THE CORDIC ALGORITHM IMPLEMENTATION FOR
’
TRIGONOMETRIC FUNCTION EVALUATION

IN HP21MX
/s ‘e

By

PETHSUNG THOMAS HU

4

Bachelor of Science
National Chiao Tung University
Hsinchu, Taiwan

1972

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
May, 1978

Shs
147
HEMe

(op?

PREFACE

This paper describes the Cordic algorithm and its implementation
for the evaluation of the sine funq}ion in a HP2IMX computer. A
polynomial method is also described and implemented in the HP21MX
computer for the purpose of comparing the result with the the Cordic
algorithm. The HP21MX microprogramming. is also applied in this
experiment to increase the programming efficiency.

I would like to express my gratitude to my major advisers,
Dr. Edward Shreve and Dr. G.E. Hedrick for their advice? and guidance
during this project. Also, appreciation is expressed to my other
committee member, Dr. T.E. Bailey for his invaluable assistance in the
preparation of the final manuscript. Thanks are also extended to
Mrs. Pam Haught for her fyping this paper and her»invaluable help in

preparing the final copy of this paper.

iii -

Chapter

I

IT.

IIT.

Iv.

TABLE OF CONTENTS

INTRODUCTION . . . « . v v v v v 0 v e e e e e e

e

STANDARD TECHNIQUE FOR THE EVALUATION OF TRIGONOMETRIC
FUNCTIONS & & & v v v v v e v v v e v o o o o &

THE CORDIC ALGORITHM . . .+ . v v v v v v ¢ v o« o o o @

Introduction e e e e e e e e e e e e e e e e
Functional Description
Representation of Angles in Cordic

Sine and Cosine Algorithm

COMPUTER IMPLEMENTATION AND PROGRAMMING RESULTS .

System Features . . .
Hardware Reglqters e e e e e e e e e e e e
Display Register s e e e e e e e e e e e
Interrupt SYSEEM v v v o » ¢ o & o o o . a0 .

'APL Description of HPZIMX

The ProcessSor . v ¢ v ¢ v o o o o o o« 2 o o o o
Instruction Fetch « ¢ v v ¢ v v v « « .
Instruction Decoding
Instruction Execution + « « « . . .
Interrupt Service« ¢ v e e e e . .

Input/output INterrupts . . . « ¢« o « o « o « o .
Memory Access Routine « + . .

] Address Computation Routine .,
Instruction Execution Routine « .« .
CMicroprogramming .+ « ¢ « b 4 e e e e s 4 e e e

Conventional Control Section
Microprogrammed Control Section
The Micro-programmable Computer

Control Sectiom « & & « &« o .
The Control Processor . . « » ¢« & ¢ « « &+ &
Main Memory . . . ¢ ¢ v ¢ ¢ 4 4 e s e s e s
Input and Cutput « + ¢ ¢ « + 4« . .

Arithmetic and Logic Section
Implementation of a Polynomial Algorithm in the

HP2IMX Computer . . « + « o ¢« « o s « « o » &

iv

Page

17
20

22

22
23
24
25
25
27
27
29
43
43
47
47
43
49
60
60
61
62
62
64
65
66
66

68

Chapter Page

Implementation of the Cordic Algorithm on the

on the HP2IMX Computer . . « « « o &« « « « o « o o« o 09
Calculation of Execution Tlme s e e e e e e

V. OTHER USES OF CORDIC« ¢ ¢« ¢ ¢ o v & o + &
Arctangent Algorithm . . . & +« « +« ¢ v ¢ ¢ ¢ e v e e 88
Functional Description . . . e e e e e e e e e 88
Decimal to Binary Convers1ons in Cordlc e e e e e e e 89

VI. SUMMARY AND CONCLUSIONS . . ' & v v v e e e e e e e e 98

A SELECTED BIBLOIGRAPHY . . . & & & v & & v & & o & o o o« o« « « . 106

CAPPENDIXES v v v v 4 o o o o v o o o o 4 o 4 e e e e e e e e e . 108
APPENDIX A — FUNCTIONAL BLOCK DIAGRAM . . « « « « « « « . 108

APPENDIX B — PROGRAM LISTINGS . & « v + « v « v + o + « + 110

Table

II.

ITI.

Iv.

VI.

VII.

VIII.

IX.

XI.

XII.

XITII.

XIV.

XV.

XVI.

LIST OF TABLES

Page

Typical Rotation Computing Sequence « « « « . . 18
Typical Vectoring Computing Sequence 19
Interrupt Assignments ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e e e e 26
"PROC" Program Segments . . « v « « o « « + o« o o o o« 4 o 27
Decoding Vectors . . « ¢ ¢ ¢ o o o o o o o o o o o o o o 30
Instruction Classes . .« v ¢« ¢ v v ¢ o o o o 4 o e e e e . . 31
The Navigation Matrix« « ¢« ¢ v ¢ ¢ v ¢ o v o « o & 32
Polynomial Method Implementation Results (Assembly

Language) of Evaluating the Sine Function 70
Polynomial Method Implementation Results (Microprogram)

of Evaluating the Sine Function « 72
Cordic Algorithm Implementation Results (Assembly

Language) of Evaluating the Sine Function 82
Cordic Algorithm Implementation Results (Microprogram)

of Evaluating the Sine Function « . . 85
The Conventional Decimal—To-Binéry Conversion 91
Decimal-To-Binary Conversions in Cordic 94
Generation of + Code for 45° ¢ o v v v v . . . 96
The Comparison Between the Cordic Algorithm Implementation

Result and the Standard Sine Value 99
The Comparison Between the Polynomial Method Implementation

Result and the Standard Sine Value 102

vi

LIST OF FIGURES

Figure
1. Typical Computing Step . . . « ¢ + ¢ o ¢ v & o« o o « o« «
2. Cordic Arithmetic Unit . . .”": e e e e e e e e e e e
3. Representation of Angles in Cordic
4., The Processor System Program . . . « « v & « &+ « o « o« o &
5. Input/Output Interrupt Generator« « « « o« « o o« « .
6. Instruction Decoding Matrices . :« . .
7. Memory Access Operation « o o o
8. Address Computation Operation « « v ¢« ¢ « o « &
9. EXEC Routine . . « ¢ ¢« v v ¢« v v v o o o o o« o &
10. A Microprogram Implementation of One Macroprogram
Instruction . . ¢ ¢ ¢« ¢ v ¢ v v e e e e e e e e
11. Cordic Algorithm e
12. The AHPL Description for the Cordic Algorithm in
Implementation in HP21MX Microprogram« .
13. Implementation of + Code to Binary Conversion

vii.

Page
10
14
21
28
43
44
48
49

50

63

76

79

97

LIST OF SYMBOLS

Symbol Dimension Function

ADC Address computation defined operation
EXEC Instruction execution defined operation
I0IG I/0 interrupt generator system program
MAG Memory access defined operation
PROC Processor unit system program

RUN Run indicator

A 16 Accumulator (See Chapter IV)

B 16 Accumulator extension

C 16 Local vector

D Decoding matrices

E 1 Extend register

F 56 : I/0 device flag

M 215, 16 Main memory

N 167, 9 Navigation matri# (See Figure 4)

I 16 Instruction register

0 1 Overflow register

P 16 Program counter

Q 12 Mask vector

) 12 OP code vector

S Current interrupt priority level

T 16 T-bus

viii

56 I/0 device control bit

16 X-register’
16 Y-register
56,8 I/0 device data buffer

Local vectors
2 Local vectors
4 vPrdgrém exceptions
Power fail
Memory parity
Dual-channel port controller 1

Dual-channel port controller 2

16 Local vectors
2 Interrupt holder
Exceptions

1/0 interrupt
16 Local Vector
9 Navigation vector
Branch control in EXEC
Entry line in EXEC

Instruction class

4 Memory access quene
4 Memory access request
9 Temporary navigation vector

ix

CHAPTER I
INTRODUCTION

In the past, the transcendental functions were computed by
mathematicians using many different algorithms. Power series, polynomi-
nal expansions, continued fractions, and Chebyshev polynomials have all
been used. Since the advent of large scale computing in the twentieth
century, many mathematical functions including trancendental functions
have been calculated by computers. As a general rule, multiplication
and division are very time-consuming functions compared to addition
and subtraction implemented in a computer. A review of the conventional
methods which are used for solving transcendental functions, such as
power series, polynomial expansions, continued fractions, and Chebyshev
polynomials, shows that a number of multiplications and divisions are
required that results in inefficiency of implementation.

Therefore, much effort has been made to search for alternate ways
which can best suit the requirements of speed and programming efficiency
for real-time applications.

Henry Briggs (17) first developed the concept of pseudo-division
and pseudo-multiplication in 1924. He used this method to generate a
table of logarithms.

In 1959, J. E. Volder (9) described a Coordinate Rotation Digital
Computer (Cordic) for the calculation of trigonometric functions,

multiplication, division, and conversion between binary and mixed radix

number systems. In the same year, Dagget (1) discussed the use of the
Cordic computer for decimal-binary conversion. In 1962, Meggitt (11)
developed a pseudo-division and pseudo-multiplication processor using'
the Cordic technique, while in 1971 J. S. Walther (12) developed a
technique for calculating elementary functions using Cordic. David

S. Cochran (14) in 1972 implemented the Cordic algorithm in HP 35
calculators, and Despain (13) in 1974 developed a technique for

Fourier transformation using the Cordic algorithm.

Generally speaking, the trigonometric functions are calculated by
polynomial expansions, power series, or Chebyshev polynomials in most
current general purpose computers.

The major goal of this thesis is to implement the Cordic algorithm
in a general purpose computer for evaluation of trigonometric functionms.
The speed and accuracy of the results are observed and compared with
those of conventional algorithms. Microprogramming has been used in
this research to increase the program efficiency. The anticipated
result is to determine the best way of evaluating the trigonometric
functions, which can reduce the computer execution time to a minimum
and give reasonable accuracy of the results.

Only the sine function is implemented as a part of this research.
The tasks are divided into four parts:

1. Impiement the Cordic algorithm in an assembly coded program.

2. Implement the Cordic algorithm in a microprogram.

3. Implement one of the conventional methods in an assembly

coded program.

4. TImplement the same conventional method in a microprogram.

CHAPTER II

STANDARD TECHNIQUE FOR THE EVALUATION OF

TRIGONOMETRIC FUNCTIONS

The evaluation of elementary functions for various values of their
arguments is required to solve a number of mathematical problems.
Because of this, the computation of values of elementary functions was
an important factor in stimulating the development of mathematical
analysis. Therefore, a great deal of effort has been made by many
mathematicians in the past two centuries to find methods of evaluating
these elementary functions. Power series have been and still are used
for this purpose. Mercator used a power series for logarithms; Newton
used it then for trigonometric and inverse trigonometric functions;
and Euler used one for the exponential function. Iterative processes
(e.g., Newton's method) were also applied for solving equations (3).
Furthermore, in the eighteenth century, many mathematicians (Lambert,
Euler, Lagrange, et al.) used continued fractions to represent elemen-
tary functions. In recent years the technique of expansions in
orthogonal pblynomials has been widely applied for computing elementary
functions. The Chebyshev polynomials which give good convergence are
widely used for this purpose too.

All those methods mentioned above are well documented and are de-
scribed in many mathematics books; thus it is not necessary to e&plain

them here. Power series for evaluating trigonometric functions are used

in this paper as a conventional method of evaluating trigonometric
functions in order tq compare them to evaluations using the Cordic
algorithm. Therefore, for convenience, the power series method is de-
scribed as follows:

Power Series

The elementary functions can be represented as power series in a number

of ways. Consider the Taylor—Maéiéﬁrin Series for a given function

f(x):
a (k)
f(x) = k(?) o5 (2.1)
k=0
Truncating this at the nth term produces an nth-degree polynomial
Sn(x) (a finite Taylor Series).
n (k)
s (x) = 5 & k(?) (2.2)
n k=0
The polynomial Sn(x) has the following properties:
F(x) = 5_(x) + 0(x™h) (2.3)

where Sn(x) is the unique nth-degree polynomial of best approximation

Pn(x), for which

£(x) - P_(x) = o (xh) (2.4)

If f(x) = sin(x), then sin(x) can be represented in a power series as:
sin(x) = (l)k X2k+l (2.5)

k 0 (2k+l)')

Cos(x) can be represented in a power series as:

© 2k

cos(x) = (~l)kZ§E7T

k=0

(2.6)

In order to implement this algorithm in a computer for evaluation
of frigonometric functions, the number of terms (i.e., constant k)
~required for specific accuracy is determined first.

To’determine the constant k, the maximum accuracy of evaluation
in the computer must be known first. The computer used in this research
is an HP21MX, the memory word of which contains 16 bits. Although
multiple precision could be achieved by using multiple words in arith-
metic operations, single precision (single word) is still used in the
Cordic algorithm and power series here for the sake of simplicity of
programming:

Hastings (4) set up three equations by using power series to

evaluate the sine function, which are as follows:

o 3, 5
sin 5 x = c X + CaX + ceX (2.7)
Cl = 1.5706268
cg == 0.6432392
Cp = 0.0727102
L 3 5 7
sin 5 X = ¢qX + CqX + X + c,x (2.8)
cq = 1.570794852
c3 = -0.645920978
cg = 0.079487663
c, = -0.004362476
on 3 5 7 9
sin 5 x = ¢ + cx + X + c X + c9X (2.9)
cl = 1.57079631847
cg = ~0.64596371100

]

0.07968967928

@]
I

-0.00467376557

7
cq = 0.00015148419
where -1 < x <1 |

To determine which equation will be used in this paper, the
maximum value of the error of each equation is checked. The maximum
value of the error is 0.0001 for équation (2.7), 0.000001 for equation
(2.8), and 0.000000005 for equation (2.9). For a 16-bit computer
word, the maximum accuracy that can be represented is 5 decimal digits.

The accuracy of equations (2.8) and (2.9) is’more than 5 decimal
digits. If they are used to evaluate sine functions in a 16-bit word
machine, they will consume a lot more execution time than equation
(2.7) with just a slightly more accurate result. Therefore, in order
to get the best execution time and accuracy, equation (2.7) is used in

this research.

CHAPTER III
THE CORDIC ALGORITHM
INTRODUCTTION

Cordic is a special purpose, binary computer which contains a
unique arithmetic unit which differs from the arithmetic unit of con-
ventional computers. Although Cordic is a single processor computer,
its arithmetic unit is composed of three shift registers and three
adder-subtractors which are operated in parallel instead of sequentially.
Each programmed operation is accomplished in a fixed number of steps.
Each step ipvolves modifying three numbers which reside in three arith-
metic unit registers by adding or subtracting a constant for each one.
Setting of all three adder—subtréctors is controlled by the sign of
the quantity in one of the arithmetic unit registers. In this way,
calculations related to the addition or subtraction of constants can

be executed simultaneously.
Functional Description

There are‘tﬁo computing modes in Cordic for the trigonometric
operations: ROTATION and VECTORING. In the ROTATION mode the coordinate
components of a vector and an angle of rotation are given\and the
coordinate components of the original vector, after rotation through the

given angle, are computed. In the VECTORING mode, the coordinate

components of a vector are given and the magnitude and angular argument
of the original vector are computed. The basic computing technique
used in both the ROTATION and VECTORING modes in Cordic is a step-by-
step sequence of pseudo-rotations which result in an overali rotation
through a given angle (ROTATION) or result in a final angular argument
of zero (VECTORING).

It is necessary that the angular increments of rotation be comput-
ed in decreasing order (9). In order to evaluate the sine and cosine
functions for the angles from -180°% to 180°, the magnitude actually
chosen for the first increment should be 90°. The expression for a set

of coordinate components, Xl and Y , rotated through plus or minus 90°

1
is simply
= = . o
Y, = + Xl Rls:Ln(Gl + 90°) (3.1)
X2 = +VY1 = Rlcos(e + 90°) (3.2)

Where R1 and O, are the magnitude and angle of the vector (Xl’ Yl) and
X2 and Y2 are the coordinates of vector (Xl, Yl) after rotating 90°.
The first step is unique in that a perfect rotation step is per-
formed. The remaining computing steps can be clarified by examining
relationships involved in a typical rotation step which are shown in
Figure 1. Consider two given coordinate components, Yi and X5 in the
plane coordinate system shown. In this discussion, the quantity i is
equal to the number of the particular step under consideration. The
components Yi and Xi are associated with the ith step and describe a

vector of magnitude Ri at an angle Oi with respect to the origin

according to the relationships.

<
It

R151n9 | (3.3)

lad
it

Ricose (3.4)

In Figure 1 the angle ui is the magnitude of rotation associated
with each computing step. The general expression for ai where i > 1

is x

a, = tan " 2772 (3.5)
The reason for choosing this particular magnitude of ai is that a

rotation of coordinate components through + ui may be accomplished by

the simple process of shifting and adding. The two choices of positive

or negative rotation are shown in Figure 1. The general expressions

for the rotated components are

v =VA+-2(i-2) R;sin(e, + o))

i+l
=y, 427Gy (3.6)
i- i \ :
and
X =\/& + 2—2(1-2) Ricos(Qi + ui)
i+l
- % T 2—(1—2)Yi (3.7)

1

Note that the right-hand terms of (3.6) and (3.7) may be obtained:
by two simultaneous shift-and-add operations, if the angular rotation
magnitude is restricated to (3.5). This is the fundamental relation-
ship upon which the Cordic computing technique is based.-

The computing action of adding (or subtracting) a shifted value

10

i+l

X
X %

Typical computing step

Figure 1.

11

of X, to Yi to obtain Yi+ , while simultaneously subtracting (or adding)
i .

1

a shifted value of Yi to Xi to obtain Xi+l is termed "cross addition".
The terms under the radical in (3.6) and (3.7) indicate the
increase in magnitude when i > 2; either of the two choices of direction
produces the same change in magnitude. If the rotation is always
through either a positive or negative oy at each step, then the increase
in magnitude may be considered as a constant. This requirement does
not allow the choice of zero rotation at any step. In order to identify
the choice in a particular step, the + notation may be represented

by the binary operator Vi’ where vi can be either +1 or -1. This

csubstition produces the general expressions

Y =VL + 2 —2(1-2) R, sin(8, + v. 0.) (3.8)
1 1 1 1

i+l
and

X, =\4+ g2 (1-2) R, cos(®, + Vv, a,) (3.9)
i+l i i i i

where vi = +] or -1 '
Similarly, after the completion of the rotation step in which the

i + 1 terms are obtained, the i + 2 terms may be computed from these

terms with the results

AL m2(i-D) ~2(i-2) :
Yi+2 V1t 2 1+ 2 Ri 31n(9i + Viai + Vi+lui+l)
(3.10)
and)
\// -2(i-1) -2(i-2)
= +
Xi+2 1+ 2 1+ 2 Ri c:os(@i + viai Vi+lOLi+l)

(3.11)

12

Likewise, these rotation steps can be continued through any
finite. pre-determined number of steps. Consider the initial coordinate

components Y1 and Xl where

Y, = R, sin® (3.12)
and

Xl = Rl cos8 : (3.13)

Suppose the first rotation step is + 90° and the number of steps

is determined as n. The expressions for the final coordinate components

will be
-0 -2 -2(n-2) - .
= -+ + \Y
Yn+l CV{ 2 \/1 2 ’\4 + 2) R131n(91 + 1%1 +
A ZGZ + ...+ Vnun (3.14)
and
C X =(V1 + 2“O V1 + 2'_2 .. V1 +—2(n—2) ") R,cos(@, +v_o. +
n+1 1 1 171
vzoc2 + ...+ vnocn) (3.15)

The increase in magnitude of the components for a particular value
n is a constant and is represented by k. The value selected for n is a
function of the desired compﬁting accuracy and can Be a constant for a
particular computer. For example,
if n = 24,

k

i

1.646760255.

The basic components required to perform the cross-addition are shown

13

in Figure 2. It has not yet been shown how the prescribed sequence of
rotation sfeps can be controlled to effect the desired over-all rota-
tion. By examination of (3.14) and (3.15), the rotation of a set of

coordinate components Y, and X, through a given angle can be expressed

1 1
as
Yn+l = KR1 31n(91 +) (3.16)
and
X = .
41 KRl Cos((—)l +) (3.17)
where
= + N .
A vlal Voo, + + Voo (3.18)
In the VECTORING mode,
-9, =\, ie, -0, = + + oo+ .
91 , ie, 91 vlal vzaz Vnan (3.19)

The sequence of (3.18) and (3.19) form a special radix representation

equivalent to the desired angle, A or 8, where

oy = 90 (3.20)
a, = tan 1270 = 450 (3.21)
o, = tan 1271 = 26.5° (3.22)
a, = tan_lz_(l_z) (3.23)

The o terms are referred to as ATR (Arctangent Radix) constants and
are precomputed and stored in the computer. The Vv terms are referred
to as ATR digits and are determined during each operation.

In the Cordic computer, the ATR digits are determined sequentially,

most significant digit first, and are used to control the conditional

Y REGISTER

Figure 2.

Cordic Arithmetic Unit

5 ADDER-
HIFT SUBTRACTOR
GATES Q@ QQQ QP QPP
SHIFT (
s 90909999999
ADDER-
& > SUBTRACTOR
ol >
1
X REGISTER
ANGLE REGISTER
= I |
ADDER-
' SUBTRACTOR
ATR CONSTANTS —> -l

14

15

action of the adder-subtractors in the arithmetic wunit. The following
paragraphs contain a description of the manner in which the ATR code

representation, Vv v Vv ..., V_ can be determined for any given
n

1’ 2’ 3’
angle, A or 6.

First, for any angle A or 8, there must be at least one set of
values of V for the operators that will satisfy (3.18) and (3.19).
Second, a simple gechnique must be available for determing the ATR
code digits that satisfy these equations. The following relationships
are necessary and sufficient for any sequence of radix constants to

meet the above requirements (3.9).

| xore | < ap top Fog . Ho Tl (3.24)

< ceo + .
ui < ai+l + 0L, + o + o (3.25)

For the satisfaction of (3.20) through (3.23), it is required that

or 8 be constrained by
-180° < X or 6 < + 180° (3.26)

Equation (3.26) imposes no special consideration if the two's complement
notation is used. By employing an additional register and adder-
subtractor (identified in Figure 2 as the angle register) the relation-
ship of (3.16) (ROTATION-mode) can be instrumented by 1) sensing the
sign of the angle of rotation (or remainder if i > 1) and 2) eithef
subtracting or adding to the angle the ATR constant corresponding to the

particular step. In each step, the relationship instrumented is

| (3.27)

16

Equation (3.24) is equivalent to

+ ... a0 +a (3.28)
n n

1 ! < Oy + Og + ... + an + o (3.29)

Continuation of this sequence through Oh results in

|2 .. | <a | (3.30)

n+1 n

Equation (3.30) can be ﬁsed to prove that the remainder in the angle
register converges to zero in the ROTATION mode (9).

The sequence of operation signs used to null A to zero is the
negative of the equivaleﬁt ATR code for the original angle. More
simply, the ATR code digit of each step is equal to the sign of the
quantity in the angle register before each step. Therefore, simulta-
neously with each step in the angle register, the ATR code digit may be
used to control the cross-addition step in the Y and X registers (shown
in Figure 2) to effect a rotation of components through an equal angular
increment.

The proof of the convergence of the effective angular argumént
0 o+l to zero,'which is neceséary in the VECTORING mode, may be obtained
by replacing A by 8. The sign of the angle Gi is obtained bv sensing
the sign of Yi. The sequence of signs of Yi is the negative of the ATR
code for the effective rotation performed on the components Yl and Xl'
During each éross—addition operation in the Y and X register, the

corresponding ATR constant can be conditionally added or subtracted,

depending on’vi, to an accumulating sum in the angle register so that,

17

at the end of. the computing sequence, when Qn = 0, the quantity in

+1
the angle register will be equal to the original angular argument
91 of the coordiﬁate components Yl and Xl.

The step-by-step results of a typical rotation computing sequence
are shown in Table I. The two's complement notation is used for all
quantities, and shift quantities are truncated without round-off. The

step-by-step results of a typical rotation computing sequence are

shown in Table I.
Representation of Angles in Cordic

In Cordic, angles are represented as a binary fraction of a half
" revolution (II) with two's complements for negative angles, as shown
in Figure 3. Since a one to the left of the binary point is used to
represent a negative quantity in the two's complement system, angles
ffom-+180° to slightly less than + 360° are interpreted internally as
negative angles measured clockwise from 0°. For example, 45° in
Cordic is

/4

— =Ll = =
T A (0.25)10 (0.01),

For 90° the Cordic representation is

90° = /2

n/2 ., B
i (0.5)10 = (O.l)2

For 270° the Cordic representation is

o . 3M/2 -
270° = S5 = (1.5),, = (L.1),

TYPICAL

TABLE

I

ROTATION COMPUTING SEQUENCE

Y Register X Register Angle Register
17 0.0101110 1.1000101 = Xl 0.1100101 = A
+ 1.1000101 - 0.0101110 0.1000000 tan—l d
1.1000101 1.1010010 - 0.0100101 -1
+ 1.1010010 - 1.1000101 0.0100000 tan = 1
1.0010111 0.0001101 0.0000101 1 -1
+ 0.0000110 - 1.1001011 0.0010010 tan "2
1.0011101 0.1000010 1.1110011 -1 -9
- 0.0010000 + 1.1100111 0.0001001 tan 2
1.0001101 0.0101001 1.1111100 -1 -3
- 0.0000101 + 1.1110001 0.0000101 tan "2
1.0001000 0.0011010 0.0000001 -1 -4
+ 0.0000001 - 1.1111000 0.0000010 tan "2
1.0001001 0.0100010 1.1111111 -1 -5
- 0.0000001 + 1.1111100 0.0000001 tan "2
1.00010000 0.0011110 0.0000000

18

TABLE II

TYPICAL VECTORING COMPUTING SEQUENCE

1

Y Register X Register Angle Register
1 - 0.0101110 1.1000101 = Xl .OOOOOOO
- 1.1000101 0.0101110 .1000000 tan"l o
0.0111011 0.0101110 .1000000 -1
- 0.0101110 0.0111011 .0100000 tan 1
0.0001101 0.1101001 .1100000 1 -1
- 0.0110100 0.0000110 .0010010 tan "2
1.1011001 0.1101111 .1110010 -1 -2
+ 0.0011011 1.1110110 .0001001 tan 2
1.1110100 0.1111001 .1101001 -1 ;3
+ 0.0001111 1.1111110 .0000101 tan "2
0.0000011 0.1111011 .1100100 1 -4
- 0.0000111 0.0000111 .0000010 tan "2
1.1111111 0.1111100 = K K .1100101 = O

19

20

Sine and Cosine Algorithm

As mentioned above, there are two computing modes for Cordic,
ROTATION and VECTORING. Evaluating sine or cosine functions makes use
of the ROTATION mode by setting the original vector on the X-axis and
rotating the vector through an angular argument whose sine or cosine

is computed.
Functional Description

In order to use the ROTATION computing sequence (Table I) of Cordic
to evaluate sine and cosine functions, several initial conditions and
values are set up:

1) The Y-register is initialized with O.

2) The X-register is initialized with a unit vector.

3) The A-register is initialized with the angle which is going

to be computed.

4) A sign digit of 0 in the A-register establishes a vy of +1,
which causes the top adder - subtractor to add, the middle
adder-subtractor to subtract, and the bottom adder - sub-
tractor to subtract. A sign digit of 1 has the opposite
effect.

5) The number of steps (iterations) is initialized depending
on the desired accuracy.

The Cordic ROTATION computing,sequence is started as shown in
Table 1.

The final result is in the Y-register if the function evaluated is

sine and in the X-register if the function evaluated is cosine after

the final computation step.

21

POSITIVE
P

180°
1.00

v
NEGATIVE

/
/

-135° or 225°
1.01

-45° or 315°
1.11

-90° or 270°
1.10

Figure 3. Representation of Angles in Cordic.

CHAPTER IV

COMPUTER IMPLEMENTATION AND

PROGRAMMING RESULTS

The four tasks described in Chapter I are performed and the pro-
gramming results are obtained in this chapter.
The description of the HP2IMX computer which is used to aid

this research is given below.
System Features

The HP21MX computer is a powerful user-microprogrammable mini-
computer with 178 micro-instructions and 4K words of control space.
Each word is 24 bits long. It has 128 standard instructions, 80 of
‘which emulate the HP 2100 series computer; 42 of which are new instruc-
tions for indexing, byte and bit manipulation, byte and word moves, and
byte string scanning; and 6 of which are single~precision floating
point instructions. There are four general purpose registers, two of
which may be used as index registers. It is a fully microprogrammed
processor, including all arithmetic functions, input/output, and opera-
tor panel control. Writable Control Store (WCS) is optional.

The read-only memory (ROM) modules in which microprograms are
stored are referred to collectively as control store. Standard control
consists of 1,024 directly addressable locations configured into four

modules of 256 location each. Each control store location accommodates

22

one micro-instruction, which in turn consists of a 24-bit word
encompassing six micro-orders. The contrcl store address space of each
processor is 4,096 words.

Microprograms in standard contrel store for executing the various
machine functions are divided into three groups:

Base instruction set (modules 0 and 1)

Floating point instructions (module 14)

Extended instruction group (module 15)
Unused modules of control store are available for user-supplied
microprograms. Microinstructions in control store are 24 bits loung;
whereas, machine language instructions residing in main memory are
16 bits long. In addition, microinstructions have access to many
internal registers and logic functions that machine language instruc-
tions cannmot use.

The Writable Contxol Store (WCS) option proﬁides a read-write
control store module which can be used for the development and execution
of user-supplied microprograms. Microprograms in WCS are executed at

the same speed as those in the read-only control store.

Hardware Registers

A 16-bit accumulator which holds the results of arithmetic
and logical operations performed by programmed.instructions.
B-register
Serves the same purbose as the A-register, but is independent
from it.
M—registef
A 16-bit register used to hold the memory address which is

currently being accessed by the CPU. ;

24

T-register

A 16-bit register used to hold the data which are stored
into or retrieved from memory.
P-register

Program counter, 16 bits long, pointing to next instruction
to be fetched from memory.
S-register

A 16-bit utility register. In the halt 5r run mode, it can
be loaded via the display register.
Extend register

A one-bit register used to link the A- and B-registers by
rotation instructions or to indicate a carry from the most signif-
iéant bit (bit 15) of the A- or B-register by an add instruction
or increment instruction.
Overflow Register

A one-bit register used to indicate that an add instruction,
divide instruction, or an increment instruction has caused the A-
register or B-register to exceed the maximum positive or negative
number that can be contained in these registers.

Displavy register

A 16-bit register included in the front panel and used to
displav and modifv the contents of the six 16-bit working registers
when the computer is in the halt mode.

X~ and Y-registers

Two 16-bit registers serving as indexing registers which are

accessed through the use of 30 index register instructions and

2 jump instructions.

S, to Slm scratch pad registers
1 2

Twelve registers (each 16 bits long) used to temporarily
store data by a microprogram and cannot be accessed by a macro-

*
program.

Interrupt System

The vectored priority interrupt system has up to 60 distinct
interrupt levels, eacﬁ of which has a unique priority assignment.
Each interrupt level is associated with a numerically corresponding
interrupt location in memory.

Of the 60 interrupt levels, the first two are reserved for
hardware faults (power failure and parity error); the next two are
reserved for the Dual-Channel port controller completion interrupts;
and the reamining levels are available for I/0 device channels.
Table III lists the interrupt levels in priority order for the HP

2108 processor of the 21 MX.

APL'DeScription of HP21MX

In the APL description of the HP2IMX the computer svstem is
described as seen bv a programmer. and the descrintion is independent
of anv varticular hardware implementation. All those instructions
which are not connected with this research are not included in this
description. Iverson (2) gives a complete definition of the notation
used. The description is based on the HP21MX Computer Series Reference

Manual (5) and consists of a set of programs and tables.

* Macroprogram ~ programs stored in main memory.

Microprogram - programs stored in control store.

26

TABLE IIT

INTERRUPT ASSIGNMENTS

Channel Interrupt Location Assignments
(Octal)
04 00004 - Power Fail Interrupt
05 : 00005 Memory Paritv/Protect Interrupi
06 00006 DCPC Channel 1 Completion Interrupt
07 00007 ‘ DCPC Channel 2 Completion Interrupt
10 00010 1/0 Device (highest priority)
11-20 00011-00020 1/0 Device (Mainframe)
21-42 00021-00042 1/0 Device (Extender No. 1)
43-64 | 0004300064 1/0 Device (Extender No. 2)

The programs are either system programs or defined operations.
All programs operate concurrently and continucusly, with one line
active in each program. The defined operation program operates only
when invoked by another program. In the description presented, PROC
and IOIG are system programs, whereas ADC, EXEC, and MAC are definéd

operations.

27

The Processor

The PROC program, Figure 4, describes the sequencing and exe-
cution of instructions and the servicing of interrupts. The program

segments and their functions are summarized in Table IV.

TABLE IV

"PROC" PROGRAM SEGMENTS

Lines Function

1-4 Instruction fetch

5-14 Instruction decoding
15-26 Instruction execution
27-30 Trap interrupt service

Instruction Fetch

The first step in program execution is to fetch the instruction
from memory. In order to prepare for instruction fetch, the exceptions
vector is initialized to zero (line 1). The 16-bit instruction is
fetched from memory at the address given by the program counter, and
placed in the instruction register (line 2). The program counter is
incremented by 2 (line 3), and in case of any exceptions during
instruction fetch, control branches to line 27. Exceptions during

fetch may be dué‘to errors in parity check.

PROC system program
T i 1 i od Q9 !
B 5+ 64 0.1
- Ter w vl
MACl(.LP, i; T 2
Po(16)T 1+ P 3
=|1: vie 4
1+1 5
i*o 6
r" d:rivie Qi 1) 7 =
! Leiw1 8
212 04 9
pe-
l: i+ 10
kl + g (c1’2‘3/1, cls'/[, 512/1,
15/p, (M615,p 13, 16,15,
(11,13,14,15, 10,11,
¢ B0, 1L,p by 7089,
&7, 57'8’9/1)j 1
kZ + 1 (r.l‘/l, 0, 0, clL‘/I, 613/1.
BN P N T
b1, <71, hn, e,
s."/I)j 12
m o+ thZ 13
n « Nm 14
~ (16, 25, 25, 25, 25, 25,
25, 25, 25, 20, 21, 22,
22), 15
€+ L((tP)-1) + 1024 16
bow () + I, x t x 1024 17
ADC (Iy: b; a) 18
= 1: v/e 19 =
a < .mf‘/I 20 |3
(N“‘)1 - 1, 21 —-J
IR 13,14,15 8,9/1)15 2
j + j+ (o, 2)IS 23
m o+ jntz 24
1 -
v+ N° 25
EXEC 26—
0: V/e 27
hy <1 128 =
0 : v/h 29
mact((4,5,6,7, 168/ 0 30
((eyhl)/l)O,E:I)
L o)o «0 31
e + E(4)
Figure 4. The Processor System Program

28

29

Instruction Decoding

To determine the operation specified by the -instruction, the
instruction is decoded next. Because the operation code of an instruc-
tion in this machine may be varied from 4.bits to 16 bits and several
microinstructions may be involved in a single instruction word for some
type of instructions, the decoding task is very complicated and tedious.
Many steps and two sets of decoding vectors named u and q are used in
this APL description to aid the decoding task. These two sets of
vectors ar listed in Table V. The instructioﬁs are divided into 13
classes. Table IV summarizes those 13 classes. The number involved
in this table is used to identify the class of the instruction during
the decoding.

The class identifiers j and i are initialized in line 5 and 6.

The decoding vectors Ui and Ei are used in lines 7, 8, and 9 to identify
the class of the current instruction. Once the class of the current
instruction is found, it is stated in j (line 10).

The components of the selection vector k take on the values of the
fields depending on j (lines 11 and 12). ©Lines 13 and 14 interpret
the instruction by selecting a row Ni from the navigation matrix
N (Table VII), to specify the vector n used in subsequent control of
the instruction execution. The row of N selected, is determined by an
element of a particular decoding matrix D, Figure 6, specified by

the instruction class j, and the selection vector k.

TABLE V

DECODING VECTORS

WML U, = (1000101111111110) Q, = (1111111111111110)
J¥PT U, = (1000101111110010) Q, = (1111111111110111)
BIMI U, = (1000101111111000) Q, = (1111111111111000)
BYMI U, = (1000101111110000) | Q, = (1111111111111000)
DMI Us = (1000001111000000) Qs = (1111011111100000)
IRI U, = (1000001111100000) Qg = (1111011111100000)
FRI U, = (1000101000000000) Q, = (1111010000000000)
EAMR Uy = (1000000000000000) Qg = (1111010001110000)
EAR Uy = (1000000000000000) Q, = (1111010000000000)
101 U, ,= (0000010000000000) Q= (1111010000000000)
A/S u = (0000010000000000) Q,,= (1111010000000000)
S/R u,,= (0000000000000000) Q,,= (1111010000000000)

TABLE VI

INSTURCTION CLASSES

Class

j
MRI: Memory reference instructions 0
WMI: Word manipulation instructions 1
MJPI: Jump instructions 2
BIMI: Bit manipulation instructions 3
BYMI: Byte manipulation instructions 4
DMI: Dynamic mapping system instructions 5
IRI: Index register instructions 6
FPI: Tloating point instructions 7
EAMR: Extended arithmetic memory reference
instructions '8
EAR: Extended arithmetic register reference
instructions 9
I0I: Input/output instructions 10
A/S: Alter skip instructions 11
S/R; Shift/rotate instructions 12

31

TABLE VII

32

THE NAVIGATION MATRIX

Class

Index

Mnemonic

Name Op Code

MRI

IRI

IRI

S/R

S/R

S/R

S/R

EAR

EAR

S/R

S/R

10

11

12

13

ADA

ADB

ADX

ADY

ALF

ALS

ASL

ASR

BLF

BLR

Add to A -1000 ——————————-
Add to B -1001 ——————————-

Add memory to X
1000101111100110

Add memory to Y
1000101111101110

Rotate A left four
0000001111-1-111

A left shift. clear sign
0000001100-1-100

A left shift
0000001000-1-000

"AND" to A
A right shift
0000001001-1-001

Arithmetic shift left
100000000001 --—-

Arithmetic shift right
100000100001 ——-

Rotate B left four
0000101111-1-111

B left shift, clear sign
0000101100-1-100

33

~TABLE VILI {Continued)

Class Index

n, - Mnemoniec Name Op Code
eO S/R 14 BLS B left shift
0000101000-1~000
e S/R 15 BRS Bright shift
0 0000101001-1-001
b4 IRI 16 CAX Copy A to X
v 1000001111100001
b4 IRI 17 CAY Copy A to Y
1060001111111100
- BIMIL 18 CBS Clear bits
1000101111111100
- BYMI 19 CBT Compare bytes
1000101111110110
b, IRI 20 CBX Copy B to X
1000101111101001
b4 IRI 21 CBY Copy B to Y
lOOOlOlllllOlQOl
fO A/S 22 CCA Clear and complement A
00000111 ——————
fo ‘A/S 23 CCB Clear and complement B
00001111 -—=———-
f7 A/S 24 CCE Clear and complement E
0000-1--11 =—=—-
f2 A/S 25 CLA Clear A
" 00000101 -=—————
f2 A/S 26 CLB Clear B
dO 101 27 CLC Clear control
100011-111 —=—=—-
£o A/5 28 CLE Clear E
0000-1--01 ===—=
d0 101 29 CLF Clear flag
1000-11001 -—-—-
- I0I 30 CLO Clear overflow

1000011001000001

34

TABLE VII (Continued)

g n, Dy ng Class 1Index Mnemonic Name Op Code
1 - B4 By IRI 47 DSY Decrement Y and skip if zero
1000101111111001
0 0 ey € S/R 48 ELA Rotate E left with A
0000001110--1-110
1 0 e, € S/R 49 ELB Rotate E left with B
0000101110-1-110
G 1 ey € S/R 50 ERA Rotate E right with A
0000001101-1-101
1 0 ey € S/R 51 ERB Rotate E right with B
- 0000101101-1-1-1
- ~ - - FPI 52 FAD Floating point add
1000101600000000
- - - - FPI 53 FDV Floating point divide
1000101000110000
- - - - FPI 54 FIX Floating point to integer
1000101001000000
- - - - FPI 55 FLT Integer to floating point
1006101001010000
- - - - FFI 56 FMP Floating point multiply
1006161000100000
- - - - FPI 57 FSB Floating point subtract
1000101000010000
- 0 dO dll I0I 58 HLT Halt 1000-1-000 ——mem
- - - - A/S 59 INA Increment A
000001—-—-——- 1--
- - - - A/S 60 INR Increment B
000011-—-=——- 1--
1 0 a, a MRI 61 IOR "Inclusive OR" to A
0 2
=01l
0 0 b4~ b9 IRI 62 ISX Increment X and skip if zero
1000101111110000
0 1 b4 b9 IRI 63 ISY . Increment Y and skip if zero

1000101111111000

35

TABLE VII (Continued)

ny n3 Class Index Mnemonic Name Op Code
- - A/S 31 CMA Complement A
00000110 —--=—-—-
- - A/S 32 CMB Complement B
00001110 ————-~~
fo - A/S 33 CME Compare E
0000-1~-10 -———-
- - WMI 34 CMW Compare words
1000101111111110
a 38 MRI 35 CPA Compare to A
0 1) 1 J—
a0 ag MRI 36 CPB Compare to B
, -1011 —=——————o
b4 b8 IRI 37 CXA Copy X to A
1000001111100100
b4 bsg IRI 38 CXB Copy X to B
1000101111100100
b4 b8 IRI 39 CYA Copy Y to A
1000001111101100
b, bg IRI 40 CYB Copy Y to B
1000101111101100
- - EAMR 41 DIV Divide
100000010000 ——-
- - DMI 42 DJP Disable mem and jump
1000101111011010
- - DMI 43 DJS Disable mem and jump to sub-
routine
1000101111011011
- - EAMR 44 DLD Double load
100010001000 ---
- - EAMR 45 DST Double store
100010010000 ---
b4 b9 IRI 46 DSX Decrement X and skip if zero

100010111110001

TABLE VII {(Continued)

36

n, ng Class Index Mnemonic Name Op Code
a, a MPI 64 ISZ Increment and skip if zero
0 9
e I
go - JMPI 65 JLY Jump and load Y
1000101111110010
a, a MPI 66 JMP Jump
L3 : -0101-——==—mmmm
&, ~ JMPI 67 JPY Jump indexed by Y
1000101111111010
- - DML 68 JRS Jump and store status
1000101111001101
a a, MPI 69 JSB Jump to subroutine
-0011—————
bo bll IRI 70 LAX Load A indexed by X
1000001111100010
bo b 1 IRI 71 LAY Load A indexed by Y
1 1000001111101010
- - BYMI 72 LBT Load byte
1000101111110011
bO bll IRI 73 LBX Load B indexed bv X
1000101111000010
b, bll IRI 74 LBY Load B indexed by Y
1000101111101010
al a MRI 75 LDA Load A
/ ~1100=—mmmmm e
a; a, MRI 76 LDB Load B ~110l - e
bo b12 IRI 77 LDX Load X from memory
1000101111100101
bo b12 IRI 78 LDY Load Y from memory
1000101111101101
- - DMI 79 LFA *Load fence from A
1000001111010111
- - DMI 80 LFB *Load fence from B

1000101111010111

TABLE VI {(Continued)

37

) n, 04 Class TIndex Mnemonic Name Op Code
0 d0 d12 10T 81 LIA Load into A
100001-101=~~——m=
1 d d 10 82 LIB Load into B
0 12 100011-101~-----
- Cy = EAR 83 LSL Logical shift left
10000000001 =~—=~
- cy - EAR 84 LSR Logical shift right
100000100010~~--
- - - DMI 85 MBF Move bytes from alternate map
1000101111000011
- - - DMI 86 MBI Move bytes into alternate
1000101111000010
- - - BMI 87 MBT Move bytes
1000101111110101
- - - DMI 88 MBW Move bytes within alternate
1000101111000100
0 d dl3 I0I1 89 MIA Merge into A
0 100001-100=-~=—-
1 db dl3 10T 90 MIB Merge into B
100011-100-——~—-
- - - EAMR 91 MPY Multiply
100000001000~~-~
- - - WMI 92 MVW Move words
1000101111111111
- - - DML 93 MWF Move words from alternate map
10001G1111.000110
- - - DMI 94 MWI Move words into alternate map
1000101111000101
- - - DMI 95 MWW Move words within alternate
map '
1000101111000111
- - - S/R - 96 NOP No Operatiom

0000000000000000

38

TABLE VII (Continued)

o nz ny Class Index Mnemonic Name Op Code
dO d20 101 97 OTA Qutput A
100001-110--—-=-
do d20 101 98 OTB Qutput B
100011-110-——-—-
- - DMI 99 PAA Load/store port A map per A
1000001111001010
- - DMI 100 PAB Load/store port A map per B
1000101111001010
- - DMI 101 PBA Load/store port B map per A
1000001111001011
- - DMI 102 PBB Load/store port B map per B
' 10001-1111001011
ey ©g S/R 103 RAL Rotate A left
0000001010-1-010
e % S/R 104 RAR Rotate A right
0000001011-1-011
ey e S/R 105 RBL Rotate B left
: 0000101010010010
ey ©g S/R 106 RBR Rotate B right
0000101011-1-011
¢, - EAR 107 RRL Rotate left
100000000100---~
cg - EAR 108 RRR Rotate right
100000100100~=~-
- - DMZ 109 RSA Read status register into A
10000011110611000
- - - DMI 110 RSB Read status register into B
1000101111011000
- - A/S 111 RSS Reverse skip sense
0000-1~—-~—==—- 1
- - DMI 112 RVA Real violation register

into A
1000001111011001

39

TABLE VII (Continued)

ngny 5 Dg €lass Index Mnemonic Name Op Code
o DMI 113 RVB Read violation register
' into B ‘
1000101111011001
G O b0 blz IRT 114 SAX Store A indexed by X
' 1000001111100000
0 0O b b]_4 IRI 115 SAY Store A indexed by Y
0 1000001111101000
- - - - BIMI 116 SBS Set bits
1000101111111011
- - - - BYMI 117 SBT Store type
1000101111110100
1 0 b0 b 4 IRI 118 SBX Store B indexed by X
1 1000101111100000
1 1 bO b14 IRI 119 SBY Store B indexed by Y
1000101111101000
- - - - A/S 120 SEZ Skip if E is zero
0000-1-——-1-———-
- - - - BYMI 121 SFB Skip if flag clear
: 1000-10010-————-—
- 0 d(d14 101 122 SFC Skip if flag clear
) 1000-10011~~-——-
- 0 d dl6 I0I 123 SFsS Skip if flag set
0 1000-10011-—~—~-
- - - - DMI 124 SJPp Enable system map and jump
10001.01000100000
- - - - DMI 125 SJS Enable system map and jump
to subroutine
1000101111011101
- - - - S/R 126 SLA Skip if LSB of A is zero
00000-—————- 1-——-
- - - - S/R 127 SLB Skip if LSB of B is zero
000010———=--— 1-—-
- 0 do d14 I0I 128 SOC Skip if overflow clear

100001-010000001

40

TABLE VII {(Continued)

nl n7 n, Class Index Mnemonic Name Op Code
0 d0 d16 101 129 508 Skip if overflow set
.) 100001-011000001
- - - A/s 130 SSA Skip if sign of A is zero
‘ 000001~———- g p—
- - - Als 131 SSB Skip if sign of B is zero
000011-——-~ l——-
- - - DMI 132 SSM Store status register into
memory
1000101111001100
1 a, a MRI 133 STA Store A
/ I 5 [
1 a, a, MRI 134 STB Store
' -111)—————
0 dO d_8 I0I 135 STC Set control
* 100001-111~~--—-
0 d0 d19 101 136 STF Set flag
1600-10001-~———-~
0 dO d19‘ I0I 137 STO Set overflow
1000010001000001
- b0 b13 IRI 138 STX Store X to ﬁemory
: 1000101111100011
- b0 b13 IRI 139 STY Store Y to memory
1000101111101011
- - - DMI 140 SYA Load/store system map per A
1000001111001000
- - - DMI 141 SYB Load/store system map per B
1000101111001000
- - - A/S 142 SZA Skip if A is zero
000601~————~—— 1-
- - - A/S 143 SZB Skip if B is zero
000011-——————- 1-

- - - BYMI 144 TBS Test bits
: 1000101111111101

41

TABLE VII (Continued)

=}

ng Class Index Mnemonic Name Op Code
- DMI 145 . uJp Enable user map and jump
' to subroutine
1000101111011110
- DMI 146 UJs - Enable user map and jump
' to subroutine
1000101111011111
- DMI 147 USA Load/store user map per A
' 1000001111001001
- DMI 148 USB Load/store user map per B
1000101111001001
b15 DMI 149 XAX Exchange A and X
1000001111100111
blS IRI 150 XAY Exchange A and X
1000001111101111
b15 IRI 151 XBX Exchange B and X ;
1000101111100111
bl5 IRI 152 XBY Exchange B and Y :
1000101111101111
- DMI 153 XCA Cross compare A
’ 1000001111010110
- DMI 154 XCB Cross Compare B
1000101111010110
- DMI 155 XLA Cross load A
1000001111010100
- DMI 156 XLB Cross load B
1000101111010100
- DMI 157 XMA Transfer maps internally
per A
1000101111010000
- DML 158 XMB Transfer maps internally
' per B
1000101111010010
-~ DMI 159 XMM Transfer maps or memory

1000101111010000

42

TABLE VII (Continued)

n, mn, ng Class Index Mnemonic Name Op Code
- - - DMI 160 XMS Transfer maps sequentially
: ‘ 1000101111010001
- - - MPI 161 XOR "Exclusive OR" to A
~0100~cmmmmm e
- - = DMI 162 XSA Cross Store A
A 1000001111010101
- - - DMI 163 XSB Cross store B ;
1000101111010101
2 b4 b8 IRI 164 CAX Copy A to X
1000001111100001
3 b4 bg IRI 1165 CAY Copy A to Y
1000001111101001
2 b4 b8 IRI 166 CBX Copy B to X
1000101111100001
3 b4 b8 IRI 167 CBY Copy B to Y
1000101111101001

Base page fence register

43

A 1 : V/F . 0
i 0

I ‘ |

hl < (S>(F/)0);_, 1

ol o 2

e/ 0, | 3

| s < a0y, | g

Figure 5. Input/Output Interrupt Generator

Instruction Execution

The instruction execution étarts at line 15. The effective
address computation of MRI is performed at lines 16, 17, 18 and 19.
Line 20 sets up the immediate value for EAR. Line 21 sets up I1/0
flag clear/hold information for I0I. Line 22-24 subdecodes the packed

micro-instructions in A/S and S/R instructions.
Interrupt Service

Servicing of exceptions is given priority over I/0 interrupt
service. In case of any exception the bit (0 for exception, 1 for I/0O
interrupt) in the interrupt holder h is set (line 27). The inEérrupt
service cequence is initiated if at least one interrupt is pending
(line 28). The sequence consists of fetching a néw instruction from
one of the five fixed locations in memory. The interrupt vector address
of the peripheral device is obtained from the six least significant

bits of the T-bus. The element of h which caused the interrupt is reset.

4

0 1
o o 3% | www 92
1
D
(a) WMI Instruction
0 1 2 3 4 5 6 7
0
1401 147 99 | 101
1 1sya |usa |paa | pPBA
157 1 155 153 79
2 XMA XLA XSA XCA LFA
109 112
3 RSA RVA
86 85 88 94 93 95
4 MBI MBF | MBW MWI | MWF | MWW
141 148 100} 102 132 68
5 SYB USB PAB PBB | SSM JRS
159 160 158 156 | 163 154 80
6 XXMM XMS XMB | XL.B XSB XCB LFB
110 113 42 43 124 125 145 146
7 RSB RVB DJP DJS | SJP SJS UJp UJS
5
D 1
(b) DMSI Instruction
0 1 2 3 4 5 6 8 9 10 .15
1141 16(70 37 149
SAX |CAX|LAX CXA XAX
115 17} 71 39 150
SAY {CAY | LAY CYA XAY
1118 20} 73(138| 38 77 31151) 62 46
SBX |CBX|LBX|STX|{CXB{LDX |ADX [XBX |ISX {DSX
119 21}t 741139} 40 78 411521 63| 47
SBY [CBY |LBY |STY|CYB{LDY |ADY XBY ISY |[DSY
6D
(¢) 1IRI Instruction
Figure 6. Instruction Decoding Matrices

13

14

0 1 2 3 4 5 6 7
8l 161] 61| 1] 35| 75] 133
0 AND | XOR| IOR| ADA|CPA [LDA |STA
69| 66| 64| 2| 36| 76| 134
1 JSB | JMP| 1SZ| ADB [CPB |LDB |STB
0p

(d) MRI Instruction

0| JLY | JPY

2
D

(e) JMPI Instruction

72
0 LBT

117 87 14| 121
1|SBT |MBT [CBT |SFB

“p

(£f) BYMI Instruction

0 1
ol 18| 144
CBS | TBS
116

1 SBS
3p

(g) BIMI Instruction

0 1 2 3

52| 57 56| 53
0| FAD| FSB| FMP | FDV
54 55

FIX| FLT
7D

(h) FPI Instruction

Figure 6. (Continued)

45

0 7
0 10 83 103
ASL |LSL RRL
1 . 11) 84 104
ASR |LSR RRR
. 8D
(i) EAR Instruction
91| 44
0! MPY |DLD
411 45
1| DIV |DST
9D
(j) EAMR Instruction
0 1 2 3 4 5 6 7
58 136} 1221 123 89 81 97 27
0 HLT |STF SFC |SFS [MIA |LIA |OTA |CLC
58 29 128} 129{ 90| 82 98| 135
HLT |CLF SOC {S0S |MIB |LIB |OTB |STC
lOD
(k) IOI Instruction
0 1 2 3
25 31 | 22
CLA |CMA |CCA
26 32 23
CLB |CMB [CCB
11,
(£) A/S Instruction
7 91 103} 104 6] 50] 48] 5
0 | ALS ARS RAL |RAR |ALR |ERA {ELA |ALF
14 151 1051 106 13 51 49 17
1 |BLS BRS RBL [RBR |BLR |ERB |ELB |{BLF
12D
(m) S/R Instruction
Figure 6. (Continued)

46

47

Input/output Interrupts

“The 1/0 interrupt generator‘(IOIG) system program, Figure 5,
determine thé presence of interrupt requests by peripheral devices énd
seté the bit in’ the interrupt holder, h, accordingly (line 1), The
dwell at line O checks for interrupts on the device flag. The setting
of any I/0 device flag meané an interrupt request from that I/O device.
If a higher pribrity device has already gained control of the processor,
the lower priority device cannot be served until thé higher priority

device has finished its service routine (lines 1, 2, and 3).

Memory Access Routine

The memory access (MAC) operation, Figure 7, fetches or stores a
specified number of bytes from the memory at a given address. The
general form of the operation is MACi (j31), where i specifies the
device requesting access; j is a two—-component vector specifying the
address in memory (jo) and the type of operation (store; j1 = 23
fetch:jl = f), respectively; and 1 specified the vector into/from which
the accessed data are to be stored/fetched.

The request for service is entéred in the bus request vector r,
and in' the queue if it is empty (line 0). The program dwells at line 1
until 1 is recognized as the first nonzero entry in the queue. After
the request has been honored, the entry in the request vector is blanked
out (line 2). The parity error exception is noted (line 5), and entered
in the exception vector e. If no exception occurs, a fetch (line 4)

or store (line 7) is performed.

48

Address Computation Routine

The address éomputatiOn (ADC) operation,‘Figure 8, is used for
effeqﬁivg address calculation of the operands. The general form fér
ADé is (m; g; k)»whgre m is the mode of addressing (O means direct,
1 means inditect), g is the primary address, and k is the effective

" address returned by the operation.

/

MACl(j : £) : defined operation

~V
——— ri, qi 'e’ /q 0
0

i . 1

+ i @/ 1)o

.(—

rl 0 2

= 3y S . 3
T* Qv 4
1 H el+ ~ # / J ’ 5 =
£+w16/J 6 |
J<~# /2, 1 7
(Gt /M 8

I

g*r 9 ————

Figure 7. Memory Access Operation

49

ADC(m ; d ; k). : defined operation

* 0\: m 0
k+d'l 1 p—>
1) :
MAC (dl,f;l’_) 2
k < 11 3

Figure 8. Address Computation Operation

. \
Instruction Execution Routine

At the entry point EXEC, Figure 9, the routine for an instruction

is determined by n, (1line ao). Execution involves setting up condition

codes (if necessary) after the execution.

Lines a, - a

1 13

A1l MRI instructions are executed here. AND, IOR, XOR ADA, ADB,

CPA, CPB, and ISZ are entered at line a, to get data from memory.

1

STA, STB, LDA, and LDB are entered at line a All MRI instructions

9
are diverged at line a, and enter their own routine. The "Exit" here
means go back to PROC ; the outgoing arrow at the right side of the
line also indicates return to PROC if the arrow does not direct to any

other line. This is true not only here, but also in any other line of

the EXEC routine.

AND, TOR, XOR
———
ADA, ADB

' >

STA,STB
—_—

LDA.LDB

CPA
CPB

>

ISZ

_—7

JSB
JMP

>

ADX,ADY

AX—A(A,V, {B)no C

E,U @~{(17)T(L(A,B)n0) + 10)
0 é—{anCO)A(N((A,B)HOQ Cy)

(A,B) — u
1 ng .
MAC (a,(f,S)ni; (A,B)no)

—> (Exit)

411’ (0= L (A,B) @ C)
ny

C <— 711 + 1C

MACl(a,s;C)

0 : 1C

P<—11 + 1P

MACl(a,s;P)

P<—T a + (l,O)nO

MACl(LP, f 3 C)
P &1l + 1P
ADC (CO slw 15/C ; a)
MACl(a, f ;0
> ng

E,u & (l7)T(.L(X,Y)r1 + 10)
0

0« (u0 & CO) (A(N(X,Y)no)o & CO) b6

Figure 9. EXEC Routine.

4

50

CXA,CXB

CBX, CAX
—_—
CBY, CAY

CYA,CYB
ISX,DSX

ISY,DSY

LAX, LAY
—
LBX,LBY

LDX,LDY
—_—

STX,STY
—_—

SAX, SAY
"
SBX.SBY

XAX . XAY
—_—
XBX, XBY

ASL

ASR

LSL
LSR-
RRL

RRR

A,B,X,Y) <— (A,B,X,Y)
(B30, (BED,

1

0 : X” e— -
0 (D, «TAD HED b

P<——T1 + 1P

1 .
MAC (a ‘+ (X,Y)nla f; (A’B)n

(X, V), — C

At (a,s,(X,¥)ng)

1

)

7

0

1
b + ;
MACT (bH1(X, V)5 85 (A,B))

C ¢— (A.B)n

(A,B)néf—— (X,Y)n

0

G e ¢

1

0B, »e—abl/(By n

W/ (B, B) e—(e(31),02 (1)),

v (agul/ (B, M)

B, A= a& (B, A)

ao (B, A)

B, A «<— a4+ (B, A)

B, A & a+ (B, A)

Figure 9.

(Continued)

9

10

11

12
13

14

15

16

17

51

CLC

CLF

HLT
>

LIA,LIB

MIA,MIB

SFC,S0C

SFS
S0S

STC

STF

STO

>

>

>

a< w 6/1
>n3‘
5 d)
S< 63
0 :a

0 : nl
1l : a
F < 0
0 : a

F <—— £ (58)

0<—

RUN<

0

<
(A,B)no Z_
(A,B) < (A,B) Vv Z
B oy 2

P< T7(0 = (O’Fa)(a+0)).+ 1P
>(d5, Exit)a

P< T(l=(O,Fa)(a+O)) + 1P
>(d3, Exit)a

Vé 1

(Fa’ 0) (a+o)< 1

Figure 9. (Continued)

o

4+—>

4>

52

0TA S
OTB

ALF,BLF

© ALR,FLR

>

>

ALS, BLS .

ARS,BRS
—

ERA,ERB S

ELA,ELB

RAL,PAR
RBL, RBR

CLE

SLA,SLB

>

P<

a<

2 < (A, B)nO
1 >d5 g
a< I6
b< 0
0 : a
>n3
(A,B) < 44 (A,B)
o) o)
(A,B) < & (a,B)
Iy 0o
wlS/(A,B)n - 3m15/(A,B)n
0 0
15/ (A,B) <——(E(15)at(15)) (A,B))
| nO no 0
v(? (A.B)
nO)

B, (AB) . (NN (B, (A,B)

0 1 0

(4,¥). (A,B)
0 ny Do

O:wl/(A,B)nO

T1 + 1P

I

Figure 9. (Continued)

>

53

" CCA -
CCB
- CMA
CMB

CLA
CLB

CLE
CME

CCE

SEZ,SLA
SLB,SSA

>

INA
INB

RSS

JLY

(4,8) . &(16)

0
(A,B)n <— ~(A,B)q
0 0
(A,B) < € (16)
n
0
n< v
>n2
E<— 0
E<— E
E<— 1
S< 0

S<— (E A I

1
)V ((0=0/ (A,B)T,) AT,)

10
1
= A,B =
v((0=w/ (A,)14)A112)v((0 R(A,B)I4)
AL ,) £q
(A’B) < T(O,a) + -L(A’B) :
Iy T3 I £10
S< (S,S)I15 fll
P<— 7(0,1) 4+ 1P f
‘ I‘15 12
Y<— T1 + P 20
MACl(J.P.f;I) 895
—>
! &1
1
ADC(I¢:lw 5/I:a) 83
P<— T3 84
15
p<—(LY) + (1w /1) g5

Figure 9. (Continued)

54

I

——>

MAC](J.P,f;I)

?<—— T1L + 1P
ADC(Iﬁ;\LwlS/I;a)’
—>n,

s.<— B

1 ¢

Mack(a, £50)

s2<—-—— C¢

B,A<—T/L1(B,A) ;B
16

932

1 :0<—(0 =20C)

¢;232—l<B,A>/

C<—T/1C;C -1C/

x<—(1C) | L(B,A)

1: 0= ((C(B,A)-x):(10))>255)

B,A <—— ?2(32)
t<— ((L(B,A))-x) +(LC)

X< /x;(slez);216 -x/

B - (16)Tx
16 ‘
A - T/t,(leSZ),Z -t/

MAC%a,f:C)

sl<—~— A¢
s2<——— C¢

1
X< /.LA;A¢;2 6 — 1A/

< /lc:C¢:216—lC/

B A<— T/xxt;51952;232—xxt/

MACl(a, (f,8) ;A)
g

MACl(a+l,(f,s)n¢;B)

Figure 9. (Continued)

55

t<—;/(A,a8/B);A¢;224—(A,a8/B)/e 223 i,
/oa7/u)8/B;B15;(loc7/w8/B)—27/' 4

t<— t x 2 ‘ 1

- (13’i9’il4)n¢ i,

FIX~—————- > < (¢,1)(t<6)+Lt- ‘ N \i3

sz<———(/ a7/w8/B;B15;27—1a7/@8/B/216) 'i4

e (t,32767)82 | ; g

'0<_—__52 | L , ig
A<———T/t;t<¢;2}6 +t/ : i

FLT——-tom | b (W™ /) /D)0 o ig

:w15/A<—' b‘mls/A 19

B<— £(16) / i,
a7/w8/B<—~—T(15—b) _ i, |

%ﬁ%:%%%—~> MACl(lPif;I) i,

P - Tl + 1P ' | 7113

ADC(Iw;LwlS/I;a) il4

MAC(a,f;C) 115

MAC(a+l,f;g) ie

X< /l(C,aS/g);C¢;224—l(c,a§g)/%223 i

sz<———-/Lu7/w8/g;g15;(ia7/w8/g)—27/ ig

X<—— X X 2 :1'.19

p— x(+,—,><,%}n1 t iZO

"""" 23 127

_ 1 3 o
m<—(bC-2 1 7)v(b > (1-2 "THx 2777) t9p.1

Figure 9 (Continued)

56

- >

o o

e— >

b<—r~b, (1-2"2%)x 27129

b<—(b,1)

0<— (b<=2227yyb> (1-2)"%3%127)
129 ~129

V(> #2) 22 (-21)) (b2 ™))
P
8, (0<P)
b<—__.| b
b : 1
b— b+ 2
t<— t+1
b:@.5
b<— bx2
t<—-~t%1

Byos o JOJB = T/t (£<@) s t42d)

b<'——“'b><2'24

A,&8/B<*~“'T/b;sl;224 -b/

(b>(1+2"22)x(-zlzg))k(b<2'

t21

129
)

iy9

Figure 9. (Continued)

57

58

Lines b‘—bl

0 7

All TIRI instructions aré executed here. ADX, ADY, LDX, LDY, STX,
and STY refer to certain memory locations whose addresses are defined
in the word following the instruction word; thus some memory access
and effective address computation tasks must be done(60-63) prior to the
execution of the instructions. All the other instructions of IRI do
not require those tasks and enter the routine at line b4 to skip the

unnecessary steps.

Llnes CO---C5

The EAR instruction sets are executed here. Each instruction

enters at a different line.

Lines do—d21

All the IOI instructions are executed here. The I/0 devices are
interfaced with the processor by these instructions; symbols V, F, and
Z are used here to represent the control bits, I/0 flag bits, and data
buffers of all the I/0 devices. FEach indexed symbol refers to a

specific device.

Lines eo--e18

All the S/R instructions are executed here. Each S/R instruction
consists of four microinstructions. Each microinstruction is chosen
from its own microinstruction sét. The first microinstruction set is
the same as the fourth microinstruction set for S/R instructions. The

instruction execution is divided into three parts. The first part

59

(lines e) executes the first microinstruction, the second part

0 12
(lines 13-14) executes the second microinstruction, and the third part
(l1ines 15-17) executes the third microinstruction. The fourth micro-
instruction is executed in the first part after the previous three
microinstructions are all executed. Every S/R instruction must go

[

through these four steps to complete the instruction execution.

Lines f0+f12

All the A/S instructions are executed here. FEach A/S instruction
consists of 8 microinstructions. Thus the instruction execution is
divided into 8 parts, each part executing one microinstruction. Every
A/S instruction must go through these 8 parts to complete the instruction

~

execution.

Lines go—g5

The JUMP instructions JLY and JPY are executed here. A memory

access must be made to get the destination address of the JUMP instruc-

tion.

i ~-h
Lines h0 23

All the EAMR instructions are executed here. Each of the four EAMR
instructions requires two words of memory: one for the instruction

code and one for the operand address. Thus at line h the second mem-

0’
ory word (operand address) is incremented by 1 to point to the next
instruction. The overflow bit is set when the DIV instruction is

executed if the divisor is zero or too small. In the former case

(division by zero), the division will not be attempted and the B- and

60

|

A—registef contents will be unchanged except that a negative quantity
/

will be made positive. 1In the latter case (divisor too small), the

ekecution will be attempted with unpredictable results left in the B~

and A~registers.

Lines i -1
0

24

All the‘FPI/instructions are executed here. Four of the FPI
instructions'are floating point arithmetic instructions which require
two words>of memory: one for the instruction code and one for the
operand address. Since a full 15 bits are available for the operand
address, these instructioﬁs can directly address any location in memory.

The execution of WMI, BIMI, BYMI, and DMI instructions is/not

included in the APL description here because they are not used and

have nothing to do with this paper.
Microprogramming

Conventional Control Section

In a conventional computer coqtrol section, the functions performed
by thé instruction set determine the specified hardware design. The
major advantage of this specially designed hardware is speed of instruc-
tion execution. The major disadvantage is the loss of flexibility for
special applications or for enhancements. Any changes and additions
to existing capabilities require changes and additions to hardware
components. This is no problem for a conventional computer is there are
no new machine instructions requiredf "The hardware has been designed

to minimize timing for the instruction set" (6).

61

However, a computer manufacturer rarely produces an instruction
sét that meets the requirements of all potential users. '"Hence, the
manufacturer must either focus his attention on one group of users or
widen his scope and generalize the hardware design to meet the needs of
a number of user groups. In the latter case, the user must modify his

discipline to some extent to meet the limitations of his hardware'(6).

Microprogrammed Control Section

"In the microprogrammed computer, all distinct logical functions
are separated from the sequence in which those functions are per-
formed" (6). Thus, hardware redundancy is reduced. The control store
holds the microinstruction which defines the logical functions. Each
machine instruction in Main Memory is pérformed by a sequence of micro-
instructions in Control Store. This sequence of microinstructions
called a microprogram and is often referred as,firmware.. Software can
be executed much faster with the application of microprogramming.

This speed is achieved by two factors:
1. The memory access time of Control Store is less than
that of Main Memory.
2. The microinstruction has more flexibility than the
normal machine instruction.
In fact, the HP2IMX Control Store where microinstruction reside,
cycles more than twice as fast as Main Memory where normal machine
instructions reside. In addition, microinstruction have the ability
to access many internal registers and some logical functions that Main
Memory programs do not have.

For example, the HP21MX floating point software subroutines were

62

idéntified ds very time consuming. They were microprogrammed by
Hewlett—fackard and made available in ROM to users. Implementation of
floating point firmware requires no change to user programs. The
microprogrammed floating point instructions run about 20 times faster
thén the corresponding software subroutines.

As in the floating point microprogram, the user can study his
software, determine the most time consuming function performed, and
then microprogram these functions, that is, execute them in control
store using a single memory instruction instead of a sequence of Main

Memory instructions. Any software that uses these microprogrammed

functions will execute at a higher speed.

The Microprogrammable Computer

Functionally, a computer consists of four/major sections:

Control

Main Memory

Input and Output

Arithmetic and Logic
Each section executes under the direction of the control section by
means of a microprogram. = The control section reads the user's program
stored in Main Memory and directs the appropriate hardware in each of

the other sections.
Control Section

The control section fetches an instruction from a certain location
in memory, which is specified by the Memory Register (MR), and stores it

into the Instruction Register (IR), as shown in Figure 10. An

CONTROL SECTION'

INSTRUCTION REGISTER

MACROPROGRAM
INSTRUCTION

CONTROL STORE

MAIN MEMORY

MACROPROGRAM

MACRO-
PROGRAM

N\

MICRO-

\L

/) //%PROGRAM

ITNSTRUCH
TTON

Figure 10. A Microprogram Implemention of One
Macroprogram Instruction.

63

64

appropriate microprogram is determined by the IR. Conceptually, each
program instruction in Main Memory is a jump to a microprogrammed

y

routine which resides in Control Store.

The storage area for those microprograms is Control Store which
may be either a Read Only Memory (ROM) or Writable Control Store (WCS).
The control section that executes microprograms from ROM is referred as

a Control Processor.

The Control Processor

A microprogram in the Control Processor is in command of the
" computer at all times. A microprogram takes program instructions from
Main Memory and stores them into the IR. The upper eight bits of the
IR determine the microprogram address within one of the following
groups:

Basic instruction set

Extended'instrugtion group

Floating point instruction group

User microprogram group
The basic instruction set microprogram can be regarded as a supervisor
microprogram that determines when a user microprogram is called and then
passes control to the user microprogram.

When a micfoprogram has run to completion, it returns to location
0 in Control Store (basic instruction set), returning control.to the
Supervisdr microprogram, after which the next instruction is fetched
from Main Memory and stored into the IR, Successive microinstruction

address are determined in the following way. The ROM Address Register

65

(RAR) is incremented at the start of execution of each microinstruction.
When a jump is_executed, the RAR is loaded with the jump target address.
When a jump to a subroutine is executed, the RAR is stored into the Save
Register. When a return from a subroutine is executed (RTN), the
Save Register contents afe transferred into RAR and the Sav§ Régister
is clearedi Thus at the completion of execution of each microinstruc-
tion, the RAR holds the address of the next microinstruction.

The ceﬁtral data transfer path is the S-bus. The contents of
all registers except the following can be directed onto the S-bus:
L—register,_RAR,SAVE Register, Extend Register, and the Overflow
Register. The followiﬁg registers can receive data from the S-bus:
M-Register, T—Registef; L-Register, Counter-Register, Display-Register,
Display Indicator, and Instruction Register.

The T-but receives data only from the Rotate/Shifte; (R/S) but
can pass data to the following registers: A-Register, B-Register,
Scratch Pad Register (Sl through 812)’ X-Register, Y-Register,
P-Register, and S-Register, (Front Panel Switch Register).

The I/O—bqs serves to transfer data to and from external devices
under program control. In the functional block diagram (Appendix A)
all the data paths are shown by the arrows. For example, the B-Register
coﬁtents can be sent to S-bus and hence to the M-Register. However, the
contents of the B-Register cannot be sent to S12 (Scratch Pad 12) Qith—

out passing through the ALU.
Main Memory

The M-register is a 15-bit register which holds memory addresses

for reading from or writing into Main Memory. Upon storing from the
' i

] ~ 66

.M—Register;vbit 15 is clear (0). The T-Register or transfer register
holds the data being transferred to or from memory. The contents of
both of these registers are transferred to and from the -bus. Four
loader ROMS, selectable by Instruction Register bits 15 and 14, Ean
each contain a 64-word Main Memory program which may be loaded into
Main Memory and used to load Main Memory from a peripheral device, or to
perform any other function desired by the user.

Two flags are associated with memory: the A-Register Addresséble
Fl;g (AAF) énd the B-Register Addressable Flag (BAF). These flags

are required to allow the A- and B-registers to be addressed as loca-

tions 0 and 1, respectively, of Main Memory.

Input and Output

ThevCentral Interrupt Register (CIR) is a 6-bit register associated
with the I/0 interrupt circuitry. It is loaded with the select code
of the interrupting device under program control and passed to tHe S-bus.
Whenever the CIR is léaded, and Interrupt Acknowledge (IAK) signal is
issued to the I/0 device. The I/0 bus transfers data to and from exter-
nal devices. Two flags are associated with I/0: the interrupt pending
‘flag and the I/0 skip condition met flag. The Interrupt Enable Register
is used to disable or enable the recognition of all interrupts, except

Memory protect, parity, and power failure interrupts.

Arithmetic and Logic Section

This section consists of the Arithmetic and Logic Unit (ALU), the
twenty-two Rotate/Shifter (R/S) registers, and six flags.

The ALU and R/S are the only units that execute functional

‘ . ‘ 67
e
modifications on the data. The ALU receives inout from the S-bus and
from the L-register (Latch Register). Output from the ALU goes to the
R/S which places its output on the T-bus.
Output from the ALU and R/S can be stored in one of the folloiwné

registers via the T-bus: A-Register, BfRegister, Scratch Pad Registers

(S, through S..), X-Register, Y-Register, P-Register, and S-Register.
1 -]

12

Recall that the P-register holds the macroprogram (main memory)
address. The P—registér must be under control of the miéroprogram
which must insure that it contains the proper address»after the micro-
program is complete. . When the microprogram is complete, the resulting
P-Register value is the éddress of the next macroinstruction to be
executed. Note that the Basic Instruction Set fetch routine (at
Control Store address 0) automatically increments the P-Register
after the macroinstruction is fetched. Thus for one-word user macro-
instruction function codes, no further incrementing of the P-Register
is necessary in the user microprogram.

Tﬁe S-Register is reserved for internal storage of the Front Panel
Switch Register. Note that all of those registers can also be sent
along the S-bus for storage into memory, passage to an external device,
of input to the ALU.

The Extend Register is a one-bit register used,in shift operations
to link the A- and B-Registers or to indicate a "carry" arithmetic
result out of the A- or B-Registers. The overflow is a one-bit regis-—
ter used to indicate an arithmetic overflow from the ALU. These two

registers can also be used as flags.

68

Implementation of a Polynomial Algorithm
: : N

in the HP21MX Computer

The -four tasks which are illustrated in Chaptef.I are performed in
this chapter. One of them is to program the polynomial algorithm in
Hp 21 assembler languagé for evaluating the sine function. The other
task aoes the same thing but useswabmicroprogtam instead of the program
coded in assembler language.

The particular polynomiallalgorithm used for evaluating sine

functions has been determined in Chapter II and is shown as follows:

. _ 3 5
sin x = clx + CqX + CeX 4.1

where c 1.5706268

=-0.6432292

0
l

¢l
I

0.0727105

-1 < x<1
For evaluating the sine of an angle O, x is substituted with 26/II

in Eq. (4.1); then sin 6 can be computed by

. _ 20. 20,3 20,5
sin 6 = ¢y (II) + CB(II) + c5(H

In order to reduce the execution time when implemented this algorithm

in the computer, Eq. (4.1) can be factored as follows:

LI 2 2
sing x = X(cl + x (c3 + X) (4.2)

Although Eq. (4.1) and Eq. (4.2) give the same result in computa-
tion, they require a different number of multiplications.
Inspgction of Eq. (4.1) shows that the number of multiplications

required is 11, while the number of multiplications required by

69

Eq. (4.2) is 7. As mentioned in Chapter I, the multiplication function
is one/of the most time-consuming functions. Thus Eq. (4.2) definitely
is more efficient than Eq. (4.1) when implemented in the computer.

For the reason mentioned above, Eq. (4.2) is used for both the
microprogram and the program coded in assembly language. The results
of these two implementations are listed in Tables VIII and IX. The

program listings are listed in Appendix B.

Implementation of the Cordic Algorithm

on the HP21MX Computer

The Cordic algorithm Eas been introduced in Chapter II. To use
it for evaluation of the sine function, the value selected for n is
a function of the desired computing accuracy. Theoretically, the
larger the value of n is the more accurate the result.

Actually, it is impossible to represent a‘number to any degree of
accuracy in any computer because the accuracy of all computers is
limited by the number of bits in a word. In the HP21MX computer,
there are 16 bits in a word. When the Cordic algorithm is used to
evaluate the sine function, the value of n not only determines the
accuracy of the result, but also affects the execution time of the
program. There is a trade-off between accuracy and execution time;
i.e., when n increases, the accuracy is increased as is the execution
time. In order to get the greatest accuracy and the least execution
time, the optimum value of n must be found. As discussed in Chapter II,

a set of ATR constants, ai’ i=1,,..,n,, can be obtained from Eq. (4.3).

-(i-2)

a, = tan—l2 for 2<is<n (4.3)

TABLE VIII

POLYNOMIAL METHOD IMPLEMENTATION RESULTS
(ASSEMBLY LANGUAGE) OF EVALUATING
THE SINE FUNCTION '

Execution Time(Mili-Sec)

Angle(Radians) Sin
~1.5 -0.997558 . 0.081
-1.4 -0.985351 0.081
-1.3 -0.963378 0.081
-1.2 —0.932128 0.081
~1.1 -0.891357 0.081
-1.0 -0.841552 0.081
-0.9 -0.783447 0.081
-0.8 -0.717285 0.081
-0.7 ~0.644287 ©0.081
~-0.6 -0.564697 0.081
-0.5 -0.479492 0.081
-0.4 -0.389404 0.081
-0.3 -0.295654 0.081
-0.2 ‘—0.198730 0.081
-0.1 ~0.099853 0.081
0.0 0.0 0.081
0.1 0.099609 0.081
0.2 0.198486 0.081
0.3 0.295410 0.081
0.4 0.389160 0.081

70

TABLE VIII (Continued)

Angle(Radians) Sin Execution Time(Mili-Sec)
0.5 0.564453 0.049
0.6 0.564453 0.049
0.7 0.644042 0.049
0.8 0.717041 0.049
0.9 0.783203 | 0.049
0.1 0.841308 0.049
1.1 0.891113 0.049
1.2 0.931884 0.049
1.3 0.963134 0.049
1.4 0.985107 0.049
1.5 0.997314 0.049

TABLE IX

POLYNOMIAL METHOD IMPLEMENTATION RESULTS
(MICROPROGRAM) OF EVALUATING THE
SINE FUNCTION

Angle(Radians) Sin Execution Time(Mili-Sec)
-1.5 —6.997558 0.049
-1.4 -0.984351 0.049
-1.3 -0.963378 0.049
-1.2 -0.932128 0.049
-1.1 -0.891357 0.049
-1.0 -0.841552 0.049
-0.9 -0.783447 0.049
-0.8 -0.717285 0.049
-0.7 -0.644287 0.049
-0.6 -0.564697 0.049
-0.5 -0.479492 - 0.049
-0.4 -0.389494 0.049
-0.3 -0.295654 0.049
-0.2 ~0.198730 0.049
-0.1 -0.099353 1 0.049

0.0 0.0 "0.049
0.1 0.099609 0.049
0.2 0.198486 0.049
0.3 0.295410 0.049
0.4 0.389160 0.049

72

TABLE IX (Continued)

Angle(Radians) Sin ‘Execution Time(Mili-Sec)
0.5 0.479248 0.081
0.6 0.564453 0.081
0.7 0.644042 0.081
0.8 0.717041 0.081
0.9 0.783203 0.081
1.0 0.841308 0.081
1.1 0.891113 0.081
1.2 0.931884 0.081
1.3 0.963134 0.081
1.4 0.985107 0.081
1.5 0.997314 0.081

13

T4

When implementing the Cordic algorithm in the HP21MX computer,
ai will be divided by 180° and then represented in 16 binary digits.

1 10 = 0.400008. 0400008

will be stored in the computer. If Eq. (4.3) is used to find the ATR

. For example, if o, = 90°, then 90°/180° = 0.5

constants n=1 to n=16, the values of a, are: = 040000, oy = 620000,

%1

Oy = 011344, Oy = 004773, ag = 002421, O = 001213, u7 = 000505,
Og = 000242, Og = 0001212, 019 = 000050, Oyq = 000024, Oyp = 000012,
d13 = 000005, Oy = 000002, Oyg = 000001, O = 000000.

Because the ATR constant is represented with a l6—bit word in
the HP21MX computer, when n > 15, the constant will be toorsmall to
be represented. Thus the value 15 is the best choice for the vaiue
of n. This yields the most accurate result without excessive execution
time.
Once the value of n is determined, tﬁe value of k can be found as

well. The formula to obtain the constant k is:

k= 142 1+2:? 14272 (0=2)

(4.5)
When the constant k is computéd by Eq. (4.5) with n ; 15, the result is:
k = 1.646744

The original coordinate vector in the Cordic algorithm is:

V=1%= 0.6072589

One critical problem occurs immediately when the Cordic algorithm
is being implemented in the HP2IMX computer. Review of the Cordic
machine in Chapter III shows that'the best feature of Cordic which speeds

up computation is that it has three adder-subtractors which can operate

75.

simultaneously. In the HP21MX computer, although there are two regis-
ters (A and B) which can operate like an adder-subtractor in Cordic,
they cénnot operate simultaneously. Due to this hardware limitation,
the only way to simulate these parallel adder-subtractor operations
is to execute sequentially.

The flowchart for the assembler program which simulates the Cordic
élgorithm in the HP21ﬁM computer is shown in Figure 11.

An AHPL description for the microprogram which emulates the Cordic
algorithm in the HP21MX computer is shown in Figure 12.

Both program listings are shown in Appendix B. The programming

results for these two implementations are listed in Tables X and XI.

Calculation of Execution Time

To calculate the éxecution time of both the macroprogram and the
microprogram, the Time Base Generator (TBG) and interrupt feature are
used. The TBG generates an interrupt signal for a specified time
interval; the CPU acknowledges the interrupt and forces the current
computer program to suspend and transfer control to a service subroutine
which records the number of times that the clock interrupt has occurred.
At the end of program, the program execution time can be calculated

from the following;eQuation:

N TI
T =—222 yhere
L
T = program execution time
N = number of clock interrupts
TI = interrupt time interval of Time Base Generator
L = number of times that the program has been executed

(start)

N/

Set time
Clock Inter-
rupt

Vector

Input an
Angle

ANGLE
I

Areg <

Znable time
Clock Inter-
rupt

4
B < Unit
re
& Vector

ress Areg +
90° |
Tl
<__..__
y Breg
B “B +1
reg reg

Yes
Areg< {::>

No

"B k times

Y<—B
reg

Figure 11.

Cordic Algorithm

K « (No of
shifting
time)i

reg

Right shift

reg

reg

76

i

Y <Y +B
reg ‘reg reg

reg

reg

Right Shift

Breg k times

Figure 11. (Continued)

77

reg reg

+ Brog

reg

Breg f (Angu-

1arconstaht%

|

B < B

A . <0 No reg reg

reg +1
Yes
I |
Areg * Areg
+ B
re

i+«di+1

Output X,Y
Yes

>

Figure 11. (Continued)

78

0 MR <« P

1 P <« 1T1+.1P

2 mact (R, £51)

3 ' X<« T

4 MR « P

5 P < T1+.P

6 MACl(J.MR;f,T) :
7 S7 « T

8 56 « A

9 + (10,14) ¢

10 S7 < S7

11 S7 « (16)T1+LS7

12 X « X

13 X < (16)71+LX

l4b Y « X

15 X« 8(16)

16 E,S6 < T(LS6)+(LS7§
17 S4 « 812’13’14(16)
18 S3 « 8(16)

19 S5« X

20 L+«Y

21 - 37

22 CTR « w8/83

23 B « X

Figure 12. The AHPL Description
for the Cordic
Algorithm in Imple-
mentation in HP21MX
Microprogram

79

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

4t
45

46

47

48

(v/CTR) :0, (=,%) + (29,25)
B« 0B

(A/CTR) :1, (=,%) + (29,27)
CTR < T1+1CTR

+ 25 |

S5 <« B

CTR <« w8/s3

B<«Y

(V/CTR) :0, (=,%) - (37,33)
B<&s

(A/CTR):l,(=;+) ~+ (37,35)
CTR < TI+1CTR

-+ 33

MR « P

P « T1+1P

MACl(LMR,f;T)

S7 « T

> (42,48) g6y

E,X <« (17) (LX5+216—LL

L < S5

E,Y < (17) (1Y)+(LL)

L <« 87

E,S6 <« (17) (LS6)+216—LL
> 53

E,X « (17) (1uX)+(1L)

Figure 12. (Continued)

80

49

50

51

52

53

54

55

56

57

L <« S5

E,Y < (17)T(uy)+21011,

L « S§7

E,S6 « (17)T7(1S6)+.LL
E,S4 < (17)T1+1S4

- (57’55)(V/SA)

E,S3 < (17)7(186)+21
-+ 22

RETURN TO MACROPRAM

Figure 12. (Continued)

6

-1

81

TARLE X

CORDIC ALGORITHM IMPLEMENTATION RESULTS

(ASSEMBLY LANGUAGE) OF EVALUATING

THE SINE FUNCTION

Angle (Radians) Sin Execution Time(Mili-Sec)
0.0 0.000244 3.304
0.1 0.099975 3.297
0.2 0.198913 3.310‘
0.3 0.295410 3.313
0.4 0.389587 3.300
8.5 0.479431 3.313
0.6 0.564758 3.305
0.7 0.644226 3.305
0.8 0.717407 3.310
0.9 0.783325 3.304
1.0~ 0.841369 3.305
1.1 0.891174 3.313
1.2 0.932206 - 3.311
1.3 0.963562 3.306
1.4 0.985351 3.311
1.5 0.997558 3.318
1.6 0.999450 3.310
1.7\ 0.991760 3.318
1.8 0.973693 3.313
1.9 0.946350 3.305

82

TABLE X (Continued)

Angle(Radians) Sin Execution Time(Mili-Sec)

2.0 0.909301 3.316
R 0.863220 3.320
2.2 0.808654 3.312

2.3 0.745666 3.310

) 2.4 0.675476 3.312
2.5 0.598510 3.314

2.6 0.515686 3.324

2.7 0.427795 3.311

2.8 0.334716 3.313

2.9 0.239074 3.321

3.0 0.140869 3.311

3.1 0.041564 3.316

3.2 -0.058654 3.304

3.3 -0.157592 3.311

3.4 -0.255798 3.320

3.5 -0.350646 3.317

3.6 -0.442016 3.320

3.7 ~0.530090 3.327

3.8 -0.611999 3.311

3.9 -0.687622 3.314

4.0 -0.756713 3.329

4.1 -0.818054 3.302

4.2 ~0.871520 3.327

4.3 -0.916320 ©3.321

A -0.951599 3.311

TABLE X (Continued)»

Angle(Radians)

Execution Time(Mili-Sec)

Sin
4.5 -0.977539 3.322
4.6 ~0.999877 3.314
4.7 -0.999877 3.314
4.8 -0.996032 3.310
4.9 -0.982422 3.312
5.0 -0.958801 3.314
5.1 +0.925901 3.311
5.2 -0.883422 3.314
5.3 -0.832153 3.308
5.4 0.772583 3.304
5.5 -0.705505 3.309
5.6 -0.631530 3.303
5.7 -0.550659 3.309
5.8 -0.464599 3.310
5.9 -0.373840 3.305
6.0 -0.279541 3.319
6.1 ~0.182312 3.314
6.2 -0.082885 3.312

84

TABLE XI

CORDIC ALGORITHM IMPLEMENTATION RESULTS

(MICROPROGRAM) OF EVALUATING THE

SINE FUNCTION

Angle(Radians) Sin Execution Time(Mili-Sec)
0.0 0.000244 0.105
0.1 0.059975 0.126
0.2 0.198913' 0.112
0.3 0.295410 0.108
0.4 0.389587 0.106
0.5 0.479431 0.104
0.6 0.564758 0.108 -
0.7 0.644226 0.107
0.8 0.717407 0.113
0.9 0.783325 0.097
1.0 0.841369 0.110
1.1 0.891174 0.111
1.2 0.932206 0.114
1.3 0.963562 0.109
1.4 0.985351 0.104
1.5 0.997558 0.105 .
1.6 0.999450 0.104
1.7 0.991760 0.105
1.8 0.973693 0.114

. 1.9 0.946350 0.106

TABLE XI (Continued)

Angle(Radians) Sin Execution Time (Mili-Sec)
2.0 0.909301 | 0.111
2.1 0.863220 0.105

2.2 0.808654 0.106 °
2.3 0.745666 | ~0.105
2l 0.675476 0.116
2.5 0.598510 0.111
2.6 0.515686 | 0.107
2.7 0.427795 0.116
2.8 0.334716 - 0.107
2.9 0.239074 0.114
3.0 0.140869 | 0.102
3.1 0.041564 0.103
3.2 -0.058654 0.101
3.3 -0.157592 0.105
3.4 ~0.255798 | 0.106
3.5 ~0.350646 0.112
3.6 0.442016 0.110
3.7 _0.530090 0.105
3.8 ~0.611999 0.109
3.9 -0.687622 0.097
4.0 ~0.756713 0.108
4.1 -0.818054 0.112
4.2 ~0.871520 0.107
4.3 ~0.916320 o 0.107

4.4 -0.951599 0.111

TABLE XI (Continued)

Angle (Radians)

Sin Execution Time{Mili-Sec)
4.5 ~0.977539 0.106
4.6 ~0.993774 0.107
4.7 ~0.999877 0.107
4.8 ~0.996032 0.107
4.9 ~0.982422 0.102
5.0 ~0.982422 0.102
5.1 -0.925901 0.101
5.2 -0.883422" 0.110
5.3 ~0.832153 0.108
5.4 -0.772483 0.111
5.5 ~0.705505 0.110
5.6 ~0.631530 0.115
5.7 ~0.550659 0.116
5.8 -0.464599 0.107
5.9 -0.373840 0.114
6.0 -0.279541 0.111
6.1 -0.182312 0.110
6.2 ~0.082885 ' 0.107

87

CHAPTER V
OTHER USES OF CORDIC

The Cordic algorithm may also be applied in solving many other
mathematic problems as well as being applied in the evaluation of the
sine and cosine functions. Decimal to binafy and binary to decimal
conversion, arctangent function computation, fourier transformation,
et.al., can be done by the Cordic algorithm--a different way from the
conventional methods. Arctangent function computation and decimal
to binary conversions are chosen in this chapter to demonstrate how

the Cordic algorithm is applied to solve these problems.
Arctangent Algorithm

This algorithm is obtained by reversing the sine and cosine
algorithms. In this algorithm, the value V which equals Y/X is known
(X and Y are components of a vector.) The vector is rotated with
respect to the positive X-axis. The angle traversed is the angle whose

tangent equals Y/X.
Functional Description

The VECTORING mode is used in this application. To illustrate the
details of this algorithm, Figure 2 in Chapter III is referred to again.
The value of v is checked before the initialization of the X- and

Y-registers. If the value of v is greater than 1 then the Y-register

88

89

is initialized with 1 and the X—register_is initialized with w3
otherwise»the X-register is initialized with 1 a;d the Y-register is
initialized with v. The Angle Register (A-register) is always initiai—
ized with 0. A sign digit of 0 in the Y-register establishes a v,

of -1, which causes the top adder-subtractor to be set to subtract and
the middle and bottom adder-subtractors to add. A sign digit of 1 has
the opposite‘effect. The ATR constants are the same as those used in
Chapter I1I. The VECTORING computing sequence as described in Table II

is started. The angle whose tangent equals to v is taken from the

A-register after the final computation step.
Decimal to Binary Conversions in Cordic

A technique is formulated for using the Cordic arithmetic unit to
convert between angles expréssed in binary fractions of a half
revolution and angles expressed in degrees and minutes in the 8421;c0de.

The Cordic decimal—té—binary conversion technique may be compared
to a conventional conversion technique in which the 8421-code and
binary arithmetic are utilized. The conventional conversion technique
is based upon the 8421-code definition of the value of a decimal digit,

N, located i placed to the left of the units position, as given by

N x 10 = n, (8 x 100 + ny (4 x 10 + ny (2 x 10%) 0, (1 x 100)
(5.1)

where n4, Ny, N, and n, are equal to zero or one. The constants

1
8 x 100, 4 x 10%, 2 x 10", and 1 x 10", evaluated in binary for all

values of i to be used, are required in the conversion. For example,

5° in 842l1-code is

For

86°

86°
The

the

90

45°= (0x8x10+1x4x10+0x2x10+0x1x 10)
+(0x8+1x4+0x2+1x1)

45° = (0100), (0101).

example, 86° can be written as

v

(1 x8x10+0x4x10+0x2x10+0x1x10) + (0 x 8

+1x4+1x2+0x1)

i

(1000). (0110)

conversion of a negative angle is accomplished in the same way, and

result is then complemented by subtracting the binary magnitude

from zero. For example, -86° is (0111) (1010) which is the 2's comple-

ment of 86°.

- The binary value of 45° as a fraction of half revolution is shown

in Table XIT.

not

In Table XII at each step a binary constant is either added or

added, depending upon whether the 842l-code variable is 1 or 0,

respectively. In order to use the Cordic principle, it is necessary

either to add or to subtract a constant. The use of addition or sub-

traction is controlled by a code variable placed in the sign digit

position of an arithmetic unit register. The problem of conversion by

adding and subtracting constants is considered first. Subsequently,

the

method of properly positioning the code variables for control is

presented.

By analogy to the way in which a code variable of +1 is used

to establish the addition of a constant, a variable of -1 is used to

establish subtraction. Therefore, it is desired that a binary code with

+1 and ~1 variables be used to represent decimal angles in Cordic. For

.convenience, the desired code is called a + (plus-minus) code.

TABLE XIIT

THE CONVENTIONAL DECIMAL-TO-BINARY

CONVERSION
Constants Constants-Binary 8421~ Product
Degree Fraction of half Code Variable Term
Revolution
x 10 .01110010 x 0 = -00000000
x 10 .00111001 x 1 N = .00111001
x 10 .00011100 x _ 0 = .00000000
x 10 ’.00001011 X 0 = .000000¢0
8 .00000110 x 0 = .00000000
4 .00000011 X 1 = .00000110
2 .00000011 x 0 = .00000000
1 .00000001 x 1 = .00000001

Accumulated sum =

272 half revolution = .01000000.

92°

The 8, 4, 2, 1 weights cannot be applied directly to a four-digit +
~code because all possible sgms of binary-weighted + code digits are odd.
Therefore, a transformation:of the decimal digits 0, 1, ..., 9, into
a set of ten odd integers is necessary. fhe set of ten odd integers
-0, 47, ceey, =1, +1, ..., 19 is selected..

The equation transforming a decimal digit N, having one of the
values, 0, 1, ..., 9, into a digit Y having*one of the values -9, -1,

ve., 19 is

Y=2N-9 (5.2)
The equation for the inverse transformation is

N = Y+% (5.3)

N[

Applying the factor of %—in (5.3) to the 842l1-weight results in the +

code equation

1
N=Y, -4+Yy 2+ «1+Y *+5+C A (5.4)

1

where Yj = +]l . or -1 and C = %‘.» A factor of lOi may be applied to each
term in (5.4), as was done in (5.1), account for the position of the
digit N. The pattern the Yj variables of the code of (5.4), with
C = g~ and Wiﬁh 0's used t - represent -1's, is identical to that of
the Excess-3 code.

Equation (5.4) can be applied to each digit position, and the
constant term c x 10i for all decimal digit positions is added in binary

to the accumulated sum. As an example 45° will be converted from +

(excess—-3) code to binary as follows:.

93 -

for 45°
9
C2 =5 = 4.5
9 ,
Cl =5 x 10. = 45

C =‘Cl + C2 = 49.5 = total constant
Consequently the constant for 45° is 49.5.

The + 1 code representation is

5+ 3

8

fl
It

(1000), (+--)

4 + 3

7

(Olll)2 (=)

Where each digit must be added to 3 for excess -3. The zero stands for

minus one and one for plus one. Thus

45° = (~+H) (+---)
The complete conversion of 45° is shown in Table XIII.

Where from equation (5.4)

X =4 x10Y, +210Y, +1x10°Y, + Loty +¢

‘2 2 1
o - ' ‘ 1
45° = (40Y4 + 20Y3 -+ 10Y2 + 5Yl) + (4Y4 + 2Y3 + 1Y2 + 2Yl) + C
45° = (=40 + 20 + 10+ 5) + (4 - 2 = 1 =) + 49.5°

Successive digits of the + code must control successive set-
ting of the adder-subtractors in order for the proper sequence of
additions and subtractions to occﬁr as indicated in the previous table.
The settings of the adder-subtractors during the conversion operation
are established by the value of the sign digit'located in the %—register.

In positioning the + code digits for control, the technique of

nonrestoring division is useful because successive quotient digits are

TABLE XIII

DECIMAL-TO-BINARY CONVERSIONS
IN CORDIC

94

Constant Constant-Bainry
Degrees Fraction of Half + Code Product Accumulated Sum
Revolution
49.5 +.0100011001110 (correction) .010001100110 .010001100110
40 .001110001110 =x -1 .001110001110 .000011011000
20 .000111000111 x +1 .000111000111 .001010011111
10 .0000011100100 x ~ +1 ;000011100100 .001110000011
5 .00001110010 x +1 .000001110010 .001111110101
4 .000001011011 x +1 .00000101101 .010001010000
2 .000000101110 =x -1 .000000101110 .010000100010
1 .000000010111 =x -1 .000000010111 .010000001011
1/2 .000000001011 =x -1 .00000001011 .0100000000

The aécumulated sum = 2-2 half revolution = 0.010000000000

95

given by the sign of successive remainders. Dividing the number
representing the iAcodé of the‘angle by 1 p£oduces the signs of succes-
sive remainders. In Cordic this is accomplished as follows:

1) 1If the remainder is positive, subtract the divisor.

If tﬁe remainder ié negative,‘add the divisor.

2) Shift the divisor one place to the right.

3) Repeat 1 and 2.

The positioning of digits of the + code for 45° is illustrated by
following the above rules as shown in Table XIV.

‘In decimal-to-binary conversion, the + code for the desired angle is
placed in the Y-register and the divisor of 1 is placed in the X-regis-
ter. A sign digit of 0 in the Y-register establishes a Yi of -1, which
causes the top adder-subtractor, Figure 13, to subtract and the bottom
adder—-subtractor to add. A sign digit of 1 has the 6pposite effect.
The constant C in (5.4) is initially placed in the angle register and
successive constants are introduced into the bottom adder-subtractor
as shown in Figure 13. As one step of the division is taking place to
establish the next setting of thevadderfsubtractors, a constant is
. being added or subtracted to modify the quantity in the angle register
according to the sign digit in the Y-register at the beginning of/the
step. The binéry angle is taken from the bottom adder-subtractor on

the final computation step.

GENERATION OF + CODE FOR7459

TABLE XIV

Sign of Remainder

(=+++)

sub

add

sub

sub

sub

sub

add

add

(+--=)

0111
1

1111
0011
0001
0000
0000
1111

1111

1111

1000

1000

1000

1000

1000

0000

1100

1110

1111

= 0111

= 1000

7 in excess 3

8 in excess 3

96 -

97

Y REGISTER (
i . :
>+ SN
ADDER-
SUBTRACTOR

%) ¢ 5 ADDER-SUBTRACTOR

S T IIITIIIIN:

0 =>- U SUBTRACTOR
> —t~
7 b
X REGISTER
L_——L_D’-
ADDER-
SUBTRACTOR
ATR CONSTANTS —>1-¥

Figure 13. TImplementation of + Code to Binarv Conversion.

CHAPTER VI
SUMMARY AND CONCLUSIONS

The results of the programming tasks discussed in the previous
chapters are shown in Tables VIII - XI.

In order to compare the accuracy of the results obtained from each
task, a set of standard sine function values is obtained. The result
of each task is compéred to these étandard values and the accuracy is
thus determined.

For the convenience of further description, the four tasks which
have been accomplished in Chapter IV are designated Task 1, Task 2,
Task 3 and Task 4:

Task 1

polynomial method implemented in assembly coded program.
Task 2 - polynomial method implemented in microcode.
Task 3 - Cordic algorithm implemented in assembly coded program.
Task 4 - Cordic algorithm implemented in microcode.
Note that the sine values of Task 1 are identical fo those of Task 2,
while the sine values of Task 3 are identical to those of Task 4. Thus,
only two sets of results are compared with the standard sine values, as
shown in Tables XV and XVI. A-cording to these tables, both tasks are
accurate up to three decimal digits; in other words, all the tasks
give about the same accuracy of sine values.
The execution time of each taskis shown in Tables VIII -XI. By

reviewing those tables it is found that Task 1 is the most time-

98

99

TABLE XV

THE COMPARISON BETWEEN THE CORDIC ALGORITHM
IMPLEMENTATION RESULT AND THE
STANDARD SINE VALUE

Angle(Radian) Sin{(Cordic) Sin{(Correct) Error
0.0 0.000244 0.6 . 0.000244
0.1 0.099975 0.0998334 0.0001416
0.2 0.198913 0.198669 0.000244
0.3 0.295410 0.29552 0.00011
0.4 : "0.389487 0.389418 0.000169
0.5 - 0.479431 0.479425 0.000006
0.6 0.564758 0.5640642 0.000116
0.7 0.644226 0.644218 ~0.000008
0.8 0.717407 0.717356 0.000051
0.9 0.783325 0.783327 0.000002
10. 0.841369 0.841471 0.000102
1.1 0.891174 0.891207 0.000033
1.2 0.932206 0.932039 0.000167
1.3 0.963562 0.963558 0.000004
1.4 0.985351 0.98545 0.600099
1.5 0.997558 0.997495 0.0000063
1.6 0.999450 0.999574 0.000124
1.7 0.991760 0.991665 . 0.000095
1.8 0.973693 0.973848 0.000155

1.9 0.946350 0.9463 0.00005

TABLE XV (Continued)

100

Angle(Radian) Sir(Cordic) Sin(Correct) Error
2.0 0.909301 0.909297 3. 000004
2.1 0.863220 0.863209 .000011
2.2 0.808654 0.808496 .000158
2.3 0.745666 0.745705 .000039

) 2.4 0.675476 0.675463 .000039
2.5 0.598510 0.598472 .000013

2.6 0.515686 0.515502 .0000184
2.7 0.427795 0.42738 .000415
2.8 0.334716 0.334988 .000272
2.9 10.239074 0.23925 .000176
3.0 0.140869 0.14112 .000251
3.1 0.041564 0.0415808 .0000168
3.2 ~0.058654 -0.0583743 .0002797
3.3 -0.157592 ~0.157746 .000154
3.4 -0.255798 . -0.255541 .000257
3.5 -0.350646 ~0.350783 .000137
3.6 ~0.442016 ~0.442521 .000505
3.7 -0.530090 -0.529836 .000254
3.8 -0.611999 -0.611858 .000141
3.9 -0.687622 -0.687766 .000144
4.0 -0.756713 ~0.756802 .000089
4.1 -0.818054 -0.818277 .000223
4.2 -0.871520 -0.871576 .000056
4.3 -0.916320 -0.916166 .000154
Lb ~0.951599 -0.951602 .000003

101

“TABLE XV (Cc_)nt inued)

Angle(Radian) Sir (Cordic) Sin(Correct) Error
4.5 ~0.977539 ~0.97753 .000009
4.6 -0.993774 -0.993691 .000083
4.7 -0.999877 ~0.999923 .000046
4.8 ~0.996032 -0.996165 .000133
4.9 -0.982422 -0.982453 . .00031
5.0 ~0.958801 ~0.958924 .000123
5.1 ~0.024901 -0.924815 .000086
5.2 -0.883422 -0.883455 .000033
5.3 -0.832153 ~0.832267 .000114
5.4 -0.772583 ~0.772765 .000182
5.5 -0.705505 -0.70554 .000035
5.6 -0.631530 ~0.631267 .000263
5.7 -0.550659 ~0.550686 .0000027
5.8 -0.464599 ~0.464602 .000003
5.9 ~0.373840 ~0.373877 .000037
6.0 -0.279541 -0.279416 .000125
6.1 -0.182312 -0.182163 .000149
6.2 -0.082885 ~0.0830896 .0002046

TABLE XVI

THE COMPARISON BETWEEN THE POLYNCMIAL
METHOD IMPLEMENTATION RESULT AND THE
STANDARD SINE VALUE

©10Z2-

Angle (Radian) Sin(Cordic) Sin(Correct) Error
-1.5 -0.997558 ~0.997495 .000063
-1.4 -0.985351 ~0.98545 . 000099
—1.3 -0.963378 -0.963558 .00018
-1.2 -0.932128 | -0.932039 . 000089
-1.1 -0.891357 ~0.891207 .00015
~1.0 ~-0.841552 -0.841471 .000081
-0.9 -0.783447 ~-0.783327 .00012
-0.8 -0.717285 -0.717356 .000071
~0.7 -0.644287 -0.644218 .000069
-0.6 -0.564697 ~0;564642 . 000055
-0.5 -0.479425 —0.479492 .000067
~0.4 -0.389404 -0.389418 .000014
-0.3 -0.295654 -0.29552 .0001344
-0.2 -0.198730 -0.168669 .000061
-0.1 -0.099853 -0.0998334 .0000196

0.0 0.0 0.0 .000000
0.1 0.099609 0.0993334 .0001434
0.2 0.198486 0.198669 .000183
0.3 0.295410 0.29552 .00011

0.4 0.389160 0.389418 .000258

i

TABLE XVI ({Continued)

103~

Angle (Radian) Sin(Cordic) Sin(Correct) Error»
6.5 0.479248 0.479425 .600177
0.6 0.564453 0.564652 .000112
0.7 0.644042 0.644218 .000176
0.8 "0.717041 0.717356 .000315
0.9 0.7832G3 0.783327 .000124
1.0 0.841308 0.841471 .000163
1.1 0.891113 0.891207 .0000937
1.2 0.931884 0.932039 .0001546
1.3 0.963134 0.963558 . 000424
1.4 .0.985107 0.98545 .000343
1.5 0.997314 v0.997495 .000181

104

cpnsuming tésk; Task 2 consumes less time; Task 3 consumes sti}l less
time; Task-4 consumes the least time of all.

Task 1 and Task 2 are the same algorithm but implemented in
différent ways, so the sine values will be identical but the execution
time may be different. The same applies to Task 3 and Task 4. The

vpfogramming results in Chapter IV prove this assumption. |

Task 1 is performed in an assembly coded program, While Task 2
is perfofmed in a microprogram. Acéording to the description of the
miéroprogramming in Chapter IV, the execution time of Task 2 shoﬁld be
less than that of Task 1. Similarly, Task 4 should have less execution
time than‘Task 3. Thg programming results in Chapter IV also prove
this assumption.

The things that cannot be predicted before going to the computer
are whether Task 1 or Task 3 will have less execution time, and
whether Task 2 or Task 4 will have less execution time. However, we
expect that Task 1 is faster than Task 3 and Task 2 is faster than
Task 4. If this is true, it means we can improve the speed of evaluation
of trigonometric functions by replacing the conventional polynomial
method with the Cordic algorithm. Surprisingly, the programming results
in Chapter IV indicate that the conventional polynomial method is faster
than the Cdrdic algorithm for computing\trigOnometric functions.
Although this is disappointing, it is possible to determine exactly
how these results were effected.

Although the Cordic algorithm eliminates the necessity of multipli-
cation, some shifting still must Ee done. In the real Cordic machine,:
three registers (A,X,Y) can be shifted and added or subtracted

simultaneously. When the Cordic algorithm is simulated in this general

105-

purpoée’machine the HP21MX, the shifting and adding or subtracting

caﬁ oﬁly'be done sequentially, because the arithmetic unit can only
handle one arithmetic operation at a time. Imn additiqn to this, the
result of shifting and adding must be stored, and then the arithmetic
“unit for shifting and adding/subtracting of other registers msut be
released. After all three registers finish their shifting and adding/
subtracting for the current cycle, the next cycle starts. So the
shifting and adding/sﬁbtracting results of the first register in the
previous cycle Will be restofed, and so on for the second register and
thrid. Therefore, Whenvthe computer is running, é lot of storing and
restoringvis béing performed, and this is very time-consuming. That is
why Task 1 requires more execution time than Task 3. Task 2 implements
the Cordic algorithm in a microcode, so it improves the speed of Task 1,
but is still slower than Task 3 and Task 4. Task 4 is a microcode, and
thus improving the speed of Task 3. Therefore, the conclusions are:

1) The use of the Cordic algorithm for evaluating trigonometric
functions without hardﬁare extensions will be slower than
using conventional polynomial methods;

2) When using a conventional polynoﬁial method for evaluating the
sine function, the microprogram will be two times faster than
the assembly coded program;

3) In order to use the Cordic algorithm to improve the speed of
evaluation of trigonometric functions, a lot of hardware work
must be done in the current HP21MX computer.

With the suprising speed of development of the microprocessor

today, it might be very easy to construct a microcomputer which has the

features of both the general purpose computer and the Cordic computer

in the near future.

@
(2)

(3)

(4)

(5)

(6)

()

(8)

(9)

(10)

(11)

(12)

(13)

A SELECTION BIBLIOGRAPHY

Gear, W. C. Computer Organization And Programming. New York:
McGraw-Hill, 1969.

Iverson, K. E. ’é Programming Language. New York: John
Wiley, 1962.

La Lyusternik, 0., A. Chervonenkis, and A. R. Yanpol'skii.
Handbook for Computing Elementary Functions. New York:
Pergamon Press, 1965.

Héyward,,J. T. and J. P. Wonhg, Jr. Approximations For Digital
Computers. Princeton, New Jersey: Princeton University
Press.

HPilMX Computer Series Reference Manual. Cupertino, California:

Hewlett Packard Company, 1974.

HP Micropregramming 21MX Computers Operating and Reference” Manual.

"Cupertino, California: Hewlett Packard Company, 1974.

A Pocket Guide to Hewlett-Packard Computers. Cupertino,
California: Hewlett Packard Company, 1974.

A Pocket Guide to Interfacing HP Computers. Cupertine, California:
Hewlett Packard Company, 1974.

Volder, J. S. '"CORDIC Trigonometric Computation Technique." I

Transactions on Electronic Computers, EC~8, Sept., 1959,
p. 330. '

Daggett, D. H. '"Decimal-Binary Conversions in CORDIC." TRE
Transactions on Electronic Computers, EC-8, Sept., 1959,
p. 335.

Meggitt, J. E. '"Pseudo-Division and Pseudo-Multiplication Pro-
cessors . IBM Journal , April, 1962.

Waither, J. S. "A Unified Algorithm for Elementary Functions."
Spring Joint Computer Conference, 1971.

Despain, A. M. '"Fourier Transform Computers Using CORDIC
Iterations," .IEEE Transactions on Computers, Vol. c-23,
No. 10, Oct., 1974, p. 993.

106

(14)

(15}

(16)

a7n

107

Cochran, D. S. "Algorithms and Accuracy in the HP 35." Hewlett-
Packard Journal, June, 1972,

Schmid, H. and A. Bogacki. "Use of decimal CORDIC for generation
of many transcendental functions." Electrical Design News,
February, 1973, pp. 64-73.

Richards, R. K. Arithmetic opérations in digital computers.
New York: Van Nostrand, 1955.

Briggs, H. Logarithmicall arithmetike. London: George Miller,
1631.

APPENDIX A

FUNCTIONAL BLOCK DIAGRAM

108

CONTROL SECTION

"
A |
i Eil
C e
o] save
4
- i
il RAR =

T aon asgress o
§ “orro Store

ROM

Decode
Instruction
MM, Execute
Cortror

1mmediate Data

NOTES,

e L Data path

———————— = Corroi patt

Underiined characters < Micra order

Subseripts
s = Sbus tieia
st = Store fielg
<« = Jump Condition fielc
® * Special fiel
o Op field
i % Immediate Modtier hisld

Exampte

CNTR, ;1 =% Micra order "CNTR”
4 in'S bus or Store fields

MAIN MEMORY SECTION

ARITHMETIC AND LOGIC SECTION

1085,
'mw

5
=
3
Othe

er
Periphecaly

1/0 SECTION

N Mo~ o
v 2eotect
Qa1
T-bus
M Memory
AR,
cas,,
Sau Py A
woe_ 4 <
| vermor,
Aoaress : A
! s ' Aegster
i = i
 SEAD, L 4 .
; 7 Ragares
v “
rag, . e Aegater Swren
e
: a8, A8,
08, : cas, cas,
8, A
ALY Rotates Srufrer
Dy S-bus o) Dwr T-bus
e 4 s 1 LAF
ASG,
& L
i
L Reguster
F 5.
: onT4,
Doiav Counter 3
Qegster | 2SPL, o CNTE.
NTR .
OBy
A, S
NHOt. | Run
SRUN,, | Mode ALO.
LTy, Certral
iocerruor | CIAC
Register
10FF
AL1S

Figure D-1. Functional Block Diagram
D-3 D4

60T

APPENDIX B

PROGRAM LISTINGS

110

111

THE

Tk

THPLT PRREFAMETEF

Lok

TR TNTE
o 1

RINISS .

HEET REFPEATITION COUNT TO 106

START LD M

TOTIME PERIGD TO @ L MILTSECDND

F FUHIE
THFELUT ARMGLE TO THE CORRIC B

*LOMYERT T

B

ERT
EMTL
wLHTT IR

W THE CORDT © ETRETS HERE

CORLIC COMPUTING o AERCE LRE TIMES FOR THE SAME

HOITRLT s WALUES OF THE THFUT ARNGLE

\

DT

DBy B L THEN RBEFERAT THE PROGEARN

L
TP EL
Bt DR B8

(2} B
FH
s

FipGLLE

112

. ‘ ‘ 113

M

F
T

114

RER R R R N

hg s :v}«l B

IW MICR

THPUT

ARFAMETER

.
4
BE IN THE RAFGE OF *
K
N

& DUTPUT FRRAMETER--
EN A)
B RE S RV R T R CE R SR RES NP RS RV RES S SRR TR 12 8 F URY SEU RS ST SEL SRS SR RES WIS MRS N N G REY EU K R T SRS KR SRV L NS T NN KRN REEAEE SN CRR RS LN SFS LAY MRS S K% RS NI RYX VRXUPN R PA RS TPNNY

TRPUT FiGLE

LET WECTOR AL

TIME PERIQD TO B L

FNGLE TD THE (20

SCONYERT THE S THPLT FTFT D00

1

= ETRRTE HERE

RN
@ T ENTREY FOTNT T THE MICERDeE

iR B DT PERFORMS THE CORLIC COmMELT NG

LIMIT WECTOR

FINT
FINT 2

- 115

FINT S
FIMTE
ANTY
FINT .1

FRIIM PR 0R R SR A

Lt

ENT L
g
PPI0R TIFE. TN AND D0 WARELDES OF THE TR ARNGLE

"

SOUITRUT E

) L RE RS THE TRFLT RRGLE Y L THER RE

EOFOR CLOTE THTERRURT
:

e o A o 6 R S

4

£
s
e LM #
4
N

W TG T M35
JHF NP
IGEIN=1412
TART HOP
GET THE LNIT
RERD

+#ETORE 1T IN
INCIF

iR ONOF STRET

NOP ROF
DF MBI FEMDRY
FHI F

THE

TAE
COFUNITION TH REG 36

T ENL

HGET TR

DRE ¥ N

(S
NIF?

TR WOF LD 54

I
NOF
NOF
JrP

] w

HOF B

SHIFT E L COUNTER.
#THEMW STORE TH

#SET COUNTER

PEGREE G0 T ENZ

E«IT BETH PRSI NOF NOF

FEND

116

117

SR N TR TR SR SR R S
1BLY #

LEMENTED

“ROM —3E DEGREE TD 29 DEGREE
THE THFLT FNGLE . +
S A o R b R N s o e R b R

INFUT PRRAMETER
OUTEUT PARAME
i o R Tk

e DL

HOF
START LDA HD)
’ STH OLDT
LR
CLE
R
CAY
STH COUNT
1B, T
FIHG

ENTL
i FIMG

wQLTRUT SOWALLES OF THE THFUT ARGLE

T INCRE THFUT ANGLE BEY B L THEN REFPEAT THE FRO

D LT IHTE

’ 118

o 1 o S R o o S o 1 N 1o R o T o o s o s s s e b s o o o e o sk s A s o s A e e e A e s b et
#« TRSE 4 TEST FPROGERM--FOLYNOMIAL METHOD IMPFLEMENTED IN MICROFPROGRAM®
* PROGRAM . EN
IMFUT FRRAMETER--AN ANGLE RAMGEDR FROM 30 DEGREE TO 58 DEGREE 4
DUTFUT PARAMETER--THE ZINE WARLUE OF THE INFUT RMGLE *
R R R A b R b b b R s e b s b b s e e o o b o R R R e e o R o b o b e b o e e s
FSHME. R B L. T :
SET UF THE CLOCK IWMTEREUFT WECTOR ADDREESS

ORG 14E

JEE TIME

OFG 200

5TF BB

CLA

DTH 14k

NOF
STRRET LA HE

STHOLCT

CLF

CLE

TR

LAY

STA COUNT

ST 148 C
HENTRY POINT DOF THE MICEDGREAM
ENTL [I e b W
FHIG DT &
[DT
noT
ooT
I QT 8
ATHE [TITROFE FRM RETURNT THE CONTEDOL TO THISZ POINT

sz LCT
JEP ERTL
L LdE
AT FUT ESECLET 0

TIME. BIM AND CO5 WALUES OF THE INPLT FINGLE

FIDR ARG
STH ARG
JrE STRRET
WICE ROUTINE FOR CLOZE ITNTERRELDPT
MR
ST A4k O
TS2 DO
I TIME. X
AN DoT o
LCT T

119

w P CROPRDGRRA - T [HF THpiL e

[TS DO T KR B XN M RO K0 R0 H0 PN K30 URY 3 K 0 oY RS N B A S o

ESYHTE
FORTGIN=1

RERD NOF P
#STORE THE YALLE
NOF M
MIDF RO
FSTORE THE WAL

PMM R
1 TRE
HETORE THE

MIDF MHIOF
ARTORE THE WALUE
B "

L RE THIE
AUFERLITE
=
RIS
I

FTOMFIATE

#COMPUTE

AU LITE

CF WOF
©oIhN MAT

blF:

: PHI R
RETURN T MR

ORISR
FIG O THE PRILTERLICRTIOM OF THD DNTEGER:S

INCHF

PR

M

i

M

M

JHP

M

. MO BT
FEME :

'

el

AR S 3
S TNT TR

R IR TR MR AR ER R SR A R O N R R
DUt [

120

121

B DL R RE RS KBRS IE% KRN KRN RRX R KEX KR RS RE REE R K KIS R PES R0 BRI BH REESE U2 GRS B R B

T

0T s
HIDF
HIOF
F_\

S
VITA
Peihsung Thomas Hu
Candidate for the Degree of

Master” of Science

Thesis: THE CORDIC ALGORITHM IMPLEMENTATION FOR TRIGONOMETRIC
FUNCTION EVALUATION IN HP21MX

Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in Taipei, Taiwan, Republic of China,
July 2, 1950, the son of Mr. and Mrs. B. Y. Hu.

Education: Graduated from Chengko High School, Taipei, Taiwan,
Republic of China, in June, 1968; received Bachelor of
Science degree in Electrical Engineering from Chiao Tung
University, HsinoHu, Taiwan, Republic of China, in June,1972;
completed requirements for the Master of Science degree
at Oklahoma State University in May, 1978.

Professional Experience: Graduate teaching assistant, Department
of Computing and Information Sciences, Oklahoma State
University, 1975-1976; Software specialist, Atkins & Merril
Training Equipment Company, 1976-present.

