
,

THE CORDIC ALGORITHM IMPLEMENTATION FOR ,

TRIGONOMETRIC FUNCTION EVALUATION

IN HP21MX
/,

By

PEIHSUNG THOMAS HU ,,
Bachelor of Science

National Chiao Tung University

Hsinchu, Taiwan

1972

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for. the Degree of
MASTER OF SCIENCE

Hay, 1978

~-~
}q1~

H~1qe
rop·'JJ

'
'

'
'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

THE CORDIC ALGORITHM IMPLEMENTATION FOR

TRIGONOMETRIC FUNCTION EVALUATION

IN HP21MX

Thesis Approved:

fi. F ~~
Thesis Adviser

~&.11

Dean of the Graduate College

ii

PREFACE

This paper describes the Cordie algorithm and its implementation

for the evaluation of the sine function in a HP21MX computer. A

polynomial method is also described and implemented in the HP21MX

computer for the purpose of comparing the result with the the Cordie

algorithm. The HP21MX microprogramming. is also applied in this

experiment to increase the programining efficiency.

I would like to express my gratitude to my major advisers,

Dr. Edward Shreve and Dr. G.E. Hedrick for their advicei and guidance

during this project. Also, appreciation is expressed to my other

committee member, Dr. T.E. Bailey for his invaluable assistance in the

preparation of the final manuscript. Thanks are also extended to

Mrs. Pam Haught for her typing this paper and her invaluable help in

preparing the final copy of this paper.

fii
I

TABLE OF CONTENTS

Chapter

I.' INTRODUCTION

II. ST~~DARD TECHNIQUE FOR THE EVALUATION OF TRIGONO~lliTRIC
FUNCTIONS , . . .

III. THE CORDIC ALGORITHM

Introduction
Functional Description
Representation of Angles in Cordie
Sine and Cosine Algorithm

IV. COMPUTER IMPLEMENTATION AND PROGRAMMING RESULTS

System Features
Hardware Registers .
Display Register
Interrupt System .

APL Description of HP21Jvl:X
The Processor
Instruction Fetch . . .
Instruction Decoding
Instruction Execution
Interrupt Service . .
Input/output Interrupts

Memory Access Routine
Address Computat~ion Routine

"Instruction Execution Routine . .
.Ydcroprogra.mming " ...

Conventional Control Section . .
Ydcroprogrammed Control Section
The Hi.cro-programmable Computer
Control Section
The Control Processor . . • .
Main Nemory • • .
Input and Output . . .
Arithmetic and Logic Section . . . • •

Implementation of a Polynomial Algorithm in
HP21MX Computer

iv

. .
the

Page

1

3

7

7
7

17
20

22

22
23
24
25
25
27
27
29
43
L~J

47
47
48
49
60
60
61
62
62
64

"65
66
66

68

Chapter

Implementation of the Cordie Algorithm on the
on the HP21MX Computer

Calculation of Execution Time . . • •

V. OTHER USES OF CORDIC ..

Arctangent Algorithm
Functional Description
Decimal to Binary Conversions in Cordie

VI. SUMMARY AND CONCLUSIONS

A SELECTED BIBLOIGRAPHY

APPENDIXES

APPENDIX A - FUNCTIONAL BLOCK DIAGRAM

APPENDIX B - PROGRAM LISTINGS

v

Page

69
75

88

88
88
89

98

106

108

108

110

LIST OF TABLES

Table Page

I. Typical Rotation Computing Sequence . 18

II. Typical Vectoring Computing Sequence 19

III. Interrupt Assignments . 26

IV. "PROC" Program Segments 27

V. Decoding Vectors 30

VI. Instruction Classes 31

VII. The Navigation Matrix 32

VIII. Polynomial Method Implementation Results (Assembly
Language) of Evaluating the Sine Function 70

IX. Polynomial Method Implementation Results (Microprogram)
of Evaluating the Sine Function 72

X. Cordie Algorithm Implementation Results (Assembly
Language) of Evaluating the Sine Function . . . 82

XI. Cordie Algorithm Implementation Results (Microprogram)
of Evaluating the Sine Function . . . 85

XII. The Conventional Decimal-To-Binary Conversion 91

XIII. Decimal-To-Binary Conversions in Cordie 94

XIV. Generation of + Code for 45° 96

XV. The Comparison Between the Cordie Algorithm Implementation
Result and the Standard Sine Value 99

XVI. The Comparison Between the Polynomial Method Implementation
Result and the Standard Sine Value 102

vi

LIST OF FIGURES

Figure

1. Typical Computing Step

2. Cordie Arithmetic Unit

3. Representation of Angles in Cordie

4. The Processor System Program ..

5. Input/Output Interrupt Generator

6. Instruction Decoding Matrices

7. Memory Access Operation

8. Address Computation Operation

9. EXEC Routine .

10. A Microprogram Implementation of One Macroprogram
Instruction

11. Cordie Algorithm

12. The AHPL Description for the Cordie Algorithm in
Implementation in HP21MX Microprogram

13. Implementation of + Code to Binary Conversion

:vii

Page

10

14

21

28

43

44

48

49

50

63

76

79

97

Symbol

ADC

EXEC

IOIG

MAC

PROC

RUN

A

B

c

D

E

F

M

N

I

0

p

Q

u

s

T

Dimension

16

16

16

1

56

215
'

167'

16

1

16

12

12

16

16

9

LIST OF SYMBOLS

Function

Address computation defined operation

Instruction execution defined operation

I/O interrupt generator system program

Memory access defined operation

Processor unit system program

Run indicator

Accumulator (See Chapter IV)

Accumulator extension

Local vector

Decoding matrices

Extend register

I/O device flag

Main memory

Navigation matrix (See Figure 4)

Instruction register

Overflow register

Program counter

Mask vector

OP code vector

Current interrupt priority level

T-bus

viii

v 56 I/O device control bit

X 16 X-register

y 16 Y-register

z 56,8 I/O device data buffer

a,b,m,t,i,j Local vectors

d 2 Local vectors

e 4 Prci'gram exceptions

eo Power fail

el Memory parity

e2 Dual-channel port controller 1

e3 Dual-channel port controller 2

g 16 Local vectors

h 2 Interrupt holder

ho Exceptions

hl I/O interrupt

1 16 Local Vector

n 9 Navigation vector

n0,nl,n3 Branch control in EXEC

n2 Entry line in EXEC

n4 Instruction class

q 4 Memory access quene

r 4 Memory access request

v 9 Temporary navigation vector

ix

CHAPTER I

INTRODUCTION

In the past, the transcendental·functions were computed by

mathematicians using many different algorithms. Power series, polynomi­

nal expansions, continued fractions, and Chebyshev polynomials have all

been used. Since the advent of large scale computing in the twentieth

century, many mathematical functions including trancendental functions

have been calculated by computers. As a general rule, multiplication

and division are very time-consuming functions compared to addition

and subtraction implemented in a computer. A review of the conventional

methods which are used for solving transcendental functions, such as

power series, polynomial expansions, continued fractions, and Chebyshev

polynomials, shows that a number of multiplications and divisions are

required that results in inefficiency of implementation.

Therefore, much effort has been made to search for alternate ways

which can best suit the requirements of speed and programming efficiency

for real-time applications.

Henry Briggs (17) first developed the concept of pseudo-division

and pseudo-multiplication in 1924. He used this method to generate a

table of logarithms.

In 1959, J. E. Volder (9) described a Coordinate Rotation Digital

Computer (Cordie) for the calculation of trigonometric functions,

multiplication, division, and conversion between binary and mixed radix

1

2

number systems. In the same year, Dagget (10) discussed the use of the

Cordie computer for decimal-binary conversion. In 1962, Meggitt (11)

developed a pseudo-division and pseudo-multiplication processor using

the Cordie technique, while in 1971 J. S. Walther (12) developed a

technique for calculating elementary functions using Cordie. David

S. Cochran (14) in 1972 implemented the Cordie B;lgorithm in HP 35

calculators, and Despain (13) in 1974 developed a technique for

Fourier transformation using the Cordie algorithm.

Generally speaking, the trigonometric functions are calculated by

polynomial expansions, power series, or Chebyshev polynomials in most

current general purpose computers.

The major goal of this thesis is to implement the Cordie algorithm

in a general purpose computer for evaluation of trigonometric functions.

The speed and accuracy of the results are observed and compared with

those of conventional algorithms. Microprogramming has been used in

this research to increase the program efficiency. The anticipated

result is to determine the best way of evaluating the trigonometric

functions, which can reduce the computer execution time to a minimum

and give reasonable accuracy of the results.

Only the sine function is implemented as a part of this research.

The tasks are divided into four parts:

1. Implement the Cordie algorithm in an assembly coded program.

2. Implement the Cordie algorithm in a microprogram.

3. Implement one of the conventional methods in an assembly

coded program.

4. Implement the same conventional method in a microprogram.

CHAPTER II

STANDARD TECHNIQUE FOR THE EVALUATION OF

TRIGONOMETRIC FUNCTIONS

The evaluation of elementary functions for various values of their

arguments is required to solve a number of mathematical problems.

Because of this, the computation of values of elementary functions was

an important factor in stimulating the development of mathematical

analysis. Therefore, a great deal of effort has been made by many

mathematicians in the past two centuries to find methods of evaluating

these elementary functions. Power series have been and still are used

for this purpose. Mercator used a power series for logarithms; Newton

used it then for trigonometric and inverse trigonometric functions;

and Euler used one for the exponential function. Iterative processes

(e.g., Newton's method) were also applied for solving equations (3).

Furthermore, in the eighteenth century, many mathematicians (Lambert,

Euler, Lagrange, et al.) used continued fractions to represent elemen­

tary functions. In recent years the technique of expansions in

orthogonal polynomials has been widely applied for computing elementary

functions. The Chebyshev polynomials which give good convergence are

widely used for this purpose too.

All those methods mentioned above are well documented and are de-

scribed in many mathematics books; thus it is not necessary to explain

them here. Power series for evaluating trigonometric functions are used

3

4

in this paper as a conventional method of evaluating trigonometric

functions in order to compare them to evaluations using the Cordie

algorithm. Therefore, for convenience, the power series method is de-

scribed as follows:

Power Series

The elementary functions can be represented as power series in a number

of ways. Consider the Taylor-Maclallrin Series.for a given function

f (x):

f(x)
a
L:

k=O

f(k)(O)
k !

k
X

Truncating this at the nth term produces an nth-degree polynomial

S (x) (a finite Taylor Series).
n

s (x)
n

n f(k)(O) k
L:

k !
X

k=O

The polynomial s (x) has the following properties:
n

f(x) s (x) + O(xn)
n

(2.1)

(2. 2)

(2. 3)

where S (x) is the unique nth-degree polynomial of best approximation
n

P (x), for which
n

f(x) - P (x)
n

n
0 (x) (2.4)

If f (x) sin(x), then sin(x) can be represented in a power series as:

sin(x) (2.5)

Cos(x) can be represented in a power series as:

cos (x)
00 2k
L k X

k = 0 (-1) -:-'(2=-k-::-)-:-! (2. 6)

5

In order to implement this algorithm in a computer for evaluation

of trigonometric functions, the number of terms (i.e., constant k)

_required for specific accuracy is determined first.

To determine the constant k, the maximum accuracy of evaluation

in the computer must be known first. The computer used in this research

is an HP21MX, the memory word of which contains 16 bits. Although

multiple precision could be achieved by using multiple words in arith-

metic operations, single precision (single word) is still used in the

Cordie algorithm and power series here for the sake of simplicity of

programming.

Hastings (4) set up three equations by using power series to

evaluate the sine function, which are as follows:

II 3 5
(2.7) sin 2 x c1x + c3x + c5x

cl 1.5706268

c3 = - 0. 6432392

c5 0.0727102

11 3 5 7
(2. 8) sin 2 x c1x + c3x + c5x + c7x

cl 1.570794852

c3 -0.645920978

c5 0.079487663

c7 -0.004362476

11 3 5 7 9
(2.9) sin 2x c1x + c3x + c5x + c 7x + c9x

cl 1. 57079631847

c3 -0.64596371100

c5 0.07968967928

-0.00467376557

0.00015148419

where -1 ~ x ~ 1

6

To determine which equation will be used in this paper, the

maximum value of the error of each equation is checked. The maximum

value of the error is 0.0001 for equation (2.7), 0.000001 for equation

(2.8), and 0.000000005 for equation (2.9). For a 16-bit computer

word, the maximum accuracy that can be represented is 5 decimal digits.

The accuracy of equations (2.8) and (2.9) is more than 5 decimal

digits. If they are used to evaluate sine functions in a 16-bit word

machine, they will consume a lot more execution time than equation

(2.7) with just a slightly more accurate result. Therefore, in order

to get the best execution time and accuracy, equation (2.7) is used in

this research.

CHAPTER III

THE CORDIC ALGORITHM

. '
INTRODUCTION

Cordie is a special purpose, binary computer which contains a

unique arithmetic unit which differs from the arithmetic unit of con-

ventional computers. Although Cordie is a single processor computer,

its arithmetic unit is composed of three shift registers and three

adder-subtractors which are operated in parallel instead of sequentially.

Each programmed operation is accomplished in a fixed number of steps.

Each step involves modifying three. numbers which reside in three arith-

metic unit registers by adding or subtracting a constant for each one.

Setting of all three adder-subtractors is controlled by the sign of

the quantity in one of the arithmetic unit registers. In this way,

calculations related to the addition or subtraction of constants can

be executed simultaneously.

Functional Description

There are. two computing modes in Cordie for the trigonometric

operations: ROTATION and VECTORING. In the ROTATION mode the coordinate

components of a vector and an angle of rotation are given and the

coordinate components of the original vector, after rotation through the

given angle, are computed. In the VECTORING mode, the coordinate

7

components of a vector are given and the magnitude and angular argument

of the original vector are computed. The basic computing technique

used in both the ROTATION and VECTORING modes in Cordie is a step-by-

step sequence of pseudo-rotations which result in an overall rotation

through a given angle (ROTATION) or result in a final angular argument

of zero (VECTORING).

It is necessary that the angular increments of rotation be comput-

ed in decreasing order (9). In order to evaluate the sine and cosine

functions for the angles from -180°. to 180°, the magnitude actually

chosen for the first increment should be 90°. The expression for a set
I

of coordinate components, x1 and Y1 , rotated through plus or minus 90°

is simply

8

R . (9 + 90°) 1s1n 1 (3.1)

(3.2)

Where R1 and 9, are the magnitude and angle of the vector (X1 , Y1) and

x2 and Y2 are the coordinates of vector (X1 , Y1) after rotating 90°.

The first step is unique in that a perfect rotation step is per-

formed. The remaining computing steps can be clarified by examining

relationships involved in a typical rotation step which are shown in

Figure 1. Consider two given coordinate components, Yi and Xi, in the

plane coordinate system shown. In this discussion, the quantity i is

equal to the number of the particular step under consideration. The

components Y. and X. are associated with the ith step and describe a
1 1

vector of magnitude R. at an angle 9. with respect to the origin
1 1

according to the relationships.

9

y
i

R.sinEl
~

(3. 3)

X.
~

R.cose
~

(3. 4)

In Figure 1 the angle a. is the magnitude of rotation associated
~

with each computing step. The general expression for a. where i > 1
~

is x

a.
~

tan -1 2-(i-2) (3. 5)

The reason for choosing this particular magnitude of a. is that a
~

rotation of coordinate components through ~ ai may be accomplished by

the simple process of shifting and adding. The two choices of positive

or negative rotation are shown in Figure 1. The general expressions

for the rotated components are

Y = vil+2-2 (i-2)
i+l

R.sin(El. +a.)
~ ~ ~

+ -(i-2)
Y. 2 X.
~ - ~

and

= 11 + 2-2(i-2) R.cos(El. +a.)
xi+l \/J ~ ~ - ~

X. + 2- (i-2)Yi (3. 7)
~

Note that the right-hand terms of (3.6) and (3.7) may be obtained

by two simultaneous shift-and-add operations, if the angular rotation

magnitude is restricated to (3.5). This is the fundamental relation-

ship upon which the Cordie computing technique is based.

The computing action of adding (or subtracting) a shifted value

Y.
1

'1'. -(1-2)
21 xi

---r-
-(i-2)

2 X.

- _l - 1

10

-(i-2)
2 R.

1

- (i-2)
2 R.

1

Figure 1. Typical computing step

11

of X. toY. to obtain Y. 1 , while simultaneously subtracting (or adding)
1 1 1+

a shifted value of Y. to X. to obtain X. 1. is termed "cross addition".
1 1 1+

The terms under the radical in (3;6) and (3.7) indicate the

increase in magnitude when i > 2; either of the two choices of direction

produces the same change in magnitude. If the rotation is always

through either a positive or negative a. at each step, then the increase
1

in magnitude may be considered as a constant. This requirement does

not allow the choice of zero rotation at any step. In order to identify

the choice in a particular step, the :notation may be represented

by the binary operator v., where v. can be either +1 or -1. This
1 1

substition produces the general expressions

and

where v
i

Y =vi + 2 - 2 (i-2) R sin(". +)
i+l i 0 1 vi ai

X =1 I + 2-2 (i-2)
i+l Vl R. cos(8. + v a.)

l l i 1

+1 or -1

(3. 8)

(3.9)

Similarly, after the completion of the rotation step in which the

i + 1 terms are obtained, the i + 2 terms may be computed from these

terms with the results

y = \1~ + 2-2(i-1)- vi + 2-2(i-2)
i+2

(3 .10)

and

.;;_ + 2-2 (i-1) J + 2-2 (i-2)

(3.11)

12

Likewise, these rotation steps can be continued through any

finite. pre-determined number of steps. Consider the initial coordinate

components Y1 and x1 where

(3 .12)

and

(3 .13)

Suppose the first rotation step is ~ 90° and the number of steps

is determined as n. The exnressions for the final coordinate components

will be

Yn+l =cvi + 2 -O ..)J_ + 2-2 vf + 2-2 (n-2)) R · (9 + v + ... lsln 1 lal

and

y{ -2(n-2)
. . . 1 +

(3 .15)

The increase in magnitude of the components for a particular value

n is a constant and is represented by k. The value selected for n is a

function of the desired computing accuracy and can be a constant for a

particular computer. For example,

if n = 24,

k 1. 646 760255.

The basic components required to perform the cross-addition are shown

13

in Figure 2. It has not yet been shown how the prescribed sequence of

rotation steps can be controlled to effect the desired over-all rota-

tion. By examination of (3.14) and (3.15), the rotation of a set of

coordinate components Y1 and x1 through a given angle can be expressed

as

and

where

In the VECTORING mode,

-9 = A,
1

X
n+l

(3 .16)

(3.17)

(3 .18)

(3 .19)

The sequence of (3.18) and (3.19) form a special radix representation

equivalent to the desired angle, A or 9, where

a 90° (3. 20)
1

a2
-1 -0

tan 2 45° (3. 21)

a3
-1 -1

tan 2 = 26.5° (3.22)

a.
l

-1 -(i-2)
tan 2 (3. 23)

The a terms are referred to as ATR (Arctangent Radix) constants and

are precomputed and stored in the computer. The v terms are referred

to as ATR digits and are determined during each operation.

In the Cordie computer, the ATR digits are determined sequentially,

most significant digit first, and are used to control the conditional

SHIFT
GATES

ri>ll I

Y REGISTER

I II I II Ill I I
X REGISTER

2 -(i-2)y_
- l

h: II
-1/.{

j

l

ADDER­
SUBTRACTOR

ADDER-
SUBTRACT OR

:f>

F ANGLE REGISTER .----.

~~ 11111 1111111111 r 1
' 1=====1~~~~~CTOR

ATR CONSTANTS ' f> ._-__,1./.t,__· _ _j

Figure 2. Cordie Arithmetic Unit

14

15

action of the adder-subtractors in the arithmetic unit. The following

paragraphs contain a description of the manner in which the ATR code

representation, v1 , v2 , v3 , ... , vn can be determined for any given

angle, A or G.

First, for any angle A or 9, there must be at least one set of

values of Y for the operators that will satisfy (3.18) and (3.19).

Second, a simple technique must be available for determing the ATR

code digits that satisfy these equations. The following relationships

are necessary and sufficient for any sequence of radix constants to

meet the above requirements (3.9).

(3.24)

(3.25)

For the satisfaction of (3.20) through (3.23), it is required that

or 9 be constrained by

-180° < A or 9 < + 180° (3.26)

Equation (3.26) imposes no special consideration if the two's complement

notation is used. By employing an additional register and adder-

subtracter (identified in Figure 2 as the angle register) the relation-

ship of (3.16) (ROTATION-mode) can be instrumented by 1) sensing the

sign of the angle of rotation (or remainder if i > 1) and 2) either

subtracting or adding to the angle the ATR constant corresponding to the

particular step. In each step, the relationship instrumented is

I I A.
l

I - a.
l

(3.27)

16

Equation (3.24) is equivalent to

(3.28)

Application of the relationships of (3.25) results in

I A

Continuation of this sequence through a results in
n

a
n

(3.29)

(3.30)

Equation (3.30) can be used to prove that the remainder in the angle

register converges to zero in the ROTATION mode (9).

The sequence of operation signs used to null A to zero is the

negative of the equivalent ATR code for the original angle. More

simply, the ATR code digit of each step is equal to the sign of the

quantity in the angle register before each step. Therefore, simulta-

neously with each step in the angle register, the ATR code digit may be

used to control the cross-addition step in the Y and X registers (shown

in Figure 2) to effect a rotation of components through an equal angular

increment.

The proof of the convergence of the effective angular argument

9 1 to zero, which is necessary in the VECTORING mode, may be obtained
n+

by replacing A by 9. The sign of the angle 9. is obtained bv sensing
~

the sign of Y .. The sequence of signs of Y. is the negative of the ATR
~ ~

code for the effective rotation performed on the components Y1 and x1 .
,

During each cross-addition operation in the Y and X register, the

corresponding ATR constant can be conditionally added or subtracted,

depending on vi, to an accumulating sum in the angle register so that,

at the end ofthe computing sequence, when e 1 = 0, the quantity in
n+

the angle register will be equal to the original angular argument

~\ of the coordinate components Y1 and x1 .

17

The step-by-step results of a typical rotation computing sequence

are shown in Table I. The two's complement notation is used for all

quantities, and shift quantities are truncated without round-off. The

step-by-step results of a typical rotation computing sequence are ·

shown in Table I.

Representation of Angles in Cordie

In Cordie, angles are represented as a binary fraction of a half

revolution (IT) with two's complements for negative angles, as shown

in Figure 3. Since a one to the left of the binary point is used to

represent a negative quantity in the two's complement system, angles

from +180° to slightly less than+ 360° are interpreted internally as

negative angles measured clockwise from 0°. For example, 45° in

Cordie is

= co. 25\o

For 90° the Cordie representation is

IT/2
IT ~ = (0.5)10 = (0.1)2

For 270° the Cordie representation is

3IT/2
-IT- = (1. 5 \o

18

TABLE I

TYPICAL ROTATION COMPUTING SEQUENCE

Y Register X Register Angle Register

yl = 0.0101110 1.1000101 = xl 0.1100101 = :\

+ 1.1000101 - 0.0101110 - 0.1000000
-1

tan 00

1.1000101 1.1010010 0.0100101 -1 + 1.1010010 - 1.1000101 - 0.0100000 tan 1

1.0010111 0.0001101 0.0000101 -1 -1 + 0.0000110 - 1.1001011 - 0.0010010 tan 2

1.0011101 0.1000010 1.1110011 -1 -2
- 0.0010000 + 1.1100111 + 0.0001001 tan 2

1.0001101 0.0101001 1.1111100
-1 -3 l

+ 1.1110001 + 0.0000101 - 0.0000101 tan 2

1.0001000 0.0011010 0.0000001 -1 -4 + 0.0000001 - 1.1111000 - 0.0000010 tan 2

1.0001001 0.0100010 1.1111111
-1 -5 - 0.0000001 + 1.1111100 + 0.0000001 tan 2

1.00010000 0.0011110 0.0000000

19

TABLE II

TYPICAL VECTORING COMPUTING SEQUENCE

Y Register X Register Angle Register

y 0. 0101110 1.1000101 xl 0.0000000
1

- 1.1000101 + 0.0101110 + 0.1000000
-1

tan 00

0. 0111011 0.0101110 0.1000000 -1 - 0.0101110 + 0. 0111011 + 0.0100000 tan 1

0.0001101 0.1101001 0.1100000 -1 -1
- 0.0110100 + 0.0000110 + 0.0010010 tan 2

1.1011001 0.11011ll 0.1110010
-1 -2 + 0.0011011 - 1.1110110 - 0.0001001 tan 2

1.1110100 0.1111001 0.1101001 -1 -3 + 0.0001111 - 1.1111110 - 0.0000101 tan 2

0.0000011 0.1111011 0.1100100 -1 -4 - 0.0000111 + 0.0000111 + 0.0000010 tan 2

1.1111111 0.1111100 K K1 0.1100101 = 0

20

Sine and Cosine Algorithm

As mentioned above, there are two computing modes for Cordie,

ROTATION and VECTORING. Evaluating sine or cosine functions makes use

of the ROTATION mode by setting the original vector on the X-axis and

rotating the vector through an angular argument whose sine or cosine

is computed.

Functional Description

In order to use the ROTATION computing sequence (Table I) of Cordie

to evaluate sine and cosine functions, several initial conditions and

values are set up:

1)

2)

3)

4)

The Y-register is initialized with 0.

The X-register is initialized with a unit vector.

The A-register is initialized with the angle which is going

to be computed.

A sign digit of 0 in the A-register establishes a v. of +1,
1

which causes the top adder - subtracter to add, the middle

adder-subtracter to subtract, and the bottom adder - sub-

tractor to subtract. A sign digit of 1 has the opposite

effect.

5) The number of steps (iterations) is initialized depending

on the desired accuracy.

The Cordie ROTATION computing sequence is started as shown in

Table 1.

The final result is in the Y-register if the function evaluated- is

sine and in the X-register if the function evaluated is cosine after

the final computation step.

21

90°
0.10

-~~-----~----- -~

----135° ~

0.11 45°
0.01

POSITIVE

\
180° \oo
1. 00 0.00

I
NEGATIVE

-135° or 225°

1.01 -45° or 315°
1.11

~---
/

-90° or 270°
1.10

Figure 3. Representation of Angles in Cordie.

CHAPTER IV

COMPUTER IMPLEMENTATION AND

PROGRAMMING RESULTS

The four tasks described in Chapter I are performed and the pro­

gramming results are obtained in this chapter.

The description of the HP21MX computer which is used to aid

this research is given below.

System Features

The HP21MX computer is a powerful user-microprogrammable mini­

computer with 178 micro-instructions and 4K words of control space.

Each word is 24 bits long. It has 128 standard instructions, 80 of

which emulate the HP 2100 series computer; 42 of which are new instruc­

tions for indexing, byte and bit manipulation, byte and word moves, and

byte string scanning; and 6 of which are single-precision floating

point instructions. There are four general purpose registers, two of

which may be used as index registers. It is a fully microprogrammed

processor, including all arithmetic functions, input/output, and opera­

tor panel control. Writable Control Store (WCS) is optional.

The read-only memory (ROM) modules in which microprograms are

stored are referred to collectively as control store. Standard control

consists of 1,024 directly addressable locations configured into four

modules of·2S6 location each. Each control store location accommodates

22

23

one micro-instruction, which in turn consists of a 24-bit word

encompassing six micro-orders. The control store address space of each

processor is 4,096 words.

Microprograms in standard control store for executing the vaY.'ious

machine functions are divided into three groups:

Base instruction set (modules 0 and 1)

Floating point instructions (module 14)

Extended instruction group (module 15)

Unused modules of control store are available for user-supplied

microprograms. Microinstructions in control store are 24 bits lqng;

whereas, machine language instructions residing in main memory are

16 bits long. In addition, microinstructions have access to many

internal registers and logic functions that machine language instruc­

tions cannot use.

The Writable Control Store (WCS) option provides a read-write

control store module which can be used for the development and execution

of user-supplied microprograms. Microprograms in WCS are executed at

the same speed as those in the read-only control store.

Hardware Registers

A 16-bit accumulator which holds the results of arithmetic

and logical operations performed by programmed instructions.

B-register

Serves the same purpose as the A-register, but is independent

froin it.

M-register

A 16-bit register used to hold the memory address which is

currently bei~g accessed by the CPU.

T-register

A 16-bit register used to hold the data which are stored

into or retrieved from memory.

P-register

Program counter, 16 bits long, pointing to next instruction

to be fetched from memory.

S-register

A 16-bit utility register. In the halt or run mode, it can

be loaded via the display register.

Extend register

24

A one-bit register used to link the A- and B-registers by

rotation instructions or to indicate a carry from the most signif­

icant bit (bit 15) of the A- or B-register by an add instruction

or increment instruction.

Overflow Register

A one-bit register used to indicate that an add instruction,

divide instruction, or an increment instruction has caused the A­

reeister or B-register to exceed the maximum positive or negative

number that can be contained in these registers.

Displav register

A 16-bit register included in the front panel and used to

disnlav and modifv the contents of the six 16-bit working registers

when the comnuter is in the halt mode.

X- and Y-registers

Two 16-bit registers serving as indexing registers which are

accessed through the use of 30 index register instructions and

2 jump instructions.

S. to s1 A scratch pad registers
.L L

Twelve registers (each 16 bits long) used to temporarily

store data by a microprogram and cannot be accessed by a macro-

)\
program.

Interrupt System

The vectored priority interrupt system has up to 60 distinct

interrupt levels, each of which has a unique priority assignment.

25

Each interrupt level is associated with a numerically corresponding

interrupt location in memory.

Of the 60 interrupt levels, the first two are reserved for

hardware faults (power failure and parity error); the next two are

reserved for the Dual-Channel port controller completion interrupts;

and the reamining levels are available for I/0 device channels.

Table III lists the interrupt levels in priority order for the HP

2108 processor of the 21 MX.

-
APL Description of HP21MX

In the APL description of the HP21MX, the comuuter svstem is

described as seen bv a uroerammer. and the descriution is indenendent

of anv uarticular hardware imulementation. All those instructions

which are not connected with this research are not included in this

description. Iverson (2) gives a complete definition of the notation

used. The description is based on the HP21MX Computer Series Reference

Manual (5) and consists of a set of programs and tables.

* Macroprogram - programs stored in main memory.

Microprogram - programs stored in control store.

Channel

(Octal)

04

05

TABLE III

INTERRUPT ASSIGNMENTS

Interrupt Location Assignments

00004 Power Fail Interrupt

00005 Memory Paritv/Protect

26

Interrupt

06 00006 DCPC Channel 1 Completion Interrupt

07 00007 DCPC Channel 2 Completion Interrupt

10 00010 1/0 Device (highest priority)

11-20 00011-00020 1/0 Device (Mainframe)

21-42 00021-00042 1/0 Device (Extender No. 1)

43-64 00043-00064 1/0 Device (Extender No. 2)

The programs are either system programs or defined operations.

All programs operate concurrently and continuously, with one line

active in each program. The defined operation program operates only

when invoked by another program. In the description presented, PROC

and IOIG are system programs, whereas ADC, EXEC, and MAC are defined

operations.

The Processor

The PROC program, Figure 4, describes the sequencing and exe­

cution of instructions and the servicing of interrupts. The program

segments and their functions are summarized in Table IV.

TABLE IV

"PROC" PROGRAM SEGMENTS

Lines Function

1-4 Instruction fetch

5-14 Instruction decoding

15-26 Instruction execution

27-30 Trap interrupt service

Instruction Fetch

27

The first step in program execution is to fetch the instruction

from memory. In order to prepare for instruction fetch, the exceptions

vector is initialized to zero (line 1). The 16-bit instruction is

fetched from memory at the address given by the program counter, and

placed in the instruction register (line 2). The program counter is

incremented by 2 (line 3), and in case of any exceptions during

instructjon fetch, control branches to line 27. Exceptions during

fetch may be due to errors in parity check.

P •· (16)T 1 + P

1 : v/e
~--·--

i ~ l

j + 0

[j ': : : :' '"Q" " ,,

< J + i.

c15/I, 0 14,15/I, cl3, 14,15/I

011,13,14,15;1 , 010,11;1 ,

c. 9,10,ll;r, c4/I, c7,8,9/l,

10

c6,7/l, 07,8,9/I). 11
J

kz •· l (r. 4 /!, 0, 0, r 14 /l, c 13 /l,

r",ll,l2/l, c 4 'U/I, c 4 /I,

r6 ;r, c 7 /I, c 4/I, c 4/I,

r. 4 /I)j 12

L_

m ~ jDk2
kl

m
n + N

~ (16' 25, 25, 25,

25, 25, 25, 20,

22) j

I t ~ l ((LP)-1) + 1024
I

25. 25'

21, 22.

b •· (l,}O/I) + 15 X t X 1024

ADC (I0 : b; a)

1: v/e

a "'" JJ;.}4/I

(Nm) 1 ~ 16

K1 ~ 13,14,15/I, 8,9/I)l5

.. j + (0, 2)15

EXEC

0 : v /e

L ___ ---.~ h0 1

0 : V/h

1 .6;) 0
MAC ((4,5,6,7,"w T ((e,h1)/t) 0 ,£:1)

h(hf,olo~o

e + E(4)

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

. 28

29

30

31

.. ,
i

Figure 4. The Processor System Program

28

29

Instruction Decoding

To determine the operation specified by the instruction, the

instruction is decoded next. Because the operation code of an instruc-

tion in this machine may be varied from 4 bits to 16 bits and several

microinstructions may be involved in a single instruction word for some

type of instructions, the decoding task is very complicated and tedious.

Many steps and two sets of decoding vectors named u and q are used in

this APL description to aid the decoding task. These two sets of

vectors ar listed in Table V. The instructions are divided into 13

classes. Table IV summarizes those 13 classes. The number involved

in this table is used to identify the class of the instruction during

the decoding.

The class identifiers j and i are initialized in line 5 and 6.

The decoding vectors U. and E. are used in lines 7, 8, and 9 to identify
~ ~

the class of the current instruction. Once the class of the current

instruction is found, it is stated in j (line 10).

The components of the selection vector k take on the values of the

fields depending on j (lines 11 and 12). Lines 13 and 14 interpret

i
the instruction by selecting a row N from the navigation matrix

N (Table VII), to specify the vector n used in subsequent control of

the instruction execution. The row of N selected, is determined by an

element of a particular decoding matrix D, Figure 6, specified by

the instruction class j, and the selection vector k.

30

TABLE V

DECODING VECTORS

WMI u =
1

(1000101111111110) Q = 1
(1111111111111110)

JMPI u2 = (1000101111110010) Q2 (1111111111110111)

BIMI u = 3 (1000101111111000) Q3 (1111111111111000)

BYMI u4 = (1000101111110000) Q4 (1111111111111000)

DMI u = 5
(1000001111000000) Qs (1111011111100000)

IRI u6 (1000001111100000) Q6 (1111011111100000)

FRI u7 (1000101000000000) Q7 (1111010000000000)

EAMR us (1000000000000000) Q =
8

(1111010001110000)

EAR u9 (1000000000000000) Q =
9

(1111010000000000)

IOI u1o= (0000010000000000) Q10= (1111010000000000)

A/S Ull= (0000010000000000) Q11= (1111010000000000)

S/R u12= (0000000000000000) Ql2= (1111010000000000)

TABLE VI

INSTURCTION CLASSES

Class

MRI: Memory reference instructions

WMI: Word manipulation instructions

MJPI: Jump instructions

BIMI: Bit manipulation instructions

BYMI: Byte manipulation instructions

DMI: Dynamic mapping system instructions

IRI: Index register instructions

FPI: Floating point instructions

EAMR: Extended arithmetic memory reference

instructions

EAR: Extended arithmetic register reference

instructions ·

101:

A/S:

S/R:

Input/output instructions

Alter skip instructions

Shift/rotate instructions

j

0

1

2

3

4

5

6

7

8

9

10

11

12

31

32

TABLE VII

THE NAVIGATION MATRIX

no nl n2 n3 Class Index Mnemonic Name Op Code

0 0 ao a3 MRI 1 ADA Add to A -1000 -----------
1 0 ao a3 MRI 2 ADB Add to B -1001 -----------

0 bo bs IRI 3 ADX Add memory to X
1000101111100110

1 bo bs IRI 4 ADY Add memory to Y
1000101111101110

0 eo e3 S/R 5 ALF Rotate A left four
0000001111-1-111

0 eo e4 S/R 6 ALR A left shift. clear sign
0000001100-1-100

0 eo es S/R 7 ALS A left shift
0000001000-1-000

0 0 ao a2 MRI 8 AND "AND" to A
-0010 ----------

0 eo e6 S/R 9 ARS A right shift
0000001001-1-001

co EAR 10 ASL Arithmetic shift left
100000000001

cl EAR 11 ASR Arithmetic shift right
100000100001

1 eo e3 S/R 12 ELF Rotate B left four
0000101111-1-111

1 eo e4 S/R 13 BLR B left shift, clear sign
0000101100-1-100

33

TABLE VII (Continued)
-

no nl n2 n3 Class Index Mnemonic Name Op Code

1 eo e5 S/R 14 BLS B left shift
0000101000-1-000

1 eo e S/R 15 BRS Bright shift
J. 0000101001-1-001

0 2 b4 b8 IRI 16 CAX Copy A to X
1000001111100001

0 3 b4 b8 IRI 17 CAY Copy A to Y
1000001111111100

BIMI 18 CBS Clear bits
1000101111111100

BYNI 19 CBT Compare bytes
1000101111110110

1 2 b4 b8 IRI 20 CBX Copy B to X
1000101111101001

1 3 b4 b8 IRI 21 CBY Copy B to y

1000101111101001

0 fo - A/S 22 CCA Clear and complement A
00000111 -------

1 f - A/S 23 CCB Clear and complement B
0 00001111 -------

£7 A/S 24 CCE Clear and complement E
0000-1--11 -----

0 £2 - A/S 25 CLA Clear A
00000101 -------

1 f2 A/S 26 CLB Clear B

0 do d2 IOI 27 CLC Clear control
100011-111

f5 - A/S 28 CLE Clear E
0000-1--01 -----

0 do d6 IOI 29 CLF Clear flag
1000-11001

IOI 30 CLO Clear overflow
1000011001000001

34

TABLE VII (Continued)
-------------- -----
no nl n2 r:.L Class Index Mnemonic Name Op Code --------------

1 B4 B9 IRI 47 DSY Decrement Y and skip if zero
1000101111111001

0 0 eo e7 S/R 48 ELA Rotate E left with A
0000001110-1-110

1 0 eo e7 S/R 49 ELB Rotate E left with B
0000101110-1-110

0 1 eo e7 S/R so ERA Rotate E right with A
0000001101-1-101

1 0 eo e7 S/R 51 ERB Rotate E right with B
0000101101-1-l-1

FPI 52 FAD Floating point add
1000101000000000

FPI 53 FDV Floating point divide
1000101000110000

FPI 54 FIX Floating point to integer
1000101001000000

FPI 55 FLT Integer to floating point
1000101001010000

FPI 56 FMP Floating point multiply
1000101000100000

FPI 57 FSB Floating point subtract
1000101000010000

0 do dl1 IOI 58 HLT Halt
1000-1-000

A/S 59 INA Increment A
000001-------1--

A/S 60 INR Increment B
000011-------1--

1 0 ao a2 HRI 61 IOR "Inclusive OR" to A
-011------------

0 0 b4 b9 IRI 62 ISX Increment X and skip if zero
1000101111110000

0 1 b4 b9 IRI 63 ISY . Increment Y and skip if zero
1000101111111000

35

TABLE VII (Continued)

~1 nz n3 Class Index "Mnemonic Name Op Code

A/S 31 CMA Complement A
00000110 -------

A/S 32 CMB Complement B
00001110 -------

f6 A/S 33 CME Compare E
0000-1--10

WMI 34 CMW Compare words
1000101111111110

0 a as MRI 35 CPA Compare to A 0 -1010 ---------..-
1 ao as MRI 36 CPB Compare to B

-1011 ----------
2 0 b4 bs IRI 37 CXA Copy X to A

1000001111100100

2 1 b4 bs IRI 3S CXB Copy X to B
1000101111100100

3 0 b4 b8 IRI 39 CYA Copy Y to A
1000001111101100

3 1 b4 b8 IRI 40 CYB Copy Y to B
1000101111101100

EAMR 41 DIV Divide
100000010000

DMI 42 DJP Disable mem and jump
1000101111011010

DMI 43 DJS Disable mem and jump to sub-
routine

1000101111011011

EANR 44 DLD Double load
100010001000

EAMR lf5 DST Double store
100010010000

1 0 b4 b9 IRI lf6 DSX Decrement X and skio if zero
100010111110001

36

TABLE VII (Continued)

no nl n2 n3 Class Index Mnemonic Name Op Code

ao a9 MPI 64 ISZ Increment and skip if zero
-0111-----------

go JMPI 65 JLY Jump and load Y
1000101111110010

1 al a13 MPI 66 JMP Jump
-0101-----------

g4 JMPI 67 JPY Jump indexed by Y
1000101111111010

DMI 68 JRS Jump and store status
1000101111001101

0 a1 a12 MPI 69 JSB Jump to subroutine
-0011-----------

0 0 bo b11 IRI 70 LAX Load A indexed by X
1000001111100010

0 1 bo b11 IRI 71 LAY Load A indexed by Y
1000001111101010

BYMI 72 LBT Load byte
1000101111110011

1 0 bo b11 IRI 73 LBX Load B indexed bv X
1000101111000010

1 1 bo b11 IRI 74 LBY Load B indexed by Y
1000101111101010

0 0 a1 a MRI 75 LDA Load A
7 -1100-----------

1 0 a1 a7 MRI 76 LDB Load B -1101---~-------

0 bo b12 IRI 77 LDX Load X from memory
1000101111100101

1 bo b12 IRI 78 LDY Load Y from memory
1000101111101101

DMI 79 LFA "'Load fence from A
1000001111010111

DMI 80 LFB 7'Load fence from B
1000101111010111

37

11\.HLE VI (Continued)
----· .~·-----·---·-------------·

no nl nz n3 Class Index Mnemonic Name Op Code
---·--·-

0 0 do d12 IOI 81 LIA Load into A
100001-101------

1 0 do d IOI 82 LIB Load into B
12 100011-101------

c2 EAR 83 LSL Logical shift left
10000000001-----

c3 EAR 84 LSR Logical shift right
100000100010----

DMI 85 MBF Move bytes from alternate map
1000101111000011

DMI 86 MBI Move bytes into alternate
1000101111000010

BMI 87 MBT Move bytes
1000101111110101

DMI 88 MBW Move bytes within alternate
1000101111000100

0 0 d dl3 IOI 89 HIA Merge into A
0 100001-100------

1 do d13 IOI 90 MIB Merge into B
100011-100------

EAMR 91 MPY Multiply
100000001000----

WMI 92 MVW Move words
1000101111111111

DMI 93 MWF Move words from alternate map
1000101111000110

DMI 94 MWI Move words into alternate map
1000101111000101

DMI 95 MWW Move words within alternate
map

1000101111000111

- S/R 96 NOP No Operation
0000000000000000

38

TABLE VII (Continued)
n n 112 113 Class Index Mnemonic Name Op Code

0 1

0 do d20 IOI 97 OTA Output A
100001-110------

0 do d20 IOI 98 OTB Output B
100011-110------

DMI 99 PAA Load/store port A map per A
1000001111001010

DMI 100 PAB Load/store port A map per B
1000101111001010

DMI 101 PEA Load/store port B map per A
1000001111001011

DMI 102 PBB Load/store port B map per B
10001-1111001011

0 0 eo e9 S/R 103 RAL Rotate A left
0000001010-1-010

1 0 eo e9 S/R 104 RAR Rotate A right
0000001011-1-011

0 1 eo e9 S/R 105 RBL Rotate B left
0000101010010010

1 1 eo e9 S/R 106 RBR Rotate B right
0000101011-1-011

c4 EAR 107 RRL Rotate left
100000000100----

c5 EAR 108 RRR Rotate right
100000100100----

DMZ 109 RSA Read status register into A
1000001111011000

DMI llO RSB Read status register into B
1000101111011000

A/S 111 RSS Reverse skip sense
0000-1---------1

DMI 112 RVA Real violation register
into A

1000001111011001

39

TABLE VII (Continued)
--

no nl n2 n3 Class Index Mnemonic Name Op Code

DMI 113 RVB Read violation register
into B

1000101111011001

0 0 bo b14 IRI 114 SAX Store A indexed by X
1000001111100000

0 0 b bl4 IRI 115 SAY Store A indexed by Y
0 1000001111101000

BIMI 116 SBS Set bits
1000101111111011

BYMI 117 SBT Store type
1000101111110100

1 0 bo b14 IRI 118 SBX Store B indexed by X
1000101111100000

1 1 bo b14 IRI 119 SBY Store B indexed by Y
1000101111101000

A/S 120 SEZ Skip if E is zero
0000-l----1-----

BYMI 121 SFB Skip if flag clear
1000-10010------

0 do dl4 IOI 122 SFC Skip if flag c.lear
1000-10011------

0 d d16 IOI 123 SFS Skip if flag set
0 1000-10011------

DMI 124 SJP Enable system map and jump
1000101000100000

DHI 125 SJS Enable system map and jump
to subroutine

1000101111011101

S/R 126 SLA Skip if LSB of A is zero
00000-------1---

S/R 127 SLB Skip if LSB of B is zero
000010------1---

0 do dl4 I.OI 128 soc Skip if overflow clear
100001-010000001

40

TABLE VII (Continued)
I -n Ill n n3 Class Index Mnemonic Name Op Code 0 2

0 do. dl6 IOI 129 sos Skip if overflow set
100001-011000001

A/S 13'0 SSA Skip if sign of A is zero
000001-----1----

A/S 131 SSB Skip if sign of B is zero
000011-----1----

DMI 132 SSM Store status register into
memory

1000101111001100

0 1 al a7 MRI 133 STA Store A
-1110-----------

1 1 al a7 MRI 134 STB Store
-1111-----------

0 do dl8 IOI 135 'STC Set control
100001-111------

0 do d19 IOI 136 STF Set flag
1000-10001------

0 do dl9 IOI 137 STO Set overflo·w
1000010001000001

0 bo b13 IRI 138 STX Store X to memory
1000101111100011

1 bo b13 IRI 139 STY Store Y to memory
1000101111101011

DMI 140 SYA Load/store system map per A
1000001111001000

DMI llfl SYB Load/store system map per B
1000101111001000

A/S 142 SZA Skip if A is zero
000001--------1-

- A/S 143 SZB Skip if B is zero
000011--------1-

BYMI 144 TBS Test bits
1000101111111101

41

TABLE VII (Continued)
-

~0 nl n2 n3 Class Index Hnemonic Name Op Code

DMI 145 UJP Enable user map and jump
to subroutine

1000101111011110

DMI 146 UJS Enable user map and jump
to subroutine

1000101111011111

DMI 147 USA Load/store user map per A
1000001111001001

DMI 148 USB Load/store user map per B
1000101111001001

0 0 b4 b15 DMI 149 XAX Exchange A and X
1000001111100111

0 1 b4 b1s IRI 150 XAY Exchange A and X
1000001111101111

1 b4 b15 IRI 151 XBX Exchange B and X
1000101111100111

1 1 b4 bl5 IRI 152 XBY Exchange B andY
1000101111101111

DMI 153 XCA Cross compare A
1000001111010110

DMI 154 XCB Cross Compare B
1000101111010110

DMI 155 XLA Cross load A
1000001111010100

DMI 156 XLB Cross load B
1000101111010100

DHI 157 XHA Transfer maps internally
per A

1000101111010000

DMI 158 XMB Transfer maps internally
per B

1000101111010010

DMI 159 XMM Transfer maps or memory
1000101111010000

42

TABLE VII (Continued)

no nl n2 n3 Class Index Mnemonic Name Op Code

DMI 160 XMS Transfer maps sequentially
1000101111010001

BPI 161 XOR "Exclusive OR" to A
-0100-----------

DMI 162 XSA Cross Store A
1000001111010101

DMI 163 XSB Cross store B
1000101111010101 .

0 2 b4 b8 IRI 164 CAX Copy A to X
1000001111100001

3 b4 bg IRI : 165 CAY Copy A to y

1000001111101001

1 2 b4 hs IRI 166 CBX Copy B to X
1000101111100001

1 3 b4 b8 IRI 167 CBY Copy B to y

1000101111101001

* Base page fence register

43

1 v/F 0

hl + (S>(F/t0) 0) 1

-1-

,--- 1 hl 2

w6fT + T(F/ 0
l) 0 3

k--1 L--~----~----~----------------~ s + (F/lO)O ,4

Figure 5. Input/Output Interrupt Generator

Instruction Execution

The instruction execution starts at line 15. The effective

address computation of MRI is performed at lines 16, 17, 18 and 19.

Line 20 sets up the immediate value for EAR. Line 21 sets up I/0

flag clear/hold information for IOI. Line 22-24 subdecodes the packed

micro-instructions in A/S and S/R instructions.

Interrupt Service

Servicing of exceptions is given priority over I/O interrupt

service. In case of any exception the bit (0 for exception, 1 for I/0

interrupt) in the interrupt holder his set (line 27). The interrupt

service ~equence is initiated if at least one interrupt is pending

(line 28). The sequence consists of fetching a new instruction from

one of the five fixed locations in memory. The interrupt vector address

of the peripheral device is obtained from the six least significant

bits of the T-hus. The element of h which caused the interrupt is reset.

0

1

2

3

0

1

2

3

4

5

6

7

0
CMW 34

1

MVW 92

1
D

(a) WMI Instruction

0 1

140 147
SYA USA

109 112
RSA RVA

141 148
SYB USB

159 160
XMM XMS

no ll3
RSB RVB

2

99
PAA

157
XMA

86
MBI

100
PAB

42
DJP

5
D

3

101
PBA
155

85
MBF
102
PBB
158
XMB

43
DJS

(b) DMSI Instruction

4 5

153 79
XLA XSA

88 94
MBW MWI

132 68
SSM JRS

156 163
XLB XSB

124 125
SJP SJS

6 7

.. XCA LFA

93 95
MWF MWW

154 80
XCB LFB
145 146
UJP UJS

0 1 2 3 4 5 6 7 8 9 10 15
114 16 . 70 37 149
SAX CAX LAX CXA XAX
115 17 71 39 150
SAY CAY LAY CYA XAY
118 20 73 138 38 77 3 151 62 46
SBX CBX LBX STX CXB LDX ADX XBX ISX DSX
ll9 21 74 139 40 78 4 152 63 47
SBY CBY LBY STY CYB LDY ADY XBY ISY DSY

6D

(c) IRI Instruction

Figure 6. Instruction Decoding Matrices

44

--

0

1

o I

0

1

0

1

0

1

0 1 2 3 4 5

8 161 61 1 35
AND XOR lOR ADA CPA

69 66 64 2 36
JSB JMP ISZ ADB CPB

OD
(d) MRI Instruction

0 1

JLY JPY

2
D

(e) JMPI Instru<:!tion

0 1 2 3

72
LBT

117 87 14 121
SBT MBT CBT SFB

4D

(f) BYMI Instruction

0 1

18 144
CBS TtlS

llb
SBS

3D
(g) BIMI Instruction

0 1 2 3

52 57 56 53
FAD FSB FMP FDV

54 55
FIX FLT

7D
(h) FPI Instruction

Figure 6. (Continued)

45

6 7

75 133
LDA STA

76 134
LDB STB

/

0

1

0

1

0

0

1

(i)

ol 91
MPY

11
41

DIV

10 83
ASL LSL

11 84
ASR LSR

8D
EAR Instruction

44
DLD

45
DST

9D
(j) EAMR Instruction

0 1 2 3

')8 136 122 123
HLT STF SFC SFS

58 29 128 129
HLT CLF soc sos

, 10D

(k) IOI Instruction

0 1 2 3
25 31 22

CLA CMA CCA
26 32 23

CLB CMB CCB

11n
(£) A/S Instruction

7 9 103 104
LS ARS RAL RAR

14 15 105 R~~b LS BRS RBL

(m) S/R Instruction

103
RRL
104
RRR

4 5

89 81
MIA LIA

90 82
MIB LIB

6 50
ALR ERA

BLf5
.)1

ERB

Figure 6. (Continued)

46

_

7

6 7

97 27
OTA CLC

98 135
OTB STC

481 5
ELA ALF

49 12
ELB BLF

47

Ihput/output Interrupts

The 1'/0 interrupt generator (IOIG) system program, Figure 5,

determine the presence of interrupt requests by peripheral devices and

sets the bit in'the interrupt holder, h, accordingly(line 1), The

dwell at line 0 checks for interrupts on the device flag. The setting

of any I/O device flag means an interrupt request from that I/0 device.

If a higher priority device has already gained control of the processor,

the lower priority device cannot be served until the higher priority

device has finished its service routine (lines 1, 2, and 3).

Memory Access Routine

The memory access (MAC) operation, Figure 7, fetches or stores a

specified number of bytes from the memory at a given address. The

general form of the operation is MAGi (j;l), where i specifies the

device requesting access; j is a two-component vector specifying the

address in memory (j 0) and the type of operation (store; jl = 2;

fetch:j 1 =f), respectively; and 1 specified the vector into/from which

the accessed data are to be stored/fetched.

The request for service is entered in the bus request vector r,

and in' the queue if it is empty (line 0). The program dwells at line 1

until i is recognized as the first nonzero entry in the queue. After

the requ~st has been honored, the entry in the request vector is blanked

out (line 2). The parity error exception is noted (line 5), and entered

in the exception vector e. If no exception occurs, a fetch (line 4)

or store (line 7) is performed.

48

Address Computation Routine

The address computation (ADC) operation, Figure 8, is used for

effe~tive address calculation of the operands. The general form for

ADC is (m; g; k) wh~re m is'the mode of addressing (0 means direct,

1 means indirect), g is the primary address, and k is the effective

address returned by the,operation.

defined operation

~ r.' qi ..e_, _vlq 0
].

i (ql 0 1
=I=

: l) 0

rl +- 0 2

- jl : s 3 -

J ~- (j +a.1) I /M
0 4

-
1 : e +-

1 ~ =f I J 5 -

, ___ l+- wl6 IJ 6 t--

J +- ~ =f I ..e_, 1 7

(j 0 ta.l) //M +- J 8
~

q +- r 9

Figure 7. Memory Access Operation

49

ADC(m d k) defined operation

-=l.=:_ 0 m 0

k +- dl 1 '
~

1 I

MAC (d1 , f; f) 2

k +- .Ll 3

Figure 8. Address Computation Operation

Instruction Execution Routine

At the entry point EXEC, Figure 9, the routine for an instruction

is determined by n2 (line a 0). Execution involves setting up condition

codes (if necessary) after the execution.

All MRI instructions are executed here. AND, lOR, XOR ADA, ADB,

CPA, CPB, and ISZ are entered at line a1 to get data from memory.

STA, STB, LDA, and LDB are entered at line a2 . All MRI instructions

are diverged at line a2 and enter their own routine. The "Exit" here

means go back to PROC ; the outgoing arrow at the right side of the

line also indicates return to PROC if the arrow does not direct to any

other line. This is true not only here, but also in any other line of

the EXEC routine.

AND,IOR,XOR
)

-->' n2

1 MAC (a,f; C)

--> n3

A"-.-A(A, V, $) C no
ADA,ADB a4

STA,STB

LDA.LDB

CPA
--)

CPB

ISZ
--)

JSB
-->
JMP
-->

ADX,ADY

--)

E,U ~((17)T(.l(A,B)) + .lC) a 5 no
0 ~(u ~Co) A(~ ((A,B) . $ c0) a 6 a no

(A,B) <:-- u
1 no

MAC (a,(f,s)n1 ; (A,B)n0)

(all' Exit)(O= .l (A,B) e C)
nl

C <::- T1 + .lC

1
MAC (a,s;C)

--;:>

-->

0 : .lC a --)
11

P .(-n + .1P

1
MAC (a,s;P)

P <f-T a + (1,0) no
1

MAC (.iP, f ; C)

P ~Tl + .lP

ADC (CO

1 MAC (a, f ; C)

a)

Figure 9. ~XEC Routine.

so

51

\ CXA, CXB (X, Y) .c; • \

b7) ! no- u
~

CBX,CAX (A,B,X,Y) .:0- (A,B;X,Y) bs >
;> n1 ' no

CBY,CAY

CYA,CYB

ISX,DSX
0 (X,Y) ~---T(l,-1) +~(X,Y) b9 J:__>) n1 no nl

ISY,DSY

p +---Tl + :LP
blO

_c,.

LAX, LAY 1
f; (A,B)) > MAC (a+ (X,Y)n1 , bll no

·LBX,LBY

LDX,LDY (X,Y)no ~ c b12 >

STX, STY MAc 1 (a,s,(X,Y)n0) bl3 I~

1
SAX, SAY MAC (b+~(X,Y)nl' s· (A, B))

b14 1-----) ' no

SBX.SBY

XAX.XAY c ~ (A.B)
bl5 no

XBX,XBY (A, B) .~- (X, Y)
bl6 no nl

(X,Y)n·<:- C
1

bl7

(;)31/(t 31
B, A) --'> ASL B, A)<:- a ow /(co

ASR w31/(B, A) ~-(E(31) ,aa(31))B
0

31 cl 1------) v (a ~ w I (B , A))

t
A) LSL B, A~-- ao (B, c2

---7

LSR B, A~-- a? (B, A) c3

RRL B, A <:-- at (B, A) c4 ------?

RRR B, A <:-- a -t (B, A) cs -->
~

Figure 9. (Continued)

CLC

--~>

CLF

--->

L--->

HLT

--~>

LIA,LIB
---->
MIA,MIB
--->

SFC,SOC
-->·

SFS

sos

STC

STF

STO

>

. 6
a<--w /I

V<--~
a

S<-- 63

0 : a

V<~(56)

0 : n1

1 : a

F <-- ~ a

0 : a

-
F <- E (58)

0<- ~

RUN<--$

(A,B) <--z
no a

(A,B) <-- (A,B)
no no

-->(d3 , Exit) a

V<--1 a

(Fa' 0) (a+o) <:-- 1

v z
a

Figure 9. (Continued)

do

dl

d2

d2.1

d3

d4

i >

<,--+---,
d 5 +----+-=-·>

d6

d7

d8

d 9 +----t--·>

d10

dll ->

52

OTA
OTB >

ALF,BLF
---->

ALR,FLR >

ALS, BLS >

ARS,BRS >

ERA.ERB >
ELA,ELB

RAL,PAR >
RBL,RBR

CLE
---->

SLA,SLB
---->

\

/

0 : a

(A,B) <-- 4t (A,B)'
no no

(A,B) <-- 6 (A,B)
no no

w15/(A,B) < +w15/(A,B)
no --- 6 no

- 1
f;J15/(A,B) <--(E(15)a (15)) (A,B)) 0 no no

v(~(A.B))
no

fE, (A,B) < (t,+) (E, (A,B)
no-- n1 no

(A,B) <--(t,+) (A,B)
no n1 no

-1 : b

n<-- v

b<--- -1

E<"-- 0

112 : 0

1 O:w /(A,B)n0

P<--Tl + .LP

a<:-- I
11

Fig;ure 9. (Continued)

53

d20

d21

eo

eo 1 . ~

e1 --

e7 , -->r

e8 I..- , J

e18'----'

CCA , >
CCB

CMA
CMB

CLA
CLB

CLE

CME

CCE

>

>

>

>

>

SEZ,SLA

SLB,SSA
---->

INA
INB

RSS

JLY

>

>

JLY ------

JPY ------

(A, B) <- E:(16) , n
. 0

(A,B) <- ~(A,B)n
no 0

(A B) <-- E (16)
' n

0

n<--v

-->nz

E<- 0

-E<- E

E<-1

f4

fs

f6

f7

S<-- 0 f 8 1.;:,'------'

1
S<- (E A I 10)v ((O=a /(A,,B)I4)AI11)

v((O=w1 j(A,B)I4)AI12)v((O=R(A,B)I4)

/\I14) f9

(A,B)I <- T(O,a)I
4 13

S<-- (S ,S) I 15

P<- T(0,1)I + .LP
15

Y<- T1 + .LP

1
HAC (.LP,f;I)

->n
3

Y<-T1 + .LP

15
ADC(I0:.Lw /I:a)

P<- Ta

15
p<-(.iY) + (.iw /I)

Figure 9. (Continued)

-->

1--->

1--->

54

MAC~.LP,f;I)

P<- T1 + l.P

DIV------> s 1<- B0
1 MAC (a,f;C)

s2<- c0

B,A<---T/l.(B,A);B0;232-J.(B,A)/,

C<-T/l.C;c0;216-J.C/

1 : 0 <-(0 = C)

x<-(J.C) I l.(B,A)

[
f ___ 1 : 0- ((((B,A)-x)~(l.C))>2 15)

B,A <- ? (32)

---? t<- ((l.(B,A))-x)~(.LC)

16 x<-- /x; (s1 vs2) ;2 -x/

B - (16) Tx

16
A- T/t,(s1~s2);2 -t/

MPY ------- > Y.Ac1 a, f: C)

s 1<- Af/J

sz<:- c0

DLD 1 -------->MAC (a (f s) ·A)
DST ' ' n0'

1
MAC (a+1, (f,s)n~;B)

Figure 9. (Continued)

ho

h1

h2

h3

h4

hs

h6

h7

h8

h9

h10

hll

h12

hl3

h14

h15

h16

h17

h18

h19

hzo

h21

h22

55

= ------>

1-------->

+----->

+----->

. 8 24 8 23
t<-.1./(A,Ci /B) ;A0 ;2 -(A,a /B)/~ 2 i 0

t<- t X

7 8 . 7 8 7 . Ia /w /B;B15 ;(.l.a /w /B)-2 I
2 .

FIX-~-----> t<--- (0,1)(t<6)+Lt ,i3

7 8 7 7 8
s 2<---(/ a /w /B;B15 ;2 -.l.a /w /B/~16) i 4

I

t<--- (t,32767)
82

O<--- s 2

16 A<---T /t; t<0; 2 +t/
'

FLT------- b<--- ((w 15 I A)/~) 0

FAD FSB
FMP,FDV

u.;15 /A<- btw15 /A

B<-· s(16)

a7 !w8 /B<~(15-b)

> MAC1 (1P,f;I)

P - T1 + l.P

. 15 ADC(I0 ;.l.w /I;a)

MAC(a,f;C)

MAC(a+1,f;g)

8 24 & . 23
x<--- /l. (C, a I g) ; C 0; 2 -.1. (c, a 7 g) I""'" 2

7 8 7 8 7
s 2<- I .1.a fw /g;g15 ; (.1.a /w /g)-2 I

x<--- X X 2

L .:.;_ x(+,-,x, -:-) n1 t

Figure 9 (Continued)

i7 +----->

is

i9

ilO

ill -1----->

i12

\3
i14

i15

i16

i17

i18

i19

i20

56

>

r l b<-(b' (1-2""'23)x 2-129) m i21

I b<-(b,l) (b>(l+Z-:-22)x(-2129))A(b<2-129)

Q<--- (b<-z127)V(b>(l-2)-ZJX127)

v((b>(l+Z)-22(_2129))(b<2-129))

t<-0

s 1<- (b<'/J)

b<- I b

b:'/J.S

b<- bx2

t<- t-1

i22

i23

i24

i25

i26

i27

i28

i29

i30

i31

i32
7 8 8

--> B15 , a /w /B T/t;(t<'/J);t+2 I i33

b<- bX2 24
i34

8 . 24
A,a /B<- T/b ;s1 ;2 -b/ i35

Figure 9. (Continued)

57

>

58

All 1R1 instructions are executed here. ADX, ADY, LDX, LDY, STX,

and STY refer to certain memory locations whose addresses are defined

in the word following the instruction word; thus some memory access

and effective address computation tasks must be done(60-63) prior to the

execution of the instructions. All the other instructions of 1R1 do

not require those tasks and enter the routine at line b4 to skip the

unnecessary steps.

The EAR instruction sets are executed here. Each instruction

enters at a different line.

All the 101 instructions are executed here. The 1/0 devices are

interfaced with the processor by these instructions; symbols V, F, and

Z are used here to represent the control bits, 1/0 flag bits, and data

buffers of all the I/0 devices. Each indexed symbol refers to a

specific device.

All the S/R instructions are executed here. Each S/R instruction

consists of four microinstructions. Each microinstruction is chosen

from its own microinstruction set. The first microinstruction set is

the same as the fourth microinstruction set for S/R instructions. The

instruction execution is divided into three parts. The first part

59

(lines e 0-e12) executes the first microinstruction, the second part

(lines 13-14) executes the second microinstruction, and the third part

(lines 15-17) executes the third microinstruction. The fourth micro­

instruction is executed in the first part after the previous three

microinstructions are all executed. Every S/R instruction must go

through these four steps to complete the instruction execution.

All the A/S instructions are executed here. Each A/S instruction

consists of 8 microinstructions. Thus the instruction execution is

divided into 8 parts, each part executing one microinstruction. Every

A/S instruction must go through these 8 parts to complete the instruction

execution.

The JUMP instructions JLY and JPY are executed here. A memory

access must be made to get the destination address of the JUMP instruc-

tion.

All the EAMR instructions are executed here. Each of the four EAMR

instructions requires two words of memory: one for the instruction

code and one for the operand address. Thus at line h0 , the second mem­

ory word (operand address) is incremented by 1 to point to the next

instruction. The overflow bit is set when the DIV instruction is

executed if the divisor is zero or too small. In the former case

(division by zero), the division will not be attempted and the B-and

A-register contents will be unchanged except that a negative quantity
/

will be made positive. In the latter case (divisor too small), the

execution will be attempted with unpredictable results left in the B-

and A-registers.

All the FPI instructions are executed here. Four of the FPI

instructions are floating point arithmetic instructions which require

two words of memory: one for the instruction code and one for the

operand address. Since a full 15 bits are available for the operand

60

address, these instructions can directly address any locat~on in memory.

The execution of WMI, BIMI, BYMI, and DMI instructions is not

included in the APL description here because they are not used and

have nothing to do with this paper.

Microprogramming

Conventional Control Section

In a conventional computer control section, the functions performed

by the instruction set determine the specified hardware design. The

major advantage of this specially designed hardware is speed of instruc-

tion execution. The major disadvantage is the loss of flexibility for

special applications or for enhancements. Any changes and additions

to existing capabilities require changes and additions to hardware

components. This is no problem for a conventional computer is there are

no new machine instructions required. "The hardware has been designed

to minimize timing for the instruction set" (6).

61

However, a computer manufacturer rarely produces an instruction

set that meets the requirements of all potential users. "Hence, the

manufacturer must either focus his attention on one group of users or

widen his scope and generalize the hardware design to meet the needs of

a number of user groups. In the latter case, the user must modify his

discipline to some extent to meet the limitations of his hardware"(6).

Microprogrammed Control Section

"In the microprogrammed computer, all distinct logical functions

are separated from the sequence in which those functions are per­

formed" (6). Thus, hardware redundancy is reduced. The control store

holds the microinstruction which defines the logical functions. Each

machine instruction in Main Memory is performed by a sequence of micro­

instructions in Control Store. This sequence of microinstructions

called a microprogram and is often referred as.firmware. Software can

be executed much faster with the application of microprogramming.

This speed is achieved by two factors:

1. The memory access time of Control Store is less than

that of Main Memory.

2. The microinstruction has more flexibility than the

normal machine instruction.

In fact, the HP21MX Control Store where microinstruction reside,

cycles more than twice as fast as Main Memory where normal machine

instructions reside. In addition, microinstruction have the ability

to access many internal registers and some logical functions that Main

Memory programs do not have.

For example, the HP21MX floating point software subroutines were

62

identified as very time consuming. They were microprogrammed by

Hewlett-Packard and made available in ROM to users. Implementation of

floating point firmware requires no change to user programs. The

microprogrammed floating point instructions run about 20 times faster

than the corresponding software subroutines.

As in the floating point microprogram, the user can study his.

software, determine the most time consuming function performed, and

then microprogram these functions, that is, execute them in control

store using a single memory instruction instead of a sequence of Main

Memory instructions. Any software that uses these microprogrammed

functions will execute at a higher speed.

The Microprogrammable Computer

Functionally, a computer consists of four major sections:

Control

Main Memory

Input and Output

Arithmetic and Logic

Each section executes under the direction of the control section by

means of a microprogram. The control section reads the user's program

stored in Main Memory and directs the appropriate hardware in each of

the other sections.

Control Section

The control section fetches an instruction from a certain location

in memory, which is specified by the Memory Register (MR), and stores it

into the Instruction Register (IR), as shown in Figure 10. An

CONTROL SECTION. MAIN MEMORY

MACROPROGRAM

INSTRUCTION REGISTER

MACRO PROGRAM
INSTRUCTION <E:----t---t-"i-----tr

CONTROL STORE

,,~---r-r-,--,-..,-,'-r'..,.--,rl I CRO-
ROGRAM

Figure 10. A Microprogram Implemention of One
Nacroprogram Instruction.

63

CRO-

appropriate microprogram is determined by the IR. Conceptually, each

program instruction in Main Memory is a jump to a microprogrammed

routine which resides in Control Store.

64

The storage area for those microprograms is Control Store which

may be either a Read Only Memory (ROM) or Writable Control Store (WCS).

The control section that executes microprograms from ROM is referred as

a Control Processor.

The Control Processor

A microprogram in the Control Processor is in command of the

computer at all times. A microprogram takes program instructions from

Main Memory and stores them into the IR. The upper eight bits of the

IR determine the microprogram address within one of the following

groups:

Basic instruction set

Extended instruction group

Floating point instruction group

User microprogram group

The basic instruction set microprogram can be regarded as a supervisor

microprogram·that determines when a user microprogram is called and then

passes control to the user microprogram.

When a microprogram has run to completion, it returns to location

0 in Control Store (basic instruction set), returning control.to the

supervisor microprogram, after which the next instruction is fetched

from Main Memory and stored into the IR, Successive microinstruction

address are determined in the following way. The ROM Address Register

65

(RAR) is incremented at the start of execution of each microinstruction.

When a jump is executed, the RAR is loaded with the jump target address.

When a jump to a subroutine is executed, the RAR is stored into the Save

Register. When a return from a subroutine is executed (RTN), the

Save Register contents are transferred into RAR and the Sav~ Register

is cleared. Thus at the completion of execution of each microinstruc-

tion, the RAR holds the address of the next microinstruction.

The central data transfer path is the S-bus. The contents of

all registers except the following can be directed onto the S-bus:

L-register, RAR,SAVE Register, Extend Register, and the Overflow

Register. The following registers can receive data from the S-bus:

M-Register, T-Register, L-Register, Counter-Register, Display-Register,

Display Indicator, and Instruction Register.

The T-but receives data only from the Rotate/Shifter (R/S) but

can pass dat,a to the following registers: A-Register, B-Register,

Scratch Pad Register (Sl through s12), X-Register, Y-Register,

P-Register, and S-Register, (Front Panel Switch Register).

The I/O-bus serves to transfer data to and from external devices

under program control. In the functional block diagram (Appendix A)

all the data paths are shown by the arrows. For example, the B-Register

contents can be sent to S-bus and hence to the M-Register. However, the

contents of the B-Register cannot be sent to Sl2 (Scratch Pad 12) with-

out passing through the ALU.

Main Memory

The M-register is a 15-bit register which holds memory addresses

for reading from or writing into Main Memory. Upon storing from the
i

66

M-Register, bit 15 is c1ear (0). The T-Register or transfer register

holds the dat~ being transferred to or from memory. The contents of

both of these registers are transferred to and from the -bus. Four

loader ROMS, selectable by Instruction Register bits 15 and 14, can

eac~ contain a 64-word Main Memory program which may be loaded into

Main Memory and used to load Main Memory from a peripheral device,or to

perform any other function desired by the user.

Two flags are associated with memory: the A-Register Addressable

Flag (AAF) and the B-Register Addressable Flag (BAF). These flags

are required to allow the A- and B-registers to be addressed as loca­

tions 0 and 1, respectively, of Main Memory.

Input and Output

The Central Inter~upt Register (CIR) is a 6-bit register associated

with the I/0 interrupt circuitry. It is loaded with the select code

of the interrupting device under program control and passed to the S-bus.

Whenever the CIR is loaded, and Interrupt Acknowledge (IAK) signal is

issued to the I/0 device. The I/0 bus transfers data to and from exter­

nal devices. Two flags are associated with I/0: the interrupt pending

flag and the I/0 skip condition met flag. The Interrupt Enable Register

is used to disable or enable the recognition of all interrupts, except

Memory protect, parity, and power failure interrupts.

Arithmetic and Logic Section

This section consists of the Arithmetic and Logic Unit (ALU), the

twenty-two Rotate/Shifter (R/S) registers, and six flags.

The ALU and R/S are the only units that execute functional

67

I

modifications on the data. The ALD receives innut from the S-bus and

from the L-register (Latch Register). Output -from the ALD goes to the

R/S which places its output on the T-bus.

Output from- the ALD and R/S can be stored in one of the folloiwng

registers via the T-bus: A-Register, B~Register, Scratch Pad Registers

(s1 through s12), X-Register, Y-Register, P-Register, and S-Register.

Recall that the P-register holds the macroprogram (main memory)

address. The P-register must be under control of the microprogram

which must insure that it contains the proper address after the micro-

program is complete. When the microprogram is complete, the resulting

, P-Register value is the address of the next macroinstruction to be

executed. Note that the Basic Instruction Set fetch routine (at

Control Store address 0) automatically increments the P-Register

after the macroinstruction is fetched. Thus for one-word user macro-

instruction function codes, no further incrementing of the P-Register

is necessary in the user microprogram.

The S-Register is reserved for internal storage of the Front Panel

Switch Register. Note that all of those registers can also be sent

along the S-bus for storage into memory, passage to an external device,

or input to the ALD.

The Extend Register is a one-bit register usedin shift operations

to link the A- and B-Registers or to indicate a "carry" arithmetic

result out of the A- or B-Registers. The overflow is a one-bit regis­

ter used to indicate an arithmetic overflow from the ALD. These two

registers can also be used as flags.

68

Implementation of a Polynomial Algorithm
. . .,

in the HP21MX Computer

i

The four tasks which are illustrated in Chapter I are performed in

this chapter. One of them is to program the polynomial algorithm in

Hp 21 assembler language for evaluating the sine function. The other

task does the same thing but uses a microprogram instead of the program

coded in assembler language.

The particular polynomial algorithm used for evaluating sine

functions has been determined in Chapter II and is shown as follows:

where c 1 = 1. 5706268

c3 = -0.6432292

0. 0727105

-1 :o; X <S; 1

For evaluating the sine of an angle 8, x is substituted with 28/IT

in Eq. (4.1); then sin 8 can be computed by

1"\ (~) (28) 3 (28) 5 sin '=' = cl IT + c3 IT + c5 IT

(4.1)

In order to reduce the execution time when implemented this algorithm

in the computer, Eq. (4.1) can be factored as follows:

(4.2)

Although Eq. (4.1) and Eq. (4.2) give the same result in computa-

tion, they require a different number of multiplications.

Insp~ction of Eq. (4.1) shows that the number of multiplications

required is 11, while the number of multiplications required by

69

Eq. (4.2) is 7. As mentioned in Chapter I, the multiplication function

is one of the most time-consuming functions. Thus Eq. (4.2) definitely

is more efficient than Eq. (4.1) when implemented in the computer.

For the reason mentioned above, Eq. (4.2) is used for both the

microprogram and the program coded in assembly language. The results

of these two implementations are listed in Tables VIII and IX. The

program listings are listed in Appendix B.

Implementation of the Cordie Algorithm

on the HP21MX Computer

The Cordie algorithm has been introduced in Chapter II. To use

it for evaluation of the sine function, the value selected for n is

a function of the desired computing accuracy. Theoretically, the

larger the value of n is the more accurate the result.

Actually, it is impossible to represent a number to any degree of

accuracy in any computer because the accuracy of all computers is

limited by the number of bits in a word. In the HP21MX computer,

there are 16 bits in a word. When the Cordie algorithm is used to

evaluate the sine function, the value of n not only determines the

accuracy of the result, but also affects the execution time of the

program. There is a trade-off between accuracy and execution time;

i.e., when n increases, the accuracy is increased as is the execution

time. In order to get the greatest accuracy and the least execution

time, the optimum value of n must be found. As discussed in Chapter II,

a set of ATR constants, a., i=l, 1 •• ,n,, can be obtained from Eq. (4.3).
1

a. = tan-l~-(i-2) for 2~i~n
l

(4.3)

TABLE VIII

POLYNOMIAL METHOD IMPLEMENTATION RESULTS
(ASSEMBLY LANGUAGE) OF EVALUATING

THE SINE FUNCTION

Ang1e(Radians) Sin Execution Time(Mi1i-Sec)

-1.5 -0.997558 0.081

-1.4 -0.985351 0.081

-1.3 -0.963378 0.081

-1.2 -0.932128 0.081

-1.1 -0.891357 0.081

-1.0 -0.841552 0.081

-0.9 -0.783447 0.081

-0.8 -0.717285 0.081

-0.7 -0.644287 0.081

-0.6 -0.564697 0.081

-0.5 -0.479492 0.081

-0.4 -0.389404 0.081

-0.3 -0.295654 0.081

-0.2 -0.198730 0.081

-0.1 -0.099853 0.081

0.0 0.0 0.081

0.1 0.099609 0.081

0.2 0.198Lf86 0.081

0.3 0.295410 0.081

0.4 0.389160 0.081

70

71

TABLE VIII (Continued)

At;g1e (Radians) Sin Execution Time(Mili-Sec)

0.5 0.564453 0.049

0.6 0.564453 0.049

0.7 0.644042 0.049

0.8 0. 717041 0.049

0.9 0.783203 0.049

0.1 0. 841308 0.049

1.1 0. 891113 0.049

1.2 0.931884 0.049

1.3 0.963134 0.049

1.4 0.985107 0.049

1.5 0.997314 0.049

'·

TABLE IX

POLYNOMIAL METHOD IMPLEMENTATION RESULTS
(MICROPROGRAM) OF EVALUATING THE

· SINE FUNCTION

Ang1e(Radians) Sin Execution Time(Mili-Sec)

-1.5 -0.997558 0.049

-1..4 -0.984351 0. 0lf9

-1.3 -0.963378 0.049

-1.2 -0.932128 0.049

-1.1 -0.891357 0.049

-1.0 -0.841552 0.049

-0.9 -0.783447 0.049

-0.8 -0.717285 0.049

-0.7 -0.644287 0.049

-0.6 -0.564697 0.049

-0.5 -0.479492 0.049

-0.4 -0.389494 0.049

-0.3 -0.295654 0.049

-0.2 -0.198730 0.049

-0.1 -0.099353 0.049

0.0 0.0 . 0. 049

0.1 0.099609 0.049

0.2 0.198486 0.049

0.3 0.295410 0.049

0.4 0.389160 0.049

72

Ang1e(Radians)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

' I

TABLE IX (Continued)

Sin Execution Time(Mi1i-Sec)

0.479248 0.081

0.564453 0.081

0.644042 0.081

0.717041 0.081

0.783203 0.081

o. 841308 0.081

0.891113 0.081

0.931884 0.081

0. 963134 0.081

0.985107 0.081

0. 997314 0.081

73

When implementing the Cordie algorithm in the HP21MX computer,

a. will be divided by 180° and then represented in 16 binary digits.
1

74

For example, if a.1 = 90°, then 90°/180° = 0.510 = 0.400008 . 0400008

will be stored in the computer. If Eq. (4.3) is used to find the ATR

constants n=l to n=l6, the values of ai are: a 1 = 040000, a2 = 020000,

a 3 = 011344, a4 = 004773, a 5 = 002421, a6 = 001213, a 7 = 000505,

000242, a 9 0001212, a10 = 000050, a11 = 000024, a12 = 000012,

a 13 = 000005, a14 = 000002, a15 = 000001, a16 = 000000.

Because the ATR constant is represented with a 16-bit word in

the HP21MX computer, when n > 15, the constant.will be too small to

be represented. Thus the value 15 is the best choice for the value

of n. This yields the most accurate result without excessive execution

time.

Once the value of n is determined, the value of k can be found as

well. The formula to obtain the constant k is:

k 1+2~
-2(n-2)

1+2 (4. 5)

When the constant k is computed by Eq. (4.5) with n 15, the result is:

k 1. 646744

The original coordinate vector in the Cordie algorithm is:

v 1/k = 0.6072589

One critical problem occurs immediately when the Cordie algorithm

is being implemented in the HP21MX computer. Review of the Cordie

machine in Chapter III shows that the best feature of Cordie which speeds

up computation is that it has three adder-subtractors which can operate

75

simultaneously. In the HP21MX computer, although there are two regis-

ters (A and B) which can operate like an adder-subtracter in Cordie,

they cannot operate simultaneously. Due to this hardware limitation,

the only way to simulate these parallel adder-subtracter operations

is to execute sequentially.

The flowchart for the assembler program which simulates the Cordie

algorithm in the HP21MX computer is shown in Figure 11.

An AHPL description for the microprogram which emulates the Cordie

algorithm in the HP21MX computer is shown in Fi~ure 12.

Both program listings are shown in Appendix B. The programming

results for these two implementations are listed in Tables X and XI.

Calculation of Execution Time

To calculate the execution time of both the macroprogram and the

microprogram, the Time Base Generator (TBG) and interrupt feature are

used. The TBG generates an interrupt signal for a specified time

interval; the CPU acknowledges the interrupt and forces the current

computer program to suspend and transfer control to a service subroutine

which records the number of times that the clock interrupt has occurred.

At the end of program, the program execution time can be calculated

from the following:equation:

T
N X TI

L
where

T program execution time

N number of clock interrupts

TI interrupt time interval of Time Base Generator

L number of times that the program has been executed

•

------] A -A + ref reg

90°
TI

y <-- B reg

Set time
Clock Inter­
rupt

Input an
Angle

A /_ANGLE reg,
TI

Znable time
Clock Inter­

rupt

l
Breg+- Unit

Vector

Y< · B reg

Figure 11. Cordie Algorithm

i +- 1

K +- (No of
shifting
time) .

~

B <-- y
reg

I
•---,----_j

k times
reg

<--X reg

76

/
Ye~

,Y-+-Y +B I
reg reg reg;

X+ y I
r~

Right Shift

Breg k times

y +- y
reg

No I ~~ "I B + B +1 -/ reg reg 1

I

reg
B +1
reg A r~Breg+­

'---~---'

Figure 11. (Continued)

n

_ _Q_
y +Y~

reg . reg I
+ B reg

y + y
reg

-~ B + (Angu
reg

lar consta~t).

l
No

~---:;;>

A +A reg reg

+

Yes

Figure 11~ (Continued)

+ B
reg

78

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

MR +- p

P +- Tl+.LP

1
MAC (.LMR, f; T)

X+- T

MR +- p

P -<- Tl+ .LP

1
MAC (.LMR, f, T)

S7 +- T

S6 +-A

-+ (10,14)AO

S7 +- S7

S7 +- (16)Tl+.tS7

X+- X

X+- (16)T1+.tX

Y+X

15 X +- 8(16)

/

16 E,S~ +- T(.LS6)+(.LS7)

17 54 +- 812,13,14(16)

18 S3 +- 8(16)

19 SS +- X

20 L +- y

21 -+ 37

22

23

Figure 12.

8
CTR + w /S3

B +-X

The AHPL Description
for the Cordie
Algorithm in Imple­
mentation in HP21MX
Microprogram

79

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

(v/CTR):O,(=,+) + (29,25)

t
B -<- o B

(A/CTR):1,(=,f) + (29,27)

CTR +- T1 + .LCTR

+ 25

SS +- B

8
CTR +- w /S3

B +- y

(V/CTR):O,(=,f) + (37,33)

t B +- o B

(A/CTR):1,(=,f) + (37,35)

CTR +- T1+.LCTR

+ 33

MR +- .p

P +- T1+.LP

1
MAC (.LMR, f; T)

S7 +- T

+ (42,48)(86)0
. 16

E,X +- (17) (.LX)+2 -.LL

L +- S5

E,Y +- (17) (.LY)+(.LL)

L +- S7

16 E,S6 +- (17) (.LS6)+2 -.LL

+ 53

E,X +- (17) (.LX)+(.LL)

Figure 12. (Continued)

80

81

49 L -<- S5

50 E,Y + (17)T(~Y)+2 16-~L

51 L + S7

52 E,S6 + (17) TUS6)+ H

53 E, S4 -«- (17)T1+~S4

54 -+ (57,55)(v/S4)

55 E,S3 16
+ (17)T(~S6)+2 -1

56 -+ 22

57 RETURN TO MACROPRAM

Figure 12. (Continued)

•

TABLE X

CORDIC ALGORITHM IMPLEMENTATION RESULTS
(ASSEMBLY LANGUAGE) OF EVALUATING

THE SINE FUNCTION

Ang1e(Radians) Sin Execution Time (Mili -Sec)

0.0 0.000244 3.304

0.1 0.099975 3.297

0.2 0.198913 3.310

0.3 0.295410 3.313

0.4 0.389587 3.300

0.5 0.479431 3. 313

0.6 0.564758 3.305

0.7 0.644226 3.305

0.8 o. 717407 3.310

0.9 0.783325 3.304

1.0. 0.841369 3.305

1.1 0.891174 3.313

1.2 0.932206 . 3. 311

1.3 0.963562 3.306

1.4 0.985351 3.311

1.5 0.997558 3.318

1.6 0.999450 3.310

1.7 0.991760 3.318

1.8 0.973693 3. 313

1.9 0.946350 3.305

82

83

'J'ABLE X (Continued)

Angle(Radians) Sin Execution Time(Mili-Sec)
----------· --------------·----------- --

2.0 0.909301 3.316

2,1 0.863220 3.320

2.2 0.808654 3.312

2.3 0.745666 3.310

2.4 0.675476 3.312

2.5 0.598510 3.314

2.6 0.515686 3.324

2.7 0.427795 3.311

2.8 0.334716 3.313

2.9 0.239074 3.321

3.0 0.140869 3.311

3.1 0.041564 3.316

3.2 -0.058654 3.304

3.3 -0.157592 3.311

3.4 -0.255798 3.320

3.5 -0.350M6 3.317

3.6 -0.442016 . 3.320

3.7 -0.530090 3.327

3.8 -0.611999 3.311

3.9 -0.687622 3.314

4.0 -0.756713 3.329

4.1 -0. 81805L~ 3.302

4.2 -0.871520 3.327

4.3 -0.9163-20 3.321

lf. 4 -0.951599 3. 311

84

TABLE X (Continued)

Angle(Radians) Sin Execution T:i.me(Mi1i-Sec)

4.5 -:-0.977539 3.322

4.6 -0.999877 3.314

4.7 -0.999877 3.314

4.8 -0.996032 . 3.310

4.9 -0.982422 3.312

5.0 -0.958801 3.314

5.1 .;..0.925901 3.311

' 5.2 -0.883422 3.314

5.3 -0.832153 3.308

5.4 -0.772583 3.304

5.5 -0.705505 3.309

5.6 -0.631530 3.303

5.7 -0.550659 3.309

5.8 -0.464599 3.310

5.9 -0.373840 3.305

6.0 -0.279541 3.319

6.1 -0.182312 3.314

6.2 -0.082885 3.312

\'

TABLE XI

CORDIC ALGORITHM IMPLEMENTATION RESULTS
(MICROPROGRAM) OF EVALUATING THE

SINE FUNCTION

Ang1e(Radians) Sin Execution Time(Mili-Sec)
---·--·

0.0 0.000244 0.105

0.1 0.099975 0.126

0.2 0.198913 0.112

0.3 0.295410 0.108

0.4 0.389587 0.106

0.5 0.479431 0.104

0.6 0.564758 0.108

0.7 0. 6Lr4226 0.107

0.8 0.717407 0.113

0.9 0.783325 0.097

1.0 0.841369 0.110

1.1 0.891174 0.111

1.2 0.932206 0.114

1.3 0.963562 0.109

1.4 0.9853.51 0.104

1.5 0.997558 0.105 .

1.6 0.999450 0.104

1.7 0.991760 0.105

1.8 0.973693 0.114

1.9 0.946350 0.106

85

86

TABLE XI (Con tinned)

Angle (Radians) Sin Execution Time(Mili-Sec)

2.0 0.909301 0.111

2.1 0.863220 0.105

~ 2. 2 0.808654 0.106

2.3 0.745666 0.105

2.4 0.675476 0.116

2.5 0.598510 0.111

2.6 0.515686 0.107

2.7 0.427795 0.116

2.8 0.334716 0.107

2.9 0.239074 0.114

3.0 0.140869 0.102

3;1 0.041564 0.103

3.2 -0.058654 0.101

3.3 -0.157592 0.105

3.4 -0.255798 0.106

3.5 -0.350646 0.112

3.6 -0.442016 0.110

3.7 -0.530090 0.105

3.8 -0.611999 0.109

3.9 -0.687622 0.097

4.0 -0.756713 0.108

4.1 -0. 81805lf 0.112

4.2 -0.871520 0.107

4.3 -0.916320 0.107

4.4 -0.951599 0.111

87

TABLE XI (Continued)

Ang1e(Radians) Sin Execution Time(Mili-Sec)

4.5 -0.977 539 0.106

4.6 -0.993774 0.107

lf. 7 -0.999877 0.107

4.8 -0.996032 0.107

4.9 -0.982422 0.102

5.0 -0.982422 0.102

5.1 -0.925901 0.101

5.2 -0.883422 0.110

5.3 -0.832153 0.108

5.4 -0.772483 0.111

5.5 -0.705505 0.110

5.6 -0.631530 0.115

5.7 -0.550659 0.116

5.8 -0.464599 0.107

5.9 -0.373840 0.114

6.0 -0.279541 0.111

6.1 -0.182312 0.110

6.2 -0.082885 0.107

CHAPTER V

OTHER USES OF CORDIC

The Cordie algorithm may also be applied in solving many other

mathematic problems as well as being applied in the evaluation of the

sine and cosine functions. Decimal to binary and binary to decimal

conversion, arctangent function computation, fourier transformation,

et.al., can be done by the Cordie algorithm--a different way from the

conventional methods. Arctangent function computation and decimal

to binary conversions are chosen in this chapter to demonstrate how

the Cordie algorithm is applied to solve these problems.

Arctangent Algorithm

This algorithm is obtained by reversing the sine and cosine

algorithms. In this algorithm, the value V which equals Y/X is known

(X andY are components of a vector.) The vector is rotated with

respect to the positive X-axis. The angle traversed is the angle whose

tangent equals Y/X.

Functional Description

The VECTORING mode is used in this application. To illustrate the

details of this algorithm, Figure 2 in Chapter III is referred to again.

The value of v is checked before the initialization of the X- and

Y-registers. If the value of v is greater than 1 then the Y-register

8~

is initialized with 1 and the X-register is initialized with v·
'

otherwise the X-register is initialized with 1 and the Y-register is

89

initialized with v. The Angle Register (A~register) is always initial-

ized with 0. A sign digit of 0 in the Y-register establishes a v.
].

of -1, which causes the top adder-subtractor to be set to subtract and

the middle and bottom adder-subtractors to add. A sign digit of 1 has

the opposite effect. The ATR constants are the same as those used in

Chapter III. The VECTORING computing sequence as described in Table II

is started. The angle whose tangent equals to v is taken from the

A-register after the final computation step.

Decimal to Binary Conversions in Cordie

A technique is formulated for using the Cordie arithmetic unit to

convert between angles expressed in binary fractions of a half

revolution and angles expressed in degrees and minutes in the 8421-code.

The Cordie decimal-to-binary conversion technique may be compared

to a conventional conversion technique in which the 8421-code and

binary arithmetic are utilized. The conventional conversion technique

is based upon the 8421-code definition of the value of a decimal digit,

N, located i placed to the left of the units position, as given by

n4 (8 x lOi) + n3 (4 x lOi) + n2 (2 x lOi) +n1 (1 x lOi)

(5 .1)

where n4 , n3 , n2 , and n1 are equal to zero or one. The constants

8 x lOi, 4 x lOi, 2 x 10\ and 1 x lOi, evaluated in binary for all

values of i to be used, are required in the conversion. For example,

5° in 8421-code is

45° (0 X 8 X 10 + 1 X 4 X 10 + 0 X 2 X 10 + 0 X 1 X 10)

+ (0 X 8 + 1 X 4 + 0 X 2 + 1 X 1)

45°- = (0100)' (0101).

For example, 86° can be written as

86° (1 X 8 X 10 + 0 X 4 X 10 + 0 X 2 X 10 + 0 X 1 X 10) + (0 X 8

+ 1 X 4 + 1 X 2 + 0 X 1)

86° (1000). (0110)

90

.The conversion of a negative angle is accomplished in the same way, and

the result is then complemented by subtracting the binary magnitude

from zero. F~r example, -86 ° is (0111) (1010) which is the 2 's comp,le­

ment of 86°.

The binary value of 45° as a fraction of half revolution is shown

in Table XII.

In Table XII at each step a binary constant is either added or

not added, depending upon whether the 8421-code variable is 1 or 0,

respectively. In order to use the Cordie principle, it is necessary

either to add or to subtract a constant. The use of addition or sub­

traction is controlled by a code variable placed in the sign digit

position of an arithmetic unit register. The problem of conversion by

adding and subtracting constants is considered first. Subsequently,

the method of properly positioning the code variables for control is

presented.

By analogy to the way in which a code variable of +1 is used

to establish the addition of a constant, a variable of -1 is used to

establish subtraction. Therefore, it is desired that a binary code with

+1 and -1 variables be used to represent decimal angles in Cordie. For

convenience, the desired code is called a + (plus-minus) code.

Constants
Degree

8 X 10·

4 X 10

2 X 10

1 X 10

8

4

2

1

TABLE XII

THE CONVENTIONAL DECIMAL-TO-BINARY
CONVERSION .

Constants-Binary 8421-
Fraction of half Code Variable

Revolution

.01110010 X 0

.00111001 X 1 " =

.00011100 X 0

.00001011 X 0 ::::

.00000110 X 0· =

.00000011 X 1 =

.00000011 X 0

.00000001 X 1 ::::

Accumulated sum = 2-2 half revolution .01000000.

91

Product
Term

0.00000000

0.00111001

0.00000000

0.00000000

0.00000000

O.OOOOOllO

0.00000000

0.00000001

92"

The 8, 4, 2, 1 weights cannot be applied directly to a four-digit ±

code because all possible sums ~f binary-weighted ± code digits are odd.
(

Therefore, a transformation of t\he decimal digits 0, 1, ... , 9, into

a set of ten odd integers is necessary. The set of ten odd integers

-0' -7' ... ' -1, +1, ... ' +9 is selected.

The equation transforming a decimal digit N, having one of the

values, 0, 1, ... , 9, into a digit Y having one of the values -9, -1,

... , +9 is

y 2N - 9

The equation for the inverse transformation is

N ly + 2_
2 2

(5.2)

(5. 3)

1
Applying the factor of 2 in (5.3) to the 8421-weight results in the +

code equation

N (5.4)

where Y. = +l.or -1 and C =
J

9
2

A factor of lOi may be applied to each

term in (5.4), as was done in (5.1), account for the position of the

digit N.

c = 9
2

The pattern theY. variables of the code of (5.4), with
J

and with O's used t · represent -l's, is identical to that of

the Excess-3 code.

Equation (5.4) can be applied to each digit position, and the

i
constant term c ~ 10 for all decimal digit positions is added in binary

to the accumulated sum. As an example 45° will be converted from +

(excess-3) code to binary as follows:

for 45°

9 c2 = 2 4.5

45

C = .c1 + c2 = 49.5 = total constant

Consequently the constant for 45° is 49.5.

The + 1 code representation is

5 + 3 = 8 (1000)2

7 - (0111)2 4 + 3

93

(+---)

(-+++)

Where each digit must be added to 3 for excess -3. The zero stands for

minus one and one for plus one. Thus

45° = (-+++) (+---)

The complete conversion of 45° is shown in Table XIII.

X

Where fro~ equation (5.4)

(-40 + 20 + 10 + 5) + (4 - 2 - 1 - l) + 49.5°
2

Successive digits of the ± code must control successive set-

ting of the adder-subtractors in order for the proper sequence of

additions and subtractions to occur as indicated in the previous table.

The settings of the adder-subtractors during the conversion operation

are established by the value of the sign digit located in the Y-register.

In positioning the + code digits for control, the technique of

nonrestoring division is useful because successive quotient digits are

Constant
Degrees

49.5

40

20

10

5

4

2

1

1/2

TABLE XIII

DECIMAL-TO-BINARY CONVERSIONS
IN CORDIC

Constant-Bainry
Fraction of Half + Code Product

Revolution

.0100011001110 (correction) . 010001100110

. 001110001110 X -1 = -.001110001110

.000111000111 X +1 = +.000111000111

-
.0000011100100 X /+1 = +.000011100100

.00001110010 X +1 +.000001110010

. 000001011011 X +1 +.00000101101

.000000101110 X -1 -.000000101110

.000000010111 X -1 -.000000010111

.000000001011 X -1 ~.00000001011

94

Accumulated Sum

. 010001100110

. 000011011000

. 001010011111

.001110000011

. 001111110101

.010001010000

.010000100010

.010000001011

. 0100000000

The
. -2

accumulated sum = 2 half revolution = 0.010000000000

95

given by the sign of successive remainders. Dividing the number

representing the ± code of the angle by 1 produces the signs of succes-

sive remainders. In Cordie this is accomplished as follows:

1) If the remainder is positive, subtract the divisor.

If the remainder is negative, add the divisor.

2) Shift the divisor one place to the right.

3) Repeat 1 and 2.

The positioning of digits of the + code for 45° is illustrated by

following the above rules as shown in Table XIV.

In decimal-to-binary conversion, the + code for the desired angle is

placed in the Y-register and the divisor of 1 is placed in the X-regis-

ter. A sign digit of 0 in theY-register establishes a Y. of -1, which
1

causes the top adder-subtractor, Figure 13, to subtract and the bottom

adder-subtractor to add. A sign digit of 1 has the opposite effect.

The constant C in (5.4) is initially placed in the angle register and

successive constants are introduced into the bottom adder-subtractor

as shown in Figure 13. As one step of the division is taking place to

establish the next setting of the,adder-subtractors, a constant is

being added or subtracted to modify the quantity in the angle register

according to the sign digit in the Y-register at the beginning of the

step. The binary angle is taken from the bottom adder-subtractor on

the final computation step.

(-+++) (+---)

sub

add

sub

sub

!-
sub

sub

add

add

TABLE XIV

GENERATION OF + CODE FOR 45°

Sign of Remainder

0111 1000

1

1111 1000

1

0011 1000 +

1 0111 7 in excess 3

0001 1000 +

1

0000 1000 +

1

0000 0000 +

1

1111 1100

1 1000 8 in excess 3

1111 1110

1

1111 1111

96

Y REGISTER

ADDER-
• Ll,t SUBTRACTOR

SHIFT
CATES

r~ I I I I I I I I I I I I I I I X REGISTER

(• '1 \
,) - l- <'- • 'I
(_ . i

~: 111111111111111 ~ '
ATR CONSTANTS c [> - VA

lb
ADDER~
SUB'I'RAC TOR

Figure Ll. ImplementaUon of ~Code to Binarv Conversion.

97

CHAPTER VI

SUMMARY AND CONCLUSIONS

The results of the programming tasks discussed in the previous

chapters are shown in Tables VIII - XI.

In order to compare the accuracy of the results obtained from each

task, a set of standard sine function values is obtained .. The result

of each task is compared to these standard values and the accuracy is

thus determin~d.

For the convenience of further description, the four tasks which

have been accomplished in Chapter IV are designated Task 1, Task 2,

Task 3 and Task 4:

Task 1 - polynomial method implemented in assembly coded program.

Task 2 polynomial method implemented in microcode.

Task 3 - Cordie algorithm implemented in assembly coded program.

Task 4 - Cordie algorithm implemented in microcode.

Note that the sine values of Task 1 are identical to those of Task 2,

while the sine values of Task 3 are identical to those of Task 4. Thus,

only two sets of results are compared with the standard sine values, as

shown in Tables XV and XVI. A'cording to these tables, both tasks are

accurate up to three decimal digits; in other words, all the tasks

give about the same accuracy of sine values.

The execution time of each taskis shown in Tables VIII -XI. By

reviewing those tables it is found that Task 1 is the most time-

98

TABLE XV

THE COHPARISON BETWEEN THE CORDIC ALGORITHM
IMPLEMENTATION RESULT AND THE

STAND/Jm SINE VALUE

Angle(Radian) Sin(Cordic) Sin(Correct) Error

0.0 0.000244 0.0 0.000244

0.1 0.099975 0.0998334 0.0001416

0.2 0.198913 0.198669 0.000244

0.3 0.295410 0.29552 0.00011

0.4 0.389487 0.389418 0.000169

0.5 0.479431 0.479425 0.000006

0.6 0.564758 0.564642 0.000116

0.7 0.644226 0.644218 0.000008

0.8 0.717407 0.717356 0.000051

0.9 0.783325 0.783327 0.000002

10. 0. 8Lfl369 0.841471 0.000102

1.1 0.891174 0.891207 0.000033

1.2 0.932206 0.932039 0.000167

1.3 0.963562 0.963558 0.000004

1.4 0.985351 0.98545 0.000099

1.5 0.997558 0.997495 0.0000063

1.6 0.999450 0.99957Lf 0.000124

1.7 0.991760 0.991665 0.000095

1.8 0.973693 0.973848 0.000155

1.9 0.946350 0.9463 0.00005

99

100

TABLE XV (Continued)

_Ang!_e (k~dian) SiL(Cordic) Sin(Correct) ----------- Error

2.0 0.909301 0.909297 0.000004

2.1 0.863220 0.863209 0.000011

2~2 0.808654 0. 808!!96 0.000158

2.3 0.745666 0.745705 0.000039

2.4 0.675476 0.675463 0.000039

2.5 0.598510 0.598472 0.000013

2.6 0.515686 0.515502 0. 000018!+

2.7 0.427795 0.42738 0.000415

2.8 0.334716 0.334988 0.000272

2.9 0.239074 0.23925 0.000176

3.0 0.140869 0.14112 0.000251

3.1 0.041564 0.0415808 0.0000168

3.2 -0.058654 -0.0583743 0.0002797

3.3 -0.157592 -0.157746 0.000154

3.4 -0.255798 -o. 255.5A1 0.000257

3.5 -0.350646 -0.350783 . 0.000137

3.6 -0.442016 -0.442521 0.000505

3.7 -0.530090 -0.529836 0.000254

3.8 -0.611999 -0.611858 0.000141

3.9 -0.687622 -0.687766 0.000144

4.0 -0.756713 -0.756802 0.000089

4.1 -0.818054 -0.818277 0.000223

4.2 -0.871520 -0.871576 0.000056

4.3 -0.916320 -0.916166 0.000154

4·. l1 -0.951599 -0.951602 0.000003

\

101

TABLE XV (Continued)

.Angle(Radian) SiP (Cordie) Sin(Correct) Error

4.5 -0.977539 -0.97753 0.000009

lf. 6 -0.993774 -0.993691 0.000083

4.7 -0.999877 -0.999923 0.000046

4.8 -0.996032 -0.996165 0.000133

t+. 9 -0.982422 -0.982453 0.00031

5.0 -0.958801 -0.958924 0.000123

5.1 -0.024901 -0.924815 0.000086

5.2 -0.883422 -0.883455 0.000033

5.3 -0.832153 -0.832267 0.000114

5.4 -0.772583 -0.772765 0.000182

5.5 -0.705505 -0.70554 0.000035

5.6 -0.631530 -0.631267 0.000263

5.7 -0.550659 -0.550686 0.0000027

5.8 -0.464599 -0.464602 0.000003

5.9 -0.373840 -0.373877 0.000037

6.0 -0.279541 -0.279416 0.000125

6.1 -0.182312 -0.182163 0.000149

6.2 -0.082885 -0.0830896 0.0002046

Ang1e(Radian)

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

-0.9
)

-0.8

-0.7

-0.6

-0.5

-0.4

-0"3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

TABLE XVI

THE COMPARISON BETWEEN THE POLYNOMIAL
NETHOD U1PLEMENTATION RESULT AND THE

STANDARD SINE VALUE

Sin(Cordic_) Sin(Correct)

-0.997558 -0.997495

-0.985351 -0.98545

-0.963378 -0.963558

-0.932128 -0.932039

..,.0.891357 -0.891207

-0.841552 -0.841471

-0.783447 -0.783327

-0. 717285 -0.717356

-0.644287 -0.644218

-0.564697 -0.564642

-0.479425 -0.479492

-0.389404 -0.389418

-0.295654 -0.29552

-0.198730 -0.198669

-0.099853 -0.0998334

0.0 0.0

0.099609 0.0998334

0.198486 0.198669

0.295410 0.29552

0.389160 0.389418

. 102.

Error

0.000063

0.000099

0.00018

0.000089

0.00015

0.000081

0.00012

0.000071

0.000069

0.000055

0.000067

0.000014

0.0001344

0.000061

0.0000196

0.000000

0.0001434

0.000183

0.00011

0.000258

103

TABLE XVI (Continued)

A!!Md~adian) Si.n(Cordic_}_ Sin(Correct) Error

0.5 O.tf79248 0.479425 0.000177

0.6 0.564453 0.564652 0.000112

0.7 0. 641~042 0.644218 0.000176

0.8 0.717041 0.717356 0.000315

0.9 0.783203 0.783327 0.000124

1.0 0. 841308 0.841471 0.000163

1.1 0. 891113 0.891207 0.0000937

1.2 0.931884 0.932039 0.0001546

l.J 0.963134 0.963558 0.000424

1.4 0.985107 0.98545 0.000343

1.5 0.997314 0.997L!95 0.000181

104

consuming t~sk; Taf?k 2 consumes less time; Task 3 consumes still less

time; Task 4 consumes the least time of all.

Task 1 and Task 2 are the same algorithm but implemented in

different ways, so the sine values will be identical but the execution

time may be different. The same applies to Task 3 and Task 4. The

programming results in Chapter IV prove this assumption.

Task 1 is performed in an assembly coded program, while Task 2

is performed in a microprogram. According to the description of the.

microprogramming in Chapter IV. the execution time of Task 2 should be

less than that of Task L Similarly, Task 4 should have less execution

time than Task 3. The programming results in Chapter IV also prove

this assumption.

The things that cannot be predicted before going to the computer

are whether Task 1 or Task 3 will have less execution time, and

whether Task 2 or Task 4 will have less execution time. However, we

expect that Task 1 is faster than Task 3 and Task 2 is faster than

Task 4. If this is true, it means we can improve the speed of evaluation·

of trigonometric functions by replacing the conventional polynomial

method with the Cordie algorithm. Surprisingly, the programming results

in Chapter IV indicate that the conventional polynomial method is faster

than the Cordie algorithm for computing trigonometric functions.

Although this is disappointing, it is possible to determine exactly

how these results were effected.

Although the Cordie algorithm eliminates the necessity of multipli­

cation, some shifting still must be done. In the real Cordie machine,

three registers (A,X,Y) can be shifted and added or subtracted

simultaneously. When the Cordie algorithm is simulated in this general

purpose machine the HP21MX, the shifting and adding or subtracting

carr only be done sequentially, because the arithmetic unit can only

handle one arithmetic operation at a time. In addition to this, the

result of shifting and adding must be stored, and then the arithmetic

unit for shifting and adding/subtracting of other registers msut be

released. After all three registers finish their shifting and adding/

subtracting for the current cycle, the next cycle starts. So the

shifting and adding/subtracting results of the first register in the

previous cycle will be restored, and so on for the second register and

thrid. Therefore, when the computer is running, a lot of storing and

restoring is being performed, and this is very time-consuming. That is

why Task 1 requires more execution time than Task 3. Task 2 implements

the Cordie algorithm in a microcode, so it improves the speed of Task 1,

but is still slower than Task 3 and Task 4. Task 4 is a microcode, and

thus improving the speed of Task 3. Therefore, the conclusions are:

1) The use of the Cordie algorithm for evaluating trigonometric

functions without hardware extensions will-be slower than

using conventional polynomial methods;

2) When using a conventional polynomial method for evaluating the

sine function, the microprogram will be two times faster than

the assembly coded program;

3) In order to use the Cordie algorithm to improve the speed of

evaluation of trigonometric functions, a lot of hardware work

must be done in the current HP21MX computer.

With the suprising speed of development of the microprocessor

today, it might be very easy to construct a microcomputer which has the

features of both the general purpose computer and the Cordie computer

in the near future.

A SELECTION BIBLIOGRAPHY

(1) Gear, W. C. Computer Organization And Progrannning. New York:
McGraw-Hill, 1969.

(2) Iverson, K. E. ~ Pro~mming Language. New York: John
Wiley, 1962.

(3) La Lyusternik, 0., A. Chervonenkis, and A. R. Yanpol'skii.
!!:'1ndbook for Computing Elementary Functions. New York:
Pergamon Press, 1965.

(4) Hayward, J. T. and J. P. Wong, Jr. Approximations For Digital
Co___:;:rpu~~~~-· Princeton, New Jersey: Princeton University
Press.

(5) HP21HX Computer Series Reference Manual_. Cupertino, California:
Hewlett Packard Company, 1974.

(6) HP Micr_oprogramming 21MX Computers Operating_ and Reference· Manual.
Cupertino, California: Hewlett Packard Company, 1974.

(7) A Pocket Guide to Hewlett-Packard Computers. Cupertino,
California: Hewlett Packard Company, 1974.

(8) A Pocket Guid~ to Interfacing HP _gomputers. Cupertino, California:
Hewlett Packard Company, 1974.

(9) Volder, J. S. "CORDIC Trigonometric Computation Technique." IRE
Transactions on Electronic Computers, EC-8, Sept., 1959,
p. 330. .

(10) Daggett, D. H. 11 Decimal-Binary Conversions in CORDie." T'RE
Transactions on Electronic Computers, EC~S, Sept., 1959,
p. 335.

(11) Meggitt, J. E. 11 Pseudo·-Division and Pseudo-}1ultiplication Pro­
cessors." IBM Journal, April, 1962.

(12) i1aither, J. S. "A Unified Algorithm for Elementary Functions."
Spring Joint Computer Conference, 19_71.

(13) Despain, A. M. "Fourier Transform Computers Using CORDIC
Iterations." . IEEE Transactions on Computers, Vol. c-23,
No. 10, Oct. , 1974, p. 993.

106

107

(14) Cochran, D. S. "Algorithms and Accuracy in the HP 35." Hewlett­
Packard Journal, June, 1972.

(15) Schmid, H. and A. Bogacki. "Use of decimal CORDIC for generation
of many transcendental functions." Electrical Design News,
February, 1973, pp. 64-73.

(16) Richards, R. K. Arithmetic operations in digital computers.
New York: Van Nostrand, 1955.

(17) Briggs, H. Loga:tithmicall arithmetike. London: George Miller,
. 1631.

APPENDIX A

FUNCTIONAL BLOCK DIAGRAM

108
I

CONTROL SECTION MAIN MEMORY SECTION ARITHMETIC AND LOGIC SECTION

I
I

I
l S-bus

FRONT PANEL SECTION l/0 SECTION

Figure D-1. Funclional Block Diagram

APPENDIX B

PROGRAM LISTINGS

110

111

~********************************~***********~*******~**********~*****
* TASI< :1. TE:3T F;F:OGF<:AI.'I----·COFDIC ''HJ.JOF:JTf·!i··l H!F'L.E.J·IEI'~TET• IN i'J5::::E.}'IE:L'r' +
* CODE F~OGRAM
+ INPUT PARAMETER-- AN ANGLE WHICH MUST BE IN THE RANGE OF +
* , < ····::>..=:0.· ::::;_:;o > [:•EGF:EE ·l·o

* OUTPUT PARAMETER-- SIN VALUE OF THE INPUT ANGLE +
·+·

*****~******************~~***~
H9•m .. 1"1.· f.:.. L .. T
+SET UP THE CLOCk INTERRUPT VECTOR ADDRESS

ORG :L4B
J :=::f.:: T I 1···1E
Of<:G 200B
:::;lT 121B
c·Lrl

+SET UP INTERRUPT TIME PEF:IOD TO a 1 MILISECOND
O'T'F'I :1 .. 4B
N()f"

+SET REPEATITION COUNT TO 11210
::>Tf'tF:T L..Dr:t HI)

::;·rr:! L.CT
CL.r:t
CLD
'c':TF't • .. ,.
::::Tf=t ·,.·
::::Ft COUNT
Ff:ID r!J··.IG

+CONVERT THE INPUT ANGLE TO THE CORDIC REPRESENTATim~
FC'•\1 PI
F<:F:F: :1.6
::::Ln
.H'IP FtJ
:~:TH TP::::;
FINE'• 1···1c
:::::::H
f?RI ... l

Fl'·,l IO..IOP
Ll:>f=t lE:
.JI•'IF' E:l~T

f't.J crt:x:
PHP
I OF<: FH
·:>Tf't ::::1··-l
C>O:H

::::T f'6F: :J.
ISZ ::::1··.1
JJ·If:· ::::T
JJ·IP E:N

El·.n· ::::TH f<:f=t
F:J'-.ITJ. L..I:•H PH
~INITIATE TIME CL..OC~ XNTERRUPT
+THE CORDIC COMPUTING SEQUENrE STAETS HERE

:~:Tc· J .. 4E:, C
CL..fC::
·:.::TE: :.-o:

·:::TF.'.: .,,
I I:>E: U'·/
CL .. O
::;::::r:t
JI''IP C:():l. .
.:;::TF: 'r'
f'tl:•r"'t NFE

BJ.. L..l>:'< :=; T :·:
::::f-n ' ... t::::o-: cor·l

:::::n:: F:\1
.·.=:: T B T E :~:
L.l)E: .,.,

I) I\! OF'
ISZ TES
Jto'IF' C:l
.Jt1P E::2

Ci E:F:S
Jt1P [:·

L.l)',·' ::.:;

~::sf~ .. F.:~:s

Ct•"JE:, rrm
r:t[:•'r' 1E:
L[l8 ;:.::
~:::r~,.~ ::·::

j)j_ NOP
I:=:::: t-;::v

)t··Jp c;;;:
.H·1P r:::~~:

BP~.=::

Jt··Jp l):t
f<i: I ... J)'r' '·r'

:3Sf'l
Ci··Jt: .. I Nf':
i'IO'r' ::1.8

I ... E:>< t:f?
·:_;;:::H .. F:S::;
Ci"'l8 .. INB
1:11)1:1 18
[:•S:<
Jl···jp SHT

*E>:ECI...ITE THE CCH<'I) I C C•:>i·IF'-UT" 1 NCi :=::EC!UEI'Kf.::: JJJ1J T I r·!E:::: FOF~ THE :::::r:Ji"·IE m-K;LE
I~;;::: LCT
Jr··Jp EI'.ITJ.
CLC :14F:

*OUTPUT EXECUTION TIME .. SIN AN0 COS VALUES OF THE INPUT ANGLE
! ... DE: C:OI .. .II'-JT
.:r::;E: 01.1 !"
.:r:::;u OI..IT":L
CLF:
~=::n~: cotll'·rr
I....I)B ;,;
J::::E: C:ii .. IT

.J~:::t=: OI. .. IT:1.

L .. DB \t
J~:)B OI..ITJ..
I....DE: f.';1J;:::

JSB OI..JTL
:r~:;r:: 01.1 r

*INCPEA5E THE INPUT ANGLE BY 0. 1 T~~N REF~AT lHE PROGPAM
I)I...J• ~'11'·.11,

FHI) J 1'./C
[•''cT HI'·,JCi

*SERVICE ROUTINE FOP CLOCK INTERRUPT
JTIF' ::::rHF~T

T I 1"•1[1'·./0P

Ci)lit~T

COl

STC :J..4F· C
I SZ ~··ol . .ll'.iT
J"i'lf:· TH··Jt::. I
OCT 1)

Cl'lf.::. I NE:
·:~TF::: ~,.t

I''IC•f=t F:E
Jt•"lf'' F:::t.

f'/1'·./U N':C 0. 1'1
PI DEC 1. 14159
FH OCT 177600
SN NOP

112

UV OCT ~77 s
NRE OCl 140000
RE OCT 040000
SJ>:: OCT 1C
p• .. • E:::s 1
TES B::s J
CON NOP

OCT --·:16
OCT -·1':;
OCT 14
OCT -- ::l,~i:

OCT ····1.2
CICT --·::L:J ..
1.JCT --·:1..0
oc:T .,

'
OCT --·6
OCT -·':5
OCT ---4
OCT ~ .. -::·
ocr
OCT -<L
NOF''

f;!'? I'·.JOF'
OCT OOOOI)J..
OCT 1:10('11.''11;::1;;;:
OCT OOIJCIO~";

()CT 01:)01,)12
OCT OOOO:c:·:~
OI_·::T 0001~1'5~.:_1

c11:·r ooo:1 .. .::1
OCT CI00:,::42
()C'T oo1a~:;u:;

()CT ~)i):J..::::J.:~i

OCT 00242!.
OCT 004T''.?
OCT 1)'1.1~>+4

OC:T o::;::r:'if:'IOel
!'·,JOf:•

:,< E::c;:::: :1
',-' ~:::~:::::.:; J.
LCT OCT 1?7654
HD OCT 1??654
f~:H NOF
TP:::: J'.J(..IF'
J···Jc: OCT :, , ,
Ji'·,JC: DEC 0 J

113

*************************************~***~*******~********~~**********
+ TASK 2 TEST PROGRF~--CORDIC ALGORITHM IMPLEMENTED IN MICROCODE *
+ PROGRAM
+ INPUT PARAMETER-- AN ANGLE WHICH MUSl BE IN THE RANGE OF
* (-?60, 360) DEGRLE
* OUTPUT PARAMETER-- SIN VALUE OF THE 1NPUT 0NGLE

*
************************~******~******************************~*******

· FISI'1B.. ('J, f.:: .. L .. T
I)F:G JAE:

••··~:;ET UP THE CL()CJ·· It·JTFF'kUF'T '..·T> TOF: FJL'{·r~:· :·c:·

.J:::;B THIE
OF:G 200E:
:::;n:· 08
CL..H·

+SET UP rJ··nERF;:J.JF'T TII'·IE PG':IOE:• T>.' ,, 1 r·Jii .. l::;Ecot.:;:.
C>TH :14B
J'·,JOP

+SET REPEATITION COUNT TO lOCI
::::T~:IF'T LDH H[•

:::;Tf:l l..CT

ClJJ
CLB
·:;TH i·•,

::::Tf'J ','
::::TH COUNT
FHL• Hl'·Ki

1·•(OI'J'..·'EF:T THI:O: I J'.JI''IJT l:JI\IC3LE: T>.-J THE COF'I) I C 1; ETFESEi'JTfiT' I Ui·i
FT-'..1 PI
F:F:P :1. ,;
c':LH
.Tf·IP r:u
::::rn rF'·<:
HND l·lc·
:=;zi"'J
f<:f<:L l

EN I'·JC>P
I ... I:OH :1B
)I• IF' ENT
C.:H>:
FHf<:
I OF: F'H
:::::rH :=:J•.J
I">O:H
n::>F: ::1..

J ~=:::? ::.;N
J I·IF' :;r
TI'·IP [)'.1

EJ'.JI ::;·n:t Fc'H
[I'·,JL:L I .. C•f::l f;:f:i
*INITIF'JTE TIME CLOC~ INTEF:RUP1
+THE COR~IC CC~1PUTING SEQUENCE STARTS HERE

::::: ·r c J_ .• :m, c
>:::L.F:
C:B><
CE:\1

NOF''
~ THE f:NTF:Y PUINT TO THE MICRUPRUGRHM WHICH PERFORMS THE COF:DIC COMPiJTING

,.,_. SE(;'t.JENCE
OCT :10'"':::1.60

UV OCT 23J35
*THE ANGLE CONSTANTS
NRE OCT 140000
HNT:l
HJ',Jr::~

HNT?

OCT O::·U>JO>"'
>)CT 01.1.·•::.!-"
OCT o~::>·l??::·:

'

HNT~")

f=tNT6
i=tNT?

OCT 1211ZU .. :•.·1.:::
CIC,f 0~)~':1<C50":;

OCT ~Ji,":l024;;:

HNT10 OCT 000121
HNT11 OCT 000850
ANT12 OCT 000024
AN113 OCT 000012
ANT14 OCT 000085
HNT15 OCT 000002
ANT16 OCT 008001
t: F.:FTI.JF:t-.1 TO THI:C:: f''():i:NT I"'F'OI'··t I'·IJ•T·>C•r'kliClF:HI•I

I::;z L.CT
J'i""IP ENTJ
CL.C l4B

*OUTPUT EXECUTION TIME.SIN AND COS VALUES OF THE INPUT ANGLE
/ LDf.': COUI'-.IT

J::::r:: OUT
J:c.\E': OUT'!
CLE:
·:::TE: C()I ... II'·~T
!.._DB ::·::
J:;:;B I)IJT
JSB (II.JTJ..
1.. .. 1::-E: '., ..
J:::::E: OIITJ.
I..I)E: OF
J·::E: 01 IT::I..
.r::::f': I)IJT

+ li'·,II:.F:Ef't:c\f: THE I !'·,JF'I...I'> '''11'·1' il. E [':',' f} :. i H[N r:•:r:J>LHT T'-if:: r;:•:C>•.]i·:l::!i·J
!'•I .. J> nNG
I" HI> I l'!l·:
L<:C~r Al',ll .. i

IO:::>EF:\IJC:E F:CHJT' !.1',1[! , 1>;: C! .OCI< Il'·fiT 1·: I;IIPT
li''IF' :5THI:::·r

T ll'l[/'ICIP

CCII.J/'·,IT'
11N1:1
F I

·.: .. rr· 141':. ,.
r ·::;z c ()l.ii·.Jr

ri·IP T I !'IF
111:: r ';"'

I'•EC 121. ,:;,
DEC: l·'~J'5 .. 1

FH OCT J77GOO
::::J·~ !'~()p

J',JI:)F'
... F.::::::•:
'r' [:S:;:;; .:1..

LC OCT 177~S4

HD OCT 17~G54
r:.i=t t·.lo•::·
r f-·:=:: I'·,Ji'IJ"··

1··11.. 01: ·1 •
I I'·,JC I)F.C: 0 1

ll5

*~*****:~*~**=~*~(**~~~~***~~~:~~***;~;~'~-~,~~~=-~,,~~:~-~:4·'~*~:+:****~=~~*'~***~·~*~**~=~~**'~**

*' 1''1 I CPOF''P(II:ol':f:WI-- IJ'3EE• I !'·If'' I~ t':TJ···IEI'rf TH>.:O C•:.•"'l.• I C fll.GOF: I I Hi·l *'
* F''Of;: E'·/l"iU.IHT II'·IU THE ::.: :fl...r:: '"I.JI'·H 1: Ul-1 ""
* THE ANGLE OF THE SINE ~UNCTION SHOUL0 GE STORED IN *
·~ THE: REO I :=;TEf;: Fl E:EFOF:t:: El'-frf:::y THE I'HCF:UF'FOGP~:Ii·l *
~~*~~*~<***·~-~~-:i~**~(~,;~~*~'***'~**~'~***-~--~*=~~-~-~*'~*~'*****'~~-~-=***'~'~'*****'~*"i~***

'f.SVt'ITf'IB
oi'(JF: I G I ~'"'J.400

JMP NOF' PASS NOP START
'*'OF I C1 I N:o:14.U.
~;:n"JRT NOP NOP F'ASS NOF' NOP
•<·GET THE UNIT ')ECTOP FRo1··1 1'·1AHJ r··I[I'IOf;~o,.·

F:EA[:• r<or· H~C pm·1 P
*STORE IT IN REQ ~

NOP I'~OP F'fi::'::_:; .·•. n'JE:
*GET THE FIPST ANGLE CO~ITST

PEAD NOF INC PNM P
«:::;TORE .n IN F'I.~G. 57

NOP NOP PASS 57 TAB
*~TORE THE ANGLE OF THE SINE Fl~CTION IN PEQ 56

NOP NUP PASS 56 A
* I:F , THE ANGLE IS L.ESS THf'll'l :lSO [•C•JF:EE .. l::r.':AI'<CH TO DH

JMP CNDX AL15 RJS EN:l
*GET THE TWO'S COMPLEMENT OF 5?

NOP ~-JOF' Ct1P::: ::::? 5?
NOP NOP INC S? 5?

·•·•GET HJO· 0::: COI'IF'L.IC:t·H OF ;..;
NOP NOP C~PS X
NOP NOP I NC ;.,;

+:.::TORE ; .. ; J N '-r'
EI'H
I·CI...EAF: . '

,.,::;:4:~--·:14

I'JOF·
F:EO.
~KIF'

NOP
NOP

~IC!f""

I'·WP

l'.l()f"
I'·IOF'

I'ICIF'

Pn·=:-::

ZE:F:O

pf:IS:.:::
FiE>[:•

LOI·I

T

'-·
S6

S4

'··' ,.~,

NOf''

S?

36:::;[:

lt'/1"1 NOF· L.Ol·l 53 DE:
NOP NOP PASS 55 A

NOP NOF' PASS L ~
Jt'IP NOF' NOP NOP E:K1

+INITIALIZE THE COUNTER
E:K I'·J(JP I'·.J()F' Pf~~;.::- CNTP s:.;.
~,pI GHT SHIFT E: I<:EG B'r' THE NUt1E:G: IN THE COUNTER·
*THEN STORE THE SHIFTING RESULT IN 55

NOP RPT PASS E: ~

ARS R1 PASS E: B
NOP I'<OP PA::'::": S5 8

+SET COUNTER AGf~IN

+GET
E:f<:J.

•·TEST

JN

E:GT
$EN('

NOl~ NOP PA~·· CNTP S3
NOP PPT F·'A:::::; E': 'r'

ARS R1 PASS B 8
NOP NOP PASS L B

NEXT ANGLE CONSTANT
PEFK• !'·.lOP INC PNr··i I
NOf'' I'IOF' PFc.::; ·:;;:· Tf'IE:
NOP NOP PASS S6 ~~

THE ANGLE , IF GPEATEP THAN 1S0 DEUREE
. .H'IF' CNr;:.; •. ; I"'LJ."'; r·JOP EI'.L:"
NOP NC~ SUB A
NOP N~~ PASS L 55
NOF" I'KIF'' ~i[:o[:• 'r' ','
NOP NOP PASS L S?
I'Kif"·' tJOP SUE': ::.;6 ·:;;;
Jt•IP
NOP
Nor=·
NOF'
NOF'
NOF'
NOF'
JI'•'IF'
NOF'
Jr··Jp
NOF·

t·<OF·
I'~Uf"'

tK>F'
I', OF'
NOF'
t<OF·
CNI:::O:•:
~Kif">

F':TN

A(:o!:•
F'H·.::
~?UE:
F·As::;
A[:•l)
INC
TE.'C
CoEC

PA::::·c:

I_

T'

L
::::6
~oA

I'·JOF'
:~:]:

NOF'

n-.1
,-··c:;·
,;,:. '
'r'

::::4
E:-:r T
,-·-:.
-~ ·.

CJU TO Et-./:2

116

******~;~*****~~'**·-~;~**;~;~*~~*~~****:~**;k.i(*i~=~+=~-~~*****-~**;~*****~~~-~-~*=~*******~
* TASK 3 TEST PPOGPAM--PC~YNOM1AL METHO~ IMPLEMENTED IN ASSEMBLY ~

* F·Rcn:.JF:f'il"l *
* INi=·UT ~'FIF:tit•IIO:TEP-·-fit-4 riNGLE F-~ANI:,EL.• FF.:ot·1 -90 DEi::JPEE TO 9i21 DEGF.:EE *
* OUTPUT PAPAI•'IETEF:-·-THE :3INE 'ii"IL.UE OF THE HWUT m~GLE *
:~***:~*:~*;~*-~**~'***-~;~;~*=~**;~***=~**'*;~**;~~=~:~:+:*:~~--:~*****~-~:~-~~*****:~**********:~

fiSt'IE: .. A.· 8.· L .. · T
*SET LIP THE C U.XI· 1.1-.ITEF:F.:UPT '·iECTOF: m:.DI;:Es~;.

FI'H:l

ORG :14E:
.. r::::B T II'1E
ORG :C:OOB
:3TF 08
CL.A
OTA :1.4E:
NOP
LDii Hl::o
STA LCT
cu:,
ILE:
C:~1i·=:

C~-=t'r'

STA CI)I . ..INT
STC
L.t:oA Fii·JG
I'•'IP'r' F1r·m
tiSL :1
STB ::.o
LNi
CLB
t·IF''-r' c~;

AlA:': c·?
LE,ti
CLE:
t'IF'.T' :::~C!

fiSL.. J:
A[:•E: C:l
UAi lB
CL.Fi
1•'11""·,-' m·JG
~=;n.:: tiNU
STE: tir.-::.
I::OZ L.CT
.n·H=· ·J~I··rrt

CL...C :'L4b

:148 .•

18.

:Lf3

,~

~oUTF'Ul E~ECUTION TIME,SIN AND COS VALUES OF THE itlPUT ANGLE
Ll>8 CCIUNT
.J::;E) OI.JT
J58 CJUTJ
(: L.E:
'eTC Ci)IJNT
LD E: 111'·1:0.
.JSB OUT
rs;;s OIITJ_
L.l)f3 m~G
JSE: OU"!"l

*INCREASE TAE INPUT ANGLE BY ~ t THEN REPEAT THE PPOGRAM
U)H INC
AF:::::, HF:<
Af:'::;, ~~F:·::

!iF:::::
I"II)H FIN(]
:=::TA HI'K1
rr·lf'' ~;Tt1PT

*SEPVICE ROUTINE FOR CL(~~~ INTEPPUPT
T l I·IE NOF'

COUNT
fit-K;
LCT
H[:•
HNS
:::?.1)
C:L
C3
(:~5

INC

<;Tc 14E: .. c
r ::::z COU~H
fi·IF' T I !'·IE .. I
OCT (:1

OCT 0
OCT l '?;:'6'54
OCT :1 ~:·'?65.::1.
DCT 0
fJCT (1

DEC 0. ·::.::.~::<892

OEC ·-·~) . . 1.65968~;
DEC 0. 0076031915
[:oEC ~.1. 1

117

118

**********~***~*****************
* TASK 4 TEST PROGRAM--POLYNOMIAL METHOD IMPLEMENTED IN MICROPROGRAM*
* PROGRAM *
* INPUT PAPAt1ETER--AN ~:INGLE F.:FINI:JE[) FPOI"·1 ·-90 [:•EGREE TO 9\::1 f)EGREE ·'~-'
* OUTPUT PARAMETER--THE SINE VALUE OF THE INPUT ANGLE *
******************~***
t1SI"1E: .. t':J .. 8 .. L T
*SET UP THE CLOCK INTERPUPT VECTOR ADDRESS

OF:G :14E:

*ENtl':','
ENT:1
i=II'K1
C::L
C3

J:::;E: T It·1E
OF:G
STF
CLA
OTf'l
NOP
L[)A
STt"J
cu:1
CLB
CFI)';
Cr1'r'

2\::108
08

148

H[:•
L.CT

:5TH COUNT
STC 148 .. C

POINT OF THE MICPOGRHM
OCT 10~~d60
OCT i.:.1

OCT ·?77~::•4

OCT :!25406
C5 OCT 76222
t:IN~;

*THE
OCT (l

MICROPROGRAM RETURNS THE CONTROL TO THIS POINT
IS:::: LCT
Ji"IP ENTJ
CLC l4E:

*OUTPUT EXECUTIC»~ TIME,SIN AND COS VALUES OF THE INPUT ANGLE
L.l)fi COUNT
JSE: ()I.JT

J:::;B OUT:l.
CLB
sn:: COI.II\IT
U>E: ~:IN:c::

JSB OI .. I'T
.J$8 OUT:!.
L.DE: Fit·~ C)
J':.=:;B OUTJ.

~,I NCF:Et:ISE THE I NF'UT t:ING!. .. E 8',·' (J :L THEN Rf:T'Et'IT THE Pf?O<.:JFHi''l
LC·~:I INC
FIF:::;;, t:IF::::::
f''IP ~:; . m;;: ~:
t:IPS
i'IDt:l i=iNG
::::TH t:ING
Jt1F' STi'lf<·T

*SERVICE ROUTINE FOR CLOCK INTEF~UPT

TINE NOP

C:OUNT
L.CT
HC•
so.
INC

STC 14E: .. r:·
I~.;z counr
Jt1F' T I !"'E, I
OCT 0
OCT l??,::~'H

OCT 1 ??6:::;4
oc·r o
[)EC 0. :L
EN[:•

119

•·****0************~**~**~*~***~
* 1·1 I CF:OF'ROGF·~:II···I·-···U::::EI) T() E'·/I:::!L..I.JfflT ;:, IN FI...I!'K:T I ON E:',.. I t···tPi_E:f'iENT I NG THE .• ,

FVLYNOMIAL METHOD

$S'r't1Tm:::
$:OF: I G I N=1·1121(;:1

READ NOP INC PNM P
*STORE THE VF~UE X IN 52 AND 59

NOP NOP PASS 52 TAB
NOP NOP PASS 59 ~2

*STORE THE VALUE Ci IN 51
READ NOP INC PNM P
NOP NOP PR5S 51 TAB

*STORE THE VALUE C3 IN 53
READ NOP TNC PNM P
NOP ffi)P PASS 53 TAB

*STORE THE VALUE C5 IN 55
REF~ NOP INC PNM P
NOP NOP PASS S5 TAB

COI"·'IPUTE :":><
NOF'
.:r:::::t::
~:IF.:5

NOF·
NOf''
Ll

F'Ft::::::;
NOP
p~:ISS

~, ::?.:2
I'·JOf'' /"'IF'\·'
f.:: E:

STOkE)<::'< I I'·J
NOF''

S6
NO I"' p~:,~::;~:: :~:(: E:

C:Ot-'JPUTE C5><:+:::.::
NOF NOF' p,:,:;;:::: f·l
!'-lOP /'·.lOP PH~;::_; ·::··":0

JSE: NOP NOr' NOF:'
NOF NOF'' Pr:ts:::: L.

*COMPUTE C3+C5+(X*X)
NOF NOP ADD A 8

NOP NC~ PASS 52 56
JSB NOP NOP NOP MP~

*ADJUST THE SCHLE FACTOR
ARS Li PASS B 8
ARS L1 PASS B 8
HRS L1 PHSS 8 8

*COMPUTE C1+<X*X)*(C3+C5*(X*X))

I'·~ I)!"" r-~r·,,c:. Pn~:;:;:: L ::,::1
NOP NOF' ril)[:• ~~, [:

*COMPUTE XfC1+X*X*<C?+C5*(X~X)) •
NOP NOP PHSS S2 59
JSB NOP NOF NOP MPY

*SAVE THE RESULT IN MAIN MEMORY
NOP NOP PHSS T E:
WRTE NOP INC PNM P

*f':ETUf<~N TO t··!HCF:I)F'f?OGF:til·/
RETURN NOP RTN PASS NOP NOP
*SUBROUTINE FOR COMPUTING THE MULTIPLICA1ION OF TWO INiEGER~

MPY NOP COV PHSS S? A
NOf'' /'>lOP
NOP NOP
NOP PPT
r·1P',·' RJ ..
NOP NOF
Jt···Jp Ct·.![:•::<:
I'KtP NCII"'
NOP NOf"
..)'I'· IF CNI:>:·:
NCIP N/)P

NOP F<:TN
:1iEND

~:~EF:O E: NOP
PFI::.;:::: I ::_;;;;:

f:·f't:::;~:: CNTF': f3
t"llA:• F: 8
Pt~ls~:: NOP ::.;7
f~L:v::; RJ:::: *+:0::
::::uE: r::: E:
PFIS::::: l\tOI''' ::;;:;
Al15 PJS RETURN
f"f'6:::: I. :~:?

SUF.:: E: E:

120

* PRINTING R~JTINE--USED TO PRINT THE C0NTENT uF B-REGISTER :~·

OU;/"1 NOF'
C·:~:T SH•·,··
::::r::·: ::::F!'·i:.l.
L[:•f'l TT'r'
OTH J.J.B
LL•FI E:L
one, 118
:=::Tc 11E: .. c
::;Fs ::I..J.E:
JI··IF *•··::!..
l..l)('J SI><r
cr:,;o-:;
C:I H
RI'<:L l
ADf'J ASC
OTFJ J.1!:::
~::Tc· :LLE: .. I

..

...

C:I ..• H

- SF:::: LlE:
Jl"'lf" :i·:-·:1
I::::;.;
.. H•'IP L OP
[•LI) ~~:;~-::II,/

I I>:": :~::H~•/::J.

Ji'IF' OCII:/.. I
Ei-.11:->

*****************~~****~*********~***************~****~************
* U;IF.:F<:i~:I{.JE CONTPOL F.:CII_ITHJF···-F.:ETUF;:I·J THE Ci'IF.:f?IFIGE TO THE f3Ei."JINING OF*

' THE LINE AND FEED ONE LINE *
*************************~*******~**~******************************
OUT NOP

t=tSC
T·r·,.·
::;:r:,fr
CF:
l...F

~:::f'l'·/1.
f.;:L

o::;T ::::Fi\1
CLC O .. C
L.I)A TT',.'
()T~:I ::I.::LE:
LDf'l CF:
OTFI :U.E:
STC J.::JJ:: .. C
SF::: l::LE:
Jt1P *···J.
LI)F:I L..F
OTt:l :LlE:
::.;1-c: J.J.E: .. c
SFS ::LiB
Jt·1P :l·:···1

[:•1..1) SFi\1
.Jr··IP OUT ..
OCT 60
OCT 1:20(100
OCT :1..???~~;,;~,

OCT :::::1.:3
ocr :1.2
NOF'
NOP
f,IOP
(ICT 240
EN[:•

121

~
VITA

Peihsung Thomas Hu

Candidate for the Degree of

Master· of Science

Thesis: THE CORDIC ALGORITHM IMPLEMENTATION FOR TRIGONO}ffiTRIC
FUNCTION EVALUATION IN HP21MX

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Taipei, Taiwan, Republic of China,
July 2, 1950, the son of Mr. and Mrs. B. Y. Hu.

Education: Graduated from Chengko High School, Taipei, Taiwan,
Republic of China, in June, 1968; received Bachelor of
Science degree in Electrical Engineering from Chiao Tung
University, HsinoHu, Taiwan, Republic of China, in June,l972;
completed requirements for the Master of Science degree
at Oklahoma State University in May,l978.

Professional Experience: Graduate teaching assistant, Department
of Computing and Information Sciences, ·oklahoma State
University, 1975-1976; Software specialist, Atkins & Merril
Training Equipment Company, 1976-present.

