PLANT, SOIL AND DUNG FACTORS AFFECTING TALLGRASS PRAIRIE VEGETATION DURING DROUGHT CONDI-TIONS ON A NORTH CENTRAL OKLAHOMA RANGELAND WATERSHED

Ву

STEVEN HERBERT KAUTZSCH

Bachelor of Science

California Polytechnic State University

San Luis Obispo, California

1975

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1978

Thesis 1978 K21p Cop 2

PLANT, SOIL AND DUNG FACTORS AFFECTING TALLGRASS PRAIRIE VEGETATION DRUING DROUGHT CONDI-TIONS ON A NORTH CENTRAL OKLAHOMA RANGELAND WATERSHED

Thesis Approved:

Thesis Adv iser in

Dean of the Graduate College

ACKNOWLEDGMENTS

I wish to acknowledge the fact that this thesis would not have been possible if it had not been for my wife, Sharon. Her constant love, encouragement and sacrifice during the past three years of graduate school has made this goal attainable. Special thanks is also extended my two children, Tammy and Brian, for giving me the extra incentive to achieve this goal so that they might also experience a finer life.

A very special thanks is reserved for Dr. Donald G. Wagner, Professor of Animal Science, who has served as major adviser of my M.S. program. His counsel, guidance and friendship during my program are deeply appreciated and will be long remembered.

Special thanks is extended to Dr. Jeff Powell, Associate Professor of Agronomy, who has served on my graduate committee. I am especially grateful for his teaching, assistance, guidance and friendship throughout my course of study.

Special appreciation is extended to Dr. R. R. Frahm, Professor of Animal Science and Dr. P. L. Claypool, Associate Professor of Statistics for their willingness and knowledgeable help with the statistical analysis of thesis data. The author extends thanks to Mr. Robert W. Hammond, Range Research Technician, for his assistance in the computer analysis and coordination of the field work for data collection.

Thanks are due to Rod Schemm, Tom Hoagland, Paul Will, Dan Netemeyer, Larry Brock, Michael Fournier, Brice Tabor, Dave Mayes, Bob

iii

Hammond, Neal Stidham, Roger Baker, Paul Knight, Mac Barrington and other graduate students for their assistance and friendship throughout the author's graduate program.

Special recognition is extended to Kathie Hamilton, Barbara Ackerson, Tom Fuller, Shawn Merrell, Lynda Graves, Diana Traynor, Sheila Vassar for their performance and assistance in the laboratory analysis. Recognition is extended to Bob Hammond, Neal Stidham, Roger Baker, Paul Knight, Mac Barrington, Kelley Grissom and Monte McDonald for their assistance in data collection.

Special thanks are extended to my parents, Mr. Herb Kautzsch and Mrs. Ed Ramsey, and to my wife's parents, Mr. and Mrs. Jack Heimel, for their interest, thoughtfulness and encouragement throughout my graduate program.

TABLE OF CONTENTS

Chapter		•	Page
I.	INTRODUCTION	•••	1
II.	REVIEW OF LITERATURE	•••	3
	Factors Influencing Plant Chemical Composition .		3
	Soil Water Content		3
	Precipitation		4
	Soil Characteristics		5
	Plant Species Composition		5
	Stage of Maturity		6
	Factors Affecting Diet Quality and Digestibility	of	
	Forage		7
	Dung Chemical Composition		8
	Degradation of Dung		9
	Degradation Process		9
	Disappearance Rate.		9
			2
III.	STUDY AREA	• •	11
	Climate		11
	Topography		11
	Soils.		13
	Vegetation		13
	Livestock.		16
		•••	10
IV.	TALLGRASS PRAIRIE VEGETATION ON A RANGELAND WATERSHED: THE EFFECT OF RANGE SITES AND PLANT SPECIES COMPOSITIO ON IN VIVO NYLON BAG DRY MATTER DIGESTIBILITY AND PLA	N	
	FIBER COMPONENTS DURING DROUGHT CONDITIONS		19
	Abstract	• •	19
	Introduction		20
	Methods and Materials		21
	Forage Collection		21
	Laboratory Analyses		23
	NBDMD		23
•	Nylon Bag Technique		24
	NBDMD Field and Laboratory Technique .		
	Data Compilation and Statistical Analyses .		
	Results and Discussion		
	Precipitation and Soil Water Content		
	Fiber Components and NBDMD		

Chapter

Ρ	а	α	e
+	u	Э	\sim

	Cellulose and Lignin	26
	ADF	29
	NBDMD	31
	Effect of Range Site on Fiber Components and	
		32
	Cellulose and Lignin	32
	ADF	32
	NBDMD	35
	Conclusions	35
	Literature Cited	37
		57
v.	TALLGRASS PRAIRIE VEGETATION ON A RANGELAND WATERSHED:	
•••	THE EFFECT OF RANGE SITES AND PLANT SPECIES COMPOSITION	
	ON PLANT CHEMICAL COMPONENTS DURING DROUGHT CONDITIONS .	39
	Abstract	39
	Introduction.	39
	Methods and Materials	41
	Forage Collection.	41
	Laboratory Analyses.	41
	Data Compilation and Statistical Analyses	42
	Results and Discussion	42
	Seasonal Differences	42
	Nitrogen.	42
		44
		44
		46
	Phosphorus	47
	Range Site Differences	47
	Live Biomass	49
	Standing Dead Biomass	49 51
	Effects of Plant Species Composition	51
	Nitrogen	51
	Phosphorus	51 54
	Potassium	
	Calcium	54
	Conclusions	57
	Literature Cited	58
VI.	TALLGRASS PRAIRIE VEGETATION ON A RANGELAND WATERSHED:	
	DUNG CHEMICAL COMPOSITION AND RATE OF DEGRADATION ON	60
	RANGELAND DURING DROUGHT CONDITIONS	60
		60
	Abstract	60
	Introduction	61
	Methods and Materials	61
	Dung Collection	61
	Dung Degradation	62
	Laboratory Analyses	63
	Data Compilation and Statistical Analyses	63
	Results and Discussion	63
	Dung Removed From Exclosures	63

Chapter

			Dung Degradation	64 64
			Chemical Composition of Dung and Ground Litter	74 74 76
APPENDIX	A	-	CLASSIFICATION OF SOIL SERIES	79
APPENDIX	в	-	MEAN VALUES (± SE) FOR NBDMD, ADF, LIGNIN AND CELLU- LOSE IN LIVE AND DEAD BIOMASS	81
APPENDIX	С	-	MEAN VALUES (\pm SE) FOR NBDMD, ADF, LIGNIN AND CELLU-LOSE IN LIVE HERBAGE ON DIFFERENT RANGE SITE	83
APPENDIX	D	-	MEAN VALUES (± SE) FOR NBDMD, ADF, LIGNIN AND CELLU- LOSE IN DEAD BIOMASS ON DIFFERENT RANGE SITES	85
APPENDIX	Е	-	MEAN VALUES (± SE) FOR CHEMICAL COMPONENTS OF LIVE AND DEAD BIOMASS	87
APPENDIX	F	-	MEAN VALUES (± SE) FOR CHEMICAL COMPONENTS OF DUNG (0-240 DAYS) AND FIBER AND CHEMICAL CONTENT OF ALL- AGE DUNG ON RANGE SITES	89
APPENDIX	G	-	GLOSSARY OF TERMS	92
APPENDIX	н	-	COMMENT STATEMENTS FOR RANGE NUTRITION STUDY	95
APPENDIX	I	-	FIELD DATA WORKSHEETS FOR RANGE WEATHER AND FIELD WEIGHT	97
APPENDIX	J	-	FIELD DATA WORKSHEETS FOR SPECIES COMPOSITION	99
APPENDIX	К	-	PLANT SPECIES KEY FOR FIELD DATA WORKSHEETS	101
APPENDIX	L	-	OTHER PLANT SPECIES RECORDED ON LAKE CARL BLACKWELL STUDY AREA	104
APPENDIX	М	-	FIELD DATA WORKSHEETS FOR DUNG DEGRADATION STUDY	106
APPENDIX	N	-	LAB DATA WORKSHEETS FOR LABORATORY ANALYSES	108
APPENDIX	0	-	COMPUTER CARD INPUT, PROCEDURES AND ANALYSES FOR NBDMD, CHEMICAL AND FIBER COMPONENTS	111
APPENDIX	P		COMPUTER PRINT PROCEDURE FROM DISK PROGRAM FOR FIBER COMPONENT ANALYSES	119

Page

Chapter

APPENDIX	Q	- COMPUTER INPUT, PROCEDURES AND ANALYSES FROM DISK PROGRAM FOR FIBER COMPONENTS, SPECIES COMPOSITION AND CHEMICAL COMPONENTS
APPENDIX	R	- COMPUTER INPUT, PROCEDURES AND ANALYSES FROM DISK PROGRAM FOR FIBER COMPONENTS ON RANGE SITES 130
APPENDIX	S	- COMPUTER INPUT, PROCEDURES AND ANALYSES FROM DISK PROGRAM FOR CHEMICAL COMPONENTS ON RANGE SITES 135
APPENDIX	т	- COMPUTER INPUT, PROCEDURES AND ANALYSES FROM DISK PROGRAM FOR CHEMICAL COMPONENTS OF LIVE, DEAD, GROUND LITTER AND DUNG BIOMASS ON RANGE SITES 140
APPENDIX	U	- COMPUTER CARD INPUT, PROCEDURES AND ANALYSES FOR FIBER COMPONENTS OF DUNG DEGRADATION

viii

Page

LIST OF TABLES

Table

CHAPTER III	
APPENDIX A	
 Classification of soil series within each range site on the watershed and a description of each soil series. 	80
CHAPTER IV	
APPENDIX B	
<pre>1. Average (± SE) NBDMD (%) and fiber components (%) of live and dead herbage</pre>	82
APPENDIX C	
<pre>l. NBDMD (%) and fiber components (%) of live herbage on loamy and shallow prairie range sites</pre>	84
APPENDIX D	
l. NBDMD (%) and fiber components (%) of dead biomass on loamy and shallow prairie range sites	86
CHAPTER V	
1. Chemical composition (%) of live herbage on loamy and shallow prairie range sites	48
 Chemical composition (%) of dead biomass on loamy and shallow prairie range sites. 	50
3. Regression equations and species classes for herbage nitrogen content (%) by day	52
4. Regression equations and species classes for herbage phosphorus content (%) by day	53
5. Regression equations and species classes for herbage potassium content (%) by day	55

Page

able		Page
6.	Regression equations and species classes for herbage calcium content (%) by day	56
APPEND	IX E	
1.	Average (± SE) chemical composition (%) of live and dead biomass	88
CHAPTE	R VI	
1.	Average (± SE) fiber components (%) of dung (0-240 days)	65
2.	Average (± SE) fiber components (%) of all-age dung	67
3.	Average (± SE) chemical composition (%) of ground litter and all-age dung	71
4.	Chemical composition (%) of ground litter on loamy and shallow prairie range sites	75

Table

LIST OF FIGURES

Figure		Page
CHAPT	ER III	
1.	Map showing location of watershed in relation to Lake Carl Blackwell	12
2.	Soil survey map	14
3.	General view of watershed vegetation	15
4.	Aerial view of watershed	15
5.	Species composition (%) of herbage on loamy and shallow prairie sites (SCSC = <u>Schizachyrium</u> <u>scoparium</u>)	17
CHAPT	ER IV	
1.	Schematic used to randomly select plot locations at each site	22
2.	Long term average monthly precipitation (cm), actual monthly precipitation (cm) and monthly soil water (cm) content	27
3.	Cellulose and lignin contents (%) in plant biomass from April, 1976 through March, 1977	28
4.	ADF content (%) in plant biomass from April, 1976 through March, 1977 and NBDMD (%) from June, 1976 through March, 1977	30
5.	ADF (%) of live herbage on loamy and shallow prairie range sites	33
6.	Cellulose (%) of live herbage on loamy and shallow prairie range sites	34
7.	NBDMD (%) of live herbage on loamy and shallow prairie range sites	36

Figure

CHAPTER V

1.	Nitrogen and potassium contents (%) in plant biomass from April, 1976 through March, 1977	43
2.	Calcium and phosphorus contents (%) in plant biomass from April, 1976 through March, 1977	45
СНАРТ	YER VI	
1.	Nitrogen content (%) of dung (0-240 days) from July, 1976 through March, 1977; dung (all-age) and ground litter April, 1976 through March, 1977	68
2.	Phosphorus content (%) of dung (0-240 days) from July, 1976 through March, 1977; dung (all-age) and ground litter from April, 1976 through March, 1977	69
3.	Potassium content (%) of dung (0-240 days) from July, 1976 through March, 1977; dung (all-age) and ground litter from April, 1976 through March, 1977	72
4.	Calcium content (%) of dung (0-240 days) from July, 1976 through March, 1977; dung (all-age) and ground litter from April, 1976 through March, 1977	73

Page

.

CHAPTER I

INTRODUCTION

There has been much interest in recent years in animal waste pollution. Most of the interest has been directed at point sources of pollution (e.g., feedlots) or nonpoint sources such as cropland or intensively managed pasture land.

With high grain prices and a greater demand for grain abroad for human consumption, more emphasis in the future will likely be placed upon greater forage utilization in beef production systems. Much of the additional forage will have to come from rangeland, requiring more efficient rangeland forage production. Consequently, there will be a need for greater understanding of range ecosystems.

Recently, larger numbers of cattle, particularly growing animals, have been maintained on rangeland for longer periods of time because of the economic situation in the beef cattle industry. If proper management is not practiced, high stocking rates and overgrazing might lead to greater water pollution from animal wastes produced by livestock grazing rangeland.

The objectives of this study were to determine (1) the effects of range site and plant species composition on plant fiber components and <u>in vivo</u> nylon bag dry matter digestibility (NBDMD) of tallgrass prairie vegetation, (2) effects of range site and plant species composition on plant chemical composition of tallgrass prairie vegetation, and (3) the

chemical and fiber composition of all-age dung throughout the year and change in composition over time of recently deposited dung.

This thesis was written in the style and format for technical journals. The style and format adhered to in this thesis is that of the Journal of Range Management. Results of this study are presented in three different papers.

CHAPTER II

REVIEW OF LITERATURE

In the last decade considerable work has been conducted in the area of animal waste pollution. Recently, a comprehensive review by Ramsey (1974) included 1264 references to journal articles, conference proceedings, university and government publications. There was not one reference, however, that was directly related to the potential pollution from rangeland watersheds grazed by cattle.

Factors Influencing Plant Chemical Composition

A knowledge of plant chemical composition is essential and significant to better understand the relationships involved between plant and dung chemical composition. There are many factors affecting the maturity and consequently the chemical composition of rangeland herbage.

Soil Water Content

Soil moisture affects both the chemical composition and yield of plants. Early in the growing season soil water content is usually abundant. Plants are green and growing rapidly. Moisture, crude protein (CP) and phosphorus (P) content are high; whereas, crude fiber (CF) is low. As the growing season progresses soil water content decreases in temperate regions and plants mature and become dry. Throughout the growing season different changes occur in the plants: (1) CP and P decrease

(Oelberg 1956); (2) CF increases (Savage and Heller 1947); and (3) digestibility of most plant components decreases (Cook et al. 1961). Plant maturity causes most of these effects, with a decrease in soil water content indirectly affecting the resultant changes. Calcium (Ca) content is affected by soil water content and stage of growth, depending on species and location.

Precipitation

The amount and distribution of precipitation will affect plant chemical composition both directly and indirectly. Leaching of nutrients is the direct effect while variations in the amount of soil water content available for plant growth is the indirect effect.

Exposure to rain results in leaching and causes decreases in CP, P and ash of mature dry plants. Crude fiber is a plant component that resists leaching, thus proportionately increasing as leaching progresses. All species do not react in the same way. Crude protein of native grasses in New Mexico greatly declined with leaching incuring losses of 37 to 73% between October and March (Watkins 1943). Calcium and P contents were significantly reduced by heavy winter precipitation between October and March (Watkins 1943). Savage and Heller (1947) observed little influence of leaching on Ca content of grasses in Oklahoma. Guilbert et al. (1931) indicated that Ca content in bur clover and alfilaria is not affected greatly but P content is lowered, thus widening the Ca:P ratio. Dry mature grasses are in general lower in Ca content and since the P content is also reduced by leaching, the Ca:P ratio remained practically unchanged (Guilbert et al. 1931).

Soil Characteristics

Plant chemical composition is affected by different aspects related to soil such as soil depth and nutrient content of the soil.

Soil depth has been studied with seeded grasses on deep, sandy loam and shallow, rocky clay loam soils. Plants on shallow soil contained higher percentages of CP and less CF (Cook 1959). They were also found to be more palatable to livestock than those on deeper soil. Soil depth effect was indirectly responsible for this difference. Plants on shallow soil were more leafy and had smaller stems. Leafy characteristics would explain the greater palatability (Cook 1959). Stoddart (1941) however, found plants on deeper soils to have more ash and P than those on shallower soils. All other nutrients remained about the same. Site differences in soil nutrients or soil water content could be factors responsible for contradictory results.

Nitrogen generally has been the only fertilizer nutrient to affect the quality of grass herbage in the plains and mountains of the United States (Cook 1965). However, the relationship between soil fertility and plant chemical composition has not been established for all soils and species, and the effect of nutrient status of the soil can be altered by other factors.

Plant Species Composition

There are infinite variations in forage value among species. Range grasses in general have a higher CP and P content early in the growing season. Energy in the form of CF, cellulose, is low in the early growing season. As the plants mature there is a reverse relationship between nutrients that were high at the start of the growing season versus those

that were low (Oelberg 1956).

Forbs do not generally cure well. Consequently, they are inferior as forage to both grass and browse during the non-growing season. Actively growing forbs, especially legumes, are consistently higher in Ca than grasses. Forbs are most nutritious early in the growing season due to a high CP content (Oelberg 1956).

Browse species more nearly maintain their peak nutrient values throughout the growing season. Generally, browse plants are more deeprooted and tend to store food reserves in stems rather than roots (Stoddart and Smith 1955). They do not decrease in CP and energy during dry periods or during the winter as much as grasses (Stoddart and Smith 1955). Reductions in CP and P with increase in CF occur. Browse species in New Mexico contain more than three times as much Ca and 61% more P than grasses in the fall (Watkins 1937).

Stage of Maturity

Stage of maturity seems to be the most important factor affecting plant chemical composition and digestibility (Oelberg 1956). In the spring there is usually a higher soil water content and more favorable temperatures to initiate the start of rapid plant growth. Whitman et al. (1951) reported native and tame grasses of western North Dakota lost on an average 71% of their CP content by the end of September. Forage plants in Utah showed grass species had an average CP content of 8.2%, 7.2% and 4.5% in early, mid and late season, respectively (Cook and Harris 1950).

Phosphorus content normally parallels that of CP in regard to stage of maturity. Losses of from 49 to 83% P, over the growing season, were

found in range grasses in New Mexico.

Range site also has an effect on plant chemical composition in relation to stage of maturity. Protein content (10.8% to 9.6%) on unfavorable sites was significantly higher than on favorable sites (Cook 1959). The difference was largely due to differences in stem-leaf ratio. Leaves and stems were higher in lignin content (6.5% to 6.0%) on the favorable sites. Cellulose content in the entire plant was significantly higher (31.2% to 28.7%) on favorable sites than on unfavorable sites.

Factors Affecting Diet Quality and Digestibility of Forage

For many years forage yield was the main criterion for forage value. In recent years relationships between forage yield, quality and animal response have been studied. Forage quality is an indicator of plant chemical composition. A high-quality forage for a ruminant animal will possess certain characteristics: (1) high palatability to the animal, with increased feed intake, (2) optimum levels of various nutrient components in proper ratios during animal use, (3) high apparent digestibility of nutrients with optimum ratio of nitrogenous to non-nitrogenous components, (4) optimum proportions of volatile fatty acids (VFA) for efficient energy production, (5) adequate amounts of minerals, vitamins and trace elements and (6) efficient convertability of components needed for the animal body over sustained periods of time (Dietz 1970). The plant chemical composition of the animal diet selected is not necessarily the same as that of forage (Laycock and Price 1970).

The declines in digestibility are not due just to changes in chemi-

cal composition. The digestibility of all chemical components declines. Unfavorable climatic conditions are a cause of poor digestibility (<u>Min-son and Meleod 1970</u>) and lower mineral contents of forage (Patil and Jones 1970).

9

Dung Chemical Composition

The consistency of dung (physical characteristics and/or chemical composition) varies greatly depending upon the time of year cattle are grazing as it influences the type of forage being consumed. The content of the structural carbohydrates in dung is inversely related to the digestibility of the grazed forage, while the N content of dung is directly related to the N content in the forage (Raymond 1966). Direct counts of 250-3000 million bacteria/gm of cattle dung have been reported (Witzel et al. 1966). Various forms of dead and living organisms including protozoa and eggs, larvae and adults of parasitic nematodes, cestodes and trematodes are also present in dung composition.

Chemical composition analyses of dung and urine on a percentage net weight basis suggest that most voided P occurred in the feces, while N and K occurred in the urine (Heady 1975). The amount of N and sulfur (S) mineralized is closely related to the N and S content of the dung (Barrow 1961). There is no evidence that fecal excretion of N, S or organic P is affected by the level of feed intake (Barrow and Lambourne 1962). There is a very high recovery of N through the excreta on grazed pasture against the ungrazed area when pasture was fertilized (Brockman et al. 1971).

Dung of sheep grazing fertilized pastures contained a consistently higher P content than dung of sheep grazing unfertilized pastures. When

comparing both fertilized and unfertilized pastures, total inorganic P content varied widely, 0.18 to 1.7%, while organic P content changes were small, 0.15 to 0.4% (Bromfield 1961). Inorganic P is readily soluble in acid but not in water and is readily available to the plant; whereas, organic P is not readily available to the plant nor rapidly mineralized to inorganic P (Bromfield 1961).

Degradation of Dung

Degradation Process

There are many factors involved in degradation of dung and their effects and interrelationships with various other components. The process dung degradation is a complex one beginning as soon as it is deposited. It is primarily the result of microbial activity that leads to the production of CO_2 , NH_3 , H_2O , nitrate and nitrites. This in turn is accompanied by synthesis of humic compounds of higher molecular weight (Marsh and Campling 1970).

Disappearance Rate

This aspect of dung degradation is influenced primarily by two factors: (1) formation of hard crust which decreases the eroding effect of rain and retards decomposition and (2) consistency of dung in relation to seasonal changes. Weeda (1967) reported dung deposited in the fall disappeared in one-two months and dung deposited in late spring or early summer disappeared in four-six months. Dung will tend to start decomposing on the margins first, and then the central area will decompose rather slowly from the underside upward. After the patch is broken

into several pieces it will disappear rather rapidly (Weeda 1967). Dung decomposition of N fertilized pastures of two different levels, 500 or 125 kg/ha/yr. had a mean area of dung patches of $.06 \text{ m}^2$ with no difference between patches on the two N treatments (Castle and MacDaid 1972). The dung patches on high and low N treatments crumbled in 63 and 55 days and disappeared in 115 and 113 days, respectively.

CHAPTER III

STUDY AREA

The study area, part of the Lake Carl Blackwell watershed, is located 16 km northwest of Stillwater, Oklahoma, USA (Lat. $38^{\circ}N$, Long. $97^{\circ}W$, elevation 290-318 m) in the NW¹₄, Section 32, T20N, RlE of the Indian Meridian (Fig. 1). The remainder of the watershed is located in the SW¹₄, Section 32 and the eastern edge of Section 31, Noble County.

Climate

The climate is continental, with hot summers and variable winters. The average annual temperature is 16° C. The average absolute maximum temperature is 44° C in either July or August. The average absolute minimum temperature is -26° C in January. Average wind speed varies from 15 km/hr in August to 25 km/hr in March. The mean relative humidity varies from 62% in July and August to 71% in December and January. The average number of frost-free days is 206 from early April to late October. Average annual precipitation is 820 mm with about 75% occurring during the growing season. The average monthly precipitation ranges from about 120 mm in May to 30 to 35 mm in December, January and February.

Topography

The watershed, 57.5 ha in size, is rolling with 3 to 5% slopes on

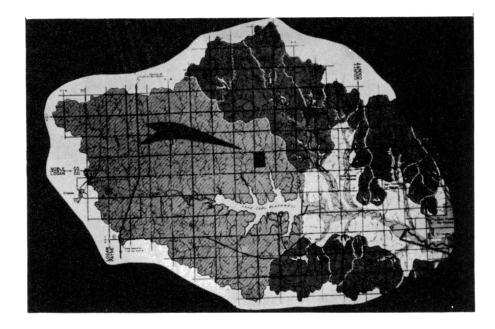


Fig. 1. Map showing location of watershed in relation to Lake Carl Blackwell.

the ridges and upland areas. The land adjacent to the drainageways has slopes of 5 to 10% or more but there are no active gulleys. The watershed is composed of two major drainageways which merge about 90 m upstream from a weir. The north drainageway has a watershed area of 20 ha. A stock water pond lies in the upper end with a watershed area of 6.1 ha. The north drainageway has a fall of 26 m over a distance of 760 m. The watershed area of the south drainageways is 30 ha. The fall is 26 m over a distance of 1060 m. The watershed has an eastwardly fall and a triangular shape.

Soils

There are eight soil series (Appendix A) with soils of very-fine or fine-loamy, mixed thermic Vertic Haplustalfs occupying 70% of the watershed (Fig. 2). The proportion of soil orders is 78% Alfisols, 16% Mollisols and 6% Inceptisols. On a range site basis, the watershed is composed of 53% loamy prairie, 32% shallow prairie, 7% claypan prairie, 6% shallow savannah and 2% sandy savannah. The loamy and claypan prairie sites are combined as loamy prairie and the shallow prairie, shallow savannah and sandy savannah sites are combined as shallow prairie.

Vegetation

Many of the plant species present on the watershed (Fig. 3) are those tallgrass prairie climax species described by Bruner (1931) and Carpenter (1940). Other existing grassland species common to lower successional stages of the tallgrass prairie have been described by Sims and Dwyer (1965). About 80 to 85% of the watershed is grassland

Fig. 2. Soil survey map.

l

Fig. 3. General view of watershed vegetation.

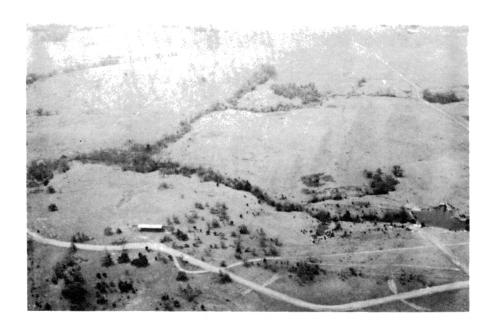


Fig. 4. Aerial view of watershed.

(Fig. 4). The average plant species class composition (Fig. 5) on loamy prairie sites during the growing season was 20% tallgrasses, 25% little bluestem (Schizachyrium scoporium), 13% midgrasses, 2% shortgrasses, 7% other grasses, 25% forbs and 8% shrubs (Powell et al. 1978). On shallow prairie sites the average species class composition was 8% tallgrasses, 20% little bluestem, 17% midgrasses, 7% shortgrasses, 13% other grasses, 33% forbs and 2% shrubs. The major tallgrasses included big bluestem (Andropogon gerardii), switchgrass (Panicum virgatum) and Indiangrass (Sorghastrum nutans). Midgrasses included various species of Andropogon, Panicum, Paspalum, dropseed (Sporobolus spp.), other genera and sideoats grama (Bouteloua curtipendula). Shortgrasses included buffalograss (Buchloe dactyloides) and other Bouteloua species. The major shrubs were buckbrush (Symphoricarpos orbiculatus) and smooth sumac (Rhus glabra). Post oak (Quercus stellata) and blackjack oak (Q. marilandica) were the dominant trees on the savannah sites. Elm (Ulmus), hackberry (Celtis), ash (Fraxinus) and persimmon (Diospyros) species were most common along drainageways.

Livestock

The watershed is grazed by Oklahoma State University cattle under a yearlong grazing, cow-calf management system. It is generally not grazed during the last two weeks of April and during the 75 days between August 1 and October 15. The average grazing use for the total watershed was about 70 animal-unit-days (AUD)/ha in 1976. Dry cows were supplemented with about 1 kg of cottonseed meal (41% protein) per head per day from October 15 to December 31 when they were removed from the watershed. From latter January to mid April cows and calves were fed

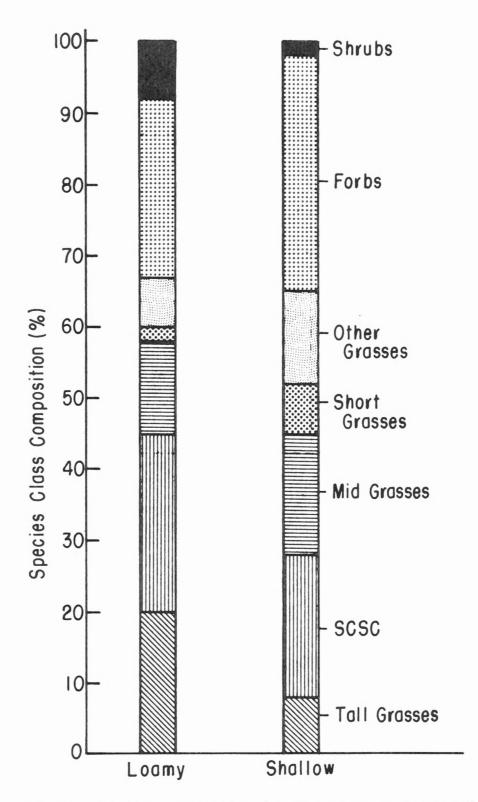


Fig. 5. Species composition (%) of herbage on loamy and shallow prairie sites (SCSC = <u>Schizachyrium scoparium</u>) (from Powell, et al. 1978).

2.7 kg of soybean meal range cubes (20% protein) and 1.8 kg of prairie hay per cow per day. A dicalcium-phosphorus mineral supplement plus salt was provided free choice during all grazing periods.

CHAPTER IV

TALLGRASS PRAIRIE VEGETATION ON A RANGELAND WATER-SHED: THE EFFECT OF RANGE SITES AND PLANT SPECIES COMPOSITION ON <u>IN VIVO</u> NYLON BAG DRY MATTER DIGESTIBILITY AND PLANT FIBER COMPONENTS DURING DROUGHT CONDITIONS

Abstract

The effects of range sites and plant species composition on plant fiber components and <u>in vivo</u> nylon bag dry matter digestibility (NBDMD) were studied on a tallgrass prairie watershed in north central Oklahoma. Drought stress was evident in herbage because of lack of precipitation and soil water. In general, cellulose content was inversely related to lignin content between May and July. Acid-detergent fiber (ADF) content was increased by the relative percentage of total warm season grasses (P < .10) and by percentage of tallgrasses plus <u>Schizachyrium</u> <u>scoparium</u> (P < .01). NBDMD was correlated with ADF (r = -0.77) (P < .01) and declined 1.62% for each 1% increase in ADF. Differences in mean cellulose content and NBDMD on different sites differed significantly (P < .01) across months. Differences in NBDMD on different sites were correlated with ADF (r = -0.80) (P < .01) and declined 1.73% for each 1% increase in ADF.

Introduction

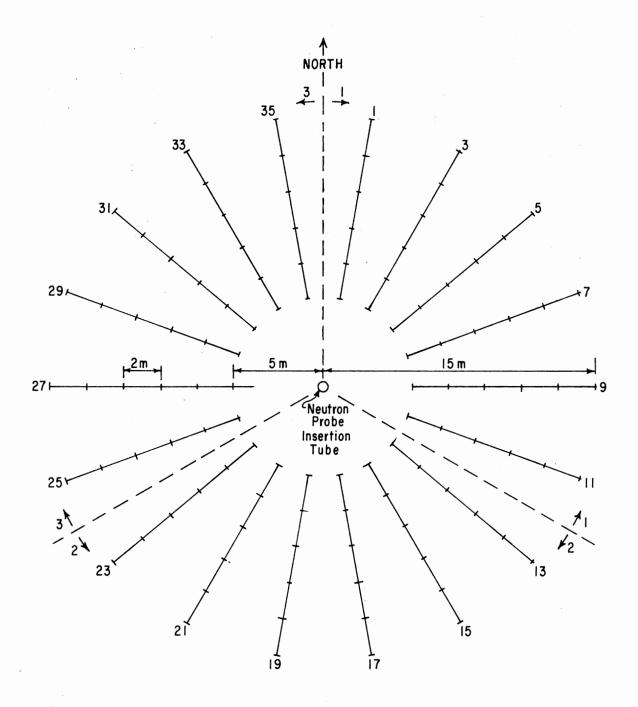
For many years forage yield was the main criterion for forage value. In recent years relationships between forage yield, quality and animal response have been studied. The diet of the animal consists of plant parts and species selected by the animal and the plant chemical composition of the diet selected is not necessarily the same as that of forage (Laycock and Price 1970). Plant species composition affects nutrient quality of herbage. As plants mature there is a reverse relationship between nutrients that were high at the start of the growing season and those that were low (Oelberg 1956).

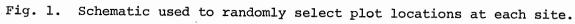
Range site affects plant chemical composition during different phenological stages of plant development. Plant chemical composition influences palatability and range site influences chemical composition of the plant tissues; therefore, range site influences palatability of plants (Watkins 1940 and Plice 1952).

There is also a difference in selection of diet due to animal species (Van Dyne and Heady 1965). Where forage is plentiful, selectivity enables animals to maintain nutrient levels of their diet even though the nutrient value of the plants decreases with maturity (Cook and Harris 1952 and Edelfen et al. 1960). Sheep fitted with esophageal fistulas, grazing California annual range, consistently consumed forage that was higher in protein and lower in crude fiber than samples clipped from the same area (Weir and Torell 1959).

The purpose of this study was to determine the effect of range site and plant species composition on plant fiber components and <u>in vivo</u> nylon bag dry matter digestibility of tallgrass prairie vegetation.

Forage Collection


Twenty-nine permanent locations were arbitrarily selected for monthly vegetation sampling. The number and distribution of locations provided a range in site conditions for regression analyses and replications on the major soil types in proportion to their percentage of occurrence throughout the watershed. Fourteen of the locations were on loamy sites and 15 were on shallow sites.


Sampling areas (Fig. 1) consisted of an area around each permanent location as indicated by a neutron probe access tube. The tube was the pivot point of the circle with a radius of 15 m. The circle was marked off in 20° increments beginning with 10° and ending at 350° . The circle was divided into thirds with boundaries falling on the compass bearings of 0° , 120° and 240° . Bearings 1, 3, 5, 7, 9 and 11 (corresponds to the degree readings of 10° , 30° , 50° , 70° , 90° and 110°) are in transect #1. Bearings 13, 15, 17, 19, 21 and 23 are in transect #2 and transect #3 consists of bearings 25, 27, 29, 31, 33 and 35.

Each bearing had six points beginning at 5 m from the center and occurring at 7, 9, 11, 13 and 15 m. The plots to be sampled were predetermined on a master copy of the location diagram.

Species composition and forage production were determined at each location using three estimated samples. Vegetation at one of the three sampling points was clipped at each location. Clipping was at ground level to determine total top growth. All estimates and clippings were from 0.5 m² circular quadrats.

Soil water content was determined monthly at each location. At

each location, a neutron probe access tube was driven into the soil to the maximum depth possible. Access tube depths ranged from 22 to 137 cm which, in most cases, coincided with the solum thickness. Soil water content was determined at several depths. From the soil surface to 50 cm soil water content was determined at 10 cm increments and depths greater than 50 cm determined at 20 cm increments. Soil water content was determined using a portable neutron scattering moisture meter (Stone et al. 1955), d/m-GAUGE Model 2800 portable scaler.

Laboratory Analyses

Clipped vegetation samples were separated into live and standing dead components, and ground through a 2 mm screen in a Wiley mill. Samples were analyzed for <u>in vivo</u> nylon bag dry matter digestibility (NBDMD) by a nylon bag technique (Johnson 1969), acid-detergent fiber (ADF), lignin and cellulose. ADF and lignin were determined by the permanganate oxidation procedure of Van Soest and Wine (1968). Samples consisted of 3 gm aliquot for DMD and a 0.5 gm aliquot for ADF and lignin. NBDMD analysis was triplicated while all other laboratory analyses were duplicated.

NBDMD

Three Holstein steers (408 kg mean weight) fitted with permanent rumen cannulae on May 5 for NBDMD trials were put on 9.5 ha of rangeland on May 20, 1976. This grazing area was composed of nearly the same plant species composition as the study area.

On November 1, hay from the same paddock in which the steers grazed was cut and baled in order to continue the NBDMD trials through the

winter months. On November 3, the hay was transported to a barn and stored. The steers (427 kg mean weight) were put in a drylot paddock on November 10, 1976. Four samples from both the supplement and hay were analyzed for CP. The supplement and hay averaged 22% and 5.5% CP, respectively. Steers were fed 7 kg hay/hd/day, 1.12 kg supplement/hd/ day, salt and water ad libitum. On April 14, 1977, the steers (510 kg mean weight) were taken back to the same paddock on rangeland to continue the NBDMD trial through May, 1977.

Nylon Bag Technique

Nylon bags were made from 100 mesh nylon. The bags were 5.0 by 7.6 cm with rounded corners to prevent the sample from collecting in the corners. A nylon thread was used for sewing the bags together. A set of six soft braided nylon lines (29 kg test), each 0.91 m in length were cut. A rubber stopper was tied at one end and a beveled stainless steel weight (76 gm) attached at the other end. A set of six lines (29 kg test) were also assembled without a weight on the end. Three small loops were made in the line. The first loop was 20 cm from the weight. The remaining two loops were spaced at 5 cm intervals above the first loop. Attached to each loop was a #3, brass swivel. A line (16 kg test) 23 cm long was attached with five loops in the line and a #3, brass swivel attached to each loop. After putting forage samples in the nylon bags, the bags were closed and tied with a line (16 kg test). The nylon bags were attached to each of the five loops. There were 15 samples per primary line and two lines per steer for a total of 30 samples per steer per analysis. A line of less than 24 kg test was not strong enough for the 0.91 m primary line and would break. The 76 gm

stainless steel weight was found to be unnecessary when test animals were on an all-forage diet.

NBDMD Field and Laboratory Technique

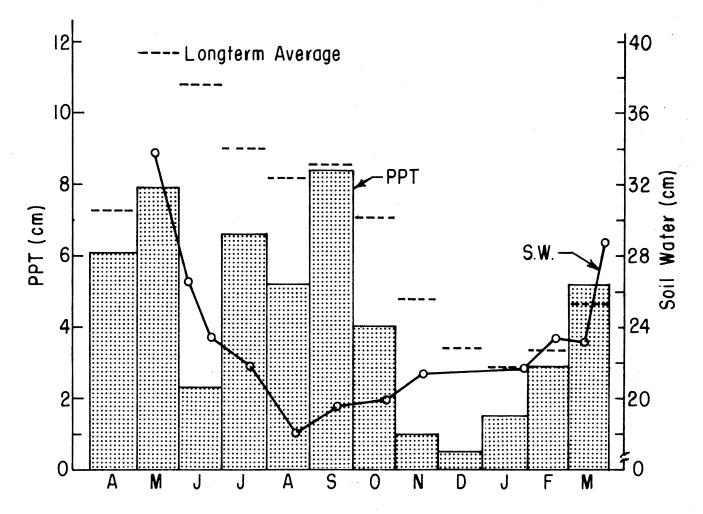
Forage samples were analyzed for NBDMD on a monthly basis to correspond to the monthly collection period of the forage from the study area. NBDMD was determined for 48-hr incubation periods. After 48 hr, samples were taken from the steers, washed in ice water, placed in a chest of ice water, and transported to the laboratory. In the laboratory individual bags were washed thoroughly with cold tap water. The bags were then placed on drying trays and put into an oven at 55°C for 48 hr. Twenty-four hours after beginning the drying process, bags were removed and ties removed to allow more thorough drying the next 24 hr. Following the drying procedure, samples were placed in desicators immediately upon removal from the oven. Samples were then reweighed and the percent NBDMD calculated.

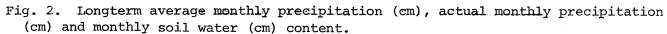
Data Compilation and Statistical Analyses

Measurements of species, herbage weights, and laboratory data were recorded directly on data forms prepared to facilitate key-punching data cards directly from data forms. Examples of the data forms, input programs and procedures are printed in Appendices I, J, K, L, N, O, P, Q, and R. Data were stored and processed by the Oklahoma State University IBM 370/158 computer. Statistical analyses were performed using the procedures of the Statistical Analysis System, SA572, (Barr and Goodnight 1972). Regression and analyses of variance tables are shown in Appendices O, P, Q and R. All differences discussed were significant at the (P < .05) level unless otherwise specified.

Results and Discussion

Precipitation and Soil Water Content

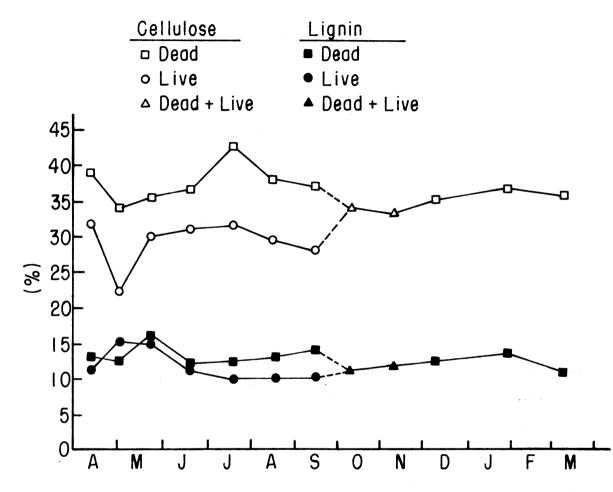
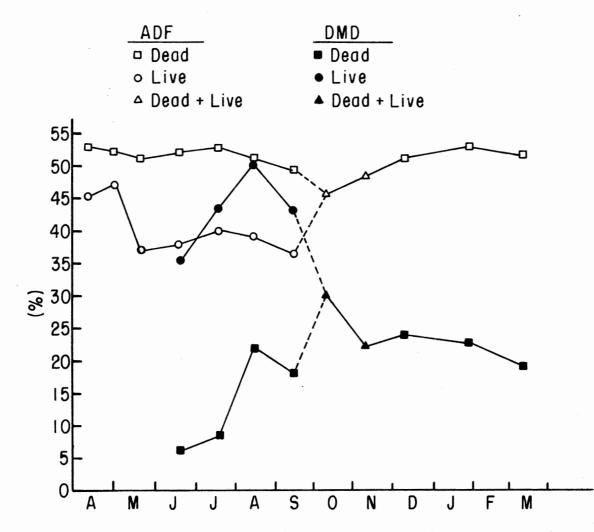

Precipitation during the growing season of 1976 was below the longterm average for that period of time (Fig. 2). March, 1977 was the only month in which the amount of precipitation exceeded the longterm average. Soil water content declined rapidly from a high of 34.2 cm in May to a low of 18.1 cm in August. Rapid growth rates of the vegetation occurred during the sharpest decline of soil water content in May and June. Infrequent rains that provided additional soil water between June and October were rapidly depleted during the hot summer months.

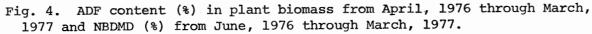

Drought stress was very evident by July. Cook and Harris (1950) indicated that environmental factors and soil water content are more important in determining the nutrient content of range forage plants under various site conditions. Drought stress appeared to occur earlier and to a greater degree for the same species on shallow prairie sites than on loamy prairie sites.

Fiber Components and NBDMD

Cellulose and Lignin

Cellulose content (%), in live and dead biomass declined between April and May (Fig. 3). As cellulose content declined from 31.9% to 22.7% in live herbage and 38.9% to 34.1% in standing dead litter during the above period, lignin content increased in live herbage from 11.3%


Fig. 3. Cellulose and lignin contents (%) in plant biomass from April, 1976 through March, 1977.

to 15.4%. This was related to the increased maturity of cool season annual grasses and spring forbs in May. In general, cellulose content was inversely related to lignin content between May and July (Fig. 3). The decline in lignin content from 15.1% to 10.2% between May and July may have resulted from an increase in the percentage of growing tallgrasses and a decrease in percentage of mature cool season annual grasses. Broyles (1978) reported the period of peak production in the tallgrass prairie varies from June to August depending on species composition, site factors such as soil water content and external factors such as grazing intensity. The difference in lignin content ranged from 10.2% to 15.4% in live herbage and from 11.0% to 16.1% in dead biomass. Grasses in Montana showed increases in lignin content of 5% in May to 18% in September (Patton and Gieseker 1942). Cellulose and lignin content in dead biomass was relatively stable throughout the winter months (Fig. 3). Specific mean values (± SE) for cellulose, lignin, ADF and NBDMD in live and dead biomass are shown in Appendix B.

ADF

Changes in ADF content in live herbage, generally reflected the change in species composition and different stages of maturity of the species (Fig. 4). ADF content was correlated (r = -.23) (P < .10) to percent warm season annual grasses in April. As the warm season annual grasses matured ADF content declined and upon reaching maturation ADF content increased 1% for every 8.6% increase in warm season annual grasses. Differences in ADF content were negatively correlated (r = -.26) (P < .10) to total warm season grasses in August. ADF content (%) was increased 1% for every 0.22% increase in tallgrasses plus

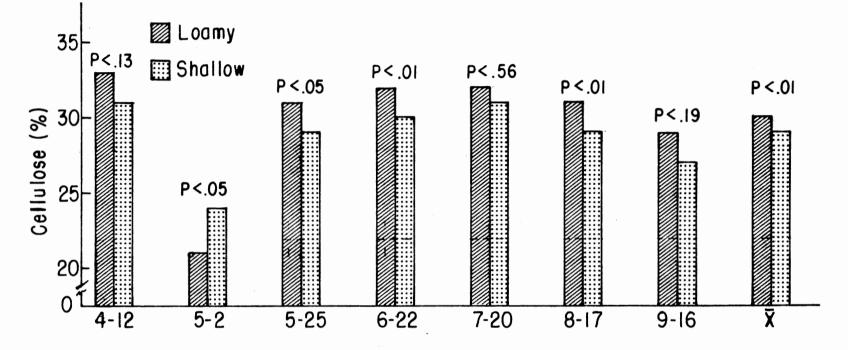
little bluestem in August (P < .01). The ADF content in dead biomass was the previous year's growth in the spring. After July, a greater percentage of the dead biomass was the current year's growth. Changes in ADF content in dead biomass were closely associated with different stages of plant phenology for different species. The ADF content of dead biomass in March, 1977 (51.3%) was at about the same level as in April, 1976 (52.7%).

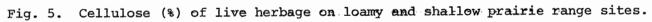
NBDMD

NBDMD in June (35.7%) was much lower than generally reported for live vegetation in the literature (Fig. 4). Burzlaff (1971) reported DMD values of growing range grasses to be 40 to 70%, declining sharply as the growing period advances. Annual grasses in California were found to be 47% digestible in midsummer when they were dry (Van Dyne 1965). Tallgrasses were at peak production in June and the herbage was clipped at ground level.

As actively growing shortgrasses and summer forbs increased in percent composition of the herbage, the NBDMD increased until all species reached peak production (Fig. 4). Arnold (1962) found digestibility of herbage selected by grazing sheep in Australia did not decline until almost three weeks after a substantial decline in digestibility of the same species clipped and fed to penned sheep. NBDMD increased rapidly from 35.7% in June to 50.4% in August and at the same time there is a rapid growth in shortgrasses and late summer forbs. Dry matter digestibility of the dead plus live and dead biomass was relatively constant between November and March, declining from 30.0% to 18.8%. Dry matter digestibility of the live plus dead biomass

throughout the year was highly correlated (r = -0.78) (P < .01) with ADF and declined 1.62% for each 1% increase in ADF.


Effect of Range Site on Fiber Components and NBDMD


Cellulose and Lignin

The cellulose content in live biomass on loamy sites was higher than that on shallow sites on all sampling dates except early May (Fig. 5). Cellulose content in the entire plant was significantly higher on favorable sites (31.2%) than on unfavorable sites (28.7%) (Cook 1959). Results from this study would agree with other studies that loamy prairie sites produced vegetation with a higher percentage of cellulose content in live herbage than did shallow prairie sites. There were no significant differences in cellulose content of dead biomass nor in lignin content of live herbage. Differences in lignin content of dead biomass were significant at less than the 10% level only in April.

ADF

ADF content of live herbage was greater (P < .10) in herbage on loamy prairie sites than that on shallow prairie sites in June, August and September (Fig. 6). The monthly average ADF content was also greater (P < .02) in herbage on loamy prairie sites. The higher ADF content in the herbage from the loamy prairie sites can be attributed to the greater percentage of tallgrass species on these sites. Cook (1959) also found that herbage on loamy prairie sites contained a higher ADF content compared to that on shallow prairie sites. Differ-

ω

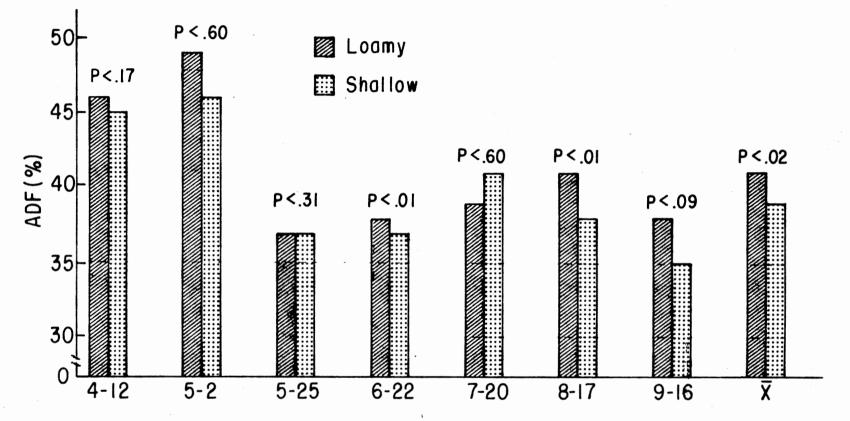


Fig. 6. ADF (%) of live herbage on loamy and shallow prairie range sites.

ences in ADF content of dead biomass due to range site were significant (P < .10) only in June and September (Table 4). Specific mean values $(\pm SE)$ for ADF, cellulose and lignin, in live and dead biomass and NBDMD on both sites are shown in Appendices C and D.

NBDMD

NBDMD was consistently greater in live herbage from shallow sites although probability levels ranged from 1% in August to 25% in July (Fig. 7). This could be because of the growth of the tallgrass species on the loamy prairie sites. Cook (1959) reported an average percent utilization was significantly greater on unfavorable sites (81%) compared to favorable sites (43%). Differences in NBDMD of dead biomass on different range sites were small and significant at the 10% or less level only in October and March. Dry matter digestibility was highly correlated (r = -0.80) with ADF (P < .01) on loamy prairie sites and declined 1.73% for each 1% increase in ADF.

Conclusions

Soil water content influenced the nutrient content of range forage plants under various site conditions. Changes in ADF content in live herbage, generally reflected the change in species composition and different stages of maturity of the species. Dry matter digestibility was lower than generally reported in the literature, possibly because of the advanced stage of growth of tallgrasses and the fact herbage was clipped at ground level. Range sites and the species composition on different sites significantly influence levels of fiber components and NBDMD.

Fig. 7. NBDMD (%) of live herbage on loamy and shallow prairie range sites.

LITERATURE CITED

- Arnold, G. W. 1962. Effects of pasture maturity on the diet of sheep. Australian J. Agr. Res. 13:701-706.
- Barr, A. J. and J. H. Goodnight. 1972. A user's guide to the statistical analysis system. North Carolina Univ., Raleigh, N.C. 360 p.
- Broyles, P. J. 1978. Oklahoma tallgrass prairie species composition and production responses to rotation fertilization on different range sites. Master of Science Thesis. Oklahoma State University, Stillwater, 70 p.
- Bruner, W. E. 1931. The vegetation of Oklahoma. Ecol. Mono. 1:99-188.
- Burzlaff, D. F. 1971. Seasonal variations of in vitro dry-matter digestibility of three sandhill grasses. J. Range Manage. 24:60-63.
- Carpenter, J. R. 1940. The grassland biome. Ecol. Mono. 10:618-684.
- Cook, C. W. 1959. The effect of site on the palatability and nutritive content of seeded wheatgrasses. J. Range Manage. 12:289-292.
- Cook, C. W. and L. E. Harris. 1950. The nutritive value of range forage as affected by vegetation type, site and state of maturity. Utah Agr. Exp. Sta. Tech. Bull. 344, 45 pp.
- Cook, C. W. and L. E. Harris. 1952. Nutritive value of cheatgrass and crested wheatgrass on spring ranges in Utah. J. Range Manage. 5:331-337.
- Edelfsen, J. L., C. W. Cook, and J. T. Blake. 1960. Nutrient content of the diet as determined by hand plucked and esophageal fistula samples. J. Anim. Sci. 19:560-566.
- Johnson, R. R. 1969. Techniques and procedures for <u>in vitro</u> and <u>in</u> <u>vivo</u> rumen studies. 175-196 p. <u>In</u> Techniques and Procedures in Animal Science Research, Amer. Soc. An. Sci.
- Laycock, W. A. and D. A. Price. 1970. Environmental influences on nutritional value of forage plants. In: Range and wildlife habitat evaluation--a research symposium. USDA Misc. Publication 1147. pp. 37-47.

- Oelberg, K. 1956. Factors affecting the nutritive value of range forage. J. Range Manage. 9:229-225.
- Patton, A. R. and L. Gieseker. 1942. Seasonal changes in lignin and cellulose content of some Montana grasses. J. Anim. Sci. 1:22-26.
- Plice, M. J. 1952. Sugar versus the intuitive choice of foods by livestock. J. Range Manage. 5:69-75.
- Powell, J., F. R. Crow and D. G. Wagner. 1978. Plant biomass and nutrient cycling on a grazed, tallgrass prairie watershed. Paper presented at the First International Rangeland Congress, Denver, Colorado, USA, August 14-18.
- Ramsey, R. H. 1974. Livestock and the environment. Environmental Protection Technology Series EPA-660/2-74-124. U.S. Environmental Protection Agency, Washington, D.C. 357 p.
- Sims, P. S. and D. D. Dwyer. 1965. Pattern of retrogression of native vegetation in North Central Oklahoma. J. Range Manage. 18:20-25.
- Stone, J. F., D. Kirkham and A. A. Read. 1955. Soil moisture determination by a portable neutron scattering moisture meter. Soil Science Society of America Proceedings 19:419-425.
- Van Dyne, G. M. 1965. Chemical composition and digestibility of plants from annual range and from purestand plots. J. Range Manage. 18:332-339.
- Van Dyne, G. M. and H. F. Heady. 1965. Dietary chemical composition of cattle and sheep grazing in common on a dry annual range. J. Range Manage. 18:78-86.
- Watkins, J. M. 1940. The growth habits and chemical composition of bromegrass, <u>Bromus inermis Leyss</u>., as affected by different environmental conditions. J. Amer. Soc. Agron. 32:527-538.
- Weir, W. C. and D. T. Torell. 1959. Selective grazing by sheep as shown by a comparison of the chemical composition of range and pasture forage obtained by hand clipping and that collected by esophageal-fistulated sheep. J. Anim. Sci. 18:641-649.

CHAPTER V

TALLGRASS PRAIRIE VEGETATION ON A RANGELAND WATERSHED: THE EFFECT OF RANGE SITES AND PLANT SPECIES COMPOSITION ON PLANT CHEMICAL COMPONENTS DUR-ING DROUGHT CONDITIONS

Abstract

The effects of range sites and plant species composition on plant chemical composition were studied on a tallgrass prairie watershed in north central Oklahoma. Plant species composition affected (P < .10) N, K and P contents of live herbage. Chemical composition of the live and dead biomass was significantly influenced by range site differences. Chemical components of N, P and K in live herbage decreased from a high in early spring to a low in summer at a rate that closely paralleled the decrease in soil water content.

Introduction

Stage of maturity seems to be the most important factor affecting plant chemical composition (Oelberg 1956). A decrease in soil water content indirectly affects the resultant changes in plant chemical composition (Laycock and Price 1970). Cook and Harris (1950) indicated environmental factors and soil water content are more important in de-

termining nutrient content of range forage plants, under various site conditions than the chemical content of the soil as determined by standard methods.

Plants on shallow soil were found to be higher in certain nutrients (Cook 1959) because of the more leafy characteristics. Stoddart (1941) however, found plants on deeper soils to have more ash and phosphorus than those on shallower soils. Site differences in soil nutrients or soil water content could be factors responsible for contradictory results.

Nitrogen generally has been the only fertilizer nutrient to affect the quality of grass herbage in the plains and mountains of the United States (Cook 1965). However, the relationship between soil fertility and plant chemical composition has not been established for all soils and species, and the effect of nutrient status of the soil can be altered by other factors.

Plant species composition also affects chemical composition of the herbage on a site. Actively growing forbs, especially legumes, are consistently higher in calcium than grasses (Oelberg 1956). Browse species generally are more deep rooted and tend to store nutrients in stems rather than in roots and maintain their nutrient value during periods of drought and winter (Stoddart et al. 1975). Browse species in New Mexico contained more than three times as much Ca and 61% more P than grasses in the fall (Watkins 1937). Watkins (1943) reported decreases of Ca up to 23%, over the growing season, in range grasses in New Mexico. Pritchard et al. (1964) found decreases in Ca content when analyzing the plant biomass above ground.

The purpose of this study was to determine the effects of range

site and plant species composition on plant chemical composition of tallgrass prairie vegetation.

Methods and Materials

Forage Collection

Twenty-nine permanent locations were arbitrarily selected for monthly vegetation sampling. The number and distribution of locations provided a range in site conditions for regression analyses and replications on the major soil types in proportion to their percentage of occurrence throughout the watershed. Fourteen of the locations were on loamy sites and 15 were on shallow sites.

Species composition and forage production were determined at each location using three estimated samples. Vegetation at one of the three sampling points was clipped at each location. Clipping was at ground level to determine total growth. All estimates and clippings were from 0.5 m^2 circular quadrats.

Laboratory Analyses

Clipped vegetation samples were hand separated into live and standing dead biomass during the growing season, air-dried and ground through a 2 mm screen in a Wiley mill. Samples were analyzed for nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca). Nitrogen was determined by the micro-Kjeldahl procedure using 0.5 gm samples. Phosphorus, K and Ca were analyzed by procedures adapted by the Soil and Water Testing Laboratory at Oklahoma State University.

Data Compilation and Statistical Analyses

Measurements of species, herbage weights, and laboratory data were recorded directly on data forms prepared to facilitate key-punching data cards directly from data forms. Examples of the data forms, input programs and procedures are printed in Appendices I, J, K, L, N, O, Q, S and T. Data were stored and processed by the Oklahoma State University IBM 370/158 computer. Statistical analyses were performed using the procedures of the Statistical Analysis System, SA572, (Barr and Goodnight 1972). Regression and analysis of variance tables are shown in the Appendices O, Q, S and T. All differences discussed were significant at the (P < .05) level unless otherwise specified.

Results and Discussion

Seasonal Differences

Nitrogen

The N content in live herbage declined (P < .01) from 2.38% in April to 1.27% in August (Fig. 1). Nitrogen tends to decrease with advancing maturity; however, the rapid decline indicates some drought stress on the live herbage and the early maturing of certain plant species. The increase (P < .01) in N content from 1.27% in August to 1.39% in September appeared to be in response to regrowth and an increased number of late summer forbs. Nitrogen content of live herbage was significantly (P < .10) affected by plant species composition in April, June and September. July and August N content of live herbage was significantly influenced by plant species composition at the

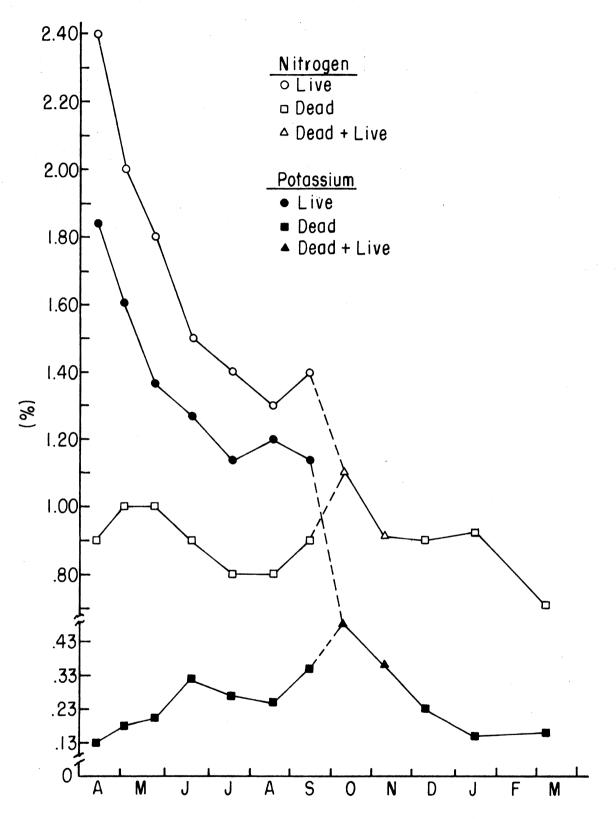
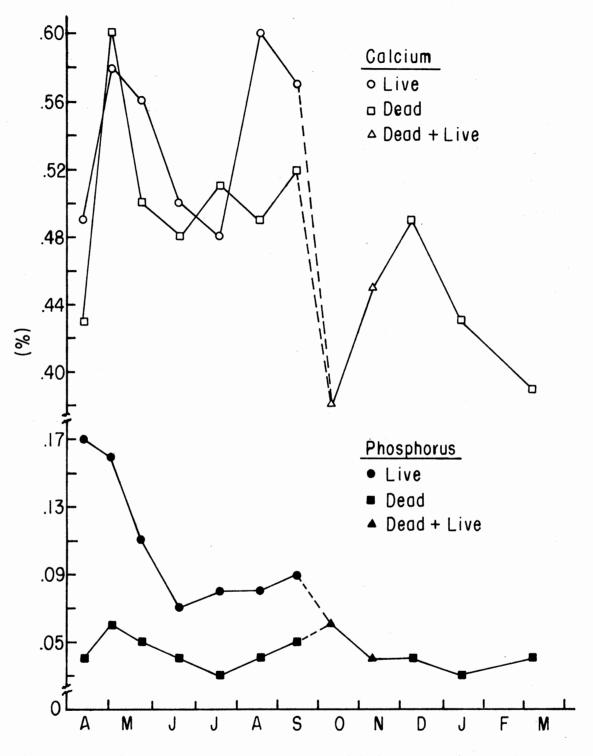
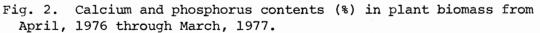


Fig. 1. Nitrogen and potassium contents (%) in plant biomass from April, 1976 through March, 1977.

(P < .05, P < .01) levels, respectively.


Nitrogen content of dead biomass peaked in June at 1% before following the same trend as N content in live herbage (Fig. 14). The higher N content in June dead biomass was probably due to the death of the cool season annual grasses and forbs. Differences in N content of dead biomass between many sampling periods were significant (P < .01).


Potassium

Changes in K content of live herbage paralleled those of N content (Fig. 1). The average K content of live herbage was much greater than other chemical components during the same periods. Potassium is readily transported from older leaves to younger leaves to aid in growth (Barrow 1967). This indicates the high degree of mobility of potassium. When K is not active in live biomass, it is easily leached from dead biomass (White 1973). Potassium content of live herbage declined rapidly from a high of 1.84% in April to 1.14% in September (Appendix E). The higher values for K content in October and November standing dead biomass were due to the live herbage in these samples. Potassium contents of both live and dead biomass were significantly (P < .01) different between sampling dates.

Calcium

Unfavorable climatic conditions can cause changes in mineral contents of forages (Patil and Jones 1970). Calcium content in live herbage was more erratic than other nutrients in live herbage (Fig. 2). Calcium content did not follow the seasonal patterns of the other nutrients. At this time there is no apparent reason why Ca content fluc-

tuated greatly. Savage and Heller (1947) observed little influence of leaching on Ca content of grasses in Oklahoma. Precipitation during the year was below the long-term average. The increase in Ca content of 0.49% in April to 0.58% in May appeared to be related to increased (P < .01) maturity of the cool-season grasses and a greater percentage of spring forbs, many of which were legumes. The highest Ca content (0.60%) appeared to be due to the peak production and a higher percentage of midgrasses, shortgrasses and late summer forbs.

Calcium content of the dead biomass was also quite variable, following a pattern similar to that of live herbage (Fig. 2). Calcium content in dead biomass was lowest (0.43%) in April and highest (0.60%) in early May.

Phosphorus

Changes in P content of both the live and dead biomass were similar to changes in N content (Fig. 2). Phosphorus content normally parallels that of N in regard to stage of maturity. However, the lowest P content in live herbage occurred in June at peak production rather than at the end of the growing season. This indicates the importance of soil water stress, early maturity and species composition on P content in rangeland vegetation. Phosphorus losses of from 49 to 83% during the growing season, were found in range grasses in New Mexico (Watkins 1943).

Phosphorus content of the dead biomass had lower values than other chemical components. Dead biomass had the narrowest range of values from a high of 0.06% in May to a low of 0.03% in July. The relative values of P content in dead biomass for different sampling periods tended to lag one month later than those in live biomass.

Range Site Differences

Live Biomass

The average N content in live biomass during the growing season on shallow sites (1.74%) was 0.15% greater (P < .05) than that (1.59%) on loamy sites (Table 1). The greater N content in live biomass on shallow sites was consistent for every sampling period except April. In general differences due to range sites were greater as the season progressed. In late summer tallgrasses and little bluestem were relatively more abundant on loamy sites and shortgrasses and late summer forbs were relatively more abundant on shallow sites.

The average P content in live biomass during the growing season on shallow sites (0.11%) was 0.01% greater (P < .10) than that (0.10%) on loamy sites (Table 1). The greater P content in live biomass on shallow sites was consistent in the summer and fall. The differences were increased as the season progressed. The differences in P content between loamy and shallow sites were significant (P < .05) during August and September.

The average K content in live biomass during the growing season on shallow sites (1.38%) was 0.03% greater than that (1.35%) on loamy sites, but significant at only the (P < .55) level (Table 1). The K content was generally greater on loamy sites in the spring and significantly (P < .05) higher in April. Throughout the summer and fall months the K content was consistently higher on shallow sites.

The average Ca content in live biomass during the growing season on shallow sites (0.58%) was 0.08% greater (P < .01) than that (0.50%) on loamy sites (Table 1). The Ca content was higher on shallow sites

		Nitrogen		I	hosphorus			Potassiur	n		Calcium				
Date	Loamy	Shallow	Diff. ¹	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.			
4-12	2.46	2.31	0.15*	0.18	0.17	0.01	2.00	1.69	0.31**	0.51	0.48	0.03			
5-2	1.91	2.06	0.15	0.15	0.16	0.01	1.67	1.53	0.14	0.55	0.61	0.06			
5-25	1.70	1.89	0.19	0.11	0.11	0.0	1.33	1.38	0.05	0.50	0.62	0.12***			
6-22	1.47	1.51	0.04	0.06	0.08	0.02*	1.20	1.33	0.13	0.13	0.52	0.04			
7- 20	1.21	1.49	0.28**	0.07	0.08	0.01	1.03	1.25	0.22	0.47	0.48	0.01			
8-17	1.10	1.42	0.32*	0.07	0.10	0.03**	1.12	1.28	0.16	0.49	0.70	0.39*			
9-16	1.27	1.50	0.23	0.08	0.10	0.02**	1.07	1.20	0.13	0.51	0.63	0.12			
Mean	1.59	1.74	0.15**	0.10	0.11	0.01*	1.35	1.38	0.03	0.50	0.58	0.08***			

Table 1. Chemical composition (%) of live herbage on loamy and shallow prairie range sites. (N = 29 for each sampling period).

Level of significance (*P < .10; **P < .05; ***P < .01).</pre>

every month except April. The differences in magnitude between sites was erratic throughout the season with differences in Ca content in June significant at the (P < .01) level.

Standing Dead Biomass

The average N content in standing dead biomass throughout the year on shallow sites (0.97%) was 0.14% greater (P < .01) than that (0.83%)on loamy sites (Table 2). The N content in standing dead biomass on shallow sites was consistently higher throughout the year. Nitrogen content in standing dead biomass on loamy sites exhibited peaks in late spring and fall, with lows in July and March. Nitrogen content in standing dead biomass on shallow sites was erratic throughout the year with a peak occurring in October.

The average P content in standing dead biomass throughout the year on shallow sites (0.05%) was 0.01% greater (P < .01) than that (0.04%) on loamy sites (Table 2). Between days on both loamy and shallow sites there was not a definite pattern established. Differences in P content on loamy and shallow sites were significant (P < .05) on several days.

The average K content in standing dead biomass throughout the year on shallow sites (0.29%) was 0.07% greater (P < .01) than that (0.22%) on loamy sites (Table 2). Potassium content in standing dead biomass followed concurrent seasonal trends on loamy and shallow sites, each reaching peaks in June and October and declining to lows in August and March. The K content in standing dead biomass was consistently higher on shallow sites.

The average Ca content in standing dead biomass throughout the year on shallow sites (0.51%) was 0.07% greater (P < .01) than that

		Nitrogen		Phosphorus			P	otassium		Calcium			
Date	Loamy	Shallow	Diff.1	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.	
4-12	0.72	0.99	0.27**	0.04	0.05	0.01*	0.10	0.16	0.06**	0.38	0.48	0.10*	
5-2	0.89	1.02	0.13	0.05	0.07	0.02	0.15	0.21	0.06	0.53	0.67	0.14	
5-25	1.02	0.99	0.03	0.05	0.05	0	0.20	0.20	0	0.45	0.54	0.09*	
6-22	0.85	0.99	0.14*	0.03	0.05	0.02**	0.27	0.37	0.10**	0.44	0.52	0.08*	
7-20	0.77	0.83	0.14	0.03	0.04	0.01	0.25	0.28	0.03	0.46	0.55	0.09**	
8-17	0.78	0.90	0.12**	0.04	0.05	0.01**	0.23	0.26	0.03	0.46	0.52	0.06*	
9-16	0.84	1.01	0.17*	0.04	0.05	0.01	0.33	0.37	0.04	0.47	0.57	0.10**	
10-12	0.97	1.17	0.20**	0.05	0.07	0.02**	0.41	0.55	0.14*	0.36	0.40	0.04*	
11-10	0.81	1.01	0.20	0.04	0.04	0	0.32	0.39	0.07	0.43	0.46	0.03	
12-10	0.83	0.97	0.14	0.03	0.04	0.01*	0.21	0.25	0.04	0.49	0.49	0	
129	0.86	1.01	0.15*	0.03	0.04	0.01**	0.12	0.19	0.07	0.42	0.45	0.03	
3-10	0.65	0.78	0.13	0.03	0.05	0.02	0.10	0.22	0.12	0.36	0.42	0.06	
Mean	0.83	0.97	0.14***	0.04	0.05	0.01***	0.22	0.29	0.07***	0.44	0.51	0.07**	

Table 2. Chemical composition (%) of dead biomass on loamy and shallow prairie range sites. (N = 29 for each sampling period).

¹Level of significance (*P < .10; **P < .05; ***P < .01).

.

50

(0.44%) on loamy sites (Table 2). Calcium content in standing dead biomass was consistently and significantly (P < .10) higher on shallow sites during the growing season. Although there were no significant differences in Ca content in standing dead biomass during the winter months, Ca content was slightly higher on shallow sites.

Effects of Plant Species Composition

Nitrogen

The average N content in live biomass was significantly (P < .10) affected by plant species composition in April, June and September (Fig. 1). July and August N content in live biomass was significantly influenced by plant species composition at the (P < .05, P < .01) levels, respectively. Nitrogen content was highest in April (Table 4) when there was a relative abundance of forb species. As the growing season progressed there was an increase in percentage of midgrasses with a decrease in cool season grasses and spring forbs. There was a gradual decline of N content in live biomass through August when it reaches 1.27%. In September there was an increase of N content in live biomass due to the decline in the percentage tallgrasses plus little bluestem and an increase of late summer forbs plus shrubs. The R-squared value of 91% in August indicates that most of the variation in N content due to species composition was due to the plant species indicated.

Phosphorus

The average P content in live biomass was highest in April (0.17%)and declined to (0.07%) in June before becoming more constant (Table 5). The regression equations used were all significant (P < .05) except for

MONTH- DAY	- bo	^b 1 ^X 1		b	2 ^X 2	^b 3 ^X 3		b ₄ X ₄		b ₅ 3	×5	^ь 6 ^х 6	, R ²	2/ P	¥±s.i	<u>3/</u> D.
4-12	0.022 -	- 0.047*	<u>7</u> / MIDG	+ 0.020	* SPFB	+ 0.031*	LSUFS	+ 0.107*	MIDG ² +	+ 0.038*	lsufs ²		40	0.03	2.38 =	± .21
5-2	0.021 •	- 0.073*	MIDG	+ 0.019	* SPFB	- 0.019 [†]	LSUFS	+ 0.192*	MIDG ² +	+ 0.034*	ESUF ²		63	0.01	1.99 ±	± .28
5-25	0.012 -	+ 0.008*	MIDG	+ 0.018	* SPFB	+ 0.012*	ESUF	+ 0.013 ⁷	csg ²				58	0.01	1.80 :	· .26
6-22	0.007 -	+ 0.022*	MIDG	+ 0.047	* CSG	+ 0.025*	SPFB	+ 0.010*	ESUF -	- 0.197*	csg ²	- 0.038* s	SPFB ² 54	0.01	1.49 ±	± .22
7-20	0.020 -	- 0.025*	TSCSC	+ 0.011	* MISCO	; - 1.360*	SPFB ²	+ 0.019*	TSCSC ²				75	0.01	1.35 =	: .19
8-17	0.008 -	+ 0.010*	MISCG	+ 0.027	* MIDG ²	+ 0.869*	csg ²	+ 0.028*	lsufs ²				91	0.01	1.27 ±	± .15
9-16	0.017 -	- 0.042*	MIDG	+ 0.151	* CSG	- 0.005*	TSCSC	+ 0.104*	MIDG ² -	- 1.351*	csg^2	+ 0.014* I	SUFS ² 63	0.01	1.39 ±	±.28

Table 3. Regression equations and species classes for herbage nitrogen content (%) by day (N = 29for each sampling period).

¹Coefficient of determination.

²Probability level for regression equation.

 $^{3}_{\text{Means}}$ $^{\pm}$ S.D. for herbage nitrogen content (%). $\frac{4}{*}$ - (P < .1). $\frac{5}{1}$ - (.1 < P < .2). $\frac{6}{\nabla}$ -(P > .2).

//MIDG = Midgrasses; CSG = Cool Season Grasses; SPFB = Spring Forbs; ESUF = Early Summer Forbs; LSUFS = Late Summer Forbs Plus Shrubs; TSCSC = Tallgrasses Plus Schizachyrium scoparium; MISCG = Miscellaneous Grasses.

MONTH- DAY	- bo b	×2	^b 2 ^X 2	b ₃ X	3 b ₄ X	4	^b 5 ^X 5	R ²	/ <u>2/</u> P	$\overline{\mathbf{Y}} \pm \text{s.d.} \frac{3}{2}$
4-12	0.002 - 0.005	4/ 6 MIDG	+ 0.007*	MIDG ² + 0.002* /	TSCSC ²			68	0.01	0.17 ± .01
5-2	0.002 - 0.003	SPFB	- 0.006 ⁺	LSUFS + 0.010* :	SPFB ² + 0.034 ⁺	lsufs ²		19	0.25	0.16 ± .03
5-25	0.001 - 0.001	CSG	- 0.001*	ESUF - 0.004* 1	TSCSC + 0.005*	csg ²		6 9	0.01	0.11 ± .01
6-22	0.001 + 0.007	csg ²	+ 0.002*	SPFB ² + 0.003* 1	MISCG ²			75	0.01	0.07 ± .01
7-20	0.001 - 0.004	SPFB	- 0.001*	TSCSC + 0.013* ($csg^2 + 0.002*$	lsufs ²	+ 0.002* TSCSC ²	62	0.01	.0.08 ± .02
8-17	0.001 + 0.003	MIDG ²	+ 0.002*	LSUFS ² + 0.001* 1	MISCG ²			64	0.01	0.08 1.02
9-16	0.001 - 0.003	MIDG	+ 0.010*	CSG - 0.001* '	TSCSC + 0.006*	MIDG ²	- 0.099* CSG ²	42	0.02	0.09 ± .02

Table 4. Regression equations and species classes for herbage phosphorus content (%) by day (N = 29 for each sampling period).

¹Coefficient of determination.

² Probability level for regression equation.

•

³Means \pm S.D. for herbage phosphorus content (%).

- $\frac{4}{*}$ (P < .1).

 $\frac{5}{+}$ + (.1 < P < .2).

6/MIDG = Midgrasses; CSG = Cool Season Grasses; SPFB = Spring Forbs; ESUF = Early Summer Forbs; LSUFS = Late Summer Forbs Plus Shrubs; TSCSC = Tallgrasses Plus Schizachyrium scoparium; MISCG = Miscellaneous Grasses.

the month of May. In May the R-square value indicating the relative significance of the equation showing which species classes were involved was only 19%. The P content in live biomass followed a trend of increasing when grasses were in abundance and decreasing slightly when forbs and shrubs were predominant.

Potassium

The average K content in live biomass was significantly (P < .01) affected by plant species composition in April, May, June and July. In August and September plant species composition affected K content in live biomass at the (P < .05) level of significance (Fig. 1). Potassium content was at a high in April (1.84%) and declined throughout the growing season to a low of 1.14% in September (Table 6). All regression equations were significant at the (P < .05) level. As the forb species declined in abundance from early spring through the summer there was a decline in K content and at the same time an increase in the percentage of grass species.

Calcium

The average Ca content in live biomass was significantly (P < .05) affected, except for April, across days by plant species composition (Table 7). The mean values of Ca content in live biomass was erratic throughout the growing season. The R-squared values were not very high in most of the equations used. Throughout the growing season there was an indication that forbs and shrubs were the dominant species involved.

Table 5.	Regression	equations	and_species	cla sses	for herbage	potassium	content	(୫)	by	day
(N = 29)	for each sa	ampling per	riod).							

DAY MONTH	bo	^b 1 ^X 1	^b 2 ^X 2	^b 3 ^x 3	b ₄ X ₄	1	b ₅ ≯	5	R ²	/ <u>2</u> / P	$\overline{\mathbf{\tilde{Y}}} \pm \mathbf{s.p.} \frac{3}{2}$
4-12	0.021 - 0.12	e6* ^{4/} ESUF	+ 0.016* TSCSC	- 0.019* MISCG	+ 0.856*	ESUF ²			75	0.01	1.84 ± .22
5-2	0.010 + 0.02	.5* SPFB	+ 0.018* CSG ²	+ 0.014* TSCSC	2				43	0.01	1.60 ± .30
5-25	0.013 - 0.03	.2 ^{+ CSG}	+ 0.012 [†] SPFB	+ 0.038* csg ²	- 0.021 [∇]	SPFB ²			32	0.04	1.36 ± .17
6-22	0.011 + 0.08	$35*$ csg^2	+ 0.019* SPFB ²	+ 0.026* MISCG	2				75	0.01	1.27 ± .14
7-20	0.013 - 0.02	2* TSCSC	$2 + 0.174 \times CSG^2$	+ 0.029* LSUFS	2 + 0.024*	TSCSC ²			75	0.01	1.14 ± .22
8-17	0.011 - 0.03	6* MIDG	/ + 0.015* SPFB	+ 0.049* MIDG ²	+ 0.023*	LSUFS ²			92	0.01	1.20 ± .08
9-16	0.011 - 0.03	2* MIDG	+ 0.127* CSG	+ 0.086* MIDG ²	- 0.952*	csg ²	+ 0.015*	lsufs ²	61	0.01	1.14 ± .22

¹Coefficient of determination.

²Probability level for regression equation.

Means ± S.D. for herbage potassium content (%).

 $\frac{4}{*}$ - (P < .1).

 $\frac{5}{+}$ -(.1 < P < .2).

 $\frac{6}{\nabla}$ - (P > .2).

MIDG = Midgrasses; CSG = Cool Season Grasses; SPFB = Spring Forbs; ESUF = Early Summer Forbs; LSUFS = Late Summer Forbs Plus Shrubs; TSCSC = Tallgrasses Plus <u>Schizachyrium</u>; MISCG = Miscellaneous Grasses.

									•
MONTH- DAY	bo	^b 1 ^X 1		^b 2 ^x 2	b ₃ X ₃	b4X4	R ²	2/ P	$\overline{\mathbf{Y}} \pm \text{s.d.} \frac{3}{2}$
4-12	0.002 +	0.029* ^{4/}	6/ SPFB	+ 0.004* LSUFS	5/ - 0.079 ⁺	SPFB ²	18	0.16	0.49 ± .10
5-2	0.003 +	0.007*	ESUF	+ 0.036 ⁺ LSUFS	+ 0.022*	SPFB ² - 0.183 [†] LSUFS ²	46	0.01	0.58 ± .15
5-25	0.008 -	0.004*	CSG	- 0.005* TSCSC	- 0.010*	MIDG ²	53	0.01	0.56 ± .10
6-22	0.007 -	0.006*	MISCG	- 0.009* SPFB ²	- 0.007*	TSCSC ²	47	0.01	0.50 ± .11
7-20	0.006 +	0.102*	SPFB	- 0.003* TSCSC	- 2.970*	SPFB ²	31	0.02	0.48 ± .13
8-17	0.003 +	0.024*	ESUF	+ 0.528* CSG ²	- 0.042*	ESUF ² + 0.026* LSUFS ²	82	0.01	0.60 ± .16
9-16	0.010 -	0.010*	MIDG	- 0.006* TSCSC	- 0.015*	MISCG ²	32	0.02	0.55 ± .22

Table 6. Regression equations and species classes for herbage calcium content (%) by day (N = 29 for each sampling period).

¹Coefficient of determination.

²Probability level for regression equation.

 $^{3}_{\text{Means }\pm$ S.D. for herbage calcium content (%).

$$\frac{4}{*}$$
 - (P < .1).

6/

$$'-(.1 < P < .2).$$

MIDG = Midgrasses; CSG = Cool Season Grasses; SPFB = Spring Forbs; ESUF = Early Summer Forbs; LSUFS = Late Summer Forbs Plus Shrubs; TSCSC = Tallgrasses Plus <u>Schizachyrium scoparium</u>; MISCG = Miscellaneous Grasses.

Conclusions

Nitrogen content declined rapidly with increased maturity of plant species; however, the rapid rate of decrease is indicative of drought stress on live plants and the early maturing of certain species. Phosphorus content paralleled N content in both live and dead biomass. Potassium content indicated a high degree of mobility in live herbage. Calcium content was very erratic in both live and dead biomass. There is no apparent explanation at this time. Range site differences and plant species composition affected plant chemical composition of both the live and dead biomass significantly.

LITERATURE CITED

- Barr, A. J. and J. H. Goodnight. 1972. A user's guide to the statistical analysis system. North Carolina Univ., Raleigh, N.C. 360 p.
- Barrow, N. J. 1967. Some aspects of the effects of grazing on the nutrition of pastures. J. Aust. Inst. Agr. Sci. 33:254-262.
- Bruner, W. E. 1931. The vegetation of Oklahoma. Ecol. Mono. 1:99-188.
- Carpenter, J. R. 1940. The grassland biome. Ecol. Mono. 10:618-684.
- Cook, C. W. 1959. The effect of site on the palatability and nutritive content of seeded wheatgrasses. J. Range Manage. 12:289-292.
- Cook, C. W. 1965. Plant and livestock responses to fertilized rangelands. Utah Agr. Exp. Bull. 455.
- Cook, C. W. and L. E. Harris. 1950. The nutritive value of range forage as affected by vegetation type, site and state of maturity. Utah Agr. Exp. Sta. Tech. Bull. 344, 45 pp.
- Laycock, W. A. and D. A. Price. 1970. Environmental influences on nutritional value of forage plants. In: Range and wildlife habitat evaluation--a research symposium. USDA Misc. Publication 1147. pp. 37-47.
- Oelberg, K. 1956. Factors affecting the nutritive value of range forage. J. Range Manage. 9:220-225.
- Patil, B. D. and D. I. H. Jones. 1970. The mineral status of some temperature herbage varieties in relation to animal performance. Proc. XI Int. Grassld. Congr. 726-730.
- Pritchard, G. I., W. J. Pidgen, and L. P. Folkins. 1964. Distribution of potassium, calcium, magnesium and sodium in grasses at progressive stages of maturity. Can. J. Plant Sci. 44:318-324.
- Ramsey, R. H. 1974. Livestock and the environment. Environmental Protection Technology Series EPA-660/2-74-124. U.S. Environmental Protection Agency, Washington, D.C. 357 p.
- Savage, D. A. and V. G. Heller. 1947. Nutritional qualities of range forage plants in relation to grazing with beef cattle on Southern Plains Experimental Range. U.S. Dep. Agr. Tech. Bull. 943, 61 pp.

- Sims, P. S. and D. D. Dwyer. 1965. Pattern of retrogression of native vegetation in North Central Oklahoma. J. Range Manage. 18:20-25.
- Stoddart, L. A. 1941. Chemical composition of <u>Symphoricarpos</u> rotundifolius as influenced by soil, site and date of collection. J. Agr. Res. 63:727-739.
- Stoddart, L. A., A. D. Smith, and T. W. Box. 1975. Range Management. 3rd ed. McGraw-Hill Book Co., Inc. New York, N. Y. 532 p.
- Watkins, W. E. 1937. The calcium and phosphorus contents of important New Mexico range forages. N. Mex. Agr. Exp. Sta. Bull. 246, 75 pp.
- White, L. M. 1973. Carbohydrate reserves of grasses: A Review. J. Range Manage. 26:13-18.

CHAPTER VI

TALLGRASS PRAIRIE VEGETATION ON A RANGELAND WATER-SHED: DUNG CHEMICAL COMPOSITION AND RATE OF DEGRADATION ON RANGELAND DURING DROUGHT CONDITIONS

Abstract

Dung (0-240 days), all-age dung and ground litter biomass on a tallgrass prairie watershed grazed by cattle in Central Oklahoma were analyzed for fiber, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) contents. There were significant differences between days for all fiber components of dung (0-240 days). Differences in all-age dung N content from June through September were relatively large. Changes in N content between sampling dates were erratic. Phosphorus content of all-age dung was higher between July and late January. Chemical composition of dung deposited in July, 1976 followed a similar trend as that in dung accumulated over several seasons on the watershed. Unlike the other nutrients K content of all-age dung was less than that of ground litter during the grazing season. Calcium content of all-age dung and ground litter biomass followed similar trends, declining from early spring to July and increasing in August. Generally, ground litter content of N, P, K and Ca was lower than that of dung and was relatively stable in all instances.

Introduction

Dung is complex material composed of water, undigested forage residues, endogeneous animal products and a large and varied population of microorganisms and products of their metabolism (Marsh and Compling 1970). Dung dry matter contains about 0.8% K, 0.36% Na, 2.4% Ca, 0.7% P and 0.8% Mg, representing 12, 33, 78, 66 and 80% of the dietary intakes of these elements, respectively (Hutton et al. 1967).

There are many factors involved in degradation of dung and interrelationships with various other components. The process of dung degradation is complex beginning as soon as dung is deposited. Dung is primarily the result of microbial activity that leads to production of CO_2 , NH_3 , CH_3 , H_2O , NO_3 and NO_2 . This in turn is accompanied by synthesis of humic compounds of higher molecular weight (Marsh and Campling 1970).

The purpose of this study was to determine the chemical and fiber composition of all-age dung throughout the year and change in composition over time of recently deposited dung.

Methods and Materials

Dung Collection

Three replications of ungrazed conditions were established by constructing a 50 m x 100 m exclosure in late winter, 1975, at each of three different locations along the upper boundary of the watershed. Dung pats were removed from within each exclosure in early spring, 1976, to provide three dung-free areas. The dung was collected and weighed to establish an estimate of dung biomass per hectare.

Twenty-nine permanent locations were arbitrarily selected for

monthly ground litter and dung sampling. The number and distribution of locations provided a range in site conditions for regression analyses and replications on the major soil types in proportion to their percentage of occurrence throughout the watershed.

Sampling areas consisted of an area 30 m in diameter around each permanent location marker. Each of 6 bearings in each third of the area radiated out from the center point and were used as sample transects. Dung samples were collected monthly in an area 2 m x 10 m along three bearings at each location. The total number of dung pats were counted along three bearings at each location. Ground litter biomass was estimated in each of three, 0.5 m^2 quadrats randomly located along dung sample transects. Ground litter was collected and weighed for one of the estimated samples using the weight-estimate method (Pechanec and Pickford 1937).

Dung Degradation

Fifty dung pats were located and marked on the day deposited, July 1, 1976. Twenty-five of the samples were marked in approximately a 4hour period one morning with the remainder marked the next morning in approximately the same amount of time. Samples were located near five of the permanent locations used for collection of ground litter and allage dung. The locating and marking of the dung occurred only one time during the study.

Six dung samples were collected on July 1, 1976 (Day 0). Six more samples were collected on day 30 with 5 samples being collected on days 60, 120, 180 and 240.

Laboratory Analyses

Dung and ground litter samples were air-dried and ground through a 2 mm screen in a Wiley mill. Samples were analyzed for acid-detergent fiber (ADF), lignin, cellulose, N, P, K and Ca. ADF and lignin were determined by the permanganate oxidation procedure of Van Soest and Wine (1968). Nitrogen was determined by the micro-Kjeldahl procedure. Phosphorus, K and Ca were analyzed by procedures adopted by the Soil and Water Testing Laboratory at Oklahoma State University.

Data Compilation and Statistical Analyses

Measurements of weather, soil factors, ground litter and dung weights, and laboratory data were recorded directly on data forms prepared to facilitate key-punching data cards directly from data forms. Examples of the data forms, input programs and procedures are printed in Appendices M, N, T and U. Data were stored and processed by the Oklahoma State University IBM 370/158 computer. Statistical analyses were performed using the procedures of the Statistical Analysis System, SA572, (Barr and Goodnight 1972). Data were analyzed using regression and analysis of variance procedures (Steel and Torrie 1960). All differences discussed were significant at the (P < .05) level unless otherwise specified.

Results and Discussion

Dung Removed From Exclosures

An average of 235 kg dung/ha was removed from the three exclosures in the spring, 1976. The dung removed was those pats readily found on

or in the ground litter. An unknown amount of small, disintegrated pieces were undoubtedly overlooked. In 1976, the watershed had an average annual stocking rate of 70 animal-unit-days (AUD)/ha. If an average daily intake of 12.0 kg/AUD and an average DMD of 50% are assumed, the dung added each year would be about 420 kg/ha. A comparison of the weights of ground litter samples without dung and those samples with dung indicated an average of 460 kg dung/ha between April, 1976 and March, 1977. Based on these assumptions and results the amount of dung decomposed or naturally removed from the watershed appears to be approximately the same as the dung added each year.

In the spring and early summer it was observed that dung pats invaded by beetles were rapidly disintegrated within 2-3 months. Dung without beetle influence persisted over several seasons mainly because of crust formation. Weeda (1967) reported dung deposited in the fall disappeared more rapidly than dung deposited in the spring or early summer. Castle and MacDaid (1972) found dung deposited on N fertilized pastures disappeared significantly faster in July than that deposited in May.

Dung Degradation

Fiber Components of Dung

ADF and lignin content increased from 46.8% to 53.9% and 18.1% to 21.7% from day 0 to day 240, respectively (Table 1). With an increase in ADF through Day 120 and then a decrease through day 240 cellulose content decreased from 23.0% on day 0 to 18.0% on day 120 and then increased slightly to 19.4% by day 240. Differences in all-age dung for all fiber components did not exhibit any trends throughout the sampling

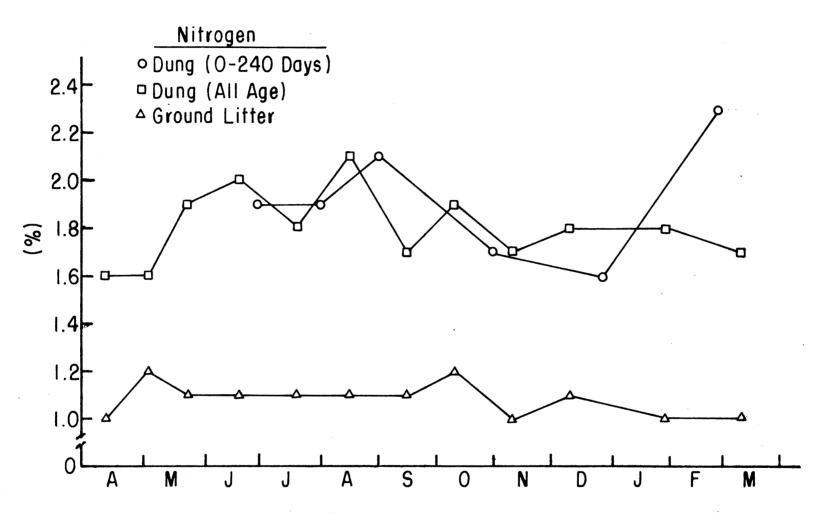
Day	Acid-Detergent Fiber (%)	Lignin (%)	Cellulose (%)
$\frac{1}{0}$ N=6	46.8 ± .004	18.1 ± .005	23.0 ± .003
30 N=6	47.5 ± .004	17.3 ± .005	21.8 ± .008
60 N=5	50.7 ± .008	21.2 ± .011	20.8 ± .003
120 N=5	55.0 ± .024	19.0 ± .011	18.0 ± .013
180 N=5	54.4 ± .009	20.5 ± .006	18.7 ± .005
240 N=6	53.9 ± .007	21.7 ± .004	19.4 ± .004
LSD.01	0.04	0.03	0.02

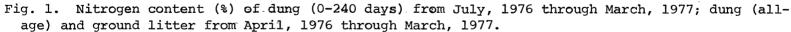
Table 1. Average (± SE) fiber components (%) of dung (0-240 days).

 $\frac{1}{Day O} = July 1, 1976.$

period (Table 2).

Ground litter collected in April and August, 1976 was analyzed for ADF, lignin and cellulose content and no significant differences were found. Analyses of ground litter were then discontinued.


Chemical Composition of Dung and Ground Litter


Differences in all-age dung N content (Fig. 1) from June through September were relatively large and erratic. Cattle did not graze on the watershed during all of this period, so the explanation for these differences is not apparent at this time. The N content in all-age dung was relatively stable from November through March, averaging 1.75% (Fig. 1). Dung deposited in July, 1976 showed a slight increase from 1.91% in August to 2.15% in September in N content before declining to 1.65% in December. There is no apparent reason for the sharp increase in N content between December and late February. Gillard (1967) reported that most N in dung occurs in the form of undigested protein which is mineralized by bacteria and is lost by volatilization of NH_3 . Ground litter over the year was very consistent in regard to N content (Fig. 1). Nitrogen content varied only 0.2% and was slightly lower in the winter months than the summer months.

Seasonal changes in all-age dung P content (Fig. 2) were less erratic than those for all-age dung N content (Fig. 1). Increased concentration during digestion (Bromfield and Jones 1970), relatively low mobility and free-choice intake of P mineral may have caused the higher and more consistent change in all-age dung P content between July and late January (Fig. 2). During this period P content increased from 0.21% to 0.27%. Bromfield (1961) reported dung P content to be highest in the

••••••••••••••••••••••••••••••••••••••	Acid-Detergent		
Date	Fiber	Lignin	Cellulose
4-12	54.8 ± .004	25.1 ± .008	18.9 ± .002
5-2	54.9 ± .008	27.0 ± .007	19.4 ± .004
5-25	54.2 ± .003	24.0 ± .005	19.6 ± .008
6-22	57.0 ± .006	20.0 ± .004	19.5 ± .004
7-20	54.5 ± .004	19.1 ± .004	20.6 ± .003
8-17	54.7 ± .004	19.4 ± .005	23.2 ± .003
9-16	56.1 ± .004	24.0 ± .039	19.8 ± .004
10-12	56.7 ± .004	21.1 ± .003	18.7 ± .002
11-10	56.4 ± .006	20.7 ± .011	18.6 ± .004
12-10	53.5 ± .004	18.7 ± .003	19.2 ± .003
1-29	57.1 ± .026	22.9 ± .027	26.9 ± .063
3-10	54.8 ± .008	19.9 ± .013	19.7 ± .004

Table 2. Average (± SE) fiber components (%) of all-age dung.

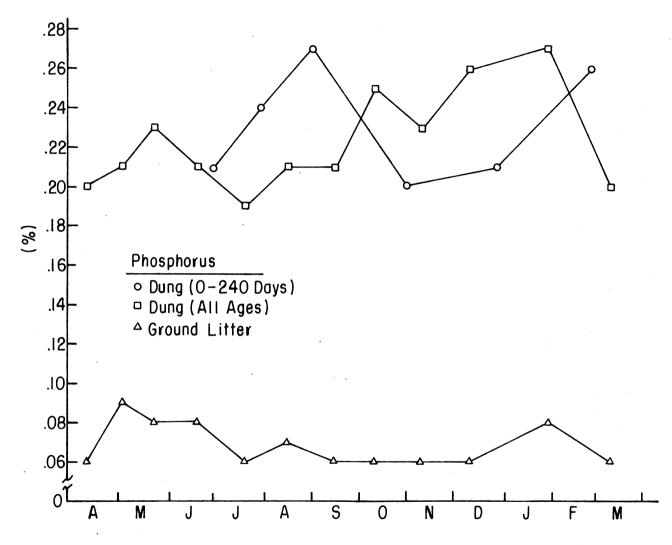


Fig. 2. Phosphorus content (%) of dung (0-240 days) from July, 1976 through March, 1977; dung (all-age) and ground litter from April, 1976 through March, 1977.

spring and autumn and lowest in midsummer and winter. Results from this study indicate all-age dung P content was highest in midwinter and lowest in midsummer with spring values in between those in midsummer and autumn (Fig. 2). Dung (0-240 days) P content increased from 0.21% on day 0 (July 1) to 0.27% in August before declining sharply to 0.20% in October. Between December and late February there was an increase from 0.22% to 0.26%.

Phosphorus content of ground litter peaked in early spring and January and was relatively uniform in the summer and autumn (Fig. 2). Peak values in P content of ground litter in early spring and January were 0.09% and 0.08%, respectively, with summer and autumn values averaging 0.065% (Table 3).

Unlike N, P and Ca, K content of all-age dung was generally below that of ground litter and 0-240 day dung (Fig. 3). Higher K content of all-age dung in summer than in early spring indicates less leaching during the dry summer months. In October K content of all-age dung increased from a low in October of 0.17% to a high of 0.32% in January (Table 3). This increase through the winter may have been due to the supplements and hay fed to livestock. Potassium, when not active in live plant material is easily leached (White 1973). The rapid decrease in K content of dung (0-240 days) between July and November illustrates the mobility of K (Fig. 3). The greatest decrease occurred in the first 30 days after deposition. Ground litter had a relatively constant K content (Fig. 3). There is a peak of 0.25% K in early May with a low of 0.17% K in late winter or early spring (Table 3).

Calcium content in all-age dung and ground litter declined from early spring to July before increasing in August (Fig. 4). Calcium

	Nitr	ogen	Phosp	horus	Potas	sium	Cal	.cium
	Ground	_	Ground	_	Ground	_	Ground	_
Date	Litter	Dung	Litter	Dung	Litter	Dung	Litter	Dung
4-12	1.02±.045	1.61±.026	0.06±.006	0.20±.009	0.16±.006	0.16±.011	0.56±.032	0.84±.042
5-2	1.23±.052	1.57±.042	0.09±.009	0.22±.015	0.25±.007	0.18±.011	0.68±.032	0.86±.042
5-25	1.11±.066	1.87±.016	0.08±.011	0.23±.018	0.22±.007	0.19±.032	0.64±.041	0.97±.037
6-22	1.14±.064	2.02±.037	0.08±.012	0.21±.011	0.22±.007	0.21±.018	0.63±.032	0.86±.032
7-20	1.10±.037	1.78±.050	0.06±.006	0.19±.014	0.20±.007	0.19±.020	0.56±.032	0.82±.061
8-17	1.14±.064	2.14±.044	0.07±.007	0.21±.010	0.21±.009	0.20±.140	0.65±.032	0.89±.028
9-16	1.10±.052	1.71±.028	0.06±.006	0.21±.010	0.21±.010	0.20±.018	0.64±.040	0.96±.020
10-12	1.22±.058	1.94±.060	0.06±.008	0.26±.034	0.23±.013	0.17±.012	0.61±.037	1.05±.063
11-10	0.98±.058	1.74±.045	0.06±.006	0.23±.010	0.21±.018	0.25±.020	0.52±.045	0.68±.040
12-10	1.10±.078	1.77±.048	0.06±.009	0 .26±. 020	0.25±.018	0.30±.020	0.50±.045	0.85±.028
1 - 29.	0.97±.076	1.83±.056	0.08±.009	0.27±.021	0.21±.009	0.32±.021	0.35±.026	0.88±.047
3-10	0.98±.049	1.65±.052	0.06±.006	0.21±.009	0.17±.011	0.31±.021	0.51±.045	0.90±.021

.

Table 3. Average (± SE) chemical composition (%) of ground liter and all-age dung. (N = 29 for each sampling period).

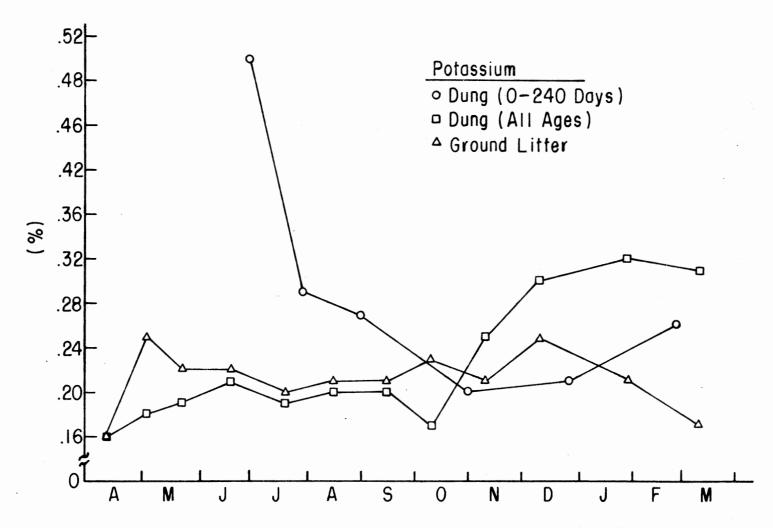


Fig. 3. Potassium content (%) of dung (0-240 days) from July, 1976 through March, 1977; all-age dung and ground litter from April, 1976 through March, 1977.

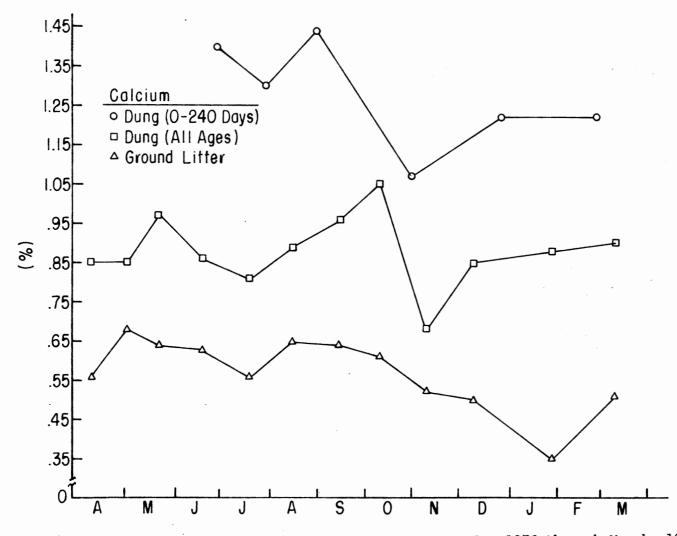


Fig. 4. Calcium content (%) of dung (0-240 days) from July, 1976 through March, 1977; all-age dung and ground litter from April, 1976 through March, 1977.

content of dung (0-240 days) was highest (1.44%) on day 60 and lowest (1.07%) on day 120. Calcium content of all-age dung declined most rapidly from 1.05% in October to 0.68% in November. Calcium content of ground litter biomass peaked in midspring and August and then decrease to a low of 0.35% in late winter.

Affect of Range Site on Chemical Composition

All-Age Dung

Differences between all-age dung fiber and chemical composition on loamy and shallow sites were very similar. This indicates diet may have more influence on dung composition than environmental effects of sites.

Ground Litter Biomass

Mean values for N, P and Ca content of ground litter were consistently higher on shallow sites (Table 4), except for 10-12 when N, P, K and Ca were all higher on loamy sites. There were no differences in K content of ground litter between loamy and shallow sites. This would indicate that leaching of K content occurred on both sites. Differences in overall mean values for N, P and Ca content were small, but highly significant.

In the summer and late fall differences in N, P and Ca content of ground litter were significant. Except for 5-25 P and Ca content differed significantly between loamy and shallow sites whenever N content differed. Most differences between loamy and shallow sites that were significant occurred in N content.

In the spring differences in Ca content of ground litter were highly significant. This difference may be attributed to the higher population

		Nitrogen			Phosphorus	3	Potassium			Calcium		
Date	Loamy	Shallow	Diff. ¹	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.
4-12	0.96	1.07	0.11	0.06	0.06	0	0.16	0.17	0.01	0.53	0.58	0.05
5-2	1.18	1.28	0.10	0.10	0.09	0.01	0.25	0.25	0	0.68	0.68	0
5-25	1.04	1.17	0.13	0.06	0.09	0.03	0.21	0.22	0.01	0.56	0.71	0.15**
6-22	1.05	1.22	0.17	0.08	0.09	0.01	0.23	0.21	0.02	0.61	0.64	0.03
7-20	0.99	1.21	0.22***	0.05	0.07	0.02**	0.19	0.21	0.02	0.50	0.61	0.11*
8-17	1.02	1.25	0.23*	0.06	0.08	0.02	0.20	0.21	0.01	0.60	0.69	0.09
9-16	1.06	1.13	0.07	0.06	0.07	0.01	0.20	0.22	0.02	0.63	0.65	0.02
10-12	1.24	1.21	0.03	0.07	0.06	0.01	0.24	0.23	0.01	0.65	0.58	0.07
11-10	0.83	1.14	0.31***	0.04	0.07	0.03**	0.20	0.22	0.02	0.38	0.64	0.26***
12-10	0.89	1.29	0.40***	0.05	0.07	0.02	0.27	0.22	0.05	0.52	0.49	0.03
1-29	0.93	1.00	0.07	0.07	0.09	0.02	0.20	0.02	0.02	0.31	0.39	0.08
3-10	0.80	1.06	0.17*	0.05	0.07	0.02*	0.17	0.16	0.01	0.48	0.54	0.06
Mean	1.01	1.17	0.16***	0.06	0.08	0.02***	0.21	0.21	0.00	0.54	0.60	0.06**

Table 4. Chemical composition (%) of ground litter on loamy and shallow prairie range sites. (N = 29 for each sampling period).

¹Level of significance (*P < .10; **P < .05; ***P < .01).

of late spring and early summer forbs on the shallow sites. Differences in N and P content of ground litter in late winter may be due to the growth of the cool season annual grasses.

Conclusions

Based on the assumptions and results of this study the amount of dung decomposed or naturally removed from the watershed appears to be approximately the same as the dung added each year. Increased concentration during digestion, realtively low mobility and free choice of P mineral may have caused the higher and more consistent change in allage dung P content between July and late January. Higher K content of all-age dung in summer than in early spring indicates less leaching during the dry summer months. Increases in K content through the winter may have been due to the supplements and hay fed to livestock. Differences in dung composition on loamy and shallow range sites were very similar indicating diet may have more influence than environmental effects of sites.

LITERATURE CITED

Barr, A. J. and J. H. Goodnight. 1972. A user's guide to the statistical analysis system. North Carolina Univ., Raleigh, N.C. 360 p.

- Bromfield, S. M. 1961. Sheep faeces in relation to the phosphorus cycle under pastures. Aust. J. Agr. Res. 12:111-123.
- Bromfield, S. M. and O. L. Jones. 1970. The effect of sheep on the recycling of phosphorus in hayed-off pastures. Aust. J. Agr. Res. 21:699-711.

Bruner, W. E. 1931. The vegetation of Oklahoma. Ecol. Mono. 1:99-188.

Carpenter, J. R. 1940. The grassland biome. Ecol. Mono. 10:618-684.

- Castle, M. E. and E. MacDaid. 1972. The decomposition of cattle dung and its effect on pasture. J. Br. Grassl. Soc. 27:133-137.
- Gillard, P. 1967. Coprophagous beetles in pasture ecosystems. J. Aust. Inst. Agr. Sci. 33:30-34.
- Hutton, J. P., K. E. Jury, and E. B. Davies. 1967. Studies in the nutritive value of New Zealand dairy pastures. 5. The intake and utilization of potassium, sodium, calcium, phosphorus and nitrogen in pasture herbage by lactating dairy cattle. N.Z.J. Agr. Res. 10:367-388.
- Marsh, R. and R. C. Campling. 1970. A Review: Fouling of pastures by dung. Herbage Abstr. 40:123-130.
- Ramsey, R. H. 1974. Livestock and the environment. Environmental Protection Technology Series EPA-660/2-74-124. U.S. Environmental Protection Agency, Washington, D.C. 357 p.
- Raymond, W. F. 1966. The nutritive value of herbage. In: Abrams, J. T. (Ed.) Recent advances in animal nutrition. London: Chruchill, pp. 81-116.
- Pechanec, J. F. and G. D. Pickford. 1937. A weight estimate method for determination of range or pasture production. J. Amer. Soc. Agron. 29:894-904.
- Sims, P. S. and D. D. Dwyer. 1965. Pattern of retrogression of native vegetation in North Central Oklahoma. J. Range Manage. 18:20-25.

- Steel, R. G. D. and J. H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill Book Company, Inc., New York. 481 p.
- White, L. M. 1973. Carbohydrate reserves of grasses: A Review. J. Range Mange. 26:13-18.

APPENDIX A

CLASSIFICAITON OF SOIL SERIES

Table 1. Classification of soil series within each range site on the watershed and a description of each soil series.

		Series	Percent	"A" Horizon (cm)	Depth (cm)	Family	Subgroup	Order
		Aydelotte	7.0	0-13	102-152	Fine, mixed, thermic	Udertic Paleustalfs	Alfisols
	r-LOAMY	Renfrow	0.1	0-38	> 150	Fine, mixed, thermic	Udertic Paleustolls	Mollisols
		Stoneburg*	45.6	0-15	51-102	Fine-loomy, mixed, thermic	Vertic Haplustalfs	Alfisols
		Zaneis*	7.5	0-23	> 100	Fine-loamy, mixed, thermic	Vertic Haplustalfs	Alfisols
SITES		Darnell	6.0	0-15	25-50	Loamy, siliceous, thermic, shallow	Udic Ustochrepts	Inceptisols
	SHALLOW-	Grainola	17.3	0-12	50-102	Very-fine, mixed, thermic	Vertic Haplustalfs	Alfisols
		Lucien	14.3	0-12	8-51	Loamy, mixed, thermic, shallow	Typic Haplustolls	Mollisols
		Stephenville	2.2	0-30	51-102	Fine-loamy, siliceous, thermic	Ultic Haplustalfs	Alfisols

*This soil series is normally classified Vertic Argiustolls (Mollisols).

APPENDIX B

MEAN VALUES (± SE) FOR NBDMD, ADF, LIGNIN AND

CELLULOSE IN LIVE AND DEAD BIOMASS

Date	te Dry Matter Digestibility		Acid-Deter	gent Fiber	Lign	in	Cellulose		
Date	Live	Dead	Live	Dead	Live	Dead	Live	Dead	
4-12			45. 4±.007	52.7±.004	11.3±.003	13.2±.002	31.9 ±.009	38.9±.005	
5-2			47.3±.02	52.3±.01	15.4±.012	12.9±.007	22.7±.009	34.1±.015	
5- 25			36.9±.004	51.3±.005	15.1±.01	16. 1±.008	30.1±.004	35.3±.011	
6-2 2	35.7±.014	6.0±.012	37.5±.005	51.5±.004	11.5±.005	11.9±.003	31.0±.005	36.4±.004	
7- 20	43.6±.009	8.4±.008	40.2±.011	52.5±.003	10.2±.009	12.3±.003	31.5±.006	42.5±.048	
8-17	50.4±.01	22.0±.01	39.0±.006	51.0±.004	10.2±.004	13.0±.006	29.9±.006	38.0±.005	
9-16	44.8±.016	18.1±.008	36.3±.007	49.3±.005	10.3±.007	14.1±.005	28.0±.007	37.0±.005	
10-12		30.0±.015		45.7±.005		11.3±.006		34.3±.007	
11-10		21.9±.01		48.3±.005		11.7±.003		33.5±.006	
12-10		23.9±.013		51.5±.005		12.6±.004		35.1±.005	
1-29		23.0±.007		52.5±.004		13.3±.005		36.6±.004	
3-10		18.8±.008		51.3±.005		11.0±.003		35.8±.006	

Table 1. Average (\pm SE) NBDMD (%) and fiber components (%) of live and dead herbage. (N = 29 for each sampling period).

APPENDIX C

.

MEAN VALUES (± SE) FOR NBDMD, ADF, LIGNIN AND

CELLULOSE IN LIVE HERBAGE ON

DIFFERENT RANGE SITE

	Dry Matt	er Digest	ibility	Acid-I	Detergent	Fiber		Lignin			Cellulos	e
Date	Loamy	Shallow	Diff.1	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.
4-12				46.4	44.5	1.9	11.0	11.6	0.6	33.3	30.6	2.7
5-2				49.1	45.6	3.5	17.1	13.7	3.4	21.0	24.3	3.3*
5-25				37.4	36.6	0.8	16.0	14.3	1.7	31.1	29.3	1.8**
6-22	35.9	38.7	2.8	38.9	36.6	2.3***	11.4	10.8	0.6	31.6	29.6	2.0***
7-20	42.7	44.8	2.1	39.2	41.1	1.9	9.1	11.2	2.1	31.9	31.0	0.9
8-17	46.2	52.6	6.4***	40.1	36.6	3.5***	10.2	10.7	0.5	31.5	27.9	3.6***
9-16	43.1	47.7	4.6	37.5	35.0	2.5*	9.7	10.9	1.2	28.8	27.0	1.8
Mean	41.4	45.0	3.6***	40.9	39.1	1.8**	11.8	11.7	0.1	30.2	28.6	1.6***

Table 1. NBDMD (%) and fiber components (%) of live herbage on loamy and shallow prairie range sites. (N = 29 for each sampling period).

1 Level of significance (*P <.10; **P < .05; ***P < .01).</pre>

APPENDIX D

MEAN VALUES (± SE) FOR NBDMD, ADF, LIGNIN AND

CELLULOSE IN DEAD BIOMASS ON

DIFFERENT RANGE SITES

	Dry Mat	ter Diges	tibility	Acid-I	Detergent 1	Fiber	L	ignin		Cellulose		
Date	Loamy	Shallow	Diff. ¹	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.	Loamy	Shallow	Diff.
4-12				52.7	52 .7	0.0	12.9	13.6	0.7*	39.0	38.9	0.1
5-2				51.1	53.4	2.3	12.1	13.6	1.5	34.2	34.0	0.2
5- 25				51.5	51.1	0.4	15.9	16.4	0.5	33.9	37.1	3.2
6-22	15.8	16.8	1.0	52.2	51.2	1.0**	12.0	12.7	0.7	36.4	35.7	0.7
7-20	8.7	8.0	0.7	52.1	52.9	0.8	12.2	12.4	0.2	37.4	47.2	9.8
8-17	20.7	21.7	1.0	50.8	51.3	0.5	15.9	15.4	0.5	37.7	37.9	0.2
9-16	17.6	19.0	1.4	50.2	48.5	1.7*	14.0	14.2	0.2	37.4	36.6	0.8
10-12	27.6	32.4	4.8*	46.2	45.1	1.1	12.1	10.6	1.5	34.5	34.1	0.4
11-10	21.5	22.4	0.9	48.5	48.1	0.4	11.4	12.0	1.4	33.9	33.0	0.9
12-10	22.1	25.9	3.8	52.0	51.1	0.9**	12.4	12.8	0.4	34.7	35.5	0.8
1-29	23.3	22.6	0.7	52.0	52.9	0.9	13.1	13.5	0.4	36.9	36.2	0.7
3-10	17.0	20.4	3.4**	52.1	50.6	1.5	11.4	10.7	0.7	36.4	35.2	1.2
Mean	16.5	16.6	0.1	51.5	51.4	0.1	13.7	14.0	0.3	36.6	38.0	2.6

Table 1. NBDMD (%) and fiber components (%) of dead biomass on loamy and shallow prairie range sites. (N = 29 for each sampling period).

¹Level of Significance (*P <,10; **P <.05).

APPENDIX E

MEAN VALUES (± SE) FOR CHEMICAL COMPONENTS

OF LIVE AND DEAD BIOMASS

	Nitrog	en	Phosp	horus	Pota	ssium	Calcium		
Date	Live	Dead	Live	Dead	Live	Dead	Live	Dead	
4-12	2.38±.045	0.86±.066	0.17±.004	0.04±.002	1.84±.076	0.13±.018	0.49±.018	0.43±.026	
5-2	1.99±.076	0.95±.084	0.16±.007	0.06±.006	1.60±.069	0.18±.018	0.58±.037	0.60±.050	
5-2 5	1.80±.069	1.00±.037	0.11±.004	0.05±.004	1.36±.037	0.20±.018	0.56±.026	0.50±.026	
6-22	1.49±.052	0.92±.041	0.07±.006	0.04±.004	1.27±.052	0.32±.026	0.32±.026	0.48±.018	
7-20	1.35±.066	0.80±.032	0.08±.006	0.03±.018	1.14±.076	0.27±.018	0.48±.026	0.51±.018	
8-17	1.27±.085	0.85±.026	0.08±.006	0.04±.004	1.20±.049	0.25±.002	0.60±.064	0.49±.002	
9-16	1.39±.074	0.93±.045	0.09±.004	0.05±.004	1.14±.055	0.35±.037	0.57±.042	0.52±.018	
10-12		1.07±.049		0.06±.004	-	0.48±.037		0.38±.011	
11-10		0.91±.066		0.04±.004		0.36±.026		0.45±.026	
12-10		0.90±.043		0.04±.004		0.23±.019		0.49±.033	
1-29		0.93±.043		0.03±.004		0.15±.026		0.43±.026	
3-1.0		0.71±.069		0.04±.006		0.16±.049		0.39±.026	

Table 1. Average (± SE) chemical composition (%) of live and dead biomass. (N = 29 for each sampling period).

APPENDIX F

MEAN VALUES (± SE) FOR CHEMICAL COMPONENTS OF DUNG (0-240 DAYS) AND FIBER AND CHEMICAL CONTENT OF ALL-AGE DUNG ON RANGE SITES

Day	Nitrogen	Phosphorus	Potassium	Calcium
$\frac{1}{N=6}$	1.92±.13	0.21±.02	0.50±.08	1.39±.14
30 N=6	1.91±.11	0.24±.02	0.29±.04	1.27±.08
60 N=5	2.15±.14	0.27±.03	0.27±.06	1.44±.11
120 N=5	1.72±.27	0.20±.03	0.20±.04	1.07±.15
180 N=5	1.65±.13	0.22±.01	0.17±.01	1.23±.13
240 N=5	2.23±.04	0.26±.02	0.21±.03	1.24±.04

Table 1. Average (\pm SD) chemical composition (%) of dung (0-240 days).

 $\frac{1}{2}$ Day 0 = July 1, 1976.

Component	Range Sit	te		Probab.
-	Loamy (N=14)	Shallow (n=15)	Diff.	Level
Acid-Detergent Fiber	55.4	55.3	0.10	.87
Lignin	21.6	22.2	0.60	.52
Cellulose	20.5	20.1	0.40	.69
Nitrogen	1.83	1.78	0.05	.22
Phosphorus	0.23	0.21	0.02	.18
Potassium	0.21	0.23	0.02	.25
Calcium	0.89	0.88	0.01	.68

Table 2. Average¹ fiber and chemical content (%) of all-age dung on shallow and loamy prairie range sites.

¹Average of 10-15 samples collected on each of 12 different sampling dates during the year.

APPENDIX G

. •

GLOSSARY OF TERMS

GLOSSARY OF TERMS

- Air-dry weight--The weight of a substance after it has been allowed to dry to equilibrium with the atmosphere.
- Biomass--The sum total of living plants and animals above and below ground in area at a given time.
- Climax--The highest ecological development of a plant community capable of perpetuation under the prevailing climatic and edaphic conditions.
- Cool-season plant--A plant which generally makes the major portion of its growth during the winter and early spring.
- Ecosystem--Organisms together with their abiotic environment, forming an interacting system, inhabiting an identifiable space.

Exclosure--An area fenced to exclude animals.

Forb--Any herbaceous plant other than those in the <u>Gramineae</u> (or Poaceae), Cyperaceae and Juncacea families.

Grass--A member of the family Gramineae (Poaceae).

- Grasslike plant--A plant of the <u>Cyperaceae</u> or <u>Juncaceae</u> families which vegetatively resembles a true grass of the Gramineae family.
- Herb--Any flowering plant except those developing persistent woody stems above ground.

Herbage--Herbs taken collectively.

- Phenology--The study of periodic biological phenomenon such as flowering, seeding, etc., especially as related to climate.
- Rangeland--Land on which the native vegetation (climax or natural potential) is predominately grasses, grass-like plants, forbs or shrubs suitable for grazing or browsing use. Includes lands revegetated naturally or artifically to provide a forage cover that is managed like native vegetation. Rangelands include natural grasslands, savannahs, shrublands, most deserts, tundra, alpine communities, coastal marshes and wet meadows.
- Range site--A distinctive kind of rangeland, which in the absence of abnormal disturbance and physical site deterioration, has the potential to support a native plant community typified by an association of species different from that of other sites. This differentiation is based upon significantly differences in kind or proportion of species, or total productivity.

- Shrub--A plant that has persistent, woody stems and a relatively low growth habit, and that generally produces several basal shoots instead of a single bole. It differs from a tree by its low stature and nonarborescent form.
- Species composition--The proportions of various plant species in relation to the total on a given area. It may be expressed in terms of cover, density, weight, etc.
- Succession, plant--The process of vegetational development whereby an area becomes successively occupied by different plant communities of higher ecological order.
- Warm-season plant--A plant which makes most or all of its growth during the spring, summer or fall and is usually dormant in winter.
- Watershed--(1) A total area of land above a given point on a waterway that contributes runoff water to the flow at that point. (2) A major subdivision of a drainage basin.

Society for Range Management. 1974. A glossary of terms used in Range Management. 36 pp.

APPENDIX H

COMMENT STATEMENTS FOR RANGE NUTRITION STUDY

CUMMENT

STUDY AREA LOCATION IN NORTH-CENTRAL OKLAHIMA NORTHWEST OF STILLWATER. THE STUDY AREA IS PART OF THE LAKE CARL BLACKWELL WATERSHED IN THE NUPTHWEST UNF-QUARTER OF SECTION 32, TOWNSHIP 20 NORTH, RANGE I EAST JE THE INDIAN MERIDIAN. THE REMAINDER OF THE WATERSHED IS LOCATED IN THE SOUTHWEST ONE-QUARTER OF SECTION 32 AND THE EASTERN EDGE OF SECTION 31, NOBLE COUNTY.

STUDY NUMBER - G1607.

STUDY NAME - PLANT, SOIL AND DUNG FACTORS AFFECTING TALLORASS PRAIRIE VEGETATION DURING DROUGHT CONDITIONS ON A CENTRAL OKLAHOMA PANGELAND WATERSHED.

INITIATED IN THE SPRING OF 1975.

TREATMENES

THREE REPLICATES OF UNGRAZED CONDITIONS WERE ESTABLISHED BY CONSTRUCTING 4 50 METER BY 100 METER EXCLOSURE IN LATE WINTER, 1975, AT EACH OF THREE DIFFERENT LOCATIONS ALONG THE UPPER BOUNDARY OF THE WATERSHED.

VEGETATION SAMPLING

TWENTY-NINE PERMANENT LOCATIONS WERE ARBITABILY SELECTED FOR MONTHLY SOIL, VEGETATION AND DUNG SAMPLING. THE NUMBER AND DISTRIBUTION OF OCATIONS PROVIDED A RANGE IN SITE CONDITIONS FOR REGRESSION ANALYSES AND REPLICATIONS ON THE MAJOR SOIL TYPES IN PROPORTION TO THEIR PERCENTAGE OF DECOURENCE THROUGHOUT THE WATER SHED. ONE LOCATION WAS SELECTED INSIDE EACH EXCLOSURE WITH AN ADJACENT LOCATION OUTSIDE THE EXCLOSURE ON THE SAME SOIL TYPE. FORAGE SAMPLES WERE COLLECTED WITHIN A DNE-HALF METER SQUARED CIRCULAR HOOP. SPECIES COMPOSITION AND FORAGE PRODUCTION WERE DETERMINED ON BOTH CAGED AND GRAZED SAMPLING POINTS. ON GRAZED AREAS COVER, GROUND LITTER AND SURFACE SOIL TEMPERATURE WERE DETERMINED. VEGETATION AT ONE SAMPLING POINT WAS CLIPPED AT ONE LOCATION, AND ALL THREE SAMPLING POINTS WITHIN EACH OCATION WAS ESTIMATED. CLIPPING WAS AT GROUND LEVEL.

IN VIVO DRY MATTER DIGESTIBILITY

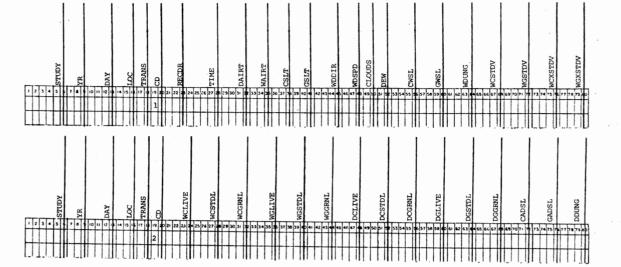
THREE HOLSTEIN STEERS FITTED WITH PERMANENT RUMEN CANNULAE WERE PUT IN RANGELAND. THIS GRAZING AREA WAS COMPOSED OF NEARLY THE SAME PLANT SPECIES COMPOSITION AS THE GRAZED WATERSHED HAUING THE 29 PERMANENT LOCATIONS. STEERS WERE PUT IN A DRYLOT PADDOCK THROUGH THE WINTER. STEERS WERE THEN FED HAY FROM THE SAME PADDOCK IN WHICH THEY GRAZED. THEY WERE ALSO FED A PROTEIN SUPPLEMENT AND RETURNED TO THE RANGELAND PADDOCK IN THE SPRING.

DUNG SAMPLING

DUNG PATS WERE REMOVED FROM WITHIN EACH EXCLOSUPE IN EARLY SPRING, 1976, TO PROVIDE THREE DUNG FREE AREAS. THE DUNG WAS WEIGHED TO ESTABLISH AN ESTIMATE OF DUNG BIOMASS PER HECTARE. DUNG SAMPLES WERE DOLECTED IN AN AREA TWO BY TEN METERS ALING THE BEARING AT WHICH THE CLIPPED FORAGE SAMPLE WAS TAKEN AND THE NUMBER OF DUNG PATS ESTIMATED ALONG ALL THREE BEARINS AT EACH LOCATION. ALIQUOTS OF DUNG PATS. ALONG THE BEARING OF THE CLIPPED FORAGE SAMPLE, WERE TAKEN AND COMBINED INTO ONE SAMPLE.

DUNG DEGRADATION SAMPLING

FIFTY DUNG PATS WERE LOCATED AND MARKED ON THE DAY DEPOSITED, JULY 1, 1976. THE LOCATING AND MARKING OF THE DUNG OCCURRED ONLY ONE TIME DURING THE STUDY. SIX DUNG SAMPLES WERE COLLECTED ON JULY 1, 1976 (DAY 0). SIX MORE SAMPLES WERE COLLECTED ON DAY 30 WITH 5 SAMPLES BEING CULLECTED ON DAYS 60, 120, 180 AND 240. DATA RECORDED AT THE TIME OF COLLECTION INCLUDED TIME OF DROP, SOIL TEMPERATURE AT 2 CM DEEP, DRY-BULB AIR TEMPERATURE, PERCENT BARE GROUND, PLANT SPECIES COMPOSITION, CLIPPED STANDING VEGETATION, GROUND LITTER, SOIL SAMPLE CULLECTED AT 0-10 CM DEEP AND WET WEIGHT.


LABORATORY ANALYSES

CLIPPED VEGETATION AND DJNG SAMPLES WERE AIR-DRIED AND GRDUND THROUGH A 2MM SCREEN IN A WILEY MILL. VEGETATION SAMPLES WERE ANALYZED FOR IN VIVO DRY MATTER DIGESTIBILITY, BY A NYLON BAG TECHNIQUE. VEGETATION AND DUNG SAMPLES WERE ANALYZED FOR DRY MATTER, CRUDE PROTEIN BY THE MICRD-KJELDAHL PROCEDURE, ACID-DETERGENT FIBER, LIGNIN AND CELLULOSE BY THE PERMANGANATE UXIDATION PROCEDURE DE VAN SOEST AND WINE. PHOSPHCRUS, POTASSIUM AND CALCIJM WERE ANALYZED BY PROCEDURES ADOPTED BY THE SDIL AND WATER TESTING LABORATORY AT OKLAHOMA STATE UNIVERSITY. SAMPLES CONSISTED OF 3, 2 AND 0.5 GM ALIQUOTS FOR DMD; DM, CP; ADF AND LIGNIN, RESPECTIVELY. DMD ANALYSIS WAS TRIPLICATED WHILE ALL, DTHER LABORATORY ANALYSES WERE DUPLICATED.

APPENDIX I

FIELD DATA WORKSHEETS FOR RANGE WEATHER

AND FIELD WEIGHT

DATA SHEETS-RANGE WEATHER AND FIELD WEIGHT

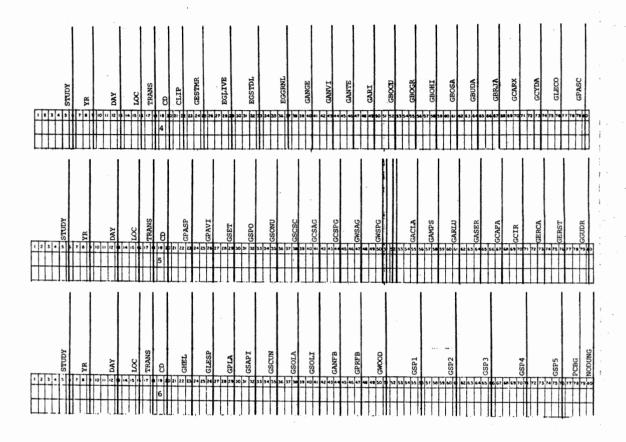
STUDY - STUDY NUMBER.

YY - YEAR. DAY - JULIAN DAY WITH I NOBEMBER CONSIDERED THE START OF A NEW PLANT YEAR

LOC - LOCATION DESIGNATED AS 1-29 PERMANENT LOCATIONS ON THE WATERSHED TRANS - TRANSECT DESIGNATED AS 1-3 WHICH WAS A 360 DEGREE CIRCLE AROUND THE PERMANENT LOCATION DIVIDED INTO THIRDS. EACH TRANSECT

THE PERMANENT LOCATION DIVIDED INTO THIRDS. EACH TRANSECT WAS 12D DEGREES. CD - DATA SHEET CARD NUMBER. RECDF - INITIALS OF INDIVIDUAL RECORDING DATA. TIME - TIME DF SAMPLING DAIRT - DRY AIR TEMPERATURE AT TIME OF SAMPLING. WAIRT - WET AIR TEMPERATURE AT TIME OF SAMPLING. SAMPLING. CSLT - CAGED SOLL TEMPERATURE AT TIME OF SAMPLING. GSLT - CAGED SOLL TEMPERATURE AT TIME OF SAMPLING. GSLT - DIRECTION OF WIND-1 TO 360 DEGREES. WDSPD - SPEED OF WIND MOVEMENT. C_OUDS - CLOUD COVER, 1-CLEAR 2-BROKEN 3-SCATTERED 4-OVERCAST S-HEAVY OVERCAST.

W35PD - SPEED OF WIND MOVEMENT. C.OUDS - CLOUD COVER, 1-CLEAR 2-BROKEN 3-SCATTERED 4-OVERCAST 5-HEAVY OVERCAST. DEW - WETNESS OF VEGETATION, 1-DPY 2-DAMP 3-WET. FWSL - CAGED WET WEIGHT OF SOIL SAMPLE-0 TO 10 CM. WJUNG - WET WEIGHT OF COLE SAMPLE-0 TO 10 CM. WJUNG - WET WEIGHT OF CAGED STANDING VEGETATION IN .5 SQ. METER-FRAME AS CLIPPED IN FIELD. WGSTOV - WET WEIGHT OF CAGED STANDING VEGETATION. WGSTOV - WET WEIGHT OF CAGED EXTRA STANDING VEGETATION. WGSTOV - WET WEIGHT OF CAGED LIVE VEGETATION. WSTOL - WET WEIGHT OF CAGED LIVE VEGETATION. WGSTOL - WET WEIGHT OF GRAZED LIVE VEGETATION. WSTOL - WET WEIGHT OF GRAZED STANDING LITTER. WGLIVE - WET WEIGHT OF GRAZED STANDING LITTER. WGSTOL - WET WEIGHT OF GRAZED STANDING LITTER. WSGPL - WET WEIGHT OF GRAZED STANDING LITTER. WSGPL - WET WEIGHT OF GRAZED STANDING LITTER. DSIDU - WET WEIGHT OF GRAZED STANDING LITTER. DSIDU - DRY WEIGHT OF CAGED LIVE VEGETATION. WSTOL - WET WEIGHT OF GRAZED STANDING LITTER. DSIDU - DRY WEIGHT OF CAGED LIVE VEGETATION. WSGPL - WET WEIGHT OF GRAZED STANDING LITTER. DSIDU - DRY WEIGHT OF CAGED LIVE VEGETATION. WSGPL - DRY WEIGHT OF CAGED LIVE VEGETATION AFTER AIR-DRYING 10-14 DAYS. DGIVE - DRY WEIGHT OF GRAZED LIVE VEGETATION AFTER AIR-DRYING 10-14 DAYS. DGIVE - DRY WEIGHT OF GRAZED LIVE VEGETATION AFTER AIR-DRYING 10-14 DAYS. DGIVE - DRY WEIGHT OF GRAZED LIVE VEGETATION AFTER AIR-DRYING 10-14 DAYS. DGIVE - DRY WEIGHT OF GRAZED LIVE VEGETATION AFTER AIR-DRYING 10-14 DAYS.


DAYS. DISTIL - DRY WEIGHT OF GRAZED STANDING LITTER AFTER AIR-DRYING 10-14 DAYS .

DATS. DATS. DATS. DEATS. DEATS. DEATS. DEATS. DEATS. DATS. DATS. DATS. DEATS. DEATS. DATS. DATS.

)

APPENDIX J

FIELD DATA WORKSHEETS FOR SPECIES COMPOSITION

DATA SHEETS-SPECIES COMPOSITION

CLIP - SAMPLE WAS CLIPPED (C) OR ESTIMATED (E).
SESTMR - ESTIMATED WEIGHT OF TOTAL GRAZED STANDING MATERIAL WITHIN A .5 SQ METER-FRAME.
SUVE - ESTIMATED WEIGHT OF TOTAL GRAZED LIVE VEGETATION WITHIN A .5 SQ METER-FRAME.
SGSDL - ESTIMATED WEIGHT OF TOTAL GRAZED STANDING LITTER WITHIN A .5 SQ METER-FRAME.
SGRML - ESTIMATED WEIGHT OF TOTAL GRAZED GROUND LITTER WITHIN A .5 SQ METER-FRAME.
SGPI-GSP5 - PLANT SPFCIES THAT CAN BE LISTED THAT ARE NOT OTHERWISE IDENTIFIED BY A SPECIES SYMBOL.
PCBG - ESTIMATED PERCENT BARE GROUND WITHIN A .5 SQ METER-FRAME.
NJDUNG - NUMBER OF DUNG COUNTED WITHIN A TWO BY TEN METER AREA ALONG THE BEARINGS AT WHICH THE CLIPPED AND ESTIMATED VEGETATION SAMPLES WERE TAK EN.

SPECIES A BREVIATIONS USED ARE LISTED SEPERATELY BY SCIENTIFIC NAME, COMMON NAME AND SPECIES SYMBOL.

APPENDIX K

PLANT SPECIES KEY TO FIELD DATA WORKSHEETS

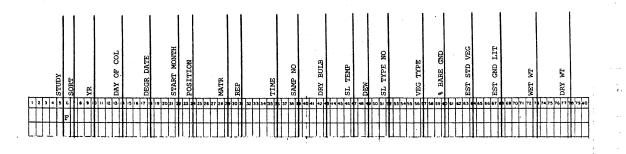
Computer Species Abbreviation	Scientific Name Sees and iss-like Andropogon gerardi Andropogon ternarius MI Andropogon ternarius MI Andropogon virginicus RI Anistida spp. CU Bouteloua curtipendula DGR Bouteloua gracilis DHI Bouteloua hirsuta DSA Bothriochloa scchariodes DA Buchloe dactyloides RX Carex spp. CO Leptoloma cognatum ASC Panicum scribnerianum ASP Paspalum spp. AVI Panicum vigratum Sporobolus spp. DNU	Common Name	Species Symbol
Grasses and			
grass-like			
ANGE	Andropogon gerardi	big bluestem	ANGE
ANTE		split-beard bluestem	ANTE
ANVI		broomsedge bluestem	ANVI
ARI		threeawn	ARIST
BOCU		sideoats grama	BOCU
BOGR		blue grama	BOGR
BOHI		hairygrama	BOHI
BOSA	Bothriochloa scchariodes	silver bluestem	BOSA
BUDA		common buffalograss	BUCHL
BRJA		Japanese brome	BRJA
CARX		sedge	CAREX
CYDA		common bermudagrass	CYDA
LECO		fall witch	LECO
PASC		scribners	PASC5
PASP		paspalum	PASPA
PAVI		switchgrass	PAV12
SET		bristlegrass	SETAR
SPO		dropseed	SPORO
SONU		yellow indiangrass	SONU2
SCSC	and the second se	little bluestem	SCSC
CSAG		cool season annual grass	
CSPG		cool season perennial grass	
WSAG		warm season annual grass	
WSPG		warm season perennial grass	
Forbs			
ACLA	Achillea lanulosa	yarrow	ACLA
AMPS	Ambrosia artemisiifolia	common ragweed	AMAR2

ARLU	Artemisia frigida	fringed sagewort	ARFR4
ASER	Aster spp.	aster	ASTER
CAFA	Cassia fasciculata	showy partridge pea	CAFA
CIR	Cirsium spp.	thistle	CIRSI
ERCA	Erigeron canadensis	mare's tail	ERCA3
ERST	Erigeron strigosus	daisy fleabane	ERST3
GUDR	Gutierrezia dracunculoides	annual broomweed	GUDR
HEL	Helianthus annuus	sunflower	HEAN 3
LESP	Lespedeza spp.	lespedeza	LESPE
PLA	Plantago spp.	plaintain	PLANT
SAPI	Salvia pitcheri	pitcher sage	SAPI3
SCUN	Schrankia uncinata	cat's claw	SCUN
SOLA	Solanum spp.	horse nettle	SOLAN
SOLI	Solidago spp.	goldenrod	SOLID
ANFB	· · ·	annual forb	
PRFB		perennial forb	
WOOD		woody species	

APPENDIX L

OTHER PLANT SPECIES RECORDED ON LAKE

CARL BLACKWELL STUDY AREA


Scientific Name	Common Name	Species Symbol
Grass and Grass-like		
Agrostis spp.	bentgrass	AGRO52
Chloris verticillata	windmill grass	CHVE2
Elymus spp.	wildrye	ELYMU
Eragrostis spp.	lovegrass	ERAGR
Hordeum pusillum	little barley	HOPU
Manisurus cylindrica	Carolina jointtail	MACY
Panicum spp.	panic	PANIC
Poa spp.	bluegrass	POA
Schedonnardus paniculatus	tumblegrass	SCPA
Sphenopholis obtusata	wedge grass	SPOB
Festuca octoflora	six-week fescue	FEOC2
Forbs		
Antennaria spp.	pussytoes	ANTEN
Asclepias spp.	milkweed	ASCLE
Baptisia australis	blue wildindigo	BAAU
Croton texensis	Texas croton	CRTE4
Daucus carota	wild carrot	CACA6
Geranium spp.	geranium	GERAN
Kuhnia eupatoroides	falseboneset	KUEU
Lepidium virginicum	Virginia pepperweed	LEVI3
Linus spp.	flax	LINUS
Liatris punctata	dotted gayfeather	LIPU
Monarda pectinata	plains beebalm	MOPE
Oenothera serrulata	half-shrub sundrop	OESE
Oxalis spp.	woodsorrel	OXALI
Petalostemon spp.	prairie clover	PETAL2
Prunus angustifolia	wild plum	PRAN2
Psoralea tenuiflora	scruf-pea	PSTE3
Ratibida columnaris	prairie cone-flower	RATIB
Rhus glabra	smooth sumac	RHGL
Ruellia ciliosa	fringeleaf ruellia	RUCI
Rudbeckia hirta	black-eyed susan	RUHI2
Specularia perfoliata	Venus looking-glass	SPPE
Ceanothus spp.	buckbrush	CEANO
Vernonia spp.	ironweed	VERNO

¹Scientific names from Waterfall, U.T. 1972. Keys to the flora of Oklahoma, Okla. State Univ. Student Union Bookstore. Stillwater, 246 pp.

²Species symbols from National list of scientific plant names. 1971. U.S. Dep. Agr. Soil Conserv. Serv. 281 pp.

APPENDIX M

FIELD DATA WORKSHEETS FOR DUNG DEGRADATION STUDY

i

DATA SHEETS - DUNG DEGRADATION

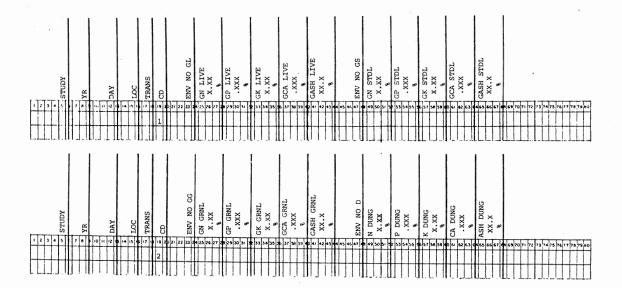
STUDY - STUDY NUMBER. SJRT - SORT AS TO CARD TYPE, F-DJNG D-DRY MATTER A-ACID-DETERGENT FIBER I-IN VIVO DRY MATTER DIGESTIBILITY.

YR - YEAR. DAY OF COL - JULIAN DAY WITH 1 NOVEMBER CONSIDERED THE START OF A NEW

THE - YEAR.
DAY OF COL - JULIAN DAY WITH 1 NOVEMBER' CONSIDEPED THE START OF A NEW PLANT YEAR.
DEGR DATE - THE NUMBER OF DAYS AFTER DEPOSITION SAMPLES WERE COLLECTED. DAYS 0, 30, 60, 120, 180 AND 240 ARE SAMPLING PERIDDS.
START MONTH - THE MONTH DAY 0 OCCURRED-IN THIS STUDY JULY.
POSITION - AREA WITHIN A .5 SQ METER-FRAME-SAMPLE TAKEN I-IN OR O-OUT.
MATR - KIND OF SAMPLE TAKEN WITHIN A .5 SQ METER-FRAME-DUNG,SOIL.
VEGETATION AND GROUND LITTER.
REP - REPLICATION SAMPLED DURING A SAMPLING PERIDD-1, 2, 3, 4 OR 5.
TIME - TIME UF SAMPLING.
SAMP NO - NUMBER OF THE SAMPLE
POY BULG - AIT TEMPERATURE AT THE TIME OF ESTIMATE.
DEW - WETNESS OF VEGETATION, 1-DRY 2-DAMP 3-WET.
SL TYPF NO - SOIL SETES NUMBER.
VEG TYPE - TYPE OF VEGETATION-TALLGRASS MODGRASS SHORT GRASS.
* BARE GND - AMOUNT OF GROUND WITH NO VEGETATION COVER.
EST STD VEG - TOTAL ESTIMATED STANDING VEGETATION WITHIN A .5 SQ METER-FRAME.

FRAME. FRAME.

APPENDIX N


LAB DATA WORKSHEETS FOR LABORATORY ANALYSES

ĽΜ ŧ MQ XSAMP WT X.XXXX DRY V XXXX CAL I XXXX NET XX g ŗ. XBLE WT X.XXXX 200 XSAMP TRANS MATR XBLE TYPE SAM X. TOT.X. ₿×. ENV REP 8 8 7 8 9 10 11 12 8 14 15 15 17 19 19 20 21 22 23 24 25 26 27 28 2 68 69 70 71 72 73 74 73 76 77 78 79 80 123456 41 42 43 57 58 3 64 65 66 4 35 36 37 3 0 31 32 33 3 Π D 1 ΓIJ S M ž ¥ TARE SAM X.XXX E TARE SAM / BAG SAM XXXX TARE WT X.XXXX Q TRANS TYPE DAY ğ BAG DRY X.) ΥR 8 123456 7 8 1 10 11 12 13 14 15 15 17 13 19 20 21 22 23 24 25 26 20 46 47 48 49 50 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4 28 2 1 ţ ŦM ADLR XRBL DR V XX.XXXX XRBL ADF XX.XXX XRBL ASH XX.XXXX R SPL 2 Ñ TAR WT .XXXX XX.XXXX ç TRANS STUDY TYPE MATR KRBL BEAK XRBL XRBL ğ DAY REP NN TAR ĉ 9 14 15 18 17 19 19 20 21 22 23 24 25 26 2 1 2 3 4 041 - 1344 45 46 4 , a 4 10 11 12 1 20 3 30 31 32 33 34 63 64 65 6 64 69 70 71 72 73 74 75 76 77 78 72 40 49 50 51 2 2

DATA SHEETS-LABORATORY ANALYSES

ATA SHEFTS-LARORATORY ANALYSES TYPF - C-CAGED VEGETATION G-GRAZED PESIDUE. MITR - KIND OF SAMPLE TAKEN MITHIN A .5 SQ METER-FRAME, VEGETATION-LIVE DEAD OR STANDING LITTER. KEP - FFPLICATION SAMPLED DURING A SAMPLING PERIOD-1 DR 2. EVVUD = FNVELOPE NUMBER XBLEND = CRUCIBLE NUMBER XBLENT = CRUCIBLE NUMBER XSAMPT = CRUCIBLE PLUS SAMPLE WEIGHT SAMVETWT = CAUGIBLE PLUS SAMPLE WEIGHT MNDCALCULATED DRY MATTER BAGNU = NUMBER ON NYLON PUMEN BAG DRYBAGWT = TAPE PLUS SAMPLE WEIGHT (WET) NETSAMWT = TAPE PLUS SAMPLE HEIGHT (WET) NETSAMWT = NET WEIGHT OF CRUCIBLE (TIN BOAT) DRY TARSAMAT = TAPE PLUS SAMPLE WEIGHT (WET) NETSAMWT = NET WEIGHT OF SAMPLE PLACED IN NYLON BAG BAGSAMT = COMBINED DRY WEIGHT OF SAMPLE ADD YLON BAG BAGSAMT = COMBINED DRY WEIGHT OF SAMPLE ADD YLON BAG BAGSAMT = CRUCIBLE NO USED TO DETERMINE ACID-DETERGENT FIBER(ADF). BEAKND = BEAKER USED FOR ADF TARSPLAT = CRUCIBLE PLUS SAMPLE HEIGHT FOR ADF TARSPLAT = CRUCIBLE RESIDUE XRBLASH = CRUCIBLE RESIDUE XRBLASH = CRUCIBLE ASH

XRBLASH = CRUCIPLE ASH

ENVNGL - ENVFLOPE NUMBER OF GRAZED LIVE RESIDUE SAMPLE. GVIIVE - NITROGEN CONTENT (%) IN GRAZED LIVE RESIDUE SAMPLE. GPLIVE - PHOSPHORUS CONTENT (%) IN GRAZED LIVE RESIDUE SAMPLE. GALIVE - CALCIUM CONTENT (%) IN GRAZED LIVE RESIDUE SAMPLE. GASHLIVE - ASH CUNTENT (%) IN GRAZED LIVE RESIDUE SAMPLE. GASHLIVE - ASH CUNTENT (%) IN GRAZED STANDING LITTER SAMPLE. GYNDGS - ENVELDE NUMBER OF GRAZED STANDING LITTER SAMPLE. GYSTDL - NITROGEN CONTENT (%) IN GRAZED STANDING LITTER SAMPLE. GYSTDL - PHOSPHOPUS CONTENT (%) IN GRAZED STANDING LITTER SAMPLE. GASHSTDL - ASH CUNTENT (%) IN GRAZED STANDING LITTER SAMPLE. GYSTDL - NITROGEN CONTENT (%) IN GRAZED STANDING LITTER SAMPLE. GASHSTDL - ASH CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - NITPOGEN CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - NITPOGEN CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - PHOSPHOPUS CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - PHOSPHOPUS CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - NITPOGEN CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - PHOSPHOPUS CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. GYGGNL - NOTENT (%) IN GRAZED GROUND LITTER SAMPLE. SKORNL - CALCIUM CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. HOUNG - PHOSPHOPUS CONTENT (%) IN GRAZED GROUND LITTER SAMPLE. EVVNDD - FVVELOPE NUMBER OF DUNG SAMPLE. PUUNG - NUTROGEN CONTENT (%) IN DUNG SAMPLE. PUUNG - PHOSPHORUS CONTENT (%) IN DUNG SAMPLE. ASH GUNG - ASH CONTENT (%) IN DUNG SAMPLE. ASH GUNG - ASH CONTENT (%) IN DUNG SAMPLE.

APPENDIX O

COMPUTER CARD INPUT, PROCEDURES AND ANALYSES

FOR NBDMD, CHEMICAL AND FIBER COMPONENTS

TITLE "RANGE NUTRITION - INVIVO"; DATA STEERS; INPUT

NAME \$ 1-5 YR 7-8 DAT 10-12 LOC 14-15 TRANS 17 CD 19 TYPE \$21 MATR \$ 23-26 REP 28 CNVND 30-33 BAGND 35-37 DRYBAGWT 39-41 2 TAREWT 40-49 4 TARSAMWT 51-55 4 NETSAMWT 57-59 2 BAGSAMWT 61-63 2;

NETWT = BAGSAMWT-DRYBAGWT: IF NETSAMWT = D THEN NETSAMWT = (TARSAMWT - TAREWT); IF MATR = 'STVG' THEN MATR = 'STDV'; IF MATR = 'STND' THEN MATR = 'STDV'; IF YR = 77 AND DAT > 5 AND DAT < 15 THEN DAY = 7010; IF YR = 77 AND DAT > 35 AND DAT < 50 THEN DAY = 7040; IF YR = 77 AND DAT > 35 AND DAT < 100 THEN DAY = 7040; IF YR = 77 AND DAT > 35 AND DAT < 135 THEN DAY = 7040; IF YR = 77 AND DAT > 125 AND DAT < 135 THEN DAY = 7130; IF DAY = 7010 AND MATR = 'STDV' AND TYPE = 'G' THEN PU = 0.05; IF DAY = 7040 AND MATR = 'STDV' AND TYPE = 'G' THEN PU = 0.05; IF DAY = 7030 AND MATR = 'STDV' AND TYPE = 'G' THEN PU = 0.03; SAMWT = NETWT-PU; CARDS;

PROC SORT DATA=STEERS; BY DAY TYPE MATR LOC; PROI PRINT DATA=STEERS; BY YR DAY TYPE MATR LOC; VAR BAGSAMWT DRYBAGWT NETWT SAMWT PU NETSAMWT;

TITLE 'RANGE NUTRITION MINERAL COMPONENT ANALYSIS';

DATA CHEMALS: INPUT

NAME \$ 1-5 Y° 7-8 DAT 10-12 LOC 14-15 TRANS 17 CD 19 ENLIVE 21-23 GNLIVE 25-27 2 GPLIVE 29-31 2 GKLIVE 33-35 2 GCLIVE 37-39 2 ENVDEAD 45-47 GNDEAD 49-51 2 GPDEAD 53-55 2 GKHEAD 57-59 2 GCADEAD 61-63 2 YR2 #2 7-8 DAT2 #2 10-11 LOC2 #2 14-15 TPANS2 #2 17 CD2 #2 19 ENVGGRN #2 21-23 GIGPN #2 25-27 2 GPGRN #2 29-31 2 GKGRN #2 33-35 2 GCAGRN #2 37-39 2 ENVDUNG #2 45-47 GNDUNG #2 49-51 2 GPDUNG #2 53-55 2 GKDUNG #2 57-59 2 GCADUNG #2 61-63 2;

IF YR = 77 AND DAT > 5 AND DAT < 15 THEN DAY = 7010; IF YR = 77 AND DAT > 35 AND DAT < 50 THEN DAY = 7040; IF YR = 77 AND DAT > 85 AND DAT < 50 THEN DAY = 7040; IF YR = 77 AND DAT > 125 AND DAT < 135 THEN DAY = 7130; CARDS:

PRDC SORT OUT= CHEMSOPT DATA=CHEMALYS; RY YR DAY LOC; PRDC PRINT DATA=CHEMSOPT; HY YR DAY; ID LOC; VAR GNLIVE GPLIVE GKLIVE GCALIVE GDDEAD GKDEAD GCADEAD; PRDC PRINT DATA=CHEMSORT; HY YR DAY; ID LOC; VAR GNGRN GPGRN GKGPA GLAGRN GNDUNG CPDUNG GKDUNG GCADUNG; PRDC MEANS DUT=CHEMAVG DATA=CHEMSORT; HY YR DAY;

VAP' GNLIVE GPLIVE GKLIVE GCALIVE GNDEAD GPDEAD GKDEAD GCADEAD GNGRN GPGRN GKGPN GCAGPN GNDUNG GPDUNG GKDUNG GCADUNG; TITLE 'RANGE NUTRITION STUDY';

DATA ANSLAB; INPUT NREC = 2 NAME \$ 1-5 YR 7-8 DAT 10-12 LOC 14-15 TRANS 17 CD 19 TYPE \$ 21 MATR \$ 23-26 REP 23 ENVNO 30-33 XBLENO \$ 35-37 XBLEWT 39-41 2 XSAMPWT 45-47 2 SAMNETWT 51-53 2 TOTORYWT 55-57 2 HNDCALDM 61-66 4 CD2 #2 19 ENVNO2 #2 30-33 XRBLNO #2 \$ 35-37 BEAKNO #2 \$ 39-41 TARWT #2 43-46 4 TARSPLWT #2 48-52 4 XRBLDRWT #2 53-58 4 XRBLADF #2 60-65 4 XRBLADLR #2 67-72 4 XRBLASH #2 74-79 4; IF SAMNETWT < 0.1 THEN SAMNETWT = XSAMPWT - XBLEWT; IF SAMNETAT > 0.2 THEN SAMNETWT = SAMNETWT; DMP = DIV((TOTDRYWT-XBLEWT), SAMNETWT); TDW = (TARSPLWT - TARWT) * DMP; ADFP = DIV((XRBLADF-XRBLDRWT), TDW); ADLP = DIV((XRBLADF-XRBLADLR), TDW); CELLP = DIV((XRBLADLR-XRBLASH), TOW); ADF = (XR3LADF - XRBLDRWT); ADL = (XR3LADF - XR8LADLR); CELL = (XRBLADLR - XRBLASH); DRYWT = (TARSPLWT - TARWT); IF TOW -> O THEN TOW = MISS(TOW); IF ADF -> O THEN ADF = MISS(ADF); IF ADL -> O THEN ADL = MISS(ADL); IF CELL -> O THEN CELL = MISS(CELL); IF DRYWT -> O THEN DRYWT = MISS(DRYWT); IF YR=75 AND DAT > 150 AND DAT < 170 THEN DAY=6163; IF YR = 76 AND DAT > 175 AND DAT < 190 THEN DAY = 6183; IF YR = 76 AND DAT > 205 AND DAT < 210 THEN DAY = 6206; IF YR = 76 AND DAT > 230 AND DAT < 240 THEN DAY = 6234; IF YR = 76 AND DAT > 255 AND DAT < 265 THEN DAY = 6262; IF YR = 76 AND DAT > 285 AND DAT < 295 THEN DAY = 6290; IF YR = 76 AND DAT > 310 AND DAT < 325 THEN DAY = 6320; IF YR = 76 AND DAT > 340 AND DAT < 350 THEN DAY = 6346; 15 THEN DAY = 7010; 50 THEN DAY = 7040; IF YR = 77 AND DAT > 5 AND DAT < IF YR = 77 AND DAT > 35 AND DAT C IF YR = 77 AND DAT > 85 AND DAT < 100 THEN DAY = 7090; IF YR = 77 AND DAT > 125 AND DAT < 135 THEN DAY = 7130; IF LOC=1 OR LOC=3 OR LOC=4 OR LOC=10 OR LOC=13 OR LOC=14 OR LOC=16 OR LOC=17 OR LOC=19 OR LOC=20 OR LOC=21 OR LOC=22 OR LOC=23 OR LOC=28 THEN SITE = 'LPRG'; IF LOC=2 OR LOC=5 OR LOC=6 OR LOC=7 OR LOC=8 OR LOC=9 OR LOC=11 OR LOC=12 OR LOC=15 OR LOC=18 OR LOC=24 OR LOC=25 OR LOC=26 OR LOC=27 OR LOC=29 THEN SITE = "SHPRG"; OUTPUT; CARDS

604 OBSERVATIONS IN DATA SET ANSLAB 37 VARIABLES PROC SORT OUT=ANSILABS DATA=ANSLAB; BY DAY SITE;

PROC ANOVA DATA=ANSILABS; CLASSES DAY SITE; MEANS DAYISITE; MODEL DMP ADFP ADLP CELLP=DAY; POOL 'E' RESIDUAL/DAY; TEST DAY BY 'E';

DATA SET ANSILABS

CLASSES	VALUES
DAY	6163 6183 6206 6234 6262 6290 6320 6346 7010 7040 7090 7130
SITE	LPRG SHPR

PROC SORT OUT=LABSANSI DATA=ANSILABS; BY SITE DAY;

PROC ANOVA DATA=LABSANSI; CLASSES SITE DAY; MEANS SITE/DAY; MODEL DMP ADFP ADLP CELLP=SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY 'E';

DATA SET LABSANSI

CLASSES	VALUE	ËS										
SITE	LPRG	SHPR										
DAY	6163	6183	6206	6234	62 62	6290	6320	6346	7010	7040	7090	7130

ANALYSIS OF VARIANCE FOR VARIABLE DMP		MEAN 0.925	371435 C.V.	2.38497249 %	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01 LSD .05	DIVISOR
DAY	11	0.047356850	0.00430516818		
Ε	592	0.288350450	0.00048707846	0.0114062838 0.00866907462	50
RESIDUAL	592	0.288350450	0.00048707846		
CORRECTED TOTAL	603	0.335707300	0.00055672852		

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	DAY	11	0.047356850	0.00430516818	8.83876	0.0001
DENOMINATOR	: E	592	0.288350450	0.00048707846		

	ANALYSIS OF VARIANCE FOR VARIABLE ADFP		MEAN	0.5535	565162	C.V.	10.6541536	Ľ	
	SOURCE	DF	SUN OF	SQUARES	MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
	DAY	11	0.	07753132	0.00704	830202			
	ε	575	2.	00006107	0.00347	836709	0.0307935333	0.0234031454	49
	RESIDUAL	575	2.	00006107	0.00347	836709			
	CORRECTED TOTAL	58 6	2.	07759240	0.00354	537952			
•									

TESTS SOURCE	DF S	UM OF SQUARES MEAN SQUARE	F VALUE	PROB > F
NUMERATOR: DAY	11	0.07753132 0.00704830202	2.02632	0.0239
DENOM IN AT OR: E	575	2.00006107 0.00347836709		

. .

ANALYSIS OF VARIANCE FOR VARIABLE ADL	p	MEAN 0.3615	17178 C.V.	953.832885 %		
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
DAY	11	143.99156	13.0901419			
E	575	6837.07435	11.8905641	1.80042267	1.36832047	49
RESIDUAL	575	6837.07435	11.8905641			
CORRECTED TOTAL	586	6981.06591	11.9130818			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	DAY	11	143.99156	13.0901419	1.10088	0.3575
DENONINATOR	: E	575	6837.07435	11.8905641		

ANALYSIS OF VARIANCE FOR VARIABLE CELLP		MEAN 0.1980	90329 C.V.	79.1811541 \$		
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05 D	IVISOR
DAY	11	0.0884933	0.0080448453			
E	575	14.1461430	0.0246019878	0.0818951726	0.0622403063	49
RESIDUAL	575	14.1461430	0.0246019878			
CORRECTED TOTAL	586	14.2346363	0.0242911882			

TESTS	SOURCE		DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	DAY		11	0.0884933	0.0080448453	0.32700	0.9794
DENOMINATOR	: E		575	14.1461430	0.0246019878		

.

1

ANALYSIS OF VARIANCE FOR VARIABLE DMP		MEAN 0.925371435 C.V	. 2.55135668	8
SOURCE	ÐF	SUM OF SQUARES MEAN SQUA	RE LSD .01	LSD .05 DIVISOR
SITE	1	0.000146652 0.000146652	08	
E	602	0.335560647 0.000557409	71 0.00496466830	0.00377335399 302
RESIDUAL	602	0.335560647 0.000557409	71	
CORRECTED TOTAL	603	0.335707300 0.000555728	52	

TESTS	SOURCE	DF	SUM OF SQUARES MEAN S	QUARE F	VALUE	PROB > F
NUMER AT OR :	SITE	1	0.000146652 0.000146	65208 0.	26310	0.6146
DENOMINATOR	: E	602	0.335560647 0.000557	40971		

ANALYSIS OF VARIANCE FOR VARIABLE ADEP		MEAN	0.553	565162	C.V.	10.765254	2 %	
SOURCE	DF	SUM OF	SQUARES	MEAN	SQUARE	LSD .0	LSD .05	DIVISOR
SITE	1	٥.	00008803	0.0000	8802573			
E	585	2.	07750437	0.0035	5128952	0.012701820	6 0.00965357944	294
RESIDUAL	585	2.	07750437	0.0035	5128952			
CORRECTED TOTAL	586	2.	07759240	0.0035	4537952			

TESTS SOURCE	DF SU	JM OF SQUARES MEAN SQUARE	F VALUE	PROB > F
NUMERATOR: SITE	L	0.00008803 0.00008802573	0.32479	0.8695
DENCMINATOR: E	585	2.07750437 0.00355128952		

ANALYSIS OF VARIANCE FOR VARIABLE ADLP		MEAN 0.3615	17178 C.V.	954.745248 %		
SOURCE	OF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD . 05 DIVISOR	
SITE	1	11.77244	11.7724381			
E	58 5	6969.29347	11.9133222	0.735680759	0.559128642 294	
RESIDUAL	585	6969.29347	11.9133222			
CORRECTED TOTAL	586	6981.06591	11.9130818			

TESTS	SDURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	SITE	1	11.77244	11.7724381	0.98817	0.6787
DENOMINATOR	: E	58 5	69 69. 29347	11.9133222		

ANALYSIS OF VARIANCE FOR VARIABLE CELLP		MEAN O.	198090329	C . V.	78.7393758	r i	
SOURCE	DF	SUM OF SQUA	RES MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	0.0026	228 0.002	6228193			
E	585	14.2320	135 0.024	3282282	0.0332451463	0.0252668224	294
RESIDUAL	58 5	14.2320	0135 0.024	3282282			
CORRECTED TOTAL	536	14.2346	363 0.024	2911882			

TESTS SOURCE	DF	SJM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR: SITE	1	0.0026228	0.0026228193	0.10781	0.7420
DENOMINATOR: E	585	14.2320135	0.0243282282		

-

.

APPENDIX P

COMPUTER PRINT PROCEDURE FROM DISK PROGRAM

FOR FIBER COMPONENT ANALYSES

//XXSHK@3 JOB (XX // TYPRUN=HOLD	<pre>XXX,503-56-0971), *KAUTZSCH*,TIME=1,CLASS=4,</pre>
***ROUTE PRINT LOC	
***JOBPARM FORMS=9	
// EXEC SAS.REGICN	
XXSAS PROC SO	
	M=SAS+REGICN=127K
	I=SYS1.USFRLIB.SASEVER.DISP=SHR
	I=SYS1.USERLIB.SASSEVER.DISP=SHR
••••	I=SYS3.LINKLIB.DISP=SHR
XXMACRO DD UNI	T= SYSDA, SPACE=(TRK, 20, CONTIG), DCB=BLKSIZE=1600
	T= SYSDA, SPACE= (TRK, (80, 40, 8))
XXSYSPRINT DD SYS	SOUT=*
XXFT02F001 DD SYS	SJJT=8,DCB=(BLKSIZE=80,RECFM=F) PUNCH OUTPUT
XXET03E001 DD SYS	SOUT=*,DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)
XXFT05F001 DD UNI	T= SYSDA, SPACE = {TRK, (10,40)},
XX DCB	3=(BLKSIZE=0404,RECFM=VBS,LRECL=32000)
XXETO6E001 DD UNE	T=SYSDA,SPACE=(TRK,(10,40)),
XX DCB	3=(BLKSIZF=0404,RECFM=VBS,LRECL=32000)
	T=SYSDA, SPACE=(TRK, (10, 40)),
	B=(BLKSIZF=0404,RECFM=VBS,LRECL=32000)
	T= SYSDA, SPACE=(TRK, (10, 40)),
	B=(BLKSIZE=0404, PECFM=VBS, LRECL= 32000)
	$T = SYSDA \cdot SPACE = (TRK, (2, 2)),$
	S=(BLKSIZE=080,LRECL=80,RECFM=FB)
	NUT = +, OCB = BUF NO= 1
	SYS1.SORTLIB, DISP=SHR
	CE= (TRK, (&SORT),, CONTIG), UNIT=SYSDA
	CE= (TRK, (&SORT), CONTIG), UNIT=SYSDA
	CE=(TRK,(&SORT),,CONTIG),UNIT=SYSDA
	CE= (TR<, (&SORT),, CONTIG), UNIT=SYSDA DSN=A8.YR7677.STEER.ADF.DMD, UNIT=2314, VOL=SER=DISK87,
)>S=48.477677.57EEEE.ADF.DMD,UNIT=2514,VOL=5EE=D15887, I.)CB=(LPECL=80.BLKSIZE=2000.RECFM=FB)
//GO.SYSIN DD *	IFJUD-ILFCUL-OVFDLN3IZE#ZUUVFREUFM-FDJ
TOU PLETE	

PROC PPINT DATA=STEERDMD; BY DAY TYPE MATR; ID LOC; VAR DMP ADEP ADEP CELLP DMD;

PROC MEANS NOPPINT DUT=STDMDX DATA=STEERDMD; BY DAY TYPE MATR; VAR DMP ADEP ADEP CELEP DMD;

PROC PRINT DATA=STDMDX; BY TYPE MATR; ID DAY; VAR DMP ADEP ADLP CELLP DMD;

APPENDIX Q

COMPUTER INPUT, PROCEDURES AND ANALYSES FROM DISK PROGRAM FOR FIBER COMPONENTS, SPECIES COMPOSITION AND CHEMICAL COMPONENTS

//ZSHK8A@3_JOB_(XXXXX,503-56-0971),'KAUTZSCH',TIME=5,CLASS=4,
// TYPEUN=HCLD
***ROUTE PRINT LOCAL
***JOBPARM HORMS=9001
// EXFC SAS+REGIGN+GD=380K
XXSAS PROC SORT=60, VER=7404
XXGD EXEC PGM=SAS+REGIDN=127K
XXSTEPLIN DD DSN=SYSI.USERLID.SAS&VFF.DISP=SHR
XX DD DSN=SYS1.USERLIB.SASS&V"R.DISP=SHR
XX DD DSN=SYS3+LINKLIB+DISP=SHR
XXMACRO DD UNIT=SYSDA,SPACE=(TRK,20,,CONTIG),DCB=BLKSIZE=1600
XXSASPATA DD UNIT=SYSDA,SPACE=(TRK,(PD,40,B))
XXSYSPRINT DD SYSUJT=*
XXFT02F001 00 SYSOUT=B+DCB=(BLKSIZE=80,PECFM=F) PUNCH DUTPUT
XXFT03F001 DD SYSDJT=*,DCB=(BLKSIZF=133,LPECL=133,RECFM=FRA)
XXFT05F001 DD UNIT=SYSDA,SPACF=(TPK,(10,40)),
XX DCB=(BLKSIZE=0404,RECFM=VBS,LRECL=32000)
XXFTO6FOC1 DD UNIT=SYSDA,SPACF=(TRK,(10,40)),
XX DCB=(BLKSTZE=0404,RECFM=V3S,LRECL=32000)
XXET 07F 001 UD UNIT=SYSDA, SPACF=(TRK, (10,40)),
XX DCB=(BLKSIZE=04)4,RECFM=VdS,LRECL=32000)
XXET08F001 00 UNIT=SYSDA,SPACE=(TRK,(10,40)),
XX DCB=(BLKSIZE=0404,RFCFM=VBS,LKECL=32000)
XXFT09F001 DD UNIT=SYSDA,SPACE=(TRK,(2,2)),
XX DCB=(BLKS1ZF=080,LRFCL=0),PECFM=FB)
XXSYSOUT DD SYSOUT=*+DCB=BUFND=1
XXSORTLIB DD DSN=SYS1.SORTLIB.DISP=SHR
XXSURTWKO1 DD SPACE=(TRK+(&SORT)+,CONTIG)+UNIT=SYSDA
XXSURTWKOZ DD SPACE= (TRK , (&SORT),, COUTI G), UNI T=SYSDA
XXSORTWK33 DD SPACE= (TRK + (&SORT) + CONTIG) + UNIT=SYSDA
XXSORTWK04 DD SPAC==(TRK.(&SORT)CONTIG).UNIT=SYSDA
// GO.FDALL DD DSN=A3.YR76.TU77.UNIT=2314.VOL=SER=DISK87.
// DISP=(OLD,KEEP),DCB=(LPECL=80,BLKSIZ=2000,BECFM=FB)
//GO.ALLGRAZE DD DSN=A8.YR7677.GRAZEST.UNIT=2314.VQL=SER=DISK87.
// DISP=(OLD,KEEP), OCB=(LRECL=80, PLKSIZ=2000, RECFM=FB)
//GO.CHEM DD DSN=A8.YR76.CH6163.T06346.UNIT=2314.VOL=SER=DISK87.
// DISP=(CLD.KEEP).DCB=(LRECL=30.BLKSIZ==2C00.RECFM=FB)
//GO.STEERDMO DD DSN=A8.YR7677.STEER.ADF.DMD,UNIT=2314,VOL=SEP=D1 SK87,
// DISP=(DLD-KEEP).)CB=(LPECL=80.BLKSIZE=2000.SECFM=FB)
//GO.SYSIN DD *

PROC SORT OUT=GRAZEVEG DATA=ALLGRAZE; BY DAY LOC;

PROC SORT OUT=FLOWT DATA=FDALL; BY DAY LOC;

DATA FIELD; SFT FLOWT; IF DAY = 6163 OR DAY = 6183 OR DAY = 6206 OR DAY = 6234 OR DAY = 6262 OR DAY = 6250 OR DAY = 6320; IF DAY = 7180 THEN DELETE; IF LOC>11 AND LOC<19 THEN UNIT = 'SOUTH'; IF LOC <= 11 OR LOC >= 19 THEN UNIT = 'NDETH'; IF LOC=1 OR LOC=2 OR LOC=3 OR LOC=4 OR LOC=5 OR LOC=6 OR LOC=7 OR LOC=9 OR LOC=10 OR LOC=11 OR LOC=12 OR LOC=4 OR LOC=23 OR LOC=15 OR LOC=16 OR LOC=18 OR LOC=19 OR LOC=20 OR LOC=21 OR LOC=20 OR LOC=23 OR LOC=24 OR LOC=27 OR LOC=28 OR LOC=29 THEN ACCESS = 'GBAZED'; IF LOC = 8 OR LOC = 17 OR LOC=25 OP LOC=26 THEN ACCESS = 'EXCLOS'; 203 OBSERVATIONS IN DATA SET FIELD 49 VARIABLES DATA EXCLEED; SET FIELD; IF ACCESS = 'FXCLOS'; WGSTDV = WCSTDV; WGGRNL = WCGRNL; DGLIVE = DCLIVE; DGSTDL = DCSTDL; DGGRNL = CGRNL; GADSL = CADSL; GADSL = CADSL; GADSL = CADSL; GADSL = CADSL;

28 OBSERVATIONS IN DATA SET EXCLEED 49 VARIABLES

PROC SORT OUT=EXCS DATA=EXCLELD; BY DAY LOC;

```
PROC SORT OUT=FLDS DATA=FIELD: BY DAY LOC;
DATA FLDEX; MERGE EXCS FLDS; BY DAY LOC:
 203 DESERVATIONS IN DATA SET FLOEX
                                                                 49 VARIABLES
DATA GRVEG; SET GRAZEVEG;
IF DAY = 6163 OR DAY = 6183 OR DAY = 6206 OR DAY = 6234 CR
DAY = 6262 OP DAY = 6290 OR DAY = 6320;
IF DAY = 7180 THEN DELETE;
IF CLIP = C';
IF CAY = 6234 AND LOC = 3 AND TRANS = 1 THEN EGSTDL = 60;
IF DAY = 6234 AND LOC = 3 AND THANS = 1 THEN EGGRNL = 220;
 203 OBSERVATIONS IN DATA SET GRVEG
                                                                  59 VARIABLES
PROC SORT DUT=GRAZE DATA=GRVEG; BY D'AY LCC;
PROC SORT OUT=WEIGH DATA=FLDEX; BY DAY LOC;
DATA GRAZEWT: MEPGE WEIGH GRAZE; BY DAY LOC;
WGLIVE = EGLIVE * (WGSTDV/(EGLIVE + EGSTDL));
WGSTDL = EGSTDL * (WGSTDV/(EGLIVE + EGSTDL));
IF LOC=1 JR LOC=2 OR LOC=3 OP LOC=4 OP LOC=5 CR LOC=6 OR LOC=7 OR LOC=9
OR LOC=10 OR LUC=11 OR LOC=12 OF LOC=13 OR LOC=14 OR LOC=15 DR LOC=16 OR LOC=18 OR LOC=19 OF LOC=20 OR LOC=21 OF LOC=22 OR LOC=23 OR LOC=24 OR LOC=27 OR LOC=28 OR LOC=29 THEN ACCESS = "GPAZED";
IF LOC = 8 OR LOC = 17 OR LOC=25 OR LOC=26 THEN ACCESS = 'EXCLOS';
IF LOC>11 AND LOC<19 THEN UNIT = 'SOUTH';
IF LOC <= 11 OR LOC >= 19 THEN UNIT = 'NORTH';
FGSTDL = FGSTDL + 0;
FGGPNL = EGGRNL + 0;
   GPCLIVE = DIV(EGLIVE, (EGLIVE + EGSTDL));
GPC STDL = 1.0 - GPCLIVE:
GRAWSPP = GANGE+GANVI+GPAVI+GSONU+GANTE+GBDSA+GLECD+GPASC+GPASP+GSPD+GSET+GBDCU
+ GB UDA + GB C GR + G B OH I + GCY DA + GAR I + GW S AG + GB S J A + GCS AG + GCARX + GC S P G + GSC S C + GW S P G + G C A F A +
GC I R+GER CA +GER ST+GGUDR+GPL A+GANF B+GACLA+GAMPS+GAPL U+GAS ER+GHEL +GLESP+GSAP I
+GSCLA+GSDLI+GPPFB+GW00D;
IF DGLIVE > 1 THEN GLIVFTR1 = DIV(DGLIVE, GRAWSPP) * 20;
IF DGLIVE -> 1 THEN GLIVETE2 = 0;
GLIVFTR = (GLIVFTR2 = 0) * GLIVFTR1;
GANGE=GANGE*GLIVFTR; GANVI=GANVI*GLIVFTR; GPAVI=GPAVI*GLIVFTR;
GSINU=GSINU*GLIVETR; GANTE=GANTE*GLIVETR; GBOSA=GBOSA*GLIVETR;
GLECO=GLECO*GLIVFTR; GPASC=GPASC*GLIVFTR; GPASP=GPASP*GLIVFTR;
GSPO=GSPO *GLIVFTR; GSET =GSET *GLIVFTR; GBOCU=GBOCU*GLIVFTR;
GBUDA=GBJDA*GLIVFTR; GBOGR=GBOGR*GLIVFTR; GBOHI=GBOHI*GLIVFTR;
GCYDA=GCYDA*GLIVFTR; GARI =GARI *GLIVFTR; GWSAG=GWSAG*GLIVFTR;
GBR JA=GBR JA*GL IVF TR; GC SAG=GC SAG*GL IVFTR; GCARX=GCARX*GL IVFTR;
GSCSC=GSCSC*GLIVFTR; GCSPG=GCSPG*GLIVFTR; GACLA=GACLA*GLIVFTR;
GAP LU=GARLU*GLIVFTR; GASER=GASEP*GLIVFTR; GCAFA=GCAFA*GLIVFTR;
GCIR =GCIR *GLIVFTR; GERCA=GEPCA*GLIVFTR; GERST=GERST*GLIVFTR;
GGUDR=GGUDR*GLIVFTR; GAMPS=GAMPS*GLIVFTP; GHEL =GHEL *GLIVFTP;
GLESP=GLESP=GLIVFTR; GPLA =GPLA *GLIVFTR; GSAPI=GSAPI*GLIVFTR;
GSCUN=GSCJN*GLIVFTR; GSOLA=GSJLA*GLIVFTR; GSOLI=GSOLI*GLIVFTR;
GANEB=GANEB*GLIVETR; GPREB=GPREB*GLIVETR; GSHRUBS=GWDOD * GLIVETR;
GWSPG = GWSPG * GLIVFTR;
GTALLGRS = GANGE + GANVI + GPAVI + GSONU;

GMIDGRS = GANTE + GBOSA + GLECU + GPASC + GPASP + GSPO + GSET + GBOCU;

GSHRTGPS = GBUDA + GBOGP + GHOHI + GCYDA;

GWSAGRS = GARI + GWSAG;

GCSGRS = GBRIA + GCSAG + GCARX + GCSPG;
GWSGRS = STALLGRS + GMIDGRS + GSHRTGRS + GWSAGRS + GSCSC;
GANFBS = GCAFA + GCIR + GERCA + GEPST + GGUDR + GPLA + GANFB;
GPRFRS = JACLA + GAMPS + GARLU + GASER + GHEL + GLESP + GSAPI +
              GSOLA + GSOLI + GPREB;
GSPEBS = GACLA + GSULI + GERCA + GERST + GPLA + GANEB;
GSPEBS = GACLA + GCIP + GERCA + GERST + GPLA + GANEB;
GSUEBS = GHEL + GLESP + GSAPI + GSCUN + GSOLA + GPREB;
GLSUEBS = GAMPS + GARLU + GASER + GCAFA + GGUDR + GSOLI;
GLSUSPP = GLSUEBS + GSHRUBS;
GMISCGRS = GSHRTGRS + GWSAGPS + GWSPG;
GGRASS = GTALLGRS + GSCSC + GMIDGRS + GCSGRS + GMISCGPS;
GFORBS = STAPHES + GESUFBS + GLSUFBS;
 GALLSPP = GGRASS + GFORBS + GSHPUBS;
PCTALL = DIV(GTALLGRS, GALLSPP);
PCMID = DIV(GMIDGRS,GALLSPP);
PCSHRT = DIV(GSHRTGRS,GALLSPP);
PCWSAG = DIV(GWSAGRS,GALLSPP);
PCC SGRS = DIV(GCSGRS,GALLSPP);
```

PCWSGRS = DIV(GWSGRS,GALLSPP); PCFORBS = DIV(GFORBS, GALLSPP): PCGRASS = DIV(GGRASS, GALLSPP): PCSCSC = DIV(GSCSC,GALLSPP); PCSPEBS = DIV(GSPEBS,GALLSPP); PCESUEBS = DIV(GSUEBS,GALLSPP); PCLSUEBS = DIV(GLSUEBS,GALLSPP); PCLSUEBS = DIV(GLSUEBS,GALLSPP); PCLSUSPP = DIV(GLSUSPP,GALLSPP); PCTLSCSC = DIV((GTALLGRS + GSCSC),GALLSPP); PCMISCGS = DIV((GSHRTGRS + GWSAGRS + GWSPG),GALLSPP); 142 VARIABLES 203 OBSER VATIONS IN DATA SET GRAZEWT PROC SORT OUT=CHEMS DATA=CHEM; BY DAY LOC; PROC SORT OUT= GRAZEWTS DATA=GRAZEWT& BY DAY LOC DATA CLIPCHEM: MERGE CHEMS GRAZEWTS; BY DAY LOC; TF DAY=6163 OR DAY=6183 OR DAY=6206 DR DAY=6234 DR DAY=6262 OR DAY=6290 OR CAY=6320; GNLIVE = GNLIVE * 0.01; GPLIVE = GPLIVE * 0.01; GKLIVE = GKLIVE * 0.01; GCALIVE = GCALIVE * 0.01;PCM2=PCMID*PCMID: PCC2=PCCSGRS*PCCSGRS; PCS2=PCSPEBS*PCSPEBS; PCE2=PCESJFBS*PCESUFBS: PCL2=PCLSUSPP*PCLSUSPP: PCT2=PCTLSCSC*PCTLSCSC; PCMI2=PCMISCGS *PCMISCGS ; 203 OBSERVATIONS IN DATA SET CLIPCHEM 177 VARIABLES DATA CLPCH163; SET CLIPCHEM; IF DAY=6163; 29 OBSERVATIONS IN DATA SET CLPCH163 177 VAR JABLES PPOC SORT OUT= STEERX DATA=STEERDMD; BY DAY LOC; PROC SORT OUT=CHEMCLIP DATA=CLIPCHEM; BY DAY LOC;

DATA CHEMSTRX: MERGE STEEPX CHEMCLIP: BY DAY LOC; IF DAY=6163; PCTALL2=PCTALL*PCTALL; PCWSAG2=PCWSAG*PCWSAG;

68 OBSERVATIONS IN DATA SET CHEMSTRX

229 VARIABLES

PROC REGR S CORP DATA=CHEMSTRX; MODEL ADFP=PCTALL PCTALL2; MODEL ADFP=PCWSAG PCWSAG2;

** *** ** ** ** ** ** ** ** **	****	·····	
* • • • • • • • • • • • • • • • • • • •		ייי איז איז איז איז א ין איז איז איז איז איז איז איז איז איז איז	*
* PROC REGR	:	RANGE NUTRITION - EFFECT OF SPECIES COMP ON ADE & NBDMD	*
*			*
* DATA SET	:	CHEMSTRX NUMBER OF VARIABLES = 5 NUMBER OF CLASSES = 0	*
*			*
* VARIABLES	:	ADEP POTALL POWSAG POTALL2 POWSAG2	*
*			*
* * * * * * * * * * * * * * * *	*****	***************************************	* * * * * * *

N = 27		COPRELATION COEFFICIENT:				/ PROB > IR! UNDER HO: RHD=0				
	ADEP	PCTALL	PCWSAG	PCTALL2	PCWSAG2					
4DFP	1.000000 0.0000	0.307672 0.1185	-0.233708 0.2407	0•2295 7 5 0•2494	-0.084918 0.6737					
PCTALL	0.307672 0.1135	1.000000	-0.328759 0.0941	0.9609 35 0.0001	-0.272793 0.1686					
PCWSAG	-0.233708 0.2407	-0.328759 0.0941	1.000000 0.0000	-0.347713 0.0755	0.926527 0.0001					
PCTALL2). 22 9575 0.2494	0.960935 0.0001	-0.347713 0.0755	1.000000 0.0000	-0.264148 0.1831					
PCWSAG2	-0.084918 0.6737	-0.272793 0.1686	0.926527 0.0001	-0.264148 0.1831	1.000000					125

ANALYSIS OF VARIANCE TABLE . REGRESSION COEFFICIENTS . AND STATISTICS OF FIT FOR DEPENDENT VARIABLE ADEP

SOURCE	ÐF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F	P - SQUARE	C.V.
REGRESSION	2	0.00541520	0.00270760	2.14530	0.1374	0.15166167	6.99245 %
FRRUR	24	0.03029060	0.00126211			STD DEV	ADEP MEAN
CORRECTED TOTAL	26	0.03570530				0.03552616	0.50896
SPURCE	DF	SEQUENTIAL SS	F VALUF	PROB > F	PARTIAL SS	F VALUE	PROB > F
PCTALL PCTALL2	1 1	0.)0337999 0.00203521	2.67805 1.61255	0.1148 0.2163	0.00353334 0.00203521	2.79956 1.61255	0.1073 0.2163
					- - 		
SOURCE	B VALUES	T FOP HI:B=J	PF	108 > 11	STD ERF B	STD B VALUES	
INTERCEPT PCTALL PCTALL2	C.49502377 53.35337 D.66364245 1.67319 -3.15183271 -1.20986			0.0001 0.1073 0.2163	0.00933032 0.396.3365 2.48206569	0.0 1.1365808 -0.8626360	

SCURCE	DF	SUM DE SQUAPES	MEAN SQUARE	F VALUE	PROB > F	R-SQUARE	. C . V .
REGRESSION	2	0.00632016	0.00316008	2.58092	0.0950	0.17700647	6.88721 %
FRRCR	24	0.02938564	0.00122440				ADFP MEAN
CORRECTED TOTAL	26	0.0357 0580				STD DEV	AUFP MEAN
						0.03499145	0.50806
SOURCE	DF	SEQUENTIAL SS	F VALUE	PRUB > F	PARTIAL SS	F VALUE	PROB > F
PCWSAG	1	0.00195024	1.59281	0.2191	0.03606268	4.95155	0.0357
PCWSAG2	1	0.00436992	3.56903	0.0710	0.00436992	3.56903	0.0710
SCURCE	B VALUES	T FOR H):8=0	PR	08 > T	STD ERF B	STD B VALUES	i
INTERCEPT	0.52431379	51.52578		0.0001	0.31016993	0.0	
PCWSAG	-1.09228904	-2.22521		0.0357	0.49087071	-1.09524297	
P CW SA G 2	8.61953943	1.38919		0.0710	4.56255105	0.92985414	

.

ANALYSIS OF VARIANCE TABLE , REGRESSION COEFFICIENTS , AND STATISTICS OF FIT FOR DEPENDENT VARIABLE ADEP

FOUR- AND FIVE- AND SIX-VARIABLE MODELS

DATA CLPCH206: SET CLIPCHEM; IF DAY=6206;

29 UBSER VATIONS IN DATA SET CLPCH206 177 VAR TABLES

PROC REQUARE START = 4 STOP = 6 PRINT = 5 DATA. = CLPCH206; VAR POMID PCCSGRS PCSPEBS PCSSUEBS PCLSUSPP PCTLSCSC PCMISCGS GNLIVE;

N= 29		FOUR+ AND FIVE- AND SIX-VARIABLE MODELS
		ALL POSSIBLE REGRESSION MODELS FOR DEPENDENT VARIABLE GNLIVE
NUMBER IN. MODEL	R-SQUARE	VARIABLES IN MODEL
4	0.56925146	PCMID PCSPEBS PCESUERS PCMISCGS
4	0.57006008	PCMID PCCSGRS PCSPFBS PCESUFBS
4	0.57125688	PCSPERS PCESUEBS PCLSUSPP PCTLSCSC
4	0.57254224	PCCSGRS PCSPFBS PCLSUSPP PCTLSCSC
4		PCMID PCSPFBS PCESUFBS PCTLSCSC
5		PCMID PCCSGRS PCSPERS PCLSUSPP PCTLSCSC
5).57818153	PCMID PCSPFBS PCESUFBS PUTLSCSC PCMISCGS
5	0.58052182	POMID POSPERS POESUEBS POLSUSPP POTESOSO
5	0.581 36 787	PCMID PCCS GPS PCSPERS PCESUERS PCMISCGS
5	0.58146706	PCCSGRS PCSPEBS PCESUEBS PCLSUSPP PCTLSCSC
6	0.58177017	PCCSGRS PCSPERS PCESUERS PCLSUSPP PCTLSCSC PCMISCGS
6	0.58177017	PCMID POCSGES PCSPEBS PCESUEBS POLSUSPP POTLSCSC
ь	0.58177017	PCMID PCSPEBS PCESUERS PCLSUSPP PCTLSCSC PCMISCGS
6	0.58177017	PCMID PCCSGRS PCSPFRS PCESUFBS PCTLSCSC PCMISCGS
6	0.58177017	POMID POCSORS POSPERS POESUEBS POLSUSPP POMISOGS

RANGE NUTRITION-FEFET DE SPECIES COMP ON CHEMICAL COMPONENTS

NUMBER OF VARIABLES = 6

PROC REGR. : RANGE NUTRITION-EFFECT OF SPECIES COMP ON CHEMICAL COMPONENTS

: GNLIVE POMID POSPESS POLSUSPP POM2 POE2

*

×

DATA SET

VARIABLES

: CLPCH183

DATA CLPCH183; SET CLIPCHEM; IF DAY=6183;

NUMBER OF CLASSES = 0

29 CBSERVATIONS IN DATA SET CLPCH183 177 VARIABLES

PROC REGR S DATA=CLPCH183; MODEL GNLIVE=PCMID PCSPERS PCLSUSPP PCM2 PCE2;

*

×

*

C PP UN	23	0.00018211	3.030077	72		STD DEV	GNLIVE MEAN
CORRECTED TOTAL	28	0.00048815				0.00281387	0.01986
SOURCE	DF	SEQUENTIAL SS	F VALUE	PROB > F	PARTIAL SS	F VALUE	PROB > F
PCMID PCSPFBS PCLSUSPP PCM2 PCE2	1 1 1 1	0.00003660 0.00002920 0.0003810 0.0003305 0.00013909	4.62274 3.68842 8.60079 4.17354 17.56599	0.0423 0.0673 0.0075 0.0527 0.0003	0.00038212 0.00009322 0.30331795 0.00006550 0.00013909	10.37120 11.77393 2.26733 8.27284 17.56599	0.0038 0.0023 0.1457 0.0085 0.0003
SOURC E	B VALUES	T FOR HD:B=D		PROB > ITI	STD ERR B	STD B VALU	ES
INTERCEPT PCMID PCSPFBS PCLSUSPP PCM2 PCE2	0.02141469 -0.07292456 0.01872268 -0.01913051 0.19248683 0.03432939	12.34911 -3.22343 3.43132 -1.50576 2.97625 4.19118		0.0001 0.0038 0.0023 0.1457 0.0085 0.0003	0.00173411 0.02264433 0.00545641 0.01270486 0.06692275 0.00319087	0.0 -1.758074 0.517960 -0.211085 1.592639 0.600992	65 03 21

MEAN SQUARE

0.00006121

0.00000792

F VALUE

7.73029

PRCB > F

0.0004

R-SQUARE

0.62693510

C.V.

14.16706 %

ANALYSIS OF VARIANCE TABLE , REGRESSION COEFFICIENTS , AND STATISTICS OF FIT FOR DEPENDENT VARIABLE GNLIVE

RANGE NUTRITION-EFFECT OF SPECIES COMP ON CHEMICAL COMPONENTS

SCURCE

E RR OR

REGRESSION

DF

5

23

SUM OF SQUARES

0.00030604

0.00018211

APPENDIX R

COMPUTER INPUT, PROCEDURES AND ANALYSES FROM

DISK PROGRAM FOR FIBER COMPONENTS

ON RANGE SITES

.

```
JOB (XXXXX,503-56-0971), 'KAUTZSCH', TIME=1, CLASS=4,
//ZZSHK@3
     TYPE UN=HOLD
****POUTE PRINT LOCAL
*** JOBPANM FIRMS=9001
// EXEC SAS, PEGLON, 30=390K
          PHIDE STREEFI, VER= 7404
FXED PGM=SAS, REGION=127K
21.248
XXGO
XXSTEPLIS OD DSN=SYS1.USERLIB.SAS&VER,DISP=SHR
            DD DSN=SYS1.USERLIB.SASS&VER.DISP=SHR
ΧХ
                DSN=SYS3.LINKLIB.DISP=SHR
           00
ХХ
                UNIT = SYSDA, SPACF = (TRK, 20, , CONTIG), DCB=BLKSIZE=1600
C S D A M X X
           0.5
XXSASDATA DD.
                UNIT=SYSDA, SPACF=(TRK, (80, 40, 8))
XXSYSPPINT OU
                SYSDUT=*
CC LCC HSCT 12X
                SYSDJT=8, DCH=(BLKSIZE=80, RECFM=F) PUNCH OUTPUT
YXI T 33F 001 00
                SYSDJT=*, DCB=(BLKSIZE=133,LRECL=133,RECFM=FBA)
X.KET05E001 00
                UNIT=SYSDA, SPACE=(TRK, (10,40)),
                )C3=( 8LKS I7E=0404, RECFM= VBS, LRECL=32000)
¥ 7
                UNIT=SYSDA, SPACE= (TRK, (10, 40))
XXFT06F001 00
                UCB=(BLKSIZE=0404,RECFM=VBS,LRECL=32000)
ХX
XX: 1075101 00
                UNIT= SYSDA, SPACE=(TRK, (10,40)),
хx
                008=(BLKSIZE=0404, RECFN=VBS, LRECL=32000)
XXETUREDC1 DO
                UNI *= SYSDA, SPACE=(TRK, (10,40)),
                DCB=(BLKS IZE=0404, RECFM=VBS, LRECL=32000)
χx
                UNIT=SYSDA, SPACE=(TRK, (2,2)),
XXET09F 001 00
                DCB=(BLKSIZE=080,LRECL=80,RECFM=FB)
ΧХ
XXSYSDIT
           DD SYSOUT = *. DCP= BUFNU=1
XXSORTLIE OD DSN=SYS1.SOFTLIB.DISP=SHR
XXSORTAKOL OD SPACE= (TRK, (&SORT), , CONTIG), UNIT=SYSDA
XXS IRTWKO2 DD SPACE= (TRK , (&SORT ), , CONTIGI, UNIT=SYSDA
XXSORTWKO3 DD SPACE=(TRK+(&SORT)+,CONTIG)+UNIT=SYSDA
KXSORTWK04 DD_SPACF=(TRK,(&SORT),,CONTIG),UNIT=SYSDA
//GO.STEEPDMO DO DSN=AB.YR7677.STEER.ADF.DMD, UNIT=2314, VOL=SER=DISK87,
// DISP=(OLD,KEEP),DCB=(LRECL=80,BLKSIZE=2000,RECEM=FB)
//GO.SYSIN DD *
DATA STEERDAY; SET STEERDMD;
  IF DAY < 6355 THEN DAYS = DAY;
  IF DAY > 6365 THEN DAYS = DAY-635;
  IF LOC=1 OR LOC=3 OR LOC=4 OR LOC=10 OR LOC=13 OR LOC=14 OR LOC=16
  OR LOC=17 OR LOC=19 OR LOC=20 OR LOC=21 OR LOC=22 OR LOC=23
  OR LOC=28 THEN SITE = 'LPRG';
  IF LOC=2 OR LOC=5 OR LOC=6 OR LOC=7 OR LOC=8 OR LOC=9 OR LOC=11 OR LOC=12
OR LOC=15 OR LOC=18 OR LOC=24 OR LOC=25 OR LOC=26 OR LOC=27
  OR LOC=29 THEN SITE = 'SHPRG';
 649 TESER VATIONS IN DATA SET STEERDAY
                                                 59 VAR IABLES
PROC REGR S C DATA=STEERDAY;
MODEL DMD = ADEP ADLP CELLP:
MODEL DHD = ADLP CELLP;
MODEL DMO = ADFP CELLP;
MODEL DMD = ADEP:
MODEL DMD = CELLP;
PROC SORT DATA=STEERDAY; BY SITE:
PROC REGR S C DATA=STEERDAY;
                                  BY SITE:
MODEL DMD = ADEP ADLP CELLP;
MODEL DMD = ADLP CELLP;
MODEL DMD = ADFP CELLP;
MODEL DM) = ADFP;
MODEL DMD = CELLP:
```

PPOC REGR	:	STATI	SΤΙ	CAL	ΑΝΔ	LYSIS	SYSTEM		
NATA SET	:	STREEDAY	N	MARER JE	VARISE	LES = 4	NUMBER OF CI	ASSES = 0	
VARIABLES	:	ADEP ADEP	CELLP	DMD					

	ADEP	4 DL P	CELLP	DMD
ADEP	-			
AUF P	1.00000 0.0000	0.334731 0.0001	0.828821 0.0001	-0.775983 0.0001
ADL P	0.334031	1.000000	0.175705	-0.254947
	0.0001	0.0000	0.0004	. 0.0001
CELLD	0.828821	0.175705	1.000000	-0.726029
	0.001	J. 0004.	3.0000	0.0501
DMD	- 0.775983 0.0001	-0.254947	-7.726029	1.000000
	0.0001	5.0051	0.0001	0.0000

ANALYSIS OF VAFIANCE TABLE . REGRESSION CREEFICIENTS . AND STATISTICS OF FIT FOR DEPENDENT VARIABLE DMD

STURCE	DE	SUM DE SQUARES	MEAN SQUARE	F VALUE	PROB > F	R-SQUARE	C.V.
REGRESSION	1	4.47048391	4.47048391	596.32203	0.0001	0.60214962	30.99560 %
ERROR	394	2.95372395	0.00749676			STD DEV	OMD MEAN
CORRECTED TOTAL	345	7.4242)786				0.38658384	0.27934
SOURCE	⊃F	SEWUENTIAL SS	F VALUS	PROB > F	PARTIAL SS	F VALUE	PROB > F
ADF P	1	4.47043391	596.32203	0.0001	4.47048391	596.32203	0.0001
SCHECE	E VALUES	T FOR HD:B=D	t	PROB > 111	STO ERR B	STD B VALJES	
INTERCEPT Adfp	1.03767411 -1.62479620	33 .09 182 - 24 . 41 971		0.0001 9.0001	0.03135742 0.06653627	0.0 - 0.7759 8300	

**								
÷	SITEFULED							
* 04T4 SFT	: STEERDLY	. NUMBER	OF VAPILELES	= 4	UMBER C	CF CLASSE	C = 2	
*		6511D (110						
* VARIABLES	: ADEP AND	CELLP 040						
********	****	* * * * * * * * * * *	*****	****	******	*****	*******	****
				S	ITE=LPR	G		
N = 212		¢.	OFFELATION CO	DEFFICIENTS	/ Pi	R08 > 181	JNDEP HO:	Rh0=
	1750	A DE P	CELLP	GNC				
ADEP	1. 100000	0.201295	0.771072	-0.795195				
		0.01	0.0001	2.0001				
		J., , , ,	J. 701	3. 3301				

ADEP	1.700000	0.201295	0.771072 0.0001	-0.795195 0.0001	
, DL D	0.201270 0.201270	1.010000	0.108192 0.1163	-0.243126 0.0004	
CELLP	0.771972 0.0001	0.108192 0.1163	1.000000	-0.710427 0.0001	

" PPOCHESS : STITISTICAL ANALYSIS SYSTEM

. .

		0.0001	7.1163	0	. ೧೦೦೧	C).)(101
		-0.795195	-0.243126 0.0004		10127		0000	
			SITE=LP	₹G ·				
TABLE	•	REGRESSION	COFFFICIENTS	, AND	STATI	STICS	OF	FIT

-JMD

FOR DEPENDENT VARIABLE DMD ANALYSIC OF VARIANCE

SOURCE	DF.	SUM OF SQUARES	MEAN SQUAPE	F VALUE	PR08 > F	R - SUUAR E	c.v.
PEGPESSION	1	2.24032308	2.24032308	361.17344	0.0001	0.63233585	29.24457 %
CERIC	210	1.30260919	0.00620290			STO DEV	DMD MEAN
							UND MEAN
COPRECTED TOTAL	211	3.54293228				0.07875850	0.26931

SCHPCE	DF	SEQUENTIAL SS	F VALUE	PPOB > F	PARTIAL SS	F VALUE	PRUB > F
ADEP	1	2.24032308	361.17344	0.0001	2.24032308	351.17344	0.0001

800 - E	H VALUES	T FOR 40:8=0	PROB > 11	STO ERR B	STO B VALUES
TATE: CEDT CDFP	1.37994519 -1.72515291	25.11712 -19.00455	0.0001 0.0001	0.04299638 0.09077624).0 -9.79519548

133

#

*

ADF P	ì	2.21002123	247.47210	1.000 . 1	2.21002129	247.47210	0.0001
SCUPCE	8 VALUES	T_F0R_H0:8=0	i -	PRDA > ITI	STO ERR R	STU 8 VALJES	
INTERCEST ADEP	1.00243950 -1.53654134	21.90443 -15.73125		0.0001 0.0001).04576424).0767448	0.0 -0.75909415	

EKROR	1.52	1.62533318	0.00043034			STD DEV	DMD MEAN
CORPECTED T IN	153	3.83535147				0.09450072	0.29090
Sintar É	OF	SEQUENTIAL SS	F VALUE	PROB > F	STAL SS	f VALUE	PROB > F

MEAN SQUARE

2.21002129

0.00893039

ANALYS'S OF MARIANCE TABLE , REGRESSION CREEFICIENTS , AND STATISTICS OF FIT FOR DEPENDENT VARIABLE DMD

SITE=SHPR

	∆JJF₽	ADL P	CELLP	DMD
ADFP	1.00000	0.426790	0.876738	-0.759094
	0.0000	0.0001	0.0001	0.0001
ADI P	0.426790	1.00000	0.252411	-0.271547
	0.0001	0.0000	0.0005	0.0002
CELLP	7. 876738 3. 03.)1	0•?52411)•005	1.000000	-0.737243 0.0001
U M C	-0.159094	-J.271547	-7.737240	1.000000
	0.0001	0.0302	0.0001	0.0000

٦F

1

1-2

SCURCE

REGRESSION EFROS

SUM OF SOUARES

2.21002129

1.62533018

N =	18+	CORRELATION	COEFFICI

CIENTS / PROB > [R] UNDER HO: RHO=0

F VALUE

247.47210

PROB > F

0.0001

R-SQUARE.

0.57622393

C.V.

32.48545 \$

#

		SITE=SH05	
17 1	:	STEERDAY NUMBER OF VARIABLES = 4 NUMBER OF CLASSES = 0	
VARIANTES	:	ADEP ADLP CELLP DMD	

APPENDIX S

COMPUTER INPUT, PROCEDURES AND ANALYSES FROM

DISK PROGRAM FOR CHEMICAL COMPONENTS

ON RANGE SITES

STATISTICAL ANALYSIS SYSTEM

```
//ZZS4K@3
           JDB (XXXXX,503-56-0971), 'KAUTZSCH', TIME=1, CLASS=A,
     TYPRUN=HOLD
11
***ROUTE PRINT LOCAL
***JOBPARM FORMS=9001
 // EXEC SAS,REGION.GD=390K
XXSAS
           PROC
                 SORT =60. VER=7404
           EXEC PGM=SAS, REGION=127K
 XXGO
XXSTEPLIB DD DSN=SYS1.USERLIB.SAS&VER.DISP=SHR
XX
            DD
               DSN=SYS1.USERLIB.SASS&VER.DISP=SHR
XX
            DD
                DSN=SYS3.LINKLIB.DISP=SHR
                UNIT=SYSDA, SPACE=ITRK, 20,, CONTIG, DCB=BLKSIZE=1600
XXMACR3
            DD
XXSASDATA DD
                UNIT=SYSDA,SPACE=(TRK,(80,40,8))
 XXSYSPPINT DU
                SYSOUT=*
                SYSDJT=B, DCB=(BLKSIZE=80, RECFM=F) PUNCH OUTPUT
 XXFT02F001 DD
XXET03EC01 D0
                SYSDJT=*, DCB=(BLKSIZE=133, LRECL=133, RECFM=FBA)
XXFT05F001 DD
                UNIT=SYSDA, SPACE=(TRK, (10,40)),
                DCB=(BLKSIZE=0404, RECFM=VBS, LRECL=32000)
 ΧХ
XXFT06F001 DD
                UNIT=SYSDA, SPACE=(TRK, (10,40)),
                DCB=(BL<SIZE=0404,RECFM=VBS,LRECL=32000)
ΧХ
XXFT07F001 DD
                UNIT=SYSDA, SPACE=(TRK, (10,40)),
                DCB=(BLKSIZE=0404,RECFM=VBS,LRECL=32000)
XX
XXET08E001 DD
                UNIT=SYSDA, SPACE=(TRK, (10,40)),
                DCB=(BLKSIZE=0404,RECFM=VBS,LRECL=32000)
 XX
                UNIT=SYSDA, SPACE=(TRK, (2,2)),
XXET09E001 DD
ΧХ
                DCB=(BL<SIZE=080,LRECL=80,RECFM=FB)
 XXSYSDUT
           DD SYSOUT =*. DCB=BUENO=1
 XXSORTLIB DD DSN=SYS1.SORTLIB, DISP=SHR
 XXSOPTWK01 DD SPACE=(TRK, (&SORT),, CONTIG), UNIT=SYSDA
 XXSORT#KO2 DD SPACF=(TRK ,(&SORT),,CONTIG),UNIT=SYSDA
XXSORTWKD3 DD SPACE= (TRK, (&SORT),, CONTIG), UNIT=SYSDA
 XXSORTWKO4 DD SPACE= (TRK, (&SORT), , CONTIG), UNIT=SYSDA
 //GO.CHEMALYS DD DSN=A8.YR7677.CH6163.T07130,UNIT=2314,VOL=SER=DISK87,
 // DISP=(OLD,KEEP), DCB=(LRECL=80, BLKSIZE=2000,RECFM=FB)
 //GO.SYSIN DD *
  DATA CHEMSITE; SET CHEMALYS;
IF LOC=1 OR LOC=3 OR LOC=4 OR LOC=10 OR LOC=13 OR LOC=14 OR LOC=16
    OR LOC=17 OR LOC=19 OR LOC=20 OR LOC=21 OR LOC=22 OR LOC=23
    OR LOC=28 THEN SITE = "LPRG";
    IF LOC=2 OR LOC=5 OR LOC=6 OR LOC=7 OR LOC=8 OR LOC=9 OR LOC=11 OR LOC=12
    OR LOC=15 OR LOC=18 OR LOC=24 OR LOC=25 OR LOC=26 OR LOC=27
    OR LOC=29 THEN SITE = 'SHPRG';
348 OBSERVATIONS IN DATA SET CHEMSITE
                                                33 VARIABLES
  PROC SORT OUT=CHEMSORT DATA=CHEMSITE; BY DAY SITE;
  PROC ANOVA DATA=CHEMSORT; BY DAY;
    CLASSES SITE; MEANS SITE;
     MODEL GNLIVE GPLIVE GKLIVE GCALIVE = SITE;
      POOL 'E' RESIDUAL/SITE; TEST SITE BY 'E';
                                               DAY=6163
   DATA SET CHEMSORT
   CLASSES
                   VALUES
   SITE
                  LPRG SHPR
```

STATISTICAL ANALYSIS SYSTEM

PROC ANOVA DATA=CHEMSORT; BY DAY; CLASSES SITE; MEANS SITE; MODEL GNDEAD GPDEAD GKDEAD GCADEAD = SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY 'E';

DAY=6163

DATA SET CHEMSORT

CLASSES VALUES

SITE LPRG SHPR

PROC ANOVA DATA=CHEMSORT; BY DAY; CLASSES SITE; MEANS SITE; MODEL GNDUNG GPDUNG GKDUNG GCADUNG = SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY 'E';

DAY=6163

DATA SET CHEMSORT CLASSES VALUES

SITE LPRG SHPR

PROC ANDVA DATA=CHEMSORT; BY DAY; CLASSES SITE; MEANS SITE; MODEL GNGRN GPGRN GKGRN GCAGRN = SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY 'E';

DAY=6163

DATA SET CHEMSORT

CLASSES	VALUES

SITE LPRG SHPR

STATISTICAL ANALYSIS SYSTEM DAY=6163

ANALYSIS OF VARIANCE FOR VARIABLE GNLIVE		MEAN 2.3789	96552 C.V.	10.0794504 %		
SDJRCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	0.15943278	0.159432775		•	
E	27	1.55243619	0.057497637	0.242595792	0.179651976	15
RESIDUAL	27	1.55243619	0.057497637			
CORRECTED TOTAL	28	1.71186897	0.061138177			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	SITE	1	0.15943278	0.159432775	2.77286	0.1039
DENOMINATOR	: E	27	1.55243619	0.057497637		-

ANALYSIS OF VARIANCE FOR VARIABLE GNDEAD		MEAN 0.85931	10345 C.V.	38.6223967 %		
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	0.54157716	0.541577159			
E	27	2.97400905	0.110148483	0.335774422	0.248654485	15
RESIDUAL	27	2.97400905	0.110148483			
CORRECTED TOTAL	28	3.51558621	0.125556650			

TESTS	SOURCE	DF S	UM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	SITE	1	0.54157716	0.541577159	4.91679	0.0332
DENOM INATOR	: E	27	2.97400905	0.110148483		

STATISTICAL ANALYSIS SYSTEM DAY=6163

.

ANALYSIS OF VARIANCE FOP VARIABLE GNDUNG		MEAN 1.612	50000 C.V.	9.24382832 %		
SOURCE	ÐF	SUM OF SQUARES	MEAN SQUARE	LSD .31	LSD .05	DIVISOR
SITE	1	0.011459359	0.0114593590			
E	26	J . 577 665641	0.0222179093	0.156548619	0.115803719	14
RESIDUAL	26	0.577665641	0.0222179093			
CORRECTED TOTAL	27	0.589125000	0.0218194444			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	SITE	1	0.011459359	0.0114593590	0.51577	0.5143
DENCMINATOR	: E	26	0.577665641	0.0222179093		

ANALYSIS OF VARIANCE FOR VARIABLE GNGRN		MEAN 1.C	1793103	C.V.	23.8042649 %		
SNURCE	DF	SUM OF SQUARE	S MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	0.0799811	0.079	99811002			
E	27	1.5852947	6 0.058	87146208	0.245149791	0.181543291	15
RESIDUAL	27	1.5852947	6 0.058	37146208			
COPRECTED TOTAL	28	1.6652758	6 0.059	4741379			

TESTS	SOURCE	, D	DF SUM	1 OF SQUARES	MEAN SQUARE	FVALUE	PROB > F
NUMERATOR:	SITE		ı	0.07998110	0.0799811002	1.36220	0.2522
DENCMINATOR	: E	2	27	1.58529476	0.0587146208		

APPENDIX T

COMPUTER INPUT PROCEDURES AND ANALYSES FROM DISK PROGRAM FOR CHEMICAL COMPONENTS OF LIVE, DEAD, GROUND LITTER AND DUNG BIOMASS ON

RANGE SITES

STATISTICAL NALYSIS SYSTEM

	(XXXXX,503-56-0971), *KAUTZSCH*,TIME=1,CLASS=A,
// TYPRUN=HO	-
***KOUTE PRINT	
***JOBPARM FOR	
// EXEC SAS.RE	
	SO 2 T = 60, VER = 7404 PGM= SAS, REGION=127K
XXSTEPLIB DD	D SN=SYS1.USERLIB.SAS&VER.DISP=SHR
XX DD	DSN=SYS1.USERLIB.SASSEVER.DISP=SHR
XX 00	DSN=SYS3.LINKLIB.DISP=SHR
XXMACRO DD	UNIT=SYSDA.SPACE=(TRK.20CONTIG).DCB=BLKSIZE=1600
XXSASDATA DD	UNIT=SYSDA.SPACE=(TRK, (80, 40, 8))
XXSYSPRINT DD	SYSDUT=*
XXFT02F001 DD	SYSJJT=B,DCB=(BLKSIZE=8C,RECFM=F) PUNCH OUTPUT
XXFT03F001 DD	SYSDJT=*, DCB=(BLKSIZE=133, LRECL=133, RECFM=FBA)
XXFT05F001 DD	UNIT=SYSDA, SPACE=(TRK, $(10, 40)$),
XX	DCB=(BLKS1ZE=0404, RECFM=VBS, LRECL=32000)
XXFT06F001 DD	UNIT=SYSDA, SPACE=(TRK, (10, 40)),
XX	DCB=(BLKSIZE=0404,RECFM=VBS,LRECL=32000)
XXETO7E001 DD	UNIT=SYSDA, SPACE=(TRK, $(10, 40)$),
XX	DCB=(BLKSIZE=0404, RECFM=VBS, LRECL=32000)
XXFT08F001 DD	UNI $f = SYSDA, SPACE = (TRK, (10, 40)),$
XX	DCB=(BLKSIZE=04)4, RECFM=VBS, LRECL=32000)
XXFT09F001 00	UNIT=SYSDA,SPACE=(TRK,(2,2)),
XX	DCB=(BLKSIZE=080,LRECL=80,RECFM=FB)
	SYSOUT = *, DCB=BUFNO=1
	DSN=SYS1.SORTLIB,DISP=SHR
	SPACE=(TRK,(&SORT),,CONTIG),UNIT=SYSDA
	SPACE=(TRK,(&SORT),,CONTIG),UNIT=SYSDA
	SPAC == (TRK, (&SORT),, CONTIG), UNIT=SYSDA
	SPACE= (TR<, (&SORT),, CONTIG), UNIT=SYSDA
	DD DSN=A3, YR7677. CH6163. T07130, UNIT=2314, VOL=SER=DI SK87,
	EEP),)CB=(LRECL=80,BLKSIZE=2000,RECFM=FB)
//GO.SYSIN DD	*

PROC SORT DUT=CHEMADVS DATA=CHEMALYS; BY DAY LOC;

PROC ANOVA DATA=CHEMAOVS; CLASSES DAY; MEANS DAY; MODEL GNLIVE GPLIVE GKLIVE GCALIVE = DAY; POOL 'E' RESIDUAL/DAY; TEST DAY BY 'E';

DATA SET CHEMADVS

CLASSES VAL'IES

DAY

6163 6183 6206 6234 6262 6290 6320 6346 7010 7040 7090 7130

STATISTICAL ANALYSIS SYSTEM

PRUC ANDVA DATA=CHEMADVS; CLASSES DAY; MEANS DAY; MODEL GNDEAD GPDEAD GKDEAD GCADEAD = DAY; POOL 'E' RESIDUAL/DAY; TEST DAY BY 'E';

DATA SET CHEMADVS

CLASSES VALUES

DAY 6163 6183 6206 6234 6262 6290 6320 6346 7010 7040 7090 7130

PROC ANDVA DATA=CHEMAOVS; CLASSES DAY; MFANS DAY; MODEL GNGRN GPGRN GKGRN GCAGRN = DAY; PODL 'E' RESIDUAL/DAY; TEST DAY BY 'E';

DATA SET CHEMADVS

CLASSES VALUES

DAY

6163 6183 6206 6234 6262 6290 6320 6346 7010 7040 7090 7130

PROC ANDVA DATA=CHEMAOVS; CLASSES DAY; MEANS DAY; MODEL GNDUNG GPDUNG GKDUNG GCADUNG = .DAY; POOL 'E' RESIDUAL/DAY; TEST DAY BY 'E';

DATA SET CHEMADVS

CLASSES VALUES

DAY

6163 6183 6206 6234 6262 6290 6320 6346 7010 7040 7090 7130

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATO?:	DAY	6	0.289006897	0.0481678161	55.79496	0.0001
DENCHINATOR	: F	1 76	0.169206897	0.0008633005		

ANALYSIS OF VARIANCE FOR VARIABLE GPLIVE		MEAN 0.1036	20690 C.V.	27.0500728	8	
Sour CE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
AVC.	6	0.289006897	0.0481678161			
 ۲	196	0.169206897	0.0008633005	0.0200704820	0.0152173489	29
265: 114	196	0.169206897	0.0008633005			
CRAFTED TOTAL	2)2	0.458213793	0.0022683851			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	DAY	6	28.8568670	4.80941783	34.74925	0.0001
DENOMINATOR	: E	196	27.1274207	0.13840521		

ANALYSIS OF VARIABLE GALIVE		MEAN 1.665	96059 C.V.	22.3311707 %		
SO HOE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
Y4(:	6	28.8568670	4.80947783			
E	196	27.1274207	0.13840521	0.254128397	0.192678988	29
RESTOUAL	196	27.1274207	0.13840521			
CORRECTED TOTAL	2 3 2	55.9842877	0.27714994			

ANALYSIS OF VAPIANCE FOR VAR	IABLE GKLIVE	MEAN 1.364	97537 C.V.	24.2001481 9	C C C C C C C C C C C C C C C C C C C	
SOURCE	DF	SUM OF SQUARES	MEAN SQUAPE	LSD .01	LSD .05	DIVISOP
DAY	6	12.1348749	2.02247915			
ε .	196	21.3866000	0.10911531	0.225641787	0.171080589	29
RESIDUAL	196	21.3866000	0.10911531			
CORRECTED TOTAL	202	33.5214749	0.16594790			

TESTS SOURCE		DF SI	UM OF SQUARES	NEAN SQUARE	F VALUE	PROB > F
NUMERATOR : DAY	. •	6	12.1348749	2.02247915	18.53525	0.0001
DENCMINATOP: E		196	21.3866000	0.10911531		

.

ANALYSIS OF VARIAUCH FOR VARIABLE GCAN	LIVE	MEAN 0.5402	47525 C.V.	37.2207538 %		
SOURCE	OF	SUM OF SQUARES	MEAN SUUAPE	LS0 .01	LSD .05	DIVISOR
DAY	. 6	0.41409070	0.0550151171	•		
E	195	1.88479592	0.0404348560	0.137365162	0.104147732	29
RESIDUAL	195	7.88479692	0.0404348560			
CORPECTED TOTAL	201	8.29388762	0.0412879981			

TESTS	SCURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	DAY	. 6	0.41409070	0.0690151171	1.70682	0.1205
DENEMINATOR	: E	195	7.88479592	0.0404348560		

ANALYSIS OF VARIANCE FOR VARIABLE GODEAD		MEAN 0.0444	767442	C.V.	49.0552939	g	
SOURCE	DF	SUM OF SQUARES	MEAN	SQUARE	LSD .01	LSD .05	DIVIS
DAY	11	0.020262610	0.0018	4205547			
E	332	0.158043204	0.0004	7603375	0.0145440041	0.0112713128	
RESIDUAL	332	0.158043204	0.0004	7603375			
CORRECTED TOTAL	343	0.178305814	0.0005	1984202			

TESTS	SOURCE		DF	SUN OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMER ATOR :	DAY	•	11	0.020262610	0.00184205547	3.86959	0.0001
DENOMINATOR	: E		332	0.158043204	0.00047603375		

 TESTS
 SOURCE
 DF
 SUM OF SQUARES
 MEAN SQUARE
 F VALUE
 PROB > F

 NUMERATOR:
 DAY
 11
 2.7432051
 0.249382285
 2.97709
 0.0011

 DENOM IMATOR:
 E
 333
 27.8944546
 0.083767131

ANALYSIS OF VARIANCE FOR VARIABLE GNDEAD MEAN 0.903971014 C.V. 32.0171238 % SOURCE DE SUM OF SQUARES MEAN SQUARE LSD .01 LSD .05 DIVISOR DAY 11 2.7432051 0.249382285 Ē 333 27.8944546 0.083767131 0.196907043 0.149515986 29. RESIDUAL 333 27.8944546 0.083767131 CORRECTED TOTAL 344 30.6376597 0.089062964

	ANALYSIS OF	VARIANCE	FOR VARIABL	E GKDEAD		MEAN	0.25715	51163	c.v.	59. 0265	688 \$	S	
	SOURCE				DF	SUM OF S	QUARES	MEAN	SQUARE	LSD	.01	LSD .05	DIVISOR
	DAY				11	3.5	121115	0.319	282868				
	E				332	7.6	490966	0.023	039448	0.103268	564	0.0784136057	29
	RESIDUAL				332	7.6	490966	0.023	039448				
	CORRECTED T	OTAL			343	11.1	612081	0.032	53 9 965				
												-	
TESTS	SOUPCE				DF	SUM OF S	QUARES	MEAN	SQUARE	FV	ALUE	PROB >	F
NUMER AT O? :	DAY				. 11	3.5	121115	0.319	282868	13.8	5810	0.000	1

7.5490966

0.023039448

332

332

DENOMINATOR: E

DENCHINATOR: F

	ANALYSIS OF VARIANCE F	FOR VARIABLE GOADEA	D	MEAN	0.4726	645349 C.V	. 31.2359568	Z	
	SOURCE		DF	SUM OF	SQUARES	MEAN SQUA	RE LSD .01	LSD .05	DIVISOR
	DAY		11	1.1	1 59 1 6 06 7	0.1053782	42		
	ŝ		332	7.2	23633207	0. J217961	81 0.100443602	0.0762686133	29
	RESTOUAL		332	7.2	23633207	0.0217961	81		
	CORRECTED TOTAL		343	8.3	39549273	0.0244765	55		
TESTS	SOUPCE		DF	SUM TF	SQUARES	MEAN SQUA	RE FVALU	E PROB >	F
NUMER ATOR :	DAY		11	1.1	15916067	0.1053782	42 4.8347	1 0.000	1

7.23633207 0.021796181

NUMERATOR:	DAY	· ·	11	2.5228790	0.229352638	2.13956	0.0173
DENCHINATOR:	E		336	36.0178690	0.107196039		
	ANALYSIS OF VARIANCE	FOR VARIABLE GPGRN		MEAN 0.06867	81609 C.V.	68.4877518 %	• • • • • • • • • • • • • • •
	SOURCE		DF	SUM OF SQUARES	MEAN SQUARE	LSD -01	LSD .05 DIVISOR
	0 A Y		11	0.047026437	0.00427513062		
	E		336	0.743365517	0.00221239737	0.0319988094	0.0242978856 29
	RESIDUAL		3 36	0.743365517	0.00221239737		
	CORRECTED TOTAL		347	0.790391954	0.00227778661		
TESTS	SOURCE		DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	DAY		11	0.047026437	0.00427513062	1.93235	0.0343
DENOM IN AT OR:	E		336	0.743365517	0.00221239737		

TESTS	SOURCE		DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	DAY	· ·	11	2.5228790	0.229352638	2.13956	0.0173
DENCHINATOR:	E		336	36.0178690	0.107196039		

ANALYSIS OF VARIANCE FOR VARIABLE GNGRN		MEAN 1.390	66092 C.V.	30.0192347 %	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01 LSD .05	DIVISOR
DAY	11	2.5228790	0.229352638		
ε	336	36.0178690	0.107196039	0.222736537 0.169132173	29
RESIDUAL	336	36.0178690	0.107196039		
CORRECTED TOTAL	347	38.5407 480	0.111068438		

Ϊ,

	SOUPCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05 DIV	ISOR
	YAC	11	2.6710678	0.242824347			
	Ę	336	14.0997034	0.041963403	0.139359832	0.105821073	29
	RESIDUAL	336	14.0997034	0.041963403			
	CORRECTED TOTAL	347	16.7707713	0.048330753			
TESTS	SOUFCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F	
		_					
NUMERATOR:	DAY	11	2.6710678	0.242824347	5.78657	0.0001	
DENOMINATOR	: F	336	14.0997034	0.041963403			

ANALYSIS OF VARIANCE FOR VARIABLE GCAGRN		MEAN	0.5697	12644 C	•V•	35.9566723 8	
SOUP OF	DF	SUM OF	SQUARES	MEAN SQ	UARE	LSD .01	LSD .05
YAC	11	2	.6710678	0.24282	4347		

	E	336	1.07406207	0.0031966133	0.0384633653	0.0292066671	29
	RESIDUAL	336	1.07406207	0.0031966133			
	CORRECTED TOTAL	347	1.29662759	0.0037366789			
TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F	
NUMERATOP :	DAY	11	0.22256552	0.0202332288	6.32958	0.0001	
DENOMINATOR	E E S	336	1.07406207	0.0031966133			

MEAN

0.211034483 C.V.

0.22256552 0.0202332288

DE SUM DE SOUARES MEAN SQUARE

26.7911667 %

LSD .01

LSD .05 DIVISOR

ANALYSIS	ĴF	VAPIANCE	FOR	VARIABLE	GKGRN
SOURCE					
DAY					

NUMERATOR:	DAY	11	8.0832805	0.734843678	12.63274	0.0001
DENOMINATOR:	E	293	17.0437405	0.058169763		
	ANALYSIS OF VARIANCE FOR VARIABLE GPDUNG		MEAN 0.2249	34211 C.V.	37.2766568 8	5
	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05 DIVISOR
	DAY	11	0.17029871	0.0154817013		
	E	292	2.05289997	0.0070304793	0.0614890754	0.0466761217 25
	RESIDUAL	292	2.05289997	0.0070304793		
	COPRECTED TOTAL	303	2.22319368	0.0073372894		
TESTS	SOJRCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMER ATOR :	D4Y	11	0.17029871	C.0154817013	2.20203	0.0144
CENOMINAT CR:	E	292	2.05289997	0.0070304793		

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	DAY	11	8.0832805	0.734843678	12.63274	0.0001
DENCHINATOR	E	293	17.0437405	0.058169763		

ANALYSIS OF VARIANCE FOR VARIABLE GNDUNG		MEAN 1.804	88525 C.V.	13.3628487 8		
\$0UPCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
DAY	11	8 .0832 805	0.734843678			
E	29 3	17.0437405	0.058169763	0.176865935	0.134259343	25
RESIDUAL	293	17.0437405	0.058169763			
COPPECTED TOTAL	3 34	25.1270210	0.082654674			

ANALYSIS OF VARIANCE F	OR VARIABLE	GKDUNG		MEAN	3.22 35	26316	C.V.	47.6564308	2	
SOURCE			DF	SUM OF	SQUARES	MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
YAC			11	0.8	7778954	0.0797	7990487			
Ε			292	3.2	2512625	0.0110)449529	0.0770703554	0.0585038215	25
RESIDUAL			292	3.2	2512625	0.0110	449529			
CORRECTED TOTAL			303	4.1	0291 579	0.0135	5409762			
SOURCE			ĐF	SUM OF	SQUARES	MEAN	SQUARE	F VALUE	PROB >	F
DAY	. •		11	0.8	7778954	0.0797	1990487	7-22493	0-000	1

TESTS	SOURCE	OF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMER AT OR :	DAY	11	0.87778954	0 .079 7990487	7.22493	0.0001
DENCMINATOR	Ε	292	3.22512625	0.011044952 9		

	ANALYSIS OF VAPLANCE FOR VARIABLE GCADUNG		MEAN 0.88250	65789 C.V.	23.9751814 %	
	SOUPCE	DF	SUM OF SQUARES	NEAN SQUARE	LSD .01	LSD .05 DIVISOR
	DAY	11	2.2912288	0.208293532		
	E	292	13.0737698	0.044773184	0.155172408	0.117/90759 25
	RESIDUAL	292	13.0737698	0.044773184		
	CORRECTED TOTAL	303	15.3649987	0.050709567		
TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	FVALUE	PROB > F
NUMER AT OR :	DAY	11	2.2912288	0.208293532	4.65219	0.0001
DEN JM INATOR:	E	29 2	13.0737698	0.044773184		

SITE LPPG SHPR

CLASSES VALUES

DATA SET STTECHEM

PROC ANEVA DATA=SITECHEM: ALASSES SITE; MEANS SITE; MODEL GNGRN GPGPN GKGRN GCAGRN = SITE; POHL 'F' PESIDUAL/SITE; TEST SITE BY 'E';

SITE LPRU SHPR

CLASSES VALUES

DATA SET SITECHEM

PROC ANDVA DATA=SITECHEM; CLASSES SITE: MEANS SITE; MODEL GNOUNG GROUNG GKOUNG GCADUNG = SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY "E";

LPRG SHPR SITE

VALUES CLASSES.

DATA SET SITECHEM

PROC ANOVA DATA=STTECHEM: CLASSES SITE; MEANS SITE; MODEL GNDEAD GPDEAD GKDEAD GCADEAD = SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY 'E';

LPRG SHPR SITE

CLASSES VALUES

DATA SET SITECHEM

PROC ANOVA DATA=SITECHEM; CLASSES SITE: MEANS SITE; MODEL GNLIVE GPLIVE GKLIVE GCALIVE = SITE; POOL 'E' RESIDUAL/SITE; TEST SITE BY "E";

PROC SORT OUT=STIECHEM DATA=CHEMSITE: BY SITE DAY;

348 OBSERVATIONS IN DATA SET CHEMSITE

33 VARIABLES

DR LOC=29 THEN SITE = 'SHPRG';

14 LOC=2 OR LOC=5 OR LOC=6 OR LOC=7 OR LOC=8 OR LOC=9 OR LOC=11 OR LOC=12 OR LOC=15 OR LOC=18 OR LOC=24 OR LOC=25 OR LOC=26 OR LOC=27

IR LOC=17 OF LOC=19 OF LOC=20 OR LOC=21 OF LOC=22 OF LOC=23 1K LIG=28 THEN SITE = "LPRG";

DATA CHEMSITE; SET CHEMALYS; IF LOC=1 OP LOC=3 OP LOC=4 OP LOC=10 OP LOC=13 OP LOC=14 OP LOC=16

STATISTICAL ANALYSIS' SYSTEM

	ANALYSIS OF VARIANCE	FOR VARIABLE GNLIVE		MEAN 1.665	96059 C.V.	31.3493479 %	
	SOURCE		DF	SUM OF SOUARES	MEAN SQUARE	LSD .01	LSD .05 DIVISOR
	SITE		1	1.1587968	1.15879680		
	E		201	54.8254909	0.27276364	0.190179110	0.144205928 102
	RESIDUAL		201	54.8254909	0.27276364		
	CORRECTED TOTAL		202	55.9842877	0.27714994		
TESTS	SOURCE		DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	SITF		1	1.1587968	1.15879680	4.24836	0.0381
DENOM INATOR:	E		201	54,8254909	0.27276364		

. .

ANALYSIS OF VARIANCE FOR VARIABLE GPLIVE		MEAN	0.108	620690	C.V.	43.5735262	z	
SOURCE	DF	SUM OF	SQUARE S	MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
SITE	L	0.00	7950460	0.00795	504 5977			
E	201	0.45	50263333	0.00224	011609	0.0172347389	0.0130684823	102
RESIDUAL	201	0.45	0263 3 33	0.00224	011609			
CORPELTED TOTAL	202	0.45	58213793	0.00226	838511			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	SITE	1	0.007950460	0.00795045977	3.54913	0.0577
DENOMINATOR	: Е	201	0.450263333	0.00224011609		

	ANALYSIS OF VARIANCE FOR	VARIABLE	GKLIVE		MEAN 1.36	6497537 C.V.	29.8905932 %		
	SJJRCF			DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
	SITE			1	0.0623364	0.062336441			
	Ē			201	33.4591 384	0.166463375	0.148569286	0.112654686	102
	RESIDUAL			201	33.4591384	0.166463375			
	CORRECTED TOTAL			202	33.5214749	0.165947895			
TESTS	SOURCE			OF	SUM OF SQUARES	S MEAN SQUARE	F VALUE	PROB > F	
NUMERAT OR :	SITE			L	0.0623364	0.062336441	0.37448	0.5485	
DENOMINATOR	: E			201	33.4591384	0.166463375		- -	

ANALYSIS OF VARIANCE FOR VARIABLE GCAL	IVE MEAN 0.5402	47525 C.V.	37.0197492 9	K ana ang ang ang ang ang ang ang ang ang
SULECE	DE SUM DE SQUARES	MEAN SQUARE	LSD .01	LSD .05 DIVISOR
SITE	1 0.29902532	0.299025320		
E	200 7.99986230	0.039999312	0.0731906891	0.0554969087 101
RESIDUAL	200 7.99986230	0.039999312		
CORRECTED TOTAL	201 8.29888762	0.041287998		

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	FVALUE	PROB > F
NUMERATOR :	SITE	1	0.29902532	0.299025320	7.47576	0.0069
DENOMINATOR	: E	2 0 0	7.99986230	0.039999312		

TESTS	SOUP CE	DF	SUM DE SQUARES	MEAN SQUARE	FVALUE	PROB > F
NUMER AT OR :	SITE	1	0.012634250	0.0126342501	26.08120	0.0001
DENOMINATOR	: E	342	0.165671564	0.0004844198		

ANALYSIS OF VARIANCE FOR VARIABLE GPDEAD		MEAN 0.04447	67442 C.V.	49.4854979	e	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD -01	LSD .05	DIVISOR
SITE	1	0.012634250	0.0126342501			
Ę	342	0.165671564	0.0004844198	0.00614758208	0.00466825813	172
RESIDUAL	342	0.165671564	0.0004844198			
CURRECTED TOTAL	343	0.178305814	0.0005198420			

	3117	L	1.1402243	1.14322432			
	E	343	28.8974354	0.08424908	0.0808370113	0.0613851734	173
	RESIDUAL	343	28.8974354	0.38424908			
	CORRECTED TOTAL	344	30.6376597	0.08936296			
TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F	
NUMEPATOR:	SITE	1	1.7402243	1.74022432	20.65571	0.0001	
DENOMINATOR	: E	343	28.8974354	0.08424908			

				•		
ANALYSIS OF VARIANCE FOR VARIABLE GNDEAD		MEAN 0.9039	71014 C.V.	32.1090965	8	
SOURCE	DF	SUM OF SQUARES	MEAN SJUARE	LSD .01	LSD .05	DIVISOP
SITE	1	1.7402243	1.74022432			
E	343	28.8974354	0.08424908	0.0808370113	0.0613851734	173
RESTOUAL	343	28,8974354	0.08424908			

	RESTOUAL	3 42	7.93576737	0.023350197			
	CORRECTED TOTAL	343	8.39547273	0.024476655			
TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUAPE	F VALUE	PROB > F	
NUMERATOR:	SITE	1	0.40972536	0.409725362	17.54698	0.0001	
DENOMINATOR:	E	342	7.98576737	0.023350197		en e	

ANALYSIS OF VARIANCE FOR	VARIABLE GCADEAD	MEAN 0.4726	£45349 C.V.	32.3303113 %	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01 LSD .05	DIVISOR
SITE	1	0.40972536	0.409725362		
<u>e</u>	342	7.93576737	0.023350197	0.0426814146 0.0324107744	172
RESTOUAL	342	7.93576737	0.023350197		
CORRECTED TOTAL	343	8.3954 1273	0.024476655		

TESTS	SOUPCE		DF SU	UM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOP :	SITE	•	ı	0.3702624	0.379262360	11.73481	0.0010
DENOMINATOR	: E		342	10.7909458	0.031552473		

......

.

ANALYSIS OF VARIANCE FOR VARIABLE GROEAD		MEAN 0.25715	51163 C.V.	69.0761636	*	
50°00	DF	SUM OF SQUARES	MEAN SQUARE	LSD -31	LSD .05	DIVISOR
SITE	1	0.3702624	0.370262360			
E	342	10.7909458	0.031552473	0.0496146828	0.0376756564	172
RESIDUAL	342	10.7939458	0.031552473			
CORRECTED TOTAL	343	11.1612081	0.032539965			

TESTS	SOURCE		DF	SUN OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERAT OR :	SITE		ı	0.01276497	0.0127649656	1.74401	0.1844
DENOM IN ATOR:	ę	• .	3 02	2.21043372	0.0073193169		

ANALYSIS OF VAPIANCE FOR VARIABLE GPOUNG		MEAN 3.2249	34211 C.V.	38.0346798	*	
SOURCE	ЭF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	0.01276497	0.0127649656			
E	302	2.21043372	0.0073193169	0.0254386365	0.0193119384	152
RESTOUAL	302	2.21043372	0.0073193169			
CORRECTED TOTAL	3 33	2.22319868	0.0073372894			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	FVALUE	PROB > F
NUMERATOR :	SITE	1	0.1230001	0.123000123	1.49052	0.2207
DENOM IN AT OR	E	303	25.0040209	0.082521521		

ANALYSIS OF VARIANCE FOR VARIABLE GNDUNG		MEAN 1.304	88525 C.V.	15,9160032	3	
SPIRCE	DF	SUM OF SQUARES	MEAN SQUARE	£50 .01	LSD .05	DIVISOR
SITE	L	0.1230001	0.123000123			
ε.	3 03	25.0040209	0.082521521	0.0851352215	0.0646315217	153
RESIDUAL	303	25.0040209	0.082521521			
CORRECTED TOTAL	304	25.1270210	0.382654674			

ANALYSIS OF VARIANCE FOR VARIABLE GKDUNG	MEAN	0.220526316	C.V.	52.7404876 %		
SOURCE	DE SUM DE	SQUARES MEAN	SQUARE	LSD .01	LSD .05 DI	IVISO*
SITE	1).	01768997 0.0176	6899660			
Ε	302 4.	08522582 0.013	5272378 0.	0345830396 0	0.0262539871	152
RESIDUAL	3)2 4.	08522582 0.013	5272 37 8			
CORRECTED TOTAL	303 4.	10291579 0.013	5409762			

TESTS	SOUPCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	SITE	1	0.01763997	0.0176899660	1.30775	0.2523
DENOMINATOR	: E	302	4.08522582	0.0135272378		

.

.

MEAN 0.482565787 C.V. 25.5497563 % ANALYSIS JE VARIANCE FOR VARIABLE GCADUNG LSD .01 LSD .05 DIVISOR DE SUM DE SQUARES MEAN SQUAFE SOURCE 0.0091210 0.0041209973 1 SITE 15.3558777 0.0508472771 0.0670490265 0.0509008057 132 302 Ε 15.3558777 0.0508472771 302 RESIDUAL 15.3649987 0.0507095666 CORRECTED TOTAL 3**33**

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	FVALUE	PROB > F
NUMERATOR :	SITE	1	0.0391210	0.0091209973	0.17938	0.6759
DENOM IN AT OR	: E	3 32	15.3558777	0.0508472771		

-	200401	UF	SUM OF SQUAKES	MEAN SQUARE	130 .01	130 .09	DIVISON
•	SITE	1	0.014382271	0.0143822715			
	r	346	0.776009683	0.0022428026	0.0131507494	0.00998645276	174
	RESTOURL	346	0.776009683	0.0022428026			
	CORRECTED TOTAL	347	0.790391954	0.0022777866			
TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > 1	F
NUMERATOR:	SITE	1	0.014382271	0.0143822715	6.41263	0.0114	4
DENOMINATOR:	F	346	0.776009683	0.0022428026			

ANALYSIS OF VARIANCE FOR VARIABLE GPGRN		MEAN	0.06867	81609	C.V.	68.9567626 %		
SOURCE	DF	SUM DE	SQUARES	MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	0.0	14382271	0.014	3822715			

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	+ VALUE	f
NUMERATOR:	SITE	1	2.1982575	2.19825747	20.92859	
DENOMINATOR:	E	346	36.3424905	0.10503610		

ANALYSIS OF VARIANCE FOR VARIABLE GNGRN		MEAN 1.090	66092 C.V.	29.7152605	₹	
STURCE	ÐF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
SITE	1	2.1982575	2.19825747			
E	346	36.3424905	0.10503610	0.0899962187	0.0683416128	174
RESTOTAL	346	36.3424905	0.10503610			
CORRECTED TOTAL	347	38.5407480	0.11106844			

ANALYSIS OF VARIANCE FOR VARIABLE GKGRN		MEAN 0.211034483 C.V. 29.0078665 %
SOURCE	DF	SUM OF SQUARES MEAN SQUARE LSD .31 LSD .05 DIVISOR
SITE	1	0.00000219 0.00000218938
E	346	1.29662540 0.00374747225 0.0169990323 0.0129087828 174
RESIDUAL	346	1.29662540 0.00374747225
CORRECTED TOTAL	347	1.29662759 0.00373667892

TESTS	SOURCE		DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMER AT OR :	SITE		1	0.00000219	0.00000218938	0.00058	0.9788
DENOMINATOR	ε		346	1.29662540	0.00374747225		
				•			

	ANALYSIS OF VARIANCE FOR VARIABLE GCAGRN		MEAN	0.56971	2644	C .V.	38.2494	149 9	6	
	SOURCE	DF	SUM OF S	QUARES	MEAN	SQUARE	LSD	.01	LSD .05	DIVISOR
. •	SITE	1	0.3	407772	0.340	0777177				
	E	346	16.4	299941	0.047	7485532	0.0605111	867	0.0459511876	174
	RESIDUAL	346	16.4	299941	0.04	7485532				
	CORRECTED TOTAL	347	16.7	707713	0.048	333 0 7 5 3				

TESTS	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR :	SITE	1	0.3407772	0.340777177	7.17644	0.0077
DENCMINATOR:	E.	346	16.4299941	0.047485532		

APPENDIX U

COMPUTER CARD INPUT, PROCEDURES AND ANALYSES FOR

FIBER COMPONENTS OF DUNG DEGRADATION

66 DBSERVATIONS IN DATA SET DUAD

35 VARTABLES

PROC SORT OUT=DUNG DATA=DUAD; BY MATE DAT ENVND REP;

ADLP = DIV((XRBLADE-XRBLADLR), TDW); CELLP = DIV((XRBLADLR-XPBLASH), TOW); ADF = (XR3LADF - XRBLDRWT); ADL = (XR3LADF - XRBLADLR); CELL = (XRBLADLR - XRBLASH); DRYWT = (TARSPLWT - TAPWT); IF TOW \rightarrow 0 THEN TOW = MISS(TOW): IF ADE \rightarrow 0 THEN ADE = MISS(ADE); IF ADL -> O THEN ADL = MISS(ADL); IF CELL -> O THEN CELL = MISS(CELL); IF DRYWT -> O THEN DRYWT = MISS(DRYWT); DUTPUT: CARDS

TARAT #2 43-46 4 TARSPLWT #2 48-51 4 XRBLORWT #2 53-58 4 XRBLADF #2 60-65 4 XRBLADLR #2 67-72 4 XRBLASH #2 74-79 4: IF MATE = DUNG! THEN MATE = DUAD!; IF SAMNETAT < 0.1 THEN SAMNETWT = XSAMPWT - XBLEWT; IF SAMNETWT > 0.2 THEN SAMNETWT = SAMNETWT; DMP = DIV((TOTDRYWT-XBLEWT), SAMNETWT); TOW = (TARSPLWT - TARWT) * DMP; ADEP = DIV((XRBLADE-XRBLDRWT), TDW);

TITLE 'WATERSHED DUNG DEGRADATION 1976':

DATA DUAD: INPUT MREC = 2

SAMPLES WERE COLLECTED ON DAY 0, 30, 60, 120 AND 240 ENVELOPE NUMBER REMAINS IN COL 30-33 AS ENVNO LOCATION DOES NOT PEFER TO A TUBE BUT THE NUMBER GIVEN THE PILE ALL OTHER INFORMATION REMAINS THE SAME AS LISTED FOR ADE AND DM DATA;

NAME \$ 1-5 YR 7-8 DAT 10-12 LOC 14-15 TRANS 17 CD 19 TYPE \$ 21 MATR \$ 23-26

PEP 28 ENVNO 30-33 XBLENO \$ 35-37 XBLEWT 39-41 2 XSAMPWT 45-47 2 SAMNETWT 51-53 2 TOTORYWT 55-57 2 HNDCALDM 61-66 4 CD2 #2 19 TNVNO2 #2 30-33 XRBLND #2 \$ 35-37 BEAKNO #2 \$ 39-41

THE WATERSHED DUNG DEGRADATION IS ARRANGED SLIGHTLY DIFFERENT THAN WHAT APPEARS IN THE INPUT STATEMENT DAT IS NOT THE DATE BUT REFERS TO THE NUMBER OF DAYS AFTEP DEPOSITION

COMMENT

STATISTICAL ANALYSIS SYSTEM

STATISTICAL ANALYSIS SYSTEM

PPOC ANOVA DATA=DUNG; CLASSES DAT; MODEL DMP ADEP ADEP CELLP = DAT; MEANS DATIREP; POUL 'ERROR' RESIDUAL/DAT; TEST DAT BY 'ERROR';

DATA SET DUNG

CLASSES	VALJES						
DA Τ	0 30 60 120 180 240)					
REP	1 2						

PROC SORT OUT=DUNG DATA=DUAD; BY MATE DAT ENVNO REP;

PROC MEANS OUT=DUNX DATA=DUNG; BY MATR DAT ENVNO; VAR DMP ADFP ADLP CELLP;

PROC PRINT DATA=DUNX; BY MATR; ID DAT ENVNO; VAR DMP ADEP ADLP CELLP;

PRUC MEANS OUT=DUDA DATA=DUNG; BY MATR DAT; VAR DMP ADEP ADLP CELLP;

PRICE PRINT DATA=DUDA: BY MATR; ID DAT; VAR DMP ADFP ADLP CELLP:

·							
TESTS	SÚNS CE		DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB > F
NUMER AT OP :	DAT.		· 5	0.073617858	9.0147235717	11.34770	0.0001
DENCMINATOR:	FRRIE		60	0.077849609	0.0012974935		

ANALYSIS OF VARIANCE FOR VARIABLE ADER		MEAN 0.5121	10359 C.V.	7.03378407	5	
SOURCE	DF	SUM DE SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
DAT	5	0.073617850	3.0147235717			
ERZOP	60	0.077849609	0.0012974935	0.04086 00233	0.9307231545	11
SESIDUAL	60	0.077845509	0.0012974935			
CORFECTED TOTAL	65	0.151467468	0.0023302687			

TESTS	SOURCE		DF	SUM OF SWUARES	MEAN SQUARE	F VALUE	PROB > F
NUMERATOR:	747		5	0.0229976515	0.00459953030	82.35916	0.0001
DENOMINATOR	ERROR		60	0.0033508333	0.00005584722		

ANALYSIS OF VARIANCE FOR VARIABLE DWP		MEAN	0.9434	84848	c.v.	0.792074183	X.	
ST IRCE	DF	SUM OF S	SQUARES	MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
1 A C	5	0.0229	976515	C. 30459	99530 30			
ERROR	60	0.0033	3508333	0.00005	55 8 47 22	0.03847708806	0.00637402758	11
RESTOUAL	60	0.0033	3508333	0.00005	5584 72 2			
CORRECTED TOTAL	65	0.0263	3 434 84 8	0.00040	536131			

TESTS	SOURCE	DF	SUM OF SQUARES MEAN SQUARE	E VALUE	PROB > F
NUMERATOR :	DAT	5	0.0207615572 0.00415231144	5.69095	0.0001
DENOMINATOR	ERROR	60	0.0286664455 0.00047777409		

•								
ANALYSIS OF VARIANCE FOR VARIABLE CELLP		MEAN	0.203	962855	C.V.	10.7166788	8	
SOJACE	DF	SUM OF	SQUARES	MEAN	SQUARE	LSD .01	LSD .05	DIVISOR
. D4T	5	0.02	07615572	0.0041	5231144			
ERROR	60	0.02	86664455	0.0004	7777409	0.0247945054	J.018643 371 8	11
RESTDUAL	60	0.02	86664455	0.0004	7777409			
CORRECTED TOTAL	65	0.04	9 42 80 0 26	0.0007	6043081			

TESTS	SOURCE		DF	SUM OF SQUARES	MEAN SQUAPE	F VALUE	PROB > F
NUMERATOR :	DAT		5	0.0187096054	0.00374192108	6.64948	0-0001
DENOMINATOR	ERROR		60	0.0337643552	0.00056273925		

ANALYSIS OF VARIANCE FOR VARIABLE ADLP		MEAN 0.195	941257 C.V.	12.1067539	8	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	LSD .01	LSD .05	DIVISOR
DAT	5	0.0187096054	0.00374192108			
ERROR	60	0.0337643552	0.00056273925	0.0269091241	0.0202332996	11
RESTDUAL	60	0.0337643552	0.00056273925	-		
CORRECTED TOTAL	65	0, 0524739607	0.00080729170			

VITA 🦪

Steven Herbert Kautzsch

Candidate for the Degree of

Master of Science

Thesis: PLANT, SOIL AND DUNG FACTORS AFFECTING TALLGRASS PRAIRIE VEGE-TATION DURING DROUGHT CONDITIONS ON A NORTH CENTRAL OKLAHOMA RANGELAND WATERSHED

Major Field: Animal Science

Biographical:

- Personal Data: Born in Hot Springs, South Dakota, July 15, 1947, the son of Mr. and Mrs. Herb H. Kautzsch; married Sharon Anne Murray, May 30, 1970; the father of one daughter, Tammy Lynn, born April 24, 1972 and one son, Brian David, born March 2, 1975.
- Education: Graduated from Custer High School, Custer, South Dakota, May, 1965; enrolled in Animal Science at South Dakota State University, 1965-1968; completed a correspondence course from the University of Wyoming, 1970; received the Associate of Arts degree from Ohlone College in Fremont, California, in June, 1973, with a major in Computer Programming; received the Bachelor of Science degree from California Polytechnic State University, San Luis Obispo, in June, 1975, with a major in Animal Science; completed requirements for the Master of Science degree at Oklahoma State University, July, 1978.
- Experience: Raised on a ranch in western South Dakota; Herdsman, Bull Test Station, California Polytechnic State University, San Luis Obispo, June, 1974 through May, 1975; Animal Science Research and Teaching Assistant, Oklahoma State University, September, 1975 through August, 1977; Rangeland Research Assistant, Oklahoma State University, September, 1977 through July, 1978.

Professional Organizations: American Society of Animal Science and Society for Range Management.