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PREFACE

The objective of the research reported in this thesis was to
investigate several linear and nonlinear algorithms for short-term
load forecasting (one to twenty-four hour), which is an integral part
of electric power system operations and is required for economic
generation scheduling, power system security assessing and
maintenance scheduling. The difficulties encountered in the study
are mainly due to the complex nature of power load which is
characterized as a multi-period (e.g., daily, weekly) and multi-
variable (e.g., weather factor, holidays, strikes) process.

During the course of this research, a temperature enhanced
-Hammerstein nonlinear model, which has the ability to model both
multiperiodicity and nonlinearity, was found to be an extremely
efficient algorithm applied to this particular problem. Another
nonlinear model-the Bilinear time series model- is reported in this
thesis and has been shown to have potential applicability to the
short-term load forecasting problem and, remarkably, may provide a
very useful model class for general applications.

At this time I would like to take this opportunity to express my
sincere gratitude to many people who were a great help to me in this
project and during my coursework at Oklahoma State University. In
particular, I wish to thank my major adviser, Dr. Martin Hagan, for

his intelligent guidance, inspiration, and invaluable aid. I cannot
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imagine how this research could have been accomplished without
him. I am also grateful to the other committee members, Dr. Keith
Teague, Dr. George Scheets and Dr. Marvin Keener for their
advisement and support. In addition, I want to extend thanks to
Dr. James Baker and Dr. Carl Latino for their support during my years
at this school. ,

Most of all, I would like to thank my family and my wife, Yisun,

for their love and constant encouragement.
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CHAPTER 1
INTRODUCTION

Power load forecasting has in the past two decades evolved into
one of the most interesting _researéh areas. This is because it relates
directly to economical considerations in power systems, and also
because it is such an interesting problem that involves many
techniques and approéches to b\e investigated and 'developed.

The economical considerations come from the fact that load
forecasting plays a key role in the planning and operation of electric
utilities. Specifically, the power load forecasts are needed for

(i) economic generation scheduling. This determines the most
economic commitment of generation sources and economic energy
interchange with other utilities. |

(ii) power system security assessihg. This information permits
the dispatchers to detect many vulnerablel situations in advance and,
therefore, operate the power system securely.

(iii) maintenance scheduling and fuel allocation.

It is obvious that the accuracy of load forecasts has significant effects
on operating and production costs. For instance, forecast error due to
underprediction of load results in the shortége of the necessary
reserves which, in turn, raise costs because of the use of the
expensive peaking units. Forecast error due to overprediction of load,

on the other hand, produces higher costs also because of an



unnecessary increase in reserves by the start-up of too many units.

For the purpose of economically efficient operation, load
forecasting can be further classified according to its forecasting
range. Very short term forecasts with lead times from a few minutes
to an hour are needed in the on line automatic generation control
(AGC) and economic dispatch functions. Short term forecasts with
lead times from an hour to a few weeks are needed for economic
generation scheduling, system security assessing and short term
maintenance scheduling. Intermediate/long term forecasts with lead
times longer than a month are needed for fuel, hydro and
maintenance scheduling, new utility constrution consideration and
the determination of prices. This paper is concerned with the short
term load forecast with lead times from one hour to one day.

A number of different forecasting algorithms have been
applied to the STLF problem. The existing load forecasting techniques
include multiple linear regression [1], general exponential smoothing
[1], spectral expansion [2], stochastic time series [3], state space [4],
Hammerstein nonlinear [5], artificial neural network (ANN) [6] and
expert system based [7] algorithms. The multiple linear regression
approach finds functional relationships between weather variables
and the system load and expresses the relation by a linear or
piecewise linear function. The general exponential smoothing method
uses a fitting function and takes the form Z;=X B;fi(t)+a,, where Z,is
the power load at time t, which is computed by the sum of a finite
number of fitting functions fi(t), usually sinusoids with a period of 24
hours. Bjand a; represent slowly time-varying constants and a white

noise, respectively. These two algorithms are computationally simple,



but may not give sufficiently accurate results because they do not
accurately represent the intrinsic characteristics of power load. In
fact, they produce an averaged result. The spectral expansion model
has basically the same form as that for the general exponential
smoothing except that the time functions fj(.) here represent the
eigenfunctions corresponding to the autocorrelation function of the
load sequences (after removal of trends and periodicities). It is
reported [8] that the spectral expansion model has the advantage
over the general exponential smoothing model in that the time
functions chosen can more closely approximate its autocorrelation
function and, therefore, the representation of loads can be obtained
with greater precision than with arbitrarily selected time functions.
One problem with the spectral expansion model is that its practical
advantage is not as sound as its theoretical one and, as a result, only
a few utilities seem to use such a method. Reference [8] has
categorized the above three models into the class of time-of-day
models.

Another class of models is categorized as dynamic models,
which include two basic types, stochastic time series models and
state space models. In dynamic models, the load is considered to be
not only a function of the time of day, but also of its most recent
history as well as the weather and noise components. The stochastic
time series approaches, normally using autoregressive-integrated-
moving average (ARIMA) and transfer function (TF) models
discussed by Box and Jenkins [9], have been shown [3] to be well
suited to the load forecasting application because of their ability to

incorporate dynamic, weather and random effects. The identification



process of the stochastic time series usually needs more intensive
computation than those of the time-of-day models. However,
considering that the frequency of parameter identification is low
(once a day) whenever the model structure is set up, this
computational burden is not a real problem. -

The state space model can actually include the time series
model and vice versa [10]. One of the most attractive features of the
state space method is that the on-line load prediction can be done by
employing the recursive property of the Kalman filter. The limitation
of this approach is that the model has to be known prior to using the
Kalman filter. Unfortunately, the identification of the state space
model is usually difficult.

So far the models we discussed are limited to linear types.
Generally speaking, linear models are used for their simplicity and
their ability to approximate most real problems. In order to be able
to better understand the STLF problem, the new direction is,
certainly, the study of nonlinear models and, hopefully, these models
will provide us with even better performance.

Recently several researchers have developed some STLF
nonlinear models. Hagan [3] proposed a nonlinear model to the STLF
by a simple nonlinear extension to the transfer function model. Later,
Lu et al. [5] applied the Hammerstein nonlinear model structure [11]
to the STLF with lead times of one hour. Another type of nonlinear
model, using an artificial neural network (ANN), was presented by
Park et al. [6]. In this paper, another nonlinear model, called the
bilinear model, is proposed for the STLF application. In addition, the

Hammerstein nonlinear model is further investigated and extended



for 24-hour-ahead forecasts.

Since temperature is very important to the STLF, a temperature
enhanced model, which modifies the Hammerstein model by
adjusting parameters through the kth step ahead forecasting errors
or the sum of 1 to k step ahead forecasting errors instead of
residuals, which are one step ahead forecasting errors, is presented
with the goal to make full use of temperature information and, thus,
further improve forecasting performance.

Following this introduction, the paper is organized as follows:
the linear time series models, which include the ARIMA and TF
models, are reviewed in chapers II-III; the general nonlinear model
of the Volterra expansion is dicussed in chapter IV; a test for
linearity is outlined in chapter IV also; some special nonlinear
models, which include the bilinear time series model, Hammerstein
nonlinear model and temperature enhanced model, are presented in
chapters V-VII; and, finally, the conclusions are given in chapter

VIII.



CHAPTER 11

LINEAR ARMA MODELS

In this chapter, some basic concepts, which will be used
throughout the paper, are presented first. Then each of the model
building steps in the general system identification scheme is
discussed and applied to the power load process. These distinct steps
include:

1. Select a class of models which will be most useful for our
load forecasting purpose;

2. Identify the order of the model selected by step 1 (i.e.,
preliminary identification);

3. Estimate the parameters of the system and, thus, set up the
tentatively identified model and, finally

4. Check the tentative model according to some criterion to
decide its goodness of fit. If good, then it is ready to use for

forecasting. Otherwise, the process is repeated from step 2.
Some Basic Concepts

Let us denote the power load series as Z¢, Z¢.1, Z¢-2, . . ., Where t,
t-1, t-2, . . . represent integer values in time, say hours. Then it is
obvious that {Z;} can be viewed as a time series and, thus, all the

time series analysis and modeling techniques can be equally applied



to the load series {Z;}. In the following discussions, we treat {Z}

simply as a general real valued time series.
Autocovariance and Autocorrelation Functions
The autocovariance of a time series {it} is defined as
Cov(Zy, Ze+x) »= E[(Ze-W)(Zesk-w)] = Re(K), k\= 0.+1,£2, (IL1)

where E[.] denotes thé expectation, g=E[Zt] is the mean, and R (k)
represents the covariance between observations k lags apart. If the
mean is constant and the covariance is only a function of lag k, then
the series is said to be stationary, otherwise it is nonstationary. Now,
let us assume that {Z;} is a stationary process, then the

autocorrelation function of lag k is defined by
p(k) = R(k)/R(0) (I1.2)

where R(0)=Cov(Z,Z;)=E[(Z-1)2]=062 is called variance of {Z.}. The
physical meanings of the mean and covariance are obvious. The
mean is, roughly speaking, the average value of the series, the
variance is a measurement of the data spread about the mean and
the covariance function describes inherent correlation between
observations k lags apart. The natural estimates of p and R(k) are

obtained by

N ) ] N=lkl )
2Zy, R(k)=§ 2(Zy W) Ziyk1 —H)
=1 t=1

k=0,£1,2, . . . ,£(N-1) (IL.3)



where N is the number of observations.

Gaussian Processes

{Z} is called a stationary, white Gaussian process if it satisfies

P(Zy,Zoy )=

Ij/ xp(- 3 (212 26)
2n) /26N j=1

(11.4)
In other words, the set of random variables {Z1, Z3,...,ZN} has a
multivariate normal distribution. From (I1.4), the stationary, white
Gaussian processes are completely specified by two parameters, the
mean W and the variance 62. We will see later that the Gaussian
processes play an important role in the model parameter

identification.
White Noise Processes

A process {a, t=0,1,2, . . .} is called a white noise process if {a¢}

consists merely of a sequence of independent random variables and

satisfies
E[at]=p’a,
02, k=0
Cov(as,ap )= {2 K20
o, (1I1.5)
or equivalently,
©=( 0
p =
a 0, k=0 (11.6)

Figure 1 illustrates this property with lags up to 6.



Figure 1. Autocorrelation Function of a
White Noise Process

Model Building and Forecasting

The model building problem is solved, basically, through two
routes. One of them is through mathematical modeling based on
physical laws. For example, the trajectories of the planets may be
modeled by Newton's laws. The other route is through system
identification, which is based on observations from the system. This
paper is concerned with the later case, and various models are built
based on system identification techniques. The forecasting problem
accordingly is stated as follows: we are given (N+1) pasf observations
{Z¢, Z¢-1, Zt-2, . . . ,Zi-N}, and wish to use the information contained in
the data set to predict m steps ahead. This predictor is denoted Zi(m).

Mathematically, we try to compute Zi(m) by

Zt(m) = B(Zb Zt-l,Zt-2, .. ~’Zt-N) (II°7)
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where 0 is a function of the given observations. It is shown [12] that
the "best" predictor Z¢(m) of Zi+m, under the "criterion" of the
minimum "mean square error” (i.e., min E[{Z{(m)-Z¢+m }2]), is the

conditional mean

Z¢(m) = E[Z¢4+ml|Z¢, Zt-1, . . .,Zt-N] (I1.8)
AR, MA and ARMA Models

In time series analysis, a model for {Z;, t=0,+1,+2, ...} means a

functional relationship described by

f(. . . Z¢-2,24-1,20,Z1+1,24425- - ) = & (I1.9)

where f(.) is the function to be found and a; is white noise. In
general, it is impossible to determine a specific function, knowing
only a finite set of data on {Z;}. However, if we consider the class of

linear models, (II.9) can be written as

L2y =ay ‘
i=—oo | (11.10)

where {¢j} is a sequence of constants. In the load forecasts, since Z;
depends only on past values, (I1.10) is simplified by setting ¢;=0 for

i<0, and rewritten as

oo
XGZ =3y
i=0 (I1.11)
(IL.11) is called the general linear process. Note that the assumption,

that f(.) is a linear function, is actually applied to the whole of
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standard time series.
In practice, we cannot hope to estimate an infinite number of
parameters. Instead, a finite order polynomial is used. In this case,

¢i=0 for i>p, thus (II.11) becomes

P
X047, _=a,
i=0 (IL.12)
where ¢¢ is assumed to be 1 and p is the order and determined by

the identification techniques discussed in next section. By introducing

the following operators

BZi=7Z1, B0Z¢=Zi.n
#(B)=1- 9B -4,B2-...-¢BP (I1.13)

(II.12) can be conveniently written in the form
®(B)Z; = a (I1.14)

(IL.14) is called the autoregressive model of order p (i.e., the AR(p)
model). The autoregressive model forms an important class of the
fundamental time series models.

Another fundamental class 'of‘ time series models is called the
moving average model. In the moving average model of order q (i.e.
the MA(q) model), the current value of the process is expressed

linearly in terms of the current and q previous random shocks.

Zt = at - elat-l - e e ™ eqat-q (II.IS)
where 61, 62, ..., 8q are constants and {at} is a white noise process.

Equivalently, we may write (II.15) as
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Z;=06(B)a; (I1.16)
where

6(B) =1-61B-062B2-.. .- 64B4 (11.17)

Since either the AR(p) or the MA(q) model can be used to
describe a given stochastic process, it is natural to combine them
together to form a more general model: the mixed autoregressive-

moving average model of order (p,q) (i.e., the ARMA(p,q) model).
¢(B)Z = 6(B)ay (I1.18)

where ¢(B) and 6(B) are given by (II.13) and (II.17), respectively.
Note that the ARMA(p,q) model includes both AR(p) and MA(q)
models as special cases and possesses a remarkably wide range of
applicability. |

The time series {Z;} described by an AR(p) , MA(q) or
ARMA(p,q) process will be a stationary process if the roots of ¢(B) lie
outside the unit circle. For some non-stationary processes, a

stationary process W; can be achieved by differencing the  original

process Zi,
_yvd
Wy =V"Z, (IL.19)
where the operator y is defined as follows
VZ,=(1-B)Z,
d» _._wrk,\d
V2t =1-B2)"Z, (I1.20)

Since the resulting process W; is stationary, it can be modeled by an

ARMA(p,q) process
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®(BYW¢ = 6(B)a; (I1.21)

Substituting W;¢ by (II.19), we obtain the autoregressive-integrated-

moving average model ARIMA(p,d,q)

$(B)VIZ, =6(B)a, (I1.22)
Finally, it is noted that many time series present some
periodicities or "seasonal" behaviors. This is especially true for our
power load because, as we will see later, the load curve contains a
daily periodicity (e.g. the load at 10 A.M. Tuesday is related to the
load at 10 A.M. Monday) as well as weekly periodicity (Sundays are
not like Mondays). Combining all these factors together, a general

time series model of the power load can be expressed as

v (2o (pl68\ydyD yD'
b, (B (BT)0" W (BTEVEV o, V16821

\ 24\ o 168
=0 (B)0' ,(B“)o" , (B a
q()q( )q( )t (I1.23)

(I1.23) forms one of our fundamental models, namely "seasonal"
ARIMA model, for the STLF application. Since the "seasonal" ARIMA
model is the basic model used by Box and Jenkins (1970) in their
work on forecasting, it is often called the Box and Jenkins time series

model.
Identification and Estimation of ARMA Models

In the last section, we chose the "seasonal" ARIMA model as

one of our fundamental classes of models for the STLF purpose. Now
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we proceed discussing the techniques used to identify the order and

estimate the parameters of the model.

Preliminary Identification

In preliminary identification, the techniques used for the
order determination rely on the analysis of the autocorrelation
function (acf) and partial autocorrelation function (pacf) of the given
process. For the purpose of illustrating how these methods are being
systematically applied to the problem of preliminary identification,
we investigate the specific properties of the acf and the pacf
associated with each particular model (e.g., AR, MA).

For an AR(p) process, the autocorrelation function is found by

(I1.14), (II.1) and (IL.2), i.e.

R(k) = E[ZtZ1x]
= 01E[Zt-1Z¢k] + 02E[Ze2Ze] +. . . + OpE[Zt-pZek] + E[arZy.k]
= ¢;R(k-1) + 9;R(k-2) + . . + ¢, R(k-p) (I1.24)

where Z; is assumed to be zero mean, otherwise Z; should be replaced
by Zi-p. The expectation E[aiZ:.x] varnishes because Z; g is
uncorrelated with a; for k > 0. Dividing both sides of (I1.24) by R(0),

we obtain the autocorrelation function
pk) = ¢1p(k-1) + ¢5p(k-2) +. . + ¢,p(k-p) (I1.25)

As is seen from (II.25), the autocorrelation function follows a certain

pattern in nature. Taking AR(1) as an example, (II.25) becomes
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pk) = ¢,p(k-1) o1l <1, k>0 (I1.26)
It is easy to show that the solution of (II.26) is

p(k) =0,k 61l < 1,k > 0 (IL.27)

Obviously, p(k) decreases exponentially as the lag k increases as
shown in Figure 2. For general AR(p) processes, p(k) is a combination
of damped sinusoids and exponentials.

The partial autocorrelation function is another important tool in
preliminary identification. It is defined with the use of the AR model.
Consider trying to fit a sequence of AR(p=1,2,3,. . .) models to a
stochastic process, which is generated by AR(p'). Let ¢xj denote the
jth coefficient in one of the fitted AR models of order k and, then, ¢xk
is the last coefficient. Clearly, ¢xyx will be nonzero for k less than or
equal to p' and zero for k greater than p'. Figure 2 shows the

characteristics of the pacf for an AR(1) process.

1.0 1.0F
X w F
10— . . 10 .
0 1 2 3 4 0 1 2 3 4
lag k lag k

Figure 2. ACF and PACF of Z; = 0.5Z.1 + a;
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For an MA(q) process, the autocorrelation function, by using a
derivation procedure similar to that above, is found to be identically
zero for lags k greater than q. In other words, the acf of an MA(q)
process will be cut off after lag q. The partial autocorrelation functioﬁ
of the MA(q) process, unlike the AR(p) process, consists of a
combination of damped sinusoids and exponential. This result may
be explained by the fact that an MA(q) process can be equally

written as
0-1(B)Z; = a; (I1.28)

where 0(B) is assumed to be invertible, with its inverse denoted by
0-1(q). In general, 6-1(B) is a polynomial with infinite order, and,
thus, (I1.28) represents an AR process with an infinite order.
Following the discussions of the pacf for the AR process, the pacf of
an MA process has infinite components. Figure 3 illustrates the acf

" and the pacf graphs for an MA(1) process.

1.0 1.0f
- 3
"g ok E ol D 1 —
: a T L =
-1.0 E— , . R 1000 . . .
0 1 2 3 4 0 1 2 3 4 5
lag k lag k

Figure 3. ACF and PACF of Z; = a; + 0.8a;-1



17

From previous discussions, we have seen that the AR process
and the MA process follow different patterns of the acf and pacf, and
thus can be distinguished easily from one another. In addition, the
cut-off property shown from either the acf or the pacf may be used
to decide the order of the model.

For an ARMA(p,q) process, and its variants the ARIMA and
"seasonal” ARIMA processes, the identification procedures may
include (1) differencing the original sequence with an appropriate
order until a stationary process is obtained. This means that no
heavy periodic component/slow decaying in the acf remain; and (2)
applying the identification results from the analysis of the AR and
MA models to the acf and pacf obtained in (1), and then determining
the orders p and q. The reader is referred to [9] for further details
about using the acf and pacf techniques for order identification of an

ARMA process.
Parameter Estimation

Once the "order" of the model is determined, the next step is to
estimate each parameter in the model. There exist many algorithms
for parameter estimation. Investigation of these algorithms is beyond
our scope. The method we use in this research is the maximum
likelihood algorithm. In this algorithm, the noise series, ay, is
assumed to follow a jointly normal distribution with zero-mean and

variance o2, and the following log-likelihood function is maximized

X))

1(¢,6,0)=1(4,0) — nlnc >
20




18

22
where S(¢,0)= a’
j=1"

(11.29)
The term f(¢,0) is a function of coefficients ¢ and 6, and is small in
comparison with the sum of squares function S(¢,0) when the
effective number of observations, n, is large. Thus, the parameters
which minimize S(¢,6) are usually used as close approximations to
maximum likelihood estimates. A nonlinear optimization routine,

which minimizes S(¢,0), is outlined in [9].

Diagnostic Checks and Forecasts

Now that the model order has been determined and the
parameters have been estimated, the last step in the identification
process is to check if the identified model is accurate. Two common
ways to determine the goodness of fit of the model are presented in
this section. These are Bartlett's test and the portmanteau lack of fit
test.

Recall that in earlier sections what we tried to do for a given
set of observations {Z;} was to find a function which accurately
describes the relationship between the values, and whose errors are
white noise (see (II.9)). Thus, checking the whiteness of the residuals
a; is commonly used as the criterion to evaluate the goodness of fit of
the model. If a; is white, the model is considered as adequate.
Otherwise, we need to reevaluate the orders and reestimate the
parameters. One way of checking the whiteness of a; is by checking
the autocorrelation function for a;. If there is only one spike at t=0

with magnitude 1 and all the other autocorrelations equal to zero,
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then a; is white noise. Since, in practice, only the approximations
rg(a) of the acf for a; are available, the boundary defined by

Bartlett's approximation

1 a 5
Var[rp ]=—{1+2 X rv} k>q
n v=1 (11.30)

is used to make the decision, where n is the effective number of
observations after differencing on Z;. If quite a few of the
autocorrelations lie outside the range of ﬂ\/W[rk] , then it probably
means that the model is not adequate.>

Another way of checking at's whiteness is through a
portmanteau lack of fit test. This test checks the Q values computed
by

K 2.
Q=n X T (a) :
k=1 (IL.31)

which, under the null hypothesis that a; is white noise process, is
approximately distributed as x2(K-p-q) on (K-p-q) degrees of
freedom, where p, q represent the orders of the ARMA(p,q) model. If
the average value of Q is high compared with a table of percentage
points (say, 5% point) of the x2(K-p-q) distribution, then the fitted
model is poor.

Up to this point, we have completed the identification process.
In other words, we have obtained a fitted model whose residual
sequence {at} is white noise and, therefore, we are ready to use the
model for forecasts.

As noted earlier, the "best” m step ahead predictor, (Z¢(m)),

under the "criterion" of the minimum mean square error, is
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Zy(m) = E[Zt+mlZy, Zt.1, . . . , Zt-N] (I1.32)

which is the conditional expectation of Zi+m given all the history of
values of Z's up to the current time t. It can be shown that the one
step ahead forecasting error is the Whité noise process a.

As an example of using (II.32) for forecasts, consider an

ARIMA(1,1,1) model

(1-0.7B)(1-B)Z; = (1-0.4B)a; (I1.33)
(1-1.7B+0.7B2)Z; = (1-0.4B)a, |
Z = 1.7Zt-1-'0.7Zt-2+at-0.4at-1 : (11.34)

For one step ahead forecast, replace t by t+1 and then take the

conditional expectation on both sides

Zi(1) = 1.7Z; - 0.7Z.1 + a,(1) - 0.4a,
= 1.7Z; - 0.7Z.1 - 0.4a;

where ai(1) = E[a+1lag, at-1, - - - ] = E[at+1] = O since a; is an
independently identically distributed white noise. Similarly, a¢(j)=0
for j>0.

For the two step ahead forecast, replace t by t+2 in (II.34) and

then take the conditional expectation on both sides

Z42) = 1.7Z«1) - 0.7Z; + a,(2) - 04a(1)
= 1.7Z1) - 0.7Z

It is easy to show that m step ahead forecast is

Zi(m) = 1.7Z(m-1) - 0.7Z¢(m-2) form > 2
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In general, for a given model we may find the m step ahead
forecasts by the following procedure:

(1) expand the given model until an explicit expression for Z; is
obtained (e.g. (I1.34));

2) replacé t by t+m and then take conditional expectation;

(3) apply the following properties to the equation obtained by

(2)
E[Zj|Z, Zt-1, - - - 1= Z(j) j=1,2,...
E[Zi4l Zy, Zt.1, . - . 1 =2y j=0,1.2,...
Elajl ag, ag.1,...]1=0 j=1.2,...
Ela¢.j | a, ag.1, . . . ] = a.j j=0,12,... (I1.35)

Simulation Results

In this section, the preceding ARIMA model (11.23) is fitted for
the electric power load series, which is a collection of hourly load
readings for 1983 from a moderately sized system in the Tulsa area.
Figure 4 and Figure 5 show the plots of the typical power load series
for a period of two weeks during summer and spring seasons,
respectively.

As observed from these figures, each season has a different
pattern of behavior. Therefore, four separate ARIMA models,
corresponding to the ‘summer, fall, winter and spring seasons, are
considered. In addition, the plots also clearly indicate the daily and
weekly periodicities of the power loads. In the following
presentation, we discuss utilizing those identification procedures

outlined previously to set up appropriate models for power loads.
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Figure 4. Summer Power Load: July 11 - July 24, 1983
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Figure 5. Spring Power Load: April 4 - April 17, 1983

Consider the summer data for a period of four weeks (July 11 -
August 7, 1983), we first examine its acf to determine if the original
process is stationary. As shown in Figure 6, the oscillatory/slow-
decaying pattern indicates that the given process is nonstationary.
In order to obtain a stationary process and, thus, be able to fit the

process by an ARMA model, several differencing schemes are
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considered (see Figure 7). As suggested from Figure 7, the stationary
process may be obtained by either a differencing scheme of ViV o0r
V1V1e68. In the following discussions, we use W=V V24 Z; as the

resulting stationary process.
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Figure 8. PACF of the Summer Load Series
Differenced V1V 24

The next step in developing the model is to identify the model
orders (p,q), (p'.q') and (p",q"). These values may be estimated by
examining the acf and pacf of W;. As shown in Figure 7c and
Figure 8, the exponential decaying pattern in the acf and the large
spikes at lags 1 and 2 in the pacf suggest p=2 and q=0 (i.e., an hourly
component is AR(2)).

Now in order to find the daily order (p',q'), those acf and pacf

values at lags of multiples of 24 are pulled out and reploted in
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Figure 9. This time the exponential decaying pattern shows up in the
pacf while the large spikes at lags 24 and 48 in the acf. This leads to
p'=0 and q'=2 (i.e., a daily component is MA(2)). We might proceed

further for the weekly component since the large spike at lag 168 is
likely related to it. At this moment, however, we simply assume that

the tentative summer model has the form
(1-0B-BY )V VuZy =(1-0B* —-0,8%)ay  (py 5

or conveniently denoted by (2,1,0)1x(0,1,2)24.

The parameters in (I1.36) were estimated using the maximum
likelihood routine [18], and then the model's residuals, a;, were
checked for goodness of fit. Figure 10 illustrates the plots of the acf
of a;. To see the details of its pattern, the spikes at lag of 0, whose

magnitude is 1, were omitted.
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Figure 10. ACF of the Residuals in Summer
Model (I1.36)
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The large spike at lag 168 suggests that the model (IL.36) may need
to have a weekly component | added to it. This matches our earlier
suspicion. By adding a weekly AR(1) component to (I1.36) and
recomputing the parameters, we obtain the following model of the
form (2,1,0)1x(0,1,2)24x(1,0,0)168:

168 24

(1-.26B-.18B2 )(1-.39B1%8 )V, Vv, 7, = (1-.73B%* —.09B*4 )a, (IL.37)
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A whiteness test for a; from (II.37) gives no indication of model
inadequacy and this completes the identification procedure.
Finally, we are ready to use (I.37) for our STLF. Using [18], 1
to 24 hour ahead load forecasts were made for a three week period
(July 29 - August 17, 1983). Table I shows a typical daily forecasts.
Figure 11 illustrates the average percent errors for each day for the
same time span. The total average percent error is found to be 4.49.
Figure 12 shows the graph of forecasts against the actual loads. We
see from this graph that a poor forecast happened on the second
sunday. Many sources may result in such a situation (e.g., a sudden
temperature change, shut down of nearby industrial plants, holidays,
etc.). It seems that the performance would be improved if
temperature could be explicitly involved in the model, since

temperature chang€s are inevitable.

16 [ :

14 [

12

& 10 [

4 8f ]

®* 6 . .

4 i} - R

2 - - ' "
0 L 1 1 ¢ 2 & & & i 1 i 1 1 & & I
082 4 6 8 1012 14 1618 20
Jul.29 Aug.17

Figure 11. Average Percent Forecasting
Errors Using (I1.37)



29

3000

2000

Load (MW)

1000 F L S L S L M L T L W i | T 1 F S L S

3000

2000

Load (MW)

0007 W T F 5 5 M T W

Actual  ------ Forecasting

Figure 12. Summer Load Forecasts Using Model (I1.37)
July 29-August 17, 1983



TABLE I
FORECAST FOR A TYPICAL SUMMER DAY

Time Load Forecast Error% Time Load Forecast Error%
(hour) (MW) (MW) (Abs.) (hour) (MW) (MW) (Abs.)

1 1547 1539 0.53 13 2168 2120 2.23
2 1452 1421 2.12 14 2292 2236 2.45
3 1356 1323 2.46 15 2379 2288 3.84
4 1300 1256 .3.40 16 2441 2301 5.72
5 1252 1191 4.87 17 2454 2317 5.58
6 1229 1164 5.25 18 2446 2297 6.08
7 1220 1178 3.41 19 2395 2246 6.20
8 1255 1285 2.42 20 2321 2147 7.48
9 1439 1482 3.01 21 2229 2054 7.87
10 1658 1660 0.11 22 2224 2019 9.23
11 1828 1810 0.99 23 2064 1861 9.84
12 1991 1976 0.76 24 1860 1647 11.40
TABLE 11
ARIMA MODELS

Load period for

Season ;. del development Model

2 168
Summer July 11-Aug.7,1983 (1-26B-18B )(-3B )¥¥ 42
" =(1-7382%.098" Y,
(1+.044B)(1-.55B ' *$v v, ,Z
=(1-658%%.198*3a
(1-.146B)(1-69B ; 6§v1v24zt
=(1-61B" ~.12B' Ja_

Fall  Oct.3-Oct.30,1983 .

Winter Jan.3-Jan.30,1983

16
_ - (1-21B)(J-55B | O % 4Z
Spring April 4-May 1,1983 =(1_'53B%4_'16 A

30
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TABLE III

AVERAGE ABSOLUTE PERCENT ERRORS
USING ARIMA MODELS

Season  Forecasting Period Ave. Abs. Error%

Summer July 29-Aug.17,1983 4.17
Fall Oct.21-Nov.9,1983 4.68
Winter Jan.21-Feb.9,1983 3.85

Spring  April 22-May 11,1983 5.24

The ARIMA models for fall, winter and spring seasons were
similarly developed and summarized in Table II. Table III shows the
average absolute percent errors for each model. It is clear from these
results that the ARIMA models are well suited for power load
processes. Consequently, the ARIMA model with the systematic
model development procedure forms one of the most popular
approaches to the short term load forecasting.

One of the drawbacks of the ARIMA model is the inability to
explicitly include weather variables such as temperature. In next
chapter, we will consider a linear transfer function model, which
allows temperature as an explicit input, and we will show that the

model indeed improves the forecasting performance.



CHAPTER III
LINEAR TRANSFER FUNCTION MODELS

In this chapter, we consider another type of linear model,
called the transfer function model, for the purpose of short term load
forecasting. This model allows temperature as an explicit variable
and, thus, may be expected to more exactly model the power load

than ARIMA models.
The Transfer Functions

The transfer function may be described as a linear filter which

connects an input X; to an output Z; as depicted in Figure 13.

Dynamic Linear
Input X, System Output Z,

Figure 13. Transfer Function Diagram

Suppose that the linear system is causal and initially relaxed,

then the transfer function model can be expressed as

32
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Z:=V(B)X; (II1.1)

where

V(B)= T v;B!
i=0 (I11.2)

is called the transfer function of the linear system.

In chapter II, the ARMA model was given by
®(B)Z = 6(B)ay
This equation can be rewritten as
Zi = ¢-1(B)0(B)a; (I11.3)

where ¢-1(B) is the inverse of $(B) and assumed to exist. Comparing
(II1.3) with (IIL.1), we see that (IIL.3) may be viewed as a special
transfer function model with white noise a; as "input".

In general, the transfer function V(B) can be best represented

by

V(B) = §-1(B)w(B)Bb (I11.4)
where d(B) = (1- 1B -... - 8;B7)

oB)=(wg-01B- ...-ngBS) (I1I1.5)

and b is a delay parameter representing a possible delayed response
of the system. Considering the fact that a disturbance noise always
exists in the working system, a general transfer function model may

be expressed as

Z = §1(B)o(B)X.p + N¢
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or Z; = V(B)X; + N¢ (1I1.6)
where N; is a disturbance noise and assumed to be independent from
the input X;. Equation (II.6) represents the class of transfer function
models for bivariate stochastic process (X;,Z:). Note that the input X,
output Z; and the disturbance noise N; are all assumed to be zero
mean stationary processes. In practice, suitable differences on them
may be needed to obtain stationary processes.

As noted earlier, a problem with ARIMA models is that
weather variables such as temperature cannot be included explicitly.
The transfer function model corrects this by taking temperature as
its input and, in the meanwhile, allows N; to be modeled by an
ARIMA process. Therefore, the transfer function models include past
load history as well as temperature explicitly and hence might be

more exact than the ARIMA models for the power loads.
Identification and Estimation of TF Models

In this section, we first present two data analysis tools, namely
the impulse response function and the cross correlation function.
Then we discuss how they are applied to identify the order (r,s) of a
transfer function. The importance of the prewhitening technique is

discussed also.

Impulse Response Function

Consider the transfer function model (III.1). If the input X,

were an impulse defined by
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" {1, t=0
t —_—
0, t=0 (111.7)

then the output sequence Z;, Z;.1, Zt-1 ... would simply be the weights
vQ, V1, V2, ... associated with the impulse input sequence X, X;.1,
Xt-2, . These weights are called the impulse response function,

forming a basic analysis tool in the transfer function model building.

By combining (III.2) with (IIL4), We have

S(B)( EviBi)=m(B)Bb
i=0 (I11.8)

or equivalently

(1-381B-38B2-..-8rBr)(vp + viB + v2B2 + ..)
= (00 - ®1B - @2B2 - ... - ®gBS)Bb (I11.9)

Equating coefficients of B results in

vi=0 j<b
Vj = 81Vj-1 + 82vj2 + ... + &Vjr + @0 j=b, (I11.10)
Vj=01Vj-1 + 82Vj-2 + ... + OVjr - ®j-b j=b+1,b+2,....b+s

vj = 81Vj-1 + 52Vj-2 + ..+ 5er-t j>b+s

Obviously, these relations may be used to identify the order (r,s) and
the delay parameter b if all v's are known. More specifically, the
parameter b may be determined by the pattern that vj=0 for j<b; the
orders r and s may be identified by the fact that the values vp,vp+1,
... ;Vb+s-r follow no fixed pattern and vj's for j2b+s-r+1 have the

pattern set forth by the rth order difference equation. Note that
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(III.10) gives initial estimates of the &'s and ®'s also by solving the

equations simultaneously.

ros orrelation Function

In chépter II, we noted that the autocorrelation function played
an important role in identifying the univariate stochastic process
such as the ARMA process. Similarly, the cross correlation function is
extensively used in the bivariate stochastic process (X,Z¢) and

defined as

pxz(k) = sz(k)/ﬁxOZ k = 0, :tl, :l:2, eee (III. 1 1)
where Yxz(k) = E[(X¢ - kx)(Ze+k - 12)], k=0, £1, £2, ... (IT1.12)

Note that in general yxz(k)#yzx(k) and yxz(k)#yxz(-k). This is different
from the autocovariance and autocorrelation functions that are
symmetric. Note also that (X;,Z;) are assumed to be stationary. Similar
to dealing with some non-stationary univariate processes,
appropriate differences on (X;,Z;) may be needed to obtain the
corresponding stationary process.

The natural estimates of yxz(k) and pxz(k) are

5 k-lN_-lkl i WZ . - k=0,+1+2
sz( )"—N— tgl(xt—u’x)( t+|k|—|~"z) = V,L1,Ls,...
Y k
P (k)=sz( ) k=0,+1,%2,...
Xz 5., (I11.13)

where sy and s, are estimates for ox and o,, respectively. It will be

seen later that px (k) is directly involved in calculating the estimates
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of the impulse response weights vj, which in turn may be used to
determine the order (r,s) and the initial estimates of parameters of a

transfer function.

Determination of (r.s)

One of the key steps toward the preliminary identification of
transfer functions is to prewhiten the input X; so that a white noise
input to the system is obtained. The basic idea behind "prewhitening"
is that if the input were white noise then the problem of estimating
the impulse response function would be. simple. This point will be
clear as we proceed.

In the case of power loads, the temperature is considered as
the input X; to the linear dynamic system. Since it is a real valued

stochastic process, an ARMA model may be employed
ox(B)X¢ = 6x(B)ay (I11.14)

Assuming 6x(B) to be invertible, (IIl.14) may be rewritten as

_ a1
o, =0\ B BX, (I1L.15)

Clearly, a white noise process o is obtained by "prewhitening" X
through an ARMA transformation. If this transformation is applied to

the general transfer function model
Z; = V(B)X; + N¢ “ (111.16)

then a new, prewhitened, model is created
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_ -1
B, = VB, +67'(B)_ BN,

or B, = V@B, +e,
(I11.17)
where
_a-l1
et_ex (B)(l)x(B)Nt
B =0y ®¥®2Z, (I11.18)

Unlike o, B¢ and &; are not necessarily white.

With the i)rewhitened transfer function model (IH.I7), the
impulse response function V(B) can be easily calculated. By
multiplying both sides of (III.17) by ot-x and taking expectations, we

have

2
E[o = kK)=v, o
[ t—kBt] Y“B'( ) Yk o (II1.19)
where, as before, we assumed that the input o is statistically
independent from the disturbance noise &; and, thus, E[a.ke:]=0.

From (II1.19),

_ YaB (k) _ PaB (’k)cﬁ

vk
o% Ca
and L k=0,11,42,...
S | (I11.20)

In summary, the procedure to identify the order parameter
(r,s) of a transfer function is as follows:

(1) Identify the ARIMA model for the input Xj;
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(2) Compute the prewhitened input o; and the similarly
transformed output PBg;

(3) Estimate the variances of o;and B; and the cross correlation
function between them;

(4) Calculate the impulse response using (III.20), and

(5) Estimate the order (r,s).
Identification of the noise model

Once we obtain the estimates of the impulse response v(k), the
noise N; can be estimated using (II1.6)
N =Z -V®)X, (I11.21)
From these noise values, a tentative ARMA(p,q) model for N;
may be determined using, again, the identification techniques
presented in chapter II. Therefore, an initial transfer function would
be
Z = 5 1(B)o(B)X b + ¢-1(B)0(B)ay (I11.22)

where N¢=¢-1(B)0(B)a; and a;is white noise. The parameters in
(II1.22) may be estimated by employing a nonlinear optimization

routine [9], which minimizes the sum of squares of a; in (III.22).
Diagnostic Checks and Forecasts

In the case of the transfer function model, we usually examine
(1) the autocorrelation function of the residuals a; from the fitted
model, and (2) the cross correlation function between the

prewhitened input o and the residual a; in order to decide the
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accuracy of the model. The common ways to check the model
adequacy by (1) are outlined in chapter II, namely Bartlett's
boundary test and Q value test. Unlike the linear ARMA model,
checking the autocorrelation function only is not sufficient. For
instance, if the acf shows some correlation patterns, it will be
impossible to decide whether it is due to the incorrect transfer
function or due to the incorrect noise model since either part may
cause the autocorrelation patterns. However, if we check both (1) and
(2) and find marked autocorrelation patterns but no evidence of the
existence of any cross correlation pattern, then the noise model must
be incorrect. On the other hand, the transfer function must be
incorrect and needs to be adjusted if there exists any cross
correlation pattern [9]. Therefore, checking both (1) and (2) provides
us with more information about the system and thus allows us to
adjust the model properly.

Similar to the Q value test for whiteness of a; process, the S

value defined by

k=0 (I11.23)
is, under the hypothesis that the model is a good fit, approximately
distributed as x2(K-r-s) on (K-r-s) degrees of freedom, where ry(ap)
denotes the approximation of tile cross correlation function between
o and B;. A high average value of S, comparing with the
corresponding %2 percentage point, indicates the inaccuracy of the
transfer function.

Once the model is checked and selected, it is ready for
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forecasting. The general procedures for forecasting using the transfer
function model are similar to those outlined in chapter II, where the

forecasts were made based on the ARIMA models.
Simulation Results

For the purpose of comparison, in this section we use the same
time periods which were used as for the ARIMA models. The
temperature readings were provided by the weather bureau for

Tulsa.
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Figure 14. Summer Temperature: July 11 - July 24,
1983

Now consider, again, the summer data for the same four week
period (July 11 - August 7, 1983), the first step in identifying the

transfer function is to identify the ARIMA model for the temperature



42

input series X;. Figure 14 is the plot of the first two weeks of data.
The acf of the series indicated its nonstationarity. A stationary
process was obtained after a difference of V1V94 as shown in Figure

15.
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Figure 15. ACF and PACF of Summer Temperature
Series Differenced V{V,,

From these graphs, a process with an hourly AR(1) and a daily

MA(1) was identified and, using the maximum likelihood routine

[18], the ARIMA; model
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(1+.098B)V V24X, = (1-.909B24)qy (I1L.24)

was found to be a good fit to the temperature series {X;}. Using

(II1.24), the prewhitened input o may be computed by
ot = (1-.909B24)-1(1+.098B)V V24X, (II1.25)

Applying this transformation to the general transfer function

model (III.6), we obtain

Bt = V(B)ay + & (I11.26)
where Bt = (1-.909B24)'1(1+.098B)V1V24Zt
g = (1-.909B24)-1(1+.098B)V1V24N;

Once we obtain the sequences {o} and {B:}, the variances of oy,
Btand the cross-correlation function pgp may be estimated using
(IL.3) and (III.13), respectively. These calculations allow us to find
the estimates of the impulse response function, which in turn may be
used to compute the noise series from (IIL.6). Theoretically, the
impulse response weights may be used to identify the order (r,s) of
the transfer function. However, in our power load application, the
impulse response turns out to be too noisy to be helpful for the order
determination (see Figure 16). Fortunately, we have had good success

by simply setting r=2 and s=1.
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lag k

Figure 16. Impulse Response Estimates from
Summer TF Model (II1.26)

The next step in identifying the transfer function model is to
identify the noise model. With the generated noise series at hand, the
ARMA noise model can be easily found by employing a series of
steps similar to those outlined in chapter IIL

The resulting summer transfer function model is

450+145B _ . 1-7038%*- 111848

Z= Xy :
t 2 168,"t
V1V24 (1-136B-.182B“ )1-470B ") (I11.27)

U 848B+.231B2

Using (II1.27), 1 to 24 hour ahead load forecasts were made for the
same three week period (i.e., July 29 - August 17, 1983). Figure 17
shows the average percent errors for each day with the total average
percent error being 4.30, indeed better than the 4.49 obtained by the
ARIMA model.
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Figure 17. Average Percent Forecasting
Errors Using (II1.27)

TABLE IV

COMPARISON OF FORECASTING ERRORS FOR
THE ARIMA AND TF MODELS (1983)
AVERAGE ABSOLUTE % ERROR

Season Forecasting period ARIMA Standard TF

Summer Jul 29-Aug 17, 1983 4.17 3.82
Fall Oct.21-Nov.9,1983 4.68 4.49
Winter  Jan 21-Feb 9, 1983 3.85 3.35

Spring April 22-May 11,1983 5.24 5.53
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The transfer function models for the other seasons were
similarly developed. Table IV shows the average absolute percent
errors for each model. From the above results, we may have the
following conclusions:

(1) The transfer function model, with temperature as an
explicit input, does provide a better performance, on the average,
than the ARIMA model. This is especially true for summer and
winter seasons when the load curve is greatly influenced by
temperatures;

(2) Since the power load is a multi-variable‘ (e.g., weather
factors, shutdown of industrial plants, strikes, ect.) and, thus, a
complex process, the past load history and hence the noise model are
dominant in load forecasts. This may be explained by the fact that
the past load itself actually inexplicitly contains all the factors
including temperature information that embody a load curve, and

(3) A nonlinear model might produce better results and this

will be the major topic in the following chapters.
A Nonlinear Extension

Before we extensively study nonlinear models for the STLF, in
this section we make a simple nonlinear extension to the previous
standard transfer function model with the goal to indicate that a
nonlinear model development might be a fruitful research area for
improvement of the STLF.

To see the existence of some nonlinear relationship contained in

the power load, a plot of 1983 peak daily power load readings vs.
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1983 peak daily temperature readings for the Tulsa area is shown in
Figure 18, where the solid line represents the third order polynomial

which is the best fit to the data using time series/regression method

[3]
Y = 1810.0 + 21.4T - 1.04T2 + 0.0093T3 (II1.38)
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Figure 18. Scatter Diagram of Hourly Loads vs
Hourly Temperatures for 1983

Now if we use this "new temperature” Y instead of temperature
T itself as input to a transfer function, and then take a series of
steps similar to developing the standard transfer function models,
the nonlinear extended transfer function models will be found and
will be more accurate, because larger weights are added to the
summer and winter temperature variations than to the other
seasons. Intuitively, this can be understood by the fact that the

temperature variation during the summer and winter seasons has a
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much larger effect on load than that during the spring and fall
seasons and, hence, the nonlinear transfer function model more
closely reflects the actual relationship between the loads and
temperatures.

Table V compares the forecasting results with those from the
previous linear models. From this Table, we see that a simple
nonlinear extension provides us with a significant improvement in
load forecasting. This éncouraging result offers some promise for load
forecasting improvement by further investigations‘ of nonlinear

models.

TABLE V

COMPARISON OF FORECASTING ERRORS
FOR THE THREE DIFFERENT MODELS
AVERAGE ABSOLUTE % ERROR

Season Forecasting Period ARIMA Standard Nonlinear

TF TF

Summer Jul 29-Aug 17, 1983  4.17 3.82 3.55
Fall Oct.21-Nov.9,1983 4.68 4.49  3.41
Winter Jan 21-Feb 9, 1983 3.85 3.35 2.84

Spring  April 22-May 11,1983  5.24 5.53 5.16




CHAPTER IV
GENERAL NONLINEAR MODELS

In the previous chapters, we developed the ARIMA models and
the TF models. These models are used to describe those processes
that satisfy the twin assumptions of linearity and stationarity which
are commonly made in the conventional time series analysis.
However, a nonlinear extended transfer function model indicated
that further nonlinear investigation might be very fruitful for the
STLF. In this chapter, the general nonlinear model is considered for
the purpose of clarifying the concepts of linear models and nonlinear
models. A statistical test for testing the assumption of linearity of a
process is then presented. Some numerical examples of testing the

departures from linearity are included also.

Volterra Series Expansions

In chapter II, the most general form of model for {Z;} was given
by a function f(.) which describes the relationship between past,
current and future observations (see (II.9)). Just as dealing with
linear models, we assume that Z;depends only on past values and not

on future ones. Thus (I1.9) takes the form

f(Zt,Zt-l,Zt-Z, ... ) =& (IV.].)
Suppose that the model (IV.1) is "invertible". In other words, (IV.1)

49
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may be "solved" so that Z; is expressed by
Z: = g(apar-1,3t-2, - - - ) (IV.2)

where g(.) is some (nonlinear) function of ai, a;.1, a2, ---. With a
Taylor series expansion on g(.) about the point 0=(0,0,0,...), we obtain

the Volterra series as follows

Zo=o+ ) 0@ .+ X X Oa a
u=0 u=0v=0
+u_z_=’0vz'owzOeuvwat—uat—vat—w+"'
(IV.3)
where
_ _,_ 98 _ g
0=g(0),0, =g _o 0, =(——2—)¢_.
t—u ’ t-u t-v
a3g
=( )‘ etc.
0=0
v aat—uaat—vaat—w (IvV.4)

(IV.3) provides an important representation for general nonlinear
models. If we approximate Z; by the second term in (IV.3), then Z; is
described by a linear model which, under the assumption of
invertibility, is identical to the general linear model (II.11).

From Volterra series point of view, a linear model is a special
case of nonlinear models. In general, in order to be able to properly
describe a given process a nonlinear model investigation is
necessary. For instance, if the system is linear, then a nonlinear

model will give no improvement in forecasting and this information
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helps us to determine whether the systemJ is linear or not. On the
other hand, if the system is indeed nonlinear, then a simple linear
model approximation may not be sufficient and a nonlinear model
should be considered.

Note that, unlike a linear model which may be defined by a
single transfer function, a nonlinear model requires an infinite
sequence of higher-order transfer functions to characterize the
relationship (IV.3), namely,

ry(o)= 36, 1"
u=0
1"2 (ml,m2)= ; E’euve-l(colu+w2v)
u=0v=0
© > -i(colu+(02v+m3w)

I3(0,05,05)= ¥ ¥ 20 ¢
u=0v=0w=0 (IV.5)

Tests for Linearity

In order to be able to properly describe a given process, a
statistical test for testing the assumption of linearity of the process is
considered in this section. This test provides us with helpful
information about the system. The importance of bispectral analysis

in studying the possible departures from linearity is also discussed.

Spectral and Bispectral Density Functions

Let {Z;} have finite moments and be weakly stationary up to

the sixth-order with the first three moments given by
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u=E[Z®)]
R(k) = Cov(Z,Zyp), k=041,22, ...
and C(t1,42) = BIZA) Zyy W) Zype W] (IV.6)

It is easy to check that the following symmetric relations hold:

R(k) = R(-k)
C(t1,t2) = Clt2,t1) = C(-ty,t2-t1) = Clt1-t2,t2), (Iv.7)

The spectral density function, f(w), and the bispectral density
function, f(wi,w2), are defined as the Fourier transforms of R(k) and

C(t1,t2)

fl@)=— STRK)e K |pl<n
2% k =—oo

1

<~ < —itj0 —itH®
fO,0)=— I TC(ytp)e 10177292,
(21'C) t1=—oot2 = -—0c0
“RS@1,0) ST (IV.8)

Using the symmetry properties (IV.7), we have

f(w) = f(-o)

f(w1,02) = f(w2,01) = f(01,-01-02) = f(-01,-02)*, (Iv.9)

where * denotes the complex conjugate. The estimates of p and R(k)
are given in (II.3) and, similarly, the estimate of C(t1,t2) is given by
N-v

A 1 N n N
S )=y T E- iy ~D i, ~)
= (IV.10)

where y=max(0,t1,t2); t;20, t,20.
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The estimates of f(w) and f(wi,w7) are given by

. 1 M k. A
f@)=o— T MDR(kxos(ke)
2mg=—m M
A 1 M M t t a —.t _‘t
f(op,0p)= ST MG D08 11T

(215)2 tl = —Mt2 =—M
(IV.11)

where M is known as the truncation point, and A() and A(.,.) are one
dimensional and two dimensional lag windows, respectively. The two
dimensional lag windows may be constructed from one dimensional

lag windows by
A(s1,52) = M(s1)M(s2)A(51-52) (IV.12)

If A(s)=A(-s), it is easy to show that (IV.12) satisfies the following

symmetric relations
A(s1,82) = A(s2,51) = A(-51,52-51) = A(S1-52,-52) (IV.13)

Many standard lag window)s> are available for the estimates of
f(w) and f(w1,02) as shown in Table VI. The choice of a specific
window is usually arbitrary. The reader is referred to [13] for
further details about lag windows.

It is well known (see [14],[15]) that f'(cq) yis a consistent

estimate of f(w) and f(ml,(oz) is a consistent estimate of f(wj,02).
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TABLE VI

STANDARD LAG WINDOWS

Daniell window AD(SF%Q)

Tukey-Hamming AT(S)__;{8-54+0.46cosns et
window .
1-6s2+6kP H<y
1
Parzen window Ap(s 2(l-lSD3 ESsﬂ
0 otherwise

Principle and Procedure of the Test

Consider the linear representation (II.11) of a process {Z;}

CXHZ =3y
1=—o0

or (I)(B)Zt =a, (IV.14)
If $(B) is invertible, then (IV.14) may be written as
Z =¢_1(B)at = X0ya;_y
u=—ce (IV.15)

where {a;} is a sequence of zero mean independent, identically
distributed random variables. It can be shown [16] that f(®w) and

f(wj,w;) of the process {Z;} satisfying (IV.15) are given by
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0'2 )
_ a
f(w)———mt |H(w)|

1k
f(0;,0;)=—=H(-0; -0 H(©; H(®;)
(2m) (IV.16)
where
H(e)= 30 e U@
u=0 av.17)
let
2
ey
7 f(o.)f(0:)f(0: +@:
(@, )f( J)( i J) (1V.18)
then from (IV.16) and (IV.18) we have
2
pn
X.=—2_ 3 , for all i,j
Y 2no6
(IV.19)

The ratio Xjj is called the normalized bispectrum, and is a constant
for all wj and w; if {Z;} is a linear process. This implies that if X;; turns
out to be a function of (wj,®;), then {Z;} must be a nonlinear process.
Therefore, the constancy of Xjj may be used as a test for linearity of
the process.

To begin the test of the constancy of Xjj, we first form a px1

column vector Y=(Y1,Y2,...... Yp) with Yi= X for some pairs of (i,j),

where k=1,2,.......p and Xij is an estimate of Xij
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" 2
. f(o,,® j)‘
lj—f . f . f‘ ®. +0.
(@)t (0;)f(0; +o;) (1V.20)
Now, under the null hypothesis that {Z;} is linear process,
E[Y{] =E[Y,]=...= E[Yp]. Next, for each Yi, a set of n uncorrelated

estimates of Yk is formed as shown) in Figure 19. Consequently, we
obtain a random sample of n estimates of Y, which are denoted by

Yi1,Y2,...,Yn The mean and variance of Y may be estimated by

v=1
n

Y., S,, =
1! Y n;

=

I Ms

fg—?xg—Yf

Mz

(IV.21)
Introducing the difference matrix B of order QxP, where Q=P-1, as

follows

1 -1 0 .. O

o 0 1 -1 (IV.22)

a new column vector B of order Q defined by BY is then
asymptotically jointly normally distributed with mean vector 0 and
the variance-covariance matrix BSyBT. Let p=BY and S=BSyB7, the

likelihood ratio test for testing B=0 against the alternative B'S'B>0

leads to the rejection of the hypothesis if the statistic T2=B7S™'p > Ao,

where Ao is a constant determined by the significance level a. The

statistic F2=[(n-Q)/Q]/T2 has, under the null hypothesis, an F
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distribution with (Q,n-Q) degrees of freedom [17].

Remarks on the choice of parameters

(1) Figure 19 shows a typical bispectrum sample for the
linearity test with parameters K=6, P=7 and r=2, where K is the
number of equally spaced points in the interval (0,x), P is the
number of the "fine" grids and n=4r+1 is the total number of points

in each "fine" grid.

Figure 19. Bispectrum Sample for Linearity
Test with K=6, r=2, p=7, n=9
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(2) Another important parameter to choose in implementing
the test is the "distance" d, which is defined in the value wd/N, the
distance between two neighbouring points on the "fine" grid, where N
is the number of observations. On the one hand, to ensure that the
spectral and bispectral estimates are uncorrelated, d should be
chosen as large as possible. On; the other hand, to ensure no overlap
between "fine" grids, we require d < N/[K(2r+1)]. Therefore, with the
parameters K and r given, the value d is determined by N as above
(e.g., if K = 6 and r = 2 then d < N/30).

(3) The value of truncation point M in (IV.11) is a very
important parameter in implementing the linearity test. In general,
increasing the parameter M means to increase the variance and
decrease the bias of the estimates of f(w) and f(wj;,02), and vice
versa. Thus, the value of M should be chosen such that both the
variance and the bias are considered. The rule of thumb is that if it is
- possible, M should be less than the square root of N [13]. In addition,
the value of M is different from window to window. Equation (IV.23)

shows the relationship between M's using different windows

MM

M M
R,1 R,2 (IV.23)

where MR is some window related parameter. (IV.23) implies that
the ratios between the values of M and MR using different windows
are the same for all windows. Table VII shows the Mgr values for
some standard windows [13].

As an example, suppose that Parzen and Daniell windows are

used, then we have
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Mpr — Mpa

Mg Par MR Dan

If MPar=10, then

M
M =MM =1‘_Z(10)55
Dan M Par 31
R,Par

TABLE VII

THE Mg VALUES

Window Daniell @~ Tukey Parzen

MR 1.7 1.86 3.1

Some Numerical Examples

In order to check the effectiveness of the above test, numerous
simulated linear and nonlinear time series are generated. As an

illustration, we consider the following series:

Series 1: Z,=13Z,_;-0.4Z, , +a,
Series 2: Z,=0.38a,_; + a,

Series 3: Z,=04Z,, + 04Z _;a, , + a,
Series 4: Z,= 0.4Z,, + 0.6Z,_ja, ; + a,
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where {a,} is a white noise sequence. The first two series are linear

ones since they are generated from the AR(2) and the MA(1) models,

respectively. The third and fourth series are nonlinear because of the

presence of the crossing term Z, ;a, ;. For all these series, the

parameters for constructing the linearity test are as follows:

P=7,K=6,r=2,n=9,d=15
N = 500, M=22 ' (IV.24)

The one dimensional and two dimensional Daniell windows are

chosen as lag windows. Under the null hypothesis that the series {Z,}
is linear, the statistic F, has an F distribution with (6,3) degress of

freedom.

TABLE VIII

THE F, VALUES FOR EXAMPLE SERIES

5% upper point of

Series F, F(6,3)
1 1.8 8.94
2 6.7 8.94
3 42.1 8.94
4 54.6 8.94
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Table VIII shows the F, values for the series. From this table,

we can confidently conclude that series 3 and 4 are nonlinear

because their F, values are much greater than the 8.94, the 5% upper

point of F(6,3). However, in general we cannot conclude that series 1
and 2 are definitely linear based only on F, values, of course, they
actually are in this illustration. This is because ‘that the test is not
exhaustive [13]. For example, the bispectrum for some nonlinear
processes can be zero and, thus, the F2 values may be less than the
5% upper point of F(6,3). Figures 20 - 23 illustrate the normalized

bispectral estimates for series 1 - 4, respectively.

Figure 20. The Normalized Bispectral
Estimates for Series 1



Figure 21. The Normalized Bispectral
Estimates for Series 2

Figure 22. The Normalized Bispectral
Estimates for Series 3

62
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Figure 23. The Normalized Bispectral
Estimates for Series 4

Figures 22 - 23 clearly show some trends (near zero the
bispectrum is nonzero), indicating that there is some nonlinearity
involved in the series, and that the lgrger the nonlinearity is, the
more obvious is the trend. It is also ’interesting to note that although
the series 1 and 2 are generated by linear models, their normalized
bispectral estimates, show some vkind of nonlinearity also. This is
unexpected. The reason for it may be due to the limitation of data
length and the accuracy of the white noise sequence {a;}. An
extended data set of length 1000 was generated for each series, and
the resulting normalized bispectral estimates were much improved.
The plots for series 3 and 4 were similar to those for 500 points,
while smaller and erratic values were obtained for series 1 and 2.
This confirmed our earlier suspicion that the trends seen in the
normalized bispectrum of the linear models were due to the limited

length of the sequence. Nevertheless, the test indeed provides
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important information on the presence of nonlinearity, as shown in

Table VIIL

TABLE IX

THE F, VALUES FOR POWER LOAD SERIES

‘ 5% upper point of
Season E

F(6,3)
Spring 40.2 8.94
Summer 95.3 - 8.94
Fall 93.9 8.94
Winter 20.1 8.94

With the same parameters as in (IV.24), the F, values for our
differenced power load (V1V24Zt) are calculated using the same
Daniell windows as before (see Table IX). As expected, these F,
values clearly indicate that nonlinear models may better de§cribe
the power load and, thus, méy make the load predictibh more
accurate. Figures 24 - 27 are plots of the normalized bispectral
estimates for each season. As is seeﬁ frorﬁ these figures, each one
represents some nonlinear effect with different behaviors. This
might suggest that a different nonlinear model may be needed for

different season.



Figure 24. The Normalized Bispectral Estimates
for Power Load in Spring Season
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Figure 25. The Normalized Bispectral Estimates
for Power Load in Summer Season
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Figure 26. The Normalized Bispectral Estimates
for Power Load in Fall Season

Figure 27. The Normalized Bispectral Estimates
for Power Load in Winter Season

In summary, in this chapter we presented a general nonlinear
model, for which linear models turn out to be special cases. We then
considered a statistical test for testing the linearity of a given
process. Numerical simulation results show that the test can provide

us with important information about a given system. Specifically, the
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positive testing result for our power loads indicates the need for
further investigations of nonlinear models. In next chapter, and the
chapters following, we discuss a few nonlinear model schemes.
Hopefully, these nonlinear models may provide us with better

forecasting performance.



CHAPTER V
BILINEAR TIME SERIES MODELS

In chapter IV, we demonstrated the existence of a nonlinear

relationship between the power load {Z,} and the white noise "input"
{a;}. Accordingly, in order to be able to properly describe this
relationship, a study of nonlinear models seems to be necessary.
Although, in chapter IV, a general nonlinear model was also
presented, in practice this model is not very useful in view of the
fact that an infinite set of higher-order transfer functions are
required to sufficiently describe a nonlinear system.

Recently a special class of nonlinear time series model, namely
the bilinear time series model, has been proposed and studied
extensively by Granger and Anderson [19], Priestly [20], and Subba
Rao and Gabr [13]. It has been shown [13] that the bilinear models
may be successfully applied to many real problems. In this chapter,
we introduce the bilinear models to the power load application with
the goal to better describe the relationship between the power load
and the white noise "input".

One of the disadvantages of the conventional bilinear models is
that the number of parameters to be estimated is large. A new form
of bilinear model is considered and it is shown that this modified
bilinear model may significantly reduce the number of parameters

and, in the meanwhile, keep the similar features of the conventional

68
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bilinear models. Another improvement over the conventional
bilinear model is gained by adding periodic or "seasonal" terms to the
model so that a more general bilinear model is created.

Using the proposed bilinear model, 4 load forecasting models,
which correspond to spring, summer, fall and winter seasons, are
developed. The forecasting ability of these bilinear models is then

compared with those for the linear ones.
Bilinear Models

The conventional discrete time bilinear model BL(p,q,m,k) can

be expressed as

ejat—j+, b..Z

0 1

j=1"

h™MB
I M=
[Ty

ijot—i%t—j

T e

1 (V.1)

where {Z;} and {a,} are real valued time series and a strict white
‘noise process, i.e. a sequence of independent zero mean random
variables, respectively.

As is seen from the definition (V.1), an ARMA(p,q) model turns
out to be a special case of the bilinear model (when bij = 0 for all i,j).
To some extent this parallels the argument that a linear model is a
special case of the general nonlinear model (IV.3). As a matter of
fact, it can be shown [20] that the bilinear model can approximate to
an arbitrary degree of accuracy any "well-behaved" Volterra series
relationship over a finite time interval. In view of this, the bilinear
models represent a powerful class of nonlinear models.

We now define the following bilinear model
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o(B)Z, = 6(B)a, + (§(B)Z)(E(B)ay) (V.2)

where ¢(B) and 6(B) are given by (II.13) and (II.17), respectively

and rewritten as follows:

¢w)=1'¢1B-¢2B2-...-¢bBP
O(B) = 1- 8B - 2B2 .. . B4

E(B) and {(B) are similarly defined as follows:

EB)=B+E,B2+... +& Bm
(B)=B+¢,B2+...+ Bk (V.3)

In this case, we have

(EBIZ)(E(B)ay)
= (B+EyB2+... +E,BM)Z)((§;B+{,B2+...+(,Bk)a,)

= (Zt_1+§zzt_2+. . .+§mZt_m)( C] at_1+§2at_2+. . .+§kat_k)
=012 131+82Z 1300t - -+ Zqag

+8281Z¢ 28 1+8280Z pay ot . . +E5 007, 02y

Hm1Zim3r 1 em2Zm@r2t - - FemCkZimark
(V.4)
Now with (V.3) and (V.4), we may easily see that models (V.2) and
(V.1) have exactly the same form. The interest thing is that the
number of parameters required by each model may be quite

different. For instance, consider p=q=2 and m=k=8, up to 68
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parameters are needed in (V.1) while only 19 parameters in (V.2).
Obviously, the later situation is much easier to handle for both
identification and forecasting procedures.

Another important feature of model (V.2) is that we may easily
generalize it to include periodic tenné which, as we have seen earlier,
appear to reflect intrinsic behaviors of many real processes. Similar
to the "seasonal" ARIMA models given by (IL.23), a general

"seasonal" bilinear model may be defined as

05(B)9'y:(B24)¢" ,n(B168)W, = 6,(B)6':(B24)0" (B 168)a,

+(Ep (B)E' [ (B2HE" 1) «(B168)W ) (1 (B) L'y (B24) " (B 168)ay)

(V.5)
where
Em(B24) =1+EB24 +E,B48 + . +& B24m' mx(
= B24 +§,B48 + ... +& B24m’ otherwise
E" W(B168) =1+ " B168+ . +E" ,BI68m" mz0 or m#0
= B168 + + §;'m--B168m" otherwise
(pe(B24) =1+ B24+ (B4 +. .. + (), B24K k=0
= B4+ {,B48 + ..+ (' B24K’ otherwise
I;"kn(B168) =1+ CHIB168 +...+ Q"k"B168k" k=0 or k'#0
= B168 4 . + (" «B168Kk" otherwise
(V.6)

and
dyD '
W, = V1 V24V?682t,
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Now model (V.5) has the ability to model both multiperiodicity
and nonlinearity for a given process and, thus, forms a very useful
model class for general applications.

It should be noted that model (V.4) may produce a little bit
larger residual sum of squares than model (V.1) of the same order
due to the reduced number of degrees of freedom. However, in view
of the AIC value, which will be discussed in detail shortly, and the
ability to model multiperiodicity, the "seasonal" bilinear model given

by (V.5) seems to be superior to the conventional bilinear model.
Identification and Estimation

For simplicity, let us consider a bilinear model of the form

%
Zo+ X 07, =a+EBZ)EBa)+a,
=1 (V.7)

- Obviously, (V.7) represents a particular case of the bilinear model
(V.2) with the pure MA terms dropped and a constant o added. The
identification and estimation procedure for (V.7) disscussed in the
following can be easily extended for the general bilinear model (V.5).

Similar to the conventional identification procedures for the
ARMA models, the steps of fitting (V.7) to a given stationary process
{Z,, t=1,2,...,N} includes

(1) preliminary identification, i.e. determing the orders p, m, k;

(2) for given p, m, and k, estimating the parameters o, {¢j}, {éj},
{ Cj} and o,.

The tool used for order determination is based on a well-known

criterion, namely the Akaike information criterion (AIC), which takes
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into account the estimated residual variance caz of the fitted model

as well as the number of parameters in the model. It will be seen
later that, when we use the AIC as the basis for the order selection
procedure, it will be more convenient to discuss parameter
estimation first and then order selection, even though it would
appear logical to carry out the identification procedure in an opposite

order.
Parameter Estimation

Suppose the order parameters p, m, k are given. The
parameters of (V.7) may be estimated using a method which is
similar to that for the linear models, i.e. the maximum likelihood-
algorithm. This is true because, in the case of the bilinear model, we
assumed that the residuals a, are independent N(0,6,) random
variables and that the mappings betwéen Z, and a, are one-one.

Now let h = [h;,h,,...,h ] denote the complete set of parameters
with

h; = ¢,, i=1,2,...,p;

hpy =10, by =8, i=2,3,..,m;

h =g, i=1,2,...,k

h

p+m+i

p+m+k+1 = & (V.8)

where n=p+m+k+1 is the total number of parameters plus 1. The
conditional maximum likelihood estimates of h are given by

minimizing
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N
S(h)= Zat
t=y+1 (V.9)

where N is the number of observations and y=max(p,m,k),

representing the number of initial values needed to evaluate the

residuals {a,} from the model (V.7).
Using the recursive Newton-Raphson algorithm, the optimal

estimates of h by minimizing S(h) are gi\(eh i)y
hG+D) = hO) - H-1(h@)G(h D) (V.10)

where h() is the estimated parameter vector obtained at the ith

iteration, and gradient vector G and Hessian matrix H are given by

oS oS dS .T
G(h)=[ ’ yeees D ]
dh; "3h, " ohy
a2s
H(h) ={ -}
ahiahj (V.11)
It is not difficult to show that
N aa
——aahs =2 Ya, o i=1,2,...,n
t-Y+1 (V.12)
\ 2
32s N Jda, da, N 0%,
=2 ¥ ———+2 Xa, ©i,j=12,...,n
9hjdh; y_ys1dh; oh; 7/ §3ham
(V.13)

It may be quite tedious to compute all the terms of the second sum

of (V.13). However, if the parameter vector h() converges to such

values that the residuals {a,} are independent, then close to h() the
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second sum of (V.13) will be approximately zero since

azat
Ela, ahiah.]=0
: (V.14)
In this case
2
a:.ai.zz > g:l—tg%t— i,j=1,2,...,n
1] t=y+1 i %% V1%

It can be shown that when (V.15) is used the estimate of the Hessian
H(h) is always assured to be positive semidefinite [20]. Note that the
estimated Hessian F(h) may be singular or close to singular, and,
thus, some numerical problems may arise. One common way to deal
with this problem is the Levenberg-Marquardt procedure [9]. In this

procedure, an approximation

H(h)+ I (V.16)
is used for the Hessiari, where & is some small positive scalar and I is
the nxn identity matrix.

With the above mﬁdified» Hessian matrix (V.16), all the partial
derivatives needed to implement the modified Newton-Raphson
algorithm are now only those of (V.12). A set of recursive equations
for these derivatives can be easily obtained. Differentiating (V.7)

w.r.t. each of the parameters, we have
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aat . . 12
a—q)j-—“\l’(q)j)'*' t—j, J_ ’ 9”"p
aat .
E;——W(gj)—zt—j(c(B)at)’ J—2,...,m,
aat 1=12,....k
Tj—“(&(B)Zt)at_j'\V(Cj), 1=1,2,....k;
aat :

—=-y(a)—-1

do (V.17)

where

oa ¢
W(hl) = (&(B)Zt)(C(B) éh_)
1 (V.18)

The recursive Newton-Raphson algorithm is now complete and
summarized as follows:
(1) Initialization

(i) set

a, =—=0, t=1,2,...,7;i=12,...,n
i (V.19)

(ii) select a proper set of initial values for h's to obtain a
good set of estimates of the parameters. A method for obtaining this
type of initial values is considered in the following section.

(2) For a given set of parameters h(i),r calculate the residuals
{a;, t=y+1,...,N} using (V.7) and the derivatives aat/ahj using the
recursive equations (V.17), (V.18) and (V.19).

(3) Evaluate the gradient vector G using (V.11) and (V.12) and
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the modified Hessian matrix using (V.11), (V.15) and (V.16).

(4) Update the parameter estimate h(+1) using (V.10).

(5) Stop the iteration if the required accuracy is obtained (the
criterion for accuracy is usually set by relative change of each
parameter value for two | adjacent iterations or the mean square error

of residuals or both), otherwise go to step 2.
Remarks on Calculation of the Derivatives

In addition to calculating the derivatives directly by (V.17) and

(V.18), numerical estimates of the derivatives have been found to be

a very good alternative. In this method, the derivative of a, w.r.t. a

particular parameter hj is obtained by perturbing hj and, in the

meanwhile, keeping the remaining parameters constant, i.e.

aa

ah ~{a,(h))-a,(hy)}/8;, j=12,..

(V.20)
where ’
hO =[h, . h- .. hn]
= [h, . hJ+8

and 8j is a small real number, typically 8j=0.001. Clearly, the

numerical method (V.20) has the advantage of general applicability

and simplicity of implementation, because for any model all we need

for the derivatives are just calculations of the residuals a,'s rather

than their derivatives, which typically are much more involved.
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Order Determination

As mentioned earlier, the Akaike information criterion AIC is
used to determine suitable order values of p, m, k. The AIC is

defined as

AIC=(N- y)log&z +2(number of independent parameters)

a
(V.21)
with
. N
6§=—}—S(h)=———1——— Y42
N-vy N-v._
t=y+1 (V.22)

where h and 5t are the estimates of the parameters and the
corresponding residuals, respectively. In using the AIC criterion, we
fit a group of models with different combinations of p, m, k; the
model with minimum AIC value is chosen. Clearly, to minimize the
AIC value we need to strike a balance between reducing the value of
the residual variance and reducing the number of model parameters.

In general, searching over a three dimensional grid for optimal
values of p, m and k would be very costly. Rao [13] has suggested the
following procedure.

(1) Find the best AR(p') model for Z,.

(2) Set an upper bound for p, m, k, say I', which is greater than
or equal to p'.

(3) For a given value of p, fit an AR(p) model.

(4) Fit a BL(p,0,1,1) model using the modified Newton-Raphson

algorithm as described above with the AR(p) coefficients as initial
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values for the {¢;} and a, and b;;=0. Calculate the corresponding 0‘32

and AIC value.

(5) Fit BL(p,0,1,2) and BL(p,0,2,1) models using the parameters
of a BL(p,0,1,1) model as initial values and setting the remaining
initial values to zero. Calculate the correéponding residual variances
and AIC values for both fitted models and choose the one which has
the smaller residual variance (This is equivalént to the choice of the
smaller AIC value) to provide the starting values. for BL(p,0,2,2)
model. |

(6) Similarly, fit BL(p,0,3,1), BL(p,0,1,3), BL(p,0,3,2),
BL(p,0,2,3), BL(p,0,3,3), . . . until either m or k have reached the
common upper bound I' or the AIC value starts to increase as m

and/or k increase. Figure 28 illustrates this searching procedure.

AR(p) — (1,1) —» (1,2) — (1,3) —

2.1) \/‘(éz) J'és)
y \// \// ......
(3;1) , (3,2) 3,3)

Figure 28. The "Nested" Search Scheme for
Order Selection
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(7) Repeat the steps from (3) to (6) for p=1,2,...,I.

The final model will be the one which has the minimum AIC
value. Obviously, by this procedure we have determined the order
parameters p, m, k and also the estimates of parameter values. Note
that the steps (5) and (6) above correspond to the conventional
bilinear models. In the case of the modified bilinear model, since the
number of parameters is p+m+k instead of p+mk+1, the searching

process may be significantly reduced.
- Diagnostic Checks and Forecasts

In the case of linear models, we check the whiteness of a
residual sequence by examining its autocorrelation functions as -
discussed in chapter II and chapter IIIl. However, this kind of test
for "white noise" based on the behavior of the autocorrelation
functions may not be adequate when nonlinear models are

considered. As an exdmple, consider the process defined by
a,= e +Pe;_ 16,9 / (V.23)

where e, is a strictly independent random variable with zero
mean and constant variance. Clearly, a, has zero mean and constant
variance also. It is easy to show that the autocorrelation function of
a, satisfies p,(k)=0, for all k#0. This example clearly indicates that for
nonlinear processes the residual sequence can be white even when
there is some structure in the process which has not been adequately
"modeled. Second order analysis is not enough; a higher moment

analysis is necessary. One method of checking the independence of
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the a/'s through higher moment analysis may be constructed as

follows.

Let yt=at2 (if a, is independent, so is y,). Define

_By Ry VN

R (0,1,1 ,
Y( ) (V.24)

where ﬁy(o) is the estimated variance of {y;}, ﬁy(l) the estimated

A

autocorrelation function of {y.} at lag 1 (see (IL2)) and Ry(o’l’l)the

estimated fourth order central moment with t;=0 and ty=t3=1, which
is defined by

Ry (t1,t0,t3)=El(Y —B Ve, —Hy XV itt, ~Hy )T ptt, —Hy)l
y t Ry Mty TRy Mty TRy Mttty TRy (V.25)

The natural estimates of p, and Ry(ty,ty,t3) are obtained by

N—y
a 1 _ _ _ _
]).l t Ry(tl,tz ,t3 )‘:E tzal( yt_Y)(yt-Hl -y)(yt+t2 -Y)(yt+t3 -Y)

’

S7=

™Mz

1
Nt
(V.26)

where y=max(ty,t,,t3); t;20, t,20, t320. It is known [13] that the
statistic W, under the hypothesis that y's are independent, is
asymptotically distributed as standard normal N(0,1). Like the Q
test, which was discussed in chapter II, if the average value of W is
high compared with some percentage point of N(0,1), then y, is not
independent. Note that the W test is valid only for those processes
which are stationary up to the fourth order.

We now consider forecasting using the bilinear model (V.7),

which can be equivalently written as follows when all the
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parameters are determined,

ij t—i? t—j

j
1 (V.27)

k
Z b..Z +a,
j=1 i=li=

p m

Similar to linear models, the minimum mean square error predictor
of a future value Z, = may be found by taking the conditional
expectation on both sides of (V.27). For bilinear models, however, the
situation is more complicated and more computation is involved than
for linear models. This is mainly due to the evaluation of expressions
such as E[Z,,  .a, +m_jIZt,Zt_1,...,Zt_n] for i<j<m. Therefore, to obtain m
step ahead forecasts by a given bilinear model we need, in addition
to the procedure outlined in chapter II for linear model forecasts,

the following properties:

(1) The variables Z,, and a,, , are independent for s>r.

(2)
Ziym-idt4m-j Lj2Zm
0 j<i and j<m

E[Z . a AZ,Z .,...] =
! 2] Z(m-i)a (4. i<m and j>m

t+m-1 " t+m-)
ZA, (m-i,m-j) i<j<m
(V.28)
where, in the last case, the variables Z,,  and a, ¢ are not

independent since s<r. In this case, we may recursively evaluate
ZA(r,s) by substituting t+L in (V.27) for t and then multiplying
a(t+L') on both sides (L,L'=1,2,...), and finally taking conditional

expectation. It can be shown that

G2

ZA (l‘ r)= E[at+r] a (V.29)
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As an illustration of using above algorithm for forecasting,

consider the following bilinear model.

Zy=01Z¢ 1 + 022 + 0+ 0y 17081 + by 37183 + D aZ 2814
(V.30)

Applying the properties just presented as well as those for linear

models to (V.29), we have

Z(1)= ¢1it +0oZy  + ot bz,lvzt-klat + bl,ﬁziat-z + 0547 1313
Z((2) = 0,Z((1) + $Z + & +by 3Z,(1)ay  + by 4Z 2, 5

Z(3) = 01Z,(2) + 99Z,(1) + @ + by 3Z(2)a, + by 4Z,(1)a,
Z@4) = 0;Z,(3) + 0,Z,2) + o + b1;3ZAt'(3,1) + by 4Z(2)a,
Z(5) = 01Z,(4) + $,Z,(3) + @ + by 3ZA(4.2) + by 42ZA((3,1)

To find ZA,(3,1), ZA4,2), . . . , substitute t+2 for t in (V.30) and then

_ multiply both sides by a,, we obtain

Ziypa1 = 0124418041 + 9228y + 02, +by 97,8058,

+ by 32418018041 + by 42,2084

Taking the conditional expectations on both sides leads to
ZA,(2,1)=§GZ +b,, (Z,62 +bs 22, _1G2
¢ (1) =905 +b3 12,03 +51,38;_1%,

Similarly,
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_ 2 52
ZA,(3.1)=4,ZA (2,1)+¢,07 +b ;ZA (2.1)a +b, ja, _ 0"
) 52
ZA,(3,2)=¢,0, +b, |Z t(1)cs +b, .07
_ 2
ZA (4,2)=§,ZA (3,2)+ ¢2°a +b, 42,07

Simulation Results

Using the identification procedure presented in previous
sections, 4 seasonal bilinear models were developed based on the
same 4 week hourly load periods as for the ARIMA models. These

models are summarized as follows:

Summer:
(1-.24B-.19B2)(1-.39B168)W, = (1-.74B24-.10B48)a, (V.31)
+ W,_163(--0010B-.0004B2-.0027B3)a,
Fall: ‘
(1-.06B)(1-.46B168)W, = (1-.63B24-.21B48)a, (V.32)
+ W,_165(--0015B24-.0007B48+.0050B72+.0022B%6)a,
Winter:
(1-.14B)(1-.68]ﬂ3168)Wt = (1-.62B24-.14B48)a, (V.33)
+ W,_;63(--0015B+.0007B2-.0028B3)a,
Spring:

(1-.21B)(1-.50B168)W, = (1-.53B24-.16B48)a, (V.34)
+ W,_;¢3(--0033B24-.0017B48)a,
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Each model above corresponds to the one which has the
minimum AIC value in the range of order values with 0<m<$5, 0<k<5
and selected combinations of m', m", k' and k" for that particular
season of the year 1983. In the identification stage, we used the
ARIMA models developed in chapter II as the best ARMA models.
Thus, the searching was actually over the combinations of m, m', m"
and k, k' and k". Since the values of m" and k" relate to the delay of
multiple of 168, m" and k" are set to 1 if needed to keep a reasonable
size of data base. The initial values for each parameter were set to be
Zeros.

It is interesting to note that for each model above they all have
one weekly term W,_;cc and may or ‘may not have daily terms a; 5,
in the bilinear part, indicating the usefulness of the seasonal
extension of the conventional bilinear models. Another interesting
feature is that the bilinear coefficients are small, but their inclusion
has a significant effect on the results of both the residual variance
and the AIC value as shown in Table X.

To test a,'s independency, the W values for each bilinear model

are calculated using (V.24). As seen from Table XI, these W values

clearly indicate that a,'s are independent. A whiteness test for a,

gives no indication of model inadequacy also.



TABLE X

COMPARISON OF RESIDUAL VARIANCES AND AIC VALUES
FOR ARIMA AND BILINEAR MODELS

ARIMA Bilinear

Season ™5 AIC o2 AIC

Summer 628.72 3083.64  610.99  3075.99
Fall  505.98 2984.26  486.02  2973.03

Winter 419,58  2894.77  410.35  2890.13
Spring  545.88  3020.55 1530.42 3010.81

TABLE XI

THE W VALUES FOR THE BILINEAR MODELS

5% upper point of

Season IWI N(0,1)
Summer 1.84 1.95
Fall 1.70 1.95
Winter 1.66 1.95

Spring 1.63 1.95




87

We now consider forecasting using the bilinear models (V.31)-
(V.34). Since each model includes some periodic bilinear terms, this
makes it possible to avoid the evaluation of expressions such as
E[Z, 2144l Zis Z, 4, cees Z, ] for r>s>0 and, thus, extremely simplifies
the forecasting process. «

For the same three week forecasting periods as for the ARIMA

models, 1 to 24 hour ahead load forecasts for the stationary series

{W,} are first calculated for each of the above models. Then the
forecasts for the original data {Z;} are found using the relationship

between Z, and W, given by

W, =V1V24Z,
= (1 - B)1 - B4z,
=(1-B-B2%+ B2)Z,
=Z-Zi 1 -Zi gy +Zy s

For example,

Z(1) =W +Z + Ziy3-Z o4
2(2) = W2) +Z(1) + Zy 23 - Z; 53
Z(3)=W3) +Z(2) +Z; 3 -Zi

and so on. Table XII shows the comparison of forecasting errors for

the ARIMA and bilinear models.



TABLE XII

COMPARISON OF FORECASTING ERRORS FOR THE
ARIMA AND BILINEAR MODELS (1983)

AVERAGE ABSOLUTE % ERROR
Season  Forecasting Period ARIMA Bilinear
Summer July 29-Aug.17,1983 = 4,17 4.38
Fall Oct.21-Nov.9,1983 4.68 4.26
Winter  Jan.21-Feb.9,1983 3.85 3.79
Spring  April 22-May 11,1983 5.24 4.71

From this table and Table X, it is clear that the bilinear model
provides a better description of the relationship between the power
load and the white noise "input" than the ARIMA models and, thus,
improves the forecasting ability.

A combination of bilinear models and the standard TF models
discussed in chapter III is also considered. These combined TF-
Bilinear models are given by

Summer:

4.30 +2.26B (1-73B%4_-.111B4®)a  +BL1
7z =— i T
t 1—.70B+.104B2 ¢ (1—.13B—.1732)(1—.469B168)VIV

24

_ _ _ 2_ 3
BLI—V1V24Zt_168( .0013B-.0016B“-.0017B )at
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Fall:

- 019+.466B (1-.612B**-.0888%%-.16787%)a_+BL2
Z =— ' T +
t 1+.985B+.884B2 ¢ (1—.053B)(1—.479B168)V1V24

_ _ 24 48 72 96
BL2=V V,,Z . .oo1§7B .00062B°+.0054B ' +.00289B”)a

Winter:

1615-124B . (1—66B**-.076B%)a +BL3
- - T +
t (1—.042B)(1—.744B163)V1V24

7 =
t  1— 587B+.148B2

_ ' _ 2_ 3
BL3—V1V24Zt_168( .0018B+.0014B“ —-.0025B )at

Spring:

24 48
1-.531B“*~.154B*)a_+BL4
-679+.145B . )a,

Z,= t 168
(1-.190B)(1-.515B"°*)V.V,,

t  1—.999B+ 328B2

_ _ 24 43
BL4 = V1V242 8( .0035B“"—-.0017B"")a )

t-16
Table XIII illustrates the results of residual variances and AIC
values for the standard TF models and the combined TF-Bilinear
models. Table XIV shows the comparison of forecasting errors for tl;e
linear and bilinear models. From these tables, we see that the
bilinear models indeed have potential ability to improve the
forecasting performance in view of the fact of smaller AIC values
than their corresponding linear models. The reason that no
significant forecasting improvement was found from our simulation
results may be due to the limited number of samples. In a long

range, the bilinear models should provide better results than the



ARIMA and TF models.

TABLE XIII

COMPARISON OF RESIDUAL VARIANCES AND AIC VALUES
FOR THE TF AND TF-BILINEAR MODELS

Transfer Function B TF-Bilinear
Season o2 ~ AIC _o2 ~ AIC
Summer 523 2991‘,71 509 2984.46
Fall 489  g965.56 471  2955.48
Winter 391 . 2857.10 . 384 2854.83
Spring 54‘1( 3011.67 528 3004.47

TABLE XIV

COMPARISON OF FORECASTING ERRORS FOR
THE LINEAR AND BILINEAR MODELS

AVERAGE ABSOLUTE % ERROR
Season ARIMA Bilinear TF TF-Bilinear
Summer 4.17 4.38 3.82 4.45
Fall 4.68 4.26 4.49 4.10
Wintel‘ 3.85 | 3.79 - 3.35 2.91

Spring  5.24 471, 553 5.08

90
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In summary, a general bilinear time series model was proposed
and applied to the STLF with the goal to exploit the nonlinearity
inherent in the power load. It is found that the proposed bilinear
models with the ability to model both nonlinearity as well as
multiperiodicity provide a very useful model class for general
applications. In addition, using the modified bilinear model, the
number of parameters to be estimated may be reduced significantly
comparing with the conventional bilinear models. This will be very
helpful for both estimation and forecasting procedures.

Using the proposed bilinear model, 4 regular bilinear models
and 4 combined TF-Bilinear models, which correspond to spring,
summer, fall and winter seasons, were developed. The forecasting
ability of these bilinear models was then compared with that for the
ARIMA and TF models.

In the next chapter, we investigate another ‘type of nonlinear
model which is particularly suitable for describing the relationship

between load and temperature.



CHAPTER VI
HAMMERSTEIN NONLINEAR MODELS

In the last chapter we presented a bilinear model to describe
the relationship between the power load and the white noise "input".
The purpose is to exploit the overall nonlinearity inherent in the
power load process. In this chapter we intend to further investigate
the nonlinear load-temperature relationship discussed in chapter III.
Recall that the nonlinear function described in chapter III was
obtained by fitting to the data usian a regression method. This
method, however, produced an averaged result and, thus, could not
accurately track the slowly-changing characteristics of the load-
temperature relationship. A nonlinear model called the Hammerstein
model is presented in this chapter and is expected to alleviate the
problem encountered earlier and, thlis, improve the forecasting

performance.
The Hammerstein Model

The Hammerstein nonlinear model was originally considered by
Narendra and Gallman [21] and developed by Chang, Haist, Gallman
and Greblicki [22]-[25]. Examples of using this model for engineering
application can be found in [5],[26]. Figure 29 illustrates the

nonlinear Hammerstein model structure with correlated noise in the

92
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output.
White Noise a ¢
Noise Model
N(B)
Nonli Gai Linear Transfer 8t
onlinear Gain
I —> G(u) =¥ | Function H(B) + >
nputy t A Output z,

Figure 29. Hammerstein Model for the STLF

Input u, and output z, are assumed to be stationary. For our

temperature T, and power load Z,, we have
u, = V1V24Tt and Z; =«V1V24Zt (VI.I)
Mathematically, the model can be expressed as

1 —s
+...+coSB

-1, -r
1+81B +...+8rB

O + 0B
z, = 0 1

(Yo *+Y1u¢ +,..+yku{‘)

_1 _‘q
+1+61B +...+9qB

| — a;
1+6,B "+...+¢_B
¢1 ¢P (V1.2)

Clearly, the nonlinear Hammerstein model structure is similar to that

of simple nonlinear model described in chapter III. This structural
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similarity allows us to adopt the orders of those models in (VIL.2).
Accordingly, all we need next is the estimates of the y's as well as the
other estimates of parameters in (VI.2). In next section, we will
derive a systematic algorithm for these estimates and show that the
Y's so obtained are time-varying least squares estimates instead of
fixed ones. |

The basic idea of the Hammerstein vmodel is that the
parameters are to be estimated as a Whole instead of séparately. This
allows us to obtain a function which ‘can change with the seasons,
rather than one which is fixed. This should lead to an improved

description of the load-temperature relationship.
The Identification Algorithm
Consider the first term of (VI.2)

1 =S
+...+cosB

-1 -1
1+81B +...+8rB

Wn + 0B
y, = 0 1

(yO +ylut+...+yku{‘)
(VI1.3)

By expressing y, by its available past values and input u,'s, (VI.3)

becomes
k i r
Yt =(Z+. ZMI(B)ut - Z Sjyt—J
i=1 i=1 (VL4)
where a=(0g+0; +...+ o)y

M;(B) = (wg + o;B1+.. .+ @ BS)y;

Similarly, the second term of (VI.2) can be expressed as
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q
= 263~
i=1 j

n Mo

q)jet_ j +a,
1 (VL5)

Define the following k(s+1)+r+p+q+1 column vectors

q(t)=[ut,...,ut _ S,...,u{‘,...,»u{‘_ sVt =17 Yt —

‘ T
g _ 1y _ q’et 1€ — p,1]

h = [0gY1,0171-s@gY1 50403 D0 Vs @1 Vg r+++» P Vi s~01 5+++5-0p
01101100 sw0r-0p00] T | (VL6)

Where T denotes the transpose. The system output is then given by
z, =y, +& =qt)Th + a, (VL7

By minimizing the sum of squares of the errors a,

N,
S(h)= Yaj
t=1 \ (VL8)

where N is the data record length, an efficient estimates of the

parameters are obtained by

N T—1 N
h=[ Zq(t)q(t)" I~ Xq(t)z,
t=1 t=1 (VL9)

where the vector q(t) may be constructed by a proceduce which will
be presented shortly. The major computation of (VIL.9) is the
inversion of a large (k(s+1)+r+p+q+1) x (k(s+1)+r+p+q+1) matrix.

Alternatively, the recursive least square (RLS) algorithm [27]
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may be used as an adaptive method for the parameter estimation.

The RLS algorithm may be summarized as follows:

1
h(t+1)=h(t)+ p(t)q(t; P41
| A+q(t+1)" p(t)q(t+1) (VI.10)

where

(- POat+Da+Tpe),

: 1
p(t+1)=x(p T . ..
A+q(t+1)" p(t)q(t+1) (VL.11)

where A is a forgetting factor between 0 and 1, and p(t) is a gain
matrix with initial value p(0)=tI, where tis a positive number, say
100, and I an identity matrix. |

Before using (VI.9) or (VIL.10) and (VI.11), the unknown
sequences {y,}, {et}r and {a;} must bg specified. The following
procedure may be employed for this purpose:

1. Consider a noise free system as shown in Figure 30.

Nonlinear Gain g Linear Transfer
—> G(u) —®| Function H(B) [
Inputu X, Output z,

Figure 30. Hammerstein Model of a Noise Free System

In this case, (VI.6) becomes

q(t)=[ut,...,u _
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h = [0)Y1,01 7] OgY] s++-sD(Ycs @1 Vg1 Qg Vo0 ,...,-Sr,oc]T (VI1.12)

where {y;} are replaced by actual output sequence {Zt-j}' Since all
the elements of q(t) are now available, using (VI.9) and (VI.12) we
obtain the initial estimate of the parameters in the deterministic
portion of the noise correlated Hammerstein model.

2. With the initial estimates obtained in step 1, the estimates

of the sequence {y,} can be generated and the sequence {g.} can be

found by
€ =2 - Y - (VI.13)

3. Once {g;} is known, we can estimate the parameters in the

noise model as we did in earlier chapters and then find the estimates

of the sequence {a}.

4. With these sequences and initial parameter values,

improved estimates of the parameters can be found from (VI.9) or

- (VL.10). These improved estimates produce another sequence ({y,}

and sequence {g,}. At this stage, however, the sequence {a;} may be

generated directly by

a,= z, - q©Th (VL14)
Steps 2-4 are continued until some specified criterion is obtained.
Remarks:

1. There is some redundancy in estimating the parameters of
o's and y's because s+k+2 parameters need to be determined for w's

and y's but (s+1)k+1 parameters are actually estimated as shown in



(VL.6).

Without loss of generality, (VI.3) can be rearranged as

where

1+ (o'lB"l +..+0B~S

y —
Uy 81B_1 +...+8rB

' . '

(ol =1 i=1,2,...,S
- (00

'Yj =mbyj , j=L2,....k

Clearly, yj' is the direct estimate of (VL6) while

o < DL -D+i+]

hsrL-1+1

S |l \J
- (Yo +Yquete--+Yu

i=12,...,s;L=12,...,k
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(VI.15)

(VI.16)

(VI.17)

From these k set of ®'s, we choose the set which has the minimum

'

root mean square error. Then Y, can be found by

Yo =0/ (1+@)+..+w,)

(VI.18)

2. Consider a typical example where the orders of (VI.2) are as

follows:

s=1,r=2,k=3,p=4,q=2

For this example, the number of parameters to be determined is

k(s+1) +r+p+q+1 =15

This requires the inversion of a 15x15 matrix. This seems to add a
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large computational burden to the algorithm. However, reference [23]
showed that a matrix of that size is adequate for most engineering
systems and can be inverted without a real problem.

3. Since the power load is a slowly-changing process, updating
parameters every hour when a new hourly reading is available may
not be necessary. In this case, a batching method of modified
Newton-Raphson algorithm discussed in chapter V is found
extremely efficient. To calculate the derivatives numerically, the

residuals {a,} of the Hammerstein model for a given set of estimates

of parameters may be found by the following stages:

(1)
X, = V1V24('y'0 +'y'1Tt +...+'y'thk)
(2) ] L
1+mlB_1 +...+oosB_s
Ve = -1 R
1+81B +...+0_B
r
3)
& =Z¢ - Yy
4

a, = (1+¢;B-1+. . .+¢pB-P)et -(0;B-1+.. .+6qB'Q)at

With these residuals, i} is easy to estimate the gradient vector G and
Hessian matrix H and, thus, update parameter vector h.

Once the parameters of (VI.2) are determined, the diagnostic
checks and forecasts follow exactly the same procedure as for the

simple nonlinear model, which was described in chapter III.
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Simulation Results

For the purpose of comparison, the same four week load and
temperature readings as for linear TF models are used to develop
the corresponding nonlinear Hammerstein models. Since the
Hammerstein models have a structure similar\ to the simple extended
nonlinear models, which were presénted in chapter III, the
parameters of the simple nonlinear models were used as good initial
values for the Hammerstein model development. Using the
identification procedure presented above, 4 Hammerstein models are

developed and summarized as follows:

Summer:

_ 1+.629B
t  1-.633B+.086

Z >(279.00-157.72T, +1.83T2—.0069T>)
B t t t

1-.716B2* - 103848 .

(1-.10B—.162B%)(1-.504B108)yv v_ 't
1V24

+

(VI.19)
Fall:

1-.477B

Z = 5
t  1-.996B+.193B

(381.25+14.20T, —.38Tt2 +.0028Tt3)

1-.750B%4 +.127B48 _ 230872
+ 163 3
(1+.091B)(1-.704B'8)v v,

(VI.20)
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Winter:

1+.535B

Z =
t  1—.589B+.184B2

(238.80+1.076T, - O98Tt2 +. 0009Tt3 )

1-.643B%4 - 064B48
163 3
(1-.024B)(1-.758B' %)V V.,

(VL.21)
Spring:
7 - 1+.842B 5 (243.00 - 6.246T +.027T2 +.0002T)
t 1-.108B—.332B t t t
1-.547B%4 _ 130B48
168y v_ -t
(1-.095B)(1-.612B* )V V.,

(VL.22)

Unlike the simple nonlinear ;hodels, which use the same
nonlinear function to describe the load-temperature relationship for
a whole year, the Hammerstein model produces 4 different nonlinear
functions, each for one season of the year and, thus, may track the
changing characteristics of the load-temperature relationship. These
functions are plotted in Figures 31-32. Figures 31(a)-(d) illustrate
the overall behaviors of the nonlinear functions fitted by the
Hammerstein models. Figures 32(a)-(d) depict the details of each
nonlinear function corresponding to an appropriate temperature
span.

By comparing the Hammerstein models with the simple
nonlinear models, we can observe not only the changes of the

nonlinear function itself but also some changes of the parameters of
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transfer function and noise model components. This further indicates
the necessity of adjusting all parameters simultaneously. Table XV
compares the forecasting results of the Hammerstein models with

those for the simple nonlinear TF models.
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Figure 31. Nonlinear Functions from Hammerstein
Models
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Figure 32. Plots of Figure 31 with Proper
Temperature Span
(



105

TABLE XV

COMPARISON OF FORECASTING ERRORS FOR THE SIMPLE
NONLINEAR TF AND HAMMERSTEIN MODELS (1983)

AVERAGE ABSOLUTE % ERROR
Season Nonlinear TF Hammerstein
Summer 3.55 3.41
Fall 3.41 3.42
Winter 2.84 \ 2.85
Spring 5.16 | 4.54
TABLE XVI

COMPARISON OF FORECASTING ERRORS FOR SIX DIFFERENT MODELS
AVERAGE % ERROR OVER FOUR SEASONS (1983)

ARIMA Bilinear TF TF-Bilinear Nonlinear TF Hammerstein

4.49 4.29 4.30 4.14 3.74 3.56
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Averaged over the four seasons, the Hammerstein model had 3.56
average percent error, comparing with 3.74 average percent error
for the simple nonlinear TF model. This translates into improvement
of 5%. Table XVI compares the average percent errors over the four
seasons for each forecasting method discussed in the paper.

From Table XVI, it is clear that the Harnmcrstein model, with
the ability fo include temperature as an explicit input and model
slowly-changing nonlinearity, gives the best result for the STLF. Now
we may have the following conclusions:

1. The electric power load is a nonlinear slowly-changing
stochastic process. An appropriate nonlinear model may be more
accurate for the STLF than a linear one;

2. Weather variables such as temperature are very important
to load forecasting. Their explicit inclusion may improve the
forecasting performance significantly. Therefore, further
investigation of temperature effects on load consumption should be a
fruitful research area for the STLF and this forms our major topic in

the next chapter.



CHAPTER VII
TEMPERATURE ENHANCED MODELS

From the previous chapters we found that temperature may
influence the forecasting results significantly. Whenever
temperature, as an explicit variable, is added to a model (e.g., TF
model, TF-Bilinear model), it always improves the forecasting
performance to some extent. This clearly indicates the possibility of
improvement of forecasts by further investigating temperatue
effects on load consumption.

One possible way to obtain such forecasting improvement by
temperature enhancement is to utilize kth step ahead forecasting
errors or the sum of 1 to k step ahead forecasting errors to adjust
model parameters, instead of using the one step ahead forecasting
error (residual) as before. The idea behind this comes from the fact
that one hour ahead (i.e., one step ahead due to hourly readings)
temperature change may not have much effect on load pattern
changes. This is also true for sudden temperature changes, in which
case it usually takes several hours before obvious temperature
effects on load begin to be effective. In other words, the
traditional TF model can not make full use of temperature
information.

This fact may be further viewed by figure 33, which illustrates

the summer load forecastes using the standard TF model (II1.27). As

107
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is seen from the figure, the forecastes are almost always either
overpredicton or underprediction of loads for several days,
corresponding to decreasing or increasing trends of the actual loads,
respectively. This may suggust that if model parameters could be
adjusted such that no obvious trends of underprediction and

overprediction exist, then we would expect better forecasting

results.
3000
= 2000 :
=]
<
Q
(|
1000 1 1 1 1 1 1 1 1 1
S S
3000
=
~ 2000
=
]
o
]
1000 1 1 1 1 L 1 1 1

M T W T F S S M T W

Actual  ------ Forecasting

Figure 33. Summer Load Forecasts Using Model (III.27)
July 29-August 17, 1983
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In this chapter, we discuss algorithms which may be used to
apply the above temperature enhancement idea to the standard TF
model and the Hammerstein model and, hopefully, obtain further

forecasting improvement.
The Algorithm

The method used for temperature enhanced model
development is the same modified Newton-Raphson algorithm as
used for the bilinear models and the Hammerstein models. The only
difference from the previous models is that the kth step ahead or the
sum of 1 to k step ahead forecasting errors are used to compute the
gradient G and the Hessian matrix H instead of the residuals, which
are the one step ahead forecasting errors. This is equivalent to using
1 to k step ahead temperature information as well as the load,
because 1 to k step ahead temperature readings must be available to
make the kth step ahead forecasts and, thus, obtain the kth step
ahead forecasting errors.

It is clear that the temperature enhanced model may be
applied to both standard TF and Hammerstein models since, in each
case, we may use 1 to k hour ahead temperature information to
compute the corresponding forecasts and, thus, the forecasting
errors. These errors, in turn, may be used to update parameters.

When the sum of 1 to k step ahead forecasting errors is used to
adjust parameters, the gradient vector G and the Hessian matrix H

may be computed as follows.

let a,,; = Z,,; - Z,(i) represent the ith step ahead forecasting
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error, the sum of squares of a;,; for lI<i<ul is given by

S = lil a2 =a2 +a2 + +a2 1<lisul<24
Sot+i t+ll 0 t+l0+1 77T Tt4+udl” T T T

- (VIL.1)
where 11 denotes the lower limit and ul the up limit for forecasting

steps. The total sum squares of error is then given by

— 2 2
S(h) = Z S Z (at+ll t+11+1+'"+at+ul)

t=7y t=y (VIL.2)

Following the same discussions for Egs (V.6)-(V.10), we have

asm_, N %y % | 1
EN 22 @7 T teu Tp, )
t= i i (VIL3)
3°S(h) - g( %,y % t+ll +8 t+ul % t+ul
han, "~ 2y on o, Oh, o,
= i j i (VIL4)
let
N da
_ Ferk
ok n g
t=7 i (VIL.5)
=2 N Rk Pk,
Sy b, on,
= i | (VIL6)

then
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u
G= X Gk and H= Hk
k=1 k=11 (VIL.7)

clearly, when k=ll=ul=1, it comes back to our early algorithm.
Once the gradient vector G and the Hessian matrix H are

obtained, parameter update, model diagnostic checks and forecasts

follow exactly the same procedure as for ‘the standard TF and

Hammerstein models.
Simulation Results

Again, the same four week load and temperature readings as
before are used for model development. Then, each model developed
is applied to make 1 to 24 hours ahead load forecasts for a three
week period. Since the goal of this chapter is to investigate the
enhanced temperature effects on thé STLF, the same structures of
. the standard TF and the Hammerstein models developed in earlier
chapters are used to build models.

Table XVII illustrates the forecasting results using the
temperature enhanced TF models obtained by adjusting parameters
through 1, 6, 12 and 18 hour ahead forecasting errors, respectively.
From this table, it is easy to see that the temperature enhanced TF
models do provide better forecastmg performance.

Table XVIII shows the forecasting results for the temperature
enhanced Hammerstein models. Comparing with Table XVII, the
Hammerstein models, even without temperature enhancement, are
still better than the TF models, further indicating the importance of

the nonlinearity involved in the STLF application. On the other hand,
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when the temperature enhancement technique is considered, an

obvious forecasting improvement is achieved.

TABLE XVII
- FORECASTING ERRORS USING TEMPERATURE

ENHANCED TF MODELS (1983)
AVE. ABS. % ERROR

Step \
‘Seak 1 6 12 18

Summer 3.82 3.19 2.78 2.66

Fall 4.49 4.33 3.92 3.91
Winter 3.35 2.52 2.63 2.78
Spring 5.53 5.35 5.30 5.50

Ave. Error 4.30 - 3.85 3.66 3.71



113

TABLE XVIII
FORECASTING ERROR USING TEMPERATURE

ENHANCED HAMM. MODELS (1983)
AVE. ABS. % ERROR

Step :

Summer 3.41 2.96 2.50 2.92
Fall 3.42 2.90 3.31 3.22
Winter 2.85 2.53 2.62 2.75
Spring 4.54 3.92 4.18 3.86
Ave. Error - 3.56 3.08 3.15 3.19

In order to study more details about the temperature enhanced
models, the plots of Summer load and temperature readings for the
forecasting period are shown by figures 34-35. The dash line in
figure 35 represents the forecasts using the temperature enhanced
Hammerstein model developed by adjusting parameters through the

twelfth step ahead forecasting errors, which is given by

_ 1-.602B
t  1-.999B+.073
1-.560B%4 —.266B43 .

(1+.299B+.637B2)(1—.591B168)V1V2 ,

Z

5 (~17.967~5.583T, ~.08449T +.001195T")
B t t t

+

(VIL.8)
From these plots, it is clear that the significant drop of power load on

the second Sunday was mainly due to the sudden temperature



114

change, which jumped from 104 OF on Saturday down to 87 OF on
Sunday. Remarkably, the temperature enhanced Hammerstein model
can still handle such a tough situation, keeping the forecasting errors
very small. In addition, by closely examining Figure 35, we may
observe that the problems of underprediction and overprediction

encountered earlier have been effectively alleviated also.

100

Degree (0 F)
v
o

(o o]
o

100

90

Degree (0 F)

80

70 [ TR SN SN SN N SN T |
M T w T F S S M T W

Figure 34. Summer Temperature: July 29-August 17,
1983
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Figure 35. Summer Load Forecasts Using Model (VIIL.8)
July 29-August 17, 1983

Models built by adjusting parameters through the sum of 1 to k
step ahead forecasting errors were also investigated. As an example,
Table XIX shows the forecasting results using the temperature
enhanced Hammerstein models which were obtained by adjusting
paramters through the sum of 1 to 18 step ahead forecasting errors.

Although no further forecasting improvement is achieved, comparing
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with previous temperature enhanced Hammerstein models, these
models may provide a consistant result in view of the fact that no
prior knowledge of a specific number of leading steps is required in

this case.

TABLE XIX

FORECASTING ERRORS USING TEMPERATURE
ENHANCED HAMM. MODEL (1-18 STEPS)
AVE. ABS % ERROR

Summer Fall Winter Spring

2.88 3.06 2.60 3.74

For reference, some of the temperature enhanced models

developed in this chapter are summarized as follows:

1. TF models using the twelfth hour ahead temperature readings

Summer:

5.998 —3.087B
7 = =T
t 1-.999B+.073B~ !
1-.484B24 —.297B48
) 163 ¢
(1+.161B+.742B)(1-.532B )V V.,

<+
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Fall:

, —__-804-.066B T
t  1-.968B+.609B- ¢
N 1-.288B%4 —.281B48 _ 236872

~ o168 !
(1+.768B)(1-.697B °°)V.V,,,

Winter:
7 - —4.03—1.297132T
' 1+.163B-.367B~
1-.733B%4 ~.141848
P 168 3
(1+.825B)(1-.975B" )V V.,

Spring:

, __—1.205+.765B
t  j_.398B—.484B2
1-.528B24 — 29448

163 3
(1+.589B)(1-817B'%%)v v,

Tt i

2. Hammerstein models using the sixth hour ahead temperature

readings.

Summer:

1+26.65B

7 = 5 (
t 1-.368B+.059B

1-.758B24_.110B48 .

(1+.152B+.007B2 )(1-.756B168 VAN

~32.03T, +.367Tt2 - 001376Tt3)

+



118

Fall:
7 = 1—08B 5 (7.757+8.744T —.3088T2 +.002583T2)
t 1-.999B+.203B t ‘ t
1—.447B%4 — 036B48-.1220B72
+ 1680 o 2t
(1+.700B)(1-.830B168)v v
/ 1'24
Winter:
7 - 1+:439B > (13.16+1.929T —.1372T2 +.00125T°)
t 1-.552B+.210B ot ' t
1-.640B24 —.191B48
(1+.508B)(1-.950B108)v v %
: ' 1724
Spring:

__ 1+0MB

t 2
1+.021B—.525B
1—.457B%4 _. 269848

* 163 3
(1+.400B)(1-.854B' %)V V

Z —20.87 - 6. 663Tt - 0273Tt2 +. 0008Tt3 )

3. Hammerstein models using 1 to 18 hours ahead temperature

readings.
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Summer:

, __ 1+34.44B
t 1-.135B-.156B
1-.888B24 +.053848

+ . a
(1+.507B+.282B2)(1—.777B168)V1V24 t

5 (—48.85-35.00T, +.401Tt2 —.00151Tt3 )

Fall:
7 - 1—:386B 5(5.089+1.842T —.1589T2 +.001607T>)
t  1-.998B+.217B t t t
. 1-.316B%4 +.089B48 . 061872 .
(1+.536B)(1-.870B168 )y v_ 't
1V 24
Winter:
7 = 1+.046B 5 (=38.3+.518T —.0977T2 +.000902T>)
t  1-.769B+.229B t t t
1-.716B%4 —.124B48
168y y .t
(1+.479B)(1-.961B' %)V v,
Spring:

_ 1+.134B
t  1-.0008B-.435B
1-.474B%4 _ 218848

168 3
(1+.512B)(1-.915B )V V.,

Z 5 (~15.61-8.084T —. 0069Tt2 +.OOO755Tt3)

Finally, it should be noted that all the results above were

obtained based on the actual temperature readings, not forecasted
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ones. The reasons for that are (1) the forecasted temperature is not
available to us; (2) the forecasted temperature may be assumed to be
very close to actual ones for a short time period, say 1 to 24 hours

ahead.



CHAPTER VII
CONCLUSIONS

In this paper, we have reviewed the linear time series
approach to short term load forecasting. This approach, which
includes the ARIMA and TF models, is capable of modeling
multiperiodicity and nonstationarity, as well as some weather effects
such as temperature. As was shown in chapter II and chapter III, the
ARIMA models and TF models wére relatively easily developed using
a systematic procedure and could produce good forecasting results.
All these features have made the linear time series approach the
most popular STLF procedure.

One disadvantage of the ARIMA and TF models is that these
models can not describe the nonlinearity of the power load, which,
as was demonstrated by the simple nonlinear model in chapter III
and the nonlinearity test in chapter IV, seems to be an important
characteristic of the load. In order to exploit the inherent
nonlinearity in the power load, two different types of nonlinear
models, and their corresponding identification algorithms, were
proposed with the goal to further improve load forecasting
performance.

The bilinear models modify the ARIMA models by adding cross

terms between the output z, and the white noise "input" a,. This

model may be considered as a description of a general nonlinear time

121
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series.

Considering that in practice many time series present some
periodicities or "seasonal" behaviors and these characteristics may be
described by bilinear terms also, a modified form of the conventional
bilinear model was created. It is found that the proposed bilinear
model, with the ability to model both nonlinearity as well as
multiperiodicity, provides a very useful model class for general
applications. In addition, the modified bilinear model may reduce the
number of parameters to be estimated significantly, when compared
with the conventional bilinear model and, thus, provides an
environment in which' both estimation and forecasting procedures
are much easier to implement than before.

Motivated by the performance improvement of the simple
nonlinear TF model, a nonlinear Hammerstein model is presented in
chapter VI. Since the parameters of the linear and nonlinear parts of
the model can now be estimated systematically as a whole by the
Newton-Raphson algorithm, the nonlinear Hammerstein model is
able to better describe the nonlinear relationship between load and
temperature for short term load forecasts.

Finally, in chapter VII, we presented a temperature enhanced
model, which modifies the Hammerstein model by adjusting
parameters through the kth step ahead or the sum of 1 to k step
ahead forecasting errors instead of residuals, which are one step
ahead forecasting errors. The basic idea behind this model is based
on the fact that the temperature information is very important in
power load forecasting and that the better this information is used,

the more accurate the load forecasts will be. Table XX summarizes
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the forecasting results for various models.

TABLE XX

COMPARISON OF FORECASTING ERRORS FOR THE
LINEAR AND NONLINEAR MODELS (1983)
AVE. ABS. % ERROR

Season ARIMA TF Simple Hamm. 1emp. Enhanced Hamm.

Nonlin. " Step 6 Steps 1-18
Summer 4 17 3.82 3.55 3.41 2.96 2.88
Fall 4.68 4.49 3.41 3.42  2.90 3.06
Winter 3.85 3.35 2.84 2.85 2.53 2.60

Spring 5.24 5.53 5.16 4.54 3.92 3.74

Ave. Error 449 430 3.74 3.56 3.08 3.07

As is seen from this table, the temperature enhanced Hammerstein
models obtained by adjusting parameters through the sixth step
ahead and the sum of 1 to 18 step ahead forecasting errors turn out
to be the best,‘ with average absolute percent error 3.08 and 3.07
over four seasons, respectively. Comparing with the previous result,
3.74, obtained by the simple nonlinear model, this translates into
improvements of 17.65% and 17.91%, respectively. If compared with
the 4.49 obtained by the ARIMA models, the improvements will be

31.40% and 31.63%, respectively. Conclusively, the nonlinear
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temperature enhanced Hammerstein model is the best of the models
and provides an efficient procedure for the STLF application.

One topic for <future research would be the development of an
adaptive model for STLF. Since the power load is a slowly time-
varying process, a model which can adapt itself to the changes might
be used and should provide a better descriptibn of the load process.
As an example of the need‘ for model adaptation, table XXI shows the
forecasting results for three 20 day periods in 1984 (winter, spring
and summer) usihg the models above. As is seen from this table,
although the temperature enhanced models give the best forecasting
errors for spring and winter seasons, they produce the worst results

for the summer season.

TABLE XXI
MEAN ABSOLUTE % FORECASTING ERROR (1984)

Simple - Hamm. JYemp. Enhanced Hamm.

Season ARIMA TF N npin Step 6 Steps 1-18

Spring 492 5.10 4.29 4.35 4.19 4.08

Summer 5.25 3.93 4.02 3.69  4.46 6.16

Winter 4.58 3.71 2.87 2.81 2.51 2.33
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By reestimating the parameters of the temperature enhanced
Hammerstein models based on the load and temperature data of
summer 1984, we then have 3.41% and 2.61% forecasing errors for
the summer 1984, respectively. This result clearly indicates that the
load and temperature patterns have changed to a certain extent since
a year ago and that an adaptive model is necessary to track these
changes and, thus, to obtain the most accurate forecast.

Another interesting model to be considered is the artificial
neural network model, which has been reported to be able to
approximate any linear/nonlinear process without imposing any
functional asumption on them. Although this model has recently
been studied by several authors [6], [28] and was shown to be an
effective approach for STLF, we feel that it is still worth further

study, at least for model comparison purposes.
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