ON 2-HEREDITARY RINGS

By
CARLOS ENRIQUE 9§BALLERO
Licenciatura en Filosofia
Universidad de Chile
Santiago, Chile

1974

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1984



« -4

H\i%if’
qgHY
2 1id ¢

CGep &



ON 2-HEREDITARY RINGS

Thesis Approved:

OM%%M/(
Thesi dv1ser
Qj' jﬁz/LVb«A i%?
éﬁ/é&ﬁ?a«ia/' 25? / }EZza,<£452/é?
(}ﬁ/ﬁﬁt Mj*%/b (;QKJ;\
/Zévvuh/\Yf%Cgiffﬁ/

//70£*"4n~—/ //)44(]Lb&jﬁan———~

Déan of the Gfaduate College

il 1205512 |



ACKNOWLEDGMENTS

I wish to thank all those persons who have helped me through my
doctoral studies. My deepest gratitude goes to Dr. Joel Haack, without
his generous and continuous help and his infinite patience this work
would have never been completed. I thank Drs. John Wolfe, Dennis
Bertholf, Wayne Powell and Warren Ford for serving on my committee. I
also thank Dr. Paul Duvall for his helpful indicatioms.

My wife Macarena and my daughters Soledad, Montserrat and Javiera
gave me their full support, encouragement and love. I have no words to
express my gratitude for their generosity.

Last but not least, I thank Ms. Barbara Newport who has done a won-

derful job in typing this dissertation.

1ii



TABLE OF CONTENTS

Chapter
I. INTRODUCTION . . . . . . « . .

IT. 2-HEREDITARY RINGS .

III. MORITA DUALITY AND 2-HEREDITARY RINGS.

BIBLIOGRAPHY. . v ¢ v ¢ v ¢« v ¢ o o o o« o &

iv

Page

27

75



Figure

Figure Page

1. Diagram of the Twisting Induced by the Addition of the

ATTOW V. % V. v v v v v v e o o o o o o v o o o o o o o o o« o+ 43
U v



CHAPTER I

INTRODUCTION

In his paper "On algebras close to hereditary algebras" [ 3]
Bautista introduces the artin algebras A satisfying the *) condition.
Following his definition we will say that a (perfect) ring R satisfies

the *) condition if given any pair of indecomposable projective left

R-modules P and Q and given any R-homomorphism {: P> Q then either y=20
or ¢ is a monomorphism. Bautista himself ([3] and [4]) has studied

the artin algebras satisfying the *) condition in connection with their
representation theory. Also, Martinez-Villa [14] has studied and
characterized the algebras which are stably equivalent to artin algebras
satisfying the *) condition.

Azumaya [2] and Morita [15] have proved that there is a (Morita)
duality between the category of finitely generated left R-modules RFM
and the category of finitely generated right R-modules FMR if and only
if R is left artinian and the indecomposable injective left R-modules
are finitely generated. Examples of artinian rings, whose indecomposable
left and right injective modules are finitely generated and which do not
have self-duality have not been known until very recently [17]. On the
other hand, the list of the classes of rings which are known to have
self-duality is not very long, and includes artin algebras, Q-F rings,
some serial rings [10] and incidence rings over the division rings [11].

Azumaya calls a ring R exact if R is left artinian and has a com-



position series of (two sided) ideals

RRR=10311_>_...3In=0

such that for each i=1,...,n every left endomorphism of Ii-l/Ii is given

by right multiplication of an element of R. He has conjectured that these

rings have self-duality.

In this work we will be mainly concerned with a particular class of
artinian rings satisfying the *) condition. It will follow from [ 6 ]
that these rings are exact.

In Chapter II we will study the projective and injective modules
over our rings and will give a characterization of the ring in terms of
them. In Chapter III we will verify Azumaya's conjecture for the rings
we are studying and will extend results in [ 9] and [11] by using ring
theoretic tools.

The rest of Chapter I is devoted to fix the notation and to intro-
duce the most basic notions. We will use [ 1] as our basic reference.

For a ring R and a left R module M, a submodule K of M will be
called essential in M, abbreviated KAM, if for every submodule L<M,
KNL = 0 implies L=0. Dually, a submodule K of M will be called super-
fluous in M, abbreviated K<<M, if for every submodule L <M, K+L=M
implies L=M.

If N<M is a submodule of M we will say that N' <M is an M-comple-

ment of N if N' is maximal with respect to NAN' = 0. 1In such a case

N®eN' AM. [1, Prop. 5.21]. We will say that T<M is an M-supplement

of Nif T is minimal with respect to N+ T = M.

. 66 M, >
k jer 1
M the natural projection onto the kth summand, 1y (or 1 if the context

If (Mi)iEI is a family of R-modules we will denote by w



1s clear) will denote the natural inclusion map N <> M for N<M. Sim-

ilarly, n. (or n if the context is clear) will denote the natural epi-

N
morphism M~+M/N for N<M.

For a ring R, J=J(R) will be the Jacobson radical of R. Also, a
set {el,...,en} of idempotents of R will be called basic if it is pair-

wise orthogonal and {Re Ren} is a complete irredundant set of repre-

IERREE
sentatives of the primitive left R-modules.

Finally, we recall that if R is a left perfect ring, then R has a
basic set of idempotents {el,...,en}; it follows that Rel/Jel,...,Ren/Jen

includes exactly one copy of each simple left R-module. With R left per-

fect, we also have

RadM = JM<< RM and Soc(N) = JLN(J) ANR.



CHAPTER II
2-HEREDITARY RINGS

A well known theorem of Cartan and Eilenberg states that a ring R is
left hereditary if and only if submodules of projective left R-modules
are projective if and only if quotient modules of injective left R-modules
are injective [16]. An entirely analogous result holds for right
R-modules. 1In this chapter we will establish a similar characterization
for artinian rings which are sums of distributive modules and also satis-—
fy the *) condition. The problem of left and right modules will also be
addressed.

Although we are mainly concerned with rings with minimum condition,
that is, with artinian rings, we will be stating some early results in
a more general setting. The existence of projective covers as well as
the need of the relations RadM = JM<<M (and SocN = ILN(J) A NR) make
perfect rings the natural objects of our study. So, let R be a left per-
fect ring, J its (Jacobson) radical and {el,...,en} a basic set of prim-
itive idempotents. It is known that {Rei}?=l constitutes an irredundant
list of representatives of the indecomposable projective left R-modules
and {Rei/Jei};;l an irredundant set of representatives of the simple
left R-module.

If RP is any indecomposable projective then P/JP is simple and JP
is the unique maximal submodule of P. We will call local a module with

this property, that is, a module with a unique maximal submodule.



Proposition 2.1

Let R be a left perfect ring. A non-zero module RM is local iff M

is the homomorphic image of an indecomposable projective R-module.

Proof: <) Let _P be an indecomposable projective module

R
Y: P > M an epimorphism.
Then M 2=P/Kerq; and hence, (P/Kervy )/J(P/Kery ) 2=M/JM, that is

n
P/JP = M/JM.

Therefore, M/JM is simple and JM is maximal, that is, M is local.

=) If M 1s local then M/JM is simple. Let
P: Re, > M/JM
be a projective cover and let

n: M- M/IM

denote the canonical projection. Then there exists a homomorphism
h: Re, - M
i

such that

Re,
i

e
% Vv

MT M/JIM

p

commutes. The fact that JM<<M and that p is onto implies that h is onto.

Definition 2.2

We will say that a left R-module N is colocal if it has a unique



minimal submodule, or equivalently if its socle is simple.

It is clear that the indecomposable injective left R-modules are co-
local.

Dual to proposition 2.1 we have

Proposition 2.3

RM is colocal if and only if there exists a monomorphism y: M -+ E

with E an indecomposable injective R-module.

Proof: <) Let ¢: M - E be any non-zero homomorphism, E an indecompos-
able injective. Then we have that E=E(S) with S a simple R-module.

Clearly,
SA QDY A E

that is M)y 2=M/Kerlp has S as its unique minimal submodule. In parti-
cular, if ¢ is 1-1, M is colocal.
=) Let M be a colocal R module, S its unique simple submodule. Then

the following diagram commutes

E(S)

Moreover, since S = Soc(M) A M, it follows that ¥ is 1-1.

We now start to examine rings which satisfy the *) conditionm.

Definition 2.4

Let R be an artinian ring. We will say that R is left 2-hereditary

if, given any pair of indecomposable projective left R-modules P and Q



and any non-zero map P: P - Q, ¥ is monic.

2-hereditary rings are then artinian rings satisfying the *) condi-
tion.

The name "f%-hereditary" for these rings is partially justified in

the following.

Proposition 2.5

Let R be a perfect ring. R satisfies the *) condition iff local

submodules of indecomposable projective R-modules are projective.

Proof: Let RQ be an indecomposable projective with K<Q local. Then
K/JK is simple. Let p: Rei + K/JK be a projective cover and n: K - K/JK
the natural projection. Then there exists a homomorphism h: Rei > K <Q
such that hn=p. But p is onto and JK<<K, hence h is onto. Also, since
Rei is an indecomposable projective, we have that h is a monomorphism and
hence an isomorphism.

<) Let RP’RQ be indecomposable projective R-modules, y: P -+ Q a non-zero

homomorphism. Then (P)y is local and hence (P)y is projective. Therefore
p Y5 )y —s 0

splits and we can write P 2=Imq; ® Kery . But Kery < JP<<P. Therefore

via ¢ and ¢ is 1-1.

Before we state our next result, notice the following: Suppose that
M is a local module; then M/JM being simple implies that M/JM and hence M
are indecomposable.

Similarly, a dual argument shows that colocal R-modules are also in-



decomposable.

We can extend proposition 2.5 as follows.

Proposition 2.6

Let R be a perfect ring that satisfies the *) condition and P a pro-

jective R module. Then, if M<P is local, then M is projective.

Proof: We can put P= P](_Al)éB. ..@PI(IAn) where each Pi is an indecomposable

projective module. Let m P>P, denote the natural projection onto Pi and

i
let Mi = Mn‘i < Pi' We claim that Mi is local. If N=JM is the unique

maximal submodule of M, then Ni=N1r is maximal in Mi’ for suppose that

i
_ -1 -1 -1 .
Ni _7_ Li < Mi then N = (Ni)1ri _7_ (Li)'n j_ (Mi)Tri = M. Moreover, Ni is

the unique maximal submodule of M, for if Ni <M, N]!_ # Ni is maximal,

(N!)'ﬂ'Tl is maximal in M, and N'w 1 # N.
i’'i i'i
By hypothesis then, Mi is projective and the sequence

Ti
0 —> Kerm, M M 0
i 1

splits, i.e., M ;Mi é Ker ™ which is a contradiction, for M is local.
Therefore M = Mi and Mi is projective.

It is known that an artinian left hereditary ring is right heredi-
tary and vice versa [ ]. As the example below shows, this is no longer

true for arbitrary left (right) hereditary rings.

Example:
Let
a b
R = {(0 c)' a€Z, b,c€Ql.

We may describe R in a more compact form and write



R = (% 8).

The right ideals of R are

Ién) - (°Z 8) , Iin) = (2 Y | yithn>0, nez

0 O
12=(g o ; I3=(8 8)
I4=(8 8) ’ Iél)={(0 Aqq)=q€Q}, A>0, A€Q.
It is easily checked that Ién), Iin), I2, I3, I4 and Iéx) are projective

right R-modules, that is, R is right hereditary. However, the left ideal

a projective left R-module. To see this, define

B: R > Z

7

Clearly, B is a ring homomorphism. Then every left Z-module M becomes

a left R-module by "extension of the scalars", that is, by defining

km where r = (k 2).

rm = B(r)m

Let

Then, if we define (mr)a = (B(r)m)a = (km)o, o becomes an R-homomorphism.
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Moreover, since o is clearly a monomorphism we get that RQ ;=RL via a.
(We remark that RQ is obtained by extension of scalars.) But ZQ is not

Z-projective and hence not R-projective.

For rings satisfying the *) condition we have,

Proposition 2.7 [19]

Let R be a left perfect ring. Then R satisfies the *) condition

on the right iff R satisfies the *) condition on the left.

Proof: Assume R satisfies the *) condition on the right, let Re, Re' be
two indecomposable projective left R modules and let f: Re - Re' be a
non-zero homomorphism. If f is not a monomorphism, let p: P+Ker f be
projective cover with P = PiAl) 0 ... & Péém) and Pi Z Re" an indecompos-

able projective; that is, there is a primitive idempotent e" such that

Re" £ Re £ Re' and pf = 0.

In other words, if for every g: Re" - Re where e"

€ R is a primitive
idempotent gf # 0, then f is a monomorphism.

Then let g: Re'" - Re by any homomorphism and apply HomR(—,R) to

Re" —&> Re _119 Re'

Then

* *
Hom(Re',R) ii—é Hom(Re,R) £ Hom(Re",R)

;I g IgA I;

e'R ——> e —E— e""R

where the vertical arrows are the natural isomorphisms and f and g are

the homomorphisms making the diagram commute. By hypothesis g is monic
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and hence fé # 0. Hence f*g* = (fg)* # 0 and consequently fg # O.

The remark below, although easy to establish will be very useful.

Remark

If Q is an R-module such that every colocal factor of Q is injective
then every non-zero map ¢: Q - E into an indecomposable injective is an
epimorphism. To see this, let ¢: Q + E be a non-zero map then (Q)¢ < E
and since E has a unique simple submodule so does (Q)¢ 2=Q/K<=:rq> . Hence

(Q)¢ is injective and (Q)¢ = Q.

The next lemma is a projectivity test for local modules over semi-
primary rings. Later in the sequel we will state an improved version
under more restrictive conditions for the ring, which will be an essen-

tial tool in proving the main result of this chapter.

Lemma 2.8
Let R be a semiprimary ring and let RM be a local module. M is pro-

jective iff given the solid part of the diagram

with E an indecomposable injective R module, there exists a homomorphism

h: M » E which makes the diagram commute.

Proof: <) We may assume that M is a factor of an indecomposable projec-
tive module P with p: P - M the natural epimorphism. If k = Kerp # O,

let S be a simple submodule of P contained in Kerp. Pick k so that
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SﬂJkP=S, SﬂJk+lP=0

+
Let n: P » P/Jk 1P be the natural epimorphism. Let 1: S - E(S) be the

injective envelope of S. Since n/S is a monomorphism, there exists a map
+
/K P/Jk lP + E(S) such that 1 = ny/S.

Let N = imny and let B = E/JN. Let f: P/K +~ B be given by (x+K)f =
(x)ny+JIN and let g: E(S) > B be the natural epimorphism. Then by hypo-

thesis, there exists h: P/K =+ E such that

/ l commutes.

E(S) —— B

We claim that Imh € N. The diagram below commutes:

anl;/ P\‘;/K
| >k

re
E(S) —— B

Let P = Re, e€ R a primitive idempotent. We have that

(e)np+JIN = enyg = epf

(e+K)f

(e+K)hg

(e+K)h + JN.

Therefore, (*) eny- (e+K)h € IJN and hence (e+K)h€ N, for eny € N.
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Therefore, Imh < N as desired.
Now, since P is projective, there exists an endomorphism o of P such

that ony = ph. From (*) we have that
(P) (lp— a)ny = (P)(ny-ph) < JN, and hence
(®) (1, -a) < JP.

Consequently,
(1p -a) € J(End(RP)).

Write o = lp+B with BEJ(End(RP)). Let 0 # s € S. Then

o
fl

sph = sany -

sny + sBnyY = st + sBnY.

But B € JEnd(RP) implies that sB € JJkP = Jk+lP. Consequently, we have

that sBn=0 and hence s1 =0 which is a contradiction. We then conclude
that K=Kerp = 0.
Now we state the corresponding dual result. The following remark

will be useful in proving it.

Lemma 2.9

Let _M, z € Sock(M) and let B € JEnd (RE) . Then, (2)B € Soc ).

R k-1

Proof: Let rEJk_l, j €J. Then erJk and 0 = (jr)z = j(rz), that is

rz € Soc(E). But J(End(RE)) = )(Soc E) and hence 0 = (rz)B = rz8,

T
End(RE

i.e., (z)BE€ Soc (B).

k-1

Now we prove the promised dual result
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Lemma 2.10

Let R be a semiprimary ring and let _M be a colocal module. M is

R

injective iff given the solid part of the diagram

with B an indecomposable projective R module, there exists a homomorphism

w: B > M which makes the diagram commute.

Proof: <) Let M be an R-module satisfying the hypothesis, and assume

M is not injective. Let T=Soc(M) and let E=EM). Then E=E(T), and
since T is simple, E is indecomposable. Let L be a maximal submodule of
E containing M and let k be an integer, 0<k<Loewy length (E) such that
Sock(E) +L = E and Sock_l(E) +L=L. Let p: P -~ E/L be the projective
cover of E/L and let n: Sock(E) + E/L be the canonical epimorphism. Then
there exists a homomorphism y: P - Sock(E) such that yn=p. Let Q =

(T)w_l; by assumption there exists ¢: P - M such that the diagram

M
. ¢

¥/Q l \ commutes.

Q—— P

Notice that Kery = (0)(1)_1 < (T)w_l = Q; that is, Kery N Q < Ker ¢.

Hence, there exists h: P/Kery -+ M such that

P/Kerp) —> M
AT

m ]\ ,/’: commutes. (1)
~

P
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Let f: P/Kery - Sock(E) be the quotient map of ¢. Then, by (1) and

since E is injective, there exists

o € End(RE) such that ha = f (2)
Hence, tha = wf, so ¢a = ¥ and 1¢o = 1y. That is,

Ya/Q = ¥/Q. (3)

Let t€T; then t=xy for some x € Q. Applying (2) gives xya = to = xp =
t; that is, the restriction of o to T is the identity map. This implies
that o is monic, for T is the unique simple submodule of E.

Moreover, since E is indecomposable, o is also epic and hence an
isomorphism which fixes T elementwise. Let o' be the inverse isomor-

phism of a. Then o' also fixes T elementwise and h = fa'. Hence

b = ba'.

Let B =a'-1 Then Ker B contains T and consequently Ker 8 is essen-

5
tial in E. Then B € J(End(RE)) (see for example [1] 18.20).

We can write:

v(B+1) = yB+y

<
I

¢n = YBn+yn.
But E¢ <M<L, hence ¢n=0, and we have

ygn+p = 0.

Let x€P. Then xy € Sock(E) and by Lemma 2.9, p=0, which is a contradic-

tion.
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Now we start placing restrictions on our ring. Some definitions are

in order.

Definition 2.11

Let R be an arbitrary ring.

a) A left R-module M is uniserial if the lattice of submodules
S(M) of M is a chain, that is, for any submodules A and B of M either ACB
or BCA.

b) A left R-module M is distributive if the lattice of submodules

S(M) of M is distributive, that is, for any submodules A, B, C of M we

have AN (B+C) = (ANB)+ (ANCQC).

Proposition 2.12 ([51, [7], [9])

Let R be a semiperfect ring. The following are equivalent.

1) RM is distributive.

2) Every quotient module of M has at most one copy of every simple
submodules in its socle.

3) For each primitive indecomposable projective P the set of sub-
modules {Imy: y € Hom(P,M)} is linearly ordered.

3') For each simple left R-module T, the set of submodules {Ker vy:
Y € Hom(M,E(T)} is linearly ordered.

4) TFor each primitive idempotent e € R the left eRe-module eM is
uniserial.

4') For each simple left R-module T, the right End(RE(T))—module

HomR(M,E(T)) is uniserial.

Definition 2.13

Let R be a left (right) perfect ring, {ei}n a basic set of primi-

i=1
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tive idempotents of R. R is left (right) semidistributive if the left

(right) R-modules Rei (eiR) are distributive.

A perfect ring R is semidistributive if it is both left and right

semidistributive.

Proposition 2.14 [8]

If R is an artinian semidistributive ring then the indecomposable

injective R-modules are all distributive.

As promised earlier, a result similar to (2.8) is now proved.

Lemma 2.15
Let R be a semidistributive artinian ring. A local left R-module M

is projective if and only if, given the solid part of the diagram

with E an indecomposable injective, B a colocal factor module of E and g
the natural epimorphism, there exists a homomorphism h: M - E that com-

pletes the diagram commutatively.

Proof: <) We may assume that M is a factor of an indecomposable pro-
jective module P with p: P > M the natural epimorphism. If K = Kerp # O,

let S be a simple submodule of P contained in Kerp. Pick an integer k

k-1, _ k+1

so that SF)JkP =8, SNJ 0. Let n: P > P/J “P be the natural epi-

morphism and let 1: S - E(S) be the injective envelope of S. Since n/S
k+1

is a monomorphism, there exists a map y: P/J ~P - E(S) such that

1=nP/S Let N = imny and let L/JN be a complement of N/JN in E/JN so
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that (N+L)/L X N/(NNL) = N/IN is an essential simple submodule of
B = E/L.

Then B is colocal (see [1] 5.21). Let f: P/K >~ B be given by
(x+K)f = xny+ L, f is well-defined because Kf < (JP)£=JN<L. Let
g: E(S) >~ B be the natural epimorphism. By hypothesis, there exists
h: P/K - E(S) so that f=hg. Since R is semidistributive, E(S) is dis-
tributive, so the set of {Imy: y € Hom(P,E)} is linearly ordered under
inclusion. Hence either imh <N=imny or N<imh. We claim that imh=N.

First, imh is not strictly contained in N, for otherwise imh <JN<L, so

that O0=hg=f, a contradiction. Hence imh>N. Since imh+L=N+L we have
imh/JN = (imhN (N+1))/JN = N/JN & (imh N L)/JN

by modularity. But imh/JN is local and hence indecomposable, so imh(1L =

JN and imh = N as claimed.

.

Now, since P is projective, there exists an endomorphism a of P
such that ayn = ph.

Since

JN > (P)(ny - ph) = (P)(lp-a)mb
we have that

®) (lp -a) < JP.
Consequently,

1p—oc € J(End(RP)).

Let a=1p+6 with BEJEnd(RP). Let 0#s€S. Then
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o
]

sph = sony

sny + sBny = s1 + sBnyY

. +
Since BE.I(End(RP)), sB € JJkP = Jk lP. Consequently we have that sfn = 0

and hence st = 0 which is a contradiction. Therefore K=0 and M is pro-
jective.
The condition of M being local in Lemma 2.15 is necessary as the

next example shows.

Example:

Let D be an arbitrary division ring. Let

The ring structure of R is the one obtained by considering R as a subring

of the ring of the 3x3 matrices over D. Let

u
M={{v]): u,v,z€D).
zZ

Then M can be given an R-module structure by restriction of scalars. Let

Then Pi 2=Rei, i=1,2,3, where eijE R is the matrix with 1 in the (i,j)

position, zero everywhere else and ei==eii. The map p: P,®P_ >~ M

(6)-¢) = (=)
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is a projective cover and M is not projective. Also, P2 and P3 are maxi-

mal in M, so M is not local.

If RS is simple and RK is any colocal (and hence indecomposable)

module we claim that the solid part of the diagram

.

E(S) K 0

can be commutatively completed. Let 8, ;=Rei/Jei, i=1,2,3, then
E(S,) = M/L, where
i i

= . = = . = *
L, =2 {ij. eiJ 0} == {RmJ. ekReJ 0} (*)

and mj = (éj’k)kEM [9]. Then Ll=0 so E(Sl)=M, and given

M_T-> M/N

with M/N colocal, there exists a unique map f': M > M 3 f'm = ¢ (see [11]

Lemma 3), L,=Rm_+Rm,6 =P

r\J . . . . .
9 3 1 =P, s E(SZ) —-M/P3 which is simple (isomorphic to
52), that is E(SZ) has no submodules other than the trivial ones from

which we infer that

~ <
o

E(Sz)

can always be commutatively completed. L, = Rm,+Rm, =P then
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E(S.) = M/L. = M/P
3 3 2°

But M/P2 S and the diagram

3

N e——

E(S3)
can (trivially) be completed.

Proposition 2.16

Let R be a perfect ring and let M be an R-module. If N<M is a max-
imal submodule, then there exists a local submodule K of M such that M =

K+N.

Proof: Let K be a supplement of N in M, that is, a submodule L which is
minimal with respect to N+ L = M. Then [12] KN N<<K. Hence KNN < JK.
We have M/N = (K+N)/N 2=K/(KFIN) which implies that K/(KNN) is simple.
Then the map h: K/(KNN) + K/JK defined by (t+KNN)h = t+JK is an iso-
morphism. Hence K is local.

Dual to Lemma 2.15 we have

Lemma 2.17
Let R be a semidistributive semiprimary ring. A colocal left R-

module M is injective if and only if given the solid part of the diagram

with P an indecomposable projective, N a local submodule of P and 1 the
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natural inclusion, there exists a homomorphism h: P - M that completes

the diagram commutatively.

Proof: <) Assume M is not injective. Let T=Soc(M), let E=E(T) be the
injective envelope of T. Then E = E(M) = E(T) is an indecomposable in-
jective.

Let % denote the Loewy length of E, let L<E be a maximal submodule
of E containing M and let k<% be an integer such that Sock(E) +L = E,
Sock_l(E) +L = L. Let X: P » E/L be the projective cover of E/L and let
m: E > E/L be the natural epimorphism. Then there exists a homomorphism
P: P > Sock(E) such that ym = A.

Let Q = (T)kb_l < P. Since Kery < Q, ¢/Q induces an isomorphism
from Q/Kery onto T, consequently, Ker y is maximal in Q, and there ex-
ists K<Q, K a local submodule, such that K+Kery = Q (Prop. 2.16).

By assumption, there exists a homomorphism ¢: P - M such that the diagram

)
V/K T\ "

commutes. This implies that

KNKer¢ = Kery N K. (*)

Since P is distributive and E is colocal we conclude ([18], Prop. 2.3)

(2]

that either Ker ¢ < Kery or Ker y <Ker ¢. We claim that Kery = Ker ¢.

~
First, if Kery < Ker ¢, then, since Kery is maximal in Q and ®)y =

P/Ker ¢ is colocal (Prop. 2.3) we see that

Q/Kery < Ker ¢ /Kery < P/Kery.
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Hence, ¢/Q = 0. But ¢/K = $/K and ¢/K = 0 which is a contradiction.

Assume then, that Ker¢ < Kery. From (*) and by modularity,
Ker¢ = Ker¢ + (Kery N K) = Reryp N (Rer¢p + K).
Hence,
Q/Ker¢ = Q/(Kery N (Rer ¢ + K)) = Q/Rery ® Q/(Ker¢ + K).
Since Q/Ker ¢ is colocal, we conclude that Q/(Ker ¢ +K) = 0. But

Q/(Rer¢ +K) = (Ker ¢ + Kery + K)/(Ker ¢ +K)

= Rer ¢/ ((Rer ¢ + K) N Ker ¢ )

Ker ¢/ Ker ¢.

So, Ker¢ = Kery as claimed. Let ¥: P/Rery - Sock(E) be the monomor-
phism induced by ¢ and let 5: P/Ker ¢ + M be the monomorphism induced by
¢. Then there exists o€ End(RE) such that yo=¢. It is then clear that
o is a monomorphism; moreover, since E is indecomposable o is an isomor-

phism and Yo=¢. Hence yYa/K = ¢/K = y/K.

Let t€T, then t=xy for x€K

(o = (X)Ya = (XY = t.

Hence, a/T = 1.. Let B=1-a, since Ker g > T, Ker g A E and BEJ(EndRE)
we can write a=1+8, BEJ(End(RE)). Yo =¢ implies ¥(1+ B) =4¢. But
¢A=0. Hence YA+PBX = 0. But xYB € Soc, ,(E) for x € P/Ker¢.

So 0 = xUBA and YA = O which is a contradictionm.
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Theorem 2.18

Let R be a semidistributive artinian ring. The following statements

are equivalent.

1) R is left f-hereditary.

2) Local submodules of (indecomposable) projective left R-modules are
projective.

3) Colocal factor modules of (indecomposable) injective left R-modules
are injective.

4) Nonzero maps between indecomposable injective left R-modules are
epimorphisms.

Moreover, these statements are equivalent to those formed when left is

replaced by right.

Proof:

1) < 2) Propositions 2.5 and 2.6.

3) = 2) Let E/K be a colocal factor module of an indecomposable in-
jective left R-module E. Let P be an indecomposable projective left R-
module with local submodule M. Consider the following diagram where

1: M > P is the inclusion map and n: E > E/K the natural epimorphism.

0 M P
V!
f l a, | B
© v
E/K <2— E

Since E/K is injective, then there exists a homomorphism a: P-+E/K such
that tao=f. Since P is projective, there exists a homomorphism B: P - E
such that Bn=o0. Let h=18; from Lemma 2.15, we see that M is projective.

2) = 3) Let M be a local submodule of an indecomposable projective R-
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module P. Let E be an indecomposable injective R-module, E/K a colocal
factor of E. Consider the following diagram, where n: E -+ E/K is the

natural epimorphism and i: M - P the inclusion map.

E—> E/K —> 0

T £

P<—7f—- M < O

By assumption M is projective and hence, there exists a homomorphism
o: M > E such that an=£f. The injectivity of E implies the existence of
a homomorphism B: P -+ E such that 1B=a. Let g=8n. Then, by Lemma 2.17
we see that E/K is injective.
3) = 4) Let Q be an arbitrary injective R-module, Q an indecomposable
injective R-module. Let ¢: Q ~ Q be a nonzero homomorphism. Then, by
assumption, 6¢ ;=6/Ker¢ is injective and Q g=(Q)¢€PL, some R-module L.
But Q being indecomposable implies that ¢ is onto.
4) = 3) Let E be an indecomposable injective R-module, K a submodule
such that E/K is colocal. Then Soc(E/K) is simple and E(E/K) is an in-
decomposable injective R-module. Let n: E - E/K be the natural epimor-
phism, 1: E/K - E(E/K) the natural inclusion. Let a=n1. By assumption
o is onto and hence so is 1. Then E/K is injective.

Finally, the dual result to Proposition 2.5 shows that 4) implies

the non-parenthetical version of 3).

We close this chapter by showing some examples of semidistributive
f2-hereditary rings.
1. Let D be a division ring and let (X,<) be a finite ordered set.

Define
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R={z d,. x,., i,j €XJ}.
i<j 13 TiJ

If we define

( d..xij)(.Z,d!.x..)= I ( Z  d,.d". Ix,. .,

X
i35 ij i<j i ij i<j i<k<j ik  kj"Tij

then R becomes a ring, called the incidence ring of D over X. This ring

may be considered as a subring of the ]X|X|X| upper triangular matrices.
R is clearly an f2-hereditary semidistributive ring.

2. An example of an %-hereditary semidistributive ring which is not
an incidence ring is given below.

Let D be a division ring and let ¢ € Aut(D) be an automorphism which

does not fix the center of D.  Let

a 0 x m
b z
R, = Z o ]: a=xb.z,c.d€D, me M
d
with DM = DD and the right D-multiplication in M is given by mxd = m¢(d).

It is clear that R, is not an incidence ring [9].

¢



CHAPTER III

MORITA DUALITY AND 2-HEREDITARY RINGS

In this chapter will establish that semidistributive f-hereditary
rings have self-duality. This will be accomplished by examining the
quivers of these rings and by calculating their injective modules.

We begin the chapter by introducing the basic notions concerning

(Morita) duality and by proving some necessary facts.

Definition 3.1

Let C and D be two categories. Let H':C»D and H":D+C be two contra-
variant functors. We say that the pair (H',H") is a duality between C

" "
and D if there exist natural isomorphisms such that H"H'==lC and H'H"==1D.

Notation. If R and S are rings, RM and MS will denote the categories of

left R-modules and right S-modules, respectively. RFM will denote the

category of finitely generated left R-modules.

Definition 3.2

Let RUS be a bimodule. The pair of contravariant additive functors

- : MM - : Mo~ _M - .
HomR( ’RUS) R g and Homs( ’RUS) g7 gM are called the U-duals

We will sometimes denote HomR(M,U) by M* and HomS(HomR(M,U),U) by
M** if M is a left R-module. The same notation will be used for a right

S-module N.

27
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Definition 3.3

Let RUS be a bimodule. We will say that a left R-module (or a right

S-module) M is U-reflexive if the evaluation map OM: M + M** defined by

(m*) (m)ch (m)m*, where m€ M, m* € M*, is an isomorphism.

Theorem 3.4 [15]
Let R and S be rings and let RC and DS be full subcategories of RM

and MS such that RE.RC and SSG DS and such that every module in RM (re-

R
spectively MS) isomorphic to one in RC (respectively DS) is in RC (re-
spectively DS).
LIS ", . .
If H': RC > DS and H": DS > RC is a duality between RC and DS’ then
there exists a bimodule RUS such that

1) RU;H"(S) and U. 2 H'(R),

S

2) there are natural isomorphisms
H' g=Ho (-,U) and H" < Hom (-,U0), and
mR b S b ’
3) every ME€ RC and every N € DS is U-reflexive.

Definition 3.5

Let R and S be rings, RUS a bimodule. We say that the duality given

by the pair HomR(-,U) and Homs(—,U) is a Morita duality if

1) _R and Sg are U-reflexive, and

R
2) every submodule and every factor module of a U-reflexive module is

U-reflexive.

Definition 3.6

An artinian ring R is said to have a (Morita) self-duality if there

is a Morita duality D: RFM - FMR, D': FMR - RFM,
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Theorem 3.7 ([2], [15])
Let R be an artinian ring. R has self-duality if and only if there

exists an injective cogenerator _E of RFM and a ring isomorphism

R

$: R~ End(RE), which induces a right R-structure on E via xr = x¢(r),

x€E, r€R, such that
D = Hom_(-,_E) and D' < Hom_(-,E )
TRYTOR MRt R

Definition 3.7

Let R be a ring with self-duality D. We will say that D is a weak-

Y
ly symmetric duality if D(Re/Je) = eR/eJ for every primitive idempotent

e €R.

Theorem 3.8 [10]

Let R be an artinian ring. Then R has a weakly symmetric duality
iff there is an injective cogenerator E of RFM and a ring isomorphism
¢: R ~» End(RE) such that (E) (¢e) 2=E(Re/Je) for every primitive idem—
potent e € R. In particular E = E(R/J); if R is basic, then E is the

minimal injective cogenerator.

Proof: 1In view of (3.7) we just need to show that D = Hom(—,RER) is
weakly symmetric if and only if Ee = (E)¢(e) 2=E(Re/Je) for every primi-
tive idempotent e € R.

But D is a weakly symmetric duality iff
N
D(Re/Je) = eR/Je.

That is,

iff [Hom(Re/Je,E)]e = [D(Re/Je)le # O
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iff e Soc(Ee) # 0O
iff Re/Je 2=Soc(Ee)

iff Ee g’E(Re/Je) as needed.

Having established the basic necessary results we proceed toward
our main goal. One of our basic techniques consists of analyzing the
quivers of an artinian ring. A quiver is a finite set of points called
vertices connected by arrows.

Given an artinian ring R and a basic set of primitive idempotents

{el,...,en} of R we form the (left) quiver gﬁRBQ_gﬁ_B as follows: the

vertices are v,,...,v_, one for each idempotent, with n,. arrows from
1 n ij
vj to v, iff the simple left R-module Rei/Jei appears exactly niJ times
2
as a direct summand of the semisimple left R-module Jej/J ej. (The

right quiver Q(R. ) of R is formed similarly, the vertices are Vi,...,V;,

one for each idempotent, with nij arrows from vi to vi iff eiR/eiJ
appears exactly nij times as a direct summand in the decomposition of
the semisimple right R-module eJJ/esz.)

It is then clear that the quiver Q of an artinian ring is a multi-
graph.

We recall here some definitions and a few elementary facts from the
theory of graphs that will be needed in the sequel (see [13]).

A (finite) graph G is defined to be an ordered pair (V,E) where V

is a (finite) set and E is a binary relation in V. The elements in V
are called the vertices and the ordered pairs in E are called the edges

(or arrows) of the graph. 1If vi,v5 €V are such that a = (vi,vj)E E then

vi is called the initial vertex and vj is called the terminal vertex.

A graph is said to be directed if directions are assigned to the edges.
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We remark that in a directed graph the edge (vi,vj) is not the same as
the edge (vj,vi). In a directed graph we will denote the edge (vj,vi)

by v, < vj.

Definition 3.9

a) In a directed graph, a path is a sequence of edges (arrows)

(ai 235 seeesdy ) such that the terminal vertex of a; coincides with the
1 2 k J
initial vertex of a; for 1<j<k-1.
i+l
b) A path is simple if it does not use the same edge twice.

c) A path is elementary if it does not meet the same vertex twice.

d) A circuit (or closed path) is a path (ai 285 seeesdy ) in which

1 2 k
the terminal vertex of ai coincides with the initial vertex of a; -
k 1
e) A directed path in a directed graph Q is a path in which any
two consecutive edges have the same direction, that is, if VoV and
j itl
v, are three consecutive vertices, then the directions assigned to
j+2
the edges joining them are
a, a,
i, 1.4
v, —s v, s LS A .
i j+l j+2

Similarly we define elementary circuits, simple circuits and directed

circuits.

Definition 3.10

a) Two vertices Voo vj in a graph Q are said to be connected if

there is a path in Q joining them.

b) A graph Q is connected if any two vertices in Q are connected.

c) A tree T is a connected graph which contains no circuits.

Definition 3.11

Let G be a graph with vertices v={v.}" _ and edges E= {a,}7 . A
i“i=1 i'i=1
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graph G' with set of vertices V' and set of edges E' is a subgraph of G

if V'cV and E'CE.

Definition 3.12

a) A tree of a graph Q is a subgraph T of Q which is a tree.

b) A spanning tree of a graph Q is a tree of Q which contains all

the vertices of Q.

Proposition 3.13 [13]

a) Any -two vertices in a tree are connected by a unique path.
b) A graph is connected iff it contains a spanning tree.
Moreover, if the graph has n vertices, its spanning tree will contain

n-1 edges.

For the quiver of an arbitrary artinian ring we state the following.

Proposition 3.14 [9]

Let R be an artinian ring with (left) quiver Q. 1If Rei/Jei is
. . . k k+1 .
(isomorphic to) a direct summand of J ej/J ej, then there is in Q a
directed path v, < v, < ... <« v, =v, of length k from v, to v,. If
i i i 3j 3 i
in addition R is hereditary the converse is true.

Proof: Induct on k. By definition of a quiver the assertion is true
for k=0, 1.

Let's now assume that Rei/Jei is (isomorphic to) a direct summand

of Jke,/Jk+le,. Let
J J
t
® Re. = ¥ le, — 0 (*)
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be a projective cover. By [1] Propositions 9.15, 9.19, 15.18 and by

passing to the quotient, f induces an epimorphism

t
@& (Je, /Jze. ) £, ke./
r=1 Je Ir J

Jk-*.]'e.'——'-> 0.

We have that R/J is a semisimple'ring; consequently

t
& (Je, /Jze, ) and Jke./Jk+le.
J J J J

r=1 r r

are R/J semisimple modules and f is a splitting homomorphism (see [1 ]

n
Prop. 4.3). Thus, there is r such that Rei/Jei ==Jej /Jzej , that is,
r r
there is an arrow from vj to vi.
T

From (*), and by the inductive hypothesis, we see there is a path

of length k-1 from vj to vj We have thus obtained the desired path of
r
length k from Vj to v

Now, suppose that R is hereditary and let v, < \ “ .. vV, =
k-1 P
Vj be a directed path of length k from vj to v, Assume that

Re, /Jei is a direct summand of the semisimple module
™ m

Jmej/Jm+lej for m<k

. . . . . m .
Since Rej is projective, so is J ej and we can write

for some left R-module M. We obtain that

N
m'_'-le./Jm-l-ze. =

J Je, /Jze. @.J'M/JZM.
1 1

m m

The existence of an arrow v < v, 1implies that Rei /Jei is
mtl m mt+l m+1
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2
(isomorphic to) a direct summand of Jei /J e, - From this we conclude

m m
that Rei /Jei is a direct summand of
m+1 m+1
Je?+l/Jm+2e..
J J
Proposition 3.15
Let R be an artinian ring with (left) quiver Q. Let vi = vi <~
k
v, + ... «v, <v, =v, be a directed path of minimal length from
i i i j
k-1 1 0 Kk
v, to v, in Q. Then e_.Re, = e.J e,.
J i i ] i ]

Proof: Let m be the least positive integer such that

e,Jke, g_e,Jk-me, C e Re,.
1 J 1 J—-— 1 ]
Clearly,

e.Jk_me./e.Jke.
1 J 1 J
is a nonzero left eiRei—module and

J(e.Re.)(e.Jk_me./e.Jke.) = e Je (e, 0. /e.3%.) = o.
i i i ji j i 11 J 1 J

We then have ([ 1], Prop. 15.18) that eiJk_mej/eiJkej is eiRei—semisimple.

Hence,

.7 /e 3%, % (e.Re. /e, Je )M
i R i i i1
for some A, and

e.(e.Jk_me./e.Jke.) # 0.
it i R

Then
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e.(e.Jk-me./e.Jk_m+le.) # 0 and
it i 3771 j

ei(Jk_mej/Jk_m+le.) # 0.

J

Consequently, Rei/Jei is (isomorphic to) a direct summand of
k- k-m+
J me./J lej and by Proposition 3.14 there is a path of length strict-

-~

ly less than k from vj to V.o contradicting our hypothesis.

For %-hereditary rings we have

Proposition 3.16

Let R be an artinian 2-hereditary ring with quiver Q. Suppose there

is a directed path (of length k) from vj to A in Q, then eiRej # 0.

Proof: We first claim that if there is an arrow vp < Vq, then there is a
1-1 map from Rep - Req. To see this, we have, by definition, that
Re /Je 1is a direct summand of Je /J2e .
P P q q
Consider the composition Jeq s Jeq/Jzeq LI Rep/Jep where n is
the natural epimorphism and 7™ the corresponding projection onto the di-
rect summand.

Since Rep is projective, there exists ¢: Rep > Jeq, ¢ # 0 such that

the following diagram commutes.

Rep
¢/ J/nl
o

Je ————> Re /Je
q nmw P

with n, also the natural epimorphism. We may consider ¢ as a map into
1

Re ; since R is 2-hereditary ¢ is 1-1. 1If vi = Vi < vl “ .. € vi <
d k k-1 1
v, = Vj is an oriented path we then get a sequence of maps
0
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s 4, 6,
Re, ——> Re, —=» _,, ——> Re, —= > Re.
* -1 1

with each ¢, a monomorphism. Hence,
i,

J
(Rei)¢i¢ik_l . ¢il # 0 and (eiRei)¢i¢ik_l cen ¢il # 0.
But
(eiRei)¢i¢ik—l cee O ) < e,Re,,
so,

e.Re, # 0.
i ]

Proposition 3.17

If R is an artinian 2-hereditary ring, then the quiver Q of R has

no directed circuits.

Proof: It is enough to show that there are no elementary circuits. Con-

sider then a circuit

v, =V <

. . <_...<—V_ +V_ = v
1 1

v, .
Kk k-1 1t *
where all the vertices other than v, = v, are different. We thus get

a sequence of monomorphisms

6. % ¢il 4

Re, — Re. —k_-l—é ... Re, ——> Re, —> Re,
11 i lk—l

Tx Tp-1

k

and then J ei # 0 which is a contradiction, for R is artinian.

Another simplification in the quiver of a ring occurs when we con-
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sider semidistributivity.

Proposition 3.18

If R is an artinian semidistributive ring, then its quiver Q is a
graph, that is, for any pair of vertices Vi,Vj in Q there is at most one

arrow from Vj to vi.

Proof: If \ and Vj are not connected by an arrow there is nothing to
prove. We may then assume that (Rei/Jei)(k) is a direct summand of
Jej/Jzej. By hypothesis, R is semidistributive, that is, Rej is distri-
butive and hence so is Jej. This implies [ 5] that Soc(Jej/Jzej) =

Jej/Jzej is square free and hence k= 1.

.

If we combine Propositions 3.17 and 3.18 we see that the quiver Q
of an artinian semidistributive R-hereditary ring is a graph with no
directed circuits. As a consequence of this fact we can partially order

the set of vertices {vl,...,vn} of Q as follows.

Definition 3.19

Let R be an artinian semidistributive f%-hereditary ring with quiver
Q. Let {vl,...,vn} be the vertices of Q. We will put vifjg if there
is at least one directed path from vj to v, or vi==vj.

We will relabel the vertices {vi} of Q so that vi:ivj implies 1i<j.
Notice also that under this condition vy is a minimal element and v is
a maximal one.

We remark here that the quiver of an artinian ring R is connected
1f and only if R is an indecomposable ring ([ 1], Prop. 7.9).

In what follows we will assume, unless otherwise stated, that R is

an artinian indecomposable semidistributive f-hereditary ring with {el,
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...,en} a basic set of primitive idempotents and with quiver Q.

As an immediate consequence of Proposition 3.17 we have that
e Je, = ... =e. Je, = ... =e Je = 0. For, if e, Je, # 0 then
11 i i n n i i

ei(Jei/Jzei) # 0 which implies that there is an oriented path (of length

one) from v, to v,.
i i

This simpie remark allows us to establish the following.

Proposition 3.20

eiRei is a division ring for every i=1,...,n.

Proof: Since eiJei = 0, we have

e.Re, = e Re. /e, Je, e.Re./J(e.Re.)
iTi i i1 i i i i

= End (Re,)/JEnd (Re.)

End (Re,/Je.).
i’"i
But Rei/Jei is simple and hence End(Rei/Jei) is a division ring.

It is our immediate task to derive from the quiver Q of R a few

simple facts about R.

First, we notice that if there is an arrow \ < vj connecting v,
with v, then eiJej # 0 and we may consider the bimodule

eiJe,
e.Re, J e . Re,.
i i j 3

Furthermore, since R is semidistributive

dime Re e . Je, = dim eiJe, =1,
i JeJRej

for otherwise,
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e, Je, 2=(e,Re,)(k)
e.Re, 1 7j i i
ii

which contradicts the fact that Rei is distributive. We can then choose

i1 € eiJe. » e..#0
J e.Re J e.Re 1J
1 J 3]
such that
e, Je, = e,Re,e,, = e,.e. Re,
i ] i 113 1] 3 3

and define

g,.: e.,Re, - e, .Re, via ze,, = e
ij i i 3 ] ij

ij(z)oij.
Clearly Gij is an isomorphism, and by using the fact that R is indecom-
posable we conclude that eiRei g=ejRej for every i, j.

Applying Proposition 3.13 wé can choose a spanning tree T of Q con-
taining n-1 arrows. We will select T so that it contains all the arrows
ending in vy (see [13]).

The existence of this tree will enable us to choose elements eijéli
whenever i <j independently of the path connecting vj to v, and will also
make possible the construction of division ring D isomorphic to eiRei
which will embed into i%& eiRei in a similar way as a ring A embeds
into the main diagonal of the ring of nxn matrices over A

Let v, = v, <V, < ... v, < v, =V, be a directed path from
o h1 k-1 K
vj to v, which lies entirely in T. Define

e, T el Ll o ... ey i ©s: € e .Je,
H 1*2 T2'3 * 3 J

where ekk==ek and ei i are defined as above for arrows v, < v, in T.
kK k+1 S |
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We will first define euv for Vu < Vv that close two directed paths froém
one vertex to another. After this stage, we will add these arrows to the
tree T and continue inductively until such additions are no longer possi-
ble.

Let auv = vu < v, be an arrow in Q-T; Vu < v, will close necessarily

a unique non-directed circuit in Q. We choose this arrow (if possible)

so that it determines two directed paths

Vi < oo e A e vl
" k-1
v, v,
i J
™ o
v < .. v V\) e V.
Jl U Jkl_l

from v, to v, with v, <« v, «+ ... < v, a directed path along T.
i i i i i
Let e €e Je , e # 0 as before. That is,
Hv TEAVEGEE VAV

eJe =e Re e =e e Re .
[FRY HoOH UV v oV

are

Then e,.e, . ... e, . e,,and e..e., . ... € ce. €, . e,
oot -1k 33 o tods Y Igr-1dr 3

elements of eiJej. Again, since R is semidistributive we have that

dim e.Je, = dim e Je, =1
e,Re, 1 7j i
i i e.Re,

J 3

and there exists 0 # t € eiRei such that

te,.e, . ...€ coe €, e_. eiieii..'ei ie.-
Hitgdy W e W 01 k-1"%k

Let

ey (t)o,

. O, . ... 0, - e -, then
u 1031 3135 (u=L)n nv
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$i81 4. Tt Cp 4 G5 T 85485 5 e @, e C Y @D
01 k-1"% J9 0’1 H Jer—plgr I
and
eJe =eRee ==e eRe.
v TR TR T [TAV RNV
. N . . . -
Let BUV euReu evRev be the isomorphism defined by zeuv euv(z)suv’

z€e Re . Let 0 _: e Re - e Re be the isomorphism determined by the
H oM uv U Y

(unique) (nondirected) path from v, to Vu along T, that is, Euvis the

isomorphism obtained by composition of the isomorphisms Gst (and their

inverses) determined by arrows vS < vt in T.

Then there exists htv € Aut(eVRev) such that the diagram below com-

mutes.

B
e Re — e Re
v

U
1 Y
v
e Re —8 > e Re
H U - LY
o}
uv

i.e., B V=35 . Let guv € Aut(e Re ) such that
v v uv U U

uv uv uv -1
and = h B
M SUV & gu BUV LY

commutes. Then B Y = g . Define
BV VY
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Hv
0 =
w8y Buv’

then we have that

Guv = qu 2)
and
= KV = Hv
euv(z)cuv euv(z)gu Buv (z)gu euv’ z € euReu.
That is,
- uv
euv(z)cuv (z)gu euv
or (3)
te =e (0" e
Hv [\ u uv

The commutative diagrams involved in the construction of ouv from Buv

for the directed path
vV, <V, <V, eee WV *V <V < ...V, <~ v,
1 3y u=1 - w v Jproy 3

uv

are shown in Figure 1. By chasing this diagram we see that hzv = gt s

i<t<j. We will call the maps hEv the twisting induced by the addition

of the arrow v <« v .
2 e EEE Y v

By (1) we can unambiguously define eij by

e.., € e ,Re,.
1] i 3

ei. eiie. . es e e, . e | eiie, . eee €, .
J 1091 -1t 3 Jod1 Jpr-13x

Similarly, from (3) we obtain

(5)

O'i.=0'iiO'ii cen i 3 L. eee O, . O',j.
J e ) k-1 Jod1 Ipr—1xr Ik

Moreover, if x € eiRei, then



o, o, ., o, . o] o
ii i34 313, p-1u uv
... e, Re, —> e, Re,——>¢e, Re, —> ... e Re —>e Re—>e Re »>...>e,Re,>...>e_ Re, > ...
i i i i 3 i u=1 "u-1 o ARV i ] ii
1 1 1 1
uv uv Hv uv
. . 1 1
4 81 ng gu—l gu
..
ii BW y
.. ©, Re, —> e Re,—/> e, Re, ——> ... >e Re —> e Re —>e Re »>...>e,Re,>...>e Re,~»...
i i i i j j u=1 "p-1 ou vV j i
1 1 1 1
1 1 1 1 1 nY n"
A% J
-1
o,. -
ii o
... e, Re, > e ,Re,—/> e, Re, ——> ... »e Re —> e Reﬁv—>e
i, 4 1 31 31 u-1""u-1 v

-1

Figure 1.

Re -...>e,Re,>...>e_ Re,~>...
Vov J ] J 3]

\Y]

Diagram of the Twisting Induced by the Addition of the Arrow Vu*‘V\’

1

nt
1

Y

(4)

ey
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xei.=xeiiei ...e\)... e, . €.,

= e e . (x)oi . ee. € ce. e, . e,,
v -1
=e,.e, ., «..e (x)o,. ... (g ") o cee €, . e..
11 10J1 uv 10:]1 H Hv 'Jk"le' 3]
IAVRE
= e,.e, . . e, (x)o, . . ( ) o ce. O, ..
11 10J1 Jkl_lel 1031 U 'Ll\) Jk'_le'
Also,
Xe,, = Xe, e, ; ...e. L oe..
+ ot k-1"k I3
=ejg g e e e..(x)oi 1954 9% 4
01 k-1"k JJ 0L T1M2 k-1"k
Hence
Of g e (guv)_lo vt s ] =0, 054 e 0y ;-
01 H H Jpr-1Jx 071 172 k-1"k
Then (4) and the definition of qu imply that
u _
g, = L, pe - (6)
U

Again, let v < v. be an arrow in Q-T, v. =< v different from
1 M1 1M1
v < v . We choose v <~ v so that (if possible) it will determine two
oY 1M
directed paths
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from v, to v _.
t s
We proceed exactly as in the previous case and we remark that

vu <~ v, does not necessarily close a unique nondirected circuit in
1 1
TU{Vu <« Vv}' However, an easy computation shows that, if vu “ v
1 1
closes the circuit containing v. < v, the isomorphism o : e Re =~
M v [SRY H H
1’1 1 "1
e, Re is independent of the path along TlJ{vu < vv}. We are now done
1 1
with the first stage. We continue until this construction is no longer

possible and collect all the arrows so obtained.

Let Tl be the graph obtained by adding to T all the arrows vu “ v,

v <V
My 21 1
We remark that Tl is a graph such that every (nondirected) circuit in T

contains two vertices joined by two (different) directed paths along T

yeeos Since Q is finite, T, exists (and might be equal to T).

1

1

and one of them along T.

Construct T2 from Tl as Tl was obtained from T, that is, add to

T, those arrows vu < v, in Q-T

1 which will close circuits composed of

1

exactly two directed paths, one along T, and the other containing

1
vu < v, Since Q 1s finite, this construction must end, say at Tr'

We remark that formulas (1), (2), (4), (5) and (6) remain valid for

We remark that Tr might not equal Q.
Let vu < v, € Q-Tr. This arrow cannot close a circuit with one

directed path along Tr’ that is, it cannot close a circuit in such a way

that two directed paths are joining a pair of vertices in the circuit.
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Let 0 # e € e Je as before, that is, such that
uv uov

e Re e = e e Re
[SURR VRN VRV HV VoV

Let : e Re =+ e Re be the i i i =

BUV uRe, wRey, isomorphism defined by Zeuv euv(z)Buv,
z€e Re .

H U

Let Euv: euReu -+ evRev be the isomorphism determined by a nondirect-
ed path from v].l to v, along Tr' It is clear by the construction of Tr
that Euv is independent of the chosen path along Tr'

Then, there exists Y ¢ Aut(e Re ), guvé Aut (e Re ) such that
A% v v H H M

MV _ Wy
Buvhv gu Buv'

. AY =
Define o = gu B , then o =0 and
uv [ Y Hv

uv
e Z)O = Z e
uv( ) v ( )gu v

or

-1

v
te =e t o .
HY UV( )gu uv

If vu < v, after inserted in Tr’ determines a directed path from

v, tov, in T U{v <« v }, that is if we have
i 3 T u v

Re

again, let e € e Je be such that e Re e =e e .
v v (TR TR TRV BV VOV

u
Define e.,., = e, cee € eee €, . . Let

., e, .
1ot 11t L Te-1M%

T =T U{v <v}
ry r u v

and let v. < v, € Q--Tr such that it closes a circuit containing two
M1 1 1
directed paths from one vertex to another one of which lies entirely in
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T . Then v <V must necessarily be in such a path. If both v <«v
ry UV UV

and Vu <« v, are along the same path we have; w.l.o.g.
1 1

V, < eee VE—VE— ,,, V €V <& ,,. V

/ i, U ) ul vl 1k-1‘¢\
vy o vj
vV, &— vV, &—mmm .., &——— v, «— v, éf////’
i I Jgr—2 ka1
with the lower path along T_ . Let e €e Je such that
1 SRS T

e Re e v, = e v. &y Rev . Then, there exists t eeiRei such that
| W W A6 AL A6 B B |

€i% 1. een N . PR
0'1 Hy 1M1 k-1"k
= eyl s e el . €e,..
Let e = (£)o, . ... (guv)-lc vee 04 e . ? then
M1V1 o1 M wY M7 M
e,, =e,,e, ., ...€,.Te€e..e. . ...08 ce. € - (7
ij 111534 3] 111451 v iV 33

is unambiguously defined. Again, let B ot e Re -~ e, Rev be the
SRS TS N | 1 "1
isomorphism defined via

ze , = eu N (z)Bu

V1 1V1 v

11

We obtain, using the same procedure described before, the isomorphism

Re > e Re

O'\):e v
MY M1 Mg Vi V1

defined by
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with

and
U, v
h 11 € Aut(e Re ).
v v,V

1 1 1
We also obtain

M1
eu N (z)cru v, (2)g eu V.’ z€e Re

1v1 11 M1 1’1 LS L}
and

TRV
-1 1'1.-1
S P S

O, . +.. [8 v y Lo . i1
1 11 k-1"k

o1

o, s O, ve. O. . (8)
0l1 J192 I -1k’

If Vu <« v, and v. <« v, are not along the same path, that is, if
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with the lower path along Tr we obtain

1
e = (t)o, . ... QG e .
H1V1 to'1 MpTIW Yy
U,V
1'1.-1 -1
Oy g4 e [gu ] ou NEREE ci ;i =0y PR [gﬁv] Ouv
01 1 11 k-1"k 0”1
. 0, .. €))
Jkl_lel
Let T = Tr Uiv =<« v, }. We construct Tr from T as T  was ob-
2 1 M1 1 3 T2 T2
tained from Tr . Since Q is finite the process must end, say at Tr .
1 k
We consider v. <« v, € Q-T and obtain T from T as T was obtained
s t rk Ty kr ry

from Tr' Again, since Q is finite, we obtain Q and the total construc-

tion ends. We remark that formulas (8) and (9) adopt the form

TRV HAaV HaV
1V1.-1 2V2 -1 3V3, -1
Oy 4 e (gu ) Gu SRR (g ) o SEERE (g ) o N
01 1 11 Ho HoVa H3 HoVo
H -
e (g ° S) 10 v % i
s us s k-1"k
=0, 4 0. . g, . (10)
tot1 J1d2 T -1
and
TERY U,V TPRY
1V1,-1 2V2 -1 -1
o, 4 el 10 g, “1 70, e %1 oo,
0'1 My V1 2 2Y2 s k-1"k
. o 111, o 2%2y-1, OO
igdg oy a8y %) %58 %y @ By
(11)
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We also remark that the addition of every path vu <« v, to Q induces

a commutative diagram as in (4).

Example:

Let Q be as follows:

/I&
v v
15— 6 ,'5
"\ \f ey
V8 /
\ /
N
A
Let T be P V3
/ V7
V1 D) Ve Vs
\\\\ \ T //;
N M /
AN
~ /
N /
Then T1 Y4
V3
LN
\
\
\
L7 V7 .
%// / \
1€ - -=V2 V6 L5
< ] ‘



2 r 3
g Y
V N
/// 7\\\\\
g/// Ta N
v1 € —— _ v2 v6 v5
A
\ \T //
AN
\\\ Vg ////
\\\ /
N/
and T is V4
ry Vs
// I
/ v
/ l7\\\\
I
Ve v
Ve A
Vi<--Y T ///rvs
Vg
M
Let v, < v, be an arrow in Q, let y,, = 0., and let vy,, = ct%.
i 3j ij ij ji ij

If vj is a vertex in Q, we can choose a (possible nondirected) path

from vl to vJ along T: vl = vi < ... V., “~ Vv, =v_ .

Define

Yo o Yo 2 eee Y. . if j=2,...,n
ot f1t2 N
1] - . -
1 if =1
elRel
and let
n
D = {d € ifl eiRei d'lTJ = dWlOlJ’ J= l’ ,n}

n
that 1s, d €D if an only if d = jzl (x)olj, X € elRel.

It is then clear that D is isomorphic to elRel via

51
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f: e,Re, = D
n

x> I (x)o

=1 H

and hence to eiRei for i=2,...,n. It is also clear that

1) Dek = ekRek

2) e.Re.,, = e,Re.e,, = e Je,, for v, <« v,
i ij i iij i3 i

3) De,. = e.Jke., for v, <v, via a path of length of k,
ij i 7j i—7j

from which we conclude that

R= % De,, = I e.Re, (12)
. ij .. 1]
Example: Let R be an artinian semidistributive f-hereditary ring with
{el,ez,e3,e4,e5,e6} a basic set of primitive idempotents. Let's assume
the partial order generated by 1<3,4; 2<3,4; 3,4<6; 4<5.

The quiver Q of R can be pictured as

/ 3\ \\\
\4 \
vy - ﬂvz /v 6
\\ / Ve
v v
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Then T determines e and o such that

13°%14°%24°%36°%56 13°%14°924°936° %56

ze ze ze

24 = @94 (2)Ty,

13 = e13(#)9y5; 14 = €14 (209,

zeg¢ = €534(2)05¢, zege = egq(2)oges

for z in the correct eiRei.
From v, * v, we get s € e4Je5 and then

13836 ~ 14845856 = €4 ((0)0 e 50es, for téeRe,.

14e45; 13836 = e14e45e56. From e45€ e4Je5 we deter-

mine 645: e4Re4 > eSRe5 so that ze,s = e45(z)845

Set 45 = (t)o then e

by using the fact that

dim e,Je 1 = dim e,Je , for then,
e,Re, 4775 4775 eSRe5

eAJe5 = e4Re4e45 = e45e5Re5.

-1 -1 -4 -1
14°13%936%s5° ©4Re, ~ egReg and put 0, ;=0,,0,403¢04g

EAut(eSReS) so that 845h5 =0 Similarly, we pick

We then notice that ¢

and we can pick th

45°
45 45 =

g, € Aut(e4Re4) so that g, 845 = 045 and we define Oys by

T T
%5 = 84 Pus T 945 = 914%13%936%56

and get © and we call this map

13936 = 914%45%56
016: elRe1 -> e6Re6.

Then,

~ 45 . 45 45
e,5(2)0,5 = e,5(2)g, "85 = (g "e;sn g~ CAute Re,)

Similarly
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_ 23 23
e23(z)o23 = (z)g2 €55 g, € Aut(ezRez)

and

-1 _ -1

912 T 91393 T 914%4

Then eij and Oij are unambiguously defined. Let

6
D={d: d= %

(x)o,., x€e.Re }.
j=1 1j 11
Then
Re, = D

eRe;
and 1) Dek = ekRek’

2) De,. = e_Jke, for v, <v, via a path of length k,

1] 1 J E N

3) R= I De

i<y M

We can say a little more about the quiver of an f%-hereditary semidistri-

butive ring.

Proposition 3.21

Let R be a semidistributive f%-hereditary ring. Then the quiver Q
of R contains no triangular circuits, that is, circuits which are formed

with three edges.

Proof: Assume
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is a triangular circuit in Q. Then

Jek/Jze

n
=TRe,/Je, ® Re,/Je, ® L
k i i i 3j

where L is a semisimple R-module.

Also,
Je./T%e. X Re./Je. ®K
i’ 5 1'%

for some semisimple R-module K.

Let

NiJe

k’

N 2
Rei/Jei @ Rej/Jej =N/J eLs

and let p: Rei 3] Rej - N/Jzek be a projective cover.

Consider the following diagram

Re, ®Re
i

P

N/Jzek

with n the natural projection. Then, there exists a nonzero homomorphism
d: Rei ® Rej +~ N such that ¢n=p.

Since NiJekiRek, ¢/Rei and q)/Rej are either both monomorphisms or one
of them is zero.
Let ¢i = ¢/Rei, ¢j = ¢/Rej. Since p is a projective cover, neither

¢1 nor ¢j can be zero and consequently both must be monomorphisms, for
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N<Je <Re But this is a contradiction since Je, 1is distributive.

k k' k

The rather simple structure of the quiver of a semidistributive
f-hereditary ring has allowed us to construct the division ring D. It
will also enable us to construct an R-module M whose existence fully
characterizes those rings. Before that, we answer the following question:
Given a directed graph G which contains no directed circuits, at most one

edge between any two vertices and no triangular circuits. Is there a

semidistributive 2-hereditary ring R whose quiver is G?

Proposition 3.22

Let G be a graph such that

1) There are no directed circuits in G.

2) There is at most one edge between any two vertices of G.
3) G contains no triangular circuits.

Then, there exists a semidistributive f-hereditary ring R with quiver G.

Proof: Let V = {Vi}?=l be the set of vertices of G. Define, vy SV

if and only if there exists a directed path in G from v, to v Thus,
we induce a partial order in the set X = {1,...,n} via i<j iff vi:ivj.
Let D be a division ring and let R be the incidence ring of D over X,
that is,

R=1{2Z d

(¥ 4 €D, 4,3 €XI.
1<y 1137

Then the quiver of R 1s G (see [ 91]).

Now, we proceed to the construction of M.

Theorem 3.23

Let R be an indecomposable semidistributive ring with {el,...,en}
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a basic set of primitive idempotents. Then, R is f%2-hereditary if and
only if there exists a left R-module M satisfying the following condi-
tions:

1) For every i=1,...,n there exists a nonzero homomorphism
o,: Re, >~ M.
i i

2) If ¢: Rei +M, i=1,...,n, is any nonzero homomorphism, then ¢

is a monomorphism.

Proof: Let RM satisfy conditions 1) and 2) in the statement and let

P Rei - Rej be a nonzero homomorphism. Then, there exists a monomor-
phism aj: Rej - M; by composing with y we obtain a nonzero map

¢aj: Rei -+ M which by hypothesis is a monomorphism. Consequently, ¢y is

a monomorphism. Conversely, assume R is an f%-hereditary ring with quiver
Q. For i<j, that is, for vi:ivj, we define a map ¢§: Rei - Rej via
z¢§==zeij where eij is the ring element in eiRej determined, as before,
by Q. It is then clear that ¢§ is a well-defined monomorphism; moreover,
if i <j<k we easily obtain from the construction of the eij's that

ij=i i. . ] = 11
¢j¢k ¢k. Hence, {Rei,¢j} is a directed system. We define M lim Rei,

that is

=
]

(Rel D ... D Ren)/S
with
S = <{X:_l¢:,L)\ - X:!)\,: X:.l € Re,, i<j}>
1] ] 1 1 1 1 -

and

A, : Re, > Re, & ... @ Re
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the natural inclusion. We also define a,: Rei -~ M via (x)o&i = (x)ki + S.
It is then clear that M satisfies 1); we claim it also satisfies 2). To
see this, we will show that the maps Oti, i=1,...,n are monomorphisms.
First, we notice that every X, € Rei can be written as
Xy = L Xpgs Ky EDeyy, ki
k<i
Let z GRei, z# 0 such that (z)ai=0, then z)\iE S and we can write
zZA, = I [xj¢2')\ -xA] ijRe. ¢8)
i R ASI gl Fpt Rey
<]
Al if 3 R R
: -
so, if m & e; e

we have, for fixed k,

k=1,...,n, denotes the natural projections,

Jj % <2
zZA.m, = I [x¢ A, - ]m
ik 9<] 27373 52,52, k
= (z x¢k)}\1r - (z xf(')kk'nk
<k k<2
k., 2 2
= (X x ¢ - I YA
e 2 k<2xk k'k
= 3 Xﬁid’ﬁ‘ 5 xl’i, %5 € Re ..
o<k k<2 3]
So,
0 k#i
k. 2 2
zZA,m. = L X ¢ - I = . (2)
AL TSP S

Furthermore, if we write, as in the remark above,

z= L 2z , 2 =ez€eRei,uii

l-lf_i 3 U H U
i_ i . deen -2
x) z XL g» X, etxszléet e,» t2l
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From (2) we obtain

k 2 L
zi.m, = ¥ (z A,m ) = I T x, ¢ - I T x,
ik pe<i ik o<k j<2 j,.27k K<t j<k j,k
3 . 0 k#1i
= I L X, Z(bk - I I x k = .
i<y a<k 32 i<k k<g J° z k=i
Hence, for fixed j, j <k we get
k9 . OEejRek if k#1i
Lox 6= T x| 0= . (3)
j<a<k 2 j<k<y 37 z,€eRey if k=1

Next, we remark that if Rel_1 is the unique maximal element respect to the
partial order < induced by Q, then a s Ren - M is an isomorphism in which
case there is nothing to prove. (See for example [16].)

Finally, we see that because of the relation a, = ¢;,Lonj for i<j, it
suffices to show that o is monomorphism for maximal indices k.

We will then assume that Ret[1 and Ren are maximal with respect to <.
So, let zERem be such that zam=0, z=j§m zj; then, zjam=0, j <m.

Applying (3) we obtain

k L L

T x, ¢, - L x.,. . =0E€e.Re (3")
j<t<k js24'k j<k<2 Jsk jk
for every k such that j <k, k#m. More explicitly, if 21,22,...,2k are
'3
the indexes such that there is a path of length 1 from vy s s=l,...,k2,
s
to Vj; hl’hZ""’hkn are the indexes for which there is a path of length
2 from vhS, s=l,...,kh to vj; 11,12,...,1ki the indexes for which there
is a path of length 3 from v, » 8% l,...,ki to Vj’ etc. We can write
S
2
- I x,.=0€e.Re (4)
NEN J 3

i<t



1.3 3
X, . X, =0 € e Re
( J’J)%l g.<e M I 4
1
2
2 3 2
x 7, - X, =0 € e,Re
( J,J)¢22 o <y %9 iA,
2
Q,kf, j 2
X, . - z X, = 0 € e.Re
( J,J)¢2k o <g % I
2 k 2 2
2
h
b (x 1g)¢’f; z x% h 0 €e Reh
j<<h 7M1 j<n<e I0T1 1
h
z (X'zl)d}ﬁ - z x{L ho 0 € e,Reh
j=a<h, 17 T2 geny< I L)
z (Xl:'kl;)(bz - z x{L =0 € e Re
j§}<hkh I hkh j<hkh<g J’hkh h| hkh
i
z (x 12)¢{L - z x% i = 0 € e.Re,
j<o<i o gei<e 30t J 1
i
z (x.zl)qs’.l - 3 £, =0¢€ e.Re,
jeg<i, 0t i,<8 ) )
i
k.
z ( z)¢% - I XQ' =0 € e Re
j<a<i ’ lk, i, <2 Ity Tk
— "k i i i
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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Y¢_ =0 € e.Re . (14)
j<2<n Ion

Now, we notice that cbg/epRep: epRep - epReq is an isomorphism whenever
254

P <q. Hence there exists a unique yJ 1 € ejRej’ L> 52,1 such that
2,2
2 i |
x, , = (y, D) - (*)
J> 1 J 1
Introducing this in (5) we get
2 2,8
x.% - I vy 1. 0 € e Re,. ")
33 T i3
1
By a similar argument, (6) and (7) will yield
2 2,2
x.2. - I Y. 2 =0 € e.Re, 6")
3.3 4 3 i3
2
ng z,zkz
x, . - & y. =0 € e.Re,. a"
3.3 Ty 3 i
kSZ,

h h,,% %,h
.t o+ 3t S- 1y l-o0cere (8")
3.3 3 no<g J 33
1
h h,,% %,h
x,2. + y,z S_. 1 vy Z_.0c¢ e.Re. "
3.3 3 o<y i
2

- I 9. =0 ¢€eRe,. (10")
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From (11), (12) and (13) we obtain

i i,2 i L0 2,1

b
x5+ v + 3t to oy e (11")
3.3 7 3 i <g J
i i .2 i L2 2,1
x.2. + y,2 S+ y,2 t_ x y. 2 - 0 (aza"
J’J J J i </Q4 J
2

lki 1k£28 lkilt 2,1ki

.ty + 7. - I y. = 0. (13")
J’J J J i <£ J

i
Finally from (14) we get
n n,% '
x, .+ I v = 0. (")
353 j<gen
Adding (5') through (14') we get
2,2 2,8 2,h 2,h

e 7 S A A S A

}Ll<2im J 5?,2<52,5m J hl<2,im ] h2<JLim ]

24n 2£n L4n 2£n

2,1 2,1
S R TR S IR S R (15)
i <t<m 1,<t<m 3 g<m 77
2£n L£n 2£n

Applying cpfn to (15) and applying 4)111{1 to (3') with j<k<m, k#£n we obtain,

2 h
2 2 ) 1
- DGt T G et - - G et -
go<a<m 321 ™ p <e<m P072 h,<¢<m 3°M1
2£n 2fn 2£n
i i
2 2 i L
- et - el et - 1 ox eder =0 (16)
i, <t<m 3071 i <g<m 3712 g<m I3
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k 2 2 '3
¢ - ZXj,qum =0, k<m, k£n. (17)

5
*5,2%n

j<a<k

Adding equations (16) and (17) gives

m %
- ij ,5Z,¢m =
2
Hence zj = Zx? 2¢m = 0 as needed. This establishes that the maps aj are
b

monomorphisms.

If m€ M, then

n
m = .Z (mi))\i + S
i=1
= % m, (e, b)a., m, € Re..
it i i i
But
m, = I ekml = I mki’ mk = ekm, € ekRe,
k<i k<i

and by (*) we can write Wy = xi¢§ for unique x; € ekRe . Let

k
= - i € Re k=1 n
Tk - Mk L7 Tk S %K svees
i>k
and let
n
r= I 1,6 (e)a, .
k=1 kk "k’ k
Then
n

= = = + = .
r kil rkk(ek)ak i rkk(ek))\k + S i mk(ek)Ak S=m

o



Let
k -1
Sl = Gl,k(rkk) € elRel,
X
f elRel——> D
n
t—> I (t)o,,
j=l iJ
dd = (Sk )f k=1 Th
an X 115> =1,...,0n en
r =

=3 dk(ek)ock = m,
k
that is, we have proved that

n
.Z D(ei)ui = M.
i=1
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(2)

Now, let g: Re:.| - M be a nonzero homomorphism; then, there exists dg €D

such that (e, =d (e.)a, and
uc ( J)g g( J) 3

-1
re,)o, = r(e,)a, rd “d (e.)o.
( J) ] ( J) J g g( J) J

-1
d .
rd, (eJ)g

-1
rd “e,)g, r € R.
( g J)g

That is, Imouj < Img. But, since aj is a monomorphism, c(Imuj) = c(Rej).

Hence, c(Img) < c(Imaj) and Img = Imaj. Consequently,

c(Kerg) = c(Ker aj) = 0, so Kerg = 0.
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If R is an incidence ring over a division ring K, the left R-module
M= 1lim Rei which we introduced in Theorem 3.23 corresponds to the "last
column vectors'". As in this particular case, we can endow M with a right
D-structure.

Let R be an 2-hereditary semidistributive ring with quiver Q. Let
T be a tree in Q and let M = lim Rei. We recall that for every vertex

4 in Q there exists a (possible non-directed) path from A to v, along

1

T, © denotes the induced isomorphism from e.Re, onto eiRei. If

1i 11

11€Amt(eiRei) we will denote by h the element in Aut(elRel) which make

the following diagram commute.

o,.
e_Re ———ll—é e.Re,
11 i i

on

<

—
=

Let i <j, then there exists (at least one) a directed path

v, <V cee <V, < v, from v, to v,. (*)
J J 1

Let v. = v, sV “« v cee VTV be the added arrows along the path

V, € cee €V <=V < ...V =<V < S EVOEV <~ Vv,.
v v
+ "1 1 H2 2 He t J
umvm
Each v =< Vv induces a twisting h € Aut(eu ReU ), m=1,...,t, and a
m m Mo m m

commutative diagram as in (4).
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G1il Gu v
e,.Re, ——> e, Re, > ... >e Re —B 0. e Re > ... >e.Re,
i i i i U v v
bv 1 1 m; m m; m
AR pHm¥m pim¥m 1 1
l * o .
\ i1, i My Buv
eiRe —> e, Re, > >e Re —20se Re >...>e. Re
1, "1 m; ‘m m, m J
) JTERY)
Lo, 1 1 o pmm h,m ™
111 um\)m Y ]
e.Re, ——> e, Re, - > e Re —> e Re 2> ... >e.Re,
i i i v 3j
1 1 m m m m
for m=1,2,...,t.
Chasing these diagrams we can write
WV, ULV, =1 v,
94 (hll1 1) 1011\) ...(h22) o v"'(hut t) lo N o, ;
0 1 1¥1 Hy HaV2 t Ve k-1
.V, oV, uv,
- H e HT L e ey, o o o .-
0 11 HeVe k-1
HaV HAaV U, v
_ 1'1.-1 2°2. -1 t't.-1
Let fij = (hi ) (hi ) (hi ) € Aut(eiRei). By (11), fij
is independent of the path from vj to v, Let
_ n
m=m+S = .Z. di.(ei:])ocj €M and let d = I (x)olkED, x € elRel.
i<j k=1

—m = Jely  _
m = my .Z. (xi¢j>\i xiki) € S.
i<j
Let z, = (m—ml)'nké Rek,

z, = L ez = I

Xk Z €e.Re, .
j<k i<k

z. E) .
.k .k J 'k



Then

Z,
jsk

=Zx1.<¢

<tk I
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L 5 L j

%% ik Fi,e %1%

j<k<®

By chasing diagrams (4) and recalling formulas (3)

HnVm
ey (z)cu v = (z)hu Ly
m m m m m mm
m=1,2, ,t
TR
te, Ly (t)(hum oy lou !
m m mm m m m

we have that

12

-1

_
@ E Do = oy e

That is, md is well defined.

Also,

since each e

k is a ekRek eZReQ bimodule for k<4 and since

uj is an R-homomorphism, M has an (R-D) bimodule structure.

We can now establish the following Corollaries.

Corollary

3.24

Let R be a semidistributive 2-hereditary ring, let M = lj;m Rei and

let N<M.
N=21I
]

Proof: Le

-1
e 9k

That is, e

Then
{D(e.)a.: (e
( J) 1 ( ]

t xX€EN, x =
j=

-1 B
R ool
i=1

Kk kl = (oo

)ocj € N}.

2 d(e )oc, jED. If dk#O, we have

di (ei)oci) = (ek)ak.

and hence (ek)OLk € N.
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Corollary 3.25

Let R be a semidistributive 2-hereditary ring, M==lim Rei. Then
1) Every nonzero homomorphism g: M-+M is a monomorphism.
2) Every nonzero homomorphism g: M+M is an epimorphism.

Moreover, EndR(M) is a division ring isomorphic to D.

Proof:

1) Let g: M>M, g# 0, define g; = o8 Rei—>M. By Theorem 3.23

8 is a monomorphism for every k.
Let x € Kerg, let {e., }, be such that (e, )a, € Kerg. We can
i "k i i
k k k
write
t
x= % r, , (e, Do, , r, . € e, Re, (see page 63)
=1 k'k k k e 'k 'k
Then
t
x)g= = r, . (e, )g. = 0.
k=1 k'k Tk Tk
But M is distributive, hence r, . (e. )g. = (r., ., e. )g. = 0; g. being
e Yk Tk S Tk

a monomorphism implies x= 0, that is, g is a monomorphism.

2) Let g: M>M be a nonzero homomorphism. Since M is a factor of
R, it has finite length and hence M = KergQ 2] Imng By 1), g and conse-
quently gQ is a monomorphism.

Hence M = Img2 < Img. That is, g is an epimorphism.

We have established then that End(RM) is a division ring.

For d € D, define wd: M~+M via (m)wd = md. Then, since M is an
R-D bimodule, de End(RM). The map y: D > EndR(M) is a monomorphism,

moreover, if h € End(RM) then h/(Rei)aiG End((Rei)ai). Hence

J

h/(Rei)ai = wd’ for some d€D and h = ¥ d € D.

d,
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That is, ¥ is an epimorphism and consequently an isomorphism.

Proposition 3.26

Let R be a semidistributive 2-hereditary ring, M = lg’.)m Rei,

o, Rei -+ M the canonical monomorphism. Let

|
I

Z{Re,a,: j ¥ k}
3 J 3]

v{De.a.: j # k}.
2De e i#

ny
If Ek = M/Lk then Soc (Ek) = Rek/Jek.

Proof: First notice that since M is distributive, so is Ek and hence

Soc(Ek) is square free [5]. Let i>k. Then,

k -
(ek)cbiai + ]_.k = (eki)ai + Lk.

0 # (ek)OLk'l'Lk

i (ei) oy + Lk'

But e, . € J and hence J(ei)ozi + 1 # 0 € E - Because of Soc(Ek)= rEk(J)
we have
n
(ei)OLi + Lk ¢ Soc(Ek) = Reki/Jeki ® ... 0 Rekg/Jekg.

Hence, 1%kl,... ,kz.

J J
be such that i#k. If (ei)OLi € Soc(Ek) then

Then ei(Rek /Jek.) = 0 and eiSoc(Ek) = 0. Let i

N
Rei/Je = Rek./Jek' ,

J J

i=1,...,2%,

.

1

that is, i=kj and (ei)ai [4 Lk which is a contradiction. Hence,
(edo; ¢ Soc(E ) for i#k.

n
Because Soc(Ek) # 0, we conclude that Soc(Ek) = Rek/Jek.
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Proposition 3.27

Let R, M, E. be as in Proposition 3.26. Then Ek is isomorphic to

k

E(Rek/Jek), the injective envelope of Rek/Jek.

Proof: We have established that Soc(Ek) 2=Rek/Jek. Because R is semi-

distributive and f2-hereditary we obtain that

c(E(Rek/Jek)) = c(ekR) [81].

But c(ekR) #{j: k<jil =n - #{3: ¥k}

c(M) - C(Lk) = C(Ek)’

That is, c(E(Rek/Jek)) = c(Ek). But E(Soc(Ek)) = E(Ek) = E(Rek/Jek)

from which it follows that

Ek = E(Ek) = E(Rek/Jek).

We now state a proposition which besides being interesting in its own

right, will be useful in proving our main result.

Proposition 3.28

Let R be a semidistributive 2-hereditary ring, M = lim Rei'
1) For every indecomposable submodule N<M and every nonzero homo-
morphism f: N->M, there exists a unique homomorphism f: M>M making the

following diagram commute.

0 —>N—>M

NG

2) For every submodule K<M such that M/K is a nonzero indecompos-
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able factor of M and every nonzero homomorphism f: M-+ M/K, there exists

a unique homomorphism f: M+M such that the following diagram commutes.

M

'k

M-—He-M/K-——» 0

Proof:

1) Let N<M and let {e, }k be the collection of idempotents of R

n
such that (e, )o. €N. Because M= I D(e.,)oa,, we have
i, i=1 i’7i

ejM) = 1 for every j and then N = eM for e = e -

z
Jj 3 k "k

Also, since N is indecomposable, the vertices {Vik}k form a connected
subgraph of Q and N = I%m Reik. Moreover, since M is distributive,
Nf <N. We conclude then, by applying Propositions 3.24 and 3.25 to
eReN’ that there exists d € D such that nf = nd, n€N.

Define

o,: Re, M wvia za, = zo.,d, i=1,...,n.
i i i i

Then z&i =za, £f. For i<]j,
k Tk
1_ —
e.¢.a, = e, a, = (e,.)a.d
195% = 1% = (8gy)
= . (x)o,.f. D)a,
(elj( ) 13 ) i
= ((®)oge o
= (x0,.e )¢ia = (x0,.e.)a
*911%17%3%5 11%17%1
= (ei(x)oli)a. = e,o,
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That is, q);&j = &i for i <j and the following diagram commutes.

M M
\\ /_/
o Re, o,
J J J -
%4 i %4
®3
Re,

Hence, since M = lg;m Rei, there exists a unique homomorphism f: M-+M

such that oajf = &j Yj. Clearly, f extends f.

2) Let K<M such that M/K is indecomposable and let f: M+M/K be
an homomorphism. Define (m+K)d = md+ K. Since D = End (M), and since
M is distributive, Kd < K and M/K is a right D-module.

Let n: M + M/K be the natural epimorphism and let {eik} be the col-
lection of idempotents such that 0# (ei )oci n € M/K, that is, (ei )ai £ K.

k "k k "k

Let Yi = ain, then for ikiik'

/ \ commutes

e. —"——“? Re
Tk Tk

and M/K = 1lim Re,
> i
k k
Also, since K<Kerf and M is distributive, f induces f': M/K > M/K
so that nf' = £f. Let e = IZ( e; then e(M/K) is an eRe-module and there
k
exists d € D such that (m+K)f' = md +K.
Define f: M-+M, via mf = md. Then mfn = of +K = md+K = (m+K)f' =
mnf'= mf for every m€ M. If g: M+M is such that mg+K = mf for every

m €M then M(g-£) < K, that is Im(g-f) # M and by Corollary 3.25 g=§.
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Now, we state and prove our main result.

Theorem 3.29

Let R be an indecomposable semidistributive f%-hereditary ring. Then

R has a weakly symmetric duality.

Proof: By results in [1l] we may assume R is basic. Let {el,...,en}
be a basic set of primitive idempotents of R and let E = El B ... H En

where
E = M/Lk = E(Rek/Jek), M= 1lim Re,, and Lj is as in Proposition 3.26.

Then Ek is an indecomposable injective R-module and, because R is basic,
E is the minimal injective cogenerator in RM'

Let S = End(RE) and let w€S, then w = I wi with w; = ﬁiWﬂj,
i,j

M E > Ek the natural projection.
Since R is 2-hereditary, ¢; is either zero or onto; moreover, if
if 3 then w% = 0 and consequently w = I w%. We have that wl # 0 if
- J i<y 'J J .
and only if (ej)aj-l-Li # 0. This implies that 1f i<j then 0 # ¢; €

Hom(Rei,ReJ). Consider the solid part of the following diagram

Re, M = E,
11 1 1 i
} I
v v l ¥3
Rej o M = Ej
J J

Then there exists 6: M—-M such that niw; = an. Hence, by Corollary 3.25

there exists a unique d € D such that (m) § = md. Define

i i i
.: Re, - Re, wvia z)y, = ze,.d = (z d.
Y5 5 i ( )YJ i3 ( )ct>J

Then the map 6: ¢§ -+ Y; is well defined and one-one.
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Let 8: S ~ R, e(iéj w§) = igj Y?- Then 6 is a bijection.

Vi 'i —_ ] . 1 |i
L., U, , v, =mwm,w'wm,. Then, if §' and y! are the maps
1% Y5 0 Y i Y3 P

. . i
associated with wi we have that

Let w' =

S+ 8' and y;+vy]" correspond to yi +yl”.

Consequently, 6 is additive.

k

a ring isomofphism. Also, O(wi) = Y; and R has a weakly symmetric dual-

Also, if i<j<k, Y;Y'J and 88' correspond to w;wéz that is, 6 is

ity (Theorem 3.8).
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