
INTEGRATION OF DATA BASE

MANAGEME'.'IT SYSTEM WITH

OPTIMIZATION

By

ASHOK KUMAR RATHI

Bachelor of Commerce

The University of Rajasthan

Jaipur, India.

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

~aster of Business Administration
'1a:,.', 1937

! I,

Name: Ashok Kumar Rathi Date of Degree: May, 1987

Institution: Oklahoma State University

Location: Stillwater, Oklahoma

Title of Study: INTEGRATION OF DATA BASE MANAGEMENT WITH OPTIMIZATION

Pages in Study: 60 Candidate for Degree of Master of
Business Administration

Major Field: Business Administration

Purpose of the Study: Much time is spent managing the data base and
modeling an optimization problem. This report proposes the use of
data base management system with optimization. This integrated
system offers many advantages compared with the conventional ways
of modeling the optimization problem. The integrated system makes
use of the existing data base, generates the relevant problem,
solves it and produces the necessary reports for the user. An
example presented in this study illustrates the entire process of
such an integrated system.

Findings and Conclusions: The DBMS based optimization can save the
modeler a lot of time and effort. Also, this can improve the
overall reliability and accuracy of the model. The modeler
consequently has more time to concentrate on the model. Data
entry/updates are not duplicated. Updates to the optimization
problem can be made simply by updating the data rather than the
problem itself. The user can generate a wide variety of reports
on the problem solution, which are more understandable and easier
to interpret than the problem solution itself. The conclusion is
that the DBMS-based optimization is recommended over ad hoc data
and ad hoc report procedures.

ii

INTEGRATION OF DATA BASE

MANAGE~ENT SYSTEM WITH

OPTIMIZATION

Report Approved:

Report Advisor

~cdd~//7~'
7

Director of Graduate Studies

' ,!·.

Head, Department of ~anagement

iii

ACKNOWLEDGEMENTS

I wish to acknowledge here Dr. Scott Turner and Dr. Ramesh Sharda

for their support, encouragement and advice on this report. Their

patience and guidance is sincerely appreciated. I also thank Office of

Business and Economic Research staff for providing all the facilities

needed for this report. My special thanks go to my sister for her

continued moral support.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. LITERATURE REVIEW•.•.•...... , • . . . • 4

Data Base Management • • • . . . • . • • • • • • • • • • • • . • 4
Matrix Generators . 5
Modeling Languages . 6
User's Interaction, Reporting and

Display Capabilities •..••••.••..•.•...•.•....•.•... 7
Summary . 8

III. ADVANTAGES OF INTEGRATING DBMS WITH OPTIMIZATION ...•...•.. 9

Use of Existing Data Base .•.•....•...•••••.•.....•..• 9
Data Management and File Management •..••••••.••...•.. 10
Application Specific Problem Generation ••••.••••••••• 11
Output Processing
Generating Intelligent Reports

12
13

IV. COMPONENTS OF THE INTEGRATED SYSTEM .••.•.••••...•••••...•• 14

Data Structure and File Structure .•••.•.•.• · •.•.•....• 15
Data Management and File Management •.•.••.••.....••..• 16
Matrix Generation •••••.••..•.••••.••••••.•.••••••..•. 17

Matrix Structure & Variable Names •••.••.....•... 17
Maintenance of Matrix Generators •••..•••••••.••• 18
Matrix Display for the User •.••••.••••••....•••• 18

A Mode 1 ing Language . 19
Report Writing . 19
A Sketch of DBMS-based LP System .••.•......•••.•..••• 21
Summary . 23

V. AN EXA~!.PLE ON JOB-SHOP PROBLEM • . • • • • • . • . • • • • • . . • . • . 24

Problem Definition 24
Problem Analysis ...••.........•.........•........•••• 28
Brief Overview of the Integrated System

in This Example . 28
Detailed Description of the Example•••••••••.•••• 30

Input Preparation ••.•.••.••••.••••.••••.•.•...•. 30
Variables Generation ..••••.••.•...•••..•••.••••• 31
Matrix Generation•.................. 33

v

Chapter Page

Optimization •••••••••••••••••••.•••••..•••••••.• 35
Solution Output Processing •••••••••••.•.•••••••• 38
Report Writing •••••••••.•..•••••..•.•••••••.•••• 40

VI. SUMMARY & CONCLUSIONS • . • . • • . • • • • • 45

A SELECTED BIBLIOGRAPHY ••••..••••.•••••••..•.••••••.••••••.• , • • • • 4 7

APPENDIX • • • • . • . . . • • • . . • • . . • . 49

vi

LIST OF FIGURES

Figure Page

1. Integration of DBMS and Optimization Program•.........• 22

2. Employee Records (ZEMPLYEE.DBF) .•....•....•.....•.••....••.... 25

3. Structure of ZEMPLYEE.DBF•......•.............. 25

4. Pending Job Orders (ZJOBORDR.DBF) •....•...••.....••........... 25

5. Structure of ZJOBORDR.DBF••......•.............. 26

6. Job Categories and Hours to Complete them in
Different Shops (ZHRSHIST.DBF) .•.•...........••...•......... 26

7. Structure of ZHRSHIST.DBF ..•......•..........••......•........ 26

8. Cost Records (ZCOSTREC.DBF) .•.•••...••....••.......•.•.•.....• 27

9. Structure of ZCOSTREC.DBF 27

10. Flow Chart of Job Shop Problem Illustrating Integration
of dBASE 1I with LINDO•....•......•.............. 29

11. Input Prepared from the Data Base (ZINPUT.DBF) ..••••..•..•.•.• 32

12. Structure of ZINPUT.DBF ••.....•.•.••••....••..•.••.•.•.•.•••.• 32

13. LP Variables in a Dictionary Form (ZLPVAR.DBF) .•......•....••. 34

14. Structure of ZLPVAR.DBF•.••..•.•......•...••......•..... 34

15. LP Problem in Data Base Format (ZLPMATRX.DBF) ...••••...•••.••• 36

16. Structure of ZLPMA.TRX.DBF 37

17. LP Problem in ASCII Format (ZLPMATRX.TXT) 37

18. LP Problem as Restructured by LINDO 39

19. LP Solution Generated by LINDO 39

20. LP Variables and their Solution Values 41

vii

Figure Page

21. Menu for Report Generation 41

22. Report Format Generation in dBASE II ••••••.•••••••••••••••.••. 43

23. Report Options as Internally Stored by dBASE II .•.•••..••••.•• 43

24. Report As Generated by dBASE II for Option 2 •••••••••••••.••.• 44

viii

CHAPTER I

INTRODUCTION

l 1ntil a few years ago, data collection and its analysis consumed a

significant amount of both clerical and mansgerial time which otherwise

could have been used for other important functions like planning etc ..

However that was the imperative of the time and not all the companies

had the luxury of computers which could do the repetitive jobs for

them. Not too many computers were available because of their high

prices. Moreover, wherever they were available, they were not used to

their fullest potential simply because adequate software was not

available. But with the advent of minis and micros, the whole scenario

underwent tremendous transformation. Now almost all companies are

directly or indirectly seeking computers' help in solving day-to-day

problems. For example, chemical companies use computers in solving

blending problems of which the constraints change fairly frequently due

to changing prices of the ingredients or for other reasons.

~anufacturing departments are usually faced with the problem of

resolving job priorities so that the overall manufacturing requirement

ca~ ~e met at a minimum cost. Today the use of computers has proven

'1el:if·J' in everv sphere.

~anagers typically face a range of planning problems that vary in

size and scope with the demands of the day. With the advent of

microcomputers and its widespread availability and applicability, the

1

outlook at different kinds of problems frequently faced by the managers

has changed. Problems are attempted to be solved as precisely and as

quickly as possible to grab the elusive opportunities. Software is now

available for a wide variety of problems. Managers use different tools

and techniques to arrive at the most satisfactory solutions. At the

same time, business planning has become more complex, in part due to

these advances in computer technology, causing managers to seek the

powerful insights that models can provide.

Consider the following scenario. A company XYZ is a manufacturing

concern which receives job orders at random. The Operations Research

analyst collects the necessary data to determine the optimal number of

hours that each shop should spend on each job in a certain period.

Then he or she performs all arithmetic calculations, models the

problem, enters necessary coefficients and variables in a desirable

format. Finally the OR analyst solves it and reports the results back

to the production department. After some time, another order is

received which also needs to be executed in the same time period. The

OR analyst is again called upon to repeat the entire process. Here the

OR analyst gets into a messy situation. But, with the type of system in

use, there is nothing that can be done to avoid that problem. The

answer to such a problem is to use a system that would take care of all

the changes made, reformulate the problem using the given model and

produce the new results.

'~nager's efficiency and effectiveness can be greatly improved if

a verv efficient database system can be made available. For example,

if the manager is faced with a routine problem of setting up the job

priorities with an objective of minimizing overall cost, it is

2

necessary that the data are easily fed into the analytical tool. The

database can be built using database software.

3

This report mainly focuses on how a data base management system

can be integrated with optimization techniques. This report consists

of six chapters including this chapter. Chapter II embodies the

literature review with respect to data base management, matrix

generators, modeling languages, report writing etc •• Chapter III deals

with the advantages resulting from integrating data base management

system (DBMS) with optimization. Chapter IV discusses at length the

various components of the integrated system. Chapter V contains an

example on the job-shop problem illustrating almost all the components

that an ideal integrated system should have. Chapter VI summarizes all

these chapters and draws the conclusion.

CHAPTER II

LITERATURE REVIEW

Data Base Management

Bisschop and Meerus [2] observed that the major portion of most

real world LP and other models consists of data and that these data

must be managed effectively. The relatively limited use of models in

our environment is partly due to the fact that a significant portion of

total resources in a modeling exercise is spent on the generation,

manipulation and reporting of models. Sharda [15] also presented

similar views. Krabek, Sjoquist and Sommer [11] questioned the

ignorance of the process required to manage the data, formulate and

build the model, report and analyze the results.

In brief, a significant portion of time is spent on data

management and problem formulation.

Sharda [15] proposed the use of spreadsheet-based optimization.

Spreadsheet-based optimization has some limitations as discussed by

Sharda, Turner and Rathi [16]. These limitations are given below:

1. The end user is expected to be expert in problem foroulation. The

spreadsheet does not formulate the problem in a desirable format.

2. The data are already stored on the computer in files or tapes etc.

and still the user has to enter the data in a spreadsheet model.

3. If the problem size is very large, the spreadsheet model occupies

a verv large storage making it difficult to build large models.

5

4. Most of the existing spreadsheet packages do not allow the user to

customize the screen for data entry and updates. Data entry and

updates have to be performed using the given screen.

5. Spreadsheet packages usually do not have a modeling language.

This precludes all the possibilities of modeling an optimization

problem.

Krabek, Sjoquist and Sommer [11] called for a system that is

capable of managing large amounts of data structured in a way

meaningful to the modeling process. Such a system should have power

and flexibility of large scale data managers.

Sharda, Turner and Rathi [16] have proposed the use of DBMS

instead of spreadsheet. Some important advantages of integrating DBMS

with optimization are discussed in Chapter III.

Matrix Generators

A matrix generator is a computer program that writes out the

algorithm's form--the coefficient matrix--of an LP. Fourer [7]

stated that such a matrix generator can be symbolic or explicit,

general or specific, and concise or redundant to various degrees, but

it3 most important qualities are understandability as a programming

language and convenience to an interpreter. DATAFOR\1, DATA~l!i.T, GA'."f.'.1A,

'faGen anri ()~1'11/PDS, IW! \fGRW, APEX- II '1RG, and '-lODELER are some of the

existing matrix-generation systems.

~atrix generators typically incorporate loops, assignments,

transfers of control, or other executable statements [7]. Matrix

generators are application specific. In other words, they are

restricted to only one class of problems. However, matrix generation

6

is a definite advantage over translation by human.

Modeling Languages

Matrix generators have a few drawbacks. The major drawback is

that they are written in a computer programming language not easily

understandable to the user. Hence Fourer [7] proposed that a modeling

language should be used in place of a programming language. He pointed

out some difficulties with matrix generators--verifiability,

modifiability, documentability, lack of independence and simplicity.

Fourer also considered a hypothetical modeling language, XML, which is

based on modeler's form. XML has easy indexing and arithmetic

expressions, and algebraic notations. Modeler can easily write a

problem model using XML.

Brown, Northup and Shapiro [4] developed a modeling and

optimization system for business planning called LOGS. The Descriptive

Modeling Language (DML) is the key feature of LOGS. This allows a

large class of LP and MIP models to be described efficiently and

parsimoniously. Rowland and Boudwin [14] developed PLATOFORM (PLanning

TOol developed in the dataFORM language of MPS II). This is a model

management framework for mathematical programming. PLATOFORM, a single

generalized support system, is used by Exxon Corporation. The database

contains translation dictionaries, data tables, LP matrices and

solution cases.

Luc-rn and \li tra [12] developed a mathematical programming modeling

system called CA~1PS (Computer Assisted Mathematical Program.ming

modelling System). This is an interactive system designed to aid model

formulation, matrix generation and model development. CA~1PS is divided

into subsystems such as INPUT, GENERATE, OPTIMISE, REPORT and

UTILITIES. The entire system is controlled by a series of menus and

screenforms.

Kisko [10] presented a computer readable format called LPL that

attempts to be as much like the human syntax as possible. The LPL

allows the user to define or specify such necessary model elements as

variables, parameters, indices of vectors and matrices, and summations

in LPL expressions. Bisschop and Meerus [2] developed a modeling tool

called GAMS (General Algebraic Modeling System). The information

content of the model representation is such that a machine can check

for algebraic correctness and completeness.

User's Interaction, Reporting and Display Capabilities

7

Rowland and Boudwin [14] observed that the user's interaction with

the system must be at the data level only. The user should not be

expected to input coefficients directly but rather the user oriented

data which the matrix generation module will use to formulate a

problem. They proposed complete independence among data management,

problem solution, and report writing modules.

Greenberg, Lucas and Mitra [9] stressed that sophisticated users

should be permitted to interactively query through the model. The

svstern should be a friendly conversational system.

Sharda [15] stated that the results stored in a spreadsheet can be

used for easy generation of formatted, tabular reports. Spreadsheet

based optimization systems may also permit easy graphical display of at

least some of the results. Sharda, Turner and Rathi [16] cited some

li~itations of report generation capabilities using a spreadsheet.

8

Summary

The literature review yields a few salient points. Data

management has so far been an ignored area. The OR analyst has to

spend much time formulating and debugging a problem. The data entry is

duplicated increasing the probability of error. As a consequence, the

analyst is not sure about the accuracy of computations and reliability

of the results. A considerable amount of time is spent in

understanding, interpreting and translating the results. This leads to

poor reporting.

The solution to the above problems lies in integrating DBMS with

optimization. Such an integration has been thoroughly explained and

illustrated in subsequent chapters. It should be noted that no

modeling language has been introduced in this report.

CHAPTER III

ADVANTAGES OF INTEGRATING DBMS WITH OPTIMIZATION

In Chapter II, we discussed some limitations of using a

spreadsheet. These limitations become more serious as the data size

increases. We proposed integration of DBMS with optimization. Sharda,

Turner and Rathi [16] discussed some important advantages of such an

integration, which are being elaborated upon below:

Use of Existing Data Bases

The LP problem is formulated using the data currently stored in

the company data base. The data may be stored online or on tape etc ..

No matter what mode of storage is in use, the fact remains that the

data have already been entered and are readily available on the

computer. Let us assume that currently no integrated environment

exists in the company. In such a situation, the LP modeler shall be

required to manually reenter the necessary data for problem

formulation. This amounts to waste of time, effort and resources.

Rather, the company could be able to use the existing data base if it

had a DB~S in operation.

The DB~S based optimization allows the user to extract the

relevant data from the existing data base. This avoids duplicate data

entry and also ensures against errors that ~ay otherwise occur in

reentering the data. Besides simply extracting the data, the DBMS also

9

allows the user to perform necessary arithmetic computations on them.

Totals, subtotals and aggregations can also be done easily. The

arithmetic and aggregation capability is very crucial to any DBMS.

10

Data strewn across multiple files are not directly usable but

rather must be subjected to manipulations for problem formulation. The

DBMS can accomplish this easily. The integrated system simply requires

a front end to communicate with the existing data base and create a new

data base file relevant to the problem formulation. The data base

package dBASE II for example, has its own data processing language

called a command language. Such a facility can substantially reduce

the modeling time.

Data Management and File Management

The DBMS also offers considerable facility on data management.

While a particular coefficient in an LP problem, for example, may be

needed at several places, it can be entered only at one place and be

extracted therefrom when needed. This enhances the integrity of the

model. Data entry and updates are also greatly facilitated.

An offshoot of such an integrated system is that the task of

managing the data can be separated from modeling - a very important

attribute of any DBMS. The modeler no longer has the responsibility of

the accuracy of coefficients or other numbers since data entry/updates

are done by another person. Thus, the modeler can concentrate on the

model.

With the DBMS, file management becomes more efficient. Adequate

security is provided to the files by requiring the user to enter the

password before he can access them. The automatic back-up facility can

11

also be provided by the DBMS. The most important aspect of the DB~lS

with respect to file management is the availability of sharing

capabilities. The files can be shared by multiple programs or multiple

users. With the rapidly advancing network technologies, this feature

is very crucial.

Application Specific Problem Generation

As indicated earlier, most of the matrix generators are

application specific. An application specific matrix generator can

internally generate only one class of problems due to the specific

structure associated with each of them. Optimal Manager, MIXIT-2 and

LPMASTER are examples of software where the LP model is built

internally by the system. The user does not see the internal

formulation unless requested. For example, MIXIT-2 is designed for

farmers to determine optimal feed mixes based on the costs of

ingredients, nutritional requirements and constitution of the

ingredients. A user of the program only answers the questions in terms

of the problem at hand, not in terms of LP terminology. The model is

generated by the program and solved using an LP program.

\lost of the DBMS packages have the command or programming langauge

which allows the user to write a program tailored to the specific

application. Csually the programming language can extract data from

multiple data base files, manipulate the data and store them back.

They also allow exporting to and importing of the files from other

packages through ASCII or other data exchange code.

With some DBMS, it is also possible to link other high level

languages. Some possible applications may be the generation of an LP

12

problem, inventory problem, MRP problem etc ..

The use of matrix generators vs. modeling languages has been

debated. Models built in a strategic environment play a useful and

even powerful role in the overall planning process. Fourer [7] advised

that the matrix generator approach can be improved upon by use of

modeling languages. Translation from the modeler's form to the

algorithm form is an inevitable task in linear programming.

Traditionally, the task of translation is accomplished through the

writing of computer programs known as matrix generators. Fourer [7]

suggested leaving the translation work to the computer. Such an

approach involves computer-readable modeling language that expresses a

linear program in much the same way that a modeler does. It is argued

that modeling languages should lead to more reliable application of

linear programming at lower overall cost. The examples of modeling

languages include XML, GAMS, LMC, LPMODEL, UIMP etc ••

Output Processing

After solving the formulated problem, the output can be processed

to produce relevant reports. Such output processing usually involves

converting the problem solution to a form that can be understood by the

report writer. The DBMS usually embodies powerful report writing

options relieving the user from the worries of report writing. The use

of standard report writing options is usually more efficient than ad

hoc report writing.

The results from optimization models can also be stored in the

company's database for future use. Baker and Shobrys [l] point out

that a data base approach allows multilevel problems to be solved

13

efficiently. An aggregate corporate problem is solved and the results

are saved in a database which is then accessed for formulation of

divisional problems.

The reports can also be interfaced with graphics. This will

improve the overall presentation and understandability of the reports.

Generating Intelligent Reports

Integrating DBMS with optimization can further be augmented by

generating intelligent reports. This advantage does not arise from

integrating DBMS with optimization but rather is an extension of report

writing options in DBMS. Greenberg, Lucas and Mitra [9] are developing

an expert system that would take the report content as an input,

generate an intelligent report that would contain a complete analysis

of the report and then provide requisite advice with necessary

documentation. This can prove very helpful where routine decisions are

made on the basis of certain rules. Development of such a system

requires a knowledge base for decision making. Knowledge base is a set

of definite rules and the decisions based on these rules.

CHAPTER IV

COMPONENTS OF THE INTEGRATED SYSTEM

One of the most important considerations in the design of any

integrated system to support optimization applications concerns the

data handling aspects of the systems. With efficient computing

hardware capable of extremely rapid arithmetic operations, linear

programming (LP) problems of several thousand rows can be solved

economically. Imagine a scenario of the company which has 12 shops

with 1500 workers and the company has 100 jobs to be delivered next

month. Its mathematical formulation by the user will require an

enormous amount of time and effort. Errors may also occur due to the

large size problem. In a situation like this, the logical control of

the data files and data therein becomes a very important consideration.

It is difficult to control the large LP application at the model

level, with data updates being made directly to the LP matrix. Often

matrix coefficients involve quite complex computations from more

fundamental data. Any lack of control may lead to ultimate breakdown

as the model stage departs from the original data base. ~oreover,

control at the matrix level requires the user to have a high skill and

familiarity with LP fundamentals, distracting him from more fundamental

task of prohlem solving and decision making.

In hrief, the problems that may arise from allowing the user to

have control at the model level with updates being made directly to the

14

LP matrix are given below:

1. Matrix coefficients usually involve quite complex computations

from the fundamental data.

15

2. Any change made to the LP matrix is not reflected in the

fundamental data due to the updates being made directly to the LP

matrix.

3. The user gets bogged down in problem formulation and modeling

rather than in problem solving and decision making.

4. The user is required to have high level of skill and familiarity

with LP fundamentals.

The rest of this Chapter discusses a few important considerations

in designing an integrated system of DBMS and optimization.

Data Structure and File Structure

Matrix generation from fundamental data is recognized as an

essential ingredient of LP support system. The matrix generator is not

sufficient to solve the problem since it must get its data from

somewhere. If the data is embodied in the program itself, the problem

of controlling the data is not alleviated. So, some form of logically

structured data base coupled with a data management component becomes

an essential feature of any comprehensive LP support system.

The principal objective of separating data from matrix generation

is to per~it the user to interface with the system at data level and

thus, relieving the user from all the worries of problem formulation,

direct updates etc .. This also lends accuracy and reliability to the

entire integrated system.

One of the first tasks, then, in building a general system for LP

16

application is to consider how the data is to be stored and

manipulated. The concept of a database implies that the data must

follow certain rules and disciplines. The question of how flexible or

rigid these rules should be made must be answered at the outset. The

following factors must be considered to answer this question:

1. How large is the data base? This will determine how much

efficiency can be gained out of a specific data structure.

2. What is the nature of optimization? The optimization technique to

be used determines the output needed which in turn determines the

structure of the data.

3. How many distinct applications need to be supported? The more the

applications, the more complex the data structure would be since

it has to satisfy the requirements of different applications.

Data Management and File Management

It was shown in Chapter III that there are many advantages of

allowing the user to work at only the data level rather than at the

modeling level. Data management and file management are two important

concepts in this regard. Data should be maintained as a logical

structure. Data represents not only numeric values but also control

information that determines the structure of the model to be solved.

The question is how the data should be managed so that they can be

~aintained and updated with ease and can also aid in efficient problem

:node ling. 1.vhat factors affect the programming of a data base manager?

These questions must be seriously considered before any system design

is initiated.

File management capabilities is another concern for the user. The

17

user is usually very much concerned about the protection and security

of his files and data. These concerns become more accentuated in an

integrated environment. Automatic back-up of the databases should be

provided for all software. The integrated software should also contain

a password feature in which the user is required to provide the correct

password before he can access any file or data.

The question of providing proper user interface with the data

should also be resolved while designing an integrated software system.

The data may be needed by one user or by several, in separately or a

shared fashion. The user may need to access more files than necessary

for proper data management and file management.

Matrix Generation

In Chapter II, it was indicated that matrix generation process

should be automated and thereby providing the user more time for

problem solving and decision making. Matrix generation involves

extracting the needed data from the database, manipulating the data and

producing the formulated problem such that it can be solved by the

optimization package.

Matrix Structure and Variable Names

The matrix generator needs a consistent structure of the variables

names and also standard formulation techniques. Matrix generators are

usually application specific. However there may be some modules which

can be shared by different matrix generators. Generation of variables

names, for example, can be accomplished by a single module and it can

be used by different matrix generators. The matrix structure also

depends on the type of optimization software being used to solve the

problem. The matrix structure, for example, shall be different for

MPSX from that of LINDO.

18

Generation of LP variable names is very important due to the

constraints imposed by the optimization software and the report

writers. Some optimization software requires the variable names to be

only 8 characters. The significance of the variable names also arises

from the fact that the report writers generate the reports through

mapping such names onto the descriptive names. Also the variable names

must be unique. In brief, the variable names must be generated with

the following considerations:

1. Limitations imposed by the optimization package.

2. Easy and efficient mapping onto the descriptive names by the

report writers.

3. Use of descriptive names so that the maintenance personnel can

understand it in case of need.

4. Uniqueness of the names.

Maintenance of Matrix Generators

The matrix generator should be designed such that it needs minimal

maintenance. One way to accomplish this is to keep the data entirely

independent of the matrix generator. In this case, the user needs to

make updates only to the database rather than to the matrix generator.

~atrix Disolav for the User

At times, the user wants to see the display of the matrix to

verify its accuracy and reliability. The matrix generator should be

19

able to produce, at the request of the user, the matrix display in a

format meaningful and comprehensible to the user. Should the user

desire, the matrix generator should be able to replace the internally

generated variable names by their descriptive names to make the display

easily understandable.

A Modeling Language

A modeling language is a modeler's form of an optimization

problem. A modeling language is taken as an input and a corresponding

algorithm's form is produced as an output. Modeler's forms have

certain common characteristics [7]. Modeler's forms are symbolic,

general, concise and easily understandable. In other words, a modeling

language represents data by symbols; defines an entire class of LP

together; describes an optimization problem nearly as briefly as

possible; and presents an optimization problem in a form that is easily

read and comprehended by people.

Selection of a particular modeling language depends on the needs

of users and the nature of computers. This means that a modeling

language should be easy to use and understand, and could be processed

and translated at a reasonable cost by the computer.

Report Writing

It was mentioned earlier that the user should devote more time to

decision ~aking rather than problem-modeling. The decision-making

process is based on the results obtained from the integrated software.

Such result generation activity is technically called report writing

since it follow from a series of activities and usually done at the

20

end. Report writing can be interpreted as a means of restructuring the

basic solution values produced by the optimization algorithms into a

form that relates back to the real world problem being modeled.

Following is a list of factors that should be considered for

report writing:

1. Restructuring of the basic solution values tends to vary from one

application to another. In other words, report writing is very

application-specific.

2. When the problem is modeled, a number of variables are generated

internally. When report writing is done, these variables are

translated into the actual names so that the user can understand.

This phenomenon is also called dictionary preparation.

3. Proper headings, titles and stubs must be generated.

4. Proper units must be appended to the values being reported. The

units may be hours, thousands of dollars etc •• Totals and

subtotals should be done wherever required.

5. Report writing should be completely menu-driven. The user should

be allowed to select an option from the menu for which he wants

the report.

6. Sometimes, the user may be interested in maintaining a separate

database where a subset of the solution can be placed and be used

for other purposes. In other words, the integrated software

should be efficient enough to extract the desired subset of a

solution and place it wherever the user wants so that the solution

values themselves can be used for modeling or other purposes.

7. ~ulticase reporting is also an important consideration. This

involves extraction of a single report solution values from more

21

than one solution case. This may be needed where multiple periods

are considered and solution is generated periodically. Hence the

integrated software should be able to access multiple solution

cases and generate one desired report.

8. The integrated software should provide for printing the reports in

a desirable format. The user may want whole or a part of the

report to be printed. The user may also want different parts of

the report to be printed in different styles and formats.

A Sketch of DBMS-based LP System

Figure 1 displays a schematic of the system showing how DBMS

interfaces with an optimizer. All data relevant to model building are

maintained by the DBMS in the database.

The model generator accesses the data from the database and

formulates the model. The model generator may consist of two

components: first, a modeling language; and second, command files. It

should be pointed out that the example given in Chapter V does not yet

include any modeling language. The command files are used to generate

a specific LP problem. The model generator performs all arithmetic and

symbolic operations. Arithmetic operations may include computation of

coefficients or manipulations of data. The standard structure of the

DBMS facilitates the model generator in model formulation.

Such a model is input into an optimizer. The results obtained are

placed in a data base file. The format of the file containing results

is usually not acceptable to DBMS. In such a situation, it needs to be

converted into a proper format. The structure of the results produced

by the optimizer is usually not in a convenient form. Hence a proper

If Necessary, Add
The Results To The

Database

/ Report Generation 1 Output File \

/I"-,,

Database / DBMS

:-1ode1 Generator

Source: Sharda, Turner and Rathi [16]

,[/

Convert To
Database

OPTIMIZER

1----)..,. 'fod e 1

Figure 1. Integration of DBMS and Optimization Program

22

23

interface may be provided.

The resulting data base file is used for report generation. The

results, at user's option, can also be added to the database. This

allows the company to use the results for other purposes e.g.

generating graphs, formulating another problem etc ..

Summary

Data structure and file structure should be selected very

carefully for better efficiency and memory utilization. Data

management and file management resolve the questions pertaining to the

degree of sharability and security of data base files, and user

interface with the integrated system. A matrix generator should be

written with a focus on proper matrix structure and variables

generation. Matrix generators are application specific. Hence the

requirements of the optimization package decide the matrix structure

and variables generation. Matrix generators should need minimal

maintenance. A modeling language could be used to produce an

algorithm's form of the problem. A modeling language is symbolic,

general, concise and easily understandable. However, processing and

translation of a modeling language should be done at a reasonable cost.

Report writing is crucial to any integrated environment. The generated

reports should be meaningful and easy to understand. Proper headings,

titles, stubs, units of measurements should be produced. Variable

rrames should be translated into a descriptive form. Reports writers

should be endowed with arithmetic and symbolic translation

capabilities. A proper interface between the report writer and the

user is also important.

CHAPTER V

AN EXAMPLE ON JOB-SHOP PROBLEM

Problem Definition

A manufacturer has n jobs which must be completed this week and

each job may be handled in any one or more of the m shops. The

manufacturer wants to know how to allocate shop time to different jobs

in order to minimize the total cost of completing all jobs. The

manufacturer maintains four data base files which are shown in Figures

2, 4, 6, and 8. These data base files have been developed using the

data base package dBASE II which also contains a data processing

language. Figures 3, 5, 7, and 9 contain the structures of these four

data base files respectively.

Figure 2 displays ZEMPLYEE.DBF which contains employee records as

to their total weekly working hours, the hourly wage rate, work status

etc .. Figure 4 shows ZJOBORDR.DBF which keeps track of all the job

records that need to be completed during the week. It also has the job

category, the date on which the job is received, and the expected date

of its completion. Figure 6 contains ZHRSHIST.DBF. This file has the

historical data on how many hours a job of a certain category would

take to co~plete. This is u~dated periodically. Figure 3 shows

ZCOSTREC.DBF which contains only 2 records. The first record relates

to the raw material cost and the second record relates to the overhead

expenses during that week. Actually, ZCOSTREC.DBF is prepared using

24

25

00001 AUSTIN,KEITH PERM SHOP2 31 40
00002 GRACEM,W. PERM SHOPl 33 40
00003 BAYLOR,CHRIS PER~! SHOP3 29 40
00004 HART,BRYAN PER~! SHOPl 30 25
00005 MOSES,DAVID TEMP SHOP3 31 40
00006 NORRIS,CHERRY PERM SHOP3 28 20
00007 UTTERBACK,ORLEY TEMP SHOP2 30 40
00008 CHURCHILL,V. PERM SHOPl 29 30
00009 WILLIAMS,S. PERM SHOP2 32 40
00010 HWAN,C. PERM SHOP3 33 40
00011 AMOS,TOM PERM SHOP2 29 40
00012 COLUMBUS,TIM PERM SHOPl 30 40
00013 WILLINGTON,K. PERM SHOPl 28 40

Figure 2. Employee Records (ZEMPLYEE.DBF)

Structure for file: B:ZEMPLYEE.DBF
Number of records: 00013
Date of last update: 01/01/80
Primary use database
Fld Name Type Width Dec
001 EMPNAME c 015
002 TYPE c 004
003 SHOP NAME c 008
004 HRLYRT N 005
005 WKHRS N 002
** Total ** 00035

Figure 3. Structure of ZEMPLYEE.DBF

00001 JO Bl A APR 3,1986 A p?. 12' 1986
00002 JOB2 B APR 4,1986 APR 12,1986
00003 JOB3 c APR 4,1986 APR 12,1986
00004 JOB4 D APR 5,1986 APR 12,1986

Figure 4. Pending Job Orders (ZJOBORDR.DBF)

Structure for file: B:ZJOBORDR.DBF
Number of records: 00004
Date of last update: 01/08/87
Primary use database
Fld name Type Width
001 JOBNAME c 008
002 CATGRY c 006
003 DATERD c 012
004 DAT EC MP c 012
** Total ** 00039

Figure 5. Structure of ZJOBORDR.DBF

00001 A 32 39 46

00002 B 151 147 15 s
00003 c 72 61 57

00004 D 118 126 121

00005 - 85 93 86

00006 F 102 94 100

Dec

Figure 6. Job Categories and Hours to Complete
in Different Shops (ZHRSHIST.DBF)

Structure for file: B:ZHRSHIST.DBF
Number of records: 00006
Date of last update: 01/08/87
Primary use database
Fld Name Type Width Dec
001 CATEGORY c 001
002 SHOPl 'I 005
003 SHOP2 'I 005
004 SHOP3 N 005
** Total ** 00017

Figure 7. Structure of ZHRSHIST.DBF

26

Them

00001 RAW. COST
00002 OVERHD/DAY

43
2000

48
1800

36
2000

Figure 8. Cost Records (ZCOSTREC.DBF)

Structure for file: B:ZCOSTREC.DBF
Number of records: 00002
Date of last update: 01/01/80
Primary use database
Fld Name Type Width
001 LJEAD c 010
002 SHOPl ~ 005
003 SHOP2 ~~ 005
004 SHOP3 \j 005
** Total ** 00026

Figure 9. Structure of ZCOSTREC.~BF

Dec

27

28

other files which are not shown here.

Problem Analysis

Now the problem will be analyzed in the light of data base

management and optimization. The key feature to be noted here is that

the information needed to formulate an LP problem is not directly

available in the above problem definition. Only the data base files

are provided and all the computations necessary for problem formulation

have been left to the modeler which resides in the integrated package.

The data base processing language of dBASE II shall be used for

arithmetic computation, data extraction and manipulation, LP problem

generation and report writing. LINDO has been used as an optimizer to

solve the LP problem. The complete procedure, from data preparation to

report writing, has been described in the next section.

Brief Overview of the Integrated System in This Example

Figure 10 shows a flow chart illustrating how dBASE II has been

integrated with LINDO. As stated earlier, Data are scattered across

the entire data base in different files. The first task, therefore, is

to extract relevant data from different files and perform arithmetic

calculations on them. This task corresponds to the input preparation

stage as shown in the flow chart. Second stage is variables

~eneration. The variables are in symbolic form and used by LIXDO in LP

problem formulation. A translation dictionarv of such variables is

maintained. ~atrix generation stage comes next. The LP problem is

formulated in a format acceptable to LINDO. In optimization stage, the

formulated LP problem is fed into an optimizer LINDO. Optimal values

Input Preparation.
Creates ZINPUT.DBF.

Variables Generation.
Creates ZLPVAR.DBF.

Matrix Generation.
Creates ZLPMATRX.DBF

Optimization.
Creates ZLPOUT.TXT.

Solution Output.
Processing.
Updates ZLPVAR.DBF
~ith Solution Values.

Report Writing.
Uses ZLPVAR.DBF.

GET INTO dBASE II

No

Yes

Update Following
Data Base Files:

ZEMPLYEE.DBF
ZJOBORDR.DBF
ZHRSHIST.DBF
ZCOSTREC.DBF

DO ZCREATE. PRG rt-------~

DO ZLPVAR.PRG

DO ZLPMATRX.PRG

GET INTO LINDO

Within LINDO, ENTER

:TAKE ZLPMATRX.TXT
:DIVERT ZLPOUT.TXT
:GO
:QUIT

RETURN TO dBASE II

DO ZI'ff ACE. PRG

DO ZLPREP.PRG

Figure 10. Flow Chart of Job Shop Problem Illustrating
Integration of dBASE II with LI~DO

29

30

are generated and transferred to dBASE II. Then the solution values

are processed and stored in a data base file. Finally, report

generation takes place. Report writing options allow the user to

generate a wide variety of reports. Report writing is completely menu

driven.

All the stages mentioned above are controlled by a single module.

User's interaction was made as convenient as possible. A detailed

discussion of such an integrated system is given in the next section.

Detailed Description of the Example

Input Preparation

Data are scattered across the entire database in different files.

In a real life situation, there will be more files and bigger data size

in the data base. The basic idea, however, is to use multiple files

such that the desired LP problem can be formulated, solved and the

results can be reported.

The first step, therefore, is to gather the relevant data

scattered across different files and place them in a separate data base

file or files which can be conveniently accessed by other modules. In

this example, this task is executed by the command file ZCREATE.PRG.

The listing of ZCREATE.PRG is given in the Appendix. ZCREATE.PRG

accesses ZEMPLYEE.DBF the contents of which are given in the problem

definition. ZCREATE.PRG accesses three fields: Shopname, Hrlyrate and

~khrs for each employee record to compute total number of hours

available in and the total wages of each shop.

ZCREATE.PRG then extracts the raw material cost and the overhead

expenses from the file ZCOSTREC.DBF. The raw material cost, overhead

31

expenses and wages are summed up to ascertain the cost/man hour in each

shop.

ZHRSHIST.DBF contains the historical data as to the number of

hours that each distinct job category requires to be completed.

ZJOBORDR.DBF contains a list of the jobs that need to be completed.

Each job has a category which is decided according to the number of

hours it will take to complete in different shops. First, ZCREATE.PRG

accesses ZJOBORDR.DBF to find the job category for each job. Then it

extracts from ZHRSHIST.DBF the number of hours corresponding to that

job category. This arrangement allows the user to update the

historical information and add more job categories as the need arises.

Also, ZJOBORDR.DBF may contain any number of job orders.

In brief, ZCREATE.PRG prepares the necessary data from the above

mentioned data files and places such data in the file called

ZINPUT.DBF. The contents and the structure of ZINPUT.DBF are listed in

Figure 11 & Figure 12 respectively. Records 1 and 2 of Figure 11 are

number of hours and cost/man hour respectively. All other records

except for the last record show the number of hours that a particular

job will take in a particular shop. Second and third columns of the

last record are the number of shops and the number of jobs

respectively.

Variables Generation

This step involves generation of internal variable names. The

variable names are in the form of Xij which denotes number of hours of

JOBj in SHOPi. In this example, the number of digits for i and j were

restricted to two. It is assumed that number of shops and jobs will

00001 17 5 160 uo
00002 84 89 80

00003 JO Bl 32 39 !16

00004 JOB2 151 147 155

00005 JOB3 72 61 57

00006 JOB4 118 126 l~l

00007 3 4 .'.)

Figure 11. Input Prepared from the Data Base (ZINPUT.DBF)

Structure for file: B:ZINPUT .DBF
Number of records: 00007
Date of last update: 01/01/30
Primary use database
Fld Name Type Width Dec

001 JOBS c 003
002 SHOPl \j 006
003 SHOP2 :l 006
004 SHOP3 N 006

** Total ** 00027

~· 12 Structure of ZINPUT.DBF rigure .

32

33

not exceed 99. The command file ZLPVAR.PRG is executed to generate the

variables. This command file accesses the last record of ZINPUT.DBF to

extract number of shops and number of jobs. Total number of variables

created equals the number of shops times the number of jobs.

ZLPVAR.PRG also extracts Shopnames, Jobnames and cost/man hour. All

these data are stored in a file called ZLPVAR.DBF. The contents and

the structure of ZLPVAR.DBF are shown in Figure 13 and Figure 14

respectively. ZLPVAR.DBF serves as a dictionary i.e. it contains

definitions of the variables generated internally. First column

contains variable names and the next two columns define those

variables.

First column of Figure 13 contains the internally created

variables. Column 4 of this figure has zeros indicating blanks. This

is because dBASE II automatically fills the blanks of the numeric

fields with zeros. Column 5 contains the cost/man hour in SHOPi. The

listing of ZLPVAR.PRG is given in APPENDIX.

Matrix Generation

Matrix generation follows variables creation. It was indicated

earlier that mostly the matrix generators are application specific. In

this case, our application is related to the job-shop LP formulation.

~n Chapter IV, it was mentioned that the limitations imposed by the

optimization package should be considered while developing a matrix

generator. The optimization package that this example uses is LI\DO.

Hence, the matrix generator named ZLPMATRX.PRG generates the LP problem

in a format acceptable to LINDO.

ZLP~ATRX.PRG first generates the objective function using the

00001 XOlOl JO Bl SHOPl 0.000 84
00002 X0102 JOB2 SHOPl 0.000 84
00003 X0103 JOB3 SHOPl 0.000 84
00004 X0104 JOB4 SHOPl 0.000 84
00005 X0201 JO Bl SHOP2 0.000 89
00006 X0202 JOB2 SHOP2 0.000 89
00007 X0203 JOB3 SHOP2 0.000 89
00008 X0204 JOB4 SHOP2 0.000 89
00009 X0301 JO Bl SHOP3 U.000 80
00010 X0302 JOB2 SHOP3 0.000 80
00011 X0303 JOB3 SHOP3 0.000 80
00012 X0304 JOB4 SHOP3 0.000 80
00013 OBJECT 0.000 0

Figure 13. LP Variables in a Dictionary Form (ZLPVAR.DBF)

Structure for file: B:ZLPVAR .DBF
~um~er of records: 00013
Date of last update: 01/01/80
Primary use dat'3.base
Fl<l ~ram e Type \·I id th Dec

001 '\VAR c 0 0 !j

0 () 2 XJ0B c 0 0 $3

003 XS HOP c 008

'.) () 4 XVALUES 'l () l () 003

() 0 5 X COST \) 'J 0 5

x * Total ** 00038

Figure l~. Structure of ZLPVAR.DBF

34

35

files ZINPUT.DBF and ZLPVAR.DBF. Internal variables stored in

ZLPVAR.DBF are prefixed with the cost/man hour (coefficients) contained

in ZINPUT.DBF. Each pair consisting of a coefficient and a variable

name occupies one record of the file called ZLPMATRX.DBF which stores

the LP formulation. Constraints are also generated using ZINPUT.DBF

and ZLPVAR.DBF. Two sets of constraints are generated by ZLPMATRX.PRG.

One set relates to the total number of hours available in SHOPi and

other set relates to ensuring that the JOBj is completed. '+', '<=',

'=' signs are generated internally by the command file. The entire LP

formulation is stored in ZLPMATRX.DBF. Finally, the ASCII version of

ZLPMATRX.DBF is created and stored in ZLPMATRX.TXT.

Figure 15 and Figure 16 show the contents and the structure of

ZLPMATRX.DBF respectively. In Figure 15, the zeros in front of the

variable names, '~INIMIZE', 'SUBJECT TO' and 'END' are really blanks

rather than zeros. The contents of ZLPMATRX.TXT are displayed in

Figure 17. Figure 17 is actually the ASCII version of ZLPMATRX.DBF.

In this figure, all the blanks are shown as blanks rather than as

zeros.

Optimization

At this stage, the control is passed to the optimization package

LI:iDO. Within LINDO, the following sequence of commands is used:

TAKE ZLP~1A TRX. TXT

DIVERT ZLPOL'T.TXT

GO

<Objective function will appear here>

<Respond 'N' to the next question>

36

00001 0.000000 MINIMIZE
00002 84.000000 XOlOl +
00003 84.000000 X0102 +
00004 84.000000 X0103 +
00005 84.000000 X0104 +
00006 89.000000 X0201 +
00007 >39.000000 X0202 +
00008 89.000000 X0203 +
00009 89.000000 X0204 +
00010 80.000000 X0301 +
00011 80.000000 X0302 +
00012 80.000000 X0303 +
00013 80.000000 X0304
00014 0.000000 SUBJECT TO
00015 0.000000 XOlOl +
00016 0.000000 X0102 +
00017 0.000000 X0103 +
00018 0.000000 X0104 <=
00019 175.000000
00020 0.000000 X0201 +
00021 0.000000 X0202 +
00022 0.000000 X0203 +
00023 0.1)00000 X0204 <=
00024 160.000000
00025 0.000000 X0301 +
00026 0.000000 XO 302 +
00027 0.000000 X0303 +
00028 0.000000 X0304 < =
00029 140.000000
00030 0.031250 XOlOl +
00031 0.025641 X0201 +
00032 0.021739 X0301 l
00033 0.006622 X0102 +
)0034 0.006802 X0202 +
00035 0.006451 X0302 l
00036 0.013888 X0103 +
J'J037 'J,016393 X0203 +
00038 0.017543 X1303 l
10039 0.008474 X'Jl04
00040 0.007936 X0204 -'-
) 00:; 1 0.oos2s:, '<0304 l
00042 J.:JOOOOO E 'ID

Figure 15. LP Problem in Data Base
Format (ZLPMATRX.DBF)

37

~lINIMIZE

84.000000XOlOl +
84.000000X0102 +
84.000000XOlOJ +
84.000000X0104 +
89.000000X0201 +
89.000000X0202 +
89.000000X0203 +
89.000000X0204 +
80.000000XOJOl +
80.000000X0302 +
80.000000XOJOJ +
80.000000X0304

Structure for file: B:ZLPMATRX.DBF
Number of records: 00042 175.000000

SUBJECT TO
X0101 +
X0102 +
X0103 +
X0104 <=

Date of last update: 01/01/80
Primary use databas~

Fld Name Type Hidth

JOl COLl '-J 010

() 0 2 MATVAR c 010

* '~ Total ** 00021

Figure 16. Structure of ZLP~ATRX.DBF

X0201 +
X0202 +
X0203 +
X0204 <=

Dec
006

160.000000
X0301 +
X0302 +
X0303 +
X0304 <=

140.000000
0.031250X0101 +
0.025641X0201 +
0.021739X0301 1
0.006622X0102 +
0.006802X0202 +
0.006451X0302 1
0.013888X0103 +
0.016393X0203 +
0.017543X0303 1
0.008474X0104 +
0.007936X0204 +
0.008264X0304 1

END

Figure 17. LP Problem in ASCII
Format (ZLPMATRX.TXT)

38

: QUIT

The TAKE command within LINDO allows the user to get the problem

in ASCII format and restructures it to the standard LINDO format. The

restructured LP problem is shown in Figure 18. The DIVERT command will

allow the user to divert the output to a file called ZLPOUT.TXT. The

output consists of the optimal values of the objective function and

variables, slack and surplus values, reduced costs, dual prices and

number of iterations. The GO command solves the LP problem. The

solution is contained in Figure 19. The QUIT command lets the control

go to the DOS level.

Solution Output Processing

The LP solution contained in Figure 19 was generated by LINDO. It

has no significance if the user cannot comprehend and interpret it.

Let us assume that the user does not know how to read the LINDO output.

Also the user may not remember which variable denotes what and how the

numbers are coherently related to each other. To sum up, the task of

understanding and interpreting the output straightway is quite tedious

and cumbersome and may sometimes lead to erroneous conclusions. To

make the user's task easy, the command file ZINFACE.PRG provides a

back-end to the solution and processes the output. ZINFACE.PRG really

serves as an interface between the LINDO solution and the report

writing. It extracts the objective function value and all the optimal

values of the variables from the solution contained in ZLPOUT.TXT and

then places them in the file ZLPVAR.DBF. As was indicated in the

section of variables generation, the second last column of ZLPVAR.DBF

was filled with zeros for blanks by dBASE II. These all the blanks are

39

MIN 84 XOlOl + 84 X0102 + 84 X0103 + 84 X0104 + 89 X0201 + 89 X0202
+ 89 X0203 + 89 X0204 + 80 X0301 + 80 X0302 + 80 X0303 + 80 X0304

SUBJECT TO

END

2)
3)
4)
s)
6)
7)
8)

XOlOl + X0102 + X0103 + X0104 <= 175
X0201 + X0202 + X0203 + X0204 <= 160
X0301 + X0302 + X0303 + X0304 <= 140
.03125 XOlOl + .025641 X0201 + .021739 X0301 =
.006622 X0102 + .006802 X0202 + .006451 X0302 =
.013888 X0103 + .016393 X0203 + .017543 X0303
.008474 X0104 + .007936 X0204 + .008264 X0304

Figure 18. LP Problem as Restructured by LINDO

LP OPTIMUM FOUND AT STEP 9

OBJECTIVE FUNCTION VALUE

1) 29805.9000

VARIABLE VALUE REDUCED COST
XOlOl 32.000000 .000000
X0102 105.932400 .000000
X0103 .000000 19.751880
X0104 37.067630 .000000
X0201 .000000 17.906890
X0202 43.886480 .000000
X0203 .000000 10.041480
X0204 .000000 7.856125
X0301 .000000 24.223310
X0302 .000000 .090225
X0303 57.002800 .000000
X0304 82.997210 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 2.644814
3) 116.113500 .000000
4) .000000 4.497604
5) .000000 -2772.634000

--"lore--
6) .000000 -13084.390000
7) .000000 -4816.600000
8) .000000 -10224. 780000

NO. ITERATIONS= 9

Figure 19. LP Solution Generated by LINDO

1
1
1
1

40

now replaced by the respective optimal values. The objective function

value reflects minimum cost of completing all jobs and the variables'

values reflecting optimal number of hours to be spent on each job in

each shop. ZINFACE.PRG makes use of ZLPOUT.DBF, a data base version of

an ASCII file ZLPOUT.TXT.

Figure 20 shows the file ZLPVAR.DBF. The only difference between

Figure 13 and Figure 20 lies in the second last column which now

contains solution values instead of zeros.

Report Writing

Finally the control passes to the report writer. With the

integrated system in place, the user is directly concerned with: first,

entering and updating the data; second, generating and studying the

relevant reports for decision making. This second step, therefore,

largely depends on the judgement of the user in that the decision

making shall be influenced by the type of report opted.

dBASE II contains a report writing option which allows the user to

generate customized reports. In this example, the command file

ZLPREP.PRG contains the report generator module. Report generation is

completely menu-driven. Six different options are available to the

user to select. What the user views on the screen while generating a

report is shown in Figure 21. The report generator ZLPREP.PRG, in

fact, uses 5 different report formats for the first five options. All

these report formats are stored in five different report format files

ending with .FRM.

ZLPVAR.DBF is accessed and the relevant values are extracted and,

if needed, these values are manipulated. Proper units and formats are

41

JOBl SHOPl 32.000 8 4
00001 XOlOl

105.932 84
00002 X0102 JOB2 SHOPl

0.000 84
00003 X0103 JOB3 SHOPl

37.067 84
00004 X0104 JOB4 SHOP 1

0.000 8 'J
00005 X0201 JO Bl SHOP2

43.886 89
00006 X0202 JOB2 SHOP2

o.ooo 89
00007 X0203 JOB3 SHOP2

0.000 89
00008 X0204 JOE4 SHOP2

0.000 80
00009 X0301 JO Bl SHOP3

0.000 80
00010 X0302 JO El 2 SHOP3

57.002 80
00011 X0303 JOB3 SHOP3

82.997 :3 0
00012 X0304 JOB4 SHOP3

29805.900 0
00013 OBJECT

Figure 20. LP Variables and their Solution Values

REPORT GENERATOR FOR JOB-SHOP PROBLEM

Please SELECT one of the following options

~ l Optimal value of the objective function.

~ 2 Optimal(Minimal) 0 of hours & cost of all jobs.

•'• 3

~·· 4

.. 5

Optimal(Minimal) H of hours and cost of a particular job *
in a particular shop.

Optimal(Minimal) U of hours & cost of a particular job
in all shops.

Optimal(Minimal) 0 of hours & cost of a particular shop
for all jobs.

·- 6 Quit to ~ain Menu.

Enter vour option ll/2/3/4/5/6J :

F . 71 ~. enu for Report Generation igure ~ . :·1

42

generated by the respective report format files. Descriptive names of

the variables are contained in ZLPVAR.DBF. The last option lets the

user quit from the report writer. This example does not provide

"PRINT" option. But this can be easily done by routing the output to

the printer rather than to the screen. "SET PRINT ON" command can be

used to accomplish that. Also, for the sake of simplicity, this

example avoids inserting the results back into the company's database

for future use.

Figure 22 shows the screen automatically generated by dBASE II on

requesting for report generation for option 3. Figure 23 displays the

contents, as internally stored by dBASE II for this option. Contents

of this figure are really the control elements of report generation

i.e. they control output of the report. For example, the first line of

that figure contains 'Y' which indicates that the user wants the

heading to be placed in the report and the heading is contained in the

second line. Options as to totals and subtotals are also interpreted

the same way. Such internally stored report options play a very useful

role in report generation. Report generation becomes very powerful and

flexible with these options.

Figure 24 shows a report generated by dBASE II for option 2.

Option 2 is related to minimum no. of hours and cost of all jobs. The

values are extracted from ZLPVAR.DBF. All totals, subtotals, titles

a~d subtitles, and units have been generated by the report generator.

All options given in Figure 22 are included in this report. Page

number and date are inserted by the report generator automatically.

ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH
PAGE HEADING? (Y/N) Y

43

ENTER PAGE HEADING: >'<:'< MINIMUM NO. OF HOURS FOR ALL JOBS IN ALL SHOPS '"'"
DOUBLE SPACE REPORT? (Y/N) N
ARE TOTALS REQUIRED? (Y/N) Y
SUBTOTALS IN REPORT? (Y/N) Y
ENTER SUBTOTALS FIELD: XSHOP
SUMMARY REPORT ONLY? (Y/N) N
EJECT PAGE AFTER SUBTOTALS? (Y/N) N
ENTER SUBTOTAL HEADING: In
COL WIDTH,CONTENTS
001 30,xjob
ENTER HEADING: Jobname ;=======
002 30,xvalues
ENTER HEADING: No. of Hours;
ARE TOTALS REQUIRED? (Y/N) y
003

Figure 22. Report Format Generation in dBASE II

y
...... MINIMUM NO. OF HOURS FOR ALL JOBS IN ALL SHOPS >'<>'<

N
y
y

XS HOP
N

N
In
30,xjob
Jobname
30,xvalues

;=======

No. of Hours; ============

Figure 23. Report Options as Internally Stored by dBASE II

PAGE NO. 00001
01/01/80

;'n'' MINIMUM NO. OF HOURS FOR ALL JOBS IN ALL SHOPS ;•,;·,

Jobname

,., In SHOP 1

JO Bl
JOB2
JOB3
JOB4
'''" SUBTOTAL ;·,;·,

,., In SHOP2

JO Bl
JOB2
JOB3
JOB4
;·,;" SUBTOTAL ,·,;'<

,., In SHOP3

JO Bl
JOB2
JOB3
JOB4
0'"'' SUBTOTAL :'n"<

No. of Hours
============

32.000
105.932

0.000
37.067

174.999

0.000
43.886

0.000
0.000

43.886

0.000
0.000

57.002
82.997

139.999

358.884

Figure 24. Report As Generated by dBASE II for Option 2

44

45

CHAPTER VI

SUMMARY AND CONCLUSIONS

The integration of DBMS with optimization offers substantial

advantages. With the DBMS in use, the modeler can spend more time on

the design of the model. Most of the models are more or less

application specific. With the rapidly growing network technologies,

the sharing of data files is becoming easier and more reliable.

Multiple users can work on the same data base.

The managerial decision making would be improved with timely

reports. Reports produced by such an integrated system are usually

more accurate and reliable. Such reports are standardized and can be

generated easily and efficiently.

Exxon Corporation is already using a very powerful integrated

system for planning called PLATOFORM (PLanning TOol developed in the

dataFOR\1 language of ~1PS II). See Palmer [13 J for a complete

description of PLATOFORM.

Greenberg, Lucas and Mitra [9] went one step further and proposed

to augment the reports with proper analysis and documentation. They

came up with an idea of appending to the report generator an expert

system (as a back-end) called ANALYZE. The ANALYZE will analyze the

output of the report generator, give necessary advice and produce the

meaningful documentation. It should, however, be noted that this is not

a substitute for the manager but rather an aid.

46

Future of DBMS-based optimization seems very bright. Substantial

efforts are geared towards making the optimization techniques available

to people who consider themselves unsophisticated users. This will

also increase the depth of use of the current problems. A significant

amount of research is underway in the field of modeling languages. In

future, matrix generators will probably become obsolete due to their

being in algorithm's form which lacks understandahility and user

friendliness. Display capabilities and user interface are also gaining

importance. Expert systems are also being developed to analyze the

reports.

A SELECTED BIBLIOGRAPHY

1. Baker, T.E., D.E. Shobrys. "The Integration of Planning,
Scheduling and Control." National Petroleum Refiners
Association, Computer Conference:CC-85-97.

2. Bisschop, J., A. Meerus. "On the Development of a General
Algebraic Modeling System in a Strategic Planning."
Mathematical Programming Study, 20:1-29.

3. Boyer, P.A. "Fitting Micros to Manufacturing Control Systems."
Infosystems, Sep. 1983:opl4-opl7.

4. Brown, R.W., W.D. Northup, J.F. Shapiro. "LOGS: A Modeling and
Optimization System for Business Planning." Computer
Assisted Decision Making, 1986:227-241.

5. Chesaspeake Decision Sciences, Inc. "The Integration of Planning,
Scheduling, and Control in the Process Industry." 1986.

6. Ellison, E.F.D., G. Mitra. "UIMP: User Interface for Mathematical
Programming." ACM Transactions on Mathematical Software,
8(3):229-255.

7. Fourer, R. "Modeling Languages versus Matrix Generators for
Linear Programming." ACM Transactions on Mathematical
Software, 9(2): 143-183-. -

8. Graduate College. "Thesis Writing Manual." Stillwater, Oklahoma,
Oklahoma State University, Revised, 1972.

9. Greenberg, H.J., C. Lucas, G. Mitra. "Computer Assisted Modelling
and Analysis of Linear Programming Problems: Towards a
Unified Framework." Working Paper, Brunel University, U.K ..

10. Kisko, T .'.'L "A Syntax for Linear Program That Computers and
People Can Understand." Industrial & Systems Engineering
Department, University of Florida, no. 86-13 (1986).

11. Krabek, C.B., R.J. Sjoquist, D.C. Sommer. "The Apex Systems:
Past and Future." AC'.'! SIG!!AP Bulletin, 29 (April,1980):
3-23.

12. Lucas, C., G. Mitra. "Computer Assisted Mathematical Programming
(\fodelling) System: CAMPS." Working Paper, Brunel
University, U.K ..

13. Palmer, K.H. "A Model-Management Framework for Mathematical
Programming." An Exxon Monograph, 1984.

48

14. Rowland, A.J., Boudwin, N.K. "A Data and Model Management System
in Exxon." 1986:253-259.

LS. Sharda, R. "Optimization Using Spreadsheets on a Microcomputer."
Annals of Operation Research, 5:594-612.

16. Sharda, R., S. Turner, A. Rathi. "Management of Mathematical
Programming Models Using Data Base Management System."
Proceedings on North East Decision Science Institute,
Atlanta, April 1987 (Forthcoming).

17. Sweet, F. "What, If Anything Is a Relational Database?."
Datamation, July 15, 1984:118-124.

18. Welke, L. "Advent of the Clustered System." Datamation, May 1,
1985:77-82.

49

APPENDIX

**
* NAME OF COtvIMAND FILE: zcreate.prg

* PURPOSE: THIS COMMAND FILE PREPARES THE INPUT NEEDED *
* FOR MODELING THE LINEAR PROGRAMMING PROBLE~1. *
* THIS FILE EXTRACTS RELEVANT INFORMATION *
* FROM FOUR FILES: EMPLOYEES' FILE (zemplyee. *
* dbf), COST RECORDS FILE (zcostrec.dbf), *
* HISTORY FILE (zhrshist.dbf) AND JOB ORDERS *
* FILE (zjobordr.dbf). zhrshist.dbf HAS NO. OF*
* HOURS REQUIRED TO COMPLETE ANY SPECIFIC *
* CATEGORY OF JOB IN DIFFERENT SHOPS. *
**

SET TALK OFF
USE zemplyee
GOTO BOTTOM

'~ I:!ITIALIZING THE VARIABLES AND COUNTERS.

STORE # TO totemp
STORE 3 TO totshop
STORE 3 TO tempk
STORE 1 TO i
DO WHILE i <= totshop

STORE STR(i,l) TO m
STORE 0 TO shopemp&m
STORE 0 TO scost&m
STORE 0 TO shrs&m
STORE i+l TO i

E'iDDO

* COMPUTING TOTAL NO. OF HOURS AVAILABLE IN SHOPi AND
* ITS COST/~AN HOUR. THESE ARE BASED ON WEEKLY RECORDS.

STORE 1 TO i
DO WHILE i <= totemp

STORE STR(i,l) TO m
GOTO i
STORE 0 TO j
STORE 'F' TO find
DO \v1JILE (j+l <= totshop .A\TD. find 'F')

STORE j+l TO j
STORE STR(j,l) TO n
IF shopname='SHOP&n'

STORE 'T' TO find
END IF

END DO
STORE scost&n+(hrlyrt*wkhrs) TO scost&n
STORE shrs&n+wkhrs TO shrs&n

so

STORE shopemp&n+l TO shopemp&n
STORE i+l TO i

END DO

*
* COMPUTING COST /MAN HOUR IN SHOPi INCLUDING WAGES,
* RAW MATERIAL COST AND OVERHEAD ON A WEEKLY BASIS.

*
* STORE 1 TO i
USE zinput
DELETE ALL
PACK
APPEND BLANK
APPEND BLANK
DO WHILE i <= totshop

STORE STR(i,l) TO m
USE zcostrec
GOTO 1
STORE shop&m TO rawcost
STORE (shrs&m*rawcost + scost&m) TO scost&m
GOTO 2
STORE scost&m+shop&m TO scost&m
USE zinput
GOTO 1
REPLACE shop&m WITH shrs&m
GOTO 2
REPLACE shop&m WITH INT(scost&m/shrs&m)
STORE i+l TO i

END DO

* !1ATCHING THE JOB CATEGORY WITH THE STANDARD
* CATEGORIES CONTAINED IN zhrshist.dbf AND DERIVING
'~ THE NO. OF HOURS THEREFROM FOR COMPLETING THE JOB
* BASED ON ITS CATEGORY.

STORE 1 TO i
USE zjobordr
GOTO BOTTO>l
STORE H TO totjob
STORE 2 TO tempk
DO WHILE i <= totjob

USE zjobordr

*

GOTO i
STORE catgry TO tempcat
STORE jobname TO jobn
USE zhrshist
STORE 1 TO j

'~ FI\TDL'JG THE JOB CATEGORY.

51

*

DO WHILE tempcat<>category
STORE j+l TO j
GOTO j

END DO

STORE 1 TO k
USE zhrshist
GOTO j
DO WHILE k <= totshop

STORE STR(k,l) TO m
STORE shop&m TO temp&m
STORE k+l TO k

END DO

USE zinput
APPEND BLANK
STORE tempk+l to tempk
GOTO tempk
REPLACE jobs WITH jobn
STORE 1 TO k
DO WHILE k <= totshop

STORE STR(k,l) TO m
REPLACE shop&m WITH temp&m
STORE k+l TO k

END DO
STORE i+l TO i

END DO
USE zinput
APPEND BLANK
GOTO BOTTOM
REPLACE shopl WITH totshop
REPLACE shop2 WITH totjob
RELEASE ALL
RETURN

52

**
* NAME OF COMMAND FILE: zlpvar.prg *
* * PURPOSE : THIS COl'-fMAND FILE CREATES Xij VARIABLES BASED ON ~~

NO. OF SHOPS AND NO. OF JOBS. Xij DENOTES NO. OF '~

HOURS TO BE SPENT IN SHOPi ON JOBj. TOTAL NO. OF*
VARIABLES CREATED EQUALS THE PRODUCT OF NO. OF
SHOPS AND NO. OF JOBS.

*
*

JOB NAMES AND COST/MAN HOUR ARE ALSO EXTRACTED
FROM zinput.dbf AND PLACED IN zlpvar.dbf.

**

SET TALK OFF
USE zinput
GOTO BOTTOM

* GET NO. OF SHOPS AND NO. OF JOBS FROM zinput.

STORE shopl TO ns
STORE shop2 TO nj
* * CREATING Xij VARIABLES.Xij DENOTES NO. OF
*HOURS TO BE SPEND IN SHOPi ON JOBj. ALSO
* EXTRACTING FROM zinput.dbf THE JOB NAME, COST/MAN HOUR.
* USE zlpvar
DELETE ALL
PACK

STORE 1 TO si
DO WHILE si <= ns

IF si <= 9
STORE 'XO'+CHR(si+48) TO xs

ELSE
STORE INT(si/10) TO al
STORE si-(al*lO) TO a2
STORE 'X'+CHR(al+48)+CHR(a2+48) TO xs

E'.'WIF

STORE STR(si,l) TO m
USE zinput
GOTO 2
STORE shop&m TO cost
STORF. 1 TO ji
DO \vlULE ji <= nj

USE zinput
GOTO 2+ji
STORE jobs TO jobn
IF ji <= 9

53

*

STORE 'O'+CHR(ji+48) TO xj
ELSE

STORE INT(ji/10) TO al
STORE ji-(al*lO) TO a2
STORE CHR(al+48)+CHR(a2+48) TO xj

END IF
STORE xs+xj TO xv

* PLACING Xij VARIABLES,SHOP NAMES,JOB NAMES &
* & COST/MAN HOUR IN zlpvar.dbf.

USE zlpvar
APPEND BLANK
REPLACE xvar WITH xv
REPLACE xshop WITH 'SHOP'+'&m'
REPLACE xjob WITH jobn
REPLACE xcost WITH cost
STORE ji+l TO ji

END DO
STORE si+l TO si

END DO

* ADDING 'OBJECTIVE FUNCTION' AS THE LAST RECORD IN zlpvar.dbf.

* GOTO BOTTOM
APPEND BLANK
REPLACE xvar WITH 'OBJECT'
RELEASE ALL
RETURN

54

** * NAME OF COMMAND FILE: zlpmatrx.prg

* PURPOSE: THIS COMMAND FILE CREATES A COMPLETE LINEAR *
* PROGRAMMING PROBLEM IN lindo format USING *
* zinput.dbf AND zlpvar.dbf.
**

* SET TALK OFF

* GET NO. OF SHOPS AND NO. OF JOBS.

* USE zinput
GOTO BOTTOM
STORE shopl TO mats
STORE shop2 TO matj

* USE zlpmatrx
DELETE ALL
PACK
APPEND BLANK

*
*GENERATING OBJECTIVE FUNCTION (MINIMZATION).

* REPLACE matvar WITH 'MINIMIZE'
STORE 1 TO mati
STORE 1 TO matx
DO WHILE mati <= mats

USE zinput
GOTO 2
STORE STR(mati,l) TO m
STORE shop&m TO mcost
STORE 1 TO matk
DO WHILE matk <= matj

USE zlpvar
GOTO matx
STORE xvar TO matr
USE zlpmatrx
APPEND BLANK
REPLACE coll WITH mcost*l.00
REPLACE matvar WITH matr+ ' +'
STORE matk+l TO matk
STORE matx+l TO matx

END DO
STORE mati+l TO mati

E\'DDO
REPLACE matvar WITH matr

* GENERATING CONSTRAINTS.

APPEND BLANK

55

REPLACE matvar WITH 'SUBJECT TO'
STORE 1 TO mati
STORE 1 TO matvarn

*
* CONSTRAINTS WITH RESPECT TO TOTAL NO. OF HOURS
* AVAILABLE IN SHOPi

DO WHILE mati <= mats
USE
USE zinput
GOTO 1
STORE STR(mati,l) TO m
STORE shop&m TO mathrs
STORE 1 TO matk
DO WHILE matk <= matj

USE
USE zlpvar
GOTO matvarn
STORE xvar TO matvarl
USE
USE zlpmatrx
APPEND BLANK
REPLACE matvar WITH matvarl+' +'
STORE matk+l TO matk
STORE matvarn+l TO matvarn

END DO
REPLACE matvar WITH matvarl+' <='
APPEND BLANK
REPLACE coll WITH mathrs*l.00
STORE mati+l TO mati

END DO

* CONSTRAINTS WITH RESPECT TO CGMPLETION OF JOBS.

STORE 2 TO matstart
STORE 1 TO mati
DO WHILE mati <= matj

STORE 1 TO matk
STORE matstart+l TO matstart
DO WHILE matk <= mats

USE
L'SE zinput
GOTO matstart
STORE STR(matk,l) TO m
STORE shop&m TO matval
IF matval = 0

STORE 0 TO matval
ELSE

STORE (1.000000/matval) TO matval
END IF
liSE
USE zlpvar

56

STORE mati+(matk-l)*matj TO mdummy
GOTO mdummy
STORE xvar TO matvarl
USE
USE zlpmatrx
APPEND BLANK
REPLACE coll WITH matval
REPLACE matvar WITH matvarl+' +'
STORE matk+l TO matk

END DO
REPLACE matvar WITH matvarl+' = l'
USE
STORE mati+l TO mati

END DO
* * END OF THE LP PROBLEM.

USE
USE zlpmatrx
APPEND BLANK
REPLACE matvar WITH 'END'
COPY TO zlpmatrx SDF
RELEASE ALL
SET TALK ON
RETURN

57

**
* NAME OF COMMAND FILE: zinface.prg *
* * * PURPOSE: THIS COMMAND FILE PROVIDES AN INTERFACE BETWEEN *
* THE LP SOLUTION AND THE REPORT GENERATION. THE *
* RELEVANT INFORMATION IS EXTRACTED FROM THE *
* SOLUTION FILE (zlpout.dbf) AND PLACED IN *
* zlpvar.dbf FOR REPORT GENERATION PURPOSES. *
**
*
SET TALK OFF
USE zlpout
DELETE ALL
PACK
APPEND FROM zlpout SDF
USE zlpvar
GOTO BOTTOM
STORE # - 1 TO totvar
STORE 1 TO count
*
*EXTRACTING THE VALUES FOR Xij.
*
DO WHILE count <= totvar

USE zlpout
GOTO count+7
STORE VAL($(line,ll,10)+$(line,22,3))/1000.000 TO nvalue
USE zlpvar
GOTO count
REPLACE xvalues WITH nvalue
STORE count+l TO count

END DO

* EXTRACTING THE OBJECTIVE FUNCTION VALUE.
*
USE zlpout
GOTO 5
STORE@('.' ,line) TO pos
STORE VAL(S(line,pos-9,9)+S(line,pos+l,3))/1000.000 TO nvalue
USE zlpvar
GOTO BOTTOM
REPLACE xvalues WITH nvalue
RELEASE ALL
RETCR:.'

58

* NA~E OF COMMAND FILE: zlprep.prg
J.

* PURPOSE: THIS COMMAND FILE GENERATES REPORTS FOR THE USER.*
THE REPORTS CAN BE GENERATED BY THE USER FOR ANY *
OF THE OPTIONS GIVEN UNDERNEATH. *

SET TALK OFF
SET CONFIRM ON
USE zlpvar
STORE 'F' TO cont
DO WHILE !(cont) <> 'N'

ERASE
? " REPORT GENERATOR FOR JOB-SHOP PROBLEM"
?
? ''***'~**:!,<********* ''
?

?
?
?
?
?

?

?
?
?

?

?

?

?
?
?

"-'-'r
"*
"*
"*
"*
"*
"*
"*
"*
"*
"*
"*
"*
"*
"*
"*

1

2

3

4

5

6

Please SELECT one of the following options *"
*"

Optimal value of the objective function. *"
J."

Optimal(Minimal) # of hours & cost of all jobs. *"
*"

Optimal(Minimal) # of hours and cost of a par ti - *"
cular job in a particular shop. *"

*"
Optimal(Minimal) # of hours & cost of a par ti - J."

cular job in all shops. *"
*"

Optimal(Minimal) # of hours & cost of a par ti - *"
cular shop for all jobs. *"

*"
Quit to Main Menu. *''

? '' *************************************:!~** **************** ''
?

ACCEPT "Enter your option (1/2/3/4/5/6) " TO ropt
DO CASE

CASE ropt='l'
ERASE
REPO FORM zrepol FOR xvar='OBJECT'

CASE ropt='2'
ERASE
REPO FORM zrepo2 FOR xvar<>'OBJECT'

CASE ropt='3'
ERASE
ACCEPT "Jobname?" TO jobname
ACCEPT "Shopname?" TO shopname
REPO FORM zrepo3 FOR xjob=!(jobname);
.AND. xshop=!(shopname)

CASE ropt='4'
ERASE

59

ACCEPT "Jobname?" TO jobname
REPO FORM zrepo4 FOR xjob=!(jobname)

CASE ropt='S'
ERASE
ACCEPT "Shopname?" TO shopname
REPO FORM zrepoS FOR xshop=!(shopname)

CASE ropt='6'
ERASE
RETURN

OTHERWISE
ERASE
?

? "**ERROR** Selected option is out of range."
?
ACCEPT "Press <RETURN> to continue" TO dummy

ENDCASE
IF (ropt > 'O' .AND. ropt < 1 6 1)

?
ACCEPT "Press <RETURN> to continue" TO dummy

END IF
END DO
RELEASE ALL
RETURN

60

VITA

ASHOK KUMAR RATHI

Candidate for the Degree of

Masters of Business Administration

Report: INTEGRATION OF DATA BASE MANAGEMENT SYSTEM WITH OPTIMIZATION

Major Field: Business Administration

Biographical:

Personal Data: Born in Ajmer, India, December 4, 1962, the son of
Chand Karan and Subhudra Rathi. Single.

Education: Graduated from the Secondary Board of Rajasthan,
Ajmer, India, in June, 1979; received Bachelor of Commerce
(Hons.) Degree from The University of Rajasthan in November,
1983; received a Chartered Accountancy Intermediate
Examination certificate in May, 1984.

Professional Experience: Chartered Accountancy Trainee, Price
Waterhouse & Co., Calcutta, India, March, 1983 to July,
1984;Graduate Research Assistant, College of Business
Administration, August, 1984, to present.

	Thesis-1987R-R234i_Page_01
	Thesis-1987R-R234i_Page_02
	Thesis-1987R-R234i_Page_03
	Thesis-1987R-R234i_Page_04
	Thesis-1987R-R234i_Page_05
	Thesis-1987R-R234i_Page_06
	Thesis-1987R-R234i_Page_07
	Thesis-1987R-R234i_Page_08
	Thesis-1987R-R234i_Page_09
	Thesis-1987R-R234i_Page_10
	Thesis-1987R-R234i_Page_11
	Thesis-1987R-R234i_Page_12
	Thesis-1987R-R234i_Page_13
	Thesis-1987R-R234i_Page_14
	Thesis-1987R-R234i_Page_15
	Thesis-1987R-R234i_Page_16
	Thesis-1987R-R234i_Page_17
	Thesis-1987R-R234i_Page_18
	Thesis-1987R-R234i_Page_19
	Thesis-1987R-R234i_Page_20
	Thesis-1987R-R234i_Page_21
	Thesis-1987R-R234i_Page_22
	Thesis-1987R-R234i_Page_23
	Thesis-1987R-R234i_Page_24
	Thesis-1987R-R234i_Page_25
	Thesis-1987R-R234i_Page_26
	Thesis-1987R-R234i_Page_27
	Thesis-1987R-R234i_Page_28
	Thesis-1987R-R234i_Page_29
	Thesis-1987R-R234i_Page_30
	Thesis-1987R-R234i_Page_31
	Thesis-1987R-R234i_Page_32
	Thesis-1987R-R234i_Page_33
	Thesis-1987R-R234i_Page_34
	Thesis-1987R-R234i_Page_35
	Thesis-1987R-R234i_Page_36
	Thesis-1987R-R234i_Page_37
	Thesis-1987R-R234i_Page_38
	Thesis-1987R-R234i_Page_39
	Thesis-1987R-R234i_Page_40
	Thesis-1987R-R234i_Page_41
	Thesis-1987R-R234i_Page_42
	Thesis-1987R-R234i_Page_43
	Thesis-1987R-R234i_Page_44
	Thesis-1987R-R234i_Page_45
	Thesis-1987R-R234i_Page_46
	Thesis-1987R-R234i_Page_47
	Thesis-1987R-R234i_Page_48
	Thesis-1987R-R234i_Page_49
	Thesis-1987R-R234i_Page_50
	Thesis-1987R-R234i_Page_51
	Thesis-1987R-R234i_Page_52
	Thesis-1987R-R234i_Page_53
	Thesis-1987R-R234i_Page_54
	Thesis-1987R-R234i_Page_55
	Thesis-1987R-R234i_Page_56
	Thesis-1987R-R234i_Page_57
	Thesis-1987R-R234i_Page_58
	Thesis-1987R-R234i_Page_59
	Thesis-1987R-R234i_Page_60
	Thesis-1987R-R234i_Page_61
	Thesis-1987R-R234i_Page_62
	Thesis-1987R-R234i_Page_63
	Thesis-1987R-R234i_Page_64
	Thesis-1987R-R234i_Page_65
	Thesis-1987R-R234i_Page_66
	Thesis-1987R-R234i_Page_67
	Thesis-1987R-R234i_Page_68
	Thesis-1987R-R234i_Page_69

