A TSO PRESENTATION OF A DECOMPOSITION TECHNIQUE //' FOR SOLVING LARGE-SCALE MULTIDIVISIONAL
 LINEAR PROGRAMMING PROBLEMS

By
WILLIAM ARTHUR SENTERS
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1975

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE December, 1978

A TS PRESENTATION OF A DECOMPOSITION TECHNIQUE
FOR SOLVING LARGE-SCALE MULTIDIVISIONAL

LINEAR PROGRAMMING PROBLEMS

Thesis Approved:

This study was concerned with the development of an interactive program designed to aid the student in learning the decomposition technique. The primary objective is to give the student an opportunity to learn the concepts of decomposition at his own rate and at the time he chooses. The program allows the student to visualize how a computer algorithm goes about solving such a problem.

I would like to express my appreciation to my advisors, Dr. George Hedrick and Dr. Donald Grace for their assistance and encouragement through the years, and to Dr. Billy Thornton for giving me a solid start in the field of operations research. Appreciation is also expressed to Dr. Scott Turner for giving his time and encouragement in being a committee member. I express special gratitude to my wife, Deborah, for her love and understanding and for being nearby when needed.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
II. THE REVISED SIMPLEX METHOD. 4
III. THE DECOMPOSITION ALGORITHM 10
Angular Structure. 10
Formulation of the Model 11
Development of Algorithm 13
IV. DISPLAY DEVICES 16
Time-Sharing Option Terminals 16
IBM 3277 16
Decscope 17
Decwriter 18
V. PROGRAM DESCRIPTION 19
Data Set DECOMP. 19
Data Set PAGE. 20
Data Set JESSE 21
VI. SUMMARY AND CONCLUSIONS 23
BIBLIOGRAPHY 25
APPENDIXES 26
APPENDIX A - USER'S GUIDE 27
APPENDIX B - INSTRUCTIONS FOR STORING AND CHANGING PROGRAMS 33
APPENDIX C - SAMPLE OF A SHORT SESSION 36
APPENDIX D - LOGIC BLOCK DIAGRAMS 49
APPENDIX E - LISTING OF THE TUTORIAL TEXT 56
APPENDIX F - LISTING OF THE CONTROL PROGRAM 72

NOMENCLATURE

A_{k}	matrix of division k coefficients for corporate constraints
B_{k}	matrix of coefficients for divisional constraints
$B_{l ; m}^{-1}$	matrix consisting of the first m columns of B^{-1}
B_{m+j}^{-1}	the $(m+j)^{\text {th }}$ column of B^{-1}
$\overline{\mathrm{b}}_{\mathrm{k}}$	vector of right hand side of division k constraints
\bar{C}_{k}	vector of relative cost factors of division k
C_{B}	vector of the objective coefficients associated with the
	basic variables
m	the number of corporate or linking constraints
λ_{k}^{j}	weights on the $j^{\text {th }}$ extreme point of division k
π	simplex multipliers
S_{k}	solution space for the $\mathrm{k}^{\text {th }}$ division
$\mathrm{X}_{\mathrm{k}}^{\mathrm{j}}$	$j^{\text {th }}$ extreme point of the $k^{\text {th }}$ division
$\overline{\mathrm{x}}_{\mathrm{k}}$	set of variables in division k

CHAPTER I

INTRODUCTION

In recent years the business world has turned to mathematical programming for a scientific approach to decision making. This is the process of representing a particular real life competitive situation in terms of an operations research mathematical model. The model usually consists of an objective function of variables which are subject to a number of functional constraints each representing a limitation of the organization. These limitations are usually of the form of limits on production, demands, manpower, machine hours, natural resources, and also social responsibilities such as standards on pollution and safety. It is common practice, and will be followed in this report, to refer to all constraints as constraints on limited resources. When these constraints and the objective function can be represented in linear statements, the process is simplified into linear programming. A simple technique for linear programming is the Simplex Method. For a small independent business, mathematical programming can be a simple task of incorporating the Simplex Method without resorting to special techniques.

However, in today's world if an organization wants to operate at an optimum level and expand, it cannot perceive itself as being independent from its environment. In other words, it must realize its organizational and social dependencies. In order for an organization to operate as a finely tuned machine it must operate at a level where
the limits on its resources are approached but not reached. As a result strict new constraints are introduced into the mathematical model of the problem. As one can imagine, the model, accurately stated, could grow in the number of constraints to such a size as to create another problem in itself - this problem being that the great number of constraints makes for inefficient use of computer time and space.

At this point a company has two alternatives. It could reduce the number of constraints, hence reducing the accuracy of the model, or it could incorporate one of the many techniques that have been developed to alleviate this problem and still keep an accurate model of the situation. Techniques such as generalized upper bounding, revised simplex, and decomposition provide an effective way of solving a large problem with a special structure with reasonable expenditure of computer time and space.

When some or all of the variables can be divided into groups such that the sum of the variables in each group must not exceed a specified upper bound, a generalized upper bound technique can be invoked.

A technique developed specifically for use with digital computers is the Revised Simplex Method, whereby many of the data can be stored on external devices, making it possible to solve large problems on small computers.

The scope of this report will center on decomposition which is a technique for solving multidivisional types of problems. Many texts and reports have been written on this algorithm, but not enough programs have been written for the use of students to receive hands on experience. This report is aimed at developing an interactive program designed to allow the student to study the decomposition principles at
his own level of detail. The student can cover the material quickly and briefly or request that a detailed explanation be given for a specific area. He may also review certain areas of trouble or return to take the session over as often as he wishes. The report develops a generalized decomposition program that can be used as a tutorial supplement to a theoretical presentation and give the advanced student a feel of how the algorithm can be used and interpreted. Hopefully, it will result in a better understanding and a more efficient use of the principle of decomposition and linear programming as a whole.

There are several factors affecting how long the general Simplex Method will require to solve a linear programming problem. Two of the most important factors are the number of constraints and the number of variables in a problem. If n is the number of variables and m the number of constraints, then the maximum number of iterations possible will be the value of $(m+n)!/(m!n!)$.

The general model for linear programming in matrix form is:

Minimize $\quad Z=\bar{C} \cdot \bar{X}$
subject to: $A \cdot \bar{X}=\overline{\mathrm{B}}$ and $x_{j}>=0$
where \bar{C} is the row vector of the relative cost factors

$$
\overline{\mathrm{C}}=\left|\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{n}\right|
$$

\bar{X} and \bar{b} are all column vectors such that

$$
\overline{\mathrm{X}}=\left|\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right|, \quad \bar{b}=\left|\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{n}
\end{array}\right|
$$

and A is the coefficient matrix

$$
A=\left|\begin{array}{lllll}
a_{11} & a_{12} & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot \\
a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & & \cdot \\
a_{m 1} & a_{m 2} & \cdot & \cdot & a_{m n}
\end{array}\right|
$$

Recall that the general Simplex Method began with the entire man matrix A, m being the number of constraints and n being the number of original variables plus slack variables. At each iteration the entire man matrix was updated and stored. Of the n variables only m basic variables were in the solution.

The Revised Simplex Method was designed to compute only the information that is currently needed at each iteration and store it in a more compact form by comprising an mam basis matrix of the columns corresponding to these m basic variables.

Let P_{j} be the $j^{\text {th }}$ column of the coefficient matrix A.

$$
P_{j}=\left|\begin{array}{c}
a_{1 j} \\
a_{2 . j} \\
\cdot \\
\cdot \\
a_{m j}
\end{array}\right|
$$

The model can now be restated as

$$
\begin{array}{cc}
\text { Minimize } & Z=\sum_{j=1}^{n} C_{j} \cdot x_{j} \\
\text { subject to: } & \sum_{j=1}^{n} P_{j} \cdot x_{j}=\bar{b} \\
\text { and } & x_{j}>=0
\end{array}
$$

With the Revised Simplex Method the updating operation does not need to be performed on the entire A matrix, which is $m \times n$ with n the number of original variables plus slack variables. Instead, let B be an mxm matrix comprised of the basic columns P_{j}.

$$
\text { i.e. } B=\left|P_{1}, P_{2}, \ldots, P_{m}\right|
$$

Only B^{-1} need be updated by the pivot operations. The Revised Simplex Method therefore solves for a set of m equations in m unknowns (basic variables). This set of equations can be denoted by $B \cdot X_{B}=\bar{b}$ where X_{B} is the vector of basic variables so that the basic solution is $X_{B}=B^{-1} \cdot \bar{b}$.

Given the basic matrix B, the linear combination that expresses any other vector P_{j} is determined by computing the vector $P_{j}^{\prime}=B^{-1} \cdot P_{j}$ which becomes the $j^{\text {th }}$ column of the current iteration. The value of the objective function for a basic solution can now be written as $Z=C_{B} \cdot P_{j}=C_{B} \cdot B^{-1} \cdot P_{j}$. Letting $\overline{0}$ be the vector of objective coefficients for the slack variables, C_{B} is the subset of the vector $|\overline{\mathrm{C}}, \overline{0}|$ containing the values of the objective coefficients associated with the basic variables.

To avoid computing P_{j}^{\prime} for all Z_{j} 's a vector of pricing or simplex multipliers is derived by $\pi=C_{B} \cdot B^{-1}$. A vector P_{j} not in the basis is "priced out" by computing $Z_{j}=\pi \cdot P_{j}=C_{B} \cdot B^{-1} \cdot P_{j}$. Thus, the P_{j} can be stored on external devices and brought into core memory only as needed.

It should be remembered that the vectors \bar{C} and P_{j} were recorded in the original data. The C_{B} vector needed to compute π is a row vector formed from \bar{C}. All that is needed to form C_{B} correctly is to keep track of which variables are in the current basis.

At each iteration the only relevant pieces of information are:

1) C^{\prime}, the vector of cost factors $C_{j}-Z_{j}$ or $C_{j}-\pi P_{j}$ relative to the current iteration. 2) the elements of the updated column P_{j} where $P_{j}^{\prime}=B^{-1} \cdot P_{j} \cdot 3$) and the values of the basic variables X_{B} where $X_{B}=B^{-1} \cdot \bar{b}$.

Using the above information and formulas, let us derive a summary of the Revised Simplex Method.

Step 0 - Given:
A - coefficient matrix
$\overline{\mathrm{b}}$ - right hand side
\bar{C} - coefficients of objective function
Initialize matrix B as the columns associated with the initial basic variables (usually slack variables requiring B to be initialized as an identity matrix). Form C_{B} and B^{-1} as stated above, compute π as $C_{B} \cdot B^{-1}$, compute $C^{-}=C_{j}-Z_{j}=C_{j}-\pi P_{j}$.

Step 1 - Determine the entering basic variable. Find $C_{S}=\min$ element of C^{\prime} where s is the index for the entering variable. Step 2-Optimization test

If $C_{S}>=0$ stop.
If $C_{S}<0$ compute the updated column $P_{S}^{\prime}=B^{-1} \cdot P_{S}$ and the new simplex multipliers $\pi=C_{B} \cdot B^{-1}$ and the new cost factors $C^{\prime}=\bar{C}-\pi P_{S}$.

Step 3 - Determine the leaving basic variable.

$$
\text { If } P_{s}^{\prime}=\left|\begin{array}{c}
a_{1 s}^{\prime} \\
a_{2 s}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
a_{m s}
\end{array}\right| \text { find } r \text { as the }
$$

index for the variable being removed from the basis by finding min $b_{i} / a_{i s}^{\prime}$ for $a_{i s}^{\prime}>0$.

Step 4 - Update the basic solution. Derive new B^{-1} and set

$$
X_{B}=B^{-1} \cdot \overline{\mathrm{~b}}
$$

Return to Step 1.
In Step $4, B^{-1}$ could be derived each time by using a standard computer routine for inverting a matrix. However, since B and B^{-1} change by only one vector from one iteration to the next, it is much more efficient to derive the new B^{-1} (denote it by $B_{\text {new }}^{-1}$) from the B^{-1} at the preceding iteration (denote it by $\mathrm{B}_{\mathrm{old}}^{-1}$). To do this, let x_{k} be the entering basic variable, $a_{i k}$ be the coefficient of x_{k} (these coefficients are determined in Step 2), and r be the index of the column in the preceding basis that is being replaced. The new B^{-1} can now be expressed in matrix notation as $B_{\text {new }}^{-1}=E \cdot B_{o l d}^{-1}$ where the matrix E is an elementary matrix, i.e., an identity matrix except that its $r^{\text {th }}$ column is replaced by the vector

$$
\eta=\left|\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\cdot \\
\cdot \\
\eta_{m}
\end{array}\right| \quad \text { where } \eta_{i}=\frac{-a_{i k}^{\prime}}{a_{r k}^{\prime}}, \text { if } i \neq r
$$

E can be written as

Of course, in the actual coding of this method the entire E matrix does not need to be physically built. Only the η vector need be computed, which could save considerable storage.

If ℓ is allowed to represent the $\ell^{\text {th }}$ iteration then in general the inverse of the $\ell^{\text {th }}$ basis can be obtained from

$$
B_{\ell}^{-1}=E_{\ell} \cdot E_{\ell-1} \cdot \cdot E_{1} \cdot E_{0} \cdot B_{0}^{-1}
$$

Until now it was assumed that the matrix B contained no artificial variables or negative slack variables and was therefore equal to the identity matrix at the beginning of the procedure.

If "=" and/or ">=" constraints are included in the model, artificial and negative slack variables must be added as in the regular Simplex Method. The procedure has to begin with a basis consisting of an identity matrix that corresponds to either real or artificial vectors. A two-phase approach can then be used. If the procedure starts with artificial vectors, a basic feasible solution must be determined by Phase I, of which the computation is not included in this report. Phase I can be interpreted as minimizing the sum of the artificial variables over the feasible region. If a feasible solution is attainable, the artificial variables can be driven to zero.

Once an initial basic feasible solution is found Phase II solves for optimality by the Revised Simplex Method. If the constraints are all "<=" Phase I may be bypassed.

Angular Structure

There has been a tremendous increase in the division of labor and segmentation of management responsibilities in organizations recently. There is also a tendency for the different divisions of an organization to become independent of the organization as a whole with their own goals and restrictions. This lends itself to a special class of problems called multidivisional, to which most large problems belong. Their special feature is that
the problem is almost decomposable into separate problems, where each division is concerned only with optimizing its own operation. However, some overall coordination is required in order to best divide certain organizational resources among the divisions (4, p.142).

Decomposition ideas and methods are as old as linear programming (6). But the first workable decomposition algorithm was introduced by Dantzig and Wolfe in 1959 (3). The basic algorithm that this report will refer to is quite simple, at least for those familiar with the mathematics of linear programming and the Revised Simplex Method. The Decomposition Method can be thought of as having each division solve its own subproblem and send its proposed solution to a central coordinator who can coordinate the proposals from all the divisions, impose the corporate viewpoint, and find the optimal solution for the
overall organization. This is accomplished, not by explicitly imposing the corporate constraints on the divisions, but by "economic pressure" in the form of adjustments to the divisions' profit or cost coefficients to reflect their use of corporate resources. Therefore, we can reformulate the model in an angular structure as follows:

where the $A_{j}, j=1,2, \ldots, n$ are matrices that represent the corporate (linking) constraints. These constraints link the divisions by making them share the organizational resources available. And the $B_{j}, j=1,2, \ldots, n$ represent the divisional constraints of each division. (0 are null matrices).

Formulation of the Model

At this point let us assume that the set of feasible solutions for each division is bounded. The solution space for each division is bounded by the constraint equations on the divisional resources. These equations define a "flat" geometrical shape (called a hyperplane) in n-dimensional space analogous to the line in two-dimensional space and the plane in three-dimensional space. The simultaneous solution of two constraint equations defines an extreme point. And since we are
restricted to linear models the set of points X_{k} such that $X_{k}>=0$ and $B_{k} \cdot X_{k}=\bar{b}_{k}$ constitute a convex set with a finite number of extreme points. Therefore, under the assumption that the set is bounded, any point in the set can be represented as a convex combination of the extreme points of the set.

Consider the solution space for $k^{\text {th }}$ division; call it S_{k}. i.e. $S_{k}=\left\{X_{k} \mid B_{k} \cdot X_{k}<=\overline{\mathrm{b}}_{\mathrm{k}}\right.$ and $\left.X_{k}>=0\right\}$. Any point in S_{k} can be represented as a (convex combination) weighted average of the extreme points of S_{k}. (Let $X_{k}^{j}=j$ th e.p. of division k). Then
$X_{k}^{*}=\sum_{j} \lambda_{k}^{j} \cdot X_{k}^{j}$ is any feasible point of the $k^{t h}$ division, where $\lambda_{k}^{j}=0$ and $\sum_{j} \lambda_{k}^{j}=1$. Therefore, this equation for X_{k}^{*} and the so-called "normalizing" or "convexity" constraints on the λ_{k}^{j} provide a way of representing the feasible solutions to division k without using any of the original constraints. Hence, the overall problem can now be reformulated with far fewer constraints as

$$
\begin{aligned}
\text { Maximize } Z= & \sum_{k=1}^{n} \sum_{j=1}^{n}\left(\bar{c}_{k} \cdot X_{k}^{j}\right) \lambda_{k}^{j} \\
\text { subject to: } & \sum_{k=1}^{n} \sum_{j=1}^{n}\left(A_{k} \cdot X_{k}^{j}\right) \lambda_{k}^{j}=\bar{b}_{0} \\
& \sum_{j=1}^{n} \lambda_{k}^{j}=1 \\
\text { and } & \\
& \lambda_{k}^{j}>=0, k=1,2, \ldots, n
\end{aligned}
$$

This formulation is completely equivalent to the one given earlier. However, since it has fewer constraints, it should be solvable with much less computational effort. It also has as many columns as
the solution space S has extreme points, which may be thousands. This fact does not matter much if the Revised Simplex Method is used, as the columns to enter the basis are generated only as they are needed.

Development of Algorithm

Recall that with the Revised Simplex Method the vector of simplex multipliers $\left(\pi=C_{B} \cdot B^{-1}\right)$ is used in computing the relative cost coefficients. During decomposition π needs to be partitioned as $\left(\bar{\pi}_{1}, \pi_{0}\right)$ with $\bar{\pi}_{1}$ associated with the reformulated division constraints and π_{0} associated with the convexity constraints. Let m denote the number of corporate (linking) constraints. Let $\left(B^{-1}\right)_{1 ; m}$ be the matrix consisting of the first m columns of B^{-1}, and let $\left(B^{-1}\right)$ be the vector consisting of the $j^{\text {th }}$ column of B^{-1}. Then $\bar{\pi}_{1}=C_{B} \cdot\left(B^{-1}\right)_{1 ; m}$ a vector and $\pi_{0}=C_{B} \cdot\left(B^{-1}\right)_{m+j}$ a scalar.

As in the regular Simplex Method, it must be determined whether or not the current feasible solution can be improved by pricing out vector P_{j}, a vector of A. Vector P_{j} is priced out as in the Revised Simplex Method by $\bar{\pi}_{1} \cdot P_{j}-\bar{c}_{j}$.

The usual simplex criterion asks that we find

$$
\min f_{j}=\left(\bar{\pi}_{1} \cdot A_{j}-\bar{c}_{j}\right) \bar{x}_{j}+\pi_{0}
$$

It should be noticed that the above equation is independent of the scalar π_{0}.

Therefore, the first step at each iteration requires solving n (number of divisions) linear programming problems of the type that follows.

Minimize $\left(\bar{\pi}_{1} \cdot A_{j}-\bar{c}_{j}\right) \bar{x}_{j}$
subject to: $B_{j} \cdot \bar{x}_{j}=\overline{\mathrm{b}}_{j}$
and $\quad \bar{x}_{, j}>=0$

Step 1-Using the simplex multipliers $\bar{\pi}_{1}$ solve the division subproblems as above obtaining solutions and optimal objective values Z_{i}.

Step 2 - Compute the $\min Z_{i}+\pi_{0}=f_{j}$
Step 3 - Stopping rule
If $f_{j}>=0$ the optimal solution can now be calculated. By letting $X_{k}^{j}=j^{\text {th }}$ extreme point of division k and λ_{k}^{j} the weights on these extreme points the optimal solution can be calculated as $\sum_{\substack{j}}\left(\lambda_{k}^{j} \cdot X_{k}^{j}\right)$ for every division k where the X_{k}^{j} 's are the extreme points of the solution space corresponding to the λ_{k}^{j} in the basis of the corporate problem. This calculation results in a vector for each division, each vector consisting of the number of elements as there are variables for that division.

Stop.
Step $4-\operatorname{If} f_{j}<0$ form the column to enter the basis as

$$
P_{j}^{\prime}=\left|\frac{A_{j} \cdot \bar{x}_{j}}{I I}\right|
$$

where II is an n component vector with a one in position j and zeroes elsewhere and A_{j} is the matrix of coefficients of the corporate constraints for division \mathbf{j}.

Step 5 - For the Revised Simplex Method to determine the leaving

vector of all 1's.
Step 6-Obtain a new basis inverse. Obtain new simplex multipliers. Go back to Step 1 and repeat.

CHAPTER IV

DISPLAY DEVICES

Time-Sharing Option Terminals

Any visual display device that can be used as a time-sharing option (TSO) terminal can be used to execute this decomposition presentation. Most TSO terminals differ only in the way the data is entered and displayed. Therefore, a basic understanding of the terminal being used will be helpful, much like one should know how to operate a typewriter before he can learn to type.

Three common devices used with TSO are the IBM 3277, Decwriter, and Decscope. General and brief instructions for each are included in this chapter. There are many models of each and detailed instructions might differ among them.

IBM 3277

An IBM 3277 is a device that consists of a screen to display output much like a television screen. Instead of displaying one line at a time, it can display a number of lines at one time. This is referred to as a page. The size of the page may differ with each model but the most common page is 22 lines long. The user has some control over when information is displayed. To enter information into the system, the IBM 3277 utilizes a keyboard. Data entered through the keyboard is
also displayed on the screen. A cursor indicates where on the screen information will be displayed. To enter a command or answer a question, the user types the command or answer on the keyboard and depresses the 'ENTER' key. To retype any portion of the line he depresses the backspace (\leftarrow) key. However, any mistakes must be corrected before the 'ENTER' key is depressed.

The program has one peculiarity when 3277 units are used: at times part of a page will be displayed at one time and the rest of the page on the next screen. In order to prevent this from happening, the 'CLEAR' key should be depressed before entering a command. The 'CLEAR' key will clear the screen and bring the cursor to the top, then the entire next page can be displayed.

Decscope

A Decscope is similar to an IBM 3277. It too has a keyboard and screen with a cursor. To enter data into the system via a decscope the user types the command on the keyboard and depresses the 'RETURN' key. However instead of displaying a page at a time, the decscope writes only one line at a time, then spaces it up. As the information reaches the top of the screen, it is lost. Again, any pertinent information should be recorded for future reference as it is lost upon leaving the screen. There is no possibility of only half a page appearing on the screen at a time; therefore, to continue the session it is not necessary to clear the screen before displaying the next page.

The Decwriter is a simple typewriter-type terminal with a keyboard for input and a hard copy printer for output. There are various models of Decwriters varying in the kind of printing mechanism, the speed of printing, and a number of other aspects. The Decwriter is similar to the Decscope in that only a line at a time is printed. To enter data the user depresses the carriage return after the data are typed. To learn the details of operating a particular model one should read the operations manual of that model.

Because the Decwriter uses a mechanical printing device rather than an electronic display device it is slower than the IBM 3277. However, it does allow the user to maintain a hard copy of the session for future reference.

PROGRAM DESCRIPTION

The program written in connection with this study is designed to convey basic ideas about decomposition. This chapter describes the function of the program, its limitations and some of the problems encountered. The program was developed to be used on a TSO (time sharing) system. Most TSO terminals have a typewriter-like keyboard to enter data. The features of each keyboard vary from terminal to terminal.

The program consists of three major TSO data sets working together to accomplish the desired results. They are named DECOMP, PAGE, and JESSE.

Data Set DECOMP

A command procedure is a TSO data set of prearranged executable sequence of commands with a description qualifier of 'CLIST'. The data set DECOMP is a command procedure or 'CLIST' created to control the processing of the overall program.

DECOMP is divided into two parts, Part 1 and Part 2. Part 1 controls the display of the pages of the text. The text begins by giving the background of decomposition. It follows with a description of the technique and gradually leads the student through the theory of the algorithm and an example.

The program is interactive in that the user can proceed, not only at his own rate, but to whatever degree of detail he wishes. The program is designed to take the student through a general approach to decomposition. He may request further instruction on any topic, as needed. The user must read the information and answer questions based on what he has just learned. The program will immediately tell the user if he has answered correctly or incorrectly, and either allow him to proceed or to review the information and attempt to answer the question again. There are several places where the user can stop and start over at the beginning if he feels it is necessary or reread previous pages.

At the conclusion of Part 1 the user has three choices. He can go through Part 1 again, terminate the session at that point, or enter Part 2.

Part 2 lets the user enter his own data to be run through a decomposition program named JESSE. Part 2 may be entered as often as needed to run more than one problem.

For greater detail on input and output, consult the User's Guide, Appendix A.

Data Set PAGE

A 'DATA' type data set contains any unformatted upper case data of any type. PAGE is a 'DATA' data set that contains all the pages of the text for Part 1 of the program. The command procedure DECOMP determines when these pages will be displayed. Each page explains ideas and gives instructions to the user prompting his response to questions. Briefly, DECOMP controls the interaction between the responses from
the user and the text in PAGE.

The pages begin by indicating the assumptions made about the student's background in L.P. and Revised Simplex and gives an introduction to the operations of the program. It then continues with the background of decomposition and a development of the technique.

It then concludes with a step-by-step procedure to solve a decomposition problem and gives an example of the procedure.

Data Set JESSE

JESSE is a data set containing a Fortran program that executes a decomposition algorithm. It is used exclusively in Part 2 of the overall program. It allows the student to input the necessary coefficients to a decomposition problem. As it solves the problem, intermediate results are printed to allow the student to follow the progress of the algorithm.

For greater detail on input and output of Part 2, consult the User's Guide, Appendix A.

Limitations of Part 1

The user has the option of reviewing certain information but the information to be reviewed is not at the discretion of the user. The reviewed pages are predefined by the control program. The information contained in the program is the only information available to the user. Unlike classroom instruction where some personalized instruction is available and questions may be asked, programmed instruction limits the amount of feedback from the student. When using a terminal other than a Decwriter, the user should take notes to which he can refer later.

Limitations of Part 2

The actual program that performs the decomposition algorithm contains a few limitations on the type of problem that can be solved. The problem must have no more than 20 subdivisions and no more than 20 constraints each. It must have no more than 20 corporate constraints and all constraints must be "less than or equal to" inequalities.

Further Study

The possibilities of refinement of the presentation seem unlimited. A more sophisticated interactive program could be written to include more questions and examples and even keep a score to judge the student's progress.

Further study could also be done to incorporate a graphical representation of the decomposition concepts, as done by Adams (1) for basic Linear Programming.

Part 2 could be further developed to include problems with "greater than or equal to" inequalities. Part 2 was written in Fortran which limits its generality. A program which lent itself to variable dimensioning would require fewer limitations on the size of the problem.

SUMMARY AND CONCLUSIONS

This report describes a method whereby the concepts of decomposition can be presented interactively using a time-sharing option (TSO) terminal. The first chapter is an introduction to the report. It discusses linear programming and leads into the large scale linear programming problem. Chapter II reviews the Revised Simplex Method. Chapter III describes a way of solving a large-scale problem. It covers the decomposition method and the formulation of the decomposition model. It then presents a six step decomposition algorithm. Chapter IV discusses three common time-sharing terminals that can be used to execute the program, along with their differences that may cause some difficulty in operation. Chapter V describes the function and internal operation of the program, its limitations, and some of the problems encountered. It is assumed that the user has some knowledge of linear programming, especially of the Revised Simplex Method.

Appendix A is a User's Guide of detailed instructions on the operations of the program. Appendix B gives instructions for storing and changing the prognam, allowing for changes to the tutorial text. Appendix C is an example of a short session that a user might execut.e. Appendix D contains the logic block diagrams of the control data set and the decomposition program. And Appendixes E and F are listings of the tutorial text and the control data set.

Any organization that has access to a TSO system has access to a valuable educational tool. A training program can benefit greatly by using the interactive capabilities of the system for pedagogical purposes. With a system of this kind the educational process is not subject to the inconsistent performance of an instructor. More time can be spent in preparing the sessions, which may be prepared by many educators, therefore achieving a more, efficient presentation. Many times students contribute greatly to a particular subject during a lab or seminar. These contributions which would otherwise be lost, can be incorporated in the programmed instructions for the benefit of future classes. In effect it eliminates the human error factor from classroom instruction. However, it should be remembered that programmed instruction as discussed in this report is a tool of education and is not meant to replace classroom instruction. Such a tool is meant to give supplemental aid to the student, thus allowing the teacher more time to give individual attention.

BIBLIOGRAPHY

(1) Adams, Marsha Lynn. "Tutorial and Visual Display of the Basic Concepts of Two Dimensional Linear Programming." (Unpub. M.S. report, Oklahoma State University, 1975.)
(2) Dantzig, George B. Linear Programming and Extensions. Princeton, New Jersey: Princeton University Press, 1963.
(3) Dantzig, George B., and Wolfe, Philip. "Decomposition Principle for Linear Programs." Operations Research. Volume 8, Jan., 1960.
(4) Hillier, Frederick S., and Lieberman, Gerald J. Operations Research. 2nd Edition, Holden-Day Inc., 1974.
(5) Lasdon, Leon S. Optimization Theory for Large Systems. New York: The MacMiilan Company, 1970.
(6) Orchard-Hays, William. Advanced Linear Programming Computing Techniques. McGraw-Hill Book Company, 1968.
(7) Wagner, G. R. "Conversational Linear Programming for Experiential Learning." Engineering Education. Volume 62, No. 7 (April, 1972), pp. 824-826.
(8) Zacharov, B., Davies, B. W., and Chau, A. Y. C. "Island - An Interactive Graphics System for Mathematical Analysis." The Computer Journal. Volume 17, No. 2 (May, 1974), pp. 104-112.

APPENDIXES

APPENDIX A

USER'S GUIDE

DECOMP can be executed on any system containing the TSO timesharing options. The user must first acquire a TSO user ID from his computer center and find out the ID number under which the program is stored. Once this is done he can \log on and begin the session in the following manner.

STEPS

1. To log on any TSO terminal, use the keyboard to key in the command LOGON aaaaaa. Where aaaaaa is the TSO user ID number.
2. Depress the ENTER or RETURN key. (If the number is invalid, the message INVAIID PROJECT NUMBER will appear. If this happens, try Step 1 again. If the situation persists, consult the computer center about the ID number.
3. If the number is password protected, you will be asked for the password. Key in the password.
4. Depress the ENTER or RETURN key. (If the password is invalid the message INVALID PASSWORD FOR USER ID aaaaaaa will appear. If this happens, go to Step 1 again. If it happens again consult the computer center.)
5. To begin the session, the user should key in EXEC 'TSO.bbbbbbb DECOMP.CLIST'. Where bbbbbbb is the TSO ID number the program is stored under at the installation.
6. Depress the ENTER or RETURN key. The program will now begin executing.

Executing DECOMP

The first screen of information is general instructions on using the program. Detailed instructions are given. at each step when a
response is required by the user.

1. After reading the instructions thoroughly, depress ENTER or the carriage return. (If an IBM 3277 is used, the program generates a message to the user to clear the screen before each enter.)
2. The first page of the text will then appear. It explains that the session is in two parts, the tutorial text and an executable program. A choice is given as to which part to execute, enter the appropriate response. You will then be prompted for your name.
3. Assuming the student wishes to step through the text, the second page will appear, outlining the main context of the text, along with additional instructions.
4. Pages 3 and 4 give an introduction into multidivisional problems and explain the angular structure of their constraints. Again press ENTER or RETURN after each page.
5. Page 5 presents the first question of the session. The message ANS = will be printed allowing the answer to be entered immediately following the message. Three chances will be given to answer the question correctly. Upon request the program will return to Page 3 for a review.
6. Page 6 explains the answer to Question \#1.
7. A general description of decomposition is then presented followed by Question \#2. Again three chances are given to enter the correct answer and an explanation of the answer is given.
8. Page 9 defines a multidivisional problem and the constraints needed for reformulation. If the student wishes he can view Page 10 for an in depth study of the reformulation.
9. Otherwise he can continue to Page 11 and Question \#3 on
reformulation. Again the message ANS $=$ is printed to prompt a response. If all three chances are used he will be given the opportunity to review Page 10.
10. Page 12 discusses why the simplex multipliers need to be partitioned for decomposition. Here the student is given the opportunity to continue discussion at a more detailed level by requesting to view Page 13.
11. Or the student can continue to Page 14 and be given Question \#4 on why the simplex multipliers are partitioned. The format for the response is similar to Question \#2 and \#3. And a chance is given to request a review of Page 13.
12. At this point the student may choose to see the six step simple algorithm or continue to Part 2. The steps are presented on two pages and at the end of the second page the student may choose to see an example of how the algorithm works.

Execution of the Example

The student is taken through the entire execution of an actual problem. Intermediate results are given at each step to help the student visualize the process taken at that point by the use of the interactive capabilities of the program. Further explanation and actual computations are available to the student at critical steps.

The first page of the example defines the problem to be solved. For efficiency purposes a problem was chosen from Hillier \& Lieberman (4). The problem consists of two divisions of no more than two constraints each and two variables each. All matrices and vectors are singled out for clarity. Unless the user is using a decwriter he
should copy this information down for future reference before depressing ENTER to continue.

Execution of Part 2

Part 2 is a Fortran program that uses the decomposition algorithm mentioned in Part 1 to solve a problem who's data is entered through the terminal. All the data to be entered will be asked for by appropriate prompting messages.

The first bit of information to be entered is a title to the problem. After the title is entered messages will be displayed asking for the number of divisions and the number of corporate constraints. These values should be entered as integer numbers without a decimal point. The right hand side of the corporate constraints will be asked for next. These will be read with a Fortran format of F5.2, which means the first value should be entered with a length of no more than 5 digits with the decimal point typed and no more than 2 digits to the right of the decimal point. Insignificant zeroes to the left or right of the decimal point do not need to be entered. The enter key should be depressed after each value is typed. This results in entering one value per line until all values are entered. The rest of the data is entered in four steps for each division as follows:

1. Prompting message - 'Type \# constraints and \# variables for Division 1^{\prime}

Response - Enter 2 integer values, one per line.
2. Prompting message - 'Type x coefficients of the objective function for Division 1' Response - Enter x number of real values with the decimal
point as described above, one per line.
3. Prompting message - 'Type x coefficients of Division 1 constraints'

Response - Again enter x number of real values, one per line.
4. Prompting message - 'Type x coefficients of the RHS of Division 1^{\prime}

Response - again enter x number of real values, one per line. The preceding steps will be repeated for each division. When all data are entered a matrix representation of the program will be displayed giving the user a chance to view the data and then the opportunity to reenter the data if necessary.

Once the data are entered correctly the program solves the problem using the decomposition method mentioned in Part 1 , giving intermediate results at each iteration.

APPENDIX B INSTRUCTIONS FOR STORING AND CHANGING PROGRAMS

The sequential data sets that make up this program are stored at the Oklahoma State University TSO library under the I'SO user identification number of U16300A. Their full qualification is as follows:

$$
\begin{aligned}
& \text { 'TSO.U16300A.DECOMP.CLIST' } \\
& \text { 'TSO.U16300A.PAGE.DATA' } \\
& \text { 'TSO.U16300A.JESSE.FORT' }
\end{aligned}
$$

To store the programs under a personal identification number, a simple copy command on TSO of the form COPY 'TSO.U16300A.name.type' 'TSO.aaaaaa.name.type' is all that is needed (where aaaaaaa is the personal identification number of the user).

Once the user has stored the data sets a few changes must be made. At present DECOMP, which controls the flow of the program, lists the tutorial text by its fully qualified name. The full qualification must be changed to the user's ID as follows.

STEPS
It is assumed the user has logged on his own TSO ID and copied the data sets.

1. With TSO in the READY mode, edit the CLIST by the command E. DECOMP. CLIST.
2. Once in the EDIT mode, enter the following command: C 1050000 /U16300A/aaaaaaa/ALL (where aaaaaaa is the user's ID number). This command changes all occurances of a fully qualified data set name to the user's ID.
3. Get out of the edit mode by entering END S.

Before the programs can be executed, one other change must be made. DECOMP calls an object module of the fortran program. Assuming the user has acquired a copy of the fortran source program JESSE.FORT he must now create an object module as follows.

With TSO in the READY mode, compile the fortran program by entering the command FORT JESSE. This compile will create an object module and the program will be ready to execute.

If any changes are made to either the CLIST DECOMP or the tutorial text PAGE, caution must be exercised. There is a close relationship between these two data sets and a similar relationship must be present after any changes are made.

Changes may also be made to the source program JESSE, although this program can be altered as you would any program written in a high level programming language. Each time the program is altered, a new object module must be created as above.

APPENDIX C

SAMPLE OF A SHORT SESSION

```
exec decomp
THIS PROGRAM IS DESIGNED TO OPERATE ON ANY TSO TERMINAR.
IT IS INTERACTIUE, MEANING THE USER WILL BE PROMPTED FOR A
RESPONSE. A DECWRITER IS PREFERRED SINCE YOU CAN MAINTAIN
A HARDCOPY OF THE SESSION AND REFER TO IT AT ANY TIME.
HOWEUER, DECSCOPES AND IBM 3277'S CAN ALSO BE USED.
THE OPERATION OF A DECSCOPE AND DECWRITER IS SLIGHTLY
DIFFERENT THAN A 3277. IF YOU ARE USING A DECSCOPE OR
DECWRITER, AFTER TYPING A RESPONSE PRESS THE RETURN KEY.
HOWEUER, WITH THE }3277\mathrm{ YOU MUST CLEAR THE SCREEN FIRST
THEN ENTER YOUR RESPONSE. THE INSTRUCTIONS DURING A
SESSION ASSUME YOU ARE USING AN IBM 3277.
    IF YOU ARE USING A 3277 OR SIMILAR TERMINAL ENTER CRT
PAGE.DATA
                                    A TSO PRESENTATION OF THE
                                    DECOMPOSITION TECHNIQUE
                        OF LINEAR PROGRAMMINE
```

 THIS PRESENTATION IS DESIGNED TO GIUE THE ADUANCED STUDENT A
 RETTER UNDERSTANDING OF DECOMPOSITION. IT IS DIUIDED INTO TWO PARTS.
PART 1. A tUTORIAL TEXT that takes the student through the
DEUELOPMENT OF DECOMPOSITION. IT IS ASSUMED THE STUDENT
HAS A THOROUGH UNDERSTANDING OF LP AND REUISED SIMPLEX.
PART 2. AN EXECUTABLE PROGRAM THAT LETS YOU ENTER YOUR OWN DATA
TO BE RUN AND GIVES YOU INTERMEDIATE RESULTS TO ALLOW
YOU TO MONITOR ITS PROGRESS.
IF YOU WOULD LIKE TO STEP THROUGH PART 1 ENTER YES.
IF YOU WANT TO RUN DATA ENTER NO.
yes
TYPE IN YOUR NAME AND HIT ENTER.
bill
PAGE.DATA
DECOMPOSITION

THIS IS A DEUELOPMENT OF THE DECOMPOSITION TECHNIQUE OF LINEAR PROGRAMMING. IT IS ASSUMED THE STUDENT' \mathcal{I} BACKGROUND INCLUDES A THOROUGH UNDERSTANDING OF LINEAR PROGRAMMINO AND REUISED SIMPLEX. THE TEXT WILL COVER:

1. MULTIDIUISIONAL PROBLEMS
2. THEIR ANGULAR STRUCTURE
3. THE DECOMPOSITION APPROACH - THEORY
4. A DECOMPOSITION ALGORITHH
5. AN EXAMPLE

EVERY SO OFTEN A QUESTION WILL BE ASKED OF YOU. TYPE IN THE ANSWER AND PRESS ENTER.
IF AT ANYTIME YOU WANT TO TERMINATE PART 1 AND GO TO PART 2 TYPE IN STOP AND PRESS ENTER. (PRESS CLEAR AND ENTER TO CONTINUE)

PAGE. DATA
decomposition is a technique used for soluing problems having a SPECIAL STRUCTURE. THESE PROBLEMS ARE CALLED MULTIDIUISIONAL AND THEIR NAME HINTS AT THE TYPE OF STRUCTURE USED, MULTIDIUISIONAL. hence, they are froblems that encompass several divisions. therefore, THE FROELEMS ARE ALMOST DECOMPOSABLE INTO SEPARATE FROELEMS, WHERE EACH DIUISION IS CONCERNED ONLY WITH OPTIMIZING IT'S OWN OPERATION. HOWEVER, SOME QUERALL COORDINATION IS REQUIRED IN ORDER TO EEST DIUIDE CERTAIN ORGANIZATIONAL RESOURCES AMONG THE DIUISIONS.

IF YOU WERE TO LOOK AT A TABLE OF CONSTRAINT COEFFICIENTS FOR THIS TYPE OF PRORLEM YOU WOULD FIND THAT THE CONSTRAINTS FOR EACH DIUISION COULD BE GROUPED TOGETHER IN A BLOCK FORMING AN ANGULAR STRUCTURE.

THE NEXT PAGE EXPLAINS THE ANGULAR STRUCTURE OF MULTIDIUISIONAL PROBLEMS AND GIUES AN EXAMPLE. (PRESS CLEAR AND ENTER TO CONTINUE OR TYPE STOP TO TERMINATE)

PAGE. DATA
TABLE OF CONSTRAINT COEFFICIENTS FOR MULTIDIUISIONAL PROBLEMS.

CORFORATE CONSTRAINTS ON ORGANIZATIONAL RESOURCES

CONSTRAINTS ON RESOURCES AUAILABLE ONLY TO DIUISION 1

DIUISION 2

LAST DIUISION

EACH SMALLER block Contains the coefficients of the constraints for ONE DIUISION. THE LONG RLOCK AT THE TOP CONTAINS THE COEFFICIENTS OF THE CORFORATE CONSTRAINTS FOR THE MASTER PRORLEM (THE FROBLEM OF COORDINATING THE ACTIUITIES OF THE DIUISIONS).

PAGE.DATA

QUESTION ̂

WHAT TYPE OF SPECIAL PROBLEM WAS THE DECOMPOSITION METHOD DEUELOPED FOR?

```
ANS =multidivisional
UERY GOOD GILL
```

 PAGE.DATA
 THE CORRECT ANSWER IS MULTIDIUISIONAL
THOSE PRORLEMS WHERE THE MAJORITY OF THE CONSTRAINTS CAN RE SEFARATED INTO GROUPS ACCORDING TO THE FESOURCES AUAILABLE.

TO LEARN HOW THE DECOMPOSITION METHOD SOLUES THESE SFECIAL STRUCTURED PRORLEMS PRESS ENTER TO GO TO THE NEXT PAGE.
(OR TYFE STOP TO TERMINATE)

F'AGE.DATA

THE GASIC APPROACH IS TO REFORMULATE THE PROBLEM IN A WAY THAT GREATLY REDUCES THE NUMBER OF FUNCTIONAL CONSTRAINTS AND THEN TO AFPLY THE fEUISED SIMPLEX. THIS UERSION OF THE SIMPLEX METHOD CAN be thought of as having each division solve its own subrroblem and SENDING ITS PROPOSAL TO THE MASTER PROBLEM.

If THESE PROPOSALS VIOLATE THE CORPORATE CONSTRAINTS THE DECOMPOSITION TECHNIQUE WILL EUALUATE THAT UIOLATION AND CALCULATE PENALTIES FOR EACH OF THE DIUISIONS IN ORDER TO FORCE THEIR SOLUTIONS TOWARD A CORPORATE OPTIMUM. IN THIS WAY WE CAN COORDINATE THE FROPOSALS FROM ALL THE DIUISIONS TO FIND THE OPTIMAL SOLUTION FOR THE OUERALL ORGANIZATION.

PRESS CLEAR AND ENTER FOR QUESTION $\boldsymbol{*} 2$ OR STOP TO TERMINATE.

PAGE.DATA
QUESTION $\geqslant 2$:

> YOU ARE IN CHARGE OF EUDGETING A LARGE CORPORATION AND EACH FLANT MANAGER SENDS YOU PROFOSED GUDGET REQUIREMENTS FOR HIS PLANT. GUT, AS IS USUALLY THE CASE, YOU CANNOT MEET. ALL THE REQUIREMENTS. AS RUDGETING DIRECTOR YOUR NEXT STEP IS TO:
> A. DETERMINE YOURSELF WHAT THE PLANT EUDGETS SHOULD BE.
> B. CALCULATE SOME KIND OF PENALTY FOR EACH PLANT TO FORCE THEM TO COME UP WITH AN AGREEAELE FROFOSAL.
> C. TEAR UP THE PROPOSALS AND HAUE THEM START OUER.
> D. RUN THE CORFORATE BUDGET AS A WHOLE USING FEUISED SIMFLEX. THEN SEND EACH PLANT ITS EUDGET.

ANS $=d$
SORRY BILL, D IS AN INCORRECT ANSWER.
tRY AGAIN, YOU HAVE 2 MORE CHANCES.
ANS $=b$
VERY GOOD BILL
THE CORRECT ANSWER IS B.
YOU WOULD EUALUATE THE UIOLATIONS AND CALCULATE PENALTIES.
EUT HOW?
HIT ENTER.
PAGE.DATA
LET'S dEFINE A PROELEM WITH N DIUISIONS AS SUCH:

N				
MAXIMIZE	SUM	(C(I)*X(I))		
	$\mathrm{I}=1$			
SUBJECT TO:	A(1)	$A(2) \ldots A(N)$	$x(0)$	$B(\theta)$
	$A(N+1)$		$x(1)$	B(1)
		$A(N+2)$	X(2)	B(2)
		-	.	.
		A 2 N$)$	$x(N)$	$B(N)$

WHERE THE B,C,X'S ARE VECTORS AND A'S ARE MATRICES. CONSIDER THE SOLUTION SPACE FOR DIUISION K; CALL IT S(K). ANY POINE IN $S(K)$ CAN EE REPRESENTED AS A WEIGHTED AUG. OF THE EXTREME POINTS of $S(K)$.

LET $\times(J, K)=E P(J)$ OF DIUISION K AND L(J,K) IT'S WEIGHT.
I.E. ANY FEASIBLE POINT $X(*, K)=\operatorname{SUM} O N J O F(L(J, K) * X(J, K))$ FOR

SOME COMBINATION OF THE L(J,K) SUCH THAT θ < $\mathrm{L}(\mathrm{J}, \mathrm{K})$ <= $\{$ AND THE SUM ON J OF ALL L(J,K) IS EQUAL TO 1.
IF YOU WOULD LIKE TO SEE THE PROBLEM REFORMULATED
gY USING THESE CONSTRAINTS ENTER YES.
yes

```
PAGE.DATA
            THIS EQUATION FOR }X(*,K) AND THE CONSTRAINTS ON THE L(J,K) PROUIDE
A METHOD FOR REPRESENTING THE FEASIELE SOLUTIONS TO DIUISION K
WITHOUT USING ANY OF THE ORIGINAL CONSTRAINTS. HENCE THE OUERALL
PROBLEM CAN NOW BE REFORMULATED WITH FAR FEWER CONSTRAINTS AS
MAXIMIZE \(\operatorname{SUM}_{K=1}^{N} \operatorname{SUM}_{J} L(J, K)(C(K) * X(J, K))\)
SUBJECT TO:
\begin{tabular}{ll} 
& \(\operatorname{SUM}_{K=1}^{N} \operatorname{SUM} L(J, K)(A(K) * X(J, K))\) \\
AND & \\
\(\quad \operatorname{SUM} L(J, K)=1\)
\end{tabular}
STUDY THIS REFORMULATION OF THE MASTER PROBLEM FOR AWHILE. THE SYMEOLISM MIGHT EE CONFUSING. THE FIRST SUMMATION (ON K) REFERS TO THE DIUISIONS. THE SECOND SUMMATION (ON J) REFERS TO THE EXTREME POINTS WITHIN EACH DIUISION.
```

```
FAGE.DATA
```

FAGE.DATA
QUESTION * 3 :
IN THE REFORMULATION OF THE MASTER PROBLEM
WHAT DO THE L(J,K)'S STAND FOR ?
A. CONSTRAINT COEFFICIENTS
B. SIMPLEX MULTIFLIERS
C. EXTREME FOINTS IN THE SOLUTION
D. RESFECTIUE WEIGHTS ON THE EXTREME POINTS

```
```

ANS =d
UERY GOOD BILL
THE CORRECT ANSWER IS D
FAGE.DATA
SINCE THIS REFORMULATION HAS FAR FEWER CONSTRAINTS IT SHOULD
FE SOLUABLE WITH MUCH LESS COMPUTATIONAL EFFORT. AT FIRST
GLANCE IT WOULD SEEM THAT ALL THE EXTREME POINTS (X(J,K)) NEED
EE IDENTIFIED. A TEDIOUS TASK TO SAY THE LEAST. FORTUNATELY,
IT IS NOT NECESSARY TO DO THIS WHEN USING THE REVISED SIMPLEX
METHOD. ALL THAT IS REQUIRED IS THAT THE SIMPLEX MULTIPLIERS (PI) BE
PARTITIONED SO THAT YOU CALCULATE ONLY WHAT IS NEEDED.

```
```

PAGE.DATA
RECALL THAT WITH REUISED SIMPLEX THE VECTOR OF SIMPLEX MULTIPLIERS
(PI = CB * BI) IS USED IN COMFUTING THE RELATIUE COST COEFFICIENTS
(AI = E INUERSE). DURING DECOMPOSITION PI NEEDS TO BE PARTITIONED
AS (PIY,PIO). LET NLC DENOTE THE NUMBER OF CORPORATE (LINKING)
CONSTRAINTS. LET BI(Y;NLC) BE THE MATRIX CONSISTING OF THE FIRST
NLC COLUMNS OF BI, AND LET BI(J) BE THE UECTOR CONSISTING OF THE JTH
COLUMN OF RI. THEN PI{ = CB * BI({;NLC) AND PI0 = CE* BI(NLC + J).
THE USUAL SIMPLEX CRITERION ASKS THAT WE FIND
MIN F(J) = {PIf * A(J) - C(J)) X(J) + PIO
THEREFORE, THE FIRST STEP AT EACH ITERATION REQUIRES SOLUING
N (NUMBER OF DIUISIONS) LP PROBLEMS OF THE TYPE
MIN (PI{ * A(J) - [(J)) X(J) + PIO
SURJECT TO A(N+J) * X(J) <= B(J)
x(J) >}=
PRESS ENTER TO CONTINUE OR TYPE STOP TO TERMINATE.
FAGE. DATA
QUESTION %4 :
WHY ARE THE SIMPLEX MULTIPLIERS, PI,
PARTITIONED INTO PIG AND PIO ?
A. to save computational efFORT
B. TO DISTINGUISH RETWEEN THE SIMPLEX MULTIPLIERS
OF EACH DIVISION.
c. to compute each relative cost coefficient
D. SO THAT IT IS NOT NECESSARY TO IDENTIFY ALL EXTREME POINTS.
ANS =a
UERY GOOD FILL
THE CORRECT ANSWER IS A.
F IS AN M*M MATRIX,
BUT TO CALCULATE FIG AND PIO YOU NEED ONLY
NLC+1 COLUMNS OF B.
WOULD YOU LIKE TO SEE A SIMPLE ALGORITHM AND EXAMPLE?yES
FAGE.DATA
STEP BY STEP ALGORITHM
STEP {. USING THE SIMPLEX MULTIPLIERS PI{ SOLUE THE DIUISION
SUBPROBLEMS AS AEOVE ORTAINING SOLUTIONS X(I)
AND OPTIMAL OBJECTIVE VALUES Z(I).
STEP 2. COMPUTE MIN Z(I) + PIO = F(J)
STEP 3. STOPPING RULE
IF F(J) >= 0 THE OPTIMAL SOLUTION IS SUA L(J)*X(J)
WHERE THE X(J)'S ARE THE EXTREME POINTS OF THE SOLUTION
SFACE CORRESPONDING TO GASIC L(J).
REmEmHER, L(J)'S ARE THE RESPECTIUE wEIGHTS ON THESE POINTS
AND ARE COMPUTED ONLY UPON TERMINATION OF THE PROBLEM
GY THE FINAL B INUERSE TIMES THE ORIGINAL RHS.
STOP
(PRESS CLEAR AND ENTER TO CONTINUE)

```
```

PAGE.DATA
STEP 4. IF F(J) < O FORM THE COLUMN TO ENTER THE BASIS AS

```

```

WHERE I IS AN N COMPONENT UECTOR WITH A ONE IN POSITION }
AND ZEROES ELSEWHERE.
STEP 5. FOR THE REUISED SIMPLEX METHOD TO NOW DETERMINE THE
LEAUING EASIC UARIABLE IT IS NECESSARY TO CALCULATE THE
CURRENT COEFFICIENTS AND RHS AS EI*A' AND BI*B'.
B' EEING THE UECTOR OF | B(0) I
1------1
WHERE { IS AN N COMPONENT VECTOR OF ALL {'S.
ORTAIN A NEW RASIS INUERSE
OBTAIN NEW SIMPLEX MULTIPLIERS.
GO BACK TO STEP { AND REPEAT.
WOULD YOU LIKE TO SEE AN EXAMPLE OF THIS ALGORITHM?YES
FAGGE.DATA
FOR AN EXAMPLE, CONSIDER THIS PROBLEM WITH 2 DIUISIONS
MAXIMIZE Z = 4X(4) + 6X(2) + 8Y({) + 5Y(2)
S.T.

```

```

 AND X(J),Y(J) >= 0
    ```

```

 C(1)=146 | C(2)=185 | B(0)=1 20 | B(1)=1 5 | B(2)=1 {2 |
 |51 | 8 1
 AND }X=X(1),X(2) AND Y = Y(1),Y(2
COPY THE ABOUE DOWN FOR FUTURE REFERENCE
FRESS ENTER
FAGE.DATA

```

THE REFORMULATED MASTER FRORLEM REQUIRES ONLY 4 CONSTRAINTS 2 FOR THE CORFORATE CONSTRAINTS AND 1 CONSTRAINT FOR EACH DIUISION THAT REQUIRES THE SUM OF THE WEIGHTS ADD UP TO \(\{\) (ON A LARGE FRORLEM THIS WOULD RE A SIGNIFICANT SAUINGS) FOR THE INITIAL BASIC FEASIBLE SOLUTION:
\(B=\)\begin{tabular}{llllll}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & \(\theta\) & 1 & 1
\end{tabular}\(=B I \quad B^{\prime}=\left\lvert\,\)\begin{tabular}{cc}
\(2 \theta\) & 1 \\
25 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}\(\quad C B=\langle\theta, \theta, \theta, \theta\rangle\right.\)

WHERE B' IS THE RHS OF THE REFORMULATED MASTER PROBLEM. HIT ENTER.
```

 PAGE.DATA
 STEP f. USING THE SIMPLEX MULTIPLIERS PIi SOLUE THE DIUISION PROBLEMS
FEMEMRER PI = CB * BI
INITIALLY CB={0,0,0,0)\& \&I=I=B, SO PI={0,0,0,0)\& PI{=(0,0)

```

```

 Y(1) = 3, Y(2) = O, AND Z(2) = -24
 DO YOU WANT TO SEE HOW THE SOLUTION IS COMPUTED?YES
PAGE.DATA
SOLVE DIUISION *1:
MIN Z(1) = (PI{ * A({) - C({))X | OR MIN (-4,-6)X
S.T.
A(3)X<= R(1)
THE SOLUTION IS }X({)=2,X(2)=3 AND Z(1)=-2
SOLUE DIUISION *2 :
MIN Z(2)=(PII * A(2)-C(2))Y { OR MIN (-8,-5)Y
A(4)Y<=B(2) | | 4 | Y <= 12
THE SOLUTION IS Y(1)=3, Y(2)=0 AND Z(2)=-24
F'AGE.DATA
STEP 2. FIND THE MINIMUM OF Z(N) + PIO = F
REMEMHER PIO = CB * COLUMN(NLC + N) OF BI
N EEING THE NUMBER OF THE DIUISION.
THEREFDRE FIO DIFFERS ACCORDING TO THE DIUISION.
F= MIN = -26 THEREFORE THE WEIGHTS(PENALTY) ON
E.F.. (2,3) OF DIUISION { ENTERS THE BASIS
DO YOU NEED HELP?yes
FAGE.DATA
SOLUE:
Z(1) + PIO = -26 + 0 = -26
Z (2) + F I 0 ~ = ~ - 2 4 + 0 = - 2 4
FAGE.DATA
STEP 3. STOPPING RULE. IF F IS }>=0\mathrm{ IT IS AN OPTIMAL SOLUTION. STOP.
F = -26 THEREFORE WE MUST CONTINUE.
HIT ENTER.
FAGE.DATA
STEP 4. GENERATE THE COLUMN TO ENTER THE BASIS AS: A' = 1141
1431
1 11
IF YOU NEED HELP TO GENERATE THE COLUMN ENTER YES.yes
FAGE.DATA

```

```

HIT ENTER.

```
fage. data
STEP 5. DETERMINE THE LEAUING BASIC UARIABLE. PROCEED IN THE USUAL WAY to calculiate the current coefficients and the rhs.


THE MINIMUM RATIO IS 1 (THE THIRD ROW). \(R=3\).
THUS THE NEW UALUES OF CB ARE \((\theta, 0,26, \theta)\)
THE EXTREME POINTS IN THE RASIS ARE : (_,_) (_,_) (2,3) (_,_) HIT ENTER.
FAGE. DATA
STEP 6. OBTAIN A NEW BASIS INUERSE AND NEW SIMPLEX MULTIPLIERS.
(1) \(11 \theta\) |

PII \(=C B * \operatorname{BI}(1 ; 2)=(\theta, \theta, 26, \theta) * \mid \theta\{\mid=(\theta, \theta)=P I\{\)
\(\left|\begin{array}{ll}\mid & \theta \\ \mid & \theta \\ \mid & \theta\end{array}\right|\)
THERE ARE MANY WAYS TO FIND AN INUERSE.
WOULD YOU LIKE TO SEE AN EASY ONE?YES
FAGE.DATA
BI' = E * BI WHERE E IS AN IDENTITY MATRIX EXCEPT THAT IT'S KTH COLUMN IS REPLACED BY THE VECTOR M WHERE

\(\left.S_{\text {HI }}=\begin{array}{lllll}1 & 0 & -14 & 0 \\ 0 & 1 & -13 & 0\end{array} \right\rvert\,\)
\(H^{\prime}=\left|\begin{array}{lllcl|}\mid & 0 & 1 & -13 & 0 \\ & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right|\)
HIT ENTER.
FAGE. DATA
*** ITERATION 1
STEP 1. RESOLUE THE DIUISION PRORLEMS.
SOLUTION FOR DIUISION \(\uparrow 1: X(1)=2 \quad X(2)=3 \quad Z(1)=-26\) SOLUTION FOR DIUISION \(\div 2: Y(1)=3 \quad Y(2)=0 \quad Z(2)=-24\)
DO YOU NEED MORE INFORMATION?YES
FAGE. DATA
COMPUTE THE OBJ. COEFFICIENTS FOR DIUISION \(\{\)
\((00) * \left\lvert\, \begin{array}{ll}1 \\ 31 & 31\end{array}-(4,6)=(-4-6)\right.\)
1231

COMPUTE THE OBJ. COEFFICIENTS FOR DIUISION 2 \((00) *|24|-(8,5)=(-8-5)\)

HIT ENTER.

PAGE.DATA
STEP 2.
```

$P I \theta=C B * B I(3)=(\theta, \theta, 26, \theta) * \left\lvert\, \begin{aligned} & \mid-111 \\ & |-13|=26\end{aligned}\right.$
$Z(1)+26=0 \quad \left\lvert\, \begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right.$
PIO $=C B * B I(4)=(\theta, \theta, 26, \theta) *|0|=\theta$
$Z(2)+\theta=-24$ |il
$F=-24$ THERFORE WEIGHTS ON E.P. $(3,0)$ OF DIUISION 2 ENTERS FASIS

```

STEP 3. STOPPING RULE.
\(F=-34\)
DO WE STOP OR CONTINUE?continue
HIT ENTER.
PAGE.DATA
STEP 4.


STEP 5.


THE MINIMUM RATIO IS 12/18. \(\mathrm{R}=2 . \quad \mathrm{CB}=(0,24,26,0)\)
THE EXTREME POINTS IN THE BASIS ARE : (_, \()(3, \theta)(2,3)(\ldots\),

FAGE.DATA
STEP 6:
B INUERSE \(11-1 / 3-20 / 3\) O1 \(\quad\) PIi \(=(0,4 / 3)\) \(\begin{array}{cccc}10 & 1 / 19 & -13 / 18 & 01 \\ 10 & 0 & 1 & 01 \\ 10 & -1 / 18 & 13 / 18 & 11\end{array}\)
- Liopor

SELF TO BE SURE YOU KNOW HOW IT IS DONE.
WORK THIS YOURSELART OUER AT THE BEGINNING OF THE EXAMPLE? no
```

FAGE.DATA
QUESTION *5.
IF }11-1/3 -20/3 01
B INUERSE = ($$
\begin{array}{ccccc}{10}&{1/18}&{-13/18}&{01}\\{10}&{0}&{1}&{01}\\{10}&{-1/18}&{13/18}&{1}\end{array}
$$]
A(1)={$$
\begin{array}{lll}{12}&{31}\\{2}&{3|}\end{array}
$$\quadA(2)=$$
\begin{array}{ll}{12}&{4}\\{6}&{4}\end{array}
$$|
COMPUTE THE COEFFICIENTS OF THE OBJECTIUE FUNCTION
FOR DIUISION { AND DIUISION 2 RESPECTIUELY.

```

```

 B. (-4,-6) AND (-8, -5)
 C. (-4/3,-2) AND (0,1/3)
 D. (-16/3,-1) AND (4,-2/3)
 ANS =c
UERY GOOD BILL
THE CORRECT ANSWER IS C.
FI1 * A(I) - C(I)
HIT ENTER.
FAGE.DATA
*** ITERATION 2
STEP 1.
DIUISION { OBJ. COEFFICIENTS
(0,4/3) * | 3| - (4,6) = (-4/3,-2)
1231
SOLUTION: X(1) = 2 x(2) = 3 Z(1) = -26/3
DIUISION 2 OBJ. COEFFICIENTS
(0,4/3)* }$$
\begin{array}{ll}{2}&{41}\\{16}&{4}\end{array}
$$]-(8,5)=(0,4/3
SOLUTION : Y(1) = 0 Y(2) = 0 Z(2) = 0
HIT ENTER.
FAGE.DATA
STEP 2.

```

```

 Z(1) + 26/3 = 0
 FIO = (0,24,26,0)* 10| = 0
 101
 111
 Z(2)+0=0
 F=0
 STEP 3. STOPPING RULE .
F IS >= O THIS IS AN OPTIMAL SOLUTION.
HIT ENTER.

```
```

FAGE.DATA
THE EXTREME POINTS IN THE BASIS ARE : (_,_) (3,0) (2,3) (_,_)
THE WEIGHTS ON THESE POINTS ARE : 5, 2/3, i , i/3
COMFUTED BY B INUERSE * ORIGINAL RHS
X=SUM L(J)*X(J)=1*(2,3)=(2,3)=X(1),X(2)
Y=SUM L(J)*Y(J)=2/3* (3,0)=(2,0)=Y({),Y(2)
THUS, AN OPTIMAL SOLUTION FOR THIS PROBLEM IS
X(1) = 2, X(2) = 3
Y(1)=2,Y(2)=0
Z = 4*2 + 6*3 + 8*2 + 5** = 42

```
HIT ENTER.
IF YOU HAUE DATA YOU WANT TO RUN AS A PROGRAN ENTER YES.
no
TO END THE SESSION ENTER LOGOFF
FEADY

APPENDIX D
LOGIC BLOCK DIAGRAMS







APPENDIX E
LISTING OF' THE TUTORIAL TEXT
```

\& TSC PKESENTATICN OF THE
DECLMPLSITIUA TECHNIGUE
CF LINEAR PRCGRAMMING

```

``` eetter unuerstancing uf decempositiun. it is civided intc tmoparis.
pakt 1. a tuturial text that takes the student thrcugh the devellfameit if decumpusition. it is assumed the student has a thokolgh unuerstanding of lp and aevised simplex.
pakt z. an executable prcgram that lets ylu enter ycur umin data TL óe RUN AND GIVES YOU INTEKMEDIATE RESULTS TO ALLUW YLU TU MUNITLK its frugress.
if yuu nuuld like to step thrdugh pant 1 enter yes.
If yCu want tc run data enter ino.
```

PAGE

LELCMPCSITION
This is a levelcpment cf the decumpcsitiun technique of linear prolikamming. it is assumed the stucentis balkgruund includes a theruugh understanding lf lintar prugnamming and kevised simplex. the TEXT wILL CGVER:

1. MUL TIDIVISICNAL PROBLEMS
2. théir angulak stíucture
3. THE UECLMPDSITICIV APPRUACH - THEURY
4. A utCLiAPCSI TiCN ALGCRI ThiA
b. AN EXAMPLE

EVtky SU uFten a cuesticn will be asked of yiud type lin the answer ANC PKESS ENTER.
If at ainytime ylu mant tu teriainate part 1 and gu to part 2
TYPE IN STUP AND PRESS ENTER.
(PRESS CLEAR AND ENTER TU CCNTINUE)
decumpusition is a techinieue used for sclving problems having a SPECIAL STRUCTURE. THESE PRCDLEMS ARE CALLED MLLTIDIVISIGNAL AND their name hints at the type jf structure useg, multidivisiunal. hence, they are problems that enclumpass siveral iivisicns. therefureg the priblems are almost decumpgsable into separate prdblems, where EACH JIVISION IS CCINERNEU CNLY WITH UFTIMILING IT'S ChiN OPERAIION. however. scime everall ccerdination is required in order to oest divice Certain organizational rejources among the divisions.
if you were to look at a table of constraint cuefficients for this TYPE OF PROXLEM YOU WOULD FIND THAT THE CCNSTRAINTS FOR EACH DIVISIUN CDULD BE GRGUPED TCGETHER IN A BLUCK FCRMING AN ANGULAR STRUCTURE.

THE NEXT PAGE EXPLAINS THE ANGULAR STRUCTURE GF MULTIDIVISIUNAL PRGBLLMS AND GIVES AN EXAMPLE. (PRESS LLEAR AND ENTER TC CONTINUE OR TYPE STCP TO TERMINATE)

PAGE 4

TALLE UF CCNSTRAINT COEFFICIENTS FOR MULTIDIVISICNAL PRCBLEMS.


CORPORATE CCNSTRAINTS CN JRGANIZAT IONAL RESCURCES


CUNSTRAINTS LN RESCURCES AVAILABLE CNLY OIVISION 1

DIVISICN 2

-


LAST CIVISICN
Each smaller elcck contains the coefficients of the constraints for CNE DIVISIUN. THE LUNG elGCK at the top contains the cuefficients uf the curpgrate ccinsthaints fur the master prublem ithe priblem of CLUKDINATING THE ACTIVITIES GF THE UIVISIONS).

## PAGE 6

## THE CLRRECT ANSWER IS mULTIDIVISIONAL

thuse prlblems hhere the majority lf the ccnstraints CAN BE SEPAKATED INTG GROUPS ACCORUING TO The RESCLRCES AVAILABLE.
to learn hch the deccmposition method solves these special STRUCTUREO PRGGLEMS PRESS ENTER TO GU TO THE NEXT PAGE.
(OR TYPE STCP TO TERMINATE)
the ōasic apprcich is to refurmulate the prcglem in a way that GREATLY KEDUCES the inulbex df functional censtraints anu then to APPLY THE REVISED SIMPLEX. THIS VERSIGN UF THE SIMPLEX METHOD CAN be thuuuht lif as haviing each divisiln salve its cme subprcblem and SENUING its pirupgSal to the master prublem.

If these prupcisals viglate the corpcrate cinstraints the cecumpusitiun techini jue mill evaluate that violation aido calculate pefalties fig each of the divisiuns in iruer tc furle their sulutions tlinard a curpirate uptimum. in this way we can ccordinate the PRUPCSALS FROM ALL THE DIVIJIUNS TO FIND THE UPTIMAL SOLUTION FOR the civerall organizarilin.
press lleak and einier fir gueistion \#2 cr stup te terminate.

PAGE a

## GUESTILIN \#2:

YUU ARE IN CHARGZ UF JuDGETING A LARGE CCRPORATION and each plaidt managie sends you prupused oudget requifiements fuk his plairt. but, as is lisually THE CASE, YUU CAiNNUT , AEET ALL THE REQUIREMEiNTS. AS GUUGETING DIRECTUR YJUR NEXT STEP IS TO:
A. DETERMINE YOURSELF WHAT THE PLANT SUDGETS SHOULD BE.
3. Lalculate sume kind uf penalit for each plant to FOKCE THEM TC COME UP WITH aN AGREEABLE PRUPUSAL.
C. TEAR UP THE PRDPOSALS AND HAVE THEM START OVER. D. run the cirpurate dudget as a whule using revised simplex. then send each plant its budget.

```
PAGE y
```

LET'S DEFINE A PRDOLEM WITH N DIVISICNS AS SUCH:


Where the b,C,X'S are vecturs and a's are matrices.
CLINSIDER THE SULJTIGN SPACE FGR DIVISICN K: CALL IT S(K). ANY POINT in $S(x)$ Can be represented as a weighted avg. íf the extreme puints CF $S(x)$.

LET $X(J, K)=$ EP(J) OF DIVISIUN K AND L(J,K) IT'S WEIGHT.
I.E. ANY FEASIOLE POINT X(*,K) = SUM ON J OF (L(J,K)*X(J,K)) FOR SIJME LOMDINATION LF THE L(J,K) SUCH THAT $0<=L(J, K)<=1$ and THE SUM GiN J LF ALL L(J,K) IS EQUAL TO 1.

PAGE 10

THIS ᄃQUATICN FCR X(*,K) AND THE CCNSTRAINTS CN THE L(J,K) PROVIDE a methou for kepresenting the feasible scluticns to civision k withuut using any cF the original cunstrainis. hence the overall prliblem lan ivúw be refgrmulateo with far fewer ccistraints as
$\operatorname{MAXIMIZE} \quad \operatorname{SUM}_{K=1}^{N} \operatorname{SUM}_{J} L(J, K)(C(K) * X(J, K))$

SUBJECT TO:
N
$\operatorname{Sum}_{K=1} \operatorname{SUM}_{J} L(J, K)(A(K) * X(J, K))$
ANU SUM L(J,K) $=1$

STUUY THIS REFUKMULATIGN OF THE MASTER PRCBLEA FOR AWHILE. THE GYMBILISM MIGHT OE CCNFUSING. THE FIRST SUMMATICN (ON KI REFERS TO the divisiluns. the second summation ich jl refers to the extreme PCINTS WITHIN EACH DIVISIGN.

## QUESTICN \#3:

IN THE REFCRMULATION UF THE MASTER PRGGLEM VAAT DG THE L(J,K)"S STAML FGR ?
A. CCNSTRAINT CSEFFICIENTS
D. SIMPLEX MULTIPLIERS
C. EXTREME POINTS IN THE SGLUTICN
D. RESPECTIVE WEIGHTS ON THE EXTREME PCINTS

PAGE 12

SINCE THIS REFJRMULATION HAS FAR FEWER CENSTRAINTS IT SHOULU BE SULVABLE wITH MUCH LESS CUMPUTATIOAAL EFFGRT. AT FIRST GLANCE IT WCULU SEEM THAT ALL THE EXTREME POINTS (X(J,K)) NEEUU ¿E IDENTIFIEU. A TEDIOUS TASK TO SAY THE LEAST. FOKTUNATELY. IT IJ NUT NECESSARY TU DU THIS WHEN USING THE REVISED SIMPLEX METHUU. ALL THAT IS REQUIRED IS THAT THE SIMFLEX MULTIPLIERS (PI) BE PARTITIONED SO THAT YGU CALCULATE ONLY WHAT IS NEEUED.

## QUESTICN \#3:

IN THE REFCRMULATION UF THE MASTER PRGGLEM VAAT DG THE L(J,K)"S STAML FGR ?
A. CCNSTRAINT CSEFFICIENTS
D. SIMPLEX MULTIPLIERS
C. EXTREME POINTS IN THE SGLUTICN
D. RESPECTIVE WEIGHTS ON THE EXTREME PCINTS

PAGE 12

SINCE THIS REFJRMULATION HAS FAR FEWER CENSTRAINTS IT SHOULU BE SULVABLE wITH MUCH LESS CUMPUTATIOAAL EFFGRT. AT FIRST GLANCE IT WCULU SEEM THAT ALL THE EXTREME POINTS (X(J,K)) NEEUU ¿E IDENTIFIEU. A TEDIOUS TASK TO SAY THE LEAST. FOKTUNATELY. IT IJ NUT NECESSARY TU DU THIS WHEN USING THE REVISED SIMPLEX METHUU. ALL THAT IS REQUIRED IS THAT THE SIMFLEX MULTIPLIERS (PI) BE PARTITIONED SO THAT YGU CALCULATE ONLY WHAT IS NEEUED.

## QUESTICN \#3:

IN THE REFCRMULATION UF THE MASTER PRGGLEM VAAT DG THE L(J,K)"S STAML FGR ?
A. CCNSTRAINT CSEFFICIENTS
D. SIMPLEX MULTIPLIERS
C. EXTREME POINTS IN THE SGLUTICN
D. RESPECTIVE WEIGHTS ON THE EXTREME PCINTS

PAGE 12

SINCE THIS REFJRMULATION HAS FAR FEWER CENSTRAINTS IT SHOULU BE SULVABLE wITH MUCH LESS CUMPUTATIOAAL EFFGRT. AT FIRST GLANCE IT WCULU SEEM THAT ALL THE EXTREME POINTS (X(J,K)) NEEUU ¿E IDENTIFIEU. A TEDIOUS TASK TO SAY THE LEAST. FOKTUNATELY. IT IJ NUT NECESSARY TU DU THIS WHEN USING THE REVISED SIMPLEX METHUU. ALL THAT IS REQUIRED IS THAT THE SIMFLEX MULTIPLIERS (PI) BE PARTITIONED SO THAT YGU CALCULATE ONLY WHAT IS NEEUED.

PAGE 17

```
 FOR AN EXAMPLE, CGNSIDER THIS PKCBLEM WITH < DIVISIONS
 MAXIMIZE L = 4X(1) + 6X(2) + 8Y(1) + 5Y(2)
 S.T.
 X(1)+3X(2)+2Y(1)+4Y(2) <= 20
 2X(1) + 3X(2) + 6Y(1) + 4Y(2) <= 25
 x(1)+x(2)
 x(1) + 2x(2)
 4Y(1) + 3Y(2)<= 12
 ANO X(J),Y(J) >= 0
 A(1)=1 1 3 | | A(2)=1 2 4 1 A A 3)=1 1 1 1 1. A(4)=1 4 3 1
 1231 1641
 1121
 C(1)=146 1 C(2)=1 8 5 | B(0)=1 20 | E(1)=| 5 | B(2)=1 12 |
AND X = X(1),X(2) AND Y = Y(1),Y(2)
 CJPY THE AbOVE ULWN FUR FUTURE REFERENCE
```

PAUE 18

THE REFURMLLATED MASTER PROBLEM REQUIRES CNLY 4 CONSTRAINTS 2 FLK THE CLikP LKATE CUNSTRAINTS ANO 1 CONSTRAINT FCR EACH UIVISICN that recuires the sum of the weights add up to le (uiv a large prijelem this would be a significant savings)
fur the Imitial basig feasible soluticn :

$$
B=\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
\mid & 0 & 1 & 0 \\
0 & 0 \\
1 & 0 & 0 & 1
\end{array} 0,1\right|=B I \quad B^{0}=\left|\begin{array}{rr|}
\mid & 20 \\
\mid & 25 \\
\mid & 1 \\
1 & 1
\end{array}\right| \quad C B=(0,0,0,0)
$$

WHERE B' IS ThE RHS UF THE REFURMULATED MASTER PRCBLEM.

PAGE 19

```
Step 1. USing the Simplex multipliers pil sqlve ihe division problemS
 REMEMEER PI = CB * BI
```



```
 THE SOLUTICNS AKE : X(1) = 2, X(2)=3, AND Z(1)= -26
 Y(1)=3,Y(2)=0, AND L(2) = -24
 SULVE dIVISICN #l:
 MINZ(1)=(FII * A(1) - C(1))X
 S.T.
 A(3)X<= B(1)
 THE SOLUTICN IS X(1)=2; }X(2)=3\mathrm{ ANU Z(1)=-26
 SULVE DIVISICN #2 :
 MINZ(2)=(PIL * A(2)-C(2))Y
 S.T.
 A(4)Y<=B(2) | S.T. | 4 | Y<= 12
 THE SULUTICN IS Y(1)=3,Y(2)=0 AND L(2)=-24
```

    PAGE 20
    ```
STEP 2. FIND THE MINIMUM OF Z(N) + PIO = F
 KEMEMBER PIO = CB * COLUMN(NLC + N) CF BI
 N BEING THE NUMBER OF THE DIVISICN.
 therefgRe pIO bIfrerS acCORDING TO tre diviSION.
 F=,1LN = -26 THEKEFORE THE WEIGHTS(PENALTY) ON
 E.P. (2,3) Lf UIVISION 1 ENTERS THE EASIS
 SOLVE:
 Z(1) + PIO = -26 + O = -20
 Z(2) +PIU = -24 + O = -24
```

STEP 3. STOPPING RULE. IF F IS $>=0$ IT IS AN UPTIMAL SOLUTION. STOP.
$F=-26$ THEREFORE WE MUST CONTINLE.

```
Step 4. GENERATE the cllumn to enter rhe dasis as: A0 = |11||
 1 11
```



```
StEP 5. detekmine the leaving basic variaElle. proceed in the usual
 way to calculate the current coefficiemts ano the rhS.
```



```
 the minimum katic is l (the thiro rum). R = 3.
 ThUS THE NEW VAlles CF CB aRe (0,0,26,0)
 THE EXTH.EME PUINTS IN THE BASIS ARE : (_,_) (_,_) (2,3) (_,_)
```

PAGE 22

```
STEP 6. LUTAIN A NEW SASIS INVERSE AND NEW SIMPLEX MULTIPLIERS.
 P11 = CO * BI(1;2)=(0,0,20,0) * {\begin{array}{lll}{1}&{0}\\{0}&{1}\end{array}|=(0,0)=P11
 10}
 1001
 BI' = E * BI WHFRE E IS AN ICENTITY MATRIX EXCEPT IHAT IT'S KTH
 CLLUMN IS REPLALES OY THE VECTGR M WHERE
```



```
 So 1 1 0 -110
 3' = = }\begin{array}{cccccc}{1}&{0}&{1}&{-13}&{0}\\{1}&{0}&{0}&{1}&{0}&{1}
 1
```

```
*** ITERATION 1
Step 1. RESULVE THE division prublems.
 SULUTIUN FCR DIVISIUN *i: \(x(1)=2 \quad x(2)=3 \quad 2(1)=-26\)
 SCLUTICN FOR DIVISION \(22: Y(1)=3 \quad Y(2)=0 \quad 2(2)=-24\)
 COMPUTE THE CÉJ. GCEFFICIENTS FOR DIVISICN 1
 \((00) * \mid 131-(4,6)=(-4-6)\)
 1231
 cimpute the cbje ceefficients *FGR division 2
 \(\left(\begin{array}{ll}10 & 0\end{array}\right) *\left|\begin{array}{ll}2 & +1 \\ 16 & 4\end{array}\right|-(0,5)=(-8-5)\)
```

PAGE 24

```
STEP 2.
```



```
 PIO=CB*SI(4)=(0,0,26,0)* (101 | | | = = 0
 Z(2) + 0 = -24
 F=-24 THERFCRE WEIGHTS CN E.P. (3,0) OF DIVISION 2 ENTERS BASIS
STEP 3. STUPPING RULE.
 F=-24
```

```
STEP 4.
```



```
STEP 5.
```




```
 THE MINIMUM RATIG IS 12/18. R = 2. CB = (0,24,26,0)
 THE EXTKEME PGINTS IN THE GASIS ARE : (_,_) (3,0) (2,3) (_,_)
 PAGE }2
 O INVERSE |1-1/3 -20/3 0| P11 = (0,4/3)

THE KATIOS ARE :
\(9 / 6,12 / 18,1 / 0,1 / 1\)
```

PAGE 26

```
```

STEP 6:

```
STEP 6:
 | |0
 | |0
 | |0
```

```
 | |0
```

```

PAGE 27
```

QUESTIUN \#5 :
IF |1-1/3 -20/3 0
B INVERSE= }\begin{array}{ccccc}{0}\&{1/13}\&{-13/18}\&{0|}<br>{0}\&{0}\&{1}\&{0|}<br>{0}\&{-1/18}\&{13/18}\&{1|}

```

```

        COMPUTF THE CUEFFICIENTS UF THE CEJECTIVE FUNCTION
            FCK LIVISICN I ANO DIVISION 2 RESPECTIVELY.
        A. (0,0) AND (0,0)
        B. (-4,-6) AND (-8,05)
        C. (-4/3,-2) AND (0,1/3)
        D. (-16/3,-1) AND (4,-2/3)
    ```
 PAGE 26
*** I TERATIUN 2
STEP 1.
 UIVISIUN 1 CEJ. CCEFFICIENTS
 \((0,4 / 3) *|13|-(4,6)=(-4 / 3,-2)\)
 \(123 \mid\)
 SULUTION: \(X(1)=2 \quad X(2)=3 \quad Z(1)=-20 / 3\)
 DIVISION 2 COJ. COEFFICIENTS
 \((0,4 / 3) *|24|-(8,5)=(0,1 / 3)\)
 1641
 SULUTION: \(Y(1)=0 \quad Y(2)=0 \quad Z(2)=0\)

PAGE 29
```

STEP2.

```

```

        L(1)+26/3=0
        PIO = (0,24,26,0)* |0| = 0
                                    101
                                    |1|
    L(L)+0=0
    F=0
    STEP 3. STEPPIAG RULE.
F IS >= 0 THIS IS AN CPTIMAL SULUTICN.
PAGE 30

```
 THE EXTREME PCINTS IN THE JASIS ARE: (_1_) (j,0) (2,3) (_,_)
 THE WEI UHTS CN THESE PCINTS AKE: \(5,2 / 3,1,1 / 3\)
 CLMFUTED EY E INVERSE * CRIGINAL RHS
 \(X=\operatorname{Sum} L(J) * X(J)=1 *(2,3)=(2,3)=X(1), X(2)\)
 \(Y=\operatorname{sum} L(J) * Y(J)=2 / 3 *(3,0)=(2,0)=Y(1), Y(2)\)
 THUS, AN UPTIMAL SCLUTICN FCR THIS PRCBLEM IS
 \(X(1)=2, X(2)=3\)
 \(Y(1)=2, Y(2)=0\)
 \(Z=4 * 2+6 * 3+8 * 2+5 * 0=42\)

APPENDIX \(F\)

LISTING OF THE CONTROL PROGRAM
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 0001 \\
& 0002
\end{aligned}
\] & /* GENERAL INSTRUCTIOMS \#f \\
\hline 0003 & CONTROL PROMPT MAIM \\
\hline 0004 & WRITE THIS PROGRAM IS DESIGNED TO OPERATE OM ANY TSO TERMINAL. \\
\hline 0005 & WRITE IT IS INTERACTIVE, MEANING THE USER WILL BE PROMPTED FOR A \\
\hline 0006 & URITE RESPONSE. A DECHRITER IS PREFERRED SIMCE YOU CAN MAIMTAIM \\
\hline 0007 & WRITE A HARDCOPY OF THE SESSION AND REFER TO IT AT ANY TIME. \\
\hline 0008 & WRITE HOWEVER, DECSCOPES AND IBM 3277'S CAM ALSO BE USED. \\
\hline 0009 & WRITE THE OPERATION OF A DECSCUPE AND DECWRITER IS SLIGHTLY \\
\hline 0010 & WRITE DIFFERENT THAN A 3277. IF YOU ARE USING A CECSCOPE OR \\
\hline 0011 & WRITE DECWRITER, AFTER TYPINS A RESPONSE PRESS THE RETURN KEY. \\
\hline 0012 & HRITE HOWEVER, WITH THE 3277 YOU MUST CLEAR THE SCREEN FIRST \\
\hline 0013 & WRITE THEN ENTER YOUR RESPONSE. THE INSTRUCTIOMS DURING A \\
\hline 0014 & WRITE SESSION ASSUME YOU ARE USING AN IBM 3277. \\
\hline 0015 & \\
\hline 0016 & /* BEGIMNIMG OF PROGRAR * \\
\hline C017 & \\
\hline 0018 & PARTI2 \\
\hline 0019 & WRITE IF YOU ARE USIMG A 3277 OR ANYTHIMS SIMILAR ENTER - CRT \\
\hline 0020 & REAO \&TERM \\
\hline 0021 & IF \&TERM = CRT THEN \(*\) \\
\hline 0022 & DO \\
\hline 0023 & WRITENR PRESS CLEAR AND ENTER \\
\hline 0024 & READ EREPLY \\
\hline C025 & END \\
\hline 0026 & L 'TSO.U16300A.PAGE.DATA 10190 SNUA \\
\hline C027 & READ EANS \\
\hline 0028 & DO WHILE (EANS \(\rightarrow\) YES) ANO (EANS \(\sim\) NO) \\
\hline 0029 & WRITE INVALID ANSWER SANS - REENTER \\
\hline 0030 & READ EANS \\
\hline 0 C 31 & END \\
\hline 0032 & IF ETERM = CRT THEN WRITENR PRESS CLEAR THEM \\
\hline 0033 & WRITE TYPE IN YOUR NAME ANO HIT ENTER. \\
\hline C034 & \\
\hline 0035 & 1* READ STUDENT'S NAME */ \\
\hline 0036 & \\
\hline CC37 & REAO ENAME \\
\hline 0038 & IF EANS = NO THEN GOTO PARTZ \\
\hline 0039 & \\
\hline C040 & / INTRODUCTION * \\
\hline C04 1 & \\
\hline 0042 & L 'TSO.U16300A.PAGE.DATAE 250430 SNUT \\
\hline CC43 & READ EANS \\
\hline 0044 & LBL 32 * \\
\hline 0045 & L 'TSO.U16300A」PAGE.DATA' 470650 SMUA \\
\hline 0046 & READ EANS \\
\hline 0047 & IF (EANS \(=\) STOP) THEN GOTO LBLI \\
\hline CC48 & \\
\hline 0049 & /* ANGULAR STRUCTUAE *f \\
\hline cosa & \\
\hline C051 & L. TSO.U16300A.PAGE.DATA' 690880 SMUA \\
\hline CC5 2 & READ EANS \\
\hline 0053 & \\
\hline 0054 & 1* PRINT QUESTION \#1 *? \\
\hline 0055 & \\
\hline 0056 & L "TSO.U16300A.PAGE.OATA" 9901050 SMM \\
\hline 0057 & WRITENR ANS = \\
\hline C058 & READ EANS \\
\hline C059 & SET ECNT \(=2\) \\
\hline 0060 & DO WHILE (ECNT > OI AND (EANS To MULTIDIVISIOMAS \\
\hline
\end{tabular}
```

0062
0 0 6 3
0064
0065
C066
0067
C068
0C69
0 0 7 0
0071
C072
0 0 7 3
0074
0075
CC76
0077
0078
0079
0080
0081
0 0 8 2
C083
C084
0085
0 0 8 6
0 0 8 7
0088
0089
0 0 9 0
0 0 9 1
C092
C093
0094
C095
C096
0097
C098
C099
0100
C101
0}10
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
C114
0115
0116
0117
C118
C119
0120

```
```

    WRITE WRONG. TRY AGAIN ENAME.
    ```
 WRITE WRONG. TRY AGAIN ENAME.
 HRITE ANO WATCH FCR SPELLING OR TRY A SIMILAR HORD
 HRITE ANO WATCH FCR SPELLING OR TRY A SIMILAR HORD
 WRITENR ANS =
 WRITENR ANS =
 READ EANS
 READ EANS
 SET CCNT = ECNT - 1
 SET CCNT = ECNT - 1
ENO
ENO
 *)GIVE A CHANCE TO REREAD PREYIOUS PAGE */
 *)GIVE A CHANCE TO REREAD PREYIOUS PAGE */
IF EANS = MULTIDIVISIONAL THEN WRITE VERY GOOD ENAME
IF EANS = MULTIDIVISIONAL THEN WRITE VERY GOOD ENAME
IF &CNT =O THEN*
IF &CNT =O THEN*
DO
DO
 WRITE HOULD YOU LIKE TO REREAD THE PREVIOUS PAGE ENAME?
 WRITE HOULD YOU LIKE TO REREAD THE PREVIOUS PAGE ENAME?
 READ EANS
 READ EANS
 IF EANS = YES THEN *
 IF EANS = YES THEN *
 DO
 DO
 IF ETERM T CRT THEN GOTO LBL3
 IF ETERM T CRT THEN GOTO LBL3
 WRITENR PRESS CLEAR AND ENTER.
 WRITENR PRESS CLEAR AND ENTER.
 REAO SREPLY
 REAO SREPLY
 GOTO LBL3
 GOTO LBL3
 ENO
 ENO
END
END
IF ETERM = CRT THEN *
IF ETERM = CRT THEN *
OO
OO
 GRITENR PRESS CLEAR AND HIF ENTER.
 GRITENR PRESS CLEAR AND HIF ENTER.
 READ EREPLY
 READ EREPLY
END
END
 |* ANSWER TO QUESTION E1 */
 |* ANSWER TO QUESTION E1 */
L 'TSO.U16300A.PAGE.DATA" 1140 1320 SNUM
L 'TSO.U16300A.PAGE.DATA" 1140 1320 SNUM
READ &ANS
READ &ANS
IF (EANS = STOP) THEN GOTO LBLL
IF (EANS = STOP) THEN GOTO LBLL
 f* INTRODUCTION TO REFORMULATION *&
 f* INTRODUCTION TO REFORMULATION *&
SET ECNT = 2
SET ECNT = 2
L 'TSO.Ul }6300A.PAGE.DATAO 1340 1500 SMUM
L 'TSO.Ul }6300A.PAGE.DATAO 1340 1500 SMUM
READ EANS
READ EANS
IF I&ANS = STOP& THEN GOTO LBLI
IF I&ANS = STOP& THEN GOTO LBLI
 f* PRINT QUESTION &2 */
 f* PRINT QUESTION &2 */
L 'TSO.U16300A.PAGE.DATA" 1580 1730 SMMM
L 'TSO.U16300A.PAGE.DATA" 1580 1730 SMMM
WRITENR ANS =
WRITENR ANS =
READ EANS
READ EANS
DO WHILE \&ANS = B) AND (ECNT > O)
DO WHILE \&ANS = B) AND (ECNT > O)
 WRITE SORRY ENAME, EANS IS AN INCORRECT ANSWER.
 WRITE SORRY ENAME, EANS IS AN INCORRECT ANSWER.
 WRITE TRY AGAIN. YOU HAVE SCNT MORE CHANCES.
 WRITE TRY AGAIN. YOU HAVE SCNT MORE CHANCES.
 IF ETERM = CRT THEN *
 IF ETERM = CRT THEN *
 DO
 DO
 WRITENR PRESS CLEAR AND HIT ENTER.
 WRITENR PRESS CLEAR AND HIT ENTER.
 READ EREPLY
 READ EREPLY
 L 'TSO.U16300A.PAGE.DATA" 1580 1730 SMUN
 L 'TSO.U16300A.PAGE.DATA" 1580 1730 SMUN
 END
 END
 WRITENR ANS =
 WRITENR ANS =
 SET &CNT = ECNT - 1
 SET &CNT = ECNT - 1
 READ EANS
 READ EANS
END
```

END

```
```

012I
0122
0123
0 1 2 4
0 1 2 5
0126
0 1 2 7
0 1 2 8
0 1 2 9
0 1 3 0
0 1 3 1
0132
0 1 3 3
0134
0135
0136
0137
0138
0 1 3 9
0140
0 1 4 1
0142
0143
0144
0 1 4 5
0 1 4 6
0 1 4 7
0 1 4 8
0 1 4 9
0 1 5 0
0151
0152
0 1 5 3
0154
0 1 5 5
0 1 5 6
0157
0158
0 1 5 9
0 1 6 0
0161
0 1 6 2
0163
0164
0 1 6 5
0 1 6 6
0167
0 1 6 8
0169
0 1 7 0
017I
C172
0 1 7 3
0174
0 1 7 5
0 1 7 6
C177
0 1 7 8
0 1 7 9
0 1 8 0

```

0121
0122
0124 0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0136
0137
0138
0139
0140
0141
0142
0144
0145
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0165
0166
0167
0168
0169
0171
C172
0173
0174
0175
0176
0178
0179
0180
IF EANS = B THEN WRITE VERY GOOO ENAME.
WRITE THE CORRECT ANSWER IS B.
WRITE YOU WOULD EVALUATE THE VIOLATIONS & CALCULATE PENALTIES.
WRITE BUT HOW?
IF &TERM = CRT THEN WRITENR PRESS CLEAR AND
WRITENR HIT ENTER.
READ EANS
IF (EANS = STOP) THEN GOTO LBL\
 /* DEFINE A GENERAL PROBLEM */
L 'TSO.Ul6300A.PAGE.DATAD 1770 1970 SNWM
HRITE IF YOU WOULD LIKE TO SEE THE PROBLEM REFORMULATED
WRITE BY USING THESE CONSTRAINTS ENTER YES.
READ EANS
IF ETERM = CRT THEN *
DO
 HRITENR PRESS CLEAR AND HIT ENTER.
 READ EREPLY
 END
 /* REFORMULATION IN MORE DETAIL */
 IF (EANS = YES) THEN *
 OO
 L 'TSO.UL6300A.PAGE.DATA' 2000 2200 SMUM
 READ EANS
 END
 IF (EANS = STOP) THEN GOTO LBLA
 /* PRINT CUESTION #3 */
 L 'TSO.U16300A.PAGE.DATA' 2290 2400 SNUM
 WRITENR ANS =
 READ EANS
 SET &CNT = 2
 DO WHILE (&CNT > O) AND (EANS = D)
 WRITE SORRY ENAME, EANS IS AN INCORRECT ANSHER
 WRITE TRY AGAIN, YOU HAVE &CNT MORE CMANCES.
 IF STERM = CRT THEN *
 DO
 WRITENR PRESS CLEAR AND HIT ENTER.
 READ EREPLY
 L.TSO.U16300A.PAGE.DATA' 2290 2400 SNUM
 END
 WRITENR ANS =
 REAO EANS
 SET ECNT = &CNT - 1
 END
 /* ANSmER to queSTION :3 */
 IF EANS = D THEN WRITE VERY GOOD ENAME
 WRITE THE CORRECT ANSWER IS D
 IF (STERM = CRT) THEN *
 O
 WRITENR PRESS CLEAR ANO HIT ENTER.
 REAO EREPLY
```

```
0181
0182
0183
0184
0 1 8 5
0186
0187
0188
0 1 8 9
0 1 9 0
0 1 9 1
0 1 9 2
0193
0 1 9 4
0 1 9 5
0 1 9 6
0197
0198
0199
0 2 0 0
0 2 0 1
0 2 0 2
0 2 0 3
0204
C205
C206
0207
0208
0 2 0 9
0210
0211
0212
0213
C214
0215
C216
0217
0218
0219
0220
0221
0222
0223
0 2 2 4
0225
0226
0227
0 2 2 8
C229
0230
0231
0232
0233
0234
0235
0236
0237
C238
0239
0 2 4 0
```

```
END
```

END
f* GIve a chance to reread the preyious page *\&
f* GIve a chance to reread the preyious page *\&
IF (\&CNT = O) AND (EANS % D O) THEN *
IF (\&CNT = O) AND (EANS % D O) THEN *
DO
DO
WRITE WOULD YOU LIKE TO REREAD THE PREVIOUS PAGEZ
WRITE WOULD YOU LIKE TO REREAD THE PREVIOUS PAGEZ
READ EANS
READ EANS
IF ETERM = CRT THEN WRITENR PRESS CLEAR ANO
IF ETERM = CRT THEN WRITENR PRESS CLEAR ANO
WRITENR HIT ENTER.
WRITENR HIT ENTER.
READ EREPLY
READ EREPLY
IF EANS = YES THEN L 'TSO.U16300A.PAGE.DATA' 2000 2200 SNMm
IF EANS = YES THEN L 'TSO.U16300A.PAGE.DATA' 2000 2200 SNMm
READ EREPLY
READ EREPLY
END
END
/* PARTITIONING OF SIMPLEX MULTIPLIERS */
/* PARTITIONING OF SIMPLEX MULTIPLIERS */
L 'TSO.U16300A.PAGE.DATA' 2480 2660 SNUM
L 'TSO.U16300A.PAGE.DATA' 2480 2660 SNUM
WRITENR DO YOU HANT TO LEARN HOW THIS IS DONE IM MORE DETAIL?
WRITENR DO YOU HANT TO LEARN HOW THIS IS DONE IM MORE DETAIL?
READ EANS
READ EANS
f* PARTITIONING N MORE DETAIL */
f* PARTITIONING N MORE DETAIL */
IF (EANS = YES) THEN *
IF (EANS = YES) THEN *
DO
DO
L 'TSO.U16300A.PAGE.DATA' 2670 2860 SMUM
L 'TSO.U16300A.PAGE.DATA' 2670 2860 SMUM
WRITENR PRESS ENTER TO CONTINUE OR TYPE STOP TO TERMINATE.
WRITENR PRESS ENTER TO CONTINUE OR TYPE STOP TO TERMINATE.
READ \&ANS
READ \&ANS
END
END
IF (EANS = STOP) THEN GOTO LBLI
IF (EANS = STOP) THEN GOTO LBLI
1* PRINT QUESTION :4 */
1* PRINT QUESTION :4 */
L 'TSO.U16300A.PAGE.DATA' 2930 3040 SMUM
L 'TSO.U16300A.PAGE.DATA' 2930 3040 SMUM
WRITENR ANS =
WRITENR ANS =
READ EANS
READ EANS
SET ECNT = 2
SET ECNT = 2
OO WHILE (ECNT > O) AND (EANS - A)
OO WHILE (ECNT > O) AND (EANS - A)
WRITE SORRY ENAME, EANS IS AN INCORRECT ANSWEE.
WRITE SORRY ENAME, EANS IS AN INCORRECT ANSWEE.
WRITE TRY AGAIN, YOU HAVE \&CNT MORE CHANCES.
WRITE TRY AGAIN, YOU HAVE \&CNT MORE CHANCES.
IF \&TERM = CRT THEN +
IF \&TERM = CRT THEN +
CO
CO
WRITENR PRESS CLEAR ANO ENTER.
WRITENR PRESS CLEAR ANO ENTER.
READ EREPLY
READ EREPLY
L 'TSO.U16300A.PAGE.DATA' 2930 3040 SMUM
L 'TSO.U16300A.PAGE.DATA' 2930 3040 SMUM
END
END
WRITEMR ANS =
WRITEMR ANS =
READ EANS
READ EANS
SET ECNT = SCNT - 1
SET ECNT = SCNT - 1
END
END
/* ANSWER TO QUESTION E* */
/* ANSWER TO QUESTION E* */
IF EANS = A THEN WRITE VERY GOOO GNAME
IF EANS = A THEN WRITE VERY GOOO GNAME
WRITE THE CORRECT ANSIER IS A.
WRITE THE CORRECT ANSIER IS A.
WRITE B IS AN M*M. MATRIX.
WRITE B IS AN M*M. MATRIX.
WRITE BUT TO CALCULATE PII ANO PIO YOU MEED OMLY
WRITE BUT TO CALCULATE PII ANO PIO YOU MEED OMLY
WRITE NLC+1 COLLHNS OF B.
WRITE NLC+1 COLLHNS OF B.
f* GIVE A CHAMCE TO REREAD THE PREVIOUS PACE *f

```
 f* GIVE A CHAMCE TO REREAD THE PREVIOUS PACE *f
```

0243
0244
C245
0 2 4 6
0 2 4 7
C248
0249
0 2 5 0
C251
0252
0 2 5 3
0254
0 2 5 5
0 2 5 6
0 2 5 7
0258
0 2 5 9
C260
0 2 6 1
0 2 6 2
0 2 6 3
0264
0 2 6 5
0266
0 2 6 7
C268
0 2 6 9
0270
0271
0272
0273
0274
C275
C276
0277
0278
C279
0280
0 2 8 1
0282
C283
0284
0285
C286
0287
0 2 8 8
0 2 8 9
0 2 9 0
C291
0 2 9 2
0293
C294
0295
0 2 9 6
0 2 9 7
C298
029
0 3 0 0

```
```

```
0242 IF (&CNT = OL AND (EANS = Al THEN +
```

```
0242 IF (&CNT = OL AND (EANS = Al THEN +
```

DO

```
DO
 WRITE WOULD YOU LIKE TO REREAD THE PREVIOUS PAGE?
 WRITE WOULD YOU LIKE TO REREAD THE PREVIOUS PAGE?
 READ EANS
 READ EANS
 IF (EANS = YESS THEM *
 IF (EANS = YESS THEM *
 DO
 DO
 IF &TERM = CRT THEN HRITENR PRESS CLEAR AND
 IF &TERM = CRT THEN HRITENR PRESS CLEAR AND
 WRITENR HIT ENTER.
 WRITENR HIT ENTER.
 READ EREPLY
 READ EREPLY
 L 'TSO.U16300 A.PAGE.DATA: 2670 2870 SNUM
 L 'TSO.U16300 A.PAGE.DATA: 2670 2870 SNUM
 READ EREPLY
 READ EREPLY
 END
 END
END
END
HRITENR WOULD YOU LIKE TQ SEE A SIMPLE ALGORITHM AND EXAMPLEZ
HRITENR WOULD YOU LIKE TQ SEE A SIMPLE ALGORITHM AND EXAMPLEZ
READ EANS
READ EANS
IF ETERM = CRT THEN *
IF ETERM = CRT THEN *
DO
DO
 WRITENR PRESS CLEAR AND HIF ENTER.
 WRITENR PRESS CLEAR AND HIF ENTER.
 READ EREPLY
 READ EREPLY
 ENO
 ENO
IF (EANS TE YES) THEN GOTO LBLI
IF (EANS TE YES) THEN GOTO LBLI
 /* BEGINNING OF A&GORITHM */
 /* BEGINNING OF A&GORITHM */
L 'TSO.U16300A.PAGE.OATA: 3110 3300 SNUM
L 'TSO.U16300A.PAGE.OATA: 3110 3300 SNUM
READ EANS
READ EANS
L -TSO.U16300A.PAGE.DATA* 3330 3520 SNUM
L -TSO.U16300A.PAGE.DATA* 3330 3520 SNUM
WRITENR WOULD YOU LIKE TO SEE AN EXAMPLE OF THIS ALGORITHM?
WRITENR WOULD YOU LIKE TO SEE AN EXAMPLE OF THIS ALGORITHM?
READ EANS
READ EANS
IF EANS = NO THEN GOTO LBLI
IF EANS = NO THEN GOTO LBLI
 /* PRINT THE EXAMPLE */
 /* PRINT THE EXAMPLE */
LBL2: +
LBL2: +
L 'TSO.U16300A.PAGE.DATA" 3550 3740 SNUM
L 'TSO.U16300A.PAGE.DATA" 3550 3740 SNUM
WRITENR PRESS ENTER.
WRITENR PRESS ENTER.
READ EREPLY
READ EREPLY
L 'TSO.U16300A.PAGE.DATA" 3810 3940 SNUM
L 'TSO.U16300A.PAGE.DATA" 3810 3940 SNUM
f* INITIALILE */
f* INITIALILE */
IF &TERM = CRT THEN HRITENR PRESS CLEAR AMO
IF &TERM = CRT THEN HRITENR PRESS CLEAR AMO
WRITENR HIT ENTER.
WRITENR HIT ENTER.
READ &REPLY
READ &REPLY
 l# ## ITERATION O */f
 l# ## ITERATION O */f
L 'TSSO.U16300A.PAGE.DATA' 3990 4040 SNUM
L 'TSSO.U16300A.PAGE.DATA' 3990 4040 SNUM
WRITENR DO YOU WANT TO SEE HOW THE SOLUTION IS COMPUTED?
WRITENR DO YOU WANT TO SEE HOW THE SOLUTION IS COMPUTED?
READ EANS
READ EANS
IF &TERM = CRT THEN *
IF &TERM = CRT THEN *
OO
OO
 WRITENR PRESS CLEAR AND HIT ENTER.
 WRITENR PRESS CLEAR AND HIT ENTER.
 READ &REPLY
 READ &REPLY
END
END
/* STEP I IM MORE DETAIL */
```

/* STEP I IM MORE DETAIL */

```
\begin{tabular}{|c|c|}
\hline 0301 & IF EANS = YES THEN + \\
\hline 0302 & DO \\
\hline 0303 & L TSO. U1 6300A PAGE.DATA 40504170 SMUN \\
\hline 0304 & READ EANS \\
\hline 0305 & END \\
\hline 0306 & \\
\hline 0307 & 1* STEP 2 * 1 \\
\hline 0308 & \\
\hline 0309 & L 'TSO.U16300A.PAGE.DATA' 42204280 SMMM \\
\hline 0310 & HRITENR DO YOU NEED HELPE \\
\hline 0311 & READ EANS \\
\hline 0312 & \\
\hline 0313 & /* STEP 2 IM MORE DETAIL \& \\
\hline 0314 & \\
\hline 0315 & IF (EANS = YES) THEN \& 'TSO.U16300A.PAGE.DATA 42904330 SNUN \\
\hline 0316 & \\
\hline 0317 & 1* STEP 3 3 \\
\hline 0318 & \\
\hline 0319 & \(1 . T S O . U 16300 A . P A G E . D A T A ' ~ 43304360 ~ S N U M ~\) \\
\hline 0320 & IF ETERM = CRT THEN WRITENR PRESS CLEAR AND \\
\hline 0321 & WRITENR HIT ENTER. \\
\hline 0322 & READ EREPLY \\
\hline 0323 & \\
\hline 0324 & / StEP * * \\
\hline 0325 & \\
\hline 0326 & L 'TSO.U16300A.PAGE.DATA" 44304460 SNUM \\
\hline 0327 & WRITENR IF YOU NEED HELP TO GENERATE THE COLUMW ENTER YES* \\
\hline 0328 & READ EANS \\
\hline 0329 & \\
\hline 0330 & /* STEP 4 IM MORE DETAIL */ \\
\hline 0331 & \\
\hline 0332 & IF (EANS \(=\) YES) THEN L 'TSO.U16300A.PAGE.DATA* 44704500 SNUM \\
\hline 0333 & IF ETERM = CRT THEN WRITENR PRESS CLEAR AND \\
\hline 0334 & WRITENR HIT ENTER. \\
\hline 0335 & READ EREPLY \\
\hline 0336 & \\
\hline 0337 & 1* STEP 5 * \\
\hline 0338 & \\
\hline 0339 & L 'TSO.U16300A.PAGE.DATA 45204620 SNUM \\
\hline 0340 & IF ETERH = CRT THEN WRITENR PRESS CLEAR AND \\
\hline 0341 & WRITENR HIT ENTER. \\
\hline 0342 & READ EREPLY \\
\hline 0343 & \\
\hline 0344 & 1* STEP 6 * \\
\hline 0345 & \\
\hline 0346 & L 'TSO.U16300A.PAGE.DATA" 46604700 SNUM \\
\hline 0347 & WRITE THERE ARE MANY WAYS TO FIND AN INVERSE® \\
\hline C348 & WRITENR HOULD YOU LIKE TO SEE AN EASY OME? \\
\hline \[
\begin{aligned}
& 0349 \\
& 0350
\end{aligned}
\] & READ EANS \\
\hline 0351 & /* EASY WAY TO FIMD AM INVERSE * \\
\hline 0352 & \\
\hline 0353 & IF (EANS = YES) THEN L TSO.U16300A.PAGE.DATA 47104820 SMM \\
\hline 0354 & IF ETERM = CRT THEN WRITEMR PRESS CLEAR AMD \\
\hline 0355 & WRITENR HIT ENTER. \\
\hline 0356 & READ EREPLY \\
\hline 0357 & \\
\hline 0358 & \(1 * *\) ITERATION 1 * \\
\hline 0359 & 1* STEP 1 * \\
\hline 0360 & \\
\hline
\end{tabular}
```

L 'TSO.UI6300A.PAGE.DATA" 4890 4930 SMUK
WRITENR DO YOU NEED MORE INFORMATIONO
READ EANS
IF (EANS = YES) THEN L 'TSO.U16300A.PAGE.OATA' 4950 5020 SNUM
IF \&TERM = CRT THEN WRITENR PRESS CLEAR AND
WRITENR HIT ENTER.
READ EREPLY
L 'TSO.U16300A.PAGE.DATA" 5090 5280 SNUM
WRITENR DO WE STOP CR CONTINUE?
READ EANS
IF (\&ANS = STOP) THEN WRITE NO. -24 < O. WE MUST CONTIMUE.
IF \&TERM = CRT THEN WRITENR PRESS CLEAR AND
WRITENR HIT ENTER.
READ \&REPLY
/* STEPS 4.5 */
L 'TSO.U16300A.PAGE.DATAE 5300 5510 SMUM
READ \&REPLY
/* STEP 6 */
L 'TSO.U16300A.PAGE.DATA' 5540 5600 SNUM
WRITE WORK THIS YOURSELF TO BE SURE YOU KNOW HOW IT IS DUNE.
WRITE OO YOU WANT TO START OVER AT THE BEGINNING OF THE EXAMPLET
READ EANS
/* AT THIS POINT YOU CAN START OYER */
IF (\&ANS = YES) THEN *
00
IF ETERM = CRT THEN *
DO
WRITENR PRESS CLEAR AND HIT ENTER.
READ EREPLY
END
GOTO LBL2
END
IF \&TERM = CRT THEN *
DO
WRITENR PRESS CLEAR ANO HIT ENTER.
READ EREPLY
ENO

```
```

                                    /* PRINT QUESTIOM 45 */
    L 'TSO.U16300A.PAGE.DATA' 5740 5900 SMMM
    L 'TSO.U16300A.PAGE.DATA' 5740 5900 SMMM
    WRITENR ANS =
    WRITENR ANS =
    READ EANS
    READ EANS
    SET &CNT = 2
    SET &CNT = 2
    DO WHILE (\&CNT > O) AND (SAMS -O C)
DO WHILE (\&CNT > O) AND (SAMS -O C)
WRITE SORRY ENAME, EANS IS AN INCORRECT ANSHER.
WRITE SORRY ENAME, EANS IS AN INCORRECT ANSHER.
WRITE TRY AGAINE YOU HAVE \&CNT MORE CMANCES.
WRITE TRY AGAINE YOU HAVE \&CNT MORE CMANCES.
IF ETERM = CRT THEN*

```
0362
0363
0364
0365
0366
0367
0368
C 369
0370
C371
0372
0373
0374
C375
0376
0377
0378
C379
0380
0381
0382
0383
C384
0385
0386
0387
0388
0389
C390
0391
0352
0393
0394
0395
C396
0397
0398
0399
0400
0401
C 402
0403
C404
C405
C406
0407
C408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0361
```

0421
0422
0 4 2 3
0424
0425
0 4 2 6
0 4 2 7
0428
0 4 2 9
0 4 3 0
0 4 3 1
0432
0433
C434
0435
0 4 3 6
C437
C438
0439
0440
0 4 4 1
C442
0443
0444
C445
C446
0447
0448
C449
C450
0451
0452
C453
C454
C455
C456
0457
0458
0 4 5 9
0 4 6 0
C461
C462
0 4 6 3
C464
0 4 6 5
0466
0 . 4 6 7
0468
0 4 6 9
0 4 7 0
0471
0 4 7 2
C473
C474
0475
C476
C477
C478
0 4 7 9
0 4 8 0

```
```

    OO
    ```
 OO
 WRITEMR PRESS CLEAR AMD HIT ENTER.
 WRITEMR PRESS CLEAR AMD HIT ENTER.
 READ EREPLY
 READ EREPLY
 L TSO.Ul6300 A.PAGE.DATA' 5740 5900 SNUN
 L TSO.Ul6300 A.PAGE.DATA' 5740 5900 SNUN
 END
 END
 WRITENR ANS =
 WRITENR ANS =
 READ EANS
 READ EANS
 SET ECNT = ECNT - 1
 SET ECNT = ECNT - 1
END
END
 |# AMSNER TO QUESTIOM E5 *
 |# AMSNER TO QUESTIOM E5 *
IF &ANS =C THEN WRITE VERY GOOD &NAME.
IF &ANS =C THEN WRITE VERY GOOD &NAME.
WRITE THE CORRECT ANSWER IS CO
WRITE THE CORRECT ANSWER IS CO
WRITE PII * AIII - CIII
WRITE PII * AIII - CIII
 f* GIVE A CHANCE TO REREAD THE PREVIOUS PAGE *U
 f* GIVE A CHANCE TO REREAD THE PREVIOUS PAGE *U
IF &CNT = O THEN*
IF &CNT = O THEN*
DO
DO
 WRITE DO YOU THINX YOU SHOULD START OVER AT TME BEGINNING?
 WRITE DO YOU THINX YOU SHOULD START OVER AT TME BEGINNING?
 READ EANS
 READ EANS
 IF EANS = YES THEN GOTO PART1
 IF EANS = YES THEN GOTO PART1
 WRITE DON'T YOU THINK YOU SHOULD AT LEAST REREAD THE EXAMPLE?
 WRITE DON'T YOU THINK YOU SHOULD AT LEAST REREAD THE EXAMPLE?
 READ EANS
 READ EANS
 IF &ANS = YES THEN GOTO LBLZ
 IF &ANS = YES THEN GOTO LBLZ
 WRITE OK, LET'S CONTINUE. WE'RE ALMOST DONE.
 WRITE OK, LET'S CONTINUE. WE'RE ALMOST DONE.
END
END
IF ETERM = CRT THEN WRITENR PRESS CLEAR AND
IF ETERM = CRT THEN WRITENR PRESS CLEAR AND
WRITENR HIT ENTER.
WRITENR HIT ENTER.
READ EREPLY
READ EREPLY
 /* ** ITERATION 2 */
 /* ** ITERATION 2 */
 /* STEP1 */
 /* STEP1 */
L 'TSO.U16300A.PAGE.OATA' 5980 6140 SNUN
L 'TSO.U16300A.PAGE.OATA' 5980 6140 SNUN
IF ETERM = CRT THEN HRITENR PRESS CLEAR AMO
IF ETERM = CRT THEN HRITENR PRESS CLEAR AMO
WRITENR HIT ENTER.
WRITENR HIT ENTER.
REAO EREPLY
REAO EREPLY
 f* STEPS 2.3 OPTIMAL SOLUTIOM *&
 f* STEPS 2.3 OPTIMAL SOLUTIOM *&
L 'TSO.U16300A.PACE.DATA' 6180 6370 SMN:
L 'TSO.U16300A.PACE.DATA' 6180 6370 SMN:
IF &TERM = CRT THEN WRITENR PRESS CLEAR AND
IF &TERM = CRT THEN WRITENR PRESS CLEAR AND
WRITENR HIT ENTER.
WRITENR HIT ENTER.
READ EREPLY
READ EREPLY
 /* COMPUTE THE AMSHEN */
 /* COMPUTE THE AMSHEN */
L 'TSO.U16300A.PAGE.DATA: 6400 6580 SNUE
L 'TSO.U16300A.PAGE.DATA: 6400 6580 SNUE
IF ETERM = CRT THEN WRITEMR PRESS CLEAR AND
IF ETERM = CRT THEN WRITEMR PRESS CLEAR AND
WRITENR HIT ENTER.
WRITENR HIT ENTER.
READ EREPLY
READ EREPLY
 f* END OF EXAMPLE AND PARTL &
 f* END OF EXAMPLE AND PARTL &
LBL1: *
LBL1: *
WRITE IF YOU HAVE DATA YOU HANT TO RUN AS A PROGRAN ENTER YESE
WRITE IF YOU HAVE DATA YOU HANT TO RUN AS A PROGRAN ENTER YESE
READ EANS
READ EANS
IF (&ANS * YES) THEN GOTO FIM
```

IF (\&ANS * YES) THEN GOTO FIM

```
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
0481 \\
0482 \\
0483
\end{tabular} \\
\hline 0484 \\
\hline 0485 \\
\hline 0486 \\
\hline 0487 \\
\hline 0488 \\
\hline 0489 \\
\hline 0490 \\
\hline 0491 \\
\hline C492 \\
\hline C493 \\
\hline 0494 \\
\hline 6495 \\
\hline 0496 \\
\hline 0497 \\
\hline 0498 \\
\hline C499 \\
\hline C500 \\
\hline 0501 \\
\hline C 502 \\
\hline 0503 \\
\hline C.504 \\
\hline C505 \\
\hline 0506 \\
\hline C507 \\
\hline C508 \\
\hline C509 \\
\hline 0510 \\
\hline 0511 \\
\hline C512 \\
\hline 0513 \\
\hline 0514 \\
\hline 0515 \\
\hline C516 \\
\hline 0517 \\
\hline 0518 \\
\hline 0519 \\
\hline 0520 \\
\hline 0521 \\
\hline C522 \\
\hline C523 \\
\hline C524 \\
\hline 0525 \\
\hline 0526 \\
\hline C527 \\
\hline 0528 \\
\hline C529 \\
\hline 0530 \\
\hline C531 \\
\hline 0532 \\
\hline 0533 \\
\hline 0534 \\
\hline C535 \\
\hline 0536 \\
\hline 0537 \\
\hline C538 \\
\hline 0539 \\
\hline 0540 \\
\hline
\end{tabular}

PART2:
WRITE ENTER A TITLE TO YOUR PROBLEM
READ ETITLE
FREE FILEIFTOSF001,FTO6F0011
ALLOC DA(*) FI(FTOSFOO1) SHR
ALLOC OAIF) FIIFTOGFOOII SHR
LCADGO JESSE.OBJ FORTLIB
WRITE ENAME, IS THERE ANOTHER PROBLEM YOU WANT TO RUNZ
READ EANS
FREE FILE(ET05F001, FTO6F001)
IF (EANS \(=\) YES) THEN GOTO PART2
WRITE DO YOU WANT TO GO THROUGH PARTI AGAINT
READ EANS
IF (EANS = YES) THEN GOTO PARTI
FIN: +
WRITE TO END THE SESSION ENTER LOGOFF
END
\[
\begin{gathered}
\text { VITA - } 2 \\
\text { William Arthur Senters } \\
\text { Candidate for the Degree of } \\
\text { Master of Science }
\end{gathered}
\]

Thesis: A TSO PRESENTATION OF A DECOMPOSITION TECHNIQUE FOR SOLVING LARGE-SCALE MULTIDIVISIONAL LINEAR PROGRAMMING PROBLEMS

Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in Midwest City, Oklahoma, July 8, 1948, the son of Mr. and Mrs. Charles D. Senters.

Education: Graduated from Collegio del Espiritu Santo, San Juan, Puerto Rico, in May, 1966; attended Eastern New Mexico University, Portales, New Mexico, from Sept., 1970 to May, 1972; attended Chapman College, Orange, California, from Jan., 1973 to Dec., 1973; received Bachelor of Science degree from Oklahoma State University at Stillwater, Oklahoma, in May, 1975, with a major in Business Administration; completed requirements for a Master of Science degree at Oklahoma State University in May, 1978.

Professional Experience: Member of the United States Air Force from Dec., 1969 to Dec., 1973; graduate teacher of 'Introduction to Data Processing' in the College of Business at Oklahoma State University, Stillwater, Oklahoma from Sept., 1976 to May, 1977. Applications programmer, Texaco, Inc., Houston, Texas, January, 1978 to the present.```

