PETROGRAPHY AND GEOCHEMISTRY OF THE BUTTERLY DOLOMITE, AND ASSOCIATED SPHALERITE MINERALIZATION, TURNER PROSPECT, ARBUCKLE MOUNTAINS, OKLAHOMA

By

PETER VAL KRANAK Bachelor of Science University of Washington Seattle, Washington

1974

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1978 Thesis 1978 K89p

PETROGRAPHY AND GEOCHEMISTRY OF THE BUTTERLY DOLOMITE, AND ASSOCIATED SPHALERITE MINERALIZATION, TURNER PROSPECT, ARBUCKLE MOUNTAINS, OKLAHOMA

Thesis Approved:

Thesis Adviser College Graduate Dean the of

PREFACE

The petrology and geochemistry of the Arbuckle Group have been neglected recently, especially in light of the wealth of new information on carbonates and the tectonic history of the area. This study deals with the Ordovician Butterly Dolomite, one of seven formations of the Arbuckle Group in the Arbuckle Mountain area.

The author wishes to thank Dr. John Trammell for suggesting the problem for this thesis study, for being the principal thesis advisor even though he left the OSU Geology Department in June 1977, and for giving all his help. Appreciation is also extended to Dr. Gary F. Stewart for his helpful criticism, help with statistics, and for serving technically as principal advisor in Dr. John Trammel's absence. Thanks also go to Dr. Zuhair Al-Shaieb for his gracious help, for the use of the facilities of the geochemical lab, and assistance in the atomic absorption analysis. Appreciation also is expressed to Mr. Bob Handfield of Texasgulf, Inc. for permission to collect samples in the Turner Prospect Area, and to Mr. Fred Chapman, Jr. for giving access to the Chapman Ranch.

Finally, the author wishes to give special thanks to Peg, my wife, for her typing, help, and patience.

iii

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
•	Previous Work	1
II.	METHODOLOGY	7
	Sampling	7 10 11 12 12
III.	REGIONAL SETTING	13
	Introduction	13 16
IV.	PETROLOGY	19
	Lithology Petrography Fabric Allochems Noncarbonate Grains Detrital Clay Minerals Cements Rock Fragments Sulfides and Oxides Replacement Dolomite X-Ray Diffraction and Cathodolumines-	19 20 22 24 30 30 32 32 33 33
		35
۷.	ZINC MINERALIZATION	40 40 40
VI.	GEOCHEMISTRY	45
	Statistical Treatment of Geochemical Data	45

Chapter

Page

Introduction The Kolmogorov-Smirnov Test Mann-Whitney U-Test	45 46 53 53 55 56 56 57 58 59
VII. PETROGENESIS	61
VIII. CONCLUSIONS	68
SELECTED BIBLIOGRAPHY	71
APPENDICES	77
APPENDIX A - STRATIGRAPHIC SECTION	78
APPENDIX B - MODAL ANALYSES OF THE BUTTERLY DOLOMITE	91
APPENDIX C - CHEMICAL ANALYSES OF THE BUTTERLY DOLOMITE	99
APPENDIX D - STATISTICS	106
APPENDIX E - SARGENT'S CHEMICAL ANALYSES OF THE BUTTERLY DOLOMITE	115

v

LIST OF TABLES

ſable		Pa	age
I.	Detrital Clay Minerals of the Butterly Dolomite		31
II.	Trace Elements in Sphalerites and Summary Statistics in PPM		42
III.	Mann-Whitney U-Test or Wilcoxon Two-Sample Test Results		48
IV.	Means for Chemical Data		50

LIST OF FIGURES

Figu	re	Page
1.	Locality of the Arbuckle Mountains and study area	2
2.	Stratigraphic units of the Timbered Hills and Arbuckle Group in the Arbuckle Anticline Area .	3
3.	Location map of the "S" section	8
4.	Geologic map of Turner Prospect Area, showing location of the "B" drill core and the "P", "T", and "Z" sections	9
5.	Reconstruction of the Arbuckle Anticline Region prior to extrusion of the Carlton Rhyolite	14
6.	Important structures of the Arbuckle Mountains .	15
7.	Tectonism of the Arbuckle Mountains during Pennsylvanian time	17
8.	Photograph of storm layers found in the "T" section	21
9.	Burrow in pervasively altered dolomite	23
10.	Detrital quartz with authigenic overgrowth. Detrital feldspar with authigenic overgrowth resulting in rhombohedral cross-section	26
11.	Fractured detrital feldspar with calcite filling.	28
12.	Dolomite intraclast with fibrous chert filling in the "S" section	29
13.	Late-stage diagenetic dolomite filling corroding early-diagenetic dolomite	36
14.	Cathodoluminescence of late-stage diagenetic dolomite filling a vug	37
15.	Sphalerite, tectonic vein dolomite, and brecciated host	42

Figu	re	Page
16.	Paragenetic events of the Butterly Dolomite and the sphalerite mineralization of the Turner	
	Prospect	62
17.	List of symbols	79
18.	Correlation chart of the Butterly Dolomite	80
19.	Explanation of crystallinity	107

1, Cot

CHAPTER I

INTRODUCTION

The Arbuckle Mountain region of southern Oklahoma (Fig. 1) is of great interest to geologists. In the past, the 11,000 ft. of fossiliferous Late Cambrian through Devonian strata constituted one of the best exposures in the Midcontinent region. More recently, it is recognized as a site of an ancient aulacogen and possesses elements of both the craton and aulacogen.

The present work is concerned only with the Butterly Dolomite, one of seven recognized formations in the Arbuckle Group (Fig. 2), and is restricted to Murray County.

Previous Work

The first mapping of the Arbuckle Mountains was done by Taff (1902, 1903, 1904), who delimited the boundaries of the Arbuckle Limestone and recognized the Arbuckle Anticline. During the next 50 years, stratigraphic and paleontologic work was done without the aid of additional detailed field work. Contributors were Ulrich (1911, 1932), Decker and Merritt (1928), Decker (1936, 1939a,b,c), Bridge (1936, 1937), Ulrich and Cooper (1938), and Frederickson (1941, 1948a, 1948b, 1949). Arbuckle Limestone was raised to group

1 .

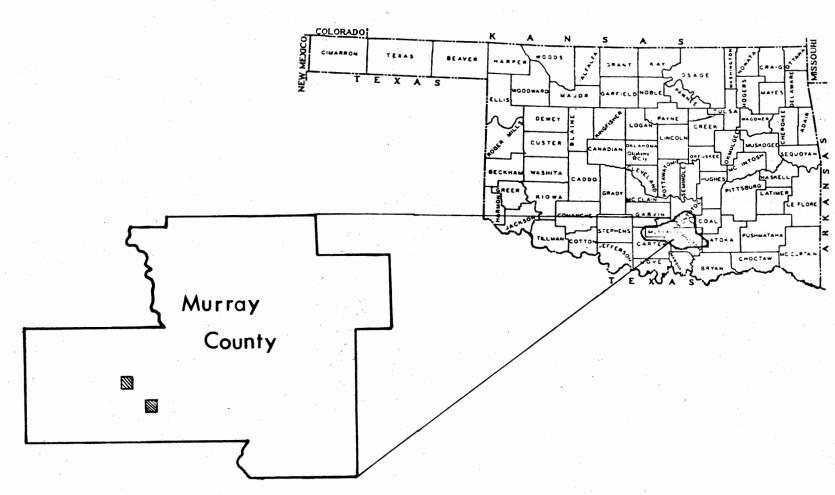


Fig. 1.-Locality of Arbuckle Mountains and study area (hachured).

N

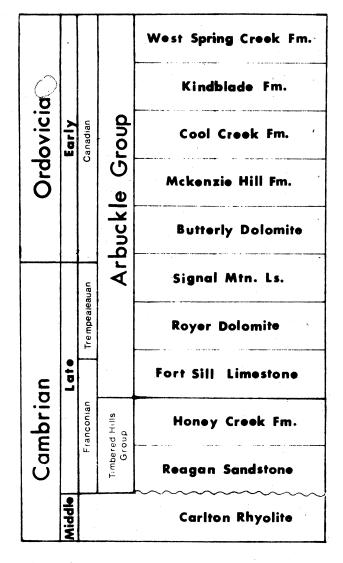


Fig. 2.-Stratigraphic units of the Timbered Hills and Arbuckle Group in the Arbuckle Anticline Area. status by Decker.

Ham (1951, 1955) mapped the Arbuckle Mountains in greater detail. His cross-sections show the regional gradation within the Arbuckle and Timbered Hills Groups from limestone in the west to dolomite in the east.

4

The name Butterly Dolomite was first applied by Decker (1939a) to the dolomite unit above the Signal Mountain Limestone and below the McKenzie Hill Limestone (Fig. 2) at the southeast end of the West Timbered Hills (Secs. 28 and 29, T1S, R1E). However, the best exposures and the type section (Ham, 1951) are found on the east side of U.S. Highway 77 (Sec. 18, T2S, R2E), southeast of the Chapman Ranch buildings. The thickness of 286 ft. reported by Decker (1939a) and Ham (1951) at this locality was measured earlier by Decker and Merritt (1928).

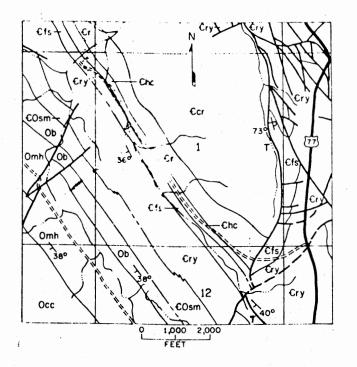
Decker and Merritt (1928) postulated that the Butterly and the Royer Dolomites are of primary origin, due to sharp contacts among strata of limestone and dolomite, where the rock types are interlayered, and because of the great strike-length of the Butterly and Royer. They also noted two types of relatively pure dolomite. One is fine-grained, and so sandy that it can be mistaken for sandstone; the other is coarse-grained and marble-like. According to Decker and Merritt (1928) these rock types are repeated over a short vertical distance, and in the Butterly there are 16 of these alternations. Their petrographic work characterized the Butterly as pleochroic, light-brown to colorless dolomite crystals ranging in length from 0.1 to 2 mm, with angular to rounded, sand-sized quartz. The quartz has undulatory extinction, and a few grains are rhombic, indicating a secondary nature. Fabric is mosaic with no evidence of recrystallization.

Ham (1951) was the first to recognize the Butterly as a facies of the limestones in the upper Signal Mountain and lower McKenzie Hill Formations. The Butterly thins westward in the Arbuckle Mountains from a maximum of 423 ft. in the east to 148 ft. in the west.

Ham's (1951) petrographic descriptions are similar to those of Decker and Merritt (1928). Ham recognized that the Butterly is not primary, but "diagenetic dolomite" and believed that dolomitization occurred on the sea floor. He pointed out that the Butterly clasts are in limestone of the lower McKenzie Hill, indicating an early diagenetic origin of the dolomite. Ham postulated that the dolomitizational process was complete by the time of the Arbuckle Orogeny (Late Pennsylvanian) because clasts of Arbuckle dolomite are in the Vanoss (Pontotoc) Conglomerate. Ham (1951) supported the pre-tectonic origin on the basis of modification of some dolomite rhombs by stylolites. He also suggested that generally the dolomite was not subsequently recrystallized.

Since Ham's monumental work, little additional work on the Butterly has been done. Stitt (1971) briefly described a measured section of the Butterly in his paleontological study of the Cambrian-Ordovician trilobites of the Timbered

Hills. Sargent (1969, 1974) also studied a few samples of the Butterly, petrographically and geochemically. Stitt's and Sargent's determinations of lithology and petrology closely agree with Ham's work and add little new information about the Butterly. Sargent's (1974) work in geochemistry, on the other hand, is used extensively on a comparative basis in this study, although he only analyzed 12 samples of the Butterly (Appendix E).


CHAPTER II

METHODOLOGY

Sampling

The dolomites were sampled in a manner that was intended to represent best the complete section of the Butterly Dolomite. This idealistic objective was accomplished only at one locality, "S" section, described previously by Stitt (1971). This section (NW $\frac{1}{2}$, SE $\frac{1}{2}$, Sec. 2, T2S, RIE) is located west of the East Timbered Hills Anticline and west of U.S. Highway 77 (Fig. 3). The section was measured with tape-and-Brunton, and one sample was taken from each stratum. One hundred and sixteen samples collected from "S" section are described in Appendix A.

Five other sections were measured and sampled in Sec. 28, T1S, R1E and in the Turner Prospect area (Fig. 4). The "T" section is a partial section of the upper third of the Butterly in SE¹/₄, SE¹/₄, NW¹/₄, Sec. 28, T1S, R1E. The "T" section is outside of the area of zinc mineralization and intensive fracturing and faulting. The "Z" section in SW¹/₄, NE¹/₄, NW¹/₄, Sec. 28, T1S, R1E (Fig. 4) represents the unmineralized upper third of fractured Butterly. The "P" sections (P5, P6, and P9) were measured in prospect pits, and are mineralized. These sections probably are within the upper

EXPLANATION

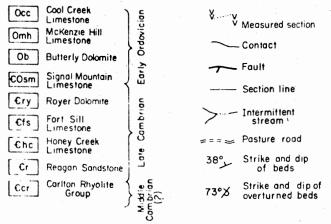
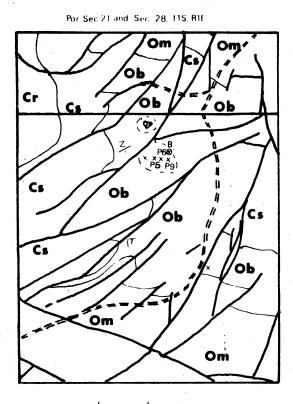



Fig. 3.-Location map of the "S"
 section (NW½, SE½, Sec.
 2, T2S, R1E). Modified
 after Stitt (1971).
 Geology mapped by Ham
 (1951).

0 1000 Feet

Road			
Measured Section	Z		
Contact		•	
Fault		•	
Open Pit	Ø		
Prospect Pit	· x		
McKenzie Hill Fm	Om		
Butterly Dolomite	ОЬ		,
Signal Mtn. Limestor	ne Cs		
Röyer Dolomite	Cr		
Mineralization	$\langle \rangle$		

Fig. 4.-Geologic map of Turner Prospect area, showing location of the "B" drill core and the "P", "T", and "Z" sections. Modified from Ham (1951).

third of the Butterly in SW¹₂, NW¹₂, NE¹₂, Sec. 28, T1S, R1E.

¥

One drill core was examined from a drill site in $SW_{\frac{1}{2}}$, $NW_{\frac{1}{2}}$, $NE_{\frac{1}{2}}$, Sec. 28, TIS, RIE. This core ("B") is now in the Oklahoma Geological Survey Core and Sample Library. The core is a sample of the lower two-thirds of the Butterly in the mineralized area. Its description is in Appendix A.

Chemical Analyses

After separating weathered material from relatively fresh material, samples were crushed in a ceramic jaw crusher, then pulverized for 10 minutes in a Spex ball mill using tungsten carbide balls and chamber. The sample were sieved to -80 mesh or finer, dried at 95°C for 1 hr., and weighed.

One-gram portions of the dried samples were dissolved in 40 ml of 10% hydrochloric acid. The samples were digested for 24 hrs. in a teflon beaker; for 6 of the 24 hrs., the samples were heated on an electric hot plate. The resulting solution was filtered for removal of insoluble residue and diluted to 50 ml with deionized water. To insure accurate determinations of strontium, cadmium, and chromium, 1% lanthanum was added to the solutions to be analyzed for these elements. Five sphalerites were processed in a similar manner, but with reagent-grade nitric acid and diluted to 100 ml.

Using a Perkin-Elmer 403 double-beam atomic absorption spectrophotometer, at manufacturer's recommended instrument settings, all of the carbonate samples were analyzed for Ca,

Mg, Li, Na, K, Sr, Pb, Mn, Fe, Zn, Cr, Ni, Cu, and Cd. The sphalerites were analyzed for Cu, Pb, Cd, Mn, and Fe.

The residues were dried, weighed, and checked by X-ray diffraction for carbonates and chlorides.

Clay Mineralogy

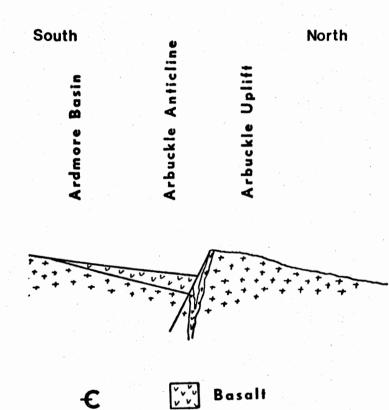
Representative samples of 25 rocks of the Butterly were crushed by hand in a mortar and pestle to -200 mesh or less. Each 20-gram sample was digested in 200 ml of sodium-acetate solution. The digested samples were stirred and allowed to settle before decanting and adding an additional 40 ml of fresh sodium-acetate solution to each sample. Each new solution was stirred and again allowed to react for 10 min. before being centrifuged for 10 minutes. Afterward, each solution was decanted and fresh sodium-acetate solution was added before repeating the centrifuging and decanting. Each collected sediment was washed twice with deionized water in a manner similar to that of the sodium-acetate solution. Each sample was mixed again with deionized water and the clay fraction was pipetted onto a clean porcelain slide and allowed to air-dry. The samples were analyzed using a Phillips-Norelco X-ray diffractometer at a rate of $^{\circ}20/1$ min. from $2^{\circ}-32^{\circ}$. Each sample was treated with ethylene glycol in a desiccator and X-rayed again to detect expandable clay. Another set of samples was heated to 450°C for 1 hr. in a muffled oven and X-rayed for chlorite.

X-Ray Diffraction of Thin-Sections

Thin-sections and some powdered samples were analyzed using a Phillips-Norelco X-ray diffractometer at a rate of $^{O}20/\frac{1}{2}$ min. with an internal standard of NaCl added. The reflection-peak positions of the (112) were measured carefully and compared to a chart for mole-percent magnesium. The chart used is from Scholle (1978, p. 228), which was modified from Goldsmith, Graf, and Heard (1961).

Petrology

Samples of the Butterly were sawed into slabs, polished with 400 and 600 grit to a smooth finish, and etched in 1.5% HCl for 5 minutes. The etched surfaces were studied under a binocular microscope with particular interest given to textures, structures, and insoluble constituents. Forty-six samples were then selected for thin-sectioning. Selected samples and thin-sections were stained with Alizarin Red-S and potassium ferricyanide by methods outlined by Dickson (1965) and Hutchison (1974).


CHAPTER III

REGIONAL SETTING

Introduction

The Arbuckle Mountain region of south-central Oklahoma is a triangular inlier of approximately 1000 sq. mi. (Ham and others, 1969). The region consists chiefly of the Arbuckle, Tishomingo, and Hunton anticlines, each bounded by faulted synclines or faults. This investigation is concerned only with the Arbuckle Anticline. The Arbuckle Anticline is separated from the other two main anticlines by the northwest-trending Washita Valley Fault, which forms the southern boundary of the Tishomingo Anticline. The Arbuckle Anticline is on the downthrown side south of the fault (Fig. 5).

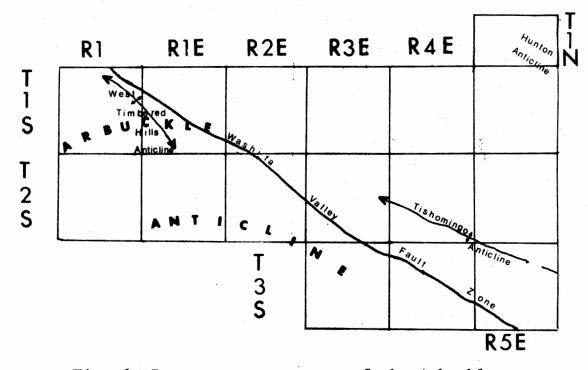
The Arbuckle Anticline has an axial trend of N60^OW and an areal extent of approximately 170 sq. mi. (Ham, 1951). The anticline is asymmetrical to overturned northward. On the northern limb is another northwest-trending anticline, the West Timbered Hills Anticline (Fig. 6). In the core of this doubly plunging anticline (Ham, 1951) the Cambrian Carlton Rhyolite crops out. The anticline is the northern boundary of the Arbuckle Anticline and is cut off to the north by the Washita Valley Fault (Fig. 6).

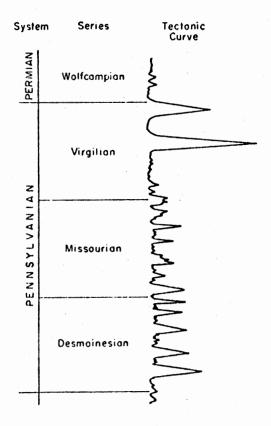
P€

Granitic Rocks

Fig. 5.-Reconstruction of the Arbuckle Anticline Region prior to extrusion of the Carlton Rhyolite. Modified after Pruatt (1975).

+ + + + +




Fig. 6.-Important structures of the Arbuckle Mountains. Modified after Ham and others (1969).

This study is limited to the Butterly Dolomite, in the west limb of the East Timbered Hills Anticline and the intermediate area between the two Timbered Hills anticlines in Murray County.

Tectonic Evolution

The tectonic evolution of the study area was dominated by the Southern Oklahoma Aulacogen. Pruatt (1975) concluded that the aulacogen originated during the Late Precambrian or the Cambrian as a cratonic rift valley. According to plate tectonics theory, the aulacogen formed as a failed arm of a triple junction associated with the opening of an ocean basin to the southwest (Hoffman and others, 1974; Pruatt, 1975). During the Late Cambrian, the rift valley and the adjacent cratonic platform began to subside, and formed a deep structural trough that persisted until Late Mississippian (Pruatt, 1975). This trough was filled with 11,000 ft. of Cambrian to Devonian marine sediments, twice as thick as their facies equivalents on the craton.

During Pennsylvanian time compressive tectonism affected the aulacogen. Ham and others (1969) recognized that the epeirogenic rise of the Hunton Anticline commenced early in Desmoinesian time. The uplift was slow, pulsating, without intense deformation (Fig. 7), and concluded early in Virgilian time. Ham also recognized two main periods of tectonism in the formation of the Arbuckle and Tishomingo Anticlines during Virgilian time. The stronger of the two periods

Tectonic Features of Uplifted Areas

Post-orogenic erosion of granitic basement rock.

Arbuckle orogeny Close folding of Arbuckle anticline and Ardmore basin; overturning and thrusting; collapse of eastern segment of southern Oklahoma geosyncline.

Early epeirogeny Slow, pulsating, but persistent uplift of Hunton anticline on margin of craton. Not strongly deformed.

Fig. 7.-Tectonism of the Arbuckle Mountains during Pennsylvanian time. Modified after Ham and others (1969). occurred during medial Virgilian time, producing the intense deformation of the two anticlines (Fig. 7). The folding was associated with reverse faults. These zones of weakness are postulated to have been the same as those present at the time of the original rift system (Pruatt, 1975).

The second main tectonic event is recorded in the 650 ft. of boulder-conglomerates of the Vanoss Formation. In this final tectonic event, the anticlines were faulted and uplifted with only minor folding. Although low-intensity faulting and folding continued through early Permian time, this second period of tectonism of late Virgilian time marked the culmination of the Arbuckle Orogeny (Fig. 7) and the beginning of its erosional cycle.

CHAPTER IV

PETROLOGY

Lithology

The Butterly Dolomite is a typical stratigraphic dolomite as defined by Sargent (1969, p. 10):

. . . a dolomite occurring in bedded sequences of regional extent and having pre-tectonic stratigraphic characteristics such as stromatolitic structures, fossils, and conformance to the local and regional structure.

The Butterly dolomite replaced the Signal Mountain Limestone and the McKenzie Hill Formation. The contact between these two formations and the Butterly is irregular and interfingered. This is evident in the "S" section (Appendix A) where the remnant McKenzie Hill is only partially dolomitized, resulting in dolomitic limestones with a few interbeds of dolomite in the upper Butterly. These dolomitic limestone remnants exist in most complete sections of the Butterly. Although the contacts of these rock types are irregular, they are easily spotted in the field by the dramatic change in color and outcrop pattern.

The Butterly is characterized by light to dark brown honeycombed weathering and by medium to coarse crystallinity with scattered finely crystalline dolomite beds. In

contrast, limestones of the McKenzie Hill and Signal Mountain are fine- to medium-crystalline intrasparite or pelsparite.

Butterly strata are laminated to massive with lamination being more common in the upper one-third of the section; the rock is massive in the lower two-thirds of the unit. A few pre-tectonic stratigraphic structures also are preserved, mainly in the laminated and flaggy strata. These include small-scale cross-lamination, soft-sediment deformation, bioturbation, scour-and-fill, and storm layers. Storm layers (Fig. 8) are defined as follows:

. . . widespread, commonly unfossiliferous and well-marked layers result from major storms and are deposited when rising tides and high winds mobilize mud on bottoms of normally quiescent shallow ponds and lakes and deposit single thick layers on shoal areas (Wilson, 1975, p. 81).

The most pervasive structures are related to dolomitization and include vugs, fractures, and breccias. The very common stylolites represent tectonism.

Petrography

Fabric

The fabric of the Butterly is a monotonous mediumcrystalline recrystallized dolomite with sutured and embayed grain-contacts. The only observed variation of this fabric is in sizes of dolomite crystals.

Laminae in the upper one-third of the Butterly are alternately sandy and sand-free. Vugs with protruding

Fig. 8.-Photograph of storm layers in the "T" section. The field of view is approximately 4 x 6 inches. rhombs of coarsely crystalline dolomite are the most abundant structure. Bioturbation is observable in a few of the thin-sections of both the dolomite and dolomitic limestone. Most of the bioturbation consists of one or two straight burrows that may be vertical, horizontal, or at an acute angle to bedding. The burrows generally are filled with detrital material and/or coarser cement, but burrows in the dolomite do not contain any detrital material and contain larger crystals than the rest of the rock (Fig. 9). In a few beds bioturbation is pervasive.

Allochems

The typical precursor to dolomitization was sandy pelletiferous intrasparite (grainstone) to sandy pelsparite (wackestone). Allochems generally are replaced in dolomite beds, except for rare allochem ghosts in a few thinsections. Therefore, most of the following part of the text is drawn from the partially dolomitized limestones of the "S" section.

Pellets are the most common allochem (Folks, 1959, 1962). Diameters of pellets in sections studied in this research range from 0.05 to 0.2 mm, and average approximately 0.15 mm. The poorly sorted pellets are elliptical to spheroidal and are composed of micrite and microsparite. They are structureless and generally contain no detrital material. Contacts show replacement of pellets by cement. In one sample the micrite envelopes are preserved. The

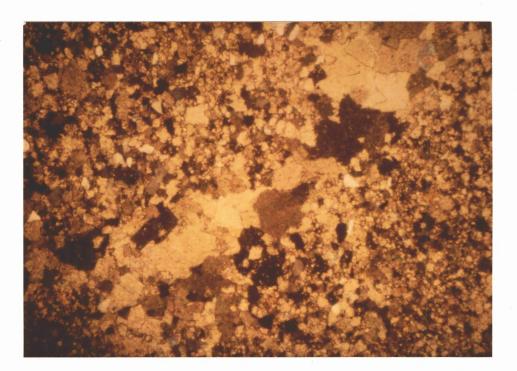


Fig. 9.-Burrow (coarser grain) in pervasively altered dolomite. Note sutured fabric. 25X; X-nicols. pellets are more resistant to dolomitization than is the sparry calcite cement or the intraclasts.

Intraclasts are the second most common allochem. They range in length from 0.2 mm to 2 cm with the average being approximately 1 mm. Intraclasts generally show decreased rounding with increased size. The average intraclast is ellipsoidal with the larger intraclasts being almost tabular. Intraclasts, like the pellets, are poorly sorted and they grade continuously from small to large. Composition of intraclasts includes micrite, pelsparite, dolomitic pelsparite, and dolomite. The intraclasts commonly contain detrital material of quartz, potassium feldspar, and chert, with authigenic overgrowths on the quartz and potassium feldspar. The intraclasts also commonly contain dolomite rhombs.

Ooids represent only a small percent of the modal analysis; in no samples did they exceed 1 percent of the rock. The ooids are approximately 0.7 mm in diameter and commonly have pellets as their cores. The ooids have radiating, microsparite structure. The oolites appear to be more resistant to replacement by both calcite and dolomite than are the intraclasts.

Two slightly dolomitized phosphatic conodonts were found. They were 0.6 mm by 0.1 mm and were cigar-shaped.

Noncarbonate Grains

The principal noncarbonate material in the Butterly is quartz. Quartz was found in almost all the rocks examined

and it averaged approximately 4% in the Butterly as a whole and approximately 5% in the thin-sections examined. It ranges in diameter from 0.03 mm (coarse silt) to 2.0 mm (very coarse sand) and averages 0.3 mm (medium sand). The dolomitic limestones contain more and coarser-grained quartz. The grains are subangular to rounded, with most being subrounded. Most of the quartz grains have authigenic overgrowths (Fig. 10). In rare instances the authigenic overgrowths produce an idioblastic quartz crystal. The original quartz detritus and the overgrowths are corroded and show evidence of replacement by both calcite and dolomite cements. The quartz grains normally have undulatory extinction. A few were fractured, with calcite in the fractures.

Inclusions in the quartz mostly are isolated vacuoles and fluid. Other inclusions, in order of decreasing abundance, include apatite, zircon, biotite, and chlorite. These minerals are only in trace amounts and seem to have been unaffected by post-depositional events.

The Butterly averages about 1% feldspar with the range being from 0 to 7 percent. Microperthite and microcline are in many of the dolomite samples. The feldspars range in length from 0.05 to 2.5 mm, with the average being 0.5 mm. Shape ranges from subrounded to angular, but predominantly is subangular. Most of the feldspars grains are unclouded by vacuoles and/or kaolinite, but many are clouded. The feldspars have clear authigenic overgrowths of potassium

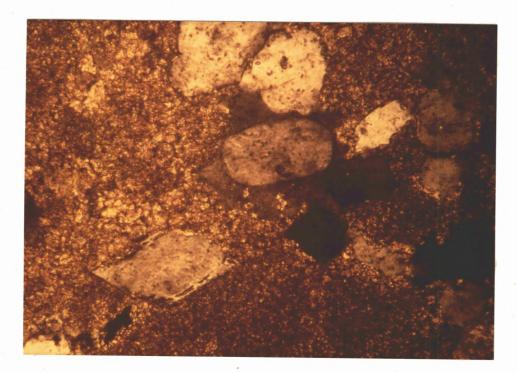


Fig. 10.-Detrital quartz (rounded upper center) with authigenic overgrowth. Detrital feldspar (lower left) with authigenic overgrowth resulting in rhombohedral cross-section. Note the inclusions of carbonate in both authigenic overgrowths and their embayed contacts of the overgrowths. 100X; X-nicols. feldspar with inclusions of calcite (Fig. 10). These overgrowths give many feldspar grains rhombohedral crosssections that aid in their identification. The authigenic overgrowths are more susceptible to replacement by calcite or dolomite than are the original detrital grains, although both show corrosive contacts and have been replaced by the carbonates. Some feldspars are fractured, and fracturing occurred both before (Fig. 11) and after the authigenic overgrowths.

Detrital chert does not exceed 1% of the rock. The original sizes and shapes of the grains of detrital chert are difficult to estimate, owing to extensive replacement by both calcite and dolomite. Most detrital chert grains that exceed 0.5 mm in diameter probably were rounded originally. Chert grains commonly have inclusions of carbonate (Fig. 12).

Zircons were found in a few thin-sections. The angular grains commonly display one or more of their original tetragonal crystal faces. Zircons range in diameter from 0.03 to 0.2 mm and average 0.05 mm. No overgrowths of zircon nor any indications of fracturing were seen.

The remaining detrital mineral is rare grains of glauconite, which range in diameter from 0.03 to 0.05 mm and average 0.04 mm. Rounded flakes of glauconite show no indication of abrasions or replacement.

Fig. 11.-Fractured detrital feldspar with calcite (red) filling. Note that authigenic overgrowth (clear, upper-right) has closed the fracture. Dolomite (yellow) has replaced the feldspar in the lower left corner. 100X; stained with Alizarin Red-S and potassium ferricyanide; plane-polarized light.

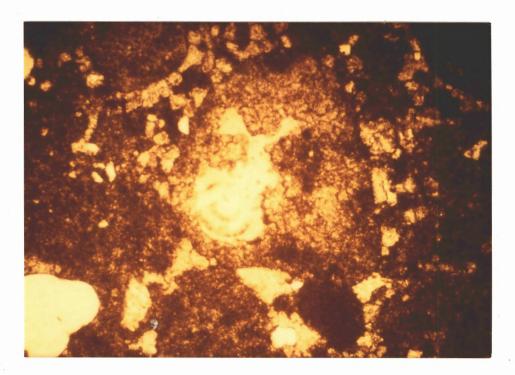


Fig. 12.-Dolomite intraclast with fibrous chert (clear) filling in dolomitic limestone of the "S" section. Note the inclusions of calcite (red) in the chert. 40X; stained with Alizarin Red-S and potassium ferricyanide; planepolarized light.

Detrital Clay Minerals

The results of the 25 samples analyzed are presented in Table I. Clay minerals were not seen in thin-section except along a few stylolites and as alterations of feldspar. They constituted only trace amounts of the total rock and appeared to be residual clay. Most samples analyzed showed some clay minerals, and even though they were observed only in samples with stylolites, this common occurrence suggests that they are dispersed throughout the rock.

The most abundant clay mineral is illite, followed by kaolinite and Fe-chlorite. The kaolinite is from alteration of feldspar and the Fe-chlorite probably is from alteration of the mafic fraction of the igneous source rock. These findings are similar to those of previous clay-mineral studies of carbonate rocks (Grim and others, 1937).

Cements

Predolomitization cements are micrite (microsparite), sparite, and drusy sparite. The micrite cement has undergone some recrystallization and therefore can be classified as microsparite.

Microsparite is the most common cement. It is nearly opaque in thin-section and seen at high magnification (320X) is a mosaic of very finely crystalline calcite. The microsparite is more susceptible to replacement by dolomite than are the allochems.

Sparite cement was observed in two modes, drusy and

TABLE I

DETRITAL CLAY MINERALS OF THE BUTTERLY DOLOMITE

Sample	Illite	Fe-Chlorite	Kaolinite	No Clays Detected
B050	58%	_	42%	_
B078	100		_	<u> </u>
B090	80	-	20	
B096	_		-	x
B130	83	-	17	
B210	50	25	25	_
B248	- ·	- *	_	x
P560	_	-	-	x
P646	- · · ·	-	100	_
P610	-		-	х
P901	-		100	-
P932	_	_	100	
S038	_	— -	_	x
S054	-			x
S125	73	27	- -	_
S224	_	-		x
S565	_	-		x
S608		- -	100	-
T025	74	-	26	_
T189	53	-	47	-
T199	50	50	-	· · · ·
Z065	70	30	-	-
Z113	100	_	- .	. –
Z206	100	- -	-	-
Z225	100	- -	-	-
x	39.6	5.3	23.1	
S	41.3	13.0	36.9	-

mosaic fabric. The mosaic sparite is fine to medium crystalline, limpid, and nonferroan. The drusy sparite is fibrous, with increased crystal size toward centers of filled spaces. The drusy sparite is also limpid, nonferroan, and is uncommon.

Rock Fragments

Rock fragments are granophyric and other quartzfeldspar igneous-rock fragments. These fragments are only in trace amounts and range from 0.1 to 1 mm in diameter. They are rounded and some show evidence of fracturing. The rock fragments show the same replacement and other characteristic features as their respective mineralogical detrital counterparts.

Sulfides and Oxides

Pyrite and sphalerite are present in the Butterly. The more common pyrite is discussed in this section, whereas sphalerite is discussed in the chapter on zinc mineralization. Pyrite grains from 0.03 to 0.1 mm in diameter are disseminated in the rock. Amount ranges from 0 to 9%, averaging less than 1% for all samples of the Butterly. Shapes of the pyrite vary from cubes to irregular masses. Pyrite commonly is variably oxidized to hematite.

Hematite is also associated with zoned dolomites. It occurs in distinctive zones, which may be completely hematite or which may be both hematite and dolomite. The zones

average 0.01 mm in thickness and are rhombohedral in crosssection.

Porosity

Porosity of the Butterly is intercrystalline and vuggy. The vugs are characterized by coarsely crystalline dolomite rhombs that project into the cavity. They are generally about a half a centimeter in diameter and represent as much as 5% of the rock. The vugs generally are associated with fracturing and several vugs may have a linear arrangement.

Porosity in thin-section is intercrystalline. Intercrystalline porosity generally is very low and, like the vuggy porosity, is more common in the dolomite than in the dolomitic limestone.

Replacement Dolomite

Evidence of two periods of dolomite replacement is observed in thin-section. These periods were separated by a period of corrosion of the dolomite. The first episode of dolomite replacement was early diagenetic, and is the most widespread. The second period was restricted to development in paleochannelways through which the dolomitizing fluids traveled. Therefore, its impact on the Butterly is less apparent and has been overlooked.

Fabric of the dolomitized rock is sutured to mosaic, and is medium-crystalline. The most common type of early diagenetic dolomite is a massive sutured fabric of pleochroic brown to clear crystals. The dolomite has resorbed and shows curved contacts with a low percentage (5%) of enfacial triple junctions. Sizes of dolomite crystals vary considerably in any thin section. Contacts with relic allochems are gradual with intermingling of fine and coarse crystals making it difficult to draw a line of separation.

The second morphologic type is zoned with clear and opaque (hematitic) dolomite. These rhombs are generally smaller than the other early diagenetic dolomite crystals. Like the other early diagenetic dolomite crystals, they have corroded and embayed contacts. Botryoidal zoned dolomites are in vugs in a few samples.

The third type of early diagenetic dolomite is coarsely crystalline, similar to the massive early-diagenetic dolomite, but it occurs in burrows that cut the dolomitized rock (Fig. 9). Therefore, it is older than the other morphologies, but its sutured fabric suggests that it is also early-diagenetic.

Late-stage diagenetic dolomite comprises about 10% of the dolomite in the Butterly, which probably accounts for low porosity. It is characterized by highly irregular morphology and by crystallinity equal in size to the paleochannelways, with a range from fine to extremely coarse crystals. Late-stage diagenetic dolomite is restricted to channelways, fractures, intercrystalline porosity, and vugs (Fig. 14). The late-stage diagenetic dolomite is found in corroded and embayed early-diagenetic dolomite, and is distinguished by its optical discontinuity (Fig. 13) and more limpid character. It fills fractures and also cements brecciated rocks. In vugs it has the coarsest crystallinity. The highly irregular shape of this replacement dolomite is due to a period of corrosion that occurred between the early and late diagenetic dolomitization. Channelways used by corroding solutions were filled by the late-diagenetic dolomite.

X-Ray Diffraction and Cathodoluminescence

Results of X-ray diffraction of thin-sections and selected samples show that there is no variation in magnesium content of the dolomite or calcite. The mineral dolomite consistently produced a (211) peak at 30.95 ⁰20 and the calcite a (211) peak at 29.5 ⁰20. These peaks indicate that the calcite is low-magnesium calcite and the dolomite is ordered (Scholle, 1978; Lippmann, 1973).

Cathodoluminescence of the Butterly thin-sections confirmed previous petrographic findings and added information to others. Quartz, feldspar, zircon, and dolomite are all luminescent.

Detrital quartz and feldspar grains have dull and bright blue luminescence respectively. Their respective overgrowths, on the other hand, are not luminescent. Therefore, the detrital grains were formed at high temperatures and the overgrowths at low temperatures (i.e., authigenic) (Thomas, 1974). Nonluminescent secondary overgrowths also

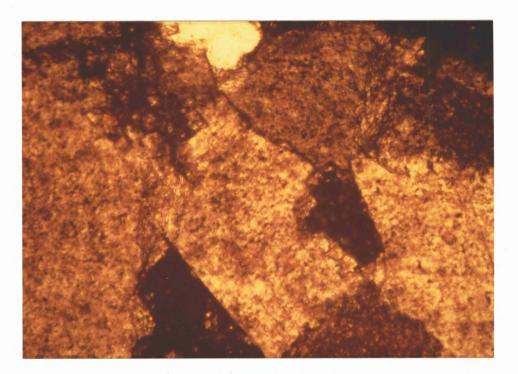


Fig. 13.-Late-stage diagenetic dolomite (black, right-center) filling corroding earlydiagenetic dolomite (yellow). 128X; X-nicols.

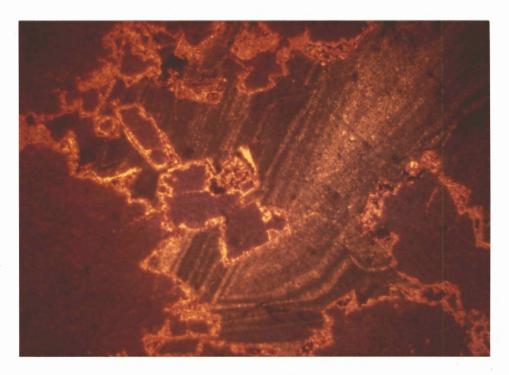


Fig. 14.-Cathodoluminescence of late-stage diagenetic dolomite filling a vug. Fifteen generations of dolomite are present and the first and third generations are bright red and yellow. Rhombs of the first generation fill the corroded contact of the early diagenetic dolomite (dull red). 20X. fill fractures in both the quartz and feldspar. Bright yellow luminescence aided in the identification of detrital zircons.

Carbonate luminescence varied from nonluminescent calcite and allochems to brightly red-luminescent late-stage diagenetic dolomite. The nonluminescent calcite cement and allochem indicate a low concentration of Mn (activator) and higher concentration of Fe, Ni, and Co (quenchers) (Sipple and Glover, 1965). Early-diagenetic dolomite varied from no luminescence to dull red luminescence. This indicates that the dolomitizational fluids varied in trace-element chemistry especially in Mn, Fe, Ni, and Co. Late-stage diagenetic dolomite also showed variation in luminescence. The corroded and embayed contacts of the early-diagenetic dolomite were filled with bright red, late-stage diagenetic dolomite.

In one section, a large vug was filled with the latestage diagenetic dolomite. In this vug are 15 generations of dolomite cement (Fig. 14). More importantly, this vug shows that only the first and third generations have bright red luminescence, so commonly seen in other thin-sections, whereas the remaining generations are either nonluminescent or have dull red luminescence. These 15 generations indicate periodic cementation within which the trace-element chemistry varied. Meyers (1974) postulated that periodic cements can be correlated from sample to sample. They also can be related to tectonism and erosion. Furthermore, the red luminescence is related to an average valency of Mn

greater than two (Sommer, 1972). The tectonic dolomite and sphalerite of the Turner Prospect area were not luminescent.

CHAPTER V

ZINC MINERALIZATION

Introduction

The Turner Prospect in Sec. 28, TIS, RIE consists of numerous prospect pits and one open pit. Production of sphalerite stopped before 1920 and the open pit is filled with water. The open pit is approximately 180 ft. wide and 40 ft. deep. Approximately 32,000 short tons of rock were mined, most of which is in the nearby dump. The Turner Prospect has been investigated frequently by mining companies in the past two decades. The prospect has been drilled recently by the American Zinc Company, which reportedly drilled 100 shallow holes in the prospect area. The prospect is currently leased by Texasgulf, Incorporated, which plans to drill several exploratory holes in the area. The prospect is typical "Mississippi Valley Type" and is very similar to the ore deposit of the Mascot-Jefferson City Zinc District in east Tennessee, described by Crawford and Hoagland (1968).

Description

The zinc mineralization is in the upper half of the Butterly Dolomite. In the mineralized area the rock is

finely crystalline and averages about 7% insoluble residues. These residues are mainly quartz and feldspar. The rock generally is laminated but massive bedding also occurs. Soft-sediment deformation in the laminated strata is common, but not necessarily associated with mineralization.

The prospect is in the area of the West Timbered Hills Anticline. Abundant faulting and fracturing characterize the prospect area. The faults and fractures contain brecciated rock fragments in a coarsely crystalline white tectonic vein-dolomite matrix (Sargent, 1969). The zinc mineralization is found in a coarsely crystalline white tectonic veindolomite, very similar to that found in the faults and fractures (Fig. 15). White dolomite veins cut the sphalerite mineralization, an indication that mineralization occurred before the end of precipitation of the dolomite.

The mineralized rock is in mantos and collapse breccias. Mantos are "horizontal" stratiform bodies between bedded replacement dolomite and are conformable to bedding. Thickness ranges from a few inches to 3 ft. The areal extent is difficult to estimate but probably is relatively small (i.e., thousands of sq. ft.). Most mining was in the collapse breccia. The area of the single collapse breccia coincides with that of the open pit, and extends to an unknown depth.

The mineralogy of the prospect is uncommonly simple, with as much as 25% colloform sphalerite, but it averages about 10%. The sphalerite commonly coats the breccia

Fig. 15.-Sphalerite (yellow-brown), tectonic vein dolomite (white), and brecciated host rock (gray). Note that the brecciated host rock is laminated and that sphalerite does not coat all the visible sides. Also note that the tectonic vein dolomite cuts the sphalerite mineralization. (Scale is in cm.) fragments or the walls of the manto. The sphalerite is light brown and on the average, contains less than one percent Fe (Table II). Other trace elements in the sphalerites include on the average, 0.3% Cd, 0.005% Mn, 0.02% Cu, and 0.3% Pb. Pyrite is the next most abundant sulfide, but it rarely exceeds 5% of the rock. Galena has been reported (Becker, 1914; Ham, 1951), but no galena was observed in any of the samples collected.

Dolomite is the most abundant gangue mineral. The white dolomite has sharp contacts with the host rock and seems to be similar to the tectonic vein dolomite described by Sargent (1969, 1974). The brecciated host rock is found in both the manto and collapse breccia. The dolomite host rock commonly is laminated but it is massive at some places. The fragments are rimmed by sphalerite and white tectonic dolomite on one or more sides (Fig. 15). Tectonic dolomite is also in cross-cutting veins in the host dolomite and the sphalerite. Close scrutiny of the contacts between the sphalerite and host dolomite sometimes shows tectonic dolomite, indicating that tectonic dolomite was precipitated before the sphalerite. However, most of the tectonic dolomite precipitated after the sphalerite mineralization.

TABLE	II

	n	Mean	Standard Deviation
Insoluble Residue	5	0.1148	0.0658
Fe	5	6342.8	2045.3
Mn	5	49.8	35.2
Cd	5	3184.0	973.0
РЪ	5	803.6	127.4
Cu	5	197.4	117.0

TRACE ELEMENTS IN SPHALERITES AND SUMMARY STATISTICS IN PPM

CHAPTER VI

GEOCHEMISTRY

Statistical Treatment of Geochemical Data

Introduction

The geochemical data were analyzed by two statistical techniques, both nonparametric; they were the Kolmogorov-Smirnov test and the Mann-Whitney U-test. The Kolmogorov-Smirnov test was used to test the hypothesis that samples concerned were random samples from a normally distributed population, whereas the Mann-Whitney U-test was applied to evaluate the hypothesis that two sets of samples showed no significant differences on the basis of attributes measured.

The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test can be used to evaluate goodness of fit to a normal distribution. The test is applicable to continuous frequency distributions and in many cases is more useful than a Chi-square test (Sokal and Rohlf, 1969). The test is "based on the absolute differences between observed and expected cumulative frequency distributions. These differences are expressed as differences between relative cumulative frequencies." (Sokal and Rohlf,

1969). Kolmogorov-Smirnov analysis tested the geochemical data by location and as a whole. Furthermore, the "S" section was divided into dolomitic limestones and dolomites. A significance level of 5% was used in all the tests. For each of the tested groupings, 14 elements (all except Li) and crystallinity were tested for conformity with normal distributions. The majority of the elements failed to pass the test of conformity to normality, even after having been transformed to logarithms and other forms of measurement. Iron and insoluble residue both showed evidence of lognormal distributions for all of the groupings. The dolomitic limestones also showed evidence of normal or lognormal distributions for all components tested.

The failure of the majority of the data to fit a normal distribution even after transformation indicates one of the following: (1) the sampling procedures used did not produce random samples; (2) the original limestone did not have normal distribution of its chemical components; or (3) the original limestone did have a normal distribution, but the components of Butterly Dolomite are non-normally distributed, which, if true, may be a result of several diagenetic alterations. The petrographic evidence of two periods of dolomitization and evidence from cathodoluminescence both support the third possibility.

Mann-Whitney U-Test

The Mann-Whitney U-test can be used without assuming

that the data were drawn from a normal distribution (Sokal and Rohlf, 1969). The null hypothesis is that the two samples being compared were derived from the same populations. (Note that 10% significance levels were used in two of the tests (Table III). These are the lowest significance levels available (Sokal and Rohlf, 1969) for the small sample size used.)

The Mann-Whitney U-test is used in instances where the larger sample size is less than 20. This test was used to compare analyses of 12 samples (Appendix E) of the Butterly (stratigraphic dolomite), taken from Sargent's (1974) dissertation, with the samples of this study. Sargent's samples were collected from three localities in the Arbuckle Mountains. The averages for each of his localities were compared to the averages of dolomite from the "B," "T," "Z," and "S" stratigraphic sections. The Mann-Whitney U-test was also used to test distributions of the various "P" sections against one another and to test the vein dolomite against the brecciated host dolomite.

The Wilcoxon Two-sample Test was used for comparison of the distributions of other sections. Results of these tests are in Table III and the salient features of these tests are discussed below.

The test between Sargent's analyses of the Butterly and analyses of this study is important. This comparison stratigraphic dolomite = Butterly Dolomite) shows evidence to conclude that 90% of the compared element-means were drawn

TABLE III

1	τv	10-52	THE L		101	NE SU					
Stratigraphic Sections	Butterly Dolomite = Stratigraphic Dolomite	"5" Dolcmites = "5" Dolomitic Limestone	"3" Dolomites = "B"	"3" Dolomites = "Z"	"Lu = "Z"	ndn = nZn	"Z" = "B"	"F5" = "P6"	"P5" = "P9"	"P6" = "P9"	Vein = Host
Significance Level	10%	5%	5%	5%	5%	5%	5%	5%	5%	5%	10%
Mg	-	R	N	R	R	R	R	N	N	R	N
Ca	-	R	R	R	R	R	N	N	N	ĸ	N
Fe	N	N	N.	N	N	R	N	R	R	R	R
Min	N	N	R	R	N	N	N	R	R	R	N
Sr	N	R	N	R	R	N	R	N	N	R	N
Na	N	R	R	R	N	N	N	R	R	R	R
к	N	R	R	R	N	N	N	R	R	R	R
Cu	R	N	N	R	R	N	R	R	N	R	R
Pb	N	N	N	R	Ŗ	R	N	R	R	R	R
Zn	N	R	R	R	R	R	N	N	R	R	R
Cđ	-	R	N	N	N	R	N	N	R	Ξι	R
Cr	-	R	R	N	N	N	R	R	N	R	F
Ni	N	R	R	R	N	N	R	R	R	H	N
L1	N	N	N	N	N	N	N	N	N	N	N
Insoluble Residue	-	R	N	R	R	N	R	N	N	ĸ	R
Crystallinity	-	R	R	N	N	R	N	N	N	Ņ	N

MANN-WHITNEY U-TEST OR WILCOXON TWO-SAMPLE TEST RESULTS

- = No Data

 $N = Not Reject H_0$ H_0 : Two samples were drawn $R = Reject H_0$ from the same population from the same population, variables measured in ppm.

from a common population. Sargent's discriminant analyses showed that the most reliable variables for discriminating stratigraphic dolomite from tectonic dolomite are Li, Na, Ni, and Cu, discriminating at the 93%, 99%, 100%, and 100% confidence levels respectively (Sargent, 1974). The rejection of Cu in the comparison of stratigraphic dolomite and tectonic dolomite (Table III) may be the result of a wider range of Cu values (0-32 ppm) found in this study compared to those reported by Sargent (2-6 ppm). The findings present evidence that the Butterly is stratigraphic, as defined by Sargent. Furthermore, the findings suggest that the distribution of elements in the Butterly is similar throughout the Arbuckle Mountains.

Another hypothesis of interest is that, in terms of the elements compared, the "S" dolomites are no different than "S" dolomitic limestones. The dolomitic limestones were defined by two criteria: the Mg/Ca ratio is less than 90 (an ideal ordered dolomite would have a ratio of 99 (Deer and others, 1964)), and the rocks are composed predominantly of calcite rather than dolomite. Twenty samples of a possible 116 were thus classified as dolomitic limestones. The results show that the dolomitization made little difference in distribution of the trace elements Fe, Mn, Cu, Pb, and Li. These tests and the element-means (Table IV) also suggest that the distributions of insoluble residues are different, signifying either a change in depositional energy, a change in source area, or that quartz and feldspar are

IADLE IV	E IV	TABLE
----------	------	-------

MEANS	FOR	CHEMICAL	DATA
-------	-----	----------	------

Elements (ppm)	All Samples Analyzed	"S" Dolomitic Limestone	''S'' Dolomite	Sargent's 1974 Butterly Samples	Weber- Secondary Dolomite		Rosler & Lange-1974 All Carbonate Rocks
Ca	175755.0	248550.0	163739.6	_		-	302300.
Mg Li	110738.0	27850.0	119364.6		-	· · · · ·	47000.
	1.0	1.0	1.0	0.18	8.99	20.00	5-20.
Na	156.3	15.7	119.3	220.70	257.00	391.00	400.
K	96.6	97.6	53.0	212.50	3970.00	6550.00	2700.
Ni	10.1	13.8	9.8	1.30	41.00	126.00	20.
Cu	6.0	5.3	5.4	3.10	6.74	5.72	4.
Sr	42.2	153.1	28.8	18.40	187.00	174.00	610.
Mn	259.9	123.4	443.2	196.40	237.00	245.00	1100.
Fe	1607.2	1100.8	1819.2	1350.70	1980.00	2790.00	3800-13000
Pb	35.8	33.2	32.5	1.42	18.20	68.20	9-27.
Zn	742.0	2.0	15.8	0.18	550.00	1100.00	20.
Cd	10.0	8.0	5.8	-	_		0.0035
Cr	10.0	7.5	10.1	_	23.40	21.30	11.
X1	4.0	2.6	4.5	·	-	-	
Residue	0.062		0.047	-	-	-	
		·		· · · · · · · · · · · · · · · · · · ·			

Note that X1 is for crystallinity, as explained in Appendix D.

less resistant to replacement by dolomite than by calcite. The petrographic study indicates that authigenic overgrowths are more susceptible to replacement in dolomites than in dolomitic limestones. Another interesting relationship observed from comparison of "S" dolomitic limestones and "S" dolomites and the element-means (Table IV) suggests that dolomitization increased crystallinity.

The remaining tests of distribution in Table III are comparisons of the different stratigraphic sections with one another except for the vein-to-host comparison. In this comparison, the vein-dolomite chemistry is compared with the brecciated host-dolomite chemistry found in the vein. These tests are based on a small sample size of 5 and therefore, are not very sensitive. These tests and the raw chemical data (Appendix C) suggest that the Zn concentrates in the host rock rather than the vein material. The observed lithologic association of sphalerite and brecciated host rocks supports this hypothesis. Furthermore, these tests suggest that the mineralizing dolomitizing fluids have different distributions for many of the trace elements compared. On the other hand, Ca, Mg, Sr, Mn, Ni, and Li distributions are similar for brecciated host rocks and vein dolomite. This may indicate that the brecciated host rocks were strongly influenced by the dolomitizing fluids. The fluids also may have influenced the various "P" sections, reflected in the diversity of distributions of the "P" sections. Furthermore, they may also reflect

differences in porosity, permeability, and fracturing of these sections or that each section is from a different stratigraphic and chemical horizon.

The other sections compared indicate that the Butterly is composed of a diverse chemical make-up, possibly due to a heterogeneous chemistry of the original rock, with different degrees of influence by the different diagenetic alterations. Another possible explanation is that at the 95% significance level, the Butterly is not chemically homogeneous both horizontally and vertically. A third possibility is that variation is due to sampling. All three explanations may be valid.

Major Elements

Analyses suggest that average rock of the Butterly contains 11.9 weight percent Mg and 16.9 weight percent Ca, values too low for ordered dolomite (13.18% Ca and 21.7% Mg (Deer and others, 1964)). However, X-ray analysis of the samples indicates that the analyzed material is ordered dolomite. Therefore, these low values are probably erroneous, caused by saturation of the atomic absorption spectrophotometer by extremely concentrated solutions. Therefore, these elements will not be discussed except in relation to the trace elements where there is supporting evidence that they are of the correct magnitude.

Trace Elements

The trace-element impurities in the dolomite samples of this study may be present as structural impurities, as inclusions, or as intergranular absorbates on dolomite or noncarbonate grains. Pb, Sr, Na, and K have radii too large to substitute appreciably in the dolomite structure, but they do substitute in the aragonite structure. In the conversion of aragonite to calcite, these ions are excluded appreciably. Their concentrations also may be reduced (to a lesser extent) on the conversion of calcite to dolomite. The ionic radii of Cu, Ni, Zn, Fe, and Mn are within the range for substitution for Mg in the dolomite structure.

The alkali elements, Li, Na, and K are most likely to be absorbed on the carbonate or noncarbonates grains, or to occur as inclusions. Surface absorption is related directly to the concentration of ions in solution and to the type of material on which it is absorbed. The alkali-element abundances are reflections of their concentrations in the diagenetic solution, of the insoluble residue, and of the percent of clay minerals in relation to other insoluble minerals. Complete evaluation of these complex interrelationships was not made in this study. However, some inferences will be attempted.

Lithium

No relationship exists between Li and insoluble residue in stratigraphic dolomites (Sargent, 1974). The uniformity of Li content in this study is also worth noting (Table IV and Appendix C). It has been suggested by several authors (Weber, 1964; Horstman, 1957) that Li is associated with the clay fraction, since it does not enter into the dolomite lattice. However, the variable mineralogy of Butterly clays argues against this in the Butterly. Therefore, from the lack of relationships between the insoluble residue and the Li content, the uniformity of Li content, and the variation in clay mineralogy of the Butterly, the conclusion can be drawn that Li is not related to the clay minerals or to quartz and perthite. Therefore, Li occurs either as an absorbate on the dolomite or as inclusions in the dolomite. Inclusions were not observed in thin-section, suggesting that Li occurs as a surface absorbent (Sargent, 1974).

Potassium

The higher K concentration of primary dolomites relative to secondary dolomites was attributed by Weber (1964) (Table IV, this report) to higher clay-mineral content of the primary dolomites. Sargent (1974) found that stratigraphic dolomites have less K than tectonic dolomites or limestones. In the samples analyzed in this study, K ranged from 0 to 816 ppm. The average value is 97 ppm, considerably less than that determined by Sargent or Weber (Table IV). However, the Wilcoxon two-sample test results indicate that there is no significant difference in distribution of K in Sargent's samples of the Butterly and those

of this study (Table III). Therefore, it is reasonable to consider that the K values reflect the clay mineralogy.

Sodium

Sodium is more concentrated in the dolomites than in the dolomitic limestones. This relationship was reported by Sargent (1974) in his comparison of limestones and dolomites and also by Fritz and Katz (1972). They also reported no correlation between Na and Al or insoluble residue. This suggests that Na is not related to clay mineralogy, but probably was related to dolomitizing solutions more saline than normal sea water (Land and Hoops, 1973). Therefore Na probably is mainly in fluid-inclusions (Sargent, 1974).

Nickel

The ionic radius of Ni is similar to that of Mg; thus it could be accommodated in the dolomite lattice by substitution. Ni has been reported to correlate with organic content in carbonates (Krauskopf, 1956). In this study Ni averaged 10 ppm (Table IV) and Sargent (1974) reported an average of 1.3 ppm (Table IV). The Mann-Whitney U-test suggests no significant difference in the distribution of the element-means between Sargent's samples and samples tested in this study. There is no direct petrographic evidence of organic materials in rocks analyzed in this study, but perhaps a few samples of the Butterly had higher organic content than those sampled by Sargent.

Copper

Copper also may be substituted into the dolomite lattice and in rocks it commonly is correlated with organic material (LeRiche, 1959). The distribution of Cu is different than that reported by Sargent (1974, p. 70), but the results are similar to Weber's (1964, p. 1824) for secondary dolomites; these data may also reflect a higher organic content of rocks sampled in this study than of Sargent's samples.

Strontium

The large Sr ion is best accommodated in the aragonite structure rather than in that of calcite or dolomite. Strontium content decreases in the replacement of aragonite by calcite or of calcite by dolomite (Kingsman, 1969; Begrens and Land, 1972). This relationship seems to be supported by results of comparison of the Sr distributions of "S" dolomites and "S" dolomitic limestones. The average Sr concentrations (42 ppm) of this study are similar to those of Sargent's (27 ppm), but are considerably lower than those reported by Weber for secondary dolomite (214 ppm) (Table IV). Therefore, these lower results may indicate that corrosion and late-stage dolomitization leached Sr.

Manganese

Increase in Mn with dolomitization has been reported by

Atwood and Fry (1967). They attributed this to higher concentrations of Mn in the dolomitizational fluids. Sargent (1974) supported these findings, but in this study the Wilcoxon two-sample test for Mn (Table III) suggests that there is no significant difference in the distributions of Mn in "S" dolomites and "S" dolomitic limestones. Therefore, results of this study are in agreement with Land and others (1975) and Till (1971), and suggest that content of Mn is not necessarily affected by dolomitization.

Lead and Zinc

Lead and zinc were found in most of the samples analyzed. Both Pb and Zn may be substituted in the dolomite lattice (Deer and others, 1962). The Wilcoxon two-sample test for the "S" dolomites compared to dolomitic limestones (Table III) suggests that dolomitization did not affect the distribution of Pb, but increased Zn. The noted association of sphalerite with the tectonic vein dolomite in the Turner Prospect and the Wilcoxon two-sample test strongly suggest that Zn concentrations are related to the Zn concentration of the dolomitizational fluids.

Iron

The ionic size of Fe is between those of Ca and Mg; therefore iron substitutes for Mg, and less commonly for Ca (Deer and others, 1964). In this study content of iron ranged from 404 ppm to 11,413 ppm. Generally it is

distributed log-normally in all the sections compared, except for the sections in the area of the zinc mineralization ("P" sections). Distribution in the "P" sections may reflect the effects of sampling, but probably the distribution is related to zinc mineralization.

Variation in content of Fe is attributed by Katz (1971) to changes in Fe^{2+}/Mg^{2+} of the dolomitizational fluids. Probably each period of dolomitization had its own Fe^{2+}/Mg^{2+} ratio and the late stages of dolomitization were poorer in iron. This hypothesis is based on cathodoluminescence, which shows that the early-diagenetic dolomite is dull or nonluminescent, indicating a higher content of quenchers, and iron is the most abundant quencher in samples documented this study. The late-stage diagenetic dolomite is more luminescent (Fig. 14), indicating a lower content of quench-er (iron).

Chromium

Weber (1964) found no significant variation in Cr between "primary" and "secondary" dolomites. Sargent (1974) failed to detect Cr, because of calcium interference. In this study Cr was detected, with large variation in amounts. The Wilcoxon two-sample test for Cr suggests that it is significantly different in distributions for "S" dolomites and "S" dolomitic limestones (Table III). The Cr content averages 10 ppm and 7 ppm for "S" dolomites and "S" dolomitic limestones respectively. These averages and the

Wilcoxon two-sample test results suggest enrichment of Cr with dolomitization. The average Cr value (10 ppm) for all of the Butterly carbonate rocks is very near the 11 ppm reported by Rosler and Lange (1972) for all carbonate rocks.

Cadmium

Cadmium averaged 6 ppm for the "S" dolomites and 8 ppm for "S" dolomitic limestones. These averages and the Wilcoxon two-sample test suggest that the dolomitizational fluids depleted Cd in limestone. The decrease in Cd and increase in Zn with dolomitization are conflicting. This relationship is not understood. The average Cd value (10 ppm) is approximately 3000 times greater in samples of Butterly than the average value for all carbonates (0.0035 ppm) reported by Rosler and Lange (Table IV). Furthermore, in the "P" section, vein and host are even more enriched in Cd, averaging nearly 50 ppm. The common association of Cd with Zn and the geochemistry of the sphalerites suggest that high Cd values indicate zinc mineralization.

Stehli and Hower (1961) analyzed Recent carbonate sediments and Pleistocene carbonate rocks for Mg, Sr, Ba, and Mn; Land and others (1975) analyzed Recent and ancient dolomites for Na and Sr. Both concluded that diagenesis caused a marked decrease in abundance of these elements. Sargent (1974) also showed these results with his chemical analysis. In this study the Wilcoxon two-sample test of "S" dolomites and "S" dolomitic limestones suggests that there are significant variations in distributions of Ca, Sr, K, Cd, Ni, Mg, Na, Zn and Cr (Table III). The averages for the element (Table IV) suggest that dolomitization of these limestones caused decreases in Ca, Sr, K, Cd, and Ni and an increase in Mg, Na, Zn, and Cr.

CHAPTER VII

PETROGENESIS

Evidence of depositional environments of the predolomitized sediments is observed in thin-sections of dolomitized limestone. The environment best fits that of a restricted marine-shelf lagoon, as described by Wilson (1975).

Detrital quartz, feldspar (microperthite and microcline), and zircon suggest an igneous source of noncarbonate grains. Furthermore, inclusions in the quartz also point to a plutonic igneous source area (Folk, 1974). Because grains of feldspar are slightly larger, on the average, than grains of quartz, and because the granophyric rock fragments indicate that this immature sediment was deposited near its source, the source area probably was tectonically active (Folk, 1974). Sea level was shallow during depositon and the energy level fluctuated tremendously, as indicated by the storm layers, rhythmite, and massive beds. Soon after deposition of the sediments, diagenetic events began (Fig. 16).

"Early diagenesis" in this study means diagenetic alterations of the sediment while still under the influences of the sea above. The first diagenetic event recognized was

	Paragen	etic Events		
		Time		
	Early	Diagenesis	Late	Surface Weathering
Micrite Envelope Calcite Cement Authigenic Feldspar Authigenic Quartz				
Dolomitization Corrosion of Dolomite			PERIODIC	
Recrystallization Fracturing Brecciation				
Stylolitization Oxidation Sphalerite				

Fig. 16.-Paragenetic events of the Butterly Dolomite and the sphalerite mineralization of the Turner Prospect.

the development of micrite envelopes. Toward the end of micritization or soon thereafter, the sediments were cemented by sparry calcite.

During and following cementation, grains of quartz and feldspar were fractured. The authigenic enlargement of quartz began first and continued after authigenic feldspar overgrowths had stopped. These enlargements indicate that the sea water (or connate water) was saline to hypersaline and saturated in SiO₂ (Buyce and Friedman, 1975). Overgrowths replaced calcite cement and the allochems, as indicated by inclusions of carbonate in the overgrowths. During this episode, quartz filled uncemented cavities, producing fibrous chert (Fig. 12).

Early-diagenetic dolomitization commenced in the waning stages of growth of authigenic quartz. It is the more abundant dolomite in the Butterly. Ham's (1951) earlydiagenesis hypothesis was drawn from his observation of dolomite detritus in the Lower Signal Mountain Formation. Dolomite detritus is also in the dolomitic limestones of the "S" section (Fig. 12). Even more convincing evidence of the early-diagenetic dolomitization are worm-burrows in a pervasively dolomitized rock (Fig. 9).

The mechanism for dolomitization probably was the mixing of fresh ground water with the sea water (Badiozamani, 1973). Zoned dolomites reflect changes of the dolomitizational fluids (Katz, 1971) which may have been due to changes in salinity, and/or changes in the oxidation tendency, or changes in the iron content of the water (Folk and Siedecka, 1974). The pervasive dolomite replaced the micritic cement and envelopes first, followed by the replacement of intraclasts, oolites, and pellets. Since it was selectively replaced, evidently micrite was the highmagnesium variety (Buchbindert and Friedman, 1970). The corrosional event is recorded by the resorbed contacts of the early-diagenetic dolomite. Concurrent with corrosion, recrystallization and brecciation occurred. The recrystallization is postulated from observations of texture, including presence of microsparite, low percent of enfacial triple junctions, and the occurrence of islands of sparite around detritus (Folk, 1959; Bathurst, 1971).

An effect of the corrosion and the early diagenetic dolomitization is the occurrence of collapse breccia, observed in the "P" and "B" sections. These brecciated rocks were embayed by the corroding fluids. Therefore, the breccia fractures and intercrystalline porosity appear to have been the channelways of the corroding fluids. Burial and decreasing influence of sea water probably caused these late-diagenetic events. With increasing depth of burial, the interstitial water became less saline, due to increase influence of ground water. The ground water was undersaturated with respect to magnesium (Back and Hanshaw, 1970), causing corrosion of the dolomite and collapse breccias. This undersaturation with respect to magnesium may have been caused by mixing of two subsurface waters with

different dissolved sodium chloride contents. These fluids corroded the channelways (i.e., fractures, intercrystalline porosity, and breccias), increasing permeability of the rock. The late-diagenetic dolomite was then precipitated along these paleochannelways. The late-stage diagenetic dolomitization was episodic, comprising more than 15 generations. The first and third generations are depleted in Fe, Ni, and Co (quenchers) relative to manganese (activator), whereas the later and second generations have opposite relationships.

The 15 generations may reflect the tectonic history of the Arbuckle Mountains, suggested by tectonic events through the Arbuckle Orogeny (Fig. 7), 15 observed generations of dolomite, and Meyers's (1974) conclusion that periodic cements can be related to tectonic events. These 15 periodic dolomites show a general trend of decreasing luminescence in the younger generations, signifying an increase in Fe in the younger generations.

The author hypothesizes that the sphalerite mineralization and associated tectonic vein dolomite are also associated with this trend. The associated dolomites are enriched in Fe ("V" group, Appendix D) and are nonluminescent. Sargent (1974) concluded from field and petrographic evidence that the tectonic dolomite is post-Arbuckle Orogeny. The author concludes they formed after the second main tectonic event (late Virgilian) in the post-uplift tectonism, suggested by Ham's (1969) tectonic curve (Fig. 7). Faults and fractures provided the channelways for the mineralizing fluids. Heyl and others (1974) concluded that "Mississippi Valley" type mineralizing fluids originated as heated oil-field brines. In this case brines were probably from the Ardmore Basin and migrated along aquifers in the basin. The Reagan Sandstone, nonconformably above the Carlton Rhyolite (Fig. 2), may have provided a pathway for the brines.

The Carlton Rhyolite contains more than twice the average abundance of zinc relative to other granitoid rocks of the world (Hanson, 1977). The author hypothesizes that the oil-field brines leached the Carlton Rhyliote of zinc; this supposition is supported by low amounts of zinc in the Carlton Rhyolite of the East Timbered Hills, compared to average amounts in the Carlton Rhyolite (Hanson, 1977). Furthermore, these zinc-rich brines could have migrated toward low-pressure zones through the Reagan Sandstone aquifer and then up faults and fractures. These ascending fluids might have mixed with descending meteoric water (Hall and Freidman, 1963) causing precipitation of tectonic dolomite, followed by sphalerite (Fig. 15). The colloform sphalerite indicates that the mineralization was also periodic, possibly due to tectonic disturbances of post-Arbuckle Orogeny time.

The author suggests that the mantos were created by the mineralizing fluids replacing remnant limestone beds in the Butterly. This hypothesis is based on higher average Sr

content of the "P" and "Z" sections (Appendix D), 37 ppm and 38 ppm respectively (compared to the average Sr value for all analyzed samples minus the "P", "Z", and "S" dolomitic limestones of 30 ppm), and on the observation that limestone remnants are found in the upper Butterly. Fluids could then have fractured surrounding host rock, enlarging the manto. This would have resulted in brecciated host rock with sphalerite mineralization on one or more sides in a matrix of dolomite (Fig. 15). Laminated sandy dolomite makes up the most common breccia fragments. This may be a function of fissility, rather than of a chemically more favorable host rock. The collapse breccia may have formed from the thinning of the underlying beds by subsurface draining. The sphalerite mineralization and tectonic dolomite lithologies are similar to those of the manto form. The collapse breccia was filled with mineralizing fluids and the sphalerite and dolomite were precipitated in a similar manner as in the manto form.

Stylolites and fractures are observed mainly in the Turner Prospect area and are associated with faulting. The most recent event was the oxidation to hematite of pyrite and of the ferroan dolomite zones (Katz, 1971). Pyrite is oxidized throughout the Butterly.

CHAPTER VIII

CONCLUSIONS

The principal conclusions of this study are:

 The Butterly Dolomite is a typical stratigraphic dolomite; it is medium-crystalline with about 5% sand of quartz and feldspar.

2. Detrital quartz and feldspar have authigenic overgrowths, indicating that the overlying sea was hypersaline and saturated in SiO_2 .

3. Detrital clay minerals include illite, kaolinite, and Fe-chlorite in order of decreasing abundance. All were found only in trace amounts and were not observed by ordinary petrographic techniques.

4. Chemical elements of the analyzed samples do not fit a normal distribution, even after transformation. This may be due to the Butterly having a non-normal distribution, which could be the product of several diagenetic alterations.

5. The comparison of "S" dolomites and "S" dolomitic limestone suggests that distributions of insoluble residue and crystallinity change with dolomitization. These results for insoluble residue indicate that quartz and feldspar are less resistant to replacement by dolomite than by calcite.

The results for crystallinity suggest dolomitization did increase crystallinity.

6. The Wilcoxon two-sample test of "S" dolomites and "S" dolomitic limestones and of the means for these two groups suggest that dolomitization of these limestones caused decrease in Ca, Sr, K, Cd, and Ni and increase in Mg, Na, Zn, and Cr.

7. The results of the Mann-Whitney U-test for the vein ("V") and host ("H") rocks and the raw chemical data (Appendix C) signify that Zn was concentrated in the host-breccia fragments. The similar distributions of Sr, Mn, Ni, and Li may be the results of the dolomitizational fluid's stamping its composition on the host rock.

8. Results of the Wilcoxon two-sample test reflect the diverse chemical makeup of samples of the Butterly. This may be explained by one of the following: (1) variation in sampling; (2) chemical distributions of the Butterly are homogeneous neither horizontally nor vertically; and (3) chemical distributions of the original rocks were heterogeneous and were complicated further by the various diagenetic alterations. The author recognizes all three as possibly valid.

9. The Butterly has been subjected to recrystallization and two periods of dolomitization separated by a period of corrosion. The first dolomitization (early diagenetic) occurred only inches below the sea-sediment interface. Corroding fluids traveled through intercrystalline pores and fractures embaying the early diagenetic dolomite.

10. The late-diagenetic dolomite precipitated in the intercrystalline porosity, fractures, faults, and vugs enlarged by the corroding fluids. Its trace-element chemistry changed from iron-poor (oldest) to iron-rich (youngest). The precipitation was periodic and may reflect the tectonic history of the Arbuckle Mountain region in Pennsylvanian and Permian time. Fifteen generations of dolomite were observed in one sample.

11. The tectonic dolomite and associated sphalerite of the Turner Prospect may be associated with the ironenrichment trend of the late-diagenetic dolomite. This author's hypothesis is that the zinc mineralization is a product of heated oil-field brines from the Ardmore Basin that migrated through the Reagan Sandstone. These brines leached zinc from the Carlton Rhyolite, mixed with descending meteoric water, and precipitated both dolomite and sphalerite. The sphalerite was localized by the replacement of remnant limestone beds.

SELECTED BIBLIOGRAPHY

- Atwood, D. K., and Fry, H. M., 1967, Strontium and manganese content of some coexisting calcites and dolomites: Am. Mineralogist, v. 52, pp. 1530-1535.
- Back, W., and Hanshaw, B. B., 1970, Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan: Jour. Hydrol., v. 40, pp. 330-368.
- Badiozamanc, K., 1973, The Dorag dolomitization modelapplication to Middle Ordovician of Wisconsin: Jour. Sed. Pet., v. 43, pp. 965-984.
- Bathurst, R. G. C., 1971, Carbonate sediments and their diagenesis: Development in Sedimentology, v. 12, Amsterdam, Elsevier, 658 p.
- Becker, C. M., 1914, Lead and zinc deposits in the Arbuckle Mountains, Oklahoma: Min. Sci., pp. 21-22.
- Behrens, E. W., and Land, L. S., 1972, Subtidal Holocene dolomite, Baffin Bay, Texas: Jour. Sed. Pet., v. 42, pp. 155-161.
- Bridge, J., 1936, Position of Cambrian-Ordovician boundary in section of Arbuckle limestone exposed on Highway 77, Murray County, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 20, pp. 980-984.
 - _____, 1937, The Correlation of the Upper Cambrian sections of Missouri and Texas with the sections in the Upper Mississippi Valley: U. S. Geol. Survey Prof. Paper 186 L., pp. 233-237.
- Buchbinder, B., and Friedman, G. M., 1970, Selective dolomitization of micrite envelopes: a possible clue to original mineralogy: Jour. Sed. Pet., v. 26, pp. 593-609.
- Buyce, R. N., and Friedman, G. N., 1975, Significance of authigenic K-feldspar in Cambrian-Ordovician carbonate rocks of the Proto-Atlantic shelf in North America, Jour. Sed. Pet., v. 45, no. 4, p. 808-821.

Crawford, J., and Hoagland, A. D., 1968, The Mascot-Jefferson City Zinc District, Tennessee, in Ridge, J. D. (ed.), Ore Deposits of the United States, 1933-1967: Am. Inst. Mining Metall. Petroleum Engineers, N. Y., pp. 242-256.

Decker, C. E., 1936, Some tentative correlations on the basis of graptolites of Oklahoma and Arkansas: Am. Assoc. Petroleum Geologists, v. 20, pp. 301-311.

, 1939a, Two Lower Paleozoic Groups, Arbuckle and Wichita Mountains, Oklahoma: Geol. Soc. America Bull., v. 50, pp. 1311-1322.

, 1939b, Contact of Honey Creek and Reagon Formations with igneous rocks in Arbuckle and Wichita Mountains, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 23, pp. 1094-1098.

, 1939c, Progress report on the classification of the Timbered Hills and Arbuckle Groups of rocks, Arbuckle and Wichita Mountains, Oklahoma: Okla. Geol. Survey Circ. 22, 62 p.

- Decker, C. E., and Merritt, C. A., 1928, Physical characteristics of the Arbuckle Limestone: Okla. Geol. Survey Circ. 15, 56 p.
- Deer, W. A., Howie, R. A., and Zussman, J., 1962, Rockforming Minerals: 5, London, Longmans, 371 p.
- Dickson, J. A. D., 1965, A modified staining technique for carbonates in thin-section: Nature, v. 205, no. 495, 585 p.
- Folk, R. L., 1959, Practical petrographic classification of limestones: Am. Assoc. Petroleum Geologists Bull., v. 43, p. 1-38.

_____, 1962, Spectral subdivision of limestone types: Am. Assoc. Petroleum Geologists, Memoir 1, pp. 62-84.

_____, 1974, Petrology of sedimentary rocks: Austin, Hemphill Publishing Co., 182 p.

- Folk, R. L., and Siedlecka, A., 1974, The "schizohaline" environment: Its sedimentary and diagenetic fabrics as exemplified by Late Paleozoic rocks of Bear Island, Svalbard: Sediment. Geol., v. 11, pp. 1-15.
- Frederickson, E. A., Jr., 1941, Correlation of Cambro-Ordovician trilobites from Oklahoma: Jour. Paleontology, v. 15, pp. 160-163.

Frederickson, E. A., Jr., 1948a, Clarification of Upper Cambrian stratigraphy in Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 32, pp. 1349-1352.

_____, 1948b, Upper Cambrian trilobites from Oklahoma: Jour. Paleontology, v. 22, pp. 798-803.

____, 1949, Trilobite fauna of the Upper Cambrian Honey Creek Formation: Jour. Paleontology, v. 23, pp. 341-363.

- Fritz, P., and Katz, A., 1972, The sodium distribution of dolomite crystals: Chem. Geol., v. 10, pp. 237-244.
- Goldsmith, J. R., Graf, D. L., and Heard, H. C., 1961, Lattice constants of the calcium-magnesium carbonates: Am. Mineralogist, v. 46, pp. 453-457.
- Grim, R. E., Lamar, J. E., and Bradley, W. F., 1937, The clay minerals in Illinois limestones and dolomites: Jour. Geol., v. 45, pp. 829-843.
- Hall, W. E., and Friedman, I., 1963, Composition of fluid inclusions, Cave-In-Rock fluorite district, Illinois and upper Mississippi Valley zinc-lead district: Econ. Geol., v. 58, pp. 886-911.
- Ham, W. E., 1951, Geology and petrology of the Arbuckle limestone in the southern Arbuckle Mountains, Oklahoma: Ph.D. Dissertation, Yale Univ., 162 p.

_____, 1955, Geology of the Arbuckle Mountain region: Okla. Geol. Survey Guidebook III, 61 p.

- Ham, W. E., Denison, R. E., and Merritt, C. A., 1964, Basement rocks and structural evolution of southern Oklahoma: Okla. Geol. Survey Bull. 95, 302 p.
- Ham, W. E., et al., 1969, Regional geology of the Arbuckle Mountains, Oklahoma: Okla. Geol. Survey Guidebook XVII, 52 p.
- Hanshaw, B. B., Back, W., and Deike, R. G., 1971, A geochemical hypothesis for dolomitization by ground water: Econ. Geol., v. 66, pp. 710-724.
- Hanson, R. E., 1977, Petrology and geochemistry of the Carlton Rhyolite, southern Oklahoma, M.S. Thesis, Oklahoma State Univ., 161 p.

Carlo Co

Heyl, A. V., Landis, G. P., and Zartman, R. E., 1974, Isotopic evidence for the origin of Mississippi Valley type mineral deposits, a review: Econ. Geol., v. 69, pp. 992-1006.

- Hoffman, P., Dewey, J. F., and Burke, K., 1974, Aulacogens and their genetic relation to geosynclines with a Proterozoic example from the Great Slave Lake, Canada, <u>in</u> Dott, R. H., Jr., et al. (eds.), Modern and ancient geosynclinal sedimentation: Soc. Econ. Paleontologists and Mineralogists Spec. Pub. No. 19, pp. 38-55.
- Horstman, E. L., 1957, The distribution of Li, Rb, and Ca in igneous and sedimentary rocks: Geochim. et Cosmochim. Acta, N. Y., 191 p.
- Hurlbut, C. S., and Klein, C., 1977, Manual of mineralogy: (after James D. Dana), New York, John Wiley and Sons, 532 p.
- Hutchison, C. S., 1974, Laboratory handbook of petrographic techniques: New York, John Wiley and Sons, 527 p.
- Katz, A., 1971, Zoned dolomite crystals: Jour. Geol., v. 7,9, pp. 38-51.
- Kingsman, D. J. J., 1969, Interpretation of Sr²⁺ concentrations in carbonate minerals and rocks: Jour. Sed. Pet., v. 39, pp. 486-508.
- Krauskopf, K. B., 1956, Factors controlling the concentrations of thirteen rare metals in sea water: Geochim. et Cosmochim. Acta., v. 9, pp. 1-32.
- Land, L. S., and Hoops, G. K., 1973, Sodium in carbonate sediments and rocks: A possible index to salinity of diagenetic solutions: Jour. Sed. Pet., v. 43, pp. 614-617.
- Land, L. S., Salem, M. R. I., and Morrow, D. W., 1975, Paleohydrology of ancient dolomites: geochemical evidence: Am. Assoc. Petroleum Geologists Bull., v. 59, no. 9, pp. 1602-1625.
- Le Riche, H. H., 1959, The distribution of certain trace elements in the lower Lias of southern England: Geochim. et Cosmochim. Acta., v. 16, pp. 101-122.
- Lippmann, F., 1973, Sedimentary carbonate minerals: Berlin, Springer, 228 p.
- Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico: Jour. Sed. Pet., v. 44, no. 3, pp. 837-861.
- Pruatt, M. A., 1975, The southern Oklahoma aulacogen: A geophysical and geological investigation: M.S. Thesis, Univ. of Oklahoma, 59 p.

Rohlf, F. J., and Sokal, R. R., 1969, Statistical tables, San Francisco, W. H. Freeman and Co., 253 p.

- Rosler, H. J., and Lange, H., 1972, Geochemical tables: Amsterdam, Elsevier.
- Sargent, K. A., 1969, Geology and petrology of selected tectonic dolomite areas in the Arbuckle Group, Arbuckle Mountains, south-central Oklahoma: M.S. Thesis, Univ. of Oklahoma, 85 p.

, 1974, Chemical and isotopic investigation of stratigraphic and tectonic dolomites in the Arbuckle Group, Arbuckle Mountains, south-central Oklahoma: Ph.D. Dissertation, Univ. of Oklahoma, 128 p.

- Scholle, P. A., 1978, A color illustrated guide to carbonate rock constituents, textures, cements, and porosities: Am. Assoc. Petroleum Geologists, Memoir 27, 241 p.
- Shearman, D. J., and Shirmohommadi, N. H., 1969, Distribution of strontium in dedolomites from the French Jura: Nature, v. 223, pp. 606-608.
- Sipplel, R. F., and Glover, E. D., 1965, Structures in carbonate rocks made visible by luminescence: Petrography Sci., v. 150, no. 3701, pp. 1283-1287.
- Sokal, R. R., and Rohlf, F. J., 1969, Biometry: The principles and practices of statistics in biological research: San Francisco, Freeman, 776 p.
- Stehli, F. G., and Hower, J., 1961, Mineralogy and early diagenesis of carbonate sediments: Jour. Sed. Pet., v. 31, pp. 358-371.
- Stitt, J. H., 1971, Late Cambrian and earliest Ordovician trilobites, Timbered Hills and Lower Arbuckle Groups, western Arbuckle Mountains, Murray County, Oklahoma: Okla. Geol. Survey Bull. 110.
- Thomas, J. B., 1974, Cathodoluminescence as applied to sandstone petrology source rock relationships: Nuclide Corp., 1174 p.
- Till, R., 1971, Are there geochemical criteria for differentiating reef and nonreef carbonates?: Am. Assoc. Petroleum Geologists Bull., v. 55, no. 3, pp. 523-528.

Ulrich, E. O., 1911, Revision of the Paleozoic systems: Geol. Soc. America, v. 22, pp. 281-680.

, 1932, Preliminary description of the Honey Creek, Fort Sill, Royer and Signal Mountain Formations of Oklahoma, in Drake, C. L., and Bridge, J. (eds.), Faunal correlation of the Ellenburger limestone of Texas: Geol. Soc. America Bull., v. 43, pp. 742-747.

Ulrich, E. O., and Cooper, 1938, Ozarkian and Canadian Brachiopoda: Geol. Soc. America Spec. Paper 13, 323 p.

Weber, J. N., 1964, Trace element composition of dolostones and dolomites and its bearing on the dolomite problem: Geochim. et Cosmochim. Acta., v. 28, pp. 1817-1868.

Wilson, L. W., 1975, Carbonate facies in geologic history: Berlin, Springer-Verlag, 471 p.

APPENDICES

APPENDIX A

STRATIGRAPHIC SECTION

List of Symbols	Used
Carbonates	c
Fractured	F
Graded Bedding	G
Orang●	O
Red	R
Yellow	Y
Laminated	
Flaggy	
Massive	
Fractured Core	^ ^ ^
Dolomitic Limestone	
Dolomite	

Fig. 17.-List of Symbols Used

Correlation Chart of Various Sections of the Butterly Dolomite

Fig. 18.-Correlation chart of the Butterly Dolomite.

	Crystallinity	Allocnems	S-ze	Terrigenous	Structures	Stratification	Color		Aneralization	Locality	Sample	Lithelogy &	Gur 21 + 5
kijomrte imestone Fuotage	Micrite Sparite Aubianticed Au	Abudod Note Intraclasts Pellets	Lutite Arenite Rudite	Other Clay Feldspar Quartz Sand	Unger Linutial Dip Cross Beets Soft Sird Dyl Licctonic Bx Fseudo-Bx Styliclutus	Laminated Flaggy Massive	Othor Blues Pink Orange Brown Brown Dk Gray LL Gray Varieusted		Other Sphalerite Pyrite		Number	Weathering Profile	
-' X		2	κ.	· · · · · · · · · · · · · · · · · · ·	×	×	N.				SOC2.		
3 X	< x xx				×		X	.N6			\$007	444	
6 7			× .	3	x		XX	5R45 & N5	2		5012	\times / /	
8 X		5	k ·				×	N6			S017	$-\langle -\rangle$	
10		10	X	3	×		×	N7			\$022		
FIT	┝┝┑┿┿┿┥┯╵				· · · · · · · · · · · ·								
13 X			1	· · · · · · · · · · · · · · · · · · ·	xx	\Join	X	N7			5029		
15	\$ ````````````````````````````````````		¥ :		×		×	N7			<u>\$033</u> <u>\$035</u> \$038	-544	
16 17			R .	5 2 13 . 4 . 1			XX	N9 & N6 N6 & N8	1		5038	Yaha	
19 20 X		13. 39 17	K	15			UX	5YR 4:1	r		S043 S045		
22 00			1.		<u> </u>		1						
23 XX	₹ ₹ ¥ ¥ ¥	25 tr 60 10 1	X	3 1		Ŕ,	X .	10YR 2.2 5YR 4/1 5YR 4/1	-		S048 S052 S054		
24 XX	9 <u></u>	and the second sec	X	2.	x x	×							· · · · · · · · · · · · · · · · · · ·
26 27 28		30 1	k ^x		ř	×.	Ř.	N6 N5	· · · · · · ·		<u>S056</u> S059 S062 S065		
28 29 30	X X X	60 60 20	X	10.1	× · · · · · ·	×	× ×	5YR 41 N6			\$059 \$062		
<u>30</u> X	$\mathbf{q} \times \mathbf{x}$		$+\mathbf{x}$		X	×	×	N7			S065		
			11.										
34 XX		5 20	K I	5 1		\bowtie	+ ×	5YR 4 1			\$071		
37 00		60 1	4	y 11111				10YB 4 2	+		5081		
38		60 5	Ŕ	10 Ir	×	\downarrow	X	10YR 4 2 N6			\$081 \$083 \$085 \$088		
40	\$ 8	70	ĸ				X X	5YR 4 1 N6 10YR 4 2			5068 5091		Calcarenite
			x	5			X				•		
43 0		40 60 10		5				5YR 4/1			S095 S099		-
45 122		60 10 1		tr				5YR 4/2			5099		
				· i· i · l ·		l de La							
49 50		40 17	X	5	×	\times \times	XX	N7 10YR 2/2	1. 1.		S106 S108		
51 52	8 - +×x - XX	5	- X-	10	_ X _ X	\times \times	r×1 +	N7& N5 N8			S110 S112	<u> </u>	
+ -			1.			• • • • •							
55 56	<u>}</u>		1¥	++	l — Į Į į	\bowtie	1X	N8 N8	tr		5119 S123	877	
57 58 59	8888		X	2	X	Κ.	× · · · ·	N8 N7 N7	tr		\$123 \$125 \$128 \$130	-47	
59 🗴			X	5		\mathbb{R}^+	X	N7			\$130	-54-7	
ē 🕅		50 tr 1	X	"		×÷		5YR4/1	.3		S135	- (
63 X			X	10 1	x III X	\sim	XIII	N7	tr		S140	THE THE	
L												12/	
66 X					X	Γ		5R6/2	1 <u>r</u>		S145		
68					X	\sim	X	N5	1		S150		
H	<u></u>		┨╢╴				╞┼┼┼╋┿┼┷┿					\vee	
72	\$X X		11 t		X	\bowtie	××××	N3	tr		S157 S160		

T	Crystal nity	Allochems	S ze	Terrigenous	Structures	Strat f cation	Color		Mineral zation	Locality	Samc'e	L the egy. &	Remains
Footage	Micrite Sprintless Appartite Appartite V Fine Unite Median V Coarrise Coarrise Coarrise Coarrise	Abraded Abraded Intraclasts Pellets	Arenite Rudite	Other Clay Feldspar Quartz Sind	Ung: Vig: Cross facts Soft sed Det lectonic Bx fueudo Bx StyleLites	Laminated Flaggy Massive	Other Black Pinte Pinte Pinte Pinte Brown Dr. Gray LL. Gray LL. Gray		Other Sphalerite Pyrite		Number	Weathering Profile	
76	xx_X	2	K		x x	×	x	N3			S 166	(7-7	
79	si x x	5	k.	5	. × .	\sim	×	N8			S173		·····
87 63					X	×	XX	NG&1CYR66			S176 S183	- Stanling	
			×.										
86 87 88	8 × &	3	Ř,		XX	$\mathbf{x} \times$	XX	N7 N7 N4&N8			S187 S190 S192	Englanda	
												-1	
93	XIIX					\times	x x	N9 8 N7			S203	TT	
95	X X X	tr tr	K.	tr	X	<u> </u>	×	NB & N7			S208		
97	XIXXX				×	\times	×	N6			<u>S211</u>	-(//	
	XXXXXX	· · · · · · · · · · · · · · · · · · ·	1		X	×	× x	N8 N98 N5	· · · · · · ·		S215 S221		
103 104 105	8 × 8€				×	×	× ×	N7 N98 N5 N98 N5	3		\$224 \$226 \$228	- <i>E</i>	
			:1			n.							
	X X X				×		X	N7		· · · · · · · · · · · · · · · · · · ·	\$235		
113	x x x		1		×	× -	×::::::	N7			S245		
	X X X							· · · · · ·		-			
E			11					· · · · · · ·					
124	X X XX				×		×	N7	_		S265		
H					×				-				
129 120	x x x					\succ	× ×	N4 N685YR7:4			S277		
1.20	A X XX						Land data 11	N685YR7:4			\$279	911	1
135							×	NB			S290	1 4	
140						\mathbf{x}^+	×	N7		· · · · · · · · · · · · · · · · · · ·	S 301	~~~//~/~~/	
												- [
												-+//	
149							×	N8			5319		
149	× ×					\times		NB	, <u>.</u>		3319	<u> </u>	1

Crystallinity	Aliochems	S ze		Structures	Stratification	Color	Vineralization	Locality	Sample Number	L thology & Weathering	Remarks
Aphan tic V Fine Fine Coarse Coarse Coarse E Coarse E Coarse Fine Fine Fine Coarse	s Abrided Se Abrided Fe Whole Intraclasts Pellets Oolites	Rudite	Other Clay Feldspar Owartz Sand	NO RESE	Flaggy Massive	Other Black Mink Prink Opange Brown Brown LL Gray LL Gray	Other Sphalerite Pyrite			Profile	
151 X X X 153 X X X				×	XX	X		- · · · ·	5322 5325 -		
157 X X X X X X X X X X X X X X X X X X X	{ 			×	×	N6 N8			\$ 333 \$ 335	07	
162 X X X		-	· · · · · · · · · ·	X	×	X N6			\$346 \$350		
170 X X X				×		× • • • • • • • • • • • • • • • • • • •			<u>\$360</u>		
175 X X + X				×	×	N7			5371 5376		
180 X X X				X	X X	X			\$379 \$386		
	<pre></pre>	X			× 	X 1 N7	tr		S 389 S 399		
100	5	: : X :	r		×	×			\$ 409 \$413		
				× ×		X N6 N6	!r	· · · · · · · · · · · · · · · · · · ·	S415 S419 S423		
204		X		×	×	SYR3'4 5YR4/1			S429 S431		
212 X X X		×			× ·	5YR4/1 N			S445 S446		
215 X X X						× N6			\$450 \$458		· · · · · · · · · · · · · · · · · · ·
219 X X X				×		× N6	1		S467	<i>Y</i>	
				1							

	Crystallinity	Allochems	Size	Terrigenous	Structures	Strat fication	Color		Mineralization	Locality	Sample	Lithclogy &	Remarks
Joloin-te Imestone Footage	Spart te Recrystali.cod Aphanette Fine Fine Course Course Course	S Abraded S Abraded Nicrite	Lutite Aienite Rudite	Other Clay Foldspar Quartz Sam	Vugs Linitial Op Cross Buds Soft Sed Def Rectonic Def Inctionic De Stylicities	L uminated F1aggy Massive	- Other - Bluck - Bluck - Bluck - Otange - Otange Brown - Brown - Brown - Brown - Brown - Otange		Other Sphalerite Pyrite		Number	Weathering Frofile	
 229 X	x x	+ + + + + + + + + + + + + + + + + + + +		ă	×176	·	×	N5			S478	X.	
232	x x	5			X	<u> </u>	X	N4			<u>\$483</u>		
234 X		3			X		x	N6 N5			\$489 \$494	- Sinh	
238 X		3			л	×		N4		······	S497	- (//	
243					X	×	X	5YR4/1			\$ <u>507</u>		
248 249	× × *	1		3	× x x	8	x×	5YR4 /1 N5			\$516 \$518		
252 X				······································	x x		× III ×	5YR4/1 N5			\$524 \$532	- H	
257 X 259 X					×	X	X X	<u>N6</u> N5			S5 <u>36</u> S54 <u>0</u>		
261 X 263 X 264 X					× ×	×	×	N4 5YR471 10YR472			S 544 S 54 8 S 54 8a		
267 X	x x	5					×	N4			S551		
271 272	<u>, x</u> *				x	××	×	N5N5			\$563 \$565		
276 🗙	× × ×				×	×	×	N5			S 5 74		
281 X		3				×	×	N4			\$ <u>58</u> 4	- 4 /	
285 X					X	×	×	N4			S590	Ų,	
28.J 290		5			×	8	××	N7 57R4/1			\$598 \$601		
293° X					×	×	×	5YR4/1			\$608	Signal Mtn. Ls.	
				+ + 1							,		· · · · · · · · · · · · · · · · · · ·

Remarks																																	
Lithology &	Weathering Profile							\langle / \rangle		\times													1 / v)	 V V V	$\frac{1}{2}\sqrt{2}$	 	75-77	v v	V V	<u> </u>			- V/v/
Sampie	Number		B048	8050		B054	B058				B066			B071	B074		B078	B 0 79		8084	2000	B087	1060H	B093	8095 B096	B099	1018			B108	B111		
Locality																															- date appendix norm		
Wineralization	Other Sphalcrite Pyrite		3									++			-	-		-+-	-					3	-					3			
			N68 N9	9N6		22	<u>N7</u>				NB			N7.	10 YR 6/2 &	5 YR 6/1	100 Z	N 7 N 8	•	N 7		22 22	N7	6N	88 8 8 2 8 8	N8	N7			NB	514		
Color	Other Black White Pink Orange Brown Dk Gray Lt Gray Varicouted		××			X	×		-+ + + + + + + + + + + + + + + + + + +		X		+ + + + +	X	XX		÷	XX		- - -		×		X	×	X.	×			X			
Stratification	Laminated Flaggy Massive		X	Х		X	X				X			X	X		X	X		++				X	XX	 X	X			X			1
Structures	Uter Vugs Initial Dip Cross Beds Soft Sed Def Tectoric Bx Pseudo Bx Stylchtes		×	X		×	+ x				X			X				××	•	×		\$X Li		X X X	XX	X	X			XXX			
Terrigenous	Other Clay Feldspar Quartz Sand			tr .								+ +												1	tr tr								
Size	Lufite Arenite Hudite	- 1	X				<u></u>	-T	+			11		-		-	Y	,				-	2	X	İX							۲.	
Alloc	Fragmont Abraided Whole Intraclasts Pellets Oolites																																
Crystalltnity	Dolomite		X	U		×××							_	XXX			X	** *_		5				X	xx					XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		₹ 	
Ē	Footage		48		_	24	58			T	8		1	+12	74		78	80		R4		0 ² 8	6		95 96	66	101		T	108			1

n S S S						
Lithorogy 8. Veatherno Profile			× × × ×		No.	A CONTRACTOR
Sample Litt Number Wea	8125	19 13 0		ę. 163	8167	8.10
Locality						
Sphalerite Pyrite				1		
Other Black White Brown Brown Dk. Gray Lt. Gray				× ×	X X X Nu	ž 2
Laminated Laminated Flaggy Massive Other				X	XX	X
- Other - Vogs Initial Dip of cross Beds Soft Sed Def Tectonic Bx O Pseudo Bx StyleLites					×	× · · · · ·
Glay Feldspar			++++++++++++++++++++++++++++++++++++++			
Lutite Arenite Fludite Fragment Araded						8
Abraded Whole Initiaclasts Pellets Outres				man a second	55	<u>0</u>
Micrite Sparite Decrystalized Aphanitic V Fine Coarse V Coarse Coarse C Coarse		x		× ×	× × ×	× × · · · ·
Linustone Footage				ž X	120 X	

Г		Crystallinity		Allochems	Size	Terrigenous	Structures	Strat fication	Color		Mineralization	Locality	Sa~p e	L thology &	Pemarks
5	Colo	Aphanilized Aphanilized V Fing Coarse Coarse F Coarse	SN N	Fossils	1.	21-1				1		1	Number	Weathering	
Footage	es lo	Coa Coa	22	Abraded Whole Intraclasts Pellets	Arenite	Clay Clay Feldspar Duartz Sand	- Other Urgs Brds Cross Brds Soft Sed Def Jectone Bx Jectone Bx Stylclutes	Flaggy Massive	Cither Black Pinite Pinite Drange Brown Dk. Gray Vauregalied		Other Sphalcrite Pyrite			Profile	
10			22	ade ole clas	e e e	spar		ate	iay nation		te inte				
191	X	X X	×		x	đ	XXXXXX	X	kx	N5 & N6			B19.	10.00	
F	_			·							1				
194	X	XIX	хI		\times	1.1	K	\times	\times ; 1111	N6	1.		B194		
E			-		11										
		-++-+++++++++++++++++++++++++++++++++++											· · · · ·		
F	-		-		1.1						1			2×	
-	-		7		k++		×			N4			8202	12-3-	
20	Ŕ	×× ×	Ŕ I	tr	X.		×	Š.	8	N4			B202 B203	222	
20	X	·x-×	x		+			\times	×	- N6-	5		B20.5 B206		1
20	X	X X	X			· · • • • • • • • • • • • • • • • • • •	RX	×	X	<u>N7</u>	"		B206		
200	5				444			\otimes :=	XXX X	NARNA			8209		
209	8	<u> </u>	8		1+-1	-+	<u> </u>	h	XXX - X -	N4 8 N9 N4 8 N9			8209 8210		
-	Ì	l≟u÷Ű			111						· · · · · · · · · · · · · · · · · · ·				
213	X	x x			X		X X X	×	X	_N6			B213		
F		1	-												
218			-		x				x	N6	1		B218		
1.	1	XX	Ă.			1 tr		\mathbf{X}		· · · · · · · · · · · · · · · · · · ·		<u></u>		444	
-			-												<u></u>
	-1											· • • • • •			
F-	1							1. 1						$-F_{Z_{17}}$	
22	X		x		111		K IX	XL	XX	N5 8N7 N5 8N7			B226	27	
22	X		×		K :		X : .: ⊦X	×	×	N5 8N7			B227		
F						· · · · ·							·		
-		1	1		11.		1			1		1 1			1
F	1		1		1.								1		
1	+-					-++.+								2× ×	
23	<u>-</u> X	XX	X	- +++++	11-		KX	×	×××	N4 8N7			B236		
											1				
24		XX	X I		X	1 11	×	X	×	N6			B240		
24	×	X	K.		X	<u>w + · + · · · · · · · · · · · · · · · · </u>		X	XX 1711	N3 & N7			B242 B243		
24	-A	<u>_</u> XI + X	×	tr	Ř-		X X			N6 & N8			8243		
246	X	X	x		X	tr	x x	×	XX X	N4 8 N9	1r		B246	177	
245			D		11.		0				tr -		1 .	Kin	
24	X		8		N T		R	- X -		N4 & N6 N5	1		B 248 B 249		
E			+									1			
1-	-	-+++++			-			+			-				
-								FT-							
			1												
-	T.	╶╅┼╋╌╿╼┡╿╺┊╋		- + + + + + + + + + + + + + + + + + + +	+++-		FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	· - ·+	┠╂╍╽┥╍┧╼╋┥┥╼┿╺┥	t	-				
F	-						+++++++++++++++++++++++++++++++++++++++								
1-								1 127-							
÷					1.					•		!	1		

1												
1												
מי ו ש												
α												8
	and the second s											
Lito ogy & Westering Profile												
Prof												
Sample												
Locarty	T000	1081 1088 1092	1123	1.43			1.99	1213	723	1239		
j												
Sphalarit Pyrite							-	-				
	N 94. 3. 28.	100	19 4 N5				e, e	0 9 9 V	92	20 V2		
Other Black White Pink			X					X				
Orange Orange Dk Gray Ut Gray Variestate	- A - A -	*	¥	××			7. 	x	×	x x		
5 Laminate	₫X. X					1	Х.					
Other	×									X X		
o Other Vugs Unitial D Cross Boi Soft Sed D Fectoric E	x		x				x	X.				
ທີ່Pseudo-L Stylclite ອຸ Other	3x. 5	×					<u> </u>			>		 ·····
Clay Feldspa	r							+				
Cuartz Sa							ۍ د			m 9	+	
0 Rudite				<u>×</u>			: X.	X		×>	۹ ۱	
w Abrade	· · · · · · · · ·											
e Intractae Pettete	its in the											
Ooliter												
Micrite Sparite Becrystalliz Aphaniti		×**	<u>+ </u>	<u> ×</u> ×			××	<u>×</u>				
Medium Goars		×		×x			XIX	· · · · ·	X :	×>		· · · · · · · · · · · · · · · · · · ·
V Coart O I Coart Dolomite Limestore		· • • • • • • • • • • • • • • • • • • •	x	TXV			x x	X	X	×		
Footage	6 8				,		., .;	-7	en Se	1.5		

Crystallinity	Allochems S	Size Terrigenous	Structures	Stratification	Color	Mineratization	Locality	Sample	Lithology &	Remarks
Adjorate Spartie Spartie V Fine Coarse V Coarse E Coarse E Coarse Foolage	5	and a	Virgs Unter Cross Bods Soft Sod Ref Tectonic Bx Fseudo-Bx Stylchiles		Olter Black White Orange Dr. Gray LL. Gray	Other Sphakrite Pyrite		Number	Weathering Profile	
			× × ×	XX	578-4/1 N7 N6 N8&N4	1 tr tr 1		Z252 Z240 Z230 Z225		
		X 5 5 2	× ×	X X	N8 5Y8 1& N7 05Y6/1&N7 N8			<u>Z2:6</u> Z206 Z202 Z 191	- Yuuduuqdu -	
	1 X	X 3 1 10 X 5	×××××	XXX	X O 5Y6/14.N5 N7 X N7 X N8			Z 182 Z 168 Z 162 Z 162		
16 X X X 18 X X X 20 X X X	X	20 tr X 15	× × × × ×	XXX	X N8 X 11 N7 X N6a N9			Z147 Z139 Z126		
	2 X		× × ×		N7 N6 SV6 1 0 SV6 14N6 10YR 6/2 N8			Z 113 Z 109 Z 106 Z 099		
25 X X X X		X 25 30	× × ×					ZC95 ZO80 ZC7 ¹ Z065		
			X	X	Х 151КО & М Х 16 Х 05ҮЙА (би4 ХХ 15 & N9			Z057		
		X ,	× × ×		N8	ţr. 		Z045 2040 Z032	- 77	
			× × × ×	XX	N7 45784 N8 N7 SV 6/15984	tr Vi tr		Z032 Z025 Z023 Z019 Z019 Z014	-	
						-				
							-			

Rear							
L-Indlogy & Weathering Profile							
Sarpe Number	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	P90) P902 P912 P918 P932 P932	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<u>с, 9</u> а			
Locatery							
Sphalerite Pyrite	9 50 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	NB 6 N4 N2 6 N5 N2 6 N1 N3 6 N1 N3 6 N1	N 14 0 N8 N5 4 N9 N8 5 4 N9 N8 5 4 N1 N5 4 N8 N8 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9	N.6 P. N.9 N.5 P. N.9 N.5 P. N.9 S.Y.A.4 / Y.9 S.Y.A.4 / Y	2 N A 2 S			
Other Black - White Orange Brown Dk. Gray Vill-Gray							
E Laminate	-x	XX XX	K XX	X			
Other Vugs Initial Di Cross Bed Soit Sed D lectonic B StyleLites				×			
Guartz Sar	○┫○┤○┛○○○ ┫○ ╂○┨ ╂○┨₽₩○₩	α Δ.					
N Arenite N Rudite	××	×××*×	XXX		<u></u>	· · · · · · · · · · · · · · · · · · ·	
Abraden Abraden Abraden Whole Pellets Oolites	d IS SP i						
Hicrite Sparite Aphanitic V. Fine Medum McGum V Coarse V Coarse V Coarse			- x xx xx	× ×			
LuneStone Footage	· [m]4 [e]1.		, y s ~ 86	х 			

MODAL ANALYSES OF THE BUTTERLY DOLOMITE

APPENDIX B

.

Sample Numbers	B1-48	B1-50	B1-93	B1-96	B1-111	B1-167
Allochem						
Intraclasts Ooids Pellets Fossils	- - 1 - 1 - 1	- - - -	- - - -	- · ·	- - -	25 - - -
Cements						
Microsparite Sparry Calcite Dolomite	- - 96	- - 97	- - 95	- 96	- - 99	- 72
Non-Carbonates						
Quartz Feldspar Zircon Chert Apatite Biotite Chlorite Glauconite Leucoxene Clay Rutile	tr - - - - - - - - - - - - - - - - -	1 tr - - - - - - - - - - - - - - - - - -	1 tr - - - - - - - - - - -	tr - - - - - 1 -	tr - - - - - - - - - - - - - -	tr tr - - - - - - - - - - -
Rock Fragments						
Granophyric	_		-	_	_	_
Mineralization						
Pyrite Sphalerite	- 3	1-	3	1 -	tr -	tr -
Porosity	tr	-	tr	1	-	2

Sample Numbers	B1-218	B1-240	B1-242	S043	S048	S052	S054
Allochem							
Intraclasts Ooids Pellets Fossils	- - 	- - tr	- - * -	13 tr 39	27 tr 18	12 37	5 27 -
Cements							
Microsparite Sparry Calcite Dolomite	- - 97	- - 96	- 96	25 - 5	37 1 01	30 2 7	37 3 10
Non-Carbonates							
Quartz Feldspar Zircon Chert Apatite Biotite Chlorite Glauconite Leucoxene Clay Rutile	1 tr - - - - - - -	1 tr - - - - - - - - - - - - - -	1 - - - - - - - - - - - - -	13 4 tr - - - - - -	14 1 - tr tr - - - -	8 3 - - - - - - - - - - -	15 2 - tr - - - - - - - - - -
Rock Fragments							
Granophyric	-	-	-	_	_	-	-
Mineralization	-						
Pyrite Sphalerite	1 -	1 -	1 -	tr -	tr -	tr -	tr -
Porosity	-	1	1	tr	-	tr	_

Sample Numbers	S056a	S062	S065	S071	S085	S088	S095	S099
Allochem								
Intraclasts Ooids Pellets Fossils	21 tr 16	13 tr 10 -	-	62 1 2 -	23 tr 28 -	30 - 5 -	18 - 2 -	28 tr 19 -
Cements								
Microsparite Sparry Calcite Dolomite	21 1 16	31 5 17	- - 76	3 11 5	27 1 10	tr 18 8	24 5 22	27
Non-Carbonates								
Quartz Feldspar Zircon Chert Apatite Biotite Chlorite Glauconite Leucoxene Clay Rutile	20 4 tr - - tr tr - -	19 3 - - - - - - - - - -	10 4 tr tr - tr - tr -	11 3 - - - - - - -	8 - - - - - - - - - -	29 5 - - - - - - - - -	21 6 tr 1 tr - - -	3 1
Rock Fragments								
Granophyric	-	tr	-	-	. –	tr	-	-
Mineralization								
Pyrite Sphalerite	-	1 -	4 -	tr -	tr -	-	tr -	tr -
Porosity	tr	tr	5	-	-	4	-	tr

Sample Numbers	S106	S110	S128	S166	S183	S190	S224	S235
		4					1	
Allochem								
Intraclasts Ooids Pellets Fossils	51 _ _	43 - - -	- - -	- 30 -	- - - -	1 - tr -	- - - -	- - tr -
Cements								
Microsparite Sparry Calcite Dolomite	2 30	- 41	- - 65	- - 68	- - 98	- - 95	- - 98	- 98
Non-Carbonates								
Quartz Feldspar Zircon Chert Apatite Biotite Chlorite Glauconite Leucoxene Clay Rutile	11 3 - - - - - - - - - - - - -	11 3 tr - - - - -	17 7 tr 2 - - - - -	tr tr - - - - - -	1 tr - - - - - - - - -	2 1 - - - - - - - - - - - - - - - - - -	tr - - - - - - - - - -	tr - - - - - - - - - - - - - - - - - - -
Rock Fragments								
Granophyric	-	-	-	-	-	-	-	-
Mineralization								
Pyrite Sphalerite	2	, <u>1</u> _	tr	tr -	tr -	tr -	1 -	1
Porosity	-	-	8	1	-	-	-	-

Sample Numbers	S279	S319	S409	S423	S532	S563	S608	т5025
Allochem								
Intraclasts Ooids Pellets Fossils	- - - -		15		- - - tr		 - 1 	- · , - · , - · ,
Cements								
Microsparite Sparry Calcite Dolomite	- - 96	- - 98	- - 74	- 90	- - 96	- - 88	- - 85	- - 98
Non-Carbonates								
Quartz Feldspar Zircon Chert Apatite Biotite Chlorite Glauconite Leucoxene Clay Rutile	tr - - - - - - - - - - - - - - - - - - -	tr tr - - - - 1		6	1 tr - - tr tr - -	7 tr 2 - - - - - -	1 tr - - - tr - -	1 tr - - - - - - - - - -
Rock Fragments								
Granophyric	_	-	_	-	-	-	÷ -	-
Mineralization					r			
Pyrite Sphalerite	-	-	-	_	1 -		9	tr -
Porosity	3	-	10	4	1	2	3	tr

Sample Numbers	т5199	T5213	Z023	Z065	Z090	Z113	Z162
Allochem							
Intraclasts	-	tr	-	· _ ·	tr	1	1
Ooids Pellets	- tr	- tr		-		· -	-
Fossils	-	- -	-	-	-	-	·
Cements							
Microsparite	-	-		_	-	-	-
Sparry Calcite	- 90	96	90	- 85	78	- 77	- 80
Dolomite	90	90	90	00	10	//	80
Non-Carbonates							
Quartz	5	2	4	12	17	17	10
Feldspar	2	tr	tr	2	3	3	5
Zircon Chert	-	tr tr	-	- tr	tr 1	tr	tr
Apatite	- tr	-	-	tr	tr	-	-
Biotite	-	_	-	-	-	_	-
Chlorite	-	tr	-	-	tr	-	· –
Glauconite	-	-		-	-	-	-
Leucoxene	-	-	-	-	-	-	-
Clay	-	tr	2	-	-	-	-
Rutile	-	-	-	tr	. –	-	-
Rock Fragments					•		
Granophyris	tr	-	-	-	tr	-	-
Mineralization							
Pyrite	1	tr	tr	tr	tr	tr	1
Sphalerite	-	-	-		-	-	-
Porosity	1	1	13	-	tr	1	2

Allochem		
Intraclasts Ooids Pellets Fossils		- - - -
Cements		
Microsparite Sparry Calcite Dolomite	- 75	- - 54
Non-Carbonates		
Quartz Feldspar Zircon Chert Apatite Biotite Chlorite Glauconite Leucoxene Clay Rutile	21 3 tr tr tr - - -	36 5
Rock Fragments		
Granophyric	-	-
Mineralization		
Pyrite Sphalerite	tr -	4
Porosity	_	tr

Sample Numbers Z206 Z225

APPENDIX C

CHEMICAL ANALYSES OF THE BUTTERLY DOLOMITE GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE

EDCHEMICAL	DATA	CONC.	IN	PPM,	RESID	WT.	IN	GRAMS)	OF	THE	BUTTERLY	DOLOMITE				7
												8:02	WEDNE SDAY,	JULY	26,	1978

	,							LOC=8	B										
085	LOC	SAMPLE	RESID	CA	MG	FE	MN	SR	NA	ĸ	LI	CU	28	ZN	CD	CR	NI	XL	HGCARAT
1	8	48	0.0097	167000	117000	884	91	30	177	35	1	5	43	5049	23	5	0	5	115.508
2	8	50	0.0671	211009	125000	707	102	54	305	316	1	5	38	67	3	5	0	4	97.672
3	8	54	0.0017	171000	117000	1332	80	30	175	25	1	5	35	27	3	155	65	6	112.806
4	8	58	0.0099	162000	117000	555	81	25	187	20	1	5	33	28	3	5	0	5	119.073
5	B	66	0.0053	156000	114000	633	75	30	855	10	1	5	30	18	5	10	10	2	120.482
6	8	71	0.0110	172000	114000	647	83	28	187	20	1	5	30	16	5	5	10	4	109.275
7	8	74	0.0086	188000	118000	630	81	30	106	20	1	0	25	18	8	10	10	5	103.482
8	8	78	0.0722	195000	126000	620	86	65	129	108	1	16	49	151	8	5.	9	4	106.532
9	8	79	0.0026	171000	120000	947	90	27	140	5	1	5	30	11	8	5	0	4	115.699
10	8	80	0.0115	194000	117000	455	71	46	278	40	1	5	25	17	5	20	13	2	99.432
11	B	84	0.0041	166000	120000	517	80	20	159	0	1	5	35	6	5	15	8	5	119.183
12	8	86	0.0172	190000	122000	585	92	25	81	28	1	5	46	0	5	15	10	2	105.864
13	8	87	0.0080	172000	118000	872	91	20	149	5	1	5	35	7	5	10	10	2	113.109
14	8	90	0.0307	176000	115000	1233	129	31	113	103	1	5	31	23	5	5	11	5	107.728
15	В	93	9.1030	184000	109000	4013	212	39	195	485	1	6	50	11	6	22	23	2	97.668
16	8	95	0.0253	170000	114000	1257	82	21	790	226	1	5	41	15	8	5	11	4 5	110.560 105.073
17	В	96	0.0332	193000	123000	874	109	31	222	57	1	5 :	36	5	5	5	11 11	2	110.845
19	8	99	0.0336	177000	119000	579	103	21 32	127 347	0	1	5	36 49	115	5	11	12	3	113.414
19	8 8	101	0.0769	157000	108000	3142 726	60 101	20	223	303 0	1	3	41	8	3	10	10	5	120.765
20	8	108	0.0147	157000 167000	115000 113000	1509	99	26	286	177	1	5	42	43	3	5	11	ś	111.559
21 22	8	111 125	0.0393	167000	125000	713	86	20	202	25	i	5	40	4	5	10	5	ś	123.406
23	8	130	0.0165	217000	130000	625	66	25	208	20	1	20	46	13	5	10	5	6	98.770
24	8	163	0.0762	185000	124000	1932	65	27	265	146	i	5	49	31	ś	ú	6	z	110.508
25	8	167	0.0187	169000	112000	1376	76	20	214	92	ì	ś	41	17	ŝ	10	10	5	109.263
26	8	170	9.1024	196000	118000	2200	111	50	468	345	î	6	39	43	6	11	7	ŝ	99.259
27	8	178	0.1959	212000	126000	2736	112	44	560	535	1	6	37	45	. 6	12	18	3	97.989
28	8	191	0.0899	199000	123000	1511	126	38	374	258	1	5	44	11	5	11	12	4	101.905
29	8	191	0.0929	182000	125000	2039	110	39	380	292	î	6	33	6	6	6	12	3	113.235
30	Ř	194	0.0728	184000	120000	2259	108	27	291	243	ī	5	38	5	8	49	28	4	107.524
31	B	202	0.0609	154000	117000	1704	122	21	128	120	ī	Ś	43	ō	8	11	11	6	125.259
32	B	203	0.0804	169000	121000	1849	120	33	190	109	1	5	33	ō	5	5	17	4	118.043
33	8	205	0.1714	193000	124000	2836	97	36	344	278	1	6	42	0	6	12	14	3	105.927
34	8	206	0.0381	150000	111000	2188	83	36	307	317	1	5	31	9	8	10	11	3	122.004
35	8	209	0.0968	160000	119000	1733	194	28	149	127	1	3	28	0	6	11	18	5	122.622
36	8	210	0.0515	169000	114000	1502	206	32	174	53	1	11	37	0	5	5	16	4	111.214
37	B	213	0.0801	168000	121000	1006	234	27	315	76	1	. 5	27	0	5	11	9	3	118.746
38	8	218	0.1122	180000	133000	777	90	45	293	332	1	6	39	0	8	13	13	4	121.921
39	8	226	0.0308	160000	111000	1052	134	28	160	108	1	5	34	0	5	62	31	4	114.379
40	8	227	0-0420	151000	112000	966	136	31	193	78	1	0	26	0	-5	10	11	4	122.288
41	B	236	0.0212	153000	119000	1134	123	20	199	36	1	5	25	0	8	5	5	6	128.233
42	8	240	0.0879	159000	115000	1995	121	27	318	285	1	5	33	0	5	110	50	3	119.246
43	В	242	0.0452	152000	121000	1335	162	21	· · · 0	92	1	0	37	5	8	5	6	5	131.246
44	8	243	0.0897	170000	117000	1483	132	27	258	390	1	5	38	0	5	11	6	5	113.473
45	8	246	0.0377	166000	120000	2182	156	23	161	78	1	0	26	0	5	16	8	6	119.183
46	8	248	0.0933	324000	13000	739	331	116	138	171	1	17	39	3	8	6	7	2	6.615
47	8	249	0.1478	170000	124000	3638	1877	29	194	458	1	0	41	33	6	12	9	3	120.258

GEOCHENICAL DATA (CONC.	IN PPM, RESID WT	IN GRAMS) OF THE BUTTERLY DOL	DMITE	5
			8:02 WEDNESDAY, JULY 26, 19	78

								- LOC=H											
085	LOC	SAMPLE	RESID	C 4	MG	FE	MN	SR	NA	K L	I CU	P.8		ZN	CD	CR	NI	XL	MGCARAT
48	н	2	0.0712	150000	105000	1588	75			91 1		70		1843	86	5 6	6	3 3	115.439
49	н	5	0.0927	118000	109000	2149	118	28	83 1	32 1	6	72	4	22043	121	0	12	3	152.296
								- LOC=P											
085	LOC	SAMPLE	RESID	CA	MG	FE	MN	SR	NA	K L	I CU	P	8	ZN	CD	CR	NI	XL	HGCARAT
50	P	500	0.0198	153000	113000	1785	250	26	0	71 1	5	3	6	1734	15	5	10	3	121.767
51	P	530	0.1196	170000	115000	2272	85			50 1			5	3862	23	6	35	3	111.530
52	P	535	0.0436	151000	106000	2536	1 36			01 1	5		7	4182	37	5	6	3	115.737
53	P	550	0.1035	167000	120000	2398	98			90 1			0	3067	14	6	12	4	118.470
54	P	600	0.0757	151000	115000	2202	1 30	32 1	68 2	22 1	5	3	2	5085	38	5	17	3	125.564
55	P	637	0.0737	162000	118000	1997	119	38 1	84 1	57 1	- 5	2	7	3886	49	5	12	3	120.091
56	ρ	646	0.1103	174000	129000	2079	96	45 1	97 1	07 1	6	3	9	1574	17	6	12	3	122.232
57	P	668	0.0208	158000	117000	817	87	31	20	0 1	5	3	1	286	10	5	5	4	122.038
58	ρ	678	0.1278	143000	109000	1777	92	34	0 1	15 1	0	. 12	0	71085	332	6	1	3	125.670
59	ρ	685	0.0483	152000	110000	2968	84	47 3	15 2	78 1	5	- 4	7	1003	24	5	1	3	119.314
60	P	610	0.0843	192000	124000	1502	71	55 3	06 1	69 1	15	4	4	8736	76	5	12	3	136.479
61	P	901	0.1026	196000	128000	1655	117	56 2	67 2	01 1	28	5	6	418	11	22	7	3	107.673
62	P	902	0.0209	154000	119000	996	82	31 1	63	5 1	5	- 4	6	8681	71	5	5	5	127.430
63	P	912	0.0838	158000	114000	1801	82	22 1	47 1	86 1			8	1473	27	5	6	3	118.957
64	P	918	0.0406	167000	113000	938	83			52 1			6	70	5	5	11	4	111.559
65	Ρ	924	0.0660	166000	115000	2248	86	37 1		61 1	5	4	3	119	11	5	11	3	114.217
66	P	932	0.0913	188000	120000	1788	77	44 1	60	94 - 1	11		4	116	6	6	7	3	105.236
67	P	941	0.1065	179000	115000	2507	90	39 2	74 3	36 1	6	3	4	325	6	6	7	3	105.922
								- LOC=S											
												C 11		7.4	CD	CR	NI	XL	MGCARAT
08 S	LOC	SAMPLE	RESID	CA	MG	FE	MN	SR	NA	K	LI	Cυ	PB	ZN					
68	S	2	0.0341	155000	109000	9887	4659	41	259	52	1	5	31	.8	35	5	8	4	115.941
69	S	7	0.0187	142000	108000	11413	4688	46	122	5	1	5	31	15			-	4	125.394
70	S	12	0.0665	166000	116000	1484	134	27	134	134	1	5	21	3	5 5	5 5	6	5 5	115.211
71	S	17	0.0295	139000	115000	1752	155	21	144	82	1	3	31 36	2 0	8	5	11 5	5	121.044
72	S	22	0.0180	158000	116000	1675	117		98	0 62	1	5	30	0	8	10	3	5	124.202
73	S	29	0.0340	150000	113000	1325	119 134	21	21	02	-1	5	36	0	5	36	11	6	119.531
74	S	33	0.0287	160000	116000	1390 2154	164		87	. 0	1	0	26	0	8	5	3	6	125.881
75	S	35	0.0250	148000	113000	3794	317	49	128	274	1	24	30	ő	12	6	8	1	134.894
76	S	38	0.1803	176000 252000	120000	923	213		125	210	1	6	35	7	8	6	13	ż	78.510
77	S	43	0.1333		114000	1786	100		79	45	1	Ö.	32	ó	11	11	11	4	119.715
78	S	45	0-0483	157000 255000	20000	1337	148	250		57	1	6	34	3	11	11	18	3	12.931
79	S S	48	0.1214	257000	9000	1557	126	197	0	104	1	5	38	0	8	11	15	3	5.174
80		52	0.0886	308000	19000	1376	82		171	235	1	12	35	6	ğ	6	14	3	9.635
81		54		262000	7000	453	115		0	38	1	5	38	0	8	11	17	ž	4.405
82	S S	56 56	0.0845	262000	17000	1240	104		ő	150	. 1	ź	46	ŏ	20	10	29	2	10.617
83	5 5	59	0.0064	258000	14000	674	65		ŏ	150	1	5	35	ő	8	10	20	ž	8.946
85	S	62	0.1940	238000	38000	1458	167		ŏ	62	ĩ	0	31	ŏ	6	12	21	2	26.324
86	S	65	0.1478	170000	114000	2153	129		47	65	· 1	õ	35	õ	9	12	8	5	110.560
90	3	60	0.1410	110000	114000	2100	,	25			•			v			5. T		

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRANS) OF THE BUTTERLY DOLOMITE 9 8:02 WEDNESDAY, JULY 26, 1978

< ~

								- LOC=:	s										
280	LOC	SAMPLE	RESID	CA	۳G	FE	MN	SR	NA	ĸ	LI	CU	PB	ZN	CD	CR	NI	XL	MGCARAT
87	S	71	0.3261	202000	63000	1165	92	92	92	82	1	5	31	2	8	8	11	4	51.420
38	S	88	0.3052	261000	8000	439	50	160	0	144	1	7	3	ō	7	7	8	3	5.053
89	S	81	0.0638	268000	11000	737	59	182	Ó	11	1	5	43	0	5	5	17	2	6.767
90	S	83	0.1553	161000	131000	1799	89	24	0	260	1	3	36	Ó	9	12	14	2	134.149
91	S	85	0.0392	250000	11000	541	57	141	0	0	1	5	47	0	5	8	8	2	7.254
92	S	91	0.1832	202000	69000	3030	135	86	0	324	1	0	37	0	6	6	5	2	56.317
93	S	95	0.1685	199000	33000	1173	156	84	6	216	1	6	2	0	6	6	8	2	27.340
94	S	99	0.0515	242000	23099	1344	90	163	0	158	1	5	32	0	5	5	6	3	15.670
95	S	106	0.1655	236000	32000	2247	102	177	24	264	1	6	30	8	12	6	13	4	22.355
96	S	108	0.0508	247000	14000	753	68	174	0	13	1	5	42	0	5	5	11	2	9.345
97	S	110	0.1477	164000	110300	5749	147	56	0	417	1	6	35	0	9	6	13	4	110.584
98	S	112	0.0307	165000	117000	3766	1702	31	170	5	1	10	31	18	8	5	16	3	116.908
99	S	119	0.0171	152000	113000	922	117	15	46	0	-1	0	31	13	5	5	5	5	122.568
100	S S	123 125	0.0199	153000	114000	4234	1837	41 57	92	0	1	5	26	9	5	5	8	. 4	122.845
101 102	S	125	0.0274	203000 173000	112000 114000	4730 5081	2468 2252	40	213	35	1	3	31	34	5	5	16	4	90.963
102	S	130	0.0844	169000	116000	2933	1311	44	98	79	1	0	29 35	10 10	6 8	11	17	•	108.643 113.165
104	S	135	0.0289	270000	5000	407	211	124	21	0	1	5	35	0	8 8	5	16	6 2	3.053
105	Š	135	0.0244	269000	9000	661	333	113	0	ő	1	5	36	14	8	5	16	2	5.516
106	s	140	0.0839	192000	112000	3859	1856	49	120	71	1	3	33	17	8	Ś	12	4	96.174
107	Š	145	0.0478	168000	110000	2636	378	21	215	24	i	ś	42	70	8	ś	16	4	107.951
108	Š	150	0.0381	150000	119000	780	88	21	16	Ō	1	ó	36	Ö	š	ś	16	6	130.797
109	Š	157	0.0532	164000	119000	1109	106	21	53	16	ī	3	37	ŏ	5	ś	11	5	119.632
110	Š	160	0.0066	146000	116000	1399	171	20	428	ō	ī	3	30	ō	5	5	5	6	130.993
111	S	166	0.0599	165000	131000	1085	96	27	69	Ō	1	ō	32	Ō	5	5	1	3	130.897
112	S	173	0.1383	180000	123000	1915	190	23	29	186	1	Ò	26	Ó	6	6	10	3	112.661
113	S	176	0.0092	156000	125000	1378	136	20	45	0	1	0	30	0	5	5	10	5	132.108
114	S	183	0.1226	177000	125000	2240	80	23	0	239	1	6	23	0	6	11	7	4	116.434
115	S	187	0.0035	140000	124000	933	65	25	133	5	1	0	2 Q	0	5	5	5	4	146.028
116	S	190	0.0680	160000	122000	1084	75	38	182	279	1	3	27	0	5	5	11	4	125.714
117	S	192	0.0213	153000	120000	889	102	26	56	46	1	0	20	0	5	5	10	5	129.310
118	S	203	0.0186	153000	121000	1095	92	20	61	0	1	0	25	0	8	3	10	5	130.388
119	S	208	0.1296	154000	94000	4762	138	69	281	816	2	6	17	931	6	3	7	4	100.635
120	S	211	0.0303	144000	108000	1598	175	21	113	3	1	5	23	1	8	5	5	6	123.653
121	S	215	0.0312	165000	120000	1342	201	21	93	10	1	3	21	0	5 8	5	5	6	119.906
122	S	221	0.0193	153000	120000	1096	133	20	178	0	1	-	20	3	•	5	10	6	129.310
123	S S	224 226	0.0959 0.0174	177000 152000	124000 115000	1383	83	39 23	122	94 0	1	22 5	22 31	0	65	6 5	1 10	4 6	115.502 124.737
124 125	S	228	0.0137	162000	119000	938	91	20	112	ŏ	1	3	30	0	5	5	10	6	121.109
125	S	235	0.0143	147000	103000	842	101	25	208	172	1	5	30	ő	5	5	10	4	115.521
127	s	245	0.0159	163000	118000	564	94	20	117	10	1	5	25	282	5	5	15	5	119.354
129	Š	265	0.0216	148000	116000	629	87	26	286	Ĩ.	1	5	46	0	ś	5	16	5	129.223
129	Š	217	0.0160	168000	121000	478	81	25	76	ŏ	i	ś	30	ŏ	ŝ	5	10	ś	118.746
130	ŝ	279	0.0084	167000	126000	1059	227	25	171	ŏ	i	ŝ	35	ŏ	5	ś	5	5	124.393
131	Š	290	0.0002	150000	120000	540	75	20	30	ŏ	ī	5	30	36	5	5	10	5	131.896
132	Š	301	0.0147	147000	118000	1979	497	20	5	10	· 1	5	25	Ō	8	5	15	6	132.345
133	Š	319	0.0340	160000	125000	621	78	31	171	114	1	5	36	Ō	8	5	11	5	128.805
134	Š	322	0.0035	156000	124000	738	110	20	68	0	1	5	30	0	8	5	10	6	131.051
135	Š	325	0.4245	269000	214000	1347	217	35	200	0	1	9	52	0	9	9	20	6	131.161
136	Š	333	0.0006	145000	119000	585	120	20	80	Ō	1	5	25	0	8	5	20	6	135.307
137	S	335	0.0033	150000	119000	1575	140	20	176	10	1	5	30	0	5	196	100	6	130.797

GEOCHEMICAL DATA (CONC. IN PPN, RESID WT. IN GRANS) OF THE BUTTERLY DOLOMITE 8:02 WEDNESDAY, JULY 26, 1978

								LOC=S											
OBS	FOC	SAMPLE	RESID	CA	MG	FE	NN	SR	NA	ĸ	LI	CU	PB	ZN	CD	CR	NI	XL	MGCARAT
138	S	346	0.0067	151000	118000	1097	156	25	131	0	1	5	30	0	5	30	18	6	128.839
139	S	350	0.0061	151000	121000	604	86	20	75	0	1	5	35	0	5	5	3	6	132.115
140	S	360	0.0185	142000	121000	647	127	20	107	0	1	5	41	0	5	5	0	6	140.488
141	S	371	0.0040	161000	116000	547	85	20	85	0	1	5	35	0	5	- 5	5	6	113.789
142	S	376	0.0060	146000	119000	830	106	15	30	Ō	1	5	30	Ō	5	15	5	3	134.381
143	S	379	0.0103	152000	111000	672	101	20	71	Ó	1	5	30	Ō	5	5	5	3	120.399
144	S	386	0.0296	160000	114000	598	93	21	108	52	1	5	31	Ō	5	5	Ó	3	117.470
145	S	389	0.0194	169000	114000	642	82	20	122	31	1	5	36	7	. 5	5	5	3	111.214
146	S	399	0.0657	160000	125000	594	91	21	64	43	ī	5	37	Ó	5	5	3	3	128.805
147	S	409	0.0391	167000	116000	614	88	21	104	42	1	5	31	9	5	10	6	4	114.521
148	S	413	0.1002	231000	36000	1300	94	144	0	94	ī	6	33	Ó	6	6	9	4	25.694
149	S	415	0.0471	163000	121000	651	100	21	31	Ö	ī	Š	31	1	Š	5	6	4	122.388
150	Ś	419	0.0089	162000	119000	762	126	20	86	ŏ	ī	5	30	ō	3	5	ŏ	4	121.109
151	Š	423	0.0091	156000	121000	878	141	15	Ő	ŏ	i	ś	35	10	ร์	ś	ŏ	5	127.880
152	S	429	0.0149	152000	119000	695	. 91	20	102	ŏ	ĩ	5	30	ŏ	3	ś	š	4	129.076
153	Š	431	0.0005	171000	118000	575	85	20	180	ŏ	ĩ	Ś	35	ŏ	3	ś	8	4	113.770
154	Š	445	0.0244	263000	191000	1199	144	49	333	72	î	8	67	ŏ	10	ś	- 21	5	119.735
155	ŝ	446	0.0227	175000	122000	496	133	31	67	۰ <u>۵</u>	i	Š	36	ŏ	5	5	10	4	114.938
156	Š	450	0.0170	168000	117000	549	71	25	97	15	1	Ś	36	0	5	10	10	3	114.820
157	š	455	0.2627	224000	158000	746	136	34	424	ó	1	ź	47	. 0	í	7	7	3	116.293
158	Š	458	0.0172	158000	115000	743	92	20	56	10	1	5	31	ŏ	5	5	5	3	120.001
159	Š	467	0.0206	153000	112000	842	112	26	82	15	1	Ś	31	õ	5	10	8	3	120.689
160	Š	478	0.0139	157000	103000	730	101	25	172	66	1	5	30	0	5	5	5	4	198.163
161	š	483	0.0441	151000	117000	1386	136	31	94	42	1	5	31	Ő	5	120	53	-	127.747
162	Š	489	0.0430	157000	117000	799	125	37	235	31	1	5	37	ő	5	21	-	3	
163	S	494	0.0196	158000	122000	561	82	31	130	51	1	5	36	0	5	20	16 10	4	122.865
164	s	497	0.0097	156000	120000	581	91	25	61	0	1	5	35	0	5	5	5	. 4	127.305 126.823
165	s	507	0.0393	156000	112000	10565	4736	52	156	0	1	5	26	-	0	5	5	4	
166	S	516	0.0639	166000	119000	988	139	27	123	69	1	5	37	13	3	5	3	3	118.369
167	S	518	0.0176	158000	120000	728	117	25	112	69 0-	1	5	36	ŏ	3	5	0	6	125.218
168	s	524	0.0112	157000	125000	784	142	25	101	0	1	5	35	0	5	10	ő	4	131.266
169	Š	532	0.0132	162000	122000	745	96	25	101	0	1	s	35	0	5	5	10	5	124.162
170	S	536	0.1656	155000	107000	485	96	30	114	132	1	6	30	2	6	5	8	4	113.814
171	S	540	0.0917	165000	117000	991	110	28	358	127	1	6	33	õ		. 10		4	116.908
172	S	544	0.0108	167000	116000	576	91	25	111		1	5	35	0	6	5	10	5	114.521
173	S	548	0.0129	167000	121000	897	142	25	86	0	1	5	35	0	5	5	10	5	
	S								-					-	2				119.457
174	-	548	0.0165	173000	117000	1688	447	38	198	0	1	5 5	36	1	2	13	10	6	111.502
175	S	551	0.0405	167000	115000	938	151	21	26	0	1		36	6	5	8	6	4	113.534
176	S	563	0.0607	165000	112000	1810	122	21	5	27	1	32	48	8	5	5	17	5	111.912
177	S	565	0-1047	191000	121000	1614	145	45	329	168	1	6	39	0	5	6	12	3	104.447
178	S	574	0.0193	158000	114000	1371	127	25	56	25	1	10	36	0	-	5	13	4	118.957
179	S	584	0.0743	162000	110000	1485	119	38	189	286	1	5	27	0	5	5	12	4	111.949
180	S	590	0.0439	178000	118000	1700	188	31	146	52	1	10	37	0	10	5	. 3	6	109.296
191	S	598	0.0713	172000	111000	4469	549	75	167	145	1	5	38	0	5	5	6	3	106.399
182	2	601	0.0316	182000	108000	5989	2272	57	98	0	1	21	36	0	5	5.	· 5	5	97.835
183	S	608	0.0363	193000	112000	6226	3165 🖧	. 73	213	21	1	21	42	5	5	5	6	5	95.676

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 11 8:02 WEDNESDAY, JULY 26, 1978

								LOC=T											
085	LOC	SAMPLE	RESID	CA	MG	FE	MN	SR	NA	ĸ	LI	CU	P8	ZN	CD	CR	NI	XL	MGCARAT
184	Ţ	0	0-0204	185000	120000	1450	71	36	245	129	1	5	36	0	3	5	16	2	106.943
185	Ţ	25	0.1157	175000	121000	1775	102	34	277	74	1	6	34	3	6	6	7 4	3	113.996
186	Ţ	81	0.0775	135000	124000	1485	108	27	130	35	1	5	38	0	5	5			151.437 135.988
187	Ţ	88	0.0215	137000	113000	1221	92	20	56	72	1	5	31	0	5	5	10	4	
188 189	T T	92	0.0210 0.0102	148000	109000 123000	1292 1212	158 136	20 35	123 207	36 5	1	5	36 45	õ	5	41	21 3	5	121.425
199	Ť	123 143	0.0102	17200C 172000	125000	2230	338	26	234	10	1	5	42	ă	5	5	0	3	119.819
191	Ť	150	0.0103	151000	111000	1061	111	25	106	10	1	5	30	ŏ	5	5	ö	4	121.196
192	Ť	189	0.0227	180000	119000	1207	368	31	246	ŏ	1	15	31	7	ś	5	5	2	108.998
193	Ť	199	0.1748	175000	109000	2181	203	48	240	200	· 1	30	4.2	3	12	6	ś	4	102.691
194	÷	213	0.0129	162000	115000	1570	117	25	76	46	- î	5	30	õ	5	š	ó	5	117.038
195	Ť	231	0.0173	163000	114000	1476	191	25	76	5	· 1	- ś	31	ŏ	· ś.	ś	ŏ	ź	115.308
196	ं	239	0.0225	159000	117000	1125	97	20	5	ó	î	Ś	31	ŏ	· 5	1Ó	5	3	121.320
197	Ť	255	0.1064	162000	116000	1343	112	28	375	67	i	6	28	ŏ	6	6	12	3	118.055
171	•	277	0.1004	102000	110000	1345		20			•		20			Ũ	• ~	-	
								L 0C = V											
08 S	LOC	SAMPLE	RESID	CA	MG	FE	MN	SR	NA	ĸ	LT	CU	PB	ZN	CD	CR	NI	XL	MGCARAT
198	v	2	0.0063	140000	109000	1057	101	35	126	0	1	5	40	3874	25	3	10	5	128.363
199	v	5	0.0080	151000	113000	1799	252	30	0	õ			40	2419	25	5	5	5	123.380
200	, v	11	0.0100	141000	112000	1465	182	30	ŏ	ŏ			56	9090	91	zó	15	5	130.961
								LOC=Z											
														_		2	_		
08 S	LOC	SAMPLE	RESID	CA	MG	FE	MN	SR	NA	K	LI	CU	PB	ZN	CD	CR	NI	XL	MGCARAT
201	Z	14	0.0215	180000	120000	1012	153	31	291	0	1	. 5	33	11	5	5	0	4	
202	Z	19	0.0417	189000	127000	1195	94	31	219	1 30	1	5	31	6	5	5	6	4	110.786
203	Z	23	0.0202	190000	126000	893	112	31	260	77	1	5	41	3	3	5	5	4	109.335
204	Z	25	0.0573	175000	122000	1379	101	42	249	170	1	5	42	18	3	8	3	4	114.938
205	Z	32	0.0102	172000	122000	924	106	35	182	25	1	5	40	38	3	5	15	5	116.943
206	Z	40	0.0138	162000	118000	938	142	30	228	61	1	5	35	5	5 0	5	5	4 5	120.091
207	Z	45	0.0616	204000	133000	1135	117	37	336	11	1	5	37	2	0	2	14 6	5	107.489 115.133
208	Z	51	0.0453	179000	125000	880	84	37	162	63	. 1	5	- 37 50	2	0	5	19	4	99.621
209	Z	53	0.3044	283000	171000	1323	144	47	259 209	0 248	1	7 6	45	14	0	7	19	3	110.239
210	Z	65	0.1132	169000	113000	2988	113	34		248		5	46	17	3	5	5	5	100.571
211	Z	71	0.0168	200000	122000	1165	153	31 50	158 491	402	1	12	47	. 5	3	6	14	4	109.914
212	2	80	0.1540	183000	122000 115000	2246 1584	106 157	30	119	184	1	18	36	28	6	6	8	3	110.233
213	Z	95 99	0.1573 0.1784	172000 182000	120000	1887	103	49	371	438	1	6	49	2.	6	6	8	3	108.706
214	Z		0.1784	191000	135000	1178	93	34	157	- 30	1	6	34	ō	6	6	4	4	116.531
215 216	Z	106	0.0487	179000	117000	1072	84	32	89	ŏ	i	5	37	2	š	Š	6	4	107.764
216	ž	113	0.1830	197000	120000	2057	117	58	345	336	1	31	43	47	6	6	8	4	100.429
218	ž	118	0.1015	178000	124000	1692	117	36	122	83	i	. 6	39	11	6	6	7	5	114.854
219	ž	126	0.0179	163000	115000	1293	137	33	173	10	î	5	36	15	5	5	5	5	116.320
220	ž	139	0.1619	179000	119000	1050	95	48	167	167	ĩ	6	48	12	6	. 6	2	4	109.607
221	ž	147	0.1541	171000	123000	1555	106	35	254	148	1	6	35	4	65	6	0	3	118.591

												· .			0	• 0 2 .	CONC 3	JAI,	JULI 209 19/0
								L0C=	2										
OBS	LOC	SAMPLE	RESID	CA	ĦG	FE	AN	SR	NA	ĸ	LI	CU	PB	ZN	CD	CP	NI	XL	MGCARAT
223	z	162	0.1021	193000	127000	1220	150	33	173	78	1	6	28	18	6	6	7	4	110-203
224	Z	168	0.1000	172000	127000	1006	33	47	272	117	1	6	39	28	6	6	7	5	121.736
225	Z	182	0.1797	189000	125000	1304	85	49	317	262	1	6	43	24	6	6	2	4	109.914
226	z	191	0.0939	177000	122000	1435	99	33	226	66	1	. 6	28	18	6	6	1	4	113.640
227	Z	202	0.0704	189000	125000	1151	102	43	118	11	1	5	38	9	5	5	17	4	109.041
228	z	206	0.2127	164000	115000	3620	102	38	89	451	1	19	38	60	6	13	9	4	115.610
229	Z	216	0.0219	174000	113000	971	82	36	250	41	-1	5	36	7	5	5	5	5	107.071
230	2	225	0.1309	161000	121000	2531	92	43	75	247	1	23	35	29	6	6	4	3	123.939
231	Z	230	0.0342	198000	130000	1268	104	36	119	0	1	5	36	5	5	5	0	4	108.243
232	z	240	0.0455	173000	127000	1294	89	37	194	37	1	5	31	16	5	3	16	4	121.032
233	ž	252	0.0043	90000	61000	2139	50	25	156	603	1	10	20	32	0	5	10	4	111.746

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 8:02 WEONESDAY, JULY 26, 1978

APPENDIX D

STATISTICS

Aphanocrystalline1Very finely crystalline2Finely crystalline3Medium crystalline4Coarsely crystalline5Very coarsely crystalline6Extremely coarsely crystalline7

Fig. 19.-Explanation of Crystallinity

GEOCHEMICAL DATA (CONC. IN PPN, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 8:02 WEDNESDAY, JULY 26, 1978

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	NAXINUM VALUE	RANGE	STD ERROR OF MEAN	SKEWNESS	KURTOSIS
RESID	233	0.062273	0.0626706	0.0002000	0.424500	0.424300	0.0041057	1.96800625	5.81618833
CA	233	175755.364807	32675.8541952	90000.0000000	324000.000000	234009.000000	2140.6663931	1.83731458	4.11419076
MG	233	110738.197425	29841.7543370	5000.0000000	214000.000000	209000.000000	1954.9983282	-2.14554484	6.08502473
FE	233	1607.227468	1437.9196913	407.0000000	11413.000000	11006.000000	94.2012511	3.87236095	19.91679027
MN .	233	259.896996	643.9169721	-50-0009000	4736.000000	4686.000000	42.1844034	5.35142122	30.73648096
SR	233	42.167382	39.1777818	15.0000000	265.000000	250.000000	2.5666218	3.33402332	12.08061735
NA	233	156.266094	126.3401863	0.0000000	855.000000	855.000000	8.2768208	1.65904425	5.84039812
ĸ	233	96.635193	128.7990949	0.0000000	816.000000	816.000000	8.4379093	1.99525227	5.21822424
LI	233	1.004292	0.0655122	1.0000000	2.000300	1.000000	0.0042918	15.26433752	233.00000000
CU	233	6.004292	5.0124826	0.0000000	32.000000	32.000000	0.3283787	2.95799068	10.49095860
PB	233	35.781116	10.1535277	2.0000000	120.000000	118.000000	0.6651797	2.67776806	21.30762577
ZN	233	742.047210	5053.3505045	0.0000000	71085.000000	71085.000000	331.0559988	12.15995721	164.63286378
CD	233	10.008584	25.0680095	9.000000	332.000000	332.000000	1.6422599	10.02628994	120.33189785
CR	233	10.060086	19.5630236	3.0000000	196.000000	193.000000	1.2816163	6.99333383	54.15263169
NI	233	10.137339	9.8902610	0.0000000	100.000000	100.000000	0.6479325	4.73740551	34.59578920
XL	233	3.995708	1.1762662	1.0000000	6.000000	5.000000	0.0770598	-0.00765888	-0.71724710
MGCARAT	233	108.563849	30.3995050	3.0531560	152.295561	149.242405	1.9915378	-2.50371245	5.63586258

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 13 8:02 WEDNESDAY, JULY 26, 1978

DEVIATION VALUE VALUE OF MEAN RESID 47 0.054240 0.0458927 0.001700 0.195900 0.194200 0.0066941 1.08607581 1.0868538 CA 47 177765.957447 27428.3356863 150000.00000 324000.000000 174000.00000 4000.8339517 3.46793059 17.1977252 MG 47 116510.638298 16323.9918664 13000.000000 133000.000000 2381.0989348 -5.73013086 36.8970863 FE 47 1409.085106 851.4708714 455.000000 187.000000 3558.000000 124.1997914 1.24812713 1.2781767 SR 47 32.361702 15.7844524 20.000000 187.000000 355.000000 23.023990 3.58945555 17.0247370 NA 47 249.234043 159.1067748 0.000000 855.000000 23.2081083 2.18386625 6.0509000 K 47 149.510638 146.0520861 0.000000 535.000000 23.2081083 2.18386625 6.0509000			· · · · ·					8.	UZ WEUNESDAT	JULY 20, 19/8
DEVIATION VALUE VALUE OF HEAN RESID 47 0.054240 0.0458927 0.001700 0.195900 0.194200 0.0066941 1.08607581 1.0865735 MG 47 117750.957447 77428.335663 15000.00000 12000.00000 2381.0989348 -5.73013086 36.8970857 MG 47 11575.957447 215.784524 20.000000 121.000000 2381.0989348 -5.73013086 36.8970857 NM 47 152.660851 250.00000 1407.000000 181.000000 23.1099348 -5.73013086 36.8970855 17.0247131 1.2781701 NA 47 152.660811 20.000000 187.000000 23.001000 21.2081083 2.1838662 6.0509001 K 47 1.495.10638 16.0520681 0.000000 25.000000 23.001000 2.1033863 0.0247331 -0.13914 L1 47 1.000000 0.000000 1.000000 2.000000 2.000000 2.0023903 -0.13914 L1 47						LOC=8				
CA 47 177765-057447 27428.3356863 150000.00000 324000.00000 174000.000000 4000.8339517 3.46793059 17.197725. HG 47 116510-63298 1632.3991866 4.370801 4055.00000 13300.000000 124.1997914 1.24812713 1.2781748 FE 47 152.680851 261.869899 6.0.00000 01877.000000 181.000000 28.1998386 6.4779817 43.355779 SR 47 132.361702 15.7844524 20.00000 11877.000000 85.000000 2.3023990 3.55945555 17.0247377 NA 47 249.230474 159.166748 0.000000 855.000000 25.000000 2.3023990 3.55945555 17.0247377 NA 47 249.230474 159.166748 0.000000 555.000000 25.000000 2.30281886 0.47789317 43.355779 NA 47 149.551638 146.0520861 0.000000 555.000000 25.000000 2.30281886 0.96745343 -0.013981 LI 47 1.000000 0.000000 1.0000010 50.000000 0.0000000 0. LU 47 5.30426 3.8576665 0.000000 50.000000 20.000000 0.5026985 2.05229337 6.137874 PB 47 32.7230426 3.8576665 0.000000 50.9.000000 20.000000 0.4369352 4.0529387 6.668142 CR 47 5.978723 2.9817515 3.000000 50.9.000000 10.1000010 0.4349322 4.8159841 23.308421 CR 47 12.668051 734.4726913 0.000000 50.9.000000 50.9.000000 0.4349322 4.8159841 23.308421 CR 47 12.638299 11.5239364 0.000000 55.000000 15.000000 1.6000100 0.4349322 4.02705133 11.5218469 MGCARAT 47 110.598782 17.6141 2.000000 55.000000 15.000000 1.600030 0.9.107113 4.02705133 11.518464 MGCARAT 47 110.598782 17.6141 2.000000 55.000000 15.000000 1.6000303 2.30023650 -0.11742 -1.024552 MGCARAT 47 110.598782 17.693351 6.615171 131.245535 124.630363 2.580257 -4.52557251 26.496990 	VARIABLE	N	MEAN				RANGE		SKE WNE SS	KURTOSIS
CA 47 177765.957447 27428.3356863 150000.00000 324000.00000 174000.00000 4000.8339517 3.46793059 17.1977257 HG 47 1409.085196 851.4708714 455.00000 133000.000000 124.1997914 1.24812713 1.278178 FE 47 1409.085196 851.4708714 455.00000 1877.000000 181.00000 2.381.998386 6.4778917 43.355779 SR 47 32.361702 15.7844524 20.00000 1877.000000 23.023990 3.5894555 17.0247377 NA 47 249.230474 155.10638 146.0520861 0.000000 555.000000 23.0203980 3.5894555 17.024737 K 47 149.510638 146.0520861 0.000000 555.000000 23.02038863 0.96745343 -0.013901 LI 47 1.00000 0.000000 1.000000 555.000000 2.3.000000 0. CU 47 5.330426 3.8576665 0.000000 50.000000 20.000000 0.5626985 2.05229337 6.137874 CU 47 5.330426 3.8576665 0.000000 50.000000 20.000000 0.46369332 4.18789461 23.308421 CU 47 5.330426 3.8576665 0.000000 50.000000 20.000000 0.4546935 -0.0568182 CU 47 5.370426 3.8576665 0.000000 50.000000 20.000000 0.4546935 -0.0568182 CU 47 5.97872 2.9817515 3.000000 50.000000 20.000000 0.4546935 -0.0568182 CU 47 5.97872 2.9817515 3.000000 50.000000 20.000000 0.4546935 -0.0568182 CU 47 5.97872 2.9917515 3.000000 155.000000 107.1338530 6.83913178 46.843917 CU 47 5.97872 2.9917515 3.000000 155.000000 107.1338530 4.83913178 46.843917 CU 47 5.97872 2.9917515 3.000000 50.000000 50.4000000 3.9707311 4.02705133 17.131531 NK 47 12.638298 11.5273364 0.000000 65.000000 65.000000 1.6609385 -0.0177134 4.02705133 17.131531 NK 47 12.638298 11.5273364 0.000000 65.000000 1.6609303 2.560257 -4.52557251 26.4969905 	RESID	47	0.054240	0.0458927	0.001700	0.195900	0.194200	0.0066941	1.08607581	1.08685384
FE 47 1409.085106 851.4708714 455.00000 13558.000000 124.1997914 1.24812713 1.2781781 NN 47 152.680851 251.8848989 60.000000 1877.000000 36.199886 64.7789317 43.355774 SR 47 32.361702 15.7844524 20.00000 187.000000 23.02103 21.8386625 6.0530900 K 47 149.510638 146.0520861 0.000000 855.000000 23.021033 21.8386625 6.05309000 LI 47 1.000000 0.000000 1.000000 0.000000 -0.0139912 CU 47 5.34026 3.4576665 0.000000 50.000000 1.0040170 0.0445503 -0.0139912 CD 47 15.460851 73.4726918 0.000000 50.4900000 10.040170 0.0445503 2.308421 CD 47 15.4608951 73.4726918 0.000000 50.4900000 154.000000 1.489392 4.4798441 23.308421 CD 47 15.98175	CA	47	177765.957447	27428.3356863	150000.000000	324000.000000	174000.000000		3.46793059	17.19772528
NN 47 152_680851 261_884899 60_00000 1877_000000 1817_000000 38_1998386 6_47789317 43_355779 NA 47 22,361083 2.1886625 17.024737 NA 47 249,234043 159,1067746 0_00000 855.000000 23.2081083 2.18386625 6.0509001 LI 47 149,510638 146.0520861 0_00000 1_00000 535.000000 2.000000 0_000000 0_074734 -0.0139011 LI 47 1.400000 0_000000 1_000000 20.000000 0_000000 0_060000 0_0764985 2.10229317 6.137874 CU 47 3.40426 3.8576665 0_000000 50.000000 2.000000 0_00000 0_06445035 -0.668422 ZN 47 124.680851 734.4726918 0_000000 25.000000 0_04459330 6.8813035 -0.668422 ZN 47 124.68089 27.2219603 5.000000 155.000000 0_0459332 -18793344 2.0779313 1	MG	47	116510.638298	16323.9918664	13000.000000	133000.000000	120000.000000	2381.0989348	-5.73013086	36.89708679
SR 47 22.361702 15.7844524 20.00000 116.000000 96.000000 2.3023930 3.58945555 17.0247371 KA 47 249.234043 159.1067746 0.000000 855.000000 21.3038863 0.96745343 -0.0130913 LI 47 1.000000 0.000000 1.000000 1.000000 0.0000000 - -0.0130913 LI 47 1.40.00000 0.000000 1.000000 0.000000 0.000000 - -0.0130913 LI 47 1.40.00000 0.000000 20.000000 0.000000 - - -0.0130913 CU 47 5.40426 3.857665 0.000000 504.00000 10.0040170 0.04445035 -0.6681420 CD 47 5.978723 2.9817515 3.000000 23.000000 150.000000 14.40798441 23.308421 CR 47 16.446809 27.213609 5.000000 150.000000 1489005 -0.1171942 -1.024552 NL 47 12.458298 11.5239364 0.000000 4.0000000 16000.000000 -0.11849005 <td>FE</td> <td>47</td> <td>1409.085106</td> <td>851.4708714</td> <td>455.000000</td> <td>4013.000000</td> <td>3558.000000</td> <td>124.1997914</td> <td>1.24812713</td> <td>1.27817874</td>	FE	47	1409.085106	851.4708714	455.000000	4013.000000	3558.000000	124.1997914	1.24812713	1.27817874
NA 47 249.234043 159.1067748 0.00000 855.00000 23.2081083 2.18386625 6.050901 LI 47 149.510638 166.052086 0.00000 535.00000 23.2081083 2.18386625 6.050901 LI 47 1.00000 0.000000 1.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004445035 -0.648142 ZN 47 124.68051 734.4726918 0.00000 23.00000 24.00000 1.04445035 -0.648142 CD 47 124.68051 734.4726918 0.00000 23.00000 24.00000 0.4445035 -0.648142 CR 47 16.446809 27.219609 5.000000 155.000000 16.000000 3.9707311 4.02705133 17.131851 CR 47 126.46809 2.7219609 5.000000 65.00000 1.880935 -0.1171942 -1.024552 CR 47 3.957447	MN .	47	152.680851	261.8848989	60.000000	1877.000000	1817.000000	38.1998386	6.47789317	43.35577941
K 47 149-510638 146.0520861 0.000000 535.000000 21.3038863 0.96745343 -0.0139912 LI 47 1.00000 0.000000 1.000000 20.000000 20.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004445035 -0.6881420 PB 47 124.6881 734.4726918 0.000000 504.00000 10.00000 0.4445035 -0.6681420 CR 47 124.64891 72.219609 5.000000 150.000000 0.4445039 2.90823650 10.518330 6.83913178 46.46391371 NI 47 12.638298 11.5239364 0.000000 55.000000 150.000000 0.3970311 4.02705133 17.113151 NL 47 12.638298 11.5239364 0.000000 6.000000 4.000000 1.8609389 2.9082350 10.518164 XL 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969805 CA 2 0.0152028	SR	47	32.361702	15.7844524	20.000000	116.000000	96.000000	2.3023990	3.58945555	17.02473704
LI 47 1.00000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.522985 2.0522937 6.1378747 CU 47 36.723404 6.8831935 25.000000 50.000000 25.000000 1.0040170 0.04445035 -0.6681420 ZN 47 124.680851 734.4726918 0.000000 5049.00000 20.000000 107.1338530 6.83913178 46.8439171 CD 47 5.978723 2.9817515 3.000000 23.000000 20.00000 0.434932 4.14798441 23.308439171 CR 47 16.446809 27.2219609 5.000000 155.000000 150.000000 0.438932 4.14798441 23.308439171 CR 47 12.63298 11.5239364 0.000000 65.000000 150.00000 0.1889089 2.9082365 10.55133 17.131351 NI 47 3.957447 1.2676141 2.000000 65.000000 4.000000 0.1889089 2.9082365 10.55133 17.131351 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969803 	NA	47	249.234043	159.1067748	0.00000	855.000000	855.000000	23.2081083	2.18386625	6.05090085
CU 47 5.340426 3.8576665 0.00000 20.00000 20.00000 0.5526985 2.052937 6.137874 PB 47 36.723404 6.8831935 25.00000 50.00000 25.00000 1.0040170 0.0445035 -0.6681422 CN 47 124.668051 734.4726918 0.00000 23.00000 20.00000 0.434932 4.14798441 23.308421 CR 47 12.468091 2.231609 5.000000 155.00000 35.000000 3.0707311 4.02705131 17.131351 NI 47 12.638298 11.5239364 0.000000 65.00000 65.00000 1.6809389 2.90823650 10.518164 KL 47 10.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969803 CA 2 0.081950 0.0152028 0.071200 0.092700 0.0215000 0.010750 - CA 2 0.081950 0.0152028 0.071200 0.092700 0	K	47	149.510638	146.0520861	0.000000	535.000000	535.000000	21.3038863	0.96745343	-0.01309121
P8 47 36.723404 6.8831935 25.00000 50.00000 25.00000 1.0040170 0.04445035 -0.6681421 ZN 47 124.660851 734.472518 0.00000 5049.00000 107.1338530 6.8391375 46.439175 CD 47 1.6.446809 27.2219609 5.000000 155.000000 1.9040170 0.44445035 -0.6681421 CR 47 16.446809 27.2219609 5.000000 155.000000 1.9040000 1.402705133 17.1313512 NI 47 3.957447 1.2676141 2.000000 6.000000 4.000000 0.1849005 -0.11771942 -1.0245527 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.49698007 LOC=H	LI	47	1.000000	0.0000000	1.000000	1.000000	0.000000	0.0000000	•	•
PB 47 36.723404 6.8831935 25.00000 50.00000 25.00000 1.0040170 0.04445035 -0.6681421 CN 47 124.680851 734.4726918 0.00000 5049.000000 107.138530 6.8391378 46.843917 CD 47 5.978723 2.9817515 3.00000 23.00000 150.00000 0.4349332 4.14798441 23.3084215 CR 47 16.446809 27.2219609 5.000000 65.000000 150.00000 1.40607339 2.9082350 10.518164 XL 47 3.957447 1.2676141 2.000000 6.000000 4.000000 0.1849005 -0.11771942 -1.0245527 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969800	CU	47	5.340426	3.8576665	0.000000	20.000000	20.000000	0.5626985	2.05229337	6.13787450
CD 47 5.978723 2.9817515 3.000000 23.00000 20.00000 0.434932 4.1479841 23.304215 CR 47 16.446809 27.2219609 5.000000 155.000000 3.9707311 4.02705133 17.1313512 NI 47 3.957447 1.2676141 2.000000 65.00000 4.000000 0.1849005 -0.11771942 -1.0245522 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969803	P8	47	36.723404	6.8831935	25.000000	50.000000		1.0040170	0.04445035	-0.66814201
CR 47 16.446809 27.2219609 5.000000 155.000000 150.000000 3.9707311 4.02705133 17.1313512 MI 47 12.638298 11.5239364 0.00000 65.000000 4.600000 1.6809389 2.90823650 10.518164 MI 47 12.638298 11.5239364 0.00000 65.000000 4.600000 0.188905 -0.1171342 -1.0245523 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969803	ZN	47	124.680851	734.4726918	0.000000	5049.000000	5049.000000	107.1338530	6.83913178	46.84391757
NI 47 12.638298 11.523364 0.00000 65.00000 65.00000 1.6809389 2.90823650 10.5181640 XL 47 3.957447 1.2676141 2.00000 6.00000 4.00000 0.1849005 -0.11771942 -1.0245522 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969805	CD	47	5.978723	2.9817515	3.000000	23.000000	20.000000	0.4349332	4.14798441	23.30842151
XL 47 3.957447 1.2676141 2.000000 6.000000 4.000000 0.1849005 -0.11771942 -1.0245522 MGCARAT 47 110.598782 17.6939351 6.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969805	CR	47	16.446809	27.2219609	5.000000	155.000000	150-000000	3.9707311	4.02705133	17.13135121
MGCARAT 47 110.598782 17.6939351 5.615171 131.245535 124.630363 2.5809257 -4.52557251 26.4969803 LOC=H LOC=H CA 2 0.081950 0.0152028 0.071200 0.0215000 0.010750 - CA 2 134000.000000 22627.4169980 118000.000000 150000.000000 32000.0000000 16000.000000 - CA 2 134000.000000 22627.4169980 118000.000000 4000.000000 2000.000000 - CA 2 134000.000000 280.84271247 105000.000000 2149.000000 561.0000000 280.500000 - FE 2 1868.500000 396.6669042 1588.000000 2149.000000 43.0000000 280.500000 - NN 2 96.500000 2.1213203 83.000000 280.00000 1.0000000 - - NN 2 84.500000 2.1213203 83.000000 280.000000 1.5000000 - - NN <td>NI</td> <td>47</td> <td>12.638298</td> <td>11.5239364</td> <td>0.000000</td> <td>65.000000</td> <td>65.000000</td> <td>1.6809389</td> <td>2.90823650</td> <td>10.51816406</td>	NI	47	12.638298	11.5239364	0.000000	65.000000	65.000000	1.6809389	2.90823650	10.51816406
RESID 2 0.081950 0.0152028 0.071200 0.092700 0.0215000 0.010750 . GA 2 134000.00000 22627.4169980 118000.00000 150000.00000 32000.000000 16000.000000 . GG 2 107000.000000 22627.4169980 118000.000000 150000.000000 32000.000000 16000.000000 . FE 2 1868.500000 396.6869042 1588.00000 2149.000000 561.0000000 280.500000 . MN 2 96.500000 30.4055916 75.000000 2149.000000 43.0000000 21.500000 . SR 2 27.500000 0.7071068 27.000000 291.000000 3.0000000 1.500000 . K 2 211.500000 112.4299782 132.000000 291.000000 0.000000 0.500000 . LII 2 1.000000 0.7071068 5.000000 1.000000 0.500000 . ZN 2 16943.000000 7212.4891681 11843.000000 22043.000000 10200.00000 1.000000 .	XL	47	3.957447	1.2676141	2.000000	6.000000	4.000000	0.1849005	-0.11771942	-1.02455224
RESID 2 0.081950 0.0152028 0.071200 0.092700 0.0215000 0.010750 . CA 2 134000.00000 22627.4169980 118000.00000 150000.00000 32000.0000000 16000.000000 . M6 2 10700.000000 238.4271247 105000.000000 10900.000000 4000.000000 280.500000 . FE 2 1868.50000 396.6869042 1588.00000 2149.00000 4000.000000 280.500000 . MN 2 96.500000 0.7071068 27.000000 28.00000 1.000000 0.500000 . SR 2 27.500000 0.7071068 27.000000 291.00000 1.500000 0.500000 . NA 2 84.500000 2.121203 83.000000 16.000000 79.500000 . LI 2 1.000000 0.0000000 1.000000 1.500000 . . . LI 2 1.000000 0.0000000 1.0000000 0.000000 LI 2	MGCARAT	47	110.598782	17.6939351	6.615171	131.245535	124.630363	2.5809257	-4.52557251	26.49698095
CA 2 134000.00000 22627.4169980 118000.00000 150000.00000 32000.000000 16000.000000 2000.000000 . MG 2 107000.00000 2828.4271247 105000.000000 109000.000000 4000.000000 2000.000000 . FE 2 1868.50000 396.6869042 1588.00000 2149.00000 561.000000 280.500000 . MN 2 96.50000 0.4055916 75.00000 118.000.000 43.000000 21.50000 . SR 2 27.50000 0.7071068 27.000000 28.00000 1.000000 0.500000 . NA 2 84.50000 2.1213203 83.000000 28.00000 3.000000 1.500000 . K 2 211.50000 112.4299782 132.000000 159.00000 . . . CU 2 5.500000 0.7071068 5.000000 1.000000 0.000000 . . . CU 2 5.500000 0.7071068 5.000000 1.000000 1.0000000 . . . </td <td></td> <td></td> <td></td> <td></td> <td></td> <td> LOC=H</td> <td></td> <td></td> <td></td> <td></td>						LOC=H				
MG 2 107000.00000 2828.4271247 105000.00000 109000.00000 4000.0000000 2000.000000 . FE 2 1868.500000 396.66869042 1588.000000 2149.000000 561.0000000 280.500000 . MN 2 96.500000 30.4055916 75.000000 118.000000 43.0000000 21.500000 . NA 2 84.500000 2.1213203 83.000000 86.000000 3.000000 1.500000 . NA 2 84.500000 12.4299782 132.000000 291.00000 1.500000 . . K 2 211.500000 1.24299782 132.000000 2.000000 7.500000 . LI 2 1.000000 0.000000 1.000000 0.500000 . CU 2 5.500000 0.7071068 5.000000 72.00000 1.0000000 0.500000 CU 2 5.500000 1.4142136 70.000000 72.000000 1.0000000 1.0000000	RESID	2	0.081950	0.0152028	0.071200	0.092700	0.0215000	0.010750		•
HG 2 107000.00000 2828.4271247 105000.00000 109000.000000 4000.0000000 2000.000000 . FE 2 1868.50000 396.6686942 1588.00000 2149.00000 561.000000 280.500000 . MN 2 96.50000 30.4055916 75.00000 118.00000 43.000000 0.500000 . SR 2 27.50000 0.7071068 27.00000 28.00000 1.000000 0.500000 . NA 2 84.50000 2.1213203 83.000000 291.00000 159.000000 1.500000 . K 2 211.50000 112.4299782 132.000000 291.00000 0.000000 . . CU 2 5.500000 0.7071068 5.000000 1.000000 0.000000 . . VZ 1.000000 0.000000 1.000000 2.000000 0.500000 . . CU 2 5.500000 0.7071068 5000000 1200.00000 1.000000 . . CU 2 71.0000000 72.24891	CA	2	134000.000000	22627.4169980	118000.000000	150000.000000	32000.0000000	16000.000000	•	•
FE 2 1868.500000 396.6869042 1588.000000 2149.000000 561.0000000 280.500000 . MN 2 96.500000 30.4055916 75.000000 118.000000 43.0000000 21.500000 . SR 2 27.500000 0.7071068 27.000000 28.000000 1.000000 0.500000 . NA 2 84.500000 2.1213203 83.000000 291.000000 159.000000 1.500000 . K 2 211.500000 112.4299782 132.000000 291.00000 0.0000000 0.000000 . CU 2 5.500000 0.7071068 5.000000 1.000000 0.000000 . . VI 2 16943.000000 7212.4891681 11843.000000 22043.000000 10200.000000 17.500000 . CD 2 103.500000 24.7487373 86.000000 121.000000 35.000000 . . CR 2 5.000000 6.000000 1.20000		2	107000.000000	2828.4271247	105000.000000	109000.000000	4000.0000000	2000.000000	•	•
MN 2 96.500000 30.4055916 75.000000 118.000000 43.0000000 21.500000 . SR 2 27.500000 0.7071068 27.000000 28.000000 1.000000 0.500000 . NA 2 84.500000 2.1213203 83.000000 86.00000 3.000000 1.500000 . LI 2 1.000000 0.0000000 1.000000 0.000000 . . CU 2 5.500000 0.7071068 5.000000 1.000000 0.000000 . . PB 2 71.000000 1.4142136 70.000000 22043.000000 10200.000000 1.5000000 . CD 2 16943.000000 7212.4891681 11843.000000 22043.000000 10200.0000000 17.500000 . CR 2 5.500000 0.7071068 5.000000 121.000000 35.000000 . . CR 2 5.500000 0.7071068 5.0000000 12.000000 3.00		2	1868.500000	396.6869042	1588.000000	2149-000000	561.0000000	280.500000	•	•
SR 2 27.50000 0.7071068 27.00000 28.00000 1.000000 0.50000 . NA 2 84.50000 2.121203 83.00000 86.00000 3.000000 1.50000 . K 2 211.50000 112.4299782 132.000000 291.00000 159.000000 79.500000 . LI 2 1.000000 0.0000000 1.000000 0.0000000 . . CU 2 5.500000 0.7071068 5.000000 6.000000 1.000000 0.000000 . PB 2 71.000000 1.4142136 70.000000 72.00000 1200.00000 5100.0000 . CD 2 103.500000 72.12.4891681 11843.000000 122.000000 5100.00000 . CD 2 103.500000 24.7487373 86.000000 121.000000 35.000000 . CR 2 5.00000 0.7071068 5.000000 12.000000 35.0000000 .	MN	2	96.500000	30.4055916	75.000000	118.000000	43.0000000	21.500000	•	•
K 2 211.500000 112.4299782 132.000000 291.000000 159.000000 79.500000 . LI 2 1.000000 0.0000000 1.000000 0.0000000 0.000000 . CU 2 5.500000 0.7071068 5.000000 6.000000 1.000000 0.500000 . PB 2 71.00000 1.4142136 70.000000 22043.00000 1200.00000 5100.00000 . ZN 2 16943.00000 72.12.4891681 11843.000000 22043.000000 152.000000 5100.00000 . CD 2 103.50000 24.7487373 86.000000 121.00000 35.000000 17.500000 . CR 2 5.500000 0.7071068 5.000000 12.000000 35.000000 . . NI 2 9.000000 4.2426407 6.000000 12.000000 6.000000 . . . XL 2 3.000000 3.000000 3.000000 0.000000 . .	SR	2	27.500000	0.7071068	27.000000	28.000000	1.0000000	0.500000	•	•
LI 2 1.000000 0.0000000 1.000000 0.0000000 0.0000000 0000000 0	NA	2	84.500000	2.1213203	83.000000	86.000000	3.0000000	1.500000	•	•
CU 2 5.500000 0.7071068 5.000000 6.000000 1.0000000 0.500000 . PB 2 71.000000 1.4142136 70.000000 72.000000 2.0000000 1.000000 . ZN 2 16943.000000 7212.4891681 11843.000000 22043.000000 10200.0000000 5100.000000 . CD 2 103.500000 24.7487373 86.000000 121.000000 35.000000 1.7500000 . CR 2 5.500000 0.7071068 5.000000 6.000000 1.0000000 0.500000 . NI 2 9.000000 4.2426407 6.000000 12.000000 0.000000 . XL 2 3.000000 0.000000 3.000000 0.000000 . .	ĸ	2	211.500000	112.4299782	132.000000	291.000000	159.0000000	79.500000	•	•
CU 2 5.500000 0.7071068 5.000000 6.000000 1.0000000 0.500000 . PB 2 71.000000 1.4142136 70.000000 72.000000 2.0000000 1.000000 . ZN 2 16943.00000 721.24891681 11843.000000 22043.000000 1020.0000000 5100.00000 . CD 2 103.50000 24.7487373 86.000000 121.00000 35.000000 17.500000 . CR 2 5.50000 0.7071068 5.000000 12.00000 6.000000 0.500000 . NI 2 9.000000 4.2426407 6.000000 12.000000 0.000000 . . XL 2 3.000000 3.000000 0.000000 3.000000 0.000000 .	LI	2	1.000000	0.0000000	1.000000	1-000000	0.0000000	0.00000	•	•
PB 2 71.000000 1.4142136 70.000000 72.000000 2.0000000 1.000000 - ZN 2 16943.000000 7212.4891681 11843.000000 22043.000000 10200.0000000 5100.000000 - CD 2 103.500000 24.7487373 86.000000 121.000000 35.000000 17.500000 - CR 2 5.500000 0.7071068 5.000000 6.000000 0.500000 - NI 2 9.000000 4.2426407 6.000000 12.000000 6.000000 0.000000 - XL 2 3.000000 0.000000 3.000000 0.0000000 - -		2	5.500000	0.7071068	5.000000	6.000000	1.0000000	0.500000	•	•
CD 2 103.500000 24.7487373 86.000000 121.000000 35.0000000 17.500000 . CR 2 5.500000 0.7071068 5.000000 6.000000 1.0000000 0.500000 . NI 2 9.000000 4.2426407 6.000000 12.000000 6.000000 3.000000 . XL 2 3.000000 3.000000 3.000000 0.0000000 .	PB	2	71.000000	1.4142136	70.000000	72.000000	2.0000000	1.000000	•	•
CD 2 103.50000 24.7487373 86.000000 121.000000 35.000000 17.500000 - CR 2 5.50000 0.7071068 5.000000 6.00000 1.000000 0.500000 - NI 2 9.000000 4.2426407 6.000000 12.000000 6.000000 3.000000 - XL 2 3.000000 3.000000 3.000000 0.0000000 -		2	16943.000000	7212.4891681	11843.000000	22043.000000	10200.0000000	5100.000000	•	•
CR 2 5.50000 0.7071068 5.00000 6.000000 1.0000000 0.500000 . NI 2 9.00000 4.2426407 6.000000 12.000000 6.000000 3.000000 . XL 2 3.000000 0.0000000 3.000000 0.0000000 .	CD	2	103.500000	24.7487373	86.000000	121.000000	35.0000000	17.500000	•	•
NI 2 9.000000 4.2426407 6.000000 12.000000 6.0000000 3.000000 . XL 2 3.000000 0.0000000 3.000000 3.000000 0.0000000 .		2	5.500000	0.7071068	5.000000	6.000000	1.0000000	0.500000	•	•
XL 2 3.000000 0.0000000 3.000000 3.000000 0.0000000 .		2	9.000000	4.2426407	6.000000	12.000000	6.0000000	3.000000	• -	•
		. 2	3.000000	0.0000000	3.000000	3.000000	0.000000	0.000000	•	•
		2	133.852429	26.0825276	115.409297	152.295561	36.8862643	18.443132	•	•

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 9:02 WEDNESDAY, JULY 26, 1973

LOC=P	
-------	--

VARIABLE	N N	MEAN	STANDARD DEVIATION	MININUM VALUE	MAXIMUM VALUE	RANGE	STD ERROR OF MEAN	SKEWNESS	KURTOSIS
RESID	19	0.074394	0.0350539	0.019800	0.127800	0.1030000	0.0082623	-0.27360780	-1.14312048
CA	18	165611.111111	15224.3569898	143000.000000	196000.000000	53000.0000000	3588.4153556	0.67368972	-0.39248869
MG	18	116666.666667	6068.2393997	106000.000000	129000.000000	23000.0000000	1430.2977431	0.50898752	0.19709755
FE	18	1903.666667	580.9804087	817.000000	2968.000000	2151.0000000	136.9383956	-0.36968221	-0.19129641
MN	18	103.611111	40.9075556	71.000000	250.000000	179.0000000	9.6420033	2.98156469	10.26605291
SR	18	37.111111	9.5971129	22.000000	56.000000	34.0000000	2.2620612	0.50235128	-0.26717061
NA	18	189.722222	109.6104361	0.000000	392.000000	392.0000000	25.8354276	-0.22461195	-0.25248671
ĸ	18	155.277778	90.7069007	0.000000	336.000000	336.0000000	21.3798215	-0.00739403	-0.29064895
LI	18	1.000000	0.0000000	1.000000	1.000000	0.0000000	0.0000000	•	•
CU	18	7.166667	6.0900111	0.000000	28.000000	28.0000000	1.4354294	2.72820354	8.42595941
PB	18	45.277778	20.0610995	27.000000	120.000000	93.0000000	4.7284465	3.30749642	12.64242790
ZN	18	6427.888889	16365.0606868	70.000000	71085.000000	71015.0000000	3857.2817954	4.05117251	16.82613622
CD	18	42.888889	75.1969093	5.000000	332.000000	327.0000000	17.7240815	3.71759914	14.73716525
CR	18	5.277778	3.9527437	5.000000	22.000000	17.0000000	0.9316706	4.13964279	17.37862214
NI	18	9.833333	7.5244699	1.000000	35.000000	34.0000000	1.7735346	2.26269554	7.31193529
XL	18	3.277778	0.5745131	3.000000	5.000000	2.0000000	0.1354140	2.07235302	3.84862268
MGCARAT	18	116.661295	7.1913932	105.236441	127.399873	22.1634322	1.6950276	-0.28074079	-1.17005565
			·		- LOC=S				
RESID	116	0.058084	0.0688186	0.000200	0.424500	0.424300	0.0063896	2.41545225	7.69895014
CA	116	178362.068966	38493.4543395	139000.000000	308000.000000	169000.000000	3574.0275106	1.54667922	1.20847735
4G	116	103586.206897	38837.0215500	5000.000000	214000.000000	209000.000000	3605.9269253	-1.31063447	1.83663969
FE	116	1695.344828	1911.8976010	407.000000	11413.000000	11006.000000	177.5152358	3.17745722	11.43958189
AN	116	388.068966	879.7466110	50.000000	4736.000000	4686.000000	81.6824222	3.77326047	14.48060533
SR	116	50.215517	53.0489202	15.000000	265.000000	250.000000	4.9254686	2.25764017	4.62983318
NA	116	101-448276	91.3584764	0.000000	428.000000	428.000000	8.4824216	1.28079585	2.07480433
K	116	60.715517	110.4575312	0.00000	816.000000	816.000000	10.2557243	3.62606371	19.11949407
LI	116	1.008621	0.0928477	1.000000	2.000000	1.000000	0.0086207	10.77032961	116.00000000
CU	116	5.396552	4.6248465	0.000000	32.000000	32.000000	0.4294062	3.18451895	13.57625668
PB	116	32.655172	7.9532366	2.000000	67.000000	65.000000	0.7384395	-0.11584002	5.31964782
ZN	116	13.396552	90.1612931	0.000000	931.000000	931.000000	8.3712659	9.56116860	95.93206987
CD	116	6.129310	2.3573389	0.000000	20.000000	20.000000	0.2188734	2.12416139	9.89834057
CR	116	9.612069	20.8717706	3.000000	196.000000	193.000000	1.9378953	7.63141714	62.38684674
NI	116	10.508621	10.7917003	0.000000	100.000000	100.000000	1.0019842	5.57683188	42.66591353
XL	116	4.155172	1.2894451	1.000000	6.000000	5.00000	0.1197220	-0.17104223	-0.81300158
MGCARAT	116	103.259523	40.2536984	3.053156	146.028090	142.974934	3.7374621	-1.68713766	1.32285355

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 8:02 WEDNESDAY, JULY 26, 1978

L0C=T VARIABLE MINIMUM MAXIMUM RANGE STD ERROR SKEWNESS KURTOSIS STANDARD N MEAN DEVIATION VALUE VALUE OF MEAN RESID 0.0508000 0.174800 0.0135769 1.57863896 14 3.047950 0.010200 0.1646000 1.69539227 162571.428571 15360.8607817 135000.000000 185000.000000 50003.0000000 4105.3627294 -0.50206713 -0.59331657 CA 14 16000.0000000 ۹G 109000.000000 125000.000000 1429.1207735 -0.00625286 -1.15615034 14 116857.142857 5347.2802988 FE 97.1714082 1.19898085 0.67941853 14 1473.428571 363.5821173 1061.000000 2230.000000 1169.0000000 ٩N 14 157.428571 90.8851467 71.300000 368.000000 297.0000000 24.2900772 1.63174286 1.80802032 SR 7.7331881 48.000000 28.0000000 2.0667814 1.19085611 1.80080827 14 28.571429 20.000000 NA 154.000000 111.4429830 0.000000 375.000000 375.0000000 29.7843900 0.37887168 -0.64227878 14 57.8362600 0.00000 200.000000 200.0000000 15.4573907 1.60341915 2.66225114 κ 14 46.428571 LI 14 1.000000 0.0000000 1.000000 1.000000 0.0000000 0.0000000 CU 14 7.642857 5.9570398 5.000000 30.000000 25.0000000 1.8593605 3.03287896 9.38977552 PB 14 34.642857 5.3436827 28.000000 45.000000 17.0000000 1.4281593 0.74303812 -0.67687860 ΖN 14 0.928571 2.0555473 0.000000 7.000000 7.0000000 0.5493681 2.40523933 5.78197412 12.000000 CD 14 5.500000 1.9903614 3.000000 9.0000000 0.5319465 2.93648190 10.38917214 5.000000 41.000000 36.0000000 2.5524329 3.62341631 13.31852050 CR 14 8.142857 9.5503294 21.000000 21.0000000 1.7174879 1.11375425 0.71106529 NI 14 6.285714 6.4262511 0.000000 0.21248343 XL 3.428571 2.000000 5.000000 3.0000000 0.2911570 -1.12345679 14 1.0894096 MGCARAT 14 119.436719 12.1238323 102.690721 151.436537 48.7458163 3-2402305 1.47485221 3.18120534 ----- ¿OC=V -----0.010000 0.0037000 0.0010693 0.24226877 RESID 0.008100 0.00185203 0:006300 3 140000.000000 151000.000000 11000.0000000 3511.8845843 1.67953560 3 144000.000000 6082.76253030 CA -1.29334278 109000.000000 113000.000000 4000-0000000 1201-8504252 MG 3 111333.333333 2081.66599947 FE 1440.333333 1057.000000 1799.000000 742.0000000 214.5517291 -0.29738061 371.61449559 -0.21783592 75.56674754 101.000000 252.000000 151.0000000 43.6284820 MN 178.333333 3 5.0000000 1.6666667 1.73205081 SR 31.666667 2.88675135 30.000000 35.000000 3 0.00000 126.000000 126.000000 42.0000000 1.73205081 NA 3 42.000000 72.74613392 0.000000 0.00000000 0.000000 0.000000 0.0000000 0.0000000 ĸ 3 1.000000 0.00000000 1.000000 1.000000 0.0000000 0.000000 LI 3 5.000000 0.00000000 5.000000 5.000000 0.0000000 0.0000000 CU 3 PB 45.333333 9.23760431 40.000000 56.000000 16.0000000 5.3333333 1.73205081 3 6671.0000000 2025-2012520 1.40286125 ΖN 3 5127.666667 3507.75146402 2419.000000 9090.000000 91.000000 66.0000000 22.0000000 1.73205081 CD 3 47.000000 38.10511777 25.000000 5.3644923 20.000000 17.0000000 1.64220707 CR 3 9.333333 9.29157324 3.000000 10.0000000 2.8967513 0.00000000 5.000000 15.000000 NI 3 10.000000 5.00000000 0.0000000 0.000000 0.00000000 5.000000 5.000000 XL 3 5.000000 -0.88940750 7.5810504 2.2242988 3.85259857 123.379853 130.960904

MGCARAT

3

127.568053

GEOCHEMICAL DATA (CONC. IN PPM, RESID WT. IN GRAMS) OF THE BUTTERLY DOLOMITE 16 9:02 Wednesday, July 26, 1978

LOC=Z										JULT 20, 1978
VARIABL	E	N	NEAN	STANDARD DEVIATION	MINIMUM Value	MAXIMUM VALUE	RANGE	STD ERROR OF MEAN	S KE WNE S S	KURTOSIS
RESID		33	0.091633	0.0721102	0.0043000	0.304400	0.300100	0.0125528	0.93638339	0.67277162
CA		33	180272.727273	26609.7640999	90000.0000000	283000.000000	193000.000000	4632.1653601	0.63043349	10.15093786
MG		33	122000.000000	14794.4246255	61000.0000000	171000.000000	110000.000000	2575.3787600	-1.10260781	12.18662254
FE		33	1474.090909	629.9059138	880.0000000	3620.000000	2740.000000	109.6525449	1.98527566	3.66330507
MN		33	138.090909	24.8550342	50.0000000	157.090000	107.000000	4.3267061	0.41165171	0.07664035
SR		33	38.212121	8.4511744	25.0000000	68.000000	43.000000	1.4711606	1.50580175	3.43064925
NA		33.	214.000000	91.5235625	75.0000000	491.000000	416.000000	15.9322072	0.88238240	1.21895287
K		33	137.878788	156.3571148	0.0000000	603.000000	603.000000	27.2182800	1.40953686	1.42226613
LI		33	1.300000	0.0000000	1.0000000	1.000000	0.000000	0.0000000	•	•
CU		33	7.878788	6.0712312	5.0000000	31.000000	26.000000	1.0568657	2.65507670	6.83616190
PB		33	37.727273	6.5730165	20.0000000	50.000000	30.000000	1.1442153	-0.22410870	0.52626527
ZN		33	15.121212	14.1504363	0.0000000	60.000000	60.000000	2.4632748	1.45997468	2.17581331
CD		33	4.333333	2.1164042	0.0000000	6.000000	6.000000	0.3684187	-1.24771071	0.23169699
CR		33	5.757576	1.5417179	3.0000000	13.000000	10.000000	0.2683786	3.32059403	15.66073211
NI		33	7.151515	5.0256916	0.0000000	19-000000	19.000000	0.8748606	0.71636476	-0.05085779
XL		33	4.090909	0.6306562	3.0000000	5.000000	2.000000	0.1097832	-0.06576428	-0.31283739
MGCARAT		33	112.021306	5.8751975	99.6213514	123.908828	24.287476	1.0227406	-0.13227735	0.00527868

"S" DOLOMITIC LIMESTONES

0:49 FRIDAY, JULY 7, 1978 2

STATISTICAL ANALYSIS SYSTEM

VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	RANGE	STD ERROR OF MEAN	SKEWNESS	KURTOSIS
FOOTAGE	20	44.700000	37.6816303	19.000000	196.000000	177.000000	8.4258687	3.71834578	15.29542505
RESID	20	0.110945	0.079643	0.006400	0.305200	0.298800	0.0178805	0.75207155	0.13212519
NA	20	15.700000	42.1951606	0.000000	171.000000	171.000000	9.4351247	3.21605209	10.51015360
K	20	97.600000	99.8527337	0.00000	324.000000	324.000000	22.3277500	0.86340083	-0.23249859
SR	20	153.050000	52.7191916	84.000000	265.000000	181.000000	11.7883696	0.65279429	-0.19647070
MN	20	123.350000	68.5767146	50.000000	333.000000	283.000000	15.3342196	1.67556670	3.49436458
FE	20	1100.750000	642.9090854	407.000000	3030.000000	2623.000000	143.7588418	1.63333477	3.40616273
CU	20	5.300000	2.4083189	0.00000	12.000000	12.000000	0.5385165	0.05978471	4.21555743
ZN	20	2.000000	3.8251247	0.00000	14.000000	14.000000	0.8553239	2.11275067	4.26838673
CD	20	7.950000	3.4255234	5.000000	20.000000	15.000000	0.7659703	2.49137847	7.89919611
NI	20	13.750000	5.8478516	5.000000	29.000000	24.000000	1.3076194	0.72715192	0.92995321
CR	20	7.450000	2.4596748	5.000000	12.000000	7.000000	0.5500000	0.66804693	-1.17773089
LI	20	1.000000	0.000000	1.000000	1.000000	0.00000	0.000000	•	•
PB	20	33.200000	11.5193202	2.000000	47.000000	45.000000	2.5757983	-1.96206182	4.08893604
CA	20	248550.000000	26150.3245426	199000.000000	308000.000000	109000.000000	5847.3903311	-0.28297159	0.89468721
MG	20	27850.000000	28047.4691606	5000.000000	120000.000000	115000.000000	6271.6047640	2.21972340	5.52514680
XL	20	2.550000	0.7591547	2.000000	4.000000	2.000000	0.1697521	1.01651158	-0.37145377
SAMPLE	20	96.850000	79.2625710	43.000000	413.000000	370.000000	17.7236498	3.64218427	14.80973157
ND	20	96.550000	79.2625716	43.000000	413.000000	370.000000	17.7236498	3.64218427	14.80973157
TOTAL	20	277961.100000	27912.5746100	233664.000000	373327.000000	139663.000000	6241.4414255	2.40058802	7.54472909
MGCARAT	20	19.646347	20.3422323	3.053156	78.509726	75.456570	4.5486614	1.81438949	2.86749810
SRCARAT	20	0.278039	0.0790089	0.178723	0.448409	0.269686	0.0176669	0.58895727	-0.60194758
MNFERAT	20	15.092033	13.7721957	4.529243	52.701450	48.172207	3.0795566	2.16015679	4.03109461

"S" DOLOMITES

196.000000

2.000000

67.000000

6.000000

608.000000

608.000000

146.028090

0.204929

53.041835

269000.000000

214000.000000

484899.000000

VARIABLE

FOOTAGE

RESID

NA

K

SR

MN

FE

CU

ZN

CD

NI

CR

LI

PB

CA

MG

XL

ND

SAMPLE

TOTAL

MGCARAT

SRCARAT

MNFERAT

Ν

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

96

10.062500

1.010417

32.541667

4.489583

313.614583

313.614583

120.678934

0.079880

16.588909

163739.583333

119364.583333

285648.12500

22.9116438

0.1020621

7.0679658

1.1144486

179.6093052

179.6093052

10.0136731

11.6782681

0.0320576

32400.8860994

20093.0701810

14469.6559386

3.000000

1.000000

17.000000

1.000000

2.00000

2.000000

90.962992

0.042879

2.599319

139000.000000

94000.000000

251404.000000

		STATI	STICAL	ANALYSIS	SYSTEM	0:46	FRIDAY, JULY	7,1978 3
				LOC=S				
	MEAN	STANDARD	MINIMUM	MAXIMUM	RANGE	STD ERROR	SKEWNESS	KURTOSIS
		DEVIATION	VALUE	VALUE		OF MEAN		
	148.572917	87.2058357	1.000000	293.000000	292.000000	8.9004083	-0.02302738	-1.26251737
	0.047072	0.0611832	0.000200	0.424500	0.424300	0.0062445	3.37798546	15.80259012
	119.312500	88.7523239	0.000000	428.000000	428.000000	9.0582461	1.33635219	2.28266691
	53.031250	111.4866481	0.000000	816.000000	816.000000	11.3785584	4.21173605	23.66143057
	28.791667	12.6756432	15.000000	75.000000	60.000000	1.2937024	1.79741456	3.09141742
	443.218750	958.1883257	65.000000	4736.000000	4671.000000	97.7946865	3.37689408	11.34157763
	1819.218750	2062.1099680	478.000000	11413.000000	10935.000000	210.4632173	2.90578077	9.27173217
	5.416667	4.9729091	0.00000	32.000000	32.000000	0.5075454	3.10135950	12.03413152
	15.770833	99.0175401	0.000000	931.000000	931.000000	10.1059354	8.69692783	79.33304178
	5.750000	1.8806494	0.00000	12.000000	12.000000	0.1919430	9.77820238	1.61510221
	9.833333	11.4658914	0.000000	100.000000	100.000000	1.1702326	5.76235028	42.13720526

193.000000

1.000000

50.000000

5.000000

606.000000

606.000000

55.065097

0.162050

50.442516

130000.000000

120000.000000

233495.000000

2.3384099

0.0104167

0.7213712

0.1137429

18.3312980

18.3312980

1.0220162

0.0032719

1.1919083

3306.9015899

2050.7403879

1476.8030751

6.94982109

9.79795897

1.28455838

3.16482154

4.44067242

-0.27620696

-0.06697926

-0.06697926

4.32067841

-0.42900955

1.93714362

1.85224166

114

3

51.50986096

96.00000000

5.59705672

13.41102740

25.01098326

-0.30992181

-1.23375740

-1.23375740

22.56033620

0.49560222

3.92915073

2.63744865

APPENDIX E

SARGENT'S CHEMICAL ANALYSES OF THE BUTTERLY DOLOMITE

	РЪ	Zn	Na	K	Li	Ni	Cu	Sr	Mn	Fe
TA 5-3-1		2	313	365	1	3	6	23	86	1212
СЪ 1	_	-	188	45	-	3	2	16	54	105
СЪ 2	-		173	165	_	1	3	22	63	439
СЪ 3	_	-	238	490	_	-	3	27	54	794
СЪ 4	-	_ *	298	150	-	1	3	23	49	397
СЪ 5	-	-	196	140	-	1	3	32	45	376
СЪ 6	-	-	284	375	1	1	3	34	63	836
СЪ Н-77-1	-	-	169	475	-	-	2	32	146	1754
СЪ Н-77-2	-	-	177	95	_	1	3	1	146	1253
AA 2-2-1	- , ,		252	110	_	5	2	3	677	3988
AA 2-10-1	17	-	157	40	-	-	4	4	405	2527
AA 2-20-1	-	-	207	100	_	_	3	4	569	2527
X	1.42	0.18	220.67	212.50	0.18	1.33	3.08	18.42	196.42	1350.67
S	4.91	0.60	53.90	165.63	0.60	1.56	1.08	12.44	223.89	1157.25

VITA

Peter Val Kranak

Candidate for the Degree of

Master of Science

- Thesis: PETROGRAPHY AND GEOCHEMISTRY OF THE BUTTERLY DOLOMITE, AND ASSOCIATED SPHALERITE MINERALIZATION, TURNER PROSPECT, ARBUCKLE MOUNTAINS, OKLAHOMA
- Major Field: Geology

Biographical:

- Personal Data: Born in Pasadena, California, October 7, 1951, the son and Mr. and Mrs. A. A. Kranak.
- Education: Graduated from Cubberley High School, Palo Alto, California, in June, 1970; received Bachelor of Science degree in Geology from University of Washington in December, 1974; completed requirements for the Master of Science degree at Oklahoma State University in December, 1978, with a major in Geology.
- Professional Experience: Teaching and research assistand, Oklahoma State University, Stillwater, Oklahoma, January, 1977-May, 1978; Geologist, Continental Oil Company, May, 1976-August, 1976 and June, 1975-October, 1975.