TOWARD A HARDWARE IMPLEMENTATION

OF THE CONTOUR MODEL

By
PU-KOUNG PHILIP TU

Bachelor of Engineering
Chung Yuan Christian College of Science
and Engineering
Taipei, Taiwan, Republic of China
1973

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1978

Thesis
|73
7333

\

TOWARD A HARDWARE IMPLEMENTATION

OF THE CONTOUR MODEL

Thesis Approved:

/?fﬂééﬁcw%

Thesis Adviser

FH

Dean of the Graduate College

ACKNOWLEDGMENTS

I am deeply grateful to my principal adviser, Dr. George Hedrick,
for suggesting this problem and for his guidance, concern, and encour-
agement through this study.

Special thanks to Dr. J. B. Johnston, whose paper became a guidance
to this study.

I would like to thank Drs. G. E. Hedrick, John R. Phillips, and
Edward L. Shreve, for serving on my advisory committee and for their
assistance in c0rrecting the final copy of this thesis. |

I also wish to express my thanks to Mrs. Carol Taylor for the
excellent typing of this thesis.

I would like to express my gratitude to my wife, Elizabeth, for
her encouragement and her confidence in my ability. Finally, I would
like .to express my gratitude to my parents, Mr. and Mrs. Chi-Lian Tu,

for their encouragement and support throughout my study.

iii

TABLE OF CONTENTS

Chapter
I. INTRODUCTION . . & ¢ ¢ o o o o« o o o o o o o o o o o

Review of Literatures . . « « « « o ¢ ¢ o o o o &
Introduction to the Contour Model
Stack Model . . . ¢« ¢ & o ¢ o o« o o &
Comparison . . « ¢« ¢ v ¢ ¢ ¢« ¢« ¢ o o o o o
Modifications . . ¢ ¢ ¢« ¢« o ¢« ¢« o ¢ 0 o . .

Statement of the Problem« « + o « « .

II. STORAGE.ORGANIZATION AND HARDWARE REGISTERS . . .

Algorithm . + v v v v v v ¢ v o o o o 4 e

Record + & v ¢ v ¢ o v v v e v e e e e e e e e

ProcesSSors .« ¢ v o 4 4 e 0 o s s 4 e s s e e e
Virtual Processor . .« « ¢« ¢ o o« o« o « o

Central Processing Unit
Instructions . . « ¢« v 4 4 4 e e e e e e e e . s
Allocation and Deallocation
Heap « ¢ o o o ¢ o o s o o o o o o o o o

SUMMATY « ¢ ¢ ¢ & o ¢ ¢ o o o o o o o o o o
ITI. PROCESSOR PATR &+ « v v v v o e e e e e e
IV. CONTROL UNIT v & v v v o o o o o o o o o o o o o o

Sequencing of Operations

Instruction Classification and Instructlon Format .

Addressing 000000 .
Instruction Sequencing
Operate Instruction . . . e e e e e e e e
Contour Control Instructlon e e e e e e e e
Summary . . . 0 4 e e i e e s e e e e e e e e e

V. FUTURE WORK . . . ¢ ¢ v ¢ v v v v v v v e e e e o o
BIBLIOGRAPHY . . & & v v v ¢ v v o o o v o o o o o oo o o W

APPENDIX - FUNCTIONAL BLOCK DIAGRAM

iv

Page

45
47
49
50

52

52
56 -
" 60
62
67
72
77
78
80

82
92
92
94
96
97
99
101
107
112
115

117

LIST OF TABLES

Table | ‘ ’ Page
I. Built—in Functions . « « o s v s oo et e 12

IT. Algorithm CONtOUT + & + v + v v o & o o o v o o o o o o o & 55
ITII. Virtual ProcesSSOT « &+ o « o o o o o« o o o o o o o o o o o 63

IV. AHPL of PATR(I,J) « = v = o o o o o oo e e e e v v v v v . 88

V. Coding of Operate Imstruction « « « « .« 102

LIST OF FIGURES

Figure
1. Nested Algorithm Contour,
ZQ._Generai Cell Format . .
3. Storage Organization .
4. Example of a Snapshot .
5. Example 1 .
6. Snapshot O to Snapshot 3 of Example 1 .
7. Snapshot 4 to Snapshot 7 of Example 1 .
8. Snapshot 8 to Smapshot_1l1l of Example 1
9. Snapshot_12 to Snapshot 15 of Example 1 .
10.‘ Example 2 .
11. Snapshot O to Snapshot 3 of Example 2‘.
12. Snapshot_4 to Snapshot_7 of Example 2 .
13. Examﬁle 3.
14. Snapshot 0 to Snapshot 3 of Example 3 .
15. Snapshot_4 to Snapshot 7 of Example 3 .
16. Snapshot_8 to Snapshot 11 of Example 3
17. Snapshot_12 to Snapshop;lS of Example 3 .
18. Snapshot 16 to Snapshot 19 of Exaﬁple 3..
19. Snapshot 20 fo Snapshot 23 of Example 3 .
20. Snapshot 24 to Snapshot 27 of Example 3
21. Heap
22,

CMAL Processing by Using an ALGOL 60 Program as an Example.

vi

Page

14
17
20
23
25
27
29
32
34
36
38
40
42
43
44
46
50

54

Figure

23. An Example of the Data Structure of an Algorithm Contour.
24, An Example of the Data Structure of a Record Contour . .
25. Multiprocessor . . ¢ .+« v ¢ o ¢ 4 4 . . . e e e e
26. The Storage Organization of a Virtual Processor
27. Virtual Processor Table+ « .+ . .

28, Central Processing Unit . . . « + v « v & v ¢ ¢ o « o o«
29. Imstruction Format « « + v + v v ¢ 4 4 e 4 .
30. Array DesCriptor . + + ¢ v o o o o+ o 4 o o o o 0 0 .
31. Processor Pair v ¢ i v 4 v v v e e e e
32. Fl&i\Chart of Matching a Processor Pair (VPi,CPUj) . .
33, Program PRO . . & . & v ¢ v v v v i vt e e e e e e e
34. Contr§1 SEqUENCET & v v v 4 4 v 4 e e e e e e
35; Overall Instruction Control Diagram

36. ENTER and EXIT . . ¢ v v v v v 4 v o v o o e v v o« o o W
37. Control Sequencer of ENTER and EXIT « v « + . .
38. Functional Block Diagram of CM 1

vii

Page

57

61

62

65

68

73

75.

79

83

86

87

93

. 100

108

. 110

. 118

' CHAPTER I
INTRODUCTION

In the recent past, use of the stack mechanism in the implementation
of’programming languages has become popular. A stack is a set of storage
locations into which one stores the data into the top pushing down the
data already in it, and from which one deletes the top element pbpping
up-the elements below. For example, all operations have their implied
operands as either the top element of the stack or the top two elements
of the stack, the result is returned to the stack and becomes the top
element after the operation. The LIFO (last in first out) push down
stack is utilized in many types of computers to genérate a machine equi-
valent program. Machines utilizing the stack mechanism in hardware exe-

Stk omakes e Compilers S/ mpler Réduce #e semantic F*P.
cute faster than a software implementation (1). However, Johnston (10)
pointed out that stack-related implementations have at least two dis-

ad
advantages. The first and more serious disyantage concerns the strictly

A
LTFO nature universally attributed to stacks. Certain unnecessary
restrictions are associated with block exit, these restrictions falsely
appear to be inherent propertiés of algorithm executipn. The second
disadvantage involves the identification of a stack as a locqs of control.
The identification causes difficulties in the execution of multiple
activity processes.

The contour model of block structured processes was first introduced

by Johnston in 1971. He first described how the contour model can

execute an ALGOL 60 program by using virtual processors. Then he
presented the cellular structure, the basic data items, the virtual
processor structure, and the access path designators incorporated in
the‘contour model. Finally, he defined the basic set of instructions
required to implement the contour model. He also pdinted out that the
contour model is directly applicable to ALGOL 60, but not to those
programming languages which do not have éontour retention properties,
ALGOL 68 is an example. Hedrick (5) modified the contour model in 1976
by implementing the "heap". He defined the heap as a set of memory
locations which is used to reserve space for the allocation of arrays

during runtime.
Review of Literatures

First, three examples are used to introduce Johnston's contour
model, then to review briefly Gries' stack model. so a comparison
between these two models can be made. Finally, the modification made

by Hedrick (5) to the contour model is presented.

Introduction to the Contour Model

Johnston (10) defined the contour model: it is a cell-based model
of the semantics of algorithm execution in a nested block environment.
He also defined a process of the contour model as a sequence of snap-
shots. Each snapshot has two components: a timefinvariant algorithm
(static) and a time-varying record of that algorithm (dynamic). Also,
each snapshét resglts from the preceding one by the execution of a
single instruction of that algorithm. In the contour model, both the

algorithm contour and the record of execution being modeled are block

structured processes. As shown in Figure 1, each '"begin-end" pair in
Figure l.a corresponds to a contour in Figure 1l.b.

Since ALGOL 60 has the necessary contour retention properties, the
contour model of block structured processes is directly applicable to
it (10). Therefore, it is best to use some ALGOL 60 like programs to
describe the contour model. Before doing this,ksome basic features of

the contour model are presented first.

e 'BEGIN Rl
I.{Z'BEGIN R2
é3 BEGIN R3
END :
‘END :
LEND :
a.) Delimiters b.) Contours

Figure 1. Nested Algorithm Contour

Storage Unit and Data Type. The contour model is a cell-based

sequence of memory locations. The general cell format used in this

paper is shown in Figure 2. However, it will be modified from data

type to data type. The cell is composed of an organization portion

and a residence portion. The organization portion of a cell consists

. of type, size, reference copnt, inhibit boxes, item present bit, and
valid bit. Type is used to specify what kind of data is contained in.
the cell. Size specifies the number of subcells in the residence of a
cell. Reference count is maintianed equal to the number of pdinters

to that cell for deallocation purposes (10). Inhibit boxes specify what
operations cannot happen to that cell, inhibit access and inhibit write
are examples. Item present bit and valid bit specify the information
stored in that cell is complete and valid respectively. The residence
of a cell consiéts of a sequence of a non—négative integer subcells.
Each subcell contains 16 bits. Several subcells together hold one basic
datum: an integer, a pointer, or a label. If the number of subcells in
a ceil is mgré than two, then it is a compound cell, otherwise it is a

single cell. Processors, contours, and instructions are three other

special data items appear in this paper.

tvpe sizé reference inhibit present wvalid ‘.subcélis)
yP count boxes bit bit | °° T
< - organization »|€—— residence ——#

Figure 2. General Cell Format

Further information about the data formation of each different type of
data is shown in Figure 3, where PB, VB, and SB are abbreviations of
item present bit, valid bit, and sign bit respectively. Also, the num-

ber of bits assigned to each subfield is specified on the top of each’

3 7 4 1 1 16
type inhibit |P|V(S ‘
(000) |~~~ ™=~ boxes |[B|B!B value
a.) - Integer
3 7 4 1l 1 16
type |_______ inhibit [P|V :
(010) boxes |B|B pointer
b.) Pointer
3 7 L 11 16 16
%gfi) _______ lggigét g g environment pointer | instruction pointer
c.) Label
3 3 3 7 16 16
%ggi).format tag|~=-=---- static link successor link
7 9 16 16 ,
instructionjoperation (1st) operand (2nd.) operand
height code if any if any
d.) Instruction
Figure 3. Storage Organization

P.gpr.ptr: general purpose register pointer
P.dsp.ptr: display register pointer

ge)

Figure 3.

Virtual Processor

(Continued)

af }Ul/mr’; re};_

3 7 5 1 i 9 16 16 ‘
; f , : \
(${8§ rgcgigzce ----- B| height| size | static link antecedent linkisubcell(s)
e.) Record Contour
3 7 5 1 7 9 16 16
type |[reference | ____ vi height| size |static link antecedent link|subcell(s)
(111) | count B
f.) Algorithm Contour
3 7 2 R 16 16 16 16
type|reference ———— . P. . P.lab.e P.lab.i
(100) count state P.soa.ep soa.lp P Y
7 9 16 16 16
instruction el pointer register
Lheight(P.ih) (P.ptr) P.gpr.ptr P'dsp.pl
. - - D[’an - -
P.soa.ep: environment pointer of site of activity ’ lo 7o 555””“ﬁ
P.soa.ip: instruction pointer of site of activity ot o e location of display ress
P.lab.ep: environment pointer of label register bosinaing oc v s
P.lab.ip: instruction pointer of label register J !)

subfield on the basis of a 64 K main store is used. 1In Figure 3, some
subfields have not been defined yet, but they will be discussed in de-

tail in the remaining chapters.

Algorithm and Record of Execution. A process is a sequence of

snapshots, each contains a static algorithm and a dynamié current state
of the record of execution of that algorithm (10). The contour struc-
ture of an algorithm functions as a template for the formation of the
record contour. During runtime, whenever anvENTER instruction is being
executed, a copy of some specific algorithm contour is made. As shown
in Figure 4, B1l' and B2'Aare copies of Bl and B2 respectively, and if
B2' is immediately enclosed by B1', then Bl should immediately enclose
B2. When record contour B2' is copied from algorithm confour B2, tﬁé
same amount of storage locations occupied by B2 are allocated for record

contour B2'., But the contents of these memory locations allocated for

B2' may not necessarily be the same as that of B2.

Height and Successor Link. One of the most important features of

the contour model is that it stresses quite explicitly the nested con-
tour structure of both the algorithm and records of execution of block
structured processes (10). It is the reason that each coﬁtour aﬁd each
instruction must have a height to specify its level. Aé shown in Figure
4, the height of each contou? or each instruction is specified in pa-
rentheses. Under normal conditions, the instruction to be executed next
is always specified by the successor link of the instruction being

executed.

Processor and Virtual Processor. Usually, a processor may be de-

fined as a device which fetches and executes instructions. In the

Bl (0) B1' (Q)
B2|- |~
P |-|- «
B2 (1) B2' (1)
B3|-|- B3|-|-
z |-|- | z |-]-
. B3 (2) _ 33' (2)
z |-]- z |-~
D e e e
(3) ep |
: o
¥
L
P (1) P' (1)
H| - -
- lE=1@ ;
I=2(2)
Zi-l- | H=8+1 (2) z|-|-
CALL B2
(€D) ,

Figure 4. Example of a Snapshot'

present context, a processor is a pointer-pair datum, and is denoted by
P.soa (site of.activity). A P.soa consists of an environment pointer
(P.soa.ep) and an instruction pointer (P.soa.ip). The environment
pointer and the instruction pointer are two major elements of a process-
or. They are related to each other as follows: if P.soa.ep is. null,
then P.soa.ip must point to an instruction which is enclésed by>no con-
tour; if P.soa.ep points to a record contour P', and P' is a copy of

the algorithm contour P, then P.soa.ip must point to an instruction

which is immediately enclosed by P (10). In both cases, P.soa.ip points
to the instruction being executed or about to be executed. 1In the con-
tour model, a processof must be in one of the four states: invalid,
aﬁake, asleep, Or terminated. As a matter of fact, the processor men-
tioned here are virtual processors, but they will be treated as process-—

ors in the normal sense for convenience in these examples.

Display and Environment. At any point of execution of a program,

it is possible for the processor to reference subcells of different
active record contours. For example, the ip in Figure 4 points to an
instruction immediately enclosed by B3, the processor must be able to

access subcells Z in B3', B3 and Z in B2', and B2 plus P in Bl'. One

wéy to solve this problem is to collect the addresses of these reference
record contours in the processor's display registers. ‘In the contour |
model, the value of processor height (P.ih), which ié é.copy of the
height of the instruction being executed, is used to update the process-
or's display registers (P.dsp) if necessary. If the contents of P.ih
is 0, then all display registers are empty. If P.ih éoptains an integer
n+l with n>0, then (1) for i>n, P.dsp.i is empty, (2) for i=n, the con-
tents of P.dsp.i is a copy of P.soa.ep, and (3) for O<i<n, P.dsp.i points
to a record contour whiich immediafely encloses the record contour pointed
by P.dsp.(i+l). Use Figure 4 as an example, the current contents of P.ih
is 3, so P.dsﬁ.Z points to B3', P.dsp.l points to B2', and P.dsp.0 points
to BL'. In this example, 2 is the highest available index of the display
registers, gnd Bl' is defined to be the outmost environment while B3' is
the innermost (top) environment of the current active processor.

The access environments of the processor consist of a set of record .

contours pointed to by active display registers. In other words, if ep

10

points to the reéord contour B3', then the en?ironments are composed of
B3' and all those record contours enclosing B3'. The access énviron-
ments make a processor access subcells of contours by name possible.
One thing must be pointed out here, ifktwo or more record contours have
a subcell with the same name,'then the subcell to be accessed is the

one in the innermost record contour.

Antecedent Link and Static Link. The algorithm contour 1s invari-

ant during the life of a program, but no record contour is invariant.
When a record contour P' is allocated, which is a copy of the algorithm
contour P, the antecedent link of P' must point to P. P is defined td
be the antecedent of P', and P' is a decedent of P. A record contour
has a unique antecedent, but an algorithm contour may have several
decedents (10). The antecedent links of record contours are used for
run—-time validity checks.

A contour has a zero height if and only if it has a null static
link (10). If a contour, A,has a.positive height 141, then the static
link of A must point to a contour, B, having a height equal to i. B is
said to immediately eﬁciose A, and A is said to be immediately enclosed
or nested within B (10). By using both of the height and the static
links if recird contours, the processor's display registers can be built

correctly.

Label and Flow Control. Labels are the basic type of data item

used in flow of control mechanism. A valid label consists of two point-
ers: an environment pointer and an instruction pointer. In order to
make a new label, a label register as part of a processor is necessary

and is denoted by P.lab. A label register is used to keep the return

11
address temporarily when a procedure call instruction is being executed.

ENTER and EXIT. ENTER and EXIT are two important instructions for

block structured processes. In the contour model, the effect of execu-
ting of an ENTER instruction consists of three steps: copying the.algo—
rithm contour into which the processor is entering; adjoining this new
record contour to the top of the currently active prpcessor's environ-
ments; and updating the processor to an an instruction immediately
enclosed by the algorithm contour being entered. The effect of executing
an EXIT instruction includes removing the innermost fecord contour from
the active processor's environments and updating the processor to an

instruction immediately outside the algorithm contour being exited.

Simplification and Abbreviation. Since the algorithm is static

during the runtime of a program, it needs to be shoWﬁ only once and
remains invariant for all remaining snapshots (10). The processor is
abbreviated to be w, of which its two legs represent the two pointers,
ep and ip, of the processor fespectively. Also, it is common for ep

to point only the innermost contour of its environments (10).

Built-in Functions and AHPL. 1In order to describe the contour model

concisely and to demonstrate how the contour model handles a program,
some bﬁilt—in functions together with A Hardware Programming Language
(AHPL) are used. The definition of each built~-in function followed by

some examples is described in TABLE I.

The following three examples are used to show how the contour model
handles the problems of passing procedure names as actual parameters to

the called procedure, parallelism, and recursion respectively.

TABLE I

BUILT-IN FUNCTIONS

BUILT-IN FUNCTION

DEFINITION

EXAMPLE

COMMENT

ADDR(name of contour)

returns the address of
the contour in the
parenhtheses

ADDR(P")

similar to ADDR in PL/1

SUB(name of contour(name of subcell))

returns the contents of
the subcell in the 2-nd
parentheses of the con-
tour in the first
parentheses

SUB(P' (L)).ep

SUB(C(Z)).ip

return the contents of
the ép of the subcell L
in record contour P'

return the contents of
the ip of the subcell Z
in algorithm contour C

ANTE (name of éontour) find the antecedent ANTE(P') return the address of
of the record contour - the algorithm contour
in the parentheses from which P' is copied

STAT (name of contour) returns the address of - STAT(C') return the address of
the contour which imme- - the record contour
diately encloses the which immediately
argument encloses C'

INC(name of register,increment) increases the contents INC(MAR, 2) increase the contents

of the first argument
by the second argument

of memory address
register by 2

I

13

Example 1. Imn the first example,'procedure names are passed as
‘actual parameters to the called procedure. The program to be executed
is EXAMPLE 1, as shown in Figure 5.a. EX 1 is the program re-expressed
in terms of the contour model, as shown in Figure 5.b. For convenience,
the instructions embedded in the algorithm contours are numbered from
top to bottom. The number on the right side of each instruction repre-
sents the address of that instruction.

As mentioned earlier, a process is a sequence of snapshots, each
snapshot results from the preceding one by executing a single instruc-
'tion of that aléorithm.

In snapshot Q, the contour model is prepared to execute EX 1.

That is, the processor is initialized to be:

P.soa.ep *— null;

P.soa.ip«— 1.

While the rest of subfields of the processor are left uninitialized.

In snapshot 1, instruction 1 is to be executed. instruction 1 is
an ENTER instruction. When an ENTER instruction is being executed, a
service routine GETAREA (3) is called to allocate storage locations
for record contour M' in this case, and return the address of the first
memory location of record contour M' to the processor's pointer régis-—
ter, P.ptr. The AHPL description of snapshot 1 is:

P.ih «— 0;

P.ptr «—— ADDR(M'");
P.dsp.0 «—— P.ptr;

P.soa.ep ———— P.ptr;

P.soa.ip «—— 14.

v 1 [ENTER
BEGIN Tz t
C -18 a
6 A:2 I ENTfER l
PROCEDURE A(X,Y);
Xl=~]= v
PROCEDURE X; INTEGER Y; EE b
BEGIN ANE
B B:3 [ENTER
PROCEDURE B(R,F);
' Rl=1~
PROCEDURE R; INTEGER F; Fl =
BEGIN 2l=1=
R(F * Y); 4 [CALL R(F T Y) |
\END; 5 [Go_To 2
‘B(X,2); bi6 [CALL B(X,2) |
[oo, 7
G ¢:8 [ENTER
PROCEDURE C;
G_ -~ v
BEGIN INTEGER G; D c
D:9 [ENTER]
TPROCEDURE D(W); INTEGER W;
_ W] =
BEGIN A
G =W 10{G = W
END; 11 [GO TO_2]
A(D,1); ¢:12 [CALL A(D,1)]
\END; 13
i aslh EEEZ%::E]
\END} 15 *
a. EXAMPLE_l b. EX_1

Figure 5. Example 1

14

15

In the contour model, the environment pointer of any label residiﬁg
in an algorithm contour is not initialized completely at assembly time.
That is, any algorithm contour contains only incomplete (invalid) labels.
As shown in Figure 5.b, the environment pointers of A and C are not
initialized. So, to initialize the environment pointers of all labels
of a newly allocated record contour is necessary. The way to convert
those incomplete labels into valid labels is to let their environment
pointer point to the newly allocated record contour if its height is
equal to 0 or it is associated with a block. As shown in SNAPSHOT_1
of Figure 6, the environment pointer of A or C points to M'.

In snapshot 2, instruction 14 is to be exeéuted. Instruction 14
is a procedure call instruction with no parameters. The subcell C can
be accessed thfough P.dsp.0, and its valﬁe is stored into the label
register (P.lab). Since P.soa.ip is updated to point ﬁo the instruction
fo-be executed next under normal conditions (the details see Chapter 1IV),
P.soa.ip points to instruction 15. However, instruction 14 is a jump
to a subroutine instruction, so the processor exchanges the site of activity
register P.soa with the label register P.lab before the next instruction
to be executed. After this exchange, P.sca.ip points to instfuction 8
instead of 15. The AHPL description of this snapshot is:

P.ih<e— 1;

P.soa.ip <" 15;

P.lab.ep ~—— SUB(M"(C)).ep;
_P.lab.ip +— 83

. TEMP‘————-P.soa.ep;

P.soa.ep <— P.lab.ep;

P.lab.ep <—— TEMP;

16

TEMP <—— P.soa.ip;

P.soa.ip =— P.,lab.ip;

P.lab.ip +— TEMP.

Where, TEMP may be-a general purpose register. At the end of the exe-
cution on instruétion‘l4, P.lab contains the return ad&ress from proce-
dure C.

In snapshot 3, instruction 8 is to be executed. Instruction 8 is
an ENTER instruction. Record contour C' is allocated and its first
address is stored into P.ptr. During the allocation, the environment
pointer of D points to C', and the return label Z is a copy of P.lab.
The AHPL descrip;ion of snapshot 3 is:

‘P.ptr +—— ADDR(C');
SUB(C' (D)) .ep +— P.ptr;
SUB(C'(Z)) .ep <-—-'—-—-P.lal‘).ep;
SUB(C'(Z)).ip =—— P.lab.ip;
P.soé.ep “—— P.ptr}
P.soa.iﬁ - 12.

In- snapshot 4, instruction 12 is to be executed. Since instruction
12 has its height equal to 2, record contour C' becomes the top environ-
ment. Instructioﬁ 12 is a procedure call on A with parameters D and 1.
Procedure A and D can be acceésed through P.dsp.0 and P.dsp.l respec-
tively, and the contents of A is copied into P.lab. Then exchange P.soa
with P.lab. The AHPL description of snapshot 4 is:

P.ih +— 2;
P.dsp.l <—— ADDR(C');
P.soa.ipk*——‘*" 13;

P.lab.ep <—— SUB(M'(A)).ep (or ADDR(M'));

l «— % —» NULL

SNAPSHOT _0:

Ml

17

AlM'|2

14 «— 5w —> NM*

'~ SNAPSHOT_1:ENTER M

Mv

8 €~ 5w ~> '

c'19
M8

N

SNAPSHOT 2:CALL C

SNAPSHOT_3:ENTER C

Figure 6. SNAPSHOT O to SNAPSHOT 3 of Example 1

18

P.lab.ip =— SUB(M'(A)).ip (or 2);
TEMP +—— P.soa.ep;

P.soa.ep = P.lab.ep;

P.lab.ep «—— TEMP;

TEMP <—— P.soa.ip;
P.soca.ip =—— P.lab.ip;
P.iab.ip‘*————— TEMP.

In snapshot 5, instruction 2 is to be executed. The height of
instruction 2 is.l, record contour M' becomes the top environment again.
Instruction 2 is entering-contour A, a copy of algorithm contour A is
made withvsubcélls X, ¥, B, and Z. The formal parameter X corresponds
to actual parameter D, Y is an integer, B is an internal sub-procedure
to procedure A, and Z is tﬁe return label. After the allbcation of
record contour A;, X is a copy of D, Y is equal to 1;‘thé‘ep of B points
to A', and Z is a copy of P.lab. The AHPL description of this snapshot
is: |
P.ih +— 1;

P.dsp.l “— null;

P.ptr <—— ADDR(A");

P.soa.ip «— 6;

P.soa.ep «— P.ptr;
SUB(A'(X)).ep ~——— SUB(C' (D)) .ep;

SUB(A' (X)) .ip <—— SUB(C'(D)) .ip;
SUB(A'(Y)) ¥ 1;

SUB(A'(B)).ep +—— P.ptr (or ADDR(A'));
SUBCAf(Z)).ép <—— P.lab.ep;

SUB(A'(Z)) .ip <—— P.lab.ip.

19

s

In snapshot 6, instruction 6 is to he executed. The height of
instruction 6 is 2, so record contour A' becomes the‘top environment:
that is, P.dsp.l points to A'. Instruction 6 is.a procedure call on B
with paramete;s X and 2; Subcells B an X can be accessed through
P.dsp.1l and P.dsp.0 respectively. Again, the return address is stored
into P.lab before the transfer occurs. The AHPL description of this
snapshot is:

P.ih+—— 23

P.dsp.1<—— P.ptr (or ADDR(A'));
R.sqa.ip?+————- 73

P.lab.ep «~——— SUB(A'(B)).ep (or ADDR(A"));
P.lab.ip — SUB(A'(B)).ip (or 3);
TEMP <——— P.spa.ep}

P.soa.ep<—— P.lab.ep;
P.lab.ep =——— TEMP;

TEMP «<—— P.soa.ip;

‘P.lab.ip «—— P.lab.ip;

P.lab.ip <—— TEMP.

In snapshot 7, instruction 3 is to be executed. Instruction 3 is
an ENTER instruction into contour B, so a record contour B' is allocated
immediateiy inside record contoﬁr A': that is, the static link of B’
points to A'. The AHPL description is
P.ptr <——— ADDR(B');

P.soa.ip «— 4;
P.soa.ep «—— P.ptr;
SUB(B'(R)).ep;*-———— SUB(A' (X)) .ep;

SUB(B'(R)) .ip = SUB(A'(X)).ip;

20

M M

M'| 2 AiM'] 2
M'] 8 cim'| 8 A
: x]cT 9
Y| 1
- ' B{AT 3
2 wo=-> M AREE)

6 e 5w —> A’

CO . » Cl
G| - ¢ -
DJC" 9 D|CY1 9
ZiML5 Z|M'1l5
SNAPSHOT 4:CALL A(D,1) SNAPSHOT_5:ENTER A
M’ M
M'f 2 AlM'I 2
M8 Al . ClM'] 8 ’ Al
XiC'l 9 1XIc'l 9
Y 1l Yi 1 B
BIA'[3 1BJA'l 3 |[R[C'}O
ZiC'L3 Z|Cc'i3 F| 2
. _ Z[A']7
3 e 1w —> A’ I e=— 1 —+B!
C!) . Cv
G| - G| -
DIC'1 9 DiCY 9
AN Z{M'[15
SNAPSHOT_6:CALL B(X) SNAPSHOT: 7?:ENTER B

Figure 7. SNAPSHOT 4 to SNAPSHOT 7 of Example 1

21

SUB(B'(F)) +— 2;
SUB(B'(Z)) .ep+—— P.lab.ep;
SUB(B'(Z)) .ip «—— P.lab.ip.

In snapshot 8, instruction 4 is to be executed. Instruction 4 is
a procedure call on R with parameter F+Y. Since the height of instruc-
tion 4 is 3, P.dsp must be initialized to point to B', through which R
and F can be accessed, while Y can be accessed through P.dsp.l. The
AHPL description of this snapshot is: |
P.ih+—— 3;

P.dsp.2 «—— P.ptr;

P.soa.ip «— 5;

P.lab.ep<—— SUB(B'(R)) .ep (or ADDR(C'));
P.lab.ip <—— SUBB'(R)).ip (or 9);

- TEMP <— P.soa.ep;

P.soa.eﬁ <«—— P.lab.ep;

"P.lab.ep «— TEMP;

TENE?—% P.soa.ip;

P.soa.ip «—— P.lab.ip;
P.lab.ip*h————-TEMP.

In snapshot 9, instruction 9 is to be executed. Instruction 9 has
its height equal to 2, and it is immediately enclosed by algorithm con-
tour C, so the display registers must be reconstructed through the
static link of record contour C': that is, P.dsp.0 points to M', and
P.dsp.1 points to C". Iﬁstruction 9 is an ENTER instruction into D, so
a copy of D is made with.usubcells W and Z. The ¢ovresponding AHPL
description is:

P.ih—— 2;

22

P.dsp.1<—— ADDR(C');
P.dsp.0+——— STAT(C");
P.ptr<+—— ADDR(D");
P.soa.ep+—— P.ptr;
P.soa.ip «— 1Q;

SUB(D'(W)) +—— F+Y (or 3);
SUB(D'(Z)).ep <—— P.lah.ep;
SUB(D'(Z)).ip +—— P.lab.ip.

In snapshot 10, instruction 10 ié to be executed. The height of
instruction 10 is 3, so P.dsp.2 must be initialized to point to D'.
Instruction 10 is to deposit the value of W into G, which resides in
record contour C'. The AHPL description of this snapshot is:
P.ih+—— 3;

P.dsp.2 <—— P.ptr;
P.soa.ip'*————- 11;
SUB(C'(G)) +— SUB(D'(W)).

In snapshot 11, instruction 11 is to be executed. Instruction 11
is a return imnstruction to the calling procedure, which is specified by
the return label Z. After executing this instructién, the contents of
Z becomes the new site of activity, and the valid bit of reéord contour
D' is set off: £hat is, D' is no longer able to be accessed. The AHPL
description is:

P.soa.ep <— SUB(D'(Z)) .ep;
P.soa.ip «—— SUB(D'(Z)).ip.

In snapshot 12, instruction 5 is to be executed. Since the last

instruction is a jump instruction, the display registers must be recon-

strcted by using the static link of B' and the height of instruction 5.

23

M' Ml
M2 AlM*[2
M']| 8 Al clM'|8 A
X|cT 9 Xjc'1 9
Y| 1 B' Y{ 1 "B
BlA'l 3 R[C'] 9 BiA'} 3 RiC'19
21C'113 F| 2 ZiC'll3 F| 2
Z[A']? l A
C' C’
G| - G| -
DIC'M 9 D|C'l 9 D'
Z{M'15 ZIM'L5 Wi 3
z|B'] S
9 w —C' 10 «— v — D'

SNAPSHOT 8:CALL R(F+4Y)

- SNAPSHOT_9:ENTER D

Ml' Ml
AlM'| 2 A|M'|2
cim'l8 A clM']8 A
AR Xi{c'to9 ’
Y{ 1 B Y 1 B'
BlA" 3 RiC'[9 BlA'l 3 Ric 9
Zic'i3 Pl 2 zlc'i3 J|Fl 2
: AT Wi 1 2Z2]A' 7
r ' l 5 = 1 = B*
C' C'
Gl 3 G| 3
' DIC'l 9 DIC'1 9
ZiM'lL5 Wi 3 ZIM'L5
Zz|B'T5
llkeé % —> D'

SNAPSHOT_10:G=W

SNAPSHOT 11:EXIT D

Figure 8. SNAPSHOT 8 to SNAPSHOT 11 of Example 1

24

‘Instruction 5 is a return instruction to the calling procedure speci-
fiéd by the return label Z. After‘executing this instruction, the
contents of Z, which resides in record contour B', becomes the new site
of activity, and record contour B' can no ionger able be accessed. The
AHPL description of this snapshot is:

P.ih «+—— 3;

P.dsp.2 «—— P.soa.ep: (or ADDR(B'));

P.dsp.l +~— STAT(:B')' (or ADDR(A'));

P.dsp.Q+—— STAT(A') (or ADDR(M'));

P.soa.ep +—— SUR(B'(Z)).ep (or ADDR(A"));
P.soa.ip <— SUB(B'(Z)).ip (or 7).

In snapshot 13, instruction 7 is to be executed. Instruction 7 is
also a return inétructioh to the calling procedure specified by the
return label Z. The same procedure as in snapshot 12 is followed, and

" the AHPL‘descripﬁion is:

: P.ih;~———-2;

P.dsp.l ~—— P.soa.ep (or ADDR(A'));
P.dsp.Q «— STAT(A') (or ADDR(M'"));
P.soa.epf-*—~ SUB(A'(Z)).ep (or ADDR(C"));
P.soa.ip'*-*——-SUB(A'(Z)).ip (or 13);

In snapshot 14, instruction 13 is to be executed. Instruction 13
is another return instruction to the calling procedure specified by the
return label Z. 1Its AHPL description is:

P.ih+— 2;
P.dsp.1 <—— P.soa.ep (or ADDR(C'));
P.dsp.0 <—— STAT(C') (or ADDR(M'));

P.soa.ep ~—— SUB(C'(Z)).ep (or ADDR(M')); : ;

M | M

2 fafml 2
8 At i clm'] 8
Xlc'l 9
Y
BIA'l 3
Z1C'13

7 = nw —> A’

c!' c!'
G _ Gl 3
DiC'l 9 DiC'l 9
ZIM'ls ZiM'11l5
13 «— w —-C'
SNAPSHOT_12:EXIT B SNAPSHOT 13:EXIT A
Ml
2
8
15 «=— % —>'M' NULL €~ 1 —»NULL
SNAPSHOT 14:EXIT C SNAPSHOT _15: TERMINATE

Figure 9. SNAPSHOT 12 to SNAPSHOT_ 15 of Example 1

26

P.soa.ip «— SUB(C'(Z)).ip (or 15).

In snapshot 15, instruction 15 is to be executed. Instruction 15
is to tefminate EX 1, so the executing processor's state will become
terminated’after ﬁhe execution of this instruction: that is, its two
pointers will point nowhere. Also, record contour M' is no longer able
to be accessed. The AHPL description of this snapshot is:

P.ih+— 1;
P.soa.ep <— null;
P.soa.ip < nulls;
P.dsp.0‘<*-‘-“ null.

In this example, procedure C is called in snapshot 2 first. Inside
C, procedure A is called in snapshot 4, with procedure D as an actual
paremater. Inside A, proceduré B is called in snapshot 6, with its
formal parameter X, a procedure, as the actual parameter. Finally, the
formal parameter R is called in snapshot 8. Since B's formal parameter
R is X which in tern is D, procedure D is involked. Each time a pro-
cedure is called with a procedure as the actual parameter, the contour
model can just treat it as a label‘and pass it to the called procedure,

and no extra procedure overhead is required.

Example 2. In this example, we will see how the contour model can
execute two procedures in parallel. The program to be executed is
EXAMPLE 2, as shown in Figure 10.a. EX 2, as shown in figure 10.b, is
the algorithm re—expressed in terms of thé data structure of the con-
tour model. For convenience, the array D declared in the main algo-
rithm contour M is treated as two distinct elements Dl and D2 at this

moment, though this is not the true situation.

r’BEGIN INTEGER A,B;
[1:2] INTEGER D;

E .
PROCEDURE F=(REF, INT A)

"INT: A 4 B;

o

PROCEDURE Q=(REF, INT B)

INT: A + B;

pi=[a(B), F(A)D;

PRINT (D);

\END H

a. EXAMPLE_2

Figure 10.

1 | ENTER

'UU ol (v g

7

b. EX_2

Example 2

27

- 28

Again, a sequence of snapshots is implemented to depict the execu-
tion of EX 2 by the contour model. However, no literal explanation
except the AHPL description is presented in each snapshot unless some-
thing new (which does not happen to EX 1) is encountered. Since more
than one processor will be used in this example, indexes are used to

: séparate different processors. For example, P_..soa.ep denotes the

0

environment pointer of the processor with index O.
The AHPL descriptions of snapshot 0 through snapshot 3 are:

Po.soa.ep‘*———*'null (snapshot 0 begins);

Po.soa.ip"———— 1 (snapshot 0 ends);

Po.ptr‘*—~—* ADDR(M') (snapshot 1 begins);

P_.soa.ep +— P

0 0

Po.soa.ip‘*—-——- 8;

SUB(M'(F)) .ep +—— P

.ptr;

O.ptr (or ADDR(M'));

-SUB(M'(F)) .ip <~—— SUB(M(F)).ip (or 2);

SUB(M'(Q)) .ep +—— P_..ptr (or ADDR(M'));

0
SUB(M'(Q)).ip =—— SUB(M(Q)).ip (or 5);

Po.ih~*———~— 1 (snapshot 2 begins);

Pofdsp.O*F———— PO

Po.soa.ip +— 93

SUB(M'(A)) +— 1;

.ptr;

Po.soa.ip «—— 10 (snapshot 3 begins);

SUB(M'(B)) «— 2.
- In snapshot 4,-instruction110 is to be executed. In instruction

10, two procedures are called simultaneously, So two new processors Pl

and P2 are allocated and initialized by PO (for details see CHAPTER III

and IV). F, Q, A, and B can be accessed through Po.dsp.O and the offset

A -
B -
F W 2
Q M5
D] -
D2,
1 €=n,—> NULL 8 € > M
SNAPSHOT_O3 ' SNAPSHOT_1:ENTER M
M' . . Ml
A1 A1 '
B | = B |2
F M']2 F_M']2
QM5 Q _IM'[5
DI - DI -
D2] = D2 =
9 <« w >N 10 €= w —>M'
SNAPSHOT_2:A=1 | SNAPSHOT_3:B= 2

Figure 11. SNAPSHOT 0 to SNAPSHOT 3 of Example 2

30

of each corresponding subcell in M'. The AHPL description of snapshot 4
is:
Po.soa.ip*r———— 11;

Pl.soa.ep*—-——— SUB(M'(F)).ep;

Pl.soa.ip'+~———-SUB(M'(F)).ip;

Pl.lab.ep*————-P

Pl.lab.lp - PO

P,.so0a.ep SUBM'(Q)) .ep;

P,.so0a.ip ~—— SUBCM'(Q)I-iP;

P2.lab.ep “+— P

Pz.lab.ip “— P

g'S0a.ep;

.soa.ip;

0.soa.ep;

0.soa.ip.

In snapshot 5, two instructions 2 and 5 are executed parallely by

processors P1 and P2 respectively. Since both instructions 2 and 5 are

ENTER instructions, two record contours F' and Q' are allocated and

initialized. The AHPL description of processor Pl executing instruction

2 is:

Pl.ptrdﬂ———— ADDR(F');
- ——

Pl.soa.ep Pl

Pl.soa.ip “— 3;

.ptr;

Pl.ih.+4—~— 1;

Pl.dsp.O —— ADDR(M');
SUB(F'(A)) <—— SUB(M'(A));
SUB(F'(Z2)).ep -~ Pl-lab-eP;

SUB(F'(2)).ip «—— P_.lab.ip.

1

The AHPL description of P, executing instruction 5 is:

2

P, .ptr <—— ADDR(Q");

2

P_.soca.ep— P

) .ptr;

2

31

Pz.soa.ip*~*~—— 6;

P,.ih+— 1}

2

Pz.dsp.O «—— ADDR(M');

SUB(Q'(B)) ~—— SUB(M'(B));
SUB(Q'(Z)).ep*-—-—Pz‘lab.ep;
SUB(Q'(2)) .ip ~— Pz-lab.ip.

In snapshot 6, instruction 3 and 6 are to be executed by P1 and P2

respectively. Since the heights of both instructions 3 and (6 are 2, so

Pl.dsp.l and P_.dsp.l must be initialized to point to F' and Q' sepa-

2

rately. Both instructions 3 and 6 are to find the sum of A and B. For

Pl; A is a local variable, while B is a global variable. For P_, B is .

2

a local variable, while A is a global variable. Global variables B and

A can be accessed through P .dsp.0 and P,.dsp.0 respectively. Finally,

1 2

deposit the sum of A and B into D1 and D2. The AHPL description of .Pl

executing instruction 3 is:
Pl.ih<~———— 2;

Pl.dsp.l<4——-Pl.ptr;

Pl.soa.ip<~———— 43

SUB(M'(D1)) <— SUB(M'(B)) + SUB(F'(A)).

The AHPL description of P, executing instruction 6 is:

2

P, .ih<—— 23

2

Pz.dsp.l<—-———-P2

P, .soa.ip+~—— 7;

2
SUB(M'(D2)) <— SUB(M'(A)) + SUB(Q'(B)).

.ptr;

In snapshot 7, instruction 4 and instruction 7 are to be exected by

Pl and P2 separately. Since both instructions 4 and 7 are return instruc-

tions to the same procedure: that is, Pl and P2 will rejoin to a single

32

M M
A 1 ‘ A 1
B 2 Bl 2
F{M]2 F M| 2
_Q M5 Q [M5 P!
Dli - D1 Al 1
D2i - D2 _QVM']ll
3 €« ﬂl—¢~F'
2 1w, — N
l Q'
Bl 2
6 6—-n2-> Q'

SNAPSHOT 4:CALL Q(B),CALL F(A)

SNAPSHOT_5:ENTER Q,ENTER F

M* nme
Al 1 Al T
Bl 2 Bl 2
F M2 FIM2
Q IM']5 . P Q |mM'i5
DIl 3 AL 1 D1 3
D2 3 AL D2] 3
I € ﬂlfékEf
Q'
5TT llt—no—>M'
ZiM'[1l
7 € m,—>Q'

SNAPSHOT_6:D; =A$B,D,=AtB

SNAPSHOT_7:EXIT F,EXIT Q

- Figure 12. SNAPSHOT 4 to SNAPSHOT 7 of Example 2

33

site of activity. So, P_ will come back to execute EX 2. Recall when

a

P0 initializes Pl and P2 in snapshot 4, the state of PO should become .

asleep, however, Po.soa.ip still points to instruction 1%, which is the

rejoining point after the processes F and Q are finished.

In snapshot 8, instruction 11 is to be executed. Instruction 11
is used to print out the values of arréy D, éo the values of D1 and D2
- will be shown on the output list,

In snapshot 9, instruction 12 is to be executed. Instruction 12
.soa.ip will point to null after

. terminates EX 2, so P,.soa.ep and P

0

execting instruction 12.

0

P and P_ are used in this
0> "1’ 2
example. Of course, there are some alternatives. For example, P0 is

used as the "master" processor in the execution of EX 2, so only one

For clarity, three processors P

processor need be initialized in snapshot 4 to execute F and Q parallely
by PO and the processor just initialized respectively. After process
Q is finished, its executing processor will "commit suicide'" and rejoin

back to PO'

Example 3. 1In this example, the algorithm EX 3 to be executed is
the inorder traversal of a binary tree (BT). In Figure 13.a, EX 3 is
the algorithm to be executed by the contour model. The binary tree to
be traversed is BT, as shown in Figure 13.b. The root of BT is pointed
by a pointer K, each node of BT has three subfields: LLINK (left link),
RLINK (right 1link), and DATA. If the LLINK (or RLINK) of a node con-
tains a 0, then that node has no left (or right) child.

An array NODE, declared in the main procedure M, is used to store
the nodes of a binary tree. T is the recursive procedure to traverse

that binary tree. Again, the array NODE is treated as several (4 in

1 [ENTER |

NODE 1j-

NODE 2| -

NODE 3| -

NODE 4]|-

T:2 ENTER

S

NE |

3 LLINK(K):0 ——%
l #
4 [CALL T(LLINK(X)) |

5 [PRINT (NODE(K)) |«—-—

6 RLINK(K):0 ———
| #
7 [CALL T(RLINK(K))]

8 I GO TQ Z *———;—————J-

A SET OF INSTRUCTIONS

USED TO CONSTRUCT A

BINARY TREE WITH ITS
ROOT POINTED BY K

10

11 =

NODE 2

a). EX 3

LLINK DATA RLINK
| NoDE 2 | 60 | NODE 3 | NODE 1
/

L o

] 24 | NODE 4 | [o 17871 o 1] ~obE

Lo [33] o | NobE 4
b). Binary Tree ‘

Figure 13. Example 3

3

34

35

this example) different variables. Each of which contains LLINK, DATA,
and RLINK. 1In order to put more attention on how the contour model
executes EX 3 recursively, we skip discussing instruction 1 and instruc-
tion 9. The subcells of record contour M' before the execution of
instruction 10 is shown in SNAPSHOT 2 in Figure 14.

In snapshot 3, instruction 10 is to be executed. Procedure T is
called with an actual parameter K. Both T and K can be accessed through
é.dsp.O, which points to record contour M' currently. Its AHPL descrip-
tion is: |
P.soa.ip=+— 11;

P.lab.ep < SUB(M'(T)) .ep;
P.lab.ip <—— SUB(M'(T)).ip;
TEMP ~—— P.soa.ep;

P.soa.ep +—— P.lab.ep;
‘P.lab.ep ~+————— TEMP;

TEMP «—— P.soa{ip;
P.soa;ip_**——-— P;lab.ip;
P.lab.ip «—— TEMP.

In snapshot 4, instruction 2 is to be executed. Instruction 2 is
an‘ENTER instruction into procedure T. The first record céntour T' is
allocated and initialized. Its AHPL descriptioﬁ is:
P,ptr*-————'ADDR(T');

P.soa.ep ~—— P.ptr;
P.soa.ip <— 3;
SUB(T'(K)) - SUB(M'(K));
SUB(T'(Z)).ep<+— P.lab.ep;

SUB(T'(Z)).ip<—— P.lab.ip.

l] <— 7w — NULL

Ml

NODE 1

NODE 2

NODE 3

trefrge

NODE 4

TiM] 2

9 «— % ~» M

- SNAPSHOT_0 SNAPSHOT_1:ENTER M
M me

NODE_112]60]3 NODE_1] 2]60]3
NODE 20120 [k NODE 2| 0| 2L | L
NODE_310]78]0 NODE_3] 0]78]0
NODE L]0133]0 NODE_L[0]33]0

K | _NODE 1 K | _NODE 1

TIW | 2 Tim [2

10 «— w —» M'

2€¢— yw — I

SNAPSHOT _2:CONSTRUCT BT

SNAPSHOT 3:CALL T(NODE_1)

Figure 14. SNAPSHOT O to SNAPSHOT 3 of Example 3

36

37

In snapshot 5, instruction 3 is to be executed. The height of
instruction 3 is 2, P.dsp.l must he initialized to point to T'., A
logicél operation testing if the node pointed by K has left child. If
it does, then instruction 4 is the instruction to be“exeCuted next.

If it does not, then ins;ruction 5 will be executed next. Since NODE 2
is the left child of NODE 1, fhe instruction to be executed‘is 4. The
AHPL description of this snapshot is:

P.ih~<—— 23

P.dsp.l <—— P.ptr;

P.soa.ip +— 4.

In snapshot 6, a call on the procedure T with the actual parameter
LLINK(K) is executed. The subcell K to be accessed is in T' instead of
M'. After getting the value of K, both T and LLINK(K) can be accessed
through P.dsp.0. Instruction 5 is the instruction to be executed next
in normal sequence, so both its address and environment must be’stored
in P.lab at the end of instruction 4. The AHPL description of snapshot
6 is:

P.soa.ip +— 5;

P.lab.ep <—— SUB(M'(T)).ep;
P.lab.ip =—— SUB(M'(T)).ip;
TEMP <——— P.soa.ep;

P.soa;ep ~——— P.lab.ep;
P.lab.ep = TEMP;

TEMP <—— P.soa.ip;

P.soa.ip *— P.labfip;

P.lab.ip <—— TEMP.

38

M M

NODE 1]/2[60}3 NODE 1]2[60]3
NODE 2| 0| 244 NODE 21 0244
NODE 3[0]78]0 NODE 3/0[/78]|0
NODE 4]0[3310 NODE 4| 6[33]0

K NODE 1 K NODE 1

T] M' 2 Tim [2

\ me ' T

K NODE: 1 LXINODE 1

2] M 711 Zi{mM 111

3 e~y —» T L «— ¢ —= T°*

SNAPSHOT 4:ENTER T

 SNAPSHOT_ 5LLINK(NODE_1):0

M M

NODE 1] 216013 NODE 1{2160][3
NODE 2| 0[24fL NODE 2| 0[2414
NODE 3/ 0[78]0 NODE 3] 0]7810
NODE 4] 0[33]0 NODE 4{0]33}(0

K NODE 1 K NODE 1

T M' 2 . Tim |2

Ti' me mw
K{NODE 1 |- KINODE 1 KINODE 2
Zim' 11 | ZIM' 1] Zlrr |
3 «— w —» T"

2 = 1t —= M

-SNAPSHOT_é:CALL T(LLINK(X))

SNAPSHOT_7:ENTER T

Figure 15. SNAPSHOT 4 to SNAPSHOT 7 of Example 3

39

In snabshot 7, a second copy of algorithm contour T is made and
éllocated immediately ingide M'. 1In order to distinguish from the first
copy T', the second copy is denoted by T". The AHPL description of this
‘snapshot is:

P.ptr +———— ADDR(T");

P.soca.ep «— P.ptr;

P.soa.ip4————‘3;

SUB(T"(K)) «— SUB(M"(SUB(T'(K)))).LLINK;
SUB(T"(Z)) .ep+—— P.lab.ep;

SUB(T"(Z)).ip ~—— P.lab.ip;

In snapshot 8, the same procedure will be followed as that in snap-
shot 5. Since NODE 2 has no left child, the instruction to be executed
next is inétruction 5.

In snapshot 9, the DATA of NODE 2 is printed out, and P.soa.ip points
to instruction 6.

In snapshot 10, a logical operation testing whether NODE 2 has a
right child or not. vSince NODE 3 is the right child oﬁ NODE 2; the
instruction to be executed next is instfuction 7.

In snapshot 11, procedure T is called with the actual parameter
RLINK(K). The subcell K is accessed from T" firét, then RLiNK(K) can
be accessed thrqugh P.dsp.0. The AHPL description of this snapshot is
exactly the same as that of snapshot 6 except P.soa.ip will point to
"instruction 8;

In snapshot 12, a third copy, T'", of aléorithm contour T is made.
The corresponding AHPL description is:

P.ptr~—— ADDR(T"');

P.soa.ep ~— P.ptr;

40

B M _ M
ODE 112]60]13 NODE 1[21]60[3
NODE 2| 0[24[4 NODE 2102414
NODE 3| 017810 NODE 3107810
NODE 4{0133]0 NODE 4]0}13310
K| NODE 1 K] 'NODE 1
T M2 T]2 |
T! v T") T' T"
K{NODE 1 KINODE 2 K[NODE 1 K[NODE 2
Z M'[11 Z|T [5 ZimM' {11 ZIT' [5
5 %— v —» T 6 «— 7 —=T"

SNAPSHOT_8:LLINK(NODE 2):0

SNAPSHOT_9:PRINT NODE_2

- M’ . M
NODE 1121601 3 NODE 1] 216013
NODE 2| 0| 24] & NODE 2] 0 24|
NODE 3] 0[7810 NODE 31017310
NODE 4]06133]0 NODE 4] 0[33]0

K] NODE 1 K] NODE 1

T M [2 TIM [2

T mw me e
KINODE 1 K] NODE 2 KINODE 1 K| NODE 2
7 1M | 11 ZIT' [5 ZIM' | 11 ZlT' | 5
7*_ Tf ___hT"

2 «— 7 —> M'

SNAPSHQT_IO:RLINK(NODE_Z):O

Figure 16. SNAPSHOT 8 to

SNAPSHOT_11: CALL T(RLINK(K))

SNAPSHOT 11 of Example 3

41

P.soa.ip +—— 3;

SUB(T"' (K)) +—— SUB(M' (SUB(T"(K)))) -RLINK;
SUB(T'" (Z)).ep +— P.lab.ep;

SUB(T"' (Z)).ip “—— P.lab.ip.

In snapshot 13, the same procedure as that of snapshot 8 is
followed. Since NODE 4 is a leaf, the next instruction to be‘executed
is instruction 5.

In snapshot 14, the DATA of NODE 4 is printed out, and P.soa.ip
will point to instruction 6.

In snapshot 15, the logical test on the value of the right link
of NODE 3 is made. Since this test fails, the instruction to be exe-
cuted is instruction 8.

In snapshot 16, a‘return instruction with return address specified
by the subcell Z of T"' is executed. After executing this instruction,
T'"'" is no longer able to be accessed. The environment pointer of the
. new siteiof activity points to record contour T", and iés instruction
#ointer points to instruction 8.

In snapshot 17; the instruction to be executed is still instruction
8. The new site of activity is a copy of the subcell Z of recore con-
tour T". Also; record contour T" will be deallocated after this smapshot.

In snapshot 18, the DATA of NODE 1 is printed out, and P.soa.ip
will point to instruction 6. |

Since NODE 1 has a right child NODE 4, the instruction to be exe-
cuted is instruction 7 in snapshot 20. Instruction 7 is a call on T |
with an ac;ual parameter RLINK(K), so a fourth copy. T'"", of algorithm

contour T is allocated immediately inside M' in snapshot 21. The steps

N

42

M M
NODE 1]2160]3 NODE 1.12]60
NODE 2] 0] 2L]L NODE 21012411
NODE 3{0[78]0 NODE 3]0]78]0
NODE 410713310 NODE L]0133]0
K] NODE 1 K [NODE 1
Tl M |2 i 12 .
T' T'l T' T"
K| NODE 1 K[NODE 2 K| NODE 1 K] NODE 2
Zim' |11 AN I ZiM (11 ZIT' I 5
T"' Tl"
K[NODE % : K[NODE &
zZiT | 8 2T 1 8
3 < 1 =T 5 <= w 1™
SNAPSHOT 12:ENTER T - SNAPSHOT_13:LLINK(NODE 4):0
: M) . M
NODE 11216013 "NODE_ 11215013
NODE 21024k NODE 2|02k &
NODE 3107810 NODE _3[0]78]0
NOPE 4]0]33[0 NODE &4{0]33]0
K| NODE 1 K| NODE 1
Tl M | 2 T 2
T' T" T' T"
KINODE 1 KINODE 2 K[NODE 1 K[NODE <
7ZiM' | 11 AR ZIM" [11 ALY 5
Tv" T"'
K] RODE . & K[NODE %
AR ’ z]T™] 8]
6 «— w —»T" '8 ®— 1 —-D""
SNAPSHOT 14 :PRINT NODE 4 SNAPSHOT_15:RLINK(NODE 4):0

Figure 17. SNAPSHOT 12 to SNAPSHOT 15 of Example 3

43

M M

NODE 1]2160]3 NODE 1]2716073
NODE 2| 0f2L [T NODE 21020
NODE_3[0] 7810 RODE 3]0]78]0
NODE 4] 0][33]0 NODE 4]0]33/0

K| NODE 1 K| NODE 1

TIM | < TIM]2

. 'T' T" Tl
K| NODE 1 K|NODE 2 K[NODE 1
zjm | 13 zj?' | 5 zlm'] 11

8 «— 7w —» T

SNAPSHOT 16:G0 TO Z(RETURN)

SNAPSHOT_17:G0 TO Z(RETURN)

M' Ml'
NODE _112]60]3 NODE 11216013
NODE 2] 0] 2L1L NODE 21012k 1%
NODE 310]78]0 NODE 3}0{78]0
NODE 4]0} 33]0 NODE 4]0]33]0
X | NODE 1 K] NODE 1
TLEM | R T[m] 2
Tl Tl
K| NODE 1 KI NODE 1
2[m [11 zlmr 111

6 &~ 7t —= T

7« «w —» T

SNAPSHOT_18:PRINT NODE 1

SNAPSHOT_19:RLINK(NODE 1):0

Figure 18. SNAPSHOT 16 to SNAPSHOT 19 of Example 3

M’ e
NODE_1]2160] 3 WODE_L]Z]20]3
NODE 2[0[24]% NQDE 2] 0] 2L %
NODE 3/0]78]0 NODE 3]0]78]0
NODE_410[33]0 NoDE 4]0]33[0
K] _NODE 1 K| NODE 1
T{m [2 TIM 2
T' TQ
K| NODE 1 K]NODE 1
2w [11 2 e 7 = ZIM] 11
Tllll
K[NODE 3
72 1

3(___ " —» T"“

5 a— 1 —p T""

SNAPSHOT_20:CALL T(RLINK(K)) SNAPSHOT 21:ENTER T
Iremes M : M
NODE 11218013 NODE 11218013
NODE 2012k NODE 2] 0 |24 |k
NODE 3107810 NODE 3] 017810
[NODE 41013310 NODE 4] 0]33]0
K| NODE 1 K] NODE 1
il 2 T M 2
T l. T!
K] NODE_ 1. KINODE 1
ZIM' | 11 ZIM'] 1
N T"ll Tl"l
K |NODE KINODE 3
/A G| 8 72T |

6 e__T’___’ T""

A .

SNAPSHOT 22 :LLINK(NODE 3):0

SNAPSHOT_23:PRINT NODE 3

Figure 19. SNAPSHOT 20 to SNAPSHOT 23 of Example 3

45

performed from snapshot 22 through snapshot 24 repeat that of snapshot
13 through snapshot 15 with the exceptions that T"" substitutes T"' and
the DATA of NODE 3 is printed out in snapshot 23. Records T"", T',
and M' will be deallocated after smapshots 25, 26, and 27 respectively.
Finally, the two pbinters of P.soa point to nowhere, and EX 3 is termi-
nated after snapshot 27.

In this example, procedure T was called recursively. At each call
of T, a new record contour, which is a copy of algorithm contour T, is
allocated and initialized. At any moment during the execution of EX 3,

if more than one copy of T exist, they all must have the same height.
Stack Model

In the stack model, a display and a data area are needed for each
¢ 17o—
procedure at runtime. Gries (3) puts the display of each procedure in

the first few locations of that data area, and uses a global index
register, called ACTIVEAREA, to contain the address of the activé dis-
play. All data within the active procedure can be accessed by using

ACTIVEAREA and thé display referenced by it. He also-points out each

procedure data area consists of the following.information: the display

for the procedure; a location named STACKTOP containing the address of
the top stack location just after this procedure data area has been
allocated; the return address; the actual parameter Display address;
the global D;splay address; the top stack location address at the point
of call; thé aétual parameters themsélves (or their addresses); ‘and each
block data area within the procedure. He defines the return address,
the actual parameter Display address, the global Display address, and

the top stack location address at the point of call be four implicit

46

84__ “ —p T""

M M
NODE 1]2][60]3 NODE 1] 218013
NODE 2] 0[2L[L NODE 2[O 25T
NODE 3]0[78]0 NODE 3| 07810
NODE 4{ 0] 3310 "NODE L[O 33|10
K] NODE 1 K 0D |
T T [.27
) Tl
K[NODE 1 KINODE 1
ZI M 11 ZIM'] 11
8e— w—> T
Tm’
K|NODE 3
AR

SNAPSHOT_24:RLINK(NODE 3):0

M'
NODE 1]2]60]3
NODE 2]|0[24 4
NODE 3/0]78{0
NODE 4] 0[33]0
K NODE_1
T MO

'SNAPSHOT 26:G0 TO Z(RETURN)

Figure 20. SNAPSHOT 24 to

SNAPSHOT_25:G0 TO Z(RETURN)

NﬁLL «— 7 —> NULL

SNAPSHOf_27:TERMINATE

SNAPSHOT 27 of Example 3

47
[ig. S, pis

parameters. Use EX 1 in Chapter I as an example, if EX 1 is executed
by the stack model, the implicit parameters when procedure R is called
in snapshot 8 are:
(i) return address;
(ii) procedure B's data area address;
(iii) procedure C's data area address;
(iv) STACKTOP at the call.

Abd-alla and Meltzer (1) implements a push down stack to solve the
problems caused by ''reentrant" procedurés. The 'reentrant" procedure
is a kind of subroutine which can be called by one process before some
other process has completed using that subroutine. They ultilizes a
fixed maximum amount 6f storage allocated to each reentrant subroutine.
The suﬁroutine then allocates some of this space to each call made to
it. After a call is completed, the subroutine frees the space allocated
to that particular call and can reallocated the space to a subsequent
call. Thgs, the calls are completed in the reverse order in which they
are called: that is, the first call made to the subroutine is the last
cail to be completed. Since only a fixed amount of storage is allocated
for‘the push down stack, the mechanism to test stack overflow must be

developed.

Comparison

The differences arising from the storage organization and the soft-
ware mechanisms between the stack model and the contour model are 'dis-
cussed briefly below.

In the stack model, the data area of each block is allocated on the

top of the data area of the procedure which immediately encloses that

48

block. In the contour model, the record contour of a block is allocated
separately from that of the procedure enclosing it.

In the stack model, the display and the data area of each procedure
are put together, and at least one storage location serves as the stack-
top to point to the address of the last memory location allocated for
that data area. In the contour model, only those variables declared
explicitly in a procedure and perhaps the return address reside in thé
record contour of that procedure.

In the stack model, the display of each procedure is stored in the
first few locations of its data area and will not be changed until that
data area is deallocated. In the contour model, the display of each
procedure is stored in the executing processor's display registers and
will be destroyed when the site of activity is changed.

When a procedure is called,.there are at least four implicit para-
meters must be ﬁassed to and stored in the data area of the called
procedure in the stack model. But this does not happen to the contour
model, since even the return address is treated as an actual parameter
(at the model level) and passed to the data area of the called procedure.

V/’ The contour model simplifies the execution of a block enter or a
block exit. When a block is entered, its record contour is allocated
and adjoined to ﬁhe top of the active environment. When a block is
exited, its record contour is removed from the top of the active display
régister.

Neither the actual display nor the global display is needed in the
contour model. Since the processor's two pointers, P.soa.ep and P.soa.ip,
always specify the current site of activity, the active display can be

created through the static link of each record contour and the height

49

of the instruction being executed. The AHPL description in snapshot 12
of example 1 in Chapter I is an example to construct a new display.

In the contour model, there is no limitation on the number of calls
to a reentrant procedure, and there is no restriction that the first

call on the reentrant procedure be completed last.

Modifications

In Johnston's paper, array allocation is never mentioned. In EX 1
and EX 2, array elements are treated as different variables, but this
is not the true situation in the contour model. If we regard an array
as a special matrix, then the number of dimensions of that afray is
always known at compilation.time, but not necessarily the number of
values in each dimension if a flexible array13 is implementéd. The way
_tb allocate an array is to allocate an array descriptor from the
algorithm contour in which that array is declared at compilation time ,
" and aliocate the array itself somewhere else at runtime. The contents
of the array descriptor may be left unspecified for a flexible array,
but will bé initialized at runtime. Hedrick (5) implements a set of

storage locations called a "heap" to store the elements of an array at

runtime. The following from (5) demonstrates the allocation of arrays.

Assume that an ALGOL 68 particular program contains the declara-
tions:

flex (1:0) real Al, A2, A3; and the assignations;

Al:=(1.0, 2.0);

A2:=(3.0, 4.0, 5.0);

A3:=(6.0); ‘

These assignations set new bounds for Al, A2, and A3 respectively
and cause three consequtive allocations on the heap (p. 25).

11f the size of an array is not fixed during runtime, then it is
a flexible array. For example, if the dimension of an array declared

% a E%ock as A(I,J,K), where I,J, and K are variables, then A is a
Eexi e array.

50

heap 1.0}2.0| 3.0({4.0]5.0]6.0

Al A2 A3

Figure 21. Heap

If the heap were empty previously, it would now look as shown in

Figure 21 after Al, A2, and A3 are allocated on the heap.
Statement of the Problem

From the previous paragraphs, it is obvious that the contour model
has at least three advantages over the stack model. They are:
(i) ease of multiprocessing;
(ii) it is easier for the compiler writer to generate code - the hard-
ware handles problems of block entry and block exit;
(iid) pséudo—parallel processing is easier.

The purpose of this paper is to make a preliminary design toward
a hardware implementation of the contour model. Since many places in
Johnston's paper are either left for future use or left unspecified.
There are some difficulties when implementing the contour model in the
hardware. The objective of this paper is mainly to design the centrai
processing unit of the contour model. This model will be called CM 1
in thié paper for convenience. It specifies:
(i) how the different types of data generated and stored in the main
store, how each one of these basic data can be accessed and transferred

to the destination register properly;

(i1) how the virtual processors implemented together with the central
processing units to handle multitasking or paraliel processing;
(iii) how the instructions of CM 1 can be fetched, executed, and

sequenced.

51

CHAPTER II
STORAGE ORGANIZATION AND HARDWARE REGISTERS

The contour model is a cell-based model (10), each of its data
items is represented as a cell. A cell is composed of two parts:
organization and residence (10). The organization is used to describe
the general information of that particular cell. The residence consists
of a set of subcells and each subcell consists of 16 bits. Several sub-
cells contain one of the basic items: an integer, a label, or a pointer.
If a cell contains more than one basic item, then it is a compound cell.
Contours and virtual processors are examples of compound cells. The
storage structure of each type of datum was shown in Figure 3, and is

discussed in detail below.
Algorithm

An algorithm is a finite set of instructions which accomplish a
particular task (9). The terms program and algorithm are used inter-
changeably when the program specifies the algorithm.

One programming language used with the contour model is Contour
Model Assembler Language (CMAL) (11). A computer system.with a CMAL
translator converts those languages which have the necessary or potential
contour retention properties into CMAL. If the CMAL is a two pass

system, CMAL creates a symbol table, which includes all the variables

52

53

and the names of algorithm contours, from the names used in the source

statements and also checks for certain possible conditiqns and diagnostic
messages during the first pass. During pass two, CMAL again examines

each of the statements in the source program along with the symbol table
and produces a binary-coded program and its algorithm contours (7). Instead
of discussing CMAL and its translator, which are beyond thé scope of this
paper, some basic characteristics and its storage structure of algorithm
contours are presented here.

The algorithm models the static portion of the program (5). It ;é
specified by the syntactically correct code of that program. For each
procedure or each block of the program, there is a corresponding algorithm
contour. Algorithm contours remain invariant during the execution of that
program and serve as temﬁlates for the formation of the contour structure
of records (10). 1t is conceptualized that the algorithm contains a
flowchart network of instructions embedded in its nested set of contours
(10).

The algorithm is treated as a data structure whose basic elements
" are storage cells (5). As shown in Figure 3, the algorithm contour con-
tains several subfields, each of its funcfions is shown in Table II.

Algorithm contoﬁrs and the binary-coded program may be stored
separately in the main store. This implies that the instructions of the
algorithm to be executed are not stored physically in the main store as
parts of the algorithm contours, although they are conceptually embedded
in the nested set of algorithm contours. The relationship between the

algorithm contours and instructions are discussed later in this chapter.

‘ CMAL CMAL
ALGOL 60 Translator “—4 Source Program

CMAL Symbol
Source Program CMAL Pass 1 Table Listing
_Relocatable/Absolute
y Object Program
Symbol CMAL Pass 2

Table Listing 4

Algorithm contours

Figure 22} CMAL Processing by Using an
ALGOL 60 Program as an
Example

55

TABLE II

" ALGORITHM CONTOUR

SUBFIELD

BIT
POSITION

FUNCTION(S)

type

valid bit

height

size

static link

antecedent link

array subcell(s)

0-2

3-14

15

16-22

23-31

32-47

48-63

Vs

from 64 ’

Type is used to specify the
subsequent subcells are treated
as an algorithm contour. The
type code of algorithm contour
is 111.

For future use.

The valid bit of any algorithm
contour is set off.

In contour model, it is nece-
ssary to identify each contour
of the nested set of contours.
Not only for checking purpose,
the height is also used to
update the display registers
if necessary. The range of
the height of any algorithm
contour can be from 0 to 127.

For the storage allocation for
the record contour, size spe-
cifies how many subcells are
needed to comnstruct that algo-
rithm contour, so the same
number of subcells are needed
for any copy of it.

The static link of an algori-
thm contour points to the
algorithm contour which immedi-
ately enclose it.

This subfield is left unspeci-
fied for any algorithm contour.

Each subcell of an algorithm
contour contains either a local
identifer or a return label.

In algorithm contours, parts

of the values of their subcells
may be uninitialized.

56

Using the program EX 1 in Chapter I as an example, the algorithm
contour A has four identifiers: one integér Y and three labels X, B,
and Z. " At the time A is allocated, Y has not been initialized yet,
and X, B, Z are three invalid lables. Since algorithm contours remain
invariant and will not be deallocated until the execution of that
algorithm is over, there is no need to use a reference count in the
algorithm contours for deallocation purposes. An algorithm contour
contains an antecedent link, though it is left unspecified,>either for
future use or for a récord contour can be constructed easily from it.
The storage structure of the algorithm contour A is shown in Figure 23
with the assumption that the number on the right side of each instruc-

tion of EX 1 is the address of that instruction stored in the main store.
Record

In the stack-based model, a data area for storing display registers,
actual parameters,:implicit parameters, local variables, and dope
vectors is needéd for each procedure at runtime (3). In the contour model,
a record contour plays this role. Each contour of the record of execu-
tion is a copy of some specific algorithm contour with some modifications
to the'contenfs of its subcells. If record contours A' and B' are copies
of algorithm contours A and B, and if B' is immediaﬁely enclosed by A',
then B is necessarily immediately enclosed by A.

The set of record contours model the sematics of the program (5).
When an active processor is entering a block or a procedure, a copy of
that corresponding algorithm contour is made: that is, a record confour

is allocated. The algorithm contour is defined to be the antecedent of

57

111 ~~——mm——m———e 0 0000001 000001011 address of M —=——mm————e—ve—m
a b c d e £ g
011 00 - 000 —=—==——————v
h i ik 1 m n o
00 = 011 ——~——m———— 1o --— 00000000000
P q r s t uv w X
00011 011 ——mmmmmmmm - 00 —- .
x y z @ # $ ¢
a: data code of algorithm contour is 111
b: unspecified field for future use
c: valid bit of algorithm contour is always set off
d: height of A"is 1
e! algorithm contour contains 11 subcells
f: the static link of A points to algorithm contour M
g: the antecedent link of any algorithm contour is left unspecified
h: subcell X is a label, the .data code of a label is 011
i: in this paper, inhibit boxes are left unspecified
j: the present bit of X is set off for both of its two pointers are

not initialized

< e ROT OB HHX

¢ algorithm contours only contain invalid labels

¢ the environment pointer of X has not been initialized yet
¢ the instruction pointer of X has not been initialized yet
: subcell Y is an integer, the data code of an integer is 000
¢ the same as i

¢ Y has not been initialized yet, its present bit is set off
¢ Y is invalid

¢ Y has not been initialized

: subcell B is a label

¢ the same as i , ,

: the present bit of B is set on for its ip is not null

: the same as k

¢ the environment pointer of B has not been initialized yet
¢ the instruction pointer of B points to instruction 3

¢ subcell Z is a label

¢ the same as i

! the same as j

¢ the same as k .

: the environment pointer of Z points to nowhere

: the instruction pointer of Z has not bgen initialized yet

DN K

Figure 23. An Example of The Data Structure
of An Algorithm Contour

58

the record contour if the latter is a copy of the former, while the
record contour is the decedent of the algorithm contour (10). When an
active processor is exiting an algorithm contour, the record contour
pointed by the environment pointer will be deallocated after executing
that EXIT instruction. Since the record contours will be allocated and
deallécated during the execution of an algorithm, they form a set of
time-variant data structures.

Record contours are treated as data structures whose basic elements
are storage cells. As shown in Figure 3.e., the function and bit posi-
tion of each subfields are the same as those of an algorithm contour
except two subfields: the reference count and the antecedent 1link.

The reference count is maintained equal to the number of pointers
which point to the record contour for the purposes of deallocation (10).
As mentioned in Chapter I, whenever a record contour is allocated, the
service routine GETAREA (3) returns the address of the first memory
location available for that record contour to the pointer register of the
executing processor, and the reference count of that record contour is
increased by one which is the consequence of the pointer in the pointer
register. If a record contour has a zero reference count, it can no
longer be acceséed and will be deallocated during the next garbage collec-
tion (3, 5, 9). The third bit through the ninth bit of a record contdur
are reserved for the reference count, so a total of 127 pointers to a
record contour are allowed.

Each record contour, sa? C', is a copy of some specific algorithm
contour, say C, then C is the antecedent of C', or C' is the decendent

of C. One algorithm contour may have more than one decendent, but each

59

record contour has only one antecedent (10). The antecedent link of a
record contour specifies its antecedent. As in Chapter I, m is used to
denote a processor, its two pointers (ep and 1p) are the focus of currént
control, the antecedent of the record of execution pointed by ep must
immediately enclose the instruction pointed by ip at any moment.

The valid bit‘of a record contour is used to specify its accessi-
bility. When a record contour is newly created and initializea, its
valid bit is set on for it becomes the innermost environment. At any
time, only those records of execution with their valid bits on constitute
the current environments: that is, their subcells can be accessed by the
processor through its display registers. Record contours with their valid
bits off cannot be accessed.

If record contour C' is a copy of its antecedent C, and C contains
no arrays, the formation of C' is described as follows:

(i) the subfield size of C decides the number of subcells (excluding the
organization -part) needed for the allocation of C';

(ii) if C is the associated algorithm contour of a called procedure,

then the contents‘of those subcells in C' are copies of actual parameters;
(iii) if C is an algorithm contour with its height equal to zero, or C is
an algorithm contour of a block, then the contents of subcells in C' are
copies of the corresponding subcells in C except for those subcells
holding a label. Since any algorithm contour contains only incomplete
labels; that is, labels consist of a null environment pointer (ep) and

a non-null instruction pointer (ip), the conversion of those incomplete
labels into complete labels during the allocation of a record contour is

necessary. The conversion consists of coping the ip of the corresponding

60

incomplete label and inserting an ep pointing to the newly allocated
record contour.

Again, using program EX 1 as an example, the storage organization
of the record contour A' after it is allocated is shown in Figure 24.
"It is the direct result of those steps in snapshot 5 of EX 1 in

Chapter I.
Processors

In the contour model, there are additional elements together with

the ep and the ip to make the processor serve as the locus of the execu-
tion of.an algorithm. In order to enable the contour model to handlé
simulation languages, operating systeﬁ processes, multiprogramming, or
coroutine (6), a set of processors are implemented. A processor in

this scene is not a hardware processor, but rather a virtual processof
and a set of hardware registers in the CPU. A contour model with 8
virtuai processors VBi (0 < i <7), and three central processing ﬁnits,
CPUj_(O < j < 2), as an example is shown in Figure 25.

In Figure 25, VP2 and CPUO form a processor pair (VPZ’CPUO)’.
which is éxecuting PROCESS I, while (VPS’CPUZ) and (VP3,CPU1) are
executing PROCESS II,and PROCESS III, respectively.‘ Since this model
contains three central processing units, there are at most three processes

currently being executed: ‘that is, there are at most three of the eight

virtual processors awake, while the rest are either asleep or terminated.

61

100 0000001 ----- 1 0000001 000001011 address of M' address of A 0l1

a b c d e f , g h i

———=—====-- 1 1 address of C' 0000000000001001 000 —-——====—=—- 00

h] k1 m n) P qr

0000000000000001 011 ===—————=—— 1 1 address of A' 0000000000000011

] t u vw X vy

011 --=---=----- 1 1 address of C' 0000000000001101

Flw. D09 FhO QLD O WP

nu RaO” 08

¥ 4@

z @ #$ ¢ *

data code of record contour is 110

the reference count of A' is 1

unspecified field

valid bit is set on

height of A'is 1

record contour A' contains 11 subcells

the static link of A' points to M'

the antecedent link of A' points to A

Subcell X is a label, the data code of a label is 011
* in this paper the inhibit boxes are left unspecified
the present bit is set on whenever that subcell contains a
complete label

ee 6o a2 ee s

=

¢ record contours contain only valid labels
: the environment pointer of X points to record contour C'
: the instruction pointer of X points to instruction 9
¢ subcell y is an integer, the data code of an integer is 000
¢ the same as j
¢ the present bit of Y is set on
the valid bit of Y is set on
: the value of Y is 1
: subcell B is a label, the data code of a label is 011
: the same as j
the same as k
the same as 1 _
the environment pointer of B points to record contour A'

v: the instruction pointer of B points to instruction 3

: subcell Z is a label

;3 the same as j

: the same as k

: the same as 1

¢ the environment pointer of Z pdints to record contour C'
the instruction pointer of Z points to instruction 13

Figure 24. An Example of The Data Structure
- of A Record Contour

62

PROCESS I PROCESS II PROCESS TII
VP0 VPl VPZ VP3 VP4 VP5 VP6 VP7
CPU0 CPUl CPU2

Figure 25. Multiprocessors

Virtual Processor

A virtual processor is not a set of devices in a model; rather,

a sequence of memory locations, which is used to realize what is called a
site of activity (SOA). At any time, a valid virtual processor is execu-
ting or about to execute a process, wﬁich is identified by the SOA of
that virtual processor. The function and the dimension of each subfield
of a virtual processor are shown in Table III.

The reference count of a virtual processor P.ref has the same func-
tions as that of a fecord contour. The staté‘of a virtual processor
specifies its current state. The site of activity of a virtual processor
P.soa contains a label, which specifies both the environment and the
instruction being executed or to be executed. The instruction héight
of a virtual processor contains a copy of the height of the instruc-
tion pointed by P.soa.ip. Besides the pointer register P.ptr, there
are two other pointer registers containing the general purpose register
pointer P.gpr.ptr and the display register pointer P.dsp.ptr separately.
For general ﬁurposes (14), 16 pseudo working registers are used for

each valid virtual processor. Each general purpose register P.gpr.i,

TABLE IIT

VIRTUAL PROCESSOR

63

points to P.dsp.n-1,
and is set equal to

null otherwise

BIT
SUBFIELD SYMBOL poSITION FUNCTION(S)
S

type P.type 0-2

reference

" cpunt P.ref 3-9 deallocation

‘state P.sta 10-11 P.sta=00 1invalid
P.sta=01 terminated
P.sta=10 asleep
P.sta=11 awake

site of P.soa 16-47 designates the eurrent

activity environment and the
address of the instruc-
tion being executed '

label P.lab 48-79 contains the new site

register of activity when a
procedure is called or
used as temporary
storage

instruction P.ih 80-86 specifies the height

height of the instruction
pointed by P.soa.ip
and is used to update
the display registers

pointer P.ptr 96-111 contains the address

register of the memory location
from which a set of
subcells is allocated
by system service
routine GETAREA

general P.gpr.ptr 112-127 points the pseudo GPRg

purpose if the virtual pro

register cessor is either awake

pointer or asleep, and is set
equal to null otherwise

display P.dsp.ptr 128-143 if P.sta is either

register awake or asleep and

pointer P.ih=n, then P.dsp.ptr

64

0 <i <15, is a 16-bit storage location, so a total of 256 consecu-
‘gi;e bits are needéd for a valid virtual processor. The address of P.grp.0
is stored in the general purpose register pointer register P.gpr.ptr.
The reason that a virtual processor contains a general purpose register
pdinter insteéd of a set of general purpose registers is that there is
no need to use 32-byte storage cells for an invalid or a terminated
virtual processor. Since the number of display registers of a virtual
processor fully depends on the value of P.ih, also it wastes memory
locations to keep display registers for an invalid virtual processor,
it is better for a virtual proceésor to hold a display register pointer
which points to the current innermost environment. As shown in Figure
26, P.dsp.ptr contains the address where P.dspQB located if the instruc-
tion height is sét equal to 4. If P.ih is 0, tﬁen set P.dsp.ptr equal
to null. The hexidecimél number on the left side of each subfield is
the address of that memory location.

When a virtual processor is allocated, its state is initialized
invalid and all its other subfields are initialized empty. When an
invalid virtual processor becomes a valid virtual processor through
the execution (by another valid virtual processor) of the INITIALIZE-
PROCESSOR instruction, discussed in Chapter IV, its state becomes one
of the three possible states: éwake, asleep, or terminated, and its
site of activity register contains a valid label which designates both
the environment and the address of the first instruction of a process
to be executed at that time. A valid virtual processor is deallocated
oniy when its reference count is 0, the storage locations reserved for

its display registers and its general purpose registers must be returned

0A3C
OA3E
0Ako
OAl2
OAL4

0A46

OA48
OAlA
0AkC
OA4E

0BAO
OBA2
OBA4
OBAG

P.typ P.ref P.sta -

P.soa.ep

P.soa.ip

P,lab.ep

P.lab.ip

P.ih ———

P.ptr

1034
1036

P.gpr.ptr

1038

P.dsp.ptr

P.dsp.0

P.dsp.1

P.dsp.2

103A
103C
103E
1040
1042
1044
1046
1048
104A

1048
1050

P.dsp.3

Figure 26. The Storage Organization of a Virtual Processor

GFR.O

GPR.1

GPR.2

GPR.3

GPR.4

GPR.5

GER.6

GPR.7

GPFR.8

GPR.9

GPFR.10

GPR-11

GPR.12

104C

GPR.13

GPR.14

GPR-15

65

66

to the free storage pool at the same time.

When CM 1 is ready to execute a process, the first thing for the
system to do is to initialize a single virtual processor. If P is the
virtual processor used in tﬁe snapshot 0 of any of the three examples
in Chapter I, the display register pointer P.dsp.ptr is set null and its
other fields are set as follows: |
P.sta: awake;

P.soa.ep: null;

P.soa.ip: the address of the first instruction of the process to be
executed by P;

P.lab.ep: null'

P.lab.ip: null;

P.ih: empty;

P.ptr: null;

P.grp.pfr: a pointer to a memory location from which 16 pseudo general
purpose registers are reserved;

P.ref: equal to 1.

The reference count of P is set equal to 1, reflecting the fact that the

awake state must have a retentive effect (10).

At any moment, the addresses of all valid virtual processors must
be kept, through which they can be retrieved. In CM 1, a virtual‘process—
or table is nécessary. Its functions are mostly like that of a symbol
table except it is a dynamic data structure. For convenience, indexes
vare used to distinguish different virtual processors. For example,.three

virtual processors, VP

1 VPZ’ and VP3, are currently valid with their

states awake, asleep, and terminated, respectively, then the virtual

67

processor table looks like Figure 27.a. If some time later,‘a new

virtual processor VP, is allocated, then the system service routine not

4

only returns the address of the first memory location allocated for VP4
to the pointer register P.ptr, but also to the virtual processor table,

as shown in Figure 27.b. 1In Figure 27.b, the address of each virtual
processor is arbitrarily chosen. Since VP4 is just allocated, its

state is still invalid.

The virtual processor table is not fixed, its size is increasing
or decreasing from time to time if some virtual processors are allocated
or deallocated. If any virtual processor is changed to a new state, the
virtual processor table must be updated at that time also.

There are many advantages of keeping a virtual processor table.
Simplifying the service routine when intercommunication between virtual
processors is necessary is an example. Also, when a new virtual processor
is to be allocated, the virtual processor table can furnish the information
regarding whether there is a terminated virtual processor. If there is,
then the allocation of that new virtual processor is not necessary éince

an update of the terminated virtual processor creates a new virtual

processor.

Central Processing Unit

In CM 1, a central processing unit (CPU) and a virtual processor
(VP) form a processor pair (VPi,CPUj), here i and j are indexes of virtual
processor and central processing unit, respectively. So, CM 1 can execute

in parallel as many processes as the number of central processing units

INDEX STATE ADDRESS (hexidecimal)
1 11 0402
2 10 0124
3 01 0234

a). Virtual Processor Table

Before VP4 is Allocated

INDEX STATE ADDRESS (hexidecimal)
1 11 0402
2 10 0124
3 01 0234
4 00 , 0374

b) Virtual Processor Table

After VP4 is Allocated

Figure 27. Virtual Processor Table

68

69

and as many tasks as the system permits virtual processors.

In CM 1, CPU is the hardware device which is responéible for the
execution of a process with the assistance of a virtual processor.

When a program is ready to Be executed, the site of activity of that
process is specified by P.soa of that associated processor. If the instruc-
tion pointed to by P.soa.iﬁ is not the first instruction of a pro-
gram, then the contents of all subfields of the associated-virtual’
processor must be transferred to appropriate registers in CPU first,

then CPU can execute that program properly.

Before presenting the method of how a processor pair executes a
program, a set of hérdware registers in the CPU must be defined first,
then the concept of processor pair can be discussed in detail in
Chapter III.

In this section, we mainly deal with the dimensions of those working
registers and the data path between them. Some of the functions of each
of those registers will not become clear until the processor pair and
the control unit discussed in the next two chapters are covered.

There aré many different kinds of registers needed in the CPU for
different purposes. ’A register can be a shift register, a rotate regi-
ster, an accumulator, a status register, an index register, a floating
point régister, a'general purpose register, or one of the control regi-
sters. In this paper, only control registers will be discussed in detail,
though most other kinds of registers are still used in the CPU of CM 1

in their usual ways.

Memory Access Registers. A memory address register (MAR) is used

70

to contain the address of the memory location to be accessed when either
a read instruction or a write instruction is being executed. Associated
with the MAR, a memory data registef (MDR) is ﬁsed to contain the
information which is either to be stored in or to be read oﬁt from the

location specified by MAR. Both MAR and MDR are 16-bit registers.

Site of Activity Register. The address and the environment of the
instruction to be executed are always specified by the site of activity
registers (SAR). It is a pointer pair register. TIts first 16 bits,

which is denoted by SAR contains a pointer pointing to the current

O’
innermost environment. Its second 16 bits, which is denoted by SARl,

contains a pointer pointing to the instruction to be executed.

Instruction Register. The instruction register (IR) contains the

instruction being executed. It is a 6-byte register. The first two

bytes, denoted by IR contains the operation code and the instruction

0’
height. In case the type of the instruction being executed is other than

a register-register instruction, the second two bytes, denoted by IRl,

contains either the first operand or the address of the first operand of

that instruction, and the third two bytes, denoted by IR contains the

2’
second operand or the address of the second operand. When a register-
register instruction is being executed, the two bytes of IR1 contain the

two indexes of the two general purpose registers, respectively.

Organization Register. Since each type of data has a different

stotage organization, a 32~bit organization register is needed to furnish

the information about what type of data being accessed and how to access

71

that type of data. Since the organization portion of a particular type
of cell is composed of different subfields and each subfield furnishes
important information for that particular cell to be accessed correctly,
the organization register has multiple functions in CM_1. For example,
the tag of an instruction specifies whether a direct or an indirect
address is used in that instruction. Another example is the size of a
record contour, it specifies how many subcells are in the fesidence part
of a record contour, so how many memory locations are needed when it is
to be allocated or how many memory locations will return back to the free
pool when it is deallocated can be decided. But those subfields cannot
be used properly until the type is decoded first. That is, always load
the first two bytes of the target cell in a memory reference instruction
to the leftmost 16 bits of the organization register (ORO), decode the

first three bits of OR, and decide the type of the target cell: if it is

0

an integer, a pointer, or a label, then the rest bits of ORO contain

inhibit boxes, present bit, and valid bit; if it is an instruction, the

rest bits of ORO contain the format and the tag of that instruction; if it

is either an algorithm contour or a record contour, load the second two
bytes of the target cell into the second 16 bits of the organization

register (ORl),'so the rest bits of OR, contain the reference count, and

0

OR1 contains the height and the size; if it is a virtual\processor, the

rest bits of ORO contain the reference count and the state.

Label Register. The label register is used when a new label is

created. The lable register is also used to contain the return address

J{ff“/“? el i3feas ane e e (mavn mem.), 72

when a procedure is called. Since a valid label consists of two pointers,
an environment pointer and an instruction pointer, two 16-bit subregisters
are needed. The first subregister (LRO) contains the environment pointer

and the second subregister (LRl) contains the instruction pointer.

Pointer Registers. The functions of subfields P.ptr, P.gpr.ptr, and

. P.dsp.ptr of a virtual processor were discussed before. In the central
processing unit of CM 1, three registers PRO, PRl’ and PR2 play the same

roles as P.ptr, P.gpr.ptr, and P.dsp.ptr do in a virtual processor,

respectively. Each of them is a 16-bit register.

Static Pointer Register. The static péinter (1ink) register (SPR)
contains the static link of the instruction being executed currently.
The function of SPR is used to check if the current instruction is well
organized: that is, fo check if the algorithm contour pointed by SPR
is the antecedent of the currently innermost record contoﬁr. If it is
not, then an interrupt will be caused. The length of SPR is 16 bits.

Data transfer between registers in the CPU is necessary during the

execution of an algorithm. In CM 1, a common bus connects registers

" 1"

and main store. Each register has an "out" gate and an "in" gate
which enables us to put information on the bus and take it off the bus
when and where we want (2).

The block diagrém of a central processing unit, together with the

main store, is drawn in Figure 28. The common bus .is a 1l6-bit OR gate.
Instructions

The Contour Model Assembler -Language (CMAL) is left unspecified

T e e

STATUS

SHIFTER

COMPLEMENT

ARITHMETIC |

AND
LOGIC

GPR

GPRl

GPR

GPR15

—— SAR0 EEm—
iR .
SARy —] MAIN
" ,
| N
< IR, | D STORE
— IRl 3 R
P IR2 _t
< OR; S
4—_____;1 OR, o
LR > ;
l 0 MAR
LRl Sy
ra PR0
PBI s —
S PR2
€ PR3‘
< SPR
Figure 28. Central Processing Unit

€L

74

in tﬁis paper. However, for the purpose of discussing its storage
organization, some baéic ideas of CMAL are presented here. At least
five formats of instructions appear in CMAL, as shown in Figure 29.

In Figure 29, the instruction length and the f?f??EMFPQF of each format
df instructions are also shown, and the number of bits in each subfield
of the instruction is shown in the upper right-hand of each subfield.

The format of CMAL offers the information to the control unit
regarding how many bytes are to be accessed and transferred to appropri-
ate working registers in the CPU. The static link and the instruction
height are used to build an appropriate relationship between the instruc-
tion, say I, and the algofithm contour, say C, which immediately encloses
I, the static link of I must point to C and the instruction height of I
must be one greater than the height of C. The inStructiqn height plays
an important role in CM 1. At any moment, the available display register
with the highest index is equal to the instruction height of the instruc-
tion being executed minus one. In other words, the display régister with
index i always points to a record contour with height i. As mentioned
earlier, the algorithm contour and its associated instructions can be
stored in separate memory locations, however, the relationship between
these two data structures must be specified by their heights, so the
algorithm can be executed properly. The successor link of an instruction
points to the instruction{to be executed next under normal conditions.

In CM 1, successor links and lables are used for the processor's flow of
control. The displaybregister index and the subcell index are used to
determine the address of an operand in an instruction which accesses

memory. The memory location with its address specified by both the

Register-Main Store (RM) length=12 bytes, Code=100

A

3
B

3

C

3

D

7

E

16

F

16

16

Main Store-Main Store (MM) Length=12 bytes, Code=101

A

3
B

3

C

3

D

7

16

16

Main Store-Immediate (MI) Length=12bytes,Code=110

A

3
B

3

c

3

D

7

E

16

F

16

16

Register-Immediate (RI) length=12 bytes Code=001

75

3 3 3 7 16 16
A - |B c D E F
9 7 16 16
H K L
Register-Register (RR) Length=lObytes)Code=010
3 3 3 7 16 16
A B C D E F
9 7 8
H K K
A: type B: format C: tag
D: unspecified field E: static link F: successor link
G: operation code H: instruction height
I: display register index J: subcell index
K: general purpose register index
L: immediate operand

Figure 29, Instruction Format

76

display register with index i and the subcell with index j contains.
either an operand or the address of an operand fully depend on the tag.
If it contains an operand, then direct address is used, if it contains
the address of an operand, then indirect address is used. For example,
in the snapshot 3 of EX 2 in Chapter I, store the immediate operand 2

into subcell B, the corresponding CMAL will look like
STI 0(3),2, i (2.1)

where 0 is the index of the display register (since record contour M'
is pointed by P.dsp.0), the integer 3 in the parentheses is the subcell
index (since subcell B is the third subcell in the residence part of
record contour M' excluding the organization part of record contour M'),
and the integer 2 is the immediate operand. The organization part of a

record contour consists of 8 bytes, so the effective address of B is

effective address of B = (p.dsp.0) + 8 + 2 x (3-1) (2.2)

here (P.dsp.0) is the contents of P.dsp.0, and 2 x (3~1) is the offset

of subcell B in reco;d contour M'. = Each bsubcell is 2 bytes.

in length and the third subcell means there are two subcells before it.
The statement (2.2) is the effective address of subcell B if direct
address is specified By the tag of the instruction (2.1). Other methods
through which an operand can be accessed is by using the pointer register
or a general purpose register which contains a pointer to somewhere

in the main store. It is not difficult to develop variants and extensions
of addressing methods (10). The effective address of an operand are

discussed in detailvin Chapter IV.

77

Allocation and Deallocation

The storage allocation and deallocation of record contours and
virtual processors are necessary when an algorithm is being executed.

Since each record contour is a copy of some algorithm contour,
which is aliocated at compile time, with the number of subcells needed
specified in its size, so a record contour occupies the same ﬁumber of
memory locations as its antecedent does. If a virtual processér is
to be allocated, its display registers will not be allocated until its
height is initialized. The storage allocation can be accomplished by
using any one of the three methods: First Fit, Best Fit, or Buddy
System. The details of these three methods are beyond the scope of this
paper, so only their basic ideas are presented here. If the system
service routine GETAREA is called to request a block of memory of N sub-
cells, First Fit will search down the list of free blocks finding the
first block containing more than or equal to N subcells; Best Fit will
search down the list of free blocks finding é free block containing sub-
cells as close to N as possible, but not less than N; while the Buddy
System will search down the available list, each of which is a set of
free blocks of equal size (a power of 2), finding the list whose elements
containing no less than N subcells, then taking the first block of that
list and repeatedly dividing that block if.necessary until finding a
subblock of smallest size but still greater than or equal to N (12, 13).
In CM 1, any oné of the three methods gbove can be used.

The reference count in the data structures discussed in this paper

is used mainly for deallocation purpose. When any data structure possesses

78

a reference count equal to 0, then the‘memory location it occupies

will return to the available storage pool during the next garbage
collection. If storage compaction is necessary, then the implementation
of a relocation register associated with each process is needed to find

the effective address of each subcell.
Heap

If a procedure or a block contains a n-dimension array

,L,:U

ALy Uy ,L,:0,,

...,Ln:Un), with the L's and U's are lower bounds and
upper bounds, respectively, then its algorithm contour contains an

U e e et

array descriptor (a dope vector). If the lower and upper bounds of an

1

array are known at compilation time, then CM 1 can allocate storage cells for
the array within the contour and generate the code for referencing the
array elements usihg the lower and upper bounds. If the bounds are not
kno&n until runtime, a fixed size o% space (depending on n) is allocated
to the deécriptor in the algorithm contour with which the array is
associated. Although the contents of that spacé are left unspecified,
the storage célls‘for the array itself will not be allocated until the
procedure or the block in which the array is declared is entered. The
reason for.a fixed amount of space can be allocated for an array in the
algorithm contour is that its dimension is always known at compilation
time (3).

The elements of an array which is located in continuous memory space
are placed either in ascending or descending order, either in row major
or in column major (3). The usual way is to store them in a data area by

row and in ascending order. For example, if A(i,j. ...l,m) is the

79

element to be accessed, then its address is found to be

BASELOG + (i—Ll)xdzxd x...xdn + (j—Lz)xd3x...xdn + (l-Ln_l)xdn

3

+ (m—Ln), ((2.3)

where BASELOG is the address of A(1l,1,...1) and d =0 -L +1, d,=

U2—L2+1,..., dn=Un—Ln+1. For convenience, the element's address can be

factored and it turns out to be

BASELOG - ((...((led2+L2)xd3+L3)xd4+:.&Ln_l)xdn+Ln)

+ (...((ixd2)+j)xd3+...+1)xdn+m (2.4)

If the bounds of A are known, then the middle term in (2.4) is a
constant while the third is a variant (3).

With the knowledge of how to find the address of an element in an
array, it seems natural for an array descriptor to have the structure

as shown in Figure 30.

n BASELOG » Ll U1 dl L2 U2 d2 oo

..+ L U d CONSTANT
n n n

Figure 30. Array Descriptor

If the bounds of an array are known at compilation time, then the

algorithm contour with which that array is associated contains an array

80

descriptor of which subfields are properly initialized, but the data
strﬁcture of the array itself will not be allocated until the procedure
or the block in which the array is declared is entered. This means
the{Eégngguigmieﬁp unspecified until execution time. If the bounds
are not known at assembly time, an uninitialized array descriptor is

allocated within the associated algorithm contour. The flexible array

is allocated out of the heap at execution time. The heap contains a

set of subcells Which, in theory, are not associated with any contour (5).
In the case of flexible arrays, the base address points into the heap

and the values of Li and Ui in the descriptor are changed as required.

It is sometimes necessary to change the base address as well (5).
Summary

(1) The algorithm.contours model the static portion of the pfograms;

(2) The set of recérd contours model the semantics of the pfograms.

(3) Record contours are copies of algorithm contours, a record contour
has the same data structure as its antecedent.

(4) A virtual proc