
TRANSFORMATICNAL GBAM~ARS: THEIR

APFLICAT IONS AND

IMPLEI.1EN'IA1ION

Ey

ALAN LYNN ROBEB'ISON

Bachelor of science in Electrical Engineering

Oklahcma State University

Still~ater, Oklahoma

1976

Submitted tc the Faculty cf the
Graduate College of the

Oklahoma State University
in partial fulfiJlnent of the reguirements

for the Degree of
MASTER OF SCIENCE

May, 1978


~~~ 
)97~ 
~w4qt 
~.J._ 



TRANSFORMATIONAL GRAMMARS: THEIR 

AfFLlCATIONS AND 

IMPLEMEN'IA'IION 

Thesis Approved: 

~~~---~---~---------------'---
Th·ESis Adviser

------~-(j_~ ------

---~~~~--------
_____ 1J~ __ 1LJJ~----

Dean of thE Graduate College

ii

PBEFACE

~his thesis is a description of an implementation cf an

experimental transformational g.tammar system developed for

use in a translator ~riting system. Transformational

grammars are useful in cospile.t-writing because they are a

powerful mechanism for the manipulation of (syntax) trees.

Thanks are due to Dr. J. P. Chandler, Dr. James R. Van

Doren. and especially tc Dr. G. E. Hedrick fer their

suggested improvements of this thesis. The authcr would

also like to acknowledge the SUffCI:t of the Na tiona! Science

Foundation for sponsoring this research under grant NSF

ftCS576-06090. I would also like to thank my wife. Laura,

for her understanding and encouragement throughout the

entire project.

iii

TAELE OF CONTENTS

Chapter Page

I. AN INTRODUCTION '10 TRANSFORMATIONAL GRAMMARS 1

Introduction •••••••
Some Applications Of

Transformational Grammars
Macro Languages, 1-grarnmaLs, and

General Beplacernent Systems • • •
A Review of the LiteratuLe •••

.

.

.
II. SOME EXA!PLE T-GBAMMABS AND TRANSFORMAT~ONS

. . 1

. . 2

. . 4
10

US.DJG THEM.. • • • • • • • .. • •• 13

Notational Conventions • • • 13
Classes of T-grammar systems • .. • • • • 15
A Practical :Example......... 21

Ili. IBPLEMENTATICN OF A T-GBAMMAR
TREE TRANSFORMER •••••

IV.

overall Description • • • • •. • • • •
Basic Logical Structure •••••
Subtree Copying Considerations •••••
some Considerations in Applying

T-Grammars to Practical Problems •••
Using T-grammars in Compilers •

CONCLUSIONS

A SELECTED BIBLICGRAPEY •

APPENDIX A - A CCNTEXT-FREE GRAMMAR TO
GENERATE T- GRAMI1AR R UIE.S • • • • •

APPENDIX B - A T-GBAM~AB TRANSLATOR FOR
ALGOL 68 .FOR.i.iAT DENOTA'liONS ••

APPENDIX C - A T-GRAM!AR TURING MACHINE •

iv

26

26
27
30

32
37

42

43

45

47

52

Table

I.

Figure

1.

2.

3.

·TABLE

Direct Calling Relationships of Three

Key Modules • • • • • • • • • •

LIST OF .FIGURES

A Simple Transformation Rule
A Transformation Rule With Parameters

An Example Tree Transformation

v

Page

28

Page

6

9

9

CHAP1ER I

AN INTRODUCTION TO TRANSFORMATIONAL

GBAMMARS

Introduction

The major goal of this thesis is to describe an

experimental im~lementation

system developed by the

of a transformational grammar

autho~. This transformational

grammar system is designed to be used as a basis for a

translator writing system. Since transformational grammars

have not yet been applied to computer s~ience to any great

extent, a secondary goal of this thesis is to illustrate how

the formalism of transforaational grammars can be applied to

some practical compiler constructicn problems.

Transformational grammars are not generative string

grammars like the more familiar regular, context-free,

context-sensitive and unrestricted grammars of the Chomsky

hieararchy. That is, the rewriting rules (productions) of

transformational grammars do net specify the gene~ation of

sets of strings. Instead, transformational grammars specify

a set of transformatiors or structural changes to be

performed on trees in some tree domain. Moreover, the rules

of conventional string graEmars are generally ccnstiained to

operate only upon strings which can te produced by other

1

2

rules in the grammar. ihen using transformational grammars,

the rules are often apflied both to (sub) trees froduced by

other rules in the granma.r, and to trees produced by some

external tree generation mechanism. One such "external"

tree genera tor is an LR(k} parser which produces a parse

tree to be used as input tc the transformational grammaE

[6]. Under these circumstances, the output of the

transformational grammar is often referred to as an

"abstract" syntax tree. This terminology is used to

distinguish it from the derivation tree resulting from the

concrete syntax of the language defined by a context-free

grammar. An abstract syntax tree is a tree whose contents

and stru~ture are based upon a strict derivaticn tree. It

differs from the derivaticn tree in that the information in

a derivation tree is crganized according to syntactic

necessity, not semantic content. Typically, nodes for

single productions may be removed, much syntactic puncuation

{";". "(". ff) .. , .. " I I etc.) without any semantic

connotations may be remcved, and the relationships between

subtrees may be modified to suit semantic rather than

syntactic necessity. At one extreme, the transformational
v-·

grammar could translate a~ input derivation tree into a form

very nearly suitable for direct interpretation by a computer

(machine-code) or a ccmpu ter program {an interpretive code).

A somewh.a t more modest applicafion can be found in the

creation of an abstract s~ntax tree in some form convenient

for use by the code-generation routines of a compiler.

3

Some Applications of lransfo~mational

GI'ammars

Trausformational grammars (T-grammars) are a very

powerful system IIIith a broad range of J;otential

applicability. several areas ~here they could prove useful

are listed below.

1) Much semantic analysis within compilers is essentially

syntactic in nature (i.e.: involves the manipulation

of tex~ 1 but is beJond the capacity of context-free

grammars alone [5). Transformational grammars are a

useful formalism for expressing this syntactic type of

work in a way that conventional context-free grammars

cannot. For optimi2ing compilers, abstract syntax

traes are the preferred internal representation of the

source p~ogram.

2) In some applications with simple compile-time

semantics, such a~ FORMAT-denotations in ALGOL 68 or

FORMAT statements in FORTBAN, it can be attractive to

interpret the abst~act syntax tree produced by a T-

grammar directly. This would allow the entire

COlllpilation process for these sublanguages to be ..
performed by a f€t of well-understood formal

technigues. This is of special interest for those

cases where an inte q:reter is used as a means of

formal semantic definition f13].

3) Many complex forms of algebraic expression

4

simplifications can te expressed in terms of a T

grammar. The work described in this thesis originally

stemmed from the author's implementation of such a T

grammar based simplification technique.

4) Many useful translations which cannot be expressed

using other widely-known techniques, such as syntax-

dicected translaticn, are easily performed using

simple T-grammars.

Macro Languages, T-Grammars, and

Genecal Replacement systems

Transformational grammars are guite similar to string

macro languages in many res t:ects. In the usual case,

neither a macro language ncr a transformational grammar is

u~ed as a generator of ~trings. In both cases, the most

~mportant function that the systems serve is the

transformation of the input to scme other form, not the

determiMtion that the given input is a member of some set

of acceptable inputs ca:: is the case with the more

conventional grammars). With .both macros and T-grammars, it

is very difficult tc speak meaningfully of the

transformation {substitution) rules independently of the set

of infuts which they are designed to transform. As a result

of these and othec similarities, transformational grammars

could be regarded rather lccsely as a type of macro language

for tz:ees.

Both string macx:os and T-grammars belong to a broad

5

class of mathematical systems known as general replacement

systems. A general replacement system is a set of objects

and a set of rules for re11acing objects in the set by other

objects in the set. These replacements are performed upcn

an object unt~l no mo1e reFlacements can be made. The

resulting object (if any) , is often then described as being

in "normal" form. All the systems in this general class,

despite theix: diversity, share many common charactex:istics.

As a result, various features of T-grammar systems will be

presented by analogy to tl:eir ccx:responding features in the

more familiar string macro x:eplacement systems. Fer

example, the simflest form of macro specifies that all

substrings of a given fcrm are to be unconditionally

replaced by some other string. An
I

examfle of such a macro

definition or rule is: abed => cde. The symbol "=>" is used

to denote replacement, anc is read as "goes to" or "is

replaced by". An application of this rule would cause an

occurance of "abed" in scJle stx:ing to be replaced by the

string 11C de ''• This transformation process takes flace in

two steps. First, a string fattern match takes flace. This

match detex:mines the substring in the given string to which

the transformation or substitution is to be applied. Given

the st[' ing "ahcdefg", the pattern match proceeds by

determining that the substring "abed" matches the left hand

side (LHS) of the given rule. For this pattern matching~

the LHS is said to imply a set of strings which are said to

"match" the given lHS. !or this case, the set of strings

6

which is implied is simflJ {"abed"}. The second step is the

substitution or transfcrmation stef. In this step, the

substriny which was found to match the LHS of the rule is

replaced by {transfer me d into} the string implied by the

right hand side (RHS) of the rule. This would ccnsist cf

substituting "cde" for "abed". The net effect of this

transformation would be tc yield the string "cdeefg". A

very similar process takes place when applying a rule of a

T-grammar to a given input tree. A sam~:le rewriting rule

from a T-grammar is given in Figure 1. This rule specifies

that a subtree of the forn of the LHS is to be replaced by a

subtree of the form of the BHS.

r--'1 r--,
J j I l
I A j J A 1
l 1 J I
l.~T.J .,.__.
l • J J

r--_J L--'1 => • ' .___,
I I ! J

r--L--a r-.a.--. r-.L-.'1 .--.L--a
J j l I J J J j

J B l 1 c J I E J I F J
J j J J J I 1 J
L--' L---..J L---..J "--.J

Figure 1. A Simple Transformation Rule

7

As in the case of macros, this transformation takes Flace in

two steps. The steps take place in the same manner as

before, except that now tte Fatte~n matching algorithm tries

to match a tree to a subtree instead of trying to match a

string to a substring. Du~ing the transformation step,

instead of replacing tte original substring by the

transformed string, a T-grammar would replace the original

subtree by a forest of suttcees (fossibly containing only

one subtree).

one can also define "farameterized" general replacement

systems. An example of a parameterized macro rule is

ADD(s1,s2) => s1 + s2. ln this rule, the symbols s1 and s2

are parameters to the ~ulE. As such, they may represent any

string. When a reference to this macro is detected, the

arguments supplied are ttevaluated" and bound to the

parameter names. The evaluaticn of the parameters consists

of the evaluation of any macro invocations contained in

them. When a macro is evaluated the values of the strings

which were supplied as arguments are available for use in

the RHS of the rule. An dfFlicaticn of this rule would

transform the string "ADt(I,Y)" into the string

two applications \culd transform the

"ADD{A,.ADD (B,C))" into the string "A+B+C".

"X+Yn and.

string

Correspondingly, one can ~lso consider parameterized T-

grammar transformation xules in

subtrees (or forests of suttrees).

which the parameters are

It is this notion of

parameters which gives T-g ram mars much of 1:heir flexibility

8

and powe~. The introduction of parameters into the rules

affects the cardinality of the set of subtrees which match

the LHS of a rule. A ccuntably infinite set of subtrees

wiil match any T-yrammar rule with at least one subtree

pa~amete~. An example of a T-grammar rule with parameters

is given in Figure 2. In this rule, tbe parameters are the

(unenclosed) symbols t1 and t2. If this rule is applied

twice to tree A in Figure 3, tree B from Figure 3 is the

result. The first application of the rule results in a tree

which matches the LHS cf the ~ule. This intermediate tree

is then t~ansformed according to the RHS of the rule,

yielding tree B in Figure 3. In general, this type of re

application process can be guite useful. In part, it is

this ability to transform a subtree more than cnce which

allows T-gr:amma~ systems tc fer:fcrm more sophisticated types

of tree manipulations than are fOssible with technigues such

as syntax-directed translations.

,-,
J J
I A l
J I
t.~.J

J 1
r---.1 L---'1

I
r--..L.e
J I
I B J
j J
'-T-'

I
I
t1

J
,--.L-,
J J
J c J
J J
L-T-.J

I
J
t2

=>

r---'1
J I
I A I
I I
'-r-T..I
J I

,.--.J

I
t1

Figure 2. A Trdnsformaticn Rule with Parameters

r---'1

J I
I A J
I I
L~T.J

j J
r-_.J ..___,
I

r--L-.
j J
J B I
J I
L--y-1

1
r--L-1

I I
I B 1
• J
L I I

j
r I I

I I
I F J
I J
L---J

Tree A

1
,--.L-,
I .J
J c I
J I
L-T-.J

I
,.-~-'1

I J
J c J
I

_,

I
1-T-.J

I
.~-,

I J
J G J
J 1 ..____ ..

2
=>

r--"1

I I
J A I
I J
'-r-T.I

I I
,.--.I '---,
I 1 r-, r--.L-"1

I I I J
I F I J G J
I 1 I l
L--.1 L- ••

Tree B

Figure 3. An Exauple 'Iree Transformation

9

10

A Review of the literature

The notion of transformational grammars has been

associated historically wjth linguistics and the modeling of

natural (human) lang~age. The notion of transformation

rules is attiibuted to Chomsky [4]. ~uch of the computer

science literature in the area of transformational grammars

is theoretical in nature and is often more directly

associated with the concert of tree automata than is the

author's work. In order to preserve mathematical

simplicity, some studies deal with grammars whose rules are

of a restricted farm. 1hese grammars are capable cf

performing many of the saue transformations as more complex

forms, but they require mere effort to use. Since the major

concern here i~ with implementation considerations, the

author's emphasis differs greatly from that of the majority

of the literature. cnly relatively recently has the

usefulness of T-grammars in comfuter science been studied to

any degree. The primary reference for practical

applications of T-graaaars to comFuting, particularly

compiler construction, is te Remer [6]. The work described

here parallels that of De Remer in many ways. Unless

otherwise stated, the ter11inology used here is the same (or

similar) to De Remer•s. De Remer gives an excellent

introduction to T-grammars for compiler-writers and contains

several detailed examples of their apflicatians to various

conpiler-writing problems. Aha and Ullmann [1,2], discuss a

11

simple form of tree manipulation, namely syntax-directed

translations. Syntax-dirEcted translation systems can be

used to perform some of the mere basic operations that T

grammars perform, but are by no means as powerful a tool as

T-grammars. Rosen (15) ficves certain theorems concerning a

general class of tree ~anipulations known as subtree

replacement systems. This paper is a good introduction to

some of the more rigorouE definitions an·d properties of

general tree-manipulation systems (including T-grammars).

Bounds (16] considers a fer~ ofT-grammar some~hat closer to

the type used here, exceft that he considers onlj top-down

transformations. His definitions are frecise and several

exam~les are given and eXflained in detail. Even though he

treats only top-down tree automata, this

solid theoretical base from which

work provides

T-grammars

pi:ovide a

may

set

a

be

of considered ..

definitions

Ginsburg and

and examples

study of natural languages.

Partee [7]

of T-grammars as afflied to the

An effort was made to make the

linguistic concepts

and;or

clear and accessible to the

ma the ma tic ian

transformations considerEd

computer

in this

top-down transformations as CffOSed

scientist.. The

faper are essentially

to the bottom-up

approach adopted in the author's research. The form of

"structural match" and "structural change" statements used

by Ginsburg and Partee, and in most linguistic literature,

is only remotely related tc the forms used by De Remer,

Bosen, Rounds, and this author.. In linguistics, T-grammars

12

are usually used to indicate the semantic equivalance of two

or more forms of a sentence. 1-grammars are used for this

purpose in artificial language translation, but such

semantic redundancy is relatively rare in artificial

languages.

CHAPTER II

SOHE EXAMPLE T-GRAMMARS

AND TRANSFORMATIONS USING THEM

Notational conventions

Before considering a t:e:rie.£ of T-g:rammar systems it is

desirable to establish same notational conventions with

regard to a linearized refresentaticn for trees and T

yrammar rules. The representation chosen here is identical

to a linearized prefix form descrited in [6]. The

representation is derived frcm the standard prefix Polish

nQtation for arithmetic expressions. Since this prefix

notation is to be used to eXfre.£S general n-ary trees, it is

necessary to bracket the subtrees in some fashion tc

indicate which subtrees are descendants of which other

subtrees. Angle brackets t ''<" and ">") are used for that

purpose. For examfle, tle linearized rep.resenta tion of an

(abstract) syntax tree for the expression A+B*(C+D) would

be:

+ A < * E <+ C D >>.

Zn this tree, the roct ncde is 1 + 1 and its two subtrees are

• A 1 and < * B < + C D> >. The node '*' in turn bas two

descendants, 'B' and <+ c D>. The node '•' has two subtrees

also. They are simflY •c• and •o•. The corresponding

13

14

standard prefix Pclish representation for the same

expression would simply be: + A * E + C D. This linearized

representation can be dEfined by an algorithm for printing

the tree. This printing is done during a standard fre-order

traversal of the tree. ln cr:dei: to indicate unambiguously

how many subtrees any given node has, the printing of a

subtree and its offEfr:irg are "bracketed" according to the

following rule: IF a suttree is not the entire tree or a

leaf THEN print a 11 <" , tle subti:ee (in preor:der), and a 11) 11

ELSE print only the subtree (in preorder). In terms of the

usual binary expression tree, the trackets surround an

operator and all of its Oferands (unless the operator is at

the root of the tree) • Using these rules, the trees of

Figure 3 of the first cha}tEI: wculd be:

Tree A: ' A • < • B' < 1 B • 1 F • > > < • c' < 1 c 1 • G 1 > >.

Tree B: • A 1 • F • • G 1

Since a T-grammar•s transformation rules are

essentially tree-structu~:ed, similar conventions have been

adopted here for representing them. In this case though,

there are also forests of subtrees to consider (such as may

occur in RHS of a rule). 7o allow these forests to be

represented, the fcllcwing ccnvention will be followed: A

RHS of a rule which is not enclosed by brackets shall be

considered a forest of subtrees x:ather than a single

subtree. For further clarification, refer to the CF grammar

in Appendix A.

---- --- - -----

15

Classes of !-grammar Systems

With these conventicns established, several classes cf

T-grammars may be defined. The fi~st system which will be

considered is a non-parameterized, simple substitution T

grammar system. The rule shewn diagrammatically in Figure 1

of the first chapter is a rule frcm such a system. It could

be represented linearly h] the string:

1 A1 1 B1 'C' => <'A' 'E' 'F'>.

Note the the RHS must be explicitly enclosed in angle

brackets to indicate tlat tne nodes 'E' and 'F' are

descendants of 'A' rather than its siblings, as would be the

intent if the brackets we.re emitted.

The next class of S}stems to be presented is the class

of sim~le parameterized !~-grammar systems. The rule in

Figure 2 of the first chapter is an example of such a rule.

It would be represented linearly as:

'A' (1 B1 t1> <'C' t2> =><'A' t1 t2>.

The node names ('A' and 'B'} are surrorinded by apostrophes

and the parameters {t1 and t2) are not enclosed by

apostrofhes. This is to distinguish a node name of 't1'

froa the rule parameter t1. Using cnly T-grammar rules of

this form, many useful functions may be performed. Several

practical examples of this tyfe may te found in [6]. one

such system from [6) is a single ~ule system. This rule is:

1 + 1 t1 <'+' t2 t3 } => (1 +1 <'+' t1 t2> t3>.

This rule, which has three ,tarameters, ,terforms a well-kno~n

16

optimizing transformation ~hich minimizes the number cf

registers re':luired to ccmpute nested sums .in algebraic

expressions. J:t would t.ransfcr m the abstract syntax tree

for an expression like A+(B+(C+I)) into the syntax tree for

the algebraically egui valent exFression ((A+B) +C) +D. The

latter form uses only cne register (temporary) for its

computation whereas the c.riginal form uses three registers.

A simple extension to the notation described thus far

allows one to "factor" common subtrees out of similar

patterns. This is useful Eince it allows the rules to be

written more concisely and can speed up the subtree pattern

matching process consideratly. !he notation for this device

is the same as used in [E]. This mechanism is specified by

the use of an 11 alternative 11 (or) operator. This operator

specifies that a subtree •ill match a given sub-.fat tern if

the subtree matches any cf the alternatives which are

separated by "l"'s. All subt.rees which belong to the same

alternative list are grou:pEd with parentheses. This is

similar in syntax tc a convention used to represent

"factored alternatives" in context-fr:ee grammars. An

example of such a factored T-grammar rule would be:

1 A1 ('B' 1 <'B' t1>) 'D' => <1 A1 ('C' J <'C' t1>) 'E'>.

This rule could be used tc ret:lace the fallowing two rules:

'A' 'B' 'D' => <'A' 'C' 'E'>,

and 1 A1 <'B' t1> 'E' =><'A' <1 C 1 t1> 1 E 1 >.

When several factored suttrees are present in a rule, their

meaning ma. y become ambigucus. For ex ample, given the rule:

17

1 A1 { <'B' t1> J<'C' t2>) (1 J: 1 J'E') =>

<'B'('E'I'G') (t1Jt2) >,

it is difficult to establish mechanically that the crder cf

each of the alternative-lists in the LHS and .EHS are

reversed with respect to one another. That is,

alternative-list in the IES of the rule corresponds

the first

to the

second alternative-list in the RHS. More complex situations

also arise. For examr.le, if the rule

'A' (1 E1 ! 1 C1) (1 D'J'E1) =><'A' (1 l'J'M 1) ('L'l'M') ('N'l'O')>

is to be meaningful, the ccrresfcndences between tt~ LHS and

BHS alternative-lists must be defined. The approach taken

here is simply to number the alternative-lists in the LHS

and RHS. Those alter nat he-lists in the RHS which have the

same number as same alternative-list in the LHS are said to

"correspond" to that

numbering convention, cne

rule would be:

alternative-list.

interfr:etaticn of

.1 A1 (1 'B' I 'C') (2 'D' J 'E') =>

Given such a

the previous

<1 A 1 {1 'L'l'M') (1 'L'J'M') (2 'N'J'O')>.

Each alternative-list in the .EllS of a rule must correspond

to exactly one alternative-list in the LHS, but an

alternative-list in the IHS need not have any alternative

list to which it corresponds, or may have many lists in the

RHS to which it corresponds. since no two alternative-lists

in the LHS of a rule ma 1 have the same number, it is

convenient to omit their explicit numbers and assume that

they are implicitly numbered starting frcm one in a left-to-

18

right manner. Using such an implicit numbering scheme, the

rule above could be re-written as:

'A' ('B'J'C') ('D'J'E') =>

<(1 'L'J'M') (1 'I'l'M') (2 'N'J'O')>.

such an implicit numbering scheme prevents any t~c

alternative-lists in the LHS of a rule from accidentally

being assigned the same n uro ber.

ihe next increase in power (and complexity) of this

method involves the use of a notation which will allow a

regular set of trees to be described. This notation uses

the asterisk to denote zero or more subtrees of a given

form~ This asterisk Oferatcr is sometimes referred to as

the Kleene closure operator [12]. It is a suffix operator,

and as such, it follows tbe subtree to which it applies.

For example, <'A' 'B'*> denotes the infinite set of trees

{<1 A1 >, <1 A1 1 E 1), <'A' 1 B1 'E'>, ••• }.

By the same conventions, <'A' <'B' 'C'>* >denotes the set

of trees

(< 1 A1 >, <'A 1 <1 B1 'C'>>, <'A'<'B' 1C 1 ><'B 1 'C'>>, ••• }.

This mechanism can extend the class of transformations which

can .be described by a T-grammar in much the same manner as

did parameters in the rules. Onfortuna tely, this powerful

tech.niy_ue presents some difficult implementation problems.

If this technigue is implemented in its fullest generality,

some rules can be written which are difficult to interpret,

and some ~ay be ambiguous. Cne such difficult rule is:

' A. <' c. t 1>* <I c ' t 2} <. c ' t3 > = > < 'A ' <' c' t 2> > ..

19

The effect of.this rule is to replace a forest of at least

two subtrees by the next-to-the-last subtree in the forest.

Here, when the * operator is used, the problem is one of

computational complexity. lt can be quite time consuming tc

determine that the LHS of a farticular rule does not match a

given subtree. A simple-minded pattern matching facility

might try vacious reflicaticn values foe the *-repeated

subtree until one causes a match for the entire pattern, cr

fails to match the given tree. In other words, it would

allow the subtree replicated by the * (< 1 C 1 t2>) to be a

forest of zero, one, two, and mere trees successively, until

it exceeds the number of such subtrees actually present in

the given subtree. This t:efeti ti ve, tr ial-and-errcr aspect

of the pattern matching can be likened to automatic top-down

syntax analysis with backup. In other words, like most

other combinatorial p:c.blems, it can be extremely slow,

especially if more than one * is present in a pattern at the

same level, or in a nested usage such as 'A'<'E' 'C'*>*. An

approach analagous to finjte state automatons can be used to

recognize that a given suttree matches a given Fattern, but

many semantic connotation~ are lest by such an approach.

There are other implementation problems associated with the

closure operator, but they ~ill not be considered further

here.

Since the closure OfEiator seems to provide a desirable

facility for dealing with "bushes" {trees with arbitrarily

many subtrees), but also fiOvides the implementor with many

20

more headaches, it is reasonable to ask if there is another

mechanism which will perform many of the same functions at a

minimal implementaticn cc~t. One such mechanism may be

found in a T-grammar rule parameter which allows subtree

parameters in T-gramma r rules tc represent non-empty forests

of subtrees. This type of parameter is an extension over

the single-subtree para meters used in [6] and elsewhere.

The convention used !ere to represen·t single-subtree

parameters is t"integer". Some ~xamples of single subtree

parameters would then be t1, t2, and t99. For £crest-valued

parameters, the letter "s •· is use a instead of

convention yields names like sl, s2, and s301.

ntn. This

The ability

to reflace the * by s-type farameters efficiently is heavily

dependent upon knowledge atout the domain of trees input to

the rules. For examfle, 'A' 'B' 'B'* =><'A' •c• 'C'*> may

be replaced by the following two rules:

1 A1 (1 B 1 1 1 B 1 s1) =) <'A' ('C' j 'X' s1) >,

and 'X 1 { • B • J • B' s 1) = > (' c 1 1 ' c 1 < • X' s 1 >) •

In these rules, 'X' is ~cae symbcl distinct from all other

symbols in the tree. Thi~ xeplacement is valid only if all

subtrees of the form <'A' 'E' s1> in the domain are also of

the form < • A • • B' *>. The single substitution which is

represented by the rule \ith a * is effectively reflaced by

a recursive re-application cf a set of rules. The T-grammar

rules given above functicn by splitting off the 'E' nodes

one at a time and processing each one without considering

the nature of the entire £uttree at once. This permits much

21

greater implementation sinflicity, hut for those rare cases

when lookahead is necessarJ, it may require a complex set cf

rules to simulate it. This enables the more ccmmon rules to

be implemented without the overhead of the lookahead

mechanism implied by the * q;:erator. It should be noted

that this form of T-grammar is capable of generating any

recursively enumerable set. Fer an informal proof of this

fact, see Appendix c. !his implies that ~ny problem which

anc be solved by any cthe r ccmr:u ting mechanism can also be

solved by this T-grammar fcrmalism.

A Practical Example

An example of the practical usefulness of T-grammars

can be found in the ccmpi Ja ticn of PLI structure and array

references. According to the PLJI Language Reference Manual

for the IBM Checkout and Or:timizing Compilers [11), the

subscripts of an array of structures containing arrays may

be placed either together cr afart. This ability to specify

the subs::: ripts between any pair of qualifiers desired is a

difficult feature for a compiler tc implement correctly. A

sample PL/I program which uses these subscript forms is

shown below.

DECLARE
1 A (3),

2 B,
3 C(4) FIX:ED BlNARY(31,0);

A (1) • B. C { 2) = 0 ;
A.B(l).C{2)=0;
A (1) • B (2) • C= 0 ;
A{1,2).B.C=O;
A.B(1,2).C=O;
A. B. C (1, 2) = 0;

22

To determine which data item is being referred to by a

given subscriptedjgualified reference, it is necessary fer

the compiler to gather all cf the gualifiers together to

form the gualified name. In the example above, this

11gualified naae" would be "A.B.C". The compiler then looks

up the reference in its symtol tatle and determines the

number of (inherited) dimen::icns (two in the examfle) that

the data item actually bas. This is compared to the total

number of subscripts supplied in the r:eference. If the

number supplied does net match the number declared, an

approfriate error messase is issued. This type of

separation of subscripts atd gualifiers cannot be performed

by most other syntax tree manit:ulation systems (such as

syntax-directed translat]cns). Conventional FL/I compilers

may implement special symtol table mEchanisms sclely to

haudle this type consttuction. However, a five-rule 1-

grammar can achieve the saae effect without any special case

provisions. A context-free grammar which generates all

syntactically legal subscripted andjor gualified references

is presented below. A T-grammar which separates the

qualifiers and the sul:sc:r:ipts conveniently is also

fresented.

Context-Free Grammar for fLJI Variable References

REFERENCE: !DEN;

BEEERENCE 1 ICT, IDEN;

SUBPARM-REF, DO~, IDEN;

SUBPARM-REF: .REFERENCE I 1 {I I EXPR-LIST, I) I.

EXPR-LIST: EXPRESSION;

EXPR-LIST, CCMMA 1 EXPRESSION.

Corresponding T-grammar for FLJI Variable References

1 EXPR-LIST 1 < 'EXPR-11ST 1 s1> 1 COM11A' t2 =>

<1 EXPR-LIST 1 s1 t2>.

'REFERENCE' t1 => <'REF 1 <'QUALS' t1> 1 SUBPARMS 1 >.

1 BEFERENCE 1 <'REF<'CUAIS' s1> s2> 'DOT' t3 =>

<'REF' < 1 QUALS' s1 t3> s2>.

1 SUBPARM-RE.F' <1 REF 1 t1 t2> 1 (1 t3 '} 1 =>

(1 REF' t1 <'ADt-SUEPARM 1 t2 t3>>.

1 ADD-SUBPARM 1 (1 SUBPAliMS' l 1 SUBPAEMS' s1) t2 =>

<'SUBPARMS 1 (t~ l sl t2) >.

23

It should be emphasi2ed that this I-grammar is designed

to transform the derivation trees produced by the context

free grammar above. After being transformed by the T

grammar, an abstract syntax tree for a variable reference

has two subtrees, one (named 'QUALS') with all the

qualifiers specified as its descendants, and one (named

1 SUBPARMS 1) with all subscripts and parameters specified as

its descendants. Note that 'REF', 'QUALS', 'SUBPARMS'. and

24

1 ADD-SUBPARM'. are new node names introduced by the '!-grammar

for its internal use. Tle first rule in the T-grammar

effectively transforms the {left) recursion inherent in the

non-terminal "EXPR-L.IST" in to a linea x: (i tera ti ve) form.

the second rule transfcrms the initial identifier in a

reference into a subtree •ith a left descendant containing

the identifier as the only subtree cf a 'QUALS' (qualifiers)

node, and a right descendant containing the list cf

subscripts for this x:efetence (initially empty). The third

rule is applied when a reference is qualified by a

subsequent :;1ualifier. Th.is new qualifier is attached as the

last subtree of the 'CUALS' node for the reference. The

fourth rule is applied \lenevex: a reference is subscripted

(or supplied with fara~eters). This rule causes the

subscripts to be attached as the last suttree of the

'SUBPARMS' node for the reference by forcing afplication of

the last rule. .Introductjcn of the node named 'ADD-SUBPARM'

into the tree forces acticns in a manner analogous tc those

which are forced by ettering a new state in a tree

automaton. When nin" this t~state 11 , the T-grammar is caused

to examine a set of transfcrmaticns which are appropriate

under these circumstances. The introduction of this new

Bode name into the tree forces the basically bottom-up

transformer to perform transformations in a top-down

fashion. The fifth (and last) rule in the T-grammar has two

subcases, one subcase for the first subscript group in a

reference, and one subcase for subsequent subscrip·t groups.

25

If "i" and "j" represent identifiers, and "e" and "f"

represent expressions, tben the string "i(e).j(f)" would be

a legal reference form. 1le abstract syntax tree for this

reference would be:

< t REF I < • Q 0 A L ~ I < 1 I D I I i • > < 'I D ' I j • > >

<'EXPR-LISl' <'EXPRESSION' 1 e 1 >>

<' EXPR-LIST' < 1 1XPBESSIGN' 'f' >> > >.

The abstract syntax tree would be nearly identical for all

semantically (logically) eguivalent reference forms that can

be specified, regardless cf the positioning of the

subscripts. This additional uniformity also serves to ease

the compiler-writer's task by reducing the total number of

cases which must be considered. This T-grammar effectively

groups the qualifiers together ("i" and "j") and separates

out the subscripts ("e" and "f") for later analjsis. This

frees the compiler writer frcm having tc design special-case

code to deal with the matter. This particular example was

chosen since it it a rather practical example ment,ioned

specifically in f2] as being beyond the power of syntax

directed translations alone. For further practical examples

from PLJI and other languages, the reader is :referred to

£6], and to the example it Afpendix B.

CHAPTER III

I3PLEME~TATION OF A T-GRAMMAR

THE! 1RANSFORMER

overall tescription

The tree transformer inplementaticn described here is a

bottom up transformer. That is, it transforms the tree

beginning at the leaves and working its wa~ up to the root

of the tree. The most convenient approach to use in this

case involves transforming tlle t.ree as it is being built.

This does not imply that a top-down parsing technigue may

not be used to generate the tree. It is a nly necessary that

the (syntax) tree froducea by the external tree generator be

constructed in a bottom-up fashion. This may .be easily done

in conjunction with any farsing technique [6,2]. Due to the

specialized nature of the transformations, they a.re

accomplished by an inter p.reter rather than by Sfecially

generated code which could be compiled or linked into a

vorki ng transformer. An interpretive approach generally

implie$ a large decrease in memory requirements and a

relatively small time ove.rhead when ccmpared tc generated

machine or high-level language code. The time overhead is

small because the primitive operations teing pe~fcrmed are

26

27

relatively complex compared to the overhead of the

interfretation frocess.

Basic Logical Structure

The tree transformer consists of three major modules: a

control module, a tree fatte-rn matcher, and a tree generator

(the actual transformer). The controlling routine scans the

LHS's of the rules and jnvckes the pattern matching module

to determine whether the current subtcee matches the given

pattern. If a match occurs, the contrcl module invokes the

tree constructor module tc construct a new subtree according

to the RHS of the given rule. After creating the new tree,

the tree constructor invokes the ccntrcl module to determine

whether the constructed t.ree shculd be further transformed

according to some rule in the 7-grammar. In the actual

implementation, the control module is named "translate", the

tree constructor is named "transform tree", and the pattern

matching module is named "pat matches tree". Their direct

calling relationships are shown below in Table I.

28

TABLE I

DIRECT CALLING RELATlONSHIPS OF THREE KEY MODULES

-----~------------------y------ ---------
1 J

Routine name j Procedures called 1 Called by
1 J

----------f---- +-
1 I

translate I transform t.ree J transform tree
I I
I pat matches tree 1
I I

-----lj,...- ------------+-----------
1 l

pat matches treej pat matches tree J pat matches tree
l I
I I translate
I I

·-----J~- ~
J I

transform tree 1 transform tree 1 transform tree
J I
J translate 1 translate
t I

----------L-------------------~

Note that the routines call upon each other in a highly

recursive fashion. The routines "transla tett and "transform

tree" call upon each other in a mutually recursive fashion,

in addition to the simile recursicn used in "transform tree 11

to traverse the output pattern (BHS) of the rule. !he use

of recursion in these procedures is conceftually simple and

straightforward, but when aJ?plied to even relatively simple

examples, it can prove to he guite difficult to follow in

all of its details.

In the process of atteupting to match a given subtree

to a given LHS (pattern) of a rule, the values of ~11 the

subtree parameters must be determined and returned to

29

control module (translate). Since each rule has a fixed

number of parameters associated with it, the parameters are

represented internally as a single-dimensional array of

fOinters to the subtrees that are the actual values of the

parameters to the rule. 1he control module then passes this

vector of parameters along to the tree constructcr module

~ransform tree) where they are then available for use in

the transformed tree.

The actual algorithu used for matching trees to

patterns is not too difficult to derive since it is a

straightforward implementation of the fcllowing six rules.

1) An empty (sub) 1atte:rn matches only an empty (sub)

tree.

2) An empty (sub) tree matches only an empty (sub)

pattern.

3) If the current (sub) pattern is an "s" parameter

4)

5)

node, then the CUIIent {sub) pattern matches the

given (non-empty) fcrest of (sub) trees.

If the current (sub) :pattern is a "t" paramete.r

node, then it n:atctes the current {sub) tree if the

patterns right sitling matches the current (sub)

tree's right siblin9.

If the current {SUb) pattern node is a named

internal node, it matches the current tree node if

its name matches tl:e name cf the tree node and the

siblings and descendants of the current pattern node

match the correspctding siblings and descendants of

30

the current tree ncde.

6) A choice subpattern matches its corresfonding

subtree if any cf Hs ccnsti tuient sub patterns match

the given subtree.

Internally, all the node names are assigned consecutive

integers for identificaticn. This enables "translate" to

easily classify each rule according to the name of the root

node of the LHS of the rule. Hence, it need search cnly a

fraction of the rules in crder to determine whether any

transformation rules apply to a given subtree. This

generally produces a noticeable imFrovement in speed over a

single list of rules.

~he tree constructor

traverses RHS of the rule

procedure (transform

and constructs a new

tree)

tree

according to the pattern, making copies of the farameter

sub-trees when apfrOfriate. After the result tree has been

constructed, it calls "translate" {recursively) to further

transform the result tree, if necessary.

Subtree Copying Considerations

This entire process is moderately simple until one

considers the number cf t j 11es that a subtree may be copied

and recopied during the building of a tree. With this in

mind, it seems desirable tc minimi2e the number of

unnecessary copying Oferations that may take place. Cofying

of subtrees cannot be eliminated altogether because the

right sibling {link) cf a subtree may be modified by the

31

tree constructor. An obvious example of the necessity of

copying can be found in the following T-grammar rule:

1 A1 t1 => <'A' t1 t1>.

It seems that whatever subtree that t1 might represent, any

attempt to make it into its own sibling would prove

disastrous. Given only exa«ples of this kind, it might seem

sufficient to copy a subtree if its right sibling (link} is

to be modified, and net CCfY it otherwise. However, since

transformations may interact with each other in complex

ways, such a strategy ~ill frove to be insufficient. An

example of such an inadesracy can be found in the following

'!-grammar rule:

•x• {'A' s1 s2) => (<'X' s1 > •A• s1 s1 J s2).

In this rule, it may seem sufficient to copy the farameter

"s1" only for the second instance of s 1 in the RH.S. Under

these circumstances, however, the first "s1 11 must also be

copied, even though its right sibling (link) is not

immediately modified. As a result of the •x• s2 => s2

portion of the rule, the criginal subtree <'X' s1> 'A' s1

s1, which looks safe enough, may be effectively transformed

into s 1 1 A' s1 s1, which .reg ui.res copying the first s1

parameter as well. The philosophy adopted in the author's

implementation is to COfY all subtree parameters except the

rightmost instance of a farameter in the RHS of a rule,

unless its right sibling (link) is modified. If its right

sibling is modified, it is unconditionally copied. A

simpler strategy which might frove sufficient would involve

32

copying a subtree parameter when it is the entire tree to be

returned by the apflicaticn of a rule, or if the right

sibling of a parameter is modified. This scheme still

copies unnecessarily. For examfle, if the following one

rule T-grammar were implemented without copying, no ill

effects would result:

'A' <'A' sl> s2 => <'A' s1 s2 >.

Another possibility for a minimal ccpying rule is the

folloliing one: Copy only those subtree parameters which

occur more than once in tre BHS of a rule.

~t has not been 2LOVEn Which (if anfl of the above

copying strategies actually work in all cases without

resulting in cycles in the intended "trees" or other ill

effects. The entire copying guesticn is a difficult one

because of the variety of ways in which rules

with each other. It may turn out that

may interact

the cnly geed

solution is to do a form cf glctal analysis on the domain of

trees to be considered and the set of transformation rules

to be used on them. The difficulties of such an approach

put its further discussicn teyond the scope of this thesis.

some Considerations in Applying

T-grammars to Practical Problems

:this section is intended ·primarily as a discussion of

some Rractical considerations that are encountered when

using a T-grammar based tree transformation system in actual

33

applications •. one cf the first considerations that is

encountered is the naturE of the interface bet~een the

external tree generator and the T-grammar tree transformer.

ln order for the tree trarsfcrmet to correctly transform the

trees produced by tte external (user-SUfFlied} tree

generator, it must knolll how the symbol names the user tree

generator creates will maf into some internal representation

of these node names. Unless all node names are kept in

character-string format (a space-wasteful practice), a

mapping function must be bound into the tree transformer.

This bli1iing may take place at any time prior tc the actual

application of a rule to a subtree. As is the case with

most bindings, the earJier it is .ferformed, the less

overhead is incurred, and the later it is performed, the

more flexibility is fiCvided. Another important feature to

include in a com~lete system is a provision for automatic

generation of the bindins information. This is easily done

if the trees are generatea ty an automatically ccnstructed

tree generator such a:: a farsing algorithm generated

automatically from a context-free grammar.

In the au thor • s i 11 ple mentation, the symbol {node) names

are bound to the internal representation when the user's T

grammar rules are translated into internal form. This makes

the transformation-time tinding trivial for the actual tree

transformer. In this case, the mapping is the identity

mapping, and need not incu~ any overhead while transforming

trees. This binding is the earli€st dynamic binding

34

possible. since the translation of T-grammar rules into

internal form is quite inexfensive, when the binding needs

to be changed, the entire T-grammar can be easily (and

cheaply) retranslated, thereby establishing the required new

mappings.

The author's imflementation is oriented towards using

an LR(1) type of parser. Mere Efecifically, a parser using

the SLR(1)/LALR(1)/Ll\{1) tatle generator descri.ted in [8,9]

was used in this study. One of the outfuts of this parsing

table generator (and mcst ethers) is a symbol table. This

symbol table is then input .ty the T-grammar rule translator

which simply uses it to initialize its own s:ymbol table,

thereby effectively establishing the required binding. This

is not a handicap, since ordinarily it is logically

necessary to design the CF grammar for an application before

designing the corresponding T-grammar for it. Ncte that the

automatic dete£mination c.f binding information is performed

by reading in the automatically generated symbol table.

Many other bindin~ schemes \Ould work as well as this one,

but they will not be discussed further here.

Another problem which has to be considered when writing

a translator for T-grammar rules is the problem of error

detection. The detecticn of, and recovery frcm syntactic

errors is not discussed here since a wealth of literature

already exists on the subject [10,2,3]. Semantic errors are

the other major class of errors. More Sfecifically,· this

section will consider what types of errors can be detected

35

at T-grammar rule translaticn time, and what errors (if

any), can only be detectEd when a specific rule is actually

applied to a specific subtree. First, it is necessary to

outline the basic types cf ~emantic errors which might occur

in syntactically correct rules. One of the most obvious

errors that will be considered is an undefined rule

parameter. That is, a parameter occurs in the RHS of a rule

which is not defined in tle lHS. one such rule is:

'A' t1 => <'B' t2>.

In this case, the value of the parameter 11 t2 11 is net defined

in the LHS of the rule. lbe following rule is a slightly

more subtle example of the same error.

1 A1 (1 B' 1 t1) =) 1 X1 {1 t1 1 'Y').

In this rule, the value cf the parameter t1 is vell defined

unless the actual subtree tc be transformed is tbe tree

<'A' 'B'>, in which case the value of the rule parameter t1

is used in the RHS without first having been given a value

in the L HS. 'I his condition can be detected when the rules

are tx:anslated into internal form, if enough information is

kept about the inherent nesting structure of the

alternative-lists and parameter names. The problem is

similar in many respects to the ~cepe of identifiex:s problem

for block-structured computer languages. The problem for T-

grammars is more comple~, however, since the parameters

{objects being "declared") are defined in the LBS, of a

rule, and used in the BHS. This would seem to in;ply a tree-
. .

structured symbcl table rather than a stack-oriented symbol

36

table as is required by conventional block-structured

languages.

Another tyfe of seJiantic e.r:ror which can occur is

inconsistent alternative-list nes·tings. One example of a

rule vith an invalid alternative-list nesting is:

'A'('B' j (<'C' 't') 1 E1 } tl I 'F') =>

(1 •x• J 'I' '.Z') (2 'A1' 1 'B1').

In this case, the s~ccnd alternative-list in the RHS

correspon:is to the second alternative-list in the LHS. This

alternative-list is used incorrectly in the RHS since it is

not nested inside of the second sul:pattern cf the first

alternative list, as it is en the LHS. The problem here is

similar to the previous protlem concerning the conditionally

undefined parameter values defined within parameter lists.

Its detection can also be acccmpl is he d with the use cf the

same tree-structured symbol table .required for detection of

undefine:i parameters.

The other major semantic error occurs whenever a given

alternative list has a different number of constituent

subpatterns in the LHS tban it does in the RHS of that same

rule. An example of a rule containing this type of error

is:

• A • (' B • 1 • c • 1 ' r • > => < • x • (• Y • J • z • > •

As can be easily seen, tte ~lternative-list in the LHS has

three sub-pattern alterratives, and the corresponding

alternative-list in the IES has only two. Tilis rule has an

undefined effect on the suttree <'A' 'D'>, since there is no

37

third alternative for the alternative-list in the BHS. This

error is quite easy to detect and is easily acccmmodated

within a simfle symbol tatle stxucture.

In the author's implementation, however, mcst of these

semantic error condition~ are not detected at rule

translation time, but are deferred until subtree

transformation time, when they are nearly all trivial to

detect. This greatly silllflifies the symbol table mechanism

required to translate a gi1en rule into internal form.

An additional ambiguity can arise if two rules match

the same subtree. If such a situation should arise, the

results would generally dEfend Ufcn the order in which the

rules were examined by the transformer. The existence cf

this condition is not u~ually obvious and may lead to

lt is also of some theoretical undesirable results.

imFortance and is discussed at length in [15]. Detection of

this condition should net .be too difficult, and should

probably result in a warning message rather than an errcr

llessage. Such a warning uessage could prove useful in the

detection of certain subtle errors or oversights in the

design of a T- grammar.

Using T-grammars in Compilers

Compilers are a special class of programs with their

own ~eculiar needs and froblems. In a compiler, the

external tree generator far the !-grammar transformer would

generally be a syntax analyzer or parser for scme context-

38

free language. As mentioned previously, the parser may

operate in either a top-down (p~edictive) or bottom up

fashion. A top-4own parser can he made to ccnst~uct its

derivation tree frcm the bottom up by waiting until the RHS

of the rule it is wcrking on is completed before attaching

the RHS subtrees to the ncde that corresfonds to the LHS of

the current rule in the CFG. After a subtree corresponding

to an application of a rule in the C.EG is ·constructed, the

tree transformer module is invoked to determine whether the

tree can be transformed according to any of the rules in the

T-grammar. This frocess has the effect of constructing and

transforming the tree from the bottom up, even though the
//

parsing mechanism may be classified as being a "top-down"

technigue. The use of the 'I-grammar tree transformer -with a

b?ttom-u~ parser is essentially the same as with a top-down

parser, except that the tree is built and the transformer is

invoked after each redtction en a rule in the C!G is

performed.

In a compiler, the (leaf) nodes of the syntax tree

usually have information fields which are generally

initialized by the lexical analyzer (scanner). In general,

the values and manipulations of these application-dependent

information fields are outside the realm of transformational

grammars. such an infcraaticn field may contain, for

example, a pointer to the symbol table to indicate which

particular identifier iE being ~efer~ed to by the terminal

symbol IDENTI.FIER. since these information ·fields are

39

usually necessary and fiE~ent in the syntax tree, it may be

desirable to manipulate the rr tc some degree in a T-grammar.

Towards this end, two primitive facilities are proposed:

rule "predicates" and rule "acticns". A rule predicate is

simply a procedure which determines whether a particular

subtree (and its infor ma tic n fields) meet some ccmpu table

pre-condition. In other words, in order for a subtree

transforma ticn to take place, the given subtree must match

both the LHS pattern atd ~atisfy the specified pre

condition. If a subtree ttatches the LHS of a rule, and the

predicate procedure returns true, then the subtree is

replaced by a subtree ccn~tructed according to the RHS as

before. It should be emphasized that these predicate

procedures are written by the user in some conventional

programming language which is callable ty the T-grammar tree

transformer. As such, these fiOcedures may examine the

information fields in any manner desired. One predicate

which is invaluable in algetraic expression simplification

problems is one vhich returns true if the values of the two

rule t-'ilrameters are identical. This wculd allcw

transformation rules to be written ihich could transform

expressions of the form {A/A) into the constant 1, and

expressions of the form (A*B) + (A*C) into exfressions of

the form A * {B+C) •

The second

perf arming some

frOpCSEd facility

arbitrary action

is a

after

subtree. These "actions" axe patterned after

mechanism for

transforming a

the semantic

40

actions used. in PL (Production Language) translators (10].

7hese action procedures may examine or modify any of the

fields of any of the nodes in a subtree. such actions might

include: entering an identifier in a symbol table, copying

the information field from cne node to another, inserting a

node in a subtree to indicate the type of an identifier

(INTegral, REAL, CHARacter,etc.), or add twa (numeric)

information fields together.

"escape" mechanisms which

transformations based upon

These two facilities act as

allow the specification cf

the information fields, and

operations upon the information fields of the tree nodes.

such operations are impossible without such a facility,

since the information fields are outside the realm of the T

grammar formalism. Of course, the predicates need net

depend solely upon the ccntent.s of the information fields,

nor do the action procedures need to operate only UfOn these

fields. since these routines are ceded in a conventional

programming language, they may examine and;or modify global

yariables at will.

Once the decision is made to include the acticn and/or

predicate extensions, it becomes necessary to decide the

types and numbers of pat a meters these routines should be

supplied. In the case of predicates, it would seem to be

sufficient to pass thell only the values of the rule's

subtree parameters, since they are basically the only

unknown quanities in the rules. In the case of action

procedures, it may be desirable for the procedure tc modify

41

the entire result tree. As a result, it seems desirable to

pass the entire result sul:tree as a parameter to an action

procedure. Additionally, it may be desirable tc fass the

values of the subtree faraneters tc the rules to an action

procedure. These two mechanisms serve tc frcvide a

necessary communications link between the T-grammar

transformer and the remainder of the compiler.

CHAFTEE IV

CONCLUSIONS

This thesis consists of tYo major parts. The first

part presents the concepts and a·fplica ticns of

transformational grammars in an easily accessible manner.

Xhis part also clarified some semantic ambiguities which had

not been discussed previously in the literature.

Additionally, a novel type cf subtree parameter is defined

which simplifies certain inflementation p~oblems. The

.resulting T-grammar systen has also .been shown tc be capable

ot generating any recursively enumerable set.

The second part cf this thesis presents a discussion of

some implementation considerations that were encountered

when designing, implementing, and using the experimental '!

grammar transformation system. Very little of this material

has been presented in the literature previously. several

extensions to the experimental '!-grammar system have also

been suggested.

In conclusion, 'I-gra~mars ccmprise a powerful tree

•anipulation system which shculd fi:cve useful in ccmpiler

writing, and other fields in ccmfute~ science. Moreover,

the experimental T-grammar implementaticn has shown that a

practical T-grammar tree transformer system need not be

difficult to imflement.

\

A SELECTED BIELIOGRAPEY

[1] Aho, A. and Ullman, J. D. 1he 1~~ory 2! Pa£~1Bg,
Tr~JH?.J&:t.io!!_, 2..!!~ ~Q~Ei1~!!9:· Enylewood Cli.tfs:
Prentice-Hal.l, 1Si2.

£2) Abo, A. and Ullman, J. D.
Mg.§!~~- Reading, Mass.:

Prinfi21§2 of £~~£11~£
Addison-Wesley, 1977.

[3] Boullier, P. "Automatic Error Eecovery for LR
parsers." in Fifth Annual III conference en the
Im~lementaticn and Design of Algorithmic Languages
5(1977), 349-361.

[4] :homsky, N. ~yntac!i£ Str~£tur~§· The Hague:

(5]

[6]

f7]

[8]

[9]

[10 J

(11]

Mouton, 19 7 7.

Cleaveland c. and Uzgalis, R. .§££.!!!1!!!!E.§ !Q£
f£Qg£~mmln3 1EESE~g~~ New York: Elsevier North
Holland, 1977.

De Remer, F. in ~£~Ei1~~ Ccn§!~~~tign: !n !Q~~B~~~
~QUr§~· New Ycrk: Sf~inger-Verlag, 1977, 121-145.

~insburg, s. and Partee, B. "A Mathematical Model
of Transformational Grammars." Informaticn and
Control 15,4{1965), 297-334.

~ray, J. "Implementation of a SLR(1) Parsing
Algorithm." (Un~;ublished M.S. thesis; stillwater,
Oklahoma: Oklahorra State University), 1973. ·

~ray, J. "Implementation of a LALR (1) Parsing
Algorithm." {Addendum to [8]) {Unpublished
Computer Center technical note; Stillwater,
Oklahoma: Oklahona State Universitn , 1976.

Gries, D. ~2.!!tEll.§.! ~£!!E1£J!Ctio.n f.QE. ;Q_!_gj.:!;;~J:
~ompy!gf~· New Ycrk: John Wiley and Sons, 1971.

IBM. g1/! fh~fko~! ~~~ QB!.!mi~jng ComEile~~,
Langg~g£]_gf.§H.§.!i.f.§ J11!.£!UaJ:. White Plains, N.Y.:
IBM, 197 6.

(12]

[13]

(14 J

£15]

£16]

44

Kleene, s. 11 Be F re ~e nta ticn of Events in Nerve-sets n,
in _!ytom_g!:l! ~_!._yci.§§ 1 Princeton: Princeton
University Pres~, 1956.

Pagan, F. "On Inte.rr:reter Oriented Definiticns of
Programming Lansuages. 11 ComJ::uter J. 19.,.2 (1976),
151-155.

Robertson, A., Hedrick, G. E., and Goto M. "Grammars
for ALGCL 68 Fermat tenotations and the lransfut
Facilities cf tle OSU ALGOL 68 Compiler." in
Fifth Annual Ill Conference on the Implementation
and Design cf Algcrithmic Languages 5(1977), 222-
252.

Rosen, B. "Tree Manit:ulating sy~tems and Church
Rosser Theorems." JACM 20,1 (1973), 160-187.

Rounds, w. 11 .Mapfings and Grammars on Trees. 11

aatbematical sy~tEES lhecry 4,3(1971) 1 257-287.

APPENDIX A

A CONTE! T-FREE GRAMAB TO

GENERATE 'I-GRAMMAR RULES

1. GOAL : "?", TGRAMMAB,

2 • T -G BA tl.M A R : li U L E ;
T-GRAMMAR, RUlE.

11?11 . .

4. RULE: LHS, =>, RES, PEBIOD-SYMECL.

5. LHS: L-TREE;
NOD.ENAME.

1. L-TREE: NODENAME, ISUBlREE-LISl;
NODE NAME, LSU I'IEEE-LlST, S-l?ARAMETER;
NODENAME, S-PARAMEl.ER.

10. LSUBTREE-LIST: LSUETRE.E;
LSUB'IREE-LIST, lSUBlREE.

12. LSUBTREE: NODINAfE;
<, L-TREE, >;
LCHOICE;
T-PARAMET.ER.

16. LCHOICE: {, LALTHNATIVE-S.EQ,) •

17. LALTERNATIVE-SEQ: lSUB!BEE-S-PARM;
LALTERNATIVE-SEQ, J, LSUBTR!E-S-PARM.

19. LSUBTREE-5-PARM: ISUB'IREE;
S-PABAMETE B.

21. RHS: RSUB'IREE-LIS1.

22. RSUBTREE-LIST: ESUETREE;
RSUBTREE-LIST, BSUBTREE.

24. RSUBTBEE: NCDENAl.E;
<, NODENAME, RUSBTREE-LIST, >;
RCHC.ICE;

T~PARAMETER;

S-PARAMET!F.

29. RCHOICE: (, INTEGER, RA11ERNATIVE-SEQ,).

30. RALTERNATIVE-SEQ: FSUETREE;
RALTERNATIVE-SEQ, J, RSUBTREE.

32. T-PARAMETER: LET1EE-T-SYMEOL, INTEGER.

33. S-PARAMETER: LETlEB-S-SYMBOL, INTEGER.

34. INTEGER: DIGIT;
INTEGER, DlGI~.

36. NODENAME: QUOTE-SlMECL, CEAR-SEQ, QUOTE-SYMBOL.

37. CHAR-SEQ: ANY-CHAR;
CHAR-SEQ, ANY-CBJR.

46

JEPENDIX B

A T-GBAM~!B TRA3SLATOR FOR

ALGOL 68 FCEMAT DENOTATIONS

A Context-free Grammar For
ALGOL 68 Ecrmat Ienotations

1. GOAL : "?", PICTCBELISl, 11?11 . .
2. PICTURELIST: PICCII;

PICTURE1IS1, CC~~A, PICCLL.

4. PICCLL: PICTUEE;
COLLECTION;
INSERTION, PICTUBE;
INSERTION, COllECTION;
INSERTION.

9. INSERTION: ALI1S;
INSERTION, All1S.

11. COLLECTION: LPAREN, PIClURELIST, BPAREN;
RBRLICATOB, LfAFEN, PICTURELIST, RPAREN;
COL.LECTION I A IllS.

14. PICTURE: INTEGE&;
REAL;
BI'l'S;
COMPL;
STRING;
OTHERPICINS.

20. OTHERPICINS: OTRFRPlC;
OTHERPICINS, AII'IS.

22. OTHERPIC: BCCL;
.BOQLCH;
GPIC;
FPIC;

47

~NTCH.

27. INTEGER: INITIAL-2EROES;
INT-PRM1E.

29. INITIAL-ZEROES: 22;
INITIAL-Z E E CES, ZZ;
INITIAL-ZEROES, Alil~.

32. INITIAL-SIGN: SI<:N;
INITIAL-SIGN, AIITS.

34. SIGN: CHPLUS;
CHMINUS;
SCHPlUS;
SCH.MINUS.

38. INT-FRAME: D-CR-SI-GR-SZ;
INT-FRAME, D-OB-SD-GR-SZ;
INT-.FRAME, ZZ;
INITIAL-SIGN, D-OR-SD-OR-SZ;
INITIAL-SIGN, ZZ;
.INITIAL-ZEROES, CHPl[S;
INITIAL-ZEEOES, CHMINUS;
INITIAL-ZEROES, D-0 H-SD-OR-SZ;
INT-FRAME, AllTS.

47. ZZ: LZ;
REPLICATGE, 12.

49. D-OR-SD-OR-SZ: D-SD-SZ;
BEPLICATOB, I-S D-SZ.

51. REAL: FREAL;
EREAL.

53. FREAL: INTEGER, IOINT;
INTEGER, fOINT, ZDSEQ;
POINT, ZDSEQ.

56. ZDSEQ: ZZ;
D-OR-SD-OR- SZ;
ZDSEQ, Z.Z;
ZDSEQ, D-OR-St-CR-SZ;
ZDSEQ, ALilS.

61. POINT: DOT-SYMB;
POINT, ALITS.

63. EREAL: FREAL, EE, INTEGER.

64. EE: E-SYMB;

48

EE, ALITS.

66. COMPL: REAL, II, EEAl.

67. II: I-SYMB;
II, ALI'IS.

69. BITS: RADIX, ZDS!Q.

70. RADIX: INT, LR;
RADIX, ALITS.

72.. STRING: AA;
STRING 1 A A;
STRING, ALI'l~.

75. AA: A-SYMB;
RBPLICATOR, A-SlMB.

77. BOOL: lB;
LSB ..

79. BOOLCH: LB, lPABIN, LITS, CCMMA, LITS, RPAREN.

80. INTCH: LC, LPAREN, STRINGLIST, BPAREN.

81. STRINGLIST; ll'IS;
STRINGLIST, CCMMA, LITS.

83. FPIC: LF, .FCRHATUBIT.

84. ALITS: ALIGN;
LITS.

86. LITS: LITERAL;
REPLICATOB, Ll!!BAL.

88. ALIGN: ALIGNMENT;
REPLICATOE, AilGNMENl.

90. R EPLICATOR: IN 'I;
.LN, INTUNIT.

A T-grammar fer Translating ALGOL 68
For&at Denotations

1 P.IC!I'URELIST' < 'PIC'IUli.ELIST' s1> =>
<'PICTURELIS1' s1>.

49

1 PICTURELIST' <'PlCTURELlST' s1> 'CCMMA' s2 =>
<'PICTUBELISl' s1 s2>.

1 PICOLL 1 t 1 => t 1.

50

'INSERTION' <'INSERTION' s1> s2=> <'INSERTION' s1 s2>.

'COLLECTION' <1 COLliCTION 1 s1> s2 =>
<'COLLECTION' sl s2>.

'COLLECTION' <1 IiEPLlCATOR 1 t1> 'LPABEN' t2 'RPAREN' =>
<'REP-GROUP' s1 t2>.

'COLLECTION' 1 LPABEN 1 t1 'liPAREN' => t1.

'PICTURE' sl => s1.

'OTHERPICINS' <'OTHERPICINS' s1> s2 =>
<'CTBEEPICIKS' sl s2>.

1 0THERP.IC 1 sl => s1.

'INT-ERAME' s1 => s1.

'I NI T I A 1-Z E R 0 ES 1 s 1 =) s 1 •

1 INITIAL-SIGN' s1 =) s1.

'SIGN 1 sl => s1.

'PLUSMINUS 1 s1 => s1.

1 PICOLL 1 <1 INSERT.ION 1 s1>

=>

(<'INTEGER' s2> 1 <'REAL' s3> 1 <'EI'.IS' s4>
J< 1 CCMPL' s5) J <'S~RING' s6> J <'BOCL' s7>
j<'BOOLCH' s8) 1 <'GPIC' s9> 1 .<'FPIC' s10>
j < I I NT c H • s 11) I < • c 0 l L .E c 'I I 0 N' s 12))

(1 <'INTEGER' sl s2> 1 <'REAL' s1 s3>
j <'EllS' sl s4>

J< 1 COMPL 1 s1 sS> J <'STRING' sl s6>
1 <'BOOL' s1 s7>

l<'BOOLCH 1 s1 s8> J <'GPIC' sl s9>
J<'FPlC' s1 s10>

l<'INTCH' s1 s11> 1 <'COLL.ECTION' s1 s12>) •

'ZDSEQ 1 sl => s1.

1 EREA1' <'FREAL' s1) s2 => <'BREAl' s1 s2>.

'EE' sl => s1.

1 BEAL 1 s1 => s1.

I .1? OI NT I s 1 =) s 1 •

I EE1 s 1 = > s 1.

'II' sl => sl.

1 BADIX 1 <1 .BADIX 1 s1> s2 => <'RADIX' s1 s2>.

'STRING' <'STRING' s1> s2 => <'STRING' s1 s2>.

1 BOOLCH 1 1 LB' 1 L.I?AR"Et5 1 t1 1 CCMMA 1 t2 1 BPAREN 1 =>
<1 BOOLCH 1 t1 t2>.

1 INTCH 1 1 I.C 1 'LPAREN 1 , t1, 'BPAREN' =>
<1·INTCH 1 t1).

1 STRINGLIST 1 <1 STRING11Sl' s1> s2 =>
<'STRINGLIST' s1 s2>.

1 ALITS 1 s1 => s1.

51

APPENDIX C

A T-GBAH!AR TURING MACEINE

An important property fCSsessed by the T-grammar

formalism is that it is atle to generate· any recursively

enumerable set. This property essentially implies that a '!

grammar can solve any froblem which can be solved by any

other computer program. '!his proper:ty can be established if

a T-grammar system can be shewn to be capable of simulating

an abstract computing device called a Turing machine. A

Turing machine is a finite state device with an unbounded

amount of memory in the form cf a tape which is divided up

into sguares each of which can hold a symbol. For any given

state and (current) input symbcl, the machine performs the

followi.ng seguence of actions: esta:tlish a new state, write

a single symbol to the tape, and move the tape head one

square to the left or right. Fcrmally a Turing machine may

be defined as a 6-tuple (Q,G,l,delta,gO,b), where Q is the

set of states, G is the sEt of permissitle tape symbols, I

is the set o£ input s}mbols (a subset of G), gO is

designated as the start state, b is an element of G-l which

has been designated as tle blank, delta is the finite state

control function which maps elements of Q x G into elements

of Q ~ G x D. In this definition, D:{L,R}, representing the

52

53

direction of tape movement, ~eft or ~ight. A configuration

of the Turing machine is a pair {q,a c b) where g is the

current state, and a c b Js the non-blank portion of the

tape. "c" is the current symbol, "a" is the portion of the

tape to the left of the current symbol, and "b" is the

portion of the tape to the right of the current symbol. The

next configuration cf the machine is comiJuted from

delta{current state,current symbcl} and consists of a triple

(s'#t',~ where s• is the new state after this acticn, t• is

the tape symbol to be written cnto the tape to replace the

current symbol, and D is the direction of movement of the

tape. These configuratio£ frcperties are represented in the

T-grammai:' Turing machine siaulator by subtrees of a tree to

be transf or me d. The elements of delta are each represented

by a rule in the T-granmar. The central mechanism is

represented by three 1:-gramma r rules. A typical

configuration of the T-grammar ~I'uring machine is shown

below:

<'TURING-MACHINE'
<• ST-SI !i I

<'S~ATE' •current state'>
(1 CUBR-SYM' •current tape symbcl'> >

<'TAPE'
<'BEFOHE' •symbcls before current symbc1'>
<'A~TEB' •symtcls after current symbol'> > >.

In this model, the current state is represented by tbe

single subtree of 'S1A7E 1 and the current tape symbol is

.represented by the singlE subtree of 1 CURR-SYM 1 • The taFe

is represented by the two subttees of the 'TAPE' node. The

sguares of the tape to the left of the current symbcl are

54

represented by the subtrees of the 'BEFORE' node, and the

subtrees to the right of the current symbol are represented

by the subtrees of the 'AF'IEB' node. The control mechanism

of the Turing machine is represented by the following three

T-grammar rules:

1 TUIUNG-LiACH1NE 1 <1 MOVE' t1 t2 ('L' J 'R')> =>
(< 4 READ-NEXT 1 tl t2 t3> 1 <1 BEAD-PREV' t1 t2 t3>).

'BEAD-NEXT' t1 t2 <1 TAII' < 'EElORE' s3>
<'AFTER' (t4 sS 1 t6)> =>
<'TURING-MACHINE' I

<' ST-SYM'
<'STATE t1>
<'CURR-SYH' {t4 j t6) >

<'TAPE'
<'BEFORE' t2 s3>
<'AFTER' {1 s3 1 1 ELANK 1)> > >.

'READ-PREV' t1 t2 <1 TAfE' <'BEFORE' (t3 s4 J t5))
<'AFTER' s6> > =>

<'TURING-MACHINE'
<'ST-SYH'

<'STATE t1>
< 1 CUR R- S Y 1'1' (1 t 3 J t 5) >

<'TAPE'
<'BEFORE' (1 sQ J 'BLANK')>
<'AFTEB' t2 s6> > >.

~D this T-gramma.r model, the elements of the next move

function {delta} are each refresented by a rule in the T-

grammar. For each value of delta{d,A)=(p,B,D), a rule cf

the form shown below is constructed.

1 ST-SYM 1 <'S'IA'IE' 1 g'><'NEX7-SYM' 'A'>=>

(1 MCVE' 1 p 1 'E' 'D'>.

The application of a rule of this form forces the

transformer to apply two cf the three control mechanism

rules to "write" the tafe symbol, change the state, and

11 move 11 the tape. As an example, the following Turing

55

machine delta functicn counts the number of "1'"s on its

input tape and writes the number of 1's MOD 3 onto the tape.

delta::{(zerostate,' 1 ') 1 (cnestate, 1 BLAl\K' ,R)),

((onestate, 1 1 1), {twostate, 'BLANK' ,R)) 1

{(twostate,'1'), (zez:ostate,'ELANK',B)) 1

{ (zerostate, 'ELAN K'), (halt ,• ZEBO' 1 R)) ,

{ {onestate,• BlANK') 1 (halt, 'ONE', R)),

{{twostate, 1 BLANK 1) 1 {halt 1 1 TW0 1 ,R)) }.

These function values are easily represented by the

following set of T-grammai tules:

1 ST-SYM 1 <'STATE' 'zerostate'> <'CURR-SYM 1 '1'> =>
<'MOVE 'onestate• 'ElANK' 'R'>.

1 ST-SYM 1 <'STATE' •ctestate'> <'CUBR-SYM' 1 1 1 > =>
<'HOVE •twostate• 1 ElANK 1 1 B'>.

1 ST-SYM 1 <'STATE' 1 t\cstate 1 > <'CUBR-SYM 1 1 11 > =>
<'HOVE 1 zerostate 1 'ELANK' 1 R1 >.

1 S.T-SYM' <'STATE' 'zez:ostate'> <'CURR-SYM' 'BLANK'> =>
<'MOVE 1 halt 1 'ZEBC' 'R'>.

1 S'I-SYM 1 <'STATE' 'cnestate'> <'CU.RB-SYM' 'BLANK'>=>
<'MOVE 'halt' 1 0NE 1 1 E1 >.

1 ST-SYt1' <'STATE' 'tkcstate'> <'CUBR-SYM' 'BLANK'>=>
<'MOVE 'halt' 'TWO' 'E'>.

This example illu~ttates how a particular Turing

machine simulator is ccnstructed from its 11athematical

definition. This example is easily extended to all Turing

machines as indicated abcve. The definition of the tape

symbol sets is done implicitly by the initialization of the

tree and the definitic n of the delta function transformation

xules.

~
VITA

Alan Lynn Robertson

candidate for the Degree of

Master cf Science

Thesis: TRANSFORMATICNAL G&AMMARS: THEIR APPLICATIONS AND
I i'1P LEI1ENTATIO N

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Lincoln,
1954, the sen cf Mr. and Mrs.

Nebraska, May 18,
D. Keith Robertson.

Education: Graduated from Clinton High School,
Clinton, Oklahoma, in I1ay, 1972; received the
Bachelor of Science degree from Oklahoma State
University in May, 1976, with a major in
Electrical Engineering; ccmpleted requirements for
the Master of Science .Cegree in May, 1973.

Professional Ex per:ie nee: Research Assoc:ia te, Oklahoma
state university, Cepartment of Computing and
Information fciences, Still~ater, Oklahoma,
August, 1976 to May.. 1978; computer programmer ..
Continental Oil Ccmfany, Ponca City .. Oklahoma ..
May, 1975 to August, 1975.

