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CHAPTER I 

INTRODUCTION 

Grain sorghum, Sorghum bicolor (L.) Moench, is the fourth largest 

cereal crop in world production. In 1968 the greenbug, Schizaphis 

graminum (Roridani), mutated to a biotype capable of attacking sorghum. 

Greenbug infestation reduced sorghum grain yields up to 45%. 

The bloom of sorghum is a grayish waxy plant exudate. The bloom 

condition exists in three forms: 1) heavy bloom - the plant having an 

ashy look from the waxy covering on the leaf sheath, boot, internode, 

and the leaf undersurface; 2) sparse bloom - the plant is covered only 

at critical points (the top of the leaf sheath and internode and the 

base of the undersurface of the lamina), and does not have an ashy 

look; 3) bloomless - no wax is present on the plant. 

Greenbugs show nonpreference for bloomless plants as the plants 

increase in age, while with increasing age bloom plants remain suscep­

tible to greenbug infestation. Sparse bloom plants should be inter­

mediate in reaction. The purpose of this study was to determine the 

number of genes involved in the inheritance of the bloomless and 

sparse-bloom mutants in sorghum. 
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CHAPTER II 

LITERATURE REVIEW 

Sorghum [Sorghum bicolor (L.) Moench] is a member of the grass 

family Gramineae, subfamily Panicoideae, tribe Andropogoneae (27). 

Exceeded only by wheat, corn, and rice, sorghum ranks fourth in world 

acreage of the cereal crops. In the Western Hemisphere it is used as 

livestock feed while in Asia and Africa it is used as human food (39). 

There are four main groups of sorghum: grain sorghum, the sorgos, 

broomcorn, and grass sorghums. The grain sorghums are further divided 

into seven groups. Of these groups kafir, milo, and feterita have 

contributed most of the germplasm used in the United States development 

of sorghum. Most new grain cultivars have come from crosses between 

kafirs and miles. At present there are over 17,000 entries in the 

world sorghum collection (27). 

The Greenbug in General 

The greenbug, Schizaphis graminum (Roridani), was first described 

in Italy in 1852. In the United States it was first identified in 

Virginia in 1882. Prior to 1968 two types, biotype A and biotype B, 

had been reported as serious pests of small grains. In 1969, Harvey 

and Hackerott (21) described a greenbug biotype injurious to sorghum 

designated as biotype C. Dickson and Laird (10) studied the sorghum 

greenbug biotype and concluded that it differed from previous biotypes 

2 



by its tolerance of high temperature, its use of sorghum as a host 

plant, and certain morphological details. Wood (44) reported several 

differences between the sorghum biotype and the small grain biotypes: 

1) Biotype C feeds in the vascular bundles. 

2) Biotype C has more antenna! sensoria and a different 

placement of the lateral abdominal tubercles. 

3) Biotype C has a paler green color, and its cornicles 

are not blacktipped. 

This greenbug biotype reaches its greatest concentrations during 

the hot summer months. 

The Greenbug on Other Crops 

3 

Hackerott and Harvey (15) conducted growth chamber tests to deter­

mine the effect of greenbug biotype C on 'Combine Kafir-60' grain 

sorghum, 'Gahi' pearl millet, 'White Wonder' foxtail millet, and 

'Turghani' proso millet. On the basis of plant injury millet was more 

resistant than sorghum. Greenbugs also survived and reproduced better 

on sorghum than millet. The mature millet plants exhibited slightly 

less resistance than seedling plants. In a preference test seedling 

stage pearl millet was preferred over foxtail and proso millet. 

Harvey and Hackerott (20) compared the effectiveness of resist­

ance in wheat, barley, rye, and sudangrass to biotype B and C green­

bugs. Genes for resistance in the plants to biotype B did not always 

confer resistance to biotype C. Harvey and Hackerott (21) conducted 

greenhouse tests with 30 species of grass to discover host plants that 

distinguished greenbugs originating from sorghum from those originating 

from wheat, and to establish biotypes by differential aphid-host 



reactions. When offered a choice between five plant species biotype 

C preferred sorghum and sudangrass more than biotype B, which pre­

ferred wheat, barley, and rye. 

4 

Livers and Harvey (26) used the rye variety 'Caribou' as the 

source of resistance in a recurrent selection program to produce a rye 

population with homozygous resistance to the greenbug. Segregation 

studies with Caribou showed resistance to be controlled by a single 

dominant gene. 

Gardenhire (11) crossed a resistant oat variety ('Russian 77') to 

two susceptible varieties ['New Nortex' and (Red Rustproof -Victoria 

x Richland) x Ranger, Texas Selection 2] to study the inheritance of 

resistance in oats. He concluded resistance in Russian 77 was con­

ditioned by a single gene pair. 

Gardenhire and Chada (13) studied the inheritance of greenbug 

resistance in barley. Utilizing 'Omugi' as the resistant parent, 

crosses were made to six susceptible lines ( 'Cordova' , 'Mo. B538' , 

'Caucasus', 'Khayyam', 'Hokudo', and Cordova x Golaid). Resistance 

was completely dominant as F1 and F2 resistant plants were as resist­

ant as the resistant parents. Reciprocal crosses between two parents 

showed no evidence of cytoplasmic inheritance. Gardenhire (12) exa­

mined the inheritance of greenbug resistance with segregating genera­

tions of four barley crosses using Omugi or a Cordova x Omugi selection 

as the resistant parent. The Omugi resistance was completely dominant. 

Gardenhire et al. (14) determined that chromosome one carried the 

single gene .·resistance in barley using the variety 'Will' • Resistance 

was carried in linkage group 1 and on the centromere-bearing segment 

of chromosome 1 in the Tl-6a translocation. 
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Painter and Peters (29) on the basis of screening tests involving 

segregating wheat populations reported that a single genetic factor 

controlled greenbug resistance. 

Daniels and Porter (9) studied segregating wheat generations in­

volving the resistant selection 'Dickinson' and five commercial varie­

ties ('Vaughn Turkey' , 'Westar' , 'Blue Jacket' , 'Kanred' , 'Crockett' ) . 

A single factor pair controlled greenbug resistance, susceptibility 

being dominant to resistance, although modifying genes may be involved. 

Tests indicated that only if the most resistant plants were selected 

could substantial progress be made for greenbug resistance. Porter and 

Daniels (31) studied crosses between resistant and susceptible wheat 

varieties and backcrosses to both parents and concluded that the factor 

or factors controlling greenbug resistance were not dominant. If 

environmental factors are minimized by replication heritability esti­

mates show greenbug resistance to be highly heritable. 

Curtis et al. (8) working with two resistant wheat varieties 

(Dickinson Selection 28A and C.I. 9058) and three susceptible varieties 

('Ponca' C.I. 12128, 'Concho' C.I. 12517, and Crockett C.I. 12702) 

concluded that greenbug resistance was governed by a single recessive 

gene pair (gbgb). Susceptibility was incompletely dominant in the F1 

of a resistant x susceptible cross. Reciprocal crosses showed no 

evidence of cytoplasmic influence on the inheritance of greenbug 

resistance. 

Wood and Curtis (45), screening resistant x susceptible (Dickinson 

Selection 28A x Ponca) selections, concluded that infested and uninfes­

ted resistant selections produced no apparent significant yield differ­

ences. Some antibiosis was indicated as there were significantly fewer 



greenbugs per linear row foot in infested resistant selections and 

checks compared with the infested susceptible check. 
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Starks et al. (36) conducted a nonpreference study with greenbug 

biotypes Band Con a broomcorn cultivar ('Deer') and 'RS610'. Biotype 

B had a noticeable nonpreference for Deer, but RS610 was dead at the 

end of the 30-day test. Biotype C indicated no preference for Deer 

over RS610 as both cultivars were killed. Results indicated that Deer 

can be used in the separation of biotypes B and C. 

Bloom and Bloomless Sorghum 

Ayyangar et al. (2) reported that bloom exists in several species 

of crops, and that the wax helps reduce transpiration by partly closing 

the stomata. The sorghum bloom exists as two types -- heavy and sparse. 

In the heavy-bloom condition there is a concentration of bloom on the 

leaf sheath, the boot, and the internode while the whole under leaf 

surface is bloomy. Plants in the sparse-bloom condition show bloom at 

the top of the leaf sheath, the top of the internode, and the base of 

the undersurface of the lamina. Inheritance of the character is con­

trolled by one simply inherited gene, H and h, with H being dominant to 

h. Allele H is responsible for heavy bloom while allele h is respon­

sible for sparse-bloom. 

The first report of the bloomless condition was by Ayyangar and 

Ponnaiya (3). Crosses between bloom and bloomless were completely 

bloom in the F1 • The F2 segregated in the ratio of 3 bloom:l bloomless, 

indicating complete dominance of the bloom. When bloomless types were 

crossed with sparse-bloom types the F1 's were completely bloom, while 

the F2 segregated in a 9 bloom:4 bloomless:3 sparse bloom ratio. They 



concluded allele Bm was responsible for bloom, while allele bm was 

responsible for the bloomless condition where allele H was not ex­

pressed. Allele h governed the sparse-bloom condition. 
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Pieretti (30) studied the damage of greenbugs to plants of RWD3-

Weskan (bloomless, seedling-susceptible), 'SA7536-l' (bloom, seedling­

resistant), their F1 's, F2 's, and a susceptible check. He reported 

that bloomless plants were not "tolerant" to greenbugs, but they exhi­

bited "nonpreference" with increasing age. SA7536-l plants (bloom) 

were tolerant to greenbugs at all growth stages. Bloomlessness was 

a simply inherited recessive trait. The tolerance to greenbugs of 

SA7536-l was re&ulated by a single pair of alleles with partial or no 

dominance. The similarity of the means for damage scores for bloom 

and bloomless groups of F2 individuals suggested that the genetic 

factors responsible for the expression of bloom and bloomlessness were 

inherited independently from those regulating the expression of toler­

ance to damage. 

Amini (1) studied the damage of greenbugs to plants of RWD3-Weskan 

(bloomless, seedling-susceptible), 'IS 809' (bloom, seedling-resistant), 

their F1 's, F2 's, and a susceptible check. He also concluded that 

bloomlessness was a simply inherited recessive trait. The tolerance 

to greenbugs of IS809 could not be explained on the basis of a single 

pair of alleles. He also concluded that bloom and bloomless groups of 

the F2 individuals exhibited the same degree of tolerance to greenbugs, 

and therefore, the bloomless type of resistance (nonpreference) and the 

normal type of resistance (tolerance) were regulated by independent 

genetic factors, and there should be no apparent difficulty in com­

bining them to improve resistance. 



Weibel et al. (41) studied five pairs of adjacent bloom and 

bloomless plants in five F3 segregating rows of four crosses at the 

heading stage. They concluded that less leaf damage in the bloomless 

plants was due to significantly fewer greenbugs. Weibel et a!. (42) 

co.unted greenbugs on near isogenic lines three and four weeks after 

emergence. Fewer greenbugs were found on the bloomless plants for 

both counts, indicating greenbug nonpreference for this type. This 

difference was highly significant. A comparison of the two counts 

showed greenbugs to be increasing on the bloom plants but not on the 

bloomless plants. 
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Maunder et al. (28) using isogenic lines of Combine Kafir-60, 

Martin, and a Redbine showed bloomless plants to have 38.4% more stalk 

disease. Bloomless plants had greater resistance to water loss, indi­

cating that under stress stomata on bloomless plants close quicker. 

Lambright and Maunder (25), using isogenic Redbine-60 Bl (bloom) and 

Redbine-60 bl (bloomless) lines showed bloom lines to have a higher 

degree of resistance to stomatal diffusion than bloomless lines. 

Various authors [Cummins and Dobson (6); Hanna et al. (19); and 

Cummins and Sudweeks (7)) have reported that in modified in vitro dry 

matter tests using isogenic or near-isogenic bloom and bloomless 

sorghum lines the bloomless lines are more digestible. They reported 

the superior performance of the bloomless lines was due to the absence 

of bloom, which acted as a barrier and slowed the penetration of micro­

organisms. Cummins (5) reported small yield differences betwee~ 

isogenic bloom and bloomless sorghum lines and he suggested that bloom­

less types co.uld be grown in humid areas to improve forage quality. 

Ross (32) used near-isogenic Combine Kafir-60 lines to test yield in 
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relation to the bloom and bloomless characteristic and concluded tha.t 

bloom plants outyielded bloomless plants, the difference being highly 

significant. Chatterton et al. (4) measured net carbon dioxide and 

water vapor exchanges in isogenic lines of bloom and bloomless sorghums. 

He concluded that in arid and semi-arid regions the yield increase 

associated with bloom plants may result in more digestible forage per 

hectare than the bloomless plants, although in humid areas bloomless 

types may provide more digestible dry matter. 

Greenbug Resistance in Sorghum 

Starks et al. (35) found greenbug resistance to be dominant and 

present in most plant growth stages. Effective at a range of temper­

atures, it is most effective at high temperatures. The three types of 

resistance (antibiosis, tolerance, and nonpreference) were present, 

the most common being antibiosis. Starks et al. (34) studied 15 grain, 

forage, grassy, semi-grassy or broomcorn lines and reported the level 

of resistance to vary with the cultivar. The three types of resistance 

were found. Levels and types of resistance should combine. Resistance 

in a single source was thought to be controlled by single gene action. 

Hackerott et al. (18) rated 648 cultivars and breeding lines for 

reaction to a natural infestation of greenbugs, and surveyed for green­

bug resistance 157 entries in the greenhouse. All sources of resist­

ance seemed to trace to S. virgatum (one of the parents in Sudan Grain), 

and the genes conditioning resistance appeared to be at the same loci. 

However, F2 segregation ratios indicated that dominant genes at more 

than one locus controlled resistance. Tolerance appeared to be the 

major component of resistance. 
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Teetes et al. (37) studied greenbug nonpreference and antibiosis 

with six sorghum lines (resistant lines SA 7536-1, 'KS 30' , IS 809, 

and 'PI 264453' and susceptible line 'TX 2536' ) in comparison to the 

susceptible line 'TX 7000' • The resistant lines exhibited nonprefer­

ence over susceptible TX 7000, with PI 264453 being the most preferred 

resistant line. Sorghum hybrids utilizing the resistant lines as 

parents had a lower level of nonpreference than the resistant sorghum 

lines. For antibiosis, the resistant lines had a longer prereproduc­

tive period than either susceptible line, although the mortality rate 

of nymphs did not vary with resistance or susceptibility. Greenbugs 

reared on resistant sorghum secreted less honey dew than those reared 

on susceptible sorghums. 

Teetes (38), studied five sorghum lines (resistant lines IS 809, 

KS 30, and SA 7536-1 and susceptible lines TX 7000 and 'SD 100') and 

certain F1 hybrids in the field to determine differences in resistance. 

Resistance levels varied with the line. Tolerance appeared to be the 

primary mechanism in resistance, although nonpreference and antibiosis 

mechanisms were present to a lesser degree. 

Johnson et al. (~3) studied the effects of a natural infestation 

of greenbugs feeding on selected resistant lines and their F1 hybrids 

in the adult plant stage. Experimental materials consisted of three 

susceptible commercial hybrids, a susceptible line, two resistant 

lines, and three resistant hybrids. Resistant lines had significantly 

less leaf tissue damage than susceptible entries, and fewer greenbugs 

than the susceptible lines and the two late-blooming susceptible hy­

brids but not the two early-blooming susceptible entries. 
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Wood (44) screened 1761 varieties and hybrids for resistance and 

found eight resistant lines. While all of the resistant lines showed 

a high degree of nonpreference, biotype C adapted easier to the resist­

ant lines. A test for fecundity showed biotypes A and B to survive 

poorly on resistant species, while biotype C had about the same survi­

val rate on resistant and susceptible species. 

Schuster and Starks (33) evaluated eleven sorghum selections in 

greenhouse and growth chamber studies to determine the components of 

host plant resistance. Apterate and alate forms of the greenbug were 

used. Eight entries showed low preference by both the apterate and 

alate forms. Antibiosis was a resistance factor in some selections, 

and in all resistant selections. Plant height differences between 

infested and uninfested plants of each entry and by individual plant­

injury ratings indicated that tolerance may be the main component of 

PI 264453. Five of the selections: 'PI 229828', IS 809, Shallu Grain, 

'PI 302178' , and 'PI 226096' , indicated comparatively high degrees of 

all three resistance components. 

Weibel et al. (43) studied the F1 and F2 progeny of Shallu Grain, 

PI 264453, and IS 809 for greenbug resistance. Reaction of F1 plants, 

although closer to the resistant parent, seemed intermediate between 

the parents. They concluded that the resistance gene could readily be 

transferred to adapted lines, and that one resistant parent in a cross 

should confer sufficient resistance. 

Weibel et al. (40) compared crosses among resistant SA 7536-1, 

IS 809, and PI 264453 for greenbug resistance and concluded that PI 

264453 had a different source of resistance, possibly not from a single 



factor pair. However, the forms of resistance were somewhat similar 

and differences appeared to be of degree and not of number. 
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Harvey and Hackerott (22) studied the effect of a seedling infes­

tation of greenbugs on susceptible Combine Kafir-60, resistant 'H39' 

and their F1 hybrid. The greenbug preferred the susceptible more than 

the F1 and both more than the resistant line. Significantly more 

greenbugs were found on the susceptible Combine Kafir-60 than on the 

resistant H39, the F1 not differing from either parent. Injury scores 

and delayed maturity followed the pattern of susceptible parent, F1 , 

and resistant parent. The yield reduction of susceptible plants infes­

ted in the seedling stage appeared to be due primarily to a reduction 

in the number of secondary culms. 

Hackerott and Harvey (16) studied the effect of C-biotype green­

bugs on resistant (KS 30) and susceptible (Combine Kafir-60) cultivars 

in the field. The reduction in grain yield of susceptible cultivars 

was caused by smaller seed size and number of seeds per head as a 

result of leaf damage. Seed quantity rather than quality was more 

severely damaged. Hackerott and Harvey (17) reported that heterozygous 

resistant hybrids will tolerate fewer greenbugs than homozygous 

resistant hybrids. 

Kofoid et al. (24) studied the relationship of greenbug resistance 

to various sorghum agronomic traits by evaluating 100 resistant and 

100 susceptible s2 progenies from a random mating population in the 

presence and absence of greenbugs. With no greenbugs present the popu­

lations differed in none of the traits studied, while in the presence 

of greenbugs the resistant population had better agronomic characters. 



CHAPTER III 

MATERIALS AND METHODS 

Parents 

Five bloomless and four sparse-bloom sorghum lines were used to 

study the number of genes involved in the inheritance of the bloomless 

and sparse-bloom mutants in sorghum. 

Bloomless lines used were RWD 3 X Weskan-4-3-1-1-2, Redbine-60, 

Restorer Combine Kafir-60, Brooks, and Cyto 13 X Tan Sugar Drip-1-3-1-1 

(Table I). Bloomless RWD 3 X Weskan-4-3-1-1-2 and Cyto 13 X Tan Sugar 

Drip-1-3-1-1 appeared as mutants in early generation breeding rows in 

the Oklahoma breeding program. Bloomless Redbine-60 originated in the 

DeKalb breeding program at Lubbock, Texas. Bloomless R Combine Kafir-

60 was developed in the Kansas breeding program at Hays, Kansas. 

Bloomless Brooks was developed or discovered by the late J. S. Brooks 

as a genetic stock. Lines were assigned the genetic designation for 

the bloomless trait, bm, plus a number to indicate the gene. 

Sparse-bloom lines were a Redlan derivative, Redlan X Wiley-

1221122, Martin, and Redlan X Y10-Calico-1-1 (Table II). Sparse-bloom 

Redland derivative and Redlan X Y10-Calico-1-1 appeared as mutants in 

segregating rows in the Oklahoma breeding program. Sparse-bloom 

Redlan X Wiley 1221122 originated from the sparse-bloom Wiley parent in 

the Oklahoma program. Sparse-bloom Martin was developed in the Kansas 

13 



TABLE I 

BLOOMLESS SORGHUM PARENTAL LINES WITH 
APPROPRIATE GENETIC DESIGNATION 

Parent Genetic Designation 

RWD 3 X Weskan-4-3-1-1-2 

Redbine-60 

R Combine Kafir-60 

Brooks 

Cyto-13 X Tan Sugar Drip-1-3-1-1 

TABLE II 

SPARSE-BLOOM SORGHUM PARENTAL LINES WITH 
APPROPRIATE GENETIC DESIGNATION 

Parent Genetic Designation 

Redlan Deriv 

Redlan X Wiley-1221122 

Martin 

Redlan X Y10-Calico-1-1 

14 
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program at Hays, Kansas. Lines were assigned the genetic designation 

for the sparse-bloom trait, h, plus a number to indicate the gene. 

The number assigned to the bloomless and sparse-bloom parental 

lines was an arbitrary, temporary designation until determination was 

made as to the number of genes involved. 

Crosses and Backcrosses 

A diallel set of crosses among the five bloomless and four sparse­

bloom parental lines was attempted during the summer of 1976 in the 

field at the Perkins Agronomy Research Station. Twenty-four of the 

cross combinations were grown in the winter nursery in Puerto Rico, or 

in the greenhouse in Oklahoma during the winter of 1976-1977. Because 

of the use of cytoplasmic male-sterile female parents in making some 

of the crosses, some of the resulting F1 plants in some of the combina­

tions were all completely male sterile. This necessitated backcrossing 

the sterile F1 plants to one or both parents to obtain seed. For con­

venience in the analysis of data the crosses were grouped into four 

types of crosses: bloomless parent X bloomless parent (Table III), 

sparse-bloom parent X sparse-bloom parent (Table IV), bloomless parent 

X sparse-bloom parent (Table V), and backcrosses (Table VI). The F1 

and parental plants were classified for the presence or absence of 

bloom (See Tables III, IV, V, and VI). 

Growing of the F2 and BC1 Generations 

The 20 F2 and 11 BC 1 populations were planted at the Perkins 

Agronomy Research Station, Perkins, Oklahoma, on 13 June 1977. The 

soil was Teller loam, a member of the fine-loamy, mixed, thermic 
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TABLE III 

SUMMARY OF BLOOMLESS X BLOOMLESS CROSSES 

Cross F 1 BlooJ/ Cross F1 
1/ Bloom-

msbm1 X bm2 + msbm1 X bm5 + 

msbm1 X bm3 + bm5 X bm2 

msbm1 X bm4 + 

1.1+ = bloom 
bloomless 

TABLE IV 

SUMMARY OF SPARSE-BLOOM X SPARSE-BLOOM CROSSES 

Cross F1 
1/ Bloom - Cross F1 

1/ Bloom-

h2 X h1 + h3 X h1 + 

h2 X h4 + h3 X h4 + 

]) + = bloom 
- = bloomless 
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TABLE V 

SUMMARY OF BLOOMLESS X SPARSE-BLOOM CROSSES 

Cross Fl Bloom~/ Cross Fl 
1/ Bloom-

hl X bm3 + h3 X bm2 + 

hl x bm5 + h3 X bm3 + 

h2 x bm2 + h3 X bm4 + 

h2 X bm3 + msbm1 X h1 + 

h2 X bm4 + msbm1 X h4 + 

h2 x bm5 + 

!/+=bloom 
- = bloomless 

TABLE VI 

SUMMARY OF BACKCROSSES 

Cross Fl BlooJ::I Cross Fl BloonJ:-1 

(msbm1 X bm2) X bm1 + (h2 X bm1) X h2 + 

(msbm1 X bm2) X bm2 + (h2 X bm1) X bm1 + 

(msbm1 x bm5) X bm1 + (h2 x bm5) X h2 + 

(h3 X h2) X h2 + (h3 X bm1) X h3 + 

(h3 X h2) X h3 + (h3 X bm1) X bm1 + 

(h3 x bm5) X h3 + 

!/+ = bloom 
- = bloomless 
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family of Udic Argiustolls. Fertilizer was applied at the rate of 

133 kg N/ha of 45-0-0 and 114 kg K20/ha broadcast preplant. The ex-

perimental area was irrigated on 20 July 1977, with approximately 5 em 

of water being applied. Experimental rows were 10.4 m long and 91.4 

em apart. Plants were thinned after emergence to one plant every 15.2 

em. Each population consisted of seed from at least two F1 generation 

plants. Two rows were seeded with each source. The total number of 

plants in each population ranged from 38 to 383, with most having at 

least 175 plants. 

Approximately 6 weeks after planting, during the early heading 

stage, plants were classified as bloom, bloomless, or sparse bloom. 

This was done by visual observation of the plants and corresponded to 

the time when the bloom reached its highest concentration. 

Statistical Analysis 

. 2 
The chi-square (X ) goodness of fit test was used as the statis-

tical test of segregation ratios. The .05 level was used as the sig-

nificance level. 



CHAPTER IV 

RESULTS AND DISCUSSION 

F1 Generation 

A bloom F1 was produced in all crosses except one. The bloom F1 

was apparently the result of heterozygosity at the loci in question. 

A bloom F1 in a bloomless X bloomless cross resulted from a dominant 

Bm gene and a recessive bm gene at each of two separate loci (Bm.bm. 
1 1 

Bm.bm.). A bloom F1 in a sparse-bloom X sparse-bloom cross had a 
J J 

dominant H gene and a recessive h gene at each of two separate loci 

(HihiHjhj). The bloom F1 in a bloomless X sparse-bloom cross had a 

dominant Bm allele and a recessive bm allele at one locus, with a 

dominant H allele and recessive h allele at the second locus (BmbmHh). 

Bloomless X Bloomless Crosses 

The classification of F2 plant types of bloomless X bloomless 

crosses are given in Table VII with chi-square and probability values. 

Observed numbers were obtained by assigning each plant to the bloom or 

bloomless classification on the basis of presence or absence of bloom. 

Expected numbers were obtained under the assumption of a 9 bloom:7 

bloomless two-gene segregation ratio with epistasis in the F2 • The 

.05 level was the significance level under which the hypothesis was 

accepted or rejected. At least one dominant Bm allele is required at 

each locus for expression of bloom in the F2 . Bloomless plants in the 
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TABLE VII 

CLASSIFICATION OF F2 PLANT TYPES OF BLOOMLESS X BLOOMLESS 
CROSSES WITH CHI-SQUARE AND PROBABILITY VALUES 

Cross Number of Plants in Classes 1 Values 
Bm bm h Total x2 p 

Expected Ratio 9:7 

msbm1 X bm2 (0)2 84 53 137 1.43 .25-.10 
(E)3 77.1 59.9 

msbm1 X bm3 (0) 162 131 293 0.11 .75-.50 
(E) 164.8 128.2 

msbm1 X bm4 (0) 199 147 346 0.22 .75-.50 
(E) 194.6 151.4 

msbm1 x bm5 (0) 73 59 132 0.05 .90-.75 
(E) 74.3 57.7 

bm5 X bm2 (0) 141 

1 
bloomless; h = sparse-bloom Bm = bloom; bm = 

2observed values 
3Expected values 



F2 result from at least one locus with the homozygous recessive bm 

allele (bm.bm. or bm.bm.), plus the double recessive homozygote. 
1 1-- -- J J 

Of the seven bloomless individuals three resemble one parent, three 
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resemble the other parent, and one is the double recessive homozygote. 

When the bm allele is homozygous at one locus the bloom (Bm) allele at 

another locus is not expressed--single recessive epistasis. 

An F2 population of 84 bloom and 53 bloomless individuals was 

produced in the msbm1 (RWD 3-Weskan) X bm2 (Redbine-60) cross. The 

probability level of .25-.10 indicated a reasonable fit to the hypo-

thesis. Genes bm1 and bm2 appeared to be different. A probability 

level of .75-.50 was indicated from F2 data of the msbm1 X bm3 (Restor­

er Combine Kafir-60) cross. Based on the population of 162 bloom and 

131 bloomless individuals the bm1 and bm3 genes appeared to be not 

identical. 

The cross of msbm1 X bm4 (Brooks) also produced a probability 

level of .75-.50. Size of the F2 population was quite large, 346 

individuals, with 199 bloom and 147 bloomless individuals. The fit of 

the data with the expected values indicated that genes bm1 and bm4 were 

different. A very strong fit of the data was apparent in the msbm1 X 

bm5 (Cyto-13 X Tan Sugar Drip) cross. Observed and expected numbers 

were almost equal (73 bloom and 59 bloomless individuals observed 

versus 74.3 bloom and 57.7 bloomless individuals expected). The .90-

.75 probability level indicated that the bm1 and bm5 genes were not 

the same. 

In the cross of bm5 X bm2 a bloomless F1 was found. When F2 

progeny were observed in the field no bloom and 141 bloomless individ-

uals were identified. Segregation for height was apparent. It appears 



that proposed genes bm5 and bm2 are the same. This conclusion is 

drawn based on the segregation for height, and a bloomless F1 • 

Sparse-Bloom X Sparse-Bloom Crosses 

The classification of F2 plant types of sparse-bloom X sparse­

bloom crosses with calculated chi-square and probability values are 

given in Table VIII. Classification of each plant into either the 

bloom or sparse-bloom group was done by visual observation of the 
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amount of bloom produced. Expected segregation ratio in the F2 was 9 

bloom:7 sparse-bloom with the assumption of two gene involvement. The 

.05 level was used as the acceptance level. The F2 bloom plants have 

at least one dominant H allele at each locus. Sparse-bloom F2 plants 

contain two recessive sparse-bloom h alleles at one locus (hihi-- or 

h.h.), which are expressed regardless of alleles at the other locus-­
-- J J 

single recessive epistasis. Three of the seven sparse-bloom types 

resemble one parent, three resemble the other parent, and one is the 

double recessive homozygote. Expression of sparse bloom ranges from 

a very light wax covering .to a heavier wax covering intermediate to the 

heavy bloom condition. In the parental lines of this study the h 2 

(Redlan-Wiley) type produced the most bloom, the h1 (Redlan deriv) and 

h3 (Martin) types intermediate amounts, and the h4 (Redlan x YlO-Calico) 

type the least bloom. 

An F2 population of 202 bloom and 160 sparse-bloom individuals 

were found in the h2 (Redlan-Wiley) X h1 (Redlan deriv) cross. This 

was in close agreement with 203.6 bloom and 158.4 sparse bloom expected 

individuals. The probability of .90-.75 gives a strong fit of the data. 

Genes h2 and h1 appeared to be different. 
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TABLE VIII 

CLASSIFICATION OF F2 PLANT TYPES OF SPARSE-BLOOM x SPARSE-BLOOM 
CROSSES WITH CHI-SQUARE AND PROBABILITY VALUES 

Crosses Number of Plants in Classes 1 Values 
Bm bm h Total x2 p 

Expected Ratio 9:7 

h2 X h1 (0)2 202 160 362 0.03 .90-.75 
(E)3 203.6 158.4 

h2 X h4 (0) 197 119 316 4.76 .05-.025 
(E) 177.8 138.2 

h3 X h1 (0) 196 125 321 3.02 .10-.05 
(E) 180.6 140.4 

h3 X h4 (0) 181 130 311 0.48 .50-.25 
(E) 174.9 136.1 

1 
h = sparse-bloom 2Bm = bloom; bm = bloomless; 

Observed values 
3Expected values 
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The cross of h2 with h4 (Redlan x YlO-Calico) produced an F2 pop­

ulation of 197 bloom and 119 sparse-bloom individuals. Based on ex­

pected numbers of 177.8 bloom and 138.2 sparse-bloom individuals, a 

significantly larger rtumber of bloom individuals were observed. As a 

result the probability, .05-.025, exceeds the .05 significance level. 

Yet genes h2 and h4 appeared to be different. Several reasons for 

this discrepancy are possible. The sparse-bloom gene series, the h 

alleles, caused production of varying amounts of bloom. Of the alleles 

in question h2 produced the most. This heavier covering of bloom in 

the F2 could have been mistaken for full bloom and individual plants 

misclassified. Misclassification of 5% of the population in this man­

ner would indicate significance. Penetrance is also a possible expla­

nation. Some plants with the bloom phenotype may actually have a 

sparse-bloom genotype, yet for some unexplained reason this was not ex­

pressed. Random chance could also play a role. For some unknown rea­

son the ratios did not fit. Although a seemingly adequate population, 

316 individuals, was grown a larger population may be needed. 

A low probability level, .10-.05, was found from analysis of the 

h3 (Martin) X h1 cross. While more bloom types were observed than ex­

pected (196 and 180.6, respectively) sufficient fit of the data was 

indicated with the .05 significance level. The genes h3 and h1 are 

not the same genes. Reasonable fit of the data was found from examin­

ing the F2 population of the h3 X h4 cross. A probability level of 

.50-.25 indicated the presence of two separate genes. 

Bloomless X Sparse-Bloom Crosses 

Classification of the F2 plant types of bloomless X sparse-bloom 
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TABLE IX 

CLASSIFICATION OF F2 PLANT TYPES OF BLOOMLESS X SPARSE-BLOOM 
CROSSES WITH CHI-SQUARE AND PROBABILITY VALUES 

Cross Number of Plants in Classes 
1 Values 

Bm bm h Total x2 p 

Expected Ratio 9:4:3 

h1 X bm3 (0)2 20 10 10 40 1.11 .75-.50 
(E)3 22.5 10 7.5 

h1 X bm5 (0) 67 32 19 118 0.66 .75-.50 
(E) 66.4 29.5 22.1 

h2 X bm2 (0) 208 79 63 350 1.56 .50-.25 
(E) 196.9 87.5 65.6 

h2 X bm3 (0) 217 85 46 348 8.03 .025-.01 
(E) 195.8 87 65.2 

h2 X bm4 (0) 186 97 41 324 9.66 .01-.005 
(E) 182.2 81 60.8 

h2 X bm5 (0) 19 10 9 38 0.78 .75-.50 
(E) 21.4 9.5 7.1 

h3 X bm2 (0) 204 86 78 368 1.60 .50-.25 
(E) 207 92 69 

h3 X bm3 (O) 212 101 70 383 0.39 .90-.75 
(E) 215.4 95.8 71.8 

h3 X bm4 (0) 158 57 54 269 2.11 .50-.25 
(E) 151.3 67.2 50.5 

msbm1 X h1(0) 196 111 57 364 6.62 .05-.025 
(E) 204.8 91 68.2 

msbm1 X h4 (o) 178 87 67 332 0.96 .75-.50 
(E) 186.8 83 62.2 

1 h = sparse-bloom Bm = bloom; bm = bloomless; 
~Observed values 
Expected values 
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crosses with the chi-square analysis and associated probability levels 

are given in Table IX. Observed numbers were obtained by assigning 

plants to the proper classification--bloom, bloomiess, or sparse-bloom. 

Expected ratios and statistical analysis was done on the basis of a 

9 bloom:4 bloomless:3 sparse bloom ratio. The .05 level was used as 

the significance level. Two distinct genes were involved: Bm, causing 

bloom, and bm, causing bloomlessness; H, causing heavy bloom but not 

expressed with bm, and h, causing sparse-bloom. For F2 expression of 

bloom one locus must contain at least one dominant Bm allele and the 

other locus must contain at least one dominant H allele (B~H_). The 

plants are heavily bloomed. Expression of the bloomless characteristic 

requires one locus to be homozygous recessive for the bm allele, regard­

less of the alleles at the second locus. The double homozygous reces­

sive (bmbmhh) genotype is also bloomless. Double recessive epistasis 

is responsible for expression of the bloomless trait as each recessive 

allele is normally expressed in the homozygous condition. The bloom­

less plant genotypes can be bmbmHH, bmbmHh, or bmbmhh. The allele h 

in the homozygous recessive condition (hh) and at least one dominant 

Bm gene at the second locus induces the expression of sparse bloom. 

Genotypes of these plants are BmBmhh or Bmbmhh. 

The cross of h1 (Redlan deriv) X bm3 (Restorer Combine Kafir-60) 

produced an F2 population which when compared to the expected ratio 

resulted in a chi-square value and probability level of .75-.50. This 

indicated the presence of two genes, h1 and bm3 . However, this predic~ 

tion was based on a small F2 population of 40 plants. If possible 

a larger population should be grown to provide greater assurance of 

this conclusion. When the h1 type was crossed with bm5 (Cyto 13 X Tan 
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Sugar Drip) the results fit the expected ratio of 9 bloom:4 bloomless: 

3 sparse-bloom. Observed and expected results are nearly equal and a 

strong fit is indicated by the .75-.50 probability level. This indi­

cates the presence of two genes. Acceptance of the hypothesis of two 

genes is also possible when examining results of the F2 of the h2 

(Redlan-Wiley) X bm2 (Redbine-60) cross. Although observed plant types 

deviate from expected types, particularly with the bloom and bloomless 

types, an adequate fit is indicated by the .50-.25 probability level. 

In two crosses involving h2 (h2 X bm3 and h2 X bm4) the probabil­

ity level falls below the .05 acceptance level. In the first cross 

significantly fewer sparse-bloom types were observed than expected, and 

in the second cross more bloomless indiv~duals were observed than ex­

pected yet the genes in question are different. Several plausible ex­

planations for this discrepancy exist. Since the h2 allele induces 

production of heavy sparse bloom these plants could have been misclass­

ified as bloom. Misclassification of 5% of such types would show sig­

nificance. Penetrance is also a possible explanation, particularly 

when more bloomless individuals occur. This is possible as bloomless 

types cannot be misclassified. Random chance and a population level 

too small to fit the ratio are also possible explanations. 

A small population of 38 F2 individuals was produced in the h2 X 

bm5 cross. The probability level of .75-.50 indicates a good fit of 

the data, and the presence of different genes. Larger populations of 

this cross should be grown to confirm this result. The cross of h3 

(Martin) X bm2 produced a reasonable fit of the data with the expec­

ted. A probability level of .50-.25 indicates the presence of differ­

ent genes. 
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A large number of individuals, 383, were produced in the cross of 

h3 X bm3 • Observed numbers agreed closely with expected values. The 

probability level of .90-.75 indicated a strong fit of the data to a 

9 bloom:4 bloomless:3 sparse bloom ratio and the presence of two genes­

h3 and bm3 • When h3 was crossed to bm4 a fairly large population was 

produced. Based on the probability level of .50-.25 it appears that 

the h3 and bm4 genes are different. 

The cross of msbm1 (RWD 3-Weskan) X h1 (Redland deriv) produced a 

probability level of .05-.025, below the .05 significance level. Fewer 

bloom and sparse-bloom individuals and more bloomless individuals were 

observed than expected. There appear to be two possible explanations. 

Penetrance, when a phenotype is not expressed yet the gene is present, 

appears to be the primary explanation. Such action would allow the 

expression of more bloomless individuals. Additionally, although a 

large population was grown it might not have been large enough to allow 

the observed number to equal expected numbers.. The alleles msbm1 and 

h1 appeared to be different. 

When msbm1 is crossed to h4 (Redlan X YlO-Calico) good agreement 

is shown between observed and expected results. The probability level 

was shown to be .75-.50. Genes msbm1 and h4 appear to be different. 

Backcrosses 

The classification of backcross1 plant types with the chi-square 

and probability levels are given in Table X. Expected numbers were 

obtained by assigning plants to the bloom and bloomless. classes in a 

backcross to the bloomless parent or the bloom and sparse-bloom 

classes in a backcross to the sparse-bloom parent. Expected numbers 
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TABLE X 

CLASSIFICATION OF BC1 PLANT TYPES WITH CHI-SQUARE 
AND PROBABILITY VALUES 

Number of Plants in Classes 1 Values 
Backcross Bm bm h Total x2 p 

Expected R.a. tio 1:1 

(msbm1 X bm2) X bm1 (0)2 37 46 83 0.98 .50-.25 
(E)3 41.5 41.5 

(msbm1 X bm2) X bm2 (0) 59 50 109 0.74 .50-.25 
(E) 54.5 54.5 

(msbm1 x bm5) X bm1 (0) 54 73 127 2.84 .10-.05 
(E) 63.5 63.5 

(h3 X h2) X h2 (0) 45 32 77 2.20 .25-.10 
(E) 38.5 38.5 

(h3 X h2) X h3 (0) 98 76 174 2.78 .10-.05 
(E) 87 87 

(h2 X bm1) X h2 (0) 146 105 251 6.70 .01-.005 
(E) 125.5 125.5 

(h2 X bm1) X bm1 (0) 126 127 253 0.004 .95-.90 
(E) 126.5 126.5 

(h2 x bm5) X h2 (0) 151 119 270 3.80 .10-.05 
(E) 135 135 

(h3 X bm1) X h3 (0) 160 130 290 3.10 .10- • .OS 
(E) 145 145 

(h3 X bm1) X bm1 (0) 118 146 264 2.96 .10-.05 
(E) 132 132 

(h3 X bm5) X h3 (0) 142 152 294 0.34 .75 .... 50 
(E) 147 147 

1 h = sparse bloom Bm = bloom; bm = bloomless; 
2observed values 
3Expected values 
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were obtained and statistical analysis done on the basis of a 1 bloom: 

1 bloomless or 1 bloom:l sparse-bloom ratio, depending on the recurrent 

parent. The .05 level was the significance level. 

Each original cross produced a bloom F1 which was sterile. The 

sterile F1 's were then backcrossed to one parent, or to both parents 

if possible. Expression of bloom in any backcross population·requires 

the presence of a dominant Bm gene at one locus and heterozygosity at 

the second locus. The expression of the bloomless character in a 

backcross genotype requires one locus to be homozygous for the reces­

sive bm allele (Bm_bmbm). Expression of the sparse bloom character 

requires one locus to be homozygous for the recessive h allele (Bm_hh). 

The F1 of the msbm1 (RWD 3-Weskan) X bm2 (Redbine-60) cross was 

backcrossed to both parents. Both backcross populations were of moder­

ate size. In both cases the probability level was .50-.25. This indi­

cates a good fit of the data, and substantiates data in Table VII on 

this cross indicating that genes or loci bm1 and bm2 appear to be dif­

ferent or independent. 

The F1 of the msbm1 X bm5 (Cyto-13 X Tan Sugar Drip) was back­

crossed to bm1 . More bloomless individuals were observed than expected 

yet the probability level was nonsignificant -.10-.05. It appears 

that genes msbm1 and bm5 are not identical. This supports data in 

Table VII on this cross. 

Backcrosses to both parents were obtained from the sterile h3 

(Martin) X h2 (Redlan-Wiley) F1• In both backcrosses more bloom and 

fewer sparse-bloom individuals were observed than expected. Probabil­

ities were .25-.10 for the h2 backcross and .10-.05 for the h3 back-



cross.. While the probabilities are low they are not significant. 

Genes h3 and h2 appear to be different. 
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While results of the backcross of h2 X bm1 to both parents con­

flict, the genes are different. When backcrossed to bm1 a very strong 

fit was indicated, the probability of .95-.90 indicating close agree­

ment. Yet when the F1 was backcrossed to the sparse-bloom h2 parent 

a highly significant probability level of .01-.005 was obtained. There 

are several possible explanations. Penetrance, when the sparse geno­

type does not express itself is most probable. Misclassification of 

sparse-bloom types as bloom types, could cause significance. Random 

chance and too small a population are also possible explanations. 

A low probability, .10-.05, was obtained in the (h2 X bm5) X h2 

backcross. More bloom types than expected caused the deviation. How­

ever, this level was not significant. Therefore, h2 and bm5 are dif­

ferent independent genes. This substantiates data in Table IX. 

The sterile h3 X bm1 F1 was backcrossed to both parents. In the 

sparse-bloom backcross more sparse-bloom progeny were observed than 

expected, while in the bloomless backcross more bloomless progeny were 

observed than expected. These deviations were not significant. 

Although the probability level was low in both cases, .10-.05, the 

presence of two genes is indicated. 

A good fit of the data was apparent in the (h3 X bm5) X h3 back­

cross. The closeness of observed and expected numbers gave a probabil­

ity level of .75-.50. Genes h3 and bm5 appear to be different. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The purpose of the study was to determine the number of genes 

involved in the inheritance of the bloomless and sparse-bloom mutants 

in sorghum [Sorghum bicolor (L.) Moench]. Inheritance studies were 

conducted with five bloomless and four sparse-bloom parental lines. 

Twenty-four of thirty-six possible crosses among the nine lines were 

studied. For purposes of discussion the crosses were grouped into four 

categories: bloomless X bloomless, sparse-bloom X sparse-bloom, bloom­

less X sparse-bloom and backcrosses which were made to male sterile F1 

plants of the original crosses. All studies were conducted in the 

field using segregating F2 and BC 1 populations. Statistical analysis 

was done using the chi-square test for goodness of fit. 

Among the five bloomless X bloomless crosses examined four had 

F1 's with bloom and their F2 's segregated in a ratio of 9 bloom to 7 

bloomless. This indicated different loci were involved. In the fifth 

cross the F1 was bloomless and the F2 was all bloomless, although the 

population segregated for other characters. 

Among the four sparse-bloom X sparse-bloom crosses examined all 

had F1 1 s with bloom and their F2 's segregated in a ratio of 9 bloom to 

7 sparse-bloom. This indicated different loci were involved. One 

cross (h2 X h4) did not quite fit the 9:7 ratio statistically, but the 

observed ratio did indicate two different loci were involved. 

32 
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Among the eleven bloomless X sparse-bloom crosses examined all 

had F1's with bloom and F2 1 s that segregated in a ratio of 9 bloom tb 

4 bloomless to 3 sparse-bloom, indicating that different loci were 

involved. Three crosses (h2 X bm3 , h2 X bm4, and bm1 X h 1) did not 

satisfy the test, but the observed ratio did indicate two different 

loci were segregating. 

The backcross data showed segregation in a ratio of 1 to 1 and 

provided supportive information on two of the bloomless X bloomless 

crosses, and on one of the bloomless X sparse-bloom combinations. 

Data on the h3 X h2 cross indicated two different loci, and the data 

on h2 X bm1 , h3 X bm1 , and h3 X bm5 indicated independent inheritance. 

It was concluded that among the cross combinations of bloomless 

and sparse-bloom parental lines tested, only those designated as bm2 

and bm5 appeared to be the same. All others were inherited indepen­

dently of each other. Further study is needed to determine: 

a) why the h2 allele does not consistently segregate 

in accordance with the two gene hypothesis 

b) the range of expression of the sparse bloom 

character 

c) the inheritance of crosses from the diallel not 

included. here. 
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