
SEGMENTED-VIRTUAL MEMORY DESIGN FOR

AN ALGOL 68 COMPILER
I / I/ t

By

MARK GOTO
!i

Bachelor of University Studies

Oklahoma State University

Stillwater, Oklahoma

1975

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1978

SEGM.ENTED-VIR'lUAL MEl'W.BY DESIGN FOB

AN ALGCL 68 COMPILER

X HESIS APPROVED:

1011892

ii

PREFACE

This thesis is a description of a design for an

ALGOL 68 run-time organization. The design relies heavily

on a segmented-virtual memory scheme for simulating a large

memory store and handling memory management requests. The

author would like to thank each of the members of the Com­

puting and Information Sciences Department who have made his

study at o.s.u. enjoyable, and especially Dr. c. E. Hedrick

who has been more than his advisor. The author would also

like to acknowledge the support of the National Science

Foundation for sponsoring this research under grant NSF­

MCS576-06090.

111

Chapter

II.

III.

IV.

TABLE OF CONTENTS

Page

INTRODUCTION • • • • • • • • • • • • • • • • • • • 1

Objectives • • • • • • • • • • • • • • • • • 1
History of the Oklahoma State University

ALGOL 68 compiler • • • • • • • • • • • • • 2
Review of Current Work • • • • • • • • • • • 4
Notes on Terminology • • • • • • • • • • • • 1

PRESENT RUN-TIME ENVIRONMENT • • • • • • • •••• 11

Introduction •••••••••••••••• 11
Run-time Symbol Table and Addressing •••• 11
Run-time Stack Organization of Memory •••• 13
Run-time Simulated Memory •••••••••• 13
Summary • • • • • • • • • • • • • • • • • • • 14

PROPOSED RUN-TIME ENVIRONMENT • • • • • • • • • • 15

Design Description ••••••••••••• 15
the Paging Environment • • • • • • • • • • • 16
The Segmented Environment •••••••••• 20
The ALGOL 68 Environment • • • • • • • • • • 26

SUMMARY, CONCLUSIONS, AND FUTURE WORK • • • • • • 33

Summary and Conclusions • • • • • • • • • • • 33
Future Work • • • • • • • • • • • • • • • • • 34

REFERENCES • 37

APPENDIX A.- DESCRIPTIONS OF RUN-TIME DATA STRUCTURES •• 39

APPENDIX B - POL DESCRIPTIONS OF RUN-TIME ROUTINES • • • 41

APPENDIX C - PROGRAM DESIGN LANGUAGE • • • • • • • • • • 52

APPENDIX D - OPERATION CODES OF THE VERSION IV OSU
ALGbL 68 COMPILER • • • • • • • • • • • • • 54

iv

LIST OF TABLES

Table Page

I. Versions of the OSU ALGOL 68 Compiler 3

II •. Paging Environment Routines •••••••

III. Segmented Environment Routines • • • • • •

IV. Items Allocated on the Heap • • • • • • •

v. Items Allocated on the Stack • • • • • • •

v

• • • • 20

• • • • 25

• • • • 28

•••• 29

l /

LIST OF FIGURES

Figure Page

1. The Layered Environments • • • • • • • • • • • • • 15

2. Mapping the Virtual Space into the Physical Space 11

3. Location of the PMT • • • • • • • • • • • • • • • 19

4. Correspondence between SMT entries and PMT
entries • 21

5. SMT structures • • • • • • • • • • • • • • • • • • 23

6. Stack and Heap Storage in Segmented Memory • • • • 27

7. Stack Display Layout • • • • • • • • • • • • • • • 31

a. Stack Environment fo~ Parallel Processes • • • • • 35

vi

CHAPTER I

INTRODUCTION

Objectives

Since 1973 a project has been underway at Oklahoma

State University to ~rite a portable compiler for the

ALGOL 68 language (1) (2) (3} (4}. This project was started

by an implementation of a subset translator and an interpre­

tive executor with the original intent of providing a scien­

tific subset compiler (1). Since that time, many modifica­

tions and additions have been incorporated with the long

range goal of providing full _support of the ALGOL 68 lan­

guage. As a result of this work, it has been recognized by

people concerned with this project that the run-time envi­

ronment provided by the current interpretive executor is

inadequate for the expanding implementation and on-going

.lilork. Therefore, it was decided to revise the present exec­

utor so as to increase the flexibility of the storage man­

agement functions.

Prior to 1977, the Oklahoma State University ALGOL 68

compiler had only limited storage management beyond the

classical stack environment. The main objective of this

thesis is to present a run-time environment design that

1

2

would simplify implementation of non-LIFO storage allocation

such as ALGOL 68 heap generators, flexible multiple values

and transput-file information. Other objectives of this

design are to handle large ALGOL 68 user storage demands on

small computers and to ease implementation of ALGOL 68 par­

allel processing.

History of the Oklahoma State

University ALGOL 68

compiler

In 1973, John Jensen implemented a scientific subset

compiler for ALGOL 68 on an IBM 1130 with 8K 16-bit words of

storage (1)~. This original version {referred to here as

Version I) of the Oklahoma State University ALGOL 68 compi­

ler has developed into an implementation that supports a

sizable subset of the language.

Major contributions have

Roger Berry (2), Alan Eyler (3),

come from thesis work by

Walter Seay {4) and Alan

Robertson (5). This includes development of a subset

ALGOL 68 transput package, addition of procedures to the

Version I compiler and the enhancement of mode processing.

Other contributions have come from several students who vol­

unteered time to work on this project, most notably Larry

Hanes, Charles Hanes and Alan Robertson.

'"lK" is equivalent to 1024.

3

Berry's (2) implementation of formatted transput

resulted in an independent package ~hich supports a subset

of transput as defined by the "Report on the Algorithmic

Language ALGOL 68" (6). Incorporating this package ~ith

the Version I compiler on an IBM 360/65 resulted in the Ver-

sion II compiler in late 1975.

TABLE I

VERSIONS OF THE OSU ALGOL 68 COMPILER

-----~--
Version Description

-----------------~--
I

II

III

IV

John Jensen•s original implementation on the IBM
1130 in 1973

Version I with Roger Berry's Transput package
incorporated on the IBM 360 in 1975

Version I enhanced to support procedures imple­
mented on the IBM 1130 in 1975

Re-integration of Berry's Transput package,
Eyler's implementation of procedures and
Jensen•s original version on the IBM 360
in 1976

--

Alan Eyler completed his ~ork (3) on implementation of

procedures during late 1975, but on the same machine as John

Jensen's original work. This version {Version III) was

4

later recombined with Version II and satisfactorily

completed in early 1976 (Version IV).

In mid 1976, Walter Seay completed his work {4) on

mode processing. It is mainly due to his modifications and

the work on integrating the Version II and III compilers

that the need for improving the run-time environment became

crucial.

In 1978, Alan Robertson completed research on Trans­

formational grammars (5), and proposed a system by which

ALGOL 68 format denotations may be parsed and interpretively

executed at run-time. In designing this addition to the

compiler, he required some heap storage mechanizms that are

easily provided by the design presented in this thesis. In

fact, the consideration of Alan Robertson's design for proc­

essing formatted transput and the problems encountered by

Walter Seay were the inspirati~n for this thesis.

The latest work on the Oklahoma State University ALGOL

68 compiler includes re-integration of Walter Seay•s work

with the Version IV compiler, updating the formatted tran­

sput package, testing the compiler on various different

machines (TI ASC, IBM 370/158, CDC CYBER 175)1 and implemen­

tation of the design ~resented here.

Review of Current Work

The ALGOL 68 language, as defined in the

Report on the Algorithmic language ALGOL 68" {7} 1

"Revised

is a very

5

powerful language. Several implementation efforts on the

language are currently in progress. Three of the most nota­

ble efforts ~hich have come to the attention of the author

are: 1) the Cambridge ALGOL 68 compiler, 2) the ALGOL 68

compiler of Paris-Sud University (Orsay)

chester ALGOL 68 compiler.

The Cambridge ALGOL 68 compiler has

and 3} the Man-

been implemented

and used at o.s.u. and has proven to be a very efficient and

fast compiler. Its drawbacks are the lack of numerical

facilities, the lack of formatted transput and the diffi­

culty involved in transporting the compiler onto

non-370-like machines. Despite these drawbacks, it has

excellent capabilities for use iq writing compilers {ie.

almost full implementation of modes and structures}. Per­

formance tests on an IBM 310/158 show that equivalent pro­

grams execute somewhere between one and a half to three

times faster ~hen using the Cambridge compiler as compared

to the IBM PL/I optimizer.

The ALGOL 68 compiler of Paris-Sud University {Orsay)

is not available at o.s.u. but its implementors claim (8) to

have implemented almost all of the language as defined by

the "Revised Report" (7). This compiler was implemented in

fORTRAN on a Univac 1100-series computer and is a true com­

piler in the sense that it produces relocatable object code.

The use of FORTRAN suggests that portability and readability

were objectives in the initial choice of the implementation

6

language. However, the authors admit that certain machine

dependent features of the Univac FORTRAN V compiler were

used and that the code generation phase is strongly depend­

ent on the run-time computer.

The Manchester ALGOL 68 compiler was of

to the run-time environment design (9) -(10),

interest due

specifically,

the use of segments. This presentation consists of a design

that uses segments of a slightly different form, with the

same goal of flexible storage management. This design uses

segments as a means for handling storage management of flex­

ible rowed values and heap generators in a similar manner to

the way that the Manchester ALGOL 68 handles problems with

these modes.

The abov• descriptions are a brief overview of current

compilers whose design have points of similarity or have

influenced this proposal. Other notable implementations of

ALGOL 68 include ALGOL 68-R (11) and the Control Data Corpo­

ration ALGOL 68 compiler for the 6600 and similar computers.

Besides the current implementation efforts mentioned

above, literature on ALGOL 68 and compiler writing topics

have contributed to the design presented here. An excellent

survey of the ALGOL 68 language is presented in the revised

edition of AD lll!~J:lll.Ql llllJ:.Q~Y~!iDD J;.Q AL.G.O.L .fl1J (12}. Much

of the information about the Manchester ALGOL 68 compiler

appears with discussions of other compiler writing topics in

the "Proceedings of the Vth Annual III Conference on Imple-

1

mentation and Design of Algorithmic Languages" (13). In

addition, the author has used material from Gries (14} as a

basis for designing parts of the run~time storage organiza-

tion. Ideas for the remaining portion of the storage man-

agement scheme in this thesis came from discussions of oper-

ating systems storage management in Madnick and

Donovan (15), especially the d•scriptions of MULTICS&.

Notes on Terminology

The author's background in compiler writing and oper-

ating systems has resulted in the use of terminology from

both fields. Terms used in this thesis such as pseudo-code,

stack environment and display vector are borrowed from com-

piler writing, while terms such as layered design, page

fault and virtual memory come from an operating systems

background 3 • While Gries (14) and Madnick and Donovan (15)

provide adequate definitions of several such terms, presen-

tation of a few descriptions here are worthwhile.

Gries (14) describes a stack environment for a block

structured language, as a large table of contiguous loca-

tions from which storage areas are allocated. These areas,

*The Multiplexed Information and Computing System (MOL­
TICS) is described in a case study by Madnick and Dono­
van (15).

aln particular, the term "layer" as used in this the­
sis, is not the same as the ALGOL 68 term "layer 11 in the .
language definition.

8

which are called stack-frames, are allocated when a program

block is entered and are de-allocated when the block is

exited. Because the stack-frames are allocated in a

last-in-first-out manner, the run-time storage organization

is called a stack environment. In addition to the alloca­

tion of memory, a vector of table indices or addresses is

maintained that indicate the beginning of each stack-frame

allocation. This vector of addresses is called a display

vector. Because this vector is updated and saved each time

a stack-frame is created, a display vector exists for each

stack-frame. For the purposes of this thesis, the storage

allocated upon entering a block is called a stack-frame, the

saved list of addresses that maps .the allocations is called

a display and a list of addresses that includes the most

recent allocation (ie. the active stack-frame) is the dis­

play vector.

Gries (14) also described an interpreter as a program

that performs two functions: 1) translates a source program

into an internal form, and 2) executes (interprets or simu­

lates) the program in this internal form. For the purposes

of this thesis, the internal form of the source program is

called pseudo-code (especially because it resembles machine

code for a hypothetical ALGOL 68 machine) and the portion of

the interpreter that performs the second function mentioned

above is called an interpretive executor.

9

Madnick and Donovan (15) describe several operating

systems besides MULTICS. MULTICS, ho~ever, has special sig­

nificance in that it uses a segmented-virtual memory manage­

ment scheme and had a design approach used known as a lay­

ered design. This thesis adopts the layered design approach

and uses a form of segmented-virtual memory management that

resembles that of MULTICS. In MULTICS, a section of high

speed primary storage is used as a cache memory to which

memory references are made. A virtual memory space is main­

tained by translating virtual addresses into cache memory

addresses. Since the virtual memory size is much larger

that the cache memory size, secondary storage is used to

store subsections of the cache memory until needed. These

subsections of cache memory are called pages in MULTICS and

in this thesis. Additionally, a reference to a page that is

not currently in cache memory causes a paging operation

known as a page swap to occur (a page of cache memory is

copied to secondary storage and the desired page of virtual

memory is copied into cache memory). All memory that is

addressable by a virtual address is considered to be paga­

ble, as opposed to hardware registers or cache memory pages

for which no address translation occurs.

Two ALGOL 68 terms of special significance are used

throughout this thesis: 1) flexible rowed values and 2} heap

values or storage. Rowed values in ALGOL 68 are values

which may be accessed via a name and a subscript; ie., they

10

correspond to Fortran or PL/1 arrays. Flexible rowed values

are values that may change their bounds after the declara-

tion of the values has been executed. This is somewhat sim-

ilar to the way PL/I varying strings may change in length.

The consequences of this feature are that the storage

requirements of a flexible rowed value may change after

allocation of the rowed value is complete, which makes this

type of storage allocation a special problem that cannot be

handled by the stack environment described above.

Heap values also cannot be handled by a stack environ-

ment, because by definition, they must remain allocated as

long as any references exists to the allocated storage, even

after the block where the heap values were allocated has

been exited4. Heap values may be of any valid ALGOL 68 mode

which creates further problems in that data-handling and

allocation techniques must exi~t for both heap and non-heap

values.

For the most part, this thesis uses the same terminal-

ogy as can be found is Gries (14) and Madnick and Dono-

van (15) unless otherwise stated. The above descriptions

hopefully provide some added . insight into the terms most

frequently used by this thesis which are not commonly known.

--·------------------~

4Note that "Heap" refers to specifically ALGOL 68 heap
storage which is storage that remains allocated even after a
program block is exited and which is garbage collected as
the need is perceived.

CEAP'IER II

PRESENT BUN-TIME ENVIRONMENT

Int-roduction

The osu ALGOL 68 compiler generates pseudo-code which

is interpretivelJ executed. The interpretive execution is

performed. irra simulated memory with an extended stack model

run-time environment. An e~cellent description of the over­

all compiler was delivered at the 1975 International Confer~

ence on ALGOL 68 (16).

This presentation is conceLned with three aspects of

the current run-time environment: 1) the run-time symbol

table and run- time add res~ ing, 2} the stack organization of

memory, and 3) the simulated memory itself. The design

presented. here sllould either improve the performance cf

and;or increase the flexitility of each aspect.

Run-time Symhol TablE and Addressing

The run-time symbol table is represented by a vector

of active entries, linked lists of inactive entries and a

table of character representations. The symbcl table

entries consist of two items: an absolute address of the

storage associated with the variable and an indicator of the

1 1

12

mode type. When a variable is accessed, a

compiler-generated identifier number is retrieved from the

pseudo-code instruction atd used to index the active entry

vector of the symbol table. !he address of the variable

location in memory is then obtained from the symbol table

and the value of the variable is either fetched from or

stored into the indicated location. If a pseudo-code

instruction accesses more than cne variable, then the above

process is repeated for each variable.

Dua to limitations imposed by the IBM 1130, the run­

time symbol table was statically limited to 120 entry posi­

tions. Although later versions of the compiler were run on

an IBM 360/65, expansion of the symbol table proved to be

very difficult due tc restrictions in the implementation

language, namely FORTRAN. At that time, it was decided net

to aiter the symbol table structui:e because the enormous

amount of re-design effort I:eguired was not available.

The design IJresented in this thesis eliminates the

run-time symbol table by using display offset addressing.

Each variable is addresse o ty an offset from a stack display

address which is kept in a disflay vector. This scheme will

remove the restriction of 120 active unigue variables and

can maintain the speed of address by keeping a copy of the

active display vector in 1rimary storage.

13

Run-time stack O~ganization of Memory

The interpretive exEcutor has a very primitive memo~y

management scheme. The allocation of memory is ferformed

according to a single stack organization. Corresponding to

each new range of the ALGCL 68 program, a new stack frame is

initialized by copying and updating the standard stack model

display vector. At the end of each range, the current stack

frame is released alcng wjth the storage associated with it.

This stack organization Elus a very simple heap allocaticn

mechanism (with no storagE reclamation) constitutes all of

the storage management of the interfretive executor.

In order to increase the flexibility of storage man~

agement, a segmented-virtual memory scheme is used. Seg­

ments are used to allocate memory for two types cf requests:

1) reguests for memory that cannot be allocated and de-allo-

cated in a stack environnent, and 2) reyuests fer memory

that may have later requests to increase or decrease the

size of the original reguests. Examples of these types of

requests are A.LGOL 68 fle.xitle rowed values, ALGOL 68 heap

values, transput-file irfcrmaticn and the memory area for

sub-allocating a stack envircnment.

Run-time simulated Memory

The simulated memorj used by the interpretive executor

consists of a disk file of 8000 words with two 80 word pages

kept in core memory. Cne fage is used to fetch pseudo-code

14

instructions while the other page is used for fetChin9 and

storing iata values. since the original implementaticn

machine was an IBM 1130 with 8k 16-bit words of memory, the

above limitations were coDsidered reasonable choices. ho-w-

ever, due to the many adoitions and modifications since the

original implementaticn, the fOWer of the implemented lan­

guage has increased significantly. The natural .t:.zsult ·af

this growth is that user:~ are attempting to write programs

of greater complexity which reguire more user stcrage.

The proposed desigr llses a virtual memory space to

allow lat:' ger memory req tests while using segmentation to

control paging. A much larger address space and increased

flexibility can be f:rovided without excessive overhead

costs.

Summary

The major problem pcints are: 1) the limitations of a

fixed and static size addressing scheme, 2) the lack of

flexibility in the storage management features, and 3} the

limited size of simulatEd memory. These problems have

caused imp lamentation efforts in extended mode processing

and transput-file processing to be extremely ccmflex. In

addition, user programs cf apFreciable size simply are not

accepted by the interfretive e~ecutor.

CEA.FTER II:I

PROPOSED EtN-TIME ENVIBCNMENT

Design Description

The proposed run-tiJie environment can be broken down

into a layered design ccnsisting of four environments as

follows: 1) an inner-mcst paging virtual memory environ-

ment, 2) a segmented memcry allocation environment, 3) an

J US.ER 1 S ENVIRCHHNT j

j ---------------- • J
J l ALGCl. 68 EbVlECNMENT J j

J I ----·-------------------· J l
I J I SEGMENTII ENVIEONMENT J j I
J J J ---------- I J l
I J J j VIRUTAI-PAGING J j I
J J j j ENV.IliCNMEN'I J J I I
I I J J ----------------------- J l I J
J J 1 J J I
I J J -------------------------1 J I
J 1 I 1
• J ------------------------------- J 1
J I ! _______________________________)

Figure 1. The layered Environments

15

16

ALGOL 68 "machine" environment, and 4) the outer-most layer

which is the ALGOL 68 user environment.

are briefly diagrammed in 2igure 1.

The Paging Environment

These envircnments

The paging environment uses a contiguous page mapping

table that maps virtual fages into physical pages that may

be stored on disk {or any other appropriate direct-access

medium.) The Page Mapping Tatle (hereafter abtreviated to

.Pl1T) is stored at the leg inning of the simulated virtual

memory such that direct jndexing can be used to map a vir­

tual fage into a physical fage. Figure 2 diagrams the vir­

tual memory to physical memory ma~_::ping. Note that the PMT

(as shown in the exploded center block} is fixed such that

the virtual addresses of the PMT are the same as the physi­

cal addresses of the .PMT.

The paging environment is simulated using a memory

block of 1024-words and a Fage Fault Table {PFT). The mem­

ory block. is divided into eight 128-wcrd page slots (num­

bered 0 to 7) which are used as a cache memory for paging

purposes (for the purfose~ cf this thesis, the term "cache 11

is used to refer to the 1rimary storage block used by this

des~gn). In contrast to the PMT which is used to indicate

the mappings between virtual and physical storage, the PFT

maps virtual memory into cache memory and is used in a man­

ner similar to the usage cf ha rdwa.re associative registers.

17

r---------... <--'1
j P M T I J
J -~------J <... J ,.-- r--------.,
J J I I i I P it T J
I J J I P H T I d---------J

Physical J l I I - • J I J I
Address J j I l-J J<.J J J I
Space J---------J 1)_ _____ I 11---------1

jphysical J<====Jfmt entryt<===Jvirtual 1
1 pagel J J---------1 J J page J Virtual
J---------1 J 1 I I J--------1 Address
I J j ·J 4 J I J Space
I I t.--- 1 ______ J < --.J J I
I I I /
• _____ J I I /

I 1
J J

Pigmre 2. Mapping the Virtual Sface into the Physical
Space

Of the eight cache memcr_y };age ~lots, slot zero always con-

tains physical page zero which always corresfonds to virtual

page zero; slots one thrcugh seven contain ph_ysical pages

and the corresponding virtual fages as indicated by entries

one t.hroug h seven of the t:F~.

Eacn entry of the PlT contains five logical fields cf

information: 1) a virtual fage number, 2) a page slot

address# J) the Least-Recently-Used (lEU) reference count,

ll) a modification flag, a 11 d 5) a physica.l page numter. The

virtual pag~ number, fage !:lot address, and physical page

number ara used to maintain the correspondance tetween a

pa~e slot and a virtual acdress. lhe "LRU reference count"

18

field indicates approximately how long ago the page slot was

referenced while the modificaticn bit indicates whether or

not the contents of that ,tage slot was nodified.

A description of thE addressing process, shows how the

various PFT entry fields are used and how a virtual address

is mapped into a physical disk page. The virtual address is

de-composed in to a virtual page number a·nd a page offset

value so that a search of the Page Fault Table may be made

to hopefully locate the fage in memory. At the same time

that the PFT is searched, two ether operations are per-

focmed: 1) locating t le least-recently-used page and

2) updating the page slot reference counts .. If the desired

virtual i-Jage is in memory • then the refez:-ence to the appro-

priate page slot or slcts is performed.

If a desired page is not in the cache memory, then a

virtual memory reference is made to the appropriate PMT
I

entry. Since the PMT is also a part of pagable memory the

physical page numbers of the PMl area are fixed such that

they correspond to the virtual page numbers. This fixed

corres~ondence allows a virtual page of the PMT to be

paged-in without address translation. ~he inguiry into the

PMT pcoduces the physical page number of the page to be

fetched. Using the locaticn of the least-recently-used page

found dwcing the PFT search, a page swap is performed and

the virtual memory reference is ccmfleted. Examining Figure

3, one c~n see that the F~T occupies the first several pages

Page No •
0

1

2

3
•

Physical
Address
Space
-------- Page

JPi1T page 1 <----------
s--------1
JPMT paget<----------
1-------J
JPMT pageJ<----------
j-------.
jPMT paget<----------
}-------1'
j J
J ..

Virtual
Address
Space

No • -------
0 --JPMT page)

J--------j
1 --JfMT page)

j-------j
2 --JPMT page!

J--------J
2 --JFMT page)

1-------- I
I • I
I

Figure 3. location of the PMT

19

of both the virtual address space and the physical address

space.

The paging environment level contains four main

modules as shown in Table 111. !hese modules perform the

operations involved in virtual memory addressing. Routine

VMREF is the external lir:kage to the faging environment in

that all virtual memory :refer.ences are performed via a call

to this routine. Routine VMP!X determines whether a refer-

ence can be satisfied cr if a "fage-fault" occurs. Routine

VHPFT performs the actual FIT search and :routine VMSWP per-

forms page swapiJing.

tAn informal PDL desc:rifticn of this module(VMPFT) and
the other virtual-paying modules (VMREF, VMPFT, VMSWP) is
presentei in Appendix E.

20

IAELE 11

PAGING ENVIHONMEN1 ROU!INES

Routine Descripticn

VMREF Virtual memory fetch and store module

VMPFX Virtual memory page fix module

VMPPT Page Fault !able search module

VMSWP Virtual memcry page swaf module

The seg1ented Envi:tonment

The Segmented envirctmeut uses segments as a means of

representing memory allocations that are dynamic but are not

allocated in any _predictable crder. A segment allocation

creates an entry (or entriEs) in the segment Mapping Table

(SMT) that reserve a grouf of FMT entries. The SMT entry

consists of four fields: 1) a virtual address origin of the

segment, 2) a segment length, 3) an allocated segment list

pointer, and Q) a pointer to the next SHT entry (SMT~ node

in the segment. The virtual address origin and the segment

length indicate the allccated virtual memory, while the

allocated segment list .ICinter and the SMTE node list

pointer are used in memory reclamation. Note that a segment

may consist of several SMl.E nodes but each SMTE refers to a

21

contiguous section of virtual memory2 (these contiguous sec-

tions of virtual memory are refered to as "blocks" in the

following discussions). ligure 4 shows how a SMTE corre-

sponds to the PMT entries.

PMT
SMT

I J
1 1 I I
J J I I
J---------J segment or.1g.1n J---------1
JSMT ENTRYj---------------->IPMT ENTRYJ
j---------1 s lj 1---------J
I J e e J J F MT ENTRY J
l J g n l I ---------1
J 1 m gVJPMT ENTRYI
I I e t I ----·---- l
I I n h/ /
J J t / /
J---------1 segaent or.1g.1n J---------J
JSMT ENTRYj--------------->1 HiT ENTRYj
·---------1 s lJJ---------1
j J e eVJPMT ENTRY)
I I g n J---------1
I l m g J 1
j ____ j e t 1 l

n h J __ I
t

Figure 4. Corresfondence between SMT
entries and PMT entries

2A contiguous secticn cf virtual memory means a section
of virtual memory with ccntiguous virtual addresses; ie.,
the physical addresses may be ncn-contiguous.

22

When the Segment Maifing Table is initially created, a

page of virtual memory is reserved and entries are created

as necessary to fill the Fage. Two entries are set to non­

zero values such that segnent 0 (represented by entry 0)

describes the origin and length of the SMT itself while seg­

ment 1 describes the .remainder of unallocated virtual mem­

ory. The remaining SMT entries are set to zero and linked

together (via the SMT! node list pointer) to form a list of

unused SMTE nodes.

The allocated segment list fointer is used to link

together the SHTE nodes that are the primary entry of each

segment. As shown in Fjgure 5, the active segment list

FOinter of entry 0 and entry 1 are used for the fUipose of

indicatin~ the beginning of the unused node list and tbe

allocated segment list. Each segment of allocated storage

is represented by a single SMTE or by a list of SMTE nodes.

The length field cf an SMTE indicates the contiguous

virtual memory size descrited by the entry node. Therefore

segment 1

which can

reguests.

represents free or unallocated blocks of memory

be used to satisfy allocation or expansion

An SMT entry node with a zero-value length field

does not represent any meucry but may be used in creation of

a new se:J men t.

The creation of a new segment and allocation of memory

requires that searches of the unused SMTE node list and the

free memory segment be made looking fer an empty node and

Se:J m ent
Mapping
Table
Segment
SMTE 0

·-------·
JSMT addrj
J --------)
J length J
'-------J
J *------"1
j-------J J
J 0 J j
l _____ J I

,.------.J
j
v

------. t list oft
J unused J
I SflTE

nodes
J •

Free
11emor }'
Segment
S MT"E 1

Allocated
Segment list - > ••

SMTE 2

·-------· •
~free blkt r->Jseg addrj ,.->tnext J
J--------J l J--------1 J jallocated
J lengtt j J J length J J J segment
J--------1 J a--------a 1
a •------~ 1 *-------'
J--------J)--------·
J * J I * I l __ l __ l l __ j __ l

I J
I I
v v . -----

J list cfJ • list of I
1 free J 1 S MTE.J s I

• memory i for this
block~ segmentt

j

• •

Figure c: SMT str:uctures -·

23

for a free space block large enough to satisfy the alloca-

tion reguest. The new SM~I node is appropriately filled-in,

removed from the unused entry node list and inserted into

the allocated segment list.

Another feature of ~egmented memory management is the

ability of segments to ex~and or contract in size. To

expand a segment, an aoditional SMT entry (representing

additional virtual memory) is chained to the primary SMTE

such that the desired total segment size is allocated. !o

24

contract a segment, the fM!! length field is reduced and a

new free SHTE is created to represent the freed virtual mem-

ory.

The four functions of segmented memory management:

1) memory allocation, 2) nenor y de-allocation, 3} expansion

of a memory allocation, ard 4) contraction of a memory allo-

cation# are provided by four of the routines shown in table

III3. The only other e1ternally called routine is SMREF

which pet·f arms segmented-n;emory addressing. The remaining

segmented environment routines fet:form internal house-keep-

ing on the Segment Mapfing ~able and Page Mapping Table.

Be:;ause of the address mapping from virtual to physi-

cal pages, allocated segments may be re-arranged into single

blocks by re-ordering the fBT. As a part of the memory man-

agement facilities, the rcutine SMSMT re-compresses segments

into single blocks. In order to avoid memory fragmentation,

this routine is invoked \benever an allocation request can

not be satisfied using onE l:lock {in other words, t.he vir-

tual memory described by a single SMTE node). Although the

added memory area is forced to be a single block in process-

ing a segment expansion request, it need not be virtually

contiguous to the original segment memo.r::y area except when

the segment being expanded is the SMT itself (ie. entry 0 of

the ·~able) ..

3See Appendix B for an informal PDL description of the
segmented envi.r::onment routines.

:!ABLE III

SEGMENTED ENVIRONMEN! RCU1INES

Routine Function ferformed

SMRBF

SMALC

SMF.RE

SHADD

SMSUB

SMSMT

SMGET

SMPUT

SMXAL

SM'l'FR

SKPMT

Segmented memory access

Allocate 2 new segment

De-allocate a segment

Expand thE size of a segment

Contract the size of a segment

.Re-compress segments into single blccks

Get a blcck of free memory

Put a block back into the free list

Allocate a SMT entry node

Un-allocate a SMT entry node

Set PMT entries segment numbers

·-----------------

25

The procedure of addressing segmented memory is

performei by the routine .SlHi:EF. This routine acceftS seg­

mented addresses which ccn~ist of a segment number and a

segment offset. The segment number is used to locate a seg­

ment block list in the SM'l and the segment off set is used to

locate the appropriate St!~.F. By combining the offset value

with the SMTE origin value 1 a virtual address is obtained

and the segmented address translation is complete.

26

The ALGOL 68 Environment

The ALGOL 68 Environment is the "machine-level" of a

hypothetical ALGOL 68 machine. For the OSU ALGOL 68 Compi-

ler1 this is the level or environment ~hich interpretively

executes pseudo-code generated from ALGOL 68 programs. In

order to maintain compatibility with earlier versions of the

OSU ALGOL 68 compiler, a translation phase must be incorpo­

rated which will convert pseudo-code generated by the code­

emitter phase of Version IV of the compiler {listed in

Appendix D) to pseudo-code suitable for the proposed run­

time executor. This translation of the pseudo-code is con­

cerned with two aspects: 1) replacing the addressing ~ith

stack-display-offset addressing and 2) modifying the

instruction codes to handle explicit stack operations.

!LG~L-~~ L~i~l A~~~~~~iD~ an~ H~g~

~!2t~~~ H~o~g~m~n!

The ALGOL 68 Environment level uses an addressing

scheme partially based on a stack environment. All instruc-

tion references to memory consist of the pair: stack-frame

number, stack-frame offset. The stack-frame number is used

to index a vector of stack-frame addresses which is added to

the offset value to yield the effective address. In order

for references to other instructions to be represented by

this same address format, an extra outer display is artifi­

cally created (display number 0) that maps the storage area

of where the program instruction codes are kept.

27

All non-instruction references to memory (any address

not a part of an instruction) take the form of valid seg-

mented addresses. Figure 6 shows how segments are used to

allocate memory for AlGCl 68 program stack areas and heap

Segmented
Memory

•
J --------- J<-----
Jiprogram area1Jl
4Jstack frame CJ<----­
J J------------1 J
Jjstorage for Jl
j J outer-most j J
jjuser program)J
JJblock I Jl
Jjstack frame 111
JJ-------------JJ
)/remainder cf 11
J/program stackJJ
Jjframe areas II
JJ ----------I I J ___________ J
J . I
j --------- J <-----
Jjan indirectl.Yll
Jjreferenced J<----­
jJheap storage 11
JJarea Jl
) J -- --- j 1
J -------·----I
J remainder of I
I segmented J
1 memory 1

•---------- J

Segment 2

program and main
stack area

segment 3

some ALGCL 68
heap storage

Figure 6. Stack and Heap storage in
Segmented Memory

28

storaye areas. The active display vector consists of

segmented addresses that refer to the beginning of each

stack frame (all stack f 1ames in Figure 6 are contained in

segment 2) • As the stack grows, the segment containing the

stack is expanded, which is accomplished through use of the

segmented environment.

'JABLE IV

ITEMS ALLCCJTED GN THE EEAP

Description of Item

All variables explicitlJ
declared to be "HEAP"
variables.

The storage allocated to
a flexible rowed value
(excluiing the array
descrit~ tor) •

Buffers and interna 1 w cx.k
areas for transput.

tescription of Why

To maintain
ables even
the block
declaration

the teaf vari­
after closing
in which the
appeared.

To allow for later expan­
sion of a flexible rowed
value (if subscript check­
ing is performed, then the
segmented address could be
easily stored with the
array descriptor).

Tc maintain global storage
for transient I/O status,
informatio~ and data.

lABLE V

ITEMS ALLCCATED CN THE STACK

Description of .Item

All local variables of
primitive modes such as
INT, REAL, BOOL, CHAR,
etc.

All local reference-to
variables such as REF 1KT,
REF REF INT, REF REAL, cr
even REF REF amode.

All local structures vhich
do not contain items tc be
put onto the heap {examfle
- STRU::: T (REAL re, .REAL i m)
goes on the stack whereas
STRUCT(STRING s) causes
the storage of the fle}i­
ble rowed value 11 s 11 to l:e
allocated in a heap area.

All local rowed values
that are not flexible
rowed values.

Description of Why

The storage management for
these items conforms to
the reguirements of a
stack-model envircnment.

The storage management for
these items conforms to
the reguirements of a
stack-model envircnment
and are used often.

The storage of the flexi­
ble rowed value must be
allowed to "flex" while
its descriptor may be
allocated on the stack.

The storage management for
these items conforms to
the requirements of a
stack-model environment.

29

As can be seen in Figure 6, heap storage is maintained

in se}ar~te memory areas, tl1ere.by avoiding allccation con-

flicts with the stack area. This allows memory management

of the stack at the ALGCL 68 level to be straight-forward

but reguires that refe~ences to the heaf be made indirectly

30

through a segmented address stored in the stack. There are

two conclusions to be drzwn from this: 1) it is easy to

manipulate the storage of i terns allocated in heap areas but

there is an overhead incurred for referencing them, and

2) the storage of an item allccated in a stack area may be

manipulated only under very rigid conditions but such maniF­

ulation Joes not require indirect addressing as for h~ap

items. These conclusicnf were carefully considered before

deciding what items of an ALGOL 68 program should be allo­

cated in the stack area and what items should go on the

heap. Tables IV and V she~ the results of several decisions

as to where an item shculd be allocated.

The· ALGOL 68 level lccal storage management consists

of a stack environment maintained within a segment. Figure

7 shows some snapshots of the run-time stack for a sample

program. For each "BEGIN" in an ALGOL 68 program, a stack­

frame is created. As stack-frames are created, a list of

addresses are maintained and copied into the beginning cf

the storage allocated fo.r each stack-f.rame. The first snap

shot o.f Figure 7 diagrams the contents of the stack after

the first stack-frame has been created. Snapshot 2 of Fig­

ure 1 shows the state of the stack after the seccnd stack­

frame has been created but tefore the storage for the rowed

value "m" is allocatsd. Ncte that the first portion of the

BEGIN
.INT i 1 j, k; ...

BEGIN
REAL X;

<-- Snapshot 1

(1: kJ INT m; <-- Snapshot 2
<- Snapcbot 3 ...

END
END

snapshot 1
r--- ------, <"I
J *----+-.J
J--------)
j ___ i __ j
l ___ j __ l
• ____ k __ ,

I J
j

•

Snafshot :2
,-) ,.---------, <"1
I J *---- +-.J
j J ---------I
1) ____ i ___ l
J l ___ j ___ j
I l __ k ___ l
1.-+---- *· 1<"1

J -------- J J
J :t---- +-.J
1---------J
l ____ x __ l
J static I
I rcrtion J
)_of_m ___ l

I • I
1 •

snapshot 3
.-> r---------"1 <"I
J J ·----+-.J
l J---------J
I l __ i __ J
J j_ ___ j __ l
J l ___ k __ i
L-+----* j("l

1--------- j J
I *---- +-.J
1---------J
l ___ x ___ j
I static t
J portion j
J_of_m __ l
J dynamic I
I portion I
l_of_m ___ l
J J
I •

•

Figure 7. ~tack Disflay layout

31

stack is an address that indicates the beginning of the

first stack-frame and that further do~n in Snafshct 2 are

two addresses which indicate the beginnings of the fiJ:st and

second stack-frames. As Each new stack-frame is created,

another address is added tc the display maintainEd in the

display vector and an upca ted· ccpy of this list is stored

32

onto the stack. The Jccal storage management can be

summarized as the creaticn and destruction of stack-frames

and parallels the techni'jues described in Gries (14) ...

CHAPTER IV

SUMMARY, CONCLUSIONS, AND FUTURE WORK

Summary and Conclusions

In keeping with the goals of the Oklahoma State Uni-

versity ALGOL 68 Compiler project, this design adds flexi-

bility ~ith a limited expense of execution time. This

design removes the major problem points of earlier versions

of the compiler in three ~ays:

1. by adding flexible
facilities;

storage management

2. by replacing the addressing scheme of earlier
versions;

3. by expanding the storage capacity of the
interpretive executor.

The Oklahoma State University ALGOL 68 Compiler is not

Dnly enhanced by the above capabilities, but the design of

the run-time system should prove easier to modify for

varying machine configurations than earlier versions thus

enhancing the portability of the compiler. This can be

attributed to the layered-design approach which applies very

nicely to the segmented virtual memory features described

here.

33

34

The o.s.u. ALGOL 68 user can benefit greatly from the

added heap storage facilities and expanded storage

capacities ~bile the layered design approach should reduce

the effort required of future implementors to modify or

extend the capabilities of the interpretive executor.

Future Work

There are several suggested modifications which are

based on the capabilities of the implementation machine. On

a machine where primary storage is plentiful, two options

may be exercised: 1) the size of the page fault table and

the cache memory may be increased, or 2) the virtual memory

level may be replaced altogether.

The modification of the size of the page fault table

and the cache

initial value

memory may be performed by adjusting the the

of the global ~ariable indicating the page

fault table size as shown in Appendix A, and by changing the

appropriate table sizes used as the page fault table and the

cache memory.

To replace the virtual memory level, the routine VMREF

should be modified, the page mapping table kept and all

other virtual memory-level items discarded. Rather than

consulting the page fault table, the routine VMREF should

directly access a table of contiguous locations as if it

were the simulated memory. The page mapping table transla­

tion of virtual addresses must be kept so that segmented

35

memory level compression of free memory blocks can be per-

formed, even though the rEsult of the txanslaticn is c~ly an

index of the simulated mencry in frima~y storage.

Future extensions to this work include the design of

run-time facilities for simulated parallel processing. In

ALGOL 68, i>arallel frcce~sing gene.rally takes the form of a

set of ALGOL 68 procedures which a~e to be executed as if

they were executing sim u 1 taneously.

Stack
Memory

.----------,

The major problem

Ji'lemory J <-·--- segment 2
J allocated J
Jbefore I
J parallel J
J pr:ocesse:: 1
J were J
;invoked 1
I I _ __:..__l _____ l ___________ _

1 Stack J<, JStack)<,)Stack J<,
jmemory J 1 jmerrc.ry l J Jme~ory 1 I
J for a J J J fer a t 1 1 for a I J
Jparallelj j j~arallelJ 1 JparallelJ }
J process J J 1 precess J J J process J J
J -----A I l I J J J I

j J J J , ___ 1 J
j l _______ l J 1
J J segment 5

segment 3 segment 4

Figure 8. stack Invir:cnment for Parallel
Processes

36

arises because while executing in parallel, different and

distinct additions may be made to the stack environment. In

fact, as shown in Figure 8, the portion of the stack allc­

cated prior to the invocation of the parallel procedures

must be shared while distinct portions

created for each parallel ~outine.

solved by allocating a new segment for

of the stack must he

!his p~oblem can be

the continuation of

the stack environment of each parallel process.

mapping of the stack environment is normally

The address

pe~formed by

the active display vector. In the case of parallel process­

ing, multiple display vectc~s are maintained such that each

parallel process may access the shared portion o£ the stack

environment and may acce~~ its own extension of the stack.

Each new display vector will contain a copy of the active

display vector up to the fOint where a parallel procedure is

invoked with added stack-frame addresses pointing to its

extension of the active stack.

FEl?ERENCES

(1) Jensen, J. c. "Imflementation of a Scientific Subset
of ALGOL 68." (Unput. M.s. thesis, Oklahoma
State Universit1, 1973.)

(2) Berry, R. "A Practical Implementation of Fcrmatted
Transput in A.LGCl 68." (Unpub. M.S. thesis,
Oklahoma State University, 1973.)

(3) Eyler, A. D. "The I nplementaticn of a Subset of
Procedures in an ALGC I 68 compiler. 11 { Unpub.
M.s. thesis, Oklahoma state University, 1975.)

(4) Seay, W. M. "Implementation of a Subset of Modes in
an ALGOL 68 CORfiler. 11 (Unpub. M.S. thesis,
Oklahoma State University, 1976.)

{5) Robertson, A. L. n!ransfcrmaticnal Grammars: Their
Applications aEd Implementation" (Unfut. M.s.
thesis, Oklahona State University, 1978.)

{6} van Wijngaal:'den, A. (Ed.) , B. J. Mailloux, J. E. L.
Peck and c. H. KesteL". 11Repcrt on the
Algorithmic Language ALGOL 68.n .N.!!.J!!~ri§ch~
Mathe m a 1!.~, V c 1 • 1 4 (1 9 6 9) , p p. 7 0- ~ 18 •

(7) van Wijngarrden, A. (Ed.), B. J. Mailloux, J. E. L.
Peck# c. H. A. KesteL", M. sintzoff, c. H.
Lindsey, L. G. I. T. Meertens, and H. G. FiskeL".
"Revised Rel,Jort on the Alyorithmic Language
ALGOL 68. 11 Berlin-Heidelberg: Springer-Verlag,
1976.

(8) Taupin# D. "The AIGCL 68 Compile..r of Paris-Sud
University.n fiC.f.§..§di_n£§ of th,g 1211
Intern~!~fn~l £fn£~~g]£~ QQ]LGCL 2E,
Stillwater# C}lahoma: (10-12 June 1975)# pp.

16-22.

(9) Barringer, H. • and c. H. Lindsey, "The Manchester
ALGOL 68 CcmpilE:t." .f~..Q_£gedj,n..g.§ Qf. !h!=! Vth
!rr~ua! II! con1£!enf~ 2n I~~lem~nta~i2n ~nd
De:ii!H! .2!. J\J.g_9..!J.!h mj,_g 1~SI.J!.S.9~• Guidel# France:
(16- 18 Hay 19 7 I) , p p. 14 5- 1 8 2.

37

38

(10) Pierce, R. H .. , "An ~LGOL 68 Run-Time organization .. II

(Unpub. M.s. thesis, Victoria University of
Manchester, 1511.)

(11) Currie, .I. F., s. G. Bond, and J. D. Morison.
11 ALGOL 68- R." !1g.QJ: .§Q I m£1g~j:~J::ion. J.. .E.
L. Peck (ed) .. Amsterdam: North Halland
Publishing Co., 1971, pp 21-34.

(12) Lindsey, c. H, and s. G. van der Meulen !.!!!.Q£.!f!al
!nt£oductiQQ ~£ 11§~1 §Q, Revised Edition,

Amsterdam: North-holland Publishing Co., 1977 ..

(13) Andre, J., and J. Eanatre (Ed.) f£~_gj,]g§ of !12£
Vt!! Anl!.!!~l !1! ~f]!~£g]£~ .2.!! .!mr le~gn!~.:t!.Q!l ~Q
De2.!.9.1! .Qf AlSJ.Q!l!l!l!!!f 1&!!.Sl!.E!.9,g2, Guidel, F~.:ance:
{ 16-18 May 19/ ".iJ.

(14) Gries, D. ~Q.!!!Ei:l.g! £On§_truct!Q!! for Qi.gJ:.ti!1
£2l!!E.!!.ter§, Ne\ York: Jchn Wiley & Sons, Inc.,
1971., PF• 171-; 11, 328-335.

(15) Madnick, s. E., and J. J. Donovan .Q_gg£ati.rr.g ~§.!:g!!!§
New York: McGraw-Hill Eook Co., 1974, ff·

105-208, 534-548.

(16) Robertson., A., and G. E. Hedrick, "A Portable
Com};liler .For An .ALGOL 68 Subset." Pr£.£.§§..Q..!ngs .2f
the 1212 !~!~£]~1ic]al ~Enfe£encg QQ ALGQb &~.
stillwater, Cilahama: (10-12 June 1S75), pp.

59-63.

{17) Van Doren, J. R. 11 Notes on Software Design Methods
{Flowcharts ana PDL's)." Presented as course
material for Ccmfuter structure ~ Programming, a
graduate level ccurse at Oklahoma State
Uni vers it y.

APPENDIX A

DESCRIPTIONS OF RUN-TIME

DATA STRUCTURES

The following descriptions are data structures used

throughout the design. Additionally, some descriptions of

the variables used in PDL descriptions of the presented

design are included. For purposes of the design presenta-

tion, global "constants" have been chosen that meet all

design requirements {these constants may or may not be opti-

mal for performance considerations).

GLOBAL "Constants"
page size (PSIZE) - page size value

PMT size
PFT size
PMTE size

SMTE size

PAGING "Hardware"
memory(l024)
pft{7,4)
active pgno
active pftn

(128 words)
(NPMTE) - no. of PMT entries
{NPFTE) - no. of PFT entries
{PELEN) - size of PMTE entry

{2 words)
{SELEN) - size of SMTE entry

(lORD)
{IOWR)
(PFILE)

(4 words)
- read op-code
- write op-code

paging disk file
{disk record length =

memory page size)

{MEMRY) - cache paging memory
(PFT) - Page Fault Table
(APNUM) - active page number
(APPOS) - active pft entry

39

PFT entries (page fault table)
1) virtual page no.
2) cache-memory page slot address
3) LRU reference count
4) Modified bit

(sign position: >O -- on, <O -- off),
and physical page no.

PMT entries (page mapping table)
1) physical page no.
2) no. of the segment possessing this page

SEGMENTED ADDRESS
1) segment mapping table entry number
2) segment offset address

SMT entries {segment mapping table)
1) Segment origin
2) Segment length
3) Allocated segment list pointer
4} Segment block list pointer

SEGMENT--A68 level "Hardwareu
termination code ERROR

SMTAR
ASNUM
ASORG
AS LEN
ASLNK
ASPTR
DSPLN

- SMT address register
active segment number
active segment origin address

- active segment length
- active allocated segment list pointer

active seg~ent block list pointer
display vector length

DSPVT - display vector of active stack frames
(maximum of 20 active stack frames)

40

APPENDIX B

PDL DESCRIPTIONS OF RUN-TIME ROUTINES

The following figures are PDL descriptions of the

Run-time routines. These descriptions are intended as a

rough guide for implementation and therefore omit detailed

or error-checking code in the interest of clarity.

Paging Environment Routines

The four routines VMREF, VMPFX, VMPFT and VMSWP form a

core of modules that deal directly with the virtual-mem­

ory/real-memory interface. With the exception of a few

restricted segmentation level routines, all accesses to the

paging level environment are performed indirectly through

the routine VMREF. The few exceptions to this mechanism are

the segmentation level routines that modify the Page Mapping

Table for the purposes of garbage collection. This limited

access allo•s the entire paging environment to be removed

with the exception of-the Page Mapping Table.

41

Reference to virtual memory routine

vmref:
PROC {virtual address~ tuffer, start. stop,

I/O flag);
v := virtual address;
i := start - 1;
DO UNTIL i > stof;

CALL vmpfx (v, c, pfte) ;
¢ c is the returned cache memory address or

zero if thE desired page is not in cache
memory ¢

¢ pfte is thE page slot number of
least-recently used page ¢

IF c = 0 THEN
vpage := v 1 page size ¢ PSIZE ¢;
voffset :-= v - tvr:age * page size);
CALL vmpfx ((2 * vpage), c, pn);

¢ if c is returned as zero, then there is
no PM'I entry for the desired page, ie.
the reference is outside the virtual
address ~face ¢

IF c = 0 Tll.Eli
signal addre~s error and guit;

FI;
ppage := memc:ry (c);
CALL vmswp (vfage, ppage, pfte);
c := pft(pft~, 2) + voffset;

FI;
i := i + 1;
v := v + 1;
IF write operaticn ,HEN

IF pfte > 0 1E.EN
¢ if pfte = 0 then virtual page := physical

page := page slot 0 which is always
paged-in It

set modifiEd-flag of pft (pf te) ;
FI;
memory (c) : = buffer (i) ;

ELSE
buffer{i) := nemory (c);

FI;
END;
RETURN;

END vmref;

42

Page Fixing coutine

vmpfx:
PROC (vaddc, c, p);

page := vaddc 1 fage size;
offset := vaddr - {page * page size) ;
IF page = 0 ~HEN

e virtual page needed is page 0 ¢
c : = offset;
p := 0;
RETURN;

FI;
IF page = active fgno t APNUM t THEN

¢ page needed aas the last page accessed ¢
c := cache addre~s cf active pft entry;
p := active pftn t APPOS ¢;
RETURN;

FI;
CALL vmpft (page, pfte, p);

e pfte is the xetucned pft entry position of
page in cachE-memory or zero if desired
page is net in memory t

IF pfte > 0 THEN
c := pft(pfte,.2) + offset; •

RETURN;
FI;
IF page S (2 * PPcT size 1 fage size) THEN

e if page reguested is a PMT page, then the
physical page number is known without
consulting tbe PMT ¢

CALL vmswp (page, page, ~;
c := pft (p, 2) t cffset;
RETURN;

ELSE
c := 0;
RETURN;

FI;
END vmpfx;

43

Page Fault Table seaich rcutine

vmpft:
PRDC (page, pfte, £1.ru) ;

pfte := 0;
p lru := 1;
max ref cnt := pft(flru,3);
DO i := 1 TO 7 BY 1;

IF 2ft{i,J) < 127 THEN
¢ increment reference count up to a

limit cf 1~7 f.
pft(i,J} :-= Ift(i,J) + 1

FI;
IF pft(i,1) = {age THEN

¢ page has bEen found; return pft fOSition ¢
active fgno ~ APNUM ¢ := page;
active pftn ¢ APPOS ¢ := i;
pfte := i;
pft(i,3) := C;

FI;
IF pft{i,3) > nax ~ef cnt THEN

¢ return position of candidate for fage-out ¢
plru := i;
max ref cnt := f£t(i,3);

FI;
END;
RETURN;

END vmpft;

Page swap routine

vmswp:
PROC (vpage, ppage, f) ;

IF pft (J?, 4) > 0 'IBEN
perform page-out operation

FI;
perform page-in Cferation;

¢ set virtual fage number, reference count,
and physical fage number ¢

pft{p,l) := vpage;
p f t (p , 3) : = 0 ;
pft(p,4) := -ppage t set modified bit off t;
active pgno ¢ AfiUM ¢ := vpage;
active pftn ¢ APfGS ¢ := p;
RETURN;

END vmswp;

44

Segmented fnvironment Routines

The segmentation level routines provide all the memory

management functions and llaf all segment-type addresses into

virtual addresses. In keeping with tbe goal of modular

design, the segmented envjtcnment presents the appearance of

being a collection of memory management primitives to all

external envia:onruent levels. thus the routines SMALC and

SMFRE are used for memcry allocation and un-allocaticn

respectively, and the routine SMREF is used fo.r all segment-

ed-level memory accesses. For expansion or contraction of

an allocated memory area, the respective routines S~ADD and

SMSUB would be called.

Ref~rence to segmentEa memory routine

smref:
PROC (seyment number, segment offset, buffer,

start, stop, 1;0 flag);
snum := segment number;
sofst := segment cffset;
len := stop start + 1;
i := start;
j : = i - 1;
IF snum # active segment no. ¢ ASNUM e 7HEN

SRtr := SMT address ¢ SMTAR ¢ +
(SMTE node size ¢ SELEN ¢ * snum) ;

CALL vmref (sptr, smte, 1, SMTE node size,
IOiiD) i

active segment no. ¢ ASNUM ¢ := snum;
active segment crigin addr. ¢ ASORG ¢ := smte(1);
active segment length¢ ASLE~ ¢ := smte(2);
active alloc. seg. list ptr. ¢ ASLNK t := smte(3);
active seg. bl ~- list ptr. ¢ ASPTB ¢ := smte (4)

FI;
sorg :=active segment origin addr. ¢ ASOBG ¢;
slen := active segment length ¢ ASLTIN ¢;
sptr := active seg. blk. list ftr. ¢ ASPTB ¢;
DO WHILE len > 0;

DO WHILE sptr 1 0 & sofst ~ slen;

¢ follow segnent chain pointer until entry
is found that contains desired offset
address ;.

sofst := sof~t - slen;
CAlL vmref (~ptr, smte, 1, SMTE node size,

IOED) ;
sorg := smte (1) ;
slen := smte (2) ;
sptr := smte(4);

END;
1 := slen- sof~t + 1;

¢ compute renaining length of seg. tlcck ¢
IF 1 > len !HEN

¢ ~ength of aesired request is totally
contained in current SHT entry ¢

l := len;
FI;
addr := sorg + ~cfst;
sofst := sofst • 1;
len : = ~en - 1;
j := j + 1;
CALL vmref (addr, buffer, i, j, I/O flag);
i := i .. 1;

END;
RETURN;

END smref;

46

47

Segment allocation ~cutine

smalc:
PROC (segment length, segment number, return code) ;

CALL smtal (SMTE address) t allocate a new SMTE
node ¢.;

sglen := segment length ¢. xounded up to the
nearest integer multiple of page size t;

CALL smget (sglen, SMTE, error code} ¢. search
free segment fer needed space, fill-in fields
of SMTE node tc reflect allocated storage
area and set errcr code {on of three possible
conditions: a) a free block of sufficient
size was found, b) no free blocK was adequate
but compression cf segments could produce the
necessary free block, and c) insufficient
total memory to perform allocation). ~;

I.F error code is al:ove condition "c" THEN
set return code tO indicate allocation failure;
RETURN;

ELSE
set return code to no error condition;

FI;
IP error code is alove condition "b" THIN

CALL smsmt ¢ ccmfress free memory segments ¢;
CALL smget (sglen., SMTE, error code};

¢. search freE segment list again for needed
segment of free memory t;

IF error code is not condition "a" THEN
set ret~rn cede to indicate allocation

failure;
RETURN;

.Fli
FI;
sptr := SMT address ¢. SMlAR t + SMTE node size

¢ SELEN ¢ + 2 t compute address of primary
allocated segment list fOinter ¢;

CALL vmref (sptr, SMTE (3), 1, 1, .IORD);
CALL vmref {SFtr, SMTE address, 1, 1, IOWR)

¢ insert new segment into allocated segment
list ¢;

segment number := (SM!E address- SMT address) 1
SHT E node size:

CALL vmref(SMTE address, SMTE, 1, SMTE node size,
IOWR) ¢ Ufidate sn;t entry t;

CALL smpmt {SMTE(l) ¢.segment crigin ¢. 1 SMTE(2)
e segment length t, segment number) e set the
segment number fields of the PMT entries that
are in the ne~ segment ¢;

RETURN:
END sma.lc;

Segment de-allocation routine

smfre:
PROC (segment numbEr);

SMTE address := (~egment number * SMTE node
size) + SMT adaress t SMlAR t;

sptr := SMTE address;
DO WHILE sptr # (;

CALL vmref (sptr, SMTE, 1, SMTE node size,
IORD) t fetcl each SMTE for segment ¢;

sptr := SMTE(4) t save ptr to next SMTE t;
CALL smpmt (SMT I (1), SMTE (2), 1) ¢ set the

segment number fields cf the EMT entries
that are in the current segment ¢;

CALL smput (SM1E address) ¢ return memory
block to free list t;

SMTE address := Sftr;
END;
RETURN;

END smfre;

48

Memory block allocation routine

smget:
PROC (segment length, new SMTE, error code) ;

total free size := 0;
sptr := SMT address ¢ SM!AR ¢ +

S MT E node size fl SILEN ¢;
last := sptr;
DO UNTIL sptr = C;

addr := sptr;
CALL vmref (sptr, free SMTE, 1, SMTE node

size, IORD) 1 fetch each SMTE of free
memory segment (segment 1) ¢;

IF free SMTE(2J <segment length THEN
total free size := total free size +

free SMTE{~) ¢total the amount of
· free memory Sface ¢;

last := sptr;
sptr := free SM'IE (4) ¢ get pointer to

next SMTE rt;
ELSE

sptr .:= 0;
.F .I;

END;
IF free SMTE{2) < segment length THEN

IF total free size < segment length THEN
error code := rt insufficient total space ¢;

ELSE
error code := fl. i~sufficient contiguous

space ¢;
FI;

ELSE
IF free SMTE{2) >segment length THEN

new SMTE(1) := free SM'IE(1) ¢copy
segment origin ¢;

new SMTE (2) := segment length;
free S.MTE (1) := free SMTE (1) +

segment length ¢ update origin of
free memcry tlock ¢;

f1:ee SMTE (2) := free S11TE (2) -
segment le-ngth ¢ update length of
free memory tlock ¢;

new SMTE {3} , tew SMTE (4) : = 0;
CALL vmref (last, free SMTE, 1, SMTB

node size, lCiR) ;
ELSE

new s MT E (1) := free SMT.E { 1) ¢ copy
segment crigin ¢;

new S.tlTE (2) := free SM'IE (2) ¢ copy
segment lergth ¢;

new s MT E (3) , new s M '1 E (4) : = 0;
IF last. = addr TEEN

49

free SMTE{1), free SMTE{2) := 0
¢ if the ~M1E found is entry 1 in

the SM~, then reset its origin
and length fields to zero¢;

CALL vruref (addr, free SMTE, 1, SMTE
node size, IOWB) ;

ELSE
last := last + 3 ¢ update pointer to

indicate l:lock list ptr field of
previous SMTE in free memory block
list ¢;

CALL vmref (last, free Sl'1TE {I.J), 1, 1,
IOWR) ¢ delete current SMTE from
free memcry block list ¢;

CALL SMTFE {addr) t un-allocate
unused SP.'IE ¢;

FI;
FI;

FI;
RETURN;

.END smget;

5(}

Memory block de-allccaticn routine

smput:
PROC (SMTE address);

addr := SMTE address;
CALL vmref (addr, cld SMTE, 1, SMTE node size,

lORD) ¢ fetch cld SM!E ¢;
last := SMT address ¢ SMTAR ¢ +

SMTE node size;
DO UNTIL last = C;

CALL vmref {last+ 2, spt.r, 1, 1, IOBD}

51

¢ fetch each SMTE of allocated segment list ¢;
IF Sftr = addr !HEN

sptr :=old ~M1E{3);
CALL vmref (last + 2, sptr, 1, 1, IOWB)

¢ Ufdate allocated segment list ¢;
last, old Sl'!! I (3) := 0;

ELSE
last := sptr;

PI;
END;
sptr := SMT address + SMTE node size + 3;
CALL vmref (Sftr:, cld SMTE (4), 1, 1, lORD)

¢ fetch pointer: to free memory block
list ¢;

CALL vmref (sptr, addr, 1, 1, IOWB) ¢ insert
old SMT .E in to list ¢;

CALL vmref (addr, cld SMTE, 1, SMTE node size,
IOWR) ¢ update free memory block list ¢;

RETURN;
END smput;

EMTE segment number Ufoate routine

smpmt:
FROC (origin, length, segment number);

addr := PMTE ncde size ¢ PELEN ¢ * (origin 1
page size ¢ PSJ ZE ¢) - 1;

npgs := (length • page size - 1) 1 fage size;
DO i := 1 TO llfgs BY 1;

addr := addr + IMTE node size;
CALL vmref {adcr, segment number, 1, 1, IOWR)

¢ set the segment number field of PMT
entries malfEd by the infut segment
origin;length ¢;

END;
RETURN;

END smpmt;

APPENDIX C

PROGRAM DESIGN LANGUAGE

the Program Design Language descriptions of the Run-

time routines use an informal PDL similar to that used by

Oklahoma State University Computing and Information Sciences

Department. Specifically the introductory notes shown here

are based on notes by Dr. J. R. Van Doren describing an

informal PDL used as Computer Science course material (17).

Modules or Procedures format

Module name:
PROC optional parameter list;

•
•

Sequence of PDL and/or English language statements
•
•

RETURN
END module name)

Module Invocation

.CALL module name(optional parameter list);

52

53

Elementary Decision logic

IF condition THEN
Sequence of PDL and/or English language statements

ELSE
Sequence of PDL and/or English language statements

FI;

or

IF condition THEN
Sequence of PDL and/or English language statements

FI;

Looping Constructs

DO WHILE condition;
Sequence of POL and/or English language statements;

END;

DO UNTIL condition; .
Sequence of PDL and/or English language statements;

END;

DO index = initial value TO final value BY increment;
Sequence of POL and/or English language statements;

END;

Comments or Remarks

t Comment or Remark statement t

APPENDIX D

OPERATION CODES OF THE VERSION IV

OSU ALGOL 68 COMPILER

The Version IV OSU ALGOL 68 Compiler interpretively

executes 4-tuple pseudo-code. The meanings of the various

4-tuples are listed below.

BASIC OPERATION CODES

010 oo, oo, 00
020 R2 1 R3

030 011 00 1 R4

030 02, R3, R4

030 03 1 R3, R4

030 041 R3, R4

C30 051 R31 R4

040 R2, 00, R4

050 R2, R31 R4

BLOCK ENTRY
BLOCK EXIT
R2 IS THE ELEMENTAL MODE OF THE

RETURNED VALUE
RJ IS THE NUMBER OF ROWS FOR R2
UNCONDITIONAL JUMP/BRANCH
R4 IS THE BRANCH ADDRESS
CONDITIONAL JUMP/BRANCH
R3 IS THE ID OF THE CONDITIONAL VALUE
R4 IS THE BRANCH ADDRESS
LO.AD ADDRESS
R3 IS THE DISPLACEMENT TO BE ADDED TO

THE RESOLVED ADDRESS
R4 IS THE ID OF THE ADDRESS TO BE PUT

ONTO THE STACK TOP
BRANCH WITH INDEX
RJ IS THE ID OF THE INDEX VALUE
R4 IS THE ADDRESS OF THE BRANCH TABLE
SET FLAG ON DATA S~ITCH
RJ IS THE FLAG NUMBER
R4 IS THE DATA SWITCH NUMBER
ALLOCATE SYMBOL
R2 IS THE MODE OF THE SYMBOL
R4 IS THE IDENTIFIER NUMBER
SET STATEMENT NUMBER
R2 IS THE STATEMENT NUMBER
R3 IS THE ELEMENTAL MODE OF THE STACK

TOP VALUE TO BE VOIDED

54

061 R2, RJ, R4

062 R2, R3 1 R4

070 R21 R31 R4

080 R2 1 R3, R4

090 R2, R3, R4

SON R2, R3, R4

510 R2, R3, R4

52N R2, R3, R4

530 R2, RJ, R4

541 R2, R3 1 R4

R4 IS THE NUMBER OF ROWS
UPDATE SYMBOL TABLE

55

R2 IS THE MODE OF SYMBOL TABLE ENTRY
R3 IS THE ADDRESS
R4 IS THE IDENTIFIER NUMBER
PRINT UNFORMATTED
R2 IS THE ELEMENTAL MODE OF THE VALUE

TO BE PRINTED
RJ IS THE NUMBER OF RO~S
R4 IS THE ID OF THE VALUE TO BE

PRINTED
BECOMES
R2 IS THE MODE OF THE VALUE TO BE

ASSIGNED
R3 IS THE SOURCE ID
R4 IS THE DESTINATION ID
READ UNFORMATTED
R2 IS THE ELEMENTAL MODE OF THE VALUE

TO BE READ
RJ IS THE NUMBER OF ROWS
R4 IS THE ID OF THE VALUE TO BE READ
DEFINE LABEL
R2 IS THE ADDRESS OF THE LABEL
R3 IS THE NEGATIVE OF THE BLOCK

NUMBER
R4 IS THE ID OF THE LABEL

ALLOCATE DESCRIPTOR FOR ARRAYS
N IS THE ELEMENTAL MODE
R2 IS THE ID OF THE ARRAY
R3 IS T~E NUMBER OF ROWS IN THE ARRAY
R4 IS THE ADDRESS OF THE SKELETON

DESCRIPTOR(S)
LOAD SUBSCRIPTED
R2 IS THE NUMBER OF RO~S IN THE ARRAY
R3 IS THE ID OF THE ARRAY
R4 IS THE SYMBOL TABLE POINTER OF THE

TEMPORARY SYMBOL TABLE ENTRY
GENERATED CONTAINING THE
CALCULATED ADDRESS

MOVE ROW OF OPERANDS
N IS THE ELEMENTAL MODE
R2 IS THE NUMBER OF ROWS
R3 IS THE ID OF THE SOURCE OPERAND
R4 IS THE ID OF THE DESTINATION

OPERAND
ALLOCATE SLICING DESCRIPTOR
R2 IS THE NUMBER OF ROwS
R3 IS THE IS OF THE ARRAY TO BE

SLICED
R4 IS THE ADDRESS OF THE SLICING

TEMPLATE
LOWER BOUND
R2 IS THE NUMBER OF ROWS IN THE ARRAY

. 542 R2 1 R3, R4

61N R2, R3 00

71N R2, R3 1 R4

72N R2 1 R3, R4

730 R2, R3, R4

800 R2, R3, 00

801 R2, R3 1 R4

810 oo, oo, 00
815 R2, R3 1 00

820 R2, R3 1 00

830 oo, oo, 00

R3 IS THE ID OF THE ARRAY OPERAND
R4 IS THE 10 OF THE ROW NUMBER
UPPER BOUND

56

R2 IS THE NUMBER OF ROWS IN THE ARRAY
R3 IS THE ID OF THE ARRAY OPERAND
R4 ·IS THE ID OF THE RO~ NUMBER
INTERNALLY GENERATED COERCION
N IS THE MODE OF THE STACK TOP

ELEMENT TO BE SAVED DURING THE
CURRENT COERCION

R2 IS THE MODE TO BE WIDENED FROM
R3 IS THE MODE TO BE WIDENED TO

COERCED RESULT IS PUT ON THE
STACK TOP

FORMATTED INPUT
N IS THE ELEMENTAL MODE
R2 IS THE ID OF THE INPUT FILE
R3 IS THE NUMBER OF ROWS IN THE INPUT

ITEM
R4 IS THE ID OF THE INPUT ITEM
FORMATTED OUTPUT
N IS THE ELEMENTAL MODE
R2 IS THE ID OF THE OUTPUT FILE
R3 IS THE NUMBER OF ROWS IN THE

OUTPUT ITEM
R4 IS THE ID OF THE OUTPUT ITEM
OPEN FILE
R2 IS THE ID OF THE FILE
R3 IS THE CHANNEL NUMBER FOR CURRENT

FILE OPEN OPERATION
R4 IS THE ID OF THE IDENTIFICATION

STRING (NOT YET IMPLEMENTED)
RETRIEVE PARAMETER
R2 IS THE IDENTIFIER NU~BER
R3 IS THE MODE INCLUDING REF CODE
IF R2=0 THEN RETRIEVE THE PARAMETER

FLAG
COMPLETE PROC DESCRIPTOR
R2 IS THE IDENTIFIER NUMBER FOR THE

PROCEDURE
R3=1 FOR COMPLETING THE STATIC

INFORMATION FIELDS, 2 FOR
COMPLETING THE ENTRY POINT
FIELD

R4 IS THE ENTRY POINT IF APPROPRIATE
PROC ENTRY
LOAD PARAMETER
R2 IS THE IDENTIFIER NUMBER OR 0 FOR A

TEMPORARY
R3 IS THE MODE
PROC EXIT
R2 IS THE MODE OF THE RETURNED VALUE
R3 IS THE NUMBER OF ROWS
LOAD RETURN INFORMATION

835 R2, 00, 00

840 oo, oo, 00

DYADIC OPERATION

ALL OPERATIONS ARE

THE VALUES OF THE
OPRND < 0
OPRND ,_ 0
OPRND > 0

CAUSES VALUES NEEDED TO RETURN
FROM A PROCEDURE TO BE LOADED
ONTO THE RUNTIME STACK

LOAD PROC DESCRIPTOR & INVOKE PROC
R2 IS THE IDENTIFIER NUMBER OF THE

PROCEDURE
SAVE SYMBOL TABLE

CODES OF THE FORM:
OPCD,OPRNDl,OPRND2,0PRND3

PERFORMED OPRNDl OP OPRND2 => OPRND3

OPERANDS HAVE THE FOLLO~ING MEANINGS:
RUN TIME SYMBOL TABLE REFERENCE
RUN TIME STACK TOP REFERENCE
RUN TIME VIRTUAL MEMORY ADDRESS

OP-CODE(N IS THE MODE INDICATOR)

ION + ADD VALID FOR N = 1, 2,
llN SUBTRACT VALID FOR N = 1, 2,
12N I DIVIDE VALID FOR N = 1, 2,
13N * MULTIPLY VALID FOR N = 1, 2,
14N ** RAISE (UP) VALID FOR N = 1, 2
15N //: MODULO VALID FOR N = 1
16N +·-·- PLUSAB VALID FOR N = 1, 2,
17N ·-· -. PRUS VALID FOR N = 1, 2,
18N -·-.- MINUSAB VALID FOR N = 1, 2,
19N J•-·- DIVIDEAB VALID FOR N = 1, 2,
20N ··-·- TIMESAB VALID FOR N = 1, 2,
21N //: := MODULOAB VALID FOR N = 1
22N -= NOT EQUAL VALID FOR N = 1, 2,

3, 4, 5
23N < LESS THAN VALID FOR N = 1, 2,
24N <= LESS THAlUEQ. VALID FOR N = 1, 2,
25N >= GRTR. THAN/EQ. VALID FOR N = 1, 2,
26N > GREATER THAN VALID FOR N = 11 2,
27N = EQUAL VALID FOR N = 11 2,

3, 4, 5
284 & (AND) LOGICAL AND
294 OR LOGICAL OR
402 ? (ON I) PLUS I TIMES REAL -> COMPLEX

57

3
3
3
3

3
3
3
3
3

5
5
5
5

58

MONADIC OPERATION CODES OF THE FORM:
OPCD11 0PCD21 0PRND21 0PRND3

ALL OPERATIONS ARE PERFORMED OP OPRNDl => OPRND2

THE VALUES OF THE OPERANDS HAVE THE SAME MEANINGS AS FOR
THOSE OPERAND VALUES USED IN DYADIC OPERATIONS

IR1 IR2(N IS THE MODE
JON 01 +

JON 02
JON OJ

JON 04
JON 05
JON 06
JON 07
JON 08
JON 09
JON 10
JON 11
JON 12
JON 13
JON 14
303 15
303 16
313 02
313 03
31J 04
322 01
322 02
322 OJ
322 04
322 05
331 01
J34 02
342 01
351 01

ABS

SORT
EXP
LN
LOG2
LOG10
SIN
cos
TAN
ARCSIN
ARCCOS
ARCTAN
CONJ
CMPLXSQR
ARG
RE
IM
ENTlER
LWB
ROUND
SIGN
UPB
ODD
- (NOT)
RANDOM
REPR

VALID FOR N = 1, 2, 3
INDICATOR)

MONADIC PLUS
(ALSO A LOAD)
MONADIC.MINUS
ABSOLUTE VALUE

VALID FOR N = 1, 2, 3
VALID FOR N = 11 2,

3, 4, 5
SQUARE ROOT VALID
E ** X VALID

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

N = 11 2, 3
N = 11 2

NATURAL LOG. VALID N = 11 2
LOG BASE 2 VALID N = 1, 2
LOG BASE 10 VALID N = 1, 2
SINE VALID N = 11 2
COSINE VALID N = 1, 2
TANGENT VALID N = 11 2
ARCSINE VALID N = 1, 2
ARCCOSINE VALID N = 11 2
ARCTANGENT VALID N = 11 2
COMPLEX CONJUGATE
COMPLEX SQUARE ROOT
COMPLEX ARCTAN COMPLEX ->
REAL PART COMPLEX ->
IMAGINARY PART COMPLEX ->
FLOOR FUNCTION REAL ->
FLOOR FUNCTION REAL ->
ROUND FUNCTION REAL ->
SIGN TRANSFER REAL ->
CEIL FUNCTION REAL ->
ODD FUNCTION INTEGRAL ->
LOGICAL NOT BOOLEAN ->
RANDOM GEN. ->
CHAR. GEN. INTEGRAL ->

REAL
REAL
REAL
INTEGRAL
INTEGRAL
INTEGRAL
INTEGRAL
INTEGRAL
BOOLEAN
BOOLEAN
REAL

CHARACTER

VITA~

MARK GOTO

Candidate for the Degree of

MASTER OF SCIENCE

Thesis: Segmented-Virtual Memory Design for an ALGOL 68
Compiler

Major Field: Computing and Information Sciences

Biographical:

Personal data: Born in Oklahoma City, Oklahoma, on
July 16, 1953.

Education: Graduated from Putnam City High School,
Oklahoma City, Oklahoma, in May, 1971; received
Bachelor of University Studies from Oklahoma State
University, Stillwater, Oklahoma, in July, 1975;
completed requirements for Master of Science
degree at Oklahoma State University, Stillwater,
Oklahoma, in July, 1978.

Professional Experience: Computer Systems Programmer
for the Oklahoma State Oniverslty Computer Center,
August, 1977-July, 1978; graduate research assist­
ant at Oklahoma State University under Dr. G. E.
Hedrick, Computing and Information Sciences
Department, Summer 1976-Spring 1977; graduate
teaching assistant, Oklahoma State University,
Computing and Information Sciences Department,
Fall 1975-Spring 1976.

