ON $\ell-H E R E D I T A R Y ~ R I N G S$

By
 CARLOS ENRIQUE CABALLERO
 Licenciatura en Filosofia
 Universidad de Chile
 Santiago, Chile
 1974

[^0]Thesis
19890
bld
sep^{2}

ON ℓ-HEREDITARY RINGS

Thesis Approved:

Wapv B. Powell
Goth Whelle (jken)
vianom T.Ford

I wish to thank all those persons who have helped me through my doctoral studıes. My deepest gratitude goes to Dr. Joel Haack, without his generous and continuous help and his infinite patience this work would have never been completed. I thank Drs. John Wolfe, Dennis Bertholf, Wayne Powell and Warren Ford for serving on my committee. I also thank Dr. Paul Duvall for his helpful indications.

My wife Macarena and my daughters Soledad, Montserrat and Javiera gave me their full support, encouragement and love. I have no words to express my gratitude for their generosity.

Last but not least, I thank Ms. Barbara Newport who has done a wonderful job in typing this dissertation.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. ८-HEREDITARY RINGS 4
III. MORITA DUALITY AND \&-HEREDITARY RINGS 27
BIBLIOGRAPHY 75

Figure

Figure Page

1. Diagram of the Twisting Induced by the Addition of the Arrow $\mathrm{v}_{\mu} \leftarrow \mathrm{v}_{\nu}$ 43

CHAPTER I

INTRODUCTION

In his paper "On algebras close to hereditary algebras" [3] Bautista introduces the artin algebras Λ satisfying the *) condition. Following his definition we will say that a (perfect) ring R satisfies the *) condition if given any pair of indecomposable projective left R-modules P and Q and given any R -homomorphism $\psi: \mathrm{P} \rightarrow \mathrm{Q}$ then either $\psi=0$ or ψ is a monomorphism. Bautista himself ([3] and [4]) has studied the artin algebras satisfying the *) condition in connection with their representation theory. Also, Martinez-Villa [14] has studied and characterized the algebras which are stably equivalent to artin algebras satisfying the *) condition.

Azumaya [2] and Morita [15] have proved that there is a (Morita) duality between the category of finitely generated left R-modules ${ }_{R} F M$ and the category of finitely generated right R-modules $F M_{R}$ if and only if R is left artinıan and the indecomposable injective left R-modules are finitely generated. Examples of artinian rings, whose indecomposable left and raght injective modules are finitely generated and which do not have self-duality have not been known until very recently [17]. On the other hand, the list of the classes of rings which are known to have self-duality is not very long, and includes artin algebras, $\mathrm{Q}-\mathrm{F}$ rings, some serial rings [10] and incidence rings over the divisıon rings [11]. Azumaya calls a ring R exact if R is left artinian and has a com-
position series of (two sided) ideals

$$
R_{R} R_{R} I_{0} \geq I_{1} \geq \cdots \geq I_{n}=0
$$

such that for each $i=1, \ldots, n$ every left endomorphism of I_{i-1} / I_{i} is given by right multiplication of an element of R. He has conjectured that these rings have self-duality.

In this work we will be mainly concerned with a particular class of artinian rings satisfying the *) condition. It will follow from [6] that these rings are exact.

In Chapter II we will study the projective and injective modules over our rings and will give a characterization of the ring in terms of them. In Chapter III we will verify Azumaya's conjecture for the rings we are studying and will extend results in [9] and [11] by using ring theoretic tools.

The rest of Chapter I is devoted to fix the notation and to introduce the most basic notions. We will use [1] as our basic reference.

For a ring R and a left R module M, a submodule K of M will be called essential in \underline{M}, abbreviated $K \underline{M}$, if for every submodule $L \leq M$, $\mathrm{K} \cap \mathrm{L}=0$ implies $\mathrm{L}=0$. Dually, a submodule K of M will be called superfluous in M, abbreviated $K \ll M$, if for every submodule $L \leq M, K+L=M$ implies $\mathrm{L}=\mathrm{M}$.

If $N \leq M$ is a submodule of M we will say that $N^{\prime} \leq M$ is an M-complement of N if N^{\prime} is maximal with respect to $N \cap N^{\prime}=0$. In such a case $N \oplus N^{\prime} \triangleq M . \quad[1$, Prop. 5.21]. We will say that $T \leq M$ is an M-supplement of N if T is minimal with respect to $N+T=M$.

If $\left(M_{i}\right){ }_{i \in I}$ is a family of R-modules we will denote by $\pi_{k}: \underset{i \in I}{\oplus} M_{i} \rightarrow$ M_{k} the natural projection onto the $k t h$ summand, ${ }^{l_{N}}$ (or \mathbf{l} if the context

1s clear) will denote the natural inclusion map $N \hookrightarrow M$ for $N \leq M$. Similarly, η_{N} (or η if the context is clear) will denote the natural epimorphism $M \rightarrow M / N$ for $N \leq M$.

For a ring $R, J=J(R)$ will be the Jacobson radical of R. Also, a set $\left\{e_{1}, \ldots, e_{n}\right\}$ of idempotents of R will be called basic if it is pairwise orthogonal and $\left\{\mathrm{Re}_{1}, \ldots, \mathrm{Re}_{\mathrm{n}}\right\}$ is a complete irredundant set of representatives of the primitive left R-modules.

Finally, we recall that if R is a left perfect ring, then R has a basic set of idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$; it follows that $\operatorname{Re}_{1} / J e_{1}, \ldots, \operatorname{Re}_{n} / J e_{n}$ includes exactly one copy of each simple left R-module. With R left perfect, we also have

$$
\operatorname{Rad} M=J M \ll{ }_{R} M \text { and } \operatorname{Soc}(N)=\ell_{N}(J) \Delta N_{R} .
$$

८-HEREDITARY RINGS

A well known theorem of Cartan and Eilenberg states that a ring R is left hereditary if and only if submodules of projective left R-modules are projective if and only if quotient modules of injective left R-modules are injective [16]. An entirely analogous result holds for right R-modules. In this chapter we will establish a similar characterization for artinian rings which are sums of distributive modules and also satisfy the *) condition. The problem of left and right modules will also be addressed.

Although we are mainly concerned with rings with minimum condition, that is, with artinian rings, we will be stating some early results in a more general setting. The existence of projective covers as well as the need of the relations $\operatorname{Rad} M=J M \ll M$ (and $\operatorname{Soc} N=\ell_{N}(J) \Delta N_{R}$) make perfect rings the natural objects of our study. So, let R be a left perfect ring, J its (Jacobson) radical and $\left\{e_{1}, \ldots, e_{n}\right\}$ a basic set of primitive idempotents. It is known that $\left\{\operatorname{Re}_{i}\right\}_{i=1}^{n}$ constitutes an irredundant list of representatives of the indecomposable projective left R-modules and $\left\{\operatorname{Re}_{i} / \mathrm{Je}_{i}\right\}_{i=1}^{n}$ an irredundant set of representatives of the simple left R-module.

If ${ }_{R} P$ is any indecomposable projective then $P / J P$ is simple and $J P$ is the unique maximal submodule of P. We will call local a module with this property, that is, a module with a unique maximal submodule.

Proposition 2.1

Let R be a left perfect ring. A non-zero module R^{M} is local iff M is the homomorphic image of an indecomposable projective R-module.

Proof: \Leftrightarrow Let ${ }_{R} P$ be an indecomposable projective module
$\psi: P \rightarrow M$ an epimorphism.

Then $M \xlongequal[\cong]{\cong} / \operatorname{Ker} \psi$ and hence, $(P / \operatorname{Ker} \psi) / J(P / \operatorname{Ker} \psi) \xlongequal{\cong} M / J M$, that is

$$
\mathrm{P} / \mathrm{JP} \cong \mathrm{M} / \mathrm{JM}
$$

Therefore, M / JM is simple and JM is maximal, that is, M is local.
$\Rightarrow)$ If M is local then $M / J M$ is simple. Let
$P: \operatorname{Re}_{i} \rightarrow M / J M$
be a projective cover and let
$\eta: M \rightarrow M / J M$
denote the canonical projection. Then there exists a homomorphism
$h: \operatorname{Re}_{i} \rightarrow M$
such that

commutes. The fact that $J M \ll M$ and that p is onto implies that h is onto.

Definition 2.2
We will say that a left R-module N is colocal if it has a unique
minimal submodule, or equivalently if its socle is simple.

It is clear that the indecomposable injective left R-modules are colocal.

Dual to proposition 2.1 we have

Proposition 2.3
R^{M} is colocal if and only if there exists a monomorphism $\psi: M \rightarrow E$ with E an indecomposable injective R-module.

Proof: \Leftrightarrow Let $\psi: M \rightarrow E$ be any non-zero homomorphism, E an indecomposable injective. Then we have that $E=E(S)$ with S a simple R-module. C1early,
$\mathrm{S} \underline{\Delta}(\mathrm{M}) \psi \underline{\Delta} \mathrm{E}$
that is $(\mathrm{M}) \psi \xlongequal{\cong} \mathrm{M} / \operatorname{Ker} \psi$ has S as its unique minimal submodule. In particular, if ψ is $1-1, M$ is colocal.
\Rightarrow) Let M be a colocal R module, S its unique simple submodule. Then the following diagram commutes

Moreover, since $S=\operatorname{Soc}(M) \Delta M$, it follows that ψ is $1-1$.
We now start to examine rings which satisfy the *) condition.

Definition 2.4

Let R be an artinian ring. We will say that R is left ℓ-hereditary if, given any pair of indecomposable projective left R-modules P and Q
and any non-zero map $\psi: \mathrm{P} \rightarrow \mathrm{Q}, \psi$ is monic.
८-hereditary rings are then artinian rings satisfying the *) condition.

The name "l-hereditary" for these rings is partially justified in the following.

Proposition 2.5

Let R be a perfect ring. R satisfies the *) condition iff local submodules of indecomposable projective R-modules are projective.

Proof: Let R^{Q} be an indecomposable projective with $K \leq Q$ local. Then $K / J K$ is simple. Let $p: R_{i} \rightarrow K / J K$ be a projective cover and $\eta: K \rightarrow K / J K$ the natural projection. Then there exists a homomorphism $h: \operatorname{Re}_{\mathrm{i}} \rightarrow \mathrm{K} \leq \mathrm{Q}$ such that $h \eta=p$. But p is onto and $J K \ll K$, hence h is onto. Also, since Re_{i} is an indecomposable projective, we have that h is a monomorphism and hence an isomorphism.
\Leftrightarrow Let ${ }_{R} P, R$ be indecomposable projective R-modules, $\psi: P \rightarrow Q$ a non-zero homomorphism. Then (P) ψ is local and hence $(P) \psi$ is projective. Therefore

$$
\mathrm{P} \xrightarrow{\psi} \quad(\mathrm{P}) \psi \longrightarrow 0
$$

splits and we can write $\mathrm{P} \xlongequal{\cong} \operatorname{Im} \psi \oplus \operatorname{Ker} \psi$. But $\operatorname{Ker} \psi<J P \ll \mathrm{P}$. Therefore

$$
\mathrm{P} \xlongequal{\cong} \operatorname{Im} \psi
$$

via ψ and ψ is $1-1$.
Before we state our next result, notice the following: Suppose that M is a local module; then $M / J M$ beng simple implies that $M / J M$ and hence M are indecomposable.

Similarly, a dual argument shows that colocal R-modules are also in-
decomposable.
We can extend proposition 2.5 as follows.

Proposition 2.6
Let R be a perfect ring that satisfies the *) condition and P a projective R module. Then, if $M \leq P$ is local, then M is projective.

Proof: We can put $P=P_{1}^{\left(A_{1}\right)} \not \ldots_{n} \ldots P_{n}^{\left(A_{n}\right)}$ where each P_{i} is an indecomposable projective module. Let $\pi_{i}: P \rightarrow P_{i}$ denote the natural projection onto P_{i} and let $M_{i}=M \pi_{i} \leq P_{i}$. We claim that M_{i} is local. If $N=J M$ is the unique maximal submodule of M, then $N_{i}=N \pi_{i}$ is maximal in M_{i}, for suppose that $N_{i} \notin L_{i} \leq M_{i}$ then $N=\left(N_{i}\right) \pi_{i}^{-1} \nsubseteq\left(L_{i}\right) \pi^{-1} \nsubseteq\left(M_{i}\right) \pi_{i}^{-1}=M$. Moreover, N_{i} is the unique maximal submodule of M_{i} for if $N_{i}^{\prime} \leq M_{i}, N_{i}^{\prime} \neq N_{i}$ is maximal, $\left(N_{i}^{\prime}\right) \pi_{i}^{-1}$ is maximal in M, and $N_{i}^{\prime} \pi_{i}^{-1} \neq N$.

By hypothesis then, M_{i} is projective and the sequence
$0 \longrightarrow \operatorname{Ker}_{i} \longrightarrow M \xrightarrow{\pi_{i}} M_{1} \longrightarrow 0$
splits, i.e., $M \xlongequal[\cong]{\cong} M_{i} \oplus \operatorname{Ker} \pi_{i}$ which is a contradictıon, for M is local. Therefore $M \cong M_{i}$ and M_{i} is projective.

It is known that an artinian left hereditary ring is right hereditary and vice versa []. As the example below shows, this is no longer true for arbitrary left (right) hereditary rings.

Example:
Let

$$
R=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a \in \mathbb{Z}, b, c \in Q\right\}
$$

We may describe R in a more compact form and write

$$
R=\left(\begin{array}{ll}
\mathbb{Z} & Q \\
& Q
\end{array}\right)
$$

The right ideals of R are

$$
\begin{aligned}
& I_{0}^{(n)}=\left(\begin{array}{cc}
\mathrm{n} \mathbb{Z} & \mathrm{Q} \\
0 & \mathrm{Q}
\end{array}\right) \quad, \quad I_{1}^{(\mathrm{n})}=\left(\begin{array}{cc}
\mathrm{n} \mathbb{Z} & \mathrm{Q} \\
0 & 0
\end{array}\right), \text { with } \mathrm{n} \geq 0, \mathrm{n} \in \mathbb{Z} \\
& I_{2}=\left(\begin{array}{ll}
0 & \mathrm{Q} \\
0 & 0
\end{array}\right) \quad, \quad I_{3}=\left(\begin{array}{ll}
0 & \mathrm{Q} \\
0 & \mathrm{Q}
\end{array}\right) \\
& I_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & Q
\end{array}\right)
\end{aligned}
$$

It is easily checked that $I_{0}^{(n)}, I_{1}^{(n)}, I_{2}, I_{3}, I_{4}$ and $I_{5}^{(\lambda)}$ are projective right R -modules, that is, R is rıght hereditary. However, the left ideal

$$
L=\left(\begin{array}{cc}
0 & \mathbb{Z}^{Q} \\
0 & 0
\end{array}\right)
$$

a projective left R-module. To see this, define

$$
\beta: R \rightarrow \mathbb{Z}
$$

$$
\left(\begin{array}{ll}
\mathrm{k} & \mathrm{p} \\
& \mathrm{q}
\end{array}\right) \rightarrow \mathrm{k}
$$

Clearly, β is a ring homomorphism. Then every left \mathbb{Z}-module M becomes a left R-module by "extension of the scalars", that is, by defining

$$
\mathrm{rm}=\beta(r) \mathrm{m}=\mathrm{km} \quad \text { where } \quad r=\left(\begin{array}{ll}
\mathrm{k} & \mathrm{p} \\
& \mathrm{q}
\end{array}\right)
$$

Let

$$
\begin{aligned}
\alpha: & \mathbb{Z}^{Q} \rightarrow \mathbb{Z}^{R} \\
& \rightarrow\left(\begin{array}{ll}
0 & \mathrm{p} \\
& 0
\end{array}\right)
\end{aligned}
$$

Then, if we define $(m r) \alpha=(\beta(r) m) \alpha=(k m) \alpha, \alpha$ becomes an R-homomorphism.

Moreover, since α is clearly a monomorphism we get that $R^{Q} \xlongequal{\cong}{ }_{R}{ }^{L}$ via α. (We remark that R^{Q} is obtained by extension of scalars.) But \mathbb{Z}^{Q} is not \mathbb{Z}-projective and hence not R -projective.

For rings satisfying the *) condition we have,

Proposition 2.7 [19]

Let R be a left perfect ring. Then R satisfies the *) condition on the right iff R satisfies the $*$) condition on the left.

Proof: Assume R satisfies the *) condition on the right, let $\operatorname{Re}, \operatorname{Re}$ be two indecomposable projective left R modules and let $f: \operatorname{Re} \rightarrow e^{\prime}$ be a non-zero homomorphism. If f is not a monomorphism, let $p: P \rightarrow \operatorname{Ker} f$ be projective cover with $P=P_{1}^{\left(A_{1}\right)} \oplus \ldots \oplus P_{m}^{\left(A_{m}\right)}$ and $P_{i} \xlongequal{\cong} \operatorname{Re}^{\prime \prime}$ an indecomposable projective; that is, there is a primitive idempotent $e^{"}$ such that

$$
\operatorname{Re}^{\prime \prime} \xrightarrow{\mathrm{p}} \operatorname{Re} \xrightarrow{\mathrm{f}} \operatorname{Re}^{\prime} \quad \text { and } \quad \mathrm{pf}=0 .
$$

In other words, if for every $g: R e^{\prime \prime} \rightarrow \operatorname{Re}$ where $e^{\prime \prime} \in R$ is a primitive idempotent $\mathrm{gf} \neq 0$, then f is a monomorphism.

Then let $g: \operatorname{Re} " \rightarrow \operatorname{Re}$ by any homomorphism and apply $\operatorname{Hom}_{R}(-, R)$ to

$$
\mathrm{Re}^{\prime \prime} \xrightarrow{\mathrm{g}} \operatorname{Re} \xrightarrow{\mathrm{f}} \mathrm{Re}^{\prime}
$$

Then

where the vertical arrows are the natural isomorphisms and $\hat{\mathrm{f}}$ and $\hat{\mathrm{g}}$ are the homomorphisms making the diagram commute. By hypothesis \hat{g} is monic
and hence $\hat{\mathrm{f}} \hat{\mathrm{g}} \neq 0$. Hence $\mathrm{f} \mathrm{f}^{*}=(\mathrm{fg}) * \neq 0$ and consequently $\mathrm{fg} \neq 0$. The remark below, although easy to establish will be very useful.

Remark
If Q is an R-module such that every colocal factor of Q is injective then every non-zero map $\phi: Q \rightarrow E$ into an indecomposable injective is an epimorphism. To see this, let $\phi: Q \rightarrow E$ be a non-zero map then $(Q) \phi \leq E$ and since E has a unique simple submodule so does $(Q) \phi \cong Q / K e r \phi$. Hence (Q) ϕ is injective and (Q) $\phi=Q$.

The next lemma is a projectivity test for local modules over semiprimary rings. Later in the sequel we will state an improved version under more restrictive conditions for the ring, which will be an essential tool in proving the main result of this chapter.

Lemma 2.8

Let R be a semiprimary ring and let R^{M} be a local module. M is projective iff given the solid part of the diagram

with E an indecomposable injective R module, there exists a homomorphism $h: M \rightarrow E$ which makes the diagram commute.

Proof: \Leftrightarrow) We may assume that M is a factor of an indecomposable projective module P with $\rho: \mathrm{P} \rightarrow \mathrm{M}$ the natural epimorphism. If $\mathrm{k}=\operatorname{Ker} \rho \neq 0$, let S be a simple submodule of P contained in $\operatorname{Ker} \rho$. Pick k so that

$$
S \cap J^{k} P=S, \quad S \cap J^{k+1} P=0
$$

Let $\eta: P \rightarrow P / J^{k+1} P$ be the natural epimorphism. Let $\imath: S \rightarrow E(S)$ be the injective envelope of S. Since η / S is a monomorphism, there exists a map

$$
\psi: P / J^{k+1} P \rightarrow E(S) \text { such that } z=n \psi / S \text {. }
$$

Let $N=\operatorname{imn} \psi$ and let $B=E / J N$. Let $f: P / K \rightarrow B$ be given by $(x+K) f=$ (x) $n \psi+J N$ and let $g: E(S) \rightarrow B$ be the natural epimorphism. Then by hypothesis, there exists $h: P / K \rightarrow E$ such that

We claim that $\operatorname{Imh} \subseteq \mathrm{N}$. The diagram below commutes:

Let $P=R e, e \in R$ a primitive idempotent. We have that
(e) $n \psi+J N=e n \psi g=e \rho f$

$$
\begin{aligned}
& =(e+K) f \\
& =(e+K) h g \\
& =(e+K) h+J N .
\end{aligned}
$$

Therefore, (*) en $\psi-(e+K) h \in J N$ and hence $(e+K) h \in N$, for $e n \psi \in N$.

Therefore, $\operatorname{Im} \mathrm{h} \leq \mathrm{N}$ as desired.
Now, since P is projective, there exists an endomorphism α of P such that $\alpha \eta \psi=\rho h$. From (*) we have that
(P) $\left(1_{p}-\alpha\right) n \psi=(P)(n \psi-\rho h) \leq J N$, and hence
(P) $\left(1_{p}-\alpha\right) \leq J P$.

Consequently,

$$
\left(1_{p}-\alpha\right) \in J\left(E n d\left({ }_{R} P\right)\right)
$$

Write $\alpha=1_{p}+\beta$ with $\beta \in J\left(\operatorname{End}\left({ }_{R} P\right)\right)$. Let $0 \neq s \in S$. Then

$$
\begin{aligned}
0 & =\operatorname{soh}=\operatorname{s} \alpha n \psi \\
& =\operatorname{sn} \psi+s \beta n \psi=s \imath+s \beta n \psi .
\end{aligned}
$$

But $\beta \in J E n d\left({ }_{R} P\right.$) implies that $s \beta \in J J^{k} P=J^{k+1} P$. Consequently, we have that $s \beta \eta=0$ and hence $s l=0$ which is a contradiction. We then conclude that $K=\operatorname{Ker} \rho=0$.

Now we state the corresponding dual result. The following remark will be useful in proving it.

Lemma 2.9
Let ${ }_{R} M, z \in \operatorname{Soc}_{k}(M)$ and let $\beta \in \operatorname{JEnd}\left({ }_{R} E\right)$. Then, $(z) \beta \in \operatorname{Soc}_{k-1}(M)$.
Proof: Let $r \in J^{k-1}, j \in J$. Then $j r \in J^{k}$ and $0=(j r) z=j(r z)$, that is $r z \in \operatorname{Soc}(E)$. But $J\left(\operatorname{End}\left({ }_{R} E\right)\right)=r_{\operatorname{End}\left({ }_{R} E\right)}(\operatorname{Soc} E)$ and hence $0=(r z) \beta=r z \beta$, i.e., (z) $\beta \in \operatorname{Soc}_{k-1}(E)$.

Now we prove the promised dual result

Lemma 2.10

Let R be a semiprimary ring and let R^{M} be a colocal module. M is injective iff given the solid part of the diagram

with B an indecomposable projective R module, there exists a homomorphism $\mathrm{w}: \mathrm{B} \rightarrow \mathrm{M}$ which makes the diagram commute.

Proof: \Leftrightarrow Let M be an R-module satisfying the hypothesis, and assume M is not injective. Let $T=\operatorname{Soc}(M)$ and let $E=E(M)$. Then $E=E(T)$, and since T is simple, E is indecomposable. Let L be a maximal submodule of E containing M and let k be an integer, $0 \leq k \leq$ Loewy length (E) such that $\operatorname{Soc}_{k}(E)+L=E$ and $\operatorname{Soc}_{k-1}(E)+L=L$. Let $p: P \rightarrow E / L$ be the projective cover of E / L and let $\eta: \operatorname{Soc}_{k}(E) \rightarrow E / L$ be the canonical epimorphism. Then there exists a homomorphism $\psi: P \rightarrow \operatorname{Soc}_{k}(E)$ such that $\psi \eta=p$. Let $Q=$ (T) ψ^{-1}; by assumption there exists $\phi: \mathrm{P} \rightarrow \mathrm{M}$ such that the diagram

commutes.

Notice that $\operatorname{Ker} \psi=(0) \psi^{-1} \leq(T) \psi^{-1}=Q$; that is, $\operatorname{Ker} \psi \cap Q \leq \operatorname{Ker} \phi$. Hence, there exists $h: P / \operatorname{Ker} \psi \rightarrow M$ such that

Let $f: P / \operatorname{Ker} \psi \rightarrow \operatorname{Soc}_{k}(E)$ be the quotient map of ψ. Then, by (1) and since E is injective, there exists

$$
\begin{equation*}
\alpha \in \operatorname{End}\left({ }_{R} E\right) \quad \text { such that } h \alpha=f \tag{2}
\end{equation*}
$$

Hence, $\pi h \alpha=\pi f$, so $\phi \alpha=\psi$ and $\imath \phi \alpha=\imath \psi$. That is,

$$
\begin{equation*}
\psi \alpha / Q=\psi / Q . \tag{3}
\end{equation*}
$$

Let $t \in T$; then $t=x \psi$ for some $x \in Q$. Applying (2) gives $x \psi \alpha=t \alpha=x \psi=$ t; that is, the restriction of α to T is the identity map. This implies that α is monic, for T is the unique simple submodule of E.

Moreover, since E is indecomposable, α is also epic and hence an isomorphism which fixes T elementwise. Let α^{\prime} be the inverse isomorphism of α. Then α^{\prime} also fixes T elementwise and $h=f \alpha^{\prime}$. Hence

$$
\phi=\psi \alpha^{\prime} .
$$

Let $\beta=\alpha^{\prime}-1_{E}$. Then Ker β contains T and consequently Ker β is essential in E. Then $\beta \in J\left(E n d\left({ }_{R} E\right)\right)$ (see for example [1] 18.20). We can write:

$$
\begin{aligned}
\phi & =\psi(\beta+1)=\psi \beta+\psi \\
\phi \eta & =\psi \beta \eta+\psi \eta .
\end{aligned}
$$

But $\mathrm{E} \phi \leq \mathrm{M} \leq \mathrm{L}$, hence $\phi \eta=0$, and we have

$$
\psi \beta \eta+p=0 .
$$

Let $x \in P$. Then $x \psi \in \operatorname{Soc}_{k}(E)$ and by Lemma $2.9, p=0$, which is a contradiction.

Now we start placing restrictions on our ring. Some definitions are in order.

Definition 2.11

Let R be an arbitrary ring.
a) A left R-module M is uniserial if the lattice of submodules $S(M)$ of M is a chain, that is, for any submodules A and B of M either $A \subseteq B$ or $B \subseteq A$.
b) A left R-module M is distributive if the lattice of submodules $S(\mathrm{M})$ of M is distributive, that is, for any submodules $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of M we have $A \cap(B+C)=(A \cap B)+(A \cap C)$.

Proposition 2.12 ([5], [7], [9])
Let R be a semiperfect ring. The following are equivalent.

1) R^{M} is distributive.
2) Every quotient module of M has at most one copy of every simple submodules in its socle.
3) For each primitive indecomposable projective P the set of submodules $\{\operatorname{Im} \gamma: \gamma \in \operatorname{Hom}(P, M)\}$ is linearly ordered.

3') For each simple left R-module T, the set of submodules $\{$ Ker γ : $\gamma \in \operatorname{Hom}(\mathrm{M}, \mathrm{E}(\mathrm{T})\}$ is linearly ordered.
4) For each primitive idempotent $e \in R$ the left eRe-module $e M$ is uniserial.

4') For each simple left R-module T, the right End $\left.{ }_{R} E(T)\right)$-module $\operatorname{Hom}_{R}(\mathrm{M}, \mathrm{E}(\mathrm{T}))$ is uniserial.

Definition 2.13

Let R be a left (right) perfect ring, $\left\{e_{i}\right\}_{i=1}^{n}$ a basic set of primi-
tuve idempotents of $R . R$ is left (right) semidistributive if the left (right) R-modules $\operatorname{Re}_{i}\left(e_{i} R\right)$ are distributive.

A perfect ring R is semidistributive if it is both left and right semidistributive.

Proposition 2.14 [8]
If R is an artinian semidistributive ring then the indecomposable injective R -modules are all distributive.

As promised earlier, a result similar to (2.8) is now proved.

Lemma 2.15
Let R be a semidistributive artinian ring. A local left R-module M is projective if and only if, given the solid part of the diagram

with E an indecomposable injective, B a colocal factor module of E and g the natural epimorphism, there exists a homomorphism $h: M \rightarrow E$ that completes the diagram commutatively.

Proof: $\Leftrightarrow)$ We may assume that M is a factor of an indecomposable projective module P with $\rho: P \rightarrow M$ the natural epimorphism. If $K=\operatorname{Ker} \rho \neq 0$, let S be a simple submodule of P contained in Ker ρ. Pick an integer k so that $S \cap J^{k} P=S, S \cap J^{k-1} P=0$. Let $\eta: P \rightarrow P / J^{k+1} P$ be the natural epimorphism and let $\imath: S \rightarrow E(S)$ be the injective envelope of S. Since η / S is a monomorphism, there exists a map $\psi: P / J^{k+1} P \rightarrow E(S)$ such that $\mathfrak{l}=\eta \psi / S$ Let $N=i m \eta \psi$ and let $L / J N$ be a complement of $N / J N$ in $E / J N$ so
that $(N+L) / L \cong N /(N \cap L)=N / J N$ is an essential simple submodule of $B=E / L$.

Then B is colocal (see [1] 5.21). Let $f: P / K \rightarrow B$ be given by $(x+K) f=x n \psi+L, f$ is well-defined because $K f \leq(J P) f=J N \leq L$. Let $\mathrm{g}: \mathrm{E}(\mathrm{S}) \rightarrow \mathrm{B}$ be the natural epimorphism. By hypothesis, there exists $h: P / K \rightarrow E(S)$ so that $f=h g$. Since R is semidistributive, $E(S)$ is distributive, so the set of $\{\operatorname{Im} \gamma: \gamma \in \operatorname{Hom}(P, E)\}$ is linearly ordered under inclusion. Hence either $i m h \leq N=i m n \psi$ or $N \leq i m h$. We claim that $i m h=N$. First, imh is not strictly contained in N, for otherwise $i m h \leq J N \leq L$, so that $0=h g=f$, a contradiction. Hence $i m h \geq N$. Since $\operatorname{imh}+L=N+L$ we have

$$
i m h / J N=(i m h \cap(N+L)) / J N=N / J N \oplus(i m h \cap L) / J N
$$

by modularity. But imh/JN is local and hence indecomposable, so imh $\cap \mathrm{L}=$ JN and imh $=\mathrm{N}$ as claimed.

Now, since P is projective, there exists an endomorphism α of P
such that $\alpha \psi \eta=\rho h$.
Since

$$
J N \geq(P)(n \psi-\rho h)=(P)\left(1_{p}-\alpha\right) n \psi
$$

we have that
(P) $\left(1_{p}-\alpha\right) \leq J P$.

Consequently,

$$
1_{p}-\alpha \in J\left(\operatorname{End}\left({ }_{R} P\right)\right)
$$

Let $\alpha=1_{p}+\beta$ with $\beta \in \operatorname{JEnd}\left({ }_{R} P\right)$. Let $0 \neq s \in S$. Then

$$
\begin{aligned}
0 & =s \rho h=\operatorname{s} \alpha n \psi \\
& =s n \psi+s \beta n \psi=s i+s \beta n \psi
\end{aligned}
$$

Since $\beta \in J\left(\operatorname{End}\left({ }_{R} P\right)\right), s \beta \in J J^{k} P=J^{k+1} P$. Consequently we have that $s \beta \eta=0$ and hence $s i=0$ which is a contradiction. Therefore $K=0$ and M is projective.

The condition of M being local in Lemma 2.15 is necessary as the next example shows.

Example:

Let D be an arbitrary division ring. Let

$$
R=\left\{\left(\begin{array}{ccc}
a & x & y \\
b & 0 \\
& & c
\end{array}\right): \quad a, b, c, x, y \in D\right\} .
$$

The ring structure of R is the one obtained by considering R as a subring of the ring of the 3×3 matrices over D. Let

$$
M=\left\{\left(\begin{array}{l}
u \\
v \\
z
\end{array}\right): u, v, z \in D\right\} .
$$

Then M can be given an R-module structure by restriction of scalars. Let

$$
P_{1}=\left\{\left(\begin{array}{l}
u \\
0 \\
0
\end{array}\right): u \in D\right\}, \quad P_{2}=\left\{\left(\begin{array}{l}
u \\
v \\
0
\end{array}\right): u, v \in D\right\} \text { and } \quad P_{3}=\left\{\left(\begin{array}{l}
u \\
0 \\
z
\end{array}\right): u, z \in D\right\} .
$$

Then $P_{i} \cong \operatorname{Re}_{i}, i=1,2,3$, where $e_{i j} \in R$ is the matrix with 1 in the (i, j) position, zero everywhere else and $e_{i}=e_{i i}$. The map $p: P_{2} \oplus P_{3} \rightarrow M$

$$
\left(\left(\begin{array}{l}
u \\
v \\
0
\end{array}\right),\left(\begin{array}{c}
u^{\prime} \\
0 \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
u-u^{\prime} \\
-v \\
z
\end{array}\right)\right)
$$

is a projective cover and M is not projective. Also, P_{2} and P_{3} are maximal in M, so M is not local.

If ${ }_{R} S$ is simple and ${ }_{R} K$ is any colocal (and hence indecomposable) module we claim that the solid part of the diagram

can be commutatively completed. Let $S_{i} \xlongequal{\cong} \operatorname{Re}_{i} / J e_{i}, i=1,2,3$, then $E\left(S_{i}\right) \cong M / L_{i}$ where

$$
\begin{equation*}
L_{i}=\sum_{j}\left\{D m_{j}: e_{i j}=0\right\}=\sum\left\{R m_{j}: e_{k} R e_{j}=0\right\} \tag{*}
\end{equation*}
$$

and $m_{j}=\left(\delta_{j, k}\right)_{k} \in M[9]$. Then $L_{1}=0$ so $E\left(S_{1}\right)=M$, and given

with M / N colocal, there exists a unique map $f^{\prime}: M \rightarrow M \rightarrow f^{\prime} \pi=\psi$ (see [11] Lemma 3), $L_{2}=R m_{3}+R m_{1}=P_{3}$ so $E\left(S_{2}\right) \cong M / P_{3}$ which is simple (isomorphic to $\left.\mathrm{S}_{2}\right)$, that is $\mathrm{E}\left(\mathrm{S}_{2}\right)$ has no submodules other than the trivial ones from which we infer that

can always be commutatively completed. $\mathrm{L}_{3}=\mathrm{Rm}_{2}+\mathrm{Rm}_{1}=\mathrm{P}_{2}$, then

$$
E\left(S_{3}\right) \cong M / L_{3}=M / P_{2} .
$$

But $M / P_{2} \cong S_{3}$ and the diagram

can (trivially) be completed.

Proposition 2.16

Let R be a perfect ring and let M be an R-module. If $N \leq M$ is a maximal submodule, then there exists a local submodule K of M such that $M=$ $K+N$.

Proof: Let K be a supplement of N in M, that is, a submodule L which is minimal with respect to $N+L=M$. Then [12] $K \cap N \ll K$. Hence $K \cap N \leq J K$. We have $M / N=(K+N) / N \cong K /(K \cap N)$ which implies that $K /(K \cap N)$ is simple. Then the map $h: K /(K \cap N) \rightarrow K / J K$ defined by $(t+K \cap N) h=t+J K$ is an isomorphism. Hence K is local.

Dual to Lemma 2.15 we have

Lemma 2.17

Let R be a semidistributive semiprimary ring. A colocal left Rmodule M is injective if and only if given the solid part of the diagram

with P an indecomposable projective, N a local submodule of P and l the
natural inclusion, there exists a homomorphism $h: P \rightarrow M$ that completes the diagram commutatively.

Proof: \Leftrightarrow Assume M is not injective. Let $T=\operatorname{Soc}(M)$, let $E=E(T)$ be the injective envelope of T. Then $E=E(M)=E(T)$ is an indecomposable injective.

Let ℓ denote the Loewy length of E, let $L \leq E$ be a maximal submodule of E containing M and let $k \leq \ell$ be an integer such that $\operatorname{Soc}_{k}(E)+L=E$, $\operatorname{Soc}_{k-1}(E)+L=L$. Let $\lambda: P \rightarrow E / L$ be the projective cover of E / L and let $\pi: E \rightarrow E / L$ be the natural epimorphism. Then there exists a homomorphism $\psi: P \rightarrow \operatorname{Soc}_{k}(E)$ such that $\psi \pi=\lambda$.

Let $Q=(T) \psi^{-1} \leq P$. Since $\operatorname{Ker} \psi \leq Q, \psi / Q$ induces an isomorphism from $Q / \operatorname{Ker} \psi$ onto T, consequently, $\operatorname{Ker} \psi$ is maximal in Q, and there exists $K \leq Q, K$ a local submodule, such that $K+\operatorname{Ker} \psi=Q(\operatorname{Prop}, 2.16)$. By assumption, there exists a homomorphism $\phi: P \rightarrow M$ such that the diagram

commutes. This implies that

$$
\begin{equation*}
\mathrm{K} \cap \operatorname{Ker} \phi=\operatorname{Ker} \psi \cap \mathrm{K} . \tag{*}
\end{equation*}
$$

Since P is distributive and E is colocal we conclude ([18], Prop. 2.3) that either $\operatorname{Ker} \phi \leq \operatorname{Ker} \psi$ or $\operatorname{Ker} \psi \leq \operatorname{Ker} \phi$. We claim that $\operatorname{Ker} \psi=\operatorname{Ker} \phi$. First, if $\operatorname{Ker} \psi \leq \operatorname{Ker} \phi$, then, since $\operatorname{Ker} \psi$ is maximal in Q and $(P) \psi \cong$ P/Ker ψ is colocal (Prop. 2.3) we see that

Q $/ \operatorname{Ker} \psi \leq \operatorname{Ker} \phi / \operatorname{Ker} \psi \leq \mathrm{P} / \operatorname{Ker} \psi$.

Hence, $\phi / Q=0$. But $\phi / K=\psi / K$ and $\psi / K=0$ which is a contradiction. Assume then, that $\operatorname{Ker} \phi \leq \operatorname{Ker} \psi$. From (*) and by modularity,

```
Ker }\phi=\operatorname{Ker}\phi+(\operatorname{Ker}\psi\cap\textrm{K})=\operatorname{Ker}\psi\cap(\operatorname{Ker}\phi+K)
```

Hence,

$$
\mathrm{Q} / \operatorname{Ker} \phi=\mathrm{Q} /(\operatorname{Ker} \psi \cap(\operatorname{Ker} \phi+\mathrm{K})) \cong \mathrm{Q} / \operatorname{Ker} \psi \oplus \mathrm{Q} /(\operatorname{Ker} \phi+\mathrm{K}) .
$$

Since $Q / \operatorname{Ker} \phi$ is colocal, we conclude that $Q /(\operatorname{Ker} \phi+K)=0$. But

$$
\begin{aligned}
& Q /(\operatorname{Ker} \phi+K)=(\operatorname{Ker} \phi+\operatorname{Ker} \psi+K) /(\operatorname{Ker} \phi+K) \\
& \cong \operatorname{Ker} \psi /((\operatorname{Ker} \phi+K) \cap \operatorname{Ker} \psi)
\end{aligned}
$$

$=\operatorname{Ker} \psi / \operatorname{Ker} \phi$.

So, $\operatorname{Ker} \phi=\operatorname{Ker} \psi$ as claimed. Let $\bar{\psi}: \operatorname{P} / \operatorname{Ker} \psi \rightarrow \operatorname{Soc}_{k}(E)$ be the monomorphism induced by ψ and let $\bar{\phi}: \mathrm{P} / \operatorname{Ker}^{\boldsymbol{\phi}} \rightarrow \mathrm{M}$ be the monomorphism induced by ϕ. Then there exists $\alpha \in \operatorname{End}\left({ }_{R} E\right)$ such that $\bar{\psi} \alpha=\bar{\phi}$. It is then clear that α is a monomorphism; moreover, since E is indecomposable α is an isomorphism and $\psi \alpha=\phi$. Hence $\psi \alpha / K=\phi / K=\psi / K$.

Let $t \in T$, then $t=x \psi$ for $x \in K$
$(t) \alpha=(x) \psi \alpha=(x) \psi=t$.

Hence, $\alpha / T=1_{T}$. Let $\beta=1-\alpha$, since $\operatorname{Ker} \beta \geq T$, $\operatorname{Ker} \beta \quad \Delta E$ and $\beta \in J\left(\operatorname{End}_{R} E\right)$ we can write $\alpha=1+\beta, \beta \in J\left(\operatorname{End}\left({ }_{R} E\right)\right) . \quad \bar{\psi} \alpha=\bar{\phi}$ implies $\bar{\psi}(1+\beta)=\bar{\phi}$. But $\bar{\phi} \lambda=0$. Hence $\bar{\psi} \lambda+\bar{\psi} \beta \lambda=0$. But $\mathrm{x} \bar{\psi} \beta \in \operatorname{Soc}_{k-1}(E)$ for $x \in P / \operatorname{Ker} \phi$. So $0=x \bar{\psi} \beta \lambda$ and $\bar{\psi} \lambda=0$ which is a contradiction.

Theorem 2.18
Let R be a semidistributive artinian ring. The following statements are equivalent.

1) R is left ℓ-hereditary.
2) Local submodules of (indecomposable) projective left R-modules are projective.
3) Colocal factor modules of (indecomposable) injective left R-modules are injective.
4) Nonzero maps between indecomposable injective left R-modules are epimorphisms.

Moreover, these statements are equivalent to those formed when left is replaced by right.

Proof:

1) $\Leftrightarrow 2)$ Propositions 2.5 and 2.6.

3) \Rightarrow 2) Let E / K be a colocal factor module of an indecomposable injective left R-module E. Let P be an indecomposable projective left Rmodule with local submodule M. Consider the following diagram where $l: M \rightarrow P$ is the inclusion map and $\eta: E \rightarrow E / K$ the natural epimorphism.

Since E / K is injective, then there exists a homomorphism $\alpha: P \rightarrow E / K$ such that $\imath \alpha=f$. Since P is projective, there exists a homomorphism $\beta: P \rightarrow E$ such that $\beta \eta=\alpha$. Let $h=\imath \beta$; from Lemma 2.15, we see that M is projective.
2) \Rightarrow) Let M be a local submodule of an indecomposable projective R-
module P. Let E be an indecomposable injective R-module, E / K a colocal factor of E. Consider the following diagram, where $\eta: E \rightarrow E / K$ is the natural epımorphism and $1: M \rightarrow P$ the inclusion map.

By assumption M is projective and hence, there exists a homomorphism $\alpha: M \rightarrow E$ such that $\alpha \eta=f$. The injectivity of E implies the existence of a homomorphism $\beta: P \rightarrow E$ such that $i \beta=\alpha$. Let $g=\beta n$. Then, by Lemma 2.17 we see that E / K is injective.
$3) \quad \Rightarrow$ 4) Let \tilde{Q} be an arbitrary injective R-module, Q an indecomposable injective R -module. Let $\phi: \tilde{Q} \rightarrow \mathrm{Q}$ be a nonzero homomorphism. Then, by assumption, $\tilde{Q}_{\phi} \xlongequal{\cong} \tilde{Q} / \operatorname{Ker} \phi$ is injective and $Q \cong(Q) \phi \oplus \mathrm{L}$, some R-module L. But Q being indecomposable implies that ϕ is onto.
4) \Rightarrow 3) Let E be an indecomposable injective R-module, K a submodule such that E / K is colocal. Then $\operatorname{Soc}(E / K)$ is simple and $E(E / K)$ is an indecomposable injective R-module. Let $\eta: E \rightarrow E / K$ be the natural epimorphism, $\mathrm{l}: \mathrm{E} / \mathrm{K} \rightarrow \mathrm{E}(\mathrm{E} / \mathrm{K})$ the natural inclusion. Let $\alpha=\eta \mathrm{l}$. By assumption α is onto and hence so is \imath. Then E / K is injective.

Finally, the dual result to Proposition 2.5 shows that 4) implies the non-parenthetical version of 3).

We close this chapter by showing some examples of semidistributive ℓ-hereditary rings.

1. Let D be a division ring and let (X, \leq) be a finite ordered set. Define

$$
R=\left\{\sum_{i \leq j} d_{i j} x_{i j}, \quad i, j \in X\right\}
$$

If we define

$$
\left(\sum_{i \leq j} d_{i j} x_{i j}\right)\left(\sum_{i \leq j} d_{i j}^{\prime} x_{i j}\right)=\sum_{i \leq j}\left(\sum_{i \leq k \leq j}^{\sum} d_{i k} d_{k j}^{\prime}\right) x_{i j},
$$

then R becomes a ring, called the incidence ring of \underline{D} over \underline{X}. This ring may be considered as a subring of the $|x| x|x|$ upper triangular matrices. R is clearly an ℓ-hereditary semidistributive ring.
2. An example of an ℓ-hereditary semidistributive ring which is not an incidence ring is given below.

Let D be a division ring and let $\phi \in \operatorname{Aut}(D)$ be an automorphism which does not fix the center of D. Let

$$
R_{\phi}=\left\{\left(\begin{array}{llll}
a & 0 & x & m \\
& b & y & z \\
& & c & 0 \\
& & & d
\end{array}\right): \quad a, x, b, z, c, d \in D, \quad m \in M_{D}\right\}
$$

with $D^{M}=D_{D}$ and the right D-multiplication in M is given by $m * d=m \phi(d)$. It is clear that R_{ϕ} is not an incidence ring [9].

MORITA DUALITY AND \&-HEREDITARY RINGS

In this chapter will establish that semidistributive ℓ-hereditary rings have self-duality. This will be accomplished by examining the quivers of these rings and by calculating their injective modules.

We begin the chapter by introducing the basic notions concerning (Morita) duality and by proving some necessary facts.

Definition 3.1

Let C and D be two categories. Let $H^{\prime}: C \rightarrow D$ and $H^{\prime \prime}: D \rightarrow C$ be two contravariant functors. We say that the pair ($H^{\prime}, H^{\prime \prime}$) is a duality between C and D if there exist natural isomorphisms such that $H^{\prime \prime} H^{\prime} \xlongequal{\cong} 1_{C}$ and $H^{\prime} H^{\prime \prime} \xlongequal{n} 1_{D}$.

Notation. If R and S are rings, R and M_{S} will denote the categories of left R -modules and right S-modules, respectively. ${ }_{\mathrm{R}}$ FM will denote the category of finitely generated left R-modules.

Definition 3.2
Let ${ }_{R} U_{S}$ be a bimodule. The pair of contravariant additive functors $\operatorname{Hom}_{R}\left(-,{ }_{R} U_{S}\right):{ }_{R}{ }^{M \rightarrow M_{S}}$ and $\operatorname{Hom}_{S}\left(-,,_{R} U_{S}\right): M_{S} \rightarrow{ }_{R} M$ are called the U-duals.

We will sometimes denote $\operatorname{Hom}_{R}(M, U)$ by M^{*} and $\operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(M, U), U\right)$ by $M^{* *}$ if M is a left R-module. The same notation will be used for a right S-module N.

Definition 3.3

Let ${ }_{R} U_{S}$ be a bimodule. We will say that a left R-module (or a right S-module) M is U-reflexive if the evaluation map $\sigma_{M}: M \rightarrow M^{* *}$ defined by $\left(m^{*}\right)(m) \sigma_{M}=(m) m^{*}$, where $m \in M, m^{*} \in M^{*}$, is an isomorphism.

Theorem 3.4 [15]
Let R and S be rings and let R_{R}^{C} and D_{S} be full subcategories of R^{M} and M_{S} such that ${ }_{R} R \epsilon_{R} C$ and $S_{S} \in D_{S}$ and such that every module in R^{M} (respectively M_{S}) isomorphic to one in R^{C} (respectively D_{S}) is in R^{C} (respectively D_{S}.

If $H^{\prime}:{ }_{R} C \rightarrow D_{S}$ and $H^{\prime \prime}: D_{S} \rightarrow{ }_{R} C$ is a duality between R^{C} and D_{S}, then there exists a bimodule ${ }_{R} U_{S}$ such that

1) $R^{U} \xlongequal{\cong} H^{\prime \prime}(S)$ and $U_{S} \cong H^{\prime}(R)$,
2) there are natural isomorphisms

$$
H^{\prime} \cong \operatorname{Hom}_{R}(-, U) \quad \text { and } H^{\prime \prime} \cong \operatorname{Hom}_{S}(-, U) \text {, and }
$$

3) every $M \in{ }_{R} C$ and every $N \in D_{S}$ is U-reflexive.

Definition 3.5

Let R and S be rings, $R_{S}{ }^{U}$ a bimodule. We say that the duality given by the pair $\operatorname{Hom}_{R}(-, U)$ and $\operatorname{Hom}_{S}(-, U)$ is a Morita duality if

1) R^{R} and S_{S} are U-reflexive, and
2) every submodule and every factor module of a U-reflexive module is U-reflexive.

Definition 3.6
An artinian ring R is said to have a (Morıta) self-duality if there is a Morita duality $D:{ }_{R}{ }^{F M} \rightarrow F M_{R}, D^{\prime}: F M_{R} \rightarrow{ }_{R} F M$.

Theorem 3.7 ([2], [15])
Let R be an artinian ring. R has self-duality if and only if there exists an injective cogenerator R^{E} of $R_{R} F M$ and a ring isomorphism $\phi: R \rightarrow \operatorname{End}\left({ }_{R} E\right)$, which induces a right R-structure on E via $x r=x \phi(r)$, $x \in E, r \in R$, such that

$$
D \cong \operatorname{Hom}_{R}\left(-, R_{R} E\right) \quad \text { and } \quad D^{\prime} \cong \operatorname{Hom}_{R}\left(-, E_{R}\right) .
$$

Definition 3.7

Let R be a ring with self-duality D. We will say that D is a weak1y symmetric duality if $D(\mathrm{Re} / \mathrm{Je}) \cong \mathrm{eR} / \mathrm{eJ}$ for every primitive idempotent $e \in R$.

Theorem 3.8 [10]
Let R be an artinian ring. Then R has a weakly symmetric duality iff there is an injective cogenerator E of $R_{R}{ }^{F M}$ and a ring isomorphism $\phi: R \rightarrow \operatorname{End}(R E)$ such that $(E)(\phi e) \xlongequal{\cong} E(R e / J e)$ for every primitive idempotent $e \in R$. In particular $E=E(R / J)$; if R is basic, then E is the minimal injective cogenerator.

Proof: In view of (3.7) we just need to show that $D=\operatorname{Hom}\left(-,{ }_{R} E_{R}\right)$ is weakly symmetric if and only if $E e=(E) \phi(e) \cong E(R e / J e)$ for every primitive idempotent $e \in R$.

But D is a weakly symmetric duality iff

$$
\mathrm{D}(\mathrm{Re} / \mathrm{Je}) \cong \mathrm{eR} / \mathrm{Je} .
$$

That is,
iff $[\operatorname{Hom}(\operatorname{Re} / \mathrm{Je}, \mathrm{E})] \mathrm{e} \cong[\mathrm{D}(\mathrm{Re} / \mathrm{Je})] \mathrm{e} \neq 0$
iff e $\operatorname{Soc}(E e) \neq 0$
iff $\mathrm{Re} / \mathrm{Je} \xlongequal{\cong} \operatorname{Soc}(\mathrm{Ee})$
iff $\mathrm{Ee} \xlongequal{\cong} \mathrm{E}(\mathrm{Re} / \mathrm{Je})$ as needed.

Having established the basic necessary results we proceed toward our main goal. One of our basic techniques consists of analyzing the quivers of an artinian ring. A quiver is a finite set of points called vertices connected by arrows.

Given an artinian ring R and a basic set of primitive idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$ of R we form the (left) quiver $Q\left({ }_{R} \underline{R}\right.$) of R as follows: the vertices are v_{1}, \ldots, v_{n}, one for each idempotent, with $n_{i j}$ arrows from v_{j} to v_{i} iff the simple left R-module $R e_{i} / J_{i}$ appears exactly $n_{i j}$ times as a direct summand of the semisimple left R-module $\mathrm{Je}_{\mathrm{j}} / \mathrm{J}^{2} \mathrm{e}_{\mathrm{j}}$. (The right quiver $Q\left(R_{R}\right)$ of R is formed similarly, the vertices are $v_{i}^{\prime}, \ldots, v_{n}^{\prime}$, one for each idempotent, with $n_{i j}^{\prime}$ arrows from v_{j}^{\prime} to v_{i}^{\prime} iff $e_{i} R / e_{i} J$ appears exactly $n_{i j}^{\prime}$ times as a direct summand in the decomposition of the semisimple right R-module $e_{j} J / e_{j} J^{2}$.)

It is then clear that the quiver Q of an artinian ring is a multigraph.

We recall here some definitions and a few elementary facts from the theory of graphs that will be needed in the sequel (see [13]).

A (finite) graph G is defined to be an ordered pair (V, E) where V is a (finite) set and E is a binary relation in V. The elements in V are called the vertices and the ordered pairs in E are called the edges (or arrows) of the graph. If $v_{i}, v_{j} \in V$ are such that $a=\left(v_{i}, v_{j}\right) \in E$ then v_{i} is called the initial vertex and v_{j} is called the terminal vertex. A graph is said to be directed if directlons are assigned to the edges.

We remark that in a directed graph the edge $\left(v_{i}, v_{j}\right)$ is not the same as the edge $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}\right)$. In a directed graph we will denote the edge $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}\right)$ by $v_{i} \leftarrow v_{j}$.

Definition 3.9

a) In a directed graph, a path is a sequence of edges (arrows) ($a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$) such that the terminal vertex of $a_{i_{j}}$ coincides with the initial vertex of $a_{i_{j}}$ for $1 \leq j \leq k-1$.
b) A path is simple if it does not use the same edge twice.
c) A path is elementary if it does not meet the same vertex twice.
d) A circuit (or closed path) is a path ($\mathrm{a}_{\mathrm{i}_{1}}, \mathrm{a}_{\mathrm{i}_{2}}, \ldots, \mathrm{a}_{\mathrm{i}_{k}}$) in which the terminal vertex of $\mathrm{a}_{\mathrm{i}_{\mathrm{k}}}$ coincides with the initial vertex of $\mathrm{a}_{\mathrm{i}_{1}}$.
e) A directed path in a directed graph Q is a path in which any two consecutive edges have the same direction, that is, if $\mathrm{v}_{\mathrm{i}_{\mathbf{j}}}, \mathrm{v}_{\mathrm{i}_{\mathrm{j}}+1}$ and $\mathrm{v}_{\mathrm{i}_{\mathrm{j}+2}}$ are three consecutive vertices, then the directions assigned to the edges joining them are

Similarly we define elementary circuits, simple circuits and directed circuits.

Definition 3.10
a) Two vertices v_{i}, v_{j} in a graph Q are said to be connected if there is a path in Q joining them.
b) A graph Q is connected if any two vertices in Q are connected.
c) A tree T is a connected graph which contains no circuits.

Definition 3.11
Let G be a graph with vertıces $V=\left\{v_{i}\right\}_{i=1}^{n}$ and edges $E=\left\{a_{i}\right\}_{i=1}^{n}$. A
graph G^{\prime} with set of vertices V^{\prime} and set of edges E^{\prime} is a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

Definition 3.12
a) A tree of a graph Q is a subgraph T of Q which is a tree.
b) A spanning tree of a graph Q is a tree of Q which contains all the vertices of Q .

Proposition 3.13 [13]
a) Any two vertices in a tree are connected by a unique path.
b) A graph is connected iff it contains a spanning tree.

Moreover, if the graph has n vertices, its spanning tree will contain $\mathrm{n}-1$ edges.

For the quiver of an arbitrary artinian ring we state the following.

Proposition 3.14 [9]

Let R be an artinian ring with (left) quiver Q. If $\mathrm{Re}_{\mathrm{i}} / \mathrm{Je} \mathrm{i}_{\mathrm{i}}$ is (isomorphic to) a direct summand of $J^{k} e_{j} / J^{k+1} e_{j}$, then there is in Q a directed path $\mathrm{v}_{\mathrm{i}} \leftarrow \mathrm{v}_{\mathrm{i}_{1}} \leftarrow \ldots \leftarrow \mathrm{v}_{\mathrm{i}_{\mathrm{k}}}=\mathrm{v}_{\mathrm{j}}$ of length k from v_{j} to v_{i}. If in addition R is hereditary the converse is true.

Proof: Induct on k. By definition of a quiver the assertion is true for $k=0,1$.

Let's now assume that $\mathrm{Re}_{\mathrm{i}} / \mathrm{Je}_{\mathrm{i}}$ is (isomorphic to) a direct summand of $J^{k} e_{j} / J^{k+1} e_{j}$. Let

$$
\begin{equation*}
\stackrel{\mathrm{m}=1}{\mathrm{t}} \operatorname{Re}_{\mathrm{j}_{\mathrm{r}}} \xrightarrow{\mathrm{f}} \mathrm{~J}^{\mathrm{k}-1} \mathrm{e}_{\mathrm{j}} \longrightarrow 0 \tag{*}
\end{equation*}
$$

be a projective cover. By [1] Propositions 9.15, 9.19, 15.18 and by passing to the quotient, f induces an epimorphism

$$
\underset{r=1}{\mathrm{t}}\left(\mathrm{Je}_{j_{r}} / J^{2} e_{j_{r}}\right) \xrightarrow{\bar{f}} J^{k} e_{j} / J^{k+1} e_{j} \longrightarrow 0 .
$$

We have that R / J is a semisimple ring; consequently

$$
\underset{r=1}{\oplus}\left(J e_{j_{r}} / J^{2} e_{j_{r}}\right) \quad \text { and } \quad J^{k} e_{j} / J^{k+1} e_{j}
$$

are R / J semisimple modules and $\overline{\mathrm{f}}$ is a splitting homomorphism (see [1] Prop. 4.3). Thus, there is r such that $R e_{i} / J e_{i} \cong J e_{j_{r}} / J^{2} e_{j_{r}}$, that is, there is an arrow from $\mathrm{v}_{\mathrm{j}_{\mathrm{r}}}$ to v_{i}.

From (*), and by the inductive hypothesis, we see there is a path of length $k-1$ from v_{j} to $v_{j_{r}}$ We have thus obtained the desired path of length k from v_{j} to v_{i}.

Now, suppose that R is hereditary and let $v_{i} \leftarrow v_{i_{k-1}} \leftarrow \ldots \leftarrow v_{i_{p}}=$ v_{j} be a directed path of length k from v_{j} to v_{i}. Assume that $R e_{i_{m}} / \mathrm{Je}_{\mathrm{i}_{\mathrm{m}}}$ is a direct summand of the semisimple module

$$
J^{m} e_{j} / J^{m+1} e_{j} \quad \text { for } m<k
$$

Since $R e_{j}$ is projective, so is $J^{m} e_{j}$ and we can write

$$
J^{m} e_{j} \cong \operatorname{Re}_{i_{m}} \oplus M
$$

for some left R-module M. We obtain that

$$
J^{m+1} e_{j} / J^{m+2} e_{j} \cong J e_{i_{m}} / J^{2} e_{i_{m}} \oplus J M / J^{2} M
$$

The existence of an arrow $v_{i_{m+1}} \leftarrow \mathrm{v}_{\mathbf{i}_{\mathrm{m}}}$ implies that $\mathrm{Re}_{\mathrm{i}_{\mathrm{m}+1}} / \mathrm{Je} \mathrm{i}_{\mathrm{m}+1}$ is
(isomorphic to) a direct summand of $\mathrm{Je}_{\mathrm{i}_{\mathrm{m}}} / \mathrm{J}^{2} \mathrm{e}_{\mathrm{i}_{\mathrm{m}}}$. From this we conclude that $\operatorname{Re}_{i_{m+1}} / J e_{i_{m+1}}$ is a direct summand of

$$
J e_{j}^{m+1} / J^{m+2} e_{j}
$$

Proposition 3.15

Let R be an artinian ring with (left) quiver Q. Let $v_{i}=v_{i_{k}}{ }^{\leftarrow}$
$v_{i_{k-1}} \leftarrow \ldots \leftarrow v_{i_{1}} \leftarrow v_{i_{0}}=v_{j}$ be a directed path of minimal length from
v_{j} to v_{i} in Q. Then $e_{i} R e_{j}=e_{i} J^{k} e_{j}$.

Proof: Let m be the least positive integer such that

$$
e_{i} J^{k} e_{j} \nsubseteq e_{i} J^{k-m} e_{j} \subseteq e_{i} \operatorname{Re}_{j}
$$

Clearly,

$$
e_{i} J^{k-m} e_{j} / e_{i} J^{k} e_{j}
$$

is a nonzero left $e_{i} \operatorname{Re}_{i}$-module and

$$
J\left(e_{i} R e_{i}\right)\left(e_{i} J^{k-m} e_{j} / e_{i} J^{k} e_{j}\right)=e_{i} J e_{i}\left(e_{i} J^{k-m} e_{j} / e_{i} J^{k} e_{j}\right)=0 .
$$

We then have ([1], Prop. 15.18) that $e_{i} J^{k-m} e_{j} / e_{i} J^{k} e_{j}$ is $e_{i} \operatorname{Re}_{i}$-semisimple. Hence,

$$
e_{i} J^{k-m} e_{j} / e_{i} J^{k} e_{j} \cong\left(e_{i} \operatorname{Re} i_{i} / e_{i} J e_{i}\right)^{(\lambda)}
$$

for some λ, and

$$
e_{i}\left(e_{i} J^{k-m} e_{j} / e_{i} J^{k} e_{j}\right) \neq 0
$$

Then

$$
\begin{aligned}
& e_{i}\left(e_{i} J^{k-m} e_{j} / e_{i} J^{k-m+1} e_{j}\right) \neq 0 \text { and } \\
& e_{i}\left(J^{k-m} e_{j} / J^{k-m+1} e_{j}\right) \neq 0
\end{aligned}
$$

Consequently, $\operatorname{Re}_{i} / \mathrm{Je}_{\mathrm{i}}$ is (isomorphic to) a direct summand of $J^{k-m} e_{j} / J^{k-m+1} e_{j}$ and by Proposition 3.14 there is a path of length strictly less than k from v_{j} to v_{i}, contradicting our hypothesis.

For l-hereditary rings we have

Proposition 3.16
Let R be an artinian l-hereditary ring with quiver Q . Suppose there is a directed path (of length k) from v_{j} to v_{i} in Q, then $e_{i} \operatorname{Re}_{j} \neq 0$.

Proof: We first claim that if there is an arrow $v_{p} \leftarrow v_{q}$, then there is a 1-1 map from $\mathrm{Re}_{\mathrm{p}} \rightarrow \mathrm{Re}_{\mathrm{q}}$. To see this, we have, by definition, that $R e_{p} / \mathrm{Je}_{\mathrm{p}}$ is a direct summand of $\mathrm{Je}_{\mathrm{q}} / \mathrm{J}^{2} \mathrm{e}_{\mathrm{q}}$.

Consider the composition $\mathrm{Je}_{\mathrm{q}} \xrightarrow{\eta} \mathrm{Je}_{\mathrm{q}} / \mathrm{J}^{2} \mathrm{e}_{\mathrm{q}} \xrightarrow{\pi} \mathrm{Re}_{\mathrm{p}} / \mathrm{Je} \mathrm{p}_{\mathrm{p}}$ where η is the natural epimorphism and π the corresponding projection onto the direct summand.

Since $R e_{p}$ is projective, there exists $\phi: \operatorname{Re}_{\mathrm{p}} \rightarrow J e_{\mathrm{q}}, \phi \neq 0$ such that the following diagram commutes.

with η_{1} also the natural epimorphism. We may consider ϕ as a map into $\operatorname{Re}{ }_{\mathrm{q}}$; since R is ℓ-hereditary ϕ is $1-1$. If $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}_{\mathrm{k}}} \leftarrow \mathrm{v}_{\mathrm{I}_{\mathrm{k}-1}} \leftarrow \ldots \leftarrow \mathrm{v}_{\mathrm{i}_{1}} \leftarrow$ $v_{i_{0}}=v_{j}$ is an oriented path we then get a sequence of maps

$$
\mathrm{Re}_{i} \xrightarrow{\phi_{1}} \mathrm{Re}_{\mathrm{i}_{k-1}} \xrightarrow{\phi_{i_{k-1}}} \ldots \longrightarrow \operatorname{Re}_{\mathrm{i}_{1}} \xrightarrow{\phi_{i_{1}}} \operatorname{Re}_{\mathrm{j}}
$$

with each $\phi_{i_{j}}$ a monomorphism. Hence,

$$
\left(\operatorname{Re}_{i}\right) \phi_{i} \phi_{i_{k-1}} \cdots \phi_{i_{1}} \neq 0 \quad \text { and } \quad\left(e_{i} \operatorname{Re}_{i}\right) \phi_{i} \phi_{i_{k-1}} \cdots \phi_{i_{1}} \neq 0
$$

But

$$
\left(e_{i} \operatorname{Re}_{i}\right) \phi_{i} \phi_{i_{k-1}} \cdots \phi_{i_{1}} \leq e_{i} \operatorname{Re}_{j},
$$

so,

$$
e_{i} \operatorname{Re}_{j} \neq 0
$$

Proposition 3.17
If R is an artinian ℓ-hereditary ring, then the quiver Q of R has no directed circuits.

Proof: It is enough to show that there are no elementary circuits. Consider then a circuit

$$
v_{i}=v_{i_{k}} \leftarrow v_{i_{k-1}} \leftarrow \ldots \leftarrow v_{i_{1}} \leftarrow v_{i_{0}}=v_{i}
$$

where all the vertices other than $\mathrm{v}_{\mathrm{i}_{\mathrm{k}}}=\mathrm{v}_{\mathrm{i}_{0}}$ are different. We thus get a sequence of monomorphisms

$$
\begin{aligned}
& \mathrm{Re}_{\mathrm{i}_{\mathrm{k}}} \xrightarrow{\phi_{\mathrm{i}}} \mathrm{Re}_{\mathrm{i}_{\mathrm{k}-1}} \xrightarrow{\phi_{\mathrm{i}_{\mathrm{k}-1}}} \ldots_{\mathrm{i}} \mathrm{Re}_{\mathrm{i}_{1}} \xrightarrow{\phi_{\mathrm{i}_{1}}} \mathrm{Re}_{\mathrm{i}} \xrightarrow{\phi_{1}} \mathrm{Re}_{\mathrm{i}_{\mathrm{k}-1}} \\
& \\
& \ldots,
\end{aligned}
$$

and then $J^{t k} e_{i} \neq 0$ which is a contradiction, for R is artinian.
sider semidistributivity.

Proposition 3.18

If R is an artinian semidistributive ring, then its quiver Q is a graph, that is, for any pair of vertices v_{i}, v_{j} in Q there is at most one arrow from v_{j} to $\mathrm{v}_{\mathbf{i}}$.

Proof: If v_{i} and v_{j} are not connected by an arrow there is nothing to prove. We may then assume that $\left(\mathrm{Re}_{\mathrm{i}} / \mathrm{Je} \mathrm{i}_{\mathrm{i}}\right)^{(\mathrm{k})}$ is a direct summand of $J e_{j} / J^{2} e_{j}$. By hypothesis, R is semidistributive, that is, $R e j$ is distributive and hence so is Je_{j}. This implies [5] that $\operatorname{Soc}\left(\mathrm{Je}{ }_{j} / \mathrm{J}^{2} \mathrm{e}_{\mathrm{j}}\right)=$ $J e_{j} / J^{2} e_{j}$ is square free and hence $k=1$.

If we combine Propositions 3.17 and 3.18 we see that the quiver Q of an artinian semidistributive ℓ-hereditary ring is a graph with no directed circuits. As a consequence of this fact we can partially order the set of vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ of Q as follows.

Definition 3.19
Let R be an artinian semidistributive l-heredıtary ring with quiver Q. Let $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices of Q . We will put $\mathrm{v}_{\mathrm{i}} \leq \mathrm{v}_{\mathrm{J}}$ if there is at least one directed path from v_{j} to v_{i} or $v_{i}=v_{j}$.

We will relabel the vertices $\left\{v_{i}\right\}$ of Q so that $v_{i} \leq v_{j}$ implies $i \leq j$. Notice also that under this condition v_{1} is a minimal element and v_{n} is a maximal one.

We remark here that the quiver of an artinian ring R is connected 1f and only if R is an indecomposable ring ([1], Prop. 7.9).

In what follows we will assume, unless otherwise stated, that R is an artinian indecomposable semidistributive ℓ-hereditary ring with $\left\{e_{1}\right.$,
$\left.\ldots, e_{n}\right\}$ a basic set of primitive idempotents and with quiver Q.
As an immediate consequence of Proposition 3.17 we have that
$e_{1} J e_{1}=\ldots=e_{i} J e_{i}=\ldots=e_{n} J e_{n}=0$. For, if $e_{i} J e_{i} \neq 0$ then $e_{i}\left(J e_{i} / J^{2} e_{i}\right) \neq 0$ which implies that there is an oriented path (of length one) from v_{i} to v_{i}.

This simple remark allows us to establish the following.

Proposition 3.20

$$
e_{i} R e_{i} \text { is a division ring for every } i=1, \ldots, n
$$

Proof: Since $e_{i} \mathrm{Je}_{\mathrm{i}}=0$, we have

$$
\begin{aligned}
e_{i} R e_{i}=e_{i} R e_{i} / e_{i} J e_{i} & =e_{i} \operatorname{Re}_{i} / J\left(e_{i} \operatorname{Re}{ }_{i}\right) \\
& \cong \operatorname{End}\left(\operatorname{Re}_{i}\right) / J \operatorname{End}\left(\operatorname{Re}_{i}\right) \\
& \cong \operatorname{End}\left(\operatorname{Re}_{i} / J e_{i}\right) .
\end{aligned}
$$

But $R e_{i} / \mathrm{Je}_{\mathrm{i}}$ is simple and hence $\operatorname{End}\left(\mathrm{Re}_{\mathrm{i}} / \mathrm{Je}_{\mathrm{i}}\right)$ is a division ring.
It is our immediate task to derive from the quiver Q of R a few
simple facts about R.
First, we notice that if there is an arrow $v_{i} \leftarrow v_{j}$ connecting v_{j} with v_{i} then $e_{i} \mathrm{Je}_{\mathrm{j}} \neq 0$ and we may consider the bimodule

$$
e_{i} \operatorname{Re}_{i} e_{i}{ }^{\mathrm{Je}}{ }_{j} \mathrm{Re}_{j}
$$

Furthermore, since R is semidistributive

$$
\operatorname{dim}_{e_{i} \operatorname{Re}_{i}} e_{i} J e_{j}=\operatorname{dim} e_{i} J e_{j_{j}} \operatorname{Re}{ }_{j}=1
$$

for otherwise,

$$
e_{i} \operatorname{Re}_{i} e_{i} \mathrm{Je}_{j} \xlongequal{\cong}\left(\mathrm{e}_{i} \operatorname{Re}_{i}\right)^{(k)}
$$

which contradicts the fact that Re_{i} is distributive. We can then choose

$$
e_{i j} \in e_{i} \operatorname{Re}_{i} e_{i}^{J e_{j}}{ }_{e_{j} \operatorname{Re}_{j}}, \quad e_{i j} \neq 0
$$

such that

$$
e_{i} J e_{j}=e_{i} \operatorname{Re}_{i} e_{i j}=e_{i j} e_{j} \operatorname{Re}{ }_{j}
$$

and define

$$
\sigma_{i j}: e_{i} \operatorname{Re}_{i} \rightarrow e_{j} \operatorname{Re}_{j} \quad \text { via } \quad z e_{i j}=e_{i j}(z) \sigma_{i j} .
$$

Clearly $\sigma_{i j}$ is an isomorphism, and by using the fact that R is indecomposable we conclude that $e_{i} \operatorname{Re}_{i} \cong e_{j} R e_{j}$ for every i, j.

Applying Proposition 3.13 we can choose a spanning tree T of Q containing $\mathrm{n}-1$ arrows. We will select T so that it contains all the arrows ending in v_{1} (see [13]).

The existence of this tree will enable us to choose elements $e_{i j} \in R$ whenever $i \leq j$ independently of the path connecting v_{j} to v_{i} and will also make possible the construction of division ring D isomorphic to $e_{i} \mathrm{Re}_{\mathrm{i}}$ which will embed into $\underset{i=1}{\stackrel{n}{\oplus}} e_{i} \operatorname{Re}_{i}$ in a similar way as a ring A embeds into the main diagonal of the ring of $n \times n$ matrices over A

$$
\text { Let } v_{i}=v_{i_{0}} \leftarrow v_{i_{1}} \leftarrow \ldots v_{i_{k-1}} \leftarrow v_{I_{k}}=v_{j} \text { be a directed path from }
$$ v_{j} to v_{i} which lies entirely in T. Define

$$
e_{i j}=e_{i i} e_{i_{1} i_{2}} e_{i_{2} i_{3}} \cdots e_{i_{k-1} i_{k}} e_{j j} \in e_{i} J e_{j}
$$

where $e_{k k}=e_{k}$ and $e_{i_{k} i_{k+1}}$ are defined as above for arrows $v_{i_{k}} \leftarrow v_{i_{k+1}}$ in T.

We will first define $e_{\mu \nu}$ for $v_{\mu} \leftarrow v_{\nu}$ that close two directed paths from one vertex to another. After this stage, we will add these arrows to the tree T and continue inductively until such additions are no longer possible.

Let $a_{\mu \nu}=v_{\mu} \leftarrow v_{\nu}$ be an arrow in $Q-T ; v_{\mu} \leftarrow v_{\nu}$ will close necessarily a unique non-directed circuit in Q. We choose this arrow (if possible) so that it determines two directed paths

from v_{j} to v_{i} with $\mathrm{v}_{\mathrm{i}} \leftarrow \mathrm{v}_{\mathrm{i}_{1}} \leftarrow \ldots \leftarrow \mathrm{v}_{\mathrm{j}}$ a directed path along T . Let $\overline{\mathrm{e}}_{\mu \nu} \in \mathrm{e}_{\mu} J e_{\nu}, \overline{\mathrm{e}}_{\mu \nu} \neq 0$ as before. That is,

$$
\mathrm{e}_{\mu} J e_{\nu}=\mathrm{e}_{\mu} \operatorname{Re}_{\mu} \overline{\mathrm{e}}_{\mu \nu}=\overline{\mathrm{e}}_{\mu \nu} \mathrm{e}_{\nu} \operatorname{Re}{ }_{\nu} .
$$

Then $e_{i i} e_{i_{0} i_{1}} \cdots e_{i_{k-1} i_{k}} e_{j j}$ and $e_{i i^{\prime}} e_{i_{0} j_{1}} \cdots \bar{e}_{\mu \nu} \cdots e_{j_{k^{\prime}-1} j_{k}}{ }^{e_{j j}}$ are elements of $e_{i} \mathrm{Je}_{\mathrm{j}}$. Again, since R is semidıstributive we have that

$$
\operatorname{dim}_{e_{i} \operatorname{Re}_{i}} e_{i} J e_{j}=\operatorname{dim} e_{i} J e_{j} e_{j} \operatorname{Re}_{j}=1
$$

and there exists $0 \neq t \in e_{i} \operatorname{Re}_{i}$ such that

$$
\operatorname{te}_{i i} e_{i_{0} j_{1}} \cdots \bar{e}_{\mu \nu} \ldots e_{j_{k}^{\prime}-1^{J} k^{\prime}} e_{J j}=e_{i i} e_{i_{0} i_{1}} \cdots e_{i_{k-1} i_{k}} e_{j j} .
$$

Let

$$
e_{\mu \nu}=(t) \sigma_{i_{0} j_{1}} \sigma_{j_{1} j_{2}} \cdots \sigma_{(\mu-1) \mu} \bar{e}_{\mu \nu} \text {, then }
$$

$$
\begin{align*}
& 0 \neq e_{\mu \nu} \in e_{\mu} J e_{\nu} \\
& e_{i i} e_{i_{0} i_{1}} \cdots e_{i_{k-1} i_{k}} e_{j j}=e_{i i^{\prime}} e_{i_{0} j_{1}} \cdots e_{\mu \nu} \cdots e_{j_{k \prime-1}} j_{k^{\prime}} e_{j j} \tag{1}
\end{align*}
$$

and

$$
e_{\mu} J e_{\nu}=e_{\mu} \operatorname{Re}_{\mu} e_{\mu \nu}=e_{\mu \nu} e_{\nu} \operatorname{Re}_{\nu} .
$$

Let $\beta_{\mu \nu}: e_{\mu} \operatorname{Re}_{\mu} \rightarrow e_{\nu} R e_{\nu}$ be the isomorphism defined by $z e_{\mu \nu}=e_{\mu \nu}(z) \beta_{\mu \nu}$, $z \in e_{\mu} \operatorname{Re}_{\mu}$. Let $\bar{\sigma}_{\mu \nu}: e_{\mu} \operatorname{Re}_{\mu} \rightarrow e_{\nu} \operatorname{Re}_{\nu}$ be the isomorphism determined by the (unique) (nondirected) path from v_{ν} to v_{μ} along T, that is, $\bar{\sigma}_{\mu \nu}$ is the isomorphism obtained by composition of the isomorphisms $\sigma_{s t}$ (and their inverses) determined by arrows $\mathrm{v}_{\mathrm{s}} \leftarrow \mathrm{v}_{\mathrm{t}}$ in T .

Then there exists $h_{\nu}^{\mu \nu} \in \operatorname{Aut}\left(e_{\nu} \operatorname{Re}{ }_{\nu}\right)$ such that the diagram below commutes.

i.e., $\beta_{\mu \nu} h_{\nu}^{\mu \nu}=\bar{\sigma}_{\mu \nu}$. Let $g_{\mu}^{\mu \nu} \in \operatorname{Aut}\left(e_{\mu} \operatorname{Re}_{\mu}\right)$ such that

commutes. Then $\beta_{\mu \nu} h_{\nu}^{\mu \nu}=g_{\mu}^{\mu \nu} \beta_{\mu \nu}$ and $g_{\mu}^{\mu \nu}=\beta_{\mu \nu} h_{\nu}^{\mu \nu} \beta_{\mu \nu}^{-1}$. Define

$$
\sigma_{\mu \nu}=g_{\mu}^{\mu \nu} \beta_{\mu \nu},
$$

then we have that

$$
\begin{equation*}
\sigma_{\mu \nu}=\bar{\sigma}_{\mu \nu} \tag{2}
\end{equation*}
$$

and

$$
e_{\mu \nu}(z) \sigma_{\mu \nu}=e_{\mu \nu}(z) g_{\mu}^{\mu \nu} \beta_{\mu \nu}=(z) g_{\mu}^{\mu \nu} e_{\mu \nu}, \quad z \in e_{\mu} \operatorname{Re}_{\mu} .
$$

That is,

$$
e_{\mu \nu}(z) \sigma_{\mu \nu}=(z) g_{\mu}^{\mu \nu} e_{\mu \nu}
$$

or

$$
\begin{equation*}
t e_{\mu \nu}=e_{\mu \nu}(t)\left(g_{\mu}^{\mu \nu}\right)^{-1} \sigma_{\mu \nu} \tag{3}
\end{equation*}
$$

The commutative diagrams involved in the construction of $\sigma_{\mu \nu}$ from $\beta_{\mu \nu}$ for the directed path

$$
v_{i} \leftarrow v_{j_{1}} \leftarrow v_{j_{2}} \cdots v_{\mu-1} \leftarrow v_{\mu} \leftarrow v_{v} \leftarrow \cdots v_{j_{k^{\prime}-1}} \leftarrow v_{j}
$$

are shown in Figure 1. By chasing this diagram we see that $h_{t}^{\mu \nu}=g_{t}^{\mu \nu}$, $i \leq t \leq j$. We will call the maps $h_{t}^{\mu \nu}$ the twisting induced by the addition of the arrow $v_{\mu} \leftarrow v_{\nu}$.

By (1) we can unambiguously define $e_{i j}$ by

$$
e_{i j}=e_{i i} e_{i_{0} j_{1}} \cdots e_{i_{k-1} i_{k}} e_{j j}=e_{i i} e_{j_{0} j_{1}} \cdots e_{j_{k}^{\prime}-1} j_{k} e_{j j} \in e_{i} R_{j}
$$

Similarly, from (3) we obtain

$$
\begin{equation*}
\sigma_{i j}=\sigma_{i_{0} i_{1}} \sigma_{i_{1} i_{2}} \cdots \sigma_{i_{k-1}}=\sigma_{j_{o} j_{1}} \cdots \sigma_{j_{k}^{\prime}-1_{k}} j_{j_{k}} \tag{5}
\end{equation*}
$$

Moreover, if $x \in e_{i} \operatorname{Re}_{i}$, then

Figure 1. Diagram of the Twisting Induced by the Addition of the Arrow $v_{\mu} \leftarrow v_{\nu}$

$$
\begin{aligned}
& =e_{i i} e_{i_{0} j_{1}}(x) \sigma_{i_{0} j_{1}} \cdots e_{\mu \nu} \cdots e_{j_{k^{\prime}-1} j_{k}} e_{j j} \\
& =e_{i i} e_{i_{0} j_{1}} \cdots e_{\mu \nu}(x) \sigma_{i_{0} j_{1}} \cdots\left(g_{\mu}^{\mu \nu}\right)^{-1} \sigma_{\mu \nu} \cdots e_{j_{k}-1} j_{k^{\prime}} e_{j j} \\
& =e_{i i} e_{i_{0} j_{1}} \cdots e_{j_{k^{\prime}-1} j_{k}}(x) \sigma_{i_{0} j_{1}} \cdots\left(g_{\mu}^{\mu \nu}\right)^{-1} \sigma_{\mu \nu} \cdots \sigma_{j_{k^{\prime}-1} j_{k^{\prime}}} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
x_{i j} & =x e_{i i^{\prime}} e_{i_{0} i_{1}} \cdots e_{i_{k-1}} i_{k} e_{j j} \\
& =e_{i i} e_{i_{0} i_{1}} \cdots e_{i_{k-1} i_{k}} e_{j j}(x) \sigma_{i_{0} i_{1}} \sigma_{i_{1} i_{2}} \cdots \sigma_{i_{k-1} i_{k}}
\end{aligned}
$$

Hence

$$
\sigma_{i_{0} i_{1}} \ldots\left(g_{\mu}^{\mu \nu}\right)^{-1} \sigma_{\mu \nu} \ldots \sigma_{j_{k^{\prime}-1} j_{k}}=\sigma_{i_{0} i_{1}} \sigma_{i_{1} i_{2}} \ldots \sigma_{i_{k-1} i_{k}} .
$$

Then (4) and the definition of $\sigma_{\mu \nu}$ imply that

$$
\begin{equation*}
g_{\mu}^{\mu \nu}=1_{e_{\mu} \operatorname{Re}_{\mu}} \tag{6}
\end{equation*}
$$

Again, let $v_{\mu_{1}} \leftarrow \mathrm{v}_{\nu_{1}}$ be an arrow in $\mathrm{Q}-\mathrm{T}, \mathrm{v}_{\mu_{1}} \leftarrow \mathrm{v}_{\nu_{1}}$ different from $\mathrm{v}_{\mu} \leftarrow \mathrm{v}_{\nu}$. We choose $\mathrm{v}_{\mu_{1}} \leftarrow \mathrm{v}_{\nu_{1}}$ so that (if possible) it will determine two directed paths

from v_{t} to v_{s}.
We proceed exactly as in the previous case and we remark that $\mathrm{v}_{\mu_{1}} \leftarrow \mathrm{v}_{\mathrm{v}_{1}}$ does not necessarily close a unique nondirected circuit in $\mathrm{T} U\left\{\mathrm{v}_{\mu} \leftarrow \mathrm{v}_{\nu}\right\}$. However, an easy computation shows that, if $\mathrm{v}_{\mu_{1}} \leftarrow \mathrm{v}_{\nu_{1}}$ closes the circuit containing $v_{\mu} \leftarrow v_{\nu}$, the isomorphism $\bar{\sigma}_{\mu_{1} \nu_{1}}: e_{\mu_{1}} \operatorname{Re}_{\mu_{1}} \rightarrow$ $e_{\nu_{1}} \operatorname{Re} v_{1}$ is independent of the path along $T U\left\{v_{\mu} \leftarrow v_{\nu}\right\}$. We are now done with the first stage. We continue until this construction is no longer possible and collect all the arrows so obtained.

Let T_{1} be the graph obtained by adding to T all the arrows $v_{\mu} \leftarrow v_{\nu}$, $\mathrm{v}_{\mu_{1}} \leftarrow \mathrm{v}_{\mathrm{v}_{1}}, \ldots$ Since Q is finite, T_{1} exists (and might be equal to T). We remark that T_{1} is a graph such that every (nondirected) circuit in T_{1} contains two vertices joined by two (different) directed paths along T_{1} and one of them along T.

Construct T_{2} from T_{1} as T_{1} was obtained from T, that is, add to T_{1} those arrows $v_{\mu} \leftarrow v_{V}$ in $Q-T_{1}$ which will close circuits composed of exactly two directed paths, one along T_{1} and the other containing $v_{\mu} \leftarrow v_{\nu}$. Since Q is finite, this construction must end, say at T_{r}.

We remark that formulas (1), (2), (4), (5) and (6) remain valid for T_{r}.

We remark that T_{r} might not equal Q.
Let $\mathrm{v}_{\mu} \leftarrow \mathrm{v}_{\nu} \in \mathrm{Q}-\mathrm{T}_{\mathrm{r}}$. This arrow cannot close a circuit with one directed path along T_{r}, that is, it cannot close a circuit in such a way that two directed paths are joining a pair of vertices in the circuit.

Let $0 \neq e_{\mu \nu} \in e_{\mu} J e_{\nu}$ as before, that is, such that

$$
\mathrm{e}_{\mu} \operatorname{Re}_{\mu} \mathrm{e}_{\mu \nu}=\mathrm{e}_{\mu \nu} \mathrm{e}_{\nu} \operatorname{Re}_{\nu}
$$

Let $\beta_{\mu \nu}: e_{\mu} \operatorname{Re}_{\mu} \rightarrow e_{\nu} R e_{\nu}$ be the isomorphism defined by $z e_{\mu \nu}=e_{\mu \nu}(z) \beta_{\mu \nu}$, $z \in e_{\mu} \operatorname{Re}_{\mu}$.

Let $\bar{\sigma}_{\mu \nu}: e_{\mu} \operatorname{Re}_{\mu} \rightarrow e_{\nu} \operatorname{Re}{ }_{\nu}$ be the isomorphism determined by a nondirected path from v_{μ} to v_{ν} along T_{r}. It is clear by the construction of T_{r} that $\bar{\sigma}_{\mu \nu}$ is independent of the chosen path along T_{r}.

Then, there exists $h_{\nu}^{\mu \nu} \in \operatorname{Aut}\left(e_{\nu} \operatorname{Re}_{\nu}\right), g_{\mu}^{\mu \nu} \in \operatorname{Aut}\left(e_{\mu} \operatorname{Re}_{\mu}\right)$ such that $\beta_{\mu \nu} h_{\nu}^{\mu \nu}=g_{\mu}^{\mu \nu} \beta_{\mu \nu}$.

$$
\text { Define } \sigma_{\mu \nu}=g_{\mu \nu}^{\mu \nu} \beta_{\mu \nu} \text {, then } \sigma_{\mu \nu}=\bar{\sigma}_{\mu \nu} \text { and }
$$

$$
e_{\mu \nu}(z) \sigma_{\mu \nu}=(z) g_{\mu}^{\mu \nu} e_{\mu \nu}
$$

or

$$
t e_{\mu \nu}=e_{\mu \nu}(t) g_{\mu \nu}^{\mu \nu} \sigma_{\mu \nu}^{-1} .
$$

If $v_{\mu} \leftarrow v_{\nu}$, after inserted in T_{r}, determines a directed path from v_{i} to v_{j} in $T_{r} U\left\{v_{\mu} \leftarrow v_{\nu}\right\}$, that is if we have

$$
v_{i}=v_{i_{0}} \leftarrow v_{i_{1}} \leftarrow \ldots \leftarrow v_{\mu} \leftarrow v_{v} \leftarrow \ldots v_{i_{k-1}} \leftarrow v_{i_{k}}=v_{j}
$$

again, let $e_{\mu \nu} \in e_{\mu} J e_{\nu}$ be such that $e_{\mu} R e_{\mu} e_{\mu \nu}=e_{\mu \nu} e_{\nu} R e_{\nu}$.

$$
\begin{aligned}
& \text { Define } e_{i j}=e_{i_{0} i_{1}} e_{i_{1} i_{2}} \cdots e_{\mu \nu} \cdots e_{i_{k-1} i_{k}} \text { Let } \\
& T_{r_{1}}=T_{r} U\left\{v_{\mu} \leftarrow v_{\nu}\right\}
\end{aligned}
$$

and let $v_{\mu_{1}} \leftarrow v_{\nu_{1}} \in Q-T_{r_{1}}$ such that it closes a circuit containing two directed paths from one vertex to another one of which lies entirely in
$\mathrm{T}_{\mathrm{r}_{1}}$. Then $\mathrm{v}_{\mu} \leftarrow \mathrm{v}_{\nu}$ must necessarily be in such a path. If both $\mathrm{v}_{\mu} \leftarrow \mathrm{v}_{\nu}$ and $\mathrm{v}_{\mu_{1}} \leftarrow \mathrm{v}_{\nu_{1}}$ are along the same path we have; w.1.o.g.

with the lower path along $\mathrm{T}_{\mathrm{r}_{1}}$. Let $\overline{\mathrm{e}}_{\mu_{1} \nu_{1}} \in \mathrm{e}_{\mu_{1}} \mathrm{Je}_{\nu_{1}}$ such that $\mathrm{e}_{\mu_{1}} \operatorname{Re}_{\mu_{1}} \overline{\mathrm{e}}_{\mu_{1} \nu_{1}}=\overline{\mathrm{e}}_{\mu_{1} \nu_{1}} \mathrm{e}_{\nu_{1}} \operatorname{Re}_{\nu_{1}}$. Then, there exists $\mathrm{t} \in \mathrm{e}_{\mathrm{i}} \operatorname{Re}_{i}$ such that

$$
\operatorname{te}_{i i^{\prime}} e_{i_{0} i_{1}} \cdots e_{\mu \nu} \cdots \bar{e}_{\mu_{1} \nu_{1}} \cdots e_{i_{k-1} i_{k}} e_{j j}
$$

$$
=e_{i i} e_{i_{0} j_{1}} \cdots e_{j_{k}^{\prime}-1} j_{k} e_{j j}
$$

Let $e_{\mu_{1} \nu_{1}}=(t) \sigma_{i_{0} i_{1}} \ldots\left(g_{\mu}^{\mu \nu}\right)^{-1} \sigma_{\mu \nu} \ldots \sigma_{\mu_{1}-1 \mu} \bar{e}_{\mu_{1} \nu_{1}}$, then

$$
\begin{equation*}
e_{i j}=e_{i i} e_{i_{0} j_{1}} \cdots e_{j j}=e_{i i} e_{i_{0} i_{1}} \cdots e_{\mu \nu} \cdots e_{\mu_{1} \nu_{1}} \cdots e_{j J} \tag{7}
\end{equation*}
$$

is unambiguously defined. Again, let $\beta_{\mu_{1} \nu_{1}}: e_{\mu_{1}} \operatorname{Re}_{\mu_{1}} \rightarrow e_{\nu_{1}} R e_{\nu_{1}}$ be the isomorphism defined via

$$
z_{\mu_{1} \nu_{1}}=e_{\mu_{1} \nu_{1}}(z) \beta_{\mu_{1} \nu_{1}} .
$$

We obtain, using the same procedure described before, the isomorphism

$$
\sigma_{\mu_{1} \nu_{1}}: e_{\mu_{1}} \operatorname{Re}_{\mu_{1}} \rightarrow e_{\nu_{1}} \operatorname{Re}_{\nu_{1}}
$$

defined by

$$
\sigma_{\mu_{1} \nu_{1}}=g_{\mu_{1}}^{\mu_{1} \nu_{1}}{ }_{\mu_{1} \nu_{1}}
$$

with

$$
\begin{aligned}
& \beta_{\mu_{1} \nu_{1}} h_{\nu_{1}}^{\mu_{1} \nu_{1}}=g_{\mu_{1}}^{\mu_{1} \nu_{1}}{ }_{\mu_{1} \nu_{1}} \\
& g_{\mu_{1}}^{\mu_{1} \nu_{1}} \in \operatorname{Aut}\left(e_{\mu_{1}} \operatorname{Re}_{\mu_{1}}\right)
\end{aligned}
$$

and

$$
h_{\nu_{1}}^{\mu_{1} \nu_{1}} \in \operatorname{Aut}\left(e_{\nu_{1}} \operatorname{Re}_{\nu_{1}}\right)
$$

We also obtain
and

$$
\begin{align*}
& \sigma_{i_{0} i_{1}} \cdots\left[g_{\mu}^{\mu \nu}\right]^{-1} \sigma_{\mu \nu} \ldots\left[g_{\mu_{1}}^{\mu_{1} 1_{1}}\right]^{-1} \sigma_{\mu_{1} \nu_{1}} \cdots \sigma_{i_{k-1}{ }_{k}} \\
& =\sigma_{i_{0} j_{1}}{ }_{j_{1} j_{2}} \cdots \sigma_{j_{k}-1} j_{k^{\prime}} \tag{8}
\end{align*}
$$

If $v_{\mu} \leftarrow v_{\nu}$ and $v_{\mu_{1}} \leftarrow v_{v_{1}}$ are not along the same path, that is, if

with the lower path along $\mathrm{T}_{\mathrm{r}_{1}}$ we obtain

$$
\begin{align*}
& e_{\mu_{1} \nu_{1}}=(t) \sigma_{i_{0} i_{1}} \cdots \sigma_{\mu_{1}-1 \mu} \overline{\mathrm{e}}_{\mu_{1} \nu_{1}}, \\
& \left.\sigma_{i_{0} i_{1}} \cdots g_{\mu_{1}}^{\mu_{1} \nu_{1}}\right]^{-1}{ }_{\sigma_{\mu_{1} \nu_{1}}} \cdots \sigma_{i_{k-1} i_{k}}=\sigma_{i_{0} j_{1}} \ldots\left[g_{\mu}^{\mu \nu}\right]^{-1} \sigma_{\mu \nu} \\
& \ldots \sigma_{j_{k}{ }^{\prime}-1} j_{k^{\prime}} . \tag{9}
\end{align*}
$$

Let $T_{r_{2}}=T_{r_{1}} U\left\{v_{\mu_{1}} \leftarrow v_{V_{1}}\right\}$. We construct $T_{r_{3}}$ from $T_{r_{2}}$ as $T_{r_{2}}$ was obtained from $T_{r_{1}}$. Since Q is finite the process must end, say at $T_{r_{k}}$. We consider $v_{s} \leftarrow v_{t} \in Q-T_{r_{k}}$ and obtain $T_{r_{k_{1}}}$ from $T_{k_{r}}$ as $T_{r_{1}}$ was obtained from T_{r}. Again, since Q is finite, we obtain Q and the total construction ends. We remark that formulas (8) and (9) adopt the form

$$
\begin{align*}
& \sigma_{i_{0} i_{1}} \ldots\left(g_{\mu_{1}}^{\mu_{1} \nu_{1}}\right)^{-1} \sigma_{\mu_{1} \nu_{1}} \ldots\left(g_{\mu_{2}}^{\mu_{2} \nu_{2}}\right)^{-1} \sigma_{\mu_{2} \nu_{2}} \ldots\left(g_{\mu_{3}}^{\left.\mu_{3}\right)^{-1} \sigma_{\mu_{2} \nu_{2}}}\right. \\
& \ldots\left(g_{\mu_{s}}^{\mu_{s}}\right)^{-1} \sigma_{\mu_{s}{ }_{s}} \ldots \sigma_{i_{k-1}} i_{k} \\
& =\sigma_{i_{0} i_{1}}{ }_{j_{1} j_{2}} \cdots{ }_{j_{k}{ }^{\prime}-1}{ }^{j_{k}}, \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& { }_{\sigma_{i_{0} i_{1}}} \cdots\left[g_{\mu_{1}}^{\mu_{1} \nu_{1}}\right]^{-1} \sigma_{\mu_{1} \nu_{1}} \cdots\left[g_{\mu_{2}}^{\mu_{2}{ }_{2}}\right]^{-1}{ }_{\sigma_{\mu_{2} \nu_{2}}} \cdots\left[g_{\mu_{s}}^{\left.\mu_{s}^{\nu}{ }_{s}\right]^{-1} \cdots \sigma_{i_{k-1}} i_{k}}\right. \\
& =\sigma_{i_{0} j_{1}} \cdots\left[g_{\alpha_{1}}^{\alpha_{1}{ }_{1}}\right]^{-1}{ }_{\sigma_{\alpha_{1} \beta_{1}}} \cdots\left[g _ { \alpha _ { 2 } } ^ { \alpha _ { 2 } ^ { \beta }] ^ { - 1 } } { } _ { \sigma _ { \alpha _ { 2 } \beta _ { 2 } } } \cdots \left[g_{\alpha_{t}}^{t^{\beta} t^{-1}}{ }_{\sigma_{\alpha_{t}}}\right.\right. \\
& \cdots \sigma_{j_{k^{\prime}-1}} j_{k^{\prime}} \cdot \tag{11}
\end{align*}
$$

We also remark that the addition of every path $v_{\mu} \leftarrow v_{\nu}$ to Q induces a commutative diagram as in (4).

Example:
Let Q be as follows:

Let T be

Then T_{1} is

Let $v_{i} \leftarrow v_{j}$ be an arrow in Q, let $\gamma_{i j}=\sigma_{i j}$ and let $\gamma_{j i}=\sigma_{i j}^{-1}$. If v_{j} is a vertex in Q, we can choose a (possible nondirected) path from v_{1} to v_{j} along $T: v_{1}=v_{i_{0}} \leftarrow \ldots v_{i_{k-1}} \leftarrow v_{k}=v_{j}$.
Define

$$
\sigma_{i j}= \begin{cases}\gamma_{i_{0} i_{1}} \gamma_{i_{1} i_{2}} \cdots \gamma_{i_{k-1}} i_{k} & \text { if } j=2, \ldots, n \\ l_{e_{1} R_{1}} & \text { if } j=1\end{cases}
$$

and let

$$
D=\left\{d \in \underset{i=1}{\stackrel{n}{\oplus}} e_{i} \operatorname{Re}_{i}: d \pi_{j}=d \pi_{1} \sigma_{1 j}, \quad j=1, \ldots, n\right\}
$$

that $1 s, d \in D$ if an only if $d=\sum_{j=1}^{n}(x) \sigma_{1 j}, x \in e_{1} \operatorname{Re}_{1}$.
It is then clear that D is isomorphic to $e_{1} R e_{1}$ via

$$
\mathrm{f}: \mathrm{e}_{1} \mathrm{Re}_{1} \rightarrow \mathrm{D}
$$

$$
x \rightarrow \sum_{j=1}^{n}(x) \sigma_{1 j}
$$

and hence to $e_{i} \operatorname{Re}_{i}$ for $i=2, \ldots, n$. It is also clear that

1) $D e_{k}=e_{k} \mathrm{Re}_{k}$
2) $e_{i} \operatorname{Re}_{i j}=e_{i} R e_{i} e_{i j}=e_{i} J e_{j}$, for $v_{i} \leftarrow v_{j}$
3) $D e_{i j}=e_{i} J^{k} e_{j}$, for $v_{i} \leq v_{j}$ via a path of length of k, from which we conclude that

$$
\begin{equation*}
R=\sum_{i \leq j}^{\sum D e_{i j}}=\sum_{i \leq j} e_{i} R e_{j} \tag{12}
\end{equation*}
$$

Example: Let R be an artinian semidistributive ℓ-hereditary ring with $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ a basic set of primitive idempotents. Let's assume the partial order generated by $1 \leq 3,4 ; 2 \leq 3,4 ; 3,4 \leq 6 ; 4 \leq 5$.

The quiver Q of R can be pictured as

Let's choose the spanning tree T as the solid arrows below

Then T determines $e_{13}, e_{14}, e_{24}, e_{36}, e_{56}$ and $\sigma_{13}, \sigma_{14}, \sigma_{24}, \sigma_{36}, \sigma_{56}$ such that

$$
\begin{array}{lll}
z e_{13}=e_{13}(z) \sigma_{13}, & z e_{14}=e_{14}(z) \sigma_{14}, & z e_{24}=e_{24}(z) \sigma_{24} \\
z e_{36}=e_{36}(z) \sigma_{36}, & z e_{56}=e_{56}(z) \sigma_{56}, &
\end{array}
$$

for z in the correct $e_{i} \operatorname{Re}_{i}$.
From $v_{4} \leftarrow \mathrm{v}_{5}$ we get $\overline{\mathrm{e}}_{45} \in \mathrm{e}_{4} \mathrm{Je}_{5}$ and then

$$
e_{13} e_{36}=t e_{14} \bar{e}_{45} e_{56}=e_{14}\left((t) \sigma_{14} \bar{e}_{45}\right) e_{56} \quad \text { for } t \in e_{1} \operatorname{Re}_{1} .
$$

Set $e_{45}=(t) \sigma_{14} \bar{e}_{45}$; then $e_{13} e_{36}=e_{14}{ }_{4}{ }_{45} e_{56}$. From $e_{45} \in e_{4} \mathrm{Je}_{5}$ we determine $\beta_{45}: e_{4} \operatorname{Re}_{4} \rightarrow e_{5} \operatorname{Re}_{5}$ so that $\mathrm{ze}_{45}=e_{45}(z) \beta_{45}$ by using the fact that

$$
\begin{aligned}
& \operatorname{dim}_{e_{4} \mathrm{Re}_{4}} \mathrm{e}_{4} \mathrm{Je}_{5}=1=\operatorname{dim}_{4} \mathrm{e}_{5} \mathrm{Je}_{5} \mathrm{e}_{5} \mathrm{Re}_{5} \text {, for then, } \\
& \mathrm{e}_{4} \mathrm{Je}_{5}=\mathrm{e}_{4} \mathrm{Re}_{4} \mathrm{e}_{45}=\mathrm{e}_{45} \mathrm{e}_{5} \mathrm{Re}_{5} .
\end{aligned}
$$

We then notice that $\sigma_{14}^{-1} \sigma_{13} \sigma_{36} \sigma_{65}^{-1}: e_{4} \operatorname{Re}_{4} \rightarrow e_{5} \operatorname{Re}_{5}$ and put $\bar{\sigma}_{45}=\sigma_{14}^{-1} \sigma_{13} \sigma_{36} \sigma_{65}^{-1}$ and we can pick $h_{5}^{45} \in \operatorname{Aut}\left(e_{5} \operatorname{Re}_{5}\right)$ so that $\beta_{45} h_{5}=\bar{\sigma}_{45}$. Similarly, we pick $\mathrm{g}_{4}^{45} \in \operatorname{Aut}\left(\mathrm{e}_{4} \operatorname{Re}_{4}\right)$ so that $\mathrm{g}_{4}^{45} \beta_{45}=\bar{\sigma}_{45}$ and we define σ_{45} by

$$
\sigma_{45}=g_{4}^{45} \beta_{45}=\bar{\sigma}_{45} \equiv \sigma_{14}^{-1} \sigma_{13} \sigma_{36} \sigma_{56}^{-1}
$$

and get $\sigma_{13} \sigma_{36}=\sigma_{14} \sigma_{45} \sigma_{56}$ and we call this map

$$
\sigma_{16}: e_{1} \operatorname{Re}_{1} \rightarrow e_{6} \operatorname{Re}_{6} .
$$

Then,

$$
e_{45}(z) \sigma_{45}=e_{45}(z) g_{4}^{45} \beta_{45}=(z) g_{4}^{45} e_{45}, \quad g_{4}^{45} \in \operatorname{Aut}\left(e_{4} \operatorname{Re}_{4}\right)
$$

$$
e_{23}(z) \sigma_{23}=(z) g_{2}^{23} e_{23}, \quad g_{2}^{23} \in \operatorname{Aut}\left(e_{2} \operatorname{Re}_{2}\right)
$$

and

$$
\sigma_{12}=\sigma_{13} \sigma_{23}^{-1}=\sigma_{14} \sigma_{24}^{-1}
$$

Then $e_{i j}$ and $\sigma_{i j}$ are unambiguously defined. Let

$$
D=\left\{d: d=\sum_{j=1}^{6}(x) \sigma_{1 j}, \quad x \in e_{1} \operatorname{Re}_{1}\right\} .
$$

Then

$$
\mathrm{e}_{1} \mathrm{Re}_{1} \cong \mathrm{D}
$$

and

1) $D e_{k}=e_{k} R e_{k}$,
2) $D e_{i j}=e_{i} J^{k} e_{j}$ for $v_{i} \leq v_{j}$ via a path of length k,
3) $R=\sum_{i \leq j} D e_{i j}$.

We can say a little more about the quiver of an ℓ-hereditary semidistributive ring.

Proposition 3.21

Let R be a semidistributive ℓ-hereditary ring. Then the quiver Q of R contains no triangular circuits, that is, curcuits which are formed with three edges.

Proof: Assume

is a triangular circuit in Q . Then

$$
J e_{k} / J^{2} e_{k} \stackrel{\cong}{=} \operatorname{Re}_{i} / J e_{i} \oplus \operatorname{Re}_{j} / J e_{j} \oplus L
$$

where L is a semisimple R-module.
Also,

$$
J e_{j} / J^{2} e_{j} \xlongequal{\cong} \operatorname{Re}_{i} / J e_{i} \oplus K
$$

for some semisimple R-module K.
Let

$$
R e_{i} / J e_{i} \oplus R e_{j} / J e_{j} \stackrel{\cong}{=} N / J^{2} e_{k}, \quad N \leq J e_{k}
$$

and let $p: \operatorname{Re}_{i} \oplus \operatorname{Re}{ }_{j} \rightarrow N / J^{2} e_{k}$ be a projective cover.

Consider the following diagram

with η the natural projection. Then, there exists a nonzero homomorphism
$\phi: \operatorname{Re}_{i} \oplus \operatorname{Re}_{\mathrm{j}} \rightarrow \mathrm{N}$ such that $\phi \eta=\mathrm{p}$.

Since $N \leq J e_{k} \leq \operatorname{Re}_{k}, \phi / \operatorname{Re}_{i}$ and $\phi / \operatorname{Re}_{j}$ are either both monomorphisms or one of them is zero.

Let $\phi_{i}=\phi / \operatorname{Re}_{i}, \phi_{j}=\phi / \operatorname{Re}_{j}$. Since p is a projective cover, neither ϕ_{I} nor ϕ_{j} can be zero and consequently both must be monomorphisms, for
$\mathrm{N} \leq \mathrm{Je}_{\mathrm{k}} \leq \mathrm{Re}_{\mathrm{k}}$. But this is a contradiction since Je_{k} is distributive. The rather simple structure of the quiver of a semidistributive ℓ-hereditary ring has allowed us to construct the division ring D. It will also enable us to construct an R-module M whose existence fully characterizes those rings. Before that, we answer the following question: Given a directed graph G which contains no directed circuits, at most one edge between any two vertices and no triangular circuits. Is there a semidistributive l-hereditary ring R whose quiver is G ?

Proposition 3.22

Let G be a graph such that

1) There are no directed circuits in G.
2) There is at most one edge between any two vertices of G.
3) G contains no triangular circuits.

Then, there exists a semidistributive ℓ-hereditary ring R with quiver G.

Proof: Let $V=\left\{v_{i}\right\}_{i=1}^{n}$ be the set of vertices of G. Define, $v_{i} \leq v_{j}$ if and only if there exists a directed path in G from v_{j} to v_{i}. Thus, we induce a partial order in the set $X=\{1, \ldots, n\}$ via $i \leq j$ iff $v_{i} \leq v_{j}$. Let D be a division ring and let R be the uncidence ring of D over X, that is,

$$
R=\left\{\sum_{i<j} d_{i j} x_{i j}: d_{i j} \in D, i, j \in X\right\}
$$

Then the quiver of R is G (see [9]).
Now, we proceed to the construction of M.

Theorem 3.23
Let R be an indecomposable semidistributive ring with $\left\{e_{1}, \ldots, e_{n}\right\}$
a basic set of primitive idempotents. Then, R is ℓ-hereditary if and only if there exists a left R-module M satisfying the following conditions:

1) For every $i=1, \ldots, n$ there exists a nonzero homomorphism $\alpha_{i}: \operatorname{Re}_{i} \rightarrow M$.
2) If $\phi: R e_{i} \rightarrow M, i=1, \ldots, n$, is any nonzero homomorphism, then ϕ is a monomorphism.

Proof: Let R^{M} satisfy conditions 1) and 2) in the statement and let $\psi: R e_{i} \rightarrow R e_{j}$ be a nonzero homomorphism. Then, there exists a monomorphism $\alpha_{j}: \operatorname{Re}_{j} \rightarrow M$; by composing with ψ we obtain a nonzero map $\psi \alpha_{j}: R e_{i} \rightarrow M$ which by hypothesis is a monomorphism. Consequently, ψ is a monomorphism. Conversely, assume R is an ℓ-hereditary ring with quiver Q. For $i \leq j$, that is, for $v_{i} \leq v_{j}$, we define a map $\phi_{j}^{i}: \operatorname{Re}_{i} \rightarrow \operatorname{Re}{ }_{j}$ via $z \phi_{j}^{i}=z e_{i j}$ where $e_{i j}$ is the ring element in $e_{i} R e_{j}$ determined, as before, by Q. It is then clear that ϕ_{j}^{i} is a well-defined monomorphism; moreover, if $i \leq j \leq k$ we easily obtain from the construction of the $e_{i j}$'s that $\phi_{j}^{i} \phi_{k}^{j}=\phi_{k}^{i}$. Hence, $\left\{\operatorname{Re}_{i}, \phi_{j}^{i}\right\}$ is a directed system. We define $M=\underset{\rightarrow}{\lim } \operatorname{Re}_{i}$, that is

$$
M=\left(\operatorname{Re}_{1} \oplus \ldots \oplus \operatorname{Re}_{\mathrm{n}}\right) / \mathrm{S}
$$

with

$$
S=\left\langle\left\{x_{i}^{J} \phi_{j}^{i} \lambda_{j}-x_{i}^{j} \lambda_{i}: x_{i}^{J} \in \operatorname{Re} e_{i}, i \leq j\right\}\right\rangle
$$

and

$$
\lambda_{k}: \operatorname{Re}_{k} \rightarrow \operatorname{Re}_{1} \oplus \ldots \oplus \operatorname{Re}_{n}
$$

the natural inclusion. We also define $\alpha_{i}: \operatorname{Re}_{i} \rightarrow M \operatorname{via}(x) \alpha_{i}=(x) \lambda_{i}+S$. It is then clear that M satisfies 1); we claim it also satisfies 2). To see this, we will show that the maps $\alpha_{i}, i=1, \ldots, n$ are monomorphisms.

First, we notice that every $x_{i} \in \operatorname{Re}_{i}$ can be written as
$x_{i}=\sum_{k \leq i} x_{k i}, \quad x_{k i} \in D e_{k i}, k \leq i$.
Let $z \in \operatorname{Re}_{i}, z \neq 0$ such that $(z) \alpha_{i}=0$, then $z \lambda_{i} \in S$ and we can write

$$
\begin{equation*}
z \lambda_{i}=\sum_{\ell \leq j}\left[x_{\ell}^{j} \phi_{j}^{\ell} \lambda_{J}-x_{\ell}^{j} \lambda_{\ell}\right], \quad x_{\ell}^{j} \in \operatorname{Re}_{\ell} . \tag{1}
\end{equation*}
$$

Also, if $\pi_{k}: \underset{i=1}{\stackrel{n}{\oplus}} R e_{i} \rightarrow R e_{k}, k=1, \ldots, n$, denotes the natural projections, we have, for fixed k,

$$
\begin{aligned}
& z \lambda_{i} \pi_{k}=\sum_{\ell \leq j}\left[x_{\ell}^{j} \phi_{j}^{\ell} \lambda_{j}-x_{\ell}^{j} \lambda_{\ell}\right] \pi_{k} \\
& =\left(\sum_{\ell<k} x_{\ell}^{k} \phi_{k}^{\ell}\right) \lambda_{k} \pi_{k}-\underset{k<\ell}{\left(\sum_{k}^{\ell}\right)} \lambda_{k} \pi_{k} \\
& =\left(\underset{\ell<k}{\Sigma} x_{\ell}^{k} \phi_{k}^{\ell}-\sum_{k<\ell} x_{k}^{\ell}\right) \lambda_{k} \pi_{k} \\
& =\sum_{\ell<k} x_{\ell}^{k} \phi_{k}^{\ell}-\sum_{k<\ell} x_{k}^{\ell}, \quad x_{j}^{s} \in R e_{j} .
\end{aligned}
$$

So,

$$
z \lambda_{i} \pi_{k}=\sum_{\ell<k} x_{\ell}^{k} \phi_{k}^{\ell}-\underset{k<\ell}{\sum} x_{k}^{\ell}=\left\{\begin{array}{ll}
0 & k \neq i \tag{2}\\
z & k=i
\end{array} .\right.
$$

Furthermore, if we write, as in the remark above,

$$
\begin{aligned}
& z=\sum_{\mu \leq i}^{\Sigma} z_{\mu}, z_{\mu}=e_{\mu} z \in e_{\mu} R e_{i}, \mu \leq i \\
& x_{l}^{j}=\sum_{t \leq \ell} x_{t \ell}^{j}, \quad x_{t \ell}^{j}=e_{t} x_{l}^{j} \in e_{t} R e_{\ell}, \quad t \leq \ell .
\end{aligned}
$$

From (2) we obtain

$$
\begin{aligned}
z \lambda_{i} \pi_{k} & =\sum_{\mu \leq i}^{\sum}\left(z_{\mu} \lambda_{i} \pi_{k}\right)=\sum_{\ell<k}^{\sum} \sum_{j \leq \ell} x_{j, \ell}^{k} \phi_{k}^{\ell}-\sum_{k<\ell}^{\sum} \sum_{j \leq k}^{\sum} x_{j, k}^{\ell} \\
& =\sum_{j \leq \ell}^{\sum} \sum_{\ell<k} x_{j, \ell}^{k} \phi_{k}^{\ell}-\sum_{j \leq k}^{\sum} \sum_{k<\ell} x_{j, k}^{\ell}= \begin{cases}0 & k \neq i \\
z & k=i\end{cases}
\end{aligned}
$$

Hence, for fixed $j, j \leq k$ we get

$$
\underset{j \leq \ell<k}{\sum} x_{j, \ell}^{k} \phi_{k}^{\ell}-\underset{j \leq k<\ell}{\sum} x_{j, k}^{\ell}=\left\{\begin{array}{ll}
0 \in e_{j} \operatorname{Re}_{k} & \text { if } k \neq i \tag{3}\\
z_{j} \in e_{j} \operatorname{Re}_{k} & \text { if } k=i
\end{array} .\right.
$$

Next, we remark that if Re_{n} is the unique maximal element respect to the partial order \leq induced by Q, then $\alpha_{n}: R e_{n} \rightarrow M$ is an isomorphism in which case there is nothing to prove. (See for example [16].)

Finally, we see that because of the relation $\alpha_{i}=\phi_{j}^{i} \alpha_{j}$ for $i \leq j$, it suffices to show that α_{k} is monomorphism for maximal indices k.

We will then assume that Re_{m} and Re_{n} are maximal with respect to \leq. So, let $z \in R e{ }_{m}$ be such that $z \alpha_{m}=0, z=\sum_{j \leq m} z_{j}$; then, $z_{j} \alpha_{m}=0, j<m$. Applying (3) we obtain

$$
\begin{equation*}
\underset{j \leq \ell<k}{\sum} x_{j, \ell}^{k} \phi_{k}^{\ell}-\sum_{j \leq k<\ell}^{\Sigma} x_{j, k}^{\ell}=0 \in e_{j} \operatorname{Re}_{k} \tag{3'}
\end{equation*}
$$

for every k such that $j \leq k, k \neq m$. More $\operatorname{explicitly,~if~} \ell_{1}, \ell_{2}, \ldots, \ell_{k_{\ell}}$ are the indexes such that there is a path of length 1 from $v_{\ell_{s}}, s=1, \ldots, k_{\ell}$, to $\mathrm{v}_{\mathrm{j}} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{k}_{\mathrm{n}}}$ are the indexes for which there is a path of length 2 from $v_{h_{s}}, s=1, \ldots, k_{h}$ to $v_{j} ; i_{1}, i_{2}, \ldots, i_{k_{i}}$ the indexes for which there is a path of length 3 from $v_{i_{s}}, s=1, \ldots, k_{i}$ to v_{j}, etc. We can write

$$
\begin{equation*}
-\sum_{j<\ell} x_{j, j}^{\ell}=0 \in e_{j} \operatorname{Re}_{j} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \left(x_{j, j}^{\ell_{1}}\right) \phi_{l_{1}}^{j}-\sum_{l_{1}<l} x_{j, l_{1}}^{\ell}=0 \in e_{j} \operatorname{Re}_{\ell_{1}} \tag{5}\\
& \left(\mathrm{x}_{\mathrm{j}, \mathrm{j}}^{\ell}\right) \phi_{\ell_{2}}^{\mathrm{j}}-\sum_{\ell_{2}<\ell}^{\sum} \mathrm{x}_{\mathrm{j}, \ell_{2}}^{\ell}=0 \in \mathrm{e}_{\mathrm{j}} \mathrm{Re}_{\ell_{2}} \tag{6}\\
& \left(\mathrm{x}_{\mathrm{j}, \mathrm{j}}^{\left.\ell \mathrm{k}_{\ell}\right) \phi_{\ell \mathrm{k}_{\ell}}^{j}-\ell_{\mathrm{k}_{\ell}}^{\Sigma}{ }^{<\ell} \mathrm{x}_{\mathrm{j}, \ell_{k_{\ell}}}^{\ell}=0 \in \mathrm{e}_{\mathrm{j}} \operatorname{Re}_{\ell{ }_{k_{\ell}}} .}\right. \tag{7}\\
& \underset{j<l<h_{1}}{\sum\left(x_{j}^{h_{1}}\right) \phi_{h_{1}}^{\ell}-\underset{j<h_{1}<\ell}{\Sigma} x_{j, h_{1}}^{\ell}=0 \in e_{J} R e_{h_{1}}, ~} \tag{8}\\
& \underset{j \leq l<h_{2}}{\sum}\left(x_{j, l}^{h_{2}}\right) \phi_{h_{2}}^{\ell}-\underset{j<h_{2}<l}{\sum} x_{j, h_{2}}^{\ell}=0 \in e_{j} R e_{h_{2}} \tag{9}\\
& \underset{j \leq l<h_{k_{h}}}{\sum} \quad\left(x_{j, l}^{h_{h}}\right) \phi_{h_{k_{h}}^{l}}^{l}-\underset{j<h_{k_{h}}^{\sum}<l}{\sum} x_{j, h_{k_{h}}^{l}}^{\ell}=0 \in e_{j} R e_{h_{k}} \tag{10}\\
& \underset{j<\ell<i_{1}}{\sum}\left(\mathrm{x}_{\mathrm{j}, \ell}^{\mathrm{i}_{1}}\right) \phi_{\mathrm{i}_{1}}^{\ell}-\underset{j<\mathrm{i}_{1}<\ell}{\sum} \mathrm{x}_{\mathrm{j}, \mathrm{i}_{1}}^{\ell}=0 \in \mathrm{e}_{\mathrm{j}} \mathrm{Re}_{\mathrm{i}_{1}} \tag{11}\\
& \sum_{j \leq \ell<i_{2}}^{\sum}\left(x_{j, \ell}^{i_{2}}\right) \phi_{i_{2}}^{\ell}-\sum_{i_{2}<\ell} x_{j, i_{2}}^{\ell}=0 \in e_{j} \operatorname{Re}_{i_{2}} \tag{12}\\
& \left.\underset{j \leq \ell<i_{k_{i}}}{\sum} \quad \stackrel{x_{j}}{k_{i}}\right) \phi_{i_{k_{i}}^{\ell}}-\sum_{i_{k_{i}}<\ell}^{\Sigma} \quad x_{j, i_{k_{i}}}^{\ell}=0 \in e_{j} \operatorname{Re}_{1_{k_{i}}} \tag{13}
\end{align*}
$$

$$
\begin{equation*}
\sum_{j<\ell<n}^{\sum}\left(x_{j, \ell}^{n}\right) \phi_{n}^{\ell}=0 \in e_{j}^{R e}{ }_{n} . \tag{14}
\end{equation*}
$$

Now, we notice that $\phi_{q}^{p} / e_{p} R e_{p}: e_{p} R e_{p} \rightarrow e_{p} R e_{q}$ is an isomorphism whenever $\mathrm{p} \leq \mathrm{q}$. Hence there exists a unique $\mathrm{y}_{\mathrm{j}}^{\ell, \ell_{1}} \in \mathrm{e}_{\mathrm{j}} \mathrm{Re}_{\mathrm{j}}, \ell>\ell_{1}$ such that

$$
\begin{equation*}
x_{j, l_{1}}^{\ell}=\left(y_{j}^{\ell, \ell} 1_{1} \phi_{\ell_{1}}^{j}\right. \tag{*}
\end{equation*}
$$

Introducing this in (5) we get

$$
\begin{equation*}
\mathrm{x}_{j j}^{\ell}-\sum_{\ell_{1}<\ell}^{\Sigma} \mathrm{y}_{\mathrm{j}}^{\ell, \ell_{1}}=0 \in \mathrm{e}_{\mathrm{j}} \mathrm{Re}_{\mathrm{j}} . \tag{5'}
\end{equation*}
$$

By a similar argument, (6) and (7) will yield

$$
\begin{align*}
& x_{j, j}^{\ell_{2}}-\sum_{\ell_{2}<\ell}^{\sum}{ }_{j}^{\ell, \ell_{2}}=0 \in e_{j} \operatorname{Re}_{j} \tag{6'}
\end{align*}
$$

From (8), (9) and (10) we obtain, after using $\phi_{j}^{i} \phi_{k}^{J}=\phi_{k}^{i}$,

$$
\begin{align*}
& x_{j, j}^{h_{1}}+{y_{j}}_{h^{\prime}, \ell}^{s}-\underset{h_{1}<l}{\sum} y_{j}^{\ell, h_{1}}=0 \in e_{j} R e_{j} \tag{8'}\\
& x_{j, j}^{h_{2}}+y_{j}^{h_{2}, l}{ }^{2}-\underset{h_{2}<l}{\sum}{ }_{j}^{l, h_{2}}=0 \in e_{j} R e_{j} \tag{9'}
\end{align*}
$$

From (11), (12) and (13) we obtain

$$
\begin{align*}
& x_{j, j}^{i_{2}}+{y_{j}}_{i_{2}, l}^{s}+y_{j}^{i_{2}, l} t-\underset{i_{2}<l}{\sum}{ }_{j}^{l, i_{2}}=0 \tag{12'}
\end{align*}
$$

Finally from (14) we get

$$
\begin{equation*}
x_{j, j}^{n}+\sum_{j<\ell<n}^{\sum} y_{j}^{n, \ell}=0 . \tag{14'}
\end{equation*}
$$

Adding (5') through (14') we get

Applying $\phi_{\mathrm{m}}^{\mathrm{j}}$ to (15) and applying $\phi_{\mathrm{m}}^{\mathrm{k}}$ to (3') with $\mathrm{j}<\mathrm{k}<\mathrm{m}, \mathrm{k} \neq \mathrm{n}$ we obtain,

$$
\begin{align*}
& -\underset{\substack{i_{1}<\ell \leq m \\
l \nless n}}{\sum}\left(x_{j, i_{1}}^{\ell}\right) \phi_{m}^{i_{1}}-\underset{\substack{i_{2}<l \leq m \\
l<n}}{\sum}\left(x_{j, I_{2}}^{\ell}\right) \phi_{m}^{i_{2}}-\underset{\substack{\ell \leq m \\
l \nless n}}{\sum} x_{j j} \phi_{l}^{j_{l} \phi_{m}^{l}}=0 \tag{16}
\end{align*}
$$

$$
\begin{equation*}
\underset{j \leq \ell<k}{\sum} x_{j, \ell}^{k} \phi_{m}^{\ell}-\sum x_{j, k}^{\ell} \phi_{m}^{\ell}=0, \quad k \leq m, k \notin n . \tag{17}
\end{equation*}
$$

Adding equations (16) and (17) gives

$$
-\Sigma \mathrm{x}_{\mathrm{j}, \ell}^{\mathrm{m}} \phi_{\mathrm{m}}^{\ell}=0
$$

 monomorphisms.

$$
\begin{aligned}
& \text { If } m \in M \text {, then } \\
& \begin{aligned}
m & =\sum_{i=1}^{n}\left(m_{i}\right) \lambda_{i}+S \\
& =\sum m_{i}\left(e_{i}\right) \alpha_{i}, \quad m_{i} \in \operatorname{Re} e_{i} .
\end{aligned} \\
& =y_{i},
\end{aligned}
$$

But

$$
m_{i}=\sum_{k \leq i} e_{k} m_{i}=\sum_{k \leq i} m_{k i}, \quad m_{k i}=e_{k} m_{i} \in e_{k} R_{i}
$$

and by (*) we can write $m_{k i}=x_{k}^{i} \phi_{i}^{k}$ for unique $x_{k}^{i} \epsilon e_{k} R e_{k}$. Let

$$
r_{k k}=m_{k k}-\sum_{i \geq k} x_{k}^{i} \in e_{k} R e_{k}, \quad k=1, \ldots, n
$$

and 1et

$$
r=\sum_{k=1}^{n} r_{k k}\left(e_{k}\right) \alpha_{k} .
$$

Then

$$
r=\sum_{k=1}^{n} r_{k k}\left(e_{k}\right) \alpha_{k}=\sum_{k} r_{k k}\left(e_{k}\right) \lambda_{k}+s=\sum_{k} m_{k}\left(e_{k}\right) \lambda_{k}+s=m
$$

Let

$$
\begin{aligned}
& \mathrm{S}_{1}^{\mathrm{k}}=\sigma_{1, k}^{-1}\left(\mathrm{r}_{\mathrm{kk}}\right) \in \mathrm{e}_{1} R e_{1}, \\
& \mathrm{f}: \mathrm{e}_{1} \mathrm{Re}_{1} \xrightarrow{\cong} \mathrm{D} \\
& \mathrm{t} \longrightarrow \sum_{j=1}^{\mathrm{n}}(\mathrm{t}) \sigma_{i j}
\end{aligned}
$$

and $d_{k}=\left(S_{11}^{k}\right) f, k=1, \ldots, n$. Then

$$
r=\sum_{k} d_{k}\left(e_{k}\right) \alpha_{k}=m,
$$

that is, we have proved that

$$
\sum_{i=1}^{n} D\left(e_{i}\right) \alpha_{i}=M .
$$

Now, let $g: R e{ }_{j} \rightarrow M$ be a nonzero homomorphism; then, there exists $d_{g} \in D$ such that $\left(e_{j}\right) g=d_{g}\left(e_{j}\right) \alpha_{j}$ and

$$
\begin{aligned}
\left(r e_{j}\right) \alpha_{j}=r\left(e_{j}\right) \alpha_{j} & =r d_{g}^{-1} d_{g}\left(e_{j}\right) \alpha_{j} \\
& =r d_{g}^{-1}\left(e_{j}\right) g \\
& =\left(r d_{g}^{-1} e_{j}\right) g, \quad r \in R .
\end{aligned}
$$

That is, $\operatorname{Im} \alpha_{j} \leq \operatorname{Img} . \quad B u t$, since α_{j} is a monomorphism, $c\left(\operatorname{Im} \alpha_{j}\right)=c\left(\operatorname{Re}_{j}\right)$. Hence, $c(\operatorname{Img}) \leq c\left(\operatorname{Im} \alpha_{j}\right)$ and $\operatorname{Img}=\operatorname{Im} \alpha_{j}$. Consequently,
$c(\operatorname{Ker} g)=c\left(\operatorname{Ker} \alpha_{j}\right)=0, \quad$ so $\operatorname{Ker} g=0$.

If R is an incidence ring over a division ring K, the left R-module $M=1 \underset{\rightarrow}{\mathrm{im}} \mathrm{Re}_{\mathrm{i}}$ which we introduced in Theorem 3.23 corresponds to the "last column vectors". As in this particular case, we can endow M with a right D-structure.

Let R be an l-hereditary semidistributive ring with quiver Q. Let T be a tree in Q and let $M=\underset{\rightarrow}{\lim } \operatorname{Re}_{i}$. We recall that for every vertex v_{i} in Q there exists a (possible non-directed) path from v_{i} to v_{1} along T, $\sigma_{1 i}$ denotes the induced isomorphism from $e_{1} \operatorname{Re}_{1}$ onto $e_{i} \operatorname{Re}_{i}$. If
$h \in \operatorname{Aut}\left(e_{i} \operatorname{Re}_{i}\right)$ we will denote by \tilde{h} the element in $\operatorname{Aut}\left(e_{1} \operatorname{Re}_{1}\right)$ which make the following diagram commute.

Let $i \leq j$, then there exists (at least one) a directed path

$$
\begin{equation*}
v_{i} \leftarrow v_{i_{1}} \cdots \leftarrow v_{i_{k-1}} \leftarrow v_{j} \text { from } v_{j} \text { to } v_{i} \tag{*}
\end{equation*}
$$

Let $v_{\mu_{1}} \leftarrow v_{\nu_{1}}, v_{\mu_{2}} \leftarrow v_{\nu_{2}} \ldots v_{\mu_{t}} \leftarrow v_{\nu_{t}}$ be the added arrows along the path (*), so that we have

$$
v_{i} \leftarrow \ldots \leftarrow v_{\mu_{1}} \leftarrow v_{v_{1}} \leftarrow \ldots \leftarrow v_{\mu_{2}} \leftarrow v_{v_{2}} \leftarrow \ldots \leftarrow v_{\mu_{t}} \leftarrow v_{v_{t}} \leftarrow \ldots \leftarrow v_{j}
$$

Each $v_{\mu_{m}} \leftarrow v_{\nu_{m}}$ induces a twisting $h_{\mu_{m}}^{\mu_{m} \nu_{m}} \in \operatorname{Aut}\left(e_{\mu_{m}} \operatorname{Re}_{\mu_{m}}\right), m=1, \ldots, t$, and a commutative diagram as in (4).

for $m=1,2, \ldots, t$.
Chasing these diagrams we can write

$$
\begin{aligned}
& \sigma_{i i_{0}} \ldots\left(h_{\mu_{1}}^{\left.\mu_{1}\right)^{\prime}}\right)^{-1} \sigma_{\mu_{1} \nu_{1}} \ldots\left(h_{\mu_{2}}^{\mu_{2} \nu_{2}}\right)^{-1} \sigma_{\mu_{2} \nu_{2}} \ldots\left(h_{\mu_{t}}^{\mu_{t}}\right)^{-1} \sigma_{\mu_{t} \nu_{t}} \ldots \sigma_{i_{k-1}} \\
& =\left(h_{i}{ }_{i}{ }^{\nu}{ }_{i}\right)^{-1}\left(h_{i}{ }_{2}{ }^{\nu}\right)^{-1} \ldots\left(h_{i}^{\mu} t^{\nu}\right)^{-1} \sigma_{\sigma_{i}} \ldots \sigma_{\mu_{1} \nu_{1}} \ldots \sigma_{\mu_{t}{ }_{t}} \ldots \sigma_{i_{k-1}{ }^{j}} . \\
& \text { Let } f_{i j}=\left(h_{i}^{\mu_{1}{ }^{\nu} 1}\right)^{-1}\left(h_{i}^{\mu_{2}{ }_{2}}\right)^{-1} \ldots\left(h_{i}^{\mu} t^{\nu}\right)^{-1} \in \operatorname{Aut}\left(e_{i} \operatorname{Re}_{i}\right) . \quad B y \text { (11) , } f_{i j}
\end{aligned}
$$

is independent of the path from v_{j} to v_{i}. Let

$$
\bar{m}=m+S=\sum_{i \leq j} d_{i j}\left(e_{i j}\right) \alpha_{j} \in M \text { and let } d=\sum_{k=1}^{n}(x) \sigma_{1 k} \in D, x \in e_{1} R e_{1}
$$

Define

$$
\overline{\mathrm{m} d}=\sum_{i \leq j} d_{i j}\left(e_{i j}(x)\left(\tilde{f}_{i j}\right)^{-1} \sigma_{1 j}\right) \alpha_{j}
$$

If $\bar{m}_{1}=\bar{m}$, then

$$
m-m_{1}=\sum_{i \leq j}\left(x_{i}^{j} \phi_{j}^{i} \lambda_{i}-x_{i}^{j} \lambda_{i}\right) \in s
$$

Let $z_{k}=\left(m-m_{1}\right) \pi_{k} \in \operatorname{Re}{ }_{k}$,

$$
z_{k}=\sum_{j \leq k} e_{j} z_{k}=\sum_{j \leq k}^{\sum} z_{j, k}, \quad z_{j, k} \in e_{j} R e_{k}
$$

Then

$$
z_{j, k}=\sum_{j \leq l<k} x_{j, \ell}^{k} \phi_{k}^{\ell}-\sum_{j \leq k<\ell} x_{j, k}^{\ell}, \quad x_{i, \ell}^{j} \in e_{i} R e_{\ell} .
$$

By chasing diagrams (4) and recalling formulas (3)

$$
\begin{aligned}
& e_{\mu_{m} \nu}(z) \sigma_{\mu_{m} \nu}=(z) h_{\mu_{m}}^{\mu_{m} \nu_{m}} e_{\mu_{m} \nu} \\
& t e_{\mu_{m} \nu}=e_{\mu_{m} \nu}(t)\left(h_{\mu_{m}}^{\mu_{m} \nu}\right)^{\nu}-\sigma_{\mu_{m} \nu}
\end{aligned}
$$

we have that

$$
x_{i, \ell}^{j}{ }_{\ell j}(x)\left(\tilde{f}_{i j}\right)^{-1} \sigma_{1 j}=x_{i, \ell}^{j}(x) \sigma_{1 \ell} e_{\ell j} .
$$

That is, $\bar{m} d$ is well defined.
Also, since each $e_{k} J e_{\ell}$ is a $e_{k} \operatorname{Re}_{k}-e_{\ell} \operatorname{Re}_{\ell}$ bimodule for $k \leq \ell$ and since α_{j} is an R-homomorphism, M has an ($R-D$) bimodule structure.

We can now establish the following Corollaries.

Corollary 3.24

Let R be a semidistributive ℓ-hereditary ring, let $M=\lim _{\rightarrow} \operatorname{Re}_{i}$ and let $\mathrm{N} \leq \mathrm{M}$. Then

$$
N=\sum_{j}\left\{D\left(e_{j}\right) \alpha_{j}:\left(e_{j}\right) \alpha_{j} \in N\right\}
$$

Proof: Let $x \in N, x=\sum_{j=1}^{n} d_{j}\left(e_{j}\right) \alpha_{j}, d_{j} \in D$. If $d_{k} \neq 0$, we have

$$
e_{k} d_{k}^{-1} x=e_{k} d_{k}^{-1}\left(\sum_{i=1}^{n} d_{i}\left(e_{i}\right) \alpha_{i}\right)=\left(e_{k}\right) \alpha_{k} .
$$

That is, $e_{k} d_{k}^{-1} x=\left(e_{k}\right) \alpha_{k}$ and hence $\left(e_{k}\right) \alpha_{k} \in N$.

Corollary 3.25

Let R be a semidistributive ℓ-hereditary ring, $M=1 \underset{\rightarrow}{\operatorname{im}} \operatorname{Re}_{i}$. Then

1) Every nonzero homomorphism $g: M \rightarrow M$ is a monomorphism.
2) Every nonzero homomorphism $g: M \rightarrow M$ is an epimorphism.

Moreover, $\operatorname{End}_{R}(M)$ is a division ring isomorphic to D.

Proof:

1) Let $g: M \rightarrow M, g \neq 0$, define $g_{i}=\alpha_{i} g: \operatorname{Re}_{i} \rightarrow M$. By Theorem 3.23 g_{k} is a monomorphism for every k.

Let $\mathrm{x} \in \operatorname{Kerg}, \operatorname{let}\left\{\mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right\}_{\mathrm{k}}$ be such that $\left(\mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right) \alpha_{\mathrm{i}_{\mathrm{k}}} \in \operatorname{Kerg}$. We can write

$$
x=\sum_{k=1}^{t} r_{i_{k} i_{k}}\left(e_{i_{k}}\right) \alpha_{i_{k}}, \quad r_{i_{k} i_{k}} \in e_{i_{k}} \operatorname{Re}_{i_{k}} \quad \text { (see page 63) }
$$

Then

$$
(x) g=\sum_{k=1}^{t} r_{i_{k} i_{k}}\left(e_{i_{k}}\right) g_{i_{k}}=0
$$

But M is distributive, hence $r_{i_{k} i_{k}}\left(e_{i_{k}}\right) g_{i_{k}}=\left(r_{i_{k} i_{k}} e_{i_{k}}\right) g_{i_{k}}=0 ; g_{i_{k}}$ being a monomorphism implies $\mathrm{x}=0$, that is, g is a monomorphism.
2) Let $g: M \rightarrow M$ be a nonzero homomorphism. Since M is a factor of R, it has finite length and hence $M=\operatorname{Kerg}^{\ell} \oplus \operatorname{Img}^{\ell}$. By 1), g and consequently g^{ℓ} is a monomorphism.

Hence $M=$ Img ${ }^{\ell} \leq$ Img. That is, g is an epimorphism.
We have established then that $\operatorname{End}\left(R^{M}\right)$ is a division ring.
For $d \in D$, define $\psi_{d}: M \rightarrow M$ via $(m) \psi_{d}=m d$. Then, since M is an $R-D$ bimodule, $\psi_{d} \in \operatorname{End}\left({ }_{R} M\right)$. The map $\psi: D \rightarrow \operatorname{End}_{R}(M)$ is a monomorphism, moreover, if $h \in \operatorname{End}\left(R^{M}\right)$ then $h /\left(\operatorname{Re}_{i}\right) \alpha_{i} \in \operatorname{End}\left(\left(\operatorname{Re}_{i}\right) \alpha_{i}\right)$. Hence
$h /\left(\operatorname{Re}_{i}\right) \alpha_{i}=\psi_{d}$, for some $d \in D$ and $h=\psi_{d}, d \in D$.

That is, ψ is an epimorphism and consequently an isomorphism.

Proposition 3.26
Let R be a semidistributive ℓ-hereditary ring, $M=1 i m e_{i}$,
$\alpha_{i}: \operatorname{Re}_{i} \rightarrow M$ the canonical monomorphism. Let

$$
\begin{aligned}
L_{k} & \left.=\sum_{j}^{\sum\left\{e_{j} \alpha_{j}\right.}: j \geq k\right\} \\
& \left.=\sum_{j}^{\sum\left\{e_{j} \alpha_{j}\right.}: j \nsucceq k\right\} .
\end{aligned}
$$

If $E_{k}=M / L_{k}$ then $\operatorname{Soc}\left(E_{k}\right) \xlongequal{\cong} \operatorname{Re}_{k} / J e_{k}$.

Proof: First notice that since M is distributive, so is E_{k} and hence $\operatorname{Soc}\left(E_{k}\right)$ is square free [5]. Let $i>k$. Then,

$$
\begin{aligned}
0 \neq\left(e_{k}\right) \alpha_{k}+L_{k} & =\left(e_{k}\right) \phi_{i}^{k} \alpha_{i}+L_{k}=\left(e_{k i}\right) \alpha_{i}+L_{k} . \\
& =e_{k i}\left(e_{i}\right) \alpha_{i}+L_{k} .
\end{aligned}
$$

But $e_{k i} \in J$ and hence $J\left(e_{i}\right) \alpha_{i}+L_{k} \neq 0 \in E_{k}$. Because of $\operatorname{Soc}\left(E_{k}\right)=r_{E_{k}}(J)$ we have

$$
\left(e_{i}\right) \alpha_{i}+L_{k} \notin \operatorname{Soc}\left(E_{k}\right) \xlongequal{\cong} \operatorname{Re}_{k_{i}} / J e_{k_{i}} \oplus \ldots \oplus \operatorname{Re}_{k_{\ell}} / J e_{k_{\ell}} .
$$

Hence, $1 \neq k_{1}, \ldots, k_{\ell}$. Then $e_{i}\left(\operatorname{Re}_{k_{j}} / \mathrm{Je}_{k_{j}}\right)=0$ and $e_{i} \operatorname{Soc}\left(E_{k}\right)=0$. Let i be such that $i \nsucceq k$. If $\left(e_{i}\right) \alpha_{i} \in \operatorname{Soc}\left(E_{k}\right)$ then

$$
\mathrm{Re}_{\mathrm{i}} / \mathrm{Je}{ }_{i} \cong \mathrm{Re}_{k_{j}} / \mathrm{Je}_{k_{j}}, \quad j=1, \ldots, \ell
$$

that is, $i=k_{j}$ and $\left(e_{i}\right) \alpha_{i} \notin L_{k}$ which is a contradiction. Hence,

$$
\left(e_{i}\right) \alpha_{i} \notin \operatorname{Soc}\left(E_{k}\right) \text { for } i \nsubseteq k .
$$

Because $\operatorname{Soc}\left(E_{k}\right) \neq 0$, we conclude that $\operatorname{Soc}\left(E_{k}\right) \xlongequal{\cong} \operatorname{Re}_{k} / J e_{k}$.

Proposition 3.27

Let R, M, E_{k} be as in Proposition 3.26. Then E_{k} is isomorphic to $E\left(R e_{k} / J e_{k}\right)$, the injective envelope of $R e_{k} / J e_{k}$.

Proof: We have established that $\operatorname{Soc}\left(E_{k}\right) \xlongequal{\cong} R e_{k} / J e_{k}$. Because R is semidistributive and ℓ-hereditary we obtain that

$$
\mathrm{c}\left(\mathrm{E}\left(\mathrm{Re}_{\mathrm{k}} / \mathrm{Je} e_{\mathrm{k}}\right)\right)=\mathrm{c}\left(\mathrm{e}_{\mathrm{k}}^{\mathrm{R}}\right) \quad[8]
$$

But $c\left(e_{k} R\right)=\sharp\{j: k \leq j\}=n-\neq\{j: j \neq k\}$

$$
=c(M)-c\left(L_{k}\right)=c\left(E_{k}\right) .
$$

That is, $c\left(E\left(\operatorname{Re}_{k} / J e_{k}\right)\right)=c\left(E_{k}\right)$. But $E\left(\operatorname{Soc}\left(E_{k}\right)\right)=E\left(E_{k}\right)=E\left(\operatorname{Re}_{k} / J e_{k}\right)$ from which it follows that

$$
E_{k}=E\left(E_{k}\right)=E\left(\operatorname{Re}_{k} / J e_{k}\right) .
$$

We now state a proposition which besides being interesting in its own right, will be useful in proving our main result.

Proposition 3.28

Let R be a semidistributive ℓ-hereditary ring, $M=1 \underset{\rightarrow}{i m} R_{i}$.

1) For every indecomposable submodule $N \leq M$ and every nonzero homomorphism $f: N \rightarrow M$, there exists a unique homomorphism $\tilde{f}: M \rightarrow M$ making the following diagram commute.

2) For every submodule $K \leq M$ such that M / K is a nonzero indecompos-
able factor of M and every nonzero homomorphism $f: M \rightarrow M / K$, there exists a unique homomorphism $\tilde{f}: M \rightarrow M$ such that the following diagram commutes.

Proof:

1) Let $N \leq M$ and let $\left\{e_{i_{k}}\right\}_{k}$ be the collection of idempotents of R such that $\left(e_{i_{k}}\right) \alpha_{i_{k}} \in N$. Because $M=\sum_{i=1}^{n} D\left(e_{i}\right) \alpha_{i}$, we have

$$
c\left(e_{j} \operatorname{Re}_{j} e_{j}^{M)}=1 \text { for every } j \text { and then } N=e M \text { for } e=\sum_{k} e_{i} .\right.
$$

Also, since N is indecomposable, the vertices $\left\{v_{i_{k}}\right\}_{k}$ form a connected subgraph of Q and $N=\lim _{\vec{k}} \operatorname{Re}_{i_{k}}$. Moreover, since M is distributive, $\mathrm{Nf} \leq \mathrm{N}$. We conclude then, by applying Propositions 3.24 and 3.25 to $e e^{N}$, that there exists $d \in D$ such that $n f=n d, n \in N$. Define

$$
\bar{\alpha}_{i}: \operatorname{Re}_{i} \rightarrow M \text { via } z \bar{\alpha}_{i}=z \alpha_{i} d, i=1, \ldots, n
$$

Then $z \bar{\alpha}_{i_{k}}=z \alpha_{i_{k}}$ f. For $i \leq j$,

$$
e_{i} \phi_{j}^{i} \bar{\alpha}_{j}=e_{i j} \bar{\alpha}_{j}=\left(e_{i j}\right) \alpha_{j} d
$$

$$
=\left(e_{i j}(x) \sigma_{1 j} f_{j}^{-1}\right) \alpha_{j}
$$

$$
=\left((x) \sigma_{1 i} e_{1 j}\right) \alpha_{j}
$$

$$
=\left(x \sigma_{1 i} e_{i}\right) \phi_{j}^{i}{ }_{j}=\left(x \sigma_{1 i} e_{i}\right) \alpha_{i}
$$

$$
=\left(e_{i}(x) \sigma_{1 i}\right) \alpha_{i}=e_{i} \bar{\alpha}_{i} .
$$

That is, $\phi_{j}^{i} \bar{\alpha}_{j}=\bar{\alpha}_{i}$ for $i \leq j$ and the following diagram commutes.

Hence, since $M=\lim _{\rightarrow} \operatorname{Re}_{i}$, there exists a unique homomorphism $\tilde{f}: M \rightarrow M$ such that $\alpha_{j} \tilde{\mathrm{f}}=\bar{\alpha}_{j} \forall j . \quad$ Clearly, $\tilde{\mathrm{f}}$ extends f.
2) Let $K \leq M$ such that M / K is indecomposable and let $f: M \rightarrow M / K$ be an homomorphism. Define $(m+K) d=m d+K$. Since $D \cong$ End (M), and since M is distributive, $\mathrm{Kd} \leq K$ and M / K is a right D -module.

Let $\eta: M \rightarrow M / K$ be the natural epimorphism and let $\left\{e_{i_{k}}\right\}$ be the collection of idempotents such that $0 \neq\left(e_{i_{k}}\right) \alpha_{i_{k}} \eta \in M / K$, that is, $\left(e_{i_{k}}\right) \alpha_{i_{k}} \& K$. Let $\gamma_{i}=\alpha_{i} \eta$, then for $i_{k} \leq i_{k}$,

commutes
and $M / K=\underset{\vec{k}}{\lim } \operatorname{Re}_{i_{k}}$.
Also, since $K \leq K e r f$ and M is distributive, f induces $f^{\prime}: M / K \rightarrow M / K$ so that $n f^{\prime}=f$. Let $e=\sum_{k} e_{i_{k}}$, then $e(M / K)$ is an eRe-module and there exists $d \in D$ such that $(m+K) f^{\prime}=m d+K$.

Define $\tilde{f}: M \rightarrow M$, via $m f=m d$. Then $m \tilde{f} \eta=m \tilde{f}+K=m d+K=(m+K) f^{\prime},=$ $m n f^{\prime}=m f$ for every $m \in M$. If $g: M \rightarrow M$ is such that $m g+K=m \tilde{f}$ for every $m \in M$ then $M(g-\tilde{f}) \leq K$, that is $\operatorname{Im}(g-\tilde{f}) \neq M$ and by Corollary $3.25 g=\tilde{f}$.

Now, we state and prove our main result.

Theorem 3.29
Let R be an indecomposable semidistributive l-hereditary ring. Then R has a weakly symmetric duality.

Proof: By results in [1] we may assume R is basic. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basic set of primitive idempotents of R and let $E=E_{1} \oplus \ldots \oplus E_{n}$ where

$$
E_{k}=M / L_{k}=E\left(\operatorname{Re}_{k} / J e_{k}\right), \quad M=\lim _{\rightarrow} \operatorname{Re}_{i}, \text { and } L_{j} \text { is as in Proposition } 3.26
$$

Then E_{k} is an indecomposable injective R-module and, because R is basic, E is the minimal injective cogenerator in R^{M}.

Let $S=\operatorname{End}\left({ }_{R} E\right)$ and let $w \in S$, then $w=\sum_{i, j} \psi_{J}^{i}$ with $\psi_{j}^{i}=\pi_{i} w \pi_{j}$, $\pi_{k}: E \rightarrow E_{k}$ the natural projection.

Since R is l-hereditary, ψ_{j}^{i} is either zero or onto; moreover, if $i \npreceq J$ then $\psi_{j}^{i}=0$ and consequently $w=\sum_{i<j} \psi_{j}^{i}$. We have that $\psi_{j}^{i} \neq 0$ if and only if $\left(e_{j}\right) \alpha_{j}+L_{i} \neq 0$. This implies that $1 f i \leq j$ then $0 \neq \phi_{j}^{i} \in$ $\operatorname{Hom}\left(\operatorname{Re}_{i}, \operatorname{Re}_{j}\right)$. Consider the solid part of the following diagram

Then there exists $\delta: M \rightarrow M$ such that $\eta_{i} \psi_{j}^{i}=\delta \eta_{j}$. Hence, by Corollary 3.25 there exists a unique $d \in D$ such that (m) $\delta=m d$. Define

$$
\gamma_{j}^{i}: \operatorname{Re}_{i} \rightarrow \operatorname{Re}_{j} \quad \text { via }(z) \gamma_{j}^{i}=z e_{i j} d=(z) \phi_{j}^{i} d
$$

Then the map $\theta: \psi_{j}^{i} \rightarrow \gamma_{j}^{i}$ is well defined and one-one.

Let $\theta: S \rightarrow R, \theta\left(\sum_{i \leq j} \psi_{j}^{i}\right)={ }_{i \leq j} \gamma_{j}^{i}$. Then θ is a bijection.
Let $w^{\prime}={ }_{i \leq j} \psi_{j}^{\prime i}, \psi_{j}^{\prime i}=\pi_{i} w^{\prime} \pi_{j}$. Then, if δ^{\prime} and $\gamma_{j}^{\prime i}$ are the maps associated with $\psi_{j}^{\prime i}$ we have that

$$
\delta+\delta^{\prime} \text { and } \gamma_{j}^{i}+\gamma_{j}^{\prime i} \text { correspond to } \psi_{j}^{i}+\psi_{j}^{\prime i}
$$

Consequently, θ is additive.
A1so, if $i \leq j \leq k, \gamma_{j}^{i} \gamma_{k}^{\prime j}$ and $\delta \delta^{\prime}$ correspond to $\psi_{j}^{i} \psi_{k}^{\prime}$, that is, θ is a ring isomorphism. Also, $\theta\left(\psi_{i}^{i}\right)=\gamma_{i}^{i}$ and R has a weakly symmetric duality (Theorem 3.8).

1. Anderson, F. R., and Fuller, K. R., Rings and Categories of Modules, Springer-Verlag, New York, 1973.
2. Azumaya, G., "A duality theory for injective modules," Journal of Mathematics, 81, 1959, 249-278.
3. Bautista, R., "On algebras close to hereditary algebras," Communicacion Interna, No. 35, UNAM, 1978.
4. Bautista, R., "Classification of certain algebras of finite representation type," Comunicacion Interna, No. 51, UNAM, 1978.
5. Camillo, V. P., "Distributive Modules, "Journal of Algebra, 36, 1975, 16-25.
6. Camillo, V. P., Fuller, K. R., and Haack, J. K., "Azumaya's exact rings and a problem in linear algebra," (unpublished paper, Oklahoma State University, n.d.)
7. Fuller, K. R., "On indecomposable injection over artinian rings," Pacific Journal of Mathematics, 29, 1969, 115-135.
8. Fuller, K. R., "Rings of left 1nvariant type, "Communications in Algebra, 6, 1978, 153-167.
9. Fuller, K. R., and Haack, J. K., "Rings with quivers that are trees," Pacific Journal of Mathematics, 76, 1978, 371-379.
10. Haack, J. K., "Self-duality and serial rings, "Journal of Algebra, 59, 1979, 345-363.
11. Haack, J. K., "Incıdence rings with self-dualıty," Proceeding of the American Mathematical Society, 78, 1980, 165-169.
12. Haack, J. K., "The duals of the Camı1lo-Zelmanowitz formulas for Goldıe dimension," Canadian Mathematical Bulletın, 25, 1982, 325-334.
13. Liu, C. L., Introduction to combinatorial mathematics, McGraw-Hill, New York, 1968.
14. Martinez-Villa, R., "Algebras stably equivalent to P-hereditary," Springer-Verlag Lecture Notes in Mathematics, No. 832, 1980, 369-431.
15. Morita, K., "Duality for modules and 1ts applications to the theory of rings with minlmum conditions," Tokyo Kyoiku Daiguku, 6, 1958, 83-142.
16. Rotman, J. J., An Introduction to Homological Algebra, Academic Press, New York, 1979.
17. Scholfield, A. H., "Artin's problem for skew field extensions," (unpublished manuscript, University of Cambridge, n.d.)
18. Stephenson, W., "Modules whose lattice of submodules is distributive, "Proceedings of the London Mathematical Society, 28, 1974, 296-310.
19. Yagamata, K., "On extensions over artinian rings with self-dualities," Tsukaba Journal of Mathematics, 4, 1980, 67-75.

N
VITA
Carlos Enrique Caballero
Candidate for the Degree of
Doctor of Philosophy

Thesis: ON ℓ-HEREDITARY RINGS

Major Field: Mathematics
Biographical:
Personal Data: Born in Santiego, Chile, December 11, 1945, the son of Mr. \& Mrs. Enrique Caballero.

Education: Received the degree Licenciatura en Filosofia from the Universidad de Chile in January, 1974; completed requirements for the Doctor of Philosophy degree at Oklahoam State University in July, 1984.

Professional Experience: Full time instructor, Department of Mathematics, Universidad de Chile, 1974-1979; Graduate Teaching Associate, Department of Mathematics, Oklahoma State University, 1980-1984.

[^0]: Submitted to the Faculty of the Graduate College of the Oklahoma State University
 in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1984

