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PREFACE 

This study is concerned with the modeling and performance 

evaluation of Flexible Manufacturing Systems (FMS's) with station 

breakdowns, Material Handling System (MHS) delay, and general repair 

and processing times. The primary objective is to determine the 

system's steady state output rate, sojourn time, and station 

utilizations. The open queueing network model is used to analyze the 

FMS. A tranformation algorithm is developed to deal with station 

breakdowns and MHS delay, and then an iterative procedure is devised to 

derive the system's performance measures. 
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NOMENCLATURE 

ai ei/Oi 

bi Probability that a job is blocked on arriving at station i 

ei Expected number of times a job will vis,it station i 

eir Expected number of times a class-,r job w'ill visit station i 

fi See fir• when there is only one class of jobs, or r is 

understood 

fir Probability that a class-r job leaves the system after 

processing at station i 

gi Probability that a job visits another station after 

processing at statio_n i, i.e. , (1 - fi) 

k Mean time between breakdowns 

pdf Probability density function 

g(·) Processing timeS's p~f 

h(·) Time between breakdowns T's pdf 

m(·) General processing time GS's pdf 

ni Station i's buffer capacity 

r ( · ) Repair time R' s pdf 

qir Probability that a class-r job has its first operation on 

machine i 

C Maximum number of jobs allowed in a system 

ci k!/[(k-i)!i!] 

B Number of classes of jobs 

CDF Cumulative density function 
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G(.) 

H(.) 

R(.) 

Di 

E[Z] 

H(.) 

L 

M 

p 

Processing time S's CDF 

Time between breakdowns T's CDF 

Repair timeR's CDF 

Transition time, or MHS'delay, of station i 

Expected value (mean) 'of the random variable Z 

General processing time of station i, i.e., Si + Di 

T's CDF (see T) 

The number of jobs in the station, i.e, station size 

Number of,class-r jobs in the ststem 

Number of stations in a system 

see Pr, when there is only one c'lass of jobs, or r is 

or r is understood 

see Pij•r• when there is only one class of jobs, orr is 

understood 

Probability that ,a class-r job will go to station j after 

processing at statin i 

Pr Transition matrix (Pij•r) for class-r jobs 

PC Production capacity, i'. e., maximum possible output rate 

Q The number of jobs in the queue, i.e, queue length 

R Repair time 

Ri Repair t'ime of station i 

S Processing time, or service time 

Si Processing time, or service time, of station i 

T Time between two consecutive breakdowns 

Ti Time between two consecutive breakdowns of station i 

TH Throughput rate, i.e., output rate 

Ui The utilization of the machine (station) i 



W The total time a job stays in the queue, i.e, waiting time 

X The total time a job stays in the station, i.e, station time 

Y Effective processing time 

Yi Effective processing time of staion i 

a1(Z) 

a2(Z) 

oi 
). 

kj 

.Ai 

Jl 

JlZ 

Jln(Z) 

Vn(Z) 

az 

Jl3(Z)/az3, i.e., Z's skewness measure 

Jl4(Z)/az4 , i.e., Z's kurtosis measure 

Mean processing rate of machine i 

Mean arrival rate (to the system) 

f~ dH(t)m(t)dt 

Mean arrival rate (to the station i) 

1/Si (for a specified station i) 

Expected value (mean) of the random variable Z 

The n-th central moment of Z (n>l) 

The n-th moment (about zero) of Z (~1) 

Standard deviation of the random variable Z 



CHAPTER I 

INTRODUCTION 

This chapter outlines a dissertation that investigates flexible 

manufacturing ~ystems (FMS 's) wit~ station, ·breakdowns, material hand­

ling system (MRS) delay, and general processing,times. In this inves­

tigation, a powerful approach is developed to,theoretically transform 

an FMS with station breakdowns and MRS delay into an equivalent system 

without station breakdowns and MRS delay. This transformation facili­

tates performance evaluations of .individual stations, as well as the 

whole FMS with general proc~ssing times. 'A recursive algorithm is 

devised to calculate stations' pe·rformance measures, such as the number 

of jobs in the station or in its queue, and the total time a job stays 

in the stati,on. An iterative proce9-ure is then developed to obtain the 

FMS' s performance measures, , such as the output rate,, sojourn time, and 

station utilizations. 

This chapter begins wi~h a brief introduction of the research 

problem, followed by a summary of ~esearch methodologies and findings. 

Then theoretical and practical implications and importance of the 

dissertation research will be described. 

The Research Problem 

An FMS is usually modeled as a queueing_network in which the 

customers are the jobs to be processed by the system and the servers 

1 



are the CNC (Computer Numerical Control) machines. Each CNC machine has a 

local control computer linked by a communication network. The model is 

schematically depicted in,Figures 4"and 5 'on pages 25 and 26. The basic 

assumptions of the queueing network model are as follow: 

(1) The total number of jobs in the system could be a fixed constant N, or 

various. 

(2) All stations use the FCFS (First-Come-First-Served) queue discipline 

and all job classes have the same se~ice rate at a station. The stations' 

service times could be exponential or non-exponential. 

(3) There may be a central storage to accommodate all jobs in the system. 

Each station may have a local buffer with infinite or limited capacity. 

(4) Machines are always available for processing jobs, (i.e., no machine 

breakdowns,) and any set-up/tool changing time is included in the service 

(processing) times. 

(5) No MRS delay. 

2 

The queueing network models have been successfully applied to study various 

planning and control aspects of FMS's, largely because the first three basic 

assumptions are so flexible that they impose few restrictions. However, the 

last two basic ass1.llnptions.seem· to be very restrictive and unrealistic. In 

practice, assumptions (4) and (5) are ofte~ violated', because machines do 

break down from time to time; and the MRS needs some time to move workpieces 

among stations and the central storage. Therefore, it is desired to develop 

new models and new methodologies which allow station breakdowns and MRS delay, 

and can incorporate general processing times. 

This dissertation will present a powerful and convenient approach to 

transform a system with MHS delay and breakdowns into an equivalent system 



without MRS delay and breakdowns. This transformation is based upon the 

method of moments. After this transformation, the earlier techniques for the 

case of no MRS delay and breakdowns c~n be applied to analyze the system. 

Furthermore, to take the advantage of· this moments-oriented transformation, 

this dissertation develops new.iterativ~ procedures to obtain performance 

measures for individual stations as well as the entire FMS's. 

Methodologies and Findings 

3 

In this dissertation, a two-step transformation is conducted to transform a 

system with MRS delay and breakdowns into an equivalent system without MHS 

delay and breakdowns. In the first step, the repair time of each machine will 

be treated as a part of the machine's processing time. This is called the 

"effective processing time," which includes the machine's normal processing 

time and repair time. When a machine breaks down while processing a job, the 

effective processing time will be the sum of the processing time and the 

machine's repair time. Of course, if the machine does not break down, the 

effective processing time is equivalent to the processing time. Let Y be the 

effective processing time, which is a random variable. If the distributions, 

or only the moments, of the processing time, repair time, and'time between 

breakdowns are given, then Y's moments can be determined. 

The second step is to address the MRS delay',issue. This step, much more 

complicated than ~he first, is directly related to the storage system. If 

there is only a central storage with infinite capacity, one can model the 

central storage and the MRS as a virtual station with the effective processing 

time that includes the queue waiting time and MRS delay. If there are also 

local moving buffers (say, conveyors) with limited capacity, MRS delay, 



denoted by D, can be treated as a part of stations' "generalized processing 

times." It is more difficult to handle the traditional local fixed buffers. 

This dissertation provides a hybrid model. to .absorb MRS delay. 

After absorbing the repair times and MRS delay into the effective 

processing time Y's or generalized processing time GS's, the approaches of 

Hahn and Shapiro (1968), Kendall and Stuart (1969), and Kottas and Lau (1979, 

1980) can be used to fit Y's or GS's first k (k=3 or 4) moments to a k­

parameter distribution function. Thus the system with the effective (or 

generalized) processing times is equivalent to the original system, but 

without breakdowns and MRS delay. Fitting the first k moments to a k­

parameter distribution is a convenient method that provides good 

approximations. 

Moreover, when the processing time distributions are known, the moments of 

Y's and/or GS's can be calculated analytically. These moments are all that 

are needed to evaluate each station~s performance, such as the total time in 

the station (station time X, which is a use-ful byproduct to determine the 

sojourn time) or in its queue (waiting time W), the number of jobs in the 

station (station size L) or in the queue (queue length Q), and the station 

output rate (TH). A step-by-step recursive algorithm (P!ocedure I) is shown 

to calculate the moments of X, W, L, and Q. 

To employ this unique moments-oriented feature, Yao and Buzacott (1985b)'s 

open queueing network model, with necessary modifications, is adopted to deal 

with station breakdowns and MRS ·delay, and an iterative procedure (Procedure 

II) is developed to evaluate the whole FMS's performance. This procedure 

employs a different, natural iteration scheme, and a simple method to compute 

each station's blocking rate, or the probability that the station will reject 

4 



2a coming job. The blocking rates are critical to derive the system output 

rate, sojourn time, and machine utilization. 

5 

Numerical examples are used to show how to transform an FMS with breakdowns 

and MRS delay into an equivalent system without breakdown and MRS delay. 

After the transformation, the effec~ive (or genera-lized) processing times are 

never exponential, no'matter whe~her -the original processing times are 

exponential or not. Then, iterative Procedur~ II can be used to analyze the 

system's performance. Computer simulations are.conducted to verify the 

analytical results: 

Theoretical and Practical Implications of 

the Dissertation Research 

This dissertation presents a powerful and convenient approach to model 

FMS's with machine breakdowns, MHS delay and stochastic repair and processing 

times. By transforming the,system with breakdowns and MRS delay into an 

equivalent system without breakdown and MRS delay, many well-established 

methodologies can be applied to evaluate·the system's performance. This 

approach concentrates on the effective processing time (or the generalized 

processing time) Y. One can analYtically calculate Y's (central) moments 

necessary in fitting any n-parameter distr,ibution for Y. Thus, the approach 

provides a solid base for the further analysis of the whole queueing network. 

Usually, one fits Y's first three or four moments to a three or four 

parameter distribution,. The major advantage of the approach in this paper is 

that there is no need to know the repair time R and/or MRS delay D's 

probability density functions (pdf's). Moreover, if the processing timeS's 

pdf is unknown, but S's first three or four moments are known, one can fit 
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them to a three or four parameter distribution as S's pdf. So in practice, 

only the mean breakdown rate and the first three or four moments of R, S and D 

are needed, which are easy to obtai~ from collected'data. This feature makes 

the proposed method very attractive to ·both researchers and practitioners, as 

determining those probab.ility density functions is not necessary. 

After the transformation! one can evaluate each station's perfor-mance, 

that is necessary to evaluate the whole system's performance. By assuming a 

Poisson arrival process, a recursive procedure is devised to use Y's moments 

to calculate the moments of the station time,, wait-ing time (in the queue), 

and station size for each station. A new algorithm is proposed to calculate 

the moments of the length of queue. It is relatively easy to obtain each 

station's output rate and utiliza-tion. Here the knowledge of the station 

time is very important, since that makes it possible to obtain the sojourn 

time. While early models concentrate on the derivation of systems' output 

rates' it is believed that the. sojourn time is more relevant to customers, 

especially for make-to-order produc~ions. This dissertation develops an 

iterative procedure (Procedure 'II), to calculate the FMS's output rate, machine 

utilization, and sojourn.time. This procedure is very efficient, and easy to 

program. 

Queuing network simulation models are also easy to be established to verify 

the analytical conclusions. 

Outline of the Dissertation 

This chapter (Chapter I) is an introduction. Chapter II gives a literature 

review. In chapter III, the necessary, basic assumptions and definitions are 

introduced. Chapter IV deals with the performance evaluation~ of queueing 
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networks without MRS delay and breakdown. Chapter V discusses machine 

breakdowns and the calculations of the effective processing time Y's moments, 

and then in chapter VI several numerical examples are given to show how to 

transform an FMS with breakdowns into an equivalent system with no breakdowns. 

Chapter VII discusses MRS delay and how to deal with MRS delay. In fact, MRS 

delay can be absorbed in the queue waiting time or in the effective process­

ing time Y. Chapter VIII shows how to,use Y's moments to compute the waiting 

time, queue length, time in the station, and number of jobs in the station 

(their moments and distributions). In chapter IX, an iterative procedure is 

proposed to derive the FMS's performance measures. Chapter X gives 

conclusions and discussions. 



CHAPTER II 

A GENERAL LITERATURE REVIEW AND 

EARLY RELATED RESEARCH 

Definition of an FMS 

A flexible manufacturing system is a computer-controlled configu-

ration, consisting of a group of processing stations, each captaining a 
/ 

set of computer numerical control (CNC) machine t~9Ls;'interconnected 
/' 

by means of an automated materia·! handling_.s-yS'tem (MHS) and storage 
/ 

systems (Groover 1987). It is capab-~f processing a variety of 
/ 

different types of parts simultaneously at the various stations. The 

FMS is designed to combine the mass-production efficiency of transfer 

lines and the flexibility of job shops to handle batch production at 

medium volume and medium product variety. FMS also combines the 

existing technology of NC (numerical control) manufacturing, automated 

material handling, and computer hardware and software to create an 

integrated system for the automatic random processing of palletized 

parts across various work stations in the system. Figure 1 gives two 

examples of FMS layout (Goetsch 1988). · 

An FMS has four essential physical components: 

1. CNC machine tools; 

2. An MHS to move parts and sometimes tools among machines and 

fixturing stations (so machines are linked by the MHS); 

3. An overall computer control network that coordinates the 

8 
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Figure 1. Two Examples of FMS's 
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machine tools, the parts-moving elements, and the workpieces. 

4. A storage system that is needed to store raw materials, work­

in-process (WIP), and finished products. 

A storage system is. necessary for the smooth operation of an FMS. 

Different machines in an FMS have different production and utilization 

rate. Therefore, when one machine finishes processing a job, the 

subsequent machine for the job may not be free to process the job 

immediately. If.there is no available space to which the job can be 

stored, the first machine will be "blocked;" if the job can be moved 

away, but there is no job waiting for the first machine, the machine 

will be "starved." Machine breakdowns are extreme cases of short-run 

imbalance of production rates. If a machine breaks down and the system 

has no storage capacity, other machines that process jobs either going 

to or coming from the. failed machine may be forced down. Therefore, 

storage spaces are needed as buffers to decouple the machines. Gene­

rally, the local buffers before each machine have limited capacities, 

whereas a central storage can be much larger, and its capacity can 

often be assumed to be infinite. However, significant "transit times" 

(MHS delay) are often incurred in moving WIP among the stations and the 

central storage. To reduce these transit times, many FMS's employ a 

mixed storage system consisting of a central storage and some local 

buffers. 

FMS Models 

An FMS is usually modeled as a queueing network in which the 

customers are the jobs to be processed by the system and the servers 

10 



are the machines. Each CNC machine has a local control computer linked 

by a communication network. 

The computer control network in_ the FMS is in fact a computer 

communication network, which can,also be modeled as a queueing network, 

in which the customers are packets of ,data, and servers are local 

control computers and the central control computer. 

Closed Queueing Network Models 

An FMS can be modeled as a closed queueing network (CQN, Solberg 

1977) following the approach of Gordon and Newell (1967), and Posner 

and Bernholtz (1968). The model is schematically depicted in Figure 2 

(Co and Li, 1989). The basic assumptions of this model are as follows 

(Buzacott and Yao 1986): 

(1) The total number of jobs in the system is a fixed constant N, 

that implies that when a finished job leaves the system, a new job 

enters the system immediately (as if that leaving job re-enters the 

system). 

(2) All stations use the FCFS queue discipline and have exponen­

tial service time distributions. All job classes have the same service, 

rate at a statfon. 

(3) All stations have a local storage large enough to accommodate 

all N jobs in the system; Le., stations will never be blocked. 

(4) Machines are always available for processing jobs, i.e., no 

breakdown, and any set-up/tool changing time is included in the service 

(processing) times. 

(5) No MRS delay. 

11 



0 
:E 
a 
.5 
.c. 
u 

0 0 
:E 

0 

0 
• C\1 

a 
• c ·-• .c. 

u 
0 0 
~ 

0 

0 
• ~ 
• ., 
• .5 
• .c. 

u 
0 0 
~ 

0 

.,. .,. 
u a 
u g 
0 ""' 
""' 0 a.._ 
I .,. 
c -

........ 
""' u - • 
""' • 0 • c._. ., 
5-4 
""' .......... 

aa c: .5 
"0 0 

0 0 

0 ., - c: 0 c .2 0 

:::J . - . 
0 0 c: -.5 ., 
"0 c:: 
0 
0 c: ...J 

-:::r 
a. 
c -

Source: H. C. Co, and G. Li, "A mean value analysis model 
for job shops and job shop-like systems," 
Computers ind. Engng, Vol.l6, No.1, (1989), 9-18. 

Figure 2. Conceptual Illustration of the Closed Network Model 
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The CQN model has been successfully applied to study various 

planning and control aspects of FMS's (Stecke and Solberg 1985, Stecke 

and Morin 1985, Yao and Buzacott 1986, Shanthikumar and Stecke 1986, 

and Dallery and Stecke 1990, a~ong others). However, the model's five 

basic assumptions seem to be very restrictive, and in many cases one or 

more of them are violated. 

Open Queuein~ Network Models 

An FMS can also be modeled as an open queueing network, in which 

the total number of jobs varies through out the operation (Jackson 

1963, Buzacott and Shanthikumar 1980), implying that the first 

assumption in the last section is dropped. This model is based on the 

works of Jackson (1963), Schweitzer (1977), and Baskett et al. (1975). 

This model is discussed in more cletail in chapters III and IV. 

Although tremendous effort has been made to relax the second and 

third assumptions with some success (Marie 1979, Shanthikumar and 

Buzacott 1980 and 1981, Whitt 1982, Altiok 1985, Yao and Buzacott 1985a 

and 1985b, among others), the fourth and fifth assumptions are 

retained, i.e., there will be no breakdowns and MHS delay in the FMS's. 

Related Research on Machine Breakdowns ~ 

Machine breakdowns have been investigated by many authors in the 

transfer line area. A transfer line (Figure 3) is a number of 

automatic machines, in series, integrated into one system by a common 

transfer mechanism and a common control system (Buzacott 1967). 

Transfer lines can be considered a "simplified" FMS. 
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Buzacott (1967, 1972), and Barlor and Proschan (1975) derived 

several basic formulas for the line's output rate R. They assume each 

station has one machine, and use discrete time units (cycles). They 

also assume all operation times"(processing times, times between 

breakdowns, and times to repair) are geometrically distributed, which 

allows them to apply Markov process methods to analyze the two-station 

case and obtain the exact solution for R and other system performance 

measures. Due to the computational difficulties of their methods, many 

authors have, in turn, proposed reasonably good approximations. Among 

them are Buzacott (1967), Ingnall and Silver (1977), who also consi­

dered the case that each station has two or more of the same kind of 

machines, and the-two stations have different processing rates, and 

Wijngaard (1979), who considered two single-machine station lines with 

different processing rates while assuming all operation times are 

exponentially distributed. However, when the number of stations is 

greater than two, these approaches are not feasible. Therefore, many 

other authors have proposed and tested other approximations (Murphy 

1975, Sheshkin 1976, Gershwin and Berman 1981, Jafari and Shanthikumar 

1987a, and Liu and Buzacott 1990). 

Notably, all the above research assumes that operation times are 

either exponentially (for continuous times) or geometrically (for 

discrete times) distributed. This assumption is often too restrictive, 

since in practice the processing and repair times could follow any 

distribution. 

Lau and Martin (1987) have investigated how the processing time's 

distribution forms affect system performance. They found that the 
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stations' steady-state output rates are sensitive to the third and 

fourth (central) moments of processing times, which suggests that the 

ordinary one- or two-parameter distributions are not satisfactory to 

describe the real random proce~sing times. Hence, they suggest the use 

of four-parameter distribution families'to describe the processing 

times, whfch are more accurate and reliable. 

Related Research on MHS Delay 

In the CQN model, one can define a special station (say, station 

0) to model the MHS. Assuming all WIP stays in station 0 .before and/ 

or after processing at each normal station, then MRS delay in essence 

becomes the station O's processing time. Since the CQN model assumes 

the total number of jobs in the system is a fixed constant N, and all 

stations have a local storage large enough to accommodate all N jobs in 

the system, one can use stati,on 0 to replace all the local buffers. 

Posner and Bernholtz (1968) solved this system and obtained the steady­

state solution (the distributiQn of the number of customers at each 

station). 

Unfortunately, this method does not work in the open queueing 

network model, because local buffer capacities are usually limited, 

while the total number of jobs in the system is various. 

Recently, MRS delay in transfer lines was considered by Commault 

and Semery (1990). They investigated to what extent this delay 

influences the line's performance and, in particular, the output rate 

R. They show in a two machine example how R is affected when this 

delay parameter varies, and then propose to define an "equivalent 
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line," with unchanged machine characteristics, no MRS delay, but 

reduced local buffer capacity (Figure 8). 

The main advantage of this approach is that, after this equiva­

lent transformation, performan~e may he evaluated using 'an existing 

method. Their simulation results show that this capacity reduction 

technique provides very good approximations for, the output rate, the 

mean buffer 'level and the mean time in system. But they only verify it 

for a two machine line, and, as the authors put it, "the really 

appealing problem is how to deal with longer l.ines.", Another short­

coming of this model is that it cannot handle syste~s with central 

storage. 

Related Research on Systems Without 

Breakdowns and MRS Delay 

On the other hand, there are many well established methods to 

analyze the transfer lines with general processing times, but without 

breakdowns (i.e., no need of repair; Altiok and Ranjan 1987, Brandwajn 

and Jow 1988, Gershwin 1987, Jun and Perros 1990, etc.). For FMS's, 

several authors have considered systems wi,th general processing times, 

but no breakdown and MRS delay. Many approaches fore FMS's are 

suggested by Shanthikumar and Buzacott (1981), Whitt (1982), Yao and 

Buzacott (1985a, 1985b, 1986), among others. 

For the open queueing network model, when processing times are 

exponentially distributed and local buffers' capacity is infinite, 

Jackson (1963) showed that the stations can be decomposed and analyzed 

separately, and the joint probability distribution of queue lengths can 
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be expressed as a product form. 

Shanthikumar and Buzacott (1981) pointed out that when processing 

times are not exponential, Jackson decomposition is not exact; they 

developed an approximate decomposition approach to analyze FMS's with 

non-exponential processing times. 

Recent Efforts, Conclusions and Implications 

It seems that there is a gap between the groups of research in the 

last three sections. The gap is the consideration of MHS delay and 

machine breakdowns. Attempts have been made to fill the gap. 

Federgruen and Green (1986) have studied queues with service 

interruptions. The service times .and service interruptions can be 

properly interpreted as times between breakdowns (on-time, or up-time, 

periods) and repair times (off-time, or down-time, periods), respec-

tively. Their model has bee~ generalized by Sengupta (1990), who has 

considered the situations in which both the arrival and service rates 

of the customers who arrive,during.the up-time periods co~ld be diffe-

rent from that they would be during the down-time periods. Unfortuna-

tely, their models are' computationally impractical. 

' Therefore, Federgruen and Green (1986) have suggested several 

approximations of completion times, wai.ting times, and the number of 

customers in the system. Their approximations are accurate only if the 

expected up- and down-tim~s are short compared to the expected 

processing times. Sengupta (1990) has provided an approximation of 

waiting times that works well only if the processing times are very 

long. However, in manufacturing environments, the expected processing 



time is usually very short compared to the down-time (repair time) and, 

especially, the up-time (time between breakdowns). Another problem is 

that their methods don't provide vehicles to aggregate a group of 

queues; therefore, their methods are not suitable for analyzing 

transfer lines and FMS's, .which consist of a group of stations, that 

are subject to starvation and blocking. 

Jafari and Shanthikumar (1987b), and Yeralan and Muth (1987) have 

considered a two-station transfer line with general up-time and down­

time distributions. The former assumes the processing times are 

constant, while the latter assumes the processing times could be 

stochastic. However, they fail to show how to extend their models to 

deal with longer lines or larger sy.stems. 

Generally speaking, any machine will break down sooner or later. 

Machine breakdowns interrupt smooth production, dramatically affecting 

the systems' performance. Therefore, by no means can breakdowns be 

ignored. For MHS delay, as Posner and Bernholtz (1968) pointed, "The 

assumption ... , namely that a unit takes zero time to move from one 

station to the next, is in general incorrect, and in many instances may 

be a poor approximation to the real situation." 

Thus, developing new models to cover station breakdowns and MHS 

delay, and new methodologies to handle breakdowns, MHS delay, and 

inevitable general processing times is ·highly desired. This disser­

tation is a formal attempt to solve these problems. 
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CHAPTER III 

BASIC ASSUMPTIONS AND DEFINITIONS 

Assumptions and Definitions Pertaining to Stations 

In this study, it is assumed that each station has one machine and 

a queue before the machine (Figure 6). For a particular station, its 

processing timeS is a random var~able. Let m(·), M(·), ~s• and ~n(S) 

be S's probability density function (pdf), cumulative density function 

(CDF), mean, and n-th central moment for n>l, respectively. When the 

station breaks down, it can be repaired in R time units. R is also a 

random variable with mean ~R• and n-th central moment ~n(R) for n>l. S 

and R are independent of each other. 

When a station ceases to run due to an inability within itself, 

one says it "breaks down." When the ~:~tation finishes processing a 

unit, if there is no available space to which the unit can be moved, 

the station will be blocked; if the unit can be moved away, but there 

is no unit waiting in the queue of th~ station, the station will be 

starved. A station (machine) is idle if it is not working. This could 

occur when the station is under repair', blocked, starved, or simply 

shut down. The station is busy if it is not idle. It is assumed 

repairmen are always available whenever breakdowns occur. 

The time between breakdowns, T, is also a random variable. T, as 

well as basic assumptions pertaining MHS delay in chapter V, will be 

discussed in the next section, because different storage systems will 
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impose special problems. Only after that can one define equivalency of 

stations and systems (also in chapter V). 

This study makes three assumptions about breakdowns. 

Assumption 1: No-Failure-While-Idle 

When stations are idle, no breakdown occurs. Ihis is a logical 

assumption. In some rare cases, machines do break down while idle, but 

usually people are not aware of it until they are going to work on the 

next job. Many .authors adopt some similar assumption (Ignall and 

Silver 1977, Buzacott and Hanifin 1978, among others). 

Assumption 2: Exponential-Up-Time 

The time between breakdowns, T, is a r.v. with pdf h(t) = we-wt. 

Suppose a breakdown occurs at the clock time t1, and the next break­

down occurs at the clock time t2. Then the up-time between these two 

breakdowns is (t2- t1) - (all idle time periods during t2 - t1). 

While this exponential distribution assumption seems restrictive, 

it is used frequently in the literature (see references in Buzacott and 

Hanifin 1978, Gershwin and Berman 1981, and Liu and Buzacott, among 

others). Additionally, it is a recent phenomenon that the frequency of 

wear-out caused breakdowns is decreasing steadily, so that other causes 

of breakdowns, such as mis-operation, electronic parts/circuits failure 

(different from mechanical wear-out), and communication network jam 

(Ghosh and Wysk 1989), are becoming relatively more significant. This 

makes the exponential distribution assumption more plausible. Later, 

one will see that this assumption is critical to analyze the system 
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with breakdowns to obtain analytical results. 

Assumption 3: No-Double-Fault 

During one job's processing ~ime, at mos~ one breakdown may occur. 

It is easy to justify t~is assumption, because usually during a 

relatively short time period, a machine should not break down twice or 

more. If the machine does break down frequently, the firm should 

replace it, or enforce some kind of preventive maintenance measure. 

Another way to state this assumption is that when a breakdown occurs, 

the station can always complete the job on hand after repair, and the 

total processing time is the same (any extra set-up time is thought to 

be a part of the repair time). Many authors simply assume that 

processing times are deterministic, and breakdowns may only occur right 

after completing a job (see ,the references in Buzacott and Hanifin 

1978, Gershwin and Berman 1981, among others). To reconcile these 

assumptions with those used in this paper, consider that the repair 

time will be charged to the last job before breakdown. 

Some Basic Probability and Statistics 

Concepts and Definitions 

In this study, theories of probability and statistics play a 

very important role. Hence, all necessary and basic probability and 

statistics concepts and definitions are presented in this section. 

The mean of a r.v. X with pdf f(.) is 
00 

E[X] =~X= ~l(X) = f-oo xf(x)dx. 

For n>l, X's n-th central moment is 



~ 

~n(X) = E[(X-E[X])n] = f-~ (x - E[X])nf(x)dx, 

and X's n-th moment is 
~ 

vn(X) = f-~ xnf(x)dx, for n ~ 0. 

Specifically, v0 (X) ~0 (X) = 1, ~l(X) = 0, and v1(X) = ~X· Usually, 

X's variance is ux2 ~2(X), and X's coefficient of variation is CV(X) 

= ux/~x· X's skewness measure is a1 = ~3(X)/ux3 , and X's kurtosis 

measure is a2 = ~4(X)/ux4 . 

For simplicity, Vn and ~n are used to denote vn(X) and ~n(X), 

respectively, whenever the r.v. X is understood. vk(X)'s (~1) are 

called X's first k moments, and ~X and ~k(X) (~2) are called X's first 

k central moments. ~n's can be expressed in terms of vn's: (Wilks 

1962, Kendall and Stuart 1969) 

~2 v2 - vl2• 

I ~3 v3 - 3v2vl + 2vl3, 

~4 V4 - 4v3vl + ~v2~12 - 3vl4• 

k 
Generally, ~k ~ (C~)vk-i(-vl)i, where C~ = k!/[(k- i)!i!]. 

i=O 

vn's can also be expressed in terms of ~n's and ~x: 

~2 + ~X2 • 

~3 + 3~2~x + ~x3 • 

~4 + 4~3~X + 6~2~x2 + ~x4 • 

k 
Generally, vk ~ (C~)~k-i~Xi· 

i=O 

I 

(3.1) 

(3.2) 

In this study, Kendall and Stuart (1969)'s notations for probabi-

lity terms will be followed. For instance, Prob[E] means the proba-

bility that an event E occurs. 
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Chapter VIII will introduce necessary queueing theory notations 

and related concepts. 

Assumptions and Definitions Pertaining to the Entire FMS 

The Basic System Model 

The basic system model is an open queueing network, consisting of 

M stations and an initial queue (Figure 4). Jobs or customers waiting 

to enter the system are kept in the initial queue. Each station 

consists of a server (or a machine) and a queue before it (Figure 5). 

This paper will consider "customer" and "job", as well as "server" and 

"machine," interchangeable terms throughout. The general assumptions 

are (Schweitzer 1977, Buzacott and Shanthikumar 1980) : 

1. Each machine can only process one job at a time. 

2. Jobs arrive at the system and join the initial queue according 

to a Poisson process with parameter A. 

3. There are B classes of jobs. The probability that an arriving 

job A is class r and has its first operation on machine i is qir• i.e., 

qir Prob(A E class rAND A's first operation is on i). 

4. FCFS (first-come-first-served) is assumed for all machines. 

5. Within each class the routing of jobs is determined by the 

transition matrix Pr = (Pij,r) fot class r, where Pij,r is the 

transition probability that a class-r job (i.e., the job class is 

known) will go to station j after processing at station i. When i=j, 

M 
1- ~ Pij,r be the probability that a class-r job 

j=l 
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leaves the system after processing at machine j. When there is only 

one class of jobs (B = 1), the subscript r could be dropped. 

6. The processing times are independent of job class. In this 

research, we will consider the proqe~sing times, to be general, i.e., 

they could follow any distribution, and 1/Si is the mean processing 

time at machine i (i.e.' machine i's processing rate is Si)· 

7. At station i there is buffer space ni, including the space for 

the job on the machine (ni>l). 

8. In the FMS, there is a central storage space for No jobs. 

Usually No is very large such that it can be treated as infin1te. 

The Expected Number of Times a Job Visits Machine i 

It is desired to know an important parameter, eir• the expected 

number of times an arriving class-r job A will visit machine i. 

Let qir be Prob(A goes to i first I A E class r), qir be 

Prob(A E class rAND A goes to i first), and hr be Prob(A E class r). 

1, . . . , M). 

Let eir be the expected number of times that A will visit the 

machine i, given A E class r, and ei be the expected number of times 

that A will visit i. Then 

Note that eir 
B 

eir*hr, (3.3) can be rewritten as ei ~ eir· 
r=l 

B 
Now notice that eir q{r + ~ P·· r*e·r (i 

.L ~J • J 
r=l 

1, M). 

(3.3) 

(3.4) 
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Using matrix notations, one has 

... ' 

MxM identity matrix. 

M 
Because of (2.4), hr*eir = hr*qir + ~ Pij•r(hr*ejr), therefore 

j=l . 
M 

qir + ~ Pji,r*ejr (i 
j=l 

or Er = Qr + PrTEr, where Er 

qMr)T. Again, 

Er = (I - PrT)-lQr. 

1, ... , M), (3.5) 

(3.6) 

Then one can obtain eir by solving the simultaneous equations (3.5) or 

(3.6). Here it is assumed that a unique solution for the eir's exist, 

and all ei~O. eir can be interpreted as the arrival rate of class r 

jobs to station i. All qir's are non-negative. If at least one qir > 

0, the network is open, and 

M M 
~ ~ qir l. 

r=l i=l 
M 

If all qir = 0, it is a closed network, and ~ eir = Nr, where Nr is 
i=l 

B 
the number of class-r jobs in the system. Of course ~ Nr N. Then 

r=l 

one should solve following equations to get eir's: 

0. 

System States and Steady State 

Suppose at a specific time t there are vi jobs in station i 
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(l~iSM). Then it is said the system is at state y = (vl, ... vi ... 

vM)· y is called the system's state vector, because it describes the 

system's current state. 

In the last subsection it is assumed that, 

(i) A unique non-negative solution for the eir's exist; 

(ii) All transition probabilities Pij,r are constant, regardless 

of which successive time periods are considered (i.e., any Pij,r does 

not change over time). 

For performance evaluation purpose, only the systems' behaviors at 

steady state or equilibrium will be considered. It is said that the 

system is at steady state if at that time the system already reaches 

the state such that (i) and (ii) hold asymptotically. 

Blocking Rate 

Because the capacity of local buffers are limited, it is possible 

that when a job A arrives at station i, i's queue is full and A is not 

allowed to enter i. The blocking rate bi can be defined as the proba­

bility that a coming job will be rejected by the station i. When the 

station is in the steady state, its output rate is equal to its input 

rate, and both input and output rates are denoted by Ai· 

In chapter IX more terminology pertaining to 'the queueing networks 

will be introduced. 
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CHAPTER IV 

PERFORMANCE EVALUAT{ON OF QUE-qE'!NG NETWORKS 

WITHOUT MRS D~LAY AND BREAKDOWNS 

Some major objectives of FMS research and development are to 

maximize the FMS's production ca~acity or output rate, to increase 

machine utilization, and to reduc~ WIP inventory. In other words, 

production capacity (hereafter PC), output rate (or throughput rate, 

hereafter TH), machine utilization, and WIP inventory level are 

important measures in evaluating the FMS's performance. These measures 

can be used to compare alternative designs, and hopefully, to obtain 

optimal system configurat,ion. Among these measures, the simplest is 

PC, which is the maximal possible output rate. 

System Output Rate When Processing Times Are Exponential 

Now assume no MRS delay'and station breakdowns, and the input rate 

for the system is A. Schweitzer (1977) shows that, if all processing 
~~------- -

times are exponentially distributed, and at most C customers are 
........ --~~----~--. 

allowed to be in the system at any time, then the FMS's output rate TH 

is a function depending on C 'and A: 

C-1 C 
TH(A, C) A[ ~ Amq(m)]/[ ~ Amq(m)] (4.1) 

m=l m=l 

M n. 
where q(K) ~ [ IT a1 1 ] , 0 s K :S C, and , ai 

n1+n2+ ... +n~K i=l 
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Note that here the summation is over all possible combinations of (nl, 

... ' ni, ... , nM) such that nl+nz+ ... +n~K, and for each K, q(K) is 

independent of A and C. 

c 
Let A(C) be~ Amq(m). Because A(C) _ Acq(C) for large A, (4.1) 

M=l 
indicates 

lim TH(A, C) q(C-1)/q(C). (4.2) 
A-+co 

When B=l, i.e. only one class of customers, ai = ei/oi· Let amax 

max{ai}, Schweitzer (1977) shows PC lim q(C-1)/q(C) = 1/amax• and 
C-+co 

lim PC (A, C) 
C-+co 

PC(A, co) if A < 1/amax } (4.3) 

Here A-+co is equivalent to the situation where there are infinite 

customers staying in the initial queue, and C-+co means there may be 

infinite customers in the system. Hence (4.3) gives the maximum 

possible output rate of the system (Buzacott and Shanthikumar 1980). 

However, when A and/or C are finite, maybe small, there is no easy way 

to calculate the throughput rate. 

If all stations have a local buffer with infinite capacity, 

Jackson (1963) shows the system can be decomposed and the equilibrium 

joint probability distribution of queue lengths can be expressed as a 

product form as follows. 

Recall that y = (vl, ... , vi, ... , vM) is the system's state 

vector, where vi (l~iSM) is the number of jobs in station i. 
M v 

Let w(y) = IT [em/om] m For any given y, 
m=l 

T(K) = ~ w(y) summed over ally's with S(y) K, 
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oo K-1 
and 1r = 1/ ~ { [ II AiJ T(K)}. 

K=O i=O 

Then the unique equilibrium state probability distribution exists, and 

is given by 

p(y) 
s (y) -1 

1rw(y)[ II Ai]· 
i=O 

(4.4) 

Note here p(y) is the probability that the system state is y. It 

is easy to see that, for a particular station i, its station size Li's 

distribution is 

~ p(y). 
'v'(ylvi=j) 

(4.5) 

Since the central storage's capacity is infinite and the transit 

time (MRS delay) is zero, that is equivalent to that every local 

buffer's capacity is infinite, so Jackson's model can be applied. 

System Output Rate When Processing Times Are General 

(4.1) to (4.3) require that the processing times must be 

exponential, and the storage capacity is infinite. This may be not 

realistic. 

As Yao and Buzacott (1985b) pointed out, most real systems have 

carefully designed procedures to ensure no blocking. One example is, 

the Caterpillar Omniline's "deliver-and-pick-up" scheme (Hutchinson 

1979); another example is Toyota's "return conveyors" (Hatvany 1983), 

which continuously takes away finished jobs from machines. 

Here it can be shown that, when the processing times follow any 

distribution, as long as there is no blocking, the FMS's output rate is 

still A. Appendix A provides the derivation. This leads to the 
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following proposition. 

PROPOSITION 1. 

For an FMS with general procefsi~g times and no blocking, IF A< 

1/amax• (or Ai < 1 for i 1, , M) the throughput rate is A. ## 

If blocking does occur (due to limited storage capacity, for 

example), several authors (Gelenbe, 1975, Yao and Buzacott 198Sb, among 

others) provide iterative procedures to calculate blocking probabili-

ties bi fori= 1, ... , M. In chrpter IX, I will develop an easier 

procedure to calculate the hi's. 

I 

Other Measures 

It is shown (Buzacott and Sha~thikumar 1980) that Ui, the 

utilization of machine i, is given by 

(4.6) 

and, if only a maximum of C jobs are allowed in the system, (4.1) 

suggests 

PC lim TH(A, C) q(C-1)/q(C). (4.7) 
A~OO 

When all ei/oi are the same, the system is called a balanced system 

with PC equal to C/([a(C+M-1)], where a=ei/oi. 

Although Buzacott and Shanthikumar (1980) assume all processing 
i 

times are exponential, it will be shown in chapter IX that (4.6) is 

valid for any processing time distribution. 
I 

It is shown in chapter III that a job (say A) will visit station i 

on average ei times. Let E[Wi] be the mean waiting time in station i's 



queue, and E[~i] be the mean time in the station i. Each time A is 

expected to spend E[Wi] of time in the queue i, and then to be served 

in 1/oi of time. Apparently, (see, say, Ross 1989) 

(4.8) 

So the sojourn time SJ, i.e., the expected time a job stays in the 

system, is given by 

SJ 
M 
:E eiE[Xi] 

i=l 

M 
~ ei(l/oi + E[Wi]). 

i=l 

Using Little's Law, one has 

E[QiJ/Ai, and 

E[LiJ/Ai, 
} 

(4.9) 

(4.10) 

where Ai is station i's input rate, E[Qi] is the expected length of 

queue i, and E[Li] is the expected station size. Since E[Li] can be 

obtained from (4.4) and (4.5), 

00 

E[Li] ~ jProb[Li=j], 
j=O 

Now E[Xi] can be derived from (4.10). Then, using (4.8), one can 

(4.11) 

determine E[Wi]; and from (4.10) one can determine E[Wi1· Finally, it 

is straightforward to calculate SJ from (4.'9). 

'" The only difficulty is that (4.11) requires the summation of 

infinite terms. In practice, one has to assume Prob[Li~J]=O for some 

large integer J, so that (4.11) can be approximated by 

J 
E[LiJ ~ jProb[Li=j]. 

j=O 
(4.12) 

It should be pointed out that, the mean WIP inventory level of 

station i, in terms of units, denoted by WIPi, is just E[Li]; i.e., 
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WIPi = E[Li] for l~iSM. 

If B>l, i.e., there are two or more classes of jobs in the 'system, 

jobs in different classes should have different values (or costs). 

Furthermore, the same job may ~ave different values (or costs) when it 

is going through different stations. So (4.12) should be revised 

accordingly to reflect these considerations. Since this heavily 

depends on the cost structures of these products, which are beyond the 

scope of this dissertation, it will not be discussed here. However, 

this is a topic worthy of future research. 
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CHAPTER V 

TECHNIQUES TO COPE W.ITH BREAKDOWNS 

In the FMS literature, it is always assumed that machines never 

break down. This is an unrealistic assumption. This study will 

investigate machine breakdowns and present a powerful and convenient 

approach to deal with them. This approach transforms the line with 

breakdowns into an equivalent line without breakdowns, and then many 

well-established methodologies can be applied to evaluate the system's 

performance. 

The Effective Processing Time Y and Its Mean E[Y] 

Consider that, when a unit A arrives at a station, which is ready 

to work on A, it will take S time units to process A if no breakdown 

occurs during the S time units. If the station breaks down during 

processing A, because of the No-Double-Fault assumption, A will stay in 

the station for S + R time units. Formally, the effective processing 

time is 

{ 
s, 

Y= 
S + R, 

if no breakdown during S; 
(5.1) 

if breakdown during S. 

According to the Exponential-Up-Time and No-Double-Fault assump-

tions, the probability that the machine breaks down during a given busy 

time duration t is 

H(t) J~ h(x)dx 

3.6 



- Jt we-wxdx - 0 

= 1 - -wt e , 

and the probability of no breakdown during t is then 

1 - H(t) = -wt e , 

where the exponential distribution's memoryless property is exploited. 

Now E[Y] can be calculated by conditioning (Ross 1989). Let 

E[XIW] be the function of the random variable W whose value at W=w is 

E[XIW=w]. Note that E[XIW] itself is a random variable. It is shown 

(Ross 1989) that, for all random variables X and W, 

E[X] = E[E[XIW]]. (5.2) 

Therefore, E[YIS] is a function of S, whose value at S t is E[YI S=t], 

and 

E [YI S=t] t[l - H(t)] + (t + JLR)H(t) 

t + JLRH(t). (5.3) 

Note the probability that S t, i.e., Prob[S=t], is m(t)dt; according 

to (5.2), 

a) 

E[Y] = fo E[YIS=t]m(t)dt 
a) 

= fo [t + JLRH(t)]m(t)dt 
a) 

= JLS + JLR fo H(t)m(t)dt. (5.4) 

a) 

For convenience, let ki denote fo tiH(t)m(t)dt for i~O. Then (5.4) can 

be rewritten as 

E[Y] = JLs + JLRko. (5. 4,) 

It is clear that, according to (5.4'), E[Y] depends only on JLS, 

JLR, and S's and T's distributions, and the repair time distribution is 

irrelevant here. Buzacott (1967) guessed that "certain results hold 
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irrespective of the repair time distribution." Equation (5.4') proves 

that is right. 

Calculation of Y's Moments and Central Moments 

In the last section, it is known that E[Y] = ~y = v1. Now, 

consider the calculation of Y's higher moments vi and central moments 

~i for i = 2, 3, and 4. In fact, one can calculate vi and ~i for all 

i>l. First, one calculates vi for i>l, and then, with the help of 

(3.1), one can easily obtain ~i for i>l. Instead of computing each vi 

individually, it is appropriate to introduce the following theorem to 

handle vi's for all i>O. 

THEOREM 1. Assume two r.v.'s X and W have a joint pdf f(x,w), and 

their marginal pdf's are fx(x) and fw(w), respectively. Then, 

for i>O, 
<X> • 

J_ 00E[X1 IW=w]fw(w)dw. (5.5) 

Proof. See Appendix B. ## 

It is known (Kendall and Stuart 1969, Ross 1989) that 

00 

f-oo xifxlw(xlw)dx. (5.6) 

The beauty of Theorem 1 is that one does not need to know f(x,w) if 

(5.6) is available. Now it is ready to compute vi's. 

Yi ~ { 
ti if no breakdown during t· , , 

Let 
(t + R)i; if breakdown during t· , 

Q-{ 0, if no breakdown during t· , 
and 

1, if breakdown during t. 

It is easy to see yi = [YiiS=t] = ti + (t + R)iQ, and 



Therefore, according to Theorem 1, 

co • 
= fo E[Y~IS=t]m(t)dt 

co • 
= fo {t~[l - H(t)] + E[(t + R)i]H(t)}m(t)dt 

co i j . . 
= vi(S) - ki + fo ~ Civj(R)t~~J]H(t)m(t)dt 

j=O 

(5.7) 

(5.8) 

Since kj (j<i) can be numerically calculated, and R's and S's moments 

are either given or easy to compute, vi(Y) can be obtained from (5.8). 

As a summary, the effective processing time Y's first four moments 

and central moments are explicitly identified. 

v1(Y) = E[Y] = v1(S) + vl(R)ko = ~S + ~Rko. 

v2(Y) = v2(S) + 2v1(R)k1 + v2(R)ko; 

v3(Y) = v3(S) + 3vl(R)k2 + 3v2(R)kl + v3(R)ko; (5.9) 

Now applying (3.1) one obtains ~i(Y)'s fori 2, 3, and 4. Namely, 

~l(Y) = v1 (Y), 

~2(Y) = v2 (Y) - [vl(Y)]2, 

~3(Y) = v3(Y) - 3v2(Y)vl(Y) + 2[vl(Y)] 3 , 
(5.10) 

~4(Y) = v4(Y) - 4v3(Y)v1(Y) + 6v2(Y)[v1(Y)]2 - 3[vl(Y)] 4 . 
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Some Discussions 

Notably it is assumed that machine breakdowns do not affect 

processing times. If breakdowns affect processing times, the equation 

(5.1) should be rewritten as 

if no breakdown; 
y (5.1') 

+ R + S2 ,' if breakdown occurs, 

where sl is the processing time before breakdown and s2 is the remain-

ing processing time after breakdown (Residual Life Time, Figure 6). 

Essentially in this study it is assumed S1 +,S2 = S, that means the 

interruption does not affect the processing time. 

No breakdown: 
s 

---------------1-----1-------

With breakdown: 
s1 R s2 

---------------1---~1---------1--1-------

FIGURE 6. The effects of breakdown 

Since it is unlikely that S1 + S2 < S, the only other possible 

case is sl + s2 > s. While it is intractable when sl and s2 are 

general, several important special cases can be handled accordingly. 

Case A: * c , where c* is a random variable. 

This will happen when a breakdown only causes some extra time to 

40 



set up and restart. Let S' = S + c*. If S and c*•s first four moments 

are known, then the first four moments of S' can be calculated by using 

formulas (7.2) and (7.3) (see chapter VII). 

Case B: S1 t S2 

Since E[wS] 

wS, where w is a constant multiplier. 

wE[S), Var[wS) w2var[S], etc., the first four 

moments of wS can be obtained easily. 

A Special Case: S and S2 are identically exponential. 

The No-Double-Fault assumption is useful to derive a series of 

results in this study. However, this assumption is apparently invalid 

when the processing time is exponential. In this case, when a 

breakdown occurs, the interrupted job will be reprocessed after repair. 

Due to the exponential distribution, the remained processing time is 

still S. In other words, the interrupted job will be treated as a new 

job, and its history is for~ot. Federgruen and Green (1986) considered 

and solved this problem. 

Summary 

Here a powerful and convenient approach is presented to handle 

station breakdowns, stochastic processing times and repair times. By 

transforming the line with breakdowns into an equivalent line without 

breakdown, many well-established methodologies can be applied to 

evaluate the system's performance. This approach concentrates on the 

effective processing time Y. It can analytically calculate Y's 

moments and central moments, that facilitate fitting any n-parameter 

distribution for Y, and therefore provides a solid base for further 
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analyses of the whole queueing network. 

Usually one fits Y's first three or four moments to a three or 

four parameter distribution, respectively. To calculate Y's moments, 

it's necessary to known S and R's moments, and the following integral, 

co ' 

ki Jo tiH(t)m(t)dt 

co • 

fo t 1 (1 - e-kt)m(t)dt, 

which only depends on the mean breakdown rate k and m(.)~ In other 

words, one doesn't need to know the repair timeR's and MRS delay D's 

pdf's! Moreover, if one doesn't know the processing time S's pdf, but 

know S's first three or four moments, he/she can fit a three or four 

parameter distribution asS's pdf m(.). So in practice, one only needs 

to know k and the first three or four moments of S, and R, and that are 

easy to obtain from collected data. This feature makes this method 

very attractive to researchers as well as practitioners, for they don't 

need to figure out those pdf~s of S and R. 

The numerical examples cin chapter VI will clearly show that the 

processing time S's third and fourth (central) moments have signifi-

cant impact on the effective processing time Y, that indicates a four-

parameter distribution is more appropriate to be used to fit S's first 

four moments. 



CHAPTER VI 

NUMERICAL EXAMPLES 

Here several numerical examples are given to show how to transform 

an FMS with breakdowns into an equivalent system with no breakdowns. 

The program and results for example 1 are in Appendix C. 

The Effects of Uncertainty and R's Distribution 

Example 1. 

Consider the following data. 

Repair time R: 

~R=S, aR2=9, ~3(R)=lOO, and ~4(R)=525. So CVR=0.6. 

Processing time S: 

~G=l.S, aT2=0.81, ~3(S)=0.8748, and ~4(S)=3.9366. So CVs=0.6. 

Time between breakdowns T: 

w=l/100, or the mean time between breakdowns is 100. 

From (3.1), 

v1(R)=S, v2(R)=34, v3(R)=360, and v4(R)=4500. } (6.1) 

To calculate ki's (05i53), one needs to determine m(t). Here one 

can fit vi(S)'s (l5i54) to an S-D distribution (Schmeiser and Deutsch 

1977), which has four parameters, a, b, c, and d. 

First, one can obtain a1 and a2 as follows. 

a1 = ~3(S)/aGs 3 = 0.8748/(0.81) 1 · 5 = 1.2, 

~3 
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Then, one can look up the graph in Schmeiser and Deutsch (1977) to find 

that, for (al, a2) = (1.2, 6), c=4.63836, and d=0.47117. (An accurate 

table can be obtained from the authors.) Then b and a can be 

calculated as follows. 

a = I-'S - [ 2=~~~::~-~::~ ·]b = 1. 3945. 
c + 1 

Note that 

CX) 

ki = fo ti(l - e-t/lOO)m(t)dt 

=lim J! ti(l- e-t/lOO)dM(t). (6.2) 
x-+co 

Let BL be a - bdc, and BR be a+ b(l - d)c. The S-D distribution has a 

very good property: Its CDF is given as the following closed-form. 

0, t < BL; 

d - [(a-t)/b]l/c, BL ~ t ~ a· 
' M(t) 

[(t-a)/b]l/c, d + a~ t ~ BR; 

1, t > l}R. 

BR 
Hence, (6.2) can be rewritten as ki = fBL ti(l- e-t/lOO)dM(t). 

Let 5 = (BR-BL)/N for some big integer N, ~(j5) = M(j5) - M((j-1)5), 

and presume BL ~ 0. Then 

N 
ki =lim ~ (j5)i[l - e-(j5/lOO)]~(j5). (6.3) 

N-+co j=l 

Equation (6.3) can be solved numerically, and the results are 

ko = o.05160, k1 = 0.16336, k2 = o.56675, k3 = 2.04813. (6.4) 



Now, from (5.9), (6.1), and (6.4), one knows 

v1(Y) = 1.758, v2(Y) = 6.448, v3(Y) = 51.636, v4(Y) = 649.211. 

Using (5.10), it is easy to see that ~y = v1(Y) = 1.758, ay2 = 3.357, 

and CVy = 1.042. By the way, ~3(Y) = 28.495 and ~4(Y) = 377.021. 

Example 2. 

Consider the following data. 

Repair time R: 

~R=5, aR2=32, ~3(R)=45, and ~4(R)=875. So CVR=l.l3. 

Processing time S: 

~s=l.5, as 2=0.81, ~3(S)=0.8748, and ~4(S)=3.9366. So CVs=0.6. 

Time between breakdowns T: w=l/100. 

From (3.1), 

vl(R)=5, v2(R)=57, v3(R)=650, and v4(R)=7200. 

vl(S)=l.5, v2(S)=3.06, v3(S)=7.8948, and v4(S)=25.1829. 

Similarly, one can know a1 = 1.2, a2 6, and all a, b, c, d, and 

ki's are the same as those in example 1. Therefore, one obtains that 

vl(Y)=l.7580, v2(Y)=7.6352, v3(Y)=77.8790, and v4(Y)=l056.3809. Then 

~y = 1.7580 and CVy = 1.2126. 

Discussions about the First Two Examples 

In example 1, assume the time unit is an hour. If all times are 

deterministic, the station processes 66 jobs in 1.5*66=99 hours without 

interruption. When it is processing the 67-th job, the machine breaks 

down, and that will take 5 hours to repair it. In total it needs 

99+1.5+5=105.5 hours to process these 67 jobs. So the mean effective 
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processing time E[Y] is about 1.575 hours. Now in fact all times are 

stochastic, E[Y] is 1.758, about 11.62% greater than 1.575, that 

clearly shows the negative effect of uncertainty. It is not 

surprising, because equation (5.3) indicates that both T's and S's 

distributions affect E[Y]. 

The Effects of the Variance, Skewness, and 

•' 
Kurtosis of Processing Times 

Example 3. 

Assume ~R=5, aR2=9, ~3(R)=lOO, ~nd ~4(R)=525. So CVR=0.6. ForT, 

W=l/100. Now one may be interested in how as 2 , a1(S), and a2(S) affect 

the effective processing time Y. Because the skewness measure 

the effects of S's second, third, and fourth central moments are being 

investigated. Let ~s=l.5. Note CVs=as/~s and is set at CVs=0.4, 0.8 

and 1.2. Table I shows the results. 

In example 2, only R's second, third, and 4-th moments are 

changed. As equations (5.3) and'(5.8) suggest, E[Y] is still 1.758, 

but CVy, v3(Y), and v4(Y) increase dramatically. 

Here considering a1 and a2 jointly (denoted by [al, a2]), Table I 

reveals that both ~y and CVy are monotonously, positively correlated 

with CVs and [al(S), a2(S)). It seems that CVs has stronger impact on 

Y than [al(S), a2(S)). So in section 3 it will be shown if a1(S) and 

a2(S), separately, have significant impact on Y. 
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TABLE I 

THE JOINT EFFECTS OF SKEWNESS AND KURTOSIS 

s: CVs = 0.4 CVs 0.8 CVs 1.2 

[al, a2] JJ.y CVy Jl.Y CVy Jl.Y CVy 

0.8 2.0 1.685 0.788 1. 721 1.070 1. 757 1. 380 
1.2 3.0 1.692 0.805 1.735 1.097 1. 778 1.410 
1.6 4.0 1.696 0.814 1.744 1.112 1. 790 1.428 
1.6 5.0 1. 715 0.860 1. 781 1.186 1.823* 1. 522* 
2.0 6.0 1. 721 0.873 1.792 1. 207 1. 861 1.542 

* The original S-D distribution has a small left tail stretching into 
the negative area, so the distribution is adjusted. Hereafter, the 
number with star is obtained after adjustment. 

Example 4. 

In this example, only w value is changed to 1/200. All others are 

the same as those in example 3. Note that w is the breakdown rate, and 

1/w is the mean time between breakdowns. 

TABLE II 

EFFECTS OF THE BREAKDOWN RATE w 

S: CVs 0.4 CVs 0.8 CVs 1.2 

[a!> a2] 1'-Y CVy Jl.y CVy Jl-y CVy 

0.8 2.0 1. 593 0.650 1.611 0.969 1. 630 1.314 
1.2 3.0 1.597 0.663 1. 619 0.987 1.641 1.335 
1.6 4.0 1.599 0.670 1.623 0.998 1.647 1.348 
1.6 5.0 1.608 0.705 1.642 1.052 1.659* 1. 382* 
2.0 6.0 1.611 0. 715 1. 647 1.068 1. 683 1.432 
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Once again, one sees clearly that both ~y and CVy are positively 

correlated with CVs and [a1(S), a2(S)]. But, comparing Table II with 

Table I, one sees that ~y decreases by 5.5% to 9.6%, and CVy decreases 
. 

by 7.2% to 17.5%. This indicates the importance of the parameter was 

expected. 

Are S's Skewness and Kurtosis Important? 

Example 5. 

R's first four central moments and k are the same as those in 

example 4. ~S is still 1.5. CVs = 0.4. First, we set a2(S) equal to 

3, and change a1(S) from -1.2 to 1.2, in step of 0.4. Then we set 

a2(S) equal to 4, and change a1(S) from -1.6 to 1.6, in step of 0.4. 

combinations (see Schmeiser and Deutsch 1977 for details). From Table 

III, it is evident that, except the marked rows, ~y and CVy are 

monotonously, positively correlated with a2(S), and a2(Y) is 

monotonously, negatively correlated with a2(S). But at [a1=l.2, a2=3] 

and [a1=l.6, a2=4], ~y and CVy are decreasing, while a2(Y) is increas-

ing. Notice that [a1=l.6, a2=3] and [a1=2.0, a2=4] are impossible 

combinations, these anomalies might be attributed to the S-D distribu-

tion's boundary behavior. 

The relation between a1(Y) and a1(S) is very ,interesting. When 

a1(S) is increasing from -1.2 to 0, a1(Y) decreases from 6.1550 to 

6.0658; then when a1(S) continues increasing to 1.2, a1(Y) turns around 

and increases to 6.1900. It seems that while S skews to left or right, 

Y always skews further toward left. That does not mean a1(Y) is always 
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positive, but always increases while a1(S) deviates further from the 

neutral point 0. 

Table III shows a1(S) has significant effects on Y. For a2(S)=3, 

while a1(S) increases from -1.2 to 0.8, py increases by 1.94%, and CVy 

increases by 9.96%. For a2(S)=4.0, while a1(S) increases from -1.6 to 

1.2, py increases by 2.69%, and CVy increases by 14.0%. 

TABLE III 

EFFECTS OF SKEWNESS 

___!!1--0 2 y CVy a1(Y) 0 2iYL 
-1.2 3.0 1. 6673 0.7480 6.1550 64.4553 
-0.8 1.6826 0.7824 6.0843 60.1234 
-0.4 1.6898 0.7990 6.0671 58.2194 
-0.0 1. 6945 0.8101 6.0658 57.0227 
0.4 1. 6978 0.8179 6.0733 56.2022 
0.8 1. 6997 0.8225 6.0904 55.7254 

@ 1. 2 1. 6923 0.8051 6.1900 57.5518 
-1.6 4.0 1.6636 0.7401 6.1328 65.5955 
-1.2 1.6820 0.7812 6.0486 60.3183 
-0.8 1. 6911 0.8022 6.0205 57.9150 
-0.4 1. 6976 0.8176 6.0067 56.2755 
0.0 1. 7021 0.8282 6.0061 55.2014 
0.4 1.7056 0.8366 6.0101 54.3697 
0.8 1. 7074 0.8410 6.0265 53.9478 
1.2 1. 7084 0.8435 6.0483 53.7088 
1.6 1.6963 0.8144 6.1882 56.5933 

Example 6. 

R's first four central moments and w are the same as those in 

example 4. PS is still 1.5. CVs = 0.4. This time set a1(S) equal to 

-0.4, and change a2(S) from 2 to 8. Then set a1(S) equal to 0.4, and 



change a2(S) from 2 to 8 again. 

From Table IV, it is evident that, when al(S)=0.4, ~y and CVy are 

monotonously, positively correlated with a2(S), and a1(Y) and a2(Y) are 

monotonously, negatively correlated with a2(S). But when a1(S) is 

-0.4, while ~y is still monotonously, positively correlated with a2(S), 

once again, CVy, a1(Y) and-a2(Y) show some anomalies that might be 

attributed to the S-D distribution's boundary behavior. Table IV 

also shows a2(S) has significant effects on Y. ·For a1(S)= -0.4, while 

a2(S) increases from 2 to 8, ~y increases by 2.31%, and CVy increases 

by 10.0%. For ai(S)=0.4, while a1(S) increases from 2 to 8, ~y 

increases by 2.38%, and CVy increases by 12.2%. These observations 

indicate that S's fourth moment ~r central moment can not be ignored. 

TABLE IV 

EFFECTS OF KURTOSIS 

Ql 0:2 ~y CVy a1(Y) a2(Y) 

-0.4 2.0. 1.6794 0.7752 6.1492 60.9373 
3.0 1.6898 0.7990 6 .. 0671 58.2194 
4.0 1.6976 0.8176 6.0067 56.2755 
5.0 1.7043 0.8335 5.9576 54.7128 
6.0 1.7105 0 .. 8484 5. 9133 53.3298 
7.0 1.7150 0.8531 5.9185 52.9702 
8.0 1.7182 0. 8472 5.9743 53.6179 

0.4 2.0 1.6888 0.7969 6.1484 58.4140 
3.0 1. 6978 0. 8179 6. 0733 56.2022 
4.0 1.7056 0.8366 6.0101 54.3697 
5.0 1. 7121 0.8524 5.9599 52.9231 
6.0 1. 7183 0.8675 5. 9139 51.6148 
7.0 1. 7238 0. 8811 5.8746 50.4997 
8.0 1.7290 0.8939 5.8390 49.4971 

so 



CHAPTER VII 

DEALING WITH MATERIAL HANDLING SYSTEM DELAY 

In the last two chapters a powerful and convenient approach is 

presented to handle breakdowns. By tr~nsfo~ing the line with 

breakdowns into an equivalent line without breakdown, many well­

established methodologies can be applied to evaluate the system's 

performance. In this chapter, the very same approach is employed to 

handle MHS delay. So far, MHS delay (or the transit time) is almost 

ignored in the FMS literature. Many FMS models simply assume transit 

times are zero. Others concluded that, in general, transit times have 

a negligible effect on the production capacity, if there are a very 

large number of jobs in the system and the ratio of mean transit time 

over mean processing time (E[D]/E[S]) is small (Posner and Bernholtz 

1968, Buzacott and Shanthikumar 1980). However, recently it is evident 

that the number of jobs in the system could be small or medium, and the 

ratio E[D]/E[S] could be as high as 80%, or even greater than 100% 

(Ghosh and Wysk 1989, Commault and Semery 1990). 

A closer look reveals that the way to treat MHS delay is depend on 

storage system configurations. In practice there are three kinds of 

storage systems as discussed below. 

Central Storage with Infinite Capacity 

Assume that the central storage with infinite capacity is shared 
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by all stations which have no local buffers. 

Let Di be the transit time for moving a job from station i (or the 

central storage) to the central storage (or station i). Posner and 

Bernholtz (1968) considered to treat the MRS and the central storage as 

an extra station (say, station 0) with the service time equal to the 

transit time. Then the system has one more station, but no MRS delay 

(Figure 7). Because any processed job has to either return to station 

0 or leave the system, there will be no blocking, 

and the probability Pio=l-fi for all i~l, and the probability Pij=O for 

all i~l and j~l. It is easy to see that Proposition I can apply, i.e., 

the system's output rate is A, and station i's utilization is Aei/6i· 

It should be, pointed out that station O's service time includes 

not only the transit time, but also the waiting time in the queue 

(hereafter, queue delay), because the central storage is virtually a 

collection of queues. Therefore, this model essentially aggregates all 

stations' MRS delay and queue delay. Station 0 is special not only 

because its server is the MRS with the central storage instead of a 

machine, but also because it can serve all other M stations simulta­

neously, that is equivalent to having M servers. Chapter IX will 

return to this point. 

Local Buffers with Limited Capacity 

Assume each station has a local buffer with limited capacity, but 

there is no central storage. 

Commault and Semery (1990) described a kind of MRS's, in which MRS 

delay for station i is Di, which is a r.v. (Figure 8), if MRS's 

52 



53 

Station 2 

Station 3 

Qo (Central Storage) 

Station 0: -~-1 I I *** ! ! }.j MRS 1-
Mo 

Figure 7. The FMS Model 
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Source: C. Commault, and A. Semery, "Taking into account 
delays in buffers for analytical performance 
evaluation of transfer lines," IIE Trans., 
Vol.22, No.2, (1990), 133-142. 

Figure 8. A Two-Machine Transfer Line with a Conveyor 
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sends jobs to i immediately using a conveyor. For example, in,Figure 

8, when machine 2 (M2) finishes a job and sends the job out, it has to 

wait for the conveyor bringing a job. At that time, the nearest job 

(A) may be still x feet away. Assume the conveyor moves jobs at a 

constant speed of v feet per second, then M2 has to wait for D2 = xjv 

seconds to get A. 

Commault and Semery (1990) suggest to transform the system into 

an "equivalent" system with unchanged station characteristics, no MHS 

delay, but reduced buffer capacities. As they point out, the main 

advantage of this approach is that, after a simple modification of the 

system input data, performance may be evaluated using existing method. 

However, they only consider a two-station case, and, as they put it, 

the really appealing problem is how to deal with larger systems. 

Theoretically, they also suggest to aggregate MHS delay and queue 

delay, because the conveyor in Figure 8 is the buffer (station 2's 

queue), and modifying buffer capacities means modifying queue delay. 

We call this Backward Aggregation. A natural alternative is to 

aggregate MHS delay and effective processing times, or Forward 

Aggregation. 

Let the general processing time of station i, GSi, be the sum of 

its effective processing time Yi and MHS delay Di, i.e., 

GSi = Yi+Di. (7.1) 

Assume Yi and Di are independent of each other, as they usually are; 

and Di's pdf is 8(.) with moments ~j(Di) for j>O. If only one station 

is in question, the subscript i can be dropped. 

For a particular station, let g(.) beGS's pdf, andy(.) beY's 
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pdf. If 8(.) andy(.) are known, g(.) is given as follows (Convolution 

Formula), 

g(x) = fo y(z)8(x-z)dz. (7.2) 

Unfortunately, in most cases (7.2) -is intractable even if y(.) and 

8(.) are given, not to mention that usually y(.) and/or 8(.) are 

unknown. An alternative is the method of moments. 

It is easy to see that GS's moments are (Wilks 1962, Kendall and 

Stuart 1969): 

f.L2(GS) 

JL3(GS) 

JL4(GS) 

f.L2(Y) + f.L2(D); 

f.L3(Y) + f.L3(D); 

f.L4(Y) + 6JL2(Y)JL2(D) + f.L4(D). 

(7.3) 

Given GS's first three or four moments, (7.3) could be fit to a three 

or four parameter distribution as GS's probability distribution. This 

distribution's density function is still denoted by g(.). 

Let's refer to Commault and Semery (1990)'s model the MB model 

(moving buffer model). Anoth~r popular model, which will be called FB 

model (fixed buffer model), describes fixed buffers. Fixed buffers 

impose some difficulties, and will be discussed in the next section. 

Hybrid Storage System 

Again, consider the central storage system. Let li be the transit 

time or MHS delay for moving a job from station i to the central 

storage, and Li be the transit time for moving a job from the central 

storage to station i. When station i completes processing job A, the 

MHS will send A to the central 'storage within li time units, if no 
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other station is waiting for A. Imagine that the central storage is a 

collection of M stations' queues, then li is only a part of A's queue 

waiting time. It is easy to see that, as long as no one needs A before 

a arrives at the central storage, li,doesn''t affect stations' process­

ing times. But when station i finishes the job on hand, it has to 

spend time li to get the next job. Naturally, local buffers can be 

used to keep several job while stations are busy, because now the MHS 

can send jobs to the station (pre-load) whenever the buffer is not 

full. In other words, the local buffer can reduce MHS delay. That 

explains why so many FMS's employ both the central storage and local 

buffers, or hybrid s-torage systems. 

If all buffers are MB's, the,last two sections already provide a 

way to transform the system into an equivalent system without MHS 

delay. But how about FB's? The first section's method is recommended, 

i.e., using an extra station (0) to represent the MHS and the central 

storage. However, when local buffers are full, station 0 will be 

blocked, so Proposition I is no longer applicable. Chapter IX will 

return to this problem. 
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CHAPTER VIII 

PERFORMANCE MEASURES OF STATIONS 

So far the job arrival process is ignored, simply because it is 

irrelevant to the effective processing time Y or the general process­

ing time GS. At this stage, the paper considers the equivalent system 

with (effective or general) processing time Yi's, but without MRS delay 

and breakdowns; i.s., does not distinguish Y and GS. 

Now it is desired to know the total time a job will stay in a 

station (X, the station time) or in its queue (W, the waiting time), 

the number of jobs in the station (L, the station size) or in the queue 

(Q, the length of the queue), and the station's output rate (TH). X, 

W, L, Q, and TH are all r.v. 's depending upon the job arrival process, 

as well as Y. 

It is assumed that external jobs arrive at the system following a 

Poisson stream with rate A. Then the arrival processes to stations are 

the merging/splitting of Poisson streams, which remain Poisson streams 

(Kelly 1979, Whitt 1982, Yao and Buzacott 1985b). Therefore, for a 

particular station i, it is assumed the arrival process is a Poisson 

stream with rate Ai, and the effective processing time is Yi with 

moments vn(Yi), n>O; or simply A andY with moments vn, if no 

confusion. 

Because the arrival process is Poisson, the service time (Y) is 

general, and there is one server (machine) in the station, it can be 
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modeled as an M/G/1 queue. Hence the method of the imbedded Markov 

chain can be applied to find out the moments of L, Q, X, and W. 

In this chapter, first several basic formulae for M/G/1 queues are 

introduced, and then a recursive procedure is developed to compute the 

moments of X, W, and L. The length of the queue, Q, has to be treated 

separately, because again we need the Theorem I to obtain Q's moments. 

Basic M/G/1 Queue Formulae 

00 

Let L(z) ~ Prob[L=n]zn be L's probability generating function 
n=O 

(Gross and Harris 1985). Define the k-th factorial moment of Las 

E[L(L-l)(L-2) ... (L-K+l)], (k>O). (8.1) 

For example, F2(L) = E[L(L-1)] = E[L2-L] = v2(L) - v1(L). One sees 

L(l) is 1, and 

L'(l) dL(z)/dzlz=l 

00 

~ n*Prob[L = n] 
n=l 

Generally, one has (Kleinrock 1975, Gross and Harris 1985) 

i.e., one can obtain L's moments by calculating L(k)(l), the k-th 

(8.2) 

derivative evaluated at z=l, which gives the k-th factorial moment of 

L. Since Fk(L) can be expressed in terms of L's first k moments, one 

can recursively calculate L's moments. The only problem is, what is 

L(z)? 
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The Expression of L(z) 

* Let Y (s) be the Laplace transform of Y's pdf m(t), i.e., 

co 

Y*(s) = fo e-stm(t)dt. 

Kleinrock (1975) shows that 

(1 - p)(l - z) 
L(z) = Y*(>,-.Az) -------­

Y*(.A-.Xz) - z 
(8.3) 

where p = .A~y. Let~ be the station's mean processing rate. Since ~y 

is the mean processing time, 

~ = 1/~y, and p = .A/~. (8.4) 

The equation (8.3) is the famous Pollaczek-Khinchin (P-K) transform 

equation, which yields the moments for the distribution of the number 

of jobs in the station. When one attempts to set z=l in equations 

L(k)(z) (~0), he obtains indeterminant forms and has to use the 
I 

L'Hospital's rule. In carrying out this operation, it is necessary to 

evaluate 

v(k)(l) lim -------- (8.5) 

where V(z) = Y*(.A-.Az). Fortunately, it can be shown (Kleinrock 1975) 

that 

(8.6) 

Specifically, V'(l) = .Av1(Y), and V"(l) = .x2v2(Y), where V' and V" are 

V(z)'s first and second order derivatives, respectively. 

Calculation of v11Yl 

Now, as an example, let's calculate L'(l). 
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L' (z) = dL(z)/dz 

(1-p)(l-z) (V-z) + (1-z)(V'-1) 
= ---.-- V' + (1-p)V(z) -------------

V-z (V-z)2 

And therefore, 

L'(l) =lim L'(z) 
z-+1 

V' (1-p) V' (V-z)+(l-z)V' (V' -1)+(1-z)VV" 
lim ----- - ( 1- p) lim -----------------------
z-+1 V'-1 z-+1 2(V-z)(V'-l) 

V' (1-z)V' (1-z)VV" 
p - (1-p) lim [-------· + -------- + -----------] 

z-+1 2(V'-l) 2(V-z) 2(V-z)(V'-l) 

p (1-z)V"-V' 
p + (1-p)[------- lim----------+ 

2(1-p) z-+1 2(V'-l) 

VV"-(l-z)V'V"-(l-z)vv(3) 
lim ] 
z-+1 2(V-z)V"+2(V'-1)2 

>.2v2(Y) 
p + (l-p)------

2(1-p)2 

>.2v2(Y) 
p + -------

2(1-p) 

Considering (8.4) and (3.1), one has 

"'1 (L) = L' (1) 

>.2v2(Y) 
p + -------

2(1-p) 

>.2(ay2 + P.y2) 
p + -----------

2(1-p) 

p2(1 + cvy2) 
= p + ----------

2(1-p) 

which is the well-known P-K mean value formula. 

(8. 7) 

(8.8) 
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One could go ahead to get L's second and higher moments. But it 

will be very troublesome and tedious to follow this way. In the next 

sections a recursive procedure is developed to calculate L's moments. 

In fact, it will calculate all-tbe moments of L, X, and W. 

A Recursive Procedure for Moments of X, W, and L 

The Recursive Procedure 

Let A*(s) be the Laplace transform of the r.v. A's pdf. Accor-

ding to Kleinrock (1975), we know that, for the station time X, 

X*(s) = Y*(s)s(l-p)/[s-A+AY*(s)], 

and for the waiting time W, 

x*(s) = Y*(s)W*(s), 

which is from the well-known formula X= Y + W. 

Then it is found that (Takacs 1962, Kleinrock 1975) 

A k i Vi+l(Y) 
h (Ck) Vk-i(W), 

1-p i=l (i+l) 

k i 
vk(X) h (Ck) vk-i(W)vi(Y), 

i=O 

Now one can calculate the first n moments of W, X, and Las 

follows. Q will be treated separately later. 

PROCEDURE I. 

Input: n, the input rate A, andY's first n moments. 

Step 1. Let i = 1; Notice that vo(.) 1· , 

Step 2. Use (8.9) and vj(W)'s (j<i) to obtain vi(W); 

(8.9) 

(8.10) 

(8.11) 
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step 3. Use (8.10), Vj (X)' s (j<i) and Vj (W) 's (j:~i) to obtain Vi (X); 

Step 4. Use (8.11), vj(L)'s (j<i) and Vj (X)' s (j:5i) to obtain Vi (L); 

Step 5. If i<n, increase i by one (i.e.' i +- i+l ) ' return to step 2; 

If i=n, stop. 

Output: The first n moments of W, X, and L. ## 

Next, one can apply this procedure to calculate their first four 

moments. 

The First Four Moments of W. X, and L 

Following the above procedure, it is found that, 

v1 (L) 

.A v2 (Y) 

1-p 2 

.Av2(Y) 

2(1-p) 

p2(l+CVy2) 

2(1-p) 
which is also well-known. 

v1(W) + v1(Y) 

.Av2(Y) 
+ J.Ly. 

2(1-p) 

--------- + AJ.Ly 
2(1-p) 

p2(1 + cvy2) 
p + ------------, 

2(1-p) 

which is reconciled with equations (8.7) and (8.8). 
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>.. 2v2(Y) v3(Y) 
2. v2(W) v1(W) + ----

1-p 2 3 

2[v1(W)]2 + 
>..v3 (Y) 

3(1-p) 

v2(X) = v2(W) + 2v1 (W)v1 (Y) + v2(Y). 

v2(L) - v1(L) >..2v2(X), and therefore 

v2(L) >..2v2(X) + v1(L). 

>.. 3v2(Y) v4(Y) 
3. v3(W) ------ v2(W) + v3(Y)v1(W) + ----- ] . 

1-p 2 4 

v3(X) = v3(W) + 3v2(W)v1(Y) + 3v1(W)v2(Y) + v3(Y). 

v3(L) - 3v2(L) + 2v1(L) = >.. 3v3(X), and therefore 

v3(L) >..3v3 (X) + 3v2 (L) - 2v1(L). 

>.. vs(Y) 
4. v4(W) = --[2v2(Y)v3(W)+2v3(Y)v2(W)+v4(Y)v1(W)+ ----]. 

1-p 5 

v4(Y). 

v4(L) - 6v3(L) + 10v2(L) - 3v1(L) = >.. 3v3(X), and therefore 

Moments of the Length of the Queue 

Let Q represent the number of jobs in the queue, not counting the 

job, if any, in processing. Q can be expressed by L, the number of 

jobs in the station, including the job in processing: 

Q-{ L - 1, if L > o· 
' (8.12) 

0, if L = 0. 

By conditioning on L, (8.12) can be rewritten as 



{ 
k - 1, 

Q = 

0, 

if L = k > 0; 
(8.13) 

if L = 0. 

According to the Theorem I in chapter V, using "~" for discrete 

distributions, instead of "f" for continuous distributions, one has 

vn(Q) = ~ (k-l)nProb[L = k] 
k=l 

= 'i [ ~ (C~)kn-j(-l)j ]*Prob[L = k] 
k=l j=O 

n • j co • 
= ~ (-l)J(Cn) { ~ kn-JProb[L = k] 

j=O , k=l 

n-1 · co co 

= ~ (-l)j(C~) { ~ kn-jProb[L = k] } + (-l)n ~ Prob[L = k] 
j=O k=O k=l 

It is easy to see that v1(Q) = v1(L) - p, which is also a well-known 

formula in the queueing theory. Moreover, 

vz(L) - 2v1(L) + p; 

v3(L) - 3v2(L) + 3vl(L) - p; 

v4(L) - 4v3(L) + 6v2(L) - 4vl(L) + p. 

Other Measures for the station 

When the arrival rate A is given, the station's steady state out-

put rate TH = A, and its utilization is p, whenever A < ~ (Gross and 

Harris 1985, Ross 1989, among others). 

In the next chapter the blocking rate computation for each station 

will be considered. Blocking usually stems from limited buffer space. 
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Notice that, if the local buffer capacity is, say, two, then the 

probability that a corning job will be rejected by this station is 

simply Prob[Q ~ 2], or Prob[L ~ 3]. Now the problem is, which one, 

Prob[Q ~ 2] or Prob[L ~ 3],· is better? If both Q's and L's CDF's are 

known, there will be no difference. But now only their moments are 

known, and have to be fit to, say, a four parameter, continuous 

distribution, that will incur some error, especially at the boundary. 

Because 

Prob[Q ~ 2] 

Prob[L ~ 3] 

Prob[L :S 1] 

1 - Prob[Q 1] - Prob[Q·= 0], 

1- Prob[L 2] - Prob[L :S 1], and 

Prob[Q 0] 

Prob[L 1] + Prob[L = 0], 

there will be more mass built up at the boundary point zero for Q than 

for L. So it is reasonable to choose working on L, rather than Q, not 

to mention the savings from avoiding the computation of (8.14). 

Now let bi be station i's blocking rate. Assume L's first three 

or four moments are fit to a three or four parameter CDF Fi(.). Then 

bi = Prob[L ~ 3] = 1- Fi(3). (8.15) 

Notably, when blocking occurs, the arrival process, therefore TH, 

could be changed. From station i's point of view·(Figure 6), i~ may 

reject some corning jobs (in input flows), and its outputs could be 

rejected by other stations. In turn, the rejected jobs will affect the 

input flows. These system related problems will be discussed in the 

next chapter. 
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CHAPTER IX 

PERFORMANCE EVALUATION OF FLEXIBLE MANUFACTURING SYSTEMS 

The Model of the System 

Yao and Buzacott (1985b) described an open queueing network with a 

set of work stations, each having a local buffer with limited capacity 

and general processing times (Figure 9). The MRS is divided into two 

subsystems, the MHS(I) and the MHS(O). The MHS(I) consists of a set of 

carts (or input conveyors) to send jobs to the stations. The MHS(O) is 

a return conveyor at the output side of the stations. 

Although the machines are never blocked in this model, the input 

jobs can be blocked if the local buffer at the destination station is 

fully occupied. The authors made an important assumption pertaining to 

the blocking mechanism: The blocked jobs will be recirculated ('block­

and-recirculate'), instead of occupying the cart and waiting in front 

of the station ('block-and-hold', see Buzacott and Fanifin, 1978). 

They argued that, "Given the versatility of job routing and the variety 

of operations and operation sequences in an FMS environment, a block­

and-hold mechanism just seems to be too restrictive." (Yao and 

Buzacott, 1985b) 

This model is adopted here, with slight modifications, and desc­

ribed in the next two sections. Some of the assumptions previously 

stated in chapter III will be repeated and/or modified as appropriate. 

6] 



~ 

:I: 
E-< 

- ~ ' -..... -
-~ b!J..;: 
·e.o 

- ~ 
tC .-4 N ~ .j 

:I: :X: :I: :I: E-t E-t E-t E-t 
('\ r\ (1 ('\ ....... N M ..:t 
c = c = 0 0 0 0 
·~ ·~ -~ -~ .u .u .u .u ca ca cu ca .u .u .u .u 
CJJ Cll Cll Cll 

...,) \..) ,J l) ...:: 
4 ' ~..0 

M --..0 ,. "-
N -

.c .. ""' ...... 
r-1 

.c k ....... .,.. t--.. - ...:: 

~z 
,... 

,... 

•• 4-1 -0 
.~ :I: "' ..0 

E-t ~ 

~ 
s:: 
0 

•..-I 
.u 
ca 
.u 

~ 
I 

0 ~ .c 

Source: D. D. Yao, and J . A. Buzacott, "Modeling tne 
performance of flexible manufacturing 
systems," Int. J. Prod. Res., Vol.23, 
No.5, (1985b), 945-959. 
(Revised by the author Long-Geng Zhao) 

Figure 9. The "Block-and-Recirculate" Model 
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Model Description 

The FMS consists of M stations, each of which has one machine 

with a general processing time (e.g., Yi for station i). The buffer 

capacity is ni at station i. The MHS(I), which is treated as station 

0, has c>O carts to deliver jobs from the central storage to stations 1 

to M. Let ri>O be the probability that MHS(I) ~ill send a job to 

station i. Thus, the "distributing rates" ri's must satisfy 

Jobs may be rejected by a station which queue is full, and 

rejected jobs will be recirculated, i.e., sent back to the central 

storage and get prepared for retrial. Note that it is assumed that 

rejected jobs follow the same probabilities ri's when they join the 

central storage. In fact, ri's are defined asymptotically, not 

individually. The service processes of carts are known, or at least 

its first k (k=4 or 5) moments, vk(D)'s, are given. Here D represents 

one cart's service time and all carts are identical. A job leaving 

station i will either be fed back to the central storage with probabi-

1 - fi, or leave the system with probability fi. Both the 

feedback and the exit transits are handled by MHS(O), which is treated 

as station M+l, and modeled as an infinite-server queue with known 

parameters. 

External jobs arrive at the system following a Poisson stream with 

rate A. Whenever the total number of jobs at the central stora~e 

reaches No, external arrivals are turned away and lost. Therefore, the 

central storage should be able to contain a total of 



M 
N No + ~ ni 

i=l 

jobs. The central storage imposes no limit on internal jobs. So the 

internal jobs have priority to occupy both the central storage and the 

MHS(I). 

The blocking at the MHS(I) is modeled through an additional 

arrival stream, the blocking feedback. Because no real physical 
I 

blocking may happen to the stations, the isolated stations can be 

analyzed using the techniques developed in chapters IV through VIII. 

The only problem is how to decide the arrival process for each station. 

This is discussed in the next section, adapted from Yao and Buzacott 

(1985b). 

The Equivalent Arrival Process 

Let the arrival rate to station i be Ai· It is assumed that the 

arrival processes to stations can be approximated by renewal streams or 

the merging/splitting of renewal streams. THi is defined as the number 

of jobs completed in a unit of time. Let bi (O~iSM) denote the proba-

bility that a job is blocked (rejected) on arriving at station i. No 

job will be blocked at station M+l. These hi's are unknown parameters 

to be derived. 

The arrival flow to station 0 has three components: the external 

flow A, the output feedback Af, and the blocking feedback Ab· The 

arrival flow to"station i (l~iSM), Ai, is a fraction ri of the output 

of station 0 (THo). The arrival flow to station M+l is the merging of 

the output (THi) from each station. 

70 



Yao and Buzacott (1985b) proved the following proposition valid 

for the model here. 

PROPOSITION II. 

The equivalent arrival rates to the stations can be formulated as 

follows: 

where 

~{ .A + Af + .Ab if n<No 
.Ao 

Af + .Ab if No~~ 

.Ai THori (l~i:SM) 

M 
.AM+l THM+l = 2: THi 

i=l 

M M 

Af = 2: THigi, 
i=l 

.Ab = 2: .Aibi 
i=l 

and the outputs of the stations are as follows: 

THo 
.A(l-bo) 

M 

1 - 2: ri[bi+(l-bi)giJ 
i=l 

From (9.1), one can see that 

.Ao (.A+ Af + .Ab)(l - bo) + (Xf + .Ab) 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

## 

.A(l - bo) + Af + .Ab· (9.1') 

9.1 to 9.6 are the flow balance equations. With the help of these 

equations, a general iterative procedure (called GIP here) can be 

employed to figure out the system's output rate TH. This GIP will be 
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introduced in the next section. 

Derivation of the Blocking Probabilities, Arrival 

Rates and System Output Rate 

The formulas (9.1) to (9.6) are based on a set of unknown 

parameters, hi's (0Si5M), which, in turn, depend on Ai's or THi's. 

This set of parameters can be derived through solving a fixed-point 

problem. The following procedure, Figure 10, is devised to find out 

Set OLD THi; 
Ai = riTH0 . Initialization 

** Calculate bi; 
Calculate NEW THi's 

OLD THi-NEW THi .., No If NEW THi' s Are Very 
Ai = riTHo. - Close To OLD THi's? 

Yes 

Calculate TH, STOP 

Figure 10. General Iterative Procedure (GIP) 



Verbally, this procedure takes Si, ni (i=O, ... ,M), ri, fi (i=l, 

... ,M) and A as inputs. First, it arbitrarily assigns initial values 

to THi's (OLD THi, usually making a reasonable guess) and sets Ai= 

riTHo; then calculates hi's (discussed later) and NEW THi's (applying 

the flow balance equations). 

Next the NEW THi's are compared with the OLD THi's. If the NEW 

and OLD THi's are close enough, the fixed point is found and the NEW 

THi's are used to calculate TH; otherwise it sets the OLD THi's equal 

to the NEW THi's and recalculates Ai's, hi's and NEW THi's and goes to 

the next iteration. 

Though there are several different versions of GIP in the litera-

ture, the underlying iterative structures are the same. Here the 

, common assumptions are that Si's (i.e., the distributions of Si's) are 

known and there are no breakdowns. To cope with breakdowns, the input 

Si should be replaceA by Yi, or the first four moments of Si and Ri 

along with ki (see Figure 11), and Procedure I in chapter VIII can be 

applied to calculate the first ·several moments of Wi, Xi and Li; then 

according to (8.15), bi 

Figure 12. 

Note that Figure 12 will replace the block with double asterisks 

(**) in Figure 10. In summary, Figure 10, should be transformed to 

Figure 13, which is the flow chart for Procedure II. 

Procedure II is ~evised to find out TH, where the superscript (j) 

denotes the j-th iteration. Note that it sets THo= A, and consequent-

ly Ai = riTHo and other THi's can be calculated by (9.5) and (9.6) if 

bi' s are known. 
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INPUTS 

For i=(O), 1, ... , M: 
First Four Moments of 
si & Ri 
A - System Input Rate 
ri - Branch-Rate 
fi - Leave-Rate 
ni - Buffer Capacity 
ki - MTBF 

Calculate the (First Four) Moments 
of the Effective Processing Time Yi 

Figure 11. System Inputs Considering'Breakdowns 

lJ 
Calculate the (First Four) 
Moments of wi, xi, and Li. 

Fit the (First Four) Moments of Li 
to a (Four-Parameter) Distribution 
as Station-Size Distribution FLi. 

bi = Prob [ Li>ni] = 1 - FLi(ni) 
Calculate NEW THi's. 

Figure 12. The New Method To Obtain bi 
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For i-(0), 1, ... 
' 

M: 
First Four Moments of si & Ri 
ki -- MTBF 

INPUTS A -- Syst em Input Rate 
..j:i_, ri -- Bran ch-Rate 

fi -- Leav e-Rate (gi-1-fi) 
ni -- Buff 

Calculate the (First Four) Moments 
of the Effective Processing Time Yi 

er Capacity 

Initialization 
Set OLD THi; 
Blocking Rate bi=O; 
Ai = riTHo. 

Calculate the (First Four) 
-..- Moments of Wi, Xi, and Li. 

Fit the (First Four) Moments of Li 
to a (Four-Parameter) Distribution 
as Station-Size Distribution FLi. 

bi - Prob[Li>nil - 1 - FLi(ni) 
Calculate NEW THi's. 

OLD THi-NEW THi 
Ai = riTHo. 

lt:l 

No If NEW THi's Are Very 
Close To OLD THi's? 

Yes ,. 
Calculate TH, STOP 

OUTPUTS 

Figure 13. The Flow Chart For PROCEDURE II. 
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PROCEDURE II. 

Input: A, Li's CDF (lsiSM), and e, which is a predetermined small 

positive number. 

(j) (j) (j ) (j) (j ) 
Step 1. Initially, set j=O, bo =0, AO =A, THo =A, and Ai = riTHo 

(lsiSM). 

(j) 
Step 2. For all i=l, ... ,M, derive bi = Prob[Li>niJ following the 

procedures introduced in chapter VIII. 

(") 
Step 3. Solve (9.5), (9.6) and (9.2) to obtain THiJ (OSiSM+l). 

(") 
St 4 U (9 4) t Obta~n 'fJ ep . se . o ~ A 

(j) 
and Ab , and use (9.1'), (9.2), and 

(") 
(9.3) to obtain Ai J (OsiSM+l). 

Step 5. Set j = j+l; 

Treat station 0 as a normal station with service time D and 

maximum buffer capacity No for external inputs. Use the same 

(j) (j) 
method of Step 2 to Calculate bo and bi (i 1, ... , M), 

(j) 
Step 6. Solve (9.5), (9.6) and (9.2) to obtain THi (OSiSM+l). 

(j) (j-1) 
If maxiiTHi - THi I < e, stop; else, go to step 4. 

Output: bi's, Ai's, and THi's. ## 

This procedure naturally imitates the system. At the beginning, 

the system is empty, and all capacity is free. So bo=O, and AO=A. 

Since the input into station 0 is a Poisson stream, and all carts are 



free, at least before the first time the number of jobs in station 0 

reaches No, the output of station 0 is also a Poisson stream. Of 

course Af and Ab may be taken in account, and later it will be shown 

that they are, also thought of as ·.Poisson. 

Beca~se the probabilistic splitting/merging of, a set of (indepen-

dent) Poisson streams preserve the Poiss~n property (Kelly 1979, Whitt 

1982), all input flows' of station i (lSiSM)' are Poisson streams. That 

is what Step 1 does. Since input flows are Poisson,. Procedure I can be 

applied to calculate hi's, which is Step 2. _ Y~o and Buzacott (1985b) 

argued that, since the input into sta'tion M+l is a superposition of the 

output processes from many machines all the time, it can be reasonably 

approximated by a Poisso,n stream·; and since station M+l is an infinite-

server station, the Poisson input will yield a Poisson output, regard-

less of the processing t~me distribution of this station. That 

' ' 
justifies (9.5) of St~p 3 .and (9.4) of Step 4. Following the same 

argument, Ab can also be approximated by a Poisson stream, and so is 

AO· Let BF denote the blo~king flow of statio~ 0, which is the 

difference between the sum of in-flows (Af + Ab + A) and the out-flow 

THo, or BF = (Af + Ab +A) -THo. Also,note that bo = BF/A; so, 

combining the above equation, one has bo = 1 - (THo - Af - Ab)/A, 

which justifies Step 5. Hillier and Boli~g (1967)'s "exit-oriented" 

approach (see Appendix I)·justifies (9.6) of Step 3. Steps 4 to 6 

compose an iteration procedure to find out the fixed points 

and 

Til 

b 

(THo, THl, 

(bo. bl, ... ' 

When the real FMS can reach steady state, this simple iterative 
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scheme should converge, although no formal proof exists. 

System Performan~e Measures 

It is clear that the system output rate is 

M 
TH ~ fiTHi. 

i=l 

The sojourn time for a class-r Job, Tsr, is approximated as follows, 

M 
Tsr ~ eir[Pi+~l(Wi)], 

i=O 
(see chapters III and IV.) (9.7) 

where Pi = AiTHi~(Yi) < 1. Note that Pi is station i's utilization. 

If MHS delay is already included in the effective processing time Y, 

there is no need to consider station 0 and M+l. When there is only one 

class of jobs, the subscript or superscript r can be dropped. The 

remaining problem is how to calculate ~l(Wi) in (9.7). 

Recall in step 2 of Procedure II, the above mentioned Procedure I 

is called, and that will calculate the moments of Wi, Xi, and Qi for 

i=O, ... , M. Therefore, it is easy to determine each station's mean 

waiting time ~l(Wi), mean length of queue ~l(Qi), and mean station time 

~l(Xi) = Pi+~l(Wi)· But due to the blocking mechanism, the real 

waiting time/queue length distributions' right tails will be truncated. 

For example, if station i's buffer capacity is ni, then 

n. fo 1 xf(x)dx, 

where f(x) is Qi's probability density function,, which can be fitted to 

Qi's first three or four moments. 
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Numerical Examples and Simulation Verification 

Example 9.1 

' ' ' 
" 

Consider an FMS with four stations,(station 1 to 4). Assume their 

service times are the same Y, which first four moments are 1.0, 0.36, 

0.0864, and 0.2592, respectively. Also assume that r1 = r2 = 0.3, r3 

r4 = 0.2; f1 = f2 = 0.35, f3 = ~4 = 0.25; Station O's,processing time 

(MRS delay) is uniformly distributed between 0.1 and 0.3; the buffer 

capacity is 3 for stations 1 to 4 and 200 for the central'storage 

(No=200); and A= 0.3. 

Table V below shows the an~lytical results from Procedure II. 

Computer simulation is used to verify the analytical results. The 

computer program for Procedure II and the basic SLAM II simulation 

model (Pritsker 1986) is shown ~n Appendix D and E, respectively. It 

can be seen that almost all analytical results fall in the ranges of 

confidence intervals, set at 95% level, with a few exceptions (marked 

by an asterisk) . 

The sojourn time is determined in _the following manner. First, 

treat the system as it is, i.e., -only 4 stations. Let Q = (rl, r2, r3, 

matrix P is 

[ 
0.3*0.65 
0.3*0.65 
0.3*0.75 
0.3*0.75 

0.3*0.65 
0.3*0.65 
0.3*0.75 
0.3*0.75 

0'. 2*0. 65 
0.2*0.65 
0.2*0.75 
0.2*0.75 

0.2*0.65] 
0.2*0.65 
0.2*0.75 
0. 2*0. 75 . 

For example, when a job leaves station 2, it will stay in the 

system with the probability of 0.65, and if it stays in the system, it 
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TABLE V 

EXAMPLE 9.1 

STATION 
1 2 3 4 INa@ 

Analytical Results a.29a3 a.29a3 a.l935 a.l935 a. 9677 
Simulatio~ Results a.2851 a:2879 a.l943 a.l9a3 a.9569 
Relative Error (%) 1.82% a.83% -a.4t% 1.68% 1.13% 
Confidence Interval ±a.a9;t ±a.a88 ±a.l25 ±a.13a ±a.a31 

(Confidence Level: 95%.) 

Station ~te: TH1 TH2 TH3 TH4 System 
--------------------------------------------------------------------
Analytical Results a.29a3 a.29a3 a.l935 a.l935 a.3aaa 
Simulation Results a.2843 a.2865 a.l94a a.l9a2 a.298a 
Relative Error (%) 2.11% 1. 33% -a.26% 1.74% a.67% 
Confidence Interval ±a.a9a ±a.a88 ±a.l24 ±a.13a ±a.a66 

Blocking Rate: b1 , b2 b3 b4 ba 
-~------------------------------------------------------
Analytical Results 
Simulation Results 
Confidence Interval 

a.aaa 
a.aa3 

±a.al8 

o.aaa 
a.aa4 

±a.al8 

a.aaa 
a.aal 

±a.aa6 

a.aaa 
a.aaa 

±a.aa6 

a.aaa 
a.aaa 

±a.aa6 

(Since all blocking rates a~e very close to zero, the Relative Error 
are meaningless.) 

Length of Queue: 1 2 3 4 5 
' . -------------------------------------------------------------------

Analytical: 
Simulation: 
Conf. Int.: 

Time in the 
Station: 

Analytical: 
Simulation: 
Conf. Int.: 

1 

1. 278 
1. 3a3 

±a.a4a 

a.a81 
a.a85. 

±a.aa7 

2 

1. 278 
1.356 

±a.a44* 

a.a81 
a.a96 

±a.aa8* 

.3 

1.163 
1.198 

±a. a·36 

a.a32 
a.a35 

±a.aa4 

4 

1.163 
1. 239 

±a.a42* 

a.a32 
a.a39 

±a.aa5* 

.a 

a.a26 
a.aaa 
±a.a9 

a.aaa 
a.aaa 

Sojourn 
Time 

4.7a4 
4.733 

±a.a88 

@ Note: INa means station O's input rate, which is determined by 
equations (9.1) and (9.1'). 
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will go to station 3 with the probability of 0.2; hence P23, the 

probability that it will go to station 3, is 0.2*0.65. Referring to 

Chapter III, one must solve the equations E = (I - pT)-lQ. It can be 

easily shown that E = (0.968, 0.968, 9.645, 0.645)T. 

Now eo= e1 + e2 + e3 + e4, because·any.job must go to station 0 

before it goes.to any other station. Note that station O's mean service 

time is (0.1 + 0.3)/2 = 0.2, and'the waiting time in queue 0 is 0.026, 

then according t9 (9.7), the sojourn time is 

Ts = 1.278*0.968 + 1.278*0:968 + 1.163*0.645 + 1.163*0.645 

+ (0.968 + 0.968 + 0.645 + 0.645)*(0.2 + 0.026) 

4.704 

which is very close to the simulation results. 

More directly, taking station 0 in consideration, then one can see 

that Q = (1, 0, 0, 0, O)T and E = (eo, e1, e2, e3, e4)T. This means a 

job first enters the central storage anyway. Consequently, the 

transition matrix P becomes 

Station 0 

I 
0 0.3 '0. 3 0.2 0.2 

I Station 1 0.65 0 0 0 0 
Station 2 0.65 0 0 0 0 
Station 3 0.75 0 0 0 0 
Station 4 0.75 0 0 0 0 

Again, equations E = (I - pT) -lq must be solved;, doing so, one 

obtains E = (3.226, 0.968, 0.968, 0.645, 0.645)T and therefore Ts = 

4.704, verifying the above result. 

Now it is straightforward to get Station i's utilization by 

Ui AiTHi~l(Yi) for l~i5M (see section 9.3). 

The sojourn time is an important measure in system analysis. As 
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shown in Proposition I, as long as the system is stable and there is no 

physical blocking, its output rate is equal to the input rate; 

therefore, people will be more concerned about the production lead 

time, or the sojourn time, which tells how long a job will stay in the 

system. However, in the literature, it is overlooked. 

Example 9.2: The Effects of A 

The system input rate A has direct effects on the system 

performance. Here suppose A changes from 0.1 to 0.7 in steps of 0.2, 

while all others are the same as those in the example 9.1. The table 

below shows the results. Since station 1 and station 2, as well as 

station 3 and station 4, are "identical" in terms of their parameters, 

station 2 and station 4 will not be shown hereafter. 

The table below clearly shows that the system output rate is 

always equal to the system input rate A, as Proposition I predicts. 

While A increases, so do stations' input/output rates and bi's. 

An interesting observation is that bo's are always close to zero. 

Can it be assumed that bo=O? It appears that this assumption would be 

valid if every station (queue) is stable, i.e., Pi<l (which is the 

standard assumption). However, it -seems that a system could reach 

steady state when even one or more stations are not "stable," since 

whenever station O's buffer is full, no more jobs will be accepted by 

the system. Unfortunately, there is no guarantee that the system can 

reach the steady state. therefore, only the systems' steady state 

performance is considered here, and it will be assumed that Pi<l for 

i=O, ... ,M. 
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TABLE VI 

THE EFFECTS OF A 

(St=Station; Ana=Analytical; Sim=Simulation; C.I=Confidence Interval; 
Sys.=System Output rate; INo=Stai:'ion O's Input Rate.) 

A 0.1 0.3 0.5 0.7 

Stl r 1THo TH1 bl r 1THo ™1 bl r 1THo TH1 bl .r1THo TH1 bl 
Ana .097 .097 .00 .290 .290 .00 .500 .476 .047 .699 .668 .09 
Sim .096 .098 .00 .285 .284 .00 .511 .471 .079 .738 .652 .11 
C.I ±.29 ±.29 ±.·09 ±.09 ±.05 ±.05 ±.03 ±.03 ±.03 ±.04 

St3 qTHo TH3 b3 r3THo TH3 b3 r 3THo TH3 b3 r 3THo TH3 b3 
Ana .065 .065 .00 .194 .194 .00 .333 .333 .00 .466 .465 .045 
Sim .064 .064 .00 .194 .194 .00 .348 .338 .03 .496 .472 .046 
C.I ±.42 ±.42 ±.12 ±.12 ±.07 ±.07 ±.04 ±.05 ±.03 ±.01 

I No Sys. bo I No Sys. bo INo Sys. bo I No Sys. bo 
Ana .323 .100 .00 .968 .300 .00 1.666 .500 .00 2.331 .700 .00 
Sim .319 .100 .00 .970 .298 .00 1. 716 .497 .00 2.461 .695 .00 
C.I ±.12 ±.12 ±.03 ±.03 ±.015 ±.04 ±.09 ±.03 

The analytical procedure also shows that when A approaches 0.8, 

station 1 and station 2's queues are fluctuating dramatically, and 

there is no evidence of convergence. 

The Effects of Local Buffer Capacity 

Following example 9.1, let us examine.the effects of local buffer 

capacity changes (all others stay the. same ex~ept that A= 0.5). Let 

QC be the local buffer capacity vector. In example 9.1, QC = (3, 3, 3, 

3)T. In general, the i-th entry of QC gives station i's buffer 

capacity. 
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According to Tables V and VI, b3 and b4 are always zero or very 

close to zero, that may suggest there is no need to increase stations 3 

and 4's buffer capacity. Therefore, only stations 1 and 2's buffer 

capacity will be changed from 2 to 5 in steps of 1. Table VII below 

show the results. 

Table VI clearly shows that both b1 and b3 decrease while QC(l) 

and QC(2) increase and QC(3) and QC(4) stay the same. When QC = (5, 5, 

3, 3), b1 and b3 are close to zero, potentially suggesting that there 

is no need to further increase the buffer capacity. 

TABLE VII 

THE EFFECTS OF QC 

Station 1 Station 3 System 
QC Input TH1 bl Input TH2 b3 I No Output bo 

--------------------------------------------------------------------
(2, 2, 3, 3) Ana .525 .464 .161 .350 .350 .01 1. 75 .500 .00 

Sim .546 .451 .175 .377 .363 .03 1. 86 .497 .00 
C. I ±.05 ±.05 ±.10 ±.07 ±.07 ±.04 ±.014 ±.04 

(3, 3' 3, 3) Ana .500 .476 .047 .333 .333 .00 1. 67 .500 .00 
Sim .511 .471 .079 .348 .338 .02 1.72 .497 .00 
C. I ±.05 ±.05 ±.03 ±.07 ±.07 ±.03 ±.014 ±.04 

(4, 4, 3, 3) Ana .484 .484 .00 .323 .323 .00 1. 61 .500 .00 
Sim .492 .476 .02 .333 .326 .02 1. 66 .497 .00 
C.I ±.05 ±.05 ±.03 ±.07 ±.07 ±.03 ±.020 ±.04 

(5, 5' 3, 3) Ana .484 .484 .00 .323 .323 .00 1. 61 .500 .00 
Sim .483 .476 .01 .329 .323 .00 1. 63 .498 .00 
C. I ±.05 ±.05 ±.02 ±.07 ±.07 ±.03 ±.020 ±.04 
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The Effects of System Balance 

In the above examples, ri's and fi's are different, therefore the 

system is not balanced (see 9hapter III, and Buzacott and Shanthikumar 

1980). It is well accepted that a balanced system will perform better. 

Therefore, the study will examine what occurs if the system is balanced 

when, say, all ri's are 1/4, all fi's are 0.3, and all ni's are 3. 

Also assume A= 0.5 and 0.7. Table VIII shows the results. Since all 

four stations ·are the same, only station 1 and station 0 are listed. 

Compared with Table VI, it is found that for the balanced system, 

all bi 's decrease. Since each station may have different settings, it 

is meaningless to compare each indtvidual station's perfor,mance. 

However, if all stations' blocking rates decrease, the entire 

system's performance improves. 

TABLE VIII 

BALANCED SYSTEMS 

0.5 0:7 

Stl r 1THo TH1 bl qTHo Tti1 bl 
Ana .417 .417 .000 .629 .583 .073 
Sim .426 .421 .012 .638 .579 .092 
C.I ±.035 ±.034 ±.021 ±.034 ±.034 ±.037 

INo Sys. bo I No Sys. bo 
Ana 1. 667 .500 .000 2.517 .700 .000 
Sim 1.689 .498 .000 2.541 .695 .000 
C. I ±.015 ±.041 ±.088 ±.033 



Statistical Aspects of Simulation 

Start-Up Policy 

As Pritsker (1986) pointed oqt, the initial conditions for a 

simulation model may cause the values obtained from the model to be 

different from those obtained after a start-up period. When steady 

state performance is to be estimated, the initial re,sponses influence 

the estimators of steady state performance. Start-up policies are used 

for setting the initial conditions for the simulation model and 

specifying a procedure for estimating a truncation point, say Tr, at 

which sample values should begin to be included in the estimators being 

computed. Considering the cost of simulation, Tr should be as small as 

possible, because all sample values collected up to the truncation 

point are discarded. 

In this study, Schriber (1974)'s truncation rule is adopted to 

monitor the sojourn time. The Schriber truncation rule sets Tr 

whenever the batch means for the i most recent batches of size b all 

fall within an interval of length e. This study used i=20, b=20, and 

e=l0%*x'' where x' is the mean of the first 100 sample observations at 

the beginning, and will be updated after every 100 observations. 

Stoppin~ Rules 

Determining the length of a simulation run as specified in terms 

of the number of sample observations is a complex problem. Assume n 

observations are taken to estimate the random variable X. Denote Xn be 

the unbiased estimation of ~X• and Var[Xnl = a~jn. Then n, the number 
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contained in a prescribed interval can be decided by Prob[X~-E~~xSX~+E] 

~ 1-a, here E is a prescribed half length for the confidence interval. 

Let Z J~(X~-~x)/ax, then. Prob[IZI ~ EJ~/ax] ~ 1-a, and let n* 

be the smallest value of n for which' the above equation holds. Assuming 
' ,' 

n* is large enough so that the ~entral limit theorem applies, it is 

easy to see that n* [(ax/E)Zaj2l 2 .• where Za/2 is such that 

1 <0 2 -== J (0.5e-Y /2)dy a/2. 
J21r Za/2 

Usually E .. is specified in relative terms of ax, that is, E = cax 

for c>O. Therefore, n* = (Za;2/2) 2 . '* The following table displays n 

values with respect to the commonly used a-c values. In this study, 

c=0.02 and a=0.05 were utilized; therefore, the length of a simulation 

run is 9604, and the actual length is Tr + 9604, where Tr is determined 

by the Schriber truncation rule. 

c 
0.01 
0.02 
0.05 
0.10 
0.20 

a I 

TABLE IX 

NUMBER OF OBSERVATIONS 

0. (}2 

54093. 
13698 

2164 
541 
135 

0.05 

38416 
9604 
1536 

384 
96 

0.10 

27060 
6765 
1084 

271 
68 
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CHAPTER X. 

CONCLUSIONS AND .DISCUSSIONS 

This diss·ertation has investigated flexible manufacturing systems 

with station breakdowns, material'handling system'delay, and general 

processing times. 

In this investigation, this dissertation presents a powerful and 

convenient approach to transform a ,system with ~S delay and breakdowns 

into an equivalent system without MHS delay and breakdowns. This 

transformation is based upon the method of,moments. After absorbing 

the repair times and MHS delay into the effective processing time Y's 

or generalized processing time GS 's', the approaches of Hahn and Shapiro 

(1968), Kendall and Stuart (1969), and Kottas and Lau (1979, 1980) can 

be used to fit Y's or GS's first k (k=3 or 4) moments to a k-parameter 

distribution function. Th~s.the system with the effective (or genera­

lized) processing times is equivalent to the original system, but 

without breakdowns and MHS delay. Fitting the first k moments to a k­

parameter distribution is a convenient method that provides good 

approximations. 

Moreover, when the processing time distributions are known, the 

moments of Y's and/or GS's can be calculated analytically. These 

moments are all that are needed to evaluate each station's performance, 

such as the total time in the station (station time X) or in its queue 

(waiting time W), the number of jobs in the station (station size L) or 
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in the queue (queue length Q), and the station output rate (TH). A 

step-by-step recursive algorithm (Procedure I) is shown to calculate 

the moments of X, W, L, and Q. Therefore, this transformation facili­

tates performance evaluations of individu?l stations, as well as the 

whole FMS with general processing times. After this transformation, the 

previously used techniques for the case of no MHS delay and breakdowns 

can be ·applied to analyze the s~stem. ' 

Furthermore, to take the advantage of this moments-oriented 

transformation, this dissertation develops new iterative procedures to 

obtain performance measures for individual stations as well as the 

entire FMS's. Procedure I is devised to calculate stations' perfor­

mance measures, such as the number of jobs in the station or in its 

queue, and the total time a job stays in the station, and Procedure II 

is then developed to obtain the FMS's performance measures. 

Numerical examples are used to show how to transform an FMS with 

breakdowns and MHS delay into an equivalent system without breakdown 

and MHS delay. After the transformation, the effective or generalized 

processing times are never exponential, no matter whether the original 

processing times are exponential or not. Then, Procedure,. IJ can be 

used to analyze the system's performance. This procedure is very 

efficient, and easy to program. Computer simulations are conducted to 

verify the analytical results. 

The analytical results show that when one or more stations are 

unstable, Procedure II can not converge, while in practice the system 

can continue operation anyway. Since it is of practical importance to 

evaluate those "unstable" FMS' performance, investigating this pheno-
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menon is worthy of future research. 

As mentioned in chapter IV, if there are two or more classes of 

jobs in the system, jobs in different classes could have different 

values (or costs). Furthermore, the same job may have different values 

(or costs) when it is going through different stations. So (4.12) 

should be revised accordingly to reflect these considerations. Since 

this heavily depends on the cost structures of these products, it is 

not discussed here. However, this is also a topic worthy of future 

research. 
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THE PROOF OF PROPOSITION I 

Consider a queueing system consisting,of m· stations in series. 

Hillier and Boling- (1967) shows -that the output rate 

TH = J.trn[l - Pm(O)], 

where I-'m is the last station m's service rate, Pm(O) is the proba-

bility that station m is idle, or starving. Note that JJm[l - Pm(O)] 

represents the only exit station, m's effective output rate, and m will 

never be blocked. ~? other words, one can concentrate on the exits and 

find out Pi(O) so 'as to obtain TH as long as no blocking occurs. Now 

consider the open queueing network again. Every job, after being 

processed in station i, will leave the system with probability of fi, 

when i is an exit. Let Ri be the effective output rate of station i, 

M M 
TH ~ Ri = ~ c5f[l - Pi(O)Jfi (11.1) 

i=l i=l 

Baskett 
I 

According to et al. (1975), Pi(ni) = -(1 
n. 

Pi)Pi 1 , where ni is 

the number of jobs in station i, and Pi= A(ei/c5i), if Pi< 1 for i=l, 

, M for the equilibrium solution to exist. (Pi = A*ai when B=l) 

Therefore 

Note that ei 

1 - (1 - Pi) 

M 
qi + ~ e·P· · 

i=l J J 1 

Pi (11.2) 

M 
fori= 1, ... , M, and ~ qi- 1, I have 

i=l 
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M M M M 
l: ei = l: Qi + l: [ l: ejPjiJ 

i=l j=l i=l i=l 

Therefore, 

M M 
= 1 + l: [ l:.e·P··] 

j=l i=l J J~ 

M M 
1 + l: ej [ l: Pj iJ 

j=l i=l 

M M M 
l: e· - l: ej [ l: P·i] = 1, or 

j=l J j=l i=l J 

M 
l: ej*fj = 1. 

j=l 
(11.3) 

The equation (11.3) simply says that any job, once enterLng the 

system, will eventually leave the system (with probability 1). 

Now return to (11.1). Using (11.2) and (11.3), one can see that 

M 
TH = l: 6i[l - Pi(O)]fi 

i=l 

M 
= l: 6i*A(ei/6i)fi 

i=l 
(from 11.2) 

A. (from 11.3) 

Because a central storage with virtually i~finite capacity can 

guarantee no-blocking, I get the following proposition. 

PROPOSITION I*. For an FMS with general processing times and no 

blocking, when A< 1/amax• (or Pi< 1 fori= 1, ... , M) the output 

rate is A. ## 
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Proposition 1* can be easily extended to B > 1. Let fir be the 

probability that a class-r job will leave the system after processing 

at station i. Note that 

B 
Ri = ~ hrfirSi[l- Pi(O)], so 

r=l 

M 
TH = ~ Ri 

i=l 

M B 
~ ~ hrfirSi(Aei/Si)l 

i=l r=l 

B M 
A ~ [ ~ hrfireil 
r=l i=l 

B M 
A ~ hr[ ~ fireil 
r=l i=l 

A. 

This proves proposition I. 
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THE PROOF OF THEOREM 1. 

THEOREM 1. Asswne two r. v. 's X and W have a joint pdf f(x, w), and 

their marginal pdf's are fx(x) and fw(w), respe9tively. Then, for i>O, 

00 

E[Xi] = J_ 00E[XiiW=w]fw(w)dw. (12.4) [i.e., (5.5)] 

Proof. 

It is known (Kendall and Stuart 1969, Ross 1989) that 

00 • 

E[XiiW=w] = f-oo xLfxlw(xlw)dx, (12.5) 

where fxlw(xlw) = f(x,w)/fw(w) is the conditional pdf of X, given that 

W=w, and is defined for all values of w such that fw(w)>O. 

So the right-hand side of (12.4) is 

00 00 00 

J_ooE[XiiW=w]fw(w)dw = f_oo[f-oo xifxlw(xlw)dx]fw(w)dw 

00 00 • 

= f-oo<f-oo xi[f(x,w)/fw(w)]dx}fw(w)dw 

00 00 • 

= f_oo[f_oo xLf(x,w)dx]dw 

00 00 > 

= J_ 00xi[J_ 00 f(x,w)dw]dx 

00 • 

= J_ooxLfx(x)dx 

E[Xi], 

that is the left-hand side of (12.4). ## 
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1 
2 
3 
4 

c 

REAL*B SS 
DIMENSION FA( 5) I WA(5) I FB( 5). WB(5) ,CX( 12. 12) ,OX( 12. 12) 
COMMON 0(25001),M.YY 
DIMENSION PV( 10),DP( 10),00( 10),YM(5),RM(5) 1 XP(5),WS(5) 

5 , N3=6 
6 I N4=7 
1 N3T=2*N3-1 
8 M3=N3-1 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccc 
C CX AND OX ARE 7X11 TABLES CONTAINING S-O C 
C DISTRIBUTION'S THIRD AND FOURTH PARAMETERS. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccc 

9 READ(5,910) ((CX(I,J),J=1,N4},I=N3,N3T) 
10 READ(5,910) ((OX(I,J),J=1,N4),I=N3,N3T) 
11 00 10 J=1,N4 
12 DO 10 I= 1 , M3 
13 IT=N3T-I+1 
14 CX(I,J)=CX(IT,J) 
15 10 DX(I,J)=1.-DX(IT,J) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 
I c XLEMDA IS THE MEAN TIME BETWEEN BREAKDOWNS. c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

16 XLEMDA=100 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C VECTOR RM CONTAINS THE FIRST FOUR MOMENTS (TO C 
C ZERO) OF THE REPAIR TIME R. C 
C VECTOR FB CONTAINS THE FIRST FOUR MOMENTS C 
C (CENTRAL) OF R. HERE EQUATION 3.2 IS APPLIED. C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

17 RM(1)=5. 
18 FB(2)=9. 
19 FB(1)=RM(1) 
20 RM(2)=FB(2)+FB(1)**2 
21 IF (WB(2).LT.O.) GO TO 615 
22 FB(3)=100. 
23 FB(4)=525. 
24 RM(3)=FB(3)+3.*FB(1)*FB(2)+FB(1)**3 
25 RM(4)=FB(4)+4.*FB(1)*FB(3)+6.*FB(1)**2*FB(2)+FB(1)**4 
26 WRITE(6,66) 
27 66 FDRMAT(1X,'MOMENTS OF R: ') 
28; WRITE(6,955) (RM(l).I=1,4) 
29 WRITE(6,70) 
30 70 FORMAT(1X,'CENTRAL MOMENTS OF R: ') 
31 WRITE(6,955) (FB(I),I=1,4) 
32 WRITE(6,69) 
33 69 FORMAT(1X,'LEMDA=') 
34 WRITE(6,955) XLEMDA 
35 68 FORMAT(F6.2,' ') 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C VECTOR XP CONTAINS THE FIRST FOUR MOMENTS OF C 
C THE PROCESSING TIME P; CV IS THE COEFFICIENT C 
C OF VARIATION OF P. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

36 XP(1)•1.5 
37 CV=0.6 
38 SEG=CV*XP(1) 
39 XP(2)=SEG**2 

ccccccccccccccccccccccccccccccccccccccccccc 
C A1 IS ALPHA 1, AND A2 IS ALPHA 2. C 
ccccccccccccccccccccccccccccccccccccccccccc 

40 A2=6 
41 A1=1.2 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C IK=6 CORRESPONDS TO A1=0, IK=6+1 CORRESPONDS TO C 
C A1=0+0.4, ETC., AND JK IS A2-1. (ACCORDING TO C 
C THE STRUCTURES OF TABLEA CX AND OX.) C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

42 JK=5 
43 IK=9 

cccccccccccccccccccccccccccccccccccccccccccccc 
C FIT A O-S DISTRIBUTION AS PROCESSING C 
C TIME P'S PDF M(T) REQUIRED IN (5.4), C 
C (5.5), AND (5.8). P1, P2, P3 AND P4 C 
C ARE THE FOUR PARAMETERS OF THE 0-S C 
C DISTRIBUTION. C 
cccccccccccccccccccccccccccccccccccccccccccccc ~ 

44 P3=CX(IK,uK) 
45 P4=DX(IK,uK) 
46 DO 400 II81,4 
47 WA(II)=O. 
48 400 WB(II)=O. 
49 PA=P3+1 
50 PB=PA**2 
51 PC=2.*P3+1 
52 P0=(1.-P4)**PA-P4**PA 
53 P2=PB*(P4**PC+(1.~P4)**PC)-PC*PD**2 
54 P2=SEG*SORT(PC*PB/P2) 
55 P1=XP(1)-PO*P2/PA 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C BL AND BR ARE THE LEFT ABO RIGHT BOUNDARIES C 
C OF THE S-O DISTRUBUTIDN. C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

56 BL=P1-P2*P4**P3 
57 BR=P1+P2*(1.-P4)**P3 
58 866 Y1=0. 
59 WRITE (6,950) 
60 WRITE(6,951) CV,A1,A2 
61 XP(3)=XP(2)**1.5*A1 
62 XP(4)=XP(2)**2.*A2 

cccccccccccccccccccccccccccccccccccccc 
C HERE EQUATION 3.2 IS APPLIED. C 
cccccccccccccccccccccccccccccccccccccc 

63 WS(1)=XP(1) 
64 WS(2)=XP(2)+XP(1)*~2 
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65 WS(3)•XP(3)+3•XP(2)•XP(t)+XP(1)••3 
66 WS(4)•XP(4)+4•XP(3)*XP(t)+6*XP(2)*XP(1)••2+XP(1)*•4 
67 WRITE(6,72) 
68 72 FDRMAT(tX,'MDMENTS OF S: ') 
69 WRITE(6,955) (WS(I),I•1,4) 
70 WRITE(6,71) 
71 71 FORMAT(tX,'CENTRAL MOMENTS OF S: ') 
72 WRITE(6,955) (XP(I},I•1,4) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C THE NUMERICAL INTEGRAL ALGORITHM TO CALCULATE C 
C KO, 1<1, 1<2 AND K3 REQUIRED IN (5.9), AND (5. 10). C 
C SEE (6.2) AND (6.3) FOR THE ALGORITHM. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

73 M•5000 
74 T•ABS{BR-BL) 
75 SS•(BR-BL)/M 
76 343 CALL FDSD(SS,P1,P2,P3,P4,BR,BL) 
77 833 DO 234 1•1,4 
78 WA(I)•O. 
79 TIME•BL 
80 DO 238 ~·t,M 
81 TIME•TIME+SS 
82 Zt•TIME••(l-t)•(t~EXP(-TIME/XLEMDA))*D(J) 
83 238 WA(I)•WA(I)+ZI 
84 234 CONTINUE 
85 WRITE (6,814) Pt,P2,P3,P4,BR,BL,SS 
86 814 FDAMAT(tX,'P ARE',4FID.5,1X,'BR/BL•',2F10.4,' SS ',FB.S) 
87 829 WRITEt6,73) 
88 73 FDRMAT(tX,'INTEGRAL Kl: ') 
89 WRITE(6,955) (WA(I),I•t,4) 

ccccccccccccccccccccccccccccccccccccccccccccccc 
C APPLYING (5.9) TO OBTAIN Y'S MOMENTS. C 
ccccccccccccccccccccccccccccccccccccccccccccccc 

90 YM(1)•WS(1)+AM(t)•WA(I) 
91 YM(2)•WS(2)+2•RM(t)•WA(2)+AM(2)•WA(I) 

105 

92 YM(3)•WS(3)+3•AM(I)•WA(3)+3•RM(2)•WA(2)+AM(3)•WA(I) 
93 YM(4)•WS(4)+4*AM(t)•WA(4)+6•RM(2)*WA(3)+4•AM(3)*WA(2)+RM(4)•WA(1) 
94 WRITE(6,74) 
95 74 FDRMAT(IX,'MOMENTS OF Y: ') 
96 WAIT£(6,955) (YM(I),I•t,4) 
97 505 WB(I)•YM(I) 
98 WB(2)•YM(2)-YM(t)••2 
99 IF (W8(2).LT.O.) WB(2)•0. 



101 WB(3)=YM(3)-J.•YM(1)•YM(2)+2.•YM(1)••3 
102 WB(4)=YM(4)-4.•YM(I)•YM(3)+6.•YM(1)••2•YM(2)-3.*YM(1)••4 
103 GT=SQRT(WB(2)) 
104 GCV=GT/WB(I) 
105 GS=WB(3)/GT••3 
lOG GK=WB(4)/GT••4 
107 WRITE(6,75) 
108 75 FORMAT(1X,'CENTRAL MOMENTS OF Y: ') 
109 WRITE(6,955) (WB(I),I=1,4) 
110 WRITE(6,76) 
Ill 76 FORMAT(1X,'MEAN, CV, SKEWNESS, AND KURTOSIS OF Y: ') 
112 WRITE(6,955) W0(1),GCV,GS,GK 
113 GO TO 539 
114 962 FbRMAT (2X,'B(,BR ARE',2F10.5) 
115 901 FORMAT(8F11.7) 
116 920 FORMAT (13,11.F11.6,3F9.G,F7.4,F8.4,2F7.~.F8.5,11) 
1 11 903 FORMAT c 2x. 'cr = •• F 10. a. 3X. • c 1 ='. F 11.1, Jx. · NI ='. 14. 3X. 'cF = •• F 10.6) 
118 539 CONTINUE 
119 500 CONTINUE 
120 GO TO 615 
121 904 FORMAT(IX,'P-VALUES ARE',4fl2.5) 
122 910 FORMAT(8FI0.7) 
123 911 FORMAT(7FII.7) 
124 913 FORMAT(IX,'MEAN,CV,SB1.B2 ARE',4FI5.~7) 
125 955 FORMAT(4F20.8) 
126 950 FORMAT(' ') 
12i 951 FORMAT(IX,'CV,AI,A2 ARE',3F8.2) 
128 960 FORMAT (IX,'CT,T,SS,M ARE',Ft5.9,2F15.7,17) 
129 615 STOP 
130 END 

SOURCE STATEMENTS = 129, PROGRAM SIZE • 5864 BYTES, PROGRAM NAME = MAIN 

NO DIAGNOSTICS GENERATED. 

••MAIN•• END OF COMPILATION 1 •••••• 

1-' 
0 
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1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

*STATISTICS* 

*STATISTICS* 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C SUBROUTINE FDSD CALCULATES M(T) IN (6.2) AND C 
C (6.3) WITH STEP LENGTH SS, FROM BL TO BR. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE FDSD(SS,P1,P2,P3,P4,BR,BL) 
REAL*B SS,X2 
COMMON D(25001),M,YY 
P5=1./P3 
DO 2 K"1,M 

2 D(K)=O. 
Y1=0. 
X2=BL 

5 DO 40 K=1,M-1 
X2=X2+SS 
IF (X2.GT.P1) GO TO 30 
V2=P4-((P1-X2)/P2)**P5 
GO TO 31 

30 V2=P4+((X2-P1)/P2)**P5 
31 O(K)=V2-Y1 
40 Y1=Y2 

O(M)=1-D(M-1) 
RETURN 
END 

SOURCE STATEMENTS • 19, PROGRAM SIZE = 1292 BYTES, PROGRAM NAME = FDSD 

NO DIAGNOSTICS GENERATED. 

**FDSD** END OF COMPILATION 2 ****** 



MOMENTS Of R: 
5.00000000 

CENTRAL MOMENTS OF R: 
5.00000000 

LEMDA• 
100. 00000000 

CV,A3,A4 ARE 0.60 
MOMENtS DF S: 

t.20 

34 • 00000000 

8.00000000 

8.00 

3.05999947 

360.00000000 

too. oooooooo 

7.89479828 t.50000000 
CENTRAL MOMENTS OF S: 

1.50000000 
PARE 1.39450 45.t3Gtt 
INTEGRAL Kl: 

0.81000006 0.87479997 
4.63836 0.47117 BR/BL• 3.74Bt 

0.05160357 
MOMENTS OF Y: 

' 1. 75801754 
CENTRAL MOMENTS OF Y: 

o. 1633561:J 

6.44808102 

1.75801754 
MEAN, CV, SKEWNESS, 

1.75801754 

3.36745621 
AND KURTOSIS OF Y: 

1 . 04227352 

0.56675237 

B I • 63566590 

28.49490360 

4.63181877 

4BOO. 00000000 

B2B • 00000000 

25.18289180 

3.93659973 
0.0186 ss 0.00075 

2.04813004 

649.21142600 

377.02148400 

33.44609070 

1-' 
0 
00 
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1 
2 
3 
4 

5 
6 

7 

8 
9 

10 

11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

110 

REAL*8 SS . 
0 I MENS I C h YC 5 , 5 ) , 8 < 5 ) , T H < 7 ) , X"I ( 7 ) , CX < 1 Z, l2J , 0 X U2, 12 ) , R < 5 > , C 'H 5 ) 
COMMON 0(10Cl,TH0<7),M,MH,H2,QCCSl,IA<7),WA<5),WB<5l,P3,P4 
DIMENSION PV<lQ),OP<lO),QGtlQ),VL.(5,4l,X(5,4),W<S,4l,F<5l,YB<S,5> 

-cc c c ccccc ccc c ccc c cc c ccc c c ecce cc c c cc cc c cccctc cccccccccc ccc·cccc cc c 
C XK IS A SHALL POSITIVE NU~BER TO CC~TROL THE ACCURACY. C cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

XK=l.OE-4 
K=O 

ccccccccccccccccccccccccccccccccc 
C N - NUH8ER OF STATIONS. C 
ccccccccccccccccccccccccccccccccc 

N=4 
ccccccccr.cccccccccccccccccccccccc 
C XIN - SYSTE~ INPUT RATE. C 
ccccccccccccccccccccccccccccccccc 

XIN=O • .l" 
WRITE (6,951) XIN . 

ccccccccccccccccccccccccccccccccccccccccccc 
C VECTOR 8 CONTAINS BLOCKING" RATES. C 
C NOTE: STATIC~ N+l IS STATION Oi C 
C THE CENTRAL STORAGEJHHS, ANC C 
C STATION N+2 IS ~oUTPUT" STATION. C 
ccccccccccccccccccccccccccccccccccccccccccc 

B<N+l)=O . 
cccccccccccccccccccccccccccccccccccccccccccc 
C VECTOR XI CC~TAINS BRANCH STREAMS C 
C FLOW OUT OF STATION o, VECTOR THO C 
C CONTAINS STATIONS INPUT RATE, AND C 
C VECTOR TH CC~TAINS OUTPUT RATES. C cccccccccccccccccccccccccccccccccccccccccccc 

XICN+Z>=XIN 
TlHN+l>•XIN 

·THOCN+l)•XIN 
THO<N+2)=XIN 

cccccccccccccccccccccccccccccccccccccccccccccc 
C CX ANO OX ARE 7Xll TABLES CONTAINING C 
C S-O DISTRIBUTION'S THIRC ANO FOURTH C 
C HOHENTS PARA,..ETERS. C cccccccccccccccccccccccccccccccccccccccccccccc 

N3=6 
N4=7 
N3T=2*N3•l 
H3=N3-l 
REAOC5,910> CCCXCI,J),J=l,N4),1=~3,h3T> 
READ<5,910) ((0XCI,Jl,J=l,h4),l=N3,~3T> 
00 10 J=l,N4 ' 
DO 10 1=1,113 
IT=N3T- I+l 
CX <I, J > =CX (IT, J) 



25 10 DX<I,Jl=l.-CX<IT,Jl 
cccccccccccccccccccccccccccccccccccccccccccccccccc 
C MATRIX Y CO~TAINS THE FIRST FOUR MC~ENTS C 
C OF EACH STATION'S EFFECTI~£ PROCESSI~G C 
C TI HE, VECTOR QC CONTAINS eUFFER CAPACITY'i .C 
C VECTOR R CO~TAINS BRANCH PRCBABILITIES C 
C RI •s, ANC VECTOR F CONTAINS STATlCh 1-4'5 C 
C LEAVING PROe~BILITIES. C 
cccccccccccccccccccccccccccccccccccccccccccccccccc 

26 DO ll I=l,N+l 
27 IA<I>=O 
28 ll READCS,901l CYCI,Jl,J=t,4l 
29 READCS,811) 1QCCil,I=t,N•ll 
30 WRITE <6,91!) CQCCil,I=l,N+ll 
31 READCS,91ll <R<Il,I=l,Nl 
32 WRITE (6,926> <R<I>,I=l,Nl 
33 REAO<S,9lll <F<I>,I=l,Nl 
34 WRITE C6,92!l <F<tl,I=l,Nl 

ccccccccccccccccccccccccccccccccccccccccccccccccc 
C INITIALIZATitN: STEP l OF PROCEDURE II~ C 
ccccccccccccccccccccccccccccccccccccccccccccccccc 

35 DO 12 I=l,N 
36 XICil=R<ll*T~CN+ll 
37 12 THOCl)=XICil 
38 DO 14 I=l,N+l 
39 14 CVCil=SQRTCYCI,2ll/YCI,ll 

cccccccccccccccccccccccccccccccccccccc 
C YB CONTAINS Y'S FIRST FCUR C 
C MOMENTS ABO~T LERO. C 
cccccccccccccccccccccccccccccccccccccc 

40 DO S I=l,N+l 
41 YBCI,2l=V(I,2l+Y(I,ll**2 
42 YB<I,3l=YCI,3l+3.•Y<I,l)*Y<I,2)+VCI,ll**3 

111 

43 5 YB<t,4l=YC1,4)+4.*Y<I,ll*Y<I,3)+6.*YCI,ll**2*YCI,2l+YCI,ll**4 
ccccccccccccccccccccccccccccccccccccccccccc 
C CALCULATE FIRST THREE HCHCE~TS OF C 
C X <TIHE IN STATION>, W C~AITING C 
C TIHE IN THE ~UEUE), ANC L <LENGTH C 
C OF THE Q~E~El FOR STATICN I. C 
C SEE PROCEDURE I AND SECTICN a.z.z C 
ccccccccccccccccccccccccccccccccccccccccccc 

44 54 DO 15 I•l,N+l 
45 XN=Xl(l) 
46 RO=XN*Y(I,l) 
47 RN=l-RO 
48 IF <RN.LE.O> GO TO 22 
49 w<I,l>=XN•YBCI,2l•0.5/Rh 
50 X(I,ll=~<I,l>+YCI,l> 
51 VLCI,l)=XN*X<I,ll 
52 IJ(I,2>=2*W(l,l)~W(I,l)+(Xh/3)*Y<I,3)/RN 
53 X(l,2l=w<I,2l+2*W<I,l>*Y<I,l)+YB<I,2) 
54 VL<I,2l=XN~Xh~X(l,2l+VL(l,l) 
55 W<I,3)=XN*<!*Y5<I,2>•~<I,2)/2+YB<I,3l*W<I,l)+VB<I,4l/4)/RN 
So XCI,3>=w<I,3)+3*W<I,2)*Y<I,ll+3*~<I,ll*YBCI,2>+VB<I,3) 
57 VL(I,3l=XN*X~*XN*X<I,3)+3*vL<I,2l-2*VL(l,l) 
58 GO TO 15 



c 
cccccccccccccccccccccccccccccccccccccccccccc 
C IA<I>=l MEA~S QUEUE I IS UNSTABLE. C cccccccccccccccccccccccccccccccccccccccccccc 

59 22 IA<I>=l 
60 15 CONTINUE 

ccccccccccccccccccccccccccccccccccccccccccccc C DETERHINE T~E SKEWNESS ANC ~URTOSIS C 
C OF THE QUEUE LENGTH DISTRIBUTION. C 
C SEE SECTION 3.2. C ccccccccccccccccccccccccccccccccccccccccccccc 61 00 100 I=l, N+l 

~2 IF CIA<I>.GE.1> GO TO 34 
e3 DO 16 J=l,N-1 
64 16 WACJl=VLCI,J> 
65 WBC1l=W~<l> 
66 WBC2l=WAC2>-•A<l>**2 
~7 IF CWBC2>.LE.O> WBC2l=0.2 
69 WBC3l=WAC3l-3.~WACl)*WAC2)+2.~WA(l)$*3 70 B1=WBC3)/W8C2l**l.S ccccccccccccccccccccccccccccccccccccccc 

C ADJUSTMENT FCR SPECIAL CASES. C ccccccccccccccccccccccccccccccccccccccc 
71 IF CBl.LT.-2) 61=•1.9999 
73 IF CB1.GT.2> 81=1.9999 
75 IC=6 
76 IB=Bl/0.4+6 
77 P3=CXCIC,IB> 
78 XB=<IB-6l*0.4 
79 JB=IB 
80 IF C8l.LT.Xel JB=IB-1 
82 IF <Bl.GT.Xel JB=tB+l 
84 IF CP3.GT.O> GO TO 20 
85 IF CIB.GT.6> GO TO 18 
86 00 17 KK=IB+1,6 
87 P3=CXCIC,~K> 
88 IF CP3.GT.O) GO TO 20 
89 17 CONTINUE 
90 18 DO 19 KK=IB-1,6,-1 
91 P3=CXCIC,KK> 
92 IF CP3.GT.O> GO TO 20 
93 19 CONTI~UE 
94 20 PX•CXCIC,JB> 
95 IF <PX.L£.0> GO TO 21 cccccccccccccccccccccccccccccccccccccccccccccc C SIMPLE INTERPOLATION IF NECESSARY TC C C DETERMINE P3 AND P4 FOR Q~EUE LEhGTh C 

C OISTRIBUTIOt.. C cccccccccccccccccccccccccccccccccccccccccccccc 96 P3=P3+<PX-P3l*ABS<<IB-6l*0.4-Sll/0.4 97 21 P4=0XCIC,IB> 
98 23 CONTINUE cccccccccccccccccccccccccccccccccccccccccccccc C DETERMINE Pl A~D P2 FOR ~UELE LEN~T~ C C DISTRIBUTlO~. C cccccccccccccccccccccccccccccccccccccccccccccc 
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99 26 LP=OXCIC,JB) 
100 27 PA=P3+1 
101 PB=PA**2 
102 PC=2.•P3+1 
103 P0=<1.-P4)#~FA-P4##PA 
104 P2=PB•<P4**PC+<l.-P4l**PC)•PC*PD**2 
105 PW=PC*PB/P2 
106 IF CPV.LT.O.> PV=O. 
108 P2=CV<I>*SQ"TCPV> 
109 P1=~8C1l·PD*P2/PA 
110 BR=Pl+P2*<1.-P4l##P3 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C CALCULATE THE BLOCKING RATE. <SEE SECTIO 8.4.> C 
C HERE CDF IS ~IVEN IN EXAHFLE l <SECTION 6.1.1>. C ccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

111 8(1)•0. 
112 IG=QCCI> 
113 IF <IG.GE.SR> GO TO 100 
114 RVC=l/P3 
115 IF CIG.GT .PU GO TO 3'0 
116 B<I>=P4-<<P1•[G)/P2l**RVC 
117 GO TO 32 
118 30 B<I>=P4+<CIG•P1l/P2)$#RVC 
119 32 B<I>=l·B<I> 
120 GO TO 100 
121 34 TH<I>=l/YCI,ll 
122 B<I>•<XI<Il•TH<l))/XI<I> 
123 100 CONTINUE 

ccccccccccccccccccccccccccccccccccccccccccccccc 
C CALCULATE E~CH STATION'S O~TPUT RATE C 
C AND INPUT RATE <STEP 3' OF PROCEDURE II) C 
ccccccccccccccccccccccccccccccccccccccccccccccc 

124 ll=O 
125 DO 40 I•l,N 
126 40 Z1=Zl+R<Il#<B<I>+<1-B<I>>•<1-F<I>>> 
127 TH<N+ll•XIN*<l·B<N+l))/CL•Z1> 
128 DO 50 I•l,N 
129 IF ClA<l).GE.l) GO TO 50 
130 TH<I>=TH<N+l>•R<I>*<l-B<I>> 
131 50 XI<I>•R<I>•Th<N+l) 
132 XICN+2l=O 
133 DO 60 I=l,N 
134 IA<Il=O 
135 60 XICN+2l=XIC~+2l+TH<I> 
136 IACN+ll=O 
137 TH<N+2l=XICh+2) 

ccccccccccccccccccccccccccccccccccccccccc 
C CALCULATE L~~OA•F AhO LAHCA•B. C 
C STEP 4 OF P"CCEOURE II. C ccccccccccccccccccccccccccccccccccccccccc 

138 FLO=O 
139 FB=O 
l40 DO 65 I=1,N 
141 FLD=FLD+TH<Il~<1-F<l)) 
142 65 FB=FB+XICI>•e<l> 
143 XICN+l>=FLD+F.B+XlN~<1-e<N+l)) 
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144 B<N+ll=l-<TH<N+Ll-FLD-fBl/XIN 
ccccccccccccccccccccccccccccccccccccccccccccc 
C CHECK THE CChVERGENCE AhO DETERHI~E C 
C IF MORE ITERATIONS ARE NECESSARY. C 
C STEP 6 OF PROCEDURE II. C 
ccccccccccccccccccccccccccccccccccccccccccccc 

145 00 70 I=l,N+2 
146 AX=ABSCTHCI>-THOCI)) 
147 IF <AX.GT.XK) GO TO 80 
148 70 CONTINUE 
149 GO TO 90 
150 80 K=K+l 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C THE HAXIHUH NUBER OF ITERATIONS IS !00. C 
C IF IT IS NOT CONVERGE AFTER 800 ITERATIONS, C 
C THE PROCEDURE WILL BE FCRCED TO STCP. C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

151 IF CK.GT.800l GO TO 90 
152 DO 85 I=l,N+Z 
153 85 THOCI>=THCI> 
154 GO TO 54 

cccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C PRINT OUT EACH.STATION'S-INPUT RATE, OUTPUT C 
C RATE, BLCCKihG RATE, MOMENTS OF WAITING TIHE C 
C AND QUEUE LE~GTH, AND ACCURACY MESSAGE. C 
C OUTPUT STEP OF PROCEDURE II. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

155 90 WRITE (6,916) 
156 WRITEC6,913) CTH<I),I•1,N+2) 
157 WRITE (6,917) 
158 WRITEC6,913) CTHOCI),I=1,N+2) 
159 WRITE (6,912> 
160 WRITEC6,913) CBCI),I=l,N+l) 
161 WRITE (6,822) 
162 WRITEC6,913l CW(l,1),I•l,N+l) 
163 WRITE (6,823) 
164 WRITE(6,913> CYLCI,ll,I=l,N+l) 
165 WRITE (6,914> 
166 WRITECb,913> CXICI>,I=l,N+2) 
167 WRITE (6,916) 
168 WRITE<6,913> CTH<I>,I=l,N+2) 
169 GO TO 615 
170 901 FORHATC4Fl0.4) 
171 910 FORHATC8Fl0.7l 
172 911 FORHATC4F7.4) 
173 811 FORHATCSF7.4) 
174 913 FORHATC1X,6F15.7) 
175 955 FORHATC4F20.8) 
176 950 FORHAT<• ') 
177 912 FORHATClX,•eLOKING RATE:•> 
178 822 FORHAT<lX,•~AITING TIME Ih THE ~~EUE:'> 
179 914 FORHATC1X,'lhPUT RATE:•> 
180 823 FORMAT<!X,•~LEUE LENGTH:•) 
181 916 FORMATClX,•CuTPUT TH:'> 
182 917 FORMAT<lX,•CLTPUT THO:') 
183 918 FORHAT(lX,'BLFFER CAPACIT~:•,5F7.2) 



144 

145 
146 
147 
148 
149 
150 

151 
152 
153 
154 

155 
156 
157 
158 
159 
1f:O 
1f:1 
1f:Z 
1f:3 
lf:4 
1f:5 
1f:6 
1f:7 
1f:8 
lf:9 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
1!!6 
187 

188 

B<N+l)=l-<TH<N+ll-FLO-FB)/XIN 
CCC C CCCCC C-C CC CCC CCC C CCC CC CCC CCC CC"CCCCCCCC CCCC 
C CHECK THE CChVERGE~CE AND DETERHI~E C 
C IF MORE ITERATIONS ARE ~ECESSARY. C 
C STEP 6 OF P~CCEDURE Il. C 
ccccccccccccccccccccccccccccccccccccccccccccc 

DO 70 I=l,N+2 . ' ' 
AX=ABS<TH<I>-THOCI)l 
IF <AX.GT.XKl GO TO 80 

70 CONTINUE 
GO TO 90' 

80 K=K.+l- ' ' 
cccccccc~~ccccccccccccctccccccccccccccccccccccccccccc 
C THE MA>XIHU" ~USER 'OF ITERATIO~S IS 800. C 
C IF IT IS NOT CONVERGE AFTER 800 ITERATIONS, C 
C THE PROCEDURE ~ILL BE FCRCED TO ~TCP. , C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

IF <K.GT.aoo> GO TO 90 
DO 85 I=l,N+2 

85 THOCD=TH<I> 
GO T,O- 54 

cccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C '·PRINT,'OUT EACH·STATtON'~ INPUT RATE, OUTPUT C 
C RATE, ~LCCKihG RATE, HCHEHJS OF ~AITING TIHE C 
C AND QUEUE LEhGTH, AND ACCURACY MESSAGE. C 
C OUTPUT STEP OF PROCEDURE II. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

90 WRITE (6,916) , 
WRITEC6,91~' C~HCI),[•l,N+2~ 
WRITE (6,917) 
WRITEC6,913l CTHOCI),I•1,H+2l 
WRITE (6,912) 
WRITE(6,913l CBCil,I=l,N+ll 
WRITE (6,822> 
WRITEC6,913l CWCI,Ll,I•l,H+ll' 
WRITE C6,82:!l ' , 
WRITEC6,913l CVLCI,ll,I•L,N+l) 
WRITE (6,914) - I 

WRITEC6,913 l CX't'C I),, I=l,N+2) 
WRITE (6,9lf:) -
WRITEC6,913·) CTHC Il ,I=l,N:t-2> 
GO TO 615 ', ' , 

901 FORHATC4Fl0.4l 
910 FORHATC8Fl0.7) 
911 FORHATC4F7.4) 
811 FORHAT<5F7.4) 
913 FORHAT<lX,6F15.7l 
955 FO~HATC4F20.!l 
950 FORHAn• 1 ) 

912 FORHAHlX,'I!LOKING RATE:•·) 
!22 FORHAT<lX,•~~ITING TIME Ih THE G~EUE:•> 
914 FORHAT<lX,'lhPUT RATE:•) 
!23 FORHATC1X,•1~EUE LEN~TH:•) 
916 FORHATClX,~C~TPUT TH:•) 
917 FORHAT<1X, 1 CLTPUT THO:•> 
918 fORHATtlX,•BLFFER CAPACITY:•,SF7.Zl 
~26 FORM4T(lX,•CISPER. PROB.:•,4F6.2l 
928 FORHAT<lX, 1 LfAV. PROB.:•,4F6.Zl 
~51 FORMAT<lX,!L~HOA IS',lF8.2) 
615 STOP 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C · THE FdLLOWINC: DATA FORM TABLE CX AhO TABLE OX. C 
cccccc~ccccccccccccccccccccccccccccccccccccccccccccccccc 

END 
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LAMDA IS 0.30 
BUFFER CAPACITY: 3.00 3.00 3.00 3.00 10.00 
DISPER. PROB.: 0.30 0.30 0.20 0.20 
LEAV. PROB.: 0.35 0.35 0.25 0.25 
OUTPUT TH: 

0.2903225 0.2903225 0. 1935483 o. 1935483 0. 9617417 0.9677416 
OUTPUT THO: 

0.2903225 0.2903225 0. 1935483 0. 1935483 0.9677417 0.9677416 
BLOKING RATE: 

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 
WAITING TIME IN THE QUEUE: 

0.2781816 0.-2781816 0.1631998 0.1631998 0.0259800 
0.2018971 0.2018971 0.0809163 0.0809163 0.0013499 
0.9621100 0.9621100 0.4382698 0.4382698 0.0011339 

QUEUE LENGTH: 
0.3710847 0. 3710847_ 0.2251353 0.2251353 0.2186902 
0.5496266 0.5496266 0.29f3405 0.2913405 0.2702382 
1.0322027 1 .0322027 0.4511033 0.4511033 0.3871995 

INPUT RATE: 
0.2903225 0.2903225 0.1935483 o. 1935483 0.9677415 0.9677416 
3.4444447 3.4444447 5. 1666679 5. 1666679 1.0333328 1.0333328 

OUTPUT TH: 
0.2903225 o-.2903225 0.1935483 o. 1935483 0.9677417 0.9677416 
3.4444447 3.4444447 5.1666679 5. 1666679 1.0333328 I .0333328 



APPENDIX E 

SIMULATION MODELS AND SAMPLE PRINTOUT 
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SLAM II NETWORK MODEL: AN FMS WITit FOUR STATIONS (Page 1; Total 3 Pages) 

NI{Q(5)< ~00 

Queues 1 - 4: Stations 1 - 4. 
Queue 5: Central Storage & MHS. 

-
....... 

TNO~I: Present Time. 

' ' \ 

\ 

NNQ(I): Humber of Jobs in Queue I. 

MHS Delay: UNFRM(XX(l),XX(2)), where XX(l)=O.l (lower Bound) and XX(2)=0.3 (Upper Bound), and 
UNFRM means unifonm distributed. 

XX(4): Number of Arrivals. 
XX(5): Number of Jobs in the System. 
XX(6): Number of Jobs Rejected by the System. 
Vector ATRIB describes a job's attributes: 

ATRIB(l) - Arrival Time. ATRIB(2) - Processing Time. ATRIB(3) - MUS Delay. 
PrRIB(5) - Time in the Station. 



~[3rRitU5J =li'IOW- ATf!J 8(5) J1) 

BErWARV-1 
TR.IB(:2) 

[I 

'-
- ..:... -- QUE.UE. 5 

[SIMILAR TO QUEUE 1 f3MNCHJ 

USERF( I}: 

.. 
• •(siMILAR TO QUEU£ 4- BRANCH] 

User defined function; 
It will generate a random number following a four 
parameter distribution. The four parameters are 
XX(60+I), XX(70+1), XX(BO+I), and XX(90+I). 

SLAM II NETWORK MODEL: AN FMS WITH FOUR STATIONS 

ATRtACl) 

...... 
- -r-Qu£U£ 5 

(Page 2; Total 3 Pages) 



@: It fs self-evident. 
See the SLAH II printout. 

SLAM II NETWORK MODEL: AN FMS WITH FOUR STATIONS 

__ ,..... Collect Sbdistics 
------ a !.8tve tfv,. SjsWtlt , 

(Page 3; Total 3 Pages) 

~ 
N 
0 



U14345A.SIMX2.DATA 
VPSPRINT 5.1.002 MONDAY OCTOBER 28,1991 
VPSPRINT SIMX2.DATA LOCAL FORMS(9001) 

15:15:58 U14345A MVS1 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* 
* 
* 
* 
* • 
* • 
• 
• 
* • 
• 
• 
• 
• 
• 
• 
• 

c 

• • • * * • • • • * • • * • • 
* • 
• 

SLAM II VERSION 4.03 
* 
* • 

• * • • • • • * • • • * • • * 

COPYRIGHT 1983 BY PRITSKER AND ASSOCIATES, INC. 

ALL RIGHTS RESERVED 

• 
* • 
• 
• 
• 
• 
• 
* • 
• 
• 
* • 
• 
• 
• 
• 
• 

• THIS SOFTWARE IS PROPRIETARY TO AND A TRADE SECRET OF PRITSKER & * 
• ASSOCIATES, INC. ACCESS TO AND USE OF THIS SOFTWARE IS GRANTED * 
• UNDER THE TERMS AND CONDITIONS OF THE SOFTWARE LICENSE AGREEMENT • 
* BETWEEN PRITSKER & ASSOCIATES, INC. AND LICENSEE, IDENTIFIED BY * 
• NUMBER AS FOLLOWS: * 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
* 
• 
• 

SERIAL NUMBER: 202699 

THE TERMS AND CONDITIONS OF THE AGREEMENT SHALL BE STRICTLY 
ENFORCED. ANY VIOLATION OF THE AGREEMENT MAY VOID LICENSEE'S 
RIGHT TO USE THE SOFTWARE. 

PRITSKER AND ASSOCIATES, INC. 
P.O. BOX 2413 

WEST LAFAYETTE, INDIANA 47906 
(317)463-5557 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

121 



1 GEN,ZHAO,Oissertat1on,10/25/91,1,,NO,,NO: 
2 LIMIT ,5,9. 1200; 
3 INTLC,XX(4)=0,XX(5)=0,XX(6)=0: 

122 

4 INTLC, XX ( 6 I ) = 1 . 68 14 1, XX ( 71 ) = 1 . 19402, XX ( 81 ) z:Q. 22996, XX ( 91 ) =0. 83996: 
5 INTLC,XX(62)=1.68141,XX(72)z:1.19402,XX(82)=0.22996,XX(92)=0.83996; 
6 INTLC.XX(63)=1.68141,XX(73)=1.19402,XX(83)=0.22996,XX(93)=0.83996; 
7 INTLC,XX(64)=1.68141,XX(74)=1. 19402,XX(84)=0.22996,XX(94)=0.83996; 
8 INTLC,XX(1)=0.1,XX(2)=0.3; 
9 INTLC,XX(11)=0.3,XX(12)=0.3,XX(13)~0.2,XX(14)•0.2; 

10 TIMST,XX(S),SYSTEM SIZE; 
11 TIMST,XX(6),BLOCK FROM SYSTEM; 
12 NETWORK; 
13 CREATE.EXPON(3.3333,7),,1,,1; 
14 ACT,,NNO(S).GE.200,TRM: 
15 ACT , , NNO ( 5 ) • L T . 200: 
16 ASSIGN,XX(5)•XX(5)•1,XX(4)=XX(4)+1,1; 
17 05 ASSIGN,ATRIB(3)=UNFRM(XX(1),XX(2),3),ATRIS(5)=TNOW,1; 
18 05A CDLCT,SETWEEN,TIME BETW ARV 5; 
19 OUEUE(5),.212,BALK(TRM): -

_20 ACT( 10)/5,ATRIS(3); 
21 ASSIGN,ATRIB(5)=TNOW-ATRIB(5),1; 
22 COLCT,ATRIB(3),MHS: 
23 CDLCT,ATRIB(S),TIME IN ST_O; 
24 GOON, 1: 
25 ACT., XX ( I 1), 01: 
26 ACT, ,XX( 12) ,02; 
27 ACT,,XX(13),03; 
28 ACT .. XX( 14).04: 
29 01 ASSIGN,ATRI8(2)=USERF(1),ATRI8(5)•TNOW,1; 
30 COLCT,BETWEEN,TIME BETW ARV 1; 
31 01A OUEUE(1),,2,BALK(05); -
32 ACT/1,ATRIB(2); 
33 COLCT~BETWEEN,TIME BTW LEAV_t: 
34 GOON, 1: 
35 ACT,,XX(4).LE.500,N1; 
36 ACT,,XX(4).GT.SOO: 
37 ASSIGN,ATRIB(S)=TNOW-ATRI8(5),1; 
38 COLCT,ATRIB(S),TIME IN ST 1; 
39 COLCT,ATRIB(2),EPT 1; -
40 N1 GDON,1; -
41 ACT,,0.65,05: 
42 ACT,,0.35,TCL: 
43 02 ASSIGN,ATRIB(2)=USERF(2),ATRIS(5)=TNOW,1; 
44 CDLCT,SETWEEN,TIME BETW ARV 2: 
45 02A OUEUE{2),,2,BALK(OS): -
4G ACT/2,ATRl8(2): 
47 CDLCT,BETWEEN,TIME BTW LEAV_2; 
48 GOON, I; 
49 ACT,,XX(4).LE.SOO,N2; 
50 ACT,,XX(4).GT.SOO: 
51 ASSIGN,ATRIB(S)=TNOW-ATRIB(S), 1: 
52 COLCT,ATRIB(5).TIME IN ST 2; 
53 COLCT,ATRIB(2),EPT 2; -
54 N2 GOON, 1 : -
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55 ACT , , 0. 65 , OS: 
56 ACT, , 0. JS, TCL: 
57 03 ASSIGN,ATRIB(2l=USERF{3),ATIHB(5)=TNOW,1; 
58 COLCT,BETWEEN,TIME aETW ARV_3: 
59 Q3A QUEUE(3),,2,BALK(05); 
60 ACT/3,ATRIB(2); 
61 COLCT,BETWEEN.TtME BTW LEAV_3: 
G2 GOON. I; 
63 ACT,.XX(4),LE.500,N3; 
6~ ~CT,,XX(4).GT.SOO: 
65 ASSIGN, ATRIB( S,l afNOW-ATRIB ( 5), 1; 

66 CDLCT,ATRIB(S),TIME IN ST_J; 
67 CDLCT,ATRIB(2),£PT_3; 
68 N3 GOON, 1; 
69 ACT , , 0. 75 , 05 ; 
70 ACT, .0.25, TCL; 
7t 0~ ASSIGN,ATRIBl2)~USERF(4),ATRIB(S)=TNOW, I; 
72 CDLCT,BElWEEN,TlME BETW ARV_4: 
73 04A OUEUE(4),,2,BALKlOS); 
74 ACT/4,ATRIB(2); 
75 COLCT.BETWEEN.TtME BTW LEAV_4: 
76 GOON, 1: 
77 ACT,,XX(4).LE.SOO.N3; 
78 ACT,,XX(4).GT.SOO: 
79 ASSIGN,ATR1B(5)=TNOW-ATRt8(5), I; 
80 COLCT,ATRIB(S),TIME IN ST 4: a 1 CCLCT,ATRIB(2),EPT_4: -
82 N4 GCCN, 1: 
83 ACT . , 0. 75 . OS: 
84 ACT. ,0.25, TCL: 
as TCL GCCN,1; 
86 ACT,,XX(4).LT.SOO.TM; 
87 ACT,,XX(4).GE.500: 
88 CCLCT,SETWEEN.TIME BETW APART; 
89 CCLCT,lNT( !),TIME IN SYSTEM; 
90 ACT: 
91 TM ASSIGN,XX(S)=XX(S)-1; 
92 TERM, 10000: 
93 TRM ASSIGN,XX(6)=XX(6)~!; 
9·1 TERM) 
!)!j END; 
96 FIN; 



DATA SET: U14345A.PP.DATA 
DATE: 91/11/10 TIME: 11:10 

PROGRAM MAIN 
CDMMDN/SCDM1/ATRIB(100),DD(100),DDL(100),DTNDW,Il,MFA, 

1 MSTDP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100), 
2 TNEXT,TNDW,XX(100) 

DIMENSION NSET(30000) 
COMMON QSET(30000) 
EQUIVALENCE (NSET(1),QSET(1)) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C THIS HEAD IS REGUJRED BY THE SLAM II SYSTEM C 
ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c 

NNSET•30000 
NCRDR•5 
NPRNT•6 
NTAPE•1 
CALL SLAM 
STOP 
END 

FUNCTION USERF(l) 
CDMMDN/SCDM1/ATRIB(100),DD(100),00L(100),DTNDW,II,MFA,MSTDP, 

1 NCLNR,NCROR,NPRNT,NNRUN,NNSET,NTAPE,SS(tOO).SSL(tOO),TNEXT. 
2 TNDW,XX( 100) 

ccccccccccccccccccccccccccccccccccccccccccccccccccc 
C THIS FUNCTION GENERATES A RANDOM SAMPLING C 
C FROM S-O DISTRIBUTION WITH 4 PARAMETERS C 
C GIVEN AS XX(GO+I), XX(70+I), XX(SO+l), C 
C AND XX(90+I). C 
ccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

RX•UNFRM(0.0,1.0,2) 
IF (RX.LT.XX(I+90)) GO TD 17 
RX•RX-XX(I+90) 
RX•XX(I+60)+XX(I+70)*RX**XX(I+BO) 
GO TD 18 

17 RX•XX(I+90)-RX 
RX•XX(I+60)-XX(I+70)*RX**XX(I+BO) 

18 IF (RX.GT.O.) GO TO 19 
RX•O.OOS 

19 USERF•RX 
RETURN 
END 
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NUMBER I OF 

TIME BETW ARV_5 
MHS 
TIME IN ST 0 
TIME BETW ARV I 
TIME BTW LEAV::::t 
TIME IN ST I 
EPT I 
TIME BETW ARV 2 
TIME BTW LEAV-2 
TIME IN ST_2 -
EPT 2 
TIME BETW ARV 3 
TIME BTW LEAV-3 
TIME IN ST_3 -
EPT 3 
TIME BETW ARV 4 
TIME BTW LEAV-4 
TIME IN ST 4 -
EPT 4 -
TIME BETW APART 
TIME IN SYSTEM 

MEAN 
VALUE 

0. I032E+OI 
0 I995E+OO 
0. 1995E+OO 
0.3477E+01 
0.3524E+Ot 
0. 1304E+01 
0. 1019E+OI 
0.3434E+OI 
0.3490E+OI 
0. 1303E+OI 
O.I016E+OI 
0.5124E+OI 
0.5149E+OI 
0. 118 I E+OI 
0. 1007E+OI 
0.5127E+OI 
0.5150E+OI 
0. 1219E+OI 
0. 1030E+OI 
0.3355E+OI 
0.4699E+OI 

MEAN 
VALUE 

SYSTEM SIZE O.I403E+OI 
BLOCK FROM SYSTE O.OOOOE+OO 

S L A M I I S U M M A R Y R E P 0 R T 

SIMULATION PROJECT Dlssrtatton BY ZHAO 

DATE 10/25/1991 RUN 

CURRENT TIME 0.3513E+05 
STATISTICAL ARRAYS CLEARED AT TIME O.OOOOE+OO 

••STATISTICS FOR VARIABLES BASED ON OBSERVATION•• 

STANDARD 
DEVIATION 

0. 1577E+Ot 
0.5761E-OI 
0.5761£-0I 
0.4546E+OI 
0.4507E+OI 
0.969BE+OO 
0.7034E+OO 
0.4374E+OI 
0.4345E+OI 
0.9910E+OO 
0.7133E+OO 
0.6433E+Ot 
0.6409E+OI 
0.8813E+OO 
0.7090E+OO 
0.6514E+OI 
0.64SIE+OI 
0.9455E+OO 
0.7625E+OO 
0.3357E+Ot 
0.4243£+01 

COEFF. OF 
VARIATION 

0. 1528E+OI 
0.2888E+OO 
0.2888E+OO 
0. 1307E+Ot 
0. 1279E+OI 
0.7437E+OO 
0.6900E+OO 
0.1274E+OI 
0. 1245E+OI 
0.7605E+OO 
0.7022E+OO 
O.t256E+OI 
0. 1245E+OI 
0.7461E+OO 
0.7044E+OO 
0. 1270E+OI 
0. I258E+Ot 
0.1759E+OO 
0.7405E+OO 
0. IOOOE+Ot 
0.9030E+OO 

MINIMUM 
VALUE 

O.OOOOE+OO 
0. tOOOE+OO 
0.9961E-01 
O.OOOOE+OO 
0.5342E+OO 
0.5J42E+OO 
0.5343E+OO 
O.OOOOE+OO 
0.5342E+OO 
0.5342E+OO 
0.5343E+OO 
O.OOOOE+OO 
0.5347E+OO 
0.5342E+OO 
0,5343E+OO 
0.3906E-02 
0.5352E+OO 
0.5342E+OO 
0.5344E+OO 
0.7324E-03 
0.6406E+OO 

MAXIMUM 
VALUE 

0. 4067E+02 
0.3000E+OO 
0.3008E+OO 
0.6057E+02 
0.589BE+02 
0. 1472E+02 
0. 1472E+02 
0.4678E+02 
0.4667E+02 
0. 1594E+02 
0. I594E+02 
0 6955E+02 
0.6910E+02 
0. 1667E+02 
0. 1667E+02 
0.9738E+02 
0.1779E+02. 
0. 1696E+02 
0. I696E+02 
0.5442E+02 
0.4032£+02 

••STATISTICS FOR TIME-PERSISTENT VARIABLES•• 

STANDARD 
DEVIATION 

0. 1292E+Ot 
O.OOOOE+OO 

MINIMUM 
VALUE 

O.OOOOE+OO 
O.OOOOE+OO 

MAXIMUM 
VALUE 

0 9000E+OI 
O.OOOOE+OO 

TIME 
INTERVAL 

0.3513E+05 
0.3513E+05 

NUMBER OF 
OBSERVATIONS 

34033 
34034 
34034 
10099 
9966 
9480 
9480 

'10225 
10061 
9623 
9623 
6856 
6823 
6497 
6497 
6850 
6819 
6515 
6515 

10004 
10005 

VALUE 

O.OOOOE+OO 
O.OOOOE+OO 

...... 
N 
lJ1 



.. FILE STATISTICS .. 

FILE AVERAGE STANDARD MAXIMUM CURRENT AVERAGE 
NUMBER LABEL/TYPE LENGTU DEVIATION lENGTH LENGllf WAIT JNG TIME 

1 Q1A QUEUE 0 0817 0.3117 2 0 0 2879 
2 Q2A QUEUE Q·0818 0.3205 2 0 0.2856 
3 Q3A QUEUE 0 0336 0. 2009 2 0 0 1731 
4 Q4A QUEUE 0.0366 o. 2099 2 0 0 1883 
5 QUEUE 0 0000 0 0000 0 0 0 0000 
6 CALENDAR 2. 1693 0.9871 B 0 0 3470 

••SERVICE ACTIVITY STATISTICS•• 

ACTJ VITY START NODE OR SERVER AVERAGE STANDARD CURRENT AVERAGE MAXIMUM IDLE MAXIMUM BUSY ENTITY 
INDEX ACTIVITY LABEL CAPACITY UTILIZATION DEVIATION UTILIZATION BLOCI<AKE TIME/SERVERS · TIME/SERVERS COUNT 

I QIA QUEUE 1 0.2898 0.4537 0 0.0000 58 4180· 20.7305 9967 
2 Q2A QUEUE I 0.2905 0.4540 0 0.0000 46.0113 23 6006 10062 
3 Q3A QUEUE I o. 1960 0.3970 0 0 0000 60 5537 18.7676 6824 
4 Q4A QUEUE I 0. 1998 0.3999 0 0.0000 77.0859 19. 1084 6820 
5 QUEUE tO 0. 1933 0.4374 0 0.0000 10.0000 5.0000 34034 
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