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PBEFACE 

~his thesis is a description of an implementation cf an 

experimental transformational g.tammar system developed for 

use in a translator ~riting system. Transformational 

grammars are useful in cospile.t-writing because they are a 

powerful mechanism for the manipulation of (syntax) trees. 
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Doren. and especially tc Dr. G. E. Hedrick fer their 

suggested improvements of this thesis. The authcr would 

also like to acknowledge the SUffCI:t of the Na tiona! Science 

Foundation for sponsoring this research under grant NSF

ftCS576-06090. I would also like to thank my wife. Laura, 

for her understanding and encouragement throughout the 

entire project. 
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CHAP1ER I 

AN INTRODUCTION TO TRANSFORMATIONAL 

GBAMMARS 

Introduction 

The major goal of this thesis is to describe an 

experimental im~lementation 

system developed by the 

of a transformational grammar 

autho~. This transformational 

grammar system is designed to be used as a basis for a 

translator writing system. Since transformational grammars 

have not yet been applied to computer s~ience to any great 

extent, a secondary goal of this thesis is to illustrate how 

the formalism of transforaational grammars can be applied to 

some practical compiler constructicn problems. 

Transformational grammars are not generative string 

grammars like the more familiar regular, context-free, 

context-sensitive and unrestricted grammars of the Chomsky 

hieararchy. That is, the rewriting rules (productions) of 

transformational grammars do net specify the gene~ation of 

sets of strings. Instead, transformational grammars specify 

a set of transformatiors or structural changes to be 

performed on trees in some tree domain. Moreover, the rules 

of conventional string graEmars are generally ccnstiained to 

operate only upon strings which can te produced by other 

1 
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rules in the grammar. ihen using transformational grammars, 

the rules are often apflied both to (sub) trees froduced by 

other rules in the granma.r, and to trees produced by some 

external tree generation mechanism. One such "external" 

tree genera tor is an LR(k} parser which produces a parse 

tree to be used as input tc the transformational grammaE 

[ 6 ]. Under these circumstances, the output of the 

transformational grammar is often referred to as an 

"abstract" syntax tree. This terminology is used to 

distinguish it from the derivation tree resulting from the 

concrete syntax of the language defined by a context-free 

grammar. An abstract syntax tree is a tree whose contents 

and stru~ture are based upon a strict derivaticn tree. It 

differs from the derivaticn tree in that the information in 

a derivation tree is crganized according to syntactic 

necessity, not semantic content. Typically, nodes for 

single productions may be removed, much syntactic puncuation 

{";". "(". ff) .. , .. " I I etc. ) without any semantic 

connotations may be remcved, and the relationships between 

subtrees may be modified to suit semantic rather than 

syntactic necessity. At one extreme, the transformational 
v-· 

grammar could translate a~ input derivation tree into a form 

very nearly suitable for direct interpretation by a computer 

(machine-code) or a ccmpu ter program {an interpretive code). 

A somewh.a t more modest applicafion can be found in the 

creation of an abstract s~ntax tree in some form convenient 

for use by the code-generation routines of a compiler. 
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Some Applications of lransfo~mational 

GI'ammars 

Trausformational grammars (T-grammars) are a very 

powerful system IIIith a broad range of J;otential 

applicability. several areas ~here they could prove useful 

are listed below. 

1) Much semantic analysis within compilers is essentially 

syntactic in nature (i.e.: involves the manipulation 

of tex~ 1 but is beJond the capacity of context-free 

grammars alone [5). Transformational grammars are a 

useful formalism for expressing this syntactic type of 

work in a way that conventional context-free grammars 

cannot. For optimi2ing compilers, abstract syntax 

traes are the preferred internal representation of the 

source p~ogram. 

2) In some applications with simple compile-time 

semantics, such a~ FORMAT-denotations in ALGOL 68 or 

FORMAT statements in FORTBAN, it can be attractive to 

interpret the abst~act syntax tree produced by a T-

grammar directly. This would allow the entire 

COlllpilation process for these sublanguages to be .. 
performed by a f€t of well-understood formal 

technigues. This is of special interest for those 

cases where an inte q:reter is used as a means of 

formal semantic definition f13]. 

3) Many complex forms of algebraic expression 
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simplifications can te expressed in terms of a T

grammar. The work described in this thesis originally 

stemmed from the author's implementation of such a T

grammar based simplification technique. 

4) Many useful translations which cannot be expressed 

using other widely-known techniques, such as syntax-

dicected translaticn, are easily performed using 

simple T-grammars. 

Macro Languages, T-Grammars, and 

Genecal Replacement systems 

Transformational grammars are guite similar to string 

macro languages in many res t:ects. In the usual case, 

neither a macro language ncr a transformational grammar is 

u~ed as a generator of ~trings. In both cases, the most 

~mportant function that the systems serve is the 

transformation of the input to scme other form, not the 

determiMtion that the given input is a member of some set 

of acceptable inputs ca:: is the case with the more 

conventional grammars). With .both macros and T-grammars, it 

is very difficult tc speak meaningfully of the 

transformation {substitution) rules independently of the set 

of infuts which they are designed to transform. As a result 

of these and othec similarities, transformational grammars 

could be regarded rather lccsely as a type of macro language 

for tz:ees. 

Both string macx:os and T-grammars belong to a broad 
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class of mathematical systems known as general replacement 

systems. A general replacement system is a set of objects 

and a set of rules for re11acing objects in the set by other 

objects in the set. These replacements are performed upcn 

an object unt~l no mo1e reFlacements can be made. The 

resulting object (if any) , is often then described as being 

in "normal" form. All the systems in this general class, 

despite theix: diversity, share many common charactex:istics. 

As a result, various features of T-grammar systems will be 

presented by analogy to tl:eir ccx:responding features in the 

more familiar string macro x:eplacement systems. Fer 

example, the simflest form of macro specifies that all 

substrings of a given fcrm are to be unconditionally 

replaced by some other string. An 
I 

examfle of such a macro 

definition or rule is: abed => cde. The symbol "=>" is used 

to denote replacement, anc is read as "goes to" or "is 

replaced by". An application of this rule would cause an 

occurance of "abed" in scJle stx:ing to be replaced by the 

string 11C de ''• This transformation process takes flace in 

two steps. First, a string fattern match takes flace. This 

match detex:mines the substring in the given string to which 

the transformation or substitution is to be applied. Given 

the st[' ing "ahcdefg", the pattern match proceeds by 

determining that the substring "abed" matches the left hand 

side (LHS) of the given rule. For this pattern matching~ 

the LHS is said to imply a set of strings which are said to 

"match" the given lHS. !or this case, the set of strings 
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which is implied is simflJ {"abed"}. The second step is the 

substitution or transfcrmation stef. In this step, the 

substriny which was found to match the LHS of the rule is 

replaced by {transfer me d into} the string implied by the 

right hand side (RHS) of the rule. This would ccnsist cf 

substituting "cde" for "abed". The net effect of this 

transformation would be tc yield the string "cdeefg". A 

very similar process takes place when applying a rule of a 

T-grammar to a given input tree. A sam~:le rewriting rule 

from a T-grammar is given in Figure 1. This rule specifies 

that a subtree of the forn of the LHS is to be replaced by a 

subtree of the form of the BHS. 

r--'1 r--, 
J j I l 
I A j J A 1 
l 1 J I 
l.~T.J .,.__. 
l • J J 

r--_J L--'1 => • ' .___, 
I I ! J 

r--L--a r-.a.--. r-.L-.'1 .--.L--a 
J j l I J J J j 

J B l 1 c J I E J I F J 
J j J J J I 1 J 
L--' L---..J L---..J "--.J 

Figure 1. A Simple Transformation Rule 
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As in the case of macros, this transformation takes Flace in 

two steps. The steps take place in the same manner as 

before, except that now tte Fatte~n matching algorithm tries 

to match a tree to a subtree instead of trying to match a 

string to a substring. Du~ing the transformation step, 

instead of replacing tte original substring by the 

transformed string, a T-grammar would replace the original 

subtree by a forest of suttcees (fossibly containing only 

one subtree). 

one can also define "farameterized" general replacement 

systems. An example of a parameterized macro rule is 

ADD(s1,s2) => s1 + s2. ln this rule, the symbols s1 and s2 

are parameters to the ~ulE. As such, they may represent any 

string. When a reference to this macro is detected, the 

arguments supplied are ttevaluated" and bound to the 

parameter names. The evaluaticn of the parameters consists 

of the evaluation of any macro invocations contained in 

them. When a macro is evaluated the values of the strings 

which were supplied as arguments are available for use in 

the RHS of the rule. An dfFlicaticn of this rule would 

transform the string "ADt(I,Y)" into the string 

two applications \culd transform the 

"ADD{A,.ADD (B,C))" into the string "A+B+C". 

"X+Yn and. 

string 

Correspondingly, one can ~lso consider parameterized T-

grammar transformation xules in 

subtrees (or forests of suttrees). 

which the parameters are 

It is this notion of 

parameters which gives T-g ram mars much of 1:heir flexibility 
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and powe~. The introduction of parameters into the rules 

affects the cardinality of the set of subtrees which match 

the LHS of a rule. A ccuntably infinite set of subtrees 

wiil match any T-yrammar rule with at least one subtree 

pa~amete~. An example of a T-grammar rule with parameters 

is given in Figure 2. In this rule, tbe parameters are the 

(unenclosed) symbols t1 and t2. If this rule is applied 

twice to tree A in Figure 3, tree B from Figure 3 is the 

result. The first application of the rule results in a tree 

which matches the LHS cf the ~ule. This intermediate tree 

is then t~ansformed according to the RHS of the rule, 

yielding tree B in Figure 3. In general, this type of re

application process can be guite useful. In part, it is 

this ability to transform a subtree more than cnce which 

allows T-gr:amma~ systems tc fer:fcrm more sophisticated types 

of tree manipulations than are fOssible with technigues such 

as syntax-directed translations. 



,-, 
J J 
I A l 
J I 
t.~.J 

J 1 
r---.1 L---'1 

I 
r--..L.e 
J I 
I B J 
j J 
'-T-' 

I 
I 
t1 

J 
,--.L-, 
J J 
J c J 
J J 
L-T-.J 

I 
J 
t2 

=> 

r---'1 
J I 
I A I 
I I 
'-r-T..I 
J I 

,.--.J 

I 
t1 

Figure 2. A Trdnsformaticn Rule with Parameters 

r---'1 

J I 
I A J 
I I 
L~T.J 

j J 
r-_.J ..___, 
I 

r--L-. 
j J 
J B I 
J I 
L--y-1 

1 
r--L-1 

I I 
I B 1 
• J 
L I I 

j 
r I I 

I I 
I F J 
I J 
L---J 

Tree A 

1 
,--.L-, 
I .J 
J c I 
J I 
L-T-.J 

I 
,.-~-'1 

I J 
J c J 
I 

_, 

I 
1-T-.J 

I 
.~-, 

I J 
J G J 
J 1 ..____ .. 

2 
=> 

r--"1 

I I 
J A I 
I J 
'-r-T.I 

I I 
,.--.I '---, 
I 1 r-, r--.L-"1 

I I I J 
I F I J G J 
I 1 I l 
L--.1 L- •• 

Tree B 

Figure 3. An Exauple 'Iree Transformation 

9 
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A Review of the literature 

The notion of transformational grammars has been 

associated historically wjth linguistics and the modeling of 

natural (human) lang~age. The notion of transformation 

rules is attiibuted to Chomsky [4]. ~uch of the computer 

science literature in the area of transformational grammars 

is theoretical in nature and is often more directly 

associated with the concert of tree automata than is the 

author's work. In order to preserve mathematical 

simplicity, some studies deal with grammars whose rules are 

of a restricted farm. 1hese grammars are capable cf 

performing many of the saue transformations as more complex 

forms, but they require mere effort to use. Since the major 

concern here i~ with implementation considerations, the 

author's emphasis differs greatly from that of the majority 

of the literature. cnly relatively recently has the 

usefulness of T-grammars in comfuter science been studied to 

any degree. The primary reference for practical 

applications of T-graaaars to comFuting, particularly 

compiler construction, is te Remer [6]. The work described 

here parallels that of De Remer in many ways. Unless 

otherwise stated, the ter11inology used here is the same (or 

similar) to De Remer•s. De Remer gives an excellent 

introduction to T-grammars for compiler-writers and contains 

several detailed examples of their apflicatians to various 

conpiler-writing problems. Aha and Ullmann [1,2], discuss a 
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simple form of tree manipulation, namely syntax-directed 

translations. Syntax-dirEcted translation systems can be 

used to perform some of the mere basic operations that T

grammars perform, but are by no means as powerful a tool as 

T-grammars. Rosen ( 15) ficves certain theorems concerning a 

general class of tree ~anipulations known as subtree 

replacement systems. This paper is a good introduction to 

some of the more rigorouE definitions an·d properties of 

general tree-manipulation systems (including T-grammars). 

Bounds (16] considers a fer~ ofT-grammar some~hat closer to 

the type used here, exceft that he considers onlj top-down 

transformations. His definitions are frecise and several 

exam~les are given and eXflained in detail. Even though he 

treats only top-down tree automata, this 

solid theoretical base from which 

work provides 

T-grammars 

pi:ovide a 

may 

set 

a 

be 

of considered .. 

definitions 

Ginsburg and 

and examples 

study of natural languages. 

Partee [ 7] 

of T-grammars as afflied to the 

An effort was made to make the 

linguistic concepts 

and;or 

clear and accessible to the 

ma the ma tic ian 

transformations considerEd 

computer 

in this 

top-down transformations as CffOSed 

scientist.. The 

faper are essentially 

to the bottom-up 

approach adopted in the author's research. The form of 

"structural match" and "structural change" statements used 

by Ginsburg and Partee, and in most linguistic literature, 

is only remotely related tc the forms used by De Remer, 

Bosen, Rounds, and this author.. In linguistics, T-grammars 
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are usually used to indicate the semantic equivalance of two 

or more forms of a sentence. 1-grammars are used for this 

purpose in artificial language translation, but such 

semantic redundancy is relatively rare in artificial 

languages. 



CHAPTER II 

SOHE EXAMPLE T-GRAMMARS 

AND TRANSFORMATIONS USING THEM 

Notational conventions 

Before considering a t:e:rie.£ of T-g:rammar systems it is 

desirable to establish same notational conventions with 

regard to a linearized refresentaticn for trees and T

yrammar rules. The representation chosen here is identical 

to a linearized prefix form descrited in [ 6]. The 

representation is derived frcm the standard prefix Polish 

nQtation for arithmetic expressions. Since this prefix 

notation is to be used to eXfre.£S general n-ary trees, it is 

necessary to bracket the subtrees in some fashion tc 

indicate which subtrees are descendants of which other 

subtrees. Angle brackets t ''<" and ">") are used for that 

purpose. For examfle, tle linearized rep.resenta tion of an 

(abstract) syntax tree for the expression A+B*(C+D) would 

be: 

+ A < * E <+ C D >>. 

Zn this tree, the roct ncde is 1 + 1 and its two subtrees are 

• A 1 and < * B < + C D> >. The node '*' in turn bas two 

descendants, 'B' and <+ c D>. The node '•' has two subtrees 

also. They are simflY •c• and •o•. The corresponding 

13 
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standard prefix Pclish representation for the same 

expression would simply be: + A * E + C D. This linearized 

representation can be dEfined by an algorithm for printing 

the tree. This printing is done during a standard fre-order 

traversal of the tree. ln cr:dei: to indicate unambiguously 

how many subtrees any given node has, the printing of a 

subtree and its offEfr:irg are "bracketed" according to the 

following rule: IF a suttree is not the entire tree or a 

leaf THEN print a 11 <" , tle subti:ee (in preor:der), and a 11 ) 11 

ELSE print only the subtree (in preorder). In terms of the 

usual binary expression tree, the trackets surround an 

operator and all of its Oferands (unless the operator is at 

the root of the tree) • Using these rules, the trees of 

Figure 3 of the first cha}tEI: wculd be: 

Tree A: ' A • < • B' < 1 B • 1 F • > > < • c' < 1 c 1 • G 1 > >. 

Tree B: • A 1 • F • • G 1 

Since a T-grammar•s transformation rules are 

essentially tree-structu~:ed, similar conventions have been 

adopted here for representing them. In this case though, 

there are also forests of subtrees to consider (such as may 

occur in RHS of a rule). 7o allow these forests to be 

represented, the fcllcwing ccnvention will be followed: A 

RHS of a rule which is not enclosed by brackets shall be 

considered a forest of subtrees x:ather than a single 

subtree. For further clarification, refer to the CF grammar 

in Appendix A. 
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Classes of !-grammar Systems 

With these conventicns established, several classes cf 

T-grammars may be defined. The fi~st system which will be 

considered is a non-parameterized, simple substitution T

grammar system. The rule shewn diagrammatically in Figure 1 

of the first chapter is a rule frcm such a system. It could 

be represented linearly h] the string: 

1 A1 1 B1 'C' => <'A' 'E' 'F'>. 

Note the the RHS must be explicitly enclosed in angle 

brackets to indicate tlat tne nodes 'E' and 'F' are 

descendants of 'A' rather than its siblings, as would be the 

intent if the brackets we.re emitted. 

The next class of S}stems to be presented is the class 

of sim~le parameterized !~-grammar systems. The rule in 

Figure 2 of the first chapter is an example of such a rule. 

It would be represented linearly as: 

'A' ( 1 B1 t1> <'C' t2> =><'A' t1 t2>. 

The node names ('A' and 'B'} are surrorinded by apostrophes 

and the parameters {t1 and t2) are not enclosed by 

apostrofhes. This is to distinguish a node name of 't1' 

froa the rule parameter t1. Using cnly T-grammar rules of 

this form, many useful functions may be performed. Several 

practical examples of this tyfe may te found in [6]. one 

such system from [6) is a single ~ule system. This rule is: 

1 + 1 t1 <'+' t2 t3 } => ( 1 +1 <'+' t1 t2> t3>. 

This rule, which has three ,tarameters, ,terforms a well-kno~n 
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optimizing transformation ~hich minimizes the number cf 

registers re':luired to ccmpute nested sums .in algebraic 

expressions. J:t would t.ransfcr m the abstract syntax tree 

for an expression like A+(B+(C+I)) into the syntax tree for 

the algebraically egui valent exFression ( (A+B) +C) +D. The 

latter form uses only cne register (temporary) for its 

computation whereas the c.riginal form uses three registers. 

A simple extension to the notation described thus far 

allows one to "factor" common subtrees out of similar 

patterns. This is useful Eince it allows the rules to be 

written more concisely and can speed up the subtree pattern 

matching process consideratly. !he notation for this device 

is the same as used in [ E ]. This mechanism is specified by 

the use of an 11 alternative 11 (or) operator. This operator 

specifies that a subtree •ill match a given sub-.fat tern if 

the subtree matches any cf the alternatives which are 

separated by "l"'s. All subt.rees which belong to the same 

alternative list are grou:pEd with parentheses. This is 

similar in syntax tc a convention used to represent 

"factored alternatives" in context-fr:ee grammars. An 

example of such a factored T-grammar rule would be: 

1 A1 ('B' 1 <'B' t1>) 'D' => <1 A1 ('C' J <'C' t1>) 'E'>. 

This rule could be used tc ret:lace the fallowing two rules: 

'A' 'B' 'D' => <'A' 'C' 'E'>, 

and 1 A1 <'B' t1> 'E' =><'A' <1 C 1 t1> 1 E 1 >. 

When several factored suttrees are present in a rule, their 

meaning ma. y become ambigucus. For ex ample, given the rule: 
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1 A1 { <'B' t1> J<'C' t2>) ( 1 J: 1 J'E') => 

<'B'('E'I'G') (t1Jt2) >, 

it is difficult to establish mechanically that the crder cf 

each of the alternative-lists in the LHS and .EHS are 

reversed with respect to one another. That is, 

alternative-list in the IES of the rule corresponds 

the first 

to the 

second alternative-list in the RHS. More complex situations 

also arise. For examr.le, if the rule 

'A' (1 E1 ! 1 C1 ) ( 1 D'J'E1 ) =><'A' ( 1 l'J'M 1 ) ('L'l'M') ('N'l'O')> 

is to be meaningful, the ccrresfcndences between tt~ LHS and 

BHS alternative-lists must be defined. The approach taken 

here is simply to number the alternative-lists in the LHS 

and RHS. Those alter nat he-lists in the RHS which have the 

same number as same alternative-list in the LHS are said to 

"correspond" to that 

numbering convention, cne 

rule would be: 

alternative-list. 

interfr:etaticn of 

.1 A1 (1 'B' I 'C') (2 'D' J 'E') => 

Given such a 

the previous 

<1 A 1 {1 'L'l'M') (1 'L'J'M') (2 'N'J'O')>. 

Each alternative-list in the .EllS of a rule must correspond 

to exactly one alternative-list in the LHS, but an 

alternative-list in the IHS need not have any alternative

list to which it corresponds, or may have many lists in the 

RHS to which it corresponds. since no two alternative-lists 

in the LHS of a rule ma 1 have the same number, it is 

convenient to omit their explicit numbers and assume that 

they are implicitly numbered starting frcm one in a left-to-
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right manner. Using such an implicit numbering scheme, the 

rule above could be re-written as: 

'A' ('B'J'C') ('D'J'E') => 

<(1 'L'J'M') (1 'I'l'M') (2 'N'J'O')>. 

such an implicit numbering scheme prevents any t~c 

alternative-lists in the LHS of a rule from accidentally 

being assigned the same n uro ber. 

ihe next increase in power (and complexity) of this 

method involves the use of a notation which will allow a 

regular set of trees to be described. This notation uses 

the asterisk to denote zero or more subtrees of a given 

form~ This asterisk Oferatcr is sometimes referred to as 

the Kleene closure operator [ 12 ]. It is a suffix operator, 

and as such, it follows tbe subtree to which it applies. 

For example, <'A' 'B'*> denotes the infinite set of trees 

{<1 A1 >, <1 A1 1 E 1 ), <'A' 1 B1 'E'>, ••• }. 

By the same conventions, <'A' <'B' 'C'>* >denotes the set 

of trees 

(< 1 A1 >, <'A 1 <1 B1 'C'>>, <'A'<'B' 1C 1 ><'B 1 'C'>>, ••• }. 

This mechanism can extend the class of transformations which 

can .be described by a T-grammar in much the same manner as 

did parameters in the rules. Onfortuna tely, this powerful 

tech.niy_ue presents some difficult implementation problems. 

If this technigue is implemented in its fullest generality, 

some rules can be written which are difficult to interpret, 

and some ~ay be ambiguous. Cne such difficult rule is: 

' A. <' c. t 1>* <I c ' t 2} <. c ' t3 > = > < 'A ' <' c' t 2> > .. 
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The effect of.this rule is to replace a forest of at least 

two subtrees by the next-to-the-last subtree in the forest. 

Here, when the * operator is used, the problem is one of 

computational complexity. lt can be quite time consuming tc 

determine that the LHS of a farticular rule does not match a 

given subtree. A simple-minded pattern matching facility 

might try vacious reflicaticn values foe the *-repeated 

subtree until one causes a match for the entire pattern, cr 

fails to match the given tree. In other words, it would 

allow the subtree replicated by the * (< 1 C 1 t2>) to be a 

forest of zero, one, two, and mere trees successively, until 

it exceeds the number of such subtrees actually present in 

the given subtree. This t:efeti ti ve, tr ial-and-errcr aspect 

of the pattern matching can be likened to automatic top-down 

syntax analysis with backup. In other words, like most 

other combinatorial p:c.blems, it can be extremely slow, 

especially if more than one * is present in a pattern at the 

same level, or in a nested usage such as 'A'<'E' 'C'*>*. An 

approach analagous to finjte state automatons can be used to 

recognize that a given suttree matches a given Fattern, but 

many semantic connotation~ are lest by such an approach. 

There are other implementation problems associated with the 

closure operator, but they ~ill not be considered further 

here. 

Since the closure OfEiator seems to provide a desirable 

facility for dealing with "bushes" {trees with arbitrarily 

many subtrees), but also fiOvides the implementor with many 
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more headaches, it is reasonable to ask if there is another 

mechanism which will perform many of the same functions at a 

minimal implementaticn cc~t. One such mechanism may be 

found in a T-grammar rule parameter which allows subtree 

parameters in T-gramma r rules tc represent non-empty forests 

of subtrees. This type of parameter is an extension over 

the single-subtree para meters used in [ 6] and elsewhere. 

The convention used !ere to represen·t single-subtree 

parameters is t"integer". Some ~xamples of single subtree 

parameters would then be t1, t2, and t99. For £crest-valued 

parameters, the letter "s •· is use a instead of 

convention yields names like sl, s2, and s301. 

ntn. This 

The ability 

to reflace the * by s-type farameters efficiently is heavily 

dependent upon knowledge atout the domain of trees input to 

the rules. For examfle, 'A' 'B' 'B'* =><'A' •c• 'C'*> may 

be replaced by the following two rules: 

1 A1 ( 1 B 1 1 1 B 1 s1) =) <'A' ('C' j 'X' s1) >, 

and 'X 1 { • B • J • B' s 1) = > (' c 1 1 ' c 1 < • X' s 1 >) • 

In these rules, 'X' is ~cae symbcl distinct from all other 

symbols in the tree. Thi~ xeplacement is valid only if all 

subtrees of the form <'A' 'E' s1> in the domain are also of 

the form < • A • • B' *>. The single substitution which is 

represented by the rule \ith a * is effectively reflaced by 

a recursive re-application cf a set of rules. The T-grammar 

rules given above functicn by splitting off the 'E' nodes 

one at a time and processing each one without considering 

the nature of the entire £uttree at once. This permits much 
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greater implementation sinflicity, hut for those rare cases 

when lookahead is necessarJ, it may require a complex set cf 

rules to simulate it. This enables the more ccmmon rules to 

be implemented without the overhead of the lookahead 

mechanism implied by the * q;:erator. It should be noted 

that this form of T-grammar is capable of generating any 

recursively enumerable set. Fer an informal proof of this 

fact, see Appendix c. !his implies that ~ny problem which 

anc be solved by any cthe r ccmr:u ting mechanism can also be 

solved by this T-grammar fcrmalism. 

A Practical Example 

An example of the practical usefulness of T-grammars 

can be found in the ccmpi Ja ticn of PLI structure and array 

references. According to the PLJI Language Reference Manual 

for the IBM Checkout and Or:timizing Compilers [ 11), the 

subscripts of an array of structures containing arrays may 

be placed either together cr afart. This ability to specify 

the subs::: ripts between any pair of qualifiers desired is a 

difficult feature for a compiler tc implement correctly. A 

sample PL/I program which uses these subscript forms is 

shown below. 



DECLARE 
1 A (3), 

2 B, 
3 C(4) FIX:ED BlNARY(31,0); 

A ( 1) • B. C { 2) = 0 ; 
A.B(l).C{2)=0; 
A ( 1) • B (2) • C= 0 ; 
A{1,2).B.C=O; 
A.B(1,2).C=O; 
A. B. C ( 1, 2) = 0; 
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To determine which data item is being referred to by a 

given subscriptedjgualified reference, it is necessary fer 

the compiler to gather all cf the gualifiers together to 

form the gualified name. In the example above, this 

11gualified naae" would be "A.B.C". The compiler then looks 

up the reference in its symtol tatle and determines the 

number of (inherited) dimen::icns (two in the examfle) that 

the data item actually bas. This is compared to the total 

number of subscripts supplied in the r:eference. If the 

number supplied does net match the number declared, an 

approfriate error messase is issued. This type of 

separation of subscripts atd gualifiers cannot be performed 

by most other syntax tree manit:ulation systems (such as 

syntax-directed translat]cns). Conventional FL/I compilers 

may implement special symtol table mEchanisms sclely to 

haudle this type consttuction. However, a five-rule 1-

grammar can achieve the saae effect without any special case 

provisions. A context-free grammar which generates all 

syntactically legal subscripted andjor gualified references 

is presented below. A T-grammar which separates the 

qualifiers and the sul:sc:r:ipts conveniently is also 



fresented. 

Context-Free Grammar for fLJI Variable References 

REFERENCE: !DEN; 

BEEERENCE 1 ICT, IDEN; 

SUBPARM-REF, DO~, IDEN; 

SUBPARM-REF: .REFERENCE I 1 {I I EXPR-LIST, I) I. 

EXPR-LIST: EXPRESSION; 

EXPR-LIST, CCMMA 1 EXPRESSION. 

Corresponding T-grammar for FLJI Variable References 

1 EXPR-LIST 1 < 'EXPR-11ST 1 s1> 1 COM11A' t2 => 

<1 EXPR-LIST 1 s1 t2>. 

'REFERENCE' t1 => <'REF 1 <'QUALS' t1> 1 SUBPARMS 1 >. 

1 BEFERENCE 1 <'REF<'CUAIS' s1> s2> 'DOT' t3 => 

<'REF' < 1 QUALS' s1 t3> s2>. 

1 SUBPARM-RE.F' <1 REF 1 t1 t2> 1 ( 1 t3 '} 1 => 

( 1 REF' t1 <'ADt-SUEPARM 1 t2 t3>>. 

1 ADD-SUBPARM 1 ( 1 SUBPAliMS' l 1 SUBPAEMS' s1) t2 => 

<'SUBPARMS 1 (t~ l sl t2) >. 
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It should be emphasi2ed that this I-grammar is designed 

to transform the derivation trees produced by the context

free grammar above. After being transformed by the T

grammar, an abstract syntax tree for a variable reference 

has two subtrees, one (named 'QUALS') with all the 

qualifiers specified as its descendants, and one (named 

1 SUBPARMS 1 ) with all subscripts and parameters specified as 

its descendants. Note that 'REF', 'QUALS', 'SUBPARMS'. and 



24 

1 ADD-SUBPARM'. are new node names introduced by the '!-grammar 

for its internal use. Tle first rule in the T-grammar 

effectively transforms the {left) recursion inherent in the 

non-terminal "EXPR-L.IST" in to a linea x: (i tera ti ve) form. 

the second rule transfcrms the initial identifier in a 

reference into a subtree •ith a left descendant containing 

the identifier as the only subtree cf a 'QUALS' (qualifiers) 

node, and a right descendant containing the list cf 

subscripts for this x:efetence (initially empty). The third 

rule is applied when a reference is qualified by a 

subsequent :;1ualifier. Th.is new qualifier is attached as the 

last subtree of the 'CUALS' node for the reference. The 

fourth rule is applied \lenevex: a reference is subscripted 

(or supplied with fara~eters). This rule causes the 

subscripts to be attached as the last suttree of the 

'SUBPARMS' node for the reference by forcing afplication of 

the last rule. .Introductjcn of the node named 'ADD-SUBPARM' 

into the tree forces acticns in a manner analogous tc those 

which are forced by ettering a new state in a tree 

automaton. When nin" this t~state 11 , the T-grammar is caused 

to examine a set of transfcrmaticns which are appropriate 

under these circumstances. The introduction of this new 

Bode name into the tree forces the basically bottom-up 

transformer to perform transformations in a top-down 

fashion. The fifth (and last) rule in the T-grammar has two 

subcases, one subcase for the first subscript group in a 

reference, and one subcase for subsequent subscrip·t groups. 
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If "i" and "j" represent identifiers, and "e" and "f" 

represent expressions, tben the string "i(e).j(f)" would be 

a legal reference form. 1le abstract syntax tree for this 

reference would be: 

< t REF I < • Q 0 A L ~ I < 1 I D I I i • > < 'I D ' I j • > > 

<'EXPR-LISl' <'EXPRESSION' 1 e 1 >> 

<' EXPR-LIST' < 1 1XPBESSIGN' 'f' >> > >. 

The abstract syntax tree would be nearly identical for all 

semantically (logically) eguivalent reference forms that can 

be specified, regardless cf the positioning of the 

subscripts. This additional uniformity also serves to ease 

the compiler-writer's task by reducing the total number of 

cases which must be considered. This T-grammar effectively 

groups the qualifiers together ("i" and "j") and separates 

out the subscripts ("e" and "f") for later analjsis. This 

frees the compiler writer frcm having tc design special-case 

code to deal with the matter. This particular example was 

chosen since it it a rather practical example ment,ioned 

specifically in f2] as being beyond the power of syntax

directed translations alone. For further practical examples 

from PLJI and other languages, the reader is :referred to 

£6], and to the example it Afpendix B. 



CHAPTER III 

I3PLEME~TATION OF A T-GRAMMAR 

THE! 1RANSFORMER 

overall tescription 

The tree transformer inplementaticn described here is a 

bottom up transformer. That is, it transforms the tree 

beginning at the leaves and working its wa~ up to the root 

of the tree. The most convenient approach to use in this 

case involves transforming tlle t.ree as it is being built. 

This does not imply that a top-down parsing technigue may 

not be used to generate the tree. It is a nly necessary that 

the (syntax) tree froducea by the external tree generator be 

constructed in a bottom-up fashion. This may .be easily done 

in conjunction with any farsing technique [6,2]. Due to the 

specialized nature of the transformations, they a.re 

accomplished by an inter p.reter rather than by Sfecially 

generated code which could be compiled or linked into a 

vorki ng transformer. An interpretive approach generally 

implie$ a large decrease in memory requirements and a 

relatively small time ove.rhead when ccmpared tc generated 

machine or high-level language code. The time overhead is 

small because the primitive operations teing pe~fcrmed are 
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relatively complex compared to the overhead of the 

interfretation frocess. 

Basic Logical Structure 

The tree transformer consists of three major modules: a 

control module, a tree fatte-rn matcher, and a tree generator 

(the actual transformer). The controlling routine scans the 

LHS's of the rules and jnvckes the pattern matching module 

to determine whether the current subtcee matches the given 

pattern. If a match occurs, the contrcl module invokes the 

tree constructor module tc construct a new subtree according 

to the RHS of the given rule. After creating the new tree, 

the tree constructor invokes the ccntrcl module to determine 

whether the constructed t.ree shculd be further transformed 

according to some rule in the 7-grammar. In the actual 

implementation, the control module is named "translate", the 

tree constructor is named "transform tree", and the pattern 

matching module is named "pat matches tree". Their direct 

calling relationships are shown below in Table I. 
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TABLE I 

DIRECT CALLING RELATlONSHIPS OF THREE KEY MODULES 

-----~------------------y------ ---------
1 J 

Routine name j Procedures called 1 Called by 
1 J 

----------f---- +-
1 I 

translate I transform t.ree J transform tree 
I I 
I pat matches tree 1 
I I 

-----lj,...- ------------+-----------
1 l 

pat matches treej pat matches tree J pat matches tree 
l I 
I I translate 
I I 

·-----J~- ~ 
J I 

transform tree 1 transform tree 1 transform tree 
J I 
J translate 1 translate 
t I 

----------L-------------------~ 

Note that the routines call upon each other in a highly 

recursive fashion. The routines "transla tett and "transform 

tree" call upon each other in a mutually recursive fashion, 

in addition to the simile recursicn used in "transform tree 11 

to traverse the output pattern (BHS) of the rule. !he use 

of recursion in these procedures is conceftually simple and 

straightforward, but when aJ?plied to even relatively simple 

examples, it can prove to he guite difficult to follow in 

all of its details. 

In the process of atteupting to match a given subtree 

to a given LHS (pattern) of a rule, the values of ~11 the 

subtree parameters must be determined and returned to 
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control module (translate). Since each rule has a fixed 

number of parameters associated with it, the parameters are 

represented internally as a single-dimensional array of 

fOinters to the subtrees that are the actual values of the 

parameters to the rule. 1he control module then passes this 

vector of parameters along to the tree constructcr module 

~ransform tree) where they are then available for use in 

the transformed tree. 

The actual algorithu used for matching trees to 

patterns is not too difficult to derive since it is a 

straightforward implementation of the fcllowing six rules. 

1) An empty (sub) 1atte:rn matches only an empty (sub) 

tree. 

2) An empty (sub) tree matches only an empty (sub) 

pattern. 

3) If the current (sub) pattern is an "s" parameter 

4) 

5) 

node, then the CUIIent {sub) pattern matches the 

given (non-empty) fcrest of (sub) trees. 

If the current (sub) :pattern is a "t" paramete.r 

node, then it n:atctes the current {sub) tree if the 

patterns right sitling matches the current (sub) 

tree's right siblin9. 

If the current {SUb) pattern node is a named 

internal node, it matches the current tree node if 

its name matches tl:e name cf the tree node and the 

siblings and descendants of the current pattern node 

match the correspctding siblings and descendants of 
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the current tree ncde. 

6) A choice subpattern matches its corresfonding 

subtree if any cf Hs ccnsti tuient sub patterns match 

the given subtree. 

Internally, all the node names are assigned consecutive 

integers for identificaticn. This enables "translate" to 

easily classify each rule according to the name of the root 

node of the LHS of the rule. Hence, it need search cnly a 

fraction of the rules in crder to determine whether any 

transformation rules apply to a given subtree. This 

generally produces a noticeable imFrovement in speed over a 

single list of rules. 

~he tree constructor 

traverses RHS of the rule 

procedure (transform 

and constructs a new 

tree) 

tree 

according to the pattern, making copies of the farameter 

sub-trees when apfrOfriate. After the result tree has been 

constructed, it calls "translate" {recursively) to further 

transform the result tree, if necessary. 

Subtree Copying Considerations 

This entire process is moderately simple until one 

considers the number cf t j 11es that a subtree may be copied 

and recopied during the building of a tree. With this in 

mind, it seems desirable tc minimi2e the number of 

unnecessary copying Oferations that may take place. Cofying 

of subtrees cannot be eliminated altogether because the 

right sibling {link) cf a subtree may be modified by the 
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tree constructor. An obvious example of the necessity of 

copying can be found in the following T-grammar rule: 

1 A1 t1 => <'A' t1 t1>. 

It seems that whatever subtree that t1 might represent, any 

attempt to make it into its own sibling would prove 

disastrous. Given only exa«ples of this kind, it might seem 

sufficient to copy a subtree if its right sibling (link} is 

to be modified, and net CCfY it otherwise. However, since 

transformations may interact with each other in complex 

ways, such a strategy ~ill frove to be insufficient. An 

example of such an inadesracy can be found in the following 

'!-grammar rule: 

•x• {'A' s1 s2) => (<'X' s1 > •A• s1 s1 J s2). 

In this rule, it may seem sufficient to copy the farameter 

"s1" only for the second instance of s 1 in the RH.S. Under 

these circumstances, however, the first "s1 11 must also be 

copied, even though its right sibling (link) is not 

immediately modified. As a result of the •x• s2 => s2 

portion of the rule, the criginal subtree <'X' s1> 'A' s1 

s1, which looks safe enough, may be effectively transformed 

into s 1 1 A' s1 s1, which .reg ui.res copying the first s1 

parameter as well. The philosophy adopted in the author's 

implementation is to COfY all subtree parameters except the 

rightmost instance of a farameter in the RHS of a rule, 

unless its right sibling (link) is modified. If its right 

sibling is modified, it is unconditionally copied. A 

simpler strategy which might frove sufficient would involve 
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copying a subtree parameter when it is the entire tree to be 

returned by the apflicaticn of a rule, or if the right 

sibling of a parameter is modified. This scheme still 

copies unnecessarily. For examfle, if the following one

rule T-grammar were implemented without copying, no ill 

effects would result: 

'A' <'A' sl> s2 => <'A' s1 s2 >. 

Another possibility for a minimal ccpying rule is the 

folloliing one: Copy only those subtree parameters which 

occur more than once in tre BHS of a rule. 

~t has not been 2LOVEn Which (if anfl of the above 

copying strategies actually work in all cases without 

resulting in cycles in the intended "trees" or other ill 

effects. The entire copying guesticn is a difficult one 

because of the variety of ways in which rules 

with each other. It may turn out that 

may interact 

the cnly geed 

solution is to do a form cf glctal analysis on the domain of 

trees to be considered and the set of transformation rules 

to be used on them. The difficulties of such an approach 

put its further discussicn teyond the scope of this thesis. 

some Considerations in Applying 

T-grammars to Practical Problems 

:this section is intended ·primarily as a discussion of 

some Rractical considerations that are encountered when 

using a T-grammar based tree transformation system in actual 
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applications •. one cf the first considerations that is 

encountered is the naturE of the interface bet~een the 

external tree generator and the T-grammar tree transformer. 

ln order for the tree trarsfcrmet to correctly transform the 

trees produced by tte external (user-SUfFlied} tree 

generator, it must knolll how the symbol names the user tree 

generator creates will maf into some internal representation 

of these node names. Unless all node names are kept in 

character-string format (a space-wasteful practice), a 

mapping function must be bound into the tree transformer. 

This bli1iing may take place at any time prior tc the actual 

application of a rule to a subtree. As is the case with 

most bindings, the earJier it is .ferformed, the less 

overhead is incurred, and the later it is performed, the 

more flexibility is fiCvided. Another important feature to 

include in a com~lete system is a provision for automatic 

generation of the bindins information. This is easily done 

if the trees are generatea ty an automatically ccnstructed 

tree generator such a:: a farsing algorithm generated 

automatically from a context-free grammar. 

In the au thor • s i 11 ple mentation, the symbol {node) names 

are bound to the internal representation when the user's T

grammar rules are translated into internal form. This makes 

the transformation-time tinding trivial for the actual tree 

transformer. In this case, the mapping is the identity 

mapping, and need not incu~ any overhead while transforming 

trees. This binding is the earli€st dynamic binding 
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possible. since the translation of T-grammar rules into 

internal form is quite inexfensive, when the binding needs 

to be changed, the entire T-grammar can be easily (and 

cheaply) retranslated, thereby establishing the required new 

mappings. 

The author's imflementation is oriented towards using 

an LR(1) type of parser. Mere Efecifically, a parser using 

the SLR(1)/LALR(1)/Ll\{1) tatle generator descri.ted in [8,9] 

was used in this study. One of the outfuts of this parsing 

table generator (and mcst ethers) is a symbol table. This 

symbol table is then input .ty the T-grammar rule translator 

which simply uses it to initialize its own s:ymbol table, 

thereby effectively establishing the required binding. This 

is not a handicap, since ordinarily it is logically 

necessary to design the CF grammar for an application before 

designing the corresponding T-grammar for it. Ncte that the 

automatic dete£mination c.f binding information is performed 

by reading in the automatically generated symbol table. 

Many other bindin~ schemes \Ould work as well as this one, 

but they will not be discussed further here. 

Another problem which has to be considered when writing 

a translator for T-grammar rules is the problem of error 

detection. The detecticn of, and recovery frcm syntactic 

errors is not discussed here since a wealth of literature 

already exists on the subject [10,2,3]. Semantic errors are 

the other major class of errors. More Sfecifically,· this 

section will consider what types of errors can be detected 



35 

at T-grammar rule translaticn time, and what errors (if 

any), can only be detectEd when a specific rule is actually 

applied to a specific subtree. First, it is necessary to 

outline the basic types cf ~emantic errors which might occur 

in syntactically correct rules. One of the most obvious 

errors that will be considered is an undefined rule 

parameter. That is, a parameter occurs in the RHS of a rule 

which is not defined in tle lHS. one such rule is: 

'A' t1 => <'B' t2>. 

In this case, the value of the parameter 11 t2 11 is net defined 

in the LHS of the rule. lbe following rule is a slightly 

more subtle example of the same error. 

1 A1 ( 1 B' 1 t1) =) 1 X1 {1 t1 1 'Y'). 

In this rule, the value cf the parameter t1 is vell defined 

unless the actual subtree tc be transformed is tbe tree 

<'A' 'B'>, in which case the value of the rule parameter t1 

is used in the RHS without first having been given a value 

in the L HS. 'I his condition can be detected when the rules 

are tx:anslated into internal form, if enough information is 

kept about the inherent nesting structure of the 

alternative-lists and parameter names. The problem is 

similar in many respects to the ~cepe of identifiex:s problem 

for block-structured computer languages. The problem for T-

grammars is more comple~, however, since the parameters 

{objects being "declared") are defined in the LBS, of a 

rule, and used in the BHS. This would seem to in;ply a tree-
. . 

structured symbcl table rather than a stack-oriented symbol 
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table as is required by conventional block-structured 

languages. 

Another tyfe of seJiantic e.r:ror which can occur is 

inconsistent alternative-list nes·tings. One example of a 

rule vith an invalid alternative-list nesting is: 

'A'('B' j (<'C' 't') 1 E1 } tl I 'F') => 

(1 •x• J 'I' '.Z') (2 'A1' 1 'B1'). 

In this case, the s~ccnd alternative-list in the RHS 

correspon:is to the second alternative-list in the LHS. This 

alternative-list is used incorrectly in the RHS since it is 

not nested inside of the second sul:pattern cf the first 

alternative list, as it is en the LHS. The problem here is 

similar to the previous protlem concerning the conditionally 

undefined parameter values defined within parameter lists. 

Its detection can also be acccmpl is he d with the use cf the 

same tree-structured symbol table .required for detection of 

undefine:i parameters. 

The other major semantic error occurs whenever a given 

alternative list has a different number of constituent 

subpatterns in the LHS tban it does in the RHS of that same 

rule. An example of a rule containing this type of error 

is: 

• A • ( ' B • 1 • c • 1 ' r • > => < • x • ( • Y • J • z • > • 

As can be easily seen, tte ~lternative-list in the LHS has 

three sub-pattern alterratives, and the corresponding 

alternative-list in the IES has only two. Tilis rule has an 

undefined effect on the suttree <'A' 'D'>, since there is no 
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third alternative for the alternative-list in the BHS. This 

error is quite easy to detect and is easily acccmmodated 

within a simfle symbol tatle stxucture. 

In the author's implementation, however, mcst of these 

semantic error condition~ are not detected at rule 

translation time, but are deferred until subtree

transformation time, when they are nearly all trivial to 

detect. This greatly silllflifies the symbol table mechanism 

required to translate a gi1en rule into internal form. 

An additional ambiguity can arise if two rules match 

the same subtree. If such a situation should arise, the 

results would generally dEfend Ufcn the order in which the 

rules were examined by the transformer. The existence cf 

this condition is not u~ually obvious and may lead to 

lt is also of some theoretical undesirable results. 

imFortance and is discussed at length in [ 15]. Detection of 

this condition should net .be too difficult, and should 

probably result in a warning message rather than an errcr 

llessage. Such a warning uessage could prove useful in the 

detection of certain subtle errors or oversights in the 

design of a T- grammar. 

Using T-grammars in Compilers 

Compilers are a special class of programs with their 

own ~eculiar needs and froblems. In a compiler, the 

external tree generator far the !-grammar transformer would 

generally be a syntax analyzer or parser for scme context-
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free language. As mentioned previously, the parser may 

operate in either a top-down (p~edictive) or bottom up 

fashion. A top-4own parser can he made to ccnst~uct its 

derivation tree frcm the bottom up by waiting until the RHS 

of the rule it is wcrking on is completed before attaching 

the RHS subtrees to the ncde that corresfonds to the LHS of 

the current rule in the CFG. After a subtree corresponding 

to an application of a rule in the C.EG is ·constructed, the 

tree transformer module is invoked to determine whether the 

tree can be transformed according to any of the rules in the 

T-grammar. This frocess has the effect of constructing and 

transforming the tree from the bottom up, even though the 
// 

parsing mechanism may be classified as being a "top-down" 

technigue. The use of the 'I-grammar tree transformer -with a 

b?ttom-u~ parser is essentially the same as with a top-down 

parser, except that the tree is built and the transformer is 

invoked after each redtction en a rule in the C!G is 

performed. 

In a compiler, the (leaf) nodes of the syntax tree 

usually have information fields which are generally 

initialized by the lexical analyzer (scanner). In general, 

the values and manipulations of these application-dependent 

information fields are outside the realm of transformational 

grammars. such an infcraaticn field may contain, for 

example, a pointer to the symbol table to indicate which 

particular identifier iE being ~efer~ed to by the terminal 

symbol IDENTI.FIER. since these information ·fields are 
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usually necessary and fiE~ent in the syntax tree, it may be 

desirable to manipulate the rr tc some degree in a T-grammar. 

Towards this end, two primitive facilities are proposed: 

rule "predicates" and rule "acticns". A rule predicate is 

simply a procedure which determines whether a particular 

subtree (and its infor ma tic n fields) meet some ccmpu table 

pre-condition. In other words, in order for a subtree 

transforma ticn to take place, the given subtree must match 

both the LHS pattern atd ~atisfy the specified pre

condition. If a subtree ttatches the LHS of a rule, and the 

predicate procedure returns true, then the subtree is 

replaced by a subtree ccn~tructed according to the RHS as 

before. It should be emphasized that these predicate 

procedures are written by the user in some conventional 

programming language which is callable ty the T-grammar tree 

transformer. As such, these fiOcedures may examine the 

information fields in any manner desired. One predicate 

which is invaluable in algetraic expression simplification 

problems is one vhich returns true if the values of the two 

rule t-'ilrameters are identical. This wculd allcw 

transformation rules to be written ihich could transform 

expressions of the form {A/A) into the constant 1, and 

expressions of the form (A*B) + (A*C) into exfressions of 

the form A * {B+C) • 

The second 

perf arming some 

frOpCSEd facility 

arbitrary action 

is a 

after 

subtree. These "actions" axe patterned after 

mechanism for 

transforming a 

the semantic 
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actions used. in PL (Production Language) translators (10]. 

7hese action procedures may examine or modify any of the 

fields of any of the nodes in a subtree. such actions might 

include: entering an identifier in a symbol table, copying 

the information field from cne node to another, inserting a 

node in a subtree to indicate the type of an identifier 

(INTegral, REAL, CHARacter,etc.), or add twa (numeric) 

information fields together. 

"escape" mechanisms which 

transformations based upon 

These two facilities act as 

allow the specification cf 

the information fields, and 

operations upon the information fields of the tree nodes. 

such operations are impossible without such a facility, 

since the information fields are outside the realm of the T

grammar formalism. Of course, the predicates need net 

depend solely upon the ccntent.s of the information fields, 

nor do the action procedures need to operate only UfOn these 

fields. since these routines are ceded in a conventional 

programming language, they may examine and;or modify global 

yariables at will. 

Once the decision is made to include the acticn and/or 

predicate extensions, it becomes necessary to decide the 

types and numbers of pat a meters these routines should be 

supplied. In the case of predicates, it would seem to be 

sufficient to pass thell only the values of the rule's 

subtree parameters, since they are basically the only 

unknown quanities in the rules. In the case of action 

procedures, it may be desirable for the procedure tc modify 
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the entire result tree. As a result, it seems desirable to 

pass the entire result sul:tree as a parameter to an action 

procedure. Additionally, it may be desirable tc fass the 

values of the subtree faraneters tc the rules to an action 

procedure. These two mechanisms serve tc frcvide a 

necessary communications link between the T-grammar 

transformer and the remainder of the compiler. 



CHAFTEE IV 

CONCLUSIONS 

This thesis consists of tYo major parts. The first 

part presents the concepts and a·fplica ticns of 

transformational grammars in an easily accessible manner. 

Xhis part also clarified some semantic ambiguities which had 

not been discussed previously in the literature. 

Additionally, a novel type cf subtree parameter is defined 

which simplifies certain inflementation p~oblems. The 

.resulting T-grammar systen has also .been shown tc be capable 

ot generating any recursively enumerable set. 

The second part cf this thesis presents a discussion of 

some implementation considerations that were encountered 

when designing, implementing, and using the experimental '!

grammar transformation system. Very little of this material 

has been presented in the literature previously. several 

extensions to the experimental '!-grammar system have also 

been suggested. 

In conclusion, 'I-gra~mars ccmprise a powerful tree 

•anipulation system which shculd fi:cve useful in ccmpiler 

writing, and other fields in ccmfute~ science. Moreover, 

the experimental T-grammar implementaticn has shown that a 

practical T-grammar tree transformer system need not be 

difficult to imflement. 
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APPENDIX A 

A CONTE! T-FREE GRAMAB TO 

GENERATE 'I-GRAMMAR RULES 

1. GOAL : "?", TGRAMMAB, 

2 • T -G BA tl.M A R : li U L E ; 
T-GRAMMAR, RUlE. 

11?11 . . 

4. RULE: LHS, =>, RES, PEBIOD-SYMECL. 

5. LHS: L-TREE; 
NOD.ENAME. 

1. L-TREE: NODENAME, ISUBlREE-LISl; 
NODE NAME, LSU I'IEEE-LlST, S-l?ARAMETER; 
NODENAME, S-PARAMEl.ER. 

10. LSUBTREE-LIST: LSUETRE.E; 
LSUB'IREE-LIST, lSUBlREE. 

12. LSUBTREE: NODINAfE; 
<, L-TREE, >; 
LCHOICE; 
T-PARAMET.ER. 

16. LCHOICE: {, LALTHNATIVE-S.EQ, ) • 

17. LALTERNATIVE-SEQ: lSUB!BEE-S-PARM; 
LALTERNATIVE-SEQ, J, LSUBTR!E-S-PARM. 

19. LSUBTREE-5-PARM: ISUB'IREE; 
S-PABAMETE B. 

21. RHS: RSUB'IREE-LIS1. 

22. RSUBTREE-LIST: ESUETREE; 
RSUBTREE-LIST, BSUBTREE. 

24. RSUBTBEE: NCDENAl.E; 
<, NODENAME, RUSBTREE-LIST, >; 
RCHC.ICE; 



T~PARAMETER; 

S-PARAMET!F. 

29. RCHOICE: (, INTEGER, RA11ERNATIVE-SEQ, ). 

30. RALTERNATIVE-SEQ: FSUETREE; 
RALTERNATIVE-SEQ, J, RSUBTREE. 

32. T-PARAMETER: LET1EE-T-SYMEOL, INTEGER. 

33. S-PARAMETER: LETlEB-S-SYMBOL, INTEGER. 

34. INTEGER: DIGIT; 
INTEGER, DlGI~. 

36. NODENAME: QUOTE-SlMECL, CEAR-SEQ, QUOTE-SYMBOL. 

37. CHAR-SEQ: ANY-CHAR; 
CHAR-SEQ, ANY-CBJR. 
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JEPENDIX B 

A T-GBAM~!B TRA3SLATOR FOR 

ALGOL 68 FCEMAT DENOTATIONS 

A Context-free Grammar For 
ALGOL 68 Ecrmat Ienotations 

1. GOAL : "?", PICTCBELISl, 11?11 . . 
2. PICTURELIST: PICCII; 

PICTURE1IS1, CC~~A, PICCLL. 

4. PICCLL: PICTUEE; 
COLLECTION; 
INSERTION, PICTUBE; 
INSERTION, COllECTION; 
INSERTION. 

9. INSERTION: ALI1S; 
INSERTION, All1S. 

11. COLLECTION: LPAREN, PIClURELIST, BPAREN; 
RBRLICATOB, LfAFEN, PICTURELIST, RPAREN; 
COL.LECTION I A IllS. 

14. PICTURE: INTEGE&; 
REAL; 
BI'l'S; 
COMPL; 
STRING; 
OTHERPICINS. 

20. OTHERPICINS: OTRFRPlC; 
OTHERPICINS, AII'IS. 

22. OTHERPIC: BCCL; 
.BOQLCH; 
GPIC; 
FPIC; 
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~NTCH. 

27. INTEGER: INITIAL-2EROES; 
INT-PRM1E. 

29. INITIAL-ZEROES: 22; 
INITIAL-Z E E CES, ZZ; 
INITIAL-ZEROES, Alil~. 

32. INITIAL-SIGN: SI<:N; 
INITIAL-SIGN, AIITS. 

34. SIGN: CHPLUS; 
CHMINUS; 
SCHPlUS; 
SCH.MINUS. 

38. INT-FRAME: D-CR-SI-GR-SZ; 
INT-FRAME, D-OB-SD-GR-SZ; 
INT-.FRAME, ZZ; 
INITIAL-SIGN, D-OR-SD-OR-SZ; 
INITIAL-SIGN, ZZ; 
.INITIAL-ZEROES, CHPl[S; 
INITIAL-ZEEOES, CHMINUS; 
INITIAL-ZEROES, D-0 H-SD-OR-SZ; 
INT-FRAME, AllTS. 

47. ZZ: LZ; 
REPLICATGE, 12. 

49. D-OR-SD-OR-SZ: D-SD-SZ; 
BEPLICATOB, I-S D-SZ. 

51. REAL: FREAL; 
EREAL. 

53. FREAL: INTEGER, IOINT; 
INTEGER, fOINT, ZDSEQ; 
POINT, ZDSEQ. 

56. ZDSEQ: ZZ; 
D-OR-SD-OR- SZ; 
ZDSEQ, Z.Z; 
ZDSEQ, D-OR-St-CR-SZ; 
ZDSEQ, ALilS. 

61. POINT: DOT-SYMB; 
POINT, ALITS. 

63. EREAL: FREAL, EE, INTEGER. 

64. EE: E-SYMB; 
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EE, ALITS. 

66. COMPL: REAL, II, EEAl. 

67. II: I-SYMB; 
II, ALI'IS. 

69. BITS: RADIX, ZDS!Q. 

70. RADIX: INT, LR; 
RADIX, ALITS. 

72.. STRING: AA; 
STRING 1 A A; 
STRING, ALI'l~. 

75. AA: A-SYMB; 
RBPLICATOR, A-SlMB. 

77. BOOL: lB; 
LSB .. 

79. BOOLCH: LB, lPABIN, LITS, CCMMA, LITS, RPAREN. 

80. INTCH: LC, LPAREN, STRINGLIST, BPAREN. 

81. STRINGLIST; ll'IS; 
STRINGLIST, CCMMA, LITS. 

83. FPIC: LF, .FCRHATUBIT. 

84. ALITS: ALIGN; 
LITS. 

86. LITS: LITERAL; 
REPLICATOB, Ll!!BAL. 

88. ALIGN: ALIGNMENT; 
REPLICATOE, AilGNMENl. 

90. R EPLICATOR: IN 'I; 
.LN, INTUNIT. 

A T-grammar fer Translating ALGOL 68 
For&at Denotations 

1 P.IC!I'URELIST' < 'PIC'IUli.ELIST' s1> => 
<'PICTURELIS1' s1>. 
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1 PICTURELIST' <'PlCTURELlST' s1> 'CCMMA' s2 => 
<'PICTUBELISl' s1 s2>. 

1 PICOLL 1 t 1 => t 1. 

50 

'INSERTION' <'INSERTION' s1> s2=> <'INSERTION' s1 s2>. 

'COLLECTION' <1 COLliCTION 1 s1> s2 => 
<'COLLECTION' sl s2>. 

'COLLECTION' <1 IiEPLlCATOR 1 t1> 'LPABEN' t2 'RPAREN' => 
<'REP-GROUP' s1 t2>. 

'COLLECTION' 1 LPABEN 1 t1 'liPAREN' => t1. 

'PICTURE' sl => s1. 

'OTHERPICINS' <'OTHERPICINS' s1> s2 => 
<'CTBEEPICIKS' sl s2>. 

1 0THERP.IC 1 sl => s1. 

'INT-ERAME' s1 => s1. 

'I NI T I A 1-Z E R 0 ES 1 s 1 =) s 1 • 

1 INITIAL-SIGN' s1 =) s1. 

'SIGN 1 sl => s1. 

'PLUSMINUS 1 s1 => s1. 

1 PICOLL 1 <1 INSERT.ION 1 s1> 

=> 

(<'INTEGER' s2> 1 <'REAL' s3> 1 <'EI'.IS' s4> 
J< 1 CCMPL' s5) J <'S~RING' s6> J <'BOCL' s7> 
j<'BOOLCH' s8) 1 <'GPIC' s9> 1 .<'FPIC' s10> 
j < I I NT c H • s 11 ) I < • c 0 l L .E c 'I I 0 N' s 12) ) 

(1 <'INTEGER' sl s2> 1 <'REAL' s1 s3> 
j <'EllS' sl s4> 

J< 1 COMPL 1 s1 sS> J <'STRING' sl s6> 
1 <'BOOL' s1 s7> 

l<'BOOLCH 1 s1 s8> J <'GPIC' sl s9> 
J<'FPlC' s1 s10> 

l<'INTCH' s1 s11> 1 <'COLL.ECTION' s1 s12> ) • 

'ZDSEQ 1 sl => s1. 

1 EREA1' <'FREAL' s1) s2 => <'BREAl' s1 s2>. 

'EE' sl => s1. 



1 BEAL 1 s1 => s1. 

I .1? OI NT I s 1 =) s 1 • 

I EE1 s 1 = > s 1. 

'II' sl => sl. 

1 BADIX 1 <1 .BADIX 1 s1> s2 => <'RADIX' s1 s2>. 

'STRING' <'STRING' s1> s2 => <'STRING' s1 s2>. 

1 BOOLCH 1 1 LB' 1 L.I?AR"Et5 1 t1 1 CCMMA 1 t2 1 BPAREN 1 => 
<1 BOOLCH 1 t1 t2>. 

1 INTCH 1 1 I.C 1 'LPAREN 1 , t1, 'BPAREN' => 
<1·INTCH 1 t1). 

1 STRINGLIST 1 <1 STRING11Sl' s1> s2 => 
<'STRINGLIST' s1 s2>. 

1 ALITS 1 s1 => s1. 
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APPENDIX C 

A T-GBAH!AR TURING MACEINE 

An important property fCSsessed by the T-grammar 

formalism is that it is atle to generate· any recursively 

enumerable set. This property essentially implies that a '!

grammar can solve any froblem which can be solved by any 

other computer program. '!his proper:ty can be established if 

a T-grammar system can be shewn to be capable of simulating 

an abstract computing device called a Turing machine. A 

Turing machine is a finite state device with an unbounded 

amount of memory in the form cf a tape which is divided up 

into sguares each of which can hold a symbol. For any given 

state and (current) input symbcl, the machine performs the 

followi.ng seguence of actions: esta:tlish a new state, write 

a single symbol to the tape, and move the tape head one 

square to the left or right. Fcrmally a Turing machine may 

be defined as a 6-tuple (Q,G,l,delta,gO,b), where Q is the 

set of states, G is the sEt of permissitle tape symbols, I 

is the set o£ input s}mbols (a subset of G), gO is 

designated as the start state, b is an element of G-l which 

has been designated as tle blank, delta is the finite state 

control function which maps elements of Q x G into elements 

of Q ~ G x D. In this definition, D:{L,R}, representing the 
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direction of tape movement, ~eft or ~ight. A configuration 

of the Turing machine is a pair {q,a c b) where g is the 

current state, and a c b Js the non-blank portion of the 

tape. "c" is the current symbol, "a" is the portion of the 

tape to the left of the current symbol, and "b" is the 

portion of the tape to the right of the current symbol. The 

next configuration cf the machine is comiJuted from 

delta{current state,current symbcl} and consists of a triple 

(s'#t',~ where s• is the new state after this acticn, t• is 

the tape symbol to be written cnto the tape to replace the 

current symbol, and D is the direction of movement of the 

tape. These configuratio£ frcperties are represented in the 

T-grammai:' Turing machine siaulator by subtrees of a tree to 

be transf or me d. The elements of delta are each represented 

by a rule in the T-granmar. The central mechanism is 

represented by three 1:-gramma r rules. A typical 

configuration of the T-grammar ~I'uring machine is shown 

below: 

<'TURING-MACHINE' 
<• ST-SI !i I 

<'S~ATE' •current state'> 
( 1 CUBR-SYM' •current tape symbcl'> > 

<'TAPE' 
<'BEFOHE' •symbcls before current symbc1'> 
<'A~TEB' •symtcls after current symbol'> > >. 

In this model, the current state is represented by tbe 

single subtree of 'S1A7E 1 and the current tape symbol is 

.represented by the singlE subtree of 1 CURR-SYM 1 • The taFe 

is represented by the two subttees of the 'TAPE' node. The 

sguares of the tape to the left of the current symbcl are 
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represented by the subtrees of the 'BEFORE' node, and the 

subtrees to the right of the current symbol are represented 

by the subtrees of the 'AF'IEB' node. The control mechanism 

of the Turing machine is represented by the following three 

T-grammar rules: 

1 TUIUNG-LiACH1NE 1 <1 MOVE' t1 t2 ('L' J 'R')> => 
(< 4 READ-NEXT 1 tl t2 t3> 1 <1 BEAD-PREV' t1 t2 t3>). 

'BEAD-NEXT' t1 t2 <1 TAII' < 'EElORE' s3> 
<'AFTER' (t4 sS 1 t6)> => 
<'TURING-MACHINE' I 

<' ST-SYM' 
<'STATE t1> 
<'CURR-SYH' {t4 j t6) > 

<'TAPE' 
<'BEFORE' t2 s3> 
<'AFTER' {1 s3 1 1 ELANK 1 )> > >. 

'READ-PREV' t1 t2 <1 TAfE' <'BEFORE' (t3 s4 J t5)) 
<'AFTER' s6> > => 

<'TURING-MACHINE' 
<'ST-SYH' 

<'STATE t1> 
< 1 CUR R- S Y 1'1' ( 1 t 3 J t 5) > 

<'TAPE' 
<'BEFORE' (1 sQ J 'BLANK')> 
<'AFTEB' t2 s6> > >. 

~D this T-gramma.r model, the elements of the next move 

function {delta} are each refresented by a rule in the T-

grammar. For each value of delta{d,A)=(p,B,D), a rule cf 

the form shown below is constructed. 

1 ST-SYM 1 <'S'IA'IE' 1 g'><'NEX7-SYM' 'A'>=> 

( 1 MCVE' 1 p 1 'E' 'D'>. 

The application of a rule of this form forces the 

transformer to apply two cf the three control mechanism 

rules to "write" the tafe symbol, change the state, and 

11 move 11 the tape. As an example, the following Turing 
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machine delta functicn counts the number of "1'"s on its 

input tape and writes the number of 1's MOD 3 onto the tape. 

delta::{(zerostate,' 1 ') 1 (cnestate, 1 BLAl\K' ,R)), 

( (onestate, 1 1 1 ), {twostate, 'BLANK' ,R)) 1 

{(twostate,'1'), (zez:ostate,'ELANK',B)) 1 

{ ( zerostate, 'ELAN K'), (halt ,• ZEBO' 1 R)) , 

{ {onestate,• BlANK') 1 (halt, 'ONE', R)), 

{{twostate, 1 BLANK 1 ) 1 {halt 1 1 TW0 1 ,R)) }. 

These function values are easily represented by the 

following set of T-grammai tules: 

1 ST-SYM 1 <'STATE' 'zerostate'> <'CURR-SYM 1 '1'> => 
<'MOVE 'onestate• 'ElANK' 'R'>. 

1 ST-SYM 1 <'STATE' •ctestate'> <'CUBR-SYM' 1 1 1 > => 
<'HOVE •twostate• 1 ElANK 1 1 B'>. 

1 ST-SYM 1 <'STATE' 1 t\cstate 1 > <'CUBR-SYM 1 1 11 > => 
<'HOVE 1 zerostate 1 'ELANK' 1 R1 >. 

1 S.T-SYM' <'STATE' 'zez:ostate'> <'CURR-SYM' 'BLANK'> => 
<'MOVE 1 halt 1 'ZEBC' 'R'>. 

1 S'I-SYM 1 <'STATE' 'cnestate'> <'CU.RB-SYM' 'BLANK'>=> 
<'MOVE 'halt' 1 0NE 1 1 E1 >. 

1 ST-SYt1' <'STATE' 'tkcstate'> <'CUBR-SYM' 'BLANK'>=> 
<'MOVE 'halt' 'TWO' 'E'>. 

This example illu~ttates how a particular Turing 

machine simulator is ccnstructed from its 11athematical 

definition. This example is easily extended to all Turing 

machines as indicated abcve. The definition of the tape 

symbol sets is done implicitly by the initialization of the 

tree and the definitic n of the delta function transformation 

xules. 
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