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PREFACE 

This thesis introduces an additional stratabound, redbed copper de­

posit to the growing list of Midcontinent occurrences.· This north­

central Oklahoma deposit has been defined in the shallow subsurface of 

Grant County through well-cuttings and electric logs. Paleoenvironmental 

considerations have been shown to be important in understanding the ori­

gin of this deposit. Furthermore, recent developments in low temperature 

geochemistry have been applied to study its origin. 

This writer would like to thank Dr. Zuhair Al-Shaieb, thesis adviser, 

for his enthusiastic support and guidance of this investigation. Thanks 

are also due to Dr. Gary Stewart and Dr. Alex Ross, who served on the 

thesis committee and who made valuable suggestions regarding this text. 

Dr. Gary Stewart is especially appreciated for his assistance on strati­

graphy and statistics and for his constructive criticism of the manu­

script. Dr. Pieter Berendsen of the Kansas Geological Survey is thanked 

for introducing this writer to the Midcontinent redbed copper problem 

and for encouraging its further study. Appreciation is extended to the 

Oklahoma Geological Survey Core and Sample Library for permitting use of 

their well-cuttings. The Oklahoma City Geological Society Well Log 

Library is thanked for providing access to electric logs. 

Finally, this writer would like to express sincere gratitude to his 

wife, Joan, for her unyielding support, assistance, and understanding. 
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CHAPTER I 

INTRODUCTION 

The area of investigation is located in north-central Oklahoma, and 

includes all of Grant and the western one~third of Kay Counties. This 

area extends from the southern half of T.29N. to T.25N. and from R.8W. 

to R.lW. consisting of over 1290 square miles (Figure 1). Surface geo­

logy is rather simple as exhibited by lower Permian strata striking 

essentially north-south with dip ranging from 25 to 35 feet per mile to 

the west (Figure 2). The oldest rocks in the study area are the Welling­

ton Formation which is exposed principally in Kay County. The Garber 

Sandstone overlies the Wellington and occupies the central portion of the 

study area. The Hennessey Shale overlies the Garber and is exposed in 

the western third of Grant County. The youngest units are the Quaternary 

deposits associated with the Salt Fork River and its tributaries. Topo­

graphy is strongly related to differential erosion of north-south strik­

ing, gentle west-dipping strata which may form east-facing cuestas. 

More than 50 copper-sulfide bearing locations have been reported in 

Oklahoma across the broad Pennian belt. For the most part, these occur­

rences are limited to the surface, restricted in areal extent and most 

reports contain only brief descriptive remarks. Only two areas have been 

studied extensively: the Greta District, Jackson County, and to a lesser 

extent the Mangum District, Greer County, Oklahoma (Figure 3; Table I). 

1 



T25N 

2 ---..... ------

TEXAS 

Figure 1. Index Map of Study Area 

/ 
/ 

/ 

6 

/ 
/ 

/ 

2 

A 
R 
K 
A 
N 
s 
A 
s 



T 29 N 

T 28N 

T 27N 

T 26N 

T 25N 

.::,;_ 

R8W R 7W 

~ 

D 
~ 

R6W R SW R4 W R3W R2W R 1W 

QUATERNARY 

HENNESSY SHALE 

GARBER SANDSTONE 

WELLING TON FORMATION 

Figure 2 . Geologic Map of Study Area w 



Figure 3. Midcontinent Distribution Map of 
Redbed Copper Occurrences 
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Location 
No. 

2 

3 

4 

5 

6 

7 

County 

Cotton 

Cotton 

Cotton 

Cotton 

Jackson 

Comanche 

Comanche 

TABLE I 

COPPER OCCURRENCES OF THE MIDCONTINENT PERMIAN BELT 

Location 

Sec. 2 and 3, 
T. 5S. , R. 11 W. 

SW-4, SE~, 
Sec. 35, 
T. 4S. , R. 1 OW. 

Sec. 30 
T. 4S. , R. l 2W. 

Sec. 10 
T. 5S. , R. 1 OW. 

Sec. 3, 4, 9, 
10, 15, 16 
T. 1 S. , R. 22W. 

Sec. 31, 
T.3N., R.15W. 

Sec. 19, 
T. 3N. , R. l 4W. 

Remarks 

Chalcocite replacing wood fragments 
with some malachite and azurite 

Chalcocite nodules in sandstone 
coated with malachite 

No data 

No data 

Creta District: Thin green-gray 
copper shale in the Flowerpot Shale, 
average copper content 3. 8%. Main­
ly malachite and chalcocite, with 
minor brochanite and cuprite 

No data 

No data 

Source 

Johnson, 1969 
Fay, 1975 

Fath, 1915 
Johnson, 1969 

Johnson, 1969 
Fay, 1975 

Johnson, 1969 
Fay, 1975 

Ham and 
Johnson, 1964 

Johnson, 1969 
Fay, 1975 

Johnson, 1969 

CJ"I 



Location 
No. 

8 

9 

10 

11 

12 

13 

14 

15 

16 

County 

Comanche 

Kiowa 

Kiowa 

Kiowa 

Kiowa 

Kiowa 

Greer 

Greer 

Beckman 

TABLE I. (Continued) 

Location 

Sec. 19, 
T.31N., R.15W. 

Sec. 8, 
T. 3W. , R. l 6W. 

SE14, Sec. 7, 
T .4N. , R. l 6W. 

Sec. 2, 
T .4N. , R. 20W. 

Sec. 22, 
T. 7N. , R. l 7W. 

Sec. 11, 
T. 7N. , R. l 9W. 

Sec. 21, 22, 
27' 28' 34' 
T .4N. , R. 22W. 

Sec. 27 
T.7N., R.23W. 

Sec. 29, 
T.BN., R.22W. 

Remarks 

Hale Copper Mine, average copper 
content 0.35% 

No data 

Kiowa Copper Company 

No data 

No data 

No data 

Mangum District, Meadows Copper 
Shale Member of the Flowerpot 
Shale, malachite and chalcocite are 
the ore minerals 

No data 

No data 

Source 

Shead, 1926 

Johnson, 1969 

Shead, 1926 

Johnson, 1969 
Fay, 1975 

Johnson, 1969 

Johnson, 1969 
Fay, 1975 

Johnson, 1976 

Johnson, 1969 

Johnson, 1969 
Fay, 1975 
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Location 
No. 

17 

18 

19 

20 

21 

22 

23 

24 

County 

Garvin 

McClain 

Pontotoc 

Seminole 

Okfuskee 

Blaine 

Blaine 

Kingfisher 

TABLE I. (Continued) 

Location 

Sec. 7, 8, 
18' 20 
T. 8N. , R. 1 E. 

SW~, Sec. 33 , 
T.5N., R.2E. 

Sec. 29 
T .4N. , R. 6 E. 

SW~, NE~, 
Sec. 34, 
T. 6N. , R. 5 E. 

SE~, SW1-t1, 
Sec. 31, 
T.17N., R.7E. 

Sec. 15, 
T.17N., R.llW. 

Sec. 29 
T.16N., R. lOW. 

Sec. 7, 
T. l 5N. , R. 9W. 

Remarks 

Malachite in Garber Sandstone, 
Paoli, solution-front body, chalco­
cite and native copper 

Malachite in red sandstones and 
shales of the Stillwater Formation 

Chalcocite in sandstone, average 
copper content 12.3% 

Malachite mineralization 

Malachite with minor azurite, 
chalcocite, chrysocolla, and native 
copper, copper content 15.4% 

No data 

No data 

No data 

Source 

Johnson, 1969 
Shockey and 
others, 197 4 
Redfi e 1 d, 1927 

Redfi e 1 d, 1927 
Merritt, 1940 

Shead, 1929 

Shead, 1929 

Merritt, 1940 
Shead, 1926 

Johnson, 1969 
Fay, 1975 

Johnson, 1969 

Johnson, 1969 
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Location 
No. 

25 

26 

27 

28 

29 

30 

31 

32 

County 

Garfield 

Grant 

Noble 

Noble 

Noble 

Noble 

Noble 

Noble 

Location 

NE~, SE~, 
Sec. 8, 
T.24S., R.3W. 

NE~, Sec. 5, 
T.25S., R.3W. 

NE\, Nl~!-:2, 
Sec. 35, 
T.21N., R. rn. 

E~, Sec. 3, 
T.20N., R. lW. 

W~, Sec. 19, 
T. 20N. , R. l E. 

E~, Sec. 3, 
T.21N., R. lW. 

SW~, SE~, 
Sec. 25, 
T.21W., R.3E. 

NW~, SE~, 
Sec. 16, 
T.22N., R.2E. 

TABLE I. (Continued) 

Remarks 

Native copper in the Hennessey 
Shale with 40% copper 

Chalcocite replacing wood fragments 

Galena reported from the bottom of 
a 40 foot shaft 

Upper-middle Wellington Formation 

Lower Insect Bed, upper-middle 
Wellington Formation 

Lower Insect Bed, upper-middle 
Wellington Formation 

Fort Riley Limestone 

Lower Wellington Formation 

Source 

Haworth and 
Bennett, 1901 
Reiter, 1920 

Merritt, 1940 

Shelton, 1971 

Shel ton, 1971 

Shelton, 1971 

Raasch, 1946 

Shelton, 1971 
Heine, 1975 

Shelton, 1971 
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Location 
No. 

33 

34 

35 

36 

37 

38 

County 

Payne 

Pawnee 

Sumner 

Sumner 

Sumner 

Sumner 

Location 

Sec. 23, 
T. 20N. , R. 3E. 

SE~, Sec. 22, 
T. 20N. , R. 3W. 

Sec. 19, 
T.22N., R:3E. 
Sec. 23, 24, 
T. 22N. , R. 3E. 

Sec. 13, 
T. 35S. , R. 3W. 

Sec. 27, 34, 
35, 
T. 3 3S . , R. 3W. 

SE~, SE~, 
SE~, Sec. 30, 
T. 32S. , R. 3W. 

Sec. 15, 
T.35S., R.3W. 

TABLE I. (Continued) 

Remarks 

Cuprified wood fragments in sand­
stone 

Chalcocite replacing wood fragments 
in sandstone with secondary coating 
of malachite and azurite 

Chalcocite nodules and replacements 
of wood 
Chalcocite, malachite and azurite 
in limestone conglomerate in the 
Stillwater Formation 

Malachite in thin carbonate bed in 
lower Ninnescah Shale 

,Malachite in the Milan Dolomite 
Member 

Malachite with minor azurite in 
thin dolomite bed 

Malachite in thin carbonate bed and 
gray shale below 

Source 

Merritt, 1940 
Rogers, 1916 
Heine, 1975 
Tarr, 1910 

Merritt, 1940 
Fischer, 1937 
Merritt, 1940 
Rogers, 1916 

Swineford, 1955 

Waugh and 
Brady, 1976 

Waugh and 
Brady, 1976 

Cox, personal 
observation 

l.O 



TABLE I. (Continued) 

Location 
No. County Location Remarks Source 

39 Harper Sec. 24, Malachite in Runnymede Member Waugh and 
T.34S., R.6W. Brady, 1976 

40 Harper SW~, NW~, Malachite in Runnymede Member Waugh and 
NW~, Sec. 18, Brady, 1976 
T.31S., R.5W. 

41 Harper Sec. 10, Malachite in Runnymede Member Waugh and 
T.31S., R.6rJ. Brady, 1976 

42 Kingman Sec. 20, No data Waugh and 
T. 30S . , R. 6W. Brady, 1976 

43 Kingman Sec. 27, 35 Malachite in Runnymede Member vJaugh and 
T. 28N. , R. 6v!. Brady, 1976 

44 Sedgwick Sec. 15 Malachite in Milan Dolomite Member rJaugh and 
T. 28S. , R. 3W. Brady, 1976 

0 
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A subsurface geochemical exploration investigation of this type is 

timely in the development of understanding Oklahoma redbed stratabound 

copper-sulfides. A copper-sulfide trend in north-central Oklahoma has 

been traced into the subsurface on a regional basis, both across its 

strike and down-dip throughout approximately 720 square miles in Grant 

County. To the knowledge of this writer, no similar undertaking has yet 

been reported in Oklahoma. 

Geologic controls of redbed stratabound copper-sulfide mineraliza­

tion in Oklahoma, the Midcontinent and indeed the world are still contro­

versial. Timing of mineralization, sources of metals and mechanisms that 

brought metals to its present distributions are still unclear. Although 

this investigation is designed to solve a problem of local interest, it 

should contribute information to the problem of Midcontinent stratabound 

copper. 

Objectives 

The primary objectives of this investigation are to: (1) determine 

the variation of copper, zinc, and lead sulfides in the Wellington Forma­

tion and parts of the lower Garber Sandstone, (2) delineate and interpret 

mineralized copper, zinc, and lead horizons, (3) statistically interpret 

geochemical data, (4) compare mineralization to lithofacies and environ­

ments of deposition, and (5) relate mineralization style to surrounding 

regional copper occurrences. 

Previous Investigations 

Accounts of redbed copper occurrences began in Oklahoma with Haworth 

and Bennett (1901) who described native copper in the Hennessey Shale 
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near Hillsdale, Garfield County (Figure 3; Table I). This remarkable 

occurrence was termed 11 common 11 looking red clay shales with crevices 

occupied by sheets of metallic copper from 1/2 inch to 2 inches wide. 

The copper-bearing zone was 6 inches thick and composed of material not 

much different from barren rock above or below. 

Gould and others (1908) reported numerous copper occurrences from 

the following counties: Pottawatomie, Lincoln, Logan, Noble, Garfie1d, 

Major, Woods, Kingfisher, Blaine, Caddo, McClain, and Greer (Figure 3; 

Table I). Early estimations of copper concentrations .and distributions 

by small prospect pit and tunnel operations proved grades to be subeco­

nomic. 

Tarr (1910) studied the petrography of a copper occurrence in north­

eastern Payne County, where copper-sulfide minerals replaced wood frag­

ments and formed nodules in positions conforming to initial dips of the 

enclosing sandstones (Figure 3; Table I). Copper minerals reported in­

clude chalcocite, chalcopyrite, malachite, azurite, and minor chalcan­

thite. 

Fath (1915) recorded copper mineralization in southeastern Cotton 

County, along the Red River (Figure 3; Table I). Chalcocite, malachite, 

and azurite are associated with sandstones and shales of the Wichita 

Formation in the form of chalcocite nodules, fine dissemination of mala­

chite, and cuprified wood. 

Rogers (1916) prepared polished sections of redbed copper from Payne 

County to compare with those of Sierra Ocura and Nacimiento Districts, 

New Mexico (Figure 3; Table I). Reiter (1920), Redfield (1927), and 

Shead and others (1929) reviewed various mining attempts and reported on 

some of their ore grades. 
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Fischer (1937) and Fischer and others (1961) related geochemical 

cycles of associated deposits of copper-vanadium-uranium-silver in sand­

stones and shales of the Permian, Triassic, and Jurassic of the Midcon­

tinent. 

Merritt (1940) reviewed, updated and compared copper-sulfides in the 

following counties: Garvin, Payne, Pawnee, Grant, Garfield, Comanche, 

Cotton, Jefferson, and Okfuskee. He noted that copper phases occurring 

in these areas had similar paragenesis, which suggested similar origin. 

Stroud and others (1970) conducted a Bureau of Mines study on the 

production potential of Permian redbed copper in Texas, Oklahoma, and 

Kansas. Estimates were made for the commercial possibilities for low­

grade, medium-volume, strip-mine operations of 6 to 12 inches of pay 

zones at 0.5 to 1.5 percent copper. 

Shockey and others (1974) described in detail a possible copper­

silver solution-front origin for the Paoli occurrence, Garvin County, 

briefly mentioned earlier by Redfield (1927) (Figure 3; Table I). Host 

rocks for solution-front developments were sandstone paleochannels in 

the lower Permian Wellington Formation, with average grades of 0.75 per­

cent copper and 6.0 ounce per ton of silver. Primary ore minerals are 

chalcocite and native silver, with secondary minerals of malachite and 

azurite. 

Heine (1975) geochemically explored for redbed copper in portions 

of Noble, Payne, and Pawnee Counties (Figure 3; Table I). Mineraliza­

tion is mainly in the form of chalcocite nodules, replacement of carbona­

ceous materials, and pyrite, with coatings of secondary malachite and 

azurite. Of considerable interest i~ his suggestion that the bedrock 

copper distribution coincides with known subsurface 11 highs 11 • 
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Interest in redbed copper in Oklahoma dramatically increased in 

1962 with discovery of disseminated malachite in an extensive 6 inch 

thick shale bed in the Flowerpot Shale at Creta, Jackson County (Figure 

3; Table I). Eagle-Picher Industries Inc. announced on March 19, 1965, 

their intentions to construct a copper mill at Creta and to strip-mine 

this copper seam at a rate of 500 tons per day. The Creta discovery re-

newed interest in prospecting the Permian redbeds of Oklahoma, Kansas, 

and Texas for additional deposits. This resulted in a second discovery 

of copper shale at Mangum, Greer County, by the Lobaris Copper Company 

(Figure 3; Table I). Eagle-Picher Industries Inc. mined the copper shale 

from 1965 to 1975, but when the price of copper dropped to below 65 cents 

per pound, and production costs continued to rise, this operation was 

closed down (Johnson, 1976). 

Methods of Investigation 

Conventional surface geochemical surveys traditionally sample soils, 

rocks, stream sediments, water, vegetation, and air to detect subsurface 

mineral concentrations (Levinson, 1974). Sampling media, as listed 

above, would have limited capability in defining subsurface mineraliza­

tion unique to this area because: 

1. copper-sulfides are restricted to thin (less than one foot) beds 

of shales, silty shales, and carbonates, 

2. the southern half of the study area is covered by thick fluvial 

deposits of the Salt Fork River, and 

3. exposures of bed rock are quite limited, generally small and 

discontinuous. 
' As a result of these limitations, this study departs from standard 
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practice to take advantage of the existence and availability of well­

cuttings from the shallow subsurface. Petroleum exploration and produc­

tion in Grant and western Kay Counties have been moderately intensive, 

so that well-cuttings and electric logs are fairly common for this area. 

Since a surface geochemical exploration program probably could not ade­

quately define mineralization in this area, a subsurface investigation 

is called to explore with this under-utilized source of geochemical and 

lithologic data. 

Sampling Method 

Twenty-one wells were selected for this study from Grant and west­

ern Kay Counties (Table II; Figure 1). Considerable effort was made to 

find wells that were as evenly spaced as possible and that were also 

sampled for well-cuttings at shallow depths. Although the resulting dis­

tribution is far from ideal, it is the best that could be done with 

available resources. For all wells, except Well Number One (Plate 1), a 

ten foot sampling interval was used. Where samples were not collected 

by the driller, those intervals were omitted. Random sampling of well­

cuttings is controlled by the driller and must be assumed to be repre­

sentative of the entire interval. 

Well-cuttings were examined with a binocular microscope and de­

scribed in detail with special emphasis on lithology, texture, and evi­

dence of mineralization. Twenty-two thousand feet of lithologic sections 

were constructed from data derived from well-cuttings and electric logs 

(Maher, 1964). 



TABLE II 

WELL LOCATIONS AND SAMPLING INTERVALS 

Sampling Number 
Well Interval of 

No. Well Title Location (in feet) Samples 

1 Helmerich and Payne, Grouse No. 1 Sec. 29, T.25N., R.8W. 220-1720 78 

2 Gutowsky, Smith No. 1 Sec. 36, T.25N., R.6W. 130-1700 156 
3 Carter, Kirley No. 1 Sec. 6, T.25N., R.4W. 100-1220 112 

4 Reda Pump Co., Booher No. 3 Sec. 16, T.25N., R.3W. 350-920 57 

5 Marland, Kreiger No. 1 Sec. 4, T.25N., R.2W. 150-620 40 

6 Halco-Meyers, Davis No. 1 Sec. 27, T.25N., R.lW. 100-450 45 

7 W.A.Daleney,Jr.,Shoheweis No. 1 Sec. 7, T.26N., R.7W. 350-1560 121 

8 Barnes, Davis No. 1 Sec. 31, T.26N., R.6W. 300-1520 114 

9 Carter, Kolarik No. 1 Sec. 4, T.26N., R.5W. 460-1410 93 

10 Bu-Vi-Bar, Hurst No. 1 Sec. 25, T.26N., R.5W. 90-1240 115 

11 Jay Simmons, Stockton No. 1 Sec. 16, T. 26N. , R. 3W. 180-1020 82 

12 Zephyr, State No. 1, Sec. 13, T.26N., R.2W. 180-500 30 

13 Shell, Foster No. 1 Sec. 30, T.27N., R.8W. 350-1750 137 

14 T. C. Wylie, Younger No. 1 Sec. 27, T.27N., R.5W. 280-1200 84 

15 Appleton, Martin No. 1 Sec. 23, T.27N., R.3W. 170-700 46 

16 Boucher, Nelson No. 1 Sec. 1, T.27N., R.3W. 140-770 37 

17 Sinclair, Hedrixon No. 1 Sec. 17, T.29N., R.8W. 400-1180 107 
~ 

°' 



TABLE II (Continued) 

Sampling Number 
Well Interval of 

No. Well Title Location (in feet) Samples 

18 Gypsy, Bilderback No. 1 Sec. 27, T.28N., R.7W. 90-1660 155 

19 Continental, Kretschmar No. l Sec. 28, T.28N., R.5W. 330-1380 97 

20 Wentz, Wirtz No. l Sec. 22, T.28N., R.4W. l 00-1140 104 

21 Helmerich and Payne, Roth No. 1 Sec. 8, T.28N., R.2W. 80-610 53 

"' 



Stratigraphic Method 

From the lithologic sections, four east-west stratigraphic cross 

sections were constructed where rock-stratigraphic correlations were 

established. Cross sections were also used to place geochemical data 

in a lithologic and stratigraphic framework for later interpretation 

(Plates 1, 2, 3, and 4). 

Geochemical and Mineralogical Methods 
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More than l ,800 well-cutting samples were analyzed for copper, 

lead, and zinc concentrations in accordance with standard atomic­

absorption practices. Background, threshold, and anomalous values were 

determined statistically. The various mineral phases have been deter­

mined by ore microscopic methods. 

Chemical Analysis 

Copper, zinc, and lead concentrations were determined using a 

Perkin-Elmer 403 double-beam atomic-absorption spectrophotometer, with 

instrument settings for the various elements in accordance with manufac­

turer's specifications. Prior to actual analysis of samples, atomic­

absorption spectrophotometer photo-cell lamps were pre-warmed until back­

ground noise reached a minimum and readings were consistent. Furthermore, 

previously determined samples were regularly checked for reproducibility. 

Multiple readings of each sample were taken and averaged values were re­

corded. 

One gram of -80 mesh powdered sample was placed in a beaker with 20 

ml of aqua regia. After digestion for 18 hours at room temperature and 

6 hours at 100°C, samples were cooled, filtered, and diluted to 50 ml. 
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Clay Mineral Analysis 

A maximum of two samples were taken at each well, the first 50 feet 

from the base of the Wellington Formation, and the second 100 feet from 

the top of the Wellington. Individual samples were disaggregated by hand 

using mortar and pestle. Care was taken to minimize structural modifica­

tion of clays during disaggregation. The clay size fraction was sepa­

rated from the coarser by dispersion of the clays with distilled water, 

and removed by pipette. The mixture of clay and water was carefully and 

uniformly distributed on a porcelain slide and dried under heat lamps. 

Two slides were prepared for each sample, one was used for normal and 

heat treatments, and the other for glycolation treatment only. Normal 

samples were dried under heat lamps where the temperature did not exceed 

75°C. Heated samples were placed in a muffle furnace for one hour at 

400°C. Glycolated samples were placed in an atmosphere saturated with 

ethylene glycol. 

Copper-Sulfides in Oklahoma 

The Midcontinent Permian copper belt extends from Kansas, through 

Oklahoma and the study area, into Texas. Copper-sulfides have been re­

ported throughout much of the Permian and can be divided stratigraphic­

al ly into three mineralization times: 

1. Wolfcampian Series copper of Pawnee and eastern Payne Counties, 

2. Leonardian Series copper of north-central and south-central 

Oklahoma and south-central Kansas, which includes the area under inves­

tigation, and 

3. Guadalupean Series copper of south-western Oklahoma, which in­

cludes the Creta and Mangum Districts (Figure 3; Table I). 
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Low-temperature chalcocite and malachite in shales, sandstones, and 

carbonates are the principal copper minerals in Oklahoma. Chalcocite is 

dominant in the subsurface whereas malachite is found only at the surface 

and extreme shallow subsurface. Other primary copper minerals thus far 

reported include: digenite, djurleite, chalcopyrite, bornite, tenorite, 

atacamite, and native copper. Secondary copper minerals include: azur­

ite, covellite, brochantite, botallackite, callaghanite, and cuprite 

(Haworth and Bennett, 1901; Tarr, 1910; Fath, 1915; Rogers, 1916; 

Merritt, 1940; Dingess, 1976). Most of these copper phases are rare and 

are not expected to contribute to the economic potential of any given 

area in Oklahoma. 



CHAPTER II 

STRATIGRAPHY OF THE LOWER PERMIAN 

Wellington Formation 

The Wellington Formation was named by Cragin (1896, 1897) from ex­

posures near Wellington, Sumner County, Kansas (Figure 3), just 15 miles 

north of the study area. More detailed and extensive work on the nature 

of the Wellington followed with the investigations of Norton (1939), 

Ver Wiebe (1937), Raasch (1946), Swineford (1955), Tasch (1960, 1961, 

1963a, 1963b, 1964), and Shelton (1971). 

Stratigraphic Framework 

The Wellington Formation in Oklahoma is the lowest unit of the 

Sumner Group of the Leonardian Series of early Permian time. It is 

approximately equivalent to the Wellington Formation of Kansas, and the 

uppermost portion of the Wichita Group of central Oklahoma and Texas 

(Dunbar, 1940; Dunbar and others, 1960). 

Boundaries 

The upper limit of the Wellington is defined differently in Kansas, 

where its type section is located, than in Oklahoma. North of the state 

line, the top of the Milan Dolomite Member marks the top of the Welling­

ton (Swineford, 1955). However, ·to the south, the base of the lowest 
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thick sandstone bed of the Garber Sandstone marks the top of the Welling­

ton (Aurin and others, 1926; Green, 1937). 

Reports on Wellington Formation thickness from surface surveys vary: 

(1) Ver Wiebe (1937) measured 570 feet, (2) Clark and Cooper (1927) mea­

sured 670 feet, (3) Raasch (1946) measured 822 feet, (4) Swineford (1955) 

and Zeller (1968) both reported 700 feet, which included about 100 feet 

of the Hutchinson Salt Member, and (5) Shelton (1971) measured 850 feet. 

These measurements were made of rocks exposed at the surface in ~a~ious 

parts of north-central Oklahoma and south-central Kansas, with little 

said about the subsurface. Thickness of the Wellington in the subsur­

face is problematic, because it undergoes facies change as well as some 

apparent thickening. Maximum thickness in the subsurface is attained in 

the western portions of Grant County where it is approximately 1 ,060 

feet (Figure 4). 

Lithologic Character 

The Wellington consists mainly of red, brownish-red, and gray, silty 

shales with thin lenticular sandstones and carbonate beds (Shelton, 1971; 

Raasch, 1946; Ver Wiebe, 1937). A thick sequence of evaporites in the 

middle of the Wellington dominates well-cuttings and electric log re­

sponses; evaporites are discussed in more detail later in the text (see 

p. for Wellington evaporites discussion). Three fundamental trends 

in the character of the Wellington can be observed along strike and down 

dip: 

1. The color-chan~e line between redbeds and non-redbeds migrates 

from near the top of the Wellington in northern Kay County to near the 

middle, in south-eastern Grant County (Anderson, 1941). 
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2. The sandstone content progressively increases to the south 

whereas dolomite and shale increase to the north (Clark and Cooper, 

1927). 
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3. The evaporite content increases down dip as sandstone decreases. 

Environments of Deposition of the Wellington 

Formation 

The Wellington Formation, in this area, was deposited on the east­

ern shelf of the restricted, hypersaline Permian sea, the waters of 

which were unsuited for diverse life forms of that time. Much of the 

Wellington is barren of fauna and flora, with only thin, intermittently 

fossiliferous beds that may contain conchostraca, mollusca, eurypterids, 

paleolimuliids, reptiles, insects, carbonaceous plant debris, spores, 

pollens, and silicified wood fragments (Tasch, 1964). 

In general, the Wellington is thought to have alternated between 

shallow marine and tidal-flat conditions. During transgressive marine 

phases, thick evaporite sequences were deposited in the deeper parts of 

the basin, while near-shore and on tidal-flats thin carbonate beds were 

deposited. During regressive phases, Wellington sedimentation was more 

terrestrially influenced as broad tidal-flats extended out over the 

shrinking Permian sea. On these broad lowlands, puddles, ponds, lakes, 

timbered lands, creeks, and occasionally channels may have been locally 

important (Dunbar, 1924; Raasch, 1946; Tasch, l963a; Shelton, 1971). 

Division of the Wellington Formation in the 

Shallow Subsurface 

Numerous methods of dividing the Wellington Formation have been 
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suggested as a result of surface-mapping (Ver Wiebe, 1937; Raasch, 1946; 

Billings, 1956; Shelton, 1971). No matter how successful these 

approaches may have been at the surface, they cannot be applied to the 

subsurface because: 

1. lithologic facies change in the down dip direction, along with 

apparent thickening; 

2. thick evaporite sequences in the subsurface that are not found 

at the surface; and 

3. correlation of key beds at the surface to electric logs and 

well-cuttings in the subsurface is difficult. 

Figure 4 shows the way that shallow subsurface strata have been 

divided for the purpose of this study. This classification is not in­

tended for use at the surface because it is based strictly on subsurface 

rock-stratigraphic characteristics (i.e., well-cuttings and electric 

logs). 

Lower Shales Member. The informal "Lower Shales Member 11 is the old­

est unit in the Wellington Formation overlying the Herington Limestone, 

and being overlain by the informal "Lower Evaporites Member 11 • The Lower 

Shales Member ranges from 60 to 90 feet thick, averaging 70 feet. This 

unit consists principally of gray shales interstratified with minor 

amounts of red shales. The Lower Shales include an evaporite bed that 

can be found throughout the subsurface of the study area. In the western 

portions of Grant County the evaporite bed is found near the top of the 

Lower Shales Member; however, to the east it migrates down section to 

about the middle of this unit, where it splits into two evaporite beds 

(Plates l, 2, 3, and 4). These beds represent the first indication, in 

this area, that the Permian basin became evaporitic. 
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Lower Evaporites Member. The informal 11 Lower Evaporites Member" 

overlies the Lower Shales Member and underlies the informal "Middle 

Shales Member". The unit is as thick as 325 feet in the extreme western 

wells and thins eastward to as little as 195 feet, with an average thick­

ness of about 250 feet. The Lower Evaporites Member consists mainly of 

evaporite beds interstratified with gray shales. These evaporite beds 

seem to increase in thickness to the west whereas the relative shale con­

tent increases to the east (Plates 1, 2, 3, and 4). 

Middle Shales Member. The informal 11 Middle Shales Member" overlies 

the Lower Evaporites Member and underlies the informal "Upper Evaporites 

Member". The unit is as thick as 215 feet in the eastern wells and thins 

to 115 feet to the west. Average thickness is 155 feet, and consists 

mainly of gray shales, silty shales, and several evaporite beds that can 

be traced across most of the subsurface. The easternmost wells in the 

section contain thin carbonate beds interstratified with gray shales; the 

carbonates may be associated with near-shore and tidal-flat deposits 

(Plates 1, 2, 3, and 4). 

Upper Evaporites Member. The informal "Upper Evaporites Member" 

overlies the Middle Shales Member and underlies the informal "Upper 

Shales Member". The maximum thickness of this unit is 170 feet and thins 

to 30 feet in the east, averaging 130 feet. This unit consists of evapo­

rite beds interstratified with gray shales. These evaporite beds are 

thinner and less continuous than those in the Lower Evaporites Member. 

The Upper Evaporites Member loses most of its identity midway in the 

sections as a result of increases in shale content (Plates 1, 2, 3, and 

4). 
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Upper Shales Member. The informal "Upper Shales Member" overlies 

the Upper Evaporites Member and underlies the Garber Sandstone. Maximal 

thickness of 460 feet is reached in the eastern portions of Grant County 

and thins westward to 360 feet and averages 410 feet. The Upper Shales 

Member consists of shales, silty shales, minor siltstone beds, with thin 

carbonate and evaporite beds. Furthermore, the color-change line varies 

from the middle of the Upper Shales to near its base. Above the color­

change line redbeds are dominant whereas below the line, gray shales and 

silts persist. The transition is gradational and occurs over a 50 to 

150 foot interval, and consists of red and gray interstratified beds. 

The Upper Shales Member is where substantial copper mineralization has 

occurred (Plates 1, 2, 3, and 4). 

Wellington Evaporites 

The general term 11 evaporites 11 is used in this thesis to include 

gypsum, anhydrite, halite, and other salts. Mineral phases of these 

evaporites cannot be determined readily using electric logs and well­

cuttings, so this writer has lumped them together under a general head­

ing. X-ray diffraction analysis of well-cuttings could distinguish 

insoluble evaporites, but all soluble salts are usually dissolved by 

freshwater based-drilling muds. 

The work of Jordan and Vosburg (1963) permits some speculation re­

garding the nature of the Wellington evaporites. According to them, 

both the Upper and Lower Evaporites Members are actually part of the 

same stratigraphic facies that has been separated by the Middle Shales 

Member, just west of Grant County. They have determined further that 

the Upper Evaporites Member contains exclusively anhydrite, whereas the 



Lower Evaporites Member contains anhydrite and salt, interbedded in 

approximately equal proportions. 

A test well was drilled in central Grant County (SW corner, SW~, 

SE~, sec. 32, T.27N., R.5W.) to determine the specific distribution of 

Wellington evaporites (Jordan, 1961). This test hole was drilled with 
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a salt-brine mud to recover salts and determine more accurately the 

evaporite distribution. Gamma-ray, latero and sonic logs were run to 

assist in defining evaporite beds as well as distinguishing between salt 

and anhydrite (Figure 5). Average sonic velocity for anhydrite is 20,000 

feet per second (interval transit time of 50 microseconds per foot) 

whereas average sonic velocity for rock salt is 15,000 feet per second 

(interval transit time of 66.7 microseconds per foot); the two evaporite 

types may thus be distinguished (Tixier and others, 1959). 

Garber Sandstone 

The Garber Sandstone was named for the town of Garber, Garfield 

County, v1here the rock unit is well exposed and came into use gradually 

as it was made popular by local geologists (Figure 4). 

Stratigraphic Framework 

The Garber Sandstone in Oklahoma is in the upper half of the Sumner 

Group, of the lower middle Leonardian Series, of the lower Permian. In 

Kansas, the Garber is equivalent to the Ninnescah Shale (which includes 

the Runnymede and Stone Corral Members), whereas in Texas it correlates 

with the lower half of the Clear Fork Group (Dunbar, 1940; Dunbar and 

others, 1960; Johnson, 1976). 
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Boundaries 

The upper boundary of the Garber Sandstone is marked by the upper­

most thick sandstone above which clay-shales of the Hennessey Shale 

dominate. The lower contact with the Wellington Formation is defined by 

the lowermost thick sandstone of the Garber (Aurin and others, 1926). 

Lithologic Character 

Surface studies of the Garber Sandstone have led to its division 

into the Lucien Shale Member and the Hayward Sandstone Member. The 

Lucien Shale Member is the lower unit and consists mostly of red, lami­

nated, partially fissile shale, interbedded with several red sandstones. 

The lowest sandstone forms a bench used to mark the Garber-Wellington 

contact. These sandstones contain medium- and small-scale cross bedding, 

initial dip, and some evidence of channeling. Thickness of the Lucien 

Shale is approximately 250 feet. The Hayward Sandstone Member is the 

upper unit consisting of thick ledges of massive, red sandstones, inter­

stratified with fissile shale and siltstone beds. The sandstones gener­

ally are lenticular, with medium- and small-scale cross bedding. 

Thickness of this member is approximately 350 feet (Aurin and others, 

1926; Clark and Cooper, 1927; Dott, 1932; Green, 1936; Shelton, 1971). 

Environments of Deposition of the Garber 

Sandstone 

Like the Wellington Formation, the Garber Sandstone was deposited 

on the eastern flanks of the Permian basin. Hypersaline conditions pre­

vailed into the Garber environment thus limiting faunal and floral 



populations and diversity, but not so hypersaline as to precipitate 

evaporites. 
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The overall coarser texture of the Garber, in comparison to the 

Wellington, and the presence of multistoried, cross-bedded sandstones 

seems to indicate a transition from shallow marine evaporite and tidal­

flat sedimentation of the Wellington to a Garber deltaic, interdeltiac, 

and tidal-flat sedimentation (Dott, 1932). Tanner (1959) suggests that 

what many geologists have considered to be a Garber Delta, could actu­

ally be a coastal long-shore deposit. Cross-bedding studies of the 

Garber produced current directions, 90 degrees from each other, which 

implies littoral sediment transportation and deposition. 

To the south, the Garber Sandstone coarsens and thickens into a 

more characteristic delta complex. This delta, in central Oklahoma, is 

reported to have been deposited by a late Pa 1 eozoi c stream ca 11 ed the 

Chert River. This stream is thought to have originated on the northern 

slope of the Llanoria land mass and drained northwest into Oklahoma 

(Oakes, 1947; Chenoweth, 1959). 

The Garber Sandstone in the Subsurface 

Establishment of the Wellington-Garber contact in the subsurface is 

problematic. Many workers using surface criteria have been successful 

in defining this contact (Aurin and others, 1926; Clark and Cooper, 1927; 

Patterson, 1933; Shelton, 1971); however, subsurface criteria are not 

as clearly discernible. The Garber Sandstone loses much of its elastic 

identity in the shallow subsurface of Grant County because it undergoes 

facies change. The many distinct sandstones that make up the Garber in 

central Oklahoma pinch-out to the north and become a nearly massive 
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sequence of red siltstones and shales in the study area. Electric logs 

and well-cuttings show no distinct breaks and cannot be used to estab­

lish or correlate the Wellington-Garber contact. In this study, the 

contact has been approximated by taking Shelton's (1971) composite sec­

tion of the Wellington Formation, adding to it the thickness of evapo~ 

rites present in the subsurface, while applying Jordan's (1961) test 

hole data. Since there is no other, more accurate method of establishing 

this contact, this approximation is used with appropriate skepticism. 

The Garber has not been divided since no suitable criteria could be de­

fined. 

Deposition Into the Permian Sea 

The Wolfcamp Series of early Permian age is lithologically similar 

to the uppermost Pennsylvanian and is without significant changes in 

sedimentation style. Alternating off-shore and near-shore sedimentation 

resulted in cyclic layering of limestone, mudstone and dolomite. To the 

south, the Wichita-Amarillo archipelago furnished elastics and partially 

restricted the Permian sea (Jewett, 1932; Maclachlan, 1967). The Wolf­

campian sea generally expanded from the start of the Permian to the mid­

dle of Wolfcampian time. By the middle of this epoch, the sea had 

transgressed to cover 25 percent more area than at the beginning of the 

Permian (Hills, 1942). This sea was typically normal marine, unstrati­

fied, and free circulating. However, by middle Wolfcampian time the 

Wichita-Amarillo archipelago was uplifted just enough to close the Wolf­

campian sea to the south from the rest of the Permian sea. Restriction 

of the sea started a regressive trend that continued to the close of the 

Permian Period. Shrinking of the sea caused the Permian to the north to 



lose its open, free circulating marine characteristics and become a 

saline sea (Hills, 1972). 

The Leonardian sea continued to retreat from an earlier peak with 

only minor advances. For the first time in the Permian age, brackish 
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and saline waters became widespread at the expense of the normal marine 

sea. The outline of the normal marine sea is usually farthest from the 

shore and is marked by deposition of gray to black sandstones and shales, 

with gray limestones and dolomites containing marine fossils. The saline 

sea is marked by the deposition of evaporites. The brackish sea is near­

est to the shore and is most influenced by large amounts of elastics com­

ing from streams (Hills, 1942). 

A small advance of the Leonardian sea or a short period of free cir­

culation is recorded by deposition of the Stone Corral Dolomite. Gradual 

uplift of the bordering land resulted in an influx of elastics; which con­

tributed to the development of the Garber Delta. Stream activity is 

thought to have intensified, possibly swollen by increased rainfall in the 

upland drainage basins and choked with sediments. This influx of fresh 

waters further increased the stratification of the Leonardian sea, causing 

the brackish zone to increase in area (Hills, 1942; Clifton, 1944). 

Sediment Source 

There were four positive elements in the area of the eastern shelf 

of the Permian sea that were more or less active in the late Pennsylvani­

an through early Permian and influenced sedimentation in the study area: 

to the south were the Wichitas, Arbuckles, and Ouachitas, and to the 

east were the Ozarks. The Wichitas and Ouachitas are thought to have 

had greater relief and are considered to be responsible for supplying 



most of the sediments (Miser, 1929; Van der Gracht, 1931; Green, 1936; 

Anderson, 1941; Tanner, 1959; Maclachlan, 1967). 

Climate of the Lower Permian 
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The contrast between the humidity of the Pennsylvanian coal swamps 

and the aridity of the lower Permian evaporitic basin is remarkable 

(Dunbar, 1924). The Wellington Formation is the first Permian rock unit 

to reflect many characteristics of an arid environment (i.e., mud cracks, 

hopper crystals, very limited and dwarfed fauna, and abundant evaporites). 

At the peak of aridity, the Wellington evaporites were deposited; however, 

the severity of the climate seems to have ameliorated about middle Well­

ington time, as evaporite deposition ceased. At this time there was local 

deposition of plant debris within the Middle Shales Member. There is some 

indication, at least on a local level, that moist conditions existed with 

near normal marine waters. Dunbar (1924) documents this stay in aridity, 

as he skillfully recorded a brief moment in Wellington time: a relatively 

moist, swampy environment that left remains of logs, tree stumps, leaf 

impressions, and insect pods. The recurrence,of aridity soon follows, as 

indicated by the renewed deposition of evaporites forming the Upper 

Evaporites Member. 



CHAPTER I I I 

RESULTS AND DISCUSSION 

Interpretation of Geochemical Data 

The management and interpretation of numerical data are crucial to 

understanding the geologic significance of this data. This phase of 

data synthesis is perhaps the most important part of exploration geochem­

istry, and if done well, will greatly enhance the value of the data. 

Assuming that a geochemical study has produced some apparent anomalous 

results, major questions arise: are these anomalies genetically related 

to mineralized bodies? And equally important, what defines anomalous re­

sults? The following discussion summarizes the methods of numeric syn­

thesis and interpretation of the data presented in this thesis (Ahrens, 

1954; Levinson, 1974). 

Skewed Data Distributions 

Concentrations of copper, zinc, and lead for this study are listed 

by well and depth in Appendix A, and can be shown to have skewed distri­

butions. The data displayed as cumulative frequency curves for copper, 

zinc, and lead all produce "bell curves" with large positive tails 

extending into the higher concentrations (Figure 6 and Table III). This 

notion is supported further by Table IV and Figure 7, where large skew­

ness and kurtosis values are reported for the parent population. Perhaps 

the most convincing evidence indicating these elements are not normally 
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Interval 
(PPM) 

0-5 

6-10 

11-15 

16-20 

21-25 

26-30 

31-35 

36-40 

41-45 

46-50 

51-55 

56-60 

61-65 

66-70 

. 71-75 

76-80 

TABLE III 

INDIVIDUAL AND CUMULATIVE PERCENT DISTRIBUTION FOR COPPER, 
ZINC AND LEAD WITH ARITHMETIC INTERVALS 

Copper Zinc Lead 
Individual Cumulative Individual Cumulative Individual Cumulative 

Percent Percent Percent Percent Percent Percent 

4. 15 4 .15 0.00 0.00 1.22 1.22 

17. 81 21. 96 0 .11 0. 11 6.75 7.97 

29.04 51.00 0.66 0. 77 20.96 28.93 

25. 17 76. 16 3.65 4.42 29.37 58.30 

8.46 84.62 10 .62 15.04 20.96 79.26 

3.21 87.83 14.49 29 .. 54 11. 11 90.38 

2.43 90.27 20.24 49.78 5.53 95.91 

1. 99 92.26 16.76 66.54 1.33 97.23 

1.16 93.42 12. 11 78.65 0.61 97.84 

0.83 94.25 6.31 84.96 0. 77 98.62 

0. 72 94.97 3.04 88.00 0. 17 98. 78 

0.39 95.35 2.60 90.60 0.06 98.84 

0.39 95.74 1.43 92.04 0.11 98.95 

0.39 96.13 1. 16 93.20 0.22 99. 17 

0.28 96.41 0.83 94.03 0.00 99. 17 

- 0.55 96.79 0.66 94.69 0.06 99.22 w 
-.....i 



TABLE III. (Continued) 

Copper Zinc Lead 
Interval Individual Cumulative Individual Cumulative Individual Cumulative 

(PPM) Percent Percent Percent Percent Percent Percent 
--
81-85 0.22 97 .18 0.33 95.02 0.06 99.28 

86-90 0.11 97.29 0.39 95.41 0.06 99.34 

91-95 0.11 97.40 0. 61 96.02 0.00 99.34 

96-100 0. 11 97. 51 0.22 96.24 0.00 99.34 

101-105 0. 17 97.68 0.33 96.57 0.06 99.39 

106-110 0. 11 97.79 0.22 96.79 0.06 99.45 

111-115 0. 11 97.90 0.33 97. 12 

116-120 0.22 98.12 0.17 97.29 

121-125 0.06 98.18 0.22 97.51 

126-130 0.06 98.23 0.06 97.57 

131-135 0.06 98.29 0.06 97.62 

136-140 0.11 98.40 0.06 97.68 

141-145 0. 11 98.51 0. 17 97.84 

146-150 0.06 98.56 0.06 97.90 

151-155 0. 11 98.67 0.17 98.06 

156-160 0.06 98.73 0.06 98.12 

161-165 0.00 98.73 0.11 98.23 

166-170 --- --- 0.06 98.29 --- --- w 
CX> 



Interval 
(PPM) 

171-175 

176-180 

181-185 

186-190 

191-195 

196-200 

Copper 
Individual Cumulative 

Percent Percent 

TABLE III. (Continued) 

Zinc 
Individual Cumulative 

Percent Percent 

0.00 98.29 

0.11 98.40 

0. 17 98.56 

0.22 98.78 

0.00 98.78 

0.06 98.84 

Lead 
Individual Cumulative 

Percent Percent 

w 
l.O 



TABLE IV 

STATISTICAL REVIEW OF COPPER, ZINC AND LEAD POPULATIONS 

Parent Copper Zinc Lead 

Sta ti sti ca 1 Popula- Mineralized Barren Mineralized Barren Mineralized Barren 
Review ti on Cu> 55 Cu< 55 Zn> 60 Zn< 60 Pb> 50 Pb< 50 - -

N Cu 1807 .00 97.0 1710.0 
Zn 1808. 00 178.00 1630.00 
Pb 1808.00 37.00 1771. 00 

Mean Cu 30. 1 0 275.2 16. 2 
Zn 43.80 125. 70 35.40 
Pb 31. 1 0 496.00 21.40 

Standard Cu 164.40 665.8 8.5 
Deviation Zn 45.20 112.10 9.90 

Pb 195. 9 0 1303.00 7.20 

Minimum Cu 0.50 55.0 0.5 
Value (PPM) Zn 8.00 60.00 8.00 

Pb 0.00 50.00 0.00 

Maximum Cu 5800.00 5800.0 53.0 
Value (PPM) Zn 850.00 850.00 65.00 

Pb 6525.00 6525.00 46.00 
Variance Cu 27036.00 443249.0 71. 3 

Zn 2039.00 12554.00 98.40 
Pb 38394.00 1697810.00 52.20 

Standard Cu 3.87 67.6 0~2 
Error of Zn 1.06 8.39 0.24 
Mean Pb 4. 61 214. 21 0. 17 .i:::. 

0 



TABLE IV. (Continued) 

Parent Copper Zinc Lead 

Statistical Popula- Mineralized Barren Mineralized Barren Mineralized Barren 
Review ti on Cu> 55 Cu< 55 Zn> 60 Zn< 60 Pb> 50 Pb< 50 

Covariance Cu 545.50 242.00 52.00 
Zn 103.00 89 .10 27.90 
Pb 629.30 262.70 33.70 

Skewness Cu 27.00 6.60 1.49 
Zn 9.20 3.59 0.44 
Pb 28.20 3.90 0.44 

Kurtosis Cu 878.00 51.30 3.00 
Zn 117. 00 15.90 0. 14 
Pb 852.00 11. 00 0.25 

.j:::. 

........ 
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distributed comes from plotting of cumulative frequency on probability"." 

scale with arithmetic scale concentration (Figure 7). If the parent 

population was normally distributed, each element should plot as a 

straight line, with no breaks. However, from inspection of Figure 7, 

it is clear that copper, zinc, and lead cannot be represented by straight 

lines (Lepeltier, 1969; Tennant and White, 1959; Ahrens, 1954). 

Multiple Populations 

The distributions of copper, zinc, and lead in the study area are 

best represented by two distinct groups, a barren and a mineralized popu­

lation. Evidence for this hypothesis comes from two sources. Binocular­

microscopic examination of well-cuttings indicates that the vast majority 

of samples are devoid of any visible mineralization and constitutes the 

barren population; however, within some horizons evidence for mineraliza­

tion is clear and these samples constitute the mineralized population. 

Statistical summary of geochemical data (Table IV) suggest multiple popu­

lations in several ways including large standard deviations with large 

positive skewness and kurtosis. Furthermore, Figure 8 shows two distinct 

populations for each element, each represented by a straight line 

(Lepeltier, 1969; Tennant and White, 1954). 

Determination of Background, Threshold, and 

Anomalous Values 

Geochemical exploration generates data which can be divided into 

two categories: 

1. Background distribution--the normal range of concentration of 

elements exclusive of mineralized samples, and 
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2. Anomalous distribution--the concentration of elements above the 

upper limit of background and is related to mineralization. 

Background and anomalous populations are separated by threshold values, 

which are defined as the upper limits of normal background variation; so 

that values higher than a threshold are therefore anomalous, possibly 

mineralized and worthy of further attention. Once a threshold value is 

determined for each element in a given rock, both background and anoma­

lous concentrations are defined (Levinson, 1974; Lepeltier, 1969; Tennant 

and White, 1959). Hawkes and Webb (1962) suggest that thresholds can be 

calculated and set equal to the mean plus two standard deviations, but 

only if the data distribution represents a single population. Since 

there is evidence indicating that copper, zinc, and lead distributions 

are actually composed to two populations, the Hawkes and Webb (1962) 

formula is not applicable. Perhaps a more genetic method to determine 

threshold values in element distributions with multiple populations would 

be to plot such distributions on probability versus logarithmic concen­

trations (Figure 8; Table V). Best fitting straight lines may be drawn 

through each population and the intersection of two lines can be desig­

nated as a threshold point, separating background, and anomalous popula­

tions. Threshold values for copper, zinc, and lead have been determined 

in this manner for this study and are: 

1. copper threshold= 55 ppm, 

2. zinc threshold = 60 ppm, and 

3. lead threshold = 50 ppm. 

Copper, Zinc, and Lead Populations 

Because the parent populations for copper, zinc, and lead are 
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Log 
Interval* 

l 0.00- 1.30 

2 1. 30- 1.80 

3 l .80- 2.40 
4 2.40- 3.20 

5 3.20- 4.30 

6 4.30- 5.80 

7 5.80- 7.80 

8 7.80- 10.40 

9 10.40- 13.90 

10 13.90- 18.70 

11 18.70- 25.04 
12 25.04- 33.60 
13 33.60- 44.90 
14 44.90- 60.30 
15 60.30- 80.80 
16 80.80-108.30 

TABLE V 

INDIVIDUAL AND CUMULATIVE PERCENT DISTRIBUTION OF COPPER~ 
ZINC AND LEAD WITH LOG INTERVALS 

Copper Zinc 
Individual Cumulative Individual Cumulative 

Percent Percent Percent Percent 

0.06 0.06 --- ---
0.00 0.06 --- ---
0.28 0.33 --- ---
0.78 2.21 --- ---
1.33 2.44 --- ---
1.66 4.10 --- ---
6.09 10. 18 --- ---

11 . 73 21. 92 0 .11 0.11 
15.66 37.58 0.22 0.33 
31. 10 68.68 2.38 2.71 

15. 94 84.61 12.33 15. 04 
4.70 89.32 25 .11 40.15 

3.99 93.30 36.39 76.55 
2.04 95.35 14. 05 90.60 

1.61 96.96 4.09 94.69 

0.89 97.84 1. 99 96.68 

Lead 

Individual Cumulative 
Percent Percent 

0.05 0.05 

0.00 0.05 

0.00 0.05 
0.00 0.05 

0.00 0.05 

0. 12 0. 12 

0.00 0. 12 

6.75 7.97 

1. 22 9. 18 

22.07 31.25 

48.01 79.26 
11 . 56 90.82 

6.53 97.35 

1.60 98.95 

0.28 99.23 

0.22 99.45 ..i::. 

°' 



TABLE V. (Continued) 

Copper Zinc 

Log Individual Cumulative Individual Cumulative 
Interval* Percent Percent Percent Percent 

17 l 08.'30- 145. 10 o~ 72 98.56 1.16 97.84 

18 145.10- 194.40 0.22 98.78 9.40 98.78 

19 194.40- 260.60 0.11 98.89 5.53 99.34 

20 260.60- 349.20 0.11 99.00 2.21 99.56 

21 349.20- 467.90 0.22 99.22 2.21 99.78 

22 467.90- 627.10 0.33 99.56 0 .11 99.89 

23 627.10- 840.50 0.17 99. 72 0.05 99.95 
24 840.50-1126.30 0. 11 99.83 0.05 100.00 

25 1126.30-1509.00 0.00 99.83 0.00 0.00 
26 1509.00-2023.00 0.06 99.89 0.00 0.00 
27 2023.00-2711.00 0.06 99.95 0.00 0.00 

28 2711 . 00-3633. 00 0.00 99.95 0.00 0.00 

29 3633.00-4869.00 0.00 99.95 0.00 0.00 

30 4869.00-6525.00 0.06 100.00 0.00 0.00 

* Log interval= 0.127. 

Lead 

Individual Cumulative 
Percent Percent 

0.05 99.50 

0.00 99.50 

0.05 99.56 

0.05 99 .61 

0.00 99.61 

0. 11 99. 72 

0.00 99.73 

0.00 99.73 

0.17 99.89 

0.00 99.89 

0.00 99.89 

0.00 99.89 

0.05 99.95 

0.05 100.00 

.i:=:. 
"'-J 



48 

statistically complex, it would be useful to determine the statistical 

characteristics of the background and mineralized subpopulation separate­

ly for each element. Table IV is a statistical review of the parent, 

background, and mineralized populations which displays several important 

trends. The mineralized group, as expected, shows a manifold increase 

in the mean, since only values greater than a given threshold are being 

considered. But, because only anomalous values were included, with their 

wide range of concentrations, the standard deviation, variance, and the 

standard error of the mean all increased substantially. Perhaps most im­

portant of all, the skewness and kurtosis values for the mineralized 

populations dramatically shifted to a more normal range. Anomalous 

groups only approach normal distributions, but they do not actually 

attain normalcy. The background population, as expected, shows a consis­

tently lower mean concentration for copper, zinc, and lead. Furthermore, 

as a result of limited ranges of variation (between zero and the threshold 

value for the particular element) there were significant decreases in the 

standard deviation, variance, and the standard error of the mean. The 

skewness and kurtosis for the background populations have decreased so 

much that they appear to be near normally distributed. 

Copper Distribution in Stratigraphic-Geochemical 

Cross Sections 

From the inspection of Plates l, 2, 3, and 4,it is evident that a 

significant copper mineralization zone is located in the Upper Shales 

Member of the Wellington Formation. Where it is best developed, as many 

as four distinct horizons may be encountered within a 250 to 320 foot 

interval. Excellent examples of this fully developed copper sequence 
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can be found in Wells 8 and 10 (Plate 2). Wells in Kay and eastern 

Grant Counties may not have this copper zone, either because well­

cuttings were not recovered during the drilling or wells are to the east 

of the copper outcrop belt. From strong showings of copper in the east­

ernmost wells, there is reason to suspect that these mineralized zones 

extend farther east into shallower depths. But how far east is uncertain 

and would require additional shallow wells to determine their extent. To 

the west this copper zone seems to contain fewer mineralized horizons and 

usually with reduced copper concentrations, suggesting the copper zone 

pinches out to the west. Figure 9 is a geochemical map of the copper 

zone for the study area and was prepared in the following manner: (1) 

each well was studied to determine the number of copper zones it con­

tained and the maximum concentration for each zone; (2) an average copper 

value was determined for each well based on the number of copper zones 

in the Upper Shales Member of the Wellington Formation; and (3) areas of 

equal copper content were mapped (Table VI). The resulting geochemical 

map illustrates the variation of Upper Shales Member copper in the west­

ern two-thirds of Grant County. The most promising geochemical prospect 

area is outlined by the 1000 ppm and greater copper pattern. 

Other copper anomalies are present elsewhere in the sections; how­

ever, they are not as large or as correlatable as those in the Upper 

Shales Member copper zone. Examples of these untraceable copper anoma­

lies may be found in the Lower Evaporites Member of Wells 18 and 19 

(Plate 4), which contains three or four low-level anomalies at various 

stratigraphic horizons. Copper anomalies of this sort are not associ­

ated with significant, observable mineralization in well-cuttings as are 

those of the Upper Shales Member. 
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Well 
No. 

l 

2 

3 

4 
5 

6 

7 

8 

9 

lO 

ll 

12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

TABLE VI 

AVERAGED COPPER CONTENT OF THE MINERALIZED ZONES 
IN THE UPPER WELLINGTON FORMATION 

Copper Content 
(PPM) 

135 

277 

661 
* N.D. 

N.D. 
N.D. 
44 

906 
N.D. 
438 

N.D. 
N.D. 
463 

3070 

N.D. 
N.D. 
88 

350 

139 

90 

N.D. 

* N.D. = no data. 
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Zinc Distribution in Stratigraphic-Geochemical 

Cross Sections 
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Anomalous zinc concentrations in Plates 1, 2, 3, and 4 do not seem 

to be organized into distinct, correlatable zones as were the copper. 

There is, however, some indication of minor zinc zones in the Upper and 

Middle Shales Members in the eastern portions of Plates 2 and 4, but they 

are not clearly defined. The best example of this phenomenon is in Wells 

9, 10, and 11 of Plate 2. In each well the zinc zone ranges in thickness 

from 200 to 250 feet with two or three discontinuous zinc horizons. 

Lead Distribution in Stratigraphic-Geochemical 

Cross Sections 

Anomalous lead concentrations are extremely discontinuous and occur 

in what seems to be unrelated stratigraphic horizons. For example, Well 

2 (Plate 1) has a mineralized lead horizon at the base of the Lower 

Evaporites Member, Well 7 (Plate 2) has lead zones at th~ base of the 

Garber Sandstone, the Upper Evaporites Member and the Lower Shales Mem­

ber, and Well 21 (Plate 4) has three distinct lead zones in the Upper 

and Middle Shale Members. Lead anomalies, unlike zinc anomalies, are 

much more intense (similar to copper) but appear to have no correlatable 

trends. 

Ore Petrology of the Upper Wellington Formation 

Chalcocite seems to be responsible for copper anomalies in the 

upper Wellington Formation of the shallow subsurface of Grant County. 

The morphology of chalcocite observed in this area is quite varied, and 
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includes: (l) fine-grained disseminations, (2) veinlets, (3) irregular 

patches, {4) mineralization in carbonate vugs, and (5) pseudohexagonal 

and cubic forms. 

Fine-grained disseminations of chalcocite are the most abundant 

forms of mineralization and may range in size from 200 microns down to 

the limit of resolution of the microscope (Figure 10). Smaller grains 

have irregular forms whereas some larger grains may have pseudohexagonal 

or cubic forms. These fine-grained disseminations are often bimodally 

distributed as suggested in Figure 10, and are the principal source of 

copper anomalies in the upper Wellington Formation. 

Another less frequently encountered mineralization form are veinlets 

of chalcocite up to 500 microns in length. Chalcocite veinlets are not 

commonly observed, but occur mainly in gray shales (Figures 11 and 12), 

but may be found in fine-grained micritic carbonates (Figure 13). Of 

further interest is the shadow phenomenon associated with veinlets in 

gray shales (Figures 11 and 12) which suggests that the veinlet plane 

extends down below the surface of the thin section casting a shadow. 

These veinlets were perhaps compaction fractures that were later mineral­

ized, and based on their scarcity, are not expected to contribute sub­

stantially to the overall copper content of the upper Wellington 

Formation. 

Irregular patches of chalcocite are very common and are second only 

to fine-grained disseminations in abundance. This group consists of 

wide-ranging shapes generally larger than 100 microns and can be found 

in either shales or carbonates. Irregular patches of chalcocite within 

carbonates tend to be found where micrite recrystallization is slightly 

more intense (Figures 14 through 17). Figure 18 shows an irregular 



Figure 10 , Fine-Grained Disseminated Chalcocite (Black) 
in Fine-Grained Micritic Carbonate, 
Transmitted Polarized Light (XlO) 
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Figure 11. Chalcocite Veinlets (Black) in Gray 
Shale, Transmitted Polarized Light 
(XlO) 
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Figure 12. Chalcocite Veinlets (Black) in Gray 
Shale, Transmitted Polarized Light 
(Xll) 
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Figure 13. Chalcocite Veinlets (Black) in 
Fine-Grained Micritic Carbon­
ate, Transmitted Light (XlO) 
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Figure 14. Irregular Chalcocite Patch (White) in 
Medium-Grained Micritic Carbonate, 
Polished Ore Section (XlO) 
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Figure 15. Irregular Chalcocite Patch (White), 
Same as Figure 14 but Enlarged 
(X20) 
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Figure 16. Irregular Chalcocite Patches (Black) in 
Fine- to Medium-Grained Micrite, 
Transmitted Polarized Light (XlO) 
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Figure 17. Irregular Chalcocite Patches (Black) in 
Fine- to Medium-Grained Micrite, 
Transmitted Polarized Light (XlO) 

61 



Figure 18. Irregular Patch of Chalcocite (Wh i te) 
~Ji th Two Phases in Gray Sha 1 e, 
Polished Ore Section (X20) 
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shaped grain with two phases of chalcocite in gray shale. Figure 19 is 

an irregular mineralization form that suggests that the digestive tract 

of burrowing organisms may have been replaced by chalcocite. Similar to 

veinlets, the shadow phenomenon permits tracing the burrow below the 

viewing surface of the thin section. 

Chalcocite grains that have grown in carbonate vugs are another form 

of mineralization but are not a significant contributor of copper. Most 

chalcocite growths only partially fill vugs, which are later flooded by 

silica (Figures 20 through 23). 

Pseudohexagonal and cubic forms of chalcocite are the least abundant 

habit in the upper Wellington (Figures 24 and 25). These forms are the 

result of either replacement of pyrite or the growth of primary chalcocite 

crystals. 

Clay Minerals Distribution 

Clays of the Wellington Formation consist principally of illite, 

kaolinite, and chlorite. Tables VII and VIII list the clay distribution 

from the upper and lower Wellington Formation in this study area. Table 

IX is a statistical summary of the Wellington clays where the mean, stan­

dard deviation, and variance were calculated. Based on this data, illite 

was found to be dominant with an average of 60.5 percent, whereas kaolin­

ite was 22.4 percent, and c~lorite was only 16.9 percent. 

The upper and lower Wellington clays are quite similar; however, 

there are some interesting differences. The lower Wellington clays tend 

to be significantly richer in illite (55.5 percent for the ~pper and 62.0 

percent for the lower), and kaolinite (22.9 percent for the lower and 

21.4 percent for the upper). The upper Wellington clays, on the other 



Figure 19. Irregular Patch of Chalcocite (Black) 
in the Form of a Burrow in Gray 
Shale, Transmitted Polarized Light 
(Xll) 
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Figure 20. Chalcocite Grain (White) Partially 
Filling a Carbonate Vug, Polished 
Ore Section (XlO) 
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Figure 21. Chalcocite Grain (White) in Carbonate 
Vug, Same as Figure 20 but Enlarged, 
Polished Ore Section (X20) 
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Figure 22. Chalcocite Grain (Black} in a 
Carbonate Vug, Same as 
Figure 21, but in Transmit­
ted Polarized Light (X20} 
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Figure 23 . Chalcocite Grain (White) Partially 
Filling a Carbonate Vug, Polished 
Ore Section (XlO) 
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Figure 24. Cubic Chalcocite (Black) in Carbonate 
Vug, Transmitted Light (XlO) 
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Figure 25. Pseudohexagonal Chalcocite (White) in 
Gray Shale, Polished Ore Section 
(XlO) 

70 
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TABLE VII 

UPPER WELLINGTON FORMATION CLAYS IN PERCENT 

Well 
No. Kaolinite Ill ite Chlorite 

17.3 65.7 16.9 
2 21. l 66.2 12.6 
3 26.5 63.3 10.2 
7 24. l 68.9 6.9 
8 9.2 34.3 56.5 
9 17.6 76.5 5.9 

10 22.2 51.9 25.9 
11 6.4 58.2 35.5 
13 26 .1 63.0 10.9 
14 42.3 38.5 18.2 
17 21. l 52.6 26.3 
18 15.3 76.3 8.5 
19 19. 5 56.l 24.4 
20 31.3 50.0 18.8 
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TABLE VIII 

LOWER WELLINGTON FORMATION CLAYS IN PERCENT 

We 11 
No. Kaolinite Ill i te Chlorite 

1 30.4 55.9 13. 7 

2 16.3 77 .5 6.3 

3 18.2 77 .3 4.6 

4 30.5 69.5 6. 1 

5 11 . 1 69.4 19.4 
7 31.1 55.6 11.1 
8 14.3 74.3 11 .4 

9 12. 1 81.8 6. 1 

10 18.2 72.7 9. 1 

11 18. 5 66.7 14.8 

12 52.0 36.0 12.0 

13 6.7 73.3 20.0 

14 31.3 59.4 9.4 

15 37.3 63.6 9. l 

16 21.2 66.7 12. l 

17 17.8 55.6 26.7 
18 26.7 40.0 33.3 

19 21. 7 56.5 21. 7 
20 25.0 27.3 27.3 
21 16.7 60.0 23.3 
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TABLE IX 

STATISTICAL SUMMARY OF THE WELLINGTON FORMATION CLAYS 

Upper Lower 
Factor Total Wellington We 11 i ngton 

Kaolinite 
N = 34.0 14.0 20~0 

Mean = 22.4 21.4 22.9 
S.D. = 9.8 8.9 10.5 
Var. = 92.6 7 4. l l 04. 7 

I 11 i te 
N = 34.0 14.0 20.0 

Mean = 60.5 55.5 62.0 
S.D. = 13.4 19.0 14.4 
Var. = 174. l 336.2 197 .1 

Chlorite 
N = 34.0 14.0 20.0 

Mean = 16.9 19.8 14.9 
S.D. = 10.9 13.6 8;2 
Var. = 114. 5 172 .6 63.6 
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hand, are slightly richer in chlorite (19.9 percent for the upper and 

14.9 percent for the lower). These relationships are best observed in 

statistical summary (Table IX), although the illite-kaolinite-chlorite 

tertiary diagram suggests similar relationships; however, it is not 

quite as clear (Figure 26). 

The kaolinite-chlorite fields map of the lower Wellington reflects 

the dominance of illite (Figure 27). There is only one significant kao­

linite trend that extends approximately from the northeast to the south­

west, in a diagonal fashion across this area. Other kaolinite-chlorite 

fields show no trend, and are in comparison quite limited. 

This clay distribution fits into the lower Wellington paleo­

environments when it is considered part of the transgressive phase, where 

the Permian seas expanded and flooded the Wellington lowlands. The clay 

distribution, as illustrated, is strongly influenced by marine illite. 

The composition of this portion of the Wellington clays is quite similar 

to the Permian Zechstein sequence of Germany, which was found to be also 

dominated by marine illite (Weaver and Pollard, 1973). The generally 

weak and few kaolinite-chlorite trends may be the result of limited dis­

tributary channel development and the influence of tidal and long-shore 

currents. 

The kaolinite-chlorite fields map of the upper Wellington indicates 

that there are four major trends represented: two kaolinite and two 

chlorite, each of which is elongated in the east-west direction (Figure 

28). The illite content of the upper Wellington is shown to be depleted 

by the large areas occupied by other fields. 

The clay distribution of the upper Wellington may be related to the 

regressive phase of the Permian sea, where Wellington sediments were 
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*-LOWER WELLINGTON 

•-UPPER WELLINGTON 

KAOLINITE CHLORITE 

Figure _26. Tertiary Diagram of the Wellington Formation Clays 



T29N 

T28N 

T27N 

T26N 

T25N 

R8W R7 W R6 W RSW R4W R3W 

~ 
~ 

KAOLINITE - Greater Than 20% 

CHLORITE - Greater Than 20% 

R2W R1W 

- . ~- --........ 
-~.. . .. . . . . . .. . • • • J' •.••• • • • • • • • • • ·······• ········ .... ·• ... 
~a a a .~ •• I . . . . ... 
~a W a a e I . '• ... -. ·-· 

Figure 27. Lower Wellington Formation Kaolinite-Chlorite Facies Map 
..__, 
O'I 



77 

0. ;r: 
.... 

res 
:::::: 

a: Vl 
Q) .,... 
u 

;r: res 
l.J.... 

N 
a: ) 

) 
Q) 

,o +-' 
00 

.,... 
~ s.. 

JOOO 0 ~ 
0 

• 0000 
r-

)000 0 N 0 ..r:: 

C') 0000 0 N 
u 

a: •0000 0 
I 

JOOOOO c Q) 

.)00000 
+-' 

1000000 
a c .,... 

..c a s:: 
) .... ..c 

.,... 
r-

J 
;r: ... 0 .. ... res 

~ • ... 
a: - • s:: 

a - 0 

• a 
.,... 
+-' 

;r: 
... • res 

(!J ... E 
.,, s.. 

a: 
(!J 0 

I l.J.... 

... I s:: 
0 

)00 0000 ( 
... .... +' 

;r: )080000 0( ... O'l 

lO 00000< 
s:: 

co >0000000< 
z .,... 

a: 0000000< 
ai: r-

0000000 ( 
_. 

0 
r-

0000000< 
Q) 

')000000 0 _. :::;;:: 

'00 0000 c % s.. 
')00000 ( 

Q) 

;r: ~00000 ( ~ u 0.. 

.... ')0000 ( 
0.. 

~oooo ( :::> 
llC ')0 00 

' 099 
co 
N 

;r: Q) 
s.. 

'° a: 
::::5 
en .,... 

l.J.... 

z I z z 
Cl .... 
N N N 

c II) 

.... ... N N .... .... .... 



78 

advancing into the Permian basin. The clay of this section should be ex­

pected to be more terrestrially influenced, which is perhaps reflected in 

the reduced amount of illite and the increased importance of kaolinite, 

which is probably detrital. The kaolinite-chlorite fields may be related 

to the activity of streams on minor shallow marine topography. 

The stratabound copper of the upper Wellington Formation thus seems 

to be related to the major regression of the Permian sea. Furthermore, 

copper mineralization seems to be hosted by rocks influenced by the ter­

restrial phase of the Wellington as evidenced by detrital clay in the 

shales and the intertidal origin of the carbonates. 

Comparison With Regional Occurrences 

Permian redbed stratabound copper of the Midcontinent occurs over a 

wide geographic area, and within varied host lithologies. But with all 

these variables, each copper occurrence shares many common characteris­

tics with Midcontinent copper as a whole, including age, mineralogy, 

paragenesis, and possibly origin. The detailed work done at the Greta 

and to a lesser extent at the Mangum District permits some speculation 

regarding similarities and differences between the Grant County occur­

rence and these Districts. 

Mangum District, Greer County 

The copper bearing-bed at the Mangum District is a medium gray, 

laminated silty shale called the Meadows Copper Shale, and is 30 to 35 

feet from the top of the Flowerpot Shale. The Meadows Copper Shale 

varies in thickness between 4 and 18 inches with an average of 14 inches. 
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Copper mineralization is not uniform throughout the entire interval, 

but averages about 1.1 percent and ranges from 0.5 to more than 2.0 per­

cent. 

Since the Mangum deposit has not yet been mined and studied in as 

much detail as the Creta deposit, it is not as well understood. Nearly 

all testing has been at the outcrop or in shallow test pits. Dissemi­

nated malachite is reported to be the dominant copper-sulfide so far, 

but some test pits have recovered chalcocite under 10 to 15 feet of over­

burden, and it is likely to be the dominant ore mineral for the Meadows 

Copper Shale in the shallow subsurface (Johnson, 1976). 

Creta District, Jackson County 

The mineralized unit at this deposit is a medium gray, gypsiferous 

silty shale called the Prewitt Copper Shale and is 35 to 40 feet below 

the top of the Flowerpot Shale. The Prewitt Copper Shale ranges in 

thickness from 3 to 12 inches, but averages about 8.5 inches, with an 

average ore grade of about 2.0 percent copper, and ranges from 0.5 to 

4.5 percent. The principal copper-sulfides at this deposit are chalco­

cite, malachite, and azurite, with minor quantities of botallackite and 

callaghanite. Chalcocite is the principal ore mineral mined at Creta, 

and occurs in various forms {Harn and Johnson, 1964). 

l. Fine-grained disseminations of chalcocite 10 to 150 microns in 

diameter are most abundant, and whose shape varies from irregular to 

spherical. Spherical chalcocite disseminations are generally larger 

than irregular shaped grains and have been identified as replacements 

of spores. Nearly all the mineralization in the Prewitt Copper Shale 

is contained in spores replaced by chalcocite. There is an abrupt 
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contact between the mineralized zone and the barren rock above and below. 

Most of the spores exhibit only a minor degree of collapse and may appear 

slightly ellipsoidal; completely collapsed spores are uncommon at Greta. 

Spores of the Prewitt Shale have been identified as Triletes (Hagni and 

Gann, 1976). 

2. Veinlets of chalcocite have also been reported in the Prewitt 

Copper Shale. These thin, flaky, irregular discontinuous veinlets are 

probably compaction fractures that may be as long as a few inches, but 

most are microscopic in size. These mineralized forms are of minor quan­

titative importance to the overall copper content of the Prewitt Shale, 

but suggest that copper-bearing solutions may have migrated through them 

during diagenesis. Veinlets have been reported along, as well as, across 

bedding planes, and appear to consist entirely of chalcocite without re­

placement remnants of other materials such as pyrite (Hagni and Gann, 

1976). 

3. Amoeboid patches and stringers of chalcocite are a conspicuous 

form of mineralization at Greta. Typically, they are elongated and mean­

der randomly. These patches seem to be confined to non-laminated, bio­

turbated, blocky shale beds and thus they may have been formed in 

digestive tracts of burrowing organisms (Hagni and Gann, 1976). 

4. Pryite replacement by chalcocite occasionally indicates its 

origin when the process is not complete. In these cases, islands of 

pyrite (atoll structure) may be found where chalcocite completely sur­

rounds pyrite. Chalcocite pseudomorphs of pyrite may occasionally be 

found (Hagni and Gann, 1976). 

The origin of copper mineralization at Greta is told by the replace­

ment of spores and pyrite, chalcocite veinlets, and some encroachment on 
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quartz grains, indicating that mineralization occurred after deposition 

with some diagenesis of the host sediments. Additional evidence from 

sulfur-isotope studies indicate that the sulfur was biogenically pro­

duced and probably diagenetic (Lockwood, 1972). The origin of the 

mineralizing solution is uncertain and is without any indications of 

faulting, folding, or hydrothermal activity (Lockwood, 1972; Dingess, 

1976; Hagni and Gann, 1976; Kidwell and Bower, 1976). 

Speculation on the Origin of Redbed Copper 

in Oklahoma 

The literature on the subject of redbed copper genesis reflects 

wide ranging opinions. The principal modes of origin of Permian redbed 

stratabound copper of the Midcontinent can be grouped into four cate­

gories: (1) syngenesis, (2) epigenesis, (3) complex mixture of syngene­

sis followed by epigenetic processes, and (4) diagenesis. The following 

is a brief review of these models and their application in Oklahoma. 

Fischer (1937) described the origin of copper-vanadium-uranium-

si lver associated deposits in southwestern United States. He presented 

a syngenetic mechanism to explain mineralization in redbeds and in order 

to satisfy certain geologic relationships: (1) lenticular nature of ore 

bodies, (2) the restriction of mineralization to limited lithologic hori­

zons, and (3) the absence of any evidence of structural control over 

mineralization. Fay (1975) applied a similar syngenetic mechanism when 

he concluded that sedimentary chalcocite deposition occurred in environ­

ments beyond delta margins and a long basin margin. In these areas 

there was a mixing of fresh water from the land with near-shore marine 

water which resulted in the deposition of copper. 
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Rogers (1916) examined polished sections of redbed copper-sulfides 

to determine their origin through textures. From the study of several 

deposits in Oklahoma and New Mexico, he noted that there were remarkable 

petrographic similarities and suggested that their origins are also 

similar. Based on textural relationships, he strongly emphasized an 

epigenetic argument. 

Tarr's (1910) study of redbed copper in northeastern Payne County 

suggested a complex origin for this occurrence. He constructed a model 

where Permian streams flowed into an inland bay of the Permian sea, and 

brought both metallic salts and fragments of wood together. Organic 

matter produced locally reduced conditions where copper-sulfides preci­

pitated during sedimentation. A second mineralization event occurred 

after these sediments were deeply buried, lithified, and brought back to 

near the surface where remobilization of copper enriched pre-existing 

copper forms and the remaining unmineralized organic debris. 

Lockwood (1972) compared the Greta and.Mangum deposits and concluded 

that a diagenetic origin for both these occurrences seemed to fit observa­

tions regarding: (l) paragenesis of ore minerals, {2) presence of dia­

genetic sulfur, (3) geometry of the ore bodies, and (4) relationships to 

organic content. 

Genesis of Copper Mineralization in 

North-Central Oklahoma 

Host lithologies for chalcocite mineralization in Grant County are 

carbonates and gray shales. The carbonate hosts are thin, vuggy, fine­

to medium-grained micrites, with some minor recrystallization. Some 

vugs record a sequence of events where minor fine calcite grew around 
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the rim, followed by a chalcocite mineralization event and finally a 

silica flood which filled the rest of the vug space. Mineralization in 

gray shales and carbonates occurred in various forms: (1) fine-grained 

dissemination, (2) veinlets, (3) irregular patches, (4) mineralization 

in vugs, and (5) cubic or hexagonal pseudomorphs. 

The first estimation of the geometry of this copper deposit would 

be an irregular blanket, paralleling a portion of the ancient Permian 

shoreline (Figure 9). Since the margins of this deposit apparently ex­

ceed the confines of the study area, the ultimate geometry of this body 

is not certain. 

All significant copper-sulfide mineralization is confined to the 

Upper Shales Member of the Wellington Formation. In fact, where mineral­

ization is most intense, four distinct zones may be observed in various 

stratigraphic positions that do not seem to fluctuate substantially in 

this area. The restriction of the copper to these horizons, without any 

evidence of structural or hydrothermal activity, suggests to this writer 

a strong lithologic control. 

The Grant County occurrence has some apparent vertical and horizon­

tal zonations with respect to copper and zinc. The copper zone is found 

stratigraphically higher in the section and possibly extending farther 

into the basin than the zinc. 

The genesis of the Grant County deposit, in this writer's opinion, 

is probably related to diagenetic processes, which would explain the 

geologic relationships discussed earlier. The mechanism that caused the 

mineralizing solution to pass through these favorable lithologies is un­

certain. The sabkha process described by Renfro (1974) is indeed plausi­

ble, and has already been applied to the Midcontinent by Smith (1975). 
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An alternative to the sabkha model is Rose's (1976) suggestion that 

cuprous chloride complexes are important in understanding the origin of 

redbed copper. He recognized that normal oxidized ground and surface 

waters, at reasonable pH values had negligible copper solubilities, and 

thus could not be mineralizing agents. However, copper,as Cucl2 and 

CuCl~- with 0.5m Cl- at intermediate Eh and pH, will have solubilities 

of about 100 ppm copper, and contains enough copper in solution to be 

an effective transporter of copper and possibly a mineralizing agent. 

Rose (1976) points to two geological situations likely to have high-

chloride water associated with them: basins with evaporites and where 

connate waters are moving out of marine sediments. These oxidized con-

nate brines escape from the underlying sediments during compaction and 

migrate upward where they may encounter organically-reduced conditions 

which will precipitate copper. 

Copper mineralization characteristics in north-central Oklahoma 

seems to favor Rose's (1976) hypothesis. The chalcocite mineralization 

zone of the upper We 11 i ngton Formation is part of a major regressive 

sequence and is underlain by a thick wedge of evaporites and marine 

shales. During the compaction, connate water rich in chlorides com­

plexed with copper migrates upward through the upper Wellington which 

contains terrestrially-related sediments and organic matter. This re-

duced environment causes the copper to precipitate in compaction frac­

tions, as fine-grained disseminations, in carbonate vugs and as irregular 

patches. In general, the following relationships seem to be important 

in copper mineralization in the Midcontinent: (1) regressive sequences 

containing organic matter underlain by a thick marine transgressive 

wedge, (2) the transgressive wedge contains evaporites or marine shales 
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wtth saline connate waters rich in chlorides, (3) cuprous chloride com­

plexes form in the connate water, and (4) compaction of these thick, 

marine sequences causes this solution to move upward through the reduced 

regressive sequences above, causing low temperature chalcocite to preci­

pitate. 

Source of Copper 

The source of copper is perhaps the least problematic in the under­

standing of redbed copper genesis. The Wichita Mountains that were 

flanking the Permian sea to the south was an excellent source of Permian 

copper. Important contributors of copper were the gabbroic and anortho­

site groups, which contained on the average 140 ppm and 20 ppm copper, 

respectively. Granites and rhyolites were less important, as they aver­

aged only 11.0 copper. Following the late Pennsylvanian uplift, vast 

quantities of granite and gabbro were eroded and leached, as evidenced 

by local accumulations of more than 5,000 feet of granite wash (Al-Shaieb 

and others, 1976). 

Fay (1975) proposed that the weathering and erosion of chalcopyrite 

deposits of the Ouachitas would release copper to streams under oxidiz­

ing conditions. These mineralized areas of the Ouachitas were emplaced 

by Virgilian time and are suggested to be an important source of Permian 

copper. Late Pennsylvanian and early Permian streams transported copper 

in solution to the Permian sea and seems to be a closer source of copper 

for the Grant deposit than the Wichitas, and may have had greater influ­

ence. 



CHAPTER IV 

SUMMARY 

Geochemical exploration of the shallow subsurface of Grant and Kay 

Counties, Oklahoma has revealed several interesting ideas which can be 

summarized in the following: 

1. The Upper Shales Member of the Wellington Formation contains 

anomalous copper mineralization trends which, when fully developed, may 

contain up to four distinct copper zones within 250 to 320 foot inter­

vals. Chalcocite is the principal copper-sulfide phase of these trends 

which have an irregular blanket geometry. The eastern limit of the chal­

cocite zone remains to be tested to determine its concentration and ex­

tent near the surface. 

2. Copper, zinc, and lead zonations are not very distinct; however, 

copper and zinc horizons do suggest some zoning patterns: 

a. a weak zinc zone appears to be stratigraphically lower than 

the copper zone; 

b. furthermore, the copper zone extends more basinward than 

the zinc zone. Lead anomalies are intense but do not appear 

to be organized into a definable trend. 

3. Geochemical distribution of copper, zinc, and lead for this red­

bed stratabound body is bi-modal. 

4. The principal reason behind the skewed distribution of copper, 

zinc, and lead is that they consist of two distinct populations: a 
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background and a mineralized population. 

5. Background and anomalous (mineralized) populations have been 

statistically separated by the determination of a threshold value for 

each element. 
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6. Petrographic studies of well-cuttings in polished thin sections 

indicate clearly that the mineralization occurred after the deposition 

of the host rocks and is probably of diagenetic origin. 

7. Host rocks consist of gray shales and carbonates. 

8. Clay studies of the Wellington Formation suggest that minerali­

zation is related to terrestrially influenced, regressive portion of the 

Wellington Formation. 
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TABLE X 

CHEMICAL ANALYSIS OF WELL-CUTTINGS 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interva 1 (PPM) (PPM) (PPM) 

Well No. 1 
Sec. 29, T.25N., R.8W. 

220-240 141 249 108 1130-1150 25 47 25 
240-260 72 45 36 1150-1170 53 52 30 
260-280 10 55 33 1170-1190 30 44 25 
280-300 8 44 28 1190-1210 16 43 30 
300-320 7 46 32 1210-1230 40 47 25 
360-380 6 60 31 1230-1250 22 50 28 
420-440 9 67- 16 1250-1270 19 51 30 
440-460 11 73 46 1270-1290 25 50 33 
460-480 10 47 25 1290-1310 40 46 30 
480-500 7 52 18 1310-1330 69 61 23 
500-520 6 53 13 1330-1350 18 47 25 
520-540 8 67 28 1350-1370 93 111 40 
540-560 9 57 29 1370-1390 72 93 55 
560-580 5 84 51 1390-1410 28 48 25 
580-600 9 46 20 1410-1430 34 69 43 
610-630 5 35 35 1430-1450 27 94 45 
630-650 4 33 15 1450-1470 21 144 30 
650-670 4 71 25 1470-1490 17 109 25 
670-690 20 33 30 1510-1520 41 64 25 
690-710 5 58 25 1520-1530 24 183 25 
710-730 7 47 20 1530-1540 85 51 20 
730-750 25 73 15 1540-1550 80 104 25 
750-770 9 49 20 1550-1560 56 151 50 
770-790 8 46 15 1560-1570 25 108 27 
790-810 7 42 15 1570-1580 47 147 26 
810-830 8 41 13 1580-1590 77 69 25 
830-850 10 37 15 1590-1600 47 186 28 
850-870 19 47 15 1600-1610 24 182 70 
870-890 41 48 18 1610-1620 35 69 25 
890-910 158 45 15 1620-1630 37 92 35 
910-930 34 47 13 1630-1640 15 76 20 
930-950 47 50 15 1640-1650 43 47 50 
950-970 51 40 15 1650-1660 21 135 20 
970-990 106 49 15 1660-1670 20 71 20 
990-1010 86 95 15 1670-1680 14 71 20 

1010-1030 142 85 70 1680-1690 55 40 20 
1030-1050 29 47 35 1690-1700 27 43 25 
1050-1070 99 56 23 1700-1710 21 48 25 
1070-1090 35 79 23 1710-1720 15 33 20 
1090-1110 72 48 20 
1110-1130 17 49 25 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

Well No. 2 
Sec. 36, T.25N., R.6W. 

130-140 7 21 15 590-600 13 36 20 
140-150 8 23 10 600-610 6 33 8 
160-170 7 26 15 610-620 6 35 15 
170-180 7 24 15 620-630 9 37 10 
180-190 7 22 15 630-640 155 36 8 
190-200 7 24 10 640-650 9 37 8 
200-210 3 19 20 650-660 11 33 10 
210-220 3 22 10 660-670 13 35 20 
220-230 6 27 15 670-680 9 34 15 
230-240 6 33 20 680-690 14 35 20 
250-260 10 36 30 690-700 13 35 17 
260-270 7 35 15 700-710 18 37 20 
270-280 6 26 15 710-720 28 37 20 
280-290 9 28 15 720-730 122 43 20 
290-300 8 26 15 730-740 62 36 15 
300-310 10 30 20 740-750 12 35 30 
310-320 14 24 20. 750-760 8 35 15 
320-330 16 30 20 760-770 31 36 25 
330-340 6 28 15 780-790 19 39 35 
340-350 8 27 15 790-800 14 37 25 
350-360 5 27 13 800-810 12 33 30 
360-370 5 27 10 810-820 14 36 25 
370-380 4 22 18 820-830 14 95 30 
380-390 6 26 15 830-840 12 34 25 
390-400 6 23 15 840-850 14 33 30 
400-410 8 22 15 850-860 13 34 40 
410-420 10 22 18 860-870 21 35 35 
420-430 5 22 15 870-880 20 33 25 
430-440 7 27 13 880-890 46 32 25 
440-450 6 25 15 890-900 13 34 30 
450-460 7 30 15 900-910 20 95 35 
460-470 7 37 20 910-920 15 35 35 
470-480 8 40 15 920-930 15 34 35 
480-490 8 27 15 930-940 16 445 30 
490-500 7 30 15 940-950 21 44 35 
500-510 10 30 18 950-960 15 36 35 
510-520 14 34 20 960-970 17 41 30 
530-540 32 26 20 970-980 17 87 30 
540-550 10 36 15 980-990 17 233 30 
550-560 553 44 25 990-1000 14 38 35 
560-570 80 35 20 l 000-1010 44 49 30 
570-580 19 35 20 1010-1020 23 48 46 
580-590 13 33 15 1020-1030 60 38 25 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) {PPM) (PPM) Interval (PPM) (PPM) (PPM) 

1030-1040 18 40 30 1370-1380 12 29 20 
1040-1050 28 65 30 1380-1390 9 26 20 
1050-1060 25 68 35 1390-1400 17 51 25 
1060-1070 46 49 500 1400-1410 10 425 15 
1070-1080 15 34 25 1410-1420 22 41 20 
1080-1090 12 35 25 1420-1430 11 34 20 
1090-1100 30 37 25 ' 1430-1440 13 48 20 
1100-1110 25 42 25 1440-1450 16 42 20 
1110-1120 12 34 25 1450-1460 18 37 35 
1120-1130 23 58 35 1460-1470 220 58 20 
1130-1140 69 45 35 1480-1490 31 36 40 
1140-1150 103 40 30 1490-1500 102 57 35 
1150-1160 12 37 25 1500-1510 12 30 20 
1160-1170 18 45 30 1510-1520 24 37 30 
1180-1190 25 40 35 1520-1530 18 35 35 
1190-1200 26 61 30 1530-1540 15 23 30 
1200-1210 15 41 30 1540-1550 26 29 50 
1210-1220 14 35 35 1550-1560 12 22 20 
1220-1230 20 32 25 1560-1570 12 84 30 
1230-1240 15 35 30 1570-1580 15 65 30 
1240-1250 15 57 25 1580-1590 17 42 25 
1250-1260 13 36 35 1590-1600 32 165 30 
1260-1270 16 41 30 1600-1610 15 80 30 
1270-1280 12 29 20 1610-1620 66 38 35 
1280-1290 13 38 15 1620-1630 18 32 25 
1290-1300 16 38 15 1630-1640 15 32 24 
1300-1310 13 35 15 164.0-1650 29 31 30 
1310-1320 11 25 20 1650-1660 15 120 25 
1320-1330 20 42 20 1660-1670 16 31 20 
1330-1340 39 41 15 1670-1680 16 30 20 
1340-1350 15 30 25 1680-1690 15 41 20 
1350-1360 17 26 25 1690-1700 15 35 30 
1360-1370 16 33 20 

Well No. 3 
Sec. 6, T.25N., R.4W. 

100-110 8 21 20 280-290 8 24 25 
120-130 33 24 20 300-310 6 23 25 
140-150 10 24 30 320-330 10 27 30 
160-170 9 23 20 340-350 16 26 40 
180-190 9 23 35 350-360 6 27 20 
200-210 8 25 20 360-370 675 32. 20 
220-230 0.5 21 25 370-380 106 36 25 
240-2-50 24 23 30 380-390 23 35 20 
260-270 13 28 25 390-400 55 32 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval {PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

400-410 1023 44 20 810-820 23 34 20 
410-420 407 29 15 820-830 20 46 20 
420-430 28 44 20 830-840 20 75 15 
430-440 388 27 20 840-850 28 60 20 
440-450 805 29 20 850-860 25 31 20 
450-460 43 33 20 860-870 19 40 25 
460-470 33 48 30 870-880 38 71 25 
470-480 16 40 30 880-890 29 60 15 
480-490 10 44 25 890-900 18 34 20 
490-500 80 40 30 900-910 15 25 20 
500-510 20 45 40 910-920 15 31 20 
510-520 27 44 30 920...;930 23 28 30 
520-530 12 41 30 930-940 20 35 20 
530-540 20 38 35 940-950 19 29 30 
540-550 18 43 35 950-960 19 40 25 
550-560 34 39 35 960-970 17 34 25 
560-570 40 42 35 970-980 18 33 20 
570-580 46 38 45 980-990 24 77 15 
580-590 19 40 45 990-1000 25 ' 26 30 
590-600 20 40 50 1000-1010 11 23 25 
600-610 13 39 40 1010-1020 23 28 35 
610-620 24 40 40 1020-1030 14 26 20 
620-630 17 39 35 1030-1040 19 28 30 
630-640 21 40 35 1040-1050 11 17 10 
640-650 13 34 35 1050-1060 18 25 20 
650-660 18 39 35 1060-1070 15 17 20 
660-670 16 39 30 1070-1080 10 27 15 
670-680 18 37 30 1080-1090 9 22 25 
680-690 16 35 25 1090-1100 24 30 20 
690-700 17 41 35 1100-1110 17 19 20 
700-710 24 33 20 1110-1120 10 15 20 
710-720 21 35 25 1130-1140 10 17 20 
720-730 21 30 30 1140-1150 8 30 10 
730-740 17 44 20 1150-1160 16 39 25 
740-750 19 37 25 1160-1170 23 29 20 
750-760 18 39 30 1170-1180 17 28 20 
760-770 22 34 35 1180-1190 14 22 25 
770-780 19 29 20 1190-1200 30 35 25 
780-790 16 34 20 1200-1210 14 25 20 
790-800 20 40 30 1210-1220 20 35 30 
800-810 46 34 35 



100 

TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval {PPM) {PPM) {PPM) Interval (PPM) (PPM) (PPM) 

Well No. 4 
Sec. 16, T.25N., R.3W. 

360-370 16 93 30 650-660 15 32 10 
370-380 14 30 50 660-670 13 82 20 
380-390 16 36 30 670-680 43 123 25 
390-400 15 30 35 680-690 12 26 15 
400-410 19 82 25 690-700 9 25 20 
410-420 16 90 30 700-710 19 37 25 
420-430 16 35 25 710-720 15 33 35 
430-440 16 39 30 720-730 14 39 25 
440-450 17 36 20 730-740 12 36 30 
450-460 19 36 25 740-750 9 26 15 
460-470 21 34 25 750-760 10 18 20 
470-480 33 30 30 760-770 13 23 15 
480-490 17 35 25 770-780 82 . 120 20 
490-500 19 34 20 780-790 ll 24 20 
500-510 17 38 20 790-800 67 21 15 
510-520 15 35 15 800-810 7 23 20 
520-530 16 35 15 810-820 10 20 15 
530-540 9 30 5 820-830 26 32 15 
540-550 33 30 5 830-840 12 21 20 
550-560 35 33 5 840-850 10 26 15 
560-570 14 31 5 850-860 10 23 15 
570-580 17 37 15 860-870 ll 22 15 
580-590 33 38 10 870-880 13 31 15 
590-600 10 29 10 8-80-890 37 26 15 
600-610 23 33 20 890-900 26 30 20 
610-620 33 31 25 900-910 10 25 10 
620-630 17 31 25 910-920 12 27 10 
640-650 16 58 25 

Well No. 5 
Sec. 4, T.25N., R.2W. 

150-160 26 40 25 330-340 12 68 20 
160-170 34 40 25 340-350 35 35 20 
170-180 23 47 25 350-360 14 33 20 
180-190 20 33 25 360-370 19 17 20 
190-200 20 29 20 370-380 21 33 25 
210-220 17 42 15 380-390 12 47 20 
280-290 17 30 20 390-400 50 31 20 
290-300 48 58 30 400-410 21 55 25 
300-310 17 35 25 410-420 30 51 25 
310-320 25 35 40 420-430 40 55 25 
320-330 19 35 25 430-440 56 50 15 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

440-450 13 28 20 540-550 12 22 20 
460-470 14 36 20 550-560 11 20 20 
470-480 8 23 15 560-570 8 16 20 
490-500 17 36 15 570-580 9 26 20 
500-510 12 30 20 580-590 14 230 20 
510-520 11 31 15 590-600 39 21 20 
520-530 8 38 20 600-610 64 25 20 
530-540 11 25 20 610-620 17 28 15 

Well No. 6 
Sec. 27, T.25N., R. lW. 

l 00-110 2 25 15 270-280 8 25 15 
110-120 32 27 15 280-290 8 18 20 
120-130 7 30 10 290-300 15 19 30 
130-140 36 57 10 300-310 13 42 30 
140-150 17 50 10 310-320 10 l 03 35 
150-160 17 62 15 320-330 22 17 25 
160-170 9 33 15 330-340 10 21 25 
170-180 . 15 30 10 340-350 7 62 25 
180-190 10 30 15 350-360 13 48 50 
190-200 12 27 20 360-370 12 19 30 
200-210 9 17 25 380-390 12 21 15 
210-220 15 23 15 390-400 19 21 20 
220-230 10 24 15 400-410 16 22 20 
230-240 9 24 15 410-420 6 21 / 15 
240-250 7 18 20 420-430 9 21 20 
250-260 13 51 35 430-440 15 24 25 
260-270 16 22 20 440-460 11 39 25 

Well No. 7 
Sec. 7, T.26N., R.7W. 

350-360 3 23 12 480-490 3 22 15 
360-370 6 21 13 490-500 3 19 10 
370-380 3 19 10 500-510 5 20 15 
380-390 2 18 8 510-520 2 18 13 
390-400 3 18 10 520-530 26 22 13 
400-410 5 16 13 530-540 3 24 13 
410-420 2 17 13 540-550 4. 21 13 
420-430 10 21 15 550"-560 6 32 18 
430-440 10 22 18 560-570 17 41 18 
440-450 7 21 18 570-580 3 32 15 
450-460 10 39 345 580-590 4 35 10 
460-470 3 17 10 590-600 4 34 13 
470-480 3 21 15 600-610 9 35 15 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval {PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

610-620 24 30 15 1070-1080 8 29 20 
620-630 89 79 20 1080-1090 116 25 15 
630-640 60 110 85 1090-1100 8 29 15 
640-650 21 30 30 1110-1120 15 . 24 20 
650-660 19 32 30 1120-1130 12 29 25 
660-670 13 34 20 1130-1140 14 26 30 
670-680 43 33 20 1140-1150 14 25 25 
680-690 24 35 25 1150-1160 18 30 90 
690-700 25 33 30 1180-1190 17 29 35 
700-710 19 32 25 1190-1200 13 56 1300 
710-720 16 34 30 1200-1210 11 22 20 
720-730 20 42 30 1210-1220 14 30 25 
730-740 49 38 30 1220-1230 14 36 30 
740-750 25 42 28 1230-1240 16 27 30 
750-760 13 34 20 1240-1250 13 26 30 
760-770 17 40 25 1250-1260 14 24 25 
770-780 13 33 20 1260-1270 8 14 20 
780-790 20 43 33 1270-1280 8 16 20 
790-800 25 44 45 1280-1290 9 22 35 
800-810 16 53 20 1290-1300 6 317 10 
810-820 15 44 20 1300-1310 6 22 10 
820-830 16 91 35 1310-1320 9 21 8 
830-840 17 66 80 1320-1330 8 64 8 
840-850 17 44 35 1330-1340 8 15 10 
850-860 24 26 25 1340-1350 6 13 10 
860-870 21 26 25 1350-1360 6 25 8 
870-880 11 22 30 1360-1370 8 22 10 
880-890 19 27 30 1370-1380 11 26 15 
890-900 20 27 25 1380-1390 10 25 20 
900-910 23 26 35 1390-1400 12 20 15 
910-920 19 153 25 1400-1410 13 32 30 
920-930 16 30 35 1410-1420 8 12 13 
930-940 14 22 25 1420-1430 15 17 30 
940-950 19 27 25 1430-1440 9 9 30 
950-960 20 29 20 1440-1450 11 17 13 
960-970 12 28 43 1450-1460 10 17 35 
970-980 10 49 18 1460-1470 12 18 25 
980-990 13 31 25 1470-1480 11 23 20 

. 990-1000 12 28 30 1480-1490 12 21 25 
1000-1010 12 29 30 1490-1500 10 14 15 
1010-1020 19 22 25 1500-1510 17 23 30 
1020-1030 25 37 28 1510-1520 17 29 30 
1030-1040 18 324 4725 1520-1530 10 13 25 
1040-1050 13 33 30 1530-1540 9 12 20 
1050-1060 14 34 25 1540-1550 10 16 20 
1060-1070 14 595 6525 1550-1560 19 28 195 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

Well No. 8 
Sec. 31, T.26N., R.6W. 

300-310 24 28 15 800-810 21 48 40 
320-330 7 30 10 810-820 19 44 30 
330-340 15 29 15 890-900 18 37 25 
340-350 11 32 15 900-910 15 177 25 
350-360 7 38 10 910-920 19 47 35 
370-380 37 24 15 920-930 19 44 20 
380-390 9 25 10 930-940 13 36 25 
400-410 7 31 20 940-950 14 40 20 
410-420 8 25 15 950-960 16 31 25 
450-460 5 24 15 960-970 45 57 25 
460-470 4 25 15 970-980 21 54 25 
470-480 107 34 105 980-990 15 42 15 
480-490 8 32 15 990-1000 14 36 30 
490-500 5 24 20 1000-1010 15 37 30 
500-510 925 29 30 1020-1030 8 42 15 
510-520 10 38 20 1030-1040 15 41 25 
520-530 5 38 20 1040-1050 11 43 20 
530-540 4 32 15 1050-1060 7 40 20 
540-550 6 37 10 1060-1070 21 59 20 
550-560 31 41 15 1070-1080 15 44 20 
560-570 6 35 15 1080-1090 14 35 30 
570-580 95 37 45 1090-1100 22 58 30 
580-590 1685 37 30 1100-1110 38 73 25 
590-600 55 29 15 1120-1130 20 45 20 
600-610 18 41 20 1130-1140 14 41 25 
610-620 12 43 20 1140-1150 17 38 15 
620-630 9 35 15 1150-1160 12 52 20 
630-640 6 40 15 1160-1170 21 49 25 
640-650 10 45 20 1170-1180 12 60 20 
650-660 21 45 30 1180-1190 5 31 10 
660-670 16 58 15 1190-1200 9 32 20 
670-680 44 61 50 1200-1210 14 38 25 
680-690 98 50 25 1210-1220 8 27 15 
690-700 18 42 25 1220-1230 23 37 25 
700-710 21 56 10 1230-1240 9 38 15 
710-720 12 51 25 1240-1250 17 46 25 
720-730 11 44 15 1250-1260 17 51 15 
730-740 8 59 20 1260-1270 16 452 25 
740-750 30 56 25 1270-1280 23 33 50 
750-760 30 45 70 1280-1290 6 16 20 
760-770 13 41 25 1290-1300 9 28 15 
780-790 19 48 35 1310-1320 19 27 20 
790-800 17 46 40 1320-1330 15 43 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interva 1 (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

1330-1340 26 34 25 1420-1430 15 29 20 
1340-1350 15 31 20 1440-1450 15 31 20 
1350-1360 9 24 15 1450-1460 21 38 20 
1360-1370 11 31 10 1460-1470 24 35 30 
1370-1380 10 30 20 1470-1480 15 35 2'5 
1380-1390 11 39 15 1480-1490 19 39 15 
1390-1400 11 31 20 1490-1500 16 50 20 
1400-1410 14 34 15 1500-1510 16 47 20 
1410-1420 15 35 20 1510-1520 26 44 20 

vle 11 No. 9 
Sec. 4, T.26N., R.5W. 

460-470 17 80 25 810-820 21 38 25 
470-480 14 41 20 820-830 17 36 30 
480-490 19 38 20 830-840 18 38 30 
490-500 13 38 30 840-850 16 38 20 
500-510 21 41 20 850-860 80 79 25 
510-520 12 41 20 860-870 18 43 25 
520-530 36 57 25 870-880 21 37 25 
530-540 17 58 45 880-890 41 60 30 
540-550 15 41 25 890-900 23 38 20 
560-570 16 40 40 900-910 26 46 25 
570-580 16 41 45 910-920 24 36 30 
580-590 15 43 30 920-930 20 37 25 
590-600 16 45 20 930-940 16 28 25 
600-610 16 125 25 940-950 15 44 30 
610-620 16 32 20 950-960 15 32 35 
620-630 15 30 25 960-970 15 36 25 
640-650 16 32 35 970-980 13 21 35 
650-660 16 104 30 980-990 19 35 25 
660-670 17 55 35 . 990-1000 41 36 30 
670-680 17 37 15 1000-1010 16 30 25 
680-690 18 18 20 1010-1020 14 27 20 
690-700 20 38 25 1020-1030 18 25 20 
700-710 18 182 25 1030-1040 12 20 30 
710-720 16 39 20 1040-1050 11 384 25 
720-730 16 60 35 1050-1060 9 33 30 
730-740 18 57 30 1060-1070 14 30 25 
740-750 17 49 25 1070-1080 19 30 20 
750-760 21 41 25 1080-1090 16 22 15 
760-770 62 50 20 1090-1100 14 25 20 
770-780 16 46 20 1100-1110 14 30 20 
780-790 17 51 35 1110-1120 15 50 30 
790-800 117 58 30 1120-1130 29 14 25 
800-810 18 35 20 1130-1140 14 32 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

1140-1150 14 33 25 1270-1280 9 23 10 
1150-1160 12 25 20 1280-1290 13 24 15 
1160-1170 17 35 15 1290-1300 12 34 30 
1170-1180 14 28 20 1300-1310 14 43 25 
1180-1190 13 188 20 1310-1320 12 35 25 
1190-1200 18 33 15 1320-1330 12 34 25 
1200-1210 15 62 20 1330-1340 16 28 30 
1210-1220 13 25 20 1340-1350 12 23 25 
1220-1230 16 26 25 1350-1360 14 32 25 
1230-1240 14 28 15 1370-1380 11 24 20 
1240-1250 13 34 18 1380-1390 12 70 30 
1250-1260 13 32 20 1390-1400 10 145 25 
1260-1270 12 32 20 1410-1420 13 25 20 

Well No. 10 
Sec. 25, T.26N., R.5W. 

90-100 11 62 25 450-460 18 36 20 
100-11_0 10 63 35 460-470 140 34 25 
110-120 11 57 35 470-480 30 42 35 
120-130 6 35 25 480-490 150 42 30 
140-150 3 19 5 490-500 14 42 25 
160-170 12 43 25 500-510 7 31 15 
170-180 510 34 25 510-520 10 31 20 
190-200 22 20 15 520-530 10 39 20 
210-220 30 45 20 530-540 13 38 25 
230-240 6 23 25 540-550 14 36 25 
240-250 79 22 20 550-560 17 41 35 
250-260 23 20 15 560-570 19 47 35 
260-270 7 29 25 570-580 16 38 30 
280-290 7 15 20 580-590 18 67 35 
300-310 4 31 20 590-600 17 65 40 
310-320 4 27 20 600-610 17 258 50 
320-330 6 28 20 610-620 16 49 25 
330-340 6 31 20 620-630 24 31 25 
340-350 6 31 25 630-640 17 42 35 
350-360 326 36 25 640-650 21 48 35 
360-370 355 36 25 650-660 13 51 15 
370-380 540 35 20 660-670 13 31 35 
380-390 815 22 35 670-680 13 36 25 
390-400 71 32 15 680-690 18 35 25 
400-410 5 35 15 690-700 16 53 25 
410-420 13 28 15 700-710 17 36 15 
420-430 18 33 25 710-720 15 41 15 
430-440 6 29 25 720-730 22 48 20 
440-450 36 37 20 730-740 15 35 25 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

740-750 18 54 30 990-1000 14 37 10 
750-760 18 345 35 1000-1010 14 57 5 
760-770 20 91 25 1010-1020 33 33 10 
770-780 17 35 30 1020-1030 14 36 5 
780-790 18 35 25 1030-1040 14 39 10 
790-800 19 67 25 1040-1050 14 73 10 
800-810 21 49 30 1050-1060 17 38 10 
810-820 19 54 50 1060-1070 15 33 10 
820-830 20 39 40 1070-1080 13 33 15 
830-840 22 189 30 1080-1090 15 34 20 
840-850 30 38 30 1090-1100 10 33 5 
850-860 23 42 25 1100-1110 28 27 10 
860-870 19 40 40 1120-1130 64 28 15 
870-880 19 36 20 1130-1140 15 32 15 
880-890 19 39 25 1140-1150 15 27 15 
890-900 16 35 25 1150-1160 16 31 20 
900-910 16 62 20 1160-1170 14 25 20 
910-920 16 32 20 1170-1180 16 33 15 
920-930 15 31 20 1180-1190 15 29 20 
930-940 17 63 20 1190-1200 12 25 20 
940-950 20 33 25 1200-1210 14 46 20 
950-960 14 31 30 1210-1220 20 41 25 
960-970 31 41 20 1220-1230 45 42 20 
970-980 17 39 25 1230-1240 31 38 20 
980-990 15 36 25 

Well No. 11 
Sec. 13, T. 26N. , R. 3W. 

180-190 65 46 25 350-360 23 45 20 
190-200 24 45 25 360-370 47 45 15 
200-210 20 38 35 370-380 28 45 20 
210-220 44 42 25 380-390 51 44 20 
220-230 119 35 30 390-400 33 40 20 
230-240 112 49 20 400-410 18 63 15 
240-250 16 47 25 410-420 21 53 25 
250-260 13 43 15 420-430 15 44 30 
260-270 19 34 20 430-440 38 63 20 
270-280 17 39 20 440-450 22 59 40 
280-290 12 45 20 450-460 32 51 35 
290-300 15 52 15 460-470 14 35 20 
300-310 12 46 10 470-480 16 38 15 
310-320 19 46 20 480-490 18 205 50 
320-330 44 56 15 490-500 21 105 40 
330-340 36 45 20 500-510 21 38 20 
340-350 15 49 10 510-520 20 36 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper · Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

520-530 19 63 20 780-790 18 40 25. 
530-540 17 40 15 790-800 20 37 30 
540-550 21 66 25 800-810 18 40 25 
550-560 10 36 15 810-820 16 33 15 
560-570 24 35 25 820-830 20 31 20 
570-580 16 36 25 830-840 16 32 20 
600-610 12 43 15 840-850 15 31 20 
610-620 12 40 20 850-860 12 56 20 
620-630 15 46 15 860-870 13 29 25 
630-640 18 55 20 870-880 12 29 20 
640-650 16 58 25 880-890 11 37 20 
650-660 23 69 30 890-900 9 29 15 
660-670 17 40 25 900-910 14 30 15 
670-680 20 187 25 910-920 13 35 15 
680-690 22 118 20 920-930 10 30 15 
690-700 8 26 15 930-940 15 28 20 
700-710 9 21 9 940-950 20 29 25 
710-720 23 40 35 950-960 14 26 25 
720-730 21 35 25 960-970 16 32 15 
730-740 17 35 25 970-980 17 30 20 
740-750 15 34 20 980-990 14 31 20 
750-760 21 42 20 990-1000 20 32 20 
760-770 21 43 20 l 000-1010 15 30 20 
770-780 15 60 25 

Well No. 12 
Sec. l 3, T. 26N. , R. 2W. 

180-190 22 28 65 320-330 20 19 20 
190-200 22 33 30 340-350 14 27 25 
200-210 12 33 25 350-360 15 30 25 
210-220 18 27 25 370-380 35 25 20 
220-230 19 27 30 390-400 15 25 20 
230-240 11 31 15 400-410 23 34 15 
240-250 16 54 25 410-420 33 23 25 
250-260 14 29 30 420-430 15 22 25 
260-270 14 27 25 430-440 21 29 30 
270-280 28 24 25 440-450 17 32 25 
280-290 52 25 25 450-460 18 61 15 
290-300 26 22 140 460-470 17 26 20 
300-310 31 24 25 470-480 19 25 25 
310-320 9 18 20 480-490 12 34 25 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval {PPM) (PPM) {PPM) Interva 1 (PPM) (PPM) (PPM) 

Well No. 13 
Sec. 30, T.27N., R.8W. 

350-360 9 40 20 810-820 11 36 20 
360-370 11 64 30 820-830 16 41 20 
370-380 14 32 23 830-840 500 28 33 
380-390 11 57 33 840-850 16 41 35 
390-400 4 27 10 850-860 11 35 23 
400-410 6 40 15 860-870 15 44 25 
410-420 8 34 15 880-890 13 41 23 
420-430 7 32 20 890-900 22 39 30 
430-440 6 34 20 900-910 22 50 25 
440-450 11 38 23 910-920 12 38 28 
450-460 4 34 10 920-930 16 35 20 
460-470 2 25 15 930-940 37 36 15 
470-480 7 32 25 940-950 15 34 15 
480-490 6 55 36 950-960 16 36 15 
490-500 6 57 25 960-970 17 40 45 
500-510 4 30 25 970-980 13 35 18 
510-520 4 33 28 980-990 16 76 20 
530-540 4 32 15 990-1000 15 56 20 
540-550 4 43 15 1000-1010 15 39 22 
570-580 4 35 15 1010-1020 13 46 16 
580-590 8 41 20 1020-1030 12 80 18 
590-600 5 34 15 1030-1040 10 17 33 
600-610 36 34 18 1040-1050 16 26 25 
610-620 5 31 15 1050-1060 16 29 25 
620-630 4 36 18 1060-1070 19 29 25 
630-640 20 28 20 1070-1080 14 28 21 
640-650 6 42 18 1080-1090 15 26 20 
650-660 7 50 18 1100-1110 13 34 15 
660-670 6 42 15 1110-1120 16 27 18 
670-680 7 43 30 1120-1130 16 32 18 
680-690 7 46 18 1130-1140 14 26 23 
690-700 5 45 15 1140-1150 13 30 25 
700-710 4 45 15 1150-1160 19 34 20 
710-720 4 36 15 1160-1170 12 82 20 
720-730 425 40 15 1170-1180 37 38 23 
730-740 33 44 18 1180-1190 17 27 20 
740-750 6 36 15 1190-1200 16 35 18 
750-760 5 40 18 1200-1210 16 34 20 
760-770 8 53., 18 1210-1220 26 37 23 
770-780 22 43 18 1220-1230 19 152 23 
780-790 37 36 20 1230-1240 16 34 25 
790-800 11 40 25 1240-1250 18 41 23 
800-810 11 46 13 1250-1260 51 37 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) ·rnterva 1 (PPM) (PPM) (PPM) 

1260-1270 14 41 15 1510-1520 17 42 13 
1270-1280 12 41 15 1520-1530 34 89 18 
1280-1290 15 40 18 1530-1540 20 67 10 
1290-1300 13 52 18 1540-1550 18 37 18 
1300-1310 16 74 18 1550-1560 17 112 10 
1310-1320 23 29 25 1560-1570 19 72 13 
1320-1330 14 51 18 1570-1580 16 31 15 
1330-1340 65 48 18 1580-1590 31 54 15 
1340-1350 18 43 23 1590-1600 17 37 10 
1350-1360 71 68 20 1600-1610 16 23 10 
1360-1370 13 34 15 1610-1620 17 29 13 
1370-1380 37 41 23 1620-1630 17 32 13 
1380-1390 16 40 18 1630-1640 17 38 18 
1390-1400 20 48 20 1640-1650 16 25 18 
1400-1410 17 62 20 1560-1660 14 18 20 
1410-1420 18 43 15 1660-1670 22 23 15 
1420-1430 31 49 20 1670-1680 15 51 18 
1430-1440 22 47 20 1680-1690 25 27 20 
1440-1450 18 32 18 1690-1700 15 20 15 
1460-1470 19 52 15 1700-1710 56 25 15 
1470-1480 22 55 18 1710-1720 20 80 20 
1480-1490 23 35 18 1720-1730 13 66 20 
1490-1500 46 43 15 1730-1740 12 40 25 
1500-1510 22 51 20 1740-1750 15 24 30 

Well No. 14 
Sec. 18, T.27N., R.8W. 

280-290 2550 46 25 450-460 24 40 15 
290-300 5800 28 30 470-480 10 46 15 
300-310 11 50 10 480-490 27 29 25 
310-320 14 45 15 490-500 20 27 35 
320-330 26 57 10' 500-510 12 200 25 
330-340 7 29 15 510-520 17 98 25 
340-350 10 31 15 520-530 18 47 30 
350-360 14 31 25 530-540 20 52 30 
360-370 35 23 20 550-560 16 31 20 
370-380 11 27 20 570-580 16 36 25 
380-390 339 19 30 580-590 13 34 15 
390-400 37 23 30 590-600 14 32 25 
400-410 7 26 20 600-610 18 34 20 
410-420 39 23 25 610-620 16 32 25 
420-430 20 33 15 620-630 15 34 15 
430-440 35 29 20 650-660 17 38 15 
440-450 17 27 20 660-670 15 34 20 
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TABLE X. (Con ti nued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

670-680 16 37 10 960-970 10 28 30 
680-690 16 47 15 970-980 12 25 20 
690-700 14 51 20 980-990 18 27 25 
710-720 15 36 20 990-1000 12 42 20 
720-730 18 70 20 1000-1010 10 33 20 
730-740 15 64 15 1010-1020 11 32 25 
740-750 17 101 20 1020-1030 11 28 20 
750-760 14 39 10 1030-1040 13 68 20 
760-770 12 36 15 1040-1050 12 28 25 
770-780 12 40 10 1050-1060 13 40 25 
780-790 14 34 20 1060-1070 12 27 20 
790-800 22 42 25 1070-1080 11 39 30 
820-830 22 34 20 1080-1090 37 28 25 
830-840 32 40 30 1100-1110 20 27 30 
840-850 27 35 30 1110-1120 11 30 25 
580-860 19 42 20 1120-1130 12 32 20 
860-870 20 35 20 1130-1140 14 29 35 
870-880 19 34 25 1140-1150 14 34 20 
880-890 21 35 20 1150-1160 13 34 25 
890-900 21 79 15 1160-1170 16 32 25 
900-910 16 28 20 1170-1180 13 30 25 
910-920 25 31 20 1180-1190 15 142 30 
920-930 8 20 15 1190-1200 13 45 25 
930-940 18 28 20 1200-1210 18 50 20 
940-950 15 30 20 1210-1220 19 53 20 
950-960 10 29 20 

Well No. 15 
Sec. 23, T.27N., R.3W. 

170-180 15 30 25 370-380 16 40 25 
180-190 17 30 40 380-390 20 37 20 
190-200 15 27 35 390-400 15 36 20 
200-210 13 35 20 400-410 16 39 15 
220-230 24 35 40 410-420 18 34 20 
230-240 38 35 35 420-430 23 36 15 
250-260 20 36 25 430-440 17 35 15 
270-280 16 40 20 440-450 18 34 15 
290-300 16 30 40 450-460 18 36 20 
300-310 18 36 25 460-470 16 37 15 
310-320 15 54 30 470-480 23 40 25 
320-330 19 44 25 480-490 19 37 15 
330-340 18 38 25 490-500 21 36 20 
340-350 21 40 25 500-510 12 31 10 
350-360 17 36 15 520-530 9 26 20 
360-370 20 36 20 540-550 11 27 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) {PPM) (PPM) 

550-560 12 20 15 630-640 9 124 20 
560-570 24 24 25 640-650 9 30 20 
570-580 7 18 14 650-660 13 22 15 
580-590 7 63 25 660-670 19 52 35 
590-600 7 19 15 670-680 13 28 15 
600-610 10 125 30 680-690 40 39 15 
620-630 12 50 25 690-700 22 22 30 

Well No. 16 
Sec. 1, T.27N., R.3W. 

30-40 14 31 15 410-420 18 42 15 
50-60 18 33 20 420-430 15 50 20 
60-70 14 38 20 430-440 19 42 15 
70-80 14 40 25 440-450 18 43 15 
80-90 13 49 20 450-460 26 44 20 
90-100 15 38 20 460-470 18 113 20 

110-120 13 59 30 480-490 16 37 20 
130-140 18 43 20 500-510 15 60 20 
140-150 10 43 15 510-520 21 40 25 
160-170 13 64 30 520-530 11 31 20 
170-180 17 35 20 540-550 8 31 20 
190-200 11 255 25 550-560 7 17 15 
230-240 15 201 30 560-570 12 67 20 
250-260 15 36 20 620-630 14 29 15 
260-270 12 56 15 640-650 11 30 15 
270-280 16 30 15 660-670 6 18 15 
280-290 17 34 25 670-680 6 19 15 
310-320 13 39 20 700-710 12 26 20 
320-330 10 156 20 710-720 8 23 20 
330-340 15 37 20 730-740 22 41 30 
350-360 13 43 20 740-750 19 170 25 
370-380 38 48 65 750-760 8 48 15 
380-390 40 41 70 760-770 10 22 20 

Well No. 17 
Sec. 17, T.17 to 29N., R.8W. 

400-410 9 45 10 480-490 14 43 25 
410-420 12 45 15 490-500 13 42 20 
420-430 19 51 20 500-510 12 43 10 
430-440 15 44 20 510-520 35 44 15 
440-450 12 48 13 520-530 18 45 15 
450-560 15 42 15 530-540 20 44 10 
460-470 12 40 25 540-550 15 40 15 
470-480 85 42 15 550-560 15 39 15 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

560-570 35 38 10 1060-1070 16 40 20 
560-580 29 88 10 1070-1080 18 33 30 
580-590 25 41 15 1080-1090 12 32 25 
590-600 55 42 15 1090-1 lOO 17 40 25 
600-610 5 39 20 1100-1110 14 35 25 
610-620 25 41 10 1120-1130 23 44 35 
620-630 12 40 5 1160-1170 13 41 20 
630-640 10 34 5 1170-1180 18 35 15 
640-650 8 40 15 1180-1190 10 31 15 
650-660 55 29 5 1190-1200 12 45 30 
660-670 35 43 5 1200-1210 13 49 25 
670-680 10 35 5 1210-1220 10 32 30 
680-690 44 37 10 1220-1230 9 32 20 
710-720 46 40 5 1230-1240 8 28 30 
720-730 7 44 5 1240-1250 14 . 33 25 
730-740 20 45 15 1270-1280 7 23 15 
740-750 155 50 10 1280-1290 6 25 20 
750-760 14 47 15 1290-1300 11 29 15 
760-770 16 45 20 1300-1310 19 34 30 
770-780 14 47 30 1310-1320 38 39 35 
780-790 8 44 25 1320-1330 15 45 15 
790-800 10 50 20 1330-1340 10 35 20 
800-810 24 48 25 1340-1350 15 39 15 
810-820 10 47 25 1350-1360 8 36 20 
820-830 17 48 30 1360-1370 72 50 
830-840 40 48 25 1370-1380 39 39 20 
840-850 21 45 30 1380-1390 12 33 15 
850-860 16 45 20 1390-1400 22 25 20 
860-870 27 41 30 1400-1410 13 26 20 
870-880 14 45 25 1420-1430 11 24 25 
880-890 67 50 25 1430-1440 8 18 20 
890-900 27 46 20 1440-1450 4 8 15 
900-910 14 42 25 1450-1460 6 18 20 
910-920 18 50 25 1460-1470 10 24 20 
920-930 14 41 35 1470-1480 9 24 15 
930-940 10 42 25 1480-1490 13 27 30 
940-950 35 42 30 1490-1500 14 25 25 
950-960 21 45 25 1500-1510 10 24 25 
970-980 10 35 20 1510-1520 13 28 20 
980-990 17 39 25 1520-1530 12 36 30 
990-1000 21 38 25 1530-1540 120 37 20 

1000-1010 9 44 25 1540-1550 24 37 25 
1010-1020 78 39 25 1550-1560 14 33 30 
1030-1040 20 37 20 1560-1570 21 49 30 
1040-1050 12 30 35 1570-1580 13 39 30 
1050-1060 13 36 30 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

Wel 1 No. 18 
Sec. ·21, T.28N., R.7W. 

90-100 14 37 35 550-560 68 34 25 
100-110 13 44 30 560-570 18 33 30 
110-120 11 37 40 570-580 4 36 15 
120-130 21 32 35 580-590 38 41 10 
130-140 7 33 35 590-600 8 38 10 
140-150 8 33 35 600-610 44 37 10 
150-160 6 32 20 610-620 14 41 15 
160-170 5 32 15 620-630 28 45 20 
180-190 11 25 25 630-640 10 42 15 
190-200 9 31 25 640-650 16 40 25 
200-210 6 40 15 650-660 27 38 25 
220-230 6 32 20 660-670 9 34 20 
230-240 7 29 25 670-680 10 35 25 
240-250 5 35 25 680-690 13 36 20 
250-260 10 27 35 690-700 11 31 20 
260-270 10 32 35 700-710 16 34 30 
280-290 5 31 25 710-720 14 34 25 
290-300 8 31 25 720-730 9 30 30 
300-310 8 29 20 730-740 15 40 35 
310-320 11 31 20 740-750 11 30 20 
320-330 6 35 25 750-760 14 25 25 
330-340 14 25 20 760-770 11 29 20 
340-350 7 29 20 770-780 11 22 25 
350-360 6 32 20 780-790 11 23 30 
360-370 7 28 15 790-800 13 30 25 
370-380 6 27 20 800-810 12 27 20 
380-390 7 29 20 810-820 11 27 15 
390-400 7 42 25 820-830 11 23 25 
400-410 10 26 15 830-840 15 29 30 
410-420 5 34 25 840-850 14 29 30 
420-430 5 36 10 850-860 10 27 25 
430-440 13 37 25 860-870 15 43 30 
440-450 5 34 15 870-880 10 33 15 
450-460 5 29 10 880-890 12 46 20 
460-470 19 26 20 890-900 6 21 15 
470-480 6 24 20 900-910 19 23 15 
480-490 14 36 25 910-920 13 25 20 
490-500 5 25 20 920-930 9 38 15 
500-510 4 31 15 930-940 8 31 20 
510-520 216 26 40 940-950 5 42 10 
520-530 505 27 30 950-960 9 22 20 
530-540 550 23 25 960-970 9 480 20 
540-550 128 24 35 970-980 58 25 20 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

980-990 12 30 30 1310-1320 77 98 35 
990-1000 13 31 30 1320-1330 37 54 25 

1000-1010 10 33 10 1330-1340 22 39 20 
1010-1020 12 33 25 1340-1350 18 32 25 
1020-1030 11 26 30 1350-1360 81 34 20 
1030-1040 12 35 15 1360-1370 17 41 20 
1040-1050 9 32 15 1370-1380 65 64 15 
1050-1060 12 35 20 1380-1390 80 57 20 
1060-1070 16 45 20 1390-1400 16 93 15 
1070-1080 13 36 15 1400-1410 13 25 25 
1080-1090 12 29 25 1410-1420 23 40 20 
1090-1100 21 33 15 1420-1430 29 33 20 
1100-1110 22 36 10 1430-1440 52 53 20 
1110-1120 16 30 15 1440-1450 41 108 15 
1120-1130 19 33 25 1450-1460 14 25 15 
1130-1140 15 33 25 1460-1470 11 21 15 
1140-1150 47 31 20 1470-1480 13 29 10 
1150-1160 25 39 15 1480-1490 13 97 10 
1160-1170 12 86 30 1490-1500 27 24 15 
1170-1180 23 46 25 1500-1510 27 23 20 
1180-1190 14 34 15 1510-1520 27 114 20 
1190-1200 11 30 5 1520-1530 11 55 15 
1200-1210 16 28 10 1530-1540 17 43 10 
1210-1220 15 48 15 1540-1550 19 94 20 
1220-1230 17 34 15 1550-1560 13 27 20 
1230-1240 14 32 10 1560-1570 14 41 10 
1240-1250 14 32 15 1570-1580 27 27 25 
1250-1260 11 31 10 1580-1590 13 61 15 
1260-1270 22 47 10 1590-1600 15 253 15 
1270-1280 19 41 20 1600-1610 34 34 15 
1280-1290 16 44 20 1610-1620 29 57 15 
1290-1300 24 43 25 . 1620-1630 13 23 25 
1300-1310 20 68 30 

Well No. 19 
Sec. 28, T.28N., R.5W. 

330-340 139 45 10 420-430 30 40 5 
340--350 47 33 10 430-440 18 42 15 
350-360 6 35 10 440-450 11 46 10 
360-370 3 41 10 450-460 10 41 15 
370-380 20 34 5 460-470 17 39 10 
380-390 28 35 5 470-480 27 38 15 
390-400 66 41 15 480-490 16 37 15 
400-410 14 39 10 490-500 16 49 25 
410-420 32 54 60 500-510 18 46 35 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interval (PPM) (PPM) (PPM) 

510-520 15 41 30 910-920 14 43 15 
520-530 16 37 35 920-930 11 28 20 
530-540 19 43 25 930-940 8 21 15 
540-550 16 36 25 940-950 8 25 15 
550-560 18 35 15 950-960 113 29 10 
560-570 15 33 20 960-970 17 33 15 
570-580 16 26 20 970-980 12 56 20 
580-590 13 48 20 980-990 8 18 5 
600-610 14 32 20 990-1000 14 39 10 
610-620 17 80 15 1000-1010 13 313 20 
620-630 17 54 15 1010-1020 15 34 15 
630-640 16 39 15 1020-1030 13 34 15 
640-650 18 49 15 1030-1040 15 34 10 
650-660 18 43 20 1040-1050 13 33 10 
660-670 18 46 15 1050-1060 36 30 15 
670-680 16 45 15 1060-1070 16 31 20 
680-690 20 59 15 1070-1080 15 42 15 
690-700 17 180 20 1080-1090 14 31 15 
700-710 16 35 10 1090-1100 15 23 15 
710-720 18 42 15 1100-1110 10 25 10 
720-730 16 38 10 1110-1120 11 42 15 
730-740 15 37 20 1120-1130 13 42 10 
740-750 17 138 20 1130-1140 9 26 15 
750-760 16 88 20 1140-1150 28 40 20 
760-770 17 52 15 1150-1160 135 130 10 
770-780 15 38 20 1160-1170 17 27 15 
780-790 31 33 10 1170-1180 11 89 20 
790-800 15 32 10 1260-1270 11 37 20 
800-810 13 37 15 1270-1280 32 23 25 
810-820 9 35 15 1280-1290 10 25 25 
820-830 10 33 10 1290-1300 10 51 20 
830-840 44 40 15 1300-1310 13 38 20 
840-850 18 33 20 1310-1320 9 23 20 
850-860 15 34 10 1320-1330 11 25 25 
860-870 15 34 20 1330-1340 9 24 20 
870-880 7 202 0 1340-1350 9 24 20 
880-890 8 28 10 1350-1360 10 102 20 
890-900 10 29 15 1360-1370 10 27 25 
900-910 11 27 15 1370-1380 11 27 25 

Well No. 20 
Sec. 22, T.28N., R.5W. 

100-110 4 26 15 130-140 5 25 10 
110-120 6 30 20 140-150 7 27 15 
120-130 7 29 15 150-160 7 27 15 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interva 1 (PPM) (PPM) (PPM) 

160-170 6 24 15 620-630 16 33 20 
170-180 16 23 20 630-640 15 37 20 
180-190 6 25 15 640-650 16 37 15 
190-200 15 24 15 650-660 18 34 20 
200-210 9 37 10 660-670 17 100 25 
210-220 7 40 15 670-680 17 40 25 
220-230 56 32 10 680-690 19 39 30 
230-240 76 38 15 690-700 19 37 25 
240-250 29 37 10 700-710 23 725 25 
250-260 13 27 20 710-720 17 41 25 
260-270 31 30 10 720-730 19 41 35 
270-280 3 36 10 730-740 16 31 25 
280-290 15 35 15 740-750 20 44 30 
290-300 6 34 10 750-760 10 28 25 
300-310 5 42 20 760-770 19 40 25 
310-320 103 32 15 770-780 17 32 25 
320-330 36 41 20 780-790 16 30 25 
330-340 13 43 15 790-800 15 34 20 
340-350 8 41 20 800-810 15 46 20 
350-360 25 42 15 810-820 14 29 20 
360-370 13 38 15 820-830 7 20 15 

·370-380 7 41 20 830-840 13 25 20 
380-390 18 38 20 840-850 6 24 20 
390-400 17 30 20 850-860 6 15 15 
400-410 12 33 15 860-870 5 14 20 
410-420 12 38 20 870-880 10 21 25 
420-430 11 38 20 880-890 9 19 20 
430-440 17 46 30 890-900 9 42 35 
440-450 17 41 35 900-910 9 22 25 
450-460 20 33 40 910-920 6 23 10 
460-470 12 43 15 920-930 7 28 5 
470-480 13 27 20 930-940 8 20 20 
480-490 13 34 25 940-950 9 19 15 
490-500 15 31 30 950-960 9 21 10 
500-510 12 28 25 960-970 9 24 15 
510-520 18 28 30 970-980 11 26 15 
520-530 12 24 25 980-990 12 25 10 
530-540 15 74 20 990-1000 12 25 15 
540-551) 13 28 20 1000-1010 13 34 15 
550-560 15 850 30 1010-1020 51 28 20 
560-570 13 34 20 1020-1030 11 27 25 
570-580 18 52 20 1030-1040 16 25 20 
580-590 16 47 20 1040-1050 8 16 10 
590-600 19 45 55 1050-1060 10 20 15 
600-610 15 33 30 1060-1070 8 19 20 
610-620 16 33 25 1070-1080 10 22 15 
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TABLE X. (Continued) 

Depth Copper Zinc Lead Depth Copper Zinc Lead 
Interval (PPM) (PPM) (PPM) Interva 1 (PPM) (PPM) (PPM) 

1080-1090 11 23 20 1110-1120 15 19 25 
1090-1100 8 18 15 1120-1130 10 24 20 
1100-1110 10 20 20 1130-1140 9 20 20 

Well No. 21 
Sec. 8, T.28N., R.2W . 

80-90 42 33 15 . 350-360 .17 37 25 
90-100 30 42 15 360-370 44 55 30 

100-110 16 31 20 370-380 38 41 25 
110-120 41 38 20 380-390 30 40 20 
120-130 24 37 15 390-400 25 41 1220 
140-150 13 33 15 400-410 20 34 20 
150-160 23 45 15 410-420 22 36 25 
160-170 20 46 20 420-430 20 41 30 
170-180 21 44 15 430-440 17 46 20 
180-190 25 47 15 440-450 22 33 25 
190-200 20 49 20 450-460 15 39 30 
200-210 19 53 15 460-470 19 40 15 
210-220 21 52 15 470-480 28 41 25 
220-230 22 73 45 480-490 18 67 10 
230-240 14 33 15 490-500 16 20 25 
240-250 17 39 10 500-510 25 46 25 
250-260 14 44 20 510-520 19 56 15 
260-270 16 39 15 520-530 10 112 30 
270-280 16 36 15 530-540 19 73 20 
280-290 18 113 25 540-550 11 28 30 
290-300 16 34 25 550-560 12 52 20 
300-310 24 40 20 560-570 55 52 35 
310-320 17 39 15 570-580 20 163 30 
320-330 18 38 575 580-590 15 44 20 
330-340 16 39 25 590-600 13 41 30 
340-350 18 39 1150 600-610 15 40 30 
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