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CHAPTER I 

INTRODUCTION 

in the recent past, use of the stack mechanism in the implementation 

of programming languages has become popular. A stack is a set of storage 

locations into which one stores the data into the top pushing down t!1.e 

data already in it, and from which one deletes the top element popping 

up the elements below. For example, all operations have their implied 

operands as either the top element of the stack or the top two elements 

of the stack, the result is returned to the stack and becomes the top 

element after the operation. The LIFO (last in first out) push down 

stack is utilized in many types of computers to generate a machine egui-

valent program. Machines utilizing the stack mechanism in hardware exe-
5t"'"k. ~,Je.s f4_c. co,..,r;/,..,s s:rr.rl~_,-. ~~.L .... <-"' H....._ .H . .m,...,.,f,·,._ ';"'-P. 

cute faster than a software implementatio'n (1). However, Johnston (10) 

pointed out that stack-related implementations have at least two dis­
~.J. 

advantages. The first and more serious distantage concerns the strictly 

LIFO nature universally attributed to stacks. Certain unnecessary 

restrictions are associated with block exit, these restrictions falsely 

appear to be inherent properties of algorithm execution. The second 

disadvantage involves the identification of a stack as a locus of control. 

The identification causes difficulties in the execution of multiple 

activity processes. 

The contour model of block structured processes was first introduced 

by Johnston in 1971. He first described how the contour model can 

1 
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execute an ALGOL 60 program by using virtual processors. Then he 

presented the cellular structure, the basic data items, the virtual 

processor structure, and the access path designators incorporated in 

the contour model. Finally, he defined the basic set of instructions 

required to implement the contour model. He also pointed out that the 

contour model is directly applicable to ALGOL 60, but not to those 

programmirtg languages which do not have contour retention properties, 

ALGOL 68 is an example. Hedrick (5) modified the contour model in 1976 

by implementing the "heap". He defined the heap as a set of memory 

locations which is used to reserve space for the allocation of arrays 

during runtime. 

Review .of Literatures 

First, three examples are used to introduce Johnston's contour 

model, then to review briefly Gries' stack model. ,so a comparison 

between these two models can be made. Finally, the modification made 

by Hedrick (5) to the contour model is presented. 

Introduction to the Contour Model 

Johnston (10) defined the contour model: it is a cell-based model 

of the semantics of algorithm execution in a nested block environment. 

He also defined a process of the contour model as a sequence of snap­

shots. Each snapshot has two components: a time-:invariant algorithm 

(static) and a time-varying record of that algorithm (dynamic). Also, 

each snapshot results from the preceding one by the execution of a 

single instr~ction of that algorithm. In the contour model, both the 

algorithm contour and the record of execution beingmodeled are block 



structured processes. As shown in Figure 1, each "begin-end" pair in 

Figure l.a corresponds to a contour in Figure l.b. 

3 

Since ALGOL 60 has the necessary ~~ur ~etenti~_properties, the 

contour model of block structured processes is directly applicable to 

it (10). Therefore, it is best to use some ALGOL 60 like programs to 

describe the contour model. Before doing this, some basic features of 

the contour model are presented first. 

Rl BEGIN Rl 

RZ BEGIN R2 

Rt:IN R3 

l 
END 

END 

a.) Delimiters b.) Contours 

Figure 1. Nested Algorithm Contour 

Storage Unit and Data Type. The contour model is acell-based 

model of semantics of algorithm contours (10). ~e.!.~--~!=l_. __ ~ __ C:C?!:!-_~_i_g~o_'ll:~-­

seql!ei!_c:!:__~!__:I!~"!!IO!"Y .. JQ_<;at:t_Qg§_· The general cell format used in this 

paper is shown in Figure 2. However, it will be modified from data 

type to data type. The cell is composed of an organization portion 
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and a residence portion. The organization portion of a cell consists 

. of type, size, reference count, inhibit boxes, item present bit, and 

valid bit. Type is used to specify what kind of data is contained in 

the cell. Size specifies the number of subcells in the residence of a 

cell. Reference count is maintianed equal to the number of pointers 

to that cell for deallocation purposes (10}. Inhibit boxes specify what 

operations cannot happen to that cell, inhibit access and inhibit write 

are examples. Item present bit and valid bit specify the information 

stored in that cell is complete and valid respectively. The residence 

of a cell consists of a sequence of a non-negative integer subcells. 

Each s~~<:_~!_! ___ ~ontCl:.!!1f> __ lg __ ~_!,ts_. Several subcells together hold one basic 

datum: an integer, a pointer, or a label. If the number of subcells in 

a cell is more than two, then it is a compound cell, otherwise it is a 

single cell. Processors, contours, and instructions are three other 

special data items appear in this paper. 

type size 
reference 

count 
inhibit present 
boxes bit 

valid 
bit sub cells 

•----------------- organization---------------~~-- residence--; 

Figure 2. General Cell Format 

Further information about the data formation of each different type of 

data is shown in Figure 3, where PB, VB, and SB are abbreviations of 

item present bit, valid bit, and sign bit respectively. Also, the num-

ber of bits assigned to each subfield is specified on the top of each' 



4 
inhibit 

boxes 

;{. 

4 
inhibit 

boxes 

a.) Integer 

4 
inhibit 

boxes 

b.) Pointer 

16 
value 

16 
pointer 

16 16 
environment pointer instruction pointer 

c.) Label 

16 
static link 

16 
operand 
an 

16 
successor link 

16 
operand 

an 

d.) Instruction 

Figure 3. Storage Organization 



16 16 

static link antecedent link subce1l(s) 

e.) Record Contour 

16 16 
static link antecedent link subcell(s) 

f.) Algorithm Contour 

16 16 16 16 
P.soa.ep P.soa.ip P.lab.ep P.lab.ip 

16 16 
P.gpr.ptr 

P.soa.ep: environment pointer of site of activity 
p. soa. ip: instruction pointer of site of activity ro:n+} "to fk 
P.lab.ep: environment pointer of label register · 1 

P.lab.ip: instruction pointer of label register bej;"~'"J """'"· 
p. gpr. ptr: general purpose register pointer of JIA· f'<'rr '"J>-
P.dsp.ptr: display register pointer 

g.) Virtual Processor 

Figure 3. (Con tlnued) 
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subfield on the basis of a 64 K main store is used. In Figure 3, some 

subfields have not been defined yet, but they will be discussed in de­

tail in the remaining chapters •. 

Algorithm and Record of Execution. A process is a sequence of 

snapshots, each contains a static algorithm and a dynamic current state 

of the record of execution of that algorithm (10). The contour struc­

ture of an algorithm functions as a template for the formation of the 

record contour. During runtime, whenever an ENTER instruction is being 

executed, a copy of some specific algorithm contour is made. As shown 

in Figure 4, Bl' and B2' are copies of Bland B2 respectively, and if 

B2' is· immediately enclosed by B~, then Bl should immediately enclose 

B2. When record contour B2' is copied from algorithm contour B2, the 

same amount of storage locations occupied by B2 are allocated for record 

contour B2'. But the contents of these memory locations allocated for 

B2' may not necessarily be the same as that of B2. 

Height and Successor Link. One of the most important features of 

the contour model is that it stresses quite explicitly the nested con­

tour structure of both the algorithm and records of execution of block 

structured processes (10). It is the reason that each contour and each 

instruction must have a height to specify its level. As shown in Figure 

4, the height of each contour or each instruction is specified in pa­

rentheses. Under normal conditions, the instruction to be executed next 

is always specified by the successor link of the instruction being 

executed. 

Processor and Virtual Processor. Usually, a processor may be de­

fined as a device which fetches and executes instructions. In the 
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Bl (0) Bl' (0) 

B2 - -
p - -

B2 _(ll B2' (1) 

B3 - - B3 - -
z - - z - -

B3 (2) B3' (2) 
I z 1-1-1 z 1-1-1 

. ' . 
CALL p <---- --- --- 1p 

--------- 7T 

(3) . . 
ep ' I I . I 

.; 

. I 

p _(1) pt (1) 

H - H -
H = 1 (2) 

I -
-I-

I = 2 (2) 
z H = H +I (2) 

I -

z -I-. . 

CALL B2 
(1) 

Figure 4. Example of a Snapshot 

present context, a processor is a pointer-pair datum, and is denoted by 

P.soa (site of activity). A P.soa consists of an environment pointer 

(P.soa.ep) and an instruction pointer (P.soa.ip). The environment 

pointer and the instruction pointer are two major elements of a process-

or. They are related to each other as follows: if P.soa.ep is.null, 

then P.soa.ip must point to an instruction which is enclosed by no con-

tour; if P.soa.ep points to a record contour P', and P' is a copy of 

the algorithm contour P, then P.soa.ip must point to an instruction 
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which is immediately enclosed by P (10). In both cases, P.soa.ip points 

to the instruction being executed or about to be executed. In the con-

tour model, a processor must be in one of the four states: invalid, 

awake, asleep, or terminated. As a matter of fact, the processor men-

tioned here are virtual processors, but they will be treated as process-

ors in the normal sense for convenience in these examples. 

Display and Environment. At any point of execution of a program, 

it is possible· for the processor to reference subcells of different 

active record contours. For example, the ip in Figure 4 points to an 

instruction immediately enclosed by B3, the processor must be able to 

access subcells Z in B3', B3 and Z in B2', and B2 plus Pin Bl'. One 

way to solve this problem is to c:g:J)ect the addresse~ ___ q_f _t_l:l~_E>-~ __ Eeferen~5!-

record contou_rs_!.1L._the processor' s __ g_isplay register~~ In the contour -- ----------.. --···~----~---~----~-' ·- -- ............... -------------- ·---~----

model, the value of processor height (P. ih), which is a copy of the 

height of the instruction being executed, is used to update the process-

or's display registers (P. dsp) if necessary. If the contents of P.ih 

is 0, then all display registers are empty. If p .ih contains an integer 

n+l with n>O, then (1) for .i>n, P.dsp.i is empty, (2) for i=n, the con-

tents of P.dsp.i is a copy of P.soa.ep, and (3) for 02i<n, P.dsp.i points 

to a record contour which immediately encloses the record contour pointed 

by P.dsp.(i+l). Use Figure 4 as an example, the current contents of P.ih 

is 3, so P.dsp.2 points to B3', P.dsp.l points to B2', and P.dsp.O points 

to Bl'. In this example, 2 is the highest available index of the display 

registers, and Bl' is defined to be the outmost _environment while B3' is 

the innermost (top) environment of the current active processor. 

The access environments of the processor consist of a set of record. 

contours pointed to by active display registers. In other words, if ep 



10 

points to the record contour B3', then the environments are composed of 

B3' and all those record contours enclosing B3'. The access environ­

ments make a processor access subcells of contours by name possible. 

One thing must be pointed out here, if two or more record contours have 

a subcell with the same name, then the subcell to be accessed is the 

one in the innermost record contour. 

Antecedent Link and Static Link. The algorithm contour is invari~ 

ant during the life of a program, but no record contour is invariant. 

When a record contour P' is allocated, which is a copy of the algorithm 

contour P, the antecedent link of P' must point to P. P is defined to 

be the antecedent of P', and P' is a decedent of P. A record contour 

has a unique antecedent, but an algorithm contour may have several 

decedents (10). The antecedent links of record contours are used for 

run-time validity checks. 

A contour has a zero height if and only if it has a null static 

link (10). If a contour,A,has a positive height i+l, then the static 

link of A must point to a contour,B,having a height equal to i. B is 

said to immediately enclose A, and A is said to be immediately enclosed 

or nested within B (10). By using both of the height and the static 

links if recird contours, the processor's display registers can be built 

correctly. 

Label and Flow Control. Labels are the basic type of data item 

used in flow of control mechanism. A valid label consists of two point­

ers: an environment pointer and an instruction pointer. In order to 

make a new label, a label register as part of a processor ts necessary 

and is denoted by P.lab. A label register is used to keep the return 
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address temporarily when a procedure call instruction is being executed. 

ENTER and EXIT. ENTER and EXIT are two important instructions for 

block structured processes. In the contour model, the effect of execu­

ting of an ENTER instruction consists of three steps: copying the algo­

rithm contour into which the processor is entering; adjoining this new 

record contour to the top of the currently active processor's environ­

ments; and updating the processor to an an instruction immediately 

enclosed by the algorithm contour being entered. The effect of executing 

an EXIT instruction includes removing the innermost record contour from 

the active processor's environments and updating the processor to an 

instruction immediately outside the algorithm contour being exited. 

Simplification and Abbreviation. Since the algorithm is static 

during the runtime of a program, it needs to be shown only once and 

remains invariant for all remaining snapshots (10). The processor is 

abbreviated to be TI, of which its two legs represent the two pointers, 

ep and ip, of the processor respectively. Also, it is common for ep 

to point only the innermost contour of its environments (10). 

Built-in Functions and AHPL. In order to describe the contour model 

concisely and to demonstrate how the contour model handles a program,, 

some built-in functions together with A Hardware Programming Language 

(AHPL) are used. The definition of each built-in function followed by 

some examples is described in TABLE I. 

The following three examples are used to show how the contour model 

handles the problems of passing procedure names as actual parameters to 

the called procedure, parallelism, and recursion respectively. 



BUILT-IN FUNCTION 

ADDR(name of contour) 

TABLE I 

BUILT-IN FUNCTIONS 

DEFINITION 

returns the address of 
the contour in the 
parentheses 

SUB(name of contour(name of subcell)) returns the contents of 
the subcell in the 2-nd 
parentheses of the con­
tour in the first 
parentheses 

ANTE(name of contour) find the antecedent 
of the record contour 
in the parentheses 

EXAMPLE COMMENT 

ADDR(P ') similar to ADDR in PL/1 

SUB(P 1 (L)).-ep return the contents of 
the ep of the subcell L 
in record contour P 1 

SUB(C(Z)) .ip return the cont·ents of 
the ip of the subcell Z 
in algorithm contour C 

ANTE(P I) return the address of 
the algorithm contour 
from which P 1 is copied 

STAT(name of contour) returns the address of · STAT(C') 
the contour which imme- · 

return the address of 
the record contour 
which immediately 
encloses C1 

INC(name of register,increment) 

diately encloses the 
argument 

increases the contents 
of the first argument 
by the second argument 

INC(MAR,2) increase the contents 
of memory address . 
register by 2 
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Example 1. In the first example, procedure names are passed as 

actual parameters to the called procedure. The program to be executed 

is EXAMPLE_l, as shown in Figure S.a. EX 1 is the program re-expressed 

in terms of the contour model, as shown in Figure S.b. For convenience, 

the instructions embedded in the algorithm contours are numbered from 

top to bottom. The number on the right side of each instruction repre­

sents the address of that instruction. 

As mentioned earlier, a process is a sequence of snapshots, each 

snapshot results from the preceding one by executing a single instruc­

tion of that algorithm. 

In snapsh_ot 0, the contour model is prepared to execute EX 1. 

That is, the processor is initialized to be: 

P.soa.ep ---null; 

P.soa.ip--- 1. 

While the rest of subfields of the processor are left uninitialized. 

In snapshot 1, instruction 1 is to be executed. Instruction 1 is 

an ENTER instruction. When an ENTER instruction is being executed, a 

service routine GETAREA (3) is called to allocate storage locations 

for record contour M' in this case, and return the address of the first 

memory location of record contour Mr to the processor's pointer regis­

ter, P.ptr. The AHPL description of snapshot l is: 

P.ih 0; 

P.ptr ADDR(M'); 

P.dsp.O P.ptr; 

P.soa.ep P.ptr; 

P.soa.ip 14. 



M 

PROCEDURE A(X,Y); 

PROCEDURE X; INTEGER Y1 
BEGIN 
B 

PROCEDURE B(R,F); 

PROCEDURE R; INTEGER F; 

BEGIN 

R(F +. Y); 

END; 

'B(X,2)J 

PROCEDURE C; 

BEGIN INTEGER G; 

PROCEDURE D(W}; INTEGER W; 
BEGIN 

G : W; 

END: 

A(D,l); 

A 
a 

A:2 I ENTER I 

X - - " y - b 
B - 3 
z - -

Ba31 ENTER I 

R -I-
F -z -I-

4 I CALL R F + Y> I 

r 
5 I GO TO Z I 

bJ6 CALL B (X. 2) I 
.L. 

? I GO TO Z I 

C a8 lEN ER _I 

G - ,~ 

Dl-19 c 
ZJ- -

D:9 I ENTER J 

w -z -1-

10 I G : W I 
J, 

11 I GO TO Z I 

c:l2 CALL A( D_,_l) _I 

1) I GO TO Z I 

aa14 I CALL . .Qj 

"' 15 * 

a. EXAMPLE_l b. EX_l 

Figure 5. Example 1 

14 
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In the contour model, the environment pointer of any label residing 

in an algorithm contour is not initialized completely at assembly time. 

That is, any algorithm contour contains only incomplete (invalid) labels. 

As shown in Figure S.b, the environment pointers of A and C are not 

initialized. So, to initialize the environment pointers of all labels 

of a newly allocated record contour is necessary. The way to convert 

those incomplete labels into valid labels is to let their environment 

pointer point to the newly allocated record contour if its height is 

equal to 0 or it is associated with a block. As shown in SNAPSHOT 1 

of Figure 6, the environment pointer of A or C points to }1 1 • 

In snapshot 2, instruction 14 is to be executed. Instruction 14 

is a procedure call instruction with no parameters. The subcell C can 

be accessed through P.dsp.O, and its value is stored into the label 

register (P.lab). Since P.soa.ip is updated to point to the instruction 

to be executed next under normal conditions (the details see Chapter IV), 

P.soa.ip points to instruction 15. Hm·Tever, instruction 14 is a jump 

to a subroutine instruction, so the processor exchanges the site of activity 

register P.soa with the label register P.lab before the neit instruction 

to.be executed. After this exchange, P.soa.ip points to instruction 8 

instead of 15. The AHPL description of this snapshot is: 

P.ih 1; 

P. so a. ip o4------ 15; 

SUB(M'i(C}) .ep; P.lab.ep --­

P.lab.ip --- 8; 

TEMP P.soa.ep; 

P.soa.ep --- P.lab.ep; 

P.lab.ep TE}!P; 
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TEMP--- P. soa. ip; 

P.soa.ip P.lab.ip; 

P.lab.ip --TEMP. 

Where, TEMP may be-.a general purpose register. At the end of the exe­

cution on instruction. 14, P.lab contains the return address from proce­

dure G. 

In snapshot 3, instruction 8 is to be executed. Instruction 8 is 

an ENTER instruction. Record contour C' is allocated and its first 

address is stored into P.ptr. During the allocation, the environment 

pointer of D points to C', and the return label Z is a copy of P.lab. 

The AHPL description of snapshot 3 is: 

P.ptr ADDR(C'); 

SUB(C'(D)).ep P.ptr; 

SUB(C 1 (Z)).ep P.lab.ep; 

SUB(C'(Z)).ip P.lab.ip; 

P.soa.ep P.ptr; 

P.soa.ip 12. 

In snapshot 4, instruction 12 is to be executed. Since instruction 

12 has its height equal to 2, record contour C' becomes the top environ­

ment. Instruction 12 is a procedure call on A with p.arameters D and l. 

Procedure A and D can be accessed through P.dsp.O and P.dsp.l respec­

tively, and the contents of A is copied into P.lab. Then exchange P.soa 

with P.lab. The AHPL description of snapshot 4 is: 

P.ih 2; 

P.dsp.l ADDR(C'); 

P.soa.ip 13; 

P .lab • ep o(,--- SUB(M'(A)).ep (or ADDR(M')); 



l "'- tr -+ NULL 

SNAPSHOT_O: 

AI M'l 2 I 
Cl M'l 8 I 

M' 

SNAPSHOT_2:CALL C 

AI M'l2 I 
Cl M'l8 I 

M' 

SNAPSHOT_l:ENTER M 

M' 
AIM'I2 I 
CIM'I 8 I 

C' 
G -
D C'l 9 
Z M'l 8 

12- tr-+ C' 

SNAPSHOT_J:ENTER C 

Figure 6. SNAPSHOT 0 to SNAPSHOT 3 of Example 1 

17 



P .lab .ip -- SUB(_M' (A}} .ip (or 2); 

TEMP- P.soa.ep; 

P.soa.ep ---- P.lab.ep; 

P .lab • ep '*---- TEMP; 

TEMP P.soa.ip; 

P .soa.ip ~-- P .lab .ip; 

P .lab . ip TEMP • 
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In snapshot 5, instruction 2 is to be executed. The height of 

instruction 2 is 1, record contour M' becomes the top environment again. 

Instruction 2 is entering contour A, a copy of ~lgorithm contour A is 

made with subcells X, Y, B, and Z. The formal parameter X corresponds 

to actual parameter D, Y is an integer, B is an internal sub-procedure 

to procedure A, and Z is the return label. After the allocation of 

record contour A', X is a copy of D, Y is equal to 1~ the ep of B points 

to A 1 , and Z is a copy of P .lab. The AHPL description of this snapshot 

is: 

P.ih--- 1; 

P.dsp.l ~--null; 

P.ptr --- ADDR(A'); 

P.soa.ip --- 6; 

P.soa.ep ~-- P.ptr; 

SUB(A'(X)).ep SUB(C'(D)).ep; 

SUB(A I (X)). ip --- SUB(C' (D)). ip; 

SUB(A' (Y}) -- 1; 

SUB(A' (B)) .ep +--- P.ptr (or ADDR(A')); 

SUB(A,' (Z)} .ep P.lab.ep; 

SUB(A'(Z)).ip -.c. P.lab.ip. 
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In snapshot 6, instruction 6 is to be executed. The height of 

instruction 6 is 2, so record contour A' becomes the top environment: 

that is, P.dsp.l points to A'. Instruction 6 is a procedure call on B 

with parameters X and 2. Sub cells B an X can be accessed through 

P.dsp.l and P.dsp.O respectively. Again, the return address is stored 

into P.lab before the transfer occurs. The AHPL description of this 

snapshot is: 

P.ih 2; 

P. dsp .1--- P .ptr (or ADDR(A ')); 

P.soa.ip 7; 

P.lab.ep ..,..___ SUB(A'(B)}.ep (or ADDR(A')); 

P.lab.ip SUB(A'(B)).ip (or 3); 

TEMP P.spa.ep; 

P.soa.ep P.lab.ep; 

P.lab.ep TEMP; 

TEMP P.soa.ip; 

P.lab.ip P.lab.ip; 

P.lab.ip TEMP. 

In snapshot 7, instruction 3 is to be executed. Instruction. 3 is 

an ENTER instruction into contour B, so a record contour B' is allocated 

immediately inside record contour A': that is, the static link of B' 

points to A'. The AHPL description is : 

P .ptr --- ADDR(B '); 

P.soa.ip 4; 

P.soa.ep P.ptr; 

SUB(B' (R)) .ep --- SUB(A' (X)) .ep; 

SUB(B' (R)) .ip -- SUB(A' (X)) .ip; 
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M' M' 
AIM' I 2 I AIM'l 2 I 
Cl M' I 8 I CIM'I 8 I 

A' 
X C'l 9 
y 1 

2 +- t1 __,.. M' B A'l 1 
z c '111 

6- tr ~A' 

c• C' 
G - G -
D C'l 9 D C'l 9 
z lYl '115_ Z M'll5 

SNAPSHOT_4:CALL A(D,1) SNAPSHOT_5:ENTER A 

M' - M' 
AIM'I 2 t AIM'l2 I 
CIM'I 8 I A' C IM'I8 I A' . 

X C'l 9 X C'l 9 
y 1 y 1 B' 
B A'l 1 B A'l 3 R C' I 9 
Z C'l13 z c '111 F 2 

Z A'l 7 
J~tr_,.A' I 4- tr ~B' 

-

C' c· 
G - G -
D C'l 9 D C'l 9 
Z M'll5 Z M '11 ') 

SNAPSHOT_6~CALL B(X) SNAPSHOT~?aENTER B 

Figure 7. SNAPSHOT 4 to SNAPSHOT 7 of Example 1 
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SUB(B' (F))-­ 2; 

SUB(B 1 (Z)) .e·n-p• .. -- P .lab .ep; 

SUB(B 1 (Z}).ip P.lab.ip. 

In snapshot 8, instruction 4 is to be executed. Instruction 4 is 

a procedure call on R with parameter F+Y. Since the height of instruc­

tion 4 is 3, P. dsp must be initialized to point to B' , through which R 

and F can be accessed, while Y can be accessed through P.dsp.l. The 

AHPL description of this snapshot is: 

P.ih 3; 

P.ptr; P.dsp.2 -­

P.soa.ip ~-- 5; 

P.lab.ep --- SUB(B 1 (R}) .ep (or ADDR(C 1 )}; 

P .lab .ip SUB(JJ 1 (R}l .ip (or 9); 

TEMP--- P .soa.ep; 

P.soa.ep --- P .lab .ep; 

P.lab.ep TEMP; 

TEMP P.soa.ip; 

P .soa.ip --- P .lab .ip; 

P.lab.ip TEMP. 

In snapshot 9, instruction 9 is to be executed. Instruction 9 has 

its height equal to 2, and it is immediately enclosed by algorithm con­

tour C, so the display registers must be reconstructed through the 

static link of record contour C 1 : that is, P .dsp .0 points to M', and 

P.dsp.l points to C'. Instruction 9 is an ENTER instruction into D, so 

a copy of D is made wi.th·_,subcells W and z.. The oor;res.po:nding AHPL 

description is: 

P.ih 2; 
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P .dsp.l---· ADDR(Ct}; 

P.dsp.O STAT(C'}; 

P.ptr ADDR(D'); 

P.soa.ep P.ptr; 

P.soa.ip 10; 

SUB(D' (W)) F+Y (or 3}; 

SUB(D 1 (Z)} .ep --- P.lab.ep; 

SUB(D 1 (Z)). ip ....--- P .lab .ip. 

In snapshot 10, instruction 10 is to be executed. The height of 

instruction 10 is 3, so P.dsp.2 must be initialized to point to D'. 

Instruction 10 is to deposit the value of W into G, which resides in 

record contour ct. The AHPL description of this snapshot is: 

P.ih 3; 

P.dsp.2 P.ptr; 

P.soa.ip 11; 

SUB(C I (G)) SUB(D' (W)}. 

In snapshot 11, instruction 11 is to be executed. Instruction 11 

is a return instruction to the calling procedure, which is specified by 

the return label z. After executing this instruction, the contents of 

Z becomes the new site of activity, and the valid bit of record contour 

D' is set off: that is, D' is no longer able to be accessed. The AHPL 

description is: 

P.soa.ep SUB(D'(Z)).ep; 

P.soa.ip SUB(D'(Z}).ip. 

In snapshot 12, instruction 5 is to be executed. Since the last 

instruction is a jump instruction, the display registers must be recon­

strcted by using the static link of B' and the height of instruction 5. 
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SNAPSHOT ll:EXIT D 

Figure 8. SNAPSHOT 8 .to SNAPSHOT_ll of Example 1 
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Instruction 5 is a return instruction to the calling proc'edure speci­

fied by the return label z. After executing this instruction, the 

contents of Z, which resides in record contour B', becomes the new site 

of activity, and record contour B' can no longer able be accessed. The 

AHPL description of this snapshot is: 

P.ih--­ 3; 

P.dsp.2---P.soa.ep. (or ADDR(B')); 

P. dsp .1 STAT (B.'} (or ADDR (A 1 ) ) ; 

P.dsp.Q STAT(A 1 } (or ADDR(}1'}.}; 

P.soa.ep SUB(B'(Z}).ep (or ADDR(A 1 )1; 

P.soa.ip SUB.(B. 1 (Z)).ip (or 7}. 

In snapshot 13, instruction 7 is to be executed. Instruction 7 is 

also a return instruction to the calling procedure specified by the 

return label z. The same procedure as in snapshot 12 is followed, and 

the AHPL description is: 

P.ih 2; 

P. dsp .1 --- P. so a. ep (or ADDR(A1 }); 

P.dsp.O STAT(A 1 } (or ADDR(M')); 

P. soa.ep SUB(A 1 (Z)). ep (or ADDR(C'}}; 

P.soa.ip SUB(A' (Z)) .ip (or 13). 

In snapshot 14, instruction 13 is to be executed. Instruction 13 

is another return instruction to the calling procedure specified by the 

return label Z. Its AHPL description is: 

·P.ih--­ 2; 

P.dsp.l---P.soa.ep (or ADDR(C 1 )); 

P.dsp.O STAT(C') (or ADDR(M')); 

P.soa.ep SUB(C'(Z)).ep (or ADDR(M'}); 
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Figure 9. SNAPSHOT 12 to SNAPSHOT 15 of Example 1 
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P. so a. ip -4----- SUB (C 1 (Z)} . ip (or 15). 

In snapshot 15, instruction 15 is to be executed. Instruction 15 

is to terminate EX_l, so the executing processor's state will become 

terminated after the execution of this instruction: that is, its two 

pointers will point nowhere. Also, record contour M' is no longer able 

to be accessed. The AHPL description of this snapshot is: 

P.ih-+--- 1; 

P.soa.ep ---null; 

P.soa.ip null; 

P.dsp.O null. 

In this example, procedure C is called in snapshot 2 first. Inside 

C, procedure A is called in snapshot 4, with procedure D as an actual 

paremater. Inside A, procedure B is called in snapshot 6, with its 

formal parameter X, a procedure, as the actual parameter. Finally, the 

formal parameter R is called in snapshot 8. Since B's formal parameter 

R is X which in tern is D, procedure D is involked. Each time a pro­

cedure is called with a procedure as the actual parameter, the contour 

model can just treat it as a label and pass it to the called procedure, 

and no extra procedure overhead is required. 

Example 2. In this example, we will see how the contour model can 

execute two procedures in parallel. The program to be executed is 

EXAMPLE_2, as shown in Figure lO.a. EX_2, as shown in Figure lO.b, is 

the algorithm re-expressed in terms of the data structure of the con­

tour model. For convenience, the array D declared in the main algo­

rithm contour M is treated as two distinct elements Dl and D2 at this 

moment, though this is not the true situation. 



BEGIN INTEGER A,B1 
[la2] INTEGER D; 

E 

(
PROCEDURE F:(REFt 

.. INT: A +B; 

INT A) 

Q 

PROCEDURE Q=(REF, INT B) 

INT: A+ B; 

A::l; 

B::2; 

Ds:[Q(B), F(A)]; 

PRINT (D); 

END1 

a. EXAMPLE_2 

Figure 10. 

a 

Fs2 I ENTERl 
I 

AI - I l 
Z I-I- I J I D2=M·B I 

J, 
4 I GO TO 7. I 

5 I ENTER I 

Bl - I 
z 1-1- I 

6 I Dl=A+B I 

"' 7 I GO 'l'O Z j 

12 

b. EX_2 

Example 2 
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Again, a sequence of snapshots is implemented to depict the execu­

tion of EX_2 by the contour model. However, no literal explanation 

except the AHPL description is presented in each snapshot unless some­

thing new (which does not happen to EX_l} is encountered. Since more 

than one processor will be used in this example, indexes are used to 

separate different processors. For example, P0 .soa.ep denotes the 

environment pointer of the processor with index 0. 

The AHPL descriptions of snapshot 0 through snapshot 3 are: 

P0 .soa.ep--- null (snapshot 0 begins}; 

P0 .soa.ip 1 (snapshot 0 ends); 

P0 .ptr ADDR(M') (snapshot 1 begins}; 

P0 .soa.ep P0 .ptr; 

P0.soa.ip·--- 8; 

SUB(M'(F)) .ep +-- P0 .ptr (or ADDR(M')); 

SUB (M 1 (F)). ip SUB (M(F)) . ip (or 2); 

SUB (M' (Q)) . ep PO. ptr (or ADDR(M')); 

SUB(M'(Q)).ip ~ SUB(M(Q)).ip (or 5); 

P0 .ih 1 (snapshot 2 begins); 

P0 .dsp.O --,--- P0 .ptr; 

P0 .soa.ip 9; 

SUB (M' (A) ) 1 ; 

P0 .soa.ip --- 10 (snapshot 3 begins); 

SUB(M' (B)) +---- 2. 

· In snapshot 4, instruction 10 is to be executed. In instruction 

10, two procedures are called simultaneously, so two new processors P1 

and P2 are allocated and initialized by P0 (for details see CHAPTER III 

and IV). F, Q, A, and B can be accessed through P0 .dsp.O and the offset 
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M' 
A -
B -
F M' 12 

_Q M'l5_ 
01 -
02 -

8<E-1r ..... M' 
0 

SNAPSHOT_Os SNAPSHOT_l1ENTER M 

M' M' 
A 1 A 1 
B - B 2 
F M'l 2 F M'l2 
Q M' I '5 .~ M I I ') 
Dl - Dl -
D2 - 02 -

9~tr-+M' . 0 . 
10 ..:-- tr _, M' 

0 

' 

SNAPSHOT_2:A=l SNAPSHOT .. ) sB: 2 

Figure 11. SNAPSHOT 0 to SNAPSHOT_3 of Example 2 
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of each corresponding subcell in M'. The AHPL description of snapshot 4 

is: 

P0 .soa.ip 11; 

P1 .soa.ep SUB(M' (F)} .ep; 

P1 .soa.ip SUB (M 1 (F}} , ip ; 

P1 .lab .ep P0 .soa.ep; 

P1 .lab.ip P 0 . soa.ip; 

P2 .soa.ep SUB(M' (Q)}.ep; 

P2 .soa.ip SUB (M' (Q} 1. ip ; 

P 2 .lab .ep P0 .soa.ep; 

P 2.lab.ip P0 .soa.ip. 

In snapshot 5, two instructions 2 and 5 are executed parallely by 

processors P1 and P2 respectively. Since both instructions 2 and 5 are 

ENTER instructions, two record contours F 1 and Q1 are allocated and 

initialized. The AHPL description of processor P1 executing instruction 

2 is: 

P .ptr ADDR(F'); 
1 

P1 .soa.ep P1 .ptr; 

P .soa.ip 3; 
1 

p .ih 1; 
1 

P1 .dsp.O ADDR(M 1 ); 

SUB (F I (A)) SUB (M' (A}); 

SUB (F' (Z)) .ep --- P l .lab .ep; 

SUB (F 1 (Z)} . ip P 1 .lab. ip. 

The. AHPL description of P2 executing instruction 5 is: 

P2 .ptr+--- ADDR(Q'); 

P2 .soa.ep 



P2 .soa.ip 6; 

p2.ih 1; 

P2 .dsp.O ADDR(M'}; 

SUB(Q 1 (B}} SUB(M' (;B)}; 

SUB(Q 1 (Z)} .ep --- P 2 .lab .ep; 

SUB(Q' (Z)) .ip P 2 .lab.ip. 

31 

In snapshot 6, instruction 3 and 6 are to be executed by P 1 and P 2 

respectively. Since the heights of both instructions 3 and .6 are 2, so 

P1 .dsp.l and P2.dsp.l must be initialized to point to F' and Q' sepa­

rately. Both instructions 3 and 6 are to find the sum of A and B. For 

P1 , A is a local variable, while B is a global variable. For P2 , B is 

a local. variable, while A is a global variable. Global variables B and 

A can·be accessed through P1 .dsp.O and P2 .dsp.O respectively. Finally, 

deposit the sum of A and B into Dl and D2. The AHPL description of P1 

executing instruction 3 is: 

P1 .ih 2; 

P1 .dsp.l P1 .ptr; 

P 1 . so a. ip -+--- 4; 

SUB (M' (Dl)) -+--- SUB(M'(B)) + SUB(F'(A)). 

The AHPL description of P2 executing instruction 6 is: 

p 2.ih 

:P 2 .dsp.l 

P 2.soa.ip 

2; 

P 2 . ptr; 

7; 

SUB(M' (D2)) -+--- SUB (M 1 (A}) + SUB (Q 1 (B)). 

In snapshot 7, instruction 4 and instruction 7 are to be exected by 

P1 and P2 separately. Since both instructions 4 and 7 are return instruc­

tions to the same procedure: that is, P1 and P2 will rejoin to a single 
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M' M' 
A 1 A 1 
l3 2 B 2 
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B 2 B 2 
F M'12 l'' M' 12 
Q M'l5 F' Q WI 5 
Dl 1 AI 1 I Dl ' D2 3 ZIM'Ill I DZ ' 
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Q' 
Bl 1 I 

11~ 'h'0~M' 

Z IM'Ill I 

7 ~ '11'2-+Q' 

SNAPSHOT_6rD1~AfB,D2:AtB SNAPSHOT_7:EXIT F,EXIT Q 

Figure 12. SNAPSHOT 4 to SNAPSHOT_7 of Example 2 
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site of activity. So, P0 will come back to execute EX 2. Recall when 

P0 initializes P1 and P2 in snapshot 4, the state of P0 should become:. 

asleep, however, P0 .soa.ip still points to instruction ll:, which is the 

rejoining point after the processes F and Q are finished. 

In snapshot 8, instruction 11 is to be executed. Instruction 11 

is used to print out the values of array D, so the values of Dl and D2 

will be shown on the output list. 

In snapshot 9, instruction 12 is to be executed. Instruction 12 

terminates EX_2, so P0 .soa.ep and P0 .soa.ip will point to null after 

execting instruction 12. 

For clarity, three processors P0 , P1 , and P2 are used in this 

example. Of course, there are some alternatives. For example, P0 is 

used as the "master" processor in the execution of EX_2, so only one 

processor need be initialized in snapshot 4 to execute F and Q parallely 

by P and the processor just initialized respectively. After process 
0 

Q is finished, its executing processor will 11 commit suicide" and rejoin 

back to P0 • 

Example 3. In this example, the algorithm EX_3 to be executed is 

the inorder traversal of a binary tree (BT). In Figure 13. a, EX_3 is 

the algorithm to be executed by the contour model. The binary tree to 

be traversed is BT, as shown in Figure 13.b. The root of BT is pointed 

by a pointer K, each node of BT has three subfields: LLINK (left link), 

RLINK (right link), and DATA. If the LLINK (or RLINK) of a node con-

tains a 0, then that node has no left (or 'right) child. 

An array NODE, declared in the main procedure M, is used to store 

the nodes of a binary tree. T is the recursive procedure to traverse 

that binary tree. Again, the array NODE is treated as several (4 in 
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1 I ENTER I 

NODE 1 - -- -
NODE 2 - -- -
NODE 3 - -- - a 
NODE 4 - -- -

K -
T -I 2 

T :2 I ENTER I 

Kl- I 
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= 
3 LLINK(K) :0 ~ 

L ~ 
4 I CALL T (LLINK(K)) 

I PRINT (NODE (K)) I 5 

~ 
= 6 RLINK(K):O 

~ ~ 
7 I CALL T(RLINK(K)) I 

8 IGOTOZI 

A SET OF INSTRUCTIONS 

9 
USED TO CONSTRUCT A 

BINARY TREE WITH ITS 
ROOT POINTED BY K 

J. 
10 l CALL T(K) I 

11 + 
* 

a). EX_3 

NODE 1 

NODE 2 NODE 3 

NODE 4 

b). Binary Tr~e 

Figure 13. Example 3 
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this example} different variables. Each of which contains LLINK, DATA, 

and RLINK. In order to put more attention on bow the contour model 

executes EX_3 recursively, we skip discussing instruction 1 and instruc­

tion 9. The subcells of record contour M' before the execution of 

instruction 10 is shown in SNAPSHOT 2 in Figure 14. 

In snapshot 3, instruction 10 is to be executed. Procedure T is 

called with an actual parameter K. Both T and K can be accessed through 

P.dsp.O, which points to record contour M' currently. Its AHPL descrip­

tion is: 

P.soa.ip 11; 

P .lab .ep SUB(M 1 (T)) .ep; 

P.lab.ip SUB(M 1 (T)) .ip; 

TEMP P.soa.ep; 

P.soa.ep P .lab. ep; 

P.lab.ep TEMP; 

TEMP P .soa. ip; 

P.soa.ip P .lab .ip; 

P.lab.ip TEMP. 

In snapshot 4, instruction 2 is to be executed. Instruction 2 is 

an ENTER instruction into procedure T. The first record contour T 1 is 

allocated and initialized. Its AHPL description is: 

P.ptr ADDR(T'); 

P.soa.ep P.ptr; 

P,soa.ip 3; 

SUB (T I (K)) SUB (M I (K)) ; 

SUB(T 1 (Z)) .ep -+-- P.lab.ep; 

SUB.(T' (Z) ) . ip P .lab • ip . 
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M' 
NODE 1 - - -
NODE 2 - - -
NODE 1 - - -
NODE 4 - - -

Kl -
TIM' 2 

1 ~ 11' ~NULL 9 - 11' __. M' 

SNAPSHOT_O · SNAPSHOT_1:ENTER M 

M' M' 
NODE 1 2 60 1 NODE 1 2 60 1 
NODE 2 0 24 4 NODE 2 0 24 14 
NODE '3 0 78 0 NODE 1 0 78 0 
NODE 4 0 11 0 NODE l.j, 0 11 0 

Kl NODE 1 Kl NODE 1 
T I f/1' 2 TIM' I 2 

10 ~ 11'- M' 2 +- 11' - M' 

SNAPSHOT_21CONSTRUCT BT SNAPSHOT J:CALL T(NODE 1) - -

Figure 14. SNAPSHOT 0 to SNAPSHOT_3 of Example 3 



In snapshot 5, instruction 3 is to be executed. The he.ight of 

instruction 3 is 2, P.dsp.l must be initialized to point to T 1 • A 

logical operation testing if the node pointed hy K has left child. If 

it does, then instruction 4 is the instruction to be executed next. 
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If it does not, then instruction 5 will be executed next. Since NODE 2 

is the left child of NODE 1, the instruction to be executed is 4. The 

AHPL description of this snapshot is: 

2; P.ih--­

P.dsp.l--- P.ptr; 

P.soa.ip -~- 4. 

In snapshot 6, a call on the procedure T with the actual parameter 

LLINK(K) is executed. The subcell K to be accessed is in T' instead of 

M1 • After getting the value of K, both T and LLINK(K) can be accessed 

through P.dsp.O. Instruction 5 is the instruction to be executed next 

in normal sequence, so both its address and environment must be stored 

in P.lab at the end of instruction 4. The AHPL description of snapshot 

6 is: 

P.soa.ip 5; 

P.lab.ep SUB(M' (T)) .ep; 

P .lab. ip SUB(M' (T)) .ip; 

TEMP P.soa.ep; 

P.soa.ep P .lab .ep; 

P .lab .ep TEMP; 

TEMP P.soa.ip; 

P.soa.ip P .lab. ip; 

P .lab. ip TEMP. 
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M' M' 
NODE 1 2 60 1 NODE l 2 60 1 
NODE 2 0 2h 4 NODE 2 0 24 4 
NODE 3 0 78 0 NODE 3 c 78 0 
NODE 4 0 33 0 NODE 4· 0 JJ 0 

Kl NODE 1 Kl NODS 1 
T I M' 2 TIM' 2 

T' T' 
Kl NODE 1 I KlNODE 1 J 
Zl M' I 11 I Zlfr'l' 11 I 

J - '11' -+ T' 4 ~ '11'- T' 

SNAPSHOT_4:ENTER T SNAPSHOT_ 5 LLI!'TK( NODE_l) : 0 

M' M' 
NODE 1 2 60 3 NODE 1 2 60 J 
NODE 2 0 24 .4 NODE 2 0 2LJ-_ l!_ 
NODE 1 0 7~ 0 NODE 3 0 7R 0 
NODE I~ 0 11 0 NODE 4 0 33 0 

KJ NODE 1 Kl ~0 E 1 
Tl M' 2 . T l M' 2 

T' T' T" 
KINODE 1J · Kl NODE 1 I KJ NODE 21 
Zl M' 111 ZIM'tlJ. I ZIT' I 5 I 

J - '11' -+ T" 

' 

2- tr-+ M' 

SNAPSHOT_6:CALL T(LLINK(K)) SNAPSHOT_?:ENTER T 

Figure 15. SNAPSHOT 4 to SNAPSHOT_7 of Example 3 
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In snapshot 7, a second copy of algorithm contour Tis made and 

allocated immediately inside M1 • In order to distinguish from the first 

copy T', the second copy is denoted by T". The AHPL description of this 

snapshot is: 

P. ptr ADDR(T") ; 

P.soa.ep P.ptr; 

P.soa.ip 3; 

SUB (T" (K)) SUB (M' (SUB (T' (K))}) . LLINK; 

SUB(T"(Z)) .ep --- P.lab.ep; 

SUB(T" (Z)) .ip P .lab .ip. 

In snapshot 8, the same procedure will be followed as that in snap­

shot 5. Since NODE 2 has no left child, the instruction to be executed 

next is instruction 5. 

In snapshot 9, the DATA of NODE 2 is printed out, and P.soa.ip points 

to instruction 6. 

In snapshot 10, a logical operation testing whether NODE 2 has a 

right child or not. Since NODE 3 is the right child of NODE. 2, the 

instruction to be executed next is instruction 7. 

In snapshot 11, procedure T is called with the actual parameter 

RLINK(K). The subcell K is accessed from T" first, then RLINK(K} can 

be accessed through P.dsp.O. The AHPL description of this snapshot is 

exactly the same as that of snapshot 6 except P.soa.ip will point to 

instruction 8~ 

In snapshot 12, a third copy, T'", of algorithm contour T is made. 

The corresponding AHPL description is: 

P .ptr--- ADDR(T'"); 

P.soa.ep P.ptr; 
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T' T" T' T" 
Kl NODE 1 I KINODE 2 I KINODE 1 I Kl NODE 2 I 
Zl M' I 11 I ZJT' I 5 I ZIM'Jlll Zl T' I 5 I 

5 ~ 'T1' __.. T" 6~ 'T1' -T" 

SNAPSHOT B:LLINK(NODE 2):0 SNAPSHOT_9:PRINT NODE_2 

M' 
NODE 1 ;:: 60 3 NOD~ 1 2 i60 3 
NODB 2 0 24 4 NODE 2 0 24 4 
NODE J~ 0 713 0 NODE ) 0 78 0 
NODE 4 0 3'3 0 NODE 4 0 '3'3 0 

Kl NODE 1 Kl NODE 1 . 
Tl M' 2 Tl M' 2 

T' T" T' T" 
Kl NODE 1 I KIHODE 2 I KINODE 1 I KINODE21 
Z I M' I 11 I ZJT' l 51 Z IM' I 11 I ZIT' I 5 I 

7o<o~:- 'T1' ~ T" 

2 ..- 'T1' ~M' ' -

SNAP~H~T_lO:RLINK(UODE_2):0 SNAPSHOT_lls ·CALL T(RLINK(K)) 

Figure 16. SNAPSHOT 8 to SNAPSHOT 11 of Example 3 



P.soa.ip 3; 

SUB(T'" (K)) SUB(M'(SUB(T"(K)))) .RLINK; 

SUB(T"' (Z)).ep P.lab.ep; 

SUB(T"' (Z)).ip P.lab.ip. 

In snapshot 13, the same procedure as that of snapshot 8 is 

followed. Since NODE 4 is a leaf, the next instruction to be executed 

is instruction 5. 

In snapshot 14, the DATA of NODE 4 is printed out, and P.soa.ip 

will point to instruction 6. 

In snapshot 15, the logical test on the value of the right link 

of NODE 3 is made. Since this test fails, the instruction to be exe­

cuted is instruction 8. 
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In snapshot 16, a return instruction with return address specified 

by the subcell Z of T"' is executed. After executing this instruction, 

T'" is no longer able to be accessed. The environment pointer of the 

new site of activity points to record contour T", and its instruction 

pointer points to instruction 8. 

In snapshot 17, the instruction to be executed is still instruction 

8. The new site of activity is a copy of the subcell Z of recore con­

tour T". Also, record contour T" will be deallocated after this snapshot. 

In snapshot 18, the DATA of NODE 1 is printed out, and P.soa~ip 

will point to instruction 6. 

Since NODE 1 has a right child NODE 4, the instruction to be exe­

cuted is instruction 7 in snapshot 20. Instruction 7 is a call on T 

with an actual parameter RLINK(K), so a fourth copy. T"", of algorithm 

contour T is allocated immediately inside M1 in snapshot 21. The steps 



M' 
NODE 1 2160 l 
NODE 2 0 24 14 
NODE 1 0 78 0 
NODE 4 0 11 0 

Kl NODE 1 
T I W 2 

T' T" 
Kl NODE 1 I l\1 NODE 2 I 
ZIM' I 11 I zIT I T "') I 

T"' 
KI.NOPE 4 I 
ZIT" I 8 I 
3- 11' ~·" 

SNAPSHOT_l2:ENTER T 

M' 
NODE 1 2 60 '3 
NODE 2 0 2h 4 
NODE 3 0 78 0 
NODE 4 0 '31 0 

Kl NODE 1 
T I M' I 2 

T' T" 
Kl NODE 1 I KINODE21 
ZIM' 111 Zl T' I '5 I 

rp "' 
Kl NODE l!. I 
Zl T" f 81 
6 .-- 11' ~T '" 

SNAPSHOT_l4:PRINT NODE 4 

M' 
NODE 1 2 60 3 
NODE 2 0 2h [11:. 

NODE 1 0 78 0 
NODE 4 0 11 0 

KT NODE 1 
T I M' T 2 

T' T" 
Kl NODE 1 I Kl NODE 2 I 
ZIW 111 Zl T' 1 -e;-1 

T"' 
Kl NODE -4-T 
Z[ T" . 81 
5~ 11' -+1'"' 

SNAPSHOT_l3:LLINK(NODE 4):0 

T' 
K!NODE 1 I 
ZIM'Illl 

· 8 ,..__ Tr -+T '" . 

SNAPSHOT 15:RLINK(NODE 4):0 - '. 

Figure 17. SNAPSHOT 12 to SNAPSHOT 15 of Example 3 
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M' M' 
NODE 1 2 ~(JO 1 NODE 1 2 60 3 
NODE 2 () 24 4 NODE 2 0 24- 4 
NODE 3 0 78 0 NODE_3 0 78 0 
NODI 4 0 33 0 NODE 4 0 JJ 0 

K NODE 1 .. Kl NODE 1 
T M' I ~. Tl M' 2 

. T' T" T' 
Kl NODE 1 I KJNODE 2 I KlNODE 1 J 
ZIW I 111 Zl T' I S I Zl M' I 11 I 

8- Tr ~ T" .5- tr --. T' 

,_ 

SNAPSHOT_16:GO TO Z(RETURN) SNAPSHOT_17:GO TO Z(RETURN) 

M' M' 
NODE 1 2 6_0 3_ NODE l 2 160 3 
NODE 2 0 24 4 NODE 2 0 24 .l.j. 

NODE 3 0 78 0 NODE '3 0 !78 0 
NODE 4 0 33 0 NODE 4 0 '33 0 

Kl NODE 1 Kl NODE l 
T I M' ;:: T j M' 2 

T' T' 
Kl NODE 1 I Kl NODE 1 I 
Zl M' I 11 I Zl M' J 11 I 
6..-11~T' 7 ~ 11- T' 

SNAPSHOT_18:PRINT NODE 1 SNAPSHOT_l9:RLINK(NODE 1) ,o 

Figure 18. SNAPSHOT 16 to SNAPSHOT 19 of Example 3 



M' M' 
NODE 1 2 60 1 NODE 1 2 60 1 
NODE 2 0 24 4 NODE 2 021i ~ 
NODE '3 0 78 0 NODE 3 0 78 0 
NODE 4 0 '33 0 NODl -4 on- 0 

Kl NODE 1 .. K NODE 1 
Tl W I 2 . ' T M' 2 

T' T' 
KINODE 1 I KINODE 1 I 
ZIM' I 11 I 2 ~ 11 --. M' ZIM'l 111 

T"" 
·KI NODE 3 I 
Zl T' I 8 l 

~ ~ 11 - T"" 

SNAPSHOT_20:CALL T{RLINK{K)) SNAPSHOT_2l:ENTER T 

M' M' 
NODE 1 2 60 3 NODE 1 2 i60 '3 
NODE 2 0 2L Lt._ NODE 2 0 24 ~ 
NODE '3 0 7E 0 NODE '3 0 78 0 
NODE 4 0 3' j 0 NODE LJ. 0 .'31 0 

Kl NODE 1 Kl NODE 1 
Tl W 2 Tl M' '2 

T' T' 
Kl NODE 1 I KINODE 1 I 
Zl M' I 11 I Zl M'l 111 

'1""' 'T'"" 
KINODE '3 I K1NODE 1 I 
ZIT'I 81 ZlT' l -8 -1 

5 ,..__ 11 -+ T"" 6 E:-~ T"" 

SNAPSHOT_22:LLINK(NODE J}rO SNAPSHOT_2JrPRINT NODE 3 

Figure 19. SNAPSHOT 20 to SNAPSHOT 23 of Example 3 
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performed from snapshot 22 through snapshot 24 repeat that of snapshot 

13 through snapshot 15 with the exceptions that T"'' substitutes T11 ' and 

the DATA of NODE 3 is printed out in snapshot 23. Records T'"', T'. 

and M' will be deallocated after snapshots 25, 26, and 27 respectively. 

Finally, the two pointers of P.soa point to nowhere, and EX 3 is termi-

nated after snapshot 27. 

In this example, procedure T was called recursively. At each call 

of T, a new record contour, which is a copy of algorithm contour T, is 

allocated and initialized. At any moment during the execution of EX_3, 

if more than one copy of T exist, they all must have the same height. 

Stack Model 

In the stack model, a display and a data area are needed for each 
r. 170----

procedure at runtime. Gr:fes ___ {J)_ __ P_1.!~S~~h~_4;i._sJ'.lCl.Y._~~£_~Cl.S.h. __ p.J.:.Q_~e4g:r_~_:f.tl_ 

register, called ACTIVEAREA, to contain the address of the active dis-

play. All data within the active procedure can be accessed by using 

ACTIVEAREA and the display referenced by it. He also points out ea~p.~-

for the procedure; a location named STACKTOP containing the address of 

the top stack location just after this procedure data area has been 

allocated; the return address; the actual parameter Display address; 

the global Display address; the top stack location address at the point 

of call; the actual parameters themselves (or their addresses); and each 

block data area within the procedure. He defines the return address, 

the actual parameter Display address, the global Display address, and 

the top stack location address at the point of call be four implicit 
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M' M' 
NODE 1 2 60 3 
NODE 2 0 2/t- 4 
NODE 1 0 78 0 
NODE 4 0 '3'3 0 

Kl NODE 1 .. 
T I M' z .. 

T' 
Kl NODE 1 I 
Zl M' 111 

8 ~ 1r ~ T' 

T"" 
KINODE 11 
ZIT' I 8 I 

8- 1r ~ T"" 

SNAPSHOT_24:RLINK(NODE 3):0 SNAPSHOT_25:GO TO Z(RETURN) 

M' 
NODE 1 2 60 1 
NODE 2 0 24 4 
NODE 1 0 78 0 
NODE 4 0 '3'3 0 

Kl NO Di 1 
Tl M' .z 

NULL E-- 1r ~ NULL 

11 ~ 11' ~ M' 

SNAPSHOT_26sGO TO Z(RETURN) SNAPSHOT_271TERMINATE 

Figure 20. SNAPSHOT 24 to SNAPSHOT 27 of Example 3 
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(';?' t;-' /./If-

parameters. Use EX_l in Chapter I as an example, if EX_l is executed 

by the stack model, the implicit parameters when procedure R is called 

in snapshot 8 are: 

(i) return address; 

(ii) procedure B's data area address; 

(iii) procedure C's data area address; 

(iv) STACKTOP at the call. 

Abd-alla and Meltzer (1) implements a push down~l<:. to solve the 

problems caused by "reentrant" procedures. The "reentrant" procedure 

is a kind of subroutine which can be called by one process before some 

other process has completed using that subroutine. They ultilizes_a 

fixed maximum amount of storage allocated to each reentrant subroutine. 

The subroutine then allocates some of this space to each call made to 

it. After a call is completed, the subroutine frees the space allocated 

to that particular call and can reallocated the space to a subsequent 

call. Thus, the calls are completed in the reverse order in which they 

are called: that is, the first call made to the subroutine is the last 

call to be completed. Since only a fixed amount of storage is allocated 

for the push down stack, the mechanism to test stack overflow must be 

developed. 

Comparison 

The differences arising from the storage organization and the soft-

ware mechanisms between the stack model and the contour model are dis-

cussed briefly below. 

In the stack model, the data area of each block is allocated on the 

top of the data area of the procedure which immediately encloses that 
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block. In the contour model, the record contour of a block is allocated 

separately from that of the procedure enclosing it. 

In the stack model, the display and the data area of each procedure 

are put together, and at least one storage location serves as the stack­

top to point to the address of the last memory location allocated for 

that data area. In the contour model, only those variables declared 

explicitly in a procedure and perhaps the return address reside in the 

record contour of that procedure. 

In the stack model, the display of each procedure is stored in the 

first few locations of its data area and will not be changed until that 

data area is deallocated. In the contour model, the display of each 

procedure is stored in the executing processor's display registers and 

will be destroyed when the site of activity is changed. 

When a procedure is called, there are at least four implicit para­

meters must be passed to and stored in the data area of the called 

procedure in the stack model. But this does not happen to the contour 

model, since even the return address is treated as an actual parameter 

(at the model level) and passed to the data area of the called procedure. 

~ The contour model simplifies the execution of a block enter or a 

block exit. When a block is entered, its record contour is allocated 

and adjoined to the top of the active environment. When a block is 

exited, its record contour is removed from the top of the active display 

register. 

Neither the actual display nor the global display is needed in the 

contour model. Since the processor's two pointers, P.soa.ep and P.soa.ip, 

always specify the current site of activity, the active display can be 

created through the static link of each record contour and the height 
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of the instruction being executed. The AHPL description in snapshot 12 

of example 1 in Chapter I is an example to construct a new display. 

In the contour model, there is no limitation on the number of calls 

to a reentrant procedure, and there is no restriction that the first 

call on the reentrant procedure be completed last. 

Modifications 

In Johnston's paper, array allocation is never mentioned. In EX 1 

and EX_2, array elements are treated as different variables,,but this 

is not the true situation in the contour model. If we regard an array 

as a special matrix, then the number of dimensions of that array is 

always known at compilation time, but not necessarily the number of 

values in each dimension if a flexible array~ is implemented. The way 

to allocate an array is to allocate an array descriptor from the 

algorithm contour in which that array is declared at compilation time , 

and allocate the array itself somewhere else at runtime. The contents 

of the array descriptor may be left unspecified for a flexible array, 

but will be initialized at runtime. Hedrick (5) implements a set of 

storage locations called a "heap" to store the elements of an array at 

runtime. The following from (5) demonstrates the allocation of arrays. 

Assume that an ALGOL 68 particular program contains the declara­
tions: 
flex (1:0) real Al, A2, A3; and the assignations; 
Al :=(1.0, 2.0); 
A2:=(3.0, 4.0, 5.0); 
A3:=(6.0); 
These assignations set new bounds for Al, A2, and A3 respectively 
and cause three consequtive allocations on the heap (p. 25). 

lrf the size of an array is not fixed during runtime, then it is 
a flexible array. For example, if the dimension of an array declared 
iu a,block as A(I,J,K), where I,J, and K are variables, then A is a 
tl.ex1ble array. 
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heap 1.0 jz.o 13.0 14.0 ls.o 16.oj --~ 
--

B B ~ 
Figure 21. Heap 

If the heap were empty prev·iously, it would now look as shown in 

Figure 21 after Al, A2, and A3 are allocated on the heap. 

Statement of the Problem 

From the previous paragraphs, it is obvious that the contour model 

has at least three advantages over the stack model. They are: 

(i) ease of multiprocessing; 

(ii) it is easier for the compiler writer to generate code ,;.. the hard-

ware handles problems of block entry and block exit; 

(iii) pseudo-parallel processing is easier. 

The purpose of this paper is to make a preliminary design toward 

a hardware implementation of the contour model. Since many places in 

Johnston's paper are either left for future use or left unspecified. 

There are some difficulties when implementing the contour model in the 

hardware. The objective of this paper is mainly to design the central 

processing unit of the contour model. This model will be called CM 1 

in this paper for convenience. It specifies: 

(i) how the different types of data generated and stored in the main 

store, how each one of these basic data can be accessed and transferred 

to the destination register properly; 



(ii) how the virtual processors implemented together with the central 

processing units to handle multitasking or parallel processing; 

(iii) how the instructions of CM 1 can be fetched, executed, and 

sequenced. 
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CHAPTER II 

STORAGE ORGANIZATION AND HARDWARE REGISTERS 

The contour model is a cell-based model (10), each of its data 

items is represented as a cell. A cell is composed of two parts: 

organization and residence (10). The organization is used to describe 

the general information of that particular cell. The residence consists 

of a set of subcells and each subcell consists of 16 bits. Several sub­

cells contain one of the basic items: an integer, a label, or a pointer. 

If a cell contains more than one basic item, then it is a compound cell. 

Contours and virtual processors are examples of compound cells. The 

storage structure of each type of datum was shown in Figure 3, and is 

discussed in detail below. 

Algorithm 

An algorithm is a finite set of instructions which accomplish a 

particular task (9). The terms program and algorithm are used inter­

changeably when the program specifies the algorithm. 

One programming language used with the contour model is Contour 

Model Assembler Language (CMAL) (11). A computer system with a CMAL 

translator converts those languages which have the necessary or potential 

contour retention properties into CMAL. If the CMAL is a two pass 

system, CMAL creates a symbol table, which includes all the variables 
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and the names of algorithm contours, from the names used in the source 

statements and also checks for certain possible conditions and diagnostic 

messages during the first pass. During pass two, CMAL again examines 

each of the statements in the source program along with the symbol table 

and produces a binary-coded program and its algorithm contours (7). Instead 

of discussing CMAL and its translator, which are beyond the scope of this 

paper, some basic characteristics and its storage structure of algorithm 

contours are presented here. 

The algorithm models the static portion of the program (5). It is 

specified by the syntactically correct code of that program. For each 

procedure or each block of the program, there is a corresponding algorithm 

contour. Algorithm contours remain invariant during the execution of that 

program and serve as templates for the formation of the contour structure 

of records (10). It is conceptualized that the algorithm contains a 

flowchart network of instructions embedded in its nested set of contours 

(10). 

The algorithm is treated as a data structure whose basic elements 

are storage cells (5). As shown in Figure 3, the algorithm contour con-

tains several subfields, each of its functions is shown in Table II. 

Algorithm contours and the binary-coded program may be stored 

separately in the main store. This implies that the instructions of the 

algorithm to be executed are not stored physically in the main store as 

parts of the algorithm contours, although they are conceptually embedded 

in the nested set of algori'thm contours. The relationship between the 

algorithm contours and instructions are discussed later in this chapter. 



~---A_L_c_o_L_6_o __ ~·~ ,L. ____ c_MAL ____ _JI ~~---------c-MAL----------~ _ _-1l Translator f-; Source Program 

CMAL 
Source Program 

Symbol 
Table Listing 

CMAL Pass 1 Symbol 
r r--"7 Table Listing 

. Relocatable/ Absolute 
.. I Object Program 

H CMAL Pass 2 

Algorithm contours 

Figure 22. CMAL Processing by Using an 
ALGOL 60 Program as an 
Example 
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SUB FIELD 

type 

valid bit 

height 

size. 

static link 

antecedent link 

array subcell(s) 

TABLE II 
. -. ·-·· 

ALGORITID1 CONTOUR 

BIT 
POSITION 

0-2 

3-14 

15 

16-22 

23-31 

32-47 

48-63 

from 64 

,¥ 
/ 

FUNCTION(S) 

Type is used to specify the 
subsequent subcells are treated 
as an algorithm contour. The 
type code of algorithm contour 
is 111. 

For future use. 

The valid bit of any algorithm 
contour is set off. 

In contour model, it is nece­
ssary to identify each contour 
of the nested set of contours. 
Not only for checking purpose, 
the height is also used to 
update the display registers 
if necessary. The range of 
the height of any algorithm 
contour can be from 0 to 127. 

For the storage allocation for 
the record contour, size spe­
cifies how many subcells are 
needed to construct that algo­
rithm contour, so the same 
number of subcells are needed 
for any copy of it. 

The static link of an algori-
thm contour points to the 
algorithm contour which immedi-
ately enclose it. 

This sub field is left unspeci-
fied for any algorithm contour. 

Each subcell of an algorithm 
contour contains either a local 
identifer or a return label. 
In algorithm contours, parts 
of the values of their subcells 
may be uninitialized. 
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Using the program EX_l in Chapter I as an example, the algorithm 

contour A has four identifiers: one integer Y and three labels X, B, 

and Z. , At the time A is allocated, Y has not been initialized yet, 

and X, B, Z are three invalid lables. Since algorithm contours remain 

invariant and will not be deallocated until the execution of that 

algorithm is over, there is no need to use a reference count in the 

algorithm contours for deallocation purposes. An algorithm contour 

contains an antecedent link, though it is left unspecified, either for 

future use or for a record contour can be constructed easily from it. 
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The storage structure of the algorithm contour A is shown in Figure 23 

with the assumption that the number on the right side of each instruc­

tion of EX 1 is the address of that instruction stored in the main store. 

Record 

In the stack-based model, a data area for storing display registers, 

actual parameters, implicit parameters, local variables, and dope 

vectors is needed for each procedure at runtime (3). In the contour model, 

a record contour plays this role. Each contour of the record of execu­

tion is a copy of some specific algorithm contour with some modifications 

to the contents of its subcells. If record contours A' and B' are copies 

of algorithm contours A and B, and if B' is immediately enclosed by A', 

then B is necessarily immediately enclosed by A. 

The set of record contours model the sematics of the program (5). 

When an active processor is entering a block or a procedure, a copy of 

that corresponding algorithm contour is made: that is, a record contour 

is allocated. The algorithm contour is defined to be the antecedent of 



57 

111 0 0000001 000001011 address of M 

a b c d e f g 

011 0 0 ---------------- 000 

h i j k 1 m n 0 

0 0 ---------------- 011 ----------- 1 0 ---------------- 00000000000 

p q r s t u v w x 

00011 011 ----------- 0 0 ---------------- ----------------

X y z @ If $ 

a: data code of algorithm contour is 111 
b: unspecified field for future use 
c: valid bit of algorithm contour is always set off 
d: height of A" is 1 
e: algorithm contour contains 11 subcells 

¢ 

f: the static link of A points to algorithm contour M 
g: the antecedent link of any algorithm contour is left unspecified 
h: subcell X is a label, the data code of a label is 011 
i: in this paper, inhibit boxes are left unspecified 
j: the present bit of X is set off for both of its two pointers are 

not initialized 
k: algorithm contours only contain invalid labels 
1: the environment pointer of X has not been initialized yet 
m: the instruction pointer of X has not been initialized yet 
n: subcell Y is an integer, the data code of an integer is 000 
o: the same as i 
p: Y has not been initialized yet, its present bit is set off 
q: Y is invalid 
r: Y has not been initialized 
s: subcell B is a label 
t: 
u: 
v: 
w: 
x: 
y: 
z: 
@: 
II: 
$: 
¢: 

the same as i 
the present bit of B is 
the same as k 
the environment pointer 
the instruction pointer 
subcell Z is a label 
the same as i 
the same as j 
the same as k 
the environment pointer 
the instruction pointer 

Figure 23. An 

set on for its ip is not null 

of B has not been initialized 
of B points to instruction 3 

of z points to nowhere 
of z has not been initialized 

' 

Example of The Data Structure 
of An Algorithm Contour 

yet 

yet 
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the record contour if the latter is a copy of the former, while the 

record contour is the decedent of the algorithm contour (10). When an 

active processor is exiting an algorithm contour, the record contour 

pointed by the environment pointer will be deallocated after executing 

that EXIT instruction. Since the record contours will be allocated and 

deallocated during the execution of an algorithm, they form a set of 

time-variant data structures. 

Record contours are treated as data structures whose basic elements 

are storage cells. As shown in Figure 3.e., the function and bit posi­

tion of each subfields are the same as those of an algorithm contour 

except two subfields: the reference count and the antecedent link. 

The reference count is maintained equal to the number of pointers 

which point to the record contour for the purposes of deallocation (10). 

As mentioned in Chapter I, whenever a record contour is allocated, the 

service routine GETAREA (3) returns the address of the first memory 

location available for that record contour to the pointer register of the 

executing processor, and the reference count of that record contour is 

increased by one which is the consequence of the pointer in the pointer 

register. If a record contour has a zero reference count, it can no 

longer be accessed and will be deallocated during the next garbage collec­

tion (3, 5, 9). The third bit through the ninth bit of a record contour 

are reserved for the reference count, so a total of 127 pointers to a 

record contour are allowed. 

Each record contour, say C', is a copy of some specific algorithm 

contour, say C, then C is the antecedent of C', or C' is the decendent 

of C. One algorithm contour may have more than one decendent, but each 
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record contour has only one antecedent (10). The antecedent link of a 

record contour specifies its antecedent. As in Chapter I, ~ is used to 

denote a processor, its two pointers (ep and ip) are the fqcus of current 

control, the antecedent of the record of execution pointed by ep must 

immediately enclose the 'instruction pointed by ip at any moment. 

The valid bit of a record contour is used to specify its accessi­

bility. When a record contour is newly created and initialized, its 

valid bit is set on for it becomes the innermost environment. At any 

time, only those records of execution with their valid bits on constitute 

the current environments: that is, their subcells can be accessed by the 

processor through its display registers. Record contours with their valid 

bits off cannot be accessed. 

If record contour C' is a copy of its antecedent C, and ~· contains 

no arrays, the formation of C' is described as follows: 

(i) the subfield size of C decides the number of subcells (excluding the 

organization -part) needed for the allocatio~ of C'; 

(ii) if C is the associated algorithm contour of a called procedure, 

then the contents of those subcells in C' are copies of actual parameters; 

(iii) if C is an algorithm contour with its height equal to zero, or C is 

an algorithm contour of a block, then the contents of subcells in C' are 

copies of the corresponding subcells in C except for those subcells 

holding a label. Since any algorithm contour contains only incomplete 

labels; that is, labels consist of a null environment pointer (ep) and 

a non-null instruction pointer (ip), the conversion of those incomplete 

labels into complete labels during the allocation of a record contour is 

necessary. The conversion co~sists of coping the ip of the corresponding 
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incomplete label and inserting an ep pointing to the newly allocated 

record contour. 

Again, using program EX_l as an example, the storage organization 

of the record contour A' after it is allocated is shown in Figure 24. 

It is the direct result of those steps in snapshot 5 of EX 1 in 

Chapter I. 

Processors 

In the contour model, there are additional elements together with 

the 'ep and the ip to make the processor serve as the locus of the execu-

tion of an algorithm. In order to enable the contour model to handle 

simulation languages, operating system processes, multiprogramming, or 

coroutine (6), a set of processors are implemented. A processor in 

this scene is not a hardware processor, but rather a virtual processor 

and a set of hardware registers in the CPU. A contour model with 8 

virtual processors VP. (0 < i < 7), and three central processing units, 
1 - -

CPU. (0 ~ j ~ 2), as an example is shown in Figure 25. 
J 

In Figure 25, VP 2 and CPU0 form a proces~or pair (VP 2 ,cPu0), 

which is executing PROCESS I, while (VP5 ,CPU2) and (VP 3 ,CPU1) are 

executing PROCESS II and PROCESS III, respectively. Since this model 

contains three central processing units, there are at most three processes 

currently being executed: that is, there are at most three of the eight 

virtual processors awake, while the rest are either asleep or terminated. 
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100 0000001 1 0000001 000001011 address of M' address of AOll 

a b c d e f g h i 

----------- 1 1 address of C' 0000000000001001 000 ----------- 0 0 

j k 1 ni n 0 p q r 

0000000000000001 011 ----------- 1 1 address of A' 0000000000000011 

s t u vw X y 

011 ----------- 1 1 address of c' 0000000000001101 

z 

a: 
b: 
c: 
d: 
e: 
f: 
g: 
h: 
i: 
j: 
R: 

1: 
m: 
n: 
o: 
p: 
q: 
r: 
s: 
t: 
u: 
v: 
w: 
x: 
y: 
z: 
@; 
tf: 
$: 
¢: 
*: 

@ ¢ 

data code of record contour is 110 
the reference count of A' is 1 
unspecified field 
valid bit is set on 
height of A'is 1 
record contour A' contains 11 subce11s 
the static link of A' points to M' 
the antecedent link of A' points to A 
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sub cell X· .is a label, thP. data code of a label is 011 
in this paper the inhibit boxes arP. lP.ft unspecified 
the present bit is set on whenever that subcell contains a 
complete label 
record contours contain only valid labels 
the environment pointer of X points to record contour C' 
the instruction pointer of X points to instruction 9 
subcell y is an integer, the data code of an integer is 000 
the same as j 
the present bit of Y is set on 
the valid bit of Y is set on 
the value of Y is 1 
subcell B is a label, the data code of a label is 011 
the same as j 
the same as k 
the same as 1 
the environment pointer of B points to record contour 
the instruction pointer of B points to instruction 3 
subcell Z is a label 
the same as j 
the same as k 
the same as 1 
the environment pointer of z points to record contour 
the instruction pointer of z points to instruction 13 

Figure 24. An Example of The Data Structure 
of A Record Contour 

A' 

C' 
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Figure 25. Multiprocessors 

Virtual Processor 

A virtual processor is not a set of devices in a model; rather, 

a sequence of memory locations, which is used to realize what is called a 

site of activity (SOA). At any time, a valid virtual processor is execu­

ting or about to execute a process, which is identified by the SOA of 

that virtual processor. The function and the dimension of each subfield 

of a virtual processor are shown in Table III. 

The reference count of a virtual processor P.ref has the same func­

tions as that of a record contour. The state of a virtual processor 

specifies its current state. The site of activity of a virtual processor 

P.soa contains a label, which specifies both the environment and the 

instruction being executed or to be executed. The instruction height 

of a virtual processor contains a copy of the height of the instruc-

tion pointed by P.soa.ip. Besides the pointer register P.ptr, there 

are two other pointer registers containing the general purpose register 

pointer P.gpr.ptr and the display register pointer P.dsp.ptr separately. 

For general purposes (14), 16 pseudo working registers are used for 

each valid virtual processor. Each general purpose register P.gpr.i, 



SUBFIELD 

type 

reference 
C<!)Un t 

state 

TABLE III 

VIRTUAL PROCESSOR 

BIT 
SYMBOL POSITION 

P.type 0-2 

P.ref 3-9 

P.sta 10-11 

FUNCTION(S) 

deallocation 

P.sta=OO 
P.sta=Ol 
P.sta=lO 
P.sta=ll 

invalid 
terminated 
asleep 
awake 

site of P.soa 16-47 designates the current 
environment and the 
address of the instruc_ 
tion being executed 

activity 

label P.lab 48-79 contains the new site 
of activity when a 
procedure is called or 
used as temporary 
storage 

register 

instruction P.ih 
height 

80-86 specifies the height 
of the instruction 
pointed by P.soa.ip 
and is used to update 
the display registers 

pointer P.ptr 96-111 contains the address 
of the memory location 
from which a set of 
subcells is allocated 
by system service 
routine GETAREA 

register 

general 
purpose 
register 
pointer 

display 
register 
pointer 

P.gpr.ptr 112-127 points the pseudo GPRo 
if the virtual pro 
cessor is either awake 
or asleep, and is set 
equal to null otherwise 

P.dsp.ptr 128-143 if P.sta is either 
awake or asleep and 
P.ih=n, then P.dsp.ptr 
points to P.dsp.n-1, 
and is set equal to 
null otherwise 
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0 2 i 2 15, is a 16-bit storage location, so a total of 256 consecu-

tive bits are needed for a valid virtual processor, The address of P.grp.O 

is stored in the general purpose register pointer register P.gpr.ptr. 

The reason that a virtual processor contains a general purpose register 

pointer instead of a set of general purpose registers is that there is 

no need to use 32-byte storage cells for an invalid or a terminated 

virtual processor. Since the number of display registers of a virtual 

processor fully depends on the value of P.ih, also it wastes memory 

locations to keep display registers for an invalid virtual processor, 

it is better for a virtual processor to hold a display register pointer 

which points to the current innermost environment. As shown in Figure 

26, P.dsp.ptr contains the address where P.dsp:3 located if the instruc­

tion height is set equal to 4. If P.ih is 0, then set P.dsp.ptr equal 

to null. The hexidecimal number on the left side of each subfield is 

the address of that memory location. 

When a virtual processor is allocated, its state is initialized 

invalid and all its other subfields are initialized empty. When an 

invalid virtual processor becomes a valid virtual processor through 

the execution (by another valid virtual processor) of the INITIALIZE­

PROCESSOR instruction, discussed in Chapter IV, its state becomes one 

of the three possible states: awake, asleep, or terminated, and its 

site of activity register contains a valid label which designates both 

the environment and the address of the first instruction of a process 

to be executed at that time. A valid virtual processor is deallocated 

only when its reference count is 0, the storage locations reserved for 

its display registers and its general purpose registers must be returned 
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Figure 26. The Storage Organization of a Virtual Processor 
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to the free storage pool at the same time. 

When CM_l is ready to execute a process, the first thing for the 

system to do is to initialize a single virtual processor. If P is the 

virtual processor used in the snapshot 0 of any of the three examples 

in Chapter I, the display register pointer P.dsp.ptr is set null and its 

other fields are set as follows: 

P.sta: awake; 

P.soa.ep: null; 

P.soa.ip: the address of the first instruction of the process to be 

executed by P; 

P.lab.ep: null' 

P .lab. ip: null; 

P.ih: empty; 

P.ptr: null; 

P.grp.ptr: a pointer to a memory location from which 16 pseudo general 

purpose registers are reserved; 

P.ref: equal to 1. 

The reference count of P is set equal to 1, reflecting the fact that the 

awake state must have a retentive effect (10). 

At any moment, the addresses of all valid virtual processors must 

be kept, through which they can be retrieved. In CM_l, a virtual process­

or table is necessary. Its functions are mostly like that of a symbol 

table except it is a dynamic data structure. For convenience, indexes 

are used to distinguish different virtual processors. For example, three 

virtual processors, VP1 , VP 2, and VP3 , are currently valid with their 

states awake, asleep, and terminated, respectively, then the virtual 
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processor table looks like Figure 27.a. If some time later, a new 

virtual processor VP4 is allocated, then the system service routine not 

only returns the address of the first memory location allocated for VP4 

to the pointer register P.ptr, but also to the virtual processor table, 

as shown in Figure 27.b. In Figure 27.b, the address of each virtual 

processor is arbitrarily chosen. Since VP4 is just allocated, its 

state is still invalid. 

The virtual processor table is not fixed, its size is increasing 

or decreasing from time to time if some virtual processors are allocated 

or deallocated. If any virtual processor is changed to a new state, the 

wirtual processor table must be updated at that time also. 

There are many advantages of keeping a virtual processor table. 

Simplifying the service routine when intercommunication between virtual 

processors is necessary is an example. Also, when a new virtual processor 

is to be allocated, the virtual processor table can furnish the information 

regarding whether there is a terminated virtual processor. If there is, 

then the allocation of that new virtual processor is not necessary since 

an update of the terminated virtual processor creates a new virtual 

processor. 

Central Processing Unit 

In CM_l, a central processing unit (CPU) and a virtual processor 

(VP) form a processor pair (VP.,CPU.), here i and j are indexes of virtual 
l J 

processor and central processing unit, respectively. So, CM_l can execute 

in parallel as many processes as the number of central processing units 



INDEX 
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INDEX 
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2 
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STATE ADDRESS (hexidecimal) 

11 0402 

10 012A 

01 0234 

a} Virtual Processor Table 
Before VP4 is Allocated 

STATE ADDRESS (hexidecimal) 

11 0402 

10 012A 

01 0234 

00 0374 

b) Virtual Processor Table 
After VP 4 is Allocated 

Figure 27. Virtual Processor Table 
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and as many tasks as the system permits virtual processors. 

In CM_l, CPU is the hardware device which is responsible for the 

execution of a process with the assistance of a virtual processor. 
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When a program is ready to be executed, the site of activity of that 

process is specified by P. soa of that associated processor. If the instrttc­

tion pointed to by P.soa.ip is not the first instruction of a pro­

gram, then the contents of all subfields of the associated virtual 

processor must be transferred to appropriate registers in CPU first, 

then CPU can execute that program properly. 

Before presenting the method of how a processor pair executes a 

program, a set of hardware registers in the CPU must be defined first, 

then the concept of processor pair can be discussed in detail in 

Chapter III. 

In this section, we mainly deal with the dimensions of those working 

registers and the data path between them. Some of the functions of each 

of those registers will not become clear until the processor pair and 

the control unit discussed in the next two chapters are covered. 

There are many different kinds of registers needed in the CPU for 

different purposes. A register can be a shift register, a rotate regi­

ster, an accumulator, a status register, an index register, a floating 

point register, a general purpose register, or one of the control regi­

sters. In this paper, only control registers will be discussed in detail, 

though most other kinds of registers are still used in the CPU of CM 1 

in their usual ways. 

Memory Access Registers. A memory address register (MAR) is used 
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to contain the address of the memory location to be accessed when either 

a read instruction or a write instruction is being e~ecuted. Associated 

with the MAR, a memory data register (MDR) is used to contain the 

information which is either to be stored in or to be read out from the 

location specified by MAR. Both MAR and MDR are 16-bit registers. 

Site of Activity Register. The address and the environment of the 

instruction to be executed are always specified by the site of activity 

registers (SAR). It is a pointer pair register. Its first 16 bits, 

which is denoted by SAR0 , contains a pointer pointing to the current 

innermost environment. Its second 16 bits, which is denoted by SAR1 , 

contains a pointer pointing to the instruction to be executed. 

Instruction Register. The instruction register (IR) contains the 

instruction being executed. It is a 6-byte register. The first two 

bytes, denoted by IR0 , contains the operation code and the instruction 

height. In case the type of the instruction being executed is other than 

a register-register instruction, the second two bytes, denoted by IR1 , 

contains either the first operand or the address of the first operand of 

that instruction, and the third two bytes, denoted by IR2 , contains the 

second operand or the address of the second operand. When a register­

register instruction is being executed, the two bytes of IR1 contain the 

two indexes of the two general purpose registers,respectively. 

Organization Register. Since each type of data has a different 

storage organization, a 32-bit organization register is needed to furnish 

the information about what type of data being accessed and how to access 
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that type of data. Since the organization portion of a particular type 

of cell is composed of different subfields and each subfield furnishes 

important information for that particular cell to be accessed correctly, 

the organization register has multiple functions in CM_l. For example, 

the tag of an instruction specifies whether a direct or an indirect 

address is used in that instruction. Another example is the size of a 

record contour, it specifies how many subcells are in the residence part 

of a record contour, so how many memory locations are needed when it is 

to be allocated or how many memory locations will return back to the free 

poolwhenit is deallocated can be decided. But those subfields cannot 

be used properly until the type is decoded first. That is, always load 

the first two bytes of the target cell in a memory reference instruction 

to the leftmost 16 bits of the organization register (OR0), decode the 

first three bits of OR0 and decide the type of the target cell: if it is 

an integer, a pointer, or a label, then the rest bits of OR0 contain 

inhibit boxes, present bit, and valid bit; if it is an instruction, the 

rest bits of OR0 contain the format and the tag of that instruction; if it 

is either an algorithm contour or a record contour, load the second two 

bytes of the target cell into the second 16 bits of the organization 

register (OR1), so the rest bits of OR0 contain the reference count, and 

OR1 contains the height and the size; if it is a virtual processor, the 

rest bits of OR0 contain the reference count and the state. 

Label Register. The label register is used when a new label is 

created. The lable register is also used to contain the return address 
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when a procedure is called. Since a valid label consists of two pointers, 

an environment pointer and an instruction pointer, two 16-bit subregisters 

are needed. The first subregister (LR0) contains the.environment pointer 

and the second subregister (LR1) contains the instruction pointer. 

Pointer Registers. The functions of subfields P.ptr, P.gpr.ptr, and 

. P.dsp.ptr of a virtual processor were discussed before. In the central 

processing unit of CM_l, three registers PR0 , PR1 , and PR2 play the same 

roles as P.ptr, P.gpr.ptr, and P.dsp.ptr do in a virtual processor, 

respectively. Each of them is a 16-bit register. 

Static Pointer Register. The static pointer (link) register (SPR) 

contains the static link of the instruction being executed currently. 

The function of SPR is used to check if the current instruction is well 

organized: that is, to check if the algorithm contour pointed by SPR 

is the antecedent of the currently innermost record contour. If it is 

not, then an interrupt will be caused. The length of SPR is 16 bits. 

Data transfer between registers in the CPU is necessary during the 

execution of an algorithm. In CM_l, a common bus connects registers 

and main store. Each register has an "out" gate and an "in" gate 

which enables us to put information on the bus and take it off the bus 

when and where we want (2). 

The block diagram of a central processing unit, together with the 

mainstore, is drawn in Figure 28. The common bus .is a 16-bit OR gate. 

Instructions 

]'h_~-~~-n_5~_ur Model Assembler ·Lang':lage {CM.A,L) is left .l1nsp.~C::if;L~-~ 
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in this paper. However, for the purpose of discussing its storage 

organization, some basic ideas of CMAL are presented here. At least 

five formats of instructions appear in CMAL, as shown in Figure 29. 
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In Figure 29, the instruction length and the format code of each format 

of instructions are also shown, and the number of bits in each subfield 

of tne instruction is shown in the upper right-hand of each subfield. 

The format of CMAL offers the information to the control unit 

regarding how many bytes are to be accessed and transferred to appropri­

ate working registers in the CPU. The static link and the instruction 

height are used to build an appropriate relationship between the instruc­

tion, say I, and the algorithm contour, say C, which immediately encloses 

I, the static link of I must point to C and the instruction height of I 

must be one greater than the height of C. The instruction height plays 

an important role in CM_l. At any moment, the available display register 

with the highest index is equal to the instruction height of the instruc­

tion being executed minus one. In other words, the display register with 

index i always points to a record contour with height i. As mentioned 

earlier, the algorithm contour and its associated instructions can be 

stored in separate memory locations, however, the relationship between 

these two data structures must be specified by their height~ so the 

algorithm can be executed properly. The successor link of an instruction 

points to the instruction to be executed next under normal conditions. 

In CM_l, successor links and lables are used for the processor's flow of 

control. The display register index and the subcell index are used to 

determine the address of an operand in an instruction which accesses 

memory. The memory location with its address specified by both the 
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D: unspecified field E: static link F: successor link 
G: operation code H: instruction height 
I: display register index J: subcell index 
K: general purpose register index 
L: immediate operand 

Figure 29. Instruction Format 



display register with index i and the subcell with index j contains. 

either an operand or the address of an operand fully depend on the tag. 

If it contains an operand, then direct address is used, if it contains 

the address of an operand, then indirect address is used. For example, 

in the snapshot 3 of EX_2 in Chapter I, store the immediate operand 2 

into subcell B, the corresponding CMAL will look like 

STI 0(3) ,2, (2.1) 

where 0 is the index of the display register (since record contour M' 
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is pointed by P.dsp.O), the integer 3 in the parentheses is the subcell 

index (since subcell B is the third subcell in the residence part of 

record contour M' excluding the organization part of record contour M'), 

and the integer 2 is the immediate operand. The organization part of a 

record contour consists of 8 bytes, so the effective address of B is 

effective address of B = (p.dsp.O) + 8 + 2 x (3-1) (2.2) 

here (P.dsp.O) is the contents of P.dsp.O, and 2 x (3-1) is the offset 

of subcell Bin record contour M'. · Each subcell is 2 bytes 

in length and the third subcell means there are two subcells before it. 

The statement (2.2) is the effective address of subcell B if direct 

address is specified by the tag of the instruction (2.1). Other methods 

through which an operand can be accessed is by using the pointer register 

or a general purpose register which contains a pointer to somewhere 

in the main store. It is not difficult to develop variants and extensions 

of addressing methods (10). The effective address of an operand are 

discussed in detail in Chapter IV. 



Allocation and Deallocation 

The storage allocation and deallocation of record contours and 

virtual processors are necessary when an algorithm is being executed. 

Since each record contour is a copy of some algorithm contour, 

which is allocated at compile time,with the number of subcells needed 

specified in its size, so a record contour occupies the same number of 

memory locations as its antecedent does. If a virtual processor is 

77 

to be allocated, its display registers will not be allocated until its 

height is initialized. The storage allocation can be accomplished by 

using any one of the three methods: First Fit, Best Fit, or Buddy 

System. The details of these three methods are beyond the scope of this 

paper, so only their basic ideas are presented here. If the system 

service routine GETAREA is called to request a block of memory of N sub­

cells, First Fit will search down the list of free blocks finding the 

first block containing more than or equal to N subcells; Best Fit will 

search down the list of free blocks finding a free block containing sub­

cells as close to N as possible, but not less than N; while the Buddy 

System will search down the available list, each of which is a set of 

free blocks of equal size (a power of 2), finding the list whose elements 

containing no less than N subcells, then taking the first block of that 

list and repeatedly dividing that block if necessary until finding a 

subblock of.smallest size but still greater than or equal toN (12, 13). 

In CM_l, any one of the three methods above can .be used. 

The reference count in the data structures discussed in this paper 

is used mainly for deallocation purpose. When any data structure possesses 
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a reference count equal to 0, then the memory location it occupies 

will return to the available storage pool during the next garbage 

collection. If storage compaction is necessary, then the implementation 

of a relocation register associated with each process is needed to find 

the effective address of each subcell. 

Heap 

If a procedure or a block contains a n-dimension array 

upper bounds, respectively, then its algorithm contour contains an 
""'-... .. --·<·--- -· 

array descr~J>_tO_I_ (a dope vect()r). If the .lower and upper bounds of an 
---~---.. ·-·~- -~ _,_____ - .- --------- ---------·--· 

array are known at compilation time, then CM 1 can allocate storage cells for 

the array within the contour and generate the code for referencing the 

array elements using the lower and upper bounds. If the bounds are not 

known until runtime, a fixed size of space (depending on n) is allocated 

to the descriptor in the algorithm contour with which the array is 

associated. Although the contents of that space are left unspecified, 

the storage cells for the array itself will not be allocated until the 

procedure or the block in which the array is declared is entered. The 

reason for a fixed amount of space can be allocated for an array in the 

algorithm contour is that its dimension is always known at compilation 

time (3). 

The elements of an array which is located in continuous memory space 

are placed either in ascending or descending order, either in row major 

or in column major (3). The usual way is to store them in a data area by 

row and in ascending order. For example, if A(i,j •••. l,m) is the 



element to be accessed, then its address is found to be 

+ (m-1 ), 
n 

where BASELOG is the address of A(l,l, ... l) and d1=u1-L1+1, d2= 
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(2.3) 

u2-L2+1, .•• , d =U -1 +1. For convenience, the element's address can be 
n n n 

factored and it turns out to be 

BASELOG - (( ... ((Ll xd2+L2)xd3+L 3)xd4 +. •• +Ln-l)xdn +Ln) 

+ ( ... ((ixd2)+j)xd3+ ... +l)xdn+m (2.4) 

If the bounds of A are known, then the middle term in (2.4) is a 

constant while the third is a variant (3). 

With the knowledge of how to find the address of an element in an 

array, it seems natural for an array descriptor to have the structure 

as shown in ~igure 30. 

n 

L 
n 

BASELOG 

u 
n 

d CONSTANT 
n 

Figure 30. Array Descriptor 

If the bounds of an array are known at compilation time, then the 

algorithm contour with which that array is associated contains an array 
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descriptor of which subfields are properly initialized, but the.data 

structure of the array itself will not be allocated until the procedure 

or the block in which the array is declared is entered. This·means 

the B~~-~LOG i._§_ __ j,§!_ft unspecified unt.il e:){ect~.t:iontil!le· If the bounds 
,........ ' ····-·---·····--

are not known at assembly time, an uninitialized array descriptor is 

allocated within the associated algorithm contour. T~~_!_!_extlll~_.§-X.!~X 

set of subcells which, in theory, are not associated with any contour (5). 

In the case of flexible arrays, the base address points into the heap 

and the values of Li and U. in the descriptor are changed as required. 
. 1 

It is sometimes necessary to change the base address as well (5). 

Summary 

(1) The algorithm.contours model the static portion of the programs. 

(2) The set of record contours model the semantics of the programs. 

(3) Record contours are copies of algorithm contours, a record contour 

has the same data structure as its antecedent. 

(4) A virtual processor consists of a set of pseudo-registers which 

are allocated in consecutive memory locations except its display 

registers and general purpose registers. 

(5) The Central Processing Unit (CPU) is a set of hardware devices. 

CPU and an virtual processor constitute a processor pair (VP, CPU). 

(6) If the bounds of an array are known at compilation time, an array 

descriptor is allocated within the algorithm contour with which the 
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array is associated, the array descriptor is properly initialized 

but its BASELOG is left unspecified. The array itself will not be 

allocated until the execution of the procedure in which the array 

is declared is entered. 

(7) If the bounds of an array are not known, or the attribute of an 

array is changeable, an uninitialized array descriptor is allocated 

within the algorithm contour with which the array is associated. 

The array itself will be allocated out of a heap when the procedure 

in which the array is declared is entered. 

(8) The heap contains a set of subcells which, in theory, are not 

associated with any contour, except when a descriptor within a 

contour points to a set of heap cells. 



CHAPTER III 

PROCESSOR PAIR 

CM_l is a parallel system in which more than one processor might 

be active; that is, more than one process might be being executed. 

A working processor pair (VP,, CPU.) consists of one awake virtual 
1. J 

processor VPi and one active central processing unit CPUj. The CPUj 

will execute a process specified by its first instruction address and 

its innermost environment or by the site of activity of VP .. 
1. 

There are two possible sources that one VP with index i and one 

CPU with index j can be combined together as a processor pair (VP., 
1. 

CPU.); they are either asked by the supervisor or arranged by the 
J 

system service routine. The instruction to construct a new processor 

pair is PAIR(I,J), where I represents the virtual processor with index 

i, and J represents the central processing unit with index j. The value 

of I is specified, in this instruction, only when VP. can be found in the 
1. 

virtual processor table. Otherwise, its format is PAIR(*,J). The 

value of J can be specified by one internal register in the.CPU. 

There are three possible cases at the time when a processor pair 

(VP., CPU.) is to be created and they are shown in Figure 31. In Case 
1. J 

1, as shown in Figure 3l.a, VP. is either asleep or terminated and CPU. 
1. J 
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Figure 31. Processor Pair 
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is not active. In Case 2, as shown in Figure 3l.b., (VPi_2 , CPUj+l), 

(VP. 1 , CPU. 1), and (VP.+l' CPU.) are three active processor pairs 
1- J- l J 

and VP. is either asleep or terminated. In Case 3, as shown in Figure 
l 

3l.c, all conditions are the same as Case 2 except VP. has not yet 
l 

been initialized. In Case 1, CPU. is not active when the processor 
J 

pair (VP., CPU.) is asked to be created, so the instruction PAIR(I,J) 
l J 

can be executed immediately. However, this is not the situation in 

the other two cases, since CPU. is contained in the working processor 
. J 

pair (VPi+l' CPUj), which is executing an instruction, say M, of a 

process, say PGM, the instruction PAIR(I,J) will not be executed until 
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(VPi+l' CPUj) finishes executing M and checking whether M is the last 

instruction of PGM. If M is the last instruction of PGM to be executed, 

then the state of VPi+l will be changed to be terminated. If it is not, 

then the address of the instruction of PGM should be executed next by 

(VPi+l' CPUj) and its innermost environment, together with the contents 

of most of the registers in CPU., will be stored in the site of activity 
J 

and other appropriate subfields of VPi+l' respectively, and the state of 

VPi+l will be changed to be asleep. In this way, the rest of the 

instructions of PGM can be executed subsequently. 

At the beginning of creating a processor pair (VP., CPU.), if either 
l J 

VP. cannot be found in the virtual processor table; that is, the VP. 
l l 

has to be initialized first, or the state of VP. is terminated, then the 
l 

site of activity, of which its environment pointer is null and its instruc-

tion pointer points to the first instruction of the process to be 

executed by (VP., CPU.), must be specified by supervisor or the system 
l J 



service routine. Finally, the contents of all subfields of VP. must be 
~ 

fetched to the appropriate registers in CPU .• At this moment, the new 
J 

processor pair (VP., CPU.) is ready to begin to execute that process. 
~ J 

The flow chart of creating a new processor pair is shown in Figure 32. 
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To simplify the AHPL description of creating a processor pair, some 

instructions such as WAKE, ALLOC, and INIT are discussed in detail 

in the next chapter, and some control bits or indexes are used as 

follows: 

(1) The registers used in the AHPL description will not be specified 

explicitly ~hen they are registers in CPU.; 
J 

(2) The bit B is used to denote whether the instruction M being 

executed by the processor pair (VPi+l' CPUj) is finished; 

(3) An index k is used to trace loops; 

(4) Ready is a bit which denotes the creation of the new processor 

pair (VPi, CPUj) is finished and ready to execute the first instruc­

tion of the process specified by VP.; 
~ 

(5) Instruction WAKE is used to change the state of a virtual processor 

from either terminated or asleep to awake; 

(6) Instruction ALLOC XXX is used to allocate cells for a specific 

data type, which is specified by its argument XXX. For example, 

ALLOC 100 is to allocate a virtual processor having a null initial 

contents; 

(7) Instruction INIT is used to initialize the target virtual processor 

with a specified site of activity; 

(8) The bit STA is used to denote if CPU. is currently awake or asleep. 
J 
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The AHPL description of the execution of instruction PAIR(I,J) 

is depicted in Table IV. 

Since the execution of some instructions need to use the contents 

of some registers, the contents of the registers in CPU. must be stored 
J 

into VPi+l and the contents of subfields of VPi have to be fetched to 

CPU. before (VP,,CPU.) can execute a process. For example, the process 
J 1. J 

PRO being executed by (VPi+l'CPUj) is shown in Figure 33. After the 

instruction ADD 5,9 is finished, the next instruction to be executed 

should be BN S,Label. However, the instruction PAIR(I,J) is asked by 

supervisor, so the address of the instruction BN S,Label together with 

its innermost environment and the contents of those registers in CPU. are 
. J 

stored into VPi+l' In this way, the contents of GPR5 will not be destroy-

ed when PRO is to be executed later. 

PRO: 

ADD 5,9 

BN S,Label 

Label ADD 5,7 

WND 

I* Add the contents of GPR5 to 
contents of GPR9 , and store 
sum into GPR5 

*I 
I* Branch to the instruction 

specified by Label if the 
contents of GPR5 is negative 

*I 

Figure 33. Program PRO 

the 
the 
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TABLE IV 

AHPL OF PAIR (I,J) 

INSTRUCTION SEQUENCE 

(1) -----;. (STA X 2) + (STA X 23) 

(2) -- (B x 3) + (B x 2) 

(3) MAR..,.__ ADDR(VP i+1 ) 

(4) _ ___,.. cW-MAR . x 5) + 
. 10 (1) 

. MAR 
(~ 110 X 24) 

\.:: (1) 

(5) INC(MAR,2) 

(6) :W-MAR SARO 

(7) INC(MAR, 2) 

(8) W-MAR SAR1 

( 9.) INC(MAR, 2) 

(10) :t-tl-MAR LR0 

(ll) INC(MAR,2) 

(12) ~'MAR LR1 

(13) INC(MAR, 2) 

(14) ~7 /~MAR w7 /IRQ 

(15) INC(MAR,2) 

(16) W-MAR PR0 

COMMENT 

Is CPUj currently executing a pro­

cess.? 

Does CPUj finish executing M.? 

Get the address of VPi+1 . 

Test the state of VPi+l is awake 

or terminated after executing M. 
If it is still awake(M is not 
instruction of PGM), the contents 
of most of the registers in CPU. 

. J 
must be stored into the appropri-
ate subfields of VPi+1 . 

Store the contents of SAR0 into 
P.soa.ep of VPi+l" 

Store the contents of SAR1 into 
P.soa.ip of VPi+1 . 

Store the contents of LR0 into 
P.lab.ep of VPi+l" 

Store the contents of LR1 into 
P.lab.ip of VPi+1 • 

Store the right seven bits of IR0 
into P.ih of VPi+1 . 

Store the contents of PR0 into 
P.ptr of VPi+l" 
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TABLE IV (continued) 

INSTRUCTION SEQUENCE 

(17) MAR ""---- PR1 

(18) K 0 

(19) ~MAR GP~ 
(20) 
(21) 
(22) 
(23) 
(24) 

(25) 

(26) 
(27) 

(28) 
(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

INC(MAR, 2} 
K K+l 
K:l6,((,==) (19,24) 
STA 1 
MAR ADDR(VP .) 

~ 

(v/MAR x 26} 
+ (v/MAR x 29) 

ALLOC 100 
!NIT 11 

~ (31). 
PRO ADDR(VP .) 

~ 

WAKE 

MAR"" ADDR(VP.) 
~ 

INC(MAR, 2) 

SAR0 
~MAR 

INC(MAR,2) 

SAR1 _. ~MAR 

INC(MAR, 2) 

LR0 
MJ_MAR 

INC(MAR, 2) 

LR1 
~MAR 

INC(MAR,2) 

l,/ /IR0 ,. fl.. 7 ;W.MAR 

INC(MAR,2) 

COMMENT 

Steps from (17) to (22) are used 
to store the contents of GP~ of 
CPUj into GP~ of VPi+l" 

If VP can not be found in the 
virtu!! processor table, then MAR 
contains a null pointer after 
(24). 
Test if VP. is in the virtual 
processor fable. 
Allocate VP .• 
Initialize ~VP. with its state 
awake. ~ 

PR0 contains the address of vPi 

after this instruction. 
Change the state of VP. to be 
awake. ~ 
Steps (31) to (51) are used to 
fetch CPU. from VP .• 

J ~ 

Load SAR0 with P.soa.ep of VPi. 

Load SAR1 with P.soa.ip of VPi. 

Loas LR0 with P.lab.ep of VP1 • 

Load LR1 with P.lab.ip of VP1 . 

Load the right seven bits of IR0 
with P.ih of VP .• 

~ 
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TABLE IV (continued) 

(43) 

(44) 

INSTRUCTION SEQUENCE 

PR .,..~-- W-MAR 
0 

INC(MAR,2) 

(45) PR1 +<-- ~MAR 

(46) MAR-+-- PR1 

(47) K 0 

(48) GP\_-< :r-J-MAR 

(49) INC(MAR, 2) 
(50) K < K+l 
(51) K;16, ({,=) > (48,52} 
(52) Ready 1 

COMMENT 

Load PRO with P.ptr of VP1 • 

Load PR1 with P.gpr.ptr of VP1 . 

MAR contains the.address of GPR0 
of VPi after (46). 

Steps (47) to (51) are used to 
load G?~ of CPUj with GP~ of 

VPi_, 



In order to handle multitasking or coroutines, CM_l uses a 

processor pair to execute a process. Strictly speaking, a CPU of 

CM_l plays the same role as it does in most other models except it 

needs the assistance of a valid virtual processor which specifies the 

first instruction address and its environment; that is, the site of 

activity of a new process. 
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CHAPTER IV 

CONTROL UNIT 

The control unit has three major functions. The first one is to 

control the sequence of instructions of a program to be executed and 

transfer the data among different registers in the CPU. The second one 

is to issue signals to each unit to activate operations assigned to it 

at the proper time. The third one is to handle interrupts under either 

expected or unexpected. conditions. Interrupt handling is not covered in 

this paper. The purposes of the control unit presented here are: fetch 

the instructions of a program from memory, according to the sequence 

designed by the program to be executed, interpret every instruction, issue 

the necessary signals to the proper units, and perform the operation. 

Sequencing of Operations 

Those parts of the control unit which use one of a set of predeter­

mined instructions plus a clock pulse as input and produce a sequence of 

control signals as output, are referred to as a control sequencer. In 

the control sequencer, each signal other th~n the first one results from 

the preceding one by executing one operation. Each operation takes a 

finite time to be accomplished. The time interval between two signals is 

called the control delay. For ~xample, the control sequence of the 

execution of an ADD instruction is shown in Figure 34 if the address of 
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the addend is in the IR1, Box 1 is the symbol for a control delay. 

Since some operations such as READ and WRITE take more than one clock 

period to be finished, the completion pulse of such instructions must 
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be synchronized with the clock pulse before the next signal can.be 

generated. For this purpose, the feedback flip-flop circuit (Box 2) in 

Figure 34 is implemen.ted and called an asynchronous delay. Boxes 3 and 4 

are two AND gates. The output of Box 3 not only resets Box 2 but also 

activates the next operation. 

Instruction Classification and Instruction Format 

There are at least six categories of instructions in CMAL. They 

are: 

1. Read/Store instruction; 

2. Jump instruction: 

3. Operate instruction; 

4. Register reference instruction; 

5. Contour control instruction; 

6. Input/Output instruction. 

The Read and Store instructions are also called memory reference 

·instructions. Memory reference instructions are used to convey the data 

between two memory locations or one memory location and one of the working 

registers in the CPU. Jump instructions are also referred to as branch 

or transfer instructions. A jump i~struction without a comparison is an 

absolute jump instruction. Otherwise, it is a conditional jump instruc­

tion. As far as a conditional jump instruction is concerned, a test must 
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be met before the jump instruction's branching address is sequenced. 

If the test fails, the sequencing is based on the successor link. In a 

conditional jump instruction, the instruction to be sequenced must have 

a static link identical to that of the transfer instruction: that is, 

the new site of activity has exactly the same environment pointer as 

that of the old one (10). The register reference instruction is used 

to act on the data transfer between two general purpose registers or one 

general purpose register and one working register in CPU. A load of a 

general purpose register with an immediate value is also completed by a 

register reference instruction. The operate instruction (8) can perform 

a logical or an arithmetic operation on the contents of one ·or two 

registers. They could be shift or rotate the contents of one register, 

modify the contents of a register by adding to it or subtracting from it 

a constant number, and test the contents of a register and take decisions 

based on result of that test. The input/output instructions are used to 

carry data between the main store and the peripheral devices. The 

operate instruction and the contour control instruction will be discussed 

in detail later in this Chapter. 

Since different kinds of instructions have different length in bytes, 

the format of instructions must be specified. In this way, the control 

unit can access each of those different kinds of instructions properly. 

In some machines, the format of an instruction is implicitly specified 

by its operation code. In this paper, the instruction format is explicit­

ly Specified; thus the control of access to the instructions.can be dis­

cussed even though the CMAL is unspecified. As shown in Figure 29, the 



five formats of CMAL, the RR type of instruction occupies 10 bytes 

while the rest need 12 bytes. 

Addressing 
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For simplicity, without loss of generality, the implementation of 

a base register or an index register in the determination of the effec­

tive address of an operand is not covered in this paper. As shown in 

Figure 29, the tag and the (i,j) pair in the address field of a CMAL 

are used together to decide the effective address which makes a successor 

access to a subcell of a record contour possible. The tag field specifies 

a direct addressing or an indirect addressing is being used in that 

particular memory access instruction. The (i,j) pair identifies the 

j-th subcell of the record contour pointed by the active display register 

with index i (P.dsp.i). If direct addressing is used, the effective 

address of (i,j) is the sum of the contents of P.dsp.i and j-1. Since 

the subcell j is counted from the residence part (exclude the organiza­

tion part) of a record contour, 8 bytes occupied by the organization 

part must be added: that is, 

EFFECTIVE ADDRESS (P.dsp.i) + 8 + 2(j-l) 

(P.dsp.i) + 2j + 6 

(4 .1) 

(4. 2) 

If indirect addressing is used, then the contents of the memory location 

pointed to by~.~ specifies the address of the operand: that is 

EFFECTIVE ADDRESS = Mi(P.dsp.i) + 2J + 6. (4.3) 

The effective address(es) of the operand(s) must be stored back into 

IR1 (and IR2) before starting of the execution cycle of that instruction: 

that is, before the instruction code is decoded, although there is no 

particular reason to do this. 



Since the pointer is one of the basic types of data of the contour 

model, the implementation of pointers adds power to the CM 1 machine, 

especially in the determination of operands. 

Instruction Sequencing 

The execution of a CM 1 instruction consists of three stages: 

fetch, execute, and sequence. 

In the fetch cycle, there are two tasks to perform. The first one 

is to fetch the instruction specified by the pointer in SAR1 (the site 

of activity instruction pointer register) and transfer it to IR 

(instruction register). Due to the fact that P.soa.ip always points 
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to the instruction to be executed and that SAR1 is the hardware register 

corresponding to.P.dsp.ip, SAR1 points to the instruction being executed, 

but after the fetch cycle of that instruction, SAR1 points to the instruc­

tion to be executed next. There are three advantages to this: 

(1)· It minimizes the number of working registers in the CPU, since 

no program counter is needed; 

(2) It reduces the necessary data transfers because the successor link 

of the current instruction is loaded directly into SAR1 without 

being transferred to a program counter first; and 

(3) When the current instruction is a subroutine call instruction, SAR1 

contains the return address already. 

The second task to be done in the fetch cycle is to construct a new set 

of display registers if necessary. 

In the execution cycle, the instruction code in the first nine bits 
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of IR is decoded to decide which instruction must be performed and an 

order for a proper control signal to be issued to initiate a set of 

finite steps to perform that instruction. If a branch instruction or a 

procedure call instruction is being executed, then a conditional flip­

flop FF is set on. The reason for this becomes obvious in the next 

few paragraphs. 

In the sequence cycle, nothing will be done under normal conditions. 

If the instruction to be executed next is not pointed to by the successor 

link of the current instruction, then the contents of SAR1 , which is up­

dated in the fetch cycle, must be modified again. If the current instruc­

tion is a subroutine call instruction, then the site of activity of the 

called procedure is stored in the LR (label register). So, a copy of 

LR0 and LR1 into SAR0 and SAR1 , respectively, is necessary. In the branch 

instruction, the address of the instruction to be executed next is 

spe~ified by its operand rather than by its successor link. 

Under normal conditions, the instruction to be executed next is 

pointed by the successor link of the current instruction, neither the 

environment pointer nor the display registers of the active processor 

must be modified. But this is not the situation if either an uncondition­

al jump instruction or a procedure call instruction is being executed. 

When an unconditional jump instruction is being executed, its operand, 

which must be a label, specifies the new site of activity of the next 

instruction. That is, as long as the conditional flip-flop FF is set 

on, the following three things must be done: 

(1) Replace the two pointers in SAR by the two pointers of the label 
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which specifies the destination of that jump instruction, 

(2) Release the memory locations occupied by the old display registers, 

and 

(3) Construct a new set of display registers through the static link 

of each record contour in the fetch cycle of the next instruction, 

after the new set of display registers are constructed, the condi-

tion flip-flop FF is set off. 

The same scheme can be used when a procedure call instruction is being 

executed. The overall control diagram of the execution of an instruction 

is shown in Figure 35. 

In Figure 35, each box is identified by a number, the numbers inside 

the parentheses on both sides of box 6 represent the instruction categor-

ies. Also, a MI type store instruction is used in box 13 in Figure 35. 

If a M-R type instruction is used, the box 13 should be 

Jl'fAR +- GPR JrR • 
2 (4.4) 

That is, store the contents of the general p~rpose register with an 

index specified by IR2 into the main store. The same argument can be 

implemented in box 15 except the source and the destination of the data 

transfer are reversed. 

Operate Instruction 

The instruction code of an operate instruction is expanded to 25 

bits: the leftmost 9 bits of IR0 and the whole 16 bits of IR1 . The bits 

in IR0 specify that it is an operate instruction (so not all of them are 
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used), the bits in IR1 specify what operation must be performed. Sixteen 

16 
bits can specify 2 or over 64,000 operate instructions. It is not only 

difficult for the programmer to memorize that many instructions, but also 

is very hard for the hardware designer to build such a machine. Instead, 

we divide these 16 bits into several, say n, groups and each group takes 

an event time (8) to finish the operation specified by that group. In 

C~l, each operate instruction consists of n operations executed in 

sequence. If three groups are used, 6 bits describe each of the first 

two event times, and 3 bits describe the third event time, the coding is 

tabulated in Table V. For example, if an operate instruction has its code 

(in hexadecimal) in IR1 is 

2 4 0 2 

would cause ACC logical shift left and then complemented, if the resulting 

ACC is less than zero, the next instruction in normal sequence would be 

skipped. 

Of course, there are other approaches for building this table as well, 

and any combination of bits which do not result in a logical conflict 

may be specified for the three event times. 

Contour Control Instruction 

In CM_l, there are several instructions associated with the virtual 

processors that should be included in the service routines (operating 

system). Since they are so concerned with the characteristics of the 

contour model and connected to some of the working registers in CPU, those 

instructions should be brought out here although they have nothing to do 

with the users. Also, the two instructions EXIT and ENTER are so 



Bit(s) 

0 0 

TABLE V 

CODING OF OPERATE INSTRUCTION 

if shift or rotate is specified, the shift or 
rotate is left 
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1 shift/rotate right 

1 0 
1 

2 0 
1 

3 0 
1 

4,5,6 000 
001 
010 
011 
100 
101 
110 
111 

7,8 00 
01 

10 

11 

9,10,11,12 

13,14,15 000 
001 
PlO 
011 
100 
101 
110 
111 

First Event Time 

No Op 
arithmetic shift ACC 

No Op 
logical shift ACC 

No Op 
rotate ACC 

No Op 
clear ACC 
complement ACC 
increase ACC 
set link 
clear link 
set FF 
clear FF 

Second Event Time 

No Op 
increase MAR by the value specified by bits 
9 to 12 
deposit the contents of the GPR with an index 
specified by bits 9 to 12 to ACC 
deposit the contents of ACC to the GPR with an 
index specified by bits 9 to 12 
specify the value of increment to MAR or the 
index of GPR 

Third Event Time 

No Op 
skip if j_ACC=O 
skip if l_ACC<O 
skip if j_ACC>O 
skip if FF=O 
skip if FF=l 
skip if link=O 
skip if link=l 



important during the execution of a program by CM_l, it is necessary 

to discuss them in detail: how can they be performed by the control 

unit. 
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Each virtual processor must be in one of the four states: awake, 

asleep, terminated, or invalid. The address of a valid virtual processor 

can be retrieved from the virtual processor table. A virtual processor 

can be created through two steps: allocation and initialization by the 

system service routine. Since each virtual processor occupies a fixed 

memory location (18 bytes excluding the display registers and the 

general purpose registers), CM_J reserves a fixed storage area in which 

a linked list of nodes is organized, and each node contains 20 bytes: 

18 bytes plus a 2-byte forward link which points to the next available 

node. A 16-bit register "TOP" always points to the first available node. 

Whena virtual processor is allocated from the memory location pointed 

by "TOP," "TOP" is modified by the appropriate forward link. The tech­

nique to detect the underflow is necessary. During the execution of a 

program, only two kinds of data need be allocated. They are virtual 

processors and record contours. The instruction to achieve this goal 

is ALLOC followed by the data code. The effect of executing such an 

instruction is to allocate the memory locations needed by the data type 

specified by the data code and return the address of that first memory 

location to the pointer register. The initialization of a virtual 

processor can be accomplished through the initialize-processor instruc­

tion. Its format is !NIT followed by the state code. The effect of 

executing this instruction is to initialize an invalid virtual processor 
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which is located from the memory location pointed by PR0 (the hardware 

pointer register, see Chapter II) to be either asleep or awake fully 

depend on the state code. Also, the site of activity and the label 

·register of the newly initialized virtual processor are copies of the 

label register (LR) of the executing central processing unit. 

In the snapshot 4 of example 2 in Chapter I, the two virtual processors 

P1 and P2 were allocated and initialized by P0 , the real situation 

happened to that snapshot described in AHPL, if the executing processor 

pair was (P0 ,CPU0) at that time, should be: 

SAR0 11; 

LRO <~----SUB (M' (F)) • ep; 

LR1 +---SUB (M' (F)). ip; 

ALLOC 110; 

!NIT 11; 

ALLOC 110; 

!NIT 11; 

where first ALLOC instruction is to allocate P1 , while the second ALLOC 

instruction is the allocate P2. 

During the execution of multiprogramming or coroutine, the states 

of some virtual processors need to be modified from awake to asleep or 

vice versa. When a virtual processor finishes executing a process, 

its state is changed to be terminated immediately and its reference count 

is decreased by one. A terminated virtual processor will not be dealloca­

ted until the next garbage collection. In this way, a terminated virtual 

processor can be reinitialized to be either awake or asleep for executing 
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a new process later. When a new processor pair (VP. ,CPU.) is created, 
1 J 

if the state of VPi is either terminated or asleep originally, its 

state has to be changed to be awake through the wake-processor instruc-

tion. Its format is WAKE followed by the state code. The effect of 

executing this instruction is to change the state of the target virtual 

processor, which is pointed by PR0 of the executing processor pair, to 

be awake. If the target virtual processor is terminated first, three 

more things must be done: 

(1) 

(2) 

1 
The allocation of its general purpose registers is necessary 

Its site of activity is a copy of the executing processor's 

label register LR, and 

(3) Its reference count is increased by one. 

After this instruction, the state of the executing virtual processor is 

changed to be a state specified by the state code. Again use the 

snapshot 4 of Example 2 as an example, if there was a terminated virtual 

processor in the virtual processor table when P1 and P2 are to be alloca­

ted, the system service routine would get the address of that terminated 

virtual processor from the virtual processor table and store it into 

the PR0 of the executing processor pair, then through the WAKE instruc­

tion to wake P1 . The details described in AHPL are as follows: 

1The display register will not be constructed until the first 
instruction of the process to be executed by the new processor pair 
(VP.,CPU.) is fetched. 

1 J 



P1 .sta 

P 1 . soa. ep ..... _____ LR0 ; 

P1.soa.ip LR1 ; 

P1 .lab.ep .----- SARO 

P1 .lab.ip SAR1 
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P1 .gpr.ptr ADDR (the first byte of 256 bits allocated 
for P1 's 16 GPRs). 

If there was another terminated virtual processor in the virtual processor 

table available for the initialization of p2' the same procedure as 

mentioned above would be performed except the state code was 10 which 

would cause P0 to be asleep after P2 became awake. If there was not, 

then the instruction ALLOC 110 followed by INIT 11 would create an awake 

If the CPUj of an active processor pair (VPi,CPUj) is asked to 

combine with some other virtual processor to form a new processor pair, 

the state of VP. is changed to be asleep through the sleep processor 
]. 

instruction. Its format is SLEEP. The effect of executing such instruc-

tion is to store CPU. into VP. and change VP.'s state into sleep. Its 
J ]. ]. 

details were discussed in Chapter III. 

During the execution of a process, if that process is canceled for 

some reason, the executing virtual processor's state has to be changed 

through the terminate processor instruction. Its format is TERM. The 

effect of executing such instruction is to change the state of the target 

virtual processor to terminated. The target virtual processor is pointed 

by PR0 , and its reference count is decreased by one. 

The algorithm contours of a program are allocated at assembly time 
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and remain invariant during the life of that program. Its record contours 

are allocated or deallocated at runtime when ENTER or EXIT instructions 

are executed. When an ENTER instruction is being executed, the copy of 

an algorithm contour with its static link identical to that of the ENTER 

instruction is made. A newly allocated record contour has its reference 

count equal to one, which is the consequence of the pointer in PR0• As 

mentioned earlier, the reference count of a record contour is maintained 

equal to the number of pointers point to that record contour. However, 

those pointers do not include those environment pointers of labels 

residing in that record contour, but include those environment pointers 

of labels residing in other record contours. That is, when a record 

contour is deallocated, the reference counts of those record contours 

to which pointed by the environment pointers of labels residing in that 

deallocating record contour must be decreased. The situations when an 

ENTER or an EXIT instruction is being executed is drawn in Figure 36, 

with the assumption that procedure B contains no labels. The corres­

ponding control sequencers are shown in Figure 37. 

Summary 

There are four basic types of data in the contour model, each has 

its own storage organization, how they can be retrieved in a proper way 

is a problem. CM_l solves this by always loading .the first two bytes of 

the target data into the organization register OR, decoding the data 

code (first three bits of OR), and initiating proper service routine to 

finish accessing that data. The storage organization and the data code 

were shown in Figure 3. A successful instruction sequencing, as sh~wn 
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in Figure 35, needs to use the information supported by its format and 

its tag. That is, after the first two bytes of an instruction are loaded 

into the organization register OR, as shown in box 1 of Figure 35, the 

second and the third three bits contain the format and the tag separately, 

by decoding the format, the job done in box 2 of Figure 35, then how 

many bytes must be fetched from the main store to the instruction register 

becomes known, and by decoding the tag, the job done in box 9 of Figure 

35, then the effective address of its operand can be found. Recall the 

operand of a CMAL instruction can only be an integer, a label, or a 

pointer. 

During the execution of an ENTER instruction, a copy of some 

algorithm contour is made. The problem is which algorithm contour will be 

chosen. This can be solved by putting the address of the algorithm contour 

to be copied into the operand field of the ENTER instruction at assembly 

time. Of course, its tag must specify the operand is a pointer. In this 

way, the template of the record contour to be allocated can be found 

through hardware support. 



CHAPTER V 

FUTURE WORK 

The block diagram shown in t4e Appendix shows the logical structure 

of CM 1. It is left hypothetical in this paper for neither the contour 

model assembler language nor its assembler has been developed (10, 11), 

and each of them does affect the hardware design of CM 1. In this paper, 

we have presented how the basic types of data of the contour model can 

be generated, stored, and retrieved; how the algorithm contours and 

record contours of a program can be allocated and deallocated; how to 

implement a processor pair to handle the multiprogramming, coroutines, 

and reentrant procedures; how CM_l passes the procedure's name to the 

called procedure as actual parameter; how CM_l performs the recursive 

programs; and finally, how its control unit fetches, executes, sequences 

a set of instructions of a program as it is designed .. Those topics 

enable CM 1 to make some hardware implementation. But, there is still 

lots of work to do before CM 1 comes out to be a practical machine. 

As pointed out in Chapter I, the contour model can be directly 

applicable to ALGOL 60. With respect to other high level programming 

languages, there is need for some modifications to the contour model 

before they can become formal programming languages for CM_l. This 

does not mean CM_l, after being modified somehow, cannot be applicable 

to most of them. That is, as long as those programming languages which 
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can be analyzed by using BEGIN-END pair or equivalent symbols to identify 

each procedure or block can be implemented by the contour model. This 

important requirement allows CM_l to tell when or where algorithm contours 

should be created at assembly time. 

The four basic types of data which can be implemented in the contour 

model are: integers, pointers, labels, and instructions, any other type 

of data than these four cannot be handled by the contour model. In order 

to remove this restriction on the attributes of data, the efforts to 

develop suitable techniques are necessary. Recall that there is a 3-bit 

type field and several unused bits reserved for future use are contained 

in each data's storage area. If more types of data are allowed in CM_l, 

more bits are needed to code them. This can be done by expanding the 

type field to the length needed without changing the rest of the storage 

organization of each type of data. 

In this paper, C~l is presented as a traditional machine. 

How to manipulate the microprocessor in the contour model and what its 

microprogramming language looks like are important work to do in the 

future. It does not make too much sense to design CM_l by implementing 

a microprocessor at the time when even the CM_l, designed in a tradi­

tional way, has to be left hypothetical due to insufficient information 

such as the system service routines (i.e., the operating system) and 

the trade-off between the software and the hardware. 

In order to increase the flexibility of the design in the future, 

many things,such as the number of central processing units in CM 1 and 

the unused bits in the storage organization of each type of data,are 

left variant. Only ~hose working registers having connection with the 
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execution of those instructions associated with the storage organization, 

and perhaps the hardware support of the system service routines mentioned 

in this paper are presented. Finally, the design in this paper is on 

the basis of hardware necessities, not from the economic point of view. 
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