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CHAPTER I
INTRODUCTION

In nonlinear unconstrained optimization, the necessary conditions

3 . .
for stationary points (—Q-= 0) comprise systems of nonlinear equations.
8§j :

When derivatives do not exist or are costly to compute, closed form solu-
tions may not be feasible, forcing analysts to devise iterative numerical
algorithms. Every new journal contains suggested approaches--some new;
some "warmed-over." Implementation is often left to the reader.

One such algorithm is proposed by David M. Gay and Robert B.
Schnabel (38). The essence of the algorithm is to make use of steps (in
the trajectory of the solution vector) from prior iterations to help
determine the next step. These prior steps, Sj' j=0,1, ..., 1i-1,
are used in the calculation of an approximation to the Hessian matrix,
needed in the quasi-Newton determination of the next step, Si'

Broyden (13) uses the prior step Si— in determining a new step Si.

1

Gay and Schnabel propose forcing the linear independence of the Sj's by

making Si orthogonal to the subspace spanned by SO' Sl' « ooy Si—l'

A ~

where S0 = SO' the initial step, then using this Si to help determine a

new step Si+ This method is different from, but related to, Broyden's

1°
method.

This dissertation implements the Gay-Schnabel method on the IBM
370/158 computer and compares its performance with that of other pub-

lished algorithms, such as Broyden's method, Brown's method for a system



of nonlinear equations, and the Davidon-Fletcher-Powell (DFP) method
for minimization problems with analytic gradient vector. Criteria used
for comparison will be convergence rates, precision, number of funétion
evaluations, user effort required, etc.‘ Basic concepts and detailed
descriptions of these algorithms will be présented in later chapters.
wa variations of Gay énd Schnabel's proposal are also discussed,

implemented, and evaluated.
The Source of the Problem

We are concerned with the problem of "computing”" a solution of the
system of n nonlinear equations in n variables. Let the system be given

as

fj(gl, £ .« .oy En) =0, j=1,2, ..., n. (1.1)

2’

where each fj, =1, 2, ..., n is differentiable. These may be written

more concisely as
F(X) =0 (1.2)

where X is the column vector of independent variables and F the column

vector of functions fj' The problem can be stated as:
. * n * .
Find X €R such that F(X ) = 0

where F : R > R" is differentiable.

If the n nonlinear Equation (1.2) is obtained by setting the first
partial derivatives of some functional of n variables, ¢ =Rn - R, equal
to zero, then solving these equations is equivalent to finding a station-

*

ary point of ¢ (X), since a necessary condition for the point X to be a

* .
local minimum of ¢ (X) is that F(X ) = 0, where F(X) is the gradient



vector of ¢(X) defined on Rn. The Jacébian of F(X) is in this case the
Hessian matrix of ¢ (X) and is symmetric, provided ¢ (X) and its first
partial derivatives are continuous. If ¢(X) is convex, then ahy station-
ary point of ¢(X) is a minimum and the Hessian matrix is either positive
definite or semidefinite. Hénée, any method used to solve a system of
nonlinear equations can be applied to the minimization problém.

On the other hand, there is a way of converting the problem of sélv—
ing the system F(X) = 0 into a minimization problem. Let g be a func-

tional defined on R© such that the point X = 0 is the unique global

minimum of g. For instance, we might choose g(X) I|X||, with some norm
in R", then define ¢(X) = g(F(X)), for Xe R, i.e., ¢(X) = ||[F(x)|]|, for
xE:Rn. Any solution X*E:Rn of F(X) = 0 is a global minimum éf ¢, and
hence we may find X* by minimizing ¢. In case of g(X) = XTx; the func-

. n C s
tional $:R > R to be minimized has the form,

n 2 n
$(x) = J (£, (x)°, XeR,
i=1

and a global minimum of ¢ (X) is called a least-squares solutions of the
system F(X) = O.

For the reason mentioned above, the survey of literature in a later
section includes both the alg@rithms for solving systems of nonlinear
equations and those of minimization problems.

If the system of Equation (1.1) has solutions, we will be concerned
with how to approximate them. Many works in this area are the methods
for approximating one solution of Equatioﬁ (1.1); few papers describe
methods for constructing sets containing soiutions, that is, using any

estimating method to define an interval or intervals in which the roots



of Equation (1.1) must lie and the methods for finding most or all solu-

tions of Equation (1.1).
Mathematical Background

Generally, because the direct methods for solving Equation (1.1) are
not feasible, a class of iterative processes for solving Equation (1.1)
or minimization problems in Rn has been considered frequently in recent
years. One of its members is a quasi-Newton method which is a special
case of the general update method or modification method (30).

Intuitively, an iterative process { is a rule starting at an initial

point X

0

. . n . . . n’
in the domain De R to obtain an improved point XlEIDEZR . Re-

peat the process and a sequence of ever-improving points {Xk} is gener-
*
ated that approaches a solution X of the given problem. Usually, the
process is terminated when a point sufficiently close to the solution
point is obtained.
n . N n n

Let ¢: R" > R be a functional to be minimized such that F: R - R

is the gradient vector of ¢ (X); suppose F is differentiable. Expand

. n
¢ (X) as a Taylor series in the neighborhood of a point xoe R

T o1 T
¢ (X) = ¢(X0) + (F (XO)) x - Xo) + .5 x - XO) J(XO) x - XO)
+ Higher Order Terms

where J(XO) is the Jacobian of F(X) evaluated at X0 and is the Hessian

matrix of ¢(X) at XO.

If X is sufficiently close to X, such that the higher order terms

0
can be ignored when compared with the first three terms, then we can

approximate ¢ (X) by the following form,

T 1 T
¢ (X) = ¢(X0) + (F(XO)) x - XO)+ E(X - Xo) J(XO)(X - XO)



Since we want to minimize ¢ (X), we can do so by differentiating the
above form with respect to X and setting the result to zero. This im-

plies

F(XO) + J(XO)(X - Xo) = 0.

if J(XO) is nonsingular, we cén solve X from the above form,

-1
X = XO - (J(XO)) F(Xo).

It says that the stationary point X of ¢ (X) can be taken from xO in the
direction of the negative gradient modified by (J(XO))_l. This gives a
basic iterative procedure for approximating a solution of Equation (1.1)
or a minimum of ¢ (X).

The general iterative formula known as Newton's method can be formed
by taking X = X and X = X as follows:

k+1 0 k

_ _ -1
X = X (J(Xk))

K41 X F(Xk)' k=0,1, 2, 3, .... (1.3)

It is essential to the convergence of this method that the inverse
of the Hessian, (J(Xk))—l, of ¢ (X) be positive definite. The sufficient
condition is that the ¢(X) is convex and has continuous second partial
derivatives.

The advantageé of this algorithm are that if it works, then it
works extremely well; convergence.is-rapid and in general is Q-quadratic;
if a sufficiently good initial estimate of the solution can be made, it
probably is the best method, and, if F(X) is linear with a nonsingular
Jacobian matrix (ér ¢ (X) is quadratic with nonsingular Hessian matrix),

*

then Xl =X .

Newton's method suffers from two serious disadvantages from the

point of view of practical calculation. The first of these is that it



often fails to converge to a solution if one starts from a poor initial
point. To overcome this problem, the implementations are often of the

form

-1
Xk+l = Xk - Ak(J(Xk)) F(Xk), k=60,1, 2, ... (1.4)

where Ak is a scalar multiplier. This parameter is determined by a
"linear search" method (15) (16), such that Xk+l is a better approxima-

tion to the solution of the problem than X i.e.,

kl

y<ox) or |lFex I <[lFxp]]

¢(Xk+l k+1

for some norm. It has been observed, however, that this can inhibit
convergence if continued when the iterates are close to the solﬁtion
(Broyden, 1970b).

The second disadvantage of Newton's method is the difficulty of
computing the Jacobian matrix if F(X) is a complicated function. 1In
the majority of practical problems it is impossible to obtain the par-
tial derivatives analytically, and even if it were possible it would be
an extremely laborious and time~consuming operation. In order to com-
pute the Jacobian matrix numerically (finite differences method) thé
vector function F (X) must be evaluated for at least n+ 1 sets of inde-
pendent variables.

To overcome this difficulty, many authors use a matrix B(Xk) to
approximate the Jacobian matrix J(Xk) in such a way that it is modified
at each iteration so that is possesses, to some extent, the properties
of the Jacobian matrix J(Xk). Some other authors use a matrix H(Xk) to
approximate the inverse of the Jacobian (J(Xk))_l if this Jacobian is

nonsingular. It is recognized that this matrix H(Xk) is to approximate



the inverse of the Hessian of the functional ¢ (X), when applied to a
minimization problem.

From now on, we use H , B , J , F. to denote H(Xk), B(Xk)' J(Xk),

k" "k "k’ Tk
and F(Xk), respectively. Define
Sk = Xk+l - xk, (1.5)
Y =F - F . (1.6)

k k+1 k
Consider F(X) as a Taylor series expansion in the neighborhood of

n . .
Xke:R such that the higher terms can be ignored. Then

F(X) = Fk + Jk(X = Xk) (1.7)

Let X = Xk+l' the point for the next iteration, then Equation (1.7) will

be in the following form:

or

Yy =J8S. . (1.8)

Since Bk is used to approximate Jk, it is desirable that Bk satisfies

Yk = Bksk. By Equation (1.6), we know that Yk depends on Fk+l' which

, and this, by Equation (1.4), in turn depends on B .

depends on X K

k+1

So this equation Yk = Bksk cannot be used to determine Bk' but we can

expect, in the next iteration, that B , @ modification of B, by a

k+1 k

correction matrix ABk of rank m (1 < m < 2), satisfies the equation

Y. =

x = Br+15k: (1.9)

We conclude the above discussion and make the following definition

of the quasi-Newton method to solve the system of equations defined as



Equation (1.2). Equation (1.9) is usually called the quasi-Newton

equation.

Definition 1.1 (Direct update method of rank m): Given F :Rn - Rn

is differentiable. A quasi-Newton method when applied to solve F(X) = 0
is an iterative process which generates a sequence {Xk}, k=0,1, 2,...
. . . . . n
of approximations to the zero of F. At each iteration, given st:R and
nxn '

BkE:R ;, the next approximation is defined by

Xer1 = % T MBTFx

where Ak is chosen to reduce F(Xk), and

Bk+l = Bk + ABk rank ABk =m

v
[

is chosen to satisfy the quasi-Newton Equation (1.9).

Instead of storing and updating Bk' the approximation to the

Jacobian, at each iteration, one would store and update Hk = B;l if

this matrix exists for all K. Applying the Sherman-Morrison-Woodbury
i = - - + .
formula, we derive AHk Hk+l Hk from Bk+l Bk ABk, where AHk is

still of rank m. Therefore, another version of Definition 1.1 can be

stated as follows:

) n n
Definition 1.2 (Inverse update method of rank m): Given F:R -~ R

is differentiable. A quasi-Newton method when applied to solve F(X) = 0
is an iterative process which generates a sequence {Xk}, k=10,1, 2, ...
. . . . . n
of approximations to the zero of F. At each iteration, given Xke R and
nxn

Bke‘R , the next approximation is defined by

X1~ %% T MNETx

where Ak is chosen to reduce ]lF(Xk)||



and

Hk+l‘= Hk + AHk rank AHk =m > 1

is chosen to satisfy

5, = Y .
sk Hk+l k
In practice, the rank m is at most 2. The matrix Hk is an approxi-
. -1 . .
mation to Jk , the inverse of the Jacobian.
In the following chapters we will state several different algorithms
and compare their performance. One of the important criteria to be used
*

is the asymptotic rate of convergence of the process at X . Here we

state several fundamental definitions about this concept.

A n * n,
Definition 1.3: A sequence {Xk} R converges to X €¢ R if and only

if, for each ¢ > 0, there exists an integer, NO, such that for all

* *
k >N, ]]X - X || < € with respect to some norm. X is called the

0 k

limit of this sequence Xk'

Definition 1.4: Let {Xk}e R be any convergent sequence with limit

*
X . Then the quantities

*
. l IXk"l"l - X I I B i *
limsup % , if XkﬁzX , for all but
k » o ||Xk -x ||P finitely many k,
*
Q {Xk}= 0, if Xk==X , for all but
P finitely many k,
+ o otherwise

defined for all pe [1, »), are the quotient convergence factors, or

. . n .
Q-factors of {Xk} with respect to some norm ||.|| in R . Since from now
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on, ll.]l will denote the L2 vector norm defined by
n
vl = ] vh'/?
i=1

T n
for V = (Vl' V2, « e ey Vn) eR .-

*
Definition 1.5: Let C(R2, X ) denote the set of all sequences with

N
limit X generated by an iterative process . Then

* *
Q@ X)) = SUP{QP{Xk}I{Xk}e @, X))}, 1<p<w,

*
are the Q-factors of Q@ at X with respect to the norm in which the

Qp{xk} are computed.

The following theorem, proved by Ortega and Rheinholt (47), shoWs
that Qp is an isotone function of p which takes on only the values 0 and
o except at possibly one point.

*
Theorem 1.1: Let QP(Q, X)), Pe [1, =), denote the Q-factors of an
* .
iterative process at X in some fixed norm on Rn. Then exactly one of

the following conditions holds:

*

(a) Qp(ﬂ, X)=0,¥vpe [1, »);
*

(b) Qp(nl X )=, ¥Vpe (1, «);

, : *
(c) there exists a posz[l, ») such that QP(R, X)=0,V

*
pe 1, po), and Qp(ﬂ, X ) =oVpe (po, ©) .

Definition 1.6: Let Ql and Qz denote two iterative processes with

* . * *
the same limit point X , and let Qp(Ql, X ) and Qp(ﬂz, X ) be the corre-
sponding Q-factors computed in the same norm on‘Rn. Then Ql is Q-faster

* . * *
than Qz at X if there is a pe [1l, «) such thathp(Ql, X )<<Qp(92, X ).
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n

The above concept of "Q-faster" depends on the norm in R , sihce

the magnitude of Qp{xk} for an arbitrary convergent sequence {Xk} such
that 0 < Qp{xk} < + » is dependent on the norm. Now we state a property

which is independent of the norm. ;

% !
Definition 1.7: Let QP(Q, X ) be the Q-factors of the iterative
* ‘ n v
process Q at X in some norm on R . Then

, . :
+ ® if Qp(Q,X)=0,\Vp€[1, @)

0 (2, X = .
Q inf{pe [1, co)!QP(Q, X ) = + »}, otherwise

*
is the Q-order of § at X .
Ortega and Rheinbolt proved the following theorem (47).

* ' :
Theorem 1.2: Let Qp(Q, X ) be the Q-factors of the iterative pro-
* * *
cess Q at X . Then the three relations Qp(Q, X)=0, 0< QP(Q, X ) <
*
+ © are independent of the norm on Rn. Hence, the Q-order of Q at X is

also independent of the norm.

From this theorem and Definition 1.6 we can list the following

consequences.

*

Corollary 1l: Let Ql and.Q2 be iterative processes with limit X .

If
* *
OQ(Ql, X)) > OQ(92, X ),

*
then Ql is Q-faster than 92 at X in every norm.

*
Corollary 2: Let @ be an iterative process with limit X . If

* . * *
QP(Q, X ) < + » for some pe [1, «), then OQ(Q, X) > p. If Qq(Q, X)>0
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* *
for some ge [1, ), then OQ(Q, X ) < g. Hence, if 0 < QP(Q, X ) < + =

*
for some pe [1, «), then OQ(Q, X)) pP.
When we compare two iterative processes Ql and 92 with the same

* ' S

limit X , we can do the following two stages. First, we compare the Q-

orders OQ(Ql

the larger Q-order is Q-faster than the other one in every norm. If

* . %* . :
, X ) and OQ(Qz, X ); if they are different, the process with

* * :
0 (Ql, X ) =0_(Q X ) = p, then we compare the two Q-factors. If, say,

Q Q 2’ ,
9) x*) 0 < (2 x*) if (2 x*) < (Q x'*) = + o, then
Qp( 1" Qp 2’ ; O, 1 QP 1’ Qp 2! = ’

]

* *
Ql is Q-faster than Qz in every norm. If 0 < Qp(Ql, X ) < QP(QZ, X)) <
+ © in some norm, then Ql is Q-faster than 92 in that norm, but there may

exist other norms in which the relation is reversed.

*
Definition 1.8: Let 2 be an iterative process with limit X .

(1) If Ql(Q, X*) = 0, then the process is Q—superlinearly
convergent at X*.
(ii) If 0<:Q1(Q,X*)<1 in some norm, the convergence is
called Q—lipear at X*.
(iii) If QZ(Q, X*) = 0, then the process is Q-superquadratically
convergent at X*.

*
(iv) If O <Q2(Q,X ) <1 in some norm, the convergent is called

*
Q-guadratic at X .
Review of Literature

Two basic quasi-Newton methods have been seriously proposed to solve
general systems of nonlinear simultaneous equations. The secant method
was proposed by J. G. P. Barnes (3) in 1965. The updating formula for Hk

in Definition 1.2 is
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T
_ (S - BY )q
He = T

Y
9 'k

where 9 is given by
q Y, =0, k-n+1l<j<k-1

in solving the system of Equation (1.1).

Barnes (3) has proved that this method is equivalent to the general-
ized secant method described by Bittner (4) and Wolfe (58). This algo-
rithm also possesses the property of linear termination (18); that is,
it will solve a set of n linear equations in at most n+ 1 steps. Com-
puter experiments have shown that for suitable pioblems the method is
considerably superior to the Newton-Raphson method (3).

In practice, for all but the most trivial problems, the n consecu-
tive Y's in the secant method will become linearly dependent. This
makes the secant method notoriously unstable.

C. G. Broyden (13) proposed another quasi-Newton method to solve
Equation (1.1) in 1965. This method, unlike the secant method, possesses
no termination property and thus can at most give an approximate solu-
tion to a linear system. The rate of convergence is Q-superlinear (19).

If, on the other hand, B, approximates the Jacobian J

. X sufficiently well,

the method is numerically stable. The detailed algorithm of Broyden's
method and some other properties will be presented in the next chapter.
In 1968, C. G. Broyden (15) combined a particular form of Broyden's
method (1965) with a particular form of Davidenko's method (22) to
develop another method for the solution of Equation (1.1). Essentiaily,
an auxiliary function g(X, 6), where 8 is some scalar parameter, is con-

structed such that
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g(x, 0) = F(X)
and the equation
g(X, 1) =0

has a known solution. If X is a solution of
g(X, 6) =0

then X is a function of 6 and by reducing 8§ incrementally from 1 to O a
series of intermediate problems is constructed. This method usés a
quasi-Newton method to solve the intermediate problems and suggests an
improvement to Broyden's method made possible by the knowledge that a
good initial estimate of the solution is available. Since X is noﬁ a
continuous function of 6, for some value of 6 thé Jacobian of F of some
problems may become singular. One such example is the polynomial equa-
tion due to Freudehstein and Roth (1963) with 6 between 0.418 and 0.368.
Another alg@rithm was propoéed by Brown (5) in 1966. This method
is a variation of Newton's method incorporating Gaussian elimination in
such a way that the most recent information is always‘used at each step
of the algorithm. Basically the technique conéists in éxpahding the
first equation in a Taylor series about the starting guess, retaining
only linear terms, equating to zero and solving er one variable, say

X as a linear combination of the reaming n -1 variables. In the

kl

second equation, X, is eliminated by replacing it with its linear repre-

k

sentation found above, and again the same process is performed. One con-

tinues in this fashion, eliminating one variable per equation, until for
th . . . . .

the n equation, we are left with one equation in one unknown. A single

Newton Step is now performed, followed by back-substitution in the tri-

angularized linear system generated for the Xi's. This method is roughly
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quadratically convergent and requires only (n2 + 3n)/2 function evalua-
tions per iterative step as compared with n2 + n evaluations for Newton's
method. Details of the algorithm will be pfesented in Chapter III.

In 1975, W. C. Davidon (25).proVided a variable metric algorithm
for minimization calculations. Numerical experiments with Davidon's
algorithm indicate that it may be the best numerical method for calculat-
ing the least value of a differentiable function of several variables.

M. J. D. Powell (52) gave a new and elementary proof of the quadratic
termination property without line search in 1976. Powell's proof does
not require the frequent use of projection operations, i.e., "updating
H with projections of the change in the gradient and the change in X,"
which is the part of the new algorithm that achieves quadratic termina-
tion with line searchés.

In 1977, D. M. Gay and R. B. Schnabel (38) applied this "projectionf
concept to modify Bro?den's algorithm to solve systems of nonlinear equa-
tions. The convergence rate is Q-superlinear. This algorithm will be
one of the major parts to be discussed in Chapter IT. The performance
compared‘with'some otﬁer algorithms will be presented in Chapter IV.

Davidon's original variable metric method (23) was proposed in
1959. This is the first quasi—Newton‘method for minimizing functions.
With an initial point X and a positive definite trial matrix H, Davidon
defined a new point X* = X - AH¢' (X), where ¢'(X) is the gradient of
¢ (X) to be minimized, the scalar A > 0 is chosen to minimize ¢ in the
direction - H¢' (X). After making the change in X, the trial matrix H
is improved by the relation between chaﬂges in X and changes in the
gradient. Hence a sequeﬁce of points is generated to approach the

minimum by repeating the iterative process.
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The searching direction of Davidon's method is actually a downhill
direction, i.e., the direction of steepest descent from X modified by
the positive definite matrix H. The method of steepest descent for un-
constrained minimization can be traced back to the work of the well—v
known French mathematician, A.vCauchy (20), in 1847. Characteristically
the steepest descent path consists of a long first step followed by a
sequence of short zig-zag steps.. Davidon used some empirical devices to
update the matrix H at each iteration in an effort to make the direction
of steepest descent toward a minimum.

While Davidon's method was not widely publicized, R. Fletcher and
M. J. D. Powell (34) published a powerful method with rapid convergence
which is a simplified version of Davidon's method. This method is known
as the Davidon-Fletcher-Powerv(DFP) method.

As in Davidon's method, DFP uses the same searching method to -
generate the next point X* from the current point X, but the positive
definite matrix H is updated by adding a symmetric correction matrix of
rank two, defined in terms vaH, the change in X and the ehange in the
gradient. Numerical examples have shown thet this method is generally
successful in practice.

In 1967, C. G. Broydeh (14) developed a family of quasi-Newton
methods for minimization problems. Broyden updated the inverse Hessian
matrix by a correction matrix such that this new approximation to the
inverse Hessian satisfies the quasi-Newton equation. Since the correc-
tion matrix cannot be uniquely determined, families of methods can be
obtained.

A similar development was given.by D. F. Shanno (55) in 1970. At

the same time, D. Goldfarb (39) used a variational approach to combine
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two correction matrices, whiéh belong to a family derived by J.Greenstadt
(40), to form a family of update formula. These families are equivalent
to Broyden's family (1967) and usually regarded as the general case of
the DFP method. R. Fletcher (33) published another family of correction
matrices in the same year. This algorithm was developed by the combina-
tion of the DFP correction matrix and the one from its inverse update
form.

The convergence property of the members of Broyden's family has
been studied by M. J. D. Powell (1972) and L. C. W. Dixon (32).

The organization of this study will be as follows: Broyden's method
and the modification of Broyden's method, Gay-Schnabel's Algorithm,.will
be presented in Chaéter II. Chapter III will discuss the developmen?,
properties of Brown's method and the DFP method whose performance wiil be
compared with that of Gay-Schnabel's method. The result of this compari-
sonbwith selected problems will be presented in Chapter IV. The conclu-

sions considered in this study will be summarized in Chapter V.

Henceforth, ||.||F will denote the Frobenius matrix norm;
n n
_ 2 .1/2 _ nxn
||A]]F = ( Z 2 aij) for A = (aij)nxns:R .

i=1 j=1



CHAPTER II

GAY-SCHNABEL ALGORITHM--BROYDEN'S METHOD

WITH PROJECTED UPDATES

A new algorithm to solve a system of n nonlinear equations in n un-
knowns was proposed by Gay and Schnabel (38) in 1977. This algorithm ié
a modification of the class of Broyden's method (13) which is mainly to
approximate the Jacobian of Equatiqn (1.1) to determine a searching
direction at each iteration and then to generate a new ppint to form a
sequence {Xk}, k=0,1, 2, ..., of approximations to a solution X* of
Equation (l.1). Actually, this Gay-Schnabel algorithm belongs to a class
of quasi-Newton methods and has close relation to Broyden's method. We

discuss Broyden's method first.

Broyden

The first quasi-Newton method was introduced by W. C. Davidon (23)
in 1959 and simplified and published by R. Fletcher and M. J. D. Powell
(34) in 1963, but Broyden (13) was the first in this area to deal with
the solution of general sets of nonlinear Equation (1.1). The basic
concepts of the quasi-Newton method, discussed in Chapter I, can also
be applied to Broyden's method. |

The Broyden class of single rank methods is defined according to

the following algorithm.

Algorithm 2.1 (Broyden, 1965): Let X e r", By € R*?, r:rR" > R°,

€ > 0 be given.

18
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For k=0,1, 2,...,

Choose nonzero Sk = —AkaF(Xk)

X =X + S (2.1)

If ||F(xk+l

)[| < ¢ then stop.

Y = F(Xk+

X - F(Xk) | (2.2)

1)

. n
Choose dke.R - Sk'

where S, is the orthogonal complement of S

k k’

T
(B,s, - Y )d
8 =B - k k k' 'k (2.3) -

T
dk Sk

Clearly, Equation (2.3) satisfies Equation (1.9) and hence Algo-

rithm 2.1 is a direct update method of rank 1. The Ak, k=0,1,...,

" is usually chosen to reduce [[F(Xk)ll (15) or is set to unity (16) and
~l|-!l denotes the L, norm.
Broyden singled out two specific choiceé of dk. One method is
dk = Sk' a rather obvious chqice in view of the requirement that dE Sk

= 0. This is known as Broyden's first method with direct update (15).
For computing purposes, it is preferable to store Hk’ the inverse

of Bk' in the computer and it is possible, using Householder's modifica=-

tion formula, to compute Hk+l with very little labor from Hk.

Householder's formula states that if A is a nonsingular nxn matrix and

T . "
X and Y are two nx 1 vectors such that A + XY is nonsingular, then

. -1, T -1
(a+xy)taat A XA (2.4)
1 +YA°X '

Replacing dk by S

X in Equation (2.3) and applying Equation (2.4) gives
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(2.5)

(s, - HY) ST
k - Hk‘k k 'k
T . '
e
This is usually called Broyden's first method with inverse update (15).

The second choice of Broyden's class is made by setting HESkv= Y

k
in Equation (2.5). This gives
T
. Sy s (Sk - HkYk) Yk 2.6)
k+1 k vTy : :
k'k

If we replace Equation (2.3) by Equation (2.6), then Algorithm 2.1
is in another version, which is calléderoyden's second method with in-
verse update (15).

According to Broyden's experiments (13), Broyden‘s first method is
superior to Broyden's second method, if a reasonably good initial esti-
mate of the solution is available.

Assume A = J(x*), the Jacobian matrix of F(X) evaluated at the root

*
X , is nonsingular; define the matrix error

B = B - A . (2.7)

where Bk is the current approximation to A. If we consider applying

this algorithm (e.g., first method with direct update) to a system of
linear equations F(X) = AX - b = 0, where A, the Jacobian of F, is a
constant nxn matrix and b is a n vector, then we can recognize that the

error matrix Ek decreases monotonically with respect to the spectral

norm. It is trivial to see, since by Equations (2.1) and (2.2)

that if B is obtained from B, using Equation (2.3) taking dk==s , then

k+1 k k
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k+1 k T ). (2.8)

But the matrix

T
S S
k'k
(@ - )

S
Sk k
is symmetric and has n-1 eigenvalues equal to unity and one equal to
. ‘ .
zero. Its spectral norm is thus unity since the norm of the product of

two matrices is less than or equal to the product of their norms. In

this sense Bk+l is not a worse approximation to A than B

k

Convergence
A significant property of Newton's method,
X =X -3 F k=0,1, 2,... (2.9)

is the rapid convergence if one starts from a good initial point Xo.

This fact - is based on the following theorem proved by Dennis (29).

Theorem 2.1: If F :Rp-*RP is continuously differentiable in a
* n * *
neighborhood of some X € R for which F(X ) = 0 and J(X '), the Jacobian
* ' :
of F at X , is nonsingular, then there exists a positive constant € such
*
that if ||X0 - X |l < € then the sequence {Xk} defined by Equation (2.9)
*

exists and converges to X . Moreover, if there is some M > O for which

M||x - x"||, then

A

| |x - X*H < e implies ||J(X) - J(X*)HF

limit ||x —X*||/HXk-X*I|2<w

k >

k+1

i.e., the sequence {Xk} converges Q-quadratically.
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Q-quadratic convergence is quite fast; it implies foughly a doub-
ling of the number of significant digiﬁs in the approximate solution at
each iteration. One can go from an approximation accurate to just 1
digit to an approximation accurate to 16 digits in only four applications
of the iterative process.

As one of the practical problems of using Newton's method is its
frequent failure to converge from a poor initial estimate of the solu-
tion, people usually implement Newton's method in the form of Equation
(1.4) by introducing a scalar parameter Ak to enlarge the domain of con-
vergence. Since Broyden's method uses Equation (1.4) as a major form to
approximate the solution of F(X) = 0, except that the Jacobian Jk will
be approximated by an appropriate form updated at each iteration as in
Algorithm 2.1, we discuss several suggestions for the choice of Ak.

Broyden (13) first suggested choosing Ak by minimizing the norm of
Fk+l' This choice of Ak gives the greatest immediate reduction of the
norm and hence the greatest improvement to the gpproximate'solution.
Making this choice, one needs to evaluate the véctér function F a number
of times. This means an increase in the amount‘of computation required
compared with an alternative strategy of choosing a value Ak which merely
reduces the norm.. Although horm reduction doe§ not give as good an imme-
diate improvement to the solution as norm miniﬁization, the result of
Broyden's tests (13) really means that less work is involved and that
norm reduction is a better strategy than norm ﬁinimization.

Unfortunately, the strategy to obtain a monotonically decreasing
sequence of norms of F may seriously inhibit convergence to the solution

(16), and there is no obvious way of detecting the transition from the

one state to the other. Experimental evidence reported in Reference (15)
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shows that this does indeed occur when using Broyden's algorithm.

Broyden found that the choice of A, to be unity was far superior provided

k
that good initial approximations both to the solution and to the Jacobian
could be found (16). Also at least two other algorithms, proposed by

Barnes (24) and Davidon (31), suggested choosing Ak to be unity. Dennis

(27) has shown that Brown's algorithm is locally conVergent for Ak = 1.

* n n . . .
Theorem 2.2: Let X be a zero of F: R >R which is continuously
differentiable. Let the first partial derivatives satisfy a Lipschitz
* *
condition of order 1 in some open set containing X and J(X ), the

*
Jacobian of F at X , is nonsingular. Under these hypotheses, there is

an € > 0 and a § > O such that if Xoe R and Bos R satisfying

J(XO)IIF < §, then the sequencé {Xk} defined

. *
by Algorithm 2.1 with Ak = 1 for all k converges to X from XO with

1%y - X || < ana||p

*

Ile+l -X ll <a llxk - X*Il for some a > 1 and every k.

It would seem reasonable to suggest the strategy of choosing the
step-size pérameter Ak by norm reductioﬁ until one feels he hés a good
.approximate root and then switch to Xk = 1.

The rate of convergence revealed by this theorem was only Q—linear;
In practice the iteration of Algorithm 2.1 seemed much better. The rate
of convergence of Broyden's method is Q—superlineaf. This fact has been

proved by Broyden, Dennis and Moré (19).

. n ‘ )
Theorem 2.3: Let F:R +R. be continuously differentiable in an
' * *
open convex set D and X €D be a root of F(X) = 0. Assume that j(X ),
*
the Jacobian of F at X , is nonsingular and that for some M > O and

r > 0, J(X) satisfies a Lipschitz condition,
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o - aw™ ], <ullx - x"[|*

. *
of order r in a neighborhood of X . Under these conditions there exists

an €, > 0 and an e, > 0 such that if HXO - X*||‘< e, and IIBO - J(X*)IIF

1

< € then the sequence {Xk} generated by Algorithm 2.1 exists and con-

2’

-
verges Q-superlinearly to X .

The class of Broyden's method converges Q-superlinearly but does not
have the consistency property; i.e., let {Xk}f {Bk} be sequences as de-
fined by Algorithm 2.1 and x" be a zero of f, if {Xk} converges to X"
then {Bk} converges to J(x*), the Jacobian of F at X*.

This consistency condition has been a standard technique for proving
that a method is Q-superlinearly convergent. It is known that this con-
sistency condition is sufficient but not necessary (30). According to
Powell's suggestion, Dennis and Moré (30) outlined a way to construct a
counter example to support the "sufficient but not necessary" statement.

Define F.:RP-+RP sﬁch that £., £,, . . ., fn are independent of El

2 3

and fl(x) = ¢ . Let X have a zero in its first coordinate and B_ have

1 0 0]

zeros in its first row and first column except for the (1, 1) element.
If {Xk} and {Bk} are generated by Algorithm 2.1, then the first row and
first column of Bk remains unchanged while the rest of Bk is the matrix

generated by the Broyden method when applied to £ . oey fn as a func-

2!
tion of the n-1 variables (Ez, . e oy En). In particular, the sequence

{Bk} does not converge to J(X) for any XE:RF. A numerical example is

shown below.

T T * T
Example 2.1: Let X = (gl, gz) , F(X) = (gl, 252) , and X = (0,0)".

Thus,
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1 0 * 1 0
J(X) = JIX )=
0 2 0 2
consider Algorithm 2.1, with Sk = -B;le, starting from
X - (© )T v s - l1+¢ 0
0 v & 0

Apply Theorem 2.3 to this problem. Clearly it satisfies the condition
I1x - x"|| <6 =>]|ox) - J(X*)HF <u||x - x"||F with m=r=1

*
for arbitrary § > 0 since |]J(X) - JX )IIF = 0. Furthermore, we choose

el > € and 62 > /5 €, then

5y = 511 = ¢ <

1

ana |[B, - 3| = 2 e <k,

*
and hence the sequence {Xk} generated by Algorithm 2.1 converges to X
Q-superlinearly. Actually, the intermediate steps are follows:

Iteratioh 1:

e T 2 T l1+e 0
5o = Orgye) X T O v By T
0 2
Iteration 2:
E2 T T l+e O
Sl=(ol—2+€) IX2=(Or 0) IB2=

* *
Clearly, X2 = X but B2 X J(X ).
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Gay-Schnabel

Broyden's update form of single-rank methods given by Equation (2.3)

is

T
(BkSk - Yk)dk

T
dkS

k

T
for any vector dkz:Rn such that 4 s X o.
Géy and Schnabel propose to modify Broyden's update form to build a

to the Jacobian matrix from a given matrix B

better approximation B, + K

k+1

at each iteration.

This new approximation B not only satisfies the quasi-Newton

k+1

Y , where S, and Y are defined as Equations (1.5)

equation Bk+1sk = X " X

and (1.6), respectively, but also retains some good information learned

through previous iterations, such as
= = j < . .
Bk+lsj Yj and Bij Yj for all j k (2.10)
The reason that Equation (2.10) is good can be seen by considering

a linear problem F(X) = AX + b where A is nonsingular. After the first

iteration, while applying Broyden's method, we will have Bl 0= Yo
(= ASO for a linear problem); after the next iteration we will have
B2Sl = Yl (= ASl), but not in general BZSO = YO' since Bi may never

equal A, even though F'(X) = A for all Xi. If one can retain those

properties of Equation (2.2), while updating the new matrix Bk+l’ it

will be consistent, to some extent at least, with the properties that
A (= F' (X)) possessed.
Gay and Schnabel accomplished this by a proper choice of dk in

Equation (2.3) denoted by S, . The updated Bk+ will then minimize the

k 1
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satisfying B =Y, and

‘Frobenlus norm of B - B, among all B ] K

k+1 k k+1

(B - Bk)Sj = 0 for j < k. The solution is based on the following

k+1
theorem. Its proof is similar to Dennis and More's (31) proof that

Broyden's method is the least-change update among all B +

K+l satisfying

Be+1%k = Yk

nxn \ n .
Theorem 2.4: Let BeR and S, Y be non-zero vectors in R with

. . n
BS % Y. Let Z be an m-dimensional subspace of R, m < n. Then for

]].IIF, the Frobenius norm, a solution to
min {[[B - B[ :BS =Y, (B-B) z=0 for all ze 2z}
is

- (BS - ¥) s
B=B- —p—
Ss

A

where S is the orthogonal projection of S onto the orthogonal complement

of 2, i.e.,

with 2Z., 2

1 PRy Zm an orthogonal basis for Z. The solution is

unique in the Frobenius norm.

Based on the above theorem, Gay and Schnabel choose the vector Sk

to be the orthogonal projection of S, onto the orthogonal complement of

k

~ A

the subspace spanned by {So, Sl' ...y Sk—l}’ defined by

if k=0

S, ' (2.11)
if k > 1
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As a matter of fact, the projection S, of S, orthogonal to the sub-

k k

A

space spanned by S _, Si' .. ey Sk_1 may be the zero vector for some k<n,

0

the dimension of the space. Gay and Schnabel use a "restart criterion"

by setting S, = S 1if S is too small compared with S

X X X , i.e., when s, is

k k

sufficiently close to lying entirely within the subspace spanned by

A ~ A~

{So, Sl' . e ey Sk_l}. This must happen at least every n steps.
Algorithm 2.2 (Gay-Schnabel, 1977): Let Xoe Rn, Boe Rnxn’ F :RP -+
Rn, €>0, T>1 be given.
Set Q—l = 0.
For XK=0,1, 2, ....
Ch e non-zero S eiRn (likely 8, = =A B_l F(X. ))
©cos k Y S Xk k
= +
Xk+1 Xk sk
< .
IF ||F(xk+l)|] € then stop
Yk = F(Xk+l) - F(Xk)
k-1 S S?
Q' = ) o
j=2 5.8
] k-1 373
> - 1)
e |[s Il 2 lls, - sl
THEN (Sk = Sk and &%, = k)
= - ' =
ELSE (Sk Sk kak and lk zk-l)
~
B . =B - e S " (2.12)
k+1 k ;Ts .
k'k

Figure 1 shows an example of the relation between the first three
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steps {SO, S, SZ} and {s

0" Sy° Sz} generated by Algorithm 2.2 in a

three-dimensional space.

|

1

3

{

1

]

A ~ 71 7
Se= Sv S~ [ Sz

. ]

N4

3

Figure 1. Relation Between {Sy, Sy, Sy}
and {SO'sl'SZ} in a Three-
Dimensional Space

Several basic properties of these Sk's and Sk's have been developed

from this algorithm.

Each Sk is defined to be the orthogonal projection of Sk onto the

orthogonal complement of the sﬁbspace spanned by {S2 P e oo oy sk—l} since
A 1 :

the last restart. So Sk is orthogonal to Sj for j = 21,. e, k = 1.

A

S being a linear combination of {S . Sk—l’ Sk} since the

;e .

21

last restart, lies entirely in the subspace spanned by {Sz P Sk-l'
~ 1

Sk} for k =0, 1, 2,.... S is also orthogonal to Sk—l’ and consequent-

k
k - 1.

kl

ly S

1’ ot

K is orthogonal to Sj for each j = 2
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~

S. is the orthogonal projection of S

K onto the orthogonal comple-~

k

—l} since the last restart.

A

ment of the subspace spanned by {S, , ..., S

Zl k
*The magnitude of Sk equals Ilskllcosek, where ek is the angle between Sk
. ~p A _ ~ ~
and Sk. Thus, by vector analysis, Sksk = I]Skll llskllcosek = l|Sk|| =
~pa
SkSk for each k.
~ ok
If we define the sequence {Yj}o to be
. Y, if s, = s,
y =4 3 J J (2.13)
J Y. - B.Q.S. otherwise :
J 3733
for j=0,1, 2, ..., k, an add;tlonal property, Bk+lsj = Yj for
j = Ek, . . .1k since the last restart, can be proved by Equation (2.12)

and previous properties, i.e.,

(BkS -Y ) S'sS

- > k k k 'k
S = -
Bk+1 k BkSk ;TS
k"k
- (B, Sy — Y)S, Sy
= B S, - —
k'k STS
k'k
= BkSk + Yk - Bksk
If Sk = Sk' then Yk = Yk and the above form gives Bk+lsk = Yk with a
restart. .Otherwise, Sk'= Sk - kak
BBk = Bk * Yy 7 B S - B (S~ S))
= Bksk + Yk - Bksk = Yk v (2.14)
A
By Sksj =0 for j= Ek, .. .«k -1 and Equation (2.12) we have
=B S. for j = 2% - .k -1, (2.15)

s ,
Ber1®y T B>y X

Applying Equations (2.14) and (2.15) recursively gives
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A A

Bk+l 5 = Yj for j = & e e ak - 1.

kl
We summarize the above properties in the following theorem. The

analytical proof was given by Gay and Schnabel.

. n n n
Theorem 2.5: Given X_ e R , B_¢ Rnxn’ F:R >R, €>0, T>1, let

0 0
k k+1 : . .
the sequences {Si}o, {Bi}o be generated by Algorithm 2.2. Define
{S.}k as in Algorithm 2.2; let Y. =Y, if S, =S, and Y, = Y, - B.Q.S.;
10 J J J J J J J7°J 3
otherwise, j = 0, 1, .. ., k. Then at each iteration k, S1 ;. ..;Sk are
k

linearly independent, Bk+l is well-defined, and

A

Sij =0 j = Ek, ..ok -1

T

Sij =0 j = Rk, ..k -1

A ~pn

Kk T SkSk

Bk+lsj = Yj J = zk, .« . ok

Bk+1sj = 5 J = lk, .. ok

s 1< 115,11

k - Zk <n

A

As a conclusion of Theorem 2.5, S, can be regarded as the projec-

k
’
2k

e« e, S since

tion of S, orthogonal to the subspace spanned by S k-1

k

the last restart.

Following Broyden's second method, Gay and Schnabel proposed an

A

algorithm which updates approximations Hk to J(Xk)-l,and choose Yk to

be the projection of Y (Yk =F - Fk) orthogonal to the previous Yj's

k k+1

in the following update form
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kk Tk
= + . ’ .
Feer ~ T oIy (2.16)
kk
n
Algorithm 2.3: LetxoeR?,Hogﬁmn,F:Rn+R ,e>0,T> 1 be
given.
Set 2_ = 0.

1

For k=0, 1, 2,

n
Choose non-zero,S._ € R (likely S

K = -AkH

k ka)

= +
Xk+l Xk Sk

IF |lF(Xk+l)|I < € then stop.
Ve S T - FEY
k-1 Y vr
LI
%o
T -1 k'k

e [lv ]2« |y, - o]

THEN (Yk = Yk and zk = k)
= - ' =
ELSE (Yk Yk QkYk and Qk lk—l)
_ ~rp
0 o= H o+ S e
k+1 k §TY
k'k

Using Algorithm 2.3 we can prove a theorem analogous to Theorem 2.5.

We state the results as follows.

. n nxn n n
Theorem 2.6: Given Xoe R, Hos R x , F:R >R , >0, 1>1, let

k+1

o be generated by Algorithm 2.3.

k k
the sequence {Si}o, {Yi}o, {Hi}
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A A

Define {Yi}g as in Algorithm 2.3; let sj =5, if Y. =Y, ans S, = S, -

] J J 3 J
HjQ3Yj otherwise, j = 0, 1, ..., k. Then at each iteration k, YR ’
k
. e ey Yk are linearly independent, Hk+l is well defined, and
A
=0, : j = 2 .« ooy -
Yij 0 J k' k 1
T
. =0, = r e s ’ -
YkYJ 3 Kk k 1
A A
et T
Hk+le = SJ j = lk' .., k
Hk+le = S:J j = Zk, .. s k
<
<o 1% ]|
- R <
k " n
Convergence

Gay and Schnabel have analytically proved that their new algorithm
is locally Q-superlinearly convergent under the same conditions used in
the Broyden method. Incidentally, they found that their algorithm will
always locate a zéro for those n eqﬁatioﬁs in n unknowns F(X) = 0 in
n+ 1l or fewer iterations if any one or all of those n equations are
linear with non-singular Jacobian matrix. Furthermore, if k+1 itera-

* *
tions are required, then B - J(X ), X 1is a zero of F(X), has rank

k+1

n-k. Broyden's method may take 2n stpes to locate the zero for a

* .
linear system of n equations with n variables and B n J (X ) may have

2

*
rank n~1 (37). As to Newton's method, X1 = X 'if F is linear with non-

singular Jacobian. We first consider F as a linear case.
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. n n
Theorem 2.7: Let Ag R % be non-singular; bs:Rn, and F: R + R
defined by F(X) = AX + b. Consider Algorithm 2.2 acting on F, starting

n
from any X € R .and B sRnxn. If S, . ..,sn

0 0 -1

0 are linearly independent,
then B = A; and if S = -B_Y F(X ), then F(X
n n n n n

+l) = 0. Moreover, if for

are linearly independent, B exists and

some k<n, S ,...,S K

0 k-1
-1

B F(Xk) s(SO, c e ., S

« ), and if S, = -B_* F(X,), then F(X = 0.

k-1 k k k+1)

From the above theorem, it can be recognized that if Algorithm 2.2

is acting on ‘a linear problem with n-m iterations required, and if SO'
.« . ey Sn-m—l are linearly independent and no restarts have occurred,

then Bn—m will agree with A (= J(Xk), for each k) in n-m directions,

i.e., A - B will have rank m.

The next theorem concerns the case that when some but not neces-
sarily all of the component functions of F are linear, ‘the number of
iterations required to locate a zero X* is aiso less than or equal to
n+1l.

For ease of notation we use (Vl, .. .,Vk) to denote the subspace

n .
spanned by vectors V., ...,V €R and assume that the first m component

1 k

functions of F are linear. The Jacobian of F will be constant in its

C
first m rows, and we denote the approximations Bk by (BE), CkE:Rmxn,
k
(n-m)xn
D R .
K €
Theorem 2.8: Let AE:Rmxn, 1l <m < n; beR"
Fl(X)
n n n__m
F(X) = : R R with F_(X) = AX + b: R *R
F_ (X) 1
2
n n-m . . . .
and F2: R >R . Consider Algorithm 2.2 acting on F, starting from any
X eR and B_e RN, If £ k <n, s s linearl
o€ a o€ . or some Sn, Sy . .48 _; are linearly
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independent, B, )}, then the choice

k
- l ) ‘ .
Sk = --Bk F(Xk) leads to Fl(xk+l)'— 0. Furthermore, if SO,. .« es S

. -1 ‘
exists and Bk F(Xk)s (SO,. Y Sk—l

n-1

are linearly independent, then Cn A,

Schnabel made a proof that the sequence {Xi} generated by Algorithm

- i * .
2.2 with Sk = —Bkl F(Xk) converges Q-superlinearly to X if XO is close

N ‘
enough to X and if B_ is close enough in norm to J(XO). This proof is

0
analogous to the local superlinear convergence proof of Broyden, Dennis

and More (1973) for Broyden's method, and the work of Dennis and Moré

(1974) characterizing superlinear convergence.

n__n . .
Theorem 2.9: Let F:R *R be differentiable in an open convex

*
set D, and assume for some X ¢D and x>0, C > 0, that

o - sl <cllx - x7[|*

* *
where F(X ) = 0 and J(X ) is non-singular. Under these hypotheses, con-
. n nxn
sider the sequences {Xi}, {Bi}, X, e R, B, eR generated from X, and
B by Algorithm 2.2. Then there exists € >0 and § > 0 such that for
* *
||XO - X ][ < € and IIBO - JX )IIF < 8§, {Xi} converges Q-superlinearly

x -1
to X and {[IBkII}, {llBk ||} are bounded.

Using Algorithm 2.3 we can have the same convergence results for
linear and general nonlinear functions F as are given in Theorems 2.7,

2.8, and 2.9.
The Gay-Schnabel Proposal

As we mentioned in the previous section, the Gay-Schnabel algo-
rithms (Algorithm 2.2 and Algorithm 2.3) have been analytically proved

to be locally Q-superlinearly convergent and exact on linear problems.
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Now, we consider the Gay-Schnabel proposal. This proposal involves

three parts: Extensions, Implementations, and Evaluations.
Extensions

The basic idea of Gay and Séhnabel's modification of the Broyden

n
method is the choice of a proper vector S, € R used to update a new

k

approximation to the Jacobian at each iteration. Two variations of the

Gay-Schnabel algorithm are derived by the different methods of setting

Sk at each iteration. We identify the original Gay-Schnabel algorithm

(Algorithm 2.2) as algorithm I and its inverse update method (Algorithm
2.3) as algorithm I'.
The first extension is to preserve the current and most recent

quasi-Newton equation at each step by setting

R o .
s, =S =~ ( /8151 Sp_y (2.17)

k-1
in Equation (2.12) of Algorithm I at each iteration.

This choice of Sk will cause the updated Bk+l to minimize the

=Y and

Frobenius norm of B - Bk among all B k+lSk X

K1 satisfying B

k+1

(B - Bk) S, = 0. This extension can be proved to be of local

k+1 k

Q-superlinear convergence without restarts. Gay and Schnabel never
tested it. From now on we call this algorithm II.

A

Algorithm II is actually to choose S, at each iteration to be the

k
‘projection of Sk orthogonal to the previous step Sk—l instead of all the
previous steps SO, Sl,. .+, S . This choice of Sk is a special case

k-1
of the following extension. ‘

The second extension is to chooseﬂsk in the update form (Equation

(2.12)) of B equal to the projection of S, orthogonal to the previous

k+1 k
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L . . .
t Sj s, t<n, subject to the linear independence of Sk-t' Sk—t+l" . oy

Sk as in Algorithm I. Such an algorithm would require no restart. From
now on, we call this algorithm III.

Algorithm II is then a special case of algorithm III with t = 1.
We note that there is an inverse update form for each of algorithvaI
and algorithm III. These two inverse update forms will be denoted by

algorithm II' and algorithm III', respectively.

Implementations

Since algorithm II and algorithm III have never been tested, we
have implemented and tested these algorithms II, II', III, and III' and
have done further tests of algorithms I and I'. The test problems will

be covered in Chapter IV.
Evaluations

We will evaluate the performance 6f these algorithms by making a
comparison between these algorithms and the conventional Broyden's
method, as well as some other ﬁeﬁhods such as Brown's method for solving
a system of equations and the DFP.(Davidon—Fletcher-Powell) method for.
minimization problems. Criteria used will be convergence properties,
function evaluations, computing time, and user's effort required. Brown's

method and the DFP method will be covered in the following chapter.



CHAPTER III
OTHER ALGORITHMS AND COMPUTER EXPERIENCES

In this chapter the author will present two additional aléorithms-—
Brown's method and the DFP (Davidon-Fletcher-Powell) method. The per-
formance of these two algorithms will be compared with that of Gay-
Schnabel's method in the next chapter. We first consider Brown's method

to solve a system of n simultaneous nonlinear equations.
Brown

In order to reduce the amount of computational effort in solving
the system of n nonlinear equations with n unknowns, Equgtion (1.1),
Brown (5) through (8) proposedba local method which handles the equa-
tions fi = 0 one at a time so that information obtained from working

etc. The basic idea

with fl can be incorporated when working with f2,

of Brown's method is to set up a successive substitution scheme by the

expansion of previous fi in the Taylor series about an initial point XO

Then using this expansion form, set equal to zero, one solves a speci-
fied component of X of which the (approximate) partial derivative is the
largest in absolute value; then substitutes the solved component into
the next fi+l' Repeating this process, one goes through all the fi's,
then uses a back-substitution method to solve the real values of those
components which are now regarded as the components of a new point Xl.

This is different from Newton's method, which treats all these fi

38
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simultaneously. Brown's method dées not require the user to furnish any
- derivatives. The partial derivatives afi/agj required in the Taylor.ex—
pansion of fi at a given point XO are furnished by the finite difference
guotient approximation

o
+ -
fi(xO h ej) fi(Xo)

0
h

(3.1)

where ej denotes the jth unit vector and the scalar hO is usually chosen
such that hO = 0(||F(X0)||). We will show the strategy of choosing this

h0 later so as to guarantee the convergence of Brown's method. Now we

discuss the necessary steps that are required to derive a better approxi-

) - okl k+] k+1 : . * o * *
mation, Xk+l = (El ’ gz 4 e e ey gn ), to the solution X = (El, 52,
* . . _ k k k
. e ey En) from a given point Xk = (& E v v v oy En).

1’ "2
STEP 1: EXxpress fl in an approximate Taylor series expansion about

the point X, and ignore terms of order 2 and higher,

k

n
. v
£10X) = £,(x) + izl(afl/aai)<xk><gi - &) (3.2)

whereyafl(xk)/agi is defined by Equation (3.1). If X 1is close enough

k

*
to X , fl(x)ﬂzo, and we can equate Equation (3.2) to zero and solve for
one variable component, say En, whose corresponding approximate partial
derivative, afl(xk)/agn, is largest in absolute value.

n-1 23f (X ) 3f (X
_ _ 17k 1 Lk 1
ey =8 L (/) By - B - £ ) /5%

=1 i n n

) of (Xk)

(3.3)
Clearly, Eh is a linear function of the n-1 variable components El, 52,

e e or & in Equation (3.3). We rename the left-hand side of Equation

n-1
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ofy (X afq (X
(3.3) as Lp (£1+ &2+ + - -+ En-1)- The constants %é_k)/ %é k) ,i=1,
i n

af3 (Xx) .
2, ...,n-1, and fl(Xk)/——gg——— are stored for future use in computer
n

implementation.

STEP 2: Define g, (E,, &, «« oy & 1) = £,(8,, Eop o« oy B 14

, ' . k .k
Ln(gl, 52, A )). Expand g2 about the point (El, 52, .. ),

n-1 r b

linearize (ignore higher order terms) and solve that variable component,

say En—l’ whose corresponding approximate partial derivative, (agz/agn_l)

k k . k . .
(El, 52,. . oy En—l)' is largest in absolute value:
n-2 dg ag
_ .k 2 k k 2 k k
Eny = Epor L GE By e e B Vg B an B D)
i=1 i n-1
of '
k k k 2 k k
(El - gl) - gz(gl’ N En-l)/ag (Ell s . ey En_l)-
n-1
(3.4)
Here
8g2

k k
@ (gll e o oy gn—l)

is given by

X k . . k,k k
+ PR
i-1r B P hg &

k k
1’1"1) —g2 (gl' e . oy gn_l)
. hk

k
92(511 e e &

Again, we denote the right-hand side of the linear function (Equation

(3.4)) as Ln—l(gl' £2,. . s & ). The ratios

n-2

99, 99
2 k k
s e At (Er. .. B

) fori=1, 2,..., n=-2
8€i agn—l

and
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dg
k k 2

g, (€ v, & )V

2°°1 n-1"3g .

k k
(El,- Y gn—l);
are stored for future use in any computer implementation.

STEP 3: Define g3(gl,'g2,, .., Eop) = f560, Epve e oy B 0 L

(Ell o s oy gn—2)' Ln(El' o o oy gn_zl Ln—l_(gl' o o oy gn_z)))- Expand g3

k

with Taylor expansion about (g?, Ez,. . .y E:_z), linearization of the

resulting expansion, equating to zero and solving for one variable com-

ponent, say &n_z, whose corresponding approximate partial derivative

k k Xk . . . .
3g3(gl, Ez,. . gn_z)/agn_z is largest in magnitude. Now, gn—2 is a

linear combination of the remaining n- 3 variable components; i.e.,

g =L

n-2 n—2(€l' &

2»/ e e oy En_s)-

We continue in this fashion, eliminating one variable for each

equation treated. ©Every time we obtain a new linear expression, Ln "

for one of the components, say En_ in terms of the remaining n-k-1

kl

variable components, El, £2,, <., & , We use this linear expression

n-k-1

wherever &n; had appeared in the previously defined linear expressions

k

Ln—k+l' Ln—k+2" . oy Ln' On the other hand, we add one more linear ex-

pression to a linear system at each step. During the (k+'1l)st step of

the algorithm, we need to evaluate Is1’ i.e., £,

for various argu-
i+l g

ments. The values of the last k components of the variable X of fi+l

tai & : futi . .
are obtained by the substi ut;on of the linear system Ln—k+l' Ln—k+2'

. e ey Ln which has been built up; The points needed are (Et, .. .,Ei_k)

k
and (§., ..., &k ) +he,, i=1,...,n-k, where e, denotes the ith
1 n-k i i

unit vector. These points are required to determine the quantities

k k k k .
gk+l(gl’ e o oy gn_k) and agk+l(glr e o oy En"k)/agl for 1= lr YR kl

needed for the elimination of the (k+ 1)st component, say &n;

K’ by the



42

basic processes of expansion, linearization, and solution of the result-
ing expression. For each k, this results in the (k + 1)st components,
say gn—k’ being expressed as a linear combination, Ln—k’ of the remaining

n-k+1 components.

EP N: thi = - .. !
ST At this stage we have 9, (gl, L2, L3, P Ln) where Li s

are obtained by back-substitution in the n -~ 1 rowed tfiangular linear

system which now has the form

k'
Z( (&) .,z;v—g—gl’“i(a....,an(a »
99 In- j+1 k k

- gn ]+l(€l' . o ey E )/_—‘gj_' (El' « o ey E])I (3.5)
for j=n, n-1,...,2, with 9, = fl, L1 = El' Thus 9, is a function

of ‘a single variable component El, giving

Bg .
k k

El = El -9, (E )/ g (El)- : (3.6)

. + .
We use El thus obtained as the next approximation, Ek l, to the first

1
. *

*
component,{l, of the solution vector X . We rename El as L1 in Equation

(3.6) and back-solve the Li system (Equation (3.5)) to get improved

*
approximations to the other components of X..

Now, we use the notation

<= . -
Xk+l PROC(Xk, sl SN)

to denote the above procedures that derive the point Xk+l = (E§+l,. . oy
k+1 . . k k : .
En ) from a given point Xk = (El,. . oy En), by going through STEP 1 to

STEP N. Brown's algorithm can be listed as follows.
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Algorithm 3.1 (Brown, 1967): Let Xoe Rn, F :RP-*Rn, € >0 be given.

For k=0, 1, 2,. ..

IF IIF(X)II <e then stop.

Xk+l <= PROC(Xk; SL - SN).

In applying Algorithm 3.1 to F = 0, an ordering strategy must be
considered. The equations should be pre—ordefed so that the linear ones,
or most nearly linear ones, come first and then equations become pro-
gressively more nonlinear. This is because Brown's method works with
one equation, fi = 0, at a time and uses information thus obtained.imme-
diately when dealing with the next equation fi+l = 0.

One question might be raised: how can we be sure that the solution
procedure (Equation (3.3)) in STEP 1 will be defined? Brown (7) gave a
proof in 1969 that under the usual hypotheses for Newton's method there
will always be at least one non-zero partial derivative; consequéntly,
the approximate partial Equation (3.1) will also be non—vahishing.

The choice of hk in forming the approximate partial derivative
needed in Xk+l <= PROC(Xk} S1 - SN) will affect the convergence of
Brown's method. This fact is from the.following local convergence

theorem, which was proved by Brown and Dennis (10). The notation”.“oo

used in the theorem is defined as follows:
If X = (Elr 521 e o oy E.;n)l
then ||x||_= max{lailzi. =1,2,..., n}

©oIEAs (aij)nxn
n
then |[|a]|_= max{ ] |a
j=1
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Clearly,

xI1, < 1xl ], lall, < [1all,

n__n . . .
Theorem 3.1: Let F:R +R be continuously differentiable in an
. * *
open convex set D, X €D, F(X ) = 0. Assume the Jacobian J(X) of F is
. . - * n * *
continuous in N(X ; r) = {XeR : ||Xx - X Ilw < r} and J(X ) is non-
singular. Under these hypotheses there exist positive numbers € and §,

. . K
such that if XOE:N(X ; 6) and {h} is bounded in modulus by €, then the

*
sequence {Xk} generated by Algorithm 3.1 exists and converges to X .

Furthermore, if there is an M > 0 such that ||J(X) - J(X*)llco <
k||x - X*Ilm for ||x - X*Ilw < r and {n"} is 0({1fl(X*)|}), then the

convergence is Q-quadratic.

k . .
In an actual computer implementation, hj' by which one increments
&? when working with fi, is chosen accbrding to the following strategy
(8)

-B+2

h& = max{a#.; 5 x 10 }
J 1]

where

k . k k k k
oy = min { max (| £, € v - sn)l, lay Eyreent Dlee

k A
g. (gl,. « o/ &

1

- .
1oy))i 0.001 x |gjl}

and B is the number of significant digits carried by the machine.

This choice of the amount of h* can prevent the size of h* from
being absurd when compared to the magnitude of |le||w, (suppose, for
example, that kall°° = 0.001 but Ilfl(Xk)HOc = 1000; this would provide
poor approximations to the partial derivatives)fwhile at the same time

. ; *
satisfy the conditions of the theorem as the solution X is approached.
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If we examine the process X <= PROC(Xk; Sl - SN) to count the

k+1
number of fucntion evaluations, we can see that the first step requires

n+ 1 evalutions of f the second step n evaluations of f2, the third

ll

step n- 1 evaluations of f_, etc., so the total number of function evalu-

3

ations is

n+1 5
Y k= + 3N) /2.
k=2 :

On the other hand, Brown's method adds a number of other functions

to be evaluated, namely the linear functions L The evaluations of the

K
Lk are not included in the count above. Thus Brown's method is suitable
to solve problems when the functions fi are expensive to evaluate in ’
terms of the amount of computation.

Computer experiéncev(S) reveals that the method seems to be extreme-
ly stable locally in practice and has been used very successfully on at
least 100 different problems, even in cases where the fi are easy fo
evaluate. The implemented program used in the next chapter to compare
the performance of this algorithm with that:of Gay-Schnabel's algorithm

is called from the IMSL (43) library. The name of the subroutine is

ZSYSTM.
Davidon-Fletcher-Powell

The Davidon-Fletcher-Powell (DFP) méthod is a technique for finding
an unconstrained minimum of a differentiable function ¢(X) of n real
variables. It was first proposed by Davidon (23) and later reformulated
by Fletcher and Powell (34).

| Basically, the DFP method is an iterative procedure. With a given

point X and a positive definite symmetric matrix H, the DFP method
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searches along a line from X in a direction of steepest descent, modi-
*
fied by this matrix H, to a new point X such that the function value is

*
decreased. Then a new matrix H is updated according to a defined rule

. *
in terms of H, the change of X, and the change in the gradient. Now, X
* .
and H can be used to begin the next iteration. This generates a
sequence of points which converge to a local minimum of ¢ (X). We use g

to denote V¢ and state Fletcher and Powell's original proposal as the

following algorithm.

Algorithm 3.2 (Davidon-Fletcher-Powell, 1959, 1963): Given an ini-

tial point X0 and an initial matrix HO = I or any symmetric positive
definite matrix.

Fork=0,l,210"l

if g(Xk) = 0, then stop. -

Else, set dk = —Hkg(Xk) . (3.7)
. + . .
Obtain Ak> 0 such that f(Xk Akdk) is a minimum
with respect to A along Xk + Xdk,
set Sk = Akdk' . : (3.8)
Xer1 = % T S5
Y, = G(Xk+l) - g(Xk) (3.9)
Hoep = B ¥ A 7 B . (3.10)
where
T
S, S .
A= E k : (3.11)
¥y

and
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g = -*kKkk (3.12)

In the above algorithm, the quitting rule g(Xk) = 0 says that the

current point X is a stationary poiht of the function ¢ to be minimized.

k
This stationary point satisfies the necessary conditions for a local
minimum. If ¢ has continuous second partial derivatives, then the sta-
tionary point Xk is a local minimum if the Hessian matrix of ¢ is posi-
tive definite. In the computer implementation, Fletcher and Powell
recommended that the minimization be terminated if, on evaluating both
the vectois——Hkg(Xk) and —AkH#g(Xk)—-gither of the following occurs:

1. EVery component of the two vectors is less than a prescribed

value.

2. The predicted lengths of each of the vectors from the minimum

are less than avprescribed'value.

As to the line search procedure to obtain a minimum along a direc~-
tion, the algorithm uses cubic interpolation which is first given by
Davidon (23).

For ease of notation, we use g, to denote g(xk).

Two significant properties were derived by Fletcher and Powell (34).
The first one is the stability of the algérithm, i.e., the value of the
function to be minimized is decreased at each step. This property is
desirable for deséent methods, usually.

In Algorithm 3.2, 9y is the direction of steepest ascent. The

direction dk will be downhill if and only if

T T T
- = = . >
49 = (H9) gy = g g >0
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i.e., the symmetric matrix Hk is positive definite for all nontrivial
tors .
vectors g,

The above relation will be clear if we observe the first order

Taylor series form for ¢ with a sufficiently small step A >0

T
$(x,_ *+Ad) = (X)) + Adq, .

T

> .
kIx > ©

Since A >0, this implies cb(Xk + Adk) <¢(Xk) if and only if -d

Fletcher and Powell have proved, by an inductive argument, that Hk
in the DFP method defined in Algorithm 3.2 is positive definite and con-
sequently the DFP method is stable.

The second property is the quadratic convergence which is usually
known as quadratic terminatioh,.i.e., the algorithm, when applied to a
strictly convex quadratic function of n variables, will find the minimum
in at most n iterations. A termination property certainly guaranteés
efficiency when solving quadratic problems. It has often been regarded

as a desirable property for an algorithm to possess. Let the function

¢ be given by
q
T T ' , _
¢q = (1/2)X'AX + b'x + C, (3.13)

where A is positive definite. ¢q is a strictly convex quadratic func-
tion and has a unique minimum. Clearly, A is the Hessian matrix of ¢q.

If H = A—l for some k < n, then the search at the kth iteration will

find the minimum.
Fletcher and Powell proved this property by proving that the steps

SO, Sl" ..y Sk generated by Algorithm 3.2 are linearly independent

eigenvectors of Hk+lA with eigenvalue unity. Therefore, it will follow

that Hn = A_l. The detailed proof involves establishing
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szsj =0, 0<i<ij<k (3.14)
and
HAS, =S, 0<1ic<k, ’ (3.15)
1 1 = .

for 1 < k < n by induction. Equations (3.9) and (3.14) give that the

searching directions do, dl,. . o dn—l are conjugate with respect to A,

i.e.,
a’ad, = 0 0<i<3j<n-l.
1 J =

Then, by the definition of 9 = V¢q(Xk) = AX, + b and the fact that sl

k

is orthogonal to S, and hence dk in Algorithm 3.2, gives that

k

dig_ =0 for 0 < i <n - 1.

rd ..., 4d

The linear independence of do 1

in R forces g = 0. That
n-1 n

Xn is a minimum follows the positive definiteness of A.

Next, if we consider Hk+lYk by Equations (3.10), (3.11), and (3.12),
then
T T
S. S HY Y H
_ k'k _ kkkk _
Hk+lYk = HkYk + STY Yk —;E——;——-Yk Sk. (3.16)
k'k ka k

Equation (3.16) is what we called the quasi~Newton equation and hence
the DFP method is a special case of the quasi-Newton method. Therefore,
the DFP method possesses the properties which are commonly possessed by

the quasi-Newton method.
Convergence

The DFP method has become one of the most popular and most success-—

ful techniques for finding the minimum of a differentiable function of
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several variables since 1963. But until 1971, the cbnvergence was not
proved to be Q-superlinear.
Powell (51) has shown that, if
(1) the objective function ¢ is twice continuously differentiable,
(2) the objective function ¢ is strongly convex, i.e.; the eigen-
values of the Hessian are béﬁnded below by a positive constant,
(3) the line search performed at each iteration locates the exact
minimum of the function along that line, i.e., A, is chosen so

k
that

|

¢ (X, - AkPk) = min{¢(xk + APk): A > 0}

where Pk = -Hk ¢(Xk), then tﬁe sequence of function‘values
generated by the method converges to the minimum at a linear
rate.
If, in addition,
(4) the second derivatives of the objective function ¢ satisfy a

*
Lipschitz gondition at the location of the minimum X , i.e.,

[V = veh ] < mlx - x7]]

for some constant M > 0 and for all XesS = {X: ¢ (X) < ¢(XO)},
then the rate of convergencé is Q-superlinear. |
The set S in hypothesis (4) is reasonable since the stability of
the DFP method implies that the sequence {Xk} generated by the method
is contained in this set. We can conclude the above and make a theorem

related to Algorithm 3.2 as follows.

Theorem 3.2: If Algorithm 3.2 is applied to an objective function

which satisfies (1), (2), and (4), then the sequence {xk} generated by



51

*
this algorithm converges Q-superlinearly to X , the global minimum of ¢,

from XO and a positive definite matrix Ho =I; i.e.,

1im||X
00

* *
X k+l_xll/_llxk—xll=0'

Computing experiments for the DFP method were successful; Powell
has used‘this method to solve a system ofleO nonlinear simultaneous
equations successfully. Numerical difficulties also have been reported.
These are mainly caused by the breakdown of the positive definiteness of
Hk. Broyden (14) notes that negative steps have to be taken occasion-
ally. This implies that some of the Hk's are ﬂot positive definite.
Broyden attributes this failure to excessive rounding_error.b Bard (2)
pointed out that poor scaling could cause Hk to become singulari. Abbott
(1) indicated that a more probable cause of loss of poéitive definite-
ness is failure to perform an exact line search.

In order to imprer the performance, a variation on.the'original
method was suggested by McCormick and Pearson (45). For an objective
function of n variables the'procedure is "restarted" every n (or n+1)
iterations by ignoring the usﬁai matrix updating fprmula (Equation (3.10))
and instead setting the matrix-Hk (or Hk+l) to be the identity matrix
and taking the search direction to be ﬁhe negative of the gradient.

McCormick (46) has shown that , given all the hypotheses (1) through
(4), the rate of convergence of the "restarted" DFP method is quadratic
when the decrease in efror is measured over the interval of n iterations
between restarting steps.

In practice, obtaining the exact solution in a linear search is
costly (e.g., consuming most of the computation time), and since, in any

case, the "exact" solution is never obtained, there have also been some
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results on the convergence properties of the DFP method without exact
line searches.

Broyden, Dennié and Morée (19) proved the following: Assume the
objective function ¢ is twice differentiable in an:opeh convex set D
containing the minimum point Xffandvthe Hessian matii# of ¢ at X* is
symmetric and positive definite and satisfies the one-sided Lipséhitz

condition
1w - vou]| < ullx - x"||P

for some p>0, M>0, and all X in D. If (XO, Ho) is sufficiently close
to (X*, V2¢(X*)),vthen the DFP method with Ak =1 for'all k is Q-super-
linearly convergent to X*.

Dennis and Morée (30) showed that thé sequence of step sizes {Ak}
converges to one.if and only if the method converges superlinearly.

Recently, convergence theory for the. DFP method has been extended
to cover the practical situation. Lenard (44) gave conditions on the
error incurred in the line search performed at each iteration‘under
which the order of convergence of the DFPvmethod is linear or superlinear
for the original method and n-step quadratic for thé restarted method.

Even though the rate of convergence of the restarted version seems
faster than that of the original propoéal, we use the original algorithm
in the next chapter to compare the pérformance with that of the Gay-

Schnabel algorithm.



CHAPTER IV
QUALITY CONSIDERATIONS OF THE ALGORITHMS

The aim of this chapter is to compare the performance of the algo-
rithms in the Gay-Schnabel proposal with that of oﬁher algorithms men-
tioned in the previous chapters--Broyden's methéd and the DFP method.
Numerical tests were carried out on the IBM 370/158 computer at Oklahoma
State University. Thé machine has a 64-bit word in double precision,
with 56 bits devoted to the mantissa, giving an accuracy of 16 decimal
digits.

Among all these algorithms, algorithms I and I' are Gay-Schnabel's
original implementation. Brown's method and the DFP method are embodied
in éxisting computer programs in IMSL (43),.a fact which leads to some
differences in comparison. Algorithms II, II', III, and III'--the exten-
sions of the Gay-Schnabel algorithm--as well as B;oyden's first method,
are programmed by the author in standard FORTRAN. |

In the implementation of algorithms II and III, the step size S =

k

-1 . . . ' . .
—AkBk Fk is determined by choosing Ak according to the nonlinear search

described in Reference (13) with the added restriction that llskll < 1.

Instead of storing Bk' we actually store and update Hk = B;l. The com-

~

putation of S, is carried out by the Gram~Schmidt orthonormalization

k
process.

The quality of the algorithms wlll be assessed by the following

criteria: convergence properties, computational complexity, and effort

53
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requiréd. All those algorithms have been analytically proved to be Q-
superlinearly convergent except Brown's method, which converges Q-quad-
ratically sometimes. These merits will be explained in the computer
output if possible. But instead of testing the convergence properties
directly, we will examine the accﬁrady of the solution obtained. The
second criterion is often reléted to the time £aken to reach the solu-
tion and thg amount of computer storage space used in computation.
Frequently, the time taken is in conflict with the accuracy of the
solution obtained and the storége required, so éome arbitrary assumptions
will be made before a comparison of two aigorifhms.

Since time taken depends heavily on the strategy of program iﬁple—
mentation and also the difficulty in comparing the times when two methods
are tested on two different machines, we assume that the total amount of .
computation is directly proportional to the number of function evalua-
tions to obtain the solution and that the constant of proportionality is
the same for all methods. This.is more true as the complexity of:the
functions increases and the constant of proportionality approaches unity.
In the case of Brown's method "equivalent function evaluations" are
quoted since in that method some elements of F:are computed more often
than others. The term "equivalent function evaluations" is defined as
the total number of evaluationé of the individual function components,
which is simply the numﬁer of iterations multiplied by (n2 + 3n)/2. 1If
we divide this number, "equivalent function evaluations," by n and round
it to an integer, then this integer can be used to approximate the number
of function calls. Since the amount of labor involved in an iteration of

different methods may vary tremendously, the number of iterations will
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primarily be used in the comparison of the member of Gay-Schnabel's
class.

In order to compare the performance of'the various methods under as
nearly identical conditions ;s possible, they are used to solve a set of
test problems, starting from the same initial point. The accuracy of
the final solution will be regarded as obtained when the Euclidean norm
of the vector F becomes less than a tolerance arbitrarily chosen to be
10—10, although there are some other criteria for the termination rule
used in Brown's method and the DFP method as mentioned in Chapter III.

In order to keep the linear independence of the steps Si generated
by Gay-Schnabel's original algorithm, ‘the criterion parameter T used to
judge the restart procedure Will be set to 10. This is a good choice
according to Referenée (38).

We note that the Broyden algorithm chosen here to compare with
other algorithms is Broyden's first method which is superior to Broyden's
second method (13).

A table is given for each of the following selected problems and the
computing results are reported for the following items: convergence,
number of iterations, number of function evaluations, and accuracy (fiﬁal
norm of F). For reference purposes, thé normalized number of function
evaluations (Gay-Schnabel, 1977) and the mean convergeﬁce rate (Bréyden,
1965) are also reported. The normalized number of function evaluations
is defined by dividing the actuai number by the minimum of the numbers
for that problem and rounding to two decimal places while the mean con-

vergence rate R is given by

R = (1/m) ln(Nl/Nm) : (4.1)
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where m is the total number of function evaluations and Nl, Nm the ini-
tial and final Euclidean norm of F. This R, as noted by Broyden, does
not tend to an asymptotic value as m~>~ and is merely intended to be a

concise index of the performance of a method applied to a particular

problem in a particular situation.
Experimental Results

This section is devoted to a discussion of the behavior of the
various methoas when applied to a number of test cases. The table imme-
diately following each problem indicates the computing results of each
of the comparison criteria for the algorithmsf The entries on the "con-
vergence" item accompanied by a character "a" indicates that Broyden's
(1965) quadratic interpolation technique failed to reduce IIFII and a
character "b" indicates that the norm of F cannot reach the preassigned
arbitrary number 10—10 oWing to exceeding the limit (= 200) of itera-
tions. The corresponding'reports on this row are then the information
at the time of failure. Algorithms III and III' are not tested until
N > 3.

Notation used in each table:

Conv. - Is the algorithmvconvergent?
Eval. - Number of function evaluations.
N - Normalized funétion evaluations.
Iter. - Number of iterations.

T - Execution time in seconds.
[rFol[ - Initial norm of F.

El
1

Final norm of F.

R - Mean convergence rate (see Equation (4.1)).



57
Problem 1

This problem is given by J. P. Chandler (21) to study the case when
the algorithms are applied to a single nonlinear equation.

1
F (X) = arctanX XeR

*
with X = 3.0, X = 0.0, and ||l = 1.249. The results are given in

Table I. We note that algorithms I, I', and II' have the same results.

This is desirable since the orthogonal projection of S, onto the ortho-

k

gonal complement of S for k > 1 is a zero vector in R1 and hence the

k-1
updated Hk will not be changed after the first iteration for those algo-~

rithms.
TABLE I
COMPUTER RESULTS FOR PROBLEM 1.
Method  Conv. Iter. Eval. N T (sec) N R
I yes 6 9 1.00 0.15 . 0.6596D~-11 2.885
I’ yes 6 9 1.00 0.14 0.6596D~-11 2.885
II yes 6 9 1.00 0.09 0.6596D-11 2.885
11" yes 6 9 1.00 0.09 1 0.6596D-11 2.885
Broyden yes 32 82 9.11 0.55 0.7833D-11 0.329

Brown no 6 12 —-——- 0.02 1.5710D 00 —-——-
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Problem 2

This problem is taken from the derivatives of Rosenbrock's function

(54),
2.2 2

$(x) = 100 (£, - ED7 + (5, - 1)
given by

£(X) = 10 (£, - £°)

1 - 8275
£,(0) =1 -¢
, T % T

with Xy = (-1.2, 1.0)", X = (1, 1)°, and [[FO[| = 4.919. The computer

results are given in Table II.

TABLE IT

COMPUTER RESULTS FOR PROBLEM 2

Method Conv. Iter. Eval. N T (sec) lIF]] R
I yes 5 15 1.88 . 0.16 0.755D-13 2.121
I no 14 6L - 0.46 1.875D 00 0.016
11 yes 29 78 9.75 0.60 . 0.138D-15 0.488
1I1' (o) 8 42 — e 1.394D 00 0.300
Broyden ves 25 71 8.88 0.53 0.666D-14 0.482
Brown yes 3 8 . 1.00 0.03 0] ©

In the test of this problem, algorithm I' failed to converge due

to an extremely small step size taken after the tenth iteration (step



59

size less than 0.5594D-06). This caused the new step Si to lie almost
entirely in the space spanned by the previous steps. Therefore, the
linearly independent property was destroyed by the adding of a new step
Si to the previous steps. Sometimes this phenomenon can be avoided by
adjusting the paramete; EPS2 in the program (Appendix B) but a risk of
underflow then occurs in the nonlinear search.

The aufhor examined the output and listed the property of Q-super-
linear convergence of Broyden's method, algorithms I and II in Tables
III, IV, and V, respectively.

The trajectory of the search to the solution of Problem 2 by
Broyden‘s method, aléorithms I and II, and Brown's method are given in
Figures 2, 3, 4, and 5, respectively. From these we can examine the

status of convergence of these algorithms.

TABLE III

Q-SUPERLINEAR CONVERGENCE OF BROYDEN'S
METHOD WHEN APPLIED TO PROBLEM 2

K |[x, - x*||
0 _ 0.2200D-01
21 ' : . 0.1228D-01
22 0.8090D 00
23 ' 0.2107D 00
24 0.1089D-01

25 0.6661D-15




Q-SUPERLINEAR CONVERGENCE OF ALGORITHM I

WHEN APPLIED TO PROBLEM 2

*
15 - %11

v b W N O

0.2200D-01
0.2089D-01
0.2007D-01
0.1330D-01
0.8347D-02
0.7550D-14

Q-SUPERLINEAR CONVERGENCE OF ALGORITHM II

WHEN APPLIED TO PROBLEM 2

X [ - %71
0 0.2200D-01
16 0.1119D-01
17 0.8178D 00
26 0.1541D 00
27 0.7153D-02
28 0.1084D-02
29 0.1388D-16

60
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Figure 2.

W/ /1
X1 0
XZO‘

Trajectory of the Seafch to Solve
Problem 2 by Broyden's Method

x

6l



Figure 3.

Trajectory of the Search to Solve
Problem 2 by Algorithm I
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Figure 4.

Trajectory of the Search to Solve
Problem 2 by Algorithm II
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Figure 5. Trajectory of.the Search to Solve
‘Problem 2 by Brown's Method
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Problem 3

The following system is given by Brown (7):

2 .
fl(x) El - Ez -1

2 2
f2(x) (El - 2) + (52 - 0.5) -1

This system has two roots:

(1.54634288, 1.39117631) ;

Yq =
and
T
Y = (1.06734609, 0.13922767) .
The initial point is (0.1, 2.0)T with I]Foll = 5.706. From the computer
*
experiments, all the algorithms converged to Y2' i.e., X = Y2- The
experimental results are given in Table VI.
TABLE VI
COMPUTER RESULTS FOR PROBLEM 3
Method Conv. Iter. Eval. N T (sec) |]F|| R
I yes 14 29 1.61 0.48 0.6240D-14 1.188
I' yes 14 20 1.11 0.42 0.4163D-16 1.973
11 yes 13 20 1.11 0.29 0.6695D-14 1.719
i1’ yes 14 20 1.11 0.31 0.5551D~16 1.959
Broyden yes 14 18 1.00 0.23 0.7554D-14 1.903

Brown yes 8 20 1.11 0.09 0.4923D-12 1.504
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Problem 4

The following system was first studied by Freudenstein and Roth (35)

and later by Broyden (13).

LK) = <13 4 £ + (-, + 5)E, = 2E,
£,(0) = =29 4 £ + ((, + DE, - 10)E,
with X_ = (15, -2)%, X = (5, 4)".

0

According to Broyden (13) and Brown (7), Broyden's method failed to
converge to X*. This is a reason why the author was interested in test-
ing this problem.

The author tested all the algorithms with different initial poiﬁts;'
Except for Brown's method, the members of Gay-Schnabel's classvand‘
Broyden's method failed to converge with the following initial points:
(15, —2)T, (7.5, —l)T, (3, 2)T. The failure occurred because the non--
linear search technique could not reduce the norm of F sufficiently.

For instance, algorithm II, with X_ = (3, 2)T, reduced ]IF|| to 7.4635

0
in il iterations with 78 function evaluations, but in iteration 12, it
made 100 more function evaluations (178 in total) and could not improve
anything at all. Most of these function evaluations were spent in non-
linear search process. The information in Table VII is given with

XO = (3, 2.5)T and ]]FO|| = 39.13. The solution by Brown's method is

exact. Algorithm II' seems superior to any other members in the Gay-

Schnabel class.



TABLE VII

COMPUTER RESULTS FOR PROBLEM 4
X, = (3, 2.5)T,”FO” =39.13
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Method Conv. Iter. Eval. N - T (sec) ||F[] R
I yes 9 17 1.06 0.27 0.4578D-14 2.158
I yes 9 17 1.06 0.25 0.2914D-13 2.049
I1 yes 9 17 1.06 0.18 0.7127D-12 1.861
IT!’ yes 8 16 1.00 0.16 0.1862D-11 1.917
Broyden yes 9 18 1.13 0.18 0.2739D-11 1.683
Brown yes 10 25 1.56 0.11 0] "o
Problem 5

. This transcendental equation was first studied by Brown and Conte

(9).

ith X =
wi 0

The computer results are given in Table VIII.

1. ‘
£,(X) = 5 sin (§,8,)) - £,/(4m) - £, /2
‘.f2(X) = (1 - 1/(4n))(exp(2£l) - e) + egz/ﬂ - 2e£l
0.6, 3T, x" = (0.5, M7, and |[Fo|l = 0.1236.

All the algorithms

under consideration worked well on this problem. The member of the Gay-

Schnabel class is superior to Broyden's method.

This problem is taken from Powell's paper (50).

£ (X)

£2(X)

Il

~Problem 6

10000 5152 -1

exp(-£1) + exp(-&5) - 1.0001.
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TABLE VIII

COMPUTER RESULTS FOR PROBLEM 5

Method Conv. Iter. Eval. N T (sec) IIFII R
I yes 8 11 1.10 0.24 0.1348D-13 2.713
I' yes 8 11 1.10 0.25  0.1310D-15 3.135
II yes 7 10 1.00 0.15 0.6228D-12 12.601
1’ yes 7 10 1.00 0.13 0.9658D-12 2.558
Broyden yes 9 12 1.20 0.16 0.1046D-11 2.125

Brown yes 10 25 2.50 0.11 0.1265D-13 1.196
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Starting at the estimate X (0, l)T with ||Foll = 1.065. The solution

4

5=
is given approximately by X* n(0.1099 x 10 ’ 9.096)T.

All the algorithms of Gay—Scﬁnabel's class and Broyden's method
failed to reduce the norm ova to be less than 10—3. Only algorithm II
can reach a point (0.1388D-04, 7.204)" with ||F|| = 0.6933D-03 by 167
function evaluations. If we use (0.1, l.O)T as a starting guess, then
all the algorithms, except for Broyden's method, can reduce ||F]|< 10—4
and algorithm II' converged in 57 function evaluations. In both initia-

tive cases, Brown's method converges in 33 function calls (65 individual

function component evaluations). We omit the reports for this problem.
Problem 7

We start to test algorithms III and III' with this problem which

comes from Brown and Gearhart (11).

2 2
fl(x) = 51 + 251 -4
2 2
fz(X) = gl + 52 + g3 - 8
2 2 2
£,0) = (5, - D7+ (2, - V2)< + (£, =5 -4
.‘ T * - T
with initial point XO = (1, 0.7, 5)7, llFoll = 4,729 and X = (0,/5,6).

The author tested this problem and discovered that all the algo-

. * ’ T
rithms were convergent. Brown's method converged to X = (O, /5, o),
while Broyden's method and the member of Gay-Schnabel's class converged
to another root at (2, O, 4)T. This is different from the Gay-Schnabel
report. Gay and Schnabel claimed that their original algorithm also con-

verged to (0, V2, 6)".
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. . e eas . T
The author tested this problem with another initial point (1, 1, 5)
. . T T . .

which is closer to (O, /5, 6) rather than to (2, 0, 4) . This time,
T '

all algorithms under consideration converged to (O, /5, 6) as desired.
S e . T ,  a

Please note that the initial point (1, 0.7, 5) is almost equidis-

T T

tant from (O, /5, 6) and (2, O, 4)T but is closer to (2, 0, 4) . The

computer results with (1,.0.7, 5)T as initial point are given in Table

IX. Algorithm ITI' seems to be the most efficient one.

TABLE IX

COMPUTER RESULTS FOR PROBLEM 7

Method Conv. TIter. Eval. N T (sec) ||e|] R

I yes 12 17 1.00 0.49 0.1817D-12 1.817
I yes 12 17 1.00 0.46 0.1087D-12 1.847
II yes 11 22 1.30 0.29 0.4537D-13 1.467
Ir yes 11 17 1.00 0.25 0.3093D-13 1.920
IIT (t=2) yes 10 24 1.41 0.32 0.2941D-12 1.267
III' (t=2) vyes 10 17 1.00 0.27 0.6324D-14 2.015
Broyden no 11 17 1.00 0.32 0.1083D-10 1.577
Brown yes 12 36 2.11 0.24 0.1088D-14 1.000
Problem 8

The following system was first studied by Brown (7). This is a
system in which every equation is linear except for the very last one.

For n = 5, 10:
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n
—(n+ 1) + 26, + Y €

fi(X) = . i=1,...,n-1,
=1
j#L
n
£ (X) =-1+ 1 E.
n 5=1 3
*
Xy = (0.5, ..., 0.5)5; X = (1,..., 1",

The author also used this problem to test algorithm III (and algo-

rithm III') with t =2, 3, 4, i.e., set S, (or Yk) equal to the projec-

k

tion of Sk (or Yk) orthogonal to the previous t Sj's (or Yj's), t<n in
the extension of Gay-Schnabel's algorithm.

For n = 5, the author tested all the algorithms with three different
initial points: r = (0.5, ...,0.5)°, s = (0.75, ..., 0.75)", and w =
(L.5, ..., l.S)T. The cdmputer results are given in Tables X, XI, and
XII, respectively. We note that Bfown's method converged in each case
to the root X* = (1, 1, 1, 1, l)T. Broyden's method also converged to
X* (but slower) with given initial point r or s, but converged to the
root given approximately by (-0.579, -0.579, -0.579, -0.579, 8.90) with
initial point W. Taking r as initial point, the members of the Gay-
Schnabel class failed to con§erge except for algorithm III with t = 2
and t = 4. Both of these two cases are not better than Broyden's method.
As we take S or W as an initial point, the Gay-Schnabel algorithm and its
extensions seem superior to Broyden's method.

For n = 10, the author also tested all the algorithms with three
different initial points, the points all of whose components are 0.5,
0.75, and 1.5, respectively. The computer results are given in Tables
XIII, XIV, and XV. We note that Brown's method converged exactly to
(L, . . ., l)T and reduced IIFIJ = 0 for the cases of X_ = (0.5, ...,

0
0.5)T and (0.75, ..., O.75)T. The Brown method also worked well for
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X0 = (1.5, ..., l.S)T, i.e., converged in 10 iterations. Broyden's

method never converged in each case. As to the member of Gay-Schnabel's
class, the case t = 2 in algorithm III, with Xo = (0.5, ..., O.S)T, con-
verged‘in 25 iterations with 111 function calls. Algorithm II', with
X0 = (0.75, ..., O.75)T, converged in‘ 33 iterations with 173 function

calls. Taking (1.5, ..., 1.5)T as an initial point, all members in algo-

rithm III converged. These are the only convergent cases.

TABLE X

COMPUTER RESULTS FOR PROBLEM 8
N=5, Xg= (0.5, ..., 0.5)7T,

|Fol| =6.078

Method Conv. Iter. Eval. N Root 7] ] R
1 (no)? 7 21 _— --—  5.5830D 00  0.004
I (no)? 5 17 — — 5.5541D 00  0.005
II (no)® 4 14 — — 5.5700D 00  0.006
II (no)? 4 14 —ae — 5.6430D 00  0.005
=2 yes 17 35 1.25 r, 0.7269D-13  0.916
IIT  t=3 (no)® 13 32 —_ - 4.3510D 00  0.010
=4 yes 18 36 1.28 r, 0.2791D-12  0.853
=2 (no)? 4 14 -— — 5.6640D 00  0.005
ITI' t=3 (no)® 5 82 — — 5.6640D 00  0.001
t=4 (no)? 5 82 — — 5.6640D 00  0.001
Broyden yes 16 30 1.07 r, 0.1388D-16 1.354

Brown yes 7 28 1.00 r, 0 ©

(-0.579, -0.579, -0.579, -0.579, 9.895)" .

R
]

]
|

1, 1, 1, 1, 1) .



TABLE XI

COMPUTER RESULTS FOR PROBLEM 8
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N=5, X5 =(0.75, .. ., 0.75)T,
|[Fol| = 3.095
Method Conv. Iter. Eval. N Root ||F|[ R
I yes 11 21 1.00 r, 0.1625D~-13 1.566
I’ yes 11 21 1.00 ry 0.1489D-13 1.570
II yes 11 32 1.52 r, 0.2054D-13 1.020
i1’ yes 11 21 1.00 r, 0.4720D-13 1.515
t=2 yes 11 32 1.52 r, 0.1528D-13 1.029>
IIT t=3 yes 11 32 1.52 r, 0.7216D-15 1.125
t=4 yes 11 32 1.52 r, 0.9714D-16 1.188
t=2 yes 12 23 1.09 ry 0.5395D~13 1.177
IIT' t=3 yes - 12 21 1.00 r, 0.2916D-13 1.538
t=4 yes 11 21 1.00 ry 0.1476D-13 1.570
Broyden yes 11 32 1.52 r, 0.3189D-15 1.150
Brown yes 9 36 1.71 r, 0 ©
r, = (-0.579, -0.579, =-0.579, -0.579, 8.895)T.

A

T
(, 1, 1, 1, 1) .



TABLE XII

COMPUTER RESULTS FOR PROBLEM 8
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2}
Il

1, 1, 1, 1, 1) .

N=5, Xq= (1.5, ..., 1.5)7T,
ﬂFol | = 8.915
Method Conv. Iter. Eval. N Root 7] ] R
I yes 9 » 17 1.06 rl 0.2542D-13 i.970
I yes 9 17 1.06 r1 0.2251D-14 2.113
II yes 9 l6 1.00 rl 0.4965D-15 2.339
I1' yes 11 38 2.37 rl 0.8882D-15 0.970
t=2 yes 9 16 1.00 rl 0.5894D-13 2.041
IIT t=3 yes 9. 16 1.00 rl 0.3520D-13 2.073
t=4 yes 9 16 1.00 rl 0.1955D-13 2.110
t=2 no 16 87 5.43 rl 0.1241D-08 0.261
ITI' t=3 yes 10 18 1.11 rl 0.4793D-15 2.081
t=4 yes 9 17 1.06 rl 0.1940D-11 1.715
Broyden yes 9 16 1.00 r, 0.2449D-11 1.808
Brown yes 7 .28 1.75 r, 0.2498D-11 1.032
r, = (-0.579, -0.579, -0.579, -0.579, 8.895)T.



TABLE XIII

COMPUTER RESULTS FOR PROBLEM 8
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N=10, Xo= (0.5, ..., 0.5)7T,
ITFOlI 16.53 '

Method Conv. Iter. Eval. N | IFI l R
I (no) 2 1 12 -— 16.5000D 00 0.000
I (no)? 1 12 — 16.5000D 00 0.000
I (no)? 5 20 -— 16.0800D 00 0.001
IT" (no)® 1 12 -— 16.5000D 00 0.000
t=2 yes 25 111 1.71 0.1231p-11 0.272
IIT  t=3 (no)® 4 17 — 16.1000D 00 0.002
t=4 (no)? 4 i7 : -— 16.1000D 00 0.002
t=2 (no)? 1 12 -— 16.5000D 00 0.002
III' t=3 (no)? 1 12 _—- 16.5000D 00 0.002
t=4 (no)? 1 12 - 16.5000D 00 0.002
Broyden (no)® 9 23 —-— 12.0800D 00 0.014

Brown yes 10 1.00 0] o

65
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TABLE XIV

COMPUTER RESULTS FOR PROBLEM 8

N=10, Xg= (0.75, . . ., 0.75)T,
|Fol| =8.304

Method Conv. Iter. Eval. N ]IF]IV ' R
I (no)? 9 27 -— 7.2510D 00 0.005
I (no)® 5 21 — 7.4310D 00 0.005
II (no)? : 5 20 — 6.7760D 00 0.010
I1' no* 33 173 2.66 0.3494D-09 0.138
t=2 (no)?® 12 71 BE— 1.0000D 00 0.073
IIT t=3 (no)? 6 71 —— 6.7230D 00 0.003
t=4 (no)? 5 22 — 6.7230D 00 0.009
=2 (no)? 8 116 —— 7.4200D 00 1 0.001
IIT' t=3 (no)® 4 16 —_— 7.4310D 00 0.007
t=4 (no)® 4 16 -—- 7.4310D 00 0.007
Broyden (no)® 5 17 —_ 0.4913D 00 0.166

Brown yes 10 65 1.00 . 0 ' ©

*It failed to reduce |‘F|l < 10_10.



COMPUTER RESULTS FOR PROBLEM 8

TABLE XV
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N=10, X5= (1.5, ..., 1.5)T,
||Fol| = 59.02

‘Method Conv. Iter. | Eval. N 7] ] R
T (no) 2 13 — 8.9930D 00 0.145
I (no)? 2 13 — 8.9650D 00 0.145
II (no)? 3 17 - 11.6500D 00 0.095
II" (no)? 2 13 — 8.9650D 00 0.145
=2 yes 19 40 1.00 0.4246D-13 0.872
IITI t=3 yes 19 40 1.00 0.6876D-13 0.860
=4 yes 21 44 1.10 0.4434D-11 0.687
=2 (no)? 2 13 — 8.9650D 00 0.145
III' t=3 (no)® 2 13 - 8.9650D 00 0.145
t=4 (no)? 2 13 - 8.9650D 00 0.145
Broyden (no) 2 5 23 — 11.6300D 00 0.071
Brown yes 10 65 1.625 0.9873D-14 0.559
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Problem 9

This specially-constructed system was first studied by Broyden (13)

and then by Gay and Schnabel (38).

-(3 + af)E, + 28

£,(X) = 5 ~ By
£X) =€, ;- B +af)E + 28 . - B i=2,3,...,n-1,
£ =¢ - (3+0af)E - B.

Values of o, B, and n are given as follows:

(1) a = =-0.1 B =1.0 n=>5
(2) a = ~0.5 B = 1.0 n=2>5
(3) o = -0.5 B =1.0 n = 10

and the initial estimates in all cases were

: T
XO = (-1.0, -1.0, .. .,-1.0) .

From the computing experiments of the algorithms with this problem,
the author discovered that-evéry algorithm considered in this paper con-
verged in each case and that'all,vérsions and extensions of the Gay-
Schnabel methéd are superior to the Broyden method. The computer reports

are given Tables XVI, XVII, and XVIII.
Problem 10

This system of transcendental equations from Deist and Sefor (26)
is defined by

6

fi(X) = .z cotBigj i<ix<e
j=1
j#i

where (Bl,. - oy 86) = 10-2 (2.249, 2.166, 2.083, 2.000, 1.918, 1.835).



TABLE XVI

COMPUTER RESULTS FOR PROBLEM 9
5, o =-0.1, 8 = 1.0,
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||Fgl] = 1.910

Me thod Conv. Eval. N | I F ] l R
I yes 14 1.08 0.4754D-13 2.241
I yes 14 1.08 ‘o.4264D-13 2.245
11 yes 14 1.08 0.1158D-13 2.338
i1 yes 14 1.08 0.4119D-11 2.248
=2 yes 13 1.00 0.2631D-11 2.138
IIT  t=3 yes 13 1.00 ' 0.2703D-12 2.263
=4 yes 13 1.00 0.5954D-12 2.215
t=2 yes 13 1.00 0.3305D-11 2%082
III' t=3 yes 13 1.00 0.4789D-12 2.232
t=4 yes 13 1.00 0.4368D-11 2.062
Broyden yes 13 1.00 0.5521D-11 2.044
Brown yes 26 1.54 0.4440D-15 1.800




COMPUTER RESULTS FOR PROBLEM 9

TABLE XVII
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N=5, a =-0.5 8=1.0,
||Fgl] = 1.803
Method Conv. Iter. Eval. N IlFl[ R
I yes 8 14 1.08 0.6248D-13 2.214
1’ yes 8 14 1.08 0.62565-13 2.214
II 'yes 7 13 1.00 0.8435D-11 2.007
I’ yes 8 14 1.08 0.3550D-14 2.419
=2 yes 8 14 1.08 0.7573D-14 2.365
IIT  t=3 yes 7 13 1.00 0;34349-12, 2.253
=4 yes 7 13 1.00 0.6075D-12 2.209
=2 yes 8 14 1.08 0.1867D-13 2.300
III' t=3  yes 7 13 1.00 0.1510D-11 2.139
t=4 yes 7 13 1.00 0.1895D-11 2.122
Broyden yes 8 14 1.08 0. 4842D-i2 2.073
Brown yes 5 'éob 1.54 0.5439D-15 1.787




TABLE XVIII

COMPUTER RESULTS FOR PROBLEM 9
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20

N =10, a = -0.5, 8 = 1.0,
LFg 2.121
Method Conv. Itef. Eval. N IIFII R

I yes 10 21 1.05 0.1028D-11 1.350

I yes 10 21 1.05 0.1012D-11 1.351

I yes 10 21 1.05 0.1473D-11 1.333
11’ yes 10 21 1.05 0.1065D-11 1.349
£=2 yes 9 20 1.00 0.1067D-10 1.300

ITI  t=3 ves 9 20 1.00 0.1619D-10 1.280
t=4 yes 9 26 1.00 0.1428D-9 1.171

t=2 yes 10 21 1.05 0.1295D~-11 11339

IIT' t=3 yes 9 20 1.00 0.3925D-10 15236
t=4 yes 10 21 1.05 0.8649D-12 1.358
Broyden yes 10 21 1.05 0.1785D-10 - 1.214
iBrown yes 5 1.00 0.3966D-12 1.465
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Xy = (75, 75, . . ., 75) T, | |7

ol | = 1.397

*

X (121.850, 114.161, 93.6488, 62.3186, 41.3219, 30.5027)T.

The author tested this problem and discovered that all the élgo-
rithms under consideration céuld reduce the norm of F to be smaller than
1.0D-08 at least. The original Gay-Schnabel methods—-algorithms I ana I
--seem to be more suitable in solving this problem. It seems that each
member of the Gay-Schnabel class worked better than Broyden's method.
The computer reports are given in Table‘XIX. |

From the previous experiments, the aﬁthor’learned that Brown's
method could handle nine problems out‘df the given ten and converged
rapidly and accurately 21 times whiie the 22 different test cases were
given. Brown's method often reduced the norm @f F to be leés than 10_15
or even exactly to be O.b These ﬁeiits are not reduced by the number of
function calls. Brown's‘method has played a good role in the library
subroutine to solve a nonlinear system of equations. Since our objec-
tive is to study the_perférhance of the Gay—Schﬁabel method, the follow-
ing three problems Will be:devéted to the comparisbn of the performance

of the members of Gay-Schnabel's class with that of the DFP method when

applied to finding a minimum of an unconstrained minimization problem.
Problem 11

This minimization problem is introduced by Powell (49).

)4

3 2 _ 2 . '_ 4 _
¢ (x) = (€l+1052> +5(€3 £ + (&, 253) +10(e:l 54 .

4)
T . R . o
(3, -1, 0, 1) is used as an initial point. The minimum occur at

(0, 0, 0, 0) . This function is a severe test since the Hessian matrix

of ¢ is singular at the minimum point.



TABLE XIX

COMPUTER RESULTS FOR PROBLEM 10
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N=6, X0 = (75, . ..., 75T,
|Fol] = 1.397
Method Conv. Iter. Eval. N 7] | R
I yes 17 26 1.08 0.2589D-11 1.039
I yes 17 24 1.00 0.7793D-12 1.176
I no* 18 29 1.21 0.1090D-9 0.803
II" no* 19 30 1.25 0.1469D-10 0.843
=2 - yes 22 44 1.83 0.7446D-11 0.590
III  t=3 yes 21 39 1.63 0.4620D-11 0.679
=4 yes 23 52 2.17 0.2931D-11 0.517
=2 no* 24 51 2.13 0.8346D-10 0.462
III' t=3 yes 25 51 2.13 0.2915D-13 0.618
‘t=4 yes 25 45 1.88 0.2217D-11 0.604
Broyden not* 27 61 2.54 0.5984D-09 0.354
Brown yes 15 68 2.83 0.1115D-12 0.444

*It failed to reduce |!F|l < 1.0D-10.
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The test was carried out with two different initial points (3, -1,
0, l)T and (3, 1, O, l)T. Broyden's method worked well but algorithﬁs
II1', III, and III' seem to be more efficient. The DFP method is inferior
to any other method in both céses.}

Examining Tables XX and‘XXI} it can be realized that algorithm III
with t = 2 is a superior algorithm in Table XX, but it becomes inferior
to any other members of the Gay-Schnabel class in Table XXI. This re-
veals that the efficiency of an algorithm will be affected by the given

initial point.
Problem 12

This function, credited.to C. F. Wood and documented by Pearson

(48), is given by

~ 2.2 2 2.2 N
$(X) =100 (£, =€) + (1-£)° +90 (5,87 + (1-&,)

+10.1 {5, - 17 + (g,- 11 + 19.8 (£,-1) (5, - 1)

*
with X, = (-3, -1, -3, -1)T and X = (1, 1, 1, 1)7. The minimum of ¢

*
at X is zero.

: T
Starting at X (-3, -1, -3, -1)", all the algorithms under con-

0=
sideration failed to converge. Some of those algorithms such as algo-
rithm II', algorithm III with case t = 2, 3, and algorithm III' with
case t = 2, 3 converged to a stétionary point a£ (-0.9679, 0.9471,
-0.9695, 0.9512)T successfully, but this was a nonoptimal stationary
point. The function value at this nonoptimal poiﬁt is 49.9218; Algo-
rithms I, I', II and Broyden's method failed to locate any stationary

point. The DFP method reduced the function value form 19192 to 1.6471

in 11 iterations with 58 function evaluations, but it diverged afterward.
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TABLE XX

COMPUTER RESULTS FOR PROBLEM 11
Xg = (3, -1, 0, 1), ¢g = 215

Method Conv. Iter. Eval. N ¢ R
I yes 31 36 1.71 0.8619D-13 0.985
I yes 31 36 1.71 0.8688D-13 1.013
11 yes 25 40 1.90 0.7457D-13 0.890
II' - yes 16 21 1.00 0.2452D-13 1.748
t=2 yes 17 24 1.14 0.1876D-13 1.541
L o3 yes 19 24 1.14 0.7712D-13 1.482
t=2 " yes 20 . 25 1.19 0.1404D-12 1.399
1Y s yes 17 22 1.05 0.1575D-12 1.584
Broyden yes 30 35 1.67 0.1070D-12 1.007
DFP yes 31 162 7.71 0.2298D-13 o.%27

TABLE XXI

COMPUTER RESULTS FOR PROBLEM 11

Xy= (3, 1, 0, -1), ¢, = 1320

Me thod Conv. ‘Iter. Eval. N o ¢ R
T yes 33 38 1.46 =~ 0.1351D-12 0.988
I’ yes 33 38 ~ 1.46 0.1351D-12 0.988
11 yes 21 26 1.00 0.4684D-14 1.573
I1" yes 19 26 1.00 0.1796D-12 1.433
t=2 yes 28 -6l 2.35 0.1716D-12 0.612
T 3 yes 21 26 1.00 0.1591D-13 1.526
t=2 yes 24 31 1.92 0.1197D-12 1.215
TN g yes 23 30 1.53 0.3356D-13 1.298
Broyden yes 33 38 1.46 - 0.1269D-12 0.990

DFP yes 24 164 6.30 0.6049D-14 0.248




The author also tried X

found that four of the given ten algorithms converged.
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= (3, 1, 3, 1) as a starting guess and

This means that

the four algorithms located (1, 1, l,‘l)T as a stationary point. The

DFP method happened to be the same divergent situation after four time

iterations. The computer results are given in Table XXII.

TABLE XXII

COMPUTER RESULTS OF PROBLEM 12

Xy = (3, 1, 3, 1), ¢, = 12168

Method Conv. Iter. Eval. N ¢ R
I (no)? 20 49 — 0.3910D-01 -

I (no) 26 114 _— 0.3916D-02 ——

I - (no)? 22 118 _— ~0.5192D-01 —
II’ yes 50 132 1.00 -0.7047D-10 0.248
=2 yes 88" 332 2.52 -0.2823D-23 0.192

I o3 (no)? 24 108 — -0.5632D-02 —
£=2 yes 60 173 1.31 -0.9855D=-23 0.361
I 3 yes 48 141 1:07 ~0.3364D-20 0.450
Broyden (no) 58 253 —— 0.6207D-01 ——
DFP no % 905 _— -0.2506D-10 —

Problem 13

This problem giVen by Fletcher and Powell (34) is defined by

where

¢ (X) =

2 2 2
100 {(E;3 - 10 6(8,, E))) + (x(E, &) - Y+ g
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arctan (£./£.), £E. > O
216 (£, ) ={ S
T + arctan (gz/gl), El <0
and
2 2.1/2
r (€l, €2) = (El + 52) .

This function has a steep-sided helical valley in the 53 direction with
~pitch 10 and radius 1. The starting point Xo = (-1, O, 0)T and a mini-
mum occur at (1, O, 0). |

In 18 iterations the DFP hethod reduced ¢ from 2500 to 0.2396D-23.
Only two members, algorithms I' and II1', of the Gay-Schnabel. class con-

verged. Broyden's method failed to converge. The results are given in

Table XXIII.

TABLE XXIII

COMPUTER  RESULTS OF PROBLEM 13

XO = (-1, 0, 0), ¢O = 2500
Method Conv. Iter. Eval. N . 0 ’ R
I no 9 91 —— . 0.5862D-01 -—
I ves 20 55 2.04 0.9486D-20 0.981:
I1 (no)b 140 1766 - © 0.1374D+02 -—
i’ no 6 .64 —— . 0.1422D+02 Cm——
III (t=2) no 95 1615 - 0.1851D 00 -——
III'® (t=2) yes 15 27 1.00 - 0.1271D-20 2.072
Broyden no 9 91 - 0.5864D-01 -

DFP yes 18 45 1.67 0.2396D-23 1.382
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The author also used (1, O, —l)T, (1, o, l)T, (L, O, O.S)T, (1, O,
—O.3)T, and (2, 3, 4)T as startihg guesses. None of the algorithms,
except for the DFP method, converged. We omit the reports for these
tests.

The Rosenbrock function, Problem 2, is also a good unconstrained
minimization problem. This function is difficult to minimize on account

. The

. . ' . : 2
of its having a steep-sided valley following the curve El = 52

optimal point is at (1, l)T with function value zero. If we start at
(1.2, l)T, ﬁhe.searching paths of several methods have been shown in:
Figures 2 through 5. It revealed in Table II that algorithm I is the
most effiqieht method for finding the minimum of the Rosenbrock func?ion

among all the members of Gay-Schnabel's class and Broyden's method. (It

i

would be interesting to compare the performance of this method with,%hat
of the DFP method when applied to the Rosenbrock function. Table XXIV

gives this report. ¢o = 24,2,

TABLE XXIV

COMPARISON OF THE DFP METHOD AND ALGORITHM I.
WHEN APPLIED TO THE ROSENBROCK FUNCTION

Method Conv. Iter. Eval. N - T (sec) . 0 R

I yes 5 15 1.00 0.17 0.5700D-23  3.78

DFP yes 28 129 8.60 0.58 0.9478D-16 0.31
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Conclusions

From the numerical examples and discussion in the preceding section,
it is clear that Brown's method is probably as satisfactory a method as
any member of the Gay-Schnabel class or thé Broyden method for solving
systems of nonlinear equations in Rn. Actually, Brown's method is con-
siderably superior to any other methods previously available, especially
for more difficult problems. Within the 22 different test cases which
covered the first ten problems in the preceding section, Brown's methoa
failed only once and successfully reduced'the norm of F to be zero six
times at least. The effectiveness of other algorithms can also be judgéd
by the number of success in the tests available. This is given in Table
XXV. |

From the evidence presented in the tables, the author also noticed
that most of the members of the Gay-Schnabel class failed as Broyden's
method did, but when this coﬁverged, thé former turned out to be more
efficient. Problem 8 was the only exceptional case. When n = 5 with
X0 = (0.5, . .., O.S)T, Broyden's method‘converged but most of the Gay-
Schnabel mgmber did not converge; however, if it did converge, such as
t =2, t =4 in algorithm III (Table X), it converged slowly. In some
difficult problems, such as Problems 4, 6, or 8, a reasonably good ini-
» tial estimate of the solution will imérove the performance of the algo-
rithms. A failing algorithm will become successful or even efficient
with a good starting point. It seems reésonable to judge the efficiency
by the mean and standard deviation of the normalized function evalua-
tions. .This information is alsb given in Table XXV. |

By definition (quation (4.1)), the mean convergence rate can also

be used to judge both the effectiveness and the efficiency. This is



TABLE XXV

A COMPARISON OF THE ALGORITHMS BASED ON
THREE DIFFERENT FACTORS
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Number of Normalized Func. Eval. Mean Conv. Rate+
Method Success* Mean S.D. Mean S.D.
I 13 1.167 0.278 1.462 0.981
I 12 1.049 0.043 1.402 1.071
II 13 1.840 2.496 1.273 0.941
T 14 1.305 0.573 1.292 1.015
=2 >(ll)** 1.280 0.319 1.169 0.753
I1I =3 (7)** 1.164 0.282 1.055 0.911
=4 (8)** 1.259 0.413 i.096 0.848°
=2 (7)** 1.826 1.640 0.890 0.919
ITII' t=3 (6) ** . 1.207 0.454 1.000 0.954
t=4 (6)** 1.165 0.351 0.959 0.895
Broyden 14 2.429 2,944 1.152 0.795
Brown 21 1.552 0.575 o -——

*Based on 22 observations.

TBased on 16 observations listed in the tables presented.

kkt =

tions.

2 is based on 1l observations;

t = 3 is based on 10 observa-
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because both the number of function evaluations and the accuracy of an
algorithm to a particular problem are involved in Equation (4.1).

Examining the tables and previous discussion, the author tentatively
makes the following concluSions.

(1)  Gay-Schnabel's algorithms (algorithms I and I') and the first
extension (algorithms II and II') are superior to Broyden's
method.

(2) In Gay-Schnabel's proposal, the modification of Broyden'éb
first method (algorifhms I, II, and Ii) is superior. to the_‘
modification of Broydenis second method (algorithms I', II',
and III', respectively)f-

(3) Algorithm III is somewhat supefior to Bréyden's method.

(4) Algorithm IV is inferio; to both algorithms I and I' in
general. For large N,-an appropriéte choice of t in algorithm
IITI will render algorithm III more effective.

(5) There is no optimal strategy of choosing an appropriate nﬁmber
t in algorithm III.

(6) The initial point affects the performaﬁce of an algorithm.

As to the application of the member of Gay-Schnabel's class to an
unconstrained minimization prbblem, the author observed the following
results:

(1) If a reasonably good initial estimate of the minimum is avail-
able or if the problem is ani"easy" problem, then the meﬁbers
of the Gay-Schnabel class are superior to the DFP method.

(2} If a reasonably good.initial estimate is not available, then

the DFP method is superior to Gay-Schnabel's algorithm.
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(3) The Gay-Schnabel algorithms may converge to a nonopfiﬁal sta-

tionary point.

(4) The analytic gradient vectors of ¢ must be given.

All of the conclusions are somewhat tentative. The term "reason-
ably good" is itself rather vague. Furthermore, the behavior of the
various methods depends upon the nature of the'problem they are éttempt—
ing to solve. Thus it is unlikeiy that the few test problems selected
give a sufficiently accurate picture of the overall behavior of the algo=-
rithms. ﬁowever, at least some members in Gay—Schnabel's dlass have been
more efficient than Broyden's method. It may prove to be a useful alter-

native as Gay and Schnabel desired.



CHAPTER V
SUMMARY AND SUGGESTIONS FOR FURTHER WORK -
Summary

This study is based on the Gay;Schnébel propdsal (38), which is a
modification of Broyden's method for solVing systems of n nonlinear equa-
tions in Rn. The objectives of this thesis are: (1) to study the essen-
tial.features and convergent properties for the following algorithms—--
Broyden's method, Gay—Schnabel's method, Brown's method, and the DFP
(Davidbn—Fletcher—Powell) method; (?) to implement the algorithms in Gay-
Schnabel's:prdposal and compare their performance with that of the algo-
rithms mentioned above.

The introduction, statement of the problem, basic concepts of quasi=-
Newton methods, and pertinent definitions‘of convergence»properties are
given in Chapter I. The algorithm énd convergence properties of
Broyden's method, the technique of nonlinear search, the Gay-Schnabel
proposal and its extensions, which deql with‘using the orthogonal projec-
tion of current step onto the ortﬁogbnal complement of previous steps to
generate a new step, are contaihed‘in Chapter II. Chapter III presents
two effective and efficient methods: one for éolving systems of equa-
tions, and another for solving unconstrained minimization problems. The
two methods are Brown's method and the DFP method, respectiveiy. A set

of test problems and numerical results are given in Chapter IV. In

93
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addition, a library write-up and a program listing for the BROGAY pack-

age are shown in Appendices A and B, respectively.
Suggestions for Further Work

In the computational experience, we verified that a good choice of
the initial data often improves’ the effectiveneﬁs of an algorithm. ‘Such
a choice depends strongly on the properties ofithe particular class of
equations. under considérétion. So far we do not have any good strategy
for choosiné an initial détum and a random guess deperids heavily on the
probability. The first suggestion for further work is to develop a
localization method for constructing sets containing solutions in order
to make a good guess for the general system of equations.

All of the algorithms covered in this study are designed to find one
solution of a given problem. This solution, if obtained, may not be the
desired one. .For instance, some of the algorithms in Gay-Schnabel's
method converged to a point when applied to the Wood funétion, but this
obtained péiht was a non-optimal stationary point.‘ The second suggestion
for furfher work is to develop a method to approximate "multiple" roots
or to find further solutions once one has been obtained.

We tested two systems comprising ten equations (problem 9, problem
10). Wwe learnedithaﬁ some cases of algorithm III were more efficient
than other memberé of Gay-Schnabel's method. We conjecture that an
appropriate choice of t can change the algorithm ffom slow to fast.

Since we only tested the cases t = 2, 3, 4 for the above two problems,
we do not know if we can get a better performance of the algorithm for
t > 4. The third suggestion for further work is to do more tests for

a large system of equations with N > 5 and t > 4. This will involve a
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slight revision.of the program‘BROGAY. The fourth suggestion will be to

develop a strategy of making an optimal choice of t for algorithm III.
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Name of Routine: BROGAY

Language: A.N.S.I. Standard FORTRAN

Author: Guang-Nay Wang
Department of Mathematics
Oklahoma State University
Stillwater, Oklahoma 74074

Date: May, 1978
I. Purpose

BROGAY finds a solution of systems of N nonlinear equations to N
unknowns, i.e., given
n n
F:R >R,

' * *
which is differentiable, BROGAY finds a point X € Rn such that F(X ) =0.
II. Method Used

The method used ié based anthe Gay~Schnébel proposal which is a
modification of the Broyden method. A new step is determined in egch
iteration by £he orthogonal projection of the currént step onto the
orthogonal complement of the previous step. This method is a member of

the quasi-Newton method.
ITI. Use

A. Provide Main Program

The user must provide a main program to perform initialization,

call BROGAY, etc.

B. FORTRAN Call

CALL BROGAY (F,N,X,PAR,FDSTEP,EPS,EPSZ,C2,EPS3,NSEV,ITMAX,
' 1Ts,STEPMX,FX,FX1,DX,DF,H,IRC,METHOD,K)



where

FDSTEP

EPS

EPS2

c2

EPS3

NSEV

ITMAX

ITS

STEPMX

FX

FX1

DX

DF
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External subroutine supplied by the user to evaluate the
the function F, a zero of which is sought. The statement
CALL F (X, FX, PAR) results in FX <« F(X). The parameter
array PAR is passed unchanged.

n n

F:R >R.

A vector which contains the initial guess of. the unknowns
for input; contains the value of unknowns in the last

iterate for output.

If FDSTEP > O, then H is initialized by computing a finite
difference Jacobian with step size FDSTEP and 1nvert1ng

- the result to obtain the 1n1t1al H.

First stopping cfiterion: stop if ||F|l < eps.
Second stopping criterioﬁ: stop if
[|px|| < eps2 * (c2 + ||x|]|) twice.

Used in second stopping test for defending the case that X
becomes a zero vector.

Stopping tolerance for nonlinear search technigque: a new
point X1 will be accepted if

l|Fx1) ]| <EPS3%||F(X)|].

"Maximum number of function evaluations during nonlinear

search for new iterate X1; if exceeded, BROGAY returns
with IRC = 6.

Maximum allowed number of iterations.
Number of iterations actually performed.

Number allowed stép.size = maxnorm (DX); if exceeded, the
DX is replaced by (STEPMX/MAXNORM (DX))*DX.

Current F (X).
Next F (X).
Change in X.
Chanée ip F.

Inverse Jacobian approximation.
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IRC Return code:
=1 first stopping test met
= 2 second stopping test met
= 3 both 1 and 2

= 4 maximum number of iteration performed without
the above

=5 singular Jacobian at start

= 6 nonlinear search technique cannot reduce
llF(X)J[ sufficiently

=7 invalid value of n or method.

METHOD Method selection code:

0 Broyden's first method

=1 Gay-Schnabel's extension to modify Broyden's
first method :

= 2 Gay~-Schnabel's extension to modify Broyden's
second method.

K Extension selection code:

=1 Gay-Schnabel's first extension

= 2 Second extension with t =.2
= 3 .Second=exténsion with t = 3
= 4 Second extension with t = 4

calling program.

C. Error Information and Treatment

An error return can occur on any one of the following six conditions:

(1) Failure to converge--the nonlinear search technique cannot
reduce ]|F(l < EPS.

(2) N <0or N > 10.

(3) k

A

0 or K > 5.



(4)
(5)

(6)
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METHOD = 0, 1, 2.
Singular Jacobian at start.

Maximum number of iterations performed.

D. Structure of the Program

(1)
(2)

(3)

(4)

(5)

(6)

Calling program (MAIN).

Subrdutine F: contains the functions to be solved.

Subroutine NLSRCH: Broyden's line search for nonlinear equa-
tions (from Gay-Schnabel's proposal). It.can be supplied by
user. |

Subroutihe MATNV : matrix inversion to inverse the Jacobian
matrix‘(from J. P. Chandler). It is available from a numerical
source,‘such as IMSL.

BLOCK DATA: the given X-vector elements for the soiution‘afe

entered here.

Subroutine REPROT: output subroutine.

E. Example Problem

£, = 10(x, - X))
£,00 =1 - %
X, = (-1.2, nt x=qa, nt

The MAIN program and subroutines supplied for this test program are

presented below, followed by the printout from BROGAY for the above prob-

lem.



/78 ANG

/77

JNB TYPRUN=CDPY

Jca 527
IMPLICIT RPEAL*9 (A~-H,0-2)
EXTERNAL FSURA .
REAL*S xtln).Plﬂ(lo).Fx(XO).FXl(IC).OX(lo’.DF(lo)'ﬂ(loolO)
N=2
DO 10 [=1.N
10 PAR(I)=C.000
X(1)=-1,200
X{2)=1,000
FDOSTEP=0.00C1ND0O
EPS=0, 10-9
EPS2=0,10~-7
C2=0.10-3
EPS3=1,000
NSEV=17)
TYMAX=200
STEPMX=10400
METHCO=1
K at ’
CALL 3ROGAY (FSUBANXPARFOSTEP EPS,EPS2, C2,EP33,MSIV, ITMAX,
1 I TSeSTE2MX eF X 4F X1 DX ¢OF ¢H o TRC o METHQODK)
WRITE (6e111) (X(1)el=14N)
111 FORMAT (1HO3Y,*THE SOLUTION OF THE SVSTEV IS : *.2023,16)
STOP
END
SUBROUTINE FSUQA (X .FX.PAR)
IMPLICIY RFAL*A (A-H,0-2)
REAL*A FX(10).X(10)PARP( 1)
FX(1)210+000%(X(2)=-X(1)eX(1))
FX(2)=1.000-x(1)
RETURN
ENO
JES2 JOR STATISTICS ------
33 CARDS READ
0 SYSOLT PRINT RECORDS
0 SYSOUT PUNCH RECORDS .
0,30 MINUTES EXECUTION TIME ]
}
I NF IRC F D(FNopv) OF ox X=X«
] 3 b 0.49190 C1t 0.0')COD no 0eCLNND AC . 0.N0C7 D 0O Gn 220C0 C1
1 6 [} Qo 478CD C1 Cel33CO YO 0e 15890 CC 14231490 30 00208%0 C1
2 9 < Q,47490 C1 N4¢31190-71 O0e67870-21 Ne155RD 00 Ce2047D O}
3 12 [} 0->43370 0} Qed12480 N0 0061130 CC 0,5273> o0¢C 0021990 C1t
4 14 2 0o 38670 01 0eAa7C1D 09 QeS78AD CO Na1€820 C1 2018990 01
S 7 [} 0. 33aCD 01 0e2648D0-0C1 ‘Ce $6330-01 0e78370=-01 C.1908D0 01
6 290 [+] 0,3027D €1 Ce 73350 O 0,11770 01 Q264110 00 Co27120 21
T 22 ] 0014790 01 Qe 16180 01 0024930 01 2673740 00 Co1663C %1
-] 26 S 0.1454D 0} Je2447D0-31 0.13130 JU £>435A0=-91 Col166CD O1
9 29 (o] 0514350 01 Oe1955D0-n01 Celas1p 0OC N.58910=-01 Co16510 01
10 3 ] 0,14200 01 Oe 1451D~C1 Co 67450 )OO No35410 €O Ce15570 91
1 33 o 0.10220 01 O0e33800 nO 0534370 Y06 €y3n37MD €0 Ca 13370 C1
12 36 (4] Je 12320 01 N0e2192D-C3 Ne 19177 0=02 2-,10630-C2 G>13210 01
13 3y 0 060 10590 O1 Oe 23070-01 N«1953D0 00 0.33320-n1 013610 Ct
14 a1 o 0>78210 03 Ne2766D G2 0623370 02 0,298%20 N0 €C>108380 91
1S 4a [+] Qe 78200 20 Oe 15570-03 0e18399D-02 Nnl12390-02 010890 01
16 a7 (] 0.77180 00 0e1C200-91 0.6423D-91 Ne3299D-01 C.11190 01
17 &9 [4 20,5390 00 Ce23230 N0 0,23860 00 ° 030800 00 0e81780 0O
18 S2 ] 0053940 £C 00 R3160-04 ‘Oe 15940-01 Nol146820-01 0.8035C 2J0
19 55 ] 0.52980 00 C«95980-02 0.65050-01 0.,42540-01 Ne 84460 J0
20 57 o n,39210 00 Ne 13770 NO Qe17630 0N Ns27750 00 CeS56594D 120
21 60 0 0037560 00 Ce 15560-21 Ce4377D0-01 0,7156D-01 0449830 NC
22 1] ] 0.35730 10 L e19220-01 9,43320 90 0~92€60-91 Qe SR37D N2
23 66 (4] Oe 17250 0O ‘Del 8490 00 Q619550 CO 0,2a437D 30 Ce3438D NO
24 o8 [*] 013730 90 Oe¢ 35150-91 0e 15470 0OC N.11330 0O € .22750 CO
25 72 L} 212550 00 Os1186D0-91 0,10570 NoO 0,37560-01 0o 26450 0(:
26 74 ) 0n 8891D-01 Oe 3656D-"1 0.88470-01 0511050 00 Nal15410
27 75 C 0.71530~-01 O0.17380-Cl 0.70130-01 Q.1477C 30 0«7153D~ 02
28 77 9 0, 1034D0-21 0e0N690-21 0,82330-01 0.8233C-02 Oe10840-C2
29 78 [s] Qo 13R8D~-15 Oel784D=-11 Ce 1084D-01 0,1C8a0-02 Co1338C-16
29 78 1 0.13°80-15 QeCOYCDO 00 0.1984D0~-01 0.1C084aD-G2 Co1333D-16
THE SOLUTION OF THE SYSTEM IS : 0el1C007720C003000000 01

0013000300C9027070D 01
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IV. For Large Program

If N > 10, it will be necessary to make dimension change in all

routines.
V. Reference

Gay, D. M., and R. B. Schnabel. "Solving Systems of Nonlinear Equations
‘ by Broyden's Method With Projected Updates." Department of Computer
Science, Cornell University, 1977.
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VONOCRDBUN~OIOBNONP W~

L e

WRHNRIN NN
COa NOUIS Wtee— O

W
-

1MpP

£Ps
c2=
€PS
NSF
1T™
STE
ME T
K=1

CAL
1

ISUBCHK

REAL®*B (A-H,0~»2)
FSURAA
1

0N
LICtY
NaAL
8 ¥X(1C)PAR(10)FXCIC),FX1(20).,D0X(10),DF(10),H{iC,+10)

.0D0
P=0,0CC100
" .10-8
2=0.1D-7

oL 10-3

3=1 000
v=1r0

A¥=290

PMX =10. D0
HID=1 -

L RRCGAY (FSUBA M. X PARJFOSTEP ,EPS.EPS2,C2,ZPS3sNSEVITHAX,
ITSeSTEPMX +FX sFX] +DOX ¢« DF yH, IRC 4 METHODL K )

WEITF (64111) (X(I)oI=1,N)

FCAMAT (1HD,3X*THE SCLUTICN OF THE SYSTEM IS : *,2024416)
sTCP :

END

SUBSCUTINE FSUBA (X .FX.PAK)

IMFLICIY ITAL*8 (A-H.0~-2)

REAL®R FX(1D).X(10).P4R(10)

FX(l)=1C-,0CCe(X{(2)-X(1)=x(1))

FX(2)=140DC-x(1)

RETUPN

END

SURIDUTINI BROGAY (F eNo XePAR (FOSTEP ¢EPS.ZPS2,02 EPS3 NSEVITMIX,

ITSeSTEPMXGFX eFXLoeDXo OF oMo IRZ (METHGDWK)

(AP S NP e C AR AP I VA S SN P N SN S PR AN A RAR A AN S A RSN S VI R B SR ENE AN ER S E SRS AN

Ce
Ce
Ce

De

. -
THIS PROGRAM IS CESIGNEC TD TEST THE ALGOW!THMS DEVELGPED BY =
Ms GAY AN Re Be SCHNABEL, WHICH IS A MOOIFICATION OF THE BROY-«

DEN MFTHID FOI SOLVING SYSTEMS CF NCNLINEAQ EQUATIONS IN N URAKNOws

N
ORT
o™
Qua
DIF

oRt

PRC

VAR

THIS METHOO, A NEw STEP IS DEYERMINED AT EACH ITERATION B8Y THES
HNGONAL PRCJECTICN OF THE CUPRENT STEP ONTO THE, ORT ROGONAL

-

PLEMENT OF THE PREVIOUS STEPS. THIS METHOD IS A MEMBER CF ThE »
SI-NEATON METHODL CIFFERENT VERITIONS ARE JBTAINED BY TAKING -
FERENT NUM3ER CF PREVIGCUS STEPS, *
-

GINAL SOURCE i GAY. De M™Me AND Re Pe. SCHNABEL > -
"SOLVING SYSTEMS OF NCNLINEA® EQUATICNS BY BROYDEN'S METHCO -
wITr PROJECTED UFPDATES.* (1977) Ld
-

GTAMMER I GUANG=-NAY WANG =
OEPARTMENT OF MATHEMATICS -

OKLANMCMA STATE UNIVERSITY hd

. -

IADLES : ) -
F - EXTEFNAL SUBFCUTINE SUPPLIED RY THE USER TO EVALUATE®
THE FUNCTICN F, A ZERQO QOF wHICH 1S SOUGHT. THE -

STATEMENT CALL FIX.FX,PAR) PESULTS IN TX <=~ F(X)a Ld

THE PARAMETER ARRAY PAR 1S PASSEU UNCHANGEDe -
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N

X
FOSTEP
EPS
EPS 2

c2
EPS3

NSEV

TTMAX
ITS
STE PuX
Fx

FX1

Oy

OF

H
IRC

ME THOD -

SUBROUTINES
GENP1Y

GENP2
GENP3
GENPa
X00CTP

MAXNIRY
TwONRM

NUMPER OF UNKNGWS AND NUMRER OF FOUAT IONS

A VECTOR WHICH CONTAINS THE INITIAL GUESS OF ThE
UNKNCWS FOR INPUT{ CONTAINS THE VALUE OF UNKNCYS IN

LAST ITERATE FCR JUTPUT.

IF FOSYEP>0 THEN H 1S INITIALIZED B8Y COMPUTING A

FINITE DIFFERENCE JATOBIAN WITH STEP SIZE FOSTEP ANO

INVERTING THE RESULT TO OBTAIN THZ INITIAL He

JIF(x1) 1] < EPS3«||F(xX)]|]e

FIPST STOPRING.CRITERICN ¢ STCP IF [|F]] < EPS
SECOND STOPPING CRITERION : STOP 1IF

J1ox|| < EPS2stCc2+||Ix||) TwICE

USED IN SECOND STOPPING TEST FOR DEFENDING THE CASE
X HEING A ZE2Q VFCTOR,

STOPPING TOLERENCE FOR NINLINEAR SEARCH TECHNIQUE:
A NEw POINT x1 wWILL SE ACCEPTED IF

MAXTMUM NUMABEFR NF FUNCTIGN EVALUATIONS DURING
NONL INEAR SEARCH FOR NEw ITEIATE X13 IF EXCEEDEOD,

BPOGAY RETURNS wITH IRC=6
MAXIMUM ALLGWED NUM3TR CF [TERATIONS
NUMBER OF I1TERATIONS ACTUALLY PE®FQRMED

°
LARGEST ALLCWED STEPSIZE=MAXNCRM(DX); IF EXCEEDED,
THE DX IS PEPLACEZID BY (STEPMX/MAXNORM(DX) )*DX :

CURRKENT F({X)

NE XY F(X)

CHANGE IN X

CHANGE IN F

INVERSE JACCRIAN APFROX IMATIZNe

QETUQN CCDE @

FIRST STOPPING TEST MET

SECCND STOPPING TEST MET
BOTH 1 £ 2

wl THOCUT THE ABOVE
SINGULAP JACIBIAN AT START

MAX ITMUM NUMBER OF ITERATION PERFCRMED

NONLINEAQ SEARCH TECHNIQJE CANNCT REDUCE
. [IF(X)|] SUFFICIENTLY,
IRC27 INVAL 1D VALUE CF N AND NETHOD.
navnco SELECTICN CIDE
BROYDEN'S FIRST METHOD.
—| MOD IF ICAT ION OF BROYDEN'®S FIRST METHCD

MODIF ICATICN OF BROYODEN'S SECOND METHOD

CAV SCHNA3EL*S EXTENSION SELLECTION CODE
K=1 GAY-SCHNABEL®*S FIRST EXTENSION
K> - GAY-SCHNABEL®*S SECOND EXTENSION

x2e CASE T=2

=3, CASE T=3

=4, CASE T=4

GENERATE OFTHOGONAL PRCJECTICN OF CURRENT
THE CFTHOGONAL COMPLEMENT NF PREVIQUS ONE
GENEFATE ORTHCGCMAL PROJECTION CF CUIRENT

STEF CNTO
STEP
STEP ONTO

THE 2R THOGONAL COWMPLEMENY OF PREVIOUS TwO STE

GENERATE CRTHOGONAL PRCJACTION OF TURRENT

PS
STE® CNTO

THE CRTYHOGONAL CCMPLEMENY CF PREVIOUS THREE STEPS
GENEFATE OF THOGGNAL PROJECTINN OF CURRENT STEF CNYO
THE ORTPHOGONAL CCMPLEMENT OF OPREVIOUS FCUR STEPS

D3 INNEN PRCOULCT OF TwO VECTORS
FIND THE MAXIMUM NODRM CF A GIVEN VECTOR
FIND THE L2 MORM OF A GIVEN VECTOR

..I’........'.........O...'...I.'I..I.......O.'Q.......Q
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C= O1FF FIND THE DIFFERENCE OF TwO VECTTRS bd
Ce ADDMWLL SUMMAT IQN OF ONE VECYOR WITH A SCALOR MULTIRLE OF *
Ce ANOTHER VECTOR -
Cs VCHMuL A SCALOR MULTIPLE 3F A GIVEN VECTOR -
Ce F EXTFFNAL SURRQOUT INZ CONTAINS THE FUNCTICNS TC SOLVE =
Ce REPPOT JUTPUT SULBRCUTINE . L3
Cse N_SRCr BROYCEN'S L INE SSAaQCH FCTR NONLINEAR ZQUATICNS Ld
Ce FROM GAY-SCHNABEL 'S PROPOSALe IT CAN BE SIUPPLIED -
Ce Ay THE USERa .
Ce Ma TNV MATRIX - INVERSICN SUBRCUTINE 3Y DRy JoPsCHANDER =
g' ALOCK OATA TrE GIVEN STLUTION ENTERED HERE -

. .
(-.1.‘.‘nt--.hcn‘..-'t..“.‘--I‘-.‘0-.l.-..l-.“.‘-tt.“l.l..‘l...l.‘-A‘--

IMPLICIY REAL®8 (A-H,0-2)
EXTEINAL F

RE aL*8 !(IC)-°AQ(10)-FX(lD)-F!f(lO)-D*(lﬁ).DF(lO)-H(lO-lO)-A(lf)-
i VI12) «Z(10) +SBAR(10)PREVI(10).PREV2(1D)+PREV3(10),
2 PRIVAE(10)

1RC=7
IF (N 2LEs O «0ORe METHOD oLTe O s0Re METHOD oGTe 2) RETURN
Ceesvosans
C
C PARAMETER INITYIALIZATIOAN

Cons sn oo x
NSAvME
fol 2 Mok
DFNCF™=0 .00

2=0

IRC=C

17Ts="

LCce=n .

CEALL F(X.“X.PAR)

CALL TwCNIM (H.FNORM,FX)

NF =1
C
C INITIALIZE H IF NECESSARY
C .
IF (FDCTE®) 40,40.10
1) OFL TAX=1.202/FOSTER
DO 37 J=1l..N
oY (JI=Xx(J)
X(JI=X(J)+eFOSTEP
CALL F (X FX] .PAR)
07 20 1=1.N
Y-Fx (1)
YSDELTAX
20
o CONTINUE
NF =NF eN
M=
MAE]N
Cenvwveasn
C
C JACNBIAN INVERSION AND SIAGUR ARITY CFrECK ING
C

Comnbass

CALL MATINV (HeN ¥, DET ¢MA)
1IF (V) ar,aC,65%
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X3
65

NN~
SUN~

C
C
o MA JOR LOOP STARTS
C
<

4% CONTINUE

CALL REPR]T (XYS-KO-NF;N-DXNOR*.X.FNCRM}DFNO?M-IRC)
Coavauns

FIPSYT STOPPING TEST :

FIRST STOPPING MEETYS IF [|F|] »LE. EPS DR THE NUMBER
OF ITERATICNS EXCEEDS LIMIT :

NOAAND

Consnny
IF (FNCRM-EPS) S50.50.60

S0 IRC=IRC+]
59 IF (1PC~1) 70,670,670
70 IF. (I TS—ITMAX) B0 +640.640
8Q 1TS=1TS+)

Covwsnanx

[«

C - OX <—-- HeFX

Cesassns
DO 1Y0 1=l .N
DC 53 J=1 N
99 ACJI=HET L J)
1C0 CALL XDUGTP (A, FX.N.OX(I))

snsvnn e

ENSUPES MAXNORM(DX) .LE, STEPMX AND X <-- X-OX

[aXaXsXalal

(TR RN R ]
CALL MAXNIM (N.DXNCRM,DX)
IF (DXNTIRU-STEPMX) 130,130,110
110 DO 120 I=1,.N
129 OX (1)1=STEPMX/DXNIRMeDX(1)
OXNQFM=STEPUX
Ceaososns .

C SECOND STGPPING TEST

Coenssane X
130 CALL NLSRCH (FoeNFX1 X oDOXsEPSI+FNORMPARNSEV.NF,STEPMX/DXNORM)
IF (FNORM) &60,140,140
140 CALL TWONRIM (N.DXNOCRM.OX)
CALL TaONRM (NJXNORM.X)

C
c »
C SECCND STOPP ING MEETS IF |10xl] oLE. EPS2=| X}l
[ IN YwWO CONSECUTIVE TIMES

I

C

EP SDY =FPS2e ( XNORM+C2)

IF (DYNIRMN-~EPSDOX) 160.160,150
150 NSAMT=n

GO T a0
1A0 NSAME=NSAMNE ¢}

IF (NSAME-2) 180.170,.,170
170 IPC=2
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91

122

123
LDA
135
1006
107

- e e b = e
et =~ 0O
NCRPUN~OCD

GO TO a0
s veene

UDPDATE H
DF <-- FX1-FX

Ia¥alaXalaXal

[ AR RN ]
180 DO 190 1=1,N
190 OF (1)=Fx1(1
CALL TwWONRM  (
IF (DFNCRM) 40
Ces osses
C
C Z <—-- DX-HeDF
C
(Coowenana
200 LCP=LCOR+]
DO 220 1=1.N
OC 210 J=1,N
210 A(JII=HIT,I)
CALL XxDDOT® (A,
220 ZCI)=DX(I1)-Vv(I)
C‘-'...l
C
I USE FX A4S A TEMPCORARY ARRAY FCR DX DR DF

)-FX({1)
N, CFNORM, DF)
«4G.20C

DF «N.V(I))}

C

Cesasanse

IF (METHOD-1) 370,220,250

Cesamane

n

C : BFIYDEN®S FIRST “METHOD

C METHOD=1 : MODIFICATION OF 3POYDEN® FIXIST ME THOD
C M2 I D=1 : MODIFICATICN CF BRCYCEN® SECOND METHOO
C

C

yewannw
230 OC 23
230 Fx( 1)

GO T2
250 DT 26
2460 Fx(1)
we agsan

GFNEPATE SRAR [N DIFFERENT CASES
K=1 I GAY-SCHNASEL'S FIRST EXTENSION
K>1 I GAY-SCHAAEL*'S SECOND EXTENSION
K=2 I CASE T=2
K=3 I CASE T=3
K=a : CASE T=a

laXalataXalalalateYs)

e e s e

270 JF (LCP-X) 240 ,29C.340

220 GC T) (29C.310.32C.330). LOP

290 OC 3°C I=1.N

300 SBARCTIY=FX(])
G T3 360

310 CALL GFNPL( N.PREV1.FX, SBAR)
GO TN 160

320 CALL GENP2 (NJFREV1.PREV2.FX.SAAR)
GC YC 160

330 CALL GENP3 {N.PRLEV] PREV2.PREV3I,FX,SEAR)
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oo e o e e
NNV -~
WN=0 O

132
133
134
135

——
W
GV

139

1a1

132
143
14a
145
146
147
148
149
150

152
153
154

156

330
350
360
370
390

GO Y3 150

GO TT (310,32 4330.35C)e K

CALL GENPA (N,PREV1.,PREV2,PREVI,PREVA.FX,S8AR)
IF (METHOD-1) 373,390,420

DO 340 [=].N

SRAR(I)=0X(1)

Cessvene

C
C
C

V <-= (HeesT)asSAAR

(4T R FRETYY

390

ano
410

C
C
C
C
C
C

435S
4S50

oC a1 n
OC ano

ACTI)=HC
CALL XDDCTP (A.SBAR,N,.,Vv(J))
GO T aaC

DC 430 I=1,.N

V(I1)=SBAR(TI)

CALL X0DOT®(V.DF +N+VDOTOF )

s sebew

IF SBAYI=0 THEN H(K#1)=H(K)

IF SBAR=0 THEN H(K+1)=H(K)

IF (VDOTDF) 445,365,445
VDOTCF =10D0/VDJOTDF

DC 450 1=],N
VII)=V(I)*VDGCTOF

Cosvseoves

C
C

H <~= He¢Ze(VeaT)

Cevnsssne

a6n
C
C
C
C
C
465
a70
¢80
490
500
Si10
520
530
540
550
560

DO 440 J=1,N
D00 46N 1= N
HIL o) =H(l ) eZ(1)eVv(Y)

(I AR XTY]

STORE THE LATEST X S°*S

sedssae

IF (METHOD=~1) 490.470.,470
IF (_27-K) 490,480,570

GO T2 (49T .510+530.,550).L0P
DO S°n 1=x1,N
PREVI(T)=FX(I)
FX(IY=FX1( 1)

GO T a0

0N S2n I=x1.N
PPEV2(IVY=Fx( 1)
FXx(I)=FX1(I)

GO Tr a)

DO S4N [=1.N
POEVILI)=FX( 1)
FXCI)=FXI(T)

GO TN an

DC SAC 1=l .N
PREVA(1)=Fx( I)
FX(I)=Fx1(1)
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157

176

GO T a) .
570 GO T (490.58C.6N0,620).K
580 DO SS90 I=1.N

PEEVI(1)=PFEV2(T)

BREV2 (1)=FX( 1)
590 FX(I)=FX1(1)

400 OC #1C

~mvD~

mXUDe

~e~mmzZ
~<<
~wh

=

610 Fx(1)=
620 0C 63

~NMV VO~
=X OO De

. ]

53C FX(1I)

Cowasnsen

[

C - MAX IMUM NUMBER OF ITERATICN PERFUGPMED
C

Cessowsesr

640 1RC=a

GC T2 A70

Cewsnssa
C
C SINGULAR JACCBIAN AT STAFT
c .
Cessoanas

650 1RC=S

GO T3 70

Comensee

C

c NLSRCH CANNCT REDUCE YYF(X)[] SUFFICIENTLY
C :

Ceevssees
660 IPC=A
CALL MAXNFM (N, OXNORM,DX)
CALL MAXNARM (N,DFNCR]M,DF)
570 CALL FEPRIT (ITS.K" oNF N DXNORM,XeFNCRM,DF NORM, IRC)
RETUPN
END

SURPTUTINE GENPL (NeUsV.w)
sesvemy

C

Cc .

C o« 1S THE CITHOGCNAL PROJECTION OF V ONTO THE ORTNOG&NAL
C CC™MP_EMENT OF U
C
C

LA R E X R N J N
IMPLICIT JEAL®8 (A-H,0-2)
REAL*8 U(12) .v(10),wi(l10)
CALL XDDOTP (UeVeN,DUMED)
CALL XCDONTP (UsUeN,DENIM)
T=DUMER/DENOM
DO 1°C I=1,N

170 w(I)=V(I)-Ul])eT
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195
196

197

198
199
200
201

2)2
203
204
205
2006
207
208

209

NNNNNNNR
RIS gbgbaie
NowbuwN—=O

218

222

232

RE TUAN
END

SURBPRUTINE GENP2 (N,UL.U2.V.W)
s Sewan .

C .
¢ .
C w IS THE ORTHOGCNAL PROJECTION OF V ONTO THE ORTHIGONAL COMAPLEWENT
C Ul AND U2
C
Cosankss

IMFLICTIT REALY"8 (A-H,0-2)

REAL~A U1{10).U2(10G).V(10),w(10),B2(10),83(10)

CALL GENPL (N.U1.U2.82)

CALL GENPL (N,Ul.Vv,83)

CALL XDDOTP (V.B2.N,DUMER)

CALL XCDOTP (B2 .,B2+AN.DENCM)

T=DUMEP /DENIM

D0 27°C I=1.N

200 w(I)=R3(1)-B2(1) T
RETUAN
END

SUBRMNUTINE GENP3 (N.U1.,U2,U3.V,w)
teasten

C
C
C w IS THE ORTHOGONAL PRQJECT ICN OF V CNTO THE ORTHIGONAL COMALEPMENT
C Ul.u2?.03

C

C

‘e cvwnse
IMPLICIT REAL® 3 (A-%,0-2)
REAL*A UL(10),U2(10).,U3(10),V(1N),.w(10),.83(17),B84(10)
CALL GEFNP2 (N.U1l +u2.,U3.83)
CALL GFNP2 (N,Ul U2 .V.Ra)
CALL XO000Y2 (V.B3.N,DUMER)
CALL YODOTP (B3 +B3.N.DENCM)
T=DUMER/DENOM
DO 370 1=1.N

300 w(I)=Ba(1)-B3(I)eT
RETUSN
END

SUBROUTINE GENPA (NeULsU2.U3,U%sVeW)
[T E X RS ]

C
c .
C w IS CRTHOGONAL PRCJECTICN OF V CONTO THE DRYHOGINAL COWMPLEMENT OF
C Ul.u2,uU3.ve

C

C

S danay
IMPLICIT RZAL®3 (A-H,0-2) -
REAL*A U1(10).U2(10),U3(10),U4110) «v(10) .W(19),.84{10).85(10)
CALL GFNP3 (MNeULWU2.UJUS.BA)
CALL GFNP2Z (N.U! ,U2.U3,V.85)
CALL ¥DOCT? (V.84 ,N,DUMER)
CALL YDDOOTP (B3 «8BasN,DENCM)
T=DUMER/DENOM
00 a0 1=1,4N

4AN0 w(I)1=8S(1)1~Ba([)eY
RETUIN
END

116



234a
2395
236
237
218
239
2:0

24}

282
243
234
245
246
247
238
289
257
251
252

2353
2Sa
255
256
257

259

260 °

251
242
263
254
265
266

267

258
2069

SURR{UTINE XDDOTP ( X,Y.N,PRQD)

Covessesn

C PROD <-~ INNER PROOUCT CF X AND ¥
C

(oo asaan
TIMPLICIT REAL®B (A-H,0-Z)
REAL~8 X(10).Y(10)
PRQOO=C .C NI
DO 12 I=1.N

10 PICO=PIOL+X(I)=Y(])

RETUSPN
END

SURRIUTINE MAYNRM (N,U,V)
dy "9 e

C
C
C U <== MAXNCRM(V)
C
C

IVPLICIT JEAL®8 (A-H,0-2)
REAL=3 V(10)
u=0,20n
DO 29 I=1,.N
S=0DA8S(V(I))
I (U-S) 10+20.20
u=s
CINT INUE
REYYON
END

20

N~

SUBRCUTYINE TWIZNRM (N.,U.V)
Cecssves .

C U <-~- T4CNCRM(V)

Coswense

IMPLICIY IEAL*8 (A-H,.0-Z)
QRE AL*R V(10)
T1=0,CDO .
D0 17 I=1,.,N

10 T1=0MAX1(T1.DABS(V(I)]})
S$S=20.CDN
1F (Y1) 40.40,20

2) S1=1.000/T)
DO 3T I=1.N

T=v(1)es]
3) S=S+TaT
an U=0SIRT(S)eT])
PETUSN
END

SUBRIUTINE OIFF (NsU.Vew)
Cesssnaw
C U <-- V-w

Cescsvuns
IMPLICIY ITAL=8 (A-K,C-2)
REAL*8 V(1C) U(10).w(10)

117



270
271
are2
273

27a

275
276
277
278
279
230

231

282
233
2563
285
286
287

288
289

2,8
299
3co
3c1

a2
323
3Ce

305
306

DO 271 I=1.N
291 UL DH=VITI)-w(I)

RETURN

END

SUBRIUTINE ADOMUL (NsUsVeW,X)
Ceeosvue

C

C U <-- Veusx

C

Crevsaaa
IMPLICIT REAL®8 (
REAL*R U(12).v(10
) DC 301 I=1,N .
3%1 UCI)I=Vv(T)ewmx(I)})
RETUIN
END

A-r,0~2)
)

\0-2Z
X010}

'SUBRTUTENZ VCMUL (NsUsV, W)
Covntmue
c

C U '€~ vey

[«

Covsssne
IMPLICIT REAL®8 (A-H,0-Z)
REAL*8 U(10).w( 10}
DC 1301 I=1,.N

1371 W l)=vew(])

RETUF N
END

SURRJUTINE REPRCT (1 +eKsNFyNJOXNIRM ¢X FNCPM ,OF NORM, IRC)

IPLICIT REAL#8(A-H,0~2)
Casssse

[
C PO INTER SUBSRQUY INE FOR BROGAY

C

Ceensesse
COMUDON/LSTYP AR/ XSTAR(10)
REAL*E X({1C) .OXSTaR
IF {(1oFQaC) FU=Ca0DO
DF =F? ~FNORM
FOzFNQAM

IF (1eGEe 1) GO YO 10
WRITE (6.1001)
1001 FORVAT (°*) { N LRC [ 3 D(FNOTRM)
. 1 DX X-X®*/
2 - - - ——————— e - _————————-

3
OF=5.C00
1C OXSTAF =n,.CCC
o0 2n J=1.N .
20 O¥STAR=DX53TAR4{X(J)=-XSTAR(JI))sus2
OXSTAR=DSART (CXSTAR)

WP TTE (641)C2) I NF ,IRCoFNORM+OF sDFNCRM.DXNORMDOXSTAR

1272 FORMAT (1X.314.5E1340)
RETUON

END

Ce .

OF
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119

SULRMUTING NLSQCN(CALCF. Ne Fo Xo Ps EPSe NORM, PAR., ITLIM,

NL S7Cnr
FCALL. TMAX) NLSDCOD 20
IMPLICIY RLALeA( A~ H o-2) NLSOCN 3
NL S20089
see  AIDYDEN®S ®SLAPCH™ ROUTINE FOR NONLINEAR EQUATION SOLVING = NLST‘OgF(‘
NL 00060
ee® FRIOGPAMMER: DAVID ™ GAY; LATEST CFrANGE: 21 SEPTe 1976 wws NLSGCOTr
NL SO0 BF
———— e e —————— ————————— - SUMMARY e me e e e == NL SCCO 90
) NL S2C1CC
FIND T SUCH THAT JIFIx - TeP) || < EPSe||F(X)|] BY FIRST TRY-n SGC11C
ING T = 1, THEN T DETERMINED AY RROYDEN'S CUBIC ERROF TEPM IDEL., NLSCCI27
THEN (FROM THt THIRD EVALUATICN CN) BY WINIMIZING THE OUADRATIC NLUSOC1 3
INTERFCLAT ING POLYNOMIAL ABOUY THE THREF NEARESY RECENT POINTS, KLSRCla”
3FFOVE PETURNINGs SET P <=-= =~TepP = (ThE STE® TAKEN)e NLSCC1Se
: NLS00160
eess REFETFNCE: BrOYDENs CeGe(1965)s “A CLASS O° METHODS FCR SCLVINGNLS(G170
see NONUINI AR SIMULTANEDUS EQUATIONS®™,. MATHe COMPe 19, PPe S577-S93,NL SCC18C
. . NLSO019C
------------------------- —~—=—= PARAYETERS =-crome e e m e e e~ NLSC 020C
NLSOC 21D
co-eeef ARELVMETER USASE CCDES: --> = INPUT] <=> = 1/0; <-- = OUTPUT, NLSC( 220
ALSCC230
CALCF —-> SUBFQUYINE FCR EVALUATING FUNCTICN WHDSE ZERO 1S SCUGHTS NLSIC2a0
CALLING SLOUENCE: CALL CALCF(X, F, PAR): NLSCC2Sn
X = ARGUMENT, F = RPESULT, PAS = FRIVATE PARAMETERSe NLSCC26(
N —-=> F MAPS N-SPACE TO N-SPACE. NL SCC270
F <-- F(X) AT RETURN. NL SC 02KC
¥ —==> INPUT: STAPT CF THE .SEARCHS OUTPUT:ILAST POINT AT wHICH NLSCC27?)
F  wAS EVALUATEDe" NLSOC 2NC

[

<=> INDPUT: -(SEARCH DIKECTION): OUTPUT: STEP TAKEN. NLSCN319

EPS —=> STOFDING TOLERANCE: STOP wHEN || F (¥~ T-=)|l < EPS‘llr(X)i$o NLSOC327

NCR¥ <=> IMN2UT: |IF(x)]1] (TwCNCPM)Y: CUTPUT: |r(x 11 (NEw X)), NLSCC 322
VIDED STOPRING TEST MET: CTHEPWISE

FOX)|| CIF ITLIM NLSDO340
EXCEEDED e

-1l

KL £D035¢0
PAR —-> PRIVATE PARAMETER ARPAY PASSED UNCHANGED TO CALCF. NLSCO36n
ITLUIM ~=> MAX IMUM FUNCTION EVALUATICNS DURING THIS CALL ON NRSRCH: NLSCC37C
1F EXCEEDED, PETUAN WITH NOeM = —||F(x)]|]e NL SCC 380
NFCALL <-> YOTAL NUMBER OF FUNCTION SVALUATICNS: INCREMENTED AT ESCH NLSCC390
CALL OF CALCF. . NL S2Ca0C
TMAX ==> ONLY CONSIOER POINTS PETWEEN X 4 TVAX®P AND X = TMAX®P, NLSCCAL0
NLSCC0a&2C
PUA 4004204400048 0820 2024204030202 4 4442002200420 0 8424444244403 32 444+ NLS0LCASD
NLSOCaAC
see PAFIMETER DECLARATIONS »aw NLSOC4 S0
NLSCCa 60
SURKRNUTINI CALCF NLS20a7C
INTEGEFR ITL IMe No NFCALL NLS0Ca8)

REAL®*B8 EPRS.F (12 ).NCRMP(ICIPAR(10)s TMAX,X(1C)
L : NL S0CSCC
ex® LOCAL VARIABLES = NLSCCS10
NLSOC520
SUEPTUTINE LINALG NLSOCS30
INTEGEF 1. L NLSCOSaAC
QF AL=8 Al, A2, Cle C2¢ D3+ ACRMI, NRMLIM, PHI(3)y T, TMIN, TO, NL SOC550
1 vT(3) . ' NLSQCS6en
NLSO0CS570
se= OPZFRATION CODES FOR LIKNEAR ALGEBRA ROUTINE LINALG »*x» NL SOC58C
NLSNCS9C

NLSJ2062C



any

37¢

420

500

NOW_IM = EFSsNQORWV

TMIN * ~TWAX

NCPMY = NOFM

CALL DIFF (N.Y X oP)

CeLL CALCF (X, F, PAR)

NFCALL = NFCALL ¢ 1

CALL TwONRM (N ,NORWF)

T = 1.D0

1F (HOEM LT . NEMLIM) GO TC 80OC

T =

V<D<l
T 41

T
) = NORM
MOTM/NUF M
(CSQET(1.00 + 6.00%7) ~ 1.DCI/7(2.DCE*T)
11¢cn 1 = 2. ITLILIV
ALL ADDYUL (NeX.YT10~T,.P)
YD) = T .
CrLL CALCF(X. F, PAR)
NFCALL = NCALL + 1
CALL TWONKM (NJROEM,F)
IF (NNRM 1 T, NKML IM) GO TO EO0OC
I¥ (] oeGfe 1TLIM) GO TC 12CO
=T

) el

NnO -
3

VTl )
PHI(L) = NORM
DY = VI(2) = VT(3)
D2 = VI(3) - VvVY(1)
D3 = VI{1) - VvT(2)
A2 = —(2H101)1*D1 + PHI(2)#*D2 ¢ PHI(3)*D3)/(D12D2+D3)
IF (A2 .LE. C.DO) GO TC 100
Ay = (PHI((1) = PHi(2))/D03 « A2e(vTI(1) ¢ vi(2))
T = ~A1/(2.%A2)
G0 7O 30C
S (PH]I(3) eLSe PHMI(1)) GC TD 20C
T = 3,D0eVT(1) - 2.D0*VTL2)
G0 TG 320
= 340C*VT(3) - 2,D0=VT(2)
IF (Y LLEe. VT(3)) GO T0 400
IF (VT(3) oGEa TMAX)} GC TO 2T00
T = DMINI(T,s TMAX)
vT(1) = vT(2)
PHI(1) = PHI(2)
vTI(2) = VTC3)
PHIC2) = PHI(3)
L =3
G) YO 1CGO .
IF (T 2GEe VTI{(1)) GO TO 520
1IF (VTI(1) «LEe TNMIN) GO TD 2202
T = DMAY1(T, TMIN)
VI(3) = vT(2]}
P41-(3) = PHI1(2)
VI(2) = VTL1)
PHI(2) = PHI(1)
L =1
G) Yo 10O .
I (7T aLEe VT(2)) GO TO 60O
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NLS0067C
NLSO 064
NL S0CH57
NLSCCOHO6L
N S0067C

NLSCC690
NLSOO70C

NLSOO72C
ALECCT 3
NLSCC7ar
NM_ETCT7S0
KNLESCT O
NL SOCT77C
NLETCTHT
NLSCC790
NL ED5CAaTn
AL S2CB1Y
hLS?CiZC

NLSOCS8AZ
NLSOCB85R
NLSCCOEC

NLSOC8Eer
NLEOCBSC
NLSCC9CD
NUSTC91D
NL S0092C
NLSOC9 30
NLSCC9al
NLSOC9ST
NLS0C960
NLEICITT
NLSC L9580
NLSCC9ur
NL SO 10%C
NLE01010
NLS01020
NUSG 10 30

NLS

7ZZ
e
whAaA

z
z
" N i
nnooAano

NL S

zz

cr

mu
uNN0

*'Z

ri

]
CODNONDWN=DD
A IO DIND

1N o it o o s o e a e D

NLSO

z
F
th
[=}
-
N
-
o

NLSO122C



121

1F (T .GE .. VTI(3)) GO YO 2009 NLSN 1230
L =3

NLSC12ar
G~ 1IN 100C NLSC 1250
©0C 1IF (T o.Fe VI{1) OR. T «.GE, VTI(2)) GC TO 2000 NLSD 126C
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