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PREFACE 
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the indices. 
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CHAPTER I 

INTRODUCTION 

As computers play a larger role in our society, more 

and more information is stored in computers. As files or 

collections of information increase, the efficiency of the 

techniques used for the storage and retrieval of that 

information increases in importance. Usually, the informa­

tion or data in a file is not kept in the main memory_ of the 

computer but is stored on auxiliary or secondary storage 

such as disks or drums. If a file on disk or drum has 

changes made to it frequently, the file is referred to as a 

volatile file. Many organizational methods are very ineffi­

cient for volatile files and lead to· an increase in the time 

required to access records in the file. A personnel file 

could be an example of a volatile file since there may be 

frequent changes made to the file. 

For example, a file that is physically stored in a 

sequential fashion requires the entire file to be rewritten 

for any_ deletion or insertion to any part of the file except 

to the end of the file. The indexed sequential method 

requires the frequent reorganization of the entire file for 

volatile files• Unless reorganized, the access of a record 
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in an indexed sequential file could involve the search of a 

large overflow area and thus involve a lot of time. 

A new approach for the storage and retrieval of records 

on direct access auxiliary storage was discovered in 1972 by 

R. Bayer and E. McCreight (2). This approach, using a data 

structure called a B-tree, requires no complete file reorg­

anizations, makes efficient use of auxiliary storage and has 

a guaranteed time and space efficiency even in the worst 

case• 

The main topic of this thesis is to discuss the design, 

implementation and uses for a variation of the general 

B-tree referred to as a B-tree index. The framework for 

that discussion follows. 

Chapter II will introduce B-trees, B*-trees and the 

B-tree index. Following that will be a discussion of the 

uses for a B-tree index in a data base. Chapter II will 

close with a discussion of the advantages, disadvantages and 

alternatives to a B-tree index. 

The design of a system by the author for the Dean•s 

Office in the College of Arts and Sciences called for an 

access method based upon B-trees for the storage and 

retrieval of personnel records. The design and implementa­

tion of that B-tree index program is presented in Chap­

ter III. This includes the data structure design, the logic 

design and implementation factors. 
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A frequent requirement for application programs is the 

need to access all the records in a given file that have a 

particular attribute in common. For example, in the system 

mentioned above, a program might be required to process all 

the personnel records in a given department that have a 

given rank. In this example, the department and the rank 

are the attributes. These attributes are used as the key 

field for a B-tree. By using different permutations of 

these attributes for the key fields of other a-trees, a set 

of secondary indices could be constructed. Chapter IV dis­

cusses a routine that matches a partial key (taken from one 

of the attributes) to the leading portion of one of the 

B-tree indices (the one with that attribute listed first) 

and calls a routine to process each record it finds that 

matches the partial key. This is commonly referred to as a 

generic access capability. 

The final chapter is a discussion of the utilization of 

B-tree indices in a system of programs designed and imple­

mented by the author for the Dean•s Office in the College of 

Arts · and Sciences at Oklahome State University in 

Stillwater, Oklahoma. This discussion will be limited to 

that information necessary to explain the role of the B-tree 

indice~ in that system. 

Appendices will include Progr~m Design Language (PDL) 

descriptions of the major programs discussed in this thesis 

as well as actual program listings. Also included are a few 

programs showing a sample usage of the above programs. 



CHAPTER II 

B-TREES, B*-TREES AND B-TREE INDICES 

Description and Use of B-trees 

A B-tree is a uniform depth search tree with guaranteed 

efficiency_ even in the worst case. A B-tree grows from the 

bottom rather than from the top like a binary tree. The 

following rules apply_to a B-tree of order 1 m (8): 

1. Every node has no more than m offspring. 

2. Every node except the root node has at least 
rm/21 offspring. 

3. If the tree is not empty, the root node has 
at least two offspring. 

4. All leaves appear on the same level and carry 
no information• 

5. A nonleaf node with k offspring contains k-1 
keys. 

The symbol II re1 11 means 11 the smallest integer larger than e11 • 

Since the leaf nodes (external nodes) carry no information, 

the pointers to them are null pointers and the leaf nodes 

are not actually stored in the tree at all. 

1The order of a B-tree is usually the maximum number of 
branches from a node. 
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In Figure 1, every node except the root is required to 

have at least rm/21 offspring. This means each node has at 

least three offspring and, therefore, at least two keys. 

r•••••••••, 

r••••••••, r•••••••••••••••••, r•••••••••••••••, 
I 12 23 I I 42 56 64 120 I I 135 152 170 I 
Lt•••fo••t.l Lt•••t•••+•••t•••t.l Lt~•••+••••+•••+.l 

• • • . . . . .. .. .. . .. 

Figure 1. A B-tree of Order 5 

A node with j keys and j+1 pointers may_be represented 

as 

(j 1 P(1) 1 K(l},P(2) 1 K(2), • . . , P(j),K(j),P(j+l)) 

where j is the number of keys in the node. The keys and 

pointers are situated such that K(1) < K(2) < ••• < K(j) and 

P(i), for 1 < i < j+1, points to a subtree for keys between 

K(i-1) and K(i). P(1) points to a subtree with keys less 

than K(1) and P(j+l) points to a subtree with keys greater 

than K(j). In the root node of Figure 1, K(1) is equal to 

113 711 and P ( 1) is represented by the left-most arrow 

descending from the node. This notation is similar to that 

used by Knuth (8). The difference is that the number of 
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keys in the node (j) is not included in Knuth's version and 

Knuth numbers his subscripts for P beginning at zero instead 

of one. 

As can be seen in Figure 2, a B-tree of order 5 with 

two levels and maximum branching has 25 external nodes and 

24 keys. Figure 2 also shows that for minimum branching and 

three levels in an order 5 B-tree, there are 18 external 

nodes and 17 keys. 

r•••••••••, 

r•••••••••, r•••••••••1 r••••··~--, r•••••••••, r•••••••••, 
IABCDIIFGHIIIKLMNIIPQRSIIUVWXI 
Lt•+•+•+•t~ Lt•t•+•+•t~ Lt•+•t•+•+~ Lt•t•+•+•+~ Lt•+•+•t•+~ • • • • • • • • • • • • • • • • • • • • • • • • • 

r•••, 

,/·!~ 
r•••••, r•••••, 

/1!\ /r\ 
r•••••, r•••••, r•••••, 
IABIIDEIIGHI 
Lt•+•+~ Lt•+•t~ Lt•+•t~ . . . . . ' . . . r•••••, r•••••, r•••••, 

IJKIIMNIIPQI 
Lt•+•+~ Lt•+•+~ L+•+•t~ . . ' . . . . . . 

Figure 2. Maximum and Minimum Branching in a B-tree Node 
of Order 5 
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The basic operations performed on search trees are 

searching, insertion and deletion. The ordering within 

nodes makes searching a straightforward procedure: 

1. Bring the root node into internal memory. 

2. Find the first key 11K(i) 11 in the node greater 
than or equal to the search key. If the 
search key is greater than K(j), i=j+l. 

3. If the search key is equal to K(i), the 
search is successful and the search 
terminates. The search also terminates if 
the search key is not equal to K(i) and P(i) 
is null. 

4. At this point, the search key is either less 
than K(l), between K(i-1) and K(i) or greater 
than K(j). The node indicated by P(i) is 
brought into internal memory and control 
returns to step 2. 

The search performed in step 2 is a range _ search and 

requires that the physical organization of the keys in the 

node accomodates this type of search. A range search is 

used here to mean a search for two adjacent keys that 

"bracket" the search key. Therefore, the keys may_ be 

organized as a binary tree, as an ordered sequential list or 

in any fashion that allows a range search to be performed. 

Usually, the keys are physically stored in ascending order 

within a node. A binary search is the recommended method 

for finding the proper key in step 2 unless the maximum 

number of keys in a node is small• If there were only about 

six or eight keys in a node it would probably be as fast 

(and simpler) to perform a linear search. 
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In~e.t:1i2n 

The insertion of a key into the tree requires that the 

key be inserted into a bottom level node such that j is 

changed to j+1 and K(i-1) < K(i) < K(i+l) where K(i) is the 

new key and j is the number of keys in the node. If j is 

less than m (the branching factor) the insertion is fin-

ished. Otherwise, j is equal to m and the node is overfull. 

At that point, the middle key of the overfull node is 

inserted or promoted into the parent node of the overfull 

node and the overfull node is split in two. Figure 3 shows 

the B-tree of Figure 1 after the insertion of the new key 

1145 11 • 

r•••••••••••••, 

~7-~~-r:~~ 
r••••••••, r••••••••1 r•••••••••, r•••••••••••••••, 
I 12 23 I I 42 45 I I 64 120 I I 135 152 170 I 
Lt•••+••+-' Lt•••+••+-' Lt•••+•••t.J Lt••••+••••+•a•+-' . ' .. • • • .. ' . . . ' ' 
Figure 3. B-tree of Figure 1 After Insertion of the Key 

11 45 11 

In general, if a node becomes overfull, the node is 

split putting a middle key into the parent node, lower keys 
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in one of its successors and higher keys in the other, as 

follows: 

( fm/21-l,P(l),K(l), ••• ,P( fm/21-l),K( fm/21-l),P( rm/21)) 

would be left in the overfull node and 

(m-rm/21 ,P( fm/21 +l),K( fm/21 +1), ••• ,P(m),K(m),P(m+l)) 

would be put into the other node. The key K(fm/21), the 

"middle" key, is now inserted into the parent node. For 

example, if m=5 or m=6, K(3} would be inserted into the par­

ent node. If this process causes the parent node to become 

overfull, the process oL splitting the node and promoting 

the middle key is followed again. This could continue until 

the root node itself is split, in which case a new root node 

is formed with the single key promoted by the split. 

llele1ism 

Deletion is more complicated. The basic idea is to 

take whatever reshuffling steps are necessary to maintain a 

balanced B-tree after deletion, much the same as you would 

have to do if you removed one element (node) of a "mobile". 

Consider a node (called current node) from which the 

key K(i) is to be deleted. The cases to consider depend on 

whether the current node is a lowest level node or an upper 

level node. If the current node is a lowest level node and 

j~rm/21, K(i) and P(i) may be deleted and the deletion proc-
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ess is finished. Figure 4 shows the result of deleting the 

key 116411 in the B-tree of Figure 1. On the other hand, if 

j=rm/21-1, the deletion of K(i) would cause the node to 

become underfull (thereby violating one of the requirements 

for a B-tree). In that case either a rotation is performed 

using one of the current node's sibling nodes or, the cur-

rent node is combined with one of its sibling nodes2. 

r•••••••••, 

~-=~t~~=~ 
r••••••••, r•••••••••••••, r•••••••••••••••, 
I 12 23 I I 42 56 120 I I 135 152 170 I 
Lt•••t•,.f.J Lt•••+•••+•••t.J Lt••••+••••+•••+J 

• • • . . ' . ' . . . 
Figure 4. Result of Deleting the Key 11 64" in the B-tree 

of Figure 1 

A rotation is performed if the current node's right or 

left sibling has at least fm/21 keys. This is performed 

with the right sibling by moving the key K(p) in the parent 

node into the current node where p is defined such that P(p) 

is the pointer in the parent node to the current node. 

2The keys within the nodes are rotated, not the nodes 
themselves. 
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Then, the keys in the current node and its right sibling are 

shared equally and K(p) in the parent node is replaced by 

the rightmost key in the current node. For large order 

B-trees, more than one key may_ be moved out of the sibling 

node. Figure 5 shows the result of deleting the key "12" in 

the B-tree of Figure 1. 

r•••••••••, 

r••••••••, r•••••••••••••, r•••••••••••••••, 
I 23 37 I I 56 64 120 I I 135 152 170 I 
Lt•••+••+.l Lt•••+•••+•••+.J Lt••••t••••t•••+.l . .. ' • • • • . .. . .. 

Figure 5. Result of Deleting the Key "12'' in the B-tree 
of Figure 1 

A similar procedure is followed if the rotation is to 

be performed using the current node's left sibling. In this 

case the key K(p-1} in the parent node is moved into the 

current node where p is as defined above. Then, the keys 

are shared and the parent key is replaced as before. 

If a rotation cannot be performed because both the left 

and right siblings contain fm/21-1 keys, the current node is 

combined with its right sibling after the key K(p) in the 

parent node is moved to the current node. Consider the 
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result in Figure 6 of deleting "12'' in the B-tree of Figure 

3. If the current node does not have a right sibling, the 

current node can be combined with its left sibling after the 

key K(p-1) in the parent node is moved into the left 

sibling. 

r•••••••••1 

~:~_l:~:~ 
r••••••••••••••••, r•••••••••, r•••••••••••••••, 
I 23 37 42 45 I I 64 120 I I 135 152 170 I 
Lt•••t•••+•••+••+~ Lt•••+•••t~ Lt••••+••••+•••+~ 

' ' ' ' ' • • • ' . ' ' 
Figure 6. Result of Deleting the Key "12'' in the B-tree 

of Figure 3 

Since the above process removes a key from the parent 

node and does not replace it, it is possible that the parent 

node can become underfull. If that should occur, the above 

process is repeated with the parent node becoming the new 

current node. The root node does not require any reorgani-

zation when keys are deleted unless it becomes empty. If 

the root node should become empty because the two nodes on 

the next level were combined, it is discarded and the com-

bined nodes become the new root. Figure 7 shows the dele-

tion of the key "N'' in the second B-tree of Figure 2. 
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r•••••••••, 

r•••••, r•••••, r•••••, r•••••, r••••• ... •••, 
I A a I I D E I I G H I I J K I I M 0 P Q I 
Lt•+•+" Lt•+•+" Lt•+•+" Lt•+•+.l Lt•+•+•+•+"' 
' ' ' .. ' • • • • • • ' ' ' . . 

Figure 7. Result of Deleting the Key 11 N11 from the Second 
a-tree of Figure 2 

The deletion discussion above was for the deletion of a 

key in a lowest level node. If the key to be deleted is in 

an upper level node, the key_ K{i) is replaced by the small­

est key in its right subtree (P(i+l)) or the largest key in 

its left subtree (P(i)). Then, the key that was copied to 

the upper level node is deleted from the lowest level node 

following the process for deleting a key in a lowest level 

node. Figure 8 shows the replacement of the key "I" after 

being deleted from the second B-tree of Figure 2. The dele-

tion is not completed until "J" is deleted from the lowest 

level which is shown in the second a-tree of Figure 8. 

The a-tree described in the previous paragraphs has a 

guaranteed space utilization and performance efficiency. 

The following is a discussion of the upper and lower bounds 

on that efficiency. For a a-tree of order m stored on disk 



r•••, 

/:~ 
r•••••1 r•••••1 

/1~~ /~f~ 
r•••••, 
I A B I 
Lt•fr•fr' . . .. 

r•••••, 
I A B I 
Lt•+•+.l . . .. 

r•••••, 
I D E I 
Lfr•fr•+.l 

• • • 
r•••••, 
I G H I 
Lt•+•+.l • • • 

r•••••, 
I J K I 
Lt•t•t.l 

• • • 
r•••••, 
I M N I 
Lt•t•t.J 

• • • 
The intermediate tree 

r•••••••••, 
I CFJ~ 

-;;/t·· ~ 
r•••••, 
I D E I 
Lfr•+•t.J 

• • • 
r•••••, 
I G H I 
Lt•+•+.l 
.. . .. r•••••••••, 

I K L M N I 
Lt•+•+•+•+"' 
.. .. . .. .. 

r•••••, 
I P Q I 
Lt•+•t.J • • • 

r•••••, 
I P 0 I 
Lt•+•+.l .. . .. 

Figure 8. Deletion of the Key 11 ! 11 in the Second B-tree 
of Figure 2 
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or drum, the number of levels in the tree determines the 

maximum number of accesses to find a given key. In the case 

that all nodes are filled to the minimum amount, each node 

has fm/21 offspring except the root which has only two off-

spring. 

Consider level zero in the B-tree to be the one with 

the physically non-existent external nodes (leaf nodes). 
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Level one is the lowest level in the B-tree and level p is 

the one that contains the root node. The numbering method 

used here is not the conventional numbering scheme. The 

conventional method puts the root node at level one and num-

bers down from there. The method taught in Data and Storage 

Structures by Dr. James R. Van Doren (11) numbers the levels 

from the bottom up instead. The reason for this is that 

once a node is created at any given level, the node stays at 

that level and its level number never changes. In the more 

conventional numbering scheme, every time the root node 

splits, every level is renumbered. One of the advantages of 

this scheme is that when different branching factors are 

used at different levels (discussed later in this section), 

one can always know the branching factor on a given level by 

its level number (and that level number never changes). 

If there are n keys in the B-tree, there are n+1 exter-

nal nodes. Table I displays the maximum and minimum branch-

ing at each level in a B-tree of order m with p levels. The 

symbol "**'' is used to represent exponentiation. 

If there are n keys in a B-tree of order m (m>2),·there 

are n+1 external nodes (leaf nodes) and 

2*rm/21**(p-1) ~ n+1 ~ m**p. 

By_solving the above equation for p we get 

log (n+1) ~ p ~ 1+log ((n+1)/2). 
m ~In 
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TABLE I 

BRANCHING IN A B-TREE OF ORDER M 

-------------------------------------------------------------Minimum Branching Maximum Branching 
level branches level branches 

-------------------------------------------------------------p 2 P. m 
p-1 2*rm/21 p-1 m**2 
p-2 2*rm/21 **2 p-2 m**3 

• • • • 
• • • • 
• • • • 
2 2*rm/21**(p-2) 2 m**(p-1) 
1 2* rm/21 **( p-1) 1 m**p 

-------------------------------------------------------------

This shows that the number of levels in a B-tree (which also 

indicates the maximum number of nodes to be searched) is 

logarithmic in nature. The base of the logarithm is depend­

ent on the branching factor or the order of the B-tree. For 

example, if 199,999,999 records were to be stored on disk in 

a B-tree of order 20, 6.38 ~ p ~ 9~ So there are at least 

seven levels in the B-tree but no more than nine levels. 

Therefore, any record of the almost 200 million records may 

be retrieved in nine or less disk accesses. 

The primary uses for a B-tree involve the use of auxil-

iary storage since a B-tree with a sufficiently large 

branching factor can considerably reduce disk accesses to 

find needed records. It must be remembered though, that a 
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B-tree of order m must have room in each node for m-1 keys, 

m pointers and m-1 records. This is important because there 

must be sufficient room in internal memory for one or more 

B-tree nodes and, if the records are not small, there is the 

potential for a lot of wasted space in nodes that are only 

about half full• B-trees may also be useful as an internal 

search tree for programs that execute in a virtual memory_ 

system. In such a system, "pages" or sections of a program 

that are accessed frequently are kept in main memory and the 

other pages are "swapped out" onto disk until referenced. 

If the internal search tree were organized as a binary 

tree, any_ branch would reference any page within the tree 

and all this "hopping" about would probably cause many more 

11non-resident11 or "swapped out" pages to be referenced. If 

the search tree were organized as a B-tree instead, as much 

work as possible would be performed in each node, thus 

reducing the "hopping" about. Also, the root node and per­

haps the nodes on the next level would remain in internal 

memory since these nodes would be referenced frequently • 

.s.umm.a~:y; 

This section introduced the B-tree and discussed the 

search~ insertion and deletion processes in such a data 

structure. Following that was a discussion of the perform­

ance of B-trees where it was shown that the search time in a 

B-tree increases only logarithmically with an increase in 

the number of keys. Although primarily used for external 
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searching on direct access auxiliary storage, B-trees may 

also be useful for internal searching in cases where paging 

is a problem. 

The B*-tree Variation 

The B-tree of the previous section can be improved upon 

by not wasting the storage required for the null pointers at 

level one. Instead, m can be increased for level one by 

storing only keys in those nodes (8). This does not cause 

problems because a node created at level one is always a 

level one node while it exists. If different branching fac-

tors were desired for different levels in the tree, 

of these branching factors could be built for use 

B-tree algorithms. 

a table 

by the 

A significant improvement in storage utilization within 

a node can be realized by resisting the temptation to split 

nodes each time they become overfull. The idea is to share 

overflow with a sibling node. If a node becomes overfull, 

the proper key in the parent node is put into a sibling node 

and the keys and pointers in the two nodes are divided up so 

that they have about the same number of keys and pointers. 

Then, a key is put back into the parent node to reflect the 

contents of the two nodes that have been rearranged. Figure 

9 shows the result for Figure 3 if overflow sharing is used. 
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Figure 9. Overflow Sharing During Insertion of the Key_ 
11 45" into the B-tree of Figure 1 
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When overflow is not possible because one or both 

siblings are already full, then a split is necessary. Knuth 

suggests that the current node and its sibling node could be 

split into three nodes about 2/3 full (8). This guarantees 

that utilization of the space in nodes would never be less 

than 2/3 except perhaps in the root node. 

This leads to the definition of B*-trees: 

1. Every node has no more than m offspring. 

2. Every node except the root node has at least 
f(2m-1)/31 offspring. 



3. The root node has at least two but not more 
than 2 LC 2m-2) /3J +1 offspring. 

4. All leaves are on the same level and carry no 
information. 

5. A nonleaf node with k offspring contains k-1 
keys. 
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The symbol 11 LeJ 11 means 11 the largest integer smaller that e 11 • 

Rule 3 is necessary to insure that a split of the root node 

produces two nodes that still meet the requirement of rule 

2. Rule 2 is the rule that forces a higher minimum usage 

value for each node of about 2/3. 

The report on B-trees written by William Davis (5) 

shows empirically that the increased utilization gained by 

doing two-way splits versus three-way splits is not 

significant for trees built in random key order. A large 

advantage is gained by sharing overflow, but the addition of 

three-way splits is probably not worth the increased 

complexity it adds to the insertion algorithm. Tables VIII, 

IX and X in Davis' report (5) show that performing three-way 

splits only rarely produces better results than the simpler 

two-way splits. 

The B-tree Index Variation 

The B-tree is a very versatile data structure and can 

be used for a variety of purposes. There are three basic 

variations in the method of storing the data that correspond 

to keys in the B-tree. One method actually stores the 



21 

record with the key and its pointer.in the node where th~ 

key appears. This method is fine if the records are very 

small. If records are not small, a significant amount of 

space can be wasted in nodes that are not nearly_ full. 

Another method of storing the data that corresponds 

with the keys in a B-tree is to put a pointer to the data 

record with the key and the B-tree pointer. This method 

allows the actual data to be stored in a separate location 

than t_he B-tree. A.n 11 available list11 strategy could be used 

for the data record file. The key and a pointer to the data 

record would be inserted into the B-tree when a new record 

is put in the data file. 

The third basic variation has the data records stored 

in level one of the B-tree with the keys at that level. The 

upper levels in the B-tree do not have data records stored 

in them. When the insertion of a record causes the split of 

a level one node, only the key is promoted to the next 

level. This means that all data records remain in the bot­

tom level of the B-tree and that the keys in the upper lev­

els of the B-tree duplicate the rightmost (or largest or 

highest) key in each record block at level one except the 

rightmost one• The Virtual Storage Access Method (VSAM) 

used by IBM (7) is based upon this variation. The primary 

difference in VSA.M is that all the keys in a given level are 

duplicates of the rightmost keys of the nodes at the next 

lower level. Indexed sequential is another storage method 

based upon using an index. Two of the problems with indexed 
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sequential are that this method is not good for a volatile 

file and that the indexing is tied to the physical device 

(cylinder index, track index, etc.). 

The variation used by the author is a hybrid of both 

the second and the third methods listed above. At level one 

in the B-tree, all pointers point to the actual records 

which may or may not be in the same file as the B-tree. In 

the upper levels, all pointers point to other B-tree nodes. 

All keys and all pointers to the data records appear in 

level one. An insertion causes a new key and pointer to 

appear at level one and, if a split occurs, a key is copied 

to level two and also remains at level one. In other words, 

the upper levels of the B-tree contain keys that duplicate 

the rightmost key in each B-tree node ~t level one except 

the rightmost node. 

The following rules apply to a B-tree index: 

1. Every node has no more th~n m offspring. 

2. Every node except the root node has at least 
rm/21 offspring. 

3. The root node contains at least one key. 

4~ All leaves (external nodes) appear on the 
same level and carry no information• 

5. Except for the bottom level nodes, all nodes 
with k offspring contain k-1 keys. 

6. All nodes at the bottom level with k 
offspring contain k keys. 

1. All insertions are made at the bottom level 
of the B-tree and no keys are moved to the 
upper levels. A split at the bottom level 
causes a key to be copied to the next level. 
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Searching is basically the same for the B-tree index 

except that the search is never completed until the key is 

found at level one in the B-tree. The record itself may be 

retrieved by using the pointer with the key at level one. 

The search procedure discussed in the first section of this 

chapter must be changed as follows: 

1. Bring the root node into internal memory. 

2. Find the first key "K(i) 11 in the node greater 
than or equal to the search key. If the 
search key is greater than K(j), i=j+l. 

3. If the current node is a bottom level node, 
the search is successful if the search key is 
equal to K(i) and the search is unsuccessful 
if the search key is not equal to K(i). 

4. Otherwise the current node is an upper level 
node and the node indicated by P(i) is 
brought · into internal memory and control 
returns to step 2. 

Insertion requires all keys to be inserted at level 

one. If a split occurs, the rightmost key in the node 

containing the first half of the keys is copied into the 

next level• Any splits that occur in the upper levels are 

handled with the same method as that used for a standard 

B-tree• 

Deletion requires that the key (and its pointer) be 

deleted at level one. If the key is the rightmost key in 

that node, its occurrence in the upper levels must be 

changed to reflect the new rightmost key in the node at 

level one. 
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A B-tree index of the type just described requires p+l 

accesses to retrieve any one record where p is the number of 

levels in the B-tree. This can be reduced by keeping the 

root node in internal memory. 

The B-tree index described above was designed and 

implemented by the author. The following chapters in this 

thesis discuss the design, implementation and uses for this 

type of a B-tree. Chapter V contains a discussion of a 

system that used this B-tree index. 

Relational Data Base Uses for 

a B-tree Index 

In a relational data base there are collections of data 

that are referenced and manipulated by the use of defined 

relations. l relation, in simplest terms, is the logical 

structure of a set of related information that may or may 

not be closely related to the physical representation of the 

information. The use of a relation is intended to be inde­

pendent of the way the information is stored or accessed. 

An image of a relation is simply a copy of the relation 

ordered on one or more of · the attributes of the relation. 

Rather than physically copy the relation, an index is cre­

ated with pointers to the actual data. 

In "System R11 (1} the developers use a B-tree index to 

store the pointers to the actual data called Tuple Identifi­

ers (TID}. A TID contains the address of the tuple (a piece 
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of data) that is desired. Therefore, tuples may be accessed 

~irectly by traversing one of the B-tree indices defined for 

a relation. This type of use for B-trees can result in much 

faster on-line responses to various queries than other 

organizational methods. 

B-trees are a very versatile data structure. Haerder 

(6) describes a generalized access path structure where 

images that use the same attribute for the key field are 

combined into one B-tree index. This also allows the 

implicit use of binary links 3 • This means binary links can 

be used without physically storing the links anywhere. The 

links are an implicit result of the structure and ordering 

of TID's in a B-tree node. An alternative to this approach 

is to store the links in the tuples themselves which could 

cause the following: 

1. The system could be too slow. 

2. It would increase maintenance problems when 
tuples are inserted or deleted. 

3. It would increase the complexity of access to 
tuples since there would be at least two 
separate methods of access (by index and by 
binary link). 

3A binary link is a direct path from the tuple in one 
relation to its offspring tuple(s) in another relation (or 
back to its parent tuple if it is an offspring). 
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a-trees have several advantages over other contemporary 

organizational methods. One advantage is that complete file 

reorganization is never required and all reorganization is 

performed within a node or with its parent or sibling nodes 

(called local reorganization). Another advantage is that 

the lower bound performance and expected performance can be 

closely approximated and that performance can be quite good 

(11). In· some organizational methods, performance is 

dependent on the number of overflow records in the file or 

extensions added onto the file. 

One of the disadvantages of B-trees is the amount of 

work that must be done in a node in internal memory for 

searching, insertion and deletion. This work is ordinarily 

insignificant though, when compared to the time required for 

the physical input and output of records to disk. The 

B-tree algorithm attempts to reduce access time signifi~ 

cantly at the expense of additional work to be done in 

internal memory. 

Another disadvantage with B-trees is the utilization of 

space if all nodes are only about half full. This problem 

can be avoided if overflow sharing techniques are used to 

reduce the number of splits that occur. 

An alternative to using an organizational method based 

upon B-trees (like IBM's Virtual Storage Access Method) is 
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to use some other organizational method such as indexed 

sequential or inverted files (4). If an indexed sequential 

method were used as an alternative to a B-tree based method, 

a volatile file would need frequent reorganization. 4 

The B-tree index approach described earlier would 

require an access method that allows direct access of 

records. The logical access of records in the file could be 

sequential or direct or sequential from a point arrived at 

directly. If a group of records were to be retrieved that 

had a particular attribute in common, the capability to 

traverse a B-tree sequentially from a point arrived at 

directly could save a lot of time by traversing only that 

part of a B-tree that matches the common attribute• Sequen-

tial access would be accomplished by Performing an in-order 

traversal of the B-tree. Sequential access from a point 

arrived at directly to retrieve a subset of records (com-

monly called "generic access") is discussed in Chapter IV. 

This capability is offered only by a B-tree approach (such 

as the author's program or VSAM) and an indexed sequential 

approach to organizing and accessing records on direct 

access-auxiliary storage. 

4 Another alternative is to order the records in a 
sequential file and use no index. The entire file would be 
reorganized if records are inserted or deleted. Also, any 
search for records based upon an attribute that was not used 
for the ordering requirements would require a scan of the 
entire file. 
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aa~eo upon the advantages and disadvantages mentioned, 

it i~ the conclusion of. the author that organizational 

methods tor storing records on direct access auxiliary_stor-

39e ba~ed upon B-trees would guarantee quick access to a 

9iven record, would make reasonably efficient use of that 

~tora9e~ and would remove the requirement for rewriting or 

reo~ganizing volatile files. An organizational method based 

upon a~trees would allow sequential access or direct access 

Also, multiple B-tree indices could be 

created based upon different permutations of the key fields 

in an existing B~tree leading to secondary indices that 

could be used to access the records rather than using the 

priJtH!J:Y index. 

~More efficient use of the storage could be realized by 
using a strictly sequential file with no index. But, given 
the Properties desired, B-trees have good performance char-
8ete~istics and still make efficient use of storage (11). 



CHAPTER III 

DESIGN AND IMPLEMENTATION OF A 

B-TREE INDEX PROGRAM 

The data structure design, the design of the logic and 

the implementation factors of a B-tree index program written 

by the author are presented in this chapter. Program Design 

Language (PDL) descriptions and program listings are availa~ 

ble in the appendices. 

Data Structure Design 

The data structure design described in the previous 

chapter in the section on the B-tree index variation is the 

one used by the author. The basic difference between this 

type of B-tree and the standard B-tree is that pointers at 

the bottom level of the B-tree are not null or wasted. At 

the bottom level all pointers actually point to the records 

that contain the data• Another difference is that all keys 

in the tree appear at the bottom level. All the keys in the 

upper levels duplicate the rightmost key in each bottom 

level node except the rightmost node. 

The purpose for using a B-tree this way is to allow the 

insertion and deletion of records in the record file and the 

29 
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insertion and deletion of keys in the B-tree index to be 

independent of each other. If a 11simple singly-linked list 

of available storage" technique is used for creating and 

deleting records in the record file, the records never need 

to be reorganized because of the volatility of the file. 

The only reorganization ever required is the local reorgani­

zation of keys in a B-tree index node (and possibly one ~f 

its sibling nodes). The index file itself never requires· 

11wholesale" reorganization. The B-tree is always well 

organized and the pointers at level one locate the actual 

records requested. 

This method or variation of a B-tree leads to interest-

ing differences in the search, insertion and deletion algor­

ithms used for standard B-trees. The next section contains 

a discussion of the design of the logic required to imple­

ment this data structure design. 

Logic Design 

The design of the logic for the B-tree algorithms 

requires the prior determination of the methods to be used 

in insertion. Overflow can be handled by simply splitting 

the node or by attempting to share the overflow with a 

sibling node. It was decided to attempt to share overflow 

during insertion to first the right sibling and then to the 

left sibling if the right sibling were full. All splits are 

simple two-way splits. The basis for this decision came 
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from the results of a study on B-trees made by Davis (5). 

The basic design of the program is shown in Figure 10. 

BTINDX: PROC; 
set OPCODE to the operation to be performed; 
SELECT(OPCODE); 

WHEN(search) find occurrence of key at level 
one and return the corresponding pointer; 

WHEN(insert) insert the key and the record 
number at level one in the B-tree; 

WHEN(delete) remove the key and its pointer 
at level one in the B-tree; 
Change any occurrence of the key in the 
upper levels of the B-tree; 

OTHERWISE signal an error condition; 
END; 

END BTINDX; 
~ 

Figure 10. A High-Level PDL Description of a B-tree 
Index Procedure 

The entire program was designed· by writing a PDL (Pro-

gram Design Language), a pseudo language with structured 

programming constructs. Its use replaces the flowchart as a 

design tool. After the transformation of the PDL into PL/I, 

there were no major design changes required. In the 

author's opinion this is attributable to the superiority of 

a PDL over the use of a flowchart method of design. This 

opinion is supported by a study performed by Dr. Van Doren 

and others (10). 
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The POL for BTINDX, the B-tree index program, is writ-

ten so that it may now be implemented in any high-level pro-

gramming language. BTINDX is implemented in PL/I. 

IF LEFTSIB exists and is not full THEN 
IF CURNODE is not a level one node THEN 

copy LEFTSIB's parent key into LEFTSIB; FI; 
perform overflow sharing to the left; 
set LEFTSIB's parent key = highest key in LEFTSIB; 
RETURN; FI; 

IF RIGHTSIB exists and is not full THEN 
IF CURNODE is not a level one node THEN 

copy RIGHTSIB's parent key into RIGHTSIB; FI; 
perform overflow sharing to the right; 
set CURNODE 1 s parent key = highest key in CURNOOE; 
RETURN; FI; 

CALL SPLIT; 

Figure 11. Insertion overflow Procedure in POL Form 

Refer to Figure 11 for a POL description of the follow-

ing discussion. When a key is inserted into a lowest level 

node, overflow is handled a little differently (and will be 

explained later) than if overflow is in an upper level node. 

If overflow at the lowest level is handled by sharing, the 

parent key of the leftmost share partner1 must be changed to 

the new rightmost key in that node. 

1 Share partners are the current node and either its 
left or right sibling. The two nodes could be involved in 
sharing overflow or the two nodes could be the result of a 
split. 
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A split at the lowest level requires the rightmost key 

of the left share partner be inserted into the parent node 

right before the current node's parent key. The key remains 

at level one and is inserted into its parent node. 

If overflow occurs at other than level one and sharing 

is possible, the parent key that would come "between" the 

two nodes must be copied into one of the nodes before shar-

ing is attempted. After the keys are divided, the key in 

the parent node must be changed to reflect the rightmost key 

of the leftmost share partner •. 
' If a split is necessary_ in an upper level node, the 

rightmost key in the leftmost node of the two created by the 

split is inserted into the parent node. {A split in a level 

one node would have left the key in the level one node as 

well as inserting it into the parent node.) 

Deletion always starts at level one. If neither of the 

following is true, the deletion process is finished• 

1. The current node is now underfull. 

2. The key deleted was the rightmost key in the 
node. 

If the current node is underfull, its keys are either 

-combined or shared with one of its siblings. As with 

insertio~ any sharing of keys requires the proper key in 

the parent node be copied into one of the share partners if 

the current node is not a level one node• Upon completion 

of the sharing, the proper key in the parent node must be 
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updated to reflect the new rightmost key in the leftmost 

node of the two share partners. 

When two nodes are combined, the key and pointer -to the 

leftmost node of the two nodes combined must be deleted as 

well. It is possible that the parent node will become 

underfull and therefore the process could continue. 

When an underfull condition does not exist, but the 

rightmost key in the most recent node involved was the one 

deleted, the tree must be traced back towards the root 

changing the occurrence of the deleted key in the upper part 

of the tree to the new rightmost key in the node that had 

its rightmost key deleted. The only time this is not 

necessary is when the node that had its rightmost key 

deleted is the rightmost node at its level. 

Implementation Factors 

A structure for a single node in a B-tree could look 

like: 

DECLARE 
1 NODE, 

2 PTRS(O:MAXB+l) FIXED BIN(15), 
2 KEYS(MAXB) CHAR(KLEN); 

MAXB is the branching factor and KLEN is the length of the 

key field. For ease of implementation, all nodes are 

required to have an extra pointer and an extra key so that 

an overfull node will physically fit in a node and can be 

handled from that point. 
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The BTINDX routine was written so that it could 

manipulate more than one B-tree. The B-trees could be 

located in different files and have a different branching 

factor and key size. This generality has a tradeoff in the 

declaration of the space used by a node. One structure con­

tains all the physical space for up to three nodes. CUR­

NODE, SIBNODE and PARNODE are based upon this physical stor­

age• The key length and dimensions for the number of keys 

and pointers are variable. PL/I requires a "REFER" option 

to be applied to based structures with variable-dimensioned 

substructures. Crotzer (4) did not use this method because 

it was not available with the PL/I F compiler and therefore 

he could not use based structures with variable-dimensioned 

arrays. 

Three nodes are contained within memory at any one 

time. These nodes are referred to as CURNODE, PARNODE and 

SIBNODE and represent the current, parent and sibling nodes. 

Although a node may_be the current node at one point, it may 

become the parent node during a traversal. Rather than 

physically move the values in CURNODE to PARNODE, base vari­

ables are switched so that CURNODE just becomes PARNODE. 

This strategy is used throughout to reduce the amount of 

work that must be done while maintaining the B-tree. 

Refer to Appendices A and E which contain the BTINDX 

design and program, respectively. The program uses positive 

pointers in the upper levels to point to other B-tree nodes 
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but uses negative pointers at level one to point to the 

actual records. This is transparent to the user of the rou­

tine since POS (the location of the record in the record 

file) contains the absolute value of the negative pointer at 

level one. 

The search routine continues moving down levels in the 

B-tree, stacking node numbers and the location of the 

pointer to its offspring node until it arrives at level one 

where success or failure of the search can be determined. 

All insertions and deletions are preceded by a search to 

determine if the key exists and to locate the target for an 

insertion or deletion if the proper conditions exist. 

The stack is used to locate the ancestor nodes if it is 

necessary_to trace back through the tree toward the root. 

After the physical insertion or deletion of the key and its 

pointer at level one, a determination is made as to whether 

the process is finished or more work is to be done. 

For insertions, the process is complete after inserting 

the key and its pointer in a level one node if an overflow 

condition was not created. If overflow has occurred, an 

attempt to share the overflow with a sibling node is made. 

A sibling node is easy to find since the current node•s par­

ent node, if it has one, is already in main memory. If a 

split occurs at level one, the rightmost key in the leftmost 

share partner is copied to the parent node. Therefore, the 

number of keys in the parent node increases and it may 
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become overfull. Splits in upper level nodes are handled in 

a standard B-tree fashion using overflow sharing if possi­

ble. In other words, splits in the upper levels cause a key 

to get promoted (not copied) to the next level. 

If overflow is handled by sharing, the rightmost key in 

the leftmost share partner will change. This means that a 

key at the next level must also be changed. This process 

never requires looking farther than the parent node since 

the rightmost key in the rightmost offspring node will never 

change due to overflow sharing. 

As mentioned earlier in this chapter, deletion requires 

that a search be performed to find the key at level one• If 

the key exists, the key and its pointer are deleted from the 

node. If an underfull condition exists (there are less than 

rmaxb/21-1 keys) or the rightmost key_is the one deleted, 

more work is required. 

If a level one node is underfull, the keys in it and 

one of its sibling nodes are shared as long as one of the 

siblings is more than minimally full. When the deletion 

process does not cause an underfull condition but, the 

rightmost key is the one deleted, the tree must be traced 

back towards the root to change the occurrence of the 

delete~ key. 

If the underfull level one node has siblings that are 

both minimally full, it is combined with a sibling node and 

the key that used to be the rightmost key in the leftmost 
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node of the two combined nodes must be deleted in the upper 

part of the tree. 

Any underfull condition in a node that is not a level 

one node is handled by the procedure for underfull nodes in 

a standard B-tree as described in Chapter II. Underfull 

conditions are handled by rotating if possible and combining 

nodes otherwise. 
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GENERIC ACCESS OF A B-TREE 

A useful capability when using search trees is to 

access records in the tree whose key matches a partial 

search key. This is called "generic access•• (9). For exam-

ple, if a person's age and name were recorded in that order 

as the keys for a search tree, the partial key could specify 

an age and all records with that age would be accessedo 

This chapter discusses a generic access routine written for 

a B-tree index maintained by the program in the previous 

chapter. 

The requirements of the routine are: 

1. It should be general enough to permit access 
to more than one B-tree within the same 
program. 

2. The routine called to 
the key condition is 
variable. 

process a record when 
satisfied should be 

3. It should access records in collating 
sequence order and should perform a full in­
order traversal if the search key is null. 

The POL and program listing are in Appendices B and F. 

A use for this routine involves the use of multiple 

indices for one record file. If n keys are useful for that 

39 
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record file, n or more permutations or subsets of those keys 

could be used as the keys for other B-trees. If for 

example, "department•• were one of the key fields, it· could 

be used as the leading portion of the key field for a 

secondary B-tree index. Thereafter, records could be 

accessed on the basis of the department ke~ field. This 

method was used extensively by the author in the system 

described in the next chapter. 
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CHAPTER V 

DISCUSSION OF THE UTILIZATION OF A 

B-TREE INDEX FOR A PRACTICAL 

PROBLEM 

Budget and Personnel Records 

Maintenance System 

The file system designed and implemented by the author 

for the Dean's Office in the College of Arts and Sciences is 

presented in this chapter. Only enough of the system is 

presented to show the use df the B-tree index program and 

the generic access procedure. Basically, the system allows 

the creation, modification and deletion of personnel records 

and the analysis of the budget based upon the pay informa-

tion stored in each personnel record. 

During the design phase it had to be determined how the 

personnel records were to be organized and accessed on disk. 

Personnel records need to be accessed based upon a name or 

rank or home department or according to the accounts that 

contribute to their salaries. Originally, the personnel 

records were to be stored in an indexed sequential file but 

there was a need to access the records based upon four dif-

ferent attributes• Indexed sequential organization does not 

support alternate indices so that method could not be used. 

41 
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(It would be possible to have several indexed sequential 

files where one file is the primary file and contains the 

records themselves and the other files only contain as data 

the key of the record in the primary file. The primary dis-

advantage is the amount of reorganization required if the 

file system is highly volatile.) VSAM with its alternate 

indices was the natural choice at this point but the Univer-

sity Computer Center does not currently support its use. 

This led to the design and implementation of the B-tree 

index program discussed in the previous chapters~ 

The four B-trees needed are called the NAME, RANK, HOME 

and ACCTS 8-trees. The key field for each B-tree is 

described below: 

1. NAME - catenation of name, home department 
and rank. 

2. RANK - catenation of rank, home department 
and name. 

3. HOME - catenation of home department, rank 
and name. 

4. ACCTS - catenation of an account number and 
. the personnel record number. 

The NAME, RANK and HOME 8-trees contain different 

permutations of the same three key fields in a personnel 

record. All keys in a B-tree index must be unique, which 

leads to the restriction that no two personnel records may 

be recorded with the same name, rank and home department. 

If this were ever necessary, a number could be used for the 
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middle initial of the name to make each record have unique 

key fields. 

The ACCTS B-tree can be used to access all records that 

receive money from a given account. It may seem redundant 

to have the personnel record number in the key as well as in 

the pointer at level one, but it is necessary to satisfy the 

requirement of unique keys in the B-tree• 

For maintenance purposes, personnel records are 

accessed by the name field in the record. This leads to a 

problem if more than one record has the same name. The 

batch program that allows the maintenance of personnel 

records treats the problem as an error and produces a 

message stating that the real-time maintenance routine must 

be used instead. The real-time routine prompts for the rank 

and the home to determine exactly which record to modify. 

Any new personnel record requires three calls to insert 

the new keys into the NAME, HOME and RANK B-trees. As many 

keys as there are unique accounts in the record must be 

inserted into the ACCTS B-tree. 

The method for creating a record in PDL form is: 

determine name, rank, home and other ID information; 
CALL BTINDX(insert,namellhomellrank,recno,nameroot); 
CALL BTINDX(insert,hornellrankllname,recno,homeroot); 
CALL BTINDX(insert,rankllhornellname,recno,rankroot); 
build up pay and account information; 
DO for each unique account; 

CALL BTINDX(insert,acct_nollrecno,recno,acctroot); 
END; 
store personnel record in PAFILE at location recno; 
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The deletion of a personnel record requires the 

reversal of the above procedure• The updating of a record 

requires no action on the NAME, HOME or RANK B-trees unle~s 

one of the key fields in the record is changed. In that 

case, all three old keys must be deleted and the three new 

keys must be inserted. Any change to the accounts and pay 

information causes corresponding deletions and insertions so 

that when the record is rewritten, the ACCTS B-tree contains 

an entry for each unique account in the personnel record. 

Therefore, personnel records may be accessed based upon 

a person's name, rank, home department or the accounts that 

pay them. In fact, it would also be possible to access 

personnel records based on a combination of attributes as 

long as those attributes make up the leading portion of the 

key for the B-tree. This means that the proper record could 

not be found if only a person•s last name and rank were used 

as the search key. If the last name were used by itself, 

all the records with that last name could be retrieved. To 

access all the records in a given class (for example all 

records with the rank "associate professor") there is a need 

for a generic access routine. This routine and the logic 

for it is discussed in Chapter IV. 

In the program that prints personnel records, if more 

than one record has a given name, all occurrences of records 

with that name are printed. If only a last name is given to 

the routine, all records with that last name are printed. 
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In fact, if a single letter is provided as the last name, 

all records that have a last name that begins with that 

letter are printed. These actions are the result of the use 

of the generic access procedure. 

Appendices C and D contain POLs for a batch and a real-

time routine that prints a report on full-time equivalents 

(FTEs1) and dollars committed to accounts. The batch 

routine prints the report for all accounts and the real-time 

routine prints a report for a single account or subset of 

accounts• Appendices G and H contain the actual PL/I 

programs and contain %INCLUDE statements for the inclusion 

of structure declarations and internal procedures• 

Therefore, those two programs only show the detail necessary 

to see how the generic traversal procedure is used. 

More information on this file system is available in 

the Programmer's Guide written by the author and kept in the 

Dean's Office in the College of Arts and Sciences (3). It 

contains listings of all the programs in the system and 

provides more examples of the uses of the B-tree index 

program and the generic access routine. 

Another example of a system where B-trees were used in 

an information storage and retrieval system is contained in 

the thesis written by_Crotzer (4). 

1The summation of the percentage of full time worked by 
each employee is called "FTE11 • 
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Summary and Conclusions 

A a-tree indexing scheme can be very useful for any 

applications that store records in a volatile file main-

tained on direct access auxiliary storage. Such a scheme 
"· 

can greatly increase the speed of programs by reducing the 

number of records accessed on auxiliary storage. Also, a 

volatile file does not reduce the performance of the system. 

One change in the B-tree index program might be worth 

looking into. Presently, B-trees with different branching 

factors or with different key lengths are contained in sepa-

rate files. For programs that do not know the size of the 

key that will be used in the index, this is impractical. 

This requirement could be relaxed by giving the maximum size 

of a node to the index routine and allowing it to compute 

what the branching factor must be for a particular B-tree. 

a-trees with different attributes could still be stored in 

different files but it would not be necessary if the com-

puted branching factor is of a desirable size. 

An area of further research or interest involves the 

B-tree structure used by Haerder in his General Access Path 

Structure (6). The general idea allows a list of record 

identifiers to be stored with a given key. In the system 

described in this paper, a B-tree could be constructed with 

RANK as the key attribute. For each rank or key in the 

B-tree, there could be a list of record identifiers. Such a 

scheme would reduce the size of the keyfield in the indices 
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discussed earlier and would provide ready access to all the 

records that match a certain attribute. 
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APPENDIX A 

PDL DESCRIPTION OF THE 

B-TREE INDEX 

PROGRAM 

The following section contains a Program Design Lan-. 

guage (PDL) description of the B-tree index program. 

I* 
Author: David Christian 
Date: 22 May 1978 

Purpose: The purpose of this procedure is to maintain an 
exhaustive index organized into a B-TREE index where the 
lowest level pointers are pointers to the actual records. 
An explanation of this approach is available in: 

Knuth, Donald E. THE ART OF COMPUTER PROGRAMMING. 
Vol. 3, 473-480. Reading: Addison-Wesley, 1973. 

Horowitz, Ellis and Sahni, Sartaj. FUNDAMENTALS OF 
DATA STRUCTURES. 496-540. Woodland Hills, Cal.: 
Computer Science Press, 1976. 

Van Doren, James R. COMSC 5413 Class Notes. Spring 
1978, Oklahoma State University. 

Procedure Descriptions: 
BTINDX - Driver routine. Chooses the action to be 

performed. 
SEARCH - Searches for a given key at the lowest level and 

stacks pointers to nodes that trace the path to the 
node that contains the given key. 

INSERT - Inserts a new key into the tree at the lowest 
level and then promotes a key if a node splits. 

DELETE - Deletes a key at the lowest level• Underflow is 
handled by two different methods depending on whether 
the underflow occurs in a lowest level node or not. 
If the rightmost key in a lowest level node is deleted 
the new rightmost key must replace the old one in the 
upper part of the tree. 

GETNODE - Gets a node of the B-TREE and brings it into . . 

main memory. 
PUTNODE - Puts a node in main memory back into the tree. 
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HDNODE - Creates a new root node with a given key and two 
pointers. 

Description of Variables Passed to BTINDX: 
OPCODE - Contents determine whether a search, insertion 

or deletion attempt will be made. 
KEY - Key for search or insertion or deletion. 
POS - The location of the record with key = KEY in the 

record file. 
ROOT - The location of the root node in the B-TREE. 
AVAIL - The location of the first available free node in 

a singly-linked list of such free nodes. 
FLAG - The value of this flag upon return specifies the 

final status of the request specified by OPCODE. The 
values are: 

1. operation_completed. 
2. duplicate_entry. 
3. key_not_found. 
4. available_storage_exceeded. 
5. invalid_opcode. 

Description of Internal Variables: 

I* 

CURNODE - Current node. 
SIBNODE - Sibling node. 
PARNODE - Parent node. 
CSS - Location in tree of CURNODE. 
SSS - Location in tree of SIBNODE. 
PSS - Location in tree of PARNODE. 
PINCN - Position in CURNODE of first key >= KEY. 
PINPC - Position of pointer in PARNODE to CURNODE. 
PINPS - Position of pointer in PARNODE to SIBNODE. 
PTRS - The pointers in a node of the B-TREE. PTRS(O} is 

a count of the number of keys in the node. 
KEYS - The keys in a node of the B-TREE. 
STACK - Contains a pointer to a node and a subscript 

value for the location in that node of the first 
key >= KEY. 

NULL - Value considered null for a pointer in the file 
of records. 

NULL_VALUE - Value considered null for a node pointer. 
SAVEIT - Used to contain a node•s PTRS(O) value when it 

is to be changed or to hold a sum of PTRS(O) from two 
nodes. 

MAXBRANCHING - The maximum branching allowed in a node. 

BTINDX~ PROC(OPCODE, KEY, POS, ROOT, AVAIL, FLAG); 
initialize variables; 
FLAG=operation_completed; 
SELECT(OPCODE); ~ 

WHEN(search) CALL SEARCH; 
WHEN(insert) CALL INSERT; 
WHEN(delete) CALL DELETE; 
OTHERWISE FLAG=invalid_opcode; 

END; 
END BTINDX; 



SEARCH: PROC; 
initialize STACK to empty; 
IF ROOT is null THEN POS=O; RETURN; FI; 
CSS=ROOT; 
DO FOREVER; 

CALL GETNODE(CSS,CURNODE); 
PINCN=position in CURNODE of first key >= KEY; 
IF PTRS(PINCN) in CURNODE < 0 THEN 

FI; 

IF KEY = KEYS(PINCN) in CURNODE THEN 
POS=-PTRS(PINCN) in CURNODE; 

ELSE POS=O; FLAG=key_not_found; FI; 
RETURN; 

put CSS and PINCN onto STACK; 
put CURNODE into PARNODE; 
CSS=PTRS(PINPC) in PARNODE; 

END; 
END SEARCH; 

INSERT: PROC; 
initialize variables; 

· LOC=-absolute value of POS; 
IF ROOT=NULL_VALUE THEN 

FI; 

IF AVAIL=NULL_VALUE 
THEN FLAG=available_storage exceeded; 
RETURN; FI; 

CALL HDNODE(KEY,LOC,NULL); 
RETURN; 

CALL SEARCH; 
IF POS,=O THEN FLAG=duplicate_entry; RETURN; FI; 

INSRT: 
insert KEY and LOC into CURNODE at position PINCN; 
IF overflow does not exist THEN 

CALL PUTNODE(CSS,CURNODE); 
RETURN; 

FI; 
IF STACK is empty THEN GO TO SPLIT; FI; 
I* 
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When sharing keys between siblings care must be taken to 
bring the parent key down into leftmost node before 
shifting if the siblings are not lowest level nodes~ 
Then, upon completion, the rightmost key in the leftmost 
node must replace the key that was brought down if the 
siblings are not lowest level nodes. 
*I 
IF left sibling exists AND is not full THEN 

perform overflow to the left; 
ELSE 

FI; 

IF right sibling exists AND is not full THEN 
perform overflow to the right; 

ELSE GO TO SPLIT; FI; 

CALL PUTNODE(CSS,CURNODE); 



CALL PUTNODE(SSS,SIBNODE}; 
CALL PUTNODE(PSS,PARNOOE); 
RETURN; 

SPLIT: 
IF AVAIL = NULL_VALUE 

FLAG=available_storage_exceeded; RETURN; FI; 
CALL GETNODE(AVAIL,SIBNODE); 
I* 
CURNODE will be stored in the location for a new node 
and SIBNODE will be stored where CURNODE was stored. 
*I 
SSS=CSS; 
CSS=AVAIL; 
AVAIL=PTRS(O) in SIBNODE; 
put upper half of CURNODE into SIBNODE; 
set PTRS(O) in CURNODE and SIBNODE; 
KEY=highest key. in CURNODE; 
LOC=CSS; 
IF CURNODE is not a lowest level node THEN 

decrement PTRS(O) in CURNODE; FI; 
CALL PUTNODE(CSS,CURNODE); 
CALL PUTNODE(SSS,SIBNODE); 
IF STACK is empty.THEN 

FI; 

IF AVAIL = NULL_VALUE 
THEN FLAG=available_storage_exceeded; 
RETURN; FI; 

CALL HDNODE(KEY,CSS,SSS); 
RETURN; 

CSS=PSS; 
put PARNODE into CURNODE; 
PINCN=PINPC; 
pop STACK; 
IF STACK is not empty THEN 

FI; 

copy top of STACK into PSS and PINPC; 
CALL GETNODE(PSS,PARNODE); 

GO TO INSRT; 
END INSERT; 

DELETE: PROC; 
initialize variables; 
CALL SEARCH; 
IF POS=O THEN RETURN; FI; 
delete the key and its pointer in CURNODE; 
IF STACK is empty THEN 

FI; 

IF CURNODE is empty THEN 
ROOT=NULL_VALUE; 
put CURNODE back on available list; 

FI; 
RETURN; 

KEYS(PINPC) in PARNODE=highest key in CURNODE; 
IF CURNODE is not underfull THEN 
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FI; 

CALL PUTNODE(CSS,CURNODE); 
IF PINCN <= PTRS(O) in CURNODE THEN RETURN; 
GO TO TRACEBACK; 
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UNDERFULL: 
I* 
Share or combine keys with right sibling if it exists. 
*I 
IF right sibling exists THEN 

PINPS=PINPC+l; 
SSS=PTRS(PINPS) in PARNODE; 
CALL GETNODE(SSS,SIBNODE); 
SAVEIT=PTRS(O) in CURNODE + PTRS(O) in SIBNODE; 
IF CURNODE is not a lowest level node 

THEN SAVEIT=SAVEIT+l; FI; 
IF SAVEIT > MAXBRANCHING - 1 THEN I* Share keys */ 

IF CURNODE is a lowest level node THEN 
divide keys and pointers between SIBNODE and 

CURNODE; 
KEYS(PINPC) in PARNODE=highest key_in CURNODE; 

ELSE 

FI; 

increment PTRS(O) in CURNODE; 
KEYS(PTRS(O)) in CURNODE = 

KEYS(PINPC) in PARNODE; 
PTRS(PTRS(O)+l) in CURNODE=PTRS(l) in SIBNODE; 
KEYS(PINPC) in PARNODE=KEYS(l} in SIBNODE; 
delete leftmost key and pointer in SIBNODE; 

CALL PUTNODE(CSS,CURNODE}; 
CALL PUTNODE(SSS,SIBNODE); 
CALL PUTNODE(PSS,PARNODE); 
RETURN; 

ELSE /* Combine keys *I 

FU 

IF CURNODE is a lowest level node THEN 
combine CURNODE and SIBNODE into CURNODE; 
KEYS(PINPC) in PARNODE=highest key in CURNODE; 
delete key and pointer to SIBNODE; 

ELSE 

FI; 

increment PTRS(O) in CURNODE; 
put SIBNODE into CURNODE; 
delete KEY~(PINPC) in PARNODE; 
delete PTRS(PINPS) in PARNODE; 
decrement PTRS(O) in PARNODE; 

put SIBNODE back on available list; 
CALL PUTNODE(CSS,CURNODE}; 
IF PARNODE is not underfull THEN 

CALL PUTNODE(PSS,PARNODE); 
RETURN; 

FI; 

ELSE /* Share or combine keys with left sibling since 
the right sibling does not exist. CURNODE is 
the rightmost child of PARNODE. *I 



PINPS=PINPC-1; 
SSS=PTRS(PINPS) in PARNODE; 
CALL GETNODE(SSS,SIBNODE); 
SAVEIT=PTRS(O) in CURNODE +·PTRS(O) in SIBNODE; 
IF CURNODE is not a lowest level node 

THEN SAVEIT=SAVEIT+l; FI; 
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IF SAVEIT > MAXBRANCHING - 1 THEN /* Share keys */ 
IF CURNODE is a lowest level node THEN 

SAVEIT=PTRS(O) in CURNODE; 

FI; 

divide keys and pointers between SIBNODE and 
CURNODE; 

KEYS(PINPC) in PARNODE=highest key in CURNODE; 
KEYS(PINPS) in PARNODE=highest key_in SIBNODE; 

ELSE 
SAVEIT=l+PTRS(O) in CURNODE; 
shift all keys and pointers in CURNODE one to 

the right; 
increment PTRS(O) in CURNODE; 
KEYS(l) in CURNODE=KEYS(PINPS) in PARNODE; 
PTRS(l) in CURNODE=PTRS(PTRS(O)+l) in SIBNODE; 
KEYS(PINPS) in PARNODE = 

KEYS(PTRS(O)) in SIBNODE; 
decrement PTRS(O) in SIBNODE; 

FI; 
CALL PUTNODE(CSS,CURNODE); 
CALL PUTNODE(SSS,SIBNODE}; 
CALL PUTNODE(PSS,PARNODE); 
IF PINCN=SAVEIT THEN GO TO TRACEBACK; FI; 
RETURN; 

ELSE /* Combine keys */ 
IF CURNODE is a lowest level node THEN 

SAVEIT=PTRS(O) in CURNODE; 
combine SIBNODE and CURNODE into SIBNODE; 
KEYS(PINPS) in PARNODE=highest key in SIBNODE; 

ELSE 
SAVEIT=l+PTRS(O) in CURNODE; 
increment PTRS(O) in SIBNODE; 
KEYS(PTRS(O)) in SIBNODE = 

KEYS(PINPS) in PARNODE; 
combine CURNODE into SIBNODE; -

FI; 
decrement PTRS(O) in PARNODE; 
put CURNODE back on available list; 
CALL PUTNODE(SSS,SIBNODE); 
IF PARNODE is not underfull THEN 

CALL PUTNODE(PSS,PARNODE); 
IF PINCN = SAVEIT THEN GO TO TRACEBACK; FI; 
RETURN; 

FI; 
CSS=SSS; 

FI; 

_ /* PARNODE is possibly underfull */ 
pop STACK; 



IF STACK is empty THEN 

FI; 

IF PARNODE is empty THEN 
ROOT=CSS; 
put PARNODE back onto available list; 

ELSE CALL PUTNODE(PSS1 PARNODE); FI; 
RETURN; 

put PARNODE into CURNODE; 
copy top of STACK into PSS and PINPC; 
CALL GETNODE(PSS1 PARNODE); 
GO TO UNDERFULL; 
I* 
A rightmost key was deleted and its occurrence in the 
rest of the index must be changed to the new rightmost 
key. 
*I 

TRACEBACK: 
DO FOREVER; 

pop STACK; 
IF PINPC <= PTRS(O) in PARNODE OR STACK is empty_ 

THEN RETURN; FI; 
put PARNODE into CURNODE; 
copy top of STACK into PSS and PINPC; 
CALL GETNODE(PSS1 PARNODE); 
KEYS(PINPC) in PARNODE=KEYS(PTRS(O}+l) in CURNODE; 
CALL PUTNODE(PSS,PARNODE); 

END; 
END DELETE; 

GETNODE: PROC(SS 1 NODE); 
read node number SS into NODE; 

END GETNODE; 

PUTNODE: PROC(SS 1 NODE); 
put NODE into node number ss; 

END PUTNODE; 

HDNODE: PROC(KEY1 SSl,SS2); 
CSS=AVAIL; 
CALL GETNODE(CSS 1 CURNODE); 
AVAIL=PTRS(O) in CURNODE; 
PTRS(O) in CURNODE=l; 
KEYS(l) in CURNODE=KEY; 
PTRS(l) in CURNODE=SSl; 
PTRS(2) in CURNODE=SS2; 
CALL PUTNODE(CSS 1 CURNODE); 
ROOT=CSS; 

END HDNODE; 
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APPENDIX B 

PDL DESCRIPTION OF THE GENERIC PROGRAM 

The following section contains a POL description of the 

generic traversal procedure described in Chapter IV. 

GENTRAV: PROC(PKEY,INPROC,ROOT); 
I* 
Author - David Christian 
Date - 24 Sept 1978 

Purpose - This procedure does an inorder traversal of a 
B-tree starting at the first key_ that matches generically 
the partial key passed in. INPROC is called to process 
each record that is found. A full inorder traversal is 
performed if PKEY = • •; 

*I 
IF PKEY=• 1 THEN J=O; 

ELSE J=length of the nonblank portion of PKEY; 
CALL TRAVINGENTRAV(ROOT); 

TRAVINGENTRAV: PROC(NODENO); 
read node number NODENO into NODE; 
DO I=l TO PTRS(O)+l UNTIL(a key in the node > PKEY); 

IF the PKEY matches the substring of key(!) of 
length J in NODE 
THEN IF it is a lowest level node 

THEN CALL INPROC(key(I),-PTRS(I)); 
ELSE CALL TRAVINGENTRAV(PTRS(I)); FI; 

FI; 
END; 

END TRAVINGENTRAV; 
END GENTRAV; 
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APPENDIX C 

POL DESCRIPTION OF A BATCH PROGRAM 

The following section contains a POL description of one 

of the batch report generating programs of the file system 

described in Chapter V that uses the generic traversal pro-

cedure. 

$FTE$: PROC; 
I* 
Author 
Date 

- David Christian 
- 24 Sept 1978 

Purpose - This procedure prints ftes and dollars by rank for 
all accounts that contribute money. An example output is 
contained in the system proposal. 

I* 
Initialize ACTROOT; 
CALL GENTRAV( 1 1 1 BLDFTE$,ACTROOT); 

I* GENTRAV has its own POL in PDLLIB *I 
CALL BLDFTE$(0, 1 ~); 

BLDFTE$: PROC(key,RECNO); 
IF the key indicates a new account has been started 

THEN Print the dollars and ftes built up for each 
rank for the summer, fall and spring semesters; 
save the value of the new account in CURACCT; 

FI; 
IF key=O THEN RETURN; 
read record RECNO from PAFILE; 
compute and save the number of dollars and ftes 

committed each month to CURRACT; 
Add these amounts to the amounts already summed for that 
rank if it already appears; otherwise create an entry 
for that rank and initialize it with the figures just 
obtained; 

END BLDFTE$; 
END $FTE$; 
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APPENDIX D 

PDL DESCRIPTION OF A REAL-TIME PROGRAM 

The following section contains a PDL description of one 

of the real-time report generating programs of the file sys-

tern described in Chapter V that uses the generic traversal 

procedure. This program is the real-time counterpart to the 

program described in Appendix c. 

FTE$: PROC; 
I* 
Author - David Christian 
Date - 24 Sept 1978 

Purpose - This procedure prints ftes and dollars by rank for 
an account. An example output is contained in the 

I* 

system proposal. 

Initialize ACTROOT; 
determine account and put value into key; 
CALL GENTRAV(key,BLDFTE$,ACTROOT); 

I* GENTRAV has its own PDL in PDLLIB */ 
CALL BLDFTE$(01 1 1 ); 

BLDFTE$: PROC(key,RECNO); 
IF the key indicates a new account has been started 

THEN print the dollars and ftes built up for each 
rank for the summer, fall and spring semesters; 
save the value of the new account in CURACCT; 

FI; 
IF key=O THEN RETURN; 
read record REGNO from PAFILE; 
compute and save the number of dollars and ftes 

committed each month to CURRACT; 
Add these amounts to the amounts already summed for 
that rank if it appears; otherwise, make an entry for 
that rank and initialize it with the values just 
computed above; 

END BLDFTE$; 
END FTE$; 
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APPENDIX E 

PLII B-TREE INDEX PROGRAM 

The following section contains the PLII program that 

maintains a B-tree index. 

BTINDX: PROC(OP,KEY,POS,ROOT1 AVAIL 1 AVCNT 1 MAXB1 KLEN,FLAG1 

INFILE,INNODE); 
I* 

BTINDX IS AN IMPLEMENTATION OF AN EXHAUSTIVE INDEX ORGANIZED 
AS A B-TREE INDEX. THE INDEX BLOCKS ARE STORED IN ONE 
DIRECT ACCESS FILE AND THE ACTUAL RECORDS IN A DIFFERENT 
DIRECT ACCESS FILE. A POINTER IN AN INDEX BLOCK IS A 
POINTER TO ANOTHER INDEX BLOCK IF THE VALUE IS >=0. 
OTHERWISE, THE ABSOLUTE VALUE OF THE POINTER IS THE RECORD 
NUMBER IN THE OTHER FILE. 
PARAMETERS: 

OP - SPECIFIES FUNCTION TO BE PERFORMED. 
KEY - KEY FOR RETRIEVAL, INSERTION OR DELETION. 
POS - RELATIVE RECORD NUMBER OF ACTUAL RECORD. 
ROOT - RELATIVE RECORD NUMBER OF ROOT NODE OF INDEX. 
AVAIL - RELATIVE RECORD NUMBER OF FIRST AVAILABLE INDEX 

AVCNT 
MAXB 

BLOCK IN A SINGLY LINKED LIST OF AVAILABLE 
BLOCKS. 

- NUMBER OF AVAILABLE BLOCKS LEFT. 
- MAXIMUM BRANCHING IN AN INDEX BLOCK. (MUST BE 

LESS THAN WHAT BLOCK WILL PHYSICALLY CONTAIN AS 
AN EXTRA KEY AND POINTER MUST BE PRESENT FOR 
THE MAINTENANCE ROUTINES TO WORK. 

KLEN - MAXIMUM LENGTH OF KEY. 
FLAG - STATUS CODE FOR ATTEMPTED FUNCTION. 
INFILE - THIS FILE CONTAINS THE INDEX BLOCKS. 

A DETAILED POL DESCRIPTION OF THIS PROGRAM IS AVAILABLE AND 
SHOULD BE CONSULTED FOR DETAILS OF HOW THIS PROGRAM WORKS. 

*I 
DECLARE 
I* 

PARAMETER VARIABLES. 
*I 
OP CHAR(*), 
KEY CHAR(*), 
(POS,ROOT1 AYAIL 1 AVCNT,MAXB 1 KLEN 1 FLAG) FIXED BIN(15,0), 
INFILE FILE VARIABLE; 
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/**********************************************************/ 
I* *I 
I* THE FOLLOWING DECLARATION MAKES IT POSSIBLE TO REFER TO*/ 
I* AN AREA OF GLOBAL STORAGE THAT CONTAINS THE VARIABLES */ 
I* USED BY THE B-TREE INDEX PROGRAM. MAXB (MAXIMUM */ 
I* BRANCHING FOR A NODE) AND KLEN (THE LENGTH OF A KEY IN */ 
I* THE NODE) MUST BE KNOWN INTHE BLOCK BEFORE THIS */ 
/* DECLARATION IS MADE. */ 
I* *I 
I********************************************************** I 

DECLARE 
1 INNODE, /* GLOBAL B-TREE DATA */ 

(2 STKPT, /* DEPTH OF STACK */ 
2 NODENO(*), /* RELATIVE RECORD NUMBER */ 
2 PINN(*), /* POINTER IN A NODE */ 
2 PINCN, /* POINTER IN CURNODE */ 
2 PINPC, /* PARENT->CURRENT POINTER */ 
2 PINPS) /* PARENT->SIBLING POINTER */ 

FIXED BIN(15), /* *I 
2 NODES(3), /* THE THREE NODES */ 

(3 X, 3 Y, 3 Z) /* NECESSARY FOR REFER OPTION*/ 
FIXED BIN(15), /* IN BASED STRUCTURES LATER */ 

3 SUB, /* NODE AS ON DISK */ 
4 PTRS(*) /* SET OF POINTERS IN A NODE */ 

FIXED BIN(15),/* */ 
4 KEYS(*) /* SET OF KEYS IN A NODE */ 

CHAR(*), /* *I 
(2 P, /* POINTERS USED FOR BASED */ 

2 PCUR, /* STRUCTURES. */ 
2 PSIB, /* P IS USED WHEN TWO */ 
2 PPAR) POINTER; /* POINTERS ARE SWITCHED. */ 

/**********************************************************/ 
I* . *I 
I* THESE DECLARATIONS PROVIDE THE LOGICAL ACCESS TO THE */ 
/* PHYSICAL DECLARATION OF NODES ABOVE. */ 
I* *I 
/**********************************************************/ 

I* 
THE FOLLOWING ARE LOCAL INTERNAL VARIABLES. 

*I 
DECLARE 
1 CURNODE BASED(PCUR), /* 

(2 X, 2 Y, 2 Z) /* 
FIXED BIN(l5), /* 

2 CORN, /* 
3 PTRS(O:MAXB+l /* 

REFER(CURNODE.X)) /* 
FIXED BIN(15), /* 

3 KEYS(MAXB /* 
REFER(CURNODE.Y)) /* 
CHAR(KLEN /* 
REFER(CURNODE.Z)),/* 

1 SIBNODE BASED(PSIB), 

THESE STRUCTURES OVERLAY */ 
THE SUBSTRUCTURE 1 NODES 1 */ 
IN INNODE. THIS WAY, IF */ 
THE CURRENT NODE BECOMES */ 
THE PARENT NODE, ONLY */ 
POINTERS ARE CHANGED. THE*/ 
REFER OPTION IS REQUIRED */ 
FOR BASED STRUCTURES WITH */ 
VARIABLY DIMENSIONED SUB- */ 
STRUCTURES. */ 

*I 

(2 X, 2 Y, 2 Z) FIXED BIN(15), 



2 SIBN, 
3 PTRS(O:MAXB+l REFER(SIBNODE.X)) FIXED BIN(15), 
3 KEYS(MAXB REFER(SIBNODE.Y)) 

CHAR(KLEN REFER(SIBNODE.Z)), 
1 PARNODE BASED(PPAR), 

(2 X1 2 Y, 2 Z) FIXED BIN(15), 
2 PARN, 

3 PTRS(O:MAXB+l REFER(PARNODE.X)} FIXED BIN(l5) 1 

3 KEYS(MAXB REFER(PARNODE.Y)) 
CHAR(KLEN REFER(PARNODE.Z)), 

(I,J,K,LOC,SAVEIT) FIXED BIN(15,0) 1 

KY CHAR(KLEN), 
NULL FIXED BIN(l5,0) INIT(-1) 1 

(LWSTLVLNODE,LFTSIBXSTS,RITSIBXSTS) BIT(1) ALIGNED, 
TRUE BIT(l) ALIGNED INIT( 1 1 1 B), 
(FLOOR,CEIL,ABS,ADDR) BUILTIN, 
(CSS,SSS,PSS) FIXED BIN(l51 0); 

I* THE FOLLOWING INITIALIZES VARIABLES THAT MAKE 
DECLARATIONS WORK *I 

PCUR=ADDR(NODES.X(l)); 
PSIB=ADDR(NODES.X(2)); 
PPAR=ADDR(NODES.X(3)); 
CURNODE.X,SIBNODE.X,PARNODE.X=MAXB+l; 
CURNODE.Y,SIBNODE.Y,PARNODE.Y=MAXB; 
CURNODE.Z,SIBNODE.Z,PARNODE.Z=KLEN; 
FLAG=l; 
KY=KEY; 
SELECT(OP); 

WHEN( 1 INSERT 1 ) GO TO INSERT; 
WHEN( 1 DELETE 1 ) GO TO DELETE; 
WHEN( 1 SEARCH 1 ) CALL SEARCH; 
OTHERWISE FLAG=5; 

END; 
RETURN; 
I********************** I 
I* *I 
I* INSERTION ROUTINE. *I 
I* *I 
1**********************1 

INSERT: 
LOC:-ABS(POS); 
IF ROOT=-1 THEN DO; 

IF AVAIL=-1 THEN FLAG=4; 
ELSE CALL HDNODE(KY1 LOC1 NULL)} 
RETURN; 

END; 
CALL SEARCH; 
IF POS1=0 THEN DO; I* KEY ALREADY EXISTS */ 

POS=-LOC; 
FLAG=2; 
RETURN; 

END; 
POS=-LOC; 
FLAG=!; 
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INSRT: 
I* 

INSERT KY AND LOC INTO CURNODE AT POSITION PINCN. 
*I 
CURNODE.PTRS(CURNODE.PTRS(0)+2) = 

CURNODE.PTRS(CURNODE.PTRS(0)+1); 
DO I=CURNODE.PTRS(O) TO PINCN BY -1; 

CURNODE.KEYS(I+1)=CURNODE.KEYS(I); 
CURNODE.PTRS(I+1)=CURNODE.PTRS(I); 

END; 
CURNODE.KEYS(PINCN)=KY; 
CURNODE.PTRS(PINCN)=LOC; 
CURNODE.PTRS(O)=CURNODE.PTRS(0)+1; 
IF CURNODE.PTRS(O)<MAXB THEN DO; I* NO OVERFLOW *I 

CALL PUTNODE(CSS,1); 
RETURN; 

END; 
I* 

*I 

OVERFLOW HAS OCCURRED. SHARE OVERFLOW WITH LEFT OR 
RIGHT SIBLING IF POSSIBLE. 

IF STKPT=O THEN GO TO SPLIT; 
LWSTLVLNODE=CURNODE.PTRS(1)<0; 
LFTSIBXSTS=PINPC>1; 
RITSIBXSTS=PINPC<=PARNODE.PTRS(O); 
IF LFTSIBXSTS THEN SSS=PARNODE.PTRS(PINPC-1); 
ELSE SSS=PARNODE.PTRS(PINPC+1); 
CALL GETNODE(SSS,2); 
IF LFTSIBXSTS & SIBNODE.PTRS(O)<MAXB-1 THEN DO; 

I* 
PERFORM OVERFLOW SHARING TO THE LEFT. 

*I 
I=FLOOR((CURNODE.PTRS(O)-SIBNODE.PTRS(0))12}; 
IF ~LWSTLVLNODE THEN DO; 

SIBNODE.KEYS(SIBNODE.PTRS(0)+1) = 
PARNODE.KEYS(PINPC-1); 

SIBNODE.PTRS(O)=SIBNODE.PTRS(0)+1; 
END; 
DO J=1 TO I; 

SIBNODE.PTRS(O)=SIBNODE.PTRS(0)+1; 
SIBNODE.KEYS(SIBNODEoPTRS(O))=CURNODE.KEYS(J); 
SIBNODE.PTRS(SIBNODE.PTRS(O))=CURNODE.PTRS(J); 

END; 
DO J=I+1 TO MAXB; 

CURNODE.KEYS(J-I)=CURNOOE.KEYS(J); 
CURNODE.PTRS(J-I)=CURNODE.PTRS(J}; 

END; 
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CURNODE.PTRS(O)=CURNODE.PTRS(O)-I; 
CURNODE.PTRS(CURNODE.PTRS(0)+1)=CURNODE.PTRS(MAXB+1); 
J=SIBNODE.PTRS(O); 
IF ~LWSTLVLNODE THEN SIBNODE.PTRS(O) = 

SIBNODE.PTRS(0)-1; 
PARNODE.KEYS(PINPC-1)=SIBNODE.KEYS(J); 

END; 



ELSE IF RITSIBXSTS & SIBNODE.PTRS(O)<MAXB-1 THEN DO; 
I* 

PERFORM OVERFLOW SHARING TO THE RIGHT. 
*I 
I=FLOOR((CURNODE.PTRS(O)-SIBNODE.PTRS(0))12); 
K=SIBNODE.PTRS(O); 
SIBNODE.PTRS(K+I+l)=SIBNODE.PTRS(K+l); 
DO J=K TO 1 BY -1; 

SIBNODE.KEYS(J+I)=SIBNODE.KEYS(J}; 
SIBNODE.PTRS(J+I)=SIBNODE.PTRS(J); 

END; 
IF ,LWSTLVLNODE THEN DO; 

SIBNODE.KEYS(I)=PARNODE.KEYS(PINPC); 
SIBNODE.PTRS(I)=CURNODE.PTRS(MAXB+1); 
SIBNODE.PTRS(O)=SIBNODE.PTRS(0)+1; 
I=I-1; 

END; 
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)+I; 
K=MAXB-I; 
DO J=1 TO I; 

SIBNODE.KEYS(J)=CURNODE.KEYS(K+J); 
SIBNODE.PTRS(J)=CURNODE.PTRS(K+J); 

END; 
CURNODE.PTRS(O)=K; 
PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(O)); 
IF ,LWSTLVLNODE THEN CURNODE.PTRS(O)=K-1; 

END; 
ELSE GO TO SPLIT; 
CALL PUTNODE(CSS,l); 
CALL PUTNODE(SSS 1 2); 
CALL PUTNODE(PSS,3); 
RETURN; 
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SPLIT: /* OVERFLOW OCCURRED IN AT LEAST THE LOWEST LEVEL */ 
IF AVCNT<STKPT+1 THEN DO;/* AVAILABLE STORAGE EXCEEDED */ 

FLAG=4; 
RETURN; 

END; 
CALL GETNODE(AVAIL1 2); 
SSS=CSS; 
CSS=AVAIL; 
AVAIL=SIBNODE.PTRS(O); 
AVCNT=AVCNT-1; 
I=CEIL(CURNODE.PTRS(0)12); 
SIBNODE.PTRS(O)=O; 
DO J=I+l TO MAXB; 

SIBNODE.PTRS(O)=SIBNODE.PTRS(O)+l; 
SIBNODE.KEYS(SIBNODE.PTRS(O))=CURNODE.KEYS(J); 
SIBNODE.PTRS(SIBNODE.PTRS{O))=CURNODE.PTRS(J); 

END) 
SIBNODE.PTRS(SIBNODE.PTRS(0)+1)=CURNODE.PTRS(MAXB+l); 
KY=CURNODE.KEYS(I); 
LOC=CSS; 
IF CURNODE.PTRS(l)<O THEN CURNODEGPTRS(O)=I; 
ELSE CURNODE.PTRS(O)=I-1; 



CALL PUTNODE(CSS,l); 
CALL PUTNODE(SSS,2); 
IF STKPT=O THEN DO; 

CALL HDNODE(KY,CSS,SSS); 
RETURN; 

END; 
I* 

PUT PARNODE INTO CURNODE. 
*I 
CSS=PSS; 
PINCN=PINPC; 
P=PCUR; 
PCUR=PPAR; 
PPAR=P; 
STKPT=STKPT-1; 
IF STKPT>O THEN DO; 

PSS=NODENO(STKPT); 
PINPC=PINN(STKPT); 
CALL GETNODE(PSS,3}; 

END; 
GO TO INSRT; 
I******************** I 
I* *I 
I* DELETION ROUTINE *I 
I* *I 
I******************** I 

DELETE: 
CALL SEARCH; 
IF POS=O THEN RETURN; 
I* 

DELETE THE KEY AND ITS POINTER IN CURNODE. 
*I 
DO I=PINCN TO CURNODE.PTRS(O); 

CURNODE.KEYS(I)=CURNODE.KEYS(I+1); 
CURNODE.PTRS(I)=CURNODE.PTRS(I+1}; 

END; 
CURNODE.PTRS(O)=CURNODE.PTRS(0)-1; 
IF STKPT=O THEN DO; 

IF CURNODE.PTRS(O)=O THEN DO; 
ROOT=-1; 
CURNODE.PTRS(O)=AVAIL; 
AVAIL=CSS; 
AVCNT=AVCNT+1; 

END; 
CALL PUTNODE(CSS1 1); 
RETURN; 

END; 
IF CURNODE.PTRS(O)~=O THEN 

PARNODE.KEYS(PINPC)=CURNODE.KEYS(CURNODE.PTRS(O)); 
IF CURNODE.PTRS(O) >= FLOOR(MAXBI2) THEN DO; 

CALL PUTNODE(CSS,1); 
IF PINCN > CURNODE.PTRS(O) THEN DO; 

CALL PUTNODE(PSS,3); 
GO TO TRACEBACK; 

65 



END; 
RETURN; 

END; 
UNDERFULL: 

I* 
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SHARE OR COMBINE KEYS WITH RIGHT SIBLING IF IT EXISTS. 
*I 
IF PINPC <= PARNODE.PTRS(O) THEN DO; 

PINPS=PINPC+l; 
SSS=PARNODE.PTRS(PINPS); 
CALL GETNODE(SSS,2); 
SAVEIT=CURNODE.PTRS(O)+SIBNODE.PTRS{O); 
IF CURNODE.PTRS(l)>=O THEN SAVEIT=SAVEIT+l; 
IF SAVEIT > MAXB-1 THEN DO; 
I* 

SHARE KEYS. 
*I 

IF CURNODE.PTRS(l)<O THEN DO; 
I=FLOOR((SIBNODE.PTRS(0)-CURNODE.PTRS(O))I2); 
DO J=l TO I; 

CURNODE.KEYS(CURNODE.PTRS(O)+J) = 
SIBNODE.KEYS(J); 

CURNODE.PTRS(CURNODE.PTRS(O)+J) = 
SIBNODE.PTRS(J); 

END; 
DO J=I+l TO SIBNODE.PTRS(O); 

SIBNODE.PTRS(J-I)=SIBNODE.PTRS(J); 
SIBNODE.KEYS(J-I)=SIBNODE.KEYS(J); 

END; 
CURNODE.PTRS(O)=CURNODE.PTRS(O)+I; 
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)-I; 
PARNODE.KEYS(PINPC) = 

CURNODE.KEYS(CURNODE.PTRS(O)); 
END; 
ELSE DO; 

CURNODE.PTRS(O)=CURNODE.PTRS(O}+l; 
CURNODE.KEYS(CURNODE.PTRS(O)) = 

PARNODE.KEYS(PINPC); 
CURNODE.PTRS(CURNODE.PTRS(O)+l)=SIBNODE.PTRS(l); 
PARNODE.KEYS(PINPC)=SIBNODE.KEYS(l); 
DO I=l TO SIBNODE.PTRS(O}; 

SIBNODE.KEYS(I}=SIBNODE.KEYS(I+l); 
SIBNODE.PTRS(I)=SIBNODE.PTRS(I+l); 

END; 
SIBNODE.PTRS(O)=SIBNODE.PTRS(0)-1; 

END; 
CALL PUTNODE(CSS,l); 
CALL PUTNODE(SSS,2); 
CALL PUTNODE(PSS,3); 
RETURN; 

END; 
ELSE DO; 



I* 

*I 
COMBINE KEYS. 

IF CURNODE.PTRS(l)<O THEN DO; 
DO I=1 TO SIBNODE.PTRS(O); 

CURNODE.PTRS(CURNODE.PTRS(O)+I) = 
SIBNODE.PTRS(I); 

CURNODE.KEYS(CURNODE.PTRS(O)+I) = 
SIBNODE.KEYS(I); 
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END; 
CURNODE.PTRS(O)=CURNODE.PTRS(O)+SIBNODE.PTRS(O); 

END; 
ELSE DO; 

DO I=1 TO SIBNODE.PTRS(0)+1; 
CURNODE.KEYS(CURNODE.PTRS(O)+I+1) = 

SIBNODE.KEYS(I); 
CURNODE.PTRS(CURNODE.PTRS(0)+1+1) = 

SIBNODE.PTRS(I); 
END; 
CURNODE.PTRS(O) = 

CURNODE.PTRS(O)+SIBNODEoPTRS(0)+1; 
END; 
DO I=PINPC TO PARNODE.PTRS(O); 

PARNODE.KEYS(l)=PARNODE.KEYS(I+1); 
PARNODE.PTRS(l+l)=PARNODE.PTRS(l+2); 

END; 
PARNODE.PTRS(O)=PARNODE.PTRS(0)-1; 
SIBNODE.PTRS(O)=AVAIL; 
AVAIL=SSS; 
AVCNT=AVCNT+l; 
CALL PUTNODE(SSS,2); 
CALL PUTNODE(CSS,1); 
IF PARNODE.PTRS(O)>=FLOOR(MAXBI2) THEN DO; 

CALL PUTNODE(PSS,3); 
RETURN; 

END; 
END; 

END; 
I* 

*I 

CURNODE IS RIGHTMOST CHILD OF PARNODE. SHARE OR 
COMBINE CURNODE WITH LEFT SIBLING. 

ELSE DO; 
PINPS=PINPC-1; 
SSS=PARNODE.PTRS(PINPS); 
CALL GETNODE(SSS,2); 
SAVEIT=CURNODE.PTRS(O)+SIBNODE.PTRS(O); 
IF CURNODE.PTRS(1)>=0 THEN SAVEIT=SAVEIT+1; 
IF SAVEIT > MAXB-1 THEN DO; 
I* 

*I 
SHARE KEYS. 

IF CURNODE.PTRS(1)<0 THEN DO; 
SAVEIT=CURNODE.PTRS(O); 



I=FLOOR((SIBNODE.PTRS(0)-CURNODE.PTRS(0))12); 
DO J=CURNODE.PTRS(O) TO 1 BY -1; 

CURNODE.KEYS(J+I)=CURNODE.KEYS(J); 
CURNODE.PTRS(J+I)=CURNODE.PTRS(J); 

END; 
DO J=1 TO I; 

CURNODE.KEYS(J) = 
SIBNODE.KEYS(SIBNODE.PTRS(O)-I+J}; 

CURNODE.PTRS(J) = 
SIBNODE.PTRS(SIBNODE.PTRS(O)-I+J); 

END; 
CURNODE.PTRS(O)=CURNODE.PTRS(O)+I; 
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)-I; 
PARNODE.KEYS(PINPC) = 

CURNODE.KEYS(CURNODE.PTRS(O)); 
PARNODE.KEYS(PINPS) = 

SIBNODE.KEYS(SIBNODE.PTRS(O)); 
END; 
ELSE DO; 

SAVEIT=CURNODE.PTRS(0)+1; 
DO I=CURNODE.PTRS(0)+1 TO 1 BY -1; 

CURNODE.KEYS(I+1)=CURNODE.KEYS(I); 
CURNODE.PTRS(I+1)=CURNODE.PTRS(I); 

END; 
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CURNODE.PTRS(O)=CURNODE.PTRS(0}+1; 
CURNODE.KEYS(1}=PARNODE.KEYS(PINPS}; 
CURNODE.PTRS(1)=SIBNODE.PTRS(SIBNODE.PTRS(0)+1); 
PARNODE.KEYS(PINPS) = 

SIBNODE.KEYS(SIBNODE.PTRS(O)); 
SIBNODE.PTRS(O)=SIBNODE.PTRS(0)-1; 

END; 
CALL PUTNODE(CSS,1); 
CALL PUTNODE(SSS1 2); 
CALL PUTNODE(PSS,3); 
IF PINCN=SAVEIT THEN GO TO TRACEBACK; 
RETURN; 

END; 
ELSE DO; 
I* 

*I 
COMBINE KEYS. 

IF CURNODE.PTRS(l)<O THEN DO; 
SAVEIT=CURNODE.PTRS(O); 
DO I=l TO CURNODE.PTRS(O}; 

SIBNODE.KEYS(SIBNODE.PTRS(O)+I) = 
CURNODE.KEYS(I}; 

SIBNODE.PTRS(SIBNODE.PTRS(O)+I) = 
CURNODE.PTRS(I); 

END; 
SIBNODE.PTRS(O)=SIBNODE.PTRS(O)+CURNODE.PTRS(O); 
PARNODE.KEYS(PINPS) = 

SIBNODE.KEYS(SIBNODE.PTRS(O)); 
END; 
ELSE DO; 



SAVEIT=CURNODE.PTRS(O)+l; 
SIBNODE.KEYS(SIBNODE.PTRS(O)+l) = 

PARNODE.KEYS(PINPS); 
DO I=l TO CURNODE.PTRS(O)+l; 

SIBNODE.KEYS(SIBNODE.PTRS(O)+I+l) = 
CURNODE.KEYS(I); 

SIBNODE.PTRS(SIBNODE.PTRS(O)+I+l) = 
CURNODE.PTRS(I); 

END; 
SIBNODE.PTRS(O) = 

SIBNODE.PTRS(O)+CURNODE.PTRS(O)+l; 
PARNODE.KEYS(PINPS) = 

SIBNODE.KEYS(SINBODE.PTRS(O)+l); 
END; 
PARNODE.PTRS(O)=PARNODE.PTRS(0)-1; 
CURNODE.PTRS(O)=AVAIL; 
AVAIL=CSS; 
AVCNT=AVCNT+l; 
CALL PUTNODE(CSS,l); 
CALL PUTNODE(SSS,2); 
IF PARNODE.PTRS(O)>=FLOOR(MAXB/2) THEN DO; 

CALL PUTNODE(PSS,3); 
IF PINCN>SAVEIT THEN GO TO TRACEBACK; 
RETURN; 

END; 
CSS=SSS; 

END; 
END; 
I* 

PARNODE IS POSSIBLY UNDERFULL. 
*I 
STKPT=STKPT-1; 
IF STKPT=O THEN DO; 

IF PARNODE.PTRS(O)=O THEN DO; 
ROOT=CSS; 
PARNODE.PTRS(O)=AVAIL; 
AVAIL=PSS; 
AVCNT=AVCNT+l; 

END; 
CALL PUTNODE(PSS,3); 
RETURN; 

END; 
P=PCUR; 
PCUR=PPAR; 
PPAH=P; 
PINCN=PINPC; 
CSS=PSS; 
PSS=NODENO(STKPT); 
PINPC=PINN(STKPT); 
CALL GETNODE(PSS,3); 
GO TO UNDERFULL; 
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I* 
A RIGHTMOST KY HAS BEEN DELETED AND ITS OCCURRENCE IN 
THE REST OF THE TREE MUST BE CHANGED. 

*I 
TRACEBACK: 

DO WHILE(TRUE}; 
STKPT=STKPT-1; 
IF PINPC<=PARNODE.PTRS(O) I STKPT=O THEN RETURN; 
P=PCUR; 
PCUR=PPAR; 
PPAR=P; 
PINCN=PINPC; 
CSS=PSS; 
PSS=NODENO{STKPT); 
PINPC=PINN{STKPT); 
CALL GETNODE{PSS,3); 
PARNODE.KEYS{PINPC)=CURNODE.KEYS(CURNODE.PTRS(O)+l); 
CALL PUTNODE(PSS,3); 

END; 
RETURN; I* END OF DELETE ROUTINE. *I 

1*******************1 
I* *I 
I* SEARCH ROUTINE. *I 
I* *I 
1*******************1 

SEARCH: PROC; 
DECLARE (LAST,K) FIXED BIN(15,0); 
STKPT=O; 
POS=O; 
IF ROOT=-1 THEN RETURN; 
CSS=ROOT; 
I* 

FIND KY BY SEARCHING DOWN TO LOWEST LEVEL. 
*I 
DO WHILE(TRUE); 

CALL GETNODE(CSS,l); 
I* 

BINARY SEARCH TO FIND THE FIRST KY IN CURNODE >= KY 
*I 
PINCN=1; 
LAST=CURNODE.PTRS(O); 
DO WHILE(PINCN<=LAST); 

K=FLOOR((PINCN+LAST)I2); 
SELECT; 

WHEN(KY<CURNODE.KEYS(K)) LAST=K-1; 
WHEN(KY>CURNODE.KEYS(K)) PINCN=K+l; 
OTHERWISE DO; 

PINCN=K; 
LAST=K-1; 

END; 
END; 

END; 



I* 
QUIT IF AT LOWEST LEVEL. 

*I 
IF CURNODE.PTRS(l)<O THEN DO; 
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IF KY=CURNODE.KEYS(PINCN) & PINCN<=CURNODE.PTRS(O) 
THEN POS=-CURNODE.PTRS(PINCN); 
ELSE FLAG=3; 

RETURN; 
END; 
I* 

PUT CSS AND PINCN ONTO STACK. 
*I 
STKPT=STKPT+l; 
NODENO(STKPT)=CSS; 
PINN(STKPT)=PINCN; 
I* 

CAUSE CURNODE TO BECOME PARNODE. 
*I 
P=PPAR; 
PPAR=PCUR; 
PCUR=P; 
PSS=CSS; 
PINPC=PINCN; 
I* 

PREPARE TO GET NEXT NODE. 
*I 
CSS=PARNODE.~TRS(PINPC); 

END; 
END SEARCH; 

I********************** I 
I* *I 
I* READ NODE ROUTINE. *I 
I* *I 
1**********************1 

GETNODE: PROC(SS,NODE); 
DECLARE (SS,NODE) FIXED BIN(15,0); 
SELECT( NODE); 

WHEN(l) READ FILE(INFILE) INTO(CURN) KEY(SS); 
WHEN(2) READ FILE(INFILE) INTO(SIBN) KEY(SS); 
WHEN(3) READ FILE(INFILE) INTO(PARN) KEY(SS); 
OTHERWISE STOP; 

END; 
END GETNODE; 

1***********************1 
I* *I 
I* STORE NODE ROUTINE. */ 
I* *I 
I*********************** I 

PUTNODE: PROC(SS,NODE); 
DECLARE (SS,NODE) FIXED BIN(l51 0); 
SELECT( NODE); 

WHEN(l) WRITE FILE(INFILE) FROM(CURN) KEYFROM(SS); 
WHEN(2) WRITE FILE(INFILE) FROM(SIBN) KEYFROM(SS); 
WHEN(3) WRITE FILE(INFILE) FROM(PARN) KEYFROM(SS); 



OTHERWISE STOP; 
END; 

END PUTN ODE; 
1**********************1 
I* *I 
I* HEAD NODE ROUTINE. *I 
I* *I 
1**********************1 

HDNODE: PROC(KY1 SS11 SS2); 
DECLARE 
KY CHAR(*), 
{SS11 SS21 I) FIXED BIN(l5,0); 
I=AVAIL; 
CALL GETNODE(I,l); 
AVAIL=CURNODE.PTRS(O); 
AVCNT=AVCNT-1; 
CURNODE.PTRS(O)=l; 
CURNODE.KEYS(l)=KY; 
CURNODE.PTRS(l)=SSl; 
CURNODE.PTRS(2)=SS2; 
CALL PUTNODE(I,l); 
ROOT=I; 

END HDNODE; 
END BTINDX; 
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APPENDIX F 

PLII PROGRAM SHOWING USE OF 

GENERIC PROGRAl-i 

The following section contains the PLII 

performs a generic traversal of a B-tree index. 

1*******************1 
I* *I 
I* GENTRAV ROUTINE *I 
I* *I 
1*******************1 

program that 

GENTRAV: PROC(ROOT,PARKEY,CNT,MAXB,KLEN,MAXNODES,INFILE, 
INPROC,FL.AG); 

DECLARE I** FOR PARAMETERS **I 
(ROOT,CNT,MAXB,KLEN,MAXNODES) FIXED BIN(15,0), 
PARKEY CHAR(*), 
FLAG BIT(*) ALIGNED, 
INFILE FILE, 
INPROC ENTRY (FIXED BIN(15,0),CHAR(*)); 

DECLARE I** INTERNAL VARIABLES **I 
(I,J) FIXED BIN(15,0), 
(LENGTH,SUBSTR,VERIFY) BUILTIN; 

IF PARKEY=• 1 THEN J=O; 
ELSE J=LENGTH(PARKEY); 

DO I=l TO J; 
IF VERIFY(SUBSTR(PARKEY,I),• 1 )=0 THEN LEAVE; 

END; 
IF I<=J THEN J=I-1; 
IF J>KLEN THEN DO; 

FLAG= 1 1 1 B; 
RETURN; 

END; 
FLAG=1 01 B; 
CNT=O; 
CALL TRAVINGENTRAV(ROOT); 
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I************************* I 
I* *I 
I* TRAVINGENTRAV ROUTINE *I 
I* *I 
1*************************1 
TRAVINGENTRAV: PROC(NODENO) RECURSIVE; 

DECLARE 
(NODENO,I) FIXED BIN(15,0), 
1 NODE, 

2 PTRS(O:MAXB+l) FIXED BIN(l5,0), 
2 KEYS(MAXP) CHAR(KLEN); 

IF NODENO<O I NODENO>MAXNODES THEN RETURN; 
READ FILE(INFILE) INTO(NODE) KEY(NODENO); 
IF PTRS(O)<l I PTRS(O)>=MAXB THEN RETURN; 
DO I=l TO PTRS(O)+l UNTIL(SUBSTR(KEYS(I),l,J)>PARKEY); 

IF I=PTRS(O)+l & PTRS(l)<O THEN RETURN; 
IF SUBSTR(KEYS(I),l,J)>=PARKEY I I=PTRS(O)+l I J=O 
THEN DO; 

IF PTRS(I)<O THEN DO; 
IF SUBSTR(KEYS(I),l,J)>PARKEY THEN RETURN; 
CALL INPROC(-PTRS(I),KEYS(I)); 
CNT=CNT+l; 

END; 
ELSE CALL TRAVINGENTRAV(PTRS(I)); 

END; 
END; 

END TRAVINGENTRAV; 
END GENTRAV; 
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APPENDIX G 

PL/I BATCH PROGRAM 

The following section contains the batch routine that 

uses GENTRAV to do a full in-order traversal of the B-tree 

in ACTFILE. The procedures and structures that are included 

can be found in the programmer's guide written by_ the author 

located in the Deans•s Office in the College of Arts and 

Sciences. 

$FTE$: PROC OPTIONS(MAIN); 
DECLARE (CNT,MAXB,KLEN) FIXED BIN(15,0}, 

ACTFILE DIRECT INPUT KEYED ENV(REGIONAL(l)), 
PAFILE DIRECT INPUT KEYED ENV(REGIONAL(l)), 
FLAG BIT(l) ALIGNED, 
(SUBSTR,LOW,INDEX,FLOAT,FLOOR,MOD,MULTIPLY,ROUND) 
BUILTIN; 

%INCLUDE RECO; 
%INCLUDE PA; 
MAXB=120; 
KLEN=lO; 
READ. FILE(PAFILE) INTO(RECO) KEY( 1 01 ); 

CALL GENTRAV(ACTROOT, 1 1 1 CNT1 MAXB,KLEN,MAXNDE,ACTFILE, 
BLDFTE$1 FLAG); 

CALL BLDFTE$(0, 1 1 ); 

%INCLUDE BLDFTE$; 
%INCLUDE GENTRAV; 
%INCLUDE SERDAYNO; 
%INCLUDE AMTCOMM; 
%INCLUDE READPA; 

END $FTE$; 
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APPENDIX H 

PL/I REAL-TIME PROGRAM 

The following contains the real-time counterpart to the 

program in Appendix G. 

FTE$: PROC OPTIONS(MAIN); 
DECLARE (CNT 1 MAXB,KLEN) FIXED BIN(l51 0), 

ACTFILE DIRECT INPUT KEYED ENV(REGIONAL(1)) 1 

PAFILE DIRECT INPUT KEYED ENV(REGIONAL(1)) 1 

INPUTKEY CHAR{6), 
NOKEY CHAR(l), 
FLAG BIT(l) ALIGNED, 
(SUBSTR,LOW,INDEX,FLOAT,FLOOR,MOD,MULTIPLY,ROUND) 
BUILTIN; 

%INCLUDE RECO; 
%INCLUDE PA; 
ON ATTN STOP; 
MAXB=120; 
KLEN=lO; 
READ FILE(PAFILE) INTO(RECO) KEY( 1 01 ); 

PUT EDIT 
('ENTER THE ACCOUNT NUMBER (NO EMBEDDED DASHES):•) 
( COL ( 1) 1 A) ; 

GET EDIT{INPUTKEY) (COL(1),A(6)); 
PUT EDIT( 1 POSITION THE PAPER AND HIT 11 RETURN 11 : 1 ) 

( COL ( 1) 1 A) ; 
GET EDIT(NOKEY)(COL(1),A(1)); 
CALL GENTRAV(ACTROOT,INPUTKEY,CNT,MAXB,KLEN,MAXNDE, 

ACTFILE,BLDFTE$,FLAG); 
IF CNT>O THEN CALL BLDFTE$(01 1 1 ); 

ELSE PUT EDIT{ 1 ACCOUNT 1 1 INPUTKEY, 1 DOES NOT EXIST.•, 
'CHECK ACCOUNT NUMBER AND ENTER IT AS A 1 1 
1 6 DIGIT NUMBER (SUCH AS 11 102201 11 ) 1 ) 

((2)(COL(1) 1 (3)A)); 
%INCLUDE BLDFTE$; 
%INCLUDE GENTRAV; 
%INCLUDE SERDAYNO; 
%INCLUDE AMTCOMM; 
%INCLUDE READPA; 

END FTE$; 
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APPENDIX I 

PL/I DESCRIPTION OF A PERSONNEL RECORD 

A PL/I description of a personnel record is included in 

this appendix for the purpose of giving a little reference 

to what the file system has to work with. The key fields 

described in Chapter V can be seen in the substructure ID 

and in the substructure ACCOUNTS. 

DECLARE 
l·PA_RECORD, 

2 LINK_EXT 
2 ID, 

3 NAME, 
4 LAST 
4 FIRST 
4 MI 

3 SSN 
3 RANK 
3 HOME 
3 PPN 
3 HIRED 
3 PROMOTED 
3 EXW@H 

2 NO_DISTR 
2 NEXT_.ACCT 
2 DISTR(6), 

3 FROM 
3 THRU 
3 SALARY 
3 FTE 
3 BEGIN 

2 ACCOUNTS(20), 
3 ACCT 
3 BLN 
3 PAY 
3 COMM 
3 LINK 

2 FILLER 
1 PA, 

2 LINK_EXT 

FIXED BIN(15,0), 

CHAR(20), 
CHAR(15), 
CHAR(l), 
CHAR(9), 
CHAR(4), 
CHAR(6), 
CHAR(6), 
CHAR(6), 
CHAR(6), 
CHAR(l), 
FIXED BHJ(151 0), 
FIXED BIN(15,0), 

CHAR(5), 
CHAR(5), 
FIXED DEC(7,2), 
FIXED DEC(7,4), 
FIXED BIN(151 0) 1 
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CHAR(6), 
CHAR(6), 
FIXED DEC(7 1 2), 
FIXED DEC(7,2), 
FIXED BIN(15,0), 
CHAR(137), 

FIXED BIN(15,0), 
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2 ID LIKE PA_RECORD.ID, 
2 NO_DISTR FIXED BIN{15,0), 
2 NEXT_ACCT FIXED BIN{l5,0), 
2 DISTR(12) LIKE PA_RECORD.OISTR, 
2 ACCOUNTS(40) LIKE PA_RECORD.ACCOUNTS; 
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