SEGMENTED-VIRTUAL MEMORY DESIGN FOR

AN }LgQL 68 COMPILER

By
MARK GOTO
Bachelor of University Studies
Cklahoma State University
Stiiluater, Oklahoma

1975

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
~ MASTER OF SCIENCE

July, 1978 '

SEGMENTED-VIRTUAL MEMCORY DESIGN FOR

AN ALGCL 68 CONMPILER

THESIS APPROVED:

/;ZZW

———
s

UNIVERSITY

LIBRARY/

"Thesis Adviser N

ﬂ@@u@

Dean of €Graduate College

PREFACE

This thesis is é description of a design for an
ALGOL 68 run-time organization. The design relies heavily
on a segmented-virtual memory scheme for simulating a large
nemory store and handling memory management requestse. The
author would like to thank each of the members of the Com-
~puting and Information Sciences Department who have made his
study at C.S.U. enjoyable, and especially Dr. G. E. Hedrick
who has been more than his advisor. The author would also
like to acknowledge the support of the National Science
Foundation for sponsoring this research under grant NSF-

MCS576-06090.

iii

Chapter

TABLE OF CONTENTS

Ie INTRODUCTION o o o o o o o o

Objectives e ® ® ® » e e

History of the Oklahoma State

ALGOL 68 compiler « « «
Review of Current %Work =
Notes on Terminology .« «

IT. PRESENT RUN-TIME ENVIROMNMENT .

Introduction e =« « = = =
Run~time Symbol Table and

- - - - - -
- » - » - -
L J - - - » -

Addressing

Run-time Stack Organization of Memory

Run=-time Simulated Memory
SUNMMATIY » 2 o » = » @ » o

II1I. PROPOSED RUN-TIME ENVIRONMENT

Design Lescription . - =«
The Paging Environment .
The Segmented Environment
The ALGOL 68 Environment

- - L J - - hd

]
[
]
[
[
[]

e & 0
.« a 3
s 6 &
¢ & &
¢ & 2 &

IV. SUMMARY, CONCLUSIONS, AND FUTURE WORK =+ «

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

Summary and Conclusions .
Future HOfK o o = o o =« o

DESCRIPTIONS OF RUKN-TIME

PDL DESCRIPTIONS OF RUN-TIME ROUTINES

PROGRAM DESIGN LANGUAGE

OPERATION COLES OF THE VE
ALGOL 68 COMPILER < «

iv

- L] - -

University

¢ & 0

DATA STRUCTURES

- * - *® - - * »

RSION IV OSU

L] » & & 8 0

Page

o e N [L

11
13
13
14

o 8 & &

15

15
16
20
26

33

Table
I.
Il.
I11.
1v.

Ve

LIST OF TABLES

Versions of the 0OSU ALGOL 68 Compiler
Paging Environment Routines « <« « « »
Segmented Environment Routines « « »
Items Allocated on the Heap <« « « « «

Items Allocated on the Stack « « « = =

Page

Figure
1.
2.
3.
4.

5.
6.
7.
8.

LIST OF FIGURES

Page
The Layered Environments o« « s« « = = o o » o« = » =« 15
Mapping the Virtual Space into the Physical Space 17

Location O0f the PMT &« o o o ¢ ¢ = « s« «a « =« = s « 19

Correspondence between SMT entries and PMT

entries » -» -» * - » - - » - - - L 2 - » - - - -» -» 21
SMT StTUCtULeS o« o » @ o = 2 o o« » » o« o« = o« » » = 23

27

Stack and Heap Storage in Segmented Memory
StackDiSplayLaycut-.--.-.........31

Stack Environment for Parallel Processes e « « « » 35

vi

CHAPTER I
INTRODUCTION
Objectives

Since 1973 .a project has been underway at Oklahoma
State University to write a portable compiler for the
ALGOL 68 language (1) (2) (3) (4). This project was started
by an implementation of a subset itranslator and an interpre-
tive executor wiih the original intent of providing a scien-
tific subset compiler (1). Since that time, many modifica~
tions and additions have been incorporated with the 1long
range goal of providing full support of the ALGOL 68 lan-
guages As a result of this‘uotk, it has been recognized by
people cbncerned with this project that the run-time envi-
ronment provided by the current interpretive executor is
inadequate for the expanding implementation and on-going
.works Therefore, it was decided to revise the present exec-
utor so as to increase the flexibility of the storage man-
agement functionse.

Prior to 1977, the Oklahoma State University ALGOL 68
compiler had only 1limited storage management beyond the
classical stack environmente. The main objective of this

thesis is to present a run-time environment design that

would siwplify implementation of non-LIF0 storage allocation
such as ALGOL 68 heap generators, flexible multiple values
and transput-file informatione. Other objectives of this
design are to handle large ALGCL 68 user storage demands on
small computers and to ease implementation of ALGOL 68 par-

allel processinge.

History of the Oklahoma State
University ALGOL 68

compiler

In 1973, John Jensen implementgd a scientific subset
compiler for ALGOL 68 on an IBM 1130 with 8K 16-bit words of
storage (1)3%. This original version (referred to here as
Version I) of the Oklahoma State University ALGOL 68 compi-
ler has developed into an implementation that supports a
sizable subset of the langquage.

Major contributions have come from thesis work by
Roger Berry {(2), Alan Eyler (3), Walter Seay {4) and Alan
Robertson (5). This includes development of a subset
ALGOL 68 transput package, addition of procedures to the
VersionlI compiler and the enhancement of wmode processinge.
Other contributions have come from several students who vol-
unteered time to work on this project, most notably Larry

Hanes, Charles Hanes and Alan Robertsone.

snjK" jis equivalent to 1024.

Berry's (2) implementation of formatted transput
resulted in an 1independent package which supports a subset
of transput as defined by the "Report on the Algorithmic
Laﬁguage ALGOL 68" (6). Incorporating this package with
the Version I compiler on an IBM 360/65 resulted in the Ver-

sion 11I compiler'in late 1975.

TABLE I
VERSIONS OF THE OSU ALGOL 68 COMPILER

Version Description

I John Jensen's original implementation on the IBM
1130 in 1973

II Version I with Roger Berry's Transput package
incorporated on the IBM 360 in 1975

11X : Version T enhanced to support procedures imple-
mented on the IBM 1130 in 1975

IV Re~integration of Berry's Transput package,
Eyler?s implementation of procedures and
Jensen's original version on the IBM 360
in 1976

Alan Eyler completed his work (3) on implementation of
procedures during late 1975, but on the same wachine as John

Jensen's original worke. This version (Version 1III) was

later recombined with Version IT and satisfactorily
completed in early 1976 (Version 1IV).

In mid 1976, Walter Seay completed his work {(4) on
mode processing. It is mainly due to his modifications and
the work on integrating the Version II and 1III compilers
that the need for improving the run-time environment became
crucial.

In 1978, 2Alan Robertson completed research on Trans-
formational grammars (5), and}proposed a system by which
ALGOL 68 format denotations may be parsed and interpretively
executed at run-time. In designing this addition to the
compiler, he required some heap storage mechanizms that are
easily provided by the design presented in this thesise. Iﬁ
fact, the consideration of Alan Robertson®s design for proc-
essing formatted transput and the problems encountered by
Walter Seay were the inspiration for this thesis.

The latest work on the Oklahoma State University ALGOL
68 compiler 1includes re-integration of WKalter Seay's work
with the Version IV compiler, updating the formatted tran-
sput package, testing the compiler on various different
‘machines (TI ASC, IBM 370/158, CDC CYBER 175), and implemen-

tation of the design presented here.
Review of Current Work

The ALGOL 68 language, as defined 1in the %Revised

Report on the Algorithmic language ALGOL 68" (7), 1is a very

5

powerful language. Several 1mplemeniétion efforts on the
language are currently in progress. Three of the most nota-
ble efforts which have come to the attention of the author
are: 1) the Cambridge ALGOL 68 compiler, 2) the ALGOL 68
compiler of Paris-Sud University {(Orsay) and 3) the Man-
chester ALGOL 68 compilere.

The Cambridge ALGOL 68 compiler has been implemented
and used at 0.S.U. and has proven to be a very efficient and
fast compiler. Its drawbacks are the 1lack of numerical
facilities, the lack of formatted transput and the diffi-
culty involved in ‘transporting the compiler onto
non—-370-1ike machines. Despite these drawbacks, it has ’
excellent capabilities for wuse in wWwriting compileré (ie.
almost full implementation of modes and structures). Per—- -
formance tests on an IBM 370/158 show that equivalent pro-
grams execute somewhere between one and a half to three
times faster when using the Cambridge compiler as compared
to the IBM PL/I optimizere.

The ALGOL 68 compiler of Paris-Sud University (Orsay)
is not available at 0.S.U. but its impiementors claim (8B) to
have implemented almost all of the language as ﬂefined by
the "Revised Report® (7). This compiler was implemented in
FORTRAN on a Univac 1100-series computer and is a true com-
piler in the sense that,it produces relocatable object code.
The use of FORTRAN suggests that portability and readability

were objectives in the initial choice of the implementation

6

language. However, the authors admi£ that certain machine
dependent features of the Univac FORTRAN V compiler were
used and that the code generation phase is strongly depend-
ent on the run-time computer. |

The Manchester ALGOL 68 compiler was of interest due
to the run-time environment design (9) (10), specifically,
the use of segments. This presentation consists of a design
that uses segments of a slighily different form, with the
same goal of flexible storage managemente. This design uses
segments as a means for handling storage management of flex-
ible rowed values and héap generators in a similar manner to

the way that the Manchester ALGOL 68 handles problems with

. these modes.

The'above descriptions are a brief bvervieu of current
compilers whose design have points of similarity or have
influenced this proposal. Other notable implementations of
ALGOL 68 include ALGOL 68-R (11) and the Control Lata Corpo-
ration ALGOL 68 compiler for‘the 6600 and similar computerse.

Besides the current implementation efforts mentioned
above, 1literature on ALGOL 68 and compiler writing topics
have contributed to the design presented here. An excellent
survey of the ALGOL 68 language 1is presented in the revised
cdition of Ap Informal Ipfreductiop 1o ALGOL 68 (12). Much
of the information about the Manchester ALGOL 68 compiler
appears with discussions of other compiler writing topics in

the "Proceedings of the Vth Annual III Conference on Imple-

mentation and Design of Algorithmic Languages" (13). In
addition, the author has used material from Gries (14) as a
basis for designing parts of the run-time storage organiza-
tion. Ideas for the remaining portion of the storage man-
agement scheme in this thesis éame from discussions of oper-
ating systems storage management in Madnick and

Donovan (15), especially the descriptions of MULTICS2.
Notes on Terminology

The author's background in compiler writing and oper-
ating systems has resulted in the use of terminology from
both fields. Terms used in this thesis such as pseudo-code,
stack environment and display vector are borrowed from com-
piler writing, while terms such as layered design, page
fault and virtual memory come from an operating systems
background?. While Gries (14) and Madnick and Donovan (15)
provide adequate definitions of several such terms, presen-
tation of a few descriptions here are worthwhile.

Gries (14) describes a stack epvironment for a block
structured language, as a large table of contiguous loca-

tions from which storage areas are allocated. These areas,

2The Multiplexed Information and Computing System (MUL-
TICS) 1is described in a case study by Madnick and Dono-
van {(15%).

2In particular, the term "layer” as used in this the-
sis, 1is not the same as the ALGOL 68 term "layer" in the
language definitione

8

which are called stack-frames, are allscated when a program
block 1is entered and are de-allocated when the block is
exited. Because the stack-frames are allocated in a
last-in-first-out manner, the run-time storage organization
is called a stack environment. In addition to the alloca-
tion of memory, a vector of table indices or addresses is
maintained that indicate the beginning of each stack-frame
allocation. This vector of addresses is called a display
vector. Because this vector is updated and saved each time
a stack-frame is created, a display vector exists for each
stack-frame. For the butposes of this thesis, the storage
allocated upon entering a block is called a stack-frame, the
saved list of addresses that maps the allocations is called
a display and a 1list of addresses that includes the most
recent allocation (ie. the active stack-frame) 1is the dis-
play vector.

Gries (14) also described an interpreter as a program
that performs two functions: 1) translates a source program
into an internal form, and 2) executes {(interprets or simu-
lates) the program in this internal form. For the purposes
of this thesis, the internal form of the source program is
called pseudo-code (especially because it resembles machine
code for a hypothetical ALGOL 68 machine) and the portion of
the interpreter that performs the second function mentioned

above is called an interpretive executor.

Madnick and Conovan (15) describe several operating
- systems besides MULTICS. MULTICS, however, has special sig-
nificance in that it uses a segmented-virtual memory manage-
ment scheme and had a design approach used known as a lay-
ered design. This thesis adopts the layered design approach
and uses a form of segmented-virtual memory management that
resembles that of MULTICS. In MULTICS, a section of high
speed primary storage is used as a cache memory to which
memory references are made. A virtual memory space is main-
tained by translating virtual addresses into cache memory
addresses. Since the virtual memory siie is much larger
that the cache memory size, secondary storage is used to
store subsections of the cache memory until needed. Thesé
subsections of cache memory are called pages in MULTICS and
in this thesis. Additionally, a reference to a page that is
not currently in cache memory causes a paging operation
known as. a page swWwap to occur {a page of cache memory is
copied to secondary storage and the desired page of virtual
memory is copied into cache memory) All memory that is
addressable by a virtual address is cénsidered to be paga-
'ble, as opposed to hardware registers or cache memory pages
for which no address translation occurse.

| Tuo ALGOL 68 terms of special signifiéance are used
throughout this thesis: 1) flexible rowed values and 2) heap
values or storagee. Rowed values in ALGOL 68 are values

-which may be accessed via a name and a subscript; ie., they

10

correspond to Fortran or PL/I arrays. Flexible rowed values
are values that wmay change their bounds after the declara-
tion of the values has been executed. This is somewhat sim-
ilar to the way PL/I varying strings may change in length.
The Eonsequences of this feature are that the storage
requirements of a flexible rowed value may change after
allocation df the rowed value is complete, which makes this
type of storage allocation a special problem that cannot be
handled by the stack environment described above.

Heap values also cannot be handled by a stack environ-
ment, because by definition, they must remain allocated as
long as any references exists to the allocated storage, even
after the block where the heap values were allocated haS
been exited4. Heap values may be of any valid ALGOL 68 wmode
which creates further problems in that data-handling and
allocation techniques must exist for both heap and non-heap
valuese.

' For the most part, this thesis uses the same terminol-
ogy as can bé found is Gries (14) and Madnick and Dono-
van {15) unless otherwise stated. The above descriptions
'hopefully provide some added insight into the terms most

frequently used by this thesis which are not commonly knowne

4Note that "Heap" refers to specifically ALGOL 68 heap
storage which is storage that remains allocated even after a
program block 1is exited and which is garbage <collected as
the need is perceived.

CEAPTER II
PRESENT BUNK-TIME ENVIRONMENT
Irtzcduction

The 0SU ALGOL 68 conpiler dJenerates pseudo-code which
is interpretively executed. The interpretive execution is
performel in"a simulated memory with an extended stack model
run-time environment. An excellent description of the over-
all compiler was delivered at the 1975 International Confer-
ence on ALGOL 68 (16).

This presentaticn is concerned with three aspects of
the cyrrant run-time enviicnment: 1) the run-time symbol
table and run-time addressing, 2) the stack organization of
nemory, .and 3) the simulated memory itself. The design
presented here should either improve the performance <cf

and/or increase the flexitility cf each aspect.
Run—-time Symbkcl Tabl€ and Addressilg

The run—-time symbol table is represented by a vector

of active entries, linked lists of inactive entries and a
table of character representations. The symbcl table
entries consist of two items: an absclute address of the

storage associated with tke variable and an indicatcr of the

11

12

mnode type. When a variable is accessed, a
compiler-generated identifier number is retrieved frcm the
pseudo-code instructicn ard wused to index the active entry
vector of the symbol table. The address of the variable
location in memory is then obtained from the symbol table
and the value of the variable is either fetched frcm or
stored into the 1indicated locaticn. If a pseudo—code
instruction accesses more than cne variable, then the above
process is repeated for each variable.

Due to limitations imposed by the 1IBM 1130, the run-
time symbol table was statically 1limited to 120 entry posi-
tions. Although later versicns of the compiler were run on
an IBM 360/65, expansion of the symbcl table proved to be
very difficult due tc restricticns in the implementation
language, namely FORTRAN. At that time, it was decided not
to alter the symbol table structure because the enormous
amount of re-design effort required was not availalble.

The design presented in this thesis eliminates the
run-tine symbol table by wusing display offset addressing.
Each variable is addressed ty an offset frcm a stack display
address which is kept in a display vector. This scheme will
remove the restriction of 120 active unique variables and
can maintain the speed cof address by keeping a copy of the

active display vector im frimary storage.

13
Run-time Stack Organization of HNemory

The interpretive executor has a very primitive memory
management schene. The allocation of memory 1is performed
accordiny to a single stack organizaticn. Ccorresgonding to
each new range of the ALG(L 68 program, a new stack frame 1is
initialized by copying and updating the standard stack model
display vector. At the end of each range, the current stack
frame is released alcng with the storage associated with it.
This stack organization [flus a very simple heap allocaticn
mechanism (with no storage reclamation) constitutes all cf
the storage management of the intergretive executor.

In order to increase the flexibility of storage man-
agement, a segmented—-virtval memory schene is used. Seg—
ments are used to allocate memory for tvwo types cf requests:
1) requests for memory thaf cannct be allocated and de-—allo—
cated in a stack environrent, and 2) regquests fcor memory
that may have later requests to 1increase or decrease the
size of the original regquests. Examples of these types of
requests are ALGOL 68 flexikle rowed values, ALGOL 68 heag
values, transput-file dirfcrmaticn and the memory area for

sub-allocating a stack enviicament.
Run—-time Simulated Memory

The simulated memory used by the interpretive executor
consists of a disk file of 8000 words with two 80 word pages

Xept in core memory. Cne fage is used to fetch pseudo-code

14

instructions while the other page is used for fet€hin9 ang
storing data values. Since the original implementaticn
machine was an IBHM 1130 with 8k 16-bit words of memory, the
above limitations were corsidered reasonable choices. how-
ever, due to the many additions and modifications since the
original implementaticn, the power of the implemented lan-
guagye has increased significaatly. Tte natural result of
this growth is that users are attempting to write progranms
of greater complexity which require more user stcrage.

The proposed desigr vses a virtual memory space to
allow largyer memory regtests while using segmentation to
control péging. A much larger address space ard increased
~flexikility can be rprovided without excessive overhead

costs.
Sumnary

The major problem pcints are: 1) the limitaticns of a
fixed and static size addressing schene, 2) the lack of
flexibility in the storage management features, and 3) the
limited size of simulated memory. These prcblems have
caused implementation effcrts in extended mode processing
and transput-file processing to ke extremely ccmplex. In
additicon, user programs c¢f appreciable size simply are not

accepted by the interpretive executor.

CEAFTER III

PROPOSED EUN-TIME ENVIRCNMENT

Lesign Tescription

The proposed run-tine environment can be broken down
into a layered design ccnsisting of four eaviroanments as
follows: 1) an inner-mcst paging virtual memory environ-

ment, 2) a segmented memcry allocation environment, 3) an

USER'S ENVIRC}MENT

ALGCL 68 EMNIECNMENT

SEGMENTIL ENVIECHMENT

VIRUTZI-PAGING
ENVIBCNMENT

Ll e e P)
Loy iy]
Oy SO .

——— S s S s W s O

s T e B iy S e S e Mo e S B S
et e B e Bt e Simits B Boiem Gy W &
— A Gogy Mt Wi, e Ji B . B B B

o R I I e I N

Pigure 1. The Iayered Environments

15

16

ALGOL 68 "pmachine" envirorment, and 4) the outer-most layer
which is the ALGOL 68 user envircnment. These envircnments

are briefly diayrammed in Figure 1.
The Paging Environmeat

The paging environment uses a contiguous page mapping
table that maps virtual fpages into physical gpages that may
be stored on disk (or any cther appropriate direct—access
medium.) The Page Mapping Talle (hereafter akbreviated to
PMT) is stored at the teginning of the simulated virtual
memory such that direct indexing can be used to map a vir-—
tual page into a physical rage. Figure 2 diagrams the vir-
tual memory to physical memcry mappinge. Note that the Puﬁ
{as shown in ﬁhe exploded center block) is fixed such that
the virtual addresses of the FMT are the sanme as tke physi-
cal éddtesses of the PNT.

The paging environrent is simulated using a nmemory
block of 1024-words and a Page Fault Table (PFT). The men—
ory block 1is divided intoc eight 128-wcrd page slots (num—
bered 0 to 7) vhich are used as a cache memory for paging
purposes {for the purposes cf this thesis, the term "“cache"
is used to refer to the [rimary storage block used by this
design). In contrast to the PMT which is used to indicate
the mappings between virtual and physical storage, the PFT
maps virtual memory into cache memory and is used in a man—

ner similar to the usage <¢f hardware associative registers.

17

.t S g s i . .

-
A
{
|

r q
i1 P M T | i
=< | T Ty
i i1 1 I { P AT |
| [I | PHNMNT | ==
Physical| S I ST T B B !
Address | i 1 i {<4 11 i
Space |- il i_ 1 1j-—=——|
iphysical (<===={rrt entry]<===j}virtual |
I page} | == 11 page| Virtual
{——— il i i |{-——=———=-=-—] Address
i 1 1 i i | { Space
/ VAR st S b S |
/ / 7/ /
[y / /
l |
} i

Figure 2. Mapping the Virtual Space into the Physical
Sgace

- 0f the eight cache ﬁemcry [age s=slots, slot zero always con—
tainé physical page zero which always corresponds tc virtual
page zero; slots one thrcugh seven ccntain physical pages
and the corresponding virtusl pages as indicated by entries
one through seven of the EFI.

Each entry of the PIT contains five logical fields cf
information: 1) a virttal [fage number, 2) a page slot
'address, 3) the Least-Recently-Used (LBU) reference count,
4) a modification flag, ané 5) a physical page numter. The
virtual page number, ©Ffpage slot address, and physical page
number ara wused to maintasin the correspondance Lketween a

page slot and a virtual address. The "LRU reference count®

18

field indicates approximately how long ago the page slot was
referenced while the modificaticn bit indicates whether or
not the contents of that fage slot was modified.

A description of the addressing process, shows how the
various PFT entry fields are used and how a virtual address
is mapped into a physical disk page. The virtual address is
de-composed into a virtual page number and a page offset
value so that a search of the Page Fault Table may be made
to hopefully locate the fpage in memory. At the same tire
that the PFT is searched, twc cther operations are per—
formed: 1) locating tte least-recently-used page and
v2) updating the page slot reference counts. If the desired
virtual page is in memcry, then the reference to the appro4
priate page slot or slcts is performed.

I1f a desired page is not in the cache menmcory, then a
virtual memory reference 1is made to the appropriate PHNT
entry. Since the PNT is also a éart of pagable memory the
physical page numbers of the PMI area are fixed such that
they correspond to the virtual page numbers. This fixed
correspondence allows a virtuwal rfpage of +the PHT to be
paged-in without address translation. The inguiry into the
PMT produces the physical page number of the page to be
fetched. Using the locaticn of the least-recently-used page
found during the PFT search, a page swap 1is perfcrmed and
the virtual memory refererce is ccmpleted. Examining Figure

3, one can see that the FNT occupies the first several pages

19

Physical Virtual
Address ‘ Address
Space Space
Pagje No . _____ Page No .« ____ ____
0 IPHT page|==—————=m—- 0 -—-] PMT page]

i-—— i | |
1 |PMT page}{-—-——=---——— 1 -—| ENT page]
|——-—-—- | |- i
|PMNT page}=—=———=———- —=| PMT page]

===
-—} EMT page|

j==————=
i . i I . |
i . | .

J==—=-=-=|

2
3 {PMT page|<————-———-

j========

e 0l NN

Figure 3. Iocation of the PHT

of both the virtual address space and the physical address

space.

The paging environﬁent level contains four main
modules as shown in Table II?. These modules perform the
operations involved in virtual memory addressinge Routine
VMREF is the external lirkage to the G[paging environrment in
that all virtual memory references are performed via a call
to this routine. Routine VHPFX determines whether a refer-
ence can be satisfied cr if a "page-fault" occurs. Routine
VHPFT performs the actual FFT search and routine VMSWP per-

forms pagje swapping.

S - ———— ———— ————

1an informal PDL descripticn cf this module (VMPFT) and
the other virtual-paging mcdules (VMREF, VMPFT, VMSWP) 1is
presented in Appendix B.

20

TAELE 11

PAGING ENVIRCNMENT ROUTINES

Routine Descripticn

VHREF Virtual memory fetch and store module
VMPFX Virtual memory page fix module

VHPFT Page Faulf Table search module

VUS WP Virtual memcry page swap module

The Segsented Envirocnment

The Segmented envircrment uses segments as a means of
representing memory allocations that are dynamic but are not
alloéated in any jpredictatle crder. A segment allocation
creates an entry (or entries) in the Segment Mapping Table
(SM¥T) that reserve a group of ENT entries. The SHT entry
consists of four fields: 1) a virtual address origin of the
segment, 2) a segment length, 3) an allocated segment list
pointer, and 4) a pointer tc the next SKT entry {SHTE) node
in the sagment. The virtuval address origin and the segment
length indicate the allccated virtual memory, while the
allocated segment 1list [fcinter and the SMTE node 1list
pointer are used in memory reclamation. Note that a segment

may consist of several SMIE nodes but cach SMTE refers to a

21

contiguous section of virtual memory2 (these contiguous sec-
tions of virtual memcry are refered tc as "blocks"™ in the
following discussions). Figqure 4 shows how a SMTE corre-

sponds to the PHMT entries.

PHT
SHT e
—————— 1 i
i 1 H |
| i i |
j—————— | seygment origin J--—————--|
}SNT ENTRY}|=-----===—====—===>|PMT ENTRY|]
=== s 1f]|-—=~-|
l i € e]]EMT ENTRY]
| i g njl-———-- i
} | m gV]JPHNT ENTRY|
/ / e t |-—————]
/ / n hy/ /
i } t / /
jm————————] segment origin j-——————-=-]
]SHT ENTRY] — - -=>| EBT ENTRY|
f—-——1 s 1}j-=m—————]
| } € eV]BEMT ENTRY|]
i { g n j-———————-— |
| i B g | i
| S | e t | 1
n h §J______ 1
t

Figure 4. Corresgondence bhetween SHT
entries and PMT entries

27 contiguous secticn cf virtual memory means a section
of virtual memory with ccntiguous virtual addresses; ie.,
the physical addresses may be ncn-contiguous.

22

- When the Segment Mayring Table is initially created, a
page of virtual memory is reserved and entries are created
as necessary to fill the fage. Two entries are set to non-
zero values such that =segment 0 (represented by entry 0)
describes the origin and length of the SMT itself while seg-
ment 1 describes the remaipder of unallocated virtual men—
OCYe The remaining SMT entries are set to zero and linked
together (via the SMTE node list pointer) to form a list of
unused SMTE nodes.

The allocated segment list [ointer is wused to 1link
together the SHTE nodes that are the primary entry of each
segment. As shown in Figure 5, the active segment list
pointer of entry 0 and entry 1 are used for the purpose of
indicating the beginning of the unused node list and the
allocated segment list. Fach =egment of allocated storage
is répresented by a single SHTE or by a list of SHTE nodes.

The length field c¢f an SHTE indicates the contiguous
virtual memory size descriked by the entry node. Therefore
segment 1 represents free or \unallocated blocks of memory
which can be used to satisfy allocation or eXxpansion
requests. An SMT entry node with a zero-value length field
does not represent any mencly but may be used in creation of
a hew sejnent.

The creation of a new segment and allocation of memory
requires that searches of the unused SMTE node list and the

free memory segment be made lccking fcr an empty node and

23

Seyment
Mapping Free
Table Hemory Allocated
Segment Segment Segment list - > . . .
SHMTE O SMTE 1 SHTE 2
{SMT addr| {free blk{ r->iseg addr{ r—>inext i
jo——i |- i1 J-—=——=--§ | Jalloccated
{ length | | lengtk § § | length | | |segment
{—— - { |31 I
1 fooo——— | *o— o 4 ¥ 41
\ - { - i ==
{ 0 I T | * i | * | |
i —d 1 ___1____1
| i
i { {
v 1) v
{ list of} i 1ist cf} { list of
{ unused | { free i] SMTEds |
] SHTE i memory j for this
nodes | blccks | segnentj

i . 1 - i .

Figure t. SMT structures

for a free space blcck large encugh to satisfy the alloca-
tion request. The new SMTE node is appropriately filled-in,
removed from the unused entry node list and inserted into
the allocated segment list.

Another feature of segmented memory management is the
ability of segments to expand or coantract in size. To
expand a segment, an additicnal SMT entry (representing
additional virtuai memory) is chained to the primary SHMTE

such that the desired total segment size is allccated. To

24

contract a segment, the SMKTE length field is reduced and a
new free SHTE is created tc represent the freed virtual mem-
Oy«

The four functions of segmented memory management:
1) memory allocaticn, 2) nremory de—allocation, 3) expansion
of a memory allocation, ard 4) contraction of a memory allo-
cation, are provided by four of the routines shown in table
I113. The only other externally called routine is SMREF
which performs segmented-memory addressing. The remaining
segmnented environment routinres fperform internal house-keep—
ing on the Segment Mappiﬁg Jable and Page Mapping Table.

Because of the address mapping from virtual to physi-
cal pages, allocated segments may be re-arranged into singlé
blocks by re-ordering the EMT. 2As a part of the memcry man-
agement facilities, the rcutine SHSMT re-compresses segments
into.single blocks. 1In order to avoid memory fragmentation,
this routine is invcked wkenever an allccation request can
not be satisfied using one tlock (in other words, the vir-
tual memory described by a single SMTE node) . Although the
added memory area is forced to be a single block in process-
ing a segment expansion request, it need not ke wirtually
contiguous to the woriginal segment memory area except when
the segment being expandeé is the SMT itself (ie. entry 0 of

the table).

3see Appendix B for an informal PDL descripticm of the
segmented environmeant routines.

25

TABLE III

SEGMENTED ENVIRONMENT RCUIINES

Routine PFunction Ferformed

SHMREF Segmented memory access

SMALC Allocate 2 new segment

SN FRE De-alloca&e a segnment

SHADD Expand the size of a segment

SMSUB Contract the size of a segment

SHS ¥T Re-compress segments into single blccks
SHGET Get a blcck ¢f free memcry

SMPUT Put a block back into the free list
SHTAL Allocate a SMT entry nocde

SMTER Un-allocate a SMT entry node

S§P AT Set PMT enfries segment nunmbers

The procedure of addressing segmented memory 1is
performel by the routine SEEEF. This routihe accefts seg-
mented addresses which ccnsist of a segment number and a
segment of fset. The segment numker is used to locate a seg-
ment block list in the SM1 and the segment offset is used to
locate the appropriate SHETE. By combining the offset value
with the SMTE origin valve, a virtual address is obtained

and the sagmented address translation is complete.

26
The ALGOL 68 Environment

The ALGOL 68 Environment is the "machine-level® of a
hypothetical ALGOL 68 machine. For the 0SU ALGOL 68 Compi-
ler, this is the level or environment which interpretively
executes pseudo—code generated from ALGOL 68 programse. In
order to maintain compatibility with earlier versions of the
0SU ALGOL 68 compiler, a translation phase must be incorpo-
rated wﬁich will éonvert pseudo-code generated by the code-
emitter phase of Version IV of the compiler {listed in
Appendix D) io pseudo-code suitable for the proposed run-
time executor. This translation of the pseudo-code is con-
cerned with two aspects: 1) replacing the addressing with
stack-display-offset addressing and 2) modifying the

instruction codes to handle explicit stack operationse.

BLGOL_68 Level Addressing apd Heap
Siorage Managepent

The ALGOL 68 Environment level wuses an addressing
scheme partially based on a stack environment. All instruc-
~tion references to memory consist of the pair: stack—-frame
number, stack-frame offset. The stack-frame number is used
to index a vector of stack-frame addresses which is added to
the offset value to yield the effective addresse. In order
for references to other instructions to be represented by
this same address format, an extra outer display is artifi-
cally created (display number 0) that maps the storage area

of where the program instruction codes are kepte.

All non—-instruction references to

not a part

mented addresses.

allocate memory <for ALGCIL 68 prcgranm

of an instructio

Seygmented
Memory

lproyram area/||
Jstack frame ()<

—— - B g, O
|
]
[
|
|
!
[
[
[}
¢
]

listorage for |
{Jouter—post i
i luser prcgran |}
{1block / 1
flstack frame 1}
H====mmmmmmmme
j/remainder cf
j/progyram stack
}lframe areas

1l

-

— N\

Ghiten i Mo Gt

jlan indirectly]
jreferenced
jheap storage
Jarea

—
R bl M &

{

remainder of
seymnented
memory

i e e]

n)

Figure 6 shows

take the fornm

217

memory (any address

of valid seg-

how segments are used to

stack areas

T Km——- Segment 2

program and main
stack area

{~==-~- segment 3

some ALGCL 68
heap storage

Figure 6. Stack and Heap Stcrage in
Segmented Memory

and heag

28

storaye areas. The active display vector consists of

segnented addresses that refer to *he beginning cf each

stack frame (all stack firames in Figure 6 are contained in

segment 2) . As the stack grows, the segment ccntaining the
stack is expanded, which is accomplished through use of the

segmented environment.

TABLE IV

ITEHNS ALLCCATED CN THE EEAP

Description of Iten Lescription of Why

All variables explicitly Tc maintain the keap vari-

declared to be "HEAPY ables even after closing

variables. : the block in which the
' declaraticn appeared.

To allow for

The storage allocated to
a flexible rowed value
{excluding the array
descriptor).

Buffers and internal wcrk
areas for traasput.

later expan-
sicn of a flexible rowed
value (if subscript check-
ing is perfcormed, then the
segmented address could be
easily stored with the
array descriptor).

Tc maintain global storage
for transient I/0 status,
information and datae.

TABLE

v

ITEMS ALLCCATED CN THE STACK

29

Description of Itenm

Description of Why

All local variables of
primitive modes such as
INT, REAL, BOOL, CHAR,
etc.

All local reference-toc
variables such as REF IXT,
REF REF INT, REF REAL, cI&
even REF REF amode.

- All local structures which
do not contain items tc ke
put onto the heap (exargle
- STRUCT (REAL re, REAL im)
goes on the stack whereas
STRUCT (STRING s) causes
the storage of the flexi-
ble rowed value "s" to te
allocated in a heap are€a.

All local rowed values
that are not flexible
roved values.

P

The storage management for
these items conforms to
the requirements
stack-model envircnment.

The storage management for

thkese items conforms to
the requirements of a
stack-model epvircnment

and are used often.

The storage of the flexi-

ble rowed value mnust be
allowed to "flex" while
its descriptor may be

allocated on the stacke.

The storage manaygement for
these items conforms to
the requirements ocf a
stack-model environment.

of a

in separate memory areas,

of the

As can be seen in Figure 6, heap storage is maintained

flicts with the stack area.

stack at the

but reguires that references to

ALGLL 68 level to

thereky avoiding allccaticn con-

This allcws memory management

be straight-forward

the heap be made indirectly

30

through a seymented address stored in the stack. There are
two conclusions to be drewn from this: 1) it is easy to
manipulate the storage of items allocated in heap areas but
there is an overhead incurred for referencing then, and
2) the storage of an item allccated in a stack area may be
manipulated only under very rigid conditions but such manip-
ulation loes not reyuire indirect addressing as for heap
items. These conclusicns %ere carefully considered bhefore
deciding what items of an RLGGL 68 program should ke allc-
cated in the stack area and what items should go on the
~heap. Tables IV and V shcw the results of several decisions

as to where an item shculd be allocated.

ALGOL_68 Level Local Storage Managenment

The ALGOL 68 level lccal storage management consists
of a stack environment maintained within a segment. Figure
7 shows some snapshots of the run—-time stack for a sanmgle
program. For each "BEGIN" in an ALGOL 68 program, a stack-
frame is created. As stack—~-frames are created, a list cf
addresses are maintained and copied into the teginning cf
the storage allocated for each stack-frane. 'The first snap
shot of Figure 7 diagrams the contents of the stack after
the first stack-frame has heen created. Snapshot 2 of Fig-
ure 7 shows the state of the stack after the seccnd stack-
frame has been created but tefore +the storage for the rowed

value "n" is allocated. Ncte that the first porticn of the

31

BEGIN
INT 1, Jj,k; <-- Snapshot 1
BEGIN
REAL x;
[1:k] INT m; <-- Spapshot 2
ees <-- Snapchot 3
END
END
Snapshot 1 Snagshot 2 Snapshot 3
===y P 1%y P 1<q
i Fmm——t~3 | | Ferm——g=ad | | L e s mt |
e i === I R |
____1___ | Vo1l ___31___ |} I U SN |
I J____1 Pl 3 ___1| I I N
i____k____1 Pl _k____1 Dl ___k____i
i - i Ll S I<q t—t————* <4
i - - i1 |- 11
- 1 Lt o i e —— 3—d
j-——]]
b___x____1 b x i
{ static | } static |
} pcrticn | | portion |
j_of_m____1{ {_of_m___ |
i - i } dynamic |
1 e | portion |
- j_of_m____|

N . !
! .

Fiéure 7. Stack Display layout

. stack is an address that 1indicates the beginning of the
first stack-frame and that further down in Snagshct 2 are
two addresses which indicate the beginnings of the first and
second stack—-franmes. As €ach new stack-frame is created,
another address 1is added tc the display maintained in the

display vector and an ugéated ccpy of this list is stored

32

onto the stack. The lccal storage management ©Can be
summarized as the creaticn and destruction of stack-frames

and parallels the techniyues described in Gries (14).

CHAPTER IV
SUMMARY, CONCLUSIONS, AND FUTURE HWORK
Summary and Conclusions

In keeping with the goals of the (0klahowma State Uni-
versity ALGCL 68 Compiler project, this design adds flexi-
bility with a limited expense of execution time. This
design removes the major problem points of earlier versions
of the compiler in three ways:

1. by adding flexible storage management

facilities;

2. Dby replacing the addressing scheme of earlier
versions;

3. by expanding the storage capacity of the
interpretive executor.

The Oklahoma State University ALGOL 68 Compiler is not
only enhanced by the above <capabilities, but the design of
the run-time system should prove easier to modify for
varying machine configurations than earlier ﬁetsions thus
enhancing the portability of the compiler. This can be
attributed to the layered-design approach which applies very
nicely to the segmented virtual memory features described

here.

33

34

The 0.S.U. ALGOL 68 user can benefit greatly from the
added heap storage facilities and expanded storage
capacities while the layered design approach should reduce
the effort required of future implementors to modify or

extend the capabilities of the interpretive executore.
Future Work

There are several suggested modifications which are
based on the capabilities of the implementation machine. On
a machine where primary storage is plentiful, two options
may be exercised: 1) the size of the page fault table and
the cache memory may be increased, or 2) the virtual memory
level may be replaced altogethere. |

The modification of the size of the page fault table
and the cache memory may be performed by adjusting the the
initial value of the global variable indicating the page
fault table size as shown in Appendix A, and‘by changing the
appropriate table sizes used as the page‘fault table and the
cache memorys _

To replace the virtual memory level, the routine VMREF
‘should be modified, the page mapping table kept and all
other virtual memory level items discarded. Rather than
consulting the page fault table, the routine VMREF should
directly access a table of contiguous locations as if it
were the simulated memory. The page mapping table transla-

tion of virtual addresses must be kept so that segmented

i

memory level compression

cf free memory blocks

35

can be per-

formed, even though the result cf the translaticn is crly an

index of the sinulated mencry in primary storage.
Future extensions to

run—-time facilities for simulated

ALGOL 68,

this work include the

parallel processing.

design of

In

parallel prccessing generally takes the form of a
set of ALGCL 68 procedures which are to be executed as if
they were executing simuvltanecusly. The major problenm

Stack
Memory
TTTTTTTT Ty
jMemory }<~--— segment 2
jallocated}
]befgare }
iparallel |
jprocesses|
jwere i
/iavoked /
/ /
: | 1
} Stack {<y IStack 1<4 }Stack <4
jmemory | | lmercry § |} | memory | |
Jfor a ! 1 1fcr a { | |{for a | 1
{parallel} | |rparallel}y | |(parallel} |
] process | | {prccess | | jprocess | |
11 1 | I 1
i 1 I S DO B |
| I DRSS, Y l
1 | segment 5
segment 3 segment 4

Figure 8. Stack Ernvircnment for Parallel

Processes

36

arises because while executing in parallel, different and
distinct additions may be made to the stack environment. 1In
fact, as shown in Figure 8, the porticn of the stack allc-
cated prior to the invecation cf the parallel procedures
must be shared while distinct portiomns of the stack must be
created for each parallel routine. This protlem can be
solved by allocating a new segment for the continuation of
the stack environment c¢f €ach parallel process. The address
mapping of the stack environment 1is ncrmally fperformed by
the active display vector. In the case of parallel process-
ing, multiple display vectcrs are maintained such that each
parallel process may access the shared portion of the stack
environment and may access its cown extension of the stack.
Each new display vector will contain .a copy of the active
display vector up to the fpoint where a parallel prccedure is
invoked with added stack-frame addresses pointing to 1its

extension of the active stack.

(1)

(2)

(3)

(4)

{3)

(6)

(7)

(8)

9)

FEFERENCES

Jensen, J. C. "Imrlementation of a Scientific Subset
of ALGOL 68." (Unpulk. M.S. thesis, Oklahoma
State University, 1973.)

Barry, R. "A Practical Implementation of Fcrmatted
Transput in ALGCL 68." (Unpub. H.S. thesis,
Oklahkoma State University, 1973.)

Eyler, A. D. "The Inplementaticn of a Sukset of
Procedures in an ALGCL 68 Compiler." (Unpub.
M.S. thesis, Cklahoma State University, 1975.)

Seay, W. M. "Implementaticn of a Subset of Modes in
an ALGOL 68 Comrgiler." (Unpub. M.S. thesis,
Oklahoma State Uriversity, 1976.)

Robertson, A. L. "lransfcrmaticnal Grammars: Their
Applications ard Implementation” (Unpukb. M4.S.
thesis, Oklahora State University, 1578.)

van ¥Wijngaarden, A. (Ed.), B. J. Mailloux, J. E. L.
Peck and C. H. Koster. P"Repcrt on tte
Algorithmic Larguage ALGCL 68." QNumerische
Mathematik, Vcl. 14 (1969), pp. 70-218.

van Wijngarrden, A. (Ed.), B. J. HMailloux, J. E. L.
Peck, C. H. A. Koster, M. Sintzoff, C. H.
Lindsey, L. Go. lI. T. HMeertens, and R. G. Fisker.
#Revised Report on the Algorithmic Language
ALGOL 68." Beilin-Heidelberg: Springer-Verlag,
1976.

Taupin, D. "The AIGCL 68 Compiler of Paris-5Sud
University.® frcceedings of the 1375

e i e s S A s A i S o e —— A~ e — o —

Stillwater, Cklahoma: (10-12 June 1875), pp.
16- 22.

Barringer, H., and C. H. Lindsey, "The Manchester
ALGOL 68 Ccmpiler.® Proceedings of the Vth
Annual III Conference cn Implementaticn and
Design of Algorithmic Lanquages, Guidei, France:
{16-18 May 1977%), pp. 145-18Z.

317

{10)

(1)

(12)

(13)

(14)
(15)

(16)

(17)

38

Pierce, R. H., "2n 2LGOL 68 Run-Time OrYanizatlion.u
(Unpub. H.S. thesis, Victoria Umniversity of
Manchester, 1571.)

Currie, I. P., S. €. Bond, and J. D. Morison.
"ALGOL 68-R." ALGCL 68 Implementation. J. E.

L. Peck (ed). Bmsterdams: North Halland
Publishing Co., 1971, pp 21-34.

Lindsey, C. H, and £. G. van der Meulen Informal
Introduction t¢ 2LGOL 68, Revised Editicn,
Amsterdam: North—-holland Putlishing Co., 1977.

Andre, J., and J. Eanatre (Ed.) Proceedings of the
Vth Annual III Ccnference c¢n Implementation and
Design of Algorithmic lanquages, Guidel, France:
{16—18 May 1977) .

Gries, D. Compiler Construction for Digital
Computers, ©Nex Ycrk: Jchn Wiley & Sons, Inc.,
1971, pp. 171-211, 328-335.

Madnick, S. E., and J. J. Donovan Qperating Systems
New York: McGraw-Hill Eook Co., 1974, Epe
105-208, 534-54¢k. :

Robertson, A., and G. E. Hedrick, "A Portakle
Compiler For An 2LGOL 68 Sulbkset." Prcceedings of
the 1975 Internaticnal Ccnference on ALGCL 68,
Stillwater, Cklahcma: (10—-12 June 1975), pp. .
59-63.

vVan Doren, J. R. “"Notes on Software Design Methods
{Flowcharts and EDL's)." Presented as course
material for Ccmputer Structure & Programming, a
graduate level ccurse at Oklahoma State

University.

APPENDIX A

DESCRIPTIONS OF RUN-TIME

DATA STRUCTURES

The following descriptions are data structures wused
throughout the designe Additionally, some descriptions of
the variables used in PDL descriptions of the presented
design are included. For purposes of the design presenta-
tion, global "constants"™ have been chosen that meet all
design requirements {(these constants may or may not be opti-

mal for performance considerations)e.

GLOBAL "“Constants"

page size (PSIZE) - page size value
’ (128 words)

PMT size {NPMTE) - no. of PMT entries

PFT size {NPFTE) ~ no. of PFT entries

PMTE size {PELEN) - size of PMTE entry
{2 words)

SMTE size (SELEN) - size of SMTE entry
{4 words)

(IORD) - read op—code
(IOWR) - write op-code
(PFILE) - paging disk file
{disk record length =
memory page size)

PAGING "Hardware"
memory{(1024) (MEMRY) - cache paging memory
pft(7,4) {PFT) - Page Fault Table
active pgno (APNUM) - active page number
active pftn (APPOS) - active pft entry

39

40

PFT entries {(page fault table)
1) virtual page no.
2) cache-memory page slot address
3) LRU reference count
4) Modified bit
{sign position: >0 -— on, <0 -- off),
and physical page no.

PMT entries {(page mapping table)
1) physical page noe
2) no. of the segment possessing this page

SEGMENTED ADDRESS
1) segment mapping table entry number
2) segment offset address

SMT entries (segment mapping table)
1) Segment origin
2) Segment length
3) Allocated segment list pointer
4) Segment block list pointer

SEGMENT--A68 level "Hardware"
ERROR - termination code
SMTAR - SMT address register
ASNUM - active segment number
ASORG - active segment origin address
ASLEN - active segment length
ASLNK - active allocated segment list pointer
ASPTR -~ active segment block list pointer
DSPLN - display vector length

DSPYT - display vector of active stack frames
{maximum of 20 active stack frames)

APPENDIX B
PDL DESCRIPTIONS OF RUN-TIME ROUTINES

The following figures are PDL descriptions of the
Run-time routinese. These descriptions are intended as a
rough guide for implementation and therefore omit detailed

or error-checking code in the interest of claritye.
Paging Environment Routines

The four routines VMREF, VMPFX, VMPFT and VMSHP form é
core of modules that deal directly with the virtual-mem-
ory/real-memory interface. With the exception of a few
restricted segmentation level routines, all accesses to the
paging level environment are performed indirectly through
the routine VMREF. The few exceptions to this mechanism are
the segmentation level routines that modify the Page Mapping
Table for the purposes of garbage collection. This limited
"access alloks the entire paging environment to be removed

with the exception of the Page Mapping Table.

42

Reference to virtual memory routine

varef:
PROC (virtual address, tuffer, start, stop,
I/0 flag); :
v 2= virtual address;
i ;= start - 1;
DO UNTIL i > 'stop;
CALL vmpfx (v, ¢, pfte);
£ c is the returned cache memory address or
zero 1f the desired page is not in cache
memory ¢
¢ pfte is the page slot number of
least-recertly used page ¢
IF¥ ¢ = 0 THEN
vpage := v / page size ¢ PSIZE ¢;
voffset := v - {[vpage * page size);
CALL vmpfx {{(2 * vpage), c, pn);
¢ if ¢ is returned as zero, then there is
no PMT entry for the desired page, 1le.
the reference is outside the virtual
address =slace ¢
IF ¢ = 0 THE)
signal address error and guit;
FI;
prage := memcry({c);
CALL vmswp (vpage, ppage, pfte);
c := pft(rfte, 2) + voffset;

FI;

izz=1i+1;

vVi= v + 1;

IF write operaticn THEN
IF

pfte > 0 TEEN
¢ if pfte = 0 then virtual page := physical
page := rage slot 0 which is always
paged-in ¢
set modified-flag of pft{pfte);
FI;
memory (c) := buffer{i);
_ELSE
buffer{i) := nmnemory{c);
FI;
END;
RETURN;
END vmref;

43

Page Fixing routine

vapfx:
PROC {vaddr, c, p)3
page := vaddr / page size;
offset := vaddr - {page * rage size);

IF page = 0 THEN
¢ virtual page needed is page 0 ¢
¢ := offset;
2= 0;
RETURN;
FI;
IF page = active pgnc ¢ APNUM # THEN
¢ page needed was the last page accessed ¢
c := cache addiess c¢f active pft entry;
p := active pftn ¢ APEOS ¢#;
RETURN;
FI1;
CALL vmpft (page, pfte, r)i
¢ pfte is the 1eturned pft entry positicn of
page in cache-memory or zero if desired
page is nct ir memory ¢
IF pfte > 0 THEN

c 2= pit{pfte,2) + cifset; .
RETURN;
FPI;

IF page £ (2 * PFT size / fage size) THEN
£ if page reguested is a PHT page, then the
physical page number is known without
consulting tlke ENT ¢
CALL vmswp {page, page, F)s:
c := pft(p,2) + cffset;
RETURN;
ELSE
c = 0;
RETURN;
FI;
END vmpfx;

4y

Page Fault Table seaich rcutine

vapfts

PROC (page, pfte, 1lru);
pfte := 0;
plru = 1;
max ref cnt := pft{(rlru,3);
DO i := 1 70 7 EY 1;

IF pft{i,3) < 127 THEN
¢ increment reference count up to a
limit cf 127 ¢
pft(i,3) == pft(i,3) + 1
FI1;
IF pft(i,1) = fage THEN
¢ page has been found; return pft pcsition ¢
active pgnc ¢ APNUM ¢ := page;
active pftn ¢ AEPGS # :

it

i;
pfte := 1i;
pft(i,,3) := (3
FI;

IF pft(i,3) > nax ref cant THEN
¢ return positicn cf candidate for fpage-out ¢
plru == 1i;
max ref cnt := pft (i, 3);
F1i;
END;
RETURN;
END vmpft;

Page Swap routine

VRSWp:
PROC (vpage, ppage, f)i
IF pft(p,4) > O THEN
perform page—out operation
FI;
perform page-in cfperaticn;
¢ set virtual fpage numker, reference count,
and physical page number ¢

pft(p,1) := vpage;

pft{p,3) == 0;)

pft(p,4) := -ppage ¢ set modified bit off ¢;
active pgno ¢ AFM)UM ¢ := vpage;

active pftn # APECS ¢ := p;

RETURN;
END vmswp;

45
Segmented Funvironment Routines

The seygmentation level routines provide all the memory
managyement functions and map all segment-type addresses into
virtual addresses. In keeping with tke goal of modular
design, the segmented enviicnment presents the appearance of
being a collection of merory wmanagement primitives to all
external environment levels. Thus the routines SMALC and
SMFRE are used for memcry allocation and un-allocatica
respectively, and the rocutine SMREF is used for all segmeat-
ed—-level memory accesses. For expansicn or contraction of
an allocated memory area, the respective routines SKADD and

SM5UB would be callede.

~

Refarence to segmented memory routine

snref:
PROC (seyment number, segment cffset, buffer,
start, stop, 1,0 flag);
snum := segment ctunber;
sofst := seygment cffset;
len := stgp - start + 1;
i := start;
js=1i- 14
IF snum # active segment no. ¢ ASNUM ¢ THEN
sptr := SHT address ¢ SMTIAR ¢ *+
{SMTE node size ¢ SELEN ¢ * snpun);
CALL vmref (sptr, smte, 1, SHMTE node size,
‘ IOFD); ~
active segment no. ¢ ASNUM ¢ := snunm;
active segyment crigin addr. ¢ ASORG ¢ := snte(l);
active segment length ¢ ASLEKN ¢ := smnte (2);
active alloc. seg. list ptr. ¢ ASLNK ¢ := smte(3);
active seg. blk. list ptr. ¢ ASPTR ¢ := snte(4) ;
FI;
sorg 3= active segment crigin addr. ¢ ASOERG #£;
slen := active segment length ¢ ASLEN ¢;
sptr := active seg. blk. list ptr. ¢ ASPTR ¢;
DO WHILE len > (0 :
DO WHILE sptr # 0 & sofst 2 slen;

o

46

¢ follow segment chain pointer until entry
is found tkat contains desired offset
address ¢

sofst := sofst - slen;

CALL vmref (sptr, smte, 1, SHTE node size,

IQRD) ;
sorg := smte (1);
slen := snte (2);
sptr := snte (d);
END;

1l := slen - sofst + 1;
£ compute remaining length of seg. Lklcck ¢
IF 1 > len THEN
¢ length of desired request is totally
contained in current SMT entry ¢
1l := len;
FI;
addr := sorg + scfst;
sofst := sofst + 1;
len := len - 1;
j=3 +1;
CALL vmref {addr, buffer, i, j, I/0 flag);
i:3=1+1;
END;
RETURN;
END snmref;

Segment allocaticn tcutine

Smalc:
PROC (segment length, segment number, return code

CALL smtal (SMTE address) ¢ allccate a new SMTE
node ¢;

sglen := segment length ¢ rounded up to the
nearest integer multiple of page size ¢;

CALL smget {sglen, SMTE, error code) ¢ search
free segment fcr needed space, fill-in fields
of SHMTE node tc reflect allocated storage
area and set errcr code {on c¢f three rpossible
conditions: a) & free block of sufficient
size was found, D) no free block was adegquate
but compressicn ¢f segments could prcduce the
necessary free btlcck, and <¢) insufficient
total memory tc¢ perform allocation). ¢;

IPF error code is aktove condition "c" THEN

set return code t¢ indicate allocation failure;

RETURN;
ELSE
set return code to no error conditicn;
FI;
IF error code is altove ceonditicn "b"™ THEN
CALL smsmt ¢ ccnpress free memory segments £;
CALL smget (sglen, SMTE, err<r code);
¢ search free segment list again for needed
segmnent of free memory ¢;
IF error code is not conditicn "a"™ THEN
set return ccde to indicate allocaticn
failure;
RETURN;
FI;
FI;
sptr := SMT address ¢ SNMIAR ¢ + SMTE node size
¢ SELEN ¢ + 2 ¢ ccmpute address cf primary
allocated segment list pointer ¢;
CALL vamref (sptr, SMTE(3), 1, 1, IORD);
CALL vmref (srtr, SMTE address, 1, 1, IOWR)
insert new segment into allocated segnent
list ¢;
segment number

:= (SHI1E address — SMT address) /
SHTE node size;

CALL vmref(SMTE address, SMTIE, 1, SMTE node size,

IOWR) # update snt entry ¢;

CALL smpmt {SMTE(1) ¢ segment crigin ¢, SMTE(2)
¢ segment length £, segment number) ¢ set the
segment number fields of the PMT entries that
are in the new segment ¢;

RETORN;

END smalc;

47

LX)

Segment de—allocaticn routine

smfre:
PROC (seygment number };
SMTE address := (segment number * SMTE node
size) + SMT address # SNIAR ¢;
sptr := SHMTE addriess;
DO WHILE sptr # (;
CALL vmref (sptr, SHTE, 1, SMTE node size,
IORD) ¢ fetclk each SMTE for segment ¢£;
sptr := SMTE(4) ¢ save ptr tc next SMTE ¢;
CALL smpmt {SMTI{1), SHTE(2), 1) ¢ set tke
segment number fields cf the ENT entries
that are in the current segment ¢£;
CALL smput (SM1E address) ¢ return memory
block to free list ¢;
SMTE address := sptr;
END; '
RETURN;
END smire;

48

Memory block allocaticn routine

smget:
PROC (segment length, new SHTE,
total free size := 0;
sptr := SMT address ¢ SMIAR ¢ +
SHMTE node size ¢ SELEN ¢;
last := sptr;
DC UNTIL sptr = C;

addr := sptr;

CALL vmref (sptr, free SHMTE, 1, SHTE node
size, IORD) ¢« fetch each SMTE of free
memory segment {segment 1) ¢£;

IF free SHTE(2) < segment length THEN

total free size := total free size +

free SMTE{Z) ¢ total the amount of
free memcry space ¢;
last := sptr;
sptr := free SNIE(4) ¢ get pointer to
next SKTE ¢;
ELSE
sptr := 0; B
FI;
END;
IF free SMTE{2) < segment length THEN
IF total free size < segment length THEN
error code := ¢ insufficient total space ¢;

ELSE
error code g

space ¢£;

error code);

¢ insufficient contiguous

[t}

FI;
ELSE
IF free SMTE{2) > segment length THEN
new SHTE{1) := free SHIE{1) £ copy
segment origin ¢;
nevw SHMTE{2) := segment length;
free SMTE(1) := free SNIE (1) +
segment length ¢ update origin of
free memcry klcck ¢;
free SHTE(2) := free SHTE(2) -
segment lergth ¢ update length of
free memory tklock ¢;
new SMTE({3), new SMIE(4) := O0;
CALL vmref {last, free SHTE, 1, SHTE
node size, ICWR);

ELSE
new SMTE(1) := free SMTE(1) ¢ copy

segment crigin ¢;

new SHNTE(2) := free SMIE({2) ¢ copy
segment lergth ¢;

new SMTE(3), new SMIE(4) := 0;

IF last = addr TEEN

50

free SMTE(1), free SMTE(Z) == 0

£ if the SMIE found is entry 1 in
the SMT, then reset its origin
and lergth fields to zero ¢; ’

CALL vmref (addr, free SMNTE, 1, SHTE

node size, IOWE);
ELSE

last := last + 3 ¢ update pointer t¢
indicate tlock list ptr field of
previous SFTE in free memory klock
list ¢;

CALL vmref (last, free SMTE({(#4), 1, 1,
IOWR) ¢ delete currenit SMTE from
free memcry block list g;

CALL SMTFE {addr) ¢ un—allocate
unused SFIE ¢;

Fi;
F1i;
FI1;
RETURN;
END smget;

Memory block de-allccaticn routine

smputs:
PROC (SMTE address)3
addr := SMTE address;
CALL vmref {(addr, <ld SMTE, 1, SMTE node size,
IORD) ¢ fetch ¢1d SMIE ¢;
last := SHT address ¢ SMTAR £ +
SMTE node size;
DO UNTIL last = (;
CALL varef (last + 2, sptr, 1, 1, ICRD)
¢ fetch each SMTE of allocated segment list
IF sptr = addr THEN
sptr := old SMIE{(3):;
CALL vmref (last + 2, sptr, 1, 1, IOWR)
update allcoccated segment list #;
last, old SMTE(3) 2= 0;
ELSE
last := sptr;
FI;
END;
sptr 3= SMT address + SHMTE node size + 3;
CALL vmref ({sptr, cld SMTE(4), 1, 1, IORD)
¢ fetch pointer to free memory block
list #;
CALL vpref (sptr, addr, 1, 1, ICWR) ¢ insert
0ld SMTE into list ¢;
CALL vmref {(addr, cld SMTE, 1, SMTE node size,
IOWR) ¢ update free memory block list ¢;
RETURN;
END smput;

EMTE segment number update routine

smpmts
PROC ({origin, length, segment number);
addr := PHUTE ncde size ¢ PELEKN ¢ * {origin /
page size # PSIZE ¢) - 1;
npygs := (length 4 page size - 1) ,/ page size;
DO i := 1 TO nggs BY 1;
addr := addr + INTE node size;
CALL vmref {addér, seqgment number, 1, 1, ICWR)
¢ set the secment number field of PNT
entries mapred by the input segment
origin/length ¢;
END;
RETURN;
END smpnt;

51

APPENDIX C
PROGRAM DESIGN LANGUAGE

The Program Design Language descriptions of the Run-
time routines wuse an informal PDL similar to that wused by
Oklahoma State University Computing and Information Sciences
Departmente. ‘Specifically the introductory notes shown here
are based on notes by Dr. J- Re. Van Doren describing an

informal PLL used as Computer Science course material (17).'

Modules or Procedures format

Module name:
PROC optional parameter list;

Sequence of PDL and/or English language statements

RETURN
END module name;

Module Invocation

CALL module name{optional parameter 1list);

53

Elementary Decision logic

IF condition THEN

Sequence of PDL and/or English language statements
ELSE

Sequence of PDL and/or English language statements
FI;

or
IF condition THEN

Sequence of PDL and/or English language statements
FI;

Looping Constructs

DO WHILE condition;

Sequence of PDL and/or English language statements;
END;
DO UNTIL condition;

Sequence of PDL and/or English language statements;
END;
DO index = initial value TO final value BY increment;

Sequence of PDL and/or English lanquage statements;
END;

Comments or Remarks

¢ Comment or Remark statement £

The Version

APPENDIX D

OPERATION CODES OF THE VERSION IV

0SU ALGOL 68 COMPILER

1V QSU ALGOL 68 Compiler iInterpretively

execuies 4-tuple pseudo—-code. The meanings of the various

4-tuples are listed belowu.

BASIC OPERATICN CODES

010
020

030
030

030

030
€30
040

050

00,
R2,

01,

02,

03,

04,

05,

R2,

R2,

00,
R3

00,

R3,

R3,

R3,

R3,

00,

R3,

00

R4
R4

R4

R4

R4

R4

R4

BLOCK ENTRY

BLOCK EXIT

R2 IS THE ELEMENTAL MODE OF THE
RETURNED VALUE

R3 IS THE NUMBER OF ROWS FOR R2

UNCONDITIONAL JUMP/BRANCH

R4 IS THE BRANCH ADDRESS

CONDITIONAL JUMP/BRANCH

R3 IS THE ID OF THE CONDITIONAL VALUE

R4 IS THE BRANCH ADDRESS

LOAD ADDRESS

R3 IS THE DISPLACEMENT TO BE ADDED TO
THE RESOLVED ADDRESS

R4 IS THE ID OF THE ADLRESS TO BE PUT
ONTO THE STACK TOP

BRANCH WITH INDEX

R3 IS THE ID OF THE INDEX VALUE

R4 IS THE ADDRESS OF THE BRANCH TABLE

SET FLAG ON DATA SWITCH

R3 IS THE FLAG NUMBER

R4 IS THE DATA SWITCH NUMBER

ALLOCCATE SYMBOL

R2 IS THE MODE OF THE SYMBOL

R4 IS THE IDENTIFIER NUMBER

SET STATEMENT NUMBER

R2 IS THE STATEMENT NUMBER

R3 IS THE ELEMENTAL MODE OF THE STACK
TOP VALUE TO BE VOIDED

54

061

062

070

080

090

50N

510

52N

530

541

R2,

R2,

R2,

R2,

R2,

R2,

R2,

R2,

R2,

R2,

R3.,

R3,

R3,

R3,

R3,

R3,

R3,

R3,

R3,

R3,

R4

R4

R4

R4

R4

R4

R4

R4

R4

R4

55

R4 IS THE NUMBER OF ROWS

UPDATE SYMBOL TABLE

R2 IS THE MODE OF SYMBOL TABLE ENTRY

R3 IS THE ADDRESS

R4 IS THE IDENTIFIER NUMBER

PRINT UNFORMATTED

R2 IS THE ELEMENTAL MODE OF THE VALUE
TO BE PRINTED

R3 IS THE NUMBER OF RONS

R4 IS THE ID OF THE VALUE TO BE
PRINTED

BECOMES

R2 IS THE MODE OF THE VALUE TO BE
ASSIGNED

R3 IS THE SOURCE ID

R4 IS THE DESTINATIGN ID

READ UNFORMATTED

R2 IS THE ELEMENTAL MODE OF THE VALUE
TO0 BE READ

R3 IS THE NUMBER OF ROWKS

R4 IS THE ID OF THE VALUE TO BE READ

DEFINE LABEL

R2 IS THE ADDRESS OF THE LABEL

R3 IS THE NEGATIVE OF THE BLOCK
NUMBER

R4 IS THE ID OF THE LABEL

ALLOCATE DESCRIPTOR FOR ARRAYS

N IS THE ELEMENTAL MODE

R2 IS THE ID OF THE ARRAY

R3 IS THE NUMBER CF RO®S IN THE ARRAY

R4 IS THE ADDRESS OF THE SKELETON
DESCRIPTOR(S)

LOAD SUBSCRIPTED

R2 IS THE NUMBER OF ROXS IN THE ARRAY

R3 IS THE ID OF THE ARRAY

R4 IS THE SYMBOL TABLE POINTER OF THE
TEMPORARY SYMBOL TABLE ENTRY
GENERATED CONTAINING THE
CALCULATED ADDRESS

MOVE ROW OF OPERANDS

N IS THE ELEMENTAL MODE

R2 IS THE NUMBER OF ROWS

R3 IS THE ID OF THE SOURCE OPERAND

R4 IS THE ID OF THE DESTINATION
OPERAND

ALLOCATE SLICING DESCRIPTOR

R2 IS THE NUMBER CF RO4S

R3 IS THE IS OF THE ARRAY TO BE
SLICED

R4 IS THE ADDRESS OF THE SLICING
TEMPLATE

LOWER BOUND

R2 IS THE NUMBER OF ROWS IN THE ARRAY

- 542

61N

71N

72N

730

800

801

810
815

820

830

R2,

R2,

R2,

R2,

R2,

R2,

R2,

00,
R2,

R2,

00,

R3,

R3

R3,

R3,

R3,

R3,

R3,

00,
R3,

R3,

00,

R4

00

R4

R4

R4

00

R4

00
00

00

00

56

R3 IS THE ID OF THE ARRAY OPERAND

R4 IS THE ID OF THE ROW NUMBER

UPPER BOUND

R2 IS THE NUMBER OF ROWS IN THE ARRAY

R3 IS THE ID OF THE ARRAY OPERAND

R4 ‘IS THE ID OF THE ROW NUMBER

INTERNALLY GENERATED COERCION

N IS THE MODE OF THE STACK TOP

' ELEMENT TO BE SAVED DURING THE
CURRENT COERCION

R2 IS THE MODE TO BE WIDENED FROM

R3 IS THE MODE TO BE WIDENED TO
COERCED RESULT IS PUT ON THE
STACK TOP

FORMATTED INPUT

N IS THE ELEMENTAL MODE

R2 IS THE ID OF THE INPUT FILE

~R3 IS THE NUMBER OF ROWS IN THE INPUT

ITEM

R4 IS THE ID OF THE INPUT ITEM

FORMATTEL OUTPUT

N IS5 THE ELEMENTAL MODE

R2 IS THE ID OF THE OUTPUT FILE

R3 IS THE NUMBER OF ROWS IN THE
OUTPUT ITEM

R4 IS5 THE ID OF THE OUTPUT ITEN

OPEN FILE

R2 IS THE ID OF THE FILE

R3 IS THE CHANNEL NUMBER FOR CURRENT
FILE OPEN OPERATION

R4 IS THE ID OF THE IDENTIFICATION
STRING (NOT YET IMPLEMENTED)

RETRIEVE PARAMETER

R2 IS THE IDENTIFIER NUMBER

R3 IS THE MODE INCLUDING REF CODE

IF R2=0 THEN RETRIEVE THE PARAMETER
FLAG

COMPLETE PROC DESCRIPTOR

R2 IS THE IDENTIFIER NUMBER FOR THE
PROCEDURE

R3=1 FOR COMPLETING THE STATIC
INFORMATION FIELDS, 2 FOR
COMPLETING THE ENTRY POINT
FIELD

R4 IS THE ENTRY POINT IF APPROPRIATE

PROC ENTRY

LOAD PARAMETER

R2 IS THE IDENTIFIER NUMBER OR O FOR A
TEMPORARY

R3 IS THE MODE

PROC EXIT

R2 IS THE MODE OF THE RETURNED VALUE

R3 IS THE NUMBER OF ROWS

LOAD RETURN INFORMATION

51

CAUSES VALUES NEEDED TO RETURN
FROM A PROCEDURE TO BE LOADED
ONTO THE RUNTIME STACK

835 R2, 00, 00 LCAD PROC DESCRIPTOR & INVOKE PROC
R2 IS THE IDENTIFIER NUMBER OF THE
PROCEDURE
840 00, 00, 00 SAVE SYMBOL TABLE

DYADIC OPERATION CODES OF THE FORM:
0PCD,OPRND1,0PRNL2,0PRND3

ALL OPERATIONS ARE PERFORMED OPRND1 OP OPRND2 => OPRND3

THE VALUES OF THE OPERANDS HAVE THE FOLLOWING MEANINGS:

OPRND < 0 RUN TIME SYMBOL TABLE REFERENCE
OPRND = O RUN TIME STACK TOP REFERENCE

OPRND > O RUN TIME VIRTUAL MEMORY ADDRESS

OP-CODE(N IS THE MOLE INDICATOR)

10N + ADD VALID FOR N =1, 2, 3
11N - SUBTRACT . VALID FOR N =1, 2, 3
12N / DIVIDE VALID FOR N =1, 2, 3
13N * MULTIPLY VALID FOR N =1, 2, 3
14N *% RAISE (UP) VALID FOR N =1, 2
15N /7: MODULO VALID FOR N =1
16N +3= PLUSAB VALID FOR N =1, 2, 3
17N +=3 PRUS VALID FOR N =1, 2, 3
18N -3= MINUSAB VALID FOR N =1, 2, 3
19N /:= CIVIDEAB VALID FOR N =1, 2, 3
20N *3:= TIMESAB VALID FOR N =1, 2, 3
21N //::= MODULOAB VALID FOR N = 1
22N = NOT EQUAL VALID FOR N = 1, 2,
3, 4, 5
23N < LESS THAN VALID FOR N =1, 2, 5
24N <= LESS THAN/EQ. VALID FORN =1, 2, 5
25N = GRTR. THAN/EQ. VALID FOR N =1, 2, 5
26N > GREATER THAN VALID FOR N =1, 2, 5
217N = EQUAL VALID FOR N = 1, 2,
3, 4, 5
284 & (AND) LOGICAL AND
294 OR LOGICAL OR

402 ? (OR 1) PLUS I TIMES REAL -> COMPLEX

"MONADIC OPERATION CODES OF THE FORM:
oPCD1,0PCD2,0PRND2,0PRND3

ALL OPERATIONS ARE PERFORMED OP OPRND1 => OPRND2
THE VALUES OF THE OPERANDS HAVE THE SAME MEANINGS
THOSE OPERAND VALUES USED IN DYADIC OPERATIONS

IR1 IR2(N IS THE MODE INDICATOR)

30N 01 + MONADIC PLUS VALID FOR N
(ALSO A LOAD)
3JON 02 - MONADIC MINUS VALID FOR N
30N 03 ABS ABSOLUTE VALUE VALID FOR N
3
30N 04 SORT SQUARE ROOT VALID FOR N
30N 05 EXP E ** X VALID FOR N
30N 06 LN NATURAL LOG. VALID FOR N
30N 07 L0G2 LOG BASE 2 VALID FOR N
30N 08 LOG10 LOG BASE 10 VALID FOR N
30N 09 SIN SINE VALID FOR N
30N 10 Cos COSINE VALID FOR N
30N 11 TAN TANGENT VALID FOR N
30N 12 ARCSIN ARCSINE VALID FOR N
30N 13 ARCCGS ARCCOSINE VALID FOR N
30N 14 ARCTAN ARCTANGENT VALID FOR N
303 15 CONJ COMPLEX CONJUGATE
303 16 CMPLXSQR COMPLEX SQUARE ROOT
313 02 ARG COMPLEX ARCTAN COMPLEX ->
313 03 RE REAL PART CCEPLEX =>
313 04 IM IMAGINARY PART COMPLEX =>
322 01 ENTIER FLOGCR FUNCTICON REAL ->
322 02 LWB FLOOR FUNCTION REAL ->
322 03 ROUND ROUND FUNCTICN REAL ->
322 04 SIGN SIGN TRANSFER REAL -2
322 05 upB CEIL FUNCTION REAL ->
331 01 oDD ODD FUNCTION INTEGRAL ->
334 02 = (NCT) LCGICAL NOT BOGLEAN ~->
342 01 RANDCM RANDOM GENa ->

351 01 REPR CHAR. GEN. INTEGRAL ->

58

AS FOR

]
ot
.
N
“
(7

i
[
-
NS
\

1, 2, 3

T T T A T 1 1 O [O '
[y
~
NNNNONNNMNMNNNON

REAL
REAL
REAL
INTEGRAL
INTEGRAL
INTEGRAL
INTEGRAL
INTEGRAL
BOOLEAN
BOOLEAN
REAL
CHARACTER

VI"I‘)\;L

MARK GOTO

Candidate for the Degree of

—

MASTER OF SCIENCE

Thesis: Segmented-Virtual Memory Design for an ALGOL 68
Compiler

Major Field: Computing and Information Sciences
Biographical: '

Personal data: Born in Oklahoma City, Oklahoma, on
July 16, 1953.

Education: Graduated from Putnam City High School,
Oklahoma City, Oklahoma, in May, 1971; received
Bachelor of University Studies from Oklahoma State
University, Stillwater, Oklahoma, in July, 1975;
conpleted requirements for Master of Science
degree at Oklahoma State University, Stillwuater,
Oklahoma, in July, 1978.

Professional Experience: Computer Systemns Programmer
for the Oklahoma State University Computer Center,
August, 1977-July, 1978; graduate research assist-
ant at Oklahoma State University under Dre G« Ee
Hedrick, Computing and Information Sciences
Department, Summer 1976-Spring 1977; graduate
teaching assistant, Oklahoma State University,
Computing and Information Sciences Department,
Fall 1975-Spring 1976.

