
A B-TREE INDEX APPROACH TO STORING AND

RETRIEVING RECORDS ON DIRECT

ACCESS AUXILIARY STORAGE

By_

DAVID DALE CHRISTIAN ,,
Bachelor of University Studies

~klahoma State University

Stillwater, Oklahoma

1977

Submitted to the Faculty of the
.Graduate College of the
Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1978

--I hc.srs
J978
~SSSb
eop.z

A B-TREE INDEX APPROACH TO STORING AND

RETRIEVING RECORDS ON DIRECT

ACCESS AUXILIARY STORAGE

Thesis Approved:

-~~~~~-------
---~~L~~~~~-----------------
4JauUlJ~

--
----~l~~-(7 -~~--------

Dean of Graduate College

1019386

ii

PREFACE

A B-tree indexing scheme is used to access personnel

records in a budget and personnel records maintenance system

for the Dean•s Office in the College of Arts and Sciences at

Oklahoma State University. Primary and alternate indices

are supported as well as the generic access of the keys in

the indices.

This thesis and my graduate education have been aided

over the past year and a half by_several people and I would

like to thank each of them.

I gratefully_ acknowledge the time and effort Dr. James

R. Van Doren, my major adviser, put in to make my graduate

education a profitable and memorable experience. Thanks are

also extended to my committee members, Dr. Donald w. Grace

and Dr. Donald D. Fisher, for their suggestions.

Further thanks are extended to Dr. Grace for the oppor

tunity he gave me to further my knowledge and experience by

performing a service for the Dean's Office in the College of

Arts and Sciences at Oklahoma State University.

A very special note of appreciation is offered to my

wife, Cherry, for the help, patience and love that has

helPed to make my graduate education the most enjoyable and

exciting years of my life. I would also like to thank my

iii

parents, Jerry and Verna Matheny, for their encouragement

and assistance both financial and otherwise and for their

moral support which ultimately made this thesis possible.

iv

Chapter

I.

II.

III.

IV.

TABLE OF CONTENTS

Page

INTRODUCTION • • 0 • • • • • • • • • • • • • • • •

B-TREES, B*-TREES AND B-TREE INDICES • • • • • • •

1

4

Description and Use of B-trees • • • • • • • 4
The B*-tree Variation •••••••••••• 18
The B-tree Index Variation •••••••• 5 20
Relational Data Base Uses for a B-tree Index 24
Advantages, Disadvantages and Alternatives to

B-trees • • • • • • • • • • • • • • • • • • 26

DESIGN AND IMPLEMENTATION OF A B-TREE INDEX
PROGRAM • • • • • • • • • • • • • • • • • • 29

Data Structure Design • • • • • • • • • • • • 29
Logic Design • • • • • • • • • • 0 • • • • • 30
Implementation Factors • • • • • • • • • • • 34

GENERIC ACCESS OF A B-TREE • • • • • • • • • • • • 39

V. DISCUSSION OF THE UTILIZATION OF A B-TREE INDEX
FOR A PRACTICAL PROBLEM • • ·• • • • • • • • ••• 41

Budget and Personnel Records Maintenance
System • • • • • • • • • • • • • • • • • • 41

Summary and Conclusions • • • • • • • • • • • 46

REFERENCES • 48

APPENDIX A - PDL DESCRIPTION OF THE B-TREE INDEX PROGRAM 50

APPENDIX B - POL DESCRIPTION OF THE GENERIC PROGRAM • • • 57

APPENDIX C - POL DESCRIPTION OF A BATCH PROGRAM • • ••• 58

APPENDIX D - PDL DESCRIPTION OF A REAL-TIME PROGRAM • • • 59

APPENDIX E - PL/I B-TREE INDEX PROGRAM • • • • • • • • • 60

APPENDIX F - PL/I PROGRAM SHOWING USE OF GENERIC PROGRAM 73

APPENDIX G - PL/I BATCH PROGRAM • • • • • • • • • • • • • 75

v

Chapter Page

APPENDIX H - PL/I REAL-TIME PROGRAM • • • • • • • • • • • 76

APPENDIX I - PL/I DESCRIPTION OF A PERSONNEL RECORD • • • 77

vi

TABLE

Table Pa.ge

I. Branching in a B-tree of Order M ••••••••• 16

vii

LIST OF FIGURES

Figure Page

1. A B-tree of Order 5 • • • • • • • • • • • • • • • 5

2. Maximum and Minimum Branching in a B-tree Node of
Order 5 • • • • ~ • • • • • • • • • • • • • • • 6

3. B-tree. of Figure 1 After Insertion of the Key 11 45 11 8

4. Result of Deleting the Key_ 11 6411 in the B-tree of
Figure 1 • • • • • • • • .. • • • • • • • • • • • 10

5. Result of Deleting the Key 111211 in the B-tree of
Figure 1 • 11

6. Result of Deleting the Key 111211 in the B-tree of
Figure 3 • • • • • • • • • • • • • . • • • • • • 12

7. Result of Deleting the Key liN II from the Second
B-tree of Figure 2 • • • • • • • • • • • • • • • 13

a. Deletion of the Key "I" in the Second B-tree of
Figure 2 . • • • • • • • • • • • • • • • . • • • 14

9. Overflow Sharing During Insertion of the Key 11 4511

into the B-tree of Figure 1 • • • ••••••• 19

10. A High-Level PDL Description of a B-tree Index
Procedure • • • • • • • • • • • • • • • • • • • 31

11. Insertion Overflow Procedure in PDL Form • . .. • • 32

viii

CHAPTER I

INTRODUCTION

As computers play a larger role in our society, more

and more information is stored in computers. As files or

collections of information increase, the efficiency of the

techniques used for the storage and retrieval of that

information increases in importance. Usually, the informa

tion or data in a file is not kept in the main memory_ of the

computer but is stored on auxiliary or secondary storage

such as disks or drums. If a file on disk or drum has

changes made to it frequently, the file is referred to as a

volatile file. Many organizational methods are very ineffi

cient for volatile files and lead to· an increase in the time

required to access records in the file. A personnel file

could be an example of a volatile file since there may be

frequent changes made to the file.

For example, a file that is physically stored in a

sequential fashion requires the entire file to be rewritten

for any_ deletion or insertion to any part of the file except

to the end of the file. The indexed sequential method

requires the frequent reorganization of the entire file for

volatile files• Unless reorganized, the access of a record

1

2

in an indexed sequential file could involve the search of a

large overflow area and thus involve a lot of time.

A new approach for the storage and retrieval of records

on direct access auxiliary storage was discovered in 1972 by

R. Bayer and E. McCreight (2). This approach, using a data

structure called a B-tree, requires no complete file reorg

anizations, makes efficient use of auxiliary storage and has

a guaranteed time and space efficiency even in the worst

case•

The main topic of this thesis is to discuss the design,

implementation and uses for a variation of the general

B-tree referred to as a B-tree index. The framework for

that discussion follows.

Chapter II will introduce B-trees, B*-trees and the

B-tree index. Following that will be a discussion of the

uses for a B-tree index in a data base. Chapter II will

close with a discussion of the advantages, disadvantages and

alternatives to a B-tree index.

The design of a system by the author for the Dean•s

Office in the College of Arts and Sciences called for an

access method based upon B-trees for the storage and

retrieval of personnel records. The design and implementa

tion of that B-tree index program is presented in Chap

ter III. This includes the data structure design, the logic

design and implementation factors.

3

A frequent requirement for application programs is the

need to access all the records in a given file that have a

particular attribute in common. For example, in the system

mentioned above, a program might be required to process all

the personnel records in a given department that have a

given rank. In this example, the department and the rank

are the attributes. These attributes are used as the key

field for a B-tree. By using different permutations of

these attributes for the key fields of other a-trees, a set

of secondary indices could be constructed. Chapter IV dis

cusses a routine that matches a partial key (taken from one

of the attributes) to the leading portion of one of the

B-tree indices (the one with that attribute listed first)

and calls a routine to process each record it finds that

matches the partial key. This is commonly referred to as a

generic access capability.

The final chapter is a discussion of the utilization of

B-tree indices in a system of programs designed and imple

mented by the author for the Dean•s Office in the College of

Arts · and Sciences at Oklahome State University in

Stillwater, Oklahoma. This discussion will be limited to

that information necessary to explain the role of the B-tree

indice~ in that system.

Appendices will include Progr~m Design Language (PDL)

descriptions of the major programs discussed in this thesis

as well as actual program listings. Also included are a few

programs showing a sample usage of the above programs.

CHAPTER II

B-TREES, B*-TREES AND B-TREE INDICES

Description and Use of B-trees

A B-tree is a uniform depth search tree with guaranteed

efficiency_ even in the worst case. A B-tree grows from the

bottom rather than from the top like a binary tree. The

following rules apply_to a B-tree of order 1 m (8):

1. Every node has no more than m offspring.

2. Every node except the root node has at least
rm/21 offspring.

3. If the tree is not empty, the root node has
at least two offspring.

4. All leaves appear on the same level and carry
no information•

5. A nonleaf node with k offspring contains k-1
keys.

The symbol II re1 11 means 11 the smallest integer larger than e11 •

Since the leaf nodes (external nodes) carry no information,

the pointers to them are null pointers and the leaf nodes

are not actually stored in the tree at all.

1The order of a B-tree is usually the maximum number of
branches from a node.

4

5-

In Figure 1, every node except the root is required to

have at least rm/21 offspring. This means each node has at

least three offspring and, therefore, at least two keys.

r•••••••••,

r••••••••, r•••••••••••••••••, r•••••••••••••••,
I 12 23 I I 42 56 64 120 I I 135 152 170 I
Lt•••fo••t.l Lt•••t•••+•••t•••t.l Lt~•••+••••+•••+.l

• • •

Figure 1. A B-tree of Order 5

A node with j keys and j+1 pointers may_be represented

as

(j 1 P(1) 1 K(l},P(2) 1 K(2), • . . , P(j),K(j),P(j+l))

where j is the number of keys in the node. The keys and

pointers are situated such that K(1) < K(2) < ••• < K(j) and

P(i), for 1 < i < j+1, points to a subtree for keys between

K(i-1) and K(i). P(1) points to a subtree with keys less

than K(1) and P(j+l) points to a subtree with keys greater

than K(j). In the root node of Figure 1, K(1) is equal to

113 711 and P (1) is represented by the left-most arrow

descending from the node. This notation is similar to that

used by Knuth (8). The difference is that the number of

6

keys in the node (j) is not included in Knuth's version and

Knuth numbers his subscripts for P beginning at zero instead

of one.

As can be seen in Figure 2, a B-tree of order 5 with

two levels and maximum branching has 25 external nodes and

24 keys. Figure 2 also shows that for minimum branching and

three levels in an order 5 B-tree, there are 18 external

nodes and 17 keys.

r•••••••••,

r•••••••••, r•••••••••1 r••••··~--, r•••••••••, r•••••••••,
IABCDIIFGHIIIKLMNIIPQRSIIUVWXI
Lt•+•+•+•t~ Lt•t•+•+•t~ Lt•+•t•+•+~ Lt•t•+•+•+~ Lt•+•+•t•+~ •

r•••,

,/·!~
r•••••, r•••••,

/1!\ /r\
r•••••, r•••••, r•••••,
IABIIDEIIGHI
Lt•+•+~ Lt•+•t~ Lt•+•t~ ' . . . r•••••, r•••••, r•••••,

IJKIIMNIIPQI
Lt•+•+~ Lt•+•+~ L+•+•t~ . . '

Figure 2. Maximum and Minimum Branching in a B-tree Node
of Order 5

7

The basic operations performed on search trees are

searching, insertion and deletion. The ordering within

nodes makes searching a straightforward procedure:

1. Bring the root node into internal memory.

2. Find the first key 11K(i) 11 in the node greater
than or equal to the search key. If the
search key is greater than K(j), i=j+l.

3. If the search key is equal to K(i), the
search is successful and the search
terminates. The search also terminates if
the search key is not equal to K(i) and P(i)
is null.

4. At this point, the search key is either less
than K(l), between K(i-1) and K(i) or greater
than K(j). The node indicated by P(i) is
brought into internal memory and control
returns to step 2.

The search performed in step 2 is a range _ search and

requires that the physical organization of the keys in the

node accomodates this type of search. A range search is

used here to mean a search for two adjacent keys that

"bracket" the search key. Therefore, the keys may_ be

organized as a binary tree, as an ordered sequential list or

in any fashion that allows a range search to be performed.

Usually, the keys are physically stored in ascending order

within a node. A binary search is the recommended method

for finding the proper key in step 2 unless the maximum

number of keys in a node is small• If there were only about

six or eight keys in a node it would probably be as fast

(and simpler) to perform a linear search.

8

In~e.t:1i2n

The insertion of a key into the tree requires that the

key be inserted into a bottom level node such that j is

changed to j+1 and K(i-1) < K(i) < K(i+l) where K(i) is the

new key and j is the number of keys in the node. If j is

less than m (the branching factor) the insertion is fin-

ished. Otherwise, j is equal to m and the node is overfull.

At that point, the middle key of the overfull node is

inserted or promoted into the parent node of the overfull

node and the overfull node is split in two. Figure 3 shows

the B-tree of Figure 1 after the insertion of the new key

1145 11 •

r•••••••••••••,

~7-~~-r:~~
r••••••••, r••••••••1 r•••••••••, r•••••••••••••••,
I 12 23 I I 42 45 I I 64 120 I I 135 152 170 I
Lt•••+••+-' Lt•••+••+-' Lt•••+•••t.J Lt••••+••••+•a•+-' . ' .. • • • .. ' . . . ' '
Figure 3. B-tree of Figure 1 After Insertion of the Key

11 45 11

In general, if a node becomes overfull, the node is

split putting a middle key into the parent node, lower keys

9

in one of its successors and higher keys in the other, as

follows:

(fm/21-l,P(l),K(l), ••• ,P(fm/21-l),K(fm/21-l),P(rm/21))

would be left in the overfull node and

(m-rm/21 ,P(fm/21 +l),K(fm/21 +1), ••• ,P(m),K(m),P(m+l))

would be put into the other node. The key K(fm/21), the

"middle" key, is now inserted into the parent node. For

example, if m=5 or m=6, K(3} would be inserted into the par

ent node. If this process causes the parent node to become

overfull, the process oL splitting the node and promoting

the middle key is followed again. This could continue until

the root node itself is split, in which case a new root node

is formed with the single key promoted by the split.

llele1ism

Deletion is more complicated. The basic idea is to

take whatever reshuffling steps are necessary to maintain a

balanced B-tree after deletion, much the same as you would

have to do if you removed one element (node) of a "mobile".

Consider a node (called current node) from which the

key K(i) is to be deleted. The cases to consider depend on

whether the current node is a lowest level node or an upper

level node. If the current node is a lowest level node and

j~rm/21, K(i) and P(i) may be deleted and the deletion proc-

10

ess is finished. Figure 4 shows the result of deleting the

key 116411 in the B-tree of Figure 1. On the other hand, if

j=rm/21-1, the deletion of K(i) would cause the node to

become underfull (thereby violating one of the requirements

for a B-tree). In that case either a rotation is performed

using one of the current node's sibling nodes or, the cur-

rent node is combined with one of its sibling nodes2.

r•••••••••,

~-=~t~~=~
r••••••••, r•••••••••••••, r•••••••••••••••,
I 12 23 I I 42 56 120 I I 135 152 170 I
Lt•••t•,.f.J Lt•••+•••+•••t.J Lt••••+••••+•••+J

• • • . . ' . ' . . .
Figure 4. Result of Deleting the Key 11 64" in the B-tree

of Figure 1

A rotation is performed if the current node's right or

left sibling has at least fm/21 keys. This is performed

with the right sibling by moving the key K(p) in the parent

node into the current node where p is defined such that P(p)

is the pointer in the parent node to the current node.

2The keys within the nodes are rotated, not the nodes
themselves.

11

Then, the keys in the current node and its right sibling are

shared equally and K(p) in the parent node is replaced by

the rightmost key in the current node. For large order

B-trees, more than one key may_ be moved out of the sibling

node. Figure 5 shows the result of deleting the key "12" in

the B-tree of Figure 1.

r•••••••••,

r••••••••, r•••••••••••••, r•••••••••••••••,
I 23 37 I I 56 64 120 I I 135 152 170 I
Lt•••+••+.l Lt•••+•••+•••+.J Lt••••t••••t•••+.l . .. ' • • • •

Figure 5. Result of Deleting the Key "12'' in the B-tree
of Figure 1

A similar procedure is followed if the rotation is to

be performed using the current node's left sibling. In this

case the key K(p-1} in the parent node is moved into the

current node where p is as defined above. Then, the keys

are shared and the parent key is replaced as before.

If a rotation cannot be performed because both the left

and right siblings contain fm/21-1 keys, the current node is

combined with its right sibling after the key K(p) in the

parent node is moved to the current node. Consider the

12

result in Figure 6 of deleting "12'' in the B-tree of Figure

3. If the current node does not have a right sibling, the

current node can be combined with its left sibling after the

key K(p-1) in the parent node is moved into the left

sibling.

r•••••••••1

~:~_l:~:~
r••••••••••••••••, r•••••••••, r•••••••••••••••,
I 23 37 42 45 I I 64 120 I I 135 152 170 I
Lt•••t•••+•••+••+~ Lt•••+•••t~ Lt••••+••••+•••+~

' ' ' ' ' • • • ' . ' '
Figure 6. Result of Deleting the Key "12'' in the B-tree

of Figure 3

Since the above process removes a key from the parent

node and does not replace it, it is possible that the parent

node can become underfull. If that should occur, the above

process is repeated with the parent node becoming the new

current node. The root node does not require any reorgani-

zation when keys are deleted unless it becomes empty. If

the root node should become empty because the two nodes on

the next level were combined, it is discarded and the com-

bined nodes become the new root. Figure 7 shows the dele-

tion of the key "N'' in the second B-tree of Figure 2.

13

r•••••••••,

r•••••, r•••••, r•••••, r•••••, r••••• ... •••,
I A a I I D E I I G H I I J K I I M 0 P Q I
Lt•+•+" Lt•+•+" Lt•+•+" Lt•+•+.l Lt•+•+•+•+"'
' ' ' .. ' • • • • • • ' ' ' . .

Figure 7. Result of Deleting the Key 11 N11 from the Second
a-tree of Figure 2

The deletion discussion above was for the deletion of a

key in a lowest level node. If the key to be deleted is in

an upper level node, the key_ K{i) is replaced by the small

est key in its right subtree (P(i+l)) or the largest key in

its left subtree (P(i)). Then, the key that was copied to

the upper level node is deleted from the lowest level node

following the process for deleting a key in a lowest level

node. Figure 8 shows the replacement of the key "I" after

being deleted from the second B-tree of Figure 2. The dele-

tion is not completed until "J" is deleted from the lowest

level which is shown in the second a-tree of Figure 8.

The a-tree described in the previous paragraphs has a

guaranteed space utilization and performance efficiency.

The following is a discussion of the upper and lower bounds

on that efficiency. For a a-tree of order m stored on disk

r•••,

/:~
r•••••1 r•••••1

/1~~ /~f~
r•••••,
I A B I
Lt•fr•fr'

r•••••,
I A B I
Lt•+•+.l

r•••••,
I D E I
Lfr•fr•+.l

• • •
r•••••,
I G H I
Lt•+•+.l • • •

r•••••,
I J K I
Lt•t•t.l

• • •
r•••••,
I M N I
Lt•t•t.J

• • •
The intermediate tree

r•••••••••,
I CFJ~

-;;/t·· ~
r•••••,
I D E I
Lfr•+•t.J

• • •
r•••••,
I G H I
Lt•+•+.l
.. . .. r•••••••••,

I K L M N I
Lt•+•+•+•+"'
..

r•••••,
I P Q I
Lt•+•t.J • • •

r•••••,
I P 0 I
Lt•+•+.l

Figure 8. Deletion of the Key 11 ! 11 in the Second B-tree
of Figure 2

14

or drum, the number of levels in the tree determines the

maximum number of accesses to find a given key. In the case

that all nodes are filled to the minimum amount, each node

has fm/21 offspring except the root which has only two off-

spring.

Consider level zero in the B-tree to be the one with

the physically non-existent external nodes (leaf nodes).

15

Level one is the lowest level in the B-tree and level p is

the one that contains the root node. The numbering method

used here is not the conventional numbering scheme. The

conventional method puts the root node at level one and num-

bers down from there. The method taught in Data and Storage

Structures by Dr. James R. Van Doren (11) numbers the levels

from the bottom up instead. The reason for this is that

once a node is created at any given level, the node stays at

that level and its level number never changes. In the more

conventional numbering scheme, every time the root node

splits, every level is renumbered. One of the advantages of

this scheme is that when different branching factors are

used at different levels (discussed later in this section),

one can always know the branching factor on a given level by

its level number (and that level number never changes).

If there are n keys in the B-tree, there are n+1 exter-

nal nodes. Table I displays the maximum and minimum branch-

ing at each level in a B-tree of order m with p levels. The

symbol "**'' is used to represent exponentiation.

If there are n keys in a B-tree of order m (m>2),·there

are n+1 external nodes (leaf nodes) and

2*rm/21**(p-1) ~ n+1 ~ m**p.

By_solving the above equation for p we get

log (n+1) ~ p ~ 1+log ((n+1)/2).
m ~In

16

TABLE I

BRANCHING IN A B-TREE OF ORDER M

---Minimum Branching Maximum Branching
level branches level branches

---p 2 P. m
p-1 2*rm/21 p-1 m**2
p-2 2*rm/21 **2 p-2 m**3

• • • •
• • • •
• • • •
2 2*rm/21**(p-2) 2 m**(p-1)
1 2* rm/21 **(p-1) 1 m**p

This shows that the number of levels in a B-tree (which also

indicates the maximum number of nodes to be searched) is

logarithmic in nature. The base of the logarithm is depend

ent on the branching factor or the order of the B-tree. For

example, if 199,999,999 records were to be stored on disk in

a B-tree of order 20, 6.38 ~ p ~ 9~ So there are at least

seven levels in the B-tree but no more than nine levels.

Therefore, any record of the almost 200 million records may

be retrieved in nine or less disk accesses.

The primary uses for a B-tree involve the use of auxil-

iary storage since a B-tree with a sufficiently large

branching factor can considerably reduce disk accesses to

find needed records. It must be remembered though, that a

17

B-tree of order m must have room in each node for m-1 keys,

m pointers and m-1 records. This is important because there

must be sufficient room in internal memory for one or more

B-tree nodes and, if the records are not small, there is the

potential for a lot of wasted space in nodes that are only

about half full• B-trees may also be useful as an internal

search tree for programs that execute in a virtual memory_

system. In such a system, "pages" or sections of a program

that are accessed frequently are kept in main memory and the

other pages are "swapped out" onto disk until referenced.

If the internal search tree were organized as a binary

tree, any_ branch would reference any page within the tree

and all this "hopping" about would probably cause many more

11non-resident11 or "swapped out" pages to be referenced. If

the search tree were organized as a B-tree instead, as much

work as possible would be performed in each node, thus

reducing the "hopping" about. Also, the root node and per

haps the nodes on the next level would remain in internal

memory since these nodes would be referenced frequently •

.s.umm.a~:y;

This section introduced the B-tree and discussed the

search~ insertion and deletion processes in such a data

structure. Following that was a discussion of the perform

ance of B-trees where it was shown that the search time in a

B-tree increases only logarithmically with an increase in

the number of keys. Although primarily used for external

18

searching on direct access auxiliary storage, B-trees may

also be useful for internal searching in cases where paging

is a problem.

The B*-tree Variation

The B-tree of the previous section can be improved upon

by not wasting the storage required for the null pointers at

level one. Instead, m can be increased for level one by

storing only keys in those nodes (8). This does not cause

problems because a node created at level one is always a

level one node while it exists. If different branching fac-

tors were desired for different levels in the tree,

of these branching factors could be built for use

B-tree algorithms.

a table

by the

A significant improvement in storage utilization within

a node can be realized by resisting the temptation to split

nodes each time they become overfull. The idea is to share

overflow with a sibling node. If a node becomes overfull,

the proper key in the parent node is put into a sibling node

and the keys and pointers in the two nodes are divided up so

that they have about the same number of keys and pointers.

Then, a key is put back into the parent node to reflect the

contents of the two nodes that have been rearranged. Figure

9 shows the result for Figure 3 if overflow sharing is used.

r•••••••••,

r••••••••, r••••••••••••••••1 r••••••••••••••••••··~

I 12 23 I I 42 45 56 64 I I 125 135 152 170 I
Lt•••t••+.J Lt•••t•••t•••+••+.J Lt••••+••••+••••+•••t.J • • • • • • t • '

Overflow to the Right

r•••••••••,

r••••••••••••, r•••••••••••••••••, r•••••••••••••••,
I 12 23 37 I I 45 56 64 120 I I 135 152 170 I
Lt•••t•••t••t.J L+•••+•••t•••t•••t.J Lt••••+••••+•••t.J

• • • • • • • • • ' ' . .
Overflow to the Left

Figure 9. Overflow Sharing During Insertion of the Key_
11 45" into the B-tree of Figure 1

19

When overflow is not possible because one or both

siblings are already full, then a split is necessary. Knuth

suggests that the current node and its sibling node could be

split into three nodes about 2/3 full (8). This guarantees

that utilization of the space in nodes would never be less

than 2/3 except perhaps in the root node.

This leads to the definition of B*-trees:

1. Every node has no more than m offspring.

2. Every node except the root node has at least
f(2m-1)/31 offspring.

3. The root node has at least two but not more
than 2 LC 2m-2) /3J +1 offspring.

4. All leaves are on the same level and carry no
information.

5. A nonleaf node with k offspring contains k-1
keys.

20

The symbol 11 LeJ 11 means 11 the largest integer smaller that e 11 •

Rule 3 is necessary to insure that a split of the root node

produces two nodes that still meet the requirement of rule

2. Rule 2 is the rule that forces a higher minimum usage

value for each node of about 2/3.

The report on B-trees written by William Davis (5)

shows empirically that the increased utilization gained by

doing two-way splits versus three-way splits is not

significant for trees built in random key order. A large

advantage is gained by sharing overflow, but the addition of

three-way splits is probably not worth the increased

complexity it adds to the insertion algorithm. Tables VIII,

IX and X in Davis' report (5) show that performing three-way

splits only rarely produces better results than the simpler

two-way splits.

The B-tree Index Variation

The B-tree is a very versatile data structure and can

be used for a variety of purposes. There are three basic

variations in the method of storing the data that correspond

to keys in the B-tree. One method actually stores the

21

record with the key and its pointer.in the node where th~

key appears. This method is fine if the records are very

small. If records are not small, a significant amount of

space can be wasted in nodes that are not nearly_ full.

Another method of storing the data that corresponds

with the keys in a B-tree is to put a pointer to the data

record with the key and the B-tree pointer. This method

allows the actual data to be stored in a separate location

than t_he B-tree. A.n 11 available list11 strategy could be used

for the data record file. The key and a pointer to the data

record would be inserted into the B-tree when a new record

is put in the data file.

The third basic variation has the data records stored

in level one of the B-tree with the keys at that level. The

upper levels in the B-tree do not have data records stored

in them. When the insertion of a record causes the split of

a level one node, only the key is promoted to the next

level. This means that all data records remain in the bot

tom level of the B-tree and that the keys in the upper lev

els of the B-tree duplicate the rightmost (or largest or

highest) key in each record block at level one except the

rightmost one• The Virtual Storage Access Method (VSAM)

used by IBM (7) is based upon this variation. The primary

difference in VSA.M is that all the keys in a given level are

duplicates of the rightmost keys of the nodes at the next

lower level. Indexed sequential is another storage method

based upon using an index. Two of the problems with indexed

22

sequential are that this method is not good for a volatile

file and that the indexing is tied to the physical device

(cylinder index, track index, etc.).

The variation used by the author is a hybrid of both

the second and the third methods listed above. At level one

in the B-tree, all pointers point to the actual records

which may or may not be in the same file as the B-tree. In

the upper levels, all pointers point to other B-tree nodes.

All keys and all pointers to the data records appear in

level one. An insertion causes a new key and pointer to

appear at level one and, if a split occurs, a key is copied

to level two and also remains at level one. In other words,

the upper levels of the B-tree contain keys that duplicate

the rightmost key in each B-tree node ~t level one except

the rightmost node.

The following rules apply to a B-tree index:

1. Every node has no more th~n m offspring.

2. Every node except the root node has at least
rm/21 offspring.

3. The root node contains at least one key.

4~ All leaves (external nodes) appear on the
same level and carry no information•

5. Except for the bottom level nodes, all nodes
with k offspring contain k-1 keys.

6. All nodes at the bottom level with k
offspring contain k keys.

1. All insertions are made at the bottom level
of the B-tree and no keys are moved to the
upper levels. A split at the bottom level
causes a key to be copied to the next level.

23

Searching is basically the same for the B-tree index

except that the search is never completed until the key is

found at level one in the B-tree. The record itself may be

retrieved by using the pointer with the key at level one.

The search procedure discussed in the first section of this

chapter must be changed as follows:

1. Bring the root node into internal memory.

2. Find the first key "K(i) 11 in the node greater
than or equal to the search key. If the
search key is greater than K(j), i=j+l.

3. If the current node is a bottom level node,
the search is successful if the search key is
equal to K(i) and the search is unsuccessful
if the search key is not equal to K(i).

4. Otherwise the current node is an upper level
node and the node indicated by P(i) is
brought · into internal memory and control
returns to step 2.

Insertion requires all keys to be inserted at level

one. If a split occurs, the rightmost key in the node

containing the first half of the keys is copied into the

next level• Any splits that occur in the upper levels are

handled with the same method as that used for a standard

B-tree•

Deletion requires that the key (and its pointer) be

deleted at level one. If the key is the rightmost key in

that node, its occurrence in the upper levels must be

changed to reflect the new rightmost key in the node at

level one.

24

A B-tree index of the type just described requires p+l

accesses to retrieve any one record where p is the number of

levels in the B-tree. This can be reduced by keeping the

root node in internal memory.

The B-tree index described above was designed and

implemented by the author. The following chapters in this

thesis discuss the design, implementation and uses for this

type of a B-tree. Chapter V contains a discussion of a

system that used this B-tree index.

Relational Data Base Uses for

a B-tree Index

In a relational data base there are collections of data

that are referenced and manipulated by the use of defined

relations. l relation, in simplest terms, is the logical

structure of a set of related information that may or may

not be closely related to the physical representation of the

information. The use of a relation is intended to be inde

pendent of the way the information is stored or accessed.

An image of a relation is simply a copy of the relation

ordered on one or more of · the attributes of the relation.

Rather than physically copy the relation, an index is cre

ated with pointers to the actual data.

In "System R11 (1} the developers use a B-tree index to

store the pointers to the actual data called Tuple Identifi

ers (TID}. A TID contains the address of the tuple (a piece

f •.

25

of data) that is desired. Therefore, tuples may be accessed

~irectly by traversing one of the B-tree indices defined for

a relation. This type of use for B-trees can result in much

faster on-line responses to various queries than other

organizational methods.

B-trees are a very versatile data structure. Haerder

(6) describes a generalized access path structure where

images that use the same attribute for the key field are

combined into one B-tree index. This also allows the

implicit use of binary links 3 • This means binary links can

be used without physically storing the links anywhere. The

links are an implicit result of the structure and ordering

of TID's in a B-tree node. An alternative to this approach

is to store the links in the tuples themselves which could

cause the following:

1. The system could be too slow.

2. It would increase maintenance problems when
tuples are inserted or deleted.

3. It would increase the complexity of access to
tuples since there would be at least two
separate methods of access (by index and by
binary link).

3A binary link is a direct path from the tuple in one
relation to its offspring tuple(s) in another relation (or
back to its parent tuple if it is an offspring).

Advantages, Disadvantages and

Alternatives to B-trees

26

a-trees have several advantages over other contemporary

organizational methods. One advantage is that complete file

reorganization is never required and all reorganization is

performed within a node or with its parent or sibling nodes

(called local reorganization). Another advantage is that

the lower bound performance and expected performance can be

closely approximated and that performance can be quite good

(11). In· some organizational methods, performance is

dependent on the number of overflow records in the file or

extensions added onto the file.

One of the disadvantages of B-trees is the amount of

work that must be done in a node in internal memory for

searching, insertion and deletion. This work is ordinarily

insignificant though, when compared to the time required for

the physical input and output of records to disk. The

B-tree algorithm attempts to reduce access time signifi~

cantly at the expense of additional work to be done in

internal memory.

Another disadvantage with B-trees is the utilization of

space if all nodes are only about half full. This problem

can be avoided if overflow sharing techniques are used to

reduce the number of splits that occur.

An alternative to using an organizational method based

upon B-trees (like IBM's Virtual Storage Access Method) is

27

to use some other organizational method such as indexed

sequential or inverted files (4). If an indexed sequential

method were used as an alternative to a B-tree based method,

a volatile file would need frequent reorganization. 4

The B-tree index approach described earlier would

require an access method that allows direct access of

records. The logical access of records in the file could be

sequential or direct or sequential from a point arrived at

directly. If a group of records were to be retrieved that

had a particular attribute in common, the capability to

traverse a B-tree sequentially from a point arrived at

directly could save a lot of time by traversing only that

part of a B-tree that matches the common attribute• Sequen-

tial access would be accomplished by Performing an in-order

traversal of the B-tree. Sequential access from a point

arrived at directly to retrieve a subset of records (com-

monly called "generic access") is discussed in Chapter IV.

This capability is offered only by a B-tree approach (such

as the author's program or VSAM) and an indexed sequential

approach to organizing and accessing records on direct

access-auxiliary storage.

4 Another alternative is to order the records in a
sequential file and use no index. The entire file would be
reorganized if records are inserted or deleted. Also, any
search for records based upon an attribute that was not used
for the ordering requirements would require a scan of the
entire file.

28

aa~eo upon the advantages and disadvantages mentioned,

it i~ the conclusion of. the author that organizational

methods tor storing records on direct access auxiliary_stor-

39e ba~ed upon B-trees would guarantee quick access to a

9iven record, would make reasonably efficient use of that

~tora9e~ and would remove the requirement for rewriting or

reo~ganizing volatile files. An organizational method based

upon a~trees would allow sequential access or direct access

Also, multiple B-tree indices could be

created based upon different permutations of the key fields

in an existing B~tree leading to secondary indices that

could be used to access the records rather than using the

priJtH!J:Y index.

~More efficient use of the storage could be realized by
using a strictly sequential file with no index. But, given
the Properties desired, B-trees have good performance char-
8ete~istics and still make efficient use of storage (11).

CHAPTER III

DESIGN AND IMPLEMENTATION OF A

B-TREE INDEX PROGRAM

The data structure design, the design of the logic and

the implementation factors of a B-tree index program written

by the author are presented in this chapter. Program Design

Language (PDL) descriptions and program listings are availa~

ble in the appendices.

Data Structure Design

The data structure design described in the previous

chapter in the section on the B-tree index variation is the

one used by the author. The basic difference between this

type of B-tree and the standard B-tree is that pointers at

the bottom level of the B-tree are not null or wasted. At

the bottom level all pointers actually point to the records

that contain the data• Another difference is that all keys

in the tree appear at the bottom level. All the keys in the

upper levels duplicate the rightmost key in each bottom

level node except the rightmost node.

The purpose for using a B-tree this way is to allow the

insertion and deletion of records in the record file and the

29

30

insertion and deletion of keys in the B-tree index to be

independent of each other. If a 11simple singly-linked list

of available storage" technique is used for creating and

deleting records in the record file, the records never need

to be reorganized because of the volatility of the file.

The only reorganization ever required is the local reorgani

zation of keys in a B-tree index node (and possibly one ~f

its sibling nodes). The index file itself never requires·

11wholesale" reorganization. The B-tree is always well

organized and the pointers at level one locate the actual

records requested.

This method or variation of a B-tree leads to interest-

ing differences in the search, insertion and deletion algor

ithms used for standard B-trees. The next section contains

a discussion of the design of the logic required to imple

ment this data structure design.

Logic Design

The design of the logic for the B-tree algorithms

requires the prior determination of the methods to be used

in insertion. Overflow can be handled by simply splitting

the node or by attempting to share the overflow with a

sibling node. It was decided to attempt to share overflow

during insertion to first the right sibling and then to the

left sibling if the right sibling were full. All splits are

simple two-way splits. The basis for this decision came

31

from the results of a study on B-trees made by Davis (5).

The basic design of the program is shown in Figure 10.

BTINDX: PROC;
set OPCODE to the operation to be performed;
SELECT(OPCODE);

WHEN(search) find occurrence of key at level
one and return the corresponding pointer;

WHEN(insert) insert the key and the record
number at level one in the B-tree;

WHEN(delete) remove the key and its pointer
at level one in the B-tree;
Change any occurrence of the key in the
upper levels of the B-tree;

OTHERWISE signal an error condition;
END;

END BTINDX;
~

Figure 10. A High-Level PDL Description of a B-tree
Index Procedure

The entire program was designed· by writing a PDL (Pro-

gram Design Language), a pseudo language with structured

programming constructs. Its use replaces the flowchart as a

design tool. After the transformation of the PDL into PL/I,

there were no major design changes required. In the

author's opinion this is attributable to the superiority of

a PDL over the use of a flowchart method of design. This

opinion is supported by a study performed by Dr. Van Doren

and others (10).

32

The POL for BTINDX, the B-tree index program, is writ-

ten so that it may now be implemented in any high-level pro-

gramming language. BTINDX is implemented in PL/I.

IF LEFTSIB exists and is not full THEN
IF CURNODE is not a level one node THEN

copy LEFTSIB's parent key into LEFTSIB; FI;
perform overflow sharing to the left;
set LEFTSIB's parent key = highest key in LEFTSIB;
RETURN; FI;

IF RIGHTSIB exists and is not full THEN
IF CURNODE is not a level one node THEN

copy RIGHTSIB's parent key into RIGHTSIB; FI;
perform overflow sharing to the right;
set CURNODE 1 s parent key = highest key in CURNOOE;
RETURN; FI;

CALL SPLIT;

Figure 11. Insertion overflow Procedure in POL Form

Refer to Figure 11 for a POL description of the follow-

ing discussion. When a key is inserted into a lowest level

node, overflow is handled a little differently (and will be

explained later) than if overflow is in an upper level node.

If overflow at the lowest level is handled by sharing, the

parent key of the leftmost share partner1 must be changed to

the new rightmost key in that node.

1 Share partners are the current node and either its
left or right sibling. The two nodes could be involved in
sharing overflow or the two nodes could be the result of a
split.

33

A split at the lowest level requires the rightmost key

of the left share partner be inserted into the parent node

right before the current node's parent key. The key remains

at level one and is inserted into its parent node.

If overflow occurs at other than level one and sharing

is possible, the parent key that would come "between" the

two nodes must be copied into one of the nodes before shar-

ing is attempted. After the keys are divided, the key in

the parent node must be changed to reflect the rightmost key

of the leftmost share partner •.
' If a split is necessary_ in an upper level node, the

rightmost key in the leftmost node of the two created by the

split is inserted into the parent node. {A split in a level

one node would have left the key in the level one node as

well as inserting it into the parent node.)

Deletion always starts at level one. If neither of the

following is true, the deletion process is finished•

1. The current node is now underfull.

2. The key deleted was the rightmost key in the
node.

If the current node is underfull, its keys are either

-combined or shared with one of its siblings. As with

insertio~ any sharing of keys requires the proper key in

the parent node be copied into one of the share partners if

the current node is not a level one node• Upon completion

of the sharing, the proper key in the parent node must be

34

updated to reflect the new rightmost key in the leftmost

node of the two share partners.

When two nodes are combined, the key and pointer -to the

leftmost node of the two nodes combined must be deleted as

well. It is possible that the parent node will become

underfull and therefore the process could continue.

When an underfull condition does not exist, but the

rightmost key in the most recent node involved was the one

deleted, the tree must be traced back towards the root

changing the occurrence of the deleted key in the upper part

of the tree to the new rightmost key in the node that had

its rightmost key deleted. The only time this is not

necessary is when the node that had its rightmost key

deleted is the rightmost node at its level.

Implementation Factors

A structure for a single node in a B-tree could look

like:

DECLARE
1 NODE,

2 PTRS(O:MAXB+l) FIXED BIN(15),
2 KEYS(MAXB) CHAR(KLEN);

MAXB is the branching factor and KLEN is the length of the

key field. For ease of implementation, all nodes are

required to have an extra pointer and an extra key so that

an overfull node will physically fit in a node and can be

handled from that point.

35

The BTINDX routine was written so that it could

manipulate more than one B-tree. The B-trees could be

located in different files and have a different branching

factor and key size. This generality has a tradeoff in the

declaration of the space used by a node. One structure con

tains all the physical space for up to three nodes. CUR

NODE, SIBNODE and PARNODE are based upon this physical stor

age• The key length and dimensions for the number of keys

and pointers are variable. PL/I requires a "REFER" option

to be applied to based structures with variable-dimensioned

substructures. Crotzer (4) did not use this method because

it was not available with the PL/I F compiler and therefore

he could not use based structures with variable-dimensioned

arrays.

Three nodes are contained within memory at any one

time. These nodes are referred to as CURNODE, PARNODE and

SIBNODE and represent the current, parent and sibling nodes.

Although a node may_be the current node at one point, it may

become the parent node during a traversal. Rather than

physically move the values in CURNODE to PARNODE, base vari

ables are switched so that CURNODE just becomes PARNODE.

This strategy is used throughout to reduce the amount of

work that must be done while maintaining the B-tree.

Refer to Appendices A and E which contain the BTINDX

design and program, respectively. The program uses positive

pointers in the upper levels to point to other B-tree nodes

36

but uses negative pointers at level one to point to the

actual records. This is transparent to the user of the rou

tine since POS (the location of the record in the record

file) contains the absolute value of the negative pointer at

level one.

The search routine continues moving down levels in the

B-tree, stacking node numbers and the location of the

pointer to its offspring node until it arrives at level one

where success or failure of the search can be determined.

All insertions and deletions are preceded by a search to

determine if the key exists and to locate the target for an

insertion or deletion if the proper conditions exist.

The stack is used to locate the ancestor nodes if it is

necessary_to trace back through the tree toward the root.

After the physical insertion or deletion of the key and its

pointer at level one, a determination is made as to whether

the process is finished or more work is to be done.

For insertions, the process is complete after inserting

the key and its pointer in a level one node if an overflow

condition was not created. If overflow has occurred, an

attempt to share the overflow with a sibling node is made.

A sibling node is easy to find since the current node•s par

ent node, if it has one, is already in main memory. If a

split occurs at level one, the rightmost key in the leftmost

share partner is copied to the parent node. Therefore, the

number of keys in the parent node increases and it may

37

become overfull. Splits in upper level nodes are handled in

a standard B-tree fashion using overflow sharing if possi

ble. In other words, splits in the upper levels cause a key

to get promoted (not copied) to the next level.

If overflow is handled by sharing, the rightmost key in

the leftmost share partner will change. This means that a

key at the next level must also be changed. This process

never requires looking farther than the parent node since

the rightmost key in the rightmost offspring node will never

change due to overflow sharing.

As mentioned earlier in this chapter, deletion requires

that a search be performed to find the key at level one• If

the key exists, the key and its pointer are deleted from the

node. If an underfull condition exists (there are less than

rmaxb/21-1 keys) or the rightmost key_is the one deleted,

more work is required.

If a level one node is underfull, the keys in it and

one of its sibling nodes are shared as long as one of the

siblings is more than minimally full. When the deletion

process does not cause an underfull condition but, the

rightmost key is the one deleted, the tree must be traced

back towards the root to change the occurrence of the

delete~ key.

If the underfull level one node has siblings that are

both minimally full, it is combined with a sibling node and

the key that used to be the rightmost key in the leftmost

38

node of the two combined nodes must be deleted in the upper

part of the tree.

Any underfull condition in a node that is not a level

one node is handled by the procedure for underfull nodes in

a standard B-tree as described in Chapter II. Underfull

conditions are handled by rotating if possible and combining

nodes otherwise.

CHAPTER IV

GENERIC ACCESS OF A B-TREE

A useful capability when using search trees is to

access records in the tree whose key matches a partial

search key. This is called "generic access•• (9). For exam-

ple, if a person's age and name were recorded in that order

as the keys for a search tree, the partial key could specify

an age and all records with that age would be accessedo

This chapter discusses a generic access routine written for

a B-tree index maintained by the program in the previous

chapter.

The requirements of the routine are:

1. It should be general enough to permit access
to more than one B-tree within the same
program.

2. The routine called to
the key condition is
variable.

process a record when
satisfied should be

3. It should access records in collating
sequence order and should perform a full in
order traversal if the search key is null.

The POL and program listing are in Appendices B and F.

A use for this routine involves the use of multiple

indices for one record file. If n keys are useful for that

39

40

record file, n or more permutations or subsets of those keys

could be used as the keys for other B-trees. If for

example, "department•• were one of the key fields, it· could

be used as the leading portion of the key field for a

secondary B-tree index. Thereafter, records could be

accessed on the basis of the department ke~ field. This

method was used extensively by the author in the system

described in the next chapter.

I

CHAPTER V

DISCUSSION OF THE UTILIZATION OF A

B-TREE INDEX FOR A PRACTICAL

PROBLEM

Budget and Personnel Records

Maintenance System

The file system designed and implemented by the author

for the Dean's Office in the College of Arts and Sciences is

presented in this chapter. Only enough of the system is

presented to show the use df the B-tree index program and

the generic access procedure. Basically, the system allows

the creation, modification and deletion of personnel records

and the analysis of the budget based upon the pay informa-

tion stored in each personnel record.

During the design phase it had to be determined how the

personnel records were to be organized and accessed on disk.

Personnel records need to be accessed based upon a name or

rank or home department or according to the accounts that

contribute to their salaries. Originally, the personnel

records were to be stored in an indexed sequential file but

there was a need to access the records based upon four dif-

ferent attributes• Indexed sequential organization does not

support alternate indices so that method could not be used.

41

42

(It would be possible to have several indexed sequential

files where one file is the primary file and contains the

records themselves and the other files only contain as data

the key of the record in the primary file. The primary dis-

advantage is the amount of reorganization required if the

file system is highly volatile.) VSAM with its alternate

indices was the natural choice at this point but the Univer-

sity Computer Center does not currently support its use.

This led to the design and implementation of the B-tree

index program discussed in the previous chapters~

The four B-trees needed are called the NAME, RANK, HOME

and ACCTS 8-trees. The key field for each B-tree is

described below:

1. NAME - catenation of name, home department
and rank.

2. RANK - catenation of rank, home department
and name.

3. HOME - catenation of home department, rank
and name.

4. ACCTS - catenation of an account number and
. the personnel record number.

The NAME, RANK and HOME 8-trees contain different

permutations of the same three key fields in a personnel

record. All keys in a B-tree index must be unique, which

leads to the restriction that no two personnel records may

be recorded with the same name, rank and home department.

If this were ever necessary, a number could be used for the

43

middle initial of the name to make each record have unique

key fields.

The ACCTS B-tree can be used to access all records that

receive money from a given account. It may seem redundant

to have the personnel record number in the key as well as in

the pointer at level one, but it is necessary to satisfy the

requirement of unique keys in the B-tree•

For maintenance purposes, personnel records are

accessed by the name field in the record. This leads to a

problem if more than one record has the same name. The

batch program that allows the maintenance of personnel

records treats the problem as an error and produces a

message stating that the real-time maintenance routine must

be used instead. The real-time routine prompts for the rank

and the home to determine exactly which record to modify.

Any new personnel record requires three calls to insert

the new keys into the NAME, HOME and RANK B-trees. As many

keys as there are unique accounts in the record must be

inserted into the ACCTS B-tree.

The method for creating a record in PDL form is:

determine name, rank, home and other ID information;
CALL BTINDX(insert,namellhomellrank,recno,nameroot);
CALL BTINDX(insert,hornellrankllname,recno,homeroot);
CALL BTINDX(insert,rankllhornellname,recno,rankroot);
build up pay and account information;
DO for each unique account;

CALL BTINDX(insert,acct_nollrecno,recno,acctroot);
END;
store personnel record in PAFILE at location recno;

44

The deletion of a personnel record requires the

reversal of the above procedure• The updating of a record

requires no action on the NAME, HOME or RANK B-trees unle~s

one of the key fields in the record is changed. In that

case, all three old keys must be deleted and the three new

keys must be inserted. Any change to the accounts and pay

information causes corresponding deletions and insertions so

that when the record is rewritten, the ACCTS B-tree contains

an entry for each unique account in the personnel record.

Therefore, personnel records may be accessed based upon

a person's name, rank, home department or the accounts that

pay them. In fact, it would also be possible to access

personnel records based on a combination of attributes as

long as those attributes make up the leading portion of the

key for the B-tree. This means that the proper record could

not be found if only a person•s last name and rank were used

as the search key. If the last name were used by itself,

all the records with that last name could be retrieved. To

access all the records in a given class (for example all

records with the rank "associate professor") there is a need

for a generic access routine. This routine and the logic

for it is discussed in Chapter IV.

In the program that prints personnel records, if more

than one record has a given name, all occurrences of records

with that name are printed. If only a last name is given to

the routine, all records with that last name are printed.

45

In fact, if a single letter is provided as the last name,

all records that have a last name that begins with that

letter are printed. These actions are the result of the use

of the generic access procedure.

Appendices C and D contain POLs for a batch and a real-

time routine that prints a report on full-time equivalents

(FTEs1) and dollars committed to accounts. The batch

routine prints the report for all accounts and the real-time

routine prints a report for a single account or subset of

accounts• Appendices G and H contain the actual PL/I

programs and contain %INCLUDE statements for the inclusion

of structure declarations and internal procedures•

Therefore, those two programs only show the detail necessary

to see how the generic traversal procedure is used.

More information on this file system is available in

the Programmer's Guide written by the author and kept in the

Dean's Office in the College of Arts and Sciences (3). It

contains listings of all the programs in the system and

provides more examples of the uses of the B-tree index

program and the generic access routine.

Another example of a system where B-trees were used in

an information storage and retrieval system is contained in

the thesis written by_Crotzer (4).

1The summation of the percentage of full time worked by
each employee is called "FTE11 •

46

Summary and Conclusions

A a-tree indexing scheme can be very useful for any

applications that store records in a volatile file main-

tained on direct access auxiliary storage. Such a scheme
"·

can greatly increase the speed of programs by reducing the

number of records accessed on auxiliary storage. Also, a

volatile file does not reduce the performance of the system.

One change in the B-tree index program might be worth

looking into. Presently, B-trees with different branching

factors or with different key lengths are contained in sepa-

rate files. For programs that do not know the size of the

key that will be used in the index, this is impractical.

This requirement could be relaxed by giving the maximum size

of a node to the index routine and allowing it to compute

what the branching factor must be for a particular B-tree.

a-trees with different attributes could still be stored in

different files but it would not be necessary if the com-

puted branching factor is of a desirable size.

An area of further research or interest involves the

B-tree structure used by Haerder in his General Access Path

Structure (6). The general idea allows a list of record

identifiers to be stored with a given key. In the system

described in this paper, a B-tree could be constructed with

RANK as the key attribute. For each rank or key in the

B-tree, there could be a list of record identifiers. Such a

scheme would reduce the size of the keyfield in the indices

47

discussed earlier and would provide ready access to all the

records that match a certain attribute.

REFERENCES

(1) Astrahan, M. M. et al. "System R: Relational Approach
to Database Management... A!:M I.t:.an~s.~.ti.2n~ QD
Ua.ta~a~~ S~s.t~ms, Vol. 1, No. 2 (June, 1976),
97-137.

(2) Bayer, R. and E. McCreight. "Organization and
Maintenance of Large Ordered Indexes~" A&1a
Int2x:ma.ti~a, Vol. 1 (1972), 173-189.

(3) Christian, David D. Programmer's Guide for the Budget
and Personnel Records Maintenance System
(unpublished). Dean's Office, College of Arts
and Sciences, Stillwater, Oklahoma: Oklahoma
State University, 1978.

(4) Crotzer, Arthur D. "Efficacy_ of B-trees in an
Information Storage and Retrieval Environment."
(unpub. Masters thesis, Oklahoma State
University, 1975.)

(5) Davis, William s. "Empirical Behavior of B-trees. 11

(unpub. Masters report, Oklahoma State
University, 1974.)

(6) Haerder, Theo. "Implementing a Generalized Access
Path Structure for a Relational Database
s y stern. II AkM I.t:ans.a&.ti..2D2 s.m Ila.talla~.e s:v:s.t.ems,
Vol. 3, No. 3 (September, 1978), 285-298.

<7> In.tx:.2guh.ti.2n 12 lllM lli.t:.e&.t A&&.e2§ ~!.2x:.ag.e ll.e~i&.es ~ng
D~ganiza11.2n H~tb2ds (GC20-1649-6). New York:
International Business Machines Corporation,
1974.

(8) knuth, Donald E. Ih~ A.t:1 Q;f .C.2m~:u.t.e.t: f.t:Qgr.amming,
Vol. 3 (1973) 1 473-480e

(9) QS ELLI ~b.e&k.2u1 ang Q~.timi~ing k2mQi1.ex:s: Languag~
Re!e~.en&~ Manual (GC33-0009-4). New York:
International Business Machines Corporation,
1976.

48

49

(10) Ramsey, H. Rudy, Michael E. Atwood, and James R. Van
Doren. A ~QmRa~a1i~~ S1Y~Y 21 flQWkha~ts gll~
f~Qg~am U~~isn Languas~~ 12~ !h~ U~1ail~g
£~2k~gu~al SU~ki1i~a1iQn~ Q1 k2m2u1~~ f~Qg~am~
Colorado: Scientific Applications, Inc. (portions
to be published.)

(11) Van Doren, James R. Data and Storage Structures
(unpub. class notes). Stillwater, Oklahoma:
Oklahoma State University, 1978.

APPENDIX A

PDL DESCRIPTION OF THE

B-TREE INDEX

PROGRAM

The following section contains a Program Design Lan-.

guage (PDL) description of the B-tree index program.

I*
Author: David Christian
Date: 22 May 1978

Purpose: The purpose of this procedure is to maintain an
exhaustive index organized into a B-TREE index where the
lowest level pointers are pointers to the actual records.
An explanation of this approach is available in:

Knuth, Donald E. THE ART OF COMPUTER PROGRAMMING.
Vol. 3, 473-480. Reading: Addison-Wesley, 1973.

Horowitz, Ellis and Sahni, Sartaj. FUNDAMENTALS OF
DATA STRUCTURES. 496-540. Woodland Hills, Cal.:
Computer Science Press, 1976.

Van Doren, James R. COMSC 5413 Class Notes. Spring
1978, Oklahoma State University.

Procedure Descriptions:
BTINDX - Driver routine. Chooses the action to be

performed.
SEARCH - Searches for a given key at the lowest level and

stacks pointers to nodes that trace the path to the
node that contains the given key.

INSERT - Inserts a new key into the tree at the lowest
level and then promotes a key if a node splits.

DELETE - Deletes a key at the lowest level• Underflow is
handled by two different methods depending on whether
the underflow occurs in a lowest level node or not.
If the rightmost key in a lowest level node is deleted
the new rightmost key must replace the old one in the
upper part of the tree.

GETNODE - Gets a node of the B-TREE and brings it into . .

main memory.
PUTNODE - Puts a node in main memory back into the tree.

50

51

HDNODE - Creates a new root node with a given key and two
pointers.

Description of Variables Passed to BTINDX:
OPCODE - Contents determine whether a search, insertion

or deletion attempt will be made.
KEY - Key for search or insertion or deletion.
POS - The location of the record with key = KEY in the

record file.
ROOT - The location of the root node in the B-TREE.
AVAIL - The location of the first available free node in

a singly-linked list of such free nodes.
FLAG - The value of this flag upon return specifies the

final status of the request specified by OPCODE. The
values are:

1. operation_completed.
2. duplicate_entry.
3. key_not_found.
4. available_storage_exceeded.
5. invalid_opcode.

Description of Internal Variables:

I*

CURNODE - Current node.
SIBNODE - Sibling node.
PARNODE - Parent node.
CSS - Location in tree of CURNODE.
SSS - Location in tree of SIBNODE.
PSS - Location in tree of PARNODE.
PINCN - Position in CURNODE of first key >= KEY.
PINPC - Position of pointer in PARNODE to CURNODE.
PINPS - Position of pointer in PARNODE to SIBNODE.
PTRS - The pointers in a node of the B-TREE. PTRS(O} is

a count of the number of keys in the node.
KEYS - The keys in a node of the B-TREE.
STACK - Contains a pointer to a node and a subscript

value for the location in that node of the first
key >= KEY.

NULL - Value considered null for a pointer in the file
of records.

NULL_VALUE - Value considered null for a node pointer.
SAVEIT - Used to contain a node•s PTRS(O) value when it

is to be changed or to hold a sum of PTRS(O) from two
nodes.

MAXBRANCHING - The maximum branching allowed in a node.

BTINDX~ PROC(OPCODE, KEY, POS, ROOT, AVAIL, FLAG);
initialize variables;
FLAG=operation_completed;
SELECT(OPCODE); ~

WHEN(search) CALL SEARCH;
WHEN(insert) CALL INSERT;
WHEN(delete) CALL DELETE;
OTHERWISE FLAG=invalid_opcode;

END;
END BTINDX;

SEARCH: PROC;
initialize STACK to empty;
IF ROOT is null THEN POS=O; RETURN; FI;
CSS=ROOT;
DO FOREVER;

CALL GETNODE(CSS,CURNODE);
PINCN=position in CURNODE of first key >= KEY;
IF PTRS(PINCN) in CURNODE < 0 THEN

FI;

IF KEY = KEYS(PINCN) in CURNODE THEN
POS=-PTRS(PINCN) in CURNODE;

ELSE POS=O; FLAG=key_not_found; FI;
RETURN;

put CSS and PINCN onto STACK;
put CURNODE into PARNODE;
CSS=PTRS(PINPC) in PARNODE;

END;
END SEARCH;

INSERT: PROC;
initialize variables;

· LOC=-absolute value of POS;
IF ROOT=NULL_VALUE THEN

FI;

IF AVAIL=NULL_VALUE
THEN FLAG=available_storage exceeded;
RETURN; FI;

CALL HDNODE(KEY,LOC,NULL);
RETURN;

CALL SEARCH;
IF POS,=O THEN FLAG=duplicate_entry; RETURN; FI;

INSRT:
insert KEY and LOC into CURNODE at position PINCN;
IF overflow does not exist THEN

CALL PUTNODE(CSS,CURNODE);
RETURN;

FI;
IF STACK is empty THEN GO TO SPLIT; FI;
I*

52

When sharing keys between siblings care must be taken to
bring the parent key down into leftmost node before
shifting if the siblings are not lowest level nodes~
Then, upon completion, the rightmost key in the leftmost
node must replace the key that was brought down if the
siblings are not lowest level nodes.
*I
IF left sibling exists AND is not full THEN

perform overflow to the left;
ELSE

FI;

IF right sibling exists AND is not full THEN
perform overflow to the right;

ELSE GO TO SPLIT; FI;

CALL PUTNODE(CSS,CURNODE);

CALL PUTNODE(SSS,SIBNODE};
CALL PUTNODE(PSS,PARNOOE);
RETURN;

SPLIT:
IF AVAIL = NULL_VALUE

FLAG=available_storage_exceeded; RETURN; FI;
CALL GETNODE(AVAIL,SIBNODE);
I*
CURNODE will be stored in the location for a new node
and SIBNODE will be stored where CURNODE was stored.
*I
SSS=CSS;
CSS=AVAIL;
AVAIL=PTRS(O) in SIBNODE;
put upper half of CURNODE into SIBNODE;
set PTRS(O) in CURNODE and SIBNODE;
KEY=highest key. in CURNODE;
LOC=CSS;
IF CURNODE is not a lowest level node THEN

decrement PTRS(O) in CURNODE; FI;
CALL PUTNODE(CSS,CURNODE);
CALL PUTNODE(SSS,SIBNODE);
IF STACK is empty.THEN

FI;

IF AVAIL = NULL_VALUE
THEN FLAG=available_storage_exceeded;
RETURN; FI;

CALL HDNODE(KEY,CSS,SSS);
RETURN;

CSS=PSS;
put PARNODE into CURNODE;
PINCN=PINPC;
pop STACK;
IF STACK is not empty THEN

FI;

copy top of STACK into PSS and PINPC;
CALL GETNODE(PSS,PARNODE);

GO TO INSRT;
END INSERT;

DELETE: PROC;
initialize variables;
CALL SEARCH;
IF POS=O THEN RETURN; FI;
delete the key and its pointer in CURNODE;
IF STACK is empty THEN

FI;

IF CURNODE is empty THEN
ROOT=NULL_VALUE;
put CURNODE back on available list;

FI;
RETURN;

KEYS(PINPC) in PARNODE=highest key in CURNODE;
IF CURNODE is not underfull THEN

53

FI;

CALL PUTNODE(CSS,CURNODE);
IF PINCN <= PTRS(O) in CURNODE THEN RETURN;
GO TO TRACEBACK;

54

UNDERFULL:
I*
Share or combine keys with right sibling if it exists.
*I
IF right sibling exists THEN

PINPS=PINPC+l;
SSS=PTRS(PINPS) in PARNODE;
CALL GETNODE(SSS,SIBNODE);
SAVEIT=PTRS(O) in CURNODE + PTRS(O) in SIBNODE;
IF CURNODE is not a lowest level node

THEN SAVEIT=SAVEIT+l; FI;
IF SAVEIT > MAXBRANCHING - 1 THEN I* Share keys */

IF CURNODE is a lowest level node THEN
divide keys and pointers between SIBNODE and

CURNODE;
KEYS(PINPC) in PARNODE=highest key_in CURNODE;

ELSE

FI;

increment PTRS(O) in CURNODE;
KEYS(PTRS(O)) in CURNODE =

KEYS(PINPC) in PARNODE;
PTRS(PTRS(O)+l) in CURNODE=PTRS(l) in SIBNODE;
KEYS(PINPC) in PARNODE=KEYS(l} in SIBNODE;
delete leftmost key and pointer in SIBNODE;

CALL PUTNODE(CSS,CURNODE};
CALL PUTNODE(SSS,SIBNODE);
CALL PUTNODE(PSS,PARNODE);
RETURN;

ELSE /* Combine keys *I

FU

IF CURNODE is a lowest level node THEN
combine CURNODE and SIBNODE into CURNODE;
KEYS(PINPC) in PARNODE=highest key in CURNODE;
delete key and pointer to SIBNODE;

ELSE

FI;

increment PTRS(O) in CURNODE;
put SIBNODE into CURNODE;
delete KEY~(PINPC) in PARNODE;
delete PTRS(PINPS) in PARNODE;
decrement PTRS(O) in PARNODE;

put SIBNODE back on available list;
CALL PUTNODE(CSS,CURNODE};
IF PARNODE is not underfull THEN

CALL PUTNODE(PSS,PARNODE);
RETURN;

FI;

ELSE /* Share or combine keys with left sibling since
the right sibling does not exist. CURNODE is
the rightmost child of PARNODE. *I

PINPS=PINPC-1;
SSS=PTRS(PINPS) in PARNODE;
CALL GETNODE(SSS,SIBNODE);
SAVEIT=PTRS(O) in CURNODE +·PTRS(O) in SIBNODE;
IF CURNODE is not a lowest level node

THEN SAVEIT=SAVEIT+l; FI;

55

IF SAVEIT > MAXBRANCHING - 1 THEN /* Share keys */
IF CURNODE is a lowest level node THEN

SAVEIT=PTRS(O) in CURNODE;

FI;

divide keys and pointers between SIBNODE and
CURNODE;

KEYS(PINPC) in PARNODE=highest key in CURNODE;
KEYS(PINPS) in PARNODE=highest key_in SIBNODE;

ELSE
SAVEIT=l+PTRS(O) in CURNODE;
shift all keys and pointers in CURNODE one to

the right;
increment PTRS(O) in CURNODE;
KEYS(l) in CURNODE=KEYS(PINPS) in PARNODE;
PTRS(l) in CURNODE=PTRS(PTRS(O)+l) in SIBNODE;
KEYS(PINPS) in PARNODE =

KEYS(PTRS(O)) in SIBNODE;
decrement PTRS(O) in SIBNODE;

FI;
CALL PUTNODE(CSS,CURNODE);
CALL PUTNODE(SSS,SIBNODE};
CALL PUTNODE(PSS,PARNODE);
IF PINCN=SAVEIT THEN GO TO TRACEBACK; FI;
RETURN;

ELSE /* Combine keys */
IF CURNODE is a lowest level node THEN

SAVEIT=PTRS(O) in CURNODE;
combine SIBNODE and CURNODE into SIBNODE;
KEYS(PINPS) in PARNODE=highest key in SIBNODE;

ELSE
SAVEIT=l+PTRS(O) in CURNODE;
increment PTRS(O) in SIBNODE;
KEYS(PTRS(O)) in SIBNODE =

KEYS(PINPS) in PARNODE;
combine CURNODE into SIBNODE; -

FI;
decrement PTRS(O) in PARNODE;
put CURNODE back on available list;
CALL PUTNODE(SSS,SIBNODE);
IF PARNODE is not underfull THEN

CALL PUTNODE(PSS,PARNODE);
IF PINCN = SAVEIT THEN GO TO TRACEBACK; FI;
RETURN;

FI;
CSS=SSS;

FI;

_ /* PARNODE is possibly underfull */
pop STACK;

IF STACK is empty THEN

FI;

IF PARNODE is empty THEN
ROOT=CSS;
put PARNODE back onto available list;

ELSE CALL PUTNODE(PSS1 PARNODE); FI;
RETURN;

put PARNODE into CURNODE;
copy top of STACK into PSS and PINPC;
CALL GETNODE(PSS1 PARNODE);
GO TO UNDERFULL;
I*
A rightmost key was deleted and its occurrence in the
rest of the index must be changed to the new rightmost
key.
*I

TRACEBACK:
DO FOREVER;

pop STACK;
IF PINPC <= PTRS(O) in PARNODE OR STACK is empty_

THEN RETURN; FI;
put PARNODE into CURNODE;
copy top of STACK into PSS and PINPC;
CALL GETNODE(PSS1 PARNODE);
KEYS(PINPC) in PARNODE=KEYS(PTRS(O}+l) in CURNODE;
CALL PUTNODE(PSS,PARNODE);

END;
END DELETE;

GETNODE: PROC(SS 1 NODE);
read node number SS into NODE;

END GETNODE;

PUTNODE: PROC(SS 1 NODE);
put NODE into node number ss;

END PUTNODE;

HDNODE: PROC(KEY1 SSl,SS2);
CSS=AVAIL;
CALL GETNODE(CSS 1 CURNODE);
AVAIL=PTRS(O) in CURNODE;
PTRS(O) in CURNODE=l;
KEYS(l) in CURNODE=KEY;
PTRS(l) in CURNODE=SSl;
PTRS(2) in CURNODE=SS2;
CALL PUTNODE(CSS 1 CURNODE);
ROOT=CSS;

END HDNODE;

56

APPENDIX B

PDL DESCRIPTION OF THE GENERIC PROGRAM

The following section contains a POL description of the

generic traversal procedure described in Chapter IV.

GENTRAV: PROC(PKEY,INPROC,ROOT);
I*
Author - David Christian
Date - 24 Sept 1978

Purpose - This procedure does an inorder traversal of a
B-tree starting at the first key_ that matches generically
the partial key passed in. INPROC is called to process
each record that is found. A full inorder traversal is
performed if PKEY = • •;

*I
IF PKEY=• 1 THEN J=O;

ELSE J=length of the nonblank portion of PKEY;
CALL TRAVINGENTRAV(ROOT);

TRAVINGENTRAV: PROC(NODENO);
read node number NODENO into NODE;
DO I=l TO PTRS(O)+l UNTIL(a key in the node > PKEY);

IF the PKEY matches the substring of key(!) of
length J in NODE
THEN IF it is a lowest level node

THEN CALL INPROC(key(I),-PTRS(I));
ELSE CALL TRAVINGENTRAV(PTRS(I)); FI;

FI;
END;

END TRAVINGENTRAV;
END GENTRAV;

57

APPENDIX C

POL DESCRIPTION OF A BATCH PROGRAM

The following section contains a POL description of one

of the batch report generating programs of the file system

described in Chapter V that uses the generic traversal pro-

cedure.

FTE: PROC;
I*
Author
Date

- David Christian
- 24 Sept 1978

Purpose - This procedure prints ftes and dollars by rank for
all accounts that contribute money. An example output is
contained in the system proposal.

I*
Initialize ACTROOT;
CALL GENTRAV(1 1 1 BLDFTE$,ACTROOT);

I* GENTRAV has its own POL in PDLLIB *I
CALL BLDFTE$(0, 1 ~);

BLDFTE$: PROC(key,RECNO);
IF the key indicates a new account has been started

THEN Print the dollars and ftes built up for each
rank for the summer, fall and spring semesters;
save the value of the new account in CURACCT;

FI;
IF key=O THEN RETURN;
read record RECNO from PAFILE;
compute and save the number of dollars and ftes

committed each month to CURRACT;
Add these amounts to the amounts already summed for that
rank if it already appears; otherwise create an entry
for that rank and initialize it with the figures just
obtained;

END BLDFTE$;
END FTE;

58

APPENDIX D

PDL DESCRIPTION OF A REAL-TIME PROGRAM

The following section contains a PDL description of one

of the real-time report generating programs of the file sys-

tern described in Chapter V that uses the generic traversal

procedure. This program is the real-time counterpart to the

program described in Appendix c.

FTE$: PROC;
I*
Author - David Christian
Date - 24 Sept 1978

Purpose - This procedure prints ftes and dollars by rank for
an account. An example output is contained in the

I*

system proposal.

Initialize ACTROOT;
determine account and put value into key;
CALL GENTRAV(key,BLDFTE$,ACTROOT);

I* GENTRAV has its own PDL in PDLLIB */
CALL BLDFTE$(01 1 1);

BLDFTE$: PROC(key,RECNO);
IF the key indicates a new account has been started

THEN print the dollars and ftes built up for each
rank for the summer, fall and spring semesters;
save the value of the new account in CURACCT;

FI;
IF key=O THEN RETURN;
read record REGNO from PAFILE;
compute and save the number of dollars and ftes

committed each month to CURRACT;
Add these amounts to the amounts already summed for
that rank if it appears; otherwise, make an entry for
that rank and initialize it with the values just
computed above;

END BLDFTE$;
END FTE$;

59

s

APPENDIX E

PLII B-TREE INDEX PROGRAM

The following section contains the PLII program that

maintains a B-tree index.

BTINDX: PROC(OP,KEY,POS,ROOT1 AVAIL 1 AVCNT 1 MAXB1 KLEN,FLAG1

INFILE,INNODE);
I*

BTINDX IS AN IMPLEMENTATION OF AN EXHAUSTIVE INDEX ORGANIZED
AS A B-TREE INDEX. THE INDEX BLOCKS ARE STORED IN ONE
DIRECT ACCESS FILE AND THE ACTUAL RECORDS IN A DIFFERENT
DIRECT ACCESS FILE. A POINTER IN AN INDEX BLOCK IS A
POINTER TO ANOTHER INDEX BLOCK IF THE VALUE IS >=0.
OTHERWISE, THE ABSOLUTE VALUE OF THE POINTER IS THE RECORD
NUMBER IN THE OTHER FILE.
PARAMETERS:

OP - SPECIFIES FUNCTION TO BE PERFORMED.
KEY - KEY FOR RETRIEVAL, INSERTION OR DELETION.
POS - RELATIVE RECORD NUMBER OF ACTUAL RECORD.
ROOT - RELATIVE RECORD NUMBER OF ROOT NODE OF INDEX.
AVAIL - RELATIVE RECORD NUMBER OF FIRST AVAILABLE INDEX

AVCNT
MAXB

BLOCK IN A SINGLY LINKED LIST OF AVAILABLE
BLOCKS.

- NUMBER OF AVAILABLE BLOCKS LEFT.
- MAXIMUM BRANCHING IN AN INDEX BLOCK. (MUST BE

LESS THAN WHAT BLOCK WILL PHYSICALLY CONTAIN AS
AN EXTRA KEY AND POINTER MUST BE PRESENT FOR
THE MAINTENANCE ROUTINES TO WORK.

KLEN - MAXIMUM LENGTH OF KEY.
FLAG - STATUS CODE FOR ATTEMPTED FUNCTION.
INFILE - THIS FILE CONTAINS THE INDEX BLOCKS.

A DETAILED POL DESCRIPTION OF THIS PROGRAM IS AVAILABLE AND
SHOULD BE CONSULTED FOR DETAILS OF HOW THIS PROGRAM WORKS.

*I
DECLARE
I*

PARAMETER VARIABLES.
*I
OP CHAR(*),
KEY CHAR(*),
(POS,ROOT1 AYAIL 1 AVCNT,MAXB 1 KLEN 1 FLAG) FIXED BIN(15,0),
INFILE FILE VARIABLE;

60

61

/**/
I* *I
I* THE FOLLOWING DECLARATION MAKES IT POSSIBLE TO REFER TO*/
I* AN AREA OF GLOBAL STORAGE THAT CONTAINS THE VARIABLES */
I* USED BY THE B-TREE INDEX PROGRAM. MAXB (MAXIMUM */
I* BRANCHING FOR A NODE) AND KLEN (THE LENGTH OF A KEY IN */
I* THE NODE) MUST BE KNOWN INTHE BLOCK BEFORE THIS */
/* DECLARATION IS MADE. */
I* *I
I** I

DECLARE
1 INNODE, /* GLOBAL B-TREE DATA */

(2 STKPT, /* DEPTH OF STACK */
2 NODENO(*), /* RELATIVE RECORD NUMBER */
2 PINN(*), /* POINTER IN A NODE */
2 PINCN, /* POINTER IN CURNODE */
2 PINPC, /* PARENT->CURRENT POINTER */
2 PINPS) /* PARENT->SIBLING POINTER */

FIXED BIN(15), /* *I
2 NODES(3), /* THE THREE NODES */

(3 X, 3 Y, 3 Z) /* NECESSARY FOR REFER OPTION*/
FIXED BIN(15), /* IN BASED STRUCTURES LATER */

3 SUB, /* NODE AS ON DISK */
4 PTRS(*) /* SET OF POINTERS IN A NODE */

FIXED BIN(15),/* */
4 KEYS(*) /* SET OF KEYS IN A NODE */

CHAR(*), /* *I
(2 P, /* POINTERS USED FOR BASED */

2 PCUR, /* STRUCTURES. */
2 PSIB, /* P IS USED WHEN TWO */
2 PPAR) POINTER; /* POINTERS ARE SWITCHED. */

/**/
I* . *I
I* THESE DECLARATIONS PROVIDE THE LOGICAL ACCESS TO THE */
/* PHYSICAL DECLARATION OF NODES ABOVE. */
I* *I
/**/

I*
THE FOLLOWING ARE LOCAL INTERNAL VARIABLES.

*I
DECLARE
1 CURNODE BASED(PCUR), /*

(2 X, 2 Y, 2 Z) /*
FIXED BIN(l5), /*

2 CORN, /*
3 PTRS(O:MAXB+l /*

REFER(CURNODE.X)) /*
FIXED BIN(15), /*

3 KEYS(MAXB /*
REFER(CURNODE.Y)) /*
CHAR(KLEN /*
REFER(CURNODE.Z)),/*

1 SIBNODE BASED(PSIB),

THESE STRUCTURES OVERLAY */
THE SUBSTRUCTURE 1 NODES 1 */
IN INNODE. THIS WAY, IF */
THE CURRENT NODE BECOMES */
THE PARENT NODE, ONLY */
POINTERS ARE CHANGED. THE*/
REFER OPTION IS REQUIRED */
FOR BASED STRUCTURES WITH */
VARIABLY DIMENSIONED SUB- */
STRUCTURES. */

*I

(2 X, 2 Y, 2 Z) FIXED BIN(15),

2 SIBN,
3 PTRS(O:MAXB+l REFER(SIBNODE.X)) FIXED BIN(15),
3 KEYS(MAXB REFER(SIBNODE.Y))

CHAR(KLEN REFER(SIBNODE.Z)),
1 PARNODE BASED(PPAR),

(2 X1 2 Y, 2 Z) FIXED BIN(15),
2 PARN,

3 PTRS(O:MAXB+l REFER(PARNODE.X)} FIXED BIN(l5) 1

3 KEYS(MAXB REFER(PARNODE.Y))
CHAR(KLEN REFER(PARNODE.Z)),

(I,J,K,LOC,SAVEIT) FIXED BIN(15,0) 1

KY CHAR(KLEN),
NULL FIXED BIN(l5,0) INIT(-1) 1

(LWSTLVLNODE,LFTSIBXSTS,RITSIBXSTS) BIT(1) ALIGNED,
TRUE BIT(l) ALIGNED INIT(1 1 1 B),
(FLOOR,CEIL,ABS,ADDR) BUILTIN,
(CSS,SSS,PSS) FIXED BIN(l51 0);

I* THE FOLLOWING INITIALIZES VARIABLES THAT MAKE
DECLARATIONS WORK *I

PCUR=ADDR(NODES.X(l));
PSIB=ADDR(NODES.X(2));
PPAR=ADDR(NODES.X(3));
CURNODE.X,SIBNODE.X,PARNODE.X=MAXB+l;
CURNODE.Y,SIBNODE.Y,PARNODE.Y=MAXB;
CURNODE.Z,SIBNODE.Z,PARNODE.Z=KLEN;
FLAG=l;
KY=KEY;
SELECT(OP);

WHEN(1 INSERT 1) GO TO INSERT;
WHEN(1 DELETE 1) GO TO DELETE;
WHEN(1 SEARCH 1) CALL SEARCH;
OTHERWISE FLAG=5;

END;
RETURN;
I********************** I
I* *I
I* INSERTION ROUTINE. *I
I* *I
1**********************1

INSERT:
LOC:-ABS(POS);
IF ROOT=-1 THEN DO;

IF AVAIL=-1 THEN FLAG=4;
ELSE CALL HDNODE(KY1 LOC1 NULL)}
RETURN;

END;
CALL SEARCH;
IF POS1=0 THEN DO; I* KEY ALREADY EXISTS */

POS=-LOC;
FLAG=2;
RETURN;

END;
POS=-LOC;
FLAG=!;

62

INSRT:
I*

INSERT KY AND LOC INTO CURNODE AT POSITION PINCN.
*I
CURNODE.PTRS(CURNODE.PTRS(0)+2) =

CURNODE.PTRS(CURNODE.PTRS(0)+1);
DO I=CURNODE.PTRS(O) TO PINCN BY -1;

CURNODE.KEYS(I+1)=CURNODE.KEYS(I);
CURNODE.PTRS(I+1)=CURNODE.PTRS(I);

END;
CURNODE.KEYS(PINCN)=KY;
CURNODE.PTRS(PINCN)=LOC;
CURNODE.PTRS(O)=CURNODE.PTRS(0)+1;
IF CURNODE.PTRS(O)<MAXB THEN DO; I* NO OVERFLOW *I

CALL PUTNODE(CSS,1);
RETURN;

END;
I*

*I

OVERFLOW HAS OCCURRED. SHARE OVERFLOW WITH LEFT OR
RIGHT SIBLING IF POSSIBLE.

IF STKPT=O THEN GO TO SPLIT;
LWSTLVLNODE=CURNODE.PTRS(1)<0;
LFTSIBXSTS=PINPC>1;
RITSIBXSTS=PINPC<=PARNODE.PTRS(O);
IF LFTSIBXSTS THEN SSS=PARNODE.PTRS(PINPC-1);
ELSE SSS=PARNODE.PTRS(PINPC+1);
CALL GETNODE(SSS,2);
IF LFTSIBXSTS & SIBNODE.PTRS(O)<MAXB-1 THEN DO;

I*
PERFORM OVERFLOW SHARING TO THE LEFT.

*I
I=FLOOR((CURNODE.PTRS(O)-SIBNODE.PTRS(0))12};
IF ~LWSTLVLNODE THEN DO;

SIBNODE.KEYS(SIBNODE.PTRS(0)+1) =
PARNODE.KEYS(PINPC-1);

SIBNODE.PTRS(O)=SIBNODE.PTRS(0)+1;
END;
DO J=1 TO I;

SIBNODE.PTRS(O)=SIBNODE.PTRS(0)+1;
SIBNODE.KEYS(SIBNODEoPTRS(O))=CURNODE.KEYS(J);
SIBNODE.PTRS(SIBNODE.PTRS(O))=CURNODE.PTRS(J);

END;
DO J=I+1 TO MAXB;

CURNODE.KEYS(J-I)=CURNOOE.KEYS(J);
CURNODE.PTRS(J-I)=CURNODE.PTRS(J};

END;

63

CURNODE.PTRS(O)=CURNODE.PTRS(O)-I;
CURNODE.PTRS(CURNODE.PTRS(0)+1)=CURNODE.PTRS(MAXB+1);
J=SIBNODE.PTRS(O);
IF ~LWSTLVLNODE THEN SIBNODE.PTRS(O) =

SIBNODE.PTRS(0)-1;
PARNODE.KEYS(PINPC-1)=SIBNODE.KEYS(J);

END;

ELSE IF RITSIBXSTS & SIBNODE.PTRS(O)<MAXB-1 THEN DO;
I*

PERFORM OVERFLOW SHARING TO THE RIGHT.
*I
I=FLOOR((CURNODE.PTRS(O)-SIBNODE.PTRS(0))12);
K=SIBNODE.PTRS(O);
SIBNODE.PTRS(K+I+l)=SIBNODE.PTRS(K+l);
DO J=K TO 1 BY -1;

SIBNODE.KEYS(J+I)=SIBNODE.KEYS(J};
SIBNODE.PTRS(J+I)=SIBNODE.PTRS(J);

END;
IF ,LWSTLVLNODE THEN DO;

SIBNODE.KEYS(I)=PARNODE.KEYS(PINPC);
SIBNODE.PTRS(I)=CURNODE.PTRS(MAXB+1);
SIBNODE.PTRS(O)=SIBNODE.PTRS(0)+1;
I=I-1;

END;
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)+I;
K=MAXB-I;
DO J=1 TO I;

SIBNODE.KEYS(J)=CURNODE.KEYS(K+J);
SIBNODE.PTRS(J)=CURNODE.PTRS(K+J);

END;
CURNODE.PTRS(O)=K;
PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(O));
IF ,LWSTLVLNODE THEN CURNODE.PTRS(O)=K-1;

END;
ELSE GO TO SPLIT;
CALL PUTNODE(CSS,l);
CALL PUTNODE(SSS 1 2);
CALL PUTNODE(PSS,3);
RETURN;

64

SPLIT: /* OVERFLOW OCCURRED IN AT LEAST THE LOWEST LEVEL */
IF AVCNT<STKPT+1 THEN DO;/* AVAILABLE STORAGE EXCEEDED */

FLAG=4;
RETURN;

END;
CALL GETNODE(AVAIL1 2);
SSS=CSS;
CSS=AVAIL;
AVAIL=SIBNODE.PTRS(O);
AVCNT=AVCNT-1;
I=CEIL(CURNODE.PTRS(0)12);
SIBNODE.PTRS(O)=O;
DO J=I+l TO MAXB;

SIBNODE.PTRS(O)=SIBNODE.PTRS(O)+l;
SIBNODE.KEYS(SIBNODE.PTRS(O))=CURNODE.KEYS(J);
SIBNODE.PTRS(SIBNODE.PTRS{O))=CURNODE.PTRS(J);

END)
SIBNODE.PTRS(SIBNODE.PTRS(0)+1)=CURNODE.PTRS(MAXB+l);
KY=CURNODE.KEYS(I);
LOC=CSS;
IF CURNODE.PTRS(l)<O THEN CURNODEGPTRS(O)=I;
ELSE CURNODE.PTRS(O)=I-1;

CALL PUTNODE(CSS,l);
CALL PUTNODE(SSS,2);
IF STKPT=O THEN DO;

CALL HDNODE(KY,CSS,SSS);
RETURN;

END;
I*

PUT PARNODE INTO CURNODE.
*I
CSS=PSS;
PINCN=PINPC;
P=PCUR;
PCUR=PPAR;
PPAR=P;
STKPT=STKPT-1;
IF STKPT>O THEN DO;

PSS=NODENO(STKPT);
PINPC=PINN(STKPT);
CALL GETNODE(PSS,3};

END;
GO TO INSRT;
I******************** I
I* *I
I* DELETION ROUTINE *I
I* *I
I******************** I

DELETE:
CALL SEARCH;
IF POS=O THEN RETURN;
I*

DELETE THE KEY AND ITS POINTER IN CURNODE.
*I
DO I=PINCN TO CURNODE.PTRS(O);

CURNODE.KEYS(I)=CURNODE.KEYS(I+1);
CURNODE.PTRS(I)=CURNODE.PTRS(I+1};

END;
CURNODE.PTRS(O)=CURNODE.PTRS(0)-1;
IF STKPT=O THEN DO;

IF CURNODE.PTRS(O)=O THEN DO;
ROOT=-1;
CURNODE.PTRS(O)=AVAIL;
AVAIL=CSS;
AVCNT=AVCNT+1;

END;
CALL PUTNODE(CSS1 1);
RETURN;

END;
IF CURNODE.PTRS(O)~=O THEN

PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(O));
IF CURNODE.PTRS(O) >= FLOOR(MAXBI2) THEN DO;

CALL PUTNODE(CSS,1);
IF PINCN > CURNODE.PTRS(O) THEN DO;

CALL PUTNODE(PSS,3);
GO TO TRACEBACK;

65

END;
RETURN;

END;
UNDERFULL:

I*

66

SHARE OR COMBINE KEYS WITH RIGHT SIBLING IF IT EXISTS.
*I
IF PINPC <= PARNODE.PTRS(O) THEN DO;

PINPS=PINPC+l;
SSS=PARNODE.PTRS(PINPS);
CALL GETNODE(SSS,2);
SAVEIT=CURNODE.PTRS(O)+SIBNODE.PTRS{O);
IF CURNODE.PTRS(l)>=O THEN SAVEIT=SAVEIT+l;
IF SAVEIT > MAXB-1 THEN DO;
I*

SHARE KEYS.
*I

IF CURNODE.PTRS(l)<O THEN DO;
I=FLOOR((SIBNODE.PTRS(0)-CURNODE.PTRS(O))I2);
DO J=l TO I;

CURNODE.KEYS(CURNODE.PTRS(O)+J) =
SIBNODE.KEYS(J);

CURNODE.PTRS(CURNODE.PTRS(O)+J) =
SIBNODE.PTRS(J);

END;
DO J=I+l TO SIBNODE.PTRS(O);

SIBNODE.PTRS(J-I)=SIBNODE.PTRS(J);
SIBNODE.KEYS(J-I)=SIBNODE.KEYS(J);

END;
CURNODE.PTRS(O)=CURNODE.PTRS(O)+I;
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)-I;
PARNODE.KEYS(PINPC) =

CURNODE.KEYS(CURNODE.PTRS(O));
END;
ELSE DO;

CURNODE.PTRS(O)=CURNODE.PTRS(O}+l;
CURNODE.KEYS(CURNODE.PTRS(O)) =

PARNODE.KEYS(PINPC);
CURNODE.PTRS(CURNODE.PTRS(O)+l)=SIBNODE.PTRS(l);
PARNODE.KEYS(PINPC)=SIBNODE.KEYS(l);
DO I=l TO SIBNODE.PTRS(O};

SIBNODE.KEYS(I}=SIBNODE.KEYS(I+l);
SIBNODE.PTRS(I)=SIBNODE.PTRS(I+l);

END;
SIBNODE.PTRS(O)=SIBNODE.PTRS(0)-1;

END;
CALL PUTNODE(CSS,l);
CALL PUTNODE(SSS,2);
CALL PUTNODE(PSS,3);
RETURN;

END;
ELSE DO;

I*

*I
COMBINE KEYS.

IF CURNODE.PTRS(l)<O THEN DO;
DO I=1 TO SIBNODE.PTRS(O);

CURNODE.PTRS(CURNODE.PTRS(O)+I) =
SIBNODE.PTRS(I);

CURNODE.KEYS(CURNODE.PTRS(O)+I) =
SIBNODE.KEYS(I);

67

END;
CURNODE.PTRS(O)=CURNODE.PTRS(O)+SIBNODE.PTRS(O);

END;
ELSE DO;

DO I=1 TO SIBNODE.PTRS(0)+1;
CURNODE.KEYS(CURNODE.PTRS(O)+I+1) =

SIBNODE.KEYS(I);
CURNODE.PTRS(CURNODE.PTRS(0)+1+1) =

SIBNODE.PTRS(I);
END;
CURNODE.PTRS(O) =

CURNODE.PTRS(O)+SIBNODEoPTRS(0)+1;
END;
DO I=PINPC TO PARNODE.PTRS(O);

PARNODE.KEYS(l)=PARNODE.KEYS(I+1);
PARNODE.PTRS(l+l)=PARNODE.PTRS(l+2);

END;
PARNODE.PTRS(O)=PARNODE.PTRS(0)-1;
SIBNODE.PTRS(O)=AVAIL;
AVAIL=SSS;
AVCNT=AVCNT+l;
CALL PUTNODE(SSS,2);
CALL PUTNODE(CSS,1);
IF PARNODE.PTRS(O)>=FLOOR(MAXBI2) THEN DO;

CALL PUTNODE(PSS,3);
RETURN;

END;
END;

END;
I*

*I

CURNODE IS RIGHTMOST CHILD OF PARNODE. SHARE OR
COMBINE CURNODE WITH LEFT SIBLING.

ELSE DO;
PINPS=PINPC-1;
SSS=PARNODE.PTRS(PINPS);
CALL GETNODE(SSS,2);
SAVEIT=CURNODE.PTRS(O)+SIBNODE.PTRS(O);
IF CURNODE.PTRS(1)>=0 THEN SAVEIT=SAVEIT+1;
IF SAVEIT > MAXB-1 THEN DO;
I*

*I
SHARE KEYS.

IF CURNODE.PTRS(1)<0 THEN DO;
SAVEIT=CURNODE.PTRS(O);

I=FLOOR((SIBNODE.PTRS(0)-CURNODE.PTRS(0))12);
DO J=CURNODE.PTRS(O) TO 1 BY -1;

CURNODE.KEYS(J+I)=CURNODE.KEYS(J);
CURNODE.PTRS(J+I)=CURNODE.PTRS(J);

END;
DO J=1 TO I;

CURNODE.KEYS(J) =
SIBNODE.KEYS(SIBNODE.PTRS(O)-I+J};

CURNODE.PTRS(J) =
SIBNODE.PTRS(SIBNODE.PTRS(O)-I+J);

END;
CURNODE.PTRS(O)=CURNODE.PTRS(O)+I;
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)-I;
PARNODE.KEYS(PINPC) =

CURNODE.KEYS(CURNODE.PTRS(O));
PARNODE.KEYS(PINPS) =

SIBNODE.KEYS(SIBNODE.PTRS(O));
END;
ELSE DO;

SAVEIT=CURNODE.PTRS(0)+1;
DO I=CURNODE.PTRS(0)+1 TO 1 BY -1;

CURNODE.KEYS(I+1)=CURNODE.KEYS(I);
CURNODE.PTRS(I+1)=CURNODE.PTRS(I);

END;

68

CURNODE.PTRS(O)=CURNODE.PTRS(0}+1;
CURNODE.KEYS(1}=PARNODE.KEYS(PINPS};
CURNODE.PTRS(1)=SIBNODE.PTRS(SIBNODE.PTRS(0)+1);
PARNODE.KEYS(PINPS) =

SIBNODE.KEYS(SIBNODE.PTRS(O));
SIBNODE.PTRS(O)=SIBNODE.PTRS(0)-1;

END;
CALL PUTNODE(CSS,1);
CALL PUTNODE(SSS1 2);
CALL PUTNODE(PSS,3);
IF PINCN=SAVEIT THEN GO TO TRACEBACK;
RETURN;

END;
ELSE DO;
I*

*I
COMBINE KEYS.

IF CURNODE.PTRS(l)<O THEN DO;
SAVEIT=CURNODE.PTRS(O);
DO I=l TO CURNODE.PTRS(O};

SIBNODE.KEYS(SIBNODE.PTRS(O)+I) =
CURNODE.KEYS(I};

SIBNODE.PTRS(SIBNODE.PTRS(O)+I) =
CURNODE.PTRS(I);

END;
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)+CURNODE.PTRS(O);
PARNODE.KEYS(PINPS) =

SIBNODE.KEYS(SIBNODE.PTRS(O));
END;
ELSE DO;

SAVEIT=CURNODE.PTRS(O)+l;
SIBNODE.KEYS(SIBNODE.PTRS(O)+l) =

PARNODE.KEYS(PINPS);
DO I=l TO CURNODE.PTRS(O)+l;

SIBNODE.KEYS(SIBNODE.PTRS(O)+I+l) =
CURNODE.KEYS(I);

SIBNODE.PTRS(SIBNODE.PTRS(O)+I+l) =
CURNODE.PTRS(I);

END;
SIBNODE.PTRS(O) =

SIBNODE.PTRS(O)+CURNODE.PTRS(O)+l;
PARNODE.KEYS(PINPS) =

SIBNODE.KEYS(SINBODE.PTRS(O)+l);
END;
PARNODE.PTRS(O)=PARNODE.PTRS(0)-1;
CURNODE.PTRS(O)=AVAIL;
AVAIL=CSS;
AVCNT=AVCNT+l;
CALL PUTNODE(CSS,l);
CALL PUTNODE(SSS,2);
IF PARNODE.PTRS(O)>=FLOOR(MAXB/2) THEN DO;

CALL PUTNODE(PSS,3);
IF PINCN>SAVEIT THEN GO TO TRACEBACK;
RETURN;

END;
CSS=SSS;

END;
END;
I*

PARNODE IS POSSIBLY UNDERFULL.
*I
STKPT=STKPT-1;
IF STKPT=O THEN DO;

IF PARNODE.PTRS(O)=O THEN DO;
ROOT=CSS;
PARNODE.PTRS(O)=AVAIL;
AVAIL=PSS;
AVCNT=AVCNT+l;

END;
CALL PUTNODE(PSS,3);
RETURN;

END;
P=PCUR;
PCUR=PPAR;
PPAH=P;
PINCN=PINPC;
CSS=PSS;
PSS=NODENO(STKPT);
PINPC=PINN(STKPT);
CALL GETNODE(PSS,3);
GO TO UNDERFULL;

69

70

I*
A RIGHTMOST KY HAS BEEN DELETED AND ITS OCCURRENCE IN
THE REST OF THE TREE MUST BE CHANGED.

*I
TRACEBACK:

DO WHILE(TRUE};
STKPT=STKPT-1;
IF PINPC<=PARNODE.PTRS(O) I STKPT=O THEN RETURN;
P=PCUR;
PCUR=PPAR;
PPAR=P;
PINCN=PINPC;
CSS=PSS;
PSS=NODENO{STKPT);
PINPC=PINN{STKPT);
CALL GETNODE{PSS,3);
PARNODE.KEYS{PINPC)=CURNODE.KEYS(CURNODE.PTRS(O)+l);
CALL PUTNODE(PSS,3);

END;
RETURN; I* END OF DELETE ROUTINE. *I

1*******************1
I* *I
I* SEARCH ROUTINE. *I
I* *I
1*******************1

SEARCH: PROC;
DECLARE (LAST,K) FIXED BIN(15,0);
STKPT=O;
POS=O;
IF ROOT=-1 THEN RETURN;
CSS=ROOT;
I*

FIND KY BY SEARCHING DOWN TO LOWEST LEVEL.
*I
DO WHILE(TRUE);

CALL GETNODE(CSS,l);
I*

BINARY SEARCH TO FIND THE FIRST KY IN CURNODE >= KY
*I
PINCN=1;
LAST=CURNODE.PTRS(O);
DO WHILE(PINCN<=LAST);

K=FLOOR((PINCN+LAST)I2);
SELECT;

WHEN(KY<CURNODE.KEYS(K)) LAST=K-1;
WHEN(KY>CURNODE.KEYS(K)) PINCN=K+l;
OTHERWISE DO;

PINCN=K;
LAST=K-1;

END;
END;

END;

I*
QUIT IF AT LOWEST LEVEL.

*I
IF CURNODE.PTRS(l)<O THEN DO;

71

IF KY=CURNODE.KEYS(PINCN) & PINCN<=CURNODE.PTRS(O)
THEN POS=-CURNODE.PTRS(PINCN);
ELSE FLAG=3;

RETURN;
END;
I*

PUT CSS AND PINCN ONTO STACK.
*I
STKPT=STKPT+l;
NODENO(STKPT)=CSS;
PINN(STKPT)=PINCN;
I*

CAUSE CURNODE TO BECOME PARNODE.
*I
P=PPAR;
PPAR=PCUR;
PCUR=P;
PSS=CSS;
PINPC=PINCN;
I*

PREPARE TO GET NEXT NODE.
*I
CSS=PARNODE.~TRS(PINPC);

END;
END SEARCH;

I********************** I
I* *I
I* READ NODE ROUTINE. *I
I* *I
1**********************1

GETNODE: PROC(SS,NODE);
DECLARE (SS,NODE) FIXED BIN(15,0);
SELECT(NODE);

WHEN(l) READ FILE(INFILE) INTO(CURN) KEY(SS);
WHEN(2) READ FILE(INFILE) INTO(SIBN) KEY(SS);
WHEN(3) READ FILE(INFILE) INTO(PARN) KEY(SS);
OTHERWISE STOP;

END;
END GETNODE;

1***********************1
I* *I
I* STORE NODE ROUTINE. */
I* *I
I*********************** I

PUTNODE: PROC(SS,NODE);
DECLARE (SS,NODE) FIXED BIN(l51 0);
SELECT(NODE);

WHEN(l) WRITE FILE(INFILE) FROM(CURN) KEYFROM(SS);
WHEN(2) WRITE FILE(INFILE) FROM(SIBN) KEYFROM(SS);
WHEN(3) WRITE FILE(INFILE) FROM(PARN) KEYFROM(SS);

OTHERWISE STOP;
END;

END PUTN ODE;
1**********************1
I* *I
I* HEAD NODE ROUTINE. *I
I* *I
1**********************1

HDNODE: PROC(KY1 SS11 SS2);
DECLARE
KY CHAR(*),
{SS11 SS21 I) FIXED BIN(l5,0);
I=AVAIL;
CALL GETNODE(I,l);
AVAIL=CURNODE.PTRS(O);
AVCNT=AVCNT-1;
CURNODE.PTRS(O)=l;
CURNODE.KEYS(l)=KY;
CURNODE.PTRS(l)=SSl;
CURNODE.PTRS(2)=SS2;
CALL PUTNODE(I,l);
ROOT=I;

END HDNODE;
END BTINDX;

72

APPENDIX F

PLII PROGRAM SHOWING USE OF

GENERIC PROGRAl-i

The following section contains the PLII

performs a generic traversal of a B-tree index.

1*******************1
I* *I
I* GENTRAV ROUTINE *I
I* *I
1*******************1

program that

GENTRAV: PROC(ROOT,PARKEY,CNT,MAXB,KLEN,MAXNODES,INFILE,
INPROC,FL.AG);

DECLARE I** FOR PARAMETERS **I
(ROOT,CNT,MAXB,KLEN,MAXNODES) FIXED BIN(15,0),
PARKEY CHAR(*),
FLAG BIT(*) ALIGNED,
INFILE FILE,
INPROC ENTRY (FIXED BIN(15,0),CHAR(*));

DECLARE I** INTERNAL VARIABLES **I
(I,J) FIXED BIN(15,0),
(LENGTH,SUBSTR,VERIFY) BUILTIN;

IF PARKEY=• 1 THEN J=O;
ELSE J=LENGTH(PARKEY);

DO I=l TO J;
IF VERIFY(SUBSTR(PARKEY,I),• 1)=0 THEN LEAVE;

END;
IF I<=J THEN J=I-1;
IF J>KLEN THEN DO;

FLAG= 1 1 1 B;
RETURN;

END;
FLAG=1 01 B;
CNT=O;
CALL TRAVINGENTRAV(ROOT);

73

I************************* I
I* *I
I* TRAVINGENTRAV ROUTINE *I
I* *I
1*************************1
TRAVINGENTRAV: PROC(NODENO) RECURSIVE;

DECLARE
(NODENO,I) FIXED BIN(15,0),
1 NODE,

2 PTRS(O:MAXB+l) FIXED BIN(l5,0),
2 KEYS(MAXP) CHAR(KLEN);

IF NODENO<O I NODENO>MAXNODES THEN RETURN;
READ FILE(INFILE) INTO(NODE) KEY(NODENO);
IF PTRS(O)<l I PTRS(O)>=MAXB THEN RETURN;
DO I=l TO PTRS(O)+l UNTIL(SUBSTR(KEYS(I),l,J)>PARKEY);

IF I=PTRS(O)+l & PTRS(l)<O THEN RETURN;
IF SUBSTR(KEYS(I),l,J)>=PARKEY I I=PTRS(O)+l I J=O
THEN DO;

IF PTRS(I)<O THEN DO;
IF SUBSTR(KEYS(I),l,J)>PARKEY THEN RETURN;
CALL INPROC(-PTRS(I),KEYS(I));
CNT=CNT+l;

END;
ELSE CALL TRAVINGENTRAV(PTRS(I));

END;
END;

END TRAVINGENTRAV;
END GENTRAV;

74

APPENDIX G

PL/I BATCH PROGRAM

The following section contains the batch routine that

uses GENTRAV to do a full in-order traversal of the B-tree

in ACTFILE. The procedures and structures that are included

can be found in the programmer's guide written by_ the author

located in the Deans•s Office in the College of Arts and

Sciences.

FTE: PROC OPTIONS(MAIN);
DECLARE (CNT,MAXB,KLEN) FIXED BIN(15,0},

ACTFILE DIRECT INPUT KEYED ENV(REGIONAL(l)),
PAFILE DIRECT INPUT KEYED ENV(REGIONAL(l)),
FLAG BIT(l) ALIGNED,
(SUBSTR,LOW,INDEX,FLOAT,FLOOR,MOD,MULTIPLY,ROUND)
BUILTIN;

%INCLUDE RECO;
%INCLUDE PA;
MAXB=120;
KLEN=lO;
READ. FILE(PAFILE) INTO(RECO) KEY(1 01);

CALL GENTRAV(ACTROOT, 1 1 1 CNT1 MAXB,KLEN,MAXNDE,ACTFILE,
BLDFTE$1 FLAG);

CALL BLDFTE$(0, 1 1);

%INCLUDE BLDFTE$;
%INCLUDE GENTRAV;
%INCLUDE SERDAYNO;
%INCLUDE AMTCOMM;
%INCLUDE READPA;

END FTE;

75

APPENDIX H

PL/I REAL-TIME PROGRAM

The following contains the real-time counterpart to the

program in Appendix G.

FTE$: PROC OPTIONS(MAIN);
DECLARE (CNT 1 MAXB,KLEN) FIXED BIN(l51 0),

ACTFILE DIRECT INPUT KEYED ENV(REGIONAL(1)) 1

PAFILE DIRECT INPUT KEYED ENV(REGIONAL(1)) 1

INPUTKEY CHAR{6),
NOKEY CHAR(l),
FLAG BIT(l) ALIGNED,
(SUBSTR,LOW,INDEX,FLOAT,FLOOR,MOD,MULTIPLY,ROUND)
BUILTIN;

%INCLUDE RECO;
%INCLUDE PA;
ON ATTN STOP;
MAXB=120;
KLEN=lO;
READ FILE(PAFILE) INTO(RECO) KEY(1 01);

PUT EDIT
('ENTER THE ACCOUNT NUMBER (NO EMBEDDED DASHES):•)
(COL (1) 1 A) ;

GET EDIT{INPUTKEY) (COL(1),A(6));
PUT EDIT(1 POSITION THE PAPER AND HIT 11 RETURN 11 : 1)

(COL (1) 1 A) ;
GET EDIT(NOKEY)(COL(1),A(1));
CALL GENTRAV(ACTROOT,INPUTKEY,CNT,MAXB,KLEN,MAXNDE,

ACTFILE,BLDFTE$,FLAG);
IF CNT>O THEN CALL BLDFTE$(01 1 1);

ELSE PUT EDIT{ 1 ACCOUNT 1 1 INPUTKEY, 1 DOES NOT EXIST.•,
'CHECK ACCOUNT NUMBER AND ENTER IT AS A 1 1
1 6 DIGIT NUMBER (SUCH AS 11 102201 11) 1)

((2)(COL(1) 1 (3)A));
%INCLUDE BLDFTE$;
%INCLUDE GENTRAV;
%INCLUDE SERDAYNO;
%INCLUDE AMTCOMM;
%INCLUDE READPA;

END FTE$;

76

APPENDIX I

PL/I DESCRIPTION OF A PERSONNEL RECORD

A PL/I description of a personnel record is included in

this appendix for the purpose of giving a little reference

to what the file system has to work with. The key fields

described in Chapter V can be seen in the substructure ID

and in the substructure ACCOUNTS.

DECLARE
l·PA_RECORD,

2 LINK_EXT
2 ID,

3 NAME,
4 LAST
4 FIRST
4 MI

3 SSN
3 RANK
3 HOME
3 PPN
3 HIRED
3 PROMOTED
3 EXW@H

2 NO_DISTR
2 NEXT_.ACCT
2 DISTR(6),

3 FROM
3 THRU
3 SALARY
3 FTE
3 BEGIN

2 ACCOUNTS(20),
3 ACCT
3 BLN
3 PAY
3 COMM
3 LINK

2 FILLER
1 PA,

2 LINK_EXT

FIXED BIN(15,0),

CHAR(20),
CHAR(15),
CHAR(l),
CHAR(9),
CHAR(4),
CHAR(6),
CHAR(6),
CHAR(6),
CHAR(6),
CHAR(l),
FIXED BHJ(151 0),
FIXED BIN(15,0),

CHAR(5),
CHAR(5),
FIXED DEC(7,2),
FIXED DEC(7,4),
FIXED BIN(151 0) 1

77

CHAR(6),
CHAR(6),
FIXED DEC(7 1 2),
FIXED DEC(7,2),
FIXED BIN(15,0),
CHAR(137),

FIXED BIN(15,0),

78

2 ID LIKE PA_RECORD.ID,
2 NO_DISTR FIXED BIN{15,0),
2 NEXT_ACCT FIXED BIN{l5,0),
2 DISTR(12) LIKE PA_RECORD.OISTR,
2 ACCOUNTS(40) LIKE PA_RECORD.ACCOUNTS;

VITA ;2

David Dale Christian

Candidate for the Degree of

Master of Science

Thesis: l B-TREE INDEX APPROACH TO STORING AND RETRIEVING
RECORDS ON DIRECT ACCESS AUXILIARY STORAGE

Major Field: Computing and Information Sciences

Biographical:

Personal data: Born in Houston, Texas, on July 11,
1955. Moved to Wewoka, Oklahoma, in 1963 and mar

. ried Cherry Choate in Seminole, Oklahoma, on May
14, 1976.

Education: Graduated from Wewoka High School, Wewoka,
Oklahoma, in May, 1973; received Bachelor of Uni
versity Studies from Oklahoma State University,
Stillwater, Oklahoma, in May, 1977; completed
requirements for Master of Science degree at Okla
homa State University, Stillwater, Oklahoma, in
December, 1978.

Professional Experience: Graduate research assistant
working as a programmer analyst for the Dean•s
Office in the College of Arts and Sciences, Summer
of 1977 and January 1978-December 1978; graduate
teaching assistant at Oklahoma State University,
Computing and Information Sciences Department,
Fall 1977; tutor in computer science for the Vet
eran's Administration, Summer 1977-Summer 1978.

