(4) Oklaahoma, Ed.D., 1965

ATinimes, Inc., Ann Arbor, Michigan

Copyright by

path mix maisur
1965

THE UNIVERSITY OF OKLAHOMA

 gRADUATE COLILEGE
an objective performancemrenated MUSIC ACHIEVEMENT TEST

A DISSERTATION
 SUBMTTTED TO THE GRADOATE FACUTI

in partial fulfillment of the requirenents for the
degree of
DOCTOR OF EDUCATION

EY
 PAUL MAX MANSUR
 Norman, Oklahoma

1965

This dissertation has been
microfilmed exactly as received

MANSUR, Paul Max, 1926-
AN OBJ ECTIVE PERFORMANCE-RELATED MUSIC ACHIEVEMENT TEST.

The University of Oklahoma, Ed. D. , 1965 Miusic

University Microfilms, Inc., Ann Arbor, Michigan

Copyright by
PAUL MAX Marsor
1965

THE UNIVERSITY OF OKTAHOMA

 GRADUATE COLLEGE
AN OBJECTIVE PERFOPRANCE-RETATED MUSIC ACHIEVEMENT TEST

A DISSERTATION SUBMITTED TO THE GRADUATE FACITTY

in partial fulfillment of the requirements for the
degree of
DOCTOR OF EDUCATION

EY

DAU MAX MANSUR
Norman, Oklahoma
1965

AA OBJECTIVE PERTORAMBEDREATTED
 MUSIC ACHLEVETSAT TESY

ACAINOWLEDGAIENIS

The writer gratefully acknowledges the able and deft assistance of Professor William R. Fulton who directed the study. Professors Leonard H. Hang and Ernest J. Schultz provided frequent and wise counsel in all matters musical. Professor Charles M. Bridges was of inestimable aid in planning and conducting the statistical treatment.

Additjonal assistance in validating the masical content and in providing professional adjudication for the test key was very graciously provided by Professors Robert W. Ross, Richard Brightwell, Franklin E. Williams, and Donald E. Kramer.

Sincere appreciation is also expressed for the excellent cooperation received from the many members of the Oklahoma Music Educators Association. Of particular help to the writer were Mr. Carl Barnett, Tulsa, Secretary of the O.M.E.A., and those who assisted in the several test administrations, Mr. Kenneth Peters of Durant, Mr. Albert Fitzgerrel of Ardmore, Mr. Kendal Hatch of Lawton, Kr. Eugene Griffin of Enid, Mr. Albert Buswell of Del City, and Mr. Roy Lawrence of Norman.

Permission to include quotations from their publications was generously extended by Dr. James A. Hoffren, Dr. John G. Watkins, the Silver Burdett Company, and the Knsic Educators National Conference.

Finally, this study could not have been completed without the patience, understanding, and moral support of my wife and our children. To them I express a special gratitude.

TABLE OF CONTENTS

Page
ACKNOWLEDGMIMNTS iii
LIST OF TABLES v
LIST OF FIGURES vi
Chapter
I. THE PROBLMM. 1
II. SURVEI OF MOSIC TESTING 9
III. DEVELOPMENT OF THE TEST 18
IV. ADMINISTRATION OF THE TEST
TO THE 1964 AIL-STATE CANDIDATES 29
V. CONCLUSIONS 46
BIBLIOGRAPHY 54
APPERDIX A 58
APPENDIX B 63
APPENDIX C 72

IIST OF TABLES

Table Page

1. Table of Specifications 20
2. 1964 All Siate Candidates Frequency Distribution and Centille Rank. 32
3. Item Analysis Tabie 37
4. School Size and Audition Results 42
5. Age of All.State Candidates 43
6. Grade in School of All-State Candidates 43
7. Years of Experience of All-State Candidates 44

LIST OF FIGURES

Figure Page

1. Combined Frequency Distribation 33A
2. Biserial Frequency Distribution 33B

AN OBJECTIVE PERFOREANCE-RELATED

MUSIC ACHIEVEMENT TEST

CHAPTER I

THE PROBLEM

Introduction

Group recognition and evaluation of instrumentsl music performers is a largely unexplored field of study ${ }^{1}$. Achievement evaluations are.made but are individual in character rather than being group administered. The usual technique of performance evaluation is that of an individual audition. Auditions can vary from the extremely informal and brief check for wrong notes in a school band to the lengthy and comprehensive graduate recital of a university student.

In public schools the music director holds frequent auditions or try-outs. These auditions determine the student.is rank within a section. They are used as a partial means of determining grades, choosing soloists, selection for special honors, and for assignment to ensembles. Upon attaining a fairly high degree of competence the student performer finds that auditions are the means of selecting

[^0]studente for membership in district, regional, festival, clinic, and All-State honor groups ${ }^{1}$. Part and sectional assignments in these groups are sometimes made by further auditions.

If the college freshman elects to continue his music performance he iinds that membership and assignment in the college bands, choirs, orchestras, glee clubs, and opera casts are determined by audition. If he seaks a music scholarship an audition will be required. If a music major, auditions will be required as final examinations each semesier of applied music study. There will also be periodic proficiency examinations by a committee of faculty members as well as the faculty evaluations which follow recital appearances ${ }^{2}$. If he enters the field of professional music he mast continue to audition in order to obtain and hold a pösition as a performer.

The value and effectiveness of the audition is not in question although there are some drawbacks to its use which will be noted later. Its efficacy is generally accepted by schools of music as has been indicatod. Watkins has established that of 211 music tests in achievement "the individual perfomance tests alone have exhibited reliabilities high enough to differentiate individuais. ${ }^{3}$ An individual performance test, of course, is an audition.

The sinortcomings in tine use of auditions stem from its very nature and not from its application and use. The audition is and

[^1]can be used only on an individual basism-one performer at a time to be heard by one or more auditors. The briefest possible audition, to be reasonably valid, must be five to ten minutes in length in order to weigh tone quality, knowledge of keys and scales, technical facility, sight reading ability, musical expression, and rhythmic comprehension.

Sumarily, the overwhelming problem in aural evaluation is one of time allocation for this purpose on the part of both student and teacher. One hypothetical case will illustrate this large consumption of time. . In a moderately sized high school the band may number sixty members. If the director scheduled ten-minute auditions to evaluate each student it would require ten hours to hear every student in the band. If the auditions were scheduled during the regular band period and this rehearsal period wers a full sixty minutes long it would re. quire two weeks of class time to complete the anditions. Each student would have nine hours and fifty minutes of time unoccupied during these ten class periods. Obviousiy, this would be an impractical means of evaluation. In practice the director makes his evaluations during brief fragments of time allotted during rehearsals, and tefore and after school hours while coaching solos and ensembles or directing sectional rehearsals.

An illustration from the writeris expewience will serve also to show the impracticality of using comprehensive auditions in a particular situation. While a graduate assistant with the University of Oklahoma Bands the writer was charged with the supervision and direction of the Air Forse ROTG Band. This group met only once per week during the FOTC drill period. It was imperative that this band
begin to function without delay and begin learning the procedure and routine for a military. parade and revier. At the teginning of the school year instruments and music had to be assigned, part assignments made, and marching and playing rehearsals begun immediately. With oniy sixteen rehearsals per. semester, barring cancellation of drill peripds due to inclement weather, there was never sufficient time to audition the sixty to seventy-five members and make accurate part assignments. Fortunately, some of the band members were also members of the Oniversity Band. Their andition ratings were used to plice these stadents on key parts through the various sections of the ROTC band. The ROTC students were assigned to parts after completing a simple questionnaire about. their prior experience. Cursory anditions of perhsps thirty seconds duxation were sometimes used to supplement the indications of the questionnaire.

The selection of outstanding instrumentalists for membership in the All-State band and orchestra of Oklahoma also utilizes the audition technique. The procedure for selection, in brief, is this: school music directors nominate students for anditions held to select . personnel for these groups. These nominations include a.brief sumary of the student's achievements and a recommendation by the director. The names: submitted are screened by the Selection Committee of the Oklahoma Music. Edncators Association. Approximately twice as many stadents as will be accepted for the All-State groups are invited by the Selection Comnittee to audition for membership. Audition centers are set up in five oities across the state and on a specified date the stadents report to the centers for audition. Each student perforns a propared piece of
music supplied to him by the selection committee at the time of his invitation. During the audition the stident must perform at sight another brief composition, also supplied by the committee. All performers of like instruments play exactly the same music. These auditions are tape recorded and ine student is identified upon the tape only by a number. At a later date all the tapes are assembled and edited to place the anditions in numerical order. They are then heard by the selection committee. The audition performances, identified only by number, are ranked by the committee and a cut-off point is mada when the designated instrumentation of the band and orchestra is complete. The secretary of the association then refers to the code key of the audition numbers and notifies the selected students by mail.

Although this procedure is somewhat involved it is undertaken to eliminate as much subjectivity as possible fry the selection process and ensure that final selection and part assignment be based on performance only. Age, grade, school size, and such other information are unknown to the anditors. Complete objectivity of avdition evaluation is achieved by using a coded number identification system.

A subjective weakness in the above procedure may now be selfevident. This occurs at the point of nomination by the local school director and again when the decisions are made concerning whom shall be invited. to audition. When writing an evaluation of a studentis ability in a resume or summary form there are wide variations in both style and length. The files of the Oklahoma Music Fducators Association contain recommendations varying from terse one-sentence comments to florid praise encompassing several paragraphs. The committee must
in turn make its decisions about invịtations based on these widely varying recomendations. These two phases of the selection process are inherently subjective. ${ }^{1}$

Need for a Test

Several imediate areas of application suggest themselves for utilization of an objective group test that is directly related to audition-supported proof of music performance achievement. If such a test or instrument were extant it could be used experimentally in the areas noted below. Other appiications may be suggested through its utilization in specific sitiations.

1) Such a test could be used in the public sehools. It would supplement regular auditions and provide an immediate source of group evaluations for guidance and improved teaching.
2) It could be nsed by coinieges in screening candidates who wish to audition for performatir stholarships. In addition to a very substantial time-saving for the faculty an objective test score may stimulate good students to try for scholarships who: may have had doubts about their achievement level.
3) The colleges could use:such a tesi in evaluating incoming personnel among large performance groups and as a group guidance instrument. College utilization would primarily involve testing high school senior admission candidates and recent high. sehool graduates.
4) In any case whare time is the pressing need it may be used to make preliminary group, sectional, and part assignments.
5) Such an instrument could effectively and economicaliy be used as a sc.reening device to eliminate or negate subjoctive weaknesses in the selection process for the All-State band and orchestra.

It should be noted here that the suppositions are rade about
an instrument that is related or positively correlated with demonstrated

The writer feels it would serve no useful puxpose to quote from specific recomrindations. Interested and authorized personnel may contact the executive secretary of O.M.E.A. concerning these files.
music performance achievement. A group test can not directly measure performance achievement. A direct performance evaluation is, by definition, an audition, hence, impossible to administer simultaneously to a group.

Finally, if such an objective group test were available it in no wise should be construed to be a replacement for the individual audition technique. Its use in proper context would be to supplement auditions, make evaluations more meaningful, and enhance the teachinglearning process.

Statement of the Problem

The problem in this study is to constract, administer, and validate an objective type group instrument for the evaluation of public school wind instrumentalist performance achievement.

Hypothesie

It was hypothesized that there is no significant difference between the means of a performance-related achievement test administered to students nominated and accepted for membership in All-State Band or Orchestra and to students nominated but not accepted for membership.

Procedures

The study design included an exploratory pilot study, the development of a preliminary form of the test, and development of the final form of the test administered to the All-State Band and Orchestra candidates. Data analysis included estimates of validity, reliability, and a complete test item analysis. The biserial r correlation of test results with selection for membership in All-State Band and Orchestra by
audition, an independent outside criterion, was used to determine validity and as a basis for the t test of significance between means.

Limitations

The study was limited to a sample of high school students who had been invited to audition for membership in the Oklahoma AllState Band and Orchestra by the All-State Selection Cormittee of the Oklahoma Music Educators Association. All students in the sample were wind instrumentalists.

Definitions

All-State Band and Orchestra-wthe band and orchestra divisions of the Oklahoma All-State Music Festival, an anmal honor convocation of the most proficient student musicians available from the high schools of Oklahoma.

Audition-inn individual masical performance evaluation made by one or more auditers.

Performance-related test-an objectively scored group instrument that measures factors related to musical performance but does not require an actual performance evaluation.

Wind instrumentailist-a performer upon any standard orchestral or band brass wind or wool wind instrument.

CHAPTER II

SURVEY OF MUSIC TESTING

The Nature of Music

Recognition of the basic components of music is necessary to explain the difficulties involved in masic evaluation caused by its intrinsically rather nebulous nature. Music, in simplest possible terms, consists of sound, movement, and structuralisms. Sunderman ${ }^{1}$ provides this definition and points out these components are inextricably woven together, yet they particularly govern the nature of music being at one time an aesthetic art, an intellectual disoipline, and an exceedingly technical craft. In essence we can then define a music performance as an application of technically acearate skills to an intellectually conceived form presented for aesthetic satisfaction in an aural medium.

This complexity of form and its temporal means of expression make testing and evaluation in music extremely difficult. Fraluation of music and music performance frequently involves highly subjective value-judgments. These value-judgments are necessarily subjeotive

[^2]because music is an art form, a non..verbal form of aural communication, and hence subjective in nature. Personal and socially acquired tastes profoundly affect value-judgments concerned with music and its performance and thus inhibit the success of instruments designed for musical evaluations. This is evidenced by the comparatively low validity and reliability indices reported for many of the published music tests. Super ${ }^{1}$ indicates further that music tests are not as useful in vocational guidance as are the standardized tests in other areas. This subjectivity of taste concerning music may be effectively illustrated by the old adage, One man's meat is another man's poison, if paraphrased to: One man's music is another man's cacophony.

Predictive Testing

By far tine largest body of works related to musical evaluations is in talent and ability testing. These tests attempt to measure the inherent ability of the subject and nredict the probability of success or failure in music study. The empirical studies of Dr. Carl E. Seashore ${ }^{2}$ may be considersd basic to virtually all tests of this type. His work was psyrhologically oriented and may be regarded as atomistic in its nature. He identified and labeled twenty..five separate musical senses, actions, and feelings. ${ }^{3}$

In general, talent tests attempt to measure aural. sensitivity
${ }^{1}$ Donald E. Super, Appraising Vocational Fitness (New York: Harper and Bros., 1949), pp. 319-329.
${ }^{2}$ Carl E. Seashore, The Psychology of Musical Talent (New York: Silver, Burdett and Co., 1919).

$$
3_{\text {Ibid., pp. 7, }} 8 .
$$

to sounds. Specifically, the student being tested makes value-judgments about sound intensity, pitch, timbre, duration, and repetition. The sounds presented may be recorded as in the Seashore Measures of Yusical Talents ${ }^{1}$ and the Wheeler Musical Aptitude Test. ${ }^{2}$ The former is on disc recordings; the latter is a tape recording. Others, such as the WhistlerThorpe Musical Aptitude Test, ${ }^{3}$ require the test materials to be presented from a piano or other instrument.

One fairly important difference between various talent tests is the choice of sounds for discrimination. Both the Seashore and Wheeler tests, for example, use pure fundamental tones without any overtones or harmonics. Those using the piano or orchestral instruments present more normal musical sounds with their accompanying overtone structure.

Categorically, all predictive talent tests are remarkably similar in basic constraction. They present sounds and patterns in sound to the subjects being tested who must make value-judgments about these sounds based on their anral perception. Talent tests also are similar in purpose which is to identify innate talent and predict the probability of success in future musical achievement. A statement of purpose by the eminent British authority, Dr. Herbert D. Wing, will. serve to illustrate this function of talent testing. "To pick out musically bright children at about the age of transfer to the secondary schools in order to give

[^3]them the opportunity . . . of coaching in an orchestral instrument. ${ }^{11}$
Enumeration and consideration of many more predictive talent tests could be undertaken here but the recent work of Pinkerton ${ }^{2}$ makes this completely unnecessary. He has adequately summarized the current usage of talent tests in public schools.

Music Achievoment Testing

As was noted in Chapter I, above, performance achievement testing consists largely of auditions with inherent subjectivity. Efforts to reduce this subjectivity have resulted in a number of achievenent tests being devised in recent years. These objective measures of musical achievement fall into two primary classifications: 1) Objectively scored tests of verbalized material and symbols of music, and 2) Objectively scored tests of performance. . The latter group may be subdivided further into: 2) group tests in which the subjecis evaluate performances, and b) individual performance tests evaluated by the administrator.

Several conclusions reached by Watkins in 1942 are yet largely valid today and merit inclusion here.

More work has been done in devising ability tests than in developing achievement tests.

In other fields ability tests have been validated against actual achievement, while in music only indirect measures of achievement have been available. This places the validation of the supposed ability measures on a subjective and unreliable basis.

A fer achievement tests in masic have been developed. These are

[^4]of two types: (1) najer and pencil tests designed to measure knowledge of musical symbols, (2) individual performance tests.

The individual performance tests alcne have exhibited reliabilities high enough to differentiate individuals. .The group paper and pencil tests have been found to be more highly correlated with general mental ability as measured by, intelligence tests than with any of the present-day ability tests.

This void in achievement testing still exists although there have been some notable developments since the above study. Before taking up these developments for consideration it should be noted that the Watkins stouly is essentially a refinement of the andition technique. He devised a sradz scries of musical phrases to be performed at sight by wind instrumentalists. These "sight performances" were graded by an auditor using masical measures as units performed correctly or incorrectly. Even if many errors were committed in a single measure it was still scored as a single incorrect unit. Sabjective bias in scoring was largelr eliminated in this mamer: "In the expression errors subjectivity is' avoided by making the fact of response, and not the degree of response, the criterion. n^{2} While this practice raises the reliability index and enhances the sealo's objectivity. it reduces the value-judgment to one of technicel accuracy rather than complete masicality.

A progress report concerning a study now under way: by Kenneth J. Gutsch ${ }^{3}$ was very recently published. Financed by a federal grant, this project is also based, like Watkins' study, on s̈ight reading.
${ }^{1}$ Objective Measurement of Instrmental Performance, p. 82.
2Watkins, Ibid. : p. 48.
$3_{\text {Kenneth Orial Gutsch, Mone Approach Toward the Development of }}$ an Individual Test for Assessing One Aspect of Instrumental Music Achievement," Conncil for Research in Yusic Education Bulletin No. 2, pp. 1 - 5.

The anthor, of the University of Southerrs Mississippi, seems to feel that further investigation of individual performance evaluation is fully warranted. The federal grant in support of the study would indicate considerable agreement with this premise exists.

An extremely interesting development in achievement testing has been the transfer of the value-judgment to the sribjects being tested rather than being made by the anditor in the case of private avditions. In this technique musical performances are presented to the subjects being tested. As in talent testing these periormances may be live or recorded. In the Aliferis Music Achievement Test ${ }^{1}$ the materials involving melody, haryony, and rhythin are played on the piano and the students being tested select the proper musical nötation based on what is heard. A recorded edition is alsc available.

A test devised by White ${ }^{2}$ is similar to the Aliferis test but is tape recorded and does not permit live performance. It contains sixty. masical items, tiairiy-seven on pitch and twenty.-three on rhythm. The students select the correct notation from four examples provided on the test paper.

Another test has quite recently been developed whion also uses recorded performances but the nature of the choices is quite different. This test presents several recorded passages from which
${ }^{1}$ James Aliferis, Aliferis Achievement Test Manual, College Entrance Level (Minneapolis: University of Minnesota Press, 1954).

2Adolph Peter White, The Construction and Validation of a Group Test. in Music Reading for Internediate Grades," (unpublished Ph.D. dissertation, University of Minnesota, 1963).
the subjects choose the most expressive performance. The author of this test. Dr. James A. Hoffren, used independent adjudicators of professional competency in validating his criteria. "Trained musicians manifested a significant consensus of opinion in standards of expressive performance. ${ }^{1}{ }^{1}$

Hoffren's study should be considered highly meritorious for its significantly objective approach to a subjective problem area in urgent need of much more research. He offers a particularly stimulating analysis of the reasons underlying this great void in performance evaluation research:

The obvious explanation for the lack of research in this area of expression tests is the difficulty of the task, since expression is such a subjective, nebulous facet of performance. These difficulties might be briefly enumerated. First, measuring these capabilities is difficult because the expressive elements are often personal, introspective, and subjective. Second, aesthetic qualities resist verbalization, and this may explain why expression is often taught by imitation where the student directly imitates the teacher's performance. Third, musical performance resists attempts at segmented analysis; the whole appears to be more than the sum of its parts--the separated elements are no longer musical. Fourth, music is apprehended in a time sequence, negating any attempi to "freeze" any one of its facets for more detailed analysis. A fifth reason for the lack of tests in this area is the inadequacy of the printed notation; expression is difficult to notate. Sixth, the lack of an absolute standard of beauty results in a lack of somparable quantitative methods of measuring the expressive process itself. Finally, music tests are especially sensitive to chance errors of measurements. Momentary lapses of attention are of no significance in dealing with visual materials, whereas the pace is arbitrarily determined for the subject in an aural music test.

The group paper and pencil achievement tests such as mentioned
${ }^{1}$ James A. Hoffren, "A Test of Musical Expression," Council for Research in Music Education Bulletin No. 2, p. 33.

$$
2_{\text {Ibid. . p. }} 33 .
$$

by Watkins ${ }^{1}$ above shall be considered very briefly. Their success is in measuring technical knowledge and understanding. Their failures are in regard to performance evaluation. As noted earlier they are more highly correlated with general mental ability than with musical ability. ${ }^{2}$ The well-known "Graduate Record Examination" in music is this type of test. Norms are published annually for graduating college seniors but.there is no indication that the test measures performance achierement. It is, essentially, a test in masicology, an intellectual discipline, and not a test of.intrinsic masical values related to performance achievement. Larson suggests it would more properiy be called an "Advanced Test in Musicology" because of its emphasis on the scholarly factors of music study. ${ }^{3}$

The California "Diagnostic Tests of Ac:Ievement in Music" is deesigned for use in public schools. Of ten sections, nine deal with. printed notation and only one, the tenth section, is concerned with: song recognition. Its value in measuring achievement is highly questionable as it primarily measures intellectual fanctions. ${ }^{4}$

Summary

The subjective and aesthetic qualities of masic are inhibiting
${ }^{1}$ Objective Measurement of Instramental Performance, p. 82. ${ }^{2}$ Tbid.
$3_{\text {William }}$ S. Larson, Review of "Graduate Record Elcaminations Advanced Tests: Music," The Fifth Mental Measurements Tearbook, ed. Oscar K. Buros (Highland Park, I.J.: The Gxyphon Press, 1959), p. 383.
${ }^{4}$ M. Lela Kotick and T. L. Torgerson, Diagnostic. Tests of Achievement in Music (Hollywood; Cailifomiza Test Burean, 1950).
factors affecting the success of musical evaluation techniques. By far the largesi field of investigation has been in predictive testing. A numier of predictive ability tests have been developed which have rather high reliability coefficients but validity coefficients generally are somewhat Iower.

Musical achievement testing has not been investigated as thoroughly as musical talent and ability testing. Group paper and pencil tests have not been effectively validated with performance achievement although new techniques introduced very recently appear quite promising. Auditions and individual performance tests are in quite general use and appear to be the most satisfactory method of evialuating performance achievement yet developed. Individnal performe ance testing requires a great amount of time for its administration and frequently suffers from excess subjectivity. It ray thus be safely concluded from the literature and from current practice in musical evaluaiion that group performance achievement testing is a largely unexplored field.

DEVETOPMENT OF THE TEST

Procedure

Construction of the test began in the fall of 1960 while the writer was a graduate assistant with the Oniversity of Oklahoma Bands. Problems encountered in auditioning bandsmen suggested practical usages for an objective group performance instrument. The particular requirements and organization of the University Bands were well suited for a pilot study to investigate a trial test form.

The principal advantage lay in the fact that all students accepted for membership in the University Bands were required to audition. Fach audition was scored on a mimeographed check sheet and retained in the permanent files. Each bandsman had demonstrated his performance proficiency, aptitude, and interest by anditioning and enrolling in the University Band. It was decided to construct an instrument designed to measure skills in achievement apart from performance but with the assumption that test scores would correlate positively with audition performance ratings.

An analysis of factors contributive to success in musical performance achievement was attempted. These were factors related to learning which assist a performer and contribute to his success but are not completely within the realm of subjective evaluation. If the
learning area was considered largely subjective but certain aspects of it could be evaluated objectively it was not eliminated.

The first area selected was knowledge and understanding of musical terms. Technically, a performer must understand terminology in order to perform effectively. The periormance would be evaluated primarily in a subjective way but would include the consideration of objectively discrote qualities. This may be illustrated by the Watkins ${ }^{1}$ scoring technique noted earlier. If at a given point in music the expression, piu mosso, is encountered the performer must speed up slightly to inject more motion. The quality of this acceleration is not under consideration; rather, the fact of acceleration at a given point must be demonstrated. Ignorance of the texm's meaning and its proper application would ultimately be reflected in performance by maintaining the same speed or by slowing down.

The second area considered contributive to performance success was experience and familiarity with much music literature. It was felt that extensive familiarity with music ir essential to the development of performance proficiency. Although a performance must be evaluated subjectively, the fact of familiarity with music literature can be demonstrated and reasured objectively.

The third field of learning selected was musical notation. This area of knowledge is nearly always evaluated only by an audition performance. In effect, the performance is rated and not the understanding of notation. As performance is litërally impossible without comprehension

[^5]of symbols and notation, (except by mimicry), it was decided to attempt to measure these skills objectively apart from an actual performance. Ho other learning areas were considered applicable or necessary for the constraction of this test.

It was decided to use a completely objective form to facilitate speed of administration and ease of scoring. This eliminated the possibility of using short answers or simple recall items. It was felt that university bandsmen selected for the trial administration could easily discriminate between a simple right answer and even a cleverly contrived wrong answer. For this reason, and also to discourage guessing, the alternative choice style of test item was eliminated from consideration. A complete use of multiple choice items was decided upon in order to use many plausible distractors. This style: of test construction was considered.more suitable ior measuring understandings as well as knowledge.

Test items relative to these three areas of learning were constracted based on the specific skills indicated in the table of specifications found in Table No. 1 below. The left hand colusun

TABLE 1

TABLE OF SPECIPICATIONS

lists the skills necessary for performance. The three columns to the right indicate the musical materials to be incorporated in the test as they pertain to achievement.

A test of fifty items was constructed with four subdivisions. One section dealt only. with musical terms and definitions. Two parts of the test were related to music literature; one amphasizing the names of composers and the other their compositions. The fourth section contains a brief excerpt from an original condensed band. score.

The validity of a masic test is often quite difficult to confirm, establish, or refute due to music's aesthetic nature. In order to proFide inherent content validity appropriate to the material two criteria were used. First, only terms which are in common usage along with their definitions as found ip-a musical glossary were used. Secondly, only well-known composers and their compositions were listed. All itams, names, and terms were checked in reference works for popular consumption as well as in the technical works such as Groves'. ${ }^{2}$ The novel band score may be considered an exception; however, standard terms are usød in describing and interpreting it.

It must be noted here that all questions had a clearly right, answer except those relative to the novel band score. In this part the studert is to examine the score, analyze it to the best of his ability, and then select what appears to be the most logical ansrers as they pertain to performance.

[^6]
The Pilot Study

The University of Oklahoma Bands consist primarily of two distinct organizations. The Symphonic Band is a select group with limited instrumentation and membership. The Concert Band is unlimited and serves as a training and feeder organization for the Symphonic Band. The Concert Band is normally made up primarily of freshman students functioning at a periormance level equivalent to many public high school bands.

An appropriate opportunity arose to administer the pilot form of the test to the Concert Band during a class period in which some members of the Symphonic Band were also performing with the Concert Band. The test was given to this group in a single administration. The test papers of all percussionists were eliminated from consideration and several more eliminated from overlarge sections to provide a sample proportionate to the band's normal instrumentation.

The test was scored and an item analysis made using the upper and lower quartiles. The test proved a little too difficult with a Difficulty P of 43 . The mean for all discrimination ratings was computed at .258. Three items showed a negative discrimination and six had no power of discrimination. The reliability correlation for a sample of 36 tests was computed using the chance halves technique corrected by the Brown-Spearman prophecy formula. An \underline{x} of .64 was obtained which is considered moderately effective for group guidance and evaluation. ${ }^{1}$ The standard deviation for the test was 5.3 raw
${ }^{1}$ Super, Appraising Vocational Fitness, pp. 319-329.
score points with a standard error of measurement of 1.8. This form of the test, entitied Mrusic Achievement Test," may be found in Appendix A.

An attempt to correlate the scores with audition ratings was unsuccessfol. No satisfactory method was devised to quantify the check sheet ratings. Numerical values were often misleading and did not agree with performance audition rankings. The problem in quantification seems to lie in subdivided categories contained in the check sheet and a necessity for weighting certain abilities evaluated by the adjudicator.

Several observations about the pilot test results must be reported even though not statistically supported. Some students with rather low test scores had received excellent andition ratings. Conversely, the reverse was also true; some with high test scores were rated low in the audition. This was the exception as most scores seemed to match the audition ratings rather well when both results were ranked. Ranking of audition results was rather subjective as a numerical quantification was unsuccessful, as noted above.

It was felt that Sections A, B, and C measured only knowledge of terminology and of music literature. This knowledge, as measured by this test, does not appear to correlate directly with performance achievement. An interested non-performer conld easily be possessed of sufficient knowledge to make a high score. These sections measure a function of intelligence rather than performance-related skilis; thus, they suffer from-the same weakness in constraction and application as do other paper and pencil achievement tests of this type. Therefore, this type of construction was rejected as being inadequate for the development of a performance-related test. No further usage
of this category of test item was attrapted in developing the new evaluation instrument.

The most stimulating results of the pilot study were noted in Section D, which utilized the novel band score. As this section contained only ten items it was too brief for separate and conclusive statistical treatment. The entire band staff concurred, however, in the opinion that results in this section were more consistent with audition ratings than were the other three sections. Several features of this section of the test were noted as promising guides for further test development. The particular attributes of this style test are enumerated as follows:

1) The material requires the student to silently read the music as if he were actually engaged in performance.
2) Answer choices can be graded as to relative suitability. An absolute right answer is; not essential as the student may choose the answer that seems to be the most plausible or effective.
3) Inferences and deductions about the questions can only be based on the musical example provided and by the direct application of personal skills and knowledges to the masic.
4) The use of original music prohibits the possibility that some might be familiar with the phrase as might happen if standard masical literature were used.
5) The format would permit development as a group test with its subsequent timesaving advantages over individual auditions.

Development of a Ney Test

A new test was then began using these guides. to construction. All possible answer choices were to necessitate judgements by the student about tempo, articulation, dynamics, phrasing, style, rhythm, or tonality. Selection of the proper answer would be determined by a deductive infer-
ence from the actual notation of a complete musical phrase.
Ho attempt was made to measure knowledge of musical terms. Test items were constructed so that a basic understanding of terminology would be required in order to select the most appropriate answer. The primary emphasis on all items was directly related to some aspect of performance skill. Performance.skill is, in effect, the ability of one to read, comprehend, and interpret musical notation through aequired skills. Music reading and comprehension bear an integral relationship to and with performance: Marsell emphasizes the importance of reading music as follows: Music reading is not a separate, segregated stant, or skill, or knack. It is applied musical understanding. To read masic and to understand music are two aspects of the same process. ${ }^{1}$. (emphasis Mursell's.)

The condensed band score from the preliminary test was retained. Four brief melodies were selected for additional test items. All are original and unpublished and therefore not previously known to any possible testee. In addition, four novel performance situations were devised, one of which also used notation. In order to use the deductive inference technique more effectively it was decided to use alternate choice items completely. Each was prepared as a complete statement in sentence form. This technique forces the student to accept or reject every choice after due consideration.

This test, in tentative form, was evaluated by three profecsors in the University of Oklahoma School of Music. Following this evaluation

[^7]the test was reduced in size to 126 items from the total of over 150^{-}items. This form of the test was organized into two major divisions with five subdivisions in Section I and four subdivisions in Section II. It was entitled the "Wind Instrumentalist Inventory Scale" as it was limited to use by wind instrwentalists. The word "scale" was used to. allay the fears of students who feel threatened by the word "test." "Inventory". suggests the purpose of the test as being a summany rating of performance skills.

To test the reliability of this instrument it was administered on Pebruary 24, 1962, to the Oklahoza All-State Band. This group had heen selected in a manner similar to that described above in Chapter I. Tests of six percussionists were discarded and two students did not hand in completed tests. This left one hundred tests to be scored and evaluated.

The key for grading the tests was prepared by the writer in conjunction with five professors in the University of OkClahoma Scinool of Music. A tally of all test answers was made after seoring with this . key. A second key was prepared based on this tally and the tests were rescored. The tally was also used for making an item analysis. .

A correlation index between Sections I and II was computed first. An $\underline{\underline{r}}$ of -.03 was found indicating no.relationship between the masical notation section and the items in the section of novel aitaations. There was no other indication of correlation within Section II or of correlation with any measured or ranked factor. Section II was then dropped from consideration in all further data treatment and analysis.

Section I of the test showed an internal consistency index betwreen
the odd and even halves of $\mathrm{E}_{12}=.56$. A correlation of .46 was obtained between the tally key and the original key. This figare is a validity index with an outside criterion of professional adjudication.

Item analysis revealed the test's power of discrimination was rather low although this was expected with such a highly selected group. Only six of the eighty items in Section I showed a negative power of discrimination and two had no power of discrinination.

Two unsuccessful efforts to validate and extend these findings by a less restricted administration were made. The first attempt involved a plan to test all band seniors in a random representative sample of 26 high schools. This test administration was carried out through the mails but a return of less than ten per cent forced abandonment of the plan.

The second effort was delayed until the 1962-63 school year following the selection of the 1963 All-State groups. It was hoped that an excellent return would provide sufficient data. to validate the 1962 findings and complete the present study. Test materials were sent to the band director in every high school which had one or more stadents accepted for audition by the All-State Band Selection Committee. Two hundred forty-five students were sent tests, through their band directors, and one handred forty-seven were administered and returned. Although tests were returned from some seventy-five per cent of the ninety-six participating schools, they amounted to only sixty per cent of the number of students who auditioned.

Although this was a fairly large return it was felt that the results were-inadequate to complete the study but more than ample to
validate the 1962 findings. These tests were scored twice using the 1962 keys and a correlation computed. This r of .64 is a validity coefficient with an external criterion, the pattern of response of the 1962 All-State Band members.

For several reasons it was decided to revise the test. All the test booklets still contained Section II which was no longer being used. Six test items still had a negative discrimination and others seemed quite weak as indicated in the item analysis, and needed revision. The test did not conform to the field patterns appropriate to usage of IBM machine scoring techniques. Finally, the desired sample of students selected to audition for All-State membership would nọt be available again until the next school year of 1963-64.

The basic format of Section I was retained in the revised iest. Section II was, of course, eliminated. The same four melodies and the condensed band score were retained. Eleven test items were eliminated, six new items were added, and forty-four were slightly revised in wording. This form of the test was fixed at seventy-five items in order to utilize machine scoring answer sheets more effectively. Tests using IBM answer sheets are normally constructed with items in multiples of fifteen as each scoring field. contains fifteen test numbers.

The title of "Wind Instrumentalist Inventory Scale" was retained for the new form. Hereafter it will be referred to as Form II and the 1962 test will be referred to as Form I. Form I and Form II may be found in Appendix B and Appendix C respectively.

ADMINISTRATION OF THE TEST TO THE

1964 ALI-STATE CARDIDATES

Procedure

Revision and mimeographing of Form II of the Wind Instrumentalist Inventory Scale" was completed in the fall of 1963. The Selection Committee of the Oklahoma Mpsic Educators Association completed fis planning for the 1964 All-State Band and Orchestra in November. Lists of students selected to andition were prepared for mailing in late November. The Selection Comittee approved the writer's plan to test 211 candidates for All-State at the time of audition. A mimeographed. letter describing the procedure and parpose of the test was included with the selected list and audition schedule mailed to each instrumental music director in the one hundred six participating schools.

Regional auditions were held on Dec. 7, 1963, in five cities-Norman, Durant, Tulsa, Find, and Lawton. A sufficient number of test booklets, IBM answer sheets, electrographic pencils, and test manuals were sent to each audition center for all wind instrumentalists being auditioned. Personal friends had been asked to supervise the testing in each center except Norman where the writer administered the test. A virtually complete return was obtained from Durant, Lawton, Fnid, and Norman. The test was not administered in Tulsa because of a shortage
of facilities and personnel to administer the test.
Two hundred forty-six completed tests were obtained from three handred fifty students scheduled to audition. One hundred twelve of the two hundred forty-six students were selected for membership in the A11State Band and Orchestra. This amounts to more than seventy-eight per cent of all the wind instrumentalists in these two groups. This figure is somewhat less than had been hoped for but is sufficiently. large to be representative of the population and provide adequate data for statistical treatment.

The key for Form II was devsloped as the revision of the test took place. As noted earlier only six new itgms were added and eleven were eliminated. Other changes were relatively minor and were undertaken to strengthen some ambignous statements or to require more thought before choosing an answer.

All test blanks were checked visually for heavy black answers and clean erasures, then scored on an IBM test scoring machine. No questions were weighted and no correction formula was used. Ray scores were simply the number right. Test scores were checked for accuracy with pre-scored answer sheets at periodic intervals. A "Rights plus Wrongs" check was made on each test while in the machine. All papers that did not check at seventy-five items were inspected and scored with an overlay visual key.

After grading the tests they were then transcribed to IBM punch cards. The first three digits on these cards were used as the identification number. The last two digits recorded the total raw score. The intervening seventy-five digits were used to record the
seventy-five test items as correct or incorrect. A "1" indicated a correct answer, a space an incorrect answer, and an asterisk the unattempted items. The full set of two hundred fortymix carcs was inspected visually and punches counted to ensure that each card was correct and uhe indicated score was in agreement with the number of punches.

A second set of IBR cards was prepared containing all available personal information about each candidate. This information falls into several categories and is presented in Tables 4,5,6, and 7.

A chance-halves key was also prepared on the odd and even numbered items of the test in order to obtain a reliability indesc of internal consistency. Item 1 was ignored and not counted in order to make the two halves of equal length.

Forty-nine students had also been administered Form I of the test during the 1962-63 school year. These scores were compared with the scores on Porm II to obtain an indication of the degree of equivaIence between the two forms.

Statistical Data

The full set of IBM cards was printed out on an IBM Accounting Machine to provide a full visual check and control on the collected data. The cards were run through a sorting machine to obtain the reported totals for all items. Separate totals, where needed, were obtained by using separate card sorts for those students selected for All-State membership and for those who anditioned but were not selected for band or orchestra by the audition committee.

As indicated in Table 2, the highest score for both groups AND CENTILE RANK

$\begin{gathered} \text { Raw } \\ \text { Score } \end{gathered}$	Frequency	Cumulative Frequency	Al1-State Frequency	Unselected Frequency	Centile Rank
63	1	246	1	0	99
62	2	245	2	0	. 99
61	1	243	0	1	99
60	1	242	1	0	98
59	6	241	4	2	97
58	5	235	4	1	95
57	4	230	3	1	93
56	8	226	6	2	90
55	10	218	5	5	87
54	12	208	6	6	82
53	10	196	7	3	78
52	7	186	4	3	74
51	12	179	8	4	70
50	18	167	10	8	64
49	12	149	6	6	58
48	17	137	7	10	52
47	10	120	6	4	47
46	20	110	9	11	41
45	16	90	6	10	33
44	9	74	1	8	28
42	22	65	6	16	22
42	8	43	2	6	16
41	10	35	6	4	12
40	6	25	0	6	9
39	5	19	0	5	7
38	2	14	1	1	5
37	3	12	0	3	4
36	5	9	1	4	3
35	1	4	0	1	1
34	1	3	0	4	1
33	2	2	0	2	1
$\mathrm{Mean}_{\mathrm{X}}$	$=48$	$\mathrm{Mean}_{\text {A }}$	$=50$	$\mathrm{Mean}_{\text {B }}$	$=46$
Median	$=48$	Median $_{\text {A }}$	$=50.5$	$M_{\text {Kedian }}^{\text {B }}$	$=46.5$
Hode X	$=43$	Mode $_{\text {A }}$	$=50$	Mode $_{\text {B }}$	$=43$
Reliabil	ity 6	Validity		Validity	
	$2 \doteq .62$	$\mathrm{r}_{\text {bis. }}$	$=.42$	${ }^{\text {ppbis. }}$	$=.34$
$\sigma_{\text {I }}$	$=6.07$	$\sigma_{\text {A }}$	$=5.59$	σ_{B}	$=5.85$
Standard Error of Measurement (S.E. M $^{\text {I }}$), S.E. ${ }_{\mathbf{M}}=3.79$					

was 63 and the lowest was 33 giving a range of 30 . The range of the AllState group was 27 and that of the nonoselected group was 28 . The full test mean and median coincided at 48 but the mode of the full distribu-. tion was at 43 or fire scores below the mean. The selected group mean and mode coincide at a score of 50 . The unselected group mean was at 46 with the mode at 43.

Examination of the combined frequency distribution shown in Figure 1 will show the distribution approaches a normal curve but has a positive skewness. The selected group has a negative skewness in opposition to a considerable skemess in a positive direction by the unselected group. The two distributions may be compared in, the biserial frequency distribution illustrated in Figure 2.

The reliability index of internal consistency for the fall test was computed at $\underline{\underline{r}}=.617$ which is rounded to .62 . This is the chancehalves correlation corrected by the Brown-Spearman prophecy. formula. The index of .62 is a slight improvement over Form I which had an index of $\underline{\underline{r}}=.56$ 。

Two biserial correlations were compated: The first index was computed with the assumption the two groups were approximately normal in distribution and the scores were continuous and rectilinear. The formala for this correlation is: $r_{\text {bis. }}=\frac{M_{p}-M_{q}}{\partial T}\left(\frac{p q}{u}\right)$ where M_{p} is the mean of the selected group, M_{q} is the mean of the unselected group, $\underline{\underline{L}}$ and \underline{q} are the respective percentages of the total number of students in each group, σ_{t} is the standard deviation of the total group, and \underline{n} is the height of the ordinate separating the two percentages in a normal distribation. The computed $r_{\text {bis. }}=.42$.

The second biserial correlation was computed with an alternate assumption that All-State selection is a discrete dichotomous factor. This type of correlation is knom as a point biserial \underline{x} and is computed with this formula: $r_{p b i s .}=\frac{M_{p}-M_{q}}{\sigma t}(\sqrt{p q})$. Again, M_{p} and M_{q} are the means of the All-State and unselected groups, respectively. Sigma is the stardard deviation of the total group. The letter p represents the percentage of the total sample selected for All-State membership and q.is the percentage of the total that was not selected for All-State membership. The computed rpbis. $=.34$.

The biserial correlations are the heart of this study as they are product-moment correlations between two variables, the test scores and All-State audition results: As such, they are to be interpreted in the same manner as other product-moment correlations. The figares. obtained indicate a positive relationship between the two variables. As the audition selection process was completely independent from the testing process it may be used as an ouiside criterion. This makes the biserial x correlation an indication of the test's validity. In combination with the reliability 5 of .62 , it may be concluded the test has real value for group guidance and placement evaluation. The extent of the test's value and its accuracy will be noted later after considering evaluation of data by significance tests.

Significance Tests

A test of significance is necessary to determine whether the observed difference between the selected and the non-selected groups is a real difference or whether the difference might be due to chance.

The two groups may be cortsidered independent samples as they are not matched in any way and the performance of any individual in either group hiad no effect on the performande of any individual in the other group. Under these circumstances a t test for significance of the difference between means of independent groups is appropriate. This test for significance assumes a normal distribution but considerable departure from normality does not invalidate the test. ${ }^{1}$ As the two frequency distributions approach normality this test for significance between means is quite satisfactory.

Two formulas were used to compute the t as a precaution against possible errors. They are as follows:

or

$$
t=\frac{M_{1}-M_{2}}{\sqrt{\left(\frac{\sum x^{2}+\Sigma y^{2}}{N_{1}+N_{2}-2}\right)\left(\frac{N_{1}+N_{2}}{N_{1} N_{2}}\right)}}
$$

M_{1} and M_{2} are the means of the two groups, σM_{1}^{2} and σM_{2}^{2} under the radical is the standard error of the difference between means, $\Sigma \mathrm{x}^{2}$ and $\Sigma \mathrm{y}^{2}$ are sums of the deviations squared, and N_{1} and N_{2} are the total number in each group. The first formala resulted in a t of 5.842; the second formula yielded a t of 5.837, a negligible difference.

A Table of t is entered at oodegrees of freedom as the degrees of freedom $=\left(N_{1}+N_{2}-2\right)=(112+134-2)=244$. The iargest finite number for degrees of freedom in the table is 120 . The value of t at the .01 level of confidence is 2.576. The computed t far exceeds this value, therefore the null hypothesis must be rejected. It must be
${ }^{1}$ Robert H. Koenker, Simplified Statistics (Bloomington, Hlinois: McKnight and McKnight Pablishing Co., 1961), p. 87.
concluded that thie difference between the two groups, as measured by the Form II test, did not occur by chance. Considerable weight is added to this conclusion by the fact that the computed t exceeds the 3.291 valne of t required for a . 001 level of significance.

Further testing for significance was confined to individual item analysis. For this purpose the Phi coefficient is used as it is designed to σ valuate the relationship between two dichotomous variables. The two variables in this study are selection for All-State membership and obtaining the correct answer for each one of the seventy-five test items. The Phi coefficient bears the relationship to Chi square of $X^{2}=N \varphi^{2}$ as it is compated from the cells of a two by two table. The degree of freedom is therefore always one.

As seventy-five Phi coefficients were computed they are incorporated in the Item Analysis Table, Table 3, imediately below. The table includes an ordinary item analysis of the full test using the high twentyfive per cent of the test papers and the low twenty-five per cent. The tests were placed in ranked order and the high and low groups taken at sixty-two in each group. These are noted in the table as "Low" and "High."

The "p" column contains the percentage of correct answers while the "D" colum is the index of discrimination. Colum M_{A} " contains the percentage of correct answers among all the selected group and column $\boldsymbol{w}_{\mathrm{B}}{ }^{\prime \prime}$ contains the percentage of correct answers among the unselected group. The Phi column contains the Phi coefficient. The renaining two columns contain the equivalent Chi square values and the level of significance from a table of Chi square. Since the test consists in its entirety of alternate choice items, all levels of significance from .10 to .01 are
table 3

ITEM ANALYSIS TABLE

Item	Low	High	P (\%)) D	A (\$)	B (\%)	ϕ	x^{2}	Sig.
1	47	61	89	. 23	95.5	86.4	. 155	5.881	. 02
2	50	61	91	.18	95.5	84.3	. 149	5.41	. 02
3	48	58	25	. 16	81.9	83.5	. .021	. 098	-
4	47	58	86	. 18	81.9	81.9	. 00	. 00	-
5	26	54	67	. 46	80.1	57.1	. 245	14.054	. 01
6	31	48	65	. 28	69.3	58.9	. 108	2.695	. 10
7	35	58	76	. 38	87.1	71.6	. 198	9.234	. 01
8	53	59	92	. 10	97.3	88.8	. 163	6.64	. 01
9	15	22	32	. 11	29.4	31.3	-. 020	. 098	-
10	41	42	68	. 01	68.7	64.1	. 048	. 566	-
11	21	34	62	. 21	49.1	42.1	. 070	1.200	-
12	34	33	55	-. 01	54.0	54.1	. 007	. 012	-
13	16	29	37	. 21	33.9	31.3	. 028	. 172	-
14	27	39	54	. 21	47.3	55.2	-. 079	1.476	-
15	52	59	91	. 11	94.6	89.5	. 111	2.952	. 10
16	55	59	94	. 07	98.2	91.7	. 143	4.92	. 05
17	44	53	78	. 15	86.4	78.3	. 105	2.695	-
18	30	30	48	. 00	46.4	50.7	-. 043	. 455	
19	36	54	75	. 29	82.7	67.1	. 177	7.564	. 01
20	35	47	$6 ?$. 20	75.0	63.4	. 153	5.658	. 02
21	43	. 55	80	. 20	85.7	73.8	. 145	5.166	. 05
22	36	45	66	. 16	66.9	60.4	. 067	1.104	-
23	36	51	71	. 25	71.1	71.6	-. 005	. 006	
24	30	47	63	. 28	79.2	59.7	. 210	10.78	. 01
25	45 -	57	84	. 20	87.5	82.8	. 065	. 984	-
26	36	52	72	. 26	75.4	76.1	-. 008	. 014	-
27	32	51	68	. 31	80.3	66.4	. 156	5.904	. 02
28	30	51	66	. 34	77.6	65.6	. 132	4.182	. 05
29	33	52	70	. 31	80.3	70.1	. 117	3.444	. 10

TABLE 3-Gontinned

Item	Low	High) D	A (\%)	B (\%)	ϕ	x^{2}	Sig.
30	33	52	70	. 31	81.2	67.1	. 159	6.150	. 02
31	50	53	84	. 05	86.6	79.1	. 098	2.360	-
32	43	50	76	. 11	83	70.8	. 142	4.960	. 05
33	24	31	45	. 11	37.5	49.2	-. 118	3.444	. 10
34	32	48	66	. 26	75.0	59.7	. 161	6.292	. 02
35	53	57	90	. 07	91.9	86.5	. 086	1.82	-
36	33	53	70	. 33	78.5	67.9	. 119	3.444	. 10
37	45	56	83	. 18	85.7	85.0	. 009	. 020	-
38	53	57	90	. 07	89.2	84.3	. 072	1.279	-
39	23	41	52	. 30	58.9	47.0	. 105	2.706	. 10
40	13	14	22	. 01	16.2	26.8	-. 128	3.993	. 05
41	10	13	19	. 05	14.2	23.1	-. 112	3.075	. 10
42	11	30	34	. 31	35.7	26.8	. 095	2.239	-
43	13	30	35	. 28	37.5	30.5	. 073	1.304	-
44	27	30	46	. 05	36.6	44.3	-. 079	1.509	-
45	23	37	49	. 23	44.1	48.5	-. 044	. 463	-
46	42	53	78	. 18	83.4	74.6	. 107	2.795	. 10
47	42	55	80	. 21	77.6	74.6	. 036	. 310	-
48	33	50	68	. 28	72.3	61.9	. 110	2.955	. 10
49	27	48	62	. 34	64.8	54.5	. 105	2.711	. 10
50	16	44	49	. 46	49.0	46.2	. 028	. 191	-
51	25	24	40	-. 01	43.7	38.0	. 058	. 816	-
52	19	43	51	. 39	54.9	39.5	. 154	5.788	. 02
53	32	58	74	. 43	82.7	74.6	. 098	2.329	-
54	29	54	68	. 41	81.9	67.9	. 160	6.288	. 02
55	18	13	25	-. 08	26.7	26.1	. 005	. 007	-
56	40	57	79	. 28	83.9	74.4	. 116	3.274	. 10
57	29	45	61	. 26	62.1	46.2	. 159	6.163	. 02
58	30	36	54	. 10	45.4	53.7	. .082	1.653	-
59	31	44	61	. 21	57.7	54.1	. 037	. 324	-
60	34	58	75	. 39	84.5	67.9	. 192	9.013	. 01

TABLE 3--Gontinued

Item	Low	High	$P(\$)$	D	$A(\$)$	$B(\$)$	0	X^{2}	Sig.
61	32	46	64	.23	66.9	53.7	.134	4.437	.05
62	38	37	61	-.01	64.5	69.1	-.049	.583	-
63	22	32	43	.15	42.7	45.8	. .031	.240	-
64	21	40	50	.31	53.2	44.7	.084	1.710	-
65	17	36	43	.31	43.9	44.3	-.004	.004	-
66	34	48	67	.23	72.8	72.9	.000	.000	-
67	27	41	56	.23	58.7	55.2	.035	.298	-
68	34	49	68	.25	66.9	66.6	.003	.002	-
69	46	58	85	.20	90.9	81.8	.129	4.050	.05
70	39	53	75	.23	78.5	70.4	.093	2.097	-
71	33	45	64	.20	65.7	60.6	.053	.688	-
72	23	41	52	.30	59.0	50.0	.091	2.012	-
73	23	29	43	.10	45.9	38.6	.076	1.320	-
74	40	48	72	.13	75.8	64.3	.125	3.788	.10
75	41	53	77	.20	77.6	75.1	.029	.221	-

considered irportant enough for inclusion in the table.
Several variations in discrimination will be noted by comparing the percentages of correct answers in the two full groups with the upper and lower quartile index of discrimination. These differences are caused by the second and third quartiles which are not considered in the index of discrimination but their effect appears in the percentages of correct answers in the selected and non-selected groupsi Iisted in colums "A" and "B" of Table 3.

Four test items have a negative discrimination but over the full distribution Iffeen items have a negative Phi coefficient. Two
of the negative Phi coefficients are significant at the . 10 level and one is significant at the . 05 level of confidence. Sixty test items have positive Phi coefficients and thirty-four of these are significant at the . 10 level or better. It would appear that a reversal of the key for the three negatively significant items would siightly enhance the test's power of discrimination.

With the present key some eighty per cent of the test items show some positive discrimination between the selected and unselected groups. This explains quite well why the fall test is significant at the .01 level but has a somewhat low reliability index and biserial correlation. The direction of discrimination is positive and extensive throughout the test but the degree of discrimination is not so sharply defined.

Forty-nine of the two hundred forty-six stadents who had been tested had alsc been administered Form I of the test as candidates for the 1963 All-State groups. A comparison of the scores on Form I and Form II by these students was undertaken to obtain an indication of test equivalence and stability. As this subsample is rather small, and possibly not representative, the results are not considered positively conclusive. They are included here only to support the pattern of positive correlation and discrimination previously established..

A reliability coefficient between the two sets of scores was computed at $r_{\text {xy }}=.375$. This may be considered a coefficient of equivalence between the two forms. .The 1963 tests were also compared to the key or pattern of response of the 1962 All-State. Band. This correlation was computed at $\underline{x}=.64$ which indicates that Form I was moderately stable and reasonably valid. Both of these correlations
are significant at the . 01 level of significance with $N=49$, as taken from a table of values of the correlation coefficient for different levels of significance. ${ }^{1}$

Any firm statistical inference regarding the full administration of Form II based on these forty-nine cases would be largely indefensible. It may be concluded only that the pattern of response of these forty-nine students was quite similar to that of the 1962. AllState Band paitern of response. In turn, the extent of test equivalence between Form I and Form II is positive, but only moderate in degree, as indicated by an uncontrolled sample of forty-nine cases. No further conclusion can be warranted or implied from such a sample of a small and uncontrolled size. To reiterate, these correlations are included because the 1963 administration of Form I was a part of the preliminary siudy and the results agree with and sapport the statistical significance figures established for the administration of Form II.

Additional Descriptive Data

The students who auditioned and were tested on Dee. 7, 1963, represented seventy-six Okiahoma high schools. The number of students who were auditioned ranged from one to twenty-one per school. These schools were classified according to enrollment size in agreement with the O.M.E.A. system of classification for music conteste. Table 4 illustrates the number of students per classification and their audition results.

School size seems to have some effect upon performance

TKoenker, Ibid., p. 145.

SCHOOL SIZE AND ALDITION RESULTS

School Classification Applicants	Number of Selected	All-State Band	All_State Orchestra	
AA	90	39	36	15
A	43	22	15	6
BB	27	15	10	2
B	34	18	16	0
C	13	11	2	0
DD	29	20	9	0
D	10	9	1	0

(Key to Classification code: $A A=1,000$ up; $A=750-999 ; ~ B B=500-$ 749; $\underline{B}=300-499 ; \underline{C}=150-299 ; ~ D D=85-149 ; D=84$ down. All of these classifications are based on average daily attendance.)
proficiency as many more students were invited to audition from Class AA than from any other classification. The rate of selection by audition does not appear to favor any class except that no orchestra persomnel were selected from the four smaller classifications. This is to be expected as the smaller schools do not have orchestras; only bands. Class C and D schools placed only three of twenty-three applicants in the All-State Band. All other classes had approximately half of their applicants selected to Allsstate.

Successful audition also seems to hinge to some degree upon age, grade in school, and years of playing experience. Students in the upper two grades were predominant in both the selected and unselected groups. The factor of age is illustrated in Table 5.

All candidates were in the tenth, eleventh, and twelfth grades. Students in the ninth grade are eligible to audition if they attend a

TABLE 5
AOE OF AIL-STATE CANDIDATES

Age of Candidates	All-State Band and Orchestra	Unselected Candidates
15	16	23
16	38	48
17	54	49
18	4	13
Unknown	0	2

four-year or six-year high school and if grade nine is included in the compilation of average daily attendance for classification purposes. None were invited to audition by the selection committee. Students in the twelfth grade dominate both groups, as show in Table 6.
table 6
GRADE IN SCHOOL OF ALL_STATE CANDIDATES

Grade in School	All State Band and Orchestra	Unselected Candidates
10	18	24
11	39	48
12	55	60
Unknown	0	2

Less consistency is seen in the years of playing experience among the applicants. Some schools begin instrumental instruction as eerly as the fourth grade. Others withhold organized instraction in instrumental music until the junior high school level. Considerable
variance in experience among the candidates reflects these differences in administrative policies from school to school.

TABLE 7
TEARS OF EXPBRIENCE OF ALI-STATE CARDIDATES

Years of Experience	All-State Band and Orchestra	Unselected Candidates
2	1	3
3	2	5
4	15	14
5	20	27
6	28	34
7	24	27
8	15	21
9	7	3

The data in Tables 4, 5, 6, and 7 completes the presentation of pertinent material describing the 1964 All-State candidates. This type of information lends itself well to the Chi square test for the significance of difference. Chi square was computed for every observed frequency in the four tables. No value of Chi square was significant at the .01 level of confidence. Ghi square is significant at the .02 level for students from Class AA high schools. Also in Table 4 the observed frequency for Class D high school students is significant at the . 05 level, corrected by the Yates formala for small cases. No other difference in any other table was significant.

The significance of the difference for the Class M schools may be largely explained by the greater incidence of orchestras in large high schools. This was noted in the text above when Table 4
was presented. The value of Chi square as a test of significance is not reliable when either the observed or the expected frequencies is less than five. ${ }^{1}$ Even when corrected by the Iates formula the Ghi square for Class D is inconclusive as all the frequencies are quite low. It may be concluded, therefore, that age, grade, school size, and years of experience did not contribute significantly to the observed differences between the selected and unselected groups.

Sumpary

The Wind Instrumentalist Inventory Scale, Form II, was administered on Dec. 7, 1963, to two hundred forty-six candidates for the 1964 0klahoma All-State Band and Orchestra. These candidates were chosen through the nominating and selection process required by the Selection Comittee of the Oklahoma Music Educators Association. Final selection to the All-State Band and the All-State Orehestra was made by anonymous tape. recorded performance anditions.

Statistical treatment included the computation of a chancehalves reliability index of internal consistency, biserial corrolations bstween the means of the selected and unselected groups, the t test for significance of the difference betreen means, a complete itam analybis using the phi coefficient, and the Chi square test for significance of the difference in frequencies of categorised physical characteristics. Correlation coefficients range from fair to moderate but all are significant at the .01 level of confidence. Phyaionl characteristics are not significant between the groups.

[^8]
CRAPTER V

CONCLUSIONS

Effectiveness of the Test

The present study was undertaken upon an extremely homogeneous sample. Ivery candidate had been evaluated and recommended to the All-State Selection Comittee by his instrumental music instructor. Each was considered competent enough to meet the performance requirements necessary for membership in the All-State Band or Orchestra. This evaluation by the local director had also been concurred in by the Selection Committee as manifested in the invitation to audition. The auditioning musicians possibly represent the top three or four percent of all wind instrumentalists in high schools across the state of 0kiahoma.

Because of this homogeneity of the sample obtained through the rigid screening and selection procedure the null hypothesis of no significant difference was fully justified. Yet, the hypothesis was not supported and had to be rejected. The demonstrated statistical significance suggests that the test would possibly be more effective and the measured differences more significant in a heterogeneous sample of more divergent performance achievement levels.

A study of the data in Table 2 will indicate the effectiveness of the test as a screening device. A comparison of the frequencies of
selection to All-State with Centile rank show that the higher the numerical score the greater the probability of selection. Note that Q_{1}, the lower Quartile, falls betreen C 22 and C 28. The cumulative frequency is 65, of whom only 16 were selected to All-State membership. Q_{4} begins with a raw score of 53 and contains 60 scores. A total of 39 sturdents in this quartile were selected. Q_{3} contains 35 selected candidates and Q_{2} contains 22 selected candidates. The rate of selection in Q_{4} is 65% while in Q_{1} the rate of selection is 25%.

Another indication of the test's effectiveness is by comparing the distribution to a normal curve. Some 62% of the All-State group had scores above the mean rather than the usual 50% to be found in a normal distribution. In terms of the Standard Deviation nearly 16% of a normal distribution will be minus one S.D. or below. Only eight cases, comprising 7\% of the selected group, had nomerical scores more than one S.D. below the mean. By extending dowmard only one more raw score frequency and taking a score of 41 as a lower limit, only two selected stadents would fall outside this range. In practical terms this means that over 98% of those students eventually selected to the All-State groups scored 41 or higher on Form II of the "Wind Instrumentalist Inventory Scale."

As was suggested in Chapter I, above, a most. important projected utilization of the test would be in screening large groups of students to identify competent musical performers. The results of the study indicate that the test can be rather effective as a screening and selection device. With the sample identified in this study a cut-off score of 41 raw score points would have ensured the audition of 98% of those who were finally selected to All-State while reducing the number
of auditions by ten per cent. At ten minutes per audition the reduction by trenty-five students represents a possible time saving of four hours and ten minates for the original taping, less tape editing, and again as much less time for the auditioning comittee.

This is, however, not the primary purpose of the test. It is theorized that the subjective process of student nomination by instrumental music instractors and the state Selection Comittee is liable to bias and subjective errors in judgment. Frrors in selection and nomination have been made in the past and some schools, perhaps as a consequence to errors of the past, do not participate in the AllState activities. Excellent performers in these schools are denied the opportunity of participation and recognition that accompanies AllState selection.

Members of the Selection Comilittee and a number of other state instrumental music instructors have expressed to the writer considerable desire to obtain additional participation so that the All-State groups might be more representative and that many more stadents be afforded the opportunity to audition. By eliminating or negating one subjective selection process it may be assumed that additional participation may be encouraged and secured.

A projected plan for utilization by the Oklahoma Musie Educators Association Selection Comittee is outlined briefly as follows. First, the local instructors would simply select the students they wish to nominate. No subjective evaluation or letter of recommendation would be required. All students nominated would then be administered the WWind Instrumentalist Inventory Scale," excepting percussionists and
string players. The details of administration would be planned and supervised by the state Selection Committee. The tests would be scored by machine, Standard Deviation computed, and a cut-off score determined at or near one S.D. below the mean. All students scoring above this point.would then be invited to audition and the procedure for selection thenseforth would be identical to the present system of selection.

The ultimate result of initiating such a screening procedure should not be a reduction in the number of auditions but an increase in the number of students selected for the audition procedure. The increase should result. in two ways. First, the elimination of bias and subjective components in selection would stimulate greater participation by state high schools. Secondly, the test has been shown to be definitely performance-related and performance achievement alone would be the criterion of audition nomination.

Critical Evaluation

Although the direction of discrimination is distinct, in a positive direction, and significant at the . 01 level of confidence, the degree of discrimination manifested by the . 42 biserial correlation is perhaps not as high as might be desired. However, considering the extremely homogeneous nature of the sample tested, it must be concluded that the results of the study are most satisfactory. A much higher correlation would be expected from a test administration using a very heterogeneous sample.

A thorough study of the item analysis data found in Table 3 suggests that further revision of some test items should be undertaken.

Over a period of time the revisions would result in a complete elimination of negatively discriminating items and some increase in the level of difficulty.

Additional forms of the test need to be constructed. Some alterations in format should be investigated as possible means of improving the test. The style of answer could be modified from the forced choice of "agreement" or "disagreement" to graded choices permitting gradations in degree of agreement or disagreement. This technique has been valuable in constructing scales evaluating interest patterns and psychological patterns of response of highly selected and homogeneous groups of people. The vocational interest tests by Kuder ${ }^{1}$ and Strong ${ }^{2}$ are excellent examples of this type test.item and the response pattern validation technique. The response pattern of a highly selected group or of professional musicians would serve as the criterion for standardization of such a new form.

Several limitations in performance evaluation techniques were enumerated by Hoffren. ${ }^{3}$ Some of these difficulties are minimized in the "Wind Instrumentalist Inventory Scale" by being performancemelated rather than a test of performance. First, the student's choices have been previously verbalized as technical elements of performance_rather than aesthetic elements. Second, the time sequence of apprehension

[^9]for aural materials is eliminated. The student may read and re-read the music as often as necessary. This also minimizes the possibility of errors arising from lapses of attention. The music is presented visually rather than aarally; hence, the pace of comprehension is not arbitrarily predetermined. Thind, there is no attempted notation of expressive and aesthetic qualities pertaining to the music itself; rather, the aesthetic attributes are suggested as relative only to the performance of the music.

Sumary and Recommendations

Form II of the "Wind Instrumentalist Inventory Scale" has been shown to possess a fair to moderately high degree of effectiveness in tests of significance and correlation in a highly selected and homogeneous sample. The degree of discrimination within the instrument can probably be improved through continued utilization and minor modifications in form and content. Alteration of answer format to present a gradation in degrees of response rather than a simple forced choice might enhance the power of discrimination and the indices of reliability and validity.

It is recomended that additional forms be devised and used by the Oklahoma Music Educators Association in conjunction with the selection process now in use for the All-State Nusic Festival. It is felt that the present test delineates quite clearly the path for further exploration in objective performancemrelated evaluation. Additional forms and experiments should be devised for evaluating pereussionists, vocalists, and string instrumentalists.

Further investigation is also suggested in usage of the test
in public schools and in colleges and universities. Discriminatory ability of the test in a heterogeneous grouping has not been demonstrated. An experimental study should be devised to evaluate possible uses for the test among performers of widely discrepant abilities.

Finally, it is-hoped that the present study has identified and established a new technicue in performance evaluation. The fact that there has been little research in group performance evaluation, as was noted. in Chapter II, should not be a deterrent to further valid research studies. The writer most emphatically suggests that if a valid, realistic goal can be identified then the means to attain that goal is a Iogical possibility. Kvaraceus ${ }^{1}$ supports this concept that a desired end, clearly defined, provides a point of reference in the search for a means to attain the specific end. He further contends that this is a valid and effective technique for developing and for improving concepts in evaluation. In turn, as the evaluation method improves it becomes a technique of establishing and defining the relationships betreen ends and means.

This has been attained in the present study. The end, a valid rating of performance ability was defined. A means of obtaining this rating was constructed and validated by means of a completely independent external criterion. The Wind Instrumentalist Inventory Scale, "Form II, is a performance evaluation instrument by virtiue of being performance-related. Although not a direct evaluation means

[^10]for assessing masical performance achievement it does provide an indirect technique for estimating performance achievement. Moreover, it is also a group instrament, a distinctily advantageous characteristic for all screening purposes.

It is further hoped that by identifying and validating this principle of the evaluation of performance-related factors, rather than evaluating performance alone, that some contribution to the improvement of teaching and learning processes has been made.

Blom, Eric (ed.). Groves' Dictionary of Music and Musicians. 5th ed. London: Macmillan \& Co., Itd., 1954.

Buros, Oscar K. (ed.). The Fifth Mental Measurements Yearbook. Highland Park, N. J.: The Gryphon Press, i959.

Garrett, Henry E. Statiatics in Psychology and Education. New York: Longmans, Green and Co., 1958.

Jones, Archie N. (ed.). Music Fducation in Action. Boston, Mass.: Allyn \& Bacon, Inc., 1960.

Koenker, Robert H. Simplified Statistics. Bloomington, Ill.: MeKnight \& McKnight Publishing Co., 1961.

Kwalwasser, Jacob. Tests and Measurements in Music. Boston, Mass.: C. C. Birchard \& Co., 1927.

Lundin, Robert W. An Objective Psychology of Music. New York: The Ronald Press Co., 1953.

Mursell, James L. Music Education, Pxinciples and Programs. Morristown, N. J.: Silver Bardett Co., 1956.

- The Psychology of Music. New York: W. W. Norton \& Co., Inc., 1937.

Seashore, Carl E. Psychology of Music. New York: McGraw-Hill Book Co., Inc., 1938. - The Psychology of Musical Talent. New York: Silver Burdett \& Co., 1919.

Statistical Inference. Albuquerque, N. M.: Teaching Machines, Inc., 1960.
Super, Donald E. Appraising Vocational Fitness. New York: Harper \& Bros., 1949.

Watkins, John G. Objective Measurement of Instrumental Performance. New York: Teachers College, Columbia Univ., 1942.

Artioles

Gutsch, Kenneth 0. MOne Approach Toward the Development of an Individual Test for Assessing One Aspect of Instrumental Music Achievement," Council for Research in Music Education Balletin Mo. 2, (Winter, 1964), pp. 1-5.

Coizell, Richard. MAn Investigation of Musical Achievement Arong Vocal Students, Vocal-Instrumental Students, and Instrumental Students," Jowrnal of Rosearch in Music Bducation, XI, No. 2, (Fall, 1963), pp. 123-130.

Heller, Jack Joseph. The Effect of Formal Music Tmining on the Wing Musical Intelligence Scores," Dissertation Abstracts, XXIII, No. 8, (Feb., 1963), p. 2936.

Hoffren, James Axel. "A Test of Musical Expression," Council for Research in Music Education Bulletin No. 2, (Winter, 1964), pp. 32-35. - MThe Construction and Validation of a Test of Expressive Phrasing in Music, " Dissertation Abstracts, KXIII, No. 7, (Jan., 1963), pp. 2546-2547.

Kvaraceus, William C. "Evaluation as a Key Process for Establishing the Relationship Between Ends and Means," The Joumal of Education, CXII, No. 1, (Oct., 1958), pp. 17-19.

Hargiss, Genevieve. MThe Acquisition of Sight Singing Ability in Piano Classes for Students Preparing to be Elementary Teachers," Journal of Research in Music Education, X, No. 1, (Spring, 1962), pp. 69-75.

Maimaring, James. "The Assessment of Musical Ability," British Journal of Educational Psxchology, XVII, (June, 1947), pp. 83-96.

Pinkerton, Frank W. "Taient Tests and Their Application to the Pablic School Instrumental Kasic Program," Journal of Research in Music Education, XI, No. 1, (Spring, 1963), pp. 75-80.

Roby, A. Richard. "A Study in the Correlation of Music Theory Grades with the Seashore Measures of Musical Talents and the Aliferis Music Achievement Test," Journal of Research in Music Education, X, No. 2, (Fall, 1962), pp. 137-142.

Snyder, Alice M. "The Development, Construction, and Standardization of a Test of Music Achievement," Dissertation Abstracts, XIX, No. 4. (Oct., 1958), pp. 738-739.

White, Adolph Peter. Mhe Construction and Validation of a Group Test in Kusic Reading for Intermediate Grades," Dissertation Abstracts, XXIV. No. 5, (Nov., 1963). pp. 2075-2076.

Wing, Herbert D. "A Revision of the Wing Musical Aptitude Test," Journal of Research in Music Education, \bar{X}, No. 1, (Spring. 1962), pp. 39-46.

Tests

Aliferis, James. Aliferis Achievement Test Manual, (College Entrance Level), Minneapolis: University of Minnesota Press, 1954.

Graduate Record Eraminations Advanced Tests: Music, Princeton, N. J.: Educational Testing Service, 1951.

Kotick, M. Lela and Torgerson, T. L. Diagnostic Tests of Achievement in Music, Hollywood: California Test Bureau, 1950.

Kuder, G. Frederic. Knder Preference Recorden-Occupational, Chicago: Science Research Associates, 1957.

Strong, Edward K., Jr. Manual, Strong Vocational Interest Blank for Men, Revised, Palo Alto, Calif.: Consulting Psychologists Press, i959.

Watkins, John G. and Farnum, Stephen E. Watkins-Farnum Porformance Scale: A Standardized Achievement Tost for all Band Instra ments, Winona, Minn.: Hal Leonard Music Co:, 1954.

Wheeler, Ronald W., Jr. "A Study in the Measurement of Musical_Aptitude," Unpublished Ed.D. dissertation, Oniversity of Okiahoma, 1959.

Whistier, Harvey S. and Thorpe, Luis P. Musical Aptitude Test, Hollywood: California Test Bureau, 1950.

APPENDIX A

MUSIC ACHIEVENENT TEST USED IN THE PIIOT STUDY

MUSIC ACHIEVEMENT TEST

A Musical Terms

Below is a list of musical terms. Following each term is a gronp of definitions. Select the one definition which most accurately expiains the term. Place the corresponding letter in the blank provided.

EXAMPLE:
B I Ma Non Troppo: a. little by little; b. but not too much so; c. in the style of; d. in like manner.
_ 1. Fermata: a. firmly; b. prolonged indefinitely; c. with animation; d. heavy, ponderons.
__ 2. Adagio: a. very slow and broad; b. moderately slow; c. at ease, slow and tranquil; d. moderately moving.

- 3. Allegretto: a. less fast than Allegro; b. slightly faster than Allegro; c. moderately slow; d. quick, lively.
__ 4. Ritenuto: a. gradually softer; b. gradually longer; c. gradually slower; d. gradually softer and slower.
_ 5. Stringendo: a. gradually faster and louder; b. suddenly longer; c. gradually faster; d. suddenly faster and louder.
__ 6. Morendo: 2. gradually faster and louder; b. suddenly sof'ter and slower; c. dying away; d. gradually more and more.
__ 7. Pin Mosso: a. leṣs motion; b. drawn together; c. martial; d. more motion.
__ 8. Andante Cantabile: a. moderately slow and lyrical; b. moderately fast and lyrical; c: lively but singing; d. quite slow and singing.
__ 9. Allegro con gusto: a. lively and boisterous; b. fast and delicately; c. quickly with taste; d. lively with precision.
_ 10. Allegro giusto: a. lively and boisterous; b. fast and delicately; c. quickly with taste; d. lively with precision.
_11. Pesante: a. heavy, plodding; b. in peasant style; c. plain and unadorned; d. jolly and playful.

12. Volti Subito: a. return to the sign; b. return to the beginning; c. turn quickly; d. turn back quickly; e. incomplete.
\qquad 13. I'istesso Tempo: a. the first time; b. the same speed; c. the slower speed (listless); d. the last time.
_ 14. Vivace assai: a. lively enough; b. vividly and clearly; c. very lively; d. not too lively.
\qquad 15. Tempo Bmbato: a. in borrowed time; b. in peasant or country style; c. in a stretched-ont rhythm; d. in a hurried manner.

B Music Literature

This section contains a list of musical compositions. Following each title is a group of composer's names. Select the correct composer and place the appropriate letter in the blank provided.

__ 16. Bolero: a. Ravel; b. Debussy; c. Granados; d. Grieg.
__ 17. Great Gate at Kiev: a. Prokofieff; b. Tschaikovsky; c. Monssorgsky; d. Khachaturian.
__ 18. Barnum and Bailey's Favorite: a. J.P. Sousa; b. Henry Fillmore; c. Harold Walters; d. K.L. King.
__ 19. Italian in Algiers: a. Resphigi; b. Rossini; c. Verdi; d. Puccini.
__ 20. Grand Canyon Suite: a. Fauchet; b. Grainger; c. Bennett; d. Grofe.
\qquad 21. Folk Song Suite: a. Ralph Vaughn Williams; b. Gustav Holst; c. Frank Erickson; d. Harold Walters.
__ 22. Water Music: a. Schubert; b. Mendelssohn; c. Haydin; d. Handel.
__ 23. Sheherezade: a. Prokofieff; b. Shostokovitch; c. Pimsky-Korsakov; d. Stravinsky.
__ 24. Carmen: a. Bizet; b. Debussy; c. de Falla; d. Liszt.
__ 25. Men of Ohio: a. J.P. Sousa; b. E.F. Goldman; c. K.L. Ring; d. Henry Fillmore.
_ 26. First Suite in E Flat: a. Henry Pureell; b. Gustav Holst;

- c. Ralph Vaughn Williams; d. Edward McDowell.
__ 27. The Liberty Bell: a. E.F. Goldman; b. Richand Rodgers; c. Kenneth J. Alford; d. J.P. Sousa.

28. Tulsa: a. Donald Moore; b. Donald Gillis; c. Roy Harris; d. Morton Gould.
\qquad 29. George Washington Bridge: a. William Schuman; b. Robert Shaw; c. Harold Walters; d. Forrest. L. Buchtel.
__ 30. Divertimento for Band: a. Borodin; b. E.O. Caneva; d. Philip Lang; d. Vincent Persichetti.

C Mnsic Literature

This section contains a list of composers: names. Following each name is a group of composition titles. Select the one titie not written by the composer and place the appropriate letter in the blank provided.

31. J. S. Bach: a. St. Matthew Passion; b. Samson; c. Brandenburg Concerto; d. Toceata and Fugue in D minor.
32. J. P. Sousa: a. Manhattan Beach; b. The Last Days of Pompeil; c. On the Mall; d. Hands Across the Sea.
\qquad 33. Igor Stravinsky: a. The Firebird;
b. Petrouchka;
c. Song of the Nightingale; d. Suite Francaise.
_ 34. Aaron Copland: 2. New World Symphony; b. Lincoln Portrait; c. Appalachian Spring; d. An Outdoor Overture.
__ 35. Tschaikovsky: a. The Nutcracker; b. The Sorcerer's Apprentice; c. Marche Slav; d. Pathetique Symphony.
33. Haydn Wood: a. A Manx Overture; b. Mannin Veen; c. Knightsbridge March; d. The Seafarer.
34. Ludwig von Beethoven: a. Eroica Symphony; b. Moonlight Sonata; c. Choral Symphony; d. Unfinished Symphony.
35. Richard Wagner: a. Till Eulenspiegel; b. Tristan and Isolde; c. Tannhauser; d. The Flying Dutchman.
36. Morton Gould: a. Toccata for Band; b. Pavanne; c. An American Salute; d. Jericho.
37. Frank Erickson: a. Black Canyon of the Gunnison; b. Symphony for Band; c. Autumn Silhouette; d. Air for Band.

D Music Notation
Examine carefolly this excerpt from a condensed band score．Then select what seems to be the most plausible answer for each of the following questions about the music．Place the letter of the answer you select in the blank provided．

あれままれまれ

＿41．The most likely time signature for the above excerpt should be： a． $2 / 4$ ；b． $3 / 4$ ；c． $7 / 8$ ；d． $2 / 4+3 / 8$ ；e． $9 / 8$ ．
＿＿42．The most logical tempo designation should be：a．Largo；b．Allegro Vivo；c．Allegretto；d．Adagio；e．Prestissimo．
＿43．An equivalent metronome marking would be approximately：a．$d=48$ ； b．$J=72 ;$ c．$J=160 ;$ d．$d=104$ ；e．$d=128$ ． 44．Perhaps a better way of marking the tempo for a metronome setting would be：a．$J=160 ; \mathrm{b}_{.} \mathrm{J}=208 ; c_{.} \delta=96 ; \mathrm{d} . \delta=96 ;$ e．$J_{0}=72$ ． 45．No key signature is＿given．The principal tonality is：a．E minor； b．G major；c．B minor；d．C major；e．G minor．

40．The A line is primarily：a．contrapuntal；b．harmonic；c．melodic； d．rhythmic；e．none of these．
\qquad 47．The B lines are primarily：a．contrapuntal；b．harmonic； c．melodic；
d．Fhythmic；e．none of these．
\qquad 48．If scored for fall band the C parts would probably be played by： a．high woodwinds；b．high brass；c．low woodwinds；d．low brass．
＿＿49．The percussion parts（ E ）help to emphasize particularly the a．A part；b．B parts；c．C parts；d．D parts．
＿＿50．The most suitable stylistic marking would be：a．molto pesante； b．con calore；c．leggiero secco；d．meno affettuoso．

APPENDIX B

WIND INSTRUMEMTALIST INVENTOHY SCALE, FORM I

NAME INSTRUMENT \qquad PARI \qquad CRAIR (piease print all information with last name first)
SEX \qquad AGE \qquad GRADE IN SCHOOL \qquad YEARS OF BAND EXPERTENCE \qquad
NAME OF SCHOOL \qquad DIRECTOR \qquad
HOME ADDRESS (number \& street) (post office)

SECTION I

DIRECTIONS: In this section are several music fragments. They appear in both treble and bass clef. Consider each as a melody for your instrument. Read them silently to yourself and do not sing, whistle, or hum them audibly. Then read the statements about these music phrases and use your own experience and training as a performer to decide whether each statement is accurate. Many suggested answers are not necessarily either "right" or "wrong." Mark a plus sign (+) in the blank if you "agree with the statement; a zero (0) in the blank if you "disagree" with the statement. If you have been provided with a machine scoring answer sheet mark the first space if you "agree" with the statement and the second space if you "disagree." Use only a soft leaded pencil and make all marks heavy and black.
\#1

1. This melody should be played in a marcato style.
2. This melody should be played in a legato style.
3. The style suggests a soit dynamic level.
4. The style suggests a loud dynamic level.
5. This melody requires strict riythmic accuracy in performance.
_ 6. This melody would permit a relaxed and free rhythmic performance.
_ 7. The effectiveness of this passage would depend upon success in obtaining a cantabile style of performance.
6. This melodic outline requires very accurate pitch placement.
7. The first note should be played broadly.
8. The first note should be slightly detached.
__ 11. The climax of this melody is on the third beat of the second measure.
__ 12. These rhythmic patterns would be more difficult if the meter were changed to a rapid $6 / 8$.
__ 13. The dotted quarter notes receive greater emphasis than the moving quarters and eighth notes.
9. The first note in the second measure should be held for foll value.

10. This melody should be played in a marcato style.
11. This melody should be played in a legato style.
12. The style suggests a soft dynamic level.
13. The style suggests a loud dynamic level.
14. This melody requires strict rhythmic accuracy in performance.
15. This melody would permit a relaxed and free rhythmic performance.
16. The effectiveness of this passage would depend upon success in obtaining a cantabile style of performance.
__ 22. This melodic outline requires very accurate pitch placement. 23. The first and last notes should be played with extra emphasis. 24. The first and last notes should be played detached or staccato. 25. This melody does not contain a melodic climax. 26. The notes in this melody should be held for full value. 27. This music provides less rhythmic interest than melodic interest. * * * * * * * * *

$$
J=96
$$

*3.

28. This melody should be played in a mareato style. 29. This melody should be played in a legato style.
30. The style suggests a soft dynamic level.
31. The style suggests a loud dynamic level.
32. This melody requires strict rhythmic accuracy in performance. 33. This melody would permit a relaxed and free rhythmic performance. 34. The effectiveness of this passage world depend upon success in obtaining a cantabile style of performance.
35. This melodic outline requires very accurate pitch placement. 36. The first two notes should be played broadly with extra emphasis.
(Melody Mo. 3, continued)
_ 37. The first two notes should be slightiy detached.
38. This excerpt does not contain a melodic climax.
39. The change of meter in the third measure adds rhythmic interest.
40. The first note of the third measure should be the softest in dynamics. * * * * * * *
d. $=64$

$+4$

\qquad 41. This melody should be played in a marcato style. 42. This melody should be played in a legato style. 43. The style suggests a soft dynamic level. 44. The style suggests a loud dynamic level. 45. This melody requires strict rhythmic accuracy in performance. 46. This melody would permit a relaxed and free rhythmic performance. 47. The effectiveness of this passage wonld depend upon success in obtaining a cantabile style of performance.
48. This melodic outline requires very accurate pitch placement. 49. The indicated articulations help provide a humorous, awkward effect.
50. The half note in the seventh measure receives less emphasis than the quarter note in that measure.
51. Number 50 is true because the quarter note falls on the beat.
52. Numer 50 is false because the half note is really syncopated.
53. This melody does not contain a melodic climax.
54. The notes in this melody should be slightly detached and spaced.
55. The rhythmic interest of this melody is greater than its melodic interest.

(Note that no meter signature, key, or tempo designation is given for the condensed band score above. Base your answers entirely upon your interpretation of the music as you read it to yourself silently.)
56. A logical meter signature for this excerpt might be $2 / 4+3 / 8$.
57. A meter signature of $7 / 8$ might be better than an equivalent mixed signature of $2 / 4+3 / 8$.
__ 58. Stylistic markings indicate a tempo designation of Andante or slower.
_ 59. This music could be performed in $3 / 4$ meter with one minor change in the notation.
__ 60. If the metronome marking were $d=104$ a suitable tempo term might be Allegretto.
__61. A practical metronome setting for this music could be $\delta=208$.
__ 62. The metronome setting for a dotted quarter beat note would be twothirds that of $\gamma=208$. (Approximately $d_{.}=139$)
_ 63. Prestissimo in 7/8 meter is equivalent to Allegretto in $2 / 4+3 / 8$. 64. Dolce Cantabile would be an appropriate marking for this melodic line.
65. The bass line should not be played marcato.
_
66. There is a definite countermelodic effect between the melody and the bass line.
\qquad 67. The absence of a key signature indicates a tonality of \underline{C} major.
68. The F贵 accidentals make a strong sound leaõing to G major.
69. The predominiant key sound is in E minor.
70. This excerpt is not in a definite key.
71. The C parts would probably be pleyed by lower brasses in normal band scoring.
\qquad 72. This excerpt would be more effective scored for woodwinds alone than for brasses alone.
__ 73. This excerpt would be more effective scored for brasses alone than for woodwinds alone.
__ 74. The number of parts involved would require that the excerpt be scored for full band.
__ 75. The B parts define and support the principal harmony.
_ 76. The E parts (percussion) emphasize both the melodic and bass rhythms.
_ 77. The conductor should attempt to obtain a rather grotesque and novel style of performance.
\qquad 78. As a performer you would expect the conductor to use a basic threebeat baton pattern while conducting this music.
\qquad 79. As a performer you wrould expect the conductor to use a basic fourbeat baton pattern with a shortened fourth beat.
\qquad 80. The A part, or melody, would probabiy be played eventually by nearly every instroment in the band; if you were playing the entire score.

SECTION II

DIRECTIONS: In this section of the inventory scale are several paragraphs describing novel situations. Read each situation and imagine that you are the player involved. Again, the suggested answers are not necessarily "right" or "wrong." Simply decide whether you agree or disagree with each of the statements.

Situation A

Belvue is a small town of about 2,000.population. The high school band director has been teaching here for eight years. He has resigned unexpectediy to manage a family business because his father is severely ill.

Assume that you are a senior member of this high school band. The last home football game will be played in just four days. The Board of Education has hired a new director but he will not begin work for another week. Your band has had a very successful season thus far but now you have no director to prepare your final marching appearance of the year.

Listed below are several possible actions you and the other band members could take. Mark a plus sign (+) in the blank if you consider the suggested action a desirable possibility in these circumstances. Mark a zero (0) in the blank if you disagree with the statement or feel the action would not be appropriate. (With machine answer sheets mark the first. space for plus (+), the second space for zero (0).)
_ 81. Cancel the band's appearance at this game.
\qquad 82. Have the seniors plan and prepare a new show for this game.
83. Leave the game appearance and plans up to the Drum Major.
_ 84. Repeat a show used at an eariy season game in a nearby town.
_ 85. Present a new show prepared for this game by the former director but not yet rehearsed.
__ 86. Leave the decision up to your high school principal.
\qquad 87. Ask the principal to appoint a teacher to supervise rehearsals while the Drum Major conducts.
88. Arrange with a nearby college to have a senior music student direct this appearance.
89. Have all the seniörs conduct in rehearsal and select one to direct your final performance.
\qquad 90. Cancel the week's rehearsals and report to school an hour later each day. (The band meets during the first period.)
91. Make the rehearsal into a study period supervised by an off-duty teacher.
\qquad 92. Plan to play only in the stands and do not attempt a half-time field performance.
93. Plan only a half-time concert standing at mid-field in a block band formation.
94. Have the band seniors, officers, and Drum Major plan a definite course of action. Then ask the principal for his heip.
\qquad 95. Present several plans to the entire band and abide by a majority decision.
96. Have all the seniors act as a committee of student conductors to prepare and conduct their last $_{*}$ ast game performance.

Situation B

The South High School Band is playing a concert. In one composition you have a long rest in $3 / 4$ meter, then a single measure of rest in $4 / 4$ meter, and another long rest in $3 / 4$ meter before your next entrance. You always check your count at the $4 / 4$ measure by glancing up to watch the conductor's change in beat pattern.

You look up at, what you think is the proper count and the conductor continues to beat a $3 / 4$ pattern. You then fail to hear an entrance cued in your part. Your count and the director's beat do not match. Either you or the director has missed the $4 / 4$ measure and is lost.

Mark the appropriate blanks as before to indicate whether you agree or disagree with the following statements. Each statement is either an action you might attempt or a decision to make in this situation.

- 97. Continue your old count and make your next entrance by this count.

98. Check your count with a nearby player.
99. Drop your count and waich for a $4 / 4$ measure to begin a new count.
_100. The director missed the meter change because you hear a third beat as you see his first beat.
_101. You missed the meter change because you hear a third beat as you see a first beat.
100. Stop counting and wait for the director to cue your next entrance.
101. Your next entrance is doubled in another section. Wait until you hear it and then sneak in softiy.
_104. Make your next entrance fortissimo at approximately the right place and force the band and director back together.
102. Sneak in softly several times if necessary until your part sounds right with the rest of the band.

Situation C

Tou have been selected by your director to play a short sixteen measure solo during your band's football half-time performance. Both the masic and the marching have been well rehearsed. Fou have played the solo many times but have always used the music. Just as you move into position for the solo formation your music falls to the ground. The introduction for the solo is already being played and you have about eight seconds to decide what to do.

Mark the appropriate blanks as before to indicate whether you agree or disagree with the following statements.
106. Pick up the music and run into place.
__107. Ask a bandsman near you to pick ap your music and hold it so you can see the solo music.
__108. Ask someone near to pick up the music and hand it to you.
109. Close your eyes and try to fake the solo.
110. Yell at someone nearby with music to play the solo.
111. Watch the conductor (or Drum Major) and trust your memory.
112. Signal the Drum Major to cut the music off and move on into the next formation.

This melodic line is a short solo cadenza. Assume that you are playing this cadenza in your band's concert selection at the state contest. For some reason you miss the slur into the fourth note and play an obviously wrong note that sounds almost like a squawk. (Brass players may assume that a valve or slide hing briefly; woodwind players may assume that a pad leaked momentarily or the embouchre slipped slightiy.)

Mark the appropriate blaniks as before to indicate your agreement or disagreement with the following statements as suitable reactions to this kind of unexpected situation.
_113. Stop immediately and begin the cadenza again.
114. Play the 3rd and 4th notes again and then continue the cadenza.
115. Continue as if you had made no mistake.
116. Attack the 4 th tone again as quiekly as possible and hold the fermata a little less than usual.
117. Jump to the 5 th note and play it. as a fermata before continuing.
118. Ignore the expression marks and play the cadenza again very deliberately and slowly to avoid wrong notes.
119. Begin the cadenza again but ignore the articolation marks in order to avoid wrong notes.
120. Finish the cadenza playing faster than usual so that additional errors, if any, would be less noticeable to the judges.
121. Nudge the second chair player and ask him/her to play the cadenza.
122. Skip the solo and nod to the conductor to go ahead.
123. Skip to the last note of the cadenza and play a long fermata.
124. Stop and wait for your director to decide what to do.
125. Look at the judges to see if they are writing criticisms before you decide what to do.
126. Pat your instrament down as a signal for someone with a cue to play the cadenza.

APPENDIX C
 WIND INSTBMMENTALIST RNVENTORI SCALE, FORM II
 LEITERS TO MOSIC DIRECTORS

DIRECTIOLS: This evaluation scale is based on several music fragments in different styles and keys. They appear in both treble and bass clef. Consider each one as a melody for your instrument and read the melody in the proper clef and register you normally play. Read this music silently and do not whistle, sing, or hum them audibly. Then. read the statements about these musical phrases and use your own experience and training to decine whether each statement is accurate. Many suggested answers are not necessarily either "right" or wrong." Simply decide whether you agree with each statement or disagree. If you think the statement is correct mark the first space for the question on the answer sheet; if you disagree mark the second space. Make all marks heavy and black with a soft pencil and mark only one space per question.
(If, machine scoring answer sheets are not available mark a plus sign (+) for "agree" or a zero (0) for "disagree" in the blanks of the test booklet.)

1. This melody should be played in a rather marcato style.
2. This melody should be played in a rather legato style.
3. The melody suggests a fairly soft dynamic level.

- 4. The melodic style suggest a fairly loud dynamic level.
_ 5. This phrase would require a strict rhythmic accuracy in performance.
_ 6. This melody would permit a tempo rubato style of performance.
- 7. A cantabile style of playing would be helpful in making this melody very effective and pleasant to hear.
— 8. This melodic outline would require very good intonation.
__ 9. The first note in each measure receives a slight emphasis above the rest of the melody.
\qquad 10. These phrase endings should be lightly detached or separated.
_ 11. The melodic climax is the first note of the third measure.
_ 12. This phrase would be rather difficult if the meter signature were changed to a rapid $6 / 8$.
_ 13. All the quarter notes in the second measure should be held for their full value.
_14. This phrase is not in a clearly defined key.
$J=108$

(+2)

15. This melody should be played in a rather marcato style.
16. This melody shorld be played in a somewhat legato style.
17. The style suggests a moderately loud dynamic level.
18. The melody would not be clear if played at a very loud dynamic level.
19. A cantabile style of performance is not essential to perform this phrase effectively.
_ 20. Precise intonation is less important than accurate riythm in this particular musical phrase.
__ 21. The first and last notes should be played with more emphasis than the sixteenth notes in this phrase.
20. The first and last notes should be slightiy detached or staceato.
21. This melody does not contain a true melodic climax.
22. The notes in this melody should be held for their full value.
23. This melody provides less riythmic interest than melodic interest.
_ 26. These even riythim patterns would not permit a rubato style performance.

(*3)

24. This melody should be played in a rather marcato style.
25. This melody should be played in a rather legato style.
26. The musical style suggests a fairly soft dynamic level. 30. The musical style suggests a fairly loud dynamic level. 31. This phrase would require strict rhythmic accuracy in playing. 32. This melody would permit a relaxed and free rhythmic performance. 33. Accurate pitch placement would be more important than precise rinthm in playing this melody.
27. A cantabile style of performance would be less effective than a bravara style in playing this melody.
_ 35. The first measure should be rather broad with slight accents. 36. A melodic climax is not clearly defined in this phrase.
28. The change of meter at the third measure increases tension and adds melodic interest.
29. The first note of the third measure should be the softest in dynamics.
30. The character of this phrase suggests it is more suitable for woodwind instruments than for brasses in performance.

- 40. This melody shorld be played in a somewhat marcato style. 41. This melody should be played in a somewhat legato style.
- 42. The style and articulations suggest a very soft dynamic level.
_ 43. The style and articulations suggest a moderately loud dynamic level.
_ 44. This melody would require a strict rhythmic accuracy.

45. The rhythmic effects indicated would not permit a rubato style of performance.
46. The effectiveness of this passage would be enhanced by a cantabile style of performance.47. The general effect and sound of this melody is very similar to that of folk songs.

-

48. The half note in the seventh measare receives less emphasis than the quarter note in that measure.
49. Number 48 is correct because the quarter tone falls on the beat. 50. Number 48 is incorrect because the half note is actually syncopated. 51. The melodic climax is quite strong in this melody. 52. Most notes in this phrase should be slightly detached and spaced.

(Note that no meter signature, key or tempo designation is given for the condensed band score above. Base your answers entirely upon your interpretation of the music as you read it to yourself silently.)
__ 53. A logical meter signature for this excerpt could be $2 / 4+3 / 8$ or $7 / 8$.
_ 54. Stylistic maricings indicate a tempo of Andante or slower.
__ 55. This music could be performed in $3 / 4$ time without changing any notes at all by making a small addition to each measure.
_ 56. If the metronome marking were $d=104$ a suitable tempo term might be Allegratto.

- 57. Another practical setting for the metronome would be $f=208$.
_ 58. The metronome setting for the dotted quarter beat note would be two-thirds that of $f=208$. (Approximately $d_{0}=139$.)
_ 59. Prestissimo in 6/8 could be equivalent to Allegretto in 3/4 time.
__ 60. Dolce cantabile would be an appropriate marking for this melodic line.
_ 61. The bass line shonid not be played in a marcato style.
_ 62. There is a distinct countermelodic effect between the melody and the bass line.
_63. The 辝 accidentals make this excerpt somd in G major.
_ 64. The absence of a key signature indicates this phrase is in the key of C major.
_65. The predominant key sound of this phrase is \underline{E} minor.
\qquad 66. The predominant key sound of this phrase is $\dot{\text { B }}$ minor.

67. This excerpt is not in a definite key.
68. The (́) parts would probably be played by low brasses in normal band scoring and part writing.
69. The (B) parts define and support the principal harmony.
70. The (C) parts support the riythm more than the harmony.
71. The (E) parts (percussion) emphasize both the melodic and bass rhythms.
72. The conductor should attempt a rather novel and awksard effect in performing this music.
73. The conductor should use a basic three-beat pattern with a longer third count when conducting in this riythm.
74. The conductor should use a basic four-beat pattern with a shortened fourth count when conducting in this riythm.
75. The (A) part, or melody, would probably be played eventually by nearly every instrument in the band if you were playing the entire score.

* * * * * * *

WIND INSTRDIENTALIST INVENTOHY SCALE
Manual and Direotions
TO THE DIRECTOR: Please examine a copy of the test booklet and become familiar with the format and content. The inventory meale does not attempt to measure musical knowiedge as such but does attempt to measure a student's application of knowledge to problems related to reading and performing new music. The basic premise in construction of this scale is that students of similar performance abilities on any of the melodic instruments will select similar patterns in their responses to the suggested inferences.

This edition is the third version of the test. In Its present form it contains 51 ferrer itens than the previous edition administered to the 1962 All-State Band and half the candidates for the 1963 AllState Band. As in the previous edition only alternate choices are provided. Many of the statements are neither "right" nor "wrong." The student is to decide only whether he agrees with the statement or disagrees with it. A choice shonld be made on every item as there is no penalty for guessing other than natural odds against picking the correct answer.

DIRECTIONS: A machine scoring answer sheet is provided with each test booklet. Have all students fill in the required information at the top of both the booklet and the answer sheet. Also have all students fill in the nume of the instrument each plays in the mifame of Test" blank beneath the instructor's name.

When students have completed the information blanks read aloud the directions in the booklet while they read silently. Explain carefully that they are to marik the first space opposite the question number if they "agree" with the statement; mark the second space opposite the question number if they "disagree" with the statement. Marks should be heavy and black and must be made only with a soft leaded pencil.

Spaces 2, 4, and 5 are to be left blank on all questions.
Then say aloud: "I will not explain'musical terms or give any help after we begin. The only help I can give now is to pronounce words and explain procedures. There is no time limit but you are to work as rapidly as possible. Most of you should be finished in fiftgen to twenty minutes. Remember to use only a soft-leaded pencil and make the marks heavy and black. Are there any questions?"

Pause for a moment, then say: "You may begin."
Taks up the test booklets and answer sheets as the students complete the test. Please check to make sure each student has placed his name on the onswer sheet. Return all test materials to All-State headquarters with the audition tapes.

In any event you should run short of materials have some students write directily on the test booklets or use some booklets trice or more by putting all needed information on the answer sheet only.
nOTE: PEBCUSSIONISTS DO HOT NEED TO TAKE TEE TEST.

632 villa Dr. Norvan, Okla. Nov. 25, 1963

```
F
```


Dear Band Director:

A brief objective-type test will be administered to all students who audition for the 1964 Oklahoma All-State Band. The test will be given at the five audition centers to all candidates before their auditions. This test will not in any way offect any student's acceptance or placement in the 1964 All-State Band.

Actual administration of the test will require only about twenty minutes and will be given at very frequent intervals; usually within a half hour of any group's arrival at the audition center. Please check with the audition chajrman for your time hen you report to the center. All materials necessary will be furnishein for your students as the test is scored on IBM answer sheets.

This test is part of a research project for a doctoral degree. The study began in 1960 with a preliminary form administered to University of Oklahoma band members. An extended and revised form was given to the 1962 All-State Band, and to seniors and juniors of several schools. Another revision will be used for the 1964 All-State Band candidates.

Preliminary statistical treatment thus far indicates that objective test ranking can correlate positively with audition ranking. Statistical significance has not yet been estiablished but will be determined with the results from the 1964 All-State Band applicants.

I feel this study may have great value for future activities of O.M.E.A. Such a test as this, with fairly high validity and reliability indices, can be quite useful in selecting candidates to audstion for AllDistrict Rands, All-State Rand, college schol:rship awards, and cther such means of student recognition. At the very leasi it could help make auaistions more effective, more accurate, and perhaps less time-consuming.

I thank you in advance for your help and cooperation. I am most appreciative of the assistance given me in the past tro years by so many Oklahoma school band directors.

[^11]Panl M. Mansur

OKLAROYA MOSIC EDDCATORS ASSOCIATION-ONIVERSITY OF ORCAHOMA fourcternth amoul all state high school baid

February 6,7,8, 1964
November 26, 1963

Dear Band Director:

Enclosed please find a list of studmts mho have been selected to participate in the regional auditions on December 7, 1963, with audf.tion centers, times and places. The regional auditions will be tape recoried by teams of band and orchestra directors using tape-recording equipment of high quality. On Jamuary 4, 1964, a band committee will study the Band tapes and select the 120-125 players for the 1964 A11State Band. On the same date an orchestra committee will study the Orchestra tapes and select wind and percussion players for the 1964 All-State Band. On the same date an orchestra committee will study the Orchestra tapes and select wind and percussion players for the 1964 All-State Orchestra. IF A STUDENT LISTED IS UNABLE TO PARCICIPATE, PLEASE MOTITI THE O.D. LAKD OFFICE AT ONCE (JE 6-0900 - Extension 2020 - Norman).

Yusic to be prepared for the auditions is enclosed. Please distribute this music to your stadents immediately. The music need not be memorized. Students will be required to turn in the music at the conclusion of their audition. Reading ability will be tested on an original piece of music. All flute players who double on piccolo are requested to bring their piccolos to the regional auditions. Caution your stadents about the need to be well prepared. Competiticn will be very keen. Instruments should be in perfect working order, weil-lubricated valves and slides, good reeds, etc.

Students will report to the regional audition centers Iisted below: MORNAN (O.U.), DURANT (HIGH SCHOOL), TUSA (NATHAN HALE H.S.), ENTD (HIGH SCHOOL), AND LAKTON (HIGH SCHOOL).

Yours very truly,

(signed)

Gene A. Braught, Chairman Oklahoma All-State Band

[^0]: ${ }^{1}$ James A. Hoffren, "A Test of Musical Expression," Council for Research in Music Education Bulletin No. 2., (University of Illinois and Illinois State Department of Education, Winter. 1964), f. 33.

[^1]: ${ }^{1}$ Letter to Oklahora band directors from All-State Chairman of Oklahoma Music Educators Association. (Mimeographed, Nov. 26, 1963).
 ${ }^{2}$ Bulietin, School of Music, Indiana Oniversity, 1963-64, p. 35, ff.
 ${ }^{3}$ John G. Watkins, Objective Measurement of Instrumental Performance ("Contributions to Education, No. 860," Teachers College, Columbia University, New York: Bureau of Publications, 1942), p. 82.

[^2]: ${ }^{1}$ L. F. Sunderman, "Philosophical Concepts," Muste Education in Action, ed. Archie N. Jones (Boston, Kass.s Allyn and Bacon, Inc., 1960), p. 5.

[^3]: ${ }^{1}$ Carl E. Seashore; Don Lewis, and Joseph G. Saetveit, Manual; Seashore Measures of Musical Talents (New York: The Psychological Corporation, Revised 1955).
 ${ }^{2}$ Ronaid W. Wheeler, Jr, "A Study in the Measurement of Musical Aptitude" (unpublished Ed.D. dissertation, University of Oklahoma, 1959).
 $3_{\text {Harvey S. Whistler and Luis P. Thorpe, Musical Aptitude Test }}$ (Hölywood: California Test Bureau, 1950).

[^4]: ${ }^{1}$ Herbert D. Wing, "A Revision of the Wing Musical Aptitode Test, " Joumal of Besearch in Kusic Education, X, No. 1, (Spring, 1962) p. 39.
 ${ }^{2}$ Trank W. Pinkerton, "Talent Tests and Their Application to the Public School Instrumental Music Program," Ibid. XI, Mo. 1, (Spring, 1963), pp. 75-80.

[^5]: ${ }^{1}$ Oojiective Measurement of Instrumentol Performance, p. 48.

[^6]: inflossary of Music Terms," Sehool of Music, Oniversity of Oklahoma (mimeographed, no date).
 'Groves' Dictionary of Music and Musicians, fifth ed., Eric Blom, editor, (London: $\frac{\text { Dictionary }}{\text { Macmillan }} \frac{\text { of }}{\text { and }} \frac{\text { Mosic }}{\text { Co., }} \frac{\text { and }}{\text { Ltd. }}$, 1954).

[^7]: ${ }^{1}$ James L. Marsell, Music Fincation Principles and Programs. (Morristown, N. J.: Silver Eurdett Co., 1956), p. 140.

[^8]: ${ }^{1}$ Koenker, Ibid. . p. 122.

[^9]: ${ }^{1}$ G. Frederic Kuder, Kuder Preference Recond-_Occupational, Manual, (Chicago, Ill.: Science Research associates, 1956).
 ${ }^{2}$ Edward K. Strong, Jr., Strong Vocational Interest Blank for $\frac{\mathrm{Men},}{194}$ Revised, Form M, (Palo Alto, Calif.: Consulting Psychologists Press, 1946).

 3 Hoffren, "A Test of Musical Expression," p. 33.

[^10]: ${ }^{1}$ William C. Kvaraceus, Evaluation as a Key Process for Establishing the Relationship Between Knds and Means," The Journal of Education. CXLI, No. 1, (Oct., 1958), pp. 17-19.

[^11]: Sincerely yours,

