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PREFACE 

This paper describes the Cordie algorithm and its implementation 

for the evaluation of the sine function in a HP21MX computer. A 

polynomial method is also described and implemented in the HP21MX 

computer for the purpose of comparing the result with the the Cordie 

algorithm. The HP21MX microprogramming. is also applied in this 

experiment to increase the programining efficiency. 
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during this project. Also, appreciation is expressed to my other 

committee member, Dr. T.E. Bailey for his invaluable assistance in the 

preparation of the final manuscript. Thanks are also extended to 
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CHAPTER I 

INTRODUCTION 

In the past, the transcendental·functions were computed by 

mathematicians using many different algorithms. Power series, polynomi­

nal expansions, continued fractions, and Chebyshev polynomials have all 

been used. Since the advent of large scale computing in the twentieth 

century, many mathematical functions including trancendental functions 

have been calculated by computers. As a general rule, multiplication 

and division are very time-consuming functions compared to addition 

and subtraction implemented in a computer. A review of the conventional 

methods which are used for solving transcendental functions, such as 

power series, polynomial expansions, continued fractions, and Chebyshev 

polynomials, shows that a number of multiplications and divisions are 

required that results in inefficiency of implementation. 

Therefore, much effort has been made to search for alternate ways 

which can best suit the requirements of speed and programming efficiency 

for real-time applications. 

Henry Briggs (17) first developed the concept of pseudo-division 

and pseudo-multiplication in 1924. He used this method to generate a 

table of logarithms. 

In 1959, J. E. Volder (9) described a Coordinate Rotation Digital 

Computer (Cordie) for the calculation of trigonometric functions, 

multiplication, division, and conversion between binary and mixed radix 
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number systems. In the same year, Dagget (10) discussed the use of the 

Cordie computer for decimal-binary conversion. In 1962, Meggitt (11) 

developed a pseudo-division and pseudo-multiplication processor using 

the Cordie technique, while in 1971 J. S. Walther (12) developed a 

technique for calculating elementary functions using Cordie. David 

S. Cochran (14) in 1972 implemented the Cordie B;lgorithm in HP 35 

calculators, and Despain (13) in 1974 developed a technique for 

Fourier transformation using the Cordie algorithm. 

Generally speaking, the trigonometric functions are calculated by 

polynomial expansions, power series, or Chebyshev polynomials in most 

current general purpose computers. 

The major goal of this thesis is to implement the Cordie algorithm 

in a general purpose computer for evaluation of trigonometric functions. 

The speed and accuracy of the results are observed and compared with 

those of conventional algorithms. Microprogramming has been used in 

this research to increase the program efficiency. The anticipated 

result is to determine the best way of evaluating the trigonometric 

functions, which can reduce the computer execution time to a minimum 

and give reasonable accuracy of the results. 

Only the sine function is implemented as a part of this research. 

The tasks are divided into four parts: 

1. Implement the Cordie algorithm in an assembly coded program. 

2. Implement the Cordie algorithm in a microprogram. 

3. Implement one of the conventional methods in an assembly 

coded program. 

4. Implement the same conventional method in a microprogram. 



CHAPTER II 

STANDARD TECHNIQUE FOR THE EVALUATION OF 

TRIGONOMETRIC FUNCTIONS 

The evaluation of elementary functions for various values of their 

arguments is required to solve a number of mathematical problems. 

Because of this, the computation of values of elementary functions was 

an important factor in stimulating the development of mathematical 

analysis. Therefore, a great deal of effort has been made by many 

mathematicians in the past two centuries to find methods of evaluating 

these elementary functions. Power series have been and still are used 

for this purpose. Mercator used a power series for logarithms; Newton 

used it then for trigonometric and inverse trigonometric functions; 

and Euler used one for the exponential function. Iterative processes 

(e.g., Newton's method) were also applied for solving equations (3). 

Furthermore, in the eighteenth century, many mathematicians (Lambert, 

Euler, Lagrange, et al.) used continued fractions to represent elemen­

tary functions. In recent years the technique of expansions in 

orthogonal polynomials has been widely applied for computing elementary 

functions. The Chebyshev polynomials which give good convergence are 

widely used for this purpose too. 

All those methods mentioned above are well documented and are de-

scribed in many mathematics books; thus it is not necessary to explain 

them here. Power series for evaluating trigonometric functions are used 
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in this paper as a conventional method of evaluating trigonometric 

functions in order to compare them to evaluations using the Cordie 

algorithm. Therefore, for convenience, the power series method is de-

scribed as follows: 

Power Series 

The elementary functions can be represented as power series in a number 

of ways. Consider the Taylor-Maclallrin Series.for a given function 

f (x): 

f(x) 
a 
L: 

k=O 

f(k)(O) 
k ! 

k 
X 

Truncating this at the nth term produces an nth-degree polynomial 

S (x) (a finite Taylor Series). 
n 

s (x) 
n 

n f(k)(O) k 
L: 

k ! 
X 

k=O 

The polynomial s (x) has the following properties: 
n 

f(x) s (x) + O(xn) 
n 

(2.1) 

(2. 2) 

(2. 3) 

where S (x) is the unique nth-degree polynomial of best approximation 
n 

P (x), for which 
n 

f(x) - P (x) 
n 

n 
0 (x ) (2.4) 

If f (x) sin(x), then sin(x) can be represented in a power series as: 

sin(x) (2.5) 

Cos(x) can be represented in a power series as: 

cos (x) 
00 2k 
L k X 

k = 0 ( -1 ) -:-'( 2=-k-::-)-:-! (2. 6) 
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In order to implement this algorithm in a computer for evaluation 

of trigonometric functions, the number of terms (i.e., constant k) 

_required for specific accuracy is determined first. 

To determine the constant k, the maximum accuracy of evaluation 

in the computer must be known first. The computer used in this research 

is an HP21MX, the memory word of which contains 16 bits. Although 

multiple precision could be achieved by using multiple words in arith-

metic operations, single precision (single word) is still used in the 

Cordie algorithm and power series here for the sake of simplicity of 

programming. 

Hastings (4) set up three equations by using power series to 

evaluate the sine function, which are as follows: 

II 3 5 
(2.7) sin 2 x c1x + c3x + c5x 

cl 1.5706268 

c3 = - 0. 6432392 

c5 0.0727102 

11 3 5 7 
(2. 8) sin 2 x c1x + c3x + c5x + c7x 

cl 1.570794852 

c3 -0.645920978 

c5 0.079487663 

c7 -0.004362476 

11 3 5 7 9 
(2.9) sin 2x c1x + c3x + c5x + c 7x + c9x 

cl 1. 57079631847 

c3 -0.64596371100 

c5 0.07968967928 



-0.00467376557 

0.00015148419 

where -1 ~ x ~ 1 

6 

To determine which equation will be used in this paper, the 

maximum value of the error of each equation is checked. The maximum 

value of the error is 0.0001 for equation (2.7), 0.000001 for equation 

(2.8), and 0.000000005 for equation (2.9). For a 16-bit computer 

word, the maximum accuracy that can be represented is 5 decimal digits. 

The accuracy of equations (2.8) and (2.9) is more than 5 decimal 

digits. If they are used to evaluate sine functions in a 16-bit word 

machine, they will consume a lot more execution time than equation 

(2.7) with just a slightly more accurate result. Therefore, in order 

to get the best execution time and accuracy, equation (2.7) is used in 

this research. 



CHAPTER III 

THE CORDIC ALGORITHM 

. ' 
INTRODUCTION 

Cordie is a special purpose, binary computer which contains a 

unique arithmetic unit which differs from the arithmetic unit of con-

ventional computers. Although Cordie is a single processor computer, 

its arithmetic unit is composed of three shift registers and three 

adder-subtractors which are operated in parallel instead of sequentially. 

Each programmed operation is accomplished in a fixed number of steps. 

Each step involves modifying three. numbers which reside in three arith-

metic unit registers by adding or subtracting a constant for each one. 

Setting of all three adder-subtractors is controlled by the sign of 

the quantity in one of the arithmetic unit registers. In this way, 

calculations related to the addition or subtraction of constants can 

be executed simultaneously. 

Functional Description 

There are. two computing modes in Cordie for the trigonometric 

operations: ROTATION and VECTORING. In the ROTATION mode the coordinate 

components of a vector and an angle of rotation are given and the 

coordinate components of the original vector, after rotation through the 

given angle, are computed. In the VECTORING mode, the coordinate 

7 



components of a vector are given and the magnitude and angular argument 

of the original vector are computed. The basic computing technique 

used in both the ROTATION and VECTORING modes in Cordie is a step-by-

step sequence of pseudo-rotations which result in an overall rotation 

through a given angle (ROTATION) or result in a final angular argument 

of zero (VECTORING). 

It is necessary that the angular increments of rotation be comput-

ed in decreasing order (9). In order to evaluate the sine and cosine 

functions for the angles from -180°. to 180°, the magnitude actually 

chosen for the first increment should be 90°. The expression for a set 
I 

of coordinate components, x1 and Y1 , rotated through plus or minus 90° 

is simply 

8 

R . (9 + 90°) 1s1n 1 (3.1) 

(3.2) 

Where R1 and 9, are the magnitude and angle of the vector (X1 , Y1) and 

x2 and Y2 are the coordinates of vector (X1 , Y1) after rotating 90°. 

The first step is unique in that a perfect rotation step is per-

formed. The remaining computing steps can be clarified by examining 

relationships involved in a typical rotation step which are shown in 

Figure 1. Consider two given coordinate components, Yi and Xi, in the 

plane coordinate system shown. In this discussion, the quantity i is 

equal to the number of the particular step under consideration. The 

components Y. and X. are associated with the ith step and describe a 
1 1 

vector of magnitude R. at an angle 9. with respect to the origin 
1 1 

according to the relationships. 



9 

y 
i 

R.sinEl 
~ 

(3. 3) 

X. 
~ 

R.cose 
~ 

(3. 4) 

In Figure 1 the angle a. is the magnitude of rotation associated 
~ 

with each computing step. The general expression for a. where i > 1 
~ 

is x 

a. 
~ 

tan -1 2-(i-2) (3. 5) 

The reason for choosing this particular magnitude of a. is that a 
~ 

rotation of coordinate components through ~ ai may be accomplished by 

the simple process of shifting and adding. The two choices of positive 

or negative rotation are shown in Figure 1. The general expressions 

for the rotated components are 

Y = vil+2-2 (i-2) 
i+l 

R.sin(El. +a.) 
~ ~ ~ 

+ -(i-2) 
Y. 2 X. 
~ - ~ 

and 

= 11 + 2-2(i-2) R.cos(El. +a.) 
xi+l \/J ~ ~ - ~ 

X. + 2- (i-2)Yi (3. 7) 
~ 

Note that the right-hand terms of (3.6) and (3.7) may be obtained 

by two simultaneous shift-and-add operations, if the angular rotation 

magnitude is restricated to (3.5). This is the fundamental relation-

ship upon which the Cordie computing technique is based. 

The computing action of adding (or subtracting) a shifted value 



Y. 
1 

'1'. -(1-2) 
21 xi 

---r-
-(i-2) 

2 X. 

- _l - 1 

10 

-(i-2) 
2 R. 

1 

- (i-2) 
2 R. 

1 

Figure 1. Typical computing step 
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of X. toY. to obtain Y. 1 , while simultaneously subtracting (or adding) 
1 1 1+ 

a shifted value of Y. to X. to obtain X. 1. is termed "cross addition". 
1 1 1+ 

The terms under the radical in (3;6) and (3.7) indicate the 

increase in magnitude when i > 2; either of the two choices of direction 

produces the same change in magnitude. If the rotation is always 

through either a positive or negative a. at each step, then the increase 
1 

in magnitude may be considered as a constant. This requirement does 

not allow the choice of zero rotation at any step. In order to identify 

the choice in a particular step, the :notation may be represented 

by the binary operator v., where v. can be either +1 or -1. This 
1 1 

substition produces the general expressions 

and 

where v 
i 

Y =vi + 2 - 2 (i-2) R sin(". + ) 
i+l i 0 1 vi ai 

X =1 I + 2-2 (i-2) 
i+l Vl R. cos(8. + v a.) 

l l i 1 

+1 or -1 

(3. 8) 

(3.9) 

Similarly, after the completion of the rotation step in which the 

i + 1 terms are obtained, the i + 2 terms may be computed from these 

terms with the results 

y = \1~ + 2-2(i-1)- vi + 2-2(i-2) 
i+2 

(3 .10) 

and 

.;;_ + 2-2 (i-1) J + 2-2 (i-2) 

(3.11) 
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Likewise, these rotation steps can be continued through any 

finite. pre-determined number of steps. Consider the initial coordinate 

components Y1 and x1 where 

(3 .12) 

and 

(3 .13) 

Suppose the first rotation step is ~ 90° and the number of steps 

is determined as n. The exnressions for the final coordinate components 

will be 

Yn+l =cvi + 2 -O ..)J_ + 2-2 vf + 2-2 (n-2) ) R · (9 + v + ... lsln 1 lal 

and 

y{ -2(n-2) 
. . . 1 + 

(3 .15) 

The increase in magnitude of the components for a particular value 

n is a constant and is represented by k. The value selected for n is a 

function of the desired computing accuracy and can be a constant for a 

particular computer. For example, 

if n = 24, 

k 1. 646 760255. 

The basic components required to perform the cross-addition are shown 
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in Figure 2. It has not yet been shown how the prescribed sequence of 

rotation steps can be controlled to effect the desired over-all rota-

tion. By examination of (3.14) and (3.15), the rotation of a set of 

coordinate components Y1 and x1 through a given angle can be expressed 

as 

and 

where 

In the VECTORING mode, 

-9 = A, 
1 

X 
n+l 

(3 .16) 

(3.17) 

(3 .18) 

(3 .19) 

The sequence of (3.18) and (3.19) form a special radix representation 

equivalent to the desired angle, A or 9, where 

a 90° (3. 20) 
1 

a2 
-1 -0 

tan 2 45° (3. 21) 

a3 
-1 -1 

tan 2 = 26.5° (3.22) 

a. 
l 

-1 -(i-2) 
tan 2 (3. 23) 

The a terms are referred to as ATR (Arctangent Radix) constants and 

are precomputed and stored in the computer. The v terms are referred 

to as ATR digits and are determined during each operation. 

In the Cordie computer, the ATR digits are determined sequentially, 

most significant digit first, and are used to control the conditional 



SHIFT 
GATES 

ri>ll I 

Y REGISTER 

I II I II Ill I I 
X REGISTER 

2 -(i-2)y_ 
- l 

h: II 
-1/.{ 

j 

l 

ADDER­
SUBTRACTOR 

ADDER-
SUBTRACT OR 

:f> 

F ANGLE REGISTER .----. 

~~ 11111 1111111111 r 1
' 1=====1~~~~~CTOR 

ATR CONSTANTS ' f> ._-__,1./.t,__· _ _j 

Figure 2. Cordie Arithmetic Unit 
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action of the adder-subtractors in the arithmetic unit. The following 

paragraphs contain a description of the manner in which the ATR code 

representation, v1 , v2 , v3 , ... , vn can be determined for any given 

angle, A or G. 

First, for any angle A or 9, there must be at least one set of 

values of Y for the operators that will satisfy (3.18) and (3.19). 

Second, a simple technique must be available for determing the ATR 

code digits that satisfy these equations. The following relationships 

are necessary and sufficient for any sequence of radix constants to 

meet the above requirements (3.9). 

(3.24) 

(3.25) 

For the satisfaction of (3.20) through (3.23), it is required that 

or 9 be constrained by 

-180° < A or 9 < + 180° (3.26) 

Equation (3.26) imposes no special consideration if the two's complement 

notation is used. By employing an additional register and adder-

subtracter (identified in Figure 2 as the angle register) the relation-

ship of (3.16) (ROTATION-mode) can be instrumented by 1) sensing the 

sign of the angle of rotation (or remainder if i > 1) and 2) either 

subtracting or adding to the angle the ATR constant corresponding to the 

particular step. In each step, the relationship instrumented is 

I I A. 
l 

I - a. 
l 

(3.27) 
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Equation (3.24) is equivalent to 

(3.28) 

Application of the relationships of (3.25) results in 

I A 

Continuation of this sequence through a results in 
n 

a 
n 

(3.29) 

(3.30) 

Equation (3.30) can be used to prove that the remainder in the angle 

register converges to zero in the ROTATION mode (9). 

The sequence of operation signs used to null A to zero is the 

negative of the equivalent ATR code for the original angle. More 

simply, the ATR code digit of each step is equal to the sign of the 

quantity in the angle register before each step. Therefore, simulta-

neously with each step in the angle register, the ATR code digit may be 

used to control the cross-addition step in the Y and X registers (shown 

in Figure 2) to effect a rotation of components through an equal angular 

increment. 

The proof of the convergence of the effective angular argument 

9 1 to zero, which is necessary in the VECTORING mode, may be obtained 
n+ 

by replacing A by 9. The sign of the angle 9. is obtained bv sensing 
~ 

the sign of Y .. The sequence of signs of Y. is the negative of the ATR 
~ ~ 

code for the effective rotation performed on the components Y1 and x1 . 
, 

During each cross-addition operation in the Y and X register, the 

corresponding ATR constant can be conditionally added or subtracted, 

depending on vi, to an accumulating sum in the angle register so that, 



at the end ofthe computing sequence, when e 1 = 0, the quantity in 
n+ 

the angle register will be equal to the original angular argument 

~\ of the coordinate components Y1 and x1 . 

17 

The step-by-step results of a typical rotation computing sequence 

are shown in Table I. The two's complement notation is used for all 

quantities, and shift quantities are truncated without round-off. The 

step-by-step results of a typical rotation computing sequence are · 

shown in Table I. 

Representation of Angles in Cordie 

In Cordie, angles are represented as a binary fraction of a half 

revolution (IT) with two's complements for negative angles, as shown 

in Figure 3. Since a one to the left of the binary point is used to 

represent a negative quantity in the two's complement system, angles 

from +180° to slightly less than+ 360° are interpreted internally as 

negative angles measured clockwise from 0°. For example, 45° in 

Cordie is 

= co. 25\o 

For 90° the Cordie representation is 

IT/2 
IT ~ = (0.5)10 = (0.1)2 

For 270° the Cordie representation is 

3IT/2 
-IT- = (1. 5 \o 
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TABLE I 

TYPICAL ROTATION COMPUTING SEQUENCE 

Y Register X Register Angle Register 

yl = 0.0101110 1.1000101 = xl 0.1100101 = :\ 

+ 1.1000101 - 0.0101110 - 0.1000000 
-1 

tan 00 

1.1000101 1.1010010 0.0100101 -1 + 1.1010010 - 1.1000101 - 0.0100000 tan 1 

1.0010111 0.0001101 0.0000101 -1 -1 + 0.0000110 - 1.1001011 - 0.0010010 tan 2 

1.0011101 0.1000010 1.1110011 -1 -2 
- 0.0010000 + 1.1100111 + 0.0001001 tan 2 

1.0001101 0.0101001 1.1111100 
-1 -3 l 

+ 1.1110001 + 0.0000101 - 0.0000101 tan 2 

1.0001000 0.0011010 0.0000001 -1 -4 + 0.0000001 - 1.1111000 - 0.0000010 tan 2 

1.0001001 0.0100010 1.1111111 
-1 -5 - 0.0000001 + 1.1111100 + 0.0000001 tan 2 

1.00010000 0.0011110 0.0000000 
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TABLE II 

TYPICAL VECTORING COMPUTING SEQUENCE 

Y Register X Register Angle Register 

y 0. 0101110 1.1000101 xl 0.0000000 
1 

- 1.1000101 + 0.0101110 + 0.1000000 
-1 

tan 00 

0. 0111011 0.0101110 0.1000000 -1 - 0.0101110 + 0. 0111011 + 0.0100000 tan 1 

0.0001101 0.1101001 0.1100000 -1 -1 
- 0.0110100 + 0.0000110 + 0.0010010 tan 2 

1.1011001 0.11011ll 0.1110010 
-1 -2 + 0.0011011 - 1.1110110 - 0.0001001 tan 2 

1.1110100 0.1111001 0.1101001 -1 -3 + 0.0001111 - 1.1111110 - 0.0000101 tan 2 

0.0000011 0.1111011 0.1100100 -1 -4 - 0.0000111 + 0.0000111 + 0.0000010 tan 2 

1.1111111 0.1111100 K K1 0.1100101 = 0 
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Sine and Cosine Algorithm 

As mentioned above, there are two computing modes for Cordie, 

ROTATION and VECTORING. Evaluating sine or cosine functions makes use 

of the ROTATION mode by setting the original vector on the X-axis and 

rotating the vector through an angular argument whose sine or cosine 

is computed. 

Functional Description 

In order to use the ROTATION computing sequence (Table I) of Cordie 

to evaluate sine and cosine functions, several initial conditions and 

values are set up: 

1) 

2) 

3) 

4) 

The Y-register is initialized with 0. 

The X-register is initialized with a unit vector. 

The A-register is initialized with the angle which is going 

to be computed. 

A sign digit of 0 in the A-register establishes a v. of +1, 
1 

which causes the top adder - subtracter to add, the middle 

adder-subtracter to subtract, and the bottom adder - sub-

tractor to subtract. A sign digit of 1 has the opposite 

effect. 

5) The number of steps (iterations) is initialized depending 

on the desired accuracy. 

The Cordie ROTATION computing sequence is started as shown in 

Table 1. 

The final result is in the Y-register if the function evaluated- is 

sine and in the X-register if the function evaluated is cosine after 

the final computation step. 
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Figure 3. Representation of Angles in Cordie. 



CHAPTER IV 

COMPUTER IMPLEMENTATION AND 

PROGRAMMING RESULTS 

The four tasks described in Chapter I are performed and the pro­

gramming results are obtained in this chapter. 

The description of the HP21MX computer which is used to aid 

this research is given below. 

System Features 

The HP21MX computer is a powerful user-microprogrammable mini­

computer with 178 micro-instructions and 4K words of control space. 

Each word is 24 bits long. It has 128 standard instructions, 80 of 

which emulate the HP 2100 series computer; 42 of which are new instruc­

tions for indexing, byte and bit manipulation, byte and word moves, and 

byte string scanning; and 6 of which are single-precision floating 

point instructions. There are four general purpose registers, two of 

which may be used as index registers. It is a fully microprogrammed 

processor, including all arithmetic functions, input/output, and opera­

tor panel control. Writable Control Store (WCS) is optional. 

The read-only memory (ROM) modules in which microprograms are 

stored are referred to collectively as control store. Standard control 

consists of 1,024 directly addressable locations configured into four 

modules of·2S6 location each. Each control store location accommodates 

22 
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one micro-instruction, which in turn consists of a 24-bit word 

encompassing six micro-orders. The control store address space of each 

processor is 4,096 words. 

Microprograms in standard control store for executing the vaY.'ious 

machine functions are divided into three groups: 

Base instruction set (modules 0 and 1) 

Floating point instructions (module 14) 

Extended instruction group (module 15) 

Unused modules of control store are available for user-supplied 

microprograms. Microinstructions in control store are 24 bits lqng; 

whereas, machine language instructions residing in main memory are 

16 bits long. In addition, microinstructions have access to many 

internal registers and logic functions that machine language instruc­

tions cannot use. 

The Writable Control Store (WCS) option provides a read-write 

control store module which can be used for the development and execution 

of user-supplied microprograms. Microprograms in WCS are executed at 

the same speed as those in the read-only control store. 

Hardware Registers 

A 16-bit accumulator which holds the results of arithmetic 

and logical operations performed by programmed instructions. 

B-register 

Serves the same purpose as the A-register, but is independent 

froin it. 

M-register 

A 16-bit register used to hold the memory address which is 

currently bei~g accessed by the CPU. 



T-register 

A 16-bit register used to hold the data which are stored 

into or retrieved from memory. 

P-register 

Program counter, 16 bits long, pointing to next instruction 

to be fetched from memory. 

S-register 

A 16-bit utility register. In the halt or run mode, it can 

be loaded via the display register. 

Extend register 
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A one-bit register used to link the A- and B-registers by 

rotation instructions or to indicate a carry from the most signif­

icant bit (bit 15) of the A- or B-register by an add instruction 

or increment instruction. 

Overflow Register 

A one-bit register used to indicate that an add instruction, 

divide instruction, or an increment instruction has caused the A­

reeister or B-register to exceed the maximum positive or negative 

number that can be contained in these registers. 

Displav register 

A 16-bit register included in the front panel and used to 

disnlav and modifv the contents of the six 16-bit working registers 

when the comnuter is in the halt mode. 

X- and Y-registers 

Two 16-bit registers serving as indexing registers which are 

accessed through the use of 30 index register instructions and 

2 jump instructions. 



S. to s1 A scratch pad registers 
.L L 

Twelve registers (each 16 bits long) used to temporarily 

store data by a microprogram and cannot be accessed by a macro-

)\ 
program. 

Interrupt System 

The vectored priority interrupt system has up to 60 distinct 

interrupt levels, each of which has a unique priority assignment. 
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Each interrupt level is associated with a numerically corresponding 

interrupt location in memory. 

Of the 60 interrupt levels, the first two are reserved for 

hardware faults (power failure and parity error); the next two are 

reserved for the Dual-Channel port controller completion interrupts; 

and the reamining levels are available for I/0 device channels. 

Table III lists the interrupt levels in priority order for the HP 

2108 processor of the 21 MX. 

-
APL Description of HP21MX 

In the APL description of the HP21MX, the comuuter svstem is 

described as seen bv a uroerammer. and the descriution is indenendent 

of anv uarticular hardware imulementation. All those instructions 

which are not connected with this research are not included in this 

description. Iverson (2) gives a complete definition of the notation 

used. The description is based on the HP21MX Computer Series Reference 

Manual (5) and consists of a set of programs and tables. 

* Macroprogram - programs stored in main memory. 

Microprogram - programs stored in control store. 



Channel 

(Octal) 

04 

05 

TABLE III 

INTERRUPT ASSIGNMENTS 

Interrupt Location Assignments 

00004 Power Fail Interrupt 

00005 Memory Paritv/Protect 
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Interrupt 

06 00006 DCPC Channel 1 Completion Interrupt 

07 00007 DCPC Channel 2 Completion Interrupt 

10 00010 1/0 Device (highest priority) 

11-20 00011-00020 1/0 Device (Mainframe) 

21-42 00021-00042 1/0 Device (Extender No. 1) 

43-64 00043-00064 1/0 Device (Extender No. 2) 

The programs are either system programs or defined operations. 

All programs operate concurrently and continuously, with one line 

active in each program. The defined operation program operates only 

when invoked by another program. In the description presented, PROC 

and IOIG are system programs, whereas ADC, EXEC, and MAC are defined 

operations. 



The Processor 

The PROC program, Figure 4, describes the sequencing and exe­

cution of instructions and the servicing of interrupts. The program 

segments and their functions are summarized in Table IV. 

TABLE IV 

"PROC" PROGRAM SEGMENTS 

Lines Function 

1-4 Instruction fetch 

5-14 Instruction decoding 

15-26 Instruction execution 

27-30 Trap interrupt service 

Instruction Fetch 

27 

The first step in program execution is to fetch the instruction 

from memory. In order to prepare for instruction fetch, the exceptions 

vector is initialized to zero (line 1). The 16-bit instruction is 

fetched from memory at the address given by the program counter, and 

placed in the instruction register (line 2). The program counter is 

incremented by 2 (line 3), and in case of any exceptions during 

instructjon fetch, control branches to line 27. Exceptions during 

fetch may be due to errors in parity check. 
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Figure 4. The Processor System Program 
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Instruction Decoding 

To determine the operation specified by the instruction, the 

instruction is decoded next. Because the operation code of an instruc-

tion in this machine may be varied from 4 bits to 16 bits and several 

microinstructions may be involved in a single instruction word for some 

type of instructions, the decoding task is very complicated and tedious. 

Many steps and two sets of decoding vectors named u and q are used in 

this APL description to aid the decoding task. These two sets of 

vectors ar listed in Table V. The instructions are divided into 13 

classes. Table IV summarizes those 13 classes. The number involved 

in this table is used to identify the class of the instruction during 

the decoding. 

The class identifiers j and i are initialized in line 5 and 6. 

The decoding vectors U. and E. are used in lines 7, 8, and 9 to identify 
~ ~ 

the class of the current instruction. Once the class of the current 

instruction is found, it is stated in j (line 10). 

The components of the selection vector k take on the values of the 

fields depending on j (lines 11 and 12). Lines 13 and 14 interpret 

i 
the instruction by selecting a row N from the navigation matrix 

N (Table VII), to specify the vector n used in subsequent control of 

the instruction execution. The row of N selected, is determined by an 

element of a particular decoding matrix D, Figure 6, specified by 

the instruction class j, and the selection vector k. 
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TABLE V 

DECODING VECTORS 

WMI u = 
1 

(1000101111111110) Q = 1 
(1111111111111110) 

JMPI u2 = (1000101111110010) Q2 (1111111111110111) 

BIMI u = 3 (1000101111111000) Q3 (1111111111111000) 

BYMI u4 = (1000101111110000) Q4 (1111111111111000) 

DMI u = 5 
(1000001111000000) Qs (1111011111100000) 

IRI u6 (1000001111100000) Q6 (1111011111100000) 

FRI u7 (1000101000000000) Q7 (1111010000000000) 

EAMR us (1000000000000000) Q = 
8 

(1111010001110000) 

EAR u9 (1000000000000000) Q = 
9 

(1111010000000000) 

IOI u1o= (0000010000000000) Q10= (1111010000000000) 

A/S Ull= (0000010000000000) Q11= (1111010000000000) 

S/R u12= (0000000000000000) Ql2= (1111010000000000) 



TABLE VI 

INSTURCTION CLASSES 

Class 

MRI: Memory reference instructions 

WMI: Word manipulation instructions 

MJPI: Jump instructions 

BIMI: Bit manipulation instructions 

BYMI: Byte manipulation instructions 

DMI: Dynamic mapping system instructions 

IRI: Index register instructions 

FPI: Floating point instructions 

EAMR: Extended arithmetic memory reference 

instructions 

EAR: Extended arithmetic register reference 

instructions · 

101: 

A/S: 

S/R: 

Input/output instructions 

Alter skip instructions 

Shift/rotate instructions 

j 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

31 



32 

TABLE VII 

THE NAVIGATION MATRIX 

no nl n2 n3 Class Index Mnemonic Name Op Code 

0 0 ao a3 MRI 1 ADA Add to A -1000 -----------
1 0 ao a3 MRI 2 ADB Add to B -1001 -----------

0 bo bs IRI 3 ADX Add memory to X 
1000101111100110 

1 bo bs IRI 4 ADY Add memory to Y 
1000101111101110 

0 eo e3 S/R 5 ALF Rotate A left four 
0000001111-1-111 

0 eo e4 S/R 6 ALR A left shift. clear sign 
0000001100-1-100 

0 eo es S/R 7 ALS A left shift 
0000001000-1-000 

0 0 ao a2 MRI 8 AND "AND" to A 
-0010 ----------

0 eo e6 S/R 9 ARS A right shift 
0000001001-1-001 

co EAR 10 ASL Arithmetic shift left 
100000000001 

cl EAR 11 ASR Arithmetic shift right 
100000100001 

1 eo e3 S/R 12 ELF Rotate B left four 
0000101111-1-111 

1 eo e4 S/R 13 BLR B left shift, clear sign 
0000101100-1-100 
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TABLE VII (Continued) 
-

no nl n2 n3 Class Index Mnemonic Name Op Code 
--------

1 eo e5 S/R 14 BLS B left shift 
0000101000-1-000 

1 eo e S/R 15 BRS Bright shift 
J. 0000101001-1-001 

0 2 b4 b8 IRI 16 CAX Copy A to X 
1000001111100001 

0 3 b4 b8 IRI 17 CAY Copy A to Y 
1000001111111100 

BIMI 18 CBS Clear bits 
1000101111111100 

BYNI 19 CBT Compare bytes 
1000101111110110 

1 2 b4 b8 IRI 20 CBX Copy B to X 
1000101111101001 

1 3 b4 b8 IRI 21 CBY Copy B to y 

1000101111101001 

0 fo - A/S 22 CCA Clear and complement A 
00000111 -------

1 f - A/S 23 CCB Clear and complement B 
0 00001111 -------

£7 A/S 24 CCE Clear and complement E 
0000-1--11 -----

0 £2 - A/S 25 CLA Clear A 
00000101 -------

1 f2 A/S 26 CLB Clear B 

0 do d2 IOI 27 CLC Clear control 
100011-111 

f5 - A/S 28 CLE Clear E 
0000-1--01 -----

0 do d6 IOI 29 CLF Clear flag 
1000-11001 

IOI 30 CLO Clear overflow 
1000011001000001 
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TABLE VII (Continued) 
-------------- -----
no nl n2 r:.L Class Index Mnemonic Name Op Code --------------

1 B4 B9 IRI 47 DSY Decrement Y and skip if zero 
1000101111111001 

0 0 eo e7 S/R 48 ELA Rotate E left with A 
0000001110-1-110 

1 0 eo e7 S/R 49 ELB Rotate E left with B 
0000101110-1-110 

0 1 eo e7 S/R so ERA Rotate E right with A 
0000001101-1-101 

1 0 eo e7 S/R 51 ERB Rotate E right with B 
0000101101-1-l-1 

FPI 52 FAD Floating point add 
1000101000000000 

FPI 53 FDV Floating point divide 
1000101000110000 

FPI 54 FIX Floating point to integer 
1000101001000000 

FPI 55 FLT Integer to floating point 
1000101001010000 

FPI 56 FMP Floating point multiply 
1000101000100000 

FPI 57 FSB Floating point subtract 
1000101000010000 

0 do dl1 IOI 58 HLT Halt 
1000-1-000 

A/S 59 INA Increment A 
000001-------1--

A/S 60 INR Increment B 
000011-------1--

1 0 ao a2 HRI 61 IOR "Inclusive OR" to A 
-011------------

0 0 b4 b9 IRI 62 ISX Increment X and skip if zero 
1000101111110000 

0 1 b4 b9 IRI 63 ISY . Increment Y and skip if zero 
1000101111111000 
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TABLE VII (Continued) 

~1 nz n3 Class Index "Mnemonic Name Op Code 

A/S 31 CMA Complement A 
00000110 -------

A/S 32 CMB Complement B 
00001110 -------

f6 A/S 33 CME Compare E 
0000-1--10 

WMI 34 CMW Compare words 
1000101111111110 

0 a as MRI 35 CPA Compare to A 0 -1010 ---------..-
1 ao as MRI 36 CPB Compare to B 

-1011 ----------
2 0 b4 bs IRI 37 CXA Copy X to A 

1000001111100100 

2 1 b4 bs IRI 3S CXB Copy X to B 
1000101111100100 

3 0 b4 b8 IRI 39 CYA Copy Y to A 
1000001111101100 

3 1 b4 b8 IRI 40 CYB Copy Y to B 
1000101111101100 

EAMR 41 DIV Divide 
100000010000 

DMI 42 DJP Disable mem and jump 
1000101111011010 

DMI 43 DJS Disable mem and jump to sub-
routine 

1000101111011011 

EANR 44 DLD Double load 
100010001000 

EAMR lf5 DST Double store 
100010010000 

1 0 b4 b9 IRI lf6 DSX Decrement X and skio if zero 
100010111110001 
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TABLE VII (Continued) 

no nl n2 n3 Class Index Mnemonic Name Op Code 

ao a9 MPI 64 ISZ Increment and skip if zero 
-0111-----------

go JMPI 65 JLY Jump and load Y 
1000101111110010 

1 al a13 MPI 66 JMP Jump 
-0101-----------

g4 JMPI 67 JPY Jump indexed by Y 
1000101111111010 

DMI 68 JRS Jump and store status 
1000101111001101 

0 a1 a12 MPI 69 JSB Jump to subroutine 
-0011-----------

0 0 bo b11 IRI 70 LAX Load A indexed by X 
1000001111100010 

0 1 bo b11 IRI 71 LAY Load A indexed by Y 
1000001111101010 

BYMI 72 LBT Load byte 
1000101111110011 

1 0 bo b11 IRI 73 LBX Load B indexed bv X 
1000101111000010 

1 1 bo b11 IRI 74 LBY Load B indexed by Y 
1000101111101010 

0 0 a1 a MRI 75 LDA Load A 
7 -1100-----------

1 0 a1 a7 MRI 76 LDB Load B -1101---~-------

0 bo b12 IRI 77 LDX Load X from memory 
1000101111100101 

1 bo b12 IRI 78 LDY Load Y from memory 
1000101111101101 

DMI 79 LFA "'Load fence from A 
1000001111010111 

DMI 80 LFB 7'Load fence from B 
1000101111010111 
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11\.HLE VI (Continued) 
----· .~·-----·---·-------------· 

no nl nz n3 Class Index Mnemonic Name Op Code 
---·--·-

0 0 do d12 IOI 81 LIA Load into A 
100001-101------

1 0 do d IOI 82 LIB Load into B 
12 100011-101------

c2 EAR 83 LSL Logical shift left 
10000000001-----

c3 EAR 84 LSR Logical shift right 
100000100010----

DMI 85 MBF Move bytes from alternate map 
1000101111000011 

DMI 86 MBI Move bytes into alternate 
1000101111000010 

BMI 87 MBT Move bytes 
1000101111110101 

DMI 88 MBW Move bytes within alternate 
1000101111000100 

0 0 d dl3 IOI 89 HIA Merge into A 
0 100001-100------

1 do d13 IOI 90 MIB Merge into B 
100011-100------

EAMR 91 MPY Multiply 
100000001000----

WMI 92 MVW Move words 
1000101111111111 

DMI 93 MWF Move words from alternate map 
1000101111000110 

DMI 94 MWI Move words into alternate map 
1000101111000101 

DMI 95 MWW Move words within alternate 
map 

1000101111000111 

- S/R 96 NOP No Operation 
0000000000000000 
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TABLE VII (Continued) 
n n 112 113 Class Index Mnemonic Name Op Code 

0 1 
----

0 do d20 IOI 97 OTA Output A 
100001-110------

0 do d20 IOI 98 OTB Output B 
100011-110------

DMI 99 PAA Load/store port A map per A 
1000001111001010 

DMI 100 PAB Load/store port A map per B 
1000101111001010 

DMI 101 PEA Load/store port B map per A 
1000001111001011 

DMI 102 PBB Load/store port B map per B 
10001-1111001011 

0 0 eo e9 S/R 103 RAL Rotate A left 
0000001010-1-010 

1 0 eo e9 S/R 104 RAR Rotate A right 
0000001011-1-011 

0 1 eo e9 S/R 105 RBL Rotate B left 
0000101010010010 

1 1 eo e9 S/R 106 RBR Rotate B right 
0000101011-1-011 

c4 EAR 107 RRL Rotate left 
100000000100----

c5 EAR 108 RRR Rotate right 
100000100100----

DMZ 109 RSA Read status register into A 
1000001111011000 

DMI llO RSB Read status register into B 
1000101111011000 

A/S 111 RSS Reverse skip sense 
0000-1---------1 

DMI 112 RVA Real violation register 
into A 

1000001111011001 
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TABLE VII (Continued) 
--

no nl n2 n3 Class Index Mnemonic Name Op Code 

DMI 113 RVB Read violation register 
into B 

1000101111011001 

0 0 bo b14 IRI 114 SAX Store A indexed by X 
1000001111100000 

0 0 b bl4 IRI 115 SAY Store A indexed by Y 
0 1000001111101000 

BIMI 116 SBS Set bits 
1000101111111011 

BYMI 117 SBT Store type 
1000101111110100 

1 0 bo b14 IRI 118 SBX Store B indexed by X 
1000101111100000 

1 1 bo b14 IRI 119 SBY Store B indexed by Y 
1000101111101000 

A/S 120 SEZ Skip if E is zero 
0000-l----1-----

BYMI 121 SFB Skip if flag clear 
1000-10010------

0 do dl4 IOI 122 SFC Skip if flag c.lear 
1000-10011------

0 d d16 IOI 123 SFS Skip if flag set 
0 1000-10011------

DMI 124 SJP Enable system map and jump 
1000101000100000 

DHI 125 SJS Enable system map and jump 
to subroutine 

1000101111011101 

S/R 126 SLA Skip if LSB of A is zero 
00000-------1---

S/R 127 SLB Skip if LSB of B is zero 
000010------1---

0 do dl4 I.OI 128 soc Skip if overflow clear 
100001-010000001 
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TABLE VII (Continued) 
I -n Ill n n3 Class Index Mnemonic Name Op Code 0 2 

0 do. dl6 IOI 129 sos Skip if overflow set 
100001-011000001 

A/S 13'0 SSA Skip if sign of A is zero 
000001-----1----

A/S 131 SSB Skip if sign of B is zero 
000011-----1----

DMI 132 SSM Store status register into 
memory 

1000101111001100 

0 1 al a7 MRI 133 STA Store A 
-1110-----------

1 1 al a7 MRI 134 STB Store 
-1111-----------

0 do dl8 IOI 135 'STC Set control 
100001-111------

0 do d19 IOI 136 STF Set flag 
1000-10001------

0 do dl9 IOI 137 STO Set overflo·w 
1000010001000001 

0 bo b13 IRI 138 STX Store X to memory 
1000101111100011 

1 bo b13 IRI 139 STY Store Y to memory 
1000101111101011 

DMI 140 SYA Load/store system map per A 
1000001111001000 

DMI llfl SYB Load/store system map per B 
1000101111001000 

A/S 142 SZA Skip if A is zero 
000001--------1-

- A/S 143 SZB Skip if B is zero 
000011--------1-

BYMI 144 TBS Test bits 
1000101111111101 
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TABLE VII (Continued) 
-

~0 nl n2 n3 Class Index Hnemonic Name Op Code 

DMI 145 UJP Enable user map and jump 
to subroutine 

1000101111011110 

DMI 146 UJS Enable user map and jump 
to subroutine 

1000101111011111 

DMI 147 USA Load/store user map per A 
1000001111001001 

DMI 148 USB Load/store user map per B 
1000101111001001 

0 0 b4 b15 DMI 149 XAX Exchange A and X 
1000001111100111 

0 1 b4 b1s IRI 150 XAY Exchange A and X 
1000001111101111 

1 b4 b15 IRI 151 XBX Exchange B and X 
1000101111100111 

1 1 b4 bl5 IRI 152 XBY Exchange B andY 
1000101111101111 

DMI 153 XCA Cross compare A 
1000001111010110 

DMI 154 XCB Cross Compare B 
1000101111010110 

DMI 155 XLA Cross load A 
1000001111010100 

DMI 156 XLB Cross load B 
1000101111010100 

DHI 157 XHA Transfer maps internally 
per A 

1000101111010000 

DMI 158 XMB Transfer maps internally 
per B 

1000101111010010 

DMI 159 XMM Transfer maps or memory 
1000101111010000 
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TABLE VII (Continued) 

no nl n2 n3 Class Index Mnemonic Name Op Code 

DMI 160 XMS Transfer maps sequentially 
1000101111010001 

BPI 161 XOR "Exclusive OR" to A 
-0100-----------

DMI 162 XSA Cross Store A 
1000001111010101 

DMI 163 XSB Cross store B 
1000101111010101 . 

0 2 b4 b8 IRI 164 CAX Copy A to X 
1000001111100001 

3 b4 bg IRI : 165 CAY Copy A to y 

1000001111101001 

1 2 b4 hs IRI 166 CBX Copy B to X 
1000101111100001 

1 3 b4 b8 IRI 167 CBY Copy B to y 

1000101111101001 

* Base page fence register 
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Figure 5. Input/Output Interrupt Generator 

Instruction Execution 

The instruction execution starts at line 15. The effective 

address computation of MRI is performed at lines 16, 17, 18 and 19. 

Line 20 sets up the immediate value for EAR. Line 21 sets up I/0 

flag clear/hold information for IOI. Line 22-24 subdecodes the packed 

micro-instructions in A/S and S/R instructions. 

Interrupt Service 

Servicing of exceptions is given priority over I/O interrupt 

service. In case of any exception the bit (0 for exception, 1 for I/0 

interrupt) in the interrupt holder his set (line 27). The interrupt 

service ~equence is initiated if at least one interrupt is pending 

(line 28). The sequence consists of fetching a new instruction from 

one of the five fixed locations in memory. The interrupt vector address 

of the peripheral device is obtained from the six least significant 

bits of the T-hus. The element of h which caused the interrupt is reset. 
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Ihput/output Interrupts 

The 1'/0 interrupt generator (IOIG) system program, Figure 5, 

determine the presence of interrupt requests by peripheral devices and 

sets the bit in'the interrupt holder, h, accordingly(line 1), The 

dwell at line 0 checks for interrupts on the device flag. The setting 

of any I/O device flag means an interrupt request from that I/0 device. 

If a higher priority device has already gained control of the processor, 

the lower priority device cannot be served until the higher priority 

device has finished its service routine (lines 1, 2, and 3). 

Memory Access Routine 

The memory access (MAC) operation, Figure 7, fetches or stores a 

specified number of bytes from the memory at a given address. The 

general form of the operation is MAGi (j;l), where i specifies the 

device requesting access; j is a two-component vector specifying the 

address in memory (j 0 ) and the type of operation (store; jl = 2; 

fetch:j 1 =f), respectively; and 1 specified the vector into/from which 

the accessed data are to be stored/fetched. 

The request for service is entered in the bus request vector r, 

and in' the queue if it is empty (line 0). The program dwells at line 1 

until i is recognized as the first nonzero entry in the queue. After 

the requ~st has been honored, the entry in the request vector is blanked 

out (line 2). The parity error exception is noted (line 5), and entered 

in the exception vector e. If no exception occurs, a fetch (line 4) 

or store (line 7) is performed. 
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Address Computation Routine 

The address computation (ADC) operation, Figure 8, is used for 

effe~tive address calculation of the operands. The general form for 

ADC is (m; g; k) wh~re m is'the mode of addressing ( 0 means direct, 

1 means indirect), g is the primary address, and k is the effective 

address returned by the,operation. 

defined operation 

~ r.' qi ..e_, _vlq 0 
]. 

i (ql 0 1 
=I= 

: l ) 0 

rl +- 0 2 

- jl : s 3 -

J ~- (j +a.1) I /M 
0 4 

-
1 : e +-

1 ~ =f I J 5 -

, ___ l+- wl6 IJ 6 t--

J +- ~ =f I ..e_, 1 7 

(j 0 ta.l) //M +- J 8 
~ 

q +- r 9 

Figure 7. Memory Access Operation 
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ADC(m d k) defined operation 

-=l.=:_ 0 m 0 

k +- dl 1 ' 
~ 

1 I 

MAC (d1 , f; f) 2 

k +- .Ll 3 

Figure 8. Address Computation Operation 

Instruction Execution Routine 

At the entry point EXEC, Figure 9, the routine for an instruction 

is determined by n2 (line a 0). Execution involves setting up condition 

codes (if necessary) after the execution. 

All MRI instructions are executed here. AND, lOR, XOR ADA, ADB, 

CPA, CPB, and ISZ are entered at line a1 to get data from memory. 

STA, STB, LDA, and LDB are entered at line a2 . All MRI instructions 

are diverged at line a2 and enter their own routine. The "Exit" here 

means go back to PROC ; the outgoing arrow at the right side of the 

line also indicates return to PROC if the arrow does not direct to any 

other line. This is true not only here, but also in any other line of 

the EXEC routine. 
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Figure 9. ~XEC Routine. 
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Figure 9. (Continued) 
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Figure 9. (Continued) 
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All 1R1 instructions are executed here. ADX, ADY, LDX, LDY, STX, 

and STY refer to certain memory locations whose addresses are defined 

in the word following the instruction word; thus some memory access 

and effective address computation tasks must be done(60-63) prior to the 

execution of the instructions. All the other instructions of 1R1 do 

not require those tasks and enter the routine at line b4 to skip the 

unnecessary steps. 

The EAR instruction sets are executed here. Each instruction 

enters at a different line. 

All the 101 instructions are executed here. The 1/0 devices are 

interfaced with the processor by these instructions; symbols V, F, and 

Z are used here to represent the control bits, 1/0 flag bits, and data 

buffers of all the I/0 devices. Each indexed symbol refers to a 

specific device. 

All the S/R instructions are executed here. Each S/R instruction 

consists of four microinstructions. Each microinstruction is chosen 

from its own microinstruction set. The first microinstruction set is 

the same as the fourth microinstruction set for S/R instructions. The 

instruction execution is divided into three parts. The first part 
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(lines e 0-e12 ) executes the first microinstruction, the second part 

(lines 13-14) executes the second microinstruction, and the third part 

(lines 15-17) executes the third microinstruction. The fourth micro­

instruction is executed in the first part after the previous three 

microinstructions are all executed. Every S/R instruction must go 

through these four steps to complete the instruction execution. 

All the A/S instructions are executed here. Each A/S instruction 

consists of 8 microinstructions. Thus the instruction execution is 

divided into 8 parts, each part executing one microinstruction. Every 

A/S instruction must go through these 8 parts to complete the instruction 

execution. 

The JUMP instructions JLY and JPY are executed here. A memory 

access must be made to get the destination address of the JUMP instruc-

tion. 

All the EAMR instructions are executed here. Each of the four EAMR 

instructions requires two words of memory: one for the instruction 

code and one for the operand address. Thus at line h0 , the second mem­

ory word (operand address) is incremented by 1 to point to the next 

instruction. The overflow bit is set when the DIV instruction is 

executed if the divisor is zero or too small. In the former case 

(division by zero), the division will not be attempted and the B-and 



A-register contents will be unchanged except that a negative quantity 
/ 

will be made positive. In the latter case (divisor too small), the 

execution will be attempted with unpredictable results left in the B-

and A-registers. 

All the FPI instructions are executed here. Four of the FPI 

instructions are floating point arithmetic instructions which require 

two words of memory: one for the instruction code and one for the 

operand address. Since a full 15 bits are available for the operand 

60 

address, these instructions can directly address any locat~on in memory. 

The execution of WMI, BIMI, BYMI, and DMI instructions is not 

included in the APL description here because they are not used and 

have nothing to do with this paper. 

Microprogramming 

Conventional Control Section 

In a conventional computer control section, the functions performed 

by the instruction set determine the specified hardware design. The 

major advantage of this specially designed hardware is speed of instruc-

tion execution. The major disadvantage is the loss of flexibility for 

special applications or for enhancements. Any changes and additions 

to existing capabilities require changes and additions to hardware 

components. This is no problem for a conventional computer is there are 

no new machine instructions required. "The hardware has been designed 

to minimize timing for the instruction set" (6). 
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However, a computer manufacturer rarely produces an instruction 

set that meets the requirements of all potential users. "Hence, the 

manufacturer must either focus his attention on one group of users or 

widen his scope and generalize the hardware design to meet the needs of 

a number of user groups. In the latter case, the user must modify his 

discipline to some extent to meet the limitations of his hardware"(6). 

Microprogrammed Control Section 

"In the microprogrammed computer, all distinct logical functions 

are separated from the sequence in which those functions are per­

formed" (6). Thus, hardware redundancy is reduced. The control store 

holds the microinstruction which defines the logical functions. Each 

machine instruction in Main Memory is performed by a sequence of micro­

instructions in Control Store. This sequence of microinstructions 

called a microprogram and is often referred as.firmware. Software can 

be executed much faster with the application of microprogramming. 

This speed is achieved by two factors: 

1. The memory access time of Control Store is less than 

that of Main Memory. 

2. The microinstruction has more flexibility than the 

normal machine instruction. 

In fact, the HP21MX Control Store where microinstruction reside, 

cycles more than twice as fast as Main Memory where normal machine 

instructions reside. In addition, microinstruction have the ability 

to access many internal registers and some logical functions that Main 

Memory programs do not have. 

For example, the HP21MX floating point software subroutines were 
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identified as very time consuming. They were microprogrammed by 

Hewlett-Packard and made available in ROM to users. Implementation of 

floating point firmware requires no change to user programs. The 

microprogrammed floating point instructions run about 20 times faster 

than the corresponding software subroutines. 

As in the floating point microprogram, the user can study his. 

software, determine the most time consuming function performed, and 

then microprogram these functions, that is, execute them in control 

store using a single memory instruction instead of a sequence of Main 

Memory instructions. Any software that uses these microprogrammed 

functions will execute at a higher speed. 

The Microprogrammable Computer 

Functionally, a computer consists of four major sections: 

Control 

Main Memory 

Input and Output 

Arithmetic and Logic 

Each section executes under the direction of the control section by 

means of a microprogram. The control section reads the user's program 

stored in Main Memory and directs the appropriate hardware in each of 

the other sections. 

Control Section 

The control section fetches an instruction from a certain location 

in memory, which is specified by the Memory Register (MR), and stores it 

into the Instruction Register (IR), as shown in Figure 10. An 
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Figure 10. A Microprogram Implemention of One 
Nacroprogram Instruction. 
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appropriate microprogram is determined by the IR. Conceptually, each 

program instruction in Main Memory is a jump to a microprogrammed 

routine which resides in Control Store. 
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The storage area for those microprograms is Control Store which 

may be either a Read Only Memory (ROM) or Writable Control Store (WCS). 

The control section that executes microprograms from ROM is referred as 

a Control Processor. 

The Control Processor 

A microprogram in the Control Processor is in command of the 

computer at all times. A microprogram takes program instructions from 

Main Memory and stores them into the IR. The upper eight bits of the 

IR determine the microprogram address within one of the following 

groups: 

Basic instruction set 

Extended instruction group 

Floating point instruction group 

User microprogram group 

The basic instruction set microprogram can be regarded as a supervisor 

microprogram·that determines when a user microprogram is called and then 

passes control to the user microprogram. 

When a microprogram has run to completion, it returns to location 

0 in Control Store (basic instruction set), returning control.to the 

supervisor microprogram, after which the next instruction is fetched 

from Main Memory and stored into the IR, Successive microinstruction 

address are determined in the following way. The ROM Address Register 
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(RAR) is incremented at the start of execution of each microinstruction. 

When a jump is executed, the RAR is loaded with the jump target address. 

When a jump to a subroutine is executed, the RAR is stored into the Save 

Register. When a return from a subroutine is executed (RTN), the 

Save Register contents are transferred into RAR and the Sav~ Register 

is cleared. Thus at the completion of execution of each microinstruc-

tion, the RAR holds the address of the next microinstruction. 

The central data transfer path is the S-bus. The contents of 

all registers except the following can be directed onto the S-bus: 

L-register, RAR,SAVE Register, Extend Register, and the Overflow 

Register. The following registers can receive data from the S-bus: 

M-Register, T-Register, L-Register, Counter-Register, Display-Register, 

Display Indicator, and Instruction Register. 

The T-but receives data only from the Rotate/Shifter (R/S) but 

can pass dat,a to the following registers: A-Register, B-Register, 

Scratch Pad Register (Sl through s12), X-Register, Y-Register, 

P-Register, and S-Register, (Front Panel Switch Register). 

The I/O-bus serves to transfer data to and from external devices 

under program control. In the functional block diagram (Appendix A) 

all the data paths are shown by the arrows. For example, the B-Register 

contents can be sent to S-bus and hence to the M-Register. However, the 

contents of the B-Register cannot be sent to Sl2 (Scratch Pad 12) with-

out passing through the ALU. 

Main Memory 

The M-register is a 15-bit register which holds memory addresses 

for reading from or writing into Main Memory. Upon storing from the 
i 
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M-Register, bit 15 is c1ear (0). The T-Register or transfer register 

holds the dat~ being transferred to or from memory. The contents of 

both of these registers are transferred to and from the -bus. Four 

loader ROMS, selectable by Instruction Register bits 15 and 14, can 

eac~ contain a 64-word Main Memory program which may be loaded into 

Main Memory and used to load Main Memory from a peripheral device,or to 

perform any other function desired by the user. 

Two flags are associated with memory: the A-Register Addressable 

Flag (AAF) and the B-Register Addressable Flag (BAF). These flags 

are required to allow the A- and B-registers to be addressed as loca­

tions 0 and 1, respectively, of Main Memory. 

Input and Output 

The Central Inter~upt Register (CIR) is a 6-bit register associated 

with the I/0 interrupt circuitry. It is loaded with the select code 

of the interrupting device under program control and passed to the S-bus. 

Whenever the CIR is loaded, and Interrupt Acknowledge (IAK) signal is 

issued to the I/0 device. The I/0 bus transfers data to and from exter­

nal devices. Two flags are associated with I/0: the interrupt pending 

flag and the I/0 skip condition met flag. The Interrupt Enable Register 

is used to disable or enable the recognition of all interrupts, except 

Memory protect, parity, and power failure interrupts. 

Arithmetic and Logic Section 

This section consists of the Arithmetic and Logic Unit (ALU), the 

twenty-two Rotate/Shifter (R/S) registers, and six flags. 

The ALU and R/S are the only units that execute functional 
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I 

modifications on the data. The ALD receives innut from the S-bus and 

from the L-register (Latch Register). Output -from the ALD goes to the 

R/S which places its output on the T-bus. 

Output from- the ALD and R/S can be stored in one of the folloiwng 

registers via the T-bus: A-Register, B~Register, Scratch Pad Registers 

(s1 through s12), X-Register, Y-Register, P-Register, and S-Register. 

Recall that the P-register holds the macroprogram (main memory) 

address. The P-register must be under control of the microprogram 

which must insure that it contains the proper address after the micro-

program is complete. When the microprogram is complete, the resulting 

, P-Register value is the address of the next macroinstruction to be 

executed. Note that the Basic Instruction Set fetch routine (at 

Control Store address 0) automatically increments the P-Register 

after the macroinstruction is fetched. Thus for one-word user macro-

instruction function codes, no further incrementing of the P-Register 

is necessary in the user microprogram. 

The S-Register is reserved for internal storage of the Front Panel 

Switch Register. Note that all of those registers can also be sent 

along the S-bus for storage into memory, passage to an external device, 

or input to the ALD. 

The Extend Register is a one-bit register usedin shift operations 

to link the A- and B-Registers or to indicate a "carry" arithmetic 

result out of the A- or B-Registers. The overflow is a one-bit regis­

ter used to indicate an arithmetic overflow from the ALD. These two 

registers can also be used as flags. 
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Implementation of a Polynomial Algorithm 
. . ., 

in the HP21MX Computer 

i 

The four tasks which are illustrated in Chapter I are performed in 

this chapter. One of them is to program the polynomial algorithm in 

Hp 21 assembler language for evaluating the sine function. The other 

task does the same thing but uses a microprogram instead of the program 

coded in assembler language. 

The particular polynomial algorithm used for evaluating sine 

functions has been determined in Chapter II and is shown as follows: 

where c 1 = 1. 5706268 

c3 = -0.6432292 

0. 0727105 

-1 :o; X <S; 1 

For evaluating the sine of an angle 8, x is substituted with 28/IT 

in Eq. (4.1); then sin 8 can be computed by 

1"\ (~) (28) 3 (28) 5 sin '=' = cl IT + c3 IT + c5 IT 

(4.1) 

In order to reduce the execution time when implemented this algorithm 

in the computer, Eq. (4.1) can be factored as follows: 

(4.2) 

Although Eq. (4.1) and Eq. (4.2) give the same result in computa-

tion, they require a different number of multiplications. 

Insp~ction of Eq. (4.1) shows that the number of multiplications 

required is 11, while the number of multiplications required by 
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Eq. (4.2) is 7. As mentioned in Chapter I, the multiplication function 

is one of the most time-consuming functions. Thus Eq. (4.2) definitely 

is more efficient than Eq. (4.1) when implemented in the computer. 

For the reason mentioned above, Eq. (4.2) is used for both the 

microprogram and the program coded in assembly language. The results 

of these two implementations are listed in Tables VIII and IX. The 

program listings are listed in Appendix B. 

Implementation of the Cordie Algorithm 

on the HP21MX Computer 

The Cordie algorithm has been introduced in Chapter II. To use 

it for evaluation of the sine function, the value selected for n is 

a function of the desired computing accuracy. Theoretically, the 

larger the value of n is the more accurate the result. 

Actually, it is impossible to represent a number to any degree of 

accuracy in any computer because the accuracy of all computers is 

limited by the number of bits in a word. In the HP21MX computer, 

there are 16 bits in a word. When the Cordie algorithm is used to 

evaluate the sine function, the value of n not only determines the 

accuracy of the result, but also affects the execution time of the 

program. There is a trade-off between accuracy and execution time; 

i.e., when n increases, the accuracy is increased as is the execution 

time. In order to get the greatest accuracy and the least execution 

time, the optimum value of n must be found. As discussed in Chapter II, 

a set of ATR constants, a., i=l, 1 •• ,n,, can be obtained from Eq. (4.3). 
1 

a. = tan-l~-(i-2 ) for 2~i~n 
l 

(4.3) 



TABLE VIII 

POLYNOMIAL METHOD IMPLEMENTATION RESULTS 
(ASSEMBLY LANGUAGE) OF EVALUATING 

THE SINE FUNCTION 

Ang1e(Radians) Sin Execution Time(Mi1i-Sec) 

----

-1.5 -0.997558 0.081 

-1.4 -0.985351 0.081 

-1.3 -0.963378 0.081 

-1.2 -0.932128 0.081 

-1.1 -0.891357 0.081 

-1.0 -0.841552 0.081 

-0.9 -0.783447 0.081 

-0.8 -0.717285 0.081 

-0.7 -0.644287 0.081 

-0.6 -0.564697 0.081 

-0.5 -0.479492 0.081 

-0.4 -0.389404 0.081 

-0.3 -0.295654 0.081 

-0.2 -0.198730 0.081 

-0.1 -0.099853 0.081 

0.0 0.0 0.081 

0.1 0.099609 0.081 

0.2 0.198Lf86 0.081 

0.3 0.295410 0.081 

0.4 0.389160 0.081 

70 



71 

TABLE VIII (Continued) 

At;g1e (Radians) Sin Execution Time(Mili-Sec) 

0.5 0.564453 0.049 

0.6 0.564453 0.049 

0.7 0.644042 0.049 

0.8 0. 717041 0.049 

0.9 0.783203 0.049 

0.1 0. 841308 0.049 

1.1 0. 891113 0.049 

1.2 0.931884 0.049 

1.3 0.963134 0.049 

1.4 0.985107 0.049 

1.5 0.997314 0.049 



'· 

TABLE IX 

POLYNOMIAL METHOD IMPLEMENTATION RESULTS 
(MICROPROGRAM) OF EVALUATING THE 

· SINE FUNCTION 

Ang1e(Radians) Sin Execution Time(Mili-Sec) 

-1.5 -0.997558 0.049 

-1..4 -0.984351 0. 0lf9 

-1.3 -0.963378 0.049 

-1.2 -0.932128 0.049 

-1.1 -0.891357 0.049 

-1.0 -0.841552 0.049 

-0.9 -0.783447 0.049 

-0.8 -0.717285 0.049 

-0.7 -0.644287 0.049 

-0.6 -0.564697 0.049 

-0.5 -0.479492 0.049 

-0.4 -0.389494 0.049 

-0.3 -0.295654 0.049 

-0.2 -0.198730 0.049 

-0.1 -0.099353 0.049 

0.0 0.0 . 0. 049 

0.1 0.099609 0.049 

0.2 0.198486 0.049 

0.3 0.295410 0.049 

0.4 0.389160 0.049 
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Ang1e(Radians) 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

' I 

TABLE IX (Continued) 

Sin Execution Time(Mi1i-Sec) 

0.479248 0.081 

0.564453 0.081 

0.644042 0.081 

0.717041 0.081 

0.783203 0.081 

o. 841308 0.081 

0.891113 0.081 

0.931884 0.081 

0. 963134 0.081 

0.985107 0.081 

0. 997314 0.081 

73 



When implementing the Cordie algorithm in the HP21MX computer, 

a. will be divided by 180° and then represented in 16 binary digits. 
1 
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For example, if a.1 = 90°, then 90°/180° = 0.510 = 0.400008 . 0400008 

will be stored in the computer. If Eq. (4.3) is used to find the ATR 

constants n=l to n=l6, the values of ai are: a 1 = 040000, a2 = 020000, 

a 3 = 011344, a4 = 004773, a 5 = 002421, a6 = 001213, a 7 = 000505, 

000242, a 9 0001212, a10 = 000050, a11 = 000024, a12 = 000012, 

a 13 = 000005, a14 = 000002, a15 = 000001, a16 = 000000. 

Because the ATR constant is represented with a 16-bit word in 

the HP21MX computer, when n > 15, the constant.will be too small to 

be represented. Thus the value 15 is the best choice for the value 

of n. This yields the most accurate result without excessive execution 

time. 

Once the value of n is determined, the value of k can be found as 

well. The formula to obtain the constant k is: 

k 1+2~ 
-2(n-2) 

1+2 (4. 5) 

When the constant k is computed by Eq. (4.5) with n 15, the result is: 

k 1. 646744 

The original coordinate vector in the Cordie algorithm is: 

v 1/k = 0.6072589 

One critical problem occurs immediately when the Cordie algorithm 

is being implemented in the HP21MX computer. Review of the Cordie 

machine in Chapter III shows that the best feature of Cordie which speeds 

up computation is that it has three adder-subtractors which can operate 
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simultaneously. In the HP21MX computer, although there are two regis-

ters (A and B) which can operate like an adder-subtracter in Cordie, 

they cannot operate simultaneously. Due to this hardware limitation, 

the only way to simulate these parallel adder-subtracter operations 

is to execute sequentially. 

The flowchart for the assembler program which simulates the Cordie 

algorithm in the HP21MX computer is shown in Figure 11. 

An AHPL description for the microprogram which emulates the Cordie 

algorithm in the HP21MX computer is shown in Fi~ure 12. 

Both program listings are shown in Appendix B. The programming 

results for these two implementations are listed in Tables X and XI. 

Calculation of Execution Time 

To calculate the execution time of both the macroprogram and the 

microprogram, the Time Base Generator (TBG) and interrupt feature are 

used. The TBG generates an interrupt signal for a specified time 

interval; the CPU acknowledges the interrupt and forces the current 

computer program to suspend and transfer control to a service subroutine 

which records the number of times that the clock interrupt has occurred. 

At the end of program, the program execution time can be calculated 

from the following:equation: 

T 
N X TI 

L 
where 

T program execution time 

N number of clock interrupts 

TI interrupt time interval of Time Base Generator 

L number of times that the program has been executed 
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0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

MR +- p 

P +- Tl+.LP 

1 
MAC ( .LMR, f; T) 

X+- T 

MR +- p 

P -<- Tl+ .LP 

1 
MAC (.LMR, f, T) 

S7 +- T 

S6 +-A 

-+ (10,14)AO 

S7 +- S7 

S7 +- (16)Tl+.tS7 

X+- X 

X+- (16)T1+.tX 

Y+X 

15 X +- 8(16) 

/ 

16 E,S~ +- T(.LS6)+(.LS7) 

17 54 +- 812,13,14(16) 

18 S3 +- 8(16) 

19 SS +- X 

20 L +- y 

21 -+ 37 

22 

23 

Figure 12. 

8 
CTR + w /S3 

B +-X 

The AHPL Description 
for the Cordie 
Algorithm in Imple­
mentation in HP21MX 
Microprogram 
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24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

(v/CTR):O,(=,+) + (29,25) 

t 
B -<- o B 

(A/CTR):1,(=,f) + (29,27) 

CTR +- T1 + .LCTR 

+ 25 

SS +- B 

8 
CTR +- w /S3 

B +- y 

(V/CTR):O,(=,f) + (37,33) 

t B +- o B 

(A/CTR):1,(=,f) + (37,35) 

CTR +- T1+.LCTR 

+ 33 

MR +- .p 

P +- T1+.LP 

1 
MAC (.LMR, f; T) 

S7 +- T 

+ (42,48)(86)0 
. 16 

E,X +- (17) (.LX)+2 -.LL 

L +- S5 

E,Y +- (17) (.LY)+(.LL) 

L +- S7 

16 E,S6 +- (17) (.LS6)+2 -.LL 

+ 53 

E,X +- (17) (.LX)+(.LL) 

Figure 12. (Continued) 
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49 L -<- S5 

50 E,Y + (17)T(~Y)+2 16-~L 

51 L + S7 

52 E,S6 + (17) TUS6)+ H 

53 E, S4 -«- (17)T1+~S4 

54 -+ (57,55)(v/S4) 

55 E,S3 16 
+ (17)T(~S6)+2 -1 

56 -+ 22 

57 RETURN TO MACROPRAM 

Figure 12. (Continued) 

• 



TABLE X 

CORDIC ALGORITHM IMPLEMENTATION RESULTS 
(ASSEMBLY LANGUAGE) OF EVALUATING 

THE SINE FUNCTION 

Ang1e(Radians) Sin Execution Time (Mili -Sec) 

0.0 0.000244 3.304 

0.1 0.099975 3.297 

0.2 0.198913 3.310 

0.3 0.295410 3.313 

0.4 0.389587 3.300 

0.5 0.479431 3. 313 

0.6 0.564758 3.305 

0.7 0.644226 3.305 

0.8 o. 717407 3.310 

0.9 0.783325 3.304 

1.0. 0.841369 3.305 

1.1 0.891174 3.313 

1.2 0.932206 . 3. 311 

1.3 0.963562 3.306 

1.4 0.985351 3.311 

1.5 0.997558 3.318 

1.6 0.999450 3.310 

1.7 0.991760 3.318 

1.8 0.973693 3. 313 

1.9 0.946350 3.305 

82 



83 

'J'ABLE X (Continued) 

Angle(Radians) Sin Execution Time(Mili-Sec) 
----------· --------------·----------- --

2.0 0.909301 3.316 

2,1 0.863220 3.320 

2.2 0.808654 3.312 

2.3 0.745666 3.310 

2.4 0.675476 3.312 

2.5 0.598510 3.314 

2.6 0.515686 3.324 

2.7 0.427795 3.311 

2.8 0.334716 3.313 

2.9 0.239074 3.321 

3.0 0.140869 3.311 

3.1 0.041564 3.316 

3.2 -0.058654 3.304 

3.3 -0.157592 3.311 

3.4 -0.255798 3.320 

3.5 -0.350M6 3.317 

3.6 -0.442016 . 3.320 

3.7 -0.530090 3.327 

3.8 -0.611999 3.311 

3.9 -0.687622 3.314 

4.0 -0.756713 3.329 

4.1 -0. 81805L~ 3.302 

4.2 -0.871520 3.327 

4.3 -0.9163-20 3.321 

lf. 4 -0.951599 3. 311 
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TABLE X (Continued) 

Angle(Radians) Sin Execution T:i.me(Mi1i-Sec) 

4.5 -:-0.977539 3.322 

4.6 -0.999877 3.314 

4.7 -0.999877 3.314 

4.8 -0.996032 . 3.310 

4.9 -0.982422 3.312 

5.0 -0.958801 3.314 

5.1 .;..0.925901 3.311 

' 5.2 -0.883422 3.314 

5.3 -0.832153 3.308 

5.4 -0.772583 3.304 

5.5 -0.705505 3.309 

5.6 -0.631530 3.303 

5.7 -0.550659 3.309 

5.8 -0.464599 3.310 

5.9 -0.373840 3.305 

6.0 -0.279541 3.319 

6.1 -0.182312 3.314 

6.2 -0.082885 3.312 
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TABLE XI 

CORDIC ALGORITHM IMPLEMENTATION RESULTS 
(MICROPROGRAM) OF EVALUATING THE 

SINE FUNCTION 

Ang1e(Radians) Sin Execution Time(Mili-Sec) 
---·--· 

0.0 0.000244 0.105 

0.1 0.099975 0.126 

0.2 0.198913 0.112 

0.3 0.295410 0.108 

0.4 0.389587 0.106 

0.5 0.479431 0.104 

0.6 0.564758 0.108 

0.7 0. 6Lr4226 0.107 

0.8 0.717407 0.113 

0.9 0.783325 0.097 

1.0 0.841369 0.110 

1.1 0.891174 0.111 

1.2 0.932206 0.114 

1.3 0.963562 0.109 

1.4 0.9853.51 0.104 

1.5 0.997558 0.105 . 

1.6 0.999450 0.104 

1.7 0.991760 0.105 

1.8 0.973693 0.114 

1.9 0.946350 0.106 
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TABLE XI (Con tinned) 

Angle (Radians) Sin Execution Time(Mili-Sec) 

2.0 0.909301 0.111 

2.1 0.863220 0.105 

~ 2. 2 0.808654 0.106 

2.3 0.745666 0.105 

2.4 0.675476 0.116 

2.5 0.598510 0.111 

2.6 0.515686 0.107 

2.7 0.427795 0.116 

2.8 0.334716 0.107 

2.9 0.239074 0.114 

3.0 0.140869 0.102 

3;1 0.041564 0.103 

3.2 -0.058654 0.101 

3.3 -0.157592 0.105 

3.4 -0.255798 0.106 

3.5 -0.350646 0.112 

3.6 -0.442016 0.110 

3.7 -0.530090 0.105 

3.8 -0.611999 0.109 

3.9 -0.687622 0.097 

4.0 -0.756713 0.108 

4.1 -0. 81805lf 0.112 

4.2 -0.871520 0.107 

4.3 -0.916320 0.107 

4.4 -0.951599 0.111 
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TABLE XI (Continued) 

Ang1e(Radians) Sin Execution Time(Mili-Sec) 

4.5 -0.977 539 0.106 

4.6 -0.993774 0.107 

lf. 7 -0.999877 0.107 

4.8 -0.996032 0.107 

4.9 -0.982422 0.102 

5.0 -0.982422 0.102 

5.1 -0.925901 0.101 

5.2 -0.883422 0.110 

5.3 -0.832153 0.108 

5.4 -0.772483 0.111 

5.5 -0.705505 0.110 

5.6 -0.631530 0.115 

5.7 -0.550659 0.116 

5.8 -0.464599 0.107 

5.9 -0.373840 0.114 

6.0 -0.279541 0.111 

6.1 -0.182312 0.110 

6.2 -0.082885 0.107 



CHAPTER V 

OTHER USES OF CORDIC 

The Cordie algorithm may also be applied in solving many other 

mathematic problems as well as being applied in the evaluation of the 

sine and cosine functions. Decimal to binary and binary to decimal 

conversion, arctangent function computation, fourier transformation, 

et.al., can be done by the Cordie algorithm--a different way from the 

conventional methods. Arctangent function computation and decimal 

to binary conversions are chosen in this chapter to demonstrate how 

the Cordie algorithm is applied to solve these problems. 

Arctangent Algorithm 

This algorithm is obtained by reversing the sine and cosine 

algorithms. In this algorithm, the value V which equals Y/X is known 

(X andY are components of a vector.) The vector is rotated with 

respect to the positive X-axis. The angle traversed is the angle whose 

tangent equals Y/X. 

Functional Description 

The VECTORING mode is used in this application. To illustrate the 

details of this algorithm, Figure 2 in Chapter III is referred to again. 

The value of v is checked before the initialization of the X- and 

Y-registers. If the value of v is greater than 1 then the Y-register 

8~ 



is initialized with 1 and the X-register is initialized with v· 
' 

otherwise the X-register is initialized with 1 and the Y-register is 

89 

initialized with v. The Angle Register (A~register) is always initial-

ized with 0. A sign digit of 0 in the Y-register establishes a v. 
]. 

of -1, which causes the top adder-subtractor to be set to subtract and 

the middle and bottom adder-subtractors to add. A sign digit of 1 has 

the opposite effect. The ATR constants are the same as those used in 

Chapter III. The VECTORING computing sequence as described in Table II 

is started. The angle whose tangent equals to v is taken from the 

A-register after the final computation step. 

Decimal to Binary Conversions in Cordie 

A technique is formulated for using the Cordie arithmetic unit to 

convert between angles expressed in binary fractions of a half 

revolution and angles expressed in degrees and minutes in the 8421-code. 

The Cordie decimal-to-binary conversion technique may be compared 

to a conventional conversion technique in which the 8421-code and 

binary arithmetic are utilized. The conventional conversion technique 

is based upon the 8421-code definition of the value of a decimal digit, 

N, located i placed to the left of the units position, as given by 

n4 (8 x lOi) + n3 (4 x lOi) + n2 (2 x lOi) +n1 (1 x lOi) 

(5 .1) 

where n4 , n3 , n2 , and n1 are equal to zero or one. The constants 

8 x lOi, 4 x lOi, 2 x 10\ and 1 x lOi, evaluated in binary for all 

values of i to be used, are required in the conversion. For example, 

5° in 8421-code is 



45° (0 X 8 X 10 + 1 X 4 X 10 + 0 X 2 X 10 + 0 X 1 X 10) 

+ (0 X 8 + 1 X 4 + 0 X 2 + 1 X 1) 

45°- = (0100)' (0101). 

For example, 86° can be written as 

86° (1 X 8 X 10 + 0 X 4 X 10 + 0 X 2 X 10 + 0 X 1 X 10) + (0 X 8 

+ 1 X 4 + 1 X 2 + 0 X 1) 

86° (1000). (0110) 

90 

.The conversion of a negative angle is accomplished in the same way, and 

the result is then complemented by subtracting the binary magnitude 

from zero. F~r example, -86 ° is (0111) (1010) which is the 2 's comp,le­

ment of 86°. 

The binary value of 45° as a fraction of half revolution is shown 

in Table XII. 

In Table XII at each step a binary constant is either added or 

not added, depending upon whether the 8421-code variable is 1 or 0, 

respectively. In order to use the Cordie principle, it is necessary 

either to add or to subtract a constant. The use of addition or sub­

traction is controlled by a code variable placed in the sign digit 

position of an arithmetic unit register. The problem of conversion by 

adding and subtracting constants is considered first. Subsequently, 

the method of properly positioning the code variables for control is 

presented. 

By analogy to the way in which a code variable of +1 is used 

to establish the addition of a constant, a variable of -1 is used to 

establish subtraction. Therefore, it is desired that a binary code with 

+1 and -1 variables be used to represent decimal angles in Cordie. For 

convenience, the desired code is called a + (plus-minus) code. 



Constants 
Degree 

8 X 10· 

4 X 10 

2 X 10 

1 X 10 

8 

4 

2 

1 

TABLE XII 

THE CONVENTIONAL DECIMAL-TO-BINARY 
CONVERSION . 

Constants-Binary 8421-
Fraction of half Code Variable 

Revolution 

.01110010 X 0 

.00111001 X 1 " = 

.00011100 X 0 

.00001011 X 0 :::: 

.00000110 X 0· = 

.00000011 X 1 = 

.00000011 X 0 

.00000001 X 1 :::: 

Accumulated sum = 2-2 half revolution .01000000. 
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Product 
Term 

0.00000000 

0.00111001 

0.00000000 

0.00000000 

0.00000000 

O.OOOOOllO 

0.00000000 

0.00000001 



92" 

The 8, 4, 2, 1 weights cannot be applied directly to a four-digit ± 

code because all possible sums ~f binary-weighted ± code digits are odd. 
( 

Therefore, a transformation of t\he decimal digits 0, 1, ... , 9, into 

a set of ten odd integers is necessary. The set of ten odd integers 

-0' -7' ... ' -1, +1, ... ' +9 is selected. 

The equation transforming a decimal digit N, having one of the 

values, 0, 1, ... , 9, into a digit Y having one of the values -9, -1, 

... , +9 is 

y 2N - 9 

The equation for the inverse transformation is 

N ly + 2_ 
2 2 

(5.2) 

(5. 3) 

1 
Applying the factor of 2 in (5.3) to the 8421-weight results in the + 

code equation 

N (5.4) 

where Y. = +l.or -1 and C = 
J 

9 
2 

A factor of lOi may be applied to each 

term in (5.4), as was done in (5.1), account for the position of the 

digit N. 

c = 9 
2 

The pattern theY. variables of the code of (5.4), with 
J 

and with O's used t · represent -l's, is identical to that of 

the Excess-3 code. 

Equation (5.4) can be applied to each digit position, and the 

i 
constant term c ~ 10 for all decimal digit positions is added in binary 

to the accumulated sum. As an example 45° will be converted from + 

(excess-3) code to binary as follows: 



for 45° 

9 c2 = 2 4.5 

45 

C = .c1 + c2 = 49.5 = total constant 

Consequently the constant for 45° is 49.5. 

The + 1 code representation is 

5 + 3 = 8 (1000)2 

7 - (0111)2 4 + 3 
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(+---) 

(-+++) 

Where each digit must be added to 3 for excess -3. The zero stands for 

minus one and one for plus one. Thus 

45° = (-+++) (+---) 

The complete conversion of 45° is shown in Table XIII. 

X 

Where fro~ equation (5.4) 

(-40 + 20 + 10 + 5) + (4 - 2 - 1 - l) + 49.5° 
2 

Successive digits of the ± code must control successive set-

ting of the adder-subtractors in order for the proper sequence of 

additions and subtractions to occur as indicated in the previous table. 

The settings of the adder-subtractors during the conversion operation 

are established by the value of the sign digit located in the Y-register. 

In positioning the + code digits for control, the technique of 

nonrestoring division is useful because successive quotient digits are 



Constant 
Degrees 

49.5 

40 

20 

10 

5 

4 

2 

1 

1/2 

TABLE XIII 

DECIMAL-TO-BINARY CONVERSIONS 
IN CORDIC 

Constant-Bainry 
Fraction of Half + Code Product 

Revolution 

.0100011001110 (correction) . 010001100110 

. 001110001110 X -1 = -.001110001110 

.000111000111 X +1 = +.000111000111 

-
.0000011100100 X /+1 = +.000011100100 

.00001110010 X +1 +.000001110010 

. 000001011011 X +1 +.00000101101 

.000000101110 X -1 -.000000101110 

.000000010111 X -1 -.000000010111 

.000000001011 X -1 ~.00000001011 

94 

Accumulated Sum 

. 010001100110 

. 000011011000 

. 001010011111 

.001110000011 

. 001111110101 

.010001010000 

.010000100010 

.010000001011 

. 0100000000 

The 
. -2 

accumulated sum = 2 half revolution = 0.010000000000 
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given by the sign of successive remainders. Dividing the number 

representing the ± code of the angle by 1 produces the signs of succes-

sive remainders. In Cordie this is accomplished as follows: 

1) If the remainder is positive, subtract the divisor. 

If the remainder is negative, add the divisor. 

2) Shift the divisor one place to the right. 

3) Repeat 1 and 2. 

The positioning of digits of the + code for 45° is illustrated by 

following the above rules as shown in Table XIV. 

In decimal-to-binary conversion, the + code for the desired angle is 

placed in the Y-register and the divisor of 1 is placed in the X-regis-

ter. A sign digit of 0 in theY-register establishes a Y. of -1, which 
1 

causes the top adder-subtractor, Figure 13, to subtract and the bottom 

adder-subtractor to add. A sign digit of 1 has the opposite effect. 

The constant C in (5.4) is initially placed in the angle register and 

successive constants are introduced into the bottom adder-subtractor 

as shown in Figure 13. As one step of the division is taking place to 

establish the next setting of the,adder-subtractors, a constant is 

being added or subtracted to modify the quantity in the angle register 

according to the sign digit in the Y-register at the beginning of the 

step. The binary angle is taken from the bottom adder-subtractor on 

the final computation step. 



(-+++) (+---) 

sub 

add 

sub 

sub 

!-
sub 

sub 

add 

add 

TABLE XIV 

GENERATION OF + CODE FOR 45° 

Sign of Remainder 

0111 1000 

1 

1111 1000 

1 

0011 1000 + 

1 0111 7 in excess 3 

0001 1000 + 

1 

0000 1000 + 

1 

0000 0000 + 

1 

1111 1100 

1 1000 8 in excess 3 

1111 1110 

1 

1111 1111 
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Y REGISTER 

ADDER-
• Ll,t SUBTRACTOR 

SHIFT 
CATES 

r~ I I I I I I I I I I I I I I I X REGISTER 

( • '1 \ 
, ) - l- <'- • 'I 
(_ . i 

~: 111111111111111 ~ ' 
ATR CONSTANTS c [> - VA 

lb 
ADDER~ 
SUB'I'RAC TOR 

Figure Ll. ImplementaUon of ~Code to Binarv Conversion. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The results of the programming tasks discussed in the previous 

chapters are shown in Tables VIII - XI. 

In order to compare the accuracy of the results obtained from each 

task, a set of standard sine function values is obtained .. The result 

of each task is compared to these standard values and the accuracy is 

thus determin~d. 

For the convenience of further description, the four tasks which 

have been accomplished in Chapter IV are designated Task 1, Task 2, 

Task 3 and Task 4: 

Task 1 - polynomial method implemented in assembly coded program. 

Task 2 polynomial method implemented in microcode. 

Task 3 - Cordie algorithm implemented in assembly coded program. 

Task 4 - Cordie algorithm implemented in microcode. 

Note that the sine values of Task 1 are identical to those of Task 2, 

while the sine values of Task 3 are identical to those of Task 4. Thus, 

only two sets of results are compared with the standard sine values, as 

shown in Tables XV and XVI. A'cording to these tables, both tasks are 

accurate up to three decimal digits; in other words, all the tasks 

give about the same accuracy of sine values. 

The execution time of each taskis shown in Tables VIII -XI. By 

reviewing those tables it is found that Task 1 is the most time-
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TABLE XV 

THE COHPARISON BETWEEN THE CORDIC ALGORITHM 
IMPLEMENTATION RESULT AND THE 

STAND/Jm SINE VALUE 

Angle(Radian) Sin(Cordic) Sin(Correct) Error 

0.0 0.000244 0.0 0.000244 

0.1 0.099975 0.0998334 0.0001416 

0.2 0.198913 0.198669 0.000244 

0.3 0.295410 0.29552 0.00011 

0.4 0.389487 0.389418 0.000169 

0.5 0.479431 0.479425 0.000006 

0.6 0.564758 0.564642 0.000116 

0.7 0.644226 0.644218 0.000008 

0.8 0.717407 0.717356 0.000051 

0.9 0.783325 0.783327 0.000002 

10. 0. 8Lfl369 0.841471 0.000102 

1.1 0.891174 0.891207 0.000033 

1.2 0.932206 0.932039 0.000167 

1.3 0.963562 0.963558 0.000004 

1.4 0.985351 0.98545 0.000099 

1.5 0.997558 0.997495 0.0000063 

1.6 0.999450 0.99957Lf 0.000124 

1.7 0.991760 0.991665 0.000095 

1.8 0.973693 0.973848 0.000155 

1.9 0.946350 0.9463 0.00005 
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TABLE XV (Continued) 

_Ang!_e (k~dian) SiL(Cordic) Sin(Correct) ----------- Error 

2.0 0.909301 0.909297 0.000004 

2.1 0.863220 0.863209 0.000011 

2~2 0.808654 0. 808!!96 0.000158 

2.3 0.745666 0.745705 0.000039 

2.4 0.675476 0.675463 0.000039 

2.5 0.598510 0.598472 0.000013 

2.6 0.515686 0.515502 0. 000018!+ 

2.7 0.427795 0.42738 0.000415 

2.8 0.334716 0.334988 0.000272 

2.9 0.239074 0.23925 0.000176 

3.0 0.140869 0.14112 0.000251 

3.1 0.041564 0.0415808 0.0000168 

3.2 -0.058654 -0.0583743 0.0002797 

3.3 -0.157592 -0.157746 0.000154 

3.4 -0.255798 -o. 255.5A1 0.000257 

3.5 -0.350646 -0.350783 . 0.000137 

3.6 -0.442016 -0.442521 0.000505 

3.7 -0.530090 -0.529836 0.000254 

3.8 -0.611999 -0.611858 0.000141 

3.9 -0.687622 -0.687766 0.000144 

4.0 -0.756713 -0.756802 0.000089 

4.1 -0.818054 -0.818277 0.000223 

4.2 -0.871520 -0.871576 0.000056 

4.3 -0.916320 -0.916166 0.000154 

4·. l1 -0.951599 -0.951602 0.000003 
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TABLE XV (Continued) 

.Angle(Radian) SiP (Cordie) Sin(Correct) Error 
-------------------

4.5 -0.977539 -0.97753 0.000009 

lf. 6 -0.993774 -0.993691 0.000083 

4.7 -0.999877 -0.999923 0.000046 

4.8 -0.996032 -0.996165 0.000133 

t+. 9 -0.982422 -0.982453 0.00031 

5.0 -0.958801 -0.958924 0.000123 

5.1 -0.024901 -0.924815 0.000086 

5.2 -0.883422 -0.883455 0.000033 

5.3 -0.832153 -0.832267 0.000114 

5.4 -0.772583 -0.772765 0.000182 

5.5 -0.705505 -0.70554 0.000035 

5.6 -0.631530 -0.631267 0.000263 

5.7 -0.550659 -0.550686 0.0000027 

5.8 -0.464599 -0.464602 0.000003 

5.9 -0.373840 -0.373877 0.000037 

6.0 -0.279541 -0.279416 0.000125 

6.1 -0.182312 -0.182163 0.000149 

6.2 -0.082885 -0.0830896 0.0002046 



Ang1e(Radian) 

-1.5 

-1.4 

-1.3 

-1.2 

-1.1 

-1.0 

-0.9 
) 

-0.8 

-0.7 

-0.6 

-0.5 

-0.4 

-0"3 

-0.2 

-0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

TABLE XVI 

THE COMPARISON BETWEEN THE POLYNOMIAL 
NETHOD U1PLEMENTATION RESULT AND THE 

STANDARD SINE VALUE 

Sin(Cordic_) Sin(Correct) 

-0.997558 -0.997495 

-0.985351 -0.98545 

-0.963378 -0.963558 

-0.932128 -0.932039 

..,.0.891357 -0.891207 

-0.841552 -0.841471 

-0.783447 -0.783327 

-0. 717285 -0.717356 

-0.644287 -0.644218 

-0.564697 -0.564642 

-0.479425 -0.479492 

-0.389404 -0.389418 

-0.295654 -0.29552 

-0.198730 -0.198669 

-0.099853 -0.0998334 

0.0 0.0 

0.099609 0.0998334 

0.198486 0.198669 

0.295410 0.29552 

0.389160 0.389418 

. 102. 

Error 

0.000063 

0.000099 

0.00018 

0.000089 

0.00015 

0.000081 

0.00012 

0.000071 

0.000069 

0.000055 

0.000067 

0.000014 

0.0001344 

0.000061 

0.0000196 

0.000000 

0.0001434 

0.000183 

0.00011 

0.000258 
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TABLE XVI (Continued) 

A!!Md~adian) Si.n(Cordic_}_ Sin(Correct) Error 

0.5 O.tf79248 0.479425 0.000177 

0.6 0.564453 0.564652 0.000112 

0.7 0. 641~042 0.644218 0.000176 

0.8 0.717041 0.717356 0.000315 

0.9 0.783203 0.783327 0.000124 

1.0 0. 841308 0.841471 0.000163 

1.1 0. 891113 0.891207 0.0000937 

1.2 0.931884 0.932039 0.0001546 

l.J 0.963134 0.963558 0.000424 

1.4 0.985107 0.98545 0.000343 

1.5 0.997314 0.997L!95 0.000181 
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consuming t~sk; Taf?k 2 consumes less time; Task 3 consumes still less 

time; Task 4 consumes the least time of all. 

Task 1 and Task 2 are the same algorithm but implemented in 

different ways, so the sine values will be identical but the execution 

time may be different. The same applies to Task 3 and Task 4. The 

programming results in Chapter IV prove this assumption. 

Task 1 is performed in an assembly coded program, while Task 2 

is performed in a microprogram. According to the description of the. 

microprogramming in Chapter IV. the execution time of Task 2 should be 

less than that of Task L Similarly, Task 4 should have less execution 

time than Task 3. The programming results in Chapter IV also prove 

this assumption. 

The things that cannot be predicted before going to the computer 

are whether Task 1 or Task 3 will have less execution time, and 

whether Task 2 or Task 4 will have less execution time. However, we 

expect that Task 1 is faster than Task 3 and Task 2 is faster than 

Task 4. If this is true, it means we can improve the speed of evaluation· 

of trigonometric functions by replacing the conventional polynomial 

method with the Cordie algorithm. Surprisingly, the programming results 

in Chapter IV indicate that the conventional polynomial method is faster 

than the Cordie algorithm for computing trigonometric functions. 

Although this is disappointing, it is possible to determine exactly 

how these results were effected. 

Although the Cordie algorithm eliminates the necessity of multipli­

cation, some shifting still must be done. In the real Cordie machine, 

three registers (A,X,Y) can be shifted and added or subtracted 

simultaneously. When the Cordie algorithm is simulated in this general 



purpose machine the HP21MX, the shifting and adding or subtracting 

carr only be done sequentially, because the arithmetic unit can only 

handle one arithmetic operation at a time. In addition to this, the 

result of shifting and adding must be stored, and then the arithmetic 

unit for shifting and adding/subtracting of other registers msut be 

released. After all three registers finish their shifting and adding/ 

subtracting for the current cycle, the next cycle starts. So the 

shifting and adding/subtracting results of the first register in the 

previous cycle will be restored, and so on for the second register and 

thrid. Therefore, when the computer is running, a lot of storing and 

restoring is being performed, and this is very time-consuming. That is 

why Task 1 requires more execution time than Task 3. Task 2 implements 

the Cordie algorithm in a microcode, so it improves the speed of Task 1, 

but is still slower than Task 3 and Task 4. Task 4 is a microcode, and 

thus improving the speed of Task 3. Therefore, the conclusions are: 

1) The use of the Cordie algorithm for evaluating trigonometric 

functions without hardware extensions will-be slower than 

using conventional polynomial methods; 

2) When using a conventional polynomial method for evaluating the 

sine function, the microprogram will be two times faster than 

the assembly coded program; 

3) In order to use the Cordie algorithm to improve the speed of 

evaluation of trigonometric functions, a lot of hardware work 

must be done in the current HP21MX computer. 

With the suprising speed of development of the microprocessor 

today, it might be very easy to construct a microcomputer which has the 

features of both the general purpose computer and the Cordie computer 

in the near future. 
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CONTROL SECTION MAIN MEMORY SECTION ARITHMETIC AND LOGIC SECTION 

I 
I 

I 
l S-bus 

FRONT PANEL SECTION l/0 SECTION 

Figure D-1. Funclional Block Diagram 
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~********************************~***********~*******~**********~***** 
* TASI< :1. TE:3T F;F:OGF<:AI.'I----·COFDIC ''HJ.JOF:JTf·!i··l H!F'L.E.J·IEI'~TET• IN i'J5::::E.}'IE:L'r' + 
* CODE F~OGRAM 
+ INPUT PARAMETER-- AN ANGLE WHICH MUST BE IN THE RANGE OF + 
* , < ····::>..=:0.· ::::;_:;o > [:•EGF:EE ·l·o 

* OUTPUT PARAMETER-- SIN VALUE OF THE INPUT ANGLE + 
·+· 

*****~******************~~*******************************************~ 
H9•m .. 1"1.· f.:.. L .. T 
+SET UP THE CLOCk INTERRUPT VECTOR ADDRESS 

ORG :L4B 
J :=::f.:: T I 1···1E 
Of<:G 200B 
:::;lT 121B 
c·Lrl 

+SET UP INTERRUPT TIME PEF:IOD TO a 1 MILISECOND 
O'T'F'I :1 .. 4B 
N()f" 

+SET REPEATITION COUNT TO 11210 
::>Tf'tF:T L..Dr:t HI) 

::;·rr:! L.CT 
CL.r:t 
CLD 
'c':TF't • .. ,. 
::::Tf=t ·,.· 
::::Ft COUNT 
Ff:ID r!J··.IG 

+CONVERT THE INPUT ANGLE TO THE CORDIC REPRESENTATim~ 
FC'•\1 PI 
F<:F:F: :1.6 
::::Ln 
.H'IP FtJ 
:~:TH TP::::; 
FINE'• 1···1c 
:::::::H 
f?RI ... l 

Fl'·,l IO..IOP 
Ll:>f=t lE: 
.JI•'IF' E:l~T 

f't.J crt:x: 
PHP 
I OF<: FH 
·:>Tf't ::::1··-l 
C>O:H 

::::T f'6F: :J. 
ISZ ::::1··.1 
JJ·If:· ::::T 
JJ·IP E:N 

El·.n· ::::TH f<:f=t 
F:J'-.ITJ. L..I:•H PH 
~INITIATE TIME CL..OC~ XNTERRUPT 
+THE CORDIC COMPUTING SEQUENrE STAETS HERE 

:~:Tc· J .. 4E:, C 
CL..fC:: 
·:.::TE: :.-o: 

·:::TF.'.: .,, 
I .... I:>E: U'·/ 
CL .. O 
::;::::r:t 
JI''IP C:():l. . 
.:;::TF: 'r' 
f'tl:•r"'t NFE 

BJ.. L..l>:'< :=; T :·: 
::::f-n ' ... t::::o-: cor·l 

:::::n:: F:\1 
.·.=:: T B T E :~: 
L.l)E: .,., 



I) I\! OF' 
ISZ TES 
Jto'IF' C:l 
.Jt1P E::2 

Ci E:F:S 
Jt1P [:· 

L.l)',·' ::.:; 

~::sf~ .. F.:~:s 

Ct•"JE:, rrm 
r:t[:•'r' 1E: 
L[l8 ;:.:: 
~:::r~,.~ ::·:: 

j)j_ NOP 
I:=:::: t-;::v 

)t··Jp c;;;: 
.H·1P r:::~~: 

BP~.=:: 

Jt··Jp l):t 
f<i: I ... J)'r' '·r' 

:3Sf'l 
Ci··Jt: .. I Nf': 
i'IO'r' ::1.8 

I ... E:>< t:f? 
·:_;;:::H .. F:S::; 
Ci"'l8 .. INB 
1:11)1:1 18 
[:•S:< 
Jl···jp SHT 

*E>:ECI...ITE THE CCH<'I) I C C•:>i·IF'-UT" 1 NCi :=::EC!UEI'Kf.::: JJJ1J T I r·!E:::: FOF~ THE :::::r:Ji"·IE m-K;LE 
I~;;::: LCT 
Jr··Jp EI'.ITJ. 
CLC :14F: 

*OUTPUT EXECUTION TIME .. SIN AN0 COS VALUES OF THE INPUT ANGLE 
! ... DE: C:OI .. .II'-JT 
.:r::;E: 01.1 !" 
.:r:::;u OI..IT":L 
CLF: 
~=::n~: cotll'·rr 
I....I)B ;,; 
J::::E: C:ii .. IT 

.J~:::t=: OI. .. IT:1. 

L .. DB \t 
J~:)B OI..ITJ.. 
I....DE: f.';1J;::: 

JSB OI..JTL 
:r~:;r:: 01.1 r 

*INCPEA5E THE INPUT ANGLE BY 0. 1 T~~N REF~AT lHE PROGPAM 
I)I...J• ~'11'·.11, 

FHI) J 1'./C 
[•''cT HI'·,JCi 

*SERVICE ROUTINE FOP CLOCK INTERRUPT 
JTIF' ::::rHF~T 

T I 1"•1[ 1'·./0P 

Ci)lit~T 

COl 

STC :J..4F· C 
I SZ ~··ol . .ll'.iT 
J"i'lf:· TH··Jt::. I 
OCT 1) 

Cl'lf.::. I NE: 
·:~TF::: ~,.t 

I''IC•f=t F:E 
Jt•"lf'' F:::t. 

f'/1'·./U N':C 0. 1'1 
PI DEC 1. 14159 
FH OCT 177600 
SN NOP 

112 



UV OCT ~77 s 
NRE OCl 140000 
RE OCT 040000 
SJ>:: OCT 1C 
p• .. • E:::s 1 
TES B::s J 
CON NOP 

OCT --·:16 
OCT -·1':; 
OCT .... 14 
OCT -- ::l,~i: 

OCT ····1.2 
CICT --·::L:J .. 
1.JCT --·:1..0 
oc:T ., 

' 
OCT --·6 
OCT -·':5 
OCT ---4 
OCT ~ .. -::· 
ocr 
OCT -<L 
NOF'' 

f;!'? I'·.JOF' 
OCT OOOOI)J.. 
OCT 1:10('11.''11;::1;;;: 
OCT OOIJCIO~"; 

()CT 01:)01,)12 
OCT OOOO:c:·:~ 
OI_·::T 0001~1'5~.:_1 

c11:·r ooo:1 .. .::1 
OCT CI00:,::42 
()C'T oo1a~:;u:; 

()CT ~)i):J..::::J.:~i 

OCT 00242!. 
OCT 004T''.? 
OCT 1)'1.1~>+4 

OC:T o::;::r:'if:'IOel 
!'·,JOf:• 

:,< E::c;:::: :1 
',-' ~:::~:::::.:; J. 
LCT OCT 1?7654 
HD OCT 1??654 
f~:H NOF 
TP:::: J'.J(..IF' 
J···Jc: OCT :, , , 
Ji'·,JC: DEC 0 J 
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*************************************~***~*******~********~~********** 
+ TASK 2 TEST PROGRF~--CORDIC ALGORITHM IMPLEMENTED IN MICROCODE * 
+ PROGRAM 
+ INPUT PARAMETER-- AN ANGLE WHICH MUSl BE IN THE RANGE OF 
* (-?60, 360) DEGRLE 
* OUTPUT PARAMETER-- SIN VALUE OF THE 1NPUT 0NGLE 

* 
************************~******~******************************~******* 

· FISI'1B.. ('J, f.:: .. L .. T 
I)F:G JAE: 

••··~:;ET UP THE CL()CJ·· It·JTFF'kUF'T '..·T> TOF: FJL'{·r~:· :·c:· 

.J:::;B THIE 
OF:G 200E: 
:::;n:· 08 
CL..H· 

+SET UP rJ··nERF;:J.JF'T TII'·IE PG':IOE:• T>.' ,, 1 r·Jii .. l::;Ecot.:;:. 
C>TH :14B 
J'·,JOP 

+SET REPEATITION COUNT TO lOCI 
::::T~:IF'T LDH H[• 

:::;Tf:l l..CT 

ClJJ 
CLB 
·:;TH i·•, 

::::Tf'J ',' 
::::TH COUNT 
FHL• Hl'·Ki 

1·•( OI'J'..·'EF:T THI:O: I J'.JI''IJT l:JI\IC3LE: T>.-J THE COF'I) I C 1; ETFESEi'JTfiT' I Ui·i 
FT-'..1 PI 
F:F:P :1. ,; 
c':LH 
.Tf·IP r:u 
::::rn rF'·<: 
HND l·lc· 
:=;zi"'J 
f<:f<:L l 

EN I'·JC>P 
I ... I:OH :1B 
)I• IF' ENT 
C.:H>: 
FHf<: 
I OF: F'H 
:::::rH :=:J•.J 
I">O:H 
n::>F: ::1.. 

J ~=:::? ::.;N 
J I·IF' :;r 
TI'·IP [)'.1 

EJ'.JI ::;·n:t Fc'H 
[I'·,JL:L I .. C•f::l f;:f:i 
*INITIF'JTE TIME CLOC~ INTEF:RUP1 
+THE COR~IC CC~1PUTING SEQUENCE STARTS HERE 

::::: ·r c J_ .• :m, c 
>:::L.F: 
C:B>< 
CE:\1 

NOF'' 
~ THE f:NTF:Y PUINT TO THE MICRUPRUGRHM WHICH PERFORMS THE COF:DIC COMPiJTING 

,.,_. SE(;'t.JENCE 
OCT :10'"':::1.60 

UV OCT 23J35 
*THE ANGLE CONSTANTS 
NRE OCT 140000 
HNT:l 
HJ',Jr::~ 

HNT? 

OCT O::·U>JO>"' 
>)CT 01.1.·•::.!-" 
OCT o~::>·l??::·: 

' 



HNT~") 

f=tNT6 
i=tNT? 

OCT 1211ZU .. :•.·1.::: 
CIC,f 0~)~':1<C50":; 

OCT ~Ji,":l024;;: 

HNT10 OCT 000121 
HNT11 OCT 000850 
ANT12 OCT 000024 
AN113 OCT 000012 
ANT14 OCT 000085 
HNT15 OCT 000002 
ANT16 OCT 008001 
t: F.:FTI.JF:t-.1 TO THI:C:: f''():i:NT I"'F'OI'··t I'·IJ•T·>C•r'kliClF:HI•I 

I::;z L.CT 
J'i""IP ENTJ 
CL.C l4B 

*OUTPUT EXECUTION TIME.SIN AND COS VALUES OF THE INPUT ANGLE 
/ LDf.': COUI'-.IT 

J::::r:: OUT 
J:c.\E': OUT'! 
CLE: 
·:::TE: C()I ... II'·~T 
!.._DB ::·:: 
J:;:;B I)IJT 
JSB (II.JTJ.. 
1.. .. 1::-E: '., .. 
J:::::E: OIITJ. 
I..I)E: OF 
J·::E: 01 IT::I.. 
.r::::f': I)IJT 

+ li'·,II:.F:Ef't:c\f: THE I !'·,JF'I...I'> '''11'·1' il. E [':',' f} :. i H[N r:•:r:J>LHT T'-if:: r;:•:C>•.]i·:l::!i·J 
!'•I .. J> nNG 
I" HI> I l'!l·: 
L<:C~r Al',ll .. i 

IO:::>EF:\IJC:E F:CHJT' !.1',1[ ! , 1>;: C! .OCI< Il'·fiT 1·: I;IIPT 
li''IF' :5THI:::·r 

T ll'l[ /'ICIP 

CCII.J/'·,IT' 
11N1:1 
F I 

·.: .. rr· 141':. ,. 
r ·::;z c ()l.ii·.Jr 

ri·IP T I !'IF 
111:: r ';"' 

I'•EC 121. ,:;, 
DEC: l·'~J'5 .. 1 

FH OCT J77GOO 
::::J·~ !'~()p 

J',JI:)F' 
... F.::::::•: 
'r' [:S:;:;; .:1.. 

LC OCT 177~S4 

HD OCT 17~G54 
r:.i=t t·.lo•::· 
r f-·:=:: I'·,Ji'IJ"·· 

1··11.. 01: ·1 • 
I I'·,JC I)F.C: 0 1 

ll5 



*~*****:~*~**=~*~(**~~~~***~~~:~~***;~;~'~-~,~~~=-~,,~~:~-~:4·'~*~:+:****~=~~*'~***~·~*~**~=~~**'~** 

*' 1''1 I CPOF''P(II:ol':f:WI-- IJ'3EE• I !'·If'' I~ t':TJ···IEI'rf TH>.:O C•:.•"'l.• I C fll.GOF: I I Hi·l *' 
* F''Of;: E'·/l"iU.IHT II'·IU THE ::.: :fl...r:: '"I.JI'·H 1: Ul-1 "" 
* THE ANGLE OF THE SINE ~UNCTION SHOUL0 GE STORED IN * 
·~ THE: REO I :=;TEf;: Fl E:EFOF:t:: El'-frf:::y THE I'HCF:UF'FOGP~:Ii·l * 
***~~*~~****~<***·~-~~-:i~**~(~,;~~*~'***'~**~'~***-~--~*=~~-~-~*'~*~'*****'~~-~-=***'~'~'*****'~*"i~*** 

'f.SVt'ITf'IB 
oi'(JF: I G I ~'"'J.400 

JMP NOF' PASS NOP START 
'*'OF I C1 I N:o:14.U. 
~;:n"JRT NOP NOP F'ASS NOF' NOP 
•<·GET THE UNIT ')ECTOP FRo1··1 1'·1AHJ r··I[I'IOf;~o,.· 

F:EA[:• r<or· H~C pm·1 P 
*STORE IT IN REQ ~ 

NOP I'~OP F'fi::'::_:; .·•. n'JE: 
*GET THE FIPST ANGLE CO~ITST 

PEAD NOF INC PNM P 
«:::;TORE .n IN F'I.~G. 57 

NOP NOP PASS 57 TAB 
*~TORE THE ANGLE OF THE SINE Fl~CTION IN PEQ 56 

NOP NUP PASS 56 A 
* I:F , THE ANGLE IS L.ESS THf'll'l :lSO [•C•JF:EE .. l::r.':AI'<CH TO DH 

JMP CNDX AL15 RJS EN:l 
*GET THE TWO'S COMPLEMENT OF 5? 

NOP ~-JOF' Ct1P::: ::::? 5? 
NOP NOP INC S? 5? 

·•·•GET HJO· 0::: COI'IF'L.IC:t·H OF ;..; 
NOP NOP C~PS X 
NOP NOP I NC ;.,; 

+:.::TORE ; .. ; J N '-r' 
EI'H 
I·CI...EAF: . ' 

,.,::;:4:~--·:14 

I'JOF· 
F:EO. 
~KIF' 

NOP 
NOP 

~IC!f"" 

I'·WP 

l'.l()f" 
I'·IOF' 

I'ICIF' 

Pn·=:-:: 

ZE:F:O 

pf:IS:.::: 
FiE>[:• 

LOI·I 

T 

'-· 
S6 

S4 

'··' ,.~, 

NOf'' 

S? 

36:::;[: 

lt'/1"1 NOF· L.Ol·l 53 DE: 
NOP NOP PASS 55 A 

NOP NOF' PASS L ~ 
Jt'IP NOF' NOP NOP E:K1 

+INITIALIZE THE COUNTER 
E:K I'·J(JP I'·.J()F' Pf~~;.::- CNTP s:.;. 
~,pI GHT SHIFT E: I<:EG B'r' THE NUt1E:G: IN THE COUNTER· 
*THEN STORE THE SHIFTING RESULT IN 55 

NOP RPT PASS E: ~ 

ARS R1 PASS E: B 
NOP I'<OP PA::'::": S5 8 

+SET COUNTER AGf~IN 

+GET 
E:f<:J. 

•·TEST 

JN 

E:GT 
$EN(' 

NOl~ NOP PA~·· CNTP S3 
NOP PPT F·'A:::::; E': 'r' 

ARS R1 PASS B 8 
NOP NOP PASS L B 

NEXT ANGLE CONSTANT 
PEFK• !'·.lOP INC PNr··i I 
NOf'' I'IOF' PFc.::; ·:;;:· Tf'IE: 
NOP NOP PASS S6 ~~ 

THE ANGLE , IF GPEATEP THAN 1S0 DEUREE 
. .H'IF' CNr;:.; •. ; I"'LJ."'; r·JOP EI'.L:" 
NOP NC~ SUB A 
NOP N~~ PASS L 55 
NOF" I'KIF'' ~i[:o[:• 'r' ',' 
NOP NOP PASS L S? 
I'Kif"·' tJOP SUE': ::.;6 ·:;;; 
Jt•IP 
NOP 
Nor=· 
NOF' 
NOF' 
NOF' 
NOF' 
JI'•'IF' 
NOF' 
Jr··Jp 
NOF· 

t·<OF· 
I'~Uf"' 

tK>F' 
I', OF' 
NOF' 
t<OF· 
CNI:::O:•: 
~Kif"> 

F':TN 

A(:o!:• 
F'H·.:: 
~?UE: 
F·As::; 
A[:•l) 
INC 
TE.'C 
CoEC 

PA::::·c: 

I_ 

T' 

L 
::::6 
~oA 

I'·JOF' 
:~:]: 

NOF' 

n-.1 
,-··c:;· 
,;,:. .... ' 
'r' 

::::4 
E:-:r T 
,-·-:. 
-~ ·. 

CJU TO Et-./:2 
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******~;~*****~~'**·-~;~**;~;~*~~*~~****:~**;k.i(*i~=~+=~-~~*****-~**;~*****~~~-~-~*=~*******~ 
* TASK 3 TEST PPOGPAM--PC~YNOM1AL METHO~ IMPLEMENTED IN ASSEMBLY ~ 

* F·Rcn:.JF:f'il"l * 
* INi=·UT ~'FIF:tit•IIO:TEP-·-fit-4 riNGLE F-~ANI:,EL.• FF.:ot·1 -90 DEi::JPEE TO 9i21 DEGF.:EE * 
* OUTPUT PAPAI•'IETEF:-·-THE :3INE 'ii"IL.UE OF THE HWUT m~GLE * 
:~***:~*:~*;~*-~**~'***-~;~;~*=~**;~***=~**'*;~**;~~=~:~:+:*:~~--:~*****~-~:~-~~*****:~**********:~ 

fiSt'IE: .. A.· 8.· L .. · T 
*SET LIP THE C U.XI· 1.1-.ITEF:F.:UPT '·iECTOF: m:.DI;:Es~;. 

FI'H:l 

ORG :14E: 
.. r::::B T II'1E 
ORG :C:OOB 
:3TF 08 
CL.A 
OTA :1.4E: 
NOP 
LDii Hl::o 
STA LCT 
cu:, 
ILE: 
C:~1i·=: 

C~-=t'r' 

STA CI)I . ..INT 
STC 
L.t:oA Fii·JG 
I'•'IP'r' F1r·m 
tiSL :1 
STB ::.o 
LNi 
CLB 
t·IF''-r' c~; 

AlA:': c·? 
LE,ti 
CLE: 
t'IF'.T' :::~C! 

fiSL.. J: 
A[:•E: C:l 
UAi lB 
CL.Fi 
1•'11""·,-' m·JG 
~=;n.:: tiNU 
STE: tir.-::. 
I::OZ L.CT 
.n·H=· ·J~I··rrt 

CL...C :'L4b 

:148 .• 

18. 

:Lf3 

,~ 

~oUTF'Ul E~ECUTION TIME,SIN AND COS VALUES OF THE itlPUT ANGLE 
Ll>8 CCIUNT 
.J::;E) OI.JT 
J58 CJUTJ 
(: L.E: 
'eTC Ci)IJNT 
LD E: 111'·1:0. 
.JSB OUT 
rs;;s OIITJ_ 
L.l)f3 m~G 
JSE: OU"!"l 

*INCREASE TAE INPUT ANGLE BY ~ t THEN REPEAT THE PPOGRAM 
U)H INC 
AF:::::, HF:< 
Af:'::;, ~~F:·:: 

!iF::::: 
I"II)H FIN(] 
:=::TA HI'K1 
rr·lf'' ~;Tt1PT 

*SEPVICE ROUTINE FOR CL(~~~ INTEPPUPT 
T l I·IE NOF' 

COUNT 
fit-K; 
LCT 
H[:• 
HNS 
:::?.1) 
C:L 
C3 
(:~5 

INC 

<;Tc 14E: .. c 
r ::::z COU~H 
fi·IF' T I !'·IE .. I 
OCT (:1 

OCT 0 
OCT l '?;:'6'54 
OCT :1 ~:·'?65.::1. 
DCT 0 
fJCT (1 

DEC 0. ·::.::.~::<892 

OEC ·-·~) . . 1.65968~; 
DEC 0. 0076031915 
[:oEC ~.1. 1 
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**********~*****************************************~***************** 
* TASK 4 TEST PROGRAM--POLYNOMIAL METHOD IMPLEMENTED IN MICROPROGRAM* 
* PROGRAM * 
* INPUT PAPAt1ETER--AN ~:INGLE F.:FINI:JE[) FPOI"·1 ·-90 [:•EGREE TO 9\::1 f)EGREE ·'~-' 
* OUTPUT PARAMETER--THE SINE VALUE OF THE INPUT ANGLE * 
******************~*************************************************** 
t1SI"1E: .. t':J .. 8 .. L T 
*SET UP THE CLOCK INTERPUPT VECTOR ADDRESS 

OF:G :14E: 

*ENtl':',' 
ENT:1 
i=II'K1 
C::L 
C3 

J:::;E: T It·1E 
OF:G 
STF 
CLA 
OTf'l 
NOP 
L[)A 
STt"J 
cu:1 
CLB 
CFI)'; 
Cr1'r' 

2\::108 
08 

148 

H[:• 
L.CT 

:5TH COUNT 
STC 148 .. C 

POINT OF THE MICPOGRHM 
OCT 10~~d60 
OCT i.:.1 

OCT ·?77~::•4 

OCT :!25406 
C5 OCT 76222 
t:IN~; 

*THE 
OCT (l 

MICROPROGRAM RETURNS THE CONTROL TO THIS POINT 
IS:::: LCT 
Ji"IP ENTJ 
CLC l4E: 

*OUTPUT EXECUTIC»~ TIME,SIN AND COS VALUES OF THE INPUT ANGLE 
L.l)fi COUNT 
JSE: ()I.JT 

J:::;B OUT:l. 
CLB 
sn:: COI.II\IT 
U>E: ~:IN:c:: 

JSB OI .. I'T 
.J$8 OUT:!. 
L.DE: Fit·~ C) 
J':.=:;B OUTJ. 

~,I NCF:Et:ISE THE I NF'UT t:ING!. .. E 8',·' (J :L THEN Rf:T'Et'IT THE Pf?O<.:JFHi''l 
LC·~:I INC 
FIF:::;;, t:IF:::::: 
f''IP ~:; . m;;: ~: 
t:IPS 
i'IDt:l i=iNG 
::::TH t:ING 
Jt1F' STi'lf<·T 

*SERVICE ROUTINE FOR CLOCK INTEF~UPT 

TINE NOP 

C:OUNT 
L.CT 
HC• 
so. 
INC 

STC 14E: .. r:· 
I~.;z counr 
Jt1F' T I !"'E, I 
OCT 0 
OCT l??,::~'H 

OCT 1 ??6:::;4 
oc·r o 
[)EC 0. :L 
EN[:• 
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****************************************•·******0************~**~**~*~***~ 
* 1·1 I CF:OF'ROGF·~:II···I·-···U::::EI) T() E'·/I:::!L..I.JfflT ;:, IN FI...I!'K:T I ON E:',.. I t···tPi_E:f'iENT I NG THE .• , 

FVLYNOMIAL METHOD 

$S'r't1Tm::: 
$:OF: I G I N=1·1121(;:1 

READ NOP INC PNM P 
*STORE THE VF~UE X IN 52 AND 59 

NOP NOP PASS 52 TAB 
NOP NOP PASS 59 ~2 

*STORE THE VALUE Ci IN 51 
READ NOP INC PNM P 
NOP NOP PR5S 51 TAB 

*STORE THE VALUE C3 IN 53 
READ NOP TNC PNM P 
NOP ffi)P PASS 53 TAB 

*STORE THE VALUE C5 IN 55 
REF~ NOP INC PNM P 
NOP NOP PASS S5 TAB 

*COI"·'IPUTE :":*>< 
NOF' 
.:r:::::t:: 
~:IF.:5 

NOF· 
NOf'' 
Ll 

F'Ft::::::; 
NOP 
p~:ISS 

~, ::?.:2 
I'·JOf'' /"'IF'\·' 
f.:: E: 

*STOkE )<:*:'< I I'·J 
NOF'' 

S6 
NO I"' p~:,~::;~:: :~:(: E: 

*C:Ot-'JPUTE C5*><:+:::.:: 
NOF NOF' p,:,:;;:::: f·l 
!'-lOP /'·.lOP PH~;::_; ·::··":0 

JSE: NOP NOr' NOF:' 
NOF NOF'' Pr:ts:::: L. 

*COMPUTE C3+C5+(X*X) 
NOF NOP ADD A 8 

NOP NC~ PASS 52 56 
JSB NOP NOP NOP MP~ 

*ADJUST THE SCHLE FACTOR 
ARS Li PASS B 8 
ARS L1 PASS B 8 
HRS L1 PHSS 8 8 

*COMPUTE C1+<X*X)*(C3+C5*(X*X)) 

I'·~ I)!"" r-~r·,,c:. Pn~:;:;:: L ::,::1 
NOP NOF' ril)[:• ~~, [: 

*COMPUTE XfC1+X*X*<C?+C5*(X~X)) • 
NOP NOP PHSS S2 59 
JSB NOP NOF NOP MPY 

*SAVE THE RESULT IN MAIN MEMORY 
NOP NOP PHSS T E: 
WRTE NOP INC PNM P 

*f':ETUf<~N TO t··!HCF:I)F'f?OGF:til·/ 
RETURN NOP RTN PASS NOP NOP 
*SUBROUTINE FOR COMPUTING THE MULTIPLICA1ION OF TWO INiEGER~ 

MPY NOP COV PHSS S? A 
NOf'' /'>lOP 
NOP NOP 
NOP PPT 
r·1P',·' RJ .. 
NOP NOF 
Jt···Jp Ct·.![:•::<: 
I'KtP NCII"' 
NOP NOf" 
.. )'I'· IF CNI:>:·: 
NCIP N/)P 

NOP F<:TN 
:1iEND 

~:~EF:O E: NOP 
PFI::.;:::: I ::_;;;;: 

f:·f't:::;~:: CNTF': f3 
t"llA:• F: 8 
Pt~ls~:: NOP ::.;7 
f~L:v::; RJ:::: *+:0:: 
::::uE: r::: E: 
PFIS::::: l\tOI''' ::;;:; 
Al15 PJS RETURN 
f"f'6:::: I. :~:? 

SUF.:: E: E: 
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* PRINTING R~JTINE--USED TO PRINT THE C0NTENT uF B-REGISTER :~· 

OU;/"1 NOF' 
C·:~:T SH•·,·· 
::::r::·: ::::F!'·i:.l. 
L[:•f'l TT'r' 
OTH J.J.B 
LL•FI E:L 
one, 118 
:=::Tc 11E: .. c 
::;Fs ::I..J.E: 
JI··IF *•··::!.. 
l..l)('J SI><r 
cr:,;o-:; 
C:I .... H 
RI'<:L l 
ADf'J ASC 
OTFJ J.1!::: 
~::Tc· :LLE: .. I 

.. 

... 

C:I ..• H 

- SF:::: LlE: 
Jl"'lf" :i·:-·:1 
I::::;.; 
.. H•'IP L OP 
[•LI) ~~:;~-::II,/ 

I .... I>:": :~::H~•/::J. 

Ji'IF' OCII:/.. I 
Ei-.11:-> 



*****************~~****~*********~***************~****~************ 
* U;IF.:F<:i~:I{.JE CONTPOL F.:CII_ITHJF···-F.:ETUF;:I·J THE Ci'IF.:f?IFIGE TO THE f3Ei."JINING OF* 

' THE LINE AND FEED ONE LINE * 
*************************~*******~**~****************************** 
OUT NOP 

t=tSC 
T·r·,.· 
::;:r:,fr 
CF: 
l...F 

~:::f'l'·/1. 
f.;:L 

o::;T ::::Fi\1 
CLC O .. C 
L.I)A TT',.' 
()T~:I ::I.::LE: 
LDf'l CF: 
OTFI :U.E: 
STC J.::JJ:: .. C 
SF::: l::LE: 
Jt1P *···J. 
LI)F:I L..F 
OTt:l :LlE: 
::.;1-c: J.J.E: .. c 
SFS ::LiB 
Jt·1P :l·:···1 

[:•1..1) SFi\1 
.Jr··IP OUT .. 
OCT 60 
OCT 1:20(100 
OCT :1..???~~;,;~, 

OCT :::::1.:3 
ocr :1.2 
NOF' 
NOP 
f,IOP 
(ICT 240 
EN[:• 
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