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CHAPTER I 

INfRODUCITON 

The work presented in this thesis addresses conformational dynamics of poly atomic 

molecules in the gas and condensed phases. The two systems that we have chosen for 

study are hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine (RDX) and nitrous acid (HONO). RDX 
< 

is a cyclical nitramine used as a component in solid rocket fuels. 

It can undergo both ring inversion and pseudorotations (for a more detailed discussion, see 

chapter II). Due to the low vapor pressure and inllerent instability of RDX, little is know 

about it either experimentally or theoretically on a molecular level. HONO is one of the 

simplest molecules to undergo cis--trans isomerizations. It has been studied extensively 

both experimentally and .theoretically ~o much is known about the potential;.energy surface 

(for a more detailed discussion, see chapter II). 
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Molecular dynamics simulation methodsl-5 were employed in the studies presented 

here. Molecular dynamics simulations use classical mechanics to calculate trajectories by 

numerically solving Hamilton's equations of motion. Equilibrium properties of the system 

such as energy differences between local minima, conformational distributions, and 

average structures can be calculated. These properties combined with experimental data 

yield free-energies, enthalpies, and entropies. Also, dynamical processes such as 

flexibility of molecules about their minimum energy structures and rate constants for 

transitions between local minima can be obtained. Thus, molecular dynamics simulation 

methods can be used to develop and test potential-energy surfaces and also calculate 

properties of a system which cannot be measured using current experimental techniques. 

Molecular dynamics simulations have been employed in the studies of equilibrium 

properties of simple liquids6-8, macromolecules in the gas and condensed pha~es9-26, and 

polymers in the solution and crystal phases27-32 with much success. The effects of a 

solvent on activated processes, such as barrier crossing, have received much less attention. 

The study of activated processes in condensed phase is more computationally demanding 

since the reactant and products are separated by a potential-energy barrier. Few events 

occur in a reasonable amount of computer time for barrier much larger the t<f, where K is 

the Boltzmann constant and T is the te~perature. With the aid of faster computers, barrier 

crossing processes are more tractable. 

The importance of reactions in solution is fundamental to chemistry. Studies of 

simple chetriical reactions such as, A+BC~AB+C33-36, S0 1 and S0237, and intramolecular 

proton transfer38' employing molecular dynamics simulations have helped elucidate the 

effects of the solvent on the rate of reaction. These studies have shown that for barriers in 

the range of 10-20 kcal moi-l, a "frozen solvent" picture emerges, that is, once the 

molecule ascends the barrier, it undergoes almost free passage through the barrier region; 

the molecule spends a short time in the barrier region. For low barriers,(< 10 kcal moi-l) a 

breakdown in the "frozen solvent" picture is observed due to the increased time that the 



reacting molecule spends in the barrier region. The frequent collisions of the solvent with 

the reacting molecule can significantly retard the barrier crossing process. 

3 

Molecules which undergo isomerization processes comprise an interesting class of 

compounds. Since isomerizations usually involve low barriers between neighboring 

isomers, solvent effects can play an important role in th~ dynamics. Also, the problem of 

conformational dynamics readily lends itself to molecular dynamics simulations since 

periodic potential-energy functions are usually employed to describe the transition between 

the reactant and product states. The equilibrium and rate constant data for, both the forward 

and reverse processes _can be obtained from a single long trajectory. 

To date, most studies of isomerization processes have been performed using model 

potential-energy surfaces which constrain the motions of the bonds and angles32,39-42 or 

treat the reaction coordinate as a one-dimension oscillator43-44. Recent studies have 

suggested that internal flexibility can alter the barrier crossing process by modifying local 

modes45-48. With the a4vent of faster computers, studies of molecular systems employing 

more accurate potential-energy surfaces are needed for a more realistic comparison between 

theory and experiment. 

Format of the Thesis 

A review of the literature on the two molecules in this study and other studies 

relevant to the work performed in this thesis are reviewed in Chapter TI and Chapter ill. A 

brief introduction to the methods and theories is presented in Chapter IV. The details of the 

potential-energy surfaces employed and the computational methods employed in these 

calculations are presented in Chapter V. In Chapters VI-VITI, studies of ~e conformational 

dynamics and chair~boat/twi~t ring inversion of hexahydro-1 ,3,5-~itro-1 ,3,5-triazine 

(RDX) in the gas and condensed phases which give insight into the flexibility of this cyclic 

nitramine and the effects of the environment on its conformational flexibility and inversion 

dynamics are described. In Chapter IX, studies of the cis-trans conformational dynamics 



of HONO in liquid Ar are described. We employed a relatively accurate potential-energy 

surface which incorporates switching functions to connect the trans and cis isomers. The 

effects of a solvent on the equilibrium properties of HONO are discussed. Conclusions 

and some ideas for future work are discussed in Chapter X. 
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CHAPTER II 

LITERATURE REVIEW OF RDX AND HONO 

Hexahydio-1,3,5-trinitro-1 ,3,5-triazine 

Nitramines have been studied experimentally49-71 and theoretically72-83 over the 

past few decades in ari attempt to understand their conformational properties and 

decomposition pathways. Thompson and co-workers performed several calculations on 

the decomposition of gas~phase nitramines75 and nitro compounds76-77. These studies 

have concentrated on smaller systems. 

One of the more interesting nitramines is hexahydro-1,3,5-trinitro-1,3,5-triazine 

(RDX) which is used as a component in solid rocket fuels. Due to the low vapor pressure 

and inherent instability of RDX, most studies have been concerned with the reaction 

dynamics in the condensed phase. There have been only limited studies of RDX to 

elucidate its molecular properties, mid thus, little is known about it at a molecular level. 

RDX is a cyclic molecule comprised of three methylenenitramine (CHzNN{h) 

monomers. McCrone58 first studied the crystal structure of RDX in 1950. Two 

polymorphs were observed, a.-RDX and ~-RDX, the former is stable at room temperature 

while the latter readily decomposes. In 1972, Choi and Prince59 refined the crystal 

structure and showed that RDX has Cs symmetry with the six membered ring portion of the 

molecule in the chair conformation and two of the exocyclic nitro groups axial while the 

third nitro group is equatorial (see Fig. 1). Their work showed that strong intermolecular 

forces are present in the crystal lattice due to short intermolecular distances between O···H 

as well as O···C atoms. To further study these intermolecular interactions, Haller et af.61 

5 



Figure 1. a-RDX Crystal Structure Obtained From Neutron Diffraction. The triazine ring 
atoms adopt the chair configuration. Atom types are represented as follows: 
circles with lines represent carbon, circles with small dots represent nitrogen, 
circles with large dots represent oxygen, and open circles represent hydrogen. 



a-Crystal 
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obtained the crystal structure of a RDX:sulfolane (C3Ii6N606· C4ffg(hS) complex. Their 

results show that the nitro groups are not as restricted in the sulfolane complex as in the 

pure crystal and there are fewer short intermolecular contacts. The results of Haller et af.61 

concur with the results of Choi and Prince59 which show that the axial nitro group of one 

RDX molecule resides in the 'basket' of the .neighboring RDX molecule. Rey-Lefon and 

co-workers62-64 have obtained a complete infrared spectrum of the a-RDX crystal and 

calculated a normal force field. 

Due to the unstable nature of ~-RDX, little is known about it. Karpowitz et a[.65 

obtained a spectrum of ~-RDX. A decrease in the number of frequencies as compared with 

the a-RDX crystal spectrum illustrates an increase in symmetry. They concluded that~

RDX exhibits C3v syrrimetry. To date, no crystal structure for ~-RDX has been reported. 

Some experimental studies of RDX in the liquid and vapor phase have been 

performed in an attempt to elucidate the conformational properties of the RDX molecule in 

these different environments. Iqbal et a[.66 and Karpowicz and Bri1165 have used infrared 

spectroscopy to study RDX in solution and the vapor phases, and obtained spectra similar 

to the ~-RDX crystal spectrum. Therefore, RDX is believed to poses C3v symmetry in 

both the solution phase and the vapor phase with all thee nitro groups equivalent65 

(see Fig. 2). 

Karpowicz and Bri1165 studied the the ring inversion using low temperature IR 

spectroscopy. The RDX molecule, which is similar to cyclohexane, can experience both 

ring inversion (Rl and R2) and pseudorotation (R3) as shown schematically below. The 

exocyclic nitro groups and hydrogen atoms have been omitted for clarity. (See Figs. 2 and 

3 for RDX in the chair, boat, and twist structures). 



Figure 2. Calculated C3v Chair Structure of RDX. Atoms C(l), C(3), N(4), N(6) lie in the 
plane with the three nitro groups planar. The atom types are represented as in 
Figure 1. 
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boat 

chair 

twist 

Their results show that even at very low temperatures the barrier to ring inversion is low, 

however, they could not obtain a value for it A low barrier is in accord with an earlier 

study by Lehn eta/. 67 on the rate of ring inversion for hexahydro-1,3,5-triazine with 

different exocyclic groups bonded to the nitrogen atoms of the triazine ring. This study 

showed that as the size of the exocyclic substituent increased or became more 

electronegative, the barrier for ring inversion decreased. 

There have been few theoretical studies of the conformational properties of RDX. 

11 

Orloff et aJ.19 used the semi-emperical CNDO method to calculate the energy of the 

different conformers of RDX, i.e., chair and boat structures (see Fig. 2 and 3a). Their 

calculations s1:lowed the chair and the boat structures to be equal in energy. A barrier for 

the rotation of the exocyclic nitro group was c_alculated to be 10 kcaVmol. Filhol eta/. 80 

performed a semi-eniperical INDO calculation to study the conformational properties of the 

exocyclic nitro groups. The most stable conformation was obtained when the nitro groups 

where in the plane of the C-N-C atoms of the ring (see Fig. 2). This planarity of the nitro 

group was also observed in smaller nitramines81. The dipole moment calculated by Filhol 

et aJ.80 is 5.48 D. This is in good agreement with experimental values of 5.78 n 68, 7.0 

n69, 5. 73 D 70 and 6.8 D 71. Calderbank and Pierens 70 used parameters obtained from the 



Figure 3. Boat and Twist Minumum Structures of RDX. (a) The calculated C8 boat 
structure. The boat structure is 1.3 kcal moi-l higher in energy than the chair 
structure. Atoms C(l), C(3), N(4), and N(6) lie in a plane. (b) The calculated 
twist structure. The twist structure is 1.3 kcal moi-l higher in energy than the 

. chair structure. Atoms C(l), N(2), N(4), and N(6) lie in a plane. The atom 
types are the same as in Figure 2, but the molecules have been rotated for 
clarity. 
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measured dipole moments and molar Kerr constants of some model compounds to calculate 

the dipole moment and molar Kerr constant for RDX in the different conformations, i.e., 

chair, boat, and twist (see Fig. 2, 3a, and 3b). The dipole moments obtained are 6.67 D, 

1.74 D, and 2.110 for the chair, boat, and twist conformations, respectively. These values 

illustrate that no one static structure can reproduce the observed dipole moment (5.73 D7~ 

but illustrate (using dipole considerations) that the chair conformation should dominate in 

any mixture by about 70%. Definitive conclusions cannot be made since a mixture 

comprised of 70% of the chair conformation gives a molar Kerr constant that is about 

240% larger than the observed value. Vladirniroft-83 used molecular mechanics methods84 

to study conformational properties of RDX. The calculated heat of formation and the 

dipole moment are 47.7 kcal moi-l and 9.9 D respectively. The heat of formation is in 

good agreement with the experimental value of 45.8 kcal moi-l taken as the heat of 

formation of the solid85 plus the heat of sublirnation86. The dipole moment is a factor of 2 

larger than the accepted value of 5.73 n70• 

Recently, Zhao, Hintsa, and Lee57 studied the unirnolecular decomposition ofRDX 

using infrared multiphoton excitation techniques in a molecular beam. They show that the 

most favorable decomposition pathway is a concerted ring dissociation, in which three of 

the C-N bonds of the ring break to yield three methylene nitrarnine moieties, as opposed to 

the simple N-N bond fission. Sewell and Thompson78 used classical mechanics to study 

the unimolecular decomposition of an isolated RDX molecule. They used a potential based 

on the one developed here; They modified it to include the reaction channels for the two 

decomposition pathways. Their results show good agreement with the experiment 57 in that 

the concerted ring dissociation pathway is favored. The studies mentioned above were at 

energies much higher than in the study presented here. 

The goal of this work is to develop a potential-energy surface for gas-phase RDX 

that is accurate at thermal energies. We have studied the dynamics of conformational 

changes in the gas phase and obtained barriers for the ring inversion (Rl or R2) and 
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pseudorotation processes (R3). Also,both the conformational equilibrium and rate constant 

for the chair-?boat/twist ring inversion as a function of the solvent concentration are 

discussed. Recently, it has been suggested that RDX is soluble in aXe fluid. Thus, aXe 

solvent was employed in this study. 

Nitrous Acid 

To continue the study of conformational dynamics of polyatomic molecules in 

condensed phase, we have performed molecular dynamic simulations on nitrous acid 

(HONO). HONO is a much smaller molecule than RDX and much is known about the 

potential-energy surface both experimentally and theoretically. HONO experiences 

conformational equilibrium between the trans and cis conformations as shown below (R4). 

H'-. (R4) 0 N 
O;_N' -- H/ - ~0 

'O 
trans ClS 

Both experiment87-93 and theory94-103 have shown that the trans isomer is slightly 

more stable than the cis isomer. Darsey andThompsonlOl have calculated an accurate 

potential-energy surface, using ab initio techniques, for the trans--cis isomerization. They 

calculated the cis isomer to be 0.6 kcal moi-l higher in energy than the trans isomer with a 

barrier for the trans-?cis isomerization of 9.6 kcal mol-l. In a subsequent paper, Guan and 

Thompsonl03 employed switching functions to smoothly vary the geometry between the 

trans and cis isomers. Switching functions will be discussed in more detail in chapter IX. 

We have calculated the conformational equilibrium and the cis-?trans and 

trans-?cis isomerization rate constants for HONO in liquid Ar. Also, the dynamical 

structure of HONO is discussed. 



CHAPTER ill 

REVIEW OF METHODS AND THEORIES 

Molecular dynamics simulations are useful tools for developing and testing 

potential-energy surfaces and for calculating rate constants for barrier crossing processes. 

The purpose of this' chapter it to briefly introduce the methods and theories relevant to this 

thesis. 

Development of Potential-Energy Surfaces for 

Large Polyatomic Molecules 

Mapping out a potential-energy surface, that is, constructing contour maps or 

calculating the potential energy of the molecule along a reaction coordinate, for a large 

molecule can be a formidable task. But fmding stationary points on the potential-energy 

surface can be more tractable. A common methods for obtaining minimum-energy 

structures and barriers to rotation betWeen minima is adiabatic mapping9. Adiabatic 

mapping assumes that the reaction coordinate is lolown. The system is moved along the 

reaction coordinate while periodically minimizing the potential energy by moving all the 

atoms not explicitly involved in the reaction coordinate. This method gives the potential 

energy as a function of the reaction coordinate and works well for systems in which the 

reaction coordinate easily defined. For systems with more complicated reaction 

coordinates, the contribution of each internal coordinate to the reaction coordinate is usually 

not well known. Also, with the adiabatic mapping method, dynamical effects are 

neglected. Molecular dynamics simulations make no assumptions about the stiffness of the 

molecule. 
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Unimolecular Reaction Theory 

Three important classes of classical theories for calculating rate constants are: 

transition-state theory, unimolecular rate theory in gases, and the theory of diffusion 

controlled reactions. 

Transition-State Theozy 

Transition-state theory assumes that a trajectory originating from the reactant well 

and achieving activation energy, proceeds to the transition state and then on to products. 

Furthermore, it is assumed that an equilibrium exists between the reactant and transition-
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state molecules. The transition-state theory rate constant expression in the thermodynamic 

formulation is given by105, 

(TILl) 

where f3 = (Iq, T)-1, and Iq, and T are the Boltzmann constant and temperature respectively, · 

his planck's constant, Q and Qt are .the partition functions for the reactant and transition 

state geometries respectively, and AGt is the activation free energy, that is, the free energy 

difference between the reactant well and the transition state. The rate constant is the 

equilibrium one way flux across the barrier. Thus, transition-state theory, in effect, 

assumes that collisions of the solvent molecules with the solute serve to maintain the 

assumed equilibrium between the reactant and transition-state structures but do not induce 

barrier recrossings. Barrier recrossings result from trajectories that ascend to the barrier 

region, cross the transition state, but then return to the reactant well instead of proceeding 

to the product well. 
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Lindemann Themy 

Transition-state theory does not predict the correct behavior of the unimolecular rate 

constant at low pressure. The first gene~y accepted theory for thermal unimolecular 

reactions was postulated by Lindemann 105-113. In the primary reaction, 

kt * A+M-->A +'M, (lll.2) 

a fraction of reactant m,olecules, A, become energized to an energy in excess of the critical 

energy of reaction, E0 , thiough collisions M, another reactant molecule, inert bath gas 

atom, or a product molecule. The rate constant for this activation step is denoted by kt. 

The energized molecule can either experience a deactivating collision, i.e., the reverse , 

reaction of Eq. lll.2, 

A*+M~>A+M, (lll.3) 

with rate constant k2 or proceed to products via the transition state, At, 

* k3 t 14 A --->A -->products. (lll.4) 

The rate of product formation from the transition state geometry is considered to be 

much faster than the rate for the energized molecules to attain that geometry. Therefore, 

the rate constant for the energized molecule to proceed to products is approximately k3, 

i.e., k3 << 14, so k3 = k3 + 14. Using the steady-state approximation for A*, the overall 

rate for the change in the concentration of the reactant [A] is given by 

d[A] kt k3 [A] [M] 
-(it= k2[M] + k3 . 

In the high pressure limit k2[M] >> k3 and the rate constant is given by, 

(111.5) 



_1 d[A] _ k1 k3 _ 1, 

- [A] dt - k2 - ~. 

At low pressure k2[M] << k3 and the rate constant is given by, 

1 d[A] 
- [A] dt = k1 [M]. 
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(III.6) 

(III.7) 

Therefore, the Lindemann theory predicts that at low pressure, the unimolecular rate 

constant increases with increasing [M], i.e., kuni = k1[M], while in the high pressure limit, 

the unimolecular rate constant is independent of [M], i.e., kuru= koo. This region is called 

the plateau region lOS. In this region, the rate of activation is much faster than the rate of 

reaction, so an equilibrium concentration of energized molecules is maintained. Thus, in 

the plateau region, Lindemann theory reduces to transition-state theory, i.e., kTST = koo. 

Diffusion-Controlled Rate Theozy 

It has been shown that as the solvent density or viscosity increases, the rate 

constant for reaction decreases109-111. This is attributed to the frequent collisions between 

the reacting molecules and the solvent The diffusion-controlled rate constant is 

proportional to the diffusion constant D, 

ko = 4xDcr (III.8) 

where CJ is the reactive radius. 

Kramers Theozy 

The rate constant has been shown to increase with increasing solvent density until it 

reaches a maximum after which it becomes a decreasing function of pressure (Kramers 

turnover). Kramers114 was the frrst to try and bridge the two models using a single 

theoretical model. 
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Kramers incorporated the dynamical influence of the solvent on the rate of barrier 

crossing. The effects of the dynamics of the solvent can cause a breakdown in transition

state theory by producing barrier recrossing109-112,114. Kramers theory, which is derived 

from a Langevin-Fokker-Plank type equation109-112, models the reaction coordinate as one 

dimensional with a constant frictional term acting on this coordinate. The transmission 

coefficient K is given byll4 

K:=-k-=~ 1+(-~-i- (l), 
kTST 2~ 2~ 

(III.9) 

where ~ is the frequency of the barrier, that is, the negative eigenvalue corresponding to 

the reaction coordinate at the transition-state geometry, and~ is the friction constant per 

reduced mass acting on the reaction coordinate. The transmission coefficient K is a 

measure of the dynamical effects of the solvent, that is, the extent to which the rate constant 

deviates from the transition-state theory rate constant due to the solute-solvent interactions. 

Since the friction is assumed constant, the solvent forces, both short-range and long-lived 

collective motions, act impulsively (Markovian approximation)109-112. 

Grote and Hynes115-117 derived a statistical theory based on the assumption that the 

friction is frequency dependent. The theory employes a non-Markovian generalized 

Langevin equation109-118 for the reaction coordinate. The Grote-Hynes equation for the 

transmission coefficient is 

k 
1(----

- kTST- (III.lO) 

where 

~(A) = J dt ~(t) exp[ -At] (III.ll) 
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is evaluated at the reactive frequency, A, and ~(t) is the correlation function of the random 

force, 

~(t) = <R(O)R(t)>, (lll.12) 

where R(t) is related to ~(t) by the fluctuation-dissipation theorem119. For a sharp barrier, 

there is little friction due to the short time that the molecule is in the transition-state region, 

~(A=~) is snuin115-117. Therefore, k = kTsT is a good approximation in the sharp barrier 

(low friction) regime109. For a low barrier, ~(A=cot,) can be large since the molecule can 

spend an appreciable amount of time in the barrier region and therefore k can deviate 

significantly from krsT· 

As was stated earlier, after the Kramers turnover, the rate constant becomes a 

decreasing function of the solvent density. It has been shown that at high solvent densities, 

the rate constant is again an increasing function of the solvent concentration. Deviations 

from Kramers theory at high solvent densities have been attributed to activated volume 

effects. The activation volume is given byl05,113 

(111.13) 

where P is the pressure. The activation volume is a measure of the difference in the 

volumes of the reactant plus solvent packing and transition-state geometry plus solvent 

packing120-121. A negative activation volume suggests a tighter or more compact transition 

state as compared with the equilibrium structure thus, facilitating solvent packing. 

Molecular Dynamics Simulations 

Assumptions concerning the interactions, i.e., Markovian or non-Markovian, 

between the solute and solvent atoms are inherent in statistical theories such as the ones 



22 

discussed in the preceding sections. Since the classical equations of motion are 

numerically solve in molecular dynamics simulations (see chapter V for a more detailed 

discussion of the molecular dynamics method), this method is useful in checking the 

reliability of statistical theories by comparing the rate constants obtained from the statistical 

theory with those obtained from molecular ~ynamics simulations. 

Molecular dynamics simulations are computationally expensive due to the large 

number of interactions in a liquid system. To circumvent this problem, stochastic 

molecular dynamics simulations have been employed122-123. In this method, the solvent is 

not considered explicitly, instead the solvent is modeled by using impulsive forces which 

interact randomly with the solute molecule. Thus, the computational time is greatly 

reduced. The solute-solvent interaction frequency, a, (the frequency with which the 

random force interacts with the molecule) can be related to the viscosity of the solvent by 

a=c11, where 11 is the viscosity and c is a constant that depends on the solute but is 

relatively independent of the solvent124. 

Another method which has been used to calculate the rate constant for activated 

processes is the reactive flux correlation function 125 which is based on the time correlation 

of the barrier crossing process and is given by, 

k(t) = <q(O) o[q(O)- q TS] H[q(t)]>, (111.14) 

where q is the reaction coordinate, q TS is the value of q at the transition state, q(O) is the 

initial velocity along the reaction coordinate, and H[q(t)}is unity for O<q(t)<qTS and zero 

otherwise. Reactive flux molecular dynamics simulations are useful for reactions which 

have activation barriers that are much greater the kb T since the trajectory is initiated in the 

transition state region and followed both forwards and backwards in time. 

Unfortunately, both of these methods require assumptions that may not be valid. 

The reactive flux method assumes that a canonical distribution exists in the transition-state 
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region. Recent studies have shown that this might not be true, that is, local non

equilibrium effects could be important in the region of the transition-state where barrier 

forces are large43. Also, the stochastic molecular dynamics method assumes that the 

interactions between the solute and solvent are Markovian; this has been disputed by Grote 

and Hynes115-117. 

The assumptions concerning solute~solveni interactions inherent in statistical 

theories are absent in full m~lecular dynamics simulations since the solvent is calculated 

explicitly. Also, by allowing the trajectories to evolve in time according to' the potential

energy surface, the behavior of the system along the reaction coordiD.ate and in the 

transition-state region can be obtained. 



CHAPTER N 

LITERATURE REVIEW 

The molecular dynamics simulation technique was first developed for simulating 

hard-spheres6 and Ar atoms7,8 in simple liquids. The method was then extended to 

molecular liquids such as water126, alkanes127, and alcohols127. With the advent of more 

powerful computers, molecular dynamics simul~tions have proven to be a very powerful 

tool for the study of time varying properties of proteins, nucleic acids, carbohydrates, and 

polymers in the gas and condensed phases9-32. The following review discusses work that 

is relevant to the studies presented in this thesis. The first section reviews the use of 

molecular dynamics simulations in the study of conformational flexibility in 

macromolecules. The last part of this chapter reviews some experimental and theoretical 

work which studies the effects of a solvent environment on the isomerization rate constant 

Molecular Dynamics Simulations of Conformational 

Changes in Macromolecules 

Due to the high packing density of Proteins, the atomic motion near t~e backbone 

has been shown to differ from the motion of the atoms near the surface. These different 

atomic motions give rise to a rich dynamical spectrum that ranges from the rapid local 

motions of the individual groups to the slow collective motions of larger regions within the 

molecule. Also, the surface atoms can act as a cage around the atoms near the core of the 

molecule. 

24 
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In one of the first molecular dynamics simulations of a protein, McCammon et az.11 

studied bovine pancreatic trypsin inhibitor. Their results show that bovine pancreatic 

trypsin inhibitor is fluid-like at ordinary temperatures, that is, the dynamics of the atomic 

displacements are dominated by collisions with neighboring atoms. Also, the atomic 

motion was shown to be highly anhannonic. In an extension of this earlier work, Karplus 

and McCammon 12 extended the time of the simulation of bovine pancreatic t:rypsin inhibitor 

so as to include the collective mode motion. In this simulation, fluctuations in global 

properties, such as side-chain rotation and transitions between different minima in the 

neighborhood of the average structure, were observed. The existence of large fluctuations 

in the structures and energy components indicates that the properties of proteins result from 

the occupation of a variety of thermally accessible states even on times as short as 

10-100 ps. 

Studies of the anhannonicity of large biomolecules at room temperature have been 

performed 13-15. The results of these studies identify two classes of significantly 

anhannonic atoms, namely, those w~ch are usually located near the surface or near the 

ends of the side-chains, which is due to the relatively small structural constraints at such 

locations. 

Post et az.16 used molecular dynamics simulations on native and substrate-bound 

lysozyme to study the dynamical properties of enzymes and enzyme-substrate complexes. 

Since the binding of co-factors, substrates, and inhibitors can alter the enzyme 

conformation, an understanding of the structural rearrangement and changes in motional 

properties induced by the binding is therefore important fo:r the analysis of enzymatic 

reactions16. They show that the substrate alters the motion of lysozyme and by observing 

the areas of different fluctuations, the effects of a binding sub~trate can be obtained. 

Harvey and co-workers17 studied phenylalanine transfer RNA. Their results are 

similar to earlier protein studies, in that the dynamically averaged structure resembles the 



crystal structure even though phenylalanine transfer RNA is comprised of several local 

structures that are quite different than the relatively homogeneous structure of DNA. 

Studied ofpolysacharides such as a-D glucose22-24, 1}-D glucose23, 
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a-cyclodextrin18, ,which is comprised of six (1-4)-linked a-glucose residues, and 

j}-maltose25, which is the (1-4) linked dimer of a-D glucose, have shown that the glucose 

ring exhibits considerable flexibility and even undergoes conformational transitions at room 

temperature. The conformational populations of the different side chain substituents are in 

fair agreement with the experimental values. 

The studies mentioned above were performed in vaccuo. Thus, the effects of a 

solvent environment where neglected Molecular dynamics simulations of proteins19-20, 

nucleic acids21 and polysacharides26 in the condensed phase demonstrate that the most 

important influence of a solvent or crystal environment is on the dynamically averaged 

structure, i.e., the structure is considerably closer to the x-ray structure than that obtained 

in the vacuum. For a protein, this is due to the attractive external force which causes a 

decrease in its density19. The magnitudes of the fluctuations of atoms in the interior of the 

protein are little influenced by the environment. For atoms of side chains at the surface of 

the protein, the condensed phase environment alters both the magnitude and time course of 

the fluctuations. This modification in the conformational equilibrium behavior was also 

observed for the smaller molecules21,26. 

Noid and co-workers27-31 used molecular dynamics simulations methods to study 

the conformational dynamics of polyethylene. The effects of anharmonicity in the 

polyethylene crystal were studied27-29 and shown to play a large role in the dynamics even 

at low temperatures. A transition to a conformational disordered crystal, the condis state27, 

could be observed using molecular dynamics techniques. Their results also show that 

"chaotic motion" becomes predominant at sufficiently low temperature and can damp out 

collective modes which are necessary for the generation of stable defects in the crystal31. 
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Rebertus et a/.32 used molecular dynamics simulations to study the effects of a 

solvent on the equilibrium properties, namely the configurational probability distribution, 

of n-butane in CC4. The equilibrium constant for the trans-gauche isomerization was 

calculated and compared with the Boltzmann configurational distribution function for gas

phase n-butane. Their results show 'that the conformational distribution shifts towards the 

gauche conformer. They suggest that the shift in the equilibrium is directly related to the 

ability of the solvent molecules to "pack" around the gauche isomer as compared to the 

trans isomer32. It has be~n shown32,128-131 that the gauche isomer is more "spherical" 

than the trans isomer. Therefore, the gauche isomer can be accommodated more readily by 

the solvent than can the trans isomer32. 

The studies discussed above have shown that dynamical flexibility is important in 

the equilibrium conformational dynamics of molecules. The global and local energy 

minima are usually unaffected by the dynamics but it is clear that conformational flexibility 

does play an important role in a number of aspects of protein and carbohydrate physical 

behavior by lowering barriers to transitions and, therefore, affect conformational changes 

across these different barriers. Both solvent packing effects and anharmonicity can modify 

the barrier for rotation between neighboring minima, thus substantially affecting the overall 

average value of any conformational dependent property. 

Experimental Studies of the Solvent Effects on 

Isomerization Rate Constants 

The effects of a solvent environment on the rate constant for reactions was 

discussed in Chapter III. Not only can a solvent environment affect the equilibrium 

conformational properties of the system, but it can also affect the rate of barrier crossing. 

Experimentalist have shown that the rate is proportional to the viscosity 

(macroscopic measurement of the friction), k oc: ,-a, where for the high viscosity limit of 



Kramers equation, a =1, but experimentally, a <1 is generally the casel08,113. 

Unfortunately, few molecules have been investigated over a complete viscosity range. 
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Cates and MacPhill32 studied the dynamics of n-butane as a function of different 

solvents using Raman spectroscopy. Their results show that the torsional fluctuations are 

weakly coupled to the collective mOdes of the solvent and that the short-range solute

solvent interactions are the most important.' 

Fleming and co-workersl33-135 have studied the,effects of different solvents on the 

isomerization of polyatomic molecules using flash photolysis and absorption spectroscopy. 

Their results show that molecules with slow isomerization rates require the frequency 

dependent friction mod~l to explain the observed behavior while molecules with the fastest 

rates require the zero frequency friction limit, i.e., constant friction, to explain the results. 

This behavior can be linked to the intramolecular potential in that, molecules with large 

(sharp) barriers probe a higher frequency region of the solvent than molecules with low 

(flat) barriersl33. 

Rothenberger et aL.136 used fluorescence spectroscopy to measure the isomerization 

rate of trans-stilben. Their results show a dramatic increase in the rate of isomerization in 

solution compared with the gas phase results. They have explained these results by 

observing which modes are excited in the two different phases. In the gas phase, optical 

modes are excited primarily and the rate of isomerization is directly related to the rate of 

energy transfer to the torsional mode by intramolecular coupling, whereas in solution, 

collisions excite more or less all vibrational states and therefore, the rate of isomerization 

depends on the efficiency of energy transfer from the solvent to the solutel36. 

Millar and Eisenthal137 studied the isomerizatiOI~ of 1,1'-binaphthyl in different 

alcohol solvents. They showed that the 1,1'-binaphthyl molecule is strongly coupled to the 

solvent and obeys Kramers theory over the entire friction regime, i.e., the friction acting on 

the reaction coordinate is constant. Flom et aL.138 studied the isomerization of 

alkenylantracen as a function of the solvent viscosity. The Grote-Hynes theory models the 
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experiment well but there is some discrepancy as to the correct ~(A) to use in the 

calculation. 

The experiments discussed above show that intermolecular coupling between the 

sulute and solvent can influence the dynamics of barrier crossing processes. The effects of -

the solvent on the thermodynamic activation parameters, AGt, ARt, and Ast can help 

elucidate information about the transition state and coupling between the molecule and 

solvent. 

Hasa, Eguchi, and Jonas139 have u,sed lH NMR spectroscopy to study the ring 

inversion of cyclohexane in methylcyclohexane-d14, carbon disulfide, and acetone-d(). 

Their results show that the activation parameters are independent of the solvent and that the 

rate constant for ring inversion increased as the pressure increased. These results show 

that the activation volume and transmission coefficient correlate extremely well with the 

solvent viscosity, which is proportional to the collision frequency. 

True and co-workers140-149 have studied isomerization reactions using dynamic NMR 150. 

Using this technique, pressure dependent rate data may be obtained if the system undergoes 

distinguishable unimolecular processes with moderate activation energies. Ross and 

True140 studied the effects of a solvent environment on the ring isomerization of 

cyclohexane. They observed a gas-phase inversion rate constant that is 2 to 3 times slower 

than that in the liquid-phase. This corresponds to activation parameters that are higher in 

the gas phase than in the liquid phase. The positive difference between the .gas-phase and 

liquid-phase AGt is consistent with a negative activation volumel05,113 (see Eq. III.13, 

chapter n. A negative activation volume suggests a tighter or more compact transition state 

than equilibrium structure which facilitates solvent packing120-121. Spring and True141 

studied SF4 and found a negative activation volume, which suggests a tight transition state. 

Chauvel and True143 observed small solvent effects on the activation parameters for 

methyl nitrite. They suggest that dielectric effects are equal and opposite to the effects of the 



solvent pressure on the conformational dynamics of methyl nitrite, where the dielectric 

effects are caused by the change in polarity between the syn and anti conformers. 
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Chu and Truel45 studied Tetrahydropyran (TPH) ring inversion and the effect of a 

solvent environment on this cyclic polar molecule. The results show that like the non-polar 

cyclohexane, the activation parameters and rate constant for ring inversion of THP exhibit a 

phase dependence. The gas-phase unimolecular rate constant is - 4 times slower than the 

rate constant in the liquid phase. THP also exhibits a negative activation volume which 

corresponds, as in cyclohexane, to a tight transition-state structurel45. 

Chu and Truel46 studied cyclohexyl flouride (CF) and obtained the phase 

dependence of the activation parameters and rate constant for ring inversion. The gas

phase ring inversion rate is - 7 times slower and ~at is 10% higher than in the liquid-

phase. This leads to a negative activation volume of -8 cm3 moi-l. The large negative 

activation volume is attributed to the importance of dielectric effectsl46. 

LeMasters et af.l47-149 has studied three six membered ring systems to complement 

the previously mentioned ring systems. These are hexahydro-1,3,5-trimethyl-1,3,5-

triazine (THTRIZ)l47, N,N-dimethylpiperazine (DMPZ)l48, and N-methylmorpholine 

(MM)l49. The experiments show that THTRizl47 differs from cyclohexane, THP, and 

CF, in that, an increase in the rate constant for ring inversion and a slightly lower ~at is 

observed in the gas phase as compared with its liquid counterpart, which is consistent with 

a positive activation volume. The activation volume for THTRIZ is- 1 cm3 moi-l. This 

could be due to the bulky exocyclic methyl groups and the possibility of a "loose" transition 

state due to the rapidly inverting ring nitrogensl51. DMPzl48 also has a lower ~at in the 

gas phase than in the liquid phase and yields a positive activation volume of 4 cm3 moi-l. 

The ring inversion rate constant for MM149, which incorporates both Nand 0 into the six 

membered ring~ exhibits a phase dependence similar to cyclohexane, THP, and CF, i.e., 

slower rates and a higher activation free energy in the gas-phase as compared to the liquid

phase. The decrease in ~at gives a negative activation volume which was estimated to be -
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9 cm3 moi-l. This is the largest negative activation volume in the series of six membered 

rings; cyclohexanel40 (-4 cm3 moi-l), THP145 (-5 cm3 mol-l), Cfl46 (-8 cm3 mol-l), but 

opposite to THTRIZ147 (1 cm3 moi-l) and DMPZ148 (4 cm3 moi-l). 

The value of Ast for MM149 is 0.8 cal mol-l K-1 and is the lowest value of Ast for 

the series of six membered rings; cyclohexanel40 (5.7 cal moi-lK-1), THP145 

(6.0 cal moi-lK-1), cp146 (3.3 calmoi-l:K-1), THTRJZ147 (2.8 calmoi-lK-1), and 

DMPz148 (6.1 cal moi-lK-1). Such large activation entropies suggests freely 
' 

pseudorotating transition states which were predicted by Pickett and Strauss152 for 

cyclohexane and related oxanes. The small ASt for MM suggest that pseudorotation in the 

transition state is significantly hindered which could be due to the asymmetry of the ring. 

Theoretical StUdies of the Solvent Effects on 

Isomerization Rate Constants 

In the experimental study of the ring inversion of cyclohexane139 in high-pressure 

liquids, the rate constant for ring inversion is observed to increase as the pressure 

increases. This result has been questioned since statistical calculations on simple models 

predict that the transmission coefficient sh!luld decrease with increasing liquid pressure for 

most isomerization reactions 111. Thus, U: the statistical calculations are to agree with 

experiments, it must mean that the transition-state theory rate constant is an increasing 

function of the solvent density and increas~g at a much faster rate than the decrease in 

transmission coefficient. Therefore, to bring theory into accord with experiment, Chandler 

and co-workers39-40,124 used the reactive flux correlation method to study the chair~boat 

ring inversion for cyclohexane. They show that the solvent contribution to the activation 

free-energy is positive but quite small and an increasing function of the pressure. 

Therefore, transition-state theory predicts a small (if any) decrease in the rate of ring 

inversion with increasing pressure. The stochastic molecular dynamics simulation shows 

that the transmission coefficient increases with increasing pressure. They attribute this 
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increase in the transmission coefficient to additional coupling to the solvent environment 

which enhances the rate of stabilization of the molecules after passing through the activated 

transition state. Their results show that quasiperiodic motion is important in the liquid 

phase isomerization of cyclohexane. Since the nonchaotic trajectories deplete the rate, the 

ability of the solvent to quench these trajectories leads to increased rates with increasing 

pressure or density. 

Robinson and co-workers41-43 have used full molecular dynamics simulations to 

study the solvent effects on model systems. Performing full molecular dynamics 

simulations provides information unavailable from the reactive flux method 125. For 

example, if the reaction occurs under non-eqUilibrium or non-steady state conditions, 

dynamics distant from the transition state could be important153-154. Statman and 

Robinson41 and Zhu, Lee, and Robinson42 studied the frequency-dependent friction along 

the reaction coordinate for a model system with a symmetric double well potential. If the 

intramolecular potential solely determined the rates, the equilibrium constant should be 

unity. The equilibrium constant obtained from the molecular dynamics simulations 

deviated by a factor of 10, thus solvent effects must play a role in the isomerization 

dynamics. 

The rate constants for isomerization, obtained from the molecular dynamics 

simulations, were compared with the rate constants obtained using Kramers114 theory and 

the Grote-Hynes frequency-dependent friction modeJ115-117. Neither of the statistical 

theories reproduce the rate constants obtained from the molecular dynamics calculations. 

Therefore, the entropic contribution to the rate constants due to the change in the 

hydrodynamic volume upon isomerization was calculated. The Flory-Huggings155a 

equation 

[ 1 1 J [ ~VB] kb-1 (~S)v =~VB Vs - VB - Ns In 1 + NsVs (IV.1) 
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(where N8 is the number of solvent molecules, NB is the number of isomerizing molecules, 

V8 is the volume of a single solvent molecule, and VB is the volume of a single isomerizing 

molecule) was used to calculate the entropic contribution to the ra~e constant Incorporation 

of the en tropic term into the statistical rate constants partially resolves the difference 

between the statistical theories and molecular dynamics simulations. 

Zhu and Robinson43 have used molecular dynamics simulations to study ultrafast 

dynamics in a model quasi-diatomic system, i.e., a double well potential in which a 

reaction occurs between an inner well at a contracted bond distance and an outer well at an 

extended bond distance. If the condensed-phase barrier crossing reaction takes place 

rapidly with respect to the solvent motion, local non-equilibrium dynamics may exist-43. 

They observe deviations from Maxwell-Boltzmann behavior. They show that the kinetic 

energy of the quasi-diatomic molecule along the reaction coordinate is not evenly 

distributed. On average, molecules with shorter bond lengths are relatively cool while 

those having bond lengths near the outer minimum are relatively hot. They suggest that 

once the molecule becomes excited, interaction with the heat bath· becomes less efficient due 

to the disparity in the frequencies between the molecule and solvent bath. Therefore, the 

less efficient the interactions between the molecule and solvent, the more severe the 

distortion of the kinetic energy distribution along the reaction coordinate~3. 

Straub et az.44 studied the isomerization of a diatomic model similar to the model 

system of Zhu and Robinson43. Their results show that simple theories such as 

Kramers 114 theory and Grote-Hynes' theory 115-117, predicts the correct rate constant as 

long as the frictional interaction between the solvent and the reaction coordinate and the 

potential of mean force are accurately known. Unfortunately, these quantities cannot be 

estimated with sufficient accuracy for many realistic systems. Thus, methods such as 

molecular dynamics simUlations must be used to calculate them. 

Marks et az.156 studied the isomerization of methyl isocyanide in a dense argon 

fluid. Their results show that the isomerization rate constant increases as the solvent 
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density increased until it reaches the plateau region (the rate constant is independent of the 

bath gas concentration), as predicted by Lindemann theory (see Chapter Ill). As the 

concentration further increases, the magnitude of the rate constant exhibits a dramatic 

increase. This deviation from Lindemann theory was attributed to a negative activation 

volume (Eq.ID.13)156. 



CHAPTER V 

COMPUTATIONAL PROCEDURES 

Introduction 

Two generally accepted procedures for calculating equilibrium properties of 

molecules in the gas and condensed phases are Monte Carlo1-2•157 and molecular 

dynamics1-5. Monte Carlo methods use pseudo-random configurations of the atoms which 

are selected from a canonical distribution. The average value of variable <Jil> is obtained 

by solving the equation, 

<.91> = z-1 f Jtexp[-J3V(q)]dq, (V.l) 

where Z is the classical partition function given by, 

Z = J e~p[-J3V(q)]dq. (V.2) 

V(q) is the potential energy at a configuration q(q1,q2, ... ,q0) and J3 = 1/KT where K is the 

Boltzmann constant and Tis the ensemble temperature. In the Monte Carlo solution of Eq. 

V.l, the average is expressed1-2,157 

N 

<~ = J~oo N-1 L J4. (V.3) 
i=1 

35 
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The sum can be estimated using Metropolis158 sampling methods. This is accomplished by 

performing a Markov walk. In each Markov step a new trial configuration is generated by 

moving an atom according to, 

qtrial = %ld + (0.5 - ~1) Bq' (V.4) 

where ~1 is a random number distributed uniformly over the interval [0,1]. If the move 

lowers the energy of the system, than the trial configuration is saved as the new 

configuration. If the move raises the potential energy of the system, the move is accepted 

with a probability of exp[-~V/KT], where ~V=Vtrail- Vold· This is accomplished by 

choosing a random number, ~2• and if ~2< exp[ -~ V /K:T], then the trial configuration is 

accepted; otherwise, the move is rejected and the system is returned to the old 

configuration. This procedure is repeated until convergence is achieved The value of Bq 

is chosen so that 40-50% of the trial moves are accepted At each step in the Markov chain, 

the computed averages are updated. 

Since the potential energy is a function of only the configuration of the molecule, 

the dynamical properties of the system are not considered. 

The second method, molecular dynamics simulations 1-5, involves the solution of 

the classical equations of motion. The calculation of the equilibrium properties are then 

obtained by invoking the ergodic hypothesis which states that as the time of the trajectory 

approaches infinity, the time-average will approach the ensemble average (Eq. V.l). The 

advantage of molecular dynamics simulations compared with the Monte Carlo method is 

that the time varying properties of the system can be studied. 

The molecular dynamics simulation technique was first developed for simulating 

hard-sphere6 and Ar7-8 atoms in simple liquids. The method was then extended to 

molecular liquids such as water126, alkanes127 and alcohols127. Molecular dynamics 

simulations have also proven to be a very powerful tool for the study of time varying 
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properties of proteins, nucleic acids, carbohydrates, and polymers in the gas, solution, and 

crystal phases9-32. 

Molecular dynamics simulations are performed by numerically integrating 

Hamilton's equations of motion, 

and 

. - ()H(p,q) 
p·-- aq 

• - ()H(p,q) 
q- ()p 

(V.5) 

(V.6) 

where H(p,q) is the Hamiltonian for the system, q(q1,q2, ... q0) and p(pl'p2, ... p0 ) are the 

coordinates and conjugate momenta of all the particles at some initial time to, respectively; 

and q and p are the time deiViatives of the coordinates and momenta, respectively. 

Since the number of particles included in an molecular dynamics simulation is 

small, usually between 10- 1Q3, the particles are confined to a "box" with periodic 

boundary conditions. (Some of the mechanics of periodic boundary conditions will be 

discussed later in this chapter.) The primary box of particles is than repeated to create an 

infinitely periodic system. This method reproduces equilibrium properties of liquids well if 

the number of solvent atoms is greater than ca. 100. Bunker et a[.159, in a calculation of 

the recombination of 12 in Ar, showed that if fewer than 100 solvent atoms were 

incorporated, the dissociating iodine atoms could interact with a solvent atom and its 

periodic image. J 

Calculations for systems with 100 or more solvent atoms can require a considerable 

amount of computational time. Since activated events are usually localized events, i.e., 

relatively few solvent atoms participate directly in the dynamics of the solute, the effect of a 

solvent atom far way from the solute molecule is diminished. Therefore, it is desirable to 
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avoid detailed calculations of the trajectories of atoms distant from the activation site. 

Thus, a method which incorporates only the necessary number of atoms into the dynamical 

calculation and models the interactions between the reacting molecule and the bulk solvent 

through a potential of mean force is desirable. 

Bunker et a[.159, Murrell and co-workers160-163, and Stace164 applied a technique 

developed by Lennard-Jones and Devonshire165 for modeling rare gas fluids. This method 

uses a fmite volume where the walls of the container, usually a sphere, are comprised of 

stationary solvent atoms. Inside the sphere, the solvent atoms are allowed to move 

according to the potential-energy function, while the atoms comprising the wall act as a 

potential of mean force on the solvent atoms inside the sphere. Murrell and co-workers160-

164 and Stace164 used the Born-Meyer potential to model the solute-wall and solvent-wall 

interactions. It has been shown156.160-164 that with about 8 to 32 solvent atoms, this 

model gives good qualitative results, and the computational time is decreased dramatically. 

It should be noted that, due to the absence of periodicity, the long range interactions and 

long time correlation effects obsetved in systems where periodic boundary conditions are 

employed would not be present using this model. Brooks and Karplus166 have shown that 

this model should be representative of a dense gas. 

Berkowitz and McCammon167, retaining the boundaries of the fmite volume 

method 165, incorporated stochastic boundary conditions in an attempt to decrease the 

surface effects. In their model, three regions are defined: a reaction region, which is the 

most inner area of the sphere; a bath region which surrounds the reaction region; and a 

reservoir region which is used to contain the particles in the reaction and bath regions. The 

atoms in the reaction and bath regions move according to Hamilton's equations of motion 1 

and stochastic dynamics125, respectively, while the resetvoir atoms remain fixed. The 

particles of the reaction and bath regions are allowed to pass into the neighboring region. 

Thus, as a particle from the reaction region passes into the bath region, the dynamics of that 

particle switches from molecular dynamics (Hamilton's equations of motion) to stochastic 
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dynamics. The same occurs for a particle in the bath region that moves into the reaction 

region. This method reproduces the solvent structure and long time correlations well, but 

cannot quantitatively reproduce the results of a infinitely periodic system167. 

Brooks and Karplus166 have extended the methpd of Berkowitz and 

McCammon 167 by introducing a deformable boundary rather than a predetermined 

configuration of particles for the reservoir region. Brooks and Karplus166 assume that the 

forces on an atom in the reaction and bath regions due to particles beyond the boundary 

arise from the average structure of the bulk solution. Therefore, for a simple liquid, only 

knowledge of the pair distribution function is required The molecular dynamics simulation 

is performed by conventional techniques with the addition of a deformable boundary force 

arising from the mean field interactions with particles beyond the boundary. They show 

that the structural, dynamics, and thermodynamic properties calculated are in satisfactory 

agreement with a conventional molecular dynamics simulation, but at a large reduction in 

computational time. 

The problem of surface effects can be overcome by implementing periodic 

boundary conditionsl,l68. In this method, a cubic box is replicated throughout space to 

form an infmite system. In the course of the simulation, as a molecule moves in the 

primary box, its periodic image in each of the adjacent boxes moves in exactly the same 

manner. Therefore, as a molecule leaves the primary box, one of its periodic images enters 

through the opposite face. There are no walls at the boundary of the primary cell and 

therefore, no surface effects. 

Potential-Energy Surface 

The Hamiltonian for the system is given by, 

N p~ 
H = L -2 1 + Vintra + Vinter + V wall 

i=l IDj 
(V.7) 
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where V intra is the potential term for the molecule, V inter is the potential term for the 

molecule-solvent and solvent-solvent interactions, and V wall is the interaction of the 

molecule and the solvent with the boundary of the reaction sphere. 

The intramolecular potential is given as follows, 

Vintra = Vbond + Vbend + Vwag + Vtorsion + VL-J, (V.8) 

where the bonds are represented by harmonic or Morse potentials, 

Vharmonic = L -21 ks(r.-rf)2 
. 1 

(V.9) 
1 

or 

"" -a(r.-r~) 2 
VMorse = £..J De(l - e 1 1 ) ' (V.lO) 

with ks, De and rO being the harmonic force constant, dissociation energy, and equilibrium 

bond distance respectively. The curvature parameter, a, is given by, 

~nz;CX=-v ~ . 

The bond angles and wag angles are represented by harmonic potentials, 

and 

(V.ll) 

(V.l2) 
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(V.13) 

with kb and eo being the bond angle force constant and equilibrium bond-angle 

respectively, and ky and "f being the wag angle force constant and equilibrium wag angle 

respectively. The ~edral angles are represe!J.te4 by a three-term cosine series, 

2 

Ytorsion = 11· aj cosG'ti). 
i j=O 

(V.14) 

where the aj's are fitting parameters. The non-bonded interaction, i.e. interactions between 

any two atoms not bonded to each other or to a common atom, are represented by Lennard-

Jones 6-12 interactions, 

VL-J = l4er{-(~)12 - (~)6}. J f.. f .. 
lj lj 

(V.15) 

where rij is the distance, <Jij is the atomic radius, and £ij is the Lennard-Jones well depth 

between atoms i and j. The atomic radius and Lennard-Jones well depths are calculated 

using the Lorentz-Berthelot mixing rulesl, 

a .. = [a. + a·] lj 1 J (V.16) 

and 

(V.17) 

where ai and ei are the atomic radius and Lennard-Jones well depth for the ith atom. 
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The molecule-solvent and solvent-solvent interactions, V inter. are also represented 

by the Lennard-Jones 6-12 potential given in Eq. V.15. All solvent-molecule and solvent

solvent interactions were included, that is, no explicit cutoff distance was used. 

Finite Volume Method 

For the finite volume method 160-164, a wall potential, V walt. describing the 

molecule-wall and solvent-wall interactions is modeled using a modified Born-Meyer 

interaction of the form156, 

(V.18) 

where R is the radius of the sphere and Pi is the distance of atom i from the center of the 

sphere. The p2 term in the numerator guarantee the potential and first derivative go to zero 

at the center of the sphere (p=O). The parameters A and b are set so that the wall potential 

will be large enough to confine the solute and solvent atoms, yet 'soft' enough so that the 

integration step size will not have to be decreased appreciably to retain good energy 

conservation. On average, the kinetic energy of an atom is 3Kf/2 and since only one 

component of the momenta is required to change sign for an atom to be reflected by the 

wall, an individual atom will be confined within p < R if 

1 
Vwall(p(T));;:: 2 KT, (V.19) 

where the equality gives the maximum distance from the (!enter of the sphere (p(T)), on 

average, that an atom can achieve for a given temperature. The values of A and b are taken 

empirically as 100 kcal moi-l and 9.5 A-1, respectively. The inequality in Eq. V.19 is 

shown in Figure 4 for the temperature range 400 to 1500 K using our choice of potential 



Figure 4. Effective Radius Versus Temperature. The open circles represent the average 
maximum distance from the center of the sphere an atom will achieve at a 
particular temperature. 
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parameters for V wall· This shows that over a large range of temperatures, the average 

distance that a particle will experience from the center of the reaction sphere is ca. 0.945 to 

0.955 R, where R is the radius of the sphere. 

Periodic Boundary Method 

The periodic boundary method simulates an infinitely periodic system. This is 

achieved by requiring that as a molecule leaves the primary box, one of its images enters 

the primary box through the opposite wanl,168. This can be achieved by following a 

particle in the primary box and switching attention to its periodic image when it leaves the 

box by adding or subtracting L to its x, y, or z coordinate (depending on the face the 

exiting particle passes through), where L is the length of the box. 

The minimum image convention by Metropolis158 was employed. In this scheme, 

molecule i is at the center of a region which has the same size and shape as the primary cell. 

Molecule i interacts with all the molecules whose centers lie within this region, that is, with 

the closest periodic images of the N-1 neighboring molecules. Using this convention 

produces a cutoff distance of ~ L. Thus, the potential interaction between two particles 

separated by more than this distance is assumed to be zero. The error generated by this 

convention should be negligible if the length of the box is = 6cr, where cr is the atomic 

radius of the solvent atomsl. At a distance of 6cr, the potential interaction between two 

solvent atoms is -0.0001e, where e is the Lennard-Jones well depth. Using the minimum 

image convention, there are ~ N(N-1) pairwise interactions. 

In this work, the frame of reference is moved after each step of the simulation such 

that the center of mass of the solute molecule remains at the origin of the coordinate 

system42. 
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Procedures 

The initial configuration of the molecule is taken as the equilibrium structure and its 

center of mass is placed at the origin of the coordinate system. The initial configuration of 

the solvent is obtaine4 by placing the solvent atoms in a fcc arrangement around the solute 

molecule. The edge of the lattice is calculated as, 

(V.20) 

with rna and m~ being the total mass of the solute and solvent respectively and D is the 

density of the solution. 

It is desired for the initial configuration of the system to be at a low potential 

energy, but this is not always possible as the density increases. Therefore, an annealing 

trajectory is calculated to allow the system to relax away from the initial strained 

configuration. This is accomplished by zeroing the atomic momenta whenever the kinetic 

energy of the system becomes larger than the potential energy. Usually, about 1.0 to 2.0 

ps of annealing is sufficient to remove any large potential energy due to the starting 

configuration. 

The initial values for the momenta of each atom~ selected randomly from a 

thennal distribution, 

(V.21) 

where ~ is a random number weighted by a Gaussian distribution, mi is the mass of the ith 

atom, and K and T 0 are the Boltzmann constant and desired ensemble temperature, 

respectively. An initial warm up trajectory is calculated by numerically integrating 

Hamilton's equations of motion. Only one warm up trajectory is performed for each 



ensemble of trajectories. During the warm up trajectory, the momenta were scaled 

periodically to the ensemble temperature T 0 using the scaling factor20 

~~ sf = <'1> · -1 , 

where <'I> is the temperature averaged over.a specified intetval. The instantaneous 

temperature of the trajectory is given by, 
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(V.22) 

(V.23) 

where ndf is the number of degrees of freedom for the system (3N-6 for a gas-phase 

molecule and 3N for a solution), K is the Boltzmann constant, N is the total number of 

atoms in the system, mi is the mass of the ith atom, and P's are the Cartesian momenta for 

the ith atom. The warm up trajectory should be long enough to destroy any artifacts of the 

initial configuration of the system. Periodically during the warm up trajectory, 

configurations of the system are saved as initial configurations for subsequent trajectories 

for that ensemble. 

Using one of the saved configurations from the warm up trajectory, a new set of 

momenta for each atom is sampled from a thermal distribution using Eq. V.21 and the 

trajectory is equilibrated by periodic temperature scaling. The equilibration time should be 

sufficient such that the mean fluctuations in the temperature are close to zero, the rotational 

and translational energy of the solute are 1.5K<T>, where <T> is the time-averaged 

temperature of the trajectory respectfully, and the internal kinetic energy of the solute is 

close to (3Nso~ute-6) K<T>, where Nsolute is the number of atoms in the solute. After the 

equilibration time, the trajectory is continued without further temperature scaling and phase

space points are saved periodically for subsequent analysis. 
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During each trajectory, the temperature and pressure of the system and the 

translational energy <Etrans). rotational energy (Erot), and internal energy <EintemaV of the 

solute are calculated. The temperature is calculated using Eq. V.23. The average pressurel. 

is calculated using, 

(V.24) 

where 'I and V are the instantaneous value of temperature and volume, N is the total 

number of atoms, and the term in the brackets is the intermolecular pair virial where v (rij) 

represents the molecule-solvent and solvent-solvent potential-energy terms (for a complete 

derivation, see Appendix A). The translational energy is give~ by169, 

(V.25) 

where V x• Vy. and V z are the center-of-mass Cartesian velocities and M is the total mass of 

the solute. The rotational energy is given by169, 

(V.26) 

where L is the angular momentum vector, 

N 

L = L [ r i x pi]' (V.27) 
i =1 

with ri and Pi being the positiQn and momentum vector of the ith atom relative to the 

center-of-mass of the molecule, respectively, and I is the moment of inertia tensor for the 

solute molecule. The internal energy of the solute molecule is given by, 

Eintemal = Etotal - <Etrans + EroV (V.28) 
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where Etotai is, 

(V.29) 

with Ekin being the internal kinetic energy given by 

Nsoiute 2 2 2 L p X· + p y · + p 7~ 
Eki - 1 1 -, 

n- 2m· ' 
i=l 1 

(V.30) 

(where the external rotational and translational energy of the solute has already been 

subtracted) and V intra is given by Eq. V .8. All the other variable have their usual meaning. 

Using this defmition for the total energy of the solute molecule, the energy due to coupling 

between the solute and solvent is neglected. 

The time-averaged temperature is calculated by sampling the instantaneous 

temperature (Eq. V.23) during a trajectory. The ensemble-averaged temperature is then 

deduced from the mean of the individual trajectories comprising the ensemble. The time

average and ensemble-average values of the pressure (P), Etrans. Erot. Eintemal. and Ekin 

are obtained in the same manner. 

The gas-phase molecular dynamics calculations were performed using the general 

trajectory code, GenDyn170 with modifications to include canonical initial conditions. 

Minimum and Transition-State Structures 

Mapping out the entire potential-energy surface is a formidable task, but calculating 

stationary points is slightly more tractable171. We have employed three different ways of 

calculating the stationary points on the potential-energy surface. 
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Minimum Structures 

One method employed to obtain the minimum energy structure is the minimization 

routine STEPIT172 which requires only the function to be minimized. Unfortunately, 

STEPIT is vary tiffie consuming, especially when minimizing numerous structures far from 

the local minimum. 

Another method employed for finding minimum structures is the variable metric 

method171.173. In this met:hod, an approximation to the mverse Hessian, H-1, is 

constructed iteratively such that171 

(V.31) 

where Ai is a sequence of matrices. If the potential-energy surface is approximated as a 

harmonic function, 

(V.32) 

where V(q) is the· potential-energy at configuration q, g is the computed gradient, and His 

the approximate Hessian, than the minimum configuration, <Jrn, will satisfy, 

(V.33) 

while at any point, qi, Eq. V .33 becomes 

(V.34) 

Subtracting Eq. V.34 from Eq. V.33 and multiplying by H-1 yields, 

q - q. = "-1 (- a__,~._..;< q""-i) ) 
m 1 uqi (V.3~) 
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Thus, the LHS is the finite step needed to move from configuration qi to the minimum 

configuration qm. Subtracting Eq. V.35 at configuration qi from the same equation at a 

new configuration qi+1 gives 

(V.36) 

The requirement is now imposed thatA\+1 satisfy Eq. V.36 as i{it were truly H-1, 

(V.37) 

Therefore, a new point qi+ 1 is given by, 

(V.38) 

whereA\+1 is the inverse of·the updated Hessian at the point qi+1, which can be obtained 

using the Broyden-Fletcher-Goldfarb-SQ,anno updating formula171,173. This method 

converges to a minimum much faster than does STEPIT172 since information about the 

gradient and Hessian of the potential-energy surface is employed. 

Transition-State Structures 

Since the Hessian is not posititive-definite, the variable metric method cannot be 

used to calculate trOO:sition-state structures111. Mciver and Komornicki 174 proposed that a 

saddle point can be obtained by minimizing the norm of the gradient, 

~ [ (~~J + (~J + (~~JJ ' (V.39) 

1 
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where V is the potential energy function, since it is zero at a stationary point on the 

potential energy surface. This can be achieved using a non-linear least-squares technique. 

This method will converge directly to the transition state provided the starting point is close 

to the saddle point. At the transition state, the gradient norm must be zero and not just a 

minimum. This is a drawback of this method, since the gradient norm can be a minimum at 

a shoulder in the potential-energy surface. Therefore, caution must be used when 

searching for transition-state structures. 



CHAPTER VI 

CONFORMATIONAL STUDY OF GAS-PHASE 

RDX,AT300K 

Introduction 

In this chapter, we have applied molecular dynamic simulation methods in a study 

of isolated molecules of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The goal of this 

chapter is to develop a potential-energy surface for gas-phase RDX that is accurate at 

thermal energies, study the dynamics of conformational changes, and compute the entropy 

(and free energy) change for the chair-to-boat inversion. 

Potential-Energy Surface 

An equilibrium potential-energy surface was constructed for a theoretical C3v 

structure for the chair conformation of the triazine ring by using averaged values of the 

equilibrium bond lengths of the comparable bonds in the a-RDX crystal structure obtained 

by Choi and Prince59, that is, the average value of the six C-N ring bonds in the crystal 

structure were used for all the C-N bond distances. Since the gas phase RDX molecule is 

thought to possess C3v symmetry, the values of the ring (C-N-C and N-C-N) and 

methylene (H-C-H) bond angles were assu~ed to be tetrahedr~. The wag angles, defined 

as the angle between the plane of the C-N-C atoms of the ring and the N-N bond of the 

exocyclic N02 group, for our potential were set equal to zero80-81 (see Fig 2). The 

C-N-C-N ring dihedral angles were set equal to 60° due to the tetrahedral symmetry of the 

ring bond angles. The C-N-N-0 dihedral angles were taken to be oo as calculated by 

Orloff et at.19 using CND0/2. The equilibrium values of all the internal coordinates are 
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given in Table I. The calculated Cs boat conformation is similar to the chair structure 

except that the apex atom N(2) is below the plane of the C(l), C(3), N(4), N(5) atoms of 

the molecule (see Fig. 3a). 

The potential-energy surface was constructed, 

V = V b<md + V '?end + V wag + V torsion. (VI. I) 

where the bonds are represented by harmonic potentials (Eq. V .9), 

(VI.2) 

with ks and :rO being the harmonic force constant and equilibrium bond distance 

respectively. The bond angles and wag angles are represented by harmonic potentials 

(Eqs. V.12 and V.13), 

(VI.3) 

and 

(VI.4) 

with kb and eo being the bond angle force constant and equilibrium bond-angle 

respectively, and ky and "f being the wag angle force constant and equilibrium wag angle 

respectively. The dihedral angles for the ring C-N-C-N and the exocyclic C-N-N-0 

dihedral angles are represented by a three-term cosine series (Eq. V.14), 



TABLE I 

EQUillBRIUM VALUES OF IN1ERNAL COORDINATES AND FORCE 
CONSTANT PARAMETERS FOR THE INTRAMOLECULAR 

POTENTIAL-ENERGY SURFACE OF RDX 

a b 
bond r<> kb 

C-N '1.454 4.80 
N-N 1.380 6.20 
N-0 1.210 ' 7.45 
C-H 1.081 4.99 

bond angle 
,c:,c e d 

ke 

C-N-C 109.500 0.4898 
N-C-N 109.500 0.4030 
C-N-N 125.250 0.5713 
N-N-0 117.202 0.7008 
0-N-0 125.596 0.4003 
N-C-H 109.500 0.4570 
H-C-H 109.327 0.3874 

c d 
wag angle ~ ky 

C-N-C--N02 0.00 0.66 

c e e 
dihedral angle '[0 3o a1 

C-N-C-N 60.00 0.09 -0.12 

a) Distance units are A. 
b) Stretching force constant units are mdyn A-1. 
c) Angle units are degrees. 
d) Angle force constants in mdyn A rad-2. 
e) Torsional potential parameter units are e V. 
f) Non-bonded interaction parameter units are kcal moi-l. 
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e 
a2 

0.06 
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2 

Vtorsion = L L a]· cos(j'tj). 
i j=O 

(VI.5) 

where the aj's are fitting parameters. The values of the potential parameters were obtained 

from the crystal force field for a-RDX of Trinquecoste eta/. 64 by transforming the normal 

force constant matrix to a valence force constant matrix and using only the diagonal 

elements169. The stretching force constants were used unaltered while the bond angle 

force constants were divided by one half175. The force constants for the torsional potential 

of the crystal were not used because they are expected to be influenced by the crystal lattice 

and thus would not be appropriate for an isolated molecule. Therefore, the parameters for 

the C-N-C-N dihedral angles of the triazine ring were obtained by fitting the barrier 

calculated by Allinger175 for aliphatic amines using the MM2 method84. This involves 

substituting a nitrogen atom in the place of a carbon atom for the C-C-C-N potential of 

piperidine. Vladimirotr3 used this method to study heats of formation and dipole 

moments for RDX and achieved satisfactory results. The torsional potential is intimately 

involved in the conformational dynamics and thus the lack of data for torsional barriers in 

cyclic nitramines is unfortunate. However, the potentials we use should be adequate. 

Filhol et a/. 80 used INDO to calculate the most stable configuration of the 

C2N--N02 groups. Their calculation showed that the most stable configuration is 

achieved when the nitro group is planar with respect to the C-N-C atoms in the ring (see 

Fig. 2). Planarity at the amine nitrogen was also observed by Politzer et a/ 81-82 in 

ab initio calculations for small nitramines. The INDO calculation84 showed that the 

restoring force for the wag angle potential is very weak, that is, - 1.0 kcal/mol for 10 

degrees out of the C2N-N~ plane. To obtain a C-N-N-0 torsional barrier, we used the 

value calculated by the semi-emperical technique CND0/2 which gave a rotational barrier 

of 10 kcal/mol for the exocyclic N02 group79. The values of the potential parameters are 

given in Table I. 



The experimental and calculated normal-mode frequencies are compared in 

Table II. The calculated normal-mode frequencies were obtained from the analytical 
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second derivatives of the potential-energy surface. The experimental frequencies are for 

RDX in the solution phase66. The solution and gas phase spectra are expected to be 

similar and there are no complete gas phase spectra for RDX. Experimental values for the 

torsional frequencies are not available for comparison. The average root mean square 

( <rms>) deviation between the experimental and the calculated frequencies for the chair 

structure is 33 cin-1. 

Conforma.tional changes sometimes involve motion of more than one internal 

coordinate. We use the Cremer-Pople pucker coordinates176-177 to describe the different 

conformations of the ring atoms of RDX (see appendix B for a complete derivation). For a 

six membered ring, the three puckering degrees of freedom can be represented by a set of 

"spherical polar" coordinates, Q, E>, and <I> given by 

and 

1 6 
_rz L Zi cos[1t(i-l)] 
'V6 ·-1 cos 8 = --1-------

Q 

-tan <I> 

6 

~ z 1 sin [j1t(i-l)J 
1=1 

6 ' 

~ 'z 1 cos [j1t(i-l)] 

(V1.6) 

(V1.7) 

(VI.8) 



TABLE IT 

EXPERIMENTAL AND CALCULATED FREQUENCIES FOR THE CHAIR AND 
BOATSTRUCTURESOFRDXa 

Experimental b Cal~:ulat~'f 
Chair Boat 

7 

47 (2) 48 
61 66 
147 (2) 137 

143 
174 

191 185 
205 (2) 201 
210 208 
237 (2) 232 

255 
287 261 

395 
411 (2) 412 

415 
422 (2) 441 

458 
410 425 482 
470 471 538 
490 591 574 
595 627 (2) 609 
610 719 (2) 719 

723 
740 

740 759 784 
750 774 (2) 799 
794 872 857 
855 944 (2) 943 

982 
910 969 994 
935 1041 (2) 1005 

1023 
1015 1049 1048 
1045 1054 1059 
1230 1131 (2) 1132 
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TABLE II (Continued) 

Experimental b Calculatedc 
Chair Boat 

1137 
1270 1271 1270 (2) 
1320 1272 (2) 1275 
1392 1350 (2) 1342 

1347 
1435 1414 1410 
1460 1497 1494 
1550 1544 (2) 1547 (2) 
1585 1568 (3) 1567 (3) 
2980 2985 (3) 2985 (3) 
3080 3062 (3) 3061 (3) 

a) Units are cm-1 
b) Iqbal eta/., Ref. 66 
c) This work. 
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with Q being the single puckering amplitude. The sum is over the six atoms of the ring 

and the Zi'S are the atomic displacements of the ring atoms from a mean plane that passes 

cthrough the geometrical center of the triazine ring. The exocyclic atoms have no influence 

on the definition of the pucker coordinates. 

The different conformations of the triazine ring, i.e., the chair, boat, and twist, are 

located at specific positions defmed by the coordiiiates E> and w on the surface of a sphere 

of radius Q. The chair structure is located at E>=<t or 180. with w being undefined since 

the chair structure is located at the pole of the sphere. Rotating the polar angle E> from o· 
to 90• describes the chair-to-boat ring inversion. At the equator of the sphere (E> = 90.), as 

the azimuthal angle rotates ~tween 0 and 2x, the triazine ring experiences all the different 

boat and twist conformations. The different boat and twist conformers (9=90.) are located 

at w = 0, 60, 120, 180, 240, and 3oo· and w = 30, 90, 150, 210, 270, and 330·, 

respectively. As the polar angle continues for 90• to 180., the ring undergoes inversion 

from the boat to the inverted chair structure. 

The potential energy of the RDX molecule in the chair, boat, and twist-boat 

conformations was minimized using the program STEPIT172. The minimum energy 

structures are shown in Figs. 2, 3a, and 3b for the chair, boat, and twist conformations 

respectively. The boat (9=900, w=O•) and twist-boat (8=90·, W=30•) structures are equal 

in energy and 1.3 kcal mol-l higher in potential energy than the chair (E>=O·, W=Q•) 

structure. To locate the transition states between the chair and boat or twist structures, 

trajectories which experienced ring inversions where followed and the norm of the gradient 

(Eq.V.39) was minimized, using a conjugate gradient nonlinear-least squares technique, at 

points along the trajectories. The gradient norm was minimized to better then 5x10-3 to 

determine the local minima and maxima. Figures Sa and 5b show the transition state 

structures for the chair-to-boat and chair-to-twist inversions, respectively. The transition 

state for the chair-to-boat inversion is located ate= 57.7° and w = 181.6° (Fig. 5a). The 

barrier calculated for this inversion path is 4.72 kcal moi-l and the structure at the barrier is 



Figure 5. Half-boat and Half-chair Transition-state Structures of RDX. (a) The half-boat 
structure is 4. 72 kcal mot 1 higher in energy than the chair structure. Atoms 
C(l), C(3), N(4), C(5), and N(6) lie in a plane. (b) The half-chair structure is 
4.72 kcal mol-l higher in energy than the chair structure. Atoms C(3), N(4), 
C(5), and N(6) lie in a plane. The atom types are the same as in Figure 2, but 
the molecules have been rotated for clarity. 
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a 

Chair-to-boat TS 
b 

Chair-to-twist TS 
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of Cs (half-boat) symmetry. Figure 5b illustrates the structure at the transition state for the 

chair-to-twist-boat inversion, e = 56.T and <I>= 152.T. The barrier is 4.76 kcal moi-l 

for this Ct (half-chair) structure. 

The internal coordinates for the minima and transition states are given in Table ill. 

Unfortunately, there are no experimental gas-phase values with which to compare these 

results but we can compare our minimized structures with the a-crystal structure59. 

Procedures 

Two ensembles at 300 K were calculated using the methods described in·chapter V. One 

ensemble initiated the ~X molecule in the chair conformation (I) while the second 

ensemble corresponds to the RDX molecule initially in the boat conformation (II). A 

100 ps warm-up trajectory was calculated for each ensemble. The trajectories were 

integrated for 20 ps after 20 ps of equilibration. Due to the small number of the atoms 

present in the RDX system and the exchange between potential and kinetic energy, 

fluctuations in the instantaneous temperature were observed. Because of these 

fluctuations, scaling each trajectory to a certain temperature is almost impossible. 

Therefore, some deviation from the ensemble temperature must be accepted for each 

individual trajectory. Any trajectory whose average temperature deviated by more than 10 

K from the desired ensemble temperature was rejected. The ensemble temperature for I 

and II are 302 ± 5 and 300 ± 5 K, respectively. For each run, an ensemble of 10 

trajectories were calculated which gave 200 ps of dynamics. 

A Runge-Kutta-Gill fourth order numerical integrator was used to solve the 

equations of motion with a fixed step size of 1.2 x I0-16 s. This step size gave energy 

conservation of 1 x I0-4 relative percent error. 



TABLE ill 

INTERNAL COORDINATES FOR Tiffi MINIMUM AND 
TRANSIDON-STATE STRUCTURES OF RDxa 

Coordinate Crystalb Chairc Half-boatd Boo.f Half-cbail 

Bond:g 

C(1)-N(2) 1.46 1.454 . 1.452 1.454 1.446 
N(2)-C(3) 1.46 1.454 1.450 1;454 1.446 
C(3)-N(4) 1.46 1.454 1.458 1.454 1.454 
N(4)-C(5) 1.46 1.454 1.455 1.454 1.462 
C(5)-N(6) 1.46 1.454 1.456 1.453 1.461 
N(6)-C(1) 1.46 1.454 1.454 1.454 1.452 
N(2)-N(7) 1.35 1.380 1.3.81 1.380 . 1.380 
N(4)-N(10) 1.35 1.380 L378 1.380 1.380 
N(6)-N(l3) .1.35 1.380 1.379 1.380 1.380 
N(7)-0(8) '1.23 1.210 1.210 1.210 1.210 
N(7)-0(9) 1.23 1.210 1.210 1.210 1.210 
N(10)-0(11) 1.23 1.210 1.210 1.210 1.210 
N(10)-0(12) 1.23 1.210 1.210 1.210 1.210 
N(13)-0(14) 1.23 1.210 1.210 1.210 1.210 
N(13)-0(15) 1.23 1.210 1.210 1.210 1.210 
C(l)-H{20) 1.09 1.081 1.081 1.081 1.081 
C(l)-H(21) 1.09 1.081 1.081 1.081 1.081 
C(3)-H(16) 1.09 1.081 1.081 1.081 1.081 
C(3)-H(17) 1.09 1.081 1.082 1.081 1.081 
C(5)-H(18) 1.09 1.081 1.081 1.081 1.081 
C(5)-H(19) 1.09 1.081 1.081 1.081 1.081 

Bond angle:h 

C(l)-N(2)-C(3) 115.1 109.50 107.24 109.50 106.45 
N(2)-C(3)-N(4) 108.3 109.50 113.54 109.50 110.94 
C(3)-N(4)-C{5) 115.1 109.50 116.29 109.50 115.16 
N(4)-C(5)-N(6) 108.3 109.50 120.35 109.50 121.16 
C(5)-N(6)-C{1) 115.1 109.50 112.81 109.50 114.38 
N(6)-C(1 )-N(2) 108.3 109.50 106.76 109.50 109.41 
C(1)-N(2)-N(7) 119.7 125.25 126.39 125.25 126.77 
C(3)-N(2)-N(7) 119.7 125.25 126.37 125.25 126.77 
N(2)-N(7)-0{8) 117.2 117.20 117.18 117.20 117.08 
N(2)-N(7)-0(9) 117.2 117.20 117.19 117.20 117.08 
0(8)-N(7)-0(9) 125.0 125.60 125.56 125.60 . 125.38 
C(3)-N(4)-N(10) 119.7 125.25 121.85 125.25 122.42 
C(5)-N(4)-N{10) 119.7 125.25 121.86 125.25 122.41 
N(4)-N(10)-0(11) 117.2 117.20 117.12 ·117.20 117.16 
N(4)-N(10)-0(12) 117.2 117.20 117.12 117.20 117.16 
0(11)-N(10)-0(12) · 125.0 125.60 125.45 125.60 125.52 
C(5)-N(6)-N{13) 119.7 125.25 123.60 125.25 122.81 
C(1)-N(6)-N(13) 119.7 125.25 123.60 125.25 122.81 
N(6)-N(13)-0(14) 117.2 117.20 117.19 117.20 117.14 
N(6)-N(13)-0(15) 117.2 117.20 117.19 117.20 117.14 
0(14)-N{13)-0(15) 125.0 125.60 125.58 125.60 125.48 
N(2)-C{3)-H( 16) 109.6 109.50 108.70 109.50 109.22 
N(2)-C(3)-H(17) 109.6 109.50 108.68 !09.50 109.22 
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Twist 

1.454 
1.453 
1.454 
1.454 
1.453 
1.454 
1.380 
1.380 
1.380 
1.210 
1.210 
1.210 
1.210 
1.210 
1.210 
1.081 
1.081 
1.081 
1.081 
1.081 
1.081 

109.38 
109.37 
109.76 
109.52 
109.47 
109:80 
125.31 
125.31 
117.12 
117.12 
125.45 
125.12 
125.12 
117 . .19 
117.18 
125.57 
125.26 
125.26 
117.03 
117.02 
125.29 
109.52 
109.52 
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TABLE ill (Continued) 

Coordinate Crystal Chair Half-boat Boat Half-chair Twist 

N(4)-C(3)-H(16) 109.6 109.50 108.70 109.50 109.22 109.52 
N(4)-C(3)-H(17) 109.6 109.50 108.67 109.50 109.22 109.52 
H(16)-C(3)-H(17) 108.7 109.32 108.43 . 109.32 109.00 109.36 
N(4)-C(5)-H(18) 109.6 109.50 107.19 109.50 107.01 109.50 
N(4)-C(5)-H(19) 109.6 109.50 107,21 109.50 107.01 109.49 
N(6)-C(5)-H(l8) 109.6 109.50 107.19 109.50 107.01 109.50 
N(6)-C(5)-H(19) 109.6 109.50 107.21 109.50 107.01 109.50 
H(18)-C(5)-H(19) 108.7 109.32 107.05 109.32 106.90 109.32 
N(6)-C(1)-H(20) 10g.6 109.50 110.01 .109.50 109.52 109.44 
N(6)-C(1)-H(21) 109.6 109.50 110.02 109.50 109.51 109.43 
N(2)-C(1)-H(20) 109.6 109.50 110.01 109.50 109.52 109.45 
N(2)-C(1)-H(21) 109.6 109.50 110.02 109.50 109.51 109.43 
H(20)-C(1)-H(21) 108.7 109.32 109.96 109.32 109.35 109.26 

Wag angle: 

C(1)-N(2)-C(3)--N(7) 19.8 0.00 0.00 0.00 0.00 -0.03 
C(3)-N(4)-C(5)--N(10) -33.9· 0.00 0.02 0.00 0.00 -0.02 
C(5)-N(6)-C(1)--N(13) -33.4 0.00 0.03 0.00 0.01 -0.03 

Dihedral angle: 

C(1)-N(2)-C(3)-N(4) -57.2 -60.00 55.97 60.00 67.07 70.32 
N(2)-C(3)-N(4)-C(5) 51.9 60.00 ~13.82 0.00 -28.20 -36.92 
C(3)-N(4)-C(5)-N(6) -49.2 -60.00 -9.63 -60.00 -5.80 -29.20 
N ( 4)-C(5)-N( 6)-C(l) 49.4 60.00 -9.77 60.00 1.39 69.91 
C(5)-N(6)-C(1 )-N(2) -52.1 -60.00 51.16 0.00 36.59 -36.52 
N(6)-C(1)-N(2)-C(3) 57.4 60.00 -75.68 -60.00 -71.60 -29.57 
C(1 )-N(2)-N(7)-0(9) -10.1 0.00 -0.02 0.00 -0.09 0.12 
C(3)-N(4)-N(10)-0(12) -10.1 0.00 -0.07 0.00 -0.02 0.12 
C(5)-N(6)-N(13)-0(14) -10.1 0.00 0.04 0.00 -0.02 0.14 

a) Atom numbers are defined in Fig. 1. 
b) Values taken from Ref. 59. 
c) Equilibrium C3v structure. 
d) Transition-state between the chair and boat conformations. 
e) Equilibrium Cs structure. 
f) Transition-state between the chair and twist conformations. 
g) Bond length units are A. · 
h) Angle units are deg. 
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Res4lts and Discussion 

Due to the small number of atoms in RDX, the validity of the definition of a 

temperature (Eq. V.23), defmed as the time averaged kinetic energy of all the atoms in the 

system was confirmed by comparing the distribution of atomic speeds from an ensemble of 

trajectories with the Maxwell distribution corresponding to the temperature of that 

ensemble. The Maxwellian speed distribution can be derived from the Maxwell-Boltzmann 

distribution of velocity components178 and is given by, 

dF(v) = 41t -- v2 ex -- , ( m )3/2 {-mv2] 
2mcT · 2KT 

(VI.9) 

where dF(v) is the probability of a speed being between v--7v+dv, m is the mass of the 

atom, and KandT are the Boltzmann constant and temperature, respectively. The most 

probable speed is Vmax = .V 2KT/m. The speed of each atom for a given type was 

calculated, 

- 1 . -_!_[ 2 2 2 ]2 vl- px· + py· + p z· ' 
~ 1 1 1 

(VI.lO) 

where Pxi• PYi• and Pzi are the Cartesian momenta and mi is the mass of the ith atom, at 

each step during the 200 ps of dynamics and histograms at 15-20 equal subintervals were 

obtained. Figures 6-9 shows the distribution for the four different atom types, C, N, 0, 

and H. The Maxwell-BoltZijlann. distribution was calculated at 300 K and is illustrated for 

comparison with the trajectory data. As can be seen, the Maxwellian distribution 

represents the data well. 

Dynamic Structures 

The dynamically averaged internal coordinates of RDX for ensemble I are shown in 

Table IV and are compared to the theoretical C3v equilibrium structure (see Fig. 2). The 



Figure 6. Distribution Of Speeds For The Carbon Atoms Of RDX At 300 K. 
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Figure 7. Distribution Of Speeds For The Nitrogen Atoms Of RDX At 300 K. 
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Figure 8. Distribution Of Speeds For The Oxygen Atoms Of RDX At 300 K. 
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Figure 9. Distribution Of Speeds For The Hydrogen Atoms OfRDX At 300 K. 
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dynamically averaged bonds are very Close to the equilibrium values with small 

fluctuations. The mean value of the bending angles, both the bond and wag angles, are 

close to the equilibrium values but have larger deviations with the largest being in the 

H-C-H bond angles. The time averaged ring dihedral angles of the chair structure are very 

close to the equilibrium value of 60° (see Table 1), but as the results in Table IV show, the 

mean C-N-C-N dihedral angle is 58° which n~sults in a ring structure that is less puckered 

then the equilibrium structure. The time averaged values of the pucker coordinates are 

Q=0.50A ± 0.033A and 9=9.2°± 4.8°. The values of the pucker coordinates for the 

equilibrium chair structure are Q=0.5927 A and 9=0.0°. The decrease in the mean value 

of Q compared with the equilibrium value illustrates the'flattening of the ring to a less 

puckered structure. This result is due mainly to the large anharmonicity in the torsional 

coordinate. The calculated C-N-N-0 dihedral angles show large fluctuations but do not 

traverse the 10 kcaVmol rotational barrier. 

The dynamically averaged structure of RDX for ensemble II is given in Table V. 

The rms deviations of the internal coordinates for ensemble II are very close to the 

corresponding internal coordinates of ensemble I except for the time averaged ring dihedral 

angles which have mean values of- oo and rms"values of- 48°. The time averaged values 

of the pucker coordinates for II are Q=0.78A±o.048A, 8=9.2°±4.8°, and 

<I>= 191.0°±103.6°. These values can be compared to the corresponding values for the 

equilibrium boat conformation of o.791A, 90.0°, and o.o0 for Q, e, and <I>, respectively. 

The large deviation in the <I> coordinate js d~e to a relatively unhindered pseudorotation 

between the different boat and twist conformations. 

The conformational flexibility of RDX is monitored by using the Cremer-Pople 

puckering coordinates. The chair, boat, half-boat, half-chair and twist-boat conformations 

of the triazine ring can be described by two coordinates, e and <I>. The time histories of 

the pucker coordinates e and <I> for ring inversion in RDX initially in the chair 

conformation are shown in Figs. 10(a-b). The molecule remains in the chair potential-
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TABLEN 

MEAN STRUCTURE OF RDX IN THE CHAIR CONFORMATION AT 300 Ka 

Equilibrium Mean value <rms> 
Coordinate value from dynamics deviation 

Bond:b 

C(1)-N(2) 1.45 1.45 0.03 
N(2)-N(7) 1.38 1.38 0.03 
N(7)-0(8) L21 1.21 0.02 
C(3)-H(16) 1.08 1.08 0.02 

Bond angle:c 

C(1)-N(2)-C(3) 109.5 109.5 3.98 
N(2)-C(3)-N(4) 109.5 109.7 4.84 
C(1)-N(2)-N(7) 125.3 125.1 3.70 
N(2)-N(7)-0(8) 117.2 116.1 3.76 
0(8)-N(7)-0(9) 125.6 123.7 4.67 
N(2)-C(3)-H(16) 109.5 109.3 4.51 
H(16)-C(3)-H(17) 109.3 109.1 4.98 

Wag angle: 

C(1)-N(2)-C(3)--N(7) 0.0 -0.2 4.37 

Dihedral angle: 

C(1)-N(2)-C(3)-N(4) -60.0 -58.4 9.58 
N(2)-C(3)-N(4)-C(5) 60.0 58.3 9.05 
C(3)-N(4)-C(5)-N(6) -60.0 -58.4 8.88 
N(4)-C(5)-N(6)-C(1) 60.0 58.4 9.03 
C(5)-N(6)-C(1)-N(2) -60.0· -58.4 8.56 
N(6)-C(1)-N(2)-C(3) 60.0 58.4 8.98 
C(1)-N(2)-N(7)-0(9) 0.0 -0.3 9.07 

a) Representative internal coordinates are listed (atom numbers are defined in Fig. 2). 
b) Bond length units are A. 
c) Angle units are de g. · 



TABLEV 

MEAN STRUCfURE OF RDX IN THE BOAT/TWIST 
CONFORMATION AT 300 Ka 

Equilibrium Mean value 
Coordinate value from dynamics 

Bond:b 

C(1)-N(2) 1.45 1.46 
~ N(2)-N(7) 1.38 1.38 
N(7)-0(8) 1.21 1.21 
C(3)-H(16) 1.08 1.08 

Bond angle:c 

C(1)-N(2)-C(3) 109.5 109.6 
N(2)-C(3)-N(4) 109.5 109.6 
C(l)-N(2)-N(7) 125.3 125.1 
N(2)-N(7)-0(8) 117.2 116.1 
0(8)-N(7)-0(9) 125.6 123.5 
N(2)-C(3)-H(16) 109.5 109.4 
H(16)-C(3)-H(17) 109.3 109.1 

Wag angle: 

C(1)-N(2)-C(3)--N(7) 0.0 0.1 

Dihedral angle: 

C(1)-N(2)-C(3)-N(4) 60.0 -0.6 
N(2)-C(3)-N(4)-C(5) 0.0 -8.6 
C(3)-N(4)-C(5)-N(6) -60.0 9.4 
N(4)-C(5)-N(6)-C(l) 60.0 -1.7 
C(5)-N(6)-C(1)-N(2) 0.0 -7.6 
N(6)-C(1)-N(2)-C(3) -60.0 8.3' 
C(1)-N(2)-N(7)-0(9) 0.0 -0.2 
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<rms> 
deviation 

0.03 
0.02 
0.02 
0.03 

3.82 
4.66 
3.81 
3.69 
4.80 
4.60 . 
4.54 

4.51 

46.31 
49.39 
49.75 
46.27 
48.73 
49.03 

9.17 

a) Representative internal coordinates are listed (atom numbers are~defined in Fig. 2). 
b) Bond length units are A. 
c) Angle units are de g. 
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energy well for the first 8 ps (Fig. lOa), after which it undergoes three transitions between 

the chair and boat structures over the next 6 ps. Figure 11 illustrates, in E> and <I> space, 

the final12 ps of the ring inversion shown in Fig. lO(a-b). The first ring inversion is 

through <1>=45°, which is between the half-chair (<1>=30°) and the half-boat (<1>=60°) 

structures. The following two inversions occur through <I>= 180°, which corresponds to 

the half-boat structure. Two of transitions are fairly direct while the third is not Only two 

trajectories in the chair ensemble were observed to undergo ring inversion. 

A time history of RDX initially in the boat configuration undergoing a boat-to-chair 

transition is shown in Fig. 12(a-b). As can be seen, the ring undergoes a transition from 

the boat to the inverted:chair structure (see Fig. 12a) after2 ps and remains in the inverted

chair conformation for the remaining 18 ps. During the initial2 ps, the molecule 

undergoes 5 transitions between different boat and twist structures (<I>= 240, 210, 180, 

150, and 120"). These relatively unhindered pseudorotations play a major role in the 

stability of the boat/twist conformations (E>= 0°) compared with that of the chair 

conformation (E>= 0") as will be shown later. Figure 13 illustrates, in E> and <I> space, the 

initial2.1 ps of the trajectory shown in Fig. 12(a-b). The observed transitions is fairly 

indirect Only one trajectory out of the 10 calculated for the boat ensemble was observed 

to undergo a boat-to-chair transition. 

A time history of a trajectory starting in the boat configuration that does not 

undergo a ring inversion is shown in Fig. 14. The triazine ring remains at E>=90° 

(Fig. 14a) for the 20 ps that the trajectory was followed, but relatively unhindered 

pseudorotations between the different boat (<I>= 0, 60, 120, 180, 240, and 300°) and 

twist (<I>= 30, 90, 150, 210, 270, and 330°) conformers are observed (Fig. 14b). The 

discontinuities Fig. 14b are due to the azimuthal angle being defined between oo and 360°. 



Figure 10. Time History of the Cremer-Pople Coordinates for a Trajectory that Undergoes 

a Chair-to-Boat Ring Inversion. (a) 0 (deg), and (b) <I> (deg) 
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Figure 11. Configuration Space Plot of the Pucker Coordinates E> and <P for the Trajectory 
Represented In Figure 10. Only the fmal12 ps of the trajectory are shown. 
units are in degrees. 
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Figure 12. Time History of the Cremer-Pople Coordinates for a Trajectory that Undergoes 
a Boat-to-Chair Ring Inversion. (a) 8 (deg), and (b) <I> (deg). 
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Figure 13. Configuration Space Plo,t Of The Pucker C<;>ordinates E> and <I> For The 
Trajectory Represented In Figure 12. Only the initial12 ps of the trajectory 
are shown. Units are in degrees. 
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Figure 14. Time History Of The Cremer-Pople Coordinates For A Trajectory That Does 

Not Undergoes A Boat-to-Chair Ring Inversion. (a) 9 (deg) and (b) <I> 

(deg). The discontinuities in (b) are due to the fact that the azimuthal angle is 
only defined from oo to 360°. 
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Rates and Activation Energies 

There were 249 boat-to-twist-boat inversions observed for ensemble IT. The rate 

constant was obtained by fitting a set of computed lifetimes to ln[N(t)/N(O)] =-kt, where 

N(t) is the number of lifetimes at timet, N(O) is the total number of lifetimes, and k is the 

pseudorotation rate constant. The rate consta.Qt was calculated to be 1.3 ps-1. The 

transition-state theory for isomerizations yields a rate constant equation179, 
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[KT] {-Ea} kTsT = NsT T exp KT ' (VI.ll) 

where NsT is a statistical factory equal to two since the potential is periodic and the 

molecule can pseudorotate in both directions and h is Planck's constant. Using the rate 

constant of 1.3 ps-1 for the boat-to-twist pseu~orotaticm, the calculated activation energy is 

0.8 kcal moi-l. 

Thermodynamic Properties 

The entropy difference, L\S, for the chair ahd boat configurations was estimated by 

using the method derived by Karplus and Kushick180. This method requires the use of a 

set of coordinates q to construct a harmonic potential-energy function. The coordinates are 

divided into a set of "important" (q') and '!unimportant" (q") co?rdinates, where the 

important coordinates contribute a significant fraction of the total configurational entropy 

and the unimportant coordinates contribute only a small fraction. A multivariant Gaussian 

distribution is used to model the joint probability function. The configurational entropy is 

calculated using: 

~S = K ln cr(boat) 
2 cr(chair) 

(VI.l2) 
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where cr(boat) and cr( chair) are the determinants of the variance and covariance matrices of 

the important coordinates given by 

(VI.13) 

This method is particularly useful for molecular dynamic simulations since the set of 

coordinates q' are readily available. In thjs calculation, there are 57 intel.Jlal degrees of, 

freedom needed to completely specify the molecule. As was shown previously (Table V), 

the C-N-C-N ring dihedral angle fluctuations in the boat configuration have large 

deviations from their respective equilibriumvalues due to multiple transitions between the 

boat and twist-boat stnictures. Therefore, these coordinates were disregarded in the 

entropy calculation since they violate the hannonic approximation which is a fundamental 

postulate of the entropy derivation. The set of important coordinates used in the calculation 

are comprised of 20 bonds, 19 bond angles, and 15 dihedral angles (the 3 ring dihedral 

angles were disregarded). The intem'al coordinates used are not unique. 

The entropy difference for the chair-to-boat inversion is 6 ± 3 cal moi-l K-1. This 

gives T~S = 2 ± 1 kcal moi-l at 300 K. The enthalpy for the chair-to-boat inversion, 

obtained by calculating the difference ,of the time-averaged potential energy for the chair 

and boat ensembles, is 1.5 ± 0.4 kcal moi-l. Combining these results, the free energy 

change for the chair-to-boat inversion is 0 ± 1 kcal moi-l. This value is an upper limit 

since the configurational entropy due to the C-N-C-N ring dihedral angles is neglected. 

The relatively unhindered pseudorotation between the different boat and nyist-boat 

conformers will increase the total entropy of the boat conformer thereby decreasing the free 

energy change. This result suggests that the boat configuration should be favored in the 

gas phase equilibrium composition, but due to the large uncertainty in the entropy 

calculation, definite conclusions are unwarranted. There are no experimental values with 

which to compare these results. 
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Conclusions 

We have performed a dynamics simulation for isolated RDX molecules using a 

model potential energy surface constructed from spectroscopic and theoretical data. Two 

ensembles of 10 trajectories were calculated, one in which the initial configuration of the 

molecule is the chair (I} and the other for the boat structure(ll). The initial momenta were 

selected from a Boltzmann distribution at 300 K. The molecule was equilibrated for 20 ps 

by scaling the momenta to this temperature. The trajectories were then followed for an 

additional 20 ps with no further scaling. 

The rms deviations of the internal coordinates were calculated for each of the two 

ensembles. The deviations in the bonds and angles are similar for the two configurations. 

The main difference between the two dynamically averaged structures is in the C-N-C-N 

ring dihedral angles, with ensemble Il exhibiting the largest fluctuations. These large 

fluctuations are due to the frequent pseudorotations between the boat and twist structures. 

The calculated activation barrier is 0.8 kcal moi-l. 

The energy for the half~ boat (Cs) ahd half-chair (C1) structures were calculated by 

following trajectories that had undergone ring inversions and minimizing the norm of the 

gradient at points along the trajectories. The energies calculated for these two structures 

are about 4.7 kcal moi-l. 

The configurational entropy change for the chair-to-boat inversion is calculated to 

be 6 ± 3 cal moi-l K-1. The difference in the time-averaged potential energy for the two 

ensembles is 1.5 ± 0.4 kcal moi-l. This gives a free energy change of 0 ± 1 kcal moi-l at 

300 K. This suggests that the boat conformation should be favored in the equilibrium 

composition of gas-phase RDX, but due to the uncertainty in the calculations definitive 

conclusions should not be made. It should be noted that the energetics are determined by 

the choice of the potential parameters, and thus the values of the thermodynamic quantities 

are reflections of our choices. 



There is very little experimental data with which to compare our results, but 

experiments have shown that large fluctuations are observed in RDX in both the solution 

and gas phase65•80. 
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CHAPTER VII 

THEORETICALSTUDffiSOFCONFORMATIONAL 

FLEXffiiLITY AND RING INVERSION 

IN GAS-PHASE RDX 

Introduction 

In this chapter, a more realistic potential-energy surface is constructed for gas

phase RDX. In the studies discussed in the previous chapter, we used molecular dynamics 
' 

simulations to study the conformational flexibility in isolated RDX molecules at 300 K. In 

that study, a harmonic pote11tial-energy function (PES I) was employed and non-bonded 

interactions, i.e., interactions between atoms not bonded to one another or to a common 

atom were neglected. The energy difference ~tween the chair and boat conformations was 

ca. 1 kcal moi-l. Recent studies82 on the structures and energetics of piperazine and its N, 

N-dinitro derivatives have shown that the energy difference between the chair and boat 

structures for these compounds is ca. 6-12 kcal moi-l. Thus, an energy difference of 1 

kcal moi-l between the chair and boat cotlformations ofRDX is suspect. 

The effects of anharmonicity have been shown to play an important role in the 

x-ray refinement of proteins in vacuum, solution, and crystal envitonmenis13-16. Also, 

anharmonicity has been shown to play a large role in the dynamic disorder of polymer 

crystals27 -29, i.e., conformational disorder brought about by the dynamical nature of the 

system as opposed to the static energetics. This is disorder due to the kinetic portion of 

the Hamiltonian. Since dynamic disorder implies large amplitude motion, that is, rotation 

between different minima, anharmonic effects could play an important role by inducing 
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non-linear resonances, that is, Fermi resonances as well as other low order 

resonances 181-195. 

94 

In the work presented here, we have constructed a model potential-energy surface 

for isolated RDX molecules (PES II) which incorporates anharmonicity in the bond 

stretching terms and non-bonded interactions. We have performed Monte Carlo1-2,157 and 

molecular dynamics simulations1-5 to study the conformational flexibility and calculate the 

free-energy barrier for ring inversion. 

Potential-Energy Surface 

The equilibrium coordinates are the same as those used in PES l. For that 

potential-energy surface~ the equilibrium coordinates were taken as averaged values of the 

corresponding coordinates in the crystal structure59. The equilibrium internal coordinates 

are given in Table VI. Since the start of this work, Shishkov et a/.60 used electron 

diffraction to obtain the gas-phase structure of RDX. Their results show that the gas~ phase 

structure is close to the crystal structure except that the three nitro groups are in axial 

positions, whereas in the crystal structure, two of the nitro groups are axial and the third 

nitro group is equatorial (see Fig. 2). The differences between the experimental gas-phase 

structure60 and our theoretical strUcture will be discussed later in this, chapter. 

The potential-energy surface is given by 

Vintra = VMor'se + Vbend+ Vwag ~ Vk>rsion + VL-J, (VII. I) 

where VMorse. Vbend. Vwag. Vto~:sion. and VL-J are given by Eq.(V.lO), Eq.(V.12), 

Eq.(V.13), Eq.(V.l4), and Eq.(V.l5), respectively. The harmonic force constants are 

taken from the potential-energy function in chapter VI (see Table 1). The dissociation 

energy, De. for the Morse potential where taken from the work by Sewell and 

Thompson 78. The curvature parameter, a, for the Morse potential were calculated using 
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Eq. V .11. The non-bonded interaction parameters, O'ij and Eij· were calculated using the 

Lorentz-Berthelot combining rules (Eq. V.16 and V.17) where O'i and Ei were taken from 

the MM2 work by Allinger and co-workers175,196-197. The equilibrium values of all the 

internal coordinates and potential parameters are given in Table VI. 

The ring inversion process can be monitored by employing the set of coordinates 

derived by Cremer and Pople176-177 (for a complete derivation, see Appendix B). For a 

six-membered ring, th~ inversion of the triazine ring can be described by the COQrdinate f) 

given by 

1 6 
_rz L Zi cos[n:(i-1)] 

cos e = _-v_ o6 ~i=_l __ Q---,---. (VII.2) 

where 

(VII.3) 

the sums are over the six atoms of the ring and the Zi's are their atomic displacements from 

a plane that passes through the geometrical center of the triazine ring. Using Eqs. VII.2 

and VII.3, the chair and inverted chair conformations, which are chemically equivalent 

structures, are located ate= oo and 180°. respectively, and the boat and twist 

conformations are at e = 90°. 

Minimum-Energy Conformations 

The different minimum-energy structures and corresponding energies have been 

obtained by minimizing the potential-energy function using the variable metric method 

discussed in chapter V. The chair conformation (8 = 0°) is the lowest energy 



TABLE VI 

EQUILIBRIUM VALUES OF INTERNAL COORDINATES AND 
POTENTIAL PARAMETERS FOR THE INTRAMOLECULAR 

POTENTIAL-ENERGY SURFACE OF RDX 

a 
bond r<> 

C-N 1.454 
N-N 1.380 
N-0 1.210 
C-H 1.081 

bending angle erfl 

C-N-C 109.500 
N-C-N 109.500 
C-N-N 125.250 
N-N-0 117.202 
0-N-0 125.596 
N-C-H 109.500 
H-C-H 109.327 

d 
wag angle ~ 

C-N-C--N02 0.00 

d 
dihedral angle 'tO 

C-N-C-N 60.00 
C-N-N-0 0.00 

non-bonded interactions 

H 
c 
N 
0 

a) units are A. 
b) units are eV. 

c) distance units are ao -l 

d) angle units are degrees. . 
e) angle force constants in mdyn A rad-2. 

f) units are kcal mor 1. 

b 
De 

. 3.69 
2.07 
4.25 
4.12 

e 
Ke 

0.4898 
0.4030 
0.5713 
0.7008 
0.4003 
0.4570 
0.3874 

e 
ky 

0.66 

b 
3g 

0.09 
0.22 

ef 

0.022 
0.030 
0.062 
0.002 

al 

-0.12 
0.00 

c! 

2.89 
3.64 
3.24 
2.94· 

c 
a 

1.06 
1.62 
1.24 
1.03 

0.06 
-0.22 
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conformation (Fig. 15). The internal coordinates for the minimized chair structure are 

compared with the equilibrium structure in Table VII. 
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The value of the internal coordinates for the minimum-energy structure are similar 

to the corresponding values of the equilibrium structure but some deviations are observed. 

The C-N-C bending angles decrease by ca. 3" and the C-N-C-N ring dihedral angles 

increase by ca. 3" for the minimum-energy structure as compared to the equilibrium 

structure. Thus the RDX ring is slightly more puckered in the minimum-energy structure 

(Q=0.64 A) than' the equilibrium structure (Q=0.59 A). This is due mainly to the 

interactions between the C and N atoms of the ring. 

The N-C-Heq (Heq =equatorial hydrogen) bending angle increases by ca. 3" while 

the N-C-Hax (Hax =axial hydrogen) bending angle decreased by ca. 2". Also, the value of 

the wag angles increases slightly. The shifts in the values of the N-C-H bending angles 

and the CzN--N{h wag angles for the minimum energy structure is due to the 0-H 

interactions. The effect of the 0-H interaction is also observed in the C-N-N-0 dihedral 

angles which increase by 2" as compared to the equilibrium structure. These shifts reduce 

the 0-H interaction between the Heq and the neighboring oxygen atom of the N{h group 

by increasing the distance between them. 

Although we have not considered the experimental gas-phase structure of RDX in 

constructing PES II, we can compare the experimental structure and the minimum-energy 

structure and observe any differences that might be present. In the electron diffraction 

analysis by Shishkov et a[.ffJ, some assumptions concerning the geometry were made: the 

methylene (CHz) moieties have local Czv symmetry; the C-N-N angles are equivalent; the 

N(h geometry is planar. The bond lengths for our minimum-energy structure and the gas

phase experimental structure are similar with the largest deviation being 0.025A in the N-N 

bonds. One ofthe largest deviations is in the C-N-C ring bending angles in which the 

minimum-energy structure is ca. 17" smaller than the experimental structure. This large 

deviation in the C-N-C bending angles causes our structure to be more puckered than the 



Figure 15. Minimum Chair Structure ofRDX. Atoms C(l), C(3), N(4), N(6) lie in a 
plane with the thr~e nitro groups slightly out of the C-N-C plane. The triazine 
ring atoms adopt the chair configuration. Atom types are represented as 
follows: circles with lines represent carbon atoms; circles with small dots 
represent nitrogen atoms; circles with large dots represent oxygen atoms; 
open circles represent hydrogen atoms. 
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Chair structure 
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TABLEVll 

EQUILffiRIUM AND MINIMUM-ENERGY STRUCTURES FOR RDXa 

Coordinate Equilibrium Chair Boat Twist 

Bond:b 

C(1)-N(2) 1.454 .1.471 1.477 1.472 
N(2)-C(3) 1.454 1.471 1.475 1.476 
C(3)-N(4) 1.454 1.471 1.478 1.476 
N(4)-C(5) 1.454 1.471 1.472 1.472 
C(5)-N(6) 1.454 . 1.471 1.471 1.477 
N(6)-C(1) 1.454 1.471 1.477 1.477 
N(2)-N(7) 1.380 '1.388 1.390 1.389 
N(4)-N(10) 1.380 1.388 1.390 1.389 
N(6)-N(13) 1.380 1.388 1.390 1.389 
N(7)-0(8) 1.210 1.210 1.210 1.210 
N(7)-0(9) 1.210 1.210 1.210 1.210 
N(10)-0(11) 1.210 1.210 1.210 1.210 
N(10)-0(12) 1.210 1.210 1.210 1.210 
N(13)-0(14) 1.210 1.210 1.210 1.210 
N(13)-0(14) 1.210 . 1.210 1.210 1.210 
C(1)-H(20) 1.080 1.082 1.082 1.081 
C(1)-H(21) 1.080 1.081 1.082 1.082 
C(3)-H(16) 1.080 1.082 1.082 1.082 
C(3)-H(17) 1.080 1.081 1.082 1.082 
C(5)-H(18) 1.080 1.082 1.082 1.082 
C(5)-H(19) 1.080 1.081 1.082 1.081 

Bond angle:c 

C(1)-N(2)-C(3) 109.5 106.9 108.8 109.0 
N(2)-C(3)-N(4) 109.5 109.6 115.5 115.8 
C(3)-N(4)-C(5) 109.5 106.9 111.3 109.5 
N(4)-C(5)-N(6) 109.5 109.6 109.6 112.8 
C(5)-N(6)-C(1) 109.5 106.9 110.3 111.9 
N(6)-C(1)-N(2) 109.5 109.6 115.9 112.5 
C(1)-N(2)-N(7) 125.3 126.8 125.7 126.4 
C(3)-N(2)-N(7) 125.3 126.2 125.5 124.6 
N(2)-N(7)-0(8) 117.2 117.1 117.2 116.8 
N(2)-N(7)-0(9) 117.2 117.5 117.5 117.9 
0(8)-N(7)-0(9) 125.6 122.7 l22.2 122.9 
C(3)-N(4)-N(10) 125.3 126.8 123.6 125.0 
C(5)-N(4)-N(10) 125.3 126.2 125.1 125.5 
N(4)-N(10)-0(11) 117.2 117.1 117.5 117.0 
N(4)-N(10)-0(12) 117.2 . 117.6 116.9 117.0 
0(11 )-N(10)-0(12) 125.6 122.8 122.7 122.4 
C(5)-N(6)-N(13) 125.3 126.8 125.8 124.5 
C(1)-N(6)-N(13) 125.3 126.2 123.8 123.6 
N(6)-N(13)-0(14) 117.2 117.1 118.2 117.5 
N(6)-N(13)-0(15) 117.2 117.1 117.2 116.8 
0(14)-N(13)-0(15) 125.6 122.8 123.8 122.6 
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TABLE VII (Continued) 

Coordinate Equilibrium Chair Boat Twist 

Bond angles (cont.) 
N(2)-C(3)-H(16) 109.5 112.3 106.5 106.3 
N(2)-C(3)-H(17) .109.5 107.5 110.7 110.1 
N(4)-C(3)-H(16) 109.5 112.8 107.9 110.1 
N(4)-C(3)-H(17). 109.5 107.5 108.8 106.6 
H( 16)-C(3)-H(17) 109.3 106:9 i07.0 107.7 
N(4)-C(5)-H(18) 109.5 112.3 112.8 110.7 
N(4)-C(5)-H(19) 109.5 107.5 107.4 107.2 
N(6)-C(5)-H(18) 109.5 112.8 112.7 111.4 
N(6)-C(5)-H(19) 109.5 107.5 107.4 107.5 
H(18)-C(5)-H(19) 109.3 106.9 106.7 106.9 
N(6)-C(l)-H(20) 109.5 112.3 109.0 107.6 
N(6)-C(1)-H(21) 109.5 107.5 106.8 111.0 
N(2)-C(1)-H(20) . 109.5 112.8 106.5 107.2 
N(2)-C(1)-H(21) 109.5 107.5 110.8 111.2 
H(20)-C(1)-H(21) 109.3 106.9 107.5 106.9 

Waganglec: 

C(1)-N(2)-C(3)--N(7) 19.1 0.3 1.4 -0.4 
C(3)-N(4)-C(5)--N(10) 19.1 0.3 0.1 -1.1 
C(5)-N(6)-C(1)--N(13) 19.1 0.3 0.4 -0.8 

Dihedral anglec: 

C(1)-N(2)-C(3)-N(4) 60.0 -62.9 52.2 30.5 
N(2)-C(3)-N(4)-C(5) 60.0 62.9. -5.5 28.1 
C(3)-N(4)-C(5)-N(6) 60.0 -62.9 -52.0 -60.9 
N(4)-C(5)-N(6)-C(1) 60.0 ·62.8 61.5 30.5 
C(5)-N(6)-C(1)-N(2) 60.0 -62.8 -12.5 31.0 
N(6)-C(1)-N(2)-C(3) 60.0 62.8 -42.3 -62.4 
C(1 )-N(2)-N(7)-0(9) 0.0 -2.0 4.8 -3.2 
C(3)-N(4)-N(10)-0(12) 0.0 -2.0 -1.8 -4.8 
C(5)-N(6)-N(13)-0(14) 0.0 -2.0 1.6 -4.6 

a) Atom numbers are defined in Fig. 15. 
b) Bond length units are A. 
c) Angle units are deg. 
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experimental structure. The C-N-N bending angles are ca. 10° larger in the minimum

energy structure as compared to the corresponding value in the experimental structure. The 

largest deviation between our minimum-energy structure and the experimental gas-phase 

structure is the wag angles. The wag angle, defined as the angle between the plane made 

by the C-N-C atoms of the ring and the N-N bond, is 0.3° (planar) for all three nitro 

groups in the minimum-energy structure while the experimental structure shows all three 

wag angles to be 19° (axial). In our structure, the potential function for the wag angle is 

harmonic. Therefore, the possibility of axial-equatorial inversion is neglected. 

The calculated normal-mode frequencies for the theoretical chair configuration are 

compared with the experimental frequencies of RDX in the solution phase66 and are 

presented in Table VIIL Unfortunately, there is no complete gas-phase spectrum, but the 

solution-phase and gas-phase frequencies were shown to be similar65. The average root 

mean square deviation ( <nns>) between the experimental and calculated frequencies is 

33 cm-1. 

The boat and twist minimum energy structures (E> = 90°) were obtained using the 

variable metric method and the internal coordinates are given in Table VII. The boat 

structure (Fig. 16a) is 4.5 kcal moi-l higher in energy than the chair structure while the 

twist structure (Fig. 16b) is 4.0 kcal moi-l higher in energy than the chair structure. There 

are no experimental data with which to compare either the minimized structures or 

corresponding energies of these two conformations. The calculated normal mode 

frequencies for the boat and twist structures are given in Table VIII. 

Monte Carlo Procedures 

Monte Carlo89-91 techniques have been employed to calculate the average potential

energy and fret! energy surfaces for the chair-7boat/twist ring inversion at 300 K. The MC 

method was described in chapter V. The convergence of a standard Monte Carlo method is 

poor when dealing with activated events since the Metropolisl58 method 
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TABLEVIll 

EXPERIMENTAL AND CALCULATED FREQUENCIES FOR RDXa 

Solution phase b Calculatedc 
Chair Boat Twist 

38 (2) 12 12 
29 33 

41 40 49 
52 (2) 45 53 

55 64 
57 75 80 
178 (2) 163 166 

172 182 
249 190 211 
257 233 221 
261 (2) 244 245 

258 262 
316 (2) 274 269 

290 302 
343 342 312 
424 (2) 404 406 

417 420 
410 438 (2) 434 428 
470 - 468 467 
490 441 478 472 
595 495 518 513 
610 582 562 572 

648 (2) 588 585 
603 624 

740 741 (2) 732 733 
750 - 741 749 
794 776 (2) 783 (2) 762 
855 - - 794 

807 813 811 
910 877 885 885 
935 956 1007 1009 

1027 (2) 1011 (2) 1020 
1015 - - 1032 
1045 1038 (2) 1034 1040 (2) 
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TABLE VITI (Continued) 

Solution phase b 
Chair 

Calculatedc 
---=-~-

Boat Twist 

1230 1064 

1052 1128. 1130 
1270 1165 (2) 1167 1164 
1320 1179 1193 
1392 1185 1211 1207 

1285 1256 1259 
1435 1290 (2) 1264 1262 
1460 1297 1290 

1335 (2) 1333 (2) 1330 (2) 

1382 1399 1401 

1466 1453 1452 
1550 1519 (2) 1522 (2) 1523 (2) 
1585 1554 (3) . 1555 (3) 1553 (3) 
2980 2982 (3) 2980 (3) 2980 (3) 
3080 . 3051 (3) 3045 (3) 3049 (3) 

a) Units are cm-1 
b) Iqbal et al., Ref. 66 
c) This work. 



Figure 16. Boat and Twist Minimum Structures of RDX. (a) The boat structure is 
4.5 kcal moi-l higher in energy than the chair structure. Atoms C(1), C(3), 
N(4), and N(6) lie in a plane. (b) The twist structure is 4.0 kcal mol-l higher 
in energy th.an the chair structure. Atoms C(1), C(3), C(5), and N(6) lie in a 
plane. The atom types are the same as in Figure 15, but the molecules have 
been rotated for clarity. 
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Boat structure 
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Twist-boat structure 
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generates Markov chains that are weighted to favor low energy configurations, that is, near 

the minimum of the potential-energy surface. Excursions to the barrier region are 

infrequent. One method uses to overcome this problem is non-Boltzmann samplingl-2,198-

200 

The free energy, A(8), is obtained by integrating119 

exp[-PA(8)] = J8[8*-8(q)]exp[-PV(q)] dq (Vll.4) 

where p = (lCT)-1 with KandT being the Boltzmann constant and temperature respectively, 

V(q) is the potential energy of configuration q, and 8[8*-8(q)] is the Dirac delta function 

that is equal to unity for 8(q)=8* and zero otherwise. In the Monte Carlo solution to Eq. 

Vll.4, the integral can be expressed as 

N 

exp[-PA(8)] =J~ N-l L 8[8*- 8(q)] exp[-PV(q)]. (Vll.5) 
i=l 

The sum is evaluated using Metropolis sampling158 which employs a Markov chain (see 

chapterV.) 

Umbrella sampling198-200 was employed to overcome the large barrier between the 

chair and boat/twist conformation. In this method, configuration space is sampled 

according to 

W(8) exp[-PV(q)] dq 

Pw =Jwce) exp[-PV(q)] dq 
(Vll.6) 

where Pw is the weighted distribution and W(8) is a specified weight function which 

biases the system to a specific region of configuration space., The weight function must be 

introduced such that it can subsequently be removed. In this work, the weight function is 

given by 



108 

W(9) = exp[-~Vbias(e)]. (Vll.7) 

with V(e) being a biasing potential, 

(VII.8) 

(where e represents the reaction coordinate and kbias is the hannonic force constant) used 

to bias the dist:iibution of the RDX molecule about e 0 • The free-energy surface in the 

unbiased system is given by 

N 

N-1 L B[e-e(q)] exp[-~V(q)] W(9f1 

exp[ -~A(e)] =--1-·=1---------
N 

N-1 L wcef1 

t=l 

(VII.9) 

For each biasing potential or window, i.e., each different e 0 , the free energy surface is 

calculated Since the full free-energy surface is continuous, it can be constructed piece

wise from each individual window provided there is good overlap between adjacent 

windows. 

For this calculation, eo ranged from Oo to 90° in increments of 30°. The bias force 

constant, kbias. was taken as 0.01 kcal moi-l deg-2. The initial configuration of the "ith" 

window was taken as the fmal configuration of the "(i -1)th" window. Each Markov chain 

was generated using the prescription described in chapter V. A new configuration is 

generated by randomly moving an atom of the RDX molecule. If the move lowers the 

potential-energy of the molecule, the move is accepted, otherwise, the new move is 

accepted with a probability of exp[-~AV'], where AV'= V'trial- V'old. V' = Vmtra + Vbias. 

and V intra is given by Eq. Vill.1. The Markov chain was initialized for 1000 steps after 
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which, 5xlo6 steps were generated and the free-energy swface in each window was 

calculated. The step size of the chain is ()q=O.l A which results in about a 0.50 acceptance 

ratio. This ratio was maintained throughout the calculation. 

Molecular Dynamics 

Molecular dynamics methods were used to'compute the mean dynamical structure 

for gas-phase RDX at 300 K. The molecular dynamics methods described in the chapter V 

were employed. The RDX molecule was initiated in the chair configuration and the atomic 

momenta were sampled from a thermal distribution (Eq. V.21) at .300 K. One warm up 

trajectory was run for 20 ps during which the atomic momenta were scaled to the desired 

ensemble temperature. Periodically, during the warm up trajectory, configurations of the 

RDX molecule were saved as initial configurations for subsequent trajectories in the 

ensemble. Using one of the saved configurations, the atomic momenta were selected from 

a thermal distribution and the molecule was equilibrated for 20 ps by periodically scaling 

the momenta. The trajectory was continued without further scaling for 20 ps and the 

phase-space coordinates were saved every 10 fs for subsequent analysis. An Adams201 

numerical integration method was employed with an error tolerance of lx10-6 which gave 

energy conservation of lx10-4 percent error. An ensemble of 10 trajectories was 

computed. 

Due to the small number of atoms in RDX and the exchange between kinetic and 

potential energy, a small deviation in the temJ?erature for each trajectory was accepted. If a 

trajectory deviated by more than 10 K from the desired.ensemble temperature, it was 

discarded and a new trajectory was initiated. 
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Results and Discussion 

Dynamical Structure 

The dynamically averaged chair structure was computed using molecular dynamics 

methods. An ensemble of 10 trajectories for 20 ps each was calculated which gave 200 ps 

of dynamics. The ensemble temperature was 306±5 K. The mean structure was obtained 

by calculating the time averaged structure for the 200 ps of dynamics. Table IX compares 

the dynamical structure with the minimum-ei?-er:gy structure for the chair conformation. As 

is shown in Table IX, the bond stretches and angle bending coordinates are very close to 

the corresponding values of the minimum-energy structure. There is a slight deviation 

between the dynamically averaged C-N-C-N ring dihedral angles and those for the 

minimum-energy structure. The pucker coordinates for the average structure are; 

Q=0.64±0.04 A and e = 10±5°, while the values of the pucker coordinates for the 

minimum energy structure are; Q=0.64: A and e = 0.0°. The time-averaged C-N-N-0 

dihedral angle shows the largest deviation for all of the coordinates as compared to the 

minimum-energy structure. The mean value is ca oo while the value for the C-N-N-0 

dihedral angle in the minimum structure is ca. -2°. The cause of this deviation will be 

discussed later in this section. 

The RDX molecule stayed in the chair conformation for the entire 200 ps of 

dynamics, that is, no chair~boat/twist ring inversions were observed at 300 K. 
' 

The time averaged structure for the boat/twiSt conformation (E> =: 9<n could not be 

obtained since no trajectories initiated in the boat/twist conformation remained in that 

conformation for the duration of the equilibratioQ period. 

We compared PES I (see Chapter. V) and the revised potential-energy surface, 

PES IT. Both potential-energy surfaces give time-averaged structures that are close to their 

corresponding minimum-energy structures. The difference in energy between the boat and 
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TABLE IX 

MEAN STRUCTURE OF RDX IN THE CHAIR CONFORMATION AT 300 Ka 

Minimum-enrgy Mean value <rms> 
Coordinate value from dynamics deviation 

Bond:b 

C(1)-N(2) 1.47 1.47 0.03 
N(2)-N(7) 1.39 1.39 0.03 
N(7)-0(8) 1.21 1.21 0.02 
C(3)-H(16) 1.08 ' 1.08 0.03 

Bond angle:c 

C(1)-N(2)-C(3) 106.9 106.8 3.44 
N(2)-C(3)-N(4) 109.6 109.9 4.20 
C(1)-N(2)-N(7) 126.8 126.7 3.42 
N(2)-N(7)-0(8) 117.1 117.0 3.89 
0(8)-N(7)-0(9) 122.7 121.8 4.58 
N(2)-C(3)-H(16) 112.3 112.2 4.60 
N(2)-C(3)-H(17) 107.5 107.3 5.20 
H(16)-C(3)-H(17) 106.9 106.7 5.15 

Wag angle: 

C(1)-N(2)-C(3)--N(7) 0.3 0.6 4.60 

Dihedral angle: 

C(1)-N(2)-C(3)-N(4) -62.9 -61.8 7.73 
N(2)-C(3 )-N ( 4)-C(5) 62.9 61.9 7.45 
C(3)-N(4)-C(5)-N(6) ' -62.9 -61.9 7.48 
N(4)-C(5)-N(6)-C(1) 62.8 61.7 7.90 
C(5)-N(6)-C(1)-N(2) -62.8 -61.7 7.76 
N(6)-C(1)-N(2)-C(3) 62.8 61.7 7.67 
C(1 )-N (2)-N (7)-0(9) -2.0 0.1 11.15 

a) Representative internal coordinates are listed (atom numbers are defined in Fig. 15). 
b) Bond length units are A. · 
c) Angle units are de g. 
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chair structure for PES I is ca. 1 kcal mol-l while that for PES TI is ca. 4.0 kcal moi-l 

which is in better accord with the literature82. Also, the RDX molecule is more flexible 

using PES I as compared with PES TI. This can be seen by comparing the <nns> values 

calculated using PES I (Table IV) and those calculated using PES TI (Table IX). As can 

be seen, the <nns> value is consistently larger for the corresponding internal coordinates 

of PES I compared with PES TI. One exception is in the C-N-N-0 dihedral angle which 

has a larger fluctuation for PES TI than for PES I. This large fluctuation is due to the 0-H 

interaction which modifies the. C-N-N-0 torsion potential. There are two shallow minima 

at te-N-N-O = ±2~ due to the 0-Heq interaction. At the simulation temperature (300 K) · 

though, the energy of the te-N-N-O is large! than the small barrier between the two minima 

and therefore, the 0-H interaction has little effect on the dynamics but produces a slightly 

flatter potential near the ,bottom of the well which gives rise to the larger fluctuations. 

Thermodynamic Parameters 

The average potential-energy and free-energy surfaces are calculated at 300 K using 

MC methods with umbrella samplingl98-200 and are shown in Fig. 17(a-b). Due to the 

symmetry of the potential, the reaction coordinate was only followed from E>=Oo to 9=90°. 
' ' 

The solid line is the non-linear least squares fit to the calculate points. The average 
' 

deviation between the non-linear least squares line and calculated points is 0.1 kcal mol-l 

and 0.3 kcal mol-l for the potential-energy and free-energy surfaces, respectively. As 

Fig. 17 a. ill~strates, the AH(300 K) for the chair-+boat/twist inversion is ca. 4.5 kcal mol

l with an activation enthalpy, AHt(300 K), of ca. 4.8 kcal mol-l. Figure 17b. shows the 

calculated free-energy surface. The free energy, AA(300 K), for the chair-+boat/twist 

inversion is calculated to be ca. 4.0 kcal mol-l and the activation free energy, M t(300 K), 

is ca. 4.7 kcal mol-l. Th~ mt for PES I (4.7 kcal mol-·1), tak~n as the potential energy of 

the transition-state structure, is very close to the mt for PES TI. Thus, non-bonded 



Figure 17. Potental-Energy and Free-Energy Surfaces for RDX at 300 K. (a) Average 
potential-energy surface. The deviation between the calculated points and the 
non-linear least squares fit line is 0.1 kcal moi-l. (b) The free-energy 
surface. The deviation is 0.3 kcal moi-l. 
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interactions substantially modify the difference in the minimum-energy structures by ca. 

3.5 kcal moi-l but do not strongly affect the barrier for ring inversion. 

Conclusions 
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We have modified the potential-energy surface constructed in chapter VI to include 

anharmonicity in the bond stretching terms and non-bonded interactions between atoms not 

bonded to one ~other or to a common atom. The chair, boat, and twist minimum-energy 

structures and corresponding energies have been calculated using a variable metric 

technique. The chair structure was found to be the lowest energy structure with the boat 

and twist structures being 4.5 and 4.0 kcal moi-l higher in energy than the chair 

conformation respectively. The chair structure compares well with the experimental gas

phase structure60, with the largest deviation being in the C-N-C bending angle and 

C2N--N()z wag angles. Our structure adopts a more puckered chair conformation than the 

experimental gas-phase structure. Also, the nitro groups adopt the axial position in the 

experimental structure but remain planar in our minimum-energy structure. 

The dynamical structure is close to the minimum-energy structure with small 

deviations in the C-N-C-N and C-N-N-0 dihedral angles. The C-N-C-N dihedral angles 

are slightly smaller in the dynamical structure as compared with the minimum-energy 

structure. The CN-N-0 dihedral angles deviate by ca 2• between the time-averaged 

structure and the minimum-energy structure. The dihedral angles also exhibit the largest 

fluct1;Jations. This is due to the 0-H interaction which slightly modifies the effective 

C-N-N-0 torsional potential. Overall, PES I exhibits more flexibility than does PES ll. 

The thermodynamics of PES IT are: Afl(300) ='4.5 kcal moi-l; 

M(300) = 4.0 kcal moi-l; Mit(300) = 4.5 kcal moi-l; and /lA t(300) = 4.7 kcal moi-l. In 

contrast to PES I, where the boat/twist conformation was favored due to the large entropy 

difference between the chair and boat/twist structures, the chair conformation is strongly 

favored on PES IT by ca 4.5 kcal moi-l. This is in accord with the electron diffraction 



experiments which shows that the chair configuration is favored in the gas-phase60 . It 

should be pointed out that the energetics are determined by the choice of potential 

parameters and thus, are a reflection of our choices. 
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CHAPTER VITI 

MOLECULAR DYNAMICS STUDY OF RING 

INVERSION OF RDX IN 1HE GAS-PHASE 

AND A DENSE XE FLUID AT 500 K 

Introduction 

In chapters VI an~ VII, the conformational dynamics for isolated RDX molecules 

were studied. Although studies of molecules in a vacuum can give valuable insight into the 

dynamics of these systems, vacuum studies do not correlate directly with experimental 

situations. In the study of isolated RDX, the energy of the molecule was a constant during 

each trajectory (microcanonical ensemble). In a thermal experiment, intermolecular energy 

transfer results in a continuous interchange of both energy and angular momenta between 

the solute molecule and the bath gas (canonical ensemble). 

There have been many studies concerning the dynamical effects of the solvent on 

barrier crossing processes33-44,108-117,132-139,156,159-164. These studies show that the 

solvent can have a dramatic effect on the rate of reaction. For the prototypic atom transfer 

reaction, AB+C ~ AB + C, Hyne~ -and co-workers33-34 and Wilson and co-workers35-37 , 

have shown that the solvent can dramatically alter the reaction dynamics'from those 

expected for the similar gas-phase process if the solvent couples strongly to the solute 

molecules. For a weakly coupled system, gas-phase behavior is observed, i.e., TST 

predicts the reaction rates fairly well. Straube et a[.44 and Robinson and co-workers41-43 

have shown that for a model isomerization process, a solvent environment can have a 

marked effect on the rate of barrier crossing due to the changing forces experienced by the 

solute along the reaction coordinate. When the barrier crossing takes place rapidly in 

117 



118 

comparison with the solvent motion, local non-equilibrium effects exist43. Chandler and 

co-workers39-40,124 have studied the solvent effects on the ring inversion of cyclohexane. 

They shown that quasi-periodic motion can play an important role in the dynamics of the 

system. Since quasi-periodic trajectories decrease the rate of ring inversion, the ability of 

the solvent to quench these trajectories leads to increased rates with increasing solvent 

density or pressure. Thus, intermolecular coupling, i.e., coupling between the solute and 

solvent can play a large part in reaction dynamics of condensed-phase systems. 

In this chapter, we discuss the effects of aXe solvent on the equilibrium 

distribution of the chair and boat/twist isomers and on the rate constant for 

chair~ boat/twist ring inversion. 

The presence of the bulky exocyclic nitro groups of RDX (see Fig. 15), which are 

coupled directly to the reaction coordinate, requires that a large volume must be swept out 

for the ring inversion process. Thus, the solvent could play a large role in determining the 

inversion dynamics of RDX by hindering the motion of the nitro groups. The study of 

hexahydro-1,3,5-trimethyl-1,3,5-triazine147 showed that the bulky exocyclic methyl 

groups contribute to the slower' rate of ring inversion and higher free energy of activation 

in the liquid phase as compared with the gas phase. 

Another factor in determining the rate of ring inversion is the hydrodynamic 

volume, i.e., the excluded vo~ume difference between the product and reactant -

conformations. The larger the hydiodynamic volume difference between product and 

reactant structures, the larger the entropic contribution to the rate constant for the 

isomerization. In the model systems studied ,by Statman and Robinson41, the cis 

configuration is about two-thirds the volume of the trans configuration which contributes 

to the difference between the cis~trans and trans~cis isomerization rate constants (a 

factor of 4) even thought the gas-phase isomerization potential is symmetric (the cis~trans 

and trans~cis isomerization rate constants should be equal). 
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For RDX, the energy difference between the boat/twist configuration and the chair 

configuration (see Chapter VII), may well be compensated by changes in the 

hydrodynamic volume as the solvent density increases. Thus, the equilibrium constant, 

which for gas-phase RDX strongly favors the chair conformation, could tend toward 

unity. 

' ' 
· Potential-Energy Surface 

The potential-energy surface is given by, 

V = V intra + V inter + V wall. 

where the intramolecular potential, Vintra. from chapter VII was employed. The 

intramolecular potential parameters are given in Table VI. 

(VIII.1) 

The intermolecular potential, Vmter. for the RDX-Xe and Xe-Xe interactions are 

described by a Lennard-Jones 6-12 interaction 

VL-J = ~ ~. 4Er {(~)12 - (~)6}. 
1 J J f·. f .. 

, IJ IJ 
(VIII.2) 

where the potential parameters, 0'1J and £ij. are calculated using the Lorentz-Berthelot 

mixing rules given by 

1 
<Tij = 2[ <Ti + <Tj] (VII1.3) 

and 

Eij = ~Ei Ei (VI11.4) 
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where cr1 and £1 are the atomic radius and Lennard-Jones well depth for the "ith" atom. The 

intermolecular potential parameters are given in Table X. 

The finite volume method by Murrell and co-workers156,160-164 was employed as 

described in chapter V. The wall potential, Vwan. was modeled using a modified Bom

Mayer156 potential given by 

~ Ap~ -b(R-pi) 
Vwall= ~ R2 e . 

1 

(VIIT.5) 

where R is the radius of the sphere and p1 is the distance of atom i from the center of the 

sphere. The pfterm in the numerator guarantee the potential and first derivative go to zero 

at the center of the sphere (pi=O). The parameters A and bare taken as 100 kcal moi-l and 

9.5 A-1, respectively. 

Computational Procedures 

Gas-Phase MD Simulation. The MD simulation of gas-phase RDX was 

Eerformed as described in chapter IV. No Xe solvent atoms were present and no boundary 

conditions were applied. The RDX molecule was initially in the chair conformation and the 

momenta were selected from a th~rmal distribution (Eq. V.21) at 500 K. A warm up 

trajectory was calculated for 10 ps during which, the momenta were scaled (Eq. V.22) to 

the ensemble temperature. Only one warm up trajectory was calculated. Periodically 

during the warm up trajectory, configurations of the RDX molecule were saved as initial 

configurations for subsequent trajectories. Using one of the saved configurations, a set of 

atomic momenta were sampled from a thermal distribution and the trajectory was 

equilibrated for 10 ps by periodically scaling the atomic momenta to the ensemble 

temperature. After the equilibration period, the trajectory was continued for 50 ps without 

further scaling. The phase-space coordinates were saved every 10 fs for subsequent 



TABLE X 

POTENTIAL PARAMETERS FOR THE INTERMOLECULAR 
INTERACTIONS FOR RDX AND XE 

intermolecular interactions a 

H 
c 
N 
0 
Xe 

a) The values were taken from Ref. 1. 
b) Units are kcal mol-l. 
c) Units are A. 

0.017 
0.102 
0.074 
0.122 
0.549 

c 
(J' 

2.81 
3.35 
3.31 
2.95 
3.97 
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analysis. If a trajectory deviated by more than 10 K, it was discarded and a new trajectory 

was initiated. Each trajectory required 7 hours of CPU time on an Alliant FX/8 vector 

processor. An ensemble of 20 trajectories was calculated which gave 1000 ps of 

dynamics. The ensemble temperature was 499±3 K. 

Cond.ensed-Phase MD Simulation. The condensed-phase system consisted of one 

RDX molecule and 128 Xe solvent atoms. The initial conditions of the RDX molecule and 

Xe solvent were calculated as described in chapter V. The RDX molecule is placed at the 

center of the reaction sphere while the solvent atoms are place in ~ fcc lattice about the 

molecule. The radius of the sphere is determined from the desired solvent density. The 

RDX molecule was initially in the chair configUFation. The atomic momenta of all the 

atoms were sampled from a thermal distribution (Eq. V.21) at 500 K. The system was 

annealed for 2.0 ps to reduce any large potential due to the starting configuration. This was 

achieved by zeroing the atomic momenta whenever the kinetic energy exceeded the potential 

energy. A warm up trajectory was calculated for 10 ps during which the atomic momenta 

were scaled periodically to the desrred ensemble temperature (Eq. V.22). Only one warm 

up trajectory was performed for each ensemble. Each trajectory was calculated for 60 ps, 

10 ps of equilibration and 50 ps of production. The phase-space coordinates were saved 

every 10 fs for subsequent analysis. Each condensed-phase trajectory required 12 hours of . 

CPU time on an ffiM3090-200s vector processor. Ensembles of 8-12 trajectories were 

calculated at eight different solvent concentrations. No trajectories were discarded from the 

condensed phase ensembles. 

An Adams201 numerical integration method was employed for both the gas-phase 

and condensed-phase calculations with an tolerance of 1x10-6 which gave energy 

cons~rvation of 1 x10-3 percent error, respectively. 
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Results and Discussion 

A temperature of 500 K was used so that a fair number of events could be observed 

in both the gas and condensed-phases. We verified the definition of temperature, given by 

Eq. V.23, for both calculations. The speed (Eq. VI.lO) of each atom type, C, N, 0, H, 

and Xe, was calculated every 10 fs during a trajectory and a histogram of 15-20 equal 

subintervals was obtained. The distribution of speeds are compared to the Maxwell

Boltzmann distribution (Eq. VI.9) calculated at the ensemble tempe~ture. 

The distribution of speeds for gas-phase RDX are plotted in Fig. 18(a-d). The 

histograms for gas-phase ~X were obtained by ave~ging over all 20 trajectories of the 

gas-phase ensemble. As can be seen, the Maxwell-Boltzmann distribution represents the 

trajectory data very well. 

The distribution of speeds for the RDX molecule and the Xe atoms at solvent 

densities of [Xe] = 3.1 mol dm-3 and [Xe] = 19.1 mol dm-3 are shown in Figs. 19-22. 

The histograms for RDX and the Xe solvent represent the distribution of speeds for a 

single trajectory. Thus, the agreement between the molecular dynamics simulation data 

and the Maxwell-Boltzmann distribution does not appear as good as for the gas phase, but 

as more trajectories were averaged, the agreement more become better. At both densities, 

the most probable speeds for the four different atom types of RDX are shifted slightly to 

the higher region (Figs. 19(a-d) and 21(a~d)), but the distribution exhibits the correct 

profile. The speed distributions for the Xe atoms at the lower (Fig. 20) and upper 

(Fig. 22) densities are well, represented by the Maxwell-Boltzmann distribution. 

The time history of the average temperature of a condensed-phase trajectory is 

shown in Fig. 23. As can be seen, after ca. 6 ps, the fluctuations' are negligible. The 

temperature for this trajectory is 510 K. 



Figure 18. Distribution of Speeds for Gas-Phase RDX. The Maxwell-Boltzmann 
distribution (solid line) is calculated at the ensemble temperature of 500 K. 
The atom types are as follows: (a) carbon atoms, (b) nitrogen atoms, (c) 
oxygen atoms, and (d) hydrogen atoms. 
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Figure 19. Distribution of Speeds for RDX at [Xe] = 3.1 mol dm-3. The Maxwell
Boltzmann distribution (solid line) is calculated at 500 K. The atom types are 
as follows: (a) carbon atoms, (b) nitrogen atoms, (c) oxygen atoms, and (d) 
hydrogen atoms. 
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Figure 20. Distribution of Speeds for the Xe atoms at [Xe] = 3.1 mol dm-3. The Maxwell
Boltzmann distribution (solid line) is calculated at a temperature is 500 K. 
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Figure 21. Distribution of Speeds for RDX at [Xe] = 19.1 mol dm-3. The Maxwell
Boltzmann distribution (solid line) is calculated at 500 K. The atom types are 
as follows: (a) carbon atoms, (b) nitrogen atoms, (c) oxygen atoms, and (d) 
hydrogen atoms. 
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Figure 22. Distribution of Speeds for the Xe atoms at [Xe] = 19.1 mol drn-3. The 
Maxwell-Boltzmann distribution (solid line) is calculated at a temperature is 
500 K. 
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Figure 23. Time History of the Average Temperature for a Condensed-Phase Trajectory. 
The temperature for the' trajectory is 510,..K. 
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EQuilibrium Dynamics 

Table XI lists the ensemble averages for the temperature (Eq. V.23) and 

translational energy (Eq. V.25), rotational energy (Eq. V.26), internal energy (Eq. V.28), 

and internal kinetic energy (Eq. V.30) of RDX for the eight different Xe concentrations 

studied. As the results in Table XI illustrates, the ensemble averaged internal kinetic 

energy is close to the theoretical value of (3N-6)/2 1CT and the ensemble averaged rotational 

and tninslational energies are close to their theoretical value of 1.51CT. This suggests that 

thermal equilibrium has been fairly well established in each ensemble. 

The gas-phase configurational distribution function for RDX is given by the 

Boltzmann distribution 

exp[-~V(8)] 
P(8) = , 

Jd8 exp[-~V(8)] 
(VIll.6) 

where V(8) is the gas-phase potential along the reaction coordinate. The potential-energy 

surface from 8 = Oo to 8 = 9(t was calculated in Chapter VII. The calculated points were 

fit with a fifth order polynomial between these limits. Since the potential-energy surface is 

symmetric, the potential-energy surface from 8 = 9(t to 8 = 1800 was taken as the mirror 

image of the potential-energy surfac~ from 8 = Oo to 8 = 90°. The potential energy, V(8), 

is calculated by 

5 
V(8) = L a.cpi 

. 1 1 
1= 

{ 8 for 0"~8~90° 
<p = 180°-8 for 90°~8~1800 

(VITI.?) 

(VIII.8) 

where 8 in Eq. VIII.8 is the value of the pucker coordinate and the ai's are obtained from 

the non-linear least squares fit of the gas-phase potential-energy surface (Fig. 17a) 



TABLE XI 

ENSEMBLE AVERAGES FOR RDX IN AXE FLUID 

[Xe]a <T>b <Ekin>c <E(int)>c <E(trans)>c <E(rot)>c 

3.1 510±16 28±4 69±7 1.3±0.6 1.3±0.4 

6.3 510±32 32±4 69±8 1.5±0.4 1.5±0.5 

9.4 490±31 31±3 78±7 1.7±0.4 1.4±0.2 

11.0 510±29 31±4 76±8 1.8±0.3 1.5±0.3 

12.6 510±25 28±3 71±8 1.4±0.3 1.6±0.3 

14.2 510±26 30±4 72±7' 1.3±0.2 1.5±0.4 

15.8 . 490±29 28±4 69±7 1.7±0.4 1.7±0.4 

19.1 520±28 36±4 84±6 1.8±0.3 1.8±0.3 

a) Units are mol dm-3. 
b) Units are K. 
c) Units are kcal moi-l 
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obtained from the Monte Carlo simulation in chapter Vll. The fitted coefficients are given 

in Table xn. 

Gas-Phase EQuilibrium Distribution The pucker coordinate 9 was calculated 

every 10 fs during C1ach trajectory of the gas-phase ensemble and a histogram over 18 equal 

subintervals in the range 00 to 180° was acc~ulated. The probability distribution of the 

reaction coordinate, P(9), is plotted in Fig. 24. The Boltzmann probability distribution 

(Eq. Vlll.6) is shown for comparison. Both distribution functions are normalized such 

that 

J P(e) de= 1 (VIII.9) 

where the limits of the integral are oo to 180°. As can be seen, almost complete 

equilibration is achieved, P(Oo),:;; P(180°). The Boltzmann configurational distribution 

models the trajectory data fairly well. There is a' slight underpopulation for the boat/twist 

conformations. The deviations at the end points are due to the definition of the e 
coordinate which is defined betweenOO and 180°. 

Cond.ensed-Phase EgJlllibrium Distribution There has been some controversy as 

to the validity of applying the gas-phase c.onfigurational distribution function to solvent 

environments. Flory155 suggests t:llat for n-butane in a solvent, the average potential along 

the dihedral angle should correspond closely to its unperturbed value, that is, the gas-phase 

potential. Thus, the system of molecules may be pictured as populating the configuration 

space according to a Boltzmann distribution over the intramolecular energy, i.e., 

intermolecular effects are negligible. This behavior was also observed by Zhu and 

Robinson42 for a series of model 4-atom molecules in a Lennard-Jones liquid. 

Robertus et a/.32 and Pratt and Chandler128-131 show that the gas-phase and 

condensed-phase configurational distributions are markedly different for a model potential 

of n-butane in solution. Robertus et al. 32 suggest that the local structure of a liquid can 



TABLEXTI 

COEFFICIENTS FOR THE POTENTIAL-ENERGY SURF ACE OF RDX 

a) Units are kcal moi-l. 

ao = -5.4446 x 10-2 

at = 1.8150 X lQ-3 

a2 = 7.5359 x lQ-3 

a3 = -1.7699 x 10-4 

84 = 1.4767 X lQ-6 

as= -4.1531 x lQ-9 

139 



Figure 24. Configurational Distribution of Gas-Phase ~X. The Boltzmann distribution 
(solid line), calculated at a tempera~ :~f 500 K, is shown for comparison. 
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sometimes accommodate one isomer preferentially to another. They suggest that the liquid 

structure is more easily obtained when the n-butane molecule is in the gauche isomer since 

this configuration is more "spherical" compared to the trans isomer. Zhu et a[.43 and 

Berne et a/.44 observed similar results for a quasi-diatomic molecule in which the 

configurational distribution is biased towards the contracted isomer due to its smaller 

volume. 

The distributions for different solv~nt concentrations, [Xe] = 6.2 mol dm-3, 

[Xe] = 14.2 mol dm-3, and [Xe] = 19.1 mol dm-3 are plotted in Figs. 25(a-c), 

respectively. The Boltzmann configurational distribution (Eq. VII1.6) is shown for 

comparison. All distributions have been norinalized according to Eq. VIII. 9. 

At [Xe] = 6.2 mol dm-3, fait configurational equilibration has occurred in the time 

period calculated (as evidenced by P(Oo) being almost equal to P(180°)). The Boltzmann 

distribution models the molecular dynamics simulation results fairly well over the region 

15° < E> < 165°. As the solvent concentration is increased, the distribution starts to show 

more deviation from the gas-phase distribution (Fig. 24) in the region of 15" < E> < 165°. 

Also, configurational equilibration is not as complete as evidenced by P(Oo) being only 

about half ofP(180°). The interesting feature though is that as the solvent concentration 

increases, the probability of the boat/twist conformation increase. The probability of the 

boat/twist structure, P(900), is ca. 1.6 time the gas-phase value (see Fig. 24) at [Xe] = 6.2 

mol dm-3 and ca. 3 times the gas-phase value at [Xe] = 19.1 mol dm-3. 

The equilibrium constant is Keq = [~:=~st]' where [chair] and [boat/twist] are the 

concentration of the chair and boat/twist conformations, respectively. The boat/twist 

concentration is obtained by integrating over the configurational distribution from 

E> = 60 to 1200, while the chair concentration is obtained by integrating over the 

conformational distribution from~= oo to 60° and E> =120° to 180° and dividing by two. 

The value for the equilibrium constant for the chair-boat/twist inversion for the gas-phase, 

[Xe] = 6.2 mol dm-3, [Xe] = 14.2 mol dm-3, [Xe] = 19.1 mol dm-3 are 5.3, 3.7, 2.4, 1.5, 



Figure 25. Configurational Distribution of Condensed-Phase RDX. The Boltzmann 
distribution (solid line), calculated at a temperature of 500 K, is shown for 
comparison. The solvent concentrations are: (a) [Xe]=6.3 mol dm-3; (b) 
[Xe] = 14.2 mol dm-3; (c) [Xe]=19.1 mol dm-3. 
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respectively. Thus, for RDX in this simple Lennard-Jones fluid, we observe that the gas

phase configurational distribution does not describe the condensed-phase configurational 

distributions very well at high solvent concentrations. One explanation for this results is 

that the volume of the boat/twist conformation is much smaller than that for the chair 

structure, as will be shown later. Therefore, the entropy or "size" effect, discussed 

previously32,43-44,128-131, appears to play a role in the equilibrium dynamics of 

condensed-phase RDX. 

Chair-Boatlfwist Rin~ Inversion Rate Const:aQts 

The chair~boat/twist inversion process can be followed by calculating the time 

history of the 0 pucker coordinate (Eq. Vll.2). The rate constant for the inversion process 

can be obtained by non-linear least-squares fitting 

N(t) 
No = exp[-kunit], (VIll.lO) 

where N(t) is the number of lifetimes for RDX in the chair conformation at timet, No is 

the total number of lifetimes for RDX in the chair conformation, and kuru is the 

chair~boat/twist rate constant. A trajectory is assumed to isomerize when the RDX 

molecule passes over the barrier and through the equilibrium configuration of the product 

state (the boat/twist conformation). The lifetime is taken as the time between the first and 

last inner turning point of the pucker coordinate e in the reactant state. The deviations 

between the lifetime distribution obtained from th~ molecular dynamics simulations and the 

exponential fit are between 6-10% for all cases studied. 

Gas-Phase Results. Figure 26 illustrates the time history of the pucker 

coordinate e for a typical gas-phase trajectory. The RDX molecule is initially in the chair 

conformation for the first 8 ps after which it experiences 5 ring inversions. The molecule 



Figure 26. Time History of the Pucker Coordinate E> for a Gas-Phase Trajectory at 500 K. 
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remains in the the inverted-chair conformation for the fmal35 ps of the trajectory. 

Figure 27 shows the distribution of lifetimes for the gas-phase ensemble. The rate 

constant for the chair~boat/twist inversion process obtained from Eq. VIll.lO for gas

phase RDX is 1.2 x1011 s-1. 
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Cond.ensed-Phase Results. Figure 28 shows the time history of the pucker 

coordinate for a typical trajectory in the condensed-phase. The RDX molecule experiences 

quit a few inversions during the 50 ps trajectory. This type of behavior was common to all 

the trajectories calculated at the eight different Xe solvent concentrations. 

The distribution of lifetimes and the fitted exponential decay curve for the eight 

different solvent densities studied are shown in Fig. 29(a-h). The values for the rate 

constants obtained from Eq. VIII.lO at the different solvent densities are given in Table 

XIII. 

Pressure Dt<pendence of the Rin~ Inversion Rate Constant 

The rate constant, kuni. as a function of the Xe concentration are shown in 

Fig. 30. At low concentration (inertial regime106,108-112), the ring inversion rate constant, 

kuni. obeys Lindemann behavior, that is, kuni is an increasing function of the bath gas 

concentration [Xe]. 

At [Xe] = 6.3 mol dm-3, the rate constant is a maximum and starts to decrease as 

the solvent concentration increases. This turnover in kuni (Kramer's turnoverll4) has been 

seen in a number of isomerization processes39-40,113,124,139. This behavior is usually 

attributed to frictional effects of the solvent on the reaction coordinate. Therefore, the 

isomerization can be described as a diffusive process, i.e., the rate constant decreases as 

the solvent density increases108-114. In RDX, the three exocyclic N02 groups 

(see Fig. 15), which are coupled directly to the reaction coordinate, must sweep out a large 

volume as the ring inversion proceeds. 



Figure 27. Lifetime Distribution for the Chair Conformation of RDX in the Gas Phase at 
500 K. The solid line represents the exponential fit from which the rate 
constant can be obtained. 



150 

1.0 
gas-phase 

~ 0.8 
0 

•1"""'i 
~ 

0.6 ~ 

-= ~ 
(1) 0.4 (.) 

~ 
0 

0.2 u COo 0 oq, 
0.0 

0 10 20 30 40 

time (ps) 



Figure 28. Time History of the Pucker Coordinate 8 for a Condensed-Phase Trajectory at 
500 K. 
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Figure 29. Lifetime Distributions for the Chair Conformation of RDX in theCondensed
Phase at 500 K. The Solvent Concentration are: (a) [Xe] = 3.1 mol ctm-3; 
(b) [Xe] = 6.3 mol ctm-3; (c) [Xe] = 9.4 mol ctm-3; (d) [Xe] = 11.0 mol ctm-3; 
(e) [Xe] = 12.6 mol ctm-3; (f) [Xe] = 14.2 mol ctm-3; (g) [Xe] = 15.8 mol 
ctm-3; (h) [Xe] = 19.1 mol ctm-3. The solid lines represent the exponential fit 
from which the rate constant can be obtained. 
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TABLE XIII 

RATE CONSTANTS FOR THE CHAIR-tBOATffWIST RING 
INVERSION OF RDX IN AXE FLUID 

[Xe] mol dm-3 kchair~boatltwist (s-1) 

o.oa 1.2 X 1011 (75)b 

3.1 2.9 X 1011 (35) 

6.3 4.4 X 1011 (59) 

9.4 3.3 X 1011 (48) 

11.0 3.2 X 1011 (59) 

12.6 2.2 X 1011 (57) 

14.2 2.0 X 1011 (42) 

15.8 2.5 X 1011 (39) 

19.1 3.7 X 1011 (61) 

a) Taken from the gas-phase results. 
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b) The numbers in parentheses are the number of lifetimes for the corresponding ensemble. 



Figure 30. Chair--tBoat/fwist Rate Constant Versus Solvent Concentration for RDX. 
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For hexahydro-1,3,5-trimethyl-1,3,5-triazinel47 (replace the three N(h groups of 

RDX with three CH3 groups), the rate constant for ring inversion is lower (higher free 

energy barrier) in the solution phasel51 as compared with the gas-phasel47. This increase 

in the free energy barrier is attributed to the large volume that the bulky methyl groups have 

to sweep out for inversion to occurl47. 

The chair~boat/twist rate constant, kuni· decreases until it reaches a minimum at 

[Xe] = 14.2 mol dm-3. As the solvent concentration increases above 

[Xe] = 14.2 mol dm-3, kuni starts to increase. A frequently invoked concept, the activation 

volume A vt is employed to study deviations from Lindemann behavior at 'high solvent 

concentrationlOS-106,108,113,120-121. The activation volume is defmed asl05 

(VIII.ll) 

where P is the pressure. The activation volume is a measure of the difference between the 

excluded volume of the transition-state structure and that of the reactant geometry lOS. 

Ladanyi and Hynesl21 have shown that variations in AVt generally arise from the change 

in solvent packing about the transition-state geometry as opposed to only changes in the 

reactant or transition-state geometry themselves. For a highly compressed solvent and a 

"tight" transition-state structure, AVt will be negative and according toLe Chitelier's 

principle the pressure of the solvent will lead to an equilibrium between the reactant and 

transition state in which the transiti<;>n state is more favorable than at low density. 

Using the transition state theory formulation, the unimolecular rate constant is 

given byl06 

1CT t rf~J kuni = h K exrl KT ' (VIII.12) 
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where E0 is the activation energy and Kt is the "pseudoequilibrium" constant for the 

assumed equilibrium between the reactant and transition-state configurations. Thus, for a 

"tight" transition-state structure and high solvent density, the equilibrium is expected to 

shift toward the transition state structure and Kt should increase121. An increase in Kt 

results in an 'increase in the unimolecular rate constant. 

We have studied the "volume" of RDX as a function of the reaction coordinate at 

the different Xe concentrations. We can use the pucker coordinate Q (see Eq. lll.4) except 

that the sum now extends over all21 atoms ofRDX. We let this coordinate be designated 

' 

as Z so as to distinguish it from the true pucker coordinate Q. The volume of the molecule 

is than proportional to z3. Figure 31 illustrates the ensemble averaged Z coordinate as a 

function of the reaction coordinate for gas-phase RDX. As can be seen, the volume of the 

chair (E>..., 0°) is much larger than the volume of the molecule in the transition-state region 

We investigated the change in pressure just preceding ·and immediately following 

the minimum in the rate constant at [Xe] = 14.2 mol dm-3. The pressure is calculated 

using Eq. V.24. The change in pressure, AP, in going from [Xe] = 12.6 mol dm-3 to 

[Xe] = 14.2 mol ctm-3 (just before the minimum rate constant) is..., 39 atm, whereas, when 

the solvent concentration is increased from [Xe] = 14.2 mol dm-3 to [Xe] = 15.8 mol ctm-3 

(immediately following the minimum rate constant), AP is ..., 54 atm. Also, as the solvent 

density is increased from [Xe] = 15.8 mol dm-3 to [Xe] = 19.1 mol dm-3, AP is..., 

178 atm. These large increases in pressure represent an increase in the average Xe-Xe 

interactions (see Eq. V.24) which would result in the structure with the smaller volume 

being more favorable. 

The "tight" transition state and increased Xe-Xe interactions, both strongly suggest 

that the activation volume is a plausible explanation for the increase in the chair~boat/twist 

inversion rate constant at high solvent concentrations. 



Figure 31. Radius of Gas-Phase RDX as a Function of the Reaction Coordinate. 
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Conclusions 

We have used molecular dynamics simulations to study the solvent effects on the 

equilibrium properties and the chair-?boat/twist ring inversion rate constant at 500 K for 

eight Xe solvent concentrations. 

The configurational distributions for RDX in the gas and condensed-phases were 

shown to be markedly different. The results show that as the solvent density increases, the 

probability distributions shift towards the boat/twist conformations. This is in accord with 

the results obtained for other isomerizations processes. The equilibrium constant for the 

chair-boat/twist ring inversion of RDX in the gas-phase and in the condensed phase 

([Xe] = 19.1 mol dm-3) is 5.3 and 1.5, respectively. 

The rate constant for ring inversion, kuni. obey Lindemann behavior at low solvent 

concentrations. As the solvent concentration increases, a maximum in the rate constant is 

observed after which it becom~s a decreasing function of the solvent concentration 

(Kramer's turnover). We attribute this beha~ior to the bulky exocyclic NOz groups which 

are directly coupled to the reaction coordinate and must sweep out a large volume during 

the ring inversion process. At high solvent concentrations, kuru increases with increasing 

solvent density. The behavior at high solvent densities was attributed to a negative volume 

of activation due to the "tight" transition state and the increase in the average Xe-Xe 

interaction which results in the "smaller" structure being favored. 

Unfortunately, there are no experimental data for RDX with which to compare, but 

comparison with a similar system121 yield qualitatively correct results. 



CHAPTER IX 

MOLECULAR DYNAMICS SIMULATIONS OF THE 

CIS -TRANS ISOMERIZATION OF 

HONO IN SOLUTION 

Introduction 

In this chapter, we discuss the effects of an Ar solvent on the cis-trans 

isomerization of nitrous acid (HONO). HONO is among the simplest of molecules to 

experience isomerization. Also, much is know about the potential-energy surface of 

HONO both experimentally87-93 and theoretically94-104. The reaction coordinate has been 

shown to be primarily the dihedral angle. 

H"-.. (R4) 0 N 
0-N~ ----H/ - ~0 

'O 
trans CIS 

The cis isomer is slightly higher in energy than the trans isomer. Therefore, if the re1;1ction 

could be described by a statistical thermodynamic theory, the rate constant for the trans 

~cis isomerization process should be about equal to that of the reverse process cis~trans. 

The canonical distribution is fundamental to many of the presently accepted theories 

of chemical reactions202. This assumes that the solute and solvent are in perfect thermal 

equilibrium along the reaction coordinate. Zhu and Robinson43 have recently shown that 

this might not be correct for solutes which undergo rapid local acceleration compared to the 

solvent atoms. The effect of non-equilibrium in barrier crossing processes is that the 
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solute cannot keep in perfect thermal equilibriwn with the solvent at all points on the 

reaction coordinate, especially in the region of the barrier where the forces are large. Zhu 

and Robinson43 show that the deviations from canonical behavior increase with increasing 

barrier height and the difference in mass between the reacting system and the bath atoms. 

In a recent review of simple reactions in solution, Wilson36a discussed the 

importance of the process of climbing to the barrier top since this process dominates the 

reaction time. Nitzan and co-workers153-154 showed that at low viscosity or density when 

the energy accwnulation step is dominant, the dynamics of the system in the reactant well 

could play an important role in the reaction dynamics. Also, in non-Markovian regimes, 

that is, when the solvent does not act impulsively on the reacting molecule, the dynamics 

distant from the transition state could play an important role in the isomerization process. 

Molecular dynamics simulations, although time consuming, make no assumptions 

concerning thermal equilibriwn between the solvent particles and the reacting species since 

the solvent is calculated explicitly. 

To date, most molecular dynamics simulations on cis--trans isomerization 

reactions have used model systems with certain internal coordinates constrained to their 

equilibriwn values. Studies have shown that the presence of rigid bonds and bending 

angles may lead to significant reductions in the isomerization rates20,45-48. Helfand et a[43 

have shown that for chain molecules, as the transforming bond rotates over the barrier, 

neighboring degrees of freedom can undergo distortions. These distortions can 

dramatically affect both the barrier crossing process and the equilibriwn distributions. 

Van Gunsteren £!! al. 20 studied the dynamics of a protein with and without 

constrains imposed on the internal coordinates. They showed that the magnitude of the 

fluctuations decrease by a factor of 2 and transitions between the different conformations 

are drastically reduced when internal constrains are employed. They suggest that in a 

closely packed system, excluded volwne effects due to repulsive non-bonded interactions 

can induce strong coupling between the dihedral angle and bond angle degrees of freedom 
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. Dunfield and Whittington47 and Johsi and Rao48 suggest that coupling between angle 

bending and torsional modes is important for conformational flexibility of polysaccharides. 

We have used molecular dynamics simulations to calculate the equilibrium 

configurational distribution and rate constants for the cis-Hrans and trans ---+cis 

isomerization of HONO in solution using a model intramolecular potential-energy surface 

which incorporates bond stretching, angle bending, and non-linear couplings. 

Potential-Energy Surface 

The intramolecular potential-energy surface calc~ated by Guan and Thompson 103 

for HONO was employed. The potential is given by, 

V = VHONO + V solute-solvent +~Y solvent-solvent 

where the intramolecular potential, 

V HONO = V Morse + V bend + V torsion 

is comprised of Morse stretches (Eq. V.IO), 

~ . -a.-(r.-r?) 2 
VMorse = £. Dei (1 - e 1 1 1 ) ' 

i 

(IX. I) 

(IX.2) 

(IX.3) 

with De.!{>, and a being the dissociation energy, equilibrium bond distance, and curvature 

parameter, respectively, harmonic bends (Eq. V.12), 

(IX.4) 
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where kb and e~ are the bending force constant and equilibrium bending angle, and a six 

term cosine series, 

Vtorsion = ao + a1 cos(t) + ~ [ 2cos2(t)- 1] + a3 [ 4cos3(t)- 3cos(t) l 

+ a4 [ 8cos\t)- 8cos2(t) + 1 ] 

+ a5 [ 16cos\t) - 20cos\t) + 5cos(t) ]. 

A switching function of the form203, 

1 s"C = 2 (1-cos(t)), 

(IX.5) 

(IX.6) 

was used to smoothly vary the geometry and potential parameters between the trans and cis 

isomers. The importance of nonlinear coupling between the internal coordinates and the 

reaction coordinate has been addressed extensively for the dynamics and unimolecular 

reactions of poly atomic molecules28,203-209. The instantaneous "equilibrium" geometrical 

and potential parameters are given by 

(IX.7) 

where x~ans and x~is are the value of the '.'.ith" geometrical and potential parameters in the 

trans and cis conformations, respectively. The equilibrium coordinates, rO and EP, and 

potential parameters, a. and kb are switched in this study. 

For this potential-energy function, the barrier for the trans~cis isomerization is 

9.6 kcal moi-l which is much to high (161CT, where K is the Boltzmann factor and Tis the 

temperature) for a sufficient number of barrier crossings to occur at 300 K in a reasonable 

ameunt of computer time. A technique developed to study infrequent events is the reactive 

flux method125 (see chapter ill). This method is based on the time correlation description 

of the barrier crossing process. Since each trajectory is initiated at the barrier, they need 
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only be calculated for a short period of time until the reactive flux has reached a plateau 

value. Robertus et al. 32 developed another approach in which the configurational 

probability distribution is calculated from a molecular dynamics simulation with a zero 

barrier for the reacting molecule. The equilibrium constant can be obtained by multiplying 

the zero barrier distribution function and the Boltzmann factor, exp[-~V(t)], where V(t) is 

the potential along the reaction coordinate and ~=( KI)-1. Both of these methods assume 

that the solute and solvent remain in, thermal equilibrium throughout the barrier crossing 

process, which might not be the case43. 

To overcome the high barrier but not introduce assumptions as to the behavior of 

the solute and solvent along the reaction coordinate, we scaled the torsional barrier to 

1.411CT. Thus, our model potential-energy surface for HONO is representative of a low 

barrier height system43c. The bond stretching, angle bending, and coupling terms from the 

potential-energy function by Guan and Thomsonl03 are retained. The values for the 

equilibrium internal coordinates and potential parameters are given in Table XIV and Table 

XV, respectively. The gas-phase torsional barrier is illustrated in Fig. 32. In the scaled 

potential, the cis isomer is 0.058 kcal/mol higher in energy than the trans isomer and the 

barrier is 0.84 kcal moi-l. 

The transition-state (t=85.4.) structure was calculated using the gradient norm 

method (see Chapter V). The calcUlated values of the internal coordinates for the 

transition-state structures are given in Table XIV. The calculated frequencies for the three 

different structures, cis (t=O•), trans ('t=180.), and transition state (t=85.4.) are given in 

Table XVI. 

The molecule-solvent and solvent-solvent interactions, V solute-solvent and V solvent-

solvent, are represented by Lennard-Jones 12-6 interactions 

{ 12 6} 
VL-J = l: l: 4£r (~) - (~) , 

1 J ~ f·. f·. 
lj lj 

(IX.8) 
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TABLE XIV 

EQUILIBRIUM INTERNAL COORDINATES FOR HONO 

bond ro (A) 

trans cis TSa 

N=O 1.1665 1.1773 1.1723 
N-0 1.3996 1.3776 1.3877 
H-0 0.9539 0.9646 0.9597 

bending angle E> (de~) 

trans cis TS 

0-N-0 111.38 113.94 112.76 
H-0-N 107.89 111.61 109.90 

dihedral angle 't (deg) 

trans ClS TS 

H-0-N-0 180.00 0.00 85.44 

a) Values for the transition-state structure were obtained from the mimimization proceedure 
(see text). 



TABLE XV 

POTENTIAL PARAMETERS FOR 1HE INTRAMOLECULAR POTENTIAL-ENERGY SURFACE FOR HONO 

bond 

N=O 
N-0 
H-0 

bending angle 

0-N-0 
H-0-N 

dihedral angle 

H-0-N-0 

a) units are kcal mol-l. 

De (kcal/mol) 

aoa 

115.0195 
40.7985 
78.8310 

0.4429 0.0524 

trans 

2.7553 
2.1027 
2.5629 

cis 

2.6228 
2.1364 
2.4459 

Ke (kcal mot-1 rad-2) 

trans 

249.1791 
107.2165 

-0.4039 -0.0232 

cis 

277.9544 
120.4446 

-0.0108 

as 

-0.0012 
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TABLE XVI 

CALCULATED NORMAL MODE FREQUENCIES OF HONdl 

v1 (OH) v2 (N=O) v3 (HON) v4 (NO) v5 (ONO) v6 (t) 

Trans 
. al b preVIOUS C C. 3591 1700' 1263 845 541 537 

present calc. 3589 1698 1262 844 540 162 

Cis 
. al b preVIOUS C C. 3426 1641 1302 909 540 648 

present calc. 3426 1640 1301 907 540 195 

TSC 

present calc. 3500 1645 1299 888 545 16liC 

a) Units are cm-1. 
b) Guan and Thompson, Chern. Phys., U,2, 147 (1989). 

c) The transition-state structure. The torsional coordinate, t, is the reaction coordinate. 
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where rij is the distance, O'ij is the atomic radius, and Eij is the Leonard-Jones well depth 

between atoms i andj which are calculated using the Lorentz-Berthelot mixing rules, 

cr .. = [cr. + cr ·] lJ 1 J (IX.9) 

and 

(IX.lO) 

where the O'i and Ei are·the atomic radius and Lennard-Jones well depth for the ith atom. 

The solute-solvent and solvent-solvent potential parameters are given in Table XVIT. 

Computational Procedure 

The system consists of one HONO molecule and 104 Ar solvent atoms using 

periodic boundary conditions (see Chapter V). The HONO molecule is initiated in the 

trans configuration and placed at the center of an fcc lattice of Ar atoms. Box lengths of 

17.9817 A and 16.6927 A gave densities of p=l.20 g cm-3 and p=l.50 g cm-3 or reduces 

solvent densities (pAr* = p ArO' Ar) of 0. 709 and 0.887, respectively. The atomic momenta 

are sampled from a thermal distribution (Eq. V.21) at 300 K. A trajectory is calculated by 

numerically solving Hamilton's equations of motion (Eqs. V.5-V.6) in Cartesian 

coordinates using an Adams201 variable-order variable-step algorithm with an error 

tolerance of 5 x to-5 which gives energy conservation of 0.05%. The system is annealed 

for 1.0 ps by periodically zeroing the atomic momenta. A warm up trajectory is calculated 

for 2.5 ps by periodically scaling the momenta to the desired ensemble temperature 

(Eq. V.22). Mter the warm up period, a new set of momenta are sampled from a thermal 

distribution at 300 K and a trajectory is calculated for 100-200 ps after 5 ps of 

equilibration. The phase-space coordinates are saved every 5 fs for subsequent analysis. 



TABLEXVIT 

INTERMOLECULAR INTERACTIONS FOR HONO AND ARGON 

intermolecular interactions3 

Ar-N 
Ar-0 
Ar-H 
Ar-Ar 

a) The values were taken from Ref. 1. 
b) Atomic polarizability units are kcal moi-l. 
c) Atomic radius units are A. 

0.133 
0.171 
0.064 
0.238 

3.36 
3.18 
3.11 
3.41 

174 
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The equilibrium dynamics and rate constants for the cis-wans and trans---tcis 

isomerization processes are calculated. 

Results and Discussions 

The time-averaged value of the temperature for the two densities studies are given 
' -

in Table XVIII. The time-averaged value of the internal energy (Eq. V.28), internal kinetic 

energy (Eq. V.30), translational energy (Eq. V.25), and rotational energy (Eq. V.26) are 

given in Table XVIII. All are close to their theoretical values, i.e., 3KT for the internal 

kinetic energy and 1.5KT for the translational and rotational energy. 

ConfiiDJrational Distribution 

The torsional angle was calculated every 5 fs during each trajectory and a histogram 

of 10 equal subintervals was accumulated. The configurational distribution for the two 

densities are plotted in Figs. 33(a-b). The Boltzmann distribution for gas-phase HONO, 

given by119 

· exp[-~V(t)] 

Jexp[-~V(t)]' 
(IX.ll) 

(where V(t) is the gas-phase torsional barrier,~= (KT)-1, and the limits of integration are 

from 0 to 21t) is shown for comparison. All distributions have been normalized such that 

(IX.l2) 

where the limits are from 0 to 21t. The configurational probability distribution for HONO 

at p=l.20 g cm-3 (Fig. 33a) and at p=1.50 g cm-3 (Fig. 33b) is modeled fairly well by the 

Boltzmann distribution. The equilibrium constant is Keq = [~~2 ]' where [cis] and [trans] 

are obtained by integrating the configurational probability distribution obtained from the 
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TABLE XVIII 

TIME AVERAGES FOR HONO 

[Ar]a <T> (K) <E(int)>b <E(kin)>b <E(trans)>b <E(rot)>b 

1.20 316.2 4.12 2.07 1.00 0.95 

1.50 286.4 4.47 2.23 0.87 0.92 

a) Solution concentrations units are g cm-3. 
b) Energy units are kcal moi-l. 



Figure 33. Configurational Probability Distribution for HONO. (a) p=1.20 g cm-3; (b) 

p=1.50 g cm-3. 
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molecular dynamics simulations over the cis and trans conformations. The molecule is 

assumed in the trans isomer when 85.4o~t ~ 265.4° and the cis isomer otherwise. The 
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equilibrium constants for the cis-+trans isomerization are calculated to be 1.1 and 0.7 for 

p=1.20 g cm-3 and p=l.50 g cm-3, respectively. The gas-::phase equilibrium constant, 

obtained from the Boltzmann probability distribution, is 0.89. These results show that 

HONO, in an Ar liquid, populates the configuration_space according to a near Boltzmann 
' -

distribution over the intramolecular energy of the gas-phase molecule. 

Zhu et af.42a, show that for the systems they studied, the Boltzmann distribution 

models the trajectory data well, which is in accord with the ideas suggested by Flory155. 

As was stated in Chapter VIIT, there has been some controversy as to the validity of 

extending gas-phase pt;inciples to condensed-phase systems. 

Solvent Structure 

The solvent structure can be studied by calculating the argon-argon pair radial 

distribution function, given by119 

(IX.13) 

where pAr is the number density '!f the'bulksolvent and dN(r) is the number of solvent 

atoms in a radial distance r-+r+dr of a tagged atom. The factor ( 4xp .AI2) -l normalizes the 

function to unity at distances far from the tagged particle. 

The argon-argon pairradial distribution functions, g(r) Ar-Ar• at p=l.20 g cm-3 and 

p=1.50 g cm-3 are plotted in Figs. 34a and 34b, respectively. The first solvation shell 

extend to the first minimum, rmin• in g(r) Ar-Ar whlch corresponds to 5.42 A and 5.22 A 

for p=l.20 g cm-3 and p=1.50 g cm-3, respectively. The average number of atoms 

constituting the first shell can be obtained by integrating g(r) Ar-Ar from r=O to r=rmin· The 



Figure 34. Argon-Argon Pa.4" Radial Distribution Function. -(a) p=1.20 g cm-3; (a) 

p=1.50 g cm-3: 
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average number of solvent atoms in the first solvation shell is 10.9 = 11 and 12.7 = 13 for 

p=1.20 g cm-3 and p=1.50 g cm-3, respectively. 

Isomerization Rate Constants 

Molecular Dynamics Rate Constants Since the system is comprised of only one 

isomerizing molecule, an ensemble was obtained using the method of Robinson and co

workers41-43. Mter each isomerization, i.e., cis~trans or trans~cis, a "new" trajectory 

is begun with the fmal configuration of the preceding isomerization as the initial 

configuration of the "new" trajectory. In this scheme, the time aven~.ge replaces the 

ensemble average. 

The lifetime of a trajectory is calculated as the time between the initial the fmal 

turning points in the reactant well provided the HONO molecule passes through the 

equilibrium position of the product well before returning to the reactant well. Thus, we 

account for barrier recrossings, that is, trajectories which proceed to the transition state but 

return to the equilibrium well instead of proceeding to products. The rate constant is 

obtained by fitting the computed lifetime distribution to 

[ N(t)J N(O) = exp[ -kt], (IX.14) 

where N(t) is the number of lifetimes at timet, N(O) is the total number of lifetimes, and k 

is the rate constant. The calculated lifetime distributions for the cis~trans and trans~cis 

isomerizations at p=1.20.g cm-3 and p=1.50 g cm-3 are plotted in Figs. 35(a-b) and 

36(a-b ), respectively. The deviations between the lifetime distributions and the exponential 

fit is between 8-10% for all distributions. The values of the rate constants for the 

cis~trans and trans~cis isomerization processes at the two densities are given in 

Table XIX. The trajectory at p=l.20 g cm-3 was run for 200 ps, thus, the greater number 



Figure 35. Computed Lifetime Distributions for HONO at p=l.20 g cm-3. (a) Cis~ Trans; 

(b) Trans~Cis .. 
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Figure 36. Computed Lifetime Distributions for HONO at p=l.50 g cm-3. (a) Cis-+ Trans; 

(b) Trans-+ Cis .. 
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TABLE XIX 

RATE CONSTANTS FOR THE CIS-TRANS ISOMERIZATION 
OF HONO IN LIQUID ARGON 

[Ar] gcm-3 

1.20 

1.50 

cis-7trans_ 

2.8±o.1a (105)b 

2.2± 0.1 ' (47) 

a) The error represents the deviation from the exponential fit 
b) The numbers in parentheses are the number of lifetimes. 

trans ---H:is 

2.2 ± 0.1 (108) 

1.5 ± 0.1 (55) 

187 
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of lifetimes. As the results in Table XIX shows, the rate constants for both the cis~trans 

and trans~cis isomerization processes decrease with increasing density. 

Transition-state theozy rate constants To study the effects of the Ar solvent on the 

isomerization rate constants, we compare the rate constants obtained from the molecular 

dynamics simulations with those calculated using transition-state theory. 

In classical transition-state theory~ the rate constant is given as106, 

(IX.l5) 

where P = (KI)-1, and KandT are the Boltzmann constant and temperature respectively, h 

is plank's constant, Q and Qt are the partition functions for the reactant and transition state 

geometries respectively, and vb is the potential-energy barrier. In the classicallimit106, 

the vibrational partition functions are given as 

n 
Q= II KT ' 

i hVj 

where Vi is the vibrational frequency of mode i in the reactant well, and 

(IX.16) 

(IX.17) 

where Vi t is the vibrational frequency of m<>9-e i in the transition-state structure. The 

partition function for the transition-state structure, Qt, includes all the degrees of freedom 

of the transition state structure except the reaction coordinate. The motion along the 

reaction coordinate is considered separately and its partition function included the factor 

(ph)-1 in Eq. IX.15. The translational partition functions for the reactant and transition-

state structure cancel since the mass of the molecule remains constant If the geometry of 
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the transition state and reactant geometries are very different, the external rotational 

contribution to Q and Qt might not cancel and the rate constant is multiplied by a factor106 

(IX.l8) 

where the lA, IB, and Ic and 11. ~. a:nd ~ are the principle moments of inertia for the 

reactant and transition-state structures. For HONO, the ratio of the moments of inertia 

between the transition state and the Cis isomer is 0.9 while that for the transition state and 

trans isomer is 1.1. The different parameters for the cis and trans isomers needed for 

Eq. IX.l5 are listed in Table XX. The transition-theory rate constants have been 

multiplied by a factor of two to account for the periodicity of the potential-energy function, 

i.e., HONO can isomerize in both directions. The values of the transition-state theory rate 

constants are listed in Table XX. The rate constants obtained from the molecular dynamics 

simulations at p=1.20 g cm-3 are in good agreement with those calculated using transition-

state theory. This suggest that the solvent plays a minor role in the barrier crossing 

dynamics for HONO at low density. The rate constants obtained from the molecular 

dynamics simulation at p=1.50g cm-3 are somewhat smaller than those calculated using 

transition-state theory. Thus, at the higher density, the results suggest that solvent are 

important in the barrier crossing process. There are two possibilities for the deviation 

between the rate constants obtained from the molecular dynamics simulations and those 

calculated using transition-state theory: the solvent contribution to the potential of mean 

force increases with increasing density, thus, increasing the activation free-energy 

(equilibrium effect; see Eq. ill.l) or the frequent collisions between HONO and the solvent 

during the barrier crossing process results in barrier recrossings (dynamical effect). The 

cause of the deviation between the rate constants obtained from ,the molecular dynamics 

simulations and those calculated from transition-state theory requires further study. 



TABLE XX 

TRANSffiON-STATE TIIEORY RATE CONSTANTS FOR TilE CIS-'l'RANS 
ISOMERIZATION OF HONO. 

trans~is 

5.77 

4.69 

a) See text for defmition. 

0.784 

'0.841 

3.08 

2.28 

190 
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Dynamical Structure 

The internal flexibility of HONO during the isomerization process is studied. The 

average value of the internal coordinates during the molecular dynamics simulation are 

calculated as a function of the reaction coordinate. The results are shown in Figs. 37-38. 

The average bond lengths along the reaction coordinate are almost identical to their 

corresponding equilibrium values at both densities studied; p=1.20 g cm-3 (Fig. 37a) and 

p=l.50 g cm-3 (Fig. 38a). Also, the average value of the bending angles remain very 

close to their equilibrium values along the reaction coordinate; p=l.20 g cm-3 (Fig. 37b) 

and p=l.50 g cm-3 (Fig. 38b). The small fluctuations around t=90o are probably 

statistical error due to the small sample sizes in the transition-state region. The 

"equilibrium" values of the internal coordinate change as a function of the torsional angle 

(Eq. IX.7), thus, the difference between the average value for the internal coordinate for 

the cis and trans conformations. 

The root mean square (rms) deviation for the bending angles as a function of the 

reaction coordinate are shown in Fig. 39a and 39b for p=1.20 g cm-3 and p=1.50 g cm-3, 

respectively. The increase in the fluctuations of the ONO and HON bending angles at 

p=l.20 g cm-3 (Fig. 39a) is probably due to the decrease in the bending force constant for 

the trans isomer compared with the cis isomer. The rms deviations for the ONO and HON 

angles at p=l.50 g cm-3 (Fig. 39b) are larger than the corresponding rms deviations at 

p=l.20 g cm-3 (Fig. 39a). At the higher density, the fluctuation for the two bending 

angles for cis-HONO are equal to the fluctuations for the corresponding bending angles for 

trans-HONO. The largest increase is in the HON bending angle. 

The results show the average internal coordinates remain close to their equilibrium 

values along the reaction coordinate (Figs. 37-38) at both densities studied, but the 

flexibility of the internal coordinates, especially the bending angles, increases with 

increasing density. The largest increase is observed for the HON bending angle. Thus, at 

the high solvent density, flexibility seems to be important but for a quantitative study, 



Figure 37. Mean Value of the Internal Coordinates as a function of the Reaction 

Coordinate at p=1.20 g cm-3. (a) The different bonds are represented as 
follows: (triangles) 0-N, (circles) N=O, and (squares) 0-H; (b) the different 
angles are represented as follows: (empty circles) ONO, and (filled circles) 
HON. 
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Figure 38. Mean Value of the Internal Coordinates as a function of the Reaction 
Coordinate at p=l.50 g cm-3. (a) The different bonds are bepresented as 
follows: (triangles) 0-N, (circles) N,;,.o, and (squares) 0-H; (b) the different 
angles are represented as: (empty circles) ONO, and (filled circles) HON. 
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Figure 39. Root Mean Square Deviation for !he Bending Angles of HONO as a Function 
of the Reaction Coordiante. (a) p=l.20 g cm-3; (b) p=l.50 g cm-3. The 
angles are represented as follows: (empty circles) ONO angle, and (filled 
circles) HON angle. · 
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molecular dynamics simulations for HONO with constraints imposed on the internal · 

coordinates should be performed. 

Conclusions 

198 

We have performed a molecular dyltamics simulation of the cis--trans 

isomerization of HONO in a liquid at two different densities employing a model potential-
. ' 

energy surface which incorporates internal flexibijity md non-linear coupling103. At both 

densities studied, the configurational distributions are modeled well by the Boltzmann 

distribution. The rate constants for the cis~trans and trans~cis isomerization obtained 

' 
from the molecular dynamics simulations are compared with those calculated using 

transition-state theory.· The rate cons.tants obtained from the molecular dynamics 

simulations at p=l.20 g cm-3 are in good agreement, while. the rate constants at 

p=l.50 g cm-3 are too small. These results suggest that at the higher density, the solvent . . 

can affect the barrier crossing process. It is not clear whether the deviation from transition

state theory is due to equilibrium effects (increasing activation free-energy with increasing 

density) or dynamical effects (solvent induced recrossing of the barrier). Further study 

concerning this point is needed. 

The flexibility of the internal'coordinates was studied at the two different densities. 

The average values of the internal coordinates are all close to their equilibrium values along 

the reaction coordinate, but as the density increases, the nns deviation for the bending 

angles increases. The HON bending angle undergoes the largest fluctuations at both 

densities, but exhibits a marked increase in flexibility at the higher density·. This suggests 

that flexibility in the internal coordinates is important in the cis-trans isomerization of 

HONO, although for a quantitative comparison, a molecular dynamics simulation 

incorporating constraints for the bond stretching and angle bending coordinates for HONO 

needs to be performed. 



CHAPTER X 

CONCLUSIONS 

We have used molecular dynamics simulations and Monte Carlo methods to study 

the conformational dynamics of hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine (RDX) and nitrous 

acid (HONO) in the gas 3I).d ~ondensed phases:' Molecular dynamics simulations are 

useful for studyiqg both equilibrium properties of a system as well as time varying 

properties. Also, in molecular dynamics 'simulations, the solvent dynamics are calculated 

explicitly, thus, no assumptions concerning the solute-solvent interactions are needed. 

- Hexahydro-1 ,3,5.:.trinitro-1 ,3,5-triazine 

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a member of a class of high 

energy compounds (nitramines) and is used as a component in solid rocket fuels. It can 

undergo both ring inversion and pseudorotation. Little is know about RDX either 

experimentally or theoretically. We have constructed a potential-energy sUrface which 

employed only harmonic 'interactions except for the ring torsional motion. This potential-
~ ' :' l 

energy surface yields a free energy change for the chair~boat/twist ring inversion of 

0±1 kcal moi-l at 300 K. Also, the activation barrier for the pseudorotation between the 

different boat and twist isomers was calculated ,to be 0.8 kcal moi-l. 

We also use an anharmonic potential-energy surface. This potential included 

Morse potentials for the. bond stretching terms and explicit couplings through non-bonded 

interactions (Lennard-Jones potential terms). This potential-energy surface yields a free 

energy change for the chair~boat/twist ring inversion of about 4.0 kcal mol-l at 300 K. 

199 
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Studies of the effects of aXe solvent on the conformational dynamics of RDX 

illustrate that the solvent has a marked effect both on the equilibrium configurational 

distribution and also on the chair--+boat/twist ring inversion rate constant. As the solvent 

density increases, the equilibrium constant shifts towards the boat/twist conformation by a 

factor of about 4 . . . 

The density dependence of the ring inversion rate constant obeys Lindemann theory 

at low solvent density. As the density' increases; a maximum in the rate constan~ is 

observed after which it is a decreasing function of the S()lvent density_ (Kramer's turnover). 

We attribute this behaVior to the bulky nitro groups which must sweep out a large volume 
~ ,/ 

for inversion to occur .. At high solvent concentrations, the ring inversion rate constant 

again increases as a function of the solvent concentration which we attribute to an 

activation volume effect. The activation volume is a measure of the volume difference 

between the transition-state. geometry plus solvent and the chair geometry'plus solvent 

The excluded volume of RDX at the transition-state is much smaller than that in 'the chair 

conformation, thus allowing the solvent to "pack" more efficiently about the transition-state 

geometry as opposed to the_chair geometry. These results are in accord with experimental 

results on a similar system147 (hexahydro-1,3,5-trimethyl-1,3,5-triazine) and theoretical 

studies on model systems32,41-44. 

Although .the results for RDX look prof!Using, this study does not constitute a 

complete analysis of the conformational dynamics of RDX. This is, though, to our 

knowledge, the frrst molecular dynamics study of the conformational dynamics of RDX 

either.in the gas or condensed phase~ Thus, we are on our way a more complete 

understanding of RDX on a molecular level. Some calculations that might be of interest 

are discussed below. 
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Nitrous Acid 

Molecular dynamics simulations of cis--trans isomerization of nitrous acid 

(HONO) in liquid Ar at two different densities were performed HONO is among the 

simplest of molecules to undergo isomerization and much is know about the potential

energy surface87-104. To date, most studies of barrier crossing processes have employed 

model potential-energy surfaces. In this ~tudy, a realistic potential-energy surface is 

employed which inclu<;led bond stretching and angle bending potential terms and nonlinear 

couping between the internal coordinates and the reaction coordinate. 
c 

The results show that the solvent has little effect on the equilibrium configurational 

distribution which are modeled well by the,Boltzmann distribution over the intramolecular 

energy of the gas-phase HONO. 

The Ar liquid influences the rate of isomerization in HONO. The rate constants 

obtained from the molecular dynamics simulations for the cis~trans and trans~cis 

isomerization processes are compared with rate constants calculated using transition-state 

theory. At the lower density (p=l.20 g cm-3), the rate constants obtained from the 

molecular dynamics simulations are in good agreement with those calculated using 

transition-state theory. At the higher density (p=1.50 g cm-3), the rate constants obtained 

from the molecular dynamics simulations are smaller than those calculated using transition

state theory. , 

The internal flexibility of HONO ,increases as the density increases. The largest 

effect is on the HON bending angle. Thus, forHONO, it appears that internal flexibility is 
' ,, ' 

important. This is in accord with theoretical studies which suggest that flexible bonds and 

angle could influence the dynamics of barriercrossing20,45-48. 

Future Calculations 

Some future calculations that could be useful for RDX would be to develop a 

model potential-energy surface in which the methylene (CH2) groups were treated as 
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united atoms, i.e., a single atom of mass 14. This would reduce the number of atoms that 

are integrated and the step size for the integration could be increased by almost a factor of 2 

since the high frequency CH stretches would be absent. 

Also, it would be interesting (and of some value) to perform a study in which the 

gas-phase reaction dynamics calculation by Sewell and Thompson 78 is extended to the 

solvent phase, thus determining the effects of a solvent environment on the reaction 

dynamics. If aXe solvent is employed (it has been suggested that RDX is soluble in Xe), 

the possibility of comparison between experiment and theory exists. 

Two studies that would be very useful for HONO are: i) perform molecular 

dynamics simulations of HONO with constraints imposed on the bond stretching and angle 

bending coordinates; and ii) a more thorough analysis of the effects of the solvent on the 

isomerization, i.e., is the decrease in the rate of isomerization with increasing density an 

equilibrium effect (increasing activation free energy with increasing density) or a dynamical 

effect (solvent induces recrossings)? 

The study of HONO with constraints imposed on the internal coordinates would be 

useful since neither HONO or model systems resembling HONO have been studied. This 

calculation would give a quantitative comparison of the effects of constraining the internal 

coordinates on the barrier crossing process for HONO. 
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APPENDIX A 

PRESSURE 

The ideal pressure equation, 

PV =nRT, (A.l) 

where P is the ideal pressure, V is the volume, n is the number of moles, R is the gas 

constant, and,T is the temperature, is nonnally not valid since there are interactions 

between the atoms which are neglected in the ideal gas equation. The forces between the 

atoms must be taken into account in the calculation of the pressure. 

The virial theorem, in generalized equipartion form, can be written 1, 

where H is the Hamiltonian of the sys~em, 'he is a qeneralize coordinate, and the < > 

represent averages over phase space. Assuming the qk's are Cartesian coordinates, 

substituting them for A and summing over all the atoms, Eq.(A.2) can be written 

where ri = ...Jx2+y2+z2. The total force acting on ith atom can be calculated by, 

f tot _ dH 
- i - dr·. 

1 

Substituting Eq.(A.3) into Eq.(A.2), we obtain 
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(A.2) 

(A.3) 

(A.4) 
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N 
1<~ tot> - 3 ~ ri•f i = Nx:T, 

1=1 
(A.5) 

where Got = ~xt + ~nt. The external force is given by the pressure exerted on the system 

by the walls, 

N 

--31 <L r .• f?tt>= PV, 
i=1 1 1 

(A.6) 

while the internal pressure is due to the intermolecular forces. Using Newton's third law, 

N N N N N 
L r··fi!lt= L L r ..• fi~t = -L L r···(Vr·· V(r··)), (A.7) 

1 1 1 . 1 . . 1J 1J . 1 . 1J 1J 1J 
1= 1= J>1 1= j>1 

where rij = ri - rj and 

N N 
"nt ~ ~ av f 1·· = -Vr1·· V(r.J·) = ~ ~ r- ··::\.. 
~ ~ 1=1 j>1 1J 01ij • 

(A.8) 

Incorporating Eq. (A.6-8) into Eq. (A.5), the pressure equation can be obtained, 

NlCT 1 N N (JV 
P=- --<:L L r--·->· v 3V 1=1 j>i 1J drij 

(A.9) 

where the term in the angular brackets is the intermolecular pair virial. 



APPENDIXB 

CREMER-POPLE PUCKER COORDINATES 

For many years now, it has been lalown that cyclic molecules can exist in many 

different stable conformations, but trying to quantify these different conformations has 

been a problem. Cremer and Pople176-177 have derived a set of generalized pucker 

coordinates that can be used to describe,the different conformations that exist for cyclic 

molecules. 

Initially, the positions ofN atoms are located at Cartesian coordinates (Xi. Yi. Zi) 

or position vectors Ri (i=l...N) where N is the number of atoms in the ring portion of the 

molecule. The origin can be moved to the geometrical center such that, 

N 

L Ri = 0. (B.l) 
i=l 

It is desirable to specify the displacement of each atom from a mean plane. A new set of 

Cartesian coordinates (x,y,z) with respect to the molecular axis can be chosen through a 

linear combination of the original Cartesian coordinates, such that the origin of the new 

Cartesian coordinates is at the geometrical center, the z-axis is perpendicular to the mean 

plane, and they-axis passes through the projection of atom 1 onto the mean plane. Using 

Eq. (B.1) and the requirement that the new origin be at the geometrical center, it can be 

shown that 

N 

L Zi = 0. 
i=l 
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(B.2) 



If the conditions, 

and 

N 

.2, Zi cos[21t(i-1) I N] = 0 
i=l 

N 

.2, Zi sin[21t(i-1) l N] = 0, 
i=l 

are imposed, then the mean plane of the molecule will be uniquely fixed. 
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(B.3) 

(B.4) 

To determine the orientation of the mean plane from the position vectors Ri. a new 

set of vectors is defined by, 

N 

R' = _2, Ri sin[21t(i-l) IN] , (B.5) 
i=l 

and 

N 

R" = .2, Ri cos[21t(i-1) IN] = 0. (B.6) 
i=l 

A unit vector given by 

A R'XR" 
n= IR' X R"l' (B.7) 

will be defined as the z-axis and will be perpendicular toR' and R". Therefore, the 

positive direction along the z-axis will define the "topside" of the mean plane. The 

components of ~with respect to the space fixed Cartesian coordinates CXi. Yi. Zi) can be 

obtained by 
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(B.8) 

which will satisfy Eq. (B.2) - (B.4). 

The generalized ring-puckering coordinates are given as follows: if N is odd and 

N >3, then 

and 

N 

qmcos ~m = -{f~ Zi cos[27tm(i-1) IN] 
1=1 

N 

qmsin ~m = --{f~ Zi sin[27tm(i-1) IN]. 
1=1 

(B.9) 

(B.lO) 

These generalized coordinates apply for m=2,3, ... (N-1)/2. The correspond to a set of 

puckering coordinate with amplitude qm and phase ~m. where ~ > 0 and 0 ~m ~ 2x. If 

the number of atoms in the ring is even, then Eq. (B.9) and (B.lO) apply for 

m=2,3, ... ,(N/2 -1 ). There is a single puckering amplitude 

or 

N 

qN/2 = -{f ~ Zi cos[2xm(i-1) I N] 
1=1 

N 
.. - [1~ ( 1)i-1 

qN/2 = -" N ~ - Zj. 
1=1 

(B.11.a) 

(B.ll.b) 

As can be seen from Eq. (B.11.b ), this puckering amplitude can be either positive or 

negative. Using these equations, atom 1 will always be the apex atom and there will be 
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N-3 ring-puckering coordinates. The normalization factors in Eq. (B.9)-(B.ll) are such 

that, 

N m 
2, z~ = 2, q~= Q2, 
. 1 1 . 2 1 
1= .J= 

(B.12) 

where Q represents a total puckering amplitUde. 

For RDX, there will be three ring-puckering coordinates, an amplitude-phase pair 

(q2,<I>2 ) and a single puckering coordinate q3 given by Eq. (B.9)- (B.ll). These three 

coordinates can be transformed to a set of II spherical polar II ~oordinates Q, E>, and <I> by, 

q2 = Q sinE>, 

q3 = QcosE> 

and 

where Q is defined by Eq. (B.12). In this representation of the ring-puckering 

coordinates, Q ;::: 0, 0 ~ e ~ '1t, and 0 ~ <I> ~ 27t. 

(B.l3) 

(B.14) 

(B.l5) 
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