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THE PREDICTION OF THE COMPRESSIBILITY FACTOR 

FOR LEAN NATURAL GAS - CARBON DIOXIDE 
MIXTURES AT HIGH PRESSURE

CHAPTER I 

INTRODUCTION

The prediction of the pressure-volume-temperature be­

havior of fluids has occupied the attention of many scientists

and engineers during the past century. As a consequence,

many methods of making these predictions have been proposed. 

These include:
1. Equations relating pressure, volume, and tempera­

ture which contain one or more empirical constants

for which numerical values have been developed for 

specific systems.

2. Equations expressed in terms of the known micro­
scopic parameters affecting gas behavior. These 

are relatively rigorous for simple gases consisting 
of substantially spherical molecules.

3. Correlations for pure gases that utilize some form 

of the principle of "corresponding states." More 

recent advances in this area have included

1
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additional parameters to differentiate between the 

molecular characteristics (size, shape, and 

polarity). These additional parameters have been 

expressed in terms of both the macroscopic and 

microscopic properties of the gas.

U. Various combinations of the above, plus the use of 

the "pseudocritical concept," in an attempt to ex­

tend pure gas methods to gas mixtures.

A careful study of past work has shown that practically 

all of the microscopic parameters, capable of characterizing a 

pure gas have been included in one form or another. What has 

evolved, therefore, is at least a semi-quantitative under­

standing of the relationships which govern pure gas behavior.

Improvements in predicting the behavior of mixtures 

roughly parallel that for pure gases. Unfortunately, it has 

been proven impractical to quantitatively characterize gas 

mixtures entirely by the use of microscopic factors even 

though they contribute to our knowledge of such systems.

Since mixtures occur in an almost infinite number of forms, 

characterization necessarily becomes semi-empirical at some 

point. It has been shown that a macroscopic approach is more 

desirable for complex mixtures, providing that the macroscopic 

parameter is actually characteristic of the molecular system.

Systems of the type investigated in this study repre­

sent a particularly difficult problem for they consist of 

molecules with widely varying characteristics. All attempts
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to predict the properties of such systems assume that the 

total mixture behavior can be characterized from that of the 

individual constituents through the use of various "combina­

tion rules" in conjunction with some form of the principle of 

corresponding states.
It has been shown in early studies that the gas com­

pressibility factor, Z, a correlation constant, could be 

simply related to the molal average system properties of 

natural gas mixtures provided that the mixtures consisted 

almost entirely of relatively simple molecules of a single 

homologous series. As problems developed with this method, 

additional correlating parameters were added which have been 

commonly called "third parameters." These have developed 

from both theoretical and empirical origins. Many of these 

parameters are related and are actually equivalent.

In recent years combination rules have been developed 

which are based on the formal use of the microscopic para­
meters. These are significant and of importance. Unfortu­

nately, the final form of the rules all depend on simpli­
fying assumptions. These assumptions were usually made so 

that they were compatible with the system being studied. As 

a result, the final form of the rules differed even though 

all were working from the same theoretical premise. The only 

way one can truly ascertain how good (or bad) a given rule is 

for a given type of mixture is by testing it against available 

data .
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At the present time, no "proven" correlation exists 

for the natural gas-carbon dioxide system under study even 

though one of the above, or some combination thereof, must 

certainly have utility. Therefore, the primary purpose of 

this study has been to develop a prediction method for this 

system that has proven reliance, is compatible with our the­

oretical knowledge of gas behavior, and is practical enough 

to have widespread application. !A necessary part of this 

study has been a careful appraisal of existing combination 

rules to determine their utility to the system in question.



CHAPTER II

THEORETICAL BACKGROUND - PURE GASES

While the purpose of this study was to provide a means 
for predicting the relationship between pressure, volume, and 

temperature for natural gas mixtures, a review of the develop­

ments that have been made for pure gases was deemed necessary. 

This necessity arises from the fact that prediction techniques 

for mixtures are all based on methods devised for pure gases. 

The assumptions and limitations of the single component gas 

methods are also present in those methods extended to mix­

tures. The purpose of this chapter is not to consider all 

of the work on pure gases but only that which has been uti­

lized in the prediction techniques for mixtures.

A. Equations of State 

Many attempts have been made to express the relation 

between pressure, volume, and temperature as a single equa­

tion of state. One of the earliest and most notable is the 
equation of van der Waals (68). To allow for the finite size 
of the molecules and to correct the pressure term to represent 
the influence of the forces of attraction between molecules, 

van der Waals modified the ideal gas equation and arrived at
5
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(P + a/y2)(V - b) = RT (2-1)

where the a/v^ is the correction for the attractive forces 

and b is the correction for the finite size of the molecules. 

The pressure, volume, and temperature are represented by P,

V, and T respectively, and R is the universal gas constant.
The empirical equation of state which was originally 

proposed by Kammerlingh-Onnes and has become known as the 

virial equation of state may be written

PV/RT = 1 + B(T)/V + C(T)/V^ + . . . (2-2)

where B(T), C(T), etc. are temperature dependent coefficients

(21). This expression, although it has an empirical origin,

has been used extensively to increase our knowledge of gas 

behavior. This has been possible since it may be related to 

the theoretical expressions deduced for the equation of state.

Based on the theorem of the virial, Fowler (12) has 

shown that the real gas law for moderate pressures is given 

in a general form by the equation

PV/RT = 1 - r2(e"^(r)/^T - l)dj, (2-3)

in which )0(r) is defined as the potential energy of the mole­

cules at a distance r. The integral in this expression comes 

from the second virial in the deduction of the gas law.
For moderate pressures, the terms in the virial equa­

tion beyond B(T) may be neglected. When the abbreviated form 

of the virial equation is compared with the expression derived
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by Fowler, B(T) may be related to the integral which was 

derived from the second virial. Hence, B(T) has become 

known as the second virial coefficient, C(T) the third virial 

coefficient, etc. By relating empirically determined second 

virial coefficients to the expression for the second virial, 

much has been learned about the microscopic behavior of gases. 

Unfortunately, our present knowledge of the microscopic pro­

perties can only be used for the prediction of the second 

virial for a limited number of simple gases.

Many more equations of state have been proposed. In 

general, the ability of such equations to represent the volu­
metric behavior of gases is usually dependent on the number 

of adjustable constants. While these equations are useful 
for representing observed data, they are of little use in

predicting the properties of uninvestigated gases.
In engineering application, the usual method of ex­

pressing the deviation from ideal gas behavior is through 

the use of the compressibility factor given by

Z = PV/RT , (2-4)

Generalized charts represent the most practical method

of predicting the volumetric behavior of gases. These charts 

are constructed from known data for one or more substances by 

plotting the compressibility factor as a function of reduced 

temperatures and pressures. The basis for plotting such 

generalized charts rests on the principle of corresponding 
states.



8

B. The Principle of Corresponding States

The principle of corresponding states forms the basis 

for all of the generalized compressibility factor charts in 

use today. The principle asserts that when the reduced tem­

peratures and reduced pressures of two gases are the same, 

the reduced volumes will also be the same. The reduced 

quantities are defined as follows:

reduced temperature, T^ = T/T^ (2-5)

reduced pressure, Pj, = P/Pg (2-6)

reduced volume, Vj, = V/V^ (2-7)

where T, P, and V refer to temperature, pressure, and volume 

respectively and the subscript c denotes the critical state.

For brevity, the expression "Principle of Corresponding 

States" will hereafter be referred to as PCS.

The original derivation of the PCS as made by van der

Waals begins with his form of the equation of state

(P + a/V^){V - b) = RT. (2-8)

By applying the conditions at the critical point that

dP/dV = 0 (2-9)
d^P/dV^ = 0 (2-10)

the equation can be put into the reduced form

(Pj, + 3/Vj,2)(v  ̂ - 1/3) = 8/3 Tr. (2-11)

This equation is now the same for all gases since the 

quantities a and b, which vary from one gas to another, have
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entirely disappeared. Assuming that van der Waals* equation 

is true for all gases, it appears that when any two of the 

quantities , Pj., or Vj, are given, the third is also given.

In equation form, this may be written

Vr = f(Tr,?r) (2-12)

where f denotes a universal function. Equation (2-12) repre­

sents the original PCS as developed by van der Waals.

While this principle was developed from van der Waals* 

equation, it is not limited to thpse gases for which that 

equation of state is valid. The principle may also be de­
veloped from a more general equation of state if it depends 

on only two quantities which determine the particular struc­

ture of the gas in question.
In 1939, Pitzer was able to derive this PCS by using 

classical statistical mechanics (39). To make the derivation, 

it was necessary to make simplifying assumptions. These were;

1. classical statistical mechanics is applicable,

2. the gas molecules are spherically symmetrical, 

either actually or by virtue of rapid and free 

rotation,

3. the nature of any intramolecular vibrations is 

the same whether the molecules are in the liquid 

or gaseous states,

4. the potential energy of an assemblage of molecules 

is a function only of the various intermolecular 
distances.
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5. the potential energy for a pair of molecules can 

be written

)6(r) = Ef ) (2-13)

where f is a universal function, r is the inter­

molecular distance, and 6 and are constants to 

be specified for each substance.

Guggenheim in 19^5 (13) and Hirschfelder, Curtiss, and 
Bird in 195^ (l6), also presented statistical mechanical de­

rivation of the PCS. The assumptions made by these investi­

gators were essentially the same as those used by Pitzer.
All three derivations required that the potential between a 

pair of molecules be of the form of Equation (2-13).

In the Hirschfelder, Curtiss, and Bird derivation, it 

is assumed that the equation of state of a gas may be written 

in the form

P = kT —  In [e"^(Y'^)/^'^dr^ . (2-l4)Ô V
In Equation (2-lk) the pressure, P, depends only on k'T, the 

volume, V, and on the two scale factors £ and and the 

form of the universal function, f.

The quantities € and may be used to define the 

reduced variables

P* = PfT' (2-15)
V* = (2-16)

T* = KT/e (2-17)
From the considerations discussed above and from dimensional
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analysis, it is possible to write the reduced pressure as a 

universal function of the reduced volume and temperature
P* = f(V*,T*). (2-18)

From this form of the PCS and the definition of the critical 

point, it follows that the critical temperature and pressure 

reduced in terms of the molecular constants are universal 

constants, Hirschfelder, Curtiss, and Bird presented values 

for the constants for several gases. For those gases for 

which quantum deviations can be neglected, the values of 

(P*)c, (V*)c> (T*)c are approximately the same. Assuming

them to be the same, the PCS may be written

Vr = f(Tr,Pr). (2-19)

This is identical with the original PCS proposed by van der 

Waals.
Since the reduced volume may be written

Vr = V/Vg = Z/Zc ' Tr/Pr (2-20)

the principle may be written

Z/Zg = f(Tj,,Pr) . (2-21)

If the assumption is made that Z^ is a constant for all gases, 

the PCS can be written

Z = f(Tr,Pr). (2-22)

This is the form of the principle that has been used to pre­

pare the many generalized correlations of Z as a function of 

Pj, and Tj,.
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At the critical point where and Pj. = 1.0, Equation 

(2-22) becomes

Zg = f(1,1). (2-23)

The value of the compressibility factor at the critical point 

should then be a universal constant.

Simple molecules which are essentially spherical and 

nonpolar have values of the critical compressibility factor 
approximately equal to 0 .292, but the hydrocarbon molecules 

(excluding methane which falls into the first group) have 

values of approximately equal to 0.267» These hydrocarbon
molecules, while nonpolar, have a nearly ellipsoidal shape.

Values of Z^ for polar molecules vary from O.269 down to 
0.181.1

The PCS derived from classical statistics and given in 

Equation (2-19) was based on the assumption that the potential 

energy of a pair of molecules may be written

jÔ(r) = £ f(r/^ ) . (2-24)

A potential function satisfying Pitzer's assumptions and of 

the form of Equation (2-24) is the Lennard-Jones potential 

function (30) which may be written

p(r) = 4e[(d~/r)12 _ (<^/r)^] (2-25)

Iphe discussion presented in this paragraph is a sum­
mary of a similar discussion presented by Hirschfelder, 
Curtiss, and Bird (I6), The discussion is based on values of 
Zg presented by these authors. Other authors have presented 
slightly higher values of Z^ for the hydrocarbons.
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where £ is the maximum depth of the potential, cr̂  is the col­

lision diameter or distance at which 0(r) is zero. This po­

tential function is shown in Figure II-l.
In a discussion of the Lennard-Jones potential, 

Rowlinson (52) has stated that this potential function might 

suffice for spherical nonpolar molecules, but for more complex 

molecules, several modifications are needed. These are;

1. the addition of direct and induced electrostatic 

terms to account for attractive forces arising 

from multipole interactions,

2. the addition of a means for representing the 

shape of the molecules since for a nonspherical 

shape, the repulsive forces in the potential change 

with orientation of the molecules,

3. an alteration of the exponents of the potential 
for the case of globular molecules since for glob­

ular molecules, the origins of the attractive and 

repulsive forces are not the geometrical centers

of the molecules but are the atoms or groups that
are disposed symmetrically about the center.

When the molecular model or the potential function are 

modified to account for other than spherical nonpolar mole­

cules, the PCS is no longer given by Equation (2-19). The

reduced volume is no longer just a function of the reduced

temperature and pressure but a function of a third parameter 

in addition to the critical temperature and pressure.
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C. Third Parameters

The failure of the original PCS to predict the com­

pressibility factor for all gases, regardless of their mass, 

shape, or polar moment, has led to the introduction of an 

additional parameter into the PCS so that it has the form

Z = f(Tj,,Pj.,X) (2-26)

where X represents the additional parameter. The need for 

these third parameters is apparent not only from the failure 

of the original principle to predict the compressibility 

factors of certain gases but also from the realization that 

only a few gases obey the assumptions which were necessary in 

the derivation of the principle.
Although many of the third parameters are interrelated 

and, indeed, do in certain cases show a functional relation­

ship to one another, they have been divided into groups 

depending on the particular deviation they were intended to 

correct. The parameters were grouped as follows:

1. quantum deviation parameters,

2. parameters for nonspherical or globular molecules,

3. polar moment correction parameters,

k. general parameters intended to correct for one or 

more of the above.

1. A Parameter to Account for Quantum Effects

The first assumption of Pitzer (39) in the derivation 

of the PCS was that classical statistical mechanics is
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applicable. This required that quantum effects be negligible, 

In 1921, Byk (7) published a discussion on the in­
fluence of the introduction of the classical quantum theory 
on the PCS. He stated that the volume of the unit cell in 

phase space, h^, must be expressed in a unit derived from

the critical constants of the gas. This unit was determined

to be m^/2 (Vg/n)(kTc) ^ . From this, he concluded that the 

deviations from the principle, as far as they result from 

quantum theory, should be a function of the parameter

= h/j^m^ (Vc/n)l/3 (kT^)?]. (2-2?)

With this parameter, the PCS would be

Vj. = F(Tj,,Pj.,Ar) • (2-28)

De Boer and Michels (7), in 1938, showed that the re­

duced second virial coefficient is not a function of the

reduced temperature alone as in the classical expression, 

but depends also on the value of A  f (T' where = h/-^ nr Ê  . 
The principle of corresponding states would then have the 

f orm

Vj, = F(Tj.,Pr,A*) (2-29)

where = A/d^
Hirschfelder, Curtiss, and Bird arrived at this form 

of the PCS by assuming that the equation of state may be 

written in the form

P = F(V/N,kT,h,m<r»€ ) (2-30)
and by using the molecular parameters 9^ and C for the
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reduction of variables. They arrived at

P* = F(V*,T*,A*) (2-31)

by dimensional analysis and concluded that the dimensionless 

quantities in Equation (2-31) are the only dimensionless ' - 

quantities which could be arrived at from Equation (2-30).
It is generally considered that * Is better suited 

for the study of quantum effects than A r  since J\. j. is itself 
influenced by the quantum effects through the quantities Vg 

and Tg. De Boer and Michels have shown that when the effect 

on the critical constants is small

A r  %  0.6lj^ * , (2-32)

Leland, Kobayashi, and Mueller (29), in working with 

the second virial coefficient for quantum gases arrived at 

the parameter

Q. = ----  42-,9... - (2-33)(pVg /̂ ) V MOTg
as a means of evaluating h/(f' V  ni € , from the critical con­

stants. The values of (Ô and 9 were calculated from

i> = (^q/d'cl)’ (2-34)

e = (eq/e<-i) 12-35)

where ff*- and C  are the Lennard-Jones constants and the sub­

scripts q and cl denote quantum and classical. At high molec 

ular weights, the values of 0 and jô become unity.

Satter (61) arrived at a third parameter by assuming
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an equation of state of the form

P = f(V/N,kT,h,m,Pc,Vc/N,kTc) (2-36)
and utilizing dimensional analysis. The parameter that 

Satter obtained is
1/3

,5/6, l/2
h P„

F = -------- rrr (2-37)
(kTg) (m)

or P_l/3

= 5.665 (2-38)F M

If one substitutes

then
F = 5.665(RZc^/3)  pyyJ:---- (2-40)

Vc “V  MTc
Satter also used a fourth parameter, , and arrived 

at a PCS of the form
Z = f(P^,T^,F,Z^) . (2-4l)

Satter evaluated the applicability of
Z = f(P^,T^,F/Z ) (2-42)

as a possible PCS for the components of natural gas. He 
found that this particular combination of F/Z^ was suitable 

but not a particularly convenient parameter. Satter*s work

has been included in this section on quantum parameters

because of the similarity of F to the quantum correction 

parameters.
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For natural gas, there is no need for a parameter to 

correct for quantum deviations. Only at very low temperatures 

and high pressures does methane, the lightest of the hydro­

carbons, show any quantum effects. At the temperatures and 

pressures with which the natural gas engineer is concerned, 

quantum deviations are negligible.

2. Parameters for Nonspherically Shaped 
and Globular Molecules

The second assumption which was necessary in the sta­

tistical mechanical derivation of the PCS was that the gas 

molecules were spherical. Of the hydrocarbon constituents 

of natural gas, only methane, by virtue of its rapid and 

relatively free rotation, may be considered as spherical.

The other hydrocarbon constituents have a nearly ellipsoidal 

shape.
Kihara (26), in arriving at an expression for the sec­

ond virial coefficient, utilized a potential function of the 

form of the Lennard-Jones potential but *’replaced the point 

center model by an impenetrable core whose dimensions are 

suggested by the geometry and intei^nuclear distances of the 

molecule. The potential function was then written not as a 

function of the distance between molecular centers but rather 

as a function of the minimum distance between molecular cores. 

This potential function has the form

12 oU = Uo [(Po/p)12 _ 2 (Pq/p ) ] (2-43)
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where :
U = potential energy
U = maximum (negative) potential energy o
p = shortest distance between molecular cores

= shortest distance between molecular cores

at the energy minimum.

Kihara, in his final formula for his core models, 

gives the second virial coefficient as a function not only 

of temperature but also a function of , the mean curvature, 

Sq, the surface area, and V^, the volume of the core. Pitzer 

(4o) has shown that for molecules approaching the shape of a 

thin rod of length

Mo = 7T L^,S^ = Vo = 0 (2-44)

and for a sphere of radius a^

Mo = 477 a^,So = 4 7T ao^,Vo = • (2^45)
The work of Kihara illustrates the need for a factor

to account for molecular shape.
Corner (4), to account for a cylindrical molecular 

shape, assumed that long molecules could be represented by 

four centers of force arranged rigidly along a line. He 

further assumed that the total intermolecular force is given 

by the sum of the interactions between force centers, each 

interaction being of the form of Equation (2-24), From these 

considerations, the resulting PCS has the form

?r = f(Vr,Tr,Lr) (2-46)
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where Lj, = l / ^  and L is the distance between force centers.

Similarly, for globular molecules, Corner's model 

would lead to a PCS of the form

Pr = f(Vr,Tr,ar'no) (2-^7)

where a^ = a.^f^ , a*is the distance from the center of the

molecule to the force centers, and n^ is the number of force 

centers.
To correct for a nonspherical shape, Lyderson, Green- 

korn, and Hougen (33) suggested the use of dimensionless 

molecular bond-length factor as a third parameter. This 

parameter was given as

L'/3-VRTc/Pc

where L ' = sum of the bond lengths in the longest molecular 

chain,
Since methane is the only hydrocarbon molecule in 

natural gas which can be considered as being spherical, a 

shape factor parameter should be considered as a possible 

third parameter.

3. Polar Moment Parameters 

Rowlinson (52), in his discussion of a two parameter 

potential function stated that a potential function of this 

type fails to include direct and induced electrostatic terms. 

By assuming a potential function

(0(r) = € f(r^r )-(W^/r^)g(êi,@2'^2 " (2-48)
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in which f(r/g^ ) is a universal function of the reduced dis­

tance, and s(Gi,e2'^2 " ) describes the angle depend­
ence of the interaction of two dipoles, a corresponding states 

relation

V(r) = f (2-49)

is obtained. The reduced dipole moment, , is given by

= n/ VG<T' 3 (2-50)

where |i is the molecular dipole moment.

Various investigators have used third parameters 

closely related to the reduced dipole moment. Lyderson, 

Greenkorn, and Hougen (33) investigated the use of

Pitzer (4o) has shown that the second virial coefficient is 

dependent upon q^^o^ and Hall and Ibele (15) have pro­
posed the use of the third parameter

= M^/(kT^)(V^/N) (2-52)

in the determination of the compressibility factor of polar 

gases.
The work of Pople (44) on the statistical mechanics of

assemblies of axially symmetric molecules suggests the use of

a third parameter to account for a quadrupole moment. He 

showed that for a gas such as carbon dioxide, which has a 

strong quadrupole interaction between molecules, the second
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virial coefficient is dependent upon Q /g where Q is

the quadrupole moment.

Qr = G ^ / ëTo Cr ^  ( 2 - 5 3 )

is a possible third parameter for gases with quadrupole mo­

ments .
While parameters such as the reduced dipole or quadru­

pole moment would not apply to any of the hydrocarbon consti­

tuents, they would apply to the three principle diluents of 

natural gas. These are hydrogen sulfide, which has a polar 

moment, and carbon dioxide and nitrogen, which have quadru­

pole moments.

4. General Parameters

This last group of third parameters consists of those 

parameters intended to correct for one or more deviations 

from the conditions necessary for the statistical mechanical 

derivation of the PCS. These parameters are more empirical 

in nature and are not as directly related to the potential 

function.
The form of the principle of corresponding states 

derived from van der Waals* equation and from statistical 

mechanics is

Vj. = f(Tj.,Pr) . (2-54)

Since

Vp = Z / Zg  • T r / P r  ( 2 - 5 5 )



2k

the principle may be written

Z/Z^ = f(Tr,Pr)' (2-56)

For most of the generalized charts, Z^ was assumed to be 

constant so that

Z = f(Tr,Pr) • (2-57)

Meissner and Sefferian (3^) have used Zg as a third 

parameter so that

Z = f(Tr,Pr,Zc) ' (2-58)

To account for the deviation in Z^ between gases, they have 

prepared a Z versus P^ and Tj, correlation for a gas with 

Z = 0 .27. To use this chart for gases with Z^ not equal to

0 .27, they have prepared a set of correction charts with 

Z/Z(o,27) plotted versus Zg for various values of T^.
Lyderson, Greenkorn, and Hougen (33) have also used 

Zg as a third parameter. They have prepared different tables 

of compressibility factors for values of Z^, of 0.23, 0.25,

0 .27, and 0.29 and suggested using the table for a value of 

Zc nearest to the Zg of the gas in question.

Nelson and Obert (38) have stated that the compressi­

bility factors of gases with the same value of Zg usually 

correlate closely, but this happens only when the gases have 

similar molecular structures. When the structures or mole­

cular laws of force are different, gases will not correlate 

well whether the Zg values are equal or not.

Sarem (60) proposed the use of the molecular refraction
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of a substance as a third parameter for characterizing the 

gas because it is related to refractive index, molecular 

weight, and density^ He reasoned that light dispersion, 

which is manifested in the refractive index, is intimately 

related to the London dispersion forces. The molecular re­

fraction in terms of the refractive index, n^, as measured by 

the sodium D line, density d, and molecular weight may be 

expressed as follows:
n  ̂ - 1

Rd = ----  M/ d . (2-59)+ 2

Pitzer (ij-O) has stated that the effect of nonspherical, 

globular, or polar molecules on the potential function is a 

narrowing of the potential well. While the effect of each of 

these is not exactly the same, it is in each case manifested 

in the slope of the vapor pressure versus temperature curve. 

For this reason, Pitzer used the increase in slope over that 

of a simple fluid (the inert gases, krypton or xenon) to 

obtain a third parameter, U) , which he called the acentric 

factor. The acentric factor may be calculated from

uu = - log Pj,° - 1,00 (2-6o)

where P^° is the reduced vapor pressure at a reduced tempera­

ture of 0,7. A reduced temperature of 0,7 was chosen since 
at this point the acentric factor for the simple fluids is 

zero.
Cook and Rowlinson (3) developed a parameter to account
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for elliptical nonpolar molecules^ The parameter was also 

developed to account for slightly polar molecules. This 

parameter was intended to account for the orientation effects 

that are present in the intermolecular potential foi' these 

types of molecules.

This parameter, ^  was evaluated from the reduced 

vapor pressure or from the rectilinear diameter. To evaluate 

it from the vapor pressure, they used for elliptic molecules

ln?r° = - cli(l-Tj,)/Tj. - [(l-Tt)(2c-3Tr)/Tr^] (2-6l)

and for polar molecules

(1-Tr)/Tr - [( 1-Tj, ) ( ̂+c-5Tj. )/Tj.^]. (2-62)ln?r° = - Cl

In these expressions is the reduced vapor pressure, (f'

is the correction parameter, and c is a positive constant.

The first term on the right of these expressions is 

the value of lnPj,° predicted by the original PCS. The value 
of ^ has also been evaluated from the rectilinear diameter 

with reasonable agreement with the value obtained from the 

vapor pressure.
Rowlinson's work further indicates that the effects 

caused by nonspherical, globular, or slightly polar molecules 

not obeying the required assumptions for the statistical 

mechanical derivation of the PCS are manifested in the vapor 

pressure curve.
Riedel (50) has proposed a third parameter which is
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also obtained from the vapor pressure curve. This parameter, 

is the temperature derivative of the vapor pressure curve 

at the critical point and is given by the following;

= (2-63)

Again, it was realized that the deviation from the simple 

fluid behavior was present in the difference between vapor 

pressure curves.

Third parameters for the constituents of natural gas 

are tabulated along with the critical properties in Table 2, 

Appendix B,

Inasmuch as Pitzer*s acentric factor will be relied 

upon quite heavily in the remainder of this study, a more 

detailed discussion of the acentric factor follows.

In a 1955 paper, Pitzer (4o) discussed the need for a 

third parameter to measure the deviation of the intermolecular 

potential from that of a simple fluid. He discussed the ef­

fect that globular molecules, nonspherical molecules, and 

slightly polar molecules have on the potential function and 

in turn on the vapor pressure curve.

In a second paper by Pitzer et al. (^2), the acentric 

factor was introduced to account for the deviation arising 

in the intermolecular potential due to the fact that the sum 

of the inverse sixth power terms applying to the various 

portions of a pair of complex molecules cannot be replaced by 

a single inverse sixth power term in the distance between
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molecular centers. The fact that the forces between the non­

central portions of the molecules must be considered, sug­

gested the term acentric factor.
The empirical quantity selected as indicative of the 

deviation was the reduced vapor pressure at a point well re­

moved from the critical point. Since the reduced vapor pres­

sure of Pitzer*s "simple fluid" is almost precisely 0,1 at a 

reduced temperature of 0.7» this was the point used. The 

acentric factor was then defined as

uu = - log Pj,° - 1.00 (2-6k)

where P^° is the reduced vapor pressure at Tj, = 0.7.

With the acentric factor as a third parameter, the 

PCS may be written

P  = Z(Tr»Pr,w) (2-65)

and the compressibility factor may be expanded as a power 

series in the acentric factor

Z = Z° + ID Z» + . . . (2-66)
where Z°, Z ' etc. are each functions of T^ and Pj.. Pitzer 

found that in almost all regions, the first two terms of the 

expansion were sufficient and that the third terms when ob­

tainable showed considerable doubt as to their validity. 
Consequently, no values of the third term were reported or 

utilized. Due to the omission of the quadratic term, Pitzer 

indicated that compressibility factors calculated in the
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region = 1,05 - 1.10 and = 1.4 - 2.0 might be less 

precise.

To arrive at the values of Z° and Z', the compressi­

bility factors for many fluids were interpolated graphically 

to even values of and , The region T^ from 0.8 to 4.0 

and Pj, from 0 to 9*0 were studied. For each value of P^, a 

plot such as Figure II - 2 was prepared in which the compres­

sibility factor was plotted as a function of the acentric 

factor with the reduced temperature as a parameter. In plots 

such as these, Z° represents the intercept at UJ = 0 and Z ’ 

represents the slope of the T^ lines. From many plots such 

as these, the values of Z° and Z' were read and tabulated as 

functions of T^ and P^.
Satter (6l) later expanded the tables for values of 

Tj, = 1.0 to 2.0 from the termination of Pitzer’s tables at 

Pj, = 9*0 to a Pj. of l4.0. The tabulations of Pitzer plus 

the extended region of Satter were plotted by Satter and are 

shown in Figures II - 3 and II - 4. To utilize these figures, 

it is necessary to calculate reduced temperature and reduced 

pressure utilizing the critical temperature and pressure of 

the gas. Values for Z° and Z ’ are then read from the figures 

and the compressibility is calculated from

Z = Z° + (JUZ* . (2-6?)
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CHAPTER III

CHARACTERIZATION OF GAS MIXTURES

For gas mixtures, P-V-T prediction techniques become 

all the more difficult since one must not only be concerned 

with the deviation from simple fluid behavior of each consti­

tuent but also with the complex problem of the interaction 

between the dissimilar molecules in the system. The general 

approach to mixtures has been to combine pure component pro­

perties through some combination rule to arrive at properties 

characteristic of the mixtures. These mixture properties are 

then used in the pure component relationships to predict the 

volumetric behavior for the mixture.

Several different methods have been proposed for esti­

mating the P-V-T behavior of mixtures. These may be briefly 

summarized as follows:
1. A possible method of dealing with mixtures is by 

using average constants in the equations of state 

that were discussed in Chapter II. For example, 

the constants a' and b* in van der Waals* equation 
could be calculated from

a* = (3-1)

33



34

b* = y^bi + Y2^2 • (3-2)

2, A second method would be to use a mean compressi­

bility factor, Edminster (10) has shown that if 

one assumes that Dalton's law of additive pres­

sures is applicable, then

%mix - yi%i + y2%2 + . . . 2 yi^i (3-3)

where Z^, Z^ etc. are evaluated at the T and V of

the system. If one assumes that Amagat's law of 

additive volumes is applicable, then

+ J'2̂ 2 + ' ' ' f

where Z^, Z2 etc. are evaluated at the T and P of 

the system.
3. A third method is by using generalized charts

where the reduced temperatures and pressures are 

no longer calculated from the critical properties 

but from the pseudocritical properties of the 

system.

The last method which was proposed by Kay (25) has 

received the widest engineering application.

In attempting to use the pure component generalized 

compressibility charts for gaseous mixtures, Kay realized 

that there was considerable deviation, particularly in the 

critical region. By comparing the P-V-T data of a single 

component gas with that of a mixture, he concluded that the
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deviation results from an improper selection of the critical 

point used to reduce the temperature and pressure.

If one plots the constant density lines for a pure 

component on a pressure-temperature diagram, the lines will 

intersect the vapor pressure line which terminates at the 

critical point. For a mixture, the vapor pressure line on 

a pressure-temperature diagram is replaced by a two phase 

envelope. If a similar plot is made for a mixture and the 

constant density lines are extrapolated inside the two phase 

envelope, the lines will intercept some hypothetical line 

terminating not at the critical point of the mixture but at 

some point inside the two phase envelope. This plot for a 

methane-butane system is shown in Figure III - 1. From this, 

Kay concluded that if the data in the superheated region of 

a mixture are to be compared with the superheated region of 

a single component gas by the PCS, the point for calculating 

the reduced properties is not the actual critical point but 

some hypothetical point inside the two phase envelope. Kay 

referred to this point as the pseudocritical point and the 

temperature and pressure at this point as the pseudocritical 

temperature and pseudocritical pressure of the mixture.
Kay postulated that, if the chemical composition of 

the mixture were known, the pseudocritical temperature and 

pressure could be calculated by a mixture rule from the com­

position expressed in mole fraction and the critical constants 

of the constituents in the mixture. The mixture rules used
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by Kay are

Tc' = ? YiTci (3-5)

Pc' = f yiPci (3-6)

where ' and ' denote the pseudocritical temperature and 

pressure, respectively.

To provide a comparison for these rules, Kay graphi­

cally determined the pseudocritical constants for several 

mixtures by the following method:

1. A general plot was prepared of the compressibility 

factor versus the logarithm of reduced pressure 

for various reduced temperatures of isopentane.

2. The mixture data was then plotted on a separate

sheet of semi-transparent paper with the tempera­

ture and pressure expressed in degrees Rankine 

and pounds per square inch absolute.

3. By laying the second plot over the first and 

shifting it along the pressure axis each isotherm 

could be matched with a corresponding reduced 

isotherm and the pseudocritical temperatures and 

pressure could be calculated.

By comparing the pseudocritical constants calculated 

by his mixture rule with those graphically determined, Kay 

concluded that values of the pseudocritical constants eval­

uated by these rules for the light hydrocarbons are suf­
ficiently accurate for most engineering calculations. Kay
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warned that for mixtures whose constituents differ greatly 

in molecular weight as well as chemical nature, values of the 

pseudocritical constants calculated in a similar manner are 

likely to be in error by amounts greater than that allowable.

In graphically determining the pseudocritical con­

stants, Kay used predominantly isopentane data along with 

the mixture data. For a methane-propane mixture, he used pure 

methane data. Kay never mentioned the fact, but if his 

method for graphically determining the pseudocritical con­

stants is used for the same mixture with two different sets 

of pure component data, the pseudocritical constants will 

differ unless both of these pure gases have identical Z 

versus Tj, and Pp plots. The two pure gases will not have 

identical plots unless they obey the PCS equally well.

While the difference may not be very great, empirically 

determined pseudocritical constants are dependent upon the 

general plot that was used to obtain them. In other words, 

the pseudocritical constants that are the most applicable 

depend upon the generalized correlation one uses, This 

establishes the need for third parameters in dealing with 

mixtures. If the mixture can be characterized by a third 

parameter, then the general plot for a gas with the same 

characteristic third parameter could be used to determine 

the behavior of the mixture.

Based on the work done on pure gases and the findings 

presented by Kay, two avenues of approach, to improved
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prediction of the volumetric behavior of mixtures are:

1, The use of combination rules to combine pure com­

ponent third parameters to obtain a mixture pa­

rameter which characterizes the mixture,.

2, The development of combination rules for predicting 

the pseudocritical constants which do not suffer 

from the limitations of the molal average rules of 

Kay.

A, Third Parameters for Mixtures 

Of the third parameters discussed in Chapter II, three 

have been used in the prediction of the compressibility 

factor of hydrocarbon binaries. The molecular refraction,

Rj, was proposed and utilized by Sarem (60), To obtain the 

molecular refraction for a mixture, Sarem used

Rd' = 2 YiRdi- (3-7)

Stewart, Burkhardt, and Voo (64), as well as Leland and 

Mueller (28), have used a pseudocritical compressibility 

factor

Zc' = I fi^ci' (3-8)

Prausnitz and Gunn (45), and Satter (6l), have made use of a

mixture acentric factor

w ' = 2 y^wL. (3-9)

In using as a third parameter, Leland and Mueller 

calculated Z_' by equation (3-8) and then chose a reference
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substance from among the normal paraffins between CHij, and 

^7^X6* The compressibility factor chart for the normal 
paraffin having a value of nearest to the value of Z^' 

of the mixture was then used. Steward, Burkhardt, and Voo 

also calculated Z^’ by equation (3-8) but for a reference 

substance, they made use of the charts of Lyderson, Green- 

korn, and Hougen.

One of the main disadvantages in the use of Z^' lies 

in the difficulty in obtaining the right reference substance. 

The differences in the value of Z^ of the reference substances 

is small. Only a small error in the determination of Z^’ 

could cause the selection of the wrong reference substance,

Sarem avoided part of the difficulty of choosing the 

reference substance by utilizing molecular refraction. The 

molecular refraction has the advantage that the difference 

in Rj between components is significant.

Sarem utilized the molecular refraction in the same 

manner in which Leland and Mueller used Z^*. The compressi­

bility chart for the substances having a value of nearest 

to the Rçj * of the mixture was used. The problem that arises 

here is what reference substance one uses if the R^* of the 

mixture lies between the R^ of two reference substances.

Sarem has suggested that, in this case, a binary mixture with 

an Rj' equal to the R ^ ' of the mixture in question could be 

used. This presents a judgement decision since there are 

several conceivable binary mixtures which have the same value
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of Rj'. If one is working with the normal paraffins, perhaps 

the logical choice is a binary consisting of the two normal 

paraffins with molecular refractions lying on opposite sides 

of the mixture R^'.

One of the main arguments in favor of using the mo­

lecular refraction lies in the fact that the molecular re­

fraction of the heptanes plus fraction of a natural gas is a 

measurable quantity. It may be difficult in natural systems 

because of the opaque color, but if it can be measured, it 

would avoid the necessity of separating the C'p+ fraction 

into individual components.

In using the mixture acentric factor as calculated 

with Equation (3-9)» the difficulty of choosing the proper 
reference substance is avoided. To use the acentric factor 

for mixtures requires only the charts given in Figure II - 3 

and II - 4. These same two charts are used for all mixtures.

In all of the instances where a mixture third parameter 

was employed, it was realized that it is necessary to further 

characterize the mixture by the use of combination rules to 

obtain pseudocritical constants. It is difficult to evaluate 

how successful the above mixture third parameters were be­

cause of the different combination rules used to obtain 

the pseudocritical constants. In the following sections, 

some of the combination rules that have been pro­

posed are discussed.
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B. Pseudocritical Constants from Two 
Parameter Equations of State

The most notable pseudocritical constant prediction 

methods developed since the molal average rule proposed by 

Kay have been based on either a two constant equation of 

state or on the virial approach to mixtures. This section 
is concerned with those predicted from two constant equations 

of state.
The development of pseudocritical combination rules 

based on two parameter equations of state depends upon the 

combining rules used to obtain the constants in the mixture 

equation of state. This is evident from the work of Joffe 

(22,23)0 He developed two different sets of combining rules 

from the van der Waals' equation of state.

To compute the constant a for a binary mixture, he 

used the expression

(a*)^ — y-ĵ aĵ i + ygagS « (3~10)

For the constant b, he used two different expressions. The 

first was the one suggested by van der Waals,

b ’ = yit>i + 72^2 (3-11)

and the second was an expression suggested by Lorentz

b' = y^^b^ + yg^bg + % yiya^^l^^^ + bg^/^)^ (3-12)

Van der Waals* constants for the individual components

may be expressed in terms of the critical constants by
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= 27 R^T^^f6k Pi (3-13)

bi = R Ti/8 ?i (3-14)

and by analogy, the constants for the mixture may be ex­

pressed by
a» = 27 R^(T ')^/64 p • (3-15)c c

b* = RTg'/S Pg'. (3-16)

Equations (3-15) and(3-l6) define the pseudocritical constants 

of the gaseous mixture

On substituting Equations (3-13), (3-l4), (3-15) and 

(3-16) into Equations (3-10) and (3-11), the following ex­

pressions are obtained

Tc’/(Pc’)̂  = Ti/P^Z + yg Tg/PgS (3-17)

T^'/Pc' = Ti/Pi + y 2 T2/P2 • (3-18)

If one substitutes Equations (3-13), (3-l4), (3-15) and 

(3-16) into Equations (3-10) and (3-12), the following are 

obtained

Tc'/(Pc')^ = yi Ti/Pi^ + Yz Tg/PgA (3-19)

Tc'/Pc'= T 1/P1 +

(3-20)

For n components. Equations (3-17) and (3-18) would be 

written

Tq ' /(Pc')& = Z yi Ti/Pi & (3-21)
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T c ’/Pc' = f Ti/Pi (3-22)

and Equations (3-19) and (3-20) would be written

Tc'/(Pc')* " p ?! ?ci/(Pci)* <3-231

T '/P ' = 1/8 c ' c '

If the procedure employed by Joffe is applied to the 

Dieterici equation of state (21) given by

P = S2_ (3-25)V -b

the pseudocritical constant combination rules will be the 

same as those obtained from van der Vaals^ equation of state 

since a and b expressed in terms of the critical con­
stants only differ from those of van der Waals^equation by a 

constant multiplying factor.

Applying the procedure to the Redlich and Kwong equa­
tion of state (48) given by

P = RT/V-b - Jlp (3-26)
- V(V + b)

results in different pseudocritical rules dependent upon the 

combination rules used to obtain a and b for the mixture. If 

Equations (3-10) and (3-11) are used, the resulting equations 

are
(Tc')5/4/(Pg,)& = J yiTcî /̂ /Pci& (3-27)
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and
Tc'/Po' = ^ yi?ci/Pci <3-28,

If Equations (3-10) and (3-12) are used, then

= I (3-29)

and

Tc'/?c' ' I f >'l>'j[i<To/^c>l^’ + 13-30)

The only difference between these equations and those obtained 

from van der Waals’ equation is that the exponents on and

' in Equations (3-21) and (3-23) have been changed from 1.0 

to 1.25.
The rules that Redlich and Kwong recommended for ob­

taining the mixture af and b* are

b’ = r Yibi (3-31)

and
a' = % Ç y^y^a . (3-32)1 J -L i  J-J

With â ĵ given by

^ij " ' (3-33)

When these combination rules are used, the resulting equations 

for the pseudocritical constants are

and
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The basic difference between the pseudocritical 

combination rules obtained from two parameter equations of 

state lies in the different assumptions used to combine the 

pure component a and b to obtain the a' and b ’ of the mix­

ture. From theoretical considerations alone, the choice of 

one rule over another would be strictly arbitrary. The 

choice must be determined by actually testing the rules with 

experimentally determined data, Joffe made a comparison 

for his two sets of rules and concluded that those given by 

Equations (3-23) and (3-24) represented the best rules for 

predicting the pseudocritical constants.

C . The Virial Approach to Mixtures

1. The Basis for the Virial Approach to Mixtures.

One of the primary contributions showing that the PCS 

could be applied to mixtures was the work of Guggenheim and 

McGlashan (l4). In an earlier work, Guggenheim (13) showed 

that, based on the PCS for pure substances

e/V* = 0 (T/T*) (3-36)

where B is the second virial coefficient, V* and T* are a 

volume and temperature that are characteristic for the sub­

stance, T is the absolute temperature, and ^ denotes a 

universal function.

For a two component system, the dependence of the 

second virial coefficient on the composition at a fixed
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temperature is of the form

B = (l-y)2 8^2 + 2y(l-y) Bg2 (3-37)

where y is the mole fraction of the second component, B^^ 

and Bg2 are the values of B for the pure gases 1 and 2 

respectively, and B^g is the second virial coefficient 

characteristic of the mixture. Just as B^^ and Bgg are re­
lated to the interaction between similar molecules, B^g is 

related to the interaction between the dissimilar molecules. 
For substance 1 Equation (3-36) is

%l/^ll* = P(T/Tii*) (3-38)
and for substance 2

Bgg/Vgg* = ^(T/Tgg*) (3-39)

These equations result from the assumption of an interaction 

energy, £ , whose dependence on the distance is of the form

Ê / ç  ♦ = 0 i ( r / r * )  ( 3 - ^ 0 )

where g * is an energy and r* is a length bond characteristic 

of the molecule. The symbol denotes a universal function. 

Guggenheim and McGlashan then made the assumption

that

^ 12/ ^ 2* ■ ^ ^ ( f i g / r ^ g * )  ( 3 -^ 1 )

where Ê  ^2 the interaction energy between the dissimilar 
molecules and r^g is their distance apart. These authors 
then define a characteristic temperature, T^g*, and volume



48

Vi2* by
Tl2*/t 12* = Tii*/e 11* = T22*/€ 22* ,(3-42)

and

Vl2*/(ri2f)^ = Vll*/(rii*)^ = ^ 22* ̂ ' (3-43)

By similarity with the second virial for the similar inter­
actions, it follows that

B12/V12* = P(T/Ti2*). (3-44)
This represents Guggenheim and McGlashan's formulation of the 

PCS for mixtures. The remaining problem is one of relating 

ri2* to ri2* and T22* smd € _̂2* ^o S  ^i* and 6  22** The 
combining rules which they suggested as reasonable are

ri2* = 1(^11* + ^22*) (3-45)

€ 12* = ( €  11* ^22*)^ • (3-46)

The exact relationship between the above quantities 

has not been established. The above relationships have in

some instances failed to predict the correct values of ^ 12*

and Tĵ 2**
Combining Equation (3-43) with Equation (3-45), the 

characteristic volume for the unlike pair becomes

(Vi2*)l/3 = &(Vii*)l/3 + i(V22*)^/3 . (3-4?)

Combining Equation (3-42) with Equation (3-46), the
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characteristic temperature becomes

Ti2* = (T^i* Tgg*)^. (3-48)

To test the validity of Equation (3-44), Guggenheim 

and McGlashan plotted six different mixtures
versus T/Tj^g* found reasonable agreement between the
resulting curve and the curve for pure components.

2. The Pseudocritical Constants of 
Leland and Mueller

Based on the second virial coefficient, Leland and 

Mueller (28) developed a set of rules with which the pseudo­

critical constants for a gaseous mixture may be determined. 

Their derivation begins with the theoretical expression for 

the second virial coefficient. This expression

B = 2 F N q Jq r^(l - e-u(r)/kT)jy (3-49)

was integrated by Lennard-Jones (30) for a potential term 

given by

u(r) = e f((y' /r) . (3-50)

The resulting expression for the second virial was
0& / 2 

B = 2/377‘N„flN3(4€/kT)4 Z f(*̂  )(4€/kT) (3-51)° Sk=o

where

Leland and Mueller rewrote equation (3-51) as

OQ
Z '5=0B = ?  f^ (T)<?N^e (3-52)
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The second virial coefficient for a mixture is given

by

A  i h  • <3-33)

If Equation (3-52) is substituted into Equation (3-53) j the 

second virial coefficient for a mixture becomes

t)+1
= A jïi . (3-34)

If the pseudocritical concept of Kay is valid, there 

should exist a hypothetical pure substance with critical 

properties, T̂ , * > and ' » such that the P-V-T properties

of this hypothetical substance are identical with those for 

the mixture. The second virial coefficient for this hypo­

thetical mixture would be given by

ao _ _  2:4+1
B = .T f ^ { T ) ^ e  ^ (3-55)V = o

where ^  and ^  represent the Lennard-Jones potential para­

meters for the hypothetical substance.

If the right sides of Equations (3-5^) and (3-55) are 
equated, the following expression results:

o _ 2iU±l « « n 2J^-il
l)Io G  = ill jli yi^j lo -̂0 ij ^  ij

(3-56)
By equating coefficients of like values of f.̂  (T), there 

results a set of equations of the form

^  ^  ^  -ill jîi y m  e  ij ^  ^ i j  = 0
(3-57)
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where
ÿ) — 0jl)2,3j I o « «

There are more equations in the set than are necessary 
to evaluate ^  and Ç  . No value of and £ will satisfy 
all of them. Leland and Mueller stated that two values of 
■0 should be selected so that the remaining equations in the 
set will as nearly as possible equal zero. For one of the 
valus of -0 , these authors selected zero and for the second
value, they chose a parameter, a, which they evaluated em­
pirically. The following two equations were obtained as a 
result of this selection:

e  ■=
- i/a

(3-58)

= tîi jii (3-59)

If the assumptions that
(3-60)

(3-6l)

(6 V ) i j  = V ( e  V ^ ) i  (6°'<7\^)j

(Tl

(3-62)

(3-63)

and
m

^c’ (3-6^)
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are made, then the following rules for the pseudocritical 

constants are obtained:

T » = c

a+1 1
t  t  y y i=l j=l i .1V Pc A  ^  Pc A

1=1 j=l

1 / a  

(3-65)

Pc’ = ^ c ’ i?! yi^ci

(3-66)

Leland, Mueller, and Kobayashi (29) gave the following 

method for calculating the empirical exponent, a

a = -0.75 + 2-44 . (3-6?)

For values of P F y  T /T Z y.P .2: 2,0, a may be set equal toX x C X  X X C X

1.0 and for values < 0,̂ 4-, a may be set equal to 2 .2.

Several alternate rules based on the derivation of 

Leland and Mueller are possible by varying the assumptions 

made in equations (3-6o) through (3-64).
Batter (61) has shown that if equation (3-62) is re­

placed by

^  ij = i 

the resulting equations are
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Tc'-

A  & e f r

L/a

(3-68)

Pc’ =
^c ' yi^ci

\l/3 i3

i=l j=l

(3-69)

The form for €  12 that Satter used is identical with the form 

that was used in the work of Guggenheim and McGlashan that 

was discussed in the previous section.

Sarem (60) also assumed alternate forms of the inter­

action parameter and in so doing arrived at pseudocritical 

constant rules somewhat different than those of Leland and 
Mueller, In one set of rules, he assumed that the parameters 

were given by a geometric mean

(T'ij - iO^j (3-70)

£  ij - \l£ i 6 j (3-71)

and in another, he assumed a harmonic mean given by

^  ij =

e  ij = I . (3-73)
€  i

In his work, Sarem concluded that the geometric means
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provided the most applicable pseudocritical constants for his 

prediction technique.

It is interesting to note that in the derivation of 

the Leland and Mueller rules, if the assumptions are made 

that a = 1 and is a constant, then

?k)

This is identical with the form of this ratio that Joffe 

obtained.

It is apparent from the above discussion that, just 

as in the case of Joffe's rules, several alternate forms of 

Leland and Mueller’s rules may be arrived at by alternate 

forms of the equations used to obtain the mixture constants,

3. The Pseudocritical Constants of 
Stewart, Burkhardt, and Voo

Stewart, Burkhardt, and Voo (6k) developed several 

different pseudocritical constant rules from the second 

virial approach. They used the expression for the mixture 
second virial coefficient

B == Î f V j B i j  (3-75)

and assumed that the interaction second virial coefficient 

may be represented by

Blj = kEl fklPcij. Tclj. ZcljlT . (3-76)
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In this equation T „ . P ^ - - a n d  Z„.. are the critical para-^ C l J ’ ClJ ClJ ^

meters for the interaction of species i and j. When j=i, 

these parameters are the true critical properties of species

i. The exponent ÔK was assigned various integral and frac­

tional values in their work.

It was further assumed that the second virial coef­

ficient is given by an expression analogous to Equation 

(3-76). That is,

B = ^1^ fk(Tc', ?c', Zc')TGK. (3-77)

By combining Equations (3-75), (3-76), and (3-77) there 
results

k=l^ [^k^^c'»^c*»^c'^■ ? j'^i^j^^cij»^cij»^cij0  ~ ® “

(3-78)

As in the derivation presented by Leland and Mueller, each

bracketed term must vanish independently for each power of T,

This gives a set on n equations of the form

fklTc''fc''Zc'l = f f yiyifklTclj'Pcij'Zcijl (3-79)

k = 1, 2, , . . n 0 

Equation (3-79) gives a set of n equations in the three 

unknowns, Pg', T^' and Z^'. To obtain a rigorous solution for 

the three unknowns, the number of equations must equal the

number of unknowns. For three unknowns, the second virial
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coefficient would have to be expressed by an equation con­

taining only three powers of T.

In order to use Equation (3-79)> it is necessary to 

specify the form of the function f^ in Equation (3-76).

These authors chose several different forms of f^ and eval­
uated the resulting pseudocritical constants. One form that 

th.ey assumed for Equation (3-76) is

Bij = (3-80)^J ^cij

with

and

'Pc" ' "•’cl" "rcj

= (Tci^/Pcl Tcj/Pcj)' • 13-82)

Application to Equation (3-79) gives Joffe's rules for Tg' 

and Pg'. The value of Zg' has to be found by other means, 

in this case, since B^j was assumed independent of Z^^j.

These authors stated that the numerical values of Cĵ and C£ 

do not enter into the calculation except that they must be 

non-zero and independent of temperature.
A variety of other forms of Equation (3-76) was assumed 

and corresponding sets of pseudocritical constant rules were 

obtained. In all, Stewart, Burkhardt, and Voo tested a total 

of twenty one different rules. Some of these were simple 

rules not derived from this virial approach. The rule that 

they deemed most applicable was one based on a slight
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modification of the mixing rule of Joffe.

The rules which they recommended are given by the 

following:

T c ' / P c ’ = 1 / 3 2  Yi T c i / P c l  + 2 / 3 [ p  y i ( T c i / P c l > * f

(3-83)

Tc'/(Pc’)^ = f Yi Tci/(Pci)& • (3-84)

4, The Pseudocritical Constants of 
Prausnitz and Gunn

Prausnitz and Gunn (45) developed a set of pseudo­

critical constant rules based on the virial approach. Their 

derivation is quite similar to the two virial derivations 

previously discussed, but differs in that they assume that 

the second virial coefficient is also a function of Pitzer’s 

acentric factor. These authors recommend the following pro­
cedure for calculating the pseudocritical constants;

a. Calculate all possible values of Tg^j and V ^ j  from

Tcij = (TolToj)* - ‘ Tci) (3-85)

Vclj = i('fcl + Vcj) - Vcij 13-861

A Tcij 4 Vgij, are correction terms which can
be read from curves prepared from binary data.

b. Compute the pseudocritical volume and the acentric 

factor from

Vc' = J.2. XiyjVcij <3-871
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CO’ = z (3-88)

Co Compute the quantities 8̂  and Y frc'om

3 ’ =/. yiyj(v^T^)ij (3-89)

* - Ayiyj'Vc?o'iij - <3-9»)J
do Calculate the pseudocritical temperature from

To- = (3-91,

and the pseudocritical pressure from

Pc’ = RTc'/Vc’ f yiZci . (3-92)

The constants r ’ and s may be read from tables that Prausnitz 
and Gunn presented. In these tables, r ’ and s are tabulated 
as functions of the reduced temperature and Pitzer’s acentric 
factor. This requires that the pseudocritical temperature 
be estimated before the table may be used.

Because of the complexity of the proposed method, 
Prausnitz and Gunn presented a simplified method which they 
felt would be sufficiently accurate for most chemical engi­
neering purposes. The pseudocritical constants are calculated 
in the simplified method from

T ■ = f yiTol (3-93)

= RT.'/p yiV.i f fl^cl • 13-94,
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Reid and Leland (^9) have shown that, aside from the 

empirical factors introduced to obtain a better fit with 

experimental data, the basic differences in the pseudocritir 

cal rules obtained from the second virial coefficient lie in 

the different assumptions employed to obtain the interaction 

terms from those of the pure components. This being true, 

as in the case of the pseudocritical rules obtained from two 

parameter equations of state where the final form depended 

upon the combination rules used to obtain the mixture a' and 

b*, it is impossible to choose one of these sets of rules 

over another on a theoretical basis. Again the choice must 
be based on a comparison with experimental data. No such 

comparisons have established pseudocritical rules for hydro­

carbon - carbon dioxide mixtures.



CHAPTER IV

THE EXPERIMENTAL DETERMINATION OF 

COMPRESSIBILITY FACTORS

While experimental compressibility factors are avail­

able for binaries of a hydrocarbon plus carbon dioxide, no 

such data were available for systems containing more than one 

hydrocarbon and carbon dioxide.

The experimental phase of this study was to provide 

data on mixtures of hydrocarbons and carbon dioxide. Com­

pressibility factors were determined for five mixtures of 

methane, carbon dioxide, and ethane or propane at 100, 130, 

and 160° F, and pressures up to 7,026 psia. A comparison of 

determined compressibility factors with published data and 

an analysis of the error involved have shown that the equip­

ment that was employed might not be sufficiently accurate 

for a basic study of molecular interactions, but it is suf­
ficiently accurate for the determination of usable volumetric 

data. The accuracy of the experimental data is sufficient 

for the purpose of this study.

A. Experimental Equipment

The experimental equipment used in this study was
60
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originally assembled at the University of Oklahoma by 

Nassiri (37). The technique for utilizing this equipment 

was later perfected by Satter (6l),- Slight modifications 

in the experimental set-up of these investigators were made 

in this study when it was felt that either safety, accuracy, 

or ease of operation could be improved.

Based on the phase of the experiment in which they 

are employed, the equipment may be conveniently divided into 

three groups: the high pressure equipment which is utilized

to determine the pressure, volume, and temperature relation­

ship for a gas sample; the low pressure equipment which is 

employed to determine the number of moles of gas present in 

the sample; and the auxiliary equipment.

1. The High Pressure Equipment

A high pressure cell and a mercury pump were the two

principle components of the high pressure equipment. Both 

were made by the Ruska Instrument Corporation of Houston,

Texas. They are shown schematically in Figure IV-1.

The 500 cc. cell has a maximum working pressure of

12,000 psia. It is equipped with two stainless steel valves 

which serve as inlet and outlet for the cell and an internal 

paddle mechanism which stirs the contained fluid when the 

cell is rocked. The cell was mounted in a constant tempera­

ture water bath in such a manner that it could be manually 

rocked when desired. Constant temperature was maintained in
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the bath with a circulating pump and a thermostatically con­

trolled 3,000 watt electric heater.
The 250 cc. mercury pump has a maximum working pres­

sure of 8,000 psia. The smallest scale division on the 

pump for measuring the volumes of mercury injected is

0.01 cc. Since the cell volume is twice the volume capacity 

of the mercury pump, a means of adding mercury to the system 

was necessary. This was done through the mercury reservoir 

located on top of the pump.

Coiled stainless steel tubing was used to connect the 

pump to the high pressure cell. The pump was also connected 

to a 10,000 psig Heise gauge with scale divisions of 10 psig.

2. The Low Pressure Equipment 

For determining the number of moles present in a gas 

sample, components of a standard Bean unit manufactured by 

the Refinery Supply Company of Tulsa, Oklahoma were used. 

These components were a 1,000 psig stainless steel cell, a 

glass expansion burette, a glass mercury reservoir, a mano­

meter tube, and a constant temperature bath. The unit as 

employed in this study is depicted in Figure IV-2.

As used in this study, the stainless steel cell's 
sole purpose was to avoid expanding from the variable volume 
cell (in the high pressure part of the equipment) directly 

into the glass expansion burette. With this stainless steel 

expansion cell, it was possible to expand in steps and thus
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avoid the danger of applying excessive pressures to the 

glass expansion burette.

The approximately 1,000 cc. glass expansion burette 

is equipped with a three way stopcock on the top and an etch 

mark on its lower stem. When this burette is filled with 

gas from the stopcock to the etch mark, one has a known 

volume of gas at the temperature of the bath and the pressure 

which is read on the manometer tube.

Through a tee and valve arrangement atop the glass 

mercury reservoir, the reservoir may be subjected to either 

atmospheric or some higher pressure. The purpose of the 
reservoir is to alternately inject and remove mercury from 

the glass expansion burette. This is done by controlling 

the pressure on the mercury in the reservoir.

The stainless steel constant temperature water bath 

is equipped with glass windows to allow visual observations 

of the burettes and the manometer. It is also equipped with 

an electric stirrer, a 700 watt electric heater for bringing 

the bath to a desired temperature, and a 200 watt thermo­

statically controlled heater for maintaining the desired 

temperature,
Coiled stainless steel tubing was used to connect the 

stainless steel cell to the glass expansion burette. It was 

used to inhibit the cooling that takes place when gas is 

expanded from the cell to the burette and thus shorten the 
time required to bring the gas up to the bath temperature.
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3. Auxiliary Equipment and Accessories 

Satter stated that one possible source of error in 

utilizing this equipment was the fluctuation in room tempera­

ture. For this reason, the room temperature was thermo­

statically controlled. Thermostatic controls were used to 

turn on an air conditioning system or a steam heating system 

wheneveir they were necessary to maintain the room tempera­

ture. It was possible to maintain the room at 77 + 1° F . 

throughout the experiments. This not only provided a fairly 

constant base temperature for reading pressures and volumes 

on the mercury pump but also made it easier to maintain a 

constant temperature in the two water baths.

For preparing gas mixtures, an auxiliary 100 cc. 

mercury pump equipped with an 8,000 psig Heise gauge and a 

500 cc. high pressure cell were used. This equipment was 

assembled similarly to that shown in Figure IV-1 with the 
exception that the cell was not placed in a constant tempera­

ture bath. This system was used only to prepare approximate 

mixtures to be analysed later.

Some of the accessories that were used are a dead 

weight tester, mercury in glass thermometers, a vacuum pump, 

a barometer, balances, and graduated cylinders.

B. Calibration of Equipment 

Before proceeding with the experimental work, it was 

necessary to check the calibration of several components. It
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was also necessary to accurately determine volumes of cells, 

burettes, and lines.

1. The Heise Gauge 

The 10,000 psig Heise gauge was checked with a dead 

weight tester from 50 to 8,000 psig. Only in the high pres­

sure range from 6,000 to 8,000 psig was there any appreciable 

difference between the gauge reading and those of the tester. 

This difference never exceeded the 10 psig scale division of 

the gauge.
In the experimental assemblage of the equipment, the 

distance from the center of the Heise gauge to the center of 

the high pressure cell amounts to a pressure difference of 

12 psi. This is the only correction that was applied to the 

gauge reading to obtain gauge pressure in the cell.

2. The High Pressure Cell 

Before determining the volume of the high pressure 

cell, the cell was disassembled and thoroughly cleaned with 

acetone. It was then reassembled and checked for leaks.

The volume of the high pressure cell and the line from 

the mercury pump to the cell were determined as a function of 

temperature and pressure. This was done by evacuating the 

cell from the valve on top of the cell to the discharge valve 

of the pump. The discharge valve of the pump was then opened 

and the cell filled with mercury. By varying the temperature
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and pressure of the mercury in the cell, the cell volume as 

a function of temperature and pressure could be calculated 

from

V2 = Vi[(l + )V2/VI(1 - ^2^2)1 (^-1)

where 8 is the compressibility of mercury, v is the volume 

of mercury’ relative to the volume at 6o° F., V denotes volume, 

and P denotes gauge pressure. The subscript 1 denotes the 
base temperature and pressure for making volume measurements 

on the mercury pump. A pressure of 3,000 psi and 77° F. were 

used for base conditions. is the volume the cell would

have if the mercury it contained were at 3,000 psi and 77° F .

The subscript 2 denotes the temperature and pressure of the 

cell. V2 is the volume of the cell at the pressure P2.

Values of 8 and v were taken from the literature (35) and 

are presented in Table 1 of Appendix C.

The procedure discussed above was performed several 

times at temperatures of 100, 130, and l60° F*and the pres­

sure range of 1,000 to 7,000 psig. It was found that the

cell volume varied linearly with pressure at a given tempera­

ture and nearly linearly with temperature at a given pres­

sure. At any one temperature and pressure, subsequent 

determinations of the cell volume never differed by more than 

0.05 cc. The volumes as a function of temperature and pres­

sure are shown in Figure 1 of Appendix C.

3. Expansion Cells
The volume of the stainless steel expansion cell and
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the lines connecting it to the high pressure cell and the 
gas expansion burette were determined by evacuating them and 
measuring the volume of gas necessary to fill them to atmos­
pheric pressure. The volume of gas was measured with a gas 
expansion bottle. The average of several volumetric determ­
inations was 250.0 cc.

The, volume of the glass expansion burette is far more 
critical than the volume of the steel expansion cell since 
this volume is multiplied by the number of expansions neces­
sary to go from the pressure of the high pressure cell down 
to atmospheric pressure. Prior to determining the volume of 
this burette, it was cleaned with dilute hydrochloric acid, 
acetone, and distilled water. It was then thoroughly dried 
and filled with mercury from the stopcock to the etch mark 
on the lower stem. The mercury was then removed and weighed. 
Its volume was determined by dividing the weight by the 
density at the temperature of the determination. Several 
determinations of the burette's volume were made, The 
values obtained from different determinations never differed 
by as much as 0.1 cc. and had an average value of 997*3^ cc.

k. Thermometers
Two different thermometers manufactured by the Central 

Scientific Company were used in this study. Both of these 
had scale divisions of 0.2° F. The boiling point of pure 
pentane at atmospheric pressure was measured to within
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0.1° F with both of the thermometers. No correction was 
applied to temperatures measured as this difference in 
terms of absolute temperature is insignificant.

C. Experimental Procedure 
A standard sequence was set up for performing the 

experiments. The sequence consisted of a preliminary check­
ing and preparing of the equipment, making the gas mixtures, 
determining the P-V-T relationship for the mixture in the 
high pressure equipment, and finally determining the number 
of moles in the mixture with the low pressure equipment.

1, Preliminary Preparations 
Prior to and throughout each of the experimental runs, 

checks were made to be sure the system was leakproof. The 
checks before the run were either made by establishing a 
components ability to hold a vacuum or by its ability to 
hold mercury at a pressure of 7,000 psig. Visual observa­
tions for leaks were also made throughout the experiments.

The high pressure part of the equipment was prepared 
by evacuating the high pressure cell from the valve on top 
of the cell to the discharge valve of the mercury pump.
With the discharge valve on the mercury pump closed, the 
pump was brought to 3,000 psig and a base pump reading was 
then made at this pressure and a room temperature of 77° F . 
(Subsequent pump readings were all made at these conditions.) 
The evacuated cell was then filled with mercury to 3,000 psig
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and its water bath was brought to 100^ F . Following a suf­

ficient amount of time to allow the cell to come to equili­

brium the cells volume was checked at 3,000 psig and 100° F, 

with the calibration curve given in Figure 1 of Appendix C.

Since the volume of the cell exceeds that of the 

pump, it was necessary to add mercury to the pump during 

the filling of the cell. Following a complete stroke of 

the pump, the discharge valve on the cell was closed and a 

pump reading was made at the base conditions. The pump 

pressure was reduced to zero and the valve connecting the 

pump to the mercury reservoir was opened. The pump's plunger 

was withdrawn allowing mercury to enter the pump. Care was 

taken to maintain the mercury level in the reservoir and 
thus prevent air from entering the system. When the pump's 
plunger was completely withdrawn, the valve to the reservoir 

was closed and the pump was brought to 3>000 psig and a 

reading of the pump was recorded. This procedure was always 

used to add mercury to the system. The procedure in reverse 

was employed whenever it was necessary to remove mercury 

from the system.

The low pressure equipment was prepared by filling 

the burettes of the modified Bean unit so that the mercury 

was on the plane of the etched mark of the gas expansion 

burette and the zero of the manometer tube when the system 

was exposed to atmospheric pressure and the bath was at 

100° F . (A bath temperature of 100° F,was always used in



72

the low pressure phase of the experiment.) The air pressure 

available for moving mercury from the reservoir to the gas 

expansion burette was adjusted so that the mercury would 

rise to the stopcock of the gas expansion burette when this 

burette was opened to atmospheric pressure.

2. Preparation of Mixtures

The pure hydrocarbon gases used to prepare the mix­

tures were obtained from the Phillips Petroleum Company.

The methane and propane were pure grade with a minimum purity 

of 99«0 mole per cent. The ethane was research grade with a 

purity of 99.9 per cent. The carbon dioxide obtained from 

the Matheson Company was bone dry grade with a minimum purity 

of 99.8 per cent.

Following the preparation of the high pressure equip­

ment, the cell was at 3,000 psig and 100° F. The cell was 

then connected through stainless steel tubing to a methane 

bottle. This line was evacuated and purged several times 

with methane. The pressure in the cell was then reduced to 

just below the pressure in the gas bottle and the valve 

between the two containers was opened. Approximately 400 cc. 

of methane at 1,000 psig were taken into the cell by with­
drawing mercury. The valve on top of the cell was then 

closed and the volume of methane in the cell was determined 

at 1,000, 2,000, and 3,000 psig and 100° F. By knowing the 
pressure, volume, and temperature, literature values of the 
methane compressibility factor could then be used to determine



73

the moles of methane in the system.

By knowing the number of moles of methane and the 

desired composition of the mixture, the number of moles of 

additional components in the mixture could be calculated. 

Once the number of moles of additional components were 

determined, they were added to the system by using the 

auxiliary pump and cell. The auxiliary cell was connected 

to the high pressure P-V-T cell through stainless steel 

tubing. The cell and tubing were evacuated, purged, and 

filled with the component to be added. They were then 

pressured to 2,000 psig. Since the moles, pressure, room 

temperature, and literature compressibility factors were 

known, the volume of this component that should be:’injected 

at 2,000 psig could be calculated. This volume of mercury 

was then injected into the auxiliary cell raising the cell's 

pressure to above 2,000 psig. The auxiliary equipment was 

then opened to the P-V-T cell and bled down to 2,000 psig. 

This allowed the required volume to enter the P-V-T cell.

All additional components were added in this manner.

A procedure such as the one employed in this study 

will not give exactly the desired mixture but it was found 

that it worked very well for approximating the desired mix­

ture. An example calculation for a mixture preparation is 

given in Appendix D.

The mixtures prepared in this study were chromati- 

graphically analyzed by the Phillips Petroleum Company



7h

Research Center at Bartlesville, Oklahoma. Table 1 of Ap­

pendix F shows the results of their analysis.

3. P-V-T Measurement

Following the preparation of the desired mixture, the 

high pressure part of the experimental equipment was used to 

determine the pressure, volume, and temperature relationship 

of the mixture. With the gas mixture contained in the P-V-T 
cell, the bath temperature was controlled at 100° F. and the 

pressure in the cell was adjusted to 1,000 psig.

After a sufficient amount of time to allow equilibrium 

to be reached (approximately 30 minutes), the discharge valve 

of the mercury pump was closed and the pump pressure was 

brought to 3,000 psig. A pump reading at 3,000 psig and 

77° F. was then made. From the preliminary preparation of 

the equipment, a base pump reading at these same conditions 

was available. With these two numbers, the volume of mercury 

in the cell could be calculated. This volume was corrected 

to 1,000 psig and 100° F . By knowing the cell's volume at

1.000 psig and 100° F, and the mercury's volume at these con­

ditions, the volume of gas in the cell could be calculated.
With the determination of the gas volume at 1,000 psig 

and 100° F. completed, the pump pressure was reduced from
3.000 to 1,000 psig and the discharge valve of the pump was 

opened to the cell. The cell pressure was then increased 

from 1,000 psig to 1,500 psig and the above procedure was 

repeated. Subsequent readings were taken in 500 psi
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increments to 5,000 psig and then in 1,000 psi increments 

to 7,000 psig. After the determination of the volume at

7,000 psig and 100° F, the entire pressure range from 1,000 

to 7,000 psig was covered at 130° F, and then at l60° F.

For this phase of the experimental work, as large a 

gas volume as possible was always employed. This required 

that mercury be added to the pump system before the 2,000 

psig reading and that the mercury be removed from the system 

after the 7,000 psig reading. This was performed as outlined 

in the equipment preparation section. While this could have 

been avoided by starting with a smaller gas volume, it was 

not difficult enough to warrant the loss in accuracy which 

would be caused by using the smaller volume.

k , The Determination of the Moles of Gas

For this phase of the experimentation, the high pres­

sure equipment was connected to the low through stainless 

steel tubing, Both water baths were set at 100° F and the 

system from the valve on top .of the P-V-T cell to the three 

way stopcock on the top of the gas expansion burette was 

evacuated. The gas in the P-V-T cell was then allowed to 

fill the line to the valve on top of the steel expansion 

cell. The discharge valve on this cell was closed and the 

inlet valve opened until a pressure of approximately 95 psig 

was in the cell. By opening the gas expansion burette to 

the atmosphere through the three way stopcock and applying
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pressure to the top of the mercury reservoir burette, the 

gas expansion burette was filled with mercury. The air 

supply on top of the mercury reservoir was then shut off and 

the gas expansion burette was opened to the line to the gas 

expansion cell. By careful reduction of the pressure on the

mercury reservoir and careful opening of the valve on top of

the steel expansion cell, the mercury in the gas expansion

burette was replaced with gas down to the etched mark on the

lower stem. The gas was allowed to come to equilibrium and 

the pressure on the mercury reservoir necessary to maintain 

the mercury level on the etched mark was read from the mano­

meter. With the development of experimental technique, it 

was possible to keep this pressure at zero psig. Expansions 

into the stainless steel cell and then into the gas burette 

were repeated until the pressure in the P-V-T cell was 

reduced to atmospheric pressure. By knowing the number of 

expansions into the gas burette and the pressure and tempera­

ture of this gas and by knowing the volume of the stainless 

expansion cell, the tubing to the P-V-T cell and the volume 

in the P-V-T cell, the total volume of the gas mixture at 

100° F and atmospheric pressure could be calculated. By 

assuming perfect gas behavior, the number of moles in the 

mixture could then be calculated.

D . Accuracy of the Experimental Method 
Before any of the mixtures were studied, it was felt 

that a comparison should be made between the compressibility
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factors obtained with this equipment and some published data. 

Two sets of methane compressibility factors were determined 

at 100, 130, and l60° F and pressures up to 7,026 psia. A 

comparison between these values and compressibility factors 

obtained by interpolation of the methane data of Sage and 

Lacey (59) showed no point deviating by more than 0,5 per 
cent. Following the study of the first three mixtures, two 
more sets of methane compressibility factors were determined 

at 100° F,and pressures up to 7,026 psia. In each set, only 

one point deviated by more than 0.5 per cent. Both of these 

occurred at 1,026 psia. In the first set, the deviation at 

1,026 psia was 0.65 per cent. In the second set, the devia­

tion was 0.55 per cent.

A satisfactory comparison with published data increases 

one's confidence in experimental equipment, but it does not 

establish the accuracy which can be expected. To establish 

the maximum errors which might be introduced by the equip­

ment, an analysis of the errors which could be introduced 

by each component was made.
The largest source of error in the equipment is the 

inability to read the 10,000 psig Heise pressure gauge more 
accurately than to the nearest 10 psi. An error of 10 psi 

in the pressure reading at 1,026 psia will introduce an error 

of 0.977 per cent in the subsequently determined Z. The 
error reduces to 0.1^2 per cent at 7,026 psia. This accounts 

for the largest deviations from Sage and Lacey's methane data
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occurring at 1,026 psia.

The error introduced by the volume and temperature 

measurements in the high pressure phase is considerably less 

than those introduced by the pressure reading. To illustrate 

this point, the data from the third methane run at 100° F, 

was considered. The gas volume at 1,026 psia was 388,48 cc. 

Since the mercury pump can be read to the nearest 0,01 cc,, 

the maximum error involved in this measurement was taken to 

be the maximum difference of 0.05 cc. that was obtained in 

the calibration of the P-V-T cells volume. With a gas volume 

of 388.48 CO., the error in the compressibility factor intro­

duced by a 0.05 cc. error in the gas volume will be 0.011 
per cent. At 7.026 psia, the gas volume was reduced to 

73.05 cc. and an error of 0.05 cc. would result in an error 

of 0.068 per cent. The thermometers used were accurate to 

the nearest 0.2° F. An error of 0.2° F,would introducea maxi­

mum ertor in the compressibility factor af 0.035 per cent.

In the low pressure equipment, the pressure can be 

read to the nearest .05 inches of mercury. Taking the maxi­

mum error in reading the barometric pressure as 1.5 mm. of 

mercury, the error in the compressibility factor for a baro­

metric pressure of 730 mm. of mercury would be .206 per cent. 

No difference as large as 0.1 cc. was obtained in measuring 

the volume of the gas expansion burette. A gas volume in 

the P-V-T cell of 380 cc. at 1,000 psig and 100° F.takes 

about 33 expansions to bring the gas to atmospheric pressure.
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Assuming an error of 0.1 cc, per expansion would result in 

an error of 3*3 cc. in the gas volume at atmospheric pressure 

and 100° F. Adding to this a 1 cc. error in the volume of 

the stainless steel expansion cell and lines would give a 

total error in the volume of 4.3 cc. By beginning with 
380 cc. in the high pressure cell at 1,000 psig and 100° F., 

the volume would be approximately 33,000 cc, at atmospheric 
pressure. The error in reading the volume would then cause 

an error of 0.001 per cent in the compressibility factor.

As the temperature is again read at 100° F , another tempera­

ture error of 0.035 per cent could be introduced.

Assuming that all of the discussed errors are cumula­

tive, a maximum error of 1.265 per cent could be obtained 

for the compressibility factor at 1,026 psig. The maximum 

error for all of the rest of the points would be less than

1.0 per cent. Based on the above analysis, the accuracy of 

the data is considered to be within 1.0 per cent at the pres­

sure points studied above 1,026 psig. This analysis indi­

cates that the equipment as assembled should not be used for 

pressures below 1,000 psig without providing a more accurate 

means of measuring the pressure in the P-V-T cell.

E . Mixture Compressibilitv Factors
Compressibility factors were determined for five mix­

tures of hydrocarbons and carbon dioxide. The procedure 
used for calculating the compressibility factors from the
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Appendix D. The compressibility factors for the five mix­

tures are tabulated in Table 2 of Appendix F and are plotted 

in Figures IV-3 through IV-7.
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CHAPTER V

THE SELECTION OF A THIRD PARAMETER FOR 

HYDROCARBON -CARBON DIOXIDE SYSTEMS

The remainder of this study is aimed at the selection 

of a third parameter and a set of pseudocritical rules which 

will provide a reliable prediction of the compressibility 

factors for hydrocarbon - carbon dioxide systems. The selec­

tion of the third parameter is the subject of this chapter.

As far as the hydrocarbon constituents of natural gas 

are concerned, a definite relationship exists between the 
general third parameters. In Figure V-1 through V-4, Z^, 

Rdj^c» plotted versus W. In each of these plots,
a nearly linear relationship exists between the parameters.

In Figure V-1, where Z^ is plotted versus W, the 

straight line drawn may be represented by

Zg = 0.293 - .093 w (5-1)
In Pitzer's tables, the values of Z° and Z ' at a reduced 

temperature and pressure of one are given by 0.291 and -0.080 

respectively. The critical compressibility factor should 

then be related to lu by

Zc = 0.291 - .080 UJ (5-2)

86
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The fact that all of the gases do not lie on this line is 

an indication of a slight inconsistency in Pitzer’s tables 

in the critical region.

The straight line drawn for the plot of Rj versus uj 

is exceptionally good for the heavier hydrocarbons. The 

straight line drawn on this figure is

Rj = 2,4 + 92.2 :.UJ (5-3)

When Rowlinson’s parameter, ^  ^, is plotted versus 

Pitzer's acentric factor, the straight line relationship is

J'c = 0.51 Hfi (5-4)

Rowlinson (52) gave the relationship between the two as

jc = 0.417 w (5-5)

but Rowlinson's data included other gases (not present in 

natural gas) in addition to those shown in Figure V-3 to 
obtain his correlation^

The general third parameters which have been discussed 

are assumed to be a measure of the deviation from the PCS 

caused by the molecules being either globular, non - spherical, 

or slightly polarc
If only one of these properties of th-e molecules is

causing the deviation, then a microscopic third parameter

characterizing this cause of deviation should be expressible 

as a function of the general third parameter. If the only 

cause of the normal paraffins' deviation is their non- 

spherical shape, a microscopic parameter such as Corner's
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l /^ ratio for the normal paraffins should be expressible as 
a function of a general third parameter. In Figure V-5, the 
L/î  for the first four normal paraffins and for carbon 
dioxide are plotted versus the acentric factor. For the 
paraffins, the relationship is nearly a straight line. For 
carbon dioxide, the acentric factor is affected by its 
quadrupole moment and consequently, it deviates from the 
straight line a little more than the hydrocarbons do.

In searching for a third parameter which could be 

related to the microscopic properties of the molecules, 

Satter (6l) attempted to use F/Z^ as a third parameter. The 

similarity between F given by

F = 5.665 (5-6)

and the quantum parameters based on microscopic properties 

was previously pointed out. When F/Z^ was plotted versus 

the acentric factor, Figure V-6 was obtained. The large 

deviation between the curve drawn through the hydrocarbon 

points and the carbon dioxide point is indicative that a 

property of carbon dioxide which is manifested in 6J is not 

present in the dimensionless group F/Z^. The large quadrupole 
moment of carbon dioxide probably causes this deviation.

In attempting to modify the F/Z^ to obtain better 

agreement between the normal paraffins and carbon dioxide, 

the author found that if F/Z^ is multiplied by the specific 

volume at the critical point and the product is plotted versus
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the acentric factor, the carbon dioxide point falls very- 

close to the curve drawn through the hydrocarbon points.

To preserve the excellent agreement and still keep 
dimensionless groups, a reduced critical density was defined

The methane density was chosen to reduce the other densities 
since, among the constituents of natural gas, methane comes 
closest to being a simple fluid.

In Figure V-?» the product of f/Z^ * l/d^ is plotted 

versus the acentric factor. Carbon dioxide lies very close 

to the line drawn through the hydrocarbon points. The 

relationship between these two dimensionless numbers may be 

approximated by

dj, • = 34.3 ̂ (A+2). (5-8)
F/Zc

This relationship suggests that the product of 

F/Zg * l/dj, might be a useful parameter for characterizing 
the constituents of natural gas. The critical properties 

making up this group are directly related to the microscopic 

properties. Figure V-7 further illustrates the relationship 

of the general parameters, such as the acentric factor, to 

the microscopic properties.

If one were dealing with a group of gases that deviated 
from simple fluid behavior because of either quantum effects, 
globular molecules, non-spherical molecules, or polar
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molecules, the selection of a microscopic parameter proposed 
to correct for one of these deviations would be appropriate. 
To obtain correspondence among the individual constituents 
of a group of gases where all of these causes of deviation 
were present would require a rather complex form of the PCS 
of the general form,

Z = P(Tr,Pr,W ' • ' > (5-9)

To maintain the PCS in as simple a form as possible 
it is more desirable to have a third parameter which is 
based on some bulk property influenced by several of the 
factors causing deviation. For this reason, the general 
third parameters have been used more frequently by those 
associated with the natural gas industry.

The fact that all of the general third parameters 
plot as nearly straight line functions of the acentric factor 
indicates that they could also be plotted as straight line 
functions of one another. The fact that this relationship 
exists between these parameters means that the selection of 
one over the other would be strictly arbitrary. It should be 
remembered that the gases used to prepare the figures pre­
sented in this section were predominantly the normal paraffin 
constituents of natural gas. The relationships obtained 
should not be indiscriminately extended to all gases.

In Chapter III the use of Rj', Z^', andĉ j ' to charac­
terize mixtures was discussed. One of the objections to the
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use of Zçj ' or (?) * as a third parameter has been that there is 
no theoretical justification for Equations (3-8) or (3-9).
It has been shown for the normal paraffins that molecular 
refraction is an additive property and Equation (3-7) will 
hold. If molecular refraction is an additive property and 
it is linearly related to and iw , it follows that for the
normal paraffins, Z^ and U) must also be additive properties 

and Equations (3-8) and (3-9) should hold. The extent to 
which the additive rule is applicable for components such as 
carbon dioxide or hydrogen sulfide has as yet not been estab­
lished. Pitzer and Hultgren (4l) have been able to predict 

an empirically determined w ' for several carbon dioxide- 

hydrocarbon binaries by equation (3-9).

Pitzer’s acentric factor was arbitrarily chosen as 

the third parameter to be used in this study. The use of 

Pitzer’s acentric factor avoids the difficulty of selecting 

a reference substance. The fact that molecular refraction 

is a linear function of the acentric factor will enable one 

to convert the molecular refraction of the Cy+ fraction to 

an acentric factor so the necessity of separating the frac­

tion may still be avoided. The degree of success with which 

the acentric factor has been utilized in the past affected 

this decision but the ease with which the compressibility 

charts of Pitzer can be used also made it attractive. The 

simplicity and ease with which a generalized correlation such 

as that of Standing and Katz (63) may be applied, requires 

that any prediction technique adopted by the engineer be of
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comparable simplicity while giving an increased reliability 

in the prediction of the compressibility factor.

To make use of the acentric factor for the calculation 

of mixture compressibility factors requires calculation of 

the mixture acentric factor from

. (ju * = £ y jL-Cü'i (5-10)

and calculation of the pseudocritical constants with combina­

tion rules such as were discussed in Chapter III. With 
values of the pseudocritical constants and the temperature 

and pressure, the reduced temperature and pressure can be

calculated so that Z° and Z' can be read from Figures II-3
and II-4. The compressibility factor may then be calculated 

from
Z = Z° +iW'Z' . (5-11)



CHAPTER VI

A TEST OF PSEUDOCRITICAL COMBINATION RULES

With the selection of the mixture acentric factor as 

the third parameter to be used to characterize mixtures, the 

remaining problem is to determine which of the combination 

rules for determining pseudocritical ccnstants is the mcst 

applicable for natural gas mixtures. From the discussion of 
the available pseudocritical constant prediction techniques, 

it is apparent that a large number of methods are available. 

Some of these techniques have a stronger theoretical basis 
than others, but it was necessary to make simplifying assump­

tions in the derivation of all of them. It is impossible to 

select one of these rules over the others on a strictly 

theoretical basis. The selection must be based on the appli­

cability of the combination rule for predicting reliable 

compressibility factors of mixtures characteristic of the 

system being studied. The purpose of this chapter is to 

compare the results obtained when some of these rules are 

used in conjunction with Pitzer’s acentric factor tables on 

binary mixtures.

100
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A . A Preliminary Investigation 
of Binary Mixtures

Nine different binary mixtures made up of components 

found in natural gas were studied. These binaries along 

with the source of the experimental compressibility data are 

listed in the following table:

TABLE 3-1

SOURCE OF EXPERIMENTAL DATA 
Binary REFERENCE NUMBER

CH4 -CO2 47

C2 H5 -CO2  58

C3H8-CO2 58
nC^HiQ-COg 58

CHi^-HgS 58

CH^-CgHa 59

CH4 -C 3 H8  59

C H ^-nC ^H io  59

CHi^-nC^Hj^2 59

The equal molal mixture provides the severest test 

for any compressibility factor prediction technique. For 

this reason, equal molal mixtures were used for all but the 

CH/^-C02 system. For this system, a mixture containing 60.50 
mole per cent methane was used since experimental data for 

the equal molal mixture were not available.
For this comparison of pseudocritical combination
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rules, five of the simpler methods were used. It was felt 

that if a satisfying prediction could be made with one of 

the simpler rules, the procedure would have a much better 

chance of widespread use by the natural gas industry. The 

methods tested are as follows:
METHOD 1. Kay’s rule pseudocriticals

Tc' = 2 yiTci (6-1)

Pc' = 2 yiPci (6-2)

METHOD 2. Joffe's pseudocriticals

T c ’/ ( P c ’)^ = f YiTci/CPci)^ (6-3)

T c ’/Po' = n  (6-4)

METHOD 3. Stewart, Burkhardt, and Voo’s pseudo­

criticals

•j . Tc'/P,' = 1/3(2 yi T^i/Pci) + 2/3CZ yi'Tcl/Pci)*]^

{6-5)

K = Tc'/(Pc')& = Z Yi Tci/(Pci)* (6-6)

Tg’ = K^/J (6-7)

Pe' = To'/J (6-8)
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METHOD 4. Satter's modified Leland and Muller's 

pseudocriticals

X  * =  c

(6-9)

1/a

Pc’ =
Tc’ YiZci

j-j- " ^c * c

(6 -10)
METHOD 5. Prausnitz and Gunn's simplified pseudo­

criticals

T c ’ = ; fiTci (6-11)

Pc’ = T
RTc'

f YiVci ir F ^i^ci (6 -12)

Hereafter, these pseudocritical constant prediction rules 

will be referred to by the indicated method numbers.

Compressibility factors for some of the mixtures were 

predicted using methods 1, 3» and 4 along with the acentric 

factor on an IBM 709O computer by the Continental Oil Company. 

The remainder were calculated on the University of Oklahoma's 

IBM 1620 Model II computer. The program used on the IBM 1620 
was tested by comparing results with those calculated on the
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IBM 7090 and by comparing calculated pure component compres­

sibilities with actual experimental data.
The average absolute deviation, maximum deviation, 

and point of maximum deviation that were obtained are tabu­

lated along with the ranges of pressure and temperature in 

Table 1 of Appendix E.

Examination of the results of this study indicate 

that when these pseudocritical constant rules were used 

with the acentric factor charts:

1. Methods 1 and 5 failed to adequately predict the 

pseudocriticals to be used with the acentric 

factor for the prediction of the compressibility 

factor.

2. Methods 2, 3, and 4 allowed prediction of the 

compressibility factor with comparable accuracy. 

Methods 2 and 3 were slightly superior.
3. None of the pseudocritical constant prediction 

techniques satisfactorily predicts pseudocritical 

constants for the binaries of carbon dioxide with 
ethane, propane, or n-butane.

4. For each of the pseudocritical constant prediction 

techniques, the largest deviations usually occur 

in the region of the pseudocritical pressure and 

temperature.

The fact that the largest deviations occurred in the 

critical region might be attributed to the fact that Pitzer's
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acentric factor charts are inconsistent in the critical 

region. The discussion that was presented in Chapter V of 

the plot of Zg versus £0 tends to support this notion. How­

ever, it is highly probable that the largest deviations 

would occur in this region regardless of what generalized 

plot is used. For temperatures near the critical tempera­

ture, the slope of Z versus is the greatest just to the 

left of the curve's minimum. To the left of the minimum is 
the region of the critical pressure. Due to the large slope, 
missing the experimental curve only slightly will result in 

a large error in the compressibility factor.
Of the methods used to predict the pseudocritical 

constants, methods 2 and 3 were found to be the most appli­

cable for predicting the compressibility factor for the 

hydrocarbon binaries. The average absolute deviation for 

method 3» the rules of Stewart, Burkhardt, and Vbo, was 1.0 

per cent. Using method 2, Joffe's rules, the deviation was 

only slightly larger. Neither of these methods adequately 

predicted the hydrocarbon carbon dioxide binaries.

Using method 3, compressibility factors were deter­

mined for several other hydrocarbon - carbon dioxide bi­

naries. The composition of these mixtures are listed in 

Figure VI-1. where the per cent deviations are plotted versus 

the reduced temperatures. Since the reduced pressure ranges 
at which the points were determined were not the same, the 
deviations for the propane and n-butane binaries are
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relatively lower than they would be if the deviations were 

compared on an equal reduced pressure basis. This figure 

indicates that when method 3 is used with Pitzer’s tables 
for hydrocarbon - carbon dioxide mixtures, the deviation 

that may be expected is a function of both the percentage 

carbon dioxide and what hydrocarbon is in the mixture.

B. ■Thé Graphical Determination of 
Pseudocritical Constants

To determine what pseudocritical constants should be 

used for the nine binaries considered in this chapter, an 

empirical method of determining the pseudocritical constants 

was devised. The procedure employed was slightly different 

than that employed by Kay, but the basic idea was the same. 

The pseudocritical temperature controls the location of an 

isotherm on a Z versus P^ plot in a vertical direction, arid 

the pseudocritical pressure controls its spread in a hori­

zontal direction. If a pseudocritical temperature can be 

obtained which allows a predicted minimum Z value to match 

the experimental minimum Z, for a given isotherm, then the 

isotherm should be located in a vertical direction. If the 

high pressure part of the predicted isotherm can be made to 
match the high pressure part of the experimental data by 

proper selection of the pseudocritical pressure then the 

horizontal spread should be established.

Since both the experimental and predicted isotherm 

must have a value of 1.0 at zero pressure, proper selection
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of the pseudocritical constants should give considerable 

control over the shape of a particular isotherm. In Figure 

VI-2, both the experimental and predicted curves must begin 

at a 2 value of 1.0, both must be tangent to line B - C, and 

both curves must coincide with line D - E. If the acentric 
factor satisfactorily predicts the shape of the dotted por­

tion of the curve, then satisfactory agreement between the 
predicted and experimental curves should be obtained.

The procedure employed to determine the pseudocritical 

constants may be summarized as follows:

1. Pseudocritical temperature

a. Calculate a mixture acentric factor from

b. Read the minimum value of Z° for each Tj, in 

Pitzer's acentric factor tables.

c. Read a value of Z' at the and P̂ , corres­

ponding to the minimum Z° values.

d. Calculate a Z minimum from

Z m l n  = Z ° m i n  + “ 'Z' •

e. Plot Z^^^ versus the corresponding .

f. Read the minimum value of Z for the mixture 
being studied for several isotherms of the 

experimental data.
g . For each isotherm, locate the experimental 

minimum Z value on the plot discussed in
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step 0. Record the corresponding value.

h. By knowing the temperature of the experimental 

isotherm and the reduced temperature at which 

the minimum Z was found, the pseudocritical 

temperature may be calculated from

T * = T/t . (6-15)c ' r

2. Pseudocritical pressure

a. Plot the experimental compressibility factors, 

for an isotherm of the mixture being studied, 

versus pressure.

b. With the graphically determined pseudocritical 

temperature, calculate a reduced temperature 

for the isotherm.

c. Using w* of the mixture, the calculated re­

duced temperature, and Pitzer's charts, 
calculate a compressibility factor for several 

of the larger values of Pj, compatible with 

the experimental data.

d. Locate the compressibility factor for the 

largest value of P^ on the plot discussed in 

step a and record the corresponding pressure.

e. With the value of P^ and the pressure read 

from the plot, a value of the pseudocritical 

pressure may be calculated from

Pc’ = P/Pj. . (6-16)
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f. Using this value of P^', calculate the pres­

sure corresponding to the other values of 

and plot the compressibility factors for 

these pressures. If they do not agree with 

the experimental curve, adjust the pseudo­

critical pressure to obtain the best agree­

ment for all of the points.

To illustrate the procedure, the plot discussed under 

1 - e for the fifty per cent CgHg in a C^Hg - CO2 system is 

plotted in Figure VI-3» For this system Uk)' = 0.1885. The 

experimental data (59) gives a minimum value of the Z of the 

160° F,isotherm as 0.337^* When this point is located on 

the curve, the corresponding value of the reduced temperature 

is 1.062. From the temperature of the isotherm, l60° F., and 

the reduced temperature, I.062, the pseudocritical tempera­

ture calculates to be 583.8° R. The average value of the 
pseudocritical temperature obtained from six isotherms was

584.5° R.
The experimental data of the l60° F,isotherm for this 

system is plotted in Figure VI-4. Using the average value 

of 584.5° R for the pseudocritical temperature and an acentric 

factor of 0.1885, compressibility factors for values of 

of 6.0, 7.0, 8.0 and 9.0 were calculated. The compressibility 

factor for of 9.0 was I.O87. When this value is located 

on the experimental curve, a corresponding pressure of 6,500 
psia may be read. Since a reduced pressure of 9.0 corresponds
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to a pressure of 6,500 psia, the pseudocritical pressure 

must be 722.2 psia. Using this value of the pseudocritical 

pressure, pressures corresponding to reduced pressures of
6.0, 7.0 and 8.0 were calculated and the compressibility 

factors were plotted on the figure. The points agree quite 

well with the experimental isotherm indicating that a 

pseudocritical pressure of 722.2 psia and a pseudocritical 
temperature of 584.5° R.will allow this portion of the iso­

therm to be predicted. The average pseudocritical pressure 

obtained for four different isotherms was 722.0 psia.

The results of the graphical determination of the 

pseudocritical constants are tabulated in Table 2 of Appendix 

E. The results for the hydrocarbon - carbon dioxide binaries 

are shown in Figures VI-5 through VI-8.

The selection of the isotherm to be used for a parti­

cular binary was arbitrary. There was a small variation 

with temperature in the determined constants. For this 

reason, the pseudocritical constants for several isotherms 

were averaged to obtain the values listed in Table C-2.

Since the experimental data for the methane-ethane system 

only went to 3,000 psia and since the fluctuation of pseudo­

critical constants with temperature was the most pronounced 
for this system, the listed pseudocriticals for this system 
are not as reliable as the others.

A comparison of the graphically determined pseudo­

critical constants with those calculated from Kay's rule
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reveals that for all of the hydrocarbon - carbon dioxide and 

the hydrocarbon - hydrogen sulfide binaries, the pseudo- 

critical temperatures and pressures fall below those calcu­

lated with Kay’s rule. For the hydrocarbon - hydrocarbon 

binaries, the pseudocritical constants lie above those pre­

dicted by Kay’s rule. Pitzer and Hultgren (4l) postulated 

that in the case of the hydrocarbon - hydrocarbon binaries, 

where the principle intermolecular attractive force is the 

London force between C - H bonding electrons, the positive 

deviation above an arithmetic average is due to the dif­

ference in the molecular size. For those binaries contain­

ing carbon dioxide or hydrogen sulfide, the negative 

deviation was postulated to be due to the fact that one 

component of the attractive force between unlike molecules 

is smaller than that for like molecules. Quadrupole forces 

are significant for the interaction of carbon dioxide 

molecules but are absent between carbon dioxide and hydro­

carbon molecules. Dipole-dipole forces are important between 
hydrogen sulfide molecules but are absent between the hydrogen 

sulfide - hydrocarbon molecules.
The results of predicting the compressibility factors 

for the nine binary mixtures of Section A of this chapter 

using the empirically determined pseudocriticals are presented
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in Table 1 of Appendix E. The average absolute deviations 

for the hydrocarbon - carbon dioxide and hydrocarbon - 

hydrogen sulfide system are considerably less than those 

predicted with any of the pseudocritical constant rules.



CHAPTER VII 

PSEUDOCRITICAL CONSTANTS FOR NATURAL GAS

A basic requirement of any combination rule is that 

it must be able to account for not only the forces operating 

between similar molecules but also those between dissimilar 

molecules, The fact that some of the mixing rules are satis­

factory for the prediction of the pseudocritical constants 

for hydrocarbon binaries is indicative that the methods of 

combining the pure component properties satisfactorily ac­
count for the forces between dissimilar hydrocarbon mole­

cules. The principle forces to be considered between 

hydrocarbon molecules are London dispersion forces, but 

between two carbon dioxide molecules, the quadrupole force 

must also be considered. Between a hydrocarbon and a carbon 

dioxide molecule, this quadrupole force is not present. The 

failure of the mixing rules to predict the pseudocritical 

constants for hydrocarbon - carbon dioxide binaries is indi­

cative that the methods of combining the pure component 

properties do not allow for the alteration in the inter­

molecular forces for this type of system.

One possible method for arriving at the pseudocritical

1 21
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combination rule satisfactory for hydrocarbon - carbon 
dioxide systems would be to alter the rules for combining 
pure component constants to obtain constants for the mixtures. 
For example, the methods that Joffe used to combine the pure 
component a and b to arrive at the a' and b' of the mixture 
could be altered to obtain a rule that worked better for the 
hydrocarbon - carbon dioxide systems. From our present state 
of knowledge, this would of necessity have to be done empir­
ically.

Rather than alter the basic rule for each system, the 
author chose a somewhat different approach in this study.
In working with natural gas, one is ordinarily only dealing 
with the normal paraffins. Occasionally, the engineer must 
also be concerned with the presence of a diluent such as 
carbon dioxide. The following paragraphs discuss how the 
pseudocritical constants, obtained from a combination rule 
which satisfactorily predicts the constants for the ordinary 
system, may be modified to account for the presence of a 
diluent such as carbon dioxide.

It was found in the previous chapter that method 3» 
the rules of Stewart, Burkhardt, and Voo satisfactorily 
predicted the pseudocritical constants for hydrocarbon 
binaries, but failed to adequately predict them for hydro­
carbon - carbon dioxide binaries. This suggests that method 
3, along With the acentric factor, may be used to predict 
the compressibility factor for natural gases containing only
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hydrocarbons, but that method 3 would have to be modified 

in some way to be used for natural gases containing carbon 

dioxide.
Figure VI-1 shows that the deviations between the 

predicted and experimental compressibility factors for 

hydrocarbon - carbon dioxide binaries are dependent on both 

the carbon dioxide content and what hydrocarbon is in the 

mixture. In Figure VII-1, the difference between the pseudo­

critical constants of method 3 and those graphically deter­

mined is plotted versus the mole fraction of carbon dioxide 

in the mixture. It may be seen that this difference is also 

dependent upon the percentage carbon dioxide and what hydro­

carbons are in the mixture.

Using Figure VII-1, a reliable prediction of the com­

pressibility factor for hydrocarbon - carbon dioxide binaries 

could be made. The pseudocritical temperature could be cal­

culated with method 3 and then adjusted by subtracting the 

difference between the calculated and graphically determined 

pseudocritical temperatures for the appropriate binary.
Since, in method 3, the pseudocritical pressure is calculated 

from the pseudocritical temperature, an adjusted pseudo­

critical pressure could also be obtained.
While this scheme is possible for binaries of carbon 

dioxide with methane, ethane, propane, or n-butane, it would 

not be possible for mixtures containing more than one hydro­

carbon since the graphically determined pseudocritical
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constants would not be available. It is possible to obtain 

the adjusting factor for the pseudocritical temperature of 

method 3 by treating the multi-component mixture of hydro­

carbons and carbon dioxide as a binary of one hydrocarbon 

and carbon dioxide. This requires a characterization of the 

hydrocarbon present so that the appropriate binary may be 

used to obtain the adjusting factor.

In extending the use of the acentric factor to multi- 
component mixtures, it was assumed that the mixture may be 

characterized by a mixture acentric factor determined from

w' = Z y^Wi (7-1)

Since this extension worked well for hydrocarbon mixtures, 

it should be possible to characterize the hydrocarbons in 

the mixtures of hydrocarbons and carbon dioxide by a mixture 

acentric factor.

The difference between the pseudocritical temperatures 

determined from method 3 and those graphically determined 

results from the fact that the method used to combine pure 

component constants failed to properly account for the 

variation of the multipole component of the attractive 

forces. This difference will hereafter be referred to as 

the multipole factor» To indicate that it is a correction in 

the pseudocritical temperature, the symbol 'p will hereafter 

be used to designate this factor. When of Figure VII-1 is 
cross plotted versus the hydrocarbon acentric factor with 
the percentage carbon dioxide as a parameter. Figures VII-2
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and VII-3 are obtained. These figures may be used for multi- 

component mixtures by calculating the hydrocarbon mixture 

acentric factor, »J* , and reading ^  for the appropriate 

percentage of carbon dioxide.
The procedure for predicting the compressibility 

factor for natural gases containing carbon dioxide would then 

be as follows:
1. Calculate T^' and ' from

j  = T g ' / P ^ '  = 1 / 3( 1: y + 2 / 3 [ i :  y ( p “ ) " ]  ( 7 . 2)

1k = = Z ?! Tci/IPcll' (7-3)
T ' = k^/j (7-4)c

Pp* = Tc'/J . (7-5)

2. Determine the hydrocarbon mixture acentric factor

from

w he = ? Yi^j/Z Yj (7-6)

where the summations are for all hydrocarbon 

constituents,

3 . Read 'Y from Figure VII-2 for the appropriate 
hydrocarbon acentric factor and percentage carbon 

dioxide.
4. Calculate the adjusted pseudocritical constants 

from
Tg" = Tc' - y  (7-7)
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Pc" = Pc’ ' (Tc '-''")/Tc ' • (7-8)

5| Find the total mixture acentric factor from

W  = Z (7-9)

where the summation is now taken over all com­

ponents .

6. For the temperature and pressure of the system, 

calculate reduced constants from

Tj. = T/Tg" (7-10)

Pj, = P/Pc" • (7-11)
7. With the reduced pseudocritical constants and the 

mixture acentric factor, values of Z° and Z ’ may 

be read from Pitzer's graphs or tables and the 

compressibility factor calculated from

Z = Z° +. W'Z' . (7-12)

Another diluent of natural gas which causes a dif­

ficulty in the prediction of the compressibility factor is 

hydrogen sulfide. The multipole causing the difficulty in 

this case is the dipole of hydrogen sulfide. It would be

desirable to have figures similar to Figures VII-2 and VII-3

to make a correction for the presence of hydrogen sulfide. 

Experimental data for hydrocarbon - hydrogen sulfide binaries 

are not available for enough mixtures to prepare similar 

plots.
When the difference between the graphically determined
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pseudocritical temperature and that calculated by method 3 

for the methane-hydrogen sulfide mixture is compared with 

the difference for the methane-carbon dioxide mixture, one 

finds that the difference has the same sign but is slightly 

larger for the methane-hydrogen sulfide mixture. This indi­

cates that the pseudocritical temperature for hydrocarbon - 
hydrogen sulfide mixtures could be improved by using the 

same multipole factor as that obtained for the hydrocarbon • 

dioxide mixtures.



CHAPTER VIII

THE COMPRESSIBILITY FACTOR PREDICTION FOR SYSTEMS 

CONTAINING CARBON DIOXIDE OR HYDROGEN SULFIDE

To provide a test of the ideas presented in Chapter 

VIC,the compressibility factors for ten multicomponent mix­

tures were determined by the proposed procedures. Five of 

the systems contained hydrocarbons and carbon dioxide and 

the other five contained hydrocarbons and hydrogen sulfide. 

The experimental compressibility factors for the hydro­

carbon - carbon dioxide systems were determined in this 

study. The hydrocarbon - hydrogen sulfide data were deter­
mined by Satter (6l). The analyses for these systems are 

given in Table 1 and 3 of Appendix F, Using the acentric 

factor tables and pseudocritical constants calculated by 

method 3 and adjusted with the multipole factor, ^  , the 

average absolute deviation from experimental data for 270 

points was O.éO per cent. The maximum deviation was -2.27 

per cent with only two points deviating by more than two 

per cent.

By using the acentric factor as a third parameter 

and pseudocritical constants predicted by method 3» it was

1 3 0
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possible to predict the compressibility factor of the hydro­

carbon - carbon dioxide systems experimentally determined 

for this study with an average absolute deviation of 0.92 

per cent and a maximum deviation of -3.62 per cent. The 

results of comparing experimental and predicted compres­

sibility factors indicate that carbon dioxide will not cause 

large deviations when the ethane and heavier hydrocarbons 
are at a low concentration and the carbon dioxide content 

is less than twenty per cent. Mixture 3 containing 20.16 
per cent carbon dioxide and U>."jUf per cent ethane showed an 

average absolute deviation of 1.22 per cent. With comparable 

ethane contents but lower carbon dioxide contents, the 

deviations for Mixtures 1 and 2 were considerably lower. 

Mixture 4, with a carbon dioxide content comparable to that 

of Mixture 2 but with the hydrocarbons heavier than methane 

raised to 13.16 per cent, showed a slightly larger deviation. 

Mixture 5, containing 28.6? per cent ethane and 12.92 per 

cent carbon dioxide, showed the largest deviation of any of 

the mixtures. The average absolute deviation in this case 

was 1.83 per cent with a maximum deviation of -3.62 per cent;

The compressibility factors for the hydrocarbon - 

carbon dioxide mixtures of this study were also predicted 
using method 3 pseudocritical constants adjusted with the 

multipole factor. Using V  » the average absolute deviation 
was reduced to 0.55 per cent and the maximum deviation was 

reduced to -2.27 per cent.
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The multipole factor for all the systems of this 

study was small. The maximum ^  for the five mixtures was 

4.0° for Mixture 5. Because of the small 'V corrections, 

the compressibility factors predicted with and without the 

multipole factor were comparable. Except for Mixture 1, 

where both methods satisfactorily predicted the compres­

sibility factor, the use of the multipole factor always 

improved the compressibility factor prediction.

For the five mixtures of methane, ethane, and hydro­

gen sulfide, the compressibility factors were predicted, by 

method 3 and the acentric factor, with an average absolute 

deviation of 0.94 per cent and a maximum deviation of -3.63 

per cent. By using the y  correction that was based on 

carbon dioxide data, the average absolute deviation was 

reduced to 0.68 per cent and the maximum deviation was reduced 

to -1.95 per cent.
The discussion that was presented for the carbon 

dioxide - hydrocarbon systems is also applicable for this 
type of system. That is, hydrogen sulfide presents no real 

difficulty in the prediction of compressibility factors using 

method 3 and the acentric factor unless the components heavier 

than methane are appreciable or the hydrogen sulfide content 

is above twenty per cent. Although the multipole factor 

improved the prediction for every mixture, the compressibility 

factors predicted when 'Y was not used did not deviate greatly 

from the experimental data.
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A summary of the results of comparing predicted and 

experimental compressibilities for this system is presented 

in Table 4 of Appendix F. Example calculations for the 

hydrocarbon - carbon dioxide systems are presented in 

Appendix D.

The result of the comparisons between the predicted 

and experimental compressibility factors for the ten mixtures 

discussed above attests to the reliability of using the 

acentric factor as a third parameter for characterizing 

natural gas systems. For the systems studied, the pseudo­

critical constants calculated with the rules of Stewart, 

Burkhardt, and Voo are satisfactory but the agreement with 

experimental data can be improved by adjusting these con­

stants with the multipole factor.



CHAPTER IX 

CONCLUSIONS

As a result of this study it has been possible to 

develop a multipole factor that provides a simple means of 

better characterizing the complex microscopic parameters 

governing the behavior of lean natural gas-carbon dioxide 

mixtures. It has also been concluded that:

1. The use of microscopic parameters to easily 

characterize the behavior of non-spherical, 

globular, or polar gas molecules is impractical 

with gas mixtures when more than one of these 

factors are causing the non-ideal fluid behavior. 

For natural gases, it is far more practical to 

use a third parameter (based on some bulk prop­

erty) in which all of the causes of non-ideal 

fluid behavior are manifest.

2. For the constituents of natural gas, a nearly 
linear relationship exists between the general 

parameters that have been proposed to account for 

deviations from the Principle of Corresponding 

States. Because of this relationship, the

134
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selection of one parameter over another is rather 

arbitrary.

3. The third parameter proposed by Pitzer, the 

acentric factor, is a suitable third parameter 

for such mixtures and is therefore used in this 

work. If the pseudocritical constants are ade­

quately predicted, the acentric factor tables 

will provide a reliable prediction of the com­

pressibility factor.

4. The selection of a set of pseudocritical constant 

prediction rules cannot be made on a theoretical 

basis. This selection must be made by testing 

the rules on mixtures that are typical of the 

system under study.

5. When the pseudocritical constants are determined 
with the rules of Stewart, Burkhardt and Voo, 

the deviations which may be expected between the 

experimental and predicted compressibility factors 

for hydrocarbon - carbon dioxide systems are de­

pendent on both the carbon dioxide content and 

what hydrocarbons are in the mixture.

6. When the pseudocritical constants of Stewart, 

Burkhardt, and Voo are adjusted with the multi­

pole factor determined in this study, improved 

compressibility factors for hydrocarbon - carbon
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dioxide mixtures are obtained,

7. While the multipole factor was determined from 

binary data of hydrocarbon - carbon dioxide 

systems, it may be used for hydrocarbon - hydro­

gen sulfide systems. When it is used for such 

systems, the deviation between predicted and 

experimental compressibility factors is reduced.
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TABLE A - I 

NOMENCLATURES

a = Constant in equations of state of pure gases

a ’ = Constant in equations of state of mixtures

a^ = Radius of a molecule
a^ = Reduced molecular radius

b = Constant in equations of state of pure gases

b* = Constant in equations of state of mixtures

B(T) = Second virial coefficient

c = A positive constant

C(T) = Third virial coefficient

°C = Degrees Centigrade

d = Density

dg = Critical density

dj. = Reduced density (Equation 5-7)

F = Dimensionless molecular parameter

°F = Degrees Faranheit

f( ) = A universal function
fĵ ( ) = Denotes a function dependent on k

f^( ) = Denotes a function dependent on -0
g( ) = Function describing angular dependence of the inter­

action of two dipoles 

h = Plank’s constant
i = Subscript denoting ith component

J = Tc'/Pc* (Equation 6-5)
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j = Subscript denoting jth component
K = Tc'/(Pc')^ (Equation 6-6)
°K = Degrees Kelvin
k = Boltzman’s constant
L = Distance between force centers of a molecule
Lj, = Dimensionless distance between force centers

(Equation 2-46)
Lq = Length of a molecule
L ’ = Sum of the bond lengths in the longest molecular

chain
M = Molecular weight
M q = Mean curvature of a molecule
m = Mass of a molecule
N = Number of molecules in a system

= Avogadro's Number 
n = Number of components in a system
n^ = Moles of gas

= Number of free centers of a molecule 
n^ = Refractive index
P = Absolute pressure
P* = Reduced pressure (Equation 2-15)

P = Critical pressurec ^
Pj, = Reduced pressure (Equation 2-6)

Pg' = Pseudocritical pressure
Pj,° = Reduced vapor pressure
Q = Quadrupole moment
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= Reduced quadrupole moment (Equation 2-53)

Q' = Quantum deviation parameter (Equation 2-33)

R = Universal Gas constant

Rj = Molecular refraction of a pure gas

R(j ’ = Molecular refraction of a mixture

°R = Degrees Rankine

r = Distance between two molecules
r* = A parameter in pseudocritical temperature equation

(Equation 3-91)
Sq = Surface area of a molecule
s = A parameter in pseudocritical temperature equation

(Equation 3-91)

T = Absolute temperature

T* = Reduced temperature (Equation 2-17)

Tg = Critical temperature

Tj, = Reduced temperature (Equation 2-5)

T g ' = Pseudocritical temperature

T g '* = Corrected Pseudocritical temperature (Equation 7-7)

U = Potential energy

Uq = Maximum negative potential energy

V = Total volume

V = Specific molal volume

V* = Reduced volume (Equation 2-l6)

= Critical specific molal volume 

Vj, = Reduced volume (Equation 2-7)
Vq = Volume of Kihara's Molecular Core
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V = Volume of mercury relative to volume at 60°F

X = Denotes third parameter in PCS

y = Mole fraction

Z = Compressibility factor

Z° = Compressibility factor of a substance with zero

acentric factor

Z ’ = Slope of the compressibility factor versus acentric
factor curve at a given reduced temperature and 

pressure

Zg = Critical compressibility factor of a pure gas

Zq ' = Critical compressibility factor of a mixture

a = Empirical exponent (Equation 3-67)

ttjç = Riedel's third parameter (Equation 2-63)

6 = Compressibility of mercury

° = Rowlinson*s third parameter (Equation 2-6l)

Ê. = Parameter in intermolecular function. It is the

maximum energy of interaction 

^  ~ Maximum energy of interaction of classical mole­

cules
^  q = Maximum energy of interaction of quantum molecules

0(r) = Intermolecular potential function
^ = Ratio of quantum to classical collision diameters

cubed

 ̂ = Azimuthal angle

-A. = Quantum third parameter

J\_* = Reduced quantum third parameter (Equation 2-29)
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J. = Reduced quantum third parameter (Equation 2-27)

|i = Dipole moment

Pj. = Reduced dipole moment (Equation 2-50)

iw = Pitzer's acentric factor for a pure gas

W  = Acentric factor for a mixture

*̂ hc ~ Acentric factor for the hydrocarbons in a mixture

p = Shortest distance between molecular cores

pQ = Shortest distance between molecular cores at the

energy minimum 
= Parameter in the intermolecular potential function, 

It is the collision diameter for two molecules 

with negligible kinetic energy 

^^cl “ Collision diameter for classical molecules
= Collision diameter for quantum molecules 

0 = Ratio of quantutp to classical energies of inter-^ •

action

a = Angle which dipoles make with the axis connecting

them

9k = Arbitrary exponent (Equation 3-?6)

^  = Multipole factor. A correction to the pseudo­

critical temperature (Equation 7-7)
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TABLE B-1

PHYSICAL CONSTANTS

Component
Molecular

Weight
Critical

Temperature
Of ,

Critical
Pressure

Psia

Critical
Volume
ft3/lb

CH4 16,042 -116.5 673.1 0.0993

C2H6 30.068 +90.09 708.3 0.0787
44,094 206.26 617.4 0.0730

58.120 305.62 550.7 0.0704

n 2 72,146 385.92 489.5 0.0690

CgHlk 86.172 454.5 439.7 0.0685

C7H16 100.198 512.62 396.9 0.0682

^8^18 114.224 565.2 362.1 0.0682

C9H20 128.250 613 345 0.0673

C10H22 142,276 655 320 0.0671

COg 44.010 88.0 1073 0.0348

HgS 34.076 212.7 1306



TABLE B-2

THIRD PARAMETERS

Component %c 60 °k *d l / ^ F F/Zc
CHq. 0.290 .013 5.86 6.54 0 .0 ,096 .33

0.285 .105 .05 6.28 11.425 0.19 .048 .17

C^Hg 0.277 .152 .08 6.54 16.245 0.25 .033 .12

"C4H10 0.274 .201 .11 6.77 20.64 0.39 .024 .09

nC^Hi2 0.269 .252 .13 7.03 25.286 .019 .07
0.264 .290 7,27 29.928 .016 .06

"^7^16 0.260 .352 7.53 34.565 .014 .054

nCgHig 0.256 .399 7.76 39.209 .012 .047

nC^Hgo .444 43.842 .010 .04

"^10^22 0.247 .487 8.18 48.503 .090 . o4

COg 0.275 .225 .10 6.92 0.29 .046 .17

HgS 0.284 .100 6.25 .047 .16

fMD



APPENDIX C 

CALIBRATION AND CORRECTION DATA

15 0



151 
TABLE C-1

COMPRESSIBILITY AND RELATIVE VOLUME OF MERCURY 

VOLUMES ARE RELATIVE TO VOLUME AT 60° F

Temperature Compressibility Relative Volume
OF. 0 X 107

(Vol/Vol Psi) V

6o 2 . 7 2 1.000000
70 2 . 7 5 1.001009
80 2.78 1 . 0 0 2 0 1 8

90 2.81 1.003028
100 2 . 8 4 1 . 0 0 4 0 3 8

110 2 . 8 7 1.005049

120 2.90 1.006060

130 2 . 9 3 1.007072

l4 o 2.96 1 . 0 0 8 0 8 4

150 3.00 1.009097

i6o 3.03 1.010110

170 3.06 1 . 0 1 1 1 2 4
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FIGURE C-1. HIGH PRESSURE CELL VOLUME AS A
FUNCTION OF TEMPERATURE AND PRESSURE
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TABLE D-1

SAMPLE CALCULATION FOR PREPARING MIXTURES

Mixture 1
Desired Concentration 

Component Mole Fraction

1. Methane 0.90

2. Ethane 0.05

3. Carbon Dioxide 0.05

The cell is initially filled with component 1.

Temperature of P-V-T cell = 100° F,

Room temperature = 77° F,

Volume of P-V-T cell at 3,000 psig
(from Figure C-1) = 510.^30 cc.

Volume of Mercury in the cell at

3,000 psig and 77° F. = 4o4.670 cc.
(read on pump)

Calculation of the volume of component 1 at 3,000

psig and 100° F.

V = V , , - Vgas cell mercury

Vmsrcury = '̂ 2 = Vj [( 1+30009 ̂ l(^)( 1-SOOOS^ ) ]

Values for 8 and v are read from Table C-1.

The subscripts 1 and 2 refer to 77 and 100° F. respec­

tively .
V = V,(1.002197) = ^05.559 cc.mercury J-

Vgas = 510.430-405.559 = 104.871 cc.
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TABLE D-1--CONTINUED 

Calculation of total moles and moles of each component 

at 3,000 psig and 100° F,

(from Ref. = 0.@562

Nĵ  = PV/ZRT = .9884 g. moles 

Nf = N^/O.90 = 1.098 g . moles 

Ng = N3 = 0.05(1.098) = 0.0549 g. moles 

Calculation of volumes of components 2 and 3 to be 

injected at 2,000 psig and 77° F.

Zg(from Ref. = 0.4X0

Z3(from Ref. = 0.293 

«comp.2 = 2KKT/P = 4.01 cc.
«comp. 3 = %W*T/P = 2.86 cc.
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TABLE D-2

SAMPLE CALCULATION OF COMPRESSIBILITY FACTORS 

FROM EXPERIMENTAL DATA

Mixture 3
Temperature of P-V-T cell = 100° F.

Room temperature = 77° F,

Heise Gauge Pressure = 1000 psig

Barometeric Pressure = l4.2 psia

Pressure correction due to head of mercury between 

cell and gauge = 12 psi

Absolute Pressure in cell = 1026.2 psia 

Volume of P-V-T cell at 1,000 psig and 100° F (from 

Figure C-1) = 510.290 cc.

Volume of mercury in the P-V-T cell at 3,000 psig 

and 77° F.(read from

pump) = 13^.8T5 c c .

Calculation of gas volume at 1,000 psig and 100° F .

V = V , - Vgas cell mercury

^mercury = '̂ 2 ' V,[( 1+PiBi )(^>1-P2B2 ) ]

where P^ = 3,000 psig 

Ti = 77° F.

8l = 2.77 X 10"?

= 1.001715
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TABLE D-2--CONTINUED

Pg = 1,000 psig

Tg = 100° F

@2 = 2.84 X 10-7

Vg = 1.004038
V = 134.875(1.002767) = 135.248 cc,mercury
Vgas = 375.042 cc.

Calculation of moles of gas in sample

Temperature of low pressure system = 100° F.

Volume of gas burette = 997.34 cc.

Volume of steel expansion cell + lines = 250.0 cc. 

Volume of gas in put cell @ atm. pressure and 

100° F. = 216.33 cc.
Number of expansions into gas burette = 31 

Total volume of gas at 100° F.and atmospheric

Pressure = 31(997.34) + 250.0 + 216.33 = 31,204.68 cc.

Pressure of gas(atmospheric .

pressure) = 737.05 mm of Hg,

N = PV/rT = I.I86I g. moles 

Calculation of the compressibility factor 

T = 100° F. = 310.94° K.

P = 1026.2 psia - 69.83 atm.

V = 375.042 cc.

N = 1.1861

R = 82.055 cc. atm./° K g mole 
z = pv/nrt = 0.8652
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TABLE D-3

A SAMPLE CALCULATION USING THE PROPOSED 

PROCEDURE FOR PREDICTING 

COMPRESSIBILITY FACTORS

Mixture 5 

Component Mole Fraction ÜU Tc, °R. Pg, psia

CH4 0 .5841 0.013 343.3 673

C2H6 0.2867 0.105 549.7 708

C3H8 0.1292 0.225 547.6 1071

Pressure = 5026 psia

Temperature = 130° F.

Experimental Z = 0.9209

Calculation of Z without correcting for CO2

u)' = 0 .0668

J = T^'/Pc' =

K = Tc'/|Pc'|: = f Pi Tci/Pcl

T^’ = K^/J = 4-29.1° R.

Pc' = T^'/J = 736.2 psia 

Tj. = T/Tc* = 589.6/429.1 = 1.374
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TABLE D-3--CONTINUED

Pr = P/Pc' = 5026/736.2 = 6.827

From Figures III-3 and III-4 or interpolated from 

Pitzer's acentric factor tables

Zq = 0.904l

Z ' = o.obo

Z = Zq +iO) Z '

z = 0.9067
Calculation of Z using to correct for CO2

“ho = ? yj “ j/f yj 
(the = 0.0433

From Figure V-2

'V = 4° R,

T c " =  To' - 4.0 = 429.1 - 4.0

T " =  425.1° R. c

Pc" = Pc' X Tc ”/Tc '
P_" = 736.2 X = 729.3 psicc 429.1
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TABLE D-3--CONTINUED

From Figures III-3 and III-4 or interpolated from 

Pitzer's acentric factor tables

Zq = .9110
Z ' = 0.0^0

Z = Zq + 'Z'

z = 0.9137
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TABLE E-1

SUMMARY OF COMPRESSIBILITY FACTOR CALCULATIONS 

FOR BINARY MIXTURES

Binary Mole Frac. 
1st Comp.

Temp.
Range
°F,

Press. 
Range 
Psia

Number of 
Points

CH^ COg

CgH^ CO2

C3H8 CO2 

nCî Ĥ o CO2

CH^ HgS 

CULi, C2H5 

CH^ C3H 

CH^ nC^Hj^Q

0.6050

0.500

0.500

0.500

0.500

0.500

0.500

0.500

0.500

100-280

100-280

100-280

i6o-]4o

100-280

70-150

100-280

100-280

60-280

1,000- 
10,000
1,000-
9,000
1,000-
7,000
1,000-
7,000
1,000-

10,000
1,000- 
3,000
1,000-
8,000
1,500-
7,000
2 ,000-
5,000

56

i&0

32

31

20

35

25

12
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TABLE E-1--CONTINUED

METHOD 1 METHOD 2

A AD* MD**
%

PMD*** A AD* MD**
%

PMD***
Tr

1.89 -4.57 1.32 4.22 0.85 -2.63 1.34 4.28

7.90 -33.22 1.02 1.12 6.l4 -45.98 1.03 1.17

12.46 -37.51 1.02 1.18 9.02 -43.29 1.02 1.27

13.72 -20.64 0.94 1.23 8.61 -19.92 1.11 2.06

4.45 -17.16 1.10 2.02 1.63 -3.72 1.26 4.17

3.37 +5.50 1.32 2.90 2.44 +3.73 1.31 3.56

2.86 +9.68 1.23 2.33 0.62 +3.67 1.20 1.51

3.09 +13.55 1.23 2.45 0.51 +1.68 1.29 3.18

2.14 +8.52 1.24 3.44 0.83 -1.89 1.09 3.39

* Per cent average absolute deviation

** Per cent maximum deviation

*** Point of maximum deviation
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TABLE E-1--CONTINUED

METHOD 3 METHOD 4

AAD* MD** PMD***
% % Tr Pj

AAD*
%

MD**
%

PMD***

0.77 -2.43 1.34 4.27 l.?4 -4.62 1.32 4.21

6.25 -40.01 1.02 1.17 6.86 -43.73 1.02 1.17

9.37 -49.25 1.02 1.28 9.09 -52.91 1.00 1.26

8.52 -18,93 1.11 2.06 6.85 -26.79 1.09 2.02

1.88 -7.20 1.31 2.84 4.52 -7.22 1.13 2.07

2.40 +4.38 1.31 2.84 3,20 +3.94 1.31 2.83

0.62 +3.61 1.20 2.26 2.23 -3.?4 1.08 2.23

0.55 +1.93 1.18 2.38 2.96 -3.12 I.06 3.11

0.71 +3.34 0.90 6.78 3.10 -5.87 1.07 3.28
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TABLE E-1--CONTINUED

METHOD 5
USING GRAPHICALLY 
DETERMINED PSEUDO- 
CRITICAL CONSTANTS

A AD* 
%

MD**
%

PMD***
Tr

A AD*
%

MD**
%

PMD***
Tr Pr

0.81 -2.52 1.34 4.28 0.4i + 1.01 1.79 6.19

6.66 -49.87 1.02 1.17 1.15 -22.97 l.o6 1.23

.0.84 -43.20 1.02 1.28 1.25 -18.80 1.06 1.39

.1.07 -15.05 1.13 2.09 0.54 -3.57 I.l6 2.26

2.03 -17.32 1.10 2.02 0.66 +5.52 1.15 1.06

1.90 +5.65 1.32 2.85 1.38 -10.55 1.15 2.12

1.03 +9.76 1.23 2.39 0.78 -3.12 1.07 2.25

1.77 +13.20 1.23 2.45 0.54 -2.33 1.17 2.38

3.49 +8.80 1.24 3.51 0.4i -1.80 1.08 3.41
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TABLE E-2

PSEUDOCRITICAL CONSTANTS BINARY MIXTURES

>le Frac, 
st Comp.

Graphically
Determined

'I'c' Pc’

Method

Tc ’

1 1 

Pc’

Method

?c’

1 3 

Pc’

0.2035 500.4 965.0 506.0 990.0 502.0 982.7
0.4055 455 . 5 882,7 464.8 909.6 459.0 898.7
0.6050 413.7 807.3 424.0 830.2 417.5 819.0
0.8469 369.9 721.6 374.6 733.9 371.5 728.0

0.1 541.0
0.2 535.0 936.0 548.0 998.0 546.7 974.0
0.3 530.5
0.4 528.0
0.5 527.0 811.0 548.7 890.0 546.8 855.0
0.6 528.5
0.7 532.0
0.8 537.0 739.0 549.3 781.0 548.2 761.0
0.9 543.0

0.1 549.0
0.2 553.3 869.0 571.3 980.0 572.7 933.0
0.3 561.0
0.4 571.5
0.5 584,5 722.0 606.7 844.0 609.3 783.0
0,6 598.5
0.7 615.0
0.8 632.0 648.0 642.1 708.0 643.9 675.0
0.9 649.0

CH^-COg

CgHg-COg

C^Hg-COg

ONON



TABLE E-2--CONTINUED

Binary
Mole Frac. 
1st Comp.

Graphically
Determined

Tc'

Method 1

Tc* Pc'

Method 3

Tc’ Pc'

-CO2 0.1
0.2

559.5
575.0 831.0 591.2 967.0 596.8 899.0

0.3
0.4
0.5

593.0
614.0
637.5 664.0 656.5 811.0 665.5 727.9

0.6
0.7
0.8

661.0
686.0
711.0 584.0 721.7 655*0 727.4 611.0

CH^-HgS
0.9
0.20

738.0

591.8 1152.0 606.7 1179.0 598.2 1164., 0
0,50 487.2 941.0 507.9 990.0 494.6 965.0
0.80 395.3 772.0 409.1 800.0 400.6 784.0

CH -C_H, 0 . 20 513.0 710.0 508.4 701.0 510.5 709.02 to 0.50 461.0 706.0 446.5 691.0 449 . 7 704.0
0.80 399.0 691.0 384.6 680.0 386.0 690.0

CH/^-C^Hg 0.20 613.0 638.0 601.3 628.0 608.3 638.0
0.50 521.0 666.0 504.5 645.0 515.7 664.0
0.80 419.0 685.0 407.8 662.0 415.1 678.0

CH^-nC^H^Q 0.20 693.0 584.0 680.9 575.0 693.5 583.0
0.50 580.0 630.0 554.3 612.0 574.9 629.0
0.80 454.0 670.0 427.7 649.0 441.5 666.0

CH^-nC^H 0.20 771.0 530.0 745.1 526.0 763.5 528.0
0,50 629.0 586.0 594.4 581.0 624.2 590.0
0.80 466 0 0 645.0 443,8 636.0 464,7 650.0

o.■vj
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TABLE F-1

COMPOSITION OP THE EXPERIMENTAL 
MIXTURES OF THIS STUDY

Components Mixture 1 Mixture 2 Mixture 3 Mixture k Mixture 5

CH4
C2H5

C^Hg

*2
CÔ0

0.8977 
0.o464

0.0053
0.0506

0.8520
0.o4io

0.0057
0.1013

Om7458

0.0474

0.0052

0.2016

0.7593

0.1316

0.1091

0.5841

0,2867 o\

0.1292



TABLE F-2

EXPERIMENTAL COMPRESSIBILITY FACTORS

Mixture 1
Z

Mixture 2

'essure
Psia

100°F. 130°F, i6o°f . 100°F. 130°F. i6o°f,

1026 0.8805 0.9044 0.9246 0.8813 0 .9o4o 0.9234

1526 0.8437 0.8752 0.8993 0.8378 0.8715 0.8987

2026 0.8183 0.8547 0.8847 0.8117 0.8501 0.8824

2526 0.8108 0.8508 0.8793 0.8043 0.8443 0.8766

3026 0.8223 0.8574 0,8845 0.8148 0.8509 0.8825

3526 0.8455 0.8771 0.9007 0.8377 0.8697 0.8985

4026 0.8778 0.904i 0.9225 0.8708 0.8968 0.9210

4526 0.9166 0.9373 0.9537 0.9096 0.9304 0.9492

5026 0.9591 0.9741 0.9881 0.9520 0.9688 0.9832

6026 1.0502 1.0562 l.o64o 1.0445 1.0516 1.0583

7026 1.1456 1.1430 1.1428 1.1397 1.1392 1.1385

-Mo



TABLE F-2--CONTINUED

Mixture 3 Mixture 4

•essure
Psia

100°F. 130°F, l6o°F. 100°F. 130°F. i6o°f.

1026 0.8652 0.8887 0.9095 0.8128 0.8509 0.8739

1526 0.8l4l 0.8519 0.8818 0.7500 0.7985 0.8344

2026 0.7783 0.8251 0.8600 0.7142 0.7703 0.8101

2526 0.7676 0.8136 0.8499 0.7140 0.7633 0.8037

3026 0.7783 0.8196 0.8549 0.7369 0.7779 0.8134

3526 0.8037 0.8393 0.8704 0.7754 0.8080 0.8361

4026 0.8380 0.8669 0.8933 0.8206 0.8454 0.8665

4526 0.8787 0.9022 0.9239 0.8707 0.8892 0.9030

5026 0.9231 0.9408 0.9562 0.9226 0.9361 0.9449

6026 1.0178 1.0261 1.0339 1.0312 1.0350 1.0359

7026 1.1156 1.1158 1.1154 1.l408 1.1361 1.1279



1 7 2

TABLE F-2--CONTINUED

Mixture 5 
Z

Pressure
Psia

100°F, 130°F. 160°F,

1026 0.7932 0.8298 0.86l4

1526 0.7154 0.7715 O .8132

2026 0.6755 0.7360 0.7832
2526 0.6783 0.7298 0.7753
3026 0.7078 0.7481 0.7863
3526 0.7508 0.7820 0.8112

k 026 O.8OO7 0.8238 0.8465
1*526 0.8548 0.8709 0.8885
5026 0.9104 0.9209 0.9333
6026 1.0242 1.0253 1.0286

7026 1.1379 1,1312 1.1267



TABLE F-3

COMPOSITION OF THE HYDROCARBON-HYDROGEN-SULFIDE MIXTURES 

Components Mixture A Mixture & Mixture C Mixture D Mixture E

CH^ 0,871 0.831 0.836 0.800 0.713

CgHg 0.064 0.071 0.117 0.107 0.090
H s 0,065 0.098 0.047 0.093 0.197 •NlV)



TABLE P-4

SUMMARY OF CALCULATED COMPRESSIBILITY FACTORS 

FOR MULTICOMPONENT SYSTEMS

Temperature range for all mixtures was 100 - l6o° F. 
Pressure range for all mixtures was 1026 - 7026 psia.

Mixture Number of 
Points AAD*

Method
MD**

3
PMD***

Tr Pr

Method
AAD

3 with 
MD r PMD

Tr Tr

1 33 0.46 +1,08 1.71 5.80 0.67 +1.32 1.72 5.82
2 33 0.46 -0.85 1.59 4.25 0.17 -0.42 1.52 7.10
3 33 1.22 -1.98 1.43 3.38 0.49 -0.95 1.45 6.78
k 33 0.65 -1.86 1.36 4.25 0.50 +1.60 1.37 1.45
5 33 1.83 -3.60 1.30 4.11 0.91 -2.27 1.32 4.15
A 28 1.32 -2^11 1.57 4.24 1.00 -1.76 1.58 4.26
B 28 1.30 -2.48 1.45 2.77 0.88 -1.77 1.46 2.78
C 28 0.29 -0.91 1.4? 2.86 0.22 +0.71 1.63 9.96
D 28 0.4i -0.90 1.43 2.77 0.37 +0.92 1.51 l.4i
E 28 1.4o -3-63 1.34 3.85 0.91 -1.95 1.35 3.89

-Nl

* Per cent average absolute deviation
** Per cent maximum deviation

*** Point of maximum deviation


