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CHAPTER I 

INTRODUCTION 

In nonlinear unconstrained optimization, the necessary conditions 

for stationary points (~~. = 0) comprise systems of nonlinear equations. 
J 

When derivatives do not exist or are costly to compute, closed form solu-

tions may not be feasible, forcing analysts to devise iterative numerical 

algorithms. Every new journal contains suggested approaches--some new, 

some "warmed-over." Implementation is often left to the reader. 

One such algorithm is proposed by David M. Gay and Robert B. 

Schnabel (38). The essence of the algorithm is to make use of steps (in 

the trajectory of the solution vector) from prior iterations to help 

determine the next step. These prior steps, S., j = 0, l, ••• , i - l, 
J 

are used in the calculation of an approximation to the Hessian matrix, 

needed in the quasi-Newton determination of the next step, S .• 
J. 

Broyden (13) uses the prior steps. 1 in determining a new stepS .• 
J.- J. 

Gay and Schnabel propose forcing the linear independence of the S 's by 
j 

making Si orthogonal to the subspace Spanned by s 0 , s 1 , ... , Si-l' 

where s 0 = s 0 , the initial step, then using this Si to help determine a 

new stepS. 1 . This method is different from, but related to, Broyden's 
J.+ 

method. 

This dissertation implements the Gay-Schnabel method on the IBM 

370/158 computer and compares its performance with that of other pub-

lished algorithms, such as Broyden's method, Brown's method for a system 

l 
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of nonlinear equations, and the Davidon•Fletcher-Powell (DFP) method 

for minimization problems with analytic gradient vector. Criteria.used 

for comparison will be convergence rates, precision, number of function 

evaluations, user effort required, etc. Basic concepts and detailed 

descriptions of these algorithms will be presented in later chapters. 

Two variations of Gay and Schnabel's proposal are also discussed, 

implemented, and evaluated. 

The Source of the Problem 

We are concerned with the problem of "computing" a solution of the 

system of n nonlinear equations in n variables. Let the system be given 

as 

0, j = 1, 2, ... , n. (1.1) 

where each f. , j = 1, 2, ..• , n is differentiable. These may be written 
J 

more concisely as 

F(X) = 0 (1.2) 

where X is the column vector of independent variables and F the column 

vector of functions f .• The problem can be stated as: 
J 

* n * Find X E: R such that F (X ) = 0 

where F : Rn -+ Rn is differentiable. 

If the n nonlinear Equation (1.2) is obtained by setting the first 

n 
partial derivatives of some functional of n variables, cp : R -+ R, equal 

to zero, then solving these equations is equivalent to finding a station-

* ary point of cp(X), since a necessary condition for the point X to be a 

* local minimum of cp(X) is that F(X ) = 0, where F(X) is the gradient 
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vector of ¢(X) defined on Rn. The Jacobian of F(X) is in this case the 

Hessian matrix of <jl(X) and is symmetric, provided ¢(X) and its first 

partial derivatives are continuous. If ¢(X) is convex, then any station-

ary point of ¢(X) is a minimum and the Hessian matrix is either positive 

definite or semidefinite. Hence, any method used to solve a system of 

nonlinear equations can be applied to the minimization problem. 

On the other hand, there is a way of converting the problem of solv-

ing the system F(X) = 0 into a minimization problem. Let g be a func

tional defined on Rn such that the point X = 0 is the unique global 

minimum of g. For instance, we might choose g(X) II X II , with some norm 

in Rn, then define ¢(X)= g(F(X)), for Xe:Rn, i.e., ¢(X)= IIF(X)II, for 

n * n x e: R . Any solution X e: R of F (X) = 0 is a global minimum of ¢, and 

* T hence we may find X by minimizing ¢. In case of g(X) =X X, the func-

tional <P : Rn -+ R to be minimized has the form, 

n 
<fl(X) = I 

i=l 

2 n 
( f . (X) ) , . X e: R , 

l. 

and a global minimum of <fl(X) is called a least-squares solutions of the 

system F(X) = 0. 

For the reason mentioned above, the survey of literature in a later 

section includes both the algorithms for solving systems of nonlinear 

equations and those of minimization problems. 

If the system of Equation (1.1) has solutions, we will be concerned 

with how to approximate them. Many works in this area are the methods 

for approximating one solution of Equation (1.1); few papers describe 

methods for constructing sets containing solutions, that is, using any 

estimating method to define an interval or intervals in which the roots 
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of Equation (1.1) must lie and the methods for finding most or all solu-

tions of Equation (1.1). 

Mathematical Background 

Generally, because the direct methods for solving Equation (1.1) are 

not feasible., a class of iterative processes for solving Equation (1.1) 

or minimization problems in Rn has been considered frequently in recent 

years. One of its members is a quasi-Newton method which is a special 

case of the general update method or modification method (30). 

Intuitively, an iterative process Q is a rule starting at an initial 

n n 
point x0 in the domain D E: R to obtain an improved point x1 E: D E: R • Re-

peat the process and a sequence of ever-improving points {Xk} is gener

* ated that approaches a solution X of the given problem. Usually, the 

process is terminated when a point sufficiently close to the solution 

point is obtained. 

n Let <!>: R -+ R be a functional to be minimized such that F 

is the gradient vector of <j>(X); suppose F is differentiable. Expand 

cp (X) as a Taylor series in the neighborhood of a point x0 E: Rn 

cjl(X) 

+ Higher Order Terms 

where J(X 0) is the Jacobian of F(X) evaluated at x0 and is the Hessian 

matrix of <j>(X) at x0 . 

If X is sufficiently close to x0 such that the higher order terms 

can be ignored when compared with the first three terms, then we can 

approximate <j>(X) by the following form, 
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Since we want to minimize ¢(X), we can do so by differentiating the 

above form with respect to X and setting the result to zero. This im-

plies 

If J(X0) is nonsingular, we can solve X from the above form, 

It says that the stationary point X of ¢(X) can be taken from x 0 in the 

direction of the negative gradient modified by 
-1 

(J <xo) ) . This gives a 

basic iterative procedure for approximating a solution of Equation (1.1) 

or a minimum of ¢(X). 

The general iterative formula known as Newton's method can be formed 

by taking X = xk+l and x0 = Xk as follows: 

Xk+l = Xk- (J(Xk))-l F(Xk), k = 0, 1, 2, 3, ..•. (1. 3) 

It is essential to the convergence of this method that the inverse 

-1 
of the Hessian, (J(Xk)) , of ~(X) be positive definite. The sufficient 

condition is that the ~(X) is convex and has continuous second partial 

derivatives. 

The advantages of this algorithm are that if it works, then it 

works extremely well; convergence is rapid and in general is Q-quadratic; 

if a sufficiently good initial estimate of the solution can be made, it 

probably is the best method, and, if F(X) is linear with a nonsingular 

Jacobian matrix (or ~(X) is quadratic with nonsingular Hessian matrix), 

* then x1 = X . 

Newton's method suffers from two serious disadvantages from the 

point of view of practical calculation. The first of these is that it 
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often fails to converge to a solution if one starts from a poor initial 

point. To overcome this problem, the implementations are often of the 

form 

(1. 4) 

where Ak is a scalar multiplier. This parameter is determined by a 

"linear search" method (15) (16), such that Xk+l is a better approxirna-

tion to the solution of the problem than Xk, i.e., 

for some norm. It has been observed, however, that this can inhibit 

convergence if continued when the iterates are close to the solution 

(Broyden, 1970b). 

The second disadv~ntage of Newton's method is the difficulty of 

computing the Jacobian matrix if F(X) is a complicated function. In 

the majority of practical problems it is impossible to obtain the par-

tial derivatives analytically, and even if it were possible it would be 

an extremely laborious and time-consuming operation. In order to corn-

pute the Jacobian matrix numerically (finite differences method) the 

vector function F (X) must be evaluated for at least n + 1 sets of inde-

pendent variables. 

To overcome this difficulty, many authors use a matrix B(Xk) to 

approximate the Jacobian matrix J(Xk) in such a way that it is modified 

at each iteration so that is possesses, to some extent, the properties 

of the Jacobian matrix J(Xk). Some other authors use a matrix H(Xk) to 

-1 
approximate the inverse of the Jacobian (J(Xk)) if this Jacobian is 

nonsingular. It is recognized that this matrix H(Xk) is to approximate 
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the inverse of the Hessian of the functional ~(X), when applied to a 

minimization problem. 

From now on, we use Hk, Bk, Jk, Fk to denote H(Xk), B(Xk), J(Xk), 

and F(Xk), respectively. Define 

(1.5) 

(1.6) 

Consider F(X) as a Taylor series expansion in the neighborhood of 

n 
XkE R such that the higher terms can be ignored. Then 

F(X) (1.7) 

Let X= Xk+l' the point for the next iteration, then Equation (1.7) will 

be in the following form: 

or 

(1.8) 

Since Bk is used to approximate Jk, it is desirable that Bk satisfies 

Yk = BkSk. By Equation (1.6), we know that Yk depends on Fk+l' which 

depends on Xk+l' and this, by Equation (1.4), in turn depends on Bk. 

So this equation Yk = BkSk cannot be used to determine Bk, but we can 

expect, in the next iteration, that Bk+l' a modification of Bk by a 

correction matrix ~Bk of rank m (1 < m < 2), satisfies the equation 

(1.9) 

We conclude the above discussion and make the following definition 

of the quasi-Newton method to solve the system of equations defined as 
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Equation (1.2). Equation (1.9) is usually called the quasi-Newton 

equation. 

Definition 1.1 (Direct update method of rank m): Given F : Rn + Rn 

is differentiable. A quasi-Newton method when applied to solve F(X) = 0 

is an iterative process which generates a sequence {Xk}, k = 0, 1, 2, .•• 

of approximations to the zero of F. 
n 

At each iteration, given Xk £ R and 

nxn 
Bk £ R , the next approximation is defined by 

where Ak is chosen to reduce F(Xk), and 

m > 1 

is chosen to satisfy the quasi-Newton Equation (1.9). 

Instead of storing and updating Bk, the approximation to the 

Jacobian, at each iteration, one would store and update Hk = B~1 if 

this matrix exists for all K. Applying the Sherman-Morrison-Woodbury 

formula, we derive ~~ = ~+l - ~ from Bk+l = Bk + ~Bk, where ~~ is 

still of rank m. Therefore, another version of Definition 1.1 can be 

stated as follows: 

Definition 1. 2 (Inverse update method of rank m): Given F : Rn + Rn 

is differentiable. A quasi-Newton method when applied to solve F(X) = 0 

is an iterative process which generates a sequence {Xk}, k = 0, 1, 2,. 

n 
of approximations to the zero of F. At each iteration, given Xk£ R and 

nxn 
Bk £ R , the next approximation is defined by 

where Ak is chosen to reduce I IF(Xk) I I 



and 

H + t;H 
k k 

is chosen to satisfy 

s 
k 

9 

m > l 

In practice, the rank m is at most 2. The matrix ~ is an approxi

mation to J~1 , the inverse of the Jacobian. 

In the following chapters we will state several different algorithms 

and compare their performance. One of the important criteria to be used 

* is the asymptotic rate of convergence of the process at X • Here we 

state several fundamental definitions about this concept. 

Definition 1.3: n * n A sequence {Xk} R converges to X t: R if and only 

if, for each t: > 0, there exists an integer, N0 , such that for all 

* * k > N0 , I lxk - X I I < t: with respect to some norm. X is called the 

limit of this sequence Xk. 

Definition 1.4: 
n 

Let {Xk} t: R be any convergent sequence with limit 

* X . Then the quantities 

limsup 
k -+ 00 

* llxk+l - x II 
llxk - x* liP 

' * , if Xk '\X , for all but 
finitely many k, 

* if Xk = X , for all but 
finitely many k, 

otherwise 

defined for all p t: [1, oo) , are the quotient convergence factors, or 

Q-factors of {Xk} with respect to some norm I I ·I I in Rn. Since from now 
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on, I I .1 I will denote the L2 vector norm defined by 

llvll = 

n 

r 
i=l 

V~)l/2 
J. 

* Definition 1. 5: Let C (&1, X ) denote the set of all sequences with 

* limit X generated by an iterative process &1. Then 

* Q W, X ) 
p 

1 < p < oo, 

* are the Q-factors of S1 at X with respect to the norm in which the 

Q {Xk} are computed. p . 

The following theorem, proved by Ortega and Rheinholt (47), shows 

that Q is an isotone function of p which takes on only the values 0 and 
p 

oo except at possibly one point. 

* Theorem 1.1: Let Q (&1, X), P £ [1, ·oo), denote the Q-factors of an 
p 

* n iterative process at X in some fixed norm on R • Then exactly one of 

the following conditions holds: 

* (a) Q (Q 
p ' 

X ) = 0, v p £ [1' 00) i 

* (b) Q w, p 
X ) = oo, v p £ [1' 00) i 

* (c) there exists a p 0 £ [1, oo) such that Qp (n, X ) = 0, V 

* p£ [1, p0), and QPW, X)= oo, Vp£ (p0 , oo). 

Definition 1.6: Let &&1 and &&2 denote two iterative processes with 

* * * the same limit point X , and let Qp(s&1 , X ) and QP(s&2 , X ) be the corre-

n 
spending Q-factors computed in the same norm on' R • Then n1 is Q-faster 

* than n2 at X . * * if there is a p£ [1, 00) such that: Q W1 , X) <Q (&&2 , X). 
• p p 
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n 
The above concept of "Q-faster" depends on the norm in R , since 

the magnitude of Qp{Xk} for an arbitrary convergent sequence {Xk} such 

that 0 < Qp{Xk} < + oo is dependent on the norm. Now we state a property 

which is independent of the norm. 

* Definition 1.7: Let Q (~,X) be the Q-factors of the iterative 
p 

process ~ at x* in some norm on Rn. Then 

* if Q (~,X )=O,VpE [1, oo) 
p 

* is the Q-order of ~ at X • 

* [1, oo) IQ (~ 1 X ) 
p 

+ oo}, otherwise 

Ortega and Rheinbolt proved the following theorem (47). 

* Theorem 1.2: Let Q (~, X ) be the Q-factors of the iterative pro-
p 

* * * cess ~ at X . Then the three relations Q (~, X ) = 0, 0 < Q (~, X ) < 
p p 

+ oo are independent of the norm on Rn. * Hence, the Q-order of ~ at X is 

also independent of the norm. 

From this theorem and Definition 1.6 we can list the following 

consequences. 

* Corollary 1: Let ~l and ~2 be iterative processes with limit X . 

If 

* then ~l is Q-faster than ~2 at X in every norm. 

* Corollary 2: Let~ be an iterative process with limit X . If 

* * * Qp(~, X) < + oo for some pE: [1, oo), then OQ(~, X) : p. u Q m, x > > o 
q 
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* * for some qc: [1, 00) , then OQW, X ) < q. Hence, if 0 < Q (Q, X ) < + 00 

for 

p 

* some PE [1, 00) , then OQ(Q, X ) p. 

When we compare two iterative processes n1 and n2 with the same 

* limit X , we can do the following two stages. First, we compare the Q-

* ' * orders OQ(Q1 , X ) and OQ(Q2 , X ); if they are different, the process with 

the larger Q-order is Q-faster than the other one in every norm. If 

* * OQ(Q1 , X ) OQ(Q2 , X ) = p, then we compare the two Q-factors. If, say, 

* * * * 
QP w1 , x ' = 0 < Qp(Q2 , X), or, if Qp(Q1 , X) < QP(Q2 , X)=+ oo, then 

* * Ql is Q-faster than Q2 in every norm. If 0 < Qp(Q1 , X ) < Qp(Q2 , X) < 

+ oo in some norm, then Ql is Q-faster than n2 in that norm, but there may 

exist other norms in which the relation is reversed. 

* Definition 1.8: Let Q be an iterative process with limit X • 

* (i) If Q1 (Q, X ) = 0, then the process is Q-superlinearly 

* convergent at X . 

* (ii) If 0 < Q1 W, X )< 1 in some norm, the convergence is 

* (iii) If Q2 (&"2, X ) 

* 

* called Q-linear at X . 

0, then the process is Q-superquadratically 

* convergent at X . 

(iv) If 0 < Q2 (Q, X ) < 1 in some norm, the convergent is called 

* Q-quadratic at X . 

Review of Literature 

Two basic quasi-Newton methods have been seriously proposed to solve 

general systems of nonlinear simultaneous equations. The secant method 

was proposed by J. G. P. Barnes (3) in 1965. The updating formula for ~ 

in Definition 1.2 is 
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T 

~ 
(Sk - ~Yk)qk 

T 
qk yk 

where qk is given by 

T 
0, k-n+l< j < k - l qk Y. 

J 

in solving the system of Equation (1.1). 

Barnes (3) has proved that this method is equivalent to the general-

ized secant method described by Bittner (4) and Wolfe (58). This alga-

rithm also possesses the property of linear termination (18); that is, 

it will solve a set of n linear equations in at most n + l steps. Com-

puter experiments have shown that for suitable problems the method is 

considerably superior to the Newton-Raphson method (3). 

In practice, for all but the most trivial problems, the n consecu-

tive Y's in the secant method will become linearly dependent. This 

makes the secant method notoriously unstable. 

C. G. Broyden (13) proposed. another quasi-Newton method to solve 

Equation (1.1) in 1965. This method, unlike the secant method, possesses 

no termination property and thus can at most give an approximate solu-

tion to a linear system. The rate of convergence is Q-superlinear (19). 

If, on the other hand, Bk approximates the Jacobian Jk sufficiently well, 

the method is numerically stable. The detailed algorithm of Broyden's 

method and some other properties will be presented in the next chapter. 

In 1968, C. G. Broyden (15) combined a particular form of Broyden's 

method (1965) with a particular form of Davidenko's method (22) to 

develop another method for the solution of Equation (1.1). Essentially, 

an auxiliary function g(X, 8), where 8 is some scalar parameter, is con-

structed such that 
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g(X, 0) F(X) 

and the equation 

g(X, 1) 0 

has a known solution. If X is a solution of 

g (X, e > = o 

then X is a function of 6 and by reducing 6 incrementally from 1 to 0 a 

series of intermediate problems is constructed. This method uses a 

quasi-Newton method to solve the intermediate problems and suggests an 

improvement to Broyden's method made possible by the knowledge that a 

good initial estimate of the solution is available. Since X is not a 

continuous function of 6, for some value of 6 the Jacobian ofF of some 

problems may become singular. One such example is the polynomial equa-

tion due to Freudenstein and Roth (1963) with 6 between 0.418 and 0.368. 

Another algorithm was proposed by Brown (5) in 1966. This method 

is a variation of Newton's method incorporating Gaussian elimination in 

such a way that the most recent information is always used at each step 

of the algorithm. Basically the technique consists in expanding the 

first equation in a Taylor series about the starting guess, retaining 

only linear terms, equating to zero and solving for one variable, say 

Xk, as a linear combination of the reaming n- 1 variables. In the 

second equation, Xk is eliminated by replacing it with its linear repre

sentation found above, and again the same process is performed. One con-

tinues in this fashion, eliminating one variable per equation, until for 

h th . 1 f . h . . k t e n equat~on, we are e t w~t one equat~on ~n one un nown. A single 

Newton Step is now performed, followed by back-substitution in the tri-

angularized linear system generated for the X. 's. This method is roughly 
~ 
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2 
quadratically convergent and requires only (n + 3n)/2 function evalua-

2 
tions per iterative step as compared with n + n evaluations for Newton's 

method. Details of the algorithm will be presented in Chapter III. 

In 1975, w. C. Davidon (25) provided a variable metric algorithm 

for minimization calculations. Numerical experiments with Davidon's 

algorithm indicate that it may be the best numerical method for calculat-

ing the least value of a differentiable function of several variables. 

M. J. D. Powell (52) gave a new and elementary proof of the quadratic 

termination property without line search in 1976. Powell's proof does 

not require the frequent use of projection operations, i.e., "updating 

H with projections of the change in the gradient and the change in X," 

which is the part of the new algorithm that achieves quadratic termina~ 

tion with line searches. 

In 1977, D. M. Gay and R. B. Schnabel (38) applied this "projection" 

concept to modify Broyden's algorithm to solve systems of nonlinear equa-

tions. The convergence rate is Q-superlinear. This algorithm will be 

one of the major parts to be discussed in Chapter II. The performance 

compared with some other algorithms will be presented in Chapter IV. 

Davidon's original variable metric method (23) was proposed in 

1959. This is the first quasi-Newton method for minimizing functions. 

With an initial point X and a positive definite trial matrix H, Davidon 

* defined a new point X =X- AH~' (X), where~· (X) is the gradient of 

~(X) to be minimized, the scalar A > 0 is chosen to minimize~ in the 

direction- H~' (X). After making the change in X, the trial matrix H 

is improved by the relation between changes in X and changes in the 

gradient. Hence a sequence of points is generated to approach the 

minimum by repeating the iterative process. 
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The searching direction of Davidon's method is actually a downhill 

direction, i.e., the direction of steepest descent from X modified by 

the positive definite matrix H. The method of steepest descent for un-

constrained minimization can be traced back to the work of the well-

known French mathematician, A. Cauchy (20), in 1847. Characteristically 

the steepest descent path consists of a long first step followed by a 

sequence of short zig-zag steps. Davidon used some empirical devices to 

update the matrix H at each iteration in an effort to make the direction 

of steepest descent toward a minimum. 

While Davidon's method was not widely publicized, R. Fletcher and 

M. J. D. Powell (34) published a powerful method with rapid convergence 

which is a simplified version of Davidon's method. This method is known 

as the Davidon-Fletcher-Power (DFP) method. 

As in Davidon's method, DFP uses the same searching method to 

* generate the next point X from the current point X, but the positive 

definite matrix H is updated by adding a symmetric correction matrix of 

rank two, defined in terms of H, the change in X and the change in the 

gradient. Numerical examples have shown that this method is generally 

successful in practice. 

In 1967, C. G. Broyden (14) developed a family of quasi-Newton 

methods for minimization problems. Broyden updated the inverse Hessian 

matrix by a correction matrix such that this new approximation to the 

inverse Hessian satisfies the quasi-Newton equation. Since the correc-

tion matrix cannot be uniquely determined, families of methods can be 

obtained. 

A similar development was given by D. F. Shanno (55) in 1970. At 

the same time, D. Goldfarb (39) used a variational approach to combine 
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two correction matrices, which belong to a family derived by J.Greenstadt 

(40), to form a family of update formula. These families are equivalent 

to Broyden's family (1967) and usually regarded as the general case of 

the DFP method. R. Fletcher (33) published another family of correction 

matrices in the same year. This algorithm was developed by the combina-

tion of the DFP correction matrix and the one from its inverse update 

form. 

The convergence property of the members of Broyden's family has 

been studied by M. J.D. Powell (1972) and L. C. W. Dixon (32). 

The organization of this study will be as follows: Broyden's method 

and the modification of Broyden's method, Gay-Schnabel's Algorithm, will 

be presented in Chapter II. Chapter III will discuss 

properties of Brown's method and the DFP method whose 

the development, 

performance wiil 
I 

be 

compared with that of Gay-Schnabel's method. The result of this compari-

son with selected problems will be presented in Chapter IV. The conclu-

sions considered in this study will be summarized in Chapter V. 

Henceforth, I I .1 IF will denote the Frobenius matrix norm; 

n n 

I I 
i=l j=l 

a~.) 1/2 
l.J 

for 
nxn 

A = (a .. ) e: R • 
l.J nxn 



CHAPTER II 

GAY-SCHNABEL ALGORITHM--BROYDEN'S METHOD 

WITH PROJECTED UPDATES 

A new ~lgorithm to solve a system of n nonlinear equations in n un-

knowns was proposed by Gay and Schnabel (38) in 1977. This algorithm is 

a modification of the class of Broyden's method (13) which is mainly to 

approximate the Jacobian of Equation (1.1) to determine a searching 

direction at each iteration and then to generate a new point to form a 

sequence {~}, k = 0, 1, 2, * ... , of approximations to a solution X of 

Equation (1.1). Actually, this Gay-Schnabel algorithm belongs to a class 

of quasi-Newton methods and has close relation to Broyden's method. We 

discuss Broyden's method first. 

Broyden 

The first quasi-Newton method was introduced by W. C. Davidon (23) 

in 1959 and simplified and published by R. Fletcher and M. J. D. Powell 

(34) in 1963, but Broyden (13) was the first in this area to deal with 

the solution of general sets of nonlinear Equation (1.1). The basic 

concepts of the quasi-Newton method, discussed in Chapter I, can also 

be applied to Broyden's method. 

The Broyden class of single rank methods is defined according to 

the following algorithm. 

. n nxn F .. Rn ~ n Algon.thm 2.1 (Broyden, 1965): Let x0 e: R , B0 e: R , ~ R , 

e: > 0 be given. 

18 



For k = 0 , 1 , 2 , • • • , 

Choose nonzero Sk 

If II F (Xk+l) II < E: then stop. 

. n 
Choose dk E: R - Sk, 

where Sk is the orthogonal complement of sk. 

19 

(2 .1) 

(2. 2) 

(2. 3) 

Clearly, Equation (2.3) satisfies Equation (1.9) and hence Alga-

rithm 2.1 is a direct update method of rank l. The Ak' k = 0, 1, •.. , 

is usually chosen to reduce I IF(Xk) I I (15) or is set to unity (16) and 

I 1. I I denotes the L2 norm. 

Broyden singled out two specific choices of dk. One method is 

dk = sk, a rather obvious choice in view of the requirement that d~ Sk 

= 0. This is known as Broyden's first method with direct update (15). 

For computing purposes, it is preferable to store ~' the inverse 

of Bk' in the computer and it is possible, using Householder's modifica-

tion formula, to compute ~+l with very little labor from Hk. 

Householder's formula states that if A is a nonsingular n x n matrix and 

X and Y are two n x 1 vectors such that A + XYT is nonsingular, then 

T -1 
(A + XY ) 

-1 
A 

-1 T -1 
A XY A 

T -1 
1 + Y A X 

(2. 4) 

Replacing dk by Sk in Equation (2.3) and applying Equation (2.4) gives 
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~+1 (2. 5) 

This is usually called Broyden's first method with inverse update (15). 

The second choice of Broyden's class is made by setting ~Sk Yk 

in Equation (2.5). This gives 

(2. 6) 

If we replace Equation (2.3) by Equation (2.6), then Algorithm 2.1 

is in another version, which is called Broyden's second method with in-

verse update (15). 

According to Broyden's experiments (13), Broyden's first method is 

superior to Broyden's second method, if a reasonably good initial esti-

mate of the solution is available. 

* Assume A= J(X ), the Jacobian matrix of F(X) evaluated at the root 

* X , is nonsingular; define the matrix error 

E = B - A 
k k 

(2. 7) 

where Bk is the current approximation to A. If we consider applying 

this algorithm (e.g., first method with direct update) to a system of 

linear equations F(X) =AX- b = 0, where A, the Jacobian ofF, is a 

constant n x n matrix and b is a n vector, then we can recognize that the 

error matrix Ek decreases monotonically with respect to the spectral 

norm. It is trivial to see, since by Equations (2.1) and (2.2) 

that if Bk+l is obtained from Bk using Equation (2. 3) taking dk = Sk, then 
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E (I -
k 

(2. 8) 

But the matrix 

(I -

is symmetric and has n - 1 eigenvalues equal to unity and one equal to 

• 
zero. Its spectral norm is thus unity since the norm of the product of 

two matrices is less than or equal to the product of their norms. In 

this sense Bk+l is not a worse approximation to A than Bk. 

Convergence 

A significant property of Newton's method, 

k 0,1,2, ... (2. 9) 

is the rapid convergence if one starts from a good initial point x0 • 

This fact is based on the following theorem proved by Dennis (29). 

Theorem 2.1: 
n n 

If F : R -+ R is continuously differentiable in a 

* n * neighborhood of some X t: R for which F (X ) * 0 and J (X ) , the Jacobian 

* of F at X , is nonsingular, then there exists a positive constant t: such 

* that if I lx0 - X I I < t: then the sequence {Xk} defined by Equation (2.9) 

* exists and converges to X . Moreover, if there is some M > 0 for which 

limit 
k-+oo 

* * 2 llx -X ll!llx -X II <oo k+l k 

i.e., the sequence {Xk} converges Q-quadratically. 
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Q-quadratic convergence is quite fast; it implies roughly a doub-

ling of the number of significant digits in the approximate solution at 

each iteration. One can go from an approximation accurate to just 1 

digit to an approximation accurate to 16 digits in only four applications 

of the iterative process. 

As one of the practical problems of using Newton's method is its 

frequent failure to converge from a poor initial estimate of the solu-

tion, people usually implement Newton's method in the form of Equation 

(1.4) by introducing a scalar parameter Ak to enlarge the domain of con-

vergence. Since Broyden's method uses Equation (1.4) as a major form to 

approximate the solution of F(X) = 0, except that the Jacobian Jk will 

be approximated by an appropriate form updated at each iteration as in 

Algorithm 2.1, we discuss several suggestions for the choice of Ak. 

Broyden (13) first suggested choosing Ak by minimizing the norm of 

Fk+l" This choice of Ak gives the greatest immediate reduction of the 

norm and hence the greatest improvement to the approximate solution. 
' 

' 

Making this choice, one needs to evaluate the vector function F a number 

of times. This means an increase in the amount of computation required 

compared with an alternative strategy of choosing a value Ak which merely 

reduces the norm. Although norm reduction doe~ not give as good an imme-

diate improvement to the solution as norm minimization, the result of 

Broyden's tests (13) really means that less work is involved and that 

norm reduction is a better strategy than norm minimization. 

Unfortunately, the strategy to obtain a monotonically decreasing 

sequence of norms of F may seriously inhibit convergence to the solution 

(16), and there is no obvious way of detecting the transition from the 

one state to the other. Experimental evidence reported in Reference (15) 
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shows that this does indeed occur when using Broyden's algorithm. 

Broyden found that the choice of Ak to be unity was far superior provided 

that good initial approximations both to the solution and to the Jacobian 

could be found (16). Also at least two other algorithms, proposed by 

Barnes (24) and Davidon (31), suggested choosing Ak to be unity. Dennis 

(27) has shown that Brown's algorithm is locally convergent for Ak = 1. 

h * f n n h" h · · 1 T eorem 2. 2: Let X be a zero o F : R "* R w ~c ~s cont~nuous y 

differentiable. Let the first partial derivatives satisfy a Lipschitz 

* * condition of order 1 in some open set containing X and J(X ), the 

* Jacobian of F at X , is nonsingular. Under these hypotheses, there is 

~ 0 h h "f n nxn . f . an E: > 0 and a u > sue t at ~ x0 E: R and a0 E: R sat1.s y~ng 

* I lx0 - X I I < E: and I la0 - J(X0) I IF < cS, then the sequence {Xk} defined 

* by Algorithm 2.1 with Ak - 1 for all k converges to X from x0 with 

* * II Xk+ 1 - X II < a. II ~ - X II for some a. > 1 and every k. 

It would seem reasonable to suggest the strategy of choosing the 

step-size parameter Ak by norm reduction until one feels he has a good 

approximate root and then switch to Ak ~ 1. 

The rate of convergence revealed by this theorem was only Q-linear. 

In practice the iteration of Algorithm 2.1 seemed much better. The rate 

of convergence of Broyden's method is Q-superlinear. This fact has been 

proved by Broyden, Dennis and More (19). 

Theorem 2.3: 
n n 

Let F : R "* R be continuously differentiable in an 

* * open convex set D and X E: D be a root of F (X) = 0. Assume that j (X ) , 

* the Jacobian of F at X , is nonsingular and that for some M > 0 and 

r > 0, J(X) satisfies a Lipschitz condition, 
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* I * r II J (X) - J (X ) II < M I X - X II 
F 

* of order r in a neighborhood of X • Under these conditions there exists 

* * an £1 > 0 and an £2 > 0 such that if I lx0 - X I I < £1 and I IB0 - J(X ) I IF 

< £2 , then the sequence {Xk} generated by Algorithm 2.1 exists and con

* verges Q-superlinearly to X • 

The class of Broyden's method converges Q-superlinearly but does not 

have the consistency property; i.e., let {Xk}, {Bk} be sequences as de-

* * fined by Algorithm 2.1 and X be a zero of F, if {Xk} converges to X 

* * then {Bk} converges to J(X ), the Jacobian ofF at X. 

This consistency condition has been a standard technique for proving 

that a method is Q-superlinearly convergent. It is known that this con-

sistency condition is sufficient btit not necessary (30). According to 

Powell's suggestion, Dennis and More (30) outlined a way to construct a 

counter example to support the "sufficient but not necessary" statement. 

n n · 
Define F: R +R such that f 2 , f 3 , .•. , fn are independent of ~l 

and f 1 (X) = ~ 1 • Let x0 have a zero in its first coordinate and B0 have 

zeros in its first row and first column except for the (1, 1) element. 

If {Xk} and {Bk} are generated by Algorithm 2.1, then the first row and 

first column of Bk remains unchanged while the rest of Bk is the matrix 

generated by the Broyden method when applied ~o f 2 , . . . , f as a func
n 

tion of the n- 1 variables (~ 2 , ., ~ ). In particular, the sequence 
n 

{Bk} does not converge to J (X) for any X£ Rn. A numerical example is 

shown below. 

Example 2.1: Let X 

Thus, 

T 
(0, 0) . 



J (X) {: :j 
consider Algorithm 2.1, 

T 
(0, £) , 

with sk 

. l J (X ) = 0 :j 
-1 

-Bk Fk, starting from 

Bo = [
1 

+ e: 
0 J 

0 2 + E 

Apply Theorem 2.3 to this problem. Clearly it satisfies the condition 

25 

llx- x*ll < o =>IIJ(X)- J(X*)I]F; Mllx- x*llr with M=r=l 

* for arbitrary o > 0 since I IJ(X) - J(X ) I IF= 0. Furthermore, we choose 

E 1 > £ and E 2 > 12 £ , then 

and 

* and hence the sequence {Xk} generated by Algorithm 2.1 converges to X 

Q-superlinearly. Actually, the intermediate steps are follows: 

Iteration 1: 

-2 E T 
(O' 2 + e:) ' xl 

Iteration 2: 

Clearly, x2 

2 T 
E 

(O,- 2+e:) x2 

* * X but B2 ~ J(X ). 

T = [1 +0 E 02J (0, 0) , B2 
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Gay-Schnabel 

Broyden's update form of single-rank methods given by Equation (2.3) 

is 

n T L 
for any vector dk s R such that dk Sk , 0. 

Gay and Schnabel propose to modify Broyden's update form to build a 

better approximation Bk+l to the Jacobian matrix from a given matrix Bk 

at each iteration. 

This new approximation Bk+l not only satisfies the quasi-Newton 

equation Bk+l Sk = Yk, where Sk and Yk are defined as Equations (1.5) 

and (1.6), respectively, but also retains some good information learned 

through previous iterations, such as 

Y. 
J 

and = Y. 
J 

for all j < k. (2.10) 

The reason that Equation (2.10) is good can be seen by considering 

a linear problem F(X) =AX+ b where A is nonsingular. After the first 

iteration, while applying Broyden's method, we will have B1s 0 = Y0 

(=AS for a linear problem); after the next iteration we will have 
0 

B2s 1 = Y1 (= AS1), but not in general B2s 0 Y0 , since Bi may never 

equal A, even though F' (X) = A for all X.. If one can retain those 
J. 

properties of Equation (2.2), while updating the new matrix Bk+l' it 

will be consistent, to some extent at least, with the properties that 

A (= F' (X)) possessed. 

Gay and Schnabel accomplished this by a proper choice of ~ in 

Equation (2.3) denoted by sk. The updated Bk+l will then minimize the 
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Frobenius norm of Bk+l - Bk among all Bk+l satisfying Bk+l = Yk and 

(Bk+l - Bk)Sj = 0 for j < k. The solution is based on the following 

theorem. Its proof is similar to Dennis and More's (31) proof that 

Broyden's method is the least-change update among all Bk+l satisfying 

Theorem 2.4: 
nxn . n . 

Let Be=.: R and S, Y be non-zero vectors ~n R w~ th 

BS :!,; Y. 
n 

Let z be an m-dimensional subspace of R , m < n. Then for 

I 1. I IF' the Frobenius norm, a solution to 

min {lli3- BIIF:BS = Y, (B- B) z 0 for all z e=.: z} 

is 

(BS - Y) S 
B = B -

ss 

where S is the orthogonal projection of S onto the orthogonal complement 

of Z, i.e., 

m 
s s - L 

i=l 

with • • • I z 
m 

T s z. 
~ --z 

T i z.z. 
·~ l 

an orthogonal basis for Z. 

unique in the Frobenius norm. 

The solution is 

Based on the above theorem, Gay and Schnabel choose the vector Sk 

to be the orthogonal projection of Sk onto the orthogonal complement of 

the subspace spanned by {s0 , s1 , ... , sk_1 }, defined by 

k-1 

L 
j=O 

T 
sksj 

T T Sj 
s.s. 

J J 

if k = 0 

(2.11) 
if k > 1 
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As a matter of fact, the projection sk of Sk orthogonal to the sub-

space spanned by s 0 , si, •.• , sk-l may be the zero vector for some k < n, 

the dimension of the space. Gay and Schnabel use a "restart criterion" 

by setting sk = sk if skis too small compared with sk, i.e., when skis 

sufficiently close to lying entirely within the subspace spanned by 

{s0 , s 1 , ... , sk_1 }. This must happen at least every n steps. 

Algorithm 2.2 (Gay-Schnabel, 1977): 
n nxn n 

Let x0 E R , BO E R , F : R + 

n 
R , E > 0, T > 1 be given. 

Set t_1 0. 

For K = 0, 1, 2 , • . ·. . 

n 
Choose non-zero Sk E R (likely Sk 

IF I IF(Xk+l) I I < E then stop. 

k-1 
Q' I 

j=J/,k-1 

IF II ski I > T II sk - Qk sk II 

THEN (Sk = sk and 5/, = k) 
k 

ELSE (Sk = sk - Qksk and Jl,k 

AT 

Bk+l B -
(BkSk - Yk)Sk 

= AT k 
sksk 

(2 .12) 

Figure 1 shows an example of the relation between the first three 
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steps {s0 , s 1 , s 2 } and {s0 , s 1 , s 2 } generated by Algorithm 2.2 in a 

three-dimensional space. 

Figure l. Relatio~ BeAtwe~n {s0 , s 1 , s 2 } 
and {s0 , s 1 , s 2} in a Three
Dimensional Space 

Several basic properties of these Sk's and Sk's have been developed 

from this algorithm. 

Each Sk is defined to be the orthogonal projection of Sk onto the 

orthogonal complement of the subspace spanned by {SQ. , .•• , sk_1 } since 
1 

the last restart. So sk is orthogonal to sj for j = £.1 , ,k-1. 

Sk, being a linear combination of {SR. ' . . . ' sk-1' sk} since the 
1 

last restart, lies entirely in the subspace spanned by {SR. ' . . . , sk-1' 
1 

sk} for k = 0, 1, 2,. • • . sk is also orthogonal to sk-l, and consequent

ly sk is orthogonal to sj for each j = R- 1 , .. 7, k - l. 
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sk is the orthogonal projection of sk onto the orthogonal comple

ment of the subspace spanned by {St , ..• , sk_1} since the last restart. 
A l 

.The magnitude of sk equals I I ski lcos8k, where ek is the angle between sk 

and sk. Thus, by vector analysis, ~~Sk = I l~kl 1·1 lskl lcos8k = I l~kl I = 

A k 
If we define the sequence {Yj}O to be 

A {y' y. = J 
J Y. - B.Q.S. 

J J J J 

if s. = s. 
J J 

otherwise 

for j = 0, 1, 2, ... , k ,. an addi tiona! property, Bk+l S j Y. for 
J 

(2.13) 

j = tk, .,k since the last restart, can be proved by Equation (2.12) 

and previous properties, i.e., 

(BkSk - y ) 
ATA 

8k+l8k BkSk -
k sksk 

AT 
sksk 

(BkSk 
ATA 

BkSk -
- Yk)sksk 

AT 
sksk 

= BkSk + yk - BkSk 

If sk = sk, then Yk = Yk and the above form gives Bk+lsk = Yk with a 

restart .. Otherwise, sk 

(2 .14) 

for j = tk, ... , k - l and Equation (2.12) we have 

Bk S j for j = tk, . . . , k - l. (2.15) 

Applying Equations (2.14) and (2.15) recursively gives 
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Y. 
J 

for j = tk, • . ., k - 1. 

We summarize the above properties in the following theorem. The 

analytical proof was given by Gay and Schnabel. 

. n nxn n n 
Theorem 2.5: G1.ven XOE: R, BOE: R , F: R -+R, E: > 0, T > 1, let 

k k+l 
the sequences {s.} 0 , {B.} be generated by Algorithm 2.2. Define 

l. l. 0 
,.... k A " 

{s.} as in Algorithm 2.2; let Y. = Y. if s. = s. andY.= Y.- B.Q.S.; 
l. 0 J J J J J J J J J 

otherwise, j = 0, l, •.• , k. Then at each iteration k, s 1 , ... , Sk are 
k 

linearly independent, Bk+l is well-defined, and 

~T~ 

0 j sksj = 

~T 

sksj 0 j 

"T" ~T~ 

sksk sksk 

Bk+lsj Y. j = 
J 

~ 

II sk II < T II sk II 

k - t < n 
k 

tk, • , k 1 . . -

tk, 1 . . . , k -

tk, ., 'k 

As a conclusion of Theorem 2.5, Sk can be regarded as the projec-

tion of Sk orthogonal to the subspace spanned by st , ... , sk-l since 
k 

the last restart. 

Following Broyden's second method, Gay and Schnabel proposed an 

-1 
algorithm which updates approximations Hk to J(Xk) ,and choose Yk to 

be the projection of Yk (Yk = Fk+l- Fk) orthogonal to the previous Yj's 

in the following update form 
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f\+1 (2.16) 

Algorithm 2. 3: Let x0 e: Rn, H0 e: Rnxn, F : Rn-+ Rn, e: > 0, T > 1 be 

given. 

Set £-_1 0. 

For k = 0 , 1 , 2 , • • • • 

n 
Choose non-zero, Sk e: R (likely Sk 

then stop. 

k-1 

r Q' = 
k 

j=lk-1 

IIY - Q'Y II k k k 

THEN (Yk k) 

ELSE (Yk 

Using Algorithm 2.3 we can prove a theorem analogous to Theorem 2.5. 

We state the results as follows. 

. n Rnxn n n 
Theorem 2.6: G1.ven x0 e: R , H0 e: , F: R -+R , e: > 0, T > 1, let 

k k k+l 
the sequence {si} 0 , {Yi} 0 , {Hi}O be generated by Algorithm 2.3. 



Define {~.}k as in Algorithm 2.3; letS. 
1 0 J 

s. if Y. = Y. ans S. 
J J J J 

s. -
J 

H . Q ~ Y . otherwise, j = 0, 1, . • . , k. 
J J J 

Then at each iteration k, Yt , 
k 

... , Yk are linearly independent, Hk+l is well defined, and 

ATA 
0, ykyj j tk' ... ' k - 1 

AT 
ykyj 0, j tk' ... ' k - 1 

ATA ATA 
ykyk ykyk 

Hk+l yj s. 
J 

Hk+lyj s. 
J 

j tk' •. l' k 

IIYkll < T IIYkll 

k - tk < n. 

Convergence 
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Gay and Schnabel have analytically proved that their new algorithm 

is locally Q-superlinearly convergent under the same conditions used in 

the Broyden method. Incidentally, they found that their algorithm will 

always locate a zero for those n equations inn unknowns F(X) = 0 in 

n + 1 or fewer iterations if any one or all of those n equations are 

linear with non-singular Jacobian matrix. Furthermore, if k + 1 itera-

* * tions are required, then Bk+l - J(X ) , X is a zero of F(X), has rank 

n - k. Broyden 1 s method may take 2n s tpes to locate the zero for a 

* linear system of n equations with n variables and B2n - J(X ) may have 

* rank n- 1 (37). As to Newton 1 s method, x1 X •if F is linear with non-

singular Jacobian. We first consider F as a linear case. 
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Theorem 2.7: 
nxn . n n n 

Let A£ R be non-s1.ngular; b £ R , and F : R -+ R 

defined by F(X) AX + b. Consider Algorithm 2.2 acting on F, starting 

n nxn 
from any x0 e: R and B0 e: R • If s 0 , ••• , Sn-l are linearly independent, 

then B =A; and if S -B-l F(X ), then F(X 1 ) = 0. Moreover, if for 
n n n n n+ 

-1 
some k < n, s 0 , ••• , Sk-l are linearly independent, Bk exists and 

-1 -1 
Bk F(Xk) £ (S0 , ... , Sk-l), and if Sk = -Bk F(Xk), then F(Xk+l) = 0. 

From the above theorem, it can be recognized that if Algorithm 2.2 

is acting on a linear problem with n- m iterations required, and if s 0 , 

•.. , S 1 are linearly independent and no restarts have occurred, 
n-m-

then B will agree with A (= J (Xk), for each k) in n- m directions, 
n-m 

i.e., A- B will have rank m. 
n-m 

The next theorem concerns the case that when some but not neces-

sarily all of the component functions of F are linear, the number of 

* iterations required to locate a zero X is also less than or equal to 

n + 1. 

For ease of notation we use (V 1 , . . . , V k) to denote the subspace 

n 
spanned by vectors V 1 , ... , Vk £ R and assume that the first m component 

functions of F are linear. The Jacobian of F will be constant in its 

ck mxn 
first m rows, and we denote the approximations Bk by (0 ) , Ck £ R , 

k 
D R(n-m)xn 

k E • 

Theorem 2.8: 
mxn m 

Let A E R , 1 < m < n; b £ R 
= = 

n n n m 
R -+ R with F l (X) = AX + b : R -+ R 

n n-m 
and F 2 : R -+ R Consider Algorithm 2.2 acting on F, starting from any 

x0 " Rn and B " Rnxn 
<;. 0 <;. • If for some k ,;; n, s 0 , ... , sk-l are linearly 
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independent, B~1 exists and B~1 F (Xk) e: (s0 , •.. , sk-l), then the choice 

-1 . 
Sk = -Bk F(Xk) leads to F1 (Xk+l) = 0. Furthermore, if s 0 , ... , Sn-l 

are linearly independent, then C A. 
n 

Schnabel made a proof that the sequence {X'.} generated by Algorithm 
~ 

2.2 with sk = -B~1 F(Xk) converges Q-superlinearly to x* if x0 is close 

* enough to X and if B0 is close enough in norm to J(X0). This proof is 

analogous to the local superlinear convergence proof of Broyden, Dennis 

and More (1973) for Broyden's method, and the work of Dennis and More 

(1974) characterizing superlinear convergence. 

Theorem 2.9: 
n n 

Let F : R -+ R be differentiable in an open convex 

* set D, and assume for some X e: D and r > 0, C > 0, that 

* * where F(X ) = 0 and J(X ) is non-singular. Under these hypotheses, con-

n nxn 
sider the sequences {X,}, {B.}, X. E R, B. e:R generated from x 0 and 

~ ~ ~ ~ 

B by Algorithm 2.2. Then there exists e: > 0 and 8 > 0 such that for 
0 

* * I lx0 - X I I ~ e: and I IB0 - J(X ) I IF ~ 8, {xi} converges Q-superlinearly 

to x* and {I IBkl 1}, {I IB~1 1 I} are bounded. 

Using Algorithm 2.3 we can have the same convergence results for 

linear and general nonlinear functions F as are given in Theorems 2.7, 

2.8, and 2.9. 

The Gay-Schnabel Proposal 

As we mentioned in the previous section, the Gay-Schnabel algo-

rithms (Algorithm 2.2 and Algorithm 2.3) have been analytically proved 

to be locally Q-superlinearly convergent and exact on linear problems. 
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Now, we consider the Gay-Schnabel proposal. This proposal involves 

three parts: Extensions, Implementations, and Evaluations. 

Extensions 

The basic idea of Gay and Schnabel's modification of the Broyden 

A n 
method is the choice of a proper vector sk E R used to update a new 

approximation to the Jacobian at each iteration. Two variations of the 

Gay-Schnabel algorithm are derived by the different methods of setting 

Sk at each iteration. We identify the original Gay-Schnabel algorithm 

(Algorithm 2.2) as algorithm I and its inverse update method (Algorithm 

2.3) as algorithm I'. 

The first extension is to preserve the current and most recent 

quasi-Newton equation at each step by setting 

(2.17) 

in Equation (2.12) of Algorithm I at each iteration. 

This choice of sk will cause the updated Bk+l to minimize the 

Frobenius norm of Bk+l - B 
k 

among all Bk+l satisfying Bk+lsk = yk and 

(Bk+l - Bk) sk = o. This extension can be proved to be of local 

Q-superlinear convergence without restarts. Gay and Schnabel never 

tested it. From now on we call this algorithm II. 

Algorithm II is actually to choose Sk at each iteration to be the 

projection of sk orthogonal to the previous step Sk-l instead of all the 

previous steps s 0 , s 1 , •.. , sk_1 • This choice of Sk is a special case 

of the following extension. 

The second extension is to choose Sk in the update form (Equation 

(2.12)) of Bk+l equal to the projection of Sk orthogonal to the previous 
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t s j 's, t < n, subject to the linear independence of sk-t, Sk-t+l, .. ·, 

Sk as in Algorithm I. Such an algorithm would require no restart. From 

now on, we call this algorithm III. 

Algorithm II is then a special case of algorithm III with t = l. 

We note that there is an inverse update form for each of algorithm II 

and algorithm III. These two inverse update forms will be denoted by 

algorithm II' and algorithm III', respectively. 

Implementations 

Since algorithm II and algorithm III have never been tested, we 

have implemented and tested these algorithms II, II', III, and III' and 

have done further tests of algorithms I and I'. The test problems will 

be covered in Chapter IV. 

Evaluations 

We will evaluate the performance of these algorithms by making a 

comparison between these algorithms and the conventional Broyden's 

method, as well as some other methods such as Brown's method for solving 

a system of equations and the DFP (Davidon-Fletcher-Powell) method for _ 

minimization problems. Criteria used will be convergence properties, 

function evaluations, computing time, and user's effort required. Brown's 

method and the DFP method will be covered in the following chapter. 



CHAPTER III 

OTHER ALGORITHMS AND COMPUTER EXPERIENCES 

In this chapter the author will present two additional algorithms--

Brown's method and the DFP (Davidon-Fletcher-Powell) method. The per-

formance of these two algorithms will be compared with that of Gay-

Schnabel's method in the next chapter. We first consider Brown's method 

to solve a system of n simultaneous nonlinear equations. 

Brown 

In order to reduce the amount of computational effort in solving 

the system of n nonlinear equations with n unknowns, Equation (1.1), 

Brown (5) through (8) proposed a local method which handles the equa-

tions f. = 0 one at a time so that information obtained from working 
~ 

with f 1 can be incorporated when working with f 2 , etc. The basic idea 

of Brown's method is to set up a successive substitution scheme by the 

expansion of previous fi in the Taylor series about an initial point x0 • 

Then using this expansion form, set equal to zero, one solves a speci-

fied component of X of which the (approximate) partial derivative is the 

largest in absolute value, then substitutes the solved component into 

the next f. 1 . Repeating this process, one goes through all the f.'s, 
~+ ~ 

then uses a back-substitution method to solve the real values of those 

components which are now regarded as the components of a new point x1 • 

This is different from Newton's method, which treats all these f. 
~ 

38 
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simultaneously. Brown's method does not require the user to furnish any 

derivatives. The partial derivatives cf./3~. required in the Taylor ex-
1 J 

pansion of fi at a given point x0 are furnished by the finite difference 

quotient approximation 

0 
h e.) 

J (3 .1) 

where e. denotes the jth unit vector and the scalar h0 is usually chosen 
J 

such that h0 = O(l IF(X0 ) I I>. We will show the strategy of choosing this 

h0 later so as to guarantee the convergence of Brown's method. Now we 

discuss the necessary steps that are required to derive a better approxi-

t • (Ckl+l, rna 1on, xk+l = .., k+l k+l . . * 
~ 2 , • · . , ~n ) , to the solut1on X 

* ~ ) 
n • • • I from a given point xk 

k k k 
(~1' ~2' • · ·' ~n) • 

STEP 1: Express f 1 in an approximate Taylor series expansion about 

the point Xk and ignore terms of order 2 and higher, 

(3.2) 

where 3f1 (Xk)/3~i is defined by Equation (3.1). If Xk is close enough 

* to X , f 1 (x) -v O, and we can equate Equation (3.2) to zero and solve for 

one variable component, say ~ , whose corresponding approximate partial 
n 

derivative, 3f1 (Xk)/3~n' is largest in absolute value. 

(3.3) 

Clearly, ~n is a linear function of the n- l variable components ~1 , ~2 , 

..• , ~ 1 in Equation (3. 3) . We rename the left-hand side of Equation n-
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(3. 3) as Ln. (f:l, 
af1 (Xk) af1 (Xk) 

The constants at;;i I at:n , i = l, 

2, ... , n-1, and are stored for future use in computer 

implementation. 

STEP 2: Define g2 (t;; 1 , t;; 2 , · · ., f:n-l) = f 2 (f:1 , f:2 , 

Ln(f:1 , f: 2 , •.• , E:n-l)). Expandg2 aboutthepoint (l;;~, 

linearize (ignore higher order terms) and solve that variable component, 

say l;; 1 , 
n-

whose corresponding approximate partial derivative, 

k k 
(l;;l, t;;2, .•. , 

E: n-1 

Here 

is given by 

E:k 1 ), is largest in absolute value: 
n-

E:k -
n-2 ag2 k k ag2 
I k 

n-1 i=l 
<ar-

1 

( E: l, • , t:n-1)/ at;; 
n-1 

( E: l, 

l;;~) k k af2 
(l;;. - - g2(l;;l, . , sn-1)/ at;; 1. 1 n-1 

• • • I 

• • • I 
t'k t"k. + .., . 1, .., 
1- 1 

k k 
h s. l'. 1+ 

k 
(l;;l, 

k 
., E: l)) n-

k 
.,~ 1). n-

(3. 4) 

. . . , 

Again, we denote the right-hand side of the linear function (Equation 

(3. 4)) as Ln-l (l;;l, s 2 , ... , l;;n_2). The ratios 

at . . . , for i l, 2, .•. , n-2 

and 



. . . ' ~k ) 
n-1 

are stored for future use in any computer implementation. 
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STEP 3: Define g3(~1' ~2' ... , ~n-2) = f3(~1' ~2' •.. , ~n-2' Ln-1 

(~1' · · ·' ~n-2)' Ln (~1' • · ·' ~n-2' Ln-1 (~1' · · ·' ~n-2))) · Expand g3 

k k k 
with Taylor expansion about (~ 1 , ~ 2 , •. , ~n-2 ), linearization of the 

resulting expansion, equating to zero and solving for one variable com-

ponent, say ~ 2 , whose corresponding approximate partial derivative 
n-

~k2, •.. , ~k 2 );a~ 2 is largest in magnitude. Now,~ 2 is a 
n- n- n-

linear combination of the remaining n- 3 variable components; i.e., 

We continue in this fashion, eliminating one variable for each 

equation treated. Every time we obtain a new linear expression, L k 
n-

for one of the components, say ~ k, in terms of the remaining n - k - 1 
n-

variable components, ~l, ~ 2 , ..• , ~n-k-l, we use this linear expression 

wherever ~ ·k had appeared in the previously defined linear expressions 
n-

L k 1 , L k 2 , . . . , L • On the other hand, we add one more linear ex-
n- + n- + n 

pression to a linear system at each step. During the (k + 1) st step of 

the algorithm, we need to evaluate gk+l' i.e., fi+l for various argu-

ments. The values of the last k components of the variable X of f. 1 J.+ 

are obtained by the substitution of the linear system L k 1 , 
n- + 

.•. , L which has been built up. 
n 

The points needed are (~~, 

L ' n-k+2 
k 

• • • I ~ k) n-
k k 

and (~ 1 , ..• , ~n-k) + hei, i = 1, . • • I n - k, where e. denotes the i th 
]. 

unit vector. These points are required to determine the quantities 

gk+l (~~, .•. , ~~-k) and agk+l (~~, ... , ~~-k)/a~i fori= 1, ... , n-k, 

needed for the elimination of the (k+l)st component, say ~n-k' by the 
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basic processes of expansion, linearization, and solution of the result-

ing expression. For each k, this results in the (k + 1) st components, 

say ~ k' being expressed as a linear combination, L k' of the remaining 
n- n-

n- k + 1 components. 

STEP N: At this stage we have gn = ( ~l, L2 , L3 , .•• , Ln) where Li' s 

are obtained by back-substitution in the n- 1 rowed triangular linear 

system which now has the form 

j-1 ag . 
L. = ~~- L ( n-J+l (~kl'. 

l. J . l a~. 

k ag · 1 k 
r:- )/ n-J+ 

"'"'j a~. <~1'· 
I.= l. 

. . . , 

J 

k ag · 1 k 
~.)/ n-J+ (~l' 

J a~. 
J 

• • • I 

k c), 
J 

k k ., ~.)) (C,... ~.) 
J l. l. 

(3.5) 

for j = n, n - l, . . . , 2, with g 1 = f 1 , L1 = ~ 1 · Thus g is a function 
n 

of a single variable component ~ 1 , giving 

~l (3.6) 

k+l 
we use 1;1 thus obtained as the next approximation, 1;1 , to the first 

* * component, ~1, of the solution vector X • We rename 1;1 as L1 in Equation 

(3.6) and back-solve the L. system (Equation (3.5)) to get improved 
l. 

* approximations to the other components of X . 

Now, we use the notation 

Xk+l <= PROC(Xk; Sl- SN) 

k+l 
to denote the above procedures. that derive the point xk+l = (1;1 , .•• , 

~~+l) from a given point Xk = (~~, ... , ~~), by going through STEP 1 to 

STEP N. Brown's algorithm can be listed as follows. 
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Algorithm 3.1 (Brown, 1967): 
n n n 

Let X 0 E: R F : R + R , E: > 0 be given. 

For k = 0 , 1 , 2 , . • . 

IF IIF (X) II < E: then stop. 

Xk+l <= PROC(Xk; SL- SN). 

In applying Algorithm 3.1 to F = 0, an ordering strategy must be 

considered. The equations should be pre-ordered so that the linear ones, 

or most nearly linear ones, come first and then equations become pro-

gressively more nonlinear. This is because Brown's method works with 

one equation, f. = 0, at a time and uses information thus obtained imme-
1 

diately when dealing with the next equation f. 1 = 0. 
1+ 

One question might be raised: how can we be sure that the solution 

procedure (Equation (3.3}) in STEP 1 will be defined? Brown (7) gave a 

proof in 1969 that under the usual hypotheses for Newton's method there 

will always be at least one non-zero partial derivative; consequently, 

the approximate partial Equation (3.1) will also be non-vanishing. 

The choice of hk in forming the approximate partial derivative 

needed in Xk+l <= PROC(Xk; Sl - SN) will affect the convergence of 

Brown's method. This fact is from the following local convergence 

theorem, which was proved by Brown and Dennis (10). The notation I I .1 lm 
used in the theorem is defined as follows: 

then llxll =max{ IE. I: i 
00 1 

If A = (a .. ) 
1J nxn 

then IIAII 
00 

n 

max{ L I a .. I : i 
. 1 1] 
J= 

1, 2, ... , n} 

1, 2, ... , n} 
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Clearly, 

Theorem 3 . 1 : 
n n . 

Let F : R -+ R be cont1nuously differentiable in an 

* * open convex set D, X £ D, F (X ) = 0. Assume the Jacobian J (X) of F is 

* * n * continuous in N (X ; r) = {X£ R : II X - X II 
00 

~ r} and J(X ) is non-

singular. Under these hypotheses there exist positive numbers s and o, 

such that if x0 £ N (X*; o) and {hk} is bounded in modulus by £, then the 

* sequence {Xk} generated by Algorithm 3.1 exists and converges to X • 

* Furthermore, if there is an M ~ 0 such that I IJ(X) - J(X ) I loo < 

kl lx- x*l loo for I lx- x*l loo <rand {hk} is O({lf1 (X*) ll), then the 

convergence is Q-quadratic. 

k 
In an actual computer implementation, h., by which one increments 

J 

~~when working with f., is chosen according to the following strategy 
] 1 

(8) 

where 

h~ 
J 

{ k 5 X l0-B+2 } max a .. ; 
1] 

k . k 
g. (~1' • • .,~ .)); 0.001 X~~.~} 1 n-1 J 

• • • I 

and B is the number of significant digits carried by the machine. 

* * 

. . . ' 

This choice of the amount of h can prevent the size of h from 

being absurd when compared to the magnitude of II Xk II , (suppose, for 
00 

example, that I lxkl loo = 0.001 but I lf1 (Xk) I loo = 1000; this would provide 

poor approximations to the partial derivatives) 1 while at the same time 

* satisfy the conditions of the theorem as the solution X is approached. 
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If we examine the process Xk+l < = PROC (Xk; Sl - SN) to count the 

number of fucntion evaluations, we can see that the first step requires 

n + 1 evalutions of f 1 , the second step n evaluations of f 2 , the third 

step n- 1 evaluations of f 3 , etc. , so the total number of function evalu-

ations is 

n+l 

I 2 
k = (N. + 3N) I 2 • 

k=2 

On the other hand, Brown's method adds a number of other functions 

to be evaluated, namely the linear functions Lk. The evaluations of the 

~ are not included in the count above. Thus Brown's method is suitable 

to solve problems when the functions f. are expensive to evaluate in 
~ 

terms of the amount of computation. 

Computer experience (8) reveals that the method seems to be extreme-

ly stable locally in practice and has been used very successfully on at 

least 100 different problems, even in cases where the f. are easy to 
~ 

evaluate. The implemented program used in the next chapter to compare 

the performance of this algorithm with that of Gay-Schnabel's algorithm 

is called from the IMSL (43) library. The name of the subroutine is 

ZSYSTM. 

Davidon-Fletcher-Powell 

The Davidon-Fletcher-Powell (DFP) method is a technique for finding 

an unconstrained minimum of a differentiable function ~(X) of n real 

variables. It was first proposed by Davidon (23) and later reformulated 

by Fletcher and Powell (34). 

Basically, the DFP method is an iterative procedure. With a given 

point X and a positive definite symmetric matrix H, the DFP method 



46 

searches along a line from X in a direction of steepest descent, modi-

* fied by this matrix H, to a new point X such that the function value is 

* decreased. Then a new matrix H is updated according to a defined rule 

* in terms of H, the change of X, and the change in the gradient. Now, X 

* and H can be used to begin the next iteration. This generates a 

sequence of points which converge to a local minimum of ~(X). We use g 

to denote V~ and state Fletcher and Powell's original proposal as the 

following algorithm. 

Algorithm 3.2 (Davidon-Fletcher-Powell, 1959, 1963): Given anini-

tial point x0 and an initial matrix H0 = I or any symmetric positive 

definite matrix. 

For k = 0, 1 , 2 , • • • I 

If g(Xk) = 0, then stop. 

Else, set dk = -Hkg(Xk) (3.7) 

Obtain A.k > 0 such that f (Xk + A.k dk) is a minimum 

with respect to A. along Xk + A.dk, 

where 

and 

(3. 8) 

(3. 9) 

(3.10) 

(3.11) 
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(3.12) 

In the above algorithm, the quitting rule g(Xk) = 0 says that the 

current point Xk is a stationary point of the function ~ to be minimized. 

This stationary point satisfies the necessary conditions for a local 

minimum. If ~ has continuous second partial derivatives, then the sta-

tionary point Xk is a local minimum if the Hessian matrix of ~ is posi-

tive definite. In the computer implementation, Fletcher and Powell 

recommended that the minimization be terminated if, on evaluating both 

the vectors--~g(Xk) and -Ak~g(~)--either of the following occurs: 

l. Every component of the two vectors is less than a prescribed 

value. 

2. The predicted lengths of each of the vectors from the minimum 

are less than a prescribed value. 

As to the line search procedure to obtain a minimum along a direc-

tion, the algorithm uses cubic interpolation which is first given by 

Davidon (23). 

For ease of notation, we use gk to denote g(~). 

Two significant properties were derived by Fletcher ~nd Powell (34). 

The first one is the stability of the algorithm, i.e., the value of the 

function to be minimized is decreased at each step. This property is 

desirable for descent methods, usually. 

In Algorithm 3.2, gk is the direction of steepest ascent. The 

direction dk will be downhill if and only if 
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i.e., the synunetric matrix ~ is positive definite for all nontrivial 

vectors gk. 

The above relation will be clear if we observe the first order 

Taylor series form for <1> with a sufficiently small step A > 0 

Since A > 0, this implies <1> (Xk + Adk) < <1> (Xk) if and only if -d~ gk > 0. 

Fletcher and Powell have proved, by an inductive argument, that Hk 

in the DFP method defined in Algorithm 3.2 is positive definite and con-

sequently the DFP method is stable. 

The second property is the quadratic convergence which is usually 

known as quadratic termination, .. i.e., the algorithm, when applied to a 

strictly convex quadratic function of n variables, will find the minimum 

in at most n iterations. A termination property certainly guarantees 

efficiency when solving quadratic problems. It has often been regarded 

as a desirable property for an algorithm to possess. Let the function 

<l>q be given by 

T T 
(l/2)X AX + b x + C, (3 .13) 

where A is positive definite. <1> is a strictly convex quadratic func-q . 

tion and has a unique minimum. Clearly, A is the Hessian matrix of <1> • 
q 

If Hk = A-l for some k < n, then the search at the kth iteration will 

find the minimum. 

Fletcher and Powell proved this property by proving that the steps 

s 0 , s 1 , •.• , sk generated by Algorithm 3.2 are linearly independent 

eigenvectors of ~+lA with eigenvalue unity. Therefore, it will follow 

that H 
n 

-1 
= A • The detailed proof involves establishing 
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T 
S.AS. = O, 

l J 

H. AS. = S., 
k l l 
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0 < i < j < k (3.14) 

0 < i < k, (3 .15) 

for 1 < k ~ n by induction. Equations (3.9) and (3.14) give that the 

searching directions d0 , d1 , •.. , dn-l are conjugate with respect to A, 

i.e. , 

T 
d,Ad. 

l J 
0 0 < i < j < n-1. 

Then, by the definition of gk = V~q(Xk) = AXk +band the fact that gk+l 

is orthogonal to sk and hence dk in Algorithm 3.2, gives that 

T d,g = 0 
1 n 

for 0 < i < n - 1. 

The linear independence of d0 , d1 , ••. , dn-l in Rn forces gn = 0. That 

X is a minimum follows the positive definiteness of A. 
n 

Next, if we consider Hk+lyk by Equations (3.10), (3.11), and (3.12), 

then 

(3.16) 

Equation (3.16) is what we called the quasi-Newton equation and hence 

the DFP method is a special case of the quasi-Newton method. Therefore, 

the DFP method possesses the properties which are commonly possessed by 

the quasi-Newton method. 

Convergence 

The DFP method has become one of the most popular and most success-
I 

ful techniques for finding the minimum of a differentiable function of 
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several variables since 1963. But untill971, the convergence was not 

proved to be Q-superlinear. 

Powell (51) has shown that, if 

(1) the objective function cf> is twice continuously differentiable, 

(2) the objective function cp is strongly convex, i.e., the eigen-. 

values of the Hessian are bounded below by a positive constant, 

(3) the line search performed at each iteration locates the exact 

minimum of the function along that line, i.e., Ak is chosen so 

that 

A > o} 
= 

where Pk = -~ cj>(Xk), then the sequence of function values 

generated by the method converges to the minimum at a linear 

rate. 

If, in addition, 

(4) the second derivatives of the objective function cf> satisfy a 

* Lipschitz condition at the location of the minimum X , i.e., 

2 2 * * llv cp (X) - v cp ex > IIF ,;:; Mllx - x II 

for some constant M > 0 and for all X E: S {X : cf> (X) < cf> (X O) } , 

then the rate of convergence is Q-superlinear. 

The set s in hypothesis (4) is reasonable since the stability of 

the DFP method implies that the sequence {Xk} generated by the method 

is contained in this set. We can conclude the above and make a theorem 

related to Algorithm 3.2 as follows. 

Theorem 3.2: If Algorithm 3.2 is applied to an objective function 

which satisfies (1), (2), and (4), then the sequence{~} generated by 
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* this algorithm converges Q-superlinearly to X , the global minimum of ~, 

from x0 and a positive definite matrix H0 I; i.e., 

* * lim II xk+ 1 - x II I II xk - x II = o. 
k-+oo 

Computing experiments for the DFP method were successful; Powell 

has used this method to solve a system of 100 nonlinear simultaneous 

equations successfully. Numerical difficulties also have been reported. 

These are mainly caused by the breakdown of the positive definiteness of 

Hk. Broyden (14) notes that negative steps have to be taken occasion

ally. This implies that some of the Hk's are not positive definite. 

Broyden attributes this failure to excessive rounding error. Bard (2) 

pointed out that poor scaling could cause ~ to become singular. Abbott 

(1) indicated that a more probable cause of loss of positive definite-

ness is failure to perform an exact line search. 

In order to improve the performance, a variation on the original 

method was suggested by McCormick and Pearson (45). For an objective 

function of n variables the procedure is "restarted" every n (or n + 1) 

iterations by ignoring the usual matrix updating formula (Equation (3.10)) 

and instead setting the matrix ~ (or ~+l) to be the identity matrix 

and taking the search direction to be the negative of the gradient. 

McCormick (46) has shown that , given all the hypotheses (1) through 

(4), the rate of convergence of the "restarted" DFP method is quadratic 

when the decrease in error is measured over the interval of n iterations 

between restarting steps. 

In practice, obtaining the exact solution in a linear search is 

costly (e.g., consuming most of the computation time), and since, in any 

case, the "exact" solution is never obtained, there have also been some 
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results on the convergence properties of the DFP method without exact 

line searches. 

Broyden, Dennis and More (19) proved the following: Assume the 

objective function <1> is twice differentiable in an open convex set D 

* * containing the minimum point x .. ,and the Hessian matrix of <1> at X is 

symmetric and positive definite and satisfies the one-sided Lipschitz 
I 

condition 

2 2 * * p II v <I> (X) - v <I> (X ) II ~ M II X - X II 

for some p > 0, M > 0, and all X in D. If (X , H0 ) is sufficiently close 
0 

* 2 * to (X, V <j>(X )), then the DFP method with Ak 1 for all k is Q-super-

* linearly convergent to X • 

Dennis and More (30) showed that the sequence of step sizes {Ak} 

converges to one if and only if the method converges superlinearly. 

Recently, convergence theory for the DFP method has been extended 

to cover the practical situation. Lenard (44) gave conditions on the 

error incurred in the line search performed at each iteration under 

which the order of convergence of the DFP method is linear or s~perlinear 

for the original method and n-step quadratic for the restarted method. 

Even though the rate of convergence of the restarted version seems 

faster than that of the original proposal, we use the original algorithm 

in the next chapter to compare the performance with that of the Gay-

Schnabel algorithm. 



CHAPTER IV 

QUALITY CONSIDERATIONS OF THE ALGORITHMS 

The aim of this chapter is to compare the performance of the alga-

rithms in the Gay-Schnabel proposal with that of other algorithms men-

' 
tioned in the previous chapters--Broyden's method and the DFP method. 

Numerical tests were carried out on the IBM 370/158 computer at Oklahoma 

State University. The machine has a 64-bit word in double precision, 

with 56 bits devoted to the mantissa, giving an accuracy of 16 decimal 

digits. 

Among all these algorithms, algorithms I and I' are Gay-Schnabel's 

original implementation. Brown's method and the DFP method are embodied 

in existing computer programs in IMSL (43), a fact which leads to some 

differences in comparison. Algorithms II, II', III, and III'--the exten-

sions of the Gay-Schnabel algorithm--as well as Broyden's first method, 

are programmed by the author in standard FORTRAN. 
. . 

In the implementation of algorithms II and III, the step size Sk = 

-1 
-A B F is determined by choosing Ak according to the nonlinear search 

k k k 

described in Reference (13) with the added restriction that II Sk II < 1. 

-1 
Instead of storing Bk, we actually store and update ~ = Bk • The com-

putation of Sk is carried out by the Gram-Schmidt orthonorrnalization 

process. 

The quality of the algorithms wlll be assessed by the following 

criteria: convergence properties, computational complexity, and effort 

53 
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required. All those algorithms have been analytically proved to be Q-

superlinearly convergent except Brown's method, which converges Q-quad

ratically sometimes. These merits will be explained in the computer 

output if possible. But instead of testing the convergence properties 

directly, we will examine the accuracy of the solution obtained. The 

second criterion is often related to the time taken to reach the solu

tion and the amount of computer storage space used in computation. 

Frequently, the time taken is in conflict with the accuracy of the 

solution obtained and the storage required, so some arbitrary assumptions 

will be made before a comparison of two algorithms. 

Since time taken depends heavily on the strategy of program imple

mentation and also the difficulty in comparing the times when two methods 

are tested on two different machines, we assume that the total amount of 

computation is directly proportional to the number of function evalua

tions to obtain the solution and that the constant of proportionality is 

the same for all methods. This is more true as the complexity of the 

functions increases and the constant of proportionality approaches unity. 

In the case of Brown's method "equivalent function evaluations" are 

quoted since in that method some elements of F are computed more often 

than others. The term "equivalent function evaluations" is defined as 

the total number of evaluations of the individual function components, 

which is simply the number of iterations multiplied by (n2 + 3n)/2. If 

we divide this number, "equivalent function evaluations," by nand round 

it to an integer, then this integer can be used to approximate the number 

of function calls. Since the amount of labor involved in an iteration of 

different methods may vary tremendously, the number of iterations will 
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primarily be used in the comparison of the member of Gay-Schnabel's 

class. 

In order to compare the performance of the various methods under as 

nearly identical conditions as possible, they are used to solve a set of 

test problems, starting from the same initial point. The accuracy of 

the final solution will be regarded as obtained when the Euclidean norm 

of the vector F becomes less than a tolerance arbitrarily chosen to be 

lo-10 , although there are some other criteria for the termination rule 

used in Brown's method and the DFP method as mentioned in Chapter III. 

In order to keep the linear independence of the steps S. generated 
' 1 

by Gay-Schnabel's original algorithm, the criterion parameter T used to 

judge the restart procedure will be set to 10. This is a good choice 

according to Reference (38). 

We note that the Broyden algorithm chosen here to compare with 

other algorithms is Broyden's first method which is superior to Broyden's 

second method (13). 

A table is given for each of the following selected problems and the 

computing results are reported for the following items: convergence, 

number of iterations, number of function evaluations, and accuracy (final 

norm of F). For reference purposes, the normalized number of function 

evaluations (Gay-Schnabel, 1977) and the mean convergence rate (Broyden, 

1965) are also reported. The normalized number of. function evaluations 

is defined by dividing the actual number by the minimum of the numbers 

for that problem and rounding to two decimal places while the mean con-

vergence rate R is given by 

(4 .1) 
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where m is the total number of function evaluations and N1 , Nm the ini

tial and final Euclidean norm of F. This R, as noted by Broyden, does 

not tend to an asymptotic value as m-+ oo and is merely intended to be a 

concise index of the performance of a method applied to a particular 

problem in a particular situation. 

Experimental Results 

This section is devoted to a discussion of the behavior of the 

various methods when applied to a number of test cases. The table imme-

diately following each problem indicates the computing results of each 

of the comparison criteria for the algorithms. The entries on the "con-

vergence" item accompanied by a character "a" indicates that Broyden's 

(1965) quadratic interpolation technique failed to reduce jjFjj and a 

character "b" indicates that the norm of F cannot reach the preassigned 

-10 . 
arbitrary number 10 owing to exceeding the limit (= 200) of itera-

tions. The corresponding reports on this row are then the information 

at the time of failure. Algorithms III and III' are not tested until 

N > 3. 

Notation used in each table: 

Conv. Is the algorithm convergent? 

Eval. Number of function evaluations. 

N Normalized function evaluations. 

Iter. Number of iterations. 

T Execution time in seconds. 

Initial norm of F. 

Final norm of F. 

R Mean convergence rate (see Equation (4.1)). 
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Problem 1 

This problem is given by J. P. Chandler (21) to study the case when 

the algorithms are applied to a single nonlinear equation. 

F(X) = arctanX 
1 

XER 

* with x0 = 3.0, X = 0.0, and I IF 0 1 I = 1.249. The results are given in 

Table I. We note that algoritluns I, I', and II' have the same results. 

This is desirable since the orthogonal projection of Sk onto the ortho

gonal complement of Sk-l for k > 1 is a zero vector in R1 and hence the 

updated ~ will not be changed after the first iteration for those algo

ritluns. 

TABLE I 

COMPUTER RESULTS FOR PROBLEM 1 

Method Conv. Iter. Eval. N T (sec) IIFII R 

I yes 6 9 1.00 0.15 0.65960-11 2.885 

I' yes 6 9 1.00 0.14 0.65960-11 2.885 

II yes 6 9 1.00 0.09 0.65960-11 2.885 

II' yes 6 9 1.00 0.09 0.65960-11 2.885 

Broyden yes 32 82 9.11 0.55 0.78330-11 0.329 

Brown no 6 12 0.02 1.57100 00 
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Problem 2 

This problem is taken from the derivatives of Rosenbrock's function 

(54) ' 

given by 

with x0 = (-1.2, l.O)T, x* = (1, l)T, and IIF0 II = 4.919. The computer 

results are given in Table II. 

TABLE II 

COMPUTER RESULTS FOR PROBLEM 2 

Method Conv. Iter. Eval. N T (sec) I IF II R 

I yes 5 15 1.88 0.16 0.7550-13 2.121 

I I no 14 61 0.46 1. 8750 00 0.016 

II yes 29 78 9.75 0.60 0.1380-15 0.488 

II' (no) 
a 

8 42 1. 3940 00 0.300 

Broyden yes 25 71 8.88 0.53 0.6660-14 0.482 

Brown yes 3 8 1.00 0.03 0 co 

In the test of this problem, algorithm I' failed to converge due 

to an extremely small step size taken after the tenth iteration (step 



size less than 0.5594D~06). This caused the new step S. to lie almost 
~ 

entirely in the space spanned by the previous steps. Therefore, the 
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linearly independent property was destroyed by the adding of a new step 

s. to the previous steps. Sometimes this phenomenon can be avoided by 
~ 

adjusting the parameter EPS2 in the program (Appendix B) but a risk of 

underflow then occurs in the nonlinear search. 

The author examined the output and listed the property of Q-super-

linear convergence of Broyden's method, algorithms I and II in Tables 

III, IV, and V, respectively. 

The trajectory of the search to the solution of Problem 2 by 

Broyden's method, algorithms I and II, and Brown's method are given in 

Figures 2, 3, 4, and 5, respectively. From these we can examine the 

status of convergence of these algorithms. 

TABLE III 

Q-SUPERLINEAR CONVERGENCE OF BROYDEN'S 
METHOD WHEN APPLIED TO PROBLEM 2 

K llx - x*ll k 

0 0.2200D-Ol 

21 O.l228D-Ol 

22 0.8090D 00 

23 0.2107D 00 

24 O.l089D-01 

25 0.6661D-15 



TABLE IV 

Q-SUPERLINEAR CONVERGENCE OF ALGORITHM I 
WHEN APPLIED TO PROBLEM 2 

* K llxk- x II 

0 0.2200D-01 

1 0.2089D-01 

2 0.20070-01 

3 0.13300-01 

4 0.83470-02 

5 0.75500-14 

TABLE V 

Q-SUPERLINEAR CONVERGENCE OF ALGORITHM II 
WHEN APPLIED TO PROBLEM 2 

* K llxk-x II 

0 0.22000-01 

16 0.11190-01 

17 0.81780 00 

26 0.15410 00 

27 0.71530-02 

28 0.10840-02 

29 0.13880-16 
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Figure 2. Trajectory of the Search to Solve 
Problem 2 by Broyden's Method 
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Figure 3. Trajectory of the Search to Solve 
Problem 2 by Algorithm I 
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Figure 4. Trajectory of the Search to Solve 
Problem 2 by Algorithm II 
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Figure 5. Trajectory of the Search to Solve 
·Problem 2 by Brown's Method 
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Problem 3 

The following system is given by Brown (7): 

fl (X) = ~2 - ~ - 1 
1 2 

2 2 
= (~1 - 2) + (~2 - 0.5) - 1 

This system has two roots: 

Y1 ~ (1.54634288, 1.3911763l)T~ 

and 

Y ~ (1.06734609, 0.13922767)T. 
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The initial point is (0.1, 2.0)T with I IF 0 1 I = 5.706. From the computer 

* experiments, all the algorithms converged to y 2 , i.e., X 

experimental results are given in Table VI. 

TABLE VI 

COMPUTER RESULTS FOR PROBLEM 3 

Method Conv. Iter. Eval. N T (sec) I IF II 

I yes 14 29 1.61 0.48 0.62400-14 

I' yes 14 20 1.11 0.42 0.41630-16 

II yes 13 20 1.11 0.29 0.66950-14 

II' yes 14 20 1.11 0.31 0.55510-16 

Broyden yes 14 18 1.00 0.23 0.75540-14 

Brown yes 8 20 1.11 0.09 0.49230-12 

The 

R 

1.188 

1.973 

1. 719 

1.959 

1.903 

1.504 
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Problem 4 

The following system was first studied by Freudenstein and Roth (35) 

and later by Broyden (13). 

T * 4 ) T. with x0 = (15, -2) , X = (5, 

According to Broyden (13) and Brown (7), Broyden's method failed to 

* converge to X . This is a reason why the author was interested in test-

ing this problem. 

The author tested all the algorithms with different initial points. 

Except for Brown's method, the members of Gay-Schnabel's class and 

Broyden's method failed to converge with the following initial points: 

The failure occurred because the non-

linear search technique could not reduce the norm of F sufficiently. 

For instance, algorithm II, with x 0 = (3, 2)T, reduced I IFI I to 7.4635 

in ll iterations with 78 function evaluations, but in iteration 12, it 

made 100 more function evaluations (178 in total) and could not improve 

anything at all. Most of these function evaluations were spent in non-

linear search process. The information in Table VII is given with 

x0 = (3, 2.5)T and I IF 0 1 I = 39.13. The solution by Brown's method is 

exact. Algorithm II' seems superior to any other members in the Gay-

Schnabel class. 
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TABLE VII 

COMPUTER RESULTS FOR PROBLEM 4 
X = (3 0 , 2.5)T,IIF0 1i =39.13 

Method Conv. Iter. Eval. N T (sec) I IF II R 

I yes 9 17 1.06 0.27 0.45780-14 2.158 

I' yes 9 17 1.06 0.25 0.29140-13 2.049 

II yes 9 17 1.06 0.18 0.71270..;.12 1.861 

II' yes 8 16 1.00 0.16 0.18620-11 1.917 

Broyden yes 9 18 1.13 0.18 0.27390-11 1.683 

Brown yes 10 25 1. 56 0.11 0 ·co 

Problem 5 

This transcendental equation was first studied by Brown and Conte 

(9) • 

T * (0.6, 3) , X 

The computer results are given in Table VIII. All the algorithms 

under consideration worked well on this problem. The member of the Gay-

Schnabel class is superior to Broyden's method. 

Problem 6 

This problem is taken from Powell's paper (50) .. 

1 
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TABLE VIII 

COMPUTER RESULTS FOR PROBLEM 5 

Method Conv. Iter. Eval. N T (sec) IIF II R 

I yes 8 11 1.10 0.24 0.13480-13 2. 713 

I I yes 8 11 1.10 0.25 0.1310D-15 3.135 

II yes 7 10 1.00 0.15 0.62280-12 2.601 

II' yes 7 10 1.00 0.13 0.96580-12 2.558 

Broyden yes 9 12 1.20 0.16 0.10460-11 2.125 

Brown yes 10 25 2.50 0.11 0.12650-13 1.196 
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Starting at the estimate x0 = (0, l)T with IIF0 11 = 1.065. The solution 

* -4 T is given approximately by X rv (0.1099 x 10 , 9.096) • 

All the algorithms of Gay-Schnabel's class and Broyden's method 

-3 
failed to reduce the norm of F to be less than 10 . Only algorithm II 

can reach a point (0.13880-04, 7.204)T with I IFI I = 0.69330-03 by 167 

function evaluations. T 
If we use (0.1, 1.0) as a starting guess, then 

all the algorithms, except for Broyden 's method, can reduce II F II < 10-4 

and algorithm II' converged in 57 function evaluations. In both initia-

tive cases, Brown's method converges in 33 function calls (65 individual 

function component evaluations). We omit the reports for this problem. 

Problem 7 

We start to test algorithms III and III' with this problem whic~ 

comes from Brown and Gearhart (11). 

with initial point x0 = (1, 0.7, S)T, IIF0 11 = 4.729 and x* = (0, /2, 6?. 

The author tested this problem and discovered that all the algo

rithms were convergent. Brown's method converged to x* = (0, /:2, 6)T, 

while Broyden's method and the member of Gay-Schnabel's class converged 

to another root at (2, 0, 4)T. This is different from the Gay-Schnabel 

report. Gay and Schnabel claimed that their original algorithm also con-

verged to (0, /2, 6)T. 
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The author tested this problem with another initial point (1, 1, 5)T 

c T T 
which is closer to (0, v2, 6) rather than to (2, 0, 4) . This time, 

all algorithms under consideration converged to (0, /2, 6)T as desired. 

Please note that the initial point (1, 0.7, 5)T is almost equidis~ 

tant from (0, 12, 6)T and (2, 0, 4)T but is closer to (2, 0, 4)T. The 

computer results with (1, 0.7, 5)T as initial point are given in Table 

IX. Algorithm III' seems to be the most efficient one. 

TABLE IX 

COMPUTER RESULTS FOR PROBLEM 7 

Method Conv. Iter. Eval. N T (sec) IIFII R 

I yes 12 17 1.00 0.49 0.18170~12 1.817 

I' yes 12 17 1.00 0.46 0.10870~12 1.847 

II yes 11 22 1.30 0.29 0.45370~13 1.467 

II' yes 1] 17 1.00 0.25 0.30930~13 1.920 

III (t=2) yes 10 24 1.41 0.32 0.29410~12 1.267 

III I (t=2) yes 10 17 1.00 0.27 0.63240~14 2.015 

Broyden no 11 17 1.00 0.32 0.10830~10 1.577 

Brown yes 12 36 2.11 0.24 0.10880~14 1.000 

Problem 8 

The following system was first studied by Brown (7). This is a 

system in which every equation is linear except for the very last one. 

For n = 5, 10: 



f. (X) = 
l. 

- (n + l) + 2t;:. + 
l. 

n 
f (X) -1 + IT t;:. n 

j=l J 

T * = (0.5, ••• , 0.5) ; X 

n 

I t;:. 
j=l J 

i=l, •.. ,n-1, 

jfl 

T 
= (1, ••• , 1) • 
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The author also used this problem to test algorithm III (and algo-

rithm III') with t 2, 3, 4, i.e., set Sk (or Yk) equal to the projec

tion of sk (or Yk) orthogonal to the previous t sj 's (or Yj 's), t < n in 

the. extension of Gay-Schnabel's algorithm. 

For n = 5, the author tested all the algorithms with three different 

initial points: 
T T 

r = ( 0 . 5 , . . . , 0 • 5 ) , s = ( 0 . 7 5 , • • • , 0 • 7 5 ) , and w = 

T 
(1.5, •.. ' 1.5) . The computer results are given in Tables X, XI, and 

XII, respectively. We note that Brown's method converged in each case 

* T to the root X = (1, l, l, l, l) . Broyden's method also converged to 

* X (but slower) with given initial point r or s, but converged to the 

root given approximately by (-0.579, -0.579, -0.579, -0.579, 8.90) with 

initial point W. Taking r as initial point, the members of the Gay-

Schnabel class failed to converge except for algorithm III with t = 2 

and t = 4. Both of these two cases are not better than Broyden's method. 

As we take S or W as an initial point, the Gay-Schnabel algorithm and its 

extensions seem superior to Broyden's method. 

For n = 10, the author also tested all the algorithms with three 

different initial points, the points all of whose components are 0.5, 

0.75, and 1.5, respectively. The computer results are given in Tables 

XIII, XIV, and XV. We note that Brown's method converged exactly to 

(1, .•. , l) T and reduced jjFjj 0 for the cases of x0 = (0.5, •.• , 

T T 
0.5) and (0. 75, ... , 0. 75) . The Brown method also worked well for 
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T x0 = (1.5, ..• , 1.5) , i.e., converged in 10 iterations. Broyden's 

method never converged in each case. As to the member of Gay-Schnabel's 

class, the case t = 2 in algorithm III, with x0 
T ( 0 . 5 , • • . , 0 • 5 ) , con-

verged in 25 iterations with 111 function calls. Algorithm II ' , with 

T x0 = (0. 75, ... , 0. 75) , converged in' 33 iterations with 173 function 

calls. 
T 

Taking (1. 5, ••• , 1. 5) as an initial point, all members in algo-

rithm III converged. These are the only convergent cases. 

TABLE X 

COMPUTER RESULTS FOR PROBLEM 8 
N= 5, x0 = co.5, ... , o.5)T, 

liFo II= 6.078 

Method Conv. Iter. Eval. N Root !IF II R 

I (no) a 7 21 5.5830D 00 0.004 

I I (no) 
a 

5 17 5.5541D 00 0.005 

II (no) 
a 4 14 5.5700D 00 0.006 

II' (no) 
a 

4 14 5.6430D 00 0.005 

t=2 yes 17 35 1.25 rl 0.7269D-13 0.916 
a 4.3510D 00 III t=3 (no) 13 32 0.010 

t=4 yes 18 36 1.28 rl 0.2791D-12 0.853 

t=2 (no) 
a 

4 14 5.6640D 00 0.005 

III' t=3 (no) 
a 

5 82 5.6640D 00 0.001 

t=4 (no) 
a 

5 82 5.6640D 00 0.001 

Broyden yes 16 30 1.07 r2 0.1388D-16 1.354 

Brown yes 7 28 1.00 r2 0 ()0 

(-0. 579, -0.579, -0.579, -0.579, 
T 

rl = 9. 895) • 

r2 (1 1 1, 1, 1, l)T. 



Method Conv. 

I yes 

I' yes 

II yes 

II' yes 

t=2 yes 

III t=3 yes 

t=4 yes 

t=2 yes 

III' t=3 yes 

t=4 yes 

Broyden yes 

Brown yes 

r1 = (-0.579, 

r2 (1, 1, 1, 

TABLE XI 

COMPUTER RESULTS FOR PROBLEM 8 
N=S, x 0 = (0.75, •.. ,0.7S)T, 

IIF0 II = 3.095 

Iter. Eval. N Root 

11 21 1.00 r1 

11 21 1.00 r1 

11 32 1.52 r2 

11 21 1.00 r1 

11 32 l. 52 r2 

11 32 1.52 r2 

11 32 1.52 r2 

12 23 1.09 r1 

12 21 1.00 r1 

11 21 1.00 r1 

11 32 1.52 r2 

9 36 1. 71 r2 

-0.579, -0.579, -0.579, 
T 

8. 895) . 

1, 1)T. 
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I IF II R 

0.16250-13 1.566 

0.14890-13 1.570 

0.20540-13 1.020 

0.47200-13 1.515 

0.15280-13 1.029 

0.72160-15 1.125 

0.97140-16 1.188 

0.53950-13 1.177 

0.29160-13 1.538 

0.14760-13 1.570 

0.31890-15 1.150 

0 00 



Method Conv. 

I yes 

I' yes 

II yes 

II' yes 

t=2 yes 

III t=3 yes 

t=4 yes 

t=2 no 

III' t=3 yes 

t=4 yes 

Broyden yes 

Brown yes 

r1 = (-0.579, 

r2 = (1, 1, 1, 

TABLE XII 

COMPUTER RESULTS FOR PROBLEM 8 
N = 5 , X~ = ( 1. 5 , . . . , 1. 5 )T , 

liFo! I= 8.915 

Iter. Eva1. N Root 

9 17 1.06 r 
1 

9 17 1.06 r1 

9 16 1.00 r1 

11 38 2.37 r1 

9 16 1.00 r1 

9 16 1.00 r1 

9 16 1.00 r1 

16 87 5.43 r1 

10 18 1.11 r1 

9 17 1.06 r1 

9 16 1.00 r1 

7 28 1. 75 r2 

-0.579, -0.579, -0.579, 
T 

8.895) . 

1, 1)T. 
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I IF II R 

0.25420-13 i.970 

0.22510-14 2.113 

0.49650-15 2.339 

0.88820-15 0.970 

0.58940-13 2.041 

0.35200-13 2.073 

0.19550-13 2.110 

0.12410-08 0.261 

0.47930-15 2.081 

0.19400-11 1.715 

0.24490-11 1.808 

0. 24980-11 1.032 
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TABLE XIII 

COMPUTER RESULTS FOR PROBLEM 8 
N=10, xl= (0.5, ... , o.5)T, 

I Foil = 16.53 

Method Conv. Iter. Eva1. N I IF II R 

a 
I (no) 1 12 16.5000D 00 0.000 

I I (no) 
a 

1 12 16.5000D 00 0.000 

II (no) 
a 

5 20 16.0800D 00 0.001 

II' (no) 
a 

1 12 16.5000D 00 0.000 

t=2 yes 25 111 1. 71 0.1231D-ll 0.272 

III t=3 (no) 
a 

4 17 16.1000D 00 0.002 

t=4 (no) 
a 

4 17 16.1000D 00 0.002 

t=2 (no) 
a 

1 12 16.5000D 00 0.002 

III' t=3 (no) 
a 

1 12 16:5000D 00 0.002 

t=4 (no) 
a 

1 12 16.5000D 00 0.002 

Broyden (no) 
a 

9 23 12.0800D 00 0.014 

Brown yes 10 65 1.00 0 00 
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TABLE XIV 

COMPUTER RESULTS FOR PROBLEM 8 
N = 10 I X 0 = ( 0 . 7 5 I • • • I 0 . 7 5 )T I 

II F 0 II = 8. 3 04 

Method Conv. Iter. Eval. N I IF II R 

a 
I (no) 9 27 7.25100 00 0.005 

I I (no) 
a 

5 21 7.43100 00 0.005 

II (no) a 5 20 6.77600 00 0.010 

II' no* 33 173 2.66 0.34940-09 0.138 

t=2 (no) 
a 

12 29 1.00000 00 0.073 

a 0.003 III t=3 (no) 6 71 6. 72300 00 

t=4 (no) 
a 

5 22 6.72300 00 0.009 

t=2 (no) 
a 

8 116 7.42000 00 0.001 

III' t=3 (no) 
a 4 16 7.43100 00 0.007 

t=4 (no) 
a 

4 16 7.43100 00 0.007 

Broyden (no) 
a 

5 17 0.49130 00 0.166 

Brown yes 10 65 1.00 0 00 

*It failed to reduce IIFII < 10-10. 



Method Conv. 

I (no) 
a 

I I (no) 
a 

II (no) 
a 

II' (no) 
a 

t=2 yes 

III t=3 yes 

t=4 yes 

t=2 (no) 
a 

III' t=3 (no) 
a 

t=4 (no) 
a 

Broyden (no) 
a 

Brown yes 

TABLE XV 

COMPUTER RESULTS FOR PROBLEM 8 
N = 10 , Xo = ( 1. 5 , . • . , 1. 5) T, 

IIF0 II = 59~02 

Iter. Eval. N 

2 13 

2 13 

3 17 

2 13 

19 40 l. 00 

19 40 1.00 

21 44 1.10 

2 .13 

2 13 

2 13 

5 23 

10 65 1.625 
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I IF II R 

8.99300 00 0.145 

8. 96500 00 0.145 

11.65000 00 0.095 

8. 96500 00 0.145 

0.42460-13 0.872 

0.68760-13 0.860 

0.44340-ll 0.687 

8.96500 00 0.145 

8. 96500 00 0.145 

8.96500 00 0.145 

11.63000 00 0.071 

0.98730-14 0.559 
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Problem 9 

This specially-constructed system was first studied by Broyden (13) 

and then by Gay and Schnabel (38). 

fl (X) 

fl (X) ~. 1 - (3 +a~.)~. + 2~. 1 - B, 
1- 1 1 1+ 

f (X) 
n 

Values of a, B, and n are given as follows: 

(1) a. = -0.1 B 1.0 n = 5 

(2) a. = -0.5 B = 1.0 n = 5 

(3) a = -0.5 B = l.O n = 10 

and the initial estimates in all cases were 

. T 
xo (-1.0, -1.0, ••. , -1.0) . 

i 2,3, .•. ,n-l, 

From the computing experiments of the algorithms with this problem, 

the author discovered that every algorithm considered in this paper con-

verged in each case and that all versions and extensions of the Gay-

Schnabel method are superior to the Broyden method. The computer reports 

are given Tables XVI, XVII, and XVIII. 

Problem 10 

This system of transcendental equations from Deist and Sefor (26) 

is defined by 

f. (X) 
1 

6 

I 
j=l 
j;ii 

cote.~. 
1 J 

i < i < 6 

where (81 , ... , 86 ) = 10-2 (2.249, 2.166, 2.083, 2.000, 1.918, 1.835). 



Method Conv. 

I yes 

I I yes 

II yes 

II' yes 

t=2 yes 

III t=3 yes 

t=4 yes 

t=2 yes 

III' t=3 yes 

t=4 yes 

Broyden yes 

Brown yes 

TABLE XVI 

COMPUTER RESULTS FOR PROBLEM 9 
N = 5, a = -0.1, S = 1.0, 

IIF0 ll = 1.910 

Iter. Eval. N 

8 14 1.08 

8 14 1.08 

8 14 1.08 

8 14 1.08 

7 13 1.00 

7 13 1.00 

7 13 1.00 

7 13 1.00 

7 13 1.00 

7 13 1.00 

7 13 1.00 

5 20 1.54 
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I IF II R 

0.47540-13 2.241 

0. 42640-13 2.245 

0.11580-13 2.338 

0.41190-11 2.248 

0.26310-11 2.138 

0.27030-12 2.263 

0.59540-12 2.215 
' ! 

0.33050-11 2.1082 
I 
I 
I 

0.47890-12 2.232 

0.43680-11 2.062 

0.55210-11 2.044 

0.44400-15 1.800 



Method Conv. 

I yes 

I I yes 

II ·yes 

II' yes 

t=2 yes 

III t=3 yes 

t=4 yes 

t=2 yes 

III' t=3 yes 

t=4 yes 

Broyden yes 

Brown yes 

TABLE XVII 

COMPUTER RESULTS FOR PROBLEM 9 
N = 5, a = -0.5, S = 1.0, 

IIF0 II = 1.803 

Iter. Eva1. N 

8 14 1.08 

8 14 1.08 

7 13 1.00 

8 14 1.08 

8 14 1.08 

7 13 1.00 

7 13 1.00 

8 14 1.08 

7 13 1.00 

7 13 1.00 

8 14 1.08 

5 20 1.54 

80 

I IF II R 

0.62480-13 2.214 

0.62560-13 2.214 

0.84350-11 2.007 

0.35500-14 2.419 

0.75730-14 2.365 

0 .. 34340-12 2.253 

0.60750-12 2.209 

0.18670-13 2.300 

0.15100-11 2.139 

0.18950-11 2.122 

0.48420-12 2.073 

0.54390-15 1. 787 
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TABLE XVIII 

COMPUTER RESULTS FOR PROBLEM 9 
N = 10, a = -0.5, s = l. 0, 

IIF0 ll = 2.121 

Method Conv. Iter. Eva1. N I IF II R 

I yes 10 21 1.05 0.1028D-ll 1.350 

I I yes 10 21 1.05 0.1012D-ll 1.351 

II yes 10 21 1.05 0.1473D-ll 1.333 

II' yes 10 21 1.05 0.1065D-ll 1.349 

t=2 yes 9 20 1.00 0.1067D-10 1.300 

III t=3 yes 9 20 1.00 0.1619D-10 1.280 

t=4 yes 9 20 1.00 0.1428D-9 1.171 

t=2 yes 10 21 1.05 0.1295D-ll 1.339 

III' t=3 yes 9 20 1.00 0.3925D-10 1.236 

t=4 yes 10 21 1.05 0.8649D-12 1.358 

Broyden yes 10 21 1.05 0.1785D-10 1.214 

Brown yes 5 20 1.00 0.3966D-12 1.465 



X 
0 

T 
(75, 75, ... , 75) , 
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IIF0 11 = 1.397 

* T X = (121.850, 114.161, 93.6488, 62.3186, 41.3219, 30.5027) • 

The author tested this problem and discovered that all the algo-

rithms under consideration could reduce the norm of F to be smaller than 

l.OD-08 at least. The original Gay-Schnabel methods--algorithms I and I' 

--seem to be more suitable in solving this problem. It seems that each 

member of the Gay-Schnabel class worked better than Broyden's method. 

The computer reports are given i,n Table XIX. 

From the previous experiments, the author learned that Brown's 

method could handle nine problems out of the given ten and converged 

rapidly and accurately 21 times while the 22 different test cases were 

given. Brown's method often reduced the norm ofF to be less than lo-15 

or even exactly to be 0. These merits are not reduced by the number of 

function calls. Brown's method has played a good role in the library 

subroutine to solve a nonlinear system of equations. Since our objec-

tive is to study the performance of the Gay-Schnabel method, the follow-

ing three problems will be devoted to the comparison of the performance 

of the members of Gay-Schnabel's class with that of the DFP method when 

applied to finding a minimum of an unconstrained minimization problem. 

Problem 11 

This minimization problem is introduced by Powell (49). 

<f>(x) 

T 
(3, -1, 0, 1) is used as an initial point. The minimum occur at 

T 
(0, 0, 0, 0) . This function is a severe test since the Hessian matrix 

of <P is singular at the minimum point. 



Method 

I 

I' 

II 

II' 

t=2 

III t=3 

t=4 

t=2 

III' t=3 

t=4 

Broyden 

Brown 

*It 

Conv. 

yes 

yes 

no* 

no* 

yes 

yes 

yes 

no* 

yes 

yes 

no* 

yes 

TABLE XIX 

COMPUTER RESULTS FOR PROBLEM 10 
N = 6, Xo = (75, ... , 75)T, 

IIF0 ll = 1.397 

Iter. Eval. N I IF II 

17 26 ·1.08 0.2589D-ll 

17 24 1.00 0. 7793D-12 

18 29 1.21 0.1090D-9 

19 30 1.25 0.1469D-10 

22 44 1.83 0. 7446D-ll 

21 39 1.63 0.4620D-ll 

23 52 2.17 0.2931D-ll 

24 51 2.13 0.8346D_;l0 

25 51 2.13 0.2915D-13 

25 45 1.88 0.2217D-ll 

27 61 2.54 0.5984D-09 

15 68 2.83 O.lllSD-12 

failed to reduce IIFII < 1. OD-10. 
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R 

1.039 

1.176 

0.803 

0.843 

0.590 

0.679 

0.517 

0.462 

0.618 

0.604 

0.354 

0.444 



8.4 

The test was carried out with two different initial points (3, -1, 

T T 
0, 1) and (3, 1, 0, 1) . Broyden's method worked well but algorithms 

II', III, and III' seem to be more efficient. The DFP method is inferior 

to any other method in both cases. 

Examining Tables XX and XXI, it can be realized that algorithm III 

with t = 2 is a superior algorithm in Table XX, but it becomes inferior 

to any other members of the Gay-Schnabel class in Table XXI. This re-

veals that the efficiency of an algorithm will be affected by the given 

initial point. 

Problem 12 

This function, credited to C. F. Wood and documented by Pearson 

(48.), is given by 

T * with x 0 = (-3, -1, -3, -1) and X 
T 

(1, l, l, 1) . The minimum of cp 

* at X is zero. 

Starting at x0 = (-3, -1, -3, -l)T, all the algorithms under con

sideration failed to converge. Some of those algorithms such as algo-

rithm II', algorithm IIl with case t = 2, 3, and algorithm III' with 

case t = 2, 3 converged to a stationary point at (-0.9679, 0.9471, 

-0.9695, 0.9512)T successfully, but this was a nonoptimal stationary 

point. The function value at this nonoptimal point is 49.9218.. Algo-

rithms I, I', II and Broyden's method failed to locate any stationary 

point. The DFP method reduced the function value form 19192 to 1.6471 

in ll iterations with 58. function evalua,tiops, but it diverged afterward. 



Method Conv. 

I yes 

I I yes 

II yes 

II' yes 

t=2 yes 
III 

t=3 yes 

t=2 yes 
III' 

t=3 yes 

Broyden yes 

OFP yes 

Method Conv. 

I yes 

I' yes 

II yes 

II' yes 

t=2 yes 
III 

t=3 yes 

t=2 yes 
III' 

t=3 yes 

Broyden yes 

OFP yes 

TABLE XX 

COMPUTER RESULTS FOR PROBLEM 11 
x 0 = (3, -1, o, 1), ~ 0 = 215 

Iter. Eval. N cp 

31 36 1. 71 0.86190-13 

31 36 1.71 0.86880-13 

25 40 1.90 o. 74570-13 

16 21 1.00 0.24520-13 

17 24 1.14 0.18760-13 

19 24 1.14 o. 77120-13 

20. 25 1.19 0.14040-12 

17 22 1.05 0.15750-12 

30 35 1.67 0.10700-12 

31 162 7. 71 0.22980-13 

TABLE XXI 

COMPUTER RESULTS FOR PROBLEM 11 
X = . 0 (3, 1, 0, -1) , ~0 = 1320 

Iter. Eva1. N <ji 

33 38 1.46 0.13510-12 

33 38 1.46 0.13510-12 

21 26 1.00 0.46840-14 

19 26 1.00 0.17960-12 

28 61 2.35 0.17160-12 

21 26 1.00 0.15910-13 

24 31 1.92 0.11970-12 

23 30 1. 53 0.33560-13 

33 38 1.46 0.12690-12 

24 164 6.30 0.60490-14 
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R 

0.985 

1.013 

0.890 

1.748 

1.541 

1.482 

1.399 

1.584 

1.007 
i 

0 .!.227 
I 

R 

0.988 

0.988 

1.573 

1.433 

0.612 

1.526 

1.215 

1.298 

0.990 

0.248 
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The author also tried x0 = (3, 1, 3, 1) as a starting guess and 

found that four of the given ten algorithms converged. This means that 

T 
the four algorithms located (1, 1, 1, 1) as a stationary point. The 

OFP method happened to be the same divergent situation after four time 

iterations. The computer results are given in Table XXII. 

TABLE XXII 

COMPUTER RESULTS OF PROBLEM 12 
X = 

0 
(3, 1, 3, 1), cp 0 = 12168 

Method Conv. Iter. Eval. N cp R 

I (no) 
b 

20 49 0.39100-0l 

I I (no) 
b 

26 114 0.39160-02 
a 

-0.51920-01 II . (no) 22 118 

II' yes 50 132 1.00 -0.70470-10 0.248 

t=2 yes 88 332 2.52 -0.28230-23 0.192 
III 

t=3 (no) 
a 

24 108 -0.56320-02 

t=2 yes 60 173 1.31 -0.98550-23 0.361 
III' 

t=3 48 141 1.07 -0.33640-20 0.450 yes 

Broyden (no) 
b 

58 253 0.62070-01 

OFP no 96 905 -0.25060-10 

Problem 13 

This problem given by Fletcher and Powell (34) is defined by 

cp (X) 

where 
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={arctan (t;2;t;1 ), t;1 > 0 

n +arctan (t;2;t;1 ), t; 1 < 0 

and 

(f;~ + f;~)l/2. 

This function has a steep-sided helical valley in the t; 3 direction with 

pitch 10 and radius l. The starting point x0 = (-1, 0, O)T and a mini-

mum occur at (1, 0, 0). 

In 18 iterations the OFP method reduced ~ from 2500 to 0.23960-23. 

Only two members, algorithms I' and III', of the Gay-Schnabel. class con-

verged. Broyden's method failed to converge. The results are given in 

Table XXIII. 

TABLE XXIII 

COMPUTER RESULTS OF PROBLEM 13 
X = 

0 
(-1, 0, 0) , ~0 = 2500 

Method Conv. Iter. Eval. N ~ R 

I no 9 91 0.58620-01 

I' yes 20 55 2.04 0.94860-20 0.981 

II (no) 
b 

140 1766 0.13740+02 

II' no 6 64 0.14220+02 

III (t=2) no 95 1615 0.18510 00 

III I (t=2) yes 15 27 1.00 0.12710-20 2.072 

Broyden no 9 91 0.58640-01 

OFP yes 18 45 1.67 0.23960-23 1.382 
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T T T 
The author also used (1, 0, -1) , (1, 0, 1) , (1, 0, 0.5) , (1, 0, 

T T 
-0.3) , and (2, 3, 4) as starting guesses. None of the algorithms, 

except for the DFP method, converged. We omit the reports for these 

tests. 

The Rosenbrock function, Problem 2, is also a good unconstrained 

minimization problem. This function is difficult to minimize on account 

of its having a steep-sided valley following the curve l;:~ = 1;: 2 • The 

qptimal point is at (1, l)T with function value zero. If we start at 

T 
(-1.2, 1) , the. searching paths of several methods have been shown in 

Figures 2 through 5. It revealed in Table II that algorithm I is the 

most efficient method for finding the minimum of the Rosenbrock function 
I 

among all the members of Gay-Schnabel's class and Broyden's method. 

would be interesting to compare the performance of this method with 

I 
1:It 
i 
that 
! 

of the DFP method when applied to the Rosenbrock function. Table XXIV 

gives this report. ~O = 24.2. 

Method 

I 

DFP 

TABLE XXIV 

COMPARISON OF THE DFP METHOD AND ALGORITHM I 
WHEN APPLIED TO THE ROSENBROCK FUNCTION 

Conv. Iter. Eval. N T (sec) 

yes 5 15 1.00 0.17 0.5700D-23 

yes 28 129 8.60 0.58 0.9478D-16 

R 

3.78 

0.31 
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Conclusions 

From the numerical examples and discussion in the preceding section, 

it is clear that Brown's method is probably as satisfactory a method as 

any member of the Gay-Schnabel class or the Broyden method for solving 

systems of nonlinear equations in Rn. Actually, Brown's method is con-

siderably superior to any other methods previously available, especially 

for more difficult problems. Within the 22 different test cases which 

covered the first ten problems in the preceding section, Brown's method 

failed only once and successfully reduced the norm of F to be zero six 

times at least. The effectiveness of other algorithms can also be judged 

by the number of success in the tests available. This is given in Table 

XXV. 

From the evidence presented in the tables, the author also noticed 

that most of the members of .the Gay-Schnabel class failed as Broyden's 

method did, but when this converged, the former turned out to be more 

efficient. Problem 8 was the only exceptional case. When n = 5 with 

xo = (0.5, • . . , T . 
0.5) , Broyden's method converged but most of the Gay-

Schnabel member did not converge; however, if it did converge, such as 

t = 2, t = 4 in algorithm III (Table X), it converged slowly. In some 

difficult problems, such as Problems 4, 6, or 8, a reasonably good ini-

tial estimate of the solution will improve the performance of the algo-

rithms. A failing algorithm will become successful or even efficient 

with a good starting point. It seems reasonable to judge the efficiency 

by the mean and standard deviation of the normalized function evalua-

tions. This information is also given in Table XXV. 

By definition (Equation (4.1)), the mean convergence rate can also 

be used to judge both the effectiveness and the efficiency. This is 
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TABLE XXV 

A COMPARISON OF THE ALGORITHMS BASED ON 
THREE DIFFERENT FACTORS 

Number of Normalized Func. Eval. 
t 

.Mean Conv. Rate 
t 

Method Success* Mean S.D. Mean S.D. 

I 13 1.167 0.278 1.462 0.981 

I I 12 1.049 0.043 1.402 1.071 

II 13 1.840 2.496 1.273 0. 941 

II' 14 l. 305 0.573 1.292 1.015 

t=2 (11) ** 1.280 0.319 1.169 0.753 

III t=3 (7) ** 1.164 0.282 1.055 0.911 

t=4 (8) ** 1.259 0.413 1.096 0.848' 

t=2 (7) ** 1.826 1.640 0.890 0.919 

III' t=3 (6) ** 1.207 0.454 1.000 0.954 

t=4 (6) ** 1.165 0.351 0.959 0.895 

Broyden 14 2.429 2.944 1.152 0.795 

Brown 21 1.552 0.575 00 

*Based on 22 observations. 

·r 
'Based on 16 observations listed in the tables presented. 

**t = 2 is based on 11 observations; t = 3 is based on 10 observa
tions. 



because both the number of function evaluations and the accuracy of an 

algorithm to a particular problem are involved in Equation (4.1). 
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Examining the tables and previous discussion, the author tentatively 

makes the following conclusions. 

(1) Gay-Schnabel's algorithms (algorithms I and I') and the first 

extension (algorithms II and II') are superior to Broyden's 

method. 

(2) In Gay-Schnabel's proposal, the modification of Broyden's 

first method (algorithms I, II, and II) is superior to the 

modification of Broyden's second method (algorithms I', II', 

and III', respectively). 

(3) Algorithm III is somewhat superior to Broyden's method. 

(4) Algorithm IV is inferior to both algorithms I and·I' in 

general. For large N, an appropriate choice of t in algorithm 

III will render algorithm III more effective. 

(5) There is no optimal strategy of choosing an appropriate number 

t in algorithm III. 

(6) The initial point affects the performance of an algorithm. 

As to the application of the member of Gay-Schnabel's class to an 

unconstrained minimization problem, the author observed the following 

results: 

(1) If a reasonably good initial estimate of the minimum is avail

able or if the problem is an "easy" problem, then the members 

of the Gay-Schnabel class are superior to the DFP method. 

(2) If a reasonably good initial estimate is not available, then 

the DFP method is superior to Gay-Schnabel's algorithm. 
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(3) The Gay-Schnabel algorithms may converge to a nonoptimal sta

tionary point. 

(4) The analytic gradient vectors of ~ must be given. 

All of the conclusions are somewhat tentative. The term "reason

ably good" is itself rather vague. Furthermore, the behavior of the 

various methods depends upon the nature of the problem they are attempt

ing to solve. Thus it is unlikely that the few test problems selected 

give a sufficiently accurate picture of the overall behavior of the algo

rithms. However, at least some members in Gay-Schnabel's class have been 

more efficient than Broyden's method. It may prove to be a useful alter

native as Gay and Schnabel desired. 



CHAPTER V 

SUMMARY AND SUGGESTIONS FOR FURTHER WORK 

Summary 

This study is based on the Gay-Schnabel proposal (38), which is a 

modification of Broyden's method for solving systems of n nonlinear equa

tions in Rn. The objectives of this thesis are: (l) to study the essen

tial features and convergent properties for the following algorithms-

Broyden's method, Gay-Schnabel's method, Brown's method, and the DFP 

(Davidon-Fletcher-Powell) method; (2) to implement the algorithms in Gay

Schnabel's proposal and compare their performance with that of the algo

rithms mentioned above. 

The introduction, statement of the problem, basic concepts of quasi

Newton methods, and pertinent definitions of convergence properties are 

given in Chapter I. The algorithm and convergence properties of 

Broyden's method, the technique of nonlinear search, the Gay-Schnabel 

proposal and its extensions, which deal with using the orthogonal projec

tion of current step onto the orthogonal complement of previous steps to 

generate a new step, are contained in Chapter II. Chapter III presents 

two effective and efficient methods: one for solving systems of equa

tions, and another for solving unconstrained minimization problems. The 

two methods are Brown's method and the DFP method, respectively. A set 

of test problems and numerical results are given in Chapter IV. In 

93 
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addition, a library write-up and a program listing for the BROGAY pack

age are shown in Appendices A and B, respectively. 

Suggestions for Further Work 

In the computational experience, we verified that a good choice of 

the initial data often improves the effectiveness of an algorithm. Such 

a choice depends strongly on the properties of the particular class of 

equations under consideration. So far we do not have any good strategy 

for choosing an initial datum and a random guess depends heavily on the 

probability. The first suggestion for further work is to develop a 

localization method for constructing sets containing solutions in order 

to make a good guess for the general system of equations. 

All of the algorithms covered in this study are designed to find one 

solution of a given problem. This solution, if obtained, may not be the 

desired one. For instance, some of the algorithms in Gay-Schnabel's 

method converged to a point when applied to the Wood function, but this 

obtained point was a non-optimal stationary point. The second suggestion 

for further work is to develop a method to approximate "multiple" roots 

or to find further solutions once one has been obtained. 

We tested two systems comprising ten equations (problem 9, problem 

10). We learned that some cases of algorithm III were more efficient 

than other members of Gay-Schnabel's method. We conjecture that an 

appropriate choice of t can change the algorithm from slow to fast. 

Since we only tested the cases t = 2, 3, 4 for the above two problems, 

we do not know if we can get a better performance of the algorithm for 

t > 4. The third suggestion for further work is to do more tests for 

a large system of equations with N > 5 and t > 4. This will involve a 
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slight revision.of the program BROGAY. The fourth suggestion will be to 

develop a strategy of making an optimal choice of t for algorithm III. 
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Name of Routine: BROGAY 

Language: A.N.S.I. Standard FORTRAN 

Author: Guang-Nay Wang 
Department of Mathematics 
Oklahoma State University 
Stillwater, Oklahoma 74074 

Date: May, 1978 

I. Purpose 

BROGAY finds a solution of systems of N nonlinear equations to N 

unknowns, i.e., given 

n n 
F: R +R , 

102 

* n * which is differentiable, BROGAY finds a point X E: R such that F (X ) = 0. 

II. Method Used 

The method used is based on the Gay-Schnabel proposal which is a 

modification of the Broyden method. A new step is determined in each 

iteration by the orthogonal projection of the current step onto the 

orthogonal complement of the previous step. This method is a member of 

the quasi-Newton method. 

III. Use 

A. Provide Main Program 

The user must provide a main program to perform initialization, 

call BROGAY, etc. 

B. FORTRAN Call 

CALL BROGAY (F,N,X,PAR,FDSTEP,EPS,EPS2,C2,EPS3,NSEV,ITMAX, 
ITS,STEPMX,FX,FXl,DX,DF,H,IRC,METHOD,K) 



where 

F 

N 

X 

FDS'rEP 

EPS 

EPS2 

C2 

EPS3 
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External subroutine supplied by the user to evaluate the 
the function F, a zero of which is sought. The statement 
CALL F(X, FX, PAR) results in FX + F(X). The parameter 
array PAR is passed unchanged. 

n n 
F:R -+R. 

A vector which contains the initial guess of the unknowns 
for input; contains the value of unknowns in the last 
iterate for output. 

If FDSTEP > 0, then H is initialized by computing a finite 
difference Jacobian with step size FDSTEP and inverting 
the resuJ.t to obtain the initial H. 

First stopping criterion: stop if IIFII < eps. 

Second stopping criterion: stop if 

II DX II < eps2 * (C2 + II X II ) twice. 

Used in second stopping test for defending the case that X 
becomes a zero vector. 

Stopping tolerance for nonlinear search technique: a new 
point Xl will be accepted if 

II F (Xl) II < EPS3xll F (X) 11. 

NSEV Maximum number of function evaluations during nonlinear 
·search for new iterate Xl; if exceeded, BROGAY returns 
with IRC = 6. 

ITMAX Maximum allowed number of iterations. 

ITS Number of iterations actually performed. 

STEPMX Number allowed step size= maxnorm (DX); if exceeded, the 
DX is replaced by (STEPMX/MAXNORM(DX))*DX. 

FX Current F(X). 

FXl Next F(X). 

DX Change in X. 

DF Change in F. 

H Inverse Jacobian approximation. 



IRC Return code: 

METHOD 

K 

l first stopping test met 

2 second stopping tes.t met 

3 both l and 2 

4 maximum number of iteration performed without 
the above 

5 singular Jacobian at start 

6 nonlinear search technique cannot reduce 
I IF(X) I I sufficiently 

= 7 invalid value of n or method. 

Method selection code: 

= 0 Broyden's first method 

1 Gay-Schnabel's extension to modify Broyden's 
first method 

= 2 Gay-Schnabel's extension to modify Broyden's 
second method. 

Extension selection code: 

l Gay-Schnabel's first extension 

2 Second extension with t = .. 2 

3 Second· extension with t 3 

4 Second extension with t 4 

calling program. 

C. Error Information and Treatment 

104 

An error return can occur on any one of the following six conditions: 

(l) Failure to converge--the nonlinear search technique cannot 

reduce I IFI I < EPS. 

(2) N < 0 or N > 10. 

(3) k < 0 or K > 5. 
= 
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( 4) METHOD = 0, 1 , 2. 

(5) Singular Jacobian at start. 

(Ci) Maximum number of iterations performed. 

D. Structure of the Program 

(1) Calling program (MAIN). 

(2) Subroutine F: contains the functions to be solved. 

(3) Subroutine NLSRCH: Broyden•s line search for nonlinear equa-

tions (from Gay-Schnabel's proposal). It can be supplied by 

user. 

(4) Subroutine MATNV: matrix inversion to inverse the Jacobian 

matrix (from J.P. Chandler). It is available from a numerical 

source, such as IMSL. 

(5) BLOCK DATA: the given x--vector elements for the solution are 

entered here. 

(6) Subroutine REPROT: output subroutine. 

E. Example Problem 

T * T X0 = (-1.2, 1) , X = (1, 1) • 

The MAIN program and subroutines supplied for this test program are 

presented below, followed by the printout from BROGAY for the above prob-

lem. 



.1/.A.NG Jn8 TYPPU""'=CCOY 
IMPLICIT PEAL•q (A-H.O-ZJ 
EXTER~AL FSUA& . 
Rf:AL*t$ JC I tO 1, P .~<<II 0 I, FJC I I 0 l, FX \1 I C I ,ox I I':> I ,OF ( 10 I oH (I O, I 'l I 
N:2 
DO 10 I=I,N 

I 0 PAR I I I = C • 0 D<l 
X( II =-lo200 
Xl21=1>000 
FOSTEP=O oOt:'t:trJn 
~PS::O, 10-'3 
E:PSZ=O >10-7 
C2"'0 ol O-J 
EPSJ=I, 000 
NSEII=I~~ 
l H<A> = 200 
STE PMX =I 'l•DO 
METHCO~ I 
"' .. I C"LL 3 ROGAV (F c;uBA, N, )C', PA.~ ,FOSTE"" ,E:PS,!:PS2, C2, EPS.J,,.JS=:II • ITMAX • 

1 t TS,sTE:lMX,FX,F'(t.ox,oF,H,rRC,METHQO,K) 
WRITE ( 6 • I I I I I X ( I l , I= I,'< l 

lll f'tJRMAf (IHQ,)"(,tfHE SQLUT[ON OF THE SYSTENI IS: •,2024.,16. 
STOP 
END 
::01 • .6F;OUTINE I'SlJqA (X ,FX,PARI 
l"'PLICIT '""AL•II c-.-H,O-Z I 
AEAL•A f")((lO),:'((lQ),PAP( l"J 
F X ( II• I O. 00 l)o ( X ( 2 1- XI I loX ( I l l 
FXC2I•Io000-X( 11 
RETURN 
E"'D 

J~S2 JOR ST-.TISTICS 

33 CARDS READ 

0 SYSO~T PRINT RECORDS 

0 SYSOUT PUNC~ RECO~OS 

O~JO '"lNUTES EXECUTION TI"E 

NF" IRC F DIFNOP"I ---------- ----------
0 ) ' o,•Qtqo Cl o.O!JCOO 'lO 
I 6 0 o. 47~00 Cl Ooll<CD )0 
2 Q c O:. 11\74 qo Cl l'),)ll'lD-'ll 
1 IZ 0 o. 43.].71) 01 :'e.4 1240 'lO 
4 14 'J Oo )6f> 70 n1 Oe47C10 nn 
~ I 7 0 Oe JAACO 01 0 .2~480-Cl 
6 21) 0 o.,.Jor.)70 <:'I o.7~J'::.O ('0 
7 22 0 Ool4790 I') I Oo 1~160 01 
II 2b J 0.14~40 ('\I :l.24.&7Q-jl 
9 29 0 o, 1415() 01 Oel<l'SSO-rH 

10 31 0 O, l4?C'O 01 Oe 145 tD-Cl 
ll 33 0 ".to~ 20 01 Oe31ROO <)0 
12 36 () "• I'J9 2n 01 Oe 21 420-C3 
13 J<,) 0 o, 11'\590 01 o. 210 70- c 1 
14 41 0 0,71!210 0' Oe27600 0':> 
15 .... 0 Oo 782 no 00 Oo 155 70-03 
16 47 0 o. 771 !!0 <lO 0.1~200-')1 
.17 "? c 0? 53050 00 0.23230 '10 
Ill 52 0 o.., 1:)]940 t:C Oa R3160-04 
19 55 0 1).52'>80 00 C o95Q90-02 
20 57 0 'h30?t0 no "•13770 ~0 
21 0~ 0 o. 37'\60 00 Oo 15560-')1 
22 b4 0 0.~5730 'lO -~ .1Q22D-r.t 
23 66 0 Oo 17:>50 1'0 0•18490 00 
24 61! 0 o. 13730 00 Oo )'>150-•}1 
25 7";! I) 1).,12~50 1)0 Oolle<>O-<ll 
Z6 74 c; Q., d891D-Ol Oo 36560- ~1 
27 75 c 1).71530:-01 Oo173eD-CI 
2H 77 " o~ t~"3"D-~I Oobn6qD-'ll 
29 71! 0 OoiJ"'!'0-15 o.t~e4o:...~t 
29 78 I o.t3aP.o-ts o.co1no on 

OF ox ---------- ----------o.cr. r,."~o 1~ n .. rt!"C·"'D on 
Ooi5~QO cc "').,)11\QO 00 
O.fl7870-~1 o.15'if<D 00 
0~611-\0 00 o, 5273::1 oc 
Oe'57Af.o0 en n., 1 r a?o C I 
O.f...6Jd0-0l 0.78:)"l0-t...l 
o~ ,,.,~o 01 Q.,b-+1 tO ~n 
Oo 24 Q'10 01 1).,73740 ;)0 
o. l '3110 Q(J C,4~5A)-r)t 

Coi461D oc ., ... SA'110-"i l 
Oa674.60 )0 "o l<::;4 10 co 
0'l 34 3 70 '10 c) ""'~')I) co 
,.l~'l~0-02 ').,10630-C' 2 
0. "510 00 Oo4'3P.20-'l I 
Oo 2!'1370 00 o.., 29800 <)0 
o.1 ~Q<JO-oz 1')., 12391)-0 2 
0.154290-1)1 t).32QQ[)-01 
0,23860 nn Oo3C800 01) 

·Ooi5<HD-01 :lo 1 46.'30-f) 1 
Oo650.JD-01 0.42'> .. 0-01 
Oel7"CJO 0~ ')~277'50 Oil 
Co4317D-Gt Oo7156D-01 
0~4'3~20 ()~ Q,'l2~6C>-')·I 
o.tqs~ o 00 .Q.,~4.37D 10 
Ooi547D oc 'loll 3 >D 00 
0,10570 00 ("L., 3756-J-0 1 
0•88470-1'}1 o~ ttl'..-:,u <)0 
0. 70 110-0 1 o.t477'D •JO 
0 ,!!2390-0 I O,FI2J'loC-02 
Ce10'340-0l o, I C 840-02 
O.l'l~4D-OI o.t C'B4:>-u2 

.JCR 527 

X-'J( * ----------
C.o 22GCO Cl 
Oo20'3.,.0 C1 
t-.21)470 01 
o. 21990 Cl 
Oo li:S990 01 
c..tCJ08D ~~ 
Co2')120 ~I 
C.,\66-:!C "I 
Coi615CO 01 
Coll5510 01 
C'el557D 'l1 
Co 13310 Cl 
c~t3310 n1 
o.IJI5IO Cl 
C, IO'lBO •11 
Oo10890 01 
Colll'lO 01 
Oo e 1 790 00 
Oo8035C: JO 
o. 844-60 JO 
o .so9•D ?0 
Oo49!l3D I)(') 

Oo 5"'370 0!' 
Oe34 )80 1)0 
(' .22750 t'O 
Oo26450 on 
Oo15410 ~<: 
0.71530-02 
Oo1<ltl4D-C2 
Co 1388C:-16 
Co !39~0-16 

TH;;: SDLUT I ON OF THE 5YST E'" IS : O•IC001~ancooocoooo 0 I OolOOOO?OOCOOC,O"OO 
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IV. For Large Program 

If N > 10, it wi 11 be necessary to make dimension change in all 

routines. 

Gay, 

V. Reference 

D. M., and R. B. Schnabel. "Solving Systems 
by Broyden's Method With Projected Updates." 
Science, Cornell University, 1977. 

of Nonlinear Equations 
Department of Computer 
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SJJII Tl"f'=liJ,N'lSllfiCHK 
1 Jpo~PLIC!T ~!:AL•B ( .. -H.Q ... ZJ 
2 ~XTEf'N&L FSUAA 
3 PEAL·~ Y(ICJ,PAil(IOloFKCICI,FXI(IOioOXCIOJ,OFCIO·I,H(IOoiOI 
4. N= 2 
5 DO I~ I=I,N 
6 l 'l PAW ( I ) = t"Jo C DO 
7 X(li=-I,?JO 
8 X(21=1 .000 
9 FOSTEP=OoOCC 1;)0 

10 EPS: ... 10-8 
11 !:DS2=n .. to-7 
12 C2="· ll>-3 
I 3 !" PS 3= I 0 DO 
14 NSFV=lrO 
15 l 'TMA"'= :?'lO 
16 STEP"~ =I DoDO 
I 7 "E THJD= I 
18 I<= I 
l ~ (:ALL ARCGAY CFSOJB", "I, x, P AA, FCS TCP, EPS,EPS2: ,C 2, E.PS3, NSE Ve J TMA X, 

J l TS ~STEP.,..)( .FX ,FXl ,OX, OF ,H, IJOC, N.C:THOD,I( J 
2~ WF'ITF (6ollll (IC(IIol=loNI . 
21 Ill F("QMI'.T (IH0,3C,•TttE' SC'LUTICN OF THE SYSTEM IS: '•2024el6) 
22 STOP . 
23 END 

24 S~~~~UTl~E F~UB4 (~,FX,PA~J 
25 ~~~LICIT ~~AL•8 (A-H,O-ZI 
26 R€AL•A F')C'( JO ),X( 10),P6R( lOJ 
27 FXI II =tr,.OCC•CX( 21-X( II•XC Ill 
2" Fl<121=1o0DC-XIII 
29 ll(TUPN 
JO END 

31 SUR~JUTIN~ 60QGAY CF,N,X,PaO,FOSTEP,EPS.:PS2.C?,EPSJ,NSEV,lTMI)(, 
1 tTS,STEP~X~FX,FXt.OX,O~,H.t~:.~ET~QO,K) 

C•••••••••••••••••••••••••••••••••••••••••••••••••*••••••••••••••••••••• c• . . . • 
c• THIS PPDG~A~ IS CESIGNEC T~ T~ST T~E ALGODITH~S DEVELOPED BY * 
C• Do No C.AY AN Po So SCHNABEL, WHICH IS A MODIFICATION OF THE 8ROY-• 
C• DEN ~~TH~~ FD~ SOLVING SYSTE~S ~F NO~LINEAQ EQUATIONS IN N U~KNOW* 

~: ~~T~~~~N=~T~~g~E~T7~~ ~!E~H~sce;~~~~~~i~PA~Ni~=~H~~~~;~~~N~l THE; 
C• CO .. Pl EME"T OF THE P'IEVIOUS ST!":>s. THIS ~ETHOO IS A NE,.BER CF T~E • 
C• OU&SI-"'!:•TDN ~ET1100o CIFFE~F.NT VEiliTIONS o.RE ODTAINEO BY TAt<IMo * 
C• DIFFERENT NUN3ER OF PREVIOUS STI:OS. • 
c• 
C• ORIGJNAL SOURCE ~ GAY,. o. Me· AND Re ·P.. SCHNABE:L,. 
Co 'SOLVI~G SYSTF.~S OF NCNLINE~c EOU&TICNS BY BllOYQEN'S METHCD • 
C• WIT,. PRD..IECTED. UPD.OT!:S.' 119771 • 
C• * 
C* PPC(;:,Ah'NE~ : GUANG-NA.Y WANG • 
C• 0EPAQ.TIIro1E.NT OF WATHE~ATJCS * 
C• OKLAHCMA STATE UNIVERSITY • 
C• • 
C* VJIIliABLES • 
C• F EXTE~NAL SUBPCUTINE SUPPLIED RY THE USER TO EVALUATE• 
C• THE FUNCTION F, A. 1E~O OF •HICH IS SOUGHT. THE • 
C• STATE"ENT CALL F!X,FXoPAPI PESULTS IN TX <-- FClllft * 
C• THE PA'IAMETER APQAY PAR IS P&5SF.U UNCHANGED• * 



<• 
( .. 
c• 
c• 
c• 
c• 
Co 
c• 
C• 
c• 
C• 
co 
c• 
c• 
c• 
c• 
c• 
co 
C• 
C• 
co 
c• 
c• 
Co 
c• 
c• 
c• 
c• 
c• 
c• 
co 
Co 
co 
co 
c• 
Co 
co 
co 
Co 
c• 
Co 
C• 
c• 
Co 
C• 
c• 
Co 
c• 
C• 
C• 
C• co 
c• 
Co 
co 
Co 
co 
C• 
Co 
c• 

N 
X 

FO!<TE~ 

E~S 
EPS2 

C2 

EPS:l 

NSEV 

IT MAX 
ITS 
STF.P"1X 

Fli 
FXI 
01. 
OF 
H 

lllC 

METHOD 

SUBI;:JUT INES 
GENPI 

GF.NP4 

XOOCTP 
MAXN')P'4 
Tw('l~~"' 

NUMPfP OF UNK~GW$ •rJ~ NUMBE~ OF FOUATIONS • 
A Vf.CT8R ._,HIC'~"' C')•.JTAINS TH€ :NITIAL GU£SS OF THE • 
UNKNC'*S f":JR INPUT; C~NT 'INS THE V&.LUE OF UNI<NCWS IN • 
l.AST ITERATE FCR ~UTPUT• 
IF <OSTEP>O THEN H 15 lNITI~LilEO BY CO~PUTt~G A • 
FINITE DIFFEPENCE JA:OBl~N WITH STEP SIZE FOSTEP AND* 
INVERT lNG T·Hl- RE5UL T TO OBTialN THC:: I'\! IT I4.L t-fe • 
F!PST SHJPP!NG CP!TF.~IC~ : STCP IF nFll < EPS o 
SECOND STOPPING CRITERION : STOP IF o 
IIDXII < EPS;>o(C2+IIXII1 T"ICE * 
U~F.D IN SECOt<O STCJ"PI NG TEST FQq DEFENDING THE CASE o 
)( UE lNG A ZE~C v;::CTQQ., • 
Sl0"P1NG TCLERE"-CE FCR N)NLI..,EAR SEARCH TEC~IOUE! * 
~ N~~ POINT XI ~ILL 9E ACCEPTED IF o 
I IF (X I I I I < E PS :l•l IF ( ~) I I· • 
~A~IMU~ NUMgE~ OF FUNCTI~N EVALUATIONS DURING • 
NONLINEAR SE..t~CH FOR NEw ITE::i.._T:, XI; IF EXCEEDED. * 
BPOG~Y ~ETUQNS ~ITH IRC=6 * 
MAXI~u~· \LLCWEO '\IUM9~~ CF ITE~ATIONS * 
NJMflEh OF ITERATIONS ACTUALLY PEO~QRJrotE:lo • 
LJt.HC.E:ST ALLC'•EO STEPS lZE=Iio'4X~CPM(0X )i IF E.XCEEOEO. * 
THE OX IS PEPLAC~D BY ISTEPMX/~AXNORMIDXII*DX o 
CUR'lENT FCX I * 
NE )( T F (X) • 
Ct--IANGE IN X 
CHANGE 1~ F 
INvER S.E JACCO 1 ,,.N APPhOX l·~ATI ::N. 
QETU::<N CODE : • 
IMC=l F·IRSi STOPPI"'G .TEST loi;E_T * 
l~C=2 SEC~NO STOPPING TEST ~ET • 
IRC•3 ROTH I & 2 o 
1AC=4 ~A~IMU~ NU~BER OF ITER4TlON PERFCRMEO * 

WITHCUT T~E 4BOVE * 
IRC=5 SINGULAP J.>.C:JBIAN AT START 
IRC•6 N~NLif<E&q SEARCH T!CHNIOJE C&NNCT REDUCE 

IIFIXlll SUF"ICIENTLY. • 
IRC:s7 tNVAL 10 v:.Lu!:: CF N ANO .,.ETHO~o • 
METHOD SELECTICN C90E • 
=0 BQQYOEN•$ FIRST JroiiETHIJO. . e· 
•I ~OOIFICATJ9N OF BROYDEN'S FI~ST METHCO 
=2 MOOIFICATICN OF BROYOEN'S SECOND METHOD o 
GAY-SCHNA:l!L'S EXTENSION SELLECTION CODE o 
t<:a:l GAY-SCHNI.f:3EL'S FIPST EXTE~SlO""' * 
K>l G .. Y-SCHN.O.AEL' S SECOND EXTENSION o 

22• CASE T-:2 * 
~3. CASE T:) • 
.::4 • CASE T=O\ • 

• • 
G(NERATE QPTHOGONAL PRCJECT!ON OF CURRENT STEP CNTO * 
THE CJ:',Tt-oQ(.('INAL COMPLEMENT OF PQC::Vl OUS ONF. STEP • 
C.E,.,Ef""ATE" ORTtiCGCP"l4L PROJECTION CF CU~RENT STEP ONTO • 
THE :J;:;. THOGONa.L .CO"~LE""ENT OF PR~.VIOUS T•O STEPS * 
C.ENE~ATE ORTHOGONAL PRr.J~CTION OF ~UP'lENT STED CNTO • 
THE CRTHO!",ONAL CC•PLE"E"T CF PPEviOUS THI>EE STEPS • 
GENE•ATE OPTHOGONAL PROJECTI~N OF CU'lRENT STE~ C~TO * 
THE ORTMOGr.NAL CC'<PI..ENENT OF oqEVIOUS FCuR STEPS a 
DO !NNEN PI'<COl;CT OF T"O VECTORS • 
FINO THE "'•XINUM "ORM CF A GIVEN VECTOR * 
FJNO THE LZ NORM OF 4 GIVEN VECTOR 

llO 



C• OTFF ~tND THE DtrrfPENCE OF T•O VECT~~~ * 
c• I<DDMLl.. SU.,.'-4AT ION OF ONE VEC~OR WITH A ~(ALO~ MULTIPLE OF * 
~0 ANOT .... f:R Vf..CT':J~ 

co 
~-

VC,...UL 
F 

A SCJ.LO~ ~UL T lPL£ :::F A Gl \lEN VECTOR • 
~XTF"T""JAL SUP.~OuT !""= CONTAINS THE FUNCT·ICNS TC SQ\IE' • 

Co Q~Pf'OT :lUTPUT SL.BPCUTl,.,.E • 
c• N_ 5RC .. 1 ~~~verN'S LINE S.:::"Q(t-1 F=R N("H•-'LINEAR :::au,t.TICNS • 
Co FROM GAY-SChNABEL'S PJ:::OPQSAL• IT CAN BE Sl..PPLIEO * 
Co qy ·Tt-t£- USf-_~. * 
c• JotiTNV ~~T~IX JNVt~SICN SUA~CUTINE 3Y 0~, JoP.CHANOER • 
c• AL OCt< OATA Tt1£ GIVEN S:::LUTION ENTEOEO HEP.E * 
co • C••,•••·•••••••••••••••••••••••••••••••••••••••••••**•••••••••••••••••.••* 

)2 l"'nt...lClT REAL•B (A-H,Q-Z) 
33 E)TE~NAL F 
) 4 R[ AL • 8 )': ( 1 C ) , :l A Q ( 1 0 ) , FX ( 1 0 ) • F 't I ( l 0 ) • OX ( 10) , 0 F ( 10 ) , H ( 1 0 , l 0 I • A ( 1 r) • 

l V ( 1 0) • Z ( 1 C) , SB AR ( 1 ('I ) , PQEV 1 ( 10 ) • p;;;,Ev 2 ( l 0 J , PREV3 ( 10 I. 
2 pq:;:v<>(IOI 

J5 I ~C=7 
36 IF (~ ~LC. 0 .ORe METHOD eLTe 0 aORe "EThOO eGT• 2) ~ETURN 

c•• • • • .. • 
c 
C PARAMETER IN!Tl.LlZAT!~N 
c 
C•• •• • •• 

J7 NSA~~;O 

38 ~Y~.r~~=Co~n 

3Q OFN(';:- ""'=0 .00 
.. o 1(: =0 
41 l~C=C 
'2 ITS=~ 
aJ LCD:" 
•4 C~LL F(X,~X,P-~) 
45 C~LL T•CN~~ (~~.F~ORM.FX) 
46 ...,F e.J 

c 
c 
c 

"7 IF (FOC:.TF.Pl 40.40.10 
t.8 1 .) OFL T•)l=t.;:::-:/IUSTfP 
.Q 00 31'1 .;::::1 ...... 
50 QV(j):)((J) 

'Sl )t(J)=.)I'(JJ•~DSTEP 

"3,2 C.ALL F (X .FX 1 .PAR) 
S 3 01 2 0 I :z: l • N 

IN!TlA-llE H TF NECESS~~y 

!>4 nr(IJ=F~liii-F~Ill 
ss Hf r .JJ .::.DF< I)•OELTAX 
~b 20 (CNT !Nut 
~7 '!ltJ)-:OxCJI 
58 30 CCNTI~LJt-
~<;, Nf" =Nf +PI.I 

"0 
61 

c ••••••• 
c 
c 
c 
C•.• •• ••• 

62 C~LL MATJNV (H.N,H.~,OET.~A) 
6J IF (~) 4~,4C,65~ 
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c ••••••• 
c 
C ~•JO~ LOOP STARTS 
c 
C•• "• ••• 

64 41 CONTINUE 
b5 CALL RE'f'OJT (ITS .KO .NF"eN.:>XNOR .... X.FNCRiri4.0FNO~M. JRCJ 

<•·-···· c 
c 
c 
c 
c 
C•• • • ••• 

FIRST STOPPING TEST : 
~'I"ST STOPPING MEETS IF fiFII oLE. EPS 0~ THE "'U><BER 
OF ITEQATICNS EXCEEDS LIMIT 

~6 JF (FNCQM-EPS) 50e50.~0 

67 50 IRC=IRC+I 
:08 ~1 IF (IPC-11 70,670,670 
·69 70 IF (I TS-lTMAl<l 80,640,640 
70 80 I.TS=l TS+l 

c•• ••••• 
c 
C OX <-- HoFX 
c 
c•• • •• •* 

71 on 1 "t' t=1 •"' 
72 DC' '<0 J=l ,., 
73 9•1 ~(JI=H( l,JI 
74 ICO C•LL XOIJOTP (A,FX,N.OXCIII 

c ••••••• 
c 
C E'-iSUP~ ""AXNOFhHOX) .LE. STEPMX AND X <-- X-UX 
c 
c ........ . 

75 C~LL ~AXN~~ (N.OXNCRM.DXJ 
76 IF (JXI\I'lR"'-STEPMX) 130eJ30el10· 
77 110 DO 1?0 I =I oN 
78 12'l D•!ll=ST!cP..,X/DXNQ<0'4•0X(ll 
79 Q)t,.JQr'M=STt.P""'X 

c •• ••••• 
c 
C SECOND STOPPING TEST 
c 
c•• • • •• • 

80 &.J() CALL NLSRCH (FeNeFXJ.X •. OXeEPS.J.FNORMePA~."--SEVeNF.STEP,..X.I'OXNORN) 
81 IF (FNOPt.t:) t-6ileJ40.t40 
52 S40 CALL TwQNQ~ (NeOX~OR~eOX) 
H3 CALL T•CNR~ (NeXNORNe)(t 

c ....... . 
c 
C SF.CCNO STOPPI"G "EETS IF lloxll oLEo EPS2•IJ:<IJ 
C !" TWO CO"<SECUTIVE TIMES 
c 
C••••••• 

84 EPSO~=~PS2•CX~ORN+C21 

85 IF (f'YN1""-EPSOX I 160.160,150 
8b 150 ~SA~~:~ 
87 GO T~ !A~ 
88 1~0 NS.~F=NSA~E•l 

eq If' ('IS• .. E-.?1 1!!10.170,170 
90 I 70 I"C ~2 
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91 GO Tn 40 
·C •• • • • •• 
c 
C UPDATE H 
C OF" <-- FXJ-FX 
c 
c ••••••• 

92 lRO On lQ~ l=l•N 
9J IQO O~III=FXIIII-FX(II 
94 C•LL TwC.N~~ (N,CFNOR~,OF) 
95 IF (ilF ... CR'4) A0,4uo20C 

c •• ••••• 
c 
C l <-- OX-HoOF 
c 
c•• • • •• • 

96 2~"cl LCP=LrP+l 
97 OQ 220 I =1 oN 
9~ OC 21r J=loN 
99 211) \I JI=HI I oJI "C CALL XDOOTP (A,QF,N,\1(111 

101 220 Zl I J=nxl !1-111 I I 
c•• •• * • • 
c 
C USE FX AS A TE~Pa~ARY AP~AY FCR OX OR OF 
c c. .... ...... . 

D2 IF" (\4ET><Q)-II 370o2~0o2'\0 

c•• •. • • • 
c 
c 
c 
c 
c 
C•• • • • • • 

MF THQO=C 
M~THCO=l 
W2 : D=-=l 

I:I.J 2.311 or z•" 1=1 ,N 
104 2•0 FVIII=O'<III 
IJ5 GO T:'.27n 
10<> 2'>0 0:: 2M' l=loN 
107 2"'r. F •I I I=OF! II , ...... . 

c 
c 
c 
c 
c 
c 
c 
c 
c•• • • • • • 

C~NEPATE 

I(=J : 
K>l ! 

B~']YOEN'S FIRST VETHOO 
MODIFICATION OF SPOYOEN' FI~ST '4ETH00 
MOillFICATICN CF BRCYCEI\' SECOND fo(ETHOO 

SA&~ !N DIFFERENT ~ASES 
C.Av-SCH~A~~L•S FtAST EXTE~SIO~ 
G&Y--.Cto"-A l!;L'S SECIJ"'O EXTENSION 
K=2 C&<;E T=2 
1<~3 : C&SF T=3 
K-=4 : .c•se T•4 

lOR 2 11) JF (LC'D-K) 2~0 ,,crtC· ,J40 
ICQI 2 ~0 GC TJ ( 2Q-C • JlQ • J~C ,.JJO) • LOP 
ll'l 2'11) DC' J"C l=loN 
Ill 300 Sl'AIHII=FX(II 
112 Gr T::J 3M' 
Ill 310 CALL GF"NPI( NoPPEVIoFXoSBAA) 
114 GD T~ ,~n . 
115 320. CALL GENP2 (P'Ioi"I'EVIoPREV2oFXoS'tolA) 
II 6 GC TC ,611 
ll7 3:\0 C.&LL GENP3 (N,Pk~Vl.PJ:!EV2ePR'EVl.F)(.SeAR) 

113 



114 

II 6 GO T) 1'>0 
llQ J~O GOT:' r.1l':l,J2t",J.J0,.35C,, K 
120 3~0 CALL Gl.NPA (N,PREVl,PREV2,PAEVJ,PREV4,FX,S6A~~ 
121 360 IF C>'!OTM()0-1 I 37•),390,420 
122 370 DO J~O I =I oN 
123 3~0 SRARCII=OXCII c ......... . 

c 
C V <-- (H••TI•SRAR 
c 
C•• •,., * * • 

124 JQO DC 41 'l .1=1 ,N 
125 DC 4""0 I=t,N 
126 o\00 •(I)=H(l,JI 
127 410 CALL XDOCTP CA.SBAR,N,VC.III 
126 GO r: ••c 
129 420 DC 430 l=t,N 
130 430 VCII=SBAR(I) 
131 \40 CALL ~OOQT~(V,QF,N,VDOTOFl 

c•-••••· c 
C IF SBA~=O THEN HI K+l ):H(I() 

C IF SBAR=O TI-€N H(K+lJ= ... (I() c 
c••••*•* 

132 IF (VOOTOF) 445,~65,445 
133 445 VOOT;)F=IoOD'l/VD:JTOF 
I 34 DC 45n I= I ,N 
135 450 VCII=VCII•VDOTDF 

C•• •• •• • 
c 
C ~ <-- H+Z•Cv••Tt 
c 
c••••••• 

136 oo •~n J=t.N 
137 00 4t-t') 1,l,N 
13 6 4 61) H II , .I I =H II , J I • l C I I • V ( .I I 

c ••••••• 
c 
C STORE THE LAT!:.ST- K S'S 
c 
C••••••• 

I ]9 465 IF O<ETH()0-1 I 4~0 o470 ,470 
t•o 470 JF '-~~-K, ·~o.•s~.570 
141 tdO GO T~ (4Q::" ,'3,10.5'50,550)eLOP 
1~2 4'>0 DO 5''1 1"1 ,N 
l4l PREV!CTI=FXCII 
104 !>00 FX(Il=FXI(I) 
145 GO T:-' •o 
146 510 00 5?0 Tzi,N 
147 PPFV?Cil=FXCII 
146 520 FX(Il-=FXl([) 
14 ~ GO T~ •) 
l SO 5)0 DO 5•1') l=loN 
ljl PDFV'!(f);;:.FJC(l) 
152 540 FX(Il=FXIIII 
153 GO TO ~~ 
154 550 DC ~~r J&t.N 
155 PI'1EV4( II=FX( II 
156 SbO Fl'CII=f"XI(ll 



1~7 GO T> 01 
1~8 570 GC Tr. (4qQ.58C.6~0.6ZOJ.K 
1~)9 ~~ODOS'J~l=t.N 
1~0 P~f.Vl ( t) ;:Pf."EV2( I) 
1!>1 Pl>fV? ( 1 ):VX( 11 
162 5r~0 FXCI·l=FXl(l) 
163 GO TJ "" 
1 ~ 4 fl 0 C OC ~ 1 C l = 1 ,. N 
11>5 PPE Vl ( ll=PPE\12( II 
11>6 PPEV.? Ul=>'lE\13( I I 
1~7 P"EV'III=FXtll 
1<>8 610FX(Il=F~IIII 
169 GO T) 4n 
170 b200C63t"'l=l•N 
171 ""EV! ( II=DJ<E\12( II 
172 PPEV:?(t):O~EV3(1) 
173 PPEV3(!1.=PPEV .. ([) 
174 P~EV4(I)rFX(lJ 

175 ">1CFXtli=FXI(II 
176 ~0 T~ 40 

C••••••• 
c 
C ~4Xl~UM NU~BE~ OF ITERATlCN PE~FOP~EO 
c , ........ . 

1'77 640 fOC=4 
1 7 8 GC T:' f'l70 

C•• * • • • • 
c 
C SINGULAR JACCB!AN AT STAPT 
c 
C••••••• 

17Q 650 l~Cr~ 
ldO C.0 T:J ">70 , ....... . 

c 
C N~SJ<CH CANNCT ~EOUCE YYFIXI(( SUFFICIENTLY 
c 
c••••••• 

UU 6t'l.U IPC='-
1~2 C•LL ~AXNFM (N,0XN0~~.0Xt 
163 C•LL ~AXN"M IN.OVNCq~.OFI 
t3• ~10 CALL ~EP~lT (ITS.K· .NF,.N.OXNOR~,.X.FNC~M.O~NOQM,IRC) 
16S ~ETUDN 
166 END 

187 SUf'\0-.UTINt GENPl (N,U.V,W) 
c ••••••• 
c 
c 
c 
c 

'" IS H<E c;THOC.CN•L P"OJECTION OF V ONTO THE O~THOG01NAL 
CC .... P._ E ... f:.NT OF U 

C••••••• 
I~ g I~ Pt.. l C IT ~ E: A L • 6 I A-M • 0-l I 
I 6 9 FIE AL • II U ( ! ~ I • V ( I 0 I • w II 0 I 
19C C~LL XOOOTP (U,V,N,OUMEO) 
191 C.f.LL ._-conTP Cu,u,N,OE"'o:JM) 
I ?2 T=DU"'E R/OE NOM 
193 00 I"C l=loN 
1>4 trO WIII=V(I)-UIII•T 
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·195 
!96 

!97 SU~P~UTINE GENP2 (N,Ul•U2•V,w) 
c ••••••• 
c 
C ~ IS T~E OPTHOGC~AL PROJECTIO~ OF Y ONTO THE O~THJGONAL CO~LE~ENT 
C U I A'lD U2 
c 
C•• ••••• 

19H tMFL!CIT ~EAL•B (A-H,Q-Z) 
199 RE•L•R UII!OI.U2(li)I.Y( 101.~(101 0 62(101,63(101 
200 CALL GF.,..Pl (N,Ul ,uz,A2.) 
201 CALL c~t:NPl CN,Ul .V,83) 
2)2 C.ALL :riJOQTP (V,B2,N,OUM=R) 
203 C.ALL XCDOT~ (82,R2,1\.,0EPI.:CM) 
204 T=OUtr.1EP/OENl114 
205 Of' 2'~C I=t,N 
20(> 2'l0 W(ll=rl3(11-El2(11•T 
20 7 ~'>E ru>N 
2~ 6 END 

209 SU~R~UTJNt GENP3 (N,UI,U2eU3,V,W) 
c ....... . 
c 
C ot IS THf O~THOGONAL P"'OJECT 10"' OF V ONTO THE :JRTHJG:J'lAL CQ .. >L.f:,.ENT 
c ut .u::- .uJ 
c 
c•• •• •• • 

21 0 I ~1 fiL I C I T R ~ A L • 8. ( A- H , 0- Z ) 
211 Rf'L•A UIIIOioU2(101.u3CIOI,V(Itll,wiiOI,B3(1'll.,64(101 
212 CALL C,Ft<.oP2 (N,Ul,u2.uJ,BJ) 
213 CALL GFNP2 (N,Ut.~.V,f\4) 
214 C.ALL )I'QOOT:J (V,f:JJ,N,DU'-4!:~) 

215 CALL YODOTP (f~J,B3.~.DE~C~) 
216 T=OU~Eq/O~NOM 
217 ooJ-ni=I.N 
216 300 wCII=B4III-t!31II•T 
219 RETU~N 
220 ENO 

.221 SUAR~UTINE GENP4 (~.ut.U2.U3.U4.V.W) 
C•• ....... 
c 
C ~ IS C"THOGQNAL PROJECT ION ('IF V C'ITO THE :J~TH:JG:JNAL CO""'LE"ENT 0~ 
c ut.u?.u3.U4 
c 
C••., • • •• 

222 IMPLIC'IT REAL•::) (A.-H.O-Zl 
223 RE.AL'" Ull 10 I.U2( IOioUJ( IOI.u•IIOI,vC101,WilOI,B4(10I.B5(101 
22:& C.ALL GFNP3 ("'hUl.U2.U.J.U4.B-4) 
22~ C.J.LL GtNP~ (N.Ul .U2.U3.'V.Fl51 
22fl C.lLL )IDOCT~ ( v.84 .N.OUMEJ: I 
22·1 C4LL ~DOOTP (B~.~~.~.DE~C~t 
2~d T=OUMER/OENOM 
22~ 00 4'"'0 t=l•N 
230 •oo •<rt:H51ll-t14lli•T 
231 RETU~N 

232 END 
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2]3 SlJA~rUTINE XOOOTP ( ~.v,N,PROD» 
c ....... . 
c 
C PF"<IOO < -- I '4NER P!=l00U( T CF X AND Y 
c c.•. * •••• 

234 ]_..Pl..! CIT HEAL•A (A-H.O-Z) 
2.J5 Rf a.L"'A XC 101 ,Y(.lO) 
2Jb PPO~=c.coJ· 
237 Q('l t~ l=t,N 
2~9 10 ·p~C"'O=P~OO+X(I)•Y(f) 

239 ~fTUPN 

2 .. 0 f"-0 

241 

267 

SU~R~UTI~E M•~N~~ (N,U,V) 
c ••••••• 
c 
C U <-- "AXNC.R .. (VI 
c 
c••••••• 

l"'PL!CtT -=lEAL*8 (A-H,O-Z) 
"E" .AL •"' V ( 1 0 ) 
u=o., ,; O'l 

00 ~:o~;~;~, 111 
r~ <u-s) to.2o.2o 

I~ uo S 
2"' CINTlNLJE 

RCTUYN 
E'<D 

SUBRCU"!'lNE Tw~N~'o4 (N,U,V) 
C•• • • • • • 
c 
C U <-- T •CNC·R "'4 C V ) 
c. 
C•• • • • • • 

I~PLJC[T ~EAL•8 (A-H,O-Z) 
QEAL•R V(JQ) 
TI•'),CDO 
00 l~ t=t,N 

10 TI=D .. AXICTI.OABSIV!IIll 
S• o .. ron 
IF (Tt) 40,40,20 

z 1 s 1 ':II 1 . ,, no /T 1 
00 J~ l=I.N 

ToV( II•SI 
.)') S=S+T•T 
40 tr-OS"lRT(S)•Tl 

PETUqN 
E"'D 

SU~~)UTINE OIFF (N,U,V,W) 
C•• • • • •• 
c 
c. u <-- v-w 
c c••••••• 

2,8 I"'PLICIT 'I:':AL•6 (A-,..,C-ZI 
2<>9 'IE.&L•8 V(ICJ,U(lOI,wiiOI 
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270 DO 20 I I=I.N 
211 2'\1 U(I)•VII)-W(II 
272 RETUQN 
27 .J E NO 

SUBRJUTtNE AOO~UL (N,u,v,W,X) 
c•• • •• • • c 
C U <-- V+ ••X 
c c ......... .. 

275 IMPLICIT REAL•8 CA-M,O-ZI 
21b RE.AL•II U(l~l.VI II)), X( 10) 
27 7 OC .30 I I =I ,N . 
2711 3')1 UIII•VIIl•w•>t(ll 
27Q ~ETU:,N 

2~0 END 

2SI SUPQ:UT[~~ VCMUL (N,U,V,WJ 
C•• • •• •• c 
c u ·<-- v•w 
c 
c•• .. • •• • 

282 I,..PLICTT REAL*8 (.A-H,O-Z) 
2il3 REAL•B U( 10) .wl l:ll 
2b4 DC 131" 1 1=1 ,N 
2~5 13')1 Ulll=V•Wil) 
2S6 ~ETU~N 

287 END 

288 SU~RJUTI~E ~EP~~T (.[,K,NF,N,OXNOR~,X,FNCPM,OFNORM,lRC) 
2~Q I"PLI.CIT ~EAL•B(A-H.O-ZI 

2')6 
2<l-> 
3CO 
:lCI 
:1n2 
3J 3 
JC• 
:lO~ 
306 

c•• •••• 
c 
C P0 INTE~ SUbwOUTINE FOR BROG4Y 
c 
c•• ••••• 

Cr.~~0N/LSTP~R/XSTAR(10) 
~EAL•P.. )t(tC) ,L>XST,I.D 
IF I loFOoC I F\l=C.IlOO 
OF =F:" -FNQ!:'M 
F Q.;;Ff'..:Qq-.. 

IF CloGEo II C.O TO 10 
.. r:J lTC:: (6,1 O:ll) 

1001 Fr.I>"AT 1'1 I >4f: tRC F 

I C 

20 

IJ" 2 

c• 

1 o• x-x••.i 
2• ---------- ---------- ----------
3 -- --------· l 

Of-=."'\ .COO 
OXSl'AJ:"-=1'\.,CCC 
Or' ?" .Jzt ,N 
0~$T~~=OX5TAQ+(X(J)-XSTAA(J))**2 
OXSTAD=OSOPT(CXSTARJ 
wr.r Tf. ( 6.1JC 2) I .NF .IRC .F,.,.ORto~.OF.OFNCMM.OJtNOQ""•OlllSTAR 
FOR•UT Cll'•:SI•• SEl:S•• ,. 
hf' Tl.F'N 
END 
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119 

~Ufl~:"uTlf•"~ NLSRC~((ALCF• f<li• F. x. 
l NfCA.LL. T~AXJ 

t.:L S~C'l 1f' 
NLS~cozr 
NL SO C'~"~3r· · 

... 
I"I"L I CIT l>t AL•I'!I A-H.Q-Z I 

1976 ... 
NL S~004"' 

••• NLS:"OO~C' 
NL ~(\006r: 
f'.:L svco7r 
NL SOC'O er 

SUV .. ARY ----------------------------NL SCC~Q(. 
NL S'C ICC 

FJUr> T SUCti THAT (lf'IX- T•PIJJ < E'PS•(IFIXIIJ BY FIRST "'RY-NI,Sf'CIIC. 
JNG T :- 1. TH~N T OETf:"RMJf'..;EQ AV RqQYOtN•$ (UBJC E~Q:OF' TEP"' lDEJ.. NL~l'C12~ 
t~':~ CrRQ"'' THt- T._.lRO tVALUJ.TJCN CN) AY '-'JN1~1ZJNG THE. OUAD~ATlC .._,l S:aCl~(.. 
IN1'f~r'("'LA.T ]NG POLYNQ""lAL A~QUT Tt-1!:: iH~EF. NF.A.Qt:.ST qE:.CENT PO]NTS. t~L~r:'C!4,.. 
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Nl. SC l22f'l 
"'L5(.;{":?3f'l 
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I~PUT: Sl'~PT CF THE .SEA~CH; OUlPUl :LA5T P8INT AT ~H]CH 

F -~S EVALUATCO. 
!•PUT: -I SE•RCH D IH'CTI ONI; OLTPUT: STEP TAKEN, 
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