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ABSTRACT

The object of this study was to find the practical 
methods for solving the two-dimensional temperature distri
bution in a locally isotropic medium whose state changes with 
temperature. A proposed numerical method and an experimental 
analog method appeared to offer greatest promise in solving 
such problems. To formulate the numerical solution it was 
first assumed that the changes of state of the medium under 
consideration occur in a finite temperature interval. By 
making this assumption the problem was reduced to solving a 
quasi-linear, parabolic differential equation subjected to 
some natural initial and boundary conditions. A generalized 
method was devised to study the behavior of the various 
numerical techniques for solving such problems. As a result, 
a predictor-corrector, alternating-direction, implicit (ADI) 
method was proposed. It was shown that the proposed solution 
is unconditionally stable and second order correct. The im
portant features of this solution are: a) except for a
nonlinear coefficient which should be evaluated by a suitable 
predictor formula, the proposed solution is similar to the 
solution of any ordinary heat conduction problem by an ADI 
method, b) the problems of composite media and more than one 
transition temperature can be solved without undue effort.
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The proposed numerical method was employed to obtain 
the temperature field in a semi-infinite plane external to a 
square. The plane is initially at its transition temperature 
and its boundary is at a fixed, uniform temperature. This 
problem was solved for a uniform mesh spacing and a non- 
uniform mesh spacing. The computer results indicated a high 
degree of accuracy and uniform stability of the numerical 
solution. Prior to analyzing this example problem, several 
one-dimensional problems were solved numerically to study 
the influence of the transition temperature range and other 
parameters on the accuracy of the proposed numerical method.

The experimental analog method was based on the ana
logy between heat transfer by pure conduction accompanied by 
a single change of state and mass transfer by pure chemical 
diffusion in a partially miscible, liquid-liquid, binary 
system. Several diffusion cells were tested under a variety 
of conditions to establish the feasibility of such an analog 
method. It was found that a pure two-dimensional diffusion 
field can only be produced in a suitable porous medium. The 
binary system of phenol and water was used in all the diffu
sion experiments. Using Whatman filter paper Number 52 as 
the porous medium, several successful experiments were 
carried out with the two-dimensional diffusion cell. One 
shape of the moving interface obtained corresponded to a 
semi-infinite region external to a rectangle whose boundary 
was maintained at a fixed, uniform concentration. Another 
shape was a wedge-like region external to a circle.
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As a result of these studies, it was concluded that 
the diffusion analog can be used for obtaining the shape of 
the moving interface at which a change of state occurs as 
well as the heat flux at the boundary of geometrically-com- 
plex, composite, two-dimensional regions. As an alternative 
to the diffusion analog, the numerical solution developed 
herein is recommended where a high degree of accuracy and a 
knowledge of the temperature distribution are desired, parti
cularly for regions having simple geometries.
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HEAT CONDUCTION WITH CHANGE OF PHASE 

CHAPTER I 

INTRODUCTION

The problems of transient heat conduction with change 
of phase have been encountered in studying many physical 
phenomena, such as ablation cooling, combustion of solids, 
solidification of large bodies of various mçlts, formation of 
permafrost and underground storage of cryogenic liquids.

The one-dimensional melting or solidification prob
lems have been treated extensively in current literature:
Boley (7,8), Dewey, Schlesinger and Sashkin (19), Rose (64), 
Altman (1), Sunderland and Grosh (69), Trench (74), Douglas 
and Gallie (26), Douglas (20,25), Longwell (56), Hamill and 
Bankoff (40), Ehrlich (33), Churchill and Teller (14), 
Churchill and Seider (15). Nevertheless, much work needs to 
be done to improve the accuracy of the theoretical predic
tions. In addition, there are many solidification and 
melting problems which are strongly two-dimensional and can 
not be approximated by a one-dimensional analysis. Practical 
solution of this type of melting and solidification problem 
is the object of this investigation. An immediate application



2
of the results is in the prediction of heat leak and thick
ness of the frozen ground around in-ground storage of a cryo
genic liquid during the initial cool-down, as well as in the 
periodic filling and emptying of the storage cavity and 
several similar problems.

The problem will be treated from two essentially 
different approaches. Each has its own inherited limitations, 
but when combined they may produce a complete solution for 
many two-dimensional heat conduction problems with latent 
heat. The first approach consists of the development of a 
suitable implicit numerical procedure which is then used to 
solve the problem, in a limited number of cases, with the 
aid of a high speed digital computer. The second approach 
is the development of an analog by which the two-dimensional 
temperature field in an object with latent heat is simulated 
by a geometrically-similar, concentration field produced by 
chemical diffusion in a partially miscible liquid-liquid 
binary system.

It will be demonstrated that this analog method is a 
powerful tool in studying the movement of the solid-liquid 
interface and heat transfer on the exposed boundary, when the 
object under consideration is geometrically complex although 
it suffers mildly from its inherent experimental errors. The 
numerical solution can be made fairly accurate when dealing 
with geometrically simple objects with simple boundary condi
tions . When the boundary is formed of an arbitrary surface, 
and when the boundary temperature is controlled by conduction.
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radiation and convection the numerical treatment of the prob
lem becomes difficult and highly specialized for a particular 
set of conditions and parameters. However, the proposed nu
merical solution can be used to obtain the temperature dis
tribution in a composite isotropic medium which changes its 
state at more than one temperature level, with no restrictions 
on the shape of the interfaces. These special features of 
the proposed numerical solution are believed to be unique.

The numerical solution and the analog diffusion will 
be developed independently because each method can be checked 
for consistency independent of the other. An identical 
example is solved by both procedures and a comparison of 
their results is made. However, this allegory should not be 
taken as a comparison between the theoretical and experimen
tal results, but rather, as two independent, analytical 
techniques for solving the problem.

The numerical treatment consists of two parts.
First, a relatively general theoretical analysis of the 
stability and the rate of convergence of the various numeri
cal procedures suitable for solving the problem was investi
gated. As a result of this analysis, a modified, alternating- 
direction, implicit (ADI) method was chosen as the basic 
scheme for solving the problem. A simple, predictor-correc- 
tor method was found to be the most suitable way of evaluating 
the nonlinear coefficients of the parabolic differential 
equation which describes the temperature field in a medium 
with latent heat. Second, a trial set of machine computations
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was carried out according to the procedure outlined in Chap
ter III. The results frcxn these trials for the one-dimen
sional case established the upper bounds for the norm of the 
error vector when compared to the analytical solution for 
the one-dimensional case. The latter also provided a basis 
for judging the errors in the numerical solution of the two- 
dimensional case.

Many complex two-dimensional, steady state heat con
duction (without change of state) problems have been studied 
by measuring the temperature profile in a scaled model. For 
transient, two-dimensional heat conduction problems of a 
large object, especially when a change of state is involved, 
such as solidification, measurement of temperature in a 
scaled model has the following drawbacks:

1. To devise a two-dimensional, transient, experi
mental model, a three-dimensional object must be 
used. To achieve symmetry along one of the axes, 
it would be necessary to insulate the correspon
ding faces perfectly. However, during the tran
sient period, heat will diffuse in all directions 
so that it would be difficult, if not impossible, 
to obtain a true, two-dimensional transient field. 
Another way of stating this point is that the 
thermal diffusivity of a good conductor is not 
appreciably different from the thermal diffusi
vity of a good insulator.
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2. For large objects the time-scaling factor in

volved in a laboratory-sized model is so large 
that simulation of simple, time dependent, 
boundary conditions requires an unattainable 
accuracy. To illustrate this point consider a 
cylindrical cavity 100 feet in diameter built 
in the ground and being filled and emptied with 
a cryogenic liquid every 200 hours. A labora
tory sized model could perhaps be a cylinder of 
water-saturated soil, 2 feet in diameter, with 
a 2 inch hole bored in its center. For this 
model the scaling factor for space co-ordinates 
is 600 and that of time— when the model material 
and the actual object have identical thermal 
properties— is 360,000. To simulate the boun
dary conditions one must be able to fill and 
empty the cavity in the model within 2 seconds, 
in addition to making all the measurements.

3 . To obtain the temperature profile and location 
of the interface many thermocouples would have 
to be immersed into the model. For the above 
example they should be situated on the two-dimen
sional plane of the symmetry with a spacing not 
larger than one twentieth of the diameter of the 
hole. Their positions must be known (and remain 
unchanged) to within to.OOl inch. If the tem
perature probes are 1/32 inch in diameter and if
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they are situated along straight lines, then 
about one third of the space is occupied by the 
thermocouples. The presence of the thermocouples 
produces an appreciable change in the temperature 
distribution which would have existed in their 
absence.

Because of these difficulties it is profitable to 
search for a suitable analog method for simulating the tem
perature field under consideration. The conduction of heat 
in an isotropic medium is governed by Fourier's lav/,

, = . k (t ) = (.,
ôn pc(T) an

where q is the heat flux in the direction of n due to the 
temperature gradient, ôT/èn (or energy gradient ôE/ôn) and 
pc(T) = ÔE/ôT. The accumulation of energy due to pure con
duction is,

7 q  = ̂  = pc(T)^ (b)01 o t

where t is time and where bold-faced symbols represent (and 
hereafter) vector quantities.

Now, if in a continuous and isotropic object a cer
tain flux j can be developed by a certain potential V such 
that,

3 = - a' {vfjv (a')

(b')
at

*E is the heat content of a unit volume of the system



and

a* ) = const. (c)
' 'pc(T)/

then in geometrically similar objects the potential V and the 
energy E are analogous, provided that the boundary conditions 
in both cases can be made mathematically identical. For 
example, the flux of mass by pure diffusion in an incompres
sible liquid binary system is given by Pick's second law 
of diffusion: .

iK = - i>ab<=a>Vc^

where is concentration of A in moles per unit volume.
The accumulation of the species A is then.

7Ja = at

Therefore, the concentration distribution due to the binary 
diffusion is analogous to the energy distribution (not tem
perature distribution) due to pure conduction. By a suitable 
choice of the liquid binary system one can also satisfy the 
condition (c) . For example, at the melting point of a solid 
K/pc is discontinuous, and there is an energy gap between 
the solid and liquid which are in contact with each other.
The same can be said for a partially miscible, liquid-liquid, 
binary system.

There are, of course, other fluxes and potentials 
that satisfy (a') and (b'), but for problems of heat conduc
tion with change of state (c) is a difficult one to fulfil.
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For example the flux of electrons through a conducting solid 
due to a gradient of electrical potential satisfies both (a) 
and (b‘). However, it does not satisfy (c) since a'(V) is 
essentially independent of the local potential.

The analogy between diffusion and heat conduction is 
further discussed in Chapter II. At this point it is more 
appropriate to observe the following apparent advantages of 
a diffusion analog:

1. Contrary to the heat conduction model, molecular 
diffusion can be completely stopped on a well 
defined boundary surface. Thus, for a two-dimen
sional problem, the analog can consist of a thin 
liquid film between two flat glass plates, posi
tioned in such a way that the space between them 
has a two-dimensional similarity with the object 
under consideration.

2. The location of the interface at any instant can 
be most accurately obtained by direct photography 
of the diffusion cell. The concentration profile 
can be obtained without disturbing the concentra
tion field by a variety of proven techniques, 
such as interferometry.

3. Contrary to a heat conduction model, where it is 
very difficult to know how much heat is trans
ferred to the test medium at the boundary and 
consequently impossible to simulate accurately 
the desired boundary conditions, concentration
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and flow distribution of the liquid passing over 
the boundary can be very closely controlled.
Thus, simulation of a variety of boundary condi
tions is possible in the diffusion analog.

4. The diffusion coefficient of liquid systems is 
about one thousand times smaller than its ther
mal diffusivity. Therefore, for an identical 
geometrical-scaling factor, the time-scaling 
factor is one thousand times greater than that 
of a heat conduction model. Thus, there is con
siderable latitude in selecting the most con
venient size of the model with its corresponding 
time-scale.

Most of the above observations are true when the 
diffusion analog is compared to other analogs which the 
author can visualize. The only serious drawback of a diffu
sion analog is the difficult task of developing a two-dimen
sional concentration field which is produced by pure diffu
sion . Nevertheless, since the potential applications of a 
diffusion analog are so promising, this experimental investi
gation was undertaken.

The experimental work on the diffusion cell analog 
is discussed in Chapters V and VI. It suffices to explain 
here that the object of these experiments was solely to 
demonstrate the practicality of producing a pure two-dimen
sional diffusion field in various geometrical arrangements 
for application to melting and solidification problems.
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Although all the experiments with two-dimensional diffusion 
in an open field were unsuccessful, it was possible to pro
duce a pure-diffusion, concentration field in a porous medium.

To review the state of art and also to explain the 
basic concepts developed in the present work, it is necessary 
to obtain first a general formulation of the problem.

Mathematical Presentation of the Problem 
Consider a connected three dimensional region, R', 

and its boundary surface, T'. Let R' contain a uniform and 
isotropic medium whose state and properties are only tempera
ture dependent. Define the dimensionless temperature, u, by 
the relation

u = I K(T') dT’ / I K(T') dT', T2 >T>T^ (1.1)
Ti / Ti

where, T = actual temperature,
and = two unequal but otherwise arbitrary actual 

temperatures,
K(T) = thermal conductivity of the medium con

tained in R'.
Let heat be transferred in R' by pure conduction only, and 
no heat be generated in R' by a chemical reaction or any 
other phenomena. Then the dimensionless temperature, u (x ;T ) , 

satisfies:*

*See Carslaw and Jaeger (12) for derivation of (1.1). See 
also Boley and Weiner (9) for an excellent discussion on the 
coefficients a, and y.
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y2u(x;T) = <p(u(Xyr))|^ u (X;T) . XCR'; T > 0 (1.2a)

a(XîT) u(x;t) + fi(xjT) u(x;t) = yCxyr), xcF ; T>0 (1.2b)

u(X;0) = G(X), X(R (1.2c)

where, x = (x̂ , %2 , X3 )
Xĵ , IsizS = a co-ordinate axis in any orthogonal

curvilinear co-ordinate system chosen to 
describe the region, R' (dimensionless),

^2 = the Laplacian operator, defined by

( # ;  5%)] ‘ ̂
iT^JA

9i = 9i(x)
at = at/a^ for lsü3, a geometrical scaling fac

tor applied to x^

<p(u) = <p(T) = P̂c (Tq ) / K(Tq) jy^^pc(T) / K(T)j 
= dimensionless thermal diffusivity, 

c(T) = specific heat = (ôE/ôT)^
0 = constant density of the medium in R‘
Tq = another arbitrary reference temperature 
T =^K(Tq ) / p c(Tq ) j t/a2 = dimensionless 

time.
The coefficients a, /3 and y are in general dependent on u in 
addition to x and t. However, no appreciable loss of the 
generality is introduced by assuming that they are indepen
dent of u. du/^n refers to the outward pointing normal on
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r' . When the boundary condition (1.2b) is of the natural 
type, which roust be the case for heat conduction problems, 
then in general,

a(x:T)  ̂0, /3(x ;t ) 2: 0, xcr‘, T > 0
(1.3)

a(x;r) 5 )3(x ;t ) > 0, XcF* , T > 0

If the medium in R' undergoes a change of state in some tem
perature intervals (Tp - 6Tp) to (Tp + 6Tp) with absorption 
or emission of heat, then one can write

^Tp+6Tp ^^Tp
c(T' + Tp) dT', 6Tp > 0 (1.4)
-6Tp

where L is the latent heat of transition, and s' is the sen
sible heat absorbed in the transition temperature range. 
Substituting <o(u) in (1.4) and setting

L + s ' = c(T) dT' = 
Tp-ÔTp

L + s' = K(T^) 
1 + s c(To) K(T') dT' 

Ti
and then

1 + s =
6 "i
(p(Up + u') du', ô'p > 6 "p > 0 (1.5)
-ô'„

where,

«'p =

("p =

rGTp
K(Tp - T') dT' /

o
rôTp
K(t + T') dT'FO

r? 2

K(T') dT'
Tl

K(T') dT'

(1.6)
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It is known that for pure and homogenous substances 6Tp and 
subsequently 6 'p and 6 "p are negligibly small, but never 
equal to zero. Therefore, it is more realistic to set ôp / 0 
and solve (1.1) with this restriction. For impure substances 
6Tp is about 3®C or more such that for T2 - T^ = 100“C.
2ôp = 6 'p + 6 "p  ̂0.02, if K(Tp) / K(T) z 2/3, and T^<T<T2 .

Regardless of how ôp is defined, the problem is non
linear, even if one divides the region R' into sub-regions, 
R'^, each containing only one homogenous phase, and assumes 
that <p(u) is temperature independent in the interior of each 
sub-region and 6p = 0. The reason is not so obvious at 
first glance, because this scheme makes the differential 
equation (1.2a) linear, which is very desirable. On the 
other hand, the boundary conditions on the interface of any 
two adjacent, homogenous phases become nonlinear. More 
specifically, the temperature in the two adjacent sub-regions 
R'^ and R‘j are related by the conditions,

u(i)(x;T) = u(j)(x;T) = u^ij, Xcr'ĵ j, T > 0 

rau(i) au(j) /

where the superscripts i,j designate the quantities defined 
in R ' a n d  R'j respectively. is the interface of the
two phases i, (or region R'^) and j, (or region R'j). l̂ j 
is the dimensionless heat of transition from the state "i" 
to the state "j", and u^^j is the corresponding transition



14
temperature. p(X) is a weight function depending on the co
ordinate system, n^j is a directed normal on •

If one wishes to solve the problem analytically, the 
above scheme is indeed useful. On the other hand, it brings 
in a major obstacle in the development of a general numerical 
solution. To demonstrate these points, consider the alter
native formulation of (1 .2 ) obtained by assuming 6p = 0 and 
(fi ̂  <p(u) . Namely:

y2 u(i)(x;x) = ( ^ u ^^^(x ;t ). 1  ̂i  ̂Ng, XcRij » T>0 (1.8a)

/3 m Ü I  (x;t) + (x;t) = y. , l<izN_, xcF! , t> 0  (1 .8b)
an an

u(i)(x;0) = G^(x), 1 3 i 3 Ng, XCR| (1.8c)

subjected to the interface conditions,

u(l)(X;T) = u(])(X;T) = uJj , i / j , l^i,j^N^, XfFĵ j , (1 .8 d)
T >  0

a,](i) Aiitj) an̂ ip(x)  ----  (X;T) +  ---- (X;T) = 1. .— Ü, 1 s i,j 3 N ,anii an . dt s ( 1 gg)
X€V^y 7 > 0

where the notation of (1.7) is adopted, and Ng designates the 
number of isolated phases in R*. is the portion of F'
belonging to . Note that N^ does not necessarily indicate 
the number of the thermodynamic states of the medium in R*. 
Figure 1 shows a typical two-dimensional region with four 
sub-regions.

To solve the problem analytically one first obtains 
a formal solution which satisfies (1 .8 a, b, and c) but not
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necessarily (1.8d and e) for each i, 1  ̂i  ̂Ng. Many 
special cases can be solved without undue difficulty. The 
next step is to force these solutions to satisfy the inter
face conditions (1.8d and e). The solution obtained is of 
course in an integral form. Once these steps are completed, 
an ambitious investigator may then venture into correcting 
the solution to take into account the temperature dependency 
of (p. At first glance, all these steps appear very feasible 
and practical. The situation looks even brighter when one 
tries the above ideas by first solving a simple problem, 
which traditionally has been that of linear flow of heat in 
a semi-infinite bar initially at u(x^ ) = 1 , with its sur
face Xĵ  = 0 kept at zero temperature or at which a constant 
amount of heat is removed for t > 0. The analytical solu
tion for this case has a very convenient functional form, 
and can be readily computed (7, 8 , 9, 12, 35).

In reality, however, there is a wide and dangerous 
gap between being able to derive an analytical solution for 
a simple one-dimensional problem and being able to do the 
same for even the simplest two-dimensional problem. The 
difficulty is essentially in reducing the formal integral 
solutions of the problem to a form suitable for computation. 
The integral equations are in such a form that even an 
attempt to approximate them by numerical methods presents 
some insurmountable obstructions.

The numerical solution of (1.8) also presents some 
unnecessary complications which revolve essentially around
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the interfacial conditions (1.8d and e). These complications 
arise in locating one or many interface surfaces, the direc
tion of the normal at several points on these surfaces, and 
finally in calculating their displacements as one moves from 
one time level to another. Here again the situation is not 
very bad if one is dealing with a one-dimensional problem 
where the interface is presented by a single moving point.
In fact many clever schemes have been developed for this 
special case (25, 26, 74). But, unfortunately none of these 
schemes are applicable to the problem in higher dimensions.
A co-ordinate transformation was originally proposed by the 
author (41) which maps the interface onto the circle r = 
provided that the region R' is divided only into two regions 
each containing only one homogenous phase. This transforma
tion solved many, but not all, of the difficulties in develo
ping an efficient numerical solution.

Once a suitable functional form for <p(u) is assumed, 
the job of solving (1 .2 ) numerically becomes a relatively 
easy matter. In this case one need not undertake the impos
sible task of writing a numerical procedure for locating the 
internal interfaces, nor does one need to develop a method 
for computing ôu^^Vôi^j and auO)/ôn^j immediately to the 
left and to the right of the interface R'^j,for all 1  ̂i,j  ̂
Ng. Instead, one solves the problem for u(x;t), XfR', and 
then plots the isotherms for u = u^^j, i s i,j  ̂Ng.

In view of the above observations, it seems natural 
to take Equation (1.2) as the starting equation for developing
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a numerical solution of the problem rather than Equation (1.8), 
such as is demonstrated in Chapter III.

In the case of one transition temperature, if one
lets

= max /slïl
pc(To) Ipc(T)

then cj(u) may be expressed by

o(u) = l.O+oĵ Cu) + Oglu) (1.9a)

' +6"
where

1 =
F

#2 (Up + u') du' (1.9b)

s =

-6 'f

+6 "f
(l.0+(p2 (up + u')J du'. (1.9c)

_ -6 'p

The general behavior of p(u), p^(u) and pgtu) is shown in 
Figure 2. The function p^Cu) is a positive smooth function 
and is usually defined for a medium under consideration.
@^(u) in some instances is either undefined or given as a 
pulse function. In both cases one must define a functional 
form for such that u(X;t) is best approximated. One
logical choice is:

<P2 (u) = Xexp [-/3̂ (u - Up)2 j (1 .1 0 )

where /3 is so chosen that,
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J
OgtUp + u') du' + |c| = l.Of Id

-Op

with jcj sufficiently small. For example, if /35p 2: 3 , then 
|c| < 4 X lQ-4. Obviously, when Ng > 2, similar ideas can 
be applied to every individual phase. In solving the prob
lem numerically one is primarily concerned with two important 
properties of <o(u) ,namely,

1 . #(u)  ̂1 . 0  for -00 < u < 00
(1 .1 0 a)

2. max I (p(u)i  ̂M + 1.0
-*<u<“ *• ■*

where M is a positive number independent of u . The size 
of M plays an important role in the accuracy of any numerical 
solution of the problem. In general, it is desirable to
choose M such that the combined discretization error and
error due to assuming a *alue of ôt, larger than the actual 
one is minimized.

Previous Theoretical Work
In the following, a brief account of some heuristic 

thoughts and ideas developed by previous investigators in 
solving the free boundary problems are given. Further dis
cussion on the published literature is given throughout 
Chapters II, III and IV.
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Analytical Solutions of the Stefan Problem

The first published discussion on the problems of 
heat conduction in a medium undergoing a change of state was 
given by Stefan (67) in his study of the polar ice thickness. 
For this reason such problems are referred to as the Stefan 
problem.

So far, many special cases of the Stefan problem 
have been solved analytically. These solutions are, in 
general, for the one-dimensional flow of heat in a finite or 
semi-infinite region. In this section only those solutions 
will be discussed which invite further investigation or are 
amendable to more complicated cases. For an excellent re
view of the existing solution see Carslaw and Jaeger (12) and 
Grosh and Sunderland (39). For a comprehensive theoretical 
treatment, as well as bibliography, reference should be made 
to Friedman (35). On this basis, the author recognizes 
three fundamental approaches to the problem, namely, Neumann 
(cf. 63), Boley (7) and Lightfoot (54). These solutions are 
reviewed below.

Neumann's solution. Consider a semi-infinite slab,
X  = xi > 0, initially containing a liquid at T̂  ̂with the sur
face X  =  0 maintained at zero temperature for t > 0. Let 
the freezing temperature of this liquid be Tp > 0. Then the 
temperature T(x,t) in the semi-infinite slab is given (12) by

TT (x,t) = — —  erf— ;== , t > 0, X  > 0 (1.11a)® erfg
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Z/oLt
(1 .1 1 b)

X(t) = (1.11c)
where,

X(t) = position of the interface 
Subscripts s and L designate the solid phase and 

the liquid phase, respectively, and $ is the root of the 
transcendental equation

(To, - Tp)(e"^^/erf4) -

«s/«L

CL-
CgTp

where,
erfc (sÆ)

(l.lld)

L = latent heat of fusion 
a = thermal diffusivity 
c = specific heat.

Subscripts s and L designate the solid phase and the liquid 
phase, respectively. Note that for each phase a. and c are 
assumed to be constants but are not necessarily the same for 
both phases. The solution (1.10) was given by Franz Neumann 
in his lectures in the 1860's (cf. 63). Neumann's solution 
is indeed the most useful and important solution of the Stefan 
problem. It provides a good order of magnitude check for the 
more complex problems, as well as giving the functional form 
of the functions describing the progress of the interface.
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Let T(x,t) be the temperature in the region x > 0 

and H(Z) be the Heaviside unit function.** Then, one can 
write the Neumann solution in a more elegant form:

H (x(t) - x) . J T* - Tp yT » ------- 73^  erfc— ^
erfc (V—  Vdôîjt

(1.12)

Now, if the boundary temperature is given by
T(o,t) = f(t) 

then onecan apply Duhamel's theorem to get
.t

T(x,t) = erff J f(t -t^) ôtY H(x - Xitj)) erf

• [’■ ■

’ stT [

Recently some attempts have been made to solve the above 
integro-differential equation.

Bolev's method (7). Compared with the logical pro
cedure described earlier, the essential feature of this

**H(Z) = 1 for Z > 0, H(Z) = 0 for Z < 0
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method is that it deals mathematically with a fictitious body, 
whose shape is unchanged and is identical with that of the 
body before any phase transformation occurs. The fictitious 
body is considered to be exposed to an imaginary heat input 
and initial temperature distribution whose magnitude is ad
justed so as to satisfy the appropriate solid— liquid inter
face conditions, In this way the original boundary value 
problem is replaced by an ordinary integro-differential equa
tion. The latter can be solved numerically or in series 
form without any difficulty, thus providing an exact solution. 
This method is not in general limited to the one-dimensional 
case.* However, the integro-differential equations involved 
usually become algebraically unmanagable.

To illustrate the method, consider again the flow of 
heat in a semi-infinite slab containing a liquid initially 
at zero temperature. Let the melting temperature be Tp, and 
let heat be removed at x = 0 at a constant rate Q. Let 
Tĵ (xit) and Tg(x,t) be the temperatures in the liquid phase 
and the solid phase, respectively. Assume the entire region 
X > 0 contains a fictitious liquid subjected to the boundary 
condition,

= Q + £l(t)

such that Tĵ (x,t) = T̂ (̂x,t) for x s X(t) . Next, let the 
solution T2 (x,t) be the temperature of a fictitious solid

*See Hasheroi (41) for further discussion.
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phase in the entire region x > 0 , having an unlmown Initial 
temperature g(x) such that

TgCXft) = Tg(x,t) for 0 s X i X(t)

Then one may write:

- ^  ̂  T^tx.t), X > 0 , t > 03x2 Oj dt i

Kj (O.t) = Q + f,(t), X  = 0,t > 0 (1.13)dx ^

T\(x,0) = 0, X  > 0

(%'t) = T2 (X't)

Kll (x,t) = Q (1.14)

Tg (x,0 ) = g(x)

where and T2 are subjected to the additional conditions, 
Ti(x(t) ,tj = Tp, t > 0
T^(x(t) ,t) = Tp, t > 0

ÔT0Kjj ^^2-- f^^t) , X = X(t) (1.15)

Kj = fg(t) - p L  , t > 0, X  = X(t)

The boundary value problems (1.13) and (1.14) can
be solved In terms of the unknown functions g(x) and f^(t) .* 
The system of equations, (1.13), (1.14) and (1.15), contains 
six unknowns. Applying the four conditions (1.15) to the

*See Carslaw and Jaeger (12), or any other text book on heat
conduction, for solution of (1.13) and (1.14) .
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solutions of (1.13) and (1 .1 2 ) one obtains six equations to 
be solved for the unknown functions T^, , f̂ , fg, X(t), and
g. The details of this procedure are given by Boley (7).
The most important result is the expression.

4m
ISff

m2

( '  f e  -  ■ ) “ •  [ t f  •

 ]1 2 7 ff 
where,

D — Oj/Oijj

tjjj = the time at which T^(o,t) is equal to T̂ ,.
Lightfoot *s method (54). Let the thermal properties 

of the two phases be the same and consider the region x > 0  

initially in the liquid state at a temperature T» > Tp. Let 
the position of the interface at time t be X(t) and let X(t) 
move at a velocity X(t). Then the heat of solidification is 
released at a rate IpX(t). One may consider this solidifica
tion boundary as a moving source of heat of strength IpX(t). 
If the surface x = 0 is kept at zero temperature, then the 
solution of the problem becomes:*

*See Carslaw and Jaeger (12) section (11.4) and (10.3) for 
derivation of this solution.
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T(x,t) = T« erf _ ^2(«t)% Icjîfôi

t .

j

exp 1̂- ^x - X(tĵ ) ) ̂  /  4tt(t - - (1.17)

exp ĵ- ̂ x + X(t^) ) ̂  /  4*(t - t̂ )j j»

Lightfoot (54) has solved the above integral equation by 
assuming,

x(t) = 2g (at) ̂

and making use of the condition,

T(x(t) ,t) = Tp (1.18)

The results are identical to (1.10) vdien *g = = *, and
K_ = K = K. What makes the Lightfoot method interesting s L
is the fact that the solution is the sum of two terms, each 
of which is in turn a solution of a simple heat conduction 
problem.

All that is required to be done is to use condition 
(1.18) to obtain the functional form of X(t), thus making 
it possible to write at least an integral solution for the 
more complex problems. Such a solution can yield the numeri
cal values of the temperature and position of the interface 
by a variety of techniques. The simplest one is the graphi
cal integration method.

It must be noted that both Lightfoot's method and 
Boley's method follow almost the same principles. However,
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Boley's method does not impose any restriction on the 
physical properties of the two phases. Besides, it is not 
necessary to guess a particular functional form for X(t).

The existance theorem for Stefan problems was given 
by Douglas (25) and was further developed by Kyner (48, 49). 
For other methods see Kolodner (47), Sestini (65, 6 6 ).
Oleinik (59) considered the nonlinear problem as well as 
several phase transitions. His solutions, however, satisfy 
the boundary conditions only in some generalized sense.

Numerical Solutions of the Stefan Problem
Practically all of the numerical methods suggested 

by the various authors are restricted to one-dimensional 
problems. The melting and solidification problem in higher 
dimensions is left almost entirely untouched. Most authors 
have preferred to study the numerical solution of the boun
dary value problem,

u^(x,t) = u^(x,t), 0 < X < X(t) , t > 0 (1.19a)

u%(0,t) = -1 , t > 0 (1.19b)

u(x,t) = 0  , X  ^ X(t), t > 0 (1.19c)

= -u^(x(t),t) , t > 0 (1.19d)

'X(O) = 0 (1.19e)

However, the numerical methods developed for solving (1.19) 
can be adapted to the case for which the conditions (1.19c) 
and (1.19d) are replaced by.
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u(x(t),t) = 0

u(x, 0 ) = a , a > 0 , x > 0  (1 .2 0 )

where the superscripts + and - indicate that the derivatives 
are taken Immediately on the left and on the right of the 
Interface, respectively.

The last two conditions In (1.19) may be replaced 
by the equivalent condition,

^X(t)
t = X(t) + \ u(x,t) dx (1.21)

which amounts to the heat balance over the whole system.
Douglas and Gallle (26) and Douglas (25) suggested 

the following numerical procedure:*
Let,

At^ (1 .2 2 )

Then choose At^, such that

X(t^) = X^ = n.Ac (1.23)

where Ax Is the uniform mesh spacing. Next, let W. beX, n
the approximate solution of the problem at t = t^ and let,

n
tn+l = *n+l + I  ”i.„ /k (1.24)

1=0

= *n+l -

*Thls procedure Is slightly different from the original one. ̂
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Then solve the difference system,

»i,n+l = - "i,n> / Atn ' i = 1.... " U.25a)

”l,n+l - "o,n+l = (125b)

"n+l.n+ 1  = °

Douglas (25) has proved the uniqueness theorem for 
the above solution as well as evaluating its rate of conver
gence. Note that the backward difference scheme in (1.25a) 
is in general unconditionally stable for all At > 0. Douglas 
(25) demonstrated that after some simple modifications, the 
uniqueness theorem also applies when the differential equa
tion is generalized to a nonlinear one.

Trench (74) studied the solution of the problem by 
an explicit method, taking fixed time steps. He proved that 
for At/Ac^ < 6 , {6 = h when the differential equation is 
linear; otherwise it is some known positive number) the dis
crete, forward difference solution is unique and converges 
to the solution of the continuous problem. Ehrlich (33) has 
discussed the uses of the Crank-Nicholson equation for 
generalization of (1.19).

Rose (64) has proposed a method for solving (1.19) 
that is analogous to a procedure introduced by Lax (52) to 
compute shock wave propagation in first order, hyperbolic 
equations. He has not yet succeeded in demonstrating the 
convergence for the method, but his numerical evidence is
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encouraging. Rose notes that his method is essentially in
dependent of dimensionality, but he has yet to try such a 
problem.



CHAPTER II

THE ANALOGY BETWEEN DIFFUSION MASS TRANSFER 
WITH CHANGE OF PHASE AND CONDUCTION HEAT 

TRANSFER WITH CHANGE OF PHASE

The analogy between diffusion mass transfer and 
heat conduction is well known, and the subject is discussed 
by many authors, for example Crank (17), Jost (44), and 
Carslaw and Jaeger (12). For this reason the reference here 
will be brief and oriented toward the application of this 
known principle in solving heat conduction problems with a 
free boundary (or change of state) . Included also in this 
chapter is a comprehensive discussion on the desired pro
perties of the binary liquid systems suitable for simulating 
heat conduction problems with change of phase.

Consider again the rate laws and the accumulation 
laws for diffusion in a partially miscible, liquid-liquid 
system and for heat conduction with change of phase in an 
isotropic medium., namely:

Diffusion Heat Conduction

Rate law = °AB^^A^^^A ^ = a(E)VE (2.1)

Accumulation law ” V  Ja ft (2.2)

31
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where,

= mass flux of component A,
= diffusion coefficient of component A in B,

a - thermal diffusivity = K/pc, where pc = ( ^ )
covers the entire temperature range including 
the phase transition as noted in Figure 2, 

q = conduction heat flux,
E = internal energy (heat content) of a unit

volume of the system
■ T

E(T) = / pc(T') dT'

Combining the above two laws and assuming that p is constant, 
one gets:
Diffusion ÊpA iVr. (2.3a)%t ^ AB' a' ̂  A

Heat Conduction âJS =Va(E)VE (2.3b)at
Clearly the parabolic differential equations (2.3a) and (2.3b) 
are mathematically similar. To demonstrate the complete ana
logy between the two phenomena it is also necessary to show 
the boundary conditions and the interface conditions are also 
similar. These two conditions take the following form: 
Boundary Condition:

1) Diffusion K(Cĵ i,#)(Ĉ -Cĵ ®) = 0 (2.4a)

ConLotion h(E,x|(E - E®) = 0 (2.4B)
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Interface Condition:

1) Diffusion D ^ 7 c J  -D^VC- = P(X)^C^|a. x*r; (2.5a)

tonLction E+-o-(B)Vr = p(K)AB|a, Xcl^ (2.5b)

where,
K(C^,x) = film coefficient of mass transfer at the 

boundary,
h(E,X) = film coefficient of heat transfer at the 

boundary,
n = an outward directed normal on the interface, 
Fg = the interface between the two co-existing 

phases,
p(x) = a weight function depending on the co-ordi

nate system such that p(x) dn gives the 
local change of the phase volume.

Superscripts + and - indicate immediately on the left 
and immediately on the right of the 
interface,

Ac^ = equilibrium concentration change across 
the interface,

A  E = latent heat of the change of state (melting 
or solidification),

B = the external boundary concentration of A,
Eg = environmental heat content defined byPpc dT

T,
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where Tg is the external boundary tempera
ture and p and c(T) are the internal pro
perties of the conducting region at the 
boundary.

Here again the mathematical similarity of Equations 
(2.4a) and(2.4b) as well as (2.5a) and (2.5b) is obvious.
To establish the criteria for direct analogy between the 
binary diffusion and the heat conduction, the above system 
of equations should be written in a suitable dimensionless 
form with the minimal number of parameters.

The Criteria for the Analogy
Consider a connected region R', and its boundary

surface F', as shown in Figure 3. Let there be at time t a
continuous interface F* separating the two coexistings
phases contained by R'. Imagine that R' had originally con
tained a liquid (or liquid phase I) at a uniform temperature 
T^ (or concentration C^^) and, due to imposing some tempera
ture conditions (or concentration conditions) on F', a solid 
phase (or liquid phase II) forms and expands in region R'. 
Then in the absence of chemical reaction and heat transfer 
(or mass transfer) by convection or any process other than 
conduction (or diffusion), the energy content E(X,t) (or 
concentration C^(x,t)) satisfies the following boundary 
value problems:
Differential Equation:

y  a*(u(x,T))V u(x,r) = ^ u ( x , t ) ,  xcR', t > 0 (2.7a)
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Figure 3. An Arbitrary Region R Divided into Two Sub- 
Regions by a Continuous Interface . (Each of 
the Two Sub-Regions Contains one of the Two Co- 
Existing Phases).
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Boundary Conditiont

u (x ,t ) + h(x,T.)(u(x,f ) - f(x,T))= 0, XcF', T>0 (2.7b)
Initial Condition:

u(x,0) = u^, XcR'
Interface Condition:
7u+(%,T) - xVutX^T) = P(x)|j (X,t ). xcr\ T > 0oT 8

U+(X,T) = 0, XcFg, T > 0
U-(X,T) = 1, XcTg, T > 0

where,
Heat Conduction

g -
El

Diffusion

(2.7c)

(2.7d)
(2.7e)
(2.7f)

u *
S 8

0£*(u) =

a'(u) = a(T) 5 a(E) 

X = a' ( D / a ’ (0 ) 

T = a'(0)t/aj

u_ =

f(x,r) =

=o - 4
- filF F

®B - E#
Eli - ElF F

a(u(x.T)) ; xcr

“a b “=a >

X = D' d)/D' (0) AB AB

T = D^a(0)t/a'
(2.8)

f(X,T) =

Cq - 
- Cs

C^^ - c^

h(X,T) = Kix,r)/D^(u(x,T)) i 
Xcr
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and are geometrical scaling factors in the heat con

duction problem and the diffusion problem, respectively. 
Therefore, in geometrically similar regions, the dimension- 
less energy content, u, or the dimensionless concentration, u, 
at the same dimensionless time, r, and for the geometrically 
similar points are identical, provided that the dimensionless 
parameters x, u^ and the functions a*(u), f(x,T) and h(x,r) 
are the same for both cases. The coefficients x and a* depend 
solely on the physical properties of the heat conducting media 
(or binary liquid systems). The functions f(X,r) and h(X,r) 
can be adjusted by a proper choice of the boundary conditions, 
while Uq depends on the initial temperature (or concentration).

The choice of a suitable, partially miscible binary 
liquid system therefore depends solely on x and a*, provided 
that it is practically possible to match u^ and f(x,T> by a 
suitable choice of the initial concentration and boundary 
concentration, respectively. The matching of the function 
h(x,r) usually requires some ingenuity and a thorough know
ledge of the film coefficient of mass transfer. However, 
it is essentially independent of the choice of a particular 
binary liquid system. The theoretical possibility of being 
able to match Uq and f(X,r)with practically all partially 
miscible binary liquid systems is, of course, unquestionable. 
Because the quantity (Cg^ - Cg) approaches zero as the tem
perature of the system approaches the critical solution tem
perature (Figure 4), it is possible, by a proper choice of 
the temperature, to adjust the ratio (CQ-Cg)/(Cg^-Cg) = u.
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Figure 4. The Desired Consolute Curve for a Suitable Binary 
Liquid System. (Note that there is very small 
change in C^ and C^^ around room temperature.
Note also that at Boom temperature (C^ - C^) / 
(C^I - C^) can vary between zero to about 1.5 
thus permitting simulation of a wide range of 
boundary and initial conditions at ambient 
temperature.)
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to any desired value. The same holds for the desired range 
of the ratio (C® - C^)/(C^^ - cj) = f.S o  8

Diffusion in Porous Media 
In chapters V and VI it will be seen that it is most 

difficult, if not impossible, to produce a true two-dimen
sional diffusion field in a non-porous region. On the other 
hand, reasonably good results may be obtained in porous media 
When the size of the pores are roacroscopically small, the 
diffusion equation (2.7a), the boundary conditions (2.7b), 
the initial conditions (2.7c) and the interfacial conditions 
(2.7d, e and f) all remain unchanged, provided that the 
porous medium is macroscopically isotropic. However, the 
value of the ordinary diffusion coefficient appearing in 
the dimensionless time T = ( 0 ) t/a^ must be replaced by an
effective diffusion c o e f f i c i e n t (0 ) for the porous medium 
under consideration. The effective diffusivity for porous 
media is related to the ordinary diffusivity by the relation

= n s  <2-9)

where,

n<Ai2

« 2  = effective porosity = (volume of the pores avail
able for diffusion)/(total volume),

= (mean cross-sectional area open for diffusion)/ 
(total cross-sectional area),
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17 = "tortuosity", "lithologie factor" or "labyrinth 

factor" = (actual diffusion path)/(linear path).
For a macroscopically uniform and isotropic medium 

a>2« 17, and consequently, cü are constant and independent 
of the position or concentration. The majority of authors 
working on porous media have assumed that Wj^W2 = 1.0. There 
are many instances in which this assumption is a very poor 
one. However, it holds very closely for the porous medium 
used in the present investigation (Whatman filter paper 
Number 52). The tortuosity, 17, is then the only factor that 
plays an important role in fibrous material such as filter 
paper. Carman (11) observed that in unconsolidated beds of 
spherical particles the actual distance traveled by a fluid 
in the direction of the flow is about times the linear 
path, i.e., 17 = 1.415 cind w - .71. Van der Poel (75) found 
that for unconsolidated glass powder and sand packs, 17 varies 
between 1.4 and 1.7. For fibrous material one would expect 
that 17 is slightly less than 1.4, so that o) = .75.

It is usually very difficult to arrive theoretically 
at a reliable value for 17. However, the experimental measure
ment of the quantity /17 can readily be made by making use 
of the analogy between steady state diffusion and electrical 
conduction in porous media. The analogy is simply based on 
the fact that the electrical conductivity of a conducting 
fluid in non-conducting porous media is equal to 01^17 times 
the electrical conductivity of the fluid alone. Knowing the 
electrical conductivity of the fluid, one can calculate (Hj/n.
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This method was suggested by Klinkenberg (46). He also re
ported some crude experimental data to substantiate his 
theoretical argument. More recently Dullien and Scott (32) 
and Fatt (34) successfully used the electrical conductivity 
method to make the measurements. An excellent discussion 
and review of the state of art on the experimental techniques 
for evaluating / tj and Wg is given by Welker (82).

The Properties of an Ideal. Partially Miscible 
Binary Liquid System Suitable for the 

Analog Studies
Before selecting a binary liquid system suitable for 

the present investigation, it is advisable to specify first 
of all the desired properties of such a system and then to 
search for the pair of liquids which best fulfills these 
requirements. The desired properties are:

1. Availability in a very pure state.
2. Easy to analyze accurately (to about 10“  ̂moles

per liter) the concentration of one component in
the other.

3. Availability of reliable data on:
a. equilibrium concentrations (Ĉ  and 

at various temperature levels,
b. density of the solution at all compositions,
c. refractive index at all concentrations,
d. viscosity at all concentrations and the 

temperature levels of interest,
e. integral and differential binary diffusion 

coefficient.
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£. surface tension and interfacial tension, 
g. freezing point and boiling point at various 

compositions.
4. Non-corrosive and weak solvent for resins and 

other polymers.
5. Low viscosity.
6 . No density change greater than 5 percent between 

the two equilibrium phases.
7. Very low interfacial tension WO.l dyne per cm.).
8 . Non-flammable, non-toxic, and non-caustic.
9. Sufficient change of refractive index between the 

phases to allow observation of the interface.
10. Strong change of refractive index or color with 

concentration to allow use of a simple technique 
for measuring the concentration profile developed 
by diffusion.

11. A consolute curve similar to that shown in Figure 
4 to allow simulation of a variety of initial and 
boundary conditions at room temperature.

Admitting that it is impossible to find a particular 
binary system which satisfies all the above requirements, one 
is forced to concentrate on the most critical requirements.
The requirements 3, 7 and 11 are perhaps the most important 
ones for the first evaluation of the diffusion cell analog. 
Nevertheless, when one wishes to solve a particular heat trans
fer problem, x is the only parameter that dictates the choice 
of a particular binary mixture.
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The Search for a Suitable Binary Mixture
If two common liquids are partially miscible, then 

most probably one of them is weakly polar and the other one 
is either non-polar or strongly polar. The degree of their 
mutual solubility depends on how closely they are polar or 
non-polar. This explanation of the phenomena is very crude, 
but it serves the purpose here. Therefore, water, as a 
strongly polar liquid, is the first choice for one of the 
components of the binary mixture desired. The reasons are:

1. It is abundantly available in very pure state.
2. It is the most extensively studied single fluid.
3. The properties of aqueous solution are more 

thoroughly studied, so that one would expect to 
find a wealth of experimental data on any par
tially miscible binary system having water as 
one of the components.

4. The methods for the analysis of water for most 
common liquids are well developed.

5. It is the safest liquid to handle.
Having chosen one of the components the choice of the second
one beccanes relatively easy. There are several excellent 
references covering all the experimental data on the proper
ties of aqueous solutions (55, 6 8 , 72). The critical solu
tion temperatures and the general shape of the consulate 
curves of an almost complete spectrum of the binary liquid 
mixtures are tabulated by Gould (38).
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In the course of conducting a search for the best 

binary liquid system, it was observed that the requirement 
of density very sharply limits the choice. When one wishes 
to simulate a heat transfer problem, one is essentially con
cerned with the matching of the densities, rather than the 
requirement that the two phases have almost the same density. 
However, when it is desired to compare the results of the 
diffusion analog with the known theoretical results, the 
density of the two phases should be essentially uniform in 
order to avoid the possibility of bulk flow occuring in 
addition to pure diffusion. Unfortunately, a solution to 
the transport equation involving both bulk flow and diffusion 
is not available.

As a result of the search, the binary systems phenol- 
water, aniline-water, isobutric acid-water, acetylacetone- 
water, and bezaldehyde-water appeared to be more suitable 
for the present investigation. The consulate curves for 
these systems are shown in Figure 5. Further examination 
revealed that the system of phenol and water is the best 
choice. The advantages of this system over the other are:

1. A more suitable critical solution temperature 
(6 6 »C).

2. Low interfacial tension (about 0.1 dyne per cm. 
at 55“F).

3. A more complete published data on the properties 
of this system.

4. Availability in a very pure state.
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Figure 5. The Change of Solubility with Temperatures for 
Various Substances.
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5. The techniques for analyzing water for phenol 

content are well advanced and reliaible.
The short-comings of this system are:

1. Phenol is a strong solvent, attacking materials 
of construction.

2. Phenol has a high freezing point (41.6*C).
3. It irritates the skin upon contact, which gives 

rise to some handling problems.
4. It is transparent in the visible light spectrum 

thus negating visual observation of the concen
tration profile developed in a diffusion cell.

Nevertheless, this system was taken as the best choice for 
the present feasibility studies, even though other systems 
may prove to be more desirable in future work.



CHAPTER III 

A PROPOSED NUMERICAL SOLUTION

The difficulties in developing a practical analyti
cal solution for the problems of two-dimensional heat con
duction with change of state leave two alternative approaches 
open for further investigation: 1 ) simulation of the
temperature field in a scaled model, and 2 ) approximation 
by a suitable numerical procedure. The former was considered 
in the previous chapters. The theoretical aspects of the 
latter are covered in the present chapter, and the practi
cality of solving the problem on a high speed digital computer 
is discussed in the following chapter.

For any numerical method it is first necessary to 
establish the criteria for stability prior to carrying on 
the machine computations. Second, in the absence of any 
rigorous analytical upper and lower bounds on the solution of 
the continuous problem, it is equally necessary to obtain the 
correct order of accuracy of a discrete numerical method used 
to solve the general problem. However, the order of accuracy 
specifies only the rate of convergence of a numerical solu
tion, but it does not give the absolute error. Last, but not 
least, one needs to have a sound basis for adopting a

47
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particular numerical method from the numerous possible choices. 
The fruitless and costly effort of many investigators in veri
fying these problems by actual machine computations have demon
strated the wastefulness of a trial and error approach.

The various numerical solutions are treated here es
sentially from the point of view of stability. The equiva
lence of stability and convergence of a consistent numerical 
procedure for solving a system of first order homogenous dif
ferential equations was shown by Lax and Richtnyer (53) in 
their most original treatment of the stability of linear, 
finite difference equations. Recently, Thompson (70) has ex
tended the analysis of Lax and Richtmyer to the systems of 
first order, quasi-linear differential equations. Thompson's 
analysis is for stationary finite-difference approximations.
For non-stationary finite-difference methods, it is doubtful 
that his treatment can be generally extended. Unfortunately 
the analysis of Lax and Richtmyer (53) and also Thcanpson (70) 
have little to offer about the magnitude of the discretiza
tion error.

To facilitate the choice of a suitable numerical 
method for solving the problems of heat conduction with change 
of state, a method of analysis is developed which treats most 
of the numerical techniques on a common basis. This method 
was originally devised by Varga (76, 77) for studying the 
numerical solution of a linear, parabolic, partial differen
tial equation with constant coefficients. The following is 
an extension of this method to the study of the numerical
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solutions of the quasi-linear parabolic partial differential 
equations which arose from the proposed formulation of the 
latent heat problems, Equation (1.2). The analysis is carried 
out step by step in the following manner. First, the 
Laplacian o p e r a t o r , i n  (1.2a) is formally replaced by a 
difference operator obtained by employing the common, five- 
point difference approximation. This procedure reduces the 
problem to a system of first order, quasi-linear differential 
equations, which is then approximated to obtain a fundamental, 
discrete implicit solution. Although this solution is not 
amenable to any practical computation, it serves as a founda
tion for generating systematically many practical numerical 
solutions. In fact, almost all the common numerical methods 
for solving parabolic, partial differential equations become 
the special cases of a more general approximation technique. 
Such a technique can be developed by applying the ideas in 
the Pad^, classical, rational approximation of analytic func
tions to the approximation of matrix equations.

These techniques (semi-descrete approximation, funda
mental discrete and the approximation of matrix equations) 
are presented below. A glossary of the less familiar terms 
used in this chapter is covered in Appendix A, as well as a 
collection of the known theoretical results which are fre
quently referred to in the following development.

A Semi-Discrete Approximation
Let the temperature field in the continuous region 

R' be symmetric with respect to one of the co-ordinate axes.
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say Xg. Let R" be a connected, open and bounded set in the 
plane = a^, where a^ is a constant. Let F" be the boun
dary of R". Let R"c% "  whereH" is the region x^, Xg  ̂0. 
Apply the transformation:

" = ^ =

to map the plane regional " into the unit square'll in the x-y 
plane, R" and F" into R and F, respectively. Then, the 
initia1 -boundary value problem (1 .2 ) for the transformed 
region R c)l becomes:

^[p(x,y)^ u(x,y;T)] + u(x,y;T)]
(3.2a)

= ÿ(x,y) <p(u(x,y;T)) ̂  u(x,y;T) , (x,y)(R, T > 0

^  u(x,y;T) + 5(x,y) u(x,y;r) = ÿ(x,yrr) , (x,y)cF, T>0 (3.2b)

u(x,y;0) =G(x,y), (x,y)cR (3.2c)

^(x,y) = g^gge^ /  [(l-x)^(l-y)^ > 0, (x,y)cR

P(X'y) “ gffe ^
2 2

Q(x,y) = ( j- ~ y ) (— ) > 0, (x,y)cRVl - X/ Xag/
(3.3)

ai
1  ̂i  ̂3 = gi(xi,X2 ,a2 ) = gi(x,y,^), (x,y)cR 

5(x,y) = P(x,y)

where,
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y(x,y,T) = y(x,y,T) / fi(x,y)

2 2 ^  = (1 - x) ^  + (1 - y) (x,y)croR ox oy
The coefficients 5 and y arise from the boundary condition 

K(T)|ï + h(x^,X2 .T,Tg)(T - T^) = 0, (x,y)er (3.4)

where,
Tg = environmental temperature 

hCx^fXgfT/Tg) = film coefficient of heat transfer at the
surface.

In terms of the dependent variable u and the indepen
dent variables x and y, the boundary condition (3.4) becomes

( 1 - + ( 1 - y)2|a + [ 1 u(x.y.t)
(3.5)

= h(x,y,T,Tg)Tg

Therefore,

gCx.y.T) =  i  I K(T‘)dT' > 0
T - Ti

T,

a(x,y,T,Tg) = h(x,y,T,Tg) > 0 (3.6)
,T

y(x,y,T,T_) = h(%,Y,T,Te) I K(T’)dT' T
L (T - Ti) J
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Now, from the physical considerations It can be concluded 
that:
1. If h->0, ÔT/ôn->0 and consequently ôu/ôn->0.
2. If h->®, T->T. and therefore u->u_.
3. If 0 < h < ", 0 < a,fi,Y < *.
The above conditions are obviously equivalent to Equation
(1.3). Clearly, /3 Is the average thermal conductivity In 
the Interval to T, which In general Is a weak function of 
T.

To slmpll^ the treatment of the boundary conditions, 
throughout this work It Is assumed that,

5 * -Jf- = 5(x,y)
P

(3.7)
ÿ = -J- = y(x,y;T) only.

P

The assumption (3.7) Is usually Justified. However, there 
are boundary conditions for which (3.7) Is a very poor ap
proximation .

Before proceeding with the development of a discrete 
analog for (3.2), It Is Instructive to observe the following 
points:

1. The Inltlal-boundary value problem (3.2) Is 
written for the general,orthogonal, curvilinear, 
co-ordinate systems, and likewise for Its 
numerical solution.

2. The unit square regionIs a mathematical plane 
region. It Is Invariant under any co-ordinate
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transformation in (x̂ , Xg, Xg) space. Its 
choice is purely for the convenience it offers 
in developing a general numerical solution for 
(3.2).

3. P(x,y), 0(x,y) and #i(x,y) are all positive func
tions for 0 3 x,y ^ 1. Their exact functional 
forms depend on the choice of the spatial co
ordinates in (x̂ , Xg, X3 ) space. Their func
tional form, however, is of little concern in 
the following development.

To develop a semi-discrete solution for (3.2) replace
the unit square region^ by a setHj^ =3^^(L2 ,I,2 ) of a family

of lines parallel to the x axis, and a family of lines
parallel to the y axis. Call the intersection (x^,yj), of
the i^^ horizontal line and the vertical line the mesh
point (i,J). Designate the distance from a mesh point (i,J)
to its adjacent mesh points in the direction of increasing x,
increasing y, decreasing x, and decreasing y by h.._ = h..,(x),x+x x+x

= kj_̂_2 (y), h^ = h^(x), and kj = kj (y), respectively. The 
four points adjacent to (x^,yj) are, therefore, (x^ + h^+^/yj), 
(x̂  - h^,yj), (x^,yj + kj^^), and (x ,̂yj - kj) as shown in 
Figure 6 . Associate with every mesh point (i,j) a rectangu
lar mesh region r̂ ĵ defined by, %h^ s x - x^ z 
- k̂j  ̂y - yj ^ ^^j+i* also shown in Figure 6 . Let the boun
dary of the mesh region r̂ j be c^j. For simplicity assume 
that R is the union of such rectangles. Designate the set of 
all points (i,j) which fall in the region R by I^. As cam be
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seen in Figure 6 , all the mesh points (i,j) are interior to 
R and so do not coincide with T. However, T may coincide 
with as many as three sides of the mesh region r^j. Clearly 
u(Xi,yj7T) s Uĵ j (?) is unknown for every mesh point (i,j)*R^.

Now, by integrating Equation (3.2a) over a mesh 
region (i,J)cRjj/

“ JJ u(x,y;T)) + ̂  (o(x,y)^ u(x,y;T))j dxdy

(3.8)
= - J j  ĵ0 (x,y) <p(u(x,y;T)) ̂  u(x,y;T)J dxdy; (i,j)fR^

The surface integral on the left hand side of the above equa
tion can be reduced to a line integral over c^j— the boundary 
line of r^j— by making use of Green's theorem. Namely:

- ^  j^P(x,y)^ u(x,y;rjdy + ^  |o(x,y)^ u(x,y;r)j dx

îj îj

= - ĵ </»(x,y) dxdy

(3.9)

îj

Approximating the above line integral by central differences, 
rearranging and replacing the surface integral

®i.j «’i.j ^  ■
-ij
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+ a±,j "i,j - b±,j *1+1 ,j +

di,j *1,1 - ®l,j *l,j+l = (3.10)

where,

*i'J " hi(hj^+ hi) ° °i'j

3l,j - *1-1,j Ci,j + 6i+l,j ^i,j

(3.11)

i . j  = -— r f ^ — r + - p >  ' i . j+ i  = = i.j ' i . j + i*'j+l̂ ĵ ^ Kj + l̂

dl,j - Gi,j_i fi,j + 6i,j+i ei,j

^l,j = %|^hi + lii+i)(^j + ^j+l)] ^ j j  0(x,y)dxdy S ÿ(x^,yj)

îj

s1,J *1-1,j ^i,j ■*■ *1+1,j ^l,j *l,j-l ^l,j ■*■ *l,j+l ®l,j

@1 j = discretization error
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t = T/(kh)

ai,j = 1 if (IJ)fRh 
= 0 if (i,j)/R^

'i.j = 2 ?i,j / [5i,j + 2 ti-=i,j)^ /bi.j] U.J)tri 
= 0 otherwise 

6 ij = 1 if (iJ)cRh

= 2 / [l + 2 (l-zi j) 2 / hi jj if (i,j)€l̂
= 0 otherwise 

=i.j = if (i±l.j)(Rh
= YjiJj if (iJ±l)€Rh 

bi,j = ^i+l if (i-l,j)(Rh 
= hi if (i+l.j)cRĵ
= kj+i if (i-l,j)cRjj
= kj if (i+lJ)cRij

h = m|X { ̂ i I , k = 1 }

and is the union of all mesh points (i,j)/Rj^ such that 
either (i±l,j)cRh or (i,j±l)cRh.

Clearly, the coefficients a^ j, ^i j • j * *̂i j * 
fi j, and ^i j, have no time dependent entries when 5 = S(x,y) 
On the other hand Si j, and 0i j * may or may not be time 
dependent. It may be verified by inspection that,

Ci+i j = bi j for (i+l,j), (i,J)cRĵ
(3.12)

fij + 1  = ©i j for (i,j+l), (i,j)€Rh 
Let Rjj be the union of n mesh regions, rij . Then 

one can write n equations of the type (3.10) to be solved for
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n unknown values of Uĵ j(t), (i/J)cRh* This system of equa
tions can be written as

C» — +(H(S) + y(s)) q^(t) = *^(t) + @i(t)

(3.13)

where n̂ Ĉt), s^Ct) and 9 ^(t) are n-dimensional vectors whose 
entries are respectively j(t), s^ j(t) and @i,j(t), 
(i<J)cRĵ . C and * are both n x n positive diagonal matrices 
with the diagonal entries and j , respectively. H(s)

,(s)and V are real n x n matrices with positive diagonal en
tries and non-positive off-diagonal entries. Both H(s) and
(s) have at most three non-zero entries per row. If one

orders the mesh points by rows, i.e., from left to right,
( s )top to bottom, then H is in addition the direct sum of

tri-diagonal symmetric matrices, i.e
= diag „(s) „(s)/ • • • * J (3.14)

where,

H (s) _

-b.iVj
-bf,j aiM-l,j o
o -bi-l,j

^i'-l.j ®i".j

(3.15)

J = number of vertical grid lines in Rŷ , 
(i'-l,j)/Rh but (i',J)cRh 
(m,j)/Rj^ but (i-.j)cRh
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If, on the other hand, the mesh points are ordered 

by columns, i.e., from top to bottom and from left to right, 
then V is the direct sum of tri-diagonal symmetric matrices. 
Namely:

v(s) = diag , v(®), ...v(®)...v(®)) (3.16)

where,

(s) _ -ei,j' di,jtl ”®i,JM-l o
o

,(i,J),(i,j)*Rh
,(i,j'-l),(i,j+l)/Rh

and I is the number of columns in . However, one cannot 
in general make both and tri-diagonal. Neverthe
less, it is clear that both and V^®^ are similar to tri
diagonal stieltjes matrices.

Let yCc) — Q—1 yCs) 
h(<̂ ) _ Q- 1 y(s)
a/c) =

(3.17)

Then it is easy to verify that when and % 2  belong to one 
of the common co-ordinate systems the entries of and
(c) satisfy the following relations:

ci,j = %jci
bi.j = 3jbl

(3.18)

Where the subscripts i and j designate that the corresponding 
functions depend only on Xĵ  and yj , respectively. As a result 
a significant reduction is realized in the number of
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coefficients which should be computed and stored when one 
attempts to solve the problem numerically on a computer. 
However, the matrices H^^nd V^will no longer be symmetric. 
Instead, it will be shown that each is similar to a non-nega
tive diagonal matrix. For example, if x^ and X2 belong to 
Cartesian co-ordinates, one obtains:

= 1 i = 1 , 2 ---
= 1 j = 1 , 2 ---

hi(hi+i + hi)

2 kh
^i+l^^i+l + ĥ )

2kh
(^j+l + kj)

2kh
*j+l/^j+l + kj)

i ' (3.19)

+f ! =
yj

2
i± l\< 1 - Yj /

Substituting a/c) in Equation (3.13),

*(u^(t)) + A^^^u^(t) = ■2 (t) + @2 (t)
«i(0) =

where,
s^Ct) = C"ls^(t)
0 2 (t) = C"^8 i(t)

(3.20)
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Before proceeding to study the solutions of Equation

(3.20), some additional points concerning the developments 
leading to it are well worth considering.

Further Remarks and Observations
So far, it was assumed that the theirmal properties of 

the heat conducting medium under consideration were functions 
of temperature only. In other words oiu) is a unique func
tion of u only. When the physical properties are not uniform 
throughout the region R, one may assume

= + *l,m(Um) + <P2 ,m(%%)) ' <3.21)

where/\ ̂  is a positive constant so chosen that the functions
^l,m' <p2 ,m' 1 3 m 3 n, each has essentially the same
functional form for all mesh points in R^. One then defines 
the diagonal matrices C and $ as follows:

C diag (ÿ
$ = diag (Pi,i + <P2 , 1  <Pi,n + <P2 ,n^+ %

(3.22)

where I is the identity matrix. As before, one would require 
that,

"  ̂ fl.m + Pz.m < M <3-23)

where M is a positive constant independent of u^(t). Further 
reduction in the number of the computed coefficients of the 
matrix can be realized if, instead of Equation (3.17),
one lets.
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A = + V^®^) C“^ = H + V
(3.24)

n(t) = C^u^Ct) , # (t) = C“*5ĝ (t) , * (t) =

where A is now a symmetric matrix and the matrix C is de
fined by Equation (3.22).

It can be shown (24, 36) that the n-dimensional vec
tor, 0 , arising from the discretization of the space co-ordi
nates satisfies,

' ||e(t) II = 0(h^ + k^), as h,k-»0 (3.25)

where h and k are defined by Equation (3.11). Substituting 
(3.24) in (3.20)

<&(u)^®^^ + Au(t) = #(t) + 0(t)
(3.20')

u(0) = g

It should be noted that by the above procedure the 
complex nonlinear problem. Equation (1.8), is reduced to a 
system of first order differential equations without appre
ciable loss of the generality. Any general method for solving
(3.20) is the general solution of the two-dimensional prob
lems in any composite medium with more than one transition 
temperature. It is readily seen that in arriving at (3.20') 
no assumptions were made on the possible shape and the direc
tion of movements of the interface (s). However, (3.20) cannot 
be solved directly for the position of the interface (s).
This information should be obtained from the knowledge of the 
temperature distribution in the medium under consideration.
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When the region R is a union of rectangles and half 

rectangles, and the mesh spacing is sufficiently fine, a 
slight modification in the coefficients of the matrix A can 
take care of the half rectangle mesh regions which, of course, 
are adjacent to the boundary of R. Such modifications are 
well explained by Forsythe and Wasow (36) and Varga (77).
The simplest, and perhaps equally accurate method to deal 
with these mesh regions is, however, to multiply the corres
ponding j by the ratio of the area of the triangular mesh 
region and the area of the rectangular mesh region in which 
the mesh point (i,j) is situated.

It can be seen by inspection of Equation (3.11) that 
all the off-diagonal entries of the n x n matrix A are time 
independent. For the mesh points adjacent to the boundary 
the diagonal entries of A = A(t) are dependent on t when 
Si j is a function of time. In such cases one may write

A(t) = A + D(t) 
where A is a constant matrix and 0(t) is a time dependent 
diagonal matrix. Clearly D(t) has just a few non-zero diago
nal entries. In the subsequent developments it is assumed 
that D(t) =0, i.e., 5^ j ^ j (t) for (i,j)crĵ . However, 
most of the results are applicable to the case of time depen
dent J.* ̂ J

If one numbers the mesh point (i,j)€Rh» by a natural 
ordering, i.e., from left to right and top to bottom. Figure 
6 , then the directed graph, G(A), of the n x n matrix A is 
strongly connected (77) so that the matrix A^®^ is
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irreducible. It can be verified by inspection of Equation
(3.11) that for = (aj®)),1 / J

^ Î 1411
j=i
j/i

/o)with the strict inequality being true for at least one a^
(s)1 3 i 3 n. It follows that A is an irreducibly diagonally

dominant, real n x n matrix with positive diagonal entries,
so that by Lemma A-2, the matrix A^s) ig non-singular, and

C s )the eigenvalues, 1 ^ i  ̂n of A satisfy,
l&Xl > 0 for all 1  ̂i  ̂n (3.26)

Is)In addition, since A ' is symmetric, then its eigenvalues 
are real and, by Equation (3.26), positive, so that A^®) is 
positive definite. To show that A^^) and A are also posi
tive definite, let y be any non-zero real vector. Then,

(Ay.y) = (c“^A^®^c“^,y) = (A^®^c“^,c"^) = (A^®^y^,y^^) > 0

where y^ = C”^, and (A^®^y^,y^) > 0 because A^®^ is positive 
definite, and so is A. Now, since the matrix =
C ^A^®^C ^ = A has the same eigenvalues as those of Â *̂ ,̂

(c)then A is also positive definite.

A Fundamental Discrete Solution 
The system of differential equations. Equation (3.20'), 

can be directly solved on an analog computer when n, the num
ber of equations involved, is less than twenty (84). For 
n > 2 0 , the required capacity of the analog computer exceeds
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the capacity of the commercially available analog computers. 
Although It Is possible to solve Equation (3.20') by a digi
tal analog computer for n »  2 0 , the common method Is to re
duce Equation (3.20') to a system of algebraic equations by 
discretizing the time co-ordinates and then solving this sys
tem on a suitable digital computer (73).

In the following, the continuous solution of Equation 
(3.20') Is studied first, because of Its Important role In 
the understanding of the accuracy of the various numerical 
procedures suitable for solving such problems. Then, a funda
mental discrete approximation of (3.20') Is developed, which 
serves as a basis for generating several possible numerical 
methods. A unified treatment Is then given to all these 
methods.

To proceed with the analysis, let us assume first 
that s and 6 are time Independent, and let

v(t) = u(t) - A"l(s + 0) (3.27)

Then (3.20') becomes

+ * (̂ii(t)) Av(t) = o

v(0 ) = Vq = u - A“^(b + 6 )
(3.28)

or alternatively,

+ Av(t) = f(t,v(t)) , t ^to^ 0 

▼(to) = Vo
(3.29)
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where,

f(t,v(t)) = [l “ $"^(o(t))] Av(t)

i= 0

Multiplying both sides of (3.29) by exp(tA) = ̂  (tA)^/il,
integrating and rearranging.

v(t) =

^o

Clearly, (3.30) is a solution of (3.29). Before proceeding 
any further, it is necessary to demonstrate that (3.30) 
exists, and furthermore, if the system (3.29) has any other 
solution w(t;VQ,tQ) such that W(tQ;vQ,t^) = then it roust 
be equal to v(t) given by (3.30). The criteria for existence 
and uniqueness of a bounded solution for the systems of the 
type (3.29) are extensively discussed by several authors,
e.g.. La Salle and Lefschetz (51), Bellman (3), Cesari (13), 
Coddington and Levinson (16) and Wintner (83). For the case 
of (3 .29) the fact that A has only non-negative eigenvalues 
and (I - *""̂ ) is a positive diagonal matrix, which is bounded 
in norm, ensures the existence of a solution v(t;Vg.t^) for 
tcCtQ,®] when IIv q II is sufficiently small. A Lipschitz condi
tion of the type

|<&“ (̂ti3 )̂ Avi - $"^(«2 ) ^ 2  I ̂  Kjvi - V 2 II for all t z

where K is a positive constant, guarantees uniqueness of the 
solution v(t;VQ,tQ) and also the continuity with respect to 
the initial vector Vq (13).
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Clearly, the solution (3.30) is valid if A has no 

time dependent entries. When A = A(t), then (3.30) is the 
solution of (3.29) if, and only if, A(t) and dA(t)/dt com
mute. This last condition can hardly be satisfied.

Most recently Thompson (70) has studied the differ
ence approximation of the guasi-linear equation,

+ A(t) v(t) = f(t,v) 
dt (3.31)

v(0 ) = Vq
His analysis is an extension of the fundamental work of Lax 
and Richtmyer (53) on the equivalence of stability (in the 
sense of Lax and Richtmyer) and convergence of a consistent 
numerical procedure for solving systems of homogenous first 
order differential equations. Thompson first develops a 
generalized solution for (3.31) and then studies the differ
ence approximations of such generalized solutions. The 
following Lemma 3.1 summarizes his results concerning this 
generalized solution. First, however, a definition will be 
given.

Let3 denote a Banach space and é a finite interval 
[0,T]. Let 6  denote the class of strongly continuous mapping 
from è into^ . Then:
Definition 3.1. A mapping u(.) from & into'B will be called 
a generalized solution to (3.31) provided a(.)cC and

r
u(t) = E(t) Uq + I E(t - 77) £(t,u(7j)) dff
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Lemma 3.1. Let {E(t)J, t  ̂0 he strongly continuous one-

parameter semi-group of bounded linear operators 
from &  into ̂  such that E(0) =1. Let f(t,v) be 
strongly continuous, and let there exist a posi
tive number M such that ||f(t,v, ) - f(t,v̂ )|| ^
m |1v  ̂- Vgll̂ . Then, there is one, and only one, 
generalized solution to (3.31). Furthermore, if 
a solution to (3.31) exists*, it must be the 
generalized solution. [(70), Theorem 3.1 cUid 3.2].

Clearly, Cexp(-tA)} is a semi-group of the above Lemma. 
If the n X  n matrix X(t) is the solution of (2),

= A(t) X(t)

X(o) = I

Then the unique solution of (3.31) may be expressed by
t

v(t) = X(t) Vq + X(t - V) f (l7,v)dT), t > 0 (3.32)
o

Here again [X(t)] is a semi-group of Lemma 3.1. The impor
tance of Lemma 3.1 is in justifying a generalized solution 
for all problems of the type (3.31). It is then possible to 
study the various difference approximations of (3.31), re
gardless of the functional form of the operator E(t).

Returning to the system (3.29), it is evident from 
the physical nature of the problem that one would require

*See Hille and Phillips (42), Theorem 3.3.2 for the existence 
theorems concerning (3.29).
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v(t) -» o uniformly as t -» *,

i.e., the solution v(t) = o as t . Let, for an interval 
0 < tj_i s t s tj.

= *(uU)) , tj_i s t 3 tj

Qj = (3.33)

£ = $ - I

f(t,v) = (*j^ * - l)^“^Av(t) =-S

= (j8l(t,v), /32(t,v),----   j3n(t,v{) , tj.ĵ t̂̂ tj

Substituting the above quantities in (3.29) , multiplying both 
sides of the resulting equation by Z(-t) = e x p [ - ( t j - t)Qj] 
integrating and rearranging,

v(tj) = Z(tj) v(tj_^) + J Z(-Tj) /l(T},v)dTj (3.34)

= Zj w(j_i) + Bj
Where,

Zj = exp(-rjQj)
rj = tj - tj_i > 0

t.
Otj = j  exp[(n - tj_i)Qj] fi(rj,v)dTj

Clearly for a set of positive parameters,

S = (rj jrj > 0, j = 1,2.
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(3.34) may also be expressed by

m m  m
IT Zj «1 + Tf Zj*o (3.35)

i=l J=i j=l

Some general properties of the operator Zj, j = 1,2.__
deserve further attention. First, because -Qj is an essen
tially positive matrix in the sense described in the glossary 
(Appendix A) , then by Lemma A-4,

Zj > O for all rj > 0,
i.e., all entries of Zj are strictly positive real numbers. 
Consequently, the product

is also a positive matrix for all rj >0, 1  ̂j  ̂m and all
m ^ 1, so that every entry of the vector solution v(t^) is
connected through positive coefficients to all entries of 
Vq » and all entries of the vectors Oj, for 1  ̂j s m. This 
behavior is, of course, the well known characteristic of the 
solution of the heat equations (35).

Theorem 3.1. Let A be a positive definite matrix and $ a
positive diagonal matrix. Then all the eigen
values. Cj^(Z), l^i^n of the matrix Z(r) = 
exp(-r*"^A) are positive and s a t i s 0 < cTi(Z)
< 1 for all l^izn, and all r > 0. Furthermore, 
let |Z(r)|| be the spectral norm of the n x n 
matrix Z(r), then.
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1) |z(r)j < 1 for r > 0
2) |z(r + ùr) I / |z(r)|| < 1 for àc,r > 0.

Proof; let Q = and Because A is posi
tive definite, then for any non-zero and real vector y one 
can write,

(Q(s)y,y) = ($-^*-^,y) = (A®“^,$“^) > 0

It follows that is positive definite and consequently
Q - is also positive definite. Now, the necessary
and sufficient condition for Z(r) to be convergent is that 
p(Z), the spectral radius of Z(r), be less than unity. To 
prove that p̂ Z(r)̂  < 1  for r > 0, let be an eigenvector
of Q and ffi its corresponding eigenvalue. Then Z(r) has an 
eigenvector and an eigenvalue (6) . Let the n posi
tive eigenvalues of the n x n matrix Q be

0 < a =  ̂0 2  • • • •  ̂On = b
then

p(z(r)) = max Ce“ °̂̂ i} = e”^® < 1 
l^i^n

To prove the last part of the above theorem, one notes that 
(77)

2||z(r)|| = p(z*(r)Z(r))
= p^exp(-rQ*) exp(-rQ))

where p(B) is the spectral norm of the n x n matrix B, and B* 
is the transposed conjugate of B. On the other hand, since
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Z(r) is non-singular, then Z*"l(r) * Z(-r) . Let cfi(Z*Z) ,
1 s i i n be the eigenvalues of the symmetric and positive 
definite matrix Z*(r) Z(r). Then,

(rAz*{r) Z(r)) = ------ i------   ,
a^(z*(-r) Z(-r))

l^i^n

where, Z(-r) = exp(rQ). Let y be any non-zero real vector 
such that (yly) = 1.0. Then

Z(-r)y,y) = 1 +(^  ̂ ^
i ® 

«  -  ■

= 1 + (Sy,y)
where

V  (rO)̂s y i r s t r  y
il j^l J *

Now if S is positive definite, then (Sy,y) = jôj > 0 and 
consequently

jz(r)j = tp(z*(r) Z(r))3^= [^m^ |(Ti(z*(r) Z(r))|}^

= { max I— j—r—  ------ r|]^ < 1lsi^nl(T^(z*(-r) Z(-r))l

To prove that the above relation holds, one observes 
that S is a matrix polynomial of the type

m,n=l

where a^ ^ > 0 for all r > 0. Therefore, if m s n, and y is
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any non-zero vector, for any positive definite real matrix Q 
one can write:

(iQ*)™ 0" y,y) = tf®y, Q™y)

= (0"-™ z.z) > 0

where z = Q*®y. The same is true if m > n. Thus S is posi
tive definite for all r > 0.

The above theorem also implies that for a set of m 
positive parameters rj > 0, 1 z j 3 m, and a positive and 
finite interval [a,b] such that

i
t ^ = V r .  0 < i s m ,  t^f[a,b]

J=1

m
(t„,) = lim TF Zj v(t^)

m -> ® j=l

for sufficiently small || Vg||. Therefore,
m

= JJ, 'o

formally approximates vlt^) . It is evident that v(tjn) is 
the unique solution of the system,

+ Ov(t) = o t„_i  ̂t  ̂tn, (3.36)

for the initial vector v(tra-i
m

Corollary 1. The solution w(tjjj) = U  z(rj )Vg is uniformly
j=l
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bounded in norm (i.e., spectral norm) for all 
values of rj > 0, 1 a j % m, and for all (|Vq (| 
sufficiently small. Furthermore, (̂tjj,) approxi
mates vCtjj,), the solution of (3.29), such that,
1) v(tjj,)-» v(tjjj) -> o as tn,-> ®, m-> ®.
2) Let Kt^) = v(t^) - v(t^) , and =

(z-l(rj) - l) 6j , then.

t |#j|| 3 = J#k Il̂ J y  Ok
- ) '

where = khr^ [See (3.11)].
Proof: From Theorem 3.1, one concludes that ||z(rj)|| < 1 for 
all rj > 0, 1 2 j a m. Therefore, j|v(tj)j| = |z(rj) v(tj_^)^ 
s |z(rj)|j {{ v(tj_2 )|| < |v(tj_i)| , and v(tj) is uniformly boun
ded in the spectral norm. From (3.35) one obtains,

m m
f(tm) = v(tm) - T(tin) = ̂  Ïï2(rj)ai

i=l j=l

m m
= ̂  IT Z(rj)(l - Z(r^))6 i 
i=l j=i+l

and consequently,
m m

( (W l 1̂11 IT Z(rj)(l - Z(rj(W max t|«J }
i=l j=i+l izisn

= I * I®kÏ  ̂ l®K II

where, i n  i iI 6k 11= thi|}Izisn
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It was observed before that p(z(r)) < 1 for all 

r > 0. Thus the series [l - Z(rj)]  ̂= I + Z(rj) + Z^(rj) +.. 
is convergent for all rj > 0 [(77), Theorem 3.7], so that 6j 
exists for all rj > 0, when exists. Now, let

e = ||z(rj)|. then 0 s aj s: )
and

I [l - Z(rj)] 1̂1 s l/(l - = (3.37)
e^jaj-l

Assume that Sdv/dT  ̂ where is a positive number in
dependent of At, and At = (t - tj_2 )kh. Then,

Z(rj - v) S dij

fùr.
Ml

1 - e^jaj II Z(rj - n)| Ard(Ar), ATj > 0
0

(3.38)
  --r â7  (ATj)2 , 1  ̂j s m1 - e J J

— M( At j )
where M = (1 - e J J ) . Consequently, for a fixed “ > rj
> 0,

II fij 11= o ((ATj)̂ ) as ATj -» 0, l ^ j   ̂m
and also

II *K II = )  as 0, “ > rjç > 0 (3.39)
It was assumed throughout the above development that 

dv/dt exists and is bounded. Because v(t) is the exact
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representation of a heat conduction phenomena, dv/dt exists 
for all physically possible boundary conditions. One may 
doubt, however, that when the temperature at the exposed 
boundary surface is changed abruptly, may become ex
tremely large. However, none of the entries of v(t) fall on 
such a boundary, but rather, some distance away from it so 
that any sudden temperature change at the boundary surface 
is sufficiently dampened before it reaches the mesh points 
adjacent to the exposed boundary.

Recall that v(t^) = o(tj„) - A"^(e + 0), and 
therefore,

V(tm) = a{tm) - + 8) - (3.40)
Let

«(tin) = v(tm) + A”^(b + e) (3.41)
and

û(tm) = Z(rm)[<:(tn,_i) - A'^a ] + A"^i
Then it is clear that

m _ m _
a(tm) = TT Z(rj) Uq + [l - TT Z(rj)jA-ls (3.42)

j=l j-1
and therefore,

1“ m _ _
= Û(t^) - a ( t j  = [ l  - Jîz(rj)]A-^e (3 .42')

j-1
Thus, from (3.25) and (3.39) one immediately concludes that

l|f(Vll = + k2)
and
l|«(tm) - «(tn,) II ^ |c(tn,) || + | f(t„,)|| = o ((^k )^) + 0(h^ + k")
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When m is time dependent, let the approximate solution 

£i(t}g) be defined by

" ( V  = Z(r„)[8(t„_i) - - ̂ )] + (3.43)
or

» ( t j  = a(t„) - A-l.(t„ - isr̂ ) = z(rj (3 43')

Then one can state the following:

Corollary 2. Let ■ be time dependent and ds(t)/dt exist.
Then, under the hypotheses of corollary 1, the 
approximate solution (3.43') is uniformly 
bounded in norm for all sufficiently small U q 

and ■ . Furthermore, nCtj,,) is a second order 
correct approximation of uCt^), the solution of 
(3.20') , i.e.,

I«ml=l®(^> - V  II = + ^2)

The proof of the first part of the above corollary immediately 
follows from Theorem 3.1 and Corollary 1. Defining v(t) and 
^(t,v(t) by the following relation:

v(t) = u(t) - A”^8(4)
(3.44)

^(t,v) =-($-1 $ - I) + $-1 a(t) - 8(4)

where tj_i s Ç s tj for all j = 1,2,...., it is easy to 
show that here again fi a Mi (T - Tj,^). Thus, all the re
sults of Theorem 3.1 and Corollary 1 follow.

We shall refer to u(t) as the fundamental discrete 
solution of the system (3.20'). It is evident that any stable
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numerical procedure for solving (3.43) which agrees up to 
mth terms in t with u(t) is an m^^ order approximation of 
Ü(t), but at most it is only second order approximation of 
u(t). Therefore, for m > 2, the overall order of approxima
tion is not further improved.

As far as mathematical analysis is concerned, the 
fundamental discrete solution (3.43) has many attractive 
properties. But unfortunately when n is large this solution 
is not amendable to any practical computation. The reason is 
that computation of a power series of large matrices requires 
a storage capacity far beyond that of the largest, commercially 
available,automatic computers. For the problem in hand the 
situation is much worse because of an additional iterative 
procedure which arises from the nonlinearity of the problem. 
One might ask why, if the solution (3.43) is not a practical 
numerical method for solving the problem, it was necessary 
to study its properties at all. The answer is that (3.43) 
serves as the foundation of many practical solutions. In 
other words, it is easy to derive most of the commonly re
commended numerical methods by applying a simple approxima
tion technique to approximate the exponential operator Z(rj). 
In this manner it is possible to apply a unified treatment 
for studying the stability and the rate of convergence of 
these derived approximation methods. All these points were 
observed by Varga (76) in solving the homogenous matrix dif
ferential equation

+ Av(t) = odt
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The attempt here is to demonstrate that a similar analysis 
is adaptable to the solution of (3.20').

As a consequence of Corollary 2, one observes that 
if = *(u(tj_2 )), then /3(t,v) is at least first order correct 
in T, so that the solution (3.43) is second order correct in 
T . Thus, for a second order correct approximation a predictor 
corrector scheme is not necessary. However, the absolute 
value of the error is substantially reduced if

$j= $(n(tj - %rj))

is used in (3.43). To obtain ^one would, of course, require 
a predictor-corrector scheme of the type:

1. Predictor
- r̂̂ ,) = ZihrJ v(tm_i)

= exp[-Jsrm *(a(t̂ _l))]
(3.44a)

2. Corrector

(3.44b)

where,
v(tj) =u(tj) - A~^B(tj - %rj) (3.45)

Matrix Approximation for expC-rjQj)
Consider an analytical scaler function f(z). One 

may expand f(z) in the neighborhood of the origin to get,
f(z) = 3q + â ẑ + agZ^ + --- (3.46)
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f{z) can be approximated by the Fade rational approximation,

p.q

where n (z) and d (z) are respectively polynomials of P*q p,q
degree q and p in z. In addition it is assumed that d_ _(0)P» q
/ 0. For any pair of the non-negative integers p and q,
Up g(z) and dp g(z) are so chosen to agree with as many lead
ing terms of the Taylor's series expansion of f(z) as possible 
It can be shown* that

dp g(z) f(z) - Hp g(z) = as z -> 0 (3.48)

It has been shown by Hummel and Seebeck (43) that if
f(z) = exp(-z)

then**

(., = f  - . (-Z)’'
k=0 (P+9)'k'(P-k)'

£, (p+q-k) '.p'.
(3.49)

dr. rt\z) = )      . Z.k
(p+q)ik'(p-k)"

To apply the above results to Z(rj), formally replace z by 
rjQj to get

Z(rj) = exp(-rjQj) » ^ rjQ ] ^

= E (r Q )
p^q j j

*See Wall (80), Chapter XX for an up to date discussion on 
Padé approximation of analytical functions.

★’«Bee also Varga (77), Chapter VIII.

(3.50)
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Ep q(rjOj) is called the Pad^ approximation (p,q) of Z(rj).
In analogy to (3.47) it is clear that Ep agrees
through the (p+q)^^ term in rj with the series expansion of
Z(r.). Therefore, for (p+q)  ̂1, E_ _(r.Q.) is, in the J P » 4  J J
sense of Lax and Richtmyer, a consistent approximation of
Z(rj).

From the definition of Ep g jOj) and (3.49), it
is clear that the Fade approximation 1' ®1 0 ^1 1
exactly forward difference, backward difference and Crank- 
Nicholson approximation methods, respectively. Many high 
order accuracy approximation methods can also be generated 
by taking p,q > 1.

To establish the convergence criteria for the general 
Fade approximation, we state the following theorem:

Theorem 3.2. Let the eigenvalues of Q be positive real
numbers. Then E (rQ)H < 1 for all r > 0,p,q ■
if and only if, p 2: q.

Before giving the proof of the above theorem, it is
instructive to study its consequences. The statement that
(e (rQ) II < 1 implies that, if in (3.43) the operator Z(r,) p,q J
is replaced by Ep g(rjQj), 1  ̂j  ̂m, then the numerical 
procedure

, (3.51)
+ A-ls(tm - hrj

is uniformly bounded in norm for all rj > 0, 1 z j z m and
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all p - q. Thus, Theorem 3.2 establishes the necessary and 
sufficient conditions for uniform stability of such a numeri
cal procedure.
Proof: Let us first assume that E_ _ is Hermitian. For thisP • 4
special case,

1e^ _̂ (rQ)| . p(Ep g(rQ)) = |

From (3.49) it is quite clear that

0 < jup g(z) I <|dp^q(z)j, for p & q and z > 0

so that
o(Ep.g(rQ))= ^™ax^|np_q(roi) / |< 1 (3.52)

which provides the proof for the theorem for the special case 
for which Ep g is Hermitian. Nevertheless, the spectral 
radius of Ep g(rQ) for r > 0, is always less than unity as 
long as Q has positive eigenvalues and p % q. If Ep g is 
not Hermitian, then in general

II Ep.g(rO)|| = IpCEĵ .q Ep,g))% ^ p(Ep_q) < 1

where E* is the conjugate transpose of E.
Clearly E* E is Hermitian and non-negative P/q P,q

definite, i.e., all its eigenvalues are real and satisfy 

U(E;,q Ep_g) 2 0, 1 s i  ̂n
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where Xĵ (A) is the eigenvalue of A. Now

®p.q ®p.q “  ̂” ^p,q(^p,q ^p,q " ”p.q "p.q^^pvq

s i -  D*SD
where

D  = a;iq(ro) 

s -  ap,q(rQ) dp,g(rO) - n^ ^CrQ) n^ gCrO)

Clearly both q q ^P q *'p q' general Hermitian
and non-negative definite. Therefore, S is in general Hermi
tian and has real eigenvalues, 1 a i 3 n, with correspon
ding eigenvectors Xĵ , 1 a i 3 n. Consider,

Yi = D*-lXi? (Yi, Y±) = 1
then,

(Yi' B;,g Ep q Yi) = 1 - (Yi, D*SD Yi>

= 1 - (Xi, SXi) (3.53)
= 1 - Xi(%i, Xi)

i”“ „l Sp.q Gp.q yi' h  K , q f  =

If S is positive definite, then Xi(S) must satisfy
1 > Xi > 0

and
l|Ep q|l = (1 - |ô|)^ < 1 where |ô| > 0 (3.54)

Thus, the problem is now to demonstrate that S is positive 
definite and not negative definite. Consider first the
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important case of p = q = 1, for which

S = 1 (Q + Q*)

Clearly, if Q has positive real eigenvalues, then S is posi
tive definite. Now, for p ^ q a o, inspection shows that S 
is a polynomial in Q and Q* with positive constant coefficients 

Let this series be

y  a (Q*)V where a ^ 0  L, n,ra n,m
m,n

Let y be any non-zero vector, and y* its conjugate transposed. 
Let n > m, then

Y* (Q*)™ Q* y = [q*V3* 0"-"" [tfV3

= Z* Z > 0

where z = (f'y. The same is, of course, true if m > n. 
Consequently,

y*Sy = y*[ ^  a^ m (O*)™ Cp] y > 0 
m,n

Thus S is positive definite for all p a q. For p < q, it is 
evident that there exists an r > 0 such that S is no longer 
positive definite, and consequently (jÊ  q|| ̂  1» This last 
statement completes the proof of the above theorem.

Since only unconditionally stable numerical solutions 
are of interest, the stability analysis of Ep g(rO) when 
p < q is omitted. The treatment of the approximation methods 
for exp(-rQ) is completed by stating:
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Corollary . Let Q =* ûi + Û2 • • • • + 0^ where the eigen

values of 1 s i s N, are non-negative real 
numbers and at least one 1 i ^ N,,has posi
tive eigenvalues. Let in addition,

N
M(rQ) s Jl'exp(rQ, ) 

j-1
formally approximate exp(rQ) . Then the spec
tral norm of

is less than unity for all r > 0, if and only 
if, p i q.

Proof: by Theorem 3.2,

IIE (rQ.)|| =£1, 1 s j a N, if p a q,
P/ *3

with strict inequality for at least one j , 1 a: j ^ N . Thus,
N

From Theorem 3.2, it is clear that the forward difference 
and Cremk-Nicholson methods both suggest unconditionally 
stable procedures for solving the quasi-linear problem in 
hand.

From the Corollary of Theorem 3.2 it is easy to con
clude that alternating direction implicit methods are also 
unconditionally stable. In fact, the treatment of the prob
lem in this chapter has been primarily to prove the uncon
ditional stability of this technique and its variants, which



86
will be described in detail in the following section. How
ever, the treatment opens the door for many other numerical 
methods not yet commonly used.

Variants of the Alternating Direction Implicit Methods
Since the pioneer work of Peaceman and Rachford (60) 

and Douglas and Rachford (30), many investigators have 
studied this rather interesting technique extensively for 
solving linear parabolic and elliptic partial differential 
equations (4, 5, 10, 18, 22, 23, 29, 45, 58, 61, 77, 78, 79). 
Although a general theory for the non-stationary ADI method 
has not yet been developed, the experimental computations 
reported in the literature have been encouraging enough to 
make this method commonly used.

To describe the basic ideas in the ADI method, con
sider partitioning (3.24) of the n x n matrix A, and let

Z(rj) = exp[-rj (H + V)]

Then, if H and Vj commute,

Z(rj) = exp(-rj H) exp(-rj V)

- ■*> (3-55)

= Tl(rj)
Thus,
T̂ (rj) = (I+2rj*Ĵ )”̂ (I-2rj*Ĵ ) (I+2rj*Ĵ V)"̂ (I-2rj«»jV)

(3.56)
~  ^(Pj*j-H) (pj*j+V) ^(pj*j-V)
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where pj = 2/rj. Permuting the factors, which is of course 
valid when OJ-*- H and V commute, results in

T(rj) = (pj$j + V)"l(pj*j - H)(pj*j + H)"l(pj$j - V) (3.57)

If the commutative property does not hold, then exp(-rQ) 
agrees with exp(-r*"^H) . exp(-r®“-‘’V) through linear terms. 
However, by direct computation one can veri^ that T(r) agrees 
with exp(-rQ) through quadratic terms.

From Theorem 3.2 and its corollary, it is clear that

||T(r) II < 1 for r > 0

^—1if * H and V have non-negative eigenvalues with at 
least one of them positive definite. Therefore, for these 
conditions the numerical solution

= T(r„,
m

= TT T(rj) VJ=1 °
is unconditionally stable for all rj >0, l ^ j   ̂m. Further
more > o for rj > 0, 1 a j & m. To carry out the
actual computations, one has to introduce an intermediate step

(Pm*m + Hi = (Pm4- V) (3.59a)

followed by

where
(pA  + V) . ( P Â  - H) Vi”*’»’ (3.59b)



88
Note that should not be confused with the value of
v^ttm - %rjp) . One can apply the same procedure for the pre
dictor formula of (3.45) to approximate prior to any
computation step of (3 .59). It must be kept in mind that 
the predictor equation should only approximate v(t) at time 
level (tjj, - *5r̂ ) with an error 0(^^ + h2) . The stability 
of the predictor formula should not, therefore, be of primary 
concern (27, 28). There is a variety of choice for the pre
dictor formula. To avoid using two separate logics, and con
sequently simpli^ing the computer program, the predictor- 
corrector scheme proposed here employs the same logic for 
both steps (i.e., (3.59^ and (3.59b). For the purpose of 
analysis, it is convenient to work with the vector solution 

, m = 1,2,.... However, eventually one wishes to solve 
the problem for

= vj™) + A“ ŝ(tjn - Hrjn)
In terms of , m = 1,2...., (3.59a) and (3.59b) become

(pm4n + H)w(m+%) = (3.60a)

= ipjfja - (3.60b)

where , ,.

The procedure (3.60) is the Peaceman and Rachford 
method. It is interesting to study also the other variants 
of the ADI method. The Douglas and Rachford iterative method 
is defined by (3.60a) and
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wl*»+>s). . v)t»‘"’ (3 .60c)

It can be shown that the Douglas-Rachford method is also un
conditionally stable for all r > 0, if H is positive definite 
and V non-negative definite or visa versa. Another important 
variant of these alternative, direction implicit methods is 
given by Wachspress and Habetler (79). Clearly, the diagonal 
matrix * can be multiplied by a constant, real, diagonal 
matrix F, without either affecting the alogarithm for the 
direct solution of the problem, or essentially increasing 
the arithmetic work required in carrying out the ccxaputation. 
Let

^^m) _ ^(m)

H = HF”^ (3.61)
and V = F“^ HF"^
Then the Peaceman-Rachford method,(3.60), in terms of the new
variable becomes

(3.62)
( P Â  + V)W<"^1) . ( P Â  -

Wachspress and Habetler (79) recommend the use of 
the diagonal matrix,F, for conditioning the matrices H and V. 
They demonstrated that in a rectangular region with non-uni
form mesh spacing, where usually H and V do not commute, one 
can find a matrix F such that:

mf A /  / V  ^H V = V H
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However, it was demonstrated by Birkhoff, Varga and Young (5) 
that H and V commute, if and only if, the region, R, is a 
rectangle. Nevertheless, Wachspress and Habetler (79) recom
mend the use of the conditioning matrix P for non-rectangular 
regions. Recently, however, Wachspress (78) has given a more 
satisfactory explanation on how a suitable conditioning mat
rix accelerates the convergence, as well as suggesting pos
sible ways of constructing such matrices. Actually, a 
natural choice of F is the positive diagonal matrix C, which 
has already been employed, by letting

H

Much of the work in current literature is devoted 
to the computation of the best acceleration parameter p in 
the solution of the Dirichlet boundary value problem by a 
succession of ADI iterations. The difficulty in finding the 
best acceleration parameter (or parameters) in the case of 
parabolic equations lies in the fact that here one is interes
ted in obtaining accurate values of the unknowns at each time 
level as well as those of steady state conditions. In the 
solution of the Dirichlet problem, one wishes to reach the 
steady state solution as fast as possible without much con
cern for the value of the unknowns at each intermediate itera
tion step. This point can be best visualized by noting that 
for the Dirichlet problem the error at any iteration step is 
given by (5)
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m

= TT T(r ) ((0) (3.63)
jWl j

while that of our solution to the parabolic differential 
equation (3.2) is fron two sources:

m m
a) = v(tm) - v(t^) = ^

(3.64a)
m

- ft Z(r )] A"H i=l J
m m

b) (3 Mb)

For the Dirichlet problem, one usually continues the 
iteration until II II is sufficiently small. To minimize 
the number of iterations, one only needs to minimize|j T(rj )|.
All the recent works on finding better acceleration parameters
(i.e., r.'s or pj's) are essentially for minimizing the norm
IITTIIJl T(rj)J. Although much has been said on the applicability
j=l
of these acceleration parameters to the case of the parabolic 
differential equation, it is evident from (3.64a) and (3.64b) 
that the minimization ofjj jy T(rj ) jjis not a critereon for im
proving the accuracy of the numerical solution of a parabolic 
differential equation. Regretably, most authors have over
looked not only the dominant error vector (^(t^) which arises
from the nonlinearity of the problem and discretization of

(in)the space co-ordinates, but also the way propagates and
expands. In solving the system (3.20') one should search for 
a set of parameters $  = (fj j ry > 0, j = 1,2 m) such
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that fJ, 1  ̂j  ̂m is maximum of rj > 0, 1 a j a m for which
Ĉ (tĵ ) + (g(t )̂ H< 6 where 6 is a given positive number 

indicating the desired accuracy of the solution.
With the present state of art in solving the quasi- 

linear problems of the type (3.20'), not much can be said on 
the best set of parameters . However, for a fixed source 
vector, ■, a logical requisite is

0 < a 3 < r2 < rg  < r^ = b
where a and b are determined from the accuracy requirement 
(36, 73). In the following chapter it will be shown that 
reasonably good results may be obtained by defining rj by a 
relation of the type

j+1 / J \'/2

where a is a prescribed positive constant.
Finally, it must be observed that for r̂  ^ 0, 1 3 j 
m m  ^

the null matrix asJ j'='i J --
m , so that
s m both TT Z(r.) and TT T(r.) approach 

j=l J j=l j

e^(t ) + «^(t )-> A 0̂ as m—>'
Therefore,

m jn
max " 
l^m j=i j=i

should occur after a few iterations. The spectral norm of 
the n X n matrix

m m
jOi - jUi
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can behave erratically when rj is large. This phenomenon is 
responsible for what some investigators have called instabi
lity of the ADI method for large values of rj (50, 62, 79). 
In reality, the numerical procedure (3.58) is uniformly 
bounded in norm, so that by all definitions of stability it 
is stable. To elucidate these points by way of a primitive 
example, let Vv(t) = O (i.e., one-dimensional flow of heat), 
and assume that * = I, then there exists a unitary matrix U
such that UHU' = D, where D = (d̂ ĵ ) is a positive diagonal
matrix and U' is the transpose of U. Furthermore, j|uHU'| =
||h|| = |(d |1 = max Then

| = |exp(-t^D) - - D)||

max [e'Vii _ 
l^i^n j=l  ̂^ ^j°ii

Now, when rj is very large and m is odd, the product

A
may well become negative for all d̂ ĵ , 1  ̂i ^ n. Conse
quently, the departure of the numerical solution (3.58) from 
the exact solution may be much larger than the magnitude of 
the exact solution. At the same time, the solution (3.58) is 
convergent, stable and second order correct.

Summarizing,the above development leads to an uncon
ditionally stable and second order correct numerical pro
cedure for solving two-dimensional latent heat problems.
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The detailed study of the growth of the error vector pro
duces a clearer understanding of criteria for minimizing the 
departure of the numerical solution from the exact solution 
of the problem. It was demonstrated that,contrary to the 
case of the Dirichlet problem, the error of the numerical 
solution of a parabolic differential equation Is not neces
sarily minimized when

m

Is minimized.
The acceleration parameter rj plays an Important 

role In minimizing the computer time requirement for solving 
such problems numerically. To arrive at the best set of 
parameters rj, j = 1,2...., one has to first solve the 
following problem:

Given t > 0 and|ô|> 0, find a minimum posi
tive Integer M and a set of acceleration 
parameters rj > 0, 1 ^ j ^ M, such that:

ll'H'Zlrj) - jyT(rj)|| s|6|
j=l "j=l j=l '

Such a minimization problem Is Indeed very difficult to solve. 
The author has not been able to find In the published litera
ture any solution to such problems, Insplte of Its Importance 
In solving parabolic differential equations of physics and
engineering. It Is evident that further work needs to be done 
before one can predict theoretically the most efficient set of 
acceleration parameters for solving the problem In hand.



CHAPTER IV

THE PROCEDURE AND RESULTS OF SOLVING THE HEAT CONDUCTION 
PROBLEM ON A HIGH SPEED DIGITAL COMPUTER

In the previous chapter, the theoretical aspects 
of solving the heat conduction problem numerically were dis
cussed. A predictor-corrector, ADI (alternating direction, 
implicit) method was proposed for solving the temperature 
field in an object with latent heat. The purpose of the 
present chapter is to prescribe a procedure for computing 
the temperature field on a high speed digital computer, 
utilizing the proposed method. In addition, the numerical 
solution of a few example problems are described. The ob
jectives for solving these example problems were two-fold:
1) to gain experience in translating the theoretical re
sults into the computer language as well as determining, 
by trial calculation,the accuracy, limitations and computer- 
time requirements of the proposed solution; 2) to provide, 
by way of numerical evidence, a partial answer to some of 
the problems which were not amenable to satisfactory theore
tical treatment. It must be kept in mind, however, that 
these trial results are not used as further evidence for the 
validity of the theoretical predictions of the previous chapter

95
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To explain more specifically the benefits of a few 

trial computations, consider again the proposed predictor- 
corrector formula, namely:

u(o) (4.1a)

^ T(%rjn+i) A-1#] + A"^S, m=0,l,2----  (4.1b)

J(m+is) = ) (4.1c)

(̂n>+l) ^ T(r^]^) A"^i] + A~^B, m=0,l,2... (4.Id)

In the previous chapter, it was established that the spectral 
norm of both T and T is less than one for all r^ 0, m=0,l,2.. 
Thus, the proposed solution is unconditionally stable. Fur
thermore, it was established that the solution is second 
order correct. That is to say*,

||f(m)|| _ o ((Atk)̂  + h^ + , for all Ar/kh 0.
There was very little to be said on how to prescribe the most 
efficient set of parameters:

^ = '̂̂ m l^m ^ ^o ^ O' ---}
On the other hand, the statement that the solution is second 
order correct ensures the convergence of the numerical solu
tion as well as specifying how the discrete solution approaches 
the continuous solution. But, it does not say much on the 
order of magnitude of the error- In other words, by

1* 1=
we merely mean that there exists a positive number, M, whose

*The symbol O here reads order of (Ar)^.
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magnitude is not usually specified, such that & M(Ar)^. 
Thus, the order relation for itself does not specify ts for 
a given value of ||c|* The size of M depends on the steep
ness of the temperature field and the boundary conditions 
[see (3.38) and (3.64a and b)]. It has a specific value for 
a particular problem, especially for the nonlinear heat con
duction problem in hand. A realistic, theoretical appraisal 
of M for nonlinear problems is usually very difficult. Many 
of the suggested short cut methods, such as a simple Fourier 
analysis can easily be misleading.

The significance of the proposed solution is in 
assuming a finite transition temperature range instead of 
zero. By making this rather realistic assumption, a great 
difficulty in locating the interface and obtaining the spa
tial derivatives of the temperature on the left and right 
of this interface has been resolved (see discussion in Chap
ter I). It was emphasized earlier that the dimensionless 
transition temperature range, 5p,must be sufficiently large. 
The questions that were left somewhat unanswered are:
Should one wish to approximate by the proposed method the 
solution of a latent heat problem for which 6p = 0, then 
what is the best value of 6p? Next, for any sufficiently 
large 6p what mesh spacing and set of parameters S would 
give a minimum required accuracy?

The above questions can be answered by trial calcu
lations for any particular problem. On the other hand, the 
purpose of this investigation has been to develop the
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foundation of a practical solution for obtaining the tran
sient temperature field due to pure conduction in a medium 
with latent heat. It is beyond the scope of this work to ob
tain validated answers for all the above mentioned problems 
and for all the important cases of practical interest. Never
theless , conducting a limited number of wisely chosen trial 
computations is well justified. A few numerical evidences 
may hopefully serve to show how the theoretical results of 
Chapter III can be extended. It would also serve to illus
trate Just how useful the proposed solution is and how one 
may improve its accuracy by inspecting the first set of ccot- 
puted results.

Before trying to specify the example problems, it is 
necessary to decide on a suitable solution algorithm in order 
to obtain further insight into the nature of the proposed 
solution as well as indicating what example problems will 
produce the most useful information with the minimum use of 
computer time.

The Solution Algorithm 
To solve (4.1) in the manner suggested in the pre- 

ceeding chapter, one divides the steps (4.1b) and (4.Id) 
into two sub-steps. Thus, for (4.1b) one can write

^ v) »<">+ e] (4.2a)ro+ 1  m+ 1

Jm*l) , v]-l [ ( ^  H ) w ‘“+*5)+,] ( 4 b̂)
^m+ 1  n̂ri-1
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It was mentioned earlier that, if one orders the mesh 

points by rows, H becomes tri-diagonal. If, on the other 
hand, one orders the mesh points by columns, then V is tri
diagonal. But, in general, one can not make both H and V tri
diagonal. However, in actual computation one has the choice 
of reordering the mesh points after each step of computation 
such that one is always dealing with the problem of reducing 
tri-diagonal matrices. In this way the solution algorithm is 
exactly the same for (4.2a) and (4 .2b). Let n = (nĵ ,n2 , ... #nĵ) 
be defined by

n = [— ^  î(m+%)« v] s (4.3a)
=m+l

and let
B = [■ —  h ] (4.3b)^m+ 1

then, (4.2a) becomes.

Because B is tri-diagonal, one can solve (4.4) directly by 
the Gaussian elimination method. To solve (4.4), let

'̂̂i'; j ' *i'+l,j'-------- )

'•i “ '̂ i,jM-l'---- Wi,r"'' *i,fJ
(4.5)

where i is used as a row index and J as column index, i* =
i' (j) and i"= i" (j) indicate that the row begins at the
mesh point (i* , j ) and ends at the mesh point (i",j) . j* = j'(i)
and j"= j"(i) indicate that the i*^ column begins at the mesh 
point (i,j'(i)) and ends at the mesh point (i,j"(i)).
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The matrix H may be written as:

H =

H, o
H;o H.

(4.6a)

where

Hj = T?j

a I —bĵ  I
-b; o
o N. X-V \

\

(4.6b)

Next, one writes (4.4) alternatively:

(nri-%)

where
(4.7)

and Dj is defined similarly to Wj. The matrix problem (4.7) 
can be directly solved by the following algorithm. Defining

*C..

*
9i'

= b^,/a*i; = b^/(aj - bj, _ 2 C^,^), i' ^ i s i"-l
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the components w. ., i '  ̂i s i" are given recursively by

*  t J

-Wi„ j = 91»

^ J  = 9i ' -i

(4.9)

i+lj ; i* iisi”-l

One repeats the above step for all rows to obtain all en
tries of . In a similar fashion, one can solve (4.2b)
column by column. Namely, one first writes

where

(̂nri-1) _ 1 i i i I

n =[-r^ $(nrt-î5)_ g] + ■
^m+ 1

®i“ “̂i,j' ' * * * •̂ 'i, j*fr

(4.10)

and

Vi =

dj. -ej,

*jM-l "®j'+l o
o -e

-er- 1

JUI 
df,

(4.10')

Then one solves (4.10) by an algorithm similar to (4.8) and 
(4.9) .

The above developments specify how the numerical cal
culations should be carried out. What is left to be studied 
is the problem of minimizing the computer storage requirement
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for solving the problem with a relatively fine mesh. For 
brevity, the discussions on the methods of optimizing the 
storage requirement of the proposed solution are omitted. 
However, the procedure outlined below is believed to require 
the minimum amount of storage and manipulation of data. Note
that in the following outline the equal sign (=) is used to
designate the machine command for replacing the quantity on
the left of the equal sign by the quantity on its right.

A Proposed Procedure for Solving the Problem 
on a Digital Computer 

I u(0)
$(0) = ^u(o)) Note: = 1+X exp[-d^(Uj^ j- Up)^]

m = 0

II m = m + 1 ;
If m even, a = ■— —  ; if m odd, p = —

n̂ri-1 n̂ri-1
III = (p - Vi)wj™)+ Si 1 & i ^ I

n = (p nj 1 s j 3 J
solve by Gaussian elimination method 
m j = m l i j : S J

IV n — (p ~ Hj ) . Hj + #j 1 i j ^ J
Hj = n 1 s j i J
n = (p + V\)"l 1 s i 3  I
solve by Gaussian elimination
n ^ = n  l ^ i ^ I
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V = *(C”ln)

If m even, = n
If m odd, go to II

To obtain an idea of the storage requirement of the above
solution, consider an N x N square mesh region. It is clear
from (4.10') and (4.6) that only 6 N coefficients specify V 
and H completely, and at most s contains 4N non-zero entries. 
On the other hand, w, n, and # each have entries while n
has only N entries. Therefore, all together the subscripted

2variables require storage space for (3N + IIN) words. Not
all the (3N^ + IIN) words need to be stored on the fast 
memory. In fact, one can store the component of w on a tape 
and read into the fast memory only the components which cor
respond to one row at a time. The same applies to n and *.

jt§Usually it is preferable to store only w and $ on the tape 
and to choose a computer with enough capacity to store n on 
the fast memory. Therefore, the minimum space in the fast 
memory would be (14N) words, the maximum (3N^ + llN) words, 
and the recommended capacity should be (N̂  + 13N) words.

The One-Dimensional Case 
When the temperature field is synmetric with respect 

to one of the two spatial co-ordinates, say y , the problem 
becomes one-dimensional. The proposed predictor-corrector 
method in this case reduces to

(j(n»+i5) = [_4__ $(m)+ H]-l[(-A__ ÿ™)- H)w(™)+ 2 s] (4 .1 1 a)
r̂o+ 1  ^m+ 1
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î(ro+Î3) = $(;j(n»+Î5)) (4 .1 1b)

(̂nri-1) _ ÿ(nH^^)_H)w(m)+2#](4.11c)n̂ri-1

The similarity between the basic solution algorithm for the 
one-dimensional case and that of the two-dimensional problem 
is obvious. For this reason it seems advisable to study the 
one-dimensional problem first. Also, in solving the one
dimensional problem useful information on the behavior and 
the accuracy of the proposed solution might be obtained.

It was mentioned earlier that only a limited number 
of heat conduction problems with latent heat have been solved 
analytically, and all of these solutions are for the one
dimensional problem. Comparison with these exact solutions 
is the only way to obtain an accurate estimate of the error 
of any numerical solution of the problem. In fact, in solving 
a two-dimensional problem one first assumes boundary condi
tions such that for parts of the two-dimensional region under 
consideration the temperature field is theoretically one
dimensional (e.g., along an axis sufficiently distant from a 
corner). One then compares the numerical solution for this 
region with the corresponding exact solution.

The influence of the prescribed transition range,
6p, and other parameters, arising from the physical proper
ties of the system, on the accuracy of the solution is essen
tially independent of the dimensionality of the problem.
Thus, the one-dimensional solution can be used to stu<fy the



105
effects of these parameters and consequently to obtain the 
values of 6p which give the best results. The one-dimen
sional solution can also establish an approximate procedure 
to evaluate the parameters r̂ ,, m=l,2 ,...., recursively.

Consider now the Neumann solution for a semi-infinite 
bar > 0 described in Chapter I. If the bar contains ini
tially a liquid at its freezing point, T», and at time t ^ 0  

the boundary temperature is reduced to T^, then the tempera
ture in the solid phase is given by:

u(xi ,t) = 5 =  1 - — 1 . erf *1 (4.12)Tjj - T„ erf i Zyogt

u(x(t),t) = 0
where

X(t) = 2çyô^ 

erf« =
Jv L 

= 3/5p

Tjj = T(0,t) ; t > 0

The principal value in solving this particular problem, both 
numerically and analytically, lies in gaining insight into the 
behavior of numerical solutions. Although the numerical solu
tion is difficult (due to a very steep temperature distribu
tion when t is small), its analytical solution has a very 
simple and useful form since it depends on only one



106
parameter which can be either or Cg(T® - Tj,) / L/ff. Let
X = x^/Ca + X]̂ ) and t = «gt/a^. Then,

= 1 - ë ^ -  erf
(4.13)

x(t)

For a uniform mesh spacing h (1/h = N is an integer), 
the numerical solution depends on h, 6p, and the recursive 
formula for r^ = Ar̂ ĵ /ĥ , m=l,2,.... A tabulation of Ç ver
sus the latent heat parameter Cg(T* - Tĵ ) / (Lv/ff) and the 
corresponding values of \/fi is given in Table 1. The table 
shows that, as 4 changes from 0 to 4, the latent heat para
meter changes from 0 to 10®. It seems, then, that 4 is a 
better parameter with which to work.

TABLE 1
VARIATIONS OF 4 WITH THE LATENT HEAT 

PARAMETER Cg(Tp - T^) / {hjïï)

s
U/iF

1
P

erf 4

0.000 0.000000 CD 0.000000
0.050 0.002825 112.601 0.056372
0.100 0.011359 28.023 0.112463
0.500 0.334160 0.95256 0.520500
1.000 2.290710 0.13895 0.842701
2.000 108.684960 0.0293 0.995322
3 .000 «24000.000000 0.000013 0.999975
4.000 » 1 0 8 =3x10-9 1.000000

Because the interface moves at a velocity equal to 
2 4VF, and because the temperature field is essential linear
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in the solid phase, it seems logical to prescribe A T^, m=l,2 , 
3,.... such that the interface moves a fixed fraction of the 
mesh spacing as one goes from one time level to another. 
Namely,one defines r^ by the relations

X(Tm-l+ = XIT„) = x(T„_i) + 6̂ h
^  = ix(T„) / [2«(1 - X«tJ])^ - (4.14)

m- 1

à  Ïr=l

where 6^ = movement of the interface in fractions of h for
m- 1  mthe period S A t ^ to L, A t _.r=l r r=l r

The above choice ensures that the time levels are so chosen 
that the error due to discretization of time is not increasing 
as A  Tjjj is increased with m. It has the additional advantage 
of permitting A  to be increased as one proceeds with the 
computation, thus resulting in appreciable saving in compu
tation time requirement.

The formula (4.14) suggests that r^ should be dec
reased as Ç is increased. When the latent heat effect is 
identically zero, then ( approaches infinity so that r^ 
should be zero or infinitely small. In reality one can assume 
that I»/rf / [cg(Tp - Tb) ] = 1 0 ~® without introducing an error 
more than the round-off error. For this value of the latent 
heat parameter, the corresponding value of 4 is 4.0, which 
can be used successfully in (4.14) to obtain the values of 
r^, m=l,2 ,---
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In general one does not have an expression for X(t), 

and the above procedure for calculating r^ may look fruit
less at the first glance. However, one can usually obtain 
an approximate upper bound for the rate of movement of the 
interface and then use this approximate relation to calculate 
r^ (8 , 35). It is not necessary at all that the interface in 
any actual problem moves by a fixed amount 6^ at every time 
step. The thing that one should make sure of is that it 
does not exceed In fact, when the boundary temperature
is time dependent, and perhaps periodic, one can take Tj, as 
the minimum value of temperature on the boundary within each 
interval and use (4.14) to calculate the values of r^ for 
that interval. The only revision in (4.14), to make it suit 
the case of periodic boundary conditions, is in letting m = 0  

at the beginning of any period.
Allowing w^™) to be the computed value of the un

known at the mesh point i at time level m, and uj™^ the cor
responding value of Neumann's solution for 6p = 0, one de
fines the Euclidean norm of the departure of the numerical 
solution by:

||,(">)|| = { p  [„(■") _ (4.15)
i=l

and the average departure by

where is the number of mesh points falling in the inter
val 0  ̂X  ̂X(t) . Once the value of 6p for which ||e|| is
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minimum is found, then one uses this value to study the effect 
of 4 and h on the accuracy of the solution. For most of the 
practical problems of melting and solidification 4 varies 
between 0.1 and 2.0. One does not expect much change in the
accuracy of the solution when 4 is varied between 0 . 1  and 2 .0 .
Thus, it is not very profitable to solve the problem for
various values of 4. On the other hand, h might be a signi
ficant factor in determining the accuracy of the solution.
It will not be very useful to show the effect of h on the 
accuracy of the solution when all the other parameters are 
kept constant because it has already been established that 
the solution is second order correct in h. What would be in
teresting to investigate is the problem of obtaining a numeri
cal solution for the time interval 0 to Tmax. Then, keeping 
6^h constant, what would be the best value of h? In other 
words, if one changes h, but keeps the computer time con
stant by way of increasing A T̂ , m=l,2 ,..., which value of h 
gives the best results?

The Computer Results for the One-Dimensional Case
Based on several previous experiments with the one

dimensional problem (41) it was assumed that the uniform mesh 
spacing h = 0 . 0 1  will result in a spatial discretization 
error which would be satisfactory for the present investiga
tion. Fixing the mesh spacing at h = 0.01, the one-dimen
sional problem was solved first for the following values of 
4, ® and X «
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Run Number i *F *x X

1 . 1 0.50 0 . 0 0 1 0.25 2857.650
1 . 2 0.50 0 . 0 1 0.25 285.765
1.3 0.50 0 . 1 0.25 28.577
1.4 0.50 0 . 0 0 1 0.50 2857.650
1.5 0.50 0 . 0 0 1 1 . 0 0 2857.650

An additional run (Run 1.6) was completed for h = 0.005,
= 0.5 and 6p = 0.1. Figure 7 is a plot of jj(see

(4.15) for definition of ((•̂ "̂ (|) versus \(t )= X(t) / (l + X(T)) 
for Runs 1.1,2,3,4 and 6 . x(?) is the diroensionless position
of the interface predicted by Neumann's solution (4.13). The 
computation time for these runs varied between 10 to 15 
minutes on the University of Oklahoma IBM 1410 computer, de
pending on 6^ and the time interval.

It is evident from Figure 7 that the dominant factor 
in determining the accuracy of the solution at large values 
of x(t) is the dimensionless transition range 6p. Observe 
that the accuracy of solutions for all the cases plotted in 
this figure is within the normal acceptable range. However, 
the sudden jumps of ||e(™̂ || at certain steps, followed by a 
long period in which decreases despite the increase
in the number of mesh points falling in the region 0 to x(t), 
are both heuristic and alarming. No satisfactory explana
tion can be given for this behavior of However, a
partial answer may be found in the remarks made at the end 
of Chapter III. Note that for 5p = 0.1 and 6^ = 0.25, 
does not increase suddenly; rather it follows a wavy pat
tern at the beginning and then slowly decreases. In Figure 8
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the average error for mesh points in the region 0  ̂ih ^ %(t) 
is plotted versus x(f)' Note that for 0^ = 0.25, the average 
error gradually decreases to less than 0.001. This general 
trend will carry on for x(f) ^ 0.20. For this reason there 
was no point in carrying the computations any further.

One of the reasons for choosing the boundary condi
tion u(o,t) “ 1 .0 , instead of a flux-type boundary condition, 
was the fact that initially ô u (x ,t ) / dt and 0u (x ,t ) / 3 x, at 
X  = 0.01 are very large. Consequently, the maximum error 
occurs at small values of T , and the error-reduction effect 
of the operator T(rj), defined by (3.56), can be more readily 
studied. The flux-type boundary condition, on the other hand, 
imposes a strong uniformity on the derivatives ôu/ôT and du/ôx 
so that the initial error would be negligibly small.

It is clear that the objective of these trial compu
tations was to exaggerate the erratic behavior of the Eucli
dean norm of defined by (3.64b) . Observe that | =
|j(m) ^ g(m) + where 6 = d(6p) arises from the departure 
of the Neumann solution from that of linear flow of heat in 
a medium with a transition range 6p ̂  0. Clearly, ||ôjj is 
larger for 6p = 0.1 than that for 6p < 0.1. Inspection of 
Figure 7 reveals the fact that||ë(ôp)||% 0.02 for 6p = 0.1 and 
0.01 & x(T) ^ 0.25.

Run 1.6, for which h = 0.005 and 6^ = 0.5, was carried
out to show if the accuracy of computations can be improved
by decreasing h and increasing 6^ such that the computation
time remains the same - It is seen in Figure 7 that the re
sult was negative.
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The computed dimensionless temperature w(x,r) for 

Run 1.3 is plotted in Figure 9 versus x for values of t 
ranging between 0.00277 to 0.111. Note the smoothness of 
the computed results. Note also the chemge of scale from 
linear to logarithmic on the w(x,t) axis which was done to 
demonstrate how fast w(x,t) approaches zero for x > x (t ). 
Observe that the process of melting (or solidification) be
gins at w(x/T) = 0.1. It is completed when w(x,t) = 0.0.
In this respect, the interface can be taken to be either at 
the point where melting is initiated (i.e., where w(x,t) = 
0 .1 ) or at the point where it is completed (i.e., where 
w(x,t) = 0.0). However, none of these choices are desirable 
because in the numerical results w(x,r) can never be equal to 
absolute zero. Its value at x^* X(t) is around 0.01 and dec
reases rather sharply to 1 0 ”  ̂at a few mesh points beyond 
X(t). The upper limit w = 0.1 is unsuitable, because at 
w = 0.05,3.5 per cent of the melting (or solidification) pro
cess is completed, i.e., 3.5 per cent of the latent heat is 
added (or removed) at w = 0.05. At w = 0.003 this figure is 
90 per cent, and that of w = 0.0159 is about 50 per cent. 
Consequently, it seems more suitable to take the position of 
the isotherm w = 0.0159 as the position of the interface, 
especially when one wishes to compare it with that predicted 
by Neumann's solution.

Equally important as the Euclidean norm of the error 
vector is the sign of (u - w). The accuracy of the compu
ted values of w (x ,t ) plotted in Figure 9 is such that it is
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Figure 9. Computed Temperature in a Semi-Infinite Slab.
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difficult to observe this change of sign. Figure 10 is a plot 
of u(x̂ ,t) - w(%i,t) versus for 6^ = 1 .0 , 6p = 0 . 0 0 1

and 4 = 0.5, at several time levels. Figures 11 and 12 are 
similar plots for 6p = 0.05 and 0.1 respectively. The trans
formation X - x^ / (1 + Xĵ ) was not used in computing the 
values of wtx^yr) from which the data reported in these figures 
were derived. Observe the oscillation in the values of (u-w) 
with the mesh points as well as with the time levels. It is 
evident that the values of rj corresponding to 6^ = 1 . 0  are 
appreciably large. Nevertheless, the solution wCx^/r) is 
stable and uniformly convergent as t— in addition to being 
second order correct in A T . Observe also that the magnitude 
of the center of oscillation of u(x^T) - wCx^/r) progressively 
decreases with time.

It is interesting to observe that for = 0.25 and 
4 = 0.5, the value of Ar/h increases from the initial value 
of 0.0625 to 29.95 at x(t) = 0.25. The corresponding values 
for 6^ = 1.0 are 1.13636 and 123.47. If an explicit numerical 
solution were used, then A should have been kept below
one-half by stability limitations (24).

The computer results presented here graphically are 
covered in tabulated form in Appendix B. These results were 
selected from twenty five runs which were carried out using 
the University of Oklahoma IBM 1410 computer.

Finally, it is worth mentioning that for most one
dimensional problems, one can obtain a fairly accurate solu
tion for small values of t . Using such values as the initial
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Figure 10, Variation of u(x,,T) - w(x, ,T) with T at Mesh 
Points Falling Between the Boundary and the 
Interface, (for 6x=1.0, 6p=0.001 and 4=0.50).
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Figure 11. Variation of u(xi,T) - w (xj ,̂t ) with T at 
Mesh Points Falling between the Boundary 
and the Interface, (for Gx=^'0'Gp=0.05 and 
$=0.50).
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Figure 12, Variation of u(xi,T) - wCx^.T) with T at 
Mesh Points Falling between the Boundary 
and the Interface, (for G^si.o, 6p=o.lO 
and 4=0.5)
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condition in the computer solution substantially reduces the 
large initial error which in turn improves the accuracy of 
the solution in the subsequent time levels. Indeed, for 
6% = 1 . 0  and an initial condition w(ih,To) “ 1 -erf(ih//3r^)/ 
erf 4» 1 3 i 3 5, where = 0.0025, the accuracy of the solu
tion was several times improved. Figure 13 is a plot of 
w(ih,T) versus ih/yïr for t> Tq, 6% = 1.0, 6p = 0.05 and % = 
0.5. The solid line in this figure is the exact solution.
The dotted line is the best curve passing through all the com
puted points. Note that the departure of the dotted line from 
the analytical solution is essentially due to prescribing a 
finite transition range 6p instead of zero. Compare the de
parture of the data points from this average curve with those 
of Figures 10, 11 and 12. In all the above mentioned runs 
the same recursion formula was used to evaluate rj at each 
time level.

The Two-Dimensional Case 
The analysis of the one-dimensional case served as 

a preliminary step towards solving the two-dimensional prob
lems. It was concluded that the recursion formula (4.14) 
can be successfully used to evaluate the acceleration para
meter rj, j=l,2,... by choosing 6^ sufficiently small. It 
was further observed that if the temperature distribution for 
a small, elapsed time is computed separately and fed into the 
computer as the initial temperature distribution, the accuracy 
of the numerical solution can be significantly improved.
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Figure 13. Computed Values of w(xi,r) versus (for 6«=1.0, 6p=0.05, 4= 0.5
and w Cxj .̂Tq ) = 1 - (erf x'/V5fo)/erf To=0.0025).
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There are three main objectives for solving a few 

two-dimensional example problems. First, to discover how 
successfully one can use the one-dimensional results in 
setting up the parameters for solving the two-dimensional 
problems. This information is indeed very significant and 
practical when one is engaged in performing actual machine 
computations. The reason is that the computer time require
ment for solving a two-dimensional problem may be over 1 0 0  

times more than that required to solve a one-dimensional prob
lem for the same elapsed times. Thus, it is important to 
eliminate as many preliminary two-dimensional runs as possible. 
Secondly, it is desired to study the problems of accuracy of 
the proposed numerical solution; the problems being charac
teristics of the two-dimensional problems. Finally, it is 
intended to provide a comparison between the numerical re
sults and those of the diffusion cell analog.

The two-dimensional region, R", considered for this 
study was a semi-infinite, plane region (in Cartesian co
ordinate system) bounded internally by a square of side 2 

(dimensionless and arbitrary). It was assumed that the 
region was originally at its initial transition temperature 
(i.e., u(x^, Xg, 0 ) = 0 .0 , Xĵ , XgfR") and for time t > 0 the 
temperature along the exposed boundary (i.e., u(x^, Xgff) =
1.0; x^, XgCP", where F" is the exposed boundary). For 
these conditions, the region R" can be divided into eight 
symmetric sub-regions R". Figure 14 shows one of such sym
metric regions and the associated boundary conditions.
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Figure 14. The Semi-Infinite Plane Région, R", and its 
Boundary Conditions.

X
u = 1

k (0,0)

( 1 , 1) (0,1)
0.0u

=  0

Figure 15, The Shape of the Semi-Infinite Region, R", of 
Figure 14 in the x - y Plane and its Corres
ponding Boundary Conditions.
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Figure 15 shows the shape and size of this region in x - y 
plane (see (3.1) for the definition of x and y). The reasons 
for choosing a constant temperature boundary condition at the 
exposed boundary are those cited in the one-dimensional case. 
Here again, when t is not very large, one may assume that the 
temperature field is essentially linear along a vertical line 
away from the corner.

When the medium under consideration is initially at 
its transition temperature, there will be no temperature 
change beyond the interface. For this reason, the region 
of interest at any time step is between the interface and the 
exposed (input) boundary (i.e., the line Xg = 0.0 in Figure 
14, or y = 0.0 in Figure 15). Therefore, for the time inter
val* of interest in the present work, the co-ordinate trans
formation of (3.1) may not be required, due to the fact that 
it is not necessary to compute the entries of u for points
far beyond the interface. Arranging the mesh region r. ^^ # J
like those of Figure 16 one can limit the row index at each 
time level to just a few lines beyond the interface, thus 
avoiding a substantial amount of unnecessary computation.

Two arrangements of the mesh spacing were considered. 
First, a uniform mesh spacing, i.e., k = h = 1/20. Thus, the 
region R" was divided into square and right triangles of side 
h = 1 / 2 0  by a set of equally spaced horizontal and vertical 
parallel lines. Figure 16 shows this arrangement as well as

*In most cases 0<t<2. Beyond this point, the error becomes a 
well-behaved function which approaches A“^  asymptotically as 
the number of successive iterations approaches infinity. See Chapter III.
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Region of the Example Problems. (The Spatial Posi
tion of the Mesh Points are given by the Co-ordinates 
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the numbering of the mesh points which was used for machine 
computations. It is clear that the part of the region R" 
shown in Figure 16 is enclosed in a rectangular region 3 ^

 ̂0, 2  ̂Xg  ̂0. Beyond this enclosed region negative in
dices can be used. Thus, it is assumed that for the time in
terval of interest there is no detectable change in the tem
perature at the boundary x^ = 2. To divide the entire semi- 
infinite region R" into uniform mesh regions one needs an 
infinite number of equally spaced horizontal and vertical 
lines, which of course is not practical. To improve this 
situation one either uses the co-ordinate transformation. 
Equation (3.1), with a uniform mesh spacing, or one uses a 
variable mesh spacing which divides the entire region into a 
finite number of mesh regions. The latter was adopted for the 
second arrangement considered here. Figure 16 shows both 
arrangements. The mesh spacing increases as the row index, 
i, increases and as the column index, j, gets larger than 42 
or smaller than 41. This arrangement was used because the 
temperature field was expected to depart more from that of 
the linear case around the corner DAB' in Figure 15.

The computer program was written such that the mesh
spacing can be specified by entering the values of x_ . andi

 ̂, (i,j)cRĵ  instead of the mesh spacings h^ and kj , (i, j ) (R̂ . 
For the case of variable mesh spacing the following formula 
was used to compute Xg and x̂  ̂̂  which in turn gives the 
position ( ^ 2  ^1 any mesh point (i,j)(R^ (see Figure
16) .
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x„ . = — U-- A-«.5)h—  40 2 i a 2
1 - (i - 1.5)h

X, = 1 . 0 --- U _r _41.5)h—   ̂ 61 a j a 42
1 - (j - 41.5)h

(4.16)

X, = 1.0 + — , 41 a j a 2
1 - (41.5 - j)h

h = 1 / 2 0

The acceleration parameter r̂ , m  ̂1 for the above 
two arrangements was computed by the following procedure. 
Let x(Tp,) = x(TQ)+m5^h. Then for the uniform mesh spacing.

^m = [ ( ^  X ( V /  - " = 1 (4.17)

and for the non-uniform mesh spacing

r = h ’5([ f - T ,1, m 2 1 (4.18)
2«(1 - x(T„))

The dimensionless total heat transferred, ÔQ , at the exposedm
boundary in the interval to can be approximated by

-̂ m

^m- 1

0u(xi, X2?T') . . ^
 g p   dx^^dxg J dr '
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(4.19)
(*l,j-l" *l,j+l)' ^1 ’ (i,j)(Rh

where
6<^ = total heat transferred at the exposed boundary in

the interval T . to T , BTU.m- 1 m
a = the actual length of the exposed boundary, and 

p, Cq , Tjj, Tp and <p are as defined previously in Chapter I.
Xĵ  j and Xg  ̂are the spatial positions of the mesh point 
(i,j), (i,j) (see Figures 15 and 16). The cumulative heat 
transfer at the exposed boundary, Q(T^) was then obtained as 
the sum of all 6Qj, 1  ̂j ^ m, i.e.,

m
6Qj

The Computer Program for the Two-Dimensional Problems
The above mentioned, two example problems were used 

for final de-bugging and study of the accuracy of a devised 
computer program capable of solving problems of two-dimen
sional heat conduction in a locally isotropic medium with one 
or more transition temperatures. The program was written in 
Fortran language. Nearly 600 man hours, plus 20 hours of 
IBM 1410 and 1.5 hours of CDC 1604, were consumed before this 
computer program was completely de-bugged and ready to solve 
the example problems. Of course, the development of such a 
program would have required half as much effort if the pro
gram was written for the specific case of the example problems
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The program is based on the procedure outlined on page 102.

Except when very high accuracies are desired, the 
number of mesh regions in the rectangular closure of a region 
of practical interest is not expected to exceed 4000. The 
high speed digital computer, CDC 1604, has a core storage 
capacity of 32,000 ten digit words, so that it has sufficient 
capacity for storing in its fast memory all the subscripted 
variables involved in the proposed solution. For this reason 
the computer program assumes that all the subscripted variables 
are stored in the core storage. However, a slight modifica
tion in the program will allow the use of the tape units for 
storing the entries of the diagonal matrix 5 and the vector w.

To solve a desired two-dimensional problem using the 
devised ccanputer program, one first replaces the plane region 
R by a network of mesh points with the procedure described
in Chapter III. One then lets be a rectangular network of
mesh points which contains R^ such that at least the second 
horizontal and vertical grid lines in^^ coincides partly 
with the first horizontal and vertical grid lines in R̂ , res
pectively (Figure 15). One also lets the number of horizontal 
and vertical grid lines in%^ be at least two lines more than 
those in R^. Next one numbers the grid lines in9^^ from top 
to bottom and from left to right, (Figure 16). To define 
the arbitrary network R^ for the computer program, one first 
defines the dimensionless temperature such that its value 
will always be positive in the region R. Then one lets ŵ  ̂  ̂=
-1.0 for (i,j)cR. where K is the complement of R. withh h “
respect tc%^.
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Aside from specifying the network R^, one should pro

vide the computer with the following input data:
1. Initial values of w^ (i,j)çRĵ . If for any

mesh point (i,j) the initial value of w. . is not* # J
specified, the program sets it equal to zero or 
any other desired positive number.

2. The entries of the matrices H and V .
3. The entries of the source vector 8 if 8 is fixed.

If some entries s^ j of a are time dependent, then 
a function s. . = s. .(t ) should be defined toi # J 1 f J
modify the values of s. . as t is increased.X tj

4. The functional form of j) and associated
coefficients.

5. A recursion formula for rj, j z i and associated 
coefficients.

A listing of this program as revised to solve the example prob
lems is covered in Appendix C.

The Computed Temperature Field Around a Corner
The temperature field around the corner shown in 

Figure 14 was solved for the case of constant mesh spacing 
and that of the variable mesh spacing. The high speed digi
tal computer CDC 1604 of the Southern Methodist University 
was employed to carry out the computations. Two sets of com
putations were completed for each case. One with 6 ĵ = 0.25 
and the other with 6^ ” 0.50. The latent heat parameters g 
and the dimensionless transition range 6p for all cases were
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0.5 and 0.1 respectively. To obtain an idea of the accuracy 
of the computer results, it was assumed that for small values 
of T , the temperature distribution along the 55th vertical 
grid line is essentially one-dimensional. Then the Euclidean 
norm of the departure of the vector = (Wg 5 5 , Wg 5 5 • • •
Wni gg) from that of the Neumann solution was computed in a 
similar way to that of the one-dimensional case.

The four computation runs were numbered as follows:
Problem Number Run Number Mesh Spacing 6x i

1 2 - 1 constant 0.25 0.5
2 2 - 2 constant 0.5 0.5
3 2-3 variable 0.25 0.5
4 2-4 variable 0.5 0.5
Figure 17 is a plot of

N
||e(t)|| = (u(x2 ,iTT) - Wi,5 5 CT))^]^ versus

i= 2

for Runs 2.3 and 2.4, where is a positive integer such 
that  ̂ , and ufxg ^îT) is the Neumann solution of
the one-dimensional temperature field in a region Xg  ̂ 0 .
Note that the values of |(E(T) {|for\/F ̂ 0.5 are almost the same 
as those of the numerical solution of the one-dimensional case 
for 6^ = 0.25 and 6p = 0.1 (see Figure 7) . For\^ > 0.5,jjE(T) 
uniformly increases with r , which indicates the increasing 
corner effect on the 55th vertical grid line rather than an 
increase in the error of the numerical solution. However,
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Figure 17. Variations of I|e|| with for Runs 2.3 and 2.4.
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the difference between the values of||E(r)|| for Runs 2.3 and 
2.4 is an indication of an increased discretization error 
when 6^ is increased from 0.25 to 0.5.

One of the most useful quantities in judging the 
correctness of the solution is the cumulative heat transfer 
at the exposed boundary calculated by equation (4.19). This 
quantity is especially useful when the heat flux at the ex
posed boundary is prescribed instead of the temperature. The 
reason being the fact that in this case the cumulative flux 
at the boundary is known so that the computed values of Q(r) 
provide an excellent check on the correctness of the numeri
cal solution. In Figure 18 the computed values of Q(t) for 
all the four runs is plotted versus ^ . Note how closely the 
results of Runs 1 and 3 agree with each other. Note also 
that for Runs 2 and 4, which required almost half as much ccxn- 
puter time as Runs 1 and 3, the error in Q(t) is not really 
very significant. The dotted line in Figure 18 gives the

■V

values of Q(t) if the semi-infinite region under considera
tion were bounded by the lines x^ = 0 , x^ = 1 . 0  and Xg = 0 .

The case of variable mesh spacing is indeed impor
tant in solving the problem of semi-infinite heat conduction 
in plane regions, because of the reduced number of computa
tion steps when t is large. It can easily be concluded from 
Figure 18 that a proper choice of variable mesh spacing can 
be made without any sacrifice in the accuracy of the solution, 
inspite of the fact that here the ratios of the maximum and 
minimum eigenvalues of the matrices H and V are much larger.
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Figure 19 shows the departure of Q(t) for the corner from 
that of a semi-infinite slab of a unit width. The ratio 
O/y/F increases uniformly with Vt for the corner while that 
of the semi-infinite slab is constant for all t  > 0 .

Figures 20 through 24 show the movement of the iso
therms u(x^, %2 'T) = 0.75, 0.5, 0.25, 0.05, 0.0159 and 0.003 
for Example Problem 1. The last three isotherms correspond 
to 3.5 per cent, 50 per cent and 90 per cent transition, res
pectively. These figures are the reduced photographs of the 
computer output at various time levels. The isotherms were 
drawn by interpolating between the values of u. .(t), (i»j)cR>, 
of the adj acent mesh points. The decimal points in the prin
ted values of u. • locate the actual position of the mesh1 « J
points with respect to the co-ordinate axes shown on the top 
and right of the figures. The presentation of data in this 
form not only saved a substantial amount of effort, which 
would have been consumed in converting the computer outputs 
to a graphical form, but it also preserved all the informa
tion in a very neat manner and thus allowed accurate sketches 
of any other isotherms.

Figures 25 through 29 are similar plots for Example 
Problem 3. The co-ordinates y and x in these figures are de
fined by y = ^2/(1 + Xg) and x = x^/d + jx̂ l) . The position
of the interface may be taken to be that of the isotherm
u. .(?) = 0.0159 which corresponds to 50 per cent removali # J
of the latent heat of transition. For large values of ?, the 
isotherms u. <(?) = 0.003 and u. .(?) = 0.05 are also drawn.X  f J X # J
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These two isotherms correspond respectively to 90 per cent 
and 3.50 per cent phase change.

The results of Runs 2.2 and 2.4, as well as those of 
Runs 2.1 and 2.3 which are not covered in Figures 20 through 
29 are given in Appendix C. Included also in this appendix 
is the complete listing of the input data for all the runs. 
These data are included to provide a detailed standard for 
testing future computer programs. Figure 30 gives the loca
tion of the 0.0159 isotherm which has been taken arbitrarily
as the position of the interface, where 50 per cent of the
phase transition has been completed. The curves in Figure 3 0 
were obtained by cross-plotting Figures 20 through 24.

A detailed study of Figures 20 through 29 indicates 
the smoothness and uniformity of the computed results. It 
also shows that the erroneous behavior of the numerical solu
tion for the one-dimensional case shown by Figures 10, 11 and 
1 2 is unlikely to occur for the two-dimensional problems.
The reason lies in the fact that the operator:

T(r) = (f $ + $ - H)(|r 5 + * - V)

is very unlikely to have negative entries for even large 
values of r, while some of the entries of

2 A /  1  A  A /4» + H) (1 * - H)

can very well become negative when r is sufficiently large.
The above experiments definitely demonstrated the 

usefulness of the recursion formulae (4.14), (4.17) and
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(4.18) for r, when the source vector s is fixed. The general 
use of such formulae when ■ is strongly time dependent re
mains to be investigated.

It deserves to be mentioned that r should be so 
chosen that the increment in u . .(t ) for two consecutive time

1 « J
levels does not exceed a small fraction of the transition 
temperature range 6p for all points (i,j) close to the inter
face . Otherwise

"  ^^k))['^i,j(W - '̂ i.j(tk-l)]K—X

deviates very appreciably from

1
<p̂ J (u) du

Ui_j(0)

which results in a strong departure of the numerical solution 
from the exact solution. This limitation must be seriously 
examined when s is strongly time dependent, or when Up ^ û  ̂j (0 ), 
(i,j)cRh-



CHAPTER V 

EXPERIMENTAL APPARATUS AND PROCEDURE

Two separate experimental set-ups were built: one
for testing one-dimensional diffusion cells and the other 
for testing two-dimensional diffusion cells. The one-dimen
sional diffusion cell was developed as a preliminary to the 
development of a two-dimensional diffusion cell. For both 
cases, several designs and arrangements of the diffusion cells 
were tested, until the data obtained from the one-dimensional 
and the two-dimensional diffusion cell analogs were adequate 
for the purpose of the present investigation. The apparatus 
for testing the diffusion cells also included conventional 
equipment such as temperature bath, micropump, cathetometer, 
and associated measuring equipment, which will be discussed 
only briefly. On the other hand, since the designs of the 
diffusion cells are critical, they deserve more detailed 
treatment. The successive improvements in the one-dimensional 
cells were directed toward increasing the accuracy of the 
measurements, while those of the two-dimensional cell were for 
the purpose of producing a pure two-dimensional diffusion 
field.

150
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The Apparatus for Testing the One-Dimensional

Diffusion Cell
The apparatus for the first series of the one-dimen

sional tests was essentially that previously developed by 
Walls (81) and Mirshamsi (57) for the measurement of the 
diffusion coefficient in liquid metals. It consisted of 
four quartz capillary tubings mounted on a capillary holder 
and immersed in a water bath in which the temperature was 
controlled to ±0.5®C (Figure 31). The capillary holder was 
connected by a shaft to a 1-RPM synchronous motor. A screw 
mechanism on the motor was used to move the capillary holder 
vertically and to rotate it at a speed of 1-RPM. The verti
cal movement was to allow automatic immersion or withdrawal 
of the capillaries in and out of the water bath. The rota
tion of the capillary holder was maintained throughout the 
experiment to maintain a constant boundary concentration 
without excessive turbulence. The portion of the water bath 
in which the capillaries were immersed was isolated from the 
rest of the water reservoir by a beaker containing distilled 
water. 2-ram ID and 1-mm ID capillaries were used at one time 
or another. The length of the capillaries were varied from 
3.8 cm in the tests with saturated phenol solution to 15 cm 
in the tests with pure phenol.

The cells were lowered in the bath such that their 
top was barely above water level and were kept in this posi
tion until temperature equilibrium was reached. A phenol 
solution containing both co-existing phases was kept in a



Rotating Shaftwater Level

apillary Tube

apillary Holder

Figure 31. The Quartz Capillaries and the Capillary Holder.

Inlet

Capillary

Figure 32. The Improved One-Dimensional Cell. (The Capil
lary Tubing is Enclosed in a Glass Tube Immersed 
in a Water Bath to allow better Temperature Con
trol and also better Control of the Concentration 
at the Boundary of the Capillary).
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container immersed in the water bath. The lower phase 
(phenol-rich phase) was partly withdrawn by a preheated 
hypodermic syringe which was immediately used to fill the 
capillaries. Upon submerging the capillaries, an interface 
was formed on the top, open end of the capillaries. This in
terface gradually moved inward due to the diffusion of phenol 
in water and water in phenol. The capillaries were graduated 
on their external surface to allow accurate measurement of 
the position of the interface by means of a telescope.
Several runs were completed at 30°, 40°, 50° and 60°C.

The above method, however useful, left much to be 
desired. The difficulties and the causes of error in the 
measurement of the position of the interface were:

1. The beaker in which the capillaries were submerged 
was not stirred, thus making the control of tem
perature very unstable. The excessive evaporation 
of water at 50° and 60°C, and the unstable tem
perature control caused some appreciable tempera
ture fluctuation.

2. At 50°C and higher, the continuous deaeration of 
water gave rise to the formation of air bubbles 
over the surface of the capillaries which not 
only made measurement of the interface very faulty 
but also made it difficult to maintain a constant 
concentration at the open end of the capillaries. 
In fact, it is likely that the passage of the dif
fusing molecules was blocked by these bubbles.
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3. The measurement of the position of the interface 

was very inaccurate because the capillaries were 
graduated on the outside. When viewing them 
through the telescope, the capillaries and the 
interface were not at the same focal distance.

To resolve these experimental difficulties the 
following changes were made:

1. The capillaries were enclosed in fitted glass 
tubes, which were longer than the cells. The 
tubes were closed at the top with rubber stoppers. 
Inlet and outlet lines were provided through the
stoppers for the water flow to pass the boundary
(Figure 32). This assembly was then kept in the 
agitated water bath.

2. A cathetometer which could read to ±0.005 cm was 
used to read the position of the interface.

With this modified arrangement, a series of tests 
were conducted at 55°C with a saturated phenol-rich phase in 
the cell, and a water phase containing various amounts of 
phenol (between 0.0 to 0.956 moles per liter) being passed 
over the boundary. The flow of water solution was maintained
by gravity at about 1 cc per hour. Although these tests were
more conclusive than the previous ones, they introduced some 
difficulties and shortcomings of their own. These difficulties 
can be summarized as follows:

1. The formation of air bubbles inside the capillary 
and on the top destroyed many tests.
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2. Vibration of the cells due to excessive agitation 

of the water bath was believed to disturb the 
diffusion field in the capillaries.

3. The stopper arrangement for introducing the in
let and outlet tubings proved to be awkward, es
pecially in filling the capillaries.

4. The sudden formation of a meniscus, as before, 
introduced appreciable initial error, as was the 
case with the previous tests.

5. The gravity flow of the water solution was not 
uniform and needed constant inspection for the 
possible stoppage.

In view of the above difficulties, it was found ad
visable to construct a new one-dimensional cell which could 
be operated with the minimal experimental error. A photo
graph of this cell is shown in Figure 33. A detailed drawing 
is given in Figure 34. The glass tubing in which the capil
lary was inserted was joined to a brass cap by a transparent 
epoxy resin. To avoid phenol attacking the epoxy, the in
terior part of the joint was filled with silicone rubber. The 
cap was screwed to the brass head and completely sealed with 
a teflon packing. Figure 34. The inlet and outlet tubings 
were sealed with 0 -rings such that the entire assembly was 
vacuum tight. The bottom of the capillary was seated on a 
stiff spring which forced it upward against the extended stem 
of the cell's head. The solution entered the top of the 
capillary through one side of the extended head and left from
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(a) (b)

Figure 33 The Final One-Dimensional Diffusion 
Cell— (a) The Components of the Cell, 
(b) The Assembled Cell.
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Figure 34. A Cross-Section of the Final One-Dimensional Cell 
Showing the Improvement in the Inlet and Outlet 
Tubings Connection.
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the opposite side as shown in Figures 33 and 34. The flow 
channel on the top of the capillary was about 0 . 0 2  cm thick 
and about 0.3 cm wide. The micropump (which is described 
below) was employed to pump the solution into the cell. The 
speed of pumping was maintained constant at about 3 cc per 
hour. The cell was mounted vertically in the air bath, de
signed for the two-dimensional cell, in order to overcome 
many of the difficulties that were experienced with the water 
bath in addition to maintaining a much better temperature 
control and being able to conduct the one-dimensional tests 
along with the two-dimensional ones. To fill the cell, the 
outlet tubing was closed at the end and the cell was evacuated 
by connecting container "A" (where the solution to be fed into 
the cell was kept) to a vacuum pump. Figure 35. By suddenly 
opening container "A" to the atmosphere, the back pressure 
pushed the solution into the cell and filled the capillary.
By this arrangement the solution was completely deaerated 
prior to being fed into the capillary. This technique com
pletely solved the problem of air bubble formation in the cell.

Two tests were completed with this cell. Both were 
carried out at 55®C with pure water in the capillary and a 
phenol solution containing about 8 per cent water being pum
ped over the boundary surface of the cell. Since phenol solu
tion is slightly heavier than water, the cell was mounted up
side down to avoid convection inside the cell. The capillary 
tube was 1 mm ID and about 15 cm long. The results from the 
one-dimensional cells are discussed in the next chapter.
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Figure 35. The Set-up of the One-Dimensional Cell for 
Filling with Phenol Saturated Water Solution. 
(The Entire Assembly was kept in the Air Bath).
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The Apparatus for the Two-Dimensional Cells
The apparatus consisted of:
1. The two-dimensional diffusion cells.
2. An air bath.
3 . A micropump.
4. A Graflex f/4.7 camera and associated arrangement.
5. A Sherr micro-projector.

The general layout of the apparatus is shown in Figure 36.
The specific items are described below.

Most of the experimental effort in this work was 
centered in the development of the two-dimensional diffusion 
cell. Three different cells were constructed and tested.
The first one was a complete failure in most respects. It, 
however, pointed out several important factors which should 
be taken into account in the design of future cells. Based 
on the knowledge gained from this cell, a second cell was 
constructed. With this cell it was possible to isolate 
several phenomena responsible for strong disturbance of the 
diffusion field and to study them separately. These experi
ments also demonstrated that several costly complications in 
the design of the cell were unnecessary. The third cell was 
then built and tested. The final results of the third cell 
definitely established the practicality of a two-dimensional 
diffusion cell analog, but it left much to be desired for 
accuracy and ability to measure all the important variables.

The design of these cells are discussed below. The 
experimental procedure is omitted from the discussions because
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Figure 36. A View of the Experimental Apparatus showing 
the Air Bath, the Micropump, the Cathetometer 
and the Temperature Controller.
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It was essentially trivial on one hand and different for each 
of several tests conducted, on the other hand. Only a brief 
account of the experimental procedure for the final test with 
the third cell is given.

The Preliminary Two-Dimensional Cell
This cell was designed to simulate the L-shaped region 

shown in Figure 37; it consisted of a liquid film contained 
between two parallel plates which were separated by a dis
tance which could be varied between 0.1 mm to 1 mm. To simu
late the boundary conditions a solution of desired concentra
tion was passed over the boundary in a direction perpendicu
lar to the plane of the liquid film in the cell.

Exposed
Boundary

Closed Boundary

Figure 37. The Plane Region Simulated by the 
Preliminary Cell.

Figure 38 shows the various components of the cell. It con
sists of two L-shaped, 3/16 inch thick by 4 1/8 inch x 4 1/8 
inch flat pyrex glass plates, two 3/8 inch thick by 5/16 inch 
X  5 5/16 inch square pyrex glass plates, a spacer and two 
frames. Each square glass plate was glued by a transparent
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19/32"

Exploded View of the Preliminary Cell

Cross-Section of the Preliminary Cell 
Figure 38. A Sketch of the Components of the Preliminary Cell.



164
epoxy resin to an L-shaped plate. When the glass plates were 
mounted on the spacer (see Figure 38) the clearance between 
the L-shaped plates was 0.004 inch. To increase the clearance 
between the L-shaped plates, a thin gasket of a desired thick
ness was placed on one face of the spacer. Thus, the volume 
in the cell represented an L-shaped film of the desired thick
ness .

The metal frames were used to keep the glass plates 
compressed against the spacer. To completely seal the spacer 
against the glass plates, a film of silicone rubber (Dow- 
Coming silastic 881 RTV rubber) was spread over the two faces 
of the spacer. The glass plates were then mounted on the 
spacer and the frames were used to compress the plates against 
the spacer so that the fluid silicone rubber would spread 
evenly over the contact surfaces. The entire assembly was 
then kept at 50“C for about three hours to let the silicone 
rubber harden.

An inlet and an outlet channel were provided on the 
spacer to allow filling and emptying of the cell as well as 
passing any desired solution over the exposed boundary. The 
first spacer was made out of stainless steel. It was later 
replaced by a teflon spacer to avoid breaking the glass plates 
due to uneven compression against the hard steel spacer.

The results of the tests carried out with this cell 
are discussed in the following chapter. These tests indi
cated the following defects:
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1. The dimensional stability of the cell was very 

poor. A slight pressure change in the inlet 
pipe made the glass plates bulge out, thus 
sucking in the solution on the boundary, and 
pushing it back when the pressure returned to 
normal.

2. Uneven distribution of flow over the boundary.
3. The L-shaped glass plates were not exactly of the 

same dimension which made it very difficult to 
match them properly at the open boundary.

4. Phenol gradually attacked the epoxy used to 
Join the glass plates together.

5. The hold-up volume of the flow distributor's 
channel was very large compared to the flow rate.

6 . The operation of the cell was very awkward.
Several pieces of glass plates broke while the 
cell was being assembled or dismantled.

These difficulties pointed out that a more careful design 
with much more stringent specifications was desired.

The Intermediate Cell
In the second cell, instead of using four glass plates, 

two, 3/4 inch thick by 5 inch diameter pyrex glass disks were 
used. At the center of each disk a 2 cm x 1 cm rectangular 
cavity of 0.3 cm depth was cut out by sand blasting. At the 
center of each cavity a 1/16 inch hole was bored through the 
disks. Figure 39 shows a photograph of these glass disks.
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Figure 39. The Glass Disks Used in the 
Intermediate Cell.

Exposed Boundary

losed Boundary

Figure 40 The Plane Region Simulated by the Intermediate 
Cell.
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The hole was enlarged on the opposite faces of both glass 
disks to allow installation of an 0 -ring port for connecting 
the inlet or outlet tubings. When the flat faces of the two 
disks are brought together to form the internal cavity in the 
center, the arrangement represents a region shown in Figure 
40. The exposed boundary here consists of four corners while 
that of the previous cell consisted of one corner. As in the 
previous cell, the closed boundary is so far away from the 
corners, that for all practical purposes, it can be taken as 
at infinity: that is, the region between the flat side of
the glass disks represents a semi-infinite plane region ex
terior to a rectangular slice taken from an infinitely long 
rectangular parallelepiped.

A metal ring was used to keep the disks a precise 
distance apart. Figure 41. A flow distributor was mounted in 
the central cavity such that the flow of liquid passed over 
the open boundary in a direction normal to the plane of the 
disks. An aluminum cylindrical frame was used for holding 
the disks in place. The two 0-rings mounted on the frame 
effectively sealed the space between the disks. Figure 41a 
shows this arrangement with dimensions of the various compo
nents of the cell in Figure 41b.

The advantages of this cell over the previous one 
were several. The most important ones were:

1 . A much better dimensional stability was attained. 
Under normal operating conditions, no detectable 
bending of the glass was observed, even when the
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CENTER BLOCK

FILTER PAPER
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FLOW DISTRIBUTER
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INTERMEDIATE CELL
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(b) X-SECTION OF THE INTERMEDIATE CELL.

Figure 41. (a) An Exploded View of The Intermediate Cell,
(b) the Cross-Section of the Cell, and (c) the 
Cross-Section of the Flow Distributor,
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spacing between the disks was as small as 0.05 mm. 
The thickness of the plexiglass ring shown in 
Figure 41b was so chosen to compensate thermal 
expansion of the aluminum frame,so that the 
thickness of the film between the glass disks re
mained essentially constant with temperature change.

2. The direct connection of the inlet and outlet 
tubings to the glass proved to be very effective 
in improving the filling of the cell as well as 
allowing an easy connection.

3. Several flow distributors were tried, the one 
shown in Figure 41c proved most effective. As 
can be seen, the solution entering the cell passes 
through a uniform thickness of filter paper which 
provides sufficient pressure drop to allow uniform 
distribution of the flow. The filter paper acted 
also as a dampener for possible pressure surges
in the upstream tubing. By connecting the exit 
pipe to an atmospheric reservoir, the static 
pressure in the cell was maintained constant to 
avoid elastic deformation of the disks. This 
arrangement also made it possible to reduce the 
residence volume of the flow channel in the cell 
from 1 cc to less than 0 . 1  cc.

4. The circular frame arrangement with the 0-rings 
made the assembling or opening of the cell a
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very easy matter so that several preliminary 
tests could be carried out every day.

The construction of the cell parts did not intro
duce any undue difficulty, except for the cutting of the 
cavities and the holes in the glass disks. After experimen
ting with a number of techniques over a period of months, it 
was found that a sand-blasting technique was the best. To 
cut the cavities by this method, an aluminum template was 
first made. This template was then fastened to the surface 
of the glass disks and sand blasted until the cavity's depth 
was about 3 mm. The bottom of the cavities were then flat
tened and polished with special diamond drill bits, using 
dental drilling techniques. The holes were also drilled with 
special diamond drilling bits. Although the rectangular cut 
in the template was perfect, the surface corners of the 
cavity did not turn out knife-edge sharp. There was some 
microscopic chipping of the glass on the edges.

The first pair of disks, after being completely 
built, disintegrated into small pieces while resting on a 
desk, due to residual stresses. Although the purchase order 
called for annealed glass, the disks were apparently not 
annealed. The next pair of disks were annealed in a glass 
annealing furnace before cutting the cavities and holes. No 
evidence of stress concentration was found.

After conducting a number of experiments to determine 
the feasibility of obtaining a pure diffusion field, the 
following conclusions were reached on this design of the cell:
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1. Even at a rate of 1 cc per hour the flow passing 

the boundary disturbed the liquid in the cell 
which suggested that the boundary should be sepa
rated from the passing solution by a suitable 
membrane. To avoid interference of the inter
facial tensions with these observations, the cell 
was charged with a finely divided emulsion of 
phenol in water and pure water was passed over 
the boundary. The movement of the dispersed 
phénol phase was then viewed through a 2OK 
telescope.

2. The need for a membrane suggested a very impor
tant simplification in the cell design. With 
the membrane separating the forced flow at the 
boundary from the stationary liquid in the cell, 
there was no longer any need for the elaborate 
cutting of the cavities. A flow distributor 
such as the one shown in Figure 42 would be more 
effective and much easier to place in the cell. 
This arrangement also simplified the problem of 
introducing various shapes in the exposed boun
dary for simulating desired flow fields. Figure 
43 shows the components of the flow distributor 
for an arbitrary shape of the exposed boundary.

3. The metal 0-ring ports for the inlet and outlet 
tubings and the metal ports for the flow distri
butor in the bottom disk's cavity w^re joined to
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the glass surfaces by a suitable epoxy resin.
After several days, the thermal expansion of the 
metal peices and the epoxy due to thermal cyclings 
of the cell developed surface cracks in the glass 
disks, which propagated with time (see Figure 39, 
the left glass disk).

4. In all tests the cell was filled by evacuating a 
container, connected to the outlet tubing and con
taining the solution to be charged into the cell. 
The tubing was immersed in the solution in the 
container so that when the vacuum was lifted the 
cell was charged automatically. To reduce the 
amount of residual air, the cell was purged with 
water vapor prior to filling. The large 0-rings 
on the frame presented a serious difficulty in 
getting rid of all air because of the dead volume 
around them. The air bubbles left in the grooves 
in which the 0 -rings were situated gradually dis
solved partially in the deaerated solution in the 
cell, causing bulk movements at the boundary as 
well as acting as a cushion for any pressure 
surge in the cell. Note that a pressure change 
of the order of 1 / 1 0  inch of water can create a 
volume change in the bubbles, which compared to 
the volume of the film between the glass disks 
with a spacing of, say, 0 . 1  mm, is indeed very 
large. The above difficulty was, however.
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overcome by using a smaller ring for the spacer 
and filling the space beyond it with silicone 
rubber. The 0-rings on the aluminum frame were 
then only used to avoid direct contact between 
the glass disks and the metal frame.

Despite the above mentioned defects, the tests completed with 
this cell were very conclusive. They identified the various 
phenomena which were responsible for the bulk flow in the cell

The Final Cell
The last two-dimensional cell was identical to the 

intermediate cell except for the glass disks and the boundaxy 
flow distribution parts. A 1/16 inch hole was bored in the 
center of each disk. On one side the hole was widened to %- 
inch to allow plugging of a silicone rubber stopper. Figure 
44. The inlet or outlet tubings were connected to the disks 
through the silicone rubber stoppers. The preliminary tests 
with this cell demonstrated that there is little hope for 
producing a two-dimensional diffusion field in a non-porous 
media. Most of the tests were then carried out with porous 
media. The porous medium used for the present investigation 
was ordinary Whatman filter paper Number 52. Four layers of 
the filter paper were pressed together and cut into a shape 
representing the closed boundary. They were then covered on 
both faces with two, 4-mil. thick polyethylene sheets, com
pressed between two thick glass plates and heated for 2 0  

minutes in an oven kept at 120°C. The polyethylene sheets
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Figure 44. One of the Pair of Glass Disks Used in 
the Final Cell.

Figure 45. A Photograph of the Final Cell.



176
melted over the faces of the filter papers, thus sealing them 
completely and most effectively. After cooling to room tem
perature , the desired shape of the boundary was cut out. 
Figure 45 shows a photograph of the cell with a 25® wedge 
shaped filter paper sealed between the glass disks. The ex
posed boundary here is a circle of 1 cm in diameter. The 
white ring in the middle is made of 0.5 mm filter paper com
pressed to 0.30 mm and is used to distribute the flow evenly 
over the boundary. Underneath this ring there is a 0.125 mm 
thick circular bronze sheet. The spacing between this circle 
and the bottom glass disk was about 0.45 mm. Surrounding the 
wedge is a rubber spacer which covers most of the remaining 
surface of the disk. Silicone rubber was used for sealing 
the wedge around the periphery in order to avoid possible 
leakage of air when filling the cell and expansion of the 
polyethylene sheets around the sides.

The Air Bath
The air bath was designed to provide a constant tem

perature environment for the cell. Figure 46 shows the 
various components of the bath and the relative position of 
the camera. A photograph of the air bath is shown in Figure 
47. The positions of the fans, the heaters and the tempera
ture controller probe were determined by trial and error to 
get the best temperature control. Several chrome1-alumel 
thermocouples were installed in the bath for measuring the 
temperature distribution. An accurate potentiometer was used
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Figure 47. A Front View of the Interior 
of the Air Bath
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Figure 48. Schematic Diagram of the Air Bath Showing the
Relative Positions of the Fans, the Temperature 
Probe and the Heaters.
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to read the temperature. It was observed that, with the 
arrangement shown in Figure 48, the maximum temperature dif
ference at the various points in the bath was less than 
±0.25“C. The controller was supposed to control the tempera
ture with an accuracy of ±0.01®C. However, since the readings 
of the potentiometer were not better than t0.1°C, the higher 
accuracy cannot be claimed for the present set-up.

The walls of the bath were made of a layer of tran
site and a layer of plexiglass with a few sheets of corru
gated paper between them to reduce heat loss. The heater had 
a capacity of 33 Watts at 120 Volts. The maximum power out
put of the temperature controller (Bailey Precision Tempera
ture Controller Model 104) was rated at 300 Watts. A power- 
stat was connected between the temperature controller and the 
heater to allow more flexible control. Normally, the power- 
stat was set at 60 Volts.

The cell was supported in the bath by a metal stand. 
The stand was so designed to allow movement in all directions. 
The stand was originally designed to hold the cell in a pre
cise position on the existing interferometer at the University 
of Oklahoma Chemical Engineering Laboratory. However, the use 
of the interferometer for measuring the concentration profile 
in the cell never materialized, due to unsuccessful attempts 
to produce a pure two-dimensional diffusion field in a non- 
porous region.

To avoid gravitational flow in the cell, the stand 
was adjusted such that the liquid film in the cell was in a
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perfect horizontal position. Large windows were provided at 
the front and back of the cell to allow observation and also 
photographing of the cell.

The Micropurop
To maintain a fixed boundary condition in the two- 

dimensional cell it was necessary to pass a solution of known 
composition over the boundary at a precise rate. The desired 
range for the rate of pumping was found to be between 1 . 0  - 
5.0 cc per hour. These figures were reached from the consi
deration that the concentration change of the solution having 
passed over the boundary should be between 1 0 ~ 2  - lo”  ̂moles 
per liter. If the cell contains saturated phenol solution 
and if pure water is passed over the boundary, then, assuming 
the diffusion flux at the boundary is essentially that of a 
one-dimensional model, the concentration of the water solution 
leaving the cell for the temperatures ranging from 30°C to 
60®C is given in Table 2.

TABLE 2
THE EFFECT OF THE PUMPING RATE ON THE CONCENTRATION 

OF PHENOL LEAVING THE CELL

Temperature 30°C 40°C 50°C 60?C

Pumping Rate 
cc per hr per cm2 
of the boundary 

surface

Concentration times ^timë 
moles hr^ per liter

1 0 0.0274 0.03235 0.0341 0.0327
1 0 0 0.00274 0.003235 0.00341 0.00327
500 0.000548 0.000647 0.000682 0.00065

1 0 0 0 0.000274 0.000323 0.00034 0.000327
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To arrive at the values of concentration times ^time, the 
values of diffusivity obtained from the preliminary test with 
the one-dimensional cell were used. For the concentration to 
be in the range 1 0 ~ 2  to 1 0 “̂  moles per liter between t = 1 . 0  

hour and t = 1 0 0  hours a pumping rate of about 2 0  cc per hour 
per cm^ of the boundary is required. Now, if the boundary is 
1 cm X 1 cm square and the thickness of the liquid film in 
the cell is 0.025 cm, then the desired pumping rate will be 
20 X 4 X 0.025 = 2.0 cc per hour.

Several possible micropumps were investigated.
Finally, the pump described below was found to fulfill the 
desired accuracy, dependability and flexibility. The pump. 
Figure 49, consisted of a 1 RPM synchronous geared motor, a 
reduction gear box, a horizontally moving rack and a hypo
dermic syringe. The gear box reduced the speed to 1/360 RPM. 
The output of the gear box is transmitted to horizontal move
ment of the racks through spur gears A and B , Figure 49.
The rack then pushes the plunger of the hypodermic syringe, 
thus pumping the solution out at a uniform rate. By either 
changing the size of the hypodermic syringe or changing the 
spur gears A and B, a wide range of pumping rates can be ob
tained. Substantial changes in the pumping rate can also be 
achieved by replacing the motor with one of a different speed.

The additional syringe and the threeway cock shown in 
Figure 49 were used to facilitate recharging the pump. For 
most of the tests a 20 cc syringe was used. The pumping rate 
for this syringe was 3.02 cc per hour. With this rate, the
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Figure 49. The Micropump

pump was recharged every eight hours. The procedure for re
charging involved the following steps:

1. Pour the solution into the syringe D, Figure 49.
2. Disengage the rack.
3. Turn the cock so that syringes C and D are 

connected.
4. Fill C by pulling its plunger outward.
5 . Engage the rack.
6. Turn the cock back.

It usually took less than a minute to recharge the pump. The 
interruption in the flow for this period had no detectable 
effect on the diffusion process in the cell.

Camera and Associated Optical Arrangement
The optical set-up for taking the photographs of the 

interface developed in the cell is shown in Figure 46. A
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ring shaped fluorescent lamp was used to provide a diffused 
source of light. A black box, located in the center opening 
of the ring lamp, provided a black background for the camera. 
This arrangement was found very effective in sharpening the 
contrast between the two phases. The camera used was a 
Graflex f/4.7 model. It was mounted on a tripod stand to 
allow adjustment of the camera to the horizontal position. 
Polaroid films were used for taking the photographs so that 
they could be examined immediately. As seen in Figure 46, a 
flat front mirror was mounted on the air bath ceiling at a 
45° angle to the horizontal plane so that the cell could be 
viewed with the horizontally mounted camera.

The MicroProlector
A Scherr microprojector. Figure 50, was used to read 

the position of the interface from the photographs of the 
two-dimensional cell. The optical arrangement of the pro
jector is shown in Figure 51. A micrometer cross slide stage 
with readings in 0.0001 inch. Figure 52, was placed on the 
work table of the microprojector. The photographs were placed 
between two glass disks and positioned on the micrometer cross 
slide stage. By turning the micrometer's knobs, the interface 
was brought to fall on the center of the cross lines of the 
projector screen and the micrometer readings were recorded. 
This procedure was repeated for the points of interest on the 
interface and the boundary. These x - y readings were then 
converted to a desired dimensionless form in a suitable
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co-ordinate transformation. The projection lens was 2OX.
The projection screen was 14 inch, and the maximum field for 
viewing was 1 inch x 1 inch.



CHAPTER VI 

EXPERIMENTAL RESULTS

In this chapter the results of many experiments with 
the previously mentioned diffusion cells are discussed.
These experiments were conducted in order to demonstrate the 
feasibility of employing the molecular diffusion process to 
simulate heat conduction problems with change of phase. For 
this reason, only the observations and measurements which were 
necessary for determining the nature of mass transfer in the 
cell were made. In fact, the rate of movement of the inter
face between the phenol rich phase and the water rich phase 
turned out to be the only reliable measurement which can 
determine the nature of mass transfer at the boundary and in 
the cells. The concentration profile in the cell and the 
total flux at the boundary were not measured because these 
two measurements require a development program of their own. 
Such an undertaking is profitable only when the conditions 
for producing a pure diffusion mass transfer, the optimum de
sign of the cells, and the optimum partially miscible liquid 
system are well specified.

The diffusion mass transfer in liquid systems is a 
very specialized process and quite distinct from any other

186
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phenomena responsible for the transfer of mass in such sys
tems. For one thing, it is extremely slow when compared with 
free or forced convection, or capillary rise. For another, 
the mass flux by diffusion for a given concentration poten
tial is dependent on the square root of time. For example, 
in the case of the linear flow of mass the ratio X(t)//E (X 
is the distance between the interface and the boundary, t is 
time) for the phenol-water system at 55®C is less than 1.3 mm 
per hr^ depending on the boundary concentration. Thus, after 
81 hours X(t) s 11.7 mm, and after 100 hours (t) & 13 mm. 
Clearly, any disturbance of the pure diffusion field will 
appreciably upset the relation X(t)//t  ̂1.3.

To facilitate recognizing, and perhaps resolving, 
the problems involved in the design and operation of a two- 
dimensional diffusion cell, a series of tests were completed 
with the one-dimensional cells. These tests also resulted in 
the integral diffusion coefficients which were needed in the 
study of the two-dimensional cells. The early tests with the 
two-dimensional cells only served to reveal several mechani
cal defects of the cells. These shortcomings were finally re
solved to the extent that it was possible to assert that all 
mass transfer to and from the cell was due to either diffusion 
or various interfacial forces acting on the liquid film in 
the cell. The central problem then became the complete elimi
nation of all interfacial forces which were responsible for 
the bulk flow inside the cell. The approach to this problem 
was strictly empirical. Although advances have been made in
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the past decade in understanding the nature of liquid-liquid 
and solid-liquid interfacial forces, it is not as yet possible 
to make a precise prediction of the possible ways of reducing 
the sum of all these forces to a negligibly small value (say 
1 0 " 1 0  dyne per cm). Only this type of prediction could have 
been helpful in the present work because an interfacial force 
as small as 1 0 “  ̂dyne per cm can be responsible for a con
tinuous bulk flow, which is several times larger than that ob
tained by diffusion.

The two-dimensional tests can be classified as follows:
1. A uniform phenol (or water) rich phase in the 

cell with a water (or phenol) rich phase being 
passed over the boundary.

2. A finely dispersed emulsion of phenol (or water) 
rich phase in saturated wa\-er (or phenol) rich 
phase in the cell with water.(or phenol) solution 
passed over the boundary.

3. As item 1, except that here the volume of the 
cell was filled with a porous media (filter paper).

The objective of these tests and their results are covered 
below.

Determination of the Average Diffusion Coefficient from 
the Experimental Data of the One-Dimensional Cells

Consider a long capillary tube. Figure 53, initially 
filled with a phenol rich phase of concentration Ca, moles of 
phenol per liter (C„ z C^^) and kept at a constant tempera
ture T. Let, at time t = 0, a water rich phase with a phenol
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X(t)

Concentration

Figure 53. The Concentration Profile in a Capillary Initially 
Containing a Solution of Uniform Concentration,
Cjo  ̂C^I whose Surface x = 0.0 is kept at Cg < C^

concentration Cg moles of phenol per liter (Cg < c|) be passed 
over the open end of the capillary tube. Then an interface 
will form inside the capillary whose position, X(t), for the 
case of constant diffusion coefficients, 3^ and is given
by the relation.

where
X(t) = 24^Pt

1/Xi(4) = X + */x2(ZG)

(6.1)

(6.2)

Xi(y) = ye^ erf y

X2 (y) “ ye^ erfc y
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- ‘=B
X = (cll - cl) - Cg) (6.3)

z = (61/611)%

It can be shown that when = D^(C), a relation of 
the type (6 .1 ) approximately holds, provided that the integ
ral values of diffusivities,

= -T-1--- I D*(C) dCj
c i

and (6 .4 )

5II =   DlI(C) dCc;i - c„s "CO I'”’"^11

are used. How good this approximation is depends on the 
functional form of D^(C).* If, on the other hand, the ex
perimental data confirmed that X(t)//F is constant, then it

^  T  Tcan be concluded that there are average values, D-*- and D-*--*-, 
of the diffusivities such that the relation (6 .1 ) holds. 
Because only these average values are needed in the present 
investigation, the discussion on their relations to the point 
diffusivities is omitted. Of course, all the above observa
tions are still valid if the cell is filled with a water solu
tion, and a phenol solution is passed over the boundary.

*See Geddes and Pontius (37) for further discussion and other 
methods for measuring the diffusion coefficient in binary- 
liquid systems.
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If p = 0, that is, if Co, = Cg^, then 4 does not de

pend on For this case the value of can be calculated
from the experimental values of X(t) by using the Equation 
(6.1). However, for the reasons to be discussed later, it is 
better to plot the values of X(t) versus ^t and find the slope 
of the line that best fits all the points, then to calculate 
D-*- from the relation

dX(t) / a/t)2

where dX(t) /d/t is the slope of this line. Using a least 
square method to find the best line,

X(t) = aVt + b 
which fits all data points, one gets,

R  '1 - i ( Ï 'Sf]
i=l i=l

where n is the number of data points. This method was used 
to obtain the values of the average diffusivity, D^, for 
the water-rich phase. By having phenol-saturated water in 
the capillary and passing a phenol-rich solution over the 
boundary, one can similarly get the values of the average 
diffusivity for the phenol-rich phase. If the value of the 
diffusivity for the water-rich phase is known, one
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alternatively fills the cell initially with pure water and 
passes a phenol solution over the boundary. For this case,

Knowing one can calculate Z§ and consequently

= dV z^

The Experimental Results of the One-Dimensional Cells
As mentioned earlier, the purposes of the capillary 

experiments were:
1. To demonstrate that a one-dimensional cell can 

be used to solve many unsolved problems of 
linear heat conduction with change of phase.

2. To obtain the average values of the diffusivity 
of phenol-water system, which were necessary in 
the study of the two-dimensional diffusion 
analogs.

3. To acquire some preliminary knowledge and ex
perience on the problems of developing a pure 
two-dimensional diffusion field prior to the 
design and construction of the two-dimensional 
cell.

To attain these objectives, three sets of experiments were 
carried out using capillary tubings of various sizes ranging
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from 2mm ID to 0.5 mm ID. In the first set the solution in 
the capillary was water saturated phenol and the solution at 
the boundary was pure water. The tests were conducted at 
30°, 40° and 50°C. In the second set the temperature was 
kept at 55°C for all tests, but a water solution of various 
phenol concentrations was passed over the boundary. The ini
tial solution in the cell was a water saturated phenol at 
55°C. The last set consisted of two tests having pure water 
as the initial solution in the cell and a phenol solution 
containing about 8 weight per cent water passed over the 
boundary.

The experimental set-up for the first test was that 
of Nirshamsi (57), using a scale behind the capillaries to 
read the position of the interface. For the second set it 
was that shown in Figure 32. A cathetometer was used to 
read the position of the interface. The set-up for the last 
set of tests is shown in Figures 33 and 34, with the cell 
mounted upside down to avoid any convection mass transfer 
developed by the lower density of the water phase.

The experimental data obtained from the above capil
lary tests, as well as their least square analysis, are 
covered in Appendix D. Some typical plots of X(t) versus Vt 
are shown in Figures 54 and 55. The average diffusivities ob
tained from these tests are given in Tables 3, 4 and 5.
Figure 56 shows the effect of concentration driving force on 
the average diffusivity of a water rich phase at 55°C.
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Figure 54. Growth of the Water Rich Phase in a Capillary Tube 
Initially Containing a Saturated Phenol Rich Phase 
whose Surface x = 0.0 is kept at Cg = 0.0 Moles 
Phenol per Liter.
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Figure 55 Determination of the Average Diffusivity of 
Phenol Rich Phase at 55®C from the Data on X(t).
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TABLE 3

EFFECT OF TEMPERATURE ON THE AVERAGE DIFFUSION COEFFICIENT 
FOR THE PHENOL-WATER BINARY SYSTEM

Test
No.

Temp.
«C

Concentra
tion Range 

Mois Phenol 
per Liter

dX(^
Average Diffusion 

Coefficient 
iran2/hr cm2/sec

X  105

C-l.l-a 30 0.0-0.9334 0 . 0 0.89415 3.06 0.849
C-l.l-b 30 0.0-0.9334 0 . 0 0.9091 3 .15 0.875
C-1.2-a 40 0.0-1.0205 0 . 0 1.07342 3.75 1.042
C-1.2-b 40 0.0-1.0205 0 . 0 1.06925 3 .725 1.035
C-1.3-a 50 0.0-1.2496 0 . 0 1.25175 3 .740 1.040
C-1.3-b 50 0.0-1.2496 0 . 0 1.2756 3 .855 1.070

TABLE 4
EFFECT OF CONCENTRATION ON THE AVERAGE DIFFUSIVITY

OF THE WATER RICH PHASE AT 55*C

Test
No.

Concentration 
Range 

Mois Phenol 
per Liter

M dX(^
Average Diffusion 

Coefficient 
mm2/hr cro2/sec

X  105

C-2.1 0.0 - 1.459 0 . 0 1.59 4.698 1.305
C-2.2 0.27 - 1.459 0 . 0 1.090 3.381 0.939
C-2.3 0.532 - 1.459 0 . 0 0.981 2.164 0.601
C-2.3 0.956 - 1.459 0 . 0 0.593 1.721 0.478

TABLE 5
AVERAGE DIFFUSIVITY OF THE PHENOL RICH PHASE AT 55 “C

Test
No.

Concentration 
Range 

Mois Water 
per Liter

Average Diffusivity 
mm2/hr cm^/sec

X  105

C-3.1-a 
C-3.1-b

4.78 - 23.03 
4.66 - 23.03

0.39285 1.200 1.960 0.5546
0.39035 1.1445 1.814 0.5039
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Figure 56. Effect of Concentration Driving Force,
(c| - Cg) on the Average Diffusivity of Water.
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Inspection of the plots of X(t) versus shows that 

the best straight line which fits the data does not pass 
through the origin as predicted by equation (6.1). Instead, 
at yt = 0 most of these lines intersect the x axis at a 
point which is almost one-half of the diameter of the capil
laries used. The reason for this behavior is essentially the 
formation of a concave meniscus immediately after water is 
brought into contact with the phenol solution in the cell as 
shown in Figure 57. Thus, the true mathematical boundary 
X = 0 is not the tip of the capillary but about half the 
diameter of the capillary inside. When the interface is 
moved sufficiently away from the surface, the stream lines 
for the solution passing over the boundary are perhaps like 
those shown in Figure 57. Therefore, the surface at which 
the boundary condition C = Cg is maintained is always some
where inside the capillary. The curvature of the meniscus 
depends largely on the state of the surface of the quartz 
glass of which the capillaries are made. Although all the 
necessary precautions were made in cleaning the capillaries, 
it varied from one capillary to another and from one test 
to another. To reduce this curvature, the inside surfaces 
of the capillary tubings were treated with "Desicote" a 
commercial solid surface tension reducing agent. This treat
ment of the capillaries and the phenol solutions was effective 
as far as flattening the meniscus was concerned, but, due to 
the phenomenon shown in Figure 57, it did not help to bring 
the intersection of the line X(t) versus ^t with the X(t)



199
axis closer to the origin. It seems that the best solution 
for this difficulty is the use of capillaries with a smaller 
inside diameter, say about 0.25 mm or less.

■~Jd--f

Meniscus

(a)

Stream
Lines

Meniscus

(b)

Figure 57. a) Formation of a Meniscus Immediately after 
Immersion of the Capillary in the Water Bath;
b) Disturbance of the Concentration Field In
side a Capillary caused by the Liquid passing 
over its Surface.

The values of dX(t)/ d/t given in Table 3 are the 
average values of the slope of the lines X(t) versus */t ob
tained from four different capillaries used in each test.
The values of the diffusivity for 30®C and 40°C are believed 
to be very reliable. To study the effect of the concentra
tion range on the average diffusivity of the water rich phase, 
the tests reported in Table 4 were completed. Although the 
test set-up was further refined for these tests, the values 
of the diffusivity given in Table 4 are not believed to be 
very accurate. The two values of the diffusivity for the 
phenol rich phase reported in Table 5 are believed to be quite
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reliable because of the much improved apparatus used to per
form these tests. The only major source of error is perhaps 
introduced by the use of the diffusivity of the water rich 
phase which was obtained from the previous tests.

It should be observed that the above tests were con
ducted only for the purposes described before. No attempt 
was made to produce diffusion data suitable for general use, 
but rather, to get the data needed for the feasibility study 
of the two-dimensional diffusion cell with the least amount 
of effort. For this reason the experimental set-up was some
what crude. However, when sufficiently refined, the method 
offers a promising possibility for obtaining the integral 
diffusion data for a partially miscible liquid-liquid binary 
system.

The Experimental Results of the Two-Dimensional Cells
The two-dimensional region under consideration for 

all the tests except the last demonstration tests consisted 
of a liquid layer of uniform thickness held between two 
parallel plates. The exposed boundary of this region was a 
rectangle subjected to a uniform, environmental concentration. 
The closed boundary was sufficiently away from the exposed 
boundary such that for all practical reasons it could have 
been assumed that the region simulated a semi-infinite domain 
bounded internally by an infinitely long parallel pipe whose 
surface is subjected to certain uniform conditions. The 
cross-section of this region is shown in Figure 58. The
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'Exposed Boundary

//

45

Figure 58. A Plane Region External to a Square divided into 
Symmetric Subregions.

dotted lines on the figure represent the lines of symmetry 
when the boundary concentration is uniform. The region is 
then divided into eight symmetrical sub-regions, such that 
any test represents eight sets of data. The choice of this 
particular region was based on the following considerations:

1. For a long, elapsed time, the concentration field 
close to the lines 1, 3, 5, and 7 of Figure 58 is 
essentially one-dimensional, therefore allowing 
a quick and reliable check on the existence of 
mass transfer by any phenomenon other than 
diffusion.



202
2. The shape of the Interface formed around this 

region can be estimated so that the soundness 
of the experimental results can easily be veri
fied. On the other hand, the boundary conditions 
on a sharp corner are the most difficult ones to 
deal with experimentally.

3. Because the experimental results can never be 
absolutely reproducible and exact, the eight 
similar regions provide an excellent way of es
tablishing the position of the interface by 
plotting the best curve which averages the eight 
sets of curves obtained from these regions.

In the first set of tests, the region under consideration was 
initially made of a uniform liquid film (water rich phase or 
phenol rich phase). The liquid having passed over the boun
dary was a uniform solution of different concentration. Table 
6 describes the conditions of each series of tests belonging 
to this category as well as their objectives and overall re
sults. Each series of these tests consisted in turn of 
several tests, using various thicknesses of the liquid film 
in the cell (in most cases 0.125 mm, 0.25 mm and 0.5 mm) and 
several schemes for the distribution of flow over the boun
dary. All that these tests demonstrated was the impracti- 
cality of producing a pure two-dimensional diffusion field in 
a stationary liquid film subject to a boundary condition which 
is maintained by a flowing solution. The insurmountable diffi
culty was the bulk flow due to an uneven surface force between



TABIÆ 6
THE CONDITIONS AND OBJECTIVES OF THE PBELIMINAlOr TESTS WITH THE TWO -DIMENSIONAL CELL

Test
Series

Solutlon 
in the Cell Solution Passed 

over the Boundary
Objectives Qualitative Results 

and Observations

1.1- Saturated Phenol 
Rich Phase

Saturated Water 
Rich Phase

Study of Bulk 
Flow by Inter
facial Tensions

Unstable Interface Close 
to Boundary

1.2- Saturated Water 
Rich Phase

Saturated Phenol 
Rich Phase

in the Absence of Chemical 
Diffusion

Interface very Unstable 
Phenol moved in the Cell 
Continuously, pushing 
Water out

1.3- Saturated Phenol 
Rich Phase

Saturated Water 
Rich Phase 

y B 40 & 35 dyne 
per cm

As Above No Appreciable Change 
over 1.1-

1.4- Saturated Water 
Rich Phase 

y » 40, 35 & 30 
dyne per cm

Saturated Phenol 
Rich Phase

As Above No Appreciable Change 
over 1.2-

1.5- Saturated Phenol 
Rich Phase

Distilled Water 
y = 72,45,40 & 30 

dyne per cm
Study of Bulk 
Flow by Inter
facial Tensions 
in the Presence

An Interface was formed 
and moved in the Cell. 
Later on it was distorted into a very Irregu

1.6- Pure Phenol As Above of Chemical 
Diffusion

lar Shape. Globules of 
Water formed and moved 
inside the Cell away 
from the main Interface

1.7-

1.8-

Saturated Water 
Rich Phase 

y = 40, 35 & 30 
dyne per cm

Distilled Water y ■ 40, 35 & 30 
dyne per cm

Unsaturated Phenol 
Solution

Unsaturated Phenol Solution

As Above 

As Above

Same as Above, except 
that Phenol showed a 
strong Tendency to move 
inside the Cell and replace Water
As Above

tos
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glass and phenol and glass and water as well as the inter
facial tension between water and phenol. EveTfy effort to re
solve this difficulty was unsuccessful. These efforts in
cluded the use of several surfactants such as Leconal (liquid). 
Sodium Laurylsulfate (solid) and Alconox (a commercial deter
gent) to match the surface tension of water and phenol, as 
well as the use of Desicote on the glass disks to reduce their 
surface energy.

To eliminate completely the bulk flow due to inter
facial tensions, the cell was filled with a finely dispersed 
emulsion of a saturated phenol solution in water. Then, by 
passing water over the boundary, a concentration gradiant de
velops in the continuous water phase, which in turn gradually 
dissolves the dispersed phenol solution. The reason for the 
absence of bulk flow due to surface forces is that here phenol 
is dispersed in the continuous water phase and is sustained 
in the cell. The water solution passing over the boundary 
does not form a true interface with the saturated water in 
the cell, so that all interfacial forces are absent. The 
position of what one visualizes as the interface can easily 
be observed by a sharp difference in the turbidity of the solu
tion in the cell, i.e., the emulsion phase is turbid and the 
water phase is clear.

Use of the emulsion phase in the cell offered several 
advantages but also one important limitation. The limitation 
was that this system is only capable of solving problems of 
heat conduction in which the conducting medium is initially
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at its transition temperature. The reason is the absence of 
any detectable concentration gradient in the continuous water 
phase in equilibrium with small phenol bubbles. Its most im
portant advantage is in the possibility of making an emulsion 
of any desired overall concentration, Cg^, so long as the 
amount of dispersed phenol does not exceed the concentration 
required to form a stable emulsion of water in phenol. Con
sequently, one can simulate a wide range of latent heat para
meters without changing the temperature at which the diffusion 
tests are conducted. In fact, for a phenol-water system, all 
experiments can be carried out at room temperature. The same 
can be said for an emulsion of water in a saturated phenol 
phase with a phenol solution passing over the boundary.

The early experiments with the emulsion phase were 
very inconclusive, but they yielded several important observa
tions . Viewing the region close to the boundary through a 
magnifying (2OX) telescope, it was possible to see clearly 
how the mechanical defects in the cell design, as well as 
the motion of the liquid which passed over the boundary, give 
rise to bulk motion in the cell. It was also observed that, 
even at a flow rate of about 2 cc per hour, there is a defi
nite induced agitation in the region immediate to the boundary. 
A slight irregularity in the rate of pumping of the micro-pump, 
which was caused by excessive friction in the pump's gear box 
and rack, developed a pressure wave. When the pressure wave 
reached the boundary of the cell, it gave rise to a non-uni
form pressure distribution on the boundary, which in turn
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created a bulk flow from one side to another. It should be 
noted that the strength of such pressure waves developed in 
the inlet channel was indeed negligibly small. The distur
bance in the cell was a result of infinitesimal pressure 
waves which did not reach the boundary at the same time. Con
sequently, there were regions of different pressure on the 
open boundary. To eliminate this difficulty the following 
steps were taken:

1. The micropump was improved to allow a much more 
uniform flow.

2. The boundary was separated from the flow channel 
by a thin belt made of filter paper so that these 
pressure waves could be dampened effectively.

Figure 59 shows a top view of the cell at the visci- 
nity of the boundary with the above boundary arrangement at 
two different time levels. The boundary was a 2 cm x 1 cm 
rectangle. Pure water was passed over the boundary. The top 
photograph was taken after 1:35 hours. Note that distortion 
of the bottom side of the boundary in the photograph is caused 
by a surface crack on the glass disk. The boundary is exactly 
the same as the top side. Observe the water phase-emulsion 
phase interface just formed around the filter paper belt. By 
the shape of this interface it can be positively stated that 
no preferential wetting of the glass surface or interfacial 
force exists which could cause any bulk flow. Compare this 
interface with that of a large globule of phenol on the top 
left of the bottom photograph. Here the interface is circular, 
which is the equilibrium shape when there are interfacial forces.
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01:35 hours

08:50 hours

Figure 59. Photographs of the Two-Dimensional Cell 
showing the Formation and Progress of the Inter
face between Water and an Emulsion of Phenol in 
Water.
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The bottom photograph in Figure 59 shows the shape 

of the interface after 8:50 hours. The bright spots in the 
clear phase are from the background. On the left side of 
the boundary the average rate of the movement of the inter
face was close to the approximate theoretical prediction.
This prediction was based on the assumptions that a) the 
diffusion field is linear, b) the emulsion phase is uniform, 
and c) the concentration on the external side of the paper 
belt is that of pure water. With all the care taken in per
forming this test, there was every reason to believe that the 
mass flow at the boundary was strictly by chemical diffusion. 
The non-uniformity of the interface at the top and left sides 
of the boundary was believed to be caused by the variable con
centration (the amount of suspended phenol phase per unit 
volume) in the cell and by stagnation of the boundary flow at 
these sides. Although the latter difficulty was overcome in 
the subsequent tests, the former could not be resolved.

In order to fill the cell uniformly, the emulsion has 
to either enter the cell through the filter paper belt and 
flow out for a sufficient length of time at the periphery of 
the glass disks to an exit tube connected to the cell's cylin
drical frame, or vice versa. In each case the cell is sealed 
from the outside by the 0 -rings situated on the aluminum frame 
(Figure 41) which, as discussed in Chapter V, is not very de
sirable. When the emulsion is passed through the filter paper, 
the paper preferentially allows the continuous (water) phase to 
flow, so that it distorts the initial uniform distribution of
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the emulsified phase. This situation is shown in the top 
photograph of Figure 60. Here, the emulsion entered from 
the periphery and left the cell through the filter paper belt. 
Observe the phenol bubbles of various sizes accumulated around 
the belt. Observe also the large phenol bubbles (the dark 
spots) spread all over the liquid film in the cell. These 
bubbles were formed by the aggregation of fine phenol bubbles 
while passing through the cell. The spacing between the glass 
disks (or the thickness of the liquid film) here was about 
1/6 mm. The dark shadows (especially on the right) indicate 
the sparseness of the suspended phenol phase.

At a film thickness of more than 1/4 mm, a secondary 
aggregation of phenol particles gradually took place which 
gave rise to local disturbance and internal flow. The bottom 
photograph in Figure 60 shows this situation. The photografh 
was taken after 18:00 hours. This phenomena would not have 
occurred if the phenol-water system had made a stable emul
sion. The same results were observed when the cell was ini
tially filled with an emulsion of water in phenol. Some suc
cess was achieved in filling the cell with a uniform emulsion 
when the emulsion and the cell were heated to a few degrees 
above the complete solubility temperature prior to filling. 
Upon cooling, a relatively uniform emulsion was formed in the 
cell.

To avoid gradual aggregation of the dispersed phase, 
a 0.005 inch thick nylon cloth mesh was placed between the 
glass disks which covered the entire space in the cell. The
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(a) 0 0 : 0 0  hours

(b) 18: 0 0  hours

Figure 60. Photographs of the Two-Dimensional Cell: 
(a) Immediately after Filling with an 
Emulsion of Phenol in Water and (b) after 
IBs00 Hours. The Emulsion Film Sickness 
was 1/8 ram in (a) and 1/4 mn in (b).



211
openings of the cloth were about 0.004 inch. The cell was 
then filled with a heated solution of phenol in water and 
allowed to cool down so that an emulsion phase was formed. 
Interestingly enough, every opening of the cloth contained 
a globule of phenol rich solution. The sizes of these glo
bules were almost uniform throughout. Figure 61 shows some 
typical results obtained by this arrangement. The approxi
mate position of the interface was drawn on the photographs 
while exeunining them under a microscope. Note the degree of 
symmetry and uniformity of the interface in photographs (b) 
and (c) of Figure 61, where a thin paper belt is used to 
separate the flowing liquid at the boundary from the sta
tionary liquid in the cell.

The tests in which the emulsion was trapped by the 
nylon cloth were successful in making it possible to develop 
a pure two-dimensional diffusion mass transfer, but several 
shortcomings arose which forced these tests to be discontinued:

1. The presence of a finely porous filter paper 
between the flowing boundary solution and the 
stationary liquid in the cell restricted very 
sharply the variety of boundary conditions which 
could be accurately simulated.

2. It was most difficult to see the interface 
between the emulsion phase and the clear phase 
even under a suitable microscope. The lines 
drawn on the photographs shown in Figure 61 are 
only accurate to ±0 . 2 mm since the line of de
marcation was not clear.
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Figure 61. Photographs of the Two-Dimensional Cell 
Initially Filled with an Emulsion of Phenol 
in Water, Using a Nylon Cloth to Stop Aggre
gation of the Suspended Phase with and with
out a Filter Paper Belt.



213
3. The nylon cloth in the cell precluded the use of 

an interferometric method for measuring the con
centration profile in the cell.

However, it should be noted that most of the above criticisms 
are specific to the phenol-water system. They may not apply 
to partially miscible liquids which form a permanent emulsion.

In all the experiments with the clear solutions in 
which the filter paper belt was used as a partition at the 
boundary, it was observed that a fine interface formed in the 
paper and moved outward from the rectangular boundary quite 
regularly. The difference between the refractive index of the 
water phase and the phenol phase made a distinct difference in 
the brightness of the filter paper so that it was possible to 
see the interface very clearly. For this reason a porous 
medium, consisting of Whatman filter paper Number 52, with a 
rectangular boundary cut out of the center, was used in sub
sequent experiments. The boundary flow distribution was as 
before, except that here there was no need for the filter 
paper belt. The boundary was directly exposed to the solution 
passing over it.

In the first set of tests (Runs 3.1-) the porous 
region in the cell was initially filled with a saturated 
phenol solution, and pure water was passed over the boundary. 
In Figure 62 the three photographs of the cell show the posi
tion of the interface at different time levels. Observe the 
high degree of symmetry and the well defined interface. Fur
ther examination of these photographs indicated that the
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0 1 : 1 0  hours 05:35 hours

10:35 hours

Figure 62. Test 3.1-1. The Progress of the Interface 
Formed by Passing Pure Water over the Rec
tangular Boundary of the Filter Paper Sheet 
Initially Saturated with a Phenol Rich Solution
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interface moved at a velocity much higher than that expected 
for linear diffusion in a non-porous medium. The test was 
repeated in order to determine the cause of this behavior. 
When the boundary was viewed through a 2QX telescope it was 
observed that small globules of phenol gradually ceune out of 
the pores, and consequently water moved in by perhaps capil
lary action. At first it was thought that such behavior only 
occurs at the surface of the glass disks because of the non- 
uniform contact between the filter paper and glass. To cor
rect this situation, four layers of filter paper were com
pressed together, and a thin sheet of polyethylene was uni
formly melted over the outer surfaces to close the pores on 
the surface of the paper and to provide a very smooth contact 
surface. Figure 63 shows the interface developed in such a 
region after seven minutes. As before, the distance of the 
interface from the boundary is what one would have expected 
after almost one hour. Note the small phenol globules coming 
out to the flow channel at the bottom right corner of the 
boundary.

Using the same arrangements, but filling the cell 
initially with pure water and passing an unsaturated phenol- 
rich phase at the boundary, resulted in the formation of an 
interface which moved at a rate very close to the theoretical 
prediction. The interface was much sharper and smoother than 
that shown in Figure 63. These tests are discussed in the 
remainder of this chapter.
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00:07 hours
Figure 63. Test 3.1-2. The Interface Formed in Whatman 

Filter Paper after Passing Water over the 
Rectangular Boundary for Seven Minutes. The 
Filter Paper was Initially Saturated with a 
Phenol Rich Phase.

Final Results 
As was brought up before, it was only possible to 

produce a pure two-dimensional diffusion field when the 
porous medium in the cell was initially filled with a water 
rich phase, and phenol was passed over the boundary. In all 
the subsequent tests this condition was maintained. Having 
a phenol solution at the boundary, it was no longer possible 
to obtain the total flux at the boundary by the analysis of 
the exit solution. The reason was that the amount of water 
added to the boundary solution was very small (of the order 
of 1 0 "* moles per liter) compared to the water content of the



217
phenol solution (about 5.0 moles per liter). Consequently, 
the only experimental observation was the measurement of the 
position of the interface. A chemical analysis of the solu
tion for finding the total flux would not have been suffi
ciently accurate to contribute towards the objectives of the 
present work. Furthermore, it was unlikely that the total 
flux would have been a convenient parameter for checking the 
validity of the experimental results.

A total of five tests were completed with a region 
external to a 1 cm x 1 cm boundary. All except one are re
ported here. The reason for rejecting one of the tests was a 
complete non-uniformity of the boundary on all sides of the 
square. The square boundary was cut out of the 2 inch filter 
paper disks with a sharp razor blade. There was always the 
danger of closing some of the pores in the process of cutting. 
These pores may either stay closed during the test and con
sequently result in a much lower rate of mass transfer at the 
boundary, or they may open later on to give rise to a non- 
uniform rate of interface movement. This problem existed in 
most of the tests. There was also the possibility of flow 
blockage on one or more sides of the boundary due to the 
formation of a small air bubble or the accidental movement of 
the flow distributor from its center position while assembling 
the cell. For the four tests reported here, not all the data 
obtained from the eight sub-regions shown in Figure 58 were 
assumed to be valid. Whenever there were sufficient reasons 
for believing that the above mentioned difficulties existed
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at the boundary of one of the sub-regions, the data from that 
region, as well as the effected neighboring regions, were re
jected. Table 7 gives the operating conditions for these 
tests as well as the duration of the tests cuid the sub-regions 
considered to be satisfactory.

TABLE 7
THE CONDITIONS OF TESTS 3.2-1 TO 3.2-4

Test
No.

Temp. Cb
Mol./Lit. 
of H2 O

Cœ
Mol./Lit 
of H2 O

Regions
Considered

Duration 
of Test
Hours

3.2-1 55°C 5.088 47.53 2,3,4,5,667 26:46
3.2-2 55 “C 5.088 47.53 6,7,861 23:46
3.2-3 55°C 3 .920 54.7 2,3,465 9:54
3.2-4 55°C 4.737 54.7 5,6,768 29:43

The photographs in Figure 64 show the progress of the 
interface with time for Test 3.2-2. Note the very sharp 
difference in thetranslucency of the filter paper at the op
posite sides of the interface. The brightness of the region 
saturated with phenol rich phase is essentially due to the 
closeness of the refractive index of phenol rich solution 
(1.44 - 1.53) to that of filter paper. The water rich phase 
has a refractive index ranging between 1.3 - 1.38 depending 
on the composition and temperature. Figures 65 and 6 6  are 
two sets of photographs showing the progress of the interface 
in Test 3.2-3 and Test 3.2-4.
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00:16 hours 00:31 hours 01:07 hours

04:00 hours 06 hours 23:46 hours

Figure 64. Test 3 .2-2. Photographs of the Diffusion Cell 
Showing the Progress of the Interface Developed 
Around a 1 cm x 1 cm Square Boundary. The Cell 
Was Initially Filled with Water Saturated with 
Phenol at 55*C. A Phenol Rich Solution was 
Passed over the Boundary and the Temperature was 
kept at 55*C.
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0 0 :3 0  hours

G G G
0 1 :0 0  hours 02:23  hours 05: 07 hours

Figure 65.

0 9 :5 4  hours

Test 3.2-3. Photographs of the Diffusion Cell 
Showing the Progress of the Interface Developed 
Around a Square Boundary. The Cell was Initially 
Filled with Pure Water. A Phenol Rich Solution 
was Passed over the Boundary and the Temperature 
was kept at 55*C.
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00:48 hours

00:18 hours 03:52 hours 09:34 hours

17:43 hours 26:46 hours

Figure 66. Test 3.2-1 Photographs of the Diffusion Cell 
Showing the Progress of the Interface Developed 
Around a 1 can x 1 cm Square Boundary. The Cell 
was Initially Filled with Phenol Saturated 
Water. A Phenol Rich Solution was Passed over 
the Boundary. The Temperature was kept at 55*C
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The temperature in all these tests was 55®C which 

corresponds to a change of concentration of 24.5 moles of 
water per liter across the interface. In Tests 3.2-1 and
3.2-2, the cell was initially filled with pure water, while 
in Tests 3.2-3 and 3 .2-4 it was filled with phenol-saturated 
water solution at 55®C.

Figures 67, 6 8 , 69 and 70 are plots of the average 
position of the interface X(xĵ ,t), at several time levels 
in the subregions considered to be satisfactory for Tests
3.2-1, 2, 3 and 4, respectively. Not all the regions are 
represented by an equal number of data points on these 
figures. The solid lines drawn among the data points are,
in reality, the average of several continuous curves obtained 
from each photograph of the cell. They do not correspond to 
the best curve passing through the points shown in the above 
mentioned figures. In all these figures the actual distances 
in the direction of x^and x^ are divided by one-half the 
length of the side of the square boundary (i.e., 5 mm). Thus, 
x^ and X(x^,t) are both dimensionless. The center of the co
ordinates is situated at the comer. The dimensionless 
elapsed time, t = wD^t/a^, was calculated from the knowledge 
of the time at which the photographs were taken, the experi
mental values of 3^ for the phenol rich phase, and the ex
perimental values of w (to be described below).

Test 3.2-3 was carried on first, because of the less 
tedious filling procedure for pure water. Note the large 
departure from the average curve of the position of the
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Interface in the various regions, probably due to the fact 
that the boundary was not properly cut. Also, one of the 
corners was blocked internally by absorption of silicone 
rubber before setting. It is interesting to see the formation 
of the interface behind the closed corner in Figure 65. Note 
also the improvement in the experimental data plotted in 
Figure 6 8 , which was attained only by gaining experience in 
conducting these tests.

To establish that the mass transfer in the cell has 
been only by chemical diffusion, one observes that at the 
middle of each side of the square boundary the concentration 
field is essentially one-dimensional for a long period of time. 
Therefore, the vertical position of the interface on the lines 
1, 3, 5 and 7, shown in Figure 54, should follow equation (6.1)
i.e..

X(x^,t)
Xi= - 1

= X(-l,t) = 2 ^  D^t/a^ (6.1a)

where o) is defined by (2.9) . It was observed in Chapter II 
that the value of u) for a fibrous material such as filter 
paper should be about 0.75. Figure 71 is a plot of X(-l,t) 
versus J t / ^  for Tests 3.2-1 and 2 where X(-l,t) is the 
linear average of x^(-l,t) at time t for all the regions con
sidered in these tests. The solid line on the figure is the 
best straight line which fits all the data points. The slope 
of this line was 1.303 08. For the conditions of these two 
tests 4 ~ 0.5464 and = 1.887 mm^ per hour (from capillary
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Figure 71. Variation of X(-l,t) with ̂ /t/â  showing the One- 
Dimensional Nature of the Concentration Field at

=  -1.0.
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Tests C-3.1 and 2). Substituting these values in (6.1a):

= 1.50 W^= 1.30
a(VtÂ^)

or
tt) = 0.75

which is in remarkable agreement with the expected approxi
mate value of 0.75 for w.

No process other than pure diffusion could have 
followed Equation (6.1a) so closely for such a long period 
of time (about 24 hours). Further proof of the pure diffu
sion nature of the mass transfer in the cell can be obtained 
by a close study of the best curve, shown as the dotted line 
in Figure 71, as passing through all the data points. At the 
beginning of the test the progress of the interface is slower 
than that predicted by Equation (6.1a). This result can also 
be concluded by noting that the least square line intersects 
the X axis below the origin. (Note that the intersection 
was always above the origin in all the one-dimensional capil
lary tests). The reason for this phenomenon is the impracti- 
cality of bringing the boundary concentration instantaneously 
to a desired value. Observing the displacement of water by 
phenol in the flow channel around the boundary showed that it 
takes about five minutes before the boundary concentration 
approaches that of the solution pumped into the cell.

As time goes on, and the interface gets sufficiently 
away from the boundary, the concentration field at x^ = - 1  is 
no longer one-dimensional. The corner effect makes the
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interface move slower than that of the linear flow of heat. 
This trend is also shown by the data points in Figure 71.

Having evaluated Ui, it is now possible to calculate 
the dimensionless time, T = W D^t/a^, where as before 'a' is 
one-half of the length of the square boundary (i.e., 5 mm in 
the above tests). Using the experimental values of and 
obtained from the one-dimensional tests, and the value of U) 
for the filter papers obtained from the two-dimensional satu
rated water tests, the linear rate of progress of the inter
face was predicted for the pure water tests (i.e.. Tests
3.2-3 and 4 in which the cell was initially filled with pure 
water and there was a changing concentration field on both 
sides of the interface). Figure 72 shows the comparison 
between the position of the interface at x^ =-l predicted by 
Equation (6.1a) (the solid line) and the experimental values 
of X(-1,t) for all the four tests. Plotted in this figure 
are the values of x(-1,t)/(24) versus »/r. Considering the 
magnitude of the sum of all possible sources of error which 
would have made the results partially inconsistent, the 
agreement between the experimental points and the theoretical 
predictions based on the one-dimensional model is quite re
markable. Not only are the data points reasonably close to 
the line X(-1,t)/(2Ç) = >Jr, but they also follow the expected 
trends discussed before.

Figure 73 provides a comparison between the diffusion 
analog results and the computer solution of Example Problem 1. 
Plotted in this figure is X(xj ,̂t )/24 for x^ = -1.0, -0.20, 0.0,
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+0.20 and X(x^,t) = versus */t. The solid lines represent 
the computed values of X(x2 ,t). The data points represent 
the diffusion analog results obtained from the average curves 
of Figures 67, 6 8 , 69 and 70. The agreement between the com
puter solution and the analog results is somewhat poor for 
X(xĵ ,t) = x^ because the corners were not sharp in the diffu
sion model and there were imperfections in the exposed boun
dary around the corners. Almost all the other data points in 
Figure 73 fall below the computed lines due to imperfections 
at the boundary surface which have the result of reducing the 
effective diffusion cross section. The lines of constant x^ 
in Figure 73 are a convenient means for demonstrating the con
sistency of all the data obtained from a region external to 
a square. It is not, however, intended to provide a correla
tion of all the data because of the many possible sources of 
error in the experimental measurements. In other words, these 
data were considered to be unworthy of a satisfactory correla
tion. The sources of inaccuracy of the data were essentially:

1. The cross sectional area of the open pores at 
the boundary was not uniform throughout and per
haps somewhat different from that of the rest
of the cell.

2. The pores of the filter papers were not suffi
ciently uniform throughout.

3. In all tests, four layers of filter paper, sealed 
by a polyethylene sheet, were used. At the con
tact surface of this sheet, the structure of the
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pores was substantially different from that of 
the filter papers.

4. Around the sharp corners, there was always an 
almost stagnant liquid which was not flowing at 
the same rate as that of the flat sides of the 
boundary.

5. Not all four sides of the square boundary could 
be brought to the predetermined boundary concen
tration instantaneously. This deficiency intro
duced an error of about 2 to 3 minutes in the 
values of the initial time.

5. Although most photographs were read twice on the 
microprojector, the human errors in these readings 
were appreciably large.

7. The value of the diffusion coefficient for the 
water rich phase used to calculate 4 for Tests
3.2-1 and 2, was not very accurate.

Although all these difficulties can be resolved, they never
theless offer some challenges to future investigators.

To demonstrate the utility of the diffusion cell in 
solving the complex problems of heat conduction with change 
of phase, two tests were completed with a wedge-like region 
in which a circle of 5 mm in radius was excavated. Figure 74. 
This region represents a symmetric section of a ring of 
circles in a semi-infinite plane region. The closed boundary 
is, of course, the sides of the wedge, and the open boundary 
is the internal circle. As before, four layers of Whatman
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Figure 74. The Wedge-Like Region Similar to a Symmetric 
Section of a Ring of Circles in a large Plane 
Region.

filter paper Number 52 cut in the wedge-like shape shown in
Figure 74 were placed in the cell to simulate this region
(see Figure 45). In the first test (Test 3.2-5) the cell was
initially filled with pure water and maintained at 55°C
throughout the test. A phenol solution containing 4.737 moles
of water per liter was passed over the boundary. Figure 75
is a series of photographs of the cell showing the progress
of the interface at several time levels. These photographs
were read on the microprojector and tabulated in Table 35 of
Appendix E. Figure 76 is a map of the interface at various

I ovalues of the dimensionless time T = W D  t/a where 'a* is 
the radius of the boundary circle (« 5 mm). The radial dis
tance in Figure 76 is also dimensionless, i.e., R = r/a, 
where r is the actual radial distance in the region situated 
in the cell.
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Figure 75 Test 3.2-5. Progress of the Interface Around 
a Circular Boundary Situated in A Wedge-Shaped 
Region and Initially Containing Pure Water. 
Phenol Solution was Passed over the Circular 
Boundary and the Temperature was kept at 55°C.
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Figure 76. Growth of the Interface Around a Circle Situated 
in a Wedge-Like Region.
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The way the interface deflects near the sides of the 

wedge raised some questions as to the possibility of small 
capillary action in the space between the filter paper and 
the polyethylene sheets. Note that every effort was made to 
bring about a direct contact between the polyethylene sheets 
and the filter paper around the edges. However, the effort 
was not 100 per cent successful. To verify what might have 
happened at the edges, the test was repeated with a new 
wedge, which had a definite clearance at the edges. The cell 
was initially filled with phenol saturated water at 55®C. 
Clearly, for this case the concentration field in the cell 
was strictly one-dimensional as long as the interface had not 
touched the sides of the wedge. The test was carried out at 
55®C and the same phenol solution was passed over the boun
dary. The series of photographs in Figure 77 shows how the 
interface moved with time. When the interface touched one 
side of the wedge, the phenol phase was pulled into the 
clearance space at the side of the wedge. As a result, the 
water solution moved towards the circular boundary of the 
other sides and distorted the diffusion field. Figure 78 
shows the radial position of the interface as a function of 
Vt before the capillary action on the sides took place.

It is clear from the above experiment that the capil
lary effects at the sides of the wedge were very small for 
Test 3.2-5.
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Figure 77 Test 3.2-6. Progress of the Interface Around 
a Circular Boundary Situated in a Wedge-Shaped 
Region (Top Photo) and Initially Containing 
Phenol Saturated Water Phase (at 55°C). Test 
Temperature was 55®C.
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Figure 78. Radial Position of the Interface in a Region 
External to a Unit Circle for fi=0,0 and $=0.551 
(Test 3 .2-6) .
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Closing Remarks

It has been the purpose of the experimental work of 
this investigation to search for a diffusion cell which can 
simulate the problems of heat conduction with change of 
phase. The experiments, in most cases, were conducted with 
enough care to make possible qualitative observations on the 
nature of mass transfer in the cell. The final experiments 
with filter papers are accurate in as much as demonstrating 
that the development of a two-dimensional diffusion field 
is practically possible and relatively easy once a workable 
arrangement is found. The scattering of data shown in 
Figures 67, 6 8 , 69 and 7 0 is essentially caused by the ob
structions in the passage of diffusing molecules in the cell, 
or at the boundary, and by the non-uniformity of the porous 
medium employed for these experiments.

To overcome the destructive effect of the interfacial 
tensions on the diffusional mass transfer in the cell, an 
empirical approach was adopted. An effort to predict the con
ditions and environment for off-setting these forces was un
successful. Although it is possible to provide a satisfac
tory explanation for the success of the final experimental 
work, elaboration is not justified. Prior to performing 
these tests, it was not possible to predict if any particular 
arrangement would work since, as noted, the tests with a 
phenol solution in the cell were unsuccessful. Subsequent 
tests did not shed any further light on the nature of inter- 
facial forces in the porous medium (used for this
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investigation) to allow advancement of any particular 
hypothesis.

Now that a practical way of assembling a workable 
diffusion cell has been found, it is advisable to improve 
the technique used here by investigating many more binary 
liquid systems, as well as other porous media.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK

The objectives of the present investigation were 
two fold. First, to develop a general numerical procedure 
for solving two-dimensional heat conduction problems in a 
locally isotropic medium whose state is temperature depen
dent (including phase transitions). Secondly, to examine 
the practicality of simulating the temperature field in a 
medium having a single transition temperature with a con
centration field developed by mass transfer due to pure 
chemical diffusion in a suitable, partially miscible, 
liquid-liquid binary system. It is believed that both of 
these objectives were successfully attained. However, more 
work needs to be done in order to develop a diffusion cell 
analog which can compete with the efficiency and accuracy of 
modern, high speed digital computers.

As a result of the theoretical analysis presented in 
Chapter III, and the numerical results reported in Chapter IV, 
it can be concluded that problems of heat conduction with 
change of phase can be most conveniently solved by the pro
posed method. Except for a simple additional predictor step,

243
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the proposed numerical solution is not different from that of 
solving an ordinary heat conduction problem. The proposed 
solution circumvents the difficult task of finding the pre
cise position of the interface (or interfaces) while the 
problem is being processed in a digital computer. As a re
sult, the location of the interface can be taken as the iso
therm which represents some arbitrary stage of completion of 
the phase transition, preferably when it is half complete.
It was shown that the proposed solution is highly stable and 
second order correct. The occurrence of the change of phase 
does not introduce any stability limitation over and above 
those of solving a linear parabolic partial differential equa
tion by the ADI method. However, when the temperature field 
is very steep and the time steps are very large, the dis
cretization error of the proposed solution may become much 
larger than that expected when the same procedure is used to 
solve linear parabolic differential equations. The reason is 
that the change of temperature between the consecutive time 
steps may be so large that the peaks in <p(u(x2 ,X2 ;t)̂  may re
main unrecognized by the discrete solution.

Although many difficulties were encountered in the 
development of a workable two-dimensional diffusion cell ana
log, it can be said with reasonable assurance that such an 
approach is indeed feasible. The diffusion analog, when 
fully developed, can very well prove to be a convenient tool 
in determining the progress of the interface in a two-dimen
sional region of complex geometry subjected to strongly time
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dependent boundary conditions. If an ideal binary liquid 
system is selected, if a suitable porous medium with known 
characteristics is used, and if the design of the cell allows 
fast filling and evacuating, the diffusion cell analog can 
then solve problems of melting and solidification with much 
less human effort than that of a well-chosen numerical solu
tion. To appreciate this point, it suffices to state that 
approximately 50 man hours were spent in setting up the para
meters for the very simple two-dimensional example problem 
solved in Chapter IV, in addition to the time spent in de
veloping and de-bugging the computer program.

The one-dimensional diffusion cell not only proved 
to be a convenient tool in studying problems of melting and 
solidification, but it also served as a very simple and quick 
way of measuring the binary diffusion coefficients in par
tially miscible liquid-liquid binary systems.

Recommendations for Further Work 
The central problems in approximating the matrix

solution
m

" Jîexp(-rj*jA) 
J—1

are: a) to find a suitable operator T(rj) that best approxi
mates exp(-rj*jA), and b) to choose the set of acceleration 
parameters rj , 1  ̂j s m, such that v(t^) can be approximated 
with a desired accuracy and with a minimal amount of 
computations.
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The analysis in Chapter III covers many known approxi

mating solution of parabolic differential equations, but not 
all of them. For example, multilevel approximations such as 
the unconditionally stable method of Du Fort and Frankel (31) 
need special treatment. The behavior of the three level Du 
Fort-Frankel approximation of the latent heat problems needs 
to be investigated because, with this method, there is really 
no need for a predictor formula, which in turn saves a sub
stantial amount of computation.

To minimize the error of the numerical solution one 
has to minimize || exp(-rj^ ) - T(rj)||. It is unlikely that 
this quantity has a strong minimum for r̂  > 0. The trivial 
solution of such a minimization problem is, of course, r\ = 0 , 
which is of little help. Thus, the problem for further re
search is that, given a positive integer m and the variable 
tĵ, > 0 , one must find a set of parameters

m
^ = (rj |rj > 0 , ^  rj = t , j = 1 , 2 , .. .m)

j=l
such that

m _ m
jOi

is minimized. Such a minimization problem offers a real 
challenge, but the solution would be most rewarding.

It was shown in Chapter IV that the recursion for
mulae (4.14) and (4.17) for r̂  produced remarkably good 
numerical results, especially in the case of the
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two-dimensional example problems. The maximum number of 
iterations, for a given 6^, for which these recursion for
mulae remain useful, remains to be investigated.

It was noted before that, as required of a correct 
solution of the heat equation, the operator exp(-rjOjA) is 
primitive (i.e., non-negative, irreducible and non-eyelie) . 
One of the main problems that should be avoided when solving 
parabolic differential equations by any unconditionally 
stable numerical method is the erratic behavior of the solu
tion that was observed here while solving the one-dimensional 
problem and was also observed by other investigators [e.g., 
Larkin (50)] in solving the two-dimensional problems with the 
ADI method. The author believes that such behavior is un
likely to occur so long as the operator T(r) is primitive. 
Thus, it is most useful to establish accurately for what 
values of r the operator T(r) is primitive. Varga (77) has 
shown that for T(r) to be primitive it is sufficient that

f > min [hii, v^.]
^ isisn

where h^^ and v^^ are the diagonal entries of the n x n 
matrices H and V, respectively. Because of the strong re
striction that the above condition imposes on r, the need for 
a better estimate of the limits of primitivity of T(r) and 
also

)j t  "('j
is quite obvious.
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Future work in developing the diffusion cell analog 

should be primarily directed towards resolving the difficul
ties and the sources of inaccuracy of the experimental 
measurements with porous media, which were discussed in 
Chapters V and VI. In this respect it is desired to find a 
porous medium which is chemically and diraensionally, very 
stable and has uniform pores of about 0.5 micron. Methods 
should be developed for cutting the exposed boundary out of 
such a porous medium without disturbing the pores or changing 
the cross-sectional area of flow. To make accurate control 
and measurement of the mass transfer at the boundary possible, 
and also to relax the stringent requirements on the dimensional 
stability of the cell, it is desired to increase the thickness 
of the porous medium used in the cell.

Along with this evaluation program, an arrangement 
for a more effective distribution of flow over the boundary, 
and a less cumbersome set-up for charging the cell, should 
also be designed. This development program would result in 
a diffusion cell capable of giving the precise position of 
the interface in a two-dimensional plane region subjected to 
any desired concentration conditions at its exposed boundary 
as well as giving the total flux at the boundary surface.

The measurement of the concentration profile in the 
cell offers a real challenge. The choice of any particular 
method depends almost exclusively on the choice of the pair 
of partially miscible liquids. There are many binary liquid 
systems suitable for the analog studies. A search should be
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conducted to find a suitable binary liquid system for which 
the concentration of the solution in the cell can be most 
conveniently measured. Ideally, one wishes to obtain the com
plete concentration profile and the position of the interface 
on a single photograph.

One promising technique would be to measure the 
brightness of white diffused light transmitted through the 
cell. The amount transmitted depends on the concentration of 
the liquid retained in porous medium of the diffusion cell.
If the refractive index of the material of which the porous 
medium is made is very close to that of one of the two 
liquids, then the porous medium changes from transparent to 
translucent, depending on the concentration of the solution 
contained in its pores. The extent of transparency, or trans- 
lucency, may be used as a measure of the local concentration. 
Such measurement is not,however, very accurate, because of 
scattering phenomena.

Another technique is based on the change in color of 
the solution with concentration, in which case the concentra
tion profile can be obtained directly by color photography.
Of course, optical measurements of the concentration profile 
need not be limited to visible light. The wide spectrum 
from ultraviolet to infrared should be considered. Except 
for the inevitable scattering of the incident light by the 
media, the optical method would be the simplest and most 
accurate way of obtaining the concentration profile in the 
cell.
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The widely used radioisotope techniques of measuring 

the binary diffusion coefficients of liquids do not appear 
to be very suitable because it involves tertiary diffusion 
instead of binary diffusion. At least for the case where 
only one phase transition occurs, it is not possible to es
tablish an exact analogy between tertiary diffusion and heat 
conduction.

The electrical conductivity method offers another 
possibility for obtaining the concentration profile in the 
diffusion cell. In this case a solid material must be found 
which conducts electrical current in one direction only.
This material must also have sufficient mechanical strength 
and other properties in order to replace one of the glass 
disks of the diffusion cell. If one of the disks passes the 
electrical current only in the direction perpendicular to its 
plane, and the other is a perfect conductor, then the point 
electrical resistivity of the solution in the cell can be 
measured by a variety of well known and accurate methods.
The concentration at each point can then be obtained from the 
knowledge of the electrical resistivity. The prospects of 
finding a substance that has the above mentioned directional 
property do not seem very promising. One possibility would 
be to make a disk composed of extremely fine wires glued to
gether by an efficient insulator.

The above ideas on the measurement of concentration 
profile in the cell have been advanced to provide a guide 
line for future work. Only a thorough study can establish 
whether any of these methods are feasible.
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The one-dimensional diffusion cell is more useful in 

determining the diffusion coefficients than in solving the 
heat transfer problems. The accuracy of this method can be 
largely improved when capillaries with a much smaller diameter 
are used. Glass capillary fused arrays are available on the 
market (Perraeonics Corporation of Southbridge, Mass.,) which 
have pore diameters ranging from 10 to 100 microns. The pores 
are parallel capillaries with a uniform diameter. Such a rod 
could be used for the one-dimensional test instead of the 
single capillary with a larger diameter.

In summary, then, future work should be directed
towards:

1. Numerical methods for solving the problem by 
finding better acceleration parameters.

2. Study of the two-dimensional diffusion cell ana
log aimed essentially at improving the techniques 
developed in the present work, as well as develo
ping a convenient method for measuring the con
centration profile in the cell.

3. Using the one-dimensional cell for obtaining the 
much needed diffusion coefficients in partially 
miscible, liquid-liquid binary systems.



NOMENCLATURE

*i.j *1-1 .3=1.] + *1+1 .3*4.3
a (c) H(c) + y(c)

I

X

I

b. c. . if (i.j) and (i+l,j) €
1 , j J-f J- » j **

^i.j ^i+l.j 

&  a Banach spare

c(T) specific heat = ̂ (^E/^T)p

Cg,c^ specific heat of a solid phase, and a liquid
phase, respectively

I I ,c c. ./I?.1.3 ]

c, . the boundary of r. .
1 ] 1 ]

c. . c! . a. .
1,3 1,3 1-1,3

c. 2kh P(x^- h. ,y .)/Lh. (h.+h. ,) ] , for (i,j)CRĵ

C a n X n positive diagonal matrix whose diagonal
entries are the n values of , (i, j) €R_

1,3 n
[see Equation (3.22)]
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e the class of strongly continuous mapping

from â into fi.

concentration of species A in moles per 
unit volume

initial concentration of species A in a 
system under consideration

BC the external boundary concentration ofA
species A

Cg saturation concentration of species A in
phase I, moles per unit volume

T TC saturation concentration of species A ins
phase II, moles per unit volume

a. a. j/D:

^i,j ^i.j * ®i,j

a_(x) I  -FL x""
k= 0  (p+q)!k:(p-k) 1

--IID the average binary diffusion coefficient in
a phase II

D the average binary diffusion coefficient in
a phase I

I

D^g(u), a concentration dependent binary diffusion
coefficient of species A in an A - B binary 
system



1 ,]

.(m)

5-(m)

B

'B

W,
rfsr ^AB

. / " i
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«D ab

fi j+l if (i.j) and (i,j+l)

" ( V  - " ( V

1 g(m)
Ni

the internal energy of a unit volume element 
of a system

the initial internal energy of a unit volume 
element of a system

environmental internal energy defined by
'Tb

EII the internal energy of a unit volume element 
of Phase II at its transition temperature

the internal energy of a unit volume of 
phase I at its transition temperature

Fade', (p,q) approximation of e“®, where B 
is a n X n real matrix = d  ̂(B) np g(B),

p,q
p,q = 0 , 1 , 2

f^(t) & fgCt) two unknown function of t appearing in the
Boley’s solution Csee Equations (1.13) and (1.15)]
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f(x,t) (cB-cI)/(cII-cI) also (Eg-E^)/(E^^-Ep

4

'i.i 2 kho(x^,yj-%kj)/[kj(kj+kj+^)], for (i,j)fR^

^i,j

f(t,v(t)) [l - 4rl(u(t))] Av(t)

P Wachspress and Habetler conditioning matrix

g c ^ i

a n-dimensional vector whose entries are the 
n values of u^ j(o), (i,j)CRĵ

g(x) the initial temperature distribution in a
semi-infinite slab

ĝ , l^i^s a weight function depending on the co
ordinates x̂ , X2 and Xg Csee Equation (1 .2 d)]

G(x) the initial temperature (dimensionless) dis
tribution in the region R ’

h max (h ]
l^i^I 1

h.(x)=h. the mesh spacing in x-direction = x̂  - x ,i i 1 1 —i

H

h “=> C-1 H<«>

( B )H a n X n symmetric matrix defined by Equation (3.14)
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h(B,z), film coefficient of heat transfer at the
h(z,T) boundary

i'(j) & i"(j) indicate that in a region R the vertical
grid line begins at a mesh point (i ,j) and
ends at a mesh point (i",j)

I the number of horizontal grid lines passing
through a plane region R, also identity matrix

^ a finite and real interval Co ,t 3

i a flux vector

diffusion mass flux of species A in a binary 
system of species A and B

j (i) & j"(i) indicate that in a region R the i^^ hori
zontal grid line be ins at a mesh point (i,j') 
and ends at a mesh point (i,j")

J the number of vertical grid lines passing
through a plane region R

k {k )13j3j j

kj(y)=k. the mesh spacing in y-direction =* y.-y.J J 3 j—1
K(T) a temperature dependent thermal conductivity

K(C^,x) film coefficient of mass transfer at the
boundary
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dimensionless latent heat parameter defined 
by Equation (1.5)

1 . dimensionless latent heat of transition from
the state "i" to the state "j”

latent heat of transition, BTU/LB 

2 „\ „(m) + 8

_ inz^ an outward directed normal on r .
1 ]

" p . g W  2 -  (-X)’'
k* 0  (p+q) :k: (p-k) !

the number of isolate phases in region R* 

o the null vector

O the null matrix

P(x,y) (9j^(x,y)/[g^(x,y)g^(x,y) ]) (1-x) V(l-y)^

q a local heat flux vector

q local heat flux

Q heat flux at the boundary of a semi-infinite
slab [chapter I]

Oj A [chapter III]

of*) A$~^ [chapter III]

Q(x,y) Î g2 (x,y)/(g2^(x,y)g2 (x,y) ](l-y) V(l-x)^
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Q(T ) cumulative heat transferred across the

m
boundary = 2 6 q .

j=l ^
rj tj - t j [ c h a p t e r  III amd iv]

r^j a mesh region defined by -*5h^ ^ x - ^ ^^i+l'

-«skj < y - yy < ttj+i
R the mapping of R" into % under the trans

formation (3.1)

R* a connected three-dimensional region

R|, i=l,2,... a subregion belonging to R'

R" a plane and connected two-dimensional region

ft" the plane region x̂ , % 2   ̂0

ft the plane region, l^x,y^O

Rjj the union of all mesh point (i, j) contained in R

ftjj the union of all mesh point (i, j) contained in ft

s dimensionless sensible heat removed in the
transition interval

s' sensible heat removed in the transition interval,
BTU/LB

®i»j *i-l,]Ci,j ^i+1.3 î,j+l̂ i,i *i,j-lfi,j
for (i,j)€Rjj
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■(t) C“^ s^(t)

Sl(t)

S  (rj| Zj > 0 , j = 1 , 2, ...)

t T/kh , [chapter III]

time elapsed

" i l

temperature

Too the uniform initial temperature in a semi
infinite region

environmental temperature

an arbitrary reference temperature, occasionally 
defined as the temperature for which K(T)/Pc(T) 
is maximum

Tp a transition temperature

T an arbitrary reference temperature

T(rj) (Pjïj
[chapter III and iv3

T,(r .) E, ,(-r.®.^H)E, ,( - r , [chapter III and iv]^ J J J

Tg(x,t) one-dimensional transient temperature in a
solid phase
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Tĵ (x,t) one-dimensional transient temperature in a
liquid phase

u a dimensionless temperature defined by
Equation (1.1) or (2.8)

“o (E„-eJ)/(e“ -e|) also (Co-Cg)/(c“ -Ĉ )

Up a transition temperature (dimensionless)

u(x ;T) the transient dimensionless temperature in
a region R'

* 1  j(t) = u(Xi, Yj; t)

u(i)(x;T) transient temperature (dimensionless) in a
subregion R|€R

Fu. . dimensionless transition temperature from
state "i" to state ”j"

u(t) «^(t)

u(0)

Uĵ (t) a n-dimensional vector whose entries are
the n unknown values of Uĵ j(t), (i,j)eRĵ

u(ijj) v(t )̂ + A“^s(4 ), t^ _ 2   ̂  ̂^ t^, (a fundamental
discrete solution)

5(tn) v(t^) + A (̂s(4) + 0(4)). t ^ ^  t^

U a unitory matrix



261

* ( V  " ( V  - = « * t„

V q  v ( 0 )

m
= TT T(r.) V if and only if s is time ]Wl ] °
independent 

v(t„) ; v(tg) = v(to)

V c”^

/  s  )V a n X n symmetric matrix defined by
Equation (3.16)

v(c) ^-l^(c)

w. a numerical approximation of the dimensionless1 1 n
temperature u(xjit) at a point x^= iAx and at
a time level t = t_n

„(m) = w(t^) u(t^) - - « 2 ( V

(ŵ  j ,  , . . .  j , ^ 2 î, j")

(Wi, j, ... j ... w^„ j)

X Xĵ /(1 + Xĵ) if x^ ^ 0 otherwise = Xĵ /p. + |:K̂ |)

1 ,]

' i',i

x^, l^i^B a co-ordinate axis in any orthogonal curvilineat 
co-ordinate system

X (X^, Xg, Xg)
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X(t) the position of the interface in a one

dimensional region

X{x^,T) the distance of the interface from the line
Xg = 0 for given values of and T

X(t) dX(t)/dt

X^ X(t^)

y Xg/fl + Xg) if X2 ^ 0 , otherwise = Xg/fl + jxgl)

1

ij.Z(tj) exp [-(tj - t. l̂Oj.

Greek Letters

#(t), tt(T), thermal diffusivity = K/Pc
0 '(u), 0£

0£(x;T) h(x,T,Te) = h(x,E,EB), ^ T, x cF’ ,

and Otg thermal diffusivity of a liquid phase and
a solid phase, respectively

ttj and OjJ thermal diffusivity of a phase I and a phase II,
respectively
t .

J* ] exp [(% - t. Q . (Î? ,v) dT?

0£*(u) D' (u)/D' (0) , in a diffusion modelAB AB
= tt'(u)/a*(0 ), in a heat conduction model
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“(x,y) “(x,y)/^(x,y)

a positive constant such that /36p  ̂6

^ pT(x;T)
j K(T‘)dT' Ti M T

<3(t|V) - 2Î dv(t)/dt

7 interfacial tension, dyne/cm

y(x;T) Ca(*;T). P(x;T)]

7(x,y) 7(x,y)/P{x,y)

r the boundary of R
Ir the boundary surface of the region R*

a union of all mesh points (i, j)/Rji such 
that either (i±l,j)CR^ or (i,j±l)(R^

the interface between two co-existing phases

I'* the boundary of R"

r. . the interface between two subregions RÎX
and R'; R!, R'CR*] 1 ]

6 ,̂ dimensionless half transition temperature
intervals defined by Equation (1.6)

6^ a constant used in the recursion formulae for
the acceleration parameter rj, j = 1,2,,.,. It 
is usually so chosen that 1/5^ is an integer 
Csee Equations (4.14) and (4.17)]
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6 . . a coefficient defined by Equation (3.11)** J

tl - Z(rj)]"^ Z(rj) «j

&(6p) a vector quantity whose entries are the
difference between the exact values of the 
dimensionless temperature u^Ct), laisN^, 
when 6p = 0 and that of Gp ^ o

Gq̂ i total heat transferred at the exposed boundary
in the time interval t . to Tm—i m

GQjji the dimensionless total heat transferred at
the exposed boundary of a region in the time 
interval to

&Tp the transition temperature interval divided
by two

equilibrium concentration change across the 
interface between two-partially miscible 
liquids = - Ĉ )

AE latent heat of change of state of a unit
volume element of a system = -Ê )F F

Ax a mesh spacing along the co-ordinate x

ATj (tj-tji)kh

titj S(tJ - S(tJ
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m m  m

C (t ) Z TT Z(r.) «. + Cl - z(r̂ )3A"* •1 m i=i j'=i 3 1  i=i ]

* 2 < V  'o

1) "tortuosity" or "lithologie" factor =
(actual diffusion pass)/(linear path)

T)| function of x defined by Equation (3.18)
7?j a function of y defined by Equation (3.18)

®. . the error committed at a mesh point (i,j)3
because of discretization of the spacial 
co-ordinates

fi(t) c'^e^(t)

6^(t) a n-dimensional vector whose entries are the
n values of 6. . (t)

1 f 3

e (t) c'^i(t)2
o ®

^  —j=. J #2 (u) du = X̂/tT

a positive coefficient defined by Equation (3.21)

fi = (E-Ep)/(Ep^- Ep) in a heat conduction problem
= (Cĵ - Cg)/(C^I-Cg)in a diffusion problem

C the root of the transcendental Equation (l.lld)

P. 2/r^

p density, mass per unit volume
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CT. (B) the eigenvalue of the n x n matrix B
1

I

I

. 1 . 0  if (i»j)cr otherwise it is zero
1 # J n

o a coefficient defined by Equation (3.11)3
Z - I

[K(Tq)/Pc (Tq>]t/a^ (where a is a scaling 
factor)

^i,j

^^(u) [[K(Tg)/PC(Tj]/[K(T)/pc^(T)] - 1.0], where
Cy(T) is the specific sensible heat Lsee 
Equation (1.9a)]

Ek (Tq)/Pc (Tq) ]/[K(T)//t>Cp(T) ] where Cp
1 
Pp (It ) ~ Cy(T), [see Equation (1.9b)]

P

<P(u) ,<P(T) [pc(T^)/K(To) ]/|>c(T)/K(T) 1

$ or *(u(t)) a n X n positive diagonal matrix whose
diagonal entries are the h values of 

j = P(Ui,j(t)), (i,i)€R^

*(%(()), t. T < e < t.] 3-1 3
X(tJ X(tJ/(l + X(t„))

X tt*(l)/a(0) in a heat conduction model
D^g(l)/D^g(0 ) in a diffusion model
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X^(() 4 erf 4

XgCE) 4 erfc 4
*(x,y) 9i9293/[(l-x)(l-y)]̂  » (x,y)€R

h n  i> (x,y) dxdy/[ (hi+hi+i) (kj+kj+^) ]
i]

(mean cross-sectional area open for diffusion)/ 
(total cross-sectional area)

tt»2 effective porosity = (volume of the pores
available for diffusion)/(total volume)

Special Symbols 

diag(d^, ... ,djj) a n x n diagonal matrix whose i^h diagonal

entry is d̂ , 1  ̂i  ̂n

2 -x2^erf X, or j e dx
erf (x) CD -

2 r -Xerfc X, or -j= J e dx = 1 - erf x
erfc (x) ^

exp (tA) or e S ----  , for any n x n matrix A and
i= 0  i:
scaler t

A^x a finite difference operator approximating
2
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the Laplacian operator

è a a \ ^
' âx"' Fît*/ ^1 ' ^2 ' ® * 3 &re the

cartesian co-ordinates
( 4

"is a subset of", e.g., R (reads: R̂^
is a subset of R)

U "union of", e.g., R^u R^ (reads: the union
of R^ and Rg)

€ "is an element of" e.g., xCR (reads: x is
and element of R)

f "is not an element of"
0( ) "of the order of", e.g., jxj = O(h^) (reads

X is of the order of h^, i.e., there exists 
a positive number M, independent of x such 
that I x|  ̂Mh^ as h -* 0 )

X^(B) & G^(B) the i^^ eigenvalue of the n x n matrix B

P(B) the spectral radius of a n x n matrix B
= max 

Isisn
OAB)

m
^m^m- 1  ••• ^2 ^ 1

||a || the spectral norm of a n x n matrix A
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j|x|j the Euclidean norm of a n-dimensional

vector X

jxJ + ... + jxJ for any n-dimensional
vector X
n 
Z
i=l
dimensional complex vectors x and y

m

(y,x) Z (y*x.) = the inner product of two n-

Superscripts
* designates the complex conjugate of a complex

variable (e.g., y*); conjugate transposed of 
the n-dimensional vector (e.g., y*); conjugate 
transposed of a n x n complex matrix (e.g., B*)

Subscripts
X and t designates the first order derivative of a

variable with respect to x and t, respectively, 
(e.g., u^ = 9u/9x, u^ = ôu/ôt )
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Glossary 
Diagonally dominant matrix

An n X  n complex matrix is diagonally dominant if

j?̂ i
for all 1 3 i 3 n. If in addition A is irreducible 
then the matrix A is irreducibly diagonally dominant. 
If the strict inequality in (1) is valid for all 
1 3 i 3 n, then matrix A is strictly diagonally 
dominant.

Essentially Positive matrix
A real n x n matrix A = (a. .) is essentially posi-]
tive if A is irreducible and a^ j ^ 0 for i ^ j,
1 3 3 n.

Non-negative matrix
A real n x n matrix A = (a ) is non-negative if

i, j
a. . ^ 0 for all 1  ̂i  ̂n, and all 1  ̂j  ̂n.

3

Positive matrix
A real n x n matrix A = (a- •) is positive ifJ
a. . > 0 for all 1  ̂i  ̂n and 1 ^ j J
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Positive definite matrix

An n X n matrix A = (a. .) is positive definite if
3

A has n distinct and positive eigenvalues.

Spectral norm of a matrix
If A = (a, .) is an n X n complex matrix, theni

11*11 = ^  Il **11/ 11*11

is the spectral norm of the matrix A.

Spectral radius of A matrix
Let A = (a. .) be an n x n complex matrix with 
eigenvalues 1  ̂i  ̂n. The

P (A) = max
1  ̂i  ̂n

is spectral radius of the matrix A.

Stieltie Matrix
A real n x n matrix A = (a. ,) with a. . ^ 0 for1,3 1 ,J
all i / j is a Stieltjes matrix if A is symmetric 
and positive definite.

Tridiaqonal matrix
A n X n matrix A = (â  j) is tridiagonal if

a^ j ^ 0 for i- 1   ̂j  ̂i+1 , 1  ̂i,j ^ n,
a. . = 0 otherwise.J

Euclidean norm (or length) of a vector
Let X  be a vector belonging to a n-dimensional
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vector space over the field of complex numbers. 
Then,

||x|| ^ (x*x)’s = [£
1=1

is the Euclidean norm of z.

A Summary of Some Known Theoretical Results 
Lemma A-1

Let A = (a. .) be an n x n matrix, thenJ

AII = Cp(A*A)]^

[Theorem 1.3. Varga (77)]
Corollary

If A = (a. .) is an n X  n Hermitian matrix,J
then ||a || = P(A). Moreover, if g^(x) is any
polynomial of degree m in x, then

Lemma A-2
Let A = (â  j) be an n X  n strictly or irre

ducibly diagonally dominant complex matrix. Then, the 
matrix A is nonsingular. If all the diagonal entries of 
A are in addition positive real numbers, then the eigenvalues 
of A satisfy Re 0 , 1 ^ i  ̂n. [Theorem 1.8,
Varga (77)]*

Corollary
If A = (a. .) is Hermitian and strictly

1 « 3
diagonally dominant or irreducibly diagonally 
dominant matrix with positive real diagonal 
entries, then A is positive definite.
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Lemma A-3

Let A = (a^ j) be an essentially positive matrix, 
then A has a real eigenvalue Ç(A) such that:

1. To C(A) there corresponds an eigenvector 
X  >  o  •

2. If a is any other eigenvalue of A, then 
Re a < ((A).

3. C (A) increases when any element of A is 
increased.

Lemma A-4
The matrix A is essentially positive, if and 

only if exp(tA) > O for all values of t > 0. [Theorem 
8.3, Varga (7 7 )].

Lemma A-5
If A is essentially positive and C(A) is the 

eigenvalue of Lemma A-3, then

exp(tA) % K exp(tC(A)), t " 
where K is a positive constant independent of t.

Lemma A- 6  (Monotonicity Principle)
Let A and B be two real n x n symmetric matrices 

with eigenvalues ^ ^ ...  ̂ and  ̂^ 2   ̂ ^ n̂'
respectively. Let the eigenvalues of C = A + B be 

a Tg  ̂ 3 Then

("i + ^ ■>'k  ̂ ‘“ 1 + V
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if i + j -  l ^ k ^ l  + m -  n
[Theorem 10.1, Birkhoff, Varga and Young, (4 )]

Lemma A-7
Let A = (â  j) & 0 be an irreducible n x n matrix,
*and let P be the hyperoctant of vectors x > o. Then 

for any xcp*, either

t:. < P(A) < }m m
laizn Xi Xi

or n
.Sa-

P(A) =  ̂ for all 1 3 i sn.
X

Moreover,

X€P

inf i max 
X C P *  I izi^n [ 1 ^ ] }



APPENDIX B

THE COMPUTER RESULTS FOR THE 
ONE-DIMENSIONAL CASE



APPENDIX B

THE COMPUTER RESULTS FOR THE 
ONE-DIMENSIONAL CASE

The following computations were carried out on 
the University of Oklahoma IBM 1410 in order to compare the 
results from the proposed numerical solution with Neumann's 
analytical solution for the one-dimensional, latent heat 
problems.

TABLE 8

THE PARAMETERS EMPLOYED IN THE COMPUTER SOLUTIONS 
OF THE ONE-DIMENSIONAL CASE

Tabulated Data

Run h 6% Up 11=1I w (x£,t) u(x^^i,T)-
No. w(xi,i,r)

1 . 1 0.50 0 . 0 1 0.25 0 . 0 0 1 0 . 0 0 *
1 . 2 0.50 0 . 0 1 0.25 0 . 0 1 0 . 0 0 *
1.3 0.50 0 . 0 1 0.25 0 . 1 0 . 0 0 * *
1.4 0.50 0 . 0 1 0.50 0 . 0 0 1 0 . 0 0 *
1.5 0.50 0 . 0 1 1 . 0 0 0 . 0 0 1 0 . 0 0 *
1 . 6 0.50 0.005 0.50 0.005 0 . 0 0 *
1.7 0.50 0 . 0 1 1 . 0 0 0 . 0 0 1 0 . 0 0 *
1 . 8 0.50 0 . 0 1 1 . 0 0 0.05 0 . 0 0 *
1.9 0.50 0 . 0 1 1 . 0 0 0 . 1 0 . 0 0 *

For Run 1.1 , 1 .2, 1.3, 1.4 and 1 .6 the original
co-ordinate axis x% was replaced by x = x^/Cl + x̂ ) and
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then uniform mesh spacing was used on the x axis, i.e., the
mesh point i was situated at x^ = ih, where h is the con
stant mesh spacing. For Run 1.5 and 1.7 the original co
ordinate x^ was used. The entries of the n x n tri-diagonal 
matrix H for Run 1.1, 1.2, 1.3, 1.4 and 1.6 were computed 
by the following formulae:

c^ = (1 - O.Sh)(1 - l.Sh + h2)

Cj, = ( 1 - x^ + 0 .5h)2 (l - x̂ ) ( 1 - x^ + h) , 2zi3n

bi = » 1 3 i 3 n - 1

a^ = [(1 - x^ + 0.5h)2 + (1 - Xi - 0.5h)^]

( 1 - x̂ ) ( 1 - x^ - h) , 1  ̂ i ̂  n

where x^ = ih, and n = 1/h. The computer program solves
» 2 w(x^,T) = (1 - x̂ ) w(x^,T) , 1 3 i 3 n. The values of

 ̂ 2  
w(Xĵ ,T) are then calculated by dividing w^x^/r) by (l-x̂ ) .

For Run 1.5, 1.7, 1.8 and 1.9, Cĵ = + 1, bĵ  = 1
and a^ = 2. Equation (4.14) was used to calculate the
acceleration parameter in Run 1.1, 1.2, 1.3, 1.4 and 1.6.
In Run 1,5 and 1.7, Equation (4.17) was employed.



TABLE 9
COMPUTED VALUES OP THE DIMENSlONLESS TEMPERATURE w(ih,r) 

(€ ■ 0.5, Oy - 0.25, 6p » 0.1 AND Up - 0.0)

i T "
0.000102 T “0.000416 T “0.000956 T “0.001736 T “ 0.00277 r “0.01234 T "0.03114 T "0.0625 T -0.1111

1 0.018276 0,508555 0.673242 0.734400 0.782624 0.899266 0.937150 0.955738 0.9668802 0.000044 0.013121 0.331087 0.480631 0.568376 0.796792 0.873117 0.910613 0.933100
3 0.000053 0.012544 0.251957 0.371815 0.692944 0.807976 0.864639 0.8986584 0.000088 0.010668 0.211758 0.588077 0.741812 0.817836 0.8635525 0.000130 0.009145 0.482603 0.674704 0.770229 0.8277826 0.000165 0.377395 0.606705 0.721843 0.7913497 0.273117 0.537875 0.672709 0.7542578 0.169453 0.468375 0.622860 0.716512
9 0.073131 0.398509 0.572333 0.678122
10 0.008012 0.328509 0.521166 0.639094
11 0.000495 0.258210 0.469402 0.599441
12 0.000043 0.187226 0.417068 0.559177
13 0.116087 0.364164 0.51831814 0.047266 0.310691 0.476886
15 0.008455 0.256757 0.434901
16 0.000953 0.202674 0.392382
17 0.000129 0.148785 0.349337
18 0.000015 0.094841 0.305773
19 0.039468 0.261705
20 0.009121 0.217180
21 0.001520 0.172279
22 0.000273 0.127085
23 0.000042 0.081595
24 0.035812
25 0.009746
26 0.002162
27 0.000466
28 0.000085
2930

ro00
a\
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TABLE 11
THE EUCLIDEAN NORM OF THE DEPARTURE OF THE PROPOSED 

NUMERICAL SOLUTION FROM THE NEUMANN'S SOLUTION 
FOR ( - .5, Up - 0.0, AND DIFFERENT VALUES OF h, Op and

h
%

Run 1.1 0.010 0.001 0.250

Run 1.2 0.010 0.010 0.250

Run 1.3 0.010 0.100 0.250

Run 1.4 0.01 0.001 0.500

Run 1.5 0.01 0.001 1.000

Run 1.6 0.005 0.100 0.500

r X 10̂ II.II Ihll Ihll ||«l T X 10̂ T X 10̂ II* li
1.0203 0.000167 0.001877 0.018252 4.0812 0.155354
4.1649 0.029618 0.030028 0.036693 0.171389 25.000 0.307135 16.6597 0.028674
9.5653 0.030096 0.030486 0.034472 100.000 0.239725 38.2612 0.11695417.3611 0.034910 0.011262 0.023941 0.118754 225.00 0.202668 69.4444 0.11129427.7008 0.062666 0.053168 0.035638 400.00 0.184272 110.8030 0.088548
40.7424 0.062138 0.059488 0.038730 0.230874 625.00 0.168850 162.9690 0.072950
56.6539 0.060421 0,057857 0.032993 900.00 0.156889 226.6150 0.065071
75.6143 0.058426 0.055700 0.031007 0.192721 302.4570 0.060596
97.8142 0.056455 0.053570 0.038891 391.2570 0.057484
123.4560 0.054618 0.050854 0.046325 0.168953 493.8270 0.055384
152.7580 0.052949 0.048237 0.048481 611.0330 0.053758
185.9500 0.050701 0.048561 0.047072 0.152765 743.8010 0.052203
223.2790 0.114160 0.082224 0.044437 893.1160 0.050470
265.0080 0.124222 0.110525 0.041799 0.140834 1060.0300 0.048564
311.4180 0.120807 0.111996 0.039474362.8110 0.116965 0.108806 0.037410 0.120647419.5090 0.113494 0.105358 0.035518481.8560 0.110377 0.102170 0.033738 0.125542550.2200 0.107579 0.099279 0.032080625.0000 0.105058 0.096661 0.030558 0.122046706.6170 0.102782 0.094288 0.029183795.5290 0.100720 0.092130 0.027939 0.118760892.2240 0.098847 0.090163 0.026810997.2290 0.097142 0.088414 0.025780 0.1162391111.1100 0.095589 0.086835 0.024834
1234.4700 0.114162

IV8
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TOE COMPUTER PROGRAM FOR SOLVING TWO-DIMENSIONAL 
PROBLEMS AND THE TABULATED SOLUTION OF 
TOE TWO-DIMENSIONAL EXAMPLE PROBLEMS

The Computer Program 
A listing of the program based on the procedure 

outlined in Chapter IV and specialized for example problem 
numbers 3 and 4 is given in Table 12. The program was 
written in Fortran language. The following nomenclature was 
used for input and output data transmission:

1. Input Data
IROW Number of rows in ,h
ICOL Number of columns in
INR Number of rows beyond the approximate

interface X(t) or %(T)
IP Number of iterations before the first

print-out
INC Number of entries of w to be printed

on one line
NW Number of entries of w fed into the

computer
NP Number of iterations between each

print-out 
290



NS
291

Number of entries of s fed into the 
computer

TIMEO T/(hk)
TIMAX
H
X2 X(t)/-^ or x(T)/VKky/ (1 - x(t)
nx «X
BETA in ç)(u) = 1 + X exp [- /3 (u - Up)^ ]
UPS Up
DH X
ET (
B(I,1) e!

1
B(I,2) b!X
C(I,1) f:X
C(I,2) o'i
A(I,1) f! + e!X X
A(1.2) c! + bîX X
A2(I,1) The first diagonal entry of the sub

matrix Vĵ
A2(J,2) The first diagonal entry of the sub

matrix Hj
S(I,J) =i,i
CX(I) ^i
CY(J)

Output Data
DQ 6q
Q Q
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ERROR II 6 5 5 (7 ) (I ||Ep
TIME T/(kh)
V(I,J) The solution w. .(t )J

The Solutions of the Example Problems 
In all the four example problems solved by the com

puter matrices H-^) and defined by Equation (3,17) were
used in the basic scheme of page 102, instead of H and V. For
the case of variable mesh spacing, the entries of and
(c)V' ' and s were first computed on the IBM 1620. The results 

were punched on IBM cards and used as input data when solving 
example problems 3 and 4 on the CDC 1604. A listing of all 
input data for Run 2-3 is given in Table 13. For RUN 2-4 
the same input data were used except for the values of DX 
(6^), X2 and TIMEO, which were respectively 0.50, 2.0, and 
4,0. Table 14 gives a listing of input data for Run 2-1,
The same data were used in Run 2-2 except for the values 
of DX, X2 and TIMEO, which were those of Run 2-4.

In all four runs = .01 was used in machine com
putation. For this value of ^̂ ch the dimensionless length's' 
of the exposed boundary for constant mesh spacing and vari
able mesh spacing becomes 0,2 and 0.25 respectively. To 
make the length of the exposed boundary be unity in all 
cases, the geometric scaling factors 5 and 4 were used for 
the case of constant mesh spacing and the case of variable 
mesh spacing respectively. The computed values of Q were 
then corrected by multiplying them by 25 for the first case 
and by 16 for the second case. The values of r were then



293
computed using the following relation:

T = 0.0025 TIME for Run 2-1
= 0.0025 (TIME - 4) for Run 2-2
= 0.0016 TIME for Run 2-3
= 0.0016 (TIME - 4) for Run 2-4

where
m

TIME = E r .
3=1 ^

and m is the number of the predictor steps completed.
Table 15 gives the corrected values of Q and Q//r~

for several values of t and for all the four runs. Table 16 
is a reduced photograph of the computer output for Run 2-1. 
Those of Runs 2-2, 2-3 and 2-4 are given in Tables 17, 18, 
and 19, respectively. The values of Q and t in these tables
are the corrected values. Note that the initial value of
TIMEO in Runs 2-2 and 2-4 was used only to increase the 
first few values of rj, j = 1 , 2 ..., by a factor larger 
than 2 when compared with those of Runs 2-1 and 2-3.

The last table of this appendix (Table 20) gives 
the position of the interface (i.e., 0.0159 isotherm) for 
Run 2-1 for several values of t . The data of this table 
were used to compare the computer solution and the diffusion 
cell analog solution.



TABLE 12
A LISTING OF THE COMPUTER PROGRAM AS 

SPECIALIZED FOR RUN NUMBER 2.3

DIMENSION KBB(65)
DIMENSION CX(62)»CY(62)»U(62)»V1(62)tA2(62»2> »S(A1»62)»B(62»2)
DIMENSION CS(62).GS(62>»FEEf41»62)»V(Al»62)»W(Al»62).AI62»2)
DIMENSION C(62»2)1112 FORMAT(IH )

199S FORMATI70H
1 )

1113 FORMATClHll 
PRINT 1113 
READ 1995 
PRINT 1995 
READ 1995 
PRINT 1995
READ 1995 Jg
PRINT 1995 *-
PRINT 1112 
READ 1995 
PRINT 1995 
PRINT 1112 

990 FORMAT (I4,15F7.4,///>
READ 1995 
PRINT 1995 

998 FORMAT(2I4,2F10.2,I4,F14.7)
READ 998,1ROW» 1COL,TIMEO,TIMAX,NW•H 
PRINT998,IROW,ICOL.TIMEO,TIMAX,NW#H 
IC0LM"IC0L+1 
IROWM"IROW+1 
PRINT 1112 
READ 1995 
PRINT 1995 

1998 FORMAT(514*



TABLE 12 (CONTINUED)
READ 1998,NS,INC,INR,NP,IP 
PRINT 1998,NS,INC,INR,NP,IP 
PRINT 1112 

997 FORMAT(6F12.6)
READ 1995 
PRINT 1995
READ 997,X2,DX,BETA,UFS,DH,ET
PRINT997,X2,DX,BETA,UFS,DH,ET
PRINT 1112
READ 1995
PRINT 1995
KROWIROW
KCOL-ICOL
IN"IP
QaOa
DQ"0#
M4«l
«■IROW
LL-ICOL g
WW".0000001*.0000001*.0000001 ^
DO 331 I=1,IR0WM 
DO 331 J=1,IC0LM 
V(1,J)«0.
S(I,J)=0.0 
FEEd ,J)«1.

331 W(I,J)=WW
DO 501 N=1,NS 
READ 502,i,J,XS 
PRINT 502,I,J,XS

501 S(I,J)*XS
502 FORMAT(2I5,F10.6)

PRINT 1112
IF (NW) 3333,3334,3334 

3333 PRINT 3338
3338 FORMAT( 22H WS ENTERED BY PROGRAM 

DO 3336 N=1,IR0WM



TABLE 12 (CONTINUED)
NK-IROWM-N+1 
DO 3336 NN=1,NK 
W(N,NN)=-1.

3336 CONTINUE 
NW*0 *-NW 

3334 PRINT 1112 
READ 1995 
PRINT 1995 
DO 319 N»lffNW 
READ 996,I,J,XW 
PRINT996»I*J*XW 
W(1»J)«XW

319 CONTINUE
996 FORMAT(214,F 12.6)
995 F0RMATI5F14.7)

READ 1995 
PRINT 1995
DO 318 I=1,IR0WM S
READ 995,B(I,2),A(I,2l,CX(n,C<l,2),A2<l*l) *
PRINT995,B(I,2),A(I,2),CX(I),C(I,2),A2(I,1)

318 CONTINUE 
PRINT 1112 
READ 1995 
PRINT 1995 
DO 320 I«1,IC0LM
READ 995,B(1,1} *A( U1),CY( n,C(I,l) ,A2n * 2)
PRINT995,B(I,1) ,A(I,1),CY(I),C(I,1),A2(I,2)

320 CONTINUE 
PRINT 1113 
READ 1995 
PRINT 1995 
PRINT 1112 
READ 1995 
I2 «l
SUM*TIMEO
M*4



TABLE 12 (CONTINUED)
11 = 1 

130 M»M<fl
GO TO (60*60,60,60,51)#M

51 M*1
GO TO (53,52),M4

52 R0«2,/R 
M4=l
GO TO 54

53 X2=X2+DX 
ÏXFIX-X2 
IROW-IXFIX+INR
R=(.5*X2/ET/(1-H*X2))**2-SUM
SUM=SUM+R
R0=4,/P
M4=2
IN-IN-1

54 DO 250 I=2,KK
MlO-1 %
DO 50 J=2,LL ^
IF(W(1,J)) 50,56,56

56 60 TO (4258,4257) ,M10 
4258 M11=J

M10=2
4257 GO TO (4256,4260),M4
4260 DQ=DQ-t-FEE( I, J)*(V( I,J)-W( I ,J) )*(CX( I+l}-CX( I-l) )*(CY( J-1 )-CY(J+1 ) )

1 /4.0
4256 SFS«BETA*(V(I,J)-UFS)

IF (SFS-3.) 57,58,58
58 FEE(I,J)=1.0 
- GO TO 59

57 SFFS=SFS*SFS
FEEd ,J)«l,fDH/EXPF(SFFS)

59 GO TO (62,61),M4
61 W(I,J)aV(I,J)

GO TO 50
62 V(I,J)-W(I,J)



TABLE 12 (CONTINUED)
50 CONTINUE

FEE<I»Mll)»FEE(I»Mll)/2«
250 CONTINUE

IF (IN) 60»622*60 
622 IN»NP 

0"DQ+Q
1111 F0RMAT(5H D0= ,F18.6#6H Q= ,F18.6,6H TIME=,F16.8,8H ERROR»#F16 
11111#8)

* TIME«SUM^R 
ERROR-0*
IR0WW»IR0W+1-INR 
DO 4200 I»2»IR0WW 
XXX=CX(I)/((4.0*TIME)**0.5)/H 
YYYal•/(l.+0.47047*XXX)
EROR»V(I*55)+((1.- 1#1283792*(.3084284*YYY-#0849713*YYY*YYY+.66276 
198*Y'YŸ*YYY«YYY ) /EXPF ( XXX*XXX) ) /.5205 )-1 

4200 ERROR«EROR*EROR-fERROR
PRINT 1995 g
PRINT 1112 «
PRINT 1112
PRINT 1111,00*0,TIME,ERROR 
DQ»0,
PRINT 1112
DO 4001 KNB=2,LL,INC 
KNBP-KNB+INC-1 

4011 FORMAT(4X,15(4H (I,,I2,1H)))
DO 4300 I»KNB,KNBP 

4300 KBB(I)=I
PRINT 4011,(KBB(I),I»KNB,KNBP)
PRINT 1112 
DO 4002 I»2,KK
PRINT 990,I,(V (I,J ),J=KNB,KNBP)

4002 CONTINUE
PRINT 1113 

4001 CONTINUE
DO 6063 1=1,IROW



TABLE 12 (CONTINUED)

7320 FORMAT(E18.8)
6063 DQ«DQ

IF(TIMAX-SUM) 252,252,60 
252 STOP 
60 DO 10 K=2,KK 

L1=0 
11-1
GO TO (100,101),II

100 I«K 
I4=K
13-K
GO TO 102

1 0 1  J=K 
J2=K 
J1«K

102 DO 20 L=2,LL
GO TO (103,104),11

103 JsL S
J1*L+1 '®
J2«L-1
GO TO 105

104 IsL
14-L+1 
I3=L-1

105 GO TO (106,107),Il
106 IF (W(I,J)) 108,109,109 
10€ GO TO 20
109 A1«A2(K,II)

CS(L<-l)a0,0
GS(L^1)=0.0
L1*L
11=2
GO TO 110

107 A1=A (L,II)
110 GO TO (111,112),12
111 V1(L)»(R0*FEE(I,J)-A1)*V(I,J)+B(L,II)*V(I4,J1)+C(L,II)*V(T3,J2)



TABLE 12 (CONTINUED)

1+S(I*J)
GO TO 20

112 A5«R0*FEE{I*J)+Al 
DN»A5-C(L * I n  *GS(L-1)
CSCL)bB(L*II)/DN
GS(L)«(Vn»J)+C{L»II)»GS(L“l) )/DN 

971 F0RMAT(8IA»3E16.8)
20 CONTINUE

IF (Ll) 10,10, 4750 
4750 GO TO (113,114),12
113 00 115 L=L1,LL

GO TO (116,117),11
116 J=L

GO TO 115
117 I»L ë
115 V(I,J)aVl(L) ®
981 FORMAT (2I4,E16.8)

GO TO 10
114 V1(LL)=GS(LL)

L2*LL-L1
DO 118 L3=1,L2 
L4*LL-L3

118 V1(L4)=GS(L4)+CS(L4)*V1(L4+1)
00 119 L=L1,LL
GO TO (121,120),II

120 I»L
GO TO 119

121 J=L
119 V(I,J)=V1(L)
10 CONTINUE

GO TO (122,123),12
122 12=2

GO TO (222,223),II 
222 11=2

«•ICOL
LL«IR0W



TABLE 12 (CONTINUED)
GO TO 130 

223 11*1
<K*IROW 
LL-ICOL 
GO TO 130

123 12*1
124 GO TO 130 

END

wo



TABLE 13
INPUT DATA LISTING FOR RUN NUMBER 2.3

ROWS COLS 
40 61
NS INC 
20 15

X2 
0 # 0

TIMEO TIME MAX NW 
0.0 1112.0 -21 

INR NP IP
8 3 

DX 
.25

BETA
30.

H
0.01

UF
.01 J S(I,J) I J W( I2 61 1 9798 1 412 60 1 9798 1 422 59 1 9798 1 432 58 1 9798 1 442 57 1 9798 1 45

2 56 1 9798 1 462 55 1 97980 1 48
2 54 1 9798 1 472 53 1 9798 1 49
2 52 1 9798 1 50
2 51 1 9798 1 51
2 50 1 9798 1 522 49 1 9798 1 532 48 1 9798 1 54
2 47 1 9798 1 55
2 46 1 9798 1 56
2 45 1 9798 1 57
2 44 1 9798 1 58
2 43 1 9798 1 59
2 42 1 9798 1 60

1 61

DH ET
57.154020 0.5

woro



TABLE 13 (CONTINUED)
(1 ,2 ) Ad,2) CXd) C(1,2) A2(I,1)

0 -.0050251 0 # 0 . 0 0 0 0 0 0 09702007 1 9601011 •0050251 •9899003 0.98254449316838 1 8824791 •0152284 •9507952 0.95079678943251 1 8071856 •0256410 •9128604 0.91286058581016 1 7341738 •0362694 •8760722 0.87607278229894 1 6633968 •0471204 •8404073 0.84040717889662 1 5948086 •0582010 •8058424 0.80584237560088 1 5283638 •0695187 •7723550 •77235507240950 1 4640171 • 0 8 1 0 8 1 0 •7399221 0.73992276932024 1 4017243 •0928961 •7085218 0,70852176633088 1 3414402 •1049723 •6781314 0.67813056343924 1 2831216 •1173184 •6487291 0.64872916064323 1 2267258 .1299435 •6202935 0.62029355794068 1 1722102 .1428571 •5928034 0.59280345532945 1 1195317 •1560693 •5662371 0.56623715280749 1 0686487 #1695906 •5405737 0.54057375037275 1 0195203 •1834319 •5157928 0.51579284802320 9721059 •1976047 •4918738 0.49187384575681 9263649 • 2 1 2 1 2 1 2 •4687967 0.46879674357158 8822570 •2269938 •4465411 0.44654114146558 8397432 •2422360 •4250874 0.42508743943684 7987845 •2578616 •4044161 0.40441613748350 7593430 •2738853 •3845080 0.38450803560363 7213807 •2903225 •3653444 0.36534443379535 6848595 •3071895 •3469060 0.34690603205687 6497432 •3245033 •3291744 0.32917443038630 6159947 •3422818 •3121316 0.31213162878190 5835779 •3605442 •2957588 0.29575882724190 5524581 •3793103 •2800391 0.28003912576453 5225997 •3986013 •2649544 0.26495442434807 4939681 •4184397 •2504873 0.25048732299085 4665296 •4388489 •2366211 0.23662112169116 4402503 •4598540 •2233387 0.22333872044738 4150972 •4814814 •2106233 0.2106233

w8



TABLE 13 (CONTINUED)
•1925786 •3910375 •5037593 •1984589 0.1984569•1612100 •3680390 •5267175 •1868290 0.1868290•1703525 •3460704 •5503875 •1757179 0.1757179•1599901 •3251000 •5748031 •1651099 0.1651099•1501080 •3050975 •6000000 •1549895 0.1549895•1406908 •2860326 • 6 2 6 0 1 6 2 •1453418 0.1453418
• 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0Bd •I) A d d ) CY(I) Cd$l) A2d.2)
• 0 0 0 0 0  0 0 ^ 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0•1361515 •2678754 •8873157 •1317239 0.1317239•1453418 •2860326 •8604394 •1406908 .1406908•1549895 •3050975 •8344232 •1501080 .1501080•1651099 •3251000 •8092263 •1599901 .1599901•1757179 •3460704 •7848108 •1703525 .1703525•1868290 •3680390 •7611407 •1812100 •1812100•1984589 •3910375 •7381826 •1925786 •1925786•2106233 •4150972 •7159047 •2044738 •2044738•2233387 •4402503 •6942772 •2169116 •2169116•2366211 •4665296 •6732721 •2299085 •2299085•2504873 •4939681 •6528629 •2434807 •2434807•2649544 •5225997 •6330246 •2576453 •2576453•2800391 •5524581 •6137335 •2724190 •2724190•2957588 •5835779 •5949674 •2878190 •2878190•3121316 •6159947 .5767050 •3038630 •3038630•3291744 •6497432 •5589265 •3205687 •3205687•3469060 •6848595 •5416127 •3379535 •3379535•3653444 •7213807 •5247458 •3560363 •3560363•3845080 •7593430 •5083085 •3748350 •3748350•4044161 •7987845 •4922848 •3943684 •3943684•4250874 •8397432 •4766592 •4146558 •4146558•4465411 •8822570 •4614170 •4357158 •4357158•4687967 •9263649 •4465444 •4575681 •4575681•4918738 •9721059 •4320280 •4802320 •4802320•5157928 1.0195203 •4178551 •5037275 .5037275•5405737 1.0686487 •4040138 •5280749 •5280749



TABLE 13 (CONTINUED)
•5662371 1^1195317 .3904925 •5532945 •5532945•5928034 1^1722102 •3772803 •5794068 •5794068•6202935 1^2267258 •3643667 •6064323 •6064323•6487291 1^2831216 •3517416 •6343924 •6343924•6781305 1^3414390 •3393955 •6633085 •6633088•7085217 1^4017233 •3273193 •6932016 •6932024•7399227 1^4640182 •3155042 •7240954 •7240950•7723550 1^5283642 •3039419 •7560092 •7560088•8058423 1^5948084 •2926242 •7889660 •7889662•8404071 1^6633965 •2815436 •8229894 •8229894•8760727 1^7341743 •2706926 •8581015 •8581016•9128605 1^8071863 •2600642 •8943257 •8943251•9507967 1^8824809 •2496516 •9316842 •9316838•9825444 1^9503515 •2394483 •9678071 •9702007•9678057 !•9503496 •2293981 •9825439 2.9500014•9316837 1^8824790 •2191948 •9507953 2.9500014•8943244 1^8071845 •2087822 •9128601 2.9500014•8581023 1^7341742 •1981537 •8760719 2.9500014•8229897 1^6633981 •1873028 •8404083 2.9500014•7889660 1^5948084 •1762221 •8058423 2.9500014•7560082 1^5283629 •1649045 •7723546 2.9500014•7240951 1^4640169 •1533421 •7399217 2.9500014•6932024 1^4017245 .1415270 •7085220 2.9500014•6633088 1^3414402 •1294508 •6781314 2.9500014•6343924 1^2831216 •1X71047 •6487291 2.9500014•6064323 1^2267258 •1044797 •6202935 2.9500014•5794068 1^1722102 •0915660 •5928034 2.9500014•5532945 1^1195317 •0783538 •5662371 2.9500014•5280749 1*0686487 •0648325 •5405737 2.9500014•5037275 1.0195203 .0509912 •5157928 2.9500014•4802320 •9721059 •0368184 •4918738 2.9500014•4575681 •9263649 •0223020 •4687967 2.9500014•4357158 •8822570 •0074293 •4465411 2.9500014•4146558 •4250874 -.0078128 •4250874 2.9500014• 0 * -•0234384 0 . 0 .

w
g



TABLE 14
INPUT DATA LISTING FOR RUN NUMBER 2.1

ROWS COLS TIMEO 
40 61
NS INC

TIME MAX NW 
0.0 1112.0 -21 

INR NP IP
H
0.01

20 15 8
X2 DX BETA
0.0 .25 30.I J S(I.J) J W(I.J)2 61 2. 412 60 2. 42
2 59 2. 432 58 2. 44
2 57 2. 45
2 56 2. 46 «ml g
2 55 2. 48
2 54 2. 47
2 53 2. 49 tel g
2 52 2. 502 51 2. 512 50 2. 52
2 49 2. 53
2 48 2. 54
2 47 2. 55 «w 1 g
2 46 2. 56
2 45 2. 57
2 44 2. 58
2 43 2. 59 te  1 g
2 42 2. 60

61

UF
.0 DH ET

57.154020 0.5

wo
O N



TABLE 14 (CONTINUED)
A d , 2) C X d

0. -•005
2. #005
2. • 015
2. • 025
2. • 035
2. • 045
2. • 055
2. • 065
2# .075
2. • 085
2. • 095
2. • 105
2. • 115
2. • 125
2. • 135
2. • 145
2. • 155
2. • 165
2. • 175
2. • 185
2. • 195
2. • 205
2. • 215
2. • 225
2. • 235
2. • 245
2. • 255
2. • 265
2. • 275
2. • 2852. • 295
2. • 305
2. • 315
2. • 325

C(I»2) 
0.

A2(I»1)

w
S



TABLE 14 (CONTINUED)
1 • 2. ,335 !• 1^
1 e 2. • 345 !• 1^
1 # 2. • 355 !• 1^1 # 2. • 365 1, 1^1 • 2. • 375 1^ !•
1 # 2. • 385 1^ 1.1 e 2. • 395 1^ 1^8(2,1) A(I,1) CY(I) C(I»1) A
0,0000000 0,0000000 0^0000000 O^OOOOOOO1, 2, • 595 1^ 1^1, 2, • 585 1^ !•1, 2. • 575 1^ 1^1, 2. • 565 1^ 1^1, 2, • 555 1^ 1,
1, 2, • 545 1, 1,1, 2, • 535 1^ !•1 « 2, • 525 1^ 1^
1, 2, • 515 1^ 1^1, 2, • 505 1^ 1^1, 2. • 495 1^ 1^
1, 2, • 485 !• 1^1, 2. • 475 1. 1^1, 2, • 465 1^ !•1, 2. • 455 !• 1^1, 2 , • 445 1, 1̂1, 2, • 435 1̂ !•1, 2, • 425 !• !•1, 2, • 415 1̂ 1,1 # 2, • 405 1̂ 1̂1 # 2, • 395 1̂ !•1, 2. • 385 1̂ !•1, 2, • 375 1̂ 1,1, 2, • 365 !• 1,1, 2. • 355 1̂ 1̂1, 2. • 345 !• 1̂

0000000

wo00



TABLE 14 (CONTINUED)
1. 2e e333 1# le1# 2e e325 le le1. 2e e315 le le1. 2e e305 le le1. 2e e295 le le1. 2e e285 le le1. 2e e275 le le1. 2e #265 1# 1#1. 2e #255 le 1#1. 2e #245 le le1. 2e #235 le 1#1. 2e #225 le le1. 2e #215 le le1. 2e #205 le le1. 2e #195 le 3e1. 2e #185 le 3e1. 2e #175 le 3e1. 2e #165 le 3e1. 2e #155 le 3e1. 2e #145 1# 3e1. 2e #135 le 3e1. 2e #125 le 3e1. 2e #115 1# 3e1. 2e #105 1# 3e1. 2e #095 1# 3e1. 2e #085 1# 3e1. 2e #075 le 3e1. 2e #065 1# 3e1. 2e #055 1# 3ele 2e #045 le 3ele 2e #035 le 3ele 2e #025 le 3ele 2e #015 le 3ele le #005 le 3eOe Oe -#005 0# Oe

w
S



TABLE 15
CUMULATIVE HEAT PLOW, Q, AND O/VT FOR THE POUR COMPUTED RUNS

JF
Run 2-1 

Q Q/VF JF
Run 2-2 

Q Q/JF VT
Run 2-3 

Q Q/VF j r
Run 2-4 

Q Q/'s/F
0.025 0.0249 0.9960 0.07500 0.15182 2.0243 0.02010 0.02016 1.00296 0.06476 0.13451 2.0770
0.125 0.2793 2.2144 0.20155 0.48480 2.4053 0.10256 0.22971 2.2396 0.17066 0.41730 2.4452
0.225 0.517225 2.2988 0.30923 0.76055 2.4595 0.18848 0.43235 2.2939 0.26632 0.66243 2.4872
0.325 0.76015 2.3389 0.41306 1.02972 2.4929 0.27807 0.6476 0.36286 0.91179 2.5128
0.425 1.0093 2.3748 0.51539 1.29867 2.5198 0.37148 0.87712 2.3447 0.46240 1.17211 2.5327
0.525 1.2651 2.4097 0.61696 1.57062 2.5457 0.46927 1.12338 2.3938 0.56060 1.44709 2.5813
0.625 1.5274 2.4438 0.71807 1.84727 2.5725 0.57143 1.38766 2.4284 0.67363 1.73998 2.5830
0.725 1.79645 2.4779 0.81891 2.12950 2.6004 0.67836 1.67856 2.4643 0.78633 2.05370 2.6184
0.825 2.0723 2.5119 0.91958 2.41775 2.6292 0.79042 1.97816 2.5027 0.90444 2.39110 2.6437
0.925 2.35505 2.5460 1.02011 2.71222 2.6875 0.90797 2.30891 2.5429 1.02830 2.75512 2.6793
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1.225 3.2451 2.6491 1.32121 3.63462 2.7510 1.29801 3.47621 2.6781
1.325 3.5557 2.6836 1.42145 3.95535 2.7826
1.425 3.8734 2.7181
1.525 4.1979 2.7527
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.#*•< .»iM--.MM .U»* iiiM ;iM# - . M M - M M  .lut .111» ,<i.# .m u  . •»» .Ml» .MM .# #» »M» .#1»»%#»», :*Hi .*w# »»M i#»i» .»**i .»#*»*-..»•*• .MM .*»*» .W#»-»### .$w-;M#-;ww-%in» ,im M i n  ;%#»r%»»M

,111# .##M .MM .#11# .tu# M## .#MI .>Mt '.l»M~.MM .IMI ,M M  .liir ,*Mt ..#,» .Ml» .»M# .M*» .#M» .MM .»### .»#M .§#»« .M#f .»•»# :»M» .MM Mil# .Ml# .il»» l I M n W » » — M»l"-.nM .W#*-;!

;#$»» .##M » » M -Mi» .»*»» .»m*-.ii»i ,iM» M U »  -.II»»— M»»^»w;iifr'.iMi'^.»ii»*:iMi” ;iu*";»»»*'T»»«

"n»ii‘.iu » ',MM ' . l i M M i M  ■. ■, n i - . i * i r - . * » ir“ ; » i»»—. n u —.n»»-:»nr-;inr~.'»»M  . m » . i i i i  .i m »m i u  .M i » -".»H » - .‘»a f - .M i »—.r n r - ^ »i f “ . » ii»  i M n - i i i . 111? , m i  j iir

• .Ml» .MM .M»$ .»»%» '.»»»» .MM .MM ,»»#» — #M» IMI .»M» .11.» ,|IM . IM .MM .MM'.MM #»M .MM .###» .»Ml '.fill ".MU .MM IM» .#M» .MM .MM IM» #1»» ;»»»# :»Mr »##»— »#»#%»M»"n»# Ï»M»*

I #M# M M  .»»M .»$#» Ml» .Utt".»»U".Ut» ,Mir-,»*M .#>*1 .Ml ..IM .MM .MM .MM ,MM .MM .MM .##M .Ml» .Mil .# M» IIH -.>.l|-.»i«l ." Ml--.lil|— ,IMf-.M»|-.»#H “ »#ll .#H»— .•MI*-nni“^»m-T»lir
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TABLE 1 6  (continued)
MM*' M«l*l ll.M » MilM M>H» M.MI «(>Kt «UHI <I«H< tl< l4 l «U»«t 4t«t(* 4|«I4I «|.W I (l>M* 4|>Mt «I.MI tl .M l *U«»« II.M* II,»*» II,*»* II,*** II,**» *»,*»» O,*»» II.W* «),»•• « l,» |l l l ,M I ll,M I II.M* ll.W I tl.M » #1,## ##«W$ «ItM l %*•*•*

r  .1 7 5 5 1 2 5  
0.3*55575 T U T. M i f . H i r - .M ir

;mi " m n  . w r % w r
Mil .1111 .Wl' .flll' nur "ifn “.MU iwM “,wir

~nn  .ww .ow ;### - v m  ; w w - w # ■; i» * - . .» * ! - ; » n  » ■ ■ .» » " - T i M r - : m i - ^ f f »  ■

11IW Ml* n*f ,7Mi i M T - m i  fMf .fMf-mif-iMM-ifW# ̂ M — iiff— :nff— M M — IIM— W f  i#$w— iwiT^HM .Mfr-.f#w-mM-fiw i w w  .mm .1
- n n f - : # " *  IMI - n m  ‘ . r n » - ; w n  • .m i* — .m i t * .iw *--.«h -tmit— . * m .m» .Mil-.fin~MMf'~.nM~:»Mr~'.n»f~.»«M '.»m'.wM*TiMr*':Mfi TiHi t i h i  .•w w '.’iw-;wii .m,f

n  T w i r  ,tm

-iMT*".iwr^iTif*7iti* - . i i w : m r - . n » t ~ n f N ~ ; n n - i w - i w r - ; w #i
w r  , m i  *  i*»i - ; » f n ^ ; i n i  * -Twiw-imw - . m i —.m »  i w w — ;m #-ni#-TMw . m f - . n * f  *.i4i*-T

.««»< ,* m  , i i i«  .***$ ,« iH  ,»«•• .**$* ***% ,1$** .11*1 .i»v« .1*11 ,»»M , i m  .1*1* .»*** .***$ .M il Ml* .M«» .»!•* .i«M . H . i  .»•*• .i*H  . i m  ,f»*f .•»*• .M h  , n m  , m m  . m m

.H<« .Ml# .M il .MM ,*!## .MM «IM# .MM .«Ml ,IM* .«•«! .11*1 .IM I .MM .1*#* .Ml* .M** l#M .*##* .MM W # .M«# .$*$# ,M«I .«$** .M** .H H  MM .#*##

. i w n $ m  - n w - M w  -.ifM"7MN~im MrT-.iMf-;r*fr^»r .n.r-.m#

'.1111" Jiii ■n iw 7I W  m w  mil .IMI .mi

*;;in-7iMr*.mn7ini~:mr^iiir'ni«mîir‘;u*i"^w*iiiir-TiMr-nîir-.iMi-;Mîi-.iiir-.MH— i m * : i w n M i  vMif .ini .iMi— M M - m w - n m  .imi-.iim in* - i w  n w  :i m  ;mi A m ~

T w r  : i i i f '̂ i i H  j a . J i  . i» w  n »  . H »  . n »  . i N r . i i M ' . t i n  . u n  . » i i  . » h.1111 . . I I I  .IIM  . u n  . l l i r . M I I ~ . l l l l  .1111 " . u u  '.'M il '

.i##i-:MM i i m  -.im* -.ii»r^;,»ii*.Mi* ■.tii«-.ii«-M

If .fiiv
. i i M ' . i m  .n M  ’ - . m f - . i H i  .i*M  - . i m  - ; m t —, i #m —n » » t  ~ i w i  H M# : i m —

MTI .1111 .IIU .1111 .IIIV ,||fV .||f1 .

.MM i m  M M  .Mil •.»#*« iim".lfM-,MM .Mil IIM W M  M M  : M M  :MM -.fM|-;ttM* : M W ‘.IIM ‘•MfT

W
Hen

-rt '.HH-.MW -.1. Mirirni-Mir-^MiriMM— Mir-nM»~mH-iMM^.iwr"rMM ,iwi i MM .nu ;i. i .m*-;iM# .MM^iim ini .oH .mm .«n* .#111 .1111 ;i«m '.mm .imi'.imi ...w ;M*i*;tiH -.un• -.im• :nif— .fin-niw^;w t". t m ' .iw-".W f#T.ww

I IMI ;iMr 11,

M  .(Ml .MM ;«

r-\MI# n  Ml .IMI .Mir .IHI l M M ^ M W - n i M ^ I M I  .MM"LMM Mil «M, .MM ....» .*11' .1*1 .i M  .$1*1 IMI II** l*M IMI .11*1 .11** .Mil .I$I1%MI* *M* I.H .1# .MM ̂ Hll .Mff-TMW-nMr^m

- .‘.IM  “.Mif . n n ~:in T~.I I H .1 111 .im  . u n  ':(iit" K M ' .n M ~ n n * ~ f * f f ~ ^ i ;.- r - n i w  t .i h  Tinf.int ;mr *.nw  .mw
•if~*.»*ll *,IMI“TlIII'~;iMI'^.HM'^.»l« ’.«Ml .11»» IMI .«»ll '.MM .MM .11 *1. . $ » ..UI'.IMI IMI I M  .MM ;»MI ICI .Mil IMI .«»M '.Itlf'.Mil * f .Mil . I«l M M  ' M M  IM» IIM -flW V

I Vi.ll :»*M .'•»'.*»II~.IM» .MM IIIM :IIM "Mil .11*1 *1», IMI ■•••« .*«•• .MM .: ' .MM .*1,1 .Mm  Ml# M M  .M l , IM «M$ •»«** .Mil ..«Il .- I *1,1 . »*l .,MI .Mit iMl .1*11 '.IMr~•IIV'.llir^tflt^VIfr'nHI
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TABLE 17 
NUMERICAL SOLUTION OF THE EXAMPLE PROBLEM N 0.2  FOR VARIOUS VALUES OF f

*I,W« t • ••Ml il.l** ••.•»• II.Ml II*M4 I|.«i» II.M* II.I** It.*** II.MI ll.Mi i|.«l* II.#*» II.*#* M.*t* II.Ml «••*•• ll.Ml !••### il.Mi il.Ml «|.H« «««M# «!«*«* MiH*
. M M IMI .... " "  ■•"• .... .i»t* .1111 .I»!# . » m .11# . m # .11# ■ m i

f » 005625 
0» 1 51825

..### .IIM . i n  .I##! .###1 .###1 .#11 . m

***** . M M . M M ...II . M M *11 .•#«» .Ill .I#*! .#••1 .#1# .1## .#1# .#•#1

<I*U> ,1,### II.Mt Il.Mi Il.Ml ll.lll Il.Ml Il.Ml .1.11 Il.Ml .,.#M • I . H M.MI II.MI ..... •;.i# • |.«l# ll.tli II.W# #1.1# II.H# ##.$## #1.1# 111#. 11.11
. M M  . M M .I#» . M l  . H M  . H H  .H#4 .fH,

r  »  -040625 . 1 1  .*#*# . H  .*##• .11# .##$, * H #

Q . -48480

. M M .11.1 ..IM .IIM ...» ...M *11 .«I## .«#1 #11 ...1 .#11 .#«1

. M M ..... . M M  M M ...» . ### .##1 .##1 ##1 *•—

H  IM Il.Ml Il.Ml Il.Ml Il.Ml Il.Ml I.MI Il.Ml Il.Ml I M.  II.MI I.#*# 1.1# 1.1* t.«ll II.W# II»### 11*11 .1*1. 11.11 «1.1#
. M M  M M .111 .#Hi .1»# . H  . 1 #

.Ml. M M ..... .It#. .»H# .*i*t .fin . n #

r . -095625 
O t  -76055

. M M . M M

. M M  M M " " . » m  .##1 .1*1 .#### 

. H  *M># .*### .H#a

.III. . M M .IlM . i m -•I" ...I- " " .Ifll .##1# .an# .###»

...... . . M M .M#. . M H .III. . M M  ..... ..1» ...» *11 .111 .##1 #11

.Mil III .Mil . M M **" . M M ..... ..... . M M . 1 1 .IM. .*••• .#### .#«tt

Il.Ml II.MI Il.Ml Il.Ml Il.Ml Il.Ml I.MI Il.Ml l.«*l I.MI I.«#l 11.1# 1 !.#«* ■ ..... l.fl* *I.Mi il.Wi #1.1# i . m 1.1# 1.11 i m  «1.1»
.•1. . H M . M M  . M M . 1 1 . M M .111 .III# .#«M .#1# . 1 1

.**## • M M .#**# . I M ,H#r .f#H ,1#f M » . H f  Ml# . 1 1  .#14 , H 1
r  « -170625 
0  = 1029725 .M## ■ M M .##M . M l ..M* #1. .IM. .**•# .#### .#*## .««I# .#ii

■II" ..... . M M .M## - . M M ..Ml II# .«l#t #|1 # n

— .Ml* . M M ..... ...M ..M. . M M ..IM .Ml. .1## . 1 1  .#### . H J *****

. M l  .11» ..... . M M ..IM . M M  M M . M M ##1* .1## .##1 . n # . m .1#*

.#*«• ..!•• .#*#• .11» ...M ..... .IMI .tlM ..Ml .IMI ...M .IM. .111. ..Ml •I.” 111 .111 .11# .11# . i m .i#i .**1

,l»*t .III. . I«l .##« Mil ..1*1 ...I# ... .IM. .11. .11“ .... .... 11 11 .111 .#### .•»•• ..H# .►»*# .#»## .111 .111

. *•# •• .11*1 . •*« .«ttl Mil ..... ..... ... ..... ... .III, .III. .11.1 .... 11 *.*. .... .### I#*# .##>1 .#111 . 1 1 . 1 1 .#11

4 .H** ...II . I<« .11## Mi ..... .... .Mil 11. ... .III, Ml. ..Ml Ml. .#1 .11 .III. #1# . 1## .11## .11*# i«t *•#>

ni. ... .1». III. II». .Mil ....... IMI 1*. «... #11 .11## .##1 .»#•# .11 * * .Ill .##1

t • • -.•>/. .Ij ••«## Ill# .*«■# I... Ill .... .1». Mil 111 .11* • #*• -••• *..* • Ill .1:* .:### .###» .Ill# #### II## ••*# ■#i 1##



TABLE 17 (continued)
tuil» M.IM i.lM M.ll» M.Ht «I.M» tl».#t M.M» M«*M »l.#ll II.*#» l|.#l| 4l.#M ll.«#l II.MI 41.4M U«4»* 4..«Il 11.41» 41.411 II,#44 U«4«4 4t.#44 *t.*«* II.MI II.MI ll.#M

.»### »#M .#•14 «#IM «#|l# #1*4 .#••4 «.M. «..U .#«»# .#»*# .#11# «411# #l|* «4111 «##»• .##•» .###»

IIM •*ll# .Mil «Ml» .IMI «•Ml • M M #14# .#»»# .... ..U» .«Ml .4411 ##* .#4|« .Ml» #11 •41* .•4M .#41» «M##

f % *265625 .1##* «###» •#M« .#**# .*1*1 .#•#1 «Ml# « M M #4»* • M U .1*4» .Mil .Ml# ./»## «tu# .*»## .11#» .114» .»### #1## «11## « m # • »###

0 «1 -298675 «II»# «llM «M«» .M*« IM# • »#*« «#### «*#l# . M M .#•1# • Ml* «#4I# «*#»# '### .##»» .«#«» #1## #11» *111 «#1M .4,,# «#W# •#1M • • m

• *Ml «.M. .»•>« «1»)# ,»♦»* «tin #»l# .#••• .#1## «#M| #M# , U M .#*#» «l#ll .M#l .###1 ««Ml •##»4 .«#»# •«•Il .*•>• « I M •«Ml •«Ml •«#41

«Ml* «M#l .#»» « M M .IM# .1*1 .1»## .111# II## IIM .1*1# IM# .*#1» 1#»# .###» • #|M • M M • IIM *111 • Mit .111# •II#* #14# .n#i

.M«# «Mil « M M  «Ml# «Mil ,11## «Ml# .#### Ml# IMI l##l Ml# .1### Mil ,»»•# «Ml# • M M «4I44 • M M #111 •II I .#r»4 • I I I .1*11 • IMI «IM# ,IM4

« M M .l«M «Mil «Mil .Mil .Ml# « M M .11## .Mil I I I # II## Mil «M## IM# .###• «IIM «Mil • II#» .111» • »MI •114» .11»# •1*4# .1*41 • l#4« • »»## • 1#*« .l>4*

Il ,#### . M M ,M.| . M M . M M  M M .Mil «M## IM# .Mit III# IM# Mil .#•## #11# #|4| •IIM «IIM IIM «411» • 1141 • U U «•III IMI .111. «•»*• .Ml# • l#l« • »M# • M M

Il .111# « M M .»••« . M M ..II# .IMI . M M «l#ll .IMI «Mil Ml# ,1111 .Mil .##11 «##l# «Mil • Mil « M M •Ml» «#»»• • M M • M U • M U  .111» • Ml* «Ml» • Ml» .111» . M M

it.il» ll«l#> I.MI II.Ml II.### tl.M* «l«l#l Il«l9t II.MI <t»«M II.##» «l»#M 11.#*» ll»##l II.*41 II. il 11,4*4 II.*#» II.MI II,#11 II.MI • I.MI II.#44 li.«4| II,#*» II.IM ll«M» «#•##1 ItUM

# ## .#11» «M4I Il## «IMI « M M II# .Mil ,1#»# 411» #41# .l»«» .##«» ,#••» ##»# «##»» M U «###» •###1

r  » •380625 «•1*4 ,#MI •Ml» « M M .*MI « M M «111# « M U .>»•# ,J44» .11,4 .#41# «»*M .1444 .4444 .,44» .»4#4 .»#*• • »»M •»#M .»###

o  11 *570625 « M M «IMI .«|M .«Ml «Ml# «M.» .#•#« «III# .#M« . M U .•••• 4##| .<#»# «#M# .4»#l •4»*4 .4141 4*#| •«»## •##U .44*1 •###«

,l##l «IM# « M M III «»### . M M .4»l| .#1# «•II# . M M I I # .... I I * .###1 ,#M1 .«»#» .##»» .#.#1 #*.4 .##** .$#*1 .**»» •##»» .###» .»»»»

«i#M .1141 «IM# «IMI «IM# «Ml» #4*1 .Mil .»### « I I # 4M# .4«1# .441. 11# ««»«# *##» .*#»* «•#11 ..*>» •#»• 4»M •##*# •*»•# •#U# •### • ####

«Mil « M U  « M U .1111 .un .Mil IMI .#*#> Mil .11»# «#»#» .##«1 .$•#1 .»>*• .##41 .##1» . M U .411# .«••# .4M. .4M» •#U» •411# •#UI .#111 • #l»l ,#1M

«Ml. .Ml* « M M  ,#*M «Ml# .IMI .1#M .Mil .1*1# «II## l»#| .Mil 11*4 .Ml# .IMI .#<11 .#••» .#11* • #144 «Mil •»»«# ,»»*• •#144 •Ml# «M « • Ml# • M M • Ml#

« M U .Mil .Mil . M U «Mil IM# l#M ,|l#l .1#*# ,l#l# «lit# .1*## IMI • 114* .IMI •Ml# • M M • I4U .#4*4 •144* .Mil • Ml# .14*1 • t»4» •»»## • I I # .1#»#

il .Ml# « M M ....... . II## «Ml# .1*4# .IM# Ml# ,•#*> . M M «Ml# .#### «IIS» «II#» «IIM • 1411 .1444 • »»4» • U U .14*4 «IM» • 1*4# U44 .1411 «IMI «IMI •1#M .1### « IN I

Il M M illM ........... «Mil M M IMI IMI M#l «II#. III# .un « U M «##M l#M « M M • •M4 «###» •$#»# • 11*4 • U|4 • IMl .1(41 • tUI .»••# « U M • II#» « M M .1111

11 III# . M M .I«M M M .«##» .Mil «IM# I I * «111# .111$ .•11# ••i»« •Mil «IM# « M U •4M» .414» •II## • 4»M • 41#» • 1141 •u## .#)## • U M Ul# U M • II## «IM# II##

1# « M M .......... « M M « M M • M U M M «Mil « M U «Ml# «Ml# «Ml# «IIM .11*4 • U M • 44M .ill. «Mil «Mil . M M U M « U M .11## M M «llW «Ml#

Il #### « M M  « M M ........ . « M M «##M IMI . M M • Mil «Mil « M M • III# • IM* «M 4 «4 .4 .4114 . Il» • 4U# .111# .1*1# .1*1# .»»•• Ml# .1441 «M## «Ml# M M

« M M « ##l «Mil «IIM «Mil « M M • M M «1411 .•Ut • •..t .4411 ««u. .4UI ...Il .4141 .111 ,U 4 . « M U « M M • IMI

w
Hvo
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TABLE 17 icontinuad)
*I*M> «I.*W *I.M« O .W  * ! .« •  «!.«*• (IfM * ••« •••  *#.«## l#.«M  #*»#* I I .# *  II.M * I* .# *  * * .# #  • * .# •  I # . # ,  * # .#*  « I .# *  * |# M  *#.%#, * ! . # •  • ! . • • •

r  • *515625 
O i l -847275

|E|^. 053988

.«## .#H .•#• ##• .••# ##* .

U M  .## * M  .«#• .#*» U## #4# #•# U M  .«#* .M* U M  U M  .*#* .*%# .#W .»!#
. t M  , #m . M# .«M . M# . M #  .##*# U M  .### U M  U M  .#»» . M #  .## . # #  U M  U M  U M

.#•* U M  . * M  U M  U M  U * W  .###

' U M  . M* U M  . * M  U M  .tt# ,M #

U M  ..M> . * M  U M  .**»* U M  .»#•

.#•> .*lH U M  U M  . M *  U M  ,*M

• Ml* .*••* . M #  U « H  U M  . M» .•#•

U*l* M>a# U M  U # «  U M  .#*## u M

. M* m M  U M  U M «  .M *  . ## .M#

.## U m  .#•» .mm U M
U M  .M #  .*M* . Ml U M  .•#• U M  .«*#

U M  , M #  . M *  U M  U » #  M W

U M  U M  .«IH .1*1 . M W  U M

u M  . # *  U * U  U M  U M  U M

U M  .tIM . M M  . « M  . M M  . M#

.* * #  * M  U M  «*M  .I M  .t*M

.U » l  .IM * . I M  . I M  . I M  .1»*»

.Ml* # 1  . M l  . M l  . • * #  u M

. • l U  .MM .» • #  .MW .# * #  I|M

.M *  .MM .MW .M *  .WM .MM

* M  . «M .M M  . M M  . M M  M M

IM* IM# UN *  .*#* IM* IM* ,

W W  .M M  .*#** .n*l . MM . M M  ,

IM* .**» .IM* .t*M .IM* U # l  ,

*M* .#N .*M* . M M  . M M  M M  ,

**M M M  . MM M M  U l M  M #  .

I.M* M UM «IUI* H U M  »I.«M  «IUM  M.M* M.«M *|U ** ** *** *i.W * t |.**»  *1.$** **.**# *t.*M M *  M.M# #I.M* #I.M* M.M# #*U#I I

T • -670625 
0 ,2  12950 

|E n  019757

M M  .«M* U l M  .**# . N M  .Mm  .#* . M M  .*•« U * N  .Ml# M M  .*»# U**l IM .#n* U N* .M M  UlM . M W  *1
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T A B L E  19 (continued)
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T A B L E  19 (continued)
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TABLE 20
COMPUTED VALUES OF X(x,, t ) FOR THE VARIOUS VALUES OF x AND t

(RUN NUMBER 1) ■*’

T V F X(-1,T) X(-0.2,t ) X(0,T) X(0.2,T)
X(Xj^,T) = 

%1

0.105625 6.325 0.322 0.310 0.265 0.185 0.161
0.390625 0.625 0.615 0.574 0.525 0.435 0.330
0.855625 0.925 0.907 0.840. 0.793 0.711 0.498
1.500625 1.225 1.175 1.100 1.043 0.980 0.665
2.323125 1.525 1.452 1.355 1.303 1.230 0.815
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APPENDIX D

EXPERIMENTAL DATA AND ANALYSIS OF 
THE ONE-DIMENSIONAL CELL



TABLE 21
EXPERIMENTAL DETERMINATION OF THE AVERAGE BINARY DIFFUSION COEFFICIENT

FOR PHENOL-WATER SYSTEM IN WATER-RICH PHASE AT 30®C
TEST NO. Cl.l-a, ( - 0.2559

i

Tubo Number 1 Tube Number 2 Tube Number 3 Tube Number 4

hours
Xi(t)
wn\ hours

X,(t) 
 ̂ TTOn tlhours 'î X,(t)

mm tihours
Xi(t) 

 ̂ mm

1 0.0835 0.289 0.80 0.100 0.316 0.90 0.117 0.342 1.2 0.1253 0.354 0.62 0.250 0.500 1.00 0.250 0.500 1.0 0.2663 0.516 1.4 0.2830 0.532 0.83 0.5170 0.719 1.1 0.4665 0.683 1.1 0.483 0.695 1.7 0.4998 0.707 0.94 1.5351 1.239 1.6 1.550 1.245 1.6 1.5006 1.225 2.3 1.515 1.231 1.55 2.5186 1.587 1.9 2.5313 1.591 1.8 2.5504 1.597 2.5 2.500 1.581 1.7
6 5.0176 2.240 2.5 5.0176 2.24 2.4 5.0176 2.240 3.2 5.0176 2.24 2.37 7.8961 2.810 2.9 7.896 2,81 3.4 7.8961 2.81 3.4 7.896 2.81 2,7B 12.2500 3.500 3.5 12.250 3.50 3.6 12.2500 3.50 4.0 12.250 3.50 3.49 24.7009 4.97 4.8 24.701 4.97 5.0 24.7009 4.97 5.5 24.701 4.97 4.7
10 27.4576 5.24 5.0 27.458 5.24 5.2 27.4576 5.24 5.8 27.458 5.24 5.1 W11 32.0356 5.66 5.3 32.0356 5.66 5.5 32.0356 5.66 6.1 32.0356 5.66 5.412 48,0249 6.93 6.7 48.025 6.93 6.9 48.0249 6.93 7.3 48.0249 6.93 6.6 o13 55.056 7.42 7.1 55.056 7.42 7.4 55.056 7.42 7.8 55.056 7.42 7.1
14 73.960 8.60 8.1 73.960 8.60 8.3 73.960 8.60 8.8 73.960 8.60 8.2
15 :119.902 10.95 10.0 119.902 10.95 10.2 119.902 10.95 10.8 119.902 10.95 10.0

n 15 15 15 15
OC, 62.3 64.3 71.8 61.0
St,*» 62.654 62.655 62.695 62.725
St, 411.205 411.198 411.216 411.224
OCiti 390.846 402.934 434.494 389.534
dx(tl 0.8737 0.8992 0.9009 0.9028dVE
D, im^/Hr 2.92 3.085 3.095 3.12
D, cm^/sec X 10-5 0.811 0.857 0.8597 0.8667



TABLE 22
EXPERIMENTAL DETERMINATION OF TOE AVERAGE BINARY DIFFUSION COEFFICIENT

FOR PHENOL-WATER SYSTEM IN WATER-RICH PHASE AT 30*C
TEST NO. Cl.l-b, Ç - 0,2559

i
Tube Number 1 Tube Number 2 Tube Number 3 Tube Number 4

ti
hours

tjJ XjU) iisn hours
XJt) tl

hours
Xi(t)
mm tl

hours
Xi(t)
mm

1 0.500 0.707 2.0 0.500 0.707 1.8 0.500 0.707 1.8 0.500 0.707 1.72 1.252 1.119 2.5 1.252 1.119 2.3 1.252 1.119 2.2 1.252 1.119 2.0
3 2.000 1.414 2.6 2.000 1.414 2.3 2.000 1.414 2.3 2.000 1.414 2.1
4 3.500 1.871 3.2 3.500 1.871 2.8 3.500 1.871 2.7 3.500 1.871 2.85 6.250 2.50 3.8 6.250 2.50 3.2 6.250 2.50 3.2 6.250 2.50 3.26 19.010 4.36 5.0 19.010 4.36 5.1 19.010 4.36 4.9 19.010 4.36 4.87 23.717 4.87 5.3 23.717 4.87 5.6 23.717 4.87 5.6 23.717 4.87 5.1n 46.512 6.82 7.7 46,512 6.82 7.2 46.512 6.82 7.2 46.512 6.82 7.29 70.896 8.42 9.2 70.896 8.42 8.8 70.896 8.42 8.8 70.896 8.42 8.8

n 9 9 9 9
41.3 39.1 38.7 37.7

Et,*» 32.001 32.081 32.081 32.081
H 200.964 193.046 191.875 188.613

173.637 173.637 173.637 173.637
dxU)
dVt" , jwn/Hr^ 0.9066 0.9054 0.9097 0.9148
D, mm^/Hf 3.1356 3.1284 3.1572 3.1932
B, cmV«ec % 10-S 0.871 0.869 0.877 0.887

W»



TABLE 23
EXPERIMENTAL DETERMINATION OF THE AVERAGE BINARY DIPFuJIOH COEFFICIENT

FOR PHENOL-WATER SYSTEM IN WATER-RICH PHASE AT 40'C
TEST NO. C1.2-a, ( - 0.2769

i

Tube Number 1 Tube Number 2 Tube Number 3 Tube Number 4

hours
X^tt)
urn tlhours

Xi(t)
mn

tl
hours

X^(t)
mn tihours

Xj/t)

1 0.08 0.289 0.90 0.10 0.317 1.0 0.12 0.342 1.4 0.12 0.315 0.90
2 0.27 0.516 1.00 0.27 0.516 1.2 0.28 0.532 1.6 0.25 0.500 1.1
3 0.50 0.707 1.2 0.50 0.707 1.6 0.52 0.719 1.9 0.52 0.719 1.3
4 1.000 1.000 1.4 1.00 1.000 1.8 1.02 1.009 2.0 1.02 1.009 1.5
5 1.50 1.225 1.6 1.50 1.225 2.1 1.50 1.225 2.3 1.50 1.225 2.0
6 2.75 3.318 2.0 2.75 1.659 2.6 2.75 1.659 2.6 2.75 1.659 2.3
7 4.00 2.00 2.4 4.00 2.000 3.0 4.00 2.000 3.0 4.00 2.000 2.6
8 6.50 2.55 2.9 6.50 2.550 3.6 6.50 2.550 3.6 6.50 2.550 3.2
9 11.75 3.428 4.0 11.75 3.428 4.4 11.75 3.428 4.3 11.75 3.428 4.3
10 22.50 4.743 5.3 22.50 4.743 5.8 22.50 4.743 5.6 22.50 4.743 5.6
11 27,00 5.196 5.8 27.00 5.196 6.3 17.00 5.196 6.1 27.00 5.196 6.1
12 30.00 5.477 6.2 30.00 5.477 6.6 30.00 5.477 6.4 30.00 5.477 6.4
13 47.25 6.874 8.0 47.25 6.874 8.1 47.25 6.874 8.0 47.25 6.874 7.7
14 54.25 7.365 8.4 54.25 7.365 8.7 54.25 7.365 8.4 54.25 7.365 8.1
15 70.25 8.382 9.5 70.25 8.382 10.0 70.25 8.382 9.6 70.25 8.382 9.3
16 77.25 8.789 10.0 77.25 8.789 10.3 77.25 8.789 10.1 77.25 8.789 9.8
17 95.75 9.785 11.0 95.75 9.785 11.2 95.75 9.785 11.0 95.75 9.785 11.0

n 17 17 17 17
81.60 88.3 87.0 83.2
71.64 70.013 70.075 70.106
515.473 541.101 529.786 515.275
452.60 452.62 452.69 452.66

<3Xh)
dvr , nsn/Hr** 1.13869 1.0802 1.0221 1.0527
D, imi^/Hr 4.228 3.80 3.40 3.61
5, cm^/soc X lo"^ 1.174 1.055 0.944 1.003

W
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TABLE 24
EXPERIMENTAL DETERMINATION OF THE AVERAGE BINARY DIFFUSION COEFFICIENT 

FOR PHENOL-WATER SYSTEM IN WATER-RICH PHASE AT 40'C 
TEST NO, Cl.2-b, ( - 0.2769

Tub# Number 1 Tub# Number 2 Tube Dumber 3 'fube Number 4

i
hours

Xi(t)sm hours
%i(t)man *̂1hours

XiU)
hours i XiU)

1 0,25 0.50 1.3 0.25 0.50 1.3 0.25 0.50 1.8 0.25 0.50 1.52 0.50 0.707 1.5 0.50 0.707 1.8 0.50 0.707 1.9 0.50 0.707 1.73 1.00 1.000 1.7 1.00 1.000 2.0 1.00 1.000 2.0 1.00 1.000 1.84 2.00 1.414 2.2 2.00 1.414 2.4 2.00 1.414 2.5 2.00 1.414 2.35 3.00 1.732 2.6 3.00 1.732 2.8 3.00 1.732 2.8 3.00 1.732 2.66 4.00 2.000 2.8 4.00 2.000 3.0 4.00 2.000 3.1 4.00 2.000 2.97 5.00 2.236 3.0 5.00 2.236 3.3 5.00 2.236 3.4 5.00 2.236 3.28 6.00 2.449 3.2 6.00 2.449 3.4 6.00 2.449 3.6 6.00 2.449 3.49 8.00 2.282 3.6 8.00 2.828 3.8 8.00 2.828 4.1 8.00 2.828 3.810 9.75 3.122 4.0 9.75 3.122 4.1 9.75 3.122 4.3 9.75 3.122 4.111 21.50 4.637 5.6 21.50 4.637 5.8 21.50 4.637 5.9 21.50 4.637 5.812 25.00 5.000 5.9 25.00 5.000 6.0 25.00 5.000 6.3 25.00 5.000 6.013 29.00 5.385 6.5 29.00 5.385 6.6 29.00 5.385 6.8 29.00 5.385 6.614 45.5 6.745 7.9 45.5 6.745 8.0 45.5 6.745 8.2 45.5 6.745 8.015 54.00 7.348 8.5 54.00 7.348 8.5 54.00 7.348 8.8 54.00 7.348 8.616 69.25 8.322 9.7 69.25 8.222 9.8 69.25 8.222 10.0 69.25 8.222 9.817 75.50 8.689 10.0 75.50 8.689 10.1 75.50 8.689 10.3 75.50 8.689 10.118 95.00 9.: 47 11.0 95.00 9.747 11.1 95.00 9.747 11.3 95.00 9.747 11.1

n 18 18 18 18
91.,0 93.8 97.1 93. 3
73. 861 73.861 73.861 73.861

454. 25 454. 25 454.25 454. 25
534,,933 543.78 558.571 543.,429

Aji 1..068 I.088 1.059 1.062
0, mm^/Hr 3.,719 3.860 3.657 3.677
6, cmVeec x 10-5 1.,033 1.072 1.016 1..021

W»
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TABLE 25
EXPERIMENTAL DETERMINATION OF THE AVERAGE BINARY DIFFUSION COEFFICIENT 

FOR PHENOL-WATER SYSTEM IN WATER-RICH PHASE AT 50"C 
TEST NO. CX.3-a, Ç - 0.3236

Tube Number 1 Tube Number 2 Tube Number 3 Tube Number 4

i H
hours 4 Xi(t)

mm ti
hours "i hours ‘ï x,(t)

mm hours
XjU)

1 0.25 0.500 2.2 0.25 0.500 1.3 0.25 0.500 1.4 0.25 0.500 1.8
2 0.50 0.707 2.4 0.50 0.707 1.7 0.50 0.707 1.7 0.50 0.707 2.1
3 1.00 1.000 2.6 1.00 1.000 2.0 1.00 1.000 2.0 1.00 1.000 2.5
4 2.00 1.414 3.0 2.00 1.414 2.5 2.00 1.414 2.6 2.00 1.414 2.9
5 4.00 2.000 3.8 4.00 2.000 3.3 4.00 2.000 3.3 4.00 2.000 3.7
6 6.00 2.449 4.4 6.00 2.449 3.9 6.00 2.449 3.9 6.00 2.449 4.3
7 8.50 2.828 4.8 8.00 2.828 4.5 8.00 2.828 4.5 8.00 2.828 4.9
8 10.25 3.202 5.1 10.25 3.202 4.8 10.25 3.202 4.8 10.25 3.202 5.2
9 12.00 3.464 5.5 12.00 3.464 5.2 12.00 3.464 5.0 12.00 3.464 5.6
10 25.25 5.025 7.6 25.25 5.025 7.3 25.25 5.025 7.2 25.25 5.025 7.8
11 27.50 5.244 7.8 27.50 5.244 7.6 27.50 5.244 7.50 27.50 5.244 8.0

n 11 11 11 11
49.2 44.1 43.9 48.8

Et, 97.25 97.25 97.25
Et,*̂ 27.833 27.833 27.833
EXit,*̂ 156.064 146.183 144.655 158.027
dX(t) 1.177 1.290 1.252 1.288
dVt
D, tnro2/Hc 3.3084 3.9708 3.744 3.96

2D, cm /sec X 10-5 0.919 1.103 1.040 1.1

U)



TABLE 26
EXPERIMENTAL DETERMINATION OF THE AVERAGE BINARY DIFFUSION COEFFICIENT 

FOR PHENOL-WATER SYSTEM IN WATER-RICH PHASE AT SO’C 
TEST NO. C1.3-b, ( - 0.3236

Tuba Nuinbor 1 Tube Nuihber 2 Tube Number 3 Tube Number 4

1 Xi(t) ti Xi(t) -1 Xĵ (t) tihours non hours itm hours mm hours

1 0.25 0.500 1.0 0.25 0.500 2.0 0.25 0.500 1.6 0.25 0.500 1.32 0.50 0.707 1.3 0.50 0.707 2.7 0.50 0.707 1.8 0.50 0.707 1.6
3 1.00 1.000 1.5 1.00 1.000 2.9 1.00 1.000 2.0 1.00 1.000 1.8
4 2.00 1.414 2.0 2.00 1.414 3.4 2.00 1.414 2.5 2.00 1.414 2.3
5 4.00 2.000 2.9 4.00 2.000 4.2 4.00 2.000 3.4 4.00 2.000 3.1
6 6.00 2.449 4.0 6.00 2.449 5.4 6.00 2.449 4.5 6.00 2.449 4.2
7 13.00 3.605 5.0 13.00 3.605 6.4 13.00 3.605 5.5 13.00 3.605 5.2
B 24.00 4.899 6.6 24.00 4.899 7.8 24.00 4.899 7.0 24.00 4.899 6.8
9 28.00 5.291 7.2 28.00 5.291 8.4 28.00 5.291 7.6 28.00 5.291 7.4
10 31.00 5.568 7.6 31.00 5.568 8.8 31.00 5.568 8.0 31.00 5.568 7.8
11 48.50 6.964 9.3 48.50 6.964 10.5 48.50 6.964 9.7 48.50 6.964 9.5
12 54.5 7.382 10.0 54.50 7.382 11.1 54.50 7.382 10.4 54.50 7.382 10.2
13 72.25 8.500 11.5 72.25 8.500 12.8 72.25 8.25 11.8 72.25 8.500 11.7

n 13 13 13 13
69. 9 86.,4 75.8 72.9
50.279 50.,279 50.279 50.279
285. 00 285..00 285.00 285.00

I3Cit «1
i 388.488 449,,995 408.929 398.826

d)î/dVt^ 1. 305 1.,257 1.279 1.262
D, mm^/Hr 3.931 3.,773 3.906 3.8021
B, cm^/sec X 10-5 1.092 1,,048 1.085 1.05614

W
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TABLE 27
EXPERIMENTAL DETERMINATION OF THE EFFECT OF CONCENTRATION ON AVERAGE BINARY 

DIFFUSION OF HATER-RICH PHASE AT S5*C

Test No. C2.3.-a Test No. C2.3:-a Test No. C2.3!-b Test Ho. C2.3i-a Test Ho. C2.4l-a Test No. C2.<l-b

- =D> 0.503 moles/Llt. 0.927 molcs/Lit. 0.927 noles/Lit. 1.189 molos/Lit. 1.459 molos/Lit. 1.459 moIes/Lit.
{ 0,,220 0,,2972 0,,2972 0.,3344 0.3671 0.3671

H Xi(t) tl Xiit) ti Xi(t) tl vtT Xi(t) ti Xi(t) ti VET Xi(t)
hour hour 7 im hour hour IBS hour hour im hour tm

1 0.20 0.45 1.15 0.15 0.39 1.70 0.17 0.41 1.75 0.15 0.39 1.60 0.20 0.45 2.05 0.27 0.52 1.32 0.83 0.91 1.40 00.85 0.92 2.35 0.87 0.93 2.50 00.53 0.73 2.05 0.53 0.73 2.70 0.50 0.71 2.45
3 2.13 1.46 1.75 2.05 1.43 2.80 2,07 1.43 2.60 2.27 1.51 2.80 1.20 1.10 3.25 1.033 1.01 2.554 3.90 1.98 1.95 4.52 2.13 3.30 4,52 2.13 3.10 3.83 1.96 3.35 3.03 1.74 4.65 1.67 1.29 2.95S 5.65 2.38 2.25 11.28 3.36 4.75 11.32 3.37 4.60 6.52 2.55 4.20 5.25 2.30 5.60 4.78 2.19 4.356 7.22 2.69 2.30 14.30 3.78 4.85 14.32 3.78 4.75 10.13 3.18 4.85 8.38 2.89 6.10 10.08 3.18 5.707 9.80 3.13 2.80 19.32 4.40 5.60 19.33 4.40 5.60 19.98 4.47 6.15 13.395 3.66 7.60 11.83 3.44 6.25
6 13.38 3.65 2.95 24.47 4.95 6.45 24.48 4.95 6.55 22.97 4.79 6.45 20.85 4.57 8.909 32,32 4.82 3.65 27.17 5.21 7.1510 26.25 5.12 4.00 30.82 5.55 7.30
11 30.47 5.52 4.0512 34.08 5.82 4.30

n 12 8 8 10 8 7
33.55 31.80 31.50 49.50 40.85 25.6
37.95 21.36 21.40 30.34 17.44 12.34
157.12 77.02 77.12 124.28 52.90 30.20

V l 124.80 104.7 103.90 174.40 113.60 58.00
<Jx(tJ/dVT .593 .978 .985 1.090 1.65 1.53
5, 1.7212 2.7072 2.7461 2.656 5.053 4.343
C, cm^/«»c X 10® 0.478 0.752 0.768 0.738 1.404 1.2064

w
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table 28

EXPERIMENTAL DETERMINATION OF THE AVERAGE BINARY DIFFUSION 
COEFFICIENT FOR PHENOL-WATER SYSTEM IN PHENOL-RICH PHASE

Test No. C3,1-a Test No. C3,1-b
Temperature = 55®C Temperature «= 55 ®CCb = 4.779 Moles H20/Lit. Çb « 4.6620
X = 2.3794 X * 2.3652/3 = 0.39285 ^ = 0.39035
D"= 4.698 mm^/Hr D^^= 4.698 mm^/Hr

i Xi(t) x^Ct)
hours mm hours mm

1 0.30 0.5477 0.745 0.50 0.7071 1.44
2 0.533 0.7300 0.970 0.917 0.9576 1.90
3 1.000 1.000 1.290 1.70 1.3034 2.310
4 2.067 1.4380 1.825 2.30 1.516 2.5355 3.783 1.944 2.392 3.30 1.8169 2.91
6 9.000 3.000 3.630 11.00 3.316 4.5847 16.900 4.111 5.031 13.883 3.728 5.048
8 19.417 4.4046 5.22 15.317 3.911 5.2689 21.167 4.604 5.968

n 8 9
21.030 31.963
17.1753 21.860
53.000 70.084
64.4249 97.0778
1.2000 1.1445

z = W  Dii 0.27792 0.26384

Ze^2erfc Z 0.20841 0.20095
2erf ( 0.2345 0.23214

€ 0.428512 0.42485
Bi, mm^/Hf 1.9606 1.814

cm^/sec 0.5446 X 10"^ 0.5039 X 10"^
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APPENDIX E

ANALYSIS OF DATA

TEST NUMBERS 3.2-1 AND 3.2-2
Shape of the boundary: 1 cm x 1 cm square
Solution in the cell: Phenol-saturated water
Solution on the boundary: Phenol with 8.918 Wt% water
Temperature: 5 5±0.2 5 °C

Coo = 47.53 moles/liter of H2O 
, IC =23.03 moles/liter of H2Os

= 47.53 moles/liter of HgO 
Cg = 5.088 moles/liter of H2O

c“ - C.
^  “  I  = 0.000

-  S

D^ = 1.887 mm^/Hr

x̂ (̂x) = X + B/Xg

where

2̂

+ x 2X,(x) = xe erf x
2Xo(x) = xe^ erfc x

349
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x"^(4) = 2.4206
Xi (4) - 0.4172 

= 0.5464

Assuming that X(-l,t) = 2(%üD^t/a^ i.e., at
= -1, the concentration field is essentially one dimen

sional, one can write,

d(x(-l,t)) ,_____  L k->■ = 1.0928 VI.887 ttP = 1.5012 oPd(Vt/a^)

where
nX(-l,t) = - S X. (-l,t)

^ t ^
n = number of regions considered.

TABLE 29
EVALUATION OF THE EFFECTIVE BINARY DIFFUSION COEFFICIENT OF PHENOL-WATER SYSTEM IN WHATMAN FILTER PAPER NUMBER 52

TestNumber Xi(-l,t) ht^/a t^/a^ 4 x  (-1,a 1 t) i

0.1245 0.1095 0.0120 0.01363 10.2186 0.1789 0.0320 0.03911 20.5034 0.3950 0.1560 0.19884 33.2-1 0.8387 0.6185 0.3827 0.51873 41.0558 0.8416 0.7087 0.88856 51.3070 1.0344 1.0707 1.35196 6
0.0716 0.0774 0.0060 0.00554 70.1175 0.1034 0.0107 0.01215 8
0.2220 0.2114 0.0447 0.04693 93.2-2 0.499 0.4000 0.1600 0.19960 10
0.7682 0.6033 0.3640 0.46345 11
1.2656 0.9750 0.9507 1.23396 12

L 6.9984 5.5484 3.8981 4.97246 n=12



351

Therefore

dX(-I.t/a) n?(t^/a)X. - EX. E(t^/a) 
 7=^  - = 1 1 ^ ^ ^d(Vt/a2) nE(ti/a2) _ (E tVa)2

" « X

59.66952 - 38.82992 
46.772 - 30.78474

= 1.30308

C|}̂ = 1.30308/1.5012 = 0.8685 
W = 0.7543

tt>D̂ t 17543 X 1.887T ■ — -—  =   ta2 25

= 0.056934 t



X

TABLE 30
EXPERIMENTAL RESULTS OF TEST NUMBER 3.2-1

T - 0.056934 t2.4206
0.000

( - 0.5464 
a - 5.0 im

T " 0.03416 T ■ 0.22014 T - 0.5447 T - 1.0087 T " 1.5239 r - 0.017080 t - 148 hours t - 3:52 hrs. t “ 9:34 hrs. t - 17:43 hrs. t ■ 26:46 hrs. t ■  00:18 hrs.
1 ’'1 X U j .t ) *1 X(Xj .t ) ’‘ l X(Xj ,t ) ’‘I X(Xĵ .t ) >‘1 X ( X j ^ . r ) x^ X(x^,T)

♦0.0585 0.082 ♦0.208 0.2787 ♦0.3474 0.4556 ♦0.4814 0.522 +0.4294 0.7487
♦0.0360 0.1325 ♦0.1226 0.3269 ♦0.1575 0.5869 ♦0.3405 0.6503 ♦0.0000 0.9689

2 -0.131 0.154 -0.0292 0.4161 ♦0.0000 0.6773 ♦0.000 0.8238 -0.5186 1.1306
-0.321 0.217 -0.1241 0.4389 -0.2221 0.7331 -0.4187 0.9529 -0.8982 1.2471 -0.8500 0.1245
-0.511 0.231 -0.4089 0.5342 -0.6017 0.8166 -0.7984 1.0376-0.891 0.2376 -0.8834 0.3353 -0.854 0.8679 -0.9882 1.0630
♦0.000 0.106 ♦0.1006 0.2608 +0.2553 0.5224 ♦0.2847 0.8048 ♦0.7593 0.9225-0.190 0.166 ♦0.0057 0.3170 ♦0.000 0.6382 ♦0.000 0.9074 ♦0.3796 1.0816

3 -0.379 0.190 -0.1841 0.4180 -0.0949 0.7331 -0.4745 1.0364 ♦0.000 1.1834-0.759 0.213 -0.3739 0.4738 -0.4746 0.8394 -0.8542 1.0750 -0.3796 1.2395
-0.9434 0.5353 -0.8542 .. 0.8610 -0.7593 1.2433 -0.8500 0.1245

-0.005 0.099 ♦0.1951 0.1955 ♦0.3326 0.4745 ♦0.522 0.6701 ♦0.7594 0.8124
4 -0.384 0.203 ♦0.1640 0.2175 -0.1420 0.7316 ♦0.000 0.9233 ♦0.3796 1.0152

-0.764 0.203 ♦0.1325 0.2433 -0.4305 0.8007 -0.4271 1.0440 ♦0.000 1.1568 0.8500 0.1253-0.0573 0.3770 -0.8102 0.8208 -0.8067 1.0657 -0.3796 1.3060
-0.2471 0.4282 -0.9966 1.0611 -0.9491 1.3026
-0.7217 0.4628

♦0.000 0.101 ♦0.1602 0.1955 ♦0.1363 0.4905 ♦0.3254 0.596 ♦0.2699 0.8804
-0.097 0.135 ♦0.0653 0.2847 ♦0.000 0.5774 ♦0.2304 0.6845 ♦0.000 1.0626 0.8500 0.1253

5 -0.476 0.1825 -0.0296 0.3383 -0.2433 0.6625 ♦0.000 0.8459 -0.4894 1.2180
-0.1245 0.3724

-0.856 0.203 -0.5042 0.4142 -0.623 0.7426 -0.2441 0,9279 -0.8269 1.2817
-0.8838 0.4656 -1.000 0.7927 -0.6238 0.9932

♦0.000 0.066 ♦0.1006 0.2699 ♦0.2263 0.4210 ♦0.3918 0.5152 ♦0.3796 0.7483
6 -0.095 0.133 ♦0.000 0.3690 ♦0.000 0.5604 ♦0.0000 0.7771 ♦0.000 1.0258

-0.190 0.158 -0.1898 0.4036 -0,2847 0.6970 -0.4746 0.9472 -0.3796 1.1420 0.8500 0.1238
-0.380 0.193 -0.5695 0.4677 -0.4745 0.7445 -0.8542 1.0331 -0.9491 1.3838
-0.759 0.228 -0.980 0.5108 -0.8542_ 0.845
♦0.000 0.0854 ♦0.1644 0.2441 +0.2388 0.5159 ♦0.4456 0.5152 ♦0.4320 0.7414

7 -0.1313 0.146 ♦0.0695 0.3330 ♦0.000 0.6400 +0.3405 0.6446 ♦0.000 1.0490
-0.321 0.205 -0.0254 0.3857 -0.2221 0.7711 ♦0.1507 0.7972 -0.3272 1.1628 0.8500 0.1238

♦0.0000 0.8948
-0.511 0.231 -0.2153 0.4616 -0.6017 0.8450 -0.4187 1.0288 -0.8967 1.3838

-0.4051 0.4700
-0.891 0.227 -0.7847 0.5167 -0.7984 1.0698

-0.9746 0.5106

W
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k m 2.4206
P - 0.0

TABLE 31
EXPERIMENTAL RESULTS OF TEST NUMBER 3.2-2

T  " 0,05684 t( - 0.5464 
a ■ 5.0 nn

e r - 0.00854 r - 0.01518 T ■ 0.0664 T - 0.22774 r ■ 0.5181 T - 1.3531
3 t " 00:09 hours t " 00:16 hrs. t « 1:07 hrs. t - 4:00 hrs. t - 9:06 hrs. t - 23:46 hrs.
1 X(Xĵ ,T) X ĵ X(Xj ,T) ^1 X(x^,T) «1 X(x^# t) %1 Xtx^.r) *1

+0.0855 0.0555 +0.2431 0.1672 +0.408 0.2646 +0.6152 0.4320+0.0189 0.0921 +0.1110 0.2487 +0.2750 0.3924 +0.5772 0.78611 0.8500 0.0757 0.850 0.115 -0.0736 0.1384 -0.0185 0.3255 +0.218 0.4856 +0.4062 0.7921-0.1661 0.1883 -0.0742 0.3852 +0.1243 0.561 +0.2162 1.0040-0.3511 0.2028 -0.2590 0.4430 +0.0277 0.5997 -0.1638 1.1850-0.5360 0.1986 -0.4439 0.4582 -0.1625 0.6950 -0.5438 1.276-0.906 0.2323 -0.8139 0.5118 -0.3525 0.7575 -0.9238 1.373-0.7328 0.8130-0.9230 0.8210
•10.0699 0.0773 +0.1802 0.2019 +0.2852 0.3753 +0.4066 0.6750-0.0225 0.1443 +0.0877 0.2935 +0.1901 0.4494 +0.3116 0.72976 0.850 0.0633 0.650 0.120 -0.1150 0.1757 -0.0973 0.3833 +0.000 0.5228 -0.0684 0.9042-0.3000 0.1946 -0.2822 0.4263 -0.1901 0.6004 -0.4484 1.0005-0.6699 0.2116 -0.6522 0-478 -0.5704 0.6829 -0.8284 1.1620
+0.0163 0.1095 +0.1849 0.2734 +0.2787 0.4844 +0.6263 0.7253-0.0765 0.1702 +0.0925 0.3510 +0.0886 0.5962 +0.5579 0.81957 0.850 0.0633 0.850 0.120 -0.1687 0.1986 +0.0000 0.3875 -0.1015 0.6740 -0.1550 0.9822-0.5386 0.2086 -0.1850 0.4369 -0.2916 0.7019 -0.3496 1.099-0.9086 0.2064 -0.5549 0.4612 -0.6719 0.7331 -0.4150 1.1305-0.9248 0.4844 -0.7950 1.1621-0.9850 1.1445
+0.0672 0.0684 +0.1698 0.2704 +0.3517 0.3787 +0.6247 0.7681
-0.0251 0.1925 +0.0773 0.3418 +0.2567 0.4643 +0.4347 0.9023

8 0.850 0.0757 0.850 0.115 -0.1176 0.1775 -0.0156 0.3917 +0.0665 0.5974 +0.2447 1.020
-0.3026 0.2171 -0.2001 0.4498 -0.1236 0.6845 -0.0547 1.0921
-0.6725 0.2382 -0.3851 0.4920 -0.5040 0.7932 -0.3177 1.2850

-0.7550 0.5225 -0.884 0.8156 -0.6977 1.3830
-0.9315 1.3820

Winw
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TEST NUMBER 3.2-3

Temperature:
Solution in the cell: 
Solution on the boundary: 
Shape of the boundary:

55±0.25®C 
Pure water
Phenol with 6.80 Wt% HgO 
10 mm X 10 mm square

C c D

c”S
cls
Cg

ill ^

Oi

(51/511)%

54.70 moles/liter of H2O 
47.53 moles/liter of H2O 
23.03 moles/liter of HgO

2.274
0.3752
1.887 mm^/Hr 
4.698 mm^/Hr 
0.7543 
0.63376

CALCULATE €
-1

where Xĵ (x) = X e erf x

Solving the above equation by trial and error, one gets

4 = 0.4395



TABLE 32
EXPERIMENTAL RESULTS OF TEST NUMBER 3.2-3

X 2.2740.3752 . 0.7273 ( - 0.4395 T - 0.5684 t

T » .02847 T - .05693 T “ .13569 T .29131 T » .56365
§ t" *30 hr». t > 1:00 hrs. t ■ 2:23 hr». t - 5:07 hr». t - 9:54 hr».

1 X(Xi.T) X . t) *1 X(Xĵ.t) *1 X(Xĵ.T)

♦0.0257 0.2254 +0.1813 0.1963 ♦0.1621 0.3287-0.0689 0.2340 ♦0.0767 0.3018 ♦0.1060 0.4298-0.2258 0.2685 -0.2513 0.4802 -0.0833 0.56152 -0.7500 0.1579 -0.7500 0.2082 -0.4476 0.3059 -0.4411 0.5573 -0,2726 0.6513-0.8262 0.3563 -0.8208 0.5970 -0.4619 0.7319-0.8406 0.7978
♦0.0947 0.1742 4 0.1898 0.4070 ♦0.3112 0.3495♦0.0000 0.2366 ♦0.0000 0.4833 4 0.2166 0.46313 -0.1893 0.3404 -0.1896 0.5418 +0.0273 0.6176-0.7500 0.1579 -0.7500 0.2082 -0.3786 0.3S50 -0.3796 0.5865 -0.1621 0.7179-0.7573 0.3612 -0.5695 0.5903 -0.5407 0.76520.6020 -0.9194 0.8016
4 0.0810 0.1893 ♦0.2020 0.2847 ♦0.2586 0.3820♦0.0129 0.2416 ♦0.1120 0.3462 -0.1200 0.56004 -0.3625 0.3956 -0.3093 0.5952-0.7500 0.1515 -0.7500 0.2427 -0.5808 0.3287 -0.5524 0.4677 -0.4987 0.6123-0.9595 0.3408 -0.9320 0.5034 -0.6880 0.6634
♦0.0326 0.1927 ♦0.1898 0.2619 4 0.3116 0.3923-0.0882 0.2380 ♦0.0949 0.3413 +0.2170 0.43435 -0.2775 0.2790 -0.0949 0.4168 +0.0276 0.5907-0.7500 0.1515 -0.7500 0.2427 -0.6562 0.3461 -0.2847 0.4533 -0.3510 0.5956-0.9600 0.3404 -0.6644 0.4935 -0.7296 0.6528

W
U lin
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TEST NUMBER 3.2-4

Solution in the cell: Pure water
Solution on the boundary: Phenol with 8.222 Wt% HgO
Temperature: 55±0.25“C
Shape of the boundary: 10 mm x 10 mm square

s 4.7369 moles/liter of H2O
cls 23.03 moles/liter of H2O
ciis = 47.53 moles/liter of H2O
c« = 54.70 moles/liter of HgO
X = 2.3638
M — 0.39186
w 0.7543
Ql — 1.887 mm^/Hr
D " = 4.698 mm^/Hr
;ii)*s — 0.63376
Z = 0.63376 Î

CALCULATION OF j
Let X,(4) = i e^^erf (

g 2Xgfz) = z e erfc z 
Then one can write

x ' ^ ( 5 )  = 5  +  M x ' ^  (z)

For M = 0.39186, X = 2.3638 and = 0.63376
one can solve the above equation graphically to get,

i = 0.4280



TABLE 33

X
fi

EXPERIMENTAL RESULTS OF TEST NUMBER 3.2-4
JËî /olï m 0,7273 T - 0.056934

( " 0.4280 a ■ 5.0 mm
2.3638
0.39186

g
T
t

- 0.02847 
" 00130 hrs T “

. t “
0.06452 
1:08 hrs. T - 

t -
0.31219 
5:29 hrs. T - 

t -
0.53707 
9:26 hrs. T

t
- 1.08459 
“ 19:03 hrs T - 

t ■
1.69189 
29:43 hr:

a ’‘l X(X^, T) ’‘I X(Xj, t) ’'l X(Xj ,T) ’‘l X(X ĵ .T) ’‘l X(Xĵ .T) ’‘l X(Xj,T)

5
-0.0361
-0.1323
-0.2284-0,5168
-0.9013

0.0592
0.0723
0.12570.15110.1538

40.000
-0.1073-0.2034
-0.2995
-0.4917
-0.8762

0.0661
0.14720.1726
0.23490.2407
0.2364

+0.1522
+0.000
-0.4301
-1.0124

0.2710
0.3765
0.4616
0.4616

+0.2596+0.3408
+0.0970
+0.000
-0.1491
-0.3881
-0.7762-1.000

0.2911
0.1941
0.043510.4898
0.5748
0.6059
0.60310.6889

♦0.3925 
♦0.2956 
4 0.1600 
+0.1019 
-0.0918 
-0.2855 
-0.6730

0.4169
0.5269
0.58300.6493
0.7175
0.7435
0.8016

+0.3516
♦0.1746
♦0.0000-0.4036
-0.9819

0.77100.8828
0.96371.0430
1.054

6

-0.000
-0.0961
-0.1922
-0.3845-0.7690
-0.9612

0.0346
0.078050.1188
0.1788
0.1884
0.1753

•10.000
-0.0961
-0.1922
-0.3844-0.5767
-0.9611

0.0707 
0.1434 
0.2003 0.2899 
0.2929 
0.2749

+0.1941+0.000
-0.3882-0.9705

0.2515
0.4014
0.50310.5598

4 0.1941 
4 0.0970 
4 0.0000 
-0.1941 -0.3881 
-0.7762

0.3648
0.45640.5137
0.5783
0.6326
0.6710

♦0.2906 
♦0.1937 
4 0„0969 4 0.0000 
-0.0969 
-0.2906

0.5068
0.5854
0.6656
0.7407
0.7791
0.8361

♦0.5782 
♦0.1927 
4 0.0000 -0.3885 
-0.7710 
-0.9637

0.5902 
0.9121 0.9545 
1.0771
1.1150
1.1150

7
-0.0773-0.2695
-0.4618
-0.8463

0.10230.1365
0.1696
0.1796

+0.0738 
4 0.0184 
-0.0777 
-0.2700 
-0.6544

0.08500.1342
0.2053
0.2537
0.2780

♦0.135140.000
-0.2531
-0.8354

0.28030.382
0.4969
0.5567

♦0.2317+0.1348
♦0.0376
-0.0594
-0.2534
-0.4475
-0.8356

0.3066
0.3840
0.4488
0.51110.5919
0.65790.6710

♦0.2820 ♦0.2278 
4 0.0340 
-0.1596 
-0.5470 
-0.9345

0.4490
0.5153
0.6381
0.75940.8706
0.8706

+0.5428 
♦0.313 
♦0.000 
-0.4580 -0.8435 
-0.9599

0.5601 
0.7594 0.9098 
1.0636 1.0998 
1.1114

a
-0.0134-0.0361
-0.1323
-0.5168
-0.9013

0.0208
0.0519
0.1207
0.1619
0.1353

-0.0111
-0.1072
-0.2034
-0.2995
-0.6839

0.1276
0.2088
0.2584
0.2853
0.2899

+0.1522 +0.000 
-0.4301 
-1.000

0.2562
0.3590
0.5330
0.6172

♦0.1925 
4 0.0970 
4 0.000 
-0.1940 
-0.3881 
-0.7762

0.3287 0.4110 
0.4941 
0.6123 
0.6846 
0.7006

♦0.3584♦0.2956
♦0.1987
+0.1019
-0.0918
-0.2855
-0.4793-0-8667

0.4215 
0.5029 
0.5494 
0.6264 
0.7656 
0.8345 
0.8725 0-8954

4 0.1746 
♦0.0000 
-0.2108 
-0.5964 
-0.9819

0.8438
0.9348
1.0327
1.1773
1.1758

W
U )
■sj



TABLE 34

I

TOE EXPERIMENTAL VALUES OP 3c(x i ,t ) FOR xi - -0.0, -0.2, 0.0, *0.2 AND 
Xi - X(xj^,r) FOR ALL TOE TESTS WITH A UNIT SQUARE BOUNDARY

-1.0 - 0.2 0.0

X(Xĵ ,T) X ( x ^ , t )
X ( X i , T ) X (x^, T ) X(%1,T)

2C

X ,  - *0.20

x(xi,T)
%1 ■ X(xi,t) 

x ( x i , T )

2( 2(
0.0171 0.1245 0.1139 0.1308
0.0342 0.2186 0.2000 0.173 0.1583 0.085 0.0778 0.050 0.0457 0.1849

t 1 0.2201 0.5034 0.4606 0.455 0.4164 0.373 0.3431 0.200 0.1030 0.200 0.1830 0.4691r* 0,5447 0.8387 0.7675 0.730 0.6680 0.645 0.5900 0.530 0.4850 0.380 0.3477 0.7380m O 1.0087 1.0558 0.9661 0.957 0.8757 0.870 0.7961 0.735 0.6726 0.485 0.4438 1.0043
1.5239 1.3070 1.1961 1.205 1.1027 1.130 1.0340 1.020 0.9334 0.655 0.5994 1.2345
0.0085 0.0716 0.0655 0.09223 0.0152 0.1175 0.1075 0.1229M s 0.0664 0.2220 0.2031 0.195 0.1784 0.125 0.1144 0.075 0.0666 0.2577CM 0.2277 0.4990 0.4566 0.435 0.3980 0.373 0.3413 0.200 0.1830 0.200 0.1830 0.4772n 0.5181 0.7682 0.7030 0.690 0.6314 0.622 0.5690 0.510 0.4667 0.350 0.3203 0.7198
1.3531 1.2656 1.1581 1.160 1.0615 1.090 0.9974 1.000 0.9151 0.655 0.5994 1.1632

in 0.0285 0.1547 0.176 0.1688m @1 0.0569 0.2254 0.2564 0.2385
CN V 0.1357 0.3497 0.3978 0.300 0.3413 0.225 0.2560 0.130 0.1479 0.3684m d 0.2913 0.5490 0.6246 0.496 0.5643 0.414 0.4710 0.260 0.2958 0.230 0.2617 0.53970.5636 0.7289 0.8292 0.630 0.7167 0.5Î6 0.6325 0.440 0.5006 0.330 0.3753 0.7508

0.0285 0.161 0.1881 0.140 0.1635 0.025 0.0292 0.0125 0.0146 0.1688
0.0645 0.2698 0.3152 0.213 0.2488 0.100 0.1168 0.048 0.0561 0.2540

7 m 0.3122 0.5488 0.6411 0.476 0.5561 0.380 0.4439 0.213 0.2488 0.205 0.2395 0.5585
(N V 0.5371 0.6820 0.7078 0.585 0.6834 0.485 0.5666 0.335 0.3913 0.265 0.3096 0.7329
n d ' 1.0846 0.8610 1.0058 0.785 0.9170 0.700 0.8177 0.580 0.6776 0.395 0.4614 1.0414

1.6919 1.1140 1.3014 1.026 1.1986 0.950 1.1098 0.835 0.9755 0.5550 0.6425 1.3007

w
c n00
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TEST NUMBER 3.2-5

Shape of the Region (Fig. 74): 25® semi-infinite wedge
Shape of the exposed boundary: 1,09 cm diameter circle

with its center 5.08 cm 
away from the apex

Cb 4.7369 moles/liter of H2O
cls 23.03 moles/liter of H2O
ciis
C»

47.53 moles/liter of H2O 
54.70 moles/liter of HgO

X 2.3638
0.39186

w 0.7543
1.887 mmf/Hr
4.698 mm^/Hr

C = 0.428
T WD^t .7543 X 1.887 t2 “ 2 " (5.45)^
a radius of the circle
T) dimensionless radial position

the interface



TABLB 35
POSITION CP THE INTERPACE IN THE WEDGE REGION EXTERNAL TO A UNIT CIRCLE 

TEST NUMBER 3.2-5, ( - 0.425, (t - 0.39186

.02476 00*31 hrs.
R(^:r)’'2 X l

T - .154143 t - 3*13 hrs. T  - .4X5307 t " 8*40 hrs.
%1

T  - .99274 t ■ 20*43 hrs.

-1.099 0.00 1.099 -1.201 0,00 0.191 -1.272 0.00 1.272 -1.656 0.00 1.656-1.062 0.432 1.146 -1.068 0.432 0.145 -1.198 0.430 1.273 -1.658 0.429 1.713-0.713 0.863 1.120 -0.887 0.864 0.184 -0.961 0.860 1.290 -1.387 1.021 1.7220.00 1.123 1.123 0.00 1.206 0.199 0.00 1.256 1.256 0.00 1.583 1.5830.00 2.266 2.266* 0.00 2.230 1.230* 0.00 2.279 2.279* 0.00 2.278 2.278*0.649 0.863 1.080 0.761 0.864 0.145 0.799 0.860 1.174 1.071 1.021 1.4801.008 0.432 1.097 1.048 0.432 0.128 1.111 0.430 1.191 1.432 0.429 1.4951.076 0.00 1.076 1.154 0.00 0.147 1.196 0.00 1.196 1.496 0.00 1.4961.038 -0.432 1.124 1.031 -0.432 0.112 1.060 -0.430 1.144 1.483 -0.429 1.5440.647 -0.863 1.079 0.702 -0.864 0.199 0.824 -1.860 1.191 1.107 -1.009 1.5580.00 -1.092 1.092 0.00 -1.197 0.189 0.00 -1.239 1.230 0.00 -1.579 1.579-0.722 -0.863 1.125 -0.843 -0.864 0.201 -0.910 —0.860 1.252 -1.402 -1.009 1.727-1.051 -0.432 1.137 -1.142 -0.432 0.213 -1.230 -0.430 1.303 -1.506 -0.429 1.566

T ■ 1.90242 r ■ 2.2898 T - 3.5309 r  - 4.16425t ■ 39:42 hrs t - 47*47 hrs. t - 73*41 hrs. t " 86*54 hrs.

*1 *2 *1 *2 *1 *2 "(S'-) *1 *2 R(^.r)

-2.069 0.00 2.069 -2.173 0.00 2.173 -2.397 3.00 2.397 -2.453 0.00 2.453-2.067 0.428 2.096 -2.163 0.427 2.205 -2.365 0.429 2.404 -2.417 0.430 2.435-1.853 1.016 2.113 -1.972 1.001 2.212 -2.189 1.003 2.407 -2.269 1.020 2.4880.00 1.835 1.835 -1.576 1.496 2.173 -1.831 1.502 2.368 -2.030 1.505 2.527
0.00 2.252 2.252* 0.00 2.039 2.039 -1.096 2.225 2.480 -1.387 2.850 3.170*1.546 1.016 1.850 0.152 2.162 2.167* 1.496 1.502 2.106* 2.477 1.020 2.679
1.811 0.428 1.861 0.00 2.249 2.249* 2.311 0.429 2.351 2.565 0.430 2.601*
1.856 0.00 1.856 1.752 1.276 2.167* 2.261 0.00 2.261 2.834 0.860 2.962
1.807 -0.428 1.857 1.763 1.001 2.027 2.170 -0.429 2.212 2.428 0.00 2.428
1.602 -1.013 1.895 1.973 0.427 2.019 1.912 -1.024 2.170 2.298 -0.430 2.338
0.00 -1.831 1.831 2.027 0.00 2,027 1.640 -1.502 2.224 2.007 -1.014 2.249
-1.782 -1.013 1.050 1.955 -0.427 2.001 1.272 -2.157 2.504* 1.749 -1.505 2.307
-2.021 -0.428 1.066 1.722 -1.022 2.002 1.474 -2.175 2.628* 1.499 -2.153 2.623*

1.386 -1.496 2.039 -1.885 -1.502 2.410 -1.7:5 -2.167 2.770*
0.577 -2.210 2.284* -2.199 -1.024 2.426 -1.964 -1.505 2.474
-0.687 -2.149 2.256* -2.358 -0.429 2.397 -2.310 -0.860 2.46»
-1.601 -1.496 2.191 -2.409 -0.430 2.447
-1.925 -1.022 2.143-2.126 -0.427 2.168

W
o \o

* Position of the sides of the wedge.
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TEST NUMBER 3.2-6

Shape of the region: 25® serai-infinite wedge
Shape of the boundary: 1.09 era diameter circle

with its center 5,08 era away from the apex
C

C
C

C.
M
X

a

B
I
s
IIs

= 4.7369 raoles/ liter of H2O
= 23.03 raoles/ liter of HgO 
= 47.53 raoles/liter of HgO 
= 47.53 raoles/liter of HgO 
=  0.000 
= 0.420517
= 0.5506
= 0.535 era

= = a 0.049726 t

TABLE 36
EXPERIMENTAL RESULTS OF TEST NUMBER 3.2-6

thours
T V T Hi*

rora
R = R^/a*

0.25 .01243 .11149 5.39 1.0729
0.50 .02486 .15767 6.04 1.1290
1.02 .05072 .22521 6.47 1.2093
3.07 .15266 .39071 7.21 1.3477
4.22 .20984 .4581 7.58 1.4168

* R-i = average radial position of the interface.



APPENDIX F

PHYSICAL PROPERTIES OF PHENOL-WATER SYSTEM
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TABLE 37

SOLUBILITY TEMPERATURE (TIMMERMANS (72))

Phenol Concentration
Water-Rich Phase Phenol-Rich Phase

Temp. wt.% Mole % Mole/ Wt.% Mole % Mole/
Lit. Lit.

15 7.95 1.626 73.00 34.11120 8.20 1.681 0.8772 72.10 33.103 8.065
25 8.45 1.736 71.05 31.97030 8.75 1.803 0.9334 69.90 30.78 7.751
35 9.10 1.881 68.50 29.39940 9.60 1.917 1.0205 66.80 27.812 7.33945 10.45 2.185 65.00 26.23250 11.80 2.497 1.2496 62.60 24.271 6.810
55 13.80 2.974 59.20 21.74360 16.80 3.722 1.7725 55.10 19.027 5.92865 23.90 5.672 2.522 45.80 13.987 4.880
66 34.00 8.979 3.6043 34.00 8.979 3.6043

TABLE 38
DENSITY OF WATER-PHENOL SYSTEM

AT SATURATION POINT(TIMMERMANS (72))

Grams per c.c.
Temperature, °C

Phenol Layer Water Layer

20 1.0515 1.005630 1.0423 1.002840 1.0328 0.999350 1.0226 0.005560 1.0114 0.991862 1.0087 0.9914
64 1.0056 0.9912
66 1.0015 0.9920



TABLB 39
DENSITY OF WATER>PHENOL SYSTEM (TIMMERMANS (72))

Concentration of Phenol 
Wt. %

20°C 30*C 40*C 50°C 60*C 70"

0 1.9982 0.9957 0.9922 0.9881 0.9832 0.97782 1.0001 0.9974 0.9938 0.9894 0.9845 0.97884 1.0020 0.9990 0.9953 0.9908 0.9857 0.97996 1.0038 1.0006 0.9967 0.9921 0.9868 0.98088 1.0055 1.0022 0.9981 0.9934 0.9879 0.981910 0.9944 0.9989 0.982915 0.991320 0.987230 0.991740 0.996250 1.000960 1.0138 1.005470 (1.0502) 1.0428 1.0352 1.0273 1.0191 1.010575 1.0539 1.0462 1.0382 1.0301 1.0218 1.013280 1,0576 1.0496 1.0413 1.0331 1.0248 1.016185 1.0615 1.0533 1.0450 1.0367 1.0280 1.019390 1.0655 1.0572 1.0488 1.0405 1.0319 1.023295 (1.0701) 1.0617 1.0532 1.0448 1.0362 1.0276100 1.0498 1.0413 1.0325
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table 40

VISCOSITY OP PHENOL-WATER SOLUTION RELATIVE TO WATER(TIMMERMANS (72))

Wt. % Phenol Temperature, °C Viscosity

0.8 19.2 1.01
3.9 19.2 1.04
7.3 19.2 1.14
9.2 52.0 1.13
16.0 70.0 1.16
25.0 70.0 1.12
33.0 70.0 1.25
33.5 70.0 1.38
46.0 70.0 1.45
53.0 70.0 1.51
58.0 70.0 1.57
64.4 70.0 1.71
69.5 51.0 1.72
72.8 51.0 2.97
82.7 20.0 4.51
89.6 20.0 6.05
100.0 51.0 11.90



table 41
DATA OF CAMPBELL, A. N. , AND CAMPBELL, A. J. * REFRACTORY INDICES OF AQUEOUS SOLUTION OF PHENOL

Concentration of Phenol 
Wt. %

7“C 22.5*C 25.0“C 30°C 35“C 45®C 55 "C 60“C 65“C 70®C

0.905 1.3336 1.3328 1.3326 1.3321 1.3321 1.3311 1.3288 1.3288 1.3274 1.32623.85 1.3396 1.3389 1.3387 1.3387 1.3376 1.3376 1.3350 1.3339 1.3328 1.33216.95 1.3466 1.3461 1.3456 1.3456 1.3447 1.3417 1,3405 1.3402 1.33899.65 1.3510 1.3465 1.3465 1.3464 1.340214.68 1.3580 1.3570 1.357024.10 1.3725 1.364632.50 1.389042.30 1.411449.65 1.422551.50 1.4265 1.26556.00 1.4370 1.4365 1.4355 1.434563.50 1.4545 1.4540 1.4506 1.4493 1.448668.50 1.4713 1.4679 1.4648 1.4616 1.4612 1.460175.20 1.4895 1.4843 1.4829 1.4814 1.4814 1.4815 1.4774 1.4708 1.4695 1.468982.00 1.5090 1.5051 1.5038 1.5024 1.5014 1.4977 1.4955 1.4921 1.4910 1.489590.00 1.5235 1.5225 1.5212 1.5197 1.5149 1.5149 1.5091 1.5084 1.506297.50 1.5323 1.5313 1.5277 1.5245 1.5223

w
a%

* See Timmermans (72)
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TABLE 42

DIFFUSION OF PHENOL INTO WATER (THOVERT (71))

Temperature, °C D X 10^ 
cm^/sec

1 0 . 2 . 0.74
1 1 . 0 0.67
1 2 . 0 0.6413.8 0.8414.0 0.8415.0 0.75
16.2 0.7316.6 0.75
18.6 0.95
2 1 . 6 0.84
15.6 0.73

TABLE 43
FREEZING POINTS OP PHENOL-WATER SOLUTIONS

Paterno* Rhodes and Marlsley*
Wt. % Freezing Wt. % Freezing
Phenol Temperature Phenol Temperature

I
100 40.18 1 0 0 40.899.273 37.50 98 33.097.649 31.80 97 29.396.780 29.24 95 23.195.891 27.14 92 16.294.759 23.51 90 15.75
93.711 21.16 8 8 15.1092.674 19.01 84 14.0090.598 15.08 80 13.0088.764 12.28 76 12.4087.654 10.89 II
86.115 9.23 91 14.1
84.043 7.41 8 8 9.381.293 5.51 85 6 . 277.315 3.72 SO 3.172.272 2.26 77 2 . 075 1.7

* See Timmermans (72) for references and the experimental results of other investigators.


