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CHAPTER I 

INTRODUCTION 

Tension measurement is a subject of interest to participants of the web producing and 

handling industries. A web-like material is manufactured and processed as continuous sheets that 

are stored in wound roll form. Web thickness is many orders of magnitude smaller than the web 

width. Web manufacturing and processing industries deal with many different web material 

properties and geometries such as paper, plastic, synthetic, or a combination of these basic 

materials in varying thicknesses and widths. Different size, thickness, and composition of webs 

create different problems with respect to web winding and handling. Web structural dynamics 

coupled to control system and winding dynamics may result in a quality or flawed product, 

depending on knowledge of forces exerted on the web during processing. This study deals 

primarily with measurement of web tensile forces. Tension in a web is an indication of the force 

required to draw the web through a process system and/or the compressive force applied to roll 

wraps during winding. Thus, knowledge of web tension is basic to web manufacturing and 

handling process control. 

Average tension measurement across a roll span is commonly accomplished by use of load 

cells in conjunction with an idler roll. Thus, the number of pounds indicated by the load cell 

divided by the web width provides an average tension value. While this affects feedback 

information for gross process control, other more subtle problems also affect web handling and 

web winding processes. Factors such as web uniformity, alignment of web fibers, and tension 

distribution across a web span all affect web dynamics and roll quality. This research effort 

addresses the final item above, local tension measurement allowing for knowledge of tension 

distribution across a web span. This tension profile information could lead to process corrections 

or winder alignment corrections such that improvements in roll quality could be realized. A 

general overview of web tension and tension measurement has been provided in Chapter II. 
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Positive and negative features of present tension measurement methods have been highlighted in 

this section. 

To be proposed and investigated in this report is a method of web tension measurement 

which may be used at discrete locations along a web span. This effort has been accomplished 

through the support and cooperation of the Web Handling Research Center at Oklahoma State 

University and associated WHRC Industrial Consortium members. The consortium members 

provided requirements for such a tension measurement system that have been adhered to during 

this investigation. One major requirement was that tension measurements had to be obtained 

without directly contacting the web material. The proposed scheme provides a sharp 

noncontacting stimulus to a web surface under test, creating traveling waves that propagate from 

the input disturbance location. Sensing and processing of these waves allows for determination of 

a tension indication. 

Detailed in Chapter III is the chronology of development of the above stated proposed 

experimental tension measurement scheme from a single concept to an industry adapted tension 

measurement system. Section 3.1 outlines historical background of project development. System 

hardware development along with system automation and data acquisition activities have been 

presented in sections 3.2 and 3.3. Analysis of the system theoretical model and subsequent 

system refinements with regard to sampling and data processing has been detailed in sections 3.4 

and 3.5. Finally, section 3.6 illustrates adaptation of the experimental system to a wide variety of 

web materials, thicknesses, and tension levels. Both laboratory and industrial field test results 

have been included in these discussions. 

Analytical examination of the dynamic relations between the tension measurement system and 

web under test was performed. Desired from this analysis was to better understand why the 

experimental tension measurement system provided the particular shape of signals that were being 

sensed and processed. Qualitatively, signal shape was dependent on web tension, web thickness 

and flexural rigidity, and amplitude of the input web stimulus. Unknown were the process 

dynamics, that is, coupling that was occurring between the input web stimulus and web surface. 

The analytic study to be presented examines the input web stimulus and coupling to web 

structures through finite difference modeling procedures. 
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Chapter IV provides an examination of pulse propagation theory and the applicable fluid and 

thermodynamic properties involved in this analysis. To be modeled is a weak shock front such 

that the inviscid, unsteady state, nonisentropic, compressible flow equations are used. An 

examination of the equation set characteristics is provided to illustrate the interaction of the 

independent variables used in the analysis. A short discussion of integration schemes for 

evaluating these partial differential equations is included as support material. An integration 

scheme was selected whereupon the two dimensional inviscid, unsteady state, nonisentropic, 

compressible flow equations were cast in proper finite difference form with boundary conditions 

noted. 

Web structure modeling is provided in Chapter V. Depending on thickness and stiffness, 

web materials may behave like plates or membranes. To a transverse stimulus, thin webs behave 

essentially like membranes while retaining a nonzero flexural rigidity. Thick web materials exhibit 

more of a plate-like response but still may experience very large deflections. Thus, webs may 

exhibit characteristics usually attributed to both membranes and plates. Static and dynamic 

versions of the linear membrane and plate equations are· derived and boundary conditions are 

noted. 

Modeling results are presented in Chapter VI. Graphical results of the pulse modeling are 

presented as a result of Chapter IV finite difference derivations. Pressure levels from pulse 

modeling have been coupled to the dynamic membrane and plate models given in Chapter V. 

Graphical results of membrane and plate deflection response to shock pulse input are presented 

and comparisons to experimental results are offered. 

This study contains information from both fields of experimental mechanics and analytics. 

Of main interest to the Web Handling Research Center industrial consortium members was the 

experimental equipment and evaluation techniques. A viable and accurate tension measurement 

system would be a fine addition to the web handling and processing industry in efforts to improve 

their industrial processes. The analytics have been performed to gain insight into the mechanics of 

the proposed tension measurement system and to qualify system results. This study will endeavor 

to provide a complete examination of the experimental methods and analytical basis behind the 

success of the tension measurement system to date. 



CHAPTER II 

TENSION LITERATURE SURVEY 

Knowledge of web tension is basic to web manufacturing and winding processes. Often, 

various web parameters are affected by web tension used during manufacture. fluctuations in 

these parameters may result in a nonhomogeneous web coupled with roll quality defects in the 

finished product. Measurement of web tension has become the focus of many in the web 

handling industry as a means of improving web consistancy and roll quality. A short review of 

conventional web tension control systems will be presented to justify a research effort into 

tension measurement. 

A typical web tension control system, as outlined by Ketterer [1], incorporates four factors 

into the process. These factors are nominal tension or set point, tension measured via sensors, 

error indication based on differences in set point and measured tension levels, and feedback of a 

correction signal. A thorough knowledge of tension control systems and web characteristics is 

essential such that a selected control system will have optimal sensitivity, response time, and 

operating range for the given web material to produce a unifonn web product. 

Nominal tension is typically applied to a web by driving one end of the web through a 

clutch system while inhibiting the other end of the web through a braking system. Torque 

sensors are used with the clutch and brake assemblies to guage the tension level. Engineers 

involved with these systems continue to develope clutch and brake mechanisms such that 

predictable and repeatable control may be realized. 

Several different mechanisms are available to perfonn the clutch/braking process. Drum or 

disk brakes still enjoy wide use in the web handling industry [2, 3], which may be actuated 

typically through pneumatic or hydraulic means. Deeg [4] presented a short article outlining 

the positive and negative aspects of pneumatic/hydraulic actuated braking systems. 

Electromagnetic braking systems, illustrated in Machine Design magazine [5], allow for 

braking proportional to a controlled current applied to electromagnets. Also described in 

4 



5 

Machine Design magazine were magnetic particle brakes [6] where a controllable magnetic 

field guides ferrous particles into the path of input and output shafts. Variable friction caused 

by these ferrous particles provided the torque control. Increasingly, shaft encoders are being 

utilized in clutch/braking control. Murray [7] outlined such a method where AC induction 

motors were used to vary torque to a driving roll, eliminating a clutch arrangement. In all of 

these cases, the clutch/brake torque control is designed to be sensitive not only to impulses that 

affect the system but also to inertial changes that affect tension due to the changing of roll 

radius during wind on or wind off operations. 

Dynamic tension sensing is necessary to gauge effectiveness of the set point tension control 

system. Dancer arms or load cell idler rollers are commonly used for this purpose. Haggstrom 

[8] presented a basic tension sensing scheme where a load cell coupled idler roll was used. 

Shown in Figure 2.1, this method indicates the average force value that is applied to the idler 

roll by the web under tension. Different types of force transducers could be used in conjunction 

with this arrangement to achieve the tension proportional signal depending on sensitivity and 

range requirements. 

Dancer arm rollers provide tension feedback information based on position. Typically, 

dancer arms are positioned according to a set point (nominal) tension level. Any subsequent 

rotation of the arm produces a change in signal output. This is shown schematically in Figure 

2.2. Bak [9] outlined the use of dancer arm sensors on both the driving (clutch) portion and 

inhibitive (brake) portion of a web line for tension control. Critical to the use of either load cell 

or dancer arm idlers is the dynamics of the idler assemblies themselves. These dynamics must 

be known and compensated for to prevent biasing of the desired tension proportional output 

signal. 

The last two aspects of a typical tension control system--derivation of an error indication 

from set point and sensor signal differences, and the feedback of the corrected signal to the 

clutch/brake assemblies-will not be examined in this report. Motivation for study of tension 

measurement is of interest. Even with improvements in tension control systems through more 

sophisticated sensors, quicker response times, and higher sensitivities, problems in web 

manufacturing still exist. Several researchers have provided papers regarding tension-related 

roll quality problem areas. 
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Figure 2.1. Idler Roller Load Cell Type Tension Sensor [8] 

Figure 2.2. Dancer Ann Rotation Transducer Tension Sensor [9] 
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Hutzenlaub [10] presented a paper giving general conditions for good roll quality. When 

contact (nip) rolls were in use, tension in the web leading to the winder may be different than 

the resultant tension of the wound web. Factors such as roll diameter must be considered due to 

accumulation of pressure at the web core. Roisum [ 11] indicated that the easiest parameters to 

control in a winding scheme are torque, nip, and tension. These parameters may affect the web 

prior to, during and after the actual winding operation. Thus, knowledge of local web tension 

variation could be of benefit to winding operations. Ernst [12] indicated that inconsistent 

tension with respect to time and web span could lead to defects such as poor starts, offsets, 

dishing, interweaving, interlayer slippage, bursts, wrinkles, starring, and poor slitting. Dandan 

[13] also addressed such failure modes with respect to paper winding processes. Dandan 

acknowledged inherent fluctuations in average tension control due to eccentricities or other 

sources. Speculated was that the coincidence of tension surges with web product defects led to 

high instance of breaks. One solution to help alleviate such problems was to create as uniform a 

web product as possible, thus reducing the probability of a material flaw. 

In these published papers, tension, applied either through clutch/brake assemblies or 

through nip contact rollers, has an effect on roll quality. Indicated also was concern for 

uniformity given by even distribution of web material and/or tension across a web span. 

Devices for measuring local or area tension have been proposed and marketed by researchers in 

the web handling and manufacturing industries. An examination of these devices and methods 

is an appropriate preface for the discussions to be presented in this report. 

Noncontact wave generation in plate/membrane like materials has been examined for a 

number of years. Luukkala, Heikkila, and Surakka [14] examined plate resonances in this 

manner in 1971. The objective of the study was to generate a resonance condition in paper web 

material through coincidence effects, leading ultimately to determination of the paper material 

elastic parameters. 

Coincidence occurs when the speed of sound in the atmosphere equals the speed of sound in 

the web, thus creating a resonance condition. Resonance conditions were achieved through 

variation of two quantities: the frequency of acoustical web excitation and the angle of 

incidence of the acoustical waves with respect to the web. Figure 2.3 shows the general 
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configuration for this analysis. Due to dispersive effects of the web material, plate phase 

velocity was also frequency dependent. Plate modeling techniques coupled with simplifying 

assumptions served to correlate the angle of incidence and phase velocity variables. 

Experimental tests used a set excitation frequency coupled to variation of the angle of incidence 

to generate phase velocity versus frequency data for the web material in both the machine 

direction and the cross direction. An estimate of the web material anisotropy was the final 

result of this study. 

VARIABLE ANGLE 
OF INCIDENCE 

~ 

TRANSMITIOR 

RECEIVER 
WEB MATERIAL 
UNDER TENSION 

Figure 2.3. Plate Resonance Test Configuration [14] 

A study involving this plate resonance technique as well as ultrasonic contacting techniques 

was conducted by Mann, Baum, and Habeger [15] in 1979. With respect to the aforementioned 

plate resonance method, noted was the practical limit of acoustical excitation to below 400 kHZ 

due to atmospheric attenuation. With this limitation, only relatively thick web materials could 

be tested such that the coincidence effect could occur within the excitation frequency limit. 

Ultrasonic methods were described as well for obtaining elastic parameters of webs and web 

stacks. Orthotropic wave theory was provided which related longitudinal and transverse web 
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phase speeds to material stiffness parameters. Experimenal procedures for stiffness determina

tion were outlined and test case results were provided. 

A recent study into experimental determination of paper elastic properties and anisotropic 

behavior was conducted by Olofsson, Molin, and Kyosti [16] in 1991. Laser holographic 

interferometry techniques were used to examine wave propagation in paper web materials. To 

generate elastic waves, a metal sphere was impinged on a static web surface, thus simulating an 

impulsive input. Hologram film was double exposed, first just prior to sphere contact and 

second at some programmable delay time after impact. Subsequent analysis of the film 

revealed contours of equal, out of plane displacements of the web surface. A desirable aspect of 

this research effort was the acquisition of interferograms that showed visually the magnitude, 

direction, and location of propagating waveforms from the impulsive source as a function of 

time. Web elastic parameters were then extracted from these data. 

An on-line contacting ultrasonic method was developed by Baum and Habeger [17] in 

1980. The plate resonance method, noncontacting in nature, was discarded by these researchers 

as being unfeasible in an on-line measurement situation. Again, phase velocities with respect to 

machine and cross directions were desired to gauge web anisotropy. 

Ultrasonic transmitters and receivers were mounted on rotating wheels that made contact 

with the web. When the transmitter was coincident with the web, an ultrasonic burst was 

launched which traveled in all directions from the source. When the bursts were picked up by 

the receivers and corrected for web transport velocity, a time of flight value was then available 

from which to calculate phase velocity. Noted in the paper were the successes and areas of 

difficulty in implementing this method. 

An updated version of the above system was reported by Habeger and Baum [18] in 1986. 

Improvements in their system included improved transducer design, synchronization, and signal 

sensing and interpretation. To improve synchronization, a transducer was used to provide a 

signal indicating when the transmitter, mounted on a rotating wheel, was some known angle of 

rotation away from the optimal web surface pulse launching site. When the ultrasonic pulse 

was received at machine direction and cross direction receivers, also mounted on synchronized 

wheels, digitizing and storage operations of the received pulse signals was performed. Zero 
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crossings of the digitized records were isolated and a time of flight value, corrected for the web 

transport velocity, was calculated. Haberger and Baum reported good results achieved with this 

on-line system with these improvements installed. 

Habeger pursued use of ultrasonics for measurement of web elastic parameters as was 

outlined in a 1988 publication [19]. Static tests on web material coupons were performed to 

gauge amount of or lack of orthotropic symmetry in the material machine and cross directions. 

This led to calculations of shear coupling coefficients for the nonorthotropic cases. 

Ultrasonic transducers were used to excite both longitudinal and transverse Lamb waves 

within the web test coupon. Phase velocity of these input waves was dependent on angle of 

transmission and reception of said input waves with respect to the material machine and cross 

direction orientation. An equation was used with the achieved phase velocity results such that 

planar specific stiffness coefficients could be derived. A nonorthotropic angle value was then 

obtained from viewing symmetry of the phase velocity squared and the calculated specific 

stiffness as the ultrasonic wave input angle varied from 0 degrees to 360 degrees. A nonzero 

nonorthotropic angle quantity indicated that nonzero shear coupling coefficients were present in 

subsequent material evaluation and handling. 

In the above developments by Habeger and Baum, a web contacting method was used. 

Other contacting web tension indicators have been developed that use different stimulus/ 

transducing methods. The Norwegian Pulp and Paper Research Institute devised a simple force 

coupled device for tension measurement, as was reported by Hansen [20] in 1986. Contact of 

the device with a web would deflect a soft spring blade, which was used as input to an inductive 

displacement transducer. With appropriate pressure of the transducer head to the web material, 

Hansen reported that stable, repeatable results may be achieved from this device. 

Compressed air was used instead of a spring for web deflection by the Scandev Invent 

Beetle, reported by Linna and Moilanen [21] in 1988. Reaction of the web under test to the 

compressed air input was correlated to web tension. In a test environment, the Scandev Invent 

Beetle required a permanent test stand and a spacing plate to properly set up the device prior to 

testing. Linna and Moilanen examined the positive and negative aspects of this system. In 
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general, results were quite sensitive with respect to initial transducer-to-web spacing and 

location with respect to rolls and web edges. 

Another device that used compressed air as the web stimulus was developed by Russian 

researchers. This device, as reported by Walbaum and Lisnyansky [22], applied compressed air 

to webs that were being guided through the device by rollers. Web fluctuations created a 

pressure signal that was sensed by a microphone located in a central pneumatic chamber of the 

transducer head. The microphone output was then fed to a loudspeaker system, properly 

calibrated, to track the frequency of the web fluctuations, which was then correlated to web 

tension. 

Industrial consortium members of the Web Handling Research Center, for various reasons, 

required noncontact as the bottom line for any tension measurement system. Due to possible 

damage to web coatings, scratching or denting of web surfaces, or damage to the web structure 

itself, it was felt that any contact other than random incident contact would be unacceptable. 

Noncontacting web tension measuring devices to date generally rely on acoustical 

excitation coupled to time of flight wave propagation calculations. Aforementioned plate 

resonance experiments were likely the basis for these techniques. Researchers began to closely 

couple acoustic excitation to the web structure, forcing surface bending waves rather than zero 

order symmetrical or antisymmetrical Lamb-waves. A benefit of this was reduction of the 

excitation frequency such that atmospheric attenuation effects were reduced. A drawback, 

however, was the introduction of surrounding air loading effects on the wave propagation 

process. 

The Altim Tensometer, developed by the Swedish paper industry and described by 

Meinander and Marttinen [23] in 1983, utilized the approach described above. A later paper by 

Marttinan and Luukkala [24] further explained the approach and theoretical basis. The Altim 

Tensometer produced a strong line excitation to a web by passing acoustical excitation through 

a long narrow slit. Microphones placed at intervals fore and aft of this acoustical slot monitored 

propagation of the resultant wave. Signal processing procedures, including correlation methods 

and compensation for air loading, were used to determine the time of flight value and hence the 



12 

web material phase speed. Tension values were then found through use of tabulated data 

relating tension to phase speed and web material basis weight. 

Optical detection of web response to acoustical excitation was used in the TENS CAN non

contacting tension measurement system, tested by Rye [25] in a 1988 publication. Time of 

flight indications were obtained through reflection of laser light to sensors, thus providing 

indication of passage of web flexural waves induced by an acoustical source. By laser 

configuration, the nominal distance between web surface and transducer head was measured 

and used as a correction factor in the calculations. Again, correlation techniques were used to 

obtain time of flight values, and thus the web phase velocity. Tension values were achieved 

through user input of web basis weight which was used in the data conversion process. 

The noncontacting tension measurement systems outlined above have positive aspects for 

the web manufacturing/handling industry. One advantage is the development time already 

applied to the methods, over ten years, where many of the strengths and weaknesses could be 

noted and upgraded. All of the systems outlined above, however, have limits to their respective 

performance, depending on web stiffness, thickness, and tension level. The Web Handling 

Research Center supported development of a new tension measurement system that would be 

inexpensive and be applicable to a wide variety of web materials and tension levels. It was 

believed that such a system could aid the web manufacturing and web processing industries as a 

whole. Thus, basis for development of the tension measurement system to be chronicled in this 

report was established. 

The experimental tension measurement system to be described in this report deals with 

interaction of a pneumatic shock wave with a web surface. From this interaction, flexural 

waveforms are generated in a web whereupon sensing of these flexural waveforms is used in 

the tension measurement process. Thus, many different mechanisms are involved in the 

proposed tension measurement system. Theory of wave propagation in elastic media is 

applicable to the process as is response of membranes and plates to impulsive inputs. 

Depending on the characterization of the web material as either a membrane or a plate, analysis 

complexity can be affected. Additionally, linear or nonlinear, static or dynamic membrane and 

plate models are available which certainly affect the simplicity or complexity of the analysis. A 
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literature survey is presented below to outline some of the available analysis techniques that 

have been used in similar situations. Of interest in this survey is an examination of literature 

concerning wave propagation in thin membranes and plates, interaction of shock waves with 

plate and shell structures, and static and dynamic response of plates and membranes to 

impulsive inputs. Due to the complexity of these types of problems, numerical methods have 

been used in many of these analyses. Presentation of synopses of applicable literature will 

provide some insights as to the method of analysis to be used in this study. 

Lamb presented the general theory of wave propagation in elastic half spaces [26] and later 

in plates [27]. Relations for propagation speed of symmetric (longitudinal) and antisymmetric 

(shear) plate waves were presented, where simplifications could be applied based on the ratio of 

excitation wavelength to plate thickness. This theory, however elegant, is not as applicable to 

the current analysis due to high frequencies required of the input stimulus to provide correlation 

to theory. In the low frequency end of plate response, as provided graphically by Tolstoy [28] 

and reproduced in Figure 2.4, use of excitation with wavelength on the order of plate thickness 

results in zero order longitudinal and transverse waves being excited. For many web materials 

of thickness well below one-thousandth of an inch, ultrasonic input frequencies would be 

required to achieve this type of response. Web ultrasonic on-line test system and coupon 

research of Baum and Habeger outlined earlier utilized this approach. 

,., 
o.._ and,_-- rorllnt- •-"<fM, ,, M, ,land on..,._,., 
(MJ•• M1a} model of propqatioa of a free plall. N01e the ft111Uive FOUP 
-IY 011 .v,,; lllil 0<1..U,. implioo only thai .,_ ud ,_ - .,. 
in oppolile clinaiana:......, flow bu to 1111 away frcn a IOWa at aU WDa. 

Figure 2.4. Generalized Plate Response [28] 
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Due to lower frequency excitations being adapted for noncontacting web stimulus, bending 

waves will be the dominant rather than Lamb-type waves. Propagation speed of bending waves 

is then a major consideration in the web tension measurement system to be proposed. 

Wavelength of such bending wave disturbances will be much greater than the.web thickness. 

Cohen and Berkal presented a theory of propagation of such large, sharp amplitude waves in 

membranes [29], which was later formulated by Cohen [30] for plates. 

Cohen and Berkal [29] provided an in-depth presentation of longitudinal and transverse 

wave propagation in membranes. Propagating waves on a membrane surface were treated as a 

propagating cutve where discontinuities or jump conditions could occur. Considered was the 

case of a membrane surface, initially at rest, being influenced by a shock wave. Compatibility 

relations for membrane deflection, and hence the strain and rotation, were established with 

respect to the jump conditions. Derived were the two modes of membrane wave propagation, 

shear-transverse (equiareal) and longitudinal (irrotational). Propagation speeds for the two 

wave types were: 

. v~HEAR=l. E h 
' 2 p (1 + v) 

(2.1) 

For a typical one mil (h = 0.001 in.) plastic web, specific density of approximately 0.9, Young's 

Modulus E on the order of [6 (105)] psi, and Poisson's Ratio v of 0.3 may be assumed. These 

parameters yield shear and longitudinal wave propagation speeds of 4363 and 7374 ft/sec, 

respectively. These phase speeds meet expectations of the bulk Lamb-type material response to 

ultrasonic input. 

Cohen [30] provided much of this same type of analysis with respect to plate wave 

propagation. Again, waves were treated as propagating surface cutves, where discontinuities 

were allowed. Derived were propagation speeds of extensional waves (longitudinal and shear

transverse) and bending waves (bending, twisting, and kink). For extensional waves, 

compatibility relations for displacement were formulated for the jump conditions, which were 

then related to the plate strain conditions. Thus, speed of wave propagation for shear-transverse 

and longitudinal waves were given by: 
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Vz (1- v) E h 
LONG.=--->-----'...!..__-__ 

p (1 + v) (1 - 2 v) 
y2 =.!. E h 

TRANSVERSE 2 p(l + V) 
(2.2) 

For comparative purposes, the classical propagation speeds for these modes was provided: 

y2 LONG. = E h 
a.ASSI::AL p (1 - V 2) 

2 1 E h 
V TRANSVERSE = 

CLASSICAL 2 p(1 + V) 
(2.3) 

In the case of bending waves, a similar analysis was performed such that propagation speeds for 

bending and twisting modes were given as: 

vfu,ND. = 1.. E h 
2 p (1- v2) 

y2 1 E h 
lWISTING - 2 p(1 + V) (2.4) 

Note that VBEND. and VTWis~ equal the classical values of Equation (2.3). For the web parameters 

of the preceding paragraph, the bending propagation speed is approximately 5214 ft/sec. Again, 

this phase speed is substantially higher than will be viewed with respect to large amplitude 

flexural waveforms to be detailed in this study. 

Russian researchers have examined the interaction of shock waves with various structures. 

Two publications of such work are cited below. Babaev, Kubenko, and Krishtalev studied 

interaction of a shock wave with a deformable cylindrical shell [31]. Kubenko and Moseenkov 

studied interaction of a weak shock wave on membranes which separated two acoustical half 

spaces [32]. Some methods of analysis were common to these two research worlcs. 

Basis for this analysis were equations of motion of the flexible structure for the directional 

displacement components considered and a potential function to describe motion of fluid at the 

shell structure surface. Compatibility relations were used in each case at the fluid-structure 

interface to provide an impenetrability criteria. Transform of equations to the Laplace domain 

with respect to time and Bessel function domain with respect to space was used with assumed 

series solutions. Thus, formulation of equations for pressure fluctuations and structure 

displacements was accomplished. An unspecific procedure for inversion of the transformed 

equations was outlined in general and simplifications used for computational ease were noted. 

Figures showing pressure fluctuations for test cases were provided by the authors. 
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Analysis of plates and membranes may be accomplished through a variety of methods 

depending on the underlying assumptions adopted. Complications arise in analysis due to 

consideration of more arbitrary or general situations such as nonsymmetrical loadings or 

consideration of nonlinear factors such as in-plain strains. The most prevalent models in which 

to begin an analysis are the linear membrane equation, the nonlinear (Foppl) membrane 

equations, the linear (Kirchoff) plate equation, and the nonlinear (Von Karman) plate equations. 

In general, literature was not sought for the membrane or plate free vibration (eigenvalue) 

problem. These problems examine the homogeneous membrane/plate equation alone where 

resonant frequencies are of prime interest. The homogeneous plate solution is applicable, 

however, to the forced plate problem where it comprises a portion of the overall solution. Also, 

literature related to the Mindlin plate model, where rotary inertia and shear deformations are 

considered, was not actively collected due to added complexity of the model with respect to 

potential rewards possibly achieved when viewed with respect to thin web materials. 

Energy methods were used to solve the large deflection Von Karman equations by Stippes 

in 1951 [33]. Using the Ritz method, a potential function for the plate was formulated based on 

total potential energy from internal and external forces acting on the plate. Infinite series 

solutions for the plate deflection and stress function over the two dimensional plate area was 

assumed. Substitution of these assumed solutions into the potential function allowed for 

minimization of the potential function with respect to the unknown series coefficients. Thus, a 

set of simultaneous equations could be solved for the series coefficients such that the 

displacement and stress function values could be generated. 

A relatively simple approach to the solution of the Kirchoff small deflection plate equation 

was presented by Cadambe and Kaul [34] in 1955 based on procedures outlined by Timoshenko 

[35]. The procedure used the Moment Sum definition to split the fourth order Kirchoff linear 

plate equation into two second order partial differential equations. Lower order derivatives 

were indicated to be beneficial in numerical analysis. Plate flexural rigidity or membrane 

tension could be used as the structural stiffness constant in the resulting equations. Knowledge 

of deflections and moments at the plate boundaries was required. This method precluded the 

use of free edge boundary conditions due to free edge boundary conditions being based on third 
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order partial derivatives. Cadambe and Kaul outlined the formation of moment and 

displacement meshes and the general static solution procedure. 

A widely referenced publication for the solution of the nonlinear Foppl membrane problem 

was presented by Shaw and Perrone in 1954 [36]. A similar paper was presented by Kao and 

Perrone in 1972 [37]. Nonlinear equations were derived using minimum potential energy 

principle, resulting in three equations where the in:.plane deflections u and v and the transverse 

deflection w were coupled. Procedures were provided for the step-by-step evaluation of these 

coupled equations. Nonlinear relaxation techniques were used to solve the equation set and a 

procedure was described to adapt the method to general shaped membranes. 

A method for initial value static analysis of plate mechanics was provided by Al-Khaiat and 

West [38] in 1986 and Al-Khaiat [39] in 1988. Using the Kirchoff small deflection plate model, 

a combination of finite difference fonnulation and trapezoidal rule integration was used to solve 

for lateral plate displacement. For a plate lying in an x-y plane, the scheme called for 

restructuring of the Kirchoff equation through retainment of partial derivatives with respect to x 

while replacing partial derivatives with respect to y by their finite difference formulations. 

Thus, an expression for the fourth partial derivative of deflection w with respect to x was 

achieved as a function of lower order derivatives at adjacent grid points. Trapezoidal rule was 

then used to fonnulate equations for the third, second, and first partial derivatives of w with 

respect to x and lastly an equation in w. Use of these formulated partial derivatives with an 

iterative evaluation allowed for slow convergence over the problem grid. Plate deflections 

were obtained through solution of simultaneous equations involving plate boundary conditions. 

Al-Khaiat presented results of the method for unifonn pressure loading of square plates, with 

and without in-plane loads, for comparisons to exact results. 

A publication by Jones [40] utilized the approximate analysis of nonlinear plates first 

introduced by Berger [41] in 1954. Jones' interest was the application of the Berger method to 

membranes in an attempt to simplify the analysis. Foppl nonlinear membrane equations are 

achieved through use of the Von Karman plate equations with zero flexural rigidity. Zero 

flexural rigidity reduced the equations such that the membrane deflection was shown to be 

proportional to a Prandtl stress function over the membrane area. This stress function was 
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derived from the membrane shape, edge conditions, and pressure loading. Results were 

provided in this paper for different membrane shapes but only using a unifonn pressure loading 

stimulus. 

Nerantzaki and Katsikadelis [42] solved the nonlinear Von Kannan plate equations through 

use of Green's function to convert the integral expression for potential energy over the plate 

area to line integrals over the plate boundary. Thus, line integral expressions were derived for 

the plate deflection and stress function. Boundary element methods were used to numerically 

evaluate these integrals for the deflection and stress function values. Stem [43] provided a very 

complete article on boundary value methods with respect to plate vibration in 1979. It was 

believed these methods were not as applicable to the modeling to be perfonned in this report. 

Collocation methods have been applied to plate vibration and deflection problems. 

Collocation procedures involve the specification of plate deflection at a certain number of 

points whereupon some error between the calculated deflection and the true deflection may 

occur between these collocation points. Burgess and Mahajerin [ 44] provided a plate 

deflection analysis where fictitious loads external to a plate boundary were applied to enforce 

boundary conditions via the collocation approach. In this analysis, the plate under study was 

considered to be a portion of an infinite plane where upon the solution to the Kirchoff plate 

equation for the actual loading was obtained. Fictitious loads were placed on an expanded 

boundary a distance S from the actual plate boundary. Collocation procedures were used to 

obtain the strengths of these loads such that the required boundary conditions were met. Hence, 

fictitious loads would then be a solution to the homogeneous Kirchoff plate equation. Burgess 

outlined a method of breaking up a plate into a number of subregions and allowing the actual 

desired load to be considered constant over the incremental area. Examination of the influence 

of the actual loads and fictitious loads on each plate subregion was perfonned iteratively until 

sufficient convergence occurred. Presented were a number of examples including unifonn load, 

patch load, and.point load configurations. 

A publication by Bauer detailed dynamic analysis of plate vibrations [45]. Similar papers 

by Chandrasekharappa and Srirangarajan [46, 47] used this approach with a slight modification 

to examine dynamic response of plates to pulse excitations. 
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Large deflection Von Karman equations were used in this method with the introduction of a 

time function f(t) such that time varying plate deflection and stress function, respectively, could 

be expressed through use of separation of variables as: 

Displacement: w(x,y,t) = h f(t) g(x) h(y) (2.5) 

Stress Function: F(x,y,t) = F\x,y) f\t) (2.6) 

Boundary conditions were used to obtain generic form of the deflection with respect to the x 

and y space variables. For example, simply supported plate boundaries allow for the deflection 

expression (2.5) to be written as shown in Equation (2. 7) where plate deflection is zero at plate 

boundaries x = ±a and y = ±b. 

w(x,y,t)=h f(t) cos('t ax) cos(1tbY) (2.7) 

Equation (2.7) with Equation (2.6) were used to formulate the large deflection plate equations 

for dynamic analysis: 

W( w ,F] = V'w + .eJ!. azw - E!. 
o ae o 

_.b.. {a2F a2w + a2F a2w _ 2 tp a2w } 
D ay2 ax2 ax2 ay2 ax ay ax ay 

f(t) + ro2 f(t) + e ro2 f(t) = P(t) 

(2.8) 

(2.9) 

(2.10) 

P(t) is a user defined load variation with respect to time. Ritz Galerkin method was used to 

obtain the ro and e parameters through integration of the product W [w,F] g(x) h(y) over the 

plate area. 

In application of this method, the time function f(t) is broken into two functions: 

f(t) = r(t) + s(t) (2.11) 

such that s* (t) is a solution to: 

s(t)- ro2 s(t) = P(t) (2.12) 
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which is a linearized version of the original differential Equation (2.10). Thus, the sum of 

homogeneous and particular solutions leads to the effective differential equation to solve: 

r(t) + ro 2 r(t) + e ro2 (r(t) + s*(t))3 = 0 (2.13) 

Bauer provided results for a step input pressure function and an exponentially decaying pressure 

pulse. Chandrasekharappa and Srirangarajan provided the same examples using slightly 

different numerical evaluation techniques. 

Fourier collocation expansion techniques were used by Nagaya to examine the dynamic 

response of plates and membranes to transient loads [ 48, 49]. Desired was a method of analysis 

which could be applied to an arbitrarily shaped plate or membrane for any general transient 

load. Fourier collocation expansion involved conversion of the linear plate/membrane 

governing equation to the Laplace domain. Bessel functions of the first and second kind along 

with coefficients to enforce boundary conditions and coefficients to describe the particular 

solution were then part of the transfonned governing equation. This methodology was alluded 

to earlier in this survey with regard to shock-structure interaction [31, 32]. 

Plate/membrane boundaries were broken into segments whereupon appropriate boundary 

conditions were imposed. Curved boundaries were broken up into many segments to reduce 

error in the calculations. Resulting were equations for plate deflection, slope, and moment in 

tenns of Fourier coefficients and Bessel functions. Matrices were fanned from said coefficients 

for the number of series tenns considered, where upon the Fourier coefficients could be 

obtained through solution of simultaneous equations. Plate deflection was obtained through 

Laplace transfonn inversion integral and residue theorem. Nagaya presented examples of a 

parabolic membrane and an elliptical plate response to a unifonn pressure-exponentially time 

decaying input load. A good deal of numerical computation expertise seemed necessary to 

perform the required Laplace transform inversions to obtain desired deflection values. 

A dynamic analysis of the Mindlin plate model was perfonned by Assadi-Lamouki and 

.Krauthammer [50]. Noted earlier, Mindlin plate model considers effects of shear defonnations 

and rotary inertia. This model could possibly be suited to thick heavy webs that experience 

large amplitude deflections, and thus a synopsis of the methodology is provided below. For 
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thin webs, however, the added complexity of the analysis due to inertial and shear components 

made this model not as attractive to this study. 

In this analysis, plate deflections u, v, and w were written in tenns of out-of-plane slope 

functions Bx and By : 

u = -z ~x(x,y,t) ; v = -z ~y(x,y,t) ; w = WAvo(x,y,t) (2.14) 

where Bx = i'Jw/i'Jx- Yzx; By= i'Jw/i'Jy- Yzy; and Yzx and Yzy are shear angles of the plate cross 

section. 

In-plane strains were assumed to vary linearly through the plate thickness and out-of-plane 

strains were assumed constant throughout the thickness: 

{ ~;~ = z 
Yx;/ 

-~ 
ax 

-a~y 
ay 

-~- a~y 
ay ax 

(2.15) 

(2.16) 

Elasticity laws were used with Equations (2.15) and (2.16) to obtain the corresponding stress 

conditions. 

Rotary inertia consideration led to second derivatives of Bx. By and w with respect to time 

that became part of the moment and shear equilibrium equations for a plate differential element. 

Thus, equations were fmmed to couple displacements, moments, and shear forces at each plate 

grid point. Assadi-Lamouki and Krauthammer provided the solution technique and stability 

criteria for this method with some numerical results. 

Outlined have been a few examples of plate and membrane analysis in both linear and 

nonlinear, static and dynamic cases. Of most interest were methods relating to transverse 

loading and deflection, where rotary shear and twisting could be neglected. Publications 

involving finite difference techniques were also desired for application with shock pulse 

modeling to be perfonned. Some techniques which were believed not as applicable to the 
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present study, such as finite element methods and boundary element methods, were not 

researched extensively. Examples of applicable publications include a very informative finite 

element analysis of transient wave propagation in plates by Sansalone, Carino, and Hsu [51]. 

Combination of finite difference, finite element, and Laplace transform methods were used in a 

dynamic plate analysis by Beskos and Leung [52]. Niemi and Pramila provided a finite element 

examination of transverse vibrations of a moving membrane in a surrounding fluid [53], which 

has direct application to the web handling scenario. A wealth of information is available for 

study. The objective of this literature review was to briefly outline some of the available 

analysis and evaluation methods that have been proposed and applied to membrane and plate 

models. Some of these methods will be used in this report in modeling of web response to a 

shock wave input. 



CHAPfER III 

DEVELOPMENT OF TENSION MEASUREMENT SYSTEM 

3.1 Background of Experimental Tension Measurement System 

Ideas behind the tension measurement system to be described in this report were visualized 

by Dr. Richard Lowery through interaction with the Web Handling Research Center consortium 

members. Desired by the web handling industry was a means of local tension measurement that 

would be versatile and low in costs. This tension measurement system would be required to be 

noncontacting and small in size physically so as to adapt to a large number of industrial plant 

settings where space limitations could be a factor. Additionally, the device would be required to 

work with a variety of different web materials of varying thicknesses and over a wide range of 

tension loads. Achieving all of these objectives would be beneficial to the web handling industry 

when compared to the devices presently available for local tension measurement. 

Visualized by Lowery was some device to input an impulse-like disturbance to a web 

specimen, producing longitudinal, shear, or flexural waveforms in the web that could be sensed. 

Intuitively, speed of waveform propagation is proportional to web tension. Thus the beginnings 

of the project were oriented toward generation of an impulse-like disturbance in a web and the 

subsequent sensing and interpretation of flexural waveforms produced. 

To provide an impulse input to a web specimen, a pneumatic pulsing system was designed 

and fabricated by project associate Nutter [54]. Shown in Figure 3.1-1, the pneumatic pulser was 

essentially a regulated pressure source used with a motor driven gating mechanism. The gating 

mechanism was a flat disk with a hole drilled in one spot. When the hole in the disk aligned with 

the pressure source outlet, a pulse of air was discharged through the pulser tube. At this point, 

the pressure pulse from this gating action was akin to a raised cosine pulse due to overlap of the 

two holes, which is a nonlinear function of area versus time during the overlap interval. This 
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pulse made a "wooshing" sound as the motor drove the disk through one cycle. Unsteady, 

compressible flow of the pressure pulse along the pulser tube length resulted in steepening of the 

pressure pulse front. Thus, the end result of the process was a "snapping" sound as the steepened 

pressure front reached the pulser tube exit. Another project associate, Ahn [55], performed 

experiments to determine optimal length and size of tubing to achieve the loudest, sharpest 

snapping sound for the rotary pulsing system. The shock front produced through this means was 

used as the impulsive input stimulus to web materials under test 

Figure 3.1-1. Rotary Pulsers-Original Version (Left) and Updated Version (Right) 

Web tension was related to wave propagation speed in web materials by two notable models, 

the in-vacuo and air loaded membrane deflection equations. Project associate Lee [56] provided a 

literature review and theoretical examination of these models in reference to web tension 

application. Sensing of wave propagation speed was then implemented in the experimental 

system such that pneumatic pulse generated waves could be analyzed. 
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Project associate Bradley [57] developed the pulse input/wavefonn sensing arrangement first 

used in experimental tension measurement tests. This transducer head, pictured in Figure 3.1-2, 

contained two sensing microphones such that two signals would be available for viewing. As 

web tension varied, variation in arrival time of the generated wavefonns at the sensing 

microphones could be captured with readout instruments. This first test system was situated on 

the WHRC Roisum Machine, where static and dynamic tests were perfonned. A ball screw 

platfonn for transducer head mounting was obtained such that tension profile tests could be 

perfonned. 

Figure 3.1-2. Original Bradley Transducer Head [57] 

Bradley perfonned extensive tests on different web materials at different tension levels. 

Examined were captured signal shapes, amplitudes, and time of flight infonnation. Passive signal 

conditioning methods were first used to provide more easily interpreted signals. The pneumatic 
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impulse, a broad band signal, provided a good deal of high frequency noise that was picked up by 

the transducer head electric microphones such that low pass filtering was used to reduce noise 

effects. Bradley also experimented with an operational amplifier diode clamping circuit to pass 

positive signal peaks while clamping off any negative peaks. 

Preliminary automation of the system was accomplished by project associate David Magee . 

Magee incorporated an IBM compatible computer and Metrabyte DAS50 A-D board into the 

tension measurement system for data acquisition and analysis purposes. Five records from the 

above mentioned diode clamping circuit outputs were obtained by a computer program and 

averaged together. Figure 3.1-3 is an example of a typical trace from this particular procedure. 

An analysis program would then search out the peak values of the two independent signal 

sequences. A time of flight value was then achieved through knowledge of the analog to digital 

sample rate and the index numbers corresponding to the peak amplitudes. Tension values were 

then calculated using the in-vacuo membrane and ribbon models. 
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Several questions arose from the Bradley preliminary studies that needed resolution. Some 

of these questions are outlined below. Research by Ahn revealed negative going signals as a 

result of pulser tube impulsive shock front input to a web under test. With the same microphone 

sensors in use, Bradley chose to clamp off the negative portion of the waveform. A contradiction 

appeared here in the handling of the sensed signals. A hypothesis would be needed to explain 

what the "proper" shape of the system microphones signals should look like. Mechanics of the 

pulser-to-web interaction was unresolved. The Bradley experimentation showed that higher 

amplitude waveforms could be obtained in a web when tension was relatively higher. This 

seemed to contradict the expected result that one could derive from string vibration theory. 

The WHRC Roisum Machine did not possess a good system for web tension control. This 

allowed for uncertainty in average tension being applied to a web test specimen Thus, some 

uncertainty remained regarding some of the wavefonn and numerical data obtained during testing 

by project associates as outlined above. 

Presented has been a brief background history of the tension measurement system that is the 

topic of this report. This has been presented to give a perspective of the number of researchers 

involved in this total effort to benefit the web handling industry. These preliminary efforts 

provided a viable basis for achieving the objectives outlined earlier. Further refinement of the 

experimental procedures, both sensing and signal processing, were needed to improve the system 

perfonnance. 

3.2 Field Testing of Initial Ideas 

Development of the method for discrete localized tension measurement by this researcher 

began at this point. Projected was field testing of the system in an industrial setting once 

familiarity with operation and behavior of the system had been achieved and necessary fixturing 

had been fabricated. Mobil Chemical Company in Shawnee, Oklahoma, was to be the industrial 

test site, where plastic web materials were manufactured using tension levels from 0.2 to 0.8 pli. 

To better control tension levels in the laboratory, the experimental apparatus was transferred from 

the WHRC Roisum machine to a static frame arrangement. Transferred also was the ball screw 

platform such that tension profiles could be obtained. Plastic web materials were utilized at low 
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tension levels to adequately simulate conditions that would exist at the Mobil Chemical web 

manufacturing facility. 

An HP 54501A digital oscilloscope was used to readout signals achieved from the new 

experimental laboratory test configuration. An example of a raw signal obtained in this manner is 

given in Figure 3.2-1. Note the major regions of influence indicated in the figure. Region 1 is 

dominated by high frequency noise due to the airburst or "snap" of the pneumatic shock wave. 

Region 2 is the pressure fluctuation due to the response of the web to the impulsive input. Region 

3 is the aftermath of the major web pulse passage which is dominated by low frequency web 

flutter. Region 2 is the area of interest in the tension measurement scheme. Of interest was to 

determine the relation of the speed of this generated waveform with respect to tension and also to 

obseiVe how the waveform shape changed with tension. 

Figure 3.2-2 is a replication of Figure 3.2-1 with some time inteiVals inscribed. Time period 

T1 represents the inteiVal for the airburst signal to travel from the fore (upstream) microphone to 

the aft (downstream) microphone. With the microphones two inches apart, the velocity of this 

airburst signal was: 

Cair= (2 in.)/(160(10-6) sec)= 1.250 (104) in./sec (3.1) 

This value of Cair is close to the typical speed of sound in air. Time period T2 is the inteiVal 

between the airburst and when the web pulse passes the upstream microphone. Again, for two

inch spacing between the pulser tube and the upstream microphone, the speed of the generated 

waveform could be approximated by: 

Cweb = (2 in.)/(390 (l0-6) sec)= 5.128 (1()3) in./sec (3.2) 

Finally, time period T3 corresponds to the time inteiVal by which the web waveform travels from 

the upstream to the downstream microphone. With two inch spacing, this propagation speed is 

found to be: 

Cweb = (2 in.) I (760(10-6) sec)= 2.632(103) in./sec (3.3) 

Note the difference in propagation speed as given by the Cweb values for regions 2 and 3. Time 

difference T2 was dependent on both the pulse and web response, that is, coupling of the input 

pneumatic pulse to the web. Contrasted to this was time differential T3 due to waveform 
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Figure 3.2-2. Reproduction of Figure 3.2-1 With Specific Time Intervals Marked 
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propagation in the web alone. This large difference in propagation speed, nearly a two-to-one 

ratio, illustrates complexity of the coupling involved in this experimental system. 

In preparation for field testing, new transducer heads were prepared and signal filtering was 

implemented. At the Mobil Chemical plant, web thicknesses of 0.0005 to 0.0015 inches were 

typical with web widths running 9 to 10 feet. Web transport velocity would be 450 to 500 feet 

per minute. Care would be required in housing of the system pulser tube and sensing 

microphones such that intermittent web contact would not scratch or snag the web, possibly 

causing a break. To reduce inherent system noise, filtering was used to reduce the effect of 

airburst noise and low frequency web flutter. 

Two transducer heads were fabricated of balsa wood, one short and one long transducer 

head or "shoe." Figure 3.2-3 shows the long shoe positioned on the static laboratory stand. 

Critical dimensions of these transducer heads were the spacing between the pulser tube and the 

microphone sensors. Two-inch spacing was used with the short shoe and four-inch spacing was 

used with the long shoe. Figures 3.2-4 and 3.2-5 are oscilloscope traces of raw signals obtained 

using these transducer heads on thin plastic web material at low tension. Isolating the major web 

pulse, the frequency band of these signals varied from roughly 1000 to 2000Hz. Again, high 

frequency airburst noise was present as was the low frequency trailing web flutter. 

Bandpass filtering was used to reduce high frequency noise and eliminate low frequency web 

flutter as well as any microphone DC biases. Second order Butterworth coefficients were used in 

the filter design, which was realized by a noninverting operational amplifier circuit. Filter 

specifications are provided in Figure 3.2-6. Filter bandwidth limits were selected based on 

observations such as was outlined for Figures 3.2-4 and 3.2-5. Figure 3.2-7 is an example of a 

bandpass filtered signal achieved with the long transducer head. As can be seen, the signal has 

been cleaned up giving the major web pulse component an accentuated appearance. Time interval 

measurement was aided by this conditioning such that gross estimates of web tension could be 

made. At this point field testing was in order to observe real world response of the system. 
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Figure 3.2-3. Long Transducer Head in Use on Laboratory Test Stand 
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Sensitivity 
4.0 volts/div 

Sensitivity 
4.0 volts/div 

Figure 3.2-4. Raw Signal Acquired Through Use of Short Transducer Head 
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Figure 3.2-6. Bandpass Filter Specifications [58] 
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Figure 3.2.7. Filtered Signal Acquired Through Use of Long Transducer Head 
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The first field tests at the Shawnee, Oklahoma, Mobil Chemical facility were perfonned on 

February 15, 1990. Test system consisted of the rotary pulser, long transducer head, filter 

circuitry, and an HP 54501A digital oscilloscope. Figure 3.2-8 is an example of a typical 

wavefonn obtained where the associated winding frame load cell indicated 81 pounds tension over 

a 120-inch web width. Figure 3.2-9 is a similar result at 88 pounds tension. Comparing the two 

figures, the time interval given by the oscilloscope cursors varied with tension. These results are 

based on load cell supplied average tension and not necessarily the exact tension at the test 

location. Generally, results of this field test were considered positive in that strong signals were 

obtained from the pneumatic pulse/microphone sensing system under conditions of variable and 

often substantial air gap between the transducer shoe and web. Questions remained regarding the 

shape of the microphone signals and proper interpretation of these signals. 

A study was performed to assess the validity of signals obtained from the tension 

measurement system with respect to actual perceived web motion. Figures 3.2-8 and 3.2-9 

exhibit common web waveform characteristics. The upstream microphone displayed basically a 

positive leading lip followed by a dominant downward (negative) pulse followed by an upward 

(positive) rebound pulse. The downstream microphone exhibits nearly an inversion of this 

waveform. Microphone polarity was tested such that an increase in pressure (compression) 

corresponded to a positive voltage output whereas a decrease in pressure (vacuum) corresponded 

to a negative voltage output. Microphone response knowledge could allow for interpretation of 

the acquired signals to formulate a general hypothesis regarding web response to the pneumatic 

input pulses. 

Web air loading during response to the pneumatic impulse inputs appeared to influence the 

shape of acquired waveforms. In the analysis of Figures 3.2-8 and 3.2-9, a point to remember is 

that the pulser tube and sensing microphones were all housed in the transducer head assembly on 

a common web side. Considering upstream microphone signals, the positive waveform lip prior 

to the dominant downward pulse indicates a small compressive load prior to a dominant vacuum 

load. Following this vacuum load is a positive rebound, or compressive load. 
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Sensitivity 
1.0 volt/div 

Sensitivity 
1.0 volt/div 

Time Base 1.0 millisec/div ~t = 1.96 millisec 

Figure 3.2-8. Trace From Shawnee Test for 81~Lb Tension 
Over a 120-In. Web Span 

Time Base 1.0 millisec/div 

Figure 3.2-9. Trace From Mobil Test for 88-Lb Tension 
Over a 120-In. Web Span 
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Figure 3.2-10 is an illustration of the qualitative hypothesis formulated to explain this general 

waveform characteristic. It was believed that air residing atop the web would be displaced 

outward from the impulsive input center point. This air mass would cause the initial compressive 

lip that was described above (Figure 3.2-10b). Next, the major web response to the impulse input 

would force the web away from the microphone, resulting in the relative vacuum condition 

(Figure 3.2-lOc). The rebound condition would then provide the final compressive load (Figure 

3.2-lOd). Hence, signals captured via the sensing microphones appear to be dependent on 

pneumatic input pulse-to-web coupling, the web structure mechanics, and the surrounding air load 

effects on the web dynamic response. 

The hypothesis outlined above explains the shape of a typical waveform captured by the 

upstream microphone and oscilloscope. It does not explain, however, the "inversion" evident in 

signals from the downstream microphone. Signals were obtained through use of the long 

transducer shoe, which was rather flat and smooth to avoid web damage upon contact. It was 

believed that air from the pneumatic pulse and air drawn into the system by the moving web 

boundary layer was being trapped by the flat shoe surface. A new transducer head was designed 

and fabricated, as shown in Figure 3.2-11. This design retained the smooth surface of the prior 

shoe but provided a means of dispersion of air between the pulser tube outlet and the sensing 

microphones. 

3.3 Refinement of Transducers and Signal Processing 

Coincident with development of signal generation and sensing aspects of the project was 

development of data acquisition and signal processing aspects. Thus far, data have been 

presented as oscilloscope traces. Time of flight information, subsequently referred to as a "delta 

t" (L\t) value, was obtained by setting oscilloscope cursors at the "best" positions with respect to 

the signals obtained from the fore and aft microphones. Thus, a delta t value obtained by this 

method could be somewhat arbitrary depending on the waveform shape being examined. Desired 

was a method to eliminate the "eyeball" approach and automate the process. An HP 9816 

computer was available for use with the HP 54501A digital oscilloscope for initial development in 

these areas. 
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of Experimental Signals 

Figure 3.2-11. Revised Transducer Head Design 
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Remote programming of the HP 54501A digital oscilloscope was accomplished through use 

of the HP 9816 computer. This allowed for continued digital oscilloscope use, which was a very 

good readout instrument. Thus, various oscilloscope settings were programmed and data records 

were obtained, whereupon an HPffi/IEEE488 bus connection allowed for transfer of captured 

signal data to the HP 9816 computer. This method proved to be adequate in that trigger levels, 

amount of pre- or post -trigger, and selection of single or averaged records could be programmed 

and subsequent waveform results noted. Once the digitized waveform record was transferred to 

the computer, various signal processing schemes could be initiated. 

Cross correlation was utilized for determination of the time of flight, Llt value for a given 

test. Captured by instrumentation was one complete web pulse cycle as follows. Airburst 

pneumatic shock "snap" was used as the oscilloscope trigger source, whereupon oscilloscope 

post-trigger facility was used to exclude this airburst noise from the final record. Web pulse cycle 

completion was indicated by the downstream microphone signal. With the cross correlation 

method, the correlation starting point was somewhat arbitrary. To achieve time of flight 

information, sufficient record shifts for complete signal overlap had to be performed. Equation 

(3.4) is the cross correlation function used in this analysis where T sis the x andy channel sample 

period [59] . 

..--.. N·r 
Rxy(rTs) = _1_ L, Xn Yn+ r ; r = 0, 1, 2, ... ,m 

N- r n~ 1 
(3.4) 

Figure 3.3-1 is an example of a tension test waveform captured through the automated data 

acquisition system with the transducer head design of Figure 3.2-11. Again, "inversion" of the 

web signal occurred between fore and aft microphone sensing. Figure 3.3-2 is the cross 

correlation function achieved from the waveforms of Figure 3.3-1. Due to the waveforms being 

somewhat inverted with respect to each other, one would expect the maximum negative correlation 

value to represent the point of maximum overlap of the two signals. From Figure 3.3'"2, the index 

corresponding to the point of maximum negative correlation occurred at shift number 202. Delta t 

value was then found through knowledge of the shift number and oscilloscope sampling rate. 

From Figure 3.3-1, the oscilloscope acquired 512 samples in 5 milliseconds such that the sample 

period T s was found by: 
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Figure 3.3-1. Typical Signal Captured by Automated System 
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Sensitivity 
2.0 volts/div 

Sensitivity 
1.25 volts/div 



T8 = 5.0 (l0-3) sec/512 samples= 9.7656(1Q-6)sec/samples 

The delta t value was then found by: 

At= (202 shifts) (9.7656(10-6) sec/shift)= 1.9726 (l0-3) sec 

Examination of Figure 3.3-1 provides for a quick estimate of this delta t value: 

At::::: (4 divisions) (500 (l0-6) sec/division)= 2.0 (l0-3) sec 
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(3.5) 

(3.6) 

(3.7) 

Thus, cross correlation procedures have aided in detennination of time of flight infonnation for 

this tension measurement system under development This computational improvement, the new 

transducer head, and an improved web traverse fixture were then taken back to Shawnee Mobil 

plant for additional field. tests. 

The second round of tension measurement system field testing at Mobil Chemical was 

perfonned March 22, 1990. Test objectives were to again examine signals in the industrial 

environment, to assess perfonnance of transducing and signal conditioning subsystems, and to 

verify automated data acquisition/data processing capability. Added to the system hardware was 

an upgraded web traverse to allow arbitrary transducer head positioning along the web span. This 

new traverse was comprised of a rigid length of square tubing along which a roller bearing 

transducer head mount would glide. This addition eliminated vibrational effects that led to large, 

inconsistent air gaps between the web and transducer head that were experienced in the first field 

test sequence. 

Conditions for this second sequence of tests were as follows. A plastic web of 1.25 mil 

thickness and 0.91 specific density was being processed at roughly 74 pounds tension across a 10 

foot wide web span. A bowed roller was in use at the test position, which would affect the 

inherent air gap between the web and transducer head. Figure 3.3-3 is an example of a captured 

signal with the transducer head located near the web midspan and slightly touching the web. 

Figure 3.3-4, by contrast, is an example of a signal achieved with the transducer head near the 

web edge, where a weaker signal was available due to a substantial air gap, approximately l/2 

inch, between the transducer shoe and web. Of interest was to see if variable signal strength, 

caused by the bowed roller, would affect time of flight delta t computation. 



Time Base 1.0 millisec/div 

Figure 3.3-3. Signals From Mobil Chemical Test With Transducer Head 
Near Web Midspan and Slightly Touching Web 

Time Base 1.0 millisec/div 

Figure 3.3-4. Signals From Mobil Chemical Test With Transducer Head 
Near Edge of Web With Large Airgap Present 
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Sensitivity 
2.0 volts/div 

Sensitivity 
1.25 volts/div 

Sensitivity 
2.0 volts/div 

Sensitivity 
1.0 volt/div 
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The automated data acquisition system was thoroughly tested in this industrial environment. 

Figure 3.3-5 is a trace captured by the oscilloscope under program control. Oscilloscope 

Averaging Mode was used such that four records were averaged and displayed. Figure 3.3-6 is 

the cross correlation function achieved from this data set. For this particular case, maximum 

negative correlation value occurred at shift location 230, yielding a delta t value of: 

dt = (230 shifts) (9.7656 cw-6) sees/shift)= 2.246 cw-3) sees (3.8) 

This method of delta t derivation proved to be quite insensitive to signal strength. Values obtained 

were very consistent with respect to values estimated from oscilloscope traces. 

Success in signal processing aspects of the tension measurement system was achieved at this 

point, but transducer head performance was still in question. In the effort to create a smooth 

transducer head surface to avoid web damage, the wave travel mechanism had been adversely 

affected, resulting in the "inversion" of a propagating flexural waveform in travel from the 

upstream to downstream sensor. Trapped air was considered a source of the problem, hence the 

transducer head redesign as was shown in Figure 3.2-11. When this inversion problem 

continued, a new hypothesis was needed. It was believed the transducer shoe surface, being large 

with respect to the microphone sensors, was somehow causing an impedance change in the web, 

thus affecting the traveling web waveform phase. 

A transducer head was designed and fabricated which utilized many features of the Bradley 

transducer head (Figure 3.1-2) while also providing protection against both web snags and 

acoustic reflections. Figure 3.3-7 is a schematic of this new transducer head, where the airfoil 

shaped floats and foam padding were intended to diffuse flexural wave and acoustical noise 

reflections. Metal tubes served to position the pulser tube and microphones while having minimal 

effect on the web during the wave propagation process. A new set of band pass filter parameters 

was implemented at this time. Filter center frequency was shifted to 1700 Hz with bandwidth 

limits roughly 1000 to 4000Hz. With these changes laboratory trial tested, a field test was 

scheduled for industrial environment verification. 

Mobil Chemical industrial testing was resumed on April 10, 1990. Test objectives were to 

test performance of the new transducer head desigil. Figure 3.3-8 is a trace obtained through the 
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Figure 3.3-5. Signals From Mobil Chemical Tests Captured Through 
Automated Data Acquisition System 
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Sensitivity 
2.0 volts/div 

Sensitivity 
1.25 volts/div 
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HP 9816 computer controlling program. Both upstream and downstream microphones exhibit the 

same characteristics in that an initial upward lip is followed by a dominant downward pulse. Web 

rebound follows the dominant downward pulse. Oscilloscope cursor positioning provided for an 

estimated delta t value, which yielded 1.01 milliseconds. Figure 3.3-9 is the cross correlation 

function corresponding to the Figure 3.3-8 trace. Since the two signals were of the same polarity, 

the maximum positive correlation value is of interest, which occurred at shift number 109. Delta t 

for this case is then: 

~t = (109 shifts) (9.7656 oo-6) sees/shift)= 1.06 oo-3) sees (3.9) 

The sample rate used in this case could have been increased while still capturing the necessary 

infonnation on the scope screen. Figure 3.3-10 is an example from this test sequence whereupon 

a faster sample rate was used, where oscilloscope cursors provide an approximate delta t value of 

0.928 milliseconds. Figure 3.3-11 is the corresponding cross correlation function. Maximum 

correlation value occurred at shift number 262 such that delta tin this case is given by: 

~t = (262 shifts) (3.906 oo-6) sees/shift) = 1.02 oo-3) sees (3.10) 

Correlation process resolution was increased by using a higher sample rate. A tradeoff, however, 

was that an increased sample rate implied that more correlation shifts would be necessary to insure 

complete signal overlap and thus a longer data processing period. 

At this point in the tension measurement system development the need for versatility and 

speed with respect to automation, program handling, data acquisition, and data analysis called for 

a new approach. An IBM compatible computer was acquired for use with the Metrabyte A-D 

board used by Magee during the Bradley project development. These changes in data acquisition 

methodology would allow for faster programming changes and faster signal processing capability 

compared to the HP 9816 computer. Meanwhile, project associates were developing a new pulser 

system where a solenoid valve would gate the pneumatic pressure pulses. Driven by an adjustable 

clocking source, such a system could be designed to pulse at faster rates than were presently 

available with the rotary valve pulser. Looking toward the need to measure tension profiles for 

wide web spans at Mobil Chemical, a stepper motor assembly was integrated into the traverse 

subsystem for computer control of transducer head location. Finally, an analysis was perfonned 
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Figure 3.3-8. Traces From Mobil Chemical Test With Automated 
System Using a Relatively Slow Sample Rate 
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Sensitivity 
1.5 volts/div 

Sensitivity 
1.0 volt/div 

dt = 1.01 millisec 

e.ae 81.118 IBB.BI 241.88 328.88 4BB.B8 

TIME DELAY IN NUMBER OF SAMPLES 

Figure 3.3-9. Cross Correlation Function Corresponding 
to Waveforms of Figure 3.3-8 
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Sensitivity 
2.0 volts/div 

Sensitivity 
1.5 volts/div 

Time Base 200 microsec/div ~t = 0.928 millisec 

Figure 3.3-10. Traces From Mobil Chemical Test With Automated 
System Using a Relatively High Sample Rate 
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of the conversion of acquired experimental data to tension indicators. New data sampling, 

assembly, and analysis techniques were to be implemented to help improve the tension values 

derived from this experimental method. 

3.4 Analysis and Implementation of System Model 

To this point, tension measurement system discussion has revolved around obtaining a time 

of flight, or delta t value. As was indicated earlier in this study, the ribbon equation model was to 

be employed for conversion of experimental data to tension indications. The ribbon equation is 

essentially a corrected version of the vibrating membrane wave equation. Uniform tension applied 

to membrane boundaries and differential stress analysis results in the linear membrane equation 

below based on notation of Figure 3.4-1: 

(3.11) 

where w is membrane transverse deflection. Thus, speed of wave propagation in a membrane is 

proportional to the square root of the membrane tension in a vacuum condition. 
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Figure 3.4-1. Notation for Linear Membrane Equation (3.11) [60] 
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To correct the membrane equation for air loading, a frequency dependent air loading force is 

added to the base relation (3.11). An assumed solution to the resulting partial differential equation 

coupled with compatibility relations between air particles and membrane surface allow for 

derivation of the dispersion relation for a membrane vibrating in air [ 61]: 

(3.12) 

where Kair = m/Cair and Krnembranc = m/Cmembrane are wave numbers for air and membrane in 

vacuo, and m is the membrane excitation frequency. 

A basic assumption in membrane deflection equation derivation is that of zero flexural 

rigidity. Many web materials exhibit a non zero flexural rigidity, and thus have characteristics of 

plates. Additionally, webs typically experience tension in one direction only whereas the 

membrane derivation assumes equal tension along all boundaries. The ribbon equation model, 

however, was believed to be a good basis for tension measurement data conversion. For a web 

application, the ribbon equation becomes: 

T = c;cb (Pwcb + 2 pair ) 
Y~cb- IGir 

(3.13) 

where Kweb = mwebfCweb and Kair = mweblCair. Lee [56] and Bradley [57] provide additional 

background material regarding the adaptation of this equation to the proposed tension 

measurement system. Quantities Pweb· Pair. and Carr would be considered constant with variables 

being web phase velocity Cweb and the induced flexural wave characteristic frequency ffiweb = 2 1t 

fweb. 

Common to the in-vacuo membrane model and the fluid loaded membrane model is the speed 

of sound in each medium. This quantity was to be derived experimentally through the time of 

flight information. From the project beginnings, Equation (3.11) was used with time of flight 

information to arrive at a crude tension estimate via: 

2 (X)2 T = Pwcb Cwcb = Pwcb ./!;. t (3.14) 

where X is the distance between transducer head sensing microphones. Originally desired was to 

excite the web at such a high frequency that the correction term in Equation (3.13) would be 
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negligible. If this were the case, then Equation (3.13) would degenerate to Equation (3.14). The 

impulsive pneumatic input idea was partially based on this concept of high frequency stimulus due 

to the impulse function theoretically having infinite bandwidth. Problems due to dispersive and 

coupling effects, however, forced use of the ribbon equation with the frequency dependent 

correction factor. 

Good laboratory tension estimates were achieved using cross correlation time of flight values 

and an assumed characteristic frequency value in the ribbon equation. Field testing at Mobil 

Chemical was performed using this arrangement, where a characteristic frequency value was 

selected based on actual oscilloscope signal traces. Results of these tests were not as accurate as 

was anticipated. Subsequent experimentation led to the belief that further adjustment of filtering, 

sampling process, record averaging, and characteristic frequency selection would not sufficiently 

improve the tension indication quality. A more in depth ribbon equation analysis was performed 

to examine the effect of web characteristic frequency on ribbon equation tension values. 

Equation (3.13) was written in general tenns including speeds of sound Cweb and Cair and 

wave numbers Kweb and Kair. To relate this equation to the measurement system parameters and 

measured quantities, Equation (3.13) may be rewritten as: 

(3.15) 

where X= distance between sensing microphones (inches), L\t =experimental time of flight value 

(seconds), fweb = characteristic frequency of propagating flexural wave (Hz), Pair= air density 

(lbm/in.3), and Pweb =web area density (lbm/in.2). The nature of this equation is somewhat 

difficult to visualize due to the dependence of tension on two variables, L\t and fweb· From 

experimentation, coupling of these two variables was hard to quantify because a tension increase 

causes the induced flexural wave to speed up, causing pressure fluctuations sensed by system 

microphones to occur more quickly, creating an apparent increase in web characteristic frequency. 

One must decide how much of an apparent ribbon equation tension value increase may be 

attributed to a phase velocity change and how much may be attributed to a characteristic frequency 
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change. Other factors affect the experimentally viewed web response such as pneumatic pulse 

sharpness, coupling aspects, and web mechanics aspects. Since little control had become 

apparent with respect to the experimental system coupling and mechanics aspects, the objective for 

enhanced system perfonnance then involved detennination of the relative ~t and fweb variables 

contribution of the to the overall tension indications produced. 

Sensitivity of a multi variable function F to a variable qi may be expressed as a vector with 

components i)F/dqi such that a perturbation in a variable Oqi results in a perturbation in the 

function value oF [62]. This perturbation OF~ due to~ may be approximated by: 

()F 
oFq = F(qt,Q2. .. ,Qi+Oqi, .. ,qq} - F(qt,Q2.···Qi, .. ,qJ :: - Oqi 

Oqi 
(3.16) 

For an n variable function, vector representation may be used to express the perturbation in F due 

to n component perturbations: 

(3.17) 

This result is often expressed as the uncertainty of a function measurement indication due to 

uncertainty in each of the individual function variable measurements. Maximum uncertainty is 

achieved through summation of absolute component uncertainty values [63]: 

(3.18) 

Applied to the ribbon equation, maximum uncertainty in a tension value due to uncertainty in 

the fweb and ~t variables is given by: 

(3.19) 

Evaluating the indicated partial derivatives of the ribbon Equation (3.15) provides: 

oT _ -X2 pm 

afwd> 1t ~ef;eb~ (~Y- (c~Jz 
(3.20) 
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2 
U~web = ___ x_p-'larr~· -O~f,;,;;W,;;;:eb~--

1tf~eb L1t2 ( L1t )2 - ( _l_l 
X C. arr 

(3.21) 

(3.22) 

At p . ol1t 
Uu = arr 

T 1tf L1t((L1t)2)3/2 
web x 

2 2 
2x p ebol1t 2x p . ol1t 

+ w 3 + ----~a=rr====~--
L1t 1tf2 L1t2 (L1tl- ( _1_)2 

web x c. 

(3.23) 

arr 

Four variables are present in the above relations: fweb. At , Of web , and oAt . Typical values of 

fweb and At, consistent with experimental test results, will be used such that variation in tension 

may be examined due to Of web and oAt variations. 

Figure 3.4-2 is a plot of web tension versus characteristic frequency fweb using five discrete 

values of flexural wave time of flight At. Web density 3.25 (lQ-5) lbm/in.2 was used in this 

example, which is appropriate for a 0.9 specific density plastic web material 0.001 inches (1 mil) 

thick. Time of flight values used were selected based on typical results obtained using the 

transducer head of Figure 3.3-7. The trace corresponding to At = 0.001 seconds will be selected 

for the following error analysis due to this trace well representing the range oflaboratory tension 

levels examined thus far. Uncertainty in variables fweb and At will be presented as percentages of 

the assumed values. A 10 percent uncertainty, for example, would be expressed as Of web= 0.1 

fweb and OAt = 0.1 At. 

Affect of error in characteristic frequency fweb was examined through plotting of the ~ 

function of Equations (3.19) and (3.21). Figure 3.4-3 is the result of the above mentioned 

normalization process, where discrete values of Ofweb = 0.04 fweb• 0.08 fweb• 0.12 fweb· 0.16 

fweb· and 0.20 fweb were considered. In the range of typical characteristic frequency, 1200 to 

2200 Hz, a 20 percent error in the assignment of or measurement of characteristic frequency fweb 
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results in a 5 to 7 percent tension value error. As can be seen, a tension error of less than 4 

percent could be expected with adequate, within 10 percent, flexural wave characteristic frequency 

measurement. 

Figure 3.4-4 is a similar plot which provides percent uncertainty in tension as a result of 

error in the time of flight At variable. This plot was achieved through evaluation of the uf 

function of Equations (3.19) and (3.23). Discrete values of time of flight error oAt = 0.04 At , 

0.08 At, 0.12 At, 0.16 At, and 0.20 At were considered. As can be seen in the figure, 

uncertainty in tension due to error in the At value is substantial. A 20% At error results in a 50 

percent tension error in the 1200 to 2200Hz characteristic frequency range. Clearly, an accurate 

measurement of time of flight is necessary for accurate tension indications. 

Cross correlation analysis outlined earlier was found to be beneficial in determination of an 

experimental time of flight value. This At value was obtained by examining the cross correlation 

data for the maximum value, noting the shift index associated with this maximum value, and 

multiplying this shift index times the data acquisition system sample period per channel. 

Correlation techniques are of great setvice in these types of applications due to their ability to 

smooth out noisy data sequences. Thus, if the point of maximum correlation is regarded as the 

optimal time of flight value, then uncertainty in this process could be considered to be ±1 shift or 

±1 sample period as the maximum correlation value is located. 

Percent uncertainty in experimental tension results may be evaluated through use of the above 

cross correlation uncertainty criteria. For example, section 3.3 provided two test examples in 

which the new transducer head of Figure 3.3-7 was used. These tests used sample periods of: 

Case 1-9.7656 (1Q-6) sec/sample (Equation (3.9)) and Case 2-3.906 (lQ-6) sec/sample 

(Equation (3.10)). Uncertainty term Wt of Equation (3.23) may be evaluated using At = 1.06 

msec, oAt= 9.7657 (lQ-6) sec in Case 1 and At= 1.02 msec, oAt= 3.906 (IQ-6) sec in Case 2. 

Assuming a characteristic frequency of 1700Hz and web density of 3.25 (lQ-5) lbm/in.2, the 

nominal tension and uncertainty results for these cases are: 

Case 1: T = 0.4436 ± 0.009526 pli (2.15%) 

Case 2: T = 0.4853 ± 0.004349 pli (0.90%) 

(3.24a) 

(3.24b) 
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These results indicate that if the cross correlation process is regarded as the most accurate means 

of achieving a time of flight value, then uncertainty in time of flight and subsequent uncertainty in 

the produced tension indication may be held to a very low value. 

The above sensitivity/uncertainty analysis was performed due to problems in obtaining 

accurate tension values from the experimental system. Time of flight information alone was not 

sufficient to provide for accurate, repeatable tension results. Uncertainty plots, Figures 3.4-3 and 

3.4-4, reveal some noteworthy results. From Figure 3.4-4, percent error in tension due to error 

in .1t is substantial, but does not vary greatly with characteristic frequency fweb· Thus, the 

method used to experimentally derive .1t had provided tension indications close to the expected 

tension levels fairly independently of fweb· Figure 3.4-3, however, shows a more rapid rate of 

change of tension error due to error in fweb· especially in low tension cases where fweb is 

nominally low. Development of an experimental procedure to derive flexural waveform 

characteristic frequency would likely result in more accurate, repeatable tension indications. 

Preliminary procedure formulation to obtain web characteristic frequency had begun prior to 

performance of the above uncertainty apalysis. Fast Fourier Transform algorithms were tried with 

already established computer programs. These programs would acquire a data record, compute 

time of flight through cross correlation, compute characteristic frequency through Fourier 

transform, and finally produce a tension indication through the ribbon equation model. What 

seemed to be a fairly straightforward assignment was found to have some subtle difficulties to 

overcome. Tradeoffs were necessary in the implementation of both the cross correlation and 

Fourier transform algorithms with respect to resolution, handling of records, and processing time. 

As was indicated in section 3.3, a high sample rate (short sampling period) was desired with 

respect to the cross correlation computation. Increased sample rate improved resolution of the 

time of flight computation at the expense of increased processing time. With respect to a discrete 

Fourier transform, a high sample rate implies a broad frequency band being examined. For a 

practical record length Fourier transform, the result is very poor resolution with respect to the 

characteristic frequency computation. Typical from oscilloscope traces presented in this report 

was web characteristic frequency that ranged from roughly 1000 to 2500 Hz at tension levels of 

roughly 0.5 to 0.8 pli for one mil thick plastic web material. Thus, the Nyquist sample rate of 
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5000 Hz per channel would provide minimal coverage of the anticipated signal bandwidth. This 

is contrasted to a sample rate on the order of 200,000 Hz per channel used in the correlation 

analysis. 

A decimation in time FFf algorithm was used in frequency domain analysis [64]. Record 

lengths were required to be some power of two. Examination of achievable resolution provided 

some interesting results. Sampling rates used in the cross correlation were selectable from 100 to 

400 kHz per channel, with rates 200 to 250 kHz providing the best compromise between 

resolution and processing time for typical web and tension conditions given above. For a 1024 

point FFf, the achievable resolution would then be L\f = 195.3 Hz for a 200kHz sample rate and 

L\f = 244.1 Hz for a 250 kHz sample rate. Thus, only a few increments of L\f would span the 

entire anticipated input signal bandwidth, given as roughly 1000 to 2500 Hz. This is illustrated in 

Figure 3.4-Sa. Dearly, sample rate reduction was needed to accomplish a measure of frequency 

domain resolution. 

Consider a sample rate reduction from a 400 - 500 kHz sample rate for two channels down to 

50 kHz sample rate for two channels, or 25 kHz per channel. For a 1024 point FFf, a resolution 

of L\f = 24.4 Hz would be available. With this change, illustrated in Figure 3.4-5b, the input 

signal bandwidth could be spanned by roughly 100 increments of M. A sample rate around 50 

kHz would allow for adequate frequency domain resolution but would change the approach to 

microphone signal sampling. 

A straightforward approach to signal data record assembly was used with respect to the cross 

correlation analysis. User selected sampling rate detennined record length, the number of samples 

to be collected per pneumatic input pulse. If averaging was desired, then records were added 

together point for point before beginning correlation computations. Sample rate selected 

detennined the number of necessary cross correlation shifts to perfonn to ensure proper signal 

overlap. Typically, the entire time interval of interest, from the beginning of the leading web 

pulse to the tail of the trailing web pulse, was less than two milliseconds using the transducer head 

of Figure 3.3-7. Iffor example a slower sample rate of 25 kHz per channel were to be used, then 

one would only be able to achieve fifty samples of useful information per channel in the two 

millisecond window described. One could increase the sample rate somewhat to acquire more 
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useful data points, but the desired resolution, on the order of 25 Hz to 75 Hz, would be 

sacrificed. In any case, several signal data records would need to be assembled so that sufficient 

Fourier Transfonn points would allow for the desired frequency domain resolution 

Discrete Fourier transfonn theory [65] allows for a transfonnation of a periodic sequence 

x(n) to its frequency domain equivalent X(k) through the transfonn pair: 

- N-1 
X(k) = L x(n) exi{ -j 21tkn/N] 

n=O 

N-1-
x(n) = j_ L X(k) exru 21tkn/N] 

N .k=O 

(3.25) 

(3.26) 

X(k) is also a periodic sequence, and is symmetric about the midpoint of the span k = N/2 or 

equivalently ro = 1t. If the sequence of interest x(n) is of finite duration and is M samples long, 

that is, transient in nature, then a "periodic" signal may be fonned by placing these transient 

records front to back such that: 

x(n) = L x(n + rM) = x(n modulo M) (3.27) 
r=-

Thus, the discrete Fourier transfonn X(k) may be computed for this assembled sequence through 

use of Equation (3.25). 

Experimental system frequency domain resolution dictated the need to acquire multiple 

records for processing. Thus, several records were placed front to back in a computer array prior 

to Fourier transfonn computation, as is illustrated in Figure 3.4-6. This assembly, creating a 

pseudoperiodic sequence, would serve as an averaging mechanism. Furthennore, a discrete 

frequency spectrum would result from such a sequence, aiding in subsequent selection of a 

characteristic frequency value. A tradeoff in accuracy versus data acquisition time again had to be 

dealt with. More assembled records would provide better results due to more of the critical data 

being present in the data array. Only one record was available per pulse of the pneumatic pulser, 

however, such that more records assembled meant more record assembly time prior to processing. 

A workable solution to the sampling tradeoff described above was fonnulated and the zero 

packing method [59] was used to double the Fourier transfonn resolution. A pseudoperiodic 
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record was constructed from five to seven individual records, each containing from 100 points 

(five records) to 75 points (seven records) for 512 total points. Ordinarily, the frequency 

increment is the sample rate divided by the record length N. By augmenting the record with N 

(512) zeros, the record becomes 2N points long, 1024 points in this case. Desired resolution was 

then found by division of the sample rate per channel, on the order of 25 to 30 kHz, by 1024 

points. A cosine windowing function was used on the record data portion prior to FFf 

processing. Figure 3.4-7 is an illustration of the completed record. 

Cross spectral density function between system microphone signals was the actual Fourier 

transform result computed. Bendat and Piersol [59] provided the basic procedure for computing 

this spectral function. Essentially, a complex record is formed: 

Zn = x 0 + jy0 ; n = 0, 1, 2, ... , N - 1 (3.28) 

where x0 is constructed from upstream microphone signals and Yn is constructed from 

downstream microphone signals. The Cooley-Tukey decimation in time FFf procedure resulted 

in a transformed Z(k) vector. Transformed X(k) and Y(k) vectors were found through: 

X(k) = (Z(k) + z*(N-k)) I 2 

Y(k) = (Z(k) - z*(N-k)) I j2 

k = 0, 1, 2, ... , N-1 

k = 0, 1, 2, ... , N-1 

(3.29) 

(3.30) 

where * indicates a complex conjugate. The cross spectral density magnitude estimate was then 

found through: 

Gxy(flr) = 2 Ts x*(k) Y(k) ; Ts= Sample Period 
N (3.31) 

where fk is the frequency associated with the index k, found through fk = (k)(Sample Rate per 

Channel)/N. Once calculated, the cross spectral density magnitude function dominant peak was 

selected as the web characteristic frequency. 

Field tests of this tension measurement system version at Mobil Chemical were conducted on 

January 18, 1991. Objectives of these tests were to examine performance of the system with the 

new FFf analysis capability. Additionally, both the rotary pulser and new solenoid pulser were to 

be tested for comparative purposes. Web parameters included web volume density 56.5 lbm/ft3 

and thickness 0.69 (lQ-3 in.), resulting in an area density of 2.248 (l0-5) lbrn{m.2. Nominal 
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average web tension was approximately 78 pounds over a 120 inch web span for 0.65 pli. 

Several tests were performed, including a continuous scan mode in which the transducer head 

would scan back and forth across the web, writing At, fweb· and tension indications to an output 

file. Stationery tests were performed to gauge variation of tension indications over a period of 

time. As support, oscilloscope traces were used to provide estimates of the fweb and At values. 

A single point test using the new solenoid pulser was performed to view the cross correlation 

and Fourier transform functions obtained from test data. Figure 3.4-8 displays the signals from 

this test which were obtained through digital oscilloscope computer programming. Sharper pulses 

were achieved with the solenoid pulser in comparison to those achieved through the rotary pulser. 

Oscilloscope cursors provide a web characteristic frequency estimate, approximately 2100Hz. 

Time Base 500 microsec/div 

Sensitivity 
1. 75 volts/div 

Sensitivity 
1.25 volts/div 

fweb = l{f = 2128 Hz 

Figure 3.4-8. Trace From Mobil Chemical Test of Waveform With Rough Estimate 
of Characteristic Frequency Marked 

Figures 3.4-9a and 3.4-9b are the cross correlation and cross spectrum functions from this 

test, respectively. Delta t value was found to be 0.78667 milliseconds from Figure 3.4-9a. 

Characteristic frequency was found to be 1831Hz from Figure 3.4-9b. Resultant tension value 

was computed as 0. 706 pli. This particular computer program did not account for web transport 
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velocity, which in this case would result in approximately a 7 percent error in the tension 

indication. If this correction were applied, then the indicated tension would be 0.662 pli, which 

would correlate fairly well to the nominal tension obtained through the winding system load cell. 

Figure 3.4-10 is the graphical summary from a stationery test in which the transducer head 

was located at the web midspan. This graphical summary is normally used to display tension 

profiles, where the delta X values indicate relative spacing of test locations across the web span. 

In this case, however, the transducer head was stationery and nine tests were selected. Dashed in 

Figure 3.4-10 is the average indicated tension level, 0.68280 pli. One can see variation of tension 

above and below this average level during this tension versus time test. Tension load cell would 

fluctuate from 76 to 80 pounds during a test such as this, which would correspond to an average 

tension variation of 0.63 to 0.67 pli. Web transport velocity was accounted for by this computer 

program, aiding tension indication accuracy. All of the indicated tension values are within 16% of 

the average value such that no "bad" or far out values were processed. Performance of the 

solenoid pulser, which provided a sharp strong pulse, had helped system response in this regard. 

The tension measurement system performed well in this set of field tests. Some problems 

remained with regard to the sampling procedure. For each test point, cross correlation data were 

taken at one time whereupon the sampling rate was changed and Fourier transform sampling was 

performed. Computer memory constraints would not allow for all sampling to be performed at 

once. Winding systems have inherent eccentricities, causing tension variation with time. Effect 

of the split sampling procedure was to possibly compute a time of flight value from a different 

tension condition from which a characteristic frequency value was computed. Thus, indicated 

tension values had the possibility of being "hybrid" and not the actual tension at some one specific 

point in time. For slowly varying tension conditions, this would not be a great concern, but one 

would prefer to acquire all necessary data at one time if possible. This problem would prove hard 

to overcome during remaining system development activity. 
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3.5 Implementation of Adjustable Tension 

Measurement System Response 
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The experimental web tension measurement system described thus far in this report had 

demonstrated creditable results on thin plastic web material. One objective was to make this 

system applicable to many web materials. An adjustable system response would be needed to 

provide this enhancement and thus obtain optimal system performance when arbitrary web 

materials were in use. 

Outlined in section 3.4 was development of a method of acquiring a characteristic frequency 

of induced flexural waveforms in web materials. Increasingly, it became apparent that the system 

should be "tuned" in order to obtain the best characteristic frequency value. Analog bandpass 

filtering was already in use, serving to tune the system to one set of filter characteristics. If, 

however, the "nominal" web characteristic frequency was located sufficiently away from the filter 

center frequency, then inconsistent, unrepealable results would plague the system computed 

tension indications. An attempt was made to determine whether or not filtering was unduly 

affecting the signals being processed. 

Underdamped second order systems are oscillatory in nature. By selecting a second order 

bandpass filter center frequency coincident with a "nominal" web characteristic frequency, would 

the resulting filter output exhibit any oscillatory effects. In other words, would the filter with a 

signal of frequency content in close proximity to its natural frequency cause the filter to "ring"? 

Butterworth coefficients were used in the filter design for a filter damping ratio of0.707. Little 

overshoot would then be expected in response to an impulsive input. Figure 3.5-1 is an analog 

filter time domain response to a periodic square wave pulse input of duration 1 millisecond. No 

oscillation problems are apparent from examination of this figure. Subsequent frequency domain 

tests, using periodic and one-shot square pulse inputs of varying time duration, revealed no 

adverse effect by the filter on frequency domain response. Figure 3.5-2 is an example of 

frequency domain filter response to a 500 microsecond one-shot square pulse. From this figure, 

DC components have been attenuated through bandpass filtering but the zero crossings remain at 

intervals of 2000 Hz, as is predicted from theory for a pulse of 500 microseconds duration . 

.. 
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Sensitivity 
400 mvolt/div 

Sensitivity 
2.0 volts/div 

Figure 3.5-1. Response of Analog Band-Pass Filter to Square Pulse Train Signal 

0 2k 4k 6k 8k lOk 

FREQUENCY (HZ) 

Figure 3.5-2. Spectrum of Transient Response of Analog Band 
Pass Filter to Square One-Shot Pulse 



69 

H(z) = Ha(S) I s~.Z...l...:.C.. 
T.t + z·l 

(3.35) 

Application of Equation (3.35) to the analog transfer function (3.32) resulted in the digital transfer 

function (3.36), which could be expressed as a recursive relation (3.37) where Y is an output 

sequence and X is an input sequence. 

H(z) = 2 Ts K roc (1 - z-2) 

z·2(4Q-2Tlllc+T;ro~) + z·1(-8Q+2'fsro~) + (4Q+2Tlllc+T;ro~ 
(3.36) 

(1.0 + 1t Ts BW+(1t fc Tsl) Yn= 2.0 (1.0- (1t fc Ti) Y&t 

+ (-1.0 + 1t Ts BW- (1t fc Tsl) Y&2 + (1t K Ts BW) (Xn- X&z) (3.37) 

Adaptation of digital filtering to the experimental tension measurement system was 

accomplished through programming of Equation (3.37). One benefit of the digital filtering 

scheme was the elimination of the analog filters and associated hardware. Due to low microphone 

signal voltage levels, however, an operational amplifier noninverting amplifier circuit was retained 

to boost the raw microphone signals. Equation (3.37) allowed for user selectable filter center 

frequency fc. filter bandwidth BW, and filter gain K. Decisions regarding values of these 

parameters could be made based on the filtered waveform displayed on the computer CRT screen. 

Field tests at the Shawnee Mobil Chemical facility were conducted on September 3, 1991, to 

test different filtering methods with the solenoid pulser on two different web lines. Analog 

bandpass filters were prepared with three different sets of filter parameters. Digital filtering 

parameters, as indicated earlier, could be altered at any time. Of interest was to test the indicated 

tension sensitivity to filtering parameters fc and BW. 

Three sets of analog bandpass filters were used in these tests with parameters: (a) fc = 1000 

Hz, BW = 1500 Hz; (b) fc = 1500 Hz, BW = 1000 Hz; and (c) fc = 2000 Hz, BW = 2000 Hz. 

The first web line tested was processing 1.1 mil plastic web at approximately 0. 7 pli tension. For 

this moderate tension level, the analog filter with fc=1500 Hz, BW=lOOO Hz seemed to provide 

the best results. This conclusion of "best" was based on the signal as displayed by the 

oscilloscope and on the time of flight, characteristic frequency, and tension values produced. 

Interestingly, this filter was more closely tuned to the prevailing characteristic frequency.while 

possessing the narrowest bandwidth. 
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Digital filtering was tested in this industrial environment Default filter parameters, fc = 1000 

Hz, BW = 1500Hz, K = 2.0, provided an initial filtered waveform display, as illustrated in 

Figure 3.5-3. As shown in the figure, the user could select a number of options to position the 

waveform, change the sampling rate, or change the filter parameters. 

Figure 3.5-4 is a tension profile graphical display achieved with fc = 1500Hz, BW = 2000 

Hz, and a 600 kHz sample rate. This relatively high sample rate provided for high time domain 

resolution and adequate frequency domain resolution, where 60 kHz sample rate was used in 

acquiring Fourier analysis data. Tension variations shown in Figure 3.5-4 were the result of 

variation in L.\t only due to no variation in calculated characteristic frequency through the nine test 

positions. Average tension, 0.71792 pli, compared very favorably with the nominal average 

tension of approximately 0.7 pli. 

A second web line was tested, where 0.45 mil plastic was being processed at approximately 

0.2 pli tension. Such a low tension level had not been tested extensively in the laboratory. 

Generally, lower tension such as this would result in a lower value of characteristic frequency 

coupled with a higher time of flight value. A bowed roller was present at the test site, which 

presented problems in setting of transducer head spacing with respect to the web. Figure 3.5-5 is 

an oscilloscope trace of a typical signal from this test location. These signals were taken from the 

operational amplifier noninverting amplifier circuit output prior to sampling. High frequency 

signal noise was due to an electrostatic coating processor located adjacent to the transducer head 

location. Combination of the low tension, bowed roller spacing concerns, and close proximity to 

a high frequency noise source would severely test the tension measurement system performance. 

A tension profile test for the above described test situation was performed using default 

digital filter parameters fc =1000Hz, BW=1500 Hz. Sampling was performed at 500kHz and 

50 kHz for the cross correlation and Fourier analyses, respectively. Figure 3.5-6 is the graphical 

summary of this test Excessive air gap, approximately 1/2 inch, was noted at stations 8 and 9 of 

this test. Poor characteristic frequency values were achieved at stations 8 and 9 due to this air 

gap, thus biasing the reported tension values at these stations and the resultant average tension. 

From the figure, average tension was given as 0.25258 pli. If stations 8 and 9 values were 

discarded, then the average tension for stations 1 through 7 would equal 0.23391 pli, which 
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would provide good agreement with the approximate average tension of 0.2 pli as provided by the 

winding system load cell. 

Time Base 1.0 millisec/div 

Sensitivity 
1.0 volt/div 

Sensitivity 
600 mvolt/div 

Figure 3.5-5. Typical Trace From Mobil Chemical Test on Low Tension Web Line 

Field tests described above showed that the tension measurement system was capable of 

producing very creditable tension indications. Using analog filtering methods, system 

performance was shown to be quite sensitive to the filter parameters such that proper tuning of the 

system was needed to insure best performance. Digital flltering methods allowed for easy filter 

parameter changes which helped to alleviate some of the sensitivity problems. Once tuned, the 

digital filtering methods provided extremely good results in some severe test conditions. 

Remaining to be performed, however, were tests of web materials of various thicknesses and 

compositions. Of interest would be to observe the system response to thicker materials, where 

web flexural rigidity would be more of a factor in the generation of flexural waveforms. 

3.6 Adaptation to Arbitrary Web Materials and Tensions 

During the introduction to section 3.5, mention was made of the need to adapt the 

experimental web tension measurement system to a wide variety of web materials and tension 
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levels. This section will be devoted to particular test cases performed in the laboratory where 

varying web material and web tension has been observed. Experiments with signal processing 

methods have been performed to gauge advantages or disadvantages of various methods with 

respect to resolution and accuracy of results. 

Section 3.5 detailed the process of configuring the tension measurement system for variable 

response depending on user specified filtering parameters. This proved to be a valuable asset 

during preliminary laboratory testing of arbitrary web materials. Problems became apparent due 

to web anisotropies. An example of this was observed while testing a synthetic material named 

Nomex, supplied by Dupont Corporation. Nomex and other web materials often contain "tight" 

spots and "soft" spots such that signals sensed by the system microphones might look radically 

different at these locations. Even more perplexing was that a tight spot and a soft spot might be as 

little as 1{2 inch apart along a web span. Some different signal processing procedures were 

developed to gauge performance with respect to these types of problems. 

During tension measurement system development, cross correlation function revealing the 

relation of signals obtained from the fore (upstream) and aft (downstream) microphones was 

calculated by a brute force approach. Discrete cross correlation function, Equation (3.4), was 

calculated as per the definition, resulting in rather lengthy processing time. Good results were 

obtained which precluded tampering with this procedure during prior development phases. 

Fourier transform methods may be applied to cross correlation computations as an alternate 

approach. Processing time savings may be realized if fast Fourier transform algorithms are thus 

used. 

Cross correlation calculations have thus far been viewed as purely a time domain operation. 

Correlation functions are related to spectral density functions through the Wiener-Khinchin 

relations [94]. For cross correlation defined as: 

Rxy('t) = lim .l ( x(t) y(t+'t) dt 
T Jo 

(3.38) 

The two-sided spectral density function is related by [95] 



76 

(3.39) 

where F.T. indicates Fourier transfonn. Thus, computing the cross spectrum of x andy data 

records provides a record which may be inversely transfonned to provide the cross correlation 

function: 

Rxy(t) = -1 ~- Sxy(ro) eJc.n dro = F.LtSxy(ro)] 
27t -

This may be alternately expressed as the Fourier Transfonn pair [95]: 

Rxy(t) (:) x*(ro) Y(ro) 

(3.40) 

(3.41) 

Bendat and Piersol [59] provided a set of procedures to follow to utilize this approach. Due 

to the circular nature of the Fourier transfonn, recommended was the padding of N sample data 

sequences with N zeros and then perfonning 2N point discrete Fourier transfonns (FFI's). This 

would insure decoupling of subsequent cross correlation function values. After perfonning the 

complex multiplication of Equation (3.41), inverse Fourier transfonn is perfonned. Lastly, 

recommended was use of a multiplicative scale factor N/(N-r) for- N < = r < = N- 1 to finally 
...... 

obtain Rxy(:rh) values. A similar procedure was recommended by Steams and David [94] but using 

instead a scale factor 1/(N-r) at the end of the process. 

Some of the ideas outlined above had been used in calculation of web characteristic 

frequency. Thus, application of these ideas in cross correlation context was not extremely 

difficult The only drawback to the method was the limited number of data vector sizes available, 

where a power of 2 was required. Vector sizes 512 and 1024 were most applicable for sample 

rates typically used in data acquisition. This procedure was assembled in program WHlFC, 

which is listed in Appendix E. 

During evaluation of the characteristic frequency value from sensed microphone signals, 

several records were acquired and placed front to back in a vector. Fourier transform of this 

pseudoperiodic record contained benefits of record averaging and a resultant discrete frequency 

spectrum from which a dominant spike could be identified. Disadvantages included additional 
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III have been incmporated into these tests. Recall from section 3.5 that operational amplifier 

noninverting amplifier circuits were retained to boost the raw microphone signals voltage levels. 

In these upcoming presentations, oscilloscope traces will be referred to as "raw" traces even 

though they are acquired at output of these operational amplifier circuits and not directly from the 

sensing microphones. These signals are raw in that no deliberate frequency domain modification 

has been implemented with possible exception of inherent operational amplifier bandwidth 

limitations. Digital filtered computer CRT screen dumps will also be presented to show effects of 

filtering on the raw signals. Amplitude of these displays is arbitrary depending on the gain value 

selected. Thus, gain will not be specifically detailed in these discussions. Rotary pulser was 

initially used in these tests whereupon the newer solenoid pulser was implemented roughly 

halfway through the tests. One test objective is to provide a final presentation to the web 

manufacturing and web handling industries who may consider use of these ideas in their own 

industrial facilities. Another objective is to detennine whether or not any firm statements can be 

made with respect to system perfonnance and applicability. 

Test A considers tension measurement system use on 2 mil thick Type 410 Nom ex material 

which possessed a relatively slick surface. Area density for this web material was 5.8 (lQ-5) 

lbrn{m. 2 and applied average tension was 0. 72 pli. A single point test was perfonned using signal 

processing procedures given in section 3.5 (program WH1DF of Appendix E). Figure 3.6-1a is 

the raw oscilloscope view of the test signal and Figure 3.6-1b is the digital filtered version with 

filter center frequency 2000 Hz and bandwidth 2500 Hz. From this figure, the web flexural pulse 

is quite evident in the top trace (upstream microphone) but degrades somewhat during propagation 

to the bottom trace (downstream microphone). From oscilloscope estimations, L\t and fweb are 

approximately 0.9 milliseconds and 3200Hz, respectively. Figure 3.6-2a is the cross correlation 

function and Figure 3.6-2b is the spectral density function for this test, where data were collected 

at 400 and 50 kHz sample rates for these two procedures, respectively. From the figures, L\t = 

0.915 msec and fweb = 2514.6 Hz. Tension indication from these data was 0.718 pli using the 

in-vacuo equation (Equation (3.14)) and 0.870 pli using the ribbon equation (Equation (3.15)). 

Judging system accuracy is difficult from such a single point test. This single point program 

WHIDF allows for viewing of cross correlation and frequency domain results such that tuning 
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may be adjusted and retried. An optimal set of filtering parameters may be found by such a trial 

and error process. Results obtained here will be used as a basis for comparison to fast correlation 

and single record spectral density signal processing methods. 

Test B was performed for the same test conditions as Test A but using signal processing 

methods described earlier in this section. Program WHlFC (Appendix E) was used with fllter 

parameters center frequency fc =2000Hz and bandwidth BW =2500Hz. A higher sample rate 

of 500 kHz was used in this test compared to Test A. Figures 3.6-3a and 3.6-3b are raw 

oscilloscope and digital flltered signals, respectively, acquired in this test, which maintain the 

character of those presented in Test A. Figure 3.6-4a and 3.6-4b are the fast cross correlation and 

single record spectral density functions, respectively. Results of signal processing, ~t = 0.924 

msec and fweb = 2734.4 Hz, are very similar to that obtained in Test A. Tension results are 0.704 

pli using in-vacuo and 0.840 pli using ribbon equation data conversions 

Fast correlation procedure, graphically presented in Figure 3.6-4a, has provided a trace quite 

different from that produced using standard cross correlation, as in Figure 3.6-2a. Much higher 

oscillations of the cross correlation function appear, which may result in a problem in proper shift 

point selection for ~t determination. From Figure 3.6-4a, the solid horizontal line represents zero 

where the cross correlation function swings positive and negative about this line. Two positive 

peaks at shift locations 231 and 322 and two negative peaks at shift locations 185 and 296 are 

quite close in amplitude absolute value. Fortunately in this case the proper peak was maximum, 

yielding the correct ~t value. General implementation of the fast correlation procedure was taken 

from Bendat and Piersol [59]. Specified was a scaling multiplier of the form N/(N-r), where N is 

the number of record data samples and r is the shift index. This multiplier tends to greatly amplify 

cross correlation values for low shift numbers compared with the original definition of Equation 

(3.4). This scaling factor was changed to that of the original defmition and that recommended by 

Stearns and David [94], 1/(N-r). This change helped alleviate these oscillatory problems in later 

tests. 

Fourier transform of the single record sample, Figure 3.6-4b, provided a very good result in 

this case. Effective sample rate for the single record was 25 kHz for two channels where 64 data 

points and 64 zeros resulted in a 128 point record. Note differences in resolution for this 
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approach compared to that in Figure 3.6-2b. The pseudoperiodic record has four times the 

resolution, but sampling time length is much greater. The single record transfonn allows for fast 

processing, but is more of a hit-or-miss type procedure. One should test repeatability of this 

single record approach for each possible application to insure adequate perfonnance. 

Floppy disk material was examined in this test series, where 3 mil thickness and 1.67 (10-4) 

Ibm/in. 2 area density made this material rather dense and stiff. For this test, applied average 

tension was 2.21 pli. A single point test was perfonned followed by a profile test to judge overall 

perfonnance of the system for this situation. 

Figures 3.6-5a and 3.6-5b are raw oscilloscope and filtered signals, respectively, for the 

single point floppy disk material tension test, using program WHlDF. Filter parameters selected 

were center frequency 2500 Hz and bandwidth 3000 Hz with a 400 kHz sample rate. From the 

oscilloscope trace it is evident that no problems were encountered in generating flexural 

wavefonns in this material at a higher tension level than has heretofore been tested. Estimated L.\t 

and fweb from this oscilloscope trace are 0.91 msec and 2940Hz, respectively. The filtered 

wavefonns exhibit great similarity between upstream and downstream detection, which is always 

a virtue with respect to the cross correlation process. 

Figures 3.6-6a and 3.6-6b provide the cross correlation function and pseudoperiodic spectral 

density function for this test. From the cross correlation function, an unmistakable peak at 180 

shifts provides a L.\t value of 0.900 milliseconds. Fourier transfonn provides the nice triangle type 

spectral envelope, culminating in an fweb value of 2246.1 Hz. Tension results were 2.136 pli 

from the in-vacuo model and 2.315 pli from the ribbon model. 

Test D was perfonned on this same material to achieve a tension profile. Program WH3DF 

Qisted in Appendix F) was used, which utilizes the same signal processing techniques as program 

WHlDF used earlier. Filter parameters were kept the same as in Test C but sample rate was 

increased to 500 kHz. The transducer head was located 1 inch from the floppy disk material edge 

whereupon four tests were perfonned at l-inch intervals to traverse the 5-3/8 inch web span. 

Table 1 provides time of flight, characteristic frequency, and estimated in-vacuo tension 

indications at the four test stations. Figure 3.6-7 is the graphical summary of the tension test 

providing ribbon equation tension indications. From Table 1, lowest L.\t values at center test 
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locations imply greater tension, which is con:finned in Figure 3.6-7. Average tension indicated is 

2.262 pli which is quite favorable in comparison to the 2.21 pli average applied tension. 

TABLEt 

TIME OF FLIGHT, CHARACI'ERISTIC FREQUENCY, AND IN
VACUO TENSION FOR TEST D TENSION PROFILE 

Station ~t(msec) fweb(Hz) TIN-VACUO (pli) 

1 0.972 1928.7 1.832 

2 0.904 2319.3 2.118 

3 0.876 1928.7 2.255 

4 0.912 1684.6 2.081 

Program WH3DF was again used to perfonn a tension profile test of 5 mil thick type 411 

Nomex material, TestE of this series. Type 411 Nomex has a courser surface finish and is 

somewhat softer than the Type 410 Nomex which was tested earlier. Area density for the material 

was 5.5 (l0-5) lbm/in.2 whereupon 0.85 pli average tension was applied. Figures 3.6-8a and 

3.6-8b are oscilloscope traces taken one inch from either edge of the eight-inch wide web, 

corresponding to stations 1 and 7 of the upcoming tension profile. This illustrates the type of 

signal change that one may experience when traversing a web span. Notice the dramatic changes 

that have occurred in signal amplitude, time of flight, and characteristic frequency. Thus, this 

serves as a real motivator for trying different filtering parameters on different web locations during 

preliminary set up tests. 

Figure 3.6-9 is the filtered trace corresponding to the location where Figure 3.6-8a was 

obtained, where filter center frequency 2000 Hz, bandwidth 2500 Hz, and sample rate 500 kHz 

were used. As indicated above, seven tests were perfonned in spanning the web. Table 2 
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TABLE2 

TIME OF FLIGHT, CHARACTERISTIC FREQUENCY, AND IN
VACUO TENSION FOR TESTE TENSION PROFILE 

Station L\t(msec) fweb (Hz) TIN-VACUO (pli) 

1 0.884 1098.6 0.729 
2 1.020 1098.6 0.548 
3 0.816 1464.8 0.856 
4 1.000 1464.8 0.575 
5 0.996 2197.3 0.580 
6 1.424 1831.0 0.281 
7 1.181 1098.6 0.412 
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provides the raw infonnation for each station and Figure 3.6-10 is the graphical summary for the 

test. Oscilloscope traces of Figure 3.6-8 imply a tension gradient across the web, which is 

verified by the profile plot. This soft surfaced Nomex, however, does provide for some 

unpredictable responses. In particular, station 2 appears to be a "soft" spot in the web resulting in 

a high time of flight value. Average tension indicated in Figure 3.6-10,0.789 pli, is within 8% of 

the applied average tension, which is quite good for this type of material. 

At this point the solenoid pulser was implemented into testing. Some heavier materials were 

to be examined which would likely need a bit more drive to excite. A stronger, sharper pulse was 

available with the solenoid pulser compared to the rotary pulser. Additionally, pulse width and 

repetition rate could be varied, making this a more versatile instrument. 

Test F was perfonned on 3 mil thick clear plastic web material. This material was fairly stiff 

and heavy, as evidenced by a 1.61 (10-4) lbm/in.2 area density value. For this 13-inch wide web, 

18.6 pounds were applied for an average applied tension of 1.43 pli. Test location was one inch 

from a web edge. Figure 3.6-lla shows the raw oscilloscope trace and Figure 3.6-llb shows the 

digital filtered trace for this test, where filter parameters were center frequency 1500 Hz, 

bandwidth 2000 Hz, sampled at 400kHz. Notice striking similarity between the filtered and raw 

wavefonns, which is an indication of proper filter parameter selection. Fast correlation and single 

record spectral density were perfonned through program WH1FC. Figure 3.6-12a and 3.6-12b 

are the cross correlation and spectral density functions, respectively. Critical findings were At= 

1.165 msec and fweb = 1172Hz, resulting in tension values of 1.229 and 1.386 pli from the in

vacuo and ribbon models, respectively. In this case, these alternative methods of signal 

processing have provided quite reasonable results. 

A tension profile was acquired using conventional signal processing practice of program 

WH3DF, with results noted as Test G of this series. Initial position for this test was identical to 

the location just examined in Test F. Similarly, filter parameters were kept equal: fc = 1500Hz, 

BW = 2000 Hz and 400 kHz sample rate. Table 3 provides the At and fweb statistics from this 

test along with the in-vacuo tension estimates. 
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TABLE3 

TIME OF FLIGHT, CHARACIERISTIC FREQUENCY, AND IN
VACUO TENSION FOR TEST G TENSION PROFILE 

Station L\t (msec) fweb(Hz) TIN-VACUO (pli) 

1 1.150 830.1 1.262 
2 1.150 805.7 1.262 
3 1.170 1220.7 1.219 
4 1.165 1220.7 1.229 
5 1.155 1220.7 1.251 
6 1.155 830.1 1.251 
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The tension profile summary is provided in Figure 3.6-13, which indicates an average 

tension of 1.437 pli. Notice the lack of variation of the indicated tension levels about the average 

tension level. Maximum variation occurs at station 2 and is less than 5%. This heavier, stiffer 

web material allowed for very even set up on the laboratory test stand and thus a very even tension 

distribution was possible. 

Test H was performed on paper, a 4 mil slick surfaced coated paper with area density 1.708 

(10-4) lbm/in.2. Applied tension was 1.858 pli over the 12-inch web width. Program WH1DF 

was used at a sample rate 500kHz with filter parameters fc = 1000Hz and BW = 1000Hz. 

Figures 3.6-14a and 3.6-14b provide the raw oscilloscope trace and digital filtered trace, 

respectively, where the transducer head was located near the web center. Thicker, stiffer web 

materials at higher tension levels will not deflect as far as will thin webs, as one would expect. 

Solenoid pulser had some difficulty deflecting this paper web material. Notice in Figure 3.6-14a 

the sensitivity values of 400 millivolts per division. This is the first test case examined thus far 

where the need for this higher sensitivity level was required. Signal to noise ration has been 

lowered such that sensitivity to filtering becomes more pronounced. 

Figure 3.6-14b illustrates maximum signal "windowing" that one may utilize. Here, the bare 

minimum of the flexural waveform signals is retained such that cross correlation may be achieved 

with minimal noise influence. Figure 3.6-15a is the cross correlation function corresponding to 
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the waveforms of Figure 3.6-14b, where time of flight is given as 1.132 msec. This is the 

classical cross correlation function shape seen many times in earlier sections of this chapter. 

Figure 3.6-15b is the corresponding spectral density function. In this procedure, the average 

value of the assembled pseudoperiodic record is calculated and then subtracted from each term. At 

times, however, a DC component continues to show up in the Fourier transform, as can be seen 

in Figure 3.6-15b. In determination of characteristic frequency, this DC term is ignored, 

whereupon the spike at k = 34 was selected for an fweb value of 830.6 Hz. Converting this data 

revealed tension indications of 1.381 pli and 1.623 pli for in-vacuo and ribbon equations, 

respectively. 

To further examine this paper web material, a tension profile, Test I, was measured. Default 

filter parameters were used, fc = 1000 Hz, BW = 1500 Hz, with 400 kHz sample rate. 

Transducer head was moved from the web center to near one edge, where Figure 3.6-16a and 

3.6-16b represent the raw oscilloscope and digital filtered signals, respectively. This 

characteristic is dramatically different from that observed in Test H, which was motivation for 

increased filter bandwidth on this test Table 4 provides calculated variables for this profile test, 

where six tests were performed at 2-inch increments across the 12-inch web span. Figure 3.6-17 

is the graphical summary for this test, where indicated average tension of 1.969 pli is in rather 

good agreement with the average applied tension of 1.858 pli. Note the very high tension value at 

station 6. Figure 3.6-18 is an oscilloscope trace at this location, where &t may be estimated at 

approximately 0.8 msec, which lends support to the 0.835 msec value given in Table 4 and thus 

the high tension value. An additional·single point test using program WH1FC was performed at 

this location, which yielded &t = 0.725, fweb = 1269.5 Hz, TIN-VACUO= 3.367 pli, and TRIBBON 

= 3.976 pli. It was believed that laboratory web set up was fairly uniform with maximum tension 

in the web midspan and less tension toward the web edges. This illustrates how difficult it really 

is to judge web tension distribution and how helpful this system may be as a measuring tool. 

The last tests to be examined were performed on 10 mil type 411 Nomex material, which had 

an 8-inch span and area density of 1.08 (10-4) lbm/in.2 upon which 0.97 pli average tension was 

applied. Note the light weight nature of this material. This was the thickest material tested, yet 

was a pliable material, lacking stiffness of some of the other materials tested. 
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Figure 3.6-16. Test I Signals-4 Mil Coated Paper Material 
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TABLE4 

TIME OF FLIGHT, CHARACfERISTIC FREQUENCY, AND IN
VACUO TENSION FOR TEST H TENSION PROFll..E 

Station L1t (msec) fweb(Hz) TIN-VACUO (pli) 

1 1.275 927.7 1.088 

2 1.085 927.7 1.503 

3 1.160 927.7 1.315 

4 1.090 927.7 1.490 

5 0.920 927.7 2.091 

6 0.835 927.7 2.538 
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Figure 3.6-18. Raw Signal - Figure 3.6-17 Station 6 
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400 mvolt/div 
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Test J is a single point test using program WHlFC with filter parameters fc = 600Hz, BW = 

1000 Hz and sample rate 300kHz. Figures 3.6-19a and 3.6-19b are the raw oscilloscope signals 

and digital filtered signals for this test, respectively, where the transducer head was located at web 

midspan. Visible is a lazy response, which predicated use of a low filter center frequency. 

Estimated from the raw oscilloscope signals are .L\t and fweb values of 1.3 msec and 452 Hz, 

respectively. Figures 3.6-20a and 3.6-20b are cross correlation and spectral density functions for 

this waveform. From this figure, .L\t = 1.33 msec and fweb = 293 Hz, resulting in tension 

indications of 0.629 pli for in-vacuo and 1.048 pli for ribbon models. Lack of frequency domain 

resolution may cause problems in cases such as this where characteristic frequency of the signal is 

low. These tension results are quite interesting and will be referred to later after examination of a 

tension profile obtained on this 10 mil Nomex material. 

A tension profile was performed on the above Nomex material to assess response of the 

tension measurement system on this thick yet light, pliable material. Several attempts were made 

using various combinations of filter parameters, all yielding the same basic result, which was 

overly high values of ribbon equation tension. In-vacuo tension indications were more in line 

with the applied average tension, 0.97 pli. The profile to be described below illustrates this 

apparent air loading error for this particular material. 

Test K was performed using filter parameters fc =600Hz, BW = 1000Hz, and 400kHz 

sample rate. Transducer head was initially positioned 1 inch from the material edge, 

corresponding to Figure 3.6-21a. From the figure, voltage sensitivity is 1 volt per division, as 

has been typically used, yet peak to peak amplitude of generated flexural waveform signals is only 

approximately 1 volt. Filtered signal, Figure 3.6-21b, shows some similarity between upstream 

and downstream signals such that one would anticipate creditable system performance. 

Figure 3.6-22 is the graphical summary from this test, with Table 5 providing time of flight, 

characteristic frequency, and in-vacuo information. Average tension indications are 1.713 pli 

from Figure 3.6-22 and 1.114 pli from Table 5 in-vacuo tension values. Time of flight 

information alone would appear to provide for better tension measurements in this case than do 

time of flight plus characteristic frequency information. 
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(a) Raw Unfiltered Signal 
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Sensitivity 
400 mvolt/div 

Sensitivity 
400 mvolt/div 
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Figure 3.6-19. Test J Signals--tO Mil Type 411 Nomex Material 



1 

Rei Max Ual at E: 
Rei Max Ual ~t ~'(1(1 

/----"'· 
/ '\ 

I \ l . 
l \ I I 

/ \ 
I \ 

I \ 

Rei Hax Ual at :::t::E. 
Rei Hax Ual at 4-e.e: 
Rel Hax Ual at 4-89 
Rei Hin Ual at 1 
Rei Hin Ual at 19 
Rei at 335 
Rei at 4;;!1 
Rei at 478 
Rei at 500 

Hax Correlation at Delay Point 200 
Delta T for this Test is 0.00133333 

SaMple Period = 6.66667e-8~c. 
Press any Key to Continue 

(a) Cross Correlation Function 

K = 3 FREQ = 292 • 969 HZ 

Enter Web Freq Ualue 

............ :-:-.. ~ .. -:--: .. --:-... ~----------~ 
k=1 k=64 

SAMPLING RATE : 12500 HZ 
FOR 128 PT FFT : FREQUENCY I NCREHEHT : 97.6562 HZ 

(b) Spectral Density Function 

Figure 3.6-20. Test J Signal Processing Results 

104 



~~~ ll''i I 
jiif I ~ . ; ; . ·i· ; ; . ; 

-·-··]··-rr··rr-IT-rr··~T············---·r······--.. -T ................... :i:··········--·····r--·········--··1··--··············r··················-i················-
riiiii'tiil i l + 1 ..-..: • : ..... 

::: ...... : ..... t·HHI-'lf-~~vh···=:·'··;J~:v..~.~~~·-=···'····=···'····l-·'····=···'····=···t···=·-'········'····l·········=···'····'··· 
I l\1 li ii i l V\j l I 1 1 i l 

·-·····-···fd·fi ... : ... -.:-.. +··-··-.. ···+ ... - ... -·---+--·--..... ~---·· .. -· ... f---.. ~ ........ _., ... -t--·-· ... *1-··-· ... - ..... 
{pili 1 i i I 1 1 i i 
~~' i ~ ; + i } 1 i 

r::,':.'l.'l:::,-:.·:.t1t~J.•.r:~·,T,'Io~"«•W•r.-."ll.'l.'o'o'll.".',\'o'."J,,Mo•;::r.r:n.-.... u:::,-r~'t:tlo"t:tr.t,•:rN,:-'NIIowt.~•ow"'"o"l•r::rnn:n:.::tlll"'rNNo-:.'lo':.!.Vo':.',':ll1''o".'lUU.':n::::.tN.t..T'::un::: .. awn.-r. 

................... ln..l ... ,.J ... L! ............. L ................. L. ................. t ................... L. ................. L ............... ...l. .................... L ................ . 
HI ~j~ 1\ ~~~ n ~ ~ :t 1 1 1 : 

!o-f- ___ ....., ll llU t J I l't \rf, f
1 !! f'1 Ol· ' 0 • 0 • • ---~~ 

-··""·:-:--}···tt·~r·,rt·,~trT ..... t~r:·vt::f\.""':.-+:::1.\.: -~ ;-~-:'"~-'·";t""'_.,.,.,.., .... ! •. t-..,_i __ '"_-:··1-·'-!-+o!-
"J , f ,f; . ; ! .., V "'+ "'\..,./1 ......, ! I ; 
lli ll II! ! ! t ! l ! ! ...................... iir .. ·'ir···v·r····· ............... -;-.................. T ................. ~: ................... ! ................... -......................................... - ................... .. 
!ii ,. ' ; ! . 
; H ; ; 
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(a) Raw Unfiltered Signal 
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Sensitivity 
1.0 volt/div 
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Figure 3.6-21. Test K Signals-1 0 Mil Type 411 Nom ex Material 
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TABLES 

TIME OF FLIGHT, CHARACfERISTIC FREQUENCY, AND IN
VACUO TENSION FOR TEST K TENSION PROFILE 

Station 

1 
2 
3 
4 
5 
6 
7 

l\t(msec) 

0.965 
0.905 
1.020 
1.080 
1.095 
0.995 
0.995 

fweb (Hz) 

390.6 
756.8 
366.2 
390.6 
390.6 
756.8 
756.8 

Average in-vacuo tension is 1.114 pli. 

TIN-VACUO (pli) 

1.202 
1.366 
1.076 
0.960 
0.933 
1.130 
1.130 
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Ribbon Equation (3.15) was derived based on the assumption on an air loaded membrane 

through the membrane dispersion relation (3.12). The effect of this air loading was inversely 

proportional to frequency of flexural membrane wave travel, which has been referred to as 

characteristic frequency in this report. Thus, air loading correction of Equation (3.15) is more 

significant for low characteristic frequency values. For Tests J and K on 10 mil type 411 Nomex, 

very low values of characteristic frequency were evident. In such cases the effect of the ribbon 

equation air loading correction term on indicated tension will be much greater than for web 

material/web tension combinations where characteristic frequency is much higher. Results from 

Test J could easily be misinterpreted. Test J oscilloscope trace suggests that a soft spot in the 

material is being examined, which is supported by the rather large time of flight value produced. 

Tension indications, 0.629 pli for in-vacuo and 1.048 for ribbon models, might lead one to 

assume that the larger ribbon equation tension value is correct due to close proximity to the applied 

average 0.97 pli tension. More likely, however, is that the in-vacuo tension value is closer to the 

actual web tension for this particular case. Thus, for cases where characteristic frequency is quite 

low, one may desire to examine tension indications based on time of flight only. Again, trial and 

error experimentation is necessary to formulate such decisions due to no hard and fast rule being 

available for reference. 
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Presented above has been a series of laboratory tests in an effort to provide a fairly 

comprehensive examination of the application and perfonnance of the point source local tension 

measurement system which is the main topic of this report. A variety of materials over a range of 

nominal tension levels were tested and results presented. Single-point tension tests along with 

profile tension tests were perfonned to examine innerworkings of the measurement process as 

well as perfonnance over a web span where applied average tension was known. Versatility of 

variable signal conditioning facility was demonstrated as was perfonnance of different signal 

processing approaches. Some concluding remarks may be made at this point having examined of 

tests provided in this chapter. 

Perfonnance of the point source pneumatic pulse local tension measurement system appears 

to be quite good for web materials 3 mils thick or less for all practical nominal tension levels. As 

has been seen in this section, some thicker materials have been successfully tested, but problems 

may arise for stiffer, thicker materials experiencing high tension. Materials must be nonporous 

for proper flexural wave generation. In all cases, experimentation is necessary to fonnulate 

optimal system filtering parameters to provide most accurate tension indications. 

During these discussions, system perfonnance has been given in tenns of adjectives rather 

than as numerical _values. Tension measurement system accuracy may be examined qualitatively at 

present but not quantitatively. As is, the tension measurement system requires no calibration prior 

to use. Proper signal conditioning parameter adjustment allows for "optimal" performance. 

System tension indications may be compared to average applied tension to gauge perfonnance. 

An error (sensitivity/uncertainty) analysis was performed in section 4 to illustrate the error 

contribution of each variable to resultant indicated tension error. This error analysis allowed for 

qualitative assessment of system accuracy, but a quantitative accuracy evaluation may not be 

perfonned until an "exact" web tension profile is available for use with the system. An exact web 

tension profile would have tension known accurately at any point along the web span. If this 

were available, then experimentally achieved tension profiles could be directly compared to this 

tension standard and numerical values of error could be presented. Development of a method to 

calibrate a web tension profile would be quite helpful to further aid in development of the tension 

measurement system. In a couple of instances, an error statement has been presented with respect 
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to average tension. Applied average tension was known accurately in the laboratory due to the 

static test conditions. Thus, profile tests produced a measured average tension indication which 

could be compared to the applied tension amount. It is believed that presentation of quality 

average tension comparisons in this chapter have made clear what is meant by "very good," 

"accurate," "reasonable," etc., when referring to system perf9nnance. 

This concludes discussion of this research effort's experimental aspects. Web manufacturing 

and web handling industries will have greatest use for this material. Much infonnation has been 

provided such that decisions regarding applicability of this system in industrial settings may be 

fonnulated. From a research viewpoint, however, questions remain regarding pneumatic shock 

pulse coupling to web materials with subsequent generation of flexural wavefonns that may be 

sensed, processed, and converted to tension indications. An analytic study will be presented in an 

attempt to answer some of these questions. 



CHAPfERIV 

PULSE PROPAGATION THEORY 

During development of the experimental tension measurement system, references were made 

to the coupling between the pneumatic pulse and web, which is an unknown phenomenon. If this 

coupling were known, one could more easily explain why signals obtained through the system 

transducer head microphones were shaped as they were. One could also more accurately 

hypothesize as to what materials and tension levels could be used with the system and still obtain 

dependable, repeatable tension values. A hypothesis regarding the sensed signal shape was 

presented in section 3.2, but this hypothesis was based on qualitative information rather than on 

rigorous theory. The pneumatic pulse-to-web coupling phenomena is due to nonlinear 

compressible, nonisentropic fluid flow, nonlinear plate or membrane dynamics, and fluid loading 

effects. Considering all of these factors, an exact coupling mechanism analysis is likely not 

possible. An approximate analysis will be provided in an attempt to show the effects of the 

pneumatic pulse on a web interface. 

Experimental system pneumatic pulses propagation contained two components. To begin, 

overlap of the rotary pulser disk hole (Figure 3.1-1) with the pulser tube inlet allowed for a 

compressed air pulse to enter the pulser tube. One-dimensional pulse propagation through the 

pulser tube allowed for pressure front steepening. An impedance mismatch exists at the pulser 

tube exit, which was manifested by a snapping sound as the steepened weak shock wave 

encountered this mismatch at the pulser tube exit. At this point, a second propagation situation 

begins. Three-dimensional propagation would occur as the weak shock enters the ambient 

surrounding, or two-dimensional if considered axisymmetric. Subsequent shock wave contact, 

interaction with, and reflection from the web interface would generate flexural waves in the web 

material. An analytical examination of this propagation will serve as the basis for an approximate 

web deflection analysis to follow. 

110 
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Variables required to describe a fluid particle state in a compressible flow situation are 

density p , pressure p, temperature T, specific volume 1:, internal energy e, specific enthalpy h, 

and specific entropy S [67] where p't = 1. Two of these variables are independent with 

thennodynamic relations coupling the remaining variables. Entropy is related to internal energy, 

temperature, pressure, and density through: 

(4.1) 

Ideal gas assumption allows for constant specific heats Cv and Cp such that the following 

relations may be used: 

(a) e = Cv T 

(d) R = Cp- Cv 

(b) h = Cp T (c) p = p R T 

(e) y = 1 + .R. = Cp 
Cv Cv 

(4.2) 

Substitution of these relations into (4.1) leads to relations involving internal energy, specific 

enthalpy, pressure, and density: 

(4.3) 

h=e+E.=_'Y_E. 
P y-IP 

(4.4) 

e=-l_P._ 
'Y- 1 p (4.5) 

Differential analysis is used to derive the differential equations of motion for a fluid particle 

in terms of selected independent variables. The application to be considered in this report will be 

assumed two-dimensional for a differential area lying in the x-y plane. Velocity components for 

the x andy directions are u and v, respectively. The partial differential equations of motion are 

available from many sources such as References [68], [69], and [70], and thus will simply be 

presented below. Eulerian coordinates have been selected, which is akin to a stationery observer 

viewing a set of field points. Of interest in this analysis is the behavior and propagation of fluid 

particles with respect to stationery grid points. 

Conservation of Mass: 

£e..+ _E_(p u) + _E_(p v)= 0 at dx ay (4.6) 
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Conservation of X Momentum: 

i_(p u) + ~(p u2+ p) + ~(p u v}= 0 
at ax ay (4.7) 

Conservation of Y Momentum: 

i_(p v) + ~(p u v) + ~{p v2+ p)= 0 
at ax ay (4.8) 

Conservation of Energy: 

i_(p Es) +~({pEs+ p) u) +~{(pEs+ p) v)= 0 
at ax ay (4.9) 

The quantity Es is the total, stagnation energy given by: 

Es=e+1.(u2+ v2) 
2 

(4.10) 

Originally, seven variables were presented with the qualifier that only two of the variables 

were independent. Two additional variables, the u and v velocities, have been introduced. Using 

p andEs as the remaining independent variables, then Equations (4.1), (4.2a), (4.2b), (4.2c), 

and (4.4) relateS, h, p, and T to the p andEs variables. An equation of state will consolidate 

these relations through use of Equations (4.2a), (4.2c), and (4.2e) as follows: 

p = p R T = p e ( Cp ~vCv) = p e ('y - 1) (4.11) 

The energy variable of interest is the total, stagnation energy given by Equation (4.10). 

Rearranging Equation (4.10) for substitution into Equation (4.11) results in the equation of state 

for this analysis: 

p = p [ Es - t { u2 + v2)] { "( - 1) (4.12) 

The equation set (4.6) through (4.9), when placed in vector fonn, is known as the "short fonn" 

[71] of the inviscid, compressible flow equations: 

i_ p u + ~ p u2+ p + ~ p u v = 0 
{ 

p \ { pu } { pv } {0\ 
at pv ax puv ay pv2+p 0 

pEJ (pEs+p)u {PEs+p)v of 
(4.13) 
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This equation set will be used in pneumatic shock pulse modeling to be developed in this chapter. 

Pneumatic pressure pulse propagation along the pulser tube may be described as a one

dimensional adaptation of the (4.13) equation set Nonlinear effects are utilized in this process to 

allow for pressure pulse steepening during propagation along the pulser tube length. If an ideal 

gas is assumed, pressure front steepening occurs due to the change of phase speed of the gas with 

respect to the pressure front [72]. As the propagation occurs, air particles near the pulser tube 

boundary travel faster than particles near the pulser tube centerline. Blackstock [73, 74] has 

provided methods of simulating this steepening phenomena for tube-piston arrangements through 

power series analyses. Figure 4.1 from Reference [74] illustrates the result for nonlinear, small 

signal propagation processes. If sufficient pulser tube length is used, adequate steepening may 

occur to yield the weak shock wave "snap" that is heard as the shock front exits the pulser tube 

end. Noted earlier, project associate Ahn [55] experimented with different pulser tube size and 

lengths of in the development of this portion of the project. 

Pneumatic pulse propagation may be examined through study of characteristics of the 

applicable partial differential equation system. One-dimensional pulse propagation is applicable to 

the pressure pulse travel and steepening along the pneumatic pulser tube, where independent 

space variable x and time t are applicable. A one-dimensional analysis is also applicable at the 

point where the weak shock front first exits the pulser tube end before two-dimensional analysis 

becomes necessary. A two-dimensional analysis of system characteristics does not provide a 

great deal of unique infonnation above that of a one-dimensional analysis. Of interest is to 

become familiar with the propagation process with regard to the fluid properties density, velocity, 

and stagnation energy. 

A one-dimensional analysis of the partial differential equation set (4.13) may be accom

plished through the following equation set: 

a.) 

b.) ~+a(pu2+p) o 
at ax 

c.) a(p E~ + a((p Es+ p) u) = O 
ax ax 

(4.14) 

I 
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FIG.IO WAVE OF FINITE AMPLITUDE AT THE INSTANT OF SHOO< FORMATD.I (JOROM (64') ). 

Figure 4.1. Simulation of Pressure Front Steepening Through Power Series Analysis (75] 
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System characteristics study provides the speed of fluid particle propagation through solution of 

system eigenvalues. System eigenvectors reveal relations between the density, velocity, and 

energy for a given eigenvalue. This is akin to principal coordinates of a linear equation system. 

Discontinuities of a solution to the above equation system may only occur along characteristics 

[75] which is applicable to the weak shock wave assumption. 

For independent variables x and t, equation set (4.14) may be placed in the form [76]: 

.!(u) +[A] l_ {u} + [B] = (o) at ax (4.15) 

A characteristic curve for such a system may be described by a function cp(x,t) =constant The 

system characteristic equation may be obtained through determinant formulation below: 

(4.16) 

For the nonisentropic, compressible flow equations in conservation form, roots of the above 

characteristic equation will be real quantities denoting a hyperbolic system. Again, these roots are 

the system eigenvalues which represent the speed of propagation of the wavefront in question. 

Right eigenvectors corresponding to the system eigenvalues may be formulated through: 

(4.17) 

where { lii.l} represents the eigenvector notation for the ith eigenvector. Such an analysis may be 

extended to examine the partial differential equation system Riemann invariants. Riemann 

invariants are functions of the fluid property variables density p, velocity u, and stagnation 

energy Es that are constant along characteristic lines. Thus for the above one-dimensional system 

there may exist nine such functions due to the possibility of having three eigenvectors with three 

components in each vector. To gauge the relationship between the above noted fluid properties 

and the system eigenvectors, one may apply the following equation [76]: 

(4.18) 

where i = 1, 2, 3 for the three eigenvectors. 

To place equation set (4.14) into the form of Equation (4.15), begin with the continuity 

equation expanded from Equation (4.14a): 
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(4.19) 

Expansion and rearrangement of equations (4.14 b) and (4.14 c) leads to the following results: 

u (~ + u ~ + p au)+ p au + p u au +£e.= 0 
at ax ax at ax ax 

(4.20) 

(4.21) 

As can be seen, the continuity Equation (4.19) is enclosed in brackets in Equations (4.20) and 

(4.21) and is equal to zero. The desired equation set is then easily obtained as follows: 

(4.22) 

Equation (4.12) is the equation of state for this analysis, which gives pressure as a function of 

density p, velocity u, and stagnation energy E8• Partial derivative of pressure with respect to xis 

then given by the following equations: 

p(p,u,Es) = p ("(- 1) [ Es- ~ u2] 

()p =()p ~+()p au +~()E. 
ax ()p ax au ax ()E. ax 

()p = c2~- p (y-1) u au+ p (y-1) ()E. 
ax ax ax ax 

(4.23) 

where speed of sound in the fluid c equals Yop/op. Substitution of Equation (4.23) into 

Equations (4.22b) and (4.22c) with rearrangement leads to the system formulation in the form of 

Equation (4.15): 

u p 0 

a { P} ~ u (2-y) (y-1) an tl - u + - u = 0 (4.24) 
ot Es p ax E. 0 

~ c2 - u2 (y-1) "(U p 
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Application of Equation (4.16) to the above [A] matrix and resultant characteristic equation 

factoring yields the following eigenvalues: 

(4.25) 

Substitution of these eigenvalues into Equation (4.17) and reduction of the resulting equations 

reveals the corresponding system eigenvectors: 

{
-P (y-1)} {-aptaEs\ 

1(1) = o = o I ; 
c2 Op/op 

(4.26) 

To assess the generalized Riemann invariants corresponding to the above eigenvectors, 

Equation (4.18) may be applied. Eigenvector 1C1> from Equation (4.26) provides the following 

result: 

-~ = .W.. = dEs = constant 
aptaE, o aptap 

(4.27) 

The relation du = 0 yields the result u = constant For pressure p = p (p, u, Es). the other two 

relations provide aptaEs = constant and aptap = constant with u = constant already established. 

Thus, Riemann invariants for this eigenvalue-eigenvector combination are constant velocity and 

pressure. 

Application of Equation (4.18) to eigenvector J(2) of Equation (4.26) yields the following 

result: 

~ = _m_ = dEs = constant 
P {f"c 0 

(4.28) 

The relation dEs = 0 provides the result Es = constant The remaining relations may be integrated 

to fonn the following relation: 

u - {1 J ~ dp = constant (4.29) 

Recall that speed of sound c2 = op/op = (y-1) [E,- {1/2) u~ and that Es = constant has been 

established. With these substitutions, Equation (4.29) becomes: 

u -J ,j 'Y (y-1) [ E~- {1/2) 02] dp = constant (4.30) 
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Independent variables were assumed to be p, u, and Es with y a constant such that the integration 

of Equation (4.30) may be performed with respect toP to achieve the final result below: 

u-2Vpy(y-l)[Es-(l/2)u~ =constant (4.31) 

Therefore, the Riemann invariants for this eigenvalue-eigenvector combination require constant Es 

and u- 2 V p y (y-1) [E.- (1/2) u~. Visualization of this result is difficult but it does illustrate the 

innerworkings of the thermodynamic properties of a gas during a propagation process. 

Application of Equation (4.18) to eigenvector J(3) of Equation (4.26) provides the same 

information as above with an associated sign change. 

The above analysis is an examination of the theory behind shock formation and propagation 

Although one-dimensional, the above study of unsteady state, nonisentropic compressible flow 

equation system characteristics is applicable to the experimental system being analyzed. A two

dimensional study of characteristics can be performed using procedure provided by Jeffrey and 

Taniuti [76]. Shock pulse interaction with a web would change the system characteristics from 

that illustrated in the above one- or two-dimensional analysis. Therefore, a general purpose 

method of integrating the inviscid, nonisentropic, unsteady state, compressible flow equations is 

necessary for this application Such an integration process would allow for viewing of the pulse 

behavior through pressure and velocity evaluation during a complete pulse cycle. A short 

background discussion of various integration processes will be presented prior to development of 

the finite difference relations to be used in this study. 

The process of inviscid compressional fluid flow equation integration has evolved through 

the years. Major integration process concerns were with regard to treatment of shock 

discontinuities and consistent boundary condition formulation in continuous flow problem 

conversion to discrete problems. Von Neumann and Richtmyer [77] were pioneers in 

development of the numerical integration methodology. Desired was for a shock interval to be of 

the same order of width as the discrete grid spacing to avoid aliasing. Additionally desired was to 

"smear out" the shock discontinuity such that numerical stability might be maintained. This 

process was to preserve steep gradients in the shock interval while substituting continuous 
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functions for the discontinuous points. This led to the use of explicit artificial viscosity tenns in 

the governing partial differential equation systems. 

Dissipation in compressible, unsteady state flow problems results from two major areas, 

viscosity effects and heat conduction. Introduction of an explicit artificial viscosity tenn into the 

nonviscous, compressible flow Euler equations then allowed for some dissipation, and hence the 

numerical stability, to occur. Von Neumann and Richtmyer placed the following requirements on 

the fonn of the artificial viscosity tenn [77]: 

1. Euler Equations (4.6) through (4.9) must possess solutions without discontinuities. 

2. Thickness of the shock layer must be of the order of the grid spacing independent of the 

shock strength and material in which the shock was propagating. 

3. Effect of the artificial viscosity tenn must be negligible outside of the shock thickness 

interval. 

4. Hugonoit shock relations must hold when dimensions characterizing the flow are large in 

comparison to the shock thickness interval. 

Selected as the artificial viscosity model by Von Neumann and Richtmyer was a tenn: 

(4.32) 

in one dimension where u is the x directional velocity, 't is the gas specific volume, and b is an 

adjustable constant. For the classic one-dimensional shock tube case, velocity u does not change 

appreciably with the space variable x outside of the shock region. Hence this artificial viscosity 

fonn had the greatest effect in the shock region, where the velocity gradient could become 

relatively large. Various fonns of artificial viscosity tenns have been proposed and used in 

different integration schemes. Pulliam [78] and Roache [71] have provided comprehensive 

discussions on the merits and effects of the different artificial viscosity tenns. 

In the shock region, gas velocity, density, pressure, temperature, and entropy are rapidly 

changing. The Hugonoit equation, given by Equation (4.33) below, was the result of application 

of conservation of mass, momentum, and energy to the shock interval [72]: 

(to- t 1) (Pt- po) e1- eo ; 0,1: Before,After Shock 
2 

(4.33) 
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Maintaining consistent notation, 'tis the fluid specific volume and e is the fluid internal energy. 

Thus, some dissipation was inherent to shock processes by conversion to heat. From Equation 

(4.33), the level of dissipation was not specified, thus the insertion of the additional artificial 

viscosity tenn in the system equations did not adversely affect the Hugonoit relation. 

Several methods have been developed for solution of the compressible, inviscid flow 

equations [71]. The Von Neumann-Richtmyer method used the artificial viscosity tenn (4.32) in 

a scheme such that the one-dimensional Equation (4.14) became: 

a ~ P ) a - pu +-
at pE. ax 

p u \ 
P + p u2.. (b .!\x f au ~~ = / gl 

't ax ~ \o 
(pEs+ p) u _(b .!\xf u au~~~ 

't ax~ 

(4.34) 

Notable in this method was that the dissipation was now proportional to 

rather than to 

a [au] ax ax 

which allowed for the diffusion to occur over a shorter inteiVal. The b constant required experi-

mentation to select an optimal value. A tradeoff between shock inteiVal thickness and numerical 

oscillations is dependent on this b value. 

An integration method developed by Lax and Wendroff [79] used a Jacobian fonnulation of 

the system conseJVation equations. For the one-dimensional case, Equation (4.14) is cast in the 

fonn: 

~I /u] +[AJ~I /u)=lg) 
at \p E. ax \pEs \o (4.35) 

Elements of the [A] Jacobian matrix are found from the general equation: 

aG· 
Ajk=-J ; j,k= 1, 2, 3 

aFk 
(4.36) 
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1be state Equation (4.12) was used with Equation (4.36) to fonn the Jacobian matrix for the one-

dimensional case: 

0 1 0 

[A]= ~3; Y)p 02 (3 - y) u h- 1) (4.37) 

-"( u E. - {y - 1) u3 y E. + J. {y - 1) u2 
2 

"(U 

Finite difference relation for this conservation equation system was then: 

F::!" 1 =~-At OGm + 1 Ae _.! [Amt OGt] 
ox 2 OX ox] 

[+ Arra. oG2 + Am3 oG3] + rJ Ae) . m = 1 2 3 ox ax ] U\. ' ' ' 
(4.38) 

where the following differencing was used for the a{i)x [A aG/ax] tenns: 

_![A aG] = (Ai+l + Ai)(Gi+t- Gi)- (Ai + Ai-t)(Gi- Gi-t) + o(Ax2) 
ax ax 2 Ax2 

(4.39) 

As given, the Lax-Wendroff method does not require an explicit artificial viscosity tenn. 

Relatively large numerical oscillations are a consequence of this, such that an artificial viscosity 

tenn of the fonn (1/2) u2 dt may be used to reduce oscillations. 

A more modem and sophisticated method of evaluating the unsteady state compressible 

Navier Stokes equations was developed by MacConnack [80]. Mehta and Sastri [81] used this 

method to evaluate the reflection of a shock pulse from a plane interface. Implicit methods were 

combined with explicit fonnulations to help increase accuracy and efficiency of the numerical 

integrations. Predictor-Corrector equations were fonnulated using the explicit-implicit means 

such that these equations applied to Equation (4.14) would be: 

Predictor EQuations: 

Explicit 

AF"· = -At (G?+t,j - GfJ + ffi"J+l- H?.i). 
l,J 2 2 

Ax Ay 
(4.40) 

Implicit 

(4.41) 
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Update 

(4.42) 

Corrector Equations: 

Explicit 

(4.43) 

Implicit 

(4.44) 

Update 

(4.45) 

where [A] and [B] are Jacobian matrices 

and the overbar indicates a predicted value. MacCormack provided the stability criteria for the 

method and outlined a general evaluation procedure to follow. 

Several other methods are available for use in computation of the transient compressible flow 

equations. Moretti [82] has developed a scheme based on the MacCormack method which was 

specifically designed for shock wave handling. Godunov developed an integration method which 

used parts from the Lax and Von Neumann-Richtmyer methods [83]. Rusanov developed a 

general purpose explicit integration method where two parameters were selectable for stability. 

This method was designed to work well for nonsymmetric grids .l\x :f: L\y [71]. Lapidus [84] 

developed a method such that radial flows could be handled in Cartesian coordinates based on the 

Lax-Wendroff method. Gary [85] provided a comparison of some of these different integration 

schemes in a 1964 publication. Other methods are available which have been designed to meet 

certain problem situations. 

These different integration methods have tradeoffs with regard to accuracy or ease of 

implementation. Computational fluid dynamics is such a broad and intricate topic area that this 
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study cannot do proper justice to the subject. Desired here was to briefly outline the subject to 

those unfamiliar with these methods so that use of the associated bibliography could be of use in 

some simple computational fluid dynamics problems. 

Pneumatic pulser modeling was not considered to be a severe test with respect to the 

assumed shock and boundary conditions. A weak shock wave would be assumed which would 

propagate and then reflect from an assumed rigid boundary. It was believed that a method 

involving explicit artificial viscosity would be adequate to evaluate this problem scenario. After 

examination of the work of Tyler [86], Walker [87], and Leutloff and Roesner [88], the Rusanov 

method was selected for pneumatic pulse analysis. Rusanov's method has been regarded as 

general purpose in nature and adaptable to a large number of problems with good results being 

attainable. 

The Rusanov method, which utilizes an explicit artificial viscosity term, was applied to the 

two-dimensional pneumatic shock flow situation as it exits the pulser tube. The artificial viscosity 

term was of the form [71 ]: 

~[AY ~{F)] ay ay (4.46) 

for the x and y coordinates, respectively. With these explicit dissipation terms, the two

dimensional system of equations becomes: 

.!{F) +~{G)+ ~{H}=~[Ax ~{F)]+ ~[AY ~{F}] at ax ay ax ax ay ay (4.47) 

where {F} , {G), and {H} are equal to the vectors given in the short form system Equation 

(4.13). Rearranging, the system may be expressed as: 

~{F}+~[(G}-Ax ~(F}]+~[(u}-AY ~(F}]=(O} at ax ax ay ay 
(4.48) 

Thus for dimensional quantities p, u, v, E8, and p, the units of the vectors {G), {H), 

and 

must be consistent. Use will be made of this later in the analysis. 
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Forward time differencing and center space differencing was used in the Rusanov scheme. 

Utilizing these forms for the partial derivatives of Equation (4.48) yields the following finite 

difference approximations: 

(..£._ {G}) :: - 1-[{G}f+1J.- {G}f-1J·J + o(L1x2) 
ax ij 2 L\x 

(..£..[Ax 1._ {F}])~.:: - 1-[{Af+1j + Afjj ({F}i+1j- {F}i,j)D 
ax ax l,J 2 L1x2 

~ (Afj + At1jr ({F}ij- {F}i-1j)D] + o(L1x2) 

(1..(AY ~ {F}]}n = - 1-[{Af · 1 +AI T ({F}i j+1- {F}i j)D 
ay ay i,j 2 L1y2 J+ •1 . • • 

~ (Alj + Afj-1r ({F}ij- {F}ij-1)11] + o(L1y2) 

Putting these components together yields the following if L\x = l\y =hand L\t = 't: 

(F }f,j1;,. (F }fj- ..L [(G h+1j- ( G h-1j + (H}ij+1 - (H}ij-1]0 

2h 

+ _L.[Af+1j (F}i+1j + At1j (F}i-1j + Alj+1 (F}ij+1 + Afj-1 (F}ij-1 
2h2 

+ Afj ({F}i+1j + {F}i-1j) + Al,j ({F}ij+1 + (F}ij-1) 

-{F}ij (Af+1j + At1j + Afj+1 + Afj-1 + 2 (Afj + Alj))r 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

Definition of the Courant number, used to assess stability of the numerical procedure, is a 

dimensionless quantity that relates advection speed to computational information speed. The 

Courant number should be held to less than unity to insure numerical stability. These 

requirements are summarized in Equation (4.55) below. Advection speed indicates how quickly a 

particle may travel through the maximum grid inteiVal, as is illustrated in Figure 4.2. 

c20 = Advection Speed _ <lVI +c) L\t S 1 
Computational Infonnation Speed - -J L1x2 + L1y2 

(4.55) 
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The Rusanov method uses a slightly different set of parameters and definitions to insure 

stability with respect to other explicit artificial viscosity methods. The above Courant number 

definition is utilized in the definition of dimensionless dissipation coefficients ax and flY such 

that: 

ax= ro ( lVI +c) .1\t ro C2D 
(.1\x/.1\y) .J L\x2 + L\y2 (.1\x/.1\y) 

aY = ro (.1\x} ( lVI +c) .1\t - ro (.1\x) C2D 
.1\y .J L\x2 + L\y2 .1\y 

where ro is an adjustable constant. 

(iJ+l) 

Ay 

Figure 4.2. Maximum Grid Interval 

for Advection Speed 

(4.56) 

(4.57) 

Equation (4.54) may be placed in its final form by relating the dimensionless diffusion 

coefficients ax and aY to the dimensional diffusion coefficients AX and AY, respectively. 

As was indicated earlier, units between the system vectors {G}, {H), 

and 



126 

must be consistent. Examining the first components of these vectors {G} and {H} gives Gt = p 

u and H1 = p v, respectively, that have units lb-sec/in.3. Thus, the units of 

and 

Ay _£_(F1) = Ay~ 
()y ()y 

must give lb-sec{m. 3. Units of aptax or ap/()y are lb-sec2/in. 5 such that: 

AX(*) ~(lb-sec2) = Ax~{Ursec} such that (*) = {~) 
ax ins ax in3 

(4.58) 

Examining other components of the { G} , { H} , 

and 

{Ay ()~ {F}} 

vectors yield the same result, units ofin.2/sec for AX and AY. Making use of this along with the 

dimensionless diffusion parameter led to the following definitions: 

(4.59) 

Using these definitions with Equation (4.54) leads to the simplified system relation with {F} , 

{ G }, and (H} in nondimensional form: 

{F}~j1 = {F}~j- ;rh [{G}i+l,j- (G}i-lj + (H}i,j+l- (H}ij-l]n 

+ t[ af+l,j {F}i+lj + atl,j (F}i-lj + af.j+l {F}i,j+l + af.j-l {F}ij-1 

+ af.j ({F}i+l,j + (F}i-Ij) + aLj ({F}ij+l + {F}ij-1) 

- {F}i,j (af+l,j + atl,j + aLj+l + af.j-1 + 2 (af.j + aL))T (4.60) 
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Courant number definition, given in Equation (4.55), is inversely proportional to the 

maximum speed of particle propagation through the finite difference mesh. This maximum speed 

is denoted (lVI + c)MAX and is found by searching each grid location for the maximum resultant 

particle velocity plus the local speed of sound. This maximum velocity is set proportional to the 

geometrical configuration of the mesh as shown in Figure 4.2 and given in the equation below: 

Ovl + c}MAX =(Vu2 + v2 + ckax for all ij = -J ~x2 + ~Y2 
~t 

With this definition, the two-dimensional Courant number becomes: 

(c201 j = (I vi+ c1,j ~t = (I vi+ c1,j 

' V ~x2 + ~l Ovl + c}MAX 

(4.61) 

(4.62) 

Since this quantity equals unity at at least one location on the problem grid, a multiplier CJo was 

incorporated to insure stability: 

a (lvl + c'· · (c2o1 · = 0 Jl,J 
J Ovl +c}MAX 

(4.63) 

Due to the unique Rusanov ax and aY definitions, an additional stability inequality was 

needed for the parameter ro: 

C <ro< 1 2D - - C2D; ~=dy=h (4.64) 

Using the above definition for C2n and recognizing that I(IVI + C)ijl will equali(IVI + c)MAXI at 

points in the problem grid, the final stability criteria may be written as: 

(4.65) 

so that appropriate selection of ro and crc will insure numerical stability. Roache [71] indicated 

that optimal ro and crc values were problem-dependent and that experimentation would be required 

in their determination. 

The final system equation incorporates the quantities ro and crc described above: 
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(F )P,j1 = (F )P,j [ 1.0- 2 Ovl: ~)MAX(Ovl + c1+1j + Ovl + c1-1j + Ovl + c1,j+1} 

+ Ovl + c1;-1 + 4 Ovl + c1.-Jn + 00 cro [Ovl + c1+1,' {F h+1,'+ Ovl + c1-1 · 
J J 2 Ovl + c}MAX J J J (4.66) 

{Fh-1,j +Ovl + CRj+1 {F}i,j+1 + Ovl + CRoj-1 {F}ij-1+ Ovl + c1,j ({Fh+1,j + {F}i-Ij) 

(+ {F}i,j+1 + {F)ij-l~n+ 2\({G}i+1,j- {Gh-1,j + {H)i,j+1- {H}ij-I]n 

Thus, four equations total are to be evaluated for fluid quantities density p, u, and v velocity, and 

stagnation energy, E8, each following the above form. Evaluation is sequential in nature at each 

grid location for each time frame. 

Boundary conditions must be realistically applied for proper performance of the various 

compressible flow integration schemes. Inviscid assumption allows for the use of slip wall 

boundaries, where velocity perpendicular to a wall is zero. Reflection principle is then used to 

reflect the density, energy, and tangential velocity quantities. Walker [87] provided the general 

reflection principle as applied to an arbitrary boundary. These relations are provided in Equation 

(4.67): 

Un = 0 ; aut = 0 ; ap = 0 ; £e.= 0 ; n = normal 
an an an 

a:Ut = 0 ; a2P = 0 ; ~ = 0 ; t = tangential 
an2 an2 an2 

(4.67) 

Tyler [86] provided the treatment of the diffusion terms of Equation ( 4.60) for the various 

boundary configurations. Figure 4.3a is an illustration of a horizontal boundary by which flow 

may occur below this boundary andy directional flow at the boundary points is zero. For this 

case, the amended version of the general system Equation (4.60) becomes: 

{F )ij1 = {F }iJ - ....L [( G }i+lJ - { G }i.tJ - 2 {H }i.j-1]" 
2h 

+ 2th [Af+l.j {F}i+lJ + Af-t,j {F}i.tJ + + AfJ {{F}i+l.j + {F}i.tJ) 

- {F }iJ (Af+tJ + Af-tJ + 2 AfJ}]n 

(4.68) 

Essentially, the diffusion terms corresponding to differencing with respect toy were zeroed. 

Figure 4.3b illustrates the similar case of a horizontal boundary with flow occurring above the 

indicated boundary. For this situation, y directional flow at the boundary is zeroed, resulting in: 
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Figure 4.3. Finite Difference Grid Horizontal Boundary Condition 
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(4.69) 

Figure 4.4a illustrates the case of flow to the left of a vertical wall, such that x velocity is zero at 

the boundary. For this case Equation (4.60) becomes: 

(4.70) 

Finally, Figure 4.4b shows the vertical boundary with flow to the right. Again, x directional 

velocity is considered zero at the boundary. For this case Equation (4.60) becomes: 

(4.71) 

In the last two cases, the diffusion tenns corresponding to differencing with respect to x were 

zeroed. 

Roach [71] indicated a modification to the reflection principle when a boundary was not a 

line of symmetry. This modification was due to the reflection principle adding a redundant 

boundary condition of zero slope in the case of p, e, and the tangential velocity component of 

Equations (4.7) and (4.8). This modification entailed the zeroing of the atav (p,u,v) tenn of the X 

momentum Equation (4.7), and the "d!"dx (p,u,v) tenn of they momentum Equation (4.8). 

Presented above has been the basic theory to be used in modeling of the experimental tension 

measurement system pneumatic pulser. This discussion was intended to provide a look at the 

equations, variables, and analysis techniques that are applicable to this problem. Application of 

these techniques will be presented in Chapter V. The finite difference problem grid will be 

presented along with the applicable boundary conditions and initial field conditions for the 

inviscid fluid density, velocity, and energy quantities. 
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(b) Flow Right of Boundary 

Figure 4.4. Finite Difference Grid Vertical Boundary Condition 



CHAPTERV 

MEMBRANE AND PLA1E MODEL DEVELOPMENT 

Wave propagation analysis in web materials viewed with respect to an input pressure pulse is 

quite difficult for a number of reasons. First, assumptions made concerning web structural 

behavior affects the form of the associated model equations. Next, assumptions made with 

respect to web boundary conditions affects model complexity and integrity. Finally, assumptions 

made concerning propagating wave magnitudes affect the realism and applicability of model 

equations. These concerns will be addressed in a short presentation of the various models 

examined in this study that may be applied to the web situation 

The general scenario for analytic wave generation and propagation examination in web 

materials is shown in Figure 5.1. Simple supports may be used to approximate the web rollers 

and tension is assumed constant across the web width and active in the x direction only. The 

impulsive web input will be assumed to act at the axis origin, which is the geometrical web center. 

Data obtained from pneumatic pulse analysis will serve as input stimulus to web models to be 

developed. Some compromises will be made with respect to web model selection and web 

configuration of Figure 5.1 for ease of calculation. One such compromise is associated with the 

free boundaries located at coordinates -a .s. x .s. a, y = ±b. One tradeoff deals with linear versus 

nonlinear model usage. Desired is to sufficiently justify any assumptions such that the subsequent 

analysis will remain respectable. 

Linear membrane and linear plate models will be utilized in this analysis. Clearly, with 

respect to the experimental system, large web deflections are present which would indicate a need 

to use large deflection nonlinear membrane and plate models. The reason for this numerical 

analysis, however, is to gain understanding of the pulse-to-web coupling mechanism rather than 

to exactly duplicate the web response. The added nonlinear model evaluation complexity was 

believed to outweigh possible benefits from their use in this study. Thus, basic theory behind 
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static and dynamic linear membrane and plate models will be presented whereupon results of 

model use will be presented in Chapter VI. 

y 

b 

X 
0 

T 

b-

Figure 5.1. General Configuration for Web Analysis 

The linear membrane partial differential equation was discussed briefly in section 3.4 with 

regard to wave propagation speed. Desired in this section is to closely examine the membrane 

loading to derive the static membrane response equation, then extend this analysis to the dynamic 

case. Figures 5.2 and 5.3 may be used to aid derivation of the static linear membrane model [89]. 

Figure 5.2a illustrates a differential membrane element lying in the x-y plane with constant tension 

T and a transverse loading Pz (x,y) applied. Figure 5.2b shows a typical transverse membrane 

displacement w (x,y) as a result of this transverse loading. A differential membrane element is 

illustrated in Figure 5.3 where Figure 5.3a shows the x directional membrane forces and Figure 

5.3b shows they directional forces. Membrane curvature is given by second partial derivatives of 

w with respect to the x and y space variables. From Figure 5.3a, summation of forces in the z 

direction provides: 
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Figure 5.2. Membrane Under Tension and Transverse Loads 

I dx 
~------~~~~--~--------~x 

z 

z 

T~~ I 
I 

aw I . ax aw 
-+ ax 

(a) X-Directional Membrane Forces 

dy 

I 
I 

T~ ~+ T aw I 
I 

ay I aw 
-+ ay 

(b) Y -Directional Membrane Forces 
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Figure 5.3. X- andY -Directional Membrane Forces 
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(5.1) 

From Figure 5.3b, summation of forces in the z direction provides: 

~ aw (aw a2w) ""- Fz = -T-dx + T - + - dx + Pz dx dy = 0 
ay ay al 

(5.2) 

Adding these equations results in the overall static linear membrane equation for transverse 

loading: 

o2w(x,y) + o2w(x,y) = -Pz(x,y) (5.3) 
ox2 ()y2 T 

Solutions for complex loading functions may be attained through representation of the 

loading function by Fourier series such that superposition of the membrane response to various 

frequency components may be performed. Such a Fourier series representation is of the form 

[90]: 

.... 
J)L(x,y) = L L Pmn sin (m ~ x) sin {n 1t Y) 

m=ln=l b 
(5.4) 

If a sinusoidal response is assumed, then the membrane response to such a pressure input may be 

described by: 

.... 
w(x,y) = L L Wrm sin (m: x} sin (n 1t Y} 

m=ln=l b 
(5.5) 

where the amplitude coefficient W mn is given by: 

(5.6) 

Iterative techniques may be utilized in this static analysis to compute the membrane deflection 

w(x,y) for a given pressure field Pz (x,y). 

To convert the static membrane relation to a dynamic relation, membrane inertia is 

considered. Figure 5.4 shows a differential membrane element with inertia forces opposing 

membrane motion. An analysis similar to that given above yields the z directional force summa-

tion for this situation: 
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Figure 5.4. Membrane Forces Including Inertial Force 
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(5.7) 

where m is the membrane mass per unit area. Canceling appropriate tenns leads to the dynamic 

linear membrane equation: 

()2w(x,y,t) + ()2w(x,y,t) = m ()2w(x,y,t) - Pz(x,y,t) 
()x2 oy2 T ()t2 T 

(5.8) 

Separation of variables along with assumed sinusoidal response and superposition techniques are 

used in fonnulation of exact solutions to this partial differential equation. 

Oassical development of plate mechanics is given notably by Timoshenko [35, 91]. Web 

materials possess some flexural rigidity so that a plate analysis is appropriate with respect to a web 

in tension. Consider a plate as shown in Figure 5.5, which is equivalent to one-fourth of the plate 
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area of Figure 5.1. A transverse load Pz (x,y) is applied to some area of the plate perpendicular to 

the x and y axes. Such a force creates bending moments Mx and My and twisting moments Mxy 

as well as shear forces Qx and Qy. Both the moment and shear forces are considered to be 

defined per unit length of the plate. Figure 5.6a and 5.6b shows the differential plate element with 

moment and shear forces applied, respectively. 

0 a 
X 

Figure 5 .5. Plate Experiencing a Transverse Loading 

Considering Figure 5.6, equilibrium conditions may be formulated as follows. Referring to 

Figure 5.6a, summation offorces in the z direction provides: 

(5.9) 

Referring to Figure 5.6a and 5.6b, summation of moments with respect to the x axis provides: 

L Mx = oMxy - oMy + Qy = 0 
ox oy 

(5.10) 

Similarly, summation of moments with respect to they axis provides: 

L My = oMx + oMyx + Qx = 0 
ox oy 

(5.11) 
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~--------~~-dx 

Qy + ac;; dy 

(a) Shearing Forces 

My 

Myx 

a ax 
Qx+axdx 

------------~L-------------~~x 
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ax 

My+ aMy dy 
ay 

· aMyx 
Myx+----dy 

ay 

(b) Bending Moments 

Figure 5.6. Shear and Bending Forces Acting on a 
Differential Plate Element [35] 
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If shearing forces are determined from Equations (5.10) and (5.11), then substitution of these 

quantities into Equation (5.9) yields: 

a\ix a~yx a2Mxy a2My --+-----+--=-Pz 
ax2 ax ay ax ay al 

Noting that Mxy = -Myx. this equation becomes: 

a\ix _ 2 a~xy + a2My = _ Pz 
ax2 ax ay al 

(5.12) 

(5.13) 

Moments are expressed in terms of deflection w using the plate flexural rigidity D, Poisson's 

Ratio v, and the plate cutvature relations: 

a2w Mxy = -Myx = D (1 - v) --
ax ay 

(5.14) 

(5.15) 

(5.16) 

Substitution of Equations (5.14), (5.15), and (5.16) into Equation (5.13) leads to the Kirchoff 

governing equation for small transverse plate static deflections: 

a4w(x,y) + 2 a4w(x,y) + a4w(x,y) = Pz(x,y) 

ax4 ax2 al ay4 D 
(5.17) 

For a general plate problem, integration of Equation (5.17), using plate boundary conditions, 

can yield plate deflections for the given loading Pz (x,y). In many cases, however, plate in-plane 

loads are also applied to stiffen the plate with respect to transverse loading. This situation, 

illustrated in Figure 5.7, must be analyzed with respect to tension applied to web materials. 

Differential analysis of the Figure 5.7 situation may be illustrated by Figure 5.8, where in

plane forces Nx. Ny. and Nxy are acting on the area element in addition to bending and shear 

forces which were illustrated in Figure 5.6. Equilibrium conditions for the in-plane forces are 

obtained through force summations with respect to x andy axes, respectively, as referenced to 

Figure 5.8a [35]: 



L Fx = aNx + aNyx = 0 
ax ay 

L Fy = aNxy + aNy = o 
ax ay 

Nx 

Ny 

I 1 1 
I 

1 'z 1 1 Pz (x,y) 1 
1 ! ! ! 
! ! ! 

Figure 5. 7. Plate Experiencing Transverse Loads 
and In-Plane Tensile Loads 
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(5.18) 

(5.19) 

X 

Reference to Figure 5 .8b, projection of the in-plane x directional force Nx onto the z axis relates 

the force to the deflection w. Again, second partial derivatives of w with respect to the x andy 

space variables represent the plate cmvature: 

(5.20) 



dy 

dx X 
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ax 
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ax 
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dx 
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Figure 5.8. Differential Plate Element Experiencing 
In-Plane Loads [91] 
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Similarly, using Figure 5.8c, y directional force Ny projection onto the z axis relates the force to 

the deflection w: 

""' ( aNy} (aw a1w } aw £.-JFz= Ny+- dx -+-dy -Ny-dx 
ay ay ay2 ay 

a1v. aNy aw = Ny-dxdy+--dxdy 
al ay ay 

(5.21) 

Shearing forces in the x direction act on displacements with respect to y and vice versa. 

Projection of the in-plane shearing forces Nxy and Nyx onto the z axis gives the relation to the 

deflection w: 

(5.22) 

""' ( aNxy } (aw a1w ) aw £.-JFz= Nxy+-. -dx dy -+--dy dx-N)X-dxdy 
ax ax ax ay ax 

a2w aN)X aw Nyx --dx dy + ----dx dy 
ax ay ay ax 

(5.23) 

The magnitude of Nxy equals Nyx· The resultant from these projections, obtained through 

summation of the results of Equations (5.20) through (5.23) with equilibrium conditions (5.18) 

and (5.19) imposed, result in fictitious lateral loads which are additive with the transverse load pz 

(x,y). Thus for a differential element area dA = dx·dy, the moment relation (5.13) becomes: 

(5.24) 

Again, substitution of curvature relations (5.14) through (5.16) results in the final linear plate 

equation to be used in this analysis: 

(5.25) 

Oassical solution of the small deflection plate Equations (5.17) and (5.25), known as the 

Kirchoff plate equations, may be achieved through use of plate boundary conditions and Fourier 

series representations of the input loading function pz (x,y). Complex loading functions may be 
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described by Fourier series as was shown in the membrane analysis. Equation (5.26) is the 

Fourier series representation of a complex pressure input function, which is equivalent to the 

membrane case of Equation (5.4). Equation (5.27) provides the corresponding plate deflection. 

This relation differs from the membrane equivalent, Equation (5.5), due to the effect of flexural 

rigidity on the plate stiffness: 

DO 00 

Pz(x,y) = L L Prm sin (m ~ x) sin {n 7t Y} mzlnzl b 
(5.26) 

DO DO 

w(x,y) = + L L Pnn 2sin (m ~ x) sin (n 7t Y} 

1t D mzlnzl[(~:)+(:~)] b 
(5.27) 

Szilard [90] has tabulated the load coefficient relations Pmn for several different complex loading 

functions. 

For the situation where in-plane loads Nx. Ny. and Nxy are applicable, using Equation 

(5.26) in Equation (5.25) yields: 

vAw -l{Nx a'w + Ny a'w + 2 Nxy a'w ) 
D ax2 al ax ()y 

DO DO 

=l L L Pnn sin (m ~X) sin (n 7t Y) Dmaln•l b 
(5.28) 

Using the assumption of simply supported edges, the equation solution may be expressed in the 

fonn: 

DO DO 

w(x,y) = L L Wnn sin (m: x) sin (n 7t Y} m•ln El b 
(5.29) 

where Wmn are unknown series coefficients. Differentiation of Equation (5.29) and substitution 

into Equation (5.28) would allow for solution of the Wmn coefficients. The in-plane shear 

component, Nxy. complicates the analysis in that cosine series terms become mixed with sine 

series terms, not allowing for complete cancellation of the series tenns. The web model described 

in Figure 5.1, however, allows for the elimination of the shear tenns so that the Wmn coefficients 

may be obtained quite easily. 

Due to web configuration symmetry, only half of the plate shown in Figure 5.1 need be 

analyzed. Selected for analysis will be the upper half of the plate corresponding to y > 0. Noted 
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earlier, simple supports are assumed along boundaries x = ±a, 0 s. y s. b to simulate the web 

rollers. Additionally, simple supports will be assumed along the free boundary y = b, -as. x s. a 

to simplify the analysis. A web under tension tends to channel pressure pulse response in the 

direction of applied tension. Thus, with x dimensional tension applied, web material along a free 

boundary a lateral distance b away from the pressure pulse is only slightly influenced by said 

pressure pulse, making an assumption of simple supports at this free boundary tolerable. Figure 

5.9 is then the approximate plate model to be used in this analysis. Simply supported boundary 

conditions are summarized below by Equation (5.30). 

X 

Figure 5.9. Simplified Plate Model for Web Simulation 

aZw w = 0 ; Mx =-= 0 along x = +a, -a 
ox2 

o2w w = 0 ; My=-= 0 along y = +b 
al 

(5.30) 

Figure 5.1 indicates web tension parallel to the X axis such that Nx * 0, Ny = Nxy = 0. 

With this assumption, Equation (5.28) becomes: 
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~w-Nx a~ =..L i i Prmsin(m:x)sin(nxy) 
D ax D m~tn .. t b 

(5.31) 

whereupon differentiation of Equation (5.29) and substitution yields the fonn ofWmn [90]: 

W _ Prm 
rm- D {[(mx/af + (nx!bf] + r:; (mx/af} 

(5.32) 

Thus, addition of in-plane tension Nx has served to stiffen the web, reducing the displacement 

response. This was the expected result. 

The above linear plate equations are valid for static pressure input conditions. Thus, iterative 

methods may be used to calculate the plate deflection w (x,y) for a given pressure field Pz (x,y). 

As with the membrane, however, a dynamic response is desired to most realistically model the 

pulser-to-web interaction. 

The plate model given by Equation (5.31) is of interest in this analysis due to its inclusion of 

in-plane, x directional tension. This equation may be converted to a dynamic equation through 

incorporation of plate inertial effects [90]. Figure 5.10 shows the inertial force along with the 

previously detailed external forces. 

y 

2 
(iii dx dy) iJ W 

at 2 

! 
! 

dx--~~ 

Figure 5.1 0. Plate Forces Including Inertial Force 
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The small deflection plate equations were derived through study of shear and moment forces 

on a differential plate element. If the inertial load, shown opposing plate motion in Figure 5.10, is 

considered in the analysis, then this force would be additive to the equilibrium equations used in 

the derivations. This inertial force ism {<fw/at2)dx dy where m is the plate mass per unit area. 

Thus, Equations (5.9) through (5.11) would incorporate such a term. Equation (5.17) for the 

case of no in-plane loads is then: 

d4w(x,y,t) + 2 d4W(x,y,t) + d4W(X,y,t) Pz(X,y,t) • m d2w(x,y,t) 

ax4 ax2 al ()y4 D D at2 
(5.31) 

Equation (5.25) for the case of transverse pressure loading plus in-plane tensile loading is then: 

d4w(x,y,t) + 2 a4w(x,y,t) + a4w(x,y,t) = - m a2w(x,y,t) 

ax4 ax2 al ay4 D dt2 

+ Pz{x,y,t) + N!. a\v(x,y,t) + Ny a\v(x,y,t) + 2 Nxy a\v(x,y,t) 

D D ax2 D al D ax ay 
(5.32) 

Exact solutions to the above equations again are usually found through use of harmonic excitation 

and response assumptions and separation of variables techniques. 



CHAPfER VI 

MODELING RESULTS 

Pneumatic pulse modeling and membrane/plate modeling developed in Chapters IV and V, 

respectively, will be applied at this time. Detailed in the respective developments were the system 

governing equations along with any assumptions that were used in the derivations. Of interest is 

exploration of the pulse-to-web coupling mechanism. This coupling phenomenon determines the 

performance of the experimental system in that poor coupling results in a poor signal to analyze 

which increases uncertainty and chance of error in the indicated tension result. As was indicated 

in section 3.6, soft spots in a web tend to attenuate the web response whereas tight spots aid the 

coupling process resulting in larger amplitude signals. The modeling results to be presented in 

this chapter will provide some insights regarding the characteristic shape of the experimental 

waveforms and the pulser-to-web coupling process. 

Chapter IV detailed the development of finite difference equations to be used in the pneumatic 

shock modeling procedure. Provided also were equations to be used with rigid boundaries which 

utilized the reflection principal. The finite grid for this modeling problem will be presented at this 

time along with applicable boundary conditions. This will be followed by a discussion of 

equation evaluation over the problem grid, fluid property initialization, and modeling results. 

Figure 6.1 is the finite grid used to simulate the pulser tube near a web surface. The pulser 

tube is represented by the vertical boundaries on Region 6 whereas the web surface is simulated 

by the horizontal upper boundary along Regions 1, 2, 3, 7, and 8. As shown, one pulser tube 

diameter spacing is used between the pulser tube exit and upper web boundary. This is typical of 

spacing used with the experimental system. Remaining boundaries between regions and along 

outside grid borders are used to couple fluid properties between the various regions. These 
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boundaries are appropriately updated between time frames as the evaluation process marches 

through time. 

The Rusanov method used for inviscid compressible flow equation integration required a 

fixed grid for the finite difference representation. Thus, a fixed grid implies rigid rather than 

flexible boundaries. A web, of course, is not a rigid surface but deflects under pressure loading. 

This flexibility will affect generated interface pressure levels and thus pulse-to-web coupling. For 

this approximate analysis, pressure levels at this rigid "web boundary" are of prime interest such 

that these pressure levels may be input to membrane or plate models. Differences in pressure 

levels and pressure distribution between the actual and the modeled systems are thus inherent. If 

one considers the web response with respect to the pneumatic pulse duration, however, this 

approximation does not appear to be dreadful. The pneumatic pulse is quite quick, having a 

duration on the order of 50 microseconds. Web response to these fast pulses has been much 

slower, on the order of 250 microseconds or more. Thus, instantaneous web response is not 

possible, implying that perhaps the web has not deflected a significant amount during the active 

pulse period. If so, this would help to offset flaws associated with using a stationary web 

boundary in the pulse modeling procedure. 

Finite difference Equation (4.66) is used to evaluate fluid density, u and v directional fluid 

velocities, and fluid stagnation energy as was developed in Chapter IV. Figure 6.2 is an 

expanded view of the problem grid Region 1 with boundary values and notation given. Equation 

(4.66) is contained in a subroutine within the computer program used in this process, which is 

provided in Appendix G. For each region, corner locations (x,y) = (1,1), (1,N), (N,1), and 

(N,N) are evaluated first while incorporating any applicable boundary values. For example, 

evaluation of density, u and v velocity, and stagnation energy at point (1,1), is accomplished 

through use of said fluid properties at Region 1 points (1,1), (2,1), and (1,2), boundary location 

YL(l), and boundary location XC(1). Next, remainder of the region edge locations are evaluated 

using the governing equation in loops. For the case of rigid boundaries along region edges, the 

governing equation is appropriately modified, resulting in boundary Equations ( 4.68) through 

(4.71). For example, referring to Figure 6-2 for Region 1, left-hand side and right-hand side 

edges of the region are evaluated in standard fashion using x = 1, 2 :S y :S N-1 and then x = N, 2 :S 
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y ~ N-1, respectively. Similarly, bottom edge values are evaluated using y = 1, 2 ~ x ~ N-1. The 

top edge lies along the rigid web boundary. This condition is illustrated in Figure 4.3a and 

presented in equation fonn by Equation (4.68). An indicator is used to indicate the applicable 

boundary condition such that appropriate tenns of the governing Equation (4.60) or (4.66) are 

zeroed, resulting in the appropriately modified equation of the fonn of Equations (4.68) through 

(4.71). After Equation (4.66) has been applied to all edge locations of a region, interior locations 

are then evaluated. Applicable coupling boundary conditions are updated before proceeding to the 

next region where the above procedure is repeated. 

Reflective 'Web' Boundary 
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Figure 6.2. Expanded View of Region 1 
From Figure 6.1 
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Stability of the Rusanov scheme, detailed in Chapter IV, required knowledge of the 

advection speed of the fluid. Courant number was then defined as the ratio of this advection 

speed to the computational infonnation speed (Equation (4.55)). Maximum fluid velocity is used 
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in this definition to calculate the time step for the next time frame. Thus, after evaluation of fluid 

density, u and v velocity, and stagnation energy for each region, the region is searched for 

maximum velocity by the equation below: 

After evaluation of all ten regions, an absolute maximum velocity is deteimined: 

Ovl + c}MAX = MAX [Ovl + c~jk] ; k = 1, 2, ... ,10 

This value is then used to deteimine the elapsed time and time step for the next time frame: 

n _ [O'o V dX2 + dy2r . . . 
t - (lVI + c}MAx ; t = Nondunensmnal Tune Step 

t =Nondimensional Time Sum 
t ' =Dimensional Time Sum 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where c~ is dimensional speed of sound, L' IN is dimensional space increment where L' is a 

characteristic dimension of the problem grid. This time step value in dimensional foim is used in 

the membrane/plate finite difference equation modeling procedure to be outlined later in this 

chapter. 

Nondimensional quantities were used in the Rusanov formulation of the inviscid 

compressible flow equations. Fluid properties are nondimensionalized with respect to the 

undisturbed regions of the problem. Thus, from Figure 6.1, undisturbed regions are initially 

Regions 1, 2, 3, 4, 5, 7, 8, 9, and 10 where fluid properties in undisturbed regions ahead of a 

shock front will be denoted by an "F" (field) subscript. Nondimensional variables and initial 

nondimensional values for field locations are: 

p = E!:_= 1.0 ; p = .e!: = 1.0 ; U = Up - 0.0 
PF PF 1y~ 

PF 
V = VF = 1.0; Es= l.(u2 + v2) + _p_ = .L..Q_ = 2.5 

J'YPF 2 y - 1 0.4 
·vpp- (6.5) 

Selection of initial conditions within the shock region, Region 6 of the problem grid, was based 

primarily on pressure levels used with the rotary pulser (Figure 3.1.1). Supply pressure was 

regulated at approximately 30 psig, which would result in a nondimensional pressure level of3.0. 

r 
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Losses occur during pressure pulse propagation along the pulser tube length such that use of a 

nondimensional pressure of 3.0 in Region 6 would be excessive. Nondimensional pressure of 

2.0 was believed to be more realistic. Ratio of shock region to field region pressures is an 

indication of the shock strength being considered. 

Fluid properties on either side of a shock gradient may be used to fit initial fluid properties at 

the shock gradient median. Recall that the Rusanov integration method called for spreading of a 

shock gradient over two to four grid intervals. Figure 6.3 is a schematic showing the shock 

gradient relation to problem grid Region 6. Region 6 row j =Nand the coupling boundary values 

XC were defined as initial shock gradient locations. Averaged fluid property values at the XC 

coupler locations insure sound coupling of the shock region to the field regions. Fluid properties 

behind the shock gradient are denoted with an "S" (full.S.hock), fluid properties on the shock 

gradient are denoted with a "G" (shock Qradient), with fluid properties ahead of the shock being 

denoted with an "F" subscript. Initial condition psfpp = 2.0 has been established. At this 

pressure ratio, shock tables [70] may be used to obtain the density ratio psfpp = 1.633 such that 

Ps = 1.633. Initial velocity used in the shock region was assumed parallel to the pulser tube such 

that us= 0.0, Vs = 1.0; that is, flow out of Region 6 is assumed initially perpendicular to the 

region outlet. This allows for initial condition calculations to be based on a one-dimensional 

analysis. 

(i, 1) (i, 2) 

FULL SHOCK ... _ ....... __ __ Region6 

Figure 6.3. Treatment of Shock Interval in 
Finite Difference Method 

r 
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The shock fitting method used [88] entailed examination of fluid density, speed of sound, 

and velocity at the shock gradient with respect to conditions ahead of and behind of the shock 

front. Pressure at the shock gradient was assumed to be equal to the average pressure 

PG = (ps + PF)/2 = 1.5. With respect to full shock conditions, use of shock tables provided the 

infonnation shown in Figure 6.4a. From the figure, values of Pb and v~ represent density and 

velocity of the shock gradient as viewed from the full shock condition. With respect to the 

undisturbed conditions, similar use of shock tables allowed for infonnation given in Figure 6.4b. 

Density and velocity of the shock gradient as viewed from the undisturbed region then are 

Pb and vb . These values of v~ and vb indicate velocity with respect to speed of sound in the fluid 

rather than velocity of actual fluid particles. 

Fluid particle velocities are found through a second set of shock fitting procedures. An 

assumed particle velocity in the full shock region is used to calculate relative velocities on either 

side of the shock front. Figure 6-5a provides an examination of the shock gradient referred to the 

full shock condition, resulting in particle velocity estimate ~ . Figure 6.5b is the counterpart with 

respect to the undisturbed condition, which provides the second particle velocity estimate of. . 

Finally, average values of the above mentioned quantities are used as initial fluid conditions a 

given below. 

po = (pb + Pb) I 2.0 = 1.33 

llG = (~ + ub) I 2.0 = 0.558 

po = (ps + PF) I 2.0 = 1.5 

(6.6) 

(6.7) 

(6.8) 

With respect to the pulser problem grid, Figure·6.1, velocity value UG is actually the y directional 

velocity v where the x directional velocity component will be initially zero. 

Computer program pulse f, a listing of which is included in Appendix G, was used to 

integrate the inviscid compressible flow equations from initial states until the pulse had sufficiently 

died out. At predetennined intervals during program execution, pressure and velocity contour 

data files were generated through use of user specified contour increments aP and a V. Contour 

bracketing proceeded in both x and y directions, where linear interpolation was used once a 

pressure/velocity contour was bracketed by two adjacent grid points. Contour data files were 



SHOCK 

Ps = 2.0 

Ps = 1.63 

Vs=? 

GRADIENT 

Po= 1.5 

P5=? 

c5=? 

FROM SHOCK TABLES AT Ps/Po = 2.0/1.5 = 1.33: 

Ms = 0.89 , Mo = 1.13 , ps/po = 1.22 

• P5 = ps/1.22 = 1.33 V s = Ms Cs = 1.17 
• • 

G, = ~ = 0·:~j~.5) = 1.26 ; v6 = Mo q, = 1.42 

GRADIENT 

Po= 1.5 

Pb=? 

Cb=? 

(a) Referred to Full Shock Condition 

v&=? Vp=? 

FIELD 

PF = 1.0 

PF = 1.0 

FROM SHOCK TABLES AT Pa/Pp = 1.5/1.0 = 1.5: 

Mo = 0.84 , Mp = 1.2 , PbJPF = 1.33 

• Pb = 1.33 PF = 1.33 Vp = Mp Cp = 1.42 
• • 

q, = {7[-= o.:~j~·5> = 1.26 ; v~ = Mo c'/, = 1.06 

(b) Referred to Undisturbed Condition 

Figure 6.4. Shock Gradient Speed of Sound Fitting 
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SHOCK 

Ps = 2.0 

Ps = 1.63 

Cs = 1.3 

GRADIENT 

Po= 1.5 

Pb = 1.33 

cb = 1.26 

Xs=? 

... 
• U~=? Us= 1.0 ... .. 

v& = 1.42 Vs = 1.17 

Xs = V s + Us = 2.17 • 
• • s . s 

U0 = Xs - V0 = 0.75 

(a) Referred to Full Shock Condition 

~ 

uF-? o-· .. 
vb = 1.06 

• 
• • 

Xp=? -Vp = 1.42 .. 
Up= 0.0 

F · F Uo = Xp - V o = 0.36 

(b) Referred to Undisturbed Condition 

Figure 6.5. Shock Gradient Particle Velocity Fitting 
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GRADIENT 

PG = 1.5 

p~ = 1.33 

q. = 1.26 

FIELD 

PF = 1.0 

PF = 1.0 

Cp = 1.18 
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generated every twenty time frames during periods of relatively slow pressure variation and every 

ten time frames during periods of rapidly changing conditions. At these times, the entire problem 

grid field is scanned to obtain the maximum pressure and velocity values. These values are 

displayed to the user such that intelligent selection of ~P and ~ v values may be accomplished. 

Pressure contours are presented in Appendix A and corresponding velocity contours are presented 

in Appendix B. An examination of these figures is in order to gain insight into pneumatic shock 

pulse behavior. 

From the initial state, the shock pulse propagated hemispherically with respect to the pulser 

tube outlet, as shown in time frames 20, 40, and 60, corresponding to Figures A.1, A.2, and A.3 

for pressure and Bl, B2, and B3 for velocity. Note the contour increments ~P = 0.2 and ~v = 

0.1. Recall that initial x directional velocity was zero such that the constant response of pressure 

and velocity along the width of Region 1 would be expected, with small radial propagation at the 

edges. 

Contact with the rigid web boundary begins at 70 time frames, as is shown in Figures A.4 

and B.4. The next five contours, for time frames 80, 90, 100, 110, and 120, reveal a very rapid 

pressure buildup at the web boundary. Pressure Figures A.5 through A.9 dramatically illustrate 

this effect where the contour increment M> was doubled from 0.2 to 0.4 in going from Figure A.5 

to A.6. Maximum pressure of 5.684 occurred at time frame 90. In comparison to the initial 

pressure ratio, 2.0, one can see that the general rule of thumb of weak shock pressure doubling 

upon contact with a rigid boundary has been exceeded in this analysis. Courant and Friedrichs 

[67] derived the relation for pressure build up at a rigid boundary as a function of gas constant y. 

For the cases of a strong incident shock, psfpp is large. If PR is denoted as the reflected over

pressure at the boundary, then the following approximation was fonnulated: 

PR-PF,.. 2+ 'Y+ 1 
ps-pF y-1 (6.9) 

Note that if y = 1.4 and Ps - PF = 1.0, then PR - PF = 8.0, which is substantially greater than 2.0. 

The numerical pressure levels used in this analysis appear to be somewhat stronger than "weak" 

and thus the maximum ovetpressure result PRIPs was greater than 2.0. 
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Rapid pressure build-up is of particular interest with respect to the web response hypothesis 

formulated in section 3.4. To appreciate this pressure build-up, the pressure gradient in moving 

from 80 to 90 time frames is: 

.1P _ (5.684 - 3.423) atm 14.7 psi = 
At- (12.47- 11.02)microsec 1 abn 

22.92 Mpsi/sec (6.10) 

Figures B.5 through B.9 reveal corresponding velocity contours during this interval. Minimal 

velocity is evident in Region 1. Velocity vectors begin to point outward as propagation occurs 

parallel to the web boundary. This behavior is expected and lends credence to the overall results. 

Beginning with 140 time frames, gradual dissipation of pressure begins to occur with 

propagation proceeding laterally outward from the pressure source. Figures A.10 through A.16 

for pressure and Figures B .1 0 through B .16 for velocity provide these graphic results. Contour 

increments are back to initial values, .1P = 0.2 and .1 V = 0.1. For comparative purposes, the 

pressure gradient for a pair of time increments may be examined. Proceeding from 160 to 180 

time frames provides a pressure gradient: 

.1P _ (2.347- 2.438) atm 14.7 psi _ 0 463 M "l 
-- -- . psi,sec 
.1t (25.97- 23.08) microsec 1 atm 

(6.11) 

A similar analysis from 220 to 240 time frames provides: 

.1P _ (1.535- 1.770)atm 14.7 psi _ 0998 M ;t 
-- -- . ps.,sec 
.1t (35.63 - 32.17) microsec 1 atm 

(6.12) 

Thus, pressure dissipation is occurring at a much slower rate than the initial build-up. Velocity 

contours are quite interesting during this dissipation sequence. One may view evidence of swirl, 

velocity pockets, and other interesting effects as time progresses. Generally, propagation is 

outward and downward, as one would expect, Initial ambient pressure returns to Regions 2 and 3 

beginning with time frame 200 and later to Region 1 at time frame 260. Region 1 contours tend to 

be shifted with respect to Region 2 and 3 contours. From this it may be stated that coupling 

between Region 1 and Regions 2 and 3 was the most difficult to accomplish, likely due to the 

input discontinuity at the region borders. As can be seen, coupling between other regions was 

quite successfully accomplished. 
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Contours presented above were achieved through use of an approximate analysis of the 

inviscid compressible flow equations coupled with a rigid boundary to represent the web material. 

The assumption of a rigid interface is obviously flawed but was necessary in order to perfonn the 

analysis. Pressure and velocity contours exhibit behavior that one would expect from this type of 

problem in that pressure at the web boundary increased directly above the simulated pulser tube 

outlet, velocities were minimal in areas of highest pressure, and directions of propagation were as 

expected. Time period examined for pulse duration was 260 time frames, corresponding to 39.29 

microseconds dimensional time. This is comparable to pulse durations found from experimental 

worlc.. One may further examine the above results in a qualitative manner to gauge the quality of 

hypotheses fonnulated with regard to this pulse-to-web coupling problem. 

The objective of this analytic study is to explain why experimental traces acquired through 

development of the tension measurement system were shaped as they were. Indicated was the 

general signal behavior of a sharp downward trend followed by a relatively slower rebound. 

Outlined above through examination of pressure and velocity contours was the same sort of trend 

in that a sharp pressure surge was followed by a more gradual dissipation. Some interesting 

qualitative results may be achieved by examining these trends with respect to analytical and 

experimental results. 

Figure 6.6 is a plot of web boundary pressure versus time for three grid boundary locations. 

Figure 6.6a corresponds to Region 1.point x = 11, y = 21, the central web boundary point of 

Region 1. Similarly, Figures 6.6b and 6.6c correspond to Regions 2 and Region 7 points x = 11, 

y = 21, respectively. Each figure contains a small problem grid with this indicated boundary 

location marlc.ed for easy interpretation. These plots clearly reveal the result anticipated from the 

above observations. A dramatic result of this analysis may be viewed if the result of Figure 6.6a 

is turned upside down and then compared to an actual trace from the experimental system. This 

comparison is shown in Figure 6. 7. Keep in mind that time scales corresponding to these traces 

are radically different, due to relatively slow web impulse response. Of interest, however, is the 

basic shape of the two traces, which for the most part agree. Dynamic effects present in the 

experimental trace are not applicable to the pressure trace. Qualitatively, Figure 6.7 provides 

some understanding of the pneumatic pulse-to-web coupling that is desired. Results of membrane 
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and plate response to these numerical pressure levels will be presented next to further enhance this 

understanding. 

Chapter V provided an examination of membrane and plate models to be used in this 

analysis. Indicated was the desire to perform a dynamic analysis of this problem if possible. 

Linear membrane and linear plate dynamic response equations were presented for use in such a 

simulation. These equations, in finite difference form, were used in the pulse modeling computer 

program for simultaneous computation of the membrane/plate response. A presentation of the 

problem grid, finite difference equation formulation, and pressure level distribution will be 

provided prior to the simulation results. 

Figure 6.8 is a schematic illustrating the relation of the pulse modeling problem grid to the 

membrane/plate problem grid. The membrane/plate grid represents half of the actual web model in 

that symmetry is assumed about the grid centerline, consistent with that given in Figure 5.9. 

Pressure values from the pulse modeling are applied along this membrane/plate centerline with a 

distribution function assumed to spread the one-dimensional pressure values over the two 

dimensional membrane/plate grid. 

From use and study of pulse propagation with respect to the experimental system, observed 

has been nearly total propagation in the direction of applied web tension. The pneumatic shock 

pulse is in effect "channeled" in the direction of web tension such that influence in the cross 

direction is minimal. A distribution function was used to simulate this channeling effect with 

respect to the numerically derived web pressure values. A Gaussian function was used for the 

cross directional distribution, as illustrated in Figure 6.9. This Gaussian function: 

F(y) = exp [- y2(1 cr~] = exp [- (float G) f/2 cr~] (6.13) 

has a value of unity at y = 0, given by the grid centerline G = 1), a value of 0.606 at one standard 

deviation G = 20), and a value of 0.023 at the grid edge y = b G = Ny = 55). Using a distribution 

function such as this is taking liberties with regard to the actual situation due to the problem grid, 

Figure 6.8, being only 2-1/2 pulser tube diameters deep. Certainly, in the actual system, the 

pneumatic shock pulse would have a definite effect on a point located a lateral distance of 2-1/2 

pulser tube diameters away. A distribution function such as this became necessary due to the 
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assumed simple support along the web lateral edge. Pressure along this lateral edge is attenuated 

by the distribution function; thus, less distortion and more quality views of the membrane/plate 

centerline deflection would be available. 

The dynamic linear membrane equation was presented in Chapter V and is repeated in 

Equation 6-13 below: 

(6.14) 

As was indicated in Chapter V, Tis the membrane tension (pli), m is the membrane material area 

density (lbrn{m.2), w is the transverse membrane deflection (in.), and pz is the transverse pressure 

loading (psi). Conversion of this equation to finite difference equivalent was perfonned using 

second order central difference approximations: 

(6.15) 

(a1wln = _j_ [vi!· 1-2 wr. + vlf.l] + o{l:!.y2) 2 - 2 1J+ 1J 1J-
(Jy iJ l:!.y 

(6.16) 

(a2w)n = _1 [wrtl - 2 wP· + w?il] + o(~:;.e} 
2 2 1.J 1J 1J at ij l1t 

(6.17) 

Mentioned earlier, the time step indicated in Equation (6.17) is available from the pulse modeling 

process where conversion to dimensional fonn is perfonned. Substitution of Equations (6.15) 

through (6.17) into Equation (6.14), with sufficient grouping of tenns and rearrangement, 

provides the dynamic linear membrane finite difference relation used in this analysis (.l\x=i\y=h): 

wrtl=- w?il + 2 w,t. + (T gc)(l:!.t2)[wr 1.' + w?l· + 1J 1.J 1J p 2 1+ J 1- ,J 
m l:;.x 

wYJ+l + w?J-t- 4 w?J + (gcp~12) [14.7 (Pz(i)- 1.0)- Pm] 
; 2 S iS Nx- 1, j > 1 (6.18) 

The 14.7 multiplier converts nondimensional pressure levels to units of psi. Evaluation of this 

equation with respect to the problem grid of Figure 6.8 was straightforward. A modified version 

of Equation (6.18) was required at the web centerline (j = 1) to incorporate symmetry conditions. 

This modified expression is provided below: 
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.• .n+1 1 {T gc) (A e) [ .. Wi,1 =- wf.1 + 2 wr.1 + Pm Ax2 wf+I.1 + wf-1,1 

+ 2 wf.z- 4 wf.1J + (gcp!t2) [14.7 (Pz(i)- 1.0)- Pm] 
; 2 SiS Nx - 1, j =1 (6.19) 

The dynamic linear plate equation was developed in Chapter V, resulting in Equation (5.25) 

which was modified for x directional in-plane loads only and repeated as Equation (6.20) below. 

(6.20) 

Quantities of interest are flexural rigidity D (].b-in.), x directional tension Nx (pli), with quantities 

m, w, and Pz remaining as was given above in the membrane discussion. One may take a couple 

of different paths in the evaluation of this equation. When simple supports are used, the above 

biharmonic expression may be split into two second order partial differential equations. One 

partial differential equation is in terms of moments and the other is in terms of transverse 

displacements. This procedure was noted in the literature survey by References [34], [35]. and 

[91]. This moment sum formulation was utilized in some preliminary work on the static linear 

plate equation. In-plane forces, given by the Nx term of Equation (6.20), served to couple the 

moments to the displacements such that the moment sum formulation no longer provided 

independent partial differential equations. Longer iteration times were necessary for sufficient 

solution convergence due to this displacement/ moment coupling. 

Direct finite difference formulation of Equation (6.20) was performed in this analysis. For 

equal grid spacing, M = fly = h, the biharmonic operator in finite difference form is: 

(V4Wrj = (14)[20 wrj- 8(wf+1j + wf-1j + wrJ+1 + wrj-1) 

+ 2 (wf+I.j+1 + wf+I.j-1 + wf-1J+1 + wf-1,j-1} 

+ wf+Z.i + wf-2.i + wfJ+2 + wfJ-2] + o(A2) (6.21) 

Remaining partial derivatives of equation (6.20) are provided in Equations (6.15) and (6.17). 

Substitution of these finite difference approximations into Equation (6.20) yields the linear finite 

difference plate equation to be used in this study: 



w?tl = _ ~.1 _ {gc ~t2) [w?· (20 D + 2 T _ 2 PP ) 
l.J 1.J pP 1.J 4 2 2 

~ ~ gc £\t 
- (wf+l,j + wf-1,j)(~~ + :2)- (wf.i+1 + wfJ.t)(8~~) 

+ (wr+l,j+1 + wr+l,j-1 + wr-1J+l + wr-~.j-1}(2£\~) + (wr+zj + wr~j 

+ wfJ+2 + wfJ~) (~)- 14.7 (Pz(i)- 1.0) Fy). + PP] 
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(6.22) 

Again, evaluation of this equation with respect to the problem grid, Figure 6.8, was straight

forward. Due to the fourth-order nature of the equation, two expressions were required for 

reflection of deflection conditions at the web centerline. Equations (6.23) and (6.24) below give 

the necessary reflective modifications for j = 1 and j = 2, respectively. 

wi,i 1 = _ wf:l _ (gc £\e) [~1 (20 D + 2 T _ 2 PP ) 
PP ~4 ~2 gc ~e 

-(wf+l,1 + wf-1.1) (U +.I.)- (wf.z) (J&Jl) 
~4 ~2 ~4 

+ (wr+l,2 + wr-1.2) (2£\ ~) + (wr+2,j + wf-ZJ 

+ 2 wf.J} (~)- 14.7 (Pz(i)- 1.0) Fy) + PP] 

~1 = _ wf."i _ (gc ~t2) [wr.2 (.20..D. + 2..I. _ 2 PP ) 
PP ~4 ~2 &c~e 

- (wf+l,2 + wf-1,2) (8~~ + : 2)- (wr.3 + wr.1) (8£\~) 

+ (wr+l,3 + wr+1,1 + wr-1.3 + wr-1.1) (2~~) + (wr+z.2 + wr-2.2 

+ wf.4 + wf.~ (~)- 14.7 (Pz(i)- 1.0) Fg) + PP] 

(6.23) 

3 S i S Nx =2; j = 2 (6.24) 

Response of plate or membrane models is dependent on various parameters of the problem, 

that is, structural parameters of the membrane/plate and the orientation and magnitudes of applied 

in-plane loads. Membrane tension T and plate in-plane x directional load Nx were given an 

assumed value of 1.0 pli. Area density was based on plastic web material specific density 0.9 for 

a resultant 3.25 (l0-2) lbm/in.2 density times the membrane/plate thickness. Test case examined 

in this study assumed web thickness h = 0.001 inch. Linear plate flexural rigidity is affected by 

thickness through: 



3 
D= Eh 

12 (1 - v2} 
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(6.25) 

In this analysis, E (Young's Modulus) was assumed to be (lo6) psi such that flexural rigidity for 

0.001 in. thick web material equaled (lo-4) lb-in. 

Computer programs combining pulse modeling and membrane/plate features were used to 

simulate membrane/plate pulse response. Program listings are available in Appendices H and I for 

membrane and plate response, respectively. Coding associated with acquisition of pressure/ 

velocity contours was replaced by the membrane/plate finite difference equations given above 

along with coding to write deflection infonnation to output files. Time step calculated in the pulse 

portion of the programs was converted to a dimensional quantity and used to step the 

membrane/plate simulations through time. Stability problems arose due to the time step size, 

whereupon the time step was divided by ten and applied to the membrane/plate equations. Thus, 

membrane/plate equations were evaluated ten times per pulse pressure evaluation. This analysis 

involved a good deal of computation which helped to verify some of the peculiarities associated 

with the experimental web-pulse response. 

Effective duration of the modeled pressure pulse was approximately 300 time frames. 

Simulation using membrane/plate dynamic models was carried out for 3200 time frames, which 

corresponds to 700.91 microseconds in dimensional time. Relation between time frames and 

dimensional time, given by equation (6.4), is illustrated in Figure 6.10. The figure shows 

essentially two linear regions. The bend in the cmve occurs at approximately 300 time frames, 

which indicates that maximum fluid velocity for time frames greater than 300 is nearly constant at 

the fluid speed of sound. For time steps prior to 300 time frames, relatively less dimensional time 

per time frame indicates that fluid particle velocity is nonzero resulting in maximum fluid velocity 

(lVI + c )MAX greater than the fluid speed of sound. 

Referring to the problem grid of Figure 6.8, no mention has been made as to the dimensions 

of the pulser tube diameter or to area dimensions of the web model. Dimensional quantities 

selected are consistent with dimensions of the experimental apparatus. First, square grids were 

selected such that ~x = ~y = .1. The pulser tube was assigned a diameter 0.2 inches wide 

whereupon 20 equal increments, each 0.01 inch wide, would be used with square regions to 
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model the pneumatic pulser. From the problem grid, 0.2 inch is also the spacing between pulser 

tube and web, which is typical of such spacing in the laboratory. Thus, the web model is five 

regions wide with a grid increment included between regions, resulting in 1.04 inches. Web 

depth was selected somewhat arbitrarily. In this case, depth was selected as half of the web 

width. 

Graphical display of 0.001 inch thick linear membrane and linear plate pulse modeled 

responses are provided in Appendices C and 0, respectively. A qualitative examination of the 

graphical series is appropriate as a preface to more specific examination. 

Membrane and plate response to the modeled shock front begins in earnest at time frame 300, 

as shown in Figures C.3 and 0.3. The sharp crest on the web structures is quite severe. Effect 

of the Gaussian distribution function is observable due to reduced displacement away from the 

center axis of symmetry. Displacement levels here proceeded from 0.004 to roughly 0.2 inch in 

marching from 100 to 300 time frames. Thickness of the model was 0.001 inch, so clearly, 

extremely large deflections are present which likely pose problems with respect to the linear nature 

of the membrane/plate governing equations. Similarities exist between the experimental system 

and displacement levels indicated by the membrane response during this initial positive 

displacement sequence. Air loading and damping effects would serve to attenuate actual web 

deflections somewhat. 

Continuing through the graphical displays, displacement amplitude builds as radial 

propagation effects begin to occur. This phenomenon may be observed by viewing membrane 

Figures C.4 through C.7 and plate Figures 0.4 through 0.9. Recall that the pneumatic pulse had 

an effective duration of 300 time frames. Thus, beginning with approximately 300 time frames, 

input transverse pressure is effectively zero and the Gaussian distribution function no longer 

affects the problem. Maximum displacement is evident in Figure 0.9 at 0.3762 inch. All of the 

graphical displacement results presented in Appendices C and 0 are scaled to this maximum 

deflection such that relative displacements between membrane and plate may be appreciated. 

Downward membrane and plate movement begins at 800 and 1000 time frames, respectively. 

This progression back to zero displacement is given by Figures C.8 through C.12 and 0.10 

through 0.14. At this point, negative values of displacement begin. Note that the "Maximum 
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Displacement" values given on each figure is an absolute value rather than a signed value of 

displacement Membrane and plate travel down to maximum negative displacements is illustrated 

in Figures C.l3 through C.l6 and 0.15 through 0.22, respectively. Shape of the deflected plate 

at positive maximum (Figure 0.9) and negative maximum (Figure 0.22) appear to be nearly 

mirror images of each other. The same statement may not be made with respect to the 

corresponding membrane responses, given by Figures C.7 and C.l6. In fact, the membrane has 

traveled 63% further in the downward direction. One would not think that gravitational body 

forces alone would account for such a difference. 

Remainder of the traces, Figures C.l7 through C.32 and Figures 0.23 through 0.32, show 

the membrane and plate rebounding back to zero and then beginning a second oscillation 

sequence. Of interest is the time period of one complete oscillation. Figure C.21 shows the linear 

membrane effectively zeroed after a complete oscillation, with a resulting time period of 462.04 

microseconds corresponding to 2100 time frames. An estimate of characteristic frequency from 

this period is then: 

f~~~~m~ram = 1 
Tm:miram 

c,ele 

1 -2164.3 Hz 
462.04 (10~ sec 

(6.26) 

Similarly for the plate model, rezeroing occurs at approximately 2900 time frames, shown in 

Figure 0.29. Dimensional time at this point is 638.84 microseconds such that characteristic 

frequency is: 

fpate= - 1-= 1 = 1565.3 Hz 
Ttiate 638.84 (10~ sec 

c)ele 

(6.27) 

These numbers are quite consistent with respect to experimental results. One must be careful, 

however, to consider the geometry of the membrane/plate grid in any discussions. Characteristic 

frequency values of Equations (6.26) and (6.27) above may be related to the fundamental 

frequency of a membrane or plate of a fixed length subjected to an arbitrary transverse load. One 

conclusion that one may make, however, is that flexural rigidity of the thin (0.001 in.) material is 

so small that it has little effect on the model. Deflections were smaller and characteristic frequency 

was higher for the membrane model compared to the plate model due to the membrane having 
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assumed equal tension Tin both x andy directions while the plate had only x directional tension 

Nx. 

An additional examination of the membrane/plate deflection data was perfonned to gauge the 

propagation effect at different points along the model centerline. A similar examination was 

perfonned with respect to web boundary pressures, culminating in Figure 6.6. The same three 

grid locations will be used in this analysis which will illustrate deflection with respect to space and 

time. 

Figures 6.11 and 6.12 provide deflection versus time response for plate and membrane 

respectively. Figures 6.1la and 6.12a correspond to a point centered directly above the pulser 

tube outlet. Here, the plate exhibits an almost sine-like displacement history. Hypothesized has 

been a sharp initial deflection followed by a slower rebound period. Plate response here does not 

follow such a sequence, but the membrane response shows signs consistent with the hypothesis. 

Troubling here is the larger negative displacement than initial positive displacement. As was 

suggested earlier, air loading would likely dampen out a portion of this rebound magnitude. 

Many more hannonics are indicated by the unsymmetric, peculiar membrane response compared 

to that of the plate. 

Figures 6.11 b and 6.12b provide displacement versus time histories corresponding to points 

on the model symmetry line located above the center of pulse grid Region 2. Figures 6.11 c and 

6.12c provide displacement versus time histories for similar locations above pulser grid Region 7. 

These figures do not reveal any additional infonnation that is especially enlightening. Obviously, 

simple supports at the model borders causes the displacement attenuation that is evident with 

respect to displacement indicated in Figures 6.11a and 6.12a. 

This modeling project presented here was a fair sized undertaking. Much study into 

computational fluid dynamics and structural mechanics was necessary to become familiar with the 

terminology, usage, and limitations of the various available analysis procedures. Literature 

included in the literature review with respect to these topics is just a small portion of the material 

that was searched out and reviewed. From the beginning, graphical plots as have been presented 

here were the desired analytic output infonnation. It was believed that graphical pictures would be 

very effective in explaining the nature of the pneumatic pulse-to-web coupling phenomenon. 
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Pressure and velocity contours achieved through modeling of the pneumatic pulser alone 

helped illustrate what was actually happening during a pulse cycle. One could examine the 

contours as the simulated web boundary was encountered. Subsequent pressure and velocity 

variations were viewed as the impingement, reflection, and radial propagation sequences 

unfolded. Noted was the fact that experimental and numerical pulse sequences had comparable 

time periods. 

Web boundary pressure was examined to see variation with time as propagation through 

space occurred. Figure 6. 7 was a dramatic result of this investigation, which went far to explain 

the shape of experimentally derived signals. 

Plate and membrane response to the modeled pneumatic pulser was obtained and graphical 

results displayed. One could examine relative displacement through time to aid in comparisons of 

the two models. Encouraging was the fact that the plate and membrane behaved differently. 

Characteristic oscillation frequency for these models was comparable to that obtained in the 

laboratory. Numerical displacement amplitude results were generally higher than that experienced 

in the laboratory, but noted also was absence of air loading and air damping effects on the 

numerical model. 

It is believed that some very useful information was derived as a result of the analytic 

modeling efforts presented in this report. Results were not perfect by any means and areas of 

possible improvement were noted. The bottom line, however, was better understanding of the 

pulse-to-web coupling mechanism. Through analytic examination of the pulser and typical web 

structures, it is believed that much improved understanding has been achieved. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Research objectives outlined in this report were the development of an inexpensive, compact, 

multi-purpose, noncontacting and accurate method of local tension measurement. Supported by 

the Web Handling Research Center, this project has evolved from a few simple ideas to a 

workable system. Several individuals have contributed to the effort, most notably Darren Nutter, 

n Young Ahn, and Marla Bradley under supervision of Dr. Richard L. Lowery, to lay the 

groundwork for the efforts of this researcher. Many positive statements may be made regarding 

the system performance to date. 

Tension measurement at small, discrete points along a web span was desired by the web 

handling industry. This would allow for tension distribution measurement across a web span. 

Tension measurement systems already established were either contacting in nature or were more 

of an area tension rather than point tension measurement devices. Desired was a point source 

impulsive input stimulus to the web material to provide a broadband, high frequency excitation to 

negate air loading effects. Hence the pneumatic pulser was developed which provided a weak 

pneumatic shock pulse. Noncontacting in nature, this pulse was very sharp and crisp in nature. 

Strength of the pulse, however, was such that flexural bending waves dominated the web 

response. These bending waves were of lower characteristic frequency than originally desired. 

Other adverse effects such as trailing air flow and surrounding fluid loading led to use of the 

ribbon equation rather than the simpler in-vacuo membrane relation for conversion of experimental 

data to tension indications. 

Detailed has been the transducer head development to provide web damage protection while 

not adversely affecting induced web flexural waveforms. Concurrent with these activities was the 

development of data acquisition and signal processing hardware and software. Noted in the text 

were performance tradeoffs that were encountered. Provided was reasoning used in dealing with 
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such tradeoffs and any compromises that were formed. Desired for use were the best possible 

procedures compatible with equipment and computer memory constraints. 

Tension indications from the ribbon equation were affected by signal conditioning used in the 

measurement process. Detailed were the various approaches to raw filtering signals. Low 

frequency flutter and biases were rejected as was high frequency noise from inherent sources and 

industrial environmental sources. Analog and digital methods were explored and relative merits 

and faults were noted. Sensitivity of indicated tension values to filtering was found to be a 

significant factor in the system accuracy. 

System testing has been performed in both laboratory and industrial environments. 

Laboratory environment was used in development of various hardware, signal conditioning, data 

acquisition, and data processing components. Industrial tests allowed for real world testing of 

these components and procedures where an on-line, traveling, fluttering web was present for 

study. Difficulties to overcome in these field tests included variable air gap spacing due to bowed 

rollers, eccentricities creating tension fluctuations, and raw signal corruption due to static 

electricity. The system performed well in this environment if air gap between the transducer head 

and the web was not overly excessive. Quality information was obtained from weak signals as 

well as strong signals, indicating that the system would perform well in cases of absolute web 

noncontact as well as for random web contact. Again, proper filtering was necessary for optimal 

system performance. 

Various web materials were laboratory tested to assess relative system performance. It was 

found that anisotropic behavior of web materials, that is, change from "tight" spots to "soft" 

spots, had a great effect on performance of the system. In general, system performance was 

dictated by the flexural waveform amplitude that could be generated. Aexural waveforms in 

thicker web materials tended to be of lower characteristic frequency due to increased flexural 

rigidity of the material. Variable parameter selection in the measurement system signal 

conditioning facility was of great service in tuning of the system to a particular web material and 

nominal tension level. Many of the thicker, anisotropic materials would require individual study 

before concrete statements could be made regarding tension measurement system adaptation to the 

web material. Shown, however, was good system performance for any web material of thickness 
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0.003 inch or less over a wide tension range. This adaptability was a quality initially desired at 

the project beginning. 

Out of a sincere desire to attain knowledge regarding the physics of the pneumatic pulse to 

web interaction process, a multifaceted theoretical and numerical analysis was performed. It was 

believed that such an analysis, if successful, would greatly expand the knowledge base of the 

Web Handling Research Center. Upon successful completion, this numerical modeling procedure 

could provide an estimate of system performance for linear membrane and plate web structures. 

Computer modeling would allow viewing of system response for varied web density, thickness, 

and flexural rigidity parameters, and also varied applied tension levels. 

Modeling results were presented illustrating behavior of the pneumatic shock pulse upon 

contact with a rigid boundary that was to simulate the web surface. Pressure and velocity 

contours revealed a sharp pressure build up followed by a more gradual decay as propagation 

away from the pressure source occurred. Pressure levels at the rigid boundary were used as input 

pressure to linear membrane and plate web models. Graphical results of the web model response 

to this pressure input were presented and compared to the experimentally derived web response. 

Comparisons of deflection shape, displacement amplitudes, and characteristic period of the 

numerical results to experimental signal traces were favorable. This computer analysis could be 

reconfigured to analyze other approaches suggested by Professor Lowery and project associates. 

Web response modeling for the pulser tube mounted parallel to the web surface, for example, 

could be achieved in this manner. 

The research scope covered in this study is quite large. Included in the problem were aspects 

of Instrumentation theory, Sampling/Signal Processing theory, Wave Propagation theory, Fluid 

Dynamics, Plate/Membrane Mechanics, Computer Science, and Numerical Analysis. An effort 

was made to study literature associated with these project aspects such that sound decisions could 

be made regarding system development. It is believed that questions that arose from the Bradley 

experiments have been fully addressed and answered. The noncontacting system developed 

provided good performance for a wide variety of web materials and tension levels. Transducer 

and positioning mechanisms arrived at during this research process are compact, simple, and 

inexpensive. Signal acquisition and processing is compatible to an ordinary personal computer, 
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also helping to reduce costs. In short, it is felt that requirements suggested by the Web Handling 

Research Center industrial consortium have been successfully fulfilled. Modeling procedures 

developed have supported the experimental efforts by providing needed insights into the reasons 

for the experimental system behavior and perfonnance. 

Wmk at developing the experimental and analytical results that have been presented in this 

report has led to some understanding for possible improvement areas. Some of the upcoming 

recommendations would allow for fine tuning and further use of the modeling procedures whereas 

some recommendations deal exclusively with the experimental system. Many areas of study could 

be examined to more fully develop tension measurement system perfonnance and provide better 

understanding of the mechanics involved in the system. 

Detailed in section 3.6 was tension measurement system response to arbitrary web materials 

and tension levels. A benefit in set-up and operation of this system in various industrial settings 

would be some recommendations as to signal conditioning to be used for general classes of web 

materials. A good deal of testing would be involved here, but the end result could be 

recommended starting filter parameters for different web materials based on nominal web tension, 

web thickness, web flexural rigidity, and web anisotropy. Engineers in charge of these systems 

would then have some starting point from which to become familiar with the system response 

characteristics. 

A calibration method for laboratory use is needed such that system accuracy may be more 

properly quantified. Context here refers to some means of precisely identifying a known static 

laboratory tension profile prior to experimental system use. In this sense, contact with the web 

sample would be acceptable. In essence this would result in yet another local tension 

measurement method if new ideas were fonnulated and developed. This would allow for close 

evaluation of system perfonnance for any applicable web material/web tension situation. 

Measurement of pneumatic pressure input and web displacements would be of value with 

regard to the modeling procedure. Assumed in the modeling was an initial nondimensional 

pressure ratio of 2.0 between full shock and field locations. Use of miniature pressure sensors to 

measure the pulse output pressure would provide perhaps a better initial pressure ratio estimate in 
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the modeling computer programs. Web displacement measurement to pneumatic pulse inputs has 

similar use with respect to modeling. One could judge modeling results accuracy for varying web 

material thickness and stiffness. Optical sensors have been applied to this problem with limited 

success. Such a measurement scheme is hampered in that web contact in most cases would 

greatly affect the web response. 

The modeling program could be used to examine analytic system response for varying pulser 

tube-to-web spacing. Spacing of one pulser tube diameter was used in modeling presented in this 

report. Thus, square regions were used with ..1\x = ..1\y = h. The Rusanov method used here 

allows for ..1\x :F. ..1\y grid spacing. Alternately, grid lines with respect toy could be removed from 

Regions 1, 2, 3, 7, and 8 to move the pulser tube closer to the web or added to Regions 1, 2, 3, 

7, and 8 to move the pulser tube away from the web. One could obtain an optimum spacing 

criterion from such an examination. 

Work on this research project has led to observance of many interesting phenomena. 

Difficulty arises in determination of a basis for further examination of some of these phenomena. 

Dispersive effects have been noted in various web materials using optical sensors as waveform 

pickups. Applicable theory may be applied to this identifiable case. The pneumatic pulse seems 

to promote an extremely high amplitude nonlinear web response in close vicinity to the pulse 

center point. Modeling suggested the possibility of such behavior due to the rapid high amplitude 

pressure build up directly above the simulated pulser tube outlet. Speculated was the presence of 

compressive web buckling waves as a result of such large amplitude stimulus. An examination of 

hyperelastic structures and theory could perhaps provide some insights into these areas. 
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APPENDIX C 

LINEAR MEMBRANE DEFLECTION FROM 

PULSE-TO-MEMBRANE MODELING 

219 



Maximum Displacement 0.004183 Inches 

Figure C.1. Linear Membrane Displacement at 100 Time Frames; 
Dimensional Time = 13.98 Microsec 

Maximum Displacement 0.09586 Inches 

Figure C.2. Linear Membrane Displacement at 200 Time Frames; 
Dimensional Time = 28.96 Microsec 
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Maximum Displacement 0.2077 Inches 

Figure C.3. Linear Membrane Displacement at 300 Time Frames; 
Dimensional Time= 47.05 Microsec 

Maximum Displacement 0.2315 Inches 

Figure C.4. Linear Membrane Displacement at 400 Time Frames; 
Dimensional Time = 69.05 Microsec 
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Maximum Displacement 0.218 Inches 

Figure C.5. Linear Membrane Displacement at 500 Time Frames; 
Dimensional Time = 92.23 Microsec 

Maximum Displacement 0.2119 Inches 

Figure C.6. Linear Membrane Displacement at 600 Time Frames; 
Dimensional Time= 115.45 Microsec 

222 



Maximum Displacement 0.1.819 Inches 

Figure C.7. Linear Membrane Displacement at 700 Time Frames; 
Dimensional Time= 138.70 Microsec 

Maximum Displacement 0.153 Inches 

Figure C.8. Linear Membrane Displacement at 800 Time Frames; 
Dimensional Time = 161.97 Microsec 
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Maximum Displacement 0.1417 Inches 

Figure C.9. Linear Membrane Displacement at 900 Time Frames; 
Dimensional Time= 185.22 Microsec · 

Maximum Displacement 0.1039 Inches 

Figure C.1 0. Linear Membrane Displacement at 1000 Time Frames; 
Dimensional Time = 208.44 Microsec 
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Maximum Displacement 0.05688 Inches 

Figure C.11. Linear Membrane Displacement at 1100 Time Frames; 
Dimensional Time= 231.60 Microsec 

Maximum Displacement 0.05298 Inches 

Figure C.12. Linear Membrane Displacement at 1200 Time Frames; 
Dimensional Time = 254.73 Microsec 
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Maximum Displacement 0.08992 Inches 

Figure C.13. Linear Membrane Displacement at 1300 Time Frames; 
Dimensional Time= 277.84 Microsec 

Maximum Displacement 0.158 Inches 

Figure C.14. Linear Membrane Displacement at 1400 Time Frames; 
Dimensional Time = 300.93 Microsec 
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Maximum Displacement 0.2357 lnchei> 

Figure C. IS. Linear Membrane Displacement at 1500 Time Frames; 
Dimensional Time = 324.02 Microsec 

Maximum Displacement 0.2969 Inches 

Figure C.16. Linear Membrane Displacement at 1600 Time Frames; 
Dimensional Time = 347.10 Microsec 
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Maximum Displacement 0.2964 Inches 

Figure C.17. Linear Membrane Displacement at 1700 Time Frames; 
Dimensional Time = 370.17 Microsec 

Maximum Displacement 0.2164 Inches 

Figure C.l8. Linear Membrane Displacement at 1800 Time Frames; 
Dimensional Time = 393.23 Microsec 

228 



Maximum Displacement 0.1277 Inches 

Figure C.19. Linear Membrane Displacement at 1900 Time Frames; 
Dimensional Time = 416.25 Microsec 

Maximum Displacement 0.07099 Inches 

Figure C.20. Linear Membrane Displacement at 2000 Time Frames; 
Dimensional Time= 439.19 Microsec 
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Maximum Displacement 0.06439 Inches 

Figure C.21. Linear Membrane Displacement at 2100 Time Frames; 
Dimensional Time = 462.04 Microsec 

Maximum Displacement 0.1 106 Inches 

Figure C.22. Linear Membrane Displacement at 2200 Time Frames; 
Dimensional Time = 484.78 Microsec 
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Maximum Displacement 0.1373 Inches 

Figure C.23. Linear Membrane Displacement at 2300 Time Frames; 
Dimensional Time= 507.38 Microsec 

Maximum Displacement 0.1517 Inches 

Figure C.24. Linear Membrane Displacement at 2400 Time Frames; 
Dimensional Time = 529.82 Microsec 

231 



Maximum Displacement 0.1678 Inches 

Figure C.25. Linear Membrane Displacement at 2500 Time Frames; 
Dimensional Time = 552.08 Microsec 

Maximum Displacement 0.1815 Inches 

Figure C.26. Linear Membrane Displacement at 2600 Time Frames; 
Dimensional Time= 574.14 Microsec 
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Maximum Displacement 0.1905 Inches 

Figure C.27. Linear Membrane Displacement at 2700 Time Frames; 
Dimensional Time = 595.96 Microsec 

Maximum Displacement 0.2015 Inches 

Figure C.28. Linear Membrane Displacement at 2800 Time Frames; 
Dimensional Time= 617.54 Microsec 
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Maximum Displacement 0.1961 Inches 

Figure C.29. Linear Membrane Displacement at 2900 Time Frames; 
Dimensional Time= 638.84 Microsec 

Maximum Displacement 0.1709 Inches 

Figure C.30. Linear Membrane Displacement at 3000 Time Frames; 
Dimensional Time= 659.85 Microsec 
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Maximum Displacement 0.09632 Inches 

Figure C.31. Linear Membrane Displacement at 3100 Time Frames; 
Dimensional Time = 68054 Microsec 

Maximum Displacement 0.04958 Inches 

Figure C.32. Linear Membrane Displacement at 3200 Time Frames; 
Dimensional Time= 700.91 Microsec 
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APPENDIX D 

LINEAR PLATE DEFLECI'ION FROM 

PULSE-TO-PLATE MODELING 
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Maximum Displacement 0.004211 Inches 

Figure 0.1. Linear Plate Displacement at 100 Time Frames; 
Dimensional Time= 13.98 Microsec 

Maximum Displacement 0.09802 Inches 

Figure D.2. Linear Plate Displacement at 200 Time Frames; 
Dimensional Time = 28.96 Microsec 
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Moximum Displocement 0.2187 Inches 

Figure 0.3. Linear Plate Displacement at 300 Time Frames; 
Dimensional Time= 47.05 Microsec 

Moximum Displocement 0.2706 Inches 

Figure D.4. Linear Plate Displacement at 400 Time Frames; 
Dimensional Time = 69.05 Microsec 
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Maximum Displacement 0.288 Inches 

Figure 0.5. Linear Plate Displacement at 500 Time Frames; 
Dimensional Time = 92.23 Microsec 

Maximum Displacement 0 . .31 09 Inches 

Figure D.6. Linear Plate Displacement at 600 Time Frames; 
Dimensional Time= 115.45 Microsec 
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Maximum Displacement 0.3334 Inches 

Figure D.7. Linear Plate Displacement at 700Time Frames; 
Dimensional Time= 138.70 Microsec 

Maximum Displacement 0.3509 Inches 

Figure D.8. Linear Plate Displacement at 800 Time Frames; 
Dimensional Time= 161.97 Microsec 
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Maximum Displacement 0.3762 Inches 

Figure D.9. Linear Plate Displacement at 900 Time Frames; 
Dimensional Time = 185.22 Microsec 

Maximum Displacement 0.3474 Inches 

Figure D.l 0. Linear Plate Displacement at 1000 Time Frames; 
Dimensional Time = 208.44 Microsec 
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Maximum Displacement 0.2873 Inches 

Figure D.11. Linear Plate Displacement at 1100 Time Frames; 
Dimensional Time = 231.60 Microsec 

Maximum Displacement 0.2293 Inches 

Figure D.l2. Linear Plate Displacement at 1200 Time Frames; 
Dimensional Time= 254.73 Microsec 



Maximum Displacement 0~ 169 Inches 

Figure D.13. Linear Plate Displacement at 1300 Time Frames; 
Dimensional Time= 277.84 Microsec 

Maximum Displacement 0.0834 Inches 

Figure D.14. Linear Plate Displacement at 1400 Time Frames; 
Dimensional Time = 300.93 Microsec 
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Maximum Displacement 0.04702 Inches 

Figure D. IS. Linear Plate Displacement at 1500 Time Frames; 
Dimensional Time = 324.02 Microsec 

Maximum Displacement 0.1731 Inches 

Figure D.16. Linear Plate Displacement at 1600 Time Frames; 
Dimensional Time= 347.10 Microsec 
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Maximum Displacement 0.2574 Inches 

Figure D.17. Linear Plate Displacement at 1700 Time Frames; 
Dimensional Time= 370.17 Microsec 

Maximum Displacement 0.2879 Inches 

Figure D.18. Linear Plate Displacement at 1800 Time Frames; 
Dimensional Time = 393.23 Microsec 
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Maximum Displacement 0.3011 Inches 

Figure D.19. Linear Plate Displacement at 1900 Time Frames; 
Dimensional Time = 416.25 Microsec 

Maximum Displacement 0.3283 Inches 

Figure D.20. Linear Plate Displacement at 2000 Time Frames; 
Dimensional Time= 439.19 Microsec 
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Maximum Displacement 0.3.384 Inches 

Figure D.21. Linear Plate Displacement at 2100 Time Frames; 
Dimensional Time = 462.04 Microsec 

Maximum Displacement 0.3617 Inches 

Figure D.22. Linear Plate Displacement at 2200 Time Frames; 
Dimensional Time= 484.78 Microsec 
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Maximum Displacement 0.3596 Inches 

Figure D.23. Linear Plate Displacement at 2300 Time Frames; 
Dimensional Time= 507.38 Microsec 

Maximum Displacement 0.3193 Inches 

Figure D.24. Linear Plate Displacement at 2400 Time Frames; 
Dimensional Time = 529.82 Microsec 
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Maximum Displacement 0.2605 Inches 

Figure D.25. Linear Plate Displacement at 2500 Time Frames; 
Dimensional Time = 552.08 Microsec 

Maximum Displacement 0.2007 Inches 

Figure D.26. Linear Plate Displacement at 2600 Time Frames; 
Dimensional Time= 574.14 Microsec 
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Maximum Displacement 0.1407 Inches 

Figure D.27. Linear Plate Displacement at 2700 Time Frames; 
Dimensional Time = 595.96 Microsec 

Maximum Displacement 0.06199 Inches 

Figure D.28. Linear Plate Displacement at 2800 Time Frames; 
Dimensional Time = 617.54 Micro sec 
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Maximum Displacement 0.06206 Inches 

Figure D.29. Linear Plate Displacement at 2900 Time Frames; 
Dimensional Time= 638.84 Microsec 

Maximum Displacement 0.1645 Inches 

Figure D.30. Linear Plate Displacement at 3000 Time Frames; 
Dimensional Time= 659.85 Microsec 
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Maximum Displacement 0.2628 Inches 

Figure 0.31. Linear Plate Displacement at 3100 Time Frames; 
Dimensional Time = 680.54 Microsec 

Maximum Displacement 0.2934 Inches 

Figure 0.32. Linear Plate Displacement at 3200 Time Frames; 
Dimensional Time= 700.91 Microsec 
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APPENDIX E 

COMPUTER PROGRAM LISTINGS FOR SINGLE

POINT TENSION MEASUREMENTS 
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**********************************************************************! 
*** Program WH1DF <Digital Filtering) -- Web Handling Proaram *~¥/ 

*** to take two records from the pulsing system, perform **~ 

I*** digital filtering on the raw signal, and calculate a time ***i 
I*** of flight DeltaT value on the pulse. Additional records ***' 
I*** are similarly obtained, formed into a pseudoperiodic ***I 
I*** record, upon which the spectral density is calculated for ***I 
'*** the upstream microphone signal, generating a characteristic ***I 
I*** frequency value Webfreq. The DeltaT and Webfrea results ***/ 
'*** are used in the Ribbon Equation to yield a Tension value. ***I 
'**********************************************************************I 

#include (stdio.h> 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define 
#define 
#define 
#define 

FILE 
char 
int 
int 
int 
int 
int 
double 
double 
double 
double 
double 
float 

pi 
cair 
radius 
rhoair 

<stdlib.h> 
<dos.h> 
<graphics.h> 
<conio.h> 
<alloc.h> 
<strina.h> 
(process.h> 
<math.h> 
3.14159L 
13500.0L 
1.25 
4.373e-5L 

*D50~ 
DataStrC64J,Kev,dir: 
D50IDF1 ag, i, j, k ,1; 
sl,NS,grdriver,grmode; 
ycoord,ncorr,ndel,nspan: 
reflin,mxptr,mnptr,addr,instr,coun,ncv: 
maxptr[20J,minptrC20J,Itemp,delTotr: 
SRdivider,temp,rate,sum,conv,deltaT,period: 
vel,Tc,Te,webfrea,kair,kweb: 
max[20J,min[20J,XDATC1250J,YDATC1250J: 
totmax,totmin,test,pktock.ratio: 
Fc,BW,Gain,rhoweb,XC1250J,Y[1250J: 
dist,Rtemp; 

int SEG<int far *Var) 
{ unsigned seg; 

seg=FP_SEG<Varl; 
return (segl; 

} 

int DFF<int far *Varl 
{ unsigned offs; 

offs=FP OFF<Varl; 
return <offs); 

} 

int D50Dutput<char *Strl 
{ if(D50IDFlagl { rewind<D501; D50IOFlag=O; } 

if (fprintf<D50.,"/.s",Strl == EDFI return<ll; 
if (fflush(D501 == EDFI return<ll; 

} 

int 
{ 

} 

return (01; 

D50Inputint<int *Inti 
char Str[16J; 
if <!D50IOFlagl. { rewind<D501; D50IOFlaq=1; } 
if (! fgets <Str, 16,0501) return< 1 I; 
if (sscanf(Str,"l.d",Intl != 11 return(!); 
return (0); 

int D50InputStr<char *Str> 
{ if (!D50IOFlagl { rewind(D501; D50IDFlag=1~ } 

if (! fgets <Str, 32,0501 I return< 1 I; 
return <O>; 

} 



void Get Error < > 
{ char Str[48J; 

int EN;' . 
clrscr<> ; gotoxy(6,27>; puts("\7">; 
if <D50Inputint<&EN>>; 
if <D50InputStr<DataStr>>; 
if <D50InputStr<Str>>; 
printf<"Driver Error Has Occurred !!\n\n">; 
printf<"DAS-50 Error Number=> 'Y.d\n\n",EN>: 
printf<"Error => 'Y.s\n\n",Str>; 
printf("On Command Line of=> 'Y.s\n\n",DataStr>; 
exit< 1 >; 

void Pixel1 () 
{ putpixel(k,i,1); j=i+5; putpi>:el(k,j,1); 

j=i-+·10; putpi>:el(k,j,l>; j=i+15; putpi>:eJ(k,j,l); 
} 

void Pixel20 
{ putpixel<k,i,ll; j=k+10; putpixel(j,i,ll; 
} 

void GetKBDinfo(int Ind) 
{ char *Str,buffer[10J~ 

} 

int ii; 
buffer[OJ=lO; 
for (ii=l; ii<=9; ii++) { buffer[iiJ=O;} 
Str=cgets(buffer>; switch<Ind) { 
case 1: ssca~f(Str,"'Y.lc'Y.f"~&Key,&dist>; break; 
case 2: sscanf(Str,"'Y.lc",&Key>; break; 
case 3: sscanf <Str, "'Y.f" ,&Rtemp); break; 
case 4: sscanf<Str,"'Y.d",&Itemp>; br~ak; 
} 

void GetWave(double SamplRate,int Num> 
{ char Str[48J; 

} 

int Status; 
I* Set the Number of Samcles *I 

sprintf<Str,"SEt SAmples= 'Y.d\n",Num>: 
if <D500utput<Str>l GetError<>: 

I* Set the On Board Memory Address *I 
sprintf(Str,"SEt ADdress= 000\n"l: 
if <D500utput<Str)) GetError<>: 

I* Set the Sampling Rate *I 
sprintf<Str,"SEt RAte= Int 'Y.e\n",SamclRate); 
if <D500utput<Str>> GetError<>; 

I* Acquire the Record *I 
if <D50Dutput<"ACquire\n")) GetError<>; 

Status=O; I* initialize status indicator *I 
do { if<D500utput<"GEt STatus\n")) GetError<>: 

if(D50Inputint<&Status>> GetError<>; } 
while <<Status & OxlO> != OxlO>; 

void FilterRecord(double A[J,double B[J,double SamplRate, 
double Scale,int Num) 

{ char 
int 
double 

Str[48J; 
0[2500J,ii,jj; 
cyO,cyl,cy2,cx,T,prod,f1,f2,f3,f4; 

I* Set the Memory Address *I 
sprintf<Str,"SEt ADdress= 'Y.d\n",OOO>; 
if(D500utput<Str> != 0) GetError<>; 

I* Transfer Data to Given Vector *I 
sprintfCStr,"TRAnsfer 'Y.d 'Y.d 'Y.d 'Y.d\n",SEGCDl,OFFCD>.Num.l>: 
if CD500utput<Str> != O> GetError<l; 
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} 

{ 

} 

T=2.0/Samp1Rate; prod=pi*Fc*T; 
cyO=l.O+pi*T*BW+prod*prod; cy1=2.0*(1.0-prod*orodl: 
cy2=-1.0+pi*T*BW-prod*prod; cx=oi*Gain*T*BW: 
A[OJ=cx*(Scale*D[OJ/2048.01/cyO: 
B[OJ=cx*(Scale*D[lJ/2048.01/cvO: 
A[1J=Icx*<Scale*D[2J/2048.0l+cv1*A[0Jl/cv0: 
B[1J=(cx*!Scale*D[3J/2048.0l+cvl*B[0Jl/cv0: 
for (ii=4, jj=2; ii<=Num; ii+=2, jj++l { 

fl=Scale*D[ii-2J/2048.0; 
f2=Scale*D[ii-1J/2048.0; 
f3=Scale*D[iil/2048.0; 
f4=Scale*D[ii+ll/2048.0; 
A[jj]=(cx*lf3-fll+cvl*A[ji-1J+cv2*Arii-711/rvn, 
B[jjJ=Icx*(f4-f2l+cv1*B[jj-1J+cv2*B[ii-2Jl/cv0: l 

Correlate(double A[:!, doLtbl e 8[J.double rrJ,int CQrrSpan 
1nt CorrShifts.int Delay; 

pr-·od: doubie 
int r • r d i f f • tot r d i f .f , i i 1 j j 1 

(ra1; r<=CorrShifts: r++) { for 
sum=O.O: rdiff=Corrsn~n-r• 

totrdiff=CorrSoan+Delav+1-r• 
for lii=Delav+l: ii<=tntrrli~~· 

j j=i i +r: 
prod=A[iiJ*R[jj]• 
sum=sum+prod• } 

C[rJ=sum/(floatlrdi~f• } 

i i ++) f 

void Fourea(double datar[J.douhl"' rl~t- .. ir1 ;...,+ 1\1~+ '~+ ,_, __ , 
{ int mmaw.i•rPn.m• 

double temor,te~pifwr wt thetg; 

I* perform the bit reversal *; 
j=l; for li=1; i<=Nft; i++l { 

L10: 

L20: 

L30: 

L40: 

L50: 

L60: 

if < (i-jl<Ol qoto L10: 
else goto L20: 

{ tempr=datar[jJ; tempi=datai[jJ; 
datar[jJ=datar[iJ; datai[jJ=datai[iJ; 
datar[iJ=tempr; datai[iJ=tempi; } 

m=Nft/2; 

if ((j-ml<=Ol goto L40: 
j-=m; m=<m+ll/2; goto L30; 

j+=m; } 

compute the butterflies 
mmax=l; 

if ((mmax-Nftl<O> goto L60; 
else goto L70; 

istep=2*rnrnax; 
for (m=l; m<=mmax; m++l { 

theta=pi*isign*<m-11/mmax; 
wr=cos<thetal; wi=sinlthetal; i=m: 
while (i<=Nftl { 

j=i +mma>:; 
tempr=wr*datar[jJ-wi*datai[jJ: 
tempi=wr*datai[jJ+wi*datar[jJ: 
datar[jJ=datar[iJ-temor: 
datai[jJ=datai[iJ-tempi: 
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L70: 

LBO: 
} 

void 
{ 

} 

data~[iJ=data~[iJ+temp~; 

datai[iJ=dataiEiJ+tempi; 
i +=istep; } l 

mmax=istep; goto L50; 

if lisign<Ol goto LBO; 
else {for (i=l; i<=Nft; i++) { 

data~[iJ=data~EiJINft; 
datai[iJ=datai[iJINft; } } 

ScopeSetuplint add~) 
cha~ Str[4BJ; 
strcpyiSt~,":disp:fo~m 2"); 
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ieoutput(add~,st~,12l; I* split sc~een into two parts *I 
st~cpy(St~,":view chan1;:vie~tl chan4"l; 
ieoutputCadd~,st~,23l; . I* view c~annel 1 and channel 4 *I 
st~cpyCSt~,":tim:mode t~ig;del -5.0e-4;~ang 5.0e-3;~ef left"); 
ieoutputCadd~,st~,47l; I* set up the scope ti~e base *j 
st~cpyiSt~,"=t~ig:sou~ chan1;lev 0.4">; 
ieoutputCadd~,st~,25l; · · 
st~cpyCSt~,":chan1:coup ac;offs -400.e-3;~ang 1.6"); 
ieoutputCadd~,st~,32>; I* set up channel 1 sensitivity *I 
st~cpy<St~,":chan4:coup ac;offs -200e-3;~ang 1.6"); 
ieoutputCadd~,st~,32l; I* set up channel 4 sensitivity *I 
st~cpyCSt~,":acq:type no~m;coLtn l;poin 512;comp 100"); 
ieoutput(addr,St~,39l; I* set up the acqui~e subsystem *I 

void ScopeAcqui~e<int add~) 
{ char StrE32J; 

st~cpy ( Str, ":dig chan 1, chan4" l ; 
ieoutput!add~,st~,16l; I* digitize channels 1 and 4 

} 

void SpecDensCdouble ACJ,double BCJ,double ECJ,double SamplRate.int Num) 
{ int ii; 

} 

double AR,AI,BR,BI,C,D,ScaleFactor; 
ScaleFacto~=4.01CSamplRate*<floatlNuml; 

f o~ < i i = 1; i i < =Num; i i ++ l { 
AR=<AEiiJ+AECNum+ll-iiJll2.0; 
AI=CBCiiJ-BCCNum+ll-iiJll2.0; 
BR=CB[iiJ+BE<Num+1l-iiJl12.0; 
BI=CA[iiJ-AECNum+1l-iiJll(-2.0l; 
C=AR*BR+AI*BI; D=AR*BI-AI*BR; 
ECiiJ=ScaleFacto~*sq~t<C*C+D*Dl; } 

void StepMotorCcha~ di~, int counl 
{ 

} 

#define 
#define 

iop~tl 

iop~t2 

int ii; 
outpo~t6Ciop~t2,dirl; 

688 
689 

f o~ ( i i = 1 ; i i < =coun; i i ++ > { 
outportbCioprtl,011l; 
delay <04>; 
outportbCiop~t1,010l; 

delayC04l; } 
outportb(ioprtl,OOOl; 

I* set th~ rlir~rtinn nf rotation 
I* loop until all counts stepped 
I* set the io port bit 0 high 
I* delay for 4 milli-seconds 
I* complete the cycle for a pulse 

1*****************************************~***************************1 
I** **I 
I** 
I** 

START THE MAIN PROGRAM FOR WEB TENSION MEASUREMENT **t' 
**I 



main() 
{ 
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ncy=O; ndel=O; addr=07; 
Fc=lOOO.O; BW=1500.0; Gain=2.0; 
NS=2400; rate=4.0e+5; 

I* address of HP 54501A Dioital Scope*/ 
I* Digital Filter default parameters *' 
I* initial sample number and rate *' 

D50=fopen ( "$DAS50", "r+"); 
if <D50Dutput <"Clear\n")) GetError (); 
ieseg(Oxd000); f* firmware address of IEEE488 code *' 
ieabort<>; iedevclr(addr); 

clrscr() ; I* Use BIDS scroll to cle~r ~rreen *' 
gotoxy<10,3J; I* Set cursor to Row 1. Col 7 *I 
puts<" Program WH1DF- Single Point Measurement- Diaital Filtering\n\n"J 
puts(" This program is for the operation of the tension measurement "); 
puts("system developed through Dr. Richard Lowery of Oklahoma State "); 
pt..tts<"University for the purpose of On-Line Web Tension Analysis. This">; 
puts("program acquires records from a Metrabyte DAS50 A-D board and "); 
puts<"calculates the Cross Correlation and Spectral Density functions "J; 
puts<"for the two signals. This procedure provides a delta T and ''); 
puts("characteristic frequency value which are used to calculate web "); 
puts<"tension through use of the Ribbon Equation, Dioital filterino is"); 
puts("used such that filter parameters may be adjusted by the user to "); 
puts("obtain the best quality signal possible. Default filter parameters" 
puts("are: Filter Gain= 2.0, Filter Center Frequency= 1000Hz, Filter" 
puts("Bandwidth = 1500 Hz.\n\n">; 
puts ("ENTER MATERIAL DENSITY <LBM/ IN-IN>"); 
Geti<BDinfo(3); puts(""); rhoweb=F:temp; 

puts<" POSITIONING OF TRANSDUCER HEAD \n"J; 
puts(" Position the transducer head to the desired intial"J; 
puts<"location through interactive use of this computer. Enter the"): 
puts<"desired adjustment in the form 'Lx>:<cr}' for adjustment Left "); 
puts<"xx inches or 'R>:>:<cr>' for adjustment Riqht x>: inches. l.oJhen "): 
puts("the move is completed, the computer will poll the user as "); 
puts<"follows: Enter 'R<cr>' to readjust or 'C<cr>' to continue, "): 
puts("Entering R will allow repositioning left or right and entering">; 
puts<"C will allow for continuation of this proqram.\n"); 

LlOO: 
puts<" 
puts<" 

Position Adjustment: Enter 'L:·D:<cr>' to move"): 
left or 'R>D:<cr>' to move right \n"); 

Getf<BDinfo < 1); puts (" "); switch (J<ey> { 
case r': /*Digital Output Bit 8 for Direction*/ 
case 'R': dir=Oxdf; break; /*right - D/0-8 set to one for CW rot*/ 
case '1': 
case 'L': dir=Oxde; break; /*left - D/0-8 set to zero for CCW rot*/ 
default: puts<"Invalid Entry Try Aqain\n">: octo L100; 
} 

coun=dist*35.0/(pi*radius>; 
StepMotor(dir,coun>; 

f* Number of Stepoer Motor oulse~ *I 
/*Move the Transducer the amount entered*/ 

L140: 
puts<" Enter 'R<cr>' to readjust or 
Geti<BDinfo<2>; puts<"">; switch(l<ey> 
case 'r': 
case 'R': gcto L100; 
case 'c': 
case 'C': break; 

'C<cr>' to continue \n"): 
{ 

default: pt..tts<"Irivalid Entry- Trv Aoain\n"): nnt-n 114(1! 
} 

f* --------~--------------------------------------------------*/ 
I* Set the DAS-50 to take 2400 samples. alternatinc between *' 
I* Channels 0 & 1, in the Trace-After Trinner mnrle_ Nnt-e 1-hA+*/ 

f* all the following Print statements could be abbreviated *' 
I* and put into one print statement *' 
f*------------------------------------------------------------*1 



if <D500utput <"SEt CHannels=O&l \n")) Get Error() 
if <D500utput<"SEt RAnge=+-5V\n")) GetError() 
if <D500utput<"SEt TRigger Mode=7\n"ll GetError<> 
if <D500utput ("SEt TRig Vol t=O. 7\n")) Get Error () 
if <D500utput ("SEt STart=AFter \n") ) Get Error () 

I* Initialize graphics facility to exhibit an acquired waveform *I 
L250: grdriver=5; grmode=3; 

initgraph<~grdriver,&grmode,""); 

setviewport<0,0,639,349,1); 
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I* Sample and Filter Data Set For Default or Modified Filter Parameters ~ 

L999: clearviewport<l; GetWave(rate,NS>; 
FilterRecord<XDAT,YDAT,rate,65.0,NS>; 

I* draw a grid on the screen *I 
gotoxy<1,0l; lineto (638,0>; lineto <638,260); 
lineto (1,260); lineto <1,Cil; line(1,130.638.130l: 

for (i=O,k=O; i<=240; i+=20l { 
for <k=O; k<=639; k+=20l { 

switch(k) { 
case 80: 
case 160: 
case 240: 
case 320: 
case 400: 
case 480: 
case 560: 
default: 

Pb:el1(); Pb:el2(); break; 
Pixel20; } } } 

put the data traces on the screen in screen coordinates 
for <i=ndel;· i<=<ndel+640>; i++) { 

k=i-ndel; ycoord=<int>XDATCiJ; 
j=65-ycoord; putpi:·:el (k,j,!.); 
ycoord=!int>YDAT[iJ: 
j=195-ycoord; putpi:<el<k,j.U; } 

textheight<&Key>; if <Kev==8> i=2: else i=l: 
settextstyle<O,O,i>; 

I* Present user options for waveform positionino and filterino *I 
outtextxy<1,264,"Press Space Bar to Repeat Process"); 
outte>:b:y<1,276,"Press '1' or 'r' to shift pattern left or rioht"l; 
outte>:b:y<1,288,"Press 'i' or 'd' to increase or decrease sample rate") 
outte>:b:y<1,300,"Press 'f' to alter digital filter center frequency"); 
outte:-:txy<1,312,"Press 'b' to alter digital filte1~ bandwidth"); 
outtexb:y<1,324,"Press 'g' to alter digital filter oain"); · 
outte>:txy<1,336,"F'ress 't' when ready to begin web tension test">: 

L400: Key=getch<>; switch(Keyl { 

I*** Case of Left or Right Waveform Positionino ***' 
case '1 ': 
case 'L': ndel=ndel+40; octo L999: 
case 'r ': 
case 'R': ndel=ndel-20; if (ndel<O> ndel=O; 

else gate L999; break: 

I*** Case of Increase or Decrease of Sample Rate ***I 
case 'i ' : 
case , I , : rate=rate+1.0e+5; temp=rate: ooto L99'9; 
case 'd ': 
case , D,: rate=rate-l.Oe+5; temp=rate; octo L999; 

I*** Case of Space Bar -- Repeat Waveform Viewing ***I 
case ' ': goto L999; 



I*** Case of Digital Filte~ Cente~ F~equencv Adjustment ***I 
case 'f': 
~ase 'F': clea~viewpo~ti>; ~esto~ec~tmode<>: 
gotoxyl10,3l; puts(" FILTER CENTER FREQUENCY ADJUSTMENT \n">: 
puts<"Ente~ 'lxxx' o~ ·~xxx' to adjust the filte~"l: 
puts<"c:ente~ f~equency left o~ ~ight, ~espec:tively,"l; 
puts("by an amount xxx in He~tz\n\n"l: 

L950: GetKBDinfo(ll; switc:h<Keyl { 
case ·~·: 

case 'R': Fc=Fc+dist: qoto L250: 
case '1': 
case 'L': Fc:=Fc-dist: qoto L250: 
default: puts<"Invalid ent~y- t~y again\n">: 

goto L950; } 

I*** Case of Digital Filte~ Bandwidth Adjustment ***I 
case 'b': 
case 'B': clea~viewpo~t<l; ~esto~ec:~tmode<l; 

gotoxyl10,3l; putsi"FILTER BANDWIDTH ADJUSTMENT \n">: 
puts<"Ente~ 'ixxx' o~ 'dxxx' to adjust the filte~">: 
puts("bandwidth inc~ease o~ dec:~ease, ~espectively,"): 
puts<"by an amount xxx in He~tz\n\n"l: 

L1250: GetKBDinfo(ll; switch<Key> { 
case 'i ': 
case 'I': BW=BW+dist: qoto L250: 
case 'd': 
case 'D': BW=BW-dist; qoto L250: 
default: puts<"Invalid ent~y- t~y aqain\n"l: 

goto L1250; } 

I*** Case of Digital Filte~ Gain Adjustment ***I 
case · g': 
case 'G': clea~viewpo~t<l; ~esto~ec~tmode(l: 
goto>:y<10,3>; puts<" FILTER GAIN AD.;JUSTMENT "): 
puts<"Ente~ new filte~ qain specificatinn.\n"l• 
GetKBDinfo<3>; Gain=Rtemp: qoto L250: 

I*** Case of Web Tension Test Desi~ed ***I 
case 't ': 

L1500: 

case 'T': 
default: 
} 

goto L1500; 
puts("'\x7'"l: qoto L400: 

clea~viewpo~t<>; moveto<20.10>: 
outte>:t <"CROSS CORRELATION TEST">; 

I* Set the Scope up fa~ automatic: waveform acquisition *I 
ScopeSetup(addr>; 

I* Select cross correlation shifts and span dependinq on rate *I 
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I* SRdivider divides sample rate down for subsequent Fourie~ analysis *I 

if <rate==2.0e+5l{nco~r=200; nspan=360; NS=1296;SRdivide~=4.0;} 

else if (rate==3.0e+5){ncorr=300;nspan=500;NS=1488;SRdivider=5.0;} 

else if <rate==4.0e+5){ncorr=360;nspan=600;NS=1840;SRdivide~=8.0;} 

else if (rate==5.0e+5l{ncorr=420;nspan=760;NS=2048;SRdivider=10.0;} 

else if <rate==6.0e+5){ncorr=500;nspan=900;NS=2272;SRdivider=10.0;} 

else if (rate==7.0e+5){ncorr=560;nspan=1000;NS=2496;SRdivider=11.0;} 

else if (rate==B.Oe+5l{nc:orr=560;nspan=1000;NS=2496;SRdivider=12.0;} 



else {puts(" Sampling rate selected is not supported \n">; 
goto END; } 

NS and rate ~alues ***I 
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I*** Obtain the data records according to 
GetWave(rate,NS>; ScopeAcquire<addr>; 
FilterRecordCXDAT,YDAT,rate,S.O,NSl; 
GetWave(rate,NS>; 
FilterRecord<X,Y,rate,5.0,NS>; 

/*Perform Digital Filtering*/ 

for <i=1; i<NS/2; i++) { 
I*Averaoe second record with*/ 

/*with first prior to*/ 
/*cross correlation*/ XDATCiJ=XDATCiJ+X[iJ; 

YDAT[iJ=YDATCiJ+YCiJ; } 
Correlate<XDAT,YDAT,X,nspan,ncorr,ndell; /*Perform Correlation*/ 

!********* sort the cross correlation data for plotting 
test=fabs(X[2J); 

*********! 

if(fabs<XC!Jl>test) sl=-1; else sl=1; 
i =2; j=O; k=O; 

L3500: 
i++; if li)=ncorr) goto L4500; 
if <sl>O> goto L3600; else goto L4000; 

L3600: 
if <<XCiJ-test>>=O.O) goto L3700; else octo L3800: 

L3700: 
test=X[iJ; mxptr=i; goto L3500; 

L3800: 
k++; max[kJ=test; maxptr[kJ=mxptr: sl=-1: octo L3500: 

L4000: 
if <<XCiJ-test><=O.O> goto L4100; else octo L4200: 

L4100: 
test=XCiJ; mnptr=i; goto L3500; 

L4200: 
j++; min[jJ=test; minptr[jJ=mnptr: sl=1: octo L3500: 

I* Find absolute maximum and minimum cross correlation values *I 
L4500: totmax=max[1J; mxptr=maxptr[lJ; 

totmin=min[!J; mnptr=minptr[lJ; 
for li=2; i<=k; i++) { 

if ((fabs(max[iJ)-fabsltotmax>><=O.Ol continue: 
else { totmax=max[iJ; 

mxptr=maxptr[iJ; } } 
for li=2; i<=j; i++) { 

if ((fabs(min[i])-fabsltotmin>><=O.O) continue: 
else { totmin=min[iJ; 

mnptr=minptr[iJ; } } 

I* Find span of cross correlation function to aid in plottino *I 
pktopk=fabsltotmax)+fabs(totmin>; 
if (fabsltotmax))=fabs<totmin)) ratio=fa~s(totmaxl/pktopk; 

else ratio=fabs(totmin)/pktopk; delTptr=mxptr: 

I* Establish correlation function referenceline and graphics conversion *I 
reflin=260.0*ratio; conv=200.0/pktopk; movetollO,reflin); 
for (i=l; i<=ncorr; i++) { /*plot reference line*/ 

j=i+10; linetolj,reflinl; } 
ycoord=X[lJ•conv; j=reflin-ycoord; movetoClO,jl; 
for (i=2; i<=ncorr; i++) { 
j=i+lO; ycoord=X[iJ•conv; 
k=reflin-ycoord; linetolj,k); } 

l=reflin+12; moveto<lO,l>; outtextl"l">; 
itoalncorr,DataStr,lO>; moveto(ncorr,l>; 
outtextCDataStrl; period=2.0/rate; 
deltaT=period*delTptr; movetol450,150>; 
itoaldelTptr,DataStr,lO>; 

I* plot the cross •I 
/*correlation function*/ 

outtext<"Max Correlation at">; moveto<450,166); 

/*Provide orachical*/ 
!•view of the cross•/ 

/*correlation*/ 
/*function plus*/ 
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outtext<" Delay Point">; outtext<DataStr>; 
moveto<450,1B6>; gcvt(period,6,DataStr>; 
outtext<"Period for this">; moveto<450,202>; 

/*identified index*. 
/*which is used in*. 

/*Del taT*/ 
outte>:t <" Test is ">; out text <DataStr); 
moveto<450,222>; gcvt<deltaT,6,DataStr>; 
outtext<"Delta T for this">; movetoC450,23B>; 
outtext<" Test is ">; outte>:t<DataStr>; 
moveto<20,330>; outtext<"Press any Key to Continue">; 
getch<>; clearviewport<>; 

I* Sample waveform again at a reduced rate to perform FFT computa- *I 
I* tions to obtain the wave characteristic frequency. Lower sample *I 
I* rate will allow for a higher frequency domain resolution. *I 

moveto<320,40>; outtext<"FOURIER ANALYSIS">; j=l; 
rate=rate/SRdivider; ndel=ndel/(int>SRdivider; NS=160+ndel; 
for <1=1; 1<=7; 1++) { /*Acquire seven records.*/ 
GetWave(rate,NS>; /*Assemble records into*/ 
FilterRecord<X,Y,rate,5.0,NS>; . l*pseudoperiodic*/ 
for Ci=ndel; i<=«14B+ndel>l2>; i++, j++) { /*resultant*/ 

XDAT[jJ=X[iJ; YDAT[jJ=O.O; } } /*record for FFT*/ 

sum=O.O; for (j=l; j<=512; j++) { 
sum=sum+XDAT[jJ; } 

sum=sum/512.0; for (j=1; j{=512; j++) { 
XDAT[jJ=XDAT[jJ-sum; } 

/*Subtract Average*/ 
/*value from each*/ 

/*record point*/ 

I* Use a cosine windowing function to smooth the data ends *I 
for (j=1; j<=25; j++) { 

XDAT[jJ=XDAT[jJ*cos<pi*<1.0-(j-1)/24.0l/2.0>; } 
for (j=4BB; j{=512; j++) { 

XDAT[jJ=XDAT[jJ*cos(pi*<1.0-<512-j)/24.0)/2.0);} 

I* Pad the vector with zeros from 513 to 1024 to double resolution *I 
for (j=513; j<=1024; j++) { 

XDAT[jJ=O.O; YDAT[jJ=O.O; } 

I*** Fourier Transform: XDAT = real vector; YDAT = imacinerv vector ***I 
Fourea<XDAT,YDAT,1024,-1>; 

I** Compute Spectral Density for Fore Microphone Pseudoperiodic Record ** 
SpecDens<XDAT,YDAT,X,rate,1024>; 

test=X[20J; mxptr=20; 
for Ci=21; i<=256; i++) { 

if CX[i J<test> continue; 
test=X[iJ; mxptr=i; } 

/*Identify maximum*/ 
/*Spectral Density*/ 
/*value and index*/ 

pktopk=fabs<test>; conv=260.0/pktopk; moveto(40,300>; 
for Ci=1; i<=256; i++) { 

j=i*2+39; putpixel(j,300,1>; 
ycoord=X[iJ*conv; 1=300-ycoord; 
lineto<j,l>; } 

webfreq=<rate/204B.O>*mxptr; moveto<34,310>; 
outtext<"k=1">; moveto<530,310>; outtext("k=256">; 
gcvt(rate,6,Data5tr>; moveto<1B0,320>; 
outtext<"SAMPLING RATE= ">; outtext<DataStr>: 
outte>:t (" HZ "); temp=rate/2048. 0; 

/*Plot the Spectral* 
/*Density Function* 

gcvt <temp, 6, DataStr >; .moveto <70, 335> ; 
outtext<"FOR 1024 PT FFT: FREQUENCY INCREMENT ">; 
outtext<DataStr>; outtext<" HZ">; 

/*Graphical*/ 
/*display with*/ 

/*support*/ 
/*information*/ 



itoaCmxptr,DataStr,101; moveto<320,601; 
cuttextC" MAX MAGNITUDE AT K ="I; cuttextCDataStrl~ 
mcvetoC320,80l; cuttextC" WEB FREQ = ">; 
gcvtCwebfreq,6,DataStrl; outtextCDataStrl; 
outtext<" HZ "I; getchCl; restcrecrtmcdeCl; clrscrCI; 

kair=2.0*pi*webfreq/cair; 
vel=C2.0/deltaTl; 
kweb=2.0*pi*webfreq/vel; 
temp=kweb*kweb-kair*kair; 
if Ctemp<O.OI {puts("### 

puts<" No Tension Value 

/*Wave Number for Air*/ 
I* Web Phase Speed *I 

/*Wave Number for Web*/ 

BAD VALUE OF DELTAT OR WEBFREQ ###"1: 
Processed">; goto END;> 
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I** Use Ribbon Eqation to Provide Air Loadinc Compensated Tension Value 
Tc=Crhoweb+2.0*rhoair/sqrt(templl*vel*vel/386.0; 

I** Use Membrane Equation to Provide In-Vacuo Tension Estimate **I 
Te=rhoweb*vel*vel/386.0; 

printf(" Characteristic Frequency calculated to be Xf\n\n'',webfrec>: 
printfC" Estimated Membrane Equation Tension= Xf\n\n",Tel; 
printf<" Calculated Ribbon Equation Tension= Xf\n\n",Tcl: 

END: 
} 
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!*********************************************************************! 
'*** Program WHlFC <Fast Correlation> -- Web Handling Program ***I 
'*** to take one record from the pulsing system, perform ***I 
I*** digital filtering on the raw signal, and perform fast ***I 
I*** correlation procedures resulting in a time of fliqht *** 
I*** DeltaT value. A 128 point spectral density is calculated ***; 
I*** based on the original sampled record from which a char- ***/ 
'*** acteristic frequency value Webfreq is obtained. The ***I 
I*** DeltaT and Webfreq results are used in the Ribbon ***' 
'*** equation to yield a Tension value. ***' 
'*********************************************************************' 

#include <stdio.h> 
#include <stdlib.h> 
#include <dos.h> 
#include <graphics.h> 
#include <conio.h> 
#include 
#include 
#include 
#include 
#define 
#define 
#define 

FILE 
char 
int 
int 
int 
int 
int 
int 
double 
double 
double 
double 
double 
double 
float 

pi 
cair 
rhoair 

*D50; 

<alloc. h> 
<string.h> 
<process. h) 
<math.h> 
3.14159L 
13500.0L 
4.373e-5L 

DataStr[64J,Key,dir; 
D50IOFlag,i,j,k,l; 
NS,grdriver,ormode,NumCorr: 
NumDelay,Windo,NumRelMax,NumRelMin: 
RelMaxindx[20J,RelMinindx[20J: 
Itemp,delTptr,SRdivider,reflin: 
AbsMaxindx,AbsMinindx.MaxFrealndx: 
Re1Max[20l,Re1Min[20J,freoincrement: 
rate,sum,deltaT,oeriod,temo: 
vel,Tc,Te,webfreq,kair,kweb,Fc,BW,Gain: 
rhoweb,X[260J,Z[260J,RXYC260J,AbsMax: 
XDATC1250J,YDATC1250l,WindoVal,AbsMin: 
MaxFreq; 
dist,Rtemp; 

int SEG<int far *Var> 
{ unsigned seg; 

seg=FP_SEGCVar>; 
return Cseg>; 

} 

int OFF(int far *Var> 
{ unsigned offs; 

offs=FP_OFFCVar>; 
return (offs); 

} 

int D500utput(char *Str> 
C if<D50IOFlag) { rewind<D50>; D50IOFlag=O; } 

if (fprintf<D50,"/.s",Str> == EOF> return(!); 
if (fflush<D50) == EOF> return<l>; 
return <O>; 

} 

int D50InputintCint *Int> 
{ char Str[16J; 

} 

if (!050IOFlag> { rewind(D50>; D50IOFlao=1: l 
if (!fgets<Str,16,D50>> return<l>: 
if (sscanf(Str,"/.d",Int> != 1> return(ll: 
return (Q); 



int D50InputStr<char *Str> 
{ if (!050IDFlag> { rewind<D50>: D50IOFlan=1~ } 

if C!fgets<Str,32,D50)) return(ll: 
return CO>; 

} 

void GetError<> 
{ i nt EN; 

} 

char Str C48J; 
clrscr() ; gotoxyC6,27>; puts("\7">; 
if CD50InputintC&EN>>; 
if CD50InputStr(DataStr>>; 
if <D50InputStr<Str>>; 
printfC"Driver Error Has Occurred ! !\n\n"l; 
printf("DAS-50 Error Number=> 'l.d\n\n".EN>: 
printfC"Error => 'l.s\n\n",Str>; 
printf<"Dn Command Line of => 'l.s\n\n".Datastt->: 
e:{ it < 1 l ; 

void Pi;:el1() 
{ putpb:el Ck ,i, 1l; j=i+5: putpixel <k. i. 1) • 

j=i+lO; putpi>:el<k,j.1): j=i+15: OLitoixel Ck.L1l• 
} 

void Pi>:el2 () 
{ 

} 
putpi;:el <k,i, 1>: j=k+lO: outoi>:Pl l i .i .1 l • 
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void FunctMa>:MinVals<double F[J,int Num.int *Nmax.int *Nmin.int inrll 
I*** Subroutine to find Ma>:imum and Minimum Values of a Function ***/ 
{ double Ftest; 

L 1: 

L2: 

} 

int ma>:,min,m>:indx,mnindx,slope,kk: 
if Cind==2l Num=Num/2; I* Scan Half FFT Values *' 
max=O; min=O; /*Scan all Correlation Values*/ 
if <FE 1 J<O. 0 8t.8t. FC2J<O. O> { 

if <FC1J<=FC2Jl {slope=!; min++; 
Re1Min[1J=F[1J: RelMinlnd>:[lJ=min: 
else { slope=-1; rna>:++: 
Re1Ma>:[1J=FC1J: RelMa>:Ind>:[lJ=ma>:= 

if ( F [ 1 J >O. 0 M< FL 2 J >O. 0 l { 
if <FE1J>=FC2Jl { slope=-1: rna>:++: 

RelMax[lJ=F[lJ; RelMaxind>:[lJ=max: 
else { slope=l: min++: 
RelMinC1J=F[1J; Re1Minlnd>:[1J=min: 

if <FC1J>O.O && FC2J<O.Ol { slope=-1: max++: 
Re1Max[1J=FE1J: Re1Maxlndx[1J=ma;:: 

if CFE1J<O.O && FC2J>O.Ol { slooe=l: min++: 

kk=2; Ftest=FClJ; 
whi 1 e .< kk<Num> { 

RelMin[lJ=F[lJ: RelMinlndxClJ=min: 

kk++; if (slope>Ol goto Ll: else octo I?• 

if < (F[kkJ-Ftestl >=O.Ol 
m;:ind>:=kk: conti n11,.., 1· 

else { max++; RelMax[maxJ=Ftest: 
RelMaxind>:[ma:-:J=m>:ind>:: slooe>=-1• rnn+-;,...,..,.. 1-

if <<FCkkJ-Ftestl<=O.Ol 

else { min++: Re1Min[min1=Ft,..~t• 

RelMinlnd>:[minJ=mnind>:: s]nnP=1• rnn+-iru•=• 1. 

} 

*Nmax=max; *Nmin=min: 

} 

1- 1· 

} 

} } 

} 

} 
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void PlotCorrldouble ACJ,int Num,int NumMax,int NumMin,double •AbsMax, 
int *AbsMaxindx,double *AbsMin,int *AbsMinindx,int *RefLine) 

I*** Suboutine to plot the Cross Correlation Function ***I 
{ double ratio,pktopk,conversion; 

double totmax,totmin.mxindx,mnindx: 
int ii,jj,kk,reflin; 
totmax=RelMax[lJ; mxindx=RelMaxindx[lJ: 
totmin=RelMin[lJ; mnindx=RelMinindx[lJ: 
if <NumMax<21 goto Ll; 
for Cii=2; ii<=NumMax; ii++l { 

if <RelMaxCiiJ>totmaxl 
{ totmax=RelMaxCiiJ; mxindx=RelMaxlndx[iiJ: } } 

Ll: if <NumMin<2> goto L2; 
for (ii=2; ii<=NL\mMin; ii++) { 

if <RelMin[iiJ<totminl 
{ totmin=RelMin[iiJ; mnindx=RelMinindx[iiJ: } } 

L?· pktopk=fabs<totmaxl+fabsltotminl: 
if <pktopk==O.OI { puts<"pktopk =zero">: 

ratio=0.6; pktook=l.O: octo L3: } 
if <fabs<totmax>>=fabs<totminl) ratio=fabsltotmaxl/oktook: 

else ratio=fabs<totminlloktook: 
L3: reflin=<intl 1320.0*ratiol; 

conversion=260.0/pktopk; 
*AbsMax=totmax; *AbsMaxlndx=mxindx: 
*AbsMin=totmin; *AbsMinindx~mnindx: 
*RefLine=reflin; movetollO,reflinl: 
for < i i = 1 ; i i < =Num; i i ++I { 

} 

jj=ii+10; lineto(jj,reflinl: } 
jj=reflin-<int> <AUl*conversionl: moveto<10, i il: 
for ( i i =2; i i < =Num; i i ++) { 

jj=ii+lO; 
kk=ref 1 in- ( i nt) IACi i ]*conversion) : 
lineto(jj,kkl; ) 

void PlotSpectldouble ACJ,int Num,double *AMax,int *AM~wTnrlwl 

I*** Subroutine to plot the Spectral Density function ***I 
{ double pktopk,test.conversinn: 

} 

int slooe.mult.ii.JJ.ll: 
if 1Num==641 mult=16; else if <Num==1281 mult=B: 
else if <Num==2561 mult=4; else if <Num==5121 mult=2: 
else if 1Num==10241 mult=l; test=AC1J: 
for lii=2; ii<=Numl2; ii++l { 

if IACi i J<testl continue: 
else { test=ACiiJ; ll=ii; } } 

pktopk=fabsltest>; if lpktopk==O.OI { conversion=l.O: ) 
conversion=250.0/pktopk; 
*AMax=pktopk; *AMaxindx=ll; 
moveto<40,300I; 
for < i i = 1 ; i i < =Num I 2 ; i i ++ I { 

jj=i i*mul t+39; putpi>:el (jj .300.1 I; 
11=300-lintl IA[ii]*conversion>: 
lineto(jj,lll; } 

void GetKBDinfolint Indl 
{ 

} 

char *Str ,buffer[ lOJ: 
bLiffer [OJ=lO; 
for (i=l; i<=9; i++) { buffer[iJ=O:} 
Str=cgetslbufferl; switchllndl { 
case 1: sscanf<Str,"'Y.lc'Y.f",&Kev.~cdistl: br,.~k~ 

case 2: sscanf(Str,"'Y.lc".M<ev>: break: 
case 3: sscanf<Str,"'Y.f".~<Rtemo>: break: 
case 4: sscanf <Str, "'Y.d" ,l!cltemp): break: 
} 



void Zero(double ACJ,int Num> 
{ int ii; 

for ( i i = 1; i i < =Num; i i ++) { 
ACiiJ=O.O; } 

} 

void GetWave(double SamplRate,int Num) 
Status; { 

} 

int 
char outstr C48J; 

Set the Number of Samples 
sprintf(outstr,"SEt SAmples= Xd\n".Num); 
if <D50Dutput(outstr)) GetError<>; 

I* Set the On Board Memory Address *I 
sprintf<outstr,"SEt ADdress= 000\n"l; 
if <D500utput<outstrll GetError(); 

I* Set the SamplinQ Rate *I 
sprintf<outstr,"SEt RAte= Int Xe\n",S.:~mnlR.=~h:ol~ 

if <D500utput<outstrll GetError(); 
I* Acquire the Record *' 

if CD500utpL\t("ACQuire\n")) GetErrnrCl: 

Status=O; I* initializE" c:;t.:~h•"" inrlir-.:>t-n.- ,.., 
do { if <D500utput ("GEt STatus\n") l RPt.Frrnr C l; 

if(D50Inputlnt<&Status)) RPtFrrnrCl~ l 

while «Status & 0>:10) != Ox10): 
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void FltrRecord<double ACJ,double BCJ,flo~t R.:~mnlR.:~tP.fln.=~t c:;r.:~lP.int Num) 
{ i n t i i , j j , D [ 2500 J ; 

char outstr[48J; 
double cx,cyO,cyl,cy2; 
double orod,T,fl,f2,f3,f4; 

I* Set the Memory Address *' 
spt-intf(outstr,"SEt ADdress= Xd\n".OOOl: 
if<D500utput<outstr) != 0) GetError<>: 

I* Transfer Data to RivPn VPr-tnr */ 
sprintf(outstr,"TRAnsfer Xd Xd Xd /.d\n",SEG<D>.DFF<Dl.Num.ll: 
if (D500utput<outstr) != 01 GetErrorO: 

I* Define Bandpass Filter parameters and first two Filtered Data Values 
T=2.0/Samp1Rate; prod=pi*Fc*T: 
cyO=l.O+pi*T*BW+prod*prod; cv1=2.0*<1.0-orod*orodl: 
cy2=-1.0+pi*T*BW-prod*prod; cX~Pi*Gain*T*RW~ 
ACOJ=cx*<scale*D[OJ/2048.011cy0; 
BCOJ=cx*<scale*D[1JI2048.0llcv0: 
AC1J=<cx*<scale*D[2JI2048.01+cvl*A[OJl/rvO: 
BC1J=(cx*<scale*D[3JI2048.0l+cvl*Rroll/rv0: 

I* Filter remaining input data resultinq in A[J and B[J Filtered Data *I 

} 

for ( i i =4 , j j =2; i i < Num; i i +=2. j i ++) { 
fl=scale*D[ii-2112048.0: 
f2=scale*DCii-1JI2048.0: 
f3=scale*DCiiJ/204B.O: 
f4=scale*D[ii+1JI2048.0: 
ACjjJ=<cx*(f3-fll+cyl*A[jj-1J+cv2*A[jj-2JIIcvO: 
BCjjJ=<cx*(f4-f2l+cvl*B[ji-1J+cv2*B[ii-2JllcvO: } 

void Fourea<double datar[J,double datai[J,int Nft,int sian) 
{ int mmax,istep,m; 

double tempr,tempi,wr,wi.theta: 

perform the bit reversal *' 
j=l; for <i=l; i<=Nft; i++) { 

if ((i-ji<Ol goto LlO; 
else goto L20~ 



LlO: 

L20: 

L30: 

L40: 

L50: 

L70: 

} 

{ temp~=data~[jJ; tempi=datai[j]: 
data~[jJ=data~[iJ; datai[jJ=datai[iJ: 
data~[iJ=temp~; datai[iJ=temoi: } 

m=Nft/2; 

if ((j-mi<=OI goto L40; 
j-=m; m=<m+11/2; Qoto L30; 

j+=m; } 

compute the butterflies 
mm<n:=1; 

if <<mmax-Nfti>=OI goto L70; 
i step=2*mma>:; 
fo~ <m=l; m<=mma>:; m++l { 

theta=pi*sign*<m-11/mmax; 
w~=cosCthetal; wi=sin(thetal; i=m; 
wh i 1 e < i < =Nf t I { 

j=i+mmax; 
temp~=w~*datar[jJ-wi*datai[JJ: 

tempi=w~*datai[jJ+wi*data~[jJ: 

data~[jJ=data~[iJ-temp~: 

datai[jJ=datai[iJ-tempi; 
data~[iJ=data~[iJ+temp~: 

datai[iJ=datai[iJ+tempi; 
i+=istep; } } 

mmax=istep; goto L50; 

if (sign>O> { f o~ ( i = 1 ; i < =Nf t ; i ++I { 
data~[iJ=data~[iJ/1.0; 

datai[iJ=datai[iJ/1.0; } ) 
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void SpecDens(double A[J,double B[J,double EEJ.doublP. s~mnlR~tP.int Numl 
{ int ii; 

} 

double AR,AI,BR,BI,C,D,ScaleFactor: 
ScaleFacto~=4.0/(Samp1Rate*(floatiNuml; 

f o~ ( i i = 1 ; i i < =Num; i i ++I { 
AR=CA[iiJ+A[CNum+ll-iiJI/2.0: 
AI=<B[iiJ-BECNum+ll-iiJI/2.0; 
BR=(B[iiJ+B[CNum+ll-iiJI/2.0: 
BI=!A[iiJ-A[!Num+ll-iiJl/1-2.01: 
C=AF:*BR+f; I *B I; 
D=AF:*BI-AI*BR; 
E[iiJ=ScaleFacto~*sq~tCC*C+D*Dl: } 

I* Smooth the Spectral Density Function *I 
A[1J=0.5*<EE1J+E[2JI; 
A[NumJ=0.5*<EENum-1J+E[NumJI: 

f o~ ( i i =2; i i < =Num-1 ; i i ++I { 
AEiiJ=0.25*<E[ii-1J+E[ii+1JI+0.5*EEiiJ: } 

for ( i i = 1 ; i i < =Num; i i ++I { 
E[iiJ=A[iiJ; } 

void Co~relate(double AEJ,double B[J,int Delay,int Nco~~~ 
{ int TwoNco~~,ii,jj,kk; 

double CE1030J,D[1030J,ScaleFacto~.Real,Imaa: 

TwoNco~r=2*Nco~r; 
fo~ (jj=l,ii=Delay; jj<=Ncor~; ii++,jj++) { 

CEjjJ=AEiiJ; D[jjJ=BEiiJ; } 
fo~ (jj=Nco~r+l; jj<=TwoNcor~; jj++) { 

C[jjJ=O.O; D[jjJ=O.O; } 
Ze~o<A,TwoNco~rl; 



Fourea<C,A,TwoNcorr,-1>; 
Zero<B,TwoNcorr>; 
FoureaCD,B,TwoNcorr,-1>; 
for Cii=1; ii<=TwoNcorr; ii++) { 

Real=C[iiJ*D[iiJ+A[iiJ*B[iiJ; 
Imag=C[iiJ*B[iiJ-A[iil*D[iiJ; 
C[iiJ=Real/Cfloat>Ncorr: 
D[iiJ=Imaq/(float>Ncorr: l 

Fourea<C,D,TwoNcorr,l>: 
for (ii=l; ii<=Ncorr; ii++) ( 
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I* ScaleFactor=(float)NcorriCCfln~t)N~nrr~1 n-f~lM~+-\44\. ~• 

ScaleFactnr=Cfln~+-\N~n.-r~1 n_,~,--••••-

} 

A[i] 1=Rr~l~~~~•n.-~rr;4,• 
B[iiJ=Rr~l~F~~•n.-~nr44,• 

A[ii]=r.rii11~r~la~~~•nr• 

B[iiJ=Drii11~~~1a~~~+nr• ' 

~I 

float 
I*** 
{ 

Window<int Wtvpe,int 
Subroutine to allow 

int 

Num,int Index> 
for variable data windnwinn 

L: 
***' 

float windoval: 
windoval=O.O; 
if CWtype<1 :: Wtype>6> qoto END: 
if Clndex<1 :: Index>Num> qoto END: 
windoval=l.O; 
if CWtype==1) goto END; f* R~rt~nn11l.:or 1•14nrln~oo ~/ 

if <Wtype==2> { L=<Num-2>110; 
if (Index<=L> f* T~n~r~rl P~~t Winrlnw ~/ 

windoval=O. 5* < 1. 0-cos (Pi* (float> Index/ (float> ([ +1))) .: 
if <Index><Num-L-2>> 

wi ndoval =0. 5* ( 1. 0-cos (oi * ( f 1 n~t) CN11m- T nrlav -1 \ 1 1 ~ 1 "·"•' r1 ~ 1 ' ' ' • ' 
if (Wtype==3) f* Tri ~nn11l ~r l&li nrln••• ~/ 
windova1=1. 0-fabs ( 1. 0- (float) C?*Tnrl~Y.) I 1+1 n~+ \ 1\111m\ • 
if <Wtype==4) I* H~nninn Winrlnw ~/ 
wi ndoval =0. 5* ( 1. 0-cos (pi* ( f 1 oat) ( 2* T nrl~Y. ) I C + 1 n~+ \ 1\h om\ \ ~ 
if <Wtype==5> I* Hamminc Window *I 
windoval=0.54-0.46*cos(pi*(float) <2*Index)/(fln.=~tlN11m): 
if CWtype==6> I* Blackman Window *I 
windoval=0.42-0.5*cos(pi*Cfloatl C2*Index)/(float>Numl 

END: 
} 

+O.OB*cos(pi*(floatl C4*Index)/(float>Num>: 
return(windoval>; 

!*********************************************************************! 
I** **I 

START THE MAIN PROGRAM FOR WEB TENSION MEASUREMENT 

!*********************************************************************! 

main() 
{ 

Fc=1000.0; BW=1500.0; Gain=2.0; 
NumDelay=O; NS=2400; rate=4.0e+5; 

I* Diqital Filter default oarameters 
I* initial sample number and rate 

D50=fopen < "$DAS50", "r+" >; 
if<D500utput("Clear\n">> GetErrorC>; 

clrscr<> ; I* Use BIOS scroll to clear screen *I 
gotoxy<10,3>; I* Set cursor to Row 1, Col 7 *I 
puts<" Program WHlFC - Single Point Measurement - Fast Correlation\n\n 
puts(" This program is for the operation of the tension measurement"> 
puts("system developed through Dr. Richard Lowery of Oklahoma State">: 
putsC"University for the purpose of On-Line Web Tension Analysis. This 
puts<"program acquires one record from a Metrabyte DAS50 A-D board.")• 
putsC"Fourier transform techniques are used to calculate the Cross "); 
puts<"Correlation function and Spectral Density function for the data") 
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puts<"record. This procedure provides delta T and characteristic">; 
puts("frequency values which are used to calculate web tension throuch" 
puts<"use of the ribbon equation. Digital filtering is used where">; 
puts("filter parameters are user adjustable to allow for optimal sicnal' 
puts("quality. Default filter specifications are: Filter Gain = 2.0," 
puts<"Filter Center Frequency= 1000 Hz, Filter Bandwidth= 1500 Hz.\n\n 
puts<"ENTER MATEF:IAL DENSITY <LBM/IN-IN> "); 
GetKBDinfo(3>; puts<"">; rhoweb=Rtemp; 
puts<"Enter type of window to use">; 
GetKBDinfo<4>; puts("">; Windo=Itemp; 

I* -----------------------------------------------------------*1 
I* Set the DAS-50 to take 2400 samples, alternatinc between *I 
I* Channels 0 & 1, in the Trace-After Trigger mode. Note that*/ 
I* all the following Print statements could be abbreviated *I 
I* and put into one print statement *I 
1*------------------------------------------------------------*l 

I*** 
L250: 

if <D500utput <"SEt CHannel s=0&1 \n")) Get Error < > ; 
if <D500utput ("SEt RAnge=+-5V\n" > > GetError < > ; 
if <D500utput<"SEt TRigger Mode=7\n">> GetError() 
if <D500utput("SEt TRig Volt=0.2\n">> GetError<> 
if (D500utput<"SEt STart=AFter\n">> GetError() ; 

Initialize graphics facility to exhibit an acquired waveform 
grdriver=5; grmode=3; 
ini tgraph <&grdri ver ,l!cgrmode, ""); 
setviewport<0,0,639,349,1>; 

***I 

I* Sample and Filter Data Set for Default of Modified Filter Parameters ~ 

L999: clearviewport<>; GetWave<rate,NS>; 
FltrRecord<XDAT,YDAT,rate,65.0,NS>; 

I* draw a grid on the screen *I 
gotoxy<l,O>; lineto <638,0>; lineto <638,260); 
lineto <1,260>; lineto <1,0>; line<1,130,638,130); 

for <i=O,k=O; i<=240; i+=20) ( 
for <k=O; k<=639; k+=20> { 

switch Od { 
case 80: 
case 160: 
case 240: 
case 320: 
case 400: 
case 480: 
case 560: 
default: 

Pixel10; Pixel2<>: 
Pixel2<>; ) ) 

break; 
} 

I* put the data traces on the screen in screen coordinates *I 
j=65-<int>XDAT[NumDelayJ; putpixel<1,J,1>; 
for <i=<NumDelay+1>; i<=<NumDelay+640l; i++) ( 

k=i-NumDelay; j=65-(int>XDAT[iJ; putpixel<k,J,1>; } 
j=195-<int>YDAT[NumDelayJ; putpixel(l,j,!); 
for (i=<NumDelay+l>; i<=<NumDelay+640>; i++) { 

k=i-NumDelay; j=195-(int>YDAT[iJ: outoixel(k.i.l>: } 

textheight<&Key>; if <Key==8> 1=2; else i=1; 
settextstyle<O,O,i>; 

outtextxy<1,264,"Press Space Bar to Repeat Process">; 
outtexb:y<1,276,"Press '1' or 'r' to shift pattern left or richt">: 
outte>:t>:y(1,288,"Press 'i · or 'd' to increase or decrease sample rate" 
outte;-:b:y<1,300,"Pres;s 'f' to alter digital filter center +requPncy":>; 
outte;-:b:y(l,312,"PJ-·ess 'b' to altet- di;;:ital ·filter band~o>Jidth":O; 

outte:-:b:y<1,324,"Press "g to alter digital filter qain"): 
outte>:txy<1,336,"Press 't' when ready to begin web tension test">; 



L400: Key=getchll; switch<Keyl { 

I*** Case of Left o~ Right Wavefo~m Positioninq ***I 
case '1 ': 
case 'L': NumDelay=NumDelay+40; octo L999; 
case ·~ ·: 
case 'R': NumDelay=NumDe.lay-20: 

i~ CNumDelay<Oi NumDelav=O: 
else goto L999; b~eak; 

I*** Case of Inc~ease o~ Dec~ease of Sample Rate ***I 
case . i ' : 
case , I , : ~ate=~ate+1.0e+5; go to L999; 
case . d.: 
case 'D,: ~ate=~ate-1.0e+5; go to L999; 

I*** Case of Space Bar -- Repeat Waveform Viewinq ***' 
case ' ': goto L999; 

I*** Case of Digital Filter Cente~ Frequency Adjustment ***I 
case 'f': 

L950: 

case 'F': clea~viewpo~t<l; ~esto~ec~tmodell: 

goto>:y(10,3l; pLltsl" FILTER CENTER FREQUENCY ADJUSTMENT \n"l; 
putsi"Enter 'lxxx' o~ ·~xxx' to adjust the filte~">: 
putsl"center frequency left or right, respectively,">; 
putsC"by an amount xxx in Hertz\n\n">; 
GetKBDinfolll; switchiKeyl { 

case ·~·: 

case 'R': Fc=Fc+dist; goto L250; 
case '1 ·: 
case 'L': Fc=Fc-dist; goto L250: 
default: pLltsi"Invalid entry - t~y again\n"l: 

goto L950; } 

I*** Case of Digital Filte~ Bandwidth Adjustment ***' 
case 'b': 
case 'B': clearviewpo~t<>; ~estorecrtmode<>; 
gotoxyl10,3>; putsi"FILTER BANDWIDTH ADJUSTMENT \n"l: 
puts<"Enter 'ixxx' or 'dxxx' to adjust thP ftl•Pr"): 
puts<"bandwidth increase or decrease. resoectivelv."l: 
putsl"by an amount xxx in Hertz\n\n">: 

L1250: GetKBDinfolll; switch<Keyl { 
case 'i ': 
case 'I': BW=BW+dist: qoto L250: 
case · d ': 
case 'D': BW=BW-dist; goto L250: 
default: puts<"Invalid entry- try aqain\n">: 

goto L1250; } 

'*** Case of Digital Filter Gain Adjustment ***' 
case 'g ': 
case 'G': clearviewport<>; restorecrtmodp(): 
gotoxy<10,3l; puts<" FILTER GAIN ADJUSTMENT"); 
putsi"Enter new filter qain specification.\n">: 
GetKBDinfol3l; Gain=Rtemp; goto L250; 

I*** Case of Web Tension Test Desired ***' 
case 't ': 
case 'T': 
default: 
} 

goto L1500; 
putsl"'\>:7'"1; goto L400; 
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'*** Set cross correlation shifts NumCorr dependino on sample rate ***' 
L1500: clearviewportll; 

if Crate==2.0e+5) { SRdivider=B; NumCorr=256: NS=1296; } 



if <rate==3.0e+5l { SRdivider=12; NumCorr=512; NS=1600; 

if (r-ate==4.0e+5) { SF:di vi der-=16; NumCorr-=512; NS=2043~ 

if (rate==5. Oe+5) { SF:d i vi det-=20; NumCorr=512; NS=2496; 

if Crate==6. Oe+5) { SRdivider-=24; NumCorr=512; NS=2496; 

if Crate>=7.0e+5l { clearviewportCl; restorecrtmode<l; 
puts<"Sampling rate selected is not supported\n"l; 

goto ProgEnd; } 

} 

-, -
' J 

} 

**** Obtain the data record according to NS and rate values ****I 

GetWave<rate,NSl; 
FltrRecordCXDAT,YDAT,rate,5.0,NS>; j=l; 
for <i=l; i<=NS/2; i+=SRdivider,j++) { 

WindoVal=WindowCWindo,64,jl; 
X[jJ=WindoVal*XDATCiJ; } 

/*Acquire Data*/ 
/*Filter- Record*/ 

/*Apply Windowing*/ 

CorrelateCXDAT,YDAT,NumDelay,NumCorrl; /*Correlate*/ 
FunctMaxMinValsCXDAT,NumCorr,&NumRelMax,&NumRelMin,ll; 
PlotCorr-CXDAT,NumCorr,NumRelMax,NumRelMin,&AbsMa~, 
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&AbsMaxlndx,&AbsMin,&AbsMinindx,&r-eflinl; /*Plot Corr-elation*/ 
l=reflin+12; moveto<lO,ll; outtext<"l"l; 
itoaCNumCorr,DataStr,lOl; moveto(NumCorr,ll; 
outtext<DataStrl; period=2.0/rate; j=10; 
for (i=l; i<=NumRelMax; i++) { 

moveto <440, j); outte>:t < "Rel Max Val at"); 
itoa<RelMaxindx[iJ,DataStr-,10l; 
moveto<570,jl; outtext<DataStr>; j+=12; } 

for <i=l; i<=NumRelMin; i++) { 
moveto<440,jl; outtext<"Rel Min Val at">; 
itoa<RelMin!ndxCiJ,DataStr,lO>; 
movetoC570,jl; outtext(DataStrl; j+=12; } 

/*Gr-aphical Display*/ 
/*which notes max*/ 

/*and min values of*/ 
/*Cr-oss Correlation*/ 

/*function*/ 

itoa(AbsMax!ndx,DataStr,lO>; 
deltaT=period*(floatlAbsMax!ndx; 

f*DeltaT value based on* 
/*Maximum Correlation value* 

moveto<20,324l; outtextC"Ma>: Correlation at Delay Point "l; 
outtext(DataStrl; moveto(360,324l; qcvt<period,6,Data5trl; 
outte>:t <"Sample Period = "l; OLtttext <DataStrl; 
moveto<560,324l; outtextC"sec."l; movetoC20,336l: 
gcvt<deltaT,6,DataStrl; outtext<"Delta T for this Test is "l; 
outtext<DataStrl; movetoC380,336l; 
outtext<"Press any Key to Continue">; getchO; 

* Sort through the Upstream Microphone waveform record to achieve *I 
* a reduced sample rate record for FFT processing. Obtain the *I 
* web characteristic frequency from the resultant Spectral Density *I 
* Lower sample rate allows for higher frequency domain resolution. *I 

rate=rate/((floatl5Rdivider*2.0l; 
freqincrement=rate/128.0; j=l; 
sum=O.O; for Cj=l; j(=64; j++l ( sum=sum+X[jJ; } 
sum=sum/64.0; 
for (j=l; j(=64; j++l { X[jJ=X[jJ-sum; } 
for- < j =65; j < = 128; j ++ l { X [ jJ =0. 0; } 

Zero<Z,12Bl; Fourea<X,Z,128,-1>; 
SpecDens<X,Z,RXY,rate,12Bl; 
clearviewport<l; 
PlotSpect<RXY,12B,&MaxFreq,&MaxFreqindxl; 
movetoC34,310l; outtextC"k=l"l; movetoC520,310l; 

/*Compute record*/ 
/*average and*/ 

/*subtract from*/ 
/*each point*/ 

/*Compute Spectral*/ 
/*Density function*/ 

outtextC"k=64''l; gcvt<rate,6,DataStrl; /*Graphical Disclav*/ 
moveto(180,320>; outtextC"SAMPLING RATE= "l; /*with support*/ 
oLtt text <DataStr) ; outtext (" HZ "l ; I *i nf ormation*/ 



gcvt(freqincrement,6,DataStr>; moveto(70,335>; 
outtext<"FOR 128 PT FFT: FREQUENCY INCREMENT= ">: 
outte>:t <DataStr > ; out text (" HZ "); 
webfreq=(float>MaxFreqlndx*freqincrement: 
itoa<MaxFreqlndx,DataStr,lO>; 
moveto<350,60>; outte>:t<"K = "); 
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/*Frequency value*/ 
f*<=md enter. *I 

outtext<DataStr>; moveto(420,60>; 
gcvt<webfreq,6,DataStr>; outte>:t(" : FREQ = ">; 
outtext!DataStr>; outtext(" HZ ">; moveto(350,100>; 
outte>:t("Enter Web Freq Value">; GetKBDinfo(3); 
webfreq=Rtemp; restorecrtmode<>; 

kair=2.0*pi*webfreq/cair; 
vel=(2.0/deltaTl; 
kweb=2.0*pi*webfreq/vel; 
temp=kweb*kweb-kair*kair; 

/*Wave N11mhPr .fnr Air*/ 
/*Web Phase Speed*/ 

if (temp<O. Ol {puts ( "### BAD VALUE OF DEL TAT OR WEBFREC! ###" l: 
puts(" No Tension Value Processed">: goto ProgEnd; } 

sum=rhoweb+2.0*rhoair/sqrt<temp>; 

f**Use Ribbon Equation to Provide Air Loading Compensated Tension Value*/ 
Te=rhoweb*vel*vel/386.0; 

I** Use Membrane Equation to Provide In-Vacuo Tension Estimate **I 
Tc=sum*vel*vel/386.0; 

printf(" Characteristic Frequency calculated to be Xf\n\n''.webfreql; 
printf(" Estimated Membrane Equation Tension= Xf\n\n",Te>; 
printf(" Calculated Ribbon Equation Tension= Xf\n\n",Tc>: 

ProgEnd:; 
} 



APPENDIX F 

COMPUTER PROGRAM LISTINGS FOR MULTI-POINT/ 

PROFILE TENSION MEASUREMENTS 

274 



?.75 

f*******************************************************************l 
f*** Program WH3DF <Digital Filtering> -- Web Handling Program ***I 
I*** to take records from the pulsing system, perform diaital ***/ 
I*** filtering on the raw signal, and calculate a t1m~ of ***' 
I*** flight DeltaT value for the record. Additional records ***' 
f*** are similarly acquired at a reduced sample rate, formed ***I 
I*** into a pseudoperiodic record, upon which the Spectral ***I 
I*** Density function is calculated, resulting in a Character- ***f 
I*** istic Frequency value. DeltaT and Characteristic Free. ***I 
I*** are converted to tension through the Ribbon Equation. A ***' 
f*** A graphical summary of the Tension Profile for a weh ***' 
I*** span is provided by the program. ***' 
!*******************************************************************' 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define 
#define 
#define 
#define 

FILE 
char 
int 
int 
i nt 
int 
int 
double 
double 
double 
double 
int 
double 
double 
double 
div_t 
float 

rhoair 
cair 
radius 
pi 

int SEG<int far- •Varl 

•D50; 

<stdio.h> 
<stdlib.h> 
<dos.h> 
<ar-aohics.h> 
<str-ina.h> 
<alloc.h> 
<math. h> 
<orocess.h> 
<conio.h> 

4.373e-5L 
13500.0L 
1.25 
3.14159L 

DataStr-[48J,Kev~ 

I* lhm/in-rllhl"rl */ 
I* in/sec *' 
l•tr.::~vl"rc:;.l" nl".::~r r.=~rli""'*/ 

i,j,k,l,dir-,coun.instr: 
sl,NS,qrdriver,armode: 
ndel,fdel,nsoan.r-eflin.m.=~vinrll"v• 

ycoor-d,xcoor.xsum.intind.FNR! 
ncy,cycles,ncor-r.D50JnFl.::~n.TtPmn= 

Tmax,Tmin,r-howeb,frate.rate: 
r-efedqe,totmax,vel.f2.f3: 
conv,period,deltaT,Tens.Tcalc.temn: 
webfreq,T,webwidth,transvel .trvl"l .TPnc:;..=~vn= 
maxptr[20J,xcoord[10J.deltaXC10J: 
max[2(1J,Tension[10J,Fc.BW.R.=~in.RRrlivirl,.r• 

X[1250J,Y[1250J,XDATC1250J.YDAT[12501= 
test,kweb,kair,sum: 
del w; 
dist,Rtemp: 

{ unsigned seg; 
seg=FP_SEG<Var-l; 
r-eturn(segl; 

} 

int OFF<int far- •Var) 
{ unsigned offs; 

offs=FP_OFFCVar-l; 
return(offsl; 

} 

int D500utput<char- •Str-) 
{ if(D50IOFlagl {rewind<D50l; D50IOFlaa=O: l 

if(fprintf<D50,"/.s",Str-l==EOF> r-etllrn(1)= 
if(fflush<D50>==EDF> r-etur-n<l>: 
return <0); 

} 



int D50InputintCint *Int) 
{ char TmpStr(32J 

} 

ifC!D50IOFlagl {rewindCD50l; D50IOFlaa=1: } 
if(!fgets<TmpStr,32,D50ll returnlll; 
if(sscanf<TmpStr,"%d",Intl != 11 return<ll: 
return CO); 

int D50InputStr<char *Str> 
{ if C!D50IOFlagl {rewindCD50l; D50IOFlaa=1:} 

if ( 1 fgets<Str,32,050ll return(!): 
return CO>; 

} 

void Get Error ( > 
{ int EN; 

} 

char Str[48J; 
restorecrtmode<>; clrscr<> 
goto>:yC6,27); puts("\7"); 
ifiD50Inputint<&ENll; 
if(050InputStrCStr>>; 
ifCD50InputStrCDataStrll; 
puts(" Driver Error Has Occurred ! !">; 
printf(" DAS-50 Error Number=> /.d\n",EN>; 
printf(" Error=> /.s\n",DataStrl; 
printf(" On Command Line of=> /.s\n",Strl; 
exit< 1) ; 

void F'i}:ell <> 
{ putpi>:el<k,i,l>; j=i+5; putpixel<k.j.ll; 

j=i+10; putpi>:elCk,j,ll; j=i+15; putpixel<k,j.l); 
} 

void F'ixel20 
{ putpi:-:el(k.,i,l>; j=k+10; putpi>:el(j.,i.,1>; 
} 

void GetKBDinfo(int Indl 
{ char 

char 
buffer[OJ=lO; 

*Str; 
buffer[10J; 

for < i = 1; i < =9; i ++ > { 
buffer[i J=O; } 

Str=cgetslbufferl; switch(Ind> { 
case 1: sscanfCStr,"/.1c%f",&Key,&Rtempl; break; 
case 2: sscanf<Str,"%1c",&Key>; break; 
case 3: sscanf<Str,"Xf",&Rtemp>; break; 
case 4: sscanfCStr,"%d",&Itempl; break; 
} 

void GetWave(double SamplRate,int Num> 
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f*** Subroutine to Acquire a Data Record From DAS-50 A-D Board ***I 
{ int Status; 

char outstr[32J; 
sprintf(outstr,"SEt SAmples=Xd\n",Num>; !•set number of samp 
if CD500utputCoutstr>l GetError<>; 
sprintfCoutstr,"SEt RAte= Int %e\n'',Samp1Rate>; /*set sampling r 
if CD500utput<outstrl) GetError<>; 
sprintfloutstr,"SEt ADdress= 000\n"l; /*set on board mem addr 
if <D500utput<outstr)) GetError<>; 
ifiD500utputC"ACquire\n">l GetError<l; /*acquire rec 
Status=O; /*initialize status indica 

/*device clears bits 3 & 4 when D/A compl 



do { if <D500utput<"GEt STatus\n">> GetError<>; 
if ID50Inputlnt<~Status)) GetError<>; } 
while<<Status 8c OxlOl != OxlO>; 

} 

void FilterRecordldouble ACJ,double BCJ,double SamplRate, 
float Scale,int Num) 

'*** Subroutine to Digitally Filter a Raw Data Record ***' 
{ 

char outstrC32J; 
int ii,jj,DC2500J; 
double cx,cyO,cyl,cy2,T,prod,f1,f2.f3.f4: 

277 

strcpyloutstr,"SEt ADdress 000\n">; I* set address of record 
if ID500utputloutstrll GetError<>; 

} 

sprintfCoutstr,"TRAnsfer Xd Xd Xd Xd\n",SEG<Dl,OFFCD>, 
Num,ll; I* transfer the data *f 

ifCD500utput<outstrll GetError<>; 

T=2.0/Samp1Rate; prod=pi*Fc*T; 
cyO=l.O+pi*T*BW+prod*prod; cy1=2.0*11.0-prod*prodl; 
cy2=-1.0+pi*T*BW-prod*prod; cx=pi*Gain*T*BW; 
ACOJ=cx*<Scale•DCOJ/2048.0)/cyO; 
BCOJ=cx*<Scale•D[lJ/2048.01/cvO: 
AC1J=<cx•<Scale•DC2J/204B.O>+cvl*AC0Jl/cvn: 
8[1J=Icx*l5cale*DC3J/2048.0l+cv1*Rrnll/~vn, 
for- (li=4, jj=2; ii<=Num; ii.+=2. i·i++i f 

fl=Scale•DCii-2J/2048.0: 
f2=5cale•DCii-1J/2048.0: 
f3=Scale*DCiiJ/2048.0: 
f4=Scale*D[ii+1J/2048.0: 
ACjjJ=(cx•<f3-f1)+cvl•ACii-1J+cv?*Arii-?ll/rvO• 
BCjjJ=Icx*(f4-f2)+cv1*BCjj-1J+cv2*B[jj-2J)/cvO: } 

void Correlateldouble ACJ,double BCJ,int CorrSpan, int CorrShifts,int 
I* Subroutine to compute Cross Correlation function · Delayl 
( double CC1250J,sum,prod; 

} 

int r,rdiff,totr-diff,ii,jj; 
for lr=1;r<=CorrShifts; r++) ( 

rdiff=CorrSpan-r; 
totrdiff=CorrSpan+Delay+l-r; 
sum=O.O; 
for Cii=Delay; ii<=totrdiff; ii++) ( 

jj=ii+r; 
prod=ACiil*BCjjJ; 
sum=sum+prod; } 

CCrJ=sum/Cfloat)rdiff; } 
for (ii=l; ii<=CorrShifts; ii++) { 

ACiiJ=CCiiJ; } 

void Fourea(double datarCJ,double datai[J,int Nfti 
{ int mma>:,istep,m; 

LlO: 
{ 

double temor,temoi: 
double wr,wi,theta: 

perform the bit reversal 
j=l; 
for ( i = 1 ; i < =Nf t; i ++) { 
if < Ci-J><O> goto L10; 
else goto L20; 

*' 

tempr=datar[jJ; tempi=datai[jJ; 
datar[jJ=datar[iJ; datai[jJ=dataiCiJ; 
datarCiJ=tempr; dataiCiJ=tempi: } 



L20: 

L30: 

L40: 

L50: 

L70: ·; 
} 

m•Nftl2; 

if ((j-m><=O> goto L40; 
j-=m; m=<m+lll2; goto L30; 

j+=m; } 

compute the butterflies 
mmax=l; 

if<<mmax-Nftl>=O> qoto L70: 
istep=2*mmax; 
for <m=l; m<=mmax; m++) { 

theta=-pi*<m-1llmmax; 
wr=cos <thetal: 
wi=sin<thetal; i=m: 
wh i 1 e <i < =Nf t > { 

j=i+mmax: 
tempr=wr*datar[jl-wi*datai[jl; 
tempi=wr*datai[jl+wi*datar[jl; 
datar[jl=datar[il-tempr: 
datai[jl=datai[il-tempi: 
datar[il=datar[il+tempr; 
datai[il=datai[iJ+tempi; 
i+=istep; } } 

mmax=istep; goto L50; 
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void SpecDens<double A[J,double BCl,double E[l.double SamolRate.int Numl 
I* Subroutine to compute Spectral Density Function for A and B records *I 
{ int ii; 

} 

double AR,AI,BR,BI,C,D.ScaleFactor: 
ScaleFactor=4.01CSamplRate*Cfloat>Num>: 
for < i i = 1 ; i i < :;::Num; ii ++) { 

AR=<AEiiJ+ACCNum+1l-iiJl/2.0; 
A!=CBEiiJ-BE<Num+1l-iiJl/2.0: 
BR=CBCiiJ+B[CNum+ll-iill/2.0: 
BI=IAEiiJ-AECNum+l)-iill/1-2.01: 
C=AR*BR+AI*BI; 
D=AR*BI-AI*BR; 
EEiiJ=ScaleFactor*scrt<C*C+D*Dl: } 

A[1J=0.5*CE[1J+E[2Jl; 
AENumJ=0.5*<EENum-1J+ECNumJ>; 
for < i i =2; i i < =Num-1 ; i i ++ > { 

ACiiJ=0.25*<ECii-1J+E[ii+1Jl+0.5*EEiiJ; } 

void StepMotor<int dir,in~ counl 
{ 

} 

#define 
#define 

ioportl 
ioport2 

int jj; 
outportb ( i oport2, di r); 
for (jj=l; jj(=coun; jj++) { 
outportbCioport1,011l; 
delay (05); 
outportb(ioport1,010l; 
delay<05>; } 
outportb <ioportl ,000); 

688 
689 

/*set the direction of rotation*/ 

I* set the port bit 0 hich *I 
I* delay for 5 milli-seconds *I 
I* reset port bit 0 to zero *I 
I* delay for 5 milli-seconds *I 
I* disable the stepper motor *I 

!********************************************************************* 
I** ** 

START THE MAIN PROGRAM FOR WEB TENSION MEASUREMENT ** 
** 
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main<> 
{ 

NS=2400; D50IOFlag=O; rate=4.0e+5; ndel=O; 
Gain=2.0; Fc=lOOO.O; BW=1500.0; I* Default Digital Filter Specs. *I 

/*open the path to the DAS50 board*/ 
GetError(); 

D50=fopen < "$DAS50", "r+" >; 
if <D500utput <"Clear \n" > > 

clrscr<>; gotoxy<1,3>; I* Set cursor to Row 1, Col 7 *' 
puts<" Program WH3DF - Multi Point Measurement - Digital Filtering\n\n" 
puts<" This program is for the operation of the tension measurement") 
puts<"system developed through Dr. Richard Lowery of Oklahoma State "l; 
puts<"University for the purpose of On-Line Web Tension Analysis. A">; 
puts<"Metrabyte DAS-50 A-D board is used to acquire data records where" 
puts<"upon digital filtering is used to condition the signal. Filter") 
puts("parameters are user adjustable. Cross Correlation and Spectral") 
puts<"Density functions are computed which yield time of flight and ">; 
puts<"characteristic frequency information, respectively. Ribbon ">; 
puts<"Equation is used to convert this information to tension values."> 
puts<"A stepper motor system moves the transducer head across the web " 
puts<"width to obtain a tension profile across the web width. Stepper") 
puts<"Motor increments may be evenly or unevenly spaced ac:ross the web" 
puts("span. A graphical tension summary is outpLlt showing the test">; 
puts("locations and associated tension values.\n">; 
puts<" ENTER THE WIDTH OF THE WEB BEING TESTED IN INCHES "l; 

GetKBDlnfo(3l; puts<"">; webwidth=Rtemp; 
puts<" ENTER THE WEB MATERIAL DENSITY IN LBM/SQUARE INCH">; 

GetKBDinfo(3l; puts("">; rhoweb=Rtemp; 
puts<" ENTER THE TRANSPORT VELOCITY IN FEET/MINUTE ">; 

GeU:BDlnfo<3>; puts(""); transvel=Rtemp; 
putsC"Press any key to continue •.. ">; getch<>; 

puts< 
puts< 
puts< 
puts< 
puts< 
puts< 
puts< 
puts< 
puts( 
puts< 

L100: 

clrscr<>; gotoxy<1,3l; 
INITIAL POSITIONING OF TRANSDUCER HEAD \n\n" >: 

Position the transducer head to the desired initial "): 
location through interactive use of this computer. ">: 
Enter the desired adjustment in the form 'LXX<cr>' "l: 
for adjustment left XX inches or 'RXX<cr>' for adiust-"): 
ment right XX inches. When the move is completed. the">: 
computer will poll the user as follows: Enter 'R<cr>'"l: 
to readjust or 'C<cr>' to continue. Enterina R will ">: 
allow repositioning left or riqht and enterinc C will ">: 
allow for continuation of the Web Handling proqram.\n"l; 

puts(" Initial Position Adjustment: Enter 'LXX<cr>' to move "l: 
puts(" left or 'RXX<cr>' to move right ">: 
GetKBDinfo<l>; puts("">; dist=Rtemp; switch<Kev> { 
case 
ca~.e 

casE:> 

, r,: 
, F:,: 

' l ' : 
d i. r-=0;; df; 

l*riaht - set bit 
/*one for clockw1se 

/*left - set bit 
case 'L': dir=Oxde; break; /*zero for CCW 

D/CJ-8 to*/ 
r-otation*/ 
D/0--8 to*/ 
rotation*/ 

default: pLlts<"Invalid Entry- Try Again\n"l; goto LlOO; } 

L140: 

L150: 

coun=dist*36.0/(radius*pil; 
StepMotor(dir,coun>; 

/*Move the Transducer Head*/ 
I* by the amount entered *I 

puts<" Enter 'R<cr>' to readjust or 
GetKBDinfo<2>; puts<"">; switch<Key> 
case 'r': 
case 'R': goto L100; 
case 'c': 

'C<cr>' 
{ 

to continue ">: 

case 'C': break; I* Contin••:~t-inn rl<=>c:.ir<=>rl * 
default: puts("Invalid Entry- Try Aqain\n"l; ooto L140: 
} 

puts<" Enter distance between Transducer and Web Edce "l: 
GetKBDinfo<3>; puts<"">; refedoe=Rtemo: 
clrscr<>; gotoxy<1,3l; 



puts (" 
puts<" 
puts (" 
puts<" 
puts<" 
puts(" 

L160: 

STEPPER MOTOR OPTIONS \n\n"): 
Two options are available for Steooer Motor soacina "): 
during a test: Equal or Unequal Intervals d1.1ring web "); 
traversal. Also, direction of traversal may be to the">: 
left or right. Enter the desired options as polled for">; 
below.\n"); 

puts<" DIRECTION OF TRAVERSAL: Enter 'R<cr>' for traversal">: 
puts(" right or 'L<cr>' for traversal left "): 
GetKBDinfo<2>; puts("">; switch<Key> { 

case 'r': 
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case 'R': dir=Oxdf; break; 
case '1': 

/*rioht-D/0 code for CW rot.· 

case 'L': dir=Oxde; break; 
default: puts<"Invalid Entry 

f*left-D/0 code for CCW rot.· 
Try Again\n\n">; goto L160; } 

L190: 
puts<" EQUAL OR UNEQUAL TRAVERSAL INTERVALS: Enter 'E<cr>' "): 
puts<" equal intervals or 'U<cr>' for unequal intervals"): 
GetKBDinfo<2>; puts<"">; switch<Key) { 
case 'u': /*indicates unequal intervals· 
case 'U': intind=l; goto L220; 
case 'e': 
case 'E': intind=O; break; I* indicates eoual intervals 
default: puts<"Invalid Entry- Try Again \n\n">; goto L190; } 

puts(" Enter the Interval Length 'XX' where XX is in inches"): 
Geti<BDinfo<3>; puts<"">; dist=Rtemp: intind=O: 
xcoor=<int) (webwidth-refedgel; 
delw= div<xcoor,<int>dist>; 
cycles=delw.quot; 
if ((delw.rem/dist>>0.2> cycles=cycles+1: 

/*Cal r-111 ~tP n11mhPr of· 
/*tests if eaual soacina· 

printf(" * * * 'Y.d Tests Will Be Performed * * *\n\n".cvcles>: 
printf(" * * * At 'Y.f Inch Intervals * * *\n\n".rl;c:;t)~ 

delay<2000>; 
L220: 

.I* -----------------------------------------------------------*1 
I* Set the DAS-50 to take NS samples, alternatina between *I 
I* Channels 0 & 1, in the Trace-After Triaoer mode. NntP th~t*/ 
I* all the following Print statements could be abbreviated *I 
I* and put into one print statement *I 
f*------------------------------------------------------------*1 

if <D500utput ("SEt CHannels=0&1\n")) GetError <) 
if (0500utpLit ("SEt RANge=+-5V \n") ) Get Error<> 
if <D50Dutput ("SEt TRigger Mode=7\n">> Get Error- () 
if <D50Dutput <"SEt TRig Volt=0.40\n")) Get Error<) 
if <D500utput ("SEt STart=AFter-\n">> GetErrnr () 

I*** Initialize graphics facility to exhibit the acquired waveform ***I 
L250: grdriver=5; grmode=3; 

initgraph<&grdriver,&grmode,""); 
setviewport<0,0,639,349,1>: 

L270: clearviewport<>; 
GetWave(rate,NS>; f*Acouire wavPfnrm frnm DAS-50*/ 
FilterRecord<XDAT,YDAT,rate,65.0,NS>; /*Filter the Record*/ 

!***************** draw a grid on the screen ********************/ 
gotoxy<l,O>; lineto (638,0>; lineto <638,260>; 
lineto <1,260>; lineto <1,0>; line<1,130,638,130l; 

for <i=O,k=O; i<=240; i+=201 { 
for <k=O; k<=639; k+=20l { 
switch<k> { 
case 80: 
case 160: 



case 240: 
case 320: 
case 400: 
case 480: 
case 560: 
default: 
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F'i>:ellO; F'ixel20; break: 
Pi:<el20; } } } 

I******* put the data traces on the screen in screen coordinates ******i 
L66: for <i=ndel; i<=<ndel+640>; i++) { 

k=i-ndel; j=65-<int>XDAT[iJ; putpi>:el <k,j,ll; 
j=195-<int>YDAT[iJ; putpixel<k,j,ll; } 

'********* Present User Options for Signal Manipulation *************· 
outtextxy<1,264,"Press Space Bar to Repeat Process">; 
outte>:txy<1,276,"Press '1' or 'r' to shift pattern left or right">; 
outte>:t>:y<1,288,"Press 'i' or 'd' to increase or decrease sample ra· 
outtextxy<1,300,"Press 'f' to alter digital filter center frequency 
outtextxy<1,312,"Press 'b' to alter digital filter bandwidth">; 
outtextxy<1,324,"Press 'g' to alter digital filter gain">; 
outtextxy<1,336,"Press 't' when ready to begin web tension test">; 

L400: 

'*** 

'*** 

'*** 

'*** 

L320: 

L350: 

Key=getch<>; switch(Key> { 

Case of Left or Right Waveform Positioning ***' 
case '1 ': 
case 'L': ndel=ndel+40; goto L270; 
case 'r': 
case 'R': ndel=ndel-20; if <ndel<O> ndel=O; 

else goto L270; break; 

Case of Increase or Decrease Sampling Rate ***' 
case , i , : 

case . I . : rate=rate+l.Oe+5; go to L270; 
case . d.: 
case 'D.: rate=rate-1.0e+5; go to L270; 

Case of Space Bar -- Repeat Waveform Viewino ***' 
case ' ': goto L270; 

Case of Digital Fi 1 ter Center Freouency AdjL\stment ***' 
case 'f': 
case 'F': clearviewport<l; restorecrtmode<>: 
gotoxy<l0,3>; puts<"FILTER CENTER FREQUENCY ADJUSTMENT\n">: 
puts<"Enter 'lxxx' or 'rxxx' to adjust the filter"): 
puts<"center frequency left or rioht, respectively,"); 
puts("by an amount xxx in Hertz.\n\n">: 
GetKBDinfo<l>; switch<Key> { 

case 'r ': 
case 'R': Fc=Fc+Rtemp; qoto L250; 
case '1 ': 
case 'L': Fc=Fc-Rtemp; qoto L250: 
default: puts<"Invalid Entry- Try Aoain\n">: 

goto L320; } 

Case of Digital Filter Bandwidth Adjustment 
case 'b ·: 
case 'B': clearviewport<l; restorecrtmode<>: 

***' 

got ox y < 10,3) ; puts<" FILTER BANDWIDTH ADJUSTMENT\n") : 
puts<"Enter 'i>:>:>:' or 'd>:x>:' to a.d.iust the filh••r"l! 
puts<"bandwidth --increase or decrease, resoec:tivelv."l! 
puts<"by an amount xxx in Hertz.\n\n">: 
GetKBDinfo<l>; switc:h<Key) { 

case 'i ': 
case 'I': BW=BW+Rtemo: octo L250: 
case 'd ': 
case · D' : BW=B~J-Rtemo: octo L250: 



f*** 

f*** 

I*** 

default: putsC"Invalid Entry- Trv Aoain\n"): 
goto L350: } 

Case of Digital Filter Gain Adjustment ***I 
case 'g ': 
case 'G': clearviewport<>: restorecrtmode(): 
gotcxyCl0,3>; putsC"FILTER GAIN ADJUSTMENT\n">: 
puts<"Enter new filter gain specification.\n\n">: 
GetKBDinfcC3>; Gain=Rtemp; octo L250: 

Case of Web Tension Test Desired ***I 
case 't ': 
case 'T': break; 

Case of Invalid Character Entry -- Repeat Entrv ***I 
default: puts<"\x7"l; gcto L400; ) 
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I* BEGIN THE WEB TENSION TEST -- DATA ACQUISTION *I 
I* Set correlation shifts and span dependinq on sample rate *I 

if Crate==2.0e+5) {ncorr=220: nspan=400: NS=1?9A: RRrlivirlPr=4.0: 1 

else if <rate==3.0e+5l{ncorr=280;nspan=500;NS=1600; SRdivider=5.0;} 

else if (rate==4.0e+5l{ncorr=360:nspan=600:NS=1840: SRdivirlPr=R.O:} 

else if <rate==5.0e+5l{ncorr=420;nspan=760;NS=2048;SRdivider=10.0:) 

else if Crate==6.0e+5l{ncorr=500;nspan=900:NS=2272:RRrlivirlPr=10.0:1 

else if Crate==7.0e+5){ncorr=560;nspan=1000;NS=2496;SRdivider=11.0;l 

else { outtextxyC200,40,"Samplino Rate Selected is not Supoorted''l: 
goto L1160; l 

clearviewport<>; restorecrtmodeC>; 
gotoxyC10,3>; 1=0; ncy=1; deltaX[lJ=refedge: 
frate=rate/SRdivider; period=2.0/rate; 
fdel=ndel/CintlSRdivider; FNS=160+fdel; 
printfC" BEGINNING WEB TENSION TEST \n\n">; 

/*Define Fourier; 
/*sample rate andt 

/*delay+ 
printf(" Sampling Rate fer the test is 'Y.e\n",rate>: 
printf(" Sampling Period for the test is 'Y.e\n",pericd>: 
printfC" Width of the web under test is 'Y.f\n'',webwidth>: 
printfC" Shoe is positioned 'Y.f inches from web edge\n\n",refedgel; 

f****** 
L650: 

Take two waveform records and averaoe the results *******/ 

1++; puts<" •••• Acquiring Data Records ...• \n "); 
GetWave(rate,NS>; /*Record 1 acquired*• 
FilterRecordCXDAT,YDAT,rate,5.0,NS>; /*Record Filtered*. 
GetWaveCrate,NS>; 
FilterReccrdCX,Y,rate,5.0,NS>; 
for (j=1,i=ndel; i<CNS/21; j++,i++) { 

/*Record 2 acqui red*• 
/*Record Filtered*. 

XDAT[jJ=XDAT[jJ+X[iJ; YDAT[jJ=YDAT[jJ+Y[iJ: } 
CorrelateCXDAT,YDAT,nspan,ncorr,ndel>: /*Perform Correlation*• 

f**Sort the Cross Correlation data to find the maximum correlation value· 
test=fabs<XDAT[2J>; j=2; 

L700: 

if(fabsCXDATE1J>>test) sl=-1: else sl=l: 
i=2; k=O; 

i++; 
if Ci>=ncorr) gotc L780; 
if Csl<O> goto L750; 
if CCXDATEiJ-test><O.O> qoto L730; 
test=XDATEiJ; j=i; gcto L700; 



L730: 

L.750: 

L780: 

I*** 
I*** 

k++; max[kJ=test; maxptr[kJ=j: 
sl=-1~ goto L700; 

if ((XDAT[iJ-testl>O.O> { sl=1: ootni7Cln! 1-

test=XDATCiJ; goto L700~ 

totmax=maxC1]; maxindex=maxptrC1J: 
for Ci=2; i<=k; i++) { 

if ( (fabs (me:>.>: [i J) -fabs (totmax) \ <=n. Cl\ rnn+i ,,,"'. 

totma>: =rna>: [ i J; 
maxindex=maxptr[iJ: } 

Calculate delta T for this correlation function·based on ***' 
index value correspondinq to maximum correlation value ***I 

deltaT=period*maxindex; 
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printf<" Maximum Correlation Occured at Delav Point Xd\n''.maxindex> 
printf(" Delta T value for this correlation is Xe\n\n",deltaT>; 
printf(" •••• Beginning FFT Analysis •••• \n\n">; 

I* Perform the FFT analysis on waveforms to obtain Web Frequency *I 
I* Set sample rate to reduced value (frate> to aid Free Resolution *I 

j=1; for <k=1; k<=7; k++) { /*Assemble Pseudo-*/ 
GetWave(frate,FNS>; /*periodic record*/ 
FilterRecord<X,Y,frate,5.0,FNS>; 
for <i=fdel; i<=«148+fdel)/2); i++,j++) { 

XDATCjJ=X[iJ; YDAT[jJ=O.O; } } 

I*** Compute record average value and subtract from each data point ***I 
temp=O.O; for (j=l; J<=512; j++> { 

temp=temp+XDATCjJ; } 
temp=temp/512.0; for <J=l; J<=512; j++) { 

XDAT[jJ=XDATCjJ-temp; } 

I*** Use Cosine windowing on the assembled zero biased record ***I 

I*** 

for < j = 1 ; j < =25; j ++ > { 
XDATC jJ=XDATCj l*cos (pi*< 1. 0- <float) (j-1) /24. O> /2. O>: } 

for (j=4BB; j(=512; j++) { 
XDAT[jJ=XDATCj]*cos(pi*l1.0-(float) (512-j)/24.0)/2.0): } 

Pad the data vector from 513 to 1024 with zeros ***I 
for (j=513; j(=1024; j++) { 

XDAT[jJ=O.O; YDAT[jJ=O.O; } 

I* Fourier Transform: XDAT=real vector, YDAT=imaainerv vector (zeroed) * 
FoureaCXDAT,YDAT,1024>; 

I** Compute Spectral Density Function from transformed data vectors ***I 
SpecDens<XDAT,YDAT,X,frate,1024l; 

I* Find maximum Spectral value to indicate the dominant Web Freauencv *I 
test=XC15J; k=15; 
for <i=16; i<=256; i++) { 

if (X[i J<test> continue; 
test=XCiJ; k=i; } 

printf(" Maximum Spectral Value Dc:c:ured at Point Xd\n",kl; 
webfreq=<frate/204B.O>*k; 
printf <" Characteristic: Freauenc:v for this Test is Xf\n".webft-eo>: 

I* calculate the web tension based on the delta T value and *I 
I* based on the web frequency calculated via the fft analvsis *I 



trvel=transvel*0.20; 
vel=<2.0/deltaT>-trvel; 
kair=2.0*pi*webfreq/cair; 
Tens=rhoweb*vel*vel/386.0; 
kweb=2.0*pi*webfreq/vel; 
f3=kweb*kweb-kair*kair; 

/*Transport velocity in in/sec*/ 
/*Corrected Web Phase Soeed*/ 

/*Wave Number for Air*/ 
/*In-Vacuo Web Tension Estimate*/ 

/*Wave Number for Web*/ 
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if lf3<0.01 {printf("### BAD DELTAT OR WEBFREQ VALUES OBTAINED ###\n 11 1: 
printf(" Program will skip this web location\n 11 1; 

Tension[lJ=O.O: ooto LlOOO: } 
f2=rhoweb+2.0*rhoair/sqrtlf3>; 

'***** Calculated Tension Value Based on Ribbon Equation ******' 
Tcalc=vel*vel*f2/386.0; 
Tension[lJ=Tcalc; 

printf( 11 Membr~ane In-Vacuo Estimated Tension= /.f\n 11 .Tensl: 
printf(" Calculated Ribbon Equation Tension= Xf\n\n 11 ,Tension[lJI: 

L1000: if (intind==OI goto L1010; /*case of equal trav. interval~ 

puts ( 11 Enter ·Space Bar' to move shoe and retest, ·Esc· to e:-; it \n 11 I; 
Key=getchll; if <Key!=' ') goto L1030; 
puts<" Enter desired amount of shoe movement in inches\n 11 1: 
GetKBDinfo(31; puts('"'); dist=Rtemo: ooto 11Cl?O! 

L1010: 
ncy=ncy+1; if <ncy>cyclesl qoto L1030~ 

L1020: 
deltaXCl+1J=<intldist; coun=dist*36.0/lradius*oil: 
StepMotorldir,counl; goto L650; 

I* PERFORM THE GRAPHIC SUMMARY OF THE TENSION TEST *I 
L1030: 

sum=O.O; for Ci=l; i<=l; i++) { 
sum=sum+Tension[iJ; } 

Tensavg=sum/(floatll; /*Compute Averaqe Tension*/ 
initgraphl&grdriver,&grmode, 1111 1; 
·setviewportC0,0,639,349,11; clearviewportll; 
outte:·:txyi60,B, 11 WEB TENSION SUMMARY: 11 1; 
outtextxy<300,B, 11 #"1; circlel303,11,101; 
outtextxyi315,B, 11 INDICATES STATION NUMBEF: ">: 

movetoC1,901; lineto(1,3401; 
linetol2,340>; linetol2,901; 
movetoC637,901; linetoC637,3401; 
linetoC638,3401; linetol638,901; 
i =1; 

11 WPh 'Rnornrl;<riPc:; 11 */ 

the screen *' 

outtextxy<20,30,"1"1; circle(23,33,101; 
outtextxyl34,30," T=">; 
spri ntf <Da.taStr, 11 '1.2. 5f", Tension [ 1 J).; 
outtextxy(68,30,Data8trl; 

I* Print out the tension *' 
I* value for station one *' 

i=i+1; if (i >1 I goto L1100; 
outtextxyl230,30, 11 2"1; circlel233,33,101; 
outte>:b:yl244,30," T="l; I* Print out the tension *I 
sprintf(Data8tr,"X2.5f",Tension[2JI; I* value for station two *I 
outtextxy<278,30,Da.ta.Strl; 
i=i+l; if <i>ll goto LllOO; 
outtextxyl440,30,"3"1; circlel443,33,101; 
outtextxyl454,30," T="l; I* Print out the tension *I 
sprintfCData.Str,"X2.5f 11 ,Tension[3JI: /*value for station three*/ 
outtextxy<488,30,Data5tr>; 
i=i+l; if <i>l> gotoL1100; 
outtextxyl20,50,"4"1; circle(23,53,101; 
outtextxy(34,50, 11 T="l; 
spri ntf CData.Str, "/.2. 5f 11 , Tension [ 4] I; 
outtextxyC68,50,DataStrl; 
i=i+l; if (i >l> goto L1100; 

I* Print out the tension *' 
/*value for station four *I 
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outtextxyC230,50,"5">; circleC233,53,101; 
outtextxyC244,50," T="l; I* Print out the tension*' 
sprintfCDataStr,"X2.5f",Tension[5J>: /*value for station five*' 
outtextxyC278,50,DataStr>; 
i=i+l; if Ci>ll goto L1100; 
outtextxyC440,50,"6"1; circleC443,53,101; 
outtextxyC454,50," T=">; I* Print out the tension *I 
sprintfCDataStr,"X2.5f",Tension[6Jl; I* value for station six *I 
outtextxyC488,50,DataStrl; 
i=i+l; if CU·I> goto L1100; 
outtextxyC20,70,"7"1; circleC23,73,101; 
outtextxyC34,70," T=">; I* Print out the tension*' 
sprintfCDataStr,"/.2.5f",Tension[7JI; /*value for station seven*/ 
outtextxyC68,70,DataStr>; 
i=i+l; if Ci>I> goto L1100; 
outtexb:y 1230,70, "8" I; circle 1233,73, 101; 
outtextxyC244,70," T=">; I* Print out the tension*' 
sprintf(DataStr,"X2.5f'',Tension[8J>; /*value for station eight*/ 
outtextxyC278,70,DataStr>; 
i=i+1; if Ci>I> goto LllOO; 
outtextxyC440,70,"9"); circleC443,73,10); 
outtextxyC454,70," T=">; /*Print out the tension*/ 
sprintfCDataStr,"l..2.5f",Tension[9JI; /*value for station nine*/ 

LllOO: 
outte>:txy<4B8, 70,DataStrl; 

conv=630.0/webwidth; xcoord[OJ=O; xsum=O; 
for Ci=1; i<=l; i++) { 

xcoor=!intl (deltaX[iJ*convl; 
xcoord[iJ=xcoord[i-lJ+xcoor; 
xsum=xsum+deltaX[iJ; I* draw the station 
movetoCxcoord[iJ,2501; /*number on the screen 
sprintfCDataStr,"Xd",i>; 
outtext<DataStrl; 
circle<xcoord[iJ+3,253,101; } 

xcoord [ 1 +1 J=639; 
deltaXC1+1J=Cintlwebwidth-xsum; 
for Ci=O; i<=l; i++) { 

xcoor=(xcoordCiJ+xcoord[i+lJ)/2; /*indicate the number* 
movetolxcoor,2701; /*of inches between the* 
sprintf CDataStr, "Xd" ,deltaX[i+lJI; /*different stations* 
outtextCDataStrl; } 

outtextxyC200,290,"Delta X Values in Inches">; 
moveto<<xcoord[lJ/21,2941; 
linetoCCxcoord[lJ/2)+7,2901; 
lineto<<xcoord[1J/21+7,2981; 
lineto< <>:coord[1J/21 ,294); 
linetoC190,2941; 
movetoCC(xcoord[lJ+6391/2)+7,2941; /*Arrows to indicate* 
linetoCCCxcoord[lJ+6391/21,2901; /*meaning of results* 
linetoCCCxcoord[lJ+6391/21,2981; 
lineto<<<xcoord[lJ+639J/2)+7,2941; 
lineto<400,294l; /*Display Total Web Width* 
sprintf<Data.Str,"Total Web Width is X5.1f Inches",webwidth>; 
outtextxyC180,310,DataStr>; 
movetoC3,314>; linetoC10,310J; 
linetoC10,318>; lineto<3,314>; lineto<165,314>; 
movetoC435,314>; linetoC636,314>; 
linetoi629,310J; linetoC629,31B>; linetoC637,3141; 
outte>:t>:y ( 100,330, "Reference Edge"); 
movetoC3,3341; linetoC10,330J; 
linetoC10,3381; linetoC3,334>; lineto(85,334l; 
outtextxyC350,330,"Average Tension=">; 
sprintf<DataStr,"X2.5f",Tensavg>; 
outtextxyC500,330,DataStr>; /*Display Averaae Tension• 
if <1 ==1> goto L1140; 



I*** 

L1120: 
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Search for the max and min values of Tension[il for scaling ***I 
Tmax=Tension[ll; Tmin=Tension[ll; 
fer (i=2; i<=l; i++) { 

if ((Tmax-Tension[il>>O.O> goto L1120; 
Tmax=Tension[iJ; 

if <<Tmin-Tension[iJ><O.O) continue; 
Tmin=Tension[iJ; } 

conv=150.0/(Tmax-Tmin>; xcoor=xcoord[1J; /*Graphical Conversion* 
ycoord=<int) «Tensavg-Tmin>*conv>; I*F'lot Avg Tension Level* 
while <xcoor<=xcoord[lJ) { 

j=230-ycoord; putpixel<xcoor,j,l>; xcoor+=6; } 

!********** Plot the actual tension values on the screen ************ 

for (i=1; i<=l; i++) { 
ycoord=(int> <<Tension[iJ-Tmin>*conv>; 
j=230-ycoord; moveto<xcoord[iJ.j); outtext<"*">: } 

if <1>1> goto L1150; 

!********** if 1=1 (one station only) then olnt thP tPn~inn ********** 
L1140: moveto<xcoord[lJ,lOO>; 

out text ( "*") ; 

I******* Use a ReadLn command to protect the araphics disolav ********* 
L1150: getch<>; 

L1160: } 



APPENDIX G 

COMPUTER PROGRAM LISTING FOR GENERATION OF 

PULSE PRESSURE AND VELOCITY CONTOUR DATA 
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c 
c Program Pulse.f -- This program is for integration of the 
c two dimensional inviscid, unsteady state, nonisentropic, 
c compressible flow equations for a problem grid that simulates 
c a shock tube in proximity to a web surface. An initial weak 
c shock condition in Region 6 propagates upward and reflects 
c from a rigid interface. Pressure and Velocity contours may 
c be acquired at specified times during the propagation process. 
c 

c 

dimension df(l0,21,21),uf(10,21,2l),vf(10,21,21),ef(10,21,21) 
dimension da(21,21),ua(21,21),va(21,21),ea(21,21) 
dimension dxl(21),uxl(21),vxl(21),exl(21),dxr(21),uxr(21) 
dimension vxr(21),exr(21),dyl(21),uyl(21),vyl(21),eyl(21) 
dimension dyr(21),uyr(21),vyr(21),eyr(21),dxc(21),uxc(21) 
dimension vxc(21),exc(21),dtl(21),utl(21),vtl(21),etl(21) 
dimension dtr(21),utr(21),vtr(21),etr(21),dwl(21),uwl(21) 
dimension vwl(21),ewl(21),dwr(21),uwr(21),vwr(21),ewr(21) 
dimension dzl(21),uzl(21),vzl(21),ezl(21),dzr(21),uzr(21) 
dimension vzr(21),ezr(21),dsl(21),usl(21),vsl(21),esl(21) 
dimension dsr(21),usr(21),vsr(21),esr(21),dql(21),uql(21) 
dimension vql(21),eql(21),dqr(21),uqr(21),vqr(21),eqr(21) 
dimension drl(21),url(21),vrl(21),erl(21),drr(21),urr(21) 
dimension vrr(21),err(21),dpl(21),upl(21),vpl(21),epl(21) 
dimension dpr(21),upr(21),vpr(21),epr(21) 
dimension dtime(330),time(330),vel(21,21),pres(21,21) 
character*12 PFILE, VFILE 
common /dat/gamma,omega,xKn,l,N 

c define the non dimensional quantities to be used. 
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c dp,up,vp,ep -- field values. ds,us,vs,es -- shock gradient values. 
c dn,un,vn,en -- full shock values. wplusc -- max advection speed. 
c sigma -- stability parameter. omega -- stability parameter. 
c delxd -- dimensional space increment. !count -- iteration counter. 
c delxnd -- nondimensional space increment. N -- no. of space increm 
c sumt -- nondimensional time sum. gamma -- air constant. 
c intc1,intc2,intc3,etc -- interval for contour evaluation. 
c 

c 

N=21 
gamma=1.4 
omega=1.345 
delxd=0.01 
delxnd=0.05 
ind=O 
data sigma,wplusc,patm,cair/0.5,2.3,14.7,13500.0/ 
data pn,ps,pp,un,us,up/2.0,1.5,1.0,0.0,0.0,0.0/ 
data dn,ds,dp,vn,vs,vp/1.63,1.33,1.0,1.0,0.558,0.0/ 
data intc1,intc2,intc3,intc4,icmax/60,90,110,120,260/ 
data intc5,intc6,intc7,intc8/160,220,240,260/ 
data icount,sumt/1,0.0/ 

c define initial conditions for all coupling boundary values. 
c 

data dxc/21*1.33/,uxc/21*0.0/,vxc/21*0.558/,exc/21*3.96/ 
data dxl/21*1.0/,uxl/21*0.0/,vxl/21*0.0/,exl/21*2.5/ 
data dxr/21*1.0/,uxr/21*0.0/,vxr/21*0.0/,exr/21*2.5/ 
data dyl/21•1.0/,uyl/21*0.0/,vyl/21*0.0/,eyl/21*2.5/ 
data dyr/21•1.0/,uyr/21•0.0/,vyr/21*0.0/,eyr/21*2.5/ 
data dwl/21*1.0/,uwl/21*0.0/,vwl/21*0.0/,ewl/21*2.5/ 
data dwr/21*1.0/,uwr/21*0.0/,vwr/21*0.0/,ewr/21*2.5/ 
data dtl/21*1.0/,utl/21*0.0/,vtl/21*0.0/,etl/21*2.5/ 
data dtr/21*1.0/,utr/21*0.0/,vtr/21*0.0/,etr/21*2.5/ 
data dzl/21*1.0/,uzl/21*0.0/,vzl/21*0.0/,ezl/21*2.5/ 
data dzr/21*1.0/,uzr/21*0.0/,vzr/21*0.0/,ezr/21*2.5/ 
data dsl/21*1.0/,us1/21*0.0/,vsl/21*0.0/,esl/21*2.5/ 



c 

data dsr/21*1.0/,usr/21*0.0/,vsr/21*0.0/,esr/21*2.5/ 
data dql/21*1.0/,uql/21*0.0/,vql/21*0.0/,eql/21*2.5/ 
data dqr/21*1.0/,uqr/21*0.0/,vqr/21*0.0/,eqr/21*2.5/ 
data drl/21*1.0/,url/21*0.0/,vrl/21*0.0/,erl/21*2.5/ 
data drr/21*1.0/,urr/21*0.0/,vrr/21*0.0/,err/21*2.5/ 
data dpl/21*1.0/,upl/21*0.0/,vpl/21*0.0/,epl/21*2.5/ 
data dpr/21*1.0/,upr/21*0.0/,vpr/21*0.0/,epr/21*2.5/ 

c define initial conditions for all field values. 
c 

c 

data (((df(l,i,j),l=l,lO),i=l,21),j=l,21)/4410*1.0/ 
data (((uf(l,i,j),lsl,lO),i~l,21),j•l,21)/4410*0.0/ 
data (((vf(l,i,j),l=l,lO),i=l,21),j•l,21)/4410*0.0/ 
data (((ef(l,i,j),l=l,lO),icl,21),j•l,21)/4410*2.5/ 
es=ds*(us•us+vs•vs)/2.0+ps/(gamma-l.O) 
ep=dp*(up*up+vp*vp)/2.0+pp/(gamma-l.O) 
en=dn*(un•un+vn•vn)/2.0+pn/(gamma-l.O) 

c initialize time value and open file for time information. 
c 

time(icount)=O.O 
write(6,2l)icount,time(icount) 

21 format(' ICOUNT = ',i3,' TIME. • ',f6.4,/) 
open(9, file='ptime.dat', status•'unknown') 

c 
c Initialize Region 6 for Full Shock and Shock Gradient. 
c 
220 do 230 i=l,N 

do 230 j=2,N-l 
df(6,i,j)=dn 
uf(6,i,j)=un 
vf(6,i,j)=vn 
ef(6,i,j)=en 

230 continue 
do 240 i=l,N 
df(6,i,N)=ds 
uf(6,i,N)=us 
vf(6,i,N)=vs 
ef(6,i,N}=es 

240 continue 
c 
c 
c Start the loop in the 1 number of regions -- 1 <• 1 <• 10. 
c begin definition of the corner points of each region 
c 
300 afix=O.O 
310 do 1800 1•1,10 

if (l.gt.l) go to 320 
c 
c compute Courant Number xKn for this nth iteration 
c compute nondimensional time and dimensional time values. 
c 

xKn=sigma/wplusc 
sumt=sumt+xKn 
time(icount)=(delxnd/1.41421)*sumt 
write(6,22)time(icount) 

22 format(' NON-DIMENSIONAL TIME VALUE IS NOW ',f8.6) 
deldt=xKn*delxd*sqrt(gamma)/(1.4142*cair) 
dtime(icount)=sumt•delxd*sqrt(gamma)/(1.4142l*cair) 
write(6,93)dtime(icount) 

93 format(' DIMENSIONAL TIME VALUE IS NOW ',fl2.8) 
320 go to (330,350,370,390,410,430,450,470,490,510) 1 
330 write(9,335)icount,time(icount),dtime(icount),deldt 
335 format(i4,2x,fl2.8,2x,fl5.13,2x,f15.13) 
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write(6,13) 
13 format(' REGION 1 BEING PROCESSED') 
c 
c Evaluate Region 1 corner locations. 

call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(l,l,l),uf(l,l,l), 
lvf(l,l,l},ef(l,l,l),dyl(l),uyl(l),vyl(l),eyl(l),df(l,l,2), 
2uf(l,l,2),vf(l,l,2),ef(l,l,2),df(l,2,1),uf(l,2,1),vf(l,2,1}, 
3ef(l,2,l),dxc(l),uxc(l),vxc(l),exc(l),l) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(l,l,N),uf(l,l,N), 

lvf(l,l,N),ef(l,l,N),dyl(N),uyl(N),vyl(N),eyl(N),df(l,l,N), 
2uf(l,l,N),-vf(l,l,N),ef(l,l,N),df(l,2,N),uf(l,2,N),vf(l,2,N), 
3ef(l,2,N),df(l,l,N-l),uf(l,l,N-l),vf(l,l,N-l),ef(l,l,N-l),2) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(l,N,l),uf(l,N,l), 

lvf(l,N,l),ef(l,N,l),df(l,N-l,l),uf(l,N-l,l),vf(l,N-1,1), 
2ef(l,N-l,l),df(l,N,2),uf(l,N,2),vf(l,N,2),ef(l,N,2),dyr(l), 
3uyr(l),vyr(l),eyr(l),dxc(N),uxc(N),vxc(N),exc(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(l,N,N),uf(1,N,N), 

lvf(l,N,N),ef(l,N,N),df(l,N-l,N),uf(l,N-l,N),vf(l,N-l,N), 
2ef(l,N-l,N),df(l,N,N),uf(l,N,N),-vf(l,N,N),ef(l,N,N),dyr(N), 
3uyr(N),vyr(N),eyr(N),df(l,N,N-l),uf(l,N,N-l),vf(l,N,N-l), 
4ef(l,N,N-1),2) 

c Evaluate Region 1 edge locations. 
do 340 i=2,N-l 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(l,i,l),uf(l,i,l), 

lvf(l,i,l),ef(l,i,l),df(l,i-l,l),uf(l,i-l,l),vf(l,i-l,l), 
2ef(l,i-l,l),df{l,i,2),uf(l,i,2),vf(l,i,2),ef(l,i,2),df(l,i+l,l), 
3uf(l,i+l,l),vf(l,i+l,l),ef(l,i+l,l),dxc(i),uxc(i),vxc(i), 
4exc(i),l) 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(l,i,N),uf(l,i,N), 
lvf(l,i,N),ef(l,i,N),df(l,i-l,N),uf(l,i~l,N),vf(l,i-l,N), 
2ef(l,i-l,N),df(l,i,N),uf(l,i,N),-vf(l,i,N),ef(l,i,N),df(l,i+l,N), 
3uf(l,i+l,N),vf(l,i+l,N),ef(l,i+l,N),df(l,i,N-l),uf(l,i,N-l), 
4vf(l,i,N-l),ef(l,i,N-l),2) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(l,N,i),uf(l,N,i), 

lvf(l,N,i),ef(l,N,i),df(l,N-l,i),uf(l,N-l,i),vf(l,N-l,i), 
2ef(l,N-l,i),df(l,N,i+l),uf(l,N,i+l),vf(l,N,i+l),ef(l,N,i+l), 
3dyr(i),uyr(i),vyr(i),eyr(i),df(l,N,i-l),uf(l,N,i-l),vf(l,N,i-l), 
4ef(l,N,i-l),l) 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(l,l,i),uf(l,l,i), 

lvf(l,l,i),ef(l,l,i),dyl(i),uyl(i),vyl(i),eyl(i),df(l,l,i+l), 
2uf(l,l,i+l),vf(l,l,i+l),ef(l,l,i+l),df(l,2,1),uf(l,2,1), 
3vf(l,2,i),ef(l,2,1),df(l,l,i-l),uf(l,l,i-l),vf(l,l,i-l), 
4ef(l,l,i-l),l) 

340 continue 
go to 530 

350 write(6,14) 
14 format(' REGION 2 BEING PROCESSED') 
c 
c Evaluate Region 2 corner locations. 

call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(2,N,l),uf(2,N,l), 
lvf(2,N,l),ef(2,N,l),df(2,N-l,l),uf(2,N-l,l),vf(2,N-l,l), 
2ef(2,N-l,l),df(2,N,2),uf(2,N,2),vf(2,N,2),ef(2,N,2),dyl(l), 
3uyl(l),vyl(l),eyl(l),dxl(N),uxl(N),vxl(N),exl(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(2,N,N),uf(2,N,N), 

lvf(2,N,N),ef(2,N,N),df(2,N-l,N),uf(2,N-l,N),vf(2,N-l,N), 
2ef(2,N-l,N),df(2,N,N),uf(2,N,N),-vf(2,N,N),ef(2,N,N),dyl(N), 
3uyl(N),vyl(N),eyl(N),df(2,N,N-l),uf(2,N,N-l),vf(2,N,N-l), 
4ef(2,N,N-1),2) 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(2,1,1),uf(2,1,1), 

lvf(2,1,1),ef(2,1,1),dzl(l),uzl(l),vzl(l),ezl(l),df(2,1,2), 
2uf(2,1,2),vf(2,1,2),ef(2,1,2),df(2,2,1),uf(2,2,1),vf(2,2,1), 
3ef(2,2,l),dxl(l),uxl(l),vxl(l),exl(l),l) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(2,1,N),uf(2,1,N), 

lvf(2,l,N),ef(2,l,N),dzl(N),uzl(N),vzl(N),ezl(N),df(2,1,N), 



2uf(2,l,N),-vf(2,1,N),ef(2,1,N),df(2,2,N),uf(2,2,N),vf(2,2,N), 
3ef(2,2,N),df(2,1,N-l),uf(2,1,N-l),vf(2,1,N-l),ef(2,1,N-1),2) 
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c Evaluate Region 2 edge locations. 
do 360 i=2,N-l 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(2,i,N),uf(2,i,N), 

lvf(2,i,N),ef(2,i,N),df(2,i-l,N),uf(2,i-l,N),vf(2,i-l,N), 
2ef(2,i-l,N),df(2,i,N),uf(2,i,N),-vf(2,i,N),ef(2,i,N),df(2,i+l,N}, 
3uf(2,i+l,N),vf(2,i+l,N),ef(2,i+l,N),df(2,i,N-l),uf(2,i,N-l), 
4vf(2,i,N-l),ef(2,i,N-1),2) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(2,N,i),uf(2,N,i), 

lvf(2,N,i),ef(2,N,i),df(2,N-l,i),uf(2,N-l,i),vf(2,N-l,i), 
2ef(2,N-l,i),df(2,N,i+l),uf(2,N,i+l),vf(2,N,i+l),ef(2,N,i+l), 
3dyl(i),uyl(i),vyl(i),eyl(i),df(2,N,i-l),uf(2,N,i-l),vf(2,N,i-l), 
4ef(2,N,i-l),l) 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(2,i,l),uf(2,i,l), 

lvf(2,i,l),ef(2,i,l),df(2,i-l,l),uf(2,i-l,l),vf(2,i-l,l), 
2ef(2,i-l,l),df(2,i,2),uf(2,i,2),vf(2,i,2),ef(2,i,2),df(2,i+l,l), 
3uf(2,i+l,l),vf(2,i+l,l),ef(2,i+l,l),dxl(i),uxl(i),vxl(i), 
4exl(i),l) 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(2,1,i),uf(2,1,i), 

lvf(2,l,i),ef(2,l,i),dzl(i),uzl(i),vzl(i),ezl(i),df(2,1,i+l), 
2uf(2,l,i+l),vf(2,l,i+l),ef(2,1,i+l),df(2,2,i),uf(2,2,i), 
3vf(2,2,i),ef(2,2,i),df(2,1,i-l),uf(2,1,i-l),vf(2,1,i-l), 
4ef(2,l,i-l),l) 

360 continue 
go to 530 

370 write(6,16) 
16 format(' REGION 3 BEING PROCESSED') 
c 
c Evaluate Region 3 corner locations. 

call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(3,1,1), 
luf(3,l,l),vf(3,l,l),ef(3,1,1),dyr(l),uyr(l),vyr(l),eyr(l), 
2df(3,1,2),uf(3,1,2),vf(3,1,2),ef(3,1,2),df(3,2,1),uf(3,2,1), 
3vf(3,2,l),ef(3,2,l),dxr(l),uxr(l),vxr(l),exr(l),l) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(3,1,N),uf(3,1,N), 

lvf(3,l,N),ef(3,1,N),dyr(N),uyr(N),vyr(N),eyr(N),df(3,1,N), 
2uf(3,l,N),-vf(3,l,N),ef(3,1,N),df(3,2,N),uf(3,2,N),vf(3,2,N), 
3ef(3,2,N),df(3,l,N-l},uf(3,1,N-l),vf(3,1,N-l),ef(3,1,N-l),2) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(3,N,l),uf(3,N,l), 

lvf(3,N,l),ef(3,N,l),df(3,N-l,l),uf(3,N-l,l),vf(3,N-l,l), 
2ef(3,N-l,l),df(3,N,2),uf(3,N,2),vf(3,N,2),ef(3,N,2),dzr(l),uzr(l), 
3vzr(l),ezr(l),dxr(N),uxr(N),vxr(N),exr(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(3,N,N), 

luf(3,N,N),vf(3,N,N),ef(3,N,N),df(3,N-l,N),uf(3,N-l,N),vf(3,N-l,N), 
2ef(3,N-l,N),df(3,N,N),uf(3,N,N),-vf(3,N,N),ef(3,N,N),dzr(N), 
3uzr(N),vzr(N),ezr(N),df(3,N,N-l),uf(3,N,N-l),vf(3,N,N-l), 
4ef(3,N,N-1),2) 

c Evaluate Region 3 edge locations. 
do 380 i=2,N-l 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(3,1,i), 

luf(3,l,i),vf(3,l,i),ef(3,1,i),dyr(i),uyr(i),vyr(i),eyr(i), 
2df(3,l,i+l),uf(3,l,i+l),vf(3,1,i+l),ef(3,1,i+l),df(3,2,i), 
3uf(3,2,i),vf(3,2,i),ef(3,2,i),df(3,1,i-l},uf(3,1,i-l),vf(3,1,i-l), 
4ef(3,l,i-l),l) 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(3,i,l), 

luf(3,i,l),vf(3,i,l),ef(3,i,l),df(3,i-l,l),uf(3,i-l,l),vf(3,i-l,l), 
2ef(3,i-l,l),df(3~i,2),uf(3,i,2),vf(3,i,2),ef(3,i,2),df(3,i+l,l), 
3uf(3,i+l,l),vf(3,i+l,l),ef(3,i+l,l),dxr(i),uxr(i),vxr(i),exr(i),l) 
call field(da(i,N),ua(i,N),va(i,N},ea(i,N),df(3,i,N), 

luf(3,i,N),vf(3,i,N),ef(3,i,N),df(3,i-l,N),uf(3,i-l,N),vf(3,i-l,N), 
2ef(3,i-l,N),df(3,i,N),uf(3,i,N),-vf(3,i,N),ef(3,!,N),df(3,i+l,N), 
3uf(3,i+l,N),vf(3,i+l,N),ef(3,i+l,N),df(3,i,N-l),uf(3,i,N-l), 
4vf(3,i,N-l),ef(3,i,N-1),2) . 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(3,N,1),uf(3,N,i), 



1vf(3,N,i),ef(3,N,i),df(3,N-1,i),uf(3,N-1,i),vf(3,N-1,i), 
2ef(3,N-1,i),df(3,N,i+1),uf(3,N,i+1),vf(3,N,i+1),ef(3,N,i+1), 
3dzr(i),uzr(i),vzr(i),ezr(i),df(3,N,i-1),uf(3,N,i-1),vf(3,N,i-1), 
4ef(3,N,i-1),1) 
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380 continue 
go to 530 

390 write(6,17) 
17 format(' REGION 4 BEING PROCESSED') 
c 
c Evaluate Region 4 corner locations. 

call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(4,N,N), 
1uf(4,N,N),vf(4,N,N),ef(4,N,N),df(4,N-1,N),uf(4,N-1,N),vf(4,N-1,N), 
2ef(4,N-1,N),dxl(N),uxl(N),vxl(N),exl(N),df(4,N,N),-uf(4,N,N), 
3vf(4,N,N),ef(4,N,N),df(4,N,N-1),uf(4,N,N-l),vf(4,N,N-1), 
4ef(4,N,N-1),4) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(4,1,N), 

luf(4,l,N),vf(4,1,N),ef(4,1,N),dtl(N),utl(N),vtl(N),etl(N),dxl(1), 
2uxl(1),vxl(1),exl(1),df(4,2,N),uf(4,2,N),vf(4,2,N),ef(4,2,N), 
3df(4,l,N-l),uf(4,l,N-l),vf(4,l,N-l),ef(4,l,N-1),1) 
call field(da(l,1),ua(1,1),va(l,l),ea(1,1),df(4,1,1),uf(4,1,1), 

1vf(4,l,l),ef(4,1,1),dtl(l),utl(l),vtl(1),etl(l),df(4,1,2), 
2uf(4,1,2),vf(4,1,2),ef(4,1,2),df(4,2,1),uf(4,2,l),vf(4,2,1), 
3ef(4,2,l),dsl(l),usl(l),vsl(1),esl(1),1) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(4,N,1),uf(4,N,1), 

1vf(4,N,1),ef(4,N,1),df(4,N-l,l),uf(4,N-l,l),vf(4,N-1,1), 
2ef(4,N-l,l),df(4,N,2),uf(4,N,2),vf(4,N,2),ef(4,N,2),df(4,N,l), 
3-uf(4,N,l),vf(4,N,l),ef(4,N,l),dsl(N),usl(N),vsl(N),esl(N),4) 

c Evaluate Region 4 edge locations. 
do 400 i=2,N-1 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(4,i,N), 

luf(4,i,N),vf(4,i,N),ef(4,i,N),df(4,i-l,N),uf(4,i-l,N),vf(4,i-l,N), 
2ef(4,i-l,N),dxl(i),uxl(i),vxl(i),exl(i),df(4,i+l,N),uf(4,i+1,N), 
3vf(4,i+1,N),ef(4,i+l,N),df(4,i,N-l),uf(4,i,N-1),vf(4,i,N-1), 
4ef(4,i,N-l),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(4,N,i), 

1uf(4,N,i),vf(4,N,i),ef(4,N,i),df(4,N-1,i),uf(4,N-l,i),vf(4,N-l,i), 
2ef(4,N-l,i),df(4,N,i+l),uf(4,N,i+l),vf(4,N,i+l),ef(4,N,i+l), 
3df(4,N,i),-uf(4,N,i),vf(4,N,i),ef(4,N,i),df(4,N,i-l),uf(4,N,i-l), 
4vf(4,N,i-l),ef(4,N,i-1),4) 
call field(da(l,i),ua(1,i),va(l,i),ea(1,i),df(4,l,i), 

1uf(4,l,i),vf(4,l,i),ef(4,l,i),dtl(i),utl(i),vtl(i),etl(i), 
2df(4,1,i+l),uf(4,l,i+l),vf(4,1,i+l),ef(4,l,i+l),df(4,2,i), 
3uf(4,2,i),vf(4,2,i),ef(4,2,i),df(4,l,i-l),uf(4,l,i-1), 
4vf(4,l,i-1),ef(4,l,i-l),l) 
call field(da(i,l),ua(i,l),va(i,1),ea(i,l),df(4,i,l),uf(4,i,1), 

lvf(4,i,1),ef(4,i,1),df(4,i-l,l),uf(4,i-l,l),vf(4,i-l,l), 
2ef(4,i-1,1),df(4,i,2),uf(4,i,2),vf(4,i,2),ef(4,i,2),df(4,i+l,l), 
3uf(4,i+1,1),vf(4,i+l,l),ef(4,i+1,l),dsl(i),usl(i),vsl(i),esl(i),l) 

400 continue 
go to 530 

410 write(6,27) 
27 format(' REGION 5 BEING PROCESSED') 
c 
c Evaluate Region 5 corner locations. 

call field(da(1,N),ua(1,N),va(l,N),ea(l,N),df(5,l,N), 
1uf(5,1,N),vf(S,l,N),ef(5,l,N),df(5,l,N),-uf(5,l,N),vf(5,1,N), 
2ef(5,l,N),dxr(l),uxr(1),vxr(1),exr(l),df(5,2,N),uf(5,2,N), 
3vf(5,2,N),ef(5,2,N),df(5,l,N-1),uf(5,l,N-l),vf(5,1,N-1), 
4ef(5,l,N-1),3) 
call field(da(N,N),ua(N,N),va(N,N)·,ea(N,N),df(5,N,N),uf(5,N,N), 

lvf(5,N,N),ef(5,N,N),df(5,N-l,N),uf(5,N-1,N),vf(5,N-1,N), 
2ef(5,N-l,N),dxr(N),uxr(N),vxr(N),exr(N),dtr(N),utr(N),vtr(N), 
3etr(N),df(S,N,N-l),uf(5,N,N-l),vf(5,N,N-l),ef(5,N,N-1),1) 
call field(da(1,1),ua(l,l),va(1,l),ea(1,l),df(5,l,l),uf(5,1,1), 



1vf(5,1,1),ef(5,1,1),df(5,1,1),-uf(5,1,1),vf(5,1,1),ef(5,1,1), 
2df(5,1,2),uf(5,1,2),vf(5,1,2),ef(5,1,2),df(5,2,1),uf(5,2,1), 
3vf(5,2,1),ef(5,2,1),dsr(1),usr(1),vsr(1),esr(1),3) 
call field(da(N,1),ua(N,1),va(N,1),ea(N,1),df(5,N,1),uf(5,N,1), 

1vf(5,N,1),ef(5,N,1),df(5,N-1,1),uf(5,N-1,1),vf(5,N-1,1), 
2ef(5,N-1,1),df(5,N,2),uf(5,N,2),vf(5,N,2),ef(5,N,2),dtr(1), 
3utr(1),vtr(1),etr(1),dsr(N),usr(N),vsr(N),esr(N),1) 

293 

c Evaluate Region 5 edge locations. 
do 420 i=2,N-1 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(5,i,N),uf(5,i,N), 

1vf(5,i,N),ef(5,i,N),df(5,i-1,N),uf(5,i-1,N),vf(5,i-1,N), 
2ef(5,i-1,N),dxr(i),uxr(i),vxr(i),exr(i),df(5,i+1,N),uf(5,i+1,N), 
3vf(5,i+1,N),ef(5,i+1,N),df(5,i,N-1),uf(5,i,N-1),vf(5,i,N-1), 
4ef(5,i,N-1),1) 
call field(da(1,i),ua(1,i),va(1,i),ea(1,i),df(5,1,i), 

1uf(5,1,i),vf(5,1,i),ef(5,1,i),df(5,1,i),-uf(5,1,i),vf(5,1,i), 
2ef(5,1,i),df(5,1,i+1),uf(5,1,i+1),vf(5,1,i+1),ef(5,1,i+1), 
3df(5,2,i),uf(5,2,i),vf(5,2,i),ef(5,2,i),df(5,1,i-1),uf(5,1,i-1), 
4vf(5,1,i-1),ef(5,1,i-1),3) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(5,N,i),uf(5,N,i), 

1vf(5,N,i),ef(5,N,i),df(5,N-1,i),uf(5,N-1,i),vf(5,N-1,i), 
2ef(5,N-1,i),df(5,N,i+1),uf(5,N,i+1),vf(5,N,i+1),ef(5,N,i+1), 
3dtr(i),utr(i),vtr(i),etr(i),df(5,N,i-1),uf(5,N,i-1),vf(5,N,i-1), 
4ef(5,N,i-1),1) 
call field(da(i,1),ua(i,1),va(i,1),ea(i,1),df(5,i,1),uf(5,i,1), 

1vf(5,i,1),ef(5,i,1),df(5,i-1,1),uf(5,i-1,1),vf(5,i-1,1), 
2ef(5,i-1,1),df(5,i,2),uf(5,i,2),vf(5,i,2),ef(5,i,2),df(5,i+1,1), 
3uf(5,i+1,1),vf(5,i+1,1),ef(5,i+1,1),dsr(i),usr(i),vsr(i),esr(i),1) 

420 continue 
go to 530 

430 write(6,33) 
33 format(' REGION 6 BEING PROCESSED ') 
c 
c Evaluate Region 6 corner locations. 

call field(da(1,N),ua(1,N),va(1,N),ea(1,N),df(6,1,N),uf(6,1,N), 
1vf(6,1,N),ef(6,1iN),df(6,1,N),-uf(6,1,N),vf(6,1,N),ef(6,1,N), 
2dxc(1),uxc(1),vxc(1),exc(1),df(6,2,N),uf(6,2,N),vf(6,2,N), 
3ef(6,2,N),df(6,1,N-1),uf(6,1,N-1),vf(6,1,N-1),ef(6,1,N-1),3) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(6,N,N), 

1uf(6,N,N),vf(6,N,N),ef(6,N,N),df(6,N-1,N),uf(6,N-1,N),vf(6,N-1,N), 
2ef(6,N-1,N),dxc(N),uxc(N),vxc(N),exc(N),df(6,N,N),-uf(6,N,N), 
3vf(6,N,N),ef(6,N,N),df(6,N,N-1),uf(6,N,N-1),vf(6,N,N-1), 
4ef(6,N,N-1),4) 

c Evaluate Region 6 edge locations. 
do 440 i=2,N-1 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(6,i,N), 

1uf(6,i,N),vf(6,i,N),ef(6,i,N),df(6,i-1,N),uf(6,i-1,N),vf(6,i-1,N), 
2ef(6,i-1,N),dxc(i),uxc(i),vxc(i),exc(i),df(6,i+1,N),uf(6,i+1,N), 
3vf(6,i+1,N),ef(6,i+1,N),df(6,i,N-1),uf(6,i,N-1),vf(6,i,N-1), 
4ef(6,i,N-1),1) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(6,N,i), 

1uf(6,N,i),vf(6,N,i),ef(6,N,i),df(6,N-1,i),uf(6,N-1,i),vf(6,N-1,i), 
2ef(6,N-1,i),df(6,N,i+1),uf(6,N,i+1),vf(6,N,i+1),ef(6,N,i+1), 
3df(6,N,i),-uf(6,N,i),vf(6,N,i),ef(6,N,i),df(6,N,i-1),uf(6,N,i-1), 
4vf(6,N,i-1),ef(6,N,i-1),4) 
call field(da(1,i),ua(1,i),va(1,i),ea(1,i),df(6,1,i), 

1uf(6,1,i),vf(6,1,i),ef(6,1,i),df(6,1,i),-uf(6,1,i),vf(6,1,i), 
2ef(6,1,i),df(6,1,i+1),uf(6,1,i+1),vf(6,1,i+1),ef(6,1,i+1), 
3df(6,2,i),uf(6,2,i),vf(6,2,i),ef(6,2,i),df(6,1,i-1),uf(6,1,i-1), 
4vf(6,1,i-1),ef(6,1,i-1),3) 

440 continue 
go to 530 

450 write(6,37) 
37 format(' REGION 7 BEING PROCESSED') 



294 

c 
c Evaluate Region 7 corner locations. 

call field(da(N,l),ua(N,1),va(N,1),ea(N,1),df(7,N,1), 
1uf(7,N,1),vf(7,N,1),ef(7,N,1),df(7,N-1,1),uf(7,N-1,1),vf(7,N-1,1), 
2ef(7,N-1,1),df(7,N,2),uf(7,N,2),vf(7,N,2),ef(7,N,2),dzl(1),uzl(1), 
3vzl(1),ezl(1),dwl(N),uwl(N),vwl(N),ewl(N),1) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(7,N,N), 

1uf(7,N,N),vf(7,N,N),ef(7,N,N),df(7,N-1,N),uf(7,N-1,N),vf(7,N-1,N), 
2ef(7,N-1,N),df(7,N,N),uf(7,N,N),-vf(7,N,N),ef(7,N,N),dzl(N), 
3uzl(N),vzl(N),ezl(N),df(7,N,N-1),uf(7,N,N-1),vf(7,N,N-1), 
4ef(7 ,N,N-1) ,2) 
call field(da(1,1),ua(1,1),va(1,1),ea(1,1),df(7,1,1),uf(7,1,1), 

1vf(7,1,1),ef(7,1,1),dql(1),uql(1),vql(1),eql(l),df(7,1,2), 
2uf(7,1,2),vf(7,1,2),ef(7,1,2),df(7,2,1),uf(7,2,1),vf(7,2,1), 
3ef(7,2,1),dwl(1),uw1(1),vwl(1),ewl(1),1} 
call field(da(1,N),ua(1,N),va(1,N),ea(1,N),df(7,1,N),uf(7,1,N), 

1vf(7,1,N),ef(7,1,N),dql(N),uq1(N),vql(N),eql(N),df(7,1,N), 
2uf(7,1,N),-vf(7,l,N),ef(7,1,N),df(7,2,N),uf(7,2,N),vf(7,2,N), 
3ef(7,2,N),df(7,l,N-l),uf(7,1,N-1),vf(7,1,N-1),ef(7,1,N-1),2) 

c Evaluate Region 7 edge locations. 
do 460 i=2,N-1 
call field(da(i,1),ua(i,l),va(i,l),ea(i,1),df(7,i,l), 

1uf(7,i,1),vf(7,i,1),ef(7,1,1),df(7,i-1,1),uf(7,1-1,1),vf(7,1-1,1), 
2ef(7,1-1,l),df(7,i,2),uf(7,i,2),vf(7,i,2),ef(7,1,2),df(7,i+l,1), 
3uf(7,1+1,l),vf(7,i+l,l),ef(7,1+1,1),dwl(i),uwl(i),vwl(i),ewl(i),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(7,N,1), 

1uf(7,N,i),vf(7,N,i),ef(7,N,i),df(7,N-1,i),uf(7,N-1,1),vf(7,N-1,1), 
2ef(7,N-1,1),df(7,N,i+1),uf(7,N,i+1),vf(7,N,i+1),ef(7,N,i+l), 
3dzl(i),uzl(i),vzl(i),ezl(i),df(7,N,i-l),uf(7,N,1-l),vf(7,N,i-1), 
4ef(7,N,1-1),1) 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(7,1,N), 

luf(7,i,N),vf(7,1,N),ef(7,1,N),df(7,i-l,N),uf(7,1-1,N), 
2vf(7,1-l,N),ef(7,1-1,N),df(7,1,N),uf(7,1,N),-vf(7,i,N), 
3ef(7,1,N),df(7,i+1,N),uf(7,1+1,N),vf(7,i+l,N),ef(7,1+1,N), 
4df(7,1,N-1),uf(7,i,N-l),vf(7,1,N-1),ef(7,i,N-1),2) 
call field(da(1,1),ua(1,i),va(l,i),ea(1,1),df(7,1,i),uf(7,1,1), 

lvf(7,1,i),ef(7,l,i),dql(i),uql(i),vql(i),eql(i),df(7,1,i+1), 
2uf(7,1,i+l),vf(7,1,i+1),ef(7,1,1+1),df(7,2,1),uf(7,2,1), 
3vf(7,2,1),ef(7,2,i),df(7,1,i-1),uf(7,1,1-l),vf(7,1,i-l), 
4ef(7,1,1-l),l) 

460 continue 
go to 530 

470 write(6,41) 
41 format(' REGION 8 BEING PROCESSED ') 
c 
c Evaluate Region 8 corner locations. 

call field(da(1,1),ua(1,1),va(1,1),ea(1,1),df(8,1,1),uf(8,1,1), 
1vf(8,1,l),ef(8,1,1),dzr(1),uzr(l),vzr(1),ezr(1),df(8,1,2), 
2uf(8,1,2),vf(8,1,2),ef(8,1,2),df(8,2,1),uf(8,2,1),vf(8,2,1), 
3ef(8,2,l),dwr(1),uwr(1),vwr(1),ewr(l),1) 
call field(da(l,N),ua(1,N),va(1,N),ea(1,N),df(B,1,N),uf(8,1,N), 

1vf(8,1,N),ef(B,l,N),dzr(N),uzr(N),vzr(N),ezr(N),df(8,1,N), 
2uf(8,1,N),-vf(8,1,N),ef(8,1,N),df(8,2,N),uf(8,2,N),vf(8,2,N), 
3ef(8,2,N),df(8,l,N-l),uf(8,1,N-1),vf(B,1,N-1),ef(8,1,N-1),2) 
call field(da(N, 1) ,ua(N, 1) ,va(N, 1.) ,ea(N, 1) ,df(8,N, 1) ,uf(8,N, 1), 

1vf(8,N,1),ef(B,Ni1),df(8,N-l,l),uf(8,N-1,1),vf(8,N-1,1), 
2ef(8,N-1,1),df(8,N,2),uf(8,N,2),vf(8,N,2),ef(8,N,2), 
3dqr(l),uqr(1),vqr(1),eqr(l),dwr(N),uwr(N),vwr(N),ewr(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(B,N,N),uf(8,N,N), 

1vf(8,N,N),ef(8,N,N),df(B,N-1,N),uf(8,N-1,N),vf(8,N-l,N), 
2ef(8,N-1,N),df(B,N,N),uf(8,N,N),-vf(8,N,N),ef(B,N,N),dqr(N), 
3uqr(N),vqr(N),eqr(N),df(8,N,N-1),uf(8,N,N-l),vf(8,N,N-1), 
4ef(8,N,N-1),2) 

c Evaluate Region 8 edge locations. 



295 

do 480 1•2,N-1 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(B,l,i), 
luf(8,1~1),vf(8,1,1),ef(8,1,i),dzr(i),uzr(i),vzr(i),ezr(i), 
2df(8,l,i+l),uf(B,l,i+l),vf(B,l,i+l),ef(B,l,i+l),df(8,2,i), 
3uf(8,2,1),vf(8,2,1),ef(8,2,i),df(B,l,i-l),uf(8,l,i-l),vf(8,1,1-l), 
4ef(8,1,i-1),1) 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(8,1,1), 

luf(8,1,l),vf(8,1,l),ef(8,i,l),df(8,i-l,l),uf(8,i-l,l),vf(8,i-1,1), 
2ef(8,1-l,l),df(8,1,2),uf(8,i,2),vf(8,i,2),ef(8,i,2),df(8,i+l,l), 
3uf(B,i+l,l),vf(8,1+l,l),ef(B,i+l,l),dwr(i),uwr(i),vwr(i),ewr(i),l) 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(B,i,N), 

luf(B,i,N),vf(B,i,N),ef(8,1,N),df(B,i-l,N),uf(8,1-l,N),vf(8,1-l,N), 
2ef(8,i-l,N),df(B,i,N),uf(8,i,N),-vf(8,i,N),ef(8,i,N),df(8,1+1,N), 
3uf(8,1+l,N),vf(8,1+1,N),ef(8,i+l,N),df(8,1,N-l),uf(8,1,N-1), 
4vf(8,1,N-l),ef(8,1,N-1),2) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(B,N,i),uf(S,N,i), 

lvf(B,N,i),ef(S,N,i),df(B,N-l,i),uf(B,N-l,i),vf(B,N-1,1), 
2ef(B,N-l,i),df(B,N,i+l),uf(B,N,i+l),vf(B,N,i+l),ef(B,N,i+l), 
3dqr(i),uqr(i),vqr(i),eqr(i),df(8,N,1-l),uf(8,N,i-l),vf(8,N,i-1), 
4ef(B,N,i-l),l) 

480 continue 
go to 530 

490 write(6,47) 
47 format(' REGION 9 BEING PROCESSED') 
c 
c Evaluate Region 9 corner locations. 

call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(9,N,N),uf(9,N,N), 
lvf(9,N,N),ef(9,N,N),df(9,N-l,N),uf(9,N-l,N),vf(9,N-l,N), 
2ef(9,N-l,N),dwl(N),uwl(N),vwl(N),ewl(N),dtl(N),utl(N),vtl(N), 
3etl(N),df(9,N,N-l),uf(9,N,N-l),vf(9,N,N-l),ef(9,N,N-l),l) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(9,N,l),uf(9,N,l), 

lvf(9,N,l),ef(9,N,l),df(9,N-l,l),uf(9,N-l,l),vf(9,N-l,l), 
2ef(9,N-l,l),df(9,N,2),uf(9,N,2),vf(9,N,2),ef(9,N,2), 
3dtl(l),utl(l),vtl(l),etl(l),drl(N),url(N),vrl(N),erl(N),l) 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(9,1,1),uf(9,1,1), 

lvf(9,l,l),ef(9,l,l),dpl(l),upl(l),vpl(l),epl(l),df(9,1,2), 
2uf(9,1,2),vf(9,1,2),ef(9,1,2),df(9,2,1),uf(9,2,1),vf(9,2,1), 
3ef(9,2,l),drl(l),url(l),vrl(l),erl(l),l) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(9,l,N),uf(9,l,N), 

lvf(9,1,N),ef(9,l,N),dpl(N),upl(N),vpl(N),epl(N),dwl(l),uwl(l), 
2vwl(l),ewl(l),df(9,2,N),uf(9,2,N),vf(9,2,N),ef(9,2,N), 
3df(9,l,N-l),uf(9,l,N-l),vf(9,l,N-l),ef(9,l,N-l),l) 

c Evaluate Region 9 edge locations. 
do 500 i=2,N-l 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(9,1,N), 

luf(9,i,N),vf(9,i,N),ef(9,i,N),df(9,i-l,N),uf(9,i-l,N),vf(9,i-l,N), 
2ef(9,1-l,N),dwl(i),uwl(i),vwl(i),ewl(i),df(9,1+1,N),uf(9,1+1,N), 
3vf(9,i+l,N),ef(9,l+l,N),df(9,1,N-l),uf(9,1,N-l),vf(9,1,N-1), 
4ef(9,1,N-l),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(9,N,i), 

luf(9,N,i),vf(9,N,i),ef(9,N,i),df(9,N-1,1),uf(9,N-l,i),vf(9,N-l,i), 
2ef(9,N-1,1),df(9,N,i+l),uf(9,N,i+l),vf(9,N,i+l),ef(9,N,i+l), 
3dtl(i),utl(i),vtl(i),etl(i),df(9,N,i-l),uf(9,N,i-l),vf(9~N,i-1), 
4ef(9,N,i-l),l) 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(9,i,l),uf(9,1,1), 

lvf(9,1,l),ef(9,1,l),df(9,i-l,l),uf(9,i-l,l),vf(9,1-l,l), 
2ef(9,1-l,l),df(9,1,2),uf(9,1,2),vf(9,1,2),ef(9,1,2),df(9,1+1,1), 
3uf(9,i+l,l),vf(9,i+l,l),ef(9,i+l,l),drl(i),url(i),vrl(i),erl(i),l) 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(9,1,1),uf(9,l,i), 

lvf(9,1,1),ef(9,1,1),dpl(i),upl(i),vpl(i),epl(i),df(9,1,1+1), 
2uf(9,1,1+l),vf(9,1,1+1),ef(9,1,1+1),df(9,2,1),uf(9,2,1),vf(9,2,1), 
3ef(9,2,1),df(9,l,i-l),uf(9,1,i-l),vf(9,l,i-l),ef(9,l,i-l),l) 

500 continue 
go to 530 
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510 write(6,53) 
53 format(' REGION 10 BEING PROCESSED') 
c 
c Evaluate Region 10 corner locations. 

call field(da(1,N),ua(1,N),va(1,N),ea(l,N),df(lO,l,N), 
1uf(lO,l,N),vf(l0,1,N),ef(lO,l,N),dtr(N),utr(N),vtr(N),etr(N), 
2dwr(l),uwr(l),vwr(l),ewr(l),df(l0,2,N),uf(l0,2,N),vf(l0,2,N), 
3ef(l0,2,N),df(l0,1,N-l),uf(l0,1,N-l),vf(10,1,N-l),ef(l0,1,N-l),l) 
call field(da(l,l),ua(1,1),va(l,l),ea(l,l),df(l0,1,1),uf(l0,1,1), 

lvf(10,1,l),ef(l0,1,1),dtr(l),utr(l),vtr(l),etr(1),df(l0,1,2), 
2uf(10,1,2),vf(10,1,2),ef(l0,1,2),df(l0,2,1),uf(l0,2,1),vf(l0,2,1), 
3ef(l0,2,l),drr(l),urr(l),vrr(l),err(l),l) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(lO,N,l),uf(lO,N,1), 

1vf(10,N,1),ef(10,N,l),df(10,N-1,1),uf(l0,N-1,1),vf(10,N-1,1), 
2ef(10,N-1,1),df(10,N,2),uf(10,N,2),vf(10,N,2),ef(10,N,2), 
3dpr(l),upr(1),vpr(1),epr(1),drr(N),urr(N),vrr(N),err(N),l) 
call field{da(N,N),ua(N,N),va(N,N),ea(N,N),df(lO,N,N),uf(lO,N,N), 

1vf(10,N,N),ef(l0,N,N),df(10,N-l,N),uf(10,N-1,N),vf(10,N-1,N), 
2ef(10,N-1,N),dwr(N),uwr(N),vwr(N),ewr(N),dpr(N),upr(N),vpr(N), 
3epr(N),df(10,N,N-1),uf(10,N,N-l),vf(10,N,N-1),ef(10,N,N-1),1) 

c Evaluate Region 10 edge locations. 
do 520 i=2,N-1 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(10,i,N), 

1uf(10,i,N),vf(lO,i,N),ef(10,i,N),df(10,i-1,N),uf(10,i-1,N), 
2vf(lO,i-1,N),ef(10,i-1,N),dwr(i),uwr(i),vwr(i),ewr(i), 
3df(10,i+1,N),uf(10,i+l,N),vf(10,i+1,N),ef(l0,i+1,N),df(10,i,N-1), 
4uf(10,i,N-1),vf(10,i,N-l),ef(10,i,N-1),1) . 
call field(da(1,i),ua(l,i),va(l,i),ea(l,i),df(10,1,i), 

1uf(10,1,i),vf(10,1,i),ef(10,1,i),dtr(i),utr(i),vtr(i),etr(i), 
2df(10,1,i+1),uf(l0,1,i+1),vf(10,1,i+l),ef(l0,1,i+1),df(l0,2,i), 
3uf(10,2,i),vf(10,2,i),ef(10,2,i),df(10,1,i-1),uf(10,1,i-1), 
4vf(10,1,i-l),ef(l0,1,i-1),1) 
call field(da(i,1),ua(i,1),va(i,1),ea(i,l),df(10,i,1),uf(l0,i,l), 

1vf(lO,i,1),ef(10,i,l),df(10,i-1,1),uf(10,i-1,1),vf(10,i-1,1), 
2ef(10,i-1,1),df(lO,i,2),uf(10,i,2),vf(10,i,2),ef(10,i,2), 
3df(lO,i+1,1),uf(lO,i+1,1),vf(l0,i+1,1),ef(10,i+1,1),drr(i), 
4urr(i),vrr(i),err(i),1) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(10,N,i),uf(10,N,i), 

1vf(lO,N,i),ef(10,N,i),df(10,N-1,i),uf(10,N-1,i),vf(10,N-1,i), 
2ef(10,N-1,i),df(10,N,i+1),uf(l0,N,i+l),vf(10,N,i+1),ef(10,N,i+1), 
3dpr(i),upr(i),vpr(i),epr(i),df(10,N,i-1),uf(10,N,i-1), 
4vf(lO,N,i-1),ef(lO,N,i-1),1) 

520 continue 
c 
c Evaluate interior locations for Regions 1 through 10. 
c 
530 do 540 i=2,N-1 

do 540 j=2,N-1 
call field(da(i,j),ua(i,j),va(i,j),ea(i,j),df(l,i,j),uf(l,i,j), 

lvf(l,i,j),ef(l,i,j),df(l,i-1,j),uf(l,i-1,j),vf(l,i-1,j), 
2ef(l,i-l,j),df(l,i,j+1),uf(l,i,j+1),vf(l,i,j+1),ef(l,i,j+l), 
3df(l,i+1,j),uf(l,i+1,j),vf(l,i+1,j),ef(l,i+1,j),df(l,i,j-1), 
4uf(l,!,j-1),vf(l,i,j-1),ef(l,i,j-1),1) 

540 continue 
c 
c determine the boundary conditions for next time step 
c 
600 goto (610,630,650,670,690,710,730,750,770,790) 1 
c 
c Coupling Boundaries yl and yr associated with Region 1. 
c 
610 do 620 1=1,N 

dyl(i)=da(l,i) 
uyl(i)=ua(1,i) 



vyl(i):o:va(l,i) 
eyl(i)•ea(l,i) 
dyr(i)=da(N,i) 
uyr(i)=ua(N,i) 
vyr(i)=va(N,i) 
eyr(i)cea(N,i) 

620 continue 
go to 900 

c 
c Coupling Boundaries xl and zl associated with Region 2. 
c 
630 do 640 i=l,N 

dxl(i)•da(i,l) 
uxl(i)•ua(i,l) 
vxl(i)=va(i,l) 
exl(i)=ea(i,l) 
dzl(i)=da(l,i) 
uzl(i)=ua(l,i) 
vzl(i)zva(l,i) 
ezl(i)•ea(l,i) 

640 continue 
go to 900 

c 
c Coupling Boundaries xr and zr associated with Region 3. 
c 
650 do 660 i•l,N 

dxr(i)•da(i,l) 
uxr(i)=ua(i,l) 
vxr(i)=va(i,l) 
exr(i)•ea(i,l) 
dzr(i)=da(N,i) 
uzr(i)=ua(N,i) 
vzr(i)•va(N,i) 
ezr(i)zea(N,i) 

660 continue 
go to 900 

c 
c Coupling Boundaries tl and sl associated with Region 4. 
c 
670 do 680 i=l,N 

dtl(i)•da(l,i) 
utl(i)=ua(l,i) 
vtl(i)=va(l,i) 
etl(i)•ea(l,i) 
dsl(i)•da(i,l) 
usl(i)•ua(i,l) 
vsl(i)=va(i,l) 
esl(i)=ea(i,l) 

680 continue 
go to 900 

c 
c Coupling Boundaries tr and sr associated with Region s. 
c 
690 do 700 i=l,N 

dtr(i)=da(N,i) 
utr(i)•ua(N,i) 
vtr(i)-=va(N,i) 
etr(i)=ea(N,i) 
dsr(i)•da(i,l) 
usr(i)•ua(i,l) 
vsr(i)zva(i,l) 
esr(i)•ea(i,l) 

700 continue 
go to 900 
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c 
c Coupling Boundary xc associated with Region 6. 
c 
710 do 720 i=l,N 

dxc(i)zda(i,N) 
uxc(i)=ua(i,N) 
vxc(i)=-=va(i,N) 
exc(i)=ea(i,N) 

720 continue 
go to 900 

c 
c Coupling Boundaries wl and ql associated with Region 7. 
c 
730 do 740 i=l,N 

dwl(i)=da(i,l) 
uwl(i)=ua(i,l) 
vwl(i)=va(i,l) 
ewl(i)=ea(i,l) 
dql(i)=da(l,i) 
uql(i)=ua(l,i) 
vql(i)=va(l,i) 
eql(i)=ea(l,i) 

740 continue 
go to 900 

c 
c Coupling Boundaries wr and qr associated with Region 8. 
c 
750 do 760 i=l,N 

dwr(i)=da(i,l) 
uwr(i)=ua(i,l) 
vwr(i)=va(i,l) 
ewr(i)=ea(i,l) 
dqr(i)=da(N,i) 
uqr(i)=ua(N,i) 
vqr(i)=va(N,i) 
eqr(i)=ea(N,i) 

760 continue 
go to 900 

c 
c Coupling Boundaries pl and rl associated with Region 9 •. 
c 
770 do 780 i•l,N 

dpl(i)=da(l,i) 
upl(i)=ua(l,i) 
vpl(i)=va(l,i) 
epl(i)=ea(l,i) 
drl(i)=da(i,l) 
url(i)=ua(i,l) 
vrl(i)=va(i,l) 
erl(i)zea(i,l) 

780 continue 
go to 900 

c 
c Coupling Boundaries pr and rr associated with Region 10. 
c 
790 do 800 i=l,N 

dpr(i)=da(N,i) 
upr(i)=ua(N,i) 
vpr(i)=va(N,i) 
epr(i)=ea(N,i) 
drr(i)=da(i,l) 
urr(i)=ua(i,l) 
vrr(i)=va(i,l) 
err(i)=ea(i,l) 
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800 continue 
c 
c set da, ua, va, and ea values at this time step equal to 
c df, uf, vf, and ef values for the next time step. 
c 
900 do 910 i=1,H 

do 910 jz1,H 
df(l,i,j)=da(i,j) 
uf(l,i,j)Eua(i,j) 
vf(l,i,j)=va(i,j) 
ef(l,i,j)aea(i,j) 

910 continue 
c 
c Search active region for maximum advection speed fixmax. 
c afix is maximum value of fixmax for regions 1 through 10. 
c 

fixmax=O.O 
do 920 i=1,H 
do 920 j=1,H 
usquar=ua(i,j)*ua(i,j) 
vsquar=va(i,j)*va(i,j) 
vel(i,j)=sqrt(usquar+vsquar) 
vpres=da(i,j)*(usquar+vsquar)/2.0 
pres(i,j)c(gamma-1.0)*(ea(i,j)-vpres) 
ss=gamma*pres(i,j)/da(i,j) 
if (ss.gt.O.O) go to 930 
ss=O.O 

930 ss=sqrt(ss)+vel(i,j) 
if (ss.le.fixmax) go to 920 
fixmaXESS 

920 continue 

c 
c 
c 
940 

c 
c 
c 

if (fixmax.le.afix) go to 940 
afix=fixmax 

Check for count corresponding 

if (icount.eq.intc1) go to 950 
if (icount.eq.intc2) go to 950 
if (icount.eq.intc3) go to 950 
if (icount.eq.intc4) go to 950 
if (icount.eq.intc5) go to 950 
if (icount.eq.intc6) go to 950 
if (icount.eq.intc7) go to 950 
if (icount.eq.intc8) go to 950 
go to 1800 

to a contour search. 

Search the entire grid for maximum pressure and velocity. 

950 if (l.ne.1) go to 960 
vmax=O.O 
pmax=O.O 
do 970 m=1,10 
do 970 j=l,H 
do 970 i=l,H 
veloczsqrt(uf(m,i,j)*uf(m,i,j)+vf(m,i,j)*vf(m,i,j)) 
vpress=df(m,i,j)*veloc*veloc/2.0 
press=(gamma-l.O)*(ef(m,i,j)-vpress) 
if (vmax.lt.veloc) vmax=veloc 
if ·(pmax.lt.press) pmax=press 

970 continue 
write(6,213)pmax,vmax 

213 format('Max Pressure is ',f7.4,' Max Velocity is ',f7.4,/, 
1' Enter cpmax and cvmax values for contour search ') 
read(*,*)cpmax,cvmax 
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write(6,215)cpmax,cvmax 
215 format('CPMAX val read was',f6.3,' CVMAX val read was',f6.3) 

write(6,217) 
217 format('Enter delp and delv values') 

read(*,*)delp,delv 
write(6,219)delp,delv 

219 format('delp val read was',f6.3,' delv val read was',f6.3) 
c 
960 write(6,182)icount,l 

300 

182 format('Iterations',i3,' Regions',i2,'Enter Pressure filename') 
read(5,183)PFILE 

183 format(Al2) 
write(6,184)icount,l 

184 format('iteration=',i3,' regions',i2,'enter Velocity filename') 
read(5,183)VFILE 

c 
1100 open(8, filesPFILE, statusz'unknown') 

write(8,83)delp,cpmax 
83 format(f6.3,3x,f7.4) 
c 
c pcntr is contour pressure level -- check grid with respect to 
c both x and y to see if any grid bracketing occurs. 
c 
1105 pcntr=pp+delp 
1110 piso=O.O 

c 

ipx=O 
ipyl=O 
ipy2=0 

do 1140 i=l,N 
do 1140 j=l,N 
do 1140 k=l,2 
if (j.eq.l) go to 1210 
if (k.eq.2) go to 1160 
testl=pres(i,j) 
test2=pres(i,j-l) 
go to 1170 

1160 testl=pres(j,i) 
test2=pres(j-l,i) 

1170 if (testl.gt.pcntr) go to 1180 
if (test2.gt.pcntr) go to 1190 
go to 1210 

1180 if (test2.gt.pcntr) go to 1210 
1190 ipxsi 

c 

ipyl=j 
ipy2=j-l 
piso=float(ipy2)+(pcntr-test2)/(testl-test2) 
if (k.eq.2) go to 1200 
px=float(ipx) 

c write pressure contour information to the output file. 
c 

write(8,l)pcntr,px,piso 
1 format(f8.5,5x,f8.5,5x,f8.5) 

go to 1210 
1200 px=float(ipx) 

write(8,2)pcntr,piso,px 
2 format(f8.5,5x,f8.5,5x,f8.5) 
1210 piso=O.O 
1140 continue 
c 
c increment the contour pressure value and repeat process. 
c 

pcntrspcntr+delp 



c 

if (pcntr.le.cpmax) go to 1110 
close(8) 

open(9, file=VFILE, status='unknown') 
write(9,84)delv,cvmax 

84 format(f6.3,3x,f7.4) 
c 
c vcntr is the velocity contour value -- check the grid with 
c respect to x and y to bracket any contour velocity level. 
c 
1250 vcntrzdelv 
1260 visozO.O 

ivxcO 
ivyl•O 
ivy2zO 
do 1280 i•l,N 
do 1280 j'"'l,N 
do 1280 k=1,2 
if (j.eq.1) go to 1340 
if (k.eq.2) go to 1290 
testl=vel(i,j) 
test2zvel(i,j-l) 
test3=va(i,j) 
test4=va(i,j-l) 
testS:o:ua(i,j) 
test6=ua(i,j-1) 
go to 1300 

1290 testl=vel(j,i) 
test2zvel(j-l,i) 
test3=va(j,i) 
test4=va(j-l,i) 
testS=ua(j,i) 
test6zua(j-l,i) 

1300 if (test1.gt.vcntr) go to 1310 
if (test2.gt.vcntr) go to 1320 
go to 1340 

1310 if (test2.gt.vcntr) go to 1340 
1320 vx=float(i) 

c 

vyl=float(j) 
vy2==float(j-l) 
viso•vy2+(vcntr-test2)/(testl-test2) 
yvel=test4+(viso-vy2)*(test3-test4)/(vyl-vy2) 
xvel=test6+(viso-vy2)*(test5-test6)/(vyl-vy2) 
if (k.eq.2) go to 1330 

c write contour information to the appropriate data file. 
c 

write(9,211)vcntr,vx,viso,xvel,yvel 
211 format(S(f6.3,2x)) 

go to 1340 
1330 write(9,2ll)vcntr,viso,vx,xvel,yvel 
1340 viso=O.O 
1280 continue 
c 
c increment velocity contour value and repeat process. 
c 

c 

vcntr=vcntr+delv 
if (vcntr.le.cvmax) go to 1260 
close(9) 

c increment iteration count, set maximum advection speed for 
c the next iteration, and go back to the program start. 
c 
1800 continue 
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if (icount.eq.icmax) go to 1860 
1850 wplusc•afix 

icount=icount+1 
write(6,19)icount 

19 format(' ICOUNT VALUE INCREMENTED TO ',i3) 
go to 300 

1860 continue 
c1ose(9) 
stop 

c 
c 

end 
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c Subroutine Field computes the fluid properties based on finite 
c differencing relations developed through Rusanov procedure. 
c 

c 

subroutine field(da,ua,va,ea,d1,u1,v1,e1,d2,u2,v2,e2, 
1d3,u3,v3,e3,d4,u4,v4,e4,d5,u5,v5,e5,ind) 

common /dat/gamrna,omega,xKn,l,N 

c compute advection speed for each grid location. 
c 

t1=u1*u1+v1*v1 
t2=u2*u2+v2*v2 
t3=u3*u3+v3*v3 
t4=u4*u4+v4*v4 
t5=u5*u5+v5*v5 
p1=(gamrna-1.0)*(e1-d1*t1/2.0) 
p2=(gamrna-1.0)*(e2-d2*t2/2.0) 
p3=(gamrna-1.0)*(e3-d3*t3/2.0) 
p4=(gamma-1.0)*(e4-d4*t4/2.0) 
p5=(gamrna-1.0)*(e5-d5*t5/2.0) 
if (p1.gt.O.O) go to 2000 
t1=sqrt(t1) 
go to 2010 

2000 t1=sqrt(gamrna*p1/d1+t1) 
2010 if (p2.gt.O.O) go to 2020 

t2=sqrt(t2) 
go to 2030 

2020 t2=sqrt(gamma*p2/d2+t2) 
2030 if (p3.gt.O.O) go to 2040 

t3=sqrt(t3) 
go to 2050 

2040 t3=sqrt(gamrna*p3/d3+t3) 
2050 if (p4.gt.O.O) go to 2060 

t4=sqrt(t4) 
go to 2070 

2060 t4=sqrt(gamma*p4/d4+t4) 
2070 if (p5.gt.O.O) go to 2080 

t5=sqrt(t5) 
go to 2090 

2080 t5=sqrt(gamma*p5/d5+t5) 
2090 continue 
c 
c If ind=1 then no rigid boundary is present -- normal. 
c 

if (1nd.ne.1) go to 2100 
r=2.0 
a=l.O 
b=l.O 
c=l.O 
d=l.O 
e=l.O 
f=l.O 
g=l.O 



h•1.0 
go to 2130 

c 
c If ind•2 then flow occurs below a horizontal rigid boundary. 
c 
2100 if (ind.ne.2) go to 2110 

r=4.0 
a•l.O 
b=O.O 
czl.O 
dzO.O 
e•l.O 
fsO.O 
g:o::l.O 
h•2.0 
go to 2130 

c 
c If indz3 then flow occurs right of a vertical rigid boundary. 
c 
2110 if (ind.ne.3) go to 2120 

rz4.0 
a-=0.0 
b-1.0 
c•O.O 
d-1.0 
e=O.O 
f=l.O 
g=2.0 
h=l.O 
go to 2130 

c 
c If ind=4 then flow occurs left of a vertical rigid boundary. 
c 
2120 if (ind.ne.4) go to 2130 

r=4.0 
a=O.O 
b=l.O 
c=O.O 
d=l.O 
e=2.0 
f=l.O 
g=O.O 
hzl.O 

c 
2130 sum=1.0-omega•xKn*(tl/r+(a*t2+b*t3+c•t4+d*t5)/8.0) 
c 
c Compute density value at the grid location. 
c 

c 

da=dl*sum+omega*xKn*(a*t2*d2+b*t3*d3+c*t4*d4+d*tS*d5 + 
l(a*d2+b*d3+c*d4+d*d5)*t1)/8.0 - xKn*(-e*d2*u2+f*d3*v3+ 
2g*d4*u4-h*d5*v5)/2.82842 

c Compute stagnation energy value at the grid location. 
c 

c 

ea=el•sum+omega•xKn*(a*t2•e2+b*t3•e3+c•t4•e4+d*tS•eS + 
1(a*e2+b*e3+c*e4+d*e5)*t1)/8.0 - xKn*(-e*(e2+p2)*u2+ 
2f*(e3+p3)*v3+g*(e4+p4)*u4-h*(e5+p5)*v5)/2.82842 

if (ind.eq.3) then 
ua=O.O 
g=O.O 
goto 2160 
else if (ind.eq.4) then 
ua=O.O 

303 



c 

e•O.O 
goto 2160 
else 

c compute x directional velocity at the grid location. 
c 

c 

ua•(d1*u1•sum+omega*xKn*(a*t2*d2*u2+b*t3*d3*u3+c*t4*d4*u4+ 
1d*t5*d5*u5 + (a*d2*u2+b*d3*u3+c*d4*u4+d*d5*u5)*t1)/8.0 -
2xKn*(-e*(p2+d2*u2*u2)+f*d3*u3*v3+g*(p4+d4*u4*u4)-
3h*d5*u5*v5)/2.82842)/da 
endif 

2160 if (ind.eq.2) then 
va•O.O 
h•O.O 
goto 2180 
else 

c 
c compute y directional velocity at the grid location. 
c 

c 

va=(d1*v1•sum+omega*xKn*(a*t2*d2*v2+b*t3*d3*v3+c*t4*d4*v4+ 
1d*t5*d5*v5 + (a*d2*v2+b*d3*v3+c*d4*v4+d*d5*v5)*t1)/8.0 -
2xKn*(-e*d2*u2*v2+f*(p3+d3*v3*v3)+g*d4*u4*v4-h*(p5+ 
JdS*vS*vS))/2.8284)/da 
endif 

2180 continue 
return 
end 
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306 

c 
c Program WebResp.f -- Program computes plate or membrane response 
c to pressure levels generated during pulse modeling. This is the 
c same as in program Pulse.f so notation may be checked there. 
c Dimensional time step is divided by ten before being used in the 
c membrane/plate equations. 
c 

dimension df(l0,21,2l),uf(10,21,21),vf(10,21,21),ef(l0,21,21) 
dimension da(21,2l),ua(21,2l),va(21,21),ea(21,21) 
dimension dxl(2l),uxl(2l),vx1(2l),exl(2l),dxr(2l),uxr(21) 
dimension vxr(2l),exr(2l),dyl(2l),uyl(2l),vyl(2l),eyl(21) 
dimension dyr(2l),uyr(2l),vyr(2l),eyr(2l),dxc(2l),uxc(21) 
dimension vxc(2l),exc(2l),dtl(2l),utl(2l),vtl(2l),etl(21) 
dimension dtr(2l),utr(2l),vtr(21),etr(2l),dwl(2l),uwl(21) 
dimension vwl(2l),ewl(2l),dwr(21),uwr(21),vwr(21),ewr(21) 
dimension dzl(2l),uzl(2l),vzl(21),ezl(21),dzr(21),uzr(21) 
dimension vzr(2l),ezr(2l),dsl(2l),usl(21),vsl(21),esl(21) 
dimension dsr(21),usr(2l),vsr(2l),esr(2l),dql(2l),uql(21) 
dimension vql(2l),eql(2l),dqr(21),uqr(21),vqr(21),eqr(21) 
dimension drl(2l),url(2l),vrl(21),erl(21),drr(21),urr(21) 
dimension vrr(2l),err(2l),dpl(2l),upl(2l),vpl(2l),epl(21) 
dimension dpr(2l),upr(2l),vpr(2l),epr(2l),WP(115) 
dimension dtime(3404),time(3404),vel(21,2l),pres(21,21) 
double precision WP1(60,115),WM1(60,115),W(60,115) 

c dimension WP1(60,115),WM1(60,115),W(60,115) 
character*l2 DFILE 
common /dat/gamma,omega,xKn,l,N 

c 
c see listing Pulse.f for definition of variables. 
c 

N=21 
Nx=113 
Ny=56 
gamma=1.4 
omega=1.345 
Gc=386.0 
dx=0.05 
delx=O.Ol 
ind=O 
Tens=l.O 
D•l.Oe-4 
rhoweb=3.25e-5 
factrl=D/(delx*delx*delx*delx) 
factr2=Tens/(delx*delx) 
factr4=Tens*Gc/rhoweb 
data sigma,wplusc,patm,cair/0.5,2.4,14.7,13500.0/ 
data pn,ps,pp,dn,ds,dp/2.0,1.5,1.0,1.63,1.33,1.0/ 
data vn,vs,vp,un,us,up/1.0,0.558,0.0,0.0,0.0,0.0/ 
data intcl,intc2,intc3,intc4/100,2300,2500,2700/ 
data intc5,intc6,intc7,intc8/2900,3100,3500,3500/ 
data intc9,intclO,intcll,intc12/3500,3500,3500,3500/ 
data icmax/101/ 
data WP(l),WP(2),WP(112),WP(ll3)/l.O,l.O,l.O,l.O/ 
data m,sumt/1,0.0/ 
data dxc/21*1.33/,uxc/21*0.0/,vxc/21*0.64/,exc/21*3.96/ 
data dxl/21*1.0/,uxl/21*0.0/,vxl/21*0.0/,exl/21*2.5/ 
data dxr/21*1.0/,uxr/21*0.0/,vxr/21*0.0/,exr/21*2.5/ 
data dyl/21*1.0/,uyl/21*0.0/,vyl/21*0.0/,eyl/21*2.5/ 
data dyr/21*1.0/,uyr/21*0.0/,vyr/21*0.0/,eyr/21*2.5/ 
data dwl/21*1.0/,uwl/21*0.0/,vwl/21*0.0/,ewl/21*2.5/ 
data dwr/21*1.0/,uwr/21*0.0/,vwr/21*0.0/,ewr/21*2.5/ 
data dtl/21*1.0/,utl/21*0.0/,vtl/21*0.0/,etl/21*2.5/ 
data dtr/21*1.0/,utr/21*0.0/,vtr/21*0.0/,etr/21*2.5/ 
data dzl/21*1.0/,uzl/21*0.0/,vzl/21*0.0/,ezl/21•2.5/ 



c 

data dzr/21*1.0/,uzr/21*0.0/,vzr/21*0.0/,ezr/21•2.5/ 
data dsl/21•1.0/,usl/21•0.0/,vsl/21*0.0/,esl/21*2.5/ 
data dsr/21*1.0/,usr/21•0.0/,vsr/21*0.0/,esr/21*2.5/ 
data dql/21*1.0/,uql/21*0.0/,vql/21*0.0/,eql/21*2.5/ 
data dqr/21*1.0/,uqr/21*0.0/,vqr/21*0.0/,eqr/21*2.5/ 
data drl/21*1.0/,ur1/21•0.0/,vrl/21*0.0/,erl/21*2.5/ 
data drr/21*1.0/,urr/21*0.0/,vrr/21*0.0/,err/21*2.5/ 
data dpl/21*1.0/,upl/21*0.0/,vpl/21*0.0/,epl/21*2.5/ 
data dpr/21*1.0/,upr/21*0.0/,vpr/21*0.0/,epr/21*2.5/ 
data (((df(l,i,j),l•1,10),iz1,21),jz1,21)/4410*1.0/ 
data (((uf(l,i,j),l•1,10),i=1,21),j=1,21)/4410*0.0/ 
data (((vf(l,i,j),l•1,10),i•1,21),j•1,21)/4410*0.0/ 
data (((ef(l,i,j),l•1,10),iz1,21),j•1,21)/4410*2.5/ 

c WP1 are membrane/plate deflections at time n+1 and are 
c the values solved for each iteration. WM1 are membrane/ 
c plate deflections at time n-1. WP values are Web Pressure 
c values which are input to the membrane/plate equations. 
c W values are plate/membrane deflections at time n. 
c 

data ((WP1(j,i), j•1,60), i•1,115)/6900*0.0/ 
data ((WM1(j,i), j•1,60), i•1,115)/6900*0.0/ 
data ((W(j,i), j•1,60), i•1,115)/6900•0.0/ 
es=ds*(us•us+vs•vs)/2.0+ps/(gamma-1.0) 
ep=dp*(up*up+vp*vp)/2.0+pp/(gamma-1.0) 
en=dn*(un•un+vn•vn)/2.0+pn/(gamma-1.0) 
time(m)=O.O 
dtime(m)•O.O 
write(6,21)m,time(m) 

21 format(' ICOUNT • ',i3,' TIME • ',f6.4,/) 
open(9, file='time.dat•, status•'unknown') 

c 
c initialize the field values of region 6 
c 
220 do 230 i•1,N 

do 230 j=2,N-1 
df(6,i,j)•dn 
uf(6,i,j)=un 
vf(6,i,j)~vn 
ef(6,i,j)zen 

230 continue 
do 240 i~1,N 
df(6,i,N)•ds 
uf(6,i,N)zus 
vf(6,i,N)•vs 
ef(6,i,N)•es 

240 continue 
c 
c 
c start the loop in the 1 number of regions 
c begin definition of the corner points of each region 
c 
300 afix•O.O 
310 do 1800 1•1,10 

c 

if (l.gt.1) go to 320 
xKn•sigma/wplusc 
sumt•sumt+xKn 

c deldt -- dimensional time step. deldtp and deldtm are 
c dimensional time step for plate and membrane analysis 
c where deldt has been divided by ten. 
c 

deldt•xKn*delx•sqrt(gamma)/(1.41421•cair) 
deldtp•deldt/10.0 
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deldtm=deldt/10.0 
time(m)=(dx/1.41421)*sumt 
write(6 122)time(m) 

308 

22 format(' NON-DIMENSIONAL TIME VALUE IS NOW ' 1f12.9) 
dtime(m)=sumt*delx*sqrt(gamma)/(1.4142*cair) 
write(6193)dtime(m) 

93 format(' DIMENSIONAL TIME VALUE IS NOW ' 1f15.12) 
320 go to (330 13501370 1390 1410 1430 1450 1470 1490 1510) 1 
330 write(9191)m1time(m)ldtime(m) 1deldt 
91 format(1412x 1f10.612x 1f15.12 12x1f15.12) 

write(6 113) 
13 format(' REGION 1 BEING PROCESSED') 
c 

k=47 
call field(da(1,1),ua(1 11) 1va(1 11) 1ea(1,1) 1df(1 1111) 1uf(1 1111) 1 

1vf(11111)1ef(111,1)1dyl(1) 1uyl(1) 1vyl(1) 1eyl(1) 1df(1 1112) 1 
2uf(1 1112) 1vf(1 1112) 1ef(1 11,2) 1df(1 1211),uf(112,1) 1vf(1 12 11) 1 
3ef(112 11) 1dxc(1) 1uxc(1) 1vxc(1) 1exc(1),1) 
call field(da(1 1N) 1ua(1 1N) 1va(1 1N) 1ea(1,N) 1df(l 111N),uf(l 11,N), 

lvf ( 11 1 1N) 1 ef ( 1,1 1N.) 1dyl (N) 1uyl (N) ,vyl (N) ,eyl (N) 1df ( 11 l 1N) 1 

2uf(l111N) 1-vf(1,1 1N) 1ef(1 111N) 1df(l 121N) 1uf(1 12 1N) 1vf(l 12 1N) 1 
3ef(1,2 1 N)Idf(1 1 1~N-1) 1 uf(1 1 l 1 N-1) 1 vf(1 1 l 1 N-1) 1 ef(1 1 l 1 N-l) 1 2) 
call field(da(N11) 1ua(N,1) 1va(N11) 1ea(N1l) 1df(l 1N11) 1uf(l 1N11) 1 

lvf(1 1N11) 1ef(1 1N11) 1df(l1N-1 11) 1uf(1 1N-1 11) 1vf(l 1N-l 1l) 1 
2ef(1~N-1 1 1) 1 df(l 1 N 1 2) 1 uf(1 1 N 1 2) 1 Vf(1 1 N 1 2) 1 ef(1 1 N 1 2) 1 dyr(l) 1 
3uyr(1) 1vyr(1) 1eyr(l) 1dxc(N) 1uxc(N) 1vxc(N) 1exc(N) 11) 
call field(da(N1N) 1ua(N1N) 1va(N1N) 1ea(N1N) 1df(l 1N1N) 1uf(l 1N1N) 1 

lvf(1 1N1N) 1ef(1 1N1N) 1df(1 1N-1 1N) 1uf(1 1N-1 1N) 1vf(1 1N-1 1N) 1 
2ef(1 1N-l 1N) 1df(1 1N1N) 1uf(1 1N1N) 1-vf(1 1N1N) 1ef(1 1N1N) 1dyr(N) 1 
3uyr(N) 1vyr(N) 1eyr(N) 1df(11N1N-1)1uf(1 1NIN-1) 1vf(1 1N1N-1) 1 
4ef(l~N~N-1) 1 2) 

do 340 1=2 1N-1 
call field(da(1 11) 1ua(1 11) 1va(1 1l) 1ea(1 1l) 1df(1 1111) 1uf(l 1111) 1 

lvf(1 1111) 1ef(1 11 11) 1df(1 11-l11) 1uf(1 11-l11) 1vf(1 11-111) 1 
2ef(l11-1 11) 1df(1 1112) 1uf(1 1112)1vf(1 11 12) 1ef(1 1112) 1df(l 11+1 1l) 1 
3uf(1 11+1 11) 1vf(l 11+1 11) 1ef(1 11+1 11) 1dxc(1) 1uxc(1) 1vxc(1) 1 
4exc(1) 11) 
call fie1d(da(11N)Iua(1 1N)Iva(11N) 1ea(11N)Idf(l 111N) 1uf(l 11 1N) 1 

.1vf(1 111N) 1ef(1111N)Idf(111-11N)Iuf(1 11-11N) 1vf(111-1 1N) 1 
2ef(1 11-11N) 1df(111 1N)Iuf(1 11 1N)I-vf(1 111N)Ief(1111N) 1df(1 11+11N) 1 
3uf(1 1i+1 1N) 1vf(l 11+1 1N) 1ef(1 11+1 1N) 1df(l 11 1N-1) 1uf(l 111N-1) 1 
4vf(l11 1N-1) 1ef(l 111N-l) 12) 
call f1eld(da(N1i) lua(N11) lva(N11) 1ea(NI1) 1df( l 1N1i) luf(l 1N11) 1 

1vf(l1N11) 1ef(l 1NI1) 1df(1 1N-111) 1uf(11N-1 11) 1Vf(11N-l 11) 1 
2ef(1 1N-1 11) 1df(1 1N11+1) 1uf(l 1N11+1) 1vf(l 1N11+1) 1ef(l1N11+1) 1 
3dyr( 1) 1 uyr( 1) 1vyr( 1) leyr( 1) 1df ( 11N1 1-1) 1uf ( l1N1 1-1) 1vf ( 1 1N 1 1-1) 1 

4ef(1 1N11-l) 11) 
call field(da(l,i) 1ua(1 11) 1va(1 11)1ea(l11) 1df(1 1111) 1uf(l 1111) 1 

lvf(1,1,1),ef(1,1,1),dyl(1) 1uyl(1) 1vyl(1) 1eyl(1) 1df(l 1l 11+1) 1 
2uf(l 1l 11+1) 1vf(l 111i+l) 1ef(l 1111+1) 1df(ll2 11) 1uf(l 1211) 1 
3vf(l 12 11) 1ef(l 12 11) 1df(l1111-l) 1uf(1 1111-l)lvf(llll1-1)1 
4ef(1 1111-1)11) 

340 continue 
go to 530 

350 write(6 114) 
14 format ( ' REGION . 2 BEING PROCESSED' ) 
c 

k=25 
call field(da(N11) 1ua(N11) 1va(N11) 1ea(N11) 1df(2 1N11) 1uf(2 1N11) 1 

lvf(2 1N11) 1ef(2 1N11) 1df(2 1N-1 11) 1uf(2 1N-1 11) 1vf(21N-111)1 
2ef(2 1N-1 11) 1df(2 1N12) 1uf(2 1NI2) 1vf(2 1N12) 1ef(21NI2) 1dy1(1)1 
3uyl(l) 1vyl(1) 1eyl(l) 1dxl(N) 1uxl(N) 1vxl(N) 1exl(N) 11) 
call field(da(N1N) 1ua(N1N) 1va(N1N) 1ea(N1N) 1df(2 1N1N)Iuf(21NIN) 1 

1vf(21N1N) 1ef(2 1N1N)Idf(21N-11N)Iuf(2 1N-l 1N) 1Vf(21N-11N)I 



2ef(2,N-l,N),df(2,N,N),uf(2,N,N),-vf(2,N,N),ef(2,N,N),dyl(N), 
3uyl(N),vyl(N),eyl(N},df(2,N,N-l),uf(2,N,N-l),vf(2,N,N-l), 
4ef(2,N,N-1),2) 
call f1eld(da(l,l),ua(l,l),va(l,l),ea(l,l),df(2,1,1),uf(2,1,1), 

lvf(2,l,l),ef(2,1,1),dzl(l),uzl(l),vzl(l),ezl(l),df(2,1,2), 
2uf(2,1,2),vf(2,1,2),ef(2,1,2),df(2,2,1),uf(2,2,1),vf(2,2,1), 
3ef(2,2,l),dxl(l),uxl(l),vxl(l},exl(l),l) 
call f1eld(da(l,N),ua(l,N),va(l,N),ea(l,N),df(2,1,N),uf(2,1,N), 

lvf(2,l,N),ef(2,1,N),dzl(N),uzl(N),vzl(N),ezl(N),df(2,1,N), 
2uf(2,l,N),-vf(2,1,N},ef(2,1,N),df(2,2,N),uf(2,2,N),vf(2,2,N}, 
3ef(2,2,N),df(2,l,N-l),uf(2,1,N-l),vf(2,1,N-l),ef(2,1,N-l),2} 
do 360 1=2iN-l 

309 

call field(da(l,N),ua(i,N),va(i,N),ea(i,N),df(2,1,N),uf(2,1,N), 
lvf(2,1,N),ef(2,1,N),df(2,1-l,N),uf(2,1-l,N),vf(2,1-l,N), 
2ef(2,1-l,N),df(2,1,N),uf(2,1,N),-vf(2,1,N),ef(2,1,N),df(2,1+1,N), 
3uf(2,1+l,N),vf(2,1+1,N),ef(2,1+1,N),df(2,1,N-l),uf(2,1,N-l), 
4vf(2,1,N-l),ef(2,1,N-l),2) 
call field(da(N,1),ua(Nil),va(N,1),ea(N,1) 1df(2 1N,1),uf(2 1N,1)1 

lvf(2 1N,l),ef(2,N,1),df(2,N-l,1),uf(2,N-1,1) 1vf(2,N-1,1), 
2ef(2 1N-1,1),df(2,N,1+1) 1uf(2,N,1+1) 1vf(2 1N11+1),ef(2,N,i+l), 
3dyl(i),uyl(1),vyl(i),eyl(i),df(2 1N,i-l),uf(2,N,1-l),vf(2,N,i-l), 
4ef(2,N,1-l),l) 
call f1eld(da(1,l),ua(1,1) 1va(1,1),ea(1,1),df(2,i,l),uf(2,i,l), 

lvf(2,1,l),ef(2,1,1),df(2,1-l,l),uf(2,1-l,l),vf(2,i-l,l), 
2ef(2,i-l,l),df(2,1,2),uf(2,1,2),vf(2,1,2),ef(2,1,2),df(2,1+1,1), 
3uf(2,1+l,l),vf(2 11+1,1),ef(2,i+l,l),dxl(1),uxl(1),vxl(1) 1 
4exl(1),1) 
call field ( da ( 1, 1) , ua ( 1, 1) , va ( 1, 1) , ea ( 1, 1) 1 df ("2 1 1, 1) , uf ( 2, 1, 1) , 

lvf(2,1,1),ef(2,l,i),dzl(1) 1uzl(1),vzl(1),ezl(1),df(2,1,1+1), 
2uf(2,l,i+l),vf(2,1,1+1),ef(2,1,i+l),df(2,2,1),uf(2,2,1), 
3vf(2,2,i),ef(2,2,1),df(2,1,1-l),uf(2,1,i-l),vf(2 11,1-l), 
4ef(2,1,1-l),l) 

360 continue 
go to 530 

370 wr1te(6,16) 
16 format(' REGION 3 BEING PROCESSED') 
c 

k=69 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(3,1,1), 

luf(3,l,l),vf(3,1,1),ef(3,1,1),dyr(l),uyr(l),vyr(l),eyr(l)l 
2df(3,1 12),uf(3,1,2),vf(3,1 12),ef(3,1 12),df(3,2 11),uf(3,2 11), 
3vf(3,2,l),ef(3,2,1),dxr(l),uxr(l),vxr(l),exr(l),l} 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(3,1,N),uf(3,1,N), 

lvf(3,l,N),ef(3,1,N),dyr(N),uyr(N),vyr(N) 1eyr(N),df(3,1,N), 
2uf(3,l,N),-vf(3,1,N),ef(3,1 1N),df(3,2,N),uf(3,2,N),vf(3,2,N), 
3ef(3,2,N),df(3,l,N-l),uf(3,1,N-l),vf(3,1,N-l),ef(3,1,N-1),2) 
call f1eld(da(N 1l),ua(N,l),va(Nil),ea(N,l),df(31N,l),uf(3,N,l), 

lvf(3,N,l),ef(3,N,l),df(3,N-l,l),uf(3,N-l,l),vf(3,N-l,l), 
2ef(3,N-l 1l),df(3,N,2),uf(3,N,2),vf(3,NI2),ef(3,N,2),dzr(l),uzr(l), 
3vzr(l),ezr(l),dxr(N) 1uxr(N),vxr(N),exr(N),l) 
call field(da(N,N),ua(N,N},va(N,N},ea(N,N),df(3,N,N), 

luf(3,N,N),vf(3,N,N),ef(3,N,N),df(3,N-liN),uf(3,N-l,N),vf(3,N-l,N), 
2ef(3,N-l,N),df(3,N,N) 1uf(3,N,N),-vf(3,N,N),ef(3,N,N),dzr(N), 
3uzr(N),vzr(N),ezr(N),df(3,N,N-l),uf(3,N,N-l),vf(3,N,N-l), 
4ef(3,N,N-1),2) 

do 380 1=2,N-l 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(3,1,1), 

luf(3,l,i),vf(3,1,1),ef(3,1,1),dyr(1),uyr(1),vyr(1),eyr(i), 
2df(3,1,1+l),uf(311 11+1),vf(3,1,1+1),ef(3,1,1+1),df(3,2,i), 
3uf(3,2,i),vf(3,2,1),ef(3,2,i),df(3,1,1-l),uf(3,1,1-l),vf(3,1,i-l), 
4ef(3,1 1i-l) 1l) 
call field(da(i 1l) 1ua(i 1l),va(i,l),ea(i,l)ldf(3,i,l)l 

luf(3,1,l),vf(3,1 1l),ef(3,1,1),df(3,1-l,l),uf(3,1-l,l),vf(3,i-l,l), 
2ef(3,i-l,l),df(3,1,2),uf(3,i,2),vf(3,1,2),ef(3 1i,2)1df(3,1+111), 



310 

3uf(3,i+l,l),vf(3,i+l,l),ef(3,i+l,l),dxr(i),uxr(i),vxr(1),exr(i),l) 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(l,i,N), · 

luf(3,i,N),vf(3,1,N),ef(3,i,N),df(3,i-l,N),uf(3,i-l,N),vf(3,i-l,N), 
2ef(3,i-l,N),df(3,i,N),uf(3,i,N),-vf(3,i,N),ef(3,i,N),df(3,i+l,N), 
3uf(3,i+l,N),vf(3,i+l,N),ef(3,1+1,N),df(3,i,N-l),uf(3,i,N-l), 
4vf(3,i,N-l),ef(3,i,N-l),2) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(3,N,i),uf(3,N,i), 

lvf(3,N,i),ef(3,N,i),df(3,N-l,i),uf(3,N-l,i),vf(3,N-l,i), 
2ef(3,N-l,i),df(3,N,1+1),uf(3,N,i+l),vf(3,N,i+l),ef(3,N,i+l), 
3dzr(i),uzr(i),vzr(i),ezr(i),df(3,N,1-l),uf(3,N,1-l),vf(3,N,1-l), 
4ef(3,N,1-l),l) 

380 continue 
go to 530 

390 write(6,17) 
17 format(' REGION 4 BEING PROCESSED') 
c 

call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(4,N,N), 
luf(4,N,N),vf(4,N,N),ef(4,N,N),df(4,N-l,N),uf(4,N-l,N),vf(4,N-l,N), 
2ef(4,N-l,N),dxl(N),uxl(N),vxl(N),exl(N),df(4,N,N),-uf(4,N,N), 
3vf(4,N,N),ef(4,N,N),df(4,N,N-l),uf(4,N,N-l),vf(4,N,N-l), 
4ef(4,N,N-1),4) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(4,1,N), 

luf(4,l,N),vf(4,1,N),ef(4,1,N),dtl(N),utl(N),vtl(N),etl(N),dxl(l), 
2uxl(l),vxl(l),exl(l),df(4,2,N),uf(4,2,N),vf(4,2,N),ef(4,2,N), 
3df(4,l,N-l),uf(4,1,N-l),vf(4,1,N-l),ef(4,1,N-1),1) 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(4,1,1),uf(4,1,1), 

lvf(4,l,l),ef(4,1,1),dtl(l),utl(l),vtl(l),etl(l),df(4,1,2), 
2uf(4,1,2),vf(4,1,2),ef(4,1,2),df(4,2,1),uf(4,2,1),vf(4,2,1), 
3ef(4,2,l),dsl(l),usl(l),vsl(l),esl(l),l) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(4,N,l),uf(4,N,l), 

lvf(4,N,l),ef(4,N,l),df(4,N-l,l),uf(4,N-l,l),vf(4,N-l,l), 
2ef(4,N-l,l),df(4,N,2),uf(4,N,2),vf(4,N,2),ef(4,N,2),df(4,N,l), 
3-uf(4,N,l),vf(4,N,l),ef(4,N,l),dsl(N),usl(N),vsl(N),esl(N),4) 

do 400 1=2,N-l 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(4,i,N), 

luf(4,1,N),vf(4,1,N),ef(4,1,N),df(4,1-l,N),uf(4,1-l,N),vf(4,1-l,N), 
2ef(4,1-l,N),dxl(i),uxl(i),vxl(i),exl(i),df(4,i+l,N),uf(4,i+l,N), 
3vf(4,i+l,N),ef(4,i+l,N),df(4,i,N-l),uf(4,i,N-l),vf(4,1,N-1), 
4ef(4,i,N-l),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(4,N,1), 

luf(4,N,i),vf(4,N,i),ef(4,N,i),df(4,N-l,i),uf(4,N-l,i),vf(4,N-l,i), 
2ef(4,N-l,i),df(4,N,i+l),uf(4,N,i+l),vf(4,N,i+l),ef(4,N,i+l), 
3df(4,N,i),-uf(4,N,i),vf(4,N,i),ef(4,N,1),df(4,N,i-l),uf(4,N,i-l), 
4vf(4,N,i-l),ef(4,N,i-1),4) 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(4,1,i), 

luf(4,l,i),vf(4,l,i),ef(4,1,i),dtl(i),utl(1),vtl(i),etl(i), 
2df(4,l,i+l),uf(4,1,i+l),vf(4,1,i+l),ef(4,1,i+l),df(4,2,i), 
3uf(4,2,i),vf(4,2,i),ef(4,2,i),df(4,1,i-l),uf(4,1,1-l), 
4vf(4,l,i-l),ef(4,1,1-l),l) 
call field(da(i,l),ua(!,l),va(i,l),ea(i,l),df(4,i,l),uf(4,1,1), 

lvf(4,i,l),ef(4,i,l),df(4,i-l,l),uf(4,i-l,l),vf(4,1-l,l), 
2ef(4,i-l,l),df(4,i,2),uf(4,1,2),vf(4,i,2),ef(4,1,2),df(4,i+l,l), 
3uf(4,i+l,l),vf(4,i+l,l),ef(4,i+l,l),dsl(i),usl(i),vsl(i),esl(i),l) 

400 continue 
go to 530 

410 wr1te(6,27) 
27 format(' REGION 5 BEING PROCESSED ') 
c 

call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(S,l,N), 
luf(S,l,N),vf(S,l,N),ef(S,l,N),df(S,l,N),-uf(S,l,N),vf(S,l,N), 
2ef(S,l,N),dxr(l),uxr(l),vxr(l),exr(l),df(5,2,N),uf(5,2,N), 
3vf(5,2,N),ef(5,2,N),df(S,l,N-l),uf(5,1,N-l),vf(5,1,N-l), 
4ef(S,l,N-1),3) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(S,N,N),uf(S,N,N), 



lvf(5,N,N),ef(5,N,N),df(5,N-l,N),uf(5,N-l,N),vf(5,N-l,N), 
2ef(5,N-l,N),dxr(N),uxr(N),vxr(N),exr(N),dtr(N),utr(N),vtr(N), 
3etr(N),df(5,N,N-l),uf(5,N,N-l),vf(5,N,N-l),ef(5,N,N-l),l) 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(5,1,1),uf(5,1,1), 

lvf(5,l,l),ef(5,1,1),df(5,1,1),-uf(5,1,1),vf(5,1,1),ef(5,1,1), 
2df(5,1,2),uf(5,1,2),vf(5,1,2),ef(5,1,2),df(5,2,1),uf(5,2,1), 
3vf(5,2,1),ef(5,2,l),dsr(l),usr(l),vsr(l),esr(l),3) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(5,N,l),uf(5,N,l), 
lvf(5,N,l),ef(5,N,~),df(S,N-l,l),uf(5,N-l,l),vf(5,N-l,l), 
2ef(5,N-l,l),df(S,N,2),uf(5,N,2),vf(5,N,2),ef(S,N,2),dtr(l), 
Jutr(l),vtr(l),etr(l),dsr(N),usr(N),vsr(N),esr(N),l) 
do 420 1•2,N-l 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(5,1,N),uf(5,1,N), 

lvf(S,i,N),ef(S,i,N),df(S,!-l,N),uf(S,i-l,N),vf(S,i-l,N), 
2ef(S,i-l,N),dxr(i),uxr(i),vxr(i),exr(i),df(S,i+l,N),uf(S,i+l,N), 
3vf(5,1+l,N),ef(5,i+l,N),df(5,1,N-l),uf(5,1,N-l),vf(5,1,N-l), 
4ef(5,1,N-l),l) 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(5,1,1), 

luf(5,1,1),vf(S,l,i),ef(S,l,1),df(5,1,1),-uf(5,1,1),vf(5,1,1), 
2ef(5,1,1),df(S,l,i+l),uf(S,l,i+l),vf(S,l,i+l),ef(5,1,1+1), 
3df(5,2,1),uf(5,2,1),vf(5,2,1),ef(5,2,1),df(5,1,1-l),uf(S,l,1-l), 
4vf(S,l,i-l),ef(5,1,1-1),3) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(5,N,i),uf(5,N,1), 

lvf(5,N,i),ef(5,N,i),df(S,N-l,i),uf(S,N-l,i),vf(S,N-l,i), 
2ef(S,N-l,i),df(5,N,i+l),uf(5,N,i+l),vf(S,N,i+l),ef(5,N,i+l), 
3dtr(i),utr(i),vtr(i),etr(i),df(S,N,i-l),uf(5,N,i-l),vf(S,N,1-l), 
4ef(5,N,i-l),l) . 

311 

call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(S,i,l),uf(S,i,l), 
lvf(5,1,l),ef(5,1,1),df(5,1-l,l),uf(5,1-l,l),vf(5,1-l,l), 
2ef(S,i-l,l),df(5,1,2),uf(S,i,2),vf(S,i,2),ef(S,1,2),df(S,i+l,l), 
3uf(5,1+l,l),vf(5,1+1,1),ef(5,1+1,1),dsr(i),usr(i),vsr(1),esr(i),l) 

420 continue 
go to 530 

430 write(6,33) 
33 format(' REGION 6 BEING PROCESSED') 
c 

call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(6,1,N),uf(6,1,N), 
lvf(6,l~N),ef(6,l,N),df(6,1,N),-uf(6,1,N),vf(6,1,N),ef(6,1,N), 
2dxc(l),uxc(l),vxc(l),exc(l),df(6,2,N),uf(6,2,N),vf(6,2,N), 
3ef(6,2,N),df(6,l,N-l),uf(6,1,N-l),vf(6,1,N-l),ef(6,1,N-l),3) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(6,N,N), 

luf(6,N,N),vf(6,N,N),ef(6,N,N),df(6,N-l,N),uf(6,N-l,N),vf(6,N-l,N), 
2ef(6,N-l,N),dxc(N),uxc(N),vxc(N),exc(N),df(6,N,N),-uf(6,N,N), 
3vf(6,N,N),ef(6,N,N),df(6,N,N-l),uf(6,N,N-l),vf(6,N,N-l), 
4ef(6,N,N-1),4) 

do 440 1=2,N-l 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(6,1,N), 

luf(6,1,N),vf(6,1,N),ef(6,1,N),df(6,1-l,N),uf(6,1-l,N),vf(6,1-l,N), 
2ef(6,1-l,N),dxc(i),uxc(i),vxc(i),exc(i),df(6,1+1,N),uf(6,1+1,N), 
3vf(6,1+l,N),ef(6,i+l,N),df(6,1,N-l),uf(6,1,N-l),vf(6,1,N-l), 
4ef(6,1,N-l),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(6,N,i), 

luf(6,N,i),vf(6,N,i),ef(6,N,i),df(6,N-l,i),uf(6,N-l,i),vf(6,N-l,i), 
2ef(6,N-l,i),df(6,N,l+l),uf(6,N,i+l),vf(6,N,1+1),ef(6,N,i+l), 
3df(6,N,1),-uf(6,N,l),vf(6,N,i),ef(6,N,i),df(6,N,i-l),uf(6,N,1-l), 
4vf(6,N,i-l),ef(6,N,i-1),4) 
call field(da(l,i),ua(l,i),va(l,l),ea(l,i),df(6,1,1), 

luf(6,1,1),vf(6,1,1),ef(6,1,1),df(6,1,1),-uf(6,1,1),vf(6,1,1), 
2ef(6,1,1),df(6,1,1+l),uf(6,1,1+1),vf(6,1,1+1),ef(6,1,1+1), 
3df(6,2,1),uf(6,2,1),vf(6,2,1),ef(6,2,1),df(6,1,1-l),uf(6,1,1-l), 
4vf(6,1,1-l),ef(6,1,1-1),3) 

440 continue 
go to 530 

450 write(6,37) 



312 

37 format(' REGION 7 BEING PROCESSED') 
c 

k=3 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(7,N,l), 

luf(7,N,l),vf(7,N,l),ef(7,N,l},df(7,N-l,l),uf(7,N-l,l),vf(7,N-l,l), 
2ef(7,N-l,l),df(7,N,2),uf(7,N,2),vf(7,N,2),ef(7,N,2),dzl(l),uzl(l), 
lvzl(l),ezl(l),dwl(N),uwl(N),vwl(N),ewl(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(7,N,N), 

luf(7,N,N),vf(7,N,N),ef(7,N,N),df(7,N-l,N),uf(7,N-l,N},vf(7,N-l,N), 
2ef(7,N-l,N),df(7,N,N),uf(7,N,N),-vf(7,~,N),ef(7,N,N),dzl(N), 
3uzl(N),vzl(N),ezl(N),df(7,N,N-l),uf(7,N,N-l),vf(7,N,N-1), 
4ef(7,N,N-1),2) 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(7,1,1),uf(7,1,1), 

lvf(7,1,1),ef(7,1,l),dql(l),uql(l),vql(l),eql(l),df(7,1,2), 
2uf(7,1,2),vf(7,1,2),ef(7,1,2),df(7,2,l),uf(7,2,1),vf(7,2,1), 
3ef(7,2,l),dwl(l),uwl(l),vwl(l),ewl(l),l) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(7,1,N),uf(7,1,N), 

lvf(7,l,N),ef(7,1,N),dql(N),uql(N),vql(N),eql(N),df(7,1,N), 
2uf(7,1,N),-vf(7,l,N),ef(7,l,N),df(7,2,N),uf(7,2,N),vf(7,2,N), 
3ef(7,2,N),df(7,1,N-l),uf(7,l,N-l),vf(7,l,N-l),ef(7,1,N-1),2) 
do 460 1=2,N-l 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(7,1,1), 

luf(7,i,l),vf(7,1,1),ef(7,i,l),df(7,1-l,l),uf(7,1-l,l),vf(7,1-l,l), 
2ef(7,1-l,l),df(7,1,2),uf(7,1,2),vf(7,1,2),ef(7,1,2),df(7,1+1,1), 
3uf(7,i+l,l),vf(7,i+l,l),ef(7,i+l,l),dwl(i),uwl(i),vwl(i),ewl(i),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(7,N,i), 

luf(7,N,i),vf(7,N,i),ef(7,N,i),df(7,N-l,i),uf(7,N-l,i),vf(7,N-l,i), 
2ef(7,N-l,i),df(7,N,i+l),uf(7,N,i+l),vf(7,N,i+l),ef(7,N,i+l), 
3dzl(i),uzl(i),vzl(i),ezl(i),df(7,N,i-l),uf(7,N,i~l),vf(7,N,i-l), 
4ef(7,N,i-l),l) 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(7,i,N), 

luf(7,1,N),vf(7,i,N),ef(7,1,N),df(7,1-l,N),uf(7,1-l,N), 
2vf(7,1-l,N),ef(7,1-l,N),df(7,i,N),uf(7,1,N),-vf(7,1,N), 
3ef(7,i,N),df(7,i+l,N),uf(7,i+l,N),vf(7,i+l,N),ef(7,i+l,N), 
4df(7,i,N-l),uf(7,i,N-l),vf(7,1,N-l),ef(7,i,N-1),2) 
call field(da(l,i),ua(l,i),va(l,i),ea(l,i),df(7,1,i),uf(7,1,i), 

lvf(7,1,1),ef(7,1,i),dql(i),uql(i),vql(i),eql(i),df(7,1,1+1), 
2uf(7,1,i+l),vf(7,1,i+l),ef(7,1,i+l),df(7,2,i),uf(7,2,1), 
3vf(7,2,i),ef(7,2,i),df(7,1,1-l),uf(7,1,i-l),vf(7,1,1-1), 
4ef(7,1,1-l),l) 

460 continue 
go to 530 

470 write(6,41) 
41 format(' REGION 8 BEING PROCESSED') 
c 

k•91 
call field(da(l,l),ua(l,l),va(l,l),ea(l,l),df(B,l,l),uf(B,l,l), 

lvf(8,1,l),ef(8,1,1),dzr(l),uzr(l),vzr(l),ezr(l),df(8,1,2), 
2uf(8,1,2),vf(8,1,2),ef(8,1,2),df(8,2,1),uf(8,2,1),vf(8,2,1), 
3ef(8,2,l),dwr(l),uwr(l),vwr(l),ewr(l),l) 
call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(B,l,N),uf(B,l,N), 

lvf(B,l,N),ef(B,l,N),dzr(N),uzr(N),vzr(N),ezr(N),df(B,l,N), 
2uf(8,l,N),-vf(8,1,N),ef(8,1,N),df(8,2,N),uf(8,2,N),vf(8,2,N), 
3ef(8,2,N),df(8,1,N-l),uf(8,1,N-l),vf(8,1,N-l),ef(8,1,N-l),2) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(B,N,l),uf(B,N,l), 

lvf(8,N,l),ef(8,N,l),df(8,N-l,l),uf(8,N-l,l),vf(8,N-l,l), 
2ef(8,N-l,l),df(8,N,2),uf(8,N,2),vf(8,N,2),ef(8,N,2), 
3dqr(l),uqr(l),vqr(l),eqr(l),dwr(N),uwr(N),vwr(N),ewr(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(8,N,N),uf(8,N,N), 

lvf(8,N,N),ef(8,N,N),df(8,N-l,N),uf(8,N-l,N),vf(8,N-l,N), 
2ef(8,N-l,N),df(8,N,N),uf(8,N,N),-vf(8,N,N),ef(8,N,N),dqr(N), 
3uqr(N),vqr(N),eqr(N),df(8,N,N-l),uf(8,N,N-l),vf(8,N,N-l), 
4ef(8,N,N-1),2) 

do 480 1•2,N-l 



313 

call field(da(1,i),ua(1,i),va(1,i),ea(1,i),df(8,1,i), 
1uf(8,1,i),vf(8,1,i),af(8,1,i),dzr(i),uzr(i),vzr(i),ezr(i), 
2df(8,1,i+1),uf(8,1,i+1),vf(8,1,i+1),ef(8,1,i+1),df(8,2,i), 
3uf(8,2,i),vf(8,2,i),ef(8,2,i),df(8,1,i-1),uf(8,1,i-1),vf(8,1,i-1), 
4ef(8,1,i-1),1) 
call field(da(i,1),ua(i,1),va(i,1),ea(i,1),df(8,i,1), 

1uf(8,i,1),vf(8,i,1),ef(8,i,1),df(8,i-1,1),uf(8,i-1,1),vf(8,i-1,1), 
2ef(8,i-1,1),df(8,i,2),uf(8,i,2),vf(8,i,2),ef(8,i,2),df(8,i+1,1), 
3uf(8,i+1,1),vf(8,i+1,1),ef(8,i+1,1),dwr(i),uwr(i),vwr(i),ewr(i),1) 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(S,i,N), 

1uf(8,i,N),vf(8,i,N),ef(8,i,N),df(8,i-1,N),uf(8,i-1,N),vf(8,i-1,N), 
2ef(8,i-1,N),df(8,i,N),uf(8,i,N),-vf(8,i,N),ef(8,i,N},df(8,i+1,N), 
3uf(8,i+1,N),vf(8,i+1,N),ef(8,i+1,N),df(8,i,N-1),uf(8,i,N-1), 
4vf(8,i,N-1),ef(8,i,N-l),2) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(S,N,i),uf(S,N,i), 

1vf(8,N,i),ef(8,N,i),df(8,N-1,i),uf(8,N-1,i),vf(8,N-1,i), 
2ef(8,N-1,i),df(8,N,i+1),uf(8,N,i+1),vf(8,N,i+1),ef(8,N,i+1), 
3dqr(i),uqr(i),vqr(i),eqr(i),df(8,N,i-1),uf(8,N,i-1),vf(8,N,i-1), 
4ef(8,N,i-1),1) 

480 continue 
go to 530 

490 write(6,47) 
47 format(' REGION 9 BEING PROCESSED ') 
c 

call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(9,N,N),uf(9,N,N}, 
1vf(9,N,N),ef(9,N,N),df(9,N-1,N),uf(9,N-1,N),vf(9,N-1,N), 
2ef(9,N-1,N),dwl(N),uwl(N),vwl(N),ewl(N),dtl(N),utl(N),vtl(N), 
3etl(N),df(9,N,N-1),uf(9,N,N-1),vf(9,N,N-1),ef(9,N,N-1),1) 
call field(da(N,1),ua(N,1),va(N,1),ea(N,1),df(9,N,1),uf(9,N,1), 

1vf(9,N,1),ef(9,N,1),df(9,N-1,1),uf(9,N-1,1),vf(9,N-1,1), 
2ef(9,N-1,1),df(9,N,2),uf(9,N,2),vf(9,N,2),ef(9,N,2), 
3dtl(1),utl(1),vtl(1),etl(1),drl(N),url(N),vrl(N),erl(N),1) 
call field(da(1,1),ua(1,1),va(1,1),ea(1,1),df(9,1,1),uf(9,1,1), 

1vf(9,1,1),ef(9,1,1),dpl(1),upl(1),vpl(1),epl(1),df(9,1,2), 
2uf(9,1,2),vf(9,1,2),ef(9,1,2),df(9,2,1),uf(9,2,1),vf(9,2,1), 
3ef(9,2,1),drl(1)#url(1),vrl(1),erl(1),1) 
call field(da(1,N),ua(1,N),va(1,N),ea(1,N),df(9,1,N),uf(9,1,N), 

1vf(9,1,N),ef(9,1,N),dpl(N),upl(N),vpl(N),epl(N),dwl(1),uwl(1), 
2vwl(1),ewl(1),df(9,2,N),uf(9,2,N),vf(9,2,N),ef(9,2,N), 
3df(9,1,N-1),uf(9,1,N-1),vf(9,1,N-1),ef(9,1,N-1),1) 
do 500 i=2,N-1 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(9,i,N), 

1uf(9,i,N),vf(9,i,N),ef(9,i,N),df(9,i-1,N),uf(9,i-1,N),vf(9,i-1,N), 
2ef(9,i-1,N),dwl(i),uwl(i),vwl(i),ewl(i),df(9,i+1,N),uf(9,i+1,N), 
3vf(9,i+1,N),ef(9,i+1,N),df(9,i,N-1),uf(9,i,N-1),vf(9,i,N-1), 
4ef(9,i,N-1),1) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(9,N,i), 

1uf(9,N,i),vf(9,N,i),ef(9,N,i),df(9,N-1,i),uf(9,N-1,i),vf(9,N-1,i), 
2ef(9,N-1,i),df(9,N,i+1),uf(9,N,i+1),vf(9,N,i+1),ef(9,N,i+1), 
3dtl(i),utl(i),vtl(i),etl(i),df(9,N,i-1),uf(9,N,i-1),vf(9,N,i-1), 
4ef(9,N,i-1),1) 
call field(da(i,1),ua(i,1),va(i,1),ea(i,1),df(9,i,1),uf(9,i,1), 

1vf(9,i,1),ef(9,i,1),df(9,i-1,1),uf(9,i-1,1),vf(9,i-1,1), 
2ef(9,i-1,1),df(9,i,2),uf(9,i,2),vf(9,i,2),ef(9,i,2),df(9,i+1,1), 
3uf(9,i+1,1),vf(9,i+1,1),ef(9,i+1,1),drl(i),url(i),vrl(i),erl(i),l) 
call field(da(1,i),ua(1,i),va(1,i),ea(1,i),df(9,1,i),uf(9,1,i), 

lvf(9,1,i),ef(9,1,i),dpl(i),upl(i),vpl(i),epl(i),df(9,1,i+1), 
2uf(9,1,i+l),vf(9,1,i+1),ef(9,1,i+1),df(9,2,i),uf(9,2,i),vf(9,2,i), 
3ef(9,2,i),df(9,1,i-1),uf(9,1,i-1),vf(9,1,i-1),ef(9,1,i-1),1) 

500 continue 
go to 530 

510 write(6,53) 
53 format(' REGION 10 BEING PROCESSED') 
c 
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call field(da(l,N),ua(l,N),va(l,N),ea(l,N),df(lO,l,N), 
luf(lO,l,N),vf(10,1,N),ef(10,1,N),dtr(N),utr(N),vtr(N),etr(N), 
2dwr(1),uwr(1),vwr(l),ewr(1),df(10,2,N),uf(l0,2,N),vf(10,2,N), 
3ef(10,2,N),df(10,1,N-1),uf(10,1,N-1),vf(10,1,N-1),ef(10,1,N-1),1) 
call field(da(1,1),ua(1,1),va(1,1),ea(1,1),df(10,1,1),uf(10,1,1), 

1vf(10,1,1),ef(10,1,1),dtr(l),utr(1),vtr(1),etr(l),df(l0,1,2), 
2uf(10,1,2),vf(10,1,2),ef(10,1,2),df(l0,2,1),uf(10,2,1),vf(10,2,1), 
3ef(10,2,l),drr(1),urr(1),vrr(1),err(1),1) 
call field(da(N,l),ua(N,l),va(N,l),ea(N,l),df(10,N,l),uf(l0,N,l), 

1vf(lO,N,1),ef(10,N,l),df(10,N-l,l),uf(lO,N-1,1),vf(10,N-1,1), 
2ef(10,N-1,1),df(10,N,2),uf(10,N,2),vf(lO,N,2),ef(lO,N,2), 
3dpr{1),upr(l),vpr(l),epr{l),drr(N),urr(N),vrr(N),err(N),l) 
call field(da(N,N),ua(N,N),va(N,N),ea(N,N),df(10,N,N),uf(lO,N,N), 

lvf(lO,N,N),ef(lO,N,N),df(lO,N-1,N),uf(lO,N-1,N),vf(10,N-l,N), 
2ef(l0,N-1,N),dwr(N),uwr(N),vwr(N),ewr(N),dpr(N),upr(N),vpr(N), 
3epr(N),df(lO,N,N-l),uf(lO,N,N-l),vf(lO,N,N-l),ef(lO,N,N-l),l) 
do 520 i•2,N-1 
call field(da(i,N),ua(i,N),va(i,N),ea(i,N),df(lO,i,N), 

luf(lO,i,N),vf(lO,i,N),ef(lO,i,N),df(lO,i-l,N),uf(lO,i-l,N), 
2vf(lO,i-l,N),ef(lO,i-l,N),dwr(i),uwr(i),vwr(i),ewr(i), 
3df(lO,i+l,N),uf(lO,i+l,N),vf(lO,i+l,N),ef(lO,i+l,N),df(lO,i,N-1), 
4uf(lO,i,N-l),vf(lO,i,N-l),ef(lO,i,N-1),1) 
call field(da(l,i),ua(l,i),va(l,i),ea(1,i),df(10,1,i), 

luf(l0,1,i),vf(10,1,i),ef(lO,l,i),dtr(i),utr(i),vtr(i),etr(i), 
2df(lO,l,i+l),uf(10,1,i+l),vf(lO,l,i+l),ef(lO,l,i+l),df(10,2,i), 
3uf(10,2,i),vf(l0,2,i),ef(l0,2,i),df(10,1,i-l),uf(l0,1,i-l),· 
4vf(lO,l,i-l),ef(lO,l,i-1),1) 
call field(da(i,l),ua(i,l),va(i,l),ea(i,l),df(lO,i,l),uf(lO,i,l), 

1vf(lO,i,l),ef(lO,i,l),df(10,i-l,l),uf(lO,i-l,l),vf(lO,i-1,1), 
2ef(lO,i-l,l),df(lO,i,2),uf(lO,i,2),vf(lO,i,2),ef(lO,i,2), 
3df(lO,i+l,l),uf(lO,i+l,l),vf(lO,i+l,l),ef(lO,i+l,l),drr(i), 
4urr(i),vrr(i),err(i),l) 
call field(da(N,i),ua(N,i),va(N,i),ea(N,i),df(lO,N,i),uf(lO,N,i), 

lvf(lO,N,i),ef(lO,N,i),df(lO,N-l,i),uf(lO,N-l,i),vf(lO,N-l,i), 
2ef(lO,N-1,i),df(lO,N,i+l),uf(lO,N,i+l),vf(10,N,i+l),ef(lO,N,i+l), 
3dpr(i),upr(i),vpr(i),epr(i),df(lO,N,i-l),uf(lO,N,i-l), 
4vf(lO,N,i-l),ef(lO,N,i-1),1) 

520 continue 
c 
530 do 540 i•2,N-1 

do 540 j=2,N-1 
call field(da(i,j),ua(i,j),va(i,j),ea(i,j),df(l,i,j),uf(l,i,j), 

lvf(l,i,j),ef(l,i,j),df(l,i-l,j),uf(l,i-l,j),vf(l,i-l,j), 
2ef(l,i-l,j),df(l,i,j+l),uf(l,i,j+l),vf(l,i,j+1),ef(l,i,j+l), 
3df(l,i+l,j),uf(l,i+l,j),vf(l,i+l,j),ef(l,i+l,j),df(l,i,j-1), 
4uf(1,i,j-l),vf(1,i,j-1),ef(l,i,j-1),1) 

540 continue 
c 
c determine the boundary conditions for next time step 
c 
600 go to (610,630,650,670,690,710,730,750,770,790) 1 
610 do 620 i~l,N 

dyl(i)=da(l,i) 
uyl(i)=ua(l,i) 
vyl(i)•va(l,i) 
eyl(i)•ea(l,i) 
dyr(i)=da(N,i) 
uyr(i)•ua(N,i) 
vyr(i)•va(N,i) 
eyr(i)=ea(N,i) 

620 continue 
go to 900 

630 do 640 i•l,N 
dxl(i)•da(1,1) 
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uxl(i)•ua(i,l) 
vxl(i)•va(i,l) 
exl(i)=ea(i,l) 
dzl(i)"'da(l,i) 
uzl(i)•ua(l,i) 
vzl(i)=va(l,i) 
ezl(i)•ea(l,i) 

640 continue 
go to 900 

650 do 660 i•l,N 
dxr(i)•da(i,l) 
uxr(i)•ua(i,l) 
vxr(i)•va(i,l) 
exr(i)•ea(i,l) 
dzr(i)•da(:N,i) 
uzr(i)•ua(:N,i) 
vzr(i)•va(:N,i) 
ezr(i)•ea(N,i) 

660 continue 
go to 900 

670 do 680 i•l,N 
dtl(i)•da(l,i) 
utl(i)•ua(l,i) 
vtl(i)=va(l,i) 
etl(i)•ea(l,i) 
dsl(i)-=da(i,l) 
usl(i)=ua(i,l) 
vsl(i)-=va(i,l) 
esl(i)•ea(i,l) 

680 continue 
go to 900 

690 do 700 i•l,N 
dtr(i)•da(N,i) 
utr(i)=ua(N,i) 
vtr(i)•va(N,i) 
etr(i)•ea(N,i) 
dsr(i)•da(i,l) 
usr(i)=ua(i,l) 
vsr(i)•va(i,l) 
esr(i)•ea(i,l) 

700 continue 
go to 900 

710 do 720 i•l,N 
dxc(i)•da(i,N) 
uxc(i) .. ua(i,N) 
vxc(i)•va(i,N) 
exc(i)•ea(i,N) 

720 continue 
go to 900 

730 do 740 icl,N 
dwl(i)cda(i,l) 
uwl(i)•ua(i,l) 
vwl(i)=va(i,l) 
ewl(i)zea(i,l) 
dql(i)•da(l,i) 
uql(i):o::ua(l,i) 
vql(i)-=va(l,i) 
eql(i)'"'ea(l,i) 

740 continue 
go to 900 

750 do 760 i•l,N 
dwr(i) .. da(i,l) 
uwr(i)=ua(i,l) 
vwr(i)•va(i,l) 



ewr(i)•ea(i,l) 
dqr(i)•da(N,i) 
uqr(i)•ua(N,i) 
vqr(i)•va(N,i) 
eqr(i)•ea(N,i) 

760 continue 
go to 900 

770 do 780 i=1,N 
dpl(i)•da(1,i) 
upl(i)•ua(l,i) 
vpl(i)•va(l,i) 
epl(i):o:ea(1,i) 
drl(i)•da(i,1) 
url(i)•ua(i,1) 
vrl(i)•va(i,l) 
erl(i)zea(i,1) 

780 continue 
go to 900 

790 do BOO i=1,N 
dpr(i)•da(N,i) 
upr(i)•ua(N,i) 
vpr(i)•va(N,i) 
epr(i)•ea(N,i) 
drr(i)•da(i,l) 
urr(i)•ua(i,1) 
vrr(i)=va(i,1) 
err(i)=ea(i,1) 

BOO continue 
c 
c set da, ua, va, and ea values at this time step equal to 
c df, uf, vf, and ef values for the next time step. 
c 
900 do 910 i=1,N 

do 910 j=1,N 
df(l,i,j)=da(i,j) 
uf(l,i,j)=ua(i,j) 
vf(l,i,j)zva(i,j) 
ef(l,i,j)=ea(i,j) 

910 continue 
c 

fixmaxzO.O 
do 920 i=1,N 
do 920 j""1,N 
usquar•ua(i,j)*ua(i,j) 
vsquar .. va(i,j)*va(i,j) 
vel(i,j)=sqrt(usquar+vsquar) 
vpres=da(i,j)*(usquar+vsquar)/2.0 
pres(i,j)""'(gamma-l.O)*(ea(i,j)-vpres) 
ss=gamma*pres(i,j)/da(i,j) 
if (ss.gt.O.O) go to 930 
ss•O.O 

930 ss=sqrt(ss)+vel(i,j) 
if (ss.le.fixmax) go to 920 
fixmax•ss 

920 continue 

c 

if (fixmax.le.afix) go to 940 
afix•fixmax 

c perform the plate analysis for time frame m. 
c do not perform this analysis until all regions 
c have been evaluated for time frame m. 
c 
940 go to (950,950,950,990,990,990,950,950,990,970) 1 
950 do 960 i:o:l,N 
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WP(k)•pres(i,N) 
k•k+1 

960 continue 
go to 990 

970 WP(24)•(WP(23)+WP(25))/2.0 

c 

WP(46)•(WP(45)+WP(47))/2.0 
WP(68)=(WP(67)+WP(69))/2.0 
WP(90)•(WP(89)+WP(91))/2.0 

write(6,971) 
971 format('WORKING ON THE PLATE/MEMBRANE EQUATIONS') 
666 factr3•Gc*de1dtp*de1dtp/rhoweb 

factr5•factr4*de1dtm*deldtm 
if (m.gt.801) then 
do 985 i=1,Nx 
WP(i)•l.O 

985 continue 
endif 

c 
c LINEAR MEMBRANE EQUATIONS -- REMOVE COMMENTS TO USE 
c 
c 
c 
c 
c 
c 
c980 
c 
c 
c 
c 
c 
c 
c 
c1025 
c 

do 995 k=1,10 
do 980 i=J,Nx-2 
WP1(1,i)•-WM1(1,i)+2.0*W(1,i)+factr5*(W(1,i+1)+ 

1W(1,i-1)+2.0*W(2,i)-4.0*W(1,i))/(delx*delx)+factr5* 
2(abs(WP(i)-1.0)*patm-rhoweb)/Tens 
continue 

do 1025 j=2,Ny-2 
factrO=exp(-float(j)*float(j)/800.0) 
do 1025 i•J,Nx-2 
WP1(j,i)=-WM1(j,i)+2.0*W(j,i)+factr5*(W(j,i+1)+ 

1W(j,i-1)+W(j+1,i)+W(j-1,i)-4.0*W(j,i))/(delx*delx)+ 
2factr5*(abs(WP(i)-1.0)*patm*factr0-rhoweb)/Tens 
continue 

c LINEAR PLATE EQUATIONS 
c 

do 995 k=1,10 · 
do 98.0 is3,Nx-2 
WP1(1,i)•-WM1(1,i)-factr3*(W(1,i)*(20.0*factr1+2.0* 

1factr2-2.0/factr3)-(W(1,i+1)+W(1,i-1))*(8.0*factr1+ 
2factr2)-W(2,!)*16.0*factr1+(W(2,i+1)+W(2,i-1))*4.0* 
3factr1+(W(1,i+2)+W(1,i-2)+2.0*W(3,i))*factr1-
4(WP(i)-1.0)*patm+rhoweb) 

980 continue 
c 

do 1010 i•J,Nx-2 
WP1(2,i)•-WM1(2,i)-factr3*(W(2,i)*(20.0*factr1+2.0* 

1factr2-2.0/factr3)-(W(2,i+1)+W(2,i-1))*(8.0*factr1+ 
2factr2)-(W(1,i)+W(3,i))*8.0*factr1+(W(3,i+1)+W(3,i-1) 
3+W(1,i+1)+W(1,i-1))*2.0*factr1+(W(2,i+2)+W(2,i-2)+ 
4W(2,i)+W(4,i))*factr1-(WP(i)-1.0)*patm+rhoweb) 

1010 continue 
c 

do 1300 j•3,Ny-2 
factrO=exp(-float(j)*float(j)/800.0) 
do 1300 i=3,Nx-2 
WP1(j,i)•-WM1(j,i)-factr3*(W(j,i)*(20.0*factr1+2.0* 

1factr2-2.0/factr3)-(W(j,i+1)+W(j,i-1))*(8.0*factr1+ 
2factr2)-(W(j+1,i)+W(j-1,i))*8.0*factr1+(W(j+1,i+1)+ 
3W(j+1,i-1)+W(j-1,i+1)+W(j-1,i-1))*2.0*factr1+(W(j,i+2) 
4+W(j,i-2)+W(j+2,i)+W(j-2,i))*factr1-(WP(i)-1.0)* 
5patm*factr0+rhoweb) 
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1300 continue 
c 
c Update working vectors before next iteration. 
c 

do 1835 j 8 1,Ny-2 
do 1835 i=3,Nx-2 
WM1(j,i)=W(j,i) 
W(j,i)•WP1(j,i) 

1835 continue 
995 continue 
c 
c Check for interval for writing deflections to output file. 
c 
990 if (m.eq.intc1) go to 1100 

if (m.eq.intc2) go to 1100 
if (m.eq.intc3) go to 1100 
if (m.eq.intc4) go to 1100 
if (m.eq.intc5) go to 1100 
if (m.eq.intc6) go to 1100 
if (m.eq.intc7) go to 1100 
if (m.eq.intc8) go to 1100 
if (m.eq.intc9) go to 1100 
if (m.eq.intc10) go to 1100 
if (m.eq.intc11) go to 1100 
if (m.eq.intc12) go to 1100 
go to 1800 

c 
1100 if (1.ne.10) go to 1800 

write(6,1750) 
1750 format('Enter membrane or plate deflection file name') 

read(5,1760)DFILE 
1760 format(A12) 

open(8, fi1e=DFILE, statusz'unknown') 
do 1770 j=1,Ny-2 
do 1770 i=J,Nx-2,4 
write(8,1780)i,WP1(j,i),i+1,WP1(j,i+1),i+2,WP1(j,i+2), 

11+3,WP1(j,1+3) 
1780 format(4(i3,1x,f16.9,1x)) 
1770 continue 

close(8) 
c 
1800 continue 

if (m.eq.icmax) go to 1860 
1850 wplusc=afix 

m=m+1 
write(6,19)m 

19 format(' !COUNT VALUE INCREMENTED TO ',i5) 
go to 300 

1860 continue 
close(9) 
stop 
end 

c 
c 

c 

subroutine field(da,ua,va,ea,d1,u1,v1,e1,d2,u2,v2,e2, 
1d3,u3,v3,e3,d4,u4,v4,e4,d5,u5,v5,e5,ind) 

common /dat/gamma,omega,xKn,l,N 

t1zu1*u1+v1*v1 
t2=u2*u2+v2*v2 
t3=u3*u3+v3•v3 
t4=u4*u4+v4*v4 
t5•u5*u5+v5*v5 
p1g(gamma-1.0)*(e1-d1*t1/2.0) 
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p2•(gamma-1.0)*(e2-d2*t2/2.0) 
p3•(gamma-1.0)*(e3-d3*t3/2.0) 
p4•(gamma-1.0)*(e4-d4*t4/2.0) 
p5=(gamma-1.0)*(e5-d5*t5/2.0) 
if (p1.gt.O.O) go to 2000 
tl•sqrt ( t1) 
go to 2010 

2000 t1=sqrt(gamma*p1/d1+t1) 
2010 if (p2.gt.O.O) go to 2020 

t2•sqrt(t2) 
go to 2030 

2020 t2=sqrt(gamma*p2/d2+t2) 
2030 if (p3.gt.O.O) go to 2040 

t3•sqrt(t3) 
go to 2050 

2040 t3=sqrt(gamma*p3/d3+t3) 
2050 if (p4.gt.O.O) go to 2060 

t4•sqrt(t4) 
go to 2070 

2060 t4•sqrt(gamma*p4/d4+t4) 
2070 if (p5.gt.O.O) go to 2080 

t5•sqrt(t5) 
go to 2090 

2080 t5=sqrt(gamma*p5/d5+t5) 
2090 continue 

if (ind.ne.1) go to 2100 
r•2.0 
a=1.0 
bzl.O 
c=l.O 
d=1.0 
e=l.O 
f=l.O 
g=l.O 
h=l.O 
go to 2130 

2100 if (ind.ne.2) go to 2110 
r=4.0 
a=l.O 
b=O.O 
c=l.O 
d=O.O 
ezl.O 
f•O.O 
g=l.O 
h=2.0 
go to 2130 

2110 if (ind.ne.3) go to 2120 
r=4.0 
a•O.O 
b=l.O 
czO.O 
d•l.O 
8""0.0 
f=l.O 
g=2.0 
h"'l.O 
go to 2130 

2120 if (ind.ne.4) go to 2130 
r=4.0 
a=O.O 
b:o:l.O 
c•O.O 
d=l.O 



e•2.0 
f•l.O 
g•O.O 
h•l.O 

2130 sum=l.O-omega*xKn*(tl/r+(a*t2+b*tl+c*t4+d*t5)/8.0) 
c 

c 

c 

c 

c 

da=dl*sum+omega*xKn*(a*t2*d2+b*tl*dl+c•t4*d4+d*t5*d5 + 
l(a*d2+b*dl+c*d4+d*d5)*tl)/8.0 - xKn*(-e*d2*u2+f*dl*vl+ 
2g*d4*u4-h*d5*v5)/2.82842 

ea•el•sum+omega*xKn*(a*t2*e2+b*tl*el+c*t4*e4+d*t5*e5 + 
l(a*e2+b*el+c*e4+d*e5)*tl)/8.0 - XKn*(-e*(e2+p2}*u2+ 
2f*(el+pl)*vl+g*(e4+p4)*u4-h*(e5+p5)*v5)/2.82842 

if (ind.eq.l) then 
ua•O.O 
g=O.O 
go to 2160 
else if (ind.eq.4) then 
ua•O.O 
e•O.O 
go to 2160 
else 

ua=(dl*ul*sum+omega*xKn*(a*t2*d2*u2+b*tl*dl*ul+c*t4*d4*u4+ 
ld*tS*dS*uS + (a*d2*u2+b*dl*ul+c*d4*u4+d*d5*u5)*tl)/8.0 -
2xKn*(-e*(p2+d2*u2*u2)+f*dl*ul*vl+g*(p4+d4*u4*u4)
lh*d5*u5*v5)/2.82842)/da 
end if 

2160 if (ind.eq.2) then 
va=O.O 

c 

c 

h=O.O 
go to 2180 
else 

va=(dl*vl•sum+omega*xKn*(a*t2*d2*v2+b*tl*dl*vl+c*t4*d4*v4+ 
ld*tS*dS*vS + (a*d2*v2+b*dl*vl+c*d4*v4+d*d5*v5)*tl)/8.0 -
2xKn*(-e*d2*u2*v2+f*(pl+dl*vl*v3)+g*d4*u4*v4-h*(p5+ 
ldS*vS*vS))/2.8284)/da 
end if 

2180 continue 
return 
end 
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APPENDIX I 

PHOTOGRAPHS OF EXPERIMENTAL TENSION 

MEASUREMENT SYSTEM 
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Figure 1.1. Static Test Frame and Ballscrew Platfonn for Laboratory Tests 
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Figure 1.2. IBM Compatible Computer and HP54501A Digital Oscilloscope Facility 



Figure 1.3. Solenoid Valve Pulser (Top) and Stepper 
Motor Controller (Bottom) 
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Figure 1.4. Long Static Frame Apparatus for Testing of 
Traverse and Multiple Web Samples 
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