GAS SWEETENING; DETERMINATION OF EQUILIBRIUM

DISTRIBUTION COEFFICIENTS FOR HYDROGEN SULFIDE, CARBON DIOXIDE AND METHANE IN METHANOL

By
SAEDELDEEN AHMAD AKASHAH
Bachelor of Science in Chemical Engineering
Tri-State University
Angola, Indiana
1972

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

May, 1978

GAS SWEETENING; DETERMINATION OF EQUILIBRIUM
 distribution coefficients for hydrogen SULFIDE, CARBON DIOXIDE AND METHANE

IN METHANOL

Thesis Approved:

PREFACE

Equilibrium distribution coefficients for hydrogen sulfide, carbon dioxide and methane in methanol were determined for a pressure range of 100 psi - 1000 psi and room temperature. An equilibrium cell was used and vapor molar fractions were determined by gas chromatograph.

I am truly grateful to Dr. R. N. Maddox for serving as my adviser and for his guidance and concern. I would like to thank Mr. Ali Maadah for his valued help, and Mr. E. E. McCroskey for his help in procuring equipment. My thanks to all the faculty, staff and students of the School of Chemical Engineering at Oklahoma State University who extended their help during the course of this work.

Finally, with love and appreciation, I thank my wife Mary. Her constant support and encouragement helped me through the moments of hardship.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. LITERATURE SURVEY 2
III. EQUIPMENT 4
Experimental Apparatus 4
Equilibrium Cell 4
Pressure Transducer System 6
Gas Feed System. 6
Liquid Feed System 6
Gas Chromatograph 7
IV. EXPERIMENTAL PROCEDURES 8
Pressure Transducer Calibration 8
Gas Chromatograph Calibration 8
Operating Procedure for Experimental Apparatus 9
V. EXPERIMENTAL RESULTS AND DISCUSSION. 11
VI. CONCLUSIONS AND RECOMMENDATIONS 19
BIBLIOGRAPHY 21
APPENDIX A - CALIBRATION DATA 22
APPENDIX B - EXPERIMENTAL DATA. 38
APPENDIX C - SAMPLE CALCULATIONS. 40
Table Page
I. Equilibrium Distribution Coefficients (K) for CO_{2} in Methanol 13
II. Equilibrium Distribution Coefficients (K) for $\mathrm{H}_{2} \mathrm{~S}$ in Methanol 15
III. Equilibrium Distribution Coefficients (K) for CH_{4} in Methanol 17
IV. Calibration Data for Pressure Transducer. 23
V. Pressure Transducer Calibration 24
VI. Calibration Data for Pressure Transducer 26
VII. Pressure Transducer Calibration 27
VIII. Calibration Data for Gas Chromatograph for CO_{2} Known Loading 29
IX. Gas Chromatograph Calibration Data for CO_{2} 30
X. Calibration Data for Gas Chromatograph for $\mathrm{H}_{2} \mathrm{~S}$ Known Loading 31
XI. Gas Chromatograph Calibration Data for CO_{2}. 32
XII. Calibration Data for Gas Chromatograph Analysis for $\mathrm{H}_{2} \mathrm{~S}$ 34
XIII. Gas Chromatograph Calibration Data for $\mathrm{H}_{2} \mathrm{~S}$ 36
XIV. Loading for CO_{2} Equilibrium Distribution Coefficient 39
XV. Gas Chromatograph Analysis Data for $\mathrm{CO}_{2}-\mathrm{CH}_{4}$ in Methanol 40
XVI. Loading for $H_{2} S$ Equilibrium Distribution Coefficient 41
XVII. Gas Chromatograph Analysis Data for $\mathrm{H}_{2} \mathrm{~S}-\mathrm{CH}_{4}$ in Methanol 42
XVIII. Loading for CH_{4} Equilibrium Distribution Coefficient 45
XIX. Physical Properties of the Gases 47
Table Page
XX. Pressure of the Components in the Cell. 47
XXI. Equilibrium Comparison. 50

LIST OF FIGURES

Figure Page

1. Experimental Apparatus 5
2. Equilibrium Distribution Coefficient (K) for Carbon Dioxide in Methanol 14
3. Equilibrium Distribution Coefficient (K) for Hydrogen Sulfide in Methanol. 16
4. Equilibrium Distribution Coefficient (K) for Methane in Methanol 18
5. Pressure Transducer Calibration 25
6. Pressure Transducer Calibration. 28
7. Gas Chromatograph Calibration for CO_{2} 33
8. Gas Chromatograph Calibration for $\mathrm{H}_{2} \mathrm{~S}$ 37

NOMENCLATURE

K	- equilibrium distribution coefficient
mV	- milli volt
n	- number of moles, 1 b mole
P	- pressure, psia
P_{c}	- critical pressure, psia
P_{pc}	- Pseudo critical pressure, psia
R	- ideal gas constant, $\frac{\left(\mathrm{psiaft} \mathrm{t}^{3}\right)}{\left(1 \mathrm{bmole} \mathrm{R}^{\mathrm{o}}\right)}$
T	- temperature, R^{O}
T_{c}	- critical temperature, R^{O}
T_{pc}	- Pseudo critical temperature, $\mathrm{R}^{\text {O}}$
y	- vapor molar fraction
x	- liquid molar fraction
Z	- compressibility factor
Greek Letters	
ε	```- Pseudo critical temperature adjustment factor, R O```

Gas sweetening means the removal of hydrogen sulfide and carbon dioxide from natural gas. The need to remove this from natural gas is due to health and safety considerations plus the desire to reduce corrosion in natural gas pipelines. The gas usually contains CO_{2} (carbon dioxide) and water vapor. The removal of CO_{2} from the gas is important due to the fact it is an acid gas (1).

Natural gas was simulated in this experiment by mixing methane, CO_{2}, and $\mathrm{H}_{2} \mathrm{~S}$ in specified proportions. Solvent was introduced and the mixture was allowed to reach equilibrium. The equilibrium composition of the vapor and liquid phases was determined by measuring the concentration of the components in the gas phase using gas chromotography.

The equilibrium distribution coefficient for $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}$ and methane in the solvent (methanol) was then determined at room temperature and different total pressure.

CHAPTER II

LITERATURE SURVEY

The gas and petroleum industry has given importance to the means of estimating the composition of coexisting phases in heterogeneous systems. The work of Katz and Hachmuth (2) was one of the early works to experimentally determine the equilibrium constant developed by Souders, Selheimer and Brown (8). Katz and Hachmuth investigated a naturally occurring mixture, crude oil - natural gas. Their investigation was carried out at pressures ranging from atmospheric to above 3000 pounds per square inch, and at temperatures ranging from 40° to 200° F. Equilibrium was obtained in an equilibrium bomb, and samples of the liquid and vapor phases were obtained and analyzed in fractionating columns.

Sage and Reamer (3) presented a discussion of the minimum experimental data required for the establishment of the phase behavior. They divided the data required into two categories; the first is the direct measurement of the composition of the coexisting phases, while the second requires sufficient data to permit an evaluation of chemical potential and enthalpy so as to permit the calculation of the composition. In discussing the first category they stated that the principle involves only bringing together the requisite components at the desired state, determining the prevailing pressure and, temperature and measuring the composition of each of the phases.

Muhlbauer and Monaghan (4) determined equilibrium data for CO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ in methanolamine solution. They established equilibrium by bubbling the gas through a bath of the solution and collecting it in gas sampling bombs. Liquid samples were taken and analyzed by chemical methods. Gas samples were analyzed using a mass spectrometer.

EQUIPMENT

The equipment used consisted of two main components; an experimental apparatus (Figure 1) consisting of an equilibrium cell with gas and solvent feed lines in which known amounts of components were mixed, and a gas chromotograph which was used to obtain mole fractions compositions of the gas phase.

Experimental Apparatus

The major components of the experimental apparatus are the following:

1. Equilibrium cell
2. Pressure transducer system
3. Gas feed system
4. Liquid feed system
5. Auxiliary equipment

Equilibrium Ce11

The equilibrium cell (MGM, Bartlesville, OK) is made of stainless steel and has a 1000 ml volume. The volume was calibrated by displacement of liquid at constant temperature.

The cell has a fluid driven magnetic stirrer, a connection for a pressure transducer, a connection for a gas/solvent feed line, and a

Figure 1. Experimental Apparatus
solvent drainage line. All connections and lines are stainless steel and $1 / 8$ inch $0 . D$.

Pressure Transducer System

The pressure transducer system consists of:

1. Pressure transducer (Be11 and Howell Type 4-317-0001)
2. A potentiometer (Leeds and Northrup Co. CAT. NO. 8690)
3. A regulated supply source (Dressen-Barnes Mode1 22-115A)

Gas Feed System

The gas feed system consists of three gas cylinders that supply $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}$, and CH_{4}. Each cylinder is fitted with a regulator valve and has a $1 / 8$ inch valve leading to the gas feed systern. The system is connected to a vacuum pump (Welch Duo-Seal, $1 / 3$ horsepower).

Liquid Feed System

The liquid feed system consists of a displacement pump connected on one side to a graduated cylinder (Kimax 500 mI), and to the equilibrium cell on the other. A liquid bleed line is connected between the pump and the cell in order to allow for careful bleeding of the lines.

Auxiliary Equipment:

1. Sample bomb (MGM Bartlesville, OK)
2. Flasks for the sodium hydroxide scrubber
3. Balance (Mettler Instrument Company)
4. Valves and fittings (autoclave)

Gas Chromatograph

Two different types of gas chromatographic equipment were used, one to obtain the $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ mole fraction in the gas phase, the other to obtain the $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CH}_{4}$ mole fraction. For the latter, samples were taken to the Chemistry Department and were analyzed by using a n-octanol/poracite column.

For the CO_{2} analysis, a Tractor MT-150 gas chromotograph was used with an ultrasonic detector. The column used was 1 ft .6 inches $1 / 4$ in. O.D. stainless steel packed with grade $95060-100$ mesh silica gel.

EXPERIMENTAL PROCEDURE

Pressure Transducer Calibration

The calibration of the pressure transducer was carried out using a Ruska Model 2400 HL Deadweight Pressure System. Potentiometer readings were obtained at known weights. During experimental work the transducer went out of calibration. It was recalibrated. The calibration curves and data are presented in Appendix A.

Gas Chromatograph Calibration

Since two gas chromatographs were used in this experiment, two calibration curves were obtained by different procedures. The first calibration was done for the $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ system. Mixtures with known mole fractions were analyzed using a Tracor MT 150 Gas Chromatograph. several samples were taken and the peaks cut and weighed. A ratio of CO_{2} peaks weight to total peaks weight was obtained. The results of the average ratio are shown in Appendix A.

For the $\mathrm{H}_{2} \mathrm{~S}$ calibration, known samples were taken to the Department of Chemistry at Oklahoma State University for analysis. The heights of the peaks obtained were measured.

A ratio of the length times the attenuation for the $H_{2} S$ peaks over the total sum was obtained. These results and the rough data are in Appendix Λ.

Operating Procedure for Experimental Apparatus

Instructions for operating the apparatus:

1. Select the total pressure desired and the composition of the gases. Determine the partial pressure of the components.
2. Check the potentiometer reading for atmospheric pressure.
3. Evacuate the cell and the gas feed lines.
4. Introduce the gas for which the determination is being made $\left(\mathrm{CO}_{2}\right.$ or $\left.\mathrm{H}_{2} \mathrm{~S}\right)$ until the required partial pressure is achieved.
5. Introduce methane until the required total pressure is achieved.
6. Wait 2 minutes and check the total pressure. Repeat until consistent values are obtained.
7. Add the required solvent to the gas mixture in the cell and start the stirrer. For best results allow 24 hrs . for equilibrium.
8. Evacuate the sample bomb and take a sample of the vapor phase for analysis.
9. Vent the remaining gas through the scrubber system.
10. Detach the equilibrium cell and pour the liquid into a graduated cylinder. It should be about the same as the amount introduced.
11. Attach the equilibrium cell again. Check for leaks, and repeat 1 through 10.

All results obtained are in Appendix B. A sample calculation for the K value of $H_{2} S$ in methanol is shown in Appendix C.

CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

The equilibrium distribution coefficients were determined for carbon dioxide, hydrogen sulfide and methane with methanol as solvent. Since there is no data available for these values, the degree of accuracy is hard to measure. The following assumptions were made in obtaining the results:

1. The solvent introduced is 100 ml . This assumption is reasonable since the displacement pump is connected to a graduated cylinder and the difference of the liquid height was taken as the amount introduced. The line was bled repeatedly before introducing the liquid into the cell so as to insure that 100 ml of solvent were introduced into the cell.
2. The amount of liquid at equilibrium in the cell is 100 ml .

This is a harder assumption to prove. Two factors are involved:

1. The increase of volume due to the solute
2. The decrease of volume due to pressure.

With regard to the first factor, the volume of the solution was measured carefully in a graduated cylinder and was $100 \mathrm{ml} \overline{+} 1.0$ in each run.

With regard to the second factor, the compressibility of methanol is so very small (6) that the assumption of methanol
as an incompressible fluid seems valid.
3. For the calculation of the K-values for $\mathrm{H}_{2} \mathrm{~S}$ and CO_{2} an assumption was made that no CH_{4} dissolved in the methanol. Lannung and Gjaldbaek (9) reported the mole fraction methane in methanol to be 8.71×10^{-4} at atmospheric pressure. The K-value of methane in methanol at 904.7 psia was 65.79 while for CO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ the K -values were 0.36 and 0.21 respectively. Clearly, when methane is present with $\mathrm{H}_{2} \mathrm{~S}$ and CO_{2} it can be safely assumed that methane is insoluble for the purpose of calculating the K-values for $\mathrm{H}_{2} \mathrm{~S}$ and CO_{2}.
4. The final assumption made is that when a sample is drawn from the equilibrium cell into the sample bomb the equilibrium concentration in the vapor phase is the same as at equilibrium.

The whole operation is almost instantaneous and thus the equilibrium concentration in the sample tends to be the same as at equilibrium.

The K-values obtained were plotted as functions of total pressure on $\log -\log$ scale (Figures 2, 3, and 4). As expected, K-values decrease as pressure increases.

The value for $\mathrm{K}_{\mathrm{CO}_{2}}$ at 575.7 psia was obtained as a check point after the curve was drawn. It is very close to the values predicted by the curve.

In the case of $H_{2} \mathrm{~S}$, the value at 1021.7 was obtained as a check point. Its deviation can be due to the fact that in the calibration of the gas chromatograph the results $y_{H_{2}}$ S $=$ 0.1302 (taken at 920 psia) were inconsistent.

TABLE I

EQUILIBRIUM DISTRIBUTION COEFFICIENTS (K) FOR CO_{2} IN METHANOL

Total Pressure Psia	K	Kaverage
120.7	15	16.37
420.7	17.74	
$575.7 *$	1.717	
974.7	1.243	1.48
	.2723	
		.38

* Indicates a check point.

Figure 2. Equilibrium Distribution Coefficient (K) for Carbon Dioxide in Methanol

TABLE II

> EQUILIBRIUM DISTRIBUTION COEFFICIENTS (K) FOR $\mathrm{H}_{2} \mathrm{~S}$ IN METHANOL

Total Pressure Psia	K	
114.7	5.95	K Average
	9.30	7.625
514.7	.27	.43
724.7	.59	.2536
$1021.7 *$.2536	.36

* Indicates a check point.

Figure 3. Equilibrium Distribution Coefficient (K) for Hydrogen Sulfide in Methanol

TABLE III EqUiLIbRIUM DISTRIBUTTON COEFFICIENTS (K) FOR
CH IN METHANOL CH_{4} IN METHANOL

Total Pressure Psia	K	$\mathrm{K}_{\text {Average }}$
114.7	352.11	352.11
514.7	78.125	78.125
904.7	65.79	65.79

Figure 4. Equilibrium Distribution Coefficient (K) for Methane in Methanol

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

1. This experimental procedure seems to work for obtaining K-values. The results obtained, taking into account the assumptions made, are reasonably consistent.
2. Methanol is a more effective solvent for $H_{2} S$ at low pressure than for CO_{2}.
3. Methanol is an effective solvent for both at high pressure (~ 1000 psia).
4. In order to substantiate these results the experiment has to be repeated using the same procedure and equipment.
5. The following are some recommendations for the improvement of the experiment:
a. Liquid phase samples should be analyzed and either used as check points for the calculations or used directly in obtaining K-values.
b. The gas chromatograph used for the carbon dioxide K-values is too sensitive for $\mathrm{H}_{2} \mathrm{~S}$ analysis. It should not be used. A flame type detector seems to work better, as in the case of $\mathrm{H}_{2} \mathrm{~S}$ analysis.
c. Calibration should be done on basis of mole fraction plus total pressure. For example a calibration at $y=0.05$ should be done at $100,500,1000$ psia total pressure, to ascertain the accuracy of the calibration curves.
6. Maddox, R. N. Gas and Liquid Sweetening 2nd Ed., J. M. Campbe11, 1974.
7. Katz, D. L. and K. H. Hachmuth, "Vaporization Equilibrium Constants in a Crude Oil-Natural Gas System," Industrial Engineering Chemistry, 29, 1072 (1937).
8. Sage, B. H. and H. H. Reamer, "Some Methods of Experimental Study of Vapor-Liquid Equilibria," Chemical Engineering Progress Symposium Series, 48 (2, B) (1952).
9. Muhlbauer, H. G. and P. R. Monaghan, "Sweetening Natural Gas with Ethandamine Solutions," Oil and Gas Journa1, 55 (17), 139-145 (1957).
10. Maadah, Ali, "Gas Sweetening K-Value Determination," Report Submitted to Dr. R. N. Maddox, Oklahoma State University, Stillwater, Oklahoma, 1975.
11. Perry, H. R. and Ch. H. Chilton, Chemical Engineers' Handbook. 5th Ed., McGraw-Hill, p 3-108 (1976).
12. GPSA Engineering Data Book, 9 th Ed. (revised). Gas Processors Suppliers Association, 1976.
13. Souders, M., C. Selheimer and G. Brown, "Equilibria Between Liquid and Vapor Solution of Paraffin Hydrocarbons, Industrial and Engineering Chemistry, 24 (1932).
14. Lannung, A. and C. Gjaldbaek, "The Solubility of Methane in Hydrocarbons, Alcohols, Water and Other Solvents," ACTA CHEMICA SCANDINAVICA, 14, 1124-1128 (1960).

APPENDIX A

CALIBRATION DATA
'T'ABLE IV
CALIbration data for pressure transducer*
$\left.\begin{array}{lcccc}\hline \begin{array}{c}\text { Pressure } \\ \text { (Psig) }\end{array} & & \text { Potentiometer Reading } \\ \mathrm{mV}\end{array}\right)$

TABLE V
PRESSURE TRANSDUCER CALIBRATION*

Pressure Psig	Reading mv
106	-1.0
206	-0.1
306	+0.78
406	1.70
506	2.61
606	3.52
706	4.40
906	5.30
906	6.18
1006	7.06

* Calibration (1)

Figure 5. Pressure Transducer Calibration

TABLE VI
CALIBRATION DATA FOR PRESSURE T'RANSDUCER*

Pressure (Psig)	Potentiometer Reading mV		
	1	2	3
106	-1.68	-1.66	-1.68
206	-. 73	-. 74	-. 75
306	. 15	. 16	. 14
406	1.02	1.04	1.03
506	1.92	1.92	1.92
606	2.815	2.82	2.82
706	3.7	3.7	3.7
806	4.6	4.6	4.61
906	5.5	5.5	5.5
1006	6.4	6.4	6.4

* Calibration (2)

TABLE VII

PRESSURE TRANSDUCER CALIBRATION*

$\begin{gathered} \text { Pressure } \\ \text { Psi } \end{gathered}$	Reading mv
106	-1.67
206	- . 74
306	$+.15$
406	1.03
506	1.92
606	2.82
706	3.7
806	4.6
906	5.5
1006	6.4

* Calibration (2)

Figure 6. Pressure Transducer Calibration

TABLE VIII

CALIBRATION DATA FOR GAS CHROMATOGRAPH FOR CO 2 KNOWN LOADING

Run No.	CO_{2} Loading $_{\mathrm{mV}}$	Total Loading mV	Transducer Calibration
5	-1.15	.28	1
6	-1.56	1.36	1
7	-1.5	3.10	1
8	-1.16	2.17	1
10	-1.63	1.9	1
11	-1.56	+1.36	1

TABLE IX
GAS CHROMATOGRAPH CALIBRATION DATA FOR CO_{2}

Run No.	Weight of Peak gm				
	CO_{2}	CII_{4}	Total	$\mathrm{CO}_{2} /$ Total	Avg.
5	. 380	. 2134	. 5934	. 640	
	. 4063	. 1815	. 5878	. 691	
	. 3728	. 210	. 5828	. 640	
	. 3695	. 2074	. 5769	. 630	
	. 3765	. 1820	. 5585	. 674	
	. 3248	. 206	. 5308	. 612	. 648
6	. 1555	. 2400	. 3955	. 393	
	. 146	. 2744	. 4204	. 347	
	. 145	. 2446	. 3896	. 372	
	. 121	. 2730	. 394	. 3071	
	. 1432	. 2477	. 3909	. 366	
	. 1365	. 2420	. 3785	. 3606	. 358
7	. 0661	. 2158	. 2819	. 2345	
	. 0607	. 2618	. 3225	. 2559	
	. 074	. 2725	. 3465	. 2136	
	. 0782	. 243	. 3212	. 2435	
	. 0633	. 2636	. 3269	. 1936	
	. 0715	. 277	. 3485	. 2052	. 2244
8	. 1539	. 1927	. 3466	. 444	
	. 122	. 19	. 312	. 391	
	. 1565	. 2227	. 3792	. 421	
	. 1605	. 233	. 3935	. 4078	
	. 132	. 206	. 338	. 3609	. 4031
9	. 1295	. 2007	. 3302	. 392	
	. 128	. 2295	. 3575	. 358	
	. 1295	. 2296	. 3591	. 2606	
	. 128	. 2135	. 3415	. 3748	
	. 095	. 189	. 284	. 3345	
	. 1159	. 186	. 3019	. 3839	
	. 109	. 217	. 326	. 334	. 3626
10	. 1157	. 2056	. 3213	. 36	
	. 0943	. 230	. 3243	. 29	
	. 0894	. 2125	. 3019	. 296	
	. 0835	. 2400	. 3235	. 258	
	. 0835	. 2129	. 2964	. 281	
	. 0918	. 98	. 296	. 33	. 3025
11	. 0613	. 15045	. 21175	. 2895	
	. 0632	. 15745	. 22065	. 2864	
	. 06595	. 15965	. 22560	. 2923	. 2894

TABLE X

CALIBRATION DATA FOR GAS CHROMATOGRAPH FOR $H_{2} S$ KNOWN LOADING

Run No.	Sample Bottle No.	$\mathrm{H}_{2} \mathrm{~S}$ Loading mV	```Total Loading mV```	Transducer Calibration
1	$\begin{array}{r} 11 \\ 6 \end{array}$	-2.0	2.8	2
2	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	-2.1	5.56	2
3	$\begin{array}{r} 9 \\ 10 \end{array}$	-2.35	3.0	2
4	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	-2.4	3.0	2

TABLE XI
GAS CHROMATOGRAPH CALIBRATION DATA FOR CO_{2}

Mole Fraction	$\frac{\mathrm{CO}_{2} \text { Peak Area }}{\text { Total Peak Area }}$
.40	.648
.142	.358
.103	.2244
.21	.3031
.146	.3025
.146	.2894

Figure 7. Gas Chromatograph Calibration for CO_{2}

TABLE XII
CALIBRATION DATA FOR GAS CHROMATOGRAPH ANALYSIS FOR $\mathrm{H}_{2} \mathrm{~S}$

TABLE XII (Continued)

Run No.	Average	Sample Bottle No.	Length of $\mathrm{H}_{2} \mathrm{~S}$	Attenuation	L x Att.	Length of Peak cm	Attenuation	$\text { L x Att. } \underbrace{(\mathrm{L} \times \mathrm{A})} \mathrm{H}_{2} \mathrm{~S}$	
			Peak						Total
4	. 01552	13	11.7	8	93.6	10.55	512	5401.6	. 0170
			9.8	8	78.4	10.55	512	5401.6	. 0143
		14	11.1	8	88.8	10.5	512	5376	. 0762
			10.1	8	80.8	10.5	512	5376	. 0148

TABLE XIII
GAS CHROMATOGRAPH CALIBRATION DATA FOR $\mathrm{H}_{2} \mathrm{~S}$

Mole Fraction	$\frac{\text { Area of } \mathrm{H}_{2} \mathrm{~S} \text { Peak }}{\text { Total Area }}$	Average
.1302	0.04858	
.08	0.0205	.03455
.0707	.01826	.016715
	.02125	.02162
.0544	.02199	.15575

Figure 8. Gas Chromatograph Calibration for $\mathrm{H}_{2} \mathrm{~S}$

APPENDIX B

EXPERIMENTAL DATA

LOADING FOR CO 2 EQUILIBRIUM DISTRIBUTION COEFFICIENT

Run No.	$\begin{aligned} & \text { Loading } \\ & \mathrm{mV} \end{aligned}$	Total Loading mV	Liquid Level, m1		
			Initial	Final	Transducer Calibration
14	-1.135	+6.76	201	301	1
15	-1.135	+6.76	302	402	1
16	-1.6	+1.7	301	401	1
17	-1.6	+1.7	200	300	1
18	-1.9	-1.00	352	452	1
19	-. 19	-1.00	395	495	1
20	--. 19	-1.00	300	400	1
21	-2.13	+2.381	250	350	2

TABLE XV
GAS CHROMATOGRAPH ANALYSIS DATA FOR CO $2-\mathrm{CH}_{4}$ IN METHANOL

Run No.	CO_{2} Peak Area Weight gm	CH_{4} Peak Area Weight gm	Total Weight gm	CO_{2} Peak Area Weight Total Weight	Avg.
14	. 02323	. 15755	. 18078	. 1285	
	. 02030	. 17370	. 19400	. 1046	
	. 02045	. 17252	. 19297	. 1060	
	. 01575	. 17590	. 10165	. 0822	. 1130
15	. 02565	. 17016	. 19581	. 131	
	. 02565	. 17145	. 19710	. 130	
	. 02375	. 17610	. 19985	. 1188	
	. 02245	. 17175	. 19420	. 1156	. 1239
16	. 03163	. 1489	.18053	. 1752	
	. 02905	. 14625	.17530	. 1663	
	. 02668	. 14164	. 16832	. 15850	
	. 03055	. 14365	. 17420	. 1754	. 1689
17	. 02795	. 15766	. 18561	. 1506	
	. 02700	. 16835	. 18535	. 1457	
	. 02535	.14590	.17125	. 1480	. 1481
19	. 05077	. 1441	. 19487	. 2605	
	. 04965	. 15115	. 2008	. 2473	
	. 05010	. 11874	. 16884	. 2967	. 2682
20	. 05500	. 14565	. 20065	. 2727	
	. 05564	. 14185	. 19749	. 2832	
	. 05800	. 15282	. 21082	. 2715	. 277
21	. 01660	. 18131	. 19791	. 0843	
	. 015052	. 1691	. 184152	. 0817	
	. 0261	. 1815	. 2076	. 1259	
	. 02778	. 16275	. 19053	. 1458	
	. 0284	. 1665	. 1949	. 1459	. 1160

TABLE XVI

LOADING FOR $H_{2} S$ EQUILIBRIUM DISTRIBUTION COEFFICIENT

Run No.	Sample Bottle No.	$\begin{gathered} \mathrm{H}_{2} \mathrm{~S} \\ \text { Loading } \\ \mathrm{mV} \end{gathered}$	Total Loading mV	Liquid Level, m1		Transducer Calibration
				Initial	Final	
	15					
5		-1.65	6.42	250	350	2
	16					
	17					
6		-1.65	6.42	350	450	2
	18					
	19					
7		-2.1	+1.9	250	350	2
	20					
	21					
8		-2.1	+1.9	350	450	2
	22					
	23					
9		-2.45	+1.7	250	350	2
	24					
	25					
10		-2.45	+1.70	350	450	2
	26					
	27					
11		-1.9	+3.75	200	300	2
	28					
	SG1					
12		-1.9	$+3.75$	301	401	2
	SG2					

TABLE XYII

GAS CHROMATOGRAPH aNALYSIS DATA FOR $\mathrm{H}_{2} \mathrm{~S}^{-\mathrm{CH}_{4}}$ IN METHANOL

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Sample Bottle No.	CH_{4}			$\mathrm{H}_{2} \mathrm{~S}$			$(\mathrm{L} \times \text { Att. })_{\mathrm{H}_{2} \mathrm{~S}}$	Average
		Length of Peak cm	Attenuation	L x Atten.	Length of Peak cm	Attenuation	L x Atten.		
5	15	10.6	512	5427.2	2.9	16	46.4	. 0085	
		4.0	512	2048.0	2.7	4	10.8	. 0053	
	16	10.6	512	5427.2	3.7	16	59.2	. 0108	
		10.5	512	5376	3.4	16	54.4	. 0100	
6	17	10.55	512	5401.6	4.9	16	78.4	. 0143	
		10.5	512	5376	4.45	16	71.2	. 0131	
	18	10.6	512	5427.2	4.1	16	65.6	. 0119	
		5.5	512	2816	2.4	8	19.2	. 0068	
	19	10.65	512	5452.8	2.4	16	38.4	. 007	
		4.3	512	2201.6	2.6	4	10.4	. 0047	

TABLE XVII (Continued)

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$		CH_{4}			$\mathrm{H}_{2} \mathrm{~S}$			$(\mathrm{L} \times \text { Att. })_{\mathrm{H}_{2} \mathrm{~S}}$	Average
	Sample Bottle No.	```Length of Peak cm```	Attenuation	L x Atten.	```Length of Peak cm```	Attenuation	L x Atten.		
		10.65	512	5452.8	1.5	16	24	. 0044	. 0072
		10.62	512	5437.44	6.5	4	26	. 0047	
8	21	10.7	512	5478.4	3.2	16	51.2	. 0093	
		10.7	512	5478.4	3.3	16	52.8	. 0095	
	22	10.7	512	5478.4	3.2	16	51.2	. 0093	
		10.6	512	5427.2	3.0	16	48.0	. 0087	
9	23	10.55	512	5401.6	13.75	16	220	. 0391	
		10.6	512	5427.2	13.4	16	214.4	. 038	
	24	10.7	512	5478.4	11.9	16	190.4	. 0336	
		10.62	512	5437.44	11.2	16	179.2.	. 0319	
									. 040175

TABLE XVII (Continued)

Run No.	Sample Bottle No.	Length of Peak cm	Attenuation	L x Attern.	Length of Peak cm	Attenuation	L x Atten.	$\frac{(\mathrm{L} \times \text { Att. })_{\mathrm{H}_{2} \mathrm{~S}}}{\text { Total }}$	Average
10	25	10.5	512	5376	14.1	16	225.6	. 0403	
		10.6	512	5427.2	13.2	16	211.2	. 0375	
	26	10.65	512	5452.8	18.5	16	296.0	. 0515	
		10.6	512	5427.2	17.7	16	283.2	. 0496	
11	27	10.6	512	5427.2	1.8	16	28.8	. 0053	
		- -	- - -	- Faile	to get secter	ond rea	g - - - -	- - - - -	. 0061
	28	10.6	512	5427.2	4.65	8	37.2	. 0068	
		10.6	512	5427.2	2.3	16	36.8	. 0063	

TABLE XVIII
LOADING FOR CH_{4} EQUILIBRIUM DISTRIBUTION
COEFFICIENT

Run No.	$\mathrm{CH}_{4} \text { Loading }$	Liquid Initial	Level, m1 Fina1	Final Trans. Reading
1	1.92	07	107	2.28
2	1.92	207	307	2.28
3	5.35	100	200	6.06
4	5.35	200	300	6.06
5	-1.7	300	400	-1.64
6	-1.7	100	200	-1.64

APpendix C

SAMPLE CALCULATION

SAMPLE CALCULATIONS

Run No. 5, 6

TABLE XIX

PHYSICAL PROPERTIES OF THE GASES

Gas	P_{c} psia	$\mathrm{T}_{\mathrm{c}}{ }^{O_{R}}$
$\mathrm{H}_{2} \mathrm{~S}$	1306	672.7
CH_{4}	667.8	343.37

Note: Source Reference 7

TABLE XX

PRESSURE OF THE COMPONENTS IN THE CELL

Component	Loading mV	Pressure\% psig	Pressure psia
$\mathrm{H}_{2} \mathrm{~S}$	-1.65	105	119.7
Total	6.42	1007	1021.7

1. Moles of ${\underset{H}{2}}$ S introduced in the cell

For $\mathrm{H}_{2} \mathrm{~S} \quad \operatorname{Tr}=\frac{533}{672.7}=0.792$

$$
\operatorname{Pr}=\frac{119.7}{1306}=0.09165
$$

From Figure 2.13a reference (1)

$$
\begin{aligned}
\mathrm{Z} & =0.933 \\
\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}} & =\frac{\mathrm{P} \mathrm{v}}{\mathrm{ZRT}} \\
& =\frac{119.7 \text { psia } \times 1 \text { 1iter } \times 0.03532\left(\mathrm{ft}^{3} / 1 \text { iter }\right)}{0.933 \times 10.73 \mathrm{psia}\left(\mathrm{ft}^{3} / 1 \mathrm{~b} \text { mole }{ }^{\mathrm{O}} \mathrm{R}\right) \times 533 \mathrm{R}^{\mathrm{O}}} \\
& =7.9233 \times 10^{-4} 1 \mathrm{~b} \text { mole }
\end{aligned}
$$

2. Moles of CH_{4} added

Assuming gas composition of

$$
\begin{gathered}
y_{\mathrm{H}_{2} \mathrm{~S}}=\frac{119.7 \mathrm{psia}}{1021.7 \text { psia }}=0.117 \\
y_{\mathrm{CH}} \\
=0.883 \\
\mathrm{P}_{\mathrm{pc}}=\left(y_{j} \mathrm{P}_{\mathrm{cj}}\right)+\left(\mathrm{y}_{\mathrm{i}} \mathrm{P}_{\mathrm{ci}}\right) \\
\mathrm{T}_{\mathrm{pc}}=\left(y_{j} \mathrm{~T}_{\mathrm{cj}}\right)+\left(\mathrm{y}_{\mathrm{i}} \mathrm{~T}_{\mathrm{ci}}\right) \\
\mathrm{P}_{\mathrm{pc}}=0.117 \times 1306+.883 \times 667.8=787.4394 \mathrm{psia} \\
T_{\mathrm{pc}}=0.117 \times 672.7+.833 \times 343.37=405.095 \mathrm{R}^{0}
\end{gathered}
$$

Adjusting the Pseudo critical temperature for the presence of $\mathrm{H}_{2} \mathrm{~S}$
natural gas

$$
T_{p c}^{\prime}=T_{p c}-\varepsilon
$$

from Figure 2.14 reference (1)

$$
\begin{aligned}
& \rho \underset{\mathrm{H}_{2} \mathrm{~S}}{\mathrm{y}^{2}=0.117} \quad \varepsilon=18.5 \mathrm{R}^{\circ} \\
& \mathrm{T}_{\mathrm{pc}}^{\prime}=386.595 \mathrm{R}^{\mathrm{o}} \\
& \operatorname{Pr}=\frac{1021.7}{787.4394}=1.297 \\
& \operatorname{Tr}=\frac{533}{386.595}=1.379
\end{aligned}
$$

From Figure 2.13a reference (1)

$$
\begin{aligned}
& \mathrm{Z}=0.85 \\
& \mathrm{n}_{\text {total }}=\frac{1021.7}{0.85} \times \frac{\text { psia } \times 1 \text { liter } \mathrm{x} .03532\left(\mathrm{ft}^{3} / 1 \text { iter }\right)}{10.73 \text { psia }\left(\mathrm{ft}^{3} / 1 \mathrm{~b} \text { mole } \mathrm{R}^{\mathrm{o}}\right) 533 \mathrm{R}^{\mathrm{o}}} \\
&=7.4233 \times 10^{-3} 1 \mathrm{~b} \text { mole } \\
& \mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}} / \mathrm{n}_{\text {total }} \\
&= 0.1067
\end{aligned}
$$

Repeating previous procedure

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{pc}}=735.4492 \mathrm{psia} \\
& \mathrm{~T}_{\mathrm{pc}}=378.27898 \mathrm{R}^{\mathrm{o}} \\
& \varepsilon \quad=17.5 \mathrm{R}^{\mathrm{o}} \\
& \mathrm{~T}_{\mathrm{pc}}^{\prime}=360.78 \\
& \mathrm{Pr} \\
& \mathrm{Pr}^{\prime}=1.3892 \\
& \mathrm{Tr}=1.48 \\
& \mathrm{Z} \\
& \mathrm{Z}_{\text {total }}=0.88 \\
& \mathrm{n}_{\text {tal }}=7.1703 \times 10^{-3} 1 \mathrm{~b} \text { mole }
\end{aligned}
$$

$$
y_{H_{2} \mathrm{~S}}=\frac{{ }^{n_{H} \mathrm{~S}}}{n_{\text {total }}}=.1105
$$

```
Assume
\[
\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}=.111
\]
\[
\mathrm{y}_{\mathrm{CH}_{4}}=.889
\]
\[
P_{p c}=738.64 \mathrm{psia}
\]
\[
\mathrm{T}_{\mathrm{pc}}=379.92 \mathrm{R}^{0}
\]
\[
\varepsilon=17.8 \mathrm{R}^{0}
\]
\[
T_{p c}^{\prime}=362.12
\]
\[
\operatorname{Pr}=1.38
\]
\[
\mathrm{Tr}=1.47
\]
\[
z=.88
\]
\[
n_{\text {total }}=7.1703 \times 10^{-3}
\]
\[
\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}} \quad \mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}} / \mathrm{n}_{\text {total }}=.1105 \sim .111
\]
\[
\mathrm{n}_{\mathrm{CH}_{4}}^{2}=\mathrm{n} \text { total }-\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}=6.37797 \times 10^{-3}
\]
```

TABLE XXI
EQUILIBRIUM COMPARISON

Component	No. of Moles 1 b mole	y
$\mathrm{H}_{2}^{\mathrm{S}}$	7.9233×10^{-4}	0.111
CH_{4}		
Total	6.37797×10^{-3}	0.889

No. of moles of methanol added $=$

$$
100 \mathrm{ml} \times 0.7914 \frac{\mathrm{gm}}{\mathrm{ml}} \times \frac{\mathrm{g}_{\mathrm{mole}}}{32.04 \mathrm{gm}} \times \frac{1 \mathrm{~b} \text { mole }}{454 \mathrm{gmole} \mathrm{e}}
$$

$$
=5.441 \times 10^{-3} 1 \mathrm{~b} \mathrm{~mole}
$$

For Run 5 and 6 the result of analysis from Table XVI

$$
\frac{\text { Ratio of } \mathrm{H}_{2} \mathrm{~S} \text { peak }}{\text { total ratio }}=0.01005
$$

From Figure 7

$$
\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}=0.0375
$$

Assuming no CH_{4} in methanol

$$
\begin{gathered}
y_{H_{2} \mathrm{~S}}=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}}{{ }_{\mathrm{n}_{\mathrm{CH}}^{4}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}} \\
0.0375=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}}{\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}+6.37797 \times 10^{-3} \mathrm{lb} \text { mole }}
\end{gathered}
$$

$\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}$ in vapor phase $=2.485 \times 10^{-4}$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}$ in liquid phase $=7.9233 \times 10^{-4}-2.435 \times 10^{-4} 1 \mathrm{~b}$ mole

$$
\begin{aligned}
\mathrm{X}_{\mathrm{H}_{2} \mathrm{~S}} & =\frac{5.4383 \times 10^{-4}}{5.4383 \times 10^{-4}+5.441 \times 10^{-3}}=\frac{5.4303 \times 10^{-4} 1 \mathrm{~b} \text { mole }}{5.9885 \times 10^{-3} 1 \mathrm{bmole}} \\
& =0.091 \\
\mathrm{~K}_{\mathrm{H}_{2} \mathrm{~S}} & =\frac{.0375}{.09111}=.412
\end{aligned}
$$

VITA

Saedeldeen Ahmad Akashah
Candidate for the Degree of
Master of Science

Thesis: GAS SWEETENING; DETERMINATION OF EQUILIBRIUM DISTRIBUTION COEFFICIENTS FOR HYDROGEN SULFIDE, CARBON DIOXIDE AND METHANE IN METHANOL

Major Field: Chemical Engineering
Biographical:

Personal Data: Born in Nab1us, Palestine, June 26, 1947, the son Ahmad M. Akashah and Maneafa Hafiz Sharabi-Akashah.

Education: Graduated from Shawaikh High School, Kuwait, in 1965; From Cate Preperatory School, Carpentaria, California, 1966; Attended University of California at Santa Barbara, 1966-1970, Obtained Bachelor of Science in Chemical Engineering degree from Tri-State University, Angola, Indiana, August, 1972; completed the requirements for Master of Science degree in Chemical Engineering in May, 1978.

Professional Experience: Employed as Science Tutor in Refugee Camps in Lebanon, Apri1-September, 1970. Employed as Industrial Planner by the Industrial Development and Consulting Bureau, Ministry of Commerce and Industry, Kuwait, 1972-1975. Employed by the University of Kuwait 1975-present.

Professional Membership and Honors: Associate Member American Institute of Chemical Engineers; Member Kuwait Graduate Society; Member Kuwait Society of Engineers; United Nations Fellow, 1973; United Nations Fellow, 1975.

