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CHAPTER I 

INTRODUCTION AND REVIEW 

1.1 Introduction 

Let ~1 ,~2 , ••• ,~n'''' be a sequence of independent and identically 

distributed (i.i.d.) random variables with each! being distributed as 

N (µ,c/H), where µ E JR.p is the unknown mean vector, CJ E (0, 00 ) is an 
p - -

unknown scale parameter, and His a known pxp positive definite ma-

trix. 

The problem of constructing a fixed-size confidence region forµ is 

formulated as follows. Given two preassigned numbers dE (0, 00 ) and 

a. E (0,1) and having recorded n ( .::_2) samples ~1 .~2 , ••• '~n' we propose 

the following ellipsoidal confidence region forµ: 

R = {w E JR.p: 
n 

- -1 - 2 
(X - w)' H (X - w) .::. d } , 
-n - -n -

... (1.1) 

1 n 
where X E X .. Let us use the notations P(•) and E(·) instead of 

-n n i=l -1 

P (•) and E (•), respectively, from this point onward. Now, the 
]:!,CJ ]:!,CJ 

confidence coefficient associated with the region R is given by 
n 

P{µ ER } = P{ (X - µ) I H-1 (x - µ) < a2} 
- n -n - -n - -

2 - -1 - 2 2 
P{ (n/CJ ) (X - µ)' H (X - µ) .::_ nd /CJ } 

-n - -n -

2 2 
F(nd /CJ ) , 

1 

••• (1. 2) 



where F(u) = P{U ..::_ u} with U being distributed as x2 with p degrees of 

freedom. The region R is constructed in a way such that the length of 
n 

its maximum diameter is at the most 2d. This fact is referred to as the 

region R being an ellipsoid of "fixed-size". 
n 

We also require that the confidence coefficient be at least 1 - a, 

2 2 
and thus the sample size n shoulj be at least acr /d = C, say, where 

F(a) = 1- a. This number "a" can easily be found from the chi-square 

2 

tables. Our "C" is referred to as the optimal fixed sample size required 

had cr2 been known. However, C is unknown since cr 2 is unknown, and thus 

no fixed-sample-size approach is feasible for our use. 

For the sake of completeness, we now state definitions of some 

properties for any particular procedure giving rise to the stopping time, 

say, N. 

Definitions: 

(a) A procedure is called QOVl/.l,t.6ten.t in the Chow-Robbins (1965) sense if 

for all µ E JR.p and CJ E (0, 00). The property (1.3) is also referred to as 

exa~ QOVl/.l,t.6tenQy in Mukhopadhyay (1982). 

(b) A procedure is called a6ymptot)_Qo.J.1..y QOVl/.l,t.6ten.t in the Chow-Robbins 

(1965) sense if 

... (1. 4) 

for all 1:! E JR.p and CJ E (O ,oo) • 

(c) A procedure is called a1iymptot)_Qo.J.1..y e66iC,,len.t in the Chow-Robbins 

(1965) sense if 
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lim E{N(d)/C} 
d-+O 

1, ••• (1. 5) 

for all 11 E ]RP and a E (0, 00). The equation (1.5) is now referred to as 

cv.iymptotiea.Lty 6).Ju.,t-o~de.Jt e66ic.ieneyproperty in Ghosh and Mukhopadhyay 

(1981). 

(d) A procedure is called cv.iymptotiea.Lty J.ieeond-o~de~ e66,i.c.ient in the 

Ghosh-Mukhopadhyay (1981) sense if 

lim E{N(d) - C} = k, 
d-+O 

for all 11 E ]RP and a E (0, 00), where k is a bounded constant. 

From this point onward, we will write N instead of N(d). 

1.2 Review of Literature 

••• (1.6) 

We begin this literature review with the univariate normal theory of 

fixed-width interval estimation of the mean. The literature dealing with 

the corresponding multivariate normal theory for the mean vector is then 

considered next. Finally, we mention some of the work done on point 

estimation problems for the mean or the mean vector. 

Stein (1945, 1949) developed a two-stage procedure for constructing 

a fixed-width confidence interval for the mean 11 of a univariate normal 

distribution when the variance cr2 is unknown. This procedure satisfies 

the properties (1.3) and (1.4), but it does not satisfy the property 

(1.5). See, for example, Chow and Robbins (1965) and Simons (1968). 

Ray (1957) developed a purely sequential procedure to estimate the 

mean of a normal population with a confidence interval of preassigned 

width and confidence coefficient when the variance cr2 is unknown. How-

ever, only the small sample approach was really discussed. More elabor-
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ate and thorough treatments came from Chow and Robbins (1965). This pure

ly sequential procedure is known to satisfy the properties (1.4) and 

(1.5). The basic reason behind going through a sequential scheme was to 

achieve property (1.5). In achieving that goal, however, the sequential 

procedure lost the exact property of (1.3). 

Recently, Mukhopadhyay (1980) proposed a two-stage procedure (this 

is now called the "modified two-stage procedure") for constructing a 

fixed-width confidence interval for the meanµ of a normal distribution 

when the variance cr 2 is unknown. This procedure has all the properties 

of (1.3), (1.4), and (1.5). 

A natural question then arises. If the a.f.,tjmp:to:tie e66ieieney prop

erty (1.5) can also be achieved by suitably modifying Stein's (1945, 

1949) two-stage procedure, then exactly in what sense is the purely se

quential procedure superior? Ghosh and Mukhopadhyay (1981) settled this 

issue by introducing a concept known as the ~eeond-oJtdeJl. ennieieney prop

erty. The sequential procedure satisfies property (1.6), whereas the 

modified two-stage procedure satisfies only the weaker property, namely 

(1. 5) . 

Mukhopadhyay (1982) also showed that a fixed-width confidence inter

val for the mean of a univariate population can be constructed in a fair

ly reasonable way so as to achieve exaet eo~~:teney even without the 

normality assumption. In Stein's construction, normality assumption is 

not crucial, and this was replaced by independence of some estimators of 

a pivotal nature. Modified two-stage procedures were also proposed along 

the lines of Mukhopadhyay (1980), and they were shown to be asymptotical

ly 6,,{.M:t-oJtdeJl. enn,teien:t. 

Woodroofe (1977) obtained the second-order approximations of the 



expected sample size and the risk associated with sequential procedures 

of the Ray-Chow-Robbins type. Woodroofe (1977) considered both point 

and interval estimation of the mean of a normal distribution when the 

variance is unknown. 

Hall (1981) studied a three-stage procedure for constructing a 

fixed width confidence interval for the meanµ of a univariate normal 

distribution when a2 is unknown. If a third stage was appended to 

Stein's two-stage procedure, it lost its exactness (property (1.3)) but 

it became strongly competitive with the Ray-Chow-Robbins procedure from 

the efficiency point of view (properties (1.4) and (1.5)). Hall (1981) 

considered the asymptotic theory of triple sampling as it pertained to 

the estimation of the mean of a univariate normal distribution. He 

obtained various limit theorems and expansions, and his results showed 

in turn that a suitable triple sampling procedure actually combines the 

simplicity of Stein's double sampling techniques with that of the Ray

Chow-Robbins sequential procedure. 

5 

In the area of multivariate sequential estimation, Chatterjee (1959, 

1960) extended the works of Stein (1945, 1949) for developing suitable 

two-stage procedures in the multivariate normal case with unknown mean 

vector e and completely unknown positive definite dispersion matrix E. 

It was demonstrated how that procedure could be used to obtain a fixed

size ellipsoidal confidence region forµ, 

Srivastava (1967) extended Chow and Robbins' (1965) sequential pro

cedure to construct ellipsoidal or spherical confidence regions with pre

assigned confidence coefficients for (i) the linear regression parameters 

and (ii) the mean vector of a multivariate population. No assumptions 

regarding the population distribution were made; and as a result, all 
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results were asymptotic in nature. 

Mukhopadhyay (1979) considered the construction of fixed-size simul-

taneous confidence region forµ and Z, the unknown mean vector and dis-

persion matrix of a multinormal population. Results analogous to those 

of Chow and Robbins (1965) and Srivastava (1967) were obtained. 

Mukhopadhyay (1981) considered the problem of simultaneously estima-

ting the mean and variance of a normal distribution. A semicircular 

region <:!> = { (a,b)': b > 0} of radius d > 0 and with approximately a pre
n 

assigned coverage probability (1- et) was proposed to solve the problem 

through a sequential procedure. 

We must mention that there are parallel results for minimum risk 

point estimation of the mean vectorµ of a multinormal population when Z 

is completely unknown and positive definite. One is referred to Ghosh, 

Sinha, and Mukhopadhyay (1976) and Sinha and Mukhopadhyay (1976). Wang 

(1981) also considered the same point estimation problem when Z = cr2A 

where cr 2 is unknown and A is a known pxp positive definite matrix. The 

corresponding results for the univariate situation were introduced in 

Robbins (1959), and a brief review is available in Ghosh and Mukhopadhyay 

(1976). Even though we borrowed tools from the papers on related point 

estimation problems, we do not explicitly study herein any point estima-

tion problem. 

In the present study, we develop procedures and results along the 

lines of the recent contributions of Woodroofe (1977, 1982), Mukhopadhyay 

(1980, 1982), and Hall (1981). Some partial results along the lines of 

Ghosh and Mukhopadhyay (1981), and Mukhopadhyay (1982) in the direction 

of "first-" and "second-order efficiencies" will also be discussed. 

Some of the tools necessary had already been developed and utilized for 
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a few related problems studied in Woodroofe (1977, 1982), Ghosh and 

Mukhopadhyay (1981), Hall (1981), and Mukhopadhyay and Hamdy (1983). We 

will also report some thorough computational studies conducted to make 

comparisons among the different procedures proposed in the present study. 

The basic idea of our plan of attack is very simple. Because 

C is unknown, somehow we must estimate C using a suitable positive in

teger valued random variable N, say. Once we determine this random 

sample size N, we then propose the same confidence region~ for~ as 

in (1.1) based on N samples, namely ; 1 ,;2 , ••• ,~. Naturally, the char

acteristics of any sort of "goodness" of having this region~ will un

doubtedly depend on the "closeness" between N and C. 

In Chapter II, we propose a two-stage procedure along the lines of 

Stein (1945, 1949), Chatterjee (1959, 1960), and Mukhopadhyay (1982). 

Chapter III deals with a modified two-stage procedure to obtain 

"asymptotic efficiency". This procedure was motivated by the results 

of Mukhopadhyay (1980, 1982). 

Chapter IV is devoted to the purely sequential procedure where we 

take one sample at a time after we start, to decide the stopping stage. 

We derive second-order expansions for E(N) and P{ 1:! E ~} using the non

linear renewal theory of Woodroofe (1977, 1982). 

In Chapter V, we introduce a three-stage procedure. The motivation 

behind this procedure is as follows. After starting the experiment with 

m ( ~ 2) samples, we estimate a fraction rC of the optimal fixed sample 

size C by, say, M. Then, depending on the size of M, we decide whether 

to obtain all the remaining samples of size N - M at the third stage. In 

this way, we attempt to avoid the problems of overestimating C that tend 

to occur while using the two-stage and the modified two-stage proce-
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<lures discussed in Chapters II and III. The numerical results on simula-

tions for all of these competitive procedures, as well as various remarks 

and comments on each are presented in Chapter VI. 

In what follows, we write [x] for the largest integer< x. Let us 

now introduce some of the preliminary information. Suppose .that we have 

2 
a random sample ; 1 ,;2 , .•. ,;n of size n (~2) from the Np(~,cr H) popula-

tion. Let H= BB' where B is a known pxp matrix having full rank. Then, 

-1 we let Y. = B X. where we write Y. = (Y1 .,Y2 ., ... ,Y .)', j=l,2, ... ,n. 
-J -J -J J J PJ 

So, Y1 ,Y2 , .•• ,Y are all i.i.d. N (v,cr2I), where v=B-1~. Also, we write 
- - -n p - -

- - -1 n ·- 2_ -1 p n - 2 Y. -n .E1Y .. , 1-1,2, .•. ,p and S -{p(n-1)} .E1 .E1 (Y .. -Y. ) . It can be 
in J= 1J n 1= J= 1J in 

easily seen that s2 is invariant with respect to all possible choices 
n 

2 -1 n - -1 -of the matrix B, and that indeed S = {p(n-1)} .E1 (X.-X )'H (X.-X ). 
n J= -J -n -J -n 

For computational purposes, one can use the latter expression. How-

ever, in order to use the tools from Woodroofe (1977) and Hall (1981), 

we will need the expression of s2 in terms of the corrected sums 
n 

of squares of the Y's. 
2 

We propose to estimateµ and cr by X 
-n 

-1 n 
n · E X. 

i=1-1 
2 

and S , respectively. No~, we will consider the elliptic confidence 
n 

region Rn for~ defined in (1.1). Notice that the particular structure 

we have makes it impossible to use the methods developed in Chatterjee 

(1959, 1960) or Srivastava (1967). Yet this structure is very common 

in statistical analyses. Suppose, for a simple example, we have four 

treatments characterized by observable independent random variables z1 , 

z2 , z3 , and z4 where Zi "'N(µi,cr 2), i= 1, ... ,4. We now define two con-

trasts 81 = µ1 - µ2 and 82 = µ1 + µ4 - 2µ 3 with natural estimators 

x1 = z1 - z2 and x2 = z1 + z4 - 2z3 , respectively. Now (x1 ,x2)' has the 

bivariate normal distribution with mean vector= (8 1 ,8 2) 1 and dispersion 

matrix= cr2H where H = (i !). While estimating the contrast vector 



(6 1 ,6 2)', we may very well ask for a confidence region of the type Rn 

with prescribed accuracy. Naturally, in most of these types of applica-

tions, the present formulation and its solutions are the reasonable ones 

to use. 

%p -1 %p-l We write f(x) = {2 f(%p)} x exp(-%x)I (x> 0), with I(•) being 

the indicator of ( •). Thus, F (u) = ~u f (x) dx for u > 0. Now, we tur•1 to 

the introduction of the specific statistical procedures in separate 

chapters one after the other. 

9 



CHAPTER II 

A TWO-STAGE PROCEDURE 

We start the experiment with m (.:. 2) random samples ; 1 ,;2 , .•. ,;m. 

We propose the following two-stage procedure in a manner similar to 

that defined in Stein (1945, 1949), Chatterjee (1959, 1960), and 

Mukhopadhyay (1982). We let b = pb' where b' is the upper lOOa.% point 

of a F(p,p(m-1)) distribution, and define 

2 2 
N = max{m,[bS /d] + 1}, 

m 
••• (2 .1) 

where N is a positive integer valued random variable denoting the stop-

ping time. If N = m, we stop sampling at the starting stage. Otherwise, 

we sample the difference N - m at the second stage. This way, we will 

have ; 1 ,;2 , .•. ,~ as our random samples. We then compute~ and propose 

the region~ as defined in (1.1). The following theorem lists some of 

the properties of the two-stage procedure (2.1). 

Theorem 1: For the two stage procedure (2.1) we have: 

i) 

ii) 

iii) 

iv) 

Proof: 

P{1! E ~} ~ 1- a. for all 1! E JRP and cr E (Q,oo); 

2 2 
lim E(N/C) = b/a, where C = acr /d; 
d-+O 
lim {~V(N) p(m-1) (bcr2/i)-2} = 1; and 
d-+O 
lim P{µ ER_} = 1- a. for all µ E JRP and cr E (0, 00). 

d-+O - -~ - - -

To prove part (i), notice that 

10 
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P{~ E ~} P{ ~ E ~ , N = n} 
m<n<co 

E P{ µ E R , N = n}. 
- n m<n<co 

The event {N = n} depends only on s 2 and the event { µ E R } depends 
m' - n 

only on X for every fixed n > m. Using Helmert' s orthogonal transforma
-n 

2 
tion, we see that X is independent of S for every n_> m, and thus we can 

-n m 

write 

P{ !: E ~} = P{ µ E R } P{N = n} 
- n m<n<co 

2 2 
F(nd /0 ) P{N = n} 

m<n<co 

However, we have N>bS 2/d2 which implies that Nd2 /a2>bs 2;a2. Thus, 
m - m 

Let u"'/(p) and be independent of s 2 . Then, 
m 

E{P{U < bs2 /02 I s 2 }} 
- m m 

P{F(p,p(m-1)) < b'} 

1 - a, 

by the choice of b'. 

The proof of part (ii) is trivial once we notice the basic inequal-

ity, 
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... (2.3) 

and then we divide by C and take expectations throughout. 

To prove part (iii), we again use the inequality (2.3); and we obtain 

and this leads to 

2 2 2 2 However, p(m- l)S /cr 'v x (p(m-1)) and so we have E(S-) 
m m 

4 {2/(p(m-l))+l}cr. 

Therefore, we can write 

2 22 2 2 2 2 
(bcr /d ) (2/(p(m- l)) + 1) 2 E(N ) 2 m + 2m(b/d )cr 

Now, part (ii) gives us 

Combining (2.4) and (2.5), we get 

2 22 2 2 2 
(bcr /d) (2/p(m-1))- (m +2mbcr /d) 2 Var(N) 

2 2 2 2 2 2 
..'.:.m +2mbcr /d +(bcr /d) {2/(p(m-1))}, 

which implies that 

2 cr and 

... (2. 4) 

... (2.5) 
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2 2 2 2 2 -1 1 - (m + 2mbcr Id ) { (bcr Id ) (2/ (p (m - 1)))} 

2 2 2 -1 
.::._ Var(N){(bcr /d) {2/(p(m- l))} 

2 2 ? 2 2 -1 
.::_l+(m +2mba /d-){(bcr /d )(2/(p(m-1)))} . 

Part (iii) follows inunediately by taking limits as d-+ 0. 

To prove part (iv), we take the limit as d-+O in (2.2) and apply the 

dominated convergence theorem to write 

lim P{~ E ~} 
d-+O 

lim E{F(Nd2/cr 2)} 
d-+O 

= E{F(lim Nd 2/cr 2)}, 
d-+O 

From the inequality (2.3), it follows that 

and thus we have 

lim P { µ E R_ _} = E { F (b S 2 Id 2) } . 
d-+O - -~ m 

This was shown earlier to be equal to 1- a. This completes the proof 

of Theorem 1. 

Remark 1: If we take p = 1, Stein's (1945, 1949) results will follow as 

special cases of our Theorem 1. In part (ii), we have the limiting ratio 

b/a which is almost always numerically found to be greater than one. 

However, this naturally depends on the values of p, m, and a. The reader 

is referred to Corollary 4.2 in Ghosh (1973). The part (iv) tells us that 

the procedure (2.1) is "asymptotically consistent", while part (i) shows 

that the property of "exact consistency" holds. One is referred to 



(1.3) and (1.4). Now, in order for the limiting ratio in part (ii) of 

Theorem 1 to be unity, we consider next a modified version of the two

stage procedure. 

14 



CHAPTER III 

A MODIFIED TWO-STAGE PROCEDURE 

Motivated by the results of Mukhopadhyay (1980, 1982) and of Ghosh 

and Mukhopadhyay (1981), we first choose and fix a real number 

y E (O ,oo) and let 

2 1/ (l+y) m = max{2,[(a/d) ] + l}. 

Then, with the starting sample size m determined this way, we define 

N 
2 2 

max{m,[bS /d] + l}, 
m 

... ( 3 .1) 

where N, the stopping time, is a positive integer valued random vari-

able. The rtumber b remains the same as in (2 .1). Again if N = m, we 

stop sampling at the starting stage itself. Otherwise, we sample the 

difference N - m. We compute ~ and propose the confidence region ~ for 

µ. The main point to observe here is that m-+ 00 as d-+ 0, but m/C-+ 0 as 

d-+ 0. Thus, b/ a-+ 1 as d-+ 0. Some properties of the modified two-stage 

procedure (3.1) are listed in the following theorem. 

Theorem 2: For the modified two-stage procedure (3.1) we have: 

i) P{]! E ~} ~ 1- a., for all !:! E JRP and 0 E (0 ,oo); 

ii) lim 
d-+O 

E(N/C) 2 2 = 1, where C = ao /d; 

iii) lim 
d-+O 

2 2 -2 {\V(N)p(m- l)(bo /d) } = 1; and 

iv lim 
d-+O 

P{ l1 E ~} = 1 - a. for all !:! E JRP and 0 E (O,oo). 

15 
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Proof: Parts (i), (iii), and (iv) follow along the same lines as those 

of the two-stage procedure discussed in Chapter II. To prove part (ii), we 

we consider the new basic inequality 

Taking expectations on all sides and dividing by C now yield 

b/a .::_ E(N)/C .::_ cr-2 (d 2/a)y/(l+y) + b/a + 4/C. 

After taking limits as d-+O, we then conclude that 

E(N/C)-+ 1 as d-+ 0. 

This completes the proof of our Theorem 2. 

Remark 2: If we fix p = 1, Mukhopadhyay' s (1980) results will follow as 

a special case of our Theorem 2. 

Remark 3: It is particularly important to note part (ii) which shows 

that the modified two-stage procedure satisfies equation (1.5). Parts 

(i) and (iv) verify that (1.3) and (1.4), respectively, are satisfied 

by the procedure in (3.1). One major advantage here is that in order 

to conclude lim E(N/C) = 1, one does not have to go through a purely 
d-+O 

sequential procedure. Utilizing the remark 4 from Mukhopadhyay (1982), 

one can easily conclude that lim inf E (N - C) = + 00 for our modified two
d-+O 

stage procedure (3.1) with p = 1 or 2. We conjecture that this is true 

for all integers p .:_ 1. With a view toward removing this type of unde-

sirable property, we now resort to a purely sequential scheme along the 

lines of Ray (1957) and of Chow and Robbins (1965). 



CHAPTER IV 

A PURELY SEQUENTIAL PROCEDURE 

We start the experiment with m ( ~ 2) random samples ! 1 ,;2 ,,,, ,!m, 

After that we take one sample at a time and define N to be the first in-

2 2 
teger such that n > as Id • 

n 
. •• (4 .1) 

Once again the stopping time N is a positive integer valued random vari-

able with P (N<00) = 1 for all µEJRP and crE (0, 00 ) • After sampling is stopped, 

we have N random samples ! 1,!2, ••• ,~ in hand. We compute~ and pro

pose the confidence region~ for~ as in (1.1). Some of the properties 

of the purely sequential procedure (4.1) are listed in Theorems 3 and 4. 

Theorem 3: For the purely sequential procedure (4.1), we have: 

i) P{]: E ~} = E{F(Nd2/cr2)}; 

ii) Ji~ P{l:! E ~~} = 1- a. for all ];! E JRP and cr E (O,co); 

iii) N/C + 1 w.p. 1 as d+O, for all ]!E ]RP and crE (0,oo); 

iv) E(N) ..::_ C + 0(1); 

v) lim E(N/C) = 1; and 
d+O 

vi) (2C/p)-~ (N-C) ~ N(0,1) as d+O. 

Proof: To prove part (i) first notice that the event "N = n" and X are 
-n 

independent for every fixed n > m. Now, 

17 



P{)! E ~} = I: P{~ E ~, N = n} 
m<n<co 

E 
2 ·2 

F(nd /cr )P{N = n} 
m<n<co 

= E{F(Nd2/i)}, 

which is part (i). To prove parts (ii) and (iii), we first note that 

as;/d2 ~N, since we stopped at the Nth stage. 
2 2 

Also, aSN-l / d > N-1 for 

N > m, since we did not stop at the (N - 1) th stage. Thus, we can easily 

write the following inequality: 

Dividing throughout by C and then taking limits as d-+ 0 we obtain 

lim (N/C) = 1 w.p. 1 which proves part (iii). In other words; we can 
d+O 
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also write Nd 2 I c/ + a w. p. 1 as d + 0. Hence, using the dominated conver-

gence theorem, we obtain 

lim P{t: E ~} = E{F(lim Na2/cr2)} = E{F(a)} 
d+O d+O 

1 - a.' 

by the choice of "a". This proves part (ii). To prove part (iv), we re-

call that 

and 

P n 
s 2 = {p(n-1)}-l E E 

n 
- 2 

(Y .. - y. ) ' 
l.J in i=l j=l 

2 2 
N-1 < (m-1) + (a/d )SN-l 

2 -1 p 
= (m-1) + (a/d ){p(N- 2)} E 

i=l 
p N 

< (m-1) + (a/a2){N- 2}-l E E 
i=l j=l 

N-1 
- 2 

E (Y .. - y. N 1) 
l.J l.' -j=l 

2 
(Y .. - µ.) /p. 

l.J l. 



This implies that 

(N - l)(N - 2) < (m - l)N + (a/d2) 
p N 
Z:: Z:: 

i=l j=l 

2 
(Y .. - µ.) /p, 

l] l 

2 2 2 
By using the facts that (N- 1) (N- 2) > N - 3N and that E(N ) > {E(N)} , 

and by combining them with Wald's first equation, we get 

{E(N)} 2 - 3E(N) < (m-l)E(N) + (a/d2)iE(N), 

assuming E (N) < oo, Then, dividing throughout by E (N) yields 

E(N) < C + m + 2. 
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In case E(N) can possibly be infinity, we can use the techniques of trun-

cation by defining Nk = min(k,N) for k = 1, 2, 3,.... We can immediately see 

from the preceding proof that E (Nk) .:::_ C + m + 2 since E (Nk) < 00 • Now, the· 

monotone convergence theorem will lead to part (iv), since Nk+N w.p. 1 

as k-+ 00 • 

To prove part (v), we utilize part (iv) to write 

E(N/C) < { (m+ 2)/C} + 1, 

and thus 

lim sup E(N/C) < 1. 
d-+O 

Also, Fatou's Lemma implies that lim inf E(N/C) > E{lim inf (N/C)}. But, 
d-+O - d-+O 

part (iii) implies that lim inf (N/C) = 1 w.p. 1 and hence we obtain 
d-+O 

lim inf E(N/C) = lim sup E(N/C) = 1, 
d-+O d-+O 

which proves part (v). The part (vi) follows from the main theorem of 

Ghosh and Mukhopadhyay (1975). Here, we give a sketch of the proof. From 

the stopping time N defined in (4.1), we can equivalently write 



N 
2 -1 n-1 

inf{n > m (~2): nd _::._ a(n-1) L (Y./p)}, 
l. i=l 

2 2 
where Y1 ,Y2 , ... are i.i.d. cr x (p) random variables. 2 

Since S has the 
n 
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form of a sample mean, the part (iii) and Anscombe's (1952) theorem will 

now immediately give 

and 

N\s~-l - i) 
(2/p)\cr2 

~ H(0,1) 

as d·+ O; 

as d-+ 0. 

Now, applying Theorem 3 in Ghosh and Mukhopanhyay (1979) with v = l/d2 , 

2 
$ = a/d, and T v n 

2 = S we can conclude part (vi). 
n 

This completes the 

proof of Theorem 3. 

Before we state and prove the next theorem, let us discuss basic 

notation from the nonlinear renewal theoretic results of Woodroofe 

(1977). By using Helmert's orthogonal transformation, the sequential 

procedure (4.1) can be equivalently written as 

N inf{n_::._m: 
n-1 

L 
j=l 

* 2 -1 V. <n (1-n )p/C}, 
]-

... (4.2) 

* * 2 where v1 ,v2 , .•• are i.i.d. x (p) random variables. The condition (2.5) 

in Woodroofe (1977) is easily shown to be satisfied. Also, one can 

readily see that (4.2) has the same form as Woodroofe's (1977) 

2 
equation (1.1) with his a.=2, (3=1, c=p/C, µ=p, T =2p, ;>..=C, a=~p, and 

starting sample size (m-1). + Let x = max(O,x) for xER. Now, if we write 

a -1 a-1 -bx f(x) = {r(a)b } x e I (x> O) 
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and then use Woodroofe's (1977) example (on page 986) with his µ=E(X)=a/b, 

2 2 
T = V (X) = a/b , and S 

n 

n 
k E V'~ we can easily define 
2 i=l i' 

v = v (a,b) 
a. 

-1 2 2 -1 00 -1 . + 
S(2ab) {(a.-1) a +a}-b En E{(bS -naa.) } 

n=l n 

-1 -1 2 2 00 -1 + 
b {S(2a) ((a.-1) a +a)- En E{(bS -naa.) }}. 

n=l n 

Therefore, we get 

00 

-1 2 2 -1 + 
v (a,l) = S(2a) {(a.-1) a +a}- En E{(S -no.a) }, 

a. n=l n 

and it is easily seen that 

v = v (a,b) 
a. 

-1 
= b v (a,1). 

a. 

So, if X'v /(p), then a= YzP and b = ~; and thus, 

= 1 + YzP - 2h (p) , • , , ( c+. 3) 

where h(p) = ; n-~(n,p), with k(n,p) = E{ (Yz ¥ V~ - np) +}. Since the 
n=l i=l l 

* 2 V.'s are i.i.d. x (p) random variables, it can be easily seen that 
l 

* n 
T=!-zE V. is a gamma (Yznp,l) random variable. 

l 
Therefore, E (T) =~np=V (T) . 

i=l 
We can now write, 

+ (oop E{ (T - np) } = -n ( t - np) f ( t) d t 

-1 roo 1znp -t (00 Yznp-1 -t { r (Yznp) } {-np t e d t - np -np t e d t} . 



Let 

i; t%np e -t dt , 12 = i; t%np e -t dt , 

( ) Loo yu-1 e-y dy G u;v = v for u > 0, v > 0. 

Using integration by parts we get, 

Also, 

J;;np -np 
I = (np) 2 e + %npG(%np;np). 

1 

I = G(%np ;np). 
2 

Therefore, we can conclude that 

and 

+ -1 %np -np E{(T-np)} = {r(%np)} {(np) e - %npG(%np;np)}. 

Thus, v can be computed to any desired level of accuracy by utilizing a 
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table of incomplete gamma functions. The tables from Pearson (1922) and 

Harter (1964) are helpful for this purpose. Let us define 

-1 n = 1.5 - p (1+ 2h(p)). . .. (4.4) 

Theorem 4: For the sequential procedure (4.1) we have: 

i) E(N) = C + n + o(l) as d+O, if m > 1 + 2p-l and 

ii) P{l! E ~} 
2 -2 -1 2 (1 - a.) + d cr { nf (a) + ap F" (a)} + o (d ) 

as d-+ 0, if (a) m .:".. 7 for p = 1, (b) m > 3 for p = 2 or 3; and 

-1 
(c) m.:-..1 + 2p for P.:-..4, 

where the number n is defined in (4.4). 

Proof: Part (i) of Theorem 4 follows directly from Theorem 2.4 of 
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Woodroofe (1977) with the number n coming from (4.4). From part (i) of 

Theorem 3, we have 

... (4.5) 

where N, the stopping time, comes from (4.1) or equivalently from (4.2). 

Using the Taylor's expansion, we obtain from (4.5) 

2 2 
(1-a.)+(d /o )f(a)E(N-C)+ 

••• (4.6) 

where Wis a suitable random variable between a and Nd 2Jo2 , and N* 

-k 
C 2 (N-C). It is also clear that W-+a in probability as d-+O. Now, let 

h(x;p) =e-x/ 2 x(p/Z)-l. Then, h(x;p) attains its maximum at x=x*(p)=p-2 

for every fixed p > 2. Also, we can write for x > 0: 

kp+l -1 kp -1 
F"(x) = -{2 2 r(%p)} h(x;p)+(%p-1){2 2 r(%p)} h(x;p-2). 

We now consider the separate cases for p, namely p > 4, p = 1, 2, 3, and 4. 

Case 1: Let p > 4. Then 

*2 *2 
IN F"(W) I ~ N { lklh(p-2;p) I+ lk2h(p-4;p-2) l} 

where 

kp+l -1 
k = { 2 2 r (%p) } 

1 
%p -1 ={~p-1}{2 f(!2!))}. 

Notice that the two terms inside the brackets are bounded above by posi

*2 tive constants. Also, Woodroofe's (1977) Theorem 2.3 implies that N 

-1 *2 
is uniformly integrable if m > 1 + 2p • Thus, N F" (W) is also uniformly 

integrable. Now, from part (vi) of Theorem 3, it follows that 
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*2 L 2 %pN ~ x (1) as d + 0. Since W+ a in probability as d + 0, 

*2 L 2 *2 %pF"(W)N ~ F"(a)x (1) as d+O. Hence, we obtain E{N F"(W)} 

(2/p)F"(a)+o(l) as d+O. Thus, (4.6) immediately leads to part (ii). 

Case 2: Let p = 4. Then, 

*2 1 1 2. N I- 8h(2;4) +%b(0;2) I 

where the quantity inside the brackets is a bounded positive constant. 

Therefore, N*2F"(W) is again uniformly integrable if m > l+ 2p -1; and we 

obtain the same result as in Case 1, after we use (4.6). 

Case 3 : Let p = 3 • Then, 

= I Z I, say. 

Let A be the event that N>%C. Write Z=ZI(A)+ZI(A') which implies 

Now, 

lim E{Z} 
d+O 

IZI(A) I 

lim E{ZI(A)} + lim E{ZI(A')}, if the limits exist. 
d+O d+O 
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Since W is between a and Nd 2 /02 and A is the set where N > :lzC, this im-

1 d 2/ 2 7 piesN 0>,Yza. Thus, W > :!za on the set A, and we obtain 

Hence, !zr(A) I -1 
is uniformly integrable if m > 1 + 2p Also, I (A) + 1 in 

probability as d+ 0. Thus, we have 

E{ZI(A)} (2/p)F"(a)+o(l) as d+O. 

On the other hand, we know that N .'.':_YzC on the set A' and thus, 

E{ZI(A')} 

2 2 
Again, since Wis between a and Nd /0 and N.'.':_YzC on the set A', 

d 2 I 2 1 2 I 2 -~ ( 2 I 2) -~ N 0 .'.':_Yza. Thus W < a and W > Nd 0 implies W < Nd 0 . 

.'.':. a:lzc{2512r (3/2) }-l {, dP + 

a-Yzc{2512r(3/2)}-l 1, (C/N)Yz dP 

Therefore, 



From Lemma 2. 3 of Woodroofe (1977), we have for O < y < 1, 

P (N .::_YzC) 

*r 
as d-+ 0 where E (V 1 ) < 00 with r > 2. Thus, one can readily see that for 

m> 2, lim E{ZI(A')} = 0. This leads us to part (ii) for p=3, since now 
d-+0 

we can write E(Z) (2/p) F" (a)+ o (1) as d-+ 0, and we of course utilize 

( 4 . 6) as well. 

Case 4 : Let p = 2 . Then , 

*2 
< \N 

S . N* 2 . 'f 1 . bl f 1 2 -l \ *2 "( )[ ince, is uni orm y 1ntegra e or m > + p • so is N F W . 

Using the same-arguments as before, we can write 

E{N* 2F11 (W)} = (2/p) F" (a) + o (1) as d-+ 0. 

Case 5: Let p = 1. Then, 

Again, let A denote the event that N > YzC. Then, 

where the quantities inside the absolute values are bounded positive 
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constants. Hence, \ ZI (A) I is uniformly integrable if m > 3, which in turn 



implies that E{ZI(A)} = (2/p)F"(a)+o(l) as d-+O. 

{2312r(~)}-1 , we can write 

E{ lzr(A') I} = l, lzl dP 

* Again, with b 

* fi *2 -k * fi *2 -3/2 < b N W 2 dP + b N W dP - 'A' 'A' • 

-k 2 2 -k 
Also, W 2 <(Nd/a) 2 on the set A', and so we obtain 

* -k N 2 k 
b a 2 i, C(l-C) (C/N) 2 dP+ 

3/2 5/2 
In order to make C P (N ~~C) and C P (N ~~C) both converge to zero as 

d-+ 0, the same basic techniques used at the end of Case 3 would lead us 

to the sufficient condition that f-t(m - 1) < 0, that is we need m > 6. 

Earlier, we found the condition m > 3. Thus, for m .~ 7, we have 

lim E{ZI(A')} = O. Hence, for m~7, we have part (ii), since 
d-+0 

E{N* 2F11 (W)} = (2/p)F"(a)+o(l) 

as d-+ Q. 

This completes the proof of Theorem 4. 
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Remark 4: The part (i) of our Theorem 4 shows that the purely sequential 

procedure (4.1) is indeed "asymptotically second-order efficient" in the 

Ghosh-Mukhopadhyay (1981) sense, since we have here lim E (N - C) = n. 
d-+O 

One 
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is also referred to remark 3. 

4.1 Rate of Convergence for the 

Distribution of N 

Let us write N= (2C/p)-~(N-C) where N comes from (4.1). Let 

G(x;d) = P(N.:':_x) and 4>(x) -k lx 2 (21r) 2 exp(-~t ) dt for x E (-00,00). 
-co 

The part (vi) of Theorem 3 shows that G(x;d) + 4>(x) as d+ 0, for each 

x E (- 00 , 00). The following theorem studies the rate of convergence for 

this result. 

Theorem 5: For the sequential procedure (4.1), we have as d+ 0: 

Sup IG(x;d) - 4>(x) I = O(d~-y), 
-co<x<co 

for every fixed y E (O,~). 

Proof: The stopping time N defined in (4.1) can be equivalently written 

as follows: 

* 
*2 *-1 2 n 

n (1 + n ) > (a/ d ) l: (Y. /p)}, 
- i=l 1 

N = inf{n > m ( .:_ 2): ... (4.7) 

where n*=n-1 and Y1 ,Y2 , ... are i.i.d. c:r2x2 (p) random variables. 

Notice that N defined in (4.7) has exactly the same form as that of 

*-1 2 
Ghosh' s (1980) representation with his a.= 2, L (n) = (1 + n ) , 1jJ = al d 

v 
n* 

and T = , l: (Yi/p) , where the Y. 's are i. i. d. gamma random variables with 
n 1=1 · 1 

-2 
parameters 12!> and ~cr both being positive. Now Ghosh's (1980) Theorem 

2 implies 

( -~+~y) = 0 C , as d+ O. .•. (4.8) 



Now, let us write G. = Y. /p with 
l. l. 

Then, N*2 (SN2 - cr2) = N:t (G. - cr2) 
i=l l. 

* 

implies that 

(.1E:)Yz -2 N 2 a r (G. - cr ) 
N* i=l 1 

* k -2 2 2 (YzpN ) 2 cr (SN - cr ) • 
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Let N*=N-1. 

Thus, the main results from Landers and Rogge (1976) and Ghosh's (1980) 

equation (1.3) imply 

I * k 2 2 2 Sup P{ (YzpN ) 2 (SN - cr ) 2. xcr } - Hx) I = 
-h;+ky 

0 (C <J 2 ) • 

-oo<x<oo 

However, we also have 

{I *Yz -Yz I -~+Yzy} P N N -1 > C 

k -k J,,;+ky = p { I (N - 1) 2 N 2 - 11 > c - <J 2 } 

k -k k -k k+y 
= p { I (N - 1) 2 N 2 - 111 (N - 1) 2 N 2 - 11 > c - 2 } 

k -k k -k -k+y 
2. P{ I (N - 1) 2 N 2 - 111 (N - 1) 2 N 2 + 11 > c 2 } 

1 k+y 
2_P{ICN- -11 > C2 -1} 

1 k+y 
2. p { I CN - - 11 > kC 2 } ' 

for sufficiently small d, and for some kE (0,1). Now, we get 

1 k+y p { I NC - - 11 > kC 2 } 
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Hence, we can write 

I * k 2 2 *% -% 2 I Sup P{ (%pN ) 2 (SN- cr ) < N N xcr } - 4>(x) 
-oo<x<oo 

k 2 2 2 
= Sup , IP{ (%pN) 2 (SN- cr ) < xcr } - Hx) I 
-oo<x<oo 

as d + 0, after using Lemma 10 from Landers and Rogge (1976) • In a similar 

manner, we can show that 

· k 2 2 2 -!-:;+ky 
Sup !P{(%pN) 2 (SN-l -cr) < xcr }-Hx)I = O(C 4 2 ), 

-oo<x<oo 
•.• (4.9) 

as d-+ O. 

Then, combining (4.8), (4.9), (4.10), and Ghosh's (1980) Theorem 3 

we conclude that 

Sup !P{(2C/p)-%(N-C) 2_ x}-4>(x)I 
-oo<x<oo 

= Sup !P{N 2_x} - Hx) I 
-oo<x<oo 

as d + O. This proves Theorem 5. 



CHAPTER V 

A THREE-STAGE PROCEDURE 

Motivated by the results of Hall (1981), we now propose the follow-

ing three-stage procedure. 

We start the experiment with m ( ~ 2) random samples ; 1 ,;2 , .•. ,;m. 

We fix a real number r E (0,1). We define 

2 2 
M = max{m, [raS /d ]+l}, ... (5.1) 

m 

and take new samples, if needed, to form ; 1 ,;2 , .•• ,~1• We let 

2 2 
N = max{M, [aSM/d ] + l}, ..• (5.2) 

and take new samples, if needed, to form ; 1,;2 , .•• ,~. Once we determine 

N, we propose the confidence region~ for E as indicated in (1.1). The 

following theorems study expansions of E (N) and P{ ~ E ~} as d + 0. 

Using the representations analogous to those in (4.2), we can easily 

rewrite (5.1) - (5.2) in the following equivalent fashion: 

and 

- 2 M = max{m, [raU /d ] + l}, 
m 

••• (5. 3) 

- 2 
N = max{M , [ aUM/ d ] + 1}, ... (5. 4) 

_ -1 k-1 
where Uk= (k-1) }: (U./p), k=m,m+l, ... , theU.'s being i.i.d. 

i=l 1 1 
2 2 

CJ x (p) • 

31 
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Theorem 6: Let C=;\o.2 with ;\=a/d2 . Then, for the three-stage procedure 

(5.1) - (5.2), we have as d+O: 

i) E(N) C + Yz - 2(pr)-l + o(l); 

ii)V(N) 2(pr)-1c+o(;\); and 

iii> E{!N-E(N)! 3 } = o(;\ 2). 

Proof: We follow very closely the developments in Hall (1981). We 

indicate only some of the basic steps assuming cr 2 = 1. Using (4.1) 

of Hall (1981), we get 

-1 -1 
:\ - r V(p T\) + o(l) 

-1 
A - 2(pr) + o(l). ... (5. 5) 

Also, E{;\UM- [ADM]}= Yz+ o(l), and this can be justified along the lines 

of Hall (1981). Let T=[AUM]+l. Then, Hall's (1981) equation (4.2) 

will lead to 

E(N) E(T)+o(l) 

1 + E(;\UM) - E{;\UM- [ AUM]} + 0 (1) 

-1 
;\+Yz-2(pr) +o(l), ... (5.6) 

where the last step was obtained by using (5.5). Again, by using (4.3) 

and (4.4) from Hall (1981), we obtain 

V(N) V(T)+o(l) 

-1 -1 
r W(p u1)+o(l) 

-1 
2(pr) ;\+o(;\). ... (5. 7) 

2 
In (5.6) and (5.7), replacing A by ;\a we obtain parts (i) and (ii) of 
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Theorem 6. We omit the proof of part (iii) as it can be tackled along 

the similar lines of Hall (1981). This completes the proof of Theorem 6. 

We now modify the three-stage procedure (5.1) - (5.2) slightly so as 

to be able to conclude that the resulting coverage probability turns out 

as (1 - a.) + o (i). Towards that end, we define: 

-1 -1 -1 m1 = {f(a)} ({2(pr) -~}f(a)-a(pr) F"(a)), 

2 2 M = max{m , [ raS / d ] + 1}, and 
m 

* 2 -2 N = max{M, [aSMd +m1] + 1}. 

••• (5. 8) 

. .• (5. 9) 

We extend the starting samples ; 1 ,;2 , ... ,~m to ; 1 ,;2 , ... ,~l*' and propose 

the corresponding region~* for H· 

Theorem 7: For the modified three-stage procedure (5. 8) - (5. 9), we have 

as d-+ 0: 

2 
i) P { H E ~*} = ( 1 - a) + o ( d ) , and 

* -1 ii) E(N) = C-aF"(a){prF'(a)} +o(l). 

Proof: We first verify part (i). In fact, we start working with (M,N) 

from (5.1) - (5.2); and at the end show that N must be modified to N* to 

conclude part (i). 

We still have 

E{F(R.N)}, 

2 2 
where Q, = d I cr . Now, we can write 

E{F(rn)} F(Q.E(N)) +~t2E{ (N- E(N)) 2}F"(Q.E(N)) + rl (d), 

say, where 
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by part (iii) of Theorem 6. Here k ( > O) is a generic constant indepen-

dent of d. Again, we have 

F(Ji,E(N)) = F(a)+{J1,E(N)-a}F'(a)+r2 (d), •.. (5 .10) 

say, where 

2 
r 2 (d) = ~(R.E(N) - a) F"(z), 

for a suitable positive number z. 

Let us now use A=A(d)=a(l+e:)/d2 ; and with this choice, lr2 (d)i = 

o (d2 + I e: I). Also, we have from part (i) of Theorem 6, 

2 -1 
tE(N)-a = t(A.cr +~-2(pr) +o(l))-a 

2 -2 -1 2 
= ae:+d a (~-2(pr) )+o(d ). •.. (5 .11) 

Thus, combining (5.10) and (5.11), we obtain 

2 -2 -1 2 2 I I F(tE(N)) = F(a)+F'(a){ae:+d a (~-2(pr) )}+o(d )+o(d + e: ) . 

..• (5.12) 

Again, we have from part (ii) of Theorem 6, 

2 -1 2 -2 2 
~R.E{ (N- E(N)) } = (pr) ad a + o(d ) . ... (5 .13) 

By combining (5.12) and (5.13), we get 

2 -2 -1 2 
E{F(tN)} = (1-a.)+F'(a){ae:+d a (~-2(pr) )}+o(d) 

2 -2 -1 2 2 I I +{ado (pr) +o(d)}F"(a)+o(d + i::) 

2 -2 -1 
= (1-a.)+{ae:F'(a)+d a (~-2(pr) )F'(a) 
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2 -2 -1 2 2 I I + ad cr (pr) F"(a)}+o(d )+o(d + e: ). • •. (5.14) 

To make the second term from the left in (5.14) vanish, we choose e: such 

that 

-1 -1 
Ce:= {(2(pr) -%)F'(a)-a(pr) F"(a)}/F'(a) 

which leads to 

2 2 -2 
A.CJ = C + ae:cr d 

-1 -1 -1 
= C+{F'(a)} {(2(pr) -%)F'(a)-a(pr) F"(a)} 

= C +m1 • 

Now, we can immediately see from (5.14) that 

2 
(1 - a.) + 0 (d ) ' 

as d-+ 0. This proves part (i) . 

For part (ii), simply notice from part (i) of Theorem 6 that 

* -1 -1 -1 E(N) = C+%-2(pr) +(2(pr) -%-aF"(a){prF'(a)} )+o(l) 

-1 
= C - aF" (a) {prF' (a)} + o (1). 

This completes the proof of Theorem 7. 



CHAPTER VI 

MODERATE SAMPLE SIZE PERFORMANCES OF THE 

VARIOUS PROCEDURES 

In this chapter, we present numerical results obtained through 

simulations using FORTRAN programs on an IBM 3081 D computer system 

with WATFIV Compiler. Our subsections 6.1, 6.2, 6.3, and 6.4 contain 

respectively the numerical results of simulation studies for the two-

stage procedure of Chapter II, the modified two-stage procedure of 

Chapter III, the purely sequential procedure of Chapter IV and the three-

stage procedure of Chapter V. 

Let us now explain the way we carry out the simulations. In any 

particular table we use a particular "rule" to determine the sample size 

N. We utilize the subroutine called GGNML from IMSL (1982) to generate 

samples from N (O,I) with p = 1,2,3 depending on the situation, i.e., 
p -

]:! = Q and H= I with cr 2 = 1. A particular "rule" is replicated R times, the 

jth replicate giving rise 

and X. (') respectively. in J 

to observed values of N, and XiN as, say, n(j) 

- -1 R 
Then, we estimate E (N) and µ. by n = R . I n (j) 

i J=l 
" -1 R -andµ.= R I X. (') respectively. 
i j=l in J 

We also compute the corresponding 

standard errors 

2 1 R -2k 
S (n) = { (R - R) - I (n (j) - n) } 2, 

j=l 

36 
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We consider i=l, ... ,p and j=l, ... ,R. While using a particular rule, we 

also estimate the coverage probability of the region~ by, say, C.P. 

where 
P -2 2 

C.P. = relative frequency of i~l Xin(j) .2._d 

among all the replicates for j=l,2, ... ,R. Here, we are considering 95% 

confidence regions only, that is, we keep a= .OS fixed and dis computed 

k: 
using the realtionship d = (a/C) 2 • 

6.1 Moderate Sample Size Performances of 

the Two-Stage Procedure 

We use the "rule" as being the two-stage procedure of Chapter 

II. We give results for p = 2 and 3, m = 5 and 10, C = 10, 15, 20, 25, 50, 

100, with R= 300. The results for p = 1 can be found in Starr (1966). 

The Table I summarizes our findings. 

Remark 5: From Table I, we notice that n is always somewhat larger than 

C, however, almost always the coverage exceeds the target (1 - a) = . 95. 

The amount of oversampling reduces when we go from p = 2 to p = 3, and this 

is because of the increment in the degree of freedom of the estimate of 

2 
0 . The results also get better as m increases, and this is generally 

expected. We suggest that m be taken as 5 or 10 in the absence of any 

further knowledge. The values of S(n) are quite stable, son can be 

taken as good estimators of E(N). 

6.2 Moderate Sample Size Performances of the 

Modified Two-Stage Procedure 

Here, we use the "rule" as being the modified two-stage procedure of 

Chapter III. We naturally have to choose y ( > O) suitably. We first fix 
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TABLE I 

TWO-STAGE PROCEDURE (2.1) WITH R= 300 

c d S(n) 
A A A 

C.P. p m n )11 )12 \13 

2 5 10 0.774 15.27 0.44 -0.005 -0.001 0.953 

15 0.632 23.64 0.73 0 .011 -0.004 0.967 

20 0.547 29.52 0.81 -0.011 0.008 0.953 

25 0.489 39.58 1. 16 -0.018 0.017 0.950 

50 0.346 75.26 2. 11 0. 011 -0.007 0.963 

100 0.245 158. 15 4.87 0.009 -0.009 0.950 

2 10 10 0. 774 12.59 0. 18 0.004 0.016 0.970 

15 0.632 18. 19 o. 34 -0.012 -0.007 0.963 

20 0.547 24.57 0.46 -0.008 -0.008 0.957 

25 0.489 29.41 o. 56 0.016 0.012 0.960 

50 0.346 60. 28 1. 19 -0.002 -0.001 0.953 

100 .0.245 119. 68 2. 18 0.013 -0.003 0.970 

3 5 10 0.884 13.87 0.31 -0.034 -0.015 -0.006 0.950 

15 0.722 20.90 0.49 -0.010 -0.002 0.016 0.960 

20 0.625 27. 10 0.66 0.031 -0.003 -0.008 0.933 

25 0.559 34.09 0.81 -0.016 -0.004 0.023 0.953 

50 0.395 69.01 1. 73 0.005 0.012 -0.012 0.957 

100 0. 280 134.36 3.02 -0.002 0.002 -0.001 0.950 

3 10 10 0.884 12.49 0. 15 -0.001 -0.013 -0.022 0.987 

15 o. 722 17.78 0.27 0.007 0.000 0.017 0.973 

20 0.625 23.73 0.38 0.000 -0.018 0.005 0.967 

25 0.559 28.93 0.46 -0.002 0.019 -0.020 0.953 

50 0.395 56.47 0.96 0.010 0.004 -0.002 0.947 

100 0.280 112. 37 1. 68 -0.009 0.001 -0.003 0.930 
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p= 1, and C= 24, 43, 61, 76, 96, 125, 171, 246, 384 as in Hall (1981). 

We select y= .1, .3, .5, .7 and 1.0 with R= 300. The results are most 

promising for y = . 3. In Table II, we summarize our findings for p = 1 

with R=300, except that for y= .3 in the third block, we consider R= 

1000. So, in Table II, the third block is comparable with Hall's (1981) 

findings. This modified two-stage procedure performs alrrost as good as 

or better than Hall's (1981) three-stage scheme. 

The Table III still uses the rule (3 .1) , but for p = 2, 3 and y = .1 

. 3, C = 10, 15, 20, 25, 50, 100, and R = 300. Here, y = .1 or . 3 seems to 

be the right choice. 

Remark 6: From our Tables II and III, we notice that the modified two

stage procedure (3 .1) per-forms very satisfactorily for y = . 3. The values 

of n are very close to C, and C.P. is also very much on the target. We 

recommend using the procedure (3.1) in practice with y= .3 in the absence 

of any further knowledge. 

6.3 Moderate Sample Size Performances of the 

Purely Sequential Procedure 

Here, we use the "rule" as being the purely sequential procedure of 

Chapter IV. Just to show the stability of the generator we are using, 

we provide with Table IV for p= 1, C= 10, 15, 20, 25, 50, 100 and m= 5, 

10 with R= 300. One can compare our Table IV with the corresponding 

findings in Starr (1966). Naturally, for increasing m, the procedure 

performs better. Also, ii and C.P. are close to C and (1- a) respective-

ly. 

In the case p = 2 and 3, Table V represents the results of simulation 
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TABLE II 

MODIFIED TWO-STAGE PROCEDURE (3.1) 
WITH p = 1, R= 300 

c d n S(n) 
A s (µl) C.P. y µl 

0.1 24 0.400 28.480 0.550 0.034 0.011 0.953 
43 0.299 48. 180 0.706 -0.009 0.009 0.937 
61 0.251 64.467 0.843 -0.011 0.007 0.957 
76 0.225 81. 620 0.890 0.010 0.006 0.950 
96 0.200 97.423 0.948 -0.002 0.006 0.947 

125 0.175 126.633 1. 171 -0.003 0.005 0.950 
171 o. 150 177. 197 1.379 -0.001 0.004 0.957 
246 o. 125 251. 277 1. 812 0.009 0.003 0.977 
384 0.100 383.463 2. 154 0.002 0.003 0.953 

0.3 24 0.400 31. 317 0.757 0.027 0.012 0.957 
43 0.299 49.590 0.994 -0.002 0.009 0.940 
61 0.251 68.627 1. 178 -0.011 0.007 0.947 
76 0.225 86.540 1. 303 0.007 0.007 0.947 
96 0.200 101. 237 1. 416 0.001 0.006 0.947 

125 0.175 126. 147 1. 517 -0.006 0.005 0.940 
171 o. 150 181.243 2. 100 -0.001 0.004 0.967 
246 o. 125 256.660 2.663 0.009 0.003 0.967 
384 0.100 406.406 3. 133 0.003 0.003 0.947 

0.3 24 0.400 30.677 0.410 -0.002 0.006 0.951 
* 43 0.299 50.557 0.518 0.003 0.005 0.960 

61 0.251 66.800 0.632 -0.005 0.004 0.941 
76 0.225 83.884 o. 720 0.002 0.004 0.960 
96 0.200 102.356 0.799 0.007 0.003 0.953 

125 o. 175 130.439 0.896 0.003 0.003 0.953 
171 o. 150 182.273 1. 137 -0.003 0.002 0.966 
246 o. 125 258.830 1. 391 -0.000 0.002 0.952 
384 o. 100 396.600 1. 749 -0.000 0.002 0.948 

0.5 24 0.400 34.023 1.088 0.028 0.012 0.937 
43 0.299 55.227 1.235 -0.008 0.008 0.957 
61 0.251 75.083 1.550 -0.005 0.007 0.967 
76 0.225 87.230 1.685 0.003 0.006 0.960 
96 0.200 110.090 1. 891 -0.002 0.006 0.960 

125 0.175 134.060 2 .105 -0.005 0.005 0.933 
171 o. 150 184.903 2.819 0.003 0.004 0.977 
246 o. 125 271. 537 3.642 0.007 0.004 0.953 
384 0.100 412.063 4.149 0.003 0.003 0.940 

0.7 24 0.400 38.610 1 . 311 0.016 0.012 0.943 
43 0.299 58.973 1. 553 -0.017 0.008 0.943 
61 0.251 77. 180 1.844 -0.004 0.007 0.940 
76 0.225 94.097 2.282 0.003· 0.006 0.957 
96 0.200 112. 703 2.680 0.002 0.006 0.923 

125 o. 175 140.097 2.873 -0.003 0.006 0.933 
171 o. 150 195.887 3.716 0.003 0.004 0.960 
246 o. 125 265.717 4.497 0.010 0.004 0.953 
384 o. 100 410.400 5.582 0.002 0.003 0.950 

1.0 24 0.400 52.703 1.992 0.007 0.011 0.950 
43 0.299 66.233 2.230 -0.014 0.008 0.967 
61 0.251 85.457 2.571 0.005 0.007 0.970 
76 0.225 103.010 2.907 -0.000 0.007 0.940 
96 0.200 128.040 3.713 -0.002 0.006 0.957 

125 0.175 152.737 3.667 -0.004 0.005 0.957 
171 0.150 205.000 4.713 0.003 0.004 0.947 
246 o. 125 284.213 5.843 0.007 0.004 0.927 
384 0.100 454.386 8.556 0.000 0.003 0.947 

---------

*This block is based on 1000 replications for ease of 
comparisons with Hall's (1981) table. 
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TABLE III 

MODIFIED TWO-STAGE PROCEDURE (3 .1) WITH R= 300 

---~--~------- - ---.--------
c d ii S(n) 

A A C.P. y p jll µ2 !l3 
" .. -·--·-----

0. 1 2 10 0.774 1-2. 84 0.22 0.024 0.041 0.953 

15 0.632 18. 12 0.26 0.008 0.038 0.953 

20 0.547 22.74 0.29 0.003 0.001 0.947 

25 0.489 27.33 0.37 -0.001 0.011 0.977 

50 0.346 53.24 0. 55 0.004 0.003 0.940 

100 0.245 103.95 o. 76 -0.006 0.004 0.963 

0.3 2 10 0.774 14.25 0.32 0.016 0.003 0.957 

15 0.632 18. 19 0.38 0.003 -0.030 0.960 

20 0.547 23.96 0.47 0.002 0.002 0.957 

25 0.489 28.93 0.46 -0.003 0.009 0.970 

50 0.346 56.46 0.71 -0.009 -0.006 0.953 

100 0.245 108.84 1 . 1 1 0.003 0.000 0.950 

0. 1 3 10 0.884 12. 18 o. 17 -0.002 0.013 -0.006 0.977 

15 0.722 16.77 0.20 -0.002 0.001 -0.022 0.973 

20 0.625 22.09 0.25 0.006 -0.010 -o. 011 0.957 

25 0.559 27.56 0.30 0.019 -0.007 0.003 0.963 

50 0. 395 52. 10 0.42 -0.007 -0.009 -0.003 0.957 

100 0.280 106.66 0.62 0.004 0.004 0.000 0.953 

0. 3 3 10 0.884 13.33 0.25 -0.010 0.013 0.007 0.973 

15 0.722 17.66 0.31 0.010 -0. 011 0.008 0.953 

20 0.625 22.54 0.33 0.021 -0.003 -0.005 0.943 

25 0.559 28.22 0.40 0.003 0.005 -0.003 0.957 

50 0.395 55.56 0.61 0.012 0.003 -0.010 0.953 

100 0.280 106. 10 0.84 -0.012 0.013 -0.001 0.957 
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TABLE IV 

SEQUENTIAL PROCEDURE (4 .1) WITH p = 1, R= 300 

c d ff S(n) 
A s (µl) C.P. m µl 

5 10 0.620 8.513 0.205 -0.019 37.839 0.893 

15 0.506 11. 973 0.326 0.023 37.728 0.843 

20 0.438 16.227 0.438 -0.001 24. 100 0.897 

25 0.392 20.557 0.528 -0.003 21. 823 0.873 

50 0.277 45.723 0.750 0.001 8.214 0.933 

100 0.196 97. 113 0.833 0.001 3.271 0.933 

10 10 0.620 11. 017 o. 120 0.007 32.031 0.940 

15 0.506 14.400 0.247 -0.001 24.451 0.923 

20 0.438 17.820 0.351 0.002 18.073 0.927 

25 0.392 22.643 0.464 0.015 15.753 0.923 

50 0.277 46.880 0.611 -0.000 7.586 0.927 

100 o. 196 98.397 0.850 -0.014 3.048 0.950 
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TABLE v 

SEQUElTTIAL PROCEDURE (4 .1) WITH R= 300 

p m c d i'i S(n) 
A C.P. 1-\ l-12 l-13 

2 5 10 o. 774 8.57 0. 18 -0.003 0.021 0.903 

15 0.632 12.87 0.27 0.005 -0.027 0.887 

20 0.547 17.73 0.31 -0.015 -0.015 0.870 

25 0.489 23. 18 0.36 -0.003 0.018 0.903 

50 0.346 48. 19 0.48 0.024 -0.006 0.943 

100 0.245 99.36 0.59 -0.001 -0.005 0.937 

2 10 10 0.774 10.91 0.09 -o. 011 0.007 0.957 

15 0.632 13.97 0,20 -0.000 -0.001 0.940 

20 0.547 18. 16 0.29 -0.019 0.000 0.927 

25 o. 489 23.47 0.33 -0.005 -0.001 0.910 

50 0.346 48.56 0.41 0.000 -0.022 0.920 

100 0.245 98.41 0.63 -0.001 0.000 0.943 

3 5 10 0.884 8.73 o. 15 -0.020 0.019 0.035 0.920 

15 0.722 13.58 0.23 -0.002 0.014 -0.001 0.923 

20 0.625 18.79 0.26 -0.029 -0.020 0.019 0.947 

25 0.559 24.20 0.30 0.024 -0.000 -o.011 0.900 

50 o. 395 49.40 0. 37 -0.004 0.000 0 .011 0.923 

100 0.280 98.73 0.45 -0.004 -0.010 0.009 0.947 

3 10 10 0.884 10.70 0.07 -0.003 -0.005 0.021 0.933 

15 0.722 14.03 0. 18 0.000 0.013 -0.013 0.920 

20 0.625 18.88 0.23 0.023 0.024 -0.008 0.903 

25 0.559 23.99 0.26 0.009 -0.026 0.020 0.903 

50 0.395 49.40 0.34 0.004 -0.006 0.008 0.953 

100 0.280 98.35 0.50 -0.005 0.016 -0.006 0.957 
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studies with R= 300, m= 5, 10 and C= 10, 15, 20, 25, 50, 100. The en-

tries of this table are similar to those of Table III except for the 

first column, where we now have the values of p. The conclusions from 

this table are similar to those discussed when p = 1 in Table IV. We 

recommend using the sequential procedure (4 .1) with m = 5 or 10 in prac-

tice. 

6.4 Moderate Sample Size Performances of the 

Three-Stage Procedure 

In this section, we use the "rule" as being the three-stage proce-

<lure of Chapter V. For p = 1, some numerical studies have been reported 

in Hall (1981) . We consider p = 2, 3 and C = 10, 15, 20, 25, 50, 100 with 

r= .25, .50, .75, R= 300, and m= 5, 10. 

The values of m1 as needed to implement (5. 8) - (5. 9) with a.= . 05 are 

given in the fifth column of Table VI for r = . 5. However, using the 

third and fourth columns of Table VI, one can find mi for any value of 

r E (0,1). We may point out that our m1 for p = 1 is the same as that of 

Hall (1981). 

While carrying out simulations with r= .75, we noticed some insta-

bility in the achieved coverage, namely C.P., with no detectable change 

in the estimates of the average sample sizes. Also, S(~) was somewhat 

higher than our usual expectations in some instances. On the other hand, 

the average sample sizes seemed to increase for r= .25. The results for 

r= .5 seemed to be most stable, and these are reported in Table VII. 

We compute 

- -1 
m = R 

R 
E m(j), 

j=l 

R 
E n* (j), 

j=l 
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TABLE VI 

VALUES OF m1 AS NEEDED IN (5.8) - (5.9) 

p a F' (a) F"(a) ml 

3.84 0.0298 -0.0188 8.339997 

2 5.99 0.0250 -0.0125 4.494996 

3 7.82 0.0224 -0.0097 3. 106661 

4 9.49 0.0206 -0.0081 2.372498 

5 11 .07 0.0193 -0.0070 1.913997 

6 12.59 0.0183 -0.0062 1.598331 

7 14.07 0.0174 -0.0056 1.367141 

8 15.51 0.0167 -0.0051 1. 188749 

9 16.92 0.0160 -0.0047 1 .046664 

10 18.31 0.0155 -0.0044 0.930999 

1 1 19.68 0.0150 -0.0041 0.834544 

12 21 .03 0.0145 -0.0038 0.752500 

13 22.36 0.0142 -0.0036 0.681538 

14 23.69 0.0138 -0.0034 0.620714 

15 24.99 0.0135 -0.0032 0.566001 

16 26.30 0.0131 -0.0031 0.518749 

17 27.59 0.0128 -0.0029 0.475882 

18 28.87 0.0126 -0.0028 0.437222 

19 30. 14 0.0123 -0.0027 0.402105 

20 31. 41 0.0121 -0.0026 0.370501 

21 32.67 0.0119 -0.0025 0.341428 

22 33.92 0.0117 -0.0024 0.314545 

23 35. 17 0.0115 -0.0023 0. 290000 

24 36.42 0.0113 -0.0022 0.267499 

25 37.65 0.0111 -0.0022 0.245999 

26 38.89 0.0110 -0.0021 0.226538 

27 40. 11 0.0108 -0.0020 0.207778 

28 41. 34 0.0106 -0.0020 0.190714 

29 42.56 0.0105 -0.0019 0. 174482 

30 43.77 0.0104 -0.0019 o. 159000 
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TABLE VII 

THREE-STAGE PROCEDURE (5.8) - (5.9) 
WITH R = 300, r= .5 

p m c d iii s (iii) n* s (ii*) A C.P. J..11 J..12 J..13 

2 5 10 0.774 6.23 0.12 14.10 0.21 0.013 0.016 0.980 

15 0.632 7.94 0.20 17.61 0.30 0.01!5 -0.000 0.973 

20 0.!547 10.37 0.26 21.99 0.38 0.025 0.003 0.9!57 

25 0.489 13.16 0.34 28.53 0.48 0.000 -0.010 0.963 

50 0.346 25.04 0.69 !52.68 0.67 0.00!5 0.02!5 0.933 

100 0.245 50.63 1.45 103.88 0.96 -0.004 -0.001 0.953 

2 10 10 0.774 10.01 0.01 15. 13 0.19 0.008 -0.004 0.983 

15 0.632 10.45 0.06 20.19 0.26 -0.009 0.005 0.980 

20 0.547 11.54 0.14 24.27 0.30 0.014 0.006 0.967 

25 0.489 13.04 0.20 27.98 0.40 ·0.006 ·0.010 0.963 

50 0.346 24.47 0.46 51.65 0.6!5 ·0.004 0.004 0.9!53 

100 0.245 50.56 0.91 103.49 0.84 -0.009 -0.002 0.950 

3 5 10 0.884 5.94 0.08 12.64 0.19 ·0.005 0.004 0.013 0.963 

15 0.722 8.25 0.16 17.62 0.28 0.009 0.022 0.011 0.9!57 

20 0.625 10.43 0.23 22.08 0.34 ·0.019 -0.012 0.007 0.9!50 

2!5 0.559 13.35 0.32 26.89 0.39 ·0.015 -0.011 -0.007 0.923 

50 0.395 2!5.03 0.59 !51.50 0.!57 0.010 0.008 0.006 0.923 

100 0.280 51.47 1.22 101.37 0.78 0.006 ·0.01!5 0.000 0.960 

3 10 10 0.884 10.00 0.00 13.58 0.15 -0.003 0.001 0.015 0.983 

15 o. 722 10.17 0.03 18.24 0.21 0.026 -0.005 -0.002 0.967 

20 0.625 11.44 0.12 23.17 0.28 -0.003 0.021 -0.008 0.967 

25 0.!5!59 12.80 0.16 26.54 0.33 ·0.004 0.009 0.010 0.933 

50 0.395 25.38 0.38 !12.24 0.!53 -0.00!5 0.004 0.005 0.940 

100 0.280 50.83 0.78 102.92 0.68 0.005 -0.001 -0.002 0.9!57 



S(m) 
R 
I: 

j=l 

R 
I: 

j=l 

- 2 Yz (m(j) - m) } , and 

* 2 k (n' (j) - n*) } 2 , as well. 
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We may note that n:* and C.P. are very close to C and (1- a.), respective-

ly. In the absence of any further knowledge, we suggest using the three-

stage procedure (5.8) - (5.9) with r= .5 and m= 5 or 10. 

Remark 7: In a particular application, if all our procedures can possi-

bly be implemented, we will suggest using the modified two-stage or the 

three-stage procedure, simply because these will be less time-consuming. 

However, the sequential procedure will give the best theoretical results 

if it can be implemented. The main point to note is that the three-stage 

procedure can be almost as good. The final recommendation should also 

consider the structure and design of the particular applied problem. 

Overall, the choice seems to be between the three-stage and the purely 

sequential procedures. We must also stress that we have P{ e E ~} to be 

at least (1- a.) with lim E(N/C) = 1 for the modified two-stage procedure 
d-+O 

of Chapter III. However, the coverage becomes only asymptotically (1 - a.) 

for the three-stage and sequential procedures. So, depending on the 

goal, the modified two-stage procedure can be just as appealing and pos-

sibly be more practical to use because in this case one does not need to 

go to the third stage for sampling. 

Remark 8: For all the problems discussed in Chapters II - VI, it will 

indeed be very interesting to study various effects of considering the 

James-Stein (1961) estimators instead of the more conventional ones like 



~ in defining the region~· Both numerical and theoretical develop

ments would be very challenging. This particular area has just started 

to grow only recently. One is referred to Ghosh and Sen (1983). 
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CHAPTER VII 

CONCLUSIONS 

In this study we have presented two-stage, modified two-stage, 

purely sequential, and three-stage procedures to construct "fixed-size" 

elliptic confidence regions for estimating the mean vector of a p-dimen-

2 
sional normal distribution when the dispersion matrix is of the form a H 

where a E (0, 00 ) and His a pxp known positive definite matrix. 

For the univariate case, namely when p = 1, we find that some of the 

well-known existing procedures follow as special cases of those presented 

in this study. As examples, the reader is referred to Stein's (1945, 

1949) two-stage procedure, Mukhopadhyay's (1980) modified two-stage pro-

cedure, and Chow and Robbins' (1965) purely sequential procedure. We 

also report extensive simulation studies to put various competitive pro-

cedures in proper perspective. The proposed two-stage and modified two-

stage procedures guarantee the coverage probability to be at least (1- a). 

For the purely sequential and three-stage procedures, the coverage proba-

bility is shown to be asymptotically (1- a). However, since the purely 

sequential procedure does not violate the sufficiency principle, it is 

expected to give the best theoretical results in terms of having the 

asymptotic second-order efficiency property. On the other hand, the 

three-stage procedure combines the simplicity of a two-stage procedure 

with some of the merits of a purely sequential procedure. In terms of 

the average sample size and the achieved coverage probability, the modi-
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so 

fied two-stage procedure can be almost as good as the three-stage proce-

dure. Also, the modified two-stage procedure is less time-consuming in 

terms of implementation. Our findings might possibly limit the useful-

ness of the three-stage pro~edure in some applications. The final choice 

among those procedures should depend on the goals and types of results 

one would expect to have in a particular context. Various second-order 

expansions are derived when the purely sequential and three-stage proce-

<lures are proposed. The rate of convergence to normality for the distri-

bution of N is also given for the purely sequential case. Results from 

Mukhopadhyay (1974, 1980), Ghosh and Mukhopadhyay (1975, 1981), Srivastava 

(1967), Woodroofe (1977), and Hall (1981) have proved to be extremely im-

portant and useful for the theoretical ground work in this present study. 

For practical implementation we recommend using the modified two-stage 

or the three stage-procedure, simply because these will be less time 

consuming than the purely sequential one when implemented. For more de-

tailed recommendations, the reader is also referred to Remark 7. 

Also, we can easily examine which values of the estimated coverage 

probability (C.P.) from our tables are consistent with the target cover-

age probability (T.C.P.), namely, .95. To be more specific, for any 

particular row in any of the tables, suppose we wish to test the null hy-

pothesis H0 : T.C.P. .95 against the alternative H1 : T.C.P. # .95. We 

-Yz can now compute the magnitude of (C.P. - .95){(.95)(.05)/300} , and then 

reject H0 at the 5% level if it is larger than 1.96. We have checked 

most of the achieved values of C.P. and failed to reject H0 , that is, 

the achieved C.P. values are consistent with .95. 
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