THE CORDIC ALGORITHM IMPLEMENTATION FOR

 TRIGONOMETRIC FUNCTION EVALUATIONIN HP21MX

By
PEIHSUNG THOMAS HU
Bachelor of Science

National Chiao Tung University

Hsinchu, Taiwan

1972

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
 for the Degree of MASTER OF SCIENCE
 May, 1978

$$
\begin{aligned}
& \text { Sheoin } \\
& 1978 \\
& H 8740 \\
& \operatorname{cop} .2
\end{aligned}
$$

THE CORDIC ALGORITHM IMPLEMENTATION FOR

 TRIGONOMETRIC FUNCTION EVALUATIONIN HP 21MX

Thesis Approved:

PREFACE

This paper describes the Cordic algorithm and its implementation for the evaluation of the sine function in a HP21MX computer. A polynomial method is also described and implemented in the HP21MX computer for the purpose of comparing the result with the the Cordic algorithm. The HP21MX microprogramming. is also applied in this experiment to increase the progranming efficiency.

I would like to express my gratitude to my major advisers, Dr. Edward Shreve and Dr. G.E. Hedrick for their advice : and guidance during this project. Also, appreciation is expressed to my other committee member, Dr. T.E. Bailey for his invaluable assistance in the preparation of the final manuscript. Thanks are also extended to Mrs. Pam Haught for her typing this paper and her invaluable help in preparing the final copy of this paper.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. STANDARD TECHNIQUE FOR THE EVALUATION OF TRIGONOMETRIC FUNCTIONS 3
III. THE CORDIC ALGORITHM 7
Introduction 7
Functional Description 7
Representation of Angles in Cordic 17
Sine and Cosine Algorithm 20
IV. COMPUTER IMPLEMENTATION AND PROGRAMMING RESULTS 22
System Features 22
Hardware Registers 23
Display Register 24
Interrupt System 25
APL Description of HP21MX 25
The Processor 27
Instruction Fetch 27
Instruction Decoding 29
Instruction Execution 43
Interrupt Service 43
Input/output Interrupts 47
Memory Access Routine 47
Address Computation Routine 48
Instruction Execution Routine 49
Microprogramming 60
Conventional Control Section 60
Microprogrammed Control Section 61
The Micro-programmable Computer 62
Control Section 62
The Control Processor 64
Main Memory 65
Input and Output. 66
Arithmetic and Logic Section 66
Implementation of a Polynomial Algorithm in the HP21MX Computer 68
Chapter Page
Implementation of the Cordic Algorithm on the on the HP21MX Computer 69
Calculation of Execution Time 75
V. OTHER USES OF CORDIC 88
Arctangent Algorithm 88
Functional Description 88
Decimal to Binary Conversions in Cordic 89
VI. SUMMARY AND CONCLUSIONS 98
A SELECTED BIBLOIGRAPHY 106
APPENDIXES 108
APPENDIX A - FUNCTIONAL BLOCK DIAGRAM 108
APPENDIX B - PROGRAM LISTINGS 110
Table Page
I. Typical Rotation Computing Sequence 18
II. Typical Vectoring Computing Sequence 19
III. Interrupt Assignments 26
IV. "PROC" Program Segments 27
V. Decoding Vectors 30
VI. Instruction Classes 31
VII. The Navigation Matrix 32
VIII. Polynomial Method Implementation Results (Assembly Language) of Evaluating the Sine Function 70
IX. Polynomial Method Implementation Results (Microprogram) of Evaluating the Sine Function 72
X. Cordic Algorithm Implementation Results (Assembly Language) of Evaluating the Sine Function 82
XI. Cordic Algorithm Implementation Results (Microprogram) of Evaluating the Sine Function 85
XII. The Conventional Decimal-To-Binary Conversion 91
XIII. Decimal-To-Binary Conversions in Cordic 94
XIV. Generation of \pm Code for 45° 96
XV. The Comparison Between the Cordic Algorithm Implementation Result and the Standard Sine Value 99
XVI. The Comparison Between the Polynomial Method Implementation Result and the Standard Sine Value 102

LIST OF FIGURES

Figure Page

1. Typical Computing Step 10
2. Cordic Arithmetic Unit 14
3. Representation of Angles in Cordic 21
4. The Processor System Program 28
5. Input/Output Interrupt Generator 43
6. Instruction Decoding Matrices 44
7. Memory Access Operation 48
8. Address Computation Operation 49
9. EXEC Routine 50
10. A Microprogram Implementation of One Macroprogram Instruction 63
11. Cordic Algorithm 76
12. The AHPL Description for the Cordic Algorithm in Implementation in HP21MX Microprogram 79
13. Implementation of \pm Code to Binary Conversion 97

ADC
EXEC
IOIG
MAC

PROC

RUN

A

B

C

D

E

F

M

N

I

0
P

Q

U

16

16

16

1

56
$2^{15}, 16$
167, 9

16

1

16

12

12

16

Address computation defined operation
Instruction execution defined operation
I/O interrupt generator system program
Memory access defined operation

Processor unit system program

Run indicator

Accumulator (See Chapter IV)

Accumulator extension
Local vector

Decoding matrices
Extend register
I/O device flag
Main memory
Navigation matrix (See Figure 4)
Instruction register
Overflow register
Program counter
Mask vector
OP code vector

Current interrupt priority level

T-bus

v	56	I/O device control bit
X	16	X-register
Y	16	Y-register
Z	56,8	I/O device data buffer
a, b, m, t, i, j		Local vectors
d	2	Local vectors
e	4	Prögràm exceptions
${ }_{0}$		Power fail
e_{1}		Memory parity
e_{2}		Dual-channel port controller 1
e_{3}		Dual-channel port controller 2
g	16	Local vectors
h	2	Interrupt holder
h_{0}		Exceptions
h_{1}		I/O interrupt
1	16	Local Vector
n	9	Navigation vector
$\mathrm{n}_{0}, \mathrm{n}_{1}, \mathrm{n}_{3}$		Branch control in EXEC
n_{2}		Entry line in EXEC
n_{4}		Instruction class
q	4	Memory access quene
r	4	Memory access request
v	9	Temporary navigation vector

I/O device control bit
X-register
Y-register
I/O device data buffer
Local vectors
Local vectors
Prögràm exceptions
Power fail
Memory parity
Dual-channel port controller 1
Dual-channel port controller 2
Local vectors
Interrupt holder
Exceptions
I/O interrupt
Local Vector
Navigation vector
Branch control in EXEC
Entry line in EXEC
Instruction class
Memory access quene
Memory access request
Temporary navigation vector

CHAPTER I

INTRODUCTION

Abstract

In the past, the transcendental functions were computed by mathematicians using many different algorithms. Power series, polynominal expansions, continued fractions, and Chebyshev polynomials have all been used. Since the advent of large scale computing in the twentieth century, many mathematical functions including trancendental functions have been calculated by computers. As a general rule, multiplication and division are very time-consuming functions compared to addition and subtraction implemented in a computer. A review of the conventional methods which are used for solving transcendental functions, such as power series, polynomial expansions, continued fractions, and Chebyshev polynomials, shows that a number of multiplications and divisions are required that results in inefficiency of implementation.

Therefore, much effort has been made to search for alternate ways which can best suit the requirements of speed and programming efficiency for real-time applications.

Henry Briggs (17) first developed the concept of pseudo-division and pseudo-multiplication in 1924. He used this method to generate a table of logarithms.

In 1959, J. E. Volder (9) described a Coordinate Rotation Digital Computer (Cordic) for the calculation of trigonometric functions, multiplication, division, and conversion between binary and mixed radix

number systems. In the same year, Dagget (10) discussed the use of the Cordic computer for decimal-binary conversion. In 1962, Meggitt (11) developed a pseudo-division and pseudo-multiplication processor using the Cordic technique, while in 1971 J. S. Walther (12) developed a technique for calculating elementary functions using Cordic. David S. Cochran (14) in 1972 implemented the Cordic algorithm in HP 35 calculators, and Despain (13) in 1974 developed a technique for Fourier transformation using the Cordic algorithm. Generally speaking, the trigonometric functions are calculated by polynomial expansions, power series, or Chebyshev polynomials in most current general purpose computers.

The major goal of this thesis is to implement the Cordic algorithm in a general purpose computer for evaluation of trigonometric functions. The speed and accuracy of the results are observed and compared with those of conventional algorithms. Microprogramming has been used in this research to increase the program efficiency. The anticipated result is to determine the best way of evaluating the trigonometric functions, which can reduce the computer execution time to a minimum and give reasonable accuracy of the results.

Only the sine function is implemented as a part of this research.
The tasks are divided into four parts:

1. Implement the Cordic algorithm in an assembly coded program.
2. Implement the Cordic algorithm in a microprogram.
3. Implement one of the conventional methods in an assembly coded program.
4. Implement the same conventional method in a microprogram.

CHAPTER II

STANDARD TECHNIQUE FOR THE EVALUATION OF TRIGONOMETRIC FUNCTIONS

The evaluation of elementary functions for various values of their arguments is required to solve a number of mathematical problems. Because of this, the computation of values of elementary functions was an important factor in stimulating the development of mathematical analysis. Therefore, a great deal of effort has been made by many mathematicians in the past two centuries to find methods of evaluating these elementary functions. Power series have been and still are used for this purpose. Mercator used a power series for logarithms; Newton used it then for trigonometric and inverse trigonometric functions; and Euler used one for the exponential function. Iterative processes (e.g., Newton's method) were also applied for solving equations (3). Furthermore, in the eighteenth century, many mathematicians (Lambert, Euler, Lagrange, et al.) used continued fractions to represent elementary functions. In recent years the technique of expansions in orthogonal polynomials has been widely applied for computing elementary functions. The Chebyshev polynomials which give good convergence are widely used for this purpose too.

A11 those methods mentioned above are well documented and are described in many mathematics books; thus it is not necessary to explain them here. Power series for evaluating trigonometric functions are used
in this paper as a conventional method of evaluating trigonometric functions in order to compare them to evaluations using the Cordic algorithm. Therefore, for convenience, the power series method is described as follows:

Power Series

The elementary functions can be represented as power series in a number of ways. Consider the Taylor-Maclaurin Series for a given function $\mathrm{f}(\mathrm{x}):$

$$
\begin{equation*}
f(x)=\sum_{k=0}^{a} \frac{f^{(k)}(0)}{k!} x^{k} \tag{2.1}
\end{equation*}
$$

Truncating this at the nth term produces an nth-degree polynomial
$S_{n}(x)$ (a finite Taylor Series).

$$
\begin{equation*}
S_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \tag{2.2}
\end{equation*}
$$

The polynomial $S_{n}(x)$ has the following properties:

$$
\begin{equation*}
f(x)=S_{n}(x)+O\left(x^{n}\right) \tag{2.3}
\end{equation*}
$$

where $S_{n}(x)$ is the unique n th-degree polynomial of best approximation $P_{n}(x)$, for which

$$
\begin{equation*}
f(x)-P_{n}(x)=O\left(x^{n}\right) \tag{2.4}
\end{equation*}
$$

If $f(x)=\sin (x)$, then $\sin (x)$ can be represented in a power series as:

$$
\begin{equation*}
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2} k+1}{(2 k+1)!} \tag{2.5}
\end{equation*}
$$

$\operatorname{Cos}(x)$ can be represented in a power series as:

$$
\begin{equation*}
\cos (x)=\sum_{k=0}^{\infty}(-1) \frac{k x^{2 k}}{(2 k)!} \tag{2.6}
\end{equation*}
$$

In order to implement this algorithm in a computer for evaluation of trigonometric functions, the number of terms (i.e., constant k) required for specific accuracy is determined first.

To determine the constant k, the maximum accuracy of evaluation in the computer must be known first. The computer used in this research is an HP21MX, the memory word of which contains 16 bits. Although multiple precision could be achieved by using multiple words in arithmetic operations, single precision (single word) is still used in the Cordic algorithm and power series here for the sake of simplicity of programming.

Hastings (4) set up three equations by using power series to evaluate the sine function, which are as follows:

$$
\begin{align*}
\sin \frac{\pi}{2} x & =c_{1} x+c_{3} x^{3}+c_{5} x^{5} \tag{2.7}\\
c_{1} & =1.5706268 \\
c_{3} & =-0.6432392 \\
c_{5} & =0.0727102 \\
\sin \frac{\pi}{2} x & =c_{1} x+c_{3} x^{3}+c_{5} x^{5}+c_{7} x^{7} \tag{2.8}\\
c_{1} & =1.570794852 \\
c_{3} & =-0.645920978 \\
c_{5} & =0.079487663 \\
c_{7} & =-0.004362476 \\
\sin \frac{\pi}{2} x & =c_{1} x+c_{3} x^{3}+c_{5} x^{5}+c_{7} x^{7}+c_{9} x^{9} \tag{2.9}\\
c_{1} & =1.57079631847 \\
c_{3} & =-0.64596371100 \\
c_{5} & =0.07968967928
\end{align*}
$$

$$
\begin{aligned}
& c_{7}=-0.00467376557 \\
& c_{9}=0.00015148419
\end{aligned}
$$

$$
\text { where }-1 \leq x \leq 1
$$

To determine which equation will be used in this paper, the maximum value of the error of each equation is checked. The maximum value of the error is 0.0001 for equation (2.7), 0.000001 for equation (2.8), and 0.000000005 for equation (2.9). For a 16-bit computer word, the maximum accuracy that can be represented is 5 decimal digits.

The accuracy of equations (2.8) and (2.9) is more than 5 decimal digits. If they are used to evaluate sine functions in a 16-bit word machine, they will consume a lot more execution time than equation (2.7) with just a slightly more accurate result. Therefore, in order to get the best execution time and accuracy, equation (2.7) is used in this research.

CHAPTER III

THE CORDIC ALGORITHM

INTRODUCTION

Cordic is a special purpose, binary computer which contains a unique arithmetic unit which differs from the arithmetic unit of conventional computers. Although Cordic is a single processor computer, its arithmetic unit is composed of three shift registers and three adder-subtractors which are operated in parallel instead of sequentially. Each programmed operation is accomplished in a fixed number of steps. Each step involves modifying three numbers which reside in three arithmetic unit registers by adding or subtracting a constant for each one. Setting of all three adder-subtractors is controlled by the sign of the quantity in one of the arithmetic unit registers. In this way, calculations related to the addition or subtraction of constants can be executed simultaneously.

Functional Description

There are two computing modes in Cordic for the trigonometric operations: ROTATION and VECTORING. In the ROTATION mode the coordinate components of a vector and an angle of rotation are given and the coordinate components of the original vector, after rotation through the given angle, are computed. In the VECTORING mode, the coordinate
components of a vector are given and the magnitude and angular argument of the original vector are computed. The basic computing technique used in both the ROTATION and VECTORING modes in Cordic is a step-bystep sequence of pseudo-rotations which result in an overall rotation through a given angle (ROTATION) or result in a final angular argument of zero (VECTORING).

It is necessary that the angular increments of rotation be computed in decreasing order (9). In order to evaluate the sine and cosine functions for the angles from -180° to 180°, the magnitude actually chosen for the first increment should be 90°. The expression for a set of coordinate components, X_{1} and Y_{1}, rotated through plus or minus 90° is simply

$$
\begin{align*}
& Y_{2}= \pm X_{1}=R_{1} \sin \left(\theta_{1} \pm 90^{\circ}\right) \tag{3.1}\\
& X_{2}=\mp Y_{1}=R_{1} \cos \left(\theta \pm 90^{\circ}\right) \tag{3.2}
\end{align*}
$$

Where R_{1} and θ, are the magnitude and angle of the vector $\left(X_{1}, Y_{1}\right)$ and X_{2} and Y_{2} are the coordinates of vector $\left(X_{1}, Y_{1}\right)$ after rotating 90°.

The first step is unique in that a perfect rotation step is performed. The remaining computing steps can be clarified by examining relationships involved in a typical rotation step which are shown in Figure 1. Consider two given coordinate components, Y_{i} and X_{i}, in the plane coordinate system shown. In this discussion, the quantity i is equal to the number of the particular step under consideration. The components Y_{i} and X_{i} are associated with the ith step and describe a vector of magnitude R_{i} at an angle θ_{i} with respect to the origin according to the relationships.

$$
\begin{align*}
& Y_{i}=R_{i} \sin \theta \tag{3.3}\\
& X_{i}=R_{i} \cos \theta \tag{3.4}
\end{align*}
$$

In Figure 1 the angle α_{i} is the magnitude of rotation associated with each computing step. The general expression for α_{i} where $i>1$ is x

$$
\begin{equation*}
\alpha_{i}=\tan ^{-1} 2^{-(i-2)} \tag{3.5}
\end{equation*}
$$

The reason for choosing this particular magnitude of α_{i} is that a rotation of coordinate components through $\pm \alpha_{i}$ may be accomplished by the simple process of shifting and adding. The two choices of positive or negative rotation are shown in Figure 1. The general expressions for the rotated components are

$$
\begin{align*}
Y_{i+1} & =\sqrt{1+2^{-2(i-2)}} R_{i} \sin \left(\theta_{i} \pm \alpha_{i}\right) \\
& =Y_{i} \pm 2^{-(i-2)} X_{i} \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
X_{i+1} & =\sqrt{1+2^{-2(i-2)}} R_{i} \cos \left(\theta_{i} \pm \alpha_{i}\right) \\
& =X_{i} \overline{+} 2^{-(i-2) Y_{i}} \tag{3.7}
\end{align*}
$$

Note that the right-hand terms of (3.6) and (3.7) may be obtained by two simultaneous shift-and-add operations, if the angular rotation magnitude is restricated to (3.5). This is the fundamental relationship upon which the Cordic computing technique is based.

The computing action of adding (or subtracting) a shifted value

Figure 1. Typical computing step
of X_{i} to Y_{i} to obtain Y_{i+1}, while simultaneously subtracting (or adding) a shifted value of Y_{i} to X_{i} to obtain X_{i+1} is termed "cross addition". The terms under the radical in (3.6) and (3.7) indicate the increase in magnitude when $i>2$; either of the two choices of direction produces the same change in magnitude. If the rotation is always through either a positive or negative α_{i} at each step, then the increase in magnitude may be considered as a constant. This requirement does not allow the choice of zero rotation at any step. In order to identify the choice in a particular step, the \pm notation may be represented by the binary operator v_{i}, where v_{i} can be either +1 or -1 . This substition produces the general expressions

$$
\begin{equation*}
Y_{i+1}=\sqrt{1+2^{-2(i-2)}} R_{i} \sin \left(\theta_{i}+v_{i} \alpha_{i}\right) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{i+1}=\sqrt{1+2^{-2(i-2)}} \quad R_{i} \cos \left(\theta_{i}+v_{i} \alpha_{i}\right) \tag{3.9}
\end{equation*}
$$

where $v_{i}=+1$ or -1

Similarly, after the completion of the rotation step in which the $i+1$ terms are obtained, the $i+2$ terms may be computed from these terms with the results

$$
\begin{equation*}
Y_{i+2}=\sqrt{1+2^{-2(i-1)}} \sqrt{1+2^{-2(i-2)}} R_{i} \sin \left(\theta_{i}+v_{i} \alpha_{i}+v_{i+1}^{\alpha_{i+1}}\right) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i+2}=\sqrt{1+2^{-2(i-1)}} \sqrt{1+2^{-2(i-2)}} R_{i} \cos \left(\theta_{i}+v_{i} \alpha_{i}+v_{i+1} \alpha_{i+1}\right) \tag{3.11}
\end{equation*}
$$

Likewise, these rotation steps can be continued through any
finite, pre-determined number of steps. Consider the initial coordinate components Y_{1} and X_{1} where

$$
\begin{equation*}
Y_{1}=R_{1} \sin \theta \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{1}=R_{1} \cos \theta \tag{3.13}
\end{equation*}
$$

Suppose the first rotation step is $\pm 90^{\circ}$ and the number of steps is determined as n. The expressions for the final coordinate components will be

$$
\begin{align*}
Y_{n+1}= & \left.\sqrt{1+2^{-0}} \sqrt{1+2^{-2}} \ldots \sqrt{1+2^{-2(n-2)}}\right) R_{1} \sin \left(\theta_{1}+v_{1} \alpha_{1}+\right. \\
& \left.v_{2} \alpha_{2}+\ldots+v_{n} \alpha_{n}\right) \tag{3.14}
\end{align*}
$$

and

$$
\begin{align*}
x_{n+1}= & \left(\sqrt{1+2^{-0}} \sqrt{1+2^{-2}} \ldots \sqrt{1+^{-2(n-2)}}\right) R_{1} \cos \left(\theta_{1}+v_{1} \alpha_{1}+\right. \\
& \left.v_{2} \alpha_{2}+\ldots+v_{n} \alpha_{n}\right) \tag{3.15}
\end{align*}
$$

The increase in magnitude of the components for a particular value n is a constant and is represented by k. The value selected for n is a function of the desired computing accuracy and can be a constant for a particular computer. For example,

$$
\text { if } \begin{aligned}
\mathrm{n} & =24, \\
\mathrm{k} & =1.646760255
\end{aligned}
$$

The basic components required to perform the cross-addition are shown
in Figure 2. It has not yet been shown how the prescribed sequence of rotation steps can be controlled to effect the desired over-all rotation. By examination of (3.14) and (3.15), the rotation of a set of coordinate components Y_{1} and X_{1} through a given angle can be expressed as

$$
\begin{equation*}
Y_{n+1}=K R_{1} \sin \left(\theta_{1}+\lambda\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{n+1}=K_{1} \operatorname{Cos}\left(\theta_{1}+\lambda\right) \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=v_{1} \alpha_{1}+v_{2} \alpha_{2}+\ldots+v_{n} \alpha_{n} \tag{3.18}
\end{equation*}
$$

In the VECTORING mode,

$$
\begin{equation*}
-\theta_{1}=\lambda, \text { ie, }-\theta_{1}=v_{1} \alpha_{1}+v_{2} \alpha_{2}+\ldots+v_{n} \alpha_{n} \tag{3.19}
\end{equation*}
$$

The sequence of (3.18) and (3.19) form a special radix representation equivalent to the desired angle, λ or θ, where

$$
\begin{align*}
& \alpha_{1}=90^{\circ} \tag{3.20}\\
& \alpha_{2}=\tan ^{-1} 2^{-0}=45^{\circ} \tag{3.21}\\
& \alpha_{3}=\tan ^{-1} 2^{-1}=26.5^{\circ} \tag{3.22}\\
& \alpha_{i}=\tan ^{-1} 2^{-(i-2)} \tag{3.23}
\end{align*}
$$

The α terms are referred to as ATR (Arctangent Radix) constants and are precomputed and stored in the computer. The v terms are referred to as ATR digits and are determined during each operation.

In the Cordic computer, the ATR digits are determined sequentially, most significant digit first, and are used to control the conditional

Figure 2. Cordic Arithmetic Unit
action of the adder-subtractors in the arithmetic unit. The following paragraphs contain a description of the manner in which the ATR code representation, $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ can be determined for any given angle, λ or θ.

First, for any angle λ or θ, there must be at least one set of values of v for the operators that will satisfy (3.18) and (3.19). Second, a simple technique must be available for determing the ATR code digits that satisfy these equations. The following relationships are necessary and sufficient for any sequence of radix constants to meet the above requirements (3.9).

$$
\begin{array}{r}
\mid \lambda \text { or } \theta \mid \leq \alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots+\alpha_{n}+\alpha_{n} \\
\alpha_{i} \leq \alpha_{i+1}+\alpha_{i+2}+\ldots+\alpha_{n}+\alpha_{n} \tag{3.25}
\end{array}
$$

For the satisfaction of (3.20) through (3.23), it is required that or θ be constrained by

$$
\begin{equation*}
-180^{\circ} \leq \lambda \text { or } \theta \leq+180^{\circ} \tag{3.26}
\end{equation*}
$$

Equation (3.26) imposes no special consideration if the two's complement notation is used. By employing an additional register and addersubtractor (identified in Figure 2 as the angle register) the relationship of (3.16) (ROTATION-mode) can be instrumented by 1) sensing the sign of the angle of rotation (or remainder if $i>1$) and 2) either subtracting or adding to the angle the ATR constant corresponding to the particular step. In each step, the relationship instrumented is

$$
\begin{equation*}
\left|\lambda_{i+1}\right|=\left|\left|\lambda_{i}\right|-\alpha_{i}\right| \tag{3.27}
\end{equation*}
$$

Equation (3.24) is equivalent to

$$
\begin{equation*}
-\alpha_{1} \leq|\lambda|-\alpha_{1} \leq \alpha_{2}+\alpha_{3}+\ldots+\alpha_{n}+\alpha_{n} \tag{3.28}
\end{equation*}
$$

Application of the relationships of (3.25) results in

$$
\begin{equation*}
|\lambda \quad| \equiv\left|\left|\lambda_{1}\right|-\alpha_{1}\right| \leq \alpha_{2}+\alpha_{3}+\ldots+\alpha_{n}+\alpha_{n} \tag{3.29}
\end{equation*}
$$

Continuation of this sequence through α_{n} results in

$$
\begin{equation*}
\left|\lambda_{n+1}\right| \leq \alpha_{n} \tag{3.30}
\end{equation*}
$$

Equation (3.30) can be used to prove that the remainder in the angle register converges to zero in the ROTATION mode (9).

The sequence of operation signs used to null λ to zero is the negative of the equivalent ATR code for the original angle. More simply, the ATR code digit of each step is equal to the sign of the quantity in the angle register before each step. Therefore, simultaneously with each step in the angle register, the ATR code digit may be used to control the cross-addition step in the Y and X registers (shown in Figure 2) to effect a rotation of components through an equal angular increment.

The proof of the convergence of the effective angular argument θ_{n+1} to zero, which is necessary in the VECTORING mode, may be obtained by replacing λ by θ. The sign of the angle θ_{i} is obtained by sensing the sign of Y_{i}. The sequence of signs of Y_{i} is the negative of the ATR code for the effective rotation performed on the components Y_{1} and X_{1}. During each ćross-addition operation in the Y and X register, the corresponding ATR constant can be conditionally added or subtracted, depending on v_{i}, to an accumulating sum in the angle register so that,
at the end of the computing sequence, when $\theta_{n+1}=0$, the quantity in the angle register will be equal to the original angular argument θ_{1} of the coordinate components Y_{1} and X_{1}.

The step-by-step results of a typical rotation computing sequence are shown in Table I. The two's complement notation is used for all quantities, and shift quantities are truncated without round-off. The step-by-step results of a typical rotation computing sequence are shown in Table I.

Representation of Angles in Cordic

In Cordic, angles are represented as a binary fraction of a half revolution (II) with two's complements for negative angles, as shown in Figure 3. Since a one to the left of the binary point is used to represent a negative quantity in the two's complement system, angles from $+180^{\circ}$ to slightly less than $+360^{\circ}$ are interpreted internally as negative angles measured clockwise from 0°. For example, 45° in Cordic is

$$
\frac{\pi / 4}{\pi}=\frac{1}{4}=(0.25)_{10}=(0.01)_{2}
$$

For 90° the Cordic representation is

$$
\begin{gathered}
90^{\circ}=12 \\
\frac{\Pi / 2}{\pi}=\frac{1}{2}=(0.5)_{10}=(0.1)_{2}
\end{gathered}
$$

For 270° the Cordic representation is

$$
270^{\circ}=\frac{3 \Pi / 2}{\Pi}=(1.5)_{10}=(1.1)_{2}
$$

TABLE I

TYPICAL ROTATION COMPUTING SEQUENCE

TABLE II
TYPICAL VECTORING COMPUTING SEQUENCE

Y Register	X Register	Angle Register
$Y_{1}=0.0101110$	$\underline{1.1000101}=\mathrm{x}_{1}$	0.0000000
- 1.1000101	+ 0.0101110	$+0.100000 \tan ^{-1} \infty$
0.0111011	0.0101110	0.1000000
- 0.0101110	+ 0.0111011	$+0.0100000 \tan ^{-1} 1$
0.0001101	0.1101001	$0.1100000-1-1$
- 0.0110100	+ 0.0000110	$+0.0010010 \tan ^{-1} 2^{-1}$
1.1011001	0.1101111	
+ 0.0011011	- 1.1110110	$-0.0001001 \tan ^{-1} 2^{-2}$
1.1110100	0.1111001	
$+0.0001111$	$\text { - } 1.1111110$	$-0.0000101 \tan ^{-1} 2^{-3}$
0.0000011	0.1111011	$0.1100100-1-4$
- 0.0000111	+0.0000111	$+0.0000010 \tan ^{-1} 2^{-4}$
1.1111111	$0.1111100=K_{1}$	$0.1100101=0$

Sine and Cosine Algorithm

As mentioned above, there are two computing modes for Cordic, ROTATION and VECTORING. Evaluating sine or cosine functions makes use of the ROTATION mode by setting the original vector on the X-axis and rotating the vector through an angular argument whose sine or cosine is computed.

Functional Description

In order to use the ROTATION computing sequence (Table I) of Cordic to evaluate sine and cosine functions, several initial conditions and values are set up:

1) The Y-register is initialized with 0 .
2) The X-register is initialized with a unit vector.
3) The A-register is initialized with the angle which is going to be computed.
4) A sign digit of 0 in the A-register establishes a v_{i} of +1 , which causes the top adder - subtractor to add, the middle adder-subtractor to subtract, and the bottom adder - subtractor to subtract. A sign digit of 1 has the opposite effect.
5) The number of steps (iterations) is initialized depending on the desired accuracy.

The Cordic ROTATION computing sequence is started as shown in Table 1.

The final result is in the Y-register if the function evaluated is sine and in the X-register if the function evaluated is cosine after the final computation step.

Figure 3. Representation of Angles in Cordic.

Abstract

The four tasks described in Chapter I are performed and the programming results are obtained in this chapter.

The description of the HP21MX computer which is used to aid this research is given below.

System Features

The HP21MX computer is a powerful user-microprogrammable minicomputer with 178 micro-instructions and 4 K words of control space. Each word is 24 bits long. It has 128 standard instructions, 80 of which emulate the HP 2100 series computer; 42 of which are new instructions for indexing, byte and bit manipulation, byte and word moves, and byte string scanning; and 6 of which are single-precision floating point instructions. There are four general purpose registers, two of which may be used as index registers. It is a fully microprogrammed processor, including all arithmetic functions, input/output, and operator panel control. Writable Control Store (WCS) is optional.

The read-only memory (ROM) modules in which microprograms are stored are referred to collectively as control store. Standard control consists of 1,024 directly addressable locations configured into four modules of 256 location each. Each control store location accommodates
one micro-instruction, which in turn consists of a 24 -bit word encompassing six micro-orders. The control store address space of each processor is 4,096 words.

Microprograms in standard control store for executing the various machine functions are divided into three groups:

Base instruction set (modules 0 and 1)
Floating point instructions (module 14)
Extended instruction group (module 15)
Unused modules of control store are available for user-supplied microprograms. Microinstructions in control store are 24 bits long; whereas, machine language instructions residing in main memory are 16 bits long. In addition, microinstructions have access to many internal registers and logic functions that machine language instructions cannot use.

The Writable Control Store (WCS) option provides a read-write control store module which can be used for the development and execution of user-supplied microprograms. Microprograms in WCS are executed at the same speed as those in the read-only control store.

Hardware Registers

A 16-bit accumulator which holds the results of arithmetic and logical operations performed by programmed instructions.

B-register
Serves the same purpose as the A-register, but is independent
from it.

M-register

A 16-bit register used to hold the memory address which is currently being accessed by the CPU.

T-register
A 16-bit register used to hold the data which are stored into or retrieved from memory.

P-register

Program counter, 16 bits long, pointing to next instruction to be fetched from memory.

S-register
A 16 -bit utility register. In the halt or run mode, it can be loaded via the display register.

Extend register
A one-bit register used to link the A- and B-registers by rotation instructions or to indicate a carry from the most significant bit (bit 15) of the A- or B-register by an add instruction or increment instruction.

Overflow Register

A one-bit register used to indicate that an add instruction, divide instruction, or an increment instruction has caused the Aregister or B-register to exceed the maximum positive or negative number that can be contained in these registers.

Displav register
A 16 -bit register included in the front panel and used to display and modify the contents of the six 16-bit working registers when the computer is in the halt mode. X- and Y-registers

Two 16 -bit registers serving as indexing registers which are accessed through the use of 30 index register instructions and 2 jump instructions.
S_{1} to S_{12} scratch pad registers
Twelve registers (each 16 bits long) used to temporarily store data by a microprogram and cannot be accessed by a macroprogram. ${ }^{*}$

Interrupt System

The vectored priority interrupt system has up to 60 distinct interrupt levels, each of which has a unique priority assignment. Each interrupt level is associated with a numerically corresponding interrupt location in memory.

Of the 60 interrupt levels, the first two are reserved for hardware faults (power failure and parity error); the next two are reserved for the Dual-Channel port controller completion interrupts; and the reamining levels are available for $I / 0$ device channels. Table III lists the interrupt levels in priority order for the HP 2108 processor of the 21 MX.

APL Description of HP21MX

In the APL description of the HP21MX, the computer svstem is described as seen bv a programmer. and the description is independent of anv particular hardware implementation. All those instructions which are not connected with this research are not included in this description. Iverson (2) gives a complete definition of the notation used. The description is based on the HP21MX Computer Series Reference Manual (5) and consists of a set of programs and tables.

[^0]TABLE III

INTERRUPT ASSIGNMENTS

Channel	Interrupt Location	Assignments
(Octal)		
04	00004	Power Fail Interrupt
05	00005	Memory Parity/Protect Interrupt
06	00006	DCPC Channe1 1 Completion Interrupt
07	00007	DCPC Channe1 2 Completion Interrupt
10	00010	$1 / 0$ Device (highest priority)
$11-20$	$00011-00020$	$1 / 0$ Device (Mainframe)
$21-42$	$00021-00042$	$1 / 0$ Device (Extender No. 1)
$43-64$	$00043-00064$	$1 / 0$ Device (Extender No. 2)

The programs are either system programs or defined operations. All programs operate concurrently and continuously, with one line active in each program. The defined operation program operates only when invoked by another program. In the description presented, PROC and IOIG are system programs, whereas $A D C, E X E C$, and MAC are defined operations.

The PROC program, Figure 4, describes the sequencing and execution of instructions and the servicing of interrupts. The program segments and their functions are summarized in Table IV.

TABLE IV
"PROC" PROGRAM SEGMENTS

Lines	Function
$1-4$	Instruction fetch
$5-14$	Instruction decoding
$15-26$	Instruction execution
$27-30$	Trap interrupt service

Instruction Fetch

The first step in program execution is to fetch the instruction from memory. In order to prepare for instruction fetch, the exceptions vector is initialized to zero (line 1). The 16-bit instruction is fetched from memory at the address given by the program counter, and placed in the instruction register (line 2). The program counter is incremented by 2 (line 3), and in case of any exceptions during instruction fetch, control branches to line 27. Exceptions during fetch may be due to errors in parity check.

Figure 4. The Processor System Program

Instruction Decoding

To determine the operation specified by the instruction, the instruction is decoded next. Because the operation code of an instruction in this machine may be varied from 4 bits to 16 bits and several microinstructions may be involved in a single instruction word for some type of instructions, the decoding task is very complicated and tedious. Many steps and two sets of decoding vectors named u and q are used in this APL description to aid the decoding task. These two sets of vectors ar listed in Table V. The instructions are divided into 13 classes. Table IV summarizes those 13 classes. The number involved in this table is used to identify the class of the instruction during the decoding.

The class identifiers j and i are initialized in line 5 and 6. The decoding vectors U_{i} and E_{i} are used in lines 7,8 , and 9 to identify the class of the current instruction. Once the class of the current instruction is found, it is stated in j (line 10).

The components of the selection vector k take on the values of the fields depending on j (lines 11 and 12). Lines 13 and 14 interpret the instruction by selecting a row N^{i} from the navigation matrix N (Table VII), to specify the vector n used in subsequent control of the instruction execution. The row of N selected, is determined by an element of a particular decoding matrix D, Figure 6 , specified by the instruction class j, and the selection vector k.

TABLE V

DECODING VECTORS

WMI	$\mathrm{U}_{1}=(1000101111111110)$	$\mathrm{Q}_{1}=(11111111111111110)$
JMPI	$\mathrm{U}_{2}=(1000101111110010)$	$\mathrm{Q}_{2}=(11111111111110111)$
BIMI	$\mathrm{U}_{3}=(1000101111111000)$	$\mathrm{Q}_{3}=(11111111111111000)$
BYMI	$\mathrm{U}_{4}=(1000101111110000)$	$\mathrm{Q}_{4}=(11111111111111000)$
DMI	$\mathrm{U}_{5}=(1000001111000000)$	$\mathrm{Q}_{5}=(1111011111100000)$
IRI	$\mathrm{U}_{6}=(1000001111100000)$	$\mathrm{Q}_{6}=(1111011111100000)$
FRI	$\mathrm{U}_{7}=(1000101000000000)$	$\mathrm{Q}_{7}=(1111010000000000)$
EAMR	$\mathrm{U}_{8}=(1000000000000000)$	$\mathrm{Q}_{8}=(1111010001110000)$
EAR	$\mathrm{U}_{9}=(100000000000000)$	$\mathrm{Q}_{9}=(1111010000000000)$
IOI	$\mathrm{U}_{10}=(000001000000000)$	$\mathrm{Q}_{10}=(1111010000000000)$
A/S	$\mathrm{U}_{11}=(000001000000000)$	$\mathrm{Q}_{11}=(1111010000000000)$
S/R	$\mathrm{U}_{12}=(000000000000000)$	$\mathrm{Q}_{12}=(1111010000000000)$

TABLE VI

INSTURCTION CLASSES

MRI: Memory reference instructions 0
WMI: Word manipulation instructions 1
MJPI: Jump instructions 2
BIMI: Bit manipulation instructions 3
BYMI: Byte manipulation instructions 4
DMI: Dynamic mapping system instructions 5
IRI: Index register instructions 6
FPI: Floating point instructions 7

EAMR: Extended arithmetic memory reference
instructions '8
EAR: Extended arithmetic register reference
instructions 9
IOI: Input/output instructions 10
A/S: Alter skip instructions 11
S/R: Shift/rotate instructions 12

TABLE VII
THE NAVIGATION MATRIX

${ }^{n} 0$	n_{1}	n_{2}	n_{3}	Class	Index	Mnemonic	Name Op Code
0	0	a_{0}	a_{3}	MRI	1	ADA	Add to A -1000 ------------
1	0	a_{0}	a_{3}	MRI	2	ADB	Add to B -1001 ----------
0	-	b_{0}	b_{5}	IRI	3	ADX	```Add memory to X ```
1	-	b_{0}	b_{5}	IRI	4	ADY	```Add memory to Y 10001011111101110```
0	-	e_{0}	e_{3}	S/R	5	ALF	Rotate A left four 0000001111-1-111
0	-	e_{0}	e_{4}	S/R	6	ALR	A left shift. clear sign 0000001100-1-100
0	-	e_{0}	e_{5}	S/R	7	ALS	A left shift 0000001000-1-000
0	0	a_{0}	${ }^{\text {a }} 2$	MRI	8	AND	"AND" to A -0010
0	-	e_{0}	e_{6}	S/R	9	ARS	A right shift 0000001001-1-001
-	-	c_{0}	-	EAR	10	ASL	Arithmetic shift left 100000000001
-	-	c_{1}	-	EAR	11	ASR	Arithmetic shift right 100000100001 ---
1	-	e_{0}	e_{3}	S/R	12	BLF	```Rotate B left four 0000101111-1-111```
1	-	e_{0}	e_{4}	S/R	13	BLR	B left shift, clear sign 0000101100-1-100

TABLE VII (Continued)

n_{0}	n_{1}	n_{2}	n_{3}	Class	Index	Mnemonic	Name Op Code
1	-	e_{0}	e_{5}	S/R	14	BLS	B left shift $0000101000-1-000$
1	-	e_{0}	e_{1}	S/R	15	BRS	Bright shift 0000101001-1-001
0	2	b_{4}	b_{8}	IRI	16	CAX \sim	Copy A to X 1000001111100001
0	3	b_{4}	b_{8}	IRT	17	CAY	Copy A to Y 1000001111111100
-	-	-	-	BIMI	18	CBS	Clear bits 1000101111111100
-	-	-	-	BYMI	19	CBT	Compare bytes 1000101111110110
1	2	b_{4}	b_{8}	IRI	20	CBX	Copy B to X 1000101111101001
1	3	b_{4}	b_{8}	IRI	21	CBY	Copy B to Y 1000101111101001
0	-	f_{0}	-	A/S	22	CCA	Clear and complement A 00000111
1	-	F_{0}	-	A/S	23	CCB	Clear and complement B 00001111
-	-	f_{7}	-	A/S	24	CCE	Clear and complement E 0000-1--11
0	-	f_{2}	-	A/S	25	CLA	Clear A 00000101
1	-	f_{2}	-	A/S	26	CLB	Clear B
-	0	d_{0}	d_{2}	IOI	27	CLC	```Clear control 100011-111```
-	-	f_{5}	-	A/S	28	CLE	Clear E 0000-1--01 -----
-	0	d_{0}	${ }_{6}$	IOI	29	CLF	Clear flag $1000-11001$-----
-	-	-	-	IOI	30	CLO	$\begin{aligned} & \text { Clear overflow } \\ & 1000011001000001 \end{aligned}$

TABLE VII (Continued)

${ }^{\mathrm{n}_{0}}$	n_{1}	n_{2}	n_{3}	Class	Index	Mnemonic	Name Op Code
1	-	B_{4}	B_{9}	IRI	47	DSY	$\begin{gathered} \text { Decrement } Y \text { and skip if zero } \\ 1000101111111001 \end{gathered}$
0	0	e_{0}	${ }^{\text {e }}$	S/R	48	ELA	Rotate E left with A 0000001110-1-110
1	0	${ }^{\text {e }}$	${ }^{\text {7 }}$	S/R	49	ELB	$\begin{aligned} & \text { Rotate E left with B } \\ & 0000101110-1-110 \end{aligned}$
0	1	e_{0}	${ }^{\text {e }} 7$	S/R	50	ERA	$\begin{aligned} & \text { Rotate E right with A } \\ & 0000001101-1-101 \end{aligned}$
1	0	${ }^{\mathrm{e}} 0$	${ }^{4}$	S/R	51	ERB	$\begin{aligned} & \text { Rotate E right with B } \\ & \quad 0000101101-1-1-1 \end{aligned}$
-	-	-	-	FPI	52	FAD	$\begin{aligned} & \text { Floating point add } \\ & 1000101000000000 \end{aligned}$
-	-	-	-	FPI	53	FDV	Floating point divide 1000101000110000
-	-	-	-	FPI	54	FIX	$\begin{aligned} & \text { Floating point to integer } \\ & 1000101001000000 \end{aligned}$
-	-	-	--	FPI	55	FLT	$\begin{aligned} & \text { Integer to } \text { floating point } \\ & \\ & 1000101001010000\end{aligned}$
-	-	-	-	FPI	56	FMP	$\begin{aligned} & \text { Floating point multiply } \\ & 1000101000100000 \end{aligned}$
-	-	-	-	FPI	57	FSB	Floating point subtract 1000101000010000
-	0	d_{0}	d_{11}	IOI	58	HLT	Halt 1000-1-000 --.--
-	-	-	-	A/S	59	INA	$\begin{aligned} & \text { Increment A } \\ & \quad 000001---1-1-1 \end{aligned}$
-	-	-	-	A/S	60	INR	```Increment B 000011--------1--```
1	0	${ }^{\text {a }} 0$	a_{2}	MRI	61.	IOR	$\begin{aligned} & \text { "Inclusive OR" to A } \\ & \text {-011--- } \end{aligned}$
0	0	b_{4}.	b_{9}	IRI	62	ISX	$\begin{array}{r} \text { Increment } X \text { and skip if zero } \\ 1000101111110000 \end{array}$
0	1	b_{4}	b_{9}	IRI	63	ISY	$\begin{array}{r} \text { Increment Y and skip if zero } \\ 1000101111111000 \end{array}$

TABLE VII (Continued)

TABLE VII (Continued)

n_{0}	n_{1}	n_{2}	${ }^{n} 3$	Class	Index	Mnemonic	Name Op Code
-	-	${ }^{\text {a }} 0$	${ }^{\text {a }} 9$	MPI	64	ISZ	Increment and skip if zero -0111
-	-	g_{0}	-	JMPI	65	JLY	Jump and load Y 1000101111110010
1	-	a_{1}	${ }^{a_{13}}$	MPI	66	JMP	
-	-	g_{4}	-	JMPI	67	JPY	Jump indexed by Y 10001011111111010
-	-	-	-	DMI	68	JRS	Jump and store status 1000101111001101
0	-	a_{1}	a_{12}	MPI	69	JSB	Jump to subroutine -0011-
0	0	b_{0}	b_{11}	IRI	70	LAX	Load A indexed by X 1000001111100010
0	1	b_{0}	b_{11}	IRI	71	LAY	Load A indexed by Y 1000001111101010
-	-	-	-	BYMI	72	LBT	Load byte 1000101111110011
1	0	b_{0}	b_{11}	IRI	73	LBX	Load B indexed by X 1000101111000010
1	1	b_{0}	b_{11}	IRI	74	LBY	Load B indexed by Y 1000101111101010
0	0	a_{1}	a_{7}	MRI	75	LDA	Load A -1100--.-.-.-.-.
1	0	a_{1}	a_{7}	MRI	76	LDB	
0	-	b_{0}	b_{12}	IRI	77	LDX	Load X from memory 10001011111100101
1	-	b_{0}	b_{12}	IRI	78	LDY	Load Y from memory 1000101111101101
-	-	-	-	DMI	79	LFA	*Load fence from A 1000001111010111
-	-	-	-	DMI	80	LFB	*Load fence from B 1000101111010111

TABLE VI (Continued)

${ }_{0}$	n_{1}	n_{2}	n_{3}	Class	Index	Mnemonic	Name Op Code
0	0	d_{0}	d_{12}	IOI	81	LIA	Load into A 100001-101-------
1	0	d_{0}	${ }_{12}$	IOI	82	LİB	Load into B 100011-101.-.-.-
-	-	c_{2}	-	EAR	83	LSL	Logical shift left 10000000001--.--
-	-	c_{3}	-	EAR	84	LSR	Logical shift right 100000100010--..-
-	-	-	-	DMI	85	MBF	Move bytes from alternate map 1000101111000011
-	-	-	-	DMI	86	MBI	Move bytes into alternate 1000101111000010
-	-	-	-	BMI	87	MBT	Move bytes
							1000101111110101
-	-	-	-	DMI	88	MBW	Move bytes within alternate 1000101111000100
0	0	d_{0}	${ }_{13}$	IOI	89	MIA	Merge into A 100001-100_-.-.--
1	-	d_{0}	${ }_{13}$	J.OI	90	MIB	$\begin{aligned} \text { Merge into } & \text { B } \\ & 100011-100---- \end{aligned}$
-	-	-	-	EAMR	91	MPY	Multiply
-	-	-	-	WMI	92	MVW	Move words
							1000101111111111
-	-	-	-	DMI	93	MWF	Move words from alternate map 1000101111.000110
-	-	-	-	DMI	94	MWI	Move words into alternate map 1000101111000101
-	-	-	-	DMI	95	MWW	Move words within alternate map
							1000101111000111
-	-	-	-	S/R	96	NOP	No Operation
							000000000000000

TABLE VII (Continued)

n_{0}		${ }^{\mathrm{n}} 2$	n_{3}	Class	Index	Mnemonic	Name Op Code
0	-	${ }^{\text {d }} 0$	d_{20}	IOI	97	OTA	Output A 100001-110
-	0	d_{0}	d_{20}	IOI	98	отв	Output B 100011-110
-	-	-	-	DMI	99	PAA	Load/store port A map per A 1000001111001010
-	-	-	-	DMI	100	PAB	Load/store port A map per B 1000101111001010
-	-	-	-	DMI	101	PBA	Load/store port B map per A 1000001111001011
-	-	-	-	DMI	102	PBB	Load/store port B map per B $10001-1111001011$
0	0	e_{0}	e_{9}	S/R	103	RAL	Rotate A left 0000001010-1-010
1	0	${ }^{e} 0$	${ }_{9}$	S/R	104	RAR	Rotate A right $0000001011-1-011$
0	1	e_{0}	e_{9}	S/R	105	RBL	Rotate B left 0000101010010010
1	1	${ }^{e} 0$	${ }_{9}$	S/R	106	RBR	Rotate B right 0000101011-1-011
-	-	c_{4}	-	EAR	107	RRL	Rotate left 1000000000100----
-	-	c_{5}	-	EAR	108	RRR	Rotate right 100000100100----
-	-	-	-	DMZ	109	RSA	Read status register into A 1000001111011000
-	-	-	-	DMI	110	RSB	Read status register into B 1000101111011000
-	-	-	-	A/S	111	RSS	Reverse skip sense 0000-1---------1
-	-	-	-	DMI	112	RVA	```Real violation register``` into A

TABLE VII (Continued)

		n_{2}	n_{3}	Class	Index	Mnemonic	Name Op Code
--	-	-	-	DMI	113	RVB	```Read violation register into B 1000101111011001```
0	0	b_{0}	b_{14}	IRI	114	SAX	Store A indexed by X 1000001111100000
0	0	b_{0}	b_{14}	IRI	115	SAY	Store A indexed by Y 1000001111101000
-	-	-	-	BIMI	116	SBS	Set bits 1000101111111011
-	-	-	-	BYMI	117	SBT	Store type 1000101111110100
1	0	b_{0}	b_{14}	IRI	118	SBX	Store B indexed by X 1000101111100000
1	1	b_{0}	b_{14}	IRI	119	SBY	Store B indexed by Y 1000101111101000
-	-	-	-	A/S	120	SEZ	Skip if E is zero 0000-1----1----
-	-	-	-	BYMI	121	SFB	```Skip if flag clear 1000-10010-----```
-	0	${ }^{\text {d }} 0$	${ }_{14}$	IOI	122	SFC	```Skip if flag clear 1000-10011------```
-	0	d_{0}	${ }^{\text {d }}{ }_{16}$	IOI	123	SFS	Skip if flag set $\quad 1000-10011-\ldots--1$
-	-	-	-	DMI	124	SJP	Enable system map and jump 10001.01000100000
-	-	-	-	DMI	125	SJS	Enable system map and jump to subroutine 1000101111011101
-	-	-	-	S/R	126	SLA	$\begin{aligned} & \text { Skip if LSB of A is zero } \\ & 00000 \end{aligned}$
-	-	-	-	S/R	127	SLB	
	0	d_{0}	d_{14}	IOI	128	SOC	Skip if overflow clear 100001-010000001

TABLE VII (Continued)

${ }_{0}$	${ }^{\mathrm{n}} 1$	${ }_{2}$	n_{3}	Class	Index	Mnemonic	Name Op Code
-	0			IOI	129	sos	Skip if overflow set 100001-011000001
-	-	-	-	A/S	130	SSA	Skip if sign of A is zero 000001-----1----
-	-	-	-	A/S	131	SSB	Skip if sign of B is zero 000011------1-----
-	-	-	-	DMI	132	SSM	Store status register into memory 1000101111001100
0	1			MRI	133	STA	
1	1			MRI	134	STB	
-	0		${ }^{\text {d }} 18$	IOI	135	STC	Set control 100001-111------
-	0			IOI	136	STF	Set flag 1000-10001------
-	0	d_{0}	d_{19}	IOI	137	STo	Set overflow 1000010001000001
0	-	b_{0}	b_{13}	IRI	138	STX	Store X to memory 1.0001011 .11100011
1	-	b_{0}	b_{13}	IRI	139	STY	Store Y to memory 1000101111101011
-	-	-	-	DMI	140	SYA	Load/store system map per A 1000001111001000
-	-	-	-	DMI	141	SYB	Load/store system map per B 1000101111001000
-	-		-	A/S	142	SZA	Skip if A is zero 000001--------1-
-	-	-	-	A/S	143	SZB	Skip if B is zero 000011-------1.
-	-	-	-	BYMI	144	TBS	Test bits

TABLE VII (Continued)

$\overline{\mathrm{n}_{0}}$	${ }^{n_{1}}$	${ }^{n} 2$	n_{3}	Class	Index	Mnemonic	Name Op Code
-	-	-	-	DMI	145	UJP	Enable user map and jump to subroutine 1000101111011110
-	-	-	-	DMI	146	UJS	Enable user map and jump to subroutine 1000101111011111
-	-	-	-	DMI	147	USA	Load/store user map per A 1000001111001001
-	-	-	-	DMI	148	USB	$\begin{array}{r} \text { Load/store user map per B } \\ 1000101111001001 \end{array}$
0	0	b_{4}	b_{15}	DMI	149	XAX	Exchange A and X 1000001111100111
0	1	b_{4}	b_{15}	IRI	150	XAY	$\begin{aligned} & \text { Exchange A and X } \\ & 1000001111101111 \end{aligned}$
1	-	b_{4}	b_{15}	IRI	151	XBX	$\begin{aligned} & \text { Exchange } B \text { and } X \\ & 1000101111100111 \end{aligned}$
1	1	b_{4}	b_{15}	IRI	152	XBY	
-	-	-	-	DMI	153	XCA	Cross compare A 1000001111010110
-	-	-	-	DMI	154	XCB	
-	-	-	-	DMI	155	XLA	```Cross 1oad A 10000011111010100```
-	-	-	-	DMI	156	XLB	
-	-	-	-	DMI	157	XMA	```Transfer maps internally per A 1000101111010000```
-	-	-	-	DMI	158	XMB	```Transfer maps internally per B 10001011111010010```
-	-	-	-	DMI	159	XMM	Transfer maps or memory 1000101111010000

TABLE VII (Continued)

${ }^{\mathrm{n}} 0$	n_{1}	n_{2}	${ }^{\mathrm{n}} 3$	Class	Index	Mnemonic	Name Op Code
-	-	-	-	DMI	160	XMS	Transfer maps sequentially 1000101111010001
-	-	-	-	MPI	161	XOR	"Exclusive OR" to A -0100
-	-	-	-	DMI	162	XSA	Cross Store A 1000001111010101
-	-	-	-	DMI	163	XSB	Cross store B 1000101111010101
0	2	b_{4}	b_{8}	IRI	164	CAX	Copy A to X 1000001111100001
-	3	b_{4}	b_{8}	IRI	' 165	CAY	Copy A to Y 1000001111101001
1	2	b_{4}	b_{8}	IRI	166	CBX	$\begin{aligned} & \text { Copy B to X } \\ & 1000101111100001 \end{aligned}$
1	3	b_{4}	b_{8}	IRI	167	CBY	Copy B to Y 1000101111101001

* Base page fence register

\uparrow| $1: \vee / F$ | |
| :--- | :--- |
| $h_{1} \leftarrow\left(\mathrm{~S}>\left(\mathrm{F} / \imath^{0}\right)_{0}\right)$ | 0 |
| $1: \mathrm{h}_{1}$ | 1 |
| $\omega 6 / \mathrm{T} \leftarrow \mathrm{T}\left(\mathrm{F} / \mathrm{l}^{0}\right)_{0}$ | 2 |
| $\mathrm{~S}+\left(\mathrm{F} / \mathrm{I}^{0}\right)_{0}$ | 3 |

Figure 5. Input/Output Interrupt Generator

Instruction Execution

The instruction execution starts at line 15. The effective address computation of MRI is performed at lines $16,17,18$ and 19. Line 20 sets up the immediate value for EAR. Line 21 sets up I/O flag clear/hold information for IOI. Line 22-24 subdecodes the packed micro-instructions in A / S and S / R instructions.

Interrupt Service

Servicing of exceptions is given priority over I/O interrupt service. In case of any exception the bit (0 for exception, 1 for I/0 interrupt) in the interrupt holder h is set (line 27). The interrupt service sequence is initiated if at least one interrupt is pending (line 28). The sequence consists of fetching a new instruction from one of the five fixed locations in memory. The interrupt vector address of the peripheral device is obtained from the six least significant bits of the T-bus. The element of h which caused the interrupt is reset.

(a) WMI Instruction

	0	1	23		45		6	7
0								
1	$\begin{aligned} & 140 \\ & \text { SYA } \end{aligned}$	$\begin{aligned} & 147 \\ & \text { USA } \end{aligned}$		$\begin{aligned} & 101 \\ & \text { PBA } \end{aligned}$				
2			$\begin{aligned} & 157 \\ & \text { XMA } \end{aligned}$	155	$\begin{aligned} & 153 \\ & \text { XLA } \end{aligned}$	$\begin{gathered} 79 \\ \text { XSA } \end{gathered}$	XCA	LFA
3	$\begin{array}{r} 109 \\ \text { RSA } \end{array}$	$\frac{112}{\text { RVA }}$						
4			$\begin{gathered} 86 \\ M B I \end{gathered}$	$\begin{array}{r} 85 \\ \text { MBF } \end{array}$	$\begin{gathered} 88 \\ \text { MBW } \end{gathered}$	$\begin{gathered} 94 \\ \text { MWI } \end{gathered}$	$\begin{array}{r} 93 \\ \text { MWF } \end{array}$	$\begin{array}{r} 95 \\ \text { MWW } \end{array}$
	SYB^{141}	$\begin{aligned} & 148 \\ & \text { USB } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{PAB} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { PBB } \end{aligned}$	$\begin{aligned} & 132 \\ & \text { SSM } \end{aligned}$	$\begin{array}{r} 68 \\ \text { JRS } \\ \hline \end{array}$		
6	159	160		158	156	163	154	80
	XMM	XMS		XMB	XLB	XSB	XCB	LFB
	110	113	42	43	124	125	145	146
7	RSB	RVB	DJP	DJS	SJP.	SJS	UJP	UJS

(b) DMSI Instruction

	0	1	2	3	4	5	6	7	8	9	 15
	114	16	70		37			149				
0	SAX	CAX	LAX		CXA			XAX				
	115	17	71		39			150				
1	SAY	CAY	LAY		CYA			XAY				
	118	20	73	138	38	77	3	151	62	46		
2	SBX	CBX	LBX	STX	CXB	LDX	ADX	XBX	ISX	DSX		
	119	21	74	139	40	78	\%	152	63	47		
3	SBY	CBY	LBY	STY	CYB	LDY	ADY	XBY	ISY	DSY		

(c) IRI Instruction

Figure 6. Instruction Decoding Matrices

		0	1	2	3	4	5	6	7
I_{4}	0		${ }^{8}{ }^{8}$	$\begin{aligned} & 161 \\ & \text { XOR } \end{aligned}$	$\begin{array}{r} 61 \\ \text { IOR } \end{array}$	$\begin{array}{r} 1 \\ \mathrm{ADA} \end{array}$	$\begin{array}{r} 35 \\ \text { CPA } \end{array}$	$\begin{array}{\|c\|} 75 \\ \text { LDA } \end{array}$	$\begin{gathered} 133 \\ \text { STA } \end{gathered}$
	1		$\begin{array}{r} 69 \\ \text { JSB } \end{array}$	$\begin{array}{r} 66 \\ \text { JMP } \end{array}$	$\begin{array}{r} 64 \\ \text { ISZ } \end{array}$	$\begin{array}{r} 2 \\ \mathrm{ADB} \end{array}$	$\begin{array}{\|c} 36 \\ \mathrm{CPB} \end{array}$	$\begin{gathered} 76 \\ L D B \end{gathered}$	STB

(d) MRI Instruction

(e) JMPI Instruction

(f) BYMI Instruction

(g) BIMI Instruction

	0	1	2	3
0	52	57	56	53
	FAD	FSB	FMP	FDV
1	54	55		
	FIX	FLT		

(h) FPI Instruction

Figure 6. (Continued)

(j) EAMR Instruction

	0	1	2	3	4	5	6	7
0	58	136	122	123	89	81	97	27
	HLT	STF	SFC	SFS	MIA	LIA	OTA	CLC
1	58	29	128	129	90	82	98	135
	HLT	CLF	SOC	SOS	MIB	LIB	ОтВ	STC

(k) IOI Instruction

	0		1	2
3				
		25	31	22
		CLA	CMA	CCA
		26	32	23
		CLB	CMB	CCB

11_{D}
(ℓ) A/S Instruction

0	ALS	ARS	$\begin{gathered} 103 \\ \text { RAL } \end{gathered}$	$\begin{array}{\|c\|} \hline 104 \\ \text { RAR } \end{array}$	ALR	ERA	ELA	ALF
	${ }_{\text {BLS }}{ }^{14}$	5	05	06	13			

12 D
(m) S / R Instruction

Figure 6. (Continued)

Input/output Interrupts

The I/O interrupt generator (IOIG) system program, Figure 5, determine the presence of interrupt requests by peripheral devices and sets the bit in the interrupt holder, h, accordingly (line 1). The dwell at line 0 checks for interrupts on the device flag. The setting of any I / O device flag means an interrupt request from that I / O device. If a higher priority device has already gained control of the processor, the lower priority device cannot be served until the higher priority device has finished its service routine (lines 1, 2, and 3).

Memory Access Routine

The memory access (MAC) operation, Figure 7, fetches or stores a specified number of bytes from the memory at a given address. The general form of the operation is $M A C^{i}(j ; 1)$, where i specifies the device requesting access; j is a two-component vector specifying the address in memory $\left(j_{0}\right)$ and the type of operation (store; $j_{1}=2$; fetch: $j_{1}=f$), respectively; and 1 specified the vector into/from which the accessed data are to be stored/fetched.

The request for service is entered in the bus request vector r, and in the queue if it is empty (line 0). The program dwells at line 1 until i is recognized as the first nonzero entry in the queue. After the request has been honored, the entry in the request vector is blanked out (line 2). The parity error exception is noted (line 5), and entered in the exception vector e. If no exception occurs, a fetch (line 4) or store (line 7) is performed.

Address Computation Routine

The address computation (ADC) operation, Figure 8, is used for effective address calculation of the operands. The general form for ADC is ($\mathrm{m} ; \mathrm{g} ; \mathrm{k}$) where m is the mode of addressing (0 means direct, 1 means indirect), g is the primary address, and k is the effective address returned by the operation.
$\operatorname{MAC}^{i}(j ; \ell):$ defined operation

	$\mathrm{r}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \quad \ell, \sim v / q$	0
表	i : $\left(\mathrm{q} / \mathrm{r}^{0}\right)_{0}$	1
	$\mathrm{r}_{1} \leftarrow 0$	2
$=$	j_{1} : S	3
	$\mathrm{J} \leftarrow\left(\mathrm{j}_{0} \downarrow \alpha^{1}\right) / / \mathrm{M}$	4
	$1: \mathrm{e}_{1} \leftarrow \sim \neq / \mathrm{J}$	5
	$\ell_{\leftarrow} \omega^{16} / \mathrm{J}$	6
	$\mathrm{J} \leftarrow \sim \neq / \ell, 1$	7
	$\left(j_{0} \downarrow \alpha^{1}\right) / / M \leftarrow J$	8
	$\mathrm{q} \leftarrow \mathrm{r}$	9

Figure 7. Memory Access Operation

Figure 8. Address Computation Operation

Instruction Execution Routine

At the entry point EXEC, Figure 9, the routine for an instruction is determined by n_{2} (line a_{0}). Execution involves setting up condition codes (if necessary) after the execution.

Lines $a_{1}-a_{13}$

A11 MRI instructions are executed here. AND, IOR, XOR ADA, ADB, CPA, $C P B$, and $I S Z$ are entered at line a_{1} to get data from memory. STA, STB, LDA, and LDB are entered at line a_{2}. A11 MRI instructions are diverged at line a_{2} and enter their own routine. The "Exit" here means go back to PROC ; the outgoing arrow at the right side of the line also indicates return to PROC if the arrow does not direct to any other line. This is true not only here, but also in any other line of the EXEC routine.

Figułe 9. EXEC Routine.

Figure 9. (Continued)

Figure 9. (Continued)

Figure 9. (Continued)
$\xrightarrow{\substack{\text { CCB }}} \xrightarrow{\text { CLA }}$

Figure 9. (Continued)

Figure 9 (Continued)

Figure 9. (Continued)

```
Lines \(\mathrm{b}_{0}{ }^{-\mathrm{b}} 17\)
```

A11 IRI instructions are executed here. ADX, ADY, LDX, LDY, STX, and STY refer to certain memory locations whose addresses are defined in the word following the instruction word; thus some memory access and effective address computation tasks must be done(60-63) prior to the execution of the instructions. All the other instructions of IRI do not require those tasks and enter the routine at line b_{4} to skip the unnecessary steps.

Lines $C_{0}-C_{5}$

The EAR instruction sets are executed here. Each instruction enters at a different line.

Lines $\mathrm{d}_{0}-\mathrm{d}_{21}$

A11 the IOI instructions are executed here. The I/O devices are interfaced with the processor by these instructions; symbols V, F, and Z are used here to represent the control bits, $I / 0$ flag bits, and data buffers of all the $I / 0$ devices. Each indexed symbol refers to a specific device.

Lines $\mathrm{e}_{0} \mathrm{-e}_{18}$

A11 the S / R instructions are executed here. Each S / R instruction consists of four microinstructions. Each microinstruction is chosen from its own microinstruction set. The first microinstruction set is the same as the fourth microinstruction set for S / R instructions. The instruction execution is divided into three parts. The first part
(lines $\mathrm{e}_{0}-\mathrm{e}_{12}$) executes the first microinstruction, the second part (lines 13-14) executes the second microinstruction, and the third part (lines 15-17) executes the third microinstruction. The fourth microinstruction is executed in the first part after the previous three microinstructions are all executed. Every S / R instruction must go through these four steps to complete the instruction execution.

Lines $\mathrm{f}_{0}-\mathrm{f}_{12}$

A11 the A/S instructions are executed here. Each A/S instruction consists of 8 microinstructions. Thus the instruction execution is divided into 8 parts, each part executing one microinstruction. Every A/S instruction must go through these 8 parts to complete the instruction execution.

Lines $g_{0}-g_{5}$

The JUMP instructions JLY and JPY are executed here. A memory access must be made to get the destination address of the JUMP instruction.

Lines $h_{0} h_{23}$

A11 the EAMR instructions are executed here. Each of the four EAMR instructions requires two words of memory: one for the instruction code and one for the operand address. Thus at line h_{0}, the second memory word (operand address) is incremented by 1 to point to the next instruction. The overflow bit is set when the DIV instruction is executed if the divisor is zero or too small. In the former case (division by zero), the division will not be attempted and the $B-$ and

A-register contents will be unchanged except that a negative quantity will be made positive. In the latter case (divisor too small), the execution will be attempted with unpredictable results left in the Band A-registers.

Lines $\mathrm{i}_{0}{ }^{-\mathrm{i}_{24}}$

A11 the FPI instructions are executed here. Four of the FPI instructions are floating point arithmetic instructions which require two words of memory: one for the instruction code and one for the operand address. Since a full 15 bits are available for the operand address, these instructions can directly address any location in memory.

The execution of WMI, BIMI, BYMI, and DMI instructions is not included in the APL description here because they are not used and have nothing to do with this paper.

Microprogramming

Conventional Control Section

In a conventional computer control section, the functions performed by the instruction set determine the specified hardware design. The major advantage of this specially designed hardware is speed of instruction execution. The major disadvantage is the loss of flexibility for special applications or for enhancements. Any changes and additions to existing capabilities require changes and additions to hardware components. This is no problem for a conventional computer is there are no new machine instructions required. "The hardware has been designed to minimize timing for the instruction set" (6).

However, a computer manufacturer rarely produces an instruction set that meets the requirements of all potential users. "Hence, the manufacturer must either focus his attention on one group of users or widen his scope and generalize the hardware design to meet the needs of a number of user groups. In the latter case, the user must modify his discipline to some extent to meet the limitations of his hardware" (6).

Microprogrammed Control Section
"In the microprogrammed computer, all distinct logical functions are separated from the sequence in which those functions are performed" (6). Thus, hardware redundancy is reduced. The control store holds the microinstruction which defines the logical functions. Each machine instruction in Main Memory is performed by a sequence of microinstructions in Control Store. This sequence of microinstructions called a microprogram and is often referred as firmware. Software can be executed much faster with the application of microprogramming. This speed is achieved by two factors:

1. The memory access time of Control Store is less than that of Main Memory.
2. The microinstruction has more flexibility than the normal machine instruction.

In fact, the HP21MX Control Store where microinstruction reside, cycles more than twice as fast as Main Memory where normal machine instructions reside. In addition, microinstruction have the ability to access many internal registers and some logical functions that Main Memory programs do not have.

For example, the HP21MX floating point software subroutines were

Abstract

identified as very time consuming. They were microprogrammed by Hewlett-Packard and made available in ROM to users. Implementation of floating point firmware requires no change to user programs. The microprogrammed floating point instructions run about 20 times faster than the corresponding software subroutines.

As in the floating point microprogram, the user can study his software, determine the most time consuming function performed, and then microprogram these functions, that is, execute them in control store using a single memory instruction instead of a sequence of Main Memory instructions. Any software that uses these microprogrammed functions will execute at a higher speed.

The Microprogrammable Computer

Functionally, a computer consists of four major sections:
Control

Main Memory
Input and Output
Arithmetic and Logic

Each section executes under the direction of the control section by means of a microprogram. The control section reads the user's program stored in Main Memory and directs the appropriate hardware in each of the other sections.

Control Section

The control section fetches an instruction from a certain location in memory, which is specified by the Memory Register (MR), and stores it into the Instruction Register (IR), as shown in Figure 10. An

Figure 10. A Microprogram Implemention of One Macroprogram Instruction.

Abstract

appropriate microprogram is determined by the IR. Conceptually, each program instruction in Main Memory is a jump to a microprogrammed routine which resides in Control Store.

The storage area for those microprograms is Control Store which may be either a Read Only Memory (ROM) or Writable Control Store (WCS). The control section that executes microprograms from ROM is referred as a Control Processor.

The Control Processor

A microprogram in the Control Processor is in command of the computer at all times. A microprogram takes program instructions from Main Memory and stores them into the IR. The upper eight bits of the IR determine the microprogram address within one of the following groups:

Basic instruction set
Extended instruction group

Floating point instruction group

User microprogram group

The basic instruction set microprogram can be regarded as a supervisor microprogram that determines when a user microprogram is called and then passes contro1 to the user microprogram.

When a microprogram has run to completion, it returns to location 0 in Control Store (basic instruction set), returning control to the supervisor microprogram, after which the next instruction is fetched from Main Memory and stored into the IR. Successive microinstruction address are determined in the following way. The ROM Address Register
(RAR) is incremented at the start of execution of each microinstruction. When a jump is executed, the $R A R$ is loaded with the jump target address. When a jump to a subroutine is executed, the RAR is stored into the Save Register. When a return from a subroutine is executed (RTN), the Save Register contents are transferred into RAR and the Save Register is cleared. Thus at the completion of execution of each microinstruction, the RAR holds the address of the next microinstruction.

The central data transfer path is the S-bus. The contents of all registers except the following can be directed onto the S -bus: L-register, RAR,SAVE Register, Extend Register, and the Overflow Register. The following registers can receive data from the S-bus: M-Register, T-Register, L-Register, Counter-Register, Display-Register, Display Indicator, and Instruction Register.

The T-but receives data only from the Rotate/Shifter (R/S) but can pass data to the following registers: A-Register, B-Register, Scratch Pad Register (S_{1} through S_{12}), X-Register, Y-Register, P-Register, and S-Register, (Front Panel Switch Register).

The $I / 0$-bus serves to transfer data to and from external devices under program control. In the functional block diagram (Appendix A) all the data paths are shown by the arrows. For example, the B-Register contents can be sent to S-bus and hence to the M-Register. However, the contents of the B-Register cannot be sent to S 12 (Scratch Pad 12) without passing through the ALU.

Main Memory

The M-register is a 15-bit register which holds memory addresses for reading from or writing into Main Memory. Upon storing from the

M-Register, bit 15 is clear (0). The T-Register or transfer register holds the data being transferred to or from memory. The contents of both of these registers are transferred to and from the -bus. Four loader ROMS, selectable by Instruction Register bits 15 and 14 , can each contain a 64 -word Main Memory program which may be loaded into Main Memory and used to load Main Memory from a peripheral device or to perform any other function desired by the user.

Two flags are associated with memory: the A-Register Addressable Flag (AAF) and the B-Register Addressable Flag (BAF). These flags are required to allow the $A-$ and B-registers to be addressed as locations 0 and 1 , respectively, of Main Memory.

Input and Output

The Central Interrupt Register (CIR) is a 6-bit register associated with the I/O interrupt circuitry. It is loaded with the select code of the interrupting device under program control and passed to the S-bus. Whenever the CIR is loaded, and Interrupt Acknowledge (IAK) signal is issued to the $I / 0$ device. The $I / 0$ bus transfers data to and from external devices. Two flags are associated with $I / 0$: the interrupt pending flag and the I/O skip condition met flag. The Interrupt Enable Register is used to disable or enable the recognition of all interrupts, except Memory protect, parity, and power failure interrupts.

Arithmetic and Logic Section

This section consists of the Arithmetic and Logic Unit (ALU), the twenty-two Rotate/Shifter (R / S) registers, and six flags.

The ALU and R/S are the only units that execute functional
modifications on the data. The ALU receives indut from the S-bus and from the L-register (Latch Register). Output from the ALU goes to the R/S which places its output on the T-bus.

Output from the ALU and R/S can be stored in one of the folloiwng registers via the T-bus: A-Register, B-Register, Scratch Pad Registers (S_{1} through S_{12}), X-Register, Y-Register, P-Register, and S-Register. Recall that the P-register holds the macroprogram (main memory) address. The P-register must be under control of the microprogram which must insure that it contains the proper address after the microprogram is complete. When the microprogram is complete, the resulting P-Register value is the address of the next macroinstruction to be executed. Note that the Basic Instruction Set fetch routine (at Control Store address 0) automatically increments the P-Register after the macroinstruction is fetched. Thus for one-word user macroinstruction function codes, no further incrementing of the P-Register is necessary in the user microprogram.

The S-Register is reserved for internal storage of the Front Panel Switch Register. Note that all of those registers can also be sent along the S-bus for storage into memory, passage to an external device, or input to the ALU.

The Extend Register is a one-bit register used in shift operations to link the A- and B-Registers or to indicate a "carry" arithmetic result out of the $A-$ or B-Registers. The overflow is a one-bit register used to indicate an arithmetic overflow from the ALU. These two registers can also be used as flags.

Implementation of a Polynomial Algorithm in the HP21MX Computer

The four tasks which are illustrated in Chapter I are performed in this chapter. One of them is to program the polynomial algorithm in Hp 21 assembler language for evaluating the sine function. The other task does the same thing but uses a microprogram instead of the program coded in assembler language.

The particular polynomial algorithm used for evaluating sine functions has been determined in Chapter II and is shown as follows:

$$
\begin{equation*}
\sin x=c_{1} x+c_{3} x^{3}+c_{5} x^{5} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1}=1.5706268 \\
& c_{3}=-0.6432292 \\
& c_{5}=0.0727105 \\
& -1 \leq x \leq 1
\end{aligned}
$$

For evaluating the sine of an angle θ, x is substituted with $2 \theta / \Pi$ in Eq. (4.1); then $\sin \theta$ can be computed by

$$
\sin \theta=c_{1}\left(\frac{20}{\Pi}\right)+c_{3}\left(\frac{2 \theta}{\Pi}\right)^{3}+c_{5}\left(\frac{2 \theta}{\Pi}\right)^{5}
$$

In order to reduce the execution time when implemented this algorithm in the computer, Eq. (4.1) can be factored as follows:

$$
\begin{equation*}
\sin \frac{\pi}{2} x=x\left(c_{1}+x^{2}\left(c_{3}+c_{5} x^{2}\right)\right) \tag{4.2}
\end{equation*}
$$

Although Eq. (4.1) and Eq. (4.2) give the same result in computation, they require a different number of multiplications.

Inspection of Eq. (4.1) shows that the number of multiplications required is 11 , while the number of multiplications required by

Eq. (4.2) is 7. As mentioned in Chapter 1 , the multiplication function is one of the most time-consuming functions. Thus Eq. (4.2) definitely is more efficient than Eq. (4.1) when implemented in the computer.

For the reason mentioned above, Eq. (4.2) is used for both the microprogram and the program coded in assembly language. The results of these two implementations are listed in Tables VIII and IX. The program 1istings are 1isted in Appendix B.

Implementation of the Cordic Algorithm on the HP21MX Computer

The Cordic algorithm has been introduced in Chapter II. To use it for evaluation of the sine function, the value selected for n is a function of the desired computing accuracy. Theoretically, the larger the value of n is the more accurate the result.

Actually, it is impossible to represent a number to any degree of accuracy in any computer because the accuracy of all computers is limited by the number of bits in a word. In the HP21MX computer, there are 16 bits in a word. When the Cordic algorithm is used to evaluate the sine function, the value of n not only determines the accuracy of the result, but also affects the execution time of the program. There is a trade-off between accuracy and execution time; i.e., when n increases, the accuracy is increased as is the execution time. In order to get the greatest accuracy and the least execution time, the optimum value of n must be found. As discussed in Chapter II, a set of ATR constants, $\alpha_{i}, i=1, \ldots, n$, can be obtained from Eq. (4.3).

$$
\begin{equation*}
\alpha_{i}=\tan ^{-1} 2^{-(i-2)} \text { for } 2 \leq i \leq n \tag{4.3}
\end{equation*}
$$

TABLE VIII

POLYNOMIAL METHOD IMPLEMENTATION RESULTS
(ASSEMBLY LANGUAGE) OF EVALUATING THE SINE FUNCTION

Angle(Radians)	Sin	Execution Time (Mili-Sec)
-1.5	-0.997558	0.081
-1.4	-0.985351	0.081
-1.3	-0.963378	0.081
-1.2	-0.932128	0.081
-1.1	-0.891357	0.081
-1.0	-0.841552	0.081
-0.9	-0.783447	0.081
-0.8	-0.717285	0.081
-0.7	-0.644287	0.081
-0.6	-0.564697	0.081
-0.5	-0.479492	0.081
-0.4	-0.389404	0.081
-0.3	-0.295654	0.081
-0.2	-0.198730	0.081
-0.1	-0.099853	0.081
0.0	0.0	0.081
0.1	0.099609	0.081
0.2	0.198486	0.081
0.3	0.295410	0.081
0.4	0.389160	0.081

TABLE VIII (Continued)

Angle(Radians)	Sin	Execution Time(Mili-Sec)
0.5	0.564453	0.049
0.6	0.564453	0.049
0.7	0.644042	0.049
0.8	0.717041	0.049
0.9	0.783203	0.049
0.1	0.841308	0.049
1.1	0.891113	0.049
1.2	0.931884	0.049
1.3	0.963134	0.049
1.4	0.985107	0.049
1.5	0.997314	0.049

TABLE IX
POLYNOMIAL METHOD IMPLEMENTATION RESULTS (MICROPROGRAM) OF EVALUATING THE SINE FUNCTION

Angle(Radians)	Sin	Execution Time (Mili-Sec)
-1.5	-0.997558	0.049
-1.4	-0.984351	0.049
-1.3	-0.963378	0.049
-1.2	-0.932128	0.049
-1.1	-0.891357	0.049
-1.0	-0.841552	0.049
-0.9	-0.783447	0.049
-0.8	-0.717285	0.049
-0.7	-0.644287	0.049
-0.6	-0.564697	0.049
-0.5	-0.479492	0.049
-0.4	-0.389494	0.049
-0.3	-0.295654	0.049
-0.2	-0.198730	0.049
-0.1	-0.099353	0.049
0.0	0.0	0.049
0.1	0.099609	0.049
0.2	0.198486	0.049
0.3	0.295410	0.049
0.4	0.389160	0.049

TABLE IX (Continued)

Angle(Radians)	Sin	Execution Time (Mi1i-Sec)
0.5	0.479248	0.081
0.6	0.564453	0.081
0.7	0.644042	0.081
0.8	0.717041	0.081
0.9	0.783203	0.081
1.0	0.891113	0.081
1.2	0.931884	0.081
1.3	0.9831308	0.081
1.4	0.997314	0.081
1.5		0.081

When implementing the Cordic algorithm in the HP21MX computer, α_{i} will be divided by 180° and then represented in 16 binary digits. For example, if $\alpha_{1}=90^{\circ}$, then $90^{\circ} / 180^{\circ}=0.5_{10}=0.40008_{8} . \quad 040000_{8}$ will be stored in the computer. If Eq. (4.3) is used to find the ATR constants $n=1$ to $n=16$, the values of α_{i} are: $\alpha_{1}=040000, \alpha_{2}=020000$, $\alpha_{3}=011344, \alpha_{4}=004773, \alpha_{5}=002421, \alpha_{6}=001213, \alpha_{7}=000505$, $\alpha_{8}=000242, \alpha_{9}=0001212, \alpha_{10}=000050, \alpha_{11}=000024, \alpha_{12}=000012$, $\alpha_{13}=000005, \alpha_{14}=000002, \alpha_{15}=000001, \alpha_{16}=000000$.

Because the ATR constant is represented with a 16 -bit word in the HP21MX computer, when $\mathrm{n}>15$, the constant will be too small to be represented. Thus the value 15 is the best choice for the value of n. This yields the most accurate result without excessive execution time.

Once the value of n is determined, the value of k can be found as well. The formula to obtain the constant k is:

$$
\begin{equation*}
\mathrm{k}=1+2, \quad 1+2^{-2}, \quad 1+2^{-2(\mathrm{n}-2)} \tag{4.5}
\end{equation*}
$$

When the constant k is computed by Eq. (4.5) with $\mathrm{n}=15$, the result is:

$$
k=1.646744
$$

The original coordinate vector in the Cordic algorithm is:

$$
V=1 / k=0.6072589
$$

One critical problem occurs immediately when the Cordic algorithm is being implemented in the HP21MX computer. Review of the Cordic machine in Chapter III shows that the best feature of Cordic which speeds up computation is that it has three adder-subtractors which can operate
simultaneously. In the HP21MX computer, although there are two registers (A and B) which can operate like an adder-subtractor in Cordic, they cannot operate simultaneously. Due to this hardware limitation, the only way to simulate these parallel adder-subtractor operations is to execute sequentially.

The flowchart for the assembler program which simulates the Cordic algorithm in the HP21MX computer is shown in Figure 11.

An AHPL description for the microprogram which emulates the Cordic algorithm in the HP21MX computer is shown in Figure 12.

Both program listings are shown in Appendix B. The programming results for these two implementations are listed in Tables X and XI . Calculation of Execution Time

To calculate the execution time of both the macroprogram and the microprogram, the Time Base Generator (TBG) and interrupt feature are used. The TBG generates an interrupt signal for a specified time interval; the CPU acknowledges the interrupt and forces the current computer program to suspend and transfer control to a service subroutine which records the number of times that the clock interrupt has occurred. At the end of program, the program execution time can be calculated from the following equation:

$$
\begin{aligned}
\mathrm{T} & =\frac{\mathrm{N} \times \mathrm{TI}}{\mathrm{~L}} \text { where } \\
\mathrm{T} & =\text { program execution time } \\
\mathrm{N} & =\text { number of clock interrupts } \\
\mathrm{TI} & =\text { interrupt time interval of Time Base Generator } \\
\mathrm{L} & =\text { number of times that the program has been executed }
\end{aligned}
$$

Figure 11. Cordic Algorithm

Figure 11. (Continued)

0	$M R \leftarrow P$
1	$\mathrm{P} \leftarrow \mathrm{T} 1+\perp \mathrm{P}$
2	$M A C^{1}(\perp \mathrm{MR}, \mathrm{f} ; \mathrm{T})$
3	$\mathrm{X} \leftarrow \mathrm{T}$
4	$\mathrm{MR} \leftarrow \mathrm{P}$
5	$P \leftarrow T 1+\perp P$
6	$M A C^{1}(\perp M R, f, T)$
7	S7 $\leftarrow T$
8	S6 $\leftarrow \mathrm{A}$
9	$\rightarrow(10,14)_{\mathrm{A} 0}$
10	$\mathrm{S} 7 \leftarrow \overline{\mathrm{S7}}$
11	$\mathrm{S} 7 \leftarrow(16) T 1+\perp$ ¢ 7
12	$X \leftarrow \bar{X}$
13	$X \leftarrow(16) T 1+\perp$ X
14	$Y \leftarrow X$
15	$\mathrm{X} \leftarrow \overline{8}(16)$
16	$\mathrm{E}, \mathrm{S} 6 \leqslant \mathrm{~T}(\perp \mathrm{~S} 6)+(\perp \mathrm{S} 7)$
17	$\mathrm{S} 4 \leftarrow \mathrm{~S}^{\overline{12,13,14}}(16)$
18	$\mathrm{S} 3 \leftarrow \overline{8}(16)$
19	$\mathrm{S} 5 \leftarrow \mathrm{X}$
20	$L \leftarrow Y$
21	$\rightarrow 37$
22	CTR $+\omega^{8} / \mathrm{S} 3$
23	$B \leftarrow X$
Fig	The AHPL Description for the Cordic Algorithm in Implementation in HP21MX Microprogram

$$
(\mathrm{v} / \mathrm{CTR}): 0,(=, \neq) \rightarrow(29,25)
$$

$$
B \leftarrow \hat{O} B
$$

$$
(\wedge / \text { CTR }): 1,(=, \neq) \rightarrow(29,27)
$$

CTR $\leftarrow T 1+\perp C T R$
$\rightarrow 25$
S5 + B
$\mathrm{CTR} \leftarrow \omega^{8} / \mathrm{S} 3$
$B \leftarrow Y$
(V/CTR): $0,(=, \neq) \rightarrow(37,33)$
$B \leftarrow \stackrel{\uparrow}{o} B$
$(\wedge / \mathrm{CTR}): 1,(=, \neq) \rightarrow(37,35)$
CTR $\leqslant T 1+\perp$ CTR
$\rightarrow 33$
$M R \leftarrow P$
$P \leftarrow T 1+\perp P$
$\operatorname{MAC}^{1}(\perp \mathrm{MR}, \mathrm{f} ; \mathrm{T})$
$\mathrm{S} 7 \leftarrow \mathrm{~T}$
$\rightarrow(42,48)(\mathrm{S} 6) 0$
$\mathrm{E}, \mathrm{X} \leftarrow(17)(\perp \mathrm{X})+2^{16}-\perp \mathrm{L}$
$\mathrm{L} \leftarrow \mathrm{S} 5$
$\mathrm{E}, \mathrm{Y} \leqslant(17)(\perp \mathrm{Y})+(\perp \mathrm{L})$
$\mathrm{L} \leftarrow \mathrm{S} 7$
E, $\mathrm{S} 6 \leftarrow(17)(\perp \mathrm{S} 6)+2^{16}-\perp \mathrm{L}$
$\rightarrow 53$
$\mathrm{E}, \mathrm{X} \leqslant(\mathrm{I} 7)(\perp \mathrm{X})+(\perp \mathrm{L})$
Figure 12. (Continued)

49	$\mathrm{~L} \leftarrow \mathrm{~S} 5$
50	$\mathrm{E}, \mathrm{Y} \leftarrow(17) \mathrm{T}(\perp \mathrm{Y})+2^{16}-\perp \mathrm{L}$
51	$\mathrm{~L} \leftarrow \mathrm{~S} 7$
52	$\mathrm{E}, \mathrm{S} 6 \leftarrow(17) \mathrm{T}(\perp \mathrm{S} 6)+\perp \mathrm{L}$
53	$\mathrm{E}, \mathrm{S} 4 \leftarrow(17) \mathrm{T} 1+\perp \mathrm{S} 4$
54	$\rightarrow(57,55)(\mathrm{v} / \mathrm{S} 4)$
55	$\mathrm{E}, \mathrm{S} 3 \leftarrow(17) \mathrm{T}(\perp \mathrm{S} 6)+2^{16}-1$
56	$\rightarrow 22$
57	RETURN TO MACROPRAM
	Figure $12 . \quad$ (Continued)

TABLE X

CORDIC ALGORITHM IMPLEMENTATION RESULTS (ASSEMBLY LANGUAGE) OF EVALUATING THE SINE FUNCTION

Ang1e(Radians)	Sin	Execution Time (Mili-Sec)
0.0	0.000244	3.304
0.1	0.099975	3.297
0.2	0.198913	3.310
0.3	0.295410	3.313
0.4	0.389587	3.300
0.5	0.479431	3.313
0.6	0.564758	3.305
0.7	0.644226	3.305
0.8	0.717407	3.310
0.9	0.783325	3.304
1.0	0.841369	3.305
1.1	0.891174	3.313
1.2	0.932206	3.311
1.3	0.963562	3.306
1.4	0.985351	3.311
1.5	0.997558	3.318
1.6	0.999450	3.310
1.7	0.991760	3.318
1.8	0.973693	3.313
1.9	0.946350	3.305

TABLE X (Continued)

Angle(Radians)	Sin	Execution Time(Mili-Sec)
2.0	0.909301	3.316
2.1	0.863220	3.320
2.2	0.808654	3.312
2.3	0.745666	3.310
2.4	0.675476	3.312
2.5	0.598510	3.314
2.6	0.515686	3.324
2.7	0.427795	3.311
2.8	0.334716	3.313
2.9	0.239074	3.321
3.0	0.140869	3.311
3.1	0.041564	3.316
3.2	-0.058654	3.304
3.3	-0.157592	3.311
3.4	-0.255798	3.320
3.5	-0.350646	3.317
3.6	-0.442016	3.320
3.7	-0.530090	3.327
3.8	-0.611999	3.311
3.9	-0.687622	3.314
4.0	-0.756713	3.329
4.1	-0.818054	3.302
4.2	-0.871520	3.327
4.3	-0.916320	3.321
4.4	-0.951599	3.311

TABLE X (Continued)

Angle(Radians)	Sin	Execution Time (Mili-Sec)
4.5	-0.977539	3.322
4.6	-0.999877	3.314
4.7	-0.999877	3.314
4.8	-0.996032	3.310
4.9	-0.982422	3.312
5.0	-0.958801	3.314
5.1	-0.925901	3.311
5.2	-0.883422	3.314
5.3	-0.832153	3.308
5.4	-0.772583	3.304
5.5	-0.705505	3.309
5.6	-0.631530	3.303
5.7	-0.550659	3.309
5.8	-0.464599	3.310
5.9	-0.373840	3.305
6.0	-0.279541	3.319
6.1	-0.182312	3.314
6.2	-0.082885	3.312

TABLE XI
CORDIC ALGORITHM IMPLEMENTATION RESULTS
(MICROPROGRAM) OF EVALUATING THE SINE FUNCTION

Angle(Radians)	Sin	Execution Time (Mili-Sec)
0.0	0.000244	0.105
0.1	0.099975	0.126
0.2	0.198913	0.112
0.3	0.295410	0.108
0.4	0.389587	0.106
0.5	0.479431	0.104
0.6	0.564758	0.108
0.7	0.644226	0.107
0.8	0.717407	0.113
0.9	0.783325	0.097
1.0	0.841369	0.110
1.1	0.891174	0.111
1.2	0.932206	0.114
1.3	0.963562	0.109
1.4	0.985351	0.104
J. 5	0.997558	0.105
1.6	0.999450	0.104
1.7	0.991760	0.105
1.8	0.973693	0.114
1.9	0.946350	0.106

TABLE XI (Continued)

Ang1e(Radians)	Sin	Execution Time(Mili-Sec)
2.0	0.909301	0.111
2.1	0.863220	0.105
2.2	0.808654	0.106
2.3	0.745666	0.105
2.4	0.675476	0.116
2.5	0.598510	0.111
2.6	0.515686	0.107
2.7	0.427795	0.116
2.8	0.334716	0.107
2.9	0.239074	0.114
3.0	0.140869	0.102
3.1	0.041564	0.103
3.2	-0.058654	0.101
3.3	-0.157592	0.105
3.4	-0.255798	0.106
3.5	-0.350646	0.112
3.6	-0.442016	0.110
3.7	-0.530090	0.105
3.8	-0.611999	0.109
3.9	-0.687622	0.097
4.0	-0.756713	0.108
4.1	-0.818054	0.112
4.2	-0.871520	0.107
4.3	-0.916320	0.107
4.4	-0.951599	0.111

TABLE XI (Continued)

Angle(Radians)	Sin	Execution Time(Mili-Sec)
4.5	-0.977539	0.106
4.6	-0.993774	0.107
4.7	-0.999877	0.107
4.8	-0.996032	0.107
4.9	-0.982422	0.102
5.0	-0.982422	0.102
5.1	-0.925901	0.101
5.2	-0.883422	0.110
5.3	-0.832153	0.108
5.4	-0.772483	0.111
5.5	-0.705505	0.110
5.6	-0.631530	0.115
5.7	-0.550659	0.116
5.8	-0.464599	0.107
5.9	-0.373840	0.114
6.2	-0.279541	0.111
5	-0.182312	0.110
		0.107

The Cordic algorithm may also be applied in solving many other mathematic problems as well as being applied in the evaluation of the sine and cosine functions. Decimal to binary and binary to decimal conversion, arctangent function computation, fourier transformation, et.al., can be done by the Cordic algorithm--a different way from the conventional methods. Arctangent function computation and decimal to binary conversions are chosen in this chapter to demonstrate how the Cordic algorithm is applied to solve these problems.

Arctangent Algorithm

This algorithm is obtained by reversing the sine and cosine algorithms. In this algorithm, the value V which equals Y / X is known (X and Y are components of a vector.) The vector is rotated with respect to the positive X-axis. The angle traversed is the angle whose tangent equals Y / X.

Functional Description

The VECTORING mode is used in this application. To illustrate the details of this algorithm, Figure 2 in Chapter III is referred to again. The value of v is checked before the initialization of the X - and Y-registers. If the value of v is greater than 1 then the Y-register
is initialized with 1 and the X-register is initialized with v; otherwise the X-register is initialized with 1 and the Y-register is initialized with v. The Angle Register (A-register) is always initialized with 0. A sign digit of 0 in the Y-register establishes a_{i} of -1 , which causes the top adder-subtractor to be set to subtract and the middle and bottom adder-subtractors to add. A sign digit of 1 has the opposite effect. The ATR constants are the same as those used in Chapter III. The VECTORING computing sequence as described in Table II is started. The angle whose tangent equals to v is taken from the A-register after the final computation step.

Decimal to Binary Conversions in Cordic

A technique is formulated for using the Cordic arithmetic unit to convert between angles expressed in binary fractions of a half revolution and angles expressed in degrees and minutes in the 8421-code.

The Cordic decimal-to-binary conversion technique may be compared to a conventional conversion technique in which the 8421 -code and binary arithmetic are utilized. The conventional conversion technique is based upon the 8421-code definition of the value of a decimal digit, N, located i placed to the left of the units position, as given by

$$
\begin{equation*}
\mathrm{N} \times 10^{\mathrm{i}}=\mathrm{n}_{4}\left(8 \times 10^{\mathrm{i}}\right)+\mathrm{n}_{3}\left(4 \times 10^{\mathrm{i}}\right)+\mathrm{n}_{2}\left(2 \times 10^{\mathrm{i}}\right)+\mathrm{n}_{1}\left(1 \times 10^{\mathrm{i}}\right) \tag{5.1}
\end{equation*}
$$

where n_{4}, n_{3}, n_{2}, and n_{1} are equal to zero or one. The constants $8 \times 10^{\mathbf{i}}, 4 \times 10^{i}, 2 \times 10^{i}$, and 1×10^{i}, evaluated in binary for all values of i to be used, are required in the conversion. For example, 5° in 8421 -code is

$$
\begin{aligned}
45^{\circ} & =(0 \times 8 \times 10+1 \times 4 \times 10+0 \times 2 \times 10+0 \times 1 \times 10) \\
& +(0 \times 8+1 \times 4+0 \times 2+1 \times 1) \\
45^{\circ} & =(0100),(0101) .
\end{aligned}
$$

For example, 86° can be written as
$86^{\circ}=(1 \times 8 \times 10+0 \times 4 \times 10+0 \times 2 \times 10+0 \times 1 \times 10)+(0 \mathrm{x} 8$
$+1 \times 4+1 \times 2+0 \times 1)$
$86^{\circ}=(1000) \cdot(0110)$
The conversion of a negative angle is accomplished in the same way, and the result is then complemented by subtracting the binary magnitude from zero. For example, -86° is (0111)(1010) which is the 2^{\prime} s complement of 86°.

The binary value of 45° as a fraction of half revolution is shown in Table XII.

In Table XII at each step a binary constant is either added or not added, depending upon whether the 8421 -code variable is 1 or 0 , respectively. In order to use the Cordic principle, it is necessary either to add or to subtract a constant. The use of addition or subtraction is controlled by a code variable placed in the sign digit position of an arithmetic unit register. The problem of conversion by adding and subtracting constants is considered first. Subsequently, the method of properly positioning the code variables for control is presented.

By analogy to the way in which a code variable of +1 is used to establish the addition of a constant, a variable of -1 is used to establish subtraction. Therefore, it is desired that a binary code with +1 and -1 variables be used to represent decimal angles in Cordic. For convenience, the desired code is called $a \pm$ (plus-minus) code.

TABLE XII

THE CONVENTIONAL DECIMAL-TO-BINARY CONVERSION

Constants Degree	Constants-Binary Fraction of half Revolution		$\begin{aligned} & 8421- \\ & \text { Code Var } \end{aligned}$		Product Term
8×10	. 01110010	x	0	$=$	0.00000000
4×10	. 00111001	x	1	$=$	0.00111001
2×10	. 00011100	x	0	$=$	0.00000000
1×10	. 00001011	x	0	$=$	0.00000000
8	. 00000110	x	0	$=$	0.00000000
4	. 00000011	X	1	$=$	0.00000110
2	.00000011	X	0	$=$	0.00000000
1	. 00000001	x	1	$=$	0.00000001

Accumulated sum $=2^{-2}$ half revolution $=.01000000$.

The $8,4,2,1$ weights cannot be applied directly to a four-digit \pm code because all possible sums of binary-weighted \pm code digits are odd. Therefore, a transformation of the decimal digits $0,1, \ldots, 9$, into a set of ten odd integers is necessary. The set of ten odd integers $-0,-7, \ldots,-1,+1, \ldots,+9$ is selected.

The equation transforming a decimal digit N, having one of the values, $0,1, \ldots, 9$, into a digit Y having one of the values $-9,-1$, ..., +9 is

$$
\begin{equation*}
Y=2 N-9 \tag{5.2}
\end{equation*}
$$

The equation for the inverse transformation is

$$
\begin{equation*}
\mathrm{N}=\frac{1}{2} \mathrm{Y}+\frac{9}{2} \tag{5.3}
\end{equation*}
$$

Applying the factor of $\frac{1}{2}$ in (5.3) to the 8421 -weight results in the \pm code equation

$$
\begin{equation*}
\mathrm{N}=\mathrm{Y}_{4} \cdot 4+\mathrm{Y}_{3} \cdot 2+\mathrm{Y}_{2} \cdot 1+\mathrm{Y}_{1} \cdot \frac{1}{2}+\mathrm{C} \tag{5.4}
\end{equation*}
$$

where $Y_{j}=+1$ or -1 and $C=\frac{9}{2}$. A factor of 10^{i} may be applied to each term in (5.4), as was done in (5.1), account for the position of the digit N. The pattern the Y_{j} variables of the code of (5.4), with $C=\frac{9}{2}$ and with 0^{\prime} 's used t represent -1 's, is identical to that of the Excess-3 code.

Equation (5.4) can be applied to each digit position, and the constant term $\mathrm{c} \times 10^{\mathrm{i}}$ for all decimal digit positions is added in binary to the accumulated sum. As an example 45° will be converted from \pm (excess-3) code to binary as follows:
for 45°
$C_{2}=\frac{9}{2}=4.5$
$C_{1}=\frac{9}{2} \times 10 .=45$
$C=C_{1}+C_{2}=49.5=$ total constant
Consequently the constant for 45° is 49.5 .
The ± 1 code representation is

$$
\begin{aligned}
& 5+3=8=(1000)_{2}=(+--) \\
& 4+3=7=(0111)_{2}=(-++)
\end{aligned}
$$

Where each digit must be added to 3 for excess -3 . The zero stands for minus one and one for plus one. Thus

$$
45^{\circ}=(-+++)(+---)
$$

The complete conversion of 45° is shown in Table XIII.
Where from equation (5.4)

$45^{\circ}=\left(40 Y_{4}+20 Y_{3}+10 Y_{2}+5 Y_{1}\right)+\left(4 Y_{4}+2 Y_{3}+1 Y_{2}+\frac{1}{2} Y_{1}\right)+C$
$45^{\circ}=(-40+20+10+5)+\left(4-2-1-\frac{1}{2}\right)+49.5^{\circ}$

Successive digits of the \pm code must control successive setting of the adder-subtractors in order for the proper sequence of additions and subtractions to occur as indicated in the previous table. The settings of the adder-subtractors during the conversion operation are established by the value of the sign digit located in the Y-register.

In positioning the \pm code digits for control, the technique of nonrestoring division is useful because successive quotient digits are

TABLE XIII
DECIMAL-TO-BINARY CONVERSIONS
IN CORDIC

Constant Degrees	Constant-Bainry Fraction of Half Revolution	\pm Code	Product	Accumulated Sum
49.5	.0100011001110	(correction)	.010001100110	.010001100110
40	.001110001110	x	-1	$=-.001110001110$

The accumulated sum $=2^{-2}$ half revolution $=0.010000000000$
given by the sign of successive remainders. Dividing the number representing the \pm code of the angle by 1 produces the signs of successive remainders. In Cordic this is accomplished as follows:

1) If the remainder is positive, subtract the divisor.

If the remainder is negative, add the divisor.
2) Shift the divisor one place to the right.
3) Repeat 1 and 2.

The positioning of digits of the \pm code for 45° is illustrated by following the above rules as shown in Table XIV.

In decimal-to-binary conversion, the \pm code for the desired angle is placed in the Y-register and the divisor of 1 is placed in the X-register. A sign digit of 0 in the Y-register establishes $a Y_{i}$ of -1 , which causes the top adder-subtractor, Figure 13 , to subtract and the bottom adder-subtractor to add. A sign digit of 1 has the opposite effect. The constant C in (5.4) is initially placed in the angle register and successive constants are introduced into the bottom adder-subtractor as shown in Figure 13. As one step of the division is taking place to establish the next setting of the adder-subtractors, a constant is being added or subtracted to modify the quantity in the angle register according to the sign digit in the Y-register at the beginning of the step. The binary angle is taken from the bottom adder-subtractor on the final computation step.

GENERATION OF \pm CODE FOR 45°

Figure 13. Implementatjon of \pm Code to Binarv Conversion.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The results of the programming tasks discussed in the previous chapters are shown in Tables VIII - XI.

In order to compare the accuracy of the results obtained from each task, a set of standard sine function values is obtained. The result of each task is compared to these standard values and the accuracy is thus determined.

For the convenience of further description, the four tasks which have been accomplished in Chapter IV are designated Task 1, Task 2, Task 3 and Task 4:

Task 1 - polynomial method implemented in assembly coded program.
Task 2 - polynomial method implemented in microcode.
Task 3 - Cordic algorithm implemented in assembly coded program.
Task 4 - Cordic algorithm implemented in microcode.
Note that the sine values of Task 1 are identical to those of Task 2, while the sine values of Task 3 are identical to those of Task 4. Thus, only two sets of results are compared with the standard sine values, as shown in Tables XV and XVI. A cording to these tables, both tasks are accurate up to three decimal digits; in other words, all the tasks give about the same accuracy of sine values.

The execution time of each taskis shown in Tables VIII -XI. By reviewing those tables it is found that Task 1 is the most time-

TABLE XV
THE COMPARISON BETWEEN THE CORDIC ALGORITHM IMPLEMENTATION RESULT AND THE STANDARD SINE VALUE

Ang1e(Radian)	Sin(Cordic)	Sin (Correct)	Error
0.0	0.000244	0.0	0.000244
0.1	0.099975	0.0998334	0.0001416
0.2	0.198913	0.198669	0.000244
0.3	0.295410	0.29552	0.00011
0.4	0.389487	0.389418	0.000169
0.5	0.479431	0.479425	0.000006
0.6	0.564758	0.564642	0.000116
0.7	0.644226	0.644218	0.000008
0.8	0.717407	0.717356	0.000051
0.9	0.783325	0.783327	0.000002
10.	0.841369	0.841471	0.000102
1.1	0.891174	0.891207	0.000033
1.2	0.932206	0.932039	0.000167
1.3	0.963562	0.963558	0.000004
1.4	0.985351	0.98545	0.000099
1.5	0.997558	0.997495	0.0000063
1.6	0.999450	0.999574	0.000124
1.7	0.991760	0.991665	0.000095
1.8	0.973693	0.973848	0.000155
1.9	0.946350	0.9463	0.00005

TABLE XV (Continued)

Angle(Radian)	Sin(Cordic)	Sin(Correct)	Error
2.0	0.909301	0.909297	0.000004
2.1	0.863220	0.863209	0.000011
2.2	0.808654	0.808496	0.000158
2.3	0.745666	0.745705	0.000039
2.4	0.675476	0.675463	0.000039
2.5	0.598510	0.598472	0.000013
2.6	0.515686	0.515502	0.0000184
2.7	0.427795	0.42738	0.000415
2.8	0.334716	0.334988	0.000272
2.9	0.239074	0.23925	0.000176
3.0	0.140869	0.14112	0.000251
3.1	0.041564	0.0415808	0.0000168
3.2	-0.058654	-0.0583743	0.0002797
3.3	-0.157592	-0.157746	0.000154
3.4	-0.255798	-0.255541	0.000257
3.5	-0.350646	-0.350783	0.000137
3.6	-0.442016	-0.442521	0.000505
3.7	-0.530090	-0.529836	0.000254
3.8	-0.611999	-0.611858	0.000141
3.9	-0.687622	-0.687766	0.000144
4.0	-0.756713	-0.756802	0.000089
4.1	-0.818054	-0.818277	0.000223
4.2	-0.871520	-0.871576	0.000056
4.3	-0.916320	-0.916166	0.000154
4:4	-0.951.599	-0.951602	0.000003

TABLE XV (Continued)

Angle(Radian)	Sin(Cordic)	Sin(Correct)	Exror
4.5	-0.977539	-0.97753	0.000009
4.6	-0.993774	-0.993691	0.000083
4.7	-0.999877	-0.999923	0.000046
4.8	-0.996032	-0.996165	0.000133
4.9	-0.982422	-0.982453	0.00031
5.0	-0.958801	-0.958924	0.000123
5.1	-0.024901	-0.924815	0.000086
5.2	-0.883422	-0.883455	0.000033
5.3	-0.832153	-0.832267	0.000114
5.4	-0.772583	-0.772765	0.000182
5.5	-0.705505.	-0.70554	0.000035
5.6	-0.631530	-0.631267	0.000263
5.7	-0.550659	-0.550686	0.0000027
5.8	-0.464599	-0.464602	0.000003
5.9	-0.373840	-0.373877	0.000037
6.0	-0.279541	-0.279416	0.000125
6.1	-0.182312	-0.182163	0.000149
6.2	-0.082885	-0.0830896	0.0002046

TABLE XVI

THE COMPARTSON BETWEEN THE POLYNOMIAL
METHOD IMPLEMENTATION RESULT AND THE STANDARD SINE VALUE

Ang1e(Radian)	Sin(Cordic)	Sin(Correct)	Error
-1.5	-0.997558	-0.997495	0.000063
-1.4	-0.985351	-0.98545	0.000099
-1.3	-0.963378	-0.963558	0.00018
-1.2	-0.932128	-0.932039	0.000089
-1.1	-0.891357	-0.891207	0.00015
-1.0	-0.841552	-0.841471	0.000081
-0.9	-0.783447	-0.783327	0.00012
-0.8	-0.717285	-0.717356	0.000071
-0.7	-0.644287	-0.644218	0.000069
-0.6	-0.564697	-0.564642	0.000055
-0.5	-0.479425	-0.479492	0.000067
-0.4	-0.389404	-0.389418	0.000014
-0.3	-0.295654	-0.29552	0.0001344
-0.2	-0.198730	-0.198669	0.000061
-0.1	-0.099853	-0.0998334	0.0000196
0.0	0.0	0.0	0.000000
0.1	0.099609	0.0998334	0.0001434
0.2	0.198486	0.198669	0.000183
0.3	0.295410	0.29552	0.00011
0.4	0.389160	0.389418	0.000258

TABLE XVI (Continued)

Angle(Radian)	Sin(Cordic)	Sin(Correct)	Error
0.5	0.479248	0.479425	0.000177
0.6	0.564453	0.564652	0.000112
0.7	0.644042	0.644218	0.000176
0.8	0.717041	0.717356	0.000315
0.9	0.783203	0.783327	0.000124
1.0	0.841308	0.841471	0.000163
1.1	0.931884	0.891207	0.0000937
1.2	0.963134	0.932039	0.0001546
1.3	0.985107	0.997314	0.997495
1.4			0.000424

consuming task; Task 2 consumes less time; Task 3 consumes still less time; Task 4 consumes the least time of all.

Task 1 and Task 2 are the same algorithm but implemented in different ways, so the sine values will be identical but the execution time may be different. The same applies to Task 3 and Task 4. The programming results in Chapter IV prove this assumption.

Task 1 is performed in an assembly coded program, while Task 2 is performed in a microprogram. According to the description of the microprogramming in Chapter IV, the execution time of Task 2 should be less than that of Task 1. Similarly, Task 4 should have less execution time than Task 3. The programming results in Chapter IV also prove this assumption.

The things that cannot be predicted before going to the computer are whether Task 1 or Task 3 will have less execution time, and whether Task 2 or Task 4 will have less execution time. However, we expect that Task 1 is faster than Task 3 and Task 2 is faster than Task 4. If this is true, it means we can improve the speed of evaluation of trigonometric functions by replacing the conventional polynomial method with the Cordic algorithm. Surprisingly, the programming results in Chapter IV indicate that the conventional polynomial method is faster than the Cordic algorithm for computing trigonometric functions. Although this is disappointing, it is possible to determine exactly how these results were effected.

Although the Cordic algorithm eliminates the necessity of multiplication, some shifting still must be done. In the real Cordic machine, three registers ($\mathrm{A}, \mathrm{X}, \mathrm{Y}$) can be shifted and added or subtracted simultaneously. When the Cordic algorithm is simulated in this general
purpose machine the HP21MX, the shifting and adding or subtracting can only be done sequentially, because the arithmetic unit can only handle one arithmetic operation at a time. In addition to this, the result of shifting and adding must be stored, and then the arithmetic unit for shifting and adding/subtracting of other registers msut be released. After all three registers finish their shifting and adding/ subtracting for the current cycle, the next cycle starts. So the shifting and adding/subtracting results of the first register in the previous cycle will be restored, and so on for the second register and thrid. Therefore, when the computer is running, a lot of storing and restoring is being performed, and this is very time-consuming. That is why Task 1 requires more execution time than Task 3 . Task 2 implements the Cordic algorithm in a microcode, so it improves the speed of Task 1 , but is still slower than Task 3 and Task 4. Task 4 is a microcode, and thus improving the speed of Task 3. Therefore, the conclusions are:

1) The use of the Cordic algorithm for evaluating trigonometric functions without hardware extensions will be slower than using conventional polynomial methods;
2) When using a conventional polynomial method for evaluating the sine function, the microprogram will be two times faster than the assembly coded program;
3) In order to use the Cordic algorithm to improve the speed of evaluation of trigonometric functions, a lot of hardware wọk must be done in the current HP21MX computer.

With the suprising speed of development of the microprocessor today, it might be very easy to construct a microcomputer which has the features of both the general purpose computer and the Cordic computer in the near future.

A SELECTION BIBLIOGRAPHY

(1) Gear, W. C. Computer Organization And Programming. New York: McGraw-Hill, 1969.
(2) Iverson, K. E. A Programming Language. New York: John Wiley, 1962.
(3) La Lyusternik, O., A. Chervonenkis, and A. R. Yanpol'skii. Handbook for Computing Elementary Functions. New York: Pergamon Press, 1965.
(4) Hayward, J. T. and J. P. Wong, Jr. Approximations For Digital Computers. Princeton, New Jersey: Princeton University Press.
(5) HP2lMX Computer Series Reference Manuai. Cupertino, California: Hewlett Packard Company, 1974.
(6) HP Microprogramming 21MX Computers Operating and Reference Manual. Cupertino, California: Hewlett Packard Company, 1974.
(7) A Pocket Guide to Hewlett-Packard Computers. Cupertino, California: Hewlett Packard Company, 1974.
(8) A Pocket Guide to Interfacing HP Computers. Cupertino, California: Hewlett Packard Company, 1974.
(9) Volder, J. S. "CORDIC Trigonometric Computation Technique." IRE Transactions on Electronic Computers, EC-8, Sept., 1959, p. 330.
(10) Daggett, D. H. "Decimal-Binary Conversions in CORDIC." TRE Transactions on Electronic Computers, EC-3, Sept., 1959, p. 335.
(11) Meggitt, J. E. "Pseudo-Division and Pseudo-Multiplication Processors." IBM Journal, Apri1, 1962.
(12) Waither, J. S. "A Unified Algorithm for Elementary Functions." Spring Joint Computer Conference, 19.71.
(13) Despain, A. M. "Fourier Transform Computers Using CORDIC Iterations." IEEE Transactions on Computers, Vo1. c-23, No. 10, Oct., 1974, p. 993.
(14) Cochran, D. S. "Algorithms and Accuracy in the HP 35." HewlettPackard Journal, June, 1972.
(15) Schmid, H. and A. Bogacki. "Use of decimal CORDIC for generation of many transcendental functions." Electrical Design News, February, 1973, pp. 64-73.
(16) Richards, R. K. Arithmetic operations in digital computers. New York: Van Nostrand, 1955.
(17) Briggs, H. Logarithmicall arithmetike. London: George Miller, 1631.

APPENDIX A

FUNCTIONAL BLOCK DIAGRAM

APPENDIX B

PROGRAM LISTINGS


```
    GWE FFOMFFm
```



```
* , , \GO EOGO DEDFEE
* OUTFUT FFFHMETEF-... IN YHLUE DF THE INFUT FWULE
+:
```



```
HEME, F.E. L.,T
```



```
    #FOM 14E
    TEE TTME
    GッU 205%
    STF QE
    #F
WET UF TMTEFFUFT TIME FEFIUL TO E A MILISEOUNO
        OTH 14E
        \WF
WEET FEFEFTTTTON KOMWT TG AEE
GTHFT LEMF HO
        \XiTF LET
        CLF
        ELE
        GTH 
        ETH 'Y'.
        ETG EOMNT
        FFD FDN
```



```
        F[GF|
        FFE 1E
        WM
        TMF FT
        GTH TFE
        HNE m:
        EF
        FFLL 1
EN NMF
        |[F1E
        MF ENT
HT EH%
        FFF
        ITF FH
        STH SN
        B%H
GT FEF I
        IGGM
        TMFET
        TMF EN
FMT ETH FET
ENTY IEFFF
```



```
    ETE 14E, %
    LE
    GTE %
    ETE 
    LIEE UW
    M1.!
    EFF
    TMF K%1
    GTE 'r'
    FHO PFE
EM EMETY
#HT LEM EOW
    ETE F",
    \XiTE TEE
    1.EE 'T'
```


UW	示T mz
NFEE	जnT $1+4 \mathrm{me}$
FEF	
$\triangle I \%$	日ルT $1 \times$
F＇，	$E 6 \leq 1$
TES	Ese 1
Emb	NWF
	OTT－1E
	ロッT－15
	ロ1\％ $7-14$
	MTT－12
	ロuT－－
	ロuT－11
	サएT－1E
	पuT－－
	ロuT－－
	ローT－¢
	Dा＇T－－ 4
	OTCT－－
	¢ा\％T－－
	Q1\％T－ 1
	MOF
Hi	NOF
	जाए amme
	जT T mmat
	जा EmGuz
	जuT menat
	जै बसीब56
	जाएT mb\％42
	जाT E121\％
	TuT 0n玉421
	जा बा4
	पाT 911844
	जT E玉Emए
	W\％
$\%$	5 ES 1
＇T＇	551
$1 . .1$	पाT 17664
H5	OnT $17 \% 6$
F\％	时\％
TFC：	NoF
M＂：	QT 9
T®\％	ETC 1


```
* FFOMFF%M
```



```
* &-GEEGG DEGFEE * *
*: OUTFUT FHFHMETEF-- ETM UFHUE OF THE INFUT FMULEE *
*
FWME.G.E.L.T
            MFT I4E
```



```
            JEE TIME
            OFTE EmE
            ETF बE
            ELH
*ET UF TWTEFFUFT TTME FEFTOL TO G I MTLISEOOHW
            OTH 14F
            NO
*EFT FEFEFTITTOM COUHT TO IEN
GTFFT LEF HO
    STH LOT
    ELF
    ELE
    ETH 
    GTH '%
    ETH UWHMT
    FFO FMG
WOWWEFT THE INFUT FWUE TO THE RTFOTE FEFFESENTHTTO
    FE% FT
    Fनere 1E
    ELH
    TMF FT
    GTH TF=
    H4N
    5%W
    FF1. 1
FNN PMF
    &&F1E
    HNF ENT
Hy FH%
    FHF
    IOFFH
    \triangleTH SM
    %%%
#T FF% 1
    TESN
    MWFGT
    TMF EPH
EWM ETH FR
EWT\ BNFFF
WTHTTGTE TTME ULUUG THTEFFUFT
WTHE EOFT, UOMFUTTHG EEOUEWE GTAFTE HEFE
    #W 14E, =
        ElE
        BE%
        EE'r'
        『バ%
```



```
* SEOIMEMWE
            WIT 1世1E%
```



```
*THE GWMLE EONGTHNTE
WFE जाT 14Emg
```



```
HM%% जाए छulv44
FHTS जिए बmap?
```



```
* FOE EQFHUFTING THE SINE FUHTTON **
* THE FHGLE OF THE SINE FINWTION SHOULD EE STORED IN
    THE REGTSTEE A EEFOFE EMTEF THE MTCFOFFOGFFM
**
```



```
SrMTFE
*W"1GIN=1400
            MF NOF FHES NOF STFPT
SORIGTN=1411
STRET NOF NOF FHES NOF NOF
*GET THE UNTT GEUTOE FFUH MHIN MEMORT
    FEAL MOF INL FNN F
*TORE IT IN FEG. &
        NOF NOF FHES :
        THE
WET THE FIFST FWULE COWTST
        FEFL NGF INE FNW
*STORE IT IN FEG. ST
        NOP WOF FHSS S% TAE
WTORE THE FWGLE OF THE EINE FUNCTTON IN FEG. SG
        WOF NOF FHSSES G
*TF, THE ANGIE IS LESS THFN IEG DEGEEE, ERAWCH TO ENL
    MF GME% HLIS RTS ENI
WGET THE TWOS COHFLENENT OF ET
    WOF NOF INT ST ST
*GET THOS COMFENT OF }
        WOF NOF CMFS }%\mathrm{ %
NTTOEE }%\mathrm{ NN NOF INL }
ENL NOF NOF FHES '}
WTEEAF X FEGG NWF ZEFO % NOF
+56=56+57
    HOF HWF PHES 1 ST
    NOF WOF FDO SE SE
*)4=-14
    IWM NWF LOM S4 3EEE
WLEFRES
        NHF WOF LOH SS EE
        NOF NOF FFSS SS %
        NOF NWF FHES L SOF 'T
AINITIFLIFE THE COUNTEF
EK NOF MOP FHSS UNTE SS
&FTGHT SHIFT E REG. E'r' THE RUMEEE IH THE COUNTEF.
*THEN STORE THE SHIFTIMG FESULT IN SE
        HOF EFT FHSEE %
        HES F1 FHSSE E
        NOF NWF FHSESS E
&EET COUMTEF FUGIM
    WW WWF FHES ONTESS
    HOF' EFT FHE= E 'r
    HFS Fl FFSSE E
HEET NEST GNGLE GONETHTHT
EKI FEFO NOF INO FNM F
    NOF NOF FHES S% TFGE
    NOF NOF FAES SE SE
WEST THE GHGLE. IF GFEATEE THAM LEG DEGREE GU TO ENE
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Tw & CNW\％ & H1迷 & NOF & ENE \\
\hline & NOF & W0F & EUE & \＆ & \％ \\
\hline & NOF－ & WIF： & PHS & L & \(\pm\) \\
\hline & NOF： & WOF & FLCO & ＇r＇ & ＇r＇ \\
\hline & Nop & NOF & FHS & ！ & 57 \\
\hline & NOF＇ & NOF & SUE & 56 & 56 \\
\hline & WNF & & & & JM \\
\hline ENE： & NOF & NOF & ALT & X & \％ \\
\hline & NOF & リぜ） & FHE＝ & 1 & 55 \\
\hline & NOF： & Nロ゙・ & SUE & ＇r＇ & ＇T＇ \\
\hline & NoF＇ & NはF & FAC＝ & L & 57 \\
\hline & NOF & mof & HDO & 56 & 56 \\
\hline TN & NOF & NOF & INE & 54 & 54 \\
\hline & TWF & पnc\％ & TEE & ROF & ENIT \\
\hline & MOF & 小げ & DEL & 52 & 52 \\
\hline & THF & & & & Er \\
\hline ESTT & NOF & ETN & FHS & Wop & NOF \\
\hline
\end{tabular}
FENL
```



```
* THSE 3 TEST FFOGFHM FOLTMOMTAL METHOL INFLENENTED IN FSSEMEL'' *
* FFOGFHM **
```



```
    OUTFUT FAFHHETEF--THE SINE GFLUE OF THE IHFUT FHULE
```



```
HSTE. H. E.L.T
*SET UF THE ILOUK INTEFFUFT UECTOF FDQFESE
    OFG 14E
        IEE THME
        ORG EDGE
        STF DE
        ELF
        OTA 14E
        NOF
STAFT LEA HL
        ETA LUT
        OLA
        CLE
        EF%
        CH'r'
        ETA EOUNT
        STC
        MF'T FMN
        HEL }
        STE E
        LEH IE
        ClE
        MFT'G
        HDE CZ
        LDH 1E
        CLE
        MF'T'S0
        HEL Z
        ADE E1
        LCH LE
        CLE
        MF゙r' Alv
        STE HWN
        STE HNS
        IEZ LET
        TWF ENT1
        ELE 14E
WOUTFUT E&EDUTGON TIME.SIN HWD EOE QHBUES OF THE TPFUT FMULE
        LDE EOUNT
        ISE OUT
        TSE OUT1
        ClE
        sTE EOMWT
        LDE FNE
        ISE OuT
        TSE OUT1
        LDE FHN
        IEE पuT1
*TWFEFEE THE TNFUT FHGLE EY 口 & THEN EEFEFT THE FFOMFHM
        LDFTINO
        HFS. AFS
        HFS. HRE
        BES
        HWH AWN
        STH HWN
        NWE STHRT
+SEFWTUE FOUTTNE FGE CLOTK INTEFWUFT
TINE NOF
            STE 14E.:
            152 एOUMT
                TMF THWE, I
OUNT OलT व
HWG OिT E
LET OTT 1FTES4
HE DET 177654
HNS OTTO
#0 GॉT Q
\square1 [EC 0 909002
Oz [EC - 1659685
GE DEC E. EQT64T915
INE DEE G.1
```



```
* THEK 4 TEST FROUEAM--FOLTNOMTHL NETHOD IMFLEMENTED IN MLCROPROGFAMF
* FFOGRFIM
* INFUT FHFHMETER--AN FNGLE FFMNED FFOM -.GQ DEGREE TO GE DEGREE *
* OUTFUTT FARATMETEE---THE SINE wRLUE OF THE INFUT FNGLE THE
```



```
FISME. F. B.L. T
*SET UF THE LlGUK INTEFFUFT vECTOR ADDRESS
        OFT 14E
        JSE TIME
        ORG2GGE
        STF 日E
        CLA
        OTA 14E
        NOF
STAET LDFHC
        STA LET
        Cla
        CLE
        CHE
        CH'r'
        ETH OOUNT
        STE: 14E.E
*ENTEY FOINT OF THE MICFOGRHM
ENT1 OLT 1ESLEG
F#NGOTG
EL OLT PPFP4
\square% DTT 1254EE
Es OUT TEE2e
FWE OCT E
*THE MICEOFFOGRM RETUFNG THE OOHTROL TO THIS FOIMT
    ISE LET
    TWF ENTI
    CLE 14E
```



```
    LDE COUMT
    JSE OUT
    IEE DUTI
    ClE
    STE EOUNT
    LOE FNE
        ISE OUT
        ISE OUTL
        LDE FWN
        TEE OUT1
WHEFEHSE THE INFUT FWULE ET Q I THEN FEFEGT THE FFOLGOM
        LEH INE
        ARS, HFC
        HEC, AFE
        FFS
        HDFH
        STF FWW
        TMF STFFT
*EEFwTCE FOUTTAE FOF ELOTE INTEFFUFT
TIME NOF
        STE L4E.F
        SE EDu|T
        ITF TIME:J
EOUNT EIT ET
```



```
HO जNT 1F%G4
50 OाT G
INC DEE E. 1
    EHND
```



```
** FOL'TMOMIHL METHMO {
```



```
##'rMTMES
##F!GIN=1405
        FEFLO NOF IWE FWN F
```



```
        NOF NOE FHESO THE
        HOF NOF FHSESO Se
*GTUFE THE UHLUE EL IN EI
        FEFC MNF INS FHM F
        NOF NOF FFES SJ THE
WTOFE THE WHLUE EZ IN SE
        FEFO NOF TNL FM| F
        NOF POF FHSS SS THE
*STGFE THE ,FHLUE OG TH S5
        FEFLC NOF TWN FNW F
        NOF NOF FFSESE TFE
NOMFUTTE NW%
        MOF MOF FBE= F E=
        IEE NOF WOF WOF MF'r
        FFOL1 FFOSE E
*TTFE W*% IN SE
        NOF NOF FHESEE E
WOWFUTE WE*W*%
        NF NOF FGF= F E
        NOF NOF FHSSS% 55
        SE NOF NOF MOF MF'r
        |F% NOF FHES L SC
WOMFUTE GZ+GEWG%%
        NOF POF HDO F E
```



```
        NOF NOF FFE= =% SE
        ISE MOW NOF NOF PF"Y
WHOTUET THE EOFHE FHUTOF
        FFS LI FHSEE E
        FFE LI FFSSE E
        FFE LI FHESE E
```



```
        NO% NW% F#E= LI
        NOF PWF FOD F &
```



```
        NOF N゙ツF FH5S S% 5%
        IE NW NOF NOF MFY
```



```
        WOF MUF FHE= T E
        WFTE MWF THN FNW :=
WFETUFN TO MFUWOMFROMFFM
FETUFW &NF FTM FFSG NOF NOW
```



```
MF'ч' NOF EMO FH5S =% F
    NOF NDF ZEFOE NOF
    NOF NWF FFSE! S2
    NOF FPT FHES ENTFE
    MF"r' FL FLD E E
```



```
        THF EW以% FLNE FOE +%%
        NOF WOF SUE E E
        NMF NOF FHES NOF E=
        JF ENW% FLIE TE FETLFW
        MWF% MOF,FF5S!
        NOF FTNN E|EE E E
WEW
```



```
OuT1 NOF
    [GT SF%
        5%SFM2
        L[解 TT'r'
        #TH 11E
        LOH EL
        OTA 11E
        ETG 11E E
        SFS 1JE
        TMF *--1
        LEM =1%T
        EF%
        CH
LiMF= FF!
        ADH F5O
        OTF IIE
        GT% 11E,%
        C!H
        FF=11E
        J*F:w-1
        1S%
        MF LOF
        LLE EH%
        \% =F%1
        TMF WTTM, [
        EW[C
```



```
* GHEFIFGE EONTFUL FOUTTNF--FETUFW THE GFFRIFGE TG THE EEGGQING OF:* THE I THE FWG FEEC UWE LTME
```



```
OMT NOF
    OTSF%
            G1% E.E
            L[%H TT'Y'
            ITF I1E
            LCH EF
            OTF LIE
            ETG 11E.E
            FS 11E
            IMF :+-1
            LEFGF
            GTF 11E
            GTE 11E,:
            FS 11E
            ITNF:-1
            LMESN',
            TMF IUIT.I
FO% TOTEO
T"'r brT legmer
```



```
\squareF जा 玉15
LFF TITT 1E
##% NWF
    NWF
EFW- M MF
EL WITT E4E
    EHS
```

2 VITA
Peihsung Thomas Hu
Candidate for the Degree of
Master of Science
Thesis: THE CORDIC ALGORITHM IMPLEMENTATION FOR TRIGONOMETRIC FUNCTION EVALUATION IN HP21MX
Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Taipei, Taiwan, Republic of China, July 2, 1950, the son of Mr. and Mrs. B. Y. Hu.
Education: Graduated from Chengko High School, Taipei, Taiwan, Republic of China, in June, 1968; received Bachelor of Science degree in Electrical Engineering from Chiao Tung University, HsinoHu, Taiwan, Republic of China, in June, 1972; completed requirements for the Master of Science degree at Oklahoma State University in May, 1978.
Professional Experience: Graduate teaching assistant, Department of Computing and Information Sciences, Oklahoma State University, 1975-1976; Software specialist, Atkins \& Merril Training Equipment Company, 1976-present.

[^0]: * Macroprogram - programs stored in main memory.

 Microprogram - programs stored in control store.

