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PREFACE

This study is concerned with the modeling and performance
evaluation of Flexible Manufacturing Systems (FMS's) with station
breakdowns, Material Handling System (MHS) delay, and general repair
and processing times. The primary objective is to determine the
system’'s steady state output rate, sojourn time, and station
utilizations. The open queueing network model is used to analyze the
FMS. A tranformation algorithm is developed to deal with station
breakdowns and MHS delay, and then an iterative procedure is devised to
derive the system’'s performance measures.

The author wishes to express his appreciation to his major
adviser, Dr. Hon-Shiang Lau, for his guidance and assistance throughout
this study. Appreciation is also expressed to the other committee
members, Dr. G.E. Hedrick, Dr. David C. Ho, Dr. M.G. Kletke, and Dr. R.
Wilson, for their invaluable assistance.

Finally, special gratitude is expressed to my wife, Bifen Wu, our
daugher, Congzhi, and my parents Yan Zhao and Yueming Zhang, for their

understanding, encouragement, and many sacrifices.

iii



TABLE OF CONTENTS

Chapter
I. INTRODUCTION

The Research Problem . .
Methodologies and Findings .
Theoretical and Practical Impllcatlons

of the Dissertation Research .
Outline of the Dissertation

II. A GENERAL LITERATURE REVIEW .

Definition of an FMS .

FMS Models .
Closed Queuelng Network Model .
Open Queueing Network Model .

Related Research on Machine Breakdowns

Related Research on MHS Delay

Related Research on, Systems Without

Breakdowns and MHS Delay . ..
Recent Efforts, Conclusions and Impllcatlons

IITI. BASIC ASSUMPTIONS AND DEFINITIONS

Assumptions and Definitions Pertaining to Stations
Assumption 1: No-Failure-While-Idle
Assumption 2: Exponential-Up-Time .
Assumption 3: No-Double-Fault .

Some Basic Probability and Statistics Concepts

Assumptions and Definitions Pertalnlng to

the Entire FMS .
The Basic System Model
The Expected Number of Times
a Job Visits Machine i .
System States and Steady State
Blocking Rate .

IV. PERFORMANCE EVALUATION OF QUEUEING NETWORKS
WITHOUT MHS DELAY AND BREAKDOWNs

System Output Rate When Processing Times
Are Exponential .o

System Output Rate When Proce551ng Tlmes
Are General

Other Measures

iv

Page

w =

(9]

10
11
13
13
16

17
18

20

20
21
21
22
22

24
24

27

28
29

30

30

32
33



Chapter - Page

V. TECHNIQUES TO COPE WITH BREAKDOWNS . . . . . . . . . . . . 36
The Effective Processing Time Y and Its Mean E[Y] . . 36
Calculation of Y's Moments and Central Moments . . . . 38
Some Discussions . . . . . . . . . . . . . . ... .. 40
Summary . . . . . . . . 0 o e e e e e e e e e 41

VI. NUMERICAL EXAMPLES . . . . . . . . . . . . . . . .« . . .. 43
The Effects of Uncertainty and R’'s Distribution . . . 43
Example 1 . . . . . . . . . . . . . . o ... 43
Example 2 . . . . 45
Discussions about the F1rst Two Examples ... 45
The Effects of the Variance, Skewness, and
Kurtosis of Processing Tlmes e e e e e e e e e e 46
Example 3 . . . . . . .". . . . . . . oL 46
Example 4 . . . . . e e e 47
Are S's Skewness and Kurtos1s Important? e e e e 48
Example 5 . . . . . . . . . . . . ... 48
Example 6 . . . . . . . . . . . . . . . ... 49
VII. DEALING WITH MATERIAL HANDLING SYSTEM DELAY . . . . . . . . 51
- Central Storage with Infinite Capacity . . . . . . . . 51
Local Buffers with Limited Capacity . . . . . . . . . 52
Hybrid Storage System . . . . . . . . . . . . . . .. 56
VIII. PERFORMANCE MEASURES OF STATIONS . . . . . . . . . . . . . 58
Basic M/G/l Queue Fotmulae . . . . . . . . . . . . .. 59
The Expression of L(z) . . . . . . . . . . . . 60
Calculation of vy(Y) . . . . co . 60
A Recursive Procedure for Moments of X W and L coe 62
The Recursive Procedure . . . e e 62
The First Four Moments of W, X and L e e e 63
Moments of the Length of the Queue . . . . . . . . . . 64

Other Measures for the Station . . . . . . . . . . . . 65

IX. PERFORMANCE EVALUATIONS OF FLEXIBLE

MANUFACTURING SYSTEMS . . . . . . . . . . . . . . . . .. 67

The Model of the System . . . . . . . . . . . . . . . 67

Model Description . . . e e e e e e 69

The Equivalent Arrival Process e e e e e 70
Derivation of the Blocking Probabilities,

Arrival Rates and System Output Rate . . . . . . . . 72
System Performance Measures . . e 78
Numerical Examples and Slmulatlon Ver1f1cat10n e e 79

Example 9.1 . . . e e e e e 79
Example 9.2: The Effects of A e e e e e e 82



Chapter Page

The Effects of Local Buffer Capacity . . . . . 83
The Effects of System Balance . . . . . . . . . 85
Statistical Aspects of Simulation . . . . . . . . . . 86
Start-up Policy . . . . . . . . . . . . . . .. 86
Stopping Rules. . . . . . . . . . . . . . ... 86
X.- CONCLUSIONS AND DISCUSSIONS . ... . . . . . « v « v « « « . 88
BIBLIOGRAPHY . . . . . . . . « o v v v v e e v e e e e e e e e 91
APPENDIXES . . . . . . . . o« v v e e e e e e e e e e e e e 96
APPENDIX A - THE PROOF OF PROPOSITION I . . . . . . . . . . 96
APPENDIX B - THE PROOF OF THEOREM I . . . . . . . . . . . . 100
APPENDIX C - COMPUTER PROGRAM AND PRINTOUT FOR
NUMERICAL.EXAMPLE 1 . . . . . . . . . . . . 102
APPENDIX D - COMPUTER PROGRAM AND PRINTOUT FOR
NUMERICAL EXAMPLE 9.1 . . . . . . . . . . . 109
APPENDIX E - SIMULATION MODELS AND SAMPLE PRINTOUT . . . . 117



Table

II.

III.

Iv.

VI.

VII.

VIII.

IX.

LIST OF TABLES

The Joint Effects of Skewness and Kurtosis

Effects
Effects
Effects
Example
Effects

Effects

of the Breakdown Rate w
of Skewness

of Kurtosis

9.1

of X .

of QC

Balanced Systems .

Numbers

of Observations

vii

Page
47
47
49
50
80
83
84
85

87



Figure

10.
11.
12.

13.

LIST OF FIGURES

Two Examples of FMS's

Conceptual Illustration of the Closed Network Model .

A Transfer Line with Buffers

Diagram of an FMS .

Diagram of Station i

The Effects of Breakdown

The FMS Model .

A Two-Machine Transfer Line with a Conveyor .
The "Block-and-Recirculate" Model .

General Iterative Procedure (GIP)

System Inputs Considering Breakdowns

The New Method to Obtain bj .

The Flow Chart For PROCEDURE II

viii

Page

12
14
25
26
40
53
54
68
72
73
74

75



NOMENCLATURE

aj ei/81 ‘

bi Probability that aﬂjob is blocked on grriving at station 1

eq Expected number of times a job will visit station i

eir Expected number of times a élass—r job will visit station i

£; See fi,, when there is only one class of jobs, or r is
understood

fir Probability that a class-r 5ob leaves the system after

processing at station i
gi Probability that a job visits another station after

processing at station i, i.e., (1 - £;)

k Mean time between breakdowns
pdf Probability density function
g() Processing time S's pdf

h(-) Time between breakdowns T's pdf
m("*) General processing timg Gst pdf
nj «’ Station i's buffer capacity

r(:) Repair time R'’s pdf

dir Probability that a class-r job has its first operation on

machine 1

c Maximum number of jobs allowed in a system
ck k! /[(k-i)1it]

B Number of classes of jobs

CDF Cumulative density function



Processing time S's CDF

Time between breakdowns T'’s CDF

Repair time R's CDF

Transition time, or MHS‘delay, of station i

Expected value (mean) of £he random,variable Z

General processing time of station-i, i.e., S{ + Dj

T's CDF (;ee T)

The number of jobs in the gtatioh, i.e, station size
Numbef of class-r jobs in>the ststém

Number of stations in a system,

see P, when there is only one ciass of jobs, or r is
or r is understood

see Pij’r’ when qhere is‘only one class of jobs, or r is
understood

Probability that a class-r job will go to station j after
processing at statin i

Transition matrix (Pjj,y) for class-r jobs

Production capécity, ie., maximum possible output rate
The number of jobs in the queue, i.e, queue length
Repair time

Repair time of station i

Processing time, or service timef

Processing time, or service time, of station i

Time between two consecutive breakdowﬁs

Time between two consecutive breakdowns of station i
Throughput rate, i.e., output rate

The utilization of the machine (station) i
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l‘n(z)
Vn(z)

A

The total time a job stays in the queue, i.e, waiting time
The total time a job stays in the station, i.e, station time
Effective processing time

Effective processing time of staion i

p3(z)/az3, i.e., Z's skewness measure

u4(Z)/az4, i.e., Z's kurtosis measﬁre

Mean processing rate of machine i

Mean arrival rate (to the system)

J2 tJH(t)m(t)dt

Mean arrival rate (to the station i)

1/6; (for a specified station i)

Expected value (mean) of the random variable Z

The n-th central moment of Z (n>1)

The n-th moment (about zero) of Z (n=1)

Standard deviation of the random variable Z



CHAPTER I

INTRODUCTION |

This chapter outlines é dissertation that investigates flexible
manufacturing systems (FMS'S) with station,breakdowns, material hand-
ling system (MHS) delay, and geperal processing times. In this inves-
tigation, a powerful approach is developed toitheoretically transform
an FMS with station breakdowns and MHS delay into an equivalent system
without station breakdowns and MHS delay. This transforﬁation facili-
tates performance evaluations of individual stations, as well as the
whole FMS with general processing times. 'A recursive algorithm is
devised to calculate stations'’ ﬁerformance measures, such as the number
of jobs in the station or in its queue, and the total time a job stays
in the station. An iterative pfocedure is then developed to obtain the
FMS’'s performance measures,lsuch as the output rate, sojourn time, and
station utilizations.

This chapter begins with a brief introduction of the research
problem, followed by a summary of research methodologies and findings.
Then theoretical and practical implications and importance of the

dissertation research will be described.
The Research Problem

An FMS is usually modeled as a queueing network in which the

customers are the jobs to be processed by the system and the servers



are the CNC (Computer Numerical Control) machines. Each CNC machine has a
local control computer linked by a communication network. The model is
schematically depicted in Figures 4 and 5 on pages;25 and 26. The basic
assumptions of the queueing network model are as follow:

(1) The total number of jobs in the system could be a fixed constant N, or
various.

(2) All stations use the FCFS (First-Come-First-Served) queue discipline
and all job classes have the same service rate at a station. The stations’
service times could be exponential or nen-exponential.

(3) There may be a central storage to accommodate all jobs in the system.
Each station may have a local buffer.with infinite or limited capacity.

(4) Machines are always available for processing jobs, (i.e., no machine
breakdowns,) and any set-up/tool changing time is included in the service
(processing) times.

(5) No MHS delay.

The queueing network models have been successfully applied to study various
planning and control aspects of FMS’s, largely because the first three basic
assumptions are so flexible that they impose few restrictions. However, the
last two basic assumptions seem to be very restrictive and unrealistic. 1In
practice, assumptions (4) and (5) are often violated} because machines do
break down from time to time; and the MHS needs some time to move workpieces
among stations and the central storage. Therefore, it is desired to develop
new models and new methodologies which allow station breakdowns and MHS delay,
and can incorporate general processing times.

This dissertation will present a powerful and copvenient approach to

transform a system with MHS delay and breakdowns into an equivalent system



without MHS delay and breakdowns. This transformation is based upon the
method of moments. After this Fransformation, the earlier teéhniques for the
case of no MHS delay and breakdowns can be ;pplied to analyze the ;ystem.
Furthermore, to take thé advantage of this moments-oriented transformation,
this dissertation develﬁps new>iterativé\procedures to obtain performance

measures for individual stations as well as the entire FMS'’s.
Methodologies and Findings

In this dissertatioﬁ, a two-step‘transfqrmation is conducted to transform a
system with MHS delay and breakdowns into an eduivalent system without MHS
delay and breakdowns. 1In the first step, the repair time of each machine will
be treated as a part of the machine's‘pfocessing time. This is called the
"effective processing time," which includes the machine’s normal processing

time and repair time. When a machine breaks down while processing a job, the

effective processing time will be the sum of the processing time and the
machine’s repair time. Of course, if the machine does not break down, the
effective processing time is equivalent to the processing time. Let Y be the

effective processing time, which is a random variable. ' If the distributions,

or only the moments, of thg processing‘timej repair time, and time between
breakdowns are given, then Y's’moments can be determiﬁed.

The second step is to address the MﬁS delay issue. This step, much more
complicated than the<first, is directly related to the storage system. if
there is only a central storage with infinite)capécity, one can model the
central storage and tﬁe MHS as a virtual station with the effective processing
time that includes the queue waiting time and MHS delay. 1If there are also-

local moving buffers (say, conveyors) with limited capacity, MHS délay,



denoted by D, can be treated as a part of stations’ "generalized processing
times." It is more difficult to handle the traditional local fixed buffers.
This dissertation provides a hybrid model to absorb MHS delay.

After absorbing the repair times and MHS delay into the effective
processing time Y's or generalizedrprocessing time GS'’s, the approaches of
Hahn and Shapiro (1968), Kendall ané Stuart (1969), and Kottas and Lau (1979,
1980) can be used to fit Y's or GS's first k (k=3 or 4) moments to a k-
parameter distribution function. Thus the system with the effective (or
generalized) processing times is equivalent to tﬁe original system, but
without breakdowns and MHS delay. Fitting the first k moments to a k-
parameter distribution is a convenient method that provides good
approximations.

Moreover, when the processing time distributions are known, the moments of
Y’'s and/or GS'’s can be calculated analytically. These moments are all that
are needed to evaluate each staéion*s performapce, such as the total time in
the station (station time X, which is a use-ful byproduct to determine the
sojourn time) or in its queue (waiting time W), the number of jobs in the
station (station size L) or in the queue (queue length Q), and the station
output rate (TH). A step-by-step recursive algorithm (Procedure I) is shown
to calculate the moments of X, W, L, and Q. |

To employ this unique moments-oriented feature, Yao and Buzacott (1985b)’'s
open queueing network model, with necessary modifications, is adopted to deal
with station breakdowns and MHS“delay,4and an iterative procedure (Procedure
II) is developed to evaluate the whole FMS'’s performance. This procedure
employs a different, natural iteration scheme, and a simple method to compute

each station’s blocking rate, or the’probability that the station will reject



2a coming job. The blocking rates are critical to derive thé system output
rate, sojourn time, and machine utilization.

Numerical exémples(are used to shqw ﬁow to transform an FMS with breakdowns
and MHS delay into an equivalent system éiéhout breakdown and MHS delay.
After the tr;hsformation, the effective (ér genera-lized) processing times are
never exponential, no matter Whetﬁer the 6rigina1 pfocessing times are
exponential or not. Then, iterative Procedure II caﬁ be used to analyze the

system’'s performance. Computer simulations are. conducted to verify the

analytical results.

Theoretical and Practical Implications of

the Dissertation Research

This dissertation presents a powerful and convenient approach to model
FMS's with machine breakdowns, MHS delay and stochastic repair and processing
times. By transforming the\syétem with breakdowns and MHS delay into an
equivalent system withoutrbreakdpwn’and MHS delay, many well-established
methodologies can be applied to évalﬁate‘the system's pérfo;mance. This
approach concentrates on the effecti;e processing time (or the generalized
processing time) Y. One can aﬁletically calculate Y’s (central) moments
necessary in fitting any n-parameter dist;ibutibn for Y. Thus, the approach
provides a solid base for the further analysis of the whole queueing network.

Usually, one fits Y’'s first three or four moments to a three or four
parameter distribution. The major advantage of the approach in this paper is
that there is no need to know the rebair time R and/or MHS delay D's
probability density functions (pdf’s). Moreover, if the processing time S's

pdf is unknown, but S’'s first three or four moments are known, one can fit



théﬁ to a three or four parameter distribution as S’s pdf. So in practice,
only the mean breakdown rate and the first three or four moments of R, S and D
are needed, which are easy to obtain from collected data. This feature makéé
the proposed method very atfraqtive to'bpth researchers and practitioners, as
determining ‘those probabilitj dénsify functions is not necessary.

v

After the transformation, one can eValuateUeabh station’'s perfor-mance,
that is necessary to evaluate the whole QYStem"s performance. By assuming a
Poisson arrival process, a recursiée procedure is ‘devised to use Y's moments
to calculate the moments of the station time, wait-ing time (in the queue),
and station size for each stétion. A new algorithm is proposed to calculate
the moments of the length of queue. - It is relatively easy to obtain each
station’s output rate and ptiliza-tionﬁr Here the knowledge of the station
time is very important, since that mékes it possible to obtain the sojourn
time. While early models concentrate on the derivation of systems’ output
rates, it is believed tﬁat the_éojoﬁrn time is more relevant to customers,
especially for make-to-order producﬁigns. This dissertation develops an

iterative procedure (Procedure II) to calculate the FMS'’s output rate, machine

utilization, and sojourn time. This procedure is very efficient, and easy to

program.
Queuing network simulation models are also easy to be established to verify

the analytical conclusions.
Outline of the Dissertation

This chapter (Chapter I) is an introduction. Chapter II gives a literature
review. In chapter III, the necessary, basic assumptions and definitions are

introduced. Chapter IV deals with the performance evaluations of queueing



networks without MHS delay and breakdown. Chapter V discusses machine
breakdowns and the calculations of the effective processing time Y's moments,
and then in chapter VI several numerical examples are given to show how to
transform anVFMS with bfeakdowﬁs int; an equivalent system with no breakdowns.
Chapter VII discusses MHS delay'and‘how to deal with MHS delay. In fact, MHS
delay can be absorbed'in the queue waiting fime or in thé effective process-
ing time Y. Chapter VIII shows how to use f's ﬁoments to compute the waiting
time, queue length, time in the stafion, and number of jdbs in the station
(their moments and distributions). In chabterlIX, an iferative procedure is

proposed to derive the FMS's performance measures. Chapter X gives

conclusions and discussions.



CHAPTER II

A GENERAL LITERATURE REVIEW AND

EARLY RELATED RESEARCH
Definition of an FMS g/ [ L

A flexible manufacturing system is a computer-controlled configu-
ration, consisting of a group of processing stations, each containing a

set of computer numerical control (CNC) machine tools, interconnected

"
by means of an automated material handling,sygfem (MHS) and storage

~
-

systems (Groover 1987). It is capabié/of processing a variety of
different types of parts simultaé;ously at the various stations. The
FMS is designed to comﬁine the mass-production efficiency of transfer
lines and the flexibility of job shops to handle batch production at
medium volume and medium product variety. FMS also combines the
existing technology of NC (numerical control) manufacturing, automated
material handling, and computer hardware and software to create an
integrated system for the automatic random procgssing of palletized
parts across various work stations in the system. Figure 1 gives two
examples of FMS layout (Goetsch 1988). -

An FMS has four essential physical components:

1. CNC machine tools;

2. An MHS to move parts and some£imes tools among machines and

fixturing stations (so machines are linked by the MHS);

3. An overall computer control network that coordinates the
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Figure 1. Two Examples of FMS's
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10
machine tools, the parts-moving elements, and the workpieces.

4. A storage system that is needed to store raw materials, work-
in-process (WiP), and finished pro@ucts.

A storage system is necessary for the smooth operation of an FMS.
Different machines in an FMS have different production and utilization
rate. Therefore, when one machine finishes pr;cessing a job, the
subsequent machine for the job may not(be free to process the job
immediately. If there is no available space to which the job can be
stored, the first machine will be "blocked;" if the job can be moved
away, but there is no job waiting for the first machine, the machine
will be "starved." Machine breakdowns are extreme cases of short-run
imbalance of production rates. If a machine breaks down and the system
has no storage capacity, other maéhines that process jobs either going
to or coming from the failed machine may be forced down. Therefore,
storage spaces are needed as buffers to decouple the machines. Gene-
rally, the local buffers before each machine have limited capacities,
whereas a central storage can be much larger, and its capacity can
often be assumed to be iﬁfinite. However, significant "transit times"
(MHS delay) are often incurred in moving WIP among the stations and the
central storage. To reduce these transit times, man& FMS’'s employ a
mixed storage system consisting of a central storage and some local

buffers.
FMS Models #7

An FMS is usually modeled as a queueing network in which the

customers are the jobs to be processed by the system and the servers



11
are the machines. Each CNC machine has a local control computer linked
by a communication network.

The computer control network in the FMS is in fact a computer
communication network, which can.als§ be modeled as a queueing network,
in which the customers are packets-of data, and servers are local

control computers and the central control computer.

Closed Queueing Nétwork Models

An FMS can be modeled as a closed queueing network (CQN, Solberg
1977) following the approach of Gordon and Newell (1967), and Posner
and Bernholtz (1968). The model is sqhematically depicted in-Figure 2
(Co and Li, 1989). The basic assumptions of this model are as follows
(Buzacott and Yao 1986):

(1) The total number of jobs in the system is a fixed constant N,
that implies that when a finished job leaves the system, a new job
enters the system immediately (é; if that leaving job re-enters‘the
system).

(2) All stations use the . FCFS queue discipline and have exponen-
tial service time distributions. All job classes have the same service
rate at a station.

(3) All stations have a local storage large enough to accommodate
all N jobs in the system; i.e., stations’will never be blocked.

(4) Machines are always available for processing jobs, i.e., no
breakdown, and any set-up/tool chaﬁging time is included in the service
(processing) times.

(5) No MHS delay.



Source:

Figure 2.

o
- =
o.’ -5
D2 g
[¥]
0 © o
=
o "
S o
o O
0o O
- b=
a9
{ =
(=
()
)
o o
T V] £ C.
‘o v .
. e = :
- O wun .
. £ - €
o €S o
o o | =
= o8 C
o Y g n
© c
38 ¢
" —
S : =
o °
S o
g.
o
o c
. ™ o
[ 9
s © by
. E [
.5 -
0O © ¢ a
= S
— l_

H. C. Co, and G. Li, "A mean value analysis model
for job shops and job shop-like systems,"

Computers ind. Engng, Vol.1l6, No.l, (1989), 9-18.

Conceptual Illustration of the Closed Network Model
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13
The CQN model has been successfully applied to study various
planning and control aspects of FMS's (Stecke and Solberg 1985, Stecke
and Morin 1985, Yao and Buzacottml986, Shanthikumar and Stecke 1986,
and Dallery and Stecke 1990, among others). However, the model’s five
basic assumptions seem to be very restricfive, ;nd in many cases one or

more of them are violated.

Open Queueing Network Models

An FMS can also be modeled as an open queueing network, in which
the total number of jobs varies through out the operation (Jackson
1963, Buzacott and Shanthikumar 1980), implying that the first
assumption in the 1ast’section is dropped. This model is based on the
works of Jackson (1963), Schweitzer (1977), and Baskett et al. (1975).
This model is discussed in more detail in chapters III and IV.

Although tremendous effort has been made to relax the second and
third assumptions with some success (Marie 1979, Shanthikumar and
Buzacott 1980 and 1981, Whitt 1982, Altiok 1985, Yao and Buzacott 1985a
and 1985b, among others), the fourth and fifth assumptions are

retained, i.e., there will be no breakdowns and MHS delay in the FMS'’s.
AN
Related Research on Machine Breakdowns }g

Machine breakdowns have been investigated by many authors in the
transfer line area. A transfer line (Figure 3) is a number of
automatic machines, in series, integrated inté one system by a common
transfer mechanism and a common control system (Buzacott 1967).

Transfer lines can be considered a "simplified" FMS.
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Buzacott (1967, 1972), and Barlor and Proschan (1975) derived
several basic formulas for the line’s output rate R. They assume each
station has one méchine, and use discrete time units (cycles). They
also assume all operation timesi(processing times, times between
breakdowns, and times to repair) are geometrically distributed, which
allows them to apply Markov process methods to analyze the two-station
case and obtain the exact solution for R and other system performance
measures. Due to the computational difficulties of their methods, many
authors have, in turn, proposed reasonably good approximations. Among
them are Buzacott (1967), Ingnall and Silver (1977), who also consi-
dered the case that each station has two or more of the same kind of
machines, and the two stations hé§e different processing rates, and
Wijngaard (1979), who coﬁsidered two single-machine station lines with
different processing rates while assuming all operation times are
exponentially distributed. However, when the number of stations is
greater than two, these approaches are not feasible. Therefore, many
other authors have proposed and tested other approximations (Murphy
1975, Sheshkin 1976, Gershwin and Berman 1981, Jafari and Shanthikumar
1987a, and Liu and Buzacott 1990).

Notably, all the above research assumes that operation times are
either exponentially (for continuous times) or geometrically (for
discrete times) distributed. This assumption is often too restrictive,
since in practice the processing and repair times could follow any
distribution.

Lau and Martin (1987) have investigated how the processing time’s

distribution forms affect system performance. They found that the
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stations’ steady-state output rates are sensitive to the third and
fourth (central) moments of processing times, which suggests that the
ordinary one- or two-parameter distributions are not satisfactory to
describe the real random processing times. 'Hence, they suggest the use
of four-parameter disfribution‘families'to describe the processing

times, which are more accurate and reliable.
Related Research on MHS Delay oo k

In the CQN model, one can define a speéial sfation (say, station
0) to model the MHS. Assuming all WIPx;tays in station O before and/
or after processing at each normal statién, then MHS delay in essence
becomes the statibn 0’s processing time. Since the CQN model assumes
the total number of jobs in the syétem is a fixed constant N, and all
stations have a local storage large enough to accommodate all N jobs in
the system, one can use station O to replace all the local buffers.
Posner and Bernholtz (1968)’sofved this system aﬁd obtained the steady-
state solution (the distribu£ion‘of\the number of customers at each .
station).

Unfortunately, this method does not work in the open queueing
network model, because local buffer éapacities are usually limited,
while the total number of jobs in the system is various.

Recently, MHS delay in transfer lines was considered by Commault
and Semery (1990). They investigated to what extent this delay
influences the line’s ﬁerformancé and, in particular, the output rate

R. They show in a two machine example how R is affected when this

delay parameter varies, and then propose to define an "equivalent
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line," with unchanged machine characteristics, no MHS delay, but
reduced local buffer capacity (Figure 8).

The main advantage of this approach is that, after this equiva-
lent transformation, perf&fmange m;y be evaluated using 'an existing
method. Their siﬁulation results ;how that this'cgpacity reduction
technique ﬁrovidés.very gdod appfoximations forvthe output rate, the
mean buffer level and the mean time in system. But they only verify it
for a two machine line, and, as the .authors put it, "the really
appealing problem is how to deal with 1ongér 1inés.", Another short-
coming of this model is that it cannot handle systeﬁs with central

storage.

Related Research on Systems Without gﬁ'
X

Breakdowns and MHS Delay

- On the other hand, there are many well established methods to
analyze the transfer lines with general processing times, but without
breakdowns (i.e., no neéd of repair; Altiok and Ranjan 1987, Brandwajn
and Jow 1988, Gershwin 1987, Jun and Perros 1990, etc.). For FMS's,
several authors have considered systems with general processing times,
but no breakdown and MHS delay. Many approaches for FMS's are
suggested by Shanthikumar‘and Buzacott (1981), Whitt (1982), Yao and
Buzacott (1985a, 1985b, 1986), among others.

For the open ‘queueing network model, when processing times are
exponentially distribﬁted and local buffers’ capacity is infinite,
Jackson (1963) showed that the stations can be decomposed and analyzed

/

separately, and the joint probability distribution of queue lengths can
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be expressed as a product form.
Shanthikumar and Buzacott (1981) pointed out that when processing
times are not exponential, Jackson decomposition is not exact; they
developed an approximate décompbsiéion approach to analyze FMS's with

non-exponential processing times.
Recent Efforts, Conclusions and Implications LT b

It seems that there is a gap between- the groups of research in the
last three sections. The gap is the consideration of MHS delay and
machine breakdowns. Attempts have been made to fill the gap.

Federgruen and Green (1986) have studied queues with service
interruptions. The service times .and service interruptions can be
properly interpretéd as times between breakdowns (on-time, or up-time,
periods) and repair times (off-time, or down-time, periods), respec-
tively. Their model has been generalized by Sengupta (1990), who has
considered the situations‘in which both the arrival and service rates
of the customers who arrive during the up-time periods could be diffe-
rent from that they would be during the down-time periods. Unfortuna-
tely, their models are computationally impraétical.

Therefore, Federgruen and Green (1986) have suggested éeveral
approximations of completion times, waiting times, and the number of
customers in the system. Their approximations are accurate only if the
expected up- and down-timés are short compared to the expected
processing times. Sengupta (1990) has provided an approximation of
waiting times that works well only if the processing times are very

long. However, in manufacturing enviromments, the expected processing
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time is usually very short compared to the down-time (repair time) and,
especially, the up-time (time between breakdowns). Another problem is
that their methods doﬁ't provide vehicles to aggregate a group of
queues; therefore, their methods are not suitable for analyzing
transfer lines and FMS'’s, which consist of a group of stations, that
are subject to starvation and blocking.

Jafari and Shanthikumar (1987b), and Yeralan and Muth (1987) have
considered a two-station transfer line with general up-time and down-
time distributions. The former assumes the processing times are
constant, while the latter assumes the processing times could be
stochastic. However, they fail to show how to extend their models to
deal with longer lines or larger systems.

Generally speaking, any machine will break down sooner or later.
Machine breakdowns interrupt smooth productien, dramatically affecting
the systems’ performance. Therefore, by no means can breakdowns be
ignored. For MHS delay, as Posnér and Bernholtz (1968) pointed, "The
assumption ..., namely that a unit takes zero time to move from one
station to the mnext, is in generél incorrect, and in many instances may
be a poor approximation to the real situation."

Thus, developing new models to cover station breakdowns and MHS
delay, and new methodologies to handle breakdowns, MHS delay, and
inevitable general processing times is highly desired. This disser-

tation is a formal attempt to solve these problems.



CHAPTER III
BASIC ASSUMPTIONS AND DEFINITIONS
Assumptions and Definitions Pertaining to Stations

In this study, it is assumed that each station has one machine and
a queue before the machine (Figure 6). For a particular station, its
processing time S is a random variable. Let m(-), M(-), pg, and u,(S)
be S'’s probability density function (pdf), cumulative density function
(CDF), mean, and n-th central moment for n>l, respectively. When the
station breaks down, it can be refaired in R time units. R 1is also a
random variable with mean #ﬁ, and n-th central moment p,(R) for n>1. S
and R are independent of each other. ,

When a station ceases to run due to an inability within itself,
one says it "breaks down." When the station finishes processing a
unit, if there is no available space to which the unit can be moved,
the station will be blocked; if the unit can be moved away, but there
is no unit waiting in the queue of the station, the stafion will be
starved. A station (machine) is idle if it is not working. This could
occur when the station is under repair, blocked, starved, or simply
shut down. The station is busy if it is not idle. It is assumed
repairmen are always available whenever breakdowns occur.

The time between breakdowns, T, is also a random variable. T, as
well as basic assumptions pertaining MHS delay in chapter V, will be

discussed in the next section, because different storage systems will
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impose special problems. Only after that can one define equivalency of
stations and systems (also in chapter V).

This study makes three assumpfions about breakdowns.

Assumption 1: No-Failure-While-Idle

When stations are idle, no breakdown occurs. This is a logical
assumption. In some rare cases, machines do break down while idle, But
usually people are not aware of it until they are going to work on the
next joB. Many authors adopt some siﬁilar assumption (Ignall and

Silver 1977, Buzacott and Hanifin 1978, among others).

Assumption 2: Exponential-Up-Time

The time between breakdowns, T, is a r.v. with pdf h(t) = we @t
Suppose a breakdown occurs at the clock time tj, and the next break-
down occurs at the clock timé to. Then the up-time between these two
breakdowns is (tg - t1) - (all idle time periods during to - tj).

While this exponential distribution assumption seems restrictive,
it is used frequently in the literature (see references in Buzacott and
Hanifin 1978, Gershwin and Berman 1981, and Liu and Buzacott, among
others). Additionally, it is a recent(phenomenon that the frequency of
wear-out caused breakdowns is decreasing steadily, so that other causes
of breakdowns, such as mis-operation, electronic parts/circuits failure
(different from mechanical wear-out), and communication network jam
(Ghosh and Wysk 1989), are becoming relatively more significant. This
makes the exponential distribution assumption more plausible. Later,

one will see that this assumption is critical to analyze the system
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with breakdowns to obtain analytical results.

Assumption 3: No-Double-Fault

During one job'’s processing time, at most one breakdown may occur.
It is easy to justify tpis assumption, because usually during a
relatively short time period, a machine should not break down twice or
more. If the machine does break down frequently, the firm should
replace it, or enforce some kind 6f preventive maintenance measure.
Another way to state this assumption is that when a breakdown occurs,
the station can always complete the job on hand after repair, and the
total processing time is the same (any extra set-up time is thought to
be a part of the repair time). Many authors simply assume that
processing times are deterministic, and breakdowns may only occur right
after completing a job (see the references in Buzacott and Hanifin
1978, Gershwin and Berman 1981, among others). To reconcile these
assumptions with those used in this paper, consider that the repair

time will be charged to the last jdb before breakdown.

Some Basic Probability and Statistics

Concepts and Definitions

In this study, theories of probability and statistics play a
very important role. Hence, all necessary and basic probability and
statistics concepts and definitions are presenfed in this section.

The mean of a r.v. X with pdf £(.) is

BIX] = ug = 610 = [ow xE(x)dx.

For n>1, X’'s n-th central moment is

22
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pn(X) = E[(X-E[XDP] = [0 (x - E[X])Pf(x)dx,
and X's n-th moment is

© :
va(X) = [.o xPf(x)dx, for n 2= 0.

Specifically, uo(X) rpo(X) =1, pp(X) = 0, and gl(x) = py. Usually,

X's variance is 0X2

= po(X), and X's coefficient of variation is CV(X)
= ox/px. X's skewness measure is a] = p3(X)/aX3, and X's kurtosis
measure is a9 = u4(X)/aX4.

For simplicity, v, and p, are used to denote v,(X) and p,(X),
respectively, whenever the r.v. X is understood. vy (X)'s (k=1) are
called X's first k moments, and py and pp(X) (k=2) are called X's first

k central moments. p,’s can be expressed in terms of v,'s: (Wilks

1962, Kendall and Stuart 1969) !

up = vy - 2,

p3 = vy - 3vovy + 2u13, ‘ (3.1)
- -4 L2 4
By vy v3vy + 6rovy 3vq7,
k . ‘ . .
Generally, pp = = (Cg)vk.i(-v1)t, where CE = k!/[(k - i)!i!].
i=0

vp's can also be expressed in terms of up's and py:

vy = by + px?,
vy = u3 + 3pouy + “X3’ ‘ (3.2)
vy = p4 + bpspy + 6p2px2 + ﬂX4’
ko .
Generally, vy = 2 (CE)pk-ikx’.
i=0

In this study, Kendall and Stuart (1969)'s notations for probabi-
lity terms will be followed. For instance, Prob[E] means the proba-

bility that an event E occurs.



Chapter VIII will introduce necessary queueing theory notations

and related concepts.

Assumptions and Definitions Pertaining to the Entire FMS

The Basic System Model

The basic system model is an open queueing netwqu, consisting of
M stations and an initial queue (Figure 4). Jobs or customers waiting
to enter the system are kept in the initial queue. Each station
consists of a servér (or a machine) and a queue before it (Figure 5).
This paper will consider "customer" and "job", as well as "server" and
"machine," interchangeable terms throughout. The general assumptions
are (Schweitzer 1977, Buzacott and Shanthikumar 1980)

1. Each machine can only process one job at a time.

2. Jobs arrive at the system and join the initial queue according
to a Poisson process with parameter .

3. There are B classes of jobs. The probability that an arriving
job A is class r and has its first operation on machine i is gjy, 1.e.,
qir = Prob(A € class r AND A's first operation is on i).

4, FCFS (first-come-first-served) is assumed for all machines.

5. Within each class the routing of jobsvis determined by the
transition matrix Py = (Pjj y) for class r, where Pjj r is the
transition probability that a class-r job (i.e., the job class is
known) will go to station j after processing at station i. When i=j,

Pij ,r=0.

=

Let fij, =1 -.21 Pij,r be the probability that a class-r job
J=
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leaves the system after processing at machine j. When there is only
one class of jobs (B = 1), the subscript r could be dropped.
6. The processing times are independent of job class. 1In this
research, we will consider the pfoqe;sing times to be general, i.e.,
they could follow any distribution, and 1/6; is the mean processing
time at machine i (i.e., machine i's processing rate is §j).

7. At station i there is buffer space nj, including the space for

the job on the machine (n;>1).

8. In the FMS, there is a central storage space for Ny jobs.

Usually Ng is very large such that it can be treated as infinite.

The Expected Number of Times a Job Visits Machine i

It is desired to know an impbrtant parameter, ej,, the expected
number of times an arriving class-r job A will vi;it machine i.

Let qi¥ be Prob(A goes to i first | A € class r), gjr be
Prob(A € class r AND A goes‘to i first), and h' be Prob(A € class r).
Apparently, qjr = hT¥*q;T (1 =1, ... , M).

Let e;¥ be the expected number of times that A will visit the
machine i, given A € class r, and ey be the expected number of times

that A will visit i. Then

ey = ei]‘*h]‘ + e]'_z*h2 + ... + eiB*hB
B
= X ejf*hl. ‘ (3.3)
r=1
B
Note that ejr = ejf*hY, (3.3) can be rewritten as ej = 3 ejy.
r=1
B
Now notice that ejf = qif + = Pij,r*ejr (i=1, ... M. (3.4)

r=1



Using matrix notations, one has

r .r

ef = q;T + PrTer, where e = (e1¥, egf, ... , ey!)T, and
qt = (q1%, qof, ..., qu)T. Or, ef = (I - PrT)'lqr, where I is the

MxM identity matrix.

M .
Because of (2.4), hT*e;T = h¥*xq;¥ + = Pij,r(hr*ejr), therefore
j=1 ‘
M
eir = Qir + Z Pjji r¥ejr (i1 =1, ... , M), (3.5)
j=1
or Er = Qr + Pr?Er» where Er = (e1y, ... , emy)T, and Q¢ = (qiy, ... ,
qu)T. Again,
Er - (I - PT) 1oy | (3.6)

Then one can obtain eir by solving the simultaneous equations (3.5) or
(3.6). Here it is assumed that a unique solution for the ej,’s exist,
and all ej,20. ej, can be interpreted as the arrival rate of class r
jobs to station i. All qjy’'s are non-negative. If at least one qj, >

0, the network is open, and

M M
2 X qir =1.
r=1 i=1
M
If all qjy = O, it is a closed network, and X ej, = Ny, where N, is
i=1
B
the number of class-r jobs in the system. Of course ¥ N, = N. Then
r=1

one should solve following equations to get ejy,’s:

s T
2 ejr = Ny, and (I - P2 )E, = 0.

System States and Steady State

Suppose at a specific time t there are vi jobs in station i
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(1=<i<M). Then it is said the system is at state ¥ = (v1, ... vi
vM). Y 1s called the system’s state vector, because it describes the
system’s current state.

In the last subsection it is assumed that,

(i) A unique non-negative solution for the ej,’'s exist;

(ii) All transition probabilities Pij,r are constant, regardless
of which successive time periods are considered (i.e., any Pij,r does
not change over time).

For performance evaluation purpose, only the systems' behaviors at
steady state or equilibrium will be considered. It is said that the
system is at steady state if at that time the system already reaches

the state such that (i) and (ii) hold asymptotically.

Blocking Rate

Because the capacity of local buffers are limited, it is possible
that when a job A arrives at station i, i's queue is full and A is not
allowed to enter i. The blocking rate bj can be defined as the proba-
bility that a coming job will be rejected by the station i. When the
station is in the steady state, its output rate is equal to its input
rate, and both input and output rates are denoted by Aj.

In chapter IX more terminology pertaining to the queueing networks

will be introduced.
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CHAPTER IV

PERFORMANCE EVALUATION OF QUEUEING NETWORKS

WITHOUT MHS DELAY AND BREAKDOWNS

Some major objectives of FMS reseérch and development are to
maximize the FMS'’s production capacity or output rate, to increase
machine utilization, and to reduce WIP inventory. In other words,
production capacity (hereafter PC), output rate (or throughput rate,
hereafter TH), machine utilization, and WIP inventory level are
important measures in evaluating the FMS's performance. These measures
can be used to compare alternative designs, and hopefully, to obtain
optimal system configuration. Among these measures, the simplest is

PC, which is the maximal possible output rate.
System Output Rate When Processing Times Are Exponential

Now assume no MHS delay and station breakdowns, and the input rate

for the system is A. Schweitzer (1977) shows that, if all processing

e @ -t s

times are exponentially distributed, and at most C customers are

-

allowed to be in the system at any time, then the FMS's output rate TH

is a function depending on C and AX:

c-1 C
TH(X, C) = A[ Z Aq(m)]/[ Z A™q(m)] (4.1)
m=1 =1
M n, B
where q(K) = = [MTaj Y], 0<K=<C, and.aj = = ejy/6f.

ni+no+. . .+ny=K i=1 r=1

30
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Note that here the summation is over all possible combinations of (n1,
., Nnj, ..., ny) such that nj+ng+...+ny=K, and for each K, q(K) is

independent of A and C.

C
Let A(C) be = AMgq(m). Because A(C) _ Acq(C) for large A, (4.1)
M=1
indicates
lim TH(XA, C) = q(C-1)/q(C). (4.2)
A=

When B=1, i.e. only one class of customers, aj = ej/6;. Let apay

= max{aj}, Schweitzer (1977) shows PC = lim q(C-1)/q(C) = 1l/ap,x, and

C—
lim PC(A, C) = PC(A, @) = A if A < 1l/agay
G0 (4.3)
= 1/apax 1if A = 1/ap,x.

Here M- is equivalent to the situation where there are infinite
customers staying in the initial queue, and C- means there may be
infinite customers in the system. Hence (4.3) gives the maximum
possible output rate of the system (Buzacott and Shanthikumar 1980).
However, when A and/or C are finite, maybe small, there is no easy way
to calculate the throughput rate.

If all stations have a local buffer with infinite capacity,
Jackson (1963) shows the system can be decomposed and the equilibrium
joint probability distribution of queue lengths can be expressed as a
product form as follows.

Recall that v = (vy, ... , vi{, ... , Vy) is the system’s state

vector, where vj (1<i=<M) is the number of jobs in station i.

M v
Let w(¥) =1 [ey/6p] ™. For any given y,
m=1
M
T(K) = 2 w(¥) summed over all ¥'s with S(¥) = [ 2 v§] =K,
i=1



© K-1
and n =1/ 2 ([ @I X;] T(K)).
K=0 i=0

Then the unique equilibrium state probability distribution exists, and
is given by
S(x)-1
p(@) =mw(@)[ T A4]. (4.4)
i=0 \
Note here p(y) is the probability that the system state is v. It
is easy to see that, for a particular station i, its station size Li’'s

distribution is

Prob[Li=j] = = p(¥). o (4.5)
V(¥|vi=j)

Since the central storage's capacity is infinite and the transit
time (MHS delay) is zero, that is equivalent to that every local

buffer’s capacity is infinite, so Jackson’s model can be applied.
System Output Rate When Processing Times Are General

(4.1) to (4.3) require that the processing times must be
exponential,‘and the storage capacity is infinite. This may be not
realistic.

As Yao and Buzacott (1985b) pointed out, most real systems have
carefully designed procedures to ensure no blocking. One example is-
the Caterpillar Omniline’s "deliver-and-pick—up“ scheme (Hutchinson
1979); another example is Toyota's "return conveyors" (Hatvany 1983),
which continuously takes away finished jobs from machines.

Here it can be shown that, when the processing times follow any
distribution, as long as there is no blocking, the FMS’s output rate is

still A. Appendix A provides the derivation. This leads to the
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following proposition.

PROPOSITION 1. ?

|

For an FMS with general procéssing times and no blocking, IF A<
1/apax, (or A; <1 for i =1, ... , M) the throughput rate is \. ##

If blocking does occur (dué to limited storage capacity, for
example), several authors (Gelenbe;1975, Yao and Buzacott 1985b, among
others) provide iterative procedurés to calculate blocking probabili-
ties bj for i =1, ... , M. 1In chgpter IX, I will develop an easier

procedure to calculate the bji’s.
Other Measures

It is shown (Buzacott and Shahthikumar 1980) that Uj, the
utilization of machine i, is given‘by
Ui = Aei/6i; ? (4.6)
and, if only a maximum of C jobs éfe allowed in the system, (4.1)

suggests

PC = lim TH(XA, C) = q(C-1)/q(C). (4.7)

A0
When all ej/6; are the same, the system is called a balanced system
with PC equal to C/([a(C+M-1)], whgre a=ei/6;.
Although Buzacott and Shanthikumar (1980) assume all processing
times are exponential, it will be ;hown in éhapter IX that (4.6) is
valid for any processing time distribution.

It is shown in chapter III that a job (say A) will visit station i

on average ej times. Let E[W;j] be the mean waiting time in station i’s
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queue, and E[Xi] be the mean time in the station i. Each time A is
expected to spend E[W;] of time in the queue i, and then to be served
in 1/6; of time. Apparently, (see, say, Ross 1989)
E[X;] = 1/6; + E[W{]. » (4.8)
So the sojourn time SJ, i.e., the expected time a job stays in the
system, 1s given by

M
eiE[Xj] = = ej(l/81 + E[Wi]). (4.9)
1 i=1

SJ =
i

N ™M=

Using Little's Law, one has

E[Wi]

E[Qj]/)i, and }
(4.10)

E[X;] = E[Li]/X1,
where A; is station i's;input rate, E[Qij is the expected length of
queue i, and E[Lj] is the expected station size. Since E[Lj] can be
obtained from (4.4) and (4.5),

©
E[L;j] = % jProb[Li=j], (4.11)
3=0 ‘
Now E[Xj] can be derived from (4.10). Then, using (4.8), one can
determine E[W;j]; and from (4.10) one can determine E[W;j]. Finally, it
is straightforward to calculate SJ from (4.9).

The oniy difficulty is that (4.11) requires the summation of
infinite terms. In practice, one has to assume Prob[Lj=J]=0 fgr some
large integer J, so that (4.11) can be approximated by

5 | .
E[Li] = = jProb[Li=j]. (4.12)
j=0

It should be pointed out that, the mean WIP inventory level of

station i, in terms of units, denoted by WIP;, is just E[Lj]; i.e.,
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WIP; = E[Lj] for 1l=<i=M.

If B>1, i.e., there are two or more classes of jobs in the ‘system,
jobs in different classes should have different values (or costs).
Furthermore, the same job may have different values (or costs) when it
is going through different stations. So (4.12) should be revised
accordingly to reflect these considerations. Since this heavily
depends on the cost structures of these products, which are beyond the
scope of this dissertation, it will not be discussed here. However,

this is a topic worthy of future research.



CHAPTER V
TECHNIQUES TO COPE WITH BREAKDOWNS

In the FMS literature, it is always assumed that machines never
break down. This is an unrealistic assumption. This study will
investigate machine breakdowns and present a powerful and convenient
approach to deal with them. This approach transforms the line with
breakdowns into an equivalent line without breakdowns, and then many

well-established methodologies can be applied to evaluate the system's

performance.
The Effective Processing Time Y and Its Mean E[Y]

Consider that, when a unit A arrives at a station, which is ready
to work on A, it will take S‘time units to process A if no breakdown
occurs during the S time units. If the station breaks down during
processing A, because of the No-Double-Fault assumption, A will stay in
the station for S + R time units. Formally, the effective processing
time is

S, if no breakdown during S;
v = (5.1)
S + R, if breakdown during S.

According to the Exponential-Up-Time and No-Double-Fault assump-

tions, the probability that the machine breaks down during a given busy

time duration t is

H(t) = J§ h(x)dx

36



J§ we-“%ax

1 - e-wt

and the probability of no breakdown during t is then
1 - H(t) = e™¥t, |

where the exponential distribution's‘memoryless property is exploited.

Now E[Y] can ge calculated by conditiéning (Ross 1989). Let
E[X|W] be the function of the random variable W whose value at W=w is
E{X|W=w]. Note that E[X|W] itself is a random variable. It is shown
(Ross 1989) that, for all random variables X and W,

E[X] = E[E[X|W]]. (5.2)
Therefore, E[Y|S] is a function of S, Whose value at § = t is E[Y]|S=t],

and

E[Y|S=t] = t[1 - H(t)] + (t + pR)H(t)

t + pgpH(t). (5.3)
Note the probability that S = t, i.e., Prob[S=t], is m(t)dt; according
to (5.2),
©
E[Y] = [, E[Y|S=t]m(t)dt

0

= [o [t + pgH(t)m(t)dt

pg + pr Jo H(t)m(t)dt. o (5.4)

For convenience, let kj denote f: tiH(t)m(t)dt for i=0. Then (5.4) can
be rewritten as |
E[Y] = pg + prko. : (5.4")
It is clear that, according to (5.4'), E[Y] depends only on ug,
4R, and S's and T’'s distributions, and the repair time distribution is

irrelevant here. Buzacott (1967) guessed that "certain results hold
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irrespective of the repair time distribution." Equation (5.4') proves

that is right.
Calculation of Y’s Moments and Central Moments

In the last section, it is known that E[Y] = uy = v1. Now,
consider the calculation of Y’s higher moments Vifand central moments
pi for i = 2, 3, and 4. 1In fact, one can calculate vj and pj for all
i>1. First, one calculates vi; for i>1, and thep, with the help of
(3.1), one can easily obtain pj for i>l. Instead of computing each vj
individually, it is appropriate ts introduce the following theorem to

handle vj's for all i>0.

THEOREM 1. Assume two r.v.’'s X and W have a joint pdf f(x,w), and

their marginal pdf’'s are fyx(x) and fy(w), respectively. Then,

for i>0,
. LY -
E[XY] = [_oE[X}|W=w] fyy(w)dw. (5.5)
Proof. See Appendix B. ##

It is known (Kendall and Stuart 1969, Ross 1989) that

3 0 3
E[XMW=v] = [_o x fyx y(x|w)dx. (5.6)
The beauty of Theorem 1 is that one does not need to know f(x,w) if

(5.6) is available. Now it is ready to compute vi’s.

Py

_. { tt, if no breakdown during t;
Let Y = .
(t + R)Y, if breakdown during t;
0, if no breakdown during t;
and Q =
1, if breakdown during t.

It is easy to see yi - [Yi|S=t] =ti 4 (t + R)iQ, and



E[vi|s=t] = E[Y]] = ti[1 - H(t)] + E[(t + R)E]H(E) (5.7)
Therefore, according to Theorem 1,

vi(Y) = E[¥i]

f: E[Yl|s=t]m(t)dt

- Jo (£L11 - H(O)] + E[(t + RYLJH(E) In(e)ae

o i j . i-3
=vi(s) - ki + [, 20 Civj (R)t* JJH(t)m(t)dt

Y

J

i
vi(S) - ki + = [Ciuj(R)ki_j]
j=0

i h|
vi(S) +'21 (Ci)vj(RIki-j (5.8)
J=

Since kj (j<i) can be numerically calculated, and R'’s and S'’s moments
are either given or easy to compute, v;j(Y) can be obtained from (5.8).
As a summary, the effective processing time Y's first four moments

and central moments are explicitly identified.

v1(Y) = E[Y] = v1(S) + v1(R)kg = ug + ugrkg.

vo(Y) vo(S) + 2v1(R)k1 + vo(R)koq;

v3(Y) v3(S) + 3v1(R)ky + 3vy(R)ky + v3(R)kq; > (5.9

v (Y) = v4(S) + 4v1(R)ky + 6rvo(R)ky + 4v3(R)ky +

v (R)kg. J

Now applying (3.1) one obtains uj(Y)'’'s for i = 2, 3, and 4. Namely,

BN

u1 (Y) v1(Y),
po(Y) = vo(Y) - [v1(V)]2,
+  (5.10)

p3(Y) = v3(Y) - 3vp(Y)v1(Y) + 2[v1(Y)]3,

pa(Y) = v4(Y) - 4r3(V)vi(Y) + 6vp(Y) [v1 (V)12 - 3[v1(V)]4.]
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Some Discussions

Notably it is assumed that machine breakdowns do not affect
processing times. If breakdowns affect processing times, the equation
(5.1) should be rewritten as

7 S, ]if no\breakdown;

Y = (5.1")
S1 + R + S9, if breakdown occurs,

where S7 is the processing time before breakdown and S9 is the remain-

ing processing time after breakdown (Residual Life Time, Figure 6).

Essentially in this study it is assumed Sq + S9 = S, that means the

interruption does not affect the processing time.

No breakdown:

FIGURE 6. The effects of breakdown

Since it is unlikely that S7 + S9 < S, the only other possible
case is S7 + S9 >.S. While it is intractable when S; and S9 are

general, several important special cases can be handled accordingly.

Case A: S1 + S9 =S + ¢¥, where c¢* is a random variable.

This will happen when a breakdown only causes some extra time to



set up and restart. Let S’ =S + c*. If S and c¢¥’'s first four moments

are known, then the first four moments of S’ can be calculated by using

formulas (7.2) and (7.3) (see chépter VII).

Case B: S1 + S9

wS, where w is a constant multiplier.

Since E[wS] wE[S], Var[wS] = w2Var[S], etc., the first four

moments of wS can be obtained easily.

A Special Case: S and S9 are identically exponential.

The No-Double-Fault assumption is useful to derive a series of
results in this study. However, this assumption is apparently invalid
when the processing time is exponential. In this case, when a
breakdown occurs, the interrupted job will be reprocessed after repair.
Due to the exponential distribution, the remained processing time is
still S. 1In other words, the interrupted job will be treated as a new
job, and its history is forgot. Federgruen and Green (1986) considered

and solved this problem.
Summary

Here a powerful and convenient approach is presented to handle
station breakdowns, stochastic processing times and repair times. By
transforming the line with breakdowns into ‘an equivalent line without
breakdown, many well-established methodologies can be applied to
evaluate the system’s performance. This approach concentrates on the
effective processing time Y. It can analytically calculate Y's
moments and central moments, that facilitate fitting any n-parameter

distribution for Y, and therefore provides a solid base for further
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analyses of the whole queueing network.
Usually one fits Y's first three or four moments to a three or
four parameter distribution, respectively. To calculate Y's moments,

it's necessary to known S and R's moments, and the following integral,

f: tlH(e)m(t)de

o
e
I

Jo 1A - eFom(e)ar,
which only depends on the mean breakdown rate k and m(.)~- In other
words, one doesn’t need to know the repair time R's and MHS delay D's
pdf’s! Moreover, if one doesn't know the processing time S's pdf, but
know S’'s first three or four moments, he/she can fit a three or four
parameter distribution as S's pdf m(.). So in practice, one only needs
to know k and the first three or four moments of S, and R, and that are
easy to obtain from collected data. This feature makes this method
very attractive to researchers as well as practitioners, for they don't
need to figure out those pdf’s of S and R.

The numerical examples iﬁ chapter VI will clearly show that the
processing time S’'s third and fourth (central) moments have signifi-
cant impact on the effective processing time Y, that indicates a four-

parameter distribution is more appropriate to be used to fit S's first

four moments.



CHAPTER VI

NUMERICAL EXAMPLES

Here several numerical examples are given to show how to transform

an FMS with breakdowns into an equivalent system with no breakdowns.
The program and results for example 1 are in Appendix C.
The Effects of Uncertainty and R’s Distribution

Example 1.

Consider the following data.
Repair time R:
pR=5, 0p%=9, p3(R)=100, and u,;(R)=525. So CVg=0.6.
Processing time S:
pg=1.5, op?=0.81, u3(S)=0.8748, and p4(S)=3.9366. So CVg=0.6.
Time between breakdowns T:

w=1/100, or the mean time between breakdowns is 100.

From (3.1),
v1(R)=5, v9(R)=34, v3(R)=360, and v, (R)=4500.
(6.1)
v1(8)=1.5, v9(8)=3.06, v3(S)=7.8948, v,(S)=25.1829.

To calculate ki's (0<i<3), one needs to determine m(t). Here one
can fit vj(S)'s (1<i<4) to an S-D distribution (Schmeiser and Deutsch
1977), which has four parameters, a, b, ¢, and d.

First, one can obtain @ and a9 as follows.

a1 = p3(S)/ogg> = 0.8748/(0.81)1-5 = 1.2,
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ag = py(S)/ogg™ = 3.9366/(0.81)2 = 6.
Then, one can look up the graph in Schmeiser and Deutsch (1977) to find
that, for (e, ag) = (1.2, 6), c=4.63836, and d=0.47117. (An accurate
table can be obtained from the adtﬁqrs.§ Then b and a can be

calculated as follows.

{ (2¢+1).(c+1)2 }1/2
b = og = 45.1361

(e+1)2[a20+Le(1-a) 2641 ] (2¢41) [(1-9)°¥1)2

(1-4) c+l _ dC+l
a=pg - b = 1.3945.
c+1

Note that

o
ki = [o ti(1 - e t/100yp(tyae

- lim f§ ti(1 - e t/100yam(e). (6.2)
X0

Let BL be a - bd®, and BR be a + b(1 - d)¢. The S-D distribution has a

very good property: Its CDF is given as the following closed-form.

(0, t < BL;
d - [(a-t)/b]L/c, BL < t < a;
M(t) = 1 ’
d + [(t-a)/b]l/c, a <t < BR;
L 1, t > BR.

BR .
Hence, (6.2) can be rewritten as kj = fBL ti(1 - e't/loo)dM(t).
Let § = (BR-BL)/N for some big integer N, AM(jé) = M(jé) - M((j-1)6),
and presume BL = 0. Then
N - .
ki = lim = (j6)i[1 - ¢~ (38/100)1AM(56). (6.3)
N-wo j=1

Equation (6.3) can be solved numerically, and the results are

ko = 0.05160, k; = 0.16336, ky = 0.56675, k3 = 2.04813. (6.4)



Now, from (5.9), (6.1), and (6.4), one knows

v1(Y) = 1.758, vo(Y) = 6.448, v3(Y)

51.636, v4(Y) = 649.211.

Using (5.10), it is easy to see that py v1(Y) = 1.758, UY2 = 3.357,

and CVy = 1.042. By the way, p3(Y) = 28.495 and u4(Y) = 377.021.

Example 2.

Consider the following data.
Repair time R:
pR=5, op2=32, p3(R)=45, and p,(R)=875. So CVp=1.13.
Processing time S:
ug=1.5, asz=0.81, #3(8)=0.8748, and p4(S)=3.9366. So CVg=0.6.
Time between breakdowns T: w=1/100.
From (3.1),
v1(R)=5, v9(R)=57, v3(R)=650, and v, (R)=7200.
v1(S)=1.5, v9(S)=3.06, v3(S)=7.8948, and v,(S)=25.1829.
Similarly, one can know @] = 1.2, @9 = 6, and all a, b, ¢, d, and
ki's are the same as those in example 1. Therefore, one obtains that
v1(Y)=1.7580, vo(Y)=7.6352, v3(Y)=77.8790, and v,(Y)=1056.3809. Then

uy = 1.7580 and CVy = 1.2126.

Discussions about the First Two Examples

In example 1, assume the time unit is an hour. If all times are
deterministic, the station processes 66 jobs in 1.5%66=99 hours without
interruption. When it is processing the 67-th job, the machine breaks
down, and that will take 5 hours to repair it. 1In total it needs

99+1.5+5=105.5 hours to process these 67 jobs. So the mean effective
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processing time E[Y] is about 1.575 hours. Now in fact all times are
stochastic, E[Y] is 1.758, about 11.62% greater than 1.575, that
clearly shows the negative effect of ﬁncertainty. It is not
surprising, because equation (5.3) indicates that both T's and S's

distributions affect E[Y].

The Effects of the Variance, Skewness, and

Kurtosis of Processing Times

Example 3.

Assume pp=5, op2=9, p3(R)=1ob, and pg4(R)=525. So CVg=0.6. For T,
w=1/100. Now one'may be interested in how 052, @1(S), and ag(S) affect
the effective processing time Y. Because the skewness measure
al(S)=p3(S)/aS3, the kurtosis measure az(S)=p4(S)/034, and asz= B2 (8S),
the effects of S’'s second, third, and fourth central moments are being
investigated. Let ug=1.5. Note CVg=o0g/pg and is set at CVg=0.4, 0.8
and 1.2. Table I shows the results.

In example 2, only R'’s second, third, and 4-th moments are
changed. As equations (5.3) and (5.8) suggest, E[Y] is still 1.758,
but CVy, v3(Y), aﬁd v4(Y) increase dramaticaliy.

Here considering @ and @y jointly (denoted by [aj, @9]), Table I
reveals that both wuy and CVy are monotonously, positively correlated
with CVg and [@1(S), a9(S)]. It seems that CVg has stronger impact on
Y than [@7(S), @2(S)]. So in section 3 it will be shown if @j(S) and

a9 (S), separately, have significant impact on Y.
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TABLE I

THE JOINT EFFECTS OF SKEWNESS AND KURTOSIS

47

S: CVg = 0.4 CVg = 0.8 CVg = 1.2
[e1, 2] By CVy By Cvy ¢ CVy
0.8 2.0 1.685  0.788 1.721  1.070 1.757  1.380
1.2 3.0 1.692  0.805 1.735  1.097 1.778  1.410
1.6 4.0 1.696  0.814 1.744  1.112 1.790  1.428
1.6 5.0 1.715  0.860 1.781  1.186 1.823%  1.522%
2.0 6.0 1.721 _ 0.873 1.792  1.207 1.861  1.542

* The original S-D distribution has a small left tail stretching
the negative area, so the distribution is adjusted.

number with star is obtained after adjustment.

Example 4.

into

Hereafter, the

In this example, only w value is changed to 1/200. All others are

the same as those in example 3.

Note that w is the breakdown rate, and

1/w is the mean time between breakdowns.

EFFECTS OF THE BREAKDOWN RATE w

TABLE 11

s: CVg = 0.4 CVg = 0.8 Vg = 1.2
[a1, )] py CVy wy o CVy wy CVy
0.8 2.0 | 1.593  0.650 1.611  0.969 1.630  1.314
1.2 3.0 | 1.597  0.663 1.619  0.987 1.641  1.335
1.6 4.0 | 1.599  0.670 1.623  0.998 1.647  1.348
1.6 5.0 | 1.608  0.705 1.642  1.052 1.659% 1.382%
20 6.0 | 1.611 0,715 1.647  1.068 1.683  1.432
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Once again, one sees clearly that both py and CVy are positively
correlated with CVg and [@](S), @2(S)]. But, comparing Table II with
Table I, one sees that py decreases by 5.5% to 9.6%, and CVy decreases
by 7.2% to 17.5%. This indicatésAfhefimportance of the parameter w as

expected.

Are S's Skewness and Kurtosis Important?

Example 5.

R's first four central moments and k are the same as those in
example 4. pug is still 1.5. CVg = 0.4. First, Qe set a9(S) equal to
3, and change @1(S) from -1.2 to 1.2, in step of 0.4. Then we set
a9 (S) equal to 4, and change a1(S) from -1.6 to 1.6, in step of 0.4.
Note that [a1=%1.6, a9=3] and [a1=%2.0, a9=4] are impossible
combinations (see Schmeiser and Deutsch 1977 for details). From Table
III, it is evident that, except the marked rows, py and CVy are
monotonously, positively correlated with a9(S), and ay(Y) is
monotonously, negatively corrélated with a9(S). But at [@1=1.2, ap=3]
and [@1=1.6, ag=4], py and CVy are decreasing, while a9(Y) is increas-
ing. Notice that [@1=1.6, @9=3] and [@]=2.0, a9=4] are impossible
combinations, these anomalies might be attributed to the S-D distribu-
tion’s boundary behavior.

The relation between @7(Y) and @1(S) is very interesting. When
@1 (S) is increasing from -1.2 to O, al(Yj decreases from 6.1550 to
6.0658; then when aj(S) continues increasing to 1.2, a1(Y) turns around
and increases to 6.1900. It seems that while S skews to left or right,

Y always skews further toward left. That does not mean o1 (Y) is always



positive, but always increases while @1(S) deviates further from the
neutral point O.

Table III shows a1(S) has significant effects on Y. For a9(S)=3,
while a1(S) increases from -1.2 to O.é, py increases by 1.94%, and CVy
increases by 9.96%. For a9(S)=4.0, while @1(S) increases from -1.6 to

1.2, py increases by 2.69%, and CVy increases by 14.0%.

TABLE TII

EFFECTS OF SKEWNESS

al____a9 by CVy. a1(Y) as (Y)
-1.2 3.0 1.6673 0.7480 6.1550 64.4553
-0.8 1.6826 0.7824 6.0843 60.1234
-0.4 1.6898 0.7990 6.0671 58.2194
-0.0 1.6945 0.8101 6.0658 57.0227

0.4 1.6978 0.8179 6.0733 56.2022
0.8 1.6997 0.8225 6.0904 55.7254
@1l.2 1.6923 0.8051 6.1900 57.5518
-1.6 4.0 1.6636 0.7401 6.1328 65.5955
-1.2 1.6820 0.7812 6.0486 60.3183
-0.8 1.6911 0.8022 6.0205 57.9150
-0.4 1.6976 0.8176 6.0067 56.2755
0.0 1.7021 0.8282 6.0061 55.2014
0.4 1.7056 0.8366 6.0101 54.3697
0.8 1.7074 0.8410 6.0265 53.9478
1.2 1.7084 0.8435 6.0483 53.7088
@1l.6 1.6963 0.8144 6.1882 56,5933

Example 6.

R's first four central moments and w are the same as those in
example 4. pug is still 1.5. CVg = 0.4. This time set a1(S) equal to

-0.4, and change a9(S) from 2 to 8. Then set a7(S) equal to 0.4, and



change a9(S) from 2 to 8 again.

From Table IV, it is evident that, when @)(S)=0.4, uy and CVy are
monotonously, positively correlated with a9(S), and @)(Y) and ay(Y) are
monotonously, negatively correlated with ap(S). But when a1(S) is
-0.4, while py is still monotonously, positively correlated with a9(S),
once again, CVy, 1(Y) and a9(Y) show some anomalies that might be
attributed to the S-D distribution’s boundary behavior. Table IV
also shows a9(S) has significant effects on Y. 'For/al(S)= —0.4, while
a9(S) increases from 2 to 8, uy increases by 2.31%, and CVy increases
by 10.0%. For aq(S)=0.4, while a7(S) increases from 2 to 8, uy
increases by 2.38%, and CVy increases by 12.2%. These observations

indicate that S’s fourth moment or central moment can not be ignored.

TABLE IV

EFFECTS OF KURTOSIS

a] a9 Hy CVy a1 (Y) as(Y)
-0.4 2.0. 1.6794 0.7752 6.1492 60.9373
3.0 1.6898 0.7990 6..0671 58.2194

4.0 1.6976 0.8176 6.0067 56.2755

5.0 1.7043 0.8335 5.9576 54.7128

6.0 1.7105 0.8484 5.9133 53.3298

7.0 1.7150 0.8531 5.9185 52.9702

8.0 1.7182 0.8472 5.9743 53,6179

0.4 2.0 1.6888 0.7969 6.1484 58.4140
"3.0 '1.6978 0.8179 6.0733 56.2022

4.0 1.7056 0.8366 6.0101 54,3697

5.0 1.7121 0.8524 5.9599 52.9231

6.0 1.7183 0.8675 5.9139 51.6148

7.0 1.7238 0.8811 5.8746 50.4997

8.0 1.7290 0.8939 5.8390 49.4971




CHAPTER VII
DEALING WITH MATERIAL HANDLING SYSTEM DELAY

In the last two chapters a powerful and{convenient approach is
presented to handle breakdowns. By transforming the line with
breakdowns into an equivalent line without breakdown, many well-
established methodologies can be applied to evaluate the system'’s
performance. In this chapter, the very same approach is employed to
handle MHS delay. So far, MHS delay (or the transit time) is almost
ignored in the FMS literature. Many FMS models simply assume transit
times are zero. Others concluded that, in general, transit times have
a negligible effect on the production capacity, if there are a very
large number of jobs in the system and the ratio of mean transit time
over mean processing time (E[D]/E[S]) is small (Posner and Bernholtz
1968, Buzacott and Shanthikumar 1980). However, recently it is evident
that the number of jobs in the system could be small or medium, and the
ratio E[D]/E[S] could be as high as 80%, or even greater than 100%
(Ghosh and Wysk 1989, Commault and Semery 1990).

A closer look reveals that the way to treat MHS delay is depend on
storage system configurations. In p?actice there are three kinds of

storage systems as discussed below.
Central Storage with Infinite Capacity

Assume that the central storage with infinite capacity is shared
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by all stations which have no local buffers.

Let Dj be the transit time for moving a job from station i (or the
central storage) to the central storage (or station i)  Posner and
Bernholtz (1968) considered to treat the MHS and the central storage as
an extra station (sa&, station 0) with the service time equal to the
transit time. Then the system has one more station, but no MHS delay
(Figure 7). Because any processed job has to either return to station
0 or leave the system, there will be no-blocking,
and the probability Pjp=1-fj; for all i=1, and the progability Pjj=0 for
all i=]l and j=1. It is easy to 'see that Proposition I can apply, i.e.,
the system’s outbut rate is A, and station i’'s utilization is Xej/6;.

It should be pointed out that station 0's service time includes
not only the transit time, but also the waiting time in the queue
(hereafter, queue delay), because the central storage is virtually a
collection of queues. Therefore, éhis model essentially aggregates all
stations’ MHS delay and queue delay. Station O is special not only
because its server is the MHS with the central storage instead of a
machine, but also because it can serve all other M stations simulta-
neously, th;t is equivalent to having M servers. Chapter IX will

return to this point.
Local Buffers with Limited Capacity

Assume each station has a local buffer with limited capacity, but
there is no central storage.
Commault and Semery (1990) described a kind of MHS's, in which MHS

delay for station i is Dj, which is a r.v. (Figure 8), if MHS’s
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delays in buffers for analytical performance
evaluation of transfer lines," IIE Trans.,
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Figure 8. A Two-Machine Transfer Line with a Conveyor
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sends jobs to i immediately using a conveyor. For example, in Figure
8, when machine 2 (M2) finishes a job and sends the job out, it has to
wait for the conveyor bringing a‘job. At that time, the nearest job
(A) may be still x feet away. Assume the conveyor mo?es jobs at a
constant speed of v feet per second, then M2 has to wait for Dy = x/v
seconds to get A.

Commault and Semery (1990) suggest to transform the system into
an "equivaleﬁt" system with unchanged station characteristics, no MHS
delay, but reduced buffer capacities. As they point out, the main
advantage of this approach is that, after a simple modification of the
system input data, performance may be evaluated using existing method.
However, they only consider a two-station case, and, as they put it,
the really appealing problem is how to deal with larger systems.

Theoretically, they also suggest to aggregate MHS delay and queue
delay, because the conveyor in Figure 8 is the buffer (station 2’'s
queue), and modifying buffer capacities means modifying queue delay.

We call this Backward Aggregation. A natural alternative is to

aggregate MHS delay and effective processing times, or Forward

Aggregation.

Let the general processing time of station i, GSj, be the sum of

its effective processing time Yj; and MHS delay Dj, i.e.,

GSj = Yi+Dj. / (7.1)
Assume Yj and D; are independent of each other, as they usually are;
and Di's pdf is 6(.) with moments pj(Di) for j>0. 1If only one station
is in question, the subscript i can be dropped.

For a particular station, let g(.) be GS’s pdf, and y(.) be Y's



pdf. If 6(.) and y(.) are known, g(.) is given as follows (Convolution
Formula),
«©
g(x) = fo y(2)0(x-2)dz. N \ (7.2)
Unfortunately, in most caseg (}.2),15 intfactable even if y(.) and
6(.) are given, not to mention that usually y(.) and/or 6(.) are
unknown. An alternative is the method of moments.

It is easy to see that GS's moments are (Wilks 1962, Kendall and

Stuart 1969):

Bgs = My + pp; )
19(GS) = po(Y) + uo(D);
> (7.3)
#3(GS) = p3(Y) + p3(D);
B4 (GS) = pf(Y) + 6po(Y)ug(D) + pg(D). )

Given GS'’'s first three or four moments, (7.3) could be fit to a three
or four parameter distribution as GS's probability distribution. This
distribution’s density functi&n is still denoted by g(.).

Let's refer to Commault and Semery (1990)'s model the MB model
(moving buffer model). Another popular model, which will be called FB
model (fixed buffer model), describes fixed buffers. Fixed buffers

impose some difficulties, and will be discussed in the next section.
Hybrid Storage System

Again, consider the central storage system. Let 1j be the transit
time or MHS delay for moving a job from station i to the central
storage, and Lj be the transit time for moving a job from the central

storage to station i. When station i completes processing job A, the

MHS will send A to the central storage within 1j time units, if no
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other station is waiting for A. Imagine that the central storage is a
collection of M stations’ queues, then 1l; is only a part of A’s queue
waiting time. It is easy to see that, as long as no one needs A before
a arrives at the central storage, l1j doesn’t affect stations’ process-
ing times. But when station i finishes the job on hand, it has to
spend time 1§ to get the next job. Naturally, local buffers can be
used to keep several job while stations are busy, because now the MHS
can send jobs to the station (pre-load) whenever the buffer is not
full. 1In other words, the local buffer can reduce MHS delay. That
explains why so many FMS's employ both the central storage and local
buffers, or hybrid storage systems.

If all buffers ;fe MB’'s, the last two sections already provide a
way to transform the system into an equivalent system without MHS
delay. But how about FB's? The first section’s method is recommended,
i.e., using an extra station (0) to represent the MHS and the central
storage. However, when local buffers are full, station 0 will be
blocked, so Proposition I is no longer applicable. Chapter IX will

return to this problem.



CHAPTER VIII
PERFORMANCE MEASURES OF STATIONS

So far the job arrival process is ignored, éimply because it is
irrelevant to the effective processing time Y or the general process-
ing time GS. At this stage, the paper\considers the equivalent system
with (effective or general) processing time Y;'’s, but without MHS delay
and breakdowns;/i.s., does not distinguish Y and GS.

Now it is desired to know the total time a job will stay in a
station (X, the station time) or in its queue (W, the waiting time),
the number of jobs in the station (L, the station size) or in the queue
(Q, the length of the queue), and the station’s output rate (TH). X,
W, L, Q, and TH are all r.v.’s depending upon the job arrival process,
as well as Y.

It is assumed that external jobs arrive at the system following a
Poisson stream with rate A. Then the arrival processes to stations are
the merging/splitting of Poisson streams, which remain Poisson streams
(Kelly 1979, Whitt 1982, Yao and Buzacott 1985b). Therefore, for a
particular station i, it is assumed the arrival process is a Poisson
stream with rate Aj, and the effective processing time is Yj with
moments vp(Yi), n>0; or simply A and Y with moments vy, if no
confusion.

Because the arrival process is Poisson, the service time (Y) is

general, and there is one server (machine) in the station, it can be
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modeled as an M/G/1 queue. Hence the method of the imbedded Markov
chain can be applied to find out the moments of L, Q, X, and W.
In this chapter, first seve£a1 basic formulae for M/G/l queues are
introduced, and then a recursive procedure is developed to compute the

moments of X, W, and L. The length of the queue, Q, has to be treated

separately, because again we need the Theorem I to cbtain Q’s moments.

Basic M/G/1 Queue Formulae

[= o}
Let L(z) = = Prob[L=n]z" be L'’s probability generating function
n=0

(Gross and Harris 1985). Define the k-th factorial moment of L as

Fi(L) = E[L(L-1)(L-2)...(L-K+1)], (k>0). (8.1)
For example, Fo(L) = E[L(L-1)] = E[L2-L] = vo(L) - v1(L). One sees
L(l) is 1, and

L' (1)

dL(z)/dz|z—1

@
= 2 n*Prob[L = n]
n=1

v1(L)
= pr..
Generally, one has (Kleinrock 1975, Gross and Harris 1985)

LK) (1) = (L), | (8.2)
i.e., one can obtain L’s moments by calculating L(k)(l), the k-th
derivative evaluated at z=1, which gives the k-th factorial moment of
L. Since Fi(L) can be expressed in terms of L’s first k moments, one
can recursively calculate L’s moments. The only problem is, what is

L(z)?



The Expression of L(z)

Let Y*(s) be the Laplace transform of Y's pdf m(t), i.e.,

[=2]
Y¥*(s) = fo e Stm(t)dt.-
Kleinrock (1975) shows that
(1 -p)(1 - 2)

L(z) = Y¥(A-Az) , ‘ (8.3)
Y*(A-Xz) - z

where p = Auy. Let p be the station’s mean processing rate. Since py
is the mean processing time,

p=1/puy, and p = X/u. (8.4)
The equation (8.3) is the famous Pollaczek-Khinchin (P-K) transform
equation, which yields the moments for the distribution of the number
of jobs in the station. When one attempts to set z=1 in equations
L(k)(z) (k=0), he obtains indeterminant forms and has to use the
L'Hospital’s rule. 1In carrying out this operation, it is necessary to
evaluate

dky* (A-2z)
vk) (1) = 1im ——————— , (8.5)
z>1 dzk

where V(z) = Y*(A-Az). Fortunately, it can be shown (Kleinrock 1975)
that |

v(K) (1) = akup(v). \ (8.6)

Specifically, V'(1) = Awq(Y), and V"(1l) = A2V2(Y), where V' and V" are

V(z)'s first and second order derivatives, respectively.

Calculation of vy (Y)

Now, as an example, let’s calculate L'(1l).
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L'(z) = dL(z)/dz
(1-p)(1-2) (V-z) + (1-z)(V'-1)
= ———— V' + (1-p)V(2)
V-z (V-z)2

And therefore,

L'(1) = 1im L' (2)

z—1
V' (1-p) V' (V-2)+(1-2)V' (V' -D)+(1-z)Vvv"
= lim —————— - (1-p) lim
z»l V'-1 z~1 2(V-z)(V'-1)
WA (1-z§V'
=p - (1-p) lim | — +
z=»1l 2(V'-1) 2(V-z) 2(V-z)(V'-1)
p (1-z)vr-v!
=p + (l-p)[— - lim ——m +

2(1-p) z»1l 2(V’'-1)

YV"- (1-2)V'Vn- (1-z)vv(3)
1lim ]
zo1  2(V-z)V"+2(V'-1)2

325 (Y)
=p+ (1-p)—— —
2(1-p)?

A2ug (Y)
= p + ————

2(1-p)

Considering (8.4) and (3.1), one has

v1(L) = L' (1)

]
©
+
|
|
|
|
I
|
|

I
©
+

]
)
+
|
|
|
|
|
|
|
|
|

which is the well-known P-K mean value formula.

(8.7)

(8.8)
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One could go ahead to get L's second and higher moments. But it

will be very troublesome and tedious to follow this way. In the next

sections a recursive procedure is developed to calculate L's moments.

In fact, it will calculate all. the moments of L, X, and W.
A Recursive Procedure for Moments of X, W, and L

The Recursive Procedure

Let A*(s) be the Laplace transform of the r.v. A’'s pdf. Accor-

ding to Kleinrock (1975), we know -that, for the station time X,
X*(s) = Y¥(s)s(1-p)/[s-XXY"(s)],

and for the waiting time W,
X*(s) = Y¥(s)W(s),

which is from the well-known formula X =Y + W,

Then it is found that (Takacs 1962, Kleinrock 1975)

A k i vi+1(Y)

v(W) = ——= 3 (C) — V-1 (W), (8.9)
l-p i=1 (i+1)
L
vp(X) = 2 (Cp) vr-i(Mri(Y), (8.10)
i=0
and F(L) = A (X). | (8.11)

Now one can calculate the first n moments of W, X, and L as

follows. Q will be treated separately later.

PROCEDURE 1T.

Input: n, the input rate A, and Y’s first n moments.
Step 1. Let i = 1; Notice that vp(.) = 1;

Step 2. Use (8.9) and uj(W)'s (j<i) to obtain vj(W);
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Step 3. Use (8.10), Vj(X)'S (j<i) and uj(W)'s (j=i) to obtain v;(X);
Step 4. Use (8.11), Vj(L)'s (j<i) and uj(X)’s (j=i) to obtain vj(L);
Step 5. If i<n, increase i by one (i.e., 1 « i+l ), return to step 2;
If i=n, stop.

Output: The first n moments of W, X, and L. ##

Next, one can apply this procedure to calculate their first four

moments.
The First Four Moments of W, X, and L
Following the above procedure, it is found that,

1. vi(W) = —— % ———

p2 (14CVy2)
= ——— , which is also well-known.
2(1-p)

v1(X) = vi(W) + v1(Y)

Avg (Y)
= e—e——————— + “Y
2(1-p)
v1(L) = wi(X)
A2uo ()
- + Apy
2(1-p)

which is reconciled with equations (8.7) and (8.8).



A 2v9(Y) v3(Y)
2. vo(W) = — [ vi(W) + —— ]
1-p 2 3
Ar3(Y)
= 2[r (1% + -
3(1-p)

vo(X) = vo(W) + 2vi(Wr1(Y) + vo(Y).
vo(L) - vqi(L) = A2v2(X), and therefore

vo(L) = A2u2(X) + vq(L).

A 3V2(Y) Vll-(Y)
3. w3(W) = — [ ———— vo(0) + v3(Vv (W) + ——

1-p 2

v3(X) = v3(W) + 3vo(Wr1(Y) + 3vi(Wvo(Y) + v3(Y).

v3(L) - 3vo(L) + 2v1(L) = A3u3(X), and therefore

v3(L) = A3v3(X) + 3vg(L) - 2v1(L).

A

b, va(W) = ——[209(V)r3(W)+2r3(Y)vo (W)+vg (Y)v (W)+ ———].

1-p

va(X) = vy (W) + 4rv3(Wvi(XY) + 6vo(Wvo(Y) + 4v1(Wva(Y) +

v, (Y).

vi (L) - 6v3(L) + 10vp(L) - 3v1(L) = A3v3(X), and therefore

vi (L) = M (X) + 6v3(L) - 10vy(L) + 3vq(L).

Moments of the Length of the Queue

Let Q represent the number of jobs in the queue, not counting the

job, if any, in processing. Q can be expressed by L, the number of

jobs in the station, including the job in processing:

L -1, if L > 0;
Q =

0, if L = 0.

By conditioning on L, (8.12) can be rewritten as

(8.12)
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0, if L = 0.

k-1, if L=%k>O0;
Q= (8.13)

According to the Theorem I in chapter V, using "Z" for discrete

distributions, instead of "f" for continuous distributions, one has

vpn(Q) = (k-1)DProb[L = k]

k=1
© n j . .
=3 [ 2 (CpkMI(-1)J ]*Prob[L = k]
k=1 j=0
n A © .
=2 (-1)J(Ccy) { = K JProb[L = k] )
j=0 k=1
n-1 . © . ©
=3 (-1)J(Cy) { = kP IProb[L = k] } + (-1)® £ Prob[L = k]
j=0 k=0 k=1
n . J
=3 (-1I(CRvp-j(L) + (-1)Pp. (8.14)
j=0 ’

It is easy to see that v1(Q) = v1(L) - p, which is also a well-known

formula in the queueing theory. Moreover,

vo(Q) = vo(L) - 2vi(L) + p;
v3(Q) = v3(L) - 3wg(L) + 3vi(L) - p;
v, (Q) = v4(L) - 4v3z(L) + 6vo(L) - 4vi(L) + p.

Other Measures for the station

When the arrival rate A is given, the station’s steady state out-
put rate TH = A, and its utilization is p, whenever A < p (Gross and
Harris 1985, Ross 1989, among others).

In the next chapter the blocking rate computation for each station

will be considered. Blocking usually stems from limited buffer space.
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Notice that, if the local buffer capacity is, say, two, then the
probability that a coming job will be rejected by this station is
simply Prob[Q = 2], or Prob[L = 3]. 'Now the problem is, which one,
Prob[Q = 2] or Prob[L = 3],‘iS‘Better? If both Q’'s and L’s CDF's are
known, there will be no difference.l But now only their moments are
known, and have to be fit to, say, a four parameter, continuous

distribution, that will incur some error, especially at the boundary.

Because
Prob[Q = 2] =1 - Prob[Q = 1] - Prob[Q = O],
Prob[L = 3] = 1 - Prob[L = 2] - Prob[L < 1], and
Prob[L < 1] = Prob[Q = 0] »
= Prob[L = 1] + Prob[i = 0],

there will be more mass built up at the boundary point zero for Q than
for L. So it is reasonable to choose working on L, rather than Q, not
to mention the savings from avoiding the computation of (8.14).

Now let bj be station i's‘blocking rate. Assume L's first three
or four moments are fit to a)thrée or four parameter CDF F;(.). Then

bj = Prob[L = 3] =1 - Fi(3). (8.15)

Notably, when blocking occurs,  the arrival process, therefore TH,
could be changed. From station i’s point of viéw~(figure 6), ig may
reject some coming jobs (in input flows), and its outputs could be
rejected by other stations. In turn, the rejected jobs will affect the
input flows. These system related problems will be discussed in the

next chapter.



CHAPTER IX
PERFORMANCE EVALUATION OF FLEXIBLE MANUFACTURING SYSTEMS
The Model of the System

Yao and Buzacott (1985b) described an open queueing network with a
set of work stations, each having a local buffer with limited capacity
and general processing times (Figure 9). The MHS is divided into two
subsystems, the MHS(I) and the MHS(O). The MHS(I) consists of a set of
carts (or input’conveyors) to send jobs to the stations. The MHS(0) is
a return conveyor at the output side of the stations.

Although the machines are never blocked in this model, the input
jobs can be blocked if the local buffer at the destination station is
fully occupied. The authors made an important assumption pertaining to
the blocking mechanism: The blocked jobs will be recirculated ('block-
and-recirculate’), instead of occupying the cart and waiting in front
of the station (’'block-and-hold’, see Buzacott and Fanifin, 1978).

They argued that, "Given the versatility of job routing and the variety
of operations and operation sequences in an FMS environment, a block-
and-hold mechanism just seems to be too restrictive." (Yao and
Buzacott, 1985b)

This model is adopted here, with slight modifications, and desc-
ribed in the next two sections. Some of the assumptions previously

stated in chapter III will be repeated and/or modified as appropriate.
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performance of flexible manufacturing
systems," Int. J. Prod. Res., Vol.23,
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(Revised by the author Long-Geng Zhao)

Figure 9. The "Block-and-Recirculate" Model

68



69

Model Description

The FMS consists of M stations, each of which has one machine
with a general processing time (e.g., Y; for station i). The buffer
capacity is nj at station i. The MHS(I), which is treated as station
0, has ¢>0 carts to deliver jobs from the central storage to stations 1
to M. Let rij>0 be the probability that MHS(I) will send a job to
station i. Thus, the "distributing rates" rij'’'s must satisfy

ri = 1.
1

™M=

i

Jobs may be rejected by a station which queue is full, and
rejected jobs will be recirculated, i.e., sent back to the central
storage and get prepared for retrial. Note that it is assumed that
rejected jobs follow the same probabilities rj’s when they join the
central storage. 1In fact, rij’s are defined asymptotically, not
individually. The service processes of carts are known, or at least
its first k (k=4 or 5) moments, vy (D)'s, are given. Here D represents
one cart’s service time and all carts are identical. A job leaving
station i will either be fed back to the central storage with probabi-
lity g1 = 1 - f;, or leave the system with probability fj. Both the
feedback and the exit transits are handled by MHS(O), which is treated
as station M+l, and modeled as an infinite-server queue with known
parameters.

External jobs arrive at the system following a Poisson stream with

rate A. Whenever the total number of jobs at the central storage

reaches N, external arrivals are turned away and lost. Therefore, the

central storage should be able to contain a total of
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i
jobs. The central storage imposes no limit on internal jobs. So the
internal jobs have priority to occupy both the central storage and the
MHS(I).

The blocking at the MHS(I) is modeled through an additional
arrival stream, the blgcking feedback. Because no real physical
)
blocking may happen to the stations, the isolatéd stations can be
analyzed using the techniques developed in chapters IV through VIII.
The only problem is how to decide the arrival process for each station.

This is discussed in the next section, adapted from Yao and Buzacott

(1985b).

The Equivalent Arrival Process

Let the arrival rate to station i be Xj. It is assumed that the
arrival processes to stations can be approximated by renewal streams or
the merging/splitting of renewal streams. TH; is defined as the number
of jobs completed in a unit of time. Let b; (0<i<M) denote the proba-
bility that a job is blocked (rejected) on arriving at station i. No
job will be blockéd at station M+l. These bj's are gnknown parameters
to be derived.

The arrival flow to station 0 has three components: the external
flow X, the output feedback Af, and the blocking feedback Ay. The
arrival flow to-.station i (1=<i<M), Xj, is a fraétion ri of the output
of station 0 (THp). The arrival flow to station M+l is the merging of

the output (THj) from each station.



Yao and Buzacott (1985b) proved the following proposition valid

for the model here.

PROPOSITION TIT.

The equivalent arrival rates to the stations can be formulated as

follows:
A+ A + Xy if n<Ng
Ag =
Af + Ap if Np=n=<N
Aj{ = THpor; (l=<i=M)

M
A+l = THy+p = 2 THj
i=

where

=
=

A =2 THigi, Ap = 2 Aibi
i=1 i=1

and the outputs of the stations are as follows:

A(1l-bg)
THo =
1 - 2 ryi[bj+(1-bj)gil
i=1
THy = THorj(1-bj) (1=<i=M).

From (9.1), one can see that

A0

(

A(1 - bg) + A + Ap.

9.1 to 9.6 are the flow balance equations.

(A + A+ 2p) (1 - bg) + (X + Ap)

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

#H#

(9.1")

With the help of these

equations, a general iterative procedure (called GIP here) can be

employed to figure out the system's output rate TH. This GIP will be



introduced in the next section.

Derivation of the Blocking Probabilities, Arrival

Rates and System Output Rate

The formulas (9.1) to (9.6) are based on a set of unknown
parameters, bj’'s (0<i=M), which, in turn, depend on Aj’s or THji's.
This set of parameters can be derived through solving a fixed-point

problem. The following procedure, Figure 10, is devised to find out

bi’'s, THj's and TH.

* GIVEN S;, ri. f£i.

Set OLD THj;
Ai{ = riTHg.

*%

ni_and X

Initialization

Y

OLD TH;-NEW THj No
A{ = riTHg.

Figure 10. General Iterative Procedure (GIP)

Calculate bj;
Calculate NEW THji's

'

If NEW THi's Are Very
Close To OLD THj's?

Yes

Calculate TH, STOP
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Verbally, this procedure takes S;, nj (i=0,...,M), rj, f; (i-1,
...,M) and X as inputs. First, it arbitrarily assigns initial values
to THij's (OLD THj, usually making a,rgasonable guess) and sets Aj=
riTHp; then calculates bj's (discussed later) and NEW THj's (applying
the flow balance equations). | |
Next the NEW THi's are compared with the OLD TH;'s. If the NEW

and OLD THj's are close enough, the fixed point is found and the NEW

TH;j's are used to calculate TH; otherwise it sets the OLD THj 's equal

. 1

to the NEW TH;'s and recalculates Ai’'s, bi's and NEW TH;j's and goes to
the next iteration. ‘

Though there afe several different versions of GIP in the litera-
ture, the underlying iterative structures are the same. Here the
common assumptions are that Sj's (i.e., the distributions of Sj’s) are
known and there are no breakdowns. To cope with breakdowns, the input
Si should be replaceé by Y;, or the first four moments of S; and Rj
along with kj (see Figure 11), and Procedure I in chapter VIII can be
applied to calculate the fiist\severai moments of Wi, Xj and Lj; then
according to (8.15), bj = ?robfLi >mny] =1 - Fij(nij), that leads to
Figure 12.

Note that Figure 12 will replace the block with double asterisks
(**) in Figure 10. Ig summary, Figure ld‘should be transformed to
Figure 13, which is the flow chart for Procedure II.

Procedure II is devised to find out TH, where the superscript (j)
denotes the j-th iteration. Note that it sets THp = A, and consequent-

ly X3 = r{THg and other THj's can be calculated by (9.5) and (9.6) if

by's are known.
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For i=(0), 1, ... , M:
First Four Moments of
5{ & R3

A - System Input Rate
ri - Branch-Rate

f; - Leave-Rate
nj - Buffer Capacity
ki - MTBF

Calculate the (First Four) Moments
of the Effective Processing Time Yj

l

Figure 11. System Inputs Considering Breakdowns

¥

Calculate the (First Four)

Moments of Wj, Xj, and Lj.

l

as Station-Size Distribution

Fit the (First Four) Moments of Lj
to a (Four-Parameter) Distribution

FL;.

Calculate NEW TH;i's.

bj = Prob[Li>n;] = 1 - FLj(ny)

Figure 12. The New Method To Obtain bj
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For i=(0), 1, ... , M:
First Four Moments of Sj & Rj
ki -- MTBF

INPUTS A -- System Input Rate
ri -- Branch-Rate
fj -- Leave-Rate (gij=1-fj)
nj -- Buffer Capacity

Calculate the (First Four) Moments
of the Effective Processing Time Yj

Set OLD THj;
Initialization Blocking Rate bj=0;

¢ A{ = ryTHg.

Calculate the (First Four)
™  Moments of Wi, X4, and Lj.

l

Fit the (First Four) Moments of Lj
to a (Four-Parameter) Distribution
as Station-Size Distribution FLj.

I

bj = Prob{Li>nj] = 1 - FLi(nj)
Calculate NEW THj's.

!

OLD THj-NEW THj | No | If NEW THj’'s Are Very
A; = riTHp. Close To OLD THj's?
A E

l Yes

Calculate TH, STOP TH, THj, bj, Lj, Xj.
OUTPUTS

Figure 13. The Flow Chart For PROCEDURE II.
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PROCEDURE IT.

Input: X, Lij’s CDF (1l<i=<M), and ¢, which is a predetermined small

positive number.

(3) (J) (3 (J j
Step 1. Initially, set j=O0, bOJ =0, AOJ =), THOJ =\, and AiJi riTHéJ)
(1=i<M).
. . J)
Step 2. For all i=l,...,M, derive bj = Prob[Li>nj] following the

procedures introduced in chapter VIII.

)
Step 3. Solve (9.5), (9.6) and (9.2) to obtain THiJ (0=<i=sM+1).
RSP, (3
Step 4. Use (9.4) to obtain Af and Ay , and use (9.1'), (9.2), and
. 3y .
(9.3) to obtain Aj (0=<i<M+l1).
Step 5. Set j = j+1;
Treat station 0 as a normal station with service time D and
maximum buffer capacity Ng for external inputs. Use the same
(3) Gg) .
method of Step 2 to Calculate by and bj (i=1, ..., M),

(i)
and set boJ =1 - (THy - Af - Ap)/X;

(3
Step 6. Solve (9.5), (9.6) and (9.2) to obtain TH]-_J (0=i=<M+l).

3 (3-1)
If maxy|TH; - THj | < €, stop; else, go to step 4.
Output: bij’'s, Aj's, and THi's. R ##

This procedure naturally imitates the system. At the beginning,
the system is empty, and all capacity is free. So bp=0, and Agp=A.

Since the input into station 0 is a Poisson stream, and all carts are



free, at least before the first time the number of jobs in station 0
reaches N, the output of station 0 is also a Poisson stream. Of
course Af and A may be taken in aécount, and later it will be shown
that they are also thought of as Poisson.

Because the probabilistic splifting/merging of a set of (indepen-
dent) Poisson streams preserve the Poisson property (Kelly 1979, Whitt
1982), all iﬁput flows of station i (1<i<M) are Poisson streams. That
is what Step 1 does. Since input flows are Poisson, Procedure I can be
applied to caléulate b;'s, which is SteP 2.. ?ao and Buzacott (1985b)
argued that, since the input into station ﬁ+1 is a superposition of the
output processes from many machines all the time, it can be reasonably
approximated by a Poiséqn stream; and since station M+l is an infinite-
server station, the Poisson input will yield a Poisson output, regard-
less of the processingrtime distribution of this station. That
justifies (9.5) of Step 3 and (9:4) of Step 4. Following the same
argument, A, can also be approximated by a Poisson stream, and so is
Ag. Let BF denote the blopking‘flow of station 0, which is the
difference between the sum of in-flows (Af + Ap + A) and the out-flow
THg, or BF = (Af + Ay + A) - THg. Also note tha; bg = BF/X; so,
combining the above équation, one has bg =1 - (THg - A - )/,
which justifies Step 5. Hillier and Boling (1967)'s "exit-oriented"
approach (see Appendix I)’justifies (9.6) of Step 3. Steps 4 to 6

compose an iteration procedure to find out the fixed points

TH

(THg, THy, ... , THwyy1)T,

and b= (bg, by, ... , bypT.

When the real FMS can reach steady state, this simple iterative
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scheme should converge, although no formal proof exists.
System Performance Measures

It is ciear that the system odtput rate is

Station i’s utilization is Uj = ‘)\iTHipl(Yi), 1<i=M.
The sojourn time for a class-r job, Tsr’ is approximated as follows,
M N
TSr =2 ejrlpitp1 (W1, . (see chapters III and 1IV.) (9.7)
i=0 '
where pj = A{THju(Y{) < 1. Note fhat\pi is station i’s utilization.
If MHS delay is already included in the effective processing time Y,
there is no need to consider station 0 and M+l. When there is only one
class of jobs, the subscript or' superscript r can be droppéd. The
remaining problem is how to calculate p1(Wi) in (9.7).

Recall in step 2 of Procedure II, the above mentioned Procedure I
is called, and that will calc¢ulate the moments of Wj, Xj, and Qi for
i=0, ... , M. Therefore, it is easy to determine each station's‘mean
waiting time pj(Wi), mean iéngth’of queue pl(Qi5J’and meaﬁ station time
p1(X3) = pitp1(Wi). But due to the blocking mechanism, the real

waiting time/queue length distributions’ right tails will be truncated.

For example, if station i’'s buffer capacity is njy, then

e
E[Q;] = fO xf(x)dx,
where f(x) is Qj'’s probability density function, which can be fitted to

Qi's first three or four moments.
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Numerical Examples and Simulation Verification

Example 9.1\

Consider an FMS with four éfatiops~(station 1l to 4). Assume their
service times are the same Y, which first four moments are 1.0, 0.36,
0.0864, and 0.2592, respectively. Also assume that r; = r9p = 0.3, r3 =
rq, = 0.2; f1 = f9 = 0.35, f3 = £f4 = 0.25;vStation 0's processing time
(MHS delay) is uniformly distributed between 0.1 and 0.3; the buffer
capacity is 3 for stations 1 to 4 and 200 for tﬁe central storage
(No=200); and A = 0.3.

Table V below shows the analytical results from Procedure II.
Computer simulation is used to verify the analytical results. The
computer program for Procedure II and the basic SLAM II simulation
model (Pritsker 1986) is shown %n Appendix D and E, respectively. It
can be seen that almost all analytical results fall in the ranges of
confidence intervals, set at 95% level, with a few exceptions (marked
by an asterisk).

The sojourn time is determined in the following manner. First,
treat the system as it is, i.e., only 4 stations. Let Q = (ry, rp, r3,
r)T = (0.3, 0.3, 0.2, 0.2)T and E = (e1, eg, e3, e4)T.‘ The transition
matrix P is

0.3*%0.65 0.3*%0.65 0.2%0.65 0.2%0.65
0.3*%0.65 0.3*%0.65 0.2%0.65 0.2%0.65
0.3%0.75 0.3%0.75 0.2%0.75 0.2%0.75
0.3%0.75 0.3%0.75 0.2*%0.75 0.2%0.75
For example, when a job leaves station 2, it will stay in the

system with the probability of 0.65, and if it stays in the system, it
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TABLE V
EXAMPLE 9.1
Station Input Rate - _ STATION
riTHp. 1. 2 3 4 INp@
Analytical Results 0.2903 ~ 0.2903 0.1935 0.1935 0.9677
Simulation Results 0.2851 0.2879 0.1943 0.1903 0.9569
Relative Error (%) 1.82% 0.83% -0.41% 1.68% 1.13%
Confidence Interval ‘ +0.091 ‘ +0.088 +0.125 +0.130 +0.031
(Confidence Level: 95%.) ‘
Station Qutput Rate: THy TH»y TH3 THy System
Analytical Results 0.2903 0.2903 0.1935 0.1935 0.3000
Simulation Results 0.2843 0.2865 0.1940 0.1902 0.2980
Relative Error (%) 2.11% 1.33% -0.26% 1.74% 0.67%
Confidence Interval +0.090 *+0.088 +0.124 10.130 0.066
Blocking Rate: 51 by b3 by, bo
T — o
. Analytical Results 0.000 0.000 0.000 0.000 0.000
Simulation Results 0.003 0.004 0.001 0.000 0.000
Confidence Interval +0.018 +0.006 +0.006 +0.006

10.018

(Since all blocking rates are very close

are meaningless.)

to zero, the Relative Error

Length of Queue: 1 2 3 4 5
Analytical: 0.081 0.081 0.032 0.032 0.000
Simulation: - 0.085. 0.096 0.035 0.039 0.000
Conf. Int.: +0.007 +0.008* +0.004  0.005*
Time in the ‘ Sojourn
Station: 1 2 ) 4 .0 Time
Analytical: 1.278 1.278 1.163 1.163 0.026 4.704
Simulation: 1.303 1.356 1.198 1.239 0.000 4.733
Conf. Int.: +0.040 *0.044% 20.036 +0.042% +0.09 +0.088
@ Note: INg means station O'’s input rate, which-is determined by

equations (9.1) and (9.1').
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will go to station 3 with the probability of 0.2; hence Pp3, the
probability that it will go to station 3, is 0.2%0.65. Referring to
Chapter III, one must solve the equations E = (I - PT)’lQ. It can be
easily shown that E = (0.968, 0.968, 0.645, 0.645)T.

Now eg = e ; e) + e3 + ey, because=any;30b must go to station 0
before it goes.to any other statién.)Note that station 0's mean service
time is (0.1 + 0.3)/2 = 0.2, andxéhe waiting time in queue O is 0.026,
then according to (9.7), the sojourn time is

Tq 1.278*%0.968 + 1.278%0.968 + 1.163%0.645 + 1.163%0.645

+ (0.968 + 0.968 + 0.645 + 0.645)*(0.2 + 0.026)

4.704

which is very close to the simulation results.

More directly, taking station O in consideration, then one can see
that Q = (1, 0, 0, O, 0)T aﬁd E = (eg, e1, ep, e3, ea)T. This means a
job first enters the central storage anyway. Consequently, the

transition matrix P becomes

0 0.3 :0.3. 0.2 0.2

Station O )

Station 1 0.65 0 0 0 0
Station 2 0.65 'O 0 0 0
Station 3 0.75 0 0 0 0
Station 4 0.75 O 0‘ 0 0

Aéain, equations E = (I‘- PT)'lQ must be solved; doing so, one
obtains E = (3.226, 0.968, 0.968, 0.645, 0.645)T and therefore Ts =
4.704, verifying the above result.

Now it is straightforwafd to get Station i’'s utilization by
Ui = A{THipy(Yj) for 1=<i<M (see section 9.3).

The sojourn time is an important measure in system analysis. As



shown in Proposition I, as long as the system is stable and there is no
physical blocking, its output rate is equal to the input rate;
therefore, people will be more concerned about the production lead
time, or the sojourn time,‘whiqh teilg how long a job will stay in the

system. However, in the literature, it is overlooked.

Example 9.2: The Effects of )

The system input rate A has direct effects on the system
performance. Here suppose A changes from O.i to 0.7 in steps of 0.2,
while all others are the same as those in the example 9.1. The table
below shows the resul;s. Since s£ation 1 and station 2, as well as
station 3 and station 4, are "identical" in terms of their parameters,
stétion 2 and station 4 will not be shown hereafter.

The table below clearly shows that the system output rate is
always equal to the system input rate A, as Propositiqn I predicts.
While A increases, so do stations’ input/output rates and bj's.

An interesting observation is that bgp’'s are always close to zero.
Can it be assumed that bp=0? It.appears that this assumption would be
valid if every station (queue) is stable, i.e., pi<l (which is the
standard assumption). However, it seems that a system could reach
steady state when even one or more stations are not "stable," since
whenever station 0's buffer is full, no more jobs will be accepted by
the system. Unfortunately, there is no guarantee that the system can
reach the steady state. therefore, only the systems’ steady state
performance is considered here, and it will be assumed that pj<l for

i=0, ... ,M.
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TABLE VI
THE EFFECTS OF X\
(St=Station; Ana=Analytical; Simeimulatibn; C.I=Confidence Interval;
Sys.=System Output rate; INg=Station 0's Input Rate.)

A 0.1 0.3 0.5 0.7

stl r1THyp TH; by 1r3THp TH; by ryTHyp TH; by riTHy TH} by
Ana .097 .097 .00 .290 .290 .00 .500 .476 .047 .699 .668 .09
Sim .096 .098 .00 .285 .284 .00 .511 .471 .079 .738 .652 .11
c.I +.,29 .29 +.09 .09 +.05 +£.05 £.03 £.03 .03 .04

St3 r3THy TH3 b3 r3THy TH3 b3 r3THg TH3 by r3THy TH3 bj

Ana .065 .065 .00 .194 .194 .00 .333 .333 .00 .466 .465 .045
Sim .064 .064 .00 .194 .194 .00 .348 .338 .03 .496 .472 .046
c.1 +.42 .42 .12 .12 +.07 .07 .04 £,05 .03 +,01

INg Sys. bg INg Sys. bg 1INg Sys. bg 1INg Sys. bg
Ana  .323 .100 .00 .968 .300 .00 1.666 .500 .00 2.331 .700 .00
Sim  .319 .100 .00 .970 .298 .00 1.716 .497 .00 2.461 .695 .00
c.I *.12 =*.12 +.03 *.03 +.015 *.04 .09 *.03

The analytical procedure alsd shows that when A approaches 0.8,
station 1 and station 2's queues are fluctuating dramatically, and

there is no evidence of convergence.

The Effects of local Buffer Capacity

Following example 9.1, let us examine the effects of local buffer
capacity changes (all others stay the same except that A = 0.5). Let
QC be the local buffer capacity vector. In example 9.1, QC = (3, 3, 3,
3)T. 1n general, the i-th entry of QC gives station i's buffer

capacity.



According to Tables V and VI, b3 and by, are always zero or very
close to zero, that may suggest there‘is no need to increase stations 3
and 4's buffer capacity. Therefbre, only stations 1 and 2’s buffer
capacity will be changed from 2 to 5 in steps of 1. Table VII below
show the results.

Table VI clearly shows that both b and b3 decrease while QC(1)

and QC(2) increase and QC(3) and QC(4) stay the same. When QC = (5, 5,
3, 3), by and b3 are close to zero, potentially suggesting that there

is no need to further increase the buffer capacity.

TABLE VII

THE EFFECTS OF QC

Station 1 Station 3 System
Qc Input TH] by Input THyp by INg Output by

(2, 2, 3, 3) Ana .525 .464 .161 .350 .350 .01 1.75 .500 .00
Sim .546 .451 .175 .377 .363 .03 1.86 .497 .00
C.I *.05 *.05 *,10 #.07- £.07 £.04 +.014 =*.04

(3, 3, 3, 3) Ana .500 .476 .047 .333 .333 .00 1.67 .500 .00
© Sim  .511 .471 .079 .348 .338 .02 1.72 .497 .00
C.I *.05 *.05 %03 *.07 .07 £.03 £.014 .04

(4, 4, 3, 3) Ana .484 484 .00 .323 .323 .00 1.61 .500 .00
Sim .492 .476 .02 .333 .326 .02 1.66 .497 .00
C.I *. 05 £.05*.03 £.07 £.07 £.03 £.020 .04

(5, 5, 3, 3) Ana .484 484 .00 .323 .323 .00 1l.61 .500 .00
Sim .483 .476 .01 .329 .323 .00 1.63 .498 .00
C.I £.05 £.05 £.02 *£.07 £.07 £.03 £.020 .04
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The Effects of System Balance

In the above examples, rij’s and fj's are different, therefore the
system is notlﬁglapced (see chapﬁgr'III, and Buzacott and Shanthikumar
1980). It is well accepted thééhé balanced system will perform better.
Therefore, the study will examine what oécurs if the system is balanced
when, say, all rj'’s are 1/4, all fi's are 0.3, and all nj's are 3.

Also assume A = 0.5 and 0.7. Table VIII shows the fesults. Since all
four stations -are the same, only‘station 1 and station 0 are listed.

Compared with Table VI, it is found that for the balanced system,
all bj’'s decrease. Since each sfationAmay have different settings, it
is meaningless to compare each individual station’'s performance.

However, if ail stations’ blocking rates decrease, the entire

system’'s performance improves.

TABLE VIII

BALANCED SYSTEMS

A 0.5 0:7
Stl r1THp THy by r1THg THy b1
Ana 417 417 .000 | .629 .583 .073
Sim 426 421 .012 .638 .579 .092
Cc.I +.035 +.034 %.021 +.034 +.034 £.037
INg Sys. bo INg | Sys. bo
Ana 1.667 .500 .000 2.517 .700 .000
Sim 1.689 .498 .000 2.541 .695 .000

Cc.I +.015 *.041 +.088 *.033
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Statistical Aspects of Simulation

Start-Up Policy

As Pritsker (1986) pointedvoﬁt, the initial conditions for a
simulation model may cause the valuesjobtained from the model to be
different from those obtained after a start-up period. When steady
state performance is to be estimated, the initial responses influence
the estimators of steady state performance; Start-up policies are used
for setting the initial conditions for the gimulation model and
specifying a procedure for estimating a truncation point, say Tr, at
which sample values should begin to be included in the estimators being
computed. Considering the cost of simulation, Tr should be as small as
possible, because all sample values collected up to the truncation
point are discarded. |

In this study, Schriber (1974)'s truncation rule is adopted to
monitor the sojourn time. The Schriber truncation rule sets Tr
whenever the batch means for the i most recent batches of size b all
fall within an interval of iength e. This study used i=20, b=20, and
e=10%*x', where x' is the mean of the first 100 sample observations at

the beginning, and will be updated after eVery 100 observations.

Stopping Rules

Determining the length of a simulation run as specified in terms
of the number of sample observations is a complex problem. Assume n
observations are taken to estimate the random variable X. Denote X4 be

the unbiased estimation of uy, and Var[X,] = aﬁ/n. Then n, the number



contained in a prescribed interval can be decided by Prob[X}-esux<X/+e€]
= l-a, here € is a prescribed half length for the confidence interval.

Let Z = /;(Xﬁ-px)/ax, then Prob[|Z]| = e/;/ax] = 1l-a, and let n*
be the smallest value 6f n for ﬁhiéh:?he above equation holds. Assuming
n* is 1arge‘enough so thatrthe qentfal 1imi? theorem applies, it is
easy to sée that n* = [(UX/e)Za/z]z) where Za/z‘is such that

—i: fm (o.5e'Y2/2)dy = a/2.

J2rn  Zay2

Usually €. is épecified in relative terms of oy, that is, ¢ = coy
for ¢>0. Therefore, n* = (Za/2/2)2- The following table displays‘n*
values with respect to the commoﬁly used a-c values. 1In this study,
c=0.02 and a=0.05 were utilized; therefore, the length of a simulation

run is 9604, and the actual length is Tr + 9604, where Tr is determined

by the Schriber truncation rule.

TABLE IX

NUMBER OF OBSERVATIONS

o : 0.02 0.05 0.10

(&) .
0.01 | 54093 38416 27060
0.02 | 13698 9604 6765
0.05 | 2164 1536 1084
0.10 | 541 384 271
0.20 | 135 96 68
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CHAPTER X.
CONCLUSIONS AND DISGUSSIONS

This dissertation has investigafed flexible manufacturing systems
with station‘breakdowns, materiallhandling,system'delay, and general
processing times.

In this investigation, this dissertation presents a powerful and
convenient approach to transform a system with MHS delay and breakdowns
into an equivalent system without MHS delay and‘breakdowns. This
transformation is based upon the ﬁethéd of moments. After absorbing
the repair times and MHS delay into the effective processing time Y's
or generalized processing time GS's, the approaches of Hahn and Shapiro
(1968), Kendall and Stuart k1969), and Kottas and Lau (1979, 1980) can
be used to fit Y's or GS's first K (k=3 or 4) moments to a k-parameter
distribution function. Thgs,thénsystem with the effective (or genera-
lized) processing times is equivalent to the original system, but
without breakdowns and MHS delay. Fitting the first k moments to a k-
parameter distribution is a convenient method thét provides good
approximations.

Moreéver, when the processing time distributions are known, the
moments of Y's and/or GS'’s can be calculated anélytically. These
moments are all that aré needed to evaluate each station’s performance,
such as the total time in the station (station time X) or in its queue

(waiting time W), the number of jobs in the station (station size 1) or
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in the queue (queue length Q), and the station output rate (TH). A
step-by-step recursive algorithm (Procedure I) is shown to calculate
the moments of X, W, L, and Q. Thérefore, this transformation facili-
tates performance evaluations of individual stations, as well as the
whole FMS with general processing times. After this transformation, the
previously used techniques for the case of no MHS delay and breakdowns
can be ‘applied to analyze the syséem.

Furthermore, to take the advantage of this moments-oriented
transformation, this dissertatiéh &evelops new iterative procedures to
obtain performance measures for individual stations as well as the
entire FMS’s. Procedure I is devised to calculate stations’ perfor-
mance measures, such as the number of jobs in the station or in its
queue, and the total time a job stays in the station, and Procedure II
is then developed to obtain the FMS’s performance measures.

Numerical examples are used to show how to transform an FMS wi;h
breakdowns and MHS delay into an equivalent system without breakdown
and MHS delay. After the transformation, the effective or generalized
processing times are never exponential, no matter whether the original
processing times are exponential or not. Then, Procedure,. Il can be
used to analyze the system'’s performance. Thié'procedure is very
efficient, and easy to program. Computer simulations are conducted to
verify the analytical resu1£s.

The analytical results show that when one or more stations are
unstable, Procedure II can not converge, while in practice the system
can continue operation anyway. Since it is of practical importance to

evaluate those "unstable" FMS’ performance, investigating this pheno-
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menon is worthy of future research.

As mentioned in chapter IV, if there are two or more classes of
jobs in the system, jobs in different classes could have different
values (or costs). Furthermore, the same job may have different values
(or costs) when it is going throﬁgh different stations. So (4.12)
should be revised accordingly to reflect these considerations. Since
this heavily depends on the cost structures of these products, it is
not discussed here. However, this is also a topic worthy of future

research.
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THE PROOF OF PROPOSITION I

Consider a queueing system consisting of m stations in series.
Hillier and Boling (1967) shows 'that the oﬁtput ratg

TH = p[1 - PR(0)],
where py is the last station m's service rate, Pp(0) is the proba-
bility that station m is idle, or starving. Note that up[l - P,(0)]
represents the only exit station m's effective output rate, and m will
never be blocked. 1In other words, one can concentrate on the exits and
find out P;(0) so as to obtain TH as long as no blocking occurs. Now
consider the open queueing network again. Every job, after being
processed in station i, will leave the system with probability of fj,
when i is an exit. Let Rj be the effective output rate of station i,

then Rj = fi%65[1 - P;(0)], and

=
fas
I
I ™M=
P~ ]
'—l
I
I ™M=

§;[1 - P4(0)]£f; (11.1)

, t n.
According to Baskett et al. (1975), Pi(nj) = (1 - pi)pi L, where nj is

the number of jobs in station i, and pj = A(ej/6i), if p; < 1 for i-=1,

§

, M for the equilibrium solution to exist. (pj = A¥*aj when B-=1)

Therefore
1 -Pj(0) =1 - (1 - pj) =pi=2x(ei/6;). (11.2)
M M
Note that ej = qi + 2 eiji for i=1, ... , M, and X qif = 1, I have

i=1 i=1
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M M M M
Tej=Xqi+3[2 eiji]
i=1 i=1 i=1 j=1
M M
=1+3 [ ZejPsjil
j=1 i=1 I
M M
=1 +.E ej[.Z Pji.]
j= i=1
Therefore,
M M M
Zej - Zeij [ 2ZPsisi] 1, or
-1 J j=1 J . J
M
'E ej*fj =1. , (11.3)
j=1

The equatioﬁ (11.3) simply éays that any job, once entering the
system, will eventually leave the system (with probability 1).
Now return to (11.1). Using (11.2) and (11.3), one can see that
M

TH = = 65[1 - P;(0)]£;
i-1

=

=2 63*%x(ei/61)f4 (from 11.2)
i=1

M
= A ej¥f;

i=1
= \ (from 11.3)

Because a central storage with virtually infinite capacity can

guarantee no-blocking, I get the following proposition.

PROPOSITION I*. For an FMS with general processing times and no

blocking, when A < 1/ap.y, (or pj <1 for i = 1,... , M) the output

rate is . Hit
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Proposition 1* can be easily extended to B > 1. Let fj, be the
probability that a class-r job will leave the system after processing

at station i. Note that

B N \
Ri = 2 hrfirSi[l - P;(0)], so
r=1
M
TH = 2 Ry
i=1
M B
=2 [ 3 hrfirsi(Aei/Si)]
i=1 r=1
B M
=232 [ 3 hrfirei] /
r=1 i=1
B M
=AZThf[ = fireil
r=1 i=1
B
=3I ht
r=1
= A.

This proves proposition I.
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THE PROOF OF THEOREM 1.

THEOREM 1. Assume two r.v.'’s X and W have a joint pdf f(x,w), and
their marginal pdf’s are fyx(x) and fy(w), respectively. Then, for i>0,

(-]

E[X1] = [_oE[XL|W=w]fy(w)dw. (12.4) [i.e., (5.5)]
Proof.

It is known (Kendall and Stuart 1969, Ross 1989) that

3 m 3
E(x | W=v] = [_o x fx y(x|w)dx, (12.5)
where fx|w(xlw) = f(x,w)/fy(w) is the conditional pdf of X, given that
W=w, and is defined for all values of w such that fy(w)>O0.

So the right-hand side of (12.4) is

f?wE[XiIW=W]fw(w)dw = f?w[ffw Xifx|w(x|w)dx]fw(w)dw
o oS e ®ELE G, w) /g (o) ]dx) £ (o)
e ol xiE(x,w)dx]dw

= fTin[fTw f(x,w)dw]dx

f_wxifx(x)dx

E[xi],

that is the left-hand side of (12.4). H#
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HWN -

[+ R W )]

16

103

REAL*8 SS

DIMENSION FA(S),WA(S),.FB(S5),WB(5),Cx(12,12),DX(12,12)
COMMON D(25001).M,YY

DIMENSION PV(10).0P(10).DQ(10),YM(5) ,RM(5),XP(5),WS(5)

. N3=6

Cc

N4=7
N3T=2*N3-1{
M3=N3-1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c
c

CX AND DX ARE 7X11 TABLES CONTAINING S-D c
DISTRIBUTION’S THIRD AND FOURTH PARAMETERS. C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcececeeece

10

READ(5,910) ((Cx(1,J).J=1,N4),I=N3,N3T)
READ(5,910) ((DX(I,J),Ju=1,N4),I=N3,N3T)
DO 10 J=1,N4

DO 10 I=1,M3

IT=N3T-1+1

CX(I,4)=CX(IT,J)

DX(I,Jd)=1.-DX(IT,J)

cccceeceeeeceeeeeccecececececcecececeeccececececcceccececcecececeeccececce

C

XLEMDA IS THE MEAN TIME BETWEEN BREAKDOWNS. c

ccceceeeeceeeeceeecceececcececcecececccecccecececcececcceecccecc

XLEMDA=100

ccceecceeceeceecececeeceecececececceccececceccececceccceccecceccececeeccececce

Cc
Cc
c
Cc

VECTOR RM CONTAINS THE FIRST FOUR MOMENTS (TO c
ZERO) OF THE REPAIR TIME R. o
VECTOR FB CONTAINS THE FIRST FOUR MOMENTS c
(CENTRAL) OF R. HERE EQUATION 3.2 IS APPLIED. C

Cccceceececeeeeceeceececeeccecececcececececcccceccecccceecceccecce

66

70

69

68

RM(1)=5.

FB(2)=9.

FB(1)=RM(1)

RM(2)=FB(2)+FB(1)**2

IF (wWB(2).LT.0.) GO TO 615
FB(3)=100.

FB(4)=525.
RM(3)=FB(3)+3.*FB(1)*FB(2)+FB(1)**3
RM(4)=FB(4)+4.+FB(1)*FB(3)+6.*FB(1)**2+FB(2)+FB(1)**4
WRITE(6,66)

FORMAT(1X, ‘MOMENTS OF R: ‘)
WRITE(6,955) (RM(I),I=1,4)
WRITE(6,70)

FORMAT( 1X, 'CENTRAL MOMENTS OF R: )
WRITE(6,955) (FB(I1),I=1,4)
WRITE(6,69)

FORMAT(1X,’'LEMDA=")

WRITE(6,955) XLEMDA

FORMAT(F6.2,’ ')



40
41

42
43

cceeeceecceceeeeeceeececcececcececcececececccecccccccccccccceccececee

Cc VECTOR XP CONTAINS THE FIRST FOUR MOMENTS OF c
c THE PROCESSING TIME P; CV IS THE COEFFICIENT c
Cc OF VARIATION OF P. c
oo ol ol ol of o{ o1 of of of o o o] o o of o od o of of o o of o o o o o of of o o o o o o o o o o] ol of o{ o ] o el { o o )
XP(1)=1.5
Cv=0.6

SEG=CV*XP(1)
XP(2)=SEG**2
[olod o ofol ol o of o o] ol of o of o o] o of o o{ o o] o{ of o] ol o o ol o o o of o{ o o{ o] o o e o] o] o}

c A1 IS ALPHA 1, AND A2 IS ALPHA 2. c
(ol ol ofo{of ol ol of o of o o of T of o od o o o{ of of of o o o o o of o of o] o{ o{ o o o] o o{ e o] of o4

A2=6 .

A1=1.2
cceceecececeeecceceecceceecececeecceceececececccececcceccecceccceecceccecec
Cc IK=6 CORRESPONDS TO A1=Q, IK=6+1 CORRESPONDS TO c
o A1=0+0.4, ETC., AND UK IS A2-1. (ACCORDING TO c
(o THE STRUCTURES OF TABLEA CX AND DX.) c
cceceeeeceecceeececeececcceceececceccccccceccececceccccceccccecccccece

JK=§

IK=9

CCCCCCCCCCCCeCCecceeeeeceeeceececceccccecececceceecee
c FIT A D-S DISTRIBUTION AS PROCESSING C
c TIME P’S PDF M(T) REQUIRED IN (5.4), ¢
c (5.5), AND (5.8). Pt, P2, P3 AND P4 C
c ARE THE FOUR PARAMETERS OF THE D-S c
c DISTRIBUTION. c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

P3=CX(IK,UK)

P4=DX(IK,JK)

DO 400 II=1,4

WA(I1)=0.

400 WB(II)=0.

PA=P3+1

PB=PA**2

PC=2.*P3+1

PD=(1.-P4)**PA-P4**pA

P2=PB*(P4**PC+(1.-P4)**pC)-PC*PD**2

P2=SEG*SQRT(PC*PB/P2)

P1=XP(1)-PD*P2/PA
cceeecececeececececcceecceccecececececeececececccceecececccecceeccece
c BL AND BR ARE THE LEFT ABD RIGHT BOUNDARIES C
c OF THE S-D DISTRUBUTION. c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtecece

BL=P{-P2*P4**p3

BR=P{+P2*(1.-P4)**P3

866 Y1=0.

WRITE (6,950)

WRITE(6,951) CV,A1,A2

XP(3)=XP(2)**1.5%A1

XP(4)=XP(2)*%2. *A2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeteceeece
c HERE EQUATION 3.2 IS APPLIED. C
cceceeceeccececeeccececccececceccececcececccceee

Wws(1)=xP(1)

WS(2)=XP(2)+XP(1)**2
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65

687
68
69

(Al
72

105

WS(3)=XP(3)+3*XP(2)*XP(1)+XP(1)**3
WS(4)=XP(4)+4*XP(3)*XP(§)+6*XP(2)*XP(1)**2+XP(1)**4
WRITE(6.72)

72 FORMAT(1X, *MOMENTS OF S: ‘)
WRITE(6,955) (WS(I),I=1,4)
WRITE(6,71%)
71 FORMAT(1X, CENTRAL MOMENTS OF S: ‘)
WRITE(6,955) (XP(1),I=1,4)
CCCCCCLCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCeeeceeeeee

c THE NUMERICAL INTEGRAL ALGORITHM TO GCALCULATE c

c KO, K1, K2 AND K3 REQUIRED IN (5.9) AND (5.10). C

c SEE (6.2) AND (6.3) FOR THE ALGORITHM. c

ccceeceeceeeceecceccccceccecccceceeccccecccccceccececcccccecceeccccecee
M=5000

T=ABS{BR-BL)
SS=(BR-BL)/M
343 CALL FDSD(SS.Pt1,P2,.P3,.P4,BR,BL)
833 DO 234 1=1,4
waA(1)=0.
TIME=8L
DO 238 J={, .M
TIME=TIME+SS
Z1=TIME**(1-{)*(1-EXP(-TIME/XLEMDA))*D(J)
238 WA(I)=WA(I)+21
234 CONTINUE
WRITE (6.8%4) Pt,P2,P3,P4,BR,BL.SS

814 FORMAT(1X,’P ARE’.4F10.S, !X, 'BR/BL=’,2F10.4,’ SS ‘,FB.5)
829 WRITEtG,73)

73 FORMAT( 1X, *INTEGRAL KI: *)
WRITE(G6,955) (WA(I),I=t,4)
CCCCCCCCCCOCCCCCCCCCCCeeeeeeeeeceeceeeecececeeeeece

c APPLYING (S5.9) TO OBTAIN Y*S MOMENTS. c
CCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCeCeceeeeeeeeeeee

YM(1)=WS(1)+RM( 1) *wA(1)
YM(2)=WS(2)42°RM( 1) °WwA(2)+RM(2)*wA(1)
YM(J)=WS(J)+3°AM( 1) *WA(I)+I*RM(2)*WA(2)+RM(T)*WA (1)

YM(4)=WS{4)+4°RM( 1)*WA(4)+6°RM(2)*WA(3)+4°RM(3)*WA(2)+RM(4)*WA(1)
WRITE(6,74) '

74 FORMAT(1X, MOMENTS OF Y: ‘)
WRITE(6,955) (YM(1),I=1,4)
505 wB(1)=YyM(1)
WB(2)=YM(2)-YM(§)e*2
IF (wB(2).LT.0.) wa(2)=0.




101 WB(3)=YM(3)-3.*YM(1)*YM(2)+2.*YM(1)**3

102 WB(4)=YM(4)-4.*YM(1)*YM(3)+6.*YM(1)**2*YM(2)-3.*YM(1)**4
103 GT=SQRT(WB(2)) .
104 GCV=GT/wB(1)

105 GS=WB(3)/GT**3

106 GK=WB(4)/GT*+4

107 WRITE(6,75)

108 75 FORMAT(1X.'CENTRAL MOMENTS OF Y: ‘)

108 WRITE(6.955) (wB(1),I1=1,4)

110 WRITE(6,76)

111 76 FORMAT(1X,’MEAN, CV, SKEWNESS, AND KURTOSIS OF Y: ‘)
112 WRITE(6.955) wB(1),GCV,GS,GK

113 GO TO 539 .

114 962 FORMAT (2X,’'BL,BR ARE’,2F10.5)

115 901 FORMAT(B8F11.7)

116 - 920 FORMAT (13,11,F11.6,3F9.6,F7.4,F8.4,2F7.4,F8.5,11)
117 903 FORMAT(2X.'CT=’,F10.8,3X,°C1=' ,F11.7,3X, 'NI=',14,3X,’CF=',F10.6)
118 539 CONTINUE -

119 500 CONT INUE

120 GO T0 615

121 904 FORMAT(1X.‘P-VALUES ARE’,4F12.5)

122 910 FORMAT(8F10.7)

123 911 FORMAT(7F11.7) i

124 913 FORMAT(1X, ‘MEAN,CV,SB1,B2 ARE’,4F15.7)

125 955 FORMAT(4F20.8)

126 950 FORMAT(’ ‘)

127 951 FORMAT(1X,'CV,A1,A2 ARE’,3F8.2)

128 960 FORMAT (1X,°‘CT.T,SS.M ARE’,F15.9,2F15.7,17)

129 615 STOP

130 END

*STATISTICS* SOURCE STATEMENTS = 129, PROGRAM SI1ZE = 5864 BYTES, PROGRAM NAME = MAIN

*STATISTICS® NO DIAGNOSTICS GENERATED.

**MAIN®** END OF COMPILATION {1 ®*s*e*
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c

[of o of of of of of o of of o1 of o o1 o o o1 of o o of o o o o o o o o of o o o{ o of of o o o{ o o1 o of o o o] o] o e o] o o7 o]
c SUBROUTINE FDSD CALCULATES M(T) IN (6.2) AND
Cc (6.3) WITH STEP LENGTH SS, FROM BL TO BR.

(o o of o of of o of o o of of o of o o of o o o o of o o of o1 o o o of o o o o of o o o] o o o] o o{ of o 0] o] o oL o o o o

SUBROUTINE FDSD(ss,P1,P2,P3,P4,BR,BL)

1

2 REAL*8 SS,X2

3 COMMON D(25001),M,YY

4 P5=1./P3

5 DO 2 K=1,M
1 6 2 D(K)=0.

7 Y1=0.

8 X2=BL

9 5 DO 40 K=1,M-1
1 10 X2=X2+S§
1 11 IF (X2.GT.P1) GO TO 30
1 12 " ¥2=P4-((P1-X2)/P2)**P5
1 13 GO TO 31
1 i4 30 Y2=P4+((X2-P1)/P2)**P5
1 15 31 D(K)=Y2-Y1
1 16 40 Yi1=Y2

17 0(M)=1-D(M-1)

18 RETURN

19 END

*STATISTICS* SOURCE STATEMENTS = 19, PROGRAM SIZE = 1292 BYTES, PROGRAM NAME

*STATISTICS* NO DIAGNOSTICS GENERATED.

**FDSD** END OF COMPILATION 2 ***s»»¢
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MOMENTS OF R:

5.00000000 34.00000000
CENTRAL MOMENTS OF R:
8.00000000 9.00000000
LEMDA= -
100.00000000

CV,A3,A4 ARE 0.60 1.20 6.00
MOMENTS OF S: -

1.50000000 3.059998947
CENTRAL MOMENTS OF S:
1.50000000 0.81000006

360.00000000
100.00000000

7.89479828
0.87478997

P ARE 1.39450 45.13611 4.63836 0.47117 BR/BL= 3.7451

INTEGRAL KI:

0.05160357 0. 16336613
MOMENTS OF Y: !
© 1.75801754 6.44808102
CENTRAL MOMENTS OF V:
1.75801754 3.35745621
MEAN, CV, SKEWNESS, AND KURTOSIS OF V:
1.75801754 1.04227352

0.566795237
81.63566590
28.49490360

4.63181877

4500. 00000000
8§28 . 00000000

25.18289180

3.93659973
0.0186 SS 0.00075

2.048 13004

 649.21142600

377.02148400
33.44609070
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109



W N

-4

10

15

17
18
19
20
21
22
€3
24

110

REAL%8 SS ,
DIMENSICN Y(S5,5),8(5), THC7),XT(7),CX(12,12),0X¢12,12),R(S5),CV(5)
COMMON D(10C),THOC7), M, MM, M2,QC(S), IACT) ,WACS) ,WB(5),P3,P4
DIMENSICN PV(10),0P(10),06C10),VL(S,4),X(C5,4),W(5,4),F(5),YB(5,5)
TCecececeeccceceeccccccccccecccecececccecececeeeccereecececrecceeeceececcece

C XK IS A SMALL POSITIVE NUMBER TO CONTROL THE ACCURACY. ¢
ceceeeeeeececeeeeccececcecccecccecccececccecceccccceccecceeccccceceeeccecceecec
XK=1.0E=4 -
k=90 |
cceeeecececeeceeceecececeecececccecccceeccec
C N - NUMBER CF STATIONS. C
ccccccccccccccccccccccccccccccccc -
N=4
ccccccgcrthfcccccccccccccccccccc
C XIN - SYSTEM INPUT RATE. C
cececeececececececcececceeccccceeceecceeee
XIN=0.3 ‘

WRITE (6,951) XIN
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C VECTOR B CONTAINS BLOCKING RATES. C
C NOTE: STATICN N+1 IS STATION 0> C
< THE CENTRAL STORAGE/MHS, ANC C
C STATION N+2 IS "QUTPUT™ STATION. C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
B(N+1)=90
[eddddddqadadadddddiadddddddddddd(ddqdddddd
C VECTOR XI CCNTAINS BRANCH STREAMS C
C FLOW QUT QF STATION 0, VECTOR THO c
C CONTAINS STATIONS INPUT RATE, AND C
C YECTOR TH CCNTAINS QUTPUT RATES. C

ceceeeeceeceeccecccecccececececccceccecececeececccc

XTI (N+2)=XIN

TH{N+1)=XIN

"TROIN+1)=XIN

THO(N+2)=XIN :
ddddddddqdddqdddddddddddddddddddddd ddddd S S o
C CX AND DX ARE 7X11 TABLES CCNTAINING C
C S=0 DISTRIBUTION'S THIRC AND FOURTH C
c MOMENTS PARAVETERS. C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

N3=%

N&=7

N3T=22N3=1

MI=N3=-1

READ(5,910) ((CX(IoJ):J 1,NG) ,1=N3,N3T)

READ(5,910) ((DX(I;J)oJ 1,N0) 1= h3:h3T)

00 10 J=1,Né&

DO 10 I=1,M3

IT=N3T={+1

CXC1,J)=CX(CIT,J)



25

35

36

38
39

40
41
42
43

111

10 DX(I,J)=1.=CXCIT,J)
ceceeeeeceececccccceccceceecccecccecceccceecccececccccccccccc
c MATRIX Y CONTAINS THE FIRST FQUR MGMENTS C
d OF EACH STATION'S EFFECTIVE PROCESSING c
C TIME, VECTOR QC CONTAINS BUFFER CAPACITY» C
d VECTOR R CONTAINS BRANCH PRGBABILITIES C
C RI'S, ANC VECTOR F CONTAINS STATICN 1=4'S C
c LEAVING PROBABILITIES. c
ceceeeeeceeecececcccecccccccececcececccceccccccccccecccc

D0 11 I=1,N+1 ‘

IACI)=0

11 READ(S5,501) (Y(I,J),J=1,4)

READ(S5,811) (QCCI),I=1,N+1)

WRITE (6,918) (QC(I),I=1,N+1)

READ(5,911) (RCI),I=1,N)

WRITE (6,926) (RCI),I=1,N)

READ(S5,911) (F(I),I=1,N)

WRITE (6,928) (F(I),I=L,N)
ceceeeecceeecccccceccccccccccceccceccceccceccceccccccce

C INITIALIZATICN: STEP 1 QF PROCEDURE II.. C
dedddaddqaddqdadqaqqqqddddddddddddddddddddqqqqddqs
00 12 I=1,N
XICI)=R(I)=THI(N+1)

12 THOCI)=XI(I)
DO 14 I=1,N+1
14 CV(I)=SART(Y(I,2))/Y(1,1)
(dddddaddddddddddddddddddddddddddd o
C YB CONTAINS Y*S FIRST FCUR C
C MOMENTS ABOULT ZERG. c
(dddddddddddddddddddddddddddqdddf S L (&
DO S5 I=1,N+1
YB(I,2)=YCI1,2)+Y(1,1)%%2
YBCI,3)=Y(I,3)+3.2Y(1,2)2Y(1,2)+Y (1, 1)%x%3
5 YBCI,A)=Y(1,4)+6.2Y (L, 10%YC1,3) 463V (I 1)%x2%kY(1,2)+Y(I,1)%%4
dedddddddaddddddddddddddddddddddddddddd S &
C CALCULATE FIRST THREE MCMCENTS QF C
C X (TIME IN STATION), W (WAITING
C TIME IN THE QUEUE), ANC L (LENGTH
C OF THE QUEUE) FQOR STATICN I.
C SEE PROCEDURE I AND SECTICN 8.2.2
[dddddddddaqddddddddddddddddddddddd S o
5S4 DO 15 I=1,N+1
XN=XI(1)
RO=XN%Y(I,1)
RN=1=-R0
IF (RN.LE.O) GO TO 22
WCI,1)=XN%YB(I,2)%0.5/RN
XCIl,L)=M(1,1)+Y(1,1)
VLC(I,1)=xN%X(I,1)
WCI,2)=2%W (L1, 1)%WCI, 1)+ (XN/3)%Y(I,3)/RN
XCI1,2)=%C1,2)+2%W(1,1)%YCI,1)+YB(],2)
VL(I,2)=XNEXAN=X(I,2)+VL(I,1)
WCI,3)=XNEC(2¥YB(I,2)%W(1,2)/72+4YBCI,2)%=W(l,1)+YB(1,4)/4)/RN
XCI,3)=W(1,3)+3%wW(1,2)%Y(I,1)+3%w(1,1)%YB(1,2)+YB(I,3)
VLCTI,3)=XNxXNEXNEX(I,3)+3%VL(1,2)-25VL(I,1)
GO TO 15

(aa¥aXaXal



59
60

96
97
8

112

C
ccceececeeececccceccccceeceeccecceccccecccecccce
C IACI)=1 MEANS QUEUE [ IS UNSTABLE. C
qqdddqddddadddddddddddddddddddddddddddddqq«
22 [A(D=1
15 CONTINUE
ccececcececececcececccccecececccececceccccecceccc

C OETERMINE THE SKEWNESS ANC KURTOSIS C
C OF THE QUEUE LENGTH DISTRIBUTION. C
C SEE SECTION 3.2. C

qqddqudadddddodddddddaddaddddddqadddqdqd 4444
D0 100 I=1,N+i
IF (IACI).GE.1) GO TO 34
DO 16 J=1,N-1
16 WACDI=VL(I,J)
WB(1l)=wA(1)
WB(2)=WA(2)=WA(1)a%2
IF (WB(2).LE.0) WB(2)=0.2
WB(3)=WA(3) =3 #WACLIRWA(2)+2. WA (1) #%3
B1=4B(3)/WB(2)%%1. 5
cccececececeeccecccececececececeececceceececcecce
C ADJUSTMENT FCR SPECIAL CASES. C
cccececcceeececeeececeeceeceeceeceececececeeceece
IF (B1.LT.=2) Bl==1.996%
IF (B1.GT.2) B1=1.99%9
IC=¢
IB=81/0.4+6
P3=CX(I1C,1B)
XB=(IB=6)%0.4
JB={(B
IF (Bl.LT.XB) JUB={B=-1
IF (B1.GT.XB) JB=[B+1
IF (P3.GT.0) GO TQO 20
IF (IB.GT.6) GO TO 18
DO 17 KK=IB+1,6
P3I=CXCIC,KK) ‘
IF (P3.GT.0) GO TO 20
17 CONTINUE
18 DO 19 KK=[B=1,6,-1
P3I=CXCIC,KK)
IF (P3.GT.0) GO TO 20
19 CONTINUE ‘
20 PX=CX(IC,JB)
IF (PX.LE.0) GO 10 21
cccececececececceeccecccececeecceececeeceeceeecececcecececcc

C SIMPLE INTERPOLATION IF NECESSARY TC C
C DETERMINE P3 AND P4 FOR QUEUE LENGTh C
C DISTRIBUTION. c

cccececececececcccecccccceccececccccceeccceccccccccc
P3=P3+(PX=P3)*ABS((1B=6)%0.4=-81)/0.4

2l  P4=DX(IC,IB)

é3 CONTINUE
ccceeeeececcececccececcecececccecccececececcccccecceccccc
C DETERMINE P1 AND P2 FOR QUELE LENGTh C
C DISTRIBUTION., C
qagqaddaddddddddddddddddddddddddddddddddfd S |«



99
100
101
102
103
104
105
106
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137

128
139
140
141
142
143

26 lP=DX(IC.,JB)

27 PA=P3+1
PB=PA%%2
PC=2.%P3+1
PO=(1a=PL) 2%FA=PLE%RPA
P2=PB& (P4#%PC+ (1. =P &) #xPC)=PCEPDRRZ
PuU=PCxPB/P2
IF (PU.LT.0.) PW=0.
PZ=CV(I)*SQET(PH)
P1=4B(1l)-PD*P2/PA
BR=P1+P2H(1.=PL)I%%PT

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C CALCULATE THE BLOCKING RATE. (SEE SECTIO 8.4.) C
C HERE CDF IS GIVEN IN EXAMFLE 1 (SECTION 6.1.1). C
ccecceececeeccecececececccecceeecceececccccecccccccccccccccccce

8(¢I)=0.

IG=4C(]1)

IF (1G.GE.BR) GO TO 100

RVC=1/P3

IF (I6.GT.P1) GO TO 30
B(I)=P4=((P1-1G)/P2)*=RVC
GO0 TO 32
30 BCI)=P4+((I1G=P1)/P2)#%RVC
32 B8(I)=1-8(I)
GO TO 100
36 TH(I)=1/Y(1,1)
B(I)=(XICI)=THCI)I/XI(])
100 CONTINUE

ccceceececccecceccccecccececccecccceeccccccceccccce

C CALCULATE EACH STATION'S QUTPUT RATE C
C AND INPUT RATE (STEP 3" QF PROCEDURE II) C
ccececeececeeececceccccececccceccccccrereeccccecccccc
1l=9
D0 40 I=1,N

40 21=Z1+RCII*(BCI)+(1=-B(I))%(1~-F(I)))
TH(N+1)=XIN#(1-B(N01))/(1911)
D0 50 I=1,N :
IF (IACI).GE.1) GO TO S0
THCI)=TH(N+1) %R (1) % (1-8(I1))
50 XICI)=RCI)*Th(N+1l)
XI(N+2)=0
00 60 I=1,N -
IACI)=0
60 XI(N+2)=XI(M+2)+TH(D)
IA(N+1) =0
THIN+2)=XT (N+2)
qddddddddddd dddd Jddddddf ddd S f S S f S o

C CALCULATE LAMDA-F AND LAMCA-8. C
C STEP 4 OF PRCCEDURE II. C
cccceceeecceecececcccececeeccececcecccccccecccccccce

FLD=9

FB8=0

00 65 I=1,N

FLD=FLD+TH(I)%(1=-F(1))
65 FB=FB+XI(I)2E(1)
XI(N+1)=FLD+FB+XIN%(1-8(N+1))
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144

145
146
147
148
149
150

151
152
153
154

155
156
157
1518
159
1¢0

1é2
163
1é4
1¢&5
166
1é7
1é8
1¢9
170
171
172
173
174
175
176
177
178
179
180
181
182
183

BIN+1)=1-(TH(N+L)=FLD-FB)/XIN

cceeeeeecccecceeecccecceccecccccccececeecececcccccccc

C
C
C

CHECK THE CCNVERGENCE AND DETERMINE €
IF MORE ITERATIONS ARE NECESSARY. c
STEP 6 OF PRCCEDURE II. - C

cceceececeecceccecceeccecceccecceccecceceecececcecccccce

70

80

DO 70 I=1,N+2
AX=ABS(TH(I)=-THO(I))
IF (AX.GT.XK) GO TO 80
CONTINUE

GO TO 90

K=K+1

cceececcecceccececceceecccececcececccececccecececcccccccecccc

C
C
C

THE MAXIMUM NUBER OF ITERATIONS IS 800.

IF IT IS NOT CONVERGE AFTER 800 ITERATIONS,

THE PROCEDURE WwILL B8E FCRCED TO STCP.

C
C
C

ccceceeeccecccececececececcccecccccccccececceccceccccccccccc

85

IF (K.GT.800) GO TO 90
00 85 I=1,N+2
THOCI)=TH(I)

GO TO 54

cceeeecceeccccceecececceccccecececcceccecececccccccceccecccec

C
C
C
C

PRINT QUT EACH STATION'S-INPUT RATE, OUTPUT
RATE, BLCCKING RATE, MOMENTS OF WAITING TIME

AND QUEUE LENGTH, AND ACCURACY MESSAGE.
OQUTPUT STEP OF PROCEDURE II.

C
C
C
C

ccceeceecceeccecceeececceccececcceccccececccceeccccccecceecccecc

S0

901
910
511
811
$13
955
$50
912
g22
2%
823
916
917
518

WRITE (6,916)

WRITE(6,913) (TH(I),I=1,N+2)
WRITE (6,917)

WRITE(6,913) (THOCI),I=1,N+2)
WRITE (6,912)

WRITE(6,913) (BCI),I=1,N+1)
WRITE (6,822)

WRITE(6,913) (W(I,1),I=1,N+1)
WRITE (6,822)

WRITE(6,913) (VL(1,1),1=1,N+1)
WRITE (6,914)

WRITE(6,913) (XI(I),I=1,N+2)
WRITE (6,91¢6)

WRITE(6,913) (TH(I),I=1,N+2)
GO TO 615

FORMAT (4F10.4)

FORMAT(8F10.7)

FORMAT C4F7.4)

FORMAT (5F7.4)
FORMAT(1X,6F15.7)
FORMAT(4F20.8)

FORMATC® )
FORMAT (1X, "BLOKING RATE:*)
FORMAT(1X,'WAITING TIME IN THE GUEUE:®)
FORMAT (1X, ' INPUT RATEz*)
FORMAT (1X, '§UEUE LENGTH:*)
FORMAT (1X, 'CLTPUT TH:*)
FORMAT (1X, 'CLTPUT THO:*)
FORMAT(1X,'BLFFER CAPACITY:®,5F7.2)
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144

145
146
147
148
149
150

151
152
153
154

155
156
157

159
160

161 .

le2
163
1¢é4
165
1€6
147
1¢8
1¢9
170
171
172
173
174
175
176
177
178
179
180
121
182
183
184
185
186
187

188

BIN+1L)=1=(TH(N+1)=FLD=-FB) /XIN

ccccceeeecceecccceeccececcececccccececccecceccccccc

C
C
C

CHECK THE CCNVERGENCE AND DETERMINE C
IF MORE ITERATIONS ARE NECESSARY. C
STEP 6 OF PRCCEDURE 1II. C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

70
80

DO 70 I=1,N+2
AX=ABS(TH(I)=THO(I))
IF (AX.GT.XK) GO TO 80
CONTINUE .

GO TO 90

K=K+1-

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C
C

THE MAXIMUM NUBER OF ITERATIONS IS 800. C

- IF IT IS NOT CONVERGE AFTER 800 ITERATIONS, C

THE PROCEDURE WILL BE FCRCED TO STCP. C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

85

IF (K.GT.800) GO TQ 90
DO 85 I=1,N+2
THOCI)=TH(I)

GO TO 54

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C
C
C

PRINT OUT EACH STATION'S INPUT RATE, OUTPUT
RATE, BLCCKING RATE, MOMENTS OF WAITING TIME
AND QUEUE LENGTH, AND ACCURACY MESSAGE.
OUTPUT STEP OF PROCEDURE II.

C
C
C
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

90

%01
910
11
811
613
955
§50
912
822
G14
823
916
$17
918
926
928
S §51
€15

WRITE (6,916)

WRITE(6,913) (TH(I),I=1,N+2)
WRITE (6,917)

WRITE(6,913) (THOCI),I=1,N+2)
WRITE (6,912)

WRITE(6,913) (B(I),I=1,N+1)
WRITE (&.,822)

WRITE(6.,513) (ucr,1>,t=1,u+1)
WRITE (6,821) "

WRITE(6,513) (VL(I,l)oI 1,N+1)
WRITE €6,914)

WRITE(6,913) (Xt(t).x 1,N+2)
WRITE (6,91¢)

WRITE(6.,913) (TH(I)'I 1,N*2)
GO TO 615 .

FORMAT(4F10.4)

FORMAT(8F10.7)

FORMAT(4F7.4)

FORMAT(S5F7.4)
FORMAT(1X,6F15.7)
FORMAT(4F20.8)

FORMAT(* v) .
FORMAT(1X,*BLOKING RATE:*)
FORMAT(1X, '*WAITING TIME IN THE GUEUE:z*)
FORMATC(1X, ' INPUT RATE:*)
FORMATC(1X, *GUEUE LENGTH:z*)
FORMATC1X, *CUTPUT TH:*)
FORMAT (1X, "CLTPUT THO:*)

FORMAT(1X, '*BLFFER CAPACITY:*,S5F7.2)

FORMAT(1X, *CISPER. PROB.:*,4F6.2)
FORMAT(1X, *LEAV. PROB.:*,4F6.2)

FORMAT(1X,'LAMDA IS',1F8.2)
STOP

cceceeceeccceceecccecccceccceeccecccccccccccccececcececccccccccccec

C

THE FOLLOWING DATA FORM TABLE CX AND TABLE DX.

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

END
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LAMDA IS 0.30

BUFFER CAPACITY:

DISPER. PROB.:

OUTPUT TH:
0.2903225
OUTPUT THO:
0.2903225
BLOKING RATE:
0.0000000
WAITING TIME IN
0.2781816
0.2018971
0.9621100
QUEUE LENGTH:
0.3710847
0.5496266
1.0322027
INPUT RATE:
0.2903225
3.4444447
OUTPUT TH:
0.2903225
3.4444447

3.00 3.00

3.00 3.00

0.30 0.30 0.20 0.20
LEAV. PRDB.: 0.35 0.35 0.25 0.25

0.2903225
0.2903225

0.0000000
THE QUEUE:
.2781816
.2018971
.9621100

.3710847
.5496266
.0322027

-00 OO0OO

.2903225
.44<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>