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CHAPTER I
INTRODUCTION

Several experimental situations give rise to analyzing time to
response on observational units (survival data) using split plot in time
models.‘ The general structure of such experiments is that the observa-
tion of the time of occurrence of an event (called a death, failure, or
response) is of interest. The observational units are grouped into whole
units and the treatments are randomized to whole units. If time to the
occurrence of an event T is a continuous random variable then whole units
would be considered as subsamples. If time response was grouped into
intervals in the above setting, then the sufficient statistics in this
case would be the counts of observed occurrences of an event (number of
deaths, failure) within intervals. The experiment can then be viewed as
a split plot over time where time‘intervals (periods) are subunits and
whole units would be the same as in continuous time setting, and the
response variable is some function of the counts. For the split plot
over time model we are interésted in estimating survival curves rather
than means for the usual structure of split plot model.

In this chapter we outline the type of data and the process in data
collection that defines such experimental situations using a fish experi-
ment, where studying the effect of treatment combinations on the survival
times of fish in aquarium water was desired. In an experiment presented

by Pierce, Steware and Kopecky (1978), fish were subjected to three



levels of zinc concentration in aquarium water, and approximate times-to-
death were observed. It was desired to study the effect of either one
or two week's acclimation in the test aquaria before introduction of the
zinc. There were initially two tanks for each of the treatment combina-
tions. The experiment was a 2x 3 factorial for the treatment combina-
tions structure. The 2 x 3 treatment combinations were assigned to tanks
in a completely randomized design. From this point onwards we use CRD
to designate this design. The experiment was carried on for 10 days and
mortality was observed on a daily basis. Three hundred fish were ran-
domized to 12 tanks, 25 fish to each tank. The 2x 3 treatment combina-
tions were assigned so that 2 tanks received each treatment. Table I
gives the daily mortalities, where the numbers are the observed numbers
of deaths in each day, for 10 days.

Days 1 and 2, and days 8, 9, and 10, were each combined giving K=7
class intervals. Now let us denote the points defining the time inter-

vals by

0=t0<tl<t2<t3<t4<t5<t6<t7.

The number of failures or deaths in each day or combined days would be
the number of failures or deaths in time intervals (tk-l’tk] for

k=1,2,...,7. Also, define

: number assigned (at risk) to trti, time interval k and

ijk
tank j,
ijk: number of survivors during interval k on trti and tank j,
rijk: number of failures on trti during interval k for tank j,
P.., : conditional probability that a unit on trti fails in time



interval k given that it survived k-1 time intervals for a
given tank j, and
ijk: conditional probability that a unit on trti survives time
interval k given that it survived k-1 time intervals for a

given tank j, where qijk= l-pijk.

Therefore, Table I of the observed number of deaths or failures will

represent the table of the values of r,.,, , after combining days.

ijk

TABLE I

OBSERVED NUMBER OF DEATHS

Acclimation Time: One Week Two Weeks

Zinc Concentration: Lo Med Hi Lo Med Hi

Tank: 12 1 2 1 2 12 1 2 1 2

Day/Mortality
1 0O o o o o0 o o 0o o o o O
2 1t 2 3 0o 1 1 o o t o 3 o
3 s 7 7 10 12 10 8 4 12 9 12 12
4 7 4 9 7 7T .8 4 4 5 3 3 7
5 1 2 0 5 4 3 o o 3 2 2 2
6 o o o 1t o 1 o o o o t o
7 o o o o 1t 1 O o o o o o
8 o o o 1t 0 o o o o o o o
| o o o o o0 o 0o o o o o o
10 o o o o o o©o o o o o o o




Since the 50 fish were randomly assigned to each treatment combina-
tion with 2 tanks for each treatment then 25 fish were assigned to each
tank. Thus the number at risk for the first time interval is 25 fish and

the size of this risk set, ni decreases as time advances. For the no

3K’
censoring case, the number at risk for time interval k would be the num-

ber at risk for time interval k-1 minus the number of deaths for time

interval k-1l. Therefore, Table Il represents risk sets (values of nijk)'
Now le; us define qijkf=sijk/nijk’ where sijk==nijk--rijk assuming
no censoring. Table III represents the values of qijk' If Sijkﬁ=nijk
then use s,.,, - .5, if s,., =0 then use .5.
ijk ijk
TABLE II
RISK SET TABLE
Acclimation Time: One Week Two Weeks
Zinc Concentration: Lo Med Hi Lo Med Hi
Tank: 1 2 1 2 1 2 1 2 1 2 1 2
Interval/n, .
ijk
1 25 25 25 25 25 25 25 25 25 25 25 25
2 24 23 22 22 24 24 25 25 24 25 22 25
3 19 16 15 15 12 14 16 21 12 16 10 13
4 12 12 6 8 5 6 12 17 7 13 71 6
5 11 10 6 3 1 3 12 17 4 11 5 4
6 11 10 6 2 1 2 12 17 4 11 4 4
7 11 10 & 2 o0 12 17 4 11 4 4




TABLE III

OBSERVED VALUES OF qj j

Acclimation Time: One Week Two Weeks

Zinc Concentration: Lo Med Hi Lo Med Hi
Tank : 1 2 1 2 1 2 1 2 1 2 1 2
Interval/qijk

.960 .920 0.880 .980 .960 .960 .980 .980 .960 .980 .880 .980

.792 .696 0.682 .600 .500 .583 .640 .840 .500 .640 .455 .520

.632 .950 0.400 .533 .417 .420 .750 .810 .583 .813 .700 .962

.955 .950 .917 .667 .500 .667 .958 .971 .875 .955 .800 .875

.955 .950 .917 .500 .500 .500 .958 .971 .875 .955 .875 .875

.875

(@) o o [¢) o (0] (&) o (¢)

o [0} o o [0} o o 0] 0

0 [} o [0) (o) (o) o o o
.917 0.375 0.200 0.500 0.958 0.971 0.571 0.816 0.714 0.667

[} [} o [} o o ¢} o) [}

() o (o) o (o] (&) (o} o 0

(o) o [¢) (0] o o o o 0.875

o o
o o}
o 0

4 0.917 0.833
o} 0
0 0
o o

© O O O

.955 .850 .917 .500 .500 .500 .958 .971 .875 .955




Assume that tank effects increase or decrease the survivals, i.e.
assume that there is tank variability involved, since treatment combina-
tions were applied to main units (tanks). Also assume that failure time
T is a discrete random variable since time responses were grouped into
intervals 1,2,...,K, where K=7 for the experiment presented. The re-
sponse for the discrete setting would be some function of the number of
deaths or the number of survivors. This will give us a split plot in
time where subplot units are time intervals. Failure time variability
will arise from the fact that 25 fish were randomly assigned to each
tank. Assuming that conditional on being in the same tank survival times

of different fish are independent, then the model to be considered is:

= + + 8 + +
Response = u + o, Eij Bk (aB)ik Gijk’

i=1,...,I, j=1,...,7, and k =1,...,K eo. (1.1)

where, y is an overall mean,
o, is treatment combination i effect,

Eij is main unit variability (tank variability) with

~
[}

02 for j=3'
€

0 for 3#3',

B

K is the subplot treatment or time interval effect,

(OLB)ik is the interaction between treatment and time

interval,
Gijk is the variability due to different fish in each
tank with
2
= = for k=k'
E(éijk) 0, E(éijkaijk') caijk or

=0 for k#k',



and E(eijaijk) = 0.

The response of the above model will depend on the model assumed for
the hazard function for time interval k and trti. The hazard function
Ai(tk) is the conditional probability of failing in an interval given
surviving until that interval. The choice for the response is

Response = f(ﬁij ). Two possible choices for this function that will be

k

considered are:

f(&ijk) = log(-log &ijk), and

£(q,.,) = log(@...).

ijk ijk
These responses are derived from continuous random variable models as
will be seen later. From this point onwards we use log(x) to denote
1oge(x).

Individuals at risk during time interval k may fail, be censored,
or survive to the start of the following time period. Assuming that
there is no censoring, the observed number at risk for time interval k
on a given trti and a given tank j is nijk’ and the number of individ-

ild i . Define . =n,,
uals failing is rijk in niJ(k+l) nlJk

(the number of individuals surviving interval k). Thus, individuals

-rijk’ which is denoted by

S..

ijk

surviving interval k will be individuals at risk for the next time inter-

val, i.e., s For a given trti and a given tank j, and

ik g (kL)

for K time intervals, number of deaths or failures r... ,r..,se.-,C,. 1in
ijl’> 4ij2 ijK

] with t

time intervals (tO’tl]’(tl’tZ]’°"’(t =0 among n,,

0 ijl

starters, follow a multinomial distribution with probability function:

k-1°x

Tiik
ijk *

n,.,! K+1
Pr(r.

1jrrﬁ2“’”rﬁK“ﬁj ST T ...z,

1 ™
13177452 ij(K+1) " k=1

oo (1.2)



where
+ oo+ =
rijl ri-_12 rij (K+1) nijl starters, and
+ + ... + = 1.
Ti51 " Ti32 Tii(Re1) T
Now define
k
P... = 1T q,., is the probability an individual on trt i and in
ijk g=1 L
tank j survives beyond interval k,
“ijk = Pij (k-1) -Pijk is the probability an individual fails

in interval k for a given tank j on trti,

13k is the conditional probability an individual on trti and in

in tank j survives beyond interval k given that it survives

~ beyond interval k-1, where

Uik = Pisi/Pig -1y

el
|

... = 1-q,.. is the conditional probability an individual on trt i
ijk ijk 4 '
and in tank j fails in interval k given that it survives beyond

interval k-1, and

rij(K+l) = sin is the number of individuals surviving at end of
study.
Therefore, we have
Tiik T PiiC-1) T Tigk T %31%520 0 %5 Ge-DP gk e (13
for k=1,2,...,K. The likelihood function for the multinomial distri-

bution is given by

K+1 r

ijk
Pr(rijl’rijz""’rinleij) o - ™3k
K r,.
«{ I ) iJk} X

1 @51+ 945 1e-1)P1 5k

r
. 13 (K+1)
Hay510 7955 k-1)% 5%’ }



_ o Ti3l Ti32 133 TigK
Pij1 Pij2 P13 *°Pijk

+ +...
L1327 1537 g (D)

93491
Tii3ti5at i ) Tig (R4
4352 AR TR TY .

.. + P + LRI + P = PRy = - -
Recall that rlJl r1J2 rl:l (K+1) nljl, and nijk nijl rijl
rij2- "'-rij(k-l) for k=1,2,...,K+1. Therefore the likelihood is pro-
portional to

r ceoor, el ) Prijlqnijl—rijl Priqunijl—rijl_rijZ
17432777 T K a3l Bl 132 9132

R

Pr(rij

Tigr M1 i1 527 TRk
Pisk YijK

| prijlqnijl—rijl priqunijz"rijz
- 131 %131 132 Y132

R

.

Tiik 13K TijK
15K 943K

Tiik i3k Tijk

« I p..7q..
k=1 ijk *ijk
K s,. i
ijk, . ijk "ijk
Therefore, conditioning on n,., , the number of survivors s,.,, in time in-
ijk ijk

terval k on trti and a given tank j is distributed as a binomial random
variable with parameters nijk and qijk' Furthermore, the covariance be-
tween s,., and s, is zero. Also i of q,. iven
14k ijk’ s zer so, the mean and variance qle g
that nijk is fixed by its observed number and for a given tank are given

by
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E(qijklnijk’sij) = dy4y> and

Var(qijklnijk,eij) = Pijkqijk/nijk’ respectively.

Now, for k<k', assuming that nijk> 0 we have

S

A _ A = i’!k_ ~
(G5~ 4330 193 5000 28475 510) Esijk((nijk 9 19 3028550 530
ik

B3k Sijk|nijk 1jk

€13°™4K))

]

E (0]q. ., ys€..50
nijk ijk ij

Hence, for k<k' -

) = E, ((q,

COV(q. qijk' ljk'—qijk')E(qijk_qijquijk' ’

1jk’qijk'|€ij’nijk

€515
= 0.
Using (1.4), for a given tank j and. a fixed risk set (nijk)’ we have

n Binomial (ni and

Sijkleij’nijk k%1 %)

covi(s,.
(1

Jk’sijk"eij’nijk’nijk') = 0.

Thus, for a large sample size the asymptotic distribution is given by
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~ -
Siq1l815° Mgk ¥ o™l (04,04 5000 53955 (T 944900 @nd
ik
~ - f;, _
9% nijkleij’nijk v Normal (q; 455955, (1 qijk)/nijk)°

Therefore, equal variance structure of qijk's would be inappropri-
ate since theseivariances depend on qijk's which may vary over time, and
the fact that the risk sets decrease over time (we begin with 25 fish at
risk for the first time interval and we might end up with, say, only 4
fish at risk for the last time interval). Hence, we are going to look
at a way to estimate the survivor functions for different treatment com-
binations using split plot model with unequal subplot variances.

Another experimental situation occurs in studying the effect of some
treatment combinations on patients in several hospitals. The patients
per hospital will—be selected randomly. Time-to-the introduction of a
result will be of interest. The treatment combinations will be randomly
applied to each hospital. Thus all selected patients in the same hospi-
tal will receive the same treatment. If time T is a discrete random
variable, -then time response will be grouped into intervals and the re-
sponse variable will be the number of patients on which a result occurs
(number of deaths). This will give a split plot in time where subplot
units are time intervals. Main unit variability arises from the fact
that we randomly apply treatments to hospitals. Subunit variability
arises from the fact that there is more than one patient to be selected
from each hospital. In such a case estimating survival curves is of
interest.

Another experimental situation that is related to our type of study
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is a seed germination trial, where tiﬁe—to—germinate on observational
units (carrot seeds) is considered. Seeds are randomly assigned to
dishes (whole units) in a CRD such that seeds that are applied to a dish
are of the same kind. Treatments (stored seeds against control seeds)
are randomly applied to dishes. If time to germinate T is a discrete
random variable, then time response is grouped into intervals. The re-
sponse variable for this setting is the number of seeds germinated for
each time interval. This will give us a split plot in time where sub-
plot units are time intervals. The variability due to applying the

same treatment to more than one dish is the main unit variability and
failure time variability or subunit variability arises from randomly
assigning seeds to dishes. Estimates of the probabilities that seeds
will germinate after a specified time are of interest. Some of the seeds
will not germinate ever therefore.the probability functions will not be
exact survival curves as is the situation with the other two examples.
However, estimating these probability functions is similar to the idea

of estimating survival curves.



CHAPTER II
LITERATURE REVIEW
2.1 Survival Analysis Literature

In life testing and medical follow up, the observation of the time of
occurrence of the event (called death, failure, or response) is of in-
terest. Sometimes these occurrences may be prevented for some of the
items of the sample by the occurrence of some other event (called loss
or censoring). Kaplan and Meier (1958) assumed that the life time is
independent of the potential loss time, and they provided, for random
samples of size N, the product-limit (PL) estimate that can be defined
as follows. List and label the N observed lifétimes (whether to death
or loss) in order so that one has O0<tl<t!<...<t!. Then

1—-"2 N

ﬁ(t)==H[(N—r)/(N—r+l)], where r assumes those values for which téf_t,
T

and for which t; measures the time to death. This is the distribution-
free estimator which maximizes the likelihood‘function.

Cox (1972) considered the analysis of cengored failure times. He
suggested a regression model for the failure time T of an individual
when values of one or more explanatory variables were available. For T

continuous, the hazard function is given by

A(t,z) = Ao(t) exp (B'z),

13
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which is known as the proportional hazard function. IF is also known as
the multiplicative form of the hazard function with B being the vector
of the unknown parameters, and Ao(t) is the underlying hazard function
when z= 0. For T discrete, the logistic model was suggested. A condi-
tional likelihood and maximum likelihood estimates were obtained. How-
ever, Cox (1972) proportional hazard regression model does not handle
grouped survival data or large data sets with many ties (many individ-
uals failed at the same time).

Kalbfleisch and Prentice (1973) obtained a marginal likelihood for
the regression parame;ers by restricting the class of models presented
by Cox (1972) to those that possessed a strictly monotone survivor func-
tion or, equivalently, to those for which the hazard function Ao(t) was
not identically zero over an open interval. The invariance of this re-
stricted class under the group of monotone increasing transformations on
T was exploited to derive a marginal likelihood function for B. If no
ties occur their results and the results of Cox (1972) are the same with
a simple justification. But if ties occur in the data the results ob-
tained by Kalbfleisch and Prentice (1973) are different from those sug-
gested by Cox (1972).

Prentice and Glocker (1978) considered the grouped data version of
the proportional haéardé model (Kalbfleisch and Prentice (1973)) in an
attempt to develop computationally feasible estimators of the relative
risk function and the corresponding survivor function in the presence
of many tied failure times. Asymptotic likelihood results were given
for both the estimation of the regression coefficients and the survivor
functions.

Regression models of the proportional hazard were used for anal-
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yzing some data arising from a clinical trial in medicine. Kay (1977)
considered applying the regression models of the proportional hazards to
the analysis of censored survival data. Many forms of the proportional
hazard model and a sgarch for a model fitting were carried out. When the
number of independent variables was large, selecting those independent
variables to be included in the model was achieved by a forward stepwise
procedure.

Usual regression techniques were widely used to analyze survival
data. Such work was done by Krane (1963) and Pierce, Stewart and Kopecky
(1978). Krane (1963) introduced a type of statistical analysis of sur-
vival data applicablé under the conditions that usually the available
data were grouped, most commonly in yearly intervals, and more serious
was the fact that the data was often '"censored''. Assuming that there
exists a survivor-function, S(t), such function is given by exp[-y(t)],
where y(t) is the time integral of the failure rate which was approximated
by a polynomial. For large samples it was found that the covariance
structure for y(t) may be obtained from the multinomial distribution when
the data was grouped. Thus the method of weighted least squares may be
employed to fit y(t). '"Censored" data in no way vitiate the method.

Pierce, Stewart and Kopecky (1978) provided a method based on re-
gression model for the proportional hazards to obtain, by making an ap-
proximation, a maximum likelihood function involving only the regression
parameters. The authors presented an example for analyzing toxicology
data.

Most of the preceeding literature seems to pay most attention to the
multiplicative form of the hazard function, and less work has been done

with the additive form. Elandt-Johnson (1980) used the additive model
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for the hazard function to demonstrate techniques in deriving posterior
distributions by assuming a normal prior distribution for the variables
influencing the hazard function. The hazard rate function in the addi-
tive form is given by

A(t,zo) = A(t) +
i

k
Iob 0z (>0,

1
where A(t) (>0) is the, so-called, underlying hazard rate, hi(t)’s are

functions of t alone, and z..’s are the covariates influencing the sur-

0i
vival.

An extension of the proportional hazard models was suggested by
Aranda-Ordaz (1983) where a family of transformations for probabilities
was considered for the analysis of grouped sﬁrvival data. Additive and
multiplicative models for the hazard function were compared.

Similar work-was done by Tibshirani and Ciampi (1983) where a family
of proportional and additive hazards models for the analysis of grouped
survival data was developed. They generalized the work of Aranda-Ordaz
(1983) by allowing time trends to enter the hazards. This generalization
proved to be useful in the case of crossing hazards.

From the preceeding literature, it seems that most work has been done
for continuous time random variables. Our grouped time models that are
used for inference are chosen to relate to these well known continuous
time models. We have generalized the Cox (1972) model to include main
unit variability to be able to get the split plot in time model as we
will see in Chapter III.

A general approach to the analysis of categorical data was provided
by Grizzle, Starmer and Koch (1969) by assuming that there were n, .,

i=1,2,...,s, samples from a multinomial distributions each having r cat-
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egories of response. They defined any r-1 functions of the unknown true
r

cell probabilities {m, ,: i=1,2,...,s; j=1,2,...,r, where . I_ 7., 6 =1}
ij j=1 1J

that have up to the second order derivatives with respect to PR A
noniterative weighted least squares procedure was described to fit these
functions to a linear model, along with testing hypotheses about the
parameters and testing the goodness-of-fit of the model.

This general procedure for analyzing categorical data can be applied
to survival data in the case that the variance-covariance matrix is a
diagonal matrix with the binomial variances on the diagonal.

For our grouped time model, we use a similar approach to the ap-
proach used by Grizzle, Starmer and Koch (1969) since we have the same
general structure. The only difference is that we have unequal binomial

variances; further we add an extra term in the variance-covariance matrix

which is the main-unit variability.
2.2 Split Plot and Variance Component Literature

Our model for survival analysis is based on using a split plot in
time model, and therefore we need to consider the related literature.
What we need in the variance component analysis is a method for split-
plot models with uneuqal sub-plot variances. We must mention here that
we could not find any work in the literature that has been done for this
particular study. However, a list and a presentation of the literature
that has been done in both split plot model and variance component areas
separately and combined will be considered. Some of the listed litera-
ture might not be of direct relation to our study, and some are related
in the sense that they gave us an idea on the approach that we have used

for variance component estimation.
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Early work on variance component estimation has been done by

many authors. Crump (1946) discussed and pointed out the hypotheses
appropriate to the two uses of the analysis of variance as to obtain
tests of significance of treatment effects and provided estimates of var-
iance components. The estimation of variance components was accomplish-
ed by equating the mean squares in the standard analysis of variance to
their expectations and then solving for the unknown variances. This
method of estimating variance components dealt with the one-way classi-
fication, nested classification, and factorial classifications having
equal subclass numbers. But often the subclasses are of unequal size.
Therefore a need for some other methods of estimation was raised.

Henderson (1953) developed three methods for estimating variance
components in the non-orthogonal case. The three methods can be describ-
ed as follows. Method (1): Compute sums of squares as in the standard
analysis of variance of corresponding orthogonal data. Equate these
sums to their expectations and solve for the unknown variances. This
method leads to biased estimates if certain elements of the model are
fixed or if some are correlated. Method (2): Obtain least squares
estimates of fixed effects, '"correct" the data according to these esti-
mates, then use the corrected data and proceed as in Method (1). This
method gives estimates which are free of the first of these biases, but
not of the second. Method (3): Compute mean squares by least squares
analysis of non-orthogonal data. Equate these mean squares to their ex-
pectations and solve for the unknown variances. This method yields un-
biased estimates, but the computations involved may be prohibitive.

Henderson's (1953) methods were discussed and reformulated in matrix

theory by Searle (1968). Also a fourth method for variance component
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estimation was introduced.

A common assumption in split plot experiments is that the error var-
iances for subplot treatments are the same. Curnow (1957) provided tests
of significance for the departure from equality of the variances for
different subplotltreatments. Also, an estimate of the ratio of a pair
of such variances was provided in this paper.

Rao (1970) considered the problem of estimating the different vari-

ances for the linear model y = XB+ e, where

D(e) = . .

N

by introducing a new principle called Minimum Norm Quadratic Unbiased
Estimation (MINQUE). This principle of estimation can be summarized as
follows. Let Zpioi be a linear function of the variances to be estimated,
where all oi may not be distinct. The quadratic form Y'AY is said to be
a MINQUE of Zpioi if the matrix A= (aij) is chosen such that ||A||, the
Euclidean norm of A, which is the same as the square root of trace A2,

is minimum subject to the conditions

n n
AX = 0, and I a,,0, = I P.O.,.
. ii’i .
i=1 i=
Hartley and Jayatillake (1973) pointed out that Rao's (1970) MINQUE
estimaters suffer from three defects, namely (1) The MINQUE estimator 3?,

although unbiased, may be negative, (2) The residuals y - XB employed for
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ci estimation were based on B of B which are known not to be BLUE in case
the true oi differ, and (3) Unless the matrix X has a standard structure
MINQUE estimation requires the inversion of an nXn matrix to be special-
ly computed from the elements of the observed X in each problem. With
normal assumption of the residuals added to the model presented by Rao
(1970), Hartley and Jayatillake (1973) examined the method of maximum
likelihood under the normality assumption for the estimation problem of

B and oi which are free from the three disadvantages that MINQUE estima-
tors have. Therefore the elements of B and oi are estimated by maximum
likelihood under the assumption of a lower bound for the oi of the form
0< Gijioi so that the likelihood is finite in the restricted parameter
space. The authors also considered a second problem in which the Y vec-
tor splits into subvectors Yj’s such-"that all elements of Yj have equal
variances. -

For the balanced two-way layout split plot design Li and Klotz
(1978) compared maximum likelihood estimators and restricted maximum
likelihood estimators with minimum variance unbiased estimators of
variance components. Performance was compared in terms of mean squared
error for the three estimators.

For a general mixed-effects model Brown (1978) viewed the problem
of estimating variance components in the context of linear model theory.
The approach was to estimate the unknown vector of parameters B by some
vector b and thus obtain a vector of residuals e=Y-Xb. A vector of the
squares and cross products of the residuals was then obtained, the expec-
tation of which was a known linear transformation of the variance compon-
ents.

-

For categorical data, Manton, Woodbury and Stallard (1981) presented
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_maximum likelihood procedures for the estimation of the model parameters
based on the assumption that the distribution function for each cell
death count is the negative binomial probability function. This assump-
tion is equivalent to assuming a mixture of poisson processes with the
differential risk levels among individuals within cells being a two

parameter gamma distribution.



CHAPTER IIT
MODELS FOR ANALYSTIS

3.1 Grouped Time, Multiplicative and Additive
Hazard Conditional on Main Unit with

Normal Main Unit Error

As presented in Chapter I, the structure for the design that will
be considered is that we have J main units per treatment combination
according to a CRD, nij observational units in each main unit and time
to response on each observational unit is measured. Time to response
is grouped into i;tervals'where the points defining the time intervals
are denoted by 0= t0<tt1< t2< ...<:tK. The number of failures or deaths

in time interval k, k=1,...,K is the number of failures or deaths in

1.

time interval (tk_l,tk

Define

: number of individuals assigned to main unit j of trti,

r,., : number of individuals failed on trti, main unit j during
time interval k,

s,., ¢ number of individuals survived interval k for trti and
main unit j, and

n. ., : number of individuals at risk for trti, main unit j and

time interval k.

For the no censoring case we have

22
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=n and n,. for k> 1.

P55 7 Pig1e ijk © °13(k-1)
For the censoring case we have to define cijk as the number censored dur-
ing the kth interval, then

n =n - and

131 ° M43 T Cig1°
= - = - - > .
Biik T Si3-1) T i3k T Mi3k-1) T Tiik-1) T Sigk for k>1

Also, define

pijk: conditional probability that an individual on trti and
main unit j fails in interval k given that it survived
k-1 time intervals, and

qijk=.l-pijk: conditional probability of surviving interval k

given survival of k-1 time intervals for an individual on
trt i -and main unit j.
Now, let Fij(t) be the cumulative distribution function for the continu-
ous response time random variable T for a given main unit j. Define
Sij(t)= l-Fij(t) to be the survival function for trti and main unit j.
By definition, pijk can be written as
(failing in Fimg interval k for an individual on trti )
‘and main unit j

ijk - Pr(surviving (k-1) time intervals for an individual on
trti and main unit j

Pr

)

A T
1-F )

)

[1- Fij (tk_l)] - [1 - Fij (tk)]
1-F, . (t, .)
ij

k-1
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=1 tC Fi.(tk) and
L= Fyy( )7
1 -F. t S..(t
Qi =1 =p,. = i3 = i .. (3.1)
ijk ijk 1-F (tk_l) Sij(tk_l)

Define the hazard function A(t) as the limiting conditional proba-
bility of failing in an interval given surviving until that interval as
the interval shrinks, to be

A(t) = 1im Pr(t<T<t+ar | T>¢t) _ ’;(t),
At>0 At (t)

where f£(t) and S(t) are the density function and the survival function,
respectively, for the continuous response time random variable T. Cox
(1972) suggested a regression model for the failure time T of an individ-
ual when values of one or more explanatory variables are available. For

T continuous the hazard function is of the form
A(e,2) = Ay (E) exp (B'z),

which is known as the proportional hazard function, also known as a mul-
tiplicative form of the hazard function, where Ao(t) is the underlying
hazard function when z=0. B is the vector of unknown parameters.

For our problem we generalize Cox's (1972) model to include the
extra variability involved. In other words we will try to model the
continuous time variable in a way related to Cox's (1972) model to in-
clude the random component eij' |

The multiplicative hazard function for trti and main unit j that

will be considered is as follows
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Aij(t,) = AO(t) exp(B'xi(t) + eij),

where )\O(t) is the underlying hazard when Xi(t) =0 and eij =0, B is the
vector of unknown parameters and xi(t) are the variables influencing
failure times. Also, the survival function for trti given main unit j

is given by

_ _ _ t
S-j_j (t) = 1 - Fij (t) = exp( fo Aij (u) du),

and therefore
t .
= - | '
Sij (t) exp ( fo Ao(u) exp(B xi(u) + eij)du). oo (3.2)

Substituting (3.2) in (3.1) we get

q.., = exp(-[

19k )\O(u) exp(B'xi(u) + eij)du).

Now, let us assume that Xi(t) is constant on interval k, i.e., let Ko =

value of xi(t) on interval k. Then we have

t

k
= - \J
9 51 exp(-exp( B X, + Eij) j;:k_]_ ko(u) du) ,
and this leads to
x
-— = ' .
log(-log qijk) B i + eij + log ftk-l Ao(u) du. o (3.3)
Let
x
T, = log [ A,(u) du, then
k t 0
k-1
_ - at P
log(-log qijk) B8 X + €ij + Ty where B€ R" , TkG lR, and
o _ _ P €] .
log(-log qijk) log(-log qijk) + Gijk’ where qijk 5 , and Gijk is a

ijk
random error defined by 6ijk = log(-log qijk) - log(-log qijk)'
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For the additive form of the hazard function we generalize the model
presented by Elandt-Johnson (1980) to include the random component eij in
an additive fashion. Now we derive the model that will be used later in

analysis using the additive hazard model which is given by
= ' + .
Aij () Ao(t) + B xi(t) Eij
The survivor function is then given by

sij () =1 - Fij(t)

exp(-fot Ay (@) dw

exP(-fot (o) + 8'x; (W) + &4 )du). e (3.0)

Substituting (3.4) in (3.1) we get

-t

9 5% exp( ftk-—l Qo) + B'x, (u) + eij)dU)-

Again assume that xi(t) is constant on interval k. In this case we have

t
k
= ' — . ——
9 5k exp((B'x,, + eij) (t, 1 = £))eexp( ftk—l Ao (u) du,
and this leads to
x
= Ve - - + [- ; .
log(qijk) B :sik(tk_l tk)‘+ €1 ‘(tk-l tk) [ ftk_l,ko(u) du]
(3.5)
N
. _ - 1 = - = - .
Define Zik Xik(tk—l tk), eij Eij(tk—l tk), and T 'Qk_i Xo(u)du
Then
= Q! ' P
log(qijk) B 21 + eij + Ty where B€ R" , TkEiR, and
; 1k
1°g(qijk) = log(qijk) + Gijk’ where qijk == , and sijk is a

ijk
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random error defined by Gijk = 1Og(qijk) - log(q...).

ijk

Our grouped time model given by (1.1l) is similar to these continuous
models in the sense of having similar set of parameters. Therefore we
can start with continuous setting for response time T and still end up
with grouped time model that we considered for analysis although in our
case response time T is discrete random variable.

It is appropriate here to mention that the proportional hazards model
is convenient, e.g., the log(-log) model is to be preferred over the log
model for the following two reasons;

1) Using the proportional hazards model leads to work with log(-log)
model specified by the equation

“x
log(-log qijk) = B'xik + Eij + 10g.@ Ao(u) du.
k-1
However, using the additive fofm for the hazard leads to work with log

model specified by the equation

t

k
= g! - + - + |-
1og(q,,l) B x.](t] 1 t,) €..(tk 1 t]) [ Q

AL (u) dul.
k-1 0

1

Therefore, inference with log(-log) transform is directly related to the
parameters of the continuous time interpretation. The log(-log) model
is to be preferred since B is invariant to time grouping,

2) The log model has a restricted range. ’s are observed pro-

%4k
portions and thus Oiqijkil, which implies that log(qijk) <0.
3.2 The Conditional Likelihood Function-

The No Censoring Case

As we have seen in Chapter I and section 3.1, nij is the number of

individuals. assigned to main unit j on trti (ni. starters). For the

jl
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no censoring case we have

and n,. for k> 1.

gy =@ ijk © °13(k-1)

ij ijl
Using equation (1.4) and assuming Fhat individuals in a main unit survive
independently of other individuals we then have independent multinomial
distributions over i and j. Therefore the conditional likelihood function
for the observed data can be written as:
I J K

Lqle) « T T T q
T i=1 j=1 k=1

sijk(

0TSy
iik y J , where q is ... (3.6)

1=9; 5 q

a vector of qijk,s' For (1.1) qij is a function of a,B,c depending on

k
the form assumed for the two hazard functions. Now let qijk=g(g,§,§) then,
I J K

. S..k r..k
L(a,8le) = T T T {g(a,B,e)} ° {1-g(a,8,e)} "I~
i=1 j=1 k=1

The form of the conditionél likelihood is the same as the likelihood

function for product binomial random variables for fixed n,. Therefore

ijk’

the asymptotic results for both cases are the same. For simplicity we
will act as if we had a product of binomial random variables with fixed

nijk’ even though the nijk are random. In other words the asymptotic

results are the same for the fixed nijk

is one motivation for treating the nijk as fixed. Also it is difficult

to see how there will be any information in the nijk

This could be given as another

or the random n,,, problem. This
ijk

about the qijk that

is not already obtained in the Sijk'

motivation for treating nijk fixed.

3.3 Handling Censored Data

As discussed in section 3.1, n,..

ijk for the censoring case can be

defined by the following relations
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nijl nij - cijl’ and

n c for k> 1,

13k S13(k-1) T Ci3k T M43(k-1) T Tijk-1) T Sijk
while for the no censoring case we had

=n and n.. for k> 1.

D35 T Pig10 ik °1(k-1)
Therefore, the only difference between the censored and uncensored data
is that risk sets at each time interval can be obtained somwhat differ-
ently.

Computationally, the case of censoring will not effect our parameters
of interest nor the structure of our layout since our methods are based

on the knowledge that

).

mBnmud.mﬁkqﬁk

Sijklsij’nijl_c
Hence handling censored data will be straightforward.

In general, the idea behind handling censored time can be formulated
as follows. It is often assumed that each individual has a life time T
and a censoring time C, where T and C are independent continuous random
variables with survivor functions S(t,8) and G(c,¢) and probability den-
sity functions f(t,8) and g(c,¢), respectively. 6 is the vector of param-
eters of interest and ¢ is the vector of parameters on censoring time C.
Let us assume Ti and Ci are independent for all i and define

. ol ifYy=Ty
Yi mln(Ti,Ci), and Gi {O if Yi= Ci.

The data from observations on individuals consist of the pair (Yi,si).

Further, assume that the Yi’s are independent then if an individual failed
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then the "likelihood contribution' of observing a failure given Yi <Ci

is given by the product f(yi,G)G(yi,¢). If, on the other hand, an indiv-
idual is censored then the '"likelihood contribution'" of observing a cen-
sored given Yi<'I‘i is given by the product g(yi,¢)S(yi,6). Therefore,

the full likelihood for all individuals in the study can be written as

L(e,(b) = L(yi,9,¢) = I f(yiye)G(yi9¢) I g(Yi,Cb)S(Yi,e)-
Set of all Set of all
failures censored

Since the parameter of interest is 6 then we might consider working with

the following marginal likelihood function

L(6) = il f(yi,e) Il S(yi,e).
Set of all Set of all
failures censored

Note that L(6,¢) = L(G)-K(¢). Thus, for inference on 6 alone K(¢)
acts as a constant. K(¢) will not be used in solving for MLE’s of 6 or
likelihood inference on 6. Therefore we consider working with the mar-
ginal likelihood function L(8) rather than the full likelihood L(6,¢).

In what follows, we derive the form of the full and the marginal
likelihoods given eij for our grouped time model. From the way the data

has been collected we have

(rijl’cijl""’rin’cinleij) N Multinomial (nij’aijl’¢ijl""’ain’¢in)’
oo (3.7)
where
K+1
21 (ri'jk + cijk) = nij starters,
K+1
+

=1
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aijk is the probability of an individual fails in interval k for a given
main unit j on trti with censoring, and
¢ijk is the probability of an individual censored in inﬁerval k for a
given main unit j on trti,
Recall that ﬂijk is the probability of an ind;vidual fails in inter-

val k for a given main unit j on trti for the no censoring case. Assum-

ing that all censors take place at the start of an interval then aijk and
ﬂijk are related in the following form
K+1
T, . / L Q. . ... (3.8
1Jk k—l ijk

We know that the conditional multinomial likelihood function is given by

n ! K+1

' ijl 13k 1Jk
Pr(T,,15C,.1seeesE, . sC.. |e..) = £ I o .
ijl’ ij1 ijK” jiK'ij K+1 K+1 k=1 1Jk ijk
T r,..,+ I c,. !
=1 ijk k=1 ijk
(3.9)
Now, combining (1.3), (3.7), and (3.8) we get
K+1
= 1- , ee. (3.10
%3k T 94317 945 (k-1)Pigk kil ¢35%) (3.10)
and
K+1
= “es .. - D I . e 3.11
%5t - %4310t 944 (x-1)915x kﬁl %553 (3.11)

Substituting (3.10), and (3.11) in (3.9) we have

+...4r, . -
1]1 132 rinrijZ rij(K+L)

P(rijl’cijl""’ ijk’ 1JKl ) - {pljl ij2 ...pin ij1l
K+1 R PR o S
T14(K+1) 1- 1 o )rljl i3 (k+1)
ijK ijk

k=1
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K
{m ¢11ik}
k=1

« 1 i b 1qu le 1Jk} «
k=1 ijk *ijk

K+1

Kl e . Kt Pig1” 21 “ijk
{0 653 (- T ¢..)) }.
k=1 3 k=1 *J

Assuming that individuals in a main unit survive independently of other
individuals we then have independent multinomial distributions over i and

j. Therefore the conditional likelihood function can be written as

I J K

| 1Jk rijk
dle) «{ I T T q. (1-4q..,) } x
- i=1 j=1 k=1 13k ijk
K+1
n,..- & c,,
i=1 j-1 k=1 r=1 -J

Since our parameter of interest is q then we might consider working with

~

the following conditional marginal likelihood function.

I J K
L(qle) « T T T gq
Y i=1 §=1 k=1

1Jk (

)rijk
ijk

94k
Therefore, for inference on qle alone we consider working with the con-

ditional marginal likelihood function L(qle) rather than the full condi-

tional likelihood function L(q,¢|e). This conditional marginal likeli-

~ o~ o~
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hood function for censored data has the same form as the conditional
likelihood function for uncensored data as given by (3.6). Again note
that the form of this conditional marginal likelihood function is the
same as the likelihood function of independent binomial random variables
with fixed nijk as is the case with no censored observations. Therefore
and for simplicity we act as if we had a product of independent binomial

random variables with fixed nijk’ even though the n,.,, are actually ran-

ijk

dom. Again the asymptotic results will be the same for both fixed nijk

or random n, ,, .
ijk

3.4 Unconditional Survival Functions and

Likelihood Functions

As we have seen in section 3.2,‘the conditional likelihood function
of our parameters-of interest'g=g(g,§) is also a function of the unknown
random vector €. Thus our aim in this section is to find a likelihood
function that is free from these unknown values. The purpose is that
if we can get an unconditional likelihood function, we can then find a
maximum likelihood estimator for our parameters of interest. But there
are some difficulties with this approach, and hence least squares esti-
mates will be discussed in Chapter IV.

fhe approach to find the unconditional likelihood function is out-
lined below.

1. Use the conditional hazard function to get the unconditiomal

one by assuming a normal distribution for eij'

~

2. Get qijk as a function of o and B only.

3. Write the likelihood function which is free of €.

This approach will be carried out for both multiplicative and additive
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hazard functions.

The conditional hazard function in the multiplicative form is given

by

Kilsij(t) = ko(t) eXP(B'xi(t)+eij).

Assume that Xi(t) = x,. then we have

ik

—~
[z
~
]

t
1- Fi . .(t) = exp(—Q) Ao(u) exp(B'Xik*'Eij)du)

ile.. | ;
ij ij

' t
exp (-exp (B Xik4'€ij)&) Ao(u)du)

exp (—Ao(t) exp (B'x,

1k+€ij))’

where A (t) = It A.(u)du. Now if we assume that e,, ~ N(O,cz) then we
0 0 0 ij €
have
s, (t) = [ 8. l sy (1:)f(eij)dsij

{“Dexp(—Ao(t) exp (B xiki-eij))f(sij)deij

MY(-AO(t)exp (B'xik)) s

where M(*) is the moment generating function of (¢), and Y==exp(sij) ~
1ognormal(0,c§). We should mention that there is no closed formula for
the moment generating function of a lognormal random variable. At this

stage we can use an approximation by using Taylor expansion of second

degree for

g(eij) = exp(—Ao(t) exp(B'xik+ eij)),



and expand it around aij = 0. Hence we have
= - ]
8(0) = exp (-7 (t)exp(B'x,)),

' = - ' -
g (eij) Ao(t) exp (B xiki-eij) exp ( Ao(t) exp(B'xik+-sij)),

g'(0) = -Ao(t)eXP(B'Xik)eXP(-Ao(t)eXP(B'Xik)),
g"(e,.) = -Ao(t) exp(B'xik+ Eij) exp(-Ao(t) exp(B'xik+ eij)) +

ij

[hg(6) exp(8'xyy e, )17 exp (- (6) exp(8'xy +e, ),

35

g"(0) = -Ao(t) exp(B'xik)[l-Ao(t)exp(B'Xik)] exp(—AO(t) exp(B'xik)).

Therefore,

2
o

5,(6) = {1-2,(t) exp(B'x;; ) [1=1 () exp(8'x;,) 157

- !

exp ( Ao(t) exp (B xik)).
S.(t) satisfies the following properties S,(0) =1, lim S, (t) =0, and
i i too 1
Si(t) is nonincreasing, and left continuous. Therefore, Si(t) is a
survivor function even though it is only an approximation of the tru
survivor function. The only restriction on this survivor function i

that it always intersects the underlying function Ao(t) at height =

The conditional hazard function in an additive form is given by

)\ileij (t) = Ao(t) + B'xi(t) + Eij'

Assume that xi(t) = X then we have

~

(il

~
]

- = - t '
1 File .(t) exp| Q) (Ao(u)+‘8 xik4-eij)du]

iIe.. .
ij ij

exp(-(B'xik-FEij)t-Ao(t)),

e

S

e

-1
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where Ao(t) = &; Ao(u)du. Again if we assume thatr—:ij N N<°’°§) then we

Si(t) i) SiI€ .(t)f(sij)deij

- 00
ij

0 _ ' _
S exp(-(B X b + Ao(t)) sijt)f(eij)deij
-, .t

o © Tij
exp(=(B'x; t + A ()N e f(e:ij)de::.Lj

-€,.t
exp(-8'x;, t = A () E(e )

e

2

2
— ' —-—
exp (-8 Xikt Ao(t) + Ge)'

However, Si(t) is not a survivor function since
: Si(t) ——> ® g5 t —> =,

Thus, from now on we are going to emphasize on working with log(-log,
model rather than with log model, because of the restriction on the param-
eters that log model has, and that treatment effects are free from time
grouping as we have seen in deriving the model to be used in discrete
setting from the continuous setting. Also, we should mention here that
least squares estimates are going to be considered over maximum likeli-
hood estimates because of the following reasons:

1. There is no closed form for the likelihood function.

2. The quality of the approximation is in doubt.



CHAPTER IV

AN APPROACH TO INFERENCE

4.1 Estimation of Variance Components

4,1,1 Estimation of the Binomial Variabilities

As we have seen in Chapter I,

N Binomial(ni, ), with

Sijkleij’nijk ik’ ik

cov(sijk’sijk'Ieij’nijk’nijk') = 0.

For a large sample size, the asymptotic distribution is given by

v Normal(nijkqijk,nijkqijk(l-qijk)), and

Sijkleij’nijk
S
. iik

iik By gy Normal(qijk,qijk(l-qijk)/nijk).

ik

Let g(qijk) = log(-log qijk)’

g(qijk) = l/qijk(log qijk)’

where é is defined to be the derivative of the function g. Then

A . L] 2
g(qijk)leij,nijk v Normal(g(q; )5 [8(a; 5301 a5 T-ay 00 7/my 500,

that is,

) |

0591 5% (198 9455

jk

log(-log qijk)lgij’nijk v Normal(log(-log qijk )2).

37
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Going back to the general model,

log(-log qijk) = log(-log qijk) + Sijk,

where Gijk is a random error then we have

-4y

| .
6ijk'€ij’nijk v Normal (0, 2).

15 534 9k (108 95 43)
In constructing the variance-covariance matrix for the model we need

Var(&ijk) rather than Var($ ). Therefore, we need to consider

ijkleij’nijk
Eij and sijk to be uncorrelated but not necessarily independent since

Var(6ijk) and Var(cSij ) may be different. Thus we have

kleij’nijk

Var(Sijk) E(Var(aijkleij’njik))v+ Var(E(Gijkleij,nijk)).

Since E(aij) = 0 and E(Gijk) = 0 then E(aijkleij’nijk) = 0 and hence

) DR

le

k

Var(6ij K

E(Var(cSij ij,nijk

This suggests averaging over all main units on the same trt and the same

interval to get an estimate of Var(dijk) given as

J :
Var(ﬁijk) = jzl Var(dijkleij,nijk)/# main units on trt i. ... (4.1)
For the rest of all arguments we will designate Var(Gi,k) by G§ and
2 ] ik
its estimate by o
ijk

4.1.2 Equating SS to ESS to estimate terms in V

Using a method similar to the fitting constant method provided by
Henderson (1953) and Searle (1968), an estimate of Gi can be obtained as

follows
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Step (1) Fit the full model

y = MB + §
b
= i ~
[Xiz] c + §
= Xb + Ze + 6,

where b is the vector of fixed effects, € is the single vector of random

effects, and § @ N(Q,ﬁ), where W is a diagonal matrix of 8§ ’s being
ijk
the diagonal elements. Now, the reduction sum of squares for fitting

the full model is given by

X' - [x"
R(b,e) = y'&‘l[xzz] -— ﬁ’l[ng] - w?fly
~ o~ > i 7 4 ] |_Z'. ~
1 3wy xtwZ] TR 1
= y' [ng] A—l A__l - w Y'
Y- Z'W X Z'W z| |2 ~

Step (2) Fit the reduced model
v = Xb + &.

Then, the reduction sums of squares for fitting the reduced model is

given by

RD) = vy RE 0T W .
Step (3) Get the expectation of the quadratic form under the full model.
The expectation of y'Qy under the model y = MB + § is given by
X'
E(y'Qy) = tr ||--| QIX}Z]E(BB')| + tr[qQW].
A 7

Then, the expectation of R(b,e) under the full model is given by



%

Z'

T X' x'Wlz]”
ER(b,e)) =tr||-- | W [Xiz]| _, A1
Lz Z'W X Z'W 2z
1 XWX X' “[x]
+oer W Ixizl) 1 ||
Z'W X zZ'W z] |z2']
If we let
1 X xwlZ]T [x
worklell L, -| =c¢p,
Z'W X Z'W Z z'
then we have
A e S B
ER(,e)) =tr|| .1 |E(BB')| + tr[C,].
) 12'W X Z'W Tz

7 lxlzIE(BB")

Similarly, the expectation of R(b) under the full model is given by

Xl
ER(b)) = tr|| -
~ . Z"

er[W IR W )T X'

If we let ﬁ'lx(x'ﬁ‘lx)' X' = Cz, then we have

Txrw ix WLz -
ER(b)) = tr . o el = Al
Z'W lX Z'W 1X(X'W lX) X'W 1;
Hence

Z(R(e|b)) = E(R(b,€) = R(b))

0 0

= tr 1

o z'Ww

- tr[Cz]

2-2' W xR TR

E(BB')

ey X'ﬁ_l[X:Z]E(BB')} +

+ tr[Cz].

lJE(BB' )] + tr[C,]

40
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ez (- k@i %) T ki zEee) ] + trlc;] - tr[c,]

2 A - A - A - — A —
of tr [2' (W -0 TREW R T X' 2] + erle,] - erlc,].
vl A=l Al = a1
If we let Z'(W "-W "X(X'W "X) X'W )z = C, then we have
2
E(R(glg))-oetr [C] + trlc,] - trlc,].

Step (4) Equate ER(§|§) to R(p,s)-R(b) and solve for the unknown param-

2
eter o_ slves us

82 = [R(b,e) - R(b) - tr[Cl] + tr[Cz]]/tr[C]. . (4.2

4.2 Weighted Least Squares and Survival

Functions Estimation

The split plot model with unequal subplot variances will be analyzed
first for the purpose of finding a good fitting model. This model has
main treatment effects, time effects, and treatment by time interaction
effects. The model obtained using the proportional hazard model did not
have treatment by time effects interaction. So, our modification here
can be formulated as follows..

1. 1If the best fitted model has no treatment by time interaction,
the proportional hazard model, which we started with, is then the approp-
riate one.

2. If the best fitted model has treatment by time interaction,
then we have to modify the proportional hazard model. 1In this case we
can use the general Cox (1972) model with time dependent variables, i.e.,
the covariables are functions of time. In other words we can start with

the following model for the hazard function. Let
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Aij(t) = Ao(t) exp[B'xi(t) + eij],

where xi(t) are the variables influencing failure times. In general,
these variables can be functions of time. However, in deriving the model
to be used it can be assumed that xi(t) are constant on interval k, as
we have seen before. Therefore, if the best fitted model has a treat-
ment by time interaction, we can use the general time dependent variables
for Cox (1972) model. Otherwise, the assumption that variables are free
from time effects would be appropriéte.

The split plot model with log(-log aijk) response can be written in

a matrix form as given below.

y=XB+u

~

1A

is an IJKx 1 vector of known values and yijk = log(-log qijk)’
X is an IJKx P design matrix,

B is a Px 1 vector of unknown parameters,

u is an IJKx 1 vector of random components, and
u ':‘ NIJK(Q’V) >

where V is an IJK x ILJK variance-covariance matrix having both v(eij) =

02 and v(S,..) = 02 in the following form
€ ijk 6ijk
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- 2, 2 2 2 -
G*+06 o . 0
€ lll € €
02 02+0§°" 02 0
€ e 81, €
ci 02 02+c§
€ € %11x
V= 62+O§ 02 . 02
e 8,7 € €
0 o o§+o§"' oi
122
02 02 oi+c§
€ € 12K
L 0 0 IJ times _|

Similar to the procedure provided by Grizzle, Starmer and Koch
(1969), generalized least squares estimates after estimating the variance-

covariance matrix V will be considered and are given by

A ~=1_ - ~— A Aa=1_.-1
8= @R Yy wich cbv@® = @R
For T discrete, the conditional survivor function for treatment i

and time interval t, is given by

~ ~

s (£) = T q,. cee (4.3)

iley; g=1

Estimates of the above conditional survivor functions can be easily found
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from the estimates of qijk for al1 i=1,...,I, j=1,...,J, and k=1,...,
K. It is important to mention here that estimates of the survivor func-
tions given eij =0 will be considered. The reasons for that can be sum-
marized as follows:
1. We assumed that tank variability (eij) increase or decrease the
survivor function,
2. Usually treatment means comparisons are done holding all other
conditions as constants. Similarly treatment comparisons for
survival data can be done using survival curves for different

treatments holding all other conditions constant, e.g., eij =0.



CHAPTER V
ASYMPTOTIC PROPERTIES
5.1 Introduction

The asymptotic properties for the estimators presented in Chapter
IV are based on the behavior of the estimators when both the number of
main units, J, and the number of subunits in each main unit, nij==n for
all i and j, approach «». As we have seen in Chapter IV, the variance-

covariance matrix V for grouped time model is a block diagonal matrix

that involves both 02 and 02. 02 is a function of n,., and J, and
S, . € S, . ijk
ijk ijk

V is of order IJKx IJK, and thus V depends on J. From this point onwards

we write V ) to denote this dependency. A reasonable approach to prove

J
the asymptotic properties for our estimators is as follows.
Step (1) Prove that

~2 l 2 | P

(n,. o e..)-(n,.. 0 €,.) —> 0 as n->w,
ijk Gijk ij ijk Sijk ij

Step (2) Assume as a working approximation that

==0§ Ie,, and E(y) ;=X§.
ijk -

Step (3) Prove that

82 - 0§ —£€~0 as J+~ and that W( - W(J) —29 0 as J—+>o,

J
ijk ijk )

45
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~2 ~
Step (4) o using W(J) as the variance-covariance matrix, oi(W) say, has

the following property

GE(W)-OE-—PéO as J —> o,

Step (5) From steps (3) and (4), prove, using W(J) that

2
e

2 P

o (W)—ce——eo as J —> o,

prove that 8 has an asymptotic normal distribu-

Step (6) With known V(J) 8

tion as J=+ o,

P

Step (7) Prove that i -V —> 0 as J~> =,

@) @)

Step (8) With unknown V(J) prove that @ has an asymptotic normal distri-
bution as J > .

We discuss the above steps in detail in section 5.2. All tests of

hypotheses and confidence limits are discussed in section 5.3. In sec-

tion 5.4 we discuss confidence limits for survivor functions and test

for the appropriateness of assuming the binomial variances.

5.2 Consistency of Variance Components
Estimators and Asymptotic Distri-

bution of é

As discussed in Chapter I we have

(rijl""’rin’sinleij) N Multlnomlal(n,ﬁijl,nijz,...,ﬂij(K+l)),

Therefore, by the Weak Law of Large Numbers we have
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r 5170 Ti51
Ti52/™ Ti32
i €.. £, as now,
1]
T/ "1k
.. /n T, .
L ijK RES] (K+1)J
where
K-1
ﬂijﬁ = (121 qijg)(l-qijz) for ¢=1,2,...,K, and
K
T, . =1 q,.,-
ij (K+1) 4=1 ijg
Now, let
K+1 K+1
h(r...) =q.,.., = ¢ m,. /T m,,
ijk ijk o=k+1 ije 1=k ijg
be a continuous function. Then
N “ijk, P
4 5l55 = B 5 ) Ry T 9yy @R
We now let
1- .
g(q,..) = Tk
13k q.., (log q )2
ijk ijk
be another continuous function. Then
1-q.. l1-q..
LIX 5 | eg; - Ll 7 asn>e.
Recall that
2 _ L-a;4
c<s..lij' N 2|€13
ijk nljkquk(log qijk)
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- Therefore, we have

A2 _ dijk
LETCI L
ijk q.., (log qle

Hence, we get

~2

n,. .o le,. =
ijk aijk ij

Now, if we let

L-qy0

2

0y 5391 5% (198 94 5

be the true variance of §, . then we have

JkI

2 _ 1-qy5
. . Ieij - 3 -
ijk 0, 5% 9k (198 9 43

Therefore, we have

~2 2 P
(n1Jk 5. kl ) - (n1Jk 6 I ij)-——é 0 as n+>o, ... (5.1

This completes the proof of step (1).

Assuming step (2) is true we can act as if

Is,_ and E(y) ;=XB, when the n..

. . are large.
ij 1jk ij 4 ~ ijk

Now we prove step (3). Recall that q..k is a random variable and it de-

2

pends on Sij' Then we can view the sequence {(l1-q..,)/q.., (log q...)°}

ijk’" *ijk ijk

for all j=1,2,...,J as J+» as a sequence of independently and identical-

ly distributed random variables such that E((1- quk)/quk( og qijk)z)‘<m-

Therefore, by the Strong Law of Large Numbers we have

(@magg0/a g, os g )%) - E((1-q, )/,

(S
™y

(og q,.)%)
ijk ijk ijk’" tijk ijk

3
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a.s.
—> 0 as J->o,

Hence, the convergence in probability is also true. Therefore,

~2 2 P
66 -0 —> 0,
ijk  “ijk

.. (5.2)

as J+= and for all i= l,...,I,_j= 1,...,J and k=1,...,K. By (5.2) and

Arnold's (1981) result on page 341 we have

~ P
W(J)-W(J)-——e 0, e (5.3)
as J~+ » where
Wy © (0§ )13k (5.4)
ijk

for i=1,...,I, j=1,...,J, and k=1,...,K. This completes the proof of
step (3).

For the proof of steps (4), (5), (6), (7), and (8) we proceed as
follows. For our grouped time model, Y(J) = X(J)gi—g, where cov(u) =

\ and V is a block diagonal matrix defined as before, we partition

(6)) (&))

and V as follows

Yo X )

= = ' ' t1
V) = Vg = g o0 Y5 o0 Y510

X =

\ 1 ] ]
&) = Xrreee [x} ... x.j e X0,

where Xj’s are all IKxP identical matrices. Also

Vay = Vigrxaok = J, ’
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where Vj’s are all IKxIK identical matrices. Therefore, y.’s are inde-

~

pendently and identically distributed IK-dimensional random vectors with

E(yj) = XjB and Cov(zj) = Vj. Using Arnold's (1981) theorem 18.16 (b)

we have
- L ]
vJ (Z(J) - Xj§) > NIK(Q,Vj) “ee (5-5)
J h y L %
> o = — .
as , where Z(J) 7 351 Zj

To prove step (4), we recall the estimation procedure used to get
the estimate of ci. Full and a reduced model were both fitted. The full

model is of the form

b
- 1 ~

where b is the vector of fixed effects, € is the vector of random effects,

and Cov(§) = W(J)3 where W is‘given by (5.4). For this model we write

B + 8§, where M = [X}

L) = MgyB &) 2 ay

The reduced model is of the form

Yoy T E¥oh &

A

cE is unbiased for oi since
EGH) = (E®R@®,e) - R®)) - trle;] + tr[e,]}/er[c].

Recall that E(R(b,e) - R(b)) = oitr[c] + tre;] - tr[e,] then we have
E(&i) = 02. Now, to prove that 82 is a consistent estimator for oi we

need to show that Var(&i) + 0 as J>», From (4.2) we have

Var (62 = Var(R(b.e) - R(®))/trlel).
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But 82 is a quadratic form with E(Z) = XB and V(y) = V then we have

A2 2 -1 -
Var(c?) = ’-—————-tr'[w M ' ) M (x" )
e (er[e])? <J> GOMO"O @ Mo F@ F oY <J> )

4
(trec]D)

—l -

ot )

O MOL y (

X 7 B'X 5y W gy 0 ) O WM

-1

- -1, L
M E @ EH¥nE@) o

WV a )

M, (

@ Mty

( ) X (5.6)

My oy Ky ¥y Xy Wi X B

Using the partition described for the grouped time model and then
applying it on both fitted models and partitioning Z, M, and W according-

ly we have

- _l - Xl
W 0 1
1 C 1 :
X' W,o X, .= [X'...X'...X' W, X!
OV @n¥@y = EpeoXye Xyl i :
0 =11
1) '
i J “LXJ
J
= I XWX, = JX'W.IX..
ju1 3373 3373

Similarly, we have

] _enl
X @@y = F5M %y
' -1 - |
2" i@y T 25Ny g

' -1 = (R
MY M) JMjole’

-1 1 -
! ce. X! Ly ,
V@ = K Y R Wy XW V]



i Ly -1 -
(J) N [lel vl Mjo vj MJWJ vJ],
] -1 — ] -1 [} -1 1 -1
Xy Wigy = [XjW; xjwj .+« W71, and
R | ;-1 -1
MW gy = D Mjwj cee MW
Also we have
- R -1
O @O O 0 @) 2o ey -
T 1 T
I 1 I
Lty iz x|, ,
3373373 713 3.
LI ik
WoiMo o Wt ) M
(J) @ W@ (J) (J) (J) (J) @ -
- 1’
I 1
Lt oowihe )y My, | ,
J3 3733 3 33 i
I 1 1
il ¢l , -1
Mo Mo ey Moo =
T 1 1]
D 1
Lot ourwThe )y ww L , and
J3J jJ 33 3 33
I I 14 [

l
"X @ o (J) X5y Xy Vg =

52
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I I ... I
I I ... I

Lty awiix ) xwt.

J3 3733 307373

- RS &) <
Therefore, the first term in (5.6) can be written as

2tr~[leM.(M!leM.)'M!lev.wflx.(X!wflx.)'xtwflv.]z %
o Je e e e e A s s e e e Aus e T

Jz(tr (2 Yz, - 2 R, (XWX ) Wz, 1) 2
o T e s T s s R T A

—> (0 as J —> », Also, the second term in (5.6) can be written as

A8 WM, WML ) M WY WM, (MWLM, WY =
~ J 3 3 1313 13 331 1 JJ 13 1] a

Wlx, (XWX, - WOtk R T NRLE ¢
J 3 13 3 I J 1 31313 1 N J=

1

J(tr [2'W, z.--z'.wflx.(x'.wflx.)'x'.wflz.])2
o e e T e T T e s s R A

—> (0 as J —> », Therefore, we have Var(c?i) ——> 0 as J —> «», which
A2 A
implies that o, with a known W(J),GZ (W) say, is a consistent estimator

for 02 as J —> =, This completes the proof of step (4).

A2
To prove step (5) we use steps (3) and (4) as follows. Let crg(W)
be a continuous function of W(J), and since E:J(J) -W(J) i> 0as J —>» ,

then we have

ai(ﬁ)—ci LO as J —> o=,

For the proof of step (6), we proceed as follows.

[

-1 -1 -1
= JX'V'X.), and X\_.V = I X!V.'y..
X3V57 %) and XV NP B R4

L1
Xanvomiom ;
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Therefore E based on known V(J),g(V) say, is given by

. -1 -1 -1
V) = (X'_\V X 'V
B = XV @) o' oiwm
J
- rxvixp T roxvily 1/,
S B AR B B
J
Now,
J -1 P -1
T OXIV,7y./d ——e'E(XSVj yj) as J —> «» by the weak law of large
j=1 ) )

numbers. Therefore, we have
A P -1 -1 -1
B(V) — (X!V.X,) "E(X!V,7y.,) =
~( ) J3J J) ( J 3] XJ)

-1 -1 -1 -1 -1 -1
X'V,7X.,) X'V, E(y.) = (X'V,7X,) X'V.’X.B =28
JJ 3] J ] ZJ J 3] J) JJ J~ ~
as J —> o. Thus E(V) is a consistent estimator for 8 as J —> .

Now we define a function of §(J) as

1

~

~ -1 -1 -1~
V) = (X'V,X,) X'V,
B(V) = ( Vs J) RS

and use (5.5). Applying the delta method then we obtain the following

result.
A -1 -1
IR -8 2> N0, &IVIX) T, e (5.7
~ ~ P~ 31 13
as J —> o, This completes the proof of step (6).

Using steps (3) and (5) we have

8§ -og L£50 as J—>w for all i=1,...,I, j=1,...,J, and

ijk  °ijk

k=1,...,K, and
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82— ci —P—> 0 as J —> «, Then by Arnold's (1981) result on page 341

Vj —>V, as J —> > and also we get
‘7‘0) -V(J) —P-> 0 as J —> », This completes the proof of step (7).

From the last two results we have

97 2 gyt

) . ee. (5.8
3 i3’ -8)

as J —> o,

1 1

X, 2> x'vilx,, cee (5.9)
3 i

X'V
]
as J —> », Also
a=l_.-1 P -1 -1
(X!V,"X,) = —> (X!V.7X, ... (5.10
3373 . ( 33 J) i ( )
és J —> o,

@ based on unknown V ),g(\?) say, is given by

J
5o S TS R N |
B(V) = [(XIV,"X,) ~ ¢ X!V,7y.1/J
§ 33 o1 333
J
~ J
- @iz oy,
3373 AERPRES
J
J P
Thus, using (5.8), (5.10) and since = Xj/J __>E(¥j) as J —> = we have
j=1

sy 2> vz Ixtvilx g = 8 as J —> o,
~ JJ 3] J3J 1~ ~

Therefore B(V) is consistent estimator for B as J —> ». Now, since

é(V) and @(\7) are both consistent estimators for B then we have

~



B -3 50 as T —> =,
Therefore

/IR - B(V)) =

51 J 1 -1.,.-19

[(x A x Loy, - (X'V, X)) X'V, y.1/Y/3
j ) J Y3 =1 73 i3 J) 33 54 XJ]

- LT T v v iha
Combining (5.5), (5.8) and (5.10) leads to
IR - Bm) S0,
as J —> », From (5.7) we have
TR -8 v N 0,& VRO,
~ ~ * P J31 13

which implies that for all a€ R? we have
1

2l B - pla’ (V) ] 2 w0, D),

as J —> o,

Now, using (5.10) and for all at€ RP we have

a=1_ -1 P

a'(X'v, Xj) a—>a "(X'V, X ) as J —> o,

33

This can be written equivalently as
[a' (X! v: x y~tagt/2

[a' (X! VJ X ) -1 ]1/2

P

1,

56

(5.11)

.. (5.12)

(5.13)

as J —> », Multiplying (5.12) and (5.13) and using Slutsky's theorem
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imply that

N

/Tt -plat @ikl 2 Lo wco,)

as J —> », By adding and subtracting E(ﬁ), the last result can be re-

written as

/T a B - /T a' (B(V) - B(D))

+
~=1 -1 .1/2 ~=1 -1 .1/2
"(XIV,X, "(X!'V, X,
[§(JJJ) al [§(JJJ) a]

L

N(0,1), eoo (5.14)

as J —> o,

Combining (5.11) and (5.14) we have
1

/T2t B - pla’ @ ix) ] 2 s N0,

as J —> = for all a¢€ R® . Thus we have
PP . o=l (-1
IR -8) v N_(0,xIV;7K,)T), ... (5.15)
- SAL D A B B
as J — o, This completes the proof of step (8).

5.3 Testing Hypotheses and Confidence Intervals

5.3.1 Testing the Hypothesis H.: HR=0 vs.
J

B : HB#0
The test statistic for testing the above hypothesis is given by
= = R (T\H! N T N
SS(HR=0) = g'(VH'[HEX'V "X) "H'] "HB(V).
Using (5.15) we have

/T HBEY - 8) ~ N (0,HX'V. %) tar
@D -8 F N 08T XY
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as J —> «, Then we have
3 (v ropt o1 =Ll a5 > 2
J(B(V) - B)'H [H(vaj Xj) H'] "H(B(V) - B) v x (rank(H))
as J —> ». This then implies that
B(Y 170 e B R Y A
(B - ) "B [HE'V ) TH' TTHEE) - 8)  x” (rank(H))

as J —> «», Hence, SS(H§==Q) has an asymptotic xz distribution with

rank(H) d.f. if HO is true.

5.3.2 Goodness of Fit Test

The test statistic is given by

GOF = (y - XB(W) 'V (y-xB(M) = y' (177 - T &' T x vy

~

GOF is the sum of squares to test the hypothesis that log(-logg)==X§ and
that Gijk are with distribution derived from conditional binomial assump-
tion. If XB is a saturated model, then this is a test for binomial
assumption or independence of survival times conditional on main unit.
Using Arnold's (1981) theorem 10.3 we have

GOF @ Xz(d.f.) as J —> «, where

d.f. = rank (7 1-9 k@i o kv .

Therefore, GOF has an asymptotic xz distribution if the model fits.

5.3.3 Confidence Limits for Bi and Confidence

Region for B8

Using (5.15) and defining an appropriate function of @(ﬁ) we have
1

(cii) 2(éi-Bi) L N(0,1) as J —> o,
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where i is the appropriate diagonal element of (X'\Af_]'X)_l corresponding
to the element éi' Thus an approximate 100(1-u)% confidence interval for

Bi is given by
B, + z (c )1/2 where z is the value such that a standérd
i~ “a/27id ? a/2 ' i

normal variate falls within -z / and z / with probability 1l-a.

of2 o/2
Also, using (5.15) and defining an appropriate function of @(V) we

can conclude that any subvector E(ﬁ) is asymptotically normally distrib-

uted and then an approximate 100(1l-a)?% confidence region is given by
P .~ 4 rora=l s o 2
BER : BH-p) X XEM -8 < x @,

" where xi(P) is a tabulated chi-square value with a-level and P degrees

of freedom.
5.4 Other Asymptotic Properties

5.4.1 Confidence Limits for the Conditional

Survivor Functions

To construct confidence limits for the conditional survivor function
given by
k

(tk) = I q,

S .
15=0 g=1 3%

i]e
Prentice and Gloeckler (1978) suggested using the following function

v;(8) = log(-log Sileij=0(tk’§))'

Then the distribution of yi(é) may be approximated by a normal distribu-

tion with mean yi(B) and variance given by
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ci = [gi(é)]'COV(E)[gi(é)], where

o, (8)

g, (8) = 38

Therefore, approximate 100(l-a)?% confidence interval for Yi(B) is given
by

[yi(§)--za/20i ,yi(§)4-za/20i], where za/2 is the value such that a
standard normal variate falls within -z /

and z / with probability 1l-a.

al/2 al/2
Thus, an approximate 100(1-a)?% confidence interval for Sile =0(tk,B) is
ij N
given by
exp(z 0.) exp(-z 0.)
: A a i’ - A a i
[{Sileij=0(tk’§)} , {Sileij=0(tk’§)} T. «oo (5.20)

5.4.2 Test for the Binomial Variabilities

An ad-hoc test to see whether the binomial variances, that were used
to estimate main unit variance, are appropriate or not is provided. This
test can be summarized as follows. Add, as covariate, the values of nijk
to the fitted model y= X§+-g, say. Then obtain a new model y = XB+

yn+u, where n is the vector of n,.  values for i=1,...,I, j=1,...,J,

lek
and k=1,...,K. If y=0 then the estimates of qijk’s as functions of the
parameters for the above model are unaffected by risk sets, and hence
risk sets do not affect the estimated survivor functions. However, if
Y >0 then the estimates of qijk,s are larger with larger number of sub-
units at risk, and hence risk sets will affect the estimated survivor

functions. On the other hand if y <O then the estimates of qijk’s are

smaller with larger number of subunits at risk, and hence risk sets will



affect the estimated survivor functions. Therefore a test
for the validity of the assumption that binomial variances
ate. A test for HO: y=0 against Hl: vy#0 is now given by
Yy and SQ are the corresponding estimate and standard error
of y, respectively. If units fail independently, then the
tribution applies. If qijk depends on the number at risk,

will not fail independently. Small p-values indicate. lack

dence of subunits within main unit.
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on y is a test

are appropri-

z = y/s~, where
Y

of the estimate

binomial dis-

then the units

of indepen-



CHAPTER VI

EXAMPLE OF MODEL AND ANALYSIS APPLIED TO A

REAL DATA SET USING SAS

In this chapter analysis of the fish experiment presented and fully
explained in Chapter I will be considered. SAS was used for all compu-

tations. The full model is given by

y = X + u, where cov(y) = V and

V is a block diagonal variance-covariance matrix involving both 9s
‘ ijk
for i=1,...,I, j=1,...,J, and k=1,...,K, and Oi' B is the vector of
of unknown parameters to be estimated, X is a design matrix of known con-
stants, and y is a vector of transformed values of the observed aijk’s'
The function of these aijk,s that was considered in the analysis is given
.by Vifk = log(-log &ijk) for all i=1,...,I, j=1,...,J and k=1,...,K.
Estimates of 02 can be found uéing (4.1). Table IV represents
ijk R R
the calculations involved to get 02 and y,., = log(-log q..,). It
sijk ijk ijk
should be mentioned here that in order to avoid having values for aijk

as one or zero adjusted survival, sijk(AD) say, can be used instead of

. = =g,, -.5.
the sijk values as follows Iif Sijk nijk then take sijk(AD) s1Jk

If sijk

nijk==0, we follow Grizzle, Starmer, and Koch (1969), and suggest that

=0 then take Sijk(AD) =,5. On the other hand for occasional

S, can be replaced by 1/K, where K is the number of time intervals.

ijk
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TABLE

v

ESTIMATES OF BINOMIAL VARIANCES AND VALUES OF THE
RESPONSE VARIABLE

Accl.

[T

'

-t - e s e - . - S WS GE W W W wn = As W T T G - e . G e " S G T e - . - = s > = = =

~
. 2
. Time r,. n,. S, . o Y.
Conc Tank i3k ijk ij S, . ijk
ijk
1 ] 1 1 25 24 0.74715 J3.1985
1 ] 2 ) 24 19 0.1728 -1.4559
1 1 3 '7 19 12 0. 19855 -0.7719
] 1 4 1 12 " 0.7531 -2.4459
] 1 5 o 1 1 2.082315 -3.0782
1 1 6 o " " 2.08315 -3.0782
1 1 7 o " " 2.08315 -3.0782
1 2 1 2" 25 23 0.74745 -2.4843
1 2 2 7 23 16 0.1728 -1.015
1 2 3 4 16 12 0.19855 -1.2459
1 2 4 2 12 10 0.7531 ~1.6998
1 2 5 .0 10 10 2.08315 -2.9702
1 2 6 o 10 10 2.08315 -2.9702
1 2 7 o 1c 1o 2.08315 -2.9702
2 1 1 3 25 22 1.1878 -2.0567
2 1 2 7. 22 15 0.12345 -0.9604
2 ] 3 9 15 6 0.1333 -0.0874
2 ] 4 o 6 6 1.1138 ~2.4459
2 [} 5 o [ 6 1.5129 -2.4459
2 | 6 o] 6 6 2.012 -2.4459
2 1 7 o 6 6 1.52%58 -2.4459
2 2 1 o 25 25 1.1878 -3.9019
2 2 2 10 25 15 0.12345 -0.67i7
2 2 3 7 15 ;] 0.1333 -0.4633
2 2 4 S 8 3 1.1438 ~0.0194
2 2 S5 1 3 2 1.5129 -0.904
2 2 6 o 2 2 2.012 -1.24%59
2 2 7 1 2 1 1.5258 -0.3665
3 1 1 1 25 24 0.9804 -3.1985
3 1 2 12 24 12 0.0946 -0.3665
3 1 3 7 12 5 0.1425 0.1339
3 1 4 4 5 1 0.3279 0.4759
3 1 5 o] 1 1 1.5479 -0.3665
3 1 6 1 1 (] 1.5609 -0.3665
3 ] 7 o o (] 2.0812 -0.3665
3 2 1 1 25 24 0 9804 ~-3.198%
3 2 2 10 24 14 0.0946 -0.617
3 2 3 8 14 6 0.1425 -0.1669
3 2 L] 3 6 3 0 32719 -0.3665
3 2 5 ] 3 2 1.5479 -0.904
3 2 6 ] 2 1 1.5609 -0.3665
3 2 7 o] 1 1 2.0812 -0.3665
1 1 1 o] 25 25 2.0408 -3.9019
] 1 2 9 25 16 0.1818 -0.8068
1 1 3 4 16 12 0.2516 -1.2459
1 1 4 o] 12 12 1.9909 -3.1487
1 1 5 (o] 12 12 1.9909 ~3.1487
1 1 6 o 12 12 1.9909 ~3.1487
1 1 7 o 12 12 1.9909 -3. 1487
! 2 ' o 25 25 2.0408 -3.9019
1 2 2 14 25 21 0.1818 -1.7467
1 2 3 L] 21 17 0 2516 -1.5572
1 2 14 [¢] 17 17 1 9909 -3.5258

€9



TABLE IV (Continued)

Accl.

Conc.

Tank

Time

WWLLWWWOLWLWWLWOLQWLWNNRIORNRORNRORORORNNONOON = - -

RRNRNRONRONNN oo aaeaa DVDONNNRORO N ccac e omeesNDOR

NONALUN«NOUION=NOUILUN=eN"ONLWRN=NOW

-

COONNNOOO=PWNWOOONLBOLOOOOWMIN=-OO0O |

5 52

D, . .
ijk S, . lek

ijk

" 1.9909 -3.5258
" 1.9909 -3.6258
117 1.9909 -3.6258
24 1.5106 ~3.198%
12 0.0999 -0.3665
7 0.27 -0.617
4 0.421 -0.8792
4 2.0231% -2.0134
4 2.0231¢ -2.0134
4 2.0231¢ -2.0134
25 1.5106 -3.9019
16 0.0999 -0.8068
13 0.27 -1.8749
" 0.421 -1.7883
" 2.0231 -3.0782
" 2.0231 -3.0782
(N 2.0231 -3.0782
22 1.1877 -2.057
10 0.0871 -0.2089
7 0.2436 -1.0309
1) 0.5058 -1.0881
4 1.5052 -1.4999
4 2.0064 -2.0134
4 2.0064 ~-2.0134
25 1.1877 -3.9019
13 0 0871 -0.4248
6 0.2436 -0.258%
4 0.5058 -0.904
4 1.5062 -2.0134
4 2.0064 -2.0104
4 2.0064 -2.0134

%9
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From Table IV and (4.2), we have 3§= 0.9095. Although this estimate
is small it will be considered throughéut. After constructing v, a
weighted least squares procedure is used to fit the full model.

Test for the appropriateness of using the binomial variabilities 1is
considered as proposed in Chapter V. The full model with nijk as a co-
variable has been fitted. Estimate and standard error for.the appropri-
ate coefficient on this covariable are given by @nijk=-—0.0683 and

s.e.=0.0553. Then a test for HO: Bnijk==0 against HO: Nk

by z=-1.23541 with a p-value of 0.11. This relatively large p-value

B

#0 is given

indicates that there is no evidence that the response variable y depends
on risk sets through anything other than the binomial variances. Table
V r:presents an analysis of deviation table with corresponding xz and
r-values obtained from fitting the full model without nijk as covariabie.
From Table V, it is obvious that the model fits very well. However, a
need for another model that might fit just as well but with less factors
was considered. Thus, a search for a better fitted model was carried
out. The test of significance for each factor is obtained by consider-
ing its performance with all other fagtors included in the model. The
model that has been chosen to be the appropriate one for this experiment
is the one that has only main treatment effects along with time effects.
Since this best fitting model haé no time by treatments interactions the
proportional hazard for continuous time setting is appropriate.

For the chosen model, Table VI represeﬁts the analysis of deviation

with the resulting xz and p-values. Table VII represents the estimate

of B and the standard errors of the estimates, where

~

B = (X'ff'lx)'lx'ff'ly and cév(g) - @i,
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TABLE V

ANALYSIS OF DEVIATION FOR THE
FULL MODEL

Source d.f. x2 p-value
Accl. 1 11.8354 < 0.005
Conc. 2 19.7773 < 0.005
Accl. x Conc. 2 3.5608 0.290
Time 6 18.3412 0.005
Accl. x Time 6 7.6430 0.380
Conc. x Time 12 8.1058 0.780
Goodness of 48  20.9127 0.995
Fit
All 86 and 32 are consistent estimators as the number of tanks

ijk
J — », Furthermore, @(?) has all the asymptotic properties discussed in

Chapter V. Wé should mention here that‘the asymptotic properties discus-
sed in Chapter V are all valid approximations if we have more than one
repetition per treatment. As the number of those repetitions goes to «,
the éstimators are consistent. These results are valid for the split
plot design with main. treatments being completely randomized to main
units. Also the asymptotic properties hold for the split plot design
with main units having a completely randomized block structure for the
case of more than one repetition per treatment within blocks.

Estimates and plots of the survivor functions along with their con-
fidence limits for each treatment combination are presented in Table VIII
and Figures 1, 2, 3, 4, 5, and 6, respectively. Also estimated survivor

functions of the two acclimation times for low, medium, and high levels
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of zinc concentration are presented in Figures 7, 8, and 9, respectively.
We should mention here that there are two acclimation times namely one
week and two weeks. Also there are three levels of zinc concentration
namely low, medium, and high. Treatments 1, 3, and 5 represent one week
of acclimation time with low, medium, and high levels of zinc concentra-
tion. On the other hand treatments 2, 4, and 6.represent two weeks of
acclimation time with low, medium, and high levels of zinc concentrationm,
respectively.

From the above analysis we conclude that for eij==0, the effect of
the acclimation time was important in explaining the data. For the first
two time intervals there was practically no difference in survival rates
between acclimation times of one wéek and two weeks. Fish under two
week acclimations survived better than those with one week acclimation
time in the sense .that the effect became greater with time. This sug-
gests it is better to collect the data (count the number of deaths)
after a period of at least three days. There was also an effect due
to zinc concentration which indicates that fish survive better with low

levels of zinc concentration than for higher levels.



TABLE VI

ANALYSIS OF DEVIATION FOR THE CHOSEN MODEL

2
Source d.f. X p~value
Acel. 1 3.203 0.0782
Conc. 2 29.515 < 0.0050
Time 6 81.841 < 0.0001
Goodness of fit 68 46.972 0.8000
TABLE VII

ESTIMATE OF B

Parameter Estimate s.e.
u -1.741860 0.11802
a1 -0.561034  0.11291%
cq 0.103323  0.10440
C2 0.133520 0.07461
T1 -1.432720 0.28642
Ty 0.945690 0.14188
T4 1.016880 0.15675
T, 0.574602  0.2206!1
Tg -0.362336 0.34149
T -0.388477 0.35749




ESTIMATES OF SURVIVOR FUNCTIONS

TABLE' VIII

S, L.L. U.L. Time
i | e, .=0
1]

0.97309% 0.9487 0.986 1
0.725115 0.6342 0.797 2
0.528728 0.4157 0.6295 3
Trt 1 0.431604 0.312 0.548% a
0.398606 0.28 0.5149 5
0.368886 0.251% 0.486% &
0.340447 0.225% 0.4588 7
0.979334 0.9599 0.9894 1
0.781842 0.7676 2.8767 2
0.613888 0.50%8 0.70%6 3
Trt 2 o.s2s831 0.408 0.6326 4
0.494482 0.3721 0.6054 s
0.466 0.3428 0.5799 6
0.438235% 0.3181 0.5%54% 7
0.948384 0.9026 0.973 1
- 0.53549% 0.4242 0.6346 2
Trt 3 0-289875 0. 1907 0.3964 3
0. 195403 0.111% 0.2966 4
0.167422 0.080% 0.264% 5
0.144021 0.0738 c.2368 6
0.1232314 0.06 0.2104 7
0.960235 0.9237 0.9794 1
0.619895 0.5212 0.7041 2
0.387467 0.2782 0.4953 3
Trt 4 o.286478 Q. 1844 0.3966 4
0.254508 0.1574 0.3632 5
0.226797 0.1345 0.3337 6
0.201279 0.1147 0.3053 7
0.927249 0.8647 0.9612 1
0.410%89 0.3014 0.5173 2
Trt 5 0171204 0.0971 0.263 3
r 0.0975879 0.0464 0.171% 4
0.0782952 0.0346 0. 1454 5
0.063174% 0.026 0.1238 6
9.0505878 0.0193 0.1048 7
0.943808 0.87 0.9708 1
0.505825 0.3333 ©.6031 2
g 0-258898 0.2544 0.3657 3
Trt 0. 168352 0.1157 0.2642 4
0.142224 0.0998 0.233 5
0. 120676 0.0676 0.2063 6
0.101797 0.0232 0.1818 7
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CHAPTER VII
COMPARISON TO OTHER APPROACHES
7.1 Introduction

The problem that we consider in this study is to make inferences
such as point estimation, interval estimations, and hypotheses tests
where the split plot model with unequal subunit variances is used. The
choice for such a model is based on the process that has been used in
data collection, the wa§ that the experiment was conducted, and the
assumptions that main unit variability is present and that subunits in
a main unit survi;e independently of other subunits. In other words
our method is based on the experimental procedure which indicates that
the variances of aijk are not the same for different intervals. The
method provides estimates for the variances and least squares estimates
for § which have the asymptotic properties discussed in Chapter V. It
also provides estimates and confidence limits for the survivor functions
for each treatment combination.

Another approach to this problem is to integrate out the random
component eij’ find the unconditional likelihood function, and then find
the maximum likelihood estimates. This approach was considered by Marton,
Woodbury and Stallard (1981) for the Poisson case. However, it is not
applicable to our problem and the reader is referred to section 4 of

Chapter III.
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Three different simplified approaches that were also considered to

solve the problem are listed-below
i. No main unit effect #
ii. Unweighted least squaré;dgplit plot.
iii. Unequal subplot error dé;énding on riék sets for different time
intervals. ' vt

A comparison of our approach with the above three approaches is
carried out. The comparison with the first approach is discussed in
section 7.2 where we compare the vdfiance of § for some cases of inter-

est. The comparison with the other two approaches is done using a gener-

ated example in section 7.3. s

7.2 Comparison with Inferepée that Ignores Main

Unit Variability

In this section we assume that split plot model with unequal sub-
unit variances is true. We also assume that the model with no main

v
unit variability is the fitted one. The true model is of the form

y = X8 + u, where Cov(u) =V . .-

and V is a block diagonal matrix of the form
s K 0. "

B 2 . o




Now if we let

where JK = gKik’ ié = (1 1
I 0]
2 x
N=go¢
€ .

and use (5.4) then V can be written as

V=W-+N.

The fitted model has the form

y = XB'

~ ~

+ u', where Cov(u') =W

and W is as given in (7.1).

B = (X'V'lx)'lx'v'

Therefore, the variance-covariance matrices of these estimates under

either the full or the fitted model are given by

Covv(g)
Covw(g)

COVV(E)

1

&vin™,

Now define

y and B = &) T

(X'W-lX)_l, and

(X'w'lx)'lx'w'lvw'lx(x'w'lx)'l.

81

(7.1)

To compare the variance-covariance matrices of the two estimates

for both models, the case of two treatments, two main units, and two
time intervals is considered below.

we assume that the over all average of log(-log) model is zero.

have

For convenience in calculations

Then we
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o]l 111 -1 -1 -1 -
“ 1-1 1-1 1 -1 1 -1°

3" These variances are affected by treatment and time only,
ijk
therefore, W can be written as

C 2
1 o]
Cl 0 Si-l 0
W= , where C, =
C2 i
o]
i 0 CZ_ 0 61.2
for i=1,2. And V is of the form
J2 0
J -
_ 2 _ 11 1
V=W+ O Jz , where J2 = Ll 1].
0 I ]
-1 .
Now, V can be written as
Rl 0
R
V_l = W—l - R, where R = L with
R
2
R
L O 2 |
~ -2 2 -1
9 (o5 ) (o os )
o jel je1l "j-2
Rj—l+02(0_2 +022 ) 2 2 -1 2 =2
S G ) (06 )
’ je1 %32 j*2
for j=1,2.

For the purpose of comparisons, we now consider the following cases.

Case 1: Assume that cg = 02 and oi = 02 Thus we have

ijk S §



ot - 12

= 8%
-1..-1 32
' =
X'v ) 50612’ and
3
(X'w'lx)'lx'I/J’lvw'lx(x'w»'lx)‘l = oé 8 5
0 %

Let us now use the notation A<B to denote that each element of the ma-
trix A is less than or equal to the corresponding element of the matrix

B. Therefore, we conclude the following relation

COVW(§) < Covv(g) f_CovV(§).

Case 2:
a) Assume all 02 = 02 and 02 > 02.
S, . § € §
ijk
Then
vi-loy-1 _ 1 2
-1_.-1 12 2
\] -—
(X'v "X) = 566(14-0€)12, and
12,12
“1.-1_, -1_ -1 1.-1 |88 4
X'W "X) X'W VW X(X'W "X) "= .
12 12
0 §06-F§0€
Therefore, we conclude the following relation
Covw(g) < COVV(§) f_CovV(§).
2 2 2 2 :
b) Now assume all 06 = 06 and 0<o <06' Then we conclude
ijk €
Covw(g) §_Covv(§) E_Covv(g).
Case 3: Assume all c§ are the same over trt but increase over time

ijk
and oi = max{cg } for all i, j, and k. For this case we are assuming
ijk
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that 06 = 0§ , O = G§ , and 0§ > cg Then we have
1.1 2.1 1.2 242 22 2.1
0’2 0'2
§ §
-1..-1 1 °2.1 °2.2
1 —_
XWX =g s
06 + 06
2:1 °2.2
(X'V_]'X)_l = l‘02 I,, and
278 2
242
(X'w'lx)-lx'w"lvw"lx(X'w"lx)'1 =
-202 + Oé cg - 0§
2:1 %242 2.2 %241
]_ -
&2 1det 4+ HTh .
2.2 21 2.2 206 - 20 o.+ o0
0 2.1 °2.1 2.2 ®2.2
02 0'2
I %2.1 %22

Therefore, we conclude the relation
Covw(g) j_Covv(§)’§_CovV(§).

Assume all 02

Case 4:
9 2 ijk
and o~ > max{o } for all i, j, and k. Then
€ ijk
02 02
S §
R e N N b N I R
4 2 2 2
06 + 08
21 72.2
2 2
9. .96
x'vin Tt 2L 222 2y; g
4" 2 2 e’ 72
66 + 06
2¢1 2.2
1

(X'W_lX)_lX'W_ vvflx(x'w'lx)'l =

are the same over trt but increase over time
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— 0_2 _02 —
12 12 %22 %91
O2 02 47e 47 o§ + og
178501 85,0 2.1 %2.2
i 2, 2 LT
s + s 02(02 _ O2 )2
el 22 0 € %2 %
7 2 2 2 .2
%, 9., (s * 95 )
_ 2.1 °2.2 %2.1 °2.2

Therefore, we conclude the following relation
Covw(g) §_Covv(§) §_Covv(§).

From the above four cases we conclude that if W is used when in
fact V is the true variance-covariance matrix then this will under esti-

mate the variances of the estimators.

7.3 A Generated Example for Comparison with In-
ference Using Unweighted Least Squares or

Inference Weighting by Risk Sets

In this section we use a generated example which has the properties
presented in Chapter I for the problem under study. These properties

are listed below.

1. Main unit variability has a symmetric distribution for the
discrete case.

2. Risk sets decrease over time.

3. There is a trend in the G§ in that these variances increase

ijk
over time.
Two treatments, two main units, and three time intervals are used. Let

eij have the following frequency distribution
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e,.: -1.5 -1 0 1 1.5

f(e,.): 1/9 2/9 3/9 2/9 1/9

Therefore, E(eij) = 0 and Var(eij) = 0.9444., Also let the parameters for

this experiment be known and are given by p = -1, o, = .5, Tl = .4, and

1
T, = .1. Also we let the number of subunits in each main unit be fixed

by nij = 100. For I =2, J =2, and K = 3 the design matrix has the

following form

11111111
1 1-1-1-1-1-1-1
0-1 1 0-1 1 0-1
1-1 0 1-1 0 1-1

Xl

I
I S
= o K B
|
N N
O R

With this generated example we would like to compare our model with
unweighted least squares split plot model and also with a split plot
model having unequal subplot errors depending on risk seﬁs for different
time intervals. Before proceeding with the calculations, we mention
the structure of the models to be compared. Our model, which is assumed

to be the true model, has the following form

y = XB + u, where Cov(u) =V

~

and V is as given by (7.1). The unweighted least squares split plot

model has the following form

y = XB" + u", where Cov(u") = I

~ ~ ~

and ¢ is the variance-covariance matrix and is of the form
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(Y]
.
o N

The split plot model with unequal subplot errors depending on risk sets

has the following form

y = X8" + u"', where Cov(u") =D

~

and D is the variance-covariance matrix and is of the form

- = - -1

-
JK 0 n1ll 0
J .
D= 02 K + 02 . .
€ . -1
. ijk
0 J.K
b - 0 n"l
- L IJK

Now, we proceed with the calculations involved to get the variance-
covariance matrices of B under either the true model or one of the two
fitted models. For each value of eij we calculate the corresponding

values of

log(-log qijk) =y + oy + Tt eij'

Therefore, values of qijk’ and (l-qijk)/qijk(log qijk)2 are also calcu-

) =

lated. We start with n, .= 100 then we use the equation E(n:.ij nij(k—l)

for k=1,2,3, to obtain values of n,., for each value of Eij'

ijk

2 can also be calculated.

913 (k-1)
Hence values of (1-—qijk)/nijkqijk(log qijk)

Now, wusing the frequency distribution of eij we get



9 5
% = i
ijk =1 J
2 2 3
0§= : 1 1 oF /12,
i=1 j=1 k=1 °ijk
2 5
o° = 2El[(l--qijk)/qijk
5
= z .
Dk W (nijk)lf(z)

Therefore, we have the>following
M .2500 .00289
vomlo-1 .00289 .24433
X'V XY T = - 01146 -. 00468
|-.00228 .00040
" .2778 0
vomlo-1 0 .2778
(X'z77X%) 0 0
.0 0
" 0.24592 -0.00070
iy~loy-1 _ [=0.00070  0.24242
X'D %) ~0.00658 =0.00140
-0.00196  0.00057

Then, a summary for comparison is given in Table IX.

results.

-.01146
-.00468

.01935
-.00124

0

0
.08317
-.04158

-0.00658
-0.00140

0.01301
-0.00125

.00228]
.00040
.00124
.02411

.04158
.08317]

0 7
0

88

2
s [(1—q..k)/nijkqijk(log qijk) ]gf(z),

2
(log qijk) ]Qf(z), and

, and

-0.00196
0.00057
-0.00125
0.01766

From Table IX it

seems that all methods are close for Var(&l). 2 does not get Var(T) well

which may cause problems with Var(é(t)).

Also, D looks like a possible

simplifying approach unless aijk,s are widely different.



TABLE IX

SUMMARY OF COMPARISONS RESULTS

[\

0.25000
0.24433
0.01835
0.02411
0.04098

0.27780

0.27780
0.08317
0.08317

0.08317

0.24582
0.24242
0.01301
0.01766

0.02816
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APPENDIX

A COMPUTER PROGRAM FOR ESTIMATING

MAIN UNIT VARIANCE

The following computer program can be used to estimate 02 as given
by 4.2 using SAS procedure MATRIX as follows. Values for treatments,

main units, time, transformed values of qijk’s’ and estimates of og ’s
’ ijk
using 4.1 were entered as TRT, REP, TIME, Y, and W, respectively.

RY=NROW(Y);

M=J(RY,1,1);

DTRT=DESIGN(TRT):

DTM=DESIGN(TIME);

DTRTTM=DTRT®|DTM;

DR=DESIGN(REP);

X=M| |DTRT| |DTM| |DTRTTM;

2=DR;

N=X|]2Z;

D=DIAG(W);

DI=INV(D);
NUM1=DI*N*GINV(N’/*DI*N)*N";
TRNUM{=TRACE (NUM1);
NUM2=DI*X*GINV(X’*DI*X)*X";
TRNUM2=TRACE (NUM2) ;
TRNUM=TRNUM1-TRNUM2 ;

DEN1=Z'*DI*Z;

TRDEN1=TRACE(DEN1);
DEN2=Z'*DI*X*GINV(X'*DI*X)*X'*DI*Z;
TRDEN2=TRACE(DEN2);
TRDEN=TRDEN1-TRDEN2;

RSSFUL=Y ' *DI*N*GINV (N’ *DI*N)*N’*DI*Y;
RSSRED=Y ' *DI*X*GINV (X' *DI*X)*X’'*DI*Y;
ESVARCOM=(RSSFUL-RSSRED-TRNUM) #/TRDEN:
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