.4532 

1468.9580 93.7276 98.0681 0.6300 1.3328 1.3468 98.9619 

1964.4780 107.6917 98.3248 0.5421 0.9986 1.0075 99.1097 

W(c)xlQ 

-0.3145 

-0.0589 

-0.0153 

-0.0031 

-0.0014 

-0.0009 

VI 
\0 



n* cxl03 

10 12.346 

25 1. 736 

50 0.416 

100 0.102 

150 0.045 

200 0.025 

TABLE XXI 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (3. 6): m = 3 

N*xlO SE(N*)xl02 Gxl02 SE(G)x102 A 2 2 A 2 
E(LN*)xlO E(Ln*)xlO n(c)xlO 

81.6400 15.0219 81.5855 1.7117 21.1901 23.4568 90.3368 

231.5199 28.5642 93 .3170 1.1913 8. 1861 8.5069 96.2286 

478.2397 40.7906 96.0973 0.8334 4.0327 4. 1233 97.8020 

982.8799 54.3054 98.5208 0.5500 2.0129 2.0304 99. 1397 

1485.3180 64.3090 99.1795 0.4313 1.3402 1. 3468 99.5397 

1985.0570 61. 7284 99.3760 0.3092 1.0038 1.0075 99.6255 

W(c)xlO 

-0.2266 

-0.0320 

-0.0090 

-0.0017 

-0.000G 

-0.0003 

"' 0 



n* cxl03 

10 12.346 

25 1.736 

50 0.416 

100 o. 102 

150 0.045 

200 0.025 

TABLE XXII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (3. 6): m = 4 

N*XlO SE(N*)xl02 Gxl02 - 2 A 2 2A 2 
SE(G)xlO E(LN*)xlO E(Ln*)xlO n(c)xlO 

85. 1999 13.8580 85.3039 1.5903 21.6691 23.4568 92.3789 

234.2999 26.4763 94.3826 1. 1052 8.2344 8.5069 96.7959 

480.2197 37.7408 96.4737 0.7732 4.0409 4. 1233 98.0020 

987.8799 46.4985 99.0299 0.4699 2.0180 2.0304 99.3909 

1488.4380 54.6730 99.3977 0.3672 1.3416 1.3468 99.6134 

1983.7370 63.7886 99.3992 0.3205 1.0034 1.0075 99.5925 

W(c)xlO 

-o. 1787 

-0.0272 

-0.0082 

-0.0012 

-0.0005 

-0.0004 

°' ...... 



n* cxl03 

10 12.346 

25 1.736 

50 0.416 

100 0.102 

150 0.045 

200 0.025 

TABLE XXIII 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (3. 6): m = 5 

N*xlO SE(N*)x102 c;x102 - 2 A 2 2A 2 
SE(G)xlO E(LN*)xlO E(Ln*)xlO n(c)xlO 

83.2000 12.9804 88.4005 1. 5168 22.0148 23.4568 93.8526 

· 234. 3199 25.5645 0.2332 1.0569 8.2347 8.5069 96.7999 

483.7598 34. 1965 0.1096 0.6954 4.0556 4. 1233 98.3596 

980.3979 46.9622 0.0452 0.4746 2.0182 2.0304 99.3990 

1488.8780 56.8837 0.0310 0.3817 1.3418 1.3468 99.6281 

1984.7980 61.4445 0.0221 0.3091 1.0075 1.0037 99.6190 

~ 

W(c)xlQ 

-o. 1442 

-0.0272 

-0.0067 

-0.0012 

-0.0005 

-0.0003 

a, 
N 



n* cx103 

10 12.346 

25 1.736 

50 0.416 

100 0.102 

150 0.045 

200 0.025 

TABLE XXIV 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (3.6): m= 10 

N*xlO SE(N*)x102 Gx102 SE(G)xl02 E(LN*)x102 E(Ln*)xl02 (c)x102 

108. 1799 6. 1977 97 .1936 1.2785 24.4667 23.4568 104.3052 

235.2198 23.5796 94.7467 0.9768 8.2503 8.5069 96.9837 

483.4998 34.2271 97. 1273 0.6954 4.0546 4. 1233 98.3333 

989.2197 45.2643 99.2129 0.4567 2.0194 2.0304 99.4583 

1488.8380 55.7146 99.4353 0.3743 1.3418 1. 3468 99.6267 

1984.5580 63.9614 99.3375 0.3221 1.0037 1.0075 99.6130 

W(c)xl02 

1.0099 

-0.2566 

-0.0687 

-0.0110 

-0.0050 

-0.0039 

"' w 



n* cx103 

10 12.346 

25 1. 736 

50 0.416 

100 0.102 

150 0.045 

200 0.025 

TABLE XXV 

MODERATE SAMPLE SIZE BEHAVIOR OF THE SEQUENTIAL 
PROCEDURE (3.6): m= 15 

N*x10 SE(N*)x102 cx102 - 2 A 2 2 A 2 
SE(G)xlO E(~*)xlO E(L0 *)xlO n(c)xlO 

150. 1799 0.5952 100.0913 1. 1272 29.6518 23.4568 126.4105 

237. 1998 22.6289 95.3924 0.9595 8.2847 8.5069 97.3877 

481. 5198 33. 1364 96.7479 0.6762 4.0463 4. 1233 98.1333 

992.5598 45. 1159 99.4893 0.4562 2.0228 2.0304 99.6261 

1486.1780 55.0275 99.2427 0.3694 1.3406 1. 3468 99.5378 

1987.2780 61.9275 99.4714 0.3111 1.0043 1 .0075 99.6812 

A 2 
W(c)xlO 

6. 1951 

-0.2222 

-0.0770 

-0.0076 

-0.0062 

-0.0032 

°' "'" 



CHAPTER IV 

ESTIMATION OF THE RATIO OF SCALE PARAMETERS OF 

TWO PARETO DISTRIBUTIONS 

4.1 Introduction and Formulation of the Problem 

In this chapter, we consider the problem of constructing confidence 

interval for the ratio of scale parameters of two Pareto distributions 

through two-stage and sequential procedures. This problem has not been 

discussed earlier. We may mention that the distribution of the quotient 

of two Pareto variates has been derived only recently by Pederzoli and 

Rathie (1980). We consider below two separate cases. 

In section 4.2, we consider the case where the shape parameters are 

equal but unknown, and propose both two-stage and sequential procedures 

to solve our two-sample problem. 

The case where the shape parameters are unequal and unknown is con

sidered in section 4.3. As in section 4.2, we consider both two-stage 

and sequential procedures. Now, let us turn to the formulation of the 

problem. 

Let u1 ,u2 , .•• be a sequence of i.i.d. random variables with the 

p.d.f. f(u;e 1 ,cr1 ) and v1 ,v2 , ... be i.i.d. random variables with the 

p.d.f. f(v;e 2 ,cr2) where f(x;6,cr) is defined in (1.1). Let us assume that 

the U's and V's are independent. 

After observing u1 ,u2 , ... ,Um from the first population and v1 ,v2 
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••• ,V from the second population, we consider the following transforma
n 

tions of the sets of random variables: 

X. = tn(U.), and Y. = tn(V.) 
i i J J 

for i=l, ••• ,m, j =l, ••. ,n. 

These transformations will give us random variables x1 ,x2, .•. ,Xm as i.i.d. 

with the p.d.f. g(x;µ 1 ,cr1) and also Y1 ,Y2, ..• ,Yn as i.i.d. with the p.d.f. 

g(y;µ 2 ,cr2), where g(t;µ,cr) is defined as in (2.1), and the X's and Y's 

are independent, µ. = tn(e.), i= 1,2. The maximum likelihood estimators 
i i 

of µ1 and µ2 are respectively 

Now form.::._ 2, n .::._ 2, the usual unbiased estimators of cr1 and cr2 are re

spectively, 

- 1 m 
u = I: (Xi - xm(l)) and m (m-1) i=l 

1 n 
v = I: (Yj - yn(l)). n (n-1) j=l 

Let d ( > 1) and a. E (O, 1) be two given predetermined constants. The 

problem we consider is to construct a fixed-ratio confidence interval for 
el 
~= o, say. We require the confidence interval to be constructed in 
62 
such a way that the confidence coefficient is at least (1- a.). Now, we 

propose to consider the confidence interval 

u au 
I = [ m(l) m(l)] 
m,n dVn(l) ' Vn(l) 

for o. It can be shown that the problem cannot be solved by any fixed 

sample size procedure where cr1 and cr 2 are completely unspecified (Lehmann 
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(1950)). Therefore we propose suitable two-stage and sequential proce-

dures to solve the problem. The procedures proposed are.along the lines 

of Stein (1945, 1949), Ghosh (1975), Ghosh and Mukhopadhyay (1980), 

Ghurye (1958), Ghurye and Robbins (1954), Mukhopadhyay (1980, 1982a) and 

Mukhopadhyay and Hamdy (1984a). 

As a matter of convenience, let us consider the following transform-
81 

ation. Let 2n(o) o*. It then follows that 2n(~) = 2n(8 1) - 2n(8 2) = 
2 

= o*. Let o* be estimated by Tm,n = Xm(l) -Yn(l) · Next we pro-

pose the interval 

I* = [T ± d*] m,n m,n 

for o*, with d* = 2n(d). It can be shown that P{ o E I } is exactly 
m,n 

equal to P{ o* E I* } which is given by 
m,n . 

crl md* cr2 nd* 
(-){1- exp(--)}+ (-){1- exp(--)} 

m cr1 n cr 2 

crl cr2 
-+-m n 

Now, we require that 

P{ o* E I* } > 1 - a.. 
m,n 

(4.1) 

(4. 2) 

The problem of minimizing the total sample size (m+ n) subject to 

the restriction that (4.1) is at least (1- a.) seems to be impossible to 

solve analytically (Mukhopadhyay and Hamdy (1984a)). However, if we 
acr1 acr 2 1 

choose m> C=-- and n> D=-- with a= 2n(-) the expression 
d* d* a. ' 

in (4 .1) is indeed at least (1 - a.). 

4.2 Equal but Unknown Shape Parameters 

In this case, we assume that cr = cr = cr with cr unknown. It is 1 2 

natural to take m = n, since we see that in this case we have C = D = 



acr 
d* . Now, we propose the interval 

I 
m 

for o. 

U dU 
[ m(l) m(l)] 
dVm(l) ' Vm(l) 

This leads to the interval 

I!= [Xm(l) - Ym(l) ± d*] 

for o*. Also note that 
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P{ o E I } 
m 

md* = 1 - exp{- d* ). (4. 3) 

4.2.1 Two-Stage Procedure 

We start with k (~ 2) samples from each population and we define 

(4.4) 

where bk is the upper 100a% point of the F-distribution with 2 and 

(4k-4) degrees of freedom, and [y] is the largest integer smaller than 

y. As in Stein (1945, 1949), and Mukhopadhyay and Hamdy (1984a), we 

propose the interval IM for o. In the following theorem, we study some 

properties of the two-stage procedure (4.4). 

Theorem 4.1: For the two-stage procedure (4.4), we have: 

(i) 

(ii) 

(iii) 

P{o E ~} ~ 1 - a 

bkcr bkcr 
d* ~ E(M) ~cl*+ k, 

lim P{ o E IM} = 1 - a, 
d-+l+ 



(iv) 

where C 

Proof: 

lim 
d-+l+ 

acr 
d*. 
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( > 1)' 

The proof of part (ii) follows by merely noting the following basic 

inequality from (4.4), 

and then taking the expectation throughout. Part (iv) follows from 

part (ii) after dividing all sides by C and then taking the limits of all 

sides as d-+ l+. Now, we proceed to the proof of part (i). From the 

definition of M, we see that M depends only on Wk. Since Wk is indepen

dent of (Xi(l)'Yi(l))' i=k,k+l, ••• , thus the event "M=m" is independent 

of (Xm(l) ,Ym(l)) for all fixed integers m= k,k+l,.... It can be shown 

that P{ o E \i} is equal to P{ o* E I~} which is given by 

E{l - exp(- Md*)} 
cr 

bk Wk 
> E{l - exp(- - 0 -)}, (4.6) 

where (4.6) follows from the lower bound in (4.5). Now, we can write 

(4.6) as 

b w 
E{P(O < Q < ~)IW} 

- cr k ' 
(4. 7) 

where Q has the p.d.f. f(q;0,1) and Q is chosen independently of Wk. 
2 4(k - l)W 

Note that 2Q "' x2 , cr k "" xf (k-l) and they are independent. 

Therefore, Qcr/Wk"" F2 , 4 (k-l)" Thus, (4.7) leads to 
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Qcr E{P(O <~~bk)}. (4.8) 
k 

So, by the choice of bk, (4. 7) can indeed be shown as (1- a.). This 

proves part (i). To prove part (iii), first notice from (4.5) that 

lim (Md)= bkWk a.s •• Thus, by the dominated convergence theorem, we 
d-+l+ 
can conclude that 

lim {a E \i} 
d-+l+ 

Now retracing the previous proof we can verify part (iii). This com-

pletes the proof of Theorem 4.1. 

4.2.2 Purely Sequential Procedure 

In the literature, property (iv) of Theorem 4.1 is referred to as 

"asymptotic inefficiency" as in Chow and Robbins (1965) or "first-order 

asymptotic inefficiency" as in Ghosh and Mukhopadhyay (1981) or 

Mukhopadhyay (1982a). Our goal is to propose a purely sequential pro

cedure which achieves the property that lim E(~) = 1. Now, for every 
d-+l+ c 

1 - -m~2, let Wm= 2(um +Vm) and we define a stopping variable 

M = inf{m: (4.9) 

where k (~2) is the starting sample size. As in Chow and Robbins (1965) 

and Mukhopadhyay (1974), it is clear that Mis a bonafide stopping rule. 

The following results can easily be derived as in Mukhopadhyay (1974). 

(i) lim (~) = 1 ~· lim E(~) = 1, (4.10) ... 
d-+1+ c d-+1+ c 

(ii) lim P{cS E IM} = 1 - a.. ... (4.11) 
d-+l+ 



Theorem 4.2: For the sequential procedure in (4.9), we have as 

d + 1 + and for k > 2 : 

(i) 

(ii) 

(iii) 

(M- C) ~ ( ) N 0,1, c~ 
E(M) = C + y + 0.5 + o(l), 

d*a. P{oE~} = 1- a.+ 0 (y+0.5-0.5a) + o(d*), 

where y is~ real number and can be determined EY_ using the basic tools 

from Woodroofe (1977), and d* = ln(d). 

Before proving Theorem 4.2, we will establish the following facts 

needed for the proof. Let us define a new stopping variable M' as 
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M' inf(m: m ~ k, 
m-1 

[ m(m-l)d*} z. < ~--""--
1. - a ... (4.12) 

i=l 

4z 2z 
where z1 ,z2 , ••• are i.i.d. r.v.'s with the p.d.f. ~ exp(~)I(z>O). 

cr 
Now, we state the following two lemmas. 

Lemma 4.1: (Swanepoel and van Wyk (1982)). The stopping variable M 

from (4.9) and M' from (4.12) are identically distributed. 

Lemma 4.2: (Woodroofe (1977)). 

and let M* 

integrable. 

(M' - C) = ~-....--
!.:: c2 

If O < s <rand k > I then {JM*Js} is uniformly 

From Lemma 4 .1, we see that it is sufficient to prove (i) - (iii) of 

Theorem 4.2 for M being replaced by M'. 

Proof of Theorem 4.2: 

To prove (i), we appeal to the theorem of Ghosh and Mukhopadhyay 

(M' - C) £ 
(1975), and it follows that ~ ~ N(O,l) as d + l+. Parts (ii) 

c· 



and (iii) follow from Theorem 2 of Mukhopadhyay and Hamdy (1984a), but 

after noting that d*+ 0 as d+ l+. 

4.3 Unequal and Unknown Shape Parameters 

Let us now assume that cr1 , cr 2 are both unknown and unequal. We 

consider taking unequal sample sizes m and n from the U's and V's, 

respectively. We propose the interval 

u au 
1 = [ m(l) m(l)] 
m,n dVn(l)' Vn(l) 

for o. Now, P{o EI } is given by (4.1). 
m,n 

4.3.1 Two-Stage Procedure 

We start with k (~2) samples from each population, and we define 
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M = max{k, 
gkUk 

[ci"*"] + 1L ... (4.13) 

N max{k, 
gkvk 

[ci"*"] + l}' ... (4.14) 

where gk is a suitable constant that depends only on k and a. Now we 

propose the interval~ N for o. We have defined gk properly in Theorem 
' 

4.3 

Let us define R with the p.d.f. f(r;0,1) to be independent of Uk, 
2(k- l)Dk 2(k- l)'\ 

We notice that W' = 2R, S = , T = are all 
crl cr2 

independent x;, x;k_2 and x;k_2 respectively. Let 

G 
min(S,T) 
{ (k-l)W'} 

Theorem 4.3: For the two-stage procedure (4.13) - (4.14), we have 



P{ 8 E L } > 1 - a, 
~.N -

where the constant gk is determined to satisfy the condition: 

1 
P(- < G < co) 

gk 
1 - a. 

Proof: 

First, we notice that P{ 8 E IM,N} is equal to P{ 8* E ItN}. Now we 

proceed as in Mukhopadhyay and Hamdy (1984a). From their Theorem 3 and 

our (4.1), it is easily seen that 

P{ 8* E \i,N} 
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{
<°"1)(1-exp(- Md*))+ tz)(l-exp(- Nd*)V 

a a ( 4 .15) __ E M cr1 N cr2 J , 
(--1. + ~) 

M N 
Once we notice that the expression inside the expectation in (4.15) is a 

Md* Nd* convex combination of 1- exp(---) and 1- exp(---) then it follows 
cr1 crz ' 

that 

P{8* EL* } 
~.N 

Md* Nd* 
> E{min{l - exp(---;--), 1 - exp(--)}} 

1 cr2 

Md* Nd* E{l - exp(-min(-, -) ) }. 
crl cr2 

gkUk 
From (4.13) and (4.14),_we ~ave M..:. ~ and 

... (4.16) 

Thus, 

. (Md* Nd*) min--,--
crl cr2 

. Uk Vk 
> gkmin (-, -). Therefore, from (4.16) we obtain 
- crl cr2 

= P{ 8* E I* } M,N 



Uk Vk 
~ E{l - exp{- gk min (-, -) }} 

0'1 0'2 
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. Uk Vk - -
= EP{O < R < gkmin(-,-)luk,Vk} 

0'1 0'2 
••. (4.17) 

W' gk 
= P{O < < } 

min(S, T) (k - 1) 

p{...!... < G < co}. 
gk 

• .. (4.18) 

Hence, to implement the two-stage procedures (4.13) - (4.14), we deter

mine gk in such a way that P{_!_ < G < co} = 1- o., where R and G are as 
gk 

defined earlier. This completes the proof. 

For various values of a and k, the tables in Krishnaiah and Armitage 

(1964), Gupta and Sobel (1%2), Guttman and Milton (1969), and 

Mukhopadhyay and Hamdy (1984b) will enable us to find gk. 

4.3.2 Purely Sequential Procedure 

In this case we define two stopping variables Mand N as follows: 

au 
M= inf{m: m ~ k, m ~ d:}, ... (4 .19) 

-av 
N = inf{n: n ~ k, n ~ d:}, ... (4.20) 

where k (~2) is the starting sample size. Along the lines of 

Mukhopadhyay (1974), it can be shown that Mand N are bonafide stopping 

times. When we stop, we propose the interval IM,N for o. 

Theorem 4.4: For the procedure in (4.19) - (4.20), we have as d-+ 1+: 

(i) P{oEIM N}-+ 1 - a, 
' 

(ii) E(M+N) = C + D + 2y + 1 + o(l), 
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where y is~ real number and can be determined as mentioned in Theorem 

4.2. 

We can also show that the following theorem holds for our proce-

dure in (4.19) - (4.20). 

Theorem 4.5: For the procedure in (4.19) - (4.20), we have as 

d+ l+: 

where H* 
1 

= 0.253 + za, d* = in(d). 

We omit the proofs of Theorems 4.4 and 4.5 since they follow along 

the same lines as in Mukhopadhyay and Hamdy (1984a) with obvious modifi-

cations. 



CHAPTER V 

CONCLUSIONS 

In this study, we considered several different problems in sequen

tial estimation. First, we addressed the problem of estimating the scale 

and shape parameter of a Pareto distribution. We considered a sequential 

procedure for estimating the scale parameter pointwise assuming a general 

loss function. It has been shown that our procedure is asymptotically 

risk efficient. The exact distribution of N, our stopping variable, has 

been derived using Robbins' (1959) algorithm. With the help of the exact 

distribution of N, we examine some of the exact characteristics. From 

the numerical studies of our sequential procedure for moderate sample 

sizes, we notice that our proposed procedure performs very well. 

Next, we have constructed a fixed-ratio confidence interval through 

two-stage, modified two-stage and sequential procedures for 8. Our 

numerical studies indicate that two-stage procedures perform well for 

moderate sample sizes. Specifically, our coverage probabilities are seen 

to be very close to the prescribed goal. 

In estimating the shape parameter, we considered a purely sequential 

procedure, assuming a loss function of the form of squared error plus 

linear cost. Theoretically, we have shown that our "regret" is O(c). 

Extensive numerical studies indicate that our procedure performs very 

satisfactorily even for moderate sample sizes. 

In the second set of problems, we considered estimating the ratio of 
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the scale parameters of two Pareto distributions through several two

stage and sequential procedures. We separately examined two cases; when 

the shape parameters are unknown but equal, and when the shape parameters 

are unknown and unequal. Only asymptotic properties of our procedures 

were obtained. 

Throughout this study, we have derived theoretical results which are 

either more general than those already available in the literature or 

they are simply new findings. We have built a theoretical foundation for 

dealing with sequential estimation problems for Pareto distributions. 

For practical applications, we recommend the modified two-stage pro

cedures (2.20) - (2.21), with the choice of y=0.05, and the sequential 

procedure (2.7) with m=S in estimating the scale parameter. In estima

ting cr, we recommend using the sequential procedure (3.6), and in the 

absence of prior information, a starting sample size of at least three 

is suggested. For the two-sample problems of Chapter IV the starting 

sample size k is recommended to be taken as 5 or 10. 
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