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CHAPTER I 

INTRODUCTION 

Several experimental situations give rise to analyzing time to 

response on observational units (survival data) using split plot in time 

models. The general structure of such experiments is that the observa­

tion of the time of occurrence of an event (called a death, failure, or 

response) is of interest. The observational units are grouped into whole 

units and the treatments are randomized to whole units. If time to the 

occurrence of an event Tis a continuous random variable then whole units 

would be consider~d as subsamples. If time response was grouped into 

intervals in the above setting, then the sufficient statistics in this 

case would be the counts of observed occurrences of an event (number of 

deaths, failure) within intervals. The experiment can then be viewed as 

a split plot over time where time intervals (periods) are subunits and 

whole units would be the same as in continuous time setting, and the 

response variable is some function of the counts. For the split plot 

over time model we are interested in estimating survival curves rather 

than means for the usual structure of split plot model. 

In this chapter we outline the type of data and the process in data 

collection that defines such experimental situations using a fish experi­

ment, where studying the effect of treatment combinations on the survival 

times of fish in aquarium water was desired. In an experiment presented 

by Pierce, Steware and Kopecky (1978), fish were subjected to three 
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levels of zinc concentration in aquarium water, and approximate times-to-

death were observed. It was desired to study the effect of either one 

or two week's acclimation in the test aquaria before introduction of the 

zinc. There were initially two tanks for each of the treatment combina-

tions. The experiment was a 2 x 3 factorial for the treatment combina-

tions struct•1re. The 2 x 3 treatment combinations were assigned to tanks 

in a completely randomized design. From this point onwards we use CRD 

to designate this design. The experiment was carried on for 10 days and 

mortality was observed on a daily basis. Three hundred fish were ran-

domized to 12 tanks, 25 fish to each tank. The 2 x 3 treatment combina-

tions were assigned so that 2 tanks received each treatment. Table I 

gives the daily mortalities, where the numbers are the observed numbers 

of deaths in each day, for 10 days. 

Days 1 and 2, and days 8, 9, and 10, were each combined giving K = 7 

class intervals. Now let us denote the points defining the time inter-

vals by 

The number of failures or deaths in each day or combined days would be 

the number of failures or deaths in time intervals (tk-l'tk] for 

k=l,2, •.. ,7. Also, define 

nijk: number assigned (at risk) to trti, time interval k and 

tank j, 

S • number of survivors during interval k on trt i and tank J., ijk' 

rijk: number of failures on trt i during interval k for tank j, 

pijk: conditional probability that a unit on trt i fails in time 



interval k given that it survived k-1 time intervals for a 

given tank j , and 

qijk: conditional probability that a unit on trti survives time 

interval k given that it survived k-1 time intervals for a 

given tank j, where q. 'k = 1- P. 'k 
l.J l.J 

Therefore, Table I of the observed number of deaths or failures will 

represent the table of the values of r. 'k' after combining days. 
l.J 

TABLE I 

OBSERVED NUMBER OF DEATHS 

Acclimation Time: One Week Two Weeks 

Zinc Concentration: Lo Med Hi Lo Med Hi 

Tank: 1 2 1 2 1 2 1 2 1 2 1 2 

Day/Mortality 

---------------------------------------------------------------------
0 0 0 0 0 0 0 0 0 0 0 0 

2 2 3 0 0 0 0 3 0 

3 5 7 7 10 12 10 9 4 12 9 12 12 

4 7 4 9 7 7 8 4 4 5 3 3 7 

5 2 0 5 4 3 0 0 3 2 2 2 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 

3 
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Since the 50 fish were randomly assigned to each treatment combina-

tion with 2 tanks for each treatment then 25 fish were assigned to each 

tank. Thus the number at risk for the first time interval is 25 fish and 

the size of this risk set, n. "k' decreases as time advances. For the no 
l] 

censoring case, the number at risk for time interval k would be the num-

ber at risk for time interval k-1 minus the number of deaths for time 

interval k-1. Therefore, Table II represents risk sets (values of n .. k). 
l] 

Now let us define q .. k= s .. k/n .. k' wheres .. k=n .. k-r .. k assuming . lJ lJ lJ lJ l] lJ 

no censoring. Table III represents the values of qijk. If sijk = nijk 

then use sijk - .5, if sijk = 0 then use .5. 

TABLE II 

RISK SET TABLE 

Acclimation Time: One Week Two Weeks 

Zinc Concentration: Lo Med Hi Lo Med Hi 

Tank: 1 2 1 2 1 2 1 2 1 2 1 2· 

Interval/n. "k lJ ---------------------------------------------------------------------
25 25 25 25 25 25 25 25 25 25 25 25 

2 24 23 22 22 24 24 25 25 24 25 22 25 

3 19 16 15 15 12 14 16 21 12 16 10 13 

4 12 12 6 8 5 6 12 17 7 13 7 6 

5 11 10 6 3 3 12 17 4 11 5 4 

6 11 10 6 2 2 12 17 4 11 4 4 

7 11 10 6 2 0 12 17 4 11 4 4 



TABLE III 

OBSERVED VALUES OF qijk 

Acclimation Time: One Week Two Weeks 

Zinc Concentration: Lo Med Hi Lo Med Hi 

Tank: 1 2 1 2 1 2 1 2 1 2 1 2 

Interval/qijk 

0.960 0.920 0.880 0.980 0.960 0:960 0.980 0.980 0.960 0.980 0.880 0.980 

2 0. 792 0.696 0.682 0.600 0.500 0.583 0.640 0.840 0.500 0.640 0.455 0.520 

3 0.632 0.950 0.400 0.533 0.417 0.420 0. 750 0.810 0.583 0.813 0.700 0.962 

4 0.917 0.833 0.917 0.375 0.200 0.500 0.958 0.971 0.571 0.816 0.714 0.667 

5 0.955 0.950 0.917 0.667 0.500 0.667 0.958 0.971 0.875 0.955 0.800 0.875 

6 0.955 0.950 0.917 0.500 0.500 0.500 0.958 0.971 0.875 0.955 0.875 0.875 

7 0.955 0.950 0.917 0.500 0.500 0.500 0.958 0.971 0.875 0.955 0.875 0.875 

VI 
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Assume that tank effects increase or decrease the survivals, i.e. 

assume that there is tank variability involved, since treatment combina-

tions were applied to main units (tanks). Also assume that failure time 

Tis a discrete random variable since time responses were grouped into 

intervals 1,2, ... ,K, where K= 7 for the experiment presented. The re-

sponse for the discrete setting would be some function of the number of 

deaths or the number of survivors. This will give us a split plot in 

time where subplot units are time intervals. Failure time variability 

will arise from the fact that 25 fish were randomly assigned to each 

tank. Assuming that conditional on being in the same tank survival times 

of different fish are independent, then the model to be considered is: 

Response 

i 1, ... , I, j = 1, ... ,J, and k 

where,µ is an overall mean, 

a. is treatment combination i effect, 
l 

1, ... ,K 

s .. is main unit variability (tank variability) with 
l] 

E(s .. ) = 0, 
l] 

E(s .. s .. ,) 
l] l] 

2 
= (j 

s 
for j = j I 

O for j "f j I, 

Skis the subplot treatment or time interval effect, 

(aS).k is the interaction between treatment and time 
l. 

interval, 

o. "k is the variability due to different fish in each 
l] 

tank with 

E(o .. k) = o, E(o .. ko .. k,) 
l] l] l] 

2 
(j 

o. "k l] 

for k = k' 

O for k "f k I, 

(1.1) 



and E(E .. o .. k) = 0. 
1J 1J 
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The response of the above model will depend on the model assumed for 

the hazard function for time interval k and trti. The hazard function 

Ai(tk) is the conditional probability of failing in an interval given 

surviving until that interval. The choice for the response is 

Response= f(q .. k). Two possible choices for this function that will be 
1J 

considered are: 

log(-log q .. k), 
1J 

and 

These responses are derived from continuous random variable models as 

will be seen later. From this point onwards we use log(x) to denote 

log (x). 
e 

Individuals at risk during time interval k may fail, be censored, 

or survive to the start of the following time period. Assuming that 

there is no censoring, the observed number at risk for time interval k 

on a given trt i and a given tank j is n. "k' and the number of individ-
1J 

uals failing is r .. k 
1J Define nij (k+ l) nijk - rijk' which is denoted by 

sijk (the number of individuals surviving interval k). Thus, individuals 

surviving interval k will be individuals at risk for the next time inter-

val, i.e., sijk = nij (k+l). For a given trt i and a given tank j, and 

for K time intervals, number of deaths or failures rijl'rij 2 , .•• ,rijK in 

time intervals (t0 ,t1],(t1 ,t2], ••• ,(tK-l'tK] with t 0 =0 among nijl 

starters, follow a multinomial distribution with probability function: 

Pr (r .. 1 , r .. 2 , ••. , r. "KI£ .. ) 
1J 1~ 1J 1J 

ni.l! K+l 
= r 'r ' ,.. ' TI 

ijl 0 ij2° 000 -ij(K+l) 0 k=l 

rijk 
,rijk ' 

(1. 2) 



where 

+ rij(K+l) = nijl starters, and 

,rijl + ,rij2 + ... + ,rij(K+l) = l. 

Now define 

P. "k 1J 

k 

2~1 qijt is the probability an individual on trt i and in 

tank j survives beyond interval k, 

rr. "k = P .. (k l) - P. "k is the probability an individual fails 
1J 1J · - 1J 

in interval k for a given tank j on trti, 

qijk is the co.nditional probability an individual on trt i and in 

in tank j survives beyond interval k given that it survives 

beyond interval k-1, where 

q .. k=P .. k/P .. (kl)' 1J 1J 1J -

8 

p. 'k = 1- q. "k is the conditional probability an individual on trt i 
1J 1J 

and in tank j fails in interval k given that it survives beyond 

interval k-1, and 

r = s is the number of individuals surviving at end of ij(K+l) ijK 

study. 

Therefore, we have 

(1. 3) 

for k=l,2, ••. ,K. The likelihood function for the multinomial distri-

bution is given by 

K+l rijk 
Pr ( r .. 1 , r .. 2 , •.. , r .. KI E •• ) ex: II ir1• J. k 

1J 1J 1J 1J k=l 
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Recall that rijl + rijZ + ••. + rij (K+l) = nijl' and nijk = nijl - rijl -

rijZ - , , , - rij (k-l) for k= 1,2,.,. ,K+l. Therefore the likelihood is pro­

portional to 

rijK nijl-rijl-rij2- ... -rijK 
pijK qijK 

rijl nijl-rijl rij2 nij2-rij2 
~ pijl qijl pij2 qij2 

(1. 4) 

Therefore, conditioning on nijk' the number of survivors sijk in time in­

terval k on trt i and a given tank j is distributed as a binomial random 

variable with parameters n. 'k and q. 'k' Furthermore, the covariance be-
J.J l.J 

tween s .. k ands. 'k' is zero. Also, the mean and variance of q .. k given 
l.J l.J l.J 

that n .. k is fixed by its observed number and for a given tank are given 
l.J 

by 



Var(q .. k\n .. k,s .. ) 
lJ lJ lJ 

q. 'k' and lJ 

p. 'kq "k/n. 'k' respectively. 
lJ lJ lJ 

Now, for k < k' , assuming that n. 'k > 0 we have 
lJ 

10 

E((q. 'k- q, 'k) \q .. k' ,s .. ,n. 'k) 
lJ lJ lJ lJ lJ 

sijk A 
E (( -q .. k)\q .. k,,s .. ,n .. k) 

s .. k n .. k iJ iJ lJ iJ 
lJ lJ 

s. 'k 
=E (E I ((~-q .. k)\q .. k'' 

n .. k s . . k n .. k n .. k lJ lJ lJ lJ lJ lJ 

E ( 0 \ q .. k, , s .. , n .. k) 0. 
n. 'k lJ iJ lJ lJ 

Hence, for k<k' -

cov(q. 'k'q "k' \ s .. ,n. 'k) = lJ lJ lJ lJ EA ( ( q .. k I -q .. k' ) E ( q .. k-q .. k I q .. k' ' q , , k I l] l] l] l] l] 
lJ 

o. 

Using (1.4), for a given tank j and a fixed risk set (n .. k), we have 
lJ 

cov(s .. k,s .. k 1 \s .. ,n .. k,n .. k,) 0. 
lJ lJ lJ lJ lJ 

Thus, for a large sample size the asymptotic distribution is given by 
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s. "k • 
~ls .. ,n .. k"' Normal (q .. k,q .. k(l-q .. k)/n .. k). 
n .. k l.J l.J l.J l.J l.J l.J 

l.J 

Therefore, equal variance structure of q .. k's would be inappropri­
l.J 

ate since these variances depend on q .. k's which may vary over time, and 
l.J 

the fact that the risk sets decrease over time (we begin with 25 fish at 

risk for the first time interval and we might end up with, say, only 4 

fish at risk for the last time interval). Hence, we are going to look 

at a way to estimate the survivor functions for different treatment com-

binations using split plot model with unequal subplot variances. 

Another experimental situation occurs in studying the effect of some 

treatment combinations on patients in several hospitals. The patients 

per hospital will be selected randomly. Time-to-the introduction of a 

result will be of interest. The treatment combinations will be randomly 

applied to each hospital. Thus all selected patients in the same hospi-

tal will receive the same treatment. If time Tis a discrete random 

variable, -then time response will be grouped into intervals and the re-

sponse variable will be the number of patients on which a result occurs 

(number of deaths). This will give a split plot in time where subplot 

units are time intervals. Main unit variability arises from the fact 

that we randomly apply treatments to hospitals. Subunit variability 

arises from the fact that there is more than one patient to be selected 

from each hospital. In such a case estimating survival curves is of 

interest. 

Another experimental situation that is related to our type of study 
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is a seed germination trial, where time-to-germinate on observational 

units (carrot seeds) is considered. Seeds are randomly assigned to 

dishes (whole units) in a CRD such that seeds that are applied to a dish 

are of the same kind. Treatments (stored seeds against control seeds) 

are randomly applied to dishes. If time to germinate Tis a discrete 

random variable, then time response is grouped into intervals. The re­

sponse variable for this setting is the number of seeds germinated for 

each time interval. This will give us a split plot in time where sub­

plot units are time intervals. The variability due to applying the 

same treatment to more than one dish is the main unit variability and 

failure time variability or subunit variability arises from randomly 

assigning seeds to dishes. Estimates of the probabilities that seeds 

will germinate after a specified time are of interest. Some of the seeds 

will not germinate ever therefore the probability functions will not be 

exact survival curves as is the situation with the other two examples. 

However, estimating these probability functions is similar to the idea 

of estimating survival curves. 



CHAPTER II 

LITERATURE REVIEW 

2.1 Survival Analysis Literature 

In life testing and medical follow up, the observation of the time of 

occurrence of the event (called death, failure, or response) is of in-

terest. Sometimes these occurrences may be prevented for some of the 

items of the sample by the occurrence of some other event (called loss 

or censoring). ~aplan and Meier (1958) assumed that the life time is 

independent of the potential loss time, and they provided, for random 

samples of size N; the product-limit (PL) estimate that can be defined 

as follows. List and label the N observed lifetimes (whether to death 

or loss) in order so that one has O .::_ t 1 .::_ t 2 .::_ ... .::_ t~. Then 

P (t) = II[ (N-r) I (N-r+l)], where r assumes those values for which t' < t 
r r - ' 

and for which t' measures the time to death. This is the distribution­
r 

free estimator which maximizes the likelihood function. 

Cox (1972) considered the analysis of censored failure times. He 

suggested a regression model for the failure time T of an individual 

when values of one or more explanatory variables were available. For T 

continuous, the hazard function is given by 

:>..(t,z) AO ( t) exp ( S ' z) , 

13 
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which is known as the proportional hazard function. It is also known as 

the multiplicative form of the hazard function with 8 being the vector 

of the unknown parameters, and A0 (t) is the underlying hazard function 

when z= 0. For T discrete, the logistic model was suggested. A condi­

tional likelihood and maximum likelihood estimates were obtained. How­

ever, Cox (1972) proportional hazard regression model does not handle 

grouped survival data or large data sets with many ties (many individ­

uals failed at the same time). 

Kalbfleisch and Prentice (1973) obtained a marginal likelihood for 

the regression parameters by restricting the class of models presented 

by Cox (1972) to those that possessed a strictly monotone survivor func­

tion or, equivalently, to those for which the hazard function A0 (t) was 

not identically zero over an open interval. The invariance of this re­

stricted class under the group of monotone increasing transformations on 

Twas exploited to derive a marginal likelihood function for 8, If no 

ties occur their results and the results of Cox (1972) are the same with 

a simple justification. But if ties occur in the data the results ob­

tained by Kalbfleisch and Prentice (1973) are different from those sug­

gested by Cox (1972). 

Prentice and Glocker (1978) considered the grouped data version of 

the proportional hazards model (Kalbfleisch and Prentice (1973)) in an 

attempt to develop computationally feasible estimators of the relative 

risk function and the corresponding survivor function in the presence 

of many tied failure times. Asymptotic likelihood results were given 

for both the estimation of the regression coefficients and the survivor 

functions. 

Regression models of the proportional hazard were used for anal-
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yzing some data arising from a clinical trial in medicine. Kay (1977) 

considered applying the regression models of the proportional hazards to 

the analysis of censored survival data. Many forms of the proportional 

hazard model and a search for a model fitting were carried out. When the 

number of independent variables was large, selecting those independent 

variables to be included in the model was achieved by a forward stepwise 

procedure. 

Usual regression techniques were widely used to analyze survival 

data. Such work was done by Krane (1963) and Pierce, Stewart and Kopecky 

(1978). Krane (1963) introduced a type of statistical analysis of sur­

vival data applicable under the conditions that usually the available 

data were grouped, most commonly in yearly intervals, and more serious 

was the fact that the data was often "censored". Assuming that there 

exists a survivor-function, S(t), such function is given by exp[-y(t)], 

where y(t) is the time integral of the failure rate which was approximated 

by a polynomial. For large samples it was found that the covariance 

structure for y(t) may be obtained from the multinomial distribution when 

the data was grouped. Thus the method of weighted least squares may be 

employed to fit y(t). "Censored" data in no way vitiate the method. 

Pierce, Stewart and Kopecky (1978) provided a method based on re­

gression model for the proportional hazards to obtain, by making an ap­

proximation, a maximum likelihood function involving only the regression 

parameters. The authors presented an example for analyzing toxicology 

data. 

Most of the preceeding literature seems to pay most attention to the 

multiplicative form of the hazard function, and less work has been done 

with the additive form. Elandt-Johnson (1980) used the additive model 

/ 



for the hazard function to demonstrate techniques in deriving posterior 

distributions by assuming a normal prior distribution for the variables 

influencing the hazard function. The hazard rate function in the addi-

tive form is given by 

k 
A(t,z 0) = ;\.(t) + I h. (t)z0 . ( > O), 

i=l l l 

where A(t) (> O) is the, so-called, underlying hazard rate, h.(t)'s are 
l 

functions oft alone, and z0i's are the covariates influencing the sur­

vival. 

An extension of the proportional hazard models was suggested by 

Aranda-Ordaz (1983) where a family of transformations for probabilities 

was considered for the analysis of grouped survival data. Additive and 

multiplicative models for the hazard function were compared. 

16 

Similar work-was done by Tibshirani and Ciampi (1983) where a family 

of proportional and additive hazards models for the analysis of grouped 

survival data was developed. They generalized the work of Aranda-Ordaz 

(1983) by allowing time trends to enter the hazards. This generalization 

proved to be useful in the case of crossing hazards. 

From the preceeding literature, it seems that most work has been done 

for continuous time random variables. Our grouped time models that are 

used for inference are chosen to relate to these well known continuous 

time models. We have generalized the Cox (1972) model to include main 

unit variability to be able to get the split plot in time model as we 

will see in Chapter III. 

A general approach to the analysis of categorical data was provided 

by Grizzle, Starmer and Koch (1969) by assuming that there were n. , 
l. 

i=l,2, ••. ,s, samples from a multinomial distributions each having r cat-

I 
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egories of response. They defined any r-1 functions of the unknown true 
r 

cell probabilities br .. : i = 1,2, ... ,s; j = 1,2, ... ,r, where ~ rr .. = l} 
lJ j=l lJ 

that have up to the second order derivatives with respect torr ... A 
lJ 

noniterative weighted least squares procedure was described to fit these 

functions to a linear model, along with testing hypotheses about the 

parameters and testing the goodness-of-fit of the model. 

This general procedure for analyzing categorical data can be applied 

to survival data in the case that the variance-covariance matrix is a 

diagonal matrix with the binomial variances on the diagonal. 

For our grouped time model, we use a similar approach to the ap-

proach used by Grizzle, Starmer and Koch (1969) since we have the same 

general structure. The only difference is that we have unequal binomial 

variances; further we add an extra term in the variance-covariance matrix 

which is the main-unit variability. 

2.2 Split Plot and Variance Component Literature 

Our model for survival analysis is based on using a split plot in 

time model, and therefore we need to consider the related literature. 

What we need in the variance component analysis is a method for split-

plot models with uneuqal sub-plot variances. We must mention here that 

we could not find any work in the literature that has been done for this 

particular study. However, a list and a presentation of the literature 

that has been done in both split plot model and variance component areas 

separately and combined will be considered. Some of the listed litera-

ture might not be of direct relation to our study, and some are related 

in the sense that they gave us an idea on the approach that we have used 

for variance component estimation. 

/ 
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Early work on variance component estimation has been done by 

many authors. Crump (1946) discussed and pointed out the hypotheses 

appropriate to the two uses of the analysis of variance as to obtain 

tests of significance of treatment effects and provided estimates of var­

iance components. The estimation of variance components was accomplish­

ed by equating the mean squares in the standard analysis of variance to 

their expectations and then solving for the unknown variances. This 

method of estimating variance components dealt with the one-way classi­

fication, nested classification, and factorial classifications having 

equal subclass numbers. But often the subclasses are of unequal size. 

Therefore a need for some other methods of estimation was raised. 

Henderson (1953) developed three methods for estimating variance 

components in the non-orthogonal case. The three methods can be describ­

ed as follows. Method (1): Compute sums of squares as in the standard 

analysis of variance of corresponding orthogonal data. Equate these 

sums to their expectations and solve for the·unknown variances. This 

method leads to biased estimates if certain elements of the model are 

fixed or if some are correlated. Method (2): Obtain least squares 

estimates of fixed effects, "correct" the data according to these esti­

mates, then use the corrected data and proceed as in Method (1). This 

method gives estimates which are free of the first of these biases, but 

not of the second. Method (3): Compute mean squares by least squares 

analysis of non-orthogonal data. Equate these mean squares to their ex­

pectations and solve for the unknown variances. This method yields un­

biased estimates, but the computations involved may be prohibitive. 

Henderson's (1953) methods were discussed and reformulated in matrix 

theory by Searle (1968). Also a fourth method for variance component 



19 

estimation was introduced. 

A common assumption in split plot experiments is that the error var-

iances for subplot treatments are the same. Curnow (1957) provided tests 

of significance for the departure from equality of the variances for 

different subplot treatments. Also, an estimate of the ratio cf a pair 

of such variances was provided in this paper. 

Rao (1970) considered the problem of estimating the different vari-

ances for the linear model y = Xi3 + e, where 

D(e) = 
0 

2 
(J 

n 

0 

by introducing a new principle called Minimum Norm Quadratic Unbiased 

Estimation (MINQUE). This principle of estimation can be summarized as 

2 
follows. Let Ep.cr. be a linear function of the variances to be estimated, 

l l 

2 
where all cr. may not be distinct. The quadratic form Y'AY is said to be 

l 

a MINQUE of Ep. cr7 if the matrix A= (a .. ) is chosen such that 11 A 11 , the 
l l lJ 

Euclidean norm of A, which is the same as the square root of trace A2 , 

is minimum subject to the conditions 

AX 0, and 
n 
E 

i=l 

2 
a .. cr. 
ll l 

n 
E 

i=l 

2 
p. (J •• 

l l 

Hartley and Jayatillake (1973) pointed out that Rao's (1970) MINQUE 

,.z 
estimat0rs suffer from three defects, namely (1) The MINQUE estimator cr., 

l 

although unbiased, may be negative, (2) The residuals y- XS employed for 
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a: estimation were based on S of S which are known not to be BLUE in case 
l 

the true a: differ, and (3) Unless the matrix X has a standard structure 
l 

MINQUE estimation requires the inversion of an n x n matrix to be special-

ly computed from the elements of the observed X in each problem. With 

normal assumption of the residuals added to the model presented by Rao 

(1970), Hartley and Jayatillake (1973) examined the method of maximum 

likelihood under the normality assumption for the estimation problem of 

Sand a: which are free from the three disadvantages that MINQUE estima­
l 

tors have. Therefore the elements of Sand a: are estimated by maximum 
l 

2 likelihood under the assumption of a lower bound for the cr. of the form 
l 

0 < o7 < a7 so that the likelihood is finite in the restricted parameter 
1- l 

space. The authors also considered a second problem in which the Y vec-

tor splits into subvectors Y.'s such·that all elements of Y. have equal 
J J 

variances. 

For the balanced two-way layout split plot design Li and Klotz 

(1978) compared maximum likelihood estimators and restricted maximum 

likelihood estimators with minimum variance unbiased estimators of 

variance components. Performance was compared in terms of mean squared 

error for the three estimators. 

For a general mixed-effects model Brown (1978) viewed the problem 

of estimating variance components in the context of linear model theory. 

The approach was to estimate the unknown vector of parameters S by some 

vector b and thus obtain a vector of residuals e = Y - Xb. A vector of the 

squares and cross products of the residuals was then obtained, the expec-

tation of which was a known linear transformation of the variance compon-

ents. 

For categorical data, Manton, Woodbury and Stallard (1981) presented 
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maximum likelihood procedures for the estimation of the model parameters 

based on the assumption that the distribution function for each cell 

death count is the negative binomial probability function. This assump­

tion is equivalent to assuming a mixture of poisson processes with the 

differential risk levels among individuals within cells being a two 

parameter gamma distribution. 



CHAPTER III 

MODELS FOR ANALYSIS 

3.1 Grouped Time, Multiplicative and Additive 

Hazard Conditional on Main Unit with 

Normal Main Unit Error 

As presented in Chapter I, the structure for the design that will 

be considered is that we have J main units per treatment combination 

according to a CRD, n .. observational units in each main unit and time 
lJ 

to response on each observational unit is measured. Time to response 

is grouped into intervals where the points defining the time intervals 

are denoted by O = t 0 < t 1 < t 2 < ••• < tK. The number of failures or deaths 

in time interval k, k= l, ... ,K is the number of failures or deaths in 

Define 

n .. : number of individuals assigned 
lJ 

to main unit j of trt i, 

rijk: number of individuals failed on trt i, main unit j during 

time interval k, 

sijk: number of individuals survived interval k for trt i and 

main unit j, and 

nijk: number of individuals at risk for trti, main unit j and 

time interval k. 

For the no censoring case we have 

22 
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and nijk = sij(k-1) for k > 1. 

For the censoring case we have to define cijk as the number censored dur­

ing the kth interval, then 

n .. 
iJ cij l' and 

nijk = sij(k-1) - cijk = nij(k-1) - rij(k-1) - cijk for k > 1. 

Also, define 

P · conditional probability that an individual on trt i and ijk' 

main unit j fails in interval k given that it survived 

k-1 time intervals, and 

conditional probability of surviving interval k 

given survival of k-1 time intervals for an individual on 

trt i -and main unit j . 

Now, let F .. (t) be the cumulative distribution function for the continu­
iJ 

ous response time random variable T for a given main unit j. Define 

S .. (t) = 1- F .. (t) to be the survival function for trt i and main unit j. 
i] iJ 

By definition, p. 'k can be written as 
iJ 

pijk = 

= 

P (failing in time interval k for an individual on trti 
r d . . . ·an main unit J 

P (surviving (k-1) time intervals for an individual on 
r trt i and main unit j 

F .. (tk) - F .. (tk 1) 
iJ iJ -

1- F .. (tk 1) 
i] -

[l - F .. (tk 1)] - [l - F .. (tk)] 
iJ - iJ 

1 - F .. ( tk 1 ) 
i] -

) 
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1 - F .. (tk) 
1 - lJ and 

1 F .. (tk 1) 
lJ -

1 - F .. (tk) 
l] 

1 - F .. (tk 1) 
lJ -

s .. (tk) 
l] 

s .. (tk 1) lJ -
(3 .1) 

Define the hazard function A(t) as the limiting conditional proba-

bility of failing in an interval given surviving until that interval as 

the interval shrinks, to be 

A(t) lim 
6t-+O 

Pr ( t .::_ T < t + 6 t T > t) f ( t) 
s (t)' 

where f(t) and S(t) are the density function and the survival function, 

respectively, for the continuous response time random variable T. Cox 

(1972) suggested a regression model for the failure time T of an individ-

ual when values of one or more explanatory variables are available. For 

T continuous the hazard function is of the form 

A ( t , z) = AO ( t) exp ( 13 ' z ) , 

which is known as the proportional hazard function, also known as a mul-

tiplicative form of the'hazard function, where A0 (t) is the underlying 

hazard function when z = 0. 13 is the vector of unknown parameters. 

For our problem we generalize Cox's (1972) model to include the 

extra variability involved. In other words we will try to model the 

continuous time variable in a way related to Cox's (1972) model to in-

elude the random component E •.• 
lJ 

The multiplicative hazard function for trti and main unit j that 

will be considered is as follows 



25 

A .. (t) = A0 (t) exp(S'x.(t) + s .. ), 
l.J . ]. l.J 

where A0 (t) is the underlying hazard when x. (t) = 0 and s .. = 0, S is the 
]. l.J 

vector of unknown parameters and x.(t) are the variables influencing 
]. 

failure times. Also, the survival function for trt i given main unit j 

is given by 

S .. (t) = 1 - F .. (t) 
l.J . l.J 

and therefore 

t 

t 
exp (-J:0 A .. (u) du), 

l.J 

sij (t) = exp(-fo Ao(u) exp(S'xi (u) + Eij)du). 

Substituting (3.2) in (3.1) we get 

tk 
qi.J"k = exp(-! A0 (u) exp(S'x.(u) + s .. )du). 

tk-1 1. l.J 

(3. 2) 

Now, let us assume that xi(t) is constant on interval k, i.e., let xik = 

value of x.(t) on interval k. Then we have 
]. 

and this leads to 

Let 

log (-log q .. k) 
l.J 

tk 
S'xi.k + s .. + log f A0 (u) du. 

l.J tk-1 

log(-log qijk) = S'xik + sij + 'k' where SERP, ,kER, and 
s. "k 

( ) - A -~ d log -log q. "k + o. "k' wliere q. "k - , an 
l.J l.J l.J nijk 

random error defined by o .. k = log(-log q .. k)-log(-log q .. k). 
l.J l.J l.J 

(3. 3) 

"' is a u. "k l.J 



26 

For the additive form of the hazard function we generalize the model 

presented by Elandt-Johnson (1980) to include the random component E •. in 
1] 

an additive fashion. Now we derive the model that will be used later in 

analysis using the additive hazard model which is given by 

A .. (t) = Ao(t) + S'x.(t) + E. ,, 
1] 1 1] 

The survivor function is then given by 

s .. (t) 
1] 

1 - F .. (t) 
1] 

t 
= exp (-J:0 A .• (u) du) 

1] 

Substituting (3.4) in (3.1) we get 

-tk 
q1.J.k = exp(-! (A0 (u) + S'x. (u) + E, ,)du). 

tk-1 1 . 1] 

(3. 4) 

Again assume that x.(t) is constant on interval k. In this case we have 
1 

tk 
q .. k = exp((S'x.k + E •• ) (tk 1 - t 1 ))•exp(-f A0 (u) du), 

1] 1 1] - ~ tk-1 

and this leads to 

log (q. 'k) 
1] 

Define zik = xik(tk-l - tk), 

Then 

log(q .. k) S'zik + E'. • 
1] 1] 

log(q. 'k) log(q .. k) = + 
1] 1] 

E ! , 
1] 

+ 'k' 

0ijk' 

where SE ]RP , 'k E JR, and 

A = sijk and 0ijk where qijk ' nijk 
is a 
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random error defined by 8. "k = log(q .. k) - log(q .. k). 
1.J 1.J 1.J 

Our grouped time model given by (1.1) is similar to these continuous 

models in the sense of having similar set of parameters. Therefore we 

can start with continuous setting for response time T and still end up 

with grouped time model that we considered for analysis although in our 

case response time Tis discrete random variable. 

It is appropriate here to mention that the proportional hazards model 

is convenient, e.g., the log(-log) model is to be preferred over the log 

model for the following two reasons: 

1) Using the proportional hazards model leads to work with log(-log) 

model specified by the equation 

tk 
log(-log q .. k) = S'x.k + E .. + log f A0 (u) du. 

1.J 1 1.J tk-1 

However, using the additive form for the hazard leads to work with log 

model specified by the equation 

Therefore, inference with log(-log) transform is directly related to the 

parameters of the continuous time interpretation. The log(-log) model 

is to be preferred since Sis invariant to time grouping, 

2) The log model has a restricted range. A ' d q. 'k. s are observe 
1.J 

pro-

portions and thus O < q .. k< 1, which implies that log(q .. k) < O. 
- 1.J - 1.J 

3.2 The Conditional Likelihood Function-

The No Censoring Case 

As we have seen in Chapter I and section 3.1, n .. is the number of 
1.J 

individuals· assigned to main unit j on trti (n .. 1 starters). 
1.J 

For the 
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no censoring case we have 

and nijk = sij(k-1) for k > 1. 

Using equation (1.4) and assuming that individuals in a main unit survive 

independently of other individuals we then have independent multinomial 

distributions over i and j. Therefore tbe conditional likelihood function 

for the observed data can be written as: 

1 J K sijk nijk-sijk 
L(g I~) a: IT II II qiJ"k (1- qiJ"k) , where q is 

i=l j=l k=l 
(3.6) 

a vector of qijk's. For (1.1) qijk is a function of g,§,~ depending on 

the form assumed for the two hazard functions. Now let q .. k=g(a,S,s) then, 
l.J - - -

I . J K . s .. k r. "k 
L(~,§1§) a: II II II {g(a,S,s)} l.J {1-g(g,§,~)} l.J 

i=l j=l k=l - - -

The form of the conditional likelihood is the same as the likelihood 

function for product binomial random variables for fixed nijk. Therefore 

the asymptotic results for both cases·are the same. For simplicity we 

will act as if we had a product of binomial random variables with fixed 

n .. k' even though the n .. k are random. In other words the asymptotic 
l.J l.J 

results are the same for the fixed nijk or the random nijk problem. This 

is one motivation for treating the nijk as fixed. Also it is difficult 

to see how there will be any information in the n .. k about the q .. k that 
l.J l.J 

is not already obtained 

motivation for treating 

in the s .. k. 
l.J 

n .. k fixed. 
l.J 

This could be given as another 

3.3 Handling Censored Data 

As discussed in section 3.1, n .. k for the censoring case can be 
l.J 

defined by the following relations 
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and 

sij (k-1) - cijk = nij (k-1) - rij (k-1) - cijk for k > l, 

while for the no censoring case we had 

and nijk = sij(k-1) for k > 1. 

Therefore, the only difference between the censored and uncensored data 

is that risk sets at each time interval can be obtained somwhat differ-· 

ently. 

Computationally, the case of censoring will not effect our parameters 

of interest nor the structure of our layout since our methods are based 

on the knowledge that 

s .. kle: .. ,n .. k I\J Binomial (n .. k,q .. k). 
1J 1J 1J _ . 1J 1J 

Hence handling censored data will be straightforward. 

In general, the idea behind handling censored time can be formulated 

as follows. It is often assumed that each individual has a life time T 

and a censoring time C, where T and Care independent continuous random 

variables with survivor functions S(t,8) and G(c,~) and probability den-

sity functions f(t,8) and g(c,~), respectively. 8 is the vector of param-

eters of interest and~ is the vector of parameters on censoring time C. 

Let us assume Ti and Ci are independent for all i and define 

Y. = min(T.,C.), 
1 1 1 

and if' Yi= Ti 
if Yi= Ci. 

The data from observations on individuals consist of the pair (Y.,8.). 
1 1 

Further, assume that the Y.'s are independent then if an individual failed 
1 



then the "likelihood contribution" of observing a failure given Y. < C. 
l l 
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is given by the product f(y.,6)G(y.,¢). If, on the other hand, an indiv-
1 l 

idual is censored then the "likelihood contribution" of observing a cen-

sored given Y. <T. is given by the product g(y.,¢)S(y.,8). Therefore, 
l l l l 

the full likelihood for all individuals in the study can be written as 

L (y . , 8 , cp) = 
l 

II 
Set of all 
failures 

f (y. , 8) G (y. , ¢) 
l l 

II 
Set of all 
censored 

g(y. ,¢)S(y. ,8). 
l l 

Since the parameter of interest is 8 then we might consider working with 

the following marginal likelihood function 

1(8) II 
Set of all 
failures 

f (y., 8) 
l 

II 
Set of all 

censored 

S(y.,8). 
l 

Note that 1(8,¢) = 1(8)·K(¢). Thus, for inference on 8 alone K(¢) 

acts as a constant. K(¢) will not be used in solving for MLE's of 8 or 

likelihood inference on 8. Therefore we consider working with the mar-

ginal likelihood function 1(8) rather than the full likelihood 1(8,¢). 

In what follows, we derive the form of the full and the marginal 

likelihoods given E .. for our grouped time model. From the way the data 
lJ 

has been collected we have 

(r .. 1 ,c .. 1 , ... ,r. "K'c .. IE .. ) I\., Multinomial (n .. ,a. .. 1 ,¢ .. 1 , ... ,a.. "K'¢ .. K), 
lJ lJ lJ 1JK lJ lJ lJ lJ lJ lJ 

where 

K+l 
I: (r. "k + c .. k) 

k=l lJ lJ 
n. . starters, 
lJ 

1, 

(3. 7) 
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aijk is the probability of an individual fails in interval k for a given 

main unit j on trt i with censoring, and 

¢ijk is the probability of an individual censored in interval k for a 

given main unit j on trti. 

Recall that TI. 'k is the probability of an individual fails in inter­
lJ 

val k for a given main unit j on trt i for the no censoring case. Assum-

ing that all censors take place at the start of an interval then a. "k and 
lJ 

TI. 'k are related in the following form 
lJ 

K+l 

Tiijk aijk/k:l aijk 0 
(3 .8) 

We know that the conditional multinomial likelihood function is given by 

Pr(r .. 1 ,c .. 1 , ... ,:t'-•• K,c .. K!E .. ) = 
lJ lJ lJ JJ lJ 

I 

ni · 1 • 

K+l K+l 
II I II I 

k=l 
rijk" 

k=l 
cijk" 

Now, combining (1.3), (3.7), and (3.8) we get 

and 

K+l 

aijk qijl ... qij(k-1/ijk(l- k:l ¢ijk), 

K+l 

a1°J0 (K+l) = q .. l ... q .. (K l)q .. K(l- z ¢iJ0 k). lJ lJ - lJ k=l 

Substituting (3.10), and (3.11) in (3.9) we have 

(3. 9) 

(3. lU) 

(3 .11) 

rij(K+l) K+l rijl+ ... +rij(K+l) 
q. "K (1- Z ¢ .. k) } x 
lJ k=l lJ 



K 
{ II 
k=l 

"cijk} 
't'ijk 

K rijk nijk-rijk 
a: { II p. "k q. "k } x 

k=l lJ lJ 

K+l 

K+l c. "k K+l nijl - k~l cijk 
{ II ¢. ~kJ (1- Z:: ¢ .. k) } • 
k=l lJ k=l lJ 

Assuming that individuals in a main unit survive independently of other 
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individuals we then have independent multinomial distributions over i and 

j. Therefore the conditional likelihood function can be written as 

I J K sijk rijk 
L(q,¢JE:) a: { II II II qijk (l - qijk) } x 

i=l j=l k=l 

K+l 

I J K+l c. "k K+l 
n .. 1 - Z:: cijk 

{ II II II lJ 
¢ijk) 

lJ k=l 
} . ¢. "k (1- Z:: 

i=l j-1 k=l lJ k=l 

Since our parameter of interest is q then we might consider working with 

the following conditional marginal likelihood function. 

Therefore, for inference on qJE: alone we consider working with the con-

ditional marginal likelihood function L(~J:) rather than the full condi­

tional likelihood function L(q,¢JE:). This conditional marginal likeli-
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hood function for censored data has the same form as the conditional 

likelihood function for uncensored data as given by (3.6). Again note 

that the form of this conditional marginal likelihood function is the 

same as the likelihood function of independent binomial random variables 

with fixed n .. k as is the case with no censored observations. Therefore 
J:J 

and for simplicity we act as if we had a product of independent binomial 

random variables with fixed n .. k' even though the n .. k are actually ran-
1J 1J 

dam. Again the asymptotic results will be the same for both fixed n. 'k 
1J 

or random nijk" 

3.4 Unconditional Survival Functions and 

Likelihood Functions 

As we have seen in section 3.2, the conditional likelihood function 

of our parameters-of interest ~=g(~,~) is also a function of the unknown 

random vector£. Thus our aim in this section is to find a likelihood 

function that is free from these unknown values. The purpose is that 

if we can get an unconditional likelihood function, we can then find a 

maximum likelihood estimator for our parameters of interest. But there 

are some difficulties with this approach, and hence least squares esti-

mates will be discussed in Chapter IV. 

The approach to find the unconditional likelihood function is out-

lined below. 

1. Use the conditional hazard function to get the unconditional 

one by assuming a normal distribution for £ ••• 
1J 

2. Get q. 'k as a function of a and Sonly. 
1J - -

3. Write the likelihood function which is free of£. 

This approach will be carried out for both multiplicative and additive 
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hazard functions. 

The conditional hazard function in the multiplicative form is given 

by 

A . I ( t) = Ao ( t) exp ( s I xl. ( t) + E .. ) • 
l E.. l.J 

lJ 

Assume that xi(t) = xik then we have 

t 
S . I ( t) = 1 - F . I ( t) = exp (-J,o AO ( u) exp ( S 'x. k + E .. ) du ) l E.. l E.. l • lJ 

l.J l.J 

exp (-A0 ( t) exp ( S' x. ·k + E .. ) ) , 
1 lJ 

where A0 (t) 2 Now if we assume that E .. ~ N(O,cr) then we 
l.J E 

have 

s. (t) 
]_ 

00 

= f 8.1 (t)f(E .. )dE .. 
-oo l E.. l.J l.J 

l.J 

00 

J exp(-A0 (t) exp(S'x.k+E .. ))f(E .. )dE .. 
-oo ]_ l.J l.J l.J 

where M( •) is the moment generating function of ( •), and Y = exp (E .. ) ~ 
l.J 

2 lognormal(O,cr ). We should mention that there is no closed formula for 
E 

the moment generating function of a lognormal random variable. At this 

stage we can use an approximation by using Taylor expansion of second 

degree for 

g ( E .. ) = exp ( -A0 ( t) exp ( S 'x. k + E .. ) ) , 
l.J 1 l.J 



and expand it around E •• = 0. Hence we have 
l.J 

g I ( E •• ) = -Ao ( t) exp ( s Ix. k + E .. ) exp (-Ao ( t) exp ( s Ix. k + E .. ) ) ' 
l.J . ]. l.J ]. l.J 

g II ( E .. ) = -Ao ( t) exp ( s Ix . k + E •• ) exp (-Ao ( t) exp ( s Ix . k + E .. ) ) + 
l.J ]. l.J ]. l.J 

[ Ao ( t) exp ( S 'x . k + E •• )] 2 exp (-Ao ( t) exp ( S 'x . k + s .. ) ) , 
]. l.J ]. l.J 

g" (O) 

Therefore, 

2 
(J 

Si(t) ~ {l-A0 (t) exp(S'xik)[l-A0 (t) exp(S'xik)]T} x 

S. (t) satisfies the following properties S. (0) = 1, lim S. (t) = 0, and 
]. ]. t-+<xi ]. 

S.(t) is nonincreasing, and left continuous. Therefore, S.(t) is a 
]. ]. 

survivor function even though it is only an approximation of the true 
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survivor function. The only restriction on this survivor function is 

that it always intersec~s the underlying function A0 (t) at height= e-1 . 

The conditional hazard function in an additive form is given by 

>-..
1 

Ct) = >-. 0 (t) + s' x. (t) + s ..• 
]. s . . ]. l.J 

l.J 

Assume that xi(t) = xik then we have 

si\s .. (t) 
l.J 

1-F.\ (t) l. E, , 
l.J 

exp ( - ( s I x. k + E .. ) t - Ao ( t) ) ' ]. l.J 
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2 Again if we assume thats .. 'v N(O,cr) then we 
1J E 

s. (t) = /x, s.
1 

(t)f(s .. )<ls .. 
1 -co l E. • 1J 1J 

lJ 

co 
f_coexp(-(S'x1.kt + A0 (t)) - s .. t)f(s .. )ds .. 

lJ lJ lJ 

-s .. t 
exp('-(S'xikt + A0 (t)))J_cocoe 1 J 

-s .. t 
A0 (t)) E(e iJ ) 

f(s .. )ds .. 
lJ 1J 

However, S.(t) is not a survivor function since 
1 

s. (t) 
l 

co as t - co. 

Thus, from now on we are going to emphasize on working with log(-log 

model rather than_with log model, because of the restriction on the param-

eters that log model has, and that treatment effects are free from time 

grouping as we have seen in deriving the model to be used in discrete 

setting from the continuous setting. Also, we should mention here that 

least squares estimates are going to be considered over maximum likeli-

hood estimates because of the following reasons: 

1. There is no closed form for the likelihood function. 

2. The quality of the approximation is in doubt. 



CHAPTER IV 

AN APPROACH TO INFERENCE 

4.1 Estimation of Variance Components 

4.1.1 Estimation of the Binomial Variabilities 

As we have seen in Chapter I, 

s .. kls .. ,n .. k"' Binomial(n .. k,q .. k), with 
lJ lJ lJ lJ lJ 

cov(s. 'k's. 'k' Is .. ,n. 'k'n. 'k') = 0. lJ lJ lJ lJ lJ 

For a large sample size, the asymptotic distribution is given by 

s .. kls .. ,n .. k '\, Normal(n .. kq"k'n .. kq .. k(l-q .. k)), and 
lJ lJ lJ • lJ lJ lJ lJ lJ 

A sijk O 

q1.J'k = IE .. ,n .. k "' Normal(q. 'k'q .. k(l - q .. k) /n .. k). 
n .. k lJ lJ • lJ 1J 1J 1J 
lJ 

Let g(qijk) = log(-log qijk), 

g (q. 'k) = 1/q. 'k(log q. 'k)' 
lJ lJ lJ 

. 
where g is defined to be the derivative of the function g. Then 

A I • . 2 
g(q .. k) s .. ,n .. k"' Normal(g(q .. k),[g(q .. k)] q .. k(l-q .. k)/n. 'k), 

lJ lJ lJ • lJ lJ lJ lJ lJ 

that is, 

l - qi 'k 
log(-log q .. k)ls .. ,n .. k '\, Normal(log(-log q1.J.k)' 2). 

lJ lJ lJ • (1 ) 
nijkqijk og qijk 
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Going back to the general model, 

log(-log qijk) + oijk' 

where o. 'k is a random error then we have 
lJ 

• l - qijk 
o .. k!s .. ,n .. k ~ Normal(O, 2 ). 
lJ lJ lJ ( 

nijkqijk log qijk) 
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In constructing the variance-covariance matrix for the model we need 

Var(o .. k) rather than Var(o .. kls .. ,n. 'k). Therefore, we need to consider 
lJ lJ lJ lJ 

s .. and o. 'k to be uncorrelated but not necessarily independent since 
lJ lJ 

Var(o .. k) and Var(o .. kls .. ,n .. k) may be different. Thus we have 
lJ lJ lJ lJ 

Var(o. 'k) 
lJ 

Since E(s .. ) 
lJ 

E(Var(o .. kls .. ,n .. k)) + Var(E(o .. kJs .. ,n .. k)). 
lJ lJ J l . lJ lJ lJ 

O and E(o .. k) = 0 then E(o. 'kl E .. ,n .. k) 
lJ lJ lJ lJ 

O and hence 

Var(o .. k) = E(Var(o .. kls .. ,n .. k)). 
lJ lJ lJ lJ 

This suggests averaging over all main units on the same trt and the same 

interval to get an estimate of Var(o .. k) given as 
lJ 

Var(o .. k) 
lJ 

J 
~ Var(o. 'kls .. ,n .. k)/# main units on trt i. 

j=l lJ lJ lJ 
(4 .1) 

2 
For the rest of all arguments we will designate Var(o. 'k) by cr and 

lJ o. 'k 
A2 

its estimate by cro 
ijk 

4.1.2 Equating SS to ESS to estimate terms in V 

lJ 

Using a method similar to the fitting constant method provided by 

2 
Henderson (1953) and Searle (1968), an estimate of cr can be obtained as 

E 

follows 
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Step (1) Fit the full model 

y MB+ o 

[XlZ] [!] + 0 

= Xb + ZE + cS, 

where bis the vector of fixed effects, sis the single vector of random 

effects, and o ~ N(9,W), where Wis a diagonal matrix of cr~ 's being 
ijk 

the diagonal elements. Now, the reduction sum of squares for fitting 

the full model is given by 

R(b, s) IX'] A-1 -- w y 
lz' -

Step (2) Fit the reduced model 

y Xb + o. 

Then, the reduction sums of squares for fitting the reduced model is 

given by 

Step (3) Get the expectation of the quadratic form under the full model. 

The expectation of y'Qy under the model y =MB+ o is given by 

E((~) = tr m;J Q[XiZ] E(BB')] + tr[Qi<]. 

Then, the expectation of R(~,~) under the full model is given by 
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If we let 

then we have 

[lx'w-1x 
E(R(~,~))=tr A-l 

Z'W X 

A-1 J- ] X'W Z 
A-l E(BB') + tr[C1]. 

Z'W Z 

Similarly, the expectation of R(b) under the full model is given by 

Hence 



41 

C, then we have 

Step (4) Equate ER(~J~) 

2 

to R(~,e::)-R(b) and solve for the unknown param-

eter a gives us 
e:: 

(4.2) 

4.2 Weighted Least Squares and Survival 

Functions Estimation 

The split pl9t model with unequal subplot variances will be analyzed 

first for the purpose of finding a good fitting model. This model has 

main treatment effects, time effects, and treatment by time interaction 

effects. The model obtained using the proportional hazard model did not 

have treatment by time effects interaction. So, our modification here 

can be formulated as follows. 

1. If the best fitted model has no treatment by time interaction, 

the proportional hazard model, which we started with, is then the approp-

riate one. 

2. If the best fitted model has treatment by time interaction, 

then we have to modify the proportional hazard model. In this case we 

can use the general Cox (1972) model with time dependent variables, i.e., 

the covariables are functions of time. In other words we can start with 

the following model for the hazard function. Let 



A •• (t) 
1J 

Ao(t) exp[B'x.(t) + E, .], 
1 1J 

where x.(t) are the variables influencing failure times. In general, 
1 
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these variables can be functions of time. However, in deriving the model 

to be used it can be assumed that x.(t) are constant on interval k, as 
1 

we have seen before. Therefore, if the best fitted model has a treat-

ment by time interaction, we can use the general time dependent variables 

for Cox (1972) model. Otherwise, the assumption that variables are free 

from time effects would be appropriate. 

The split plot model with log(-log q .. k) response can be written in 
1J 

a matrix form as given below. 

y XB + u 

where 

y is an IJKxl vector of known values and yijk = log(-log qijk), 

X is an IJK x P design matrix, 

B is a P x 1 vector of unknown parameters, 

u is an IJK x 1 vector of random components, and 

where V is an IJK x IJK variance-covariance matrix having both v ( e . . ) 
1J 

2 2 
cr and v(cS .. k) = cr~ in the following form 

E 1J u. "k 1J 



V= 

cr2+a2 
2 2 a a 

s 0111 E: E: 

2 2 2 2 a a +a · · • a 
E: s 0112 E: 

2 2 2 2 
a a a +a 

E: E: s 011K 

0 

0 

2+ 2 a a 
s 0121 

2 
a 

E: 

2 
a 

E: 

0 

2 2 a a 
E: E: 

2 2 2 
a +a · · · a 

s 0122 

2 
a 

E: 

0 

E: 

2 2 
a +a 

s 012K 

IJ times 

Similar to the procedure provided by Grizzle, Starmer and Koch 
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(1969), generalized least squares estimates after estimating the variance-

covariance matrix V will be considered and are given by 

A 

B 
A A 

Cov(~) 

For T discrete, the conditional survivor function for treatment i 

and time interval tk is given by 

k 

Si IE: •• ( tk) = II qij !l. (4.3) 
l.J !l=l 

Estimates of the above conditional survivor functions can be easily found 
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from the estimates of q .. k for all i=l, .•. ,I, j=l, •.. ,J, and k=l, ... , 
1J 

K. It is important to mention here that estimates of the survivor func-

tions given 2 .. = 0 will be considered. The reasons for that can be sum-
1J 

marized as follows: 

1. We assumed that tank variability (2 .. ) increase or decrease the 
1J 

survivor function, 

2. Usually treatment means comparisons are done holding all other 

conditions as constants. Similarly treatment comparisons for 

survival data can be done using survival curves for different 

treatments holding all other conditions constant, e.g., 2 .. = 0. 
lJ 



CHAPTER V 

ASYMPTOTIC PROPERTIES 

5.1 Introduction 

The asymptotic properties for the estimators presented in Chapter 

IV are based on the behavior of the estimators when both the number of 

main units, J, and the number of subunits in each main unit, n .. =n for 
l] 

all i and j, approach 00 • As we have seen in Chapter IV, the variance-

covariance matrix V for grouped time model is a block diagonal matrix 

that involves 2 
both er;, 

uijk 

2 
and er. 

E: 

2 er is a function of n. 'k and J, and o .. k 1J lJ 
Vis of order IJK x IJK, and thus V depends on J. From this point onwards 

we write V(J) to denote this dependency. A reasonable approach to prove 

the asymptotic properties for our estimators is as follows. 

Step (1) Prove that 

h2 l 2 I P ( n .. kcr" e: .. ) - ( n .. kcr" e: .. ) - 0 
l] u •• k l] l] u •• k l] 

l] l] 

as 

Step (2) Assume as a working approximation that 

h2 l • 2 I and E (y) ~ xo. 00 E:,. = era E:.. µ 

ijk l] ijk l] 

Step (3) Prove that 

&2 - cr2 Lo 
o .. k o .. k l] l] 

as J + 00 and that w - wCJ) Lo (J) 
as J + 00 • 

45 
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( A2 A2 ( Step 4) crE using W(J) as the variance-covariance matrix, crE W) say, has 

the following property 

A2 2 p 
a (W) - a ~ O as J ~ co. 

E E 

A 

Step (5) From steps (3) and (4), prove, using W(J) that 

A2A 2 p 
a (W) - a ~ O as J ----;. co, 

E E 

Step (6) With known V(J) prove that S has an asymptotic normal distribu-

tion as J-+ co, 

Step (7) Prove that V (J) - V (J) ~ 0 as J-+ 00 • 

Step (8) With unknown V(J) prove that S has an asymptotic normal distri-

bution as J-+ co, 

We discuss the above steps in detail in section 5.2. All tests of 

hypotheses and confidence limits are discussed in section 5.3. In sec-

tion 5.4 we discuss confidence limits for survivor functions and test 

for the appropriateness of assuming the binomial variances. 

5.2 Consistency of Variance Components 

Estimators and Asymptotic Distri-
A 

bution of S 

As discussed in Chapter I we have 

Therefore, by the Weak Law of Large Numbers we have 



r .. /n l] 1T ijl 

r .. 2/n 
l] 1r ij 2 

p 
E: •• ----,> as n+oo, 
l] 

r. 'k/n l] 1Tijk 

s .. K/n l] 1T ij (K+ 1) 

where 

K-1 
1r1.J." = ( II q .. n)(l-q .. 0 ) for Jl=l,2, ... ,K, and 

)(, Jl=l l]x, lJx, 

K 

1T ij (K+ 1) = Jl~l qij Jl. 

Now, let 

K+l K+l 
h(EiJ"k) = qiJ"k = I 1T . . Jl/ I 1T. "Jl 

Jl=k+l l] Jl=k l] 

be a continuous function. Then 

h(rijk) P h( ) 
- 1T .. k n -lJ 

q .. k as n -+ 00 • 

lJ 

We now let 

_ l-qijk 
g(qijk) - 2 

q .. k(log q. 'k) l] lJ 

be another continuous function. Then 

1- q. "k 
lJ I P l-qijk 

E:. • ----,> ___ __.........__ __ 2 

lJ q .. k(log q .. k) 
l] lJ 

as n-+ 00 • 
A A 2 
qijk(lbg qijk) 

Recall that 

l - qijk 
----------2 I E ••• 

A ( A ) l] 
n .. kq. "k log q. "k l] l] l] 
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Therefore, we have 

A 2 I n. "kcr;: E: •• 
1] v. "k 1] 

1] 

Hence, we get 

E: ••• 
1] 

AZ I p 
n. "kcr" E:. • ~ g(q1.J"k) as n-+ aa. 

1] u. "k 1] 
1] 

Now, if we let 

be the true variance of o .. kJc: .. then we have 
J.J 1] 

2 cro le: .. 
ijk l] 2 

n. "kq. "k(log q. ".k) J.J 1] J.J 

Therefore, we have 

AZ I 2 I LO (n. "kcr" E: •• ) - (n. "kcr" E: •• ) 
J.J u •• k J.J J.J u •• k J.J 

J.J J.J 

This completes the proof of step (1). 

as n-+ 00 • 

Assuming step (2) is true we can act as if 

AZ I • 2 I • CJ E: - cr E: and E(y) = XS, when the ni"J"k are large. 8 .. - 8 • . -
ijk J.J ijk J.J 
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(5 .1) 

Now we prove step (3). Recall that q. "k is a random variable and it de­
J.J 

pends on s.. . Then we can view the sequence { (1- q .. k) /q .. k(log q .. k) 2 } 
J.J J.J lJ lJ 

for all j=l,2, •.. ,J as J-+oo as a sequence of independently and ideiltical-

2 
ly distributed random variables such that E((l- q .. k)/q .. k(log q .. k) ) < 00 • 

lJ J.J lJ 

Therefore, by the Strong Law of Large Numbers we have 

1 J 2 2 
J I ((1-q .. k)/q .. k(log qi.J"k) )-E((l-q .. k)/q .. k(log q .. k)) 

j =l J.J J.J J.J lJ J.J 
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a.s. O as J-+ 00 • 

Hence, the convergence in probability is also true. Therefore, 

A2 2 p 
a - a ~o. (5.2) 

6. "k 6. "k lJ lJ 

as J-+ 00 and for all i=l, ... ,I, j=l, ... ,J and k=l, ... ,K. By (5.2) and 

Arnold's (1981) result on page 341 we have 

(5 .3) 

as J -+ co where 

(5. 4) 

for i=l, ... ,I, j=l, ... ,J, and k=l, ... ,K. This completes the proof of 

step (3). 
-

For the proof of steps (4), (5), (6), (7), and (8) we proceed as 

follows. For our grouped time model, l(J) = X(J)§+~, where cov(~) = 

V(J) and V(J) is a block diagonal matrix defined as before, we partition 

r(J)' x(J) and v(J) as follows 

~ (J) = ~ IJKxl [ y' _1 y'. 
-J 

where X.'s are all IKxP identical matrices. Also 
J 

vl 0 

v(J) VIJKxIJK = 
·v. 

J 

0 ·v 
J 



so 

where V.'s are all IKxIK identical matrices. Therefore, y.'s are inde-
J -J 

pendently and identically distributed IK-dimensional random vectors with 

E(y.) = X.S and Cov(y.) = V .. Using Arnold's (1981) theorem 18.16 (b) 
-J J- -J J 

we have 

/J (~(J) - xj~) ~NIK(9,vj) 

1 J 
as J+oo, where l(J) = J j~l rj. 

(5. 5) 

To prove step (4), we recall the estimation procedure used to get 

h . f 2 t e estimate o cr. Full and a reduced model were both fitted. The full E: 

model is of the form 

where bis the vector of fixed effects, ~ is the vector of random effects, 

and Cov(~) = W (Jf' where W is given by (5. 4). For this model we write 

l(J) = M(J)~ +~'where M(J) [XI Z] (J). 

The reduced model is of the form 

A2 2 
cr is unbiased for cr since 

E: E: 

{E (R(~ ,§) 

2 
Recall that E(R(b,E:) - R(~)) = crE:tr[c] + tr[c1 J - tr[c2 J then we have 

E( A2) 2 h A2 . . • for ""2 cr =a. Now, to prove tat cr is a consistent estimator v we 
E: E: E: E: 

A2 
need to show that Var(cr) + 0 as J+ 00 • From (4.2) we have 

E: 

A2 
Var(cr) 

E: Var ( (R(~, ~) R (b) ) It r [ c]) . 



A2 
But C\ is a quadratic form with E(r) = X§ and V(r) V then we have 

A2 
Var(a) 

E: 

2 -1 -1 - -1 
2 tr [W (J) {M(J) (M(J) W (J)M(J)) M(J)-x(J) (X(J) W (J/(J)) 

(tr[c]) 
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(5. 6) 

Using the partition described for the grouped time model and then 

applying it on both fitted models and partitioning Z, M, and W according-

ly we have 

J -1 
r X'.W. X. 

j=l J J J 

Similarly, we have 

-1 -1 
x(J)w(J)z(J) JX'.W. Z.; 

J J J 

-1 -1 
z(J)w(J)z(J) = JZ'.W. Z., 

J J J 

-1 
JM'.w-:-~.' M(J)W(J)M(J) J J J 

-1 -1 
x(J)w(J)v(J) = [XiWl Vl 

. -1 w. 

0 

-1 
JX'.W. X. 

J J J 

-1 X'.W. V. 
J J J 

J 

0 
X' 

1 

X' 
j 

X' 
J 

X'W-lV] 
J J J ' 



-1 [X'W-l X'.w:1 -1 
x(J)w(J) 1 1 J J 

x;wJ J, 

-1 [M'W-l M'.w:1 M'W-l] M(J)W(J) 1 1 J J J J . 

Also we have 

.. 
I I I 

1 -1 -1 - -1 
-JW. X.(X'.W. X.) X'.W. V. 

J J J J J J J J 

I I I 

I I I_ IJK 

I I 

1 -1 . - l . - -1 I I 
-JW. ~. (M '. W. ~.) M '. W. V. • 

J J J J J J J J 

I I 

I I I 

I 

I 

I 

I_ IJK 

and 

1 -L -1 - -1 I I 
.=:wJ . ~. (M'.W. ~.) M'.W. 

J J J J J J J 
, and 

I I I IJK 
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I 

1 -1 -1 - -1 I 
°?. X. (X '. W. X. ) X '. W. 

J J J J J J J 

I -

I 

I 

I 

I 

I 

I 
IJK 

Therefore, the first term in (5.6) can be written as 

-1. -1 - -1 -1 -1 - -1 2 
2tr [W.~.(M!W.~.) M!W. V.W. X.(X!W. X.) X!W. V.] . 

J J J J J J J J J J J J J J J J 

2 -1 -1 -1 - -1 2 
J (tr[Z!W. z.-Z!W. X.(X!W. X.) X!W. Z.]) 

J J J J J J J J J J J J 
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- 0 as J - co. Also, the second term in (5.6) can be written as 

-1 -1 - -1 -1 - -1 
4S'X'.[W.~.(M'.W.r1.) M!W. v.+W'.M.(M!W.rL) W. -

- J J J J J J J J J J J J J J J 

-1 I -1 - I -1 ~1 · 1 -1 - -1 W. X. (X. W. X;) X. W. V. - W. X. · (X. W. X. ) t,J. ] X. f3 f 
J J J J J J J J J J J J J J J-

-1 -1 -1 - -1 2 
.J( tr [Z!W. Z. - Z!W. X. (X!W. X.) X!W. Z.]) 

J J J J J J J J J J J J 

-o as J-co. 
,.z 

Therefore, we have Var(a ) - 0 as J - 00 , which 
E: 

. l' h "2 . h imp ies tat a wit 
E: 

,.z 
a known W(J)'a (W) say, is a consistent estimator 

2 
for a as J - co. 

E: 
This completes the proof of step (4). 

To prove step (5) we use steps (3) and ( 4) as follows. 

be a continuous function of W(J)' and since 
A p 
w(J) -w(J) -

then we have 

A2 A 2 p 
a (W) - a - O as J ~ co. 

E: E: 

For the proof of step (6), we proceed as follows. 

-1 
J(X!V. X,), 

J J J 
and 

-1 
x (J) v (J) '! (J) 

J 
[ 

j=l 

Let &2 (W) 
E: 

O as J - 00 , 



A 

Therefore S based on known V(J)'§(V) say, is given by 

S(V) 

J 
[(x ,.v-.1X.)-l ~ X'V-l ]/J L.. •• y. . 

J J J j=l J J -J 

Now, 

J 
-1 P -1 

I X'.V. y./J ~ E(X'.V. y.) as J ~ 00 by the weak law of large 
j=l J J -J J J -J 

numbers. Therefore, we have 

A 2_,. -1 -1 -1 
§(V) (X'.V. X.) E(X'.V. y.) 

J J J J J -J 

-1 -1 -1 
(X'.V. X.) X'.V. E(y.) 

J J J J J -J 

-1 -1 -1 
(X'.V. X.) X'.V. X.S 

J J J J J J-
s 

as J ~ 00 , Thu-s S(V) is a consistent estimator for s as J ~ oo, 

Now we define a function of r(J) as 

S(V) -1 -1 -1-
(X'.V. X.) X'.V. y(J) 

J J J J J -

and use (5.5). Applying the delta method then we obtain the following 

result. 
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r.;- A ___h_,,_ -1 ) - 1 
vJ ( S (V) - S) ---,- N ( 0, (X '. V. X. ) , (5. 7) 

p - J J J 

as J ~ 00 • This completes the proof of step (6). 

Using steps (3) and (5) we have 

AZ 2 P 
as: -as: ->O as J---;>oo for all i=l, ... ,I, j=l, ... ,J, and 

u. "k u. "k l.J l.J 

k = 1 , ••. , K, and 



55 

A2 2 p 
a - a --,,,. 0 as J --,,,. 00 • Then by Arnold's (1981) result on page 341 

E: E: 

V L V as J ~ 00 and also we get 
j j 

V (J) - V (J) L O as J ---=,. 00 • This completes the proof of step (7). 

From the last two results we have 

(5. 8) 

as J --,,,. 00 • 

(5. 9) 

as J ~ 00 • Also 

(5 .10) 

as J --;i. 00 • 

Now, S based on unknown V(J)'§(V) say, is given by 

§(V) 

A-1 -1 A-1 J 
= (X~V. X.) x~v. ( L y./J). 

J J J J J j=l -J 

J p 
Thus, using (5.8), (5.10) and since r y./J _____,,. E(y.) as J _____,,. 00 we have 

j=l -J -J 

A A p -1 -1 -1 
S(V) ~- (X~V. X.) x~v. x.s 

J J J J J J-
§ as J --,,,. 00 • 

Therefore S(V) is consistent estimator for Sas J --'J> 00 • Now, since 

S(V) and S(V) are both consistent estimators for S then we have 



§ (V) - § (V) L O as J ----;,, oo. 

Therefore 

/.J ( § (V) - § (V) ) = 

A-1 -1 A-1 J -1 -1 -1 J 
[ (X '. V. X. ) X '. V. E y . - (X '. V. X. ) X '. V. E y . ] //.J = 

J J J J J j=l -J J J J J J j=l -J 

A-1 -1 A-1 · -1 -1 -1 
[ (X '. V . X. ) X '. V . - (X '. V. X. ) X '. V . ] v'Jy ( ) . 

J J J J J J J J J J - J 

Combining (5.5), (5.8) and (5.10) leads to 

v'J(S(V) - S(V)) - -
p 

--,,.o, 

as J----;,, 00 • From (5.7) we have 

v'J A • I -1 -1 
J ( § (V) - §) "' N ( 0 , (X . V . X. ) ) , 

• p J J J 

which implies that for all a E RP we have 

1 

v'Ja' (B(V) - B) [a' (X'.v:1x.)-1a] 2 ~ N(O,l), 
- - - - JJ J -

as J--,,. 00 • 

Now, using (5.10) and for all a ERP we have 

A-1 -1 p -1 -1 
a ' (X '. V. X. ) a ----;,, a' (X '. V . X . ) a as J ----;,, 00 • 

- JJ J - - JJ J -

This can be written equivalently as 

[ '(X'V-lX )-1 ]1/2 a . . . a P 
- J J J -
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(5 .11) 

(5.12) 

(5 .1,3) 

as J --;,,oo. Multiplying (5.12) and (5.13) and using Slutsky's theorem 
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imply that 

1 

II a' (S(V) - S)]a' (X'.v:1x.)-1a]- 2 ~ N(0,1) 
- - - - JJ J -

A A 

as J ____,. 00 • By adding and subtracting §(V), the last result can be re--

written as 

II~' C§CV) - §) II ~' ( § (V) - s (V)) L 

1 1 1 / 2 ____,. N(O ,1), 
[a' (X'.V: X.)- a] 

- J J J -

as J ____,. 00 • 

Combining (5.11) and (5.14) we have 

1 

II a' (S(V) - S) [a' (x~v:1x.)-1a]-2 ~ N(0,1) 
- - - - JJ J -

as J ____,. 00 for all a E ]RP • Thus we have 

fT A A O A-1 -1 
vJ(S(V)- S) "'N (O,(X'.V. X.) ), 

- - • p - J J J 

as J ~oo. This completes the proof of step (8). 

5.3 Testing Hypotheses and Confidence Intervals 

5.3.1 Testing the Hypothesis Ho-=-J!§= 0 vs. 

!!_1 : HS 'f O 

(5 .14) 

(5.15) 

The test statistic for testing the above hypothesis is given by 

SS (HS= O) = S' (V)H' [H(X'v-1x)-1H' ]-1HS(V). - -

Using (5.15) we have 
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as J ~ oo. Then we have 

• 2 
"' X (rank(H)) . 

as J --;,,co. This then implies that 

as J ----;,. 00 • 
2 

Hence, SS(HS= O) has an asymptotic x distribution with 

rank(H) d.f. if H0 is true. 

5.3.2 Goodness of Fit Test 

The test statistic is given by 

GOF is the sum of_ squares to test the hypothesis that log (-log ~) = X~ and 

that o. "k are with distribution derived from conditional binomial assump-
1J 

tion. If X~ is a saturated model, then this is a test for binomial 

assumption or independence of survival times conditional on main unit. 

Using Arnold's (1981) theorem 10.3 we have 

• 2 
GOF ~ x (d.f.) as J----;,. 00 , where 

d.f. = rank (V-1 - v-1x(x'v-1x)-1x1v-1). 

. 2 
Therefore, GOF has an asymptotic x distripution if the model fits. 

5.3.3 Confidence Limits for Si and Confidence 

Region for S 

Using (5.15) and defining an appropriate function of §(V) we have 

1 
2 A L 

(cii) (Si - Si) ~ N(O,l) as J----;,. oo, 
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A-1 -1 
where c .. is the appropriate diagonal element of (X'V X) corresponding 

11 

A 

to the element S., Thus an approximate 100(1-a)% confidence interval for 
l 

Si is given by 

1/2 
Si± za/Z(cii) , where za/Z is the value such that a standard 

normal variate falls within -za/Z and za/Z with probability 1-a. 

Also, using (5.15) and defining an appropriate function of §(V) we 

can conclude that any subvector §(V) is asymptotically normally distrib-

uted and then an approximate 100(1-a)% confidence region is given by 

{SE JR.p: (S(V) - S) 'X'V-1X(S(V) - S) < /(P)}' 
- - - - - a 

2 
where x (P) is a tabulated chi-square value with a-level and P degrees 

a 

of freedom. 

5.4 Other Asymptotic Properties 

5.4.1 Confidence Limits for the Conditional 

Survivor Functions 

To construct confidence limits for the conditional survivor function 

given by 

Prentice and Gloeckler (1978) suggested using the following function 

yi(§) = log(-log sils .. =O(tk,§)). 
lJ 

Then the distribution of y.(S) may be approximated by a normal distribu-
1 -

tion with mean y.(S) and variance given by 
l -



2 
CJ • 

l 

g. (8) 
l -
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[g.(S)]'cov(B)[g.(B)], where 
l - - l -

cly. (S) 
l -

cl§ 

Therefore, approximate 100(1-a)% confidence interval for y,(S) is given 
l -

by 

[y. (S) - z 12CJ. , Y. (B) + z 12CJ.], where zrv/ 2 is the value such that a 
1 - a 1 1 - a 1 ~ 

standard normal variate falls within -za/2 and za/ 2 with probability 1-a. 

Thus, an approximate 100(1-a)% confidence interval for Sijs .. =O(tk'~) is 
l] 

given by 
exp (z CJ.) 

[{Sijs .. =O(tk,§)} a 1 

l] 

exp (-z CJ.) 
{s.l -o<tk,B)} a i ]. 

l E - -ij 
(5.20) 

5.4.2 Test for the Binomial Variabilities 

An ad-hoc test to see whether the binomial variances, that were used 

to estimate main unit variance, are appropriate or not is provided. This 

test can be summarized as follows. Add, as covariate, the values of nijk 

to the fitted model ¥ = X§ + :3-, say. Then obtain a new model ¥ = X§ + 

yn+u, where n is the vector of n .. k values for i=l, .•• ,I, j=l, ... ,J, 
lJ 

and k = 1, .•• ,K. If y=O then the estimates of q .. k's as functions of the 
lJ 

parameters for the above model are unaffected by risk sets, and hence 

risk sets do not affect the estimated survivor functions. However, if 

y > 0 then the estimates of q. 'k's are larger with larger number of sub­
lJ 

units at risk, and hence risk sets will affect the estimated survivor 

functions. On the other hand if y < 0 then the estimates of q .. k's are 
l] 

smaller with larger number of subunits at risk, and hence risk sets will 
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affect the estimated survivor functions. Therefore a test on y is a test 

for the validity of the assumption that binomial variances are appropri-

ate. A test for H0 : y= 0 against H1 : y,f. 0 is now given by z = y/sy, where 

y and sA are the corresponding estimate and standard error of the estimate 
'( 

of y, respectively. 

tribution applies. 

If units fail independently, then the binomial dis-

If q. "k depends on the number at risk, then the units 
l.J 

will not fail independently. Small p-values indicate lack of indepen-

dence of subunits within main unit. 



CHAPTER VI 

EXAMPLE OF MODEL AND ANALYSIS APPLIED TO A 

REAL DATA SET USING SAS 

In this chapter analysis of the fish experiment presented and fully 

explained in Chapter I will be considered. SAS was used for all compu-

tations. The full model is given by 

XS+~· where cov(y) V and 

2 
Vis a block diagonal variance-covariance matrix involving both a 

o. "k l] 2 
for i=l, .•. ,I, j=l, ..• ,J, and k=l, .•• ,K, and a. Sis the vector of 

E: 

of unknown parameters to be estimated, Xis a design matrix of known con-

stants, and y is a vector of transformed values of the observed qijk's. 

The function of these q .. k's that was considered in the analysis is given 
l] 

by y .. k = log(-log q .. k) for all i=l, ..• ,I, j=l, ... ,J and k=l, ... ,K. 
. l] l] 

Estimates of a~ 
ijk 

can be found using (4.1). Table IV represents 

the calculations involved to get 

should be mentioned here that in 

A2 
a 

o. "k l] 

order 

and yijk log ( - log q .. k) . 
l] 

It 

A 

to avoid having values for qijk 

as one or zero adjusted survival, s .. k(AD) say, can be used instead of 
l] 

the s .. k values as follows. If s .. k=n .. k then take s .. k(AD) = s .. k- .5. 
l] l] l] lJ l] 

If s .. k=O then take s .. k(AD)= .5. On the other hand for occasional 
l] lJ 

nijk = 0, we follow Grizzle, Starmer, and Koch (1969), and suggest that 

s. 'k can be replaced by 1/K, where K is the number of time intervals. 
l] 
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TABLE IV 

ESTIMATES OF BINm-UAL VARIANCES AND VALUES OF THE 
RESPONSE VARIABLE 

Accl. Cone. Tank Time rijk nijk 8 ijk 
(J 2 

yijk o .. k 1] 

------------------------------------------~----~------ -- ------
I I I I 25 21 0. 74715 3. 1985 
I I 2 5 24 19 0. 1728 -I 1559 
I I 3 '7 19 12 0. 19855 -0. 779 
I I 4 I 12 It 0. 7531 ·2.4459 
I I 5 0 " It 2 08315 ·3 0782 
I I 6 0 It II 2.08315 ·3 0782 
I I 1 0 11 II 2 08Jl5 ··3 0782 
I 2 I 2 25 23 0. H745 -2.4043 
I 2 2 1 23 IG 0. 1728 -1.015 
I 2 3 4 IG 12 0 1985!3 -1. 2459 
I 2 4 2 12 10 0.7531 .. I .6998 
I 2 5 .0 10 10 2 08315 -2.9702 
I 2 6 0 10 10 2.08315 -2 9702 
I 2 1 0 10 10 2.08315 -2.9702 
2 I I 3 25 22 I. lfflB -'-.O!H 
2 I 2 1 22 15 0. 12345 -0.9604 
2 I 3 9 15 6 o. 1333 -0.0874 
2 I 4 0 6 6 t. It 38 -2.4459 
2 I 5 0 6 6 t .5129 -2 4459 
2 I 6 0 6 6 2 .012 -2.4459 
2 I 1 0 6 6 I .52~8 -2 .4·159 
2 2 I 0 25 25 I. 1818 -3 9019 
2 2 2 10 25 15 0. 12345 -o 6117 
2 2 3 1 15 8 o. 1333 ·0.4633 
2 2 4 5 8 3 I. 1138 ··0.0194 
2 2 5 I 3 2 t.5129 -O.fl04 
2 2 6 0 2 2 2 .012 • I 2459 
2 2 1 I 2 I I 5258 -O. J6G5 
3 I I I 25 24 0.9804 -3. 1985 
3 I 2 12 24 12 0.0946 -o 3665 
3 I 3 1 12 5 o. 1425 o. 1339 
3 I 4 4 5 I 0. 3279 0.4759 
3 I !I 0 I I 1 5479 -0.3665 
3 I 6 I I 0 I .5609 -o 3665 
3 I 1 0 0 0 2 0912 -0.3665 
J 2 I I 25 24 0 9804 ··3. 1985 
3 2 2 10 24 14 0 0946 -0.617 
3 2 3 8 14 6 0 1425 ··O. 1669 
3 2 4 J 6 J 0 3279 -0.3665 
J 2 5 I 3 2 I. 5419 -0.904 
3 2 6 I 2 I I 5609 -o 3665 
3 2 1 0 I I 2 0812 · 0 J665 
I I I 0 25 25 2 .04()8 -J.9019 
I I 2 9 25 16 o. 1818 -0 8068 
I I 3 4 16 12 0 2516 - I 2-159 
I I 4 0 12 12 I .9909 -3 1497 
I I 5 0 12 12 1.9909 · 3 1487 
I I 6 0 12 12 I 9909 · 3 1407 
I I 1 0 12 12 I 9!J()9 · 3 1187 
I 2 I 0 25 25 2 0408 ·3.9019 
I 2 2 4 25 21 0. 1819 · I 7467 °' ··I I 2 3 4 21 ,., 0 2516 · I 5512 l,J 

-I I 2 4 0 17 17 I 9909 -3.525R 



TABLE IV (Continued) 

------------
Accl. Cone. Tank Time 

A2 
rijk n. ·1 8 ijk 

a yijk lJ ( 0. "k lJ 
-------- .---w.--- .- .- .------- ,- .-- .. ---- .,._,, _____________________________ 

- 1 I 2 5 0 17 17 1.9909 -3.5258 
- 1 1 2 6 0 17 11 1.9909 -3.5258 
- 1 1 2 1 0 11 17 1.9909 -3.6258 
- 1 2 I I 1 25 24 1.5106 -3.1985 
- 1 2 1 2 12 24 12 0.0999 -0. 3665 
. I 2 1 3 5 12 1 0.27 -o. 617 
- I 2 1 4 3 1 4 0.421 -0.5~92 

I 2 1 5 0 4 4 2 .0231 -2.0134 
- I 2 1 6 0 4 4 2 0231 -2.0134 
-I 2 I 1 0 4 4 2 .023 I -2 .0134 
··1 2 2 I 0 ~5 ~5 1.5106 -3.9019 

1 2 2 2 9 25 16 0.0999 -0.8068 
-1 2 2 3 3 16 13 o.u -· 1.5749 
··1 2 2 4 2 13 11 0.421 -1.7883 
-1 2 2 5 0 11 11 2.0231 -3.0782 
-1 2 2 6 0 II 11 2.0231 -3.0782 
-1 2 2 1 0 II II 2.0231 -3.0782 
-1 3 1 1 3 25 22 I. 1871 -2.057 
- I 3 I 2 12 22 10 0.0871 -0.2389 
- 1 3 1 3 3 10 1 0. 2436 -1.0309 
. I 3 I 4 2 1 5 0.5058 -1.0881 
··I 3 1 5 I 5 4 I 5052 - I. 4999 
- 1 3 I 6 0 4 4 2.0064 -2. 0134 
··1 3 1 1 0 4 4 2.006·1 -2.0134 
-1 3 2 I 0 ~5 25 I. 1877 -3.9019 
- 1 3 2 2 12 25 13 0 0871 -0.4248 
- I 3 2 3 1 13 6 0. 2436 -0. 2585 
-I 3 2 4 2 6 4 0.5058 -0.904 
- 1 3 2 5 0 ·I 4 1. 5052 -2 .0134 
-1 3 2 6 0 4 4 2 .0064 -2 .0134 
-1 3 2 1 0 4 4 2 .0064 -2 .0134 

-------------------------·-- ------------··------

O' 
~ 
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A2 • 
From Table IV and (4.2), we have cr = 0.0095. Although this estimate e: . 

is small it will be considered throughout. After constructing V, a 

weighted least squares procedure is used to fit the full model. 

Test for the appropriateness of using the binomial variabilities is 

considered as proposed in Chapter V. The full model with n. 'k as a co­
l] 

variable has been fitted. Estimate and standard error for the appropri-

ate coefficient on this covariable are given by Bn = -0. 0683 and 
ijk 

s.e. = 0.0553. Then a test for H0 : Snijk = 0 against H0 : Snijk -f:. 0 is given 

by z=-1.23541 with a p-value of 0.11. This relatively large p-value 

indicates that there is no evidence that the response variable y depends 

on risk sets through anything other than the binomial variances. Table 
') 

z~presents an analysis of deviation table with corresponding X- ind 

i:-values obtained from fitting the full model without n. 'k as covariable. 
l] 

From Table V, it is obvious that the model fits very well. However, a 

need for another model that might fit just as well but with less factors 

was considered. Thus, a search for a better fitted model was carried 

out. The test of significance for each factor is obtained by consider-

ing its performance with all other factors included in the model. The 

model that has been chosen to be the appropriate one for this experiment 

is the one that has only main treatment effects along with time effects. 

Since this best fitting model has no time by treatments interactions the 

proportional hazard for continuous time setting is appropriate. 

For the chosen model, Table VI represents the analysis of deviation 

.hh 1· 2 d 1 wit t e resu ting x an p-va ues. Table VII represents the estimate 

of Sand the standard errors of the estimates, where 



TABLE V 

ANALYSIS OF DEVIATION FOR THE 
FULL :10DEL 

Source d. f. x2 _p-value 

Accl. 11 . 8354 < 0.005 

Cone. 2 19.7773 < 0.005 

Accl. x Cone. 2 3.5608 0.290 

Time 6 18.3412 0.005 

Accl. x Time 6 7.6430 0.380 

Cone. x Time 12 8. 1059 0.780 

Goodness of 48 20.9127 0.995 

Fit 

A A2 
All cr and cr are consistent estimators as the number of tanks 

0 .. k E: 1J 
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J ~ 00 • Furthermore, §(Y) has all the asymptotic properties discussed in 

Chapter V. We should mention here that the asymptotic properties discus-

sed in Chapter V are all valid approximations if we have more than one 

repetition per treatment. As the number of those repetitions goes to 00 , 

the estimators are consistent. These results are valid for the split 

plot design with main .treatments being completely randomized to main 

units. Also the asymptotic properties hold for the split plot design 

with main units having a completely randomized block structure for the 

case of more than one repetition per treatment within blocks. 

Estimates and plots of the survivor functions along with their con-

fidence limits for each treatment combination are presented in Table VIII 

and Figures 1, 2, 3, 4, 5, and 6, respectively. Also estimated survivor 

functions of the two acclimation times for low, medium, and high levels 
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of zinc concentration are presented in Figures 7, 8, and 9, respectively. 

We should mention here that there are two acclimation times namely one 

week and two weeks. Also there are three levels of zinc concentration 

namely low, medium, and high. Treatments 1, 3, and 5 represent one week 

of acclimation time with low, medium, and high levels of zinc concentra-

tion. On the other hand treatments 2, 4, and 6 represent two weeks of 

acclimation time with low, medium, and high levels of zinc concentration, 

respectively. 

From the above analysis we conclude that fore .. =O, the effect of 
iJ 

the acclimation time was important in explaining the data. For the first 

two time intervals there was practically no difference in survival rates 

between acclimation times of one week and two weeks. Fish under two 

week acclimations survived better than those with one week acclimation 

time in the sense that the effect became greater with time. This sug-

gests it is better to collect the data (count the number of deaths) 

after a period of at least three days. There was also an effect due 

to zinc concentration which indicates that fish survive better with low 

levels of zinc concentration than for higher levels. 



TABLE VI 

ANALYSIS OF DEVIATION FOR THE CHOSEN HODEL 

Source 

Accl. 
Cone. 

Time 

d.f. 

2 

6 

2 
x 

3.203 

29.515 

81. 841 

Goodness of fit 68 46.972 

TABLE VII 

ESTIMATE OF B 

Parameter Estimate 

p-value 

0.0782 

< 0.0050 

< 0.0001 

0.9000 

s.e. 
------------------------------------

µ -1. 741860 0.11802 

al -0.561034 o. 11291 

cl o. 103323 0.10440 

c2 0.133520 0.07461 

•1 -1. 432720 0.28642 

'[ 2 0.945690 o. 14188 

T3 1. 016890 0. 15675 

'4 
0.574602 0.22061 

T5 
-0.362336 0.34149 

T6 -0.388477 0.35749 

68 
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TABLE'VIII 

ESTIMATES OF SURVIVOR FUNCTIONS 

L.L. U.L. Time 

0.97309!5 0.9487 0.986 1 
0. 72!511!5 0.6342 0.797 2 
0.528728 0.41!57 0.629!5 3 

Trt 1 0.431604 0.312 0.54!5!5 4 
0.398606 0.28 0.5149 5 
o. 368886 0.2!51!1 0.486! 6 
0. 340447 0.22!5! 0.4!588 7 

0.979334 0.9599 0.9894 1 
0.781842 0.7676 •), 8767 2 

Trt 2 
0.613888 0.5055 0.70!56 3 
0.525531 0.405 0.6326 4 
0.494482 0.3721 0.6054 <; 

0.466 o. 3428 0.5799 ,; 
0.43823!5 0.31!51 0. 5!5.(!5 7 

0.948384 0.9026 0.973 1 
0.535495 0.4242 0.6346 2 

Trt 3 0. 289875 0. 1907 o. 3964 3 
0. 195403 0.1115 0.2966 4 
o. 167422 0.090!5 0.264!5 5 
0. 144021 0.0738 0. 2368 6 
o. 123231 0.06 0.2104 7 

0.960235 0.9237 0.9794 I 
0.61989!5 0.5212 0.7041 2 
0.387467 0.2782 0. 4953 3 Trt 4 0.286478 0. 1844 o. 3966 4 
0. 2!54508 0. 1574 0. 3632 5 
0.226797 o. 1345 0.3337 6 
0.201279 0. 1147 0.3053 7 

0.927249 0.8647 0.9612 1 
0.410!589 0.3014 0.5173 2 

Trt 5 o. 171204 0.0971 0.263 3 
0.0975879 0.0464 0.1715 4 
0.07829!52 0.0346 0. 1454 5 
0.063174!5 0.026 0.1238 6 
0.0!50!5878 0.0193 0.1049 7 

0.943808 0.87 0.9708 1 
0.50582!5 0.3333 C.6031 2 

Trt 6 0.258899 0.2!544 0.36!57 3 
0. 1683!52 0. 1157 0.2642 4 
o. 142224 0.0998 0.233 5 
0. 120676 0.0676 0. 2063 6 
0. 101797 0.0232 0. 1818 7 
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CHAPTER VII 

COMPARISON TO OTHER APPROACHES 

7.1 Introduction 

The problem that we consider in this study is to make inferences 

such as point estimation, interval estimations, and hypotheses tests 

where the split plot model with unequal subunit variances is used. The 

choice for such a model is based on the process that has been used in 

data collection, the way that the experiment was conducted, and the 

assumptions that main unit variability is present and that subunits in 

a main unit survive independently of other subunits. In other words 

our method is based on the experimental procedure which indicates that 

the variances of q. "k are not the same for different intervals. The 
lJ 

method provides estimates for the variances and least squares estimates 

for S which have the asymptotic properties discussed in Chapter V. It 

also provides estimates and confidence limits for the survivor functions 

for each treatment combination. 

Another approach to this problem is to integrate out the random 

component E •. , find the unconditional likelihood function, and then find 
lJ 

the maximum likelihood estimates. This approach was considered by Marton, 

Woodbury and Stallard (1981) for the Poisson case. However, it is not 

applicable to our problem and the reader is referred to section 4 of 

Chapter III. 
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Three different simplified approaches that were also considered to 

solve the problem are listed below 

i. No main unit effect 

ii. Unweighted least squares SP.lit plot. 

iii. Unequal subplot error depending on rfsk sets for different time 

intervals. 

A comparison of our approach with the above three approaches is 

carried out. The comparison with the first approach is discussed in 

section 7.2 where we compare the variance of S for some cases of inter-

est. The comparison with the other two approaches is done using a gener-

ated example in section 7.3. 

7.2 Comparison with Infe~ev,ee that Ignores Main 

Unit Variability 

In this section we assume that split plot model with unequal sub-

unit variances is true. We also assume that the model with no main 

\' 
unit variability is the fitted one. The true model is of the form 

y XS+ u, where Cov(u) = V 1'·4' 

and Vis a block diagonal matrix of the form 

- 2 a 
0111 2 

a 
0112 

v = 

0 

• 2 
a o .. k 1.J 

0 

a 

+ cr2 
E 

2 

0IJK 
0 

<~: --('~, 

0 " 
·, . • 

JK 



where JK = 1rd.:tz' ~~ = (1 1 1). Now if we let 

JK 0 

2 
JK 

N = cr 
E: 

0 

and use (5.4) then V can be written as 

V = W + N. 

The fitted model has the form 

y XS' + u', where Cov(u') w 

and Wis as given in (7.1). Now define 

Therefore, the variance-covariance matrices of these estimates under 

either the full or the fitted model are given by 

Covv(~) = (X'v-1x)-1 , 

Covw(~) = (X'W-1x)-1 , and 

Covv(~) = (X'w-1x)-1x 1w-1vw-1x(x'w-1x)-1 • 
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(7 .1) 

To compare the variance-covariance matrices of the two estimates 

for both models, the case of two treatments, two main units, and two 

time intervals.is considered below. For convenience in calculations 

we assume that the over all average of log(-log) model is zero. Then we 

have 



X' 1 1 
1 -1 

-1 -1 
1 -1 

-1 
1 

-11 
-JJ . 

2 
W = (cr8 ) 8 . These variances are affected by treatment and time only, 

ijk 
therefore, W can be written as 

cl 
0 

cl 
W= , where c. = 

Cz 1 

0 CZ 

for i = 1,2. And V is of the form 

V=W+/ 
E 

-1 
Now, V can be written as 

V-l = W-l - R, where R = 

for j = 1, 2. 

2 cr 
8. 1 1• 

0 

0 

cr 
8. 2 1• 

with 

2 2 )-1 ( cr cr 
8. 1 8. 2 J. J. 

(cr2 )-2 
8. 2 J • 
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For the purpose of comparisons, we now consider the following cases. 

Case 1: 
2 

Assume that cr 
8. "k 1] 

2 2 
a8 and crE Thus we have 



(X'V-lX)-l %°!12 , and 

(x'w-1x1-1x·w-1vw-1x(x'w~1xJ-1 = a! [ ! t] 
Let us now use the notation A< B to denote that each element of the ma-

trix A is less than or equal to the corresponding element of the matrix 

B. Therefore, we conclude the following relation 

Case 2: 

a) 

Then 

2 Assume all a 
o. "k J.J 

2 2 2 
a0 and OE> a0 • 

Therefore, we conclude the following relation 

Covw(~) < Covv(~) ~ Covv(~). 

b) Now assume all a: = a: 
uijk u 

2 2 
and O < a < a 1'" 

- E u 

Covw(§) ~ Covv(§) ~ Covv(§). 

Then we conclude 

2 
a are the same over trt but increase over time 

o. "k 
Case 3: Assume all 

and cr2 
E 

2 J.J 
= max{cr0 } for all i, j, and k. For this case we are assuming 

ijk 

83 



2 
that a 

01·1 

2 2 
a O , and a 

2·2 °2°2 

(X'V-lX)-l = %a~ 12 , and 
2•2 

(X'W-1X)-lX'i·r1vw-1x(X'W-lX)-l = 

0 

Therefore, we conclude the relation 

Case 4: Assume all 
2 

the a are same over 
8 . . k lJ 

2 
> a 

82 • l 
Then we have 

trt but increase over time 

2 2 and a > max{cr O } for all i, j ' and k. Then 
s ijk 
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1 2 
4°" E: 

0 

Therefore, we conclude the following relation 

From the above four cases we conclude that if Wis used when in 

fact Vis the true variance-covariance matrix then this will under esti-

mate the variances of the estimators. 

7.3 A Generated Example for Comparison with In-

ference Using Unweighted Least Squares or 

Inference Weighting by Risk Sets 

In this section we use a generated example which has the properties 

presented in Chapter I for the problem under study. These properties 

are listed below. 

1. Main unit variability has a symmetric distribution for the 

discrete case. 

2. Risk sets decrease over time. 

There is a trend in the cr2 in that these variances increase 
cS. 'k l.J 

3. 

over time. 

Two treatments, two main units, and three time intervals are used. Let 

E:ij have the following frequency distribution 



E •• ! -1.5 
1J 

f(e: .. ): 1/9 
1J 

-1 

2/9 
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0 1 1.5 

3/9 2/9 1/9 

Therefore, E(e: .. ) = 0 and Var(e: .. ) = 0.9444. Also let the parameters for 
1J 1J . 

this e~periment be known and are given byµ= -1, a1 = .5, , 1 = .4, and 

T, .1. Also we let the number of subunits in each main unit be fixed 

by n .. = 100. For I= 2, J = 2, and K = 3 the design matrix has the 
1J 

following form 

X' = 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 

1 0 -1 1 

1 1 -1 -1 -1 -1 -1 -1 

0 -1 1 0 -1 1 0 -1 

0 1 -1 0 1 -1 0 1 -1 0 1 -1 

With this generated example we would like to compare our model with 

unweighted least squares split plot model and also with a split plot 

model having unequal subplot errors depending on risk sets for different 

time intervals. Before proceeding with the calculations, we mention 

the structure of the models to be compared. Our model, which is assumed 

to be the true model, has the following form 

y XS+ u, where Cov(u) v 

and Vis as given by (7.1). The unweighted least squares split plot 

model has the following form 

y =XS"+ u", where Cov(u") = Z: 

and Z: is the variance-covariance matrix and is of the form 



2 
i: = CJ e: 

0 

0 

The split plot model with unequal subplot errors depending on risk sets 

has the following form 

I = XS"' + u"', where Cov(u"') = D 

and Dis the variance-covariance matrix and is of the form 

2 
D = CJ 

e: 

0 

0 

JK 

+ cr2 

0 

• -1 
nijk 

0 
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Now, we proceed with the calculations involved to get the variance-

covariance matrices of Sunder either the true model or one of the two 

fitted models. For each value of e:ij we calculate the corresponding 

values of 

log(-log q .. k) = µ+a.. + ,:k + e: ..• 
~ 1 ~ 

2 
Therefore, values of qijk' and (1-qijk)/qijk(log qijk) are also calcu-

lated. We start with nij = 100 then we use the equation E(nijk) = nij (k-l) 

q .. (k l) for k = 1, 2, 3, to obtain values of n .. k for each value of e: ... 
1J - 1J 1J 

2 
Hence values of (1-q .. k)/n .. kq .. k(log q .. k) can also be calculated. 

1J 1J 1J 1J 

Now, using the frequency distribution of e: .. we get 
1J 
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2 5 2 
crJ> = E [(1-q .. k)/n .. kq .. k(log q .. k)] f(t), 
uijk Q,=l 1J 1J 1J 1J Q, 

2 2 3 2 
E E E cr 0 . "k/12, 

i=l j=l k=l 1J 

2 
(J = 

5 2 
E [(1-q .. k)/q .. k(log q1.J.k) ] 0 f(t), and 

.Q.=1 J.J 1J ;,., 

Therefore, we have the following results. 

~ . 2500 . 00289 -.01146 -.00228] 
(X'V-lX)-l = .00289 .24433 -.00468 .00040 

-.01146 -.00468 .01935 -.00124 
-.00228 .00040 -.00124 .02411 

[ ·18 

0 0 

-.04L] 
(X' z:-1X)-l = .2778 0 , and 0 .08317 

0 -.04158 .08317 

[ 0.24592 -0.00070 -0.00658 -0.0019~ 
(X'D-lX)-l = -0.00070 o_.24242 -0.00140 0.00057 

-0.00658 -0.00140 0.01301 -0. 00125 ' 
-0.00196 0.00057 -0.00125 0.01766 

Then, a summary for comparison is given in Table IX. From Table IX it 

seems that all methods are close for Var(&1). E does not get Var(i) well 

which may cause problems with Var(S(t)). Also, D looks like a possible 

simplifying approach unless qijk's are widely different. 
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TABLE IX 

SU11MARY OF COMPARISONS RESULTS 

Parameter V ( .~ ) ,, (,. \' '. . arv i'.). var",::.; a.r.~1..~ .. , 
l 6l LJL 

µ 0.25000 0.27780 0.24592 

al 0.24433 0.27780 0.24242 

Tl 0.01935 0.08317 0.01301 

T2 0.02411 0.08317 0.01766 

T3 0.04098 0.08317 0.02816 
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APPENDIX 

A COMPUTER PROGRAM FOR ESTIMATING 

MAIN UNIT VARIANCE 

2 The following computer program can be used to estimate cr as given 
E 

by 4.2 using SAS procedure MATRIX as follows. Values for treatments, 

main units, time, transformed values of q .. k's, and estimates of cr; 's 
1] . uijk 

using 4.1 were entered as TRT, REP, TIME, Y, and W, respectively. 

RY=NROW(Y); 
M=.J ( RY , 1 , 1 ) ; 
OTRT•OESIGN(TRT); 
OTMsOESIGN(TIME): 
OTRTTMsOTRTPjOTM; 
ORaOESIGN(REP); 
X=MI IDTRTI IDTMI IDTRTTM; 
Z=OR; 
N=X 11 Z: 
D=DIAG(W); 
DI =INV(O); 
NUM1=DI*N*GINV(N'*DI*N)*N': 
TRNUM1•TRACE(NUM1)~ 
NUM2=DI*X*GINV{X'*DI*X)*X': 
TRNUM2=TRACE(NUM2); 
TRNUM=TRNUM1-TRNUM2; 
DEN1=Z'*OI*Z; 
TRDEN1=TRACE(DEN1); 
DEN2=Z'*DI*X*GINV(X'*OI*X)*X'*DI*Z: 
TROEN2=TRACE(DEN2); 
TRDEN=TROEN1-TROEN2; 
RSSFUL=Y'*DI*N*GINV(N'*OI*N)*N'*OI*Y; 
RSSRED•Y'*DI*X*GINV(X'*DI*X)*X'*DI•Y; 
ESVARCOM•(RSSFUL-RSSREO-TRNUM)N/TROEN; 
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