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CHAPTER I

INTRODUCTION AND BACKROUND

Classical control system design is generally a trial-
and-error process in which various methods of analysis are
used iteratively to determine the design parameters of an
"acceptable" system. A new and direct approach to the syn-
thesis of complex, integrated control systems has been made
feasible by advances in digital computers.

The application of modern control theory to the syn-
thesis of systems that include electro-hydraulic servo
components has been limited. Hydraulic subsystems have
typically been designed separately from the rest of the
system, without regard to impact on overall system perfor-
mance.

This thesis discusses a technique for the design of on-
line adaptive controllers for nonlinear systems which incor-
porate electro-hydraulic drives. Special emphasis is given
to the development of an integrated control system for a one
degree of freedom motion platform in which the highly non-

linear equations of motion form a part of the plant model.

1.1 Motion Platform

A "motion platform" provides motion and force infor-



mation to the trainee in an aircraft training simulator.
The operating envelope of the ground-based motion platform
is limited by economic constraints and technical consider-
ations. TUsually the system is capable of providing moderate
"g" cues in the frequency band of 0.5 Hz to 4.0 Hz. It is
also capable of providing useful acceleration information
for maneuvers with periods of 2 seconds or more by tilting
the simulator. This system is very limited in evoking the
physiological effects due to high-g maneuvers. On the other
hand, it is quite useful for providing vibration or short
duration alerting cues. A detailed discussion on the tasks
of the motion platform and how these tasks are related to
the human perceptual system can be found in Reference 1. A
typical, constrained, motion platform response to aircraft
dynamics inputs is delineated in Figure 1. The control pro-
vides the higher frequency "onset" portion of the acceler-
ation profiles, then returns the cockpit to a neutral
position, so as to be able to display the next "onset" cue.
This process is known as "washing out" the motion cues.
Washout levels should be constrained to values below the
trainee's indifference threshold (from Reference 1: 2
degrees/sec and 0.1g for the semicircular canals and oto-
liths, respectively).

The common motion platform is driven hydraulically and
is controlled via a conventional electro-hydraulic servo

system. Signal inputs from aircraft equations of motion



(accelerations or rates or positions according to the spe-
cific configuration of the simulator) are processed via
filters and directed to the servo controller. A typical

block diagram of a motion platform control system is shown

in Figure 2.

X aircraft

X motion base

T

Figure 1. Typical System Response with Washout

New, modern approaches to the design of a motion plat-

form control system (which omit the model of the hydraulic
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system) are documented in References 2-11. A military

standard of motion system requirement is given in

Reference 12.

1.2 The Role of Digital Computers in
Closed Loop Electrohydraulic

Control Systems

R.H. Maskrey (13) explored possible applications of

microcomputer technology for expanding the utilization of

electrohydraulic servos. Possible uses of computer tech-

niques can be categorized into six areas:

a.

Closing the loop. Using the computer as a closed-
loop servo-controller.

Pre-loop processing. Processing command
information ahead of a conventional closed-

loop servo.

Peripheral processing. Where information is
processed both ahead of and subsequent to a
conventional closed-~loop servo.

Adaptive control. Using intelligence to modify
the basic closed-loop control procéss.

"Smart" Redundancy. Improving a redundant servo
with the addition of higher level thinking.
Improved time-optimal control. Enhancing bang-

bang control.

Areas (b), (c) and (d) above are related to this



thesis. These areas are discussed in more detail below.

1.2.1 Pre-loop Processing

Computers are in use today as pre-loop processors or as
command generators for conventional analog servos. This
approach is commonly used in motion platform control. The
computer is used effectively to perform interface functions,
to interpret keyboard readings, to process rate signal in-
puts, or to monitor interactions between subsystems. The

computer outputs drive a high performance servo.

1.2.2 Peripheral Processing

"Peripheral Processing" involves the use of a computer
to handle related information both ahead of and after a
conventional closed loop. This terminology should not be
confused with the computer world's use of satellite com-
puters to do ''peripheral''data processing. An example of
peripheral processing which uses a large computer with a six
degrees of freedom motion simulator is given in Reference 2.
As seen in Figure 3, the computer processes the information
of the flight simulation, manipulates the centroid trans-
formation, washout system and actuator extension transfor-
mation. The computer also works with output information
generated as a result of the servo operation, performs
inverse transformation and predicts the position limits.

Based upon these calculations, the computer is able to use
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the output imformation to improve the next cycle. Other
cases of peripheral processing have been discussed by

R. L.Kosut (6) and W.R.Sturgeon (10). In these cases, opti-
mal control theory is used to generate an optimal controller
(i.e.,linearized model with constant feedback gains) based
on information about the platform dynamics. But, in each of
these cases, the traditional hydraulic servo system remains

in the loop, untouched.

1.2.3 Adaptive Control

If there is a "best" application of digital computers
to electrohydraulic control, then adaptive control may be
it. It has long been held that adaptive control requires
the capabilities of a computer. A self adaptive control
system is one that is able to adjust itself to provide op-
timal or, perhaps, consistent control in the presence of
identifiable changes. Typically, adaptive control should be
used where constant performance is desired even though the
following changes occur.

a. Changes in the physical process being controlled

with respect to time.

b. Changes that occur in the power availability, such

as changes in hydraulic supply pressure due to

other demands.



¢c. Changes in loading conditions, such as load

inertia changes because of normal operation.

d. Changes of gain with amplitude.

As a result of these changes, it may be desirable to
control a variety of conditions based upon historical and
predicted performance of the system. These conditions could
include limits, gains, boundaries for nonlinearities and

even control modes.
1.3 Control System Synthesis

The design of an automatic control system generally
involves the selection of additional components which
usually have adjustable parameters such that the overall
system meets a desired performance specification. For
example, this performance specification may be formulated
(performance index) in terms of the minimization of an error
criterion, a settling time, an energy constraint, or, it may
be simply required that the response be stable.

The performance index as frequently used in control
gsystem design provides a quantitative measure of system
performance and is normally chosen to emphasize important
system characteristics. This quantitative measure is very
important for parameter identification, state estimation,
and for the design of optimal and suboptimal control

systems.



1.3.1 Feedback Control Synthesis for

Deterministic Linear Systems

The equations governing the behaviour of dynamic
systems of the type considered in this thesis are usually
non-linear. Even in cases where a linear approximation is
justified, its range of validity is likely to be limited.
In this thesis nonlinear equations of motion will be used
exclusively. However, in order to start the iterative com-
putation in defining the control laws, there is a need to
start with a stable control law before the first iteration
is executed. This control law is calculated for the linea-
rized system operating around a steady-state equilibrium
position.

Generally, the control law for the linearized system
can be calculated (provided the system is controllable) by
using one of the numerous methods of classical or optimal
control.

In this thesis, the excess pole specification method of
C.W. Merriam (14) is used to generate the linear system

control law.

1.3.2 Control Synthesis for Nonlinear Systems

General approaches for controller synthesis similar to
those available for linear systems do not exist at the
present time. A few of the proposed approaches to solve the

above problem are reviewed in this section.

10
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1¢3.2.1 A Functional Expansion Approach to the

Solution of Nonlinear Feedback Problems. Methods for

synthesizing suboptimal feedback control laws for nonlinear
systems based on a functional expansion technique have been
proposed (for example, see References 18 and 19). These

methods apply to controllable dynamical systems modelled by

X = AX +&5(X) + BU  X(0) = X_ (1.3.2.1-1)
where X, an n-vector, is the state;
U, an m-vector, is the control;
XO is the initial state;
$® is an analytic vector function;
A and B are constant matrices, and € is a
scalar parameter.
W.L.Garrard (18) suggested that the optimization

problem is the determination of a feedback control which

minimizes the index of performance
[o,>]

Jd = %JkX'QX + U'RU)dt (1.3.2.1=2)
0

Q and R are symmetric positive definite matrices. The

optimal control U* minimizes the scalar function

" H(X,p,U,e) = p'(AX + €&(X) + BU)
+ 3(X'QX + U'RU) (1.3.2.1=3)
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and is given by
g = -R™1B'p (1.3.2.1-4)

where the costate equations are:

. oH
)

]

-A'p - QX -aé’xp (1.3.2.1-5)

]
o

Lim p(t)

t —

Garrard proposed the block diagram of Figure 4 for
control. Garrard noted that this scheme allows the designer
to easily calculate a second order approximation to the
optimal control. He also stressed that this control is only
useful in some domain of asymptotic stability surrounding

the origin.

NON L INEAR PLANT

X=AX+£0(X) +BU

Rk
LINEAR PORTION [~
OF CONTROL

R B (M —KBTLB! K @(x) | NONLINEAR |

FUNCTION GENERATOR

Figure 4. An Implementation of the Suboptimal Control
(From Ref 18)
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1.3.2.2 Optimal Control Law. The optimal controller

synthesis problem can be solved utilizing Pontryagin's
Maximum Principle (see also Reference 15).
Consider a controlled dynamic process given by a set of

first-order differential equations:

x; = fi(x,¢,U,T) (1.3.2.2-1)

where, x = states, § = system parameters, U = control, t =
time; and a performance index
T
Jd = JL(X,U,r,t)dt (1.3.2.2-2)
o

which is to be minimized. The integral L(X,U,r,t) is the
cost function, and represents a measure of instantaneous
change from the ideal performance. The maximum principle

requires that the optimal control, U* which minimizes J will

maximize the scalar Hamiltonian function:

n
H(X,U,p,t) ==z:jpifi(X,U,¢,t) + L(X,U,r,t) (1.3.2.2-3)
1=1

where vector p, called the costate vector, is given by:

_ aH(X,U’P’t)

i X,
S} 5 i

(1.3.2.2-4)

e K]
]

i = 1’2 L] L .n

and
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" _ 9H(X,U,p,t)

X3 55 (1.3.2.2-5)

The optimal trajectory x*(t) and p*(t) are found by solving
the above equations with 2n boundary conditions. The
optimal control U*(t) is obtained in terms of x, p and t as:

¥*
U = U(x*,p*,t)

The individual optimal control solution is dependent upon
the particular choice of performance index.

The need for the solution of two point boundary value
problems (TPBVP) has attracted a lot of attention in recent
years. Nonlinear TPBVP's are encountered in solving optimal
control problems via the maximum principle. Numerical solu-
tion of the optimal control problems may be obtained using
iterative or non-iterative techniques. These methods suffer
from the disadvantage however, that they yield the optimal
control in the open loop form. In some cases, the problem
under consideration may be sensitive to small perturbations
in the initial costate and, as a result, convergence to an

optimal solution may be slow if convergence occurs at all.

1.3.2.3 Direct Control Algorithm. Although a con-

troller designed by the optimal control approach is optimal
in the sense of satisfying the necessary conditions for

optimality, the resultant control system is open loop and,



as such, may be very sensitive to environmental distur-
bances. Thus, it seems appropriate to consider methods for
designing a closed-loop control system to overcome such
problems. In their paper (20) H. Kaufman and R. Teavassos
suggested the following method. Suppose the controller is

constrained to be of the form:

U(t) = h[X(t),t] = KX(t) (1.3.2.3-1)

where K is a gain matrix whose elements must be determined.
The problem is to find a finite number of constants Ki’
which minimize:
e
J = @[x(tf),tf] + JL[x(t),h(x(t),t)]dt (1.3.2.3=-2)
t
o)

subject to the dynamic constraint given by
x(t) = £lx(t),h(x(t),t),t] (1.3.2.3-3)

Kaufman and Teavassos developed and evaluated control
computation algorithms that employ a significant degree of
parallelism. Their work involved the evaluation of two
approaches: optimal control and direct suboptimal control.
They recommended the direct estimation algorithm should be
used only if no appreciable noise exist. (No solution was
given for this problem). On the other hand, if process

noise is excessive, then the indirect method (optimal, two

15
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point boundary value problem in which the process noise is
regarded as control) should be considered.

With regard to the control algorithms, Kaufman and
Teavassos recommended the use of the direct gain optimi-
zation procedure in view of their findings that near optimal
response was obtained without an excessive amount of com-
putation. Also, they concluded that this procedure should
be seriously considered because the equations of motion of a
highly nonlinear system can be utilized directlly in the

control system design process.



17

1.4 Algorithm for Unconstrained

Minimization

From the material discussed in previous sections it is
evident that an efficient algorithm for minimization of a
nonlinear function, called a performance index, must be em-
ployed. The optimization problem will be of the form:

minimize f(x), subject to xe
where f igs a real-valued function and o~ , the feasible set,
is a subset of E%. In the completely unconstrained case,
o= g2,

Usually, optimization problems have constraints, like
the differential constraints (x = f(%,t)) of the dynamic
system; however, some of the most powerful and convenient
methods of solving constrained problems involve the con-
version of the problem to one of unconstrained minimization.
A comprehensive discussion of nonlinear optimization can be
found in References 22 and 23. A short overview of this
subject is given in Appendix A, including a description of
Davidon's optimization algorithm (without line search) that

was used in this research.

1.4.1 Parallel Algorithms for Reducing

Computation Time

The computer industry has developed parallel computers
which are capable of performing the same set of instructions

on many data sets simultaneously. Basically, a parallel
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computer can be viewed as a set of processing elements, each
of which has its own local memory and a repertoire of arith-
metic and logical instructions. The role of the central
processor is to coordinate the efforts of each processing
element while its local memory 1s used for temporarily
storing intermediate results.

Due to the availability of parallel processors, a
number of nonlinear estimation and control algorithms (for
parallel processing) have been proposed. Applications of
quasi-Newton algorithms (for parallel processing) are re-
viewed in Reference 20, while work on square-root algorithms
for optimal estimation (linear systems) is reported in

Reference 26.
1.5 Motivation for the Research

Electrohydraulic subsystems normally are designed
separately from the rest of the system, and then experi-
mentally tuned to give the "best" performance for a specific
limited operational envelope. References 1-11 ignored the
role of the electrohydraulic servo dynamics in the control
system design. R.L.Kosut (6) recommended the inclusion of
actuator dynamics in the system model when the controller is
designed analytically.

There is a need for an integrated control system design
scheme that includes the hydraulic subsystem dynamics in the

overall plant model. This subsystem can be modelled in its



19

natural state, that is using variables such as pressures,
velocities and displacements, that are readily available for
measurement.

The electrohydraulic servo system is highly nonlinear,
with parameters that can only be assumed e.g bulk modulus of
fluid, valve gain which changes near saturation, is also
different for pressure port and return port if the actuator
is unsymmetrical. A procedure is needed to determine a
control law which is adaptive in nature, so that performance
is consistent regardless of the nonlinearities and drifts in
parameter values.

Another important design consideration is the washout
motion for the specific application. If the computer is
used for on-line control, it may perform decisions based
upon state measurement and known hardware limitations and

generate the inputs required for washout motion.
1.6 Research Objectives and Contributions

The objectives of this research were as follows:

1. To develop computationally efficient procedures for on-
line identification and control of nonlinear dynamical
systems with time varying inputs.

2. To formulate a washout strategy for a one degree of

freedom motion platform.



To develop a state-space model of the motion platform
system that will include the nonlinear actuator
dynamics.

To simulate the proposed control system off-line for
various inputs and modes of operation (e.g. follower
mode, washout mode) and to evaluate the results.
principal results from conducting this research are:

A strategy has been developed for the adaptive control
of nonlinear systems using preselected integration
intervals. (Objective 1)

The Q-N optimization method without line search has
been shown to be an efficient method for solving the
dynamical optimization problem (nonlinear identifi-
cation and control). (Objective 2)

A braking/washout procedure can produce software
generated inputs to the system in such a way that cues
will not be attenuated unless physical constraints of
the actuator dictates this attenuation. (Objective 3)
It has been demonstratedvthat the inclusion of the non-
linear hydraulic subsystem dynamics in the plant model
produces a control system design with improved overall
system performance, compared with a design which as-
sumes the hydraulic subsystem dynamics are negligible.

(Objectives 3 and 4).



CHAPTER II
METHOD AND PROCEDURES

In this chapter, an adaptive control algorithm is
given, which can be used to solve nonlinear identification
and control problems using digital computers. Section 2.1
presents the proposed control method, Section 2.2 presents
the identification procedure and Section 2.3 describes the
approach chosen for the calculation of inputs to the washout
motion.

The direct identification and the direct control me-
thod§ were chosen in lieu of optimal control and estimation
approaches for the reasons discussed in Section 1.3.2.3.
Also, Kaufman and Teavassos (20), showed that for a sample
system, one iteration of the indirect (optimal) control al-
gorithm required significantly more time to execute compared
with the direct gain optimization procedure. This obser-

vation was also valid for the indirect and direct estimation

algorithms.
2.1 Nonlinear System Control Algorithm

This section discusses the development of a numerical
method for synthesizing the controller for a nonlinear

dynamical system. The approach is a suboptimal, direct

21
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search for the closed-loop gains that will minimize an error

function criteria.

2.1.1 Problem Statement

The physical process to be controlled is assumed to be

an n-th order continuous-time system:

X = f1[x1(t),x2(t), . . e xn(t),t]

X, = f2[x1(t),x2(t), . . . xn(t),t]

1 (20101-1)

~l

X, = fn[x1(t),x2(t), . . xn(t),t]
which is often expressed in vector form

x(t) = £lx(t),t] (2.1.1=2)
where x(t)eRn is the state vector of the systemn.

The controller to be constrained is:

U(t) = K(t)[r(t) - x(t)] (2.1.1-3)

where,
U(t)eR™ is the control vector, m<n
K(t) is an m x n gain matrix

r(t)eR™ is the input vector signal



The problem is to calculate the values of the gain matrix
elements kij that will minimize the quadratic error
function:
t _+4t
o
T = Ix(t) - r()170Q1[x(t) - r(t)1dt  (2.1.1-4a)
o)

Or, for finite steps L of integration,

L
7=) [x(3) - 2D - 2()] (2.1.1-4b)
j=1

Subject to the dynamic constraints,

x = £lx(t),0(t),0,8] (2.1.1-5)

x(to) = z(to)

z(t) is the plant state vector (measurement data), and

@ is the parameter vector of the nonlinear system.

2.1.2 Control Algorithm

The solution of the above problem requires the defini-
tion of the input to the system, r(t), and the weighting
matrix [Q] for the quadratic error function defined in the
equation (2.1.1-4).

Since x(to) and r(to) are known, but r(t) is, in
general time dependent, there is a need to extrapolate r(t)

using past information. The approach used is as follows:

R3
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Extract from storage the last 4 reference input values of
the previous cycle (see also Figure 5). Calculate the
first, second and third order time derivatives by Newton's

backward difference formula:

r' (i)

1

(3ry = 4ry_q * 73 p)/28m

2
(ry = 2r; 4 + 71, ,)/Ah (2.1.2-1)

rll(i) 5

]

L 3

Using these values, the input to the system can be predicted
by using a Taylor Series Expansion:
h2
= = ! pen n
r(t) = r(ti+h) r(ti)+hr (ti)+( Q)r (ti)
h3 ree
+ (Sgirtrr(ty) (2.1.2-2a)

or

2
r(i+k) = r(i)+kahr'(i)+ nggl (1)

3
+ (KAh) rt11(1) (2.1.2-2b)

Using this procedure, the integration should be performed

over a fraction of the update interval.
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Figure 5. Reference input extrapolation for Control
Law Synthesis.

Differentiating the quadratic error function defined in

(2.11-4)
- [x() - (8)17Q10x(E) - r(8)]
and rearranging for a diagonal matrix Q

n
%% =§EjQi(xi - ri)2 (2.1.2-3)
1=1

If the following values are set
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Q. = 1.0 (1 = k)

Q. = 0.0 (i = k), (2.1.2-4)

then a specific mode of control is obtained. If the sub-
seript k corresponds to the velocity (x(k) = velocity), then
the system will follow the velocity input only. If the
subscript k corresponds to the position input, a position
servo will be obtained. This mode selection for control is
very flexible because it does not require a different algo-

rithm for each mode of operation selected.

2.1.3 Implementation Steps

The control synthesis procedure can be summarized in

the following steps.
Step (0). Off-line Initialization

Linearize the open-loop system equations of motion with
nominal system parameters around a steady-state equilibrium
point. Calculate K, _, = K(0) for the linearized deter-
ministic system using any of the known methods so that the

forward integration of Equation 2.1.1-5 is stable.
Step (1). On-line

Apply the input to the system. Record the input signal
for the last four grid points. Calculate the first, second
and third time derivatives for the input signal at the last

point of the measured data.
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Step (2). On-line

Given K, .. and the initial state x(i) as well as
r(i+j) from extrapolation, use a nonlinear minimization pro-
cedure to update K so that the cost function J in Equation
2.1.1-4b will be minimized. x(i+j), j=1,L can be calculated
by the integration of Equation 2.1.1-5 forward in time over

the time interval (ti’ti+L) from the initial state x(i).

Step (3). On-line

If ‘jn+1 - jn|<é y Wwhere n denotes the number of op-

timization iterations performed, or if the allowed number of
optimization iterations was reached, accept the new value of

K and update the gain coefficient as follows:

Knew = Klast +a(K - Klast) (2.1.3-1)
0.0 < &< 1.0

Then return to step (1).

2.2 Nonlinear System Parameter

Identification

This section discusses the development of a numerical
method for parameter identification of nonlinear dynamical
system. The approach taken was a direct search for the par-
ameters by minimization of a specific cost function. This

specific cost function is a measure of the deviation of the
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response between the plant states (measurements) and the

assumed model (unknown parameters) states.

2.2.17 Problem Statement

The nonlinear dynamical system model and the measured

variables may be represented by the state-vector equations:

x = £0x(t),0(t),0(t),t] (2.2.1-1)
z(t) = hlx(t),t] + w(t),
where x(t) € R® 1is the state vector.
z(t) € RY is the measurement vector.
U(t) € R® is the control vector.

0(t) e Rk is the parameter vector.

L . . .
w(t) € R is a zero-mean white noise sequence.

Assuming that all the states are accessible for
measurement, the problem reduces to searching for the values
of the parameters that will minimize the error function:

t
o
J = _[[z(t) - %()170Q112 () - %(¢)1dt (2.2.1-2)
to-At
subject to the dynamic constraints of the assumed plant

model:

2(t) = £(%(8),U(8),0(t),t) (2.2.1-3)
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where x(t - at) = Z(t_ - &t), or, for finite steps L of

integration,
L
7 =) e - R(NITIRIZ() - %(§)1at (2.2.1-4)
3=1

Working directly with the nonlinear system equations of
motion rather than trying to linearize the system may render
faster system identification. Usually only a few parameters
of the nonlinear system need identification. If the system
is represented locally as X = [A]X + [B]U, then the number
of parameters to be identified will grow. If there are n
states and m inputs, then the [A] matrix with n x n elements
and the [B] matrix with n x m elements need identification.
For example, if n = 4, m = 1 then 4 x 4 + 4 x 1 = 20 par-
ameters need to be identified. Figure 6 depicts how the
sampling and integration intervals are related. The iden-
tification process is applied only during a fraction of the
interval between updates, thereby conserving function

evaluation time.
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Figure 6. Integration and Sampling Interval for
the Identification Process.

2.2.2 Implementation Steps

Step (0). Off-line Initialization

Develop the nonlinear model of the system:

2(t) = £IR(1),0(),0(t),t] (2.2.2-1)
where TU(t) = K[r(t) = %(t)]

Calculate and initialize the nominal vector of system

A
parameters .

Step (1). On-line

Apply the input to the system and record the input and
measurements of the response (state values) during the

measurement data window.
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Step (2). On-line

N A
Given ¢last and the initial state X; = Z;, use the
nonlinear minimization procedure to update § so that the
cost function J in Equation 2.2.1-4 is minimized. The
values of X(i) in the cost function are obtained by forward

integration of Equation 2.2.1-3.

Step (3). On-line

ntl _ Jn| <€, where n denotes the number of

Ir |J
optimization iterations performed, or if the allowed number
of optimization iterations is exceeded, accept the new

A

values of § and update the system parameters as follows:

"N Il A A
q)new - ®1ast +old - ¢last) (2.2.2-2)
0.0 < »< 1.0

Then return to step (1).
2.3 Washout Algorithm

The braking/washout procedure described in this section
is related to a special mode of operation for the motion
platform and involves the generation of a particular input

to the control system.

2.3.1 Problem Statement

All motion simulators have limits on the amount of

movement in each degree of freedom. The design of a system
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which will transmit motion cues to a pilot while keeping the
movement of the simulator within its constraints is the
major task faced by the designer. After the initial cue has
been transmitted, another function of the system is to
return the simulator to its neutral position without the
pilot being aware of the movement. This effect is termed
"washout". This technique of keeping the simulator near its
neutral position, maximizes the movement allowable for

subsequent cues.

2.3.2 Algorithm

The signal input to the system should be switched from
the follower mode to the washout mode in the translational
degree-of-freedom at a safe point, so that the physical

limit of the actuator is not reached.

max max
3 M)'cL2 = J(Fdx = JMX dx , (2.3.2-1)
Xy XL
where:
iL is the velocity limit of the actuator at some
position limit XL’
XL is the position corresponding to the velocity
linit X, and
Xmax is the allowed maximum displacement of the

actuator from neutral position.
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If the maximum acceleration for washout is a constant a,

then

max L) ’ (2~3~2-2)

or

X, = J 2K, - %) (2.3.2-3)

ax
will define the switching point. Once the control mode is
switched to washout, a command signal is generated to bring
the motion base to the origin with acceleration level X o,
When the base reaches the origin, the system is able to
accept more inputs from the aircraft dynamics as produced by

the real-time computations.

2.3.3 Implementation Steps (On-line)

Note: A "washout flag" is a switch that transfers the
control system to work in washout mode when "True" and to

follower mode when "False".
Step(1).

Evaluate state measurements of the system. If ABS(x)<e,
then clear the washout flag. If x>x;, set the washout flag.
Here x is the translational displacement, x is the

translational velocity and Xp is the velocity limit (xL =

Vau(x - x)) .
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If the washout flag is set, go to step (2). Otherwise,

branch to the normal follower mode.
Step (2).

In the washout mode there are two regions of operation:

a) If the maximum displacement allowed is not reached,
the system is in the brake mode.

b) If the maximum displacement allowed is exceeded,

the system is approaching the steady-state position.
Step (Ra).
The reference (acceleration) input to the system is:

r=r o+ Kx-xy), [rl<a (2.3.3-1)
Step (2b).

If x>/20x - the system moves too fast towards the

origin, then
r=r + K(x - /2ax) (2.3.3-2)
Otherwise,

r= 1 + K(x - ) (2.3.3-3)
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Step 3.

An updated input r in the washout mode has been

established; use it as a reference input to the system.

The Direct Identification method and the Direct Gain-
Optimization method are known to offer the possibility of
nearly-optimal control systems.

The contributions made in this chapter are related to
the proposed algorithms. Integration intervals of the con-
trol algorithm (Section 2.1.2) and of the identification
algorithm (Section 2.2.1) are related to a fraction of the
update intervals. The updated values of gains and para-
meters are a function of previous results obtained during
the iteration process and the new results obtained in the
current iteration. The input to the system which is used
for gain optimization, is extrapolated forward in time,
using memorized data, rather than providing only a fixed

value.



CHAPTER III
APPLICATION MODEL STUDIES
3.0 General Considerations

Before a detailed analysis, synthesis and simulation of
the application system can be undertaken, it is important
that the system configuration and desired mode of operation
be understood. So that this research will produce quali-
tative conclusions concerning the advantages of the method,
the physical configuration and its dynamical characteristics
should be typical of those now in use. Similar consider-
ation should also be given to the hydraulic servomechanism
and the measured system variables used to control it.

This section is concerned with a description of the
selected one degree-of-freedom motion platform model, its
lumped-parameter representation and the desired performance
under controlled conditions.

For this investigation,a translational degree-of-
freedom motion platform is considered. A recommended oper-
ational envelope, (from Reference 1), is given in Figure 7.
This envelope is typical for the "heave axis" performance of
motion platforms currently in service.

The motion platform system should work in two modes of

operation: a follower mode and a washout mode. In the

36
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follower mode, the motion should follow the inputs from the
aircraft dynamics as computed in real time by the computer.
In case the platform measurements indicate that the physical
limit of travel may be exceeded, the platform switches to
the washout mode of operation. The latter mode is intro-
duced to generate an input to the system independent of
aircraft dynamics, in order to bring the platform to its
neutral position.

A block diagram of the proposed system is depicted in
Figure 8. Note that the aircraft dynamics model and the
pilot model which appear on the block diagram are for des-
criptive and completeness purposes only. No attempt is made
in this thesis to incorporate these models into the system
under investigation. Furthermore, only one control variable
is used, and it is assumed that complete state measurements

are available.

3.1 Principles of Flow Control for

Valve-operated Systems

Typically in hydraulic servo systems used in simula-
tors, flow is controlled by throttling the fluid with the
variable orifices of a control valve. If the flow rate
demand is within its capacity, the pumping system normally
acts as a source of substantially constant pressure.

The controlled flow rate is dependent on the pressure

drops across the valve orifices, the density of the fluid,
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the coefficients of discharge, and the orifice areas, and is
relatively independent of the fluid temperature.
The general relationship between controlled flow rate,

valve opening and pressure drop in a typical valve is:
q = Cda\/g v &P, (3.1-1)

where q is the flow through a given orifice, a is the ori-
fice area, AP is the pressure drop across the orifice,P is
the mass density of the fluid and Gd is the coefficient of
discharge.

The combination of four single orifices into the bridge
arrangement shown on Figure 9, permits the modulation of
fluid power to an actuator and load. The four variable
orifices are coupled mechanically, so that:

ay = a4 and a, = a

for a symmetrical valve,

3

= g
3max

a a a .
1max 2max jmax

for a valve with negligible overlap or underlap (i.e. "line
to line"),

if a, > 0, a, = 0 or if a3 > 0, a, = 0.

Therefore, the flow path must be either through aq the
Load and 2, or through a3, the Load and ase.

The volumes of fluid in the actuator chambers are V1
and V2. The volumetric flow rate into chamber 1 is Q1 the
flow rate out of chamber 2 is Q2, and the ram velocity is i.
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It is assumed that the pressure is uniform in each ram
chamber and that no leakage occurs from chamber to chamber
or past the piston rod.

The continuity equation applied to ram chamber 1 is:

d d
Q = oa ( ) = - ( A )
P = o tmess) = = thTy

(3.1-2)

P19 = P17 * A

Since the volume changes because of the ram motion, equation

(3.1-2) may be written as:

Q1 = + A.x (3.1-3)
From the definition of bulk modulus,

P1 P4

_P; = - (3.1-4)

When equation (3.1-3) and equation (3.1-4) are combined

Q1 = P _B+ A X (3-1"53.)

Q, = =Py == + AX (3.1-5b)



3.2 Specific Hardware Configuration Chosen

A specific and typical hardware configuration was
chosen to test the method. The actuator piston areas were
chosen to be the same on both sides of the piston in order

to simplify the model.

Other parameters chosen were:

43

Actuator Displacement: Xmax = £30.0 in.

Load Mass: Mo = 8.635 Lbf sec/in?
Supply Pressure: P, = 2000.0 1bf/in?

Fluid Bulk Modulus: =150000.0 lbf/in2
Servovalve: Moog #78-14X; rated for 40 GPM

at 1000 psi pressure drop, no

load, 40 ma.

3.2.1 Nonlinear Equations of Motion (Open Loop)

From the chosen valve specifications:
Q = 0.1217 I /B, [in’/sec] (3.2.1-1)
II' { 4Oma for saturation.

where Pv is the pressure drop across the valve,
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and Pm is the load pressure

PS is the supply pressure and I is the current input to the
torque motor.

For a symmetrical valve and equal areas actuator:

PS - P1 = P2 ; assumes Pe =0

Pv = 2(PS - P1) = 2P2

Q1 = 0.172 I /Ps - P1

Q2 = 0.172 I P2 (3.2.1=2)

Taking into account the effects of negative current and

back-pressure, equations (3.2.1-2) may be rewritten as:

P P I P P I
Q = O. 17210 2+ (=2 - P, ) -|] .sign[-2+(=2 - P, ) =]
2 2 1 2 2 | 1|
P P I P P I
Q, = 0.1721[| 2-(-£2 - P,) —I] .sign[-®-(=2 - P,) -]
2 2 21 2 2 |I|

(3.2.1-3)

From equations (3.1-5), the flow equations for the actuator:
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L ] V1 L]
Q, = P, a + AX
(3.2.1=-4)
A .
Q2 = -P2 3 + AX

Neglecting the load friction (the friction force is less
than 8 Lbf for moog Laminar actuators), the load equation

is:

P,A - P,A

MX (3.2.1-5)

The nonlinear equations of motion are obtained by combining
equations (3.2.1-4) and (3.2.1-5).

Two system variables can be defined as follows:

X, = X,
iz =1 (P4 - P,A]
M
- B
P, = v1[Q1 - AX,] (3.2.1-6)

d
|

8
2 = p [ + A%,]
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where Q, and Q, are defined in equation (3.2.1=3) and

<
]

1 A(Xmax + X)

3.2.2 Linearization of the equations of motion

The equations of motion of the model need to be linea-
rized in order to find the required initial controller gains
that will result in a stable system. The valve equations

(3.2.1-2) are:

Q, = 0.172 I JP_ - P
Q = 0.172 I VP,
2, 9,
Then AQ1 = SI— iAI + EP; IiAP1
4  8Q, = BQZ{ AT + 2% AP (3.2.2-1)
an QW = 3T |, aF, 1,72 2
I;
or AQ1 = 0.172 [ V(PS - P1)i AT - AP1]
2, - 7)),
I

and AQ2 = 0.172 [JZP25i AT

o
2V (Py) 4 ?
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Taking the specific cases where Ii = 0.1 x 40.0 = Lma and

P2 = (PS - P1) = 0.05 x 2000.0 = 100 psi, the linearized
i

valve equations are:

i

AQ
AQ

I

1 0.172 (10AI - O.2AP1)
(3.2.2-2)

5 0.172 (10AI + O.2AP2)

Using the given parameters and assuming V1 = V2 = 240 in3,
the linearized equations of motion of the open-loop system

are

.

AX = O.926(AP1 - APZ)

>
vl
1]

625 (A0, - 8AX) = 625(1.72AI-o.o345AP1-8Ai)
- 625(-AQ2+8Ai) - 625(-1.72AI-o.0345A92+8Ai)

>
g
N
l

]
>
P4

Substituting

1} 1}
g
E B
N
o
=]
o,
[}
Il
>
H

the resulting equations are

Bd o
|

L1 7 X

Xy - 0.926X; - 0.926X,

X, = -5000%, - 21.5625%, + 10750 (3.2.2-3)
X, = 5000%, - 21.5625%, - 10750
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In the standard state vector representation, the linearized

equations of motion are of the form
X = AX + BU (3.2.2-4)

In this example

-0.0 1.0 0.0 0.0 1
0.0 0.0 0.926 -0.926
A =
LO.O 5000.0 0.0 -21.5625
and

3.2.3 Calculation of Undamped Natural

Frequency of Actuator Mass System

The selection of integration step sizes for on-line
computation and system simulation is dependent to a large
extent on the undamped natural frequency of the actuator-
mass system. For the numerical values given above, the

spring constant is

k_ = 2pA%/V, = 2.150000.8%/240 = 80000 Lb/in



The undamped natural frequency of the system is

I
w,, = =
n m

or fn = 15.3 Hz, and the period is

= 96.2 rad/sec

1 1
T = = — = 0.065 sec.
T, 5.3

This result was used to select the integration step size for

off-line simulation (step size chosen was 0.001 sec.).

3.2.4 Calculations of Position Control Gains

for the Linearized Deterministic System

The excess pole specification method (14) and the com-
puter programs that were provided by C. W. Merriam III, were
used to calculate the control gains for the linearigzed de-
terministic system for this example. In order for the
system to operate as a low pass filter up to 100 rad/sec
(the undamped natural frequency of the open-loop system for
the case considered is 96.2 rad/sec.), an appropriate

closed-loop transfer function is

1

T.(8) = ——mm—
a*® T 10.019)°

then

49



P(s) = T,(s)”" = (1+0.01s)% = 1.0
+ 0.03s + 3.0x10 %82 + 1.0x1070s3,

so the P matrix is:

6

_ -4 -
P(i,1) = [1.0 0.03 3.0x10 1.0x10 1.

Using the A and B matrices from equation (3.2.2-4) and

selecting the H matrix (output: Y = HX) as
H= [1.0 0.0 0.0 0.0],

which means position control, the following gain

coefficients were obtained:
K = [502.228 10.4174 .1295058 -.1295058J
for the control law:

I=0=|Kl{r-x}.
3.3 Simulation Results: Deterministic System

In this section, the simulated responses of linear and
nonlinear deterministic systems are evaluated.
The purpose of these simulations was to determine

whether a controller developed using the linearized model,

50
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will produce a stable response of the nonlinear model under
investigation. If the response is stable, the gains calcu-
lated for the linearized deterministic system are suitable
to be initialized in the adaptive controller of the
nonlinear system.

Both systems were given the same one inch step input
and same position control law that was derived in the last

section.
1= [x]{=(t) - X(®)}, (3.3-1)

where {r} - the input vector

{X} - the state vector
and K| = L502.228 10.4174 .1295058 -.1295058J
is the gain matrix.
Figure 10 shows the simulated response of the linearized
model and Figure 11 shows the simulated response of the
nonlinear model. The initial conditions were identical for
the two simulations. The actuator position converged in
both simulations to one inch (the same as the step input)
and the control variable converged to zero. The other
states recorded, P1 and P2, are far from being identical due
to the differences between the linearized model and the
nonlinear model, but a stable response is shown for both

models.



4000E+02

- 4000€+02

2000E+04

- 2000E+04

2000E+04

- 2000E+04

3000E+01

- 3000£+01

52

\ Pz(ml)

\\-~T—r’_/—”':j__h“-~\r\\\\~§\— l ‘/’,.jjI-—-———~—T—_._‘____T_ l '

P](P'l)

X inch

T 1 T T

1 1 1 1 1 1 1

o TIME(sec)

Figure 10. Simulated Response of Linearized model
to 1" step input.
. (Deterministic System, constant gains)



4000€+02

- 40Q000E+02

2000E+04

2000E+04

2000E+04

~ 2000E+04

3000E+01

- 3000€+01

53

Figure 11.

Simulate Response of Nonlinear model

to 1" step input.

(Deterministic System, constant gains)

1
~~
\ ~ 1 (may
- 1
! ~
—l { \\“r | i I
Pz( psa)ﬂ_—_-
P M .
N ¥
~—
L 1 1 | 1
R —
b
Pl(psl)
\\,_____.t-—ﬁ_
A 1 1 I 1
J
X (inch)
/ * : T t
1 1 1 L A 1
01 2
TIME(sec) °
J



54

3.4 Adaptive Control Law Simulation

and Discussion

3.4.1 Simulation Program

A computer program was developed to simulate the iden-
tification, control synthesis and washout procedures dis-
cussed in Chapter II. The application model and proposed
control system were described in section 3.0 of this

chapter.

3.4.1.1 Program Description. The program includes a

main calling program and eight subroutines. This program
was written in the structured programming language Fortran
77. A flow chart description of the program is given in

Figure 12.

3.4.1.2 Program NLCONT. This is the main program used

to initialize parameters, to control timing and to store
interim results. The program calls the integration routine
(RK41) to simulate the "plant" response and calls the opti-
mization routine (QNDAV1) twice: (1) for parameters identi-

fication and (2) for gain coefficients calculations.

3.4.1.3 Subroutine RK41. The purpose of the subrou-

tine is to generate the input signal to the system, calcu-
late the control variable and integrate the nonlinear system
equations of motion. The input is generated for two modes:

the follower mode and the washout mode. Integration is done
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Figure 12. Simulation Program Flowchart.



56

using a fourth-order Runge-Kutta method. This subroutine is
called by the main program (NLCONT) and by the cost function
subroutines (FUNCT1, FUNCT2). The subroutines called by
RK41 are the system equations of motion: DERFUN1 - the esti-
mated model; DERFUN2 - the reference plant model.

3.4.1.4 Subroutine QNDAV1., The purpose of this sub-

routine is to calculate the minimum of a nonlinear function
of N variables and to establish the values of the variablgs
for the minimum point.

This program was written to implement the algorithm
suggested by W.C.Davidon (25), which is basically a quasi-
Newton method without line search. The subroutines called
by QNDAV1 are: FUNCT1 (identification cost function ),
FUNCT2 (control cost function) and GRAD1 (gradient

subroutine).

3.4.1.5 Subroutine GRAD1. The purpose of this sub-

routine is to calculate the gradient of a function of N
variables. The subroutines called by GRAD1 are: FUNCT1
(identification cost function) and FUNCT2 (control cost

function).

3.4.1.6 Subroutine FUNCT1. The purpose of this sub-

routine is to calculate the cost function in the parameter
identification process. The subroutine called by FUNCT1 is

the integration subroutine RKA41.



3.4.1.7 Subroutine FUNCT2. The purpose of this sub-

routine is to calculate the cost function for the control
synthesis process. The subroutine called by FUNCT2 is the

integration subroutine RKA41.

3¢4.1.8 Subroutine DERFUN1. The purpose of this

subroutine is to calculate the equations of motion of the

estimated model.

3.4.1.9 Subroutine DERFUN2. The purpose of this

subroutine is to calculate the equations of motion of the

reference plant model.

3.4.1.10 Subroutine LXYPLT. The purpose of this sub-

routine is to generate plots on the Printronix line printer

(at Burtek, Inc., Tulsa, OK.).

3.4.2 Simulation Results for the Adaptive

Control System

In this section, the simulated responses of the
adaptive control system are discussed and compared with the
dynamic characteristics of an existing motion platform.

An acceleration input was chosen for the simulation,
since it will transfer realistic cues to the pilot trainee.
If a position input were selected, the trainee would get a

cue which lags the acceleration of the aircraft by 180°.
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Two parameters were selected for identification: Servo
valve gain and bulk modulus of the hydraulic fluid. The

"plant" parameters were fixed as follows:

Valve gain = 0.172 [in4/sec-ma-Lbf%]

6

Bulk modulus = 0.15 [x10 Lbf/inz].

The values for the estimated model parameters were

initialized for all runs as follows:
Valve gain = 0.180
Bulk modulus = 0.140

The nonlinear system that was described in section 3.2
was tested by the adaptive control simulation program of

section 3.4.1 for three different time-dependent signal

inputs:
_ . . 2
r, = 22.0 sin3t [in/sec”]
r, = 120.0 sin10t [in/sec]
ry = 80.0% [in/sec?].

The system responses for the above inputs are given respec-
tively in Figure 13, Figure 14 and Figure 15.

The low frequency input (Figure 13) and high frequency
input (Figure 14) were selected from a typical simulator

operating envelope chart (Figure 7).
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Figure 15.

Ramp Input and Washout Process
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The ramp input (Figure 15) was selected to test the
washout algorithm. Figure 13 shows a good follow-up res-
ponse of the system to a low-frequency input. But, because
of the small amplitude of the input and the outputs, it is
hard to make any decisive evaluation of the response.

The results in Figure 14 show that for a high frequency
input, the phase lag and attenuation recorded became negli-
gible after a short time interval. This short time interval
(about one second) was needed to adapt the parameters of the
model to the system parameters and to adjust the gains. The
updates in the gains are noticed as minor discontinuities in
the control I and in the response X during the initial time
interval discussed above.

Figure 15 shows the response of the system to a ramp
input. After about 0.8 sec it was calculated that the
actuator limit may be exceeded, and the mode of operation
was switched to the washout mode. This mode is intended to
bring the motion platform to a neutral position (X=0), with
an acceleration (X) limit of 0.1g. During the movement of
the platform towards the neutral position, the input to the
gsystem is adjusted continuously, so that the platform will
not overshoot the neutral position. Figure 16 shows the
estimated values of the identified parameters as a function
of time as the simulation progresses. The system input was
120 sin10t [in/sec2] as shown in Figure 14. The parameters

estimated were: valve gain (nominal value = 0.172) and bulk
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modulus of the fluid (nominal value = 0.150 x 106).
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Figure 16. Parameter Estimation During Run Time
(Input r=120 sin10t [in/secz])

2

Q = [1.0, 1.0x107%, 1.0x10™%, 1.0x107%*]

The valve gain converged to the nominal value at about
0.5 sec. The estimated bulk modulus of the fluid did not
converge to the nominal value, but it reached a constant
value after about 0.7 seconds. This result indicates that

the system performance is not very sensitive to the value of
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the bulk modulus except near resonance. (The estimated bulk
modulus of the fluid converged to the nominal value in one
of the simulation runs, when instability was introduced into
the system).

Figure 17 shows the adjustment of the gains as they
occured during the computation for the high frequency input
(120 sin10t).

These adjustments occur automatically during the ini-
tial transient and settle to a nearly constant value after
1.5 seconds. The mode selected was acceleration (pressure)
control and the initial gains selected were arbitrary. If
the initial gains were selected by calculating the nominal
gains from the linearized model, the convergence of the
computed gains would be accelerated.

The gains displayed in Figure 17 were calculated for a
particular input. Thus, different inputs lead to different
gains.

Since identification and control synthesis depend upon
the ability to minimize a defined cost function, a quantita-
tive evaluation of the method can be made by investigating
the values of the cost function during the iteration pro-
cess. Table I gives the identification cost functions
calculated for each iteration. The identification cost
function is defined in section 2.2. The control cost func-
tion as defined in section 2.1 is given for each iteration

in Table II.
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TABLE I

RESULTANT ERROR FUNCTION OF IDENTIFICATION ALGORITHM.
(at 0.05 sec. update)

Iteration No. Function Value

1 .89 x 1074

11 x 1072

.979 x 10™7

2
3
4 .349 x 1077
5
6

.376 x 10_7

.357 x 10"/

Both tables are given for simulation results shown in
Figure 14. Both accepted points and rejected iteration
points were recorded in these tables. Table III is a re-
cording of the number of function evaluations and gradient
calculations performed during the system simulation. These
values are used to predict computation time needed for real
time execution (section 4.2).

The results of the above adaptive control law
simulation can be used to qualitatively evaluate the method

against a traditional design of similar systems.
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RESULTANT ERROR FUNCTION OF CONTROL ALGORITHM
(at 0.05 sec. update)

Iteration No.

Function

Value

1

O VW 0 I O vt~ W P

- A A A
w NN =

131
<127
.305
.309
.265
.668
«523
-849
.R78
<469
<217
.129
.109

X

X

X

10%
10°

10°

107

104

10?

102

107

10"

10°

10”1

10~

T

Figure 18 and 19 show experimental results for small

amplitude sinusoidal position inputs to an existing motion

platform actuator, employing constant feedback gains.

For an input frequency of 10 rad/sec, the phase lag of

the system with position, velocity and differential pressure

feedback (Figure 18) is above 55°, and the attenuation is

about -1.5 dB. For the system with only position and dif-



TABLE III

NUMBER OF FUNCTION AND GRADIENT EVALUATIONS DURING SIMULA-
TION (6 function calls allowed for identification
and 13 for control optimization).

Update Identification Control

Time

(sec) Function Gradient  Function Gradient

0.05 6 3 13 9
0.10 6 3 13 5
0.15 6 2 13 4
0.20 6 3 13 4
0.25 6 3 13 5
0.30 6 3 13 5
0.35 6 3 13 5
0.40 6 3 13 3
0.45 6 3 13 3
0.50 6 3 13 4
0.55 6 4 13 5
0.60 6 4 13 3
0.65 6 5 13 4
0.70 6 5 13 3
0.75 6 2 13 5
0.80 6 4 13 3
0.85 6 3 13 4
0.90 6 4 13 3
0.95 6 1 13 2
1.00 6 1 13 4
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ferential pressure feedback (Figure 19), the phase lag (the
same input) is 128° and the attenuation is -5.0 dB. The
experimental results will give other characteristics for
larger amplitude inputs since the system is highly
nonlinear.

The experimental frequency response curves of Figure 18
and 19 show degradation in performance for high frequency
inputs. By comparison, the results of the adaptive control
law simulation of Figure 14 (time domain response) shows no
degradation of the system for 10 rad/sec frequency input;
both attenuation and phase lag are negligible.

In Figure 20, the conventional method of adjusting
feedback gain values is depicted. The system is provided
with a position step input and the actuator differential
pressure output is recorded as a function of time. The
pressure feedback gain (which is dependent on a resistance
in the gain amplifier) is adjusted until the differential
pressure recorded shows fast decay with an acceptable level
of overshoot and no oscillations. This is a lengthy way to
get the correct gain values. Whenever more than one feed-
back gain needs to be adjusted, the number of tests needed
in order to adjust the system gains increase.

These gains will be satisfactory only for a limited envelope
and need to be rechecked and adjusted periodically because
of drift. On the other hand, using the method devised in

this thesis, the system gains are adjusted continuously by
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the algorithm, thereby taking care of the nonlinearities and

the drifts in system parameters.



CHAPTER IV
IMPLEMENTATION CONSIDERATIONS
4.0 GENERAL

Chapter III was concerned with the application of the
proposed method to on-line control of a one degree-of-
freedom motion platform. The control law was formulated,
and the model was derived and coded in Fortran Language.
Some tests were conducted and the system response was
simulated using off-iine aids like a nominal system model
and plots. By using the trajectories obtained from the sim-
ulation runs and conparisons with existing control methods,
controller performance was evaluated. The following sec-
tions are devoted to real-time implementation feasibility
studies, especially the memory requirements, run-time pre-

diction and expected noise.
4.1 Memory Requirements

Table IV shows the memory requirement for off-line pro-
gram execution. These object code requirements include both
program and data storage. The total memory requirement for
off-line simulation of programs and data (FORT77 Compiler)
on the SEL computer is 48K bytes.
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Davidon (25) reported that the nonlinear optimization
routine as programmed on a Wang 720 mini-computer, used less
than 672 bytes of memory for program storage. Since the
object code created by the SEL FORTRAN-77 Conpiler was 9072
bytes, then even if the data memory (20 parameter capabi-
lity, 5880 bytes) requirement is subtracted, there is still
a need for 3192 bytes of program memory. It is evident that
for real time execution, the code has to be changed, opti-

mized and written in assembler language.

TABLE IV
MEMORY REQUIREMENTS FOR OFF LINE PROGRAM EXECUTION

Program Function Object Code (Bytes)
NLCONT Main 1592
LXYPLT Plot graphs 3576
QNDAV1 Nonlinear function minimization 9072%
RK41 Integration 1048
FUNCT1 Identification cost function 176
FUNCT2 Control cost function 176
GRAD1 Numerical gradient 272
DERFUN1 '"Plant' model 536
DERFUN2 'Update' model 536

¥ QNDAV1 can handle up to 20 parameters
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Using Davidon's data for the storage requirement for
the minimization routine, it can be expected that for real-
time execution, the storage requirement for the application
discussed in this thesis is about 5K bytes of memory. This
storage requirement is very modest with respect to the capa-

city of most modern mini or micro computers.

4.2 On-Line Execution Time

The on-line execution time for the algorithm can be
determined by counting the total number of additions, multi-
plications, function evaluations and gradient evaluations
for a given iteration of the minimization routine and multi-
plying the operation count by a representative execution
time for these operations. The communication time between
the processor and the memory is ignored. This estimate,
however, is problem dependent.

The dominant time consumer in the minimization routine
is the function evaluation time which is called by the mini-
mization subroutine and by the gradient subroutine.

A function evaluation consists of integrating a set of
differential equations over a defined time interval and
computing a suitably defined error function. Thus, the
function evaluation time depends primarily on the numerical
integration method employed and the complexity of the dif-

ferential equations being employed.
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4.2.1 Number of Operations Per

Integration Step

Because of its extensive use in a wide variety of
areas, as well as its high degree of accuracy, the fourth-
order Runge-Kutta (RK4) integration method was used ex-
clusively to obtain the results presented in the previous
sections. For the run time estimation, three other inte-
gration methods were chosen for comparison: second-order
Runge-Kutta method (RK2), Adams-Bashforth second-order
predictor (AB2) and Adams-Moulton (Predictor-corrector)
fourth-order (AM4). A short review of these methods and the
selection of the integration step size are given in
Appendix B.

The following letters may be assigned to represent the
number of arithmetic operations:

n = the dimensionality of the system

A = additions/subtractions
M = multiplications/divisions
F = function evaluations.

For RK2 implementation, the total arithmetic operations

which must be carried out per step:

2F + (4A + 2M)n (4.2.1-1)

For RK4 implementation the number is

AN
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LF + (9A + 11M)n (4.2.1-2)
For the AB2 predictor the number is

1F + (24 + 3M)n (4.2.1-3)
and for the AM4 predictor the number is

2F + (8A + 11M)n (4e2.1-4)

Number of arithmetic operations for evaluating x = f(x) for

the example considered:

20M + 8A +2 square root evaluations
Each iteration of a square root can be regarded as 4M + 2A
evaluations. Considering only one square root iteration per
call, the total number of operations will be

F = 20M + 8A + (4M + 2A) = 24M +10A (4.2.1=5)

The number of operations required for a single integration

step is given in Table V for n = 4.
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TABLE V

NUMBER OF ARITHMETIC OPERATIONS NEEDED
PER SINGLE INTEGRATION STEP

Method Additions Multiplications Weighted operations
assuming tm = 2tA

RK4 76 140 356
AM/, 52 92 236
RK2 36 56 148
AB2 18 36 90

As reported earlier, the off-line tests of the proposed
algorithm employed the RK4 method because of its simplicity
in coding and its self start characteristics and not because
of its efficiency (see Table V). The Adams-Moulton formulas
have a significantly smaller truncation error than the
Adams-Bashforth formulas, for comparable order methods. For
example, the fourth-order Adams-Moulton formula has a
truncation error 0.076 times that of the fourth-order
Adams-Bashforth formula. This is the principal reason for
using the implicit formulas, although there are other
considerations.

The fourth-order Adams-Moulton formula has over twice

the truncation error of the Simpson method
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(Kpyq = Xyq * JIECE_got5 ) + 40(X;,8,)
Py tg) D
The reason for using the Adams-Moulton formula is that it
has much better stability properties than the Simpson rule.
Based on the above results and considerations, it 1is
concluded that for real time applications the integration
method used should be the AM4 or the AB2, and not the RK4 as

implemented for off-line studies.

4e2.2 Number of Arithmetic Operations

per Function Evaluation

Let L = number of steps of the integrations
I = number of operations per integration
P = number of parameters to be identified

Then the number (R) of operations per function evaluation

will be:
R = PL(3A + 2M) + LI (4.2.2-1)

Substituting some representative numbers and using the AM4

integration method:



P = 4 for control calculations

I = 52A + 92M
L =10
Then
R =4 x 10(3A + 2M) + 10(524 + 92M) = 640A + 1000M

2640 equivalent operations

For the AB2 integration method:

P =4

I = 18A + 36M

L=5

R =4 X 5(30 + 2M) + 5(18A + 36M) = 1504 + 220M

= 590 equivalent operations

4.2.3 Number of Arithmetic Operations

per Gradient Evaluation

Let G = number of operations needed for gradient evaluation

G = P.R (4.2.3-1)

Tables VI and VII summarize the number of operations needed

for function and gradient evaluation, assuming tm = 2tA.
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TABLE VI

NUMBER OF WEIGHTED OPERATIONS NEEDED FOR
FUNCTION AND GRADIENT EVALUATION
(5 steps of integration)

82

Integration Method

phase AM/ AB2
Identification Function: 1250 Function: 520
P =2 Gradient: 2500 Gradient: 1040
Control Function: 1320 Function: 590
P =14 Gradient: 5280 Gradient: 2360
TABLE VII
NUMBER OF WEIGHTED OPERATIONS NEEDED FOR
FUNCTION AND GRADIENT EVALUATION
(10 steps of integration)
Integration Method
phase AM4 AB2
Identification Function: 2500 Function: 1040
P=2 Gradient: 5000 Gradient: 2080
Control Function: 2640 Function: 1180
P =4 Gradient:10560 Gradient: 4270




4eR.4 Minimigation Program - Number of

Arithmetic Operations

The number of arithmetic operations for one iteration
of the minimization routine (excluding function and gradient
evaluation) are arranged in the order of the steps given in

Appendix A:

Step 1t P ( 1A + 4M) + 1A

Step 2: P°( 1A + 1M) + PM + 1M

Step 3: P?( 1A + 1M) + P(2M + 34) + 1M

Step 4: P ( 8A + 11M) + 7M + 1A

Step 5: P ( 2A + 4M) + A + 2M

Step 6: 56M + 26A

Step 7: P( 2M + 1A) + P(20M + 10A) + 3A + 3M

The total number of operations (less function and gradient

evaluation) needed per minimization iteration is given by
0 = PR(3A+4M) + P(24A+42M) + 324 + 70M (4.2.4-1)

using equation (4.2.4-1), the total operations for

identification (p=2) is

0, = 92A + 170M = 432 weighted operations

1

and the total operations for control evaluation (P=4) is

83
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O2 = 176A + 302M = 780 weighted operations

Assuming 6 calls for function and 3 calls for gradient eval-
uation during the identification process (from Table III),
the number of operations using AM4 (10 integration steps) is
given by

N, = 6 x 2500 + 3 x 5000 + 432 = 30,432

1

and the number of operations using AB2 integration method is

N, =6 x 1040 + 3 x 2080 + 432 = 12,912

1

Assuming 13 calls for function and 5 calls for gradient
evaluation during the control calculation process (from
Table III), the number of operations using AM/ (10 integ-

ration steps) is

N2 = 13 x 2640 + 5 x 10560 + 780 = 87,120

and using the ABR integration method

N2 =13 x 1180 + 5 x 4720 + 780 = 39,720

is obtained. Using the above values for N1 and N2, the

total number of operations using the AM4 method is



N1 + N2 = 30432 + 87120 = 117,552

and the total number of operations using the AB2 method is

N1 + N2 = 12912 + 39720 = 52632
Taking the instruction time as 0.30 Msec (z-8002 micro-
processor), one cycle of the combined identification and

control process will require an estimated execution time of

6
6

I
I

117552 x .3 x 10°

0.0353 sec. (AM4), or

H
]

52632 x .3 x 10~ 0.0158 sec. (AB2).

]

Since one iteration of the adaptive control optimization
(both identification and control) consumes about 0.035 sec.
(AM4) or 0.016 sec. (AB2), it appears that for the
application in this thesis, serial processing will be
adequate. The step size for the integration routine does
not play much of a role in the computational time, but it
should be truncation error dependent, as explained in
Appendix B. The truncation error limit should be no less
than the order of the measurement resolution in order to

conserve evaluation time.
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4Le2.5 Prediction of Timing

The motion platform hardware exhibits a natural fre-
quency of 4 HZ (Fig. 20). The correct values for the
integration step size should be determined by off-line simu-
lation employing a variable step method that depends upon
the truncation error. Assuming here that integration step
size is 1/25 of the natural period of the system to be

controlled:
n< 1xl =0.010 sec.
7 * 2%

The maximum frequency of input to the system (from air-
craft dynamics) is normally 2 HZ. Assuming an update of the
control law at a rate of 2 x 6 = 12 HZ, then the update time
is 1/12 = 0.080 sec.

This update time gives enough processor time to execute
the proposed algorithm with more than 507 spare time when
the AM/ integration method is used, or more than 807% when
the AB2 integration method is used. Since the integration
is executed during a fraction of the update time, the step
size may be reduced, and a less accurate but faster

integration method like the AB2 could be used.
4.3 Noise Expectation

A real nonlinear dynamic system and measurement model

may be represented by



x(t)
z(t)

flx(t),t] + B(t)w(t) (4.3-1)
hix(t),t] + v(t) (4.3-2)

where w(t) is an m-vector of process noise and v(t) is an r-
vector of measurement noise that corrupts the observation
z(t). TFew approaches are given in the literature for real-
time estimation where the noise processes w(t) and v(t) are
mutually independent zero-mean white noise processes.
Kaufman and Teavassos (20) suggested solving the above
problem using an optimal estimation method.

A feasibility study for real-time utilization of a con-
tinuous Kalman filter was given by Gaston and Rowland (17).
But, this method relies on the linearization of the model
around operating point and not directly on the nonlinear
equations of motion.

Sinaha and Kuszta (27) presented the regression method
used to select the parameters of the model Y, = fk) + Wy
such that Wk is a zero-mean white noise sequence of least-

possible variance. This latter method involves determining

the parameters that will minimize the mean-square error

N N
J = 11VZ <Yk-f<k>)2=vaWk2
k=1 k=1

This method is comparable to the direct estimation method

used in this thesis. Kauffman and Teavassos recommended the
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use of optimal estimation method in the presence of appre-
ciable noise but did not recommend limits for the validity
of the direct estimation method. It appears that the reason
for not recommending limits is that these limits are problem
dependent and the approach taken should be left at the
discretion of the system designer.

In order to predict whether noise might constitute a
problem for the application under study, an experiment was
conducted using existing simulator hardware. A position
step input command was given to one of the three actuators
controlling the C141 flight simulator motion platform and
the actuator pressure transient was recorded using a Gould
2400S thermal writing recorder. This test was repeated
several times and the response plots for the various tests
are compared in order to determine the presence of inde-
pendent noise input to the system.

Figure 21 is a diagram of the pressure measurement
circuits. Pressure transducers (sensitivity of 200mv/3000
psi) mounting in actuator chambers 1 and 2, transmit the
measurements via amplifiers (gain value of about 50). The

summer amplifier then gives the differential pressure (Test
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point A), and eliminates 60HZ and 400HZ noise corruption.
This signal is transferred via a high pass filter (1.1 HZ
break frequency) and amplified by a gain of about 3.0 (Test
point B).

The measurements from test point A and test point B are
given in Figure 22 for three ldentical step inputs to the
system. (More identical runs were done with the same re-
sults). The recorder chart speed was 100 mm/sec and the
full scale of the output was 5 volts.

Figure 23 is an enlargement (x4) of test point A re-
cordings for the three runs, and Figure 24 is an enlarge-
ment (x3) of test point B recordings. By comparing the
three runs, it can be observed that no appreciable random
error or nonrepeatability exists in these responses. All
three graphs are identical except for a small shift in run
no. 2. This shift can be explained by the deviation of the
starting point. The three axis motion platform by itself is
a nonlinear system. Thus a small change of the starting
point results in a different geometry and force balance.

There is also a small nonlinearity in the chart recorder.

Measurement error prediction

The following data were taken from the instrument

specifications:
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Pressure Transducer: (MOOG Model 131-117):

Natural Frequency: 40 KHZ
Rise Time (90% F.S.): 0.4 msec

Hysteresis: * .25% full scale
Repeatability: < 0.17%
Static error: < 0.25%

Displacement/Velocity Transducer

(Tempsonics Series DCTM)

Non-linearity: < 0.057%

Repeatability: < £0.02%

Tempsonics claims that 60 HZ or 400 HZ noise will be
rejected by the narrow band-width detector utilized in

the transducer.

Gould Chart Recorder (Model 2400S)

Rise time to 40mm: < 4 msec with 1% overshoot
Noise: 0.1 mm peak to peak
Attenuation: 0.99 (30 HZ)

0.98 (50 HZ)

0.9 (125 HZ)

0.707 (140HZ)
Chart speed: 100 * 0.25 mm/sec.
50 division per channel (1 mm/division)
Non-linearity: +0.35% full scale

Chart wander: t0.25 mm
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Actuator friction: 7.6 Lbf

(the equivalent value in differential pressure is

-6 - 0.916 psi)
8.295

Accumulating the Data above

(in terms of pressure variables):

Frequency response for chart recorder ~1.0 psid
Chart wander = *0.25 mm = 7.5 psid
Recorder nonlinearity(50mm ~1500psi) =

1500 x 0.35%Z = 5.25 psid

Pressure transducer repeatability 0.1%Z x 3000.0=3psid

Friction in actuator ~1 psid

The overall error expected for the chart recording:

e = /5.252 +7.5% + 3% + 1% + 1% = 9.73 psid

The overall error expected for the pressure measurement
alone:

o =y 3% +1% = 3.1 psid

The overall error expected in measuring the differential
pressure is 3.1 psid, plus the static error which may be as
large as 0.25% (7.5 psi). But since the identification
process needs only incremental values from the previous

measurement, such an error will not constitute a problem.



Furthermore, during large pressure transients, the pressure
may be changed by up to 60 psi per - 0.02 sec. integration

interval (see Figure 23).
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CHAPTER V

SUMMARY AND RECOMMENDATIONS

The purpose of this research was to develop a new syn-

thesis method for adaptive control of nonlinear dynamic

systems with application to a one-degree-of-freedom motion

simulator.

Digital computer capabilities along with existing

control theories and reported optimization algorithms were

integrated to develop a new approach to the solution of the

control problem for a broad class of systems where actuator

nonlinearities and dynamics dominate the system response.

It was demonstrated that for the class of systems

studied,
actuator
adaptive
formance

The

problems

the controller design is substantially different if
dynamics are included rather than ignored. The
control scheme leads to substantially improved per-
compared to the conventional "fixed gain" design.
method developed is especially useful for control

where the frequencies of the inputs to the system

are close to the natural frequencies of the system and a

multi-input multi-output configuration is required.

5.1 Summary

In section 1.1, the requirements of a motion platform
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were given. The important problem of producing the washout
motion needed to limit cues because of physical constraints
was defined. Another problem identified was that the servo-
actuator states were not employed in previous work (Ref. 2-
11) in the design of control systems for motion platforms.

The potential for the utilization of digital computers
in closed-loop electrohydraulic control systems was dis-
cussed in section 1.2. A conclusion was reached that a good
application of computers in such systems may be in adaptive
control. Methods of nonlinear control system synthesis were
discussed in brief in section 1.3, and the recommendation of
Kaufman and Teavassos of using direct gain optimization and
direct estimation algorithm was given.

Section 1.5 evaluated the need for the development of
an integrated, adaptive control scheme that includes the
dominant nonlinearities and actuator subsystem dynamics in
the plant model.

Methods and procedures used in the research to develop
the adaptive control scheme were discussed in chapter II.
The nonlinear identification and control algorithm developed
in this chapter utilized the nonlinear process equations
directly. The direct gain optimization and direct parameter
optimization procedure used the Q-N (no line search) minimi-
zation algorithm reported by Davidon (25). The washout

algorithm receives information (position,velocity), performs
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decisions (when to switch mode of operation) and the input
to the control system, based on the system response
prediction is calculated.

Chapter III was devoted to the application model study.
A general hardware configuration for a typical one degree-
of-freedom motion platform was established and the nonlinear
equations of motion were derived.

These equations were linearized about a steady-state
operating point, and linearized control law was developed
based upon the excess pole specification method (14). By
comparing response characteristics of the linearized versus
nonlinear model for the same control law, it was decided
that controller gains derived from the linearized system of
the case chosen are suitable to be initialized in the non-
linear adaptive controller.

The methods discussed in chapter II were employed to
develop an adaptive control law for the application example.
An off-line simulation program was written and executed on
SEL 32/27 minicomputer (at Burtek Inc., Tulsa, OK). Three
runs were made to test the response characteristics of the
control system to three different time-dependent inputs.

The first was low frequency acceleration input; the second
was high frequency acceleration input, and the third was
ramp input used to test the washout algorithm. The results
of the simulation were evaluated against a traditional

closed-loop electrohydraulic servo design. It was shown
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that the proposed method improves system performance in
terms of attenuation and phase lag for a wide spectrum of
inputs, subject to hardware constraints. It eliminates the
need for the trial-and-error process often used in tuning
control system gains during hardware integration and elimi-
nates the need for periodic adjustment of these gains due to
drifts. The inclusion of the actuator system dynamics in
the plant model and the development of an integrated control
law simplify the control synthesis: The acceleration
(force) control law was calculated directly from pressure
measurements.

The control law devised in this thesis is adaptive in
the sense that the control mode can be changed from a fol-
lower mode to a washout mode and vice versa automatically.
The use of a separate washout mode eliminates the need for
washout filters.

Implementation feasibility is discussed in chapter IV.
Computer memory requirements for the application chosen look
modest, about 5K-bytes of memory for on-line execution.
Sequential processing for a one degree-of-freedom motion
platform is possible. Execution estimates for the appli-
cation model under study using an add/subtract time of 0.3
microsec., 10 integration steps; was 0.035 sec (AM4 inte-
gration method) or 0.016 sec. (AB2 integration method).

In order to predict whether noise might constitute a

problem for the application under study, a test was conduc-
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ted using existing motion platform hardware (of a C141B
simulator), and no noticeable independent random noise was
recorded.

Simulations of the proposed algorithm were executed
using a data base word size of 32 bits. Since commercial
A/D and D/A converters have up to 16 bits resolution
(0.0015% accuracy), the data base word size for an on-line
execution should be chosen accordingly. It is also recom-
mended that the step size for on-line integration should be
based upon the truncation error that will be determined by
off-line simulation, employing a variable step size/variable
order integration routine. The truncation error permitted
by this selection should not be smaller than the accumulated
dynamic measurements error (problem dependent).

Another recommendation, based on the identification
results in Section 3.4.3 is that a "dither" signal input be
used to excite the system, not only to minimize valve
"stiction" effects, but to improve the identification pro-
cess for parameters that affect the spring constant of the

actuator (e.g., bulk modulus of the fluid).
5.2 Areas for Further Research
Areas recommended for future research are as follows:

1. Work is needed to define the acceptable limit of
noise (and related number of integration steps) for which

the method of this thesis can be used.
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2. A quantitative exit criterion is needed for the
optimization routine that will both suppress instability and
conserve execution time.

3. The application example studied in this thesis was
a one degree-of-freedom motion platform (one control, four
states). Motion platforms with multiple degree-of-freedom
have a multi input/multi output configuration. While the
modelling of such a system with actuator dynamics incor-
porated is no major problem, research is needed into the
parallel processing of the identification and control phases
for such a case, so that all computations can be performed
during run time.

It may be that the solution to such problems is the use
of a high-speed array processor. For example, the speci-
fications of the NUMERIX MARS 432 array processor include an
add or multiply time of 0.1 microsecond, a real/real vector
multiply time of 0.2 microsecond and a square root calcu-
lation time of 0.8 microseconds.

4. This research was conducted using the lumped para-
meter approach: This approach is justified when the servo-
valve is mounted on the actuator, and the connecting line
dynamics are negligible. An interesting area for research
is the control of a distributed parameter system. K.N.Reid
(28) discussed dynamic models of fluid transmission lines,
but work is needed in their application to control system

design.
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5. A feasibility study of implementation, cost and
reliability of the proposed design should be made prior to
hardware design.

It is hoped that this research will motivate future
research and design in the area covered by this thesis, and
will enhance the solution of control problems involving

systems which employ hydraulic actuation.
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APPENDIX A
ALGORITHM FOR UNCONSTRAINED MINIMIZATION

From the material discussed in Chapter II it is evident
that an efficient algorithm for minimization of a nonlinear
function, called the performance cost function must be em-
ployed. In the literature, the subject is discussed as non-
linear optimization or nonlinear programming.

The optimization problem will be of the form
minimize f(x), subject to xen where f,

is a real-valued function and o , the feasible set, is a
subset of E". For the completely unconstrained case,N = E".
Usually optimization problems have constraints, like
the differential constraints (; = f(x,t)) of the dynamic
system; however, some of the most powerful and convenient
methods of solving constrained problems involve the conver-

sion of the problem to one of unconstrained minimization.
A.1 Some Properties of a Minimum

The usual notion of a minimum is a point where a

function has its least value, i.e. x such that F(xm) < F(x)
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for all x.
For a function of an n variable x = (x1,x2,...,xn) with
continuous derivatives, the minimum will be a point where

oF
a—XT=O i=1,2,-..,1’1 (A.1—1)
1

A point satisfying the last equation is guaranteed to be a
relative minimum if the Hessian matrix of F is positive
definite (all eigenvalues are positive). The Hessian matrix

is defined:

P Fr *F |
3x, 2 oX &k, oX 3K
T=| ' (A.1-2)
! 1
] 1
Fr  Fr O*F
ax 8%, & &, axnz
L 3

Geometrically, this property indicates that the quadratic
function that approximates the original function at the
point has its minimum there. Consider the Taylor series

expansion of F about Xm up to quadratic terms:

N
oF
F(x) _ F(X) + ié(gx?)(m (x, - X,)
N N
+ é§—t 2::

(5XQ§§_) (X,-X ) (X=X ) (A.1-3)
j=1 i=1 1 !
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In matrix form this becomes:

F(x) ~ F(X) + (X - X )T YF(X)

T

+ (X - Xm) I, (X - Xm) (A.1=4)

The problem of relative minima is one of the most vexing in
optimum methodology. This is because most of the viable
methods can seek only a relative minimum and cannot converge

in the general case to the least minimum.
A.2 Gradient Methods for Minimization

A.2.1 The Gradient

Central to these methods is the concept of the gradient
of the function being minimized. This vector, denoted F,
lies in the direction of greatest rate of change of the
function and has that rate of change as its magnitude. The
gradient of the function F(X) is defined as

YF = G = ( §§ , %g e, §§ ) (A.2.1-1)

A.2.2 Line Search

Consider any vector Sq and the move prescription
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Then if o is considered a variable, the locus of X for a
range of values of &« is a straight line. Substitute this

formally in F(X).

F(o) (A.2.2-2)

Il

F(X) + F(Xq + ocsq)

Since F can be considered a function of o alone (Xq and S
are fixed). The value of & which minimizes F(o&) is denoted

o¥ and can be obtained by differentiating

dF

af _ 5 (A.2.2-3)
dou

subject to
2
d“F (o)
— > 0 (A.2.2-4)
do =0

This process is called a line search and usually is done by

quadratic or cubic interpolation.

A.2.3 Gradient Algorithms

The procedure for function minimization by gradient
methods is described in the flowchart of Figure 25. A few

of the methods are given below.



START

v

INITIALIZE
X, s

SELECT o™

TO MINIMIZE
F(X+&S$)

:

X-c-Xd-drS

TRUE

CONVERGENCE

COMPUTE
NEW §

Figure 25.

TERMINATE

Gradient Algorithm Flow Chart.
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A.2.3.1 DNewton's Procedures. Expanding the value of F

by Taylor series expansion up to the quadratic term
T T
F = F(X + VF X- +3 (X-X X-X A.2.3.1-1
(x) ( q) VF, ( Xq) 3 ( q) Jq( Cl) ( 3 )

Where Jq is the matrix of second partial derivatives of F

evaluated at Xq. If ?q(X) is an approximation to the

minimum of F(X), then X should satisfy the vector equation

%S
|
]

VF +J (X=X ) =0
q q q
or

JX=JX -YF A.2.3.1-2
a q ( 3 )

VF (A.2.3.1-3)

Since F usually is not quadratic in X, the process can be

improved by selecting

s =g "1

A.2.3.1-
qVFq (A.2.3.1-4)

and producing a line search to get
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q+1
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= - ot 3.1~
xq ok 8 (A.2.3.1-5)

A.2.3.2 Davidon-Fletcher-Powell Method. (a quasi-

1

Newton method). In this method the local Hessian Jq- is

replaced by an approximate metric Hq. This substitution

eliminates the need for evaluating second derivatives and

performing matrix inversions.

Algorithm:

1.

Start with XO and HO =1
set SO = —HOVFO
¥*
Compute Xq+1 = Xq + aq(sq
h ¥ minimizes F(X + oS ).
where oy ( q q)
C te H =H +M + XN
OmPULE 41 T g T Vg T g
where
Y =G - G =9VF(X - VF(X
qQ gt q ( q+1) ( q)
s sf
M = g*
qa - %q S%Y
q q
T
HY HY
oo T (BT)
q Y ' Y
qa qag
Compute Sq+1 = —Hq+1Gq+1

and repeat from step 2.

A.2.3.3 Davidon's optimization algorithm (without line
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search). A representation of the algorithm was given by

Davidon (Ref 25). M. J. D. Powell' has written: "Numerical
experiments with Davidon's algorithm indicate that it may be
the best numerical method for calculating the least value of

a differentiable function of several variables".

Algorithm
Start evaluate f(x), g(x)
. = = = T —
set: Xy =X f,=f ky=J¢g w=k,

. T
1. Define s = -ky, £, = ky's, A= 2

If Afo > —f'o go to step 2.
If not, set s = =S4 fo/f'O

and f'o = -Afo
2. Set X = XO + JS
If -f'o < € stop. If not evaluate f(X).
If £ < fo go to step 3
If not set S = S/2, f'o = f'0/2, A= 0.5

and repeat this step.

3. Evaluate g(x). Set k = JTg, £1 = kg
= f' - = - = = = 1 =f1!
b0 f f'o, m s+kO k,XO X,fo f,ko k,f 0 f
If bo 2 €go to step 4
If not, set S = SA , fo'= fO'A and return to
step 2.

1Powell, M. J. D. 1977. Quadratic Termination Properties
of Davidon's New Variable Metric Algorithm. Math Program-
ming 12, pp. 141-=-147.



Aa .

6a.

Define m2 = me

2

If m“ <€ return to step 1

Else, define: V = st,}L=\>-m2, u = w-mmTw/m2

2T

If 106(mTu)2 < m™u"u go to step 4a, else,

set n = m x 1 null vector, n2 = 0 and go to step 5

set n=uuTs/uTu, n?= (uTs)z/uTu

2

Set b = n® + ,u.v/m2

if b > € go to step 6

2

Else n = s-mv/mz, n~ = bO - Pv/mz, b=5>»

0
If pv< n°n? go to step 6ba

Else set: Y =0, A= (V/p)é and go to step 7

2.2
Seta=b-}*, C=b+\),'Y=/l —N.\)/mn
ab

and A= /c/a
If ¢ > a go to step 7, else, set¥Y= -Y

Set: A=V + pa+ m2n2Y

P = m(A—nzV) + nYV
a = m(1+n®y) /0 - nYu/x
w o= mn2(1 +Yuv/oe ) - n(1+A) pv/o

_ T _ T
ko = ko + pq ko, J = J+Jqp

If n2 > 0 return to step 1. If not, set w = kO

and return to step 1

116



APPENDIX B

NUMERICAL INTEGRATION METHODS
USED IN SECTION 5.2

B.1 Runge-Kutta Methods

Integration methods may be classified as either single-
step or multi-step methods. One important group of single-
step algorithms are the Runge-Kutta (RK) methods. For
differential equations of the form dx/dt = f(x,t), RK me-
thods require the evaluation of f(x,t) at two, three and
four values of t on the interval ti £t X< ti+1 for second,

third and fourth order approximations, respectively.

B.1.1 Second-order Runge-Kutta method

X.  =X. + E(mo +m) (B.1.1-1)
2

where h is the step size and

mg f(xi,ti)

o4

f(xi + mgh, ti+1) (B.1.1=2)

The expression for m, in equation (B.1.1-2) uses a predicted
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value of x at the end point of the interval. The corrector
equation (B.1.1-1) utilizes the average between the initial
slope (mo) and a predicted slope (m1) for proceeding over

the entire interval.

B.1.2 Fourth-order Runge-Kutta method (RK4)

_ h
Xipq = X 4 g(mO + 2m, + 2m, + m3) (B.1.2-1)
where,
my = f(xi,ti)
m_h
my = flx, + -2-, t, + )
2 2
m1h h
m, = flx, + === , t, + =) (B.1.2-2)
i i
2 2
my = f(xl + m2h , ti + h)

B.2 Multi-step Methods

Integration formulas which require information not only
at ti but also outside the integration interval under con-
sideration (ti,ti+1), are referred to as multi-step methods.
A disadvantage of these methods is the requirement for
additional information to start the procedure. However
these methods usually require considerably less computa-

tional time than single-step methods.



B.2.1 Adams-Bashforth second order

Predictor (AB2)

This multi-step method utilizes a single past slope:

- h,. : 5 .3 ..
Xipq = %5 + 503%; = x5 _4) + 35 b7 % (3)) (B.2.1-1)

B.2.2 Adams-Moulton (Predictor-corrector)

fourth order (AM4)

. . _ h . . .
Predictor:X;; = X; + 21(55Xi - 59x%5 4 * 37%; 5 - 9xi_3)
Corrector:Xi+1 = Xi + gz( : + 19;{i - 5;1_1 + ;1_2)

19 .55

- m5gh’x (Z ) (B.2.2-1)

B.3 Selecting the Step Size

for Integration

The step size for integration may be selected using a
predicted truncation error. This error is usually defined
as the difference between the predictor and corrector
formulas. This selection is method- and problem-dependent,
and needs to be evaluated for the specific application.
Kaufman and Teavassos (20) proposed the following procedure

for the predictor/corrector equations

h,
i P _ C C Y
141 -1 " 3 (85, P - 58Ty g HAEy 5 - £y )

(B.3.1)
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h,
,+ 2or, +191°,
24

i i-

(B.3.2)

The local truncation error associated with the Adams-Moulton

corrector is

d, , & ¥(t) - 1% = - 12-h5y(5)(51), EElt ,t,]

1) + 720
(B.3-3)

By definition the local truncation error associated with the

predictor is given by

P

d Y (t ) - Y 541

i+1,p & 141 (B.3-4)

Assuming

Y(t) = t°, t > 0.0 and Y' = £(y,t) = 5t%

and substituting into the predictor equation (B.3-2)

d = 232 nd 4(5) £,) (B.3-5)

i+1,p

Then, assumingz1 = 52 =5



_ P C
de1,p ~ 41,0 T Typq) = Ty + (F7; - T(1y))
= 2w v (3 (B.3-6)
Using these results
_ 19 C P
di,c - - m [Y i - Y i+1 + AY] (B-3-7)
where
Oy = Tlty,q) - X(ty)

Using the Schwartz and triangle inequality

a5 o < 30 - Pl 1841}

By approximating ISYI = h, lf[y(ti), t]l + IO(hiz)I,

19 { C _ 4P C _
then dy o & zr{|T° - Uiyl + ony 25, 4]} (B3-8)
The procedure that was advised by Kaufman and Teavassos was
to evaluate the predictor corrector equations, then to

estimate the local truncation error.
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_ 19 C P c}
Ye T oo {‘Y - Taal o+ omy e8] (8.3-9)
if d; > e max; replace hy «— hi/2
if di <€ min; replace hi «-hix2

else leave hi .

At present, the most popular predictor-corrector algorithms
control the truncation error by varying both the step size
and the order of the method; and all of these algorithms use

the Adams family of formulas.



APPENDIX C

LISTING OF SIMULATION TEST PROGRAM
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04a/11/84 16 57 22 TASK # 16000084 AMUS

$JOB B NLCNT2 AMOS SLOF=L NLCNT2
$OPTION 2 3 4 5

$FORT77

[

c

c

PROGRAM NLCONT

c

c

c THIS PROGRAM DEMONSTRATES NONLINEAR CONTROL SYSTEM SYNTHFSIS

c WITH APPLICATION TO ELECTRO HYDRAULIC SERVO SYSTEM

4

c

c SUBROUTINES CALLED RK41, GNDAV1 LXYPLT

c

[

c DEFINE LOCAL VARIABLES

c
REAL *4 REPSILON ' MINIMIZATION LIMIT
REAL*®4 RRKI(4) ' TEMPORARY VALUE FOR GAINS
REAL #4 RKFM(4) ! TEMPORARY VALUE FOR PARAMETERS
REAL %4 ENDTIME ' END TIME OF SIMULATION
INTEGER#*2 NS ' NUMBER OF VARIABLES FOR MINIMIZATION
INTEGER®*2 ITERI ' NO OF ITERATION FOR IDENTIFIC
INTEGER#®*2 ITERC ' NO OF ITERATIONS FOR CONTRO
INTEGER#2 NITER ' MAX ITERATION FOR MINIMIZAUION
LOGICAL *1 LPRINT ' PRINT FLAG(MINIMIZATION)
LOGICAL#1 LSYS ' FOR SYSTEM IDENTIF/CONTROL
LOGICAL *1 LBUG ' FOR DEBUG ONLY
LOGICAL #1 COM(63)

c

c

c DEFINE COMMONS

c
COMMON/GN/REPSILON NITER LPRINT LSYS

c

c

INCLUDE C CONTRZ
INCLUDE C DERF2

C

c

C

Can * e R e s R e ]

c

C INITIALIZATION

C

1000 FORMAT (65A1)

1001 FORMAT (4X. 63A1)
1002 FORMAT (4F18 10)
1003 FORMAT (4110)

1004 FORMAT(4X 4F18 10)
1005 FORMAT( 1 )

WRITE(1 1005)

0001
0002
0003
0004
0005
000&
0007
0008
0009
0010
0011
0012
0013
0014
0013
[e]o3 V-]
0017
Qo118
0019
0020
0021
0022
0023
0024
0023
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
003&
0037
00138
0039
Q040
0041
0042
0043
0044
00435
0046
0047
0048
0049
0050
0051
0032
0053
0034
00535
0036

GOULD S E L MPX-3.

000
000
000
000
000
000
000
000
000
[e]e]o}
000
000
0oo
000
000
000
000
000
000
000
Qo0
000
000
000
000
000
000
000
[o]e]v]
Q00
Q00
000
Qoo
000
000
000
000
000
[6]0]0}
000
000
Qoo
000
[s1o]e}
000
000
Qoo
000
000
000
000
000
000
000
0o0Q
000

04s11/84 16 97 22 TASK # 16000084 AMOS

DO 1017 I=1 3
READ(5 1000)COM

1017 WRITE(1 1001)COM
READ(5 1003)N, ITERI ITERC
READ(3, 1002) ((FM(I J), I=1,N) J=1 N)
READ(3, 1002)(GM(1) I=1 N)
READ (3, 1Q02)BEGX, ENDX DELX ENDTIMF
READ(5 1002)(RREF(I) 1-1 N)
READ(S, 1002) (RK(1) I-1 N)
READ(S 1002)(Y(I), I=1 N)
READ(9 1002)(RGF1(I), I=1, N)
READ(5, 1002) (RGF2(1) I=1 N)
READ(S, 1002) (RFM(I) I=1 2)
LPRINT= FALSE
LBUG= FALSE '#aus#naussxFOR DBUG ONLY ######%s
WRITE(1 200)

200 FORMAT( O 10X, PLOT OF INPUT ACC OUT ACC PDSITIUN CONTROL
WRITE(1 210)BEGX ENDX DELX ENDTIME

210 FORMAT(5X START TIME= «F7 3,5X TIME INTERVAL= F7 3 5X,
X INTEGRATION STEP= F7 3 535X ‘END1IME- F7 3//)
c
CALL LXYPLT(4 20,200 , -200 200 200 1% 0 -15 0 430 -40
X RREF(35),Y(3) Y(1) RCONT O 03)
Cc
CALL GNDAV? ' INITIALIZE MACHINE EPSII ON
o
Y(3)=0 0 ' INITIALIZE REFERENCE INPUT
c
c
C B S e e e R e S R
C
C
10 CONTINUE ! START LOOP HERE
C
c STORE STATES AT START OF INTEGRATION INTERVAL
C
DO 20 I=1,N+1
STRTY(1)=Y(I)
20 CONTINUVE
C
[
c INTEGRATE THE NON-LINEAR EQUATIONS (PLANT) FROM BEGX TO ENDX
o} AND PLOT RESULTS
Cc
C LINEAR=TRUE FOR UPDATE MODEL, =FALSE FOR NONLINEAR PLANT
c
LINEAR= FALSE ' REAL PLANT
LPLOT= TRUE ! PLOT RESULTS
Cc
CALL RK41 ! INTEGRATION ROUTINE
Cc
LPLOT= FALSE ' SUPPRESS PLOT FOR CONTROL GENARATION
o}
C MR RRAEF RN AR R R R AN R AR AN RN AR AR R R RA A AN RD A RN AN AR R R A B AR
c

0097
oos8
0059
0060
0061

Q062
0063
0064

0065
0066
0047
[e107:33)
0069
0070
0071

0072
00/3
Q074
0075
0076
0077
0078
0079
0080
0081
oosz2
0083
0084
ooss
oo8s6
oo87
oosse
oo89
0090
0071

0092
0093
0094
0099
0096
0097
0078
0099
0100
0101

0102
0103
0104
0105
0106
0107
0108
0109
0110
o111t

0112

(OUILD S E L MPX

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
Q00
Qoo
000
000
000
000
000
000
000
000
000
000
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00Q
000
000
000
000
000
000
000
000
000
000
000

2L



04/11/84 16 37 22 TASK # 16000084 AMUS GOULD § F L mMPX-T 04/11/84 16 57 22 TASK # 16000084 AMOS GUUID S E L MPX-73

Cc 0113 000 C 0169 000
Cc 0114 000 C 0170 000
C STORE LAST VALUES OF STATES AND REFERENCES 01135 000 DO 42 J=1,NS 0171 Q00
C 0116 000 RFM(J)I=RKFM(J)+ 23% (RFM(J)-RKFM(J)) 0172 000
C 0117 000 42 CONT INUE 0174 000
RBEGX=BEGX o118 000 [ 0173 000
DELTA=ENDX-RBEGX 0119 000 C 0176 000

C 0120 000 c 0177 000
DO 30 I=1,N+1 0121 000 C RETURNFD VALUE WILL BE UPDATED MODEL 0178 000
ENDY(I)=Y(I) 0122 000 C 0179 000
RREFX(I)=RREF (1) 0123 000 C 0180 000

30 CONTINUE 0124 000 (R E s T R ey e R s e S A R e Q181 000
4 0123 000 [ 0182 000
[+ STORE STATES, REFERENCES LAST O 2#DELTA FOR IDENTIFICATION 0126 000 C 0183 000
4 0127 000 C CONTROL CALCULATION 0184 000
c 0128 000 C 0183 000
JL=JA 0129 000 c 0186 000

DO 50 I=1.N +1 0130 000 [ 0187 000

DO S0 JK=1,JL/S 0131 000 NITER=ITERC ' MAX NO OF ITERATIONS FOR CONTROL 0188 000

RYXACT (I, JK)=YX(I, JL=JL/S5+JK-1) 0132 000 C 0189 000

RREFC (I, JK)=RREFI (I, JL-JL/3+JK) 0133 000 C 0190 000

30 CONTINUE 0134 000 C OPTIMIZE CONTROL BASED ON UPDATED MODEL 0191 000
c 0135 000 [ (CALCULATE NEW GAINS) 0192 000
[ 0136 000 Cc 0193 000
4 EVALUATE FIRST, SECOND , THIRD ORDER DERIVATIVE 0137 000 LSYS= FALSE ' CONTROL FLAG 0194 000
c AT CONTROL POINT FOR REFERENCE INPUT EXTRAPOLATION 0138 000 C 0193 000
c 0139 000 C 0196 000
RTANG (1)=(RREFI(3, JL-2)-4 O#RREFI(3, JL-1)+3 O#RREFI(3,JL))/2 O 0140 000 DO 31 u=1,4 0197 000
RTANG(2)=RREFI (3, JL)-2 O#*RREFI(3, JL-1)+RREFI (3, UL-2) 0141 000 RRKI(J)=RK(J) 0198 000
RTANG(3)=RREFI (3, JL)-3 O#RREFI(3, JL-1)+3 O#RREF1(3, JL-2) 0142 000 31 CONTINUE 0199 000

X ~RREFI (3, JL-3) 0143 000 C 0200 000

c 0144 000 C 0201 000
c 0143 000 Cc 0202 000
C #usn a2l L2 * I IR R 0146 000 CALL GNDAV1 (RK, N) ¢ OPTIMIZATION SUBROUTINE 0203 000
C 0147 000 C 0204 000
c 0148 000 C 0209 000
c UPDATE SYSTEM PARAMETERS 0149 000 DO 32 J=1,N 0206 000
c 01350 000 RK(J)=RRKI(J)+ 19#(RK(J) —RRKI(J)) 0207 000
c RFM( )-VARIABLES THAT MINIMIZE ERROR FUNCTION 0131 000 32 CONTINUE 0208 000
C RFM(1)-BULK MOD-FLUID. RFM(2)-VALVE GAIN 0132 000 c 0209 000
c Q133 000 C RETURNED VALUES WILL BE OF UPDATED GAINS 0210 000
C 0134 000 [} 0211 000
REPSILON=0 1E-10 ' ACCURACY LIMIT 0133 000 C 0212 000

NS=2 ! NO OF VARIABLES FOR MINIMIZATION ROUTINE 0136 000 C 0213 000
NITER=ITERI ' MAX NO OF ITERATIONS FOR IDENTIFICATION 0137 000 (o} 0214 000
LPRINT= FALSE 0138 000 C #awn »* NN RN L 0213 000
LSYS= TRUE ' IDENTIFICATION FLAG 01399 000 c 0216 000

c 0160 000 C 0217 000
LINEAR= TRUE ' ADAPTIVE MODEL 0161 000 [ PREPARE FOR NEW CYCLE 0218 000

c 0162 000 C 0219 000
DO 41 J=1,NS 0163 000 BEGX=RBEGX+DELTA 0220 000
RKFM(J)=RFM(J) 0164 000 ENDX=BEGX+DELTA 0221 000

41 CONTINUE 0165 000 DO 40 I=1,N+1 0222 000
c 0166 000 Y(I)=ENDY (1) 0223 Q00
c 0167 000 RREF (I)=RREFX(I) 0224 000
CALL GNDAV1(RFM.NS) ' OPTIMIZATION SUBROUTINE 0168 000 40 CONT INVE 0225 000

Gzl



04s11/84 16 97 22 TASK # 16000084 AMOS

IF(X LT ENDTIME)GO TO 10 ! ELSE STOP SIMULATION

PRINT VALUES OF GAINS, PARAMETERS AND REFERENCES
AT TERMINATION POINT

nonononon (2]

WRITE(1, 9201) (RK(I), I=1,4)
901 FORMAT(‘0”, 3X, ‘K= ‘', 4(E12 3, 3X))
WRITE(1, 902) (RFM(I), I=1,2)
902 FORMAT(SX, ‘RFM= ‘', 2(E12 3, 5X))
WRITE(1, 903) (RREFX(I), I=1,3)

203 FORMAT (39X, ‘RREFX= , S(E12 3, 5X))
C

sTOP

END

$Al LIB=HYDROLIB,.,U
$A1 DIR=HYDRODIR. .U
$CATALOG

Al 3=D CONT2

A2 1=5L0, 1000

A2 LP=SL0. 20000
BUILD R NLCN12

SEQJ

s

GOULD 8 E L MPX-C

0226
0227
o228
0229
0230
0231
0232
0233
0234
0239
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0230

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

9cl



04/11/84 16 58 34 TASK # 16000084 AMOS GOULD S E L MPX-3: 04/11/84 16 98 34 TASK # 16000084 AMOS GOULD S E L MPX-3:

$JOB B RK42 AMOS SLOF=L RKA42 0001 000 11=2%N 0057 000
$OPTION 2 3 4 S 0002 000 12=3*N 0058 000
$FORT77 0003 000 c 0059 000
c 0004 000 c 0060 000
C 0005 000 G340 930 306 00 330 3030030 30 306 30 30309634 96 9096 30 30 36 20 36 06 36 30 36 36 T8 38 30 38 06 96 36 020 8 38 3¢ 00&1 000
[4 0006 000 c 0062 000
c , 0007 000 c START LOOP HERE 0063 000
SUBROUTINE RKa1 oooa 000 c 0064 000

[ 0009 000 c 0065 000
c 0010 000 10 CONT INUE 0066 000
[4 0011 000 c 0067 000
[ 0012 000 IF( NOT LINEAR)THEN ' OPERATION IS ON PLAN1 MODEL 0068 000
c PURPOSE OF THE SUBROUTINE IS TO GENERATE INPUT SIGNAL TO THE 0013 000 c 0069 000
c SYSTEM , CALCULATE CONTROL AND INTEGRATE THE NON-LINEAR 0014 000 c 0070 000
[ EQUATIONS OF MOTION 0013 000 c CHECK PLANT MEASUREMENTS AND DETERMINF IF NFED TO 0071 000
c INPUT IS GENERATED FOR TWO MODES FOLLOWER MODE AND WASHOUT 0016 000 c SWITCH BETWEEN TWO MODES OF OPERATION 0072 000
c MODE  INTEGRATION IS DONE BY FORTH ORDER RUNGE-KUTTA METHOD 0017 000 c 0073 000
c THIS SUBROUTINE IS CALLED BY MAIN PROGRAM(NLCONT) AND BY 0018 000 c 0074 000
c THE INDEX FUNCTION SUBROUTINES(FUNCT1, FUNCT2) 0019 000 c 0073 000
c SUBROUTINES CALLED BY RK41 ARE THE SYSTEM EGNS OF MOTION 0020 000 IF(ABS(Y(1)) LT O 2)THEN 0076 000
c SUBROUTINES-DERFUN1 FOR UPDATE MODEL., DERFUN2 FOR PLANT MODEL 0021 000 LBRAKE= FALSE 0077 000
[ 0022 000 LREV= FALSE 0078 000
c 0023 000 ELSE IF((Y(2) GT O 0) AND (Y(1) GT O 0))THEN 0079 000
c 0024 000 RY1LIM=ABS(RXLIM- V(1)) 0080 000
c 0023 000 RY2LIM=SGRT(2 O#*38 O*RY1LIM) 0081 000
c NECLARE COMMONS 0026 000 IF(Y(2) GT RY2LIM)LBRAKF= TRUF 'WELOCITY EXCEEDS | IMIT 0082 000
c 0027 000 ELSE IF((Y(2) LT O O) AND (Y(1) LT O 0))THEN 0083 000
INCLUDE C CONTR2 0028 000 RY1LIM=ABS(RXLIM+Y(1)) 0084 000

c 0029 000 RY2L IM=SQRT (2 0#38 O#*RY1LIM) 0083 000
c DECLARE LOCALS 0030 000 IF(ABS(Y(2)) GT RY2L IM)LBRAKE= TRUE 'VELOC FXCEEDS L 1MI1 0086 000
C 0031 000 c 0087 000
REAL#4 RJA ' REAL (JA-1) 0032 000 c 0088 000

REAL#4 RXLIM t LIMIT FOR TRAVEL 0033 000 END IF 0089 000
REAL®*4 RY1LIM ' ABS (RXLIM-Y(1)) 0034 000 c 0090 000

REAL#4 RY2LIM ' VEL LIMIT FOR BRAKE 0033 000 c 0091 000

REAL®4  WK(16 ) ' WORK VECTOR 0036 000 RXR(JA) =X ' STORE GREED TIME 0092 000
INTEGER#*1 IFUN ' CONTROL FOR PLOT 0037 000 c 0093 000
INTEGER#2 IC ' CONTROL FOR PLOT SPACING 0038 000 c 0094 000
LOGICAL #1 LBRAKF ' BRAKE IN EFFECT FLAG 0039 000 c ## B INPUT SIGNAL GENERATION #3535 %% %% 0095 000
LOGICAL*1 LREV ' MOTION EXCEEDS LIMII 0040 000 c 0096 000
LOGICAL#1 LSYS ' IDFNTIFICATION FLAG 0041 000 C INPUT SIGNAL HERE WILL BE ACCELARATION 0097 000

c 0042 000 c 0098 000
c 0043 000 c 0099 000
COMMON/GN/LSYS 0044 000 c 0100 000

c 0045 000 c GENERATION OF INPUT SIGNAL IN BRAKE/WASHOUT MODE 0101 000
c 0046 000 c 0102 000
c 0047 000 c 0103 000
C INITIALIZATION 0048 000 ¢ 0104 000
c 0049 000 IF (LBRAKE ) THEN 0103 000
c 0050 000 RRR=-SIGN(38 0, Y(1)) 0106 000
c 0051 000 LREV=LREV OR (ABS(Y(1)) GE RXLIM) 0107 000
Ja=1 0032 000 [4 0108 000

1c=0 0053 000 IF (LREV) THEN 0109 000
RXLIM=10 O 0054 000 RY1LIM=ABS(Y(1)) 0110 000

IFUN =0 0035 000 RY2LIM-SQRT (2 0#38 O*RY1L.IM) 0111 000
X=BEGX 0056 000 c 0112 000

LTl



nan

o000
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04/11/84 16 58 34 TASK # 16000084 AMOS
IFC(Y(1)®Y(2) LT O 0) AND (ABS(Y(2)) GT O S#RY2LIM))THEN
IF(RREF(3)#RRR GT O O)THEN
RREF (3)=RREF (J)+ O3#SIGN(ABS(Y(2))-0 3#RYZLIM.,Y(1))
ELSE
RREF (3)=RREF (3)~ 02#(RRR+RREF(3))
END IF
ELSE
RREF (3)=RREF (3)+ O1#(RRR-RREF(3))
END IF
ELSE

RY1LIM=RXLIM-ABS(Y (1))
RY2LIM=SQRT(2 O#38 O*RY1LIM)

IF(RRR*RREF (3) LT O O)THEN
RREF (5)=RREF (5)—~ 10%*SIGN(ABS(Y(2))-RY2LIM. Y(1))
ELSE
RREF(5)=RREF(5)+ O1%(RRR-RREF (3))
END IF

END IF
ELSE

GENERATE INPUT SIGNAL FOR THE FOLLOWER MODE TO
SIMULATE INPUT FROM AIRCRAFT EQUATIONS OF MOTION

RREF (5)=120 O*SIN(10 OxX) ' HIGH FREQUENCY INPUT
RREF (5)=22 O#SIN(3 0#*X) ' LOW FREQUENCY INPUT
RREF (3)=80 O#X ' RAMP TO CHECK WASHOUT

END IF

ELSE IF(LSYS)THEN ot nt IDENTIF ICATION®® 5%t % %%

RREF (9)=RREFC (3, JA) ' FROM STORAGE

ELSE " u#skCONTROL REFERENCE®%#% %% %% %

EXTRAPOLATE SIGNAL INPUT FOR CONTROL CALCULATIONS

RuA=JA-1

RREF (9)=RREFX (3)+RTANG (1) #RJA+ 3% (RUA##2) #RTANG (2)
X + 166667%(RUA##3) *RTANG(3)

0113
o114
0113
o116
0117
o118
0119
0120
o121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
Q140
0141
0142
0143
0144
0143
0146
0147
o148
0149
0150
0131
01352
0193
0154
0133
0156
0137
o138
0159
0160
0161
0162
0163
0164
0163
0166
0167
0168

GOULD S E L MPX-3

000
000
000
000
coo
000
000
000
000
000
(e]e]0]
000
000
000
000
000
Qoo
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
ooo
000
000
000
ooo0
000
000
000
000
000
000
[elo]e}
000
000
000
000
000
000
Lelolo}
000
000
000
Q00
000

O0O0O0O00O = o0 anononnon (2]

O -
«

»

[sRsNsNesNeNoNeNeNe]

o0oon (2]

i

04/11/84 16 58 34 TASK # 16000084 AMOS

END IF ! SIGNAL INPUT ESTABL ISHED

NOW CONVERT ACCELERATION INPUT
TO PRESSURE VALUES

RREF (3)=1000 0+ 9*RREF(5)/ 926
RREF (4)=1000 O- S*RREF(3)/ 926

DO 11 I=1,N +1 ' RCORD REFERENCE ON GREED
RREFI (I, JA)=RREF (I)
CONTINUE

3333 I NI IS

RCONT=0 O ! CONTROL CALCULATIONS
DO 15 I=1,N

RCONT=RCONT+RK(I)#(RREF(I)-Y(I))

CONTINUE

IF(ABS(RCONT) GE 40 O)RCONT=SIGN(40 O RCONT)

L e e e e e g e * L2 * 4

INTEGRATION STARTS HERE

*#anitnar EVALUATE DERIVATIVE(V1)
IF (LINEAR)THEN
CALL DERFUN1(RCONT, N, Y, DY, RFM) ' UPDATED MODEL
ELSE
CALL DERFUN2(RCONT N, Y.,DY RFM) !
END IF

PLANT MODEL

DO 20 I=1,N

WK(I)=Y(I)+DELX#DY(I1)/2 OEOO
WK(I+N)=DY(I) ! STORE V1
CONTINUVE

X=X+DELX/2 0EQO
* » EumEAARRRRERRNR FVALUATE V2
IF (LINEAR ) THEN
CALL DERFUN1(RCONT, N, WK DY, RFM)
ELSE
CALL DERFUNZ(RCUNT,N WK, DY RFM)
END IF

0169
0170
0171
0172
0173
o174
0173
0176
0177
o178
0179
0180
o181
0182
o183
oi1ea
0185
o186
o187
0188
0189
0190
0191
0192
0193
0194
0193
0196
0197
o198
0199
0200
o201
0202
0203
0204
0203
0206
0207
0208
0209
0210
0211

0212
0213
0214
0215
0216
0217
0218
0219
0220
0221

0222
0223
0224

GOULD S E L MPX-3.

000
000
000
000
000
000
000
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
Qo0
000
000
000
000
000
000
000
000
000
[o]e]0]
000
Qoo
000
000
000
000
000
000
000
000
000
Qoo
000
000
000
000
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04/11/84 16 58 34 TASK # 16000084 AMOS

DO 30 I=1,N

WKCI)=Y(I)+DELX#DY(I)/2 OEOQ
WK(I+I1)=DY(I) ! S§TORE v2
CONT INUE

IR R R R AR RN R COMPUTE V3

IF (LINEAR)THEN
CALL DERFUN1(RCONT: N: WK, DY, RFM)
ELSE
CALL DERFUNR2(RCONT. N, WK, DY. RFM)
END IF
DO 40 I=1.,N
WKT)=Y(I)+DELX#DY(I)
WKOI+I2)=DY(I) ! STORE V3
CONTINUE

X=X+DELX/2 OEQO

SIS R AR RN RN ERR R COMPUTE V4
IF(LINEAR) THEN
CALL DERFUN1 (RCONT, N WK, DY, RFM)

ELSE
CALL DERFUNR2(RCONT, N, WK, DY, RFM)
END IF
COMPUTE Y(K+1) * » *

DO S0 I=1,N
Y(II =YD+ (WK(T+N}+2 OEQO*WK(I+I1)+2 OEQO*WK(I+12)
X +DY(I))*DELX/6 OEOO

CONTINUVE -
NEW VALUES FOR STATES WERE ESTABLISHED
IF(Y(3) LE 0 0)Y(3)=0 O
IF(Y(4) LE 0 O)Y(4)=0 0 ' LIMIT PRESSURES TO 0 PSI
Y(3)=DY(2) ' ACCELARATION OQUTPUT OF THE MASS
» (&L 22 2] 232 MM

PLOT RESULTS OF SIMULATION

GOULD § E L MPX-3

0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0243
0244
0247
0248
0249
0250
0251
0252
0253
02%4
0233
0236
0257
0258
Q259
0260
0261
0262
0263
Q264
02695
0266
0267
0268
0269
0270
0271
0272
0273
0274
0273
0276
0277
0278
0279
0280

000
000
000
000
000
[olo]0]
000
000
000
000
000
ooo
000
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
Qoo
000
[o]e]0]
ooo
000
000
000
000
[s]e]e]
000
000
000
Qoo
Qoo

04/11/84 16 38 34 TASK # 16000084 AMOS

IF (LPLOT) THEN
IF(IC EQG O)THEN
CALL LXYPLT(IFUN, 20,200 ,-200 ,200 ,-200 ,15 0.-15 O
X 40 0,-40 O,RREF(5),Y(3), Y(1),RCONT, 0 09)

IC=4

ELSE
IC=1C~1

END IF

END IF

BTN LA S 2 2 * LA 24

nnon

DO &40 1I=1,N+1 ! RECORD STATES VALUES
YX(I, JA)=Y(T)
&0 CONTINUE

IF(X LT ENDX)THEN ! INTEGRATION INTERVAL ~
JA=JA+1
GO 70 10

END IF

00

RETURN

END
$A1 LIB=HYDROLIB..U
$A1 DIR=HYDRODIR, ,U
SLIBED
$SEQU
%

GOULD S E L. MPX-3.

0281

o282
0283
0284
0283
0286
0287
o288
0289
0290
0291
0292
0293
0294
0293
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310

000
000
000
000
000
000
000
000
000
000
000
[e]e]e]
000
000
000
000
000
Qoo
000
000
000
000
000
000
000
000
000
000
00Q
000

621
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$JOB B GNDAV1 AMOS SLOF=L GNDAV1 0001 000 INTEGER®2 N ' #0OF VARIABLES 0057 000
SOPTION 2 3 4 5 0002 000 LOGICAL*1  LPRINT ¢ TO PRINT EVERY ITERATION 0058 Q00
SFORT77 0003 000 LOGICAL*1 LSYS 0059 000
c 0004 000 COMMON/GN/ REPSILON, NITER, LPRINT.LSYS 0060 000
c SUBROUTINE TO FIND MINIMUM OF NONLINEAR FUNCTION 00038 000 c 0061 000
€ OF N VARIABLES EMPLOYING QUASI-NEWTON METHOD OF 0006 000 c 0062 000
c W C DAVIDON(MATH PROGRAMMING, ?(1973)1-30) 0007 000 C 33 % %% % % * »* 0063 000
c WITHOUT LINE SEARCH 0008 000 c 0077 000
SUBROUTINE GNDAV1 (RVX,N) ' CONTROL VERSION 0009 000 [ T L R s e S S R S R SR e i S bl 0078 000

c 0010 000 c 0079 000
REAL*4 RMJ (20, 20) 0011 000 c INITIALIZATION 0080 000
REAL#4 RVX(20) 0012 000 C 0081 000
REAL#*4 RVX0(20) 0013 000 C FUNCTION VAL FOR START 0082 000

REAL #4 RF ' FUNCTION VALUE 0014 000 IF(LSYS) THEN 0083 000

REAL %4 RFO ' F(0) 0015 000 CALL FUNCT1(RF) ' IDENTIFICATION 0084 000
REAL#*#4 RVG(20) ' GRADIENT VECTOR 0016 000 ELSE 0083 000

REAL #4 RVKO(20) 0017 000 CALL FUNCTR2(RF) ' FFEDBACK 0086 000

REAL 4 RVW(20Q) 0018 000 END IF 0087 000

REAL %4 RVS(20) ' DIRECTION VECTOR 0019 000 Cc ooas 000
REAL*4 RFO1 0020 000 C J=C11] 0089 000
REAL*4 RLAMDA 0021 000 C 0090 000

REAL #4 REPSILON 0022 000 DO 50 I=1.N 0091 000
REAL®#4 RVK(20) 0023 000 DO 50 J=1.N 0092 000

REAL #4 RF1 0024 000 c 0093 000

REAL #4 RBO 0023 000 IF(I NE J)THEN 0094 000
REAL#*4 RVM(20) 0026 000 RMJ(I, J)=0 O 0095 000
REAL*4 RFM 0027 000 ELSE 0096 000

REAL #4 RFMU 0028 000 RMJ(I, J)=1 O 0097 000

REAL %4 RFNU 0029 000 END IF 0098 000
REAL#4 RVU(20) 0030 Q00 30 CONT INUE 0099 000

REAL #4 RVN(20) 0031 000 c 0100 000
REAL*4 RFN 0032 000 c 0101 000
REAL*4 RFB 0033 000 c GRADIENT 0102 000

REAL %4 RFGAMA 0034 000 c 0103 000

REAL %4 RFDELT 0035 000 CALL GRAD1 (RVX, N, RVG, ESP. LSYS) 0104 000
REAL#4 RFA 0036 000 C 0109 000
REAL®4 RFC 0037 000 C 0106 000
REAL®4 RMJUT (20, 20) 0038 000 RFO=RF 0107 000
REAL®4 RTMP 0039 000 C 0108 000
REAL*4 RFALFA 0040 000 DO 60 I=1.,N 0109 000

REAL »4 RVP (20) 0041 000 RVKO(I)=0 O 0110 000
REAL#4 RVQ(20) 0042 000 DO &0 J=1.N 0111 000
REAL#4 X 0043 000 RVKO(I)=RVKO(I)+RMJ (1. J) *RVG(J) 0112 000

REAL %4 B 0044 000 &0 CONTINUE 0113 000
REAL#4 ) 0045 000 C 0114 000

REAL %4 EPS ' MACHINE EPSILON 0046 000 c 0115 000
REAL*4 ESP ' SGRT(MACH EPS) 0047 000 DO 70 I=1.N 0t16 000
REAL#%*4 RMTU ' 10-6(MUY2 0048 000 RVXO(1)=RVX(I) 0117 000

REAL %4 RMUTU 0049 000 RVW(I)=RVKO(I) 0118 000

REAL #4 uTs 0050 000 70 CONT INVE 0119 000
REAL#4 uTuy 0051 000 c 0120 000

REAL %4 QTKO 0052 000 c PRINT STARTING VALUES 0121 000
REAL#*4 SMAK (20, 20) 0053 000 c Q122 000
REAL*4 D 0034 000 c WRITE(1,1010) 0123 000
INTEGER*2 X ' CURRENT ITERATION # 0055 000 co10 FORMAT (10X, ‘INITIAL X = ) 0124 000
INTEGER#2  NITER ' MAX # OF ITERATIONS 0054 000 [ WRITE(1, 1012) (RVX(I) I=1 N} 0129 000

ocl
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€012 FORMAT(4X, 4D18 10)
4 WRITE(1, 1013)RF

CO13 FORMAT(6X, INITIAL F VALUE = ‘,D18 10)
c WRITE(1, 1020)
€020 FORMAT(3X, ‘U-MATRIX. INITIALIZED = )
c WRITE(1,1012) ((RMJU(I J), J=1,N), I=1,N)
c
C INITIALIZE # OF ITERATIONS
c

IXx=0
c
CHurmNRE" » #* R Iy e e e e T e T e AT LS
c
[ STEP NO 1
C
1 CONT INUVE
c
c

RFO1=0 O

DO B0 I=1.N

RVS(1)=-RVKO(I)
RFO1=RFO1+RVKO(1)*RVS(1)

80 CONTINUE
c

RLAMDA=2 O
c

IF(4 O*RFO LT -RFO1)THEN

DO 90 I=1.N
RVS(I)=-RVS(I)#4 O®*RFQ/RFO1

90 CONTINUE
c

RFO1=—4 O®*RFO
END IF

CHRBRDARARRRARARRARRBR RN DN R R RN RO NIRRT RN RS RH AN RN AR AT RRRD NN

ONONAOND

STEP NO 2
CONTINVE
UPDATE X-VALUES

DO 100 1=1.N
RVX(I)=RVXO(I)

DO 100 JU=1,N

RVX(II=RVX(I)+RMJ(I, J)#RVS(J)

CONTINUVE

IF(-RFO1 LE REPSILON)GO TO 999 TOEX T R0 5 R

IF(IX GE NITER)GO TO 999
IX=IX+1

o126
o127
oiz28
0129
0130
0131
0132
0133
0134
0133
0136
0137
0138
0139
0140
o141
0142
0143
0144
0143
0146
0147
o148
0149
0130
0151
0132
0153
0154
0153
0156
0157
0158
0139
0160
0161
0162
0163
0164
0165
0166
0167
0148
0169
0170
0171
0172
0173
0174
0173
0176
0177
o178
o179
o180
0181

GOuLD S E L MPX-3

000
[s]e]0]
00Q
0oo
000
000
0ao
000
000
000
000
000
000
Qo0
000
000
000
000
ooo0
000
000
Qo0
000
ooo0
000
000
000
ooaQ
000
000
000
000
000
000
000
000
000
000
000
000
000
[ofe]0]
000
000
000
QoQ
000
[elo]e}
000
Qo0
000
000
000
[ale]e]
000
000

[sHaleNsNsNeNoKs] g 2NNz NesNe NN
3

o

120

CHRERRERBERRAR R AR AR AL RN AR N R RS R AR AR AT R NA AR AR RT R Y

nwecco

a0

121

125
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CALL FUNCT(RF RVX.N)
IF (LSYS)THEN

CALL FUNCT1(RF) ! IDENTIFICATION
ELSE

CALL FUNCT2(RF) ! FFEDBACK
END IF

PRINT NEW VALUES FOR ITERATION POINT

IF (LPRINT) THEN

WRITE(1,1030)1X,RF

FORMAT(//, 93X, ITERATION = , 13 3X, F=
WRITE(1 1060)

FORMAT(/ 393X, ‘X-VALUES= )

WRITE(1 1012)(RVX(1), I-1.N)

WRITE(1, 1070}

FORMAT(/, 93X, J-MTRIX = )
WRITE(1, 1012) ((RMU(I U) U~-1 N> I-1 N
END IF
IF (RF GE RFO)THEN

DO 120 I=1.,N

RVS(1)=0 3%RVS(I)

CONTINUE

RFO1=0 5%RFO1

RLAMDA=0 5

GO TO 2
END IF

S8TEP NO 3
CONTINUE
CALL GRAD1! (RVX, N:; RVG, ESP LSYS)
J-TRANSPOSE
DO 121 I=1.N
DO 121 J=1.N
RMJT (I, J)=RMJ(J, 1)
K-VECTOR
DO 123 I=1 N
RVK(I)=0 O
DO 123 J=1.N
RVA(I)=RVK (1) +RMJIT (1 J)*RVG( ))
CONTINUE

F

o182
0183
o184
0189
o186
o187
oi1e8
0189
0190
0191

0192
0193
oi94
0195
0196
0197
o198
0199
0200
0201
0202
0203
0204
0205
0206
0207
ozo08
0209
0210
o211
0212
0213
o214
0215
0214
0217
0218
0219
0220
o221
oz22
0223
0224
o225
0226
0227
0228
0229
0230
0231

0232
0233
0234
023%
0234
0217

GOULD S E L MPX-3

000
000
000
000
000
000
000
000
000
[e]e]0]
000
ooQ
000
000
[oJol0]
000
000
000
Q00
000
000
000
[oo]0]
000
000
000
000
000
[e]o]e]
ooo
000
Qo0
[o]e]0)
000
[7610]
Q00
[o]e]e]
Qo
Qoo
000
[ools]
000
oo¢
000
[o]e]e]
000
000
000
000
000
[olol3}
000
Qo0
000
000
000

Ll
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c 0238 000 DO 170 I=1,N 0294 000
RF1=0 O 0239 000 RTMP=RTMP+RVM(I)#RVW(I)/RFM 0295 000

DO 130 I=1.N 0240 000 170 CONTINUE 0296 000
RF1=RF1+RVK (1) #RVS(I) 0241 Q00 Cc 0297 000

130 CONTINUVE 0242 000 C 0298 000
c 0243 000 DO 180 I=1 N 0299 000
Cc ’ 0244 000 RVUCI ) =RVW(I)-RVM(I)*RTMP 0300 000
Cc B(O) 0245 000 180 CONT INVE 0301 000
Cc 0246 Q00 C 0302 000
RBO=RF1-RFO1 0247 000 Cc 0303 000

Cc 0248 000 RMTU=0 O 0304 000
' CALC M. X,KO 0249 000 RMUTU=0 0 0305 000

Cc 0250 000 C 03046 000
DO 140 I=1.,N 0251 000 DO 190 I=1 N 0307 000
RVM(I)=RVS(I)+RVKO(I)-RVK(I) 0252 000 RMTU=RMTU+RVM( L) *RVU(I) 0308 000
RVXO(I)=RVX(I) 0233 000 RMUTU=RMUTU+RVU (1) #RVU(1) 0309 000
RVKO(I)=RVK(I) 0254 000 190 CONTINUE 0310 000

140 CONTINUE 0235 000 C 0311 000
c 0236 000 RMTU=1 OEO&6®RMTU#%2 0312 000
Cc 0237 000 RMUTU=RFM#RMUTU 0313 000
RFO=RF 0258 000 [ 0314 000
RFO1=RF1 0239 000 c 0315 000

Cc 0260 000 IF(RMTU LT RMUTU)THEN ' CAlL VECTOR N STFP 4A 0316 000
IF(RBO LT REPSILON)THEN 0261 000 o} 0317 000

[ 0262 000 uTs=0 0 0318 000
DO 150 I=1,N 0263 000 UTU=0 O 0319 000
RVS(1)=RVS(I)*RLAMDA 0264 000 C 0320 000

130 CONTINUE 02639 000 DO 200 I=1,N 0321 00Q
RFO1=RFO1*RLAMDA 0266 000 UTS=UTS+RVU(T) #RVS(I) 0322 000

C0 70 2 0267 000 UTU=UTU+RVU (1) *RVU(I) 0323 000

END IF 0268 000 200 CONTINVE 0324 000

[ 0269 000 C 0323 000
(o2 2R e e R e e e e e e s s e R S R s gt 0270 000 DO 210 I=1.N 0326 000
c 0271 000 RVN(I)=RVU(I)®#UTS/UTU 0327 000
Cc STEP NO 4 0272 000 210 CONTINUE 0328 000
Cc 0273 000 C 0329 000
4 CONTINUVE 0274 000 RFN=UTS##2/UTU 0330 000
c 027% 000 c 0331 000
RFM=0 O 0276 000 ELSE 0332 000

DO 133 I=1.,N 0277 000 c 0333 000
RFM=RFM+RVM( 1) #RVM(I) 0278 000 DO 220 I=1.N 0334 000

139 CONT INUVE 0279 Q00 RVN(I)=0 0 0335 000
Cc 0280 00Q 220 CONTINUE 0336 000
IF(RFM LE REPSILON)GO TO 1 0281 000 RFN=0 O 0337 Qo0

Cc 0282 000 Cc 0338 000
RFMU=0 O 0283 000 END IF 0339 000

DO 160 I=1,N 0284 000 Cc 0340 000
RFMU=RFMU+RVM(I)#RVS (1) 028% 000 CHERARRIR RN R RN R RN RN R T RN H BN A F AR RRA NS AR D RN DA NS 0341 000

160 CONTINUE 0286 000 Cc 0342 000
c 0287 000 Cc STEP NO 9 0343 000
RFNU=RFMU-RFM o288 000 C 0344 000

c 0289 000 c 0343 000
c . 0290 000 S CONT INVE 0344 000
Cc cALC U 0291 000 C 0347 Q00
c 0292 000 RFB=RFN+RFNU#*RFMU/RFM 0348 000
RTMP=0 O 0293 000 Cc 0149 000

cel
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IF(RFB LT REPSILON)THEN
DO 230 I=1,N

RVN(I)=RVS(I)-RVM(I)#RFMU/RFM
RFN=RBO-RFNU*RFMU/RFM
RFB=RBO

END IF

[ T e e R e e T e RS

arnn0

(2]

c
c

STEP NO &
CONT INUE
IF (RFNU#RFMU LT RFM#RFN)THEN

RFA=RFB-RFNU
RFC=RFB+RFMU

RFGAMA= BGRT( (1 O-RFMU#RFNU/ (RFN#RFM))/ (RFA*RFB))

RFDELT= SQRT(RFC/RFA)

IF(RFC LT RFA)RFGAMA=-RF GAMA

ELSE

RFGAMA=0 O

RFDELT= SGRT(RFMU/RFNU)
END IF

(o3 R s s N e e e e RS S R a2

onon onon

aocon

onon

40

aonoaonNOn

STEP NO 7
RFALFA=RFMU+RFNU*RFDEL T+RFM#RFN#RF GAMA
P — VECTOR

DO 240 I=1,N
RVP(I)=RVM(1)*(RFDELT-RFN#RFGAMA)+RVN(I ) #RFGAMA®RFMU

G-VECTOR

RVG(I)=RVM(I)#(1 O+RFN*RFGAMA)/RFALFA
X —RVN(1)*RFGAMA*RFNU/RFALFA

W-VECTOR

RVW(I)=RVM(I)#RFN#(1 O+RFGAMA*RFNU*RFMU/RFALFA)
X ~RVN(I)#(1 O+RFDELT)*RFNU#RFMU/RFALFA

CONT INUE

UPDATE VECTOR K(0)

GOULD S E L

0350
0351
0332
0353
0354
0353
0356
0337
0338
0359
0360
0361
0362
0363
0364
0363
0366
0367
0368
0369
0370
0371
Q0372
0373
0374
0375
0376
0377
0378
0379
03s0
0381
0382
o383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0399
0376
0397
0398
0399
0400
0401
0402
0403
0404
0403

MP X- 3¢

000
000
000
000
000
ooo
000
000
000
ooc
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000'
000
000
000
000
000
000
000
000
000
000
000
000
000
000
oo
000
000
000
000
000
000
000
ooa
000
000
000
000
000
000
000
000
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o}
GQTKO=0 0O
DO 250 I=1,N
250 QTHO=QTKO+RVQ(I)#*RVKO(1)
C
DO 260 I=1 N
RVKO(I)=RVKO(I)+RVP (I)#QTKO
260 CONT INUF
C
C
c UPDATE J-MATRIX
C
DO 270 I=1 N
DO 270 J=1 N
SMGK (I J)=RVQ(I)#*RVP(J)
270 CONT INVE
C
C
DO 300 I=1.N
DD 300 u=1.N
D=RMJ(I. J)
DO 290 K=1 N
290 D=D+RMJ (I, KI*SMAK(K )
RMU(I, J)=D
300 CONT INUE
C
[
IF(RFN LE O ODO)THEN
C
DO 310 I=1,N
RVW(I)=RVKO(I)
310 CONTINUE
END IF
¢
GO T0 1 ' LOOP BACK——-——-~———
[
999 CONT INVE ORRERRRRNENNE EXTT MR A NN
c
c WRITE(1, 1100)IX, RF
o}
C100 FORMAT(/ 95X, ROUTINE TERMINATED ITER #= I3 3x F = D18 10)
Cc WRITE(1, 1060)
C WRITE(1, 1012) (RVX(I) I=1 N)
c
C
RETURN
ENTRY GNDAV2
C
C
[ FIND MACHINE EPSILON
C
C
X=1 0
10 X=X*0 5
A=1 0+X
B=A-1 O

0406
0407
0408
040%9
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0433
0436
0437
04738
04739
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0431
0451
0451
04351
0431
04351
0451
0451
04351
0451
0451

GOULD S E L MPX-3-

[oe]e]
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
[s]e]s}
000
000
000
000
000
[o]6]0)
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0Q0
010
020
030
040
050
060
070
080
070
100

gel
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IF(B NE 0 0)GO TO 10
EPS=X#2 0
ESP= SQGRT(EPS)

RETURN

END
$A1 LIB=HYDROLIB,.U
$A1 DIR=HYDRODIR,,U
SLIBED
SEOV
L 1]

TASK # 16000084

AMOS

GOULD S E L MPX-3t

0431
0431
0431
0431
0451
0432
0453
0454
0455
0456
0457

110
120
130
140
150
ooo
000
000
000
000
oao

el
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$JOB B FUNCT2 AMOS SLOF=L FUNCT2
SOPTION 2 3 4 5

SFORT?77
Cc
c
c FUNCT1-MINIMIZES ERROR TO ESTABLISH SYSTEM PARAMETERS
c FUNCT2-MINIMIZES ERROR TO ESTABLISH GAIN VALUES
c
c
[ Ty e R R RS R SR 2 Y
c
SUBROUTINE FUNCT1(RF)
c
Cc
INCLUDE C CONTR2
(4
REAL®*4 RF ' RETURNED VALULC OF FUNCTION
c
c
c
c

OO0

BEGX=RXR(JL-JL/35+1)
DO 5 I=1,N+1
Y(I)=RYXACT(I. 1)
CONTINUE
LPLOT= FALSE
CALL RKA41 Ioexnnunnn INTEGRATION ROUTINE®® #3388
RF=0 O
DO 10 I=1.N
DO 10 K=1, (VA-1)
RF=RF+RAF 1 (I #(YX (I, K)-RYXACT (I, K+1)) *%2
CONTINUE

RETURN
END

(L r s e e S SES 2SR SRR RSS2SR 2R S22 2 R0t

o0 o0 o 00
(2}

(5]

ou

SUBROUTINE FUNCT2(RF)
INCLUDE C CONTR2
LOCALS

REAL#4 RF ' RETURNFD VALUF OF FUNCTION
BEGX=RBEGX+DELTA

ENDX=BEGX+0 2#DELTA
DO 5 I=1.N+1

YC(I)=ENDY(I)
CONTINUE

LPLOT= FALSE

GOULD S E L MPX-3¢

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0013
o016
0017
0019
0019
0019
0019
0020
0021
0022
0023
0024
0023
Q026
0027
oozs
0029
0030
0030
0030
0030
0031
0032
00433
0034
0033
0063
0064
0063
0066
0067
0068
0o70
0071
0072
0073
0074
007%
0076
0077
0078
0080

000
000
000
0oo
000
Q00
000
000
0o0Q
000
000
Q00
oao
000
000
000
000
000
100
200
300
000
000
000
ooQ
000
000
000
000
000
ooo
000
100
200
300
000
0oo
000
000
[e]e]0]
000
000
ooo
000
000
000
000
000
000
000
Qoo
000
000
000
000
000
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CALL RKA41
C
RF=Q O
DO 10 I=1,N
DO 10 K=1,JA
C
RF=RF+RAF2(I)# (YX (1 K)-RREFI(I,K))##»2
10 CONT INUE
c
C
C
RETURN
END

$A1 LIB=HYDROLIB..U
$A1 DIR=HYDRODIR. .U
$LIBED

$EOJ

%

AMDS

GOULD S E L MPX-3.

Qo081
oos2
0083
o084
0085
o086
o087
ooes
ooes
ooss
oosa
0089
0090
0091
0092
0093
0094
0099

000
000
000
000
000
000
000
0ao
100
200
300
ooo
000
000
000
000
000
000

qel
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$JOB B DERFN2 AMOS SLOF=L DERFN2 0001 000 RSIGN1=SIGN(1 O, RCONT) ‘* EIGN OF CONTROL VARIABLE 0037 000
$OPTION 2 3 4 9 0002 000 RSQ1=RPS*0 5+(0 5#RPS-V(3))#RSIGN1 0038 000
SFORT77 0003 000 RSGA1=ABS (RSQ1) 0039 000
c 0004 000 RSQ@2=0 9#RPS-(0Q0 S#RPS-V(4))*RSIGN1 0060 000
c 0005 000 RSQA2=ABS (RSQ2) 0061 000
c TWO SUBROUTINES USED TO CALCULATE THE NONLINEAR STATE 0006 000 Cc 0062 000
[+ EQUATIONS OF MOTION FOR ONE-DEGREE-OF-FREEDOM MOTION 0007 000 o} 0063 000
C SIMULATOR SUBROUTINE DERFUNZ2-‘PLANT ‘MODEL, 0008 000 [ FLOW TO PORT #1 OF ACTUATOR 0064 000
Cc SUBROUTINE DERFUN1-UPDATE MODEL 0009 000 C 0065 000
c 0010 000 [+ 0066 000
c 0011 Q00 IF(RSQA1 NE O O)THEN 00&7 000
c 0012 000 RQ@1=0 172#RCONT#SGRT(RSGA1)#SIGN(1 O RSQ1) 0068 000
c e T e e e ey 0013 000 ELSE 0069 000
c 0014 000 RG1=0 O 0070 000
c 0013 000 END IF 0071 000
SUBROUTINE DERFUNZ(RCONT. N,V DV, RFM) ' ‘PLANT‘ MODEFL 0016 000 C 0072 000

c 0017 000 C 0073 000
c o018 000 [ FLOW TO PORT #2 OF ACTUATOR 0074 000
c 0019 000 c 0073 000
c 0020 000 c 0076 000
c DECLARE LOCALS 0021 000 IF(RSQA2 NE O O)THEN 0077 000
c 0022 000 RQ2=0 172#RCONT*SQRT(RSQA2)I*SIGN(1 0 RSQ) 0078 000
INTEGER®2 N ' NUMBER OF STAlES 0023 000 ELSE 0079 000

REAL*®4 RFM(2) ' PARAMETERS 0024 000 R@2=0 O 0080 000

REAL+#4 RCONT ! CONTROL VARIABLE MA 0025 000 END IF 0081 000

REAL*4 V4 ' STATE VARIABLES 0026 000 C 0082 000

REAL*4 DvV(a) ' STATE EQUATION 0027 000 C 0083 000

REAL#4 BETA ' BULK MODULUS OF FLUID 0028 000 [ 00B4a 000

REAL#4 XMAX ' MAX PISTON TRAVEL 0029 000 C 008% 000

REAL®4 A1l ! AREA #1, SQ INCH 0030 000 C STATE EQUATIONS 3343 33 5203 330 30 30 3 0086 000

REAL®#4 A2 ' AREA #2 SQG INCH 0031 000 Cc 0087 000

REAL*4 RMASS ' MASS, LB-SEC 2/INCH 0032 000 C o088 000

REAL#®#4 VOL1 ' #1 VOLUME,CU INCH 0033 000 DV(1)=v(2) 0089 000

REAL#4 VvOL2 ! #2 VOLUME CU INCH 0034 000 DV(2)=(1 O/RMASS)#(V(3)*A1-V(4)#A2) ' LDOAD EGN 0090 000

REAL®#4 RG1 ! #1 PORT FLOW,CU IN/SEC 0035 000 DV(3)=(BETA/VOL1)#(RQA1-A1#V(2)) 'R 0091 000

REAL#*4 RQG2 ' #2 PORT FLOW,CU IN/SEC 0036 000 DV(4)=(BETA/VOL2)#(-RQA2+A2#V(2)) P 0092 000

REAL#4 RPS ' SUPPLY PRESSURE, PSI 0037 000 C 0093 000

c 0038 000 [ 0094 000
c 0039 000 Cc 0095 000
c 0040 000 RETURN 00946 000
BETA=1 SEO03 0041 000 END 0097 000
XMAX=30 0 0042 000 C 0098 000

A1=8 O 0043 000 c 0099 000

AZ=8 0 0044 000 C  #uxps L et . EE TR E RS 0100 000
RMASS=8 634 0043 000 c 0101 000
RPS=2000 0O Q046 000 C 0102 000

c 0047 000 Cc 0103 000
[S2 2222222 0048 000 [ 0104 000
c 0049 000 C 0105 000
c 0050 000 SUBROUTINE DERFUN1(RCONT N,V DV RFM) ' UPDATED MODFL 0106 000
c 0031 000 [+ 0107 000
VOL1=A1%(XMAX+V (1)) ' VOLUME #1 OF ACTUATOR 0032 000 c 0108 000
voL2=A2%* ( XMAX-V(1)) ' VOLUME #2 OF ACTUATOR 0093 000 C 0109 000

c 0054 000 c DECLARE LDCALS 0110 000
0053 000 c 0111 000

::: FLOW CALCULATIONS 0056 000 INTEGER#2 N ! NUMBER OF STATES 0112 000
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c
c
c

onNnoOnn

o000

RSQ1=RPS#0 3+(0 I*RPS-V(3))*RSIGNIL
RSGA1=ABS (RSQ1)
RSQ@2=0 S5*RPS-(0 5#RPS-V(4))#RSIGN1
RSQA2=ABS (RSGQ2)

FLOW TO PORT #1 OF ACTUATOR

IF(RSGA1 NE O 0)THEN

RQA1=RFM(2)#RCONTH¥SQRT (RSAA1)#51GN(1 O RSQ1)
ELSE

RQ1=0 O

END IF

FLOW TO PORT #2 0OF ACTUATOR

IF(RSGA2 NE O O)THEN

RQ2=RFM(2)#RCONT#SQRT (RSQA2)*SIGN(1 0 RSG2)
ELSE

RG@2=0 O

04/11/84 17 00 35 TASK # 16000084 AMOS
REAL *4 RFM(2) ' STATE EG PARAMETERS
REAL*4 RCONT ! CONTROL VARIABLE, MA
REAL#4 va) ' STATE VARIABLES
REAL#4 DV(4) ! STATE EGQUATION
REAL*4  XMAX ' MAX PISTON TRAVEL
REAL®*4 A1 ' AREA #1, 6Q INCH
REAL#4 A2 ' AREA #2. SQ INCH
REAL#*#4 RMASS ! MASS, LB-SEC 2/INCH
REAL*#4 VOL1 ' #1 VOLUME.CU INCH
REAL#4 vOL2 ' %2 VOLUME. CU INCH
REAL*4 RQ1 ' #1 PORT FLOW,CU IN/SFC
REAL#*4 RG2 ' #2 PORT FLOW, CU IN/SEC
REAL#4 RPS ! SUPFLY PRESSURE, PSI
XMAX=30 0
Al1=8 0
A2=8 0
RMASS=8 634
RPS=2000 0
#* 5
VOL1=A1%(XMAX+V(1))

VOL2=A2* (XMAX-V (1))
FLOW CALCULATIONS
RSIGN1=SIGN(1 O,RCONT) ' SIGN OF CONTROL VARIADI F

GOULD S E L MPX-3

0113
0114
0113
o116
o117
o118
0119
0120
o121
0122
0123
0124
0125
0126
o127
o128
0129
0130
0131
0132
0133
0134
0135
0136
0137
o138
0139
0140
0141
0142
0143
0144
0143
0146
0147
0148
0149
0150
0151
0132
0133
0154
0193
0136
0137
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0oo
000
000
000
ooo
000
000
[e]e]e}
000
Q00
000
000
000
000
000
000
000
000
ooc
000
000
[e]e]0}
000
000
000
000
000
000
000
Qo0
000
[o]e]s]
000
000
000
000
000
000
000
000
000
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onoaonNnon

anoon

END IF

STATE EGQUATIONS 5% 5armest s nied no s

DV (1)=V(2)

DV(2)=(1 O/RMASS)#(V(3)#A1-V(4)»A2) ' LOAD EGM
DV(3)=((1 OEO&*RFM(1))/VOL 1)#*(RG1-A1%#V(2)) 'OP(1)
DV(4)=((1 OEO&*RFM(1))/VOL2)#(-RQA2+A2#V(2)) tP(2)

RETURN
END

$A1 LIB=HYDROLIB, .U
$A1 DIR=HYDRODIR U

$LIBFD
$EQ )
$F

GOULD S E L MPX-3¢

0169
0170
0171

0172
0173
0174
0173
0176
0177
0178
0179
0180
o181

o182
0183
oiea
0189
o186
0187
o188
Q189
0190

000
000
000
000
000
000
000
000
000
000
Qoo
000
000
000
0Q0
000
[o]ele]
000
000
000
000
000

Lel
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$JOB B GRAD1 AMOS SLOF=L GRAD1 0000 100 c 0001 000
SOPTION 2 3 4 5 0000 200 c 0002 000
$FORT77 0000 300 c COMMON FOR MAIN 0003 000
SUBROUTINE GRAD1 (X, N, GRAD, ESP, LSYS) 0001 000 c 0004 000
REAL*4  X(20) 0002 000 REAL %4 Nt ' STATES 0005 000
REAL#4 GRAD(20) 0003 000 REAL*4  DY(4) ' STATE EQUATIONS 0006 000
REAL#4  DELX 0004 000 REAL#*4 RCONT ' CONTROL VARIABLE 0007 000
REAL#4 FK ' FUNCTION VALUE AT X(K) 0005 000 REAL#4 BEGX 0008 000
REAL*4  FK1 ' FUNCTION VAL AT X(K+1) 0006 000 REAL®4  RBEGX ' STORAGE FOR TIME 0009 000
REAL#4 ESP ' FOR DELTA X 0007 000 REAL#4  ENDX 0010 000
INTEGER*2 N ' NO OF INDEPENDENT VARIABLES 0008 000 REAL#4 DELX 0011 000
LOGICAL*#1 LSYS 0008 100 REAL#4  DELTA ! SAMPLING INTERVAL 0012 000

[ 0009 000 REAL*4 STRTY(3) ' START SEGMEN1 0013 000
c 0010 000 REAL*4 ENDY(3) ' END SEGMENT 0014 000
c CALL FUNCT  (FK,X,N) ' FUNCTION VAL AT X(K) 0011 000 REAL#4  RK(4) ' STATE FEEDBACK COEFFICIENTS 0015 000
IF (LSYS) THEN 0011 100 REAL#4  RREF(3) ' REFERENCE SIGNAL INPUT 0016 000

CALL FUNCT1(FK} ' IDENTIFICATION 0011 200 REAL#*4  RREFX(9) ' STATIC REFERENCE FOR CONTROL 0017 000

ELSE 0011 300 REAL#4  RFM(2) ' STATE PARAMETERS (VARIABLES) 0018 000

CALL FUNCT2(FK) ' FEEDBACK 0011 400 REAL#4  RREFC(35,15) ' REFERENCE FOR CONTROL 0019 000

END IF 0011 500 REAL*4 RTANG (5) ' SLOPE FOT REFERENCE,CONTR 0020 000

DO 20 IA=1,N 0012 000 REAL#4 X toTIME 0021 000

DEL X=ESP 0013 000 REAL*4 RGF1(4) ' WEIGHTING FACTORS, IDENTIF 0022 000
IF(X(IA) NE O O)DELX=DELX# ABS(X(1A)) 0014 000 REAL#4 RGF2(4) ' WEIGHTING FACTORS, CONTROL 0023 000
X(IA)=X(1A)+DELX 0013 000 REAL#4 RREFI(S 60) ' GREED RFFERENCE ACCUMULATED 0024 000

c CALL FUNCT  (FKI,X,N) ' FUNCT AT X(K+1) 0016 000 REAL*4  RYXACT(S 13)' GREED POINT STATE VALUES 0025 000
IF (LSYS) THEN 0016 100 REAL*4  RXR(60) ' GREED POINTS TIME 0026 000

CALL FUNCT1(FK1) * IDENTIFICATION 0016 200 REAL#4  YX(3 60) ' GREED POINTS STATF VALUF S 0027 000

ELSE 0016 300 INTEGER#2 JL ' MAX GREED POINTS 0028 000

CALL FUNCT2(FK1) ' P EEDBACK 0016 400 INTEGER#2  JA * GREED POINTS COUNTER 0029 000

END IF 0014 300 INTEGER#2 N ' NUMBER OF STATFS 0030 000
GRAD(1A)=(FK1-FK)/DEL X 0017 000 LOGICAL #1  LPLOT ' PLOT FLAG 0031 000
X{IA)=X(1A)~DEIL X ' RFSTORE X(K) 0018 000 LOGICAL#1 LINEAR ' LINFAR VERSION FLAC 0032 000

20 CONT INUE 0019 000 c 0033 000
RETURN 0020 000 c 0034 000

END 0021 000 COMMON/CONTR/Y, DY, RCONT, BEGX, RBEGX, ENDX, DELX, DELTA 0035 000

$A1 LIB=HYDROLIB. U 0022 000 X STRTY, ENDY. RK, RREF RRFFX RFM RREFC RTANG X RGF1 RGF2 0036 000
$A1 DIR=HYDRODIR U 0023 000 X RREFI,RYXACT,RXR, YX 0037 000
$SLIBFD 0024 000 X JL.JA,N LPLOT LINEAR 0038 000
$EOJ 0023 000 C 0039 000
ss 0026 000 c 0040 000
« 0041 000

8¢l
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$JOB B LXYPLT AMOS SLOF=L LXYPLT
SOPTION 2 9
SFORT77

000NN ONON00N0NO0N0N0N0N00N0000N000N0N0000

SUBROUTINE LXYPLT ( IFUN, MINT, MAX1,MIN1 MAX2, MIN2, MAX3, MIN3
1 » MAX4, MIN4, VALN1, VALN2, VALN3, VALN4, PLTINC)

——————— GENERAL PURPOSE ON-LINE PLOT ROUTINE FOR LXY11 PRINTER ---——

AUTHOR - MICHAEL 1 PILDITCH
DATE - 16-AUG-B2
VERSION - 04

DESCRIPTION -

THIS SUBROUTINE IS DESIGNED AS A SIMPLE GENERAL PURPOSE
GRAPHICS PROGRAM PROVIDING ‘ON-LINE‘ TIME HISTORIES FOR UP TO
FOUR VARIABLES OQUTPUT IS FORMATIED FOR THE PRINTRONICS (LXY11)
TYPE PRINTER/PLOTTER ONLY

THERE ARE TWO MODES OF OPERATION — FIRST INITIALISATION
THIS DRAWS AND ANNOTATES THE Y OR HORIZONTAL AXES MAKING FULL
USE OF THE PAPER WIDTH, AND SECOND DYNAMIC WHICH SCALES AND
PLOTS THE Y VALUES AS THEY ARE INPUT

MARKER FREQUENCY AND PAPER SCROLLING BETWEEN CONSEQUITIVE
INPUTS MAY BE SPECIFIED BY THE USER INTERPOLATION BETWEEN POINTS
IS LINEAR AND EVERY TENTH MARKER SPANS THE FULL PAGE WIDTH TO
ASSIST IN READING OF THE PRINTED OUTPUT Y VALUES WHICH EXCEED THE
PAPER MARGINS ARE FORCED TO THE NEAREST PERMISSABLE VALUE AT THE
PAGE EDGE AND THEIR MARKERS REMOVED THE X OR TIME AXIS IS
AUTOMATICALLY DRAWN AT Y=0 O IF THIS IS BETWEEN THE SPECIFIED MAX
AND MIN VALUES OR ELSE 16 ALLIGNED WITH THE LIMIT CLOSEST 7O Y=0 O

IF LESS THAN FOUR GRAPHS ARE SELECTED ALL VALUES PLACED
IN THE UNUSED PARAMETERS ARE IGNORED

THIS ROUTINE WILL ACCEPT ANY SCROLL INTERVAL GREATER OR
EQUAL TO O 03 INCHES, HOWEVER BECAUSE THERE ARE PHYSICALLY 72
DOT LINES PER INCH IN THE X DIRECTION THOSE INTERVALS WHOSE
RECIPROCALS ARE FACTORS OF 72 WILL BE ACCURATE WHILE OTHERS
MAY BE IN ERROR BY UP TO 4/ DUE TO ROUNDING TO THE NEAREST DOT
LINE -
IN THE EVENT THAT THE FIRST CALL TO THIS ROUTINE IS NOT
AN INITIALISATION MODE (1,2,3,4) SUBSEQUENT CALLS WILL
RESULT IN NO OUTPUT AND CONTROL WILL IMMEDIATLY RETURN TO THE
CALLING PROGRAM

FORMAT OF THE CALL TO THIS SUBROUTINE -

CALL LXYPLT (IFUN MINT, MAX1, MIN1, MAX2, MIN2, MAX3, MIN3,
1 MAX4, MIN4, VALN1, VALN2, VALN3, VALN4., PLTINC)
INPUT PARAMETERS
NAME TYPE DESCRIPTION TYPICAL VALUE
IFUN INTEGER CONTROLS MODE OF OPERATION

O= PLOT Y VALUES
1= SET AXIS FOR ONE GRAPH

0001
0002
Q003
0004
0003
0006
0007
ooo8
0009
0010
0oo11
Qo012
0013
0014
0013
0016
0017
oo1is
Q019
0020
0021
0022
0023
0024
0023
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0043
0046
0047
0048
0049
0050
0091
0032
0033
o034
0033
00356

GOULD S E L MPX-3:

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
[s]e]0
000
000
000
000
Qoo
000
000
000
Q00
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
ooo
000
000
000
000
000
Q00
000
000
000
000
000
000

OO0 O000000000O000000000000000000000N

C
(o}
C

]
i
i
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2= SET AXES FOR TWO GRAPHS 0057
3= SET AXES FOR THREE GRAPHS 0058
4= SET AXES FOR FOUR GRAPHS 0059
0060
MINT  INTEGER NUMBER OF CALLS BEFORE OUTPUT OF A MARKER 10 0061
0062
MAX1  REAL*4 MOST POSITIVE AXIS VALUE GRAPH 1 120 0 0063
0064
MIN1  REAL#4 MOST NEGATIVE AXIS VALUE GRAPH 1 -11 0, 2 1 0063
0066
MAX2  REAL#4 MOST POSITIVE AXIS VALUE GRAPH 2 0067
(IGNORED IF ONLY ONE GRAPH SELECTED) 0068
0069
MIN2  REAL*4 MOST NEGATIVE AXIS VALUE GRAPH 2 0070
(IGNORED IF ONLY ONE GRAPH SELECTED) 0071
0072
MAX3/MIN3 REAL*4  AS GRAPH 2 BUT IGNORED IF LESS THAN 0073
THREE GRAPHS SELECTED 0074
0075
MAX4/MIN4 REAL*4  AS GRAPH 3 BUT IGNORED IF LESS THAN 0076
FOUR GRAPHS SELECTED 0077
oo78
VALN1  VALNA4 0079
REAL#4  INPUT Y VALUES (RELEVANT VALUE IGNORED 0080
IF GRAPH NOT SELECTED) 0081
oo82
PLTINC REAL#4 SCROLL DISTANCE BETWEEN CALLS (INCHES) 01 o083
oo84
————————————— 0083
0086
NOTE - THIS SUBROUTINE MUST BE CATALOGUED WITH THE FOLLOWING o087
ASSIGNMENT - coss
A2 LP=SLO, 20000 0089
0090
————————————————————————— 0091
0092
0093
LOGICAL#*1 PLTBUF(132), INC(7) 0094
INTEGER*1 IBUF(132), IINC(7) 0095
EQUIVALENCE (IBUF(1),PLTBUF (1)) 0096
EQUIVALENCE (TINC(1), INC(1)) 0097
REAL FINC(&), MAX(4), MIN(4), VALO(4), VALN(4) AXIS(4) 0098
REAL MAX1, MAX2, MAX3 MAX4, MINL, MIN2, MIN3 MING 0099
INTEGER FLAG. INDX(4), IFUN, TI LP 0100
DATA IINC/ 1., 2. 4 B, 16, 32, 63/ o101
DATA FINC/0 0166666, 0 0333333, 0 05,0 0466666, 0 0833333 0 1001/ 0102
0103
SET LOGICAL UNIT NUMBERS o104
0103
DATA TI/ 1/ 0106
DATA LP/ 37 o107
o108
VALN(1)=VALN1 0109
VALN(2)=VALN2 o110
VALN(3)=VALN3 o111
VALN(4)=VALN4 o112

000
000
000
000
000
000
000
000
00Q
000
Q00
000
000
000
000
Qoo
000
000
Qoo
000
000
000
000
000
000
0Q0
[oe]e]
000
000
[o]ee]
Q00
000
000
[olo]e]
000
0Qo0
000
000
000
Qo0
000
000
000
oao
000
000
000
000
Qoo
000
000
000
000
000
000
000
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c 0113 000 IF(CIPOS+INDX(IGN)) LT 131) GOTO 1090 0169 000
IF(IFUN EQ 0) GOTO 1000 0114 000 PLTBUF (130)=PLTBUF (130) OR INC(&) 0170 000

IF(IFUN EQ 1) GOTO 100 0119 000 GOTO 1080 0171 000

IF(IFUN EQ 2) GOTO 100 0116 000 1090 CONT INUE 0172 000

IF(IFUN EG 3J3) 6OTO 100 0117 000 IF(CIPOS+INDX(IGN)) 6T 1) GOTO 1100 0173 000

IF(IFUN EG 4) GOTO 100 o118 000 PLTBUF (2)=PLTBUF(2) OR INC(1) 0174 000

c 0119 000 GOTO 1080 01793 000
WRITE( ‘UT ", 30) 0120 000 1100 CONT INUE 0176 000

50 FORMAT(° LXYPLT- - ILLEGAL MODE’) 0121 000 [ 0177 000
RETURN 0122 000 PLTBUF (IPOS+INDX(IGN))=PLTBUF (IPOS+INDX(IGN)) OR INC(J) 0178 00Q

c Q123 000 IF (J EQ 7) IBUF (IPOS+INDXC(IGN)) = TINC(J} 0179 000
c 0124 000 1080 CONTINUE 0180 000
c DYNAMIC MODE 0125 000 1130 CONTINVE 0181 000
Cc 0126 000 [ 0182 000
[+ 0127 000 1055 CONT INVE 0183 000
1000 CONTINUE o128 000 C 0184 000
c 0129 000 IF(J EQ 7) MCNT=MCNT+1 0185 000
IF(FLAG NE 1) RETURN 0130 000 c 0184 000

Cc 0131 000 IF(MCNT/10%#10 NE MCNT OR J NE 7) GOTO 1110 0187 000
MCOUNT=MCOUNT+1 0132 000 DD 1120 1I=1,130 0188 000

Cc 0133 000 IBUF(II)= &3 0189 000
IFCIRND NE O) GOTO 1060 0134 000 1120 CONT INVE 0190 000
NLPI=NLPI+1 0133 000 1110 CONTINUE 0191 000

1060 CONTINUVE 0136 000 c 0192 000
0137 000 WRITE(‘LP’, 40) (PLTBUF (K),K=1,131) 0193 000

DD 1050 L=1,NLPI1 0138 000 40 FORMAT (1X. 131A1) 0194 000

[4 0139 000 [+ 0193 000
DO 1010 1I=1,130 0140 000 1030 CONTINUE 0194 QOO0
IBUF(I)= 64 0141 000 [ 0197 000

1010 CONTINUE 0142 000 VALO(1)=VALN(1) 0198 000
IBUF(131)= 3 0143 000 VALO(2)=VALN(2) 0199 000

c 0144 000 VALO(3)=VALN(3) 0200 000
DO 1033 IGN=1,NGR 0143 000 VALO(4)=VALN(4) 0201 000

DO 1130 Ju=1.2 0146 000 [ 0202 000

Cc 0147 000 IRND=IRND-1 0203 000
VAL=VALOC(IGN)+(VALN(IGN)-VALOCIGN) ) /NI PI*L 0148 000 C 0204 000

c 0149 000 IFCIRND GE 0) GOTO 1070 0203 000
IF(JJ EQ 2) VAL=AXIS(IGN) 0130 000 NLPI=NLPI-1 0206 QOQ

Cc 0131 000 IRND=IROUND 0207 000
FPOS=(VAL-MINCIGN) )/ (MAX(IGN)-MINCIGN) )#GW 0132 000 1070 CONTINUE 0208 000

c 0133 000 c 0209 000
IF(FPOS GT 3200 0) FPOS = 3200 O 0134 000 RETURN 0210 000

IF(FPOS LT -3200 0) FPOS =-3200 0O 015% 000 C 0211 00C

c 0136 000 c 0212 000
IPOS=FPOS#*10 0 0157 000 c INITIALISATION MODE 0213 000

IF(FPOS LT O 0O) IPOS=IPOS-1 0158 000 c 0214 000
DELPOS=(FPOS#10 0-1P0S)/10 O 0139 000 c 0219 000

[ 01460 000 100 CONT INVE 0214 000
J=1 0161 000 c 0217 000

1020 IF(FINC(J) GT DELPOS) GOTO 1030 0162 000 DO 140 I=1,130 0218 000
J=u+1 0163 000 IBUF(1)= 64 0219 000

GOTO 1020 0164 000 140 CONTINUE 0220 000

1030 CONTINUE 0165 000 IBUF(131)= 95 0221 000
C 0166 000 C 0222 000
IF(MCOUNT/MINT#MINT EQ MCOUNT AND L EQ NLPI) J=7 0167 000 NGR=1FUN 0223 000

[ 0168 0Q0 MCOUNT=0 0224 000

o7l
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MCNT=0 0223
0226
VALO(1)=VALN(1) 0227
VALDO(2)=VALN(2) 0228
VALO(3)=VALN(3) 0229
VALO(4)=VALN(4) 0230
0231
IF(PLTINC GT O 0499) GOTO 300 0232
WRITE(UT ,310) 0233
310 FORMAT(‘ LXYPLT-- SCROLL INTERVAL TOO SMALL (MIN O OS5 INCHES) ) 0234
RETURN 0235
300 CONTINUE 0236
NLPI=72 O#PLTINC 0237
IROUND=1 0/(72 O#PLTINC-NLPI) 0238
IRND=IROUND 0239
0240
MAX (1)=MAX1 0241
MAX (2)=MAX2 0242
MAX (3)=MAX3 0243
MAX (4)=MAX4 0244
MINC(1)=MIN1 0243
MIN(2)=MIN2 0246
MIN(3)=MIN3 0247
MINC4)=MINSG 0248
0249
DO 320 1I=1,NGR 0230
IF(MINCI) LT MAX(I)) QOTO 320 02951
WRITE(‘UT',330) I 0232
330 FORMAT(‘ LXYPLT-- BAD LIMITS FOR GRAPH ., I2) 0233
RETURN 0234
320 CONT INVE 0255
0256
DO 270 I=1,NGR 02957
IF(MAX(I) GT O 0) GOTO 280 0258
AXIS(I)=MAX(I) 0259
GOTO 270 0260
280 CONTINUE 0261
IF(MIN(I) LT O 0) GOTO 290 0262
AXIS(1)=MINCI) 0263
GOT0 270 0264
290 CONT INVE 0265
AXIS(1)=0 0 0266
270 CONTINUVE 0267
0268
IF(NGR NE 4) GOTO 180 0269
GW=3 0 0270
INDX(1)=3 0271
INDX(2)=33 0272
INDX(3)=68 0273
INDX (4)=100 0274
WRITECLP ,113) MIN(1),MAX(1),MIN(2), MAX(2), MIN(3), MAX(3), 0273
MIN(4), MAX(4) 0276
113 FORMAT(1X,E12 4,8X,E12 4, 1X,E12 4 B8X,E12 4, 1X,E12 4, 6X 0277
»E12 4, 1X,E12 4,8X,E12 4) o278
GOTO 150 0279
180 CONTINUE 0280

000
000
000
000
Qoo
000
000
000
000
000
000
000
0oo
000
000
000
000
ooo
000
000
ooo
000
000
000
000
000
000
000
000
000
[olo]0}
000
000
000
000
Q00
000
000
Qo0
000
000
000
000
000
000
Q00
000
000
o]0 0
ooo
000
000
000
000
Qoo
000
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110

160

111

170

112
130

230

220

230
240

260
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IF(NGR NE 3) GOTO 160

GW=4 0

INDX(1)=3

INDX(2)=46

INDX (3)=8%

DIVI=MIN(1)+(MAX(1)-MIN(1))/2 O

DIV2=MIN(2)+(MAX(2)-MIN(2))/2 O

DIV3=MIN(3)+(MAX(I)-MIN(I))/2 O

WRITE( LP’, 110)MIN(1) DIV, MAX(1) MIN(2),DIV2, MAX(2) MIN(3I)
DIV3, MAX(3)

FORMAT(1X,E12 4,4X,E12 4 4X F12 4 E12 4 3X,E12 4 4X F12 4
E12 4,4X,E12 4 3X.E12 &)

GOTO 1S5S0

IF(NGR NE 2) GOTO 170

GW=6 O

INDX(1)=3

INDX(2)=70

DIV=(MAX(1)-MIN(1))/3 O

DIV1I=MIN(1)+DIV

DIV2=MIN(1)+DIV*2 O

DIV=(MAX(2)-MIN(2))/3 O

DIV3=MIN(2)+DIV

DIV4A=MIN(2)+DIV*2 O

WRITE(‘LP‘, 111)MIN(1),DIV1, DIV2 MAX(1),MIN(2),DIV3, DIV4A MAX(2)

FORMAT(1X.E12 4, 9X,E12 4,6X,E12 4,6X E12 4 E12 4 6X F12 4 &X
El12 4. 6X,E12 &)

GOTO 130

CONTINUE

GW=12 0

INDX(1)=6

DIV=(MAX(1)-MIN(1))/6 O

DIV1I=MIN(1)+DIV

DIV2=MIN(1)+DIV*2 O

DIV3=MIN(1)+DIV*3 O

DIV4=MIN(1)+DIV*#4 O

DIV3=MIN(1)+DIV#*3 O

WRITEC‘LP‘, 112)MIN(1), DIV1, DIV2, DIV3, DIV4, DIVS, MAX (1)

FORMAT(1X, 6(E12 4,7X),E12 4)

CONTINUE

DO 210 II=1,NGR

PLTBUF (INDX(I1))=PLTBUFCINDX(II)) OR INC(1)

IF(NGR NE 1) GOTO 220

DO 230 I1I1I=1,6

PLTBUF (INDX(II)+I1I%20)-PLTBUF (INDX(ID)+I11I#20) OR INC(1)
CONTINUE

CONTINUE

IF(NGR NE 2) GOTO 240

DO 250 III=1.3

PLTBUF (INDX(II)+III#20)=PLTBUF (INDX(II)+III®*20) OR INC(1)
CONTINUE

CONT INUE

IF(NGR NE 3) GOTO 211

DO 260 III=1.2

PLTBUF CINDX(II1)+I11#20)=PLTBUF (INDX(11)+I11#20) OR [INCC(1)

CONTINUE

0281
0282
0283
o284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0293
02986
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
o321
0322
0323
0324
0323
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336

GOULD S E L MPX-3

000

000

Qoo

000

000

000

000

000

000

000

000
000

000

000
000

000
000
000
000
000
000
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
[eJs]0]
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
oo¢
000
000
Q00
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04/11/84 17 01 27 TASK # 16000084 AMOS GOQULD S F L MPX-3¢ 04/11/84 17 03 08 TASK # 16000084 AMOS GOULD S F L MPX-3

211 CONT INVE 0337 000 c 0001 000

IF(NGR NE 4) GOTO 210 0338 000 [o 0002 000

PLTBUF (INDX(I1)+GW*10 O)=PLTBUF (INDX(II)+GW#10 0) OR INC(1) 0339 000 c COMMON AREA TO BE USED BY STATE EGN(B DERFUN) 0003 000

210 CONT INVE 0340 000 c 0004 000

c 0341 000 REAL#4 FM(4, 4) " F-MATRIX 0003 000

DO 120 I=1,7 ) 0342 000 REAL#4 GM(4) ! G-MATRIX, HERE ONE CONTROL 0006 000

, HRITEC’LP,40) (PLTBUF (K), K=1, 131) 0343 000 COMMON/DERF /FM, GM 0007 000

120 CONTINUE 0344 000 c 0008 000

c 0343 000 C STORED IN C DERF2 0009 000

DO 200 II=1,NGR 0346 000 c 0010 000

DO 130 I=INDX(II), INDX(II)+GW#10 O-1 0347 000 c 0011 000
IBUF(I1)= &3 0348 000
130 CONT INUE 0349 000
200 CONT INUE 0350 000
c 0331 000
WRITE (‘LP ,40) (PLTBUF(K),K=1,131) 0332 000
c 0353 000

FLAG=1 0354 000 _

c 0393 000 04/11/84 17 02 16 TASK # 16000084 AMOS GOULD S E L MPX-3.

RETURN 0336 000

¢ 0337 000 EXAMPLE FOR IMPI EMENTATION OF ADAPTIVE LINCAR CONTROL FEEDBACK 0000 100

END 0398 000 TO CONTROL HIGHLY NON-LINEAR ELECTRO-HYDRAULIC SYSTEM 0000 200

$A1 LIB=HYDROLIB, .U 0338 100 AMOS BURSHTEIN BURTEK INC, DECEMBER 1983 0000 300

$A1 DIR=HYDRODIR, U 0338 200 4 0000 400

SLIBED 0359 000 o0 o0 00 00 0001 000

$SEOV 0360 000 1 o -%000 0 5000 00 0002 000

by 0361 000 00 926 -21 3623 00 0003 000

oo - 9264 0o ~21 5625 0004 000

oo 0o 1073 0 1075 0 0005 000

oo 0 050 0 0o1 o2 0006 000

0o 0o 1000 0 1000 0 0007 000

0 10 01 1299 - 1299 0008 000

oo oo 1000 0 1000 © 0009 000

10 1 0E-2 1 OE-4 1 0E-4 0010 000

0 0E-02 0 0E-02 1 0E0O 1 0£00 0011 000

140 180 0012 000

04/11/84 17 03 25 TASK # 16000084 AMUS GOULD S E L MPX 3:

c 0001 000

c 0002 000

c C DERF1 0003 000

¢ 0004 000

c REAL#*4 RFM(1) ' BULK MODULUS DF FLUID(1 SE%) 0005 000

REAL#4 RFM(2) ' VALVE GAIN ( 172) 0006 000

COMMON/DERF 1/RFM 0007 000

« 0008 000

c 0009 000

[ T T e g 0010 000

44"
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