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PREFACE

A B-tree 1indexing scheme is used to access personnel
records in a budget and personnel records maintenance system
for the Dean's Office in the College of Arts and Sciences at
Oklahoma State University. Primary and alternate indices
are supported as well as the generic access of the keys in
the indicese.
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CHAPTER I

INTRODUCTION

i

As computers play a larger role in our society, more
and more information 1is stored in computers. As files or
collections of information increase, the efficiency of the
techniques used for the storage and retrieval of that
information increases in importénce. Usually, the informa-
tion or data in a file is not kept in the main memory. of the
computer but is stored on auxiliary or secondary storage
such as disks or drums. If a file on disk or drum has
changes made to it frequently, the file is referred to as a
volatile file. Many organizational methods are very ineffi-
cient for volatile files and lead to an increase in the time
required to access records in the file. A personnel file
could be an example of a volatile file since there may be
frequent changes made to the file.
| For example, a file that is physically stored in a
sequential fashion requires the entire file to be rewritten
for any deletion or insertion to any part of the file except
to the end of the fiie. The indexed sequential method
requires the frequent reorganizafion of the enfire file for

volatile files. Unless reorganized, the access of a record



in an indexed sequential file could involve the search of a
large overflow area and thus involve a lot of time.

A new approach for the storage and retrieval of records
on direct access auxiliary storage was discovered in 1972 by
Re Bayer and E. McCreight (2). This approach, using a data
structure called a B-tree, requires no complete file reorg-
anizations, makes efficient use of auxiliary storage and has
a guaranteed time and space efficiency even in the worst
case.

The main topic of this thesis is to discuss the design,
implementation and uses for a variation of the general
B-tree reférred to as a B-tree indexe. The framework for
that discussion followse.

Chapter II will introduce B-trees, B*-trees and the
B-tree index. Following that will be a discussion of the
uses for a B-tree index in a data base. Chapter II will
7 close with a discussion of the advantages, disadvantages and
alternatives to a B-tree indexe.

The design of a system by the author for the Dean's
Office in. the College of Arts and Sciences called for an
access method based upon B-trees for the storage and
retrieval of personnel records. The design and implementa-
tion of that B-tree index program is presented in Chap-
ter III. This includes the data structure design, the logic

design and implementation factorse.



A frequent requirement for application programs is the
need to access all the records in a given file that have a
particular attribute in commoh. For example, in the system
mentioned above, a program might be required to process all
the personnel records in a given department that have a
given rank. In this example, the department and the rank
are the attributes; These attributes are used as the key
field for a B-tree. By using different permutations of
these attributes for the key fields of other B-trees, a set
of secondary indices could be constructed. Chapter IV dis-
cusses a routine that matches a partial key (taken from one
of the attributes) to the leading portion of one of the
B-tree indices (the one with that attribute 1listed first)
and calls a routine to process each record it finds that
matches the partial key. This is commonly referred to as a
generic access capabilitye.

The final chapter is a discussion of the utilization of
B-tree indices in a system of programs designed and imple-
mented by the author for the Dean's Office in the College of
Arts - and Sciences at Oklahome State University in
Stilluater, Oklahoma._ This discussion will be limiied to
that information necessary to explain the role of the B-tree
indices in that system.

Appendices will include Program Design Language (PDL)
descriptions of the major prbgramsA}discussed in this thesis
as well as actual program listiﬁgs. Also included are a fewu

programs showing a sample usage of the above programse.



CHAPTER 1II
B~-TREES, B*-TREES AND B-TREE INDICES
Description and Use of B-trees

A B-tree is a uniform depth search tree with guaranteed
efficiency. even in the worst casee. A B-tree grouws from the
bottom rather than from the top 1like a binary tree. The

following rules apply. to a B-tree of order* m (8):

1. Every node has no more than m offspringe.

2. Every. node except the root node has at least
[m/21 offspringe.

3. If the tree is not empty, the root node has
at least two offspringe.

4, All leaves appear on the same level and carry
no information.

5 A nonleaf node with k offspring contains k-1
keyse.
The symbol "[el"™ means "the smallest integer larger than e".
Since the leaf nodes (external nodes) carry no information,
the pointers to them are null pointers and the 1leaf nodes

are not actually stored in the tree at all.

31The order of a B-tree is usually the maximum number of
branches froem a node.



5.

In Figure 1, every. node except the root is required to
have at least m/21 offspring. This means each node has at

least three offspring and, therefore, at least two keyse.

r---.-----'.
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Figure 1. A B-tree of Order 5

A node with j keys and Jj+1 pointers may. be represented

as

(3,P(1),K(1),P(2),K(2), o« « « ’ P(3),K(3),P(j+1))

where j is the number of keys in the nodee. The keys and
pointers are situated such that K(1) < K(2) < ... < K(3) and
P(i), for 1 < i < j+1, points to a subtree for keys between
K(i-1) and K(i). P(1) points/to a subtree with keys less
than K(1) and P(j+1) points to a subtree with keys greater
than K(j)e. In the root node of Figure 1, K(1) 1is equal to
37" and P(1) is represented by the 1left-most arrow
descending from the node. This notation is similar to that

used by Knuth (8). The difference is that the number of



keys in the node (j) is not included in Knuth's version and
Knuth numbers his subscripts for P beginning at zero instead
of one. | |

As can be seen in Figure.2, a B-tree of order 5 with
two levels and maximum branching has 25 external nodes and
24 keys. Figure 2 also shows that for minimum branching and
three levels in an ordér 5 B-tree, there are 18 external

nodes and 17 keyse
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Figure 2. Maximum and Minimum Branching in a B-tree Node
of Order S



Searching

The basic operations performed on search trees are
searching, insertion and deletion. The ordering within

nodes makes searching a straightforward procedure:

1. Bring the root node into internal memorye.
24 Find the first key "K(i)" in the node greater
than or equal to the search keye. If the
search key is greater than K(j), i=j+l.
3. If the search key is equal to K(i), the
search 1is successful and the search
terminatese. The search also terminates if
the search key is not equal to K(i) and P(i)
is null.
4. At this point, the search key is either 1less
than K(1), between K{i-1) and K(i) or greater
than K(j). The node indicated by P(i) is
brought into internal memory and control
returns to step 2.
The search performed in step 2 1is a range  search and
requires that the physical organization of the keys in the
node accomodates this type of searche. A range search is
used here to mean a search for two adjacent keys that
"hracket" the search key. Therefore, the keys may. be
organized as a binary tree, as an ordered sequential list or
in any fashion that allows a rahge search to be performed.
Usually, the keys are physically stored in ascending order
within a node. A binary search is the recommended method
for finding the proper key in step 2 unless the maximum
number of keys in a node is small. If there were only about

six or eight keys in a node it would probably be as fast

(and simpler) to perform a linear searche.

\,



Insertion

The insertion of a key into the tree requires that the
key be inserted into a bottom 1level node such that Jj is
changed to j+1 and K(i-1) < K(i) < K(i+l1) where K(i) is the
new key and j 1is the number of keys in the node. If j is
less than m (the branching factor) the insertion is fin-
ishede Otherwise, j is equal to m and the node is overfull.
At that point, the middle key of the overfull node is
inserted or promoted into the parent node of the overfull
node and the overfull node is split in two. figure 3 showus
the B-tree of Figure 1 after the insertion of the new key

"45" -

r---------.---"

1 .37 56  125_|
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| 12 23 | I 42 45 | ] 64 120 | I 135 152 170 |
L+---+--+J L*---+--+J l*-n-*---*-‘ l+----+----+-n-+1

¢ & & & b & & & & * ¥ &

Figure 3. B-tree of Figqure 1 After Insertion of the Key
ll45ll :

In general, 1if a node becomes overfull, the node is

split putting a middle key into the parent node, 1lower keys



in one of its successors and higher keys in the other, as

follous:

(Im/21-1,P(1),K(1); «.. ,P(Im/21-1),K(Im/2]1-1),P([m/21))
would be left in the overfull node and

(m-Mm/27,P(fm/21+1) ,K(Tm/27+1), vee +P(m),K(m),P(m+1))

would be put into the other node. The key K(Im/21), the
"middle"™ key, 1is now inserted into the parent node. For
example, if m=5 or m=6, K(3) would be inserted into the par-
ent nodee. If this process causes the parent node to become
overfull, the proceés of splitting the node and promoting
the middle key is followed againe. This could continue until
the root node itself is split, in which case a new root node

is formed with the single key promoted by the splite

Deletion

Deletion is more complicated. The basic idea 1is to
take whatever reshuffling steps are necessary to maintain a
balanced B-tree after deletion, much the same as you would
have to do if you removed one element (node) of a "mobile".

Consider a node (called current node) from which the
key K(i) is to be deleted. The cases to consider depend on
whether the current node is a lowest level node or an upper
level nodee. If the current ncde is a lowest level node and

j2Im/21, K(i) and P(i) may be deleted and the deletion proc-
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ess is finished. Figure 4 shows the result of deleting the
key "64" in the B-tree of Figure 1. Oon the other hand, if
j=Mm/21-1, the deletion of K(i) would cause the node to
become underfull (thereby violating one of the requirements
for a B-tree). In that case either a rotation is performed
using one of the current node*s sibling nodes or, the cur-

rent node is combined with one of its sibling nodes2.

r.----.--.l

1 37 ,125 |

I 12 23 | | 42 56 120 | | 135 152 170 |

& k & & & % | & & ] &

Figure 4. Result of Deleting the Key "64" in the B-tree
of Figure 1

A rotation is performed if the current node's right or
left sibling has at least [m/2] keys. This is performed
with the right sibling by moving the key K(p) in the parent
node into the current node where p is defined such that P(p)

is the pointer in the parent node to the current node.

2The keys within the nodes are rotated, not the nodes
themselvese.
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Then, the keys in the current node and its right sibling are
shared equally and K(p) in the parent node is replaced by
the rightmost key in the current node. For 1large order
B-trees, more than one key may. be moved out of the sibling
node. Figure 5 shows the result of deleting the key "12" in

the B-tree of Figure 1.

r--------ll1

' /l( 42\Z - 4\
reonaeanse, (e esseseensmnsng (Tesscssasssnmmny
I 23 37 | |l 56 64 120 | i 135 152 170 |
L+---+.-+J L+u--+---+---+l L+----+---a+---+-‘
E & 4 k& & & & L S |

Figure 5. Result of Deleting the Key "12"™ in the B-tree
of Figure 1

AR similar procedure 1is follcwed if the rotation is to
be performed using the current node's left siblihg. In this
case the key K(p-1) in the parent node is moved into the
current node where p is as defined above. Then, the keys
are shared and the parent key is replaced as before.

If a rotation cannot be performed because both the left
and right siblings contain [m/2]1-1 keys, the current node is
combined with its right sibling after the key K(p) in the

parent node is moved to the current nodee. Consider the
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result in Figure 6 of deleting "12" in the B-tree of Figure
3. If the current node does not have a right sibling, the
current node can be combined with its left sibling after the

key K(p-1) in the parent node is moved into the left

sibling.
[Cesasssmeg
é////////lrSG szs\i\\\\\\\\ﬁA
(Teesssneesassmmeg ressaseseny [Ceesssswesscemay
I 23 37 42 45 | | 64 120 | | 135 152 170 |
L*---+---+---.+--+J l+---+---+-’ L+----+-u-a+---+‘
& & & & & h &k & & & k&

Figure 6. Result of Deleting the Key "12" in the B-tree
of Figure 3

Since the above process removes a key from the parent
node and does not replace it, it is possible that the parent
node can become underfull. If that should occur, the above
process is repeated with the parent node becoming the new
current node. The root node does not require any reorgani-
zation when keys are deleted unless it becomes emptye. If
the root node should become empty because the two nodes on
the next level were combined, it 1is discarded and the com-
bined nodes become the new roote. Figure 7 shows the dele-

tion of the key "N" in the second B-tree of Figure 2.



13

r-.-n-ﬂ---1
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Figure 7. Result of Deleting the Key "N" from the Second
B-tree of Figure 2

The deletion discussion above was for the deletion of a
key in a lowest level node. If the key to be deleted is in
an upper level node, the key K(i) 1is replaced by the small-
est key in its right subtree (P(i+l1)) or the largest key in
its left subtree (P(i)). Then, the key that was copied to
the upper level node is deleted»from the lowest level node
following the process for deleting a key in a lowest level
node. Figure 8 shows the replacement of the key "I" after
being deleted from the second B-tree of Figure 2. The dele-
tion is not completed until "J" is deleted from the lowest

level which is shown in the second B-tree of Figure 8.

Performance

The B—~tree described in the previous paragraphs has a
guaranteed space utilization and performance efficiencye.
The following is a discussion of the upper and lower bounds

on that efficiency. For a B-tree of order m stored on disk
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r---1
e(///////L‘J\L\\\\\\ﬁs
k{////L'itF | k{///i/ﬁ1f~4\\\\$
i ABI I DEJ | GHI Il JKI I MN] T PCI
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The intermediate tree

r---------1

//'(LCQLJ 04\\\
| A B | Il DE| ] GH| |l KL MN ] Il P Q|
Lpopadd  Lpmpadd  Upepmdd  Upmpadapapd  Lpmpagd
LI bk k& & kb b bk

. Figure 8. Deletion of the Key "I"™ in the Second B-tree
of Figure 2

or drum, the number of ievels in the tree determines the
maximum number of accesses to find a given key. In the case
that all nodes are filled to the minimum amount, each node
has m/21 offspring except the root which has only two off-
springe.

Consider level =zero in the B-tree to be the one with

the physically non-existent external nodes (leaf nodes).
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Level one is the 1louwest level in the B-tree and 1level p is
the one that contains the root node. The numbering method
used here is not the conventional numbering schemee. The
conventional method puts the root node at level one and num-
bers down from theré. The method taught in Data and Storage
Structures by Dr. James R. Van Doren (11) numbers the levels
from the bottom up instead. The reason for this is that
once a node is created at any given level, the node stays at
that level and its level number never changese. In the more
conventional numbering scheme, every time the root node
splits, every level is renumbered. One of the advantages of
this scheme 1is that when different branching factors are
used at different levels (discussed 1later in this section),
one can always know the branching factor on a given level by.
its level number (and that level number never changes).

If there are n keys in the B-tree, there are n+l exter-
nal nodese. Table I displays the maximum and minimum branch-
ing at each level in a B-tree of order m with p levels. The
symbol ¥**%" js used to represent exponentiatione.

If there are n keys in a B-tree of order m (m>2), there -

are n+l external nodes (leaf nodes) and
2*%m/21**(p-1) < n+l < m**p.
By. solving the above equation for p Wwe get

log (n+l) < p < 1+log ((n+1)/2).
m M/ 27
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TABLE I

BRANCHING IN A B-TREE OF ORDER M

Minimum Branching Maximum Branching
level branches level branches
P 2 P m
p-1 2*Tm/ 21 p-1 n**2
p=-2 2% m/ 2] **2 p=2 mx*3
2 2*m/ 21 **(p-2) 2 m**(p-1)
1 2*m/ 21 **(p-1) 1 m**p

This shows that the nuhber of levels in a B-tree (which also
indicates the maximum number of nodes to be searched) is
logarifhmic in nature. The base of the logarithm is depend-
‘ent on the branching factor or the order of the B-tree. For
example, if 199,999,999 records were to be stored on disk in
a B-tree of order 20, 6.38 < p < 9. So there are at least
seven levels in the B-tree but no more than nine levels.
Therefore, any record of the almost 200 million records may

be retrieved in nine or less disk accesses.
Uses for B=irees

The primary uses for a B-tree involve the use of auxil-
iary storage since a B-tree with a sufficiently 1large
branching factor can considerably reduce disk accesses to

find needed recordse. It must be remembered though, that a
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B-tree of order m must have room in each node for m-1 keys,
m pointers and m-1 records. This is important because there
must be sufficient room in internal memory for one or more
. B-tree nodes and, if the records are not small, there is the
potential for a 1lot of wasted space in nodes that are only
about half full. B-trees may also be useful as an internal
search tree for programs that execute in a‘ virtual memory.
system. In such a system, "pagdges"™ or sections of a program
that are accessed frequently are kept in main memory and the
other pages are "swapped out" onto disk until referenced.

If the internal search tree were organized as a binary
tree, any. branch would reference any page within the tree
and all this "hopping" about would probably cause many more
"non-resident" or "swapped out" pages to be referencede. If
the search tree wWere organized as a B-tree instead, as much
work as possible would be performed in each node, thus
reducing the "hopping" about. Also, the root node and per-
haps the nodes on the next 1level would remain in internal

memory since these nodes would be referenced frequentlye.

SUmmary

Tﬁis section ihtroduced the B-tree and discussed the
search, insertion and deletion processes in such a data
structure. Following that was a discussion of the perform-
ance of B-trees where it was shown that the search time in a
B-tree increases only logarithmically. with an increase in

the number of keyse. Although primarily used for external
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searching on direct access auxiliary storage, B-trees may
also be useful for internal searching in cases where paging

is a probleme.
The B*-tree Variation

The B-tree of the previous section can be improved upon
by not wasting the storage required for the hull pointers at
level one. Inétead, m can be increased for 1level one by
storing only keys in those nodes (8). This does not cause
problems because a node created at level one is always a
level one node while it exists. 1If different branching fac-
tors were desired for different levels in the tree, a table
of these branching factors could be built for use by the

B-tree algorithms.

Overflou Sharing

A significant improvement in storage utilization within
a node can be realized by resistiné the temptation to split
nodes each time they become overfull. The idea is to share
overflow with a sibling node. If a node becomes overfull,
the prdper key in the parent node is put into a sibling node
and the keys and pointers in the two nodes are divided up so
that they have about the same number of keys and pointerse.
Then, a key. is put back into the parent node to reflect the
contents of the two nodes that have beeﬁ rearranged. Figure

9 shows the result for Figure 3 if overflow sharing—is usede.
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Figure 9. Overflow Sharing During Insertion of the Key.
"45" into the B-tree of Figure 1
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When overflow is not possible because one or both

siblings are already full, then a split is necessary. Knuth

suggests that the current node and its sibling node could bé

split into three nodes about 2/3 full (8). This guarantees

that utilization of the space in nodes would never be less

than 2,/3 except perhaps in the root node.

This leads to the definition of B*-trees:

i. Every node has no more than m offspringe.

2. Every node except the root node has at least
(2m-1)/31 offspringe.
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3. The root node has at least two but not more
than 2L(2m-2)/3}+1 offspring.

4. All leaves are on the same level and carry no
information.

5. A nonleaf node wWwith k offspring contains k-1
keyse.
The symbol "le]" means "the largest integer smaller that e'.
Rule 3 is necessary to insure that a split of the root node
produces two nodes that still meet the requirement of rule
2. ‘Rule 2 is the rule that forces a higher minimum usage
value for each node of about 2/3.

The report on B-trees written by William Davis (5)
shows empirically that the increased utilizationv gained by
doing tuwo-way splits versus three-way splits is not
significant for trees built in random key order. A large
advantage is gained by sharing overflow, but the addition of
three-way splits 1s probably not worth the increased
complexity it adds to the insertion algorithm. Tables VIII,
IX and X in Davis' report (5) show that performing three-way
splits only rarely produces better results than the simpler

two~way splits.
The B~tree Index Variation

The B-tree is a very versatile data structure and can
be used for a variety of purposese. There are three basic
variations in the method of storing the data that correspond

to keys in the B-tree. One method actually stores the
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record with the key and its pointer in the node where the
key appearse. This method is fine if the records are very
small. if records are not small, a significant amount of
space can be wasted in nodes that are not nearly. full.

Another method of storing the data that corresponds
with the keys 1in a B-tree is to put a pointer to the data.
record with the key and the B-tree pointer; This method
allouws the actual data to be stored in a separate location
than the B-tree. An "available list" strategy could be used
for the data record file. The key and a pointer to the data
record would be inserted inio the B-tree when a new record
is put in the data file. |

The third basic variation has the data records stored
in level one of the B-tree with the keys at that level. The
upper levels in the B-tree do not have data records stored
in them. When the insertion of a record causes the split of
a level one node, only the key is promoted to the next
level. This means that all data records remain in the bot-
tom level of the B-tree and that the keys in the upper lev-
els of the B-tree duplicate the rightmoét (or 1largest or
highest) key in each record block at level one except the
rightmost one. The Virtual Storage Access Method (VSAM)
used by IBM (7) is based upon this variatione. The primary
difference in VSAM is that all the keys in a given level are
duplicates of the rightmost keys of the nodes at the next
lower level. Indexed sequential is another storage method

based upon using an index. Two of the problems with indexed
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sequential are that this method is not good for a volatile
file and that the indexing is tied to the physical device
(cylinder index, track index, etc.).

The variation used by the author is a hybrid of both
the second and the third methods listed above. At level one
in the B-tree, all pointers point to the actual records
which may or may not be in the same file as the B-tree. In
the upper levels, all pointers point to other B-tree nodes.
All keys and all pointers to the data records appear in
level one. An insertion causes a neuw Kkey and pointer to
appear at level one and, if a split occurs, a key is copied
to level two and also remains at level one. 1In other words,
the upper levels of the B-tree contain keys that duplicate
the rightmost key in each B-tree node at level one except
the righfmost nodee.

The following rules apply to a B-tree index:

1. Every nhode has no more than m offspringe.

2e Every node except the root node has at least
fm/2} offspringe.

3. The root node contains at least one keve.

4. All leaves (external nodes) appear on the
same level and carry no information.

5e Except for the bottom level nodes, all nodes
with k offspring contain k-1 keyse.

6. A1l nodes at the bottom 1level with k
offspring contain k keyse.

7. All insertions are made at the bottom level
of the B-tree and no keys are moved to the
upper levels. A split at the bottom level
causes a key to be copied to the next level.
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Searching is basically the same for the B-tree index
except that the search is never completed until the key is
found at level one in the B-tree. The record itself may. be
retrieved by using the pointer with the key at 1level onee.
The search procedure discussed in the first section of this

chapter must be changed as follouws:

1. Bring the root node into internal memorye.

2e Find the first key "K(i)" in the node greater
than or equal to the search keye. If the
search key is greater than K(j), i=j+1.

3. If the current node is a bottom level node,
the search is successful if the search key is
equal to K(i) and the search is unsuccessful
if the search key is not equal to X(i).

4. Otherwise the current node is an upper level
node and the node indicated by P(i) is
brought into internal memory and control
returns to step 2.

Insertion requires all keys to be inserted at 1level
onee. If a split occurs, the rightmost key in the node
containing the first half of the keys 1is copied into the
next levele. Any splits that occur in the upper levels are
handled with the same method as that used for a standard
B-tree;

Deletion requires that the key (and its pointer) be
deleted at level one. If}the key is the rightmost key. in
that node, 1its occurrence in the upper 1levels must be

changed to reflect the new rightmost key in the node at

level one.
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A B-tree index of the type just described requires p+l
accesses to retrieve any one record where p is the number of
levels in the B-tree. This can be reduced by keeping the
root node in internal memorye.

The B-tree 1index described above was designed and
implemented by the author. The following chapters in this
- thesis discuss the design, implementation and uses for this
type of a B-tree. Chapter V contains a discussion of a

system that used this B-tree indexe.

Relational Data Base Uses for

a B-tree Index

In a relational data base there are collections of data
that are referenced and manipulated by the use of defined
relations. A relation, in simplest terms, 1is the logical
structure of a set of related information that may or may
not be closely related to the physical representation of the
information. The use of a relatioﬁ is intended to be inde-
pendent of the way the information is stored or accessed.

An image of a relation is simply a copy of the relafion
ordered on one or more of ~ the attributes of the relation.
Rather than physically copy the relation, an index is cre-
ated with pointers to the actual data.

In "System R"™ (1) the developers use a B-tree index to
store the pointers to the actual data called Tuple Identifi-

ers (TID). A TID contains the address of the tuple (a piece



25

of data) that is desired. Therefore, tuples may be accessed

- directly by traversing one of the B-tree indices defined for

a relation. This type of use for B-trees can result in much
faster on-line responses to various queries than other
organizational methods.

B-trees are a very versatile data structure. Haerder
(6) describes a generalized access path structure where
images that use the same attribute for the-key field are
combined into one B-tree index. This also allows the
implicit use of binary links3. This means binary links can
be used without physically storing the 1inks anywhere. The
links are an implicit result of the structure and ordering
of TID'*s in a B-tree node. An alternative to this approach
is to store the links in the tuples themselves which could

cause the following:

1. The system could be too slowe.

2. It would increase maintenance problems when
tuples are inserted or deleted.

3. It would increase the complexity. of access to
tuples since there would be at 1least two
separate methods of access (by index and by
binary link).

37 binary link is a direct path from the tuple in one
relation to its offspring tuple(s) in another relation (or
back to its parent tuple if it is an offspring)e.
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Advantages, Disadvantages and

Alternatives to B-trees

B-trees have several advantages over other contemporary
organizational methods. One advantage is that complete file
reorganization is never required and all reorganization is
performed within a node or with 1its parent or sibling nodes
(called local reorganization)e. Another advantage is that
the lower bound performance and expected performance can be
closely approximated and that performance can be quite good
(11). In' some organizational methods, performance is
dependent on the number of overflow records in the file or
extensions added onto the file.

One of the disédvantages of B-trees is the amount of
work that must be done in a node in internal memory for
searching, insertion and deletion. This work is ordinarily.
insignificant though, when compared to the time required for
the physical input and output of records to disk. The
B-tree algorithm attempts to reduce access time signifi-
cantly at the expense of additional work to be done‘ in
internal memorye.

Another disédvantage with B-trees is the utilization of
space if all nodes are only about half full. This problem
can be avoided‘if overflow sharing techniques are used to
reduce the number of splits that occur.

An alternative to using an organizational method based

upon B-trees (like IBM®'s Virtual Storage Access Method) 1is
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to use some other organizational method such as indexed
sequential or inverted files (4). If an indexed sequential
method were used as an alternative‘to a B-tree based method,
a volatiie file would need frequent reorganization.+%

The B-tree 1index approach described earlier- would
require an access method that allows direct access of
records. The logical access of records in the file could be
sequential or direct or sequential from a point arrived at
directlye. If a group of records were to be retrieved that
had a particular attribute 1in common, the capability to
traverse a B-tree sequentially from a point arrived at
directly could save a lot of time by traversing only that
part of a B-tree that matches the common attribute. Sequen-
tial access would be accomplished by performing an in-order
traversal of the B-tree. Sequential access from a point
arrived at directly to retrieve a subset of records (com-
monly called "generic access") is discussed in Chapter 1IV.
This capability is offered only by'a B-tree approach (such
as the author®s program or VSAM) and an indexed sequential
approach to organizing and accessing records on direct

access auxiliary storage.

“Another alternative is to order the records in a
sequential file and use no indexe The entire file would be
reorganized if records are inserted or deleted. Also, any
search for records based upon an attribute that was not used
for the ordering requirements would require a scan of the
entire filee.
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Based upon the advantages and disadvantages mentioned,
it is the conclusion of  the author that organizational
methods for storing records on direct access auxiliary. stor-
age based upon B-trees would guarantee quick access to a
given record, would make reasonably efficient use of that
storages and would remove the requirement for rewriting or
reorganizing volatile files. An organizational method based
upon B-trees would allow sequential access or direct access
based upon a keye. Also, multiple B-tree indices could be
created based upon different permutations of the key fields
in @an existing B-tree leading to secondary indices that
could be wused to access the records rather than using the

primary indeXe.

8More efficient use of the storage could be realized by
using a strictly sequential file with no indexXe. But, given
the properties desired, B-trees have good performance char-
acteristics and still make efficient use of storage (11)a.



CHAPTER III

DESIGN AND IMPLEMENTATION OF A

B-TREE INDEX PROGRAM

The data structure design, the design of the logic and
the implementation factors of a B-tree index program uwritten
by the author are presented in this chapter. Program Design
Language (PDL) descriptions and program listings are availa-

ble in the appendices.
Data Structure Design

The data structure design described in the previous
chapter in the section on the B-tree index variation is the
one used by the author. The basiq difference between this
type of B-tree and the standard B-tree is that pointers at
the bottom level of the B-tree are not null or wasted. At
the bottom level all pointers actually point to the records
that cdntain the data. Another difference is that all keys
in the tree appear at the bottom level. All the keys in the
upper levels duplicate the rightmost key in each bottonm
level node except the rightmost node.

The purpose for using a B-tree this way is to allow the

insertion and deletion of records in the record file and the

29
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insertion and deletion of keys in the B-tree index to be
independent of each other. If a “simple singly-linked list
of available storage'" technique 1is used for creating and
deleting records in the record file, the records never need
to be reorganized because of the volatility of the file.
The only reorganization ever required is the local reorgani-
zation of keys in a B-tree index node (and possibly one of
its sibling nodes). The index file itself never requires -
"wholesale"™ reorganizatione. The B-tree 1is always uell
organized and the pointers at 1level one locate the actual
records requested. <

This method or variation of a B-tree leads to interest-
ing differences in the search, inser&ion and deletion algor-
ithms used for standard B-treese. The next section contains
a discussion of the design of the logic required to imple-

ment this data structure designe.
Logic besign

The design of the 1logic for the B-tree algorithms
requires the prior 'determination of the methods to be used
in insértion. Overflow can be handled by simply. splitting
the node or by aftempting to share the overflow with a
sibling node. It was decided to attempt to share overflow
during insertion to first the right sibling and then to the
left sibling if the right sibling were full. All splits are

simple two-way splitse. The basis for this decision came
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from the results of a study on B-trees made by Davis (5).

The basic design of the program is shown in Figure 10.

BTINDX: PROC;
set OPCODE to the operation to be performed;
SELECT(OPCODE);
WHEN(search) find occurrence of key at level
one and return the corresponding pointer;
WHEN(insert) insert the key and the record
number at level one in the B-tree;
WHEN(delete) remove the key and its pointer
at level one in the B-tree;
Change any occurrence of the key in the
upper levels of the B-tree;
OTHERWISE signal an error condition;
END;
END BTINDX;

Figure 10. A High-Level PDL Description of a B-tree
Index Procedure

The entire program was designed' by writing a PDL (Pro-
gram Design Language), a pseudo language with structured
programming constructs. Its use replaces the flowchart as a
design tool. After the transformation of the PDL into PL/I,
there wWwere no major design changes required. In the
author's opinion this is attributable to the superiority of
a PDL over the use of a flowchart method of design. This
opinion is supported by a study performed by Dr. Van Doren

and others (10).
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The PDL for BTINDX, the B-tree index program, is writ-
ten so that it may now be implemented in any. high-level pro-

gramming language. BTINDX is implemented in PL/I.

IF LEFTSIB exists and is not full THEN
IF CURNODE is not a level one node THEN
copy LEFTSIB's parent key into LEFTSIB; FI;
perform overflow sharing to the left;
set LEFTSIE®'s parent key = highest key in LEFTSIB;
RETURN; FI;
IF RIGHTSIB exists and is not full THEN
IF CURNODE is not a level one node THEN
copy RIGHTSIB's parent key into RIGHTSIB; FI;
perform overflow sharing to the right;
set CURNODE*s parent key = highest key in CURNODE}
RETURN; FI;
CALL SPLIT;

Figure 11. Insertion Overflow Procedure in PDL Form

Refer to Figure 11 for a PDL description of the follow-
ing discussione. When a key is inserted into a lowest level
node, overflow is handled a little differently (and will be
explained later) than if overflow is in an upper level node.
If ovefflow at the lowest level 1is handled by sharing, the
parent key of the leftmost share partner® must be changed to

the new rightmost key in that node.

i1Share partners are the current node and either its
left or right sibling. The two nodes could be involved in
sharing overflow or the two nodes could be the result of a
split.
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A split at the lowest 1level requires the rightmost key.
of the left share partner be inserted inte the parent node
right before the current node's pafent key. The key remains
at level one and is inserted into its parent nodee.

If overflow occurs at other than level one and sharing
is possible, the parent key that would come "between" the
two nodes must be copied into one of the nodes before shar-
ing is attempted. After the keys are divided, the key in
the parent node must be changed to reflect the rightmost key
of the leftmost share partner..

If a split is necessary in an upperllevel node, the
rightmost key in the leftmost node of the two created by the
split is inserted into the parent node. (A split in a level
one node would have left the key in the level one node as
well as inserting it into the parent node.)

Deletion always starts at level one. If neither of the

following is true, the deletion process is finished.

1. The current node is now underfull.

2. The key deleted was the rightmost key in the

node.

If the current node is underfull, its keys are either
.combined or shared with one of its siblings. As with
insertion, any sharing of keys requires the proper key in
the parent hode be copied into one of the share partners if
th; current node is not a 1level one node. Upon completion

of the sharing, the proper key in the parent node must be
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updated to reflect the new rightmost key in the leftmost
node of the two share partnerse.

When two nodes are combined, the key and pointer -to the
leftmost node of the two nodes combined must be deleted as
well. It is possible that the parent' node Will become
underfull and therefore the process could continue.

When an underfull condition does not exist, but the
rightmost key in the most recent node involved was the one
deleted, the tree must be traced back towards the root
changing the occurrence of the deleted key in the upper part
of the tree to the new rightmost key in the node that had
its rightmost key deleted. The only time this is not
necessary 1is when the node that had its rightmost key

deleted is the rightmost node at its level.
Implementation Eactors

A structure for a single node' in a B-tree <could loo0k
like:
DECLARE
1 NODE,
2 PTRS(0:MAXB+1) FIXED BIN(15),
2 KEYS(MAXB) CHAR(KLEN);
MAXB is the branching factor and KLEN is the 1length of the
key fielde. For ease of implementation, all nodes are
required to have an extra pointer and an extra key so that
an overfull node will physically fit in a node and can be

handled from that point.
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The BTINDX routine was written so that it could
manipulate more than one B—tree.x The B-trees could be
located in different files and have a different branching
factor and key size. This generality has a tradeoff in the
declaration of the space used by a node. One structure con-
tains all the physical space for up to three nodes. CUR-
NODE, SIBNODE and PARNODE are based upon this physical stor-
age. The key length and dimensions for the number of keys
and pointers are variable. PL/IX :equires a "REFER" option
to be applied to based structures with variable-dimensioned
substructures. Crotzer (4) did not use this method because
it was not available with the PL/I F compiler and therefore
he could not use based structures with variable-dimensioned
arrayse

Three nodes are containéd within memory at any one
time. These nodes are referred to as CURNODE, PARNODE and
SIBNODE and represent the current, parent and sibling nodes.
Althougﬁ a node may. be the current node at one point, it may
become the parent node during a traversal. Rather than
physically move the values in CURNODE to PARNODE, base vari-
ables are switched so that CURNODE Jjust becomes PARNODE.
This strategy 1is used throughout to reduce the amount of
work that must be done Hhile maintaining the B-treee.

Refer to Appendices A and E which contain the BTINDX
design and program, respectively. The program uses positive

pointers in the upper levels to point to other B-tree nodes
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but uses negative pointers at level one to point to the
actual records. This is transparent to the user of the rou-
tine since POS (the 1location of the record in the record
file) contains the absolute value of the negative pointer at
level one.

The search routine continues moving down levels in the
B-tree, stacking node numbers and the location of the
pointer to its offspring node until it arrives at level one
where success or failure of the search can be determined.
All insertions and deletions are preceded by a search to
determine if the key exists and to locate the target for an
insertion or deletion if the proper conditions existe.

The stack is used to locate the ancestor nodes if it is
necessary. to trace back through the tree toward the roote.
After the physical insertion or deletion of the key and its
pointer at level one, a determination is made as to whether
the process is finished or more work is to be done.

For insertions, the process is complete after inserting
the key and its pointer in a level one node if an overflow
condition was not created. If overflow has occurred, an
attempi to share the overflow with a sibling node is made.
A sibling node is easy to find since the current node's par-
ent node, if it has one, 1is already in main memorye. If a
split occurs at level one, the rightmost key in the leftmost
share partner is copied tb the parent node. Therefore, the

number of keys 1in the parent node increases and it may



317

become overfull. Splits in upper level nodes are handled in
a standard B-tree fashion using overflow sharing if possi-
ble. In other wWords, splits in the upper levels cause a key
to get promoted (not copied) to the next level.

If overflow is handled by sharing, the rightmost key in
the leftmost share partner will changee. This means that a
key at the next level must also be changed; This process
never requires looking farther than thg parent node since
the rightmost key in the rightmost offspring node will never
change due to overflow sharinge.

As mentioned earlier in this chapter, deletion requires
that a search be performed to find the key at level one. If
the key exists, the key and its pointer are deleted from thé
node. If an underfull condition exists (there are less than
[maxb/21-1 keys) or the rightmost key is the one deleted,
more work is required.

If a level one node is underfull, the keys in it and
one of its sibling nodes are shared as long as one of the
siblings is more than minimally full. Khen the deletion
process does not cause an underfull condition but, the
rightmost key is the one deleted, the tree must be traced
back towards the root to change the occurrence of the
deleted keye.

If the underfull 1level one node has siblings that are
both minimally full, it is combined with a sibling node and

the key thét used to be the rightmost key in the leftmost
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node of the two combined nodes must be deleted in the upper
part of the tree.

Any underfull condition in a node that is not a level
one node is handled by the procedure for underfull nodes in
a standard B-tree as described in Chapter II. Underfull
conditions are handled by rotating if possible and combining

nodes otherwisee.
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GENERIC ACCESS OF A B-TREE

A useful capability when wusing search trees 1is to
access records in the tree whose key matches a partial
search key. This is called "generic access"™ (9). For exam-
ple, 1f a person®s age and name wWere recorded in that order
as the keys for a search tree, the partial key could specify
an age and all records with that age would be accessed.
This chapter discusses a deneric access routine Eritten for
a B-tree index maintained by the program in the previous
chapters

The requirements of the routine ares

1. It should be general enough to permit access

to more than one B-tree within the sanme
prograne

26 The routine called to process a record when

the key condition is satisfied should be
variablee '

3; It should access records in collating

sequence order and should perform a full in-
order traversal if the search key is null.
The PDIL, and program listing are in Appendices B and F.

A use for this routine involves the use of nmultiple

indices for one record file. If n keys are useful for that

39
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record file, n or more permutations or subsets of those keys
could be used as the keys for Vother B-trees. If for
example, "department"™ were one of the key fields, it  could
be used as the 1leading portion of the key field for a
secondary B-tree index. Thereafter, records could be
accessed on the basis of the department key field. This
method was used extensively by the author in the system

described in the next chaptere.



CHAPTER V

DISCUSSION OF THE UTILIZATION OF A
B-TREE INDEX FOR A PRACTICAL

PROBLEM

Budget and Personnel Records

Maintenance System

The file system designed and implemented by the author
for the Dean's Office in the College of Arts and Sciences is
presented in this chapter. Only enough of the system is
presented to show the use of the B-tree index program and
the generic access procedure. Basically, the system allcus
the creation, modification and deletion of personnel records
and the analysis of the budget based upon the pay informa-
~ tion stored in each personnel recorde.

During the design phase it had to be determined how the
personnel records were to be ofganized and accessed on diske.
Personhel records need to be accessed based upon a name or
rank or home department or according to the accounts that
contribute to their salaries. Ofiginally, the personnel
records were to be stored in an indexed sequential file but
there was a need to access the records based upon four dif-
ferent attributes. 1Indexed sequential organization does not

support alternate indices so that method could not be used.

41
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(It would be possible to have several indexed sequential
files where one file is the primary file and contains the
records themselves and the other files only contain as data
the key of the record in the primary file. The primary dis-
advantage is the amount of reorganization required if the
file system is highly volatile.) VSAM with 1its alternate
indices was the natural choice at this point but the Univer-
sity Computer Center does not currently support its use.
This 1led to the design and implementation of the B-tree
index program discussed in the previous chapters.

The four B-trees needed are called the NAME, RANK, HOME
and ACCTS B-treese. The key field for each B-tree is
described below:

1. NAME - catenation of name, home department

and ranke

2 RANK - catenation of rank, home department
and namee.

3. HOME - catenation of home department, rank
and namee.

4. ACCTS - catenation of an account number and
- the personnel record number.

The NAME, RANK and HOME B-trees contain different
permutations of the same three key fields in a personnel
record. All keys in a B-tree index must be unique, which
leads to the restriction that no two personnel records may
be recorded with the same néme, rank and home departmente.

If this were ever necessary, a'number could be used for the
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middle initial of the name to make each record have unique
key fieldse.

The ACCTS B-tree can be used to access all records that
receive money from a given accdunt. It may seem redundant
to have the personnel record number in the key as well as in
the pointer at level one, but it is necessary to satisfy the
requirement of unique keys in the B-tree.

For maintenance purposes, personnel records are
accessed by the name field in the record. This leads to a
problem if more than one record has the same name. The
batch program that allows the maintenance of personnel
records treats the problem as an error and produces a
message stating that the real-time maintenance routine must
be used instead. The real-time routine prompts for the rank
and the home to determine exactly which record to modifye.

Any new personnel record requires three calls to insert
the new keys into the NAME, HOME and RANK B-treese. As many
keys as there are unique accounts in the record must be
inserted into the ACCTS B-tree.

The method for creating a record in PDL form is:
determine name, rank, home and other ID informationj
CALL BTINDX(insert,name]lhome]]rank,recno,nameroot);
CALL BTINDX(insert,homellrank|lname,recno,homeroot);
CALL BTINDX(insert,rankl|lhomellname,recno,rankroot);
build up pay and account informationj;

DO for each unique account;
CALL BTINDX(insert,acct_nollrecno,recnosacctroot);

END;
store personnel record in PAFILE at location recnoj
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The deletion of a personnel record requires the
reversal of the above procedure. ~ The updating of a record
requires no action on the NAME, HOME or RANK B-trees unless
one of the key fields in the record is changed. In that
case, all three o0ld keys must be deleted and the three new
keys must be inserted. Any change to the accounts and pay
information causes corresponding deletions and insertions so
that when the record is rewritten, the ACCTS B-tree contains
an entry for each unique account in the personnel record.

Therefore, personnel records may be accessed based upon
a person's name, rank, home department or the accounts that
pay them. In fact, it would also be possible to access
personnel records based on a combination of attributes as
long as those attributes make up the leading portion of the
key for the B-tree. This means that the proper record could
not be found if only a person's last name and rank were used

as the search Kkeye. If the last name were used by itself,

all the records with that last name could be retrievede. To

access all the records 1in a given «class (for example all
records with the rank "associate professor") there is a need
for a generic access routine. This‘routiﬁe and the logic
for it is discussed in Chapter 1V.

In the program that prints personnel records, if more
than one record has a given name, all occurrences of records
with that name are printed. If only a last name is given to

the routine, all records with that last name are printed.
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In fact, 1if a single letter is provided as the last name,
all records that have a last name that begins with that
letter are printed. These actions are the result of the use
of the generic access proceduree.

Appendices C and D contain PDLs for a batch and a real-
time routine that prints a report on full-time equivalents
(FTEs?®) and dollars committed to accountse. The batch
routine prints the report for all accounts and the real-time
routine prints a report for a single account or subset of
accounts. Appendices ¢ and H contain the actual PL/I
programs and contain ¥INCLUDE statements for the inclusion
of structure declarations and internal procedures.
Therefore, those two programs only show the detail necessary
to see how the generic traversal procedure is used.

More information on this file system is available in
the Programmer®'s Guide written by the author and kept in the
Dean's Office in the College of Arts and Sciences (3). It
contains 1listings of all the programs in the system and
provides more examples of the uses of the B-tree index
program and the generic access routine.

| Another example of a system where B-trees were used in
an information storage and retrieval system is contained in

the thesis written by.Crotzer (4).

iThe summation of the percentage of full time worked by
each employvee is called "FTE". ‘
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Summary and Conclusions

A B-tree indexing scheme can be very useful fof any
applications that store records in a volatile file main-
taiped on direct access auxiliary storage. Such a scheme
can greatly increase the speed of programs by reducing the
number of records accessed on auxiliary storagee. ARlso, a
volatile file does not reduce the performance of the system.

One change in the B-tree index program might be worth
looking into. Presently, B-trees with different branching

factors or with different key lengths are contained in sepa-
rate files. For programs that do not know the size of the
key that will be used in the index, this is impractical.
This requirement could be relaked by giving the maximum size
of a node to the index routine and allowing it to compute
what the branching factor must be for a particular B-treee.
B-trees with different attributes could still be stored in
different files but it would not be necessary. if the com-
puted branching factor is of a desirable size.

An area of further research or interest involves the
B-tree structure used by Haerder in his General Access Path
Structure (6). The general idea allows a list of record
identifiers to be stored with a given key. In the systenm
described in this paper, a B-tree could‘be constructed with
RANK as the key attribute. For each rank or key 1in the
B-tree, there could be a list of record identifiers. Such a

scheme would reduce the size of the keyfield in the indices
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discussed earlier and would provide ready access to all the

records that match a certain attribute.
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APPENDIX A

PDL DESCRIPTION OF THE
B-TREE INDEX

PROGRAM

The following section contains a Program Design Lan-

guage (PDL) description of the B-tree index programe

,*
Author: David Christian
Date: 22 May 1978

Purpose: The purpose of this procedure is to maintain an
exhaustive index organized into a B-TREE index where the
lowest level pointers are pointers to the actual recordse.
An explanation of this approach is available in¢

Knuth, Donald E. THE ART OF COMPUTER PROGRAMMIKG.
Vol. 3, 473-480. Reading: Addison-Wesley, 1973.

Horowitz, Ellis and Sahni, Sartaj. FUNDAMENTALS OF
DATA STRUCTURES. 496-540. Woodland Hills, Cal.:
Computer Science Press, 1976

Van Doren, James R. COMSC 5413 Class Notes. Spring
1978, OCklahoma State Universitye.

Procedure Descriptions:

BTINDX - Driver routine. Chooses the action to be
performed.

SEARCH -~ Searches for a given key at the lowest level and
stacks pointers to nodes that trace the path to the
node that contains the given key.

INSERT - Inserts a new key into the tree at the lowest
level and then promotes a key if a node splits.

DELETE - Deletes a key at the lowest level. Underflow is
handled by two different methods depending on whether
the underflow occurs in a lowest level node or not.

If the rightmost key in a lowest level node is deleted
the new rightmost key must replace the old one in the
upper part of the tree.

GETNODE - Gets a node of the B-TREE and brings it into
main Memorye '

PUTNODE -~ Puts a node in main memory back into the tree.

50
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HDNODE - Creates a new root node with a given key and two
pointers.

Description of Variables Passed to BTINDX:

OPCODE - Contents determine whether a search, insertion
or deletion attempt will be madee.

KEY - Key for search or insertion or deletione.

POS - The location of the record with key = KEY in the
record file.

ROOT ~ The location of the root node in the B-TREE.

AVAIL - The location of the first available free node in
a singly-linked list of such free nodes.

FLAG - The value of this flag upon return specifies the
final status of the request specified by OPCODE. The
values are: '

-1« operation_completed.

2. duplicate_entrye

3. key_not_found.

4., available_storage_exceeded.
5. 1invalid_opcode.

Description of Internal Variables:

,/*

CURNODE =~ Current nodee.

SIBNODE - Sibling node.

PARNODE - Parent node.

CSS - Location in tree of CURNODE.

SSS - Location in tree of SIBNODE.

PSS - Location in tree of PARNODE. ‘

PINCN - Position in CURNODE of first key >= KEY.

PINPC - Position of pointer in PARNODE to CURNODE.

PINPS -~ Position of pointer in PARNODE to SIBNODE.

PTRS -~ The pointers in a node of the B-TREE. PTRS(0) is
a count of the number of keys in the node.

KEYS - The keys in a node of the B-TREE.

STACK - Contains a pointer to a node and a subscript
value for the location in that node of the first
key. >= KEV.

NULL - Value considered null for a pointer in the file
of records. _

NULL_VALUE - Value considered null for a node pointere.

SAVEIT - Used to contain a node*'s PTRS(0) value when it
is to be changed or to hold a sum of PTRS(0) from two
nodese.

MAXBRANCHING - The maximum branching allowed in a node.

BTINDX. PROC(OPCODE, KEY, POS, ROOT, AVAIL, FLAG);

initialize variables;

FLAG=operation_completed;

SELECT (CPCODE); N A
WHEN(search) CALL SEARCH;
WHEN(insert) CALL INSERT;
WHEN(delete) CALL DELETE;
OTHERWISE FLAG=invalid_opcode;

END;

END BTINDX};
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SEARCH: PROC;
initialize STACK to empty’
IF ROOT is null THEN P0S=0; RETURN; FI;
CSS=R0O0T; ;
DO FOREVER;
CALL GETNODE(CSS,CURNODE);
PINCN=position in CURNODE of first key >= KEVY;
IF PTRS(PINCN) in CURNODE < 0 THEN
IF KEY = KEYS(PINCN) in CURNODE THEN
POS=-PTRS(PIKCN) in CURNODE;
ELSE P0S=0; FLAG=key_not_found; FI;
RETURN;
FI1;
put CSS and PINCN onto STACK;
put CURNODE into PARNODE;
CSS=PTRS(PINPC) in PARNODE;
END;
END SEARCH;

INSERT: PROC;
initialize variables;
-LOC=-absolute value of POS;
IF ROOT=NULL_VALUE THEN
IF AVAIL=NULL_VALUE
THEN FLAG=available_storage exceeded;
RETURN; FI;
CALL HDNODE(KEY,LOC,NULL);
RETURN;
FI;
CALL SEARCH;
IF P0S-=0 THEN FLAG=duplicate_entry; RETURN; FI;
INSRT:
insert KEY and LOC into CURNODE at position PINCN;
IF overflow does not exist THEN
CALL PUTNODE(CSS,CURNODE);
RETURN;
FI;
IF STACK is empty THEN GO TO SPLIT; FI;
/*
~When sharing keys between siblings care must be taken to
bring the parent key down into leftmost node before
shifting if the siblings are not lowest level nodes.
Then, upon completion, the rightmost key in the leftmost
node must replace the key that was brought down if the
siblings are not lowest level nodes.
*/
IF left sibling exists AND is not full THEN
perform overflow to the left;
ELSE
IF right sibling exists AND is not full THEN
perform overflow to the right;
ELSE GO TO SPLIT; FI;
FI;
CALL PUTNODE(CSS,CURNODE);



CALL PUTNODE(SSS,SIBNODE);
CALL PUTNODE(PSS,PARNODE);
RETURN;
SPLIT:
IF AVAIL = NULL_VALUE
FLAG=available_storage_exceeded; RETURN; FI;
CALL GETNODE(AVAIL,SIBNODE);
/*
CURNODE will be stored in the location for a new node
and SIBNODE will be stored where CURNODE was stored.
*/
$SS=CSS;
CSS=AVAIL;
AVAIL=PTRS(0) in SIENODE;
put upper half of CURNODE into SIBNODE;
set PTRS(0) in CURNODE and SIBNODE;
KEVY=highest key. in CURNODE;
L0OC=CSS;
IF CURNODE is not a lowest level node THEN
decrement PTRS(0) in CURNODE; FI;
CALL PUTNODE(CSS,CURNODE);
CALL PUTNODE(SSS,SIBNODE);
IF STACK is empty THEN
IF AVAIL = NULL_VALUE
THEN FLAG=available_storage_exceeded;
RETURN; FI;
CALL HDNODE(KEY,CSS,SSS);
RETURN;
FI;
CSS=PSS;
put PARNODE into CURNODE;
PINCN=PINPC;
pop STACK;
IF STACK is not empty THEN
copy top of STACK into PSS and PINPC;
CALL GETNODE(PSS,PARNODE)};
FI;
GO TO INSRT:
END INSERT;

DELETE: PROC;
initialize variables;
CALL SEARCH;
IF POS=0 THEN RETURN; FI;
delete the key and its pointer in CURNODE;
IF STACK is empty THEN
IF CURNODE is empty THEN
ROOT=NULL_VALUE;
put CURNODE back on available list;
FI;
RETURN;
FI;
KEYS(PINPC) in PARNODE=highest key in CURNODE;
IF CURNODE is not underfull THEN
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CALL PUTNODE(CSS,CURNODE);
IF PINCN <= PTRS(0) in CURNODE THEN RETURN;
GO TO TRACEBACK;
FI;
UNDERFULL:

Share or combine keys with right sibling if it exists.

IF right sibling exists THEN
PINPS=PINPC+1;
SSS=PTRS(PINPS) in PARNCDE;
CALL GETNODE(SSS,SIBNODE);
SAVEIT=PTRS(0) in CURNODE + PTRS(0) in SIBNODE;
IF CURNODE is not a lowest level node
THEN SAVEIT=SAVEIT+1; FI; :
IF SAVEIT > MAXBRANCHING -~ 1 THEN /* Share keys */
IF CURNODE is a lowest level node THEN
divide keys and pointers between SIBNODE and
CURNODE;
KEYS(PINPC) in PARNODE=highest key in CURNODE;
ELSE
increment PTRS(0) in CURNODE;
KEYS(PTRS(0)) in CURNODE =
KEYS(PINPC) in PARNOCDE;
PTRS(PTRS(0)+1) in CURNODE=PTRS(1) in SIBNODE;
KEYS(PINPC) in PARNODE=KEYS(1) in SIBNODE;
delete leftmost key and pointer in SIBNODE;
FI;
CALL PUTNODE(CSS,CURNODE);
CALL PUTNODE(SSS,SIBNODE);
CALL PUTNODE(PSS,PARNODE);
RETURN)
ELSE /* Combine keys */
IF CURNODE is a lowest level node THEN
combine CURNODE and SIBNODE into CURNODE;
KEYS(PINPC) in PARNODE=highest key in CURNODE;
delete key and pointer to SIBNODE;
ELSE
increment PTRS(0) in CURNODE;
put SIBNODE into CURNODE;
delete KEYS(PINPC) in PARNODE;
delete PTRS(PINPS) in PARNODE;
decrement PTRS(0) in PARNODE;
FI;
put SIBNODE back on available list;
CALL PUTNODE(CSS,CURNODE);
IF PARNGODE is not underfull THEN
CALL PUTNODE(PSS,PARNODE);
RETURN;
FI;
FI;
ELSE /* Share or combine keys with left sibling since
the right sibling does not exist. CURNODE is
the rightmost child of PARNODE. */
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PINPS=PINPC-1;
SSS=PTRS(PINPS) in PARNODE;
CALL GETNODE(SSS,SIBNODE);
SAVEIT=PTRS{(0) in CURNODE + PTRS(0) in SIBNODE;
IF CURNODE is not a lowest level node
THEN SAVEIT=SAVEIT+1; FI;
IF SAVEIT > MAXBRANCHING - 1 THEN /* Share keys */
IF CURNODE is a louwest level node THEN '
' SAVEIT=PTRS{(0) in CURNODE;
divide keys and pointers between SIBNODE and
CURNODE;
KEYS(PINPC) in PARNODE=highest key in CURNODE;
KEYS(PINPS) in PARNODE=highest key. in SIBNODE;
ELSE
SAVEIT=1+PTRS(0) in CURNODE;
shift all keys and pointers in CURNODE one to
the right;
increment PTRS(0) in CURNODE;
KEYS(1) in CURNODE=KEYS(PINPS) in PARNODE;
PTRS(1) in CURNODE=PTRS(PTRS(0)+1) in SIBNODE;
KEYS(PINPS) in PARNODE =
KEYS(PTRS(0)) in SIBNODE;
decrement PTRS(0) in SIBNODE;
FI;
CALL PUTNODE(CSS,CURNODE);
CALL PUTNODE(SSS,SIBKODE);
CALL PUTNODE(PSS,PARNCDE);
IF PINCN=SAVEIT THEN GO TO TRACEBACK; FI;
RETURN;
ELSE /* Combine keys */
IF CURNODE is a lowest level node THEN
SAVEIT=PTRS(0) in CURNODE;
combine SIBNODE and CURNODE into SIBNGDE;
KEYS(PINPS) in PARNODE=highest key in SIBNODE;
ELSE
SAVEIT=1+PTRS(0) in CURNODE;
increment PTRS(0) in SIBNODE;
KEYS(PTRS(0)) in SIBHODE =
KEYS(PINPS) in PARNODE;
combine CURNODE into SIBNODE;
FI;
decrement PTRS(0) in PARNODE;
put CURNODE back on available 1list;
CALL PUTNODE(SSS,SIBNODE);
IF PARNODE is not underfull THEN
CALL PUTNCDE(PSS,PARNODE);
IF PINCN = SAVEIT THEN GO TO TRACEBACK; FI;
RETURN;
FI;
€CSS=S8SS;
FI;
FI;
~/* PARNODE is possibly underfull */
pop STACK;
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IF STACK is empty THEN
IF PARNODE is empty THEN
ROOT=CSS;
put PARNODE back onto available 1list;
ELSE CALL PUTNODE(PSS,PARNODE)j; FI;
RETURN;

FI;

put PARNODE into CURNODE;

copy. top of STACK into PSS and PINPC;

CALL GETNODE(PSS,PARNODE);

GO TO UNDERFULL;

/ * .

A rightmost key was deleted and its occurrence in the
rest of the index must be changed to the new rightmost
keye
*/

TRACEBACK:
DO FOREVER;
pop STACK;
IF PINPC <= PTRS(0) in PARNODE OR STACK is empty.
THEN RETURN; FI;
put PARNODE into CURNODE;
copy top of STACK into PSS and PINPC;
CALL GETNODE(PSS,PARNODE);
KEYS(PINPC) in PARNODE=KEYS(PTRS(0)+1l) in CURNODE;
CALL PUTNODE(PSS,PARNODE);
END; '
END DELETE;

GETNODE: PROC{SS,NODE);
read node number SS into NODE;
END GETNODE;

PUTNODE: PROC(SS,NODE);
put NODE into node number SS;
END PUTNODE;

HDNODE: PROC(KEY,SS1,5S2);
CSS=AVAIL;
CALL GETNODE(CSS,CURNODE);
AVAIL=PTRS(0) in CURNODE;
PTRS(0) in CURNODE=1;
KEYS(1) in CURNODE=KEY;
PTRS(1) in CURNODE=SS1;
PTRS(2) in CURNODE=SS2;
CALL PUTHODE(CSS,CURNODE);
ROOT=CSS;

END HDNODE;



APPENDIX B
PDL DESCRIPTION OF THE GENERIC PROGRAM

The following section contains a PDL description of the
generic traversal procedure described in Chapter IV.

GENTRAV: PROC(PKEY,INPROC,ROOT);

/*
Author - David Christian
Date - 24 Sept 1978

Purpose - This procedure does an inorder traversal of a
B-tree starting at the first key. that matches generically
the partial key passed in. INPROC is called to process
each record that is found. A full inorder traversal is
performed if PKEY = ¢ 13

*/

IF PKEV=* * THEN J=0;
ELSE J=length of the nonblank portion of PKEY;
CALL TRAVINGENTRAV(ROOT);

TRAVINGENTRAV: PROC(NODENO);
read node number NODENO into NODE;
DO I=1 TO PTRS(O0)+1 UNTIL(a key in the node > PKEY);
IF the PKEY matches the substring of key(I) of
length J in NODE
THEN IF it is a lowest level node
THEN CALL INPROC(key(I),-PTRS(I));
ELSE CALL TRAVINGENTRAV(PTRS(I)); FI;
: FI;
END;
END TRAVINGENRTRAV;
END GENTRAV;
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APPENDIX C
PDL DESCRIPTION OF A BATCH PROGRAM

The following section contains a PDL description of one
of the batch report generating programs of the file system
described in Chapter V that uses the generic traversal pro-
cedure. |

SFTES$: PROC;

/*
Author - David Christian
Date ~ 24 Sept 1978

Purpose - This procedure prints ftes and dollars by rank for
all accounts that contribute money. An example output is
contained in the system proposale.

,*
Initialize ACTROOT;
CALL GENTRAV(®' ',BLDFTES$,ACTROOT);
/* GENTRAV has its own PDL in PDLLIB */
CALL BLDFTES$(0,* ')

BLDFTE$: PROC(key,RECNO);
IF the key indicates a new account has been started
THEN print the dollars and ftes built up for each
rank for the summer, fall and spring semesters;
save the value of the new account in CURACCT;
FI;
IF key=0 THEN RETURN;
read record RECNO from PAFILE;
compute and save the number of dollars and ftes
committed each month to CURRACT;
Add these amounts to the amounts already summed for that
rank if it already appears; otherwise create an entry
for that rank and initialize it with the figures just
obtained;
END BLDFTES;
END SFTES;
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APPENDIX D

PDL DESCRIPTION OF A REAL-TIME PROGRAM

‘The following section contains a PDL description of one
of the real-time report generating programs of the file sys-
tem described in Chapter V that uses the generic traversal
procedure. This program is the real-time counterpart to the
program described in Appendix C.

FTE$: PROC;

,*
Author - David Christian
Date - 24 Sept 1978

Purpose - This procedure prints ftes and dollars by rank for
an account. An example output is contained in the
system proposale.

/*
Initialize ACTROOT;
determine account and put value into key;
CALL GENTRAV(key,BLDFTES$,ACTROOT);
/* GENTRAV has its own PDL in PDLLIB */
CALL BLDFTES(O0,' '),

BLDFTES$: PROC(key,RECNOQ);
IF the key indicates a new account has been started
THEN print the dollars and ftes built up for each
rank for the summer, fall and spring semesters;
save the value of the new account in CURACCT;
F1;
IF key=0 THEN RETURN;
read record RECNO from PAFILE;
compute and save the number of dollars and ftes
committed each month to CURRACT;
Add these amounts to the amounts alreadv summed for
that rank if it appears; otherwise, make an entry. for
that rank and initialize it with the values just
computed above;
END BLDFTES;
END FTES;
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-APPENDIX E
PL/I B-TREE INDEX PROGRAM

The following section contains the PL/I program that
maintains a B-tree index.

BTINDX: PROC(OP,KEY,POS5,RO0T,RVAIL,AVCNT,MAXB,KLEN,FLAG,
INFILE,INNODE);
/*

BTINDX IS AN IMPLEMENTATION OF AN EXHAUSTIVE INDEX ORGANIZED
AS A B-TREE INDEX. THE INDEX BLOCKS ARE STORED IN ONE
DIRECT ACCESS FILE AND THE ACTUAL RECORDS IN A DIFFERENT
DIRECT ACCESS FILE. A POINTER IN AN INDEX BLOCK IS A
POINTER TO ANOTHER INDEX BLOCK IF THE VALUE IS >=0.
OTHERWISE, THE ABSOLUTE VALUE OF THE POINTER IS THE RECORD
NUMBER IN THE OTHER FILE.

PARAMETERS :

oP - SPECIFIES FUNCTION TO BE PERFORMED.

KEY - KEY FOR RETRIEVAL, INSERTION OR DELETION.

POS - RELATIVE RECORD NUMBER OF ACTUAL RECORD.

ROOT. -~ RELATIVE RECORD NUMBER OF ROOT NODE OF INDEX.

AVAIL =~ RELATIVE RECORD NUMBER OF FIRST AVAILABLE INDEX
BLOCK IN A SINGLY LINKED LIST OF AVAILABLE
BLOCKS.

RVCNT - NUMBER OF AVAILABLE BLOCKS LEFT.

MAXB - MAXIMUM BRANCHING IN AN INDEX BLOCK. (MUST BE
LESS THAN WHAT BLOCK WILL PHYSICALLY CONTAIN AS
AN EXTRA KEY AND POINTER MUST BE PRESENT FOR
-THE MAINTENANCE ROUTINES TO H¥ORK.

KLEN - MAXIMUM LENGTH OF KEY.

FLAG - STATUS CODE FOR ATTEMPTED FUNCTION.

INFILE -~ THIS FILE CONTAINS THE INDEX BLOCKS.
A DETAILED PDL DESCRIPTION OF THIS PROGRAM IS AVAILABLE AND
SHOULD BE CONSULTED FOR DETAILS OF HOW THIS PROGRAM WORKS.

*/

DECLARE

/*

PARAMETER VARIABLES.

*/

OP CHAR(¥*),

KEY CHAR(*),

(P0OS,RO0OT,AVAIL,AVCNT,MAXB,KLEN,FLAG) FIXED BIN(15,0),

INFILE FILE VARIABLE;
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[EEEAEIR KK KARARKKRIKARAKRARERARA KRR KA RR AR RARRARAKARA KRR [
/* */
/* THE FOLLOWING DECLARATION MAKES IT POSSIBLE TO REFER TO*/
/* AN AREAR OF GLOBAL STORAGE THAT CONTAINS THE VARIABLES */

/* USED BY THE B-TREE INDEX PROGRAMe. MAXB (MAXIMUM */
/* BRANCHING FOR A NODE) AND KLEN (THE LENGTH OF A KEY IN */
/* THE NODE) MUST BE KNOWN INTHE BLOCK BEFORE THIS */
/* DECLARATION IS MADE. */
/* */

/*****.‘k*********************‘k‘k*****************************/

DECLARE

1 INNODE, /* GLOBAL B-TREE DATA */
(2 STKPT, /* DEPTH OF STACK */

2 NODENO(*), /* RELATIVE RECORD NUMBER  */

2 PINN(*), /* POINTER IN A NODE */

2 PINCN, /* POINTER IN CURNODE */

2 PINPC, /* PARENT->CURRENT POINTER  */

2 PINPS) /* PARENT->SIBLING POINTER  */

FIXED BIN(15), /* x/

2 NODES(3), /* THE THREE NODES */

(3 X, 3Y, 372) /* NECESSARY FOR REFER OPTION*/

FIXED BIN(15), /* IN BASED STRUCTURES LATER */

3 SuB, /* NODE AS ON DISK */

4 PTRS(*) /* SET OF POINTERS IN A NODE */

FIXED BIN(15),/* */

4 KEYS(*) /* SET OF KEYS IN A NODE */

CHAR(*), /* */

(2 b, /* POINTERS USED FOR BASED  */

2 PCUR, /* STRUCTURES. */

2 PSIB, /* P IS USED WHEN TWO */

2 PPAR) POINTER; /* POINTERS ARE SWITCHED. */
/********* ****************ic********************************l
/* | */
/* THESE DECLARATIONS PROVIDE THE LOGICAL ACCESS TO THE  */
/* PHYSICAL DECLARATION OF NODES ABOVE. */
/* */

JHHIEEKE I KK KIIKKKEKAK KKK KKK AKX KKK KA KKK KA KRR RKKAKK AR A AKX KKK/
/*
THE FOLLOWING ARE LOCAL INTERNAL VARIABLES.

*/
DECLARE
1 CURNODE BASED(PCUR), /* THESE STRUCTURES OVERLAY */
(2 X, 2Y, 2 27) /* THE SUBSTRUCTURE *NODES* */
FIXED BIN(15), /* IN INNODE. THIS WAY, IF */
2 CURN, /* THE CURRENT NODE BECOMES */
3 PTRS(0:MAXB+1 /* THE PARENT NODE, ONLY */

REFER(CURNCDE.X)) /* POINTERS ARE CHANGED. THE*/
FIXED BIN(15), /* REFER OPTION IS REQUIRED */

3 KEYS(MAXB /* FOR BASED STRUCTURES WITH */
REFER(CURNGDE.Y)) /* VARIABLY DIMENSIONED SUB- */
CHAR(KLEN /* STRUCTURES. *x/
REFER{CURNODE.Z)),/* ' */

1 SIBNODE BASED(PSIB),
(2 X, 2 ¥, 2 Z2) FIXED BIN(15),
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2 SIBN,
3 PTRS(0:MAXB+1 REFER(SIBNODE.X)) FIXED BIN(15),
3 KEYS(MAXB REFER(SIBNODE.Y))
CHAR(KLEN REFER(SIBNODE.Z)),
1 PARNOCDE BASED(PPAR),
(2 X, 2 Y, 2 Z) FIXED BIN(15),
2 PARN,
3 PTRS(O0:MAXB+1 REFER(PARNODE.X)) FIXED BIN(15),
3 KEVYS(MAXB REFER(PARNODE.Y))
CHAR(KLEN REFER(PARNODE.Z)),
(1,3,K,L0C,SAVEIT) FIXED BIN(15,0),
KY CHAR(KLEN),
NULL FIXED BIN(15,0) INIT(-1),
(LWSTLVLNODE,LFTSIBXSTS,RITSIBXSTS) BIT(1) ALIGNED,
TRUE BIT(1) ALIGNED INIT(*'1%B),
(FLOOR,CEIL,ABS,ADDR) BUILTIN,
(Css,sss,PSS) FIXED BIN(15,0):
THE FOLLOWING INITIALIZES VARIABLES THAT MAKE
DECLARATIONS WORK */
PCUR=ADDR(NODES.X(1));
PSIB=ADDR(NODES.X(2));
PPAR=ADDR(NODES.X(3));
CURNODE.X,SIBNODE.X,PARNODE.X=MAXB+1;
CURNODE.Y,SIBNODE.Y,PARNODE. Y=MAXB;
CURNODE«Z,SIBNODE.Z,PARNODE.Z=KLEN;
FLAG=1;
KY=KEY;
SELECT(OP);
WHEN(*INSERT®) GO TO INSERT;
WHEN(*DELETE*) GO TO DELETE;
WHEN(*SEARCH"'") CALL SEARCH;
OTHERWISE FLAG=5;

END;

RETURN;
JEFRIRERERKKKRKKRKKKRKKK [
/* x/
/* INSERTION ROUTINE. */
/* */

/ kikkkkk ******‘k***‘k*****,

INSERT:

LOC=-ABS(POS):

IF ROOT=-1 THEN DO;
IF AVAIL=-1 THEN FLAG=4;
ELSE CALL HDNGDE(KY,LOC,NULL);
RETURN;

END;

CALL SEARCH;

IF P0OS+=0 THEN DO; /* KEY ALREADY EXISTS */
P0OS=-L0OC;
FLAG=2;
RETURN;

END;

P0OS=-LOC;

FLAG=1;
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INSRT?

/l*

INSERT KY AND LOC INTO CURNODE AT POSITION PINCN.

*/

CURNODE.PTRS(CURNODE.PTRS(0)+2) =
CURNODE.PTRS(CURNODE.PTRS(0)+1);

DO I=CURNODE.PTRS(0) TO PINCN BY -1;
CURNODE.KEYS(I+1)=CURNODE.KEYS(I);
CURNODE.PTRS(I+1)=CURNODE.PTRS(I);

END;

CURNODE.KEYS(PINCN)=KY;

CURNODE.PTRS(PINCN)=LOC;

CURNODE.PTRS(0)=CURNODE.PTRS(0)+1;

IF CURNODE.PTRS(0)<MAXB THEN DO; /* NO OVERFLOW */
CALL PUTNODE(CSS,1);

RETURK;

END;

/l*

OVERFLOW HAS OCCURRED. SHARE OVERFLOW WITH LEFT OR
RIGHT SIBLING IF POSSIBLE.

*/

IF STKPT=0 THEN GO TO SPLIT;

LWSTLVYLNODE=CURNODE.PTRS(1)<0;

LFTSIBXSTS=PINPC>1;

RITSIBXSTS=PINPC<=PARNODE.PTRS(0);

IF LFTSIBXSTS THEN SSS=PARNODE.PTRS(PINPC-1);

ELSE SSS=PARNODE.PTRS(PINPC+1);

CALL GETNODE(SSsS,2);

IF LFTSIBXSTS & SIBNODE.PTRS(0)<MAXB-1 THEN DO;

/*

*/

I=FLOOR((CURNODE.PTRS(0)~SIBNODE.PTRS(0))/2);

IF ALWSTLVLNODE THEN DO; '
SIBNODE.KEYS(SIBNODE.PTRS(0)+1) =

PARNODE.KEYS(PINPC-1);
SIBNODE.PTRS(0)=SIBNODE.PTRS(0)+1;

END;

bo J=1 TO I;

SIBNODE.PTRS{0)=SIBNCDE.PTRS(0)+1;
SIBNODE.KEYS(SIBNODE.PTRS(0))=CURNODE.KEYS(J);
SIBNODE.PTRS(SIBNODE.PTRS(0))=CURNODE.PTRS(J);

END;

DO J=I+1 TO MAXB;
CURNODE.KEYS(J-I)=CURNODE.KEYS(J);
CURNODE.PTRS(J-I)=CURNODE.PTRS(J);

END;

CURNODE.PTRS(0)=CURNODE.PTRS(0)-I;

CURNODE.PTRS(CURNODE.PTRS(0)+1)=CURNODE.PTRS(MAXB+1);

J=SIBNODE.PTRS(0);

IF -LWSTLVLNODE THEN SIBNODE.PTRS(0) =
SIBNODE.PTRS(0)-1;

PARNODE.KEYS(PINPC-1)=SIBNODE.KEYS(J);

END;

PERFORM OVERFLOW SHARING TO THE LEFT.



ELSE IF RITSIBXSTS & SIBNODE.PTRS(0)<MAXB-1 THEN DO;
/*

PERFORM OVERFLOW SHARING TO THE RIGHT.

*/

I=FLOOR((CURNODE.PTRS(0)~SIBNODE.PTRS(0))/2);

K=SIBNODE.PTRS(0);

SIBNODE.PTRS(K+I+1)=SIBNODE.PTRS(K+1);

DO J=K TO 1 BY -1;
SIBNODE.KEYS{J+I)=SIBNODE.KEYS(J);
SIBNODE.PTRS(J+I)=SIBNODE.PTRS(J);

END;

IF -LWSTLVLNODE THEN DO;
SIBNODE.KEYS(I)=PARNODE.KEYS(PINPC);
SIBNODE.PTRS(I)=CURNODE.PTRS(MAXB+1);
SIBNODE.PTRS(0)=SIBNODE.PTRS(0)+1;

I=1I-1; :

END;

SIBNODE.PTRS(0)=SIBNODE.PTRS(0)+I;

K=MAXB-I;

Do J=1 TO I
SIBNODE.KEYS(J)=CURNODE.KEYS(K+J);
SIBNODE.PTRS(J)=CURNODE.PTRS(K+J);

END;

CURNODE.PTRS(0)=K;

PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(0));

IF 2LWSTLVLNODE THEN CURNODE.PTRS(0)=K-1;

END;

. ELSE GO0 TO SPLIT;

CALL PUTNODE(CSS,1);

CALL PUTNODE(SSS,2);

CALL PUTNODE(PSS,3);

RETURN;

SPLIT: /* OVERFLOW OCCURRED IN AT LEAST THE LOWEST LEVEL

IF AVCNT<STKPT+1 THEN DO;/* AVAILABLE STORAGE EXCEEDED
FLAG=4;

RETURN;

END;

CALL GETNODE(AVAIL,2);

SS5=CSS;

CSS=AVAIL;

AVAIL=SIBNODE.PTRS(0);

AVCRT=AVCNT-1;

I=CEIL(CURNCDE.PTRS(0)/2);

SIBNODE.PTRS(0)=0;

DO J=I+1 TO MAXB;
SIBNODE.PTRS(0)=SIBNODE.PTRS(0)+1;
SIBNODE.KEYS(SIBNODE.PTRS(0))=CURNODE.KEYS(J);
SIBNODE.PTRS(SIBNODE.PTRS(0))=CURNODE.PTRS(J);

END;

SIBNODE.PTRS(SIBNODE.PTRS(0)+1)=CURNODE.PTRS(MAXB+1);

KY=CURNODE.KEYS(I);

LOC=CSS; ‘

IF CURNODE.PTRS(1)<0 THEN CURNODE.PTRS(0)=I;

ELSE CURNODE.PTRS(0)=I-1;
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CALL PUTNODE(CSS,1);

CALL PUTNODE(SSS,2);

IF STKPT=0 THEN DO;
CALL HDNODE(KY,CSS,SSS);
RETURN;

END;

/*

PUT PARNODE INTO CURNODE.

*/

CSS=PSS;

PINCN=PINPC;

P=PCUR;

PCUR=PPAR;

PPAR=P;

STKPT=STKPT-1;

IF STKPT>0 THEN DO;
PSS=NODENO(STKPT);
PINPC=PINN(STKPT);
CALL GETNODE(PSS,3);

END;

GO TO INSRT;

/********************/

/* */
/* DELETION ROUTINE */
/* */

/********************,

DELETE:

CALL SEARCH;

IF POS=0 THEN RETURN;

/%

DELETE THE KEY AND ITS POINTER IN CURNODE.

*/

DO I=PINCN TO CURNODE.PTRS(0);
CURNODE.KEYS(I)=CURNODE.KEYS(I+1);
CURNODE.PTRS(I)=CURNODE.PTRS(I+1);

END;

CURNODE.PTRS(C)=CURNODE.PTRS(0)-1;

IF STKPT=0 THEN DO;

IF CURNODE.PTRS(0)=0 THEN DO;
ROOT=-1;
CURNODE.PTRS(0)=AVAIL;
AVAIL=CSS;

AVCNT=AVCNT+1;

END;

CALL PUTNODE(CSS,1);

RETURN;

END;

IF CURNODE.PTRS(0)~=0 THEN
PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(0));

IF CURNODE.PTRS(0) >= FLOOR(MAXB/2) THEN DO;
CALL PUTNODE(CSS,1);

IF PINCN > CURNODE.PTRS(0) THEN DO;
CALL PUTNODE(PSS,3);

GO TO TRACEBACK;

65



66

END;
RETURN;
END;
UNDERFULL:
l*
SHARE OR COMBINE KEYS WITH RIGHT SIBLING IF IT EXISTS.
*/
IF PINPC <= PARNODE.PTRS(0) THEN DO;
PINPS=PINPC+1;
SSS=PARNODE.PTRS(PINPS);
CALL GETNODE(SSS,2);
SAVEIT=CURNODE.PTRS(0)+SIBNODE.PTRS(0);
IF CURNODE.PTRS(1)>=0 THEN SAVEIT=SAVEIT+1;
IF SAVEIT > MAXB-1 THEN DO;
/*
SHARE KEYS.
*/

IF CURNODE.PTRS(1)<0 THEN DO;
I=FLOOR((SIENGCDE.PTRS(0)-CURNODE.PTRS(0))/2);
DO J=1 TO I1;

CURNODE.KEYS(CURNODE.PTRS(0)+J) =
SIBNODE.KEYS(J);

CURNODE.PTRS(CURNODE.PTRS(0)+J) =
SIBNODE.PTRS(J);

END;

DO J=I+1 TO SIBNODE.PTRS(0);
SIBNODE.PTRS(J-I)=SIENODE.PTRS(J);
SIBNODE.KEYS(J-I)=SIBNCDE.KEYS(J);

END;

CURNODE«.PTRS(0)=CURNODE.PTRS(0)+I;

SIBNODE.PTRS(0)=SIBNODE.PTRS(0)-I;

PARNODE.KEYS(PINPC) =
CURNODE.KEYS(CURNODE.PTRS(0));

END;

ELSE DO;
CURNODE.PTRS(0)=CURNODE.PTRS(0)+1;
CURNODE.KEYS(CURNODE.PTRS(0)) =

PARNODE.KEYS(PINPC);

CURNODE.PTRS(CURNODE.PTRS(0)+1)=SIBNODE.PTRS(1);

PARNODE.KEYS(PINPC)=SIBNODE.XEVYS(1);

DO I=1 TO SIBNODE.PTRS(0);
SIBNODE.KEYS(I)=SIBNODE.KEYS(I+1);
SIBNODE.PTRS(I)=SIBNODE.PTRS(I+1);

END;

SIBNODE.PTRS(0)=SIBNODE.PTRS(0)-1;

END;

CALL PUTNODE(CSS,1);

CALL PUTNODE(SSS,2);

CALL PUTNODE(PSS,3);

RETURN;

END?
ELSE DO;
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/*
COMBINE KEYS.
*/
IF CURNODE.PTRS(1)<0 THEN DO;
DO I=1 TO SIBNODE.PTRS(0);
CURNODE.PTRS{CURNODE.PTRS(0)+I)
SIBNODE.PTRS(I);
CURNODE.KEYS(CURNODE.PTRS(0)+I)
SIBNODE.KEYS(I);

END;
CURNODE.PTRS(0)=CURNODE.PTRS(0)+SIBNODE.PTRS(0);
END;
ELSE DO;
DO I=1 TO SIBNODE.PTRS(0)+1;
CURNODE.KEYS(CURNODE.PTRS(0)+I+1)
SIBNODE.KEYS(I);
CURNODE.PTRS(CURNODE.PTRS(0)+I+1)
SIBNODE.PTRS(I);

END?Z
CURNODE.PTRS(0) =
CURNODE.PTRS(0)+SIBNODE.PTRS(0)+1;

END;

DO I=PINPC TO PARNODE.PTRS(0);
PARNODE.KEYS(I)=PARNODE.KEYS(I+1);
PARNODE.PTRS(I+1)=PARNODE.PTRS(I+2);

END;

PARNODE.PTRS(0)=PARNODE.PTRS(0)-1;

SIBNODE.PTRS(0)=AVAIL;

AVAIL=SSS;

AVCNT=AVCNT+1;

CALL PUTNODE(SSS,2);

CALL PUTNODE(CSS,1);

IF PARNODE.PTRS(0)>=FLOOR(MAXB/2) THEN DO;
CALL PUTNODE(PSS,3); '

RETURN;
END;
END;
END;
r* .
CURNODE IS RIGHTMOST CHILD OF PARNODE. SHARE OR
COMBINE CURNODE WITH LEFT SIBLING.
*/
ELSE DO;
PINPS=PINPC-1;
SSS=PARNODE.PTRS(PINPS);
CALL GETNODE(SSS,2);
SAVEIT=CURNODE.PTRS(0)+SIBNODE.PTRS(0);
IF CURNODE.PTRS(1)>=0 THEN SAVEIT=SAVEIT+1;
IF SAVEIT > MAXB-1 THEN DO;
/*
SHARE KEYS.
*/

IF CURNODE.PTRS(1)<0 THEN DO;

SAVEIT=CURNODE.PTRS(0);
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I=FLOOR((SIBNODE.PTRS(0)-CURNODE.PTRS(0))/2);

DO J=CURNODE.PTRS(0) TO 1 BY -1;
CURNODE.KEYS(J+I)=CURNODE.KEYS(J);
CURNODE.PTRS(J+I)=CURNODE.PTRS(J);

END;

DO J=1 TO I;

CURNODE.KEYS(J) =
SIBNODE.KEVYS(SIBNODE.PTRS(0)-I+J);

CURNODE.PTRS(J) =
SIBNODE.PTRS(SIBNODE.PTRS(0)-I+J);

END;

CURNODE.PTRS(0)=CURNODE.PTRS(0)+1;

SIBNODE.PTRS(0)=SIBNODE.PTRS(0)-I;

PARNODE.KEYS(PINPC) =
CURNODE.KEYS(CURNODE.PTRS(0));

PARNODE.KEYS(PINPS) =
SIBNODE.KEYS(SIBNODE.PTRS(0));

END;
ELSE DO;

SAVEIT=CURNODE.PTRS(0)+1;

DO I=CURNODE.PTRS(0)+1 TO 1 BY -1;
CURNODE.KEYS(I+1)=CURNODE.KEYS(I);
CURNODE.PTRS(I+1)=CURNODE.PTRS(I);

END;

CURNODE.PTRS(0)=CURNODE.PTRS(0)+1;

CURNODE.KEYS(1)=PARNODE.KEYS(PINPS);

CURNODE.PTRS(1)=SIBNODE.PTRS(SIBNODE.PTRS(0)+1);

PARNODE.KEYS(PINPS) =
SIBNODE.KEYS(SIBNODE.PTRS(0));

SIBNODE.PTRS(0)=SIBNODE.PTRS(0)-1;

END;
CALL PUTNODE(CSS,1);
CALL PUTNODE(SSS,2);
CALL PUTNODE(PSS,3); '
- IF PINCN=SAVEIT THEN GO TO TRACEBACK;
RETURN;
END;
ELSE DO;
/*
. COMBINE KEYS.
*/
IF CURNODE.PTRS(1)<0 THEN DO;

SAVEIT=CURNODE.PTRS(0);

DO I=1 TO CURNODE.PTRS(0);
SIBNODE.KEYS(SIBNODE.PTRS(0)+I) =

CURNODE.KEYS(I);
SIBNODE.PTRS(SIBNODE.PTRS(0)+I)
CURNODE.PTRS(I);

END;
SIBNODE.PTRS(0)=SIBNODE.PTRS(0)+CURNODE.PTRS(0);
PARNODE.KEYS(PINPS) =
SIBNODE.KEYS(SIBNODE.PTRS(0));
END;
ELSE DO;



SAVEIT=CURNODE.PTRS(0)+1;
SIBNODE.KEYS(SIBNODE.PTRS(0)+1) =
PARNODE.KEYS(PINPS);
DO I=1 TO CURNODE.PTRS(0)+1;
SIBNODE.KEYS(SIBNODE.PTRS(0)+I+1)
CURNODE.KEYS(I);
SIBNODE.PTRS(SIBNODE.PTRS(0)+I+1)
CURNODE.PTRS(I);

END;
SIBNODE.PTRS(0) =
SIBNODE.PTRS(0)+CURNODE.PTRS(0)+1;
PARNODE.KEYS(PINPS) =
SIBNODE.KEYS(SINBODE.PTRS(0)+1);
ENDj;
PARNODE.PTRS(0)=PARNODE.PTRS(0)-1;
CURNODE.PTRS(0)=AVRIL;
AVAIL=CSS;
AVCNT=AVCNT+1;
CALL PUTNODE(CSS,1);
CALL PUTNODE(SSS,2);
IF PARNODE.PTRS(0)>=FLOOR(MAXB/2) THEN DO;
CALL PUTNODE(PSS,3): :
IF PINCN>SAVEIT THEN GO TO TRACEBACK;
RETURN;
END;
CS5=S5SS;
END;
END;
/%
PARNODE IS POSSIBLY UNDERFULL.
*/
STKPT=STKPT-1;
IF STKPT=0 THEN DOj;
IF PARNODE.PTRS(0)=0 THEN DO;
ROOT=CSS;
PARNODE.PTRS(0)=AVAIL;
AVAIL=PSS;
AVCNT=AVCNT+1;
END;
CALL PUTNODE(PSS,3);
RETURN;
END;
P=PCUR;
PCUR=PPAR;
PPAR=P;
PINCN=PINPC;
CSS=PSS;
PSS=NODENO(STKPT);
PINPC=PINN(STKPT);
CALL GETNODE(PSS,3);
GO TO UNDERFULL;
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*/
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A RIGHTMOST KY HAS BEEN DELETED AND ITS OCCURRENCE IN
THE REST OF. THE TREE MUST BE CHANGED.

TRACEBACK:

Do

WHILE(TRUE);

STKPT=STKPT-1;

IF PINPC<=PARNODE.PTRS(0) | STKPT=0 THEN RETURN;
P=PCUR;

PCUR=PPAR;

PPAR=P;

PINCN=PINPC;

CSS=PSS;

PSS=NODENO(STKPT);

PINPC=PINN(STKPT);

CALL GETNODE(PSS,3);
PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(0)+1);
CALL PUTNODE(PSS,3);

END;
RETURK; /* END OF DELETE ROUTINE. */

/*******************/

/*
/*
/*

| */
SEARCH ROUTINE. */
*/

/****** *************/

SEARCH: PROC; ,
DECLARE (LAST,K) FIXED BIN(15,0);

STKPT=0;
P0sS=0;
IF ROOT=-1 THEN RETURN;
CSS=R0O0T;
/*
FIND KY BY SEARCHING DOWN TO LOWEST LEVEL.
x/ :
DO WHILE(TRUE);
CALL GETNODE(CSS,1):
V&
BINARY SEARCH TO FIND THE FIRST KY IN CURNODE >= KY
*/
PINCN=1;

LAST=CURNODE.PTRS(0);
DO WHILE(PINCN<=LAST);
K=FLOOR((PINCN+LAST)/2);
SELECT;
WHEN(KY<CURNODE.KEYS(K)) LAST=K-1;
WHEN(KY>CURNODE.KEYS(K)) PINCN=K+1;
OTHERWISE DO;

PINCN=K;
LAST=K-1;
END;

END;
END;



/1%

QUIT IF AT LOWEST LEVEL.
*/
IF CURNODE.PTRS(1)<0 THEN DO;

IF KY=CURNODE.KEYS(PINCN) & PINCN<=CURNODE.PTRS(0)

THEN POS=-CURNODE.PTRS(PINCN);
ELSE FLAG=3;

RETURN;
END;
/*

PUT CSS AND PINCN ONTO STACK.
*/
STKPT=STKPT+1;
NODENO(STKPT)=CSS;
PINN(STKPT)=PINCN;
/*

CAUSE CURNODE TO BECOME PARNODE.
*/
P=PPAR;
PPAKR=PCUR;
PCUR=P;
PSS=CSS;
PINPC=PINCN;
/%

PREPARE TO GET NEXT NODE.
*/
CSS=PARNODE.PTRS(PINPC);

END;
END SEARCH;

l****** ****************l

I* */
/* READ NODE ROUTINE. */
/* */

/**********************/

GETNODE: PROC(SS,NODE);
DECLARE (SS,NODE) FIXED BIN(15,0);
SELECT(NODE);
WHEN(1) READ FILE(INFILE) INTO(CURN) KEY(SS);
WHEN(2) READ FILE(INFILE) INTO(SIBN) KEY(SS);
WHEN(3) READ FILE(INFILE) INTO(PARN) KEY(SS);
OTHERWISE STOP;
END;
END GETNODE;

I***********************,

/* */
/* STORE NODE ROUTINE. */
/* */

/***********************I

PUTNODE: PROC(SS,NODE);
DECLARE (SS,NODE) FIXED BIN(15,0);
SELECT(NODE);
WHEN(1) WRITE FILE(INFILE) FRCM(CURN) KEYFROM(SS);
WHEN(2) WRITE FILE(CINFILE) FROM(SIBN) KEYFROM(SS);
WHEN(3) WRITE FILE(INFILE) FROM(PARN) KEYFROM(SS);



OTHERWISE STOP;
END;
END PUTNODE;
JHEERKIKKKRKKKKKKKKKXKKKK [

/* */
/* HEAD NODE ROUTINE. */
/* */

/**********************,

HDNODE: PROC(KY,SS1,SS2);
DECLARE ‘
KY CHAR(*),
(ss1,852,1I) FIXED BIN(15,0);
I=AVAIL;
CALL GETNODE(I,1);
AVAIL=CURNODE.PTRS(0);
AVCNT=AVCNT-1;
CURNODE.PTRS(0)=1;
CURNODE.KEYS(1)=KY;
CURNODE.PTRS(1)=SS51;
CURNODE.PTRS(2)=S52;
CALL PUTNODE(I,1);
ROOT=I;

END HDNODE;

END BTINDX;
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APPENDIX F

PL/I PROGRAM SHOWING USE OF

GENERIC PROGRAM

The following section contains the PL/I program that

performs a generic traversal of a B-tree indexe.

/*******************I

[* */
/* GENTRAV ROUTINE */
/* */

,******** ***********/

GENTRAV: PROC(ROOT,PARKEY,CNT,MAXB,KLEN,MAXNODES,INFILE,
INPROC,FLAG);

DECLARE /** FOR PARAMETERS **/
(ROOT,CNT,MAXB,KLEN,MAXNODES) FIXED BIN(15,0),
PARKEY CHAR(¥*),

FLAG BIT(*) ALIGNED,
INFILE FILE,
INPROC ENTRY (FIXED BIN(15,0),CHAR(*));

DECLARE /** INTERNAL VARIABLES **/

(1I,J) FIXED BIN(15,0),
(LENGTH, SUBSTR,VERIFY) BUILTIN,

IF PARKEY=' ' THEN J=0;

ELSE J=LENGTH(PARKEY);

DO I=1 TO J;

IF VERIFY(SUBSTR(PARKEY,I),* *)=0 THEN LEAVE;

END;

IF I<=J THEN J=I-1;

IF J>KLEN THEN DO;

FLAG='1'B;
RETURN;

END;

FLAG=*0"B;

CNT=0;

CALL TRAVINGENTRAV(ROOT);
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/*****‘k*******************I

/* */
/* TRAVINGENTRAV ROUTINE */
/* */

/*************************I

TRAVINGENTRAV: PROC(NODENO) RECURSIVE;
DECLARE
(NODENO,I) FIXED BIN(15,0),
1 NODE,
2 PTRS(0:MAXB+1) FIXED BIN(15,0),
2 KEYS(MAXP) CHAR(KLEN);
IF NODENOKO | NODENO>MAXNODES THEN RETURN;
READ FILE(INFILE) INTO(NODE) KEY(NODENO);
IF PTRS(0)<1 | PTRS(0)>=MAXB THEN RETURN;
DO I=1 TO PTRS(0)+1 UNTIL(SUBSTR(KEYS(I),1,J)>PARKEY);
IF I=PTRS(0)+1 & PTRS(1)<0 THEN RETURN;
IF SUBSTR(KEYS(I),1,J)>=PARKEY | I=PTRS(0)+1 | J=0
THEN DO;
IF PTRS(I)<0 THEN DO;
IF SUBSTR(KEY¥S(I),1,J)>PARKEY THEN RETURN;
CALL INPROC(-PTRS(I),KEYS(I));
CNT=CNT+1;
END;
ELSE CALL TRAVINGENTRAV(PTRS(I));
END;
END;
END TRAVINGENTRAV;
END GENTRAV;



APPENDIX G
PL/I BATCE PROGRAM

The following section contains the batch routine that
uses GENTRAV to do a full in-order traversal of the B-tree
in ACTFILE. The procedures and structures that are included
can be found in the programmer®'s guide written by. the author
located in the Deans's Office in the College of Arts and

Sciencese.

SFTES: PROC OPTIONS(MAIN);

DECLARE (CNT,MAXB,KLEN) FIXED BIN(15,0),
ACTFILE DIRECT INPUT KEYED ENV(REGIONAL(1)).,
PAFILE DIRECT INPUT KEYED ENV(REGIONAL(1)),
FLAG BIT(1) ALIGNED,
(SUBSTR,LOW,INDEX,FLOAT,FLOOR,MOD,MULTIPLY,ROUND)
BUILTIN;

$INCLUDE RECO;

$*INCLUDE PAj

MAXB=120;

KLEN=10;

READ. FILE(PAFILE) INTO(RECO) KEY('0%');

CALL GENTRAV(ACTROOT,* °*,CNT,MAXB,KLEN,MAXNDE,ACTFILE,
BLDFTES,FLAG);

CALL BLDFTES$(O0,* ")

$INCLUDE BLDFTES?

TINCLUDE GENTRAV;

TINCLUDE SERDAYNO;

$INCLUDE AMTCOMM;

SINCLUDE READPA;

END $FTES;
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APPENDIX H
PL/I REAL-TIME PROGRAM

The following contains the real-time counterpart to the
program in Appendix G.

FTE$: PROC OPTIONS({MAIN);

DECLARE (CNT,MAXB,KLEN) FIXED BIN(15,0),
ACTFILE DIRECT INPUT KEYED ENV(REGIONAL(1)),
PAFILE DIRECT INPUT KEYED ENV(REGIONAL(1)).,
INPUTKEY CHAR(6),
NOKEY CHAR(1),
FLAG BIT(1) ALIGNED,
(SUBSTR,LOW,INDEX,FLOAT,FLOOR,MOD,MULTIPLY,ROUND)
BUILTIN;

$INCLUDE RECO;

3$INCLUDE PA;

ON ATTN STOP;

MAXB=120;

KLEN=10;

READ FILE(PAFILE) INTO(RECO) KEY(*0');

PUT EDIT
(*ENTER THE ACCOUNT NUMBER (NO EMBEDDED DASHES):v)
(CoL(1),h);

GET EDIT(INPUTKEY) (COL(1),A(6));

PUT EDIT(*POSITION THE PAPER AND HIT "RETURN"")
(COL(1),2);

GET EDIT(NOKEY)(COL(1),A(1));

CALL GENTRAV(ACTROOT,INPUTKEY,CNT,MAXB,KLEN,MAXNDE,
ACTFILE,BLDFTES,FLAG);

IF CNT>0 THEN CALL BLDFTES(O,® ');

ELSE PUT EDIT(*ACCOUNT *,INPUTKEY,* DOES NOT EXIST.?Y,
*CHECK ACCOUNT NUMBER AND ENTER IT AS A ¢,
"6 DIGIT NUMBER (SUCH AS 9%102201%%)*)
((2)(COL(1Y,(3)N));

LINCLUDE BLDFTES;

$INCLUDE GENTRAV;

$INCLUDE SERDAYNO;

$INCLUDE AMTCOMM;

$INCLUDE READPA;

END FTES;
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PL/I DESCRIPTION OF A PERSONNEL RECORD

A PL/I description of a personnel record is included in

this appendix for

to what the

APPENDI

the purpose of giving

file system has to work withe.

described in Chapter V can be

X I

seen in the

and in the substructure ACCOUNTS.

DECLARE
1.PA_RECORD,
2 LINK_EXT
2 1D,
3 NAME,
4 LAST
4 FIRST
4 MI
SSN
RANK
HOME
PPN
HIRED
PROMOTED
EXW@H
2 NO_DISTR
2 NEXT_ACCT
2 DISTR(6),
3 FROM
3 THRU
3 SALARY
3 FTE
3 BEGIN
2 ACCOUNTS(20),
3 ACCT
3 BLN
3 PAY
3 COMM
3 LINK
2 FILLER
1 PA,
2 LINK_EXT

WWwwwwww
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FIXED BIN(15,0),

CHAR(20),
CHAR(15),
CHAR(1),
CHAR(9),
CHAR(4),
CHAR(6),
CHAR(6),
CHAR(6),
CHAR(S6),
CHAR(1),

FIXED BIN(15,0),
FIXED BIN(15,0),

CHAR(5),
CHAR(5),

FIXED DEC(7,2),
FIXED DEC(7,4),
FIXED BIN(15,0),

CHAR(6),
CHAR(E),

FIXED DEC(7,2),
FIXED DEC(7,2),
FIXED BIN(15,0),
CHAR(137),

FIXED BIN(15,0),

a little reference
The key. fields

substructure ID
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2 ID LIKE PA_RECORD.ID,

2 NO_DISTR FIXED BIN(15,0),
2 NEXT_ACCT FIXED BIN(15,0),
2 DISTR(12) LIKE PA_RECORD.DISTR,

2 ACCOUNTS(40) LIKE PA_RECORD.ACCOUNTS;
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