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CHAPTER I 

INTRODUCTION 

In years favorable to the growth of winter wheat pasture, more 

than 1.5 million stocker cattle are grazed on Oklahoma wheat pastures. 

The average stocking rate is about one steer per 6 hectares, and the 

usual wheat pasture grazing period is from November 1 to March 15. With 

grazed-out programs, the grazing period is extended to about May 31. 

Stocker weight gains of .57 to .80 kg per day are common, indicating 

the high quality of wheat forage. 

Among the health problems of wheat pasture stockers is one known 

as the stocker syndrome, or the sudden death syndrome. Previous studies 

(Clay, 1973; Hornet al., 1974) have indicated that death due to the 

stocker syndrome cannot be attributed to nitrate toxicity, acute 

mineral imbalance, or clostridial toxin. High crude protein values 

(14 to 33% of dry matter) have been reported for wheat forage 

by Clay et al. (1972) and Hornet al. (1974). Johnson et al. (1974) 

further reported that 17 to 33% of the total forage nitrogen is 

in the form of non-protein nitrogen. These data along with high 

rurninal ammonia concentrations and high rurninal pH values (6.2 to 7.6; 

Hornet al., 1974), have prompted the suggestion that ammonia toxicity 

may be an etiological factor in the sudden death syndrome. However, 

Clay (1973) and Horn et al. (1975) have provided data to indicate that 

the blood ammonia concentrations of stocker cattle on winter wheat 

1 



forage per se were not high enough to result in ammonia toxicity. 

Coombe ~t al. (1960) observed that drenching fasted sheep via ruminal 

cannulae with 5 to 25 g of urea (concentra,tion in fluid not exceed

ing 6%) inhibited ruminal motility and elevated ruminal pHs 

2 

(7.3 to 7.8). These observations were accompanied by increased ruminal 

ammonia concentrations; however, signs of ammonia tbxicity were not 

observed. 

Specific signs of the sudden death syndrome led Clay (1973) to 

conclude that frothy bloat was a major cause of death in stocker cattle 

grazed on wheat forage. This conclusion was based on (1) observations 

of live stocker cattle exhibiting marked ruminal distension, (2) the 

nature of ruminal contents from dead animals, (3) the fact that some 

distended live animals were later found dead, and (4) necropsy lesions 

indicative of antemorteum bloat. 

Plant chemical components have been postulated to contribute to 

the production of stable ruminal foams necessary for frothy bloat. 

However, correlations between specific plant chemical components and 

the incidence of bloat have proved elusive and somewhat nebulous 

(Clarke and Reid, 1974) . 

With the identification of the pre-disposing factors of frothy 

bloat and their possible interactions with one another, wheat pasture 

stocker operators may be able to reduce the incidence of bloat. The 

primary objectives of these studies reported herein were to: (1) de

termine if the frothy bloat of wheat pasture stockers occurs secondarily 

to a reduced ruminal motility, (2) measure ruminal fluid foam sta

bility, expansion and strength (as indices of bloat potential) 
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throughout the wheat pasture grazing season, (3) measure changes in 

concentrations of wheat forage chemical components, believed to be re

lated to the incidence of bloat, ~nd (4) assess possible relationships 

between ruminal fluid foam measurements and the concentration of 

chemical components in wheat forage. 



CHAPTER II 

REVIEW OF LITERATURE 

Ruminal Motility and Eructation 

Contractions 

Rumina-reticular motility patterns were observed as early as 1833. 

Flourens (1833; reported by Hungate, 1966) used fistulated sheep to de

tect contractions of the rumen and reticulum, and also reported cessa

tion of the contractions when both vagus nerves were cut (Duncan, 1953). 

The basic movements of the rumina-reticulum have been divided into 

two regular cyclical sequences of contractions (Titchen and Reid, 1965; 

Sellers and Stevens, 1966). The first, which occurs about every minute, 

is concerned primarily with mixing of rumen contents and consists of a 

bi-phasic contraction of the reticulum followed in succession by a mono

phasic contraction of the dorsal ruminal sac and then by a monophasic 

contraction of the ventral ruminal sac. The second type of contraction 

is independent of the reticular contractions and occurs approximately 

every two minutes. These contractions are frequently referred to as 

S contractions and primarily involve the rumen and eructation. These 

S contractions consist of a contraction of the dorsal sac followed by 

a contraction of the ventral sac. With each sequence of the S con

tractions the contents of the dorsal sac are forced to move ventrally, 

after which the gas layer is then directed cranially towards the 
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cardia, where eructation occurs. These two sequences of rumina-reticular 

contractions are basically medullary reflexes (Titchen and Reid, 1965; 

Titchen, 1968; Harding and Leek, 1971) , with both the efferent and 

afferent nerve fibers traveling in the vagal trunks (Habel, 1956; 

Stevens and Sellers, 1956; Titchen and Reid, 1965; Leek, l969b). How

ever, there is not complete agreement on the cyclical movements of the 

rumina-reticulum due to the variety of methods employed and the inherent 

species variations that exist among ruminant animals (Sellers and 

Stevens, 1966). 

Stages of Gas Movement During Eructation 

Clarke and Reid (1974) categorized the movement of gas during eruc-

tation into the following stages: (l) Separation Stage: Bubbles form 

from gas that rise through the injesta and coalesce with the free gas 

cap present in the dorsal rumen, (2) Displacement Stage: The free gas 

cap moves cranially and downward towards the cardia, (3) Transfer Stage: 

The cardia opens and the gas passes out of the rumen into the esophagus; 

with the aid of a contraction of muscles in the ruminal wall, (4) Eso

phageal Stage: The gas passes quickly, with the accompaniment of a 

rapid contraction of the esophagus, up the esophagus and enters into 

the pharynx via the superior cervical esop~ageal sphincter, (5) Pharyn

geo-pulmonary Stage: Due to closure of the nasopharyngeal sphincter, 

the gas enters the opening of the epiglottis and is forced into the 

pulmonary cavity where a large portion is absorbed and the remainder 

is exhaled with the following expiration. 
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Effect of Rumen Fill ~ Eructation Efficiency 

Eructation, a seemingly unimportant physiological process in ma,n 

and most animals, is of great importantce in ruminants. Several groups 

of workers (Dougherty, 1940; Dougherty and Habel, 1955; Dougherty and 

Mereditp, 1955; Stevens and Sellers, 1956; Dougherty et al., 1958) have 

all contributed significantly to the understanding of eructation. Large 

quantities of gas are produced in the ruminant stomach by microbial di

gestion of simple and complex carbohydrates. Most of the gas is pro

duced in the first two compartments, the reticulum and the rumen. 

Hungate et al. (1955) estimated that about 1.2 to 2.0 t of gas are 

formed per minute in the rumen and reticulum of a 454.5 kg steer. Leek 

(1969a) demonstrated that ruminants can eructate gases in amounts that 

far exceed the maximum rates at which they could be produced by fermen

tation, and concluded that the excessive rates of gas production per 

se would not cause the clinical signs of bloat. Furthermore, unless 

the gas bubbles were stabilized as a froth, the bubbles would rise 

through the rumen contents and be eructated with the gas cap. The 

eructation (S) contractions are most commonly involved with clearing 

the cardia of injesta and redistributing it to allow access to the 

cardia by the gas cap (Reid and Corn-wall, 1959; Reid, 1963; Titchen, 

1968; Akester and Titchen, 1969). Rumen fill appears to be an impor

tant factor in accounting for the relationship between eructation and 

rumina! contractions. DoughertyandMeredith (1955) elucidated this 

system of behavior by insufflating gas into ruminally cannulated sheep 

and observing a main contraction in the dorsal sac, which caused the 

large volume of gas above the rumen fluid level to be displaced forward. 
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At the same time they recorded contractions of the rumina-reticular 

fold which lifted up and held back the forward surge of solid digesta. 

Stevens and Sellers (1960) also recorded a lowering of the rumina

reticular digesta level to as much as 10-15 em and a raising of the 

posterior dorsal sac of 10 em in ruminally cannulated sheep that were 

insufflated to an intraruminal pressure of 30 mm Hg in the dorsal sac. 

Dougherty (1940) and Stevens and Sellers (1959) also noted that if the 

rumen was insufflated with gas experimentally, there was an increase in 

the frequency of the S contractions and in eructation. 

In spite of the strong evidence that eructation is associated with 

S contractions, Clark and Quinn (1945; reported by Hungate, 1966) demon

strated that eructation could occur when the rumen was paralyzed with 

cyanide. 

Receptor Sites 

Dougherty et al. (1958) reported that the eructation reflex is 

stimulated by distension of the rumen and that.the receptors capable 

of inhibiting eructation were located in the vicinity of the cardia. 

In this study they isolated a small pouch of the rumina-reticulum 

adjacent to the cardia and demonstrated that gaseous insufflation of 

this small compartment initiated the eructation reflex. Liquid pres

sure failed to induce a complete eructation reflex. Although little 

is known about the mode of control of the cardia, Stevens and Sellers 

(1959) noted that the opening of the cardia was usually associated 

with rumen contractions, even when the cardia was kept completely 

clear. They further observed that the rate of eructation varied with 

the rate and amplitude of rumina! contractions, even when the cardia 



was exposed continuously to gas, and they suggested the presence 

of a volume-type tension receptor in the cardia. 

If the cardia is covered with fluid (including froth) the reflex 

opening of the cardia does not occur (Dougherty et al., 1958). Pre-

sumably, receptors exist at the cardia which can differentiate between 

gas and fluids. 

Leek (1969b) has reported the greatest concentrations of tension 

receptors in the medial wall of the reticulum, in the rumino-reticular 

fold, in the lips of the esophageal groove and in the medial wall of 

the cranial dorsal sac of the rumen. 

0 Weiss (1953) found that if sheep were made to stand on a 30 ramp 

the frequency of secondary cycles increased if the hind quarters were 

at the raised end of the ramp. He concluded that gas was accumulating 

in and distending the caudal region of the dorsal sac, which he attri-

buted as the cause of eructation. This conclusion was supported by 

Stevens and Sellers (1959), but disputed by Leek (1969a). The latter 

repeated Weiss' experiment but, with the aid of a cannula, maintained 

a constant gas pressure within the rumen. The results were the same 

so Lee concluded that increased fluid pressure in the cranial regions 

of the rumen was providing the stimulus for increased S contractions. 

It would seem logical that the receptors involved apparently respond 
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to tension or stretch (Stevens and Sellers, 1959), and that perhaps the 

S cycles are initiated by tension receptors in the cranial dorsal sac. 

While a rise in pressure in the region of the cardia would trigger 

the tension receptors there to facilitate the opening of the cardia 

to allow the other events of eructation to occur (Dougherty et al., 

1958). 
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The quest for the identification of receptor sites was aptly 

summarized by Stevens and Sellers (1959; P. 462) " ••• that the problem 

of characterizing rumina-reticular receptors is not one of finding 

structures which could act as receptors, but assigning functions to 

the structures already described." 

Sensory Inputs Which Effect Rumina! Motility 

Excitatory Inputs. Iggo (1955, 1956) and Leek (l969a) have 

identified low-threshold (about 4 mm Hg) tension receptors located in 

the musculature of the medial wall of the reticulum as being the main 

excitatory input to the gastric centers. These receptor sites monitor 

changes in reflex amplitude, frequency and duration of the mixing con

tractions (Leek, 1969a). Whenever intraruminal pressure becomes greater 

than 4 mm Hg there will be an increase in the mixing cycle contractions. 

This threshold is also believed to be related to mild hypermotility 

immediately after feeding with a mild degree of bloat (Leek, 1969a). 

This mechanism would also account for a depression in motility after 

a period of starvation or as a secondary feature to any disease which 

results in anorexia; which would both result in hypomotility below 

4 mm Hg (Leek, 1969a). 

Acid receptors in the abomasum have also been identified by Titchen 

(1958) as being another source of excitatory sensory input. Leek 

(1969a) regarded this mechanism as being primarily concerned with main

taining optimum volume of abomasal contents. Hydrogen ion concentra

tions fluctuate with the content fill in the abomasum. As the abomasum 

becomes empty, there is an increase in HCL concentration and a 
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consequent increase in motility, mostly in primary cycle contractions. 

As rumen contents begin to flow into the abomasum there is a decrease 

in abomasal pH, due to dilution of abomasal acid secretions by the 

rumen contents (Leek, 1969a). 

Inhibitory Inputs. These inputs counteract the above excitatory 

sensory inputs. One of these inputs arises from high threshold ten

sion (about 20 mm Hg) receptors located in the reticulum. These ten

sion receptors are normally activated at the peak of the reticular 

contraction (Leek, 1969a). This threshold would also account for the 

more abnormal conditions such as severe bloat and ruminal compaction, 

the latter being attributed to the feeding of extremely low quality 

forages. The overall effect of surpassing this high pressure threshold 

would be ruminal stasis (Leek, 1969a). 

Titchen (1958) identified another inhibitory sensory input by 

observing an inhibition of primary cycle movements due to distension 

of the abomasum and assumed that these observations were due to the 

presence of tension receptors in the.abomasum. This reflex would 

appear to act in opposition to the acid receptor mechanism of the 

abomasum by decreasing the flow rate of rumen contents into th~ abo

masum. This behavior also accounts for the observance of hypomotility 

which is exhibited in the presence of abomasal impaction and abomasal 

displacement (Leek, 1969a). 

Intraruminal Pressure and the Physiological 

Effects of Bloat 

Colvin and Daniels (1965) reported that when the rumen is at rest, 
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the gas pressure is near one atmosphere. A sharp spike in either a pri-

mary or secondary contraction wilJ cause the pressure to increase 

markedly. During severe cases of bloat resting pressures may be as high 

as 70 mm Hg (Boda et al., 1956; Colvin et al., 1958). Dougherty et al. 

(1955) have indicated that there is considerable difference between 

animals and the amount of intraruminal pressure they can tolerate. They 

observed one sheep that could tolerate an intraruminal pressure up to 

100 mm Hg when insufflated with oxygen gas. However, when the same 

animal was insufflated with carbon dioxide at 60 mm Hg, the animal 

collapsed within three minutes. These researchers, along with Davis 

et al. (1965), postulated that the increased absorption of carbon di-

oxide, obstruction of venous blood return and mechanical interference 

with respiration were the obvious effects of bloat. Reschly and Dale 

(1970) reported in experimental studies with goats that rumen insuffla-

tion pressures of 40 mm Hg resulted in increased blood pressure and 

decreased cardiac output which they presumed to be due to increased 

peripheral resistance caused by the obstruction of slow venous blood 

return. The net effect of the above events is the animal dies of 

suffocation. 

Histamine and Rumen pH 

There is a considerable body of data in the literature regarding 

the distribution of histamine in the various tissues; which usually 

varies in concentration from 0-75 ~g per gram of wet tissue. This con-

centration also varies with age and is very low in fetal tissue (Tabor, 

1954) • Histamine has been considered as a possible factor in contri-

buting to the cause of bloat (Dougherty, 1942). It has been well 



established that intravenous injections of histamine into sheep will 

cause paralysis of the rumen (Dougherty, 1942; Duncan, 1954; Dain 
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et al., 1955) and cessation of eructation (Dain et al., 1955). Hungate 

(1966) reported the work of Shinozaki (1957) who found no response 

of the physiological condition of the rumen to orally administered 

histamine. He attributed this to poor absorption of histamine through 

the rumen epithelium. 

Concern of elevated ruminal histamine concentrations has generally 

been in association with conditions which lead to acute acidosis and 

the subsequent decarboxylation of histidine to form histamine. Dain 

et al. (1955) reported that as a ruminal pH value of 5.0 was approached, 

histamine formation became evident. Lowering of the pH environment in 

the rumen, due to the fermentation of large amounts of carbohydrates, 

resulted in an increased histamine concentration to over 70 ~g/ml. Van 

der Horst (1961) has shown that ruminal fluid concentrations of amino 

acids and amines can be increased by incubating ruminal fluid with 

glucose. Sanford (1963) further reported that the increase in hista

mine content depended on a lowering of the pH, and marked increases 

in histamine concentration occurred when high acid conditions (pH 4.0 -

4.5) were prolonged. He further suggested that histamine formation 

might be the result of a change in rumen microflora brought about by 

an altered rumen environment. This conclusion was based on his ob

servations that incubation of normal ruminal fluid with histidine for 

periods of 3 to 4 hours with or without the addition of glucose did not 

result in any histamine formation. 

Dain et al. (1955) along with Mangan (1959) reported a ruminal pH 

threshold for the formation of histamine of 5.0 to 6.3. The 
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decarboxylase reaction is facilitated by bacteria (Mellanby, 1912) and 

has been extensively studied (Hanke and Koessler, 1924; Epps, 1945; Gale, 

1940, 1945, 1946). Hanke and Koessler (1924) confirmed this threshold 

for decarboxylase activity and further speculated 

• • • that the production of amines for the amino acids by 
microorganisms seems to be a protective mechanism and is re
sorted to when the accumulation of H ions within the organism's 
protoplasm is incompatible with its normal life processes. The 
amines can be thought of as reaction buffers (pp. 865-866). 

This view point was generally accepted, but Gale (1940) suggested that 

the formation of decarboxylase activity in an acid environment may be due 

to the organism's inability to utilize carbohydrate and other substrates 

at this pH. Gale (1946) offered another possibility that the decar-

boxylation of the amino acids provided an important source of co2 for 

the organisms, since at an acid pH very little carbon dioxide remains 

dissolved. 

Animal Factors Associated with Frothy Bloat 

Individual Susceptibility 

While different feeds produce different amounts of gas in the rumen 

the amounts formed do not affect an animal which is not normally sus-

ceptible to bloat. Therefore, the condition of bloat is in part a 

characteristic of individual animals. The work of Knapp et al (1943) 

and Hancock (1954) suggested that the susceptibility to bloat is inherit-

ed. Furthermore, animals vary in susceptibility to bloat-provocative 

feeds (Knapp et al., 1943; Barrentine, et al., 1954; Hancock, 1954; 

Hungate, et al., 1955; Mendel and Boda, 1961; Clarke and Reid, 1970). 

Clarke and Reid (1970) reported that bloat-limiting factors may not 



be the same in animals of different susceptibility when they are not 

bloating. These observations focus attention on animal factors and 
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on changes across time which make the animal susceptible to bloat 

during some periods and resistant to bloat at other times. This 

characteristic increases the difficulty of defining the underlying 

etiologic factors of bloat. Evidence indicating an intrinsic sus

ceptibility to bloat due to genetic inheritance includes the following: 

1) prevalence of bloat in progeny of particular sires (Hancock, 

1954; Johns, 1958; Johns et al., 1958; Reid et al., 1972), 

2) similarity in the bloating behavior of monozygotic twins 

(Hancock, 1954), 

3) difference in susceptibility of cattle of different breeds 

(Miller and Frederick, 1966; Reid et al., 1972). 

Clarke and Reid (1974) postulated that the immediate site of action of 

factor(s) that determine susceptibility to bloat would have to be 

located within the contents of the rumen. On a large scale, where 

several animals in a herd are affected by bloat, it is apparent that 

some factor, probably a feed component present in abnormal amounts, 

is affecting more than the individual bloat-prone animal and causes 

detrimental effects in both sensitive and insensitive members of the 

herd. Consequently, under certain conditions a feedstuff will fre

quently cause bloat in animals eating it, and must be attributable 

to plant components. 

Saliva 

Saliva is produced in copious amounts by five sets of paired glands 

and three unpaired glands. The parotid glands account for 40-50% 
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of the total production (Kay, 1958). The daily secretion in 

cattle and sheep has been estimated to be 25 to 190 ~ and 1 to 24 ~' 

respectively (Bailey, 1961; Church, 1969). Kay and Phillipson (1959), 

Kay (1960,1966) and Schneyer et al. (1972) reported that salivation 
~ 

is under reflex nervous and hormonal control. Factors which influ-

ence the composition and rate of salivation are the nature of feed 

(Ash and Kay, 1959; Emery et al., 1961), stimulation by the digesta 

in the gut (Comline and Titchen, 1961), mineral status of the animal 

(Blair-West et al., 1965) and osmolality of extracellular fluid (Carr 

and Titchen, 1972). 

Kay (1960) classified the glands and their secretions into serous, 

mucous and mixed. He described serous saliva as thin, high in carbon-

ate, strong buffering capacity, low in protein and little mucoprotein. 

Whether the animal is eating, ruminating or resting, serous saliva 

is continuously being secreted. Mucous saliva is thicker and contains 

more protein and mucin. This type of saliva is secreted predominantly 

at the time of feeding. 

Various research groups have attempted to discover the role of 

saliva in frothy bloat. At present its role is controversial. Weiss 

(1953) postulated that bloat was the result of a reduction in saliva 

flow, as succulent alfalfa will not provide a strong stimulus for 

salivation. Consequently, less saliva was secreted, which increases 

the viscosity of the rumen fluid and froth. Meyer et al. (1964) have 

confirmed an inverse relationship between salivation and water content 

of feed and that cattle produce less saliva when eating succulent 

young legumes than when eating mature plants. Phillipson and Reid 
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(1958) noticed that distension of the rumen during bloat initially 

stimulated salivation, but that prolonged distension proved inhibitory. 

Johns (1958) , and Mangan (1959) postulated that an increase in 

mucoprotein-containing saliva abetted bloat by assisting in the 

formation of a stable, viscous foam. Nisizawa and Pigden (1960) showed 

that sialic acid constituted 20 to 30% of the mucoprotein and was 

responsible for the viscous nature of saliva. The strong negative 

charge of sialic acid-containing side chains of the protein (Gottschalk, 

1960) are attributed to causing the increase in viscosity of saliva. 

On the other hand, Fina et al. (1961), Van Horn and Bartley (1961) 

and Mishra et al. (1968) suggested that the mucoprotein found in saliva 

serves as a foam-inhibiting and foam-breaking agent and postulated 

that mucinolytic bacteria have a role in breaking down the anti-

foaming mucins in the saliva. However, Mendel and Boda (1961) could 

not demonstrate differences in the mucin content of saliva from animals 

with high or low susceptibility to bloat. They found higher bicarbon-

ate concentrations in saliva of bloat susceptible cattle. 

In conclusion a large salivary secretion could decrease bloat by 

buffering a fall in pH. But it could also increase the severity of 

bloat by increasing the production of carbon dioxide and subsequent 

froth formation. Studies on acid-released carbon dioxide have been 

made by Johns (1958), Mangan (1959) and Gupta et al. (1962). They 

estimate the daily production of carbon dioxide from bicarbonate in 

the saliva during volatile fatty acid production to be greater than 
.•, 

250 i. As mentioned earlier, the animal should be able to ha,ndle 

this volume of gas; however, this amount of carbon dioxide would be more 
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critical if it occurred concomitantly with the factors that contribute 

to maximum foam strength and stability. 

Saliva clearly has the potential of being an important factor 

relating to bloat, but much more data are needed to reach conclusions 

concerning its specific role. 

Plant Factors Associated with Bloat 

Soluble Proteins, Nitrogen and Nucleic Acids 

Plant proteins are significant factors in the formation of stable 

foams (Miltimore et al., 1970). The literature indicates that the 

protein foaming agents are very sensitive .to pH and temperature 

(Pressey et al., 1963b; Buckingham, 1970). These researchers also 

reported the presence of foam inhibitors in alfalfa proteins and sug

gested that the plant contains a complex system of foaming agents and 

inhibitors, and that bloat potential is a delicate balance of these 

different paramet:ers. Bartley and Bassette (1961) support the major 

role of protein in foam formation, but Head (1959) postulated that the 

entrappment of copious gas into small bubbles in the rumen liquor was 

attributed to the presence of pectin and/or hemicellulose. 

Singer et al. (1952) reported that soluble leaf proteins may be 

divided into two main groups on the basis of molecular size. Fraction 

I protein is homogenous and has a molecular weight of about 555,000. 

Trown (1955) has identified this protein to be enzymatically active 

as ribulose-1,5-diphosphate carboxylase. It makes up most of the 

protein of chloroplasts of green leaves (Lyttleton and Ts'O, 1958). 
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Weissbach (1956) described its role as being associated with the ~ixation 

of carbon dioxide during photosynthesis and therefore is a major com

ponent of most green plants. Fraction II protein is made up of all the 

other soluble leaf proteins not included in Fraction I. Fraction II 

mixture of proteins has a molecular weight, from 10,000 to 20,000. 

Fraction I protein is commonly referred to as the foam-stabilizing 

protein, although Jones and Lyttleton (1973) along with Howarth et al. 

(1973) reported that both fractions contribute to the foaming proper

ties of legumes. Stifel et al. (l968a) have shown that soluble leaf 

chloroplasts and total protein were directly related to the severity 

of bloat in cattle and sheep. Howarth et al. (1975) reported the 

minimum soluble protein N concentration at which bloat occurred was 

0.214% of dry weight, These workers also found correlation coeffi

cients between bloat incidence and total nitrogen (N), insoluble 

N, soluble non-protein Nand soluble protein N to be r = 0.25 (P < .05), 

r = .18 (P < .1), r = .10 (P > .1), and r = .34 (P < .005), respectively. 

Miltimore et al. (1964) reported that nitrogen content of alfalfa was 

correlated (r = .54) with the degree of bloat. Miltimore et al. (1970) 

reported that 1.36% Fraction I chloroplast protein would cause bloat. 

McArthur and Miltimore (1969) suggested that the threshold concentra

tion for bloat was approximately 2% for Fraction I protein. They also 

mentioned that bloat provocative forages were higher in soluble protein 

than non-bloating forages and that of the soluble protein, almost one

third was Fraction I, compared with one-sixth or less from non-bloating 

forages. In the same study these researchers also found that there were 

no differences in RNA or DNA content. They concluded that although 

soluble protein might be used as an indicator to estimate bloat 
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potential, the Fraction I protein differences between bloat provocative 

and non-bloat forages were proportionately much larger and therefore 

would be more accurate for estimating the bloat potential of forages. 

McArthur et al. (1964} proposed a hypothesis for the role of Frac-

tion I protein in foam formation. In view of the fact that Reid (1959} 

considered the release of plant cell contents upon chewing to be a fac-

tor in bloat, McArthur et al. (1964} postulated that with the release 

of chloroplasts into the rumen, the Fraction I protein was readily 

soluble in the rumen fluid in a spherical shape. If the molecule 

reached the surface of the rumen fluid without undergoing microbial 

degradation, it would uncoil and become insoluble. These researchers 

related the 
. i 

stability of foam to the relative amount of th~s surface 

denatured protein present in the rumen fluid. However, the cohesive 

forces between the molecules will promote coagulation. Consequently, 

protein is not surface active and will not stabilize a foam. Upon 

agitation, protein coagulation was enhanced due to the strong forces 

between the molecules and there was a consequent reduction in foam 

stability. It would then appear that the significant factors involved 

in the foaming agent concentrations are: the rupture of the leaf cells, 

proteolytic activity in the rumen liquor and agitation of rumen con-

tents. Jones and Lyttleton (1969} lent support to these observations 

concerning protein denaturation by using gel filtration analysis simi-

lar to that reported by McArthur et al. (1964) in obtaining similar 

results. 

Another event that has been reported to be critical to events lead-

ing to surface-denaturation of proteins is the pH of the rumen. Both 

fractions of chloroplast proteins have been reported by Jones and 
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Lyttleton (1972a) to produce strong foams within the pH range of 4.4 

to 6.0. Laby (1969) and McArthur and Miltimore (1969) report that the 

soluble leaf proteins of red and white clovers produce foams of maxi-

mum strength within a pH range of 5.4 to 6.0. Jones and Lyttleton 

(1972a) concluded that both protein fractions have maximum foam strength 

capabilities within this pH range, with Fraction I having a sharper 

maximum at about pH 5.8. 

Soluble Carbohydrates 

Quinn (1943) considered that an easily utilizable carbohydrate 

present in high concentration was in a large part responsible for bloat-

ing, and showed that the incubation of rumen liquor with glucose solu-

tion rapidly increased gas formation. Head (1959) concluded the same 

and postulated that plant pectin and hemicellulose were the substances 

responsible for the foam formation in the rumen of bloated cattle. He 

( ;" 

further stated that higher gas production must be in concert with the 

surface-active agents in order for bloat to occur, and that one without 

the other would have no detrimental effect on an animal. 

In reviewing the literature, most of the findings involving carbo-

hydrates and bloat indicate that pectic substances are most commonly 

involved. Wright (1961) and Dehority et al. (1962) reported that pectin 

does not remain in the rumen long but is degraded rapidly by extracellu-

lar enzymes and microorganisms. Conrad et al. (1958, 1961) has demon-

strated that pectic substances may comprise as much as 8% of the 

dry matter in some grasses; this represents a major source of carbohy-

drates injested by ruminants. Pressey et al. (1963a) reported that 

pectic substances make up 14 to 15% of the dry weight of legumes, 
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but found no correlation with either water soluble or total pectin. 

However, Pressey et al. (1963b) in another study found that added 

pectin increased foam stability of alfalfa extracts in vitro. Wright 

(1960,196la) observed pectic gel formation and entrappment of gas along 

with an increase in viscosity of rumen digesta in vitro and postulated 

that the action of pectin methyl-esterase (Gupta and Nichols, 1962) 

in vivo assisted in this gel formation. Nichols and Deese (1966) and 

Nichols et al. (1968) reported a significant association (P < .01) 

between the incidence of bloat and the intake of this enzyme by the 

animal. Penn et al. (1966) suggested that the presence of a natural 

occurring inhibitor of pectin methyl-esterase is a contributing factor 

in preventing bloat in non-bloating animals. 

Wright (196la) and Hungate (1966) concluded that carbohydrates are 

undoubtedly involved with gas production, but that their effect on 

foam stability is doubtful except when they stimulate rumen microbes 

to produce slime. 

Saponins 

Saponins have a controversial role in frothy bloat. The capacity 

of saponins to stabilize foams and the abundance of saponins in legumes 

is well known, and has stimulated much interest in finding a possible 

role of saponins in bloat (Lindahl et al., 1954). 

Froth due to saponins is stable at pH 5.0 but negligible above 

6.0. The latter would be considered to be lower than the pH of rumen 

digesta in legume-bloated animals (Mangan, 1959). Following the foam 

studies of Mangan (1959), saponins have not been considered to be 
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major agents in the genesis of bloat froth. Mucogenic strains of 

Butyrivibrio which attack saponins have been found in the rumen of 

steers fed fresh alfalfa (Gutierrez, et al., 1958; Gutierrez, et al., 

1959; Gutierrez and Davis, 1962). 

Tannins 

Tannins are polyphenolic compounds that react with proteins to 

form a leather-like substance that is insoluble and has reduced di-

gestibility. 

Miltimore et al. (1970) reported a positive association (P < .05) 

between Fraction I protein and tannins. However, Cheek (1971) pro-

posed that tannin-saponin complexes may, in part, explain the low bloat 

potential of high tannin legumes. Kendall (1964) also showed that 

foam production in vitro was inhibited by tannins. When he added poly-

vinyl pyrrolidone (PVP), an agent known to complex with tannins, the 

ability of rumen fluid to foam was restored. This finding led Kendall 

(1966) to postula·te that foam production in the rumen might be inhibited 

by plant tannin. Although Clarke and Reid (1974) suggested no apparent 

association between tannins and bloat, these researchers cited the 

work of Hutton and Coote (1966) who examined nineteen species of legumes 

and found no correlation between tannin content of leaves and the ab-

sence of bloat. 

Minerals 

Cooper (1957) reported that a high-calcium, low-phosphorous 

ratio and a high-nitrogen, low-phosphorous ratio cause bloat. Many 

salts are foam stabilizing agents. Addition of as little as 0.63 M 
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NaCl increased the foaming capcity of cytoplasmic proteins and maxi-

mized foam stability (Mangan, 1959). 
+2 

On a molar basis Ca was twice 

ff . . +1 . . . as e 1c1ent as Na in enhanc1ng foam stab1l1ty. 

The literature suggests that minerals can be implicated in many 

different manners to promote bloat. Wright: (196la) suggested that 

pectate formation might reduce the available amount of calcium for 

stabilizing foams. Stifel et al. (1968a) found strong correlations 

(r = .85 to r = .92) between bloat and the extent and strength of cal-

cium and magnesium binding to Fraction I chloroplast protein at pH 

5.5. These investigators suggested that any factor(s) which promote 

protein denaturation would enhance bloat. They concluded that the 

mineral binding effect would salt out Fraction I protein and therefore 

stabilize foam. The relationship 
+2 +2 

binding rumen of Ca and Mg to 

bloat may have more meaning in terms of the proposal by McArthur et al. --
(1964). They suggested that Fraction I protein acts as a rumina! 

foaming agent only in a denatured state. Factors such as polar lipids 

would actively compete with protein for mineral and metal ions which 

would decrease surface denaturation of the protein and thus act as 

antifoaming agents. This would agree with Ross and Haak's (1958) 

foam inhibition theory where they observed that anti-foaming agents 

act by absorbing foaming agents from the surface of intralamellar 

bulk solutions. 

Trace Metals 

Miltimore et al. (1970) have shown that the contents of nickel 

and zinc in alfalfa were associated (P < .05) with bloat. Harris and 
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Sebba (1965) identified protein as the foaming agent which binds Ni+2 

on its negatively charged sites, which could well be a natural occurring 

example of ion flotation, where the protein acts as the collector and 

the metal ion is collected. In each case a decrease in stability of 

the foam was accompanied by a decrease in the nickel concentration of 

the foam. They further noted that the nickel concentration decreased 

with time. They also observed that in fresh alfalfa the nickel appeared 

to be available for attachment to the protein, while in aged alfalfa, 

although the nickel was still present, it was no longer available. 

When they added traces of nickel sulfate to the aged solutions, foam 

stability immediately increased substantially. The presence of nickel 

was only detectable when concentrated in the foam. Other possible 

changes over time might involve changes in protein conformation and 

configuration. Their data also showed strong evidence of metal bind

ing to various components of Fraction II protein. 

Lipids 

Mangan (1959) noted that the stability of froth was less in the 

presence of alfalfa chloroplasts. Removal of the chloroplasts increas

ed the stability of rumen foam in vitro. When the lipids were re

moved from the chloroplasts, the chloroplasts were no longer effective 

in disrupting the froth. 

Chloroplasts contain lipids and galactosyl and glycerol esters 

of linolenic acid (Weenink, 1962; Benson et al., 1959). Both bacteria 

(Wrigh~ 1961B) and protozoa (Wright, 1959) of the rumen have been iden

tified as being able to hydrogenate lipid. As lipid is hydrogenated, 

the tendency of the lipid to break up froth increases. Also Oxford 



25 

(1959) showed that ciliate Epidinium could aid foam formation by re-

moving chloroplasts from the rumen at a rapid rate. The action of 

penicillin in preventing bloat is thought to be due, in part, to the 

inhibition of bacteria that modify lipid (Mangan et al., 1959; Wright, 

1961). 

Stifel et al. (1968b) proposed a competitive relationship between 

the protein in alfalfa foam and lipid. These authors suggested that 

polar lipids compete for mineral and metal ions which bind to Fraction 

I protein and decrease protein denaturation. They further postulated 

that with maturity, the saturation of fatty acid content of phospholipid 

of plants increased (Klopenstein and Shigley, 1967)., and that calcium 

binding also increased. Thus, the incidence of bloat would be reduced. 

The inverse is thought to be true with young growing plants. The 

phospholipid content would be high in unsaturated fatty acids, thus 

more calcium would be available to bind to protein to increase denatura-

tion, so viscosity and the incidence of bloat increase. 

This theory has a lot of merit, but paints only a portion of the 

complete picture. Stifel et al. (1968a) found a strong negative corre-

lation (r = - .67) between total leaf lipids of alfalfa and bloat; while 

Miltimore and fellow workers (1970) , although finding lipid concentra-

tion and bloat not to be correlated statistically, reported that as the 

Fraction I protein increased from 2.7 to 3.8%, the average lipid concen-

tration also increased from 4.0 to 6.5%. 

Characteristics of Wheat Forage 

Green winter wheat pasture is an excellent high quality forage. 

Johnson (1973) and Johnson et al. (1974) have demonstrated that the 
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wheat plant is high in protein and low in fiber. Although no digesti-

bility studies were run, these workers suggested that wheat forage 

was highly digestible, since only 3% lignin was present in the 

herbage. Horn et al. (1974) reported that in vitro dry matter dis-

appearance of winter wheat pasture ranged from 48 to 76%. Monson (1978) 

attributed the high digestibility of wheat to its unique mode of 

being digested by bacteria, not only from the particle ends, but also 

from the sides. 

Wheat pasture during the grazing season will usually vary from 

20 to 30% crude protein content .. Johnson et al. (1973) stated that 

up to 27% of the total nitrogen was non-protein nitrogen. 

Wheat pasture contains between 10 and 30% soluble carbohydrate 

on a dry matter basis (Johnson, 1973, 1974). One might conclude that 

the soluble carbohydrate content of wheat forage contributes to the 

rapid evolution of gas during the extensive fermentation of these 

highly digestible substrates by the rumen microorganisms. Yet wheat 

forage is extremely low in soluble carbohydrates during the fall and 

spring, which is usually the time of the grazing season when the inci-

dence of bloat is greatest (Wilson, 1975). Hornet al. (1974) also 

reported that for most of the grazing season the soluble carbohydrates 

in wheat forage were low, relative to the amount of protein present. 

The mineral content of wheat pasture has received some attention 

in consideration to the incidence of bloat. Horn et al. (1974) sug-

gested that wheat pasture may provide a diet too low in available 

calcium and magnesium and too high in phosphorus; which would place 

wheat pasture opposite to the calcium:phosphorus ratio of alfalfa. 



Clay (1973) observed potassium concentrations of 2 to 3% 9~ 

the forage dry matter. High potassium concentrations may decrease 

membrane excitability of the ruminal musculature and decrease ruminal 

motility (Parthasarathy and Phillipson, 1953). 
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Horn et al. (1976) collected samples from pastures where bloat had 

or was occurring. They found that wheat forage samples taken from pas

tures where bloat was exhibited contained less (P < .05) dry matter and 

neutral-detergent fiber. Total soluble nitrogen, soluble protein 

nitrogen and soluble non-protein nitrogen were all higher (P < .05) 

from bloat provacative pastures. 

Microbial Populations Associated with Bloat 

Investigations concerning the role of rumen microbes in the , 

etiologyof bloathave been quite extensive. Jacobson et al. (1958) 

noted that the changes in the bacterial populations of bloating ani

mals were also marked by changes in the ratios of volatile fatty acids 

found in the rumen. Gutierrez et al. (1959) also demonstrated a 

change in the metabolic behavior of rumen flora with the onset of 

bloat. However, the majority of more recent investigators have not 

been able to demonstrate any differences in fermentation rates between 

bloating and non-bloating animals (Gutierrez and Davis, 1962; Clarke 

and Hungate, 1971). In addition Bryant and colleagues (1960), along 

with Clarke (1964) and Clarke and Hungate (1971) have all concluded 

that differences in numbers of species of ruminal microorganisms are 

not related to the occurrence of bloat. 

Gutierrez et al. (1958) indicated an association between poly

saccharide slime formation and the possible role of saponins in 
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causing bloat. Hungate et al. (1955) also postulated that the high 

content of readily available carbohydrate in lush legumes might provide 

sufficient substrate to support a copious production of slime. Vari-

ous workers also have reported that the slime for feedlot bloat con-

tained nucleic acid as DNA (Gutierrez et aJ~., 1961), whereas the slime 

from legume forages contained only RNA (Gutierrez et al., 1963). 

Gutierrez and Davis (1962) and Gutierrez et al. (1963) thought that the 

slime from alfalfa bloat came from the plant and was the by-product 

of microbial utilization of the carbohydrate moiety of the saponin 

molecule. 

Clark (1965) suggested that the cell contents of holotrich 

ciliates may enter into the rumen fluid via rupture of the cell walls 

of the ciliates due to excessive storage of the abundant amounts of 

soluble carbohydrates found in succulent legumes. Jones and Lyttleton 

(1972b) lent support to this hypothesis by demonstrating that the 

particle free cell contents of rumen ciliates do produce rigid foams 

within a pH range of 5.5 to 6.5. This hypothesis is attractive since 

the spillage of the cell contents along with nucleic acids would 

greatly increase rumen fluid viscosity (Hungate, 1966). Yet Bryant 

et al. (1960) found no differences in slime production between bloat 

susceptible and non-susceptible animals. 

The Chemical and Physical Properties of Froth 

Protein Monolayers 

Only a brief discussion will be presented here. For a more ,, 

detailed discussion, the reader is referred to an excellent review 
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article by Kitchener and Cooper (1959). 

Foam is a two phase system, comprised of a discontinuous phase, 

a gas, and a continuous phase, an aqueous solution. Monolayers of 

surface-active molecules located at the liquid-gas interface maintain 

the foam. Upon breaking-up, foams exhibit no scum. A froth, likewise, 

is a two phase system, consisting of a discontinuous gas phase and 

a continuous liquid phase. Froths are unique foams in that they are 

stabilized by insoluble monolayers at the liquid-gas interface. These 

monolayers are not visible. But when the froth collapses, a scum 

becomes visually evident due to the agglomeration of the froth molecules 

at the interface (Kitchener, 1964). 

The stabilizing monolayer is very fluid and elastic in nature. 

Protein monolayers can fulfill these attributes and are recognized 

as being excellent frothing agents. Since froth bubbles are continually 

being bombarded with small mechanical stresses, the elastic properties 

of froths appear to be very important to the stability and persistence 

of a froth. These stresses need to be relieved in some manner, or the 

bubbles would collapse (Labby, 1975). 

Froth Persistence and Stability 

Based on the observation that a pure liquid will not froth, there 

remains little doubt concerning the necessity of a froth stabilizer at 

the interface. Bubbles formed on the interior of a solution of pure 

water and allowed to rise to the surface stop for a short time interval, 

often only a fraction of a second, before bursting into the air. This 

time interval is a measure for the persistence of the film (Burcik, 



1950). The presence of any monolayer on the surface will allow the 

bubble to persist for a longer time, depending on the concentration 

of the surfactants at the liquid-gas interface. Several bubbles at 

the surface of a surfactant solution behave by flowing towards one 

another and forming clusters. Excess surface pressure appears to 

push the bubbles together, based on the observation that the bubbles 

push towards the sides of the vessel and collapse when very little 

surfactant is present (Kitchener, 1964). The behavior of bubbles is 

discussed in more detail in A. M. Gaudin's (1957) text, Flotation. 
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The boundaries of bubble clusters are curved since froth bubbles 

all have different diameters and thus are not characterized by plane 

boundaries between adjoining bubbles. Froths are fundamentally unstable 

systems and this difference is greatly affected by the variation in 

bubble size. The thermodynamic instability of froths is also attri

buted to the draining and bursting of froth films. Since the pressure 

of the gas is inversely proportional to the bubble radius, gas diffuses 

slowly from the smaller bubbles into the larger ones (Labby, 1975). 

A stable froth exists when the film of fluid containing the mono

layers does not thin appreciably with time. The fluid flows downward 

because of gravitation. Brady and Ross (1944) have confirmed that the 

rate of flow is inversely proportional to the viscosity of the liquid. 

With draining of the fluid containing the protein monolayers, there 

is a thinning of the bubble walls until eventually they become so thin 

that the bubbles break. If the viscosity is increased, the rate of 

drainage is reduced and the film of fluid surrounding the bubbles will 

persist for a longer period of time (Labby, 1975). Bikerman (1953) 

in his book, Foams, defined the stability (persistence or life span) 
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of a froth as being determined by the rate of bursting of films and not 

by the rate of drainage. Labby (1975) reported that upon the initia-

tion of bubble collapse between bubble sept.a, the gases from the indi-

vidual bubbles merge, producing new bubbles, whose volumes were the 

sums of the previous ones, with slightly less pressure. The shock of 

this rupture is transmitted to other bubbles with consequent further 

collapse. 

As a froth ages it is made up of larger bubbles and thinner septa. 

It has been observed by the author that the froth bed of rumen fluid 

consisted of large bubbles on top, which would contain less liquid 

surrounding the bubbles, and a lower level of smaller bubbles which 

would be more wet. By administering a constant stream of gas, one 
I 

observes a continual evolution of bubbles from the rumen fluid; with 

the younger bubbles lifting up the older ones. 

Kitchener and Cooper (1959) have mentioned other factors that can 

influence foam stability. Among these are concentration of solute, 

temperature and the effect of mixing more than one surfactant. The 

stability of froths is also very sensitive to changes in pH (Mangan, 

1959; Wright, 1959). 

Environmental Factors Associated with Bloat 

A wide range of environmental factors is associated with the 

occurrence of bloat. Factors that have been considered most important 

include high humidity, rain, wind, frost, dew, and even drought (Cole, 

et al., 1945; Johns, 1956). Clay (1973) working with winter wheat 

pasture noted that during the early fall and spring when the plant 



growth is most rapid, the incidence of deat:h loss due to bloat coin

cided with the above factors. This researcher also observed fewer 
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deaths associated with the spring growth of 1972 (during drought) than 

during the more normal spring of 1973. 

Bailey (1958) noted that bloat was most common with cool nights 

(below 10 C) and mild days. These conditions, which are often asso

ciated with cold fronts, are conducive to the production of high levels 

of soluble sugar and starch in legumes. This may be a triggering 

mechanism for bloat (Bailey, 1958). 

Clay (1973) suggested that the largest number of deaths due to 

bloat in wheat pasture stockers was during periods when the weather 

was fluctuating rapidly and when the forage was succulent and growing 

rapidly. Horn et al. (1974) examined the grazing behavior of stocker 

cattle on wheat pasture and observed that wheat pasture stockers stop 

eating prior to the movement of weather fronts through an area and then 

consume large amounts of forage after the weather fronts have passed. 

An increased forage intake might alter the rumen system sufficiently 

to induce bloat. About 25% of the calves exhibited rumina! distension 

and were believed to be bloated. According to Hancock (1954) the rate 

of eating is not important, although Mendel and Boda (1961) reported 

a higher dry matter content in the rumina! injesta from bloat suscep

tible cows. 

Horn et al. (1976) suggested a subtle relationship between climatic 

(growing) conditions, soil fertility management and stocking rates as 

they affect the maturity of forage growth, accumulation of forage and 

the incidence of bloat. 



33 

Various studies have been conducted in Oklahoma to investigate the 

effect of fertility treatments on the suspected chemical components of 

wheat pasture believed to be associated with bloat. Johnson et al. 

(1974) measured wheat sample fractions for the effect of 9 kg N/ha (con-

trol) 74 kg N/ha (high-N), 92 kg K/ha (high-K) and high-N + high-K 

fertilizers on soluble carbohydrate content and total nitrogen. They 

found no effect of the fertility treatments on the soluble carbohy-

drate content or ·the total nitrogen content in plant tissue. 

Baker and Tucker (1971) found that the nitrate content of wheat 

forage increased with increasing rates of nitrogen. However, growing 

conditions can have a significant effect on nitrate content (Wilson, 

1975). Wilson (1975) further suggested that high levels of nitrate in 

young wheat forage was associated with cloudy weather and light rain. 

He reasoned that these weather patterns may have allowed nitrates to 

accumulate in the plant due to reduced nitrate reductase activity. 

Since moisture must be present for nitrogen to enter the plant root 

zone and thus become available to the plant (Thompson, 1968), the 

absorption of nitrogen into the wheat plant during a dry period or 

season would be considerably reduced. 

The research to date appears divergent in explaining the effects of 

the environment on wheat pasture bloat. 



CHAPTER III 

RUMINAL MOTILITY OF STOCKER CATTLE GRAZED 

ON WINTER WHEAT PASTURE 

Summary 

Aplitude (mm Hg) and frequency (sec) of rumina! contractions were 

measured as an index of reduced secondary rumina! contractions being a 

predisposing factor in the bloating of stocker cattle on wheat pasture. 

Measurements were obtained at approximately weekly intervals during the 

1975-76 and 1976-77 wheat pasture grazing seasons. Rumina! motility was 

recorded during the 1975-76 grazing season by pressure transducers sur

gically implanted in the dorsal rumina! sacs of three Herford steers, 

or by water-filled, balloon cannulae inserted in the dorsal rumina! 

sacs of four additional Hereford steers equipped with permanent rumina! 

cannulae, and attached to an external pressure transducer. Data con

concerning rumina! motility patterns during the 1976-77 grazing season 

was obtained from four Hereford x Angus stocker calves equipped with 

permanent cannulae situated in the dorsal rumina! sac of each animal. 

Baseline data was obtained for both years by measuring amplitude and 

frequency of rumina! contractions prior to placing the steers on pas

ture and/or after the steers had been removed from the trial pasture. 

Mean amplitude (mm Hg) and frequency (sec) ranges of rumina! contrac

tions are listed for 1975-76 and 1976-77. Method of motility 

34 
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measurement is enclosed in parentheses, mean pre- and/or post-wheat 

pasture control amplitude and frequency values are underscored and the 

range of data for amplitude and frequency are listed separately. 

1975-76 (pressure transducers surgically implanted in the dorsal ruminal 

sac) 6.7, 33.5; 16.7-24.9,26.5-35.4; 1975-76 (water-filled balloon, 

cannulae attached to an external pressure transducer) 12.9; 32.2; 17.9-

25.2, 28.3-41.4; 1976-77 (implantable pressure transducers placed in 

the dorsal ruminal sac through small ruminal cannulae) 17.1, 23.8; 11.0-

33.5, 15.8-38.0, respectively. Amplitudes and frequencies of ruminal 

contractions for the two year study, in general, remained fairly con

stant or increased (P < .05). These data do not indicate that reduced 

ruminal motility is a predisposing factor in the bloating of stockers 

grazed on wheat forage. 

Introduction 

Frothy bloat is a major cause of deaths (2-3%) in stocker cattle 

grazed on winter wheat pasture in Oklahoma. Eructation of ruminal fer

mentation gases occurs as a sequel to the secondary ruminal contrac

tions (Sellers and Stevens, 1966). It has also been shown that the 

opening of the cardia is usually associated with the secondary contrac

tions (Stevens and Sellers, 1959) and that the covering of the cardia 

with fluids, such as mineral oil, water or rumen ingesta, results in 

the failure of the cardia to open (Dougherty et al., 1958). The rate 

of eructation has also been demonstrated to be related to the frequency 

and amplitude of the ruminal contractions (Stevens and Sellers, 1959). 

Williams (1955) observed that the primary reticulo-ruminal contractions 
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occurred at regular intervals during frothy bloat, but that the secon

dary contractions were absent. 

At the present time, there is no experimental evidence to suggest 

that a reduction in secondary rurninal cont:r'actions is a contributing 

factor to the bloating of stockers on wheat pasture. The objective 

of this study was to determine if a reduction in rurninal motility 

occurred as a predisposing factor in the bloating of stocker cattle 

grazed on winter wheat pasture. 

Experimental Procedures 

Wheat Pasture 

The studies were conducted on twenty hectares of wheat pasture 

at the Oklahoma State University Dairy Cattle Center. Nineteen kg of 

Triumph 64 wheat seed per hectare were so~1 on September 8, 1975, and 

September 9, 1976. Urea (26 kg/ha) was applied immediately before 

drilling, and 9 kg/ha of 18-46-0 fertilizer was applied with the seed. 

Total nitrogen applied per hectare at planting was approximately 14 

kg/ha. No additional nitrogen was applied during the remainder of 

the grazing season. 

1975-76 Wheat Pasture Grazing Season 

Ruminal motility of three Hereford steers (250 ~ 14 kg) placed on 

wheat pasture on December 31, 1975, was measured at approximately week

ly intervals from January 6, 1976, to February 14, 1976, by means of 
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1 pressure transducers (Figure 1) surgically implanted in the dorsal 

ruminal sac. A model DMP-4A physiograph recorder2 equipped with a type 

7172 strain gauge coupler and a type 7070 channel amplifier was used 

to record the ruminal contractions. The hard wire and electrical leads 

connector of each pressure connector was exteriorized and passed 

subcutaneously to the region of the lumbar vertebra. Each electrical 

leads connector was covered with a water-proof cap during those periods 

in which the cattle were grazing wheat forage, and measurements of 

ruminal motility were not being made. The amplitude and frequency 

of ruminal contractions were evaluated by moving the steers off wheat 

pasture, placing them in individual stalls, and connecting the electri-

cal leads to the physiograph recorder. In order to establish baseline 

data, amplitude and frequency of ruminal contractions were measured 

for three consecutive weeks prior to putting the steers on wheat pas-

ture. While off wheat pasture the steers were fed a ration that con-

sisted of 54% ground alfalfa hay, 32% corn, 7% cottonseed hulls, 5% 

soybean meal and 2% minerals and vitamins. 

During the 1975-76 grazing period, measurements of steers with the 

surgically implanted pressure transducers were interrupted by the loss 

of patency of the transducers as a result of the animals scratching 

their backs on fence wire and low-hanging tree limbs. The average 

number of days for the three steers in which surgical transducers were 

used was eighty-one. Therefore, for the remainder of the wheat pasture 

1 
Model No. P6.5; Konigsberg Instruments, Inc.; 2000 East Foothill 

Boulevard; Pasadena, California 91107. 

2Narco Bio-Systems, Inc.; P.o. Box 12511; 7651 Airport Boulevard; 
Houston, Texas 77017. 
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Figure l. Implantable Pressure Transducer 
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grazing period, water-filled, balloon cannulae were used. These were 

inserted into the dorsal ruminal sac through small ruminal cannulae 

(2.54 em. I.D.) of four Hereford steers (216 + 7.0 kg) placed on the pas-

ture on November 10, 1975. The water-filled, balloon cannulae con

sisted of approximately 210 em of intramedic polyethylene tubing3 

attached to a piece of stainless steel tubing (12 em in length); this 

was passed through a No. 6 rubber stopper, terminating with a No. 0 

rubber stopper, to which a balloon was fastened with a copper wire. 

The water-filled, balloon cannulae were attached to a type P-lOOOA 

external pressure transducer (Figure 2). The calibration was estab-

lished by placing the transducer inside an enclosed glass container 

(Figure 3). The steers were moved to individual stalls before ruminal 

motility was measured. Baseline data for these measurements were ob-

tained for two consecutive weeks after the steers had been taken from 

the wheat pasture. The same control ration was fed as indicated pre-

viously. 

The average daily weight gains of both sets of cattle on the 

wheat pasture (143 head days) was (0.93 ~ .04 kg/head/day. This 

reflects the large amount of wheat forage that was available to them. 

1976-77 Wheat Pasture Grazing Season 

Four ruminally cannulated Hereford x Angus steer calves (243 + 6.0 

kg) were placed on winter wheat pasture on November 13, 1976, and 

remained on pasture until March 24, 1977. Measurements of ruminal 

3PE 240 (1.67 mm I.D., 242 mm O.D.); Clay Adams; Parsippany, 
New Jersey 07054. 



Figure 2. External Pressure Transducer and Water-Filled, 
Balloon Cannulae 
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~iqure 3 . Enclosed Glass Container and 
Pressure Gauge for Calibra
tion 

4l 
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motility were taken from November 23, 1976, to March 15, 1977. The 

average daily gain of the steers, based on 153 head days on pasture, 

was 0.95 ~ .05 kg/head/ day. Ruminal motility of the steers was mea-

1 
sured by placing itnpL:mtable pressure transducers in the dorsal ruminal 

sac through small ruminal cannulae (2.54 em I.D.). The ruminal contrac-

tions were measured by moving the steers off wheat pasture, placing them 

in individual stalls, connecting the transducer to the physiograph re-

corder, calibrating the recorder by placing the transducer inside an en-

closed glass container (Figure 3) and then inserting the transducer into 

the dorsal ruminal sac, through the ruminal cannula of each animal. The 

baseline data was obtained by measuring amplitude and frequency of rumi-

nal contractions for two consecutive weeks prior to putting the steers 

on pasture, and for two consecutive weeks after taking them from the 

wheat forage. The same control ration as used the previous year was fed. 

In both years, no attempt was made to differentiate between pri-

mary contractions of the reticulum or to distinguish dorsal secqndary 

contractions from ventral secondary contractions. 

Statistical Analysis 

The ruminal motility data were analyzed by analysis of variance 

procedures for a randomized complete-block design with steers as blocks 

and time on wheat pasture as treatment. Tests of significance between 

the amplitudes and frequencies of ruminal contractions while on wheat 

pasture versus the mean pre- and/or post-wheat pasture amplitudes and 

frequencies were made by use of an LSD protected by a preliminary F 

test (steel and Torrie, 1960). The date x steer mean square was used 

as the error mean s.quare . 



Analyses of the pre- and post-wheat pasture mean amplitudes and 

frequencies for the 1976-77 grazing period were compared with an LSD 

as the test criterion. 

Results and Discussion 

1975-76 Wheat Pasture Grazing Season 
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The mean amplitudes and frequencies of ruminal contractions of 

steers while on wheat pasture and during the pre- and post-wheat pas

ture periods are shown in Tables I and II. Most of the amplitudes of 

ruminal contractions were significantly increased (P < .05) when 

compared to the respective pre- or post-wheat pasture amplitude means. 

Extremely large amplitudes of ruminal contractions, in the range of 

40 to 50 mm Hg, were frequently observed during the grazing period. 

The frequency of the ruminal contractions was slightly increased 

(P < .05), when compared to the control mean on March 17, 1976. Sig

nificant (P < .05) reductions in ruminal amplitude and/or frequency 

patterns, were not evident from the data collected. 

Since histamine is a potent inhibitor of ruminal motility and 

eructation, (Dougherty, 1942; Dain et al., 1955), and since the level 

of dietary protein affects ruminal histamine concentrations (Long 

et al., 1970), aliquots of rumen fluid were saved for histamine 

analysis. In addition, O'Sullivan (1968) demonstrated that the his

tamine content of several forages varies markedly with mositure and 

temperature conditions. Histamine concentrations of the ruminal fluid 

samples (four samples per week for five weeks) were determined by a 



AMPL., mm Hg 

FREQ., sec. 

TABLE I 

RUMINAL MOTILITY OF WHEAT PASTURE STOCKERS. (SURGICALLY IMPLANTED 
PRESSURE TRANSDUCERS), 1975-76 

Mean, Pre- Wheat Pasture 
Wheat 

Pasture DATE: 1-6 1-15 1-19 1-22 

6.7 23.2* 24.9* 23.7* 16.7* 

33.5 26.5 35.4 32.2 31.6 

a,b2 and 1 steer, respectively. 

*significantly different from mean of pre-wheat pasture period (P < .05). 

l-30a 

21.7 

38.2 

2-14b 

14.3 

45.6 

""' ""' 



TABLE II 

RUMINAL MOTILITY OF WHEAT PASTURE STOCKERS (WATER-FILLED, BALLOON CANNULAE ATTACHED TO P-1000-A 
EXTERNAL PRESSURE TRANSDUCER), 1975-76 

Mean, Post- Wheat Pasture 
Wheat 

Pasture DATE: 3-3 3-10 3-17 3-26 4-2 

AMPL., mm Hg 12.9 18.6 22.7* 23.5* 25.2* 17.9 

FREQ., sec. 32.2 40.0 38.4 41.4* 36.6 28.3 

*significantly different from mean of post-wheat pasture period (P < .05). 

*"' lTl 
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fluorometric procedure (Shore et al., 1959; Hakansan et al., 1972). 

The samples from December 9, 1975, to January 15, 1976, were analyzed. 

Ruminal histamine concentrations ranged from 1.0 to 6.6 ~g/100 ml 

rumen fluid. Dain et al. (1955) reported signs of acute illness in 

overfed sheep when the rumina! histamine concentrations approached 

500 ~g/100 ml. Based on these preliminary findings, plus the lack of 

reduced rumina! motility for that year, it was concluded that rumina! 

histamine concentrations were not of sufficient magnitude to alter the 

normal rumina! motility behavior of stocker cattle grazed on wheat 

pasture. Consequently no further analyses were made. 

1976-77 Wheat Pasture Grazing Season 

The mean amplitude and frequency of rumina! contractions during 

the pre- and post-wheat pasture, and the wheat pasture grazing period 

are shown in Tables III and IV, respectively. The mean amplitudes and 

frequencies displayed for pre- and post-wheat measurements in Table III 

were not different (P > .05) from one another. Large amplitudes in the 

range of 40 to 50 mm Hg were also frequently observed during the 1976-

77 grazing season. The amplitude of rumina! contractions was 

increased (P < .05) on four dates during the wheat pasture grazing 

period, whereas the mean amplitude on March 1, 1977, was decreased 

(P < .05). Frequency of rumina! contractions were generally increased, 

although significant (P < .05) reductions were observed on March 15, 

1977. 

The results of the two year study (Table V) , expressed as per

centage changes from the control values infer, that rumina! amplitude 

and frequency patterns of stocker calves grazed on winter wheat pasture 



TABLE III 

RUMINAL MOTILITY OF WHEAT PASTURE STOCKERS (PRE- AND POST-WHEAT), 1976-77 

Mean, Pre- and 
Mean, Pre- Post-Wheat Mean, Post- .Post-Wheat 

Pre-Wheat Pasture Wheat Pasture Pasture Wheat Pasture Pasture 

DATE: 11-4 11-10 11-11 4-28 5-6 

AMPL., mm Hg 20.0 17.6 17.7 18.4 16.8 13.5 15.2 17.1 

FREQ., sec. 27.1 24.3 23.3 24.9 17.3 27.0 22.2 23.8 

~ 
"-1 
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TABLE IV 

RUMINAL MOTILITY OF WHEAT PASTURE STOCKERS, 1976-77 

MEAN, PRE- AND 
POST-WHEAT PASTURE: 

WHEAT PASTURE 

11-23 
11-29 
12-7 
12-14 
12-28 

1-4 
1-18 
2-1 
2-8 
2-15 
2-22 
3-1 
3-8 
3-15 

AMPL., rom Hg 

17.1 

17.3 
16.5 
18.0 
15.9 
15.9 
23.5* 
33.5* 
25.4* 
15.2 
12.4 
26.6* 
11.0* 
15.9 
15.1 

FREQ., SEC. 

23.8 

31.7* 
29.4 
32.7* 
33.8* 
30.6* 
38.0* 
33.5* 
28.7 
29.6 
34.4* 
22.0 
35.4* 
21.9 
15.8* 

*significantly different from mean of pre~ and post-wheat pasture 
periods (P < .05). 
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TABLE V 

MEAN AMPLITUDE AND FREQUENCY OF RUMINAL CONTRACTIONS 

Amplitude, mm Hg Freg;uency, Sec. 
Control Wheat Pasture Control Wheat Pasture 

1975-76. 

Implanted Pressure 6.7 22.12 (+230) a 33.5 24.8 ( -6) 
a 

Transducers 

Water-t'illed 12.9 21.58 (+67) a 32.2 36.94 (+15) a 

Ba.lloon Cannulae 

AVG 9.8 21.85 (148.5)a 32.85 30.87 (+4.5)a 

1976-77 

17.1 18.69 (+9) 23.8 29.82 (+25) 

aParenthetical numbers represent the percentage increase of wheat 
pasture from the control. 
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are increased. The data indicate that wheat pasture bloat of stockers 

does not occur secondarily to a reduced rwainal motility. 



CHAPTER IV 

BLOAT POTENTIAL OF WHEAT PASTURE AND ITS 

RELATIONSHIP TO CHEMICAL COMPONENTS OF 

WHEAT FORAGE AND RUMEN FLUID 

Summary 

Rumina! fluid foam stability, expansion and strength, as indices of 

the likelihood of bloat, of four steer calves were measured at weekly 

intervals during the 1975-76, 1976-77 and 1977-78 wheat pasture grazing 

periods. Rumina! fluid viscosity (1976-77) was also measured, as a 

possible alternative to the rumina! fluid foam measurements from January 

18, 1977, to March 15, 1977. Additional analyses were conducted for 

wheat forage chemical components in order to observe changes in concen-

tration during the three separate grazing periods. Soluble nitrogen 

fractions (1977-78) of rumen fluid were also examined. Coefficients of 

2 
determination (R ) of the regression of rumina! fluid foam stability, 

expansion and strength on single or multiple chemical components of 

wheat forage and rumen fluid were determined by using the statistical 

analysis system all possible regression models program. The rumina! 

fluid foam parameters changed (P < .05) during the 1975-76 and 1976-77 

wheat pasture grazing seasons, but the high and low yearly values did 

not occur at the same times across years. Rumina! fluid viscosity 

showed no significant differences (P > .05) over time. Chemical com-

ponent concentrations of wheat forage also changed (P < .05) during 

51 
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all three wheat grazing years. The soluble nitrogen fractions of rumen 

fluid also changed (P < .05) during 1977-78. Maximum variation in 

foam stability, expansion and strength measurements accounted for by 

the forage chemical components were, respectively: 1975-76; 9.2% 

(dry matter, soluble carbohydrates, crude protein, foam-stabilizing 

protein), 7.8% (dry matter, soluble carbohydrates crude protein, foam

stabilizing protein) and 33.4% (dry matter, soluble carbohydrates, 

crude protein, foam-stabilizing protein); 1976-77; 50.1% (dry matter, 

neutral-detergent fiber, crude protein, total soluble nitrogen, 

soluble protein nitrogen), 39.3% (dry matter, neutral-detergent fiber, 

crude protein, total soluble nitrogen, soluble protein nitrogen), 

49.3% (dry matter, neutral-detergent fiber, crude protein, total soluble 

nitrogen, soluble non-protein nitrogen); and 1977-78; 34.7% (dry matter, 

neutral-detergent fiber, crude protein, total soluble nitrogen, soluble 

non-protein nitrogen), 22.0% (neutral-detergent fiber, crude protein, 

total soluble nitrogen, soluble protein nitrogen, soluble non-protein 

nitrogen), 25.2% (dry matter, neutral-detergent fiber, total soluble 

nitrogen, soluble protein nitrogen, soluble non-protein nitrogen). 

Maximum variation in ruminal fluid foam stability, expansion and 

strength accounted for by the total soluble nitrogen, soluble protein 

nitrogen and soluble non-protein nitrogen fractions of rumen fluid were: 

23.0%, 26.8% and 4.7%, respectively. 

Introduction 

Death losses among stocker cattle grazed on winter wheat pasture 

in Oklahoma have been reported to be as high as 25,000 head annually 
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(Johnson, 1973), due to the stocker syndrome. A rapid death seems appar-

ent since very few animals are observed in the process of dying. Due to 

the nature of rumen contents, necropsy lessions indicative of antemortem 

bloat, and the therapeautic effects of poloxalene, frothy bloat is 

thought to be a contributing factor to the stocker syndrome (Clay, 1973). 

A number of forage chemical components have been postulated as 

important in the production of stable rumina! foams. Bartley and 

Bassette (1961) concluded that the foaming constituent of cattle 

grazed on bloat provocative alfalfa pastures was proteinaceous in 

nature. Howarth et al. (1975) correlated nitrogenous fractions of al-

falfa with the incidence of bloat. Correlation coefficients between 

the incidence of bloat and the nitrogenous fractions were: total 

nitrogen, r = .25 (P < .05); insoluble nitrogen, r = .18 (P < .1); 

soluble non-protein nitrogen, r = .10 (P < .1); and soluble protein 

nitrogen, r = .34 (P < .005). 

Rumbaugh (1969), used the apical 10 em of a sufficient number of 

alfalfa stems with attached leaves to conduct a foam test by macerat-

ing the selected plant components in a high speed laboratory blender 

for 4 minutes with 300 mls of pH 5.6 phosphate buffer at room tempera-

ture. The contents were then transferred to a 1000 ml graduated 

cylinder. After two minutes the cylinder was shaken to eliminate any 

large trapped air pockets and a foam score or stable foam volume of 

the plant sample was recorded. This researcher reported a correlation 

coefficient of .18 (P < .1) between his foam test with the incidence 

of bloat. Pressey et al. (1963b) found a correlation coefficient of 

r = .56 (P < .01) between bloat incidence in cattle grazing alfalfa 

and stability of foams generated in vitro. 
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The objectives of this study were: (1) to measure changes in 

ruminal fluid foam stability, expansion and strength (as indices of the 

likelihood of bloat) during the wheat pasture grazing season, (2) to 

determine the concentrations of specific wheat forage chemical com

ponents (believed to be related to the incidence of wheat pasture 

bloat), and (3) to determine the relationship between concentrations 

of wheat forage chemical components and the rumina! fluid foam mea

surements. 

Experimental Procedures 

Wheat Pasture 

The studies were conducted on twenty hectares of wheat pasture at 

the Oklahoma State University Dairy Cattle Center. Nineteen kg of 

Triumph 64 seed were sown per hectare on September 8, 1975, and 

September 9, 1976, and 1977. Prior to drilling, urea (26 kg/ha) was 

applied, and 9 kg/ha of 18-46-0 fertilizer was included with the seed. 

There were no additional applications of nitrogen during the grazing 

periods. 

Ruminal Fluid Foam Stability, Expansion 

and Strength 

Measurements of foam stability, expansion and strength were made 

on ruminal fluid samples taken from 3 separate sets of 4 fall- weaned 

rumen cannulated steer calves. Hereford calves were used during 

the 1975-76 and 1977-78 grazing seasons, while Hereford x Angus calves 

were used during the 1976-77 grazing period. The length of each 



grazing period from which measurements were collected was: (l} 

December 23, 1975, to April l, 1976, (2} December 21, 1976, to March 

22, 1977, and (3} November ll, 1977, to April 6, 1978. 
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During the wheat pasture grazing periods, rumen fluid samples 

were taken at weekly intervals. The ruminal fluid samples were 

strained through four layers of cheesecloth, and were then centrifuged 

at 754 x g for 10 minutes. The supernatant of each sample was then 

decanted and used for the measurements of ruminal fluid foam stability, 

expansion and strength. The ruminal fluid foam measurements were 

made by a modification of the procedure of Mangan (1958}. The foam 

measurements were obtained by placing a continuous volume of rumen 

fluid (40 ml} in a glass column (Figure 4} and passing compressed air 

(19-23% oxygen, 77-81% nitrogen} through a fritted glass disc1 for 

10 minutes at a constant pressure (1.95 kg/sq.cm.}. The column shown 

in Figure 4 (110 em long, internal diameter of 3.25 em} was carefully 

selected for uniformity of bore. The glass column contains two inlets. 

One, through which gas enters, is located 5.5 em below the fritted 

glass disc. The other inlet, through which the rumen fluid enters, is 

located 2.5 em above the fritted glass disc. To avoid parallax errors, 

a red line, 4.5 em above the fritted glass disc, was used to adjust 

the amount of rumen fluid to a constant 40 ml volume. The apparatus 

was mounted to maintain the column in an exact perpendicular position. 

The gas flow was held constant with the aid of an additional pressure 

regulator. Foam stabilities were estimated from the slopes (regres

sion coefficients} of the resulting plots of foam height versus 

1size 30 Course; Kimflow 
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Figure 4. Ruminal Fluid Foam Measuring Apparatus 
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foaming time. Foam stability was defined as the rate of foam forma

tion compared to the rate of breakdown, and increased as the magnitude 

of the regression coefficients increased. The measurements of foam 

expansion and strength were defined as the volume of roam produced frcm 

a given amount of rumen fluid (em foam/ml fluid) at the end of the 10 

minute foaming period, and as the rate of fall (em/sec) of a perforated 

aluminum weight (44 g) through the resultant foams, respectively. 

As a possible alternative to the ruminal fluid foam stability, 

expansion and strength measurements, ruminal fluid viscosity was 

measured from 4 steers at weekly intervals for 8 weeks (January 18, 

1977, to March 15, 1977). Studies have shown that ruminal fluid 

viscosity is increased in bloated animals, possibly as a result of the 

ruptured microbial cell walls and the spillage of cell contents into 

the rumen (Clarke, 1965). It has been suggested that lysis of bac-

teria occurs as a result of excess intraruminal pressure and engorge

ment by certain bacteria of soluble carbohydrates (Clarke, 1965; Jones 

and Lyttleton, 1972a). Ruminal fluid viscosity (units of centistrokes) 

was determined on strained rumen fluid following analysis with a No. 

C-155, size 100 viscometer. 

Wheat Forage Chemical Components 

From November 23, 1975, to April 1, 1976, 114 samples of wheat 

forage for 19 weeks, 6 samples per week, were collected. Each 

sample represented clippings of wheat pasture from 1 of 6 randomly 

assigned areas in the test plot. The samples were immediately frozen 

in a liquid nitrogen tank (-196 C), and then ground with dry ice in a 



Wiley Mill, through a 2 mm screen. After grinding, the samples were 

stored in plastic bags in a freezer (-20 C) until chemical analyses 

were conducted. The plastic bags were left unsealed overnight to 

permit the dry ice residue to evaporate prior to being sealed. Table 

VI shows the specific chemical components examined and the sampling 

time intervals at which they were analyzed. 

During November 4, 1976, to March 22, 1977, samples of wheat 

forage for 19 weeks were collected in the same manner as the previous 

year and represented the same random clipping procedure for obtaining 

6 individual represenative samples. The forage samples were frozen 

(-20 C) immediately after collection and ground with dry ice through 
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a 2 mm screen and stored as described for the 1975-76 grazing period. 

Table VI describes the specific chemical components examined and the 

time intervals at which they were analyzed. The 1977-78 wheat grazing 

season began on November 11, 1977, and continued until April 6, 1978. 

During this length of time, 8 weeks of forage samples were collected 

from only 4 randomly assigned areas of the test plot, from which 4 

representative samples were taken. Samples from this grazing season 

were analyzed for dry matter content immediately after being collected. 

These field dry matter evaluations were determined in a Despatch 

Batch oven at a temperature of 55 c. These samples were then ground 

in a Wiley Mill through a 2 mm screen. Table VI describes the 

specific chemical components examined and the time intervals at which 

they were analyzed. 

Neutral-detergent fiber analyses were conducted according to the 

procedure of Goering and Van Soest (1970). Crude protein content of 



TABLE VI 

WHEAT FORAGE CHEMICAL COMPONENTS ANALYZED DURING THE 
VARIOUS WHEAT PASTURE GRAZING SEASONS 

Year 
Chemical Component 1975-76 1976-77 

Dry matter a a 
X X 

Neutral-detergent fiber b 
X 

Soluble carbohydrates a 
X 

Foam-stabilizing protein a 
X 

Crude protein a a 
X X 

Total soluble nitrogen 
b 

X 

Soluble protein nitrogen 
b 

X 

Soluble non-protein nitrogen b 
X 

a 
Samples analyzed at one week intervals. 

b Samples analyzed at two week intervals. 
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1977-78 

b 
X 

b 
X 

b 
X 

b 
X 

b 
X 

b 
X 
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the forage samples was determined.by the macro-kjeldahl method 

(A.O.A.C., 1975). Analyses of the soluble nitrogen fractions were 

conducted using a buffer [Na2 H P04 (56.5 g/~), NaH2Po4 (54.5 g/£), KCl 

(21.5 g/'£), NaCl (.21.5 g/£), .IvlgS04 ·7:H2o (5.82 g/Q.), K2so4 (7.5 g/Q.), 

from the "Ohio" in vitro fermentation media (Johnson, 1969). Two or 

0.5 g of wet or dry forage, respectively, were incubated in 125 ml 

buffer (pH 6.5) at 39 C in a shaking water bath for one hour. The 

solution was then filtered through Whatman #4 filter paper. Fifty ml 

aliquots of the filtrates were then analyzed for total soluble nitro-

gen by the macro-kjeldahl method (A.O.A.C., 1975); a blank consisted 

of 50 ml of buffer. Total soluble non-protein nitrogen concentrations 

were determined by deproteinizing 25 ml of the filtrate with 5 ml 

1.07 !. H2so4 and5 ml 10% sodium tungstate. This solution was mixed 

in centrifuge tubes and allowed to settle overnight in a refrigerator 

(5 C). The following morning the samples were centrifuged at 12,062 x 

g for 10 minutes, and 25 ml of the supernatant fluid was analyzed for 

total nitrogen by the macro-kjeldahl method (A.O.A.C., 1975). 

Twenty-five ml of a solution of 25 ml buffer, 5 ml 1.07 N H so4 and 
- 2 

5 ml of 10% sodium tungstate was used as a blank. Forage soluble 

protein nitrogen concentrations were calculated by the difference in 

nitrogen content of total soluble nitrogen and soluble non-protein 

nitrogen concentrations. 

The phenol-sulfuric acid procedure (Johnson et al., 1966) was 

used to determine the soluble carbohydrate content of wheat forage 

samples. 

) 
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Ribulose-1,5-diphosphate carboxylase (RuDP carboxylase or foam-

stabilizing protein) was assayed, discontinuously, as the amount of 

radioactive, acid-stable product (3-phosphoglycerate) produced during 

a 20-minute reaction period at 25 c in a shaking water bath (Chu and 

Bassham, 1973). Each reaction mixture of 0.4 ml total volume contained 

ribulose-1,5-diphosphate, (0.5 mM), MgCl ·6H o (10 mM), NaH14co3
2 

2 2 

(.29 mM), and the enzyme preparation (0.1 ml) in 0.1 M tris-HCl buffer, 

pH 7.8. 
. . . 3 

Enzyme preparat1ons were prepared by homogen1z1ng 5 g 

of wheat forage in 9 volumes of cold water. Homogenization in tris-HCl 

buffer, pH 7.8, versus water did not affect enzyme activity. The 

homogenates were then centrifuged for 10 minutes at 1086 x g, and the 

supernatant fluid was used as the enzyme preparations. At the end of 

the reaction period, 0.1 ml of concentrated glacial acetic acid was 

added to stop the reaction. The reaction vials were then flushed with 

nitrogen at room temperature to dryness. Water (0.5 ml) was added to 

each reaction vial to dissolve the residue. Ten ml of scintillation 

solution was added to each vial, and radioactivity was determined by 

counting in a liquid scintillation counter. Blanks to correct for any 

3-phosphoglycerate produced non-enzymatically were prepared by substi-

tution of buffer for enzyme preparation. One unit of RuDP carboxylase 

activity was defined as that amount of enzyme which catalyzed the 

cleavage of 1 ~mole of ribulose diphosphate to 2 ~moles of 3-phosphogly-

cerate per minute at 25 c. 

Plots of radioactivity (counts/minute) versus (1) .05 to .25 ml 

of enzyme preparation (.05 ml increments) at a fixed reaction time of 

2specific activity: 43.3 mCi/mmole, New England Nuclear; 549 
Albany Street; Boston, Mass. 02118 

3 11 . . Sorva 0mn1-m1xer. 
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20 minutes, and (2} reaction times of 5 ~o 30 minutes (5 minute incre-

ments) at a fixed amount of enzyme preparation (0.1 ml) were linear. 

Standard vials containing 1 to 20 units x 10-4 of standard 

4 
RuDP carboxylase in place of the wheat forage enzyme preparation were 

included in each set of assays. The regression of radioactivity versus 

units of standard enzyme was used to convert radioactivity resulting 

from wheat forage enzyme preparation to units of RuDP carboxylase 

activity. 

~umina,l Fluid Analyses. 

Ruminal fluid pH was of interest since the acidity of the rumen 

affects the formation of stable foams (Mangan, 1959; Wright, 1959). 

Ruminal fluid pHs were measured during each of the three grazing sea-

sons with a Corning Model 12 Research pH meter. 

Ruminal ammonia concentrations of the steers grazed on wheat 

pa,sture were also analyzed for each of the three grazing periods. 

Fifty·ml of the strained ruminal fluid were acidified with 1 ml of 20% 

H2so4 , sealed in a plastic container and immediately placed on ice. 

The samples were then transported to the laboratory and analyzed for 

ammonia by the magnesium oxide distillation step of the macro-kjeldahl 

procedure (A.O.A.C., 1975). 

During the 1977-78 grazing period, additional aliquots of strained 

ruminal fluid were collected and analyzed for total soluble nitrogen, 

soluble protein nitrogen and soluble non-protein nitrogen. The samples 

were centrifuged at 27,138 x g for 20 minutes, and 25 ml aliquots of 

4 Type I; Partially purified powder ~rom spinach; Sigma Chemical 
Company; 3500 DeKalb Street; St. Louis, Missouri 63118. 
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the supernatant fluids were analyzed for total soluble nitrogen by the 

macro-kjeldahl procedure (A.O.A.C., 1975). The supernatant flui1s (12.5 

ml aliquots) were then deproteinized with 2. 5 ml of 1. 07 ! H2so4 and 

2.5 ml of 10% sodium tungstate. These solutions were then placed in 

the refrigerator (5 C) overnight. The samples were centrifuged at 

12,062 x g the following morning, and 12.5 ml aliquots of the super

natant fluids were analyzed for total nitrogen. Soluble protein nitro

gen was calculated by the difference between the total soluble nitrogen 

and soluble non-protein nitrogen concentrations. 

Statistical Analyses 

All ruminal fluid measurements were analyzed by analysis of vari

ance procedures for a randomized complete-block design with steers as 

blocks and time as treatment. Forage data were analyzed as a completely 

randomized design with time as treatment. Differences among treatment 

means for both the ruminal fluid and forage data were tested for 

sifnificance by an LSD protected by a preliminary F test (Steel and 

Terrie, 1960). The error mean squares for the ruminal fluid and forage 

data were date x steer and date x forage, respectively, and were used 

for calculating the F values. 

The statistical analysis system all possible regression models 

program was used to obtain coefficients of determination from the 

regression of ruminal fluid foam measurements on wheat forage chemical 

chemical components. The following model was used: 
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where x1 , x2 , x3 , x4 , x5 and x6 represent the independent forage vari

ables that were included in the regression model. The dependent vari

ables for each week were considered to be individual steer observations 

and were regressed on the means of each of the independent variables 

for the respective week. Separate equations were determined for each 

of the three dependent variables: 

Y1 = Foam stability 

Y2 = Foam expansion 

Y3 Foam strength 

Results and Discussion 

Rumina! Fluid Foam Stability, Expansion 

and Strength 

Rumina! fluid foam stability, expansion and strength measurements 

of samples collected during the 1975-76, 1976-77 and 1977-78 wheat 

pasture grazing seasons are shown in Tables VII, VIII and IX, respec

tively. The initial foam stability values (12-23-75, 12-21-76, 11-11-

77) for each year were assigned values of 100%, and the remaining mea

sures of foam stability were expressed as a percentage of these initial 

values. Significant differences (P < .05) were observed in the mea

surements of rumina! fluid foam stability, expansion and strength at 

the different sampling times during 1975-76 and 1976-77 grazing 

seasons. 

During the 1975-76 wheat pasture period, the largest foam stability 

value (420% increase in the initial value) was observed on March 11, 

1976. This increase coincided with a weekly minimum-maximum average 

temperature of 0-13.5 C and 2.6 ern of precipitation during the previous 



TABLE VII 

RUMINAL FLUID FOAM STABILITY, EXPANSION AND STRENGTH MEASUREMENTS (1975-76) 

Stability 
Linear 

Regression Percent of Initial Expansion Strength 
Date n Coefficients Value (em. Foam/ml Fluid) (cm./sec.) 

12-23-75 4 .396bcd 100 7 _48abcd 

12-30-75 4 .268bcd 68 4 _26abcd 

1-15-76 4 .303 
bed 

77 6 _25abcd 1.92a 

1-22-76 4 .564cd 142 9.20cd 2.18a 

1-29-76 4 .193bc 49 3.88abc 2.45a 

2-12-76 4 .06lb 15 2.49a 2.58a 

2-19-76 4 .419bcd 106 7 _68abcd 1.92a 

2-26-76 4 .618d 156 9.79d 3.80a 

3-5-76 4 .OlOa 3 2.58ab 2.95a 

3-11-76 4 1.665a 420 26.16e 10.78b 

3-17-76 4 .366bcd 92 7.27abcd 2.65a 

3-25-76 4 .387bcd 98 8.28bcd 4.50a 

4-01-76 4 .393bcd 99 8.57cd 2.35a 

S.E. .22 S.E. 3.43 S. E. 2. 00 

abc 
Meansin the same column with common-lettered superscripts are not statistically different (P>.05). 0'1 

Ul 



TABLE VIII 

RUMINAL FLUID FOAM STABILITY, EXPANSION, STRENGTH AND VISCOSITY MEASUREMENTS (1976-77) 

stability 
Linear Percent of 

Regression Initial Expansion Strength Viscosity 
Date n Coefficients Value (em Foam/ml Fluid) (em/sec) (Centistrokes) 

12-21-76 4 • 71bc 100 1.22c 1.27ab 

12-28-76 4 .68bc 95 1.155bc .55a 

1-04-77 4 .63bc 88 1.18bc 2.96c 

1-18-77 4 .60abc 84 1.14bc .60ab 2.00a 

2-01-77 4 
_58abc 

81 1.19bc 1.94abc 2.0la 

2-08-77 4 .60abc 83 1.22c 1. 74abc 1.68a 

2-15-77 4 .89c 125 1.3lc .9lab 1.57a 

2-22-77 4 
_57abc 

80 .75abc 1. 78abc 1.44a 

3-01-77 4 .2lab 29 .42ab 1.08ab 1.63a 

3-08-77 4 .19ab 27 .42ab 1.30ab 2.19a 

3-15-77 4 .06a 8 .32a 2.04bc 1.66a 

3-22-77 4 .28ab 39 .57abc 2.87c 

S.E. . 26 S.E. .38 S.E. .72 S.E • .29 

abcMeans in the same column with common-lettered superscripts are not statistically different (P>.05). (J) 
(J) 



TABLE IX 

RUMINAL FLUID FOAM STABILITY, EXPANSION AND STRENGTH MEASUREMENTS (1977-78) 

Stability 
Linear 

Regression Percent of Expansion Strength 
Date n Coefficients Initial Value (em. Foam/ml. Fluid) (cm./sec.) 
--

11-11-77 3 .54a 100 1.55a .33a 

11-22-77 4 .Bla 150 .93a 2.45a 

12-09-77 4 .44a 81 .BOa 1.16a 

12-21-77 4 .74a 137 1.18a .90a 

1-06-78 4 1. 33 246 .92a 1.67a 

3-09-78 3 .17a 31 .52a 7.32a 

3-21-78 4 .ooa 0 .20a 2.3la 

4-06-78 3 .14a 26 .54a 2.65a 

S.E. (4. 4) .50 .49 1.95 

S.E. (4. 3) .54 .53 2.10 

S.E. (3.3) .56 .57 2.25 

aMeans in the same column with common-lettered superscripts are not statistically different (P>.05). 

0\ 
-..J 
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week (Appendix Figure 12}. Foam stabilities of 142 and 156% of the 

initial value were observed on January 22 and February 26, 1976, 

respectively. The lowest foam stability was observed on March 5, 1976. 

An explanation for the marked reduction in foam stability from February 

26 to March 5, 1976, is not apparent. However, the crude protein of the 

wheat forage, on the dates where (P < .05) reductions in foam stability 

occurred, was lower (P < .05) than that on March 11, 1976, (Appendix 

Table XVIII). Although the foam-stabilizing protein concentrations of 

wheat forage for March 11, 1976, were significantly lower than the con

centrations on February 12, 1976, and March 5, 1976. Ruminal fluid 

foam expansion and strength measurements also appeared the greatest 

on March 11, 1976, while the lowest values coincided with the low foam 

stabilities. 

The most stable foam observed during the 1976-77 wheat pasture 

grazing period occurred on February 15, 1977. This event also coincided 

with a weekly minimum-maximum temperature of 0-10 C and 3.2 em of pre

cipitation three days prior to sampling (Appendix Figure 12). Both 

foam stability and expansion-measurements showed similar patterns of 

remaining fairly constant until February 15, 1977. The following week, 

foam stability decreased to a level similar to that observed on 

February 8, 1977, and then decreased even lower for the remainder of 

the grazing period (Table VIII). Foam expansion decreased in a similar 

manner until March 22, 1977. A similar decrease in crude protein 

content of the wheat pasture was also observed (Appendix Table XIX). 

No change over time (P > .05) was observed in the rumina! fluid 

viscosity measurements (Table VIII). The regression of rumina! fluid 
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viscosity measurements resulted in correlation coefficients of r = -.14, 

r = .22 and r = - .21, respectively. 

Rumina! fluid foam measurements during 1977-78 were limited in num

ber due to an unusually severe winter. As a result of snow and/or ice 

cover on the wheat pasture from the beginning of January to the end of 

February, no measurements were made. The 1977-78 ruminal fluid foam 

data represented approximately two-thirds the observations taken during 

the two previous years. Differences among the ruminal fluid foam 

measurements were not different (P > .05), although the wheat forage 

chemical components did show (P < .05) difference throughout the grazing 

period (Appendix Table XX). Appendix Table XXI depicts the analysis 

of variance for each of the ruminal fluid foam parameters for the 1977-

78 grazing period. 

In general , as foam stability increased or decreased, concomitant 

increases or decreases occurred in foam expansion. Foam strength 

appeared to be more variable than either of the other two foam measure

ments. The effect of yearly environmental variations in the pattern 

of change in rumina! fluid foam stability showed marked changes across 

years (Figure 5). These data further suggest that the abrupt changes 

in foam stability, expansion and strength are consistent with the 

sporadic incidence of frothy bloat. 

Wheat Forage Chemical Components 

The concentration of all wheat forage chemical components measured 

during the three year study changed (P < .05) with time during each 

of the three years (Appendix Tables XVII, XIX, XX). The changes in 

wheat forage dry matter, neutral-detergent fiber (1976-77 and 
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1977-78 grazing periods only) and crude protein concentrations (which 

may reflect forage maturity and the incidence of bloat) are illustrated 

for each of the three years in Figures 6, 7, and 8 respectively. In 

general, an increase in the crude protein content coincided with a de-

crease in dry matter and neutral-detergent fiber content, during periods 

of rapid forage growth (fall and spring) , when moisture was more plenti-

ful and the days were warmer (Appendix Figure 12). The large early 

increases in dry matter and neutral-detergent fiber concentrations in 

wheat forage and the concomitant decrease in the forage crude protein 

content during the Fall of 1976 are probably atypical and reflect the 

effect of the extremely dry and cold growing conditions for wheat pas-

ture. · Figures 9, 10 and 11 depict the year to year variation in wheat 

forage dry matter, neutral-detergent fiber and crude protein content, 

and demonstrate the difficulty and comparing forage growth patterns 

across years. 

Coefficients of determination (R2) for the regression of ruminal 

fluid foam stability, expansion, or strength on chemical components of 

wheat forage during the 1975-76, 1976-77 and 1977-78 wheat pasture 

grazing periods are shown in Tables X, XI and XII, respectively. 

2 
Although the R values are quite low, it is evident that two to three 

of the forage components accounted for the majority of the variability 

in each of the foam measurements for each year. For example, forage 

dry matter and crude protein (R2 = .485) content accounted for 98% 

of the maximum variation (R2 = .493) which was accounted for in foam 

strength during the 1976-77 wheat pasture period. The independent 

variables listed in Tables X, XI and XII are believed to be related to 

the incidence of bloat. Howarth et al. (1975) reported correlation 
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TABLE X 

2 
COEFFICIENTS OF DETERMINATION (R ) FOR REGRESSION OF RUMINAL FLUID FOAM 

STABILITY, EXPANSION OR STRENGTH ON CHEMICAL COMPONENTS OF WHEAT 
FORAGE (1975-76) 

Number of IndeEendent Variables 
Dependent Independent Dry Soluble Crude 
Variable Variables Matter Carbohydrate Protein FSPa 

Foam 
Stability 1 

2 X 

3 X X 

4 X X X 

5 X X X X 

Foam 
Expansion 1 X 

2 X 

3 X X 

4 X X X 

5 X X X X 

Foam Strength 1 X 

2 X 

3 X X 

4 X X X 

5 X X X X 

aFoam-stabilizing protein -4 (units x 10 /gm forage dry matter). 

b b'l' . t . Foam-sta 1 1z1ng pro e1n (units x 10-4/mg protein). 

'*(P < .OS). 

FSPb 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

2 
R Value 

.025 

.062 

.079 

.085 

.092 

.031 

.056 

.071 

.076 

.078 

.083 

.318 

. 326* 

.328* 

.334* 

-.1 
CP 



Number of 
Dependent Independent 
Variable Variables 

Foam 
Stability 1 

2 
3 
4 . 
5 

Foam 
Expansion 1 

2 
3 
4 
5 

Foam Strength 1 
2 
3 
4 
5 

TABLE XI 

COEFFICIENTS OF DETERMINATION (R2 ) FOR REGRESSION OF RUMINAL 
FLUID FOAM STABILITY, EXPANSION OR STRENGTH ON CHEMICAL 

COMPONENTS OF WHEAT FORAGE (1976-77) 

IndeEendent Variables 
Total Soluble 

Dry Crude Soluble Protein Soluble 
Matter NDFa Protein Nitrogen Nitrogen NPNb 

X 

X X 

X X X 

X X X X 

X X X X X 

X 

X X 

X X X 

X X X X 

X X X X X 

X 

X X 

X X X 

X X X X 

X X X X X 

~eutral-detergent fiber. 
b . . 

Non-prote1n n1trogen. 

*CP < • 05). 

2 
R Value 

* .360 
.418* 
.459* 
.487* 
.501 

.332* 

.343* 

.367"' 

.382* 

.393 

.232* 

.485* 

.488* 

.492* 

.493* 

-...1 
~ 



TABLE XII 

2 
COEFFICIENTS OF DETERMINATION (R ) FOR REGRESSION OF RUMINAL 

Number of 
Dependent Independent 
Variable variables 

Foam 
Stability 1 

2 
3 
4 
5 

Foam 
Expansion 1 

2 
3 
4 
5 

Foam Strength 1 
2 
3 
4 
5 

aNeutral-detergent fiber. 

bN . "t on-prote1n n1 regen. 

*(P < . 05). 

FLUID FOAM STABILITY, EXPANSION AND STRENGTH ON CHEMICAL 
COMPONENTS OF WHEAT FORAGE (1977-78) 

Inde2endent Variables 
Total Soluble 

Dry Crude Soluble Protein Soluble 
Matter NDFa Protein Nitrogen Nitrogen NPNb 

X 

X X 

X X X 

X X X X 

X X X X X 

X 

X X 

X X X 

X X X X 

X X X X X 

X 

X X 

X X X 

X X X X 

X X X X X 

2 
R Value 

.132 

. 

. 

.114 

.18 

.191 

.210 

.220 

. 

. 252 

ro 
0 
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coefficients between the incidence of bloat and total nitrogen, soluble 

protein nitrogen and soluble non-protein nitrogen of fresh alfalfa to be 

r = .25 (P< .05), r = .34 (P < .005) and r = .1 (P > .1), respectively. 

Horn et al. (1976) reported less (P < .05) dry matter and neutral~ 

detergent fiber content of forage samples from bloat provocative wheat 

pastures. They further indicated that the concentrations of crude 

protein, total soluble nitrogen, soluble protein nitrogen and soluble 

non-protein nitrogen fractions of wheat forage samples from bloat 

provocative pastures were all increased (P < .05). 

Ruminal Fluid Analyses 

Ruminal fluid pH changed significantly during the grazing period 

of each year (P < .05, 1975-76 and 1976-77; P < .08, 1977-78). Mean 

ruminal pHs for the various sampling dates are shown in Table XIII. 

The pH ranges for the 1975-76, 1976-77 and 1977-78 wheat pasture graz

ing seasons were 5.9 to 6.4, 6.0 to 6.8, and 6.3 to 6.7, respectively. 

In general, pH values remained well above 6.0, and consequently out of 

the pH range of 5.4 to 5.7 for maximum foam strength of leaf cyto

plasmic isolates of red clover (Laby, 1969; Mangan, 1959). Jones 

and Lyttleton (1969) found maximum foam strength for white clover 

protein to be near pH 5.8. Although Mangan (1959) did show maximum 

strengths at pH values ranging from 5.4 to 6.0 for foams from red-clover 

cytoplasmic protein. Buckingham (1970) reported marked decreases in 

foam strength of red-clover cytoplasmic proteins above pH 6.0 and 

below pH 5.0. 
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TABLE XIII 

RUMEN pH OF STOCKER CATTLE GRAZING WHEAT FORAGE 

Year 

1976-76 1976-77 1977-78 

Date n Date n Date n 

12-9 4 6.34cd 12-21 4 6.15ab 11-11 3 6.37a 

12-16 4 6.19bcd 12-28 4 6.07ab 11-22 4 6.36a 

12-23 4 6.10abc 1-4 4 6.44c 12-9 4 6.62b 

12-30 4 6.42d 1-18 4 6. 77d 12-21 4 6.62b 

1-15 4 6.00ab 2-1 4 6.29bc 1-6 4 6.52ab 

1-22 4 6.25bcd 2-8 4 6.00a 3-9 3 6.72b 

1-29 4 6.34cd 2-15 4 6.2labc 3-21 4 6.34a 

2-12 4 6.40d 2-22 4 6.16ab 4-6 3 6.29a 

2-19 4 6.2lbcd 3-1 4 6.04ab 

2-26 4 6.08abc 3-8 4 6.22abc 

3-5 4 6.30cd 3-15 4 6.16ab 

3-11 4 6.08abc 3-22 4 6.0la 

3-17 4 5.90a 

3-25 4 5.88a 

4-1 4 5.98ab 

S.E. .17 S.E. .12 S.E. (4,4) .13 
S.E. (4, 3) .14 
S.E.(3,3).14 

abcdMeans in the same column with common-lettered superscripts are not 
statistically different (P > • 05) • 
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Due to reports of high protein content of wheat forage (Horn 

et al., 1976), and that 17 to 33% of the nitrogen. is in the form of 

non-protein nitrogen (Johnson et al., 1974), it has been suggested 

that ammonia toxicity may be a etiological factor in the stocker 

syndrome. Rumina! fluid ammonia concentrations changed significantly 

(P <.05) during the grazing period of each grazing year (Table XIV). 

The ammonia concentration ranges for the 1975-76, 1976-77 and 1977-78 

grazing seasons were 24.7 to 53, 26.2 to 76.6, and 28.2 to 73.9 respec

tively. Therefore, it was concluded that the postulated association 

between ammonia toxicity and the stocker syndrome did not exist in the 

trials conducted. 

The soluble nitrogen components of rumen fluid are listed in Table 

XV. All of the components showed significant differences (P < .05) 

over time. The soluble nitrogen components of rumen fluid were studied 

in an attempt to account for more of the variability observed in the 

rumina! fluid foam measurements (Table XVI). However, rumina! fluid 

soluble nitrogen components, in general, accounted for smaller propor

tions of the total variability of the foam measurements than did the 

soluble nitrogen components of the wheat forage (Table XII). Although 

considerably larger values were obtained in attempting to regress each 

of the rumen fluid soluble nitrogen components on multiple wheat 

forage chemical components (Table XVII). 



Date 

12-9 

12-16 

12-23 

12-30 

1-15 

1-22 

1-29 

2-12 

2-19 

2-26 

3-5 

3-4 

3-17 

3-25 

4-1 

TABLE XIV 

RUMEN AMMONIA NITROGEN CONCENTRATIONS (mg/100 m1) 
OF STOCKER CATTLE GRAZING WHEAT FORAGE 

Year 
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1975-76 1976-77 1977-78 
n Date n Date n 

4 29.75abcd 11-29 4 45.50cde 11-11 3 40.79bc 

4 28.81abcd 12-14 4 41.84bcd 11-22 4 44.35c 

4 38.13ef 12-21 4 46.12de 12-9 4 33.57ab 

4 25.38ab 12-28 4 37.18bcd 12-21 4 37.44bc 

4 28.69abcd 1-4 4 39.31bcd 1-6 4 33.66ab 

4 24.69a 1-18 4 35.43b 3-9 3 28.16a 

4 26.44abc 2-1 4 26.15a 3-21 4 73.90e 

4 33.00cde 2-8 4 36.62bc 4-6 3 54.92d 

4 42.38fg 2-15 4 58.25fg 

4 35.25def 2-22 4 76.65h 

4 53.00h 3-1 4 66.40g 

4 50.19h 3-8 4 59.93fg 

4 48.06gh 3-15 4 52.75ef 

4 31.3labcd 3-22 4 43.93bcde 

4 32.19bcde 

S.E. 4.42 S.E. 4.51 S.E.(4,4)4.14 
S.E. (4, 3)4.47 
S.E. (3, 3) 4. 78 

abcdefgh . 
Means ~n the same column with common-lettered superscripts 

are not statistically different (P > . 05) • 



TABLE XV 

RUMINAL FLUID SOLUBLE NITROGEN COMPONENTS! 
(1977-78) 

Total Soluble Soluble 
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Date n Soluble Nitrogen Protein Nitrogen Non-protein Nitrogen 

ll-ll-77 3 52.7bc 17.4bc 35.3b 

ll-22-77 4 39.7abc 5.3a 34.4b 

12-09-77 4 34.3a 7.4a 26.9ab 

12-21-77 4 43.9abc 10.9ab 32.5ab 

1-06-78 4 37.5ab 8.3a 29.lab 

3-09-78 3 30.9a 8.8a 22.1a 

3-21-78 4 87.ld 23.9c 63.2c 

4-06-78 3 53.9c 17.0b 36.9b 

S.E. (4, 4) 6.81 3.16 4.8 

S.E. (4, 3) 7.4 3.41 5.2 

S.E. ( 3, 3) 7.9 3.65 5.5 

abc~ eans in the same column with conunon-lettered superscripts are 
not statistically different (P > • 05) • 

lMg N/100 ml rumen fluid. 



Dependent 
Variable 

Foam 
Stability 

Foam 
Expansion 

Foam 
Strength 

TABLE XVI 

COEFFICIENTS OF DETERMINATION (R2) FOR REGRESSION 
OF RUMINAL FLUID FOAM STABILITY, EXPANSION AND 

STRENGTH ON SOLUBLE NITROGEN FRACTIONS OF 
RUMEN FLUID (1977-78) 

Independent Variables 
Number of Total Soluble 

Independent Soluble Protein Soluble 
Variables Nitrogen Nitrogen NPNa 

1 X 

2 X X 

3 X X X 

1 X 

2 X X 

3 X X X 

1 X 

2 X X 

3 X X X 

a t . Non-pro e~n nitrogen. 
* (P < .05). 
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2 
Value R 

* .147 

.172 

.230 

* .165 

.177 

* .268 

.033 

.043 

.047 



TABLE XVII 

2 
COEFFICIENTS OF DETERMINATION (R ) FOR REGRESSION OF RUMINAL FLUID SOLU-

BLE NITROGEN, SOLUBLE PROTEIN NITROGEN AND SOLUBLE NON-PROTEIN NITRO
GEN ON CHEMICAL COMPONENTS OF WHEAT FORAGE (1977-78) 

IndeEendent Variables 
Number of Total Soluble 

Dependent Independent Dry Crude Soluble Protein Soluble 
variable variables Matter NDFa Protein Nitrogen Nitrogen NPNb 

Ruminal Fluid 1 X 

Soluble 2 X X 

Nitrogen 3 X X X 

4 X X X X 

5 X X X X X 

6 X X X X X X 

Ruminal Fluid 1 X 

Soluble 2 X X 

Protein 3 X X X . 
Nitrogen 4 X X X X 

X X X 

6 X X X X X X 

Ruminal Fluid 1 X 

Soluble 2 X X X 

Non-protein 3 X X 

Nitrogen 4 X X X X 

·5 X X X X X 

6 X X X X X X 

aNeutral-detergent fiber. 
b . . Non-prote1n n1trogen. 

*(P < • 05). 

2 
R Value 

.489 * 
* 

. * 
* 

. 732 * 

.459 * 

.472 * 

.510 * 

.530 * 

.552 * 
• 553 * 

.415 * 

. * 
• 516 * 
.624 * 
. 734 * 
• 766 * 

00 
-...! 



CHAPTER V 

GENERAL DISCUSSION 

These data emphasize the need of determining where major emphasis 

should be placed in regard to measurements of bloat potential, and 

its prediction from forage chemical components. Pressey et al. (1963b), 

Miltimore et al. (1964), Stifel et al. (1968a), Rumbaugh (1969) and 

Howarth et al. (1975 and 1977) attempted to associate the incidence 

and/or degree of bloat with various forage chemical components. 

Coefficients of determination reported between the incidence and/or 

degree of bloat and various forage chemical components were, respective-

ly: R2 = .31 (P < .01); R2 2 2 = .29; R = .72 to .85; R = .03 (P < .1); 

R2 = .01 (P > .1) to .12 (P < .005). In general, the magnitude of most 

2 of the reported R values has been very low. The coefficients of 

determination (.72 to .85) reported by Stifel et al. (1968a) were 

between extent and strength of calcium and magnesium binding to Frac-

tion I chloroplast proteins at pH 5.5 and the incidence of bloat. 

Alfalfa plants (5 from each of 20 locations) were randomly cut, 

mechanically chopped and fed to the assay animals. The animals were 

assigned bloat scores on a basis of 0 to 5 at frequent intervals 

following feeding in order to obtain an overall score for bloat 

severity. The highest score obtained for each animal during the feed-

ing period was used. 
2 The R value of .31 (P < .01) reported by 

88 
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Pressey et al. (1963b) was between the incidence of bloat in cattle 

grazing alfalfa and stability of foams generated from homogenated 

alfalfa extracts. The homogenates were combined with 60 ml of 0.2 M 

phosphate buffer, pH 6.5, with the sample container immersed in water at 

39 C. Nitrogen gas was bubbled through the solution at a constant rate 

3 of 4389 em per hour for 1.75 minutes. Measurements of foam stability 

were based on the rate of decomposition of the foam as determined by 

the rate at which the liquid collected in the column. Results were 

recorded as the volume of liquid remaining in the form of foam. The 

R2 value (R2 = .29) reported by Miltimore et al. (1964) was between the 
__,.....,~ 

incidence of bloat and the crude protein content of alfalfa. The 

alfalfa was cut shortly after 8 a.m. daily, and was fed to 14 lactating 

purebred Jersey cows. At each observation, each animal was scored 

according to the severity of bloat signs on a scale of 1 (normal 

animal) to 7 (animal died of bloat). Average daily bloat incidence 

was the sum of the highest score for each animal divided by the number 

of animals on test. 

In addition to the varying degree of variation in the incidence 

and/or degree of bloat accounted for by forage chemical components, 

each group of researchers has defined or measured the respective 

parameters with different terms and apparatuses. This has further 

complicated interpretation of results. Furthermore, very few studies 

have measured foam parameters of rumina! fluid as the foaming media. 

These are perhaps reasons which have contributed to the general 

failure of identifying the specific cause(s) of bloat, since it was 

first described in 60 A.D. (Church, 1969). 
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The soluble nitrogen fractions reported in this study agree 

quite well in definition and technique with those examined by Howarth 

et al. (1975 and 1977). Although in these studies with wheat pasture, 

a greater portion of the variation in rumina! fluid foam measurements 

(indices of bloat potential) was accounted for by wheat forage 

chemical components. Howarth et al. (1975 and 1977) employed incidence 

of bloat to the forage chemical components of alfalfa cultivars. 

Horn e~ al. (1976) found differences (P < .05) between wheat forage 

chemical components from bloat-prococative wheat pastures and wheat 

pastures where stocker bloat had not occurred. These wheat forage sam

ples were obtained from pastures around the State of Oklahoma when bloat 

occurred, and therefore rumina! fluid samples could not be collected to 

examine possible relationships between rumina! fluid foam measurements 

and wheat forage chemical components. Rumen fluid was used in these 

studies based on the opinion that animal factors and samples from an 

in vivo rumina! environment are pertinent to an understanding of the 

etiology of bloat (Clarke and Reid, 1974). In analyzing the steer 

parameters, no steer effects (P > .05) were observed. The largest 

R2 value obtained in this study was .501 (P < .05; Table XI). 

Since forage intakes were not measured in these studies, a large 

portion of the unaccounted variation could possibly be accounted for 

by rate of forage intake of wheat pasture stockers. Rumen fill has 

been suggested by various workers as being an important factor in 

accounting for the efficiency of eructation and rumina! contractions 

(Dougherty, 1940; Dougherty et al., 1958; Stevens and Sellers, 1959 

and 1960). Stevens and Sellers (1960) recorded a lowering of the 
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contents of the rumino-reticulum of 10-15 em and a raising of the pos- . 

terior dorsal sac of 10 em in ruminally cannulated sheep that were insuf-

flated to an intraruminal pressure of 30 mm Hg in the dorsal sac. If the 

cardia is covered with fluid (including froth) the reflex opening of 

the cardia does not occur (Dougherty et al., 1958). Dougherty (1940) 

and Stevens and Sellers (1959) further noted that if the rumen was 

insufflated with gas experimentally, there was an initial increase in 

the frequency of the 8 contractions and in eructation. In light of 

these observations, along with the hypothesis of the effect of aggita-

tion in protein denaturation iu the rumen (.McArthur et al. , 1964 ). , the -.-
concentration of surface-active agents and ruminal motility could both 

play significant roles in the etiology of bloat. 

The generally high amplitudes and frequencies of ruminal con-

tractions observed during the 1975-76 and 1976-77 wheat pasture grazing 

seasons may be indicative of large forage intakes. However, amplitudes 

of ruminal contractions of all 4 steers on March 1, 1977, (Table IV) 

were lower (P < .05) than the pre- and post-wheat pasture mean. Large 

intakes of wheat forage could conceivably inhibit the opening of the 

cardia due to bulk-fill, and therefore effect an increase in intra-

ruminal pressure and a reduction in ruminal motility (Dougherty et al, 

1958; Titchen, 1968; Akester and Titchen, 1969; Leek, 1969a). Fre-

quency of ruminal contractions measured on March 1, 1977, were not, 

however, decreased by whatever factors caused a reduction in amplitude 

of ruminal contractions. 

Although no signs of bloat were observed in the experimental 

steers during the three-year study, the possible importance of rate 
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of forage intake over a short period of time was further suggested 

by the death, due to bloat, of a Holstein cow on December 7, 1976. 

This cow died shortly after being turned out on a wheat pasture 

adjacent to the wheat pasture utilized in these studies. The dairy 

cattle were allowed to graze wheat pasture 3 hours per day. There 

was no indication from the wheat forage chemical composition data 

(Appendix Table XIX) that the forage was particularly condusive 

to bloat during this time. Horn et al. (1974) observed the grazing 

behavior of stocker cattle on wheat pasture and observed that wheat 

pasture stockers go off feed prior to the movement of weather fronts 

through an area and then consume large amounts of forage after the 

passage of the weather fronts. About 25% of the calves exhibited 

rumina! distension and were believed to be bloated. An increased 

forage intake might alter the rumen system sufficiently to induce bloat. 

According to Hancock (1954) the rate of intake is not important, 

although Mendel and Boda (1961) reported a higher dry matter content 

in boluses from bloat susceptible cows. Reid et al. (1972) attributed 

this difference in dry matter content to be partly related to feed 

intake. 

At present, the results of studies which have attempted to 

identify the etiological factors of bloat and their relative importance 

are inconclusive. In order to obtain a more integrated picture, 

standard criteria must be established on which to base results and 

therefore contribute meaningful data to the etiology of bloat. This 

author suggests a more adequate study of the relationships concerning 

an in vivo rumina! environment. 
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APPENDIXES 



TABLE XVIII 

WHEAT FORAGE COMPOSITION1 , 1975-76 

Dry Crude Soluble Foam-Stabilizing 
2 

Foam-Stabilizing 
Date Matter % Protein % Carbohydrates % Protein Protein 

11-23-75 27.85c 22.16g 17.12i 469.5a 3.6a 

12-01-75 28.9lcd 19.96ef 18.23ij 831.4a 6.9a 

12-09-75 31.49ef 20.09ef 15.64h 899.0a 6.9a 

12-16-75 33.10f 20.06ef 15.53h 534.2a 5.0a 

12-23-75 18.60ab 20.40ef 12.03fg 980.4ab 12.3b 

12-30-75 17.68a 20.94fg 9.34cd 954.2ab 14.0bc 

1-06-76 40.65h 19.13de 14. 77h 1427.9c 13.3b 

1-15-76 50.42j 16.75ab 15.20h 2427.2fg 34.0fg 

1-22-76 50.4lj 16.40ab 14. 77h 1943.8de 25.9d 

1-29-76 50.82j 17.00abc 14.9lh 1382.0bc 15.8bc 

2-05-76 45.99i 17.29abc 12.64g 1466.7c 17.2bc 
2-12-76 42.70h 16.03a 10.33de 2081.9ef 29.3ef 
2-19-76 36.44~ 21.00fg 8.07ab 2608.5g 32.7efg 
2-26-76 42.42 17 6obc 11.9lfg 2332.6efg 27.od 
3-05-76 30.59de 

.ab 
8.22abc 2162.8efg 28.7de 

29.92~de 
16.45ef 

8.50bc 1484.l~d c 
3-11-76 20.19h 18.4, 
3-17-76 24.35b 24.37h 11.36ef 5225.4~ 47.91 

a 35.8~h 3-25-76 22.17 24.80 d 7 .31. . 3258.2. 
4-01-76 29.77cde 18.40c 19. 771 ] 3949.11 39.3 

S.E. 1.5 .89 1.13 446.9 4.9 
1 
2Mean values of 6 forage samples. 

3Foam-stabilizing protein (units x 
Foam-stabilizing protein (units x 

-4 
10_4/gm forage dry matter)~ 
10 /mg protein). 

abcdefghij . . . . . . 
Means 1.n the same column w1.th common-lettered superscr1.pts are not stat1.st1.cally d1.fferent 
(P > • 05). 

3 

I-' 
0 
0'1 



Date 

11-04-76 
11-11-76 
11-18-76 
11-26-76 
12-02-76 
12-09-76 
12-16-76 
12-21-76 
12-28-76 
1-04-77 
1-20-77 
2-01-77 
2-08-77 
2-15-77 
2-22-77 
3-01-77 
3-08-77 
3-15-77 
3-22-77 

S.E. 

1 

2 

abcdefghi 

TABLE XIX 

WHEAT FORAGE COMPOSITION1 , 1976-77 

Neutral- Total Soluble Soluble2 
Dry Detergent Crude Soluble Protein Non-Protein 

Matter % Fiber Protein % Nitrogen Nitrogen Nitrogen 

22.65a 46.30a i 1.84a .68e 1.16c 
a 28.82fg 

21. 78de 
60.55cd 

25.69f 
. 24a_ l.lObc 31.77def 25.44 g 1.34a 

32.71def 
56.'17bc 

26.12g _41abcd 
31. 96fg 24.98efg 1.33a .92a 

33.84f 
59.83cd 

25.96fg 
.49cd g 2.2lc 1. 72e 33.73def 26.11 h 

32.9lef 
56.35bc 

26.359 
.57de g 2.26c 1.69e 33.62h 26.08ab 

37.58h d 
22.70 

b abc d 
37.35h 61.00d 23.49bcde 1.82b .35b d 1.47d a .47 c 
35.99gh 60.96 21.18bcd 1.83 1.36 
35.78b 

59.60cd 
23.29. 

.28ab 1.14bc ~ 1.42a 25.9lbc 28.91hi 
27.02b 

52.47b 
27.86, 

.56de 25.80d f 28.44~ 2.35c 1. 79e 
32.07 e 23.58bcde 

1.80b .82f .98ab c 47.73a 24.44cdef 28.58d 
31.57 22.97bc 

1.18 2. 77 .95 .13 .10 .10 

Mean values of 6 forage samples. 

Percent dry matter. 

Means in the same column with common-lettered superscripts are not statistically different I-' 
0 
-..I 



TABLE XX 

WHEAT FORAGE COMPOSITION1 , 1977-78 

Neutral- Total Soluble Soluble 
Dry Detergent Crude Soluble Protein Non-protein 

Date Matter % Fiber % Protein % Nitrogen2 Nitrogen2 Nitrogen 

11-11-77 21.70b 48.89b 22.88b 1.58c .22a 1. 36f 

11-22-77 26.67c 49.40bc 20.82a 1.39b .21a 1.18e 

12-09-77 34.15d 49.42bc 19.95a l.l9a .26ab .93bc 

12-21-77 36.35d 49. 77bc 20.29a 1.24a 3 cd 
. 8 .86ab 

1-06-78 40.97e 53.60d 21.15a l.l4a .3lbc .83a 

3-09-78 41.96e 52.0lcd 20.75a 1.37b .49f .88ab 

3-21-78 28.08c 49.33bc 27.99c 1.43b .40 
de 

1.03d 

4-06-78 18.65a 45.10a 29.59d 1.45b .45ef l.OOcd 

S.E. 1.28 1. 70 .86 . 06 .04 .05 

1 
Mean values of 4 forage samples. 

2 
Percent dry matter. 

abcdef . h 1 . h 1 d . . . . ( 5) Means 1.n t e same co umn w1.t common- ettere superscr1.pts are not stat1.st1.cally d1.fferent P>.O . 

....... 
0 
ro 



Foam 
Stability 

Foam 

TABLE XXI 

ANALYSES OF VARIANCE FOR RUMINAL FLUID FOAM STABILITY, 
EXPANSION AND STRENGTH ,"1977-78 

Source of Sum of Mean 
Variation df Squares Square F 

total 28 14.39 

steer 3 .20 .06 .13 

date 7 5.11 .73 1.45 

error 18 9.08 .50 

total 28 14.11 
Expansion 

steer 3 1.08 . 36 .73 

date 7 4.28 .61 1.24 

error 18 8.75 .49 

Foam total 28 262.04 
Strength 

steer 3 23.42 7.81 1.03 

date 7 102.11 14.59 1. 92 

error 18 136.51 7.58 

109 

p > F 

.94 

.24 

.54 

.32 

.40 

.12 
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