
INFLUENCE OF p-HYDROXY-P-METHYL BUTYRATE 

ON PERFORMANCE, CARCASS QUALITY, LIPID 

DEPOSITION AND TENDERNESS OF 

LONGISSIMUS MUSCLES FROM 

SERIALLY SLAUGHTERED 

FEEDLOT STEERS 

By 

MICHAEL THOMAS VAN KOEVERING 

· Bachelor of Science 
':\_University of Wisconsin River Falls 

- River Falls, Wisconsin 
1987 

Master of Science 
Iowa State University 

Ames, Iowa 
1989 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 
the requirement for 

the Degree of 
DOCTOR OF PHILOSOPHY 

December, 1992 





OKLAHOMA STATE UNIVERSITY 

INFLUENCE OF f3-HYDROXY-f3-METHYL BUTYRATE 

ON PERFORMANCE, CARCASS QUALITY, LIPID 

DEPOSITION AND TENDERNESS OF 

LONGISSIMUS MUSCLES FROM 

SERIALLY SLAUGHTERED 

FEEDLOT STEERS 

Thesis Approved: 

ii 



ACKNOWLEDGMENTS 

Fulfilling of the requirements for the Degree Doctor of Philosophy requires 

a great deal of hard work and dedication, but these requirements are not 

accomplished alone. There are a number of different individuals who have 

worked very hard to help me fulfill these requirements, and I would like very 

much to thank each of them. 

I would like to thank Dr. Fred Owens for all of his guidance, and 

instruction as my major professor. It was truly a privilege to work with and learn 

from such a gifted individual. I would like to extend a very heartfelt thank you to 

Dr. Donald Gill, who also served as a co-major professor. I am very thankful for 

the opportunity to have worked with Dr. Gill, his patience, knowledge and 

support enabled me to grow as a researcher and an individual. 

I owe Dr. Glen Dolezal an enormous thank you for all of his help in 

obtaining the funds to support HMB research, allowing me to work in his lab, and 

finally for all of his help in the interpretation and presentation of these data. Dr. 

Dolezal has the unique ability to make any situation better, whether it be through 

his wonderful sense of humor or his depth of knowledge, he has truly been a 

vital part of my graduate program. I would like to also extend a sincere thank 

you to Drs. Ted McCollum and Earl Mitchell for their expertise, time and effort as 

members of my advisory committee. 

iii 



There are a number of other professors who have been of great 

assistance to me, of which Dr. David Buchanan must be recognized for his 

incredible ability to answer a seemingly never ending list of statistical questions, ·· 

and Dr. Charles Strasia for his unrelenting help in the preparation and collection 

of research data. I would also like to extend a very special thank you to Dr. 

Steve Nissen at Iowa State University for his support and expertise, and to Dr. 

Bob Lake at Hitch I Feeders for his help in planning and executing this 

experiment. I would also like to thank Chandra Ward, Mary Kracher and Carolyn 

Gray for there assistance. To the graduate students of the department, I would 

like to thank you for your friendship, support and assistance. 

To my wife Jerilyn, I can not put into words how much I thank you for 

being patient, understanding, and supportive during this time of demanding 

schedules and endless days. Thank you for your love and unselfish nature 

during this last year. To my family I would once again like to say thank you for 

believing and supporting me. My accomplishments are a mere reflection upon 

your influence in my life. With out you Mom and Dad this would have been a 

futile effort, but because of you it has turned into a great accomplishment. 

Thanks most of all to God our creator, for giving me the insight and faith needed 

to endure the long race. 

"Graduate school is like an endurance race, you don't run across the finish line, 

you fall over it!" 

Dr. T. E. Van Koevering, 1987. 

iv 



TABLE OF CONTENTS 

Chapter Page 

I. GENERAL INTRODUCTION ................................................................ 1 

II. REVIEW OF LITERATURE .................................................................. 3 

Effect OF Muscle Myofibers ON Carcass Quality ........................... 3 
Characterization of Myofibers .................................................... 3 

Antemortem Effects on Myofiber Distribution and Diameter ............ 4 
Gender ....................................................................................... 4 
Breed ......................................................................................... 5 
Days on Feed ............................................................................. 6 

Fiber Type and Diameter in Relation to Tenderness ...................... 7 
Fat Deposition and Myofibers ....................................................... 10 
Differences in Collagen Content Between Myofibers .................... 11 
Effects of Aging on Muscle Fiber Types ........................................ 11 
Effects of 13-Adrenergic Agonist and Somatotropin on 

Myofibers and Tenderness ...................................................... 12 
General Description of Metabolism and 

Biochemical Pathways ............................................................. 14 
Subcellular Distribution of Bracnched-Chain 

Amino Transferase ................................................................... 15 
Effects of a.Ketoisocaproate in Ruminants .................................... 17 

Growth and Performance ......................................................... 17 
Alterations in Carcass Composition ......................................... 18 

Possible Mechanisms for Alterations in Tissue Composition ........ 19 
Alterations in Marbling ............................................................. 19 
Alterations in Subcutaneous Fat .............................................. 19 
Alterations in Cholesterol ......................................................... 20 

Literature Cited .............................................................................. 21 

Ill EFFECTS OF 13-HYDROXY-13-METHYL BUTYRATE ON 
PERFORMANCE AND CARCASS QUALITY OF 
FEEDLOT STEERS ............................................................................ 28 

Abstract ......................................................................................... 28 
Introduction ................................................................................... 29 
Materials and Methods .................................................................. 30 

v 



Chapter Page. 

Animals and Diets .................................................................... 30 
Plasma Sampling ..................................................................... 31 
Carcass Data and Longissimus Muscle Sampling ................... 31 
Longissimus Muscle Chemical Analysis .................................. 32 
Data Analysis ........................................................................... 32 

Results and Discussion ................................................................. 32 
Steer Performance ................................................................... 32 
Carcass Traits .......................................................................... 33 
Plasma and Tissue Composition ............................................. 36 

Implications ................................................................................... 37 
Literature Cited .............................................................................. 38 
Legend for Figure .......................................................................... 51 

IV EFFECTS OF ~-HYDROXY -~-METHYL BUTYRATE 
ON THE TENDERNESS OF RIBEYE STEAKS 
FROM FEEDLOT STEERS ................................................................ 55 

Abstract ......................................................................................... 55 
Introduction ................................................................................... 56 
Materials and Methods .................................................................. 57 

Animals and Diets .................................................................... 57 
Carcass Data and Longissimus Muscle Sampling ................... 57 
Longissimus Muscle Cooking Properties and Shear Force ..... 58 
Data Analysis ........................................................................... 58 

Results and Discussion ................................................................. 58 
Cooking Properties of Ribeye Steaks ...................................... 58 
Tenderness of Ribeye Steaks .................................................. 59 
Chemical Composition of Longissimus Muscle ........................ 60 
Correlation Coefficients ........................................................... 60 

Implications ................................................................................... 62 
Literature Cited .............................................................................. 63 

V EFFECTS OF SLAUGHTER DATE ON PERFORMANCE, 
CARCASS CHARACTERISTICS AND TISSUE COMPOSITION 
OF FROM FEEDLOT STEERS .......................................................... 7 4 

Abstract ......................................................................................... 7 4 
Introduction ................................................................................... 75 
Materials and Methods .................................................................. 75 

Animals and Diets .................................................................... 75 
Plasma Sampling .......... : .......................................................... 76 

vi 



Chapter Page 

Carcass Data and Longissimus Muscle Sampling ................... 76 
Longissimus Muscle Chemical Analysis .................................. 77 
Longissimus Muscle Cooking Properties and Shear Force ..... 77 
Data Analysis ........................................................................... 78 

Results and Discussion ................................................................. 78 
Steer Performance ................................................................... 78 
Carcass Traits .......................................................................... 79 
Chemical Composition of Longissimus Muscle ........................ 81 
Cooking Properties of Ribeye Steaks ...................................... 83 
Tenderness of Ribeye Steaks .................................................. 83 

Implications ................................................................................... 84 
Literature Cited .............................................................................. 85 

vii 



LIST OF TABLES 

Table Page 

1. Composition of Diets .......................................................................... 40 

2. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Performance 
of Feedlot Steers Averaged Across Days on Feed ....................... 41 

3. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Performance 
of Feedlot Steers ........................................................................... 42 

4. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Carcass 
Characteristics Averaged Across Days on Feed ........................... 43 

5. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Carcass 
Characteristics of Feedlot Steers .................................................. 44 

6. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Yield Grades 
of Feedlot Steers ........................................................................... 45 

7. Effects of U.S. Quality Grades and J3-Hydroxy-J3-Methyl Butyrate 
(HMB) on Yield Grades of Feedlot Steers ..................................... 46 

8. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Marbling Score 
and U.S. Quality Grades of Steers Averaged Across 
Days on Feed ................................................................................ 47 

9. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Marbling Score 
and U.S. Quality Grades of Feedlot Steers ................................... 48 

10. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Composition of 
Plasma and Longissimus Muscle Averaged Across 
Days on Feed ................................................................................ 49 

11. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Composition of 
Plasma and Longissimus Muscle Averaged Across 
Slaughter Dates ............................................................................ 50 

12. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Cooking 
Properties, Warner-Bratzler shear force and Longissimus 
Muscle Composition of Feedlot Steers Averaged Across 
Days on Feed ................................................................................ 65 

viii 



Table Page 

13. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) and Slaughter 
Group on Cooking Properties, Warner-Bratzler Shear Force, 
and Longissimus Muscle Composition of Ribeye Steaks from 
Feedlot Steers ............................................................................... 56 

14. Effects of U.S. Quality Grades and J3-Hydroxy-J3-Methyl Butyrate 
(HMB) on Cooking Properties, Warner-Bratzler Shear Force, 
and Longissimus Muscle Composition of Ribeye Steaks 
from Feedlot Steers ....................................................................... 67 

15. Simple Correlation Coefficients for Cooking Properties, 
Warner-Bratzler Shear Force, and Longissimus Muscle 
Composition Averaged Across Treatment and 
Slaughter Group ............................................................................ 68 

16. Simple Correlation Coefficients Warner-Bratzler Shear Force, 
Carcass Characteristics, and Daily Gain Averaged Across 
Treatment and Slaughter Group .................................................... 69 

17. Simple Correlation Coefficients for Cooking Properties, 
Warner-Bratzler Shear Force, and Longissimus Muscle 
Composition for Control Steers Averaged Across Slaughter 
Group ............................................................................................ 70 

18. Simple Correlation Coefficients Warner-Bratzler Shear Force, 
Carcass Characteristics, and Daily Gain for Control Steers 
Averaged Across Slaughter Group ................................................ 71 

19. Simple Correlation Coefficients for Cooking Properties, 
Warner-Bratzler Shear Force, and Longissimus Muscle 
Composition for Steers fed J3-Hydroxy-J3-Methyl Butyrate 
(HMB) Averaged Across Slaughter Group .................................... 72 

20. Simple Correlation Coefficients Warner-Bratzler Shear Force, 
Carcass Characteristics, and Daily Gain for Steers Fed 
J3-Hydroxy-J3-Methyl Butyrate (HMB) Averaged Across 
Slaughter Group ............................................................................ 73 

21. Composition of Diets .......................................................................... 87 

22. Effects of Days on Feed on Performance of Feedlot Steers .............. 88 

23. Effects of Slaughter Group on Carcass Characteristics ..................... 89 

24. Effects of Days on Feed on USDA Quality Grades of Steers ............. 90 

25. Effects of Slaughter Group on Plasma Cholesterol and 
Longissimus Muscle Composition ................................................. 91 

26. Effects of Slaughter Group on Cooking Properties 
and Shear Force ........................................................................... 92 

ix 



LIST OF FIGURES 

Figure Page 

1. Effects of f3-Hydroxy-f3-Methyl Butyrate (HMB) on Subcutaneous 
Fat Thickness of Feedlot Steers ......................................................... 52 

2. Effects of f3-Hydroxy-f3..:Methyl Butyrate (HMB) on Calculated Yield 
Grades of Feedlot Steers Averaged Across Days on Feed .......... 53 

3. Relationship Between S.C. Fat Thickness (12th rib) and Marbling 
Deposition with in the Longissimus Muscle (Marbling Score: 
1 00 = Practically Devoid; 800 = Moderately Abundant) ................ 54 

X 



Format of Dissertation 

This dissertation is presented in the Journal of Animal Science style 

format, as o~tlined by the Oklahoma State University graduate college style 

manual. The use of this format allows for independent chapters to be prepared 

suitable for submission to scientific journals. Three papers have been prepared 

from the data collected for research to partly fulfill the requirements for the Ph.D. 

degree. Each paper is complete in itself with an abstract, introduction, materials 

and methods, results and discussion, implications and literature cited section. 

xi 



CHAPTER I 

GENERAL INTRODUCTION 

Ruminants are a diverse group of animals that consist of many different 

species scattered across a variety of different climatic and vegetative zones. 

Ruminants vary in color, shape and size; ranging from the mouse deer (300 mm 

tall weighing between 2 and 5 kg) to the giraffe (3.5 m tall weighing 2 metric 

tons; Church, 1988). Ruminants in general have played an important role in 

human agriculture, being hunted for 750,000 years and domesticated for 8,500 

years (Church, 1988). 

Ruminants can eat low quality forage and convert it into high quality · 

products such as meat, milk and fiber; this unique ability sets ruminants above 

other animals because 13.6 billion acres of the earth's land mass is more suited 

for grazing than for cultivation. Thus, if ruminants did not possess this unique 

ability, the competition for food resources that sustain both animals and humans 

would be more vigorous. 

The US cattle industry js one of this country's oldest industries; it has 

obtained this lofty position by adapting to meet consumer demands. The end 

product of the cattle industry is beef with approximately 24 million head of cattle 

slaughtered each year. The ability of the cattle industry to make progressive 

and responsive changes in such a large number of animals is an amazing 

accomplishment. 



Recently, consumers have become more aware of nutritional value in 

their diets. They have begun to reduce their intake of foods that are presumed 

to be rich in saturated fat and cholesterol. This, in part, has caused the per 

capita beef consumption to increase only 7% in the past 20 years. During this 

time period, per capita consumption of chicken and turkey has increased 72% 

and 62%, respectively. Thus, the beef industry must search for ways to produce 

beef that will satisfy consumer demands. 

Even though consumers may want leaner beef with less trimmable s.c. fat, 

most consumers still prefer a moderate degree of intramuscular fat (marbling); 

this contributes to tenderness, taste, juiciness and eating acceptability of beef. 

Another important factor, which has been studied for years but has only recently 

become a top priority is improving the consistency in the tenderness of beef 

products. To meet consumer demands, one should increase or maintain the 

intramuscular fat while decreasing the amount of s.c. fat deposited, lower the 

cholesterol content of beef tissue, and improve the consistency in tenderness of 

beef products. 
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CHAPTER II 

REVIEW OF LITERATURE 

EFFECT OF MUSCLE MYOFIBERS ON CARCASS QUALITY 

Characterization of Myofibers. Muscle and its composition, has been studied 

for centuries. Cassens and Cooper (1969) indicated that the earliest work in 

muscle histochemistry (by Lorenzini in 1678) described muscles based upon 

color. Subsequently, Ranvier in 1874 showed that muscles with increased 

redness were associated with slower contractions. Ashmore et al. (1972) 

summarized that two types of primary fibers exist, a and J3, that differ in their 

myosin ATPase activity, speed of contraction and metabolism. Myosin ATPase 

activity is low in the J3 fiber but high in the a fiber. Contraction speed is slower in 

J3 than in a fibers. The J3 fibers exhibit the highest succinic 

dehydrogenase/glycogen phosphorylase activity ratio; therefore, they are 

adapted to aerobic metabolism. In contrast, a fibers exhibit a low succinic 

dehydrogenase/glycogen phosphorylase activity ratio; therefore, they are 

adapted for anaerobic metabolism. Ashmore et al. (1972) stated that J3 fibers 

can be consistently classified as "red" fibers; whereas, a fibers could be 

classified as "red", "white", or "intermediate" fibers, based on their enzyme 

patterns. Thus, these authors re-designated fiber types as: J3 fibers as J3 Red 

(J3R)and the a fibers as a-Red (aR) or intermediate, and a White (aW). 

In 1965, Beecher et al. conducted the first comprehensive study in pigs 

using the red and white muscle fiber concept with direct application to meat 

science. This was followed by an effort to understand the properties of meat 

based on histochemistry. Muscle biology researchers have become convinced 

that the myofibril composition of meat is of great importance, stating that "the 
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properties of muscle, be they visual appearance, physiological parameters, or 

biochemical characteristics, are a reflection of the proportions of types of 

myofibers present." Data obtained from extracts or homogenates of whole 

muscle" whether they be enzyme activity, compositional information, or 

characteristics of specific proteins, are merely a reflection of the proportion of 

red and white myofibers present." (Cassens, 1977). 

Antemortem Effects on Myofiber Distribution and Diameter 

Gender. Many antemortem factors can influence the distribution and 

diameter of muscle myofibers. Animal gender can affect the proportion of 

different muscle fibers as well as the diameter of the fibers. Dreyer et al. ( 1977) 

reported that meat from bulls had a higher percentage of J3R muscle fibers and a 

lower percentage of a.W muscle fibers as compared to meat from steers. 

Similarly, steers have a higher percentage of J3R fibers and fewer a.W fibers than 

heifers (Johnston et al., 1981). However, West (1974) reported that heifers had 

a lower percentage of a.W fibers than steers. Dreyer et al.(1977) and West 

(1974) also reported that bulls had larger fiber diameters of all three fiber types 

than steers, while heifers had smaller fiber diameters than steers. Although the 

gender of an animal appears to alter the ratio of muscle fibers, it is not believed 

to be the major factor involved in the influence gender has on meat tenderness. 

Generally, meat from bulls is less tender than the meat from steers (Field, 1971; 

Seideman et al., 1982). This difference has been attributed primarily to 

differences in fiber diameter and intramuscular collagen content (Dreyer et al., 

1977; Cross et al., 1984). 
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Breed. Different breeds of cattle have been used advantageously in 

production systems; ranchers and feedlots in warmer climates utilize the heat 

resistant characteristics of Bos lndicus cattle. However, Bos lndicus cattle have 

lower meat tenderness. 

Wheeler et al. (1990a) reported that LM steaks taken from Brahman 

steers were less tender than that of purebred Hereford steers after aging for 

either 7, 14, 21, 28 or 35 d postmortem. Differences with aging were believed to 

be caused by an increase in calcium-dependent protease (CDP)-1 activity on d 0 

together with a concurrent decrease in COP inhibitor. In their study, no 

differences were found in CDP-11 or cathepsin B or B+L activities. Using 
( 

electrophoresis data, the authors concluded that meat from Hereford steers had 

a more advanced state of proteolysis as, early as 1 d postmortem, and that the 

inherent difference between breeds in COP activity and inhibitor play a major 

role in tenderness. This work is supported by the findings of Shackelford et al. 

(1991 ); shear force was greater in 5/8 Brahman versus Angus x Hereford 

steers. In contrast to Wheeler et al. (1990a), Shackelford did not find any 

changes in COP-I activity; however, they found greater COP inhibitor activity 

with 5/8 Brahman steers but no difference between breeds in cathepsins B and 

B+L activity. Shackelford et al. ( 1991) concluded that the decreased tenderness 

in the 5/8 Brahman steers was due to the increased COP inhibitor activity. 

Although the meat from Brahman cattle is less tender than meat from European 

breeds, this problem may be alleviated postmortem by electrical stimulation and 

blade tenderization (Wheeler et al., 1990b). 

Piedmontese cattle were introduced into the United States because of 

superior muscularity and leanness. Some Piedmontese have a unique 

characteristic called "double-muscling" or muscular hypertrophy. Increased 

muscularity is believed to come from a 46% increase in the number of muscle 
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fibers; most of this increase is in aW fibers (Holmes and Ashmore, 1972). 

Tatum et al. (1990) compared carcass composition and quality of steers sired by 

Piedmontese, Gelbvieh and Red Angus bulls. In their study, steers sired by 

Piedmontese bulls had carcasses with less s.c. fat, greater longissimus muscle 

(LM) area, lower numerical yield grades, and the higher muscle to bone ratios. 

These steers also had LM with the highest percentage of aW fibers, and the 

lowest percent of aR fibers, plus the smallest cross-sectional area of PR fibers. 

Concentrations of total and soluble collagen were not different between these 

breeds. Tenderness, measured by Warner-Bratzler shear force, as well as 

myofibrillar tenderness and palatability attributes for Piedmontese steers were 

greater than for Gelbvieh steers, but not different than for Red Angus steers. 

The increased percentage of aW fibers most likely is responsible for the 

enhanced muscularity and palatability attributes, while the smaller cross­

sectional area of the PR fibers may be responsible for the improved tenderness. 

In general, Piedmontese steers possessed a LM with a larger percent of aW 

fibers and smaller cross-sectional area of PR fibers; hence, they and produced 

larger amounts of lean meat with desirable eating attributes. 

Days on Feed. As time on feed increases, tenderness often increases 

(Dolezal et al., 1982; Miller et al., 1987); however, this increase may be limited 

in time to a maximum of 139 d (Epley et al., 1968) or between 150 and 180 d 

(Zinn et al., 1970b); after this time, animal age may exert a greater influence and 

decrease tenderness. May et al. (1992) fed steers between 0 and 196 d and 

reported that shear force values were lowest at 112 d; shear force va!ues at 28 

and 196 d both were greater than at 112 d. Steers that have been fed a high 

concentrate diet for 120 d have more of their collagen in the soluble fraction 

when compared to steers coming directly off from grass (Wu et al., 1981 ). This 
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may explain why cattle fed for approximately 140 d have more tender meat than 

cattle short-fed off grass or fed for an extremely long time. In general, the work 

by Johnston et al. ( 1981) demonstrated that as the energy level of the diet was 

increased, aR fibers were replaced by aW fibers resulting in an increase in the 

average fiber diameter. Johnston et al. (1975) also reported that mean fiber 

diameter of J3R fibers in steers was greater for those fed 233 versus 153 d. 

Marsh (1977) reported that the intermolecular cross links within collagen 

increase with animal age; they become more thermally resistant which results in 

less collagen breakdown during cooking. Together with factors that increase the 

fiber diameter, e.g., fiber transformation due to dietary energy levels or 

increased days on feed, collagen solubility may play a role in the decrease in 

tenderness as animals age. 

Fiber Type and Diameter in Relation to Tenderness 

Brady (1937) studied correlations, between fiber diameter and shear 

force; he found these correlations to be low but to increase when the muscle was 

cooked. He reported a high negative correlation (r = -0.81) between the number 

of fibers in a muscle bundle and mechanical shear force when considering with 

four different bovine muscles .. Later Tuma et al. (1962) studied cattle ranging in 

age from 6 to 90 months. Steaks from these animals were aged at 20 C for 

either 48 h or 14 d. Correlations, uncorrected for animal age, were significant 

across both aging periods, implying that as fiber diameter increased, shear force 

increased. Herring et al. ( 1965) also found a high correlation between fiber 

diameter and tenderness (r = .73). When animal age was included by Tuma et 

al. (1962), correlations between fiber diameter and shear force existed when 

steaks were aged for 48 h but for steaks aged for 14 d, these correlations 

disappeared. This would agree with the work of Crouse et al. (1991) who 
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reported that fiber diameter affected shear force in steaks aged for 1 or 3 d, but 

not in steaks aged between 6 and 14 d. The research by Tuma et al. (1962) and 

Crouse et al. (1991) suggests that prior to steak aging, which is believed to alter 

postmortem proteolysis, fiber diameter can alter tenderness. 

Calkins et al. (1981) reported that in "A" maturity carcasses, the percent 

aR fiber area was negatively correlated (r = -.46; P<.05) to shear force while the 

ratio of aW:aR was· positively correlated (r = .43; P<.05) to shear force. Hence, 

with the transformation from aR to aW occurs in less active muscle during their 

maturation, shear force increases (Ashmore et al. 1972). In the same study, 

averaged across carcass maturities from A to E, shear force was related 

positively to the percentage of aW fibers (r = .35; P<.01) and the percent aW 

area (r = .31; P<.05) but negatively to the percent aR area (r = -.25; P<.05). 

Thus, red fibers appear more highly correlated with carcass quality attributes 

than white fibers. This supports the work of Crouse et al. (1991 ), who also 

reported that the percent aW fiber area was significantly correlated to shear 

force (r = .60) when steaks were aged for 1 d; however, this was not true for 

steaks aged between 3 and 14 d. This suggests that as the percentage of aW 

fibers increase, shear force increases if the muscle is not aged. Although aW 

fibers generally are larger than J3R fibers, as the percentage of white fibers 

increases the average diameter of the fibers will increase, thus causing shear 

force to increase. 

Romans et al. (1965) reported low fiber diameter and tenderness 

correlations, for steaks aged for 10 d. Melton et al. (1974) worked with muscle 

biopsies, for which no aging would have occurred; they found that J3R fiber area 

was correlated significantly with live weight (r =.59), hot carcass weight (r = .64), 

marbling (r = .49), quality grade (r =.54), s.c. fat thickness (r = .75) and yield 

grade (r = .67), but J3R fiber area was not correlated with shear force or taste 
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panel tenderness. Intermediate (aR) and aW fibers were correlated significantly 

to taste panel flavor score (r = .45),but were not significantly related to 

tenderness. When these data were analyzed with the J3R and aR fibers being 

combined, most correlation coefficients decreased; however, when aR and aW 

fibers were combined, those same correlation coefficients increased. Thus, the 

aR fibers appeared to be more closely related to the aW fibers than J3R fibers. 

This work is similar to a later study reported by Melton et al. (1975) were muscle 

biopsies once again were obtained; fiber type as a percentage had no relation to 

shear force, but taste panel palatability scores tended to decrease as the 

percentage of J3R fibers increased. Similar to his work in 197 4, he found that 

aW fibers were positively correlated with taste panel attributes. 

Lewis et al. (1977) found no correlation between fiber diameter and shear 

force or taste panel tenderness when examining LM aged for 7 d; however, when 

the Psoas major (PM; considered to be predominately J3R) was aged for 7 d and 

examined the uncooked fiber diameter was correlated to shear force (r = .37; 

P,.01) and taste panel tenderness (r = -.24; P,.05). The effect of aging was 

expected to be less dramatic on the PM than the LM, because J3R fibers have a 

much thicker Z line which makes it less labile to postmortem enzymes (Gallet 

al., 1970, 197 4 ). They also reported that even though breed had an effect on 

fiber diameter, breed had little effect on tenderness. Therefore, Lewis et al. 

(1977) suggested that cattle should be selected for larger fiber diameters and 

increased muscling and that such selection would not affect tenderness. This 

may be true, as long as muscle is aged prior to cooking. 
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In summary, fiber type and diameter or area play some role in meat 

tenderness. An increase in fiber diameter has been correlated with an increased 

shear force prior to postmortem aging. The negative correlations between aW 

fibers and tenderness may be a result of the aW fibers being larger than the J3R; 

thus, fiber diameter again may be related to tenderness. 

Fat Deposition and Myofibers 

Generally, "red" fiber types metabolize and store more lipid than ''white" 

fiber. George and Jyoti, (1955) first reported histochemical data indicating that 

red muscle fibers contain more lipid than do white muscle fibers. More recently, 

Calkins et al. (1981) reported similar findings within A maturity carcasses, in 

which both the percentage of aW fibers (r = -.46; P<.05) and the percent aW 

area (r = -.45; P<.05) were correlated negatively with marbling. In contrast, the 

percent aR (r = .45; P<.05) area was correlated positively to marbling. Melton et 

al. (1974) reported that correlation coefficients between the area of J3R fibers 

and all measures of fat deposition, both s.c. and intramuscularly were positive 

when bulls fatten, the f3R fiber increases in size; aR and aW fibers were not 

related to fat deposition. Melton et al. (1975) also reported that as vascularity 

(capillaries per fiber) of a tissue increases, the amount of lipid deposition also 

increased. Ashmore et al. (1972) reported that J3R fibers have a higher capillary 

to fiber ratio than aW fibers do; increased blood flow allows for greater aerobic 

metabolism with less fatigue. Hence, lipid deposition within a muscle, such as 

the LM, would be greater if more f3R fibers are present. Because the LM is 

predominately composed of aW fibers which, generally are not associated with 

lipid deposition, lipid deposition in the LM may be a poor index of carcass 

quality. 
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Differences in Collagen Content Between Myofibers 

Data concerning the amount of connective tissue present with different 

myofibers is limited. Beatty (1966, 1967) used histochemical staining 

procedures and a biochemical method to determine hydroxyproline content, one 

index of collagen. In primates, white muscles generally contain higher 

concentrations of connective tissue. However, the similarity between white 

muscles of adult primates and A maturity bovine carcasses could be questioned. 

Effects of Aging on Muscle fiber types 

Generally, postmortem aging increases the tenderness of muscles due to 

postmortem proteolysis by several enzymes. However, muscle fiber types 

respond differently to aging. Lewis et al. (1977) found no correlation between 

fiber diameter and shear force or taste panel tenderness when examining the LM 

(predominately a.W fibers) which had been aged for 7 d. However, the Psoas 

major (PM; considered to be predominately J3R) was aged equally for 7 d and 

examined; the uncooked fiber diameter was positively correlated to shear force 

(r = .37; P<.01) and correlated negatively to taste panel tenderness (r = -.24; 

P<.OS). This suggests that the two muscles did not age at equal rates. The 

effect of postmqrtem aging would be expected to be less significant on the PM 

as compared to the LM, because J3R fibers have Z lines which are 2 to 3 times 

thicker than a.W fibers; the a.W fibers are less labile to postmortem enzymes 

(Goll et al., 1970, 1974). Crouse et al. (1991) reported that average fiber size 

{proportionally based) and tenderness were correlated when steaks were aged 

for 3 and 6 d but only percent a.W area was correlated with tenderness after 1 d 

of postmortem aging. In summary, a.W fibers are degraded faster than J3R fibers 

during postmortem aging; this is believed to be due to thinner Z lines. 
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Effects of J3-Adrenergic Agonist and Somatotropin on Myofibers and 

Tenderness 

Consumer demands for lean products has led to the investigation of 

compounds both of which increase protein accretion and decrease fat synthesis 

such as f3-adrenergic agonists and somatotropin (Moseley et al., 1990; Wheeler 

and Koohmaraie, 1992; Lanna et al., 1992). These compounds have increased 

production of lean meat in cattle (Carroll et al., 1990; Fabry and Sommer, 1990; 

Moseley et al., 1990), sheep (Hamby et al., 1986), swine (Jones et al., 1985) 

and poultry (Gwartney et al., 1992). 

Although they increase the amount of lean product, J3-adrenergic agonists 

and somatotropin, reduce tenderness. An increased force is required to shear 

muscle from cattle (Fabry et al., 1990; Vestergaard et al., 1990; Wheeler and 

Koohmaraie, 1992), sheep (Hamby et al., 1986; Pringle et al., 1991), swine 

(Jones et al., 1985; Solomon et al., 1991; Warriss et al., 1991, Chang et al., 

1992;) and poultry (Morgan et al., 1989; Gwartney et al., 1992). In both cattle 

(Vestergaard et al., 1990) and swine (Aalhus et al., 1992) administration of J3-

adrenergic agonists alter the myofiber distribution, decreasing the percentage of 

a.R and increasing the percent of a.W. This transformation from a.R to a.W is 

similar to that described by Ashmore et al. (1972). The shift from "red" to ''white" 

fibers also may explain the decrease in intramuscular fat deposition. These 

changes have caused dramatic increases in shear force with no increase in the 

amount of total or soluble hydroxyproline (Aalhus et al., 1992). Concurrent with 

the increased percentage of a.R and a.W fibers came an increase in diameter of 

these fibers. 
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Administration of p-adrenergic agonists also stimulate a transformation between 

fiber types and may reduce the action of proteolytic enzymes such as calpains 

and cathepsins due to increased calpastatin (Morgan et al., 1989; Pringle et al., 

1991; Wheeler and Koohmaraie, 1992). The combination of increased fiber 

diameter and reduced postmortem proteolytic activity may explain the decrease 

in tenderness. 

Alterations in the size and distribution of muscle fibers associated with the 

use of porcine somatotropin (pST) have been documented by Solomon et al. 

(1990 ;1991). In both studies, they administered pST to boars, barrows and 

gilts. The pST decreased the percentage of aW fibers while both aR and PR 

muscle fibers tended to increase. Even more pronounced than the shift in fiber 

distribution was the increase in fiber area; this was significant for all three 

different fiber types. Thus, the increased muscularity observed with the 

administration of pST came primarily from an increase in fiber diameter. This 

increase in fiber diameter concurrently increased shear force in barrows, but 

less consistently in boars and gilts. 

The f3-adrenergic agonists and somatotropin cause opposite shifts in fiber 

type distribution, with p-adrenergic agonists increasing the percentage of aW 

fibers and somatotropins increasing the percentage of aR and pR fibers. 

However, both increase fiber diameter leading to enhanced muscularity and 

decreased tenderness. 

13 



General Description of Metabolism and Biochemical Pathways 

The three BCAA, leucine (LEU), isoleucine and valine are among the nine 

amino acids that cannot be synthesized by animal tissues and must be supplied 

in the diet (Harper et al., 1984). The initial step in the metabolism of the amino 

acid leucine is a reversible transamination reaction; it produces the ketoacid, a­

ketoisocaproate (KIC). This transamination reaction is catalyzed by branched­

chain aminotransferase (BCAT) which is general for all BCAA, or by leucine 

transaminase, which acts solely on LEU (lchihara, 1975). Subsequent to 

transamination, the ketoacid, KIC, is irreversibly decarboxylated primarily 

(approximately 90%) by branched-chain a-ketoacid dehydrogenase (BCKAD); 

BCKAD is located in the mitochondria and produces isovaleryl CoA (Wohlhueter 

and Harper, 1970). lsovaleryl CoA is sequentially converted in the mitochondria 

to (3-methylcrotonyl CoA, (3-methylglutaconyl CoA and finally to f3-hydroxy-f3-

methylglutaryl CoA (HMG CoA). Hydroxymethylglutaryi-CoA lyase cleaves HMG 

CoA to acetoacetate and acetyl CoA. Acetoacetate can cross the mitochondrial 

membrane and can be converted into acetone and f3-hydroxybutyrate or 

acetoacetyl CoA and (3-hydroxy-(3-methylglutaryl CoA (HMG CoA) (Rawn, 1989). 

In the cytosol, HMG CoA can be converted to mevalonic acid by HMG CoA 

reductase; this is the first committed step in cholesterol synthesis. 

The remaining KIC (approximately 10%) is metabolized by a­

ketoisocaproate oxygenase (KIC oxygenase) is located in the cytosol. During 

this reaction, KIC is decarboxylated and hydroxylated to form f3-hydroxy-f3-

methylbutyrate (HMB) (Sabourin and Bieber, 1981 b, 1982a). The fate of HMB is 

not well established, but in both lambs and pigs approximately 34% of an 

exogenous dose of HMB is excreted via the urine; thus, HMB is presumably 

metabolized by the body (Van Koevering and Nissen, 1992). 
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In summary, KIC can be metabolized both in the cytosol and in the 

mitochondria by the mitochondrial BCKAD or KIC oxygenase. Both enzymes 

release carbon dioxide during decarboxylation. The oxidative decarboxylation of 

KIC by mitochondrial BCKAD produces the branched-chain acyl CoA derivative, 

isovaleryl CoA as an end product (Rawn, 1989). In the rat and human liver, KIC 

oxygenase produces 13-hydroxyisovalerate, otherwise known as 13-hydroxy-13-

methylbutyrate or HMB, as the major end product (Sabourin and Bieber 1981 a, 

1982a, 1983). HMB also has been isolated from skeletal muscle, heart, 

diaphragm and kidney of the rat (Wagenmakers et al., 1984; Hokland and 

Bremer, 1988) and from the urine of humans, rats, lambs and pigs (Tanaka et 

al., 1968; Landaas, 1974, 1975; Finnie et al., 1976; Van Koevering and Nissen, 

1992). Thus, KIC oxygenase activity may not be limited to the liver. 

Subcellular Distribution of Branched-Chain Amino Transferase 

Although BCAT activity occurs both in the cytosol and in the mitochondria, 

the proportion of activity in each fraction varies between organs and species. In 

swine, sheep, cattle and rats, BCAT activity is primarily cytosolic in skeletal 

muscle and adipose tissue (Busboom et al., 1984a). However, SCAT activity in 

the liver and kidney is cytosolic in swine but mitochondrial in sheep, cattle and 

rats (Busboom et al., 1984a). Within the rat, SCAT activity occurs solely in the 

mitochondria of heart and kidney, whereas cytosolic activity is predominant in 

the brain (70%) and the liver (100%) (Hutson, 1988; Hutson et al., 1988). 

Hutson (1988) found that rat skeletal muscle varies in the subcellular 

location of SCAT. In the soleus muscle, considered to be a predominately red 

muscle (89% f3R fibers and 11% a.R fibers), BCAT activity was completely in the 

mitochondria. The plantaris muscle, composed of a mixture of fibers (53% a.W 

fibers, 40% a.R fibers, and 7% f3R fibers), had 65% of the BCAT activity in the 
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mitochondrial fraction. In the white gastrocnemius muscle (91% aW fibers and 

9% aR fibers), 70% of the BCAT activity was accounted for in the cytosol 

(Hutson, 1988). The differences in BCAT distribution between muscle fiber 

types could be a result simply of metabolic preference. Red fibers (~R), as 

mentioned previously, have an oxidative type of metabolism. These fibers 

typically have more mitochondria; this would enhance the development of BCAT 

activity in the mitochondria. In contrast, the aW fibers have primarily a glycolytic 

type of metabolism and have fewer mitochondria to support BCAT activity in the 

cytosolic fraction. 

Increased BCAT activity in the cytosolic fraction of muscles consisting 

predominately of aW fibers, would suggest that increased amounts of KIC are 

produced in the cytosol of these muscles as compared to muscles with 

predominantly f3R fibers. In light of the fact that KIC concentrations in the 

cytosol most likely are the rate limiting factor in HMB synthesis, due to the higher 

Km of KIC oxygenase (-10 X) than of mitochondrial BCKAD (Sabourin and 

Bieber, 1979), muscles that consist of predominately aW fibers may have 

greater concentrations of KIC present in the cytosol; this could lead to increased 

synthesis of HMB. 

HMB synthesis in muscle consisting predominately of f3R fibers could only 

occur if KIC, which was produced in the mitochondria, was transported across 

the inner mitochondrial membrane to the cytosol were it could be oxidized by 

KIC oxygenase. Patel et al. (1980) in rat liver demonstrated, that KIC must be 

transported actively from the cytosol across the inner mitochondria membrane; 

even at elevated concentrations, passive diffusion does not occur. This work 

was supported by May et al. (1980) who observed that addition of carnitine to rat 

liver homogenates stimulated the oxidation of KIC and increased the export .of 

acylcarnitines from the mitochondria. This supports the theory that KIC must be 
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transported from the cytosol across the inner mitochondrial membrane and that 

KIC can not move freely; however, this transportation is believed to proceed 

from the cytosol into the mitochondria only and not vice versa. Transportation of 

KIC out of the mitochondria is unlikely due to the location of BCKAD, on the 

inner surface of the inner mitochondrial membrane, and BCKAD's great affinity 

for KIC ~Km of .02 mM; Harper et al., 1984; Paxton and Harris, 1982). Thus, if 

KIC Oxygenase activity exists in the cytosolic fraction of peripheral tissues, 

which likely is due to HMB isolation in the skeletal muscle, heart, diaphragm and 

kidney of the rat (Wagenmakers et al., 1984; Hokland and Bremer, 1988), and in 

the cytosolic fraction of the liver (Sabourin and Bieber, 1982a, 1982b), then 

muscles consisting predominately of a.W fibers should produce the majority of 

HMB. 

Effects of a.-Ketoisocaproate in Ruminants 

Growth and Performance: 

Dietary supplementation of beef cattle with KIC has been studied in three 

experiments. In the first experiment (Fiakoll et al., 1987), KIC was administered 

to 72 steers in a dose titration design with 0, 0.02, 0.07, or 0.20% of diet OM 

being KIC. These cattle were fed a moderate energy diet consisting of 75% 

concentrate and 25% roughage. During the first 56 days, KIC supplemented at 

.02% produced the greatest increase in growth rate (20%, P<.07), and 

improvement (13%, P<.OS) in feed conversion. After 161 days on feed, cattle 

fed KIC at .02% had made 14% greater growth (P<.01) with an 8% improvement 

in feed conversion . 
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The second experiment was conducted using 156 steers (232 kg), and 

KIC was fed at 0, 0.005, 0.02, or 0.07% of the diet. Simultaneously, a third study 

was conducted with 76 steers initially weighing 258 kg; it was designed to 

evaluate the effects of KIC together with implants and ionophores. In both of 

these studies, steers were fed a growing ration (30% corn silage and 70% 

concentrate) for 90 d and a high energy fini~hing diet (7% corn silage and 93% 

concentrate) for the duration of the 192 d study (Van Koevering et al., 1989b). 

Cattle performed well in both experiments 2 and 3; however, there were 

no significant responses in growth or feed conversion regardless of the 

treatment (Van Koevering et al., 1989b ). Why the same effects in the first 

experiment were not observed in the second and third experiment is not known. 

Tischler and Goldberg (1980) proposed that in vitro, KIC may decrease pyruvate 

utilization and spare glucose. When a moderate energy diet was fed, the 

glucose sparing effect of KIC may have decreased the catabolism of amino acids 

for energy, allowing more amino acids to be utilized for growth. In the second 

and third experiments, a higher energy diet was fed, so the glucose sparing 

effect of KIC on amino acid catabolism would not have been as useful for 

growth. 

Alterations in Carcass Composition: 

Effects of KIC on carcass composition have been consistent. Repeatedly, 

administration of KIC to feedlot cattle has increased the amount of intramuscular 

fat deposited within the LM. An increased percentage of cattle have graded 

choice, and more fat is present in LM even though less cholesterol is. present in 

the LM (Van Koevering et al., 1989a, 1989b ). Carcasses from steers fed KIC 

had less external fat (fewer yield grades of 4 or greater) and tended to have a 

thinner s.c. fat layer. 
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Possible Mechanisms for Alterations in Tissue Composition 

An increase in intramuscular lipogenesis together with a decrease in s.c. 

fat and cholesterol deposition seem to be contradictory effects. Separate 

mechanisms must be employed to explain each phenomena. Whether these 

mechanisms are intricately related is unknown, but they appear to originate 

simultaneously from the same compound. The combination of these 

mechanisms may explain the biological responses to HMB feeding. 

Alterations in Marbling. KIC can decrease proteolysis without 

increasing protein synthesis and decrease the oxidation of glucose (Tischler and 

Goldberg, 1980). This demonstrates the ability of KIC, or possibly HMB, to 

direct energy away from protein and glucose metabolism and toward fat 

synthesis. Thus, HMB may act on peripheral tissues to decrease proteolysis 

and glucose oxidation. This allows muscle (predominately (3R fibers) to direct 

more energy into fat deposition as marbling. 

Alterations in Subcutaneous Fat. The mechanism behind the 

decreased s.c. fat is elusive. In ruminant adipose tissue, BCAT activity is 7 fold 

greater in the cytosol than in the mitochondria; hence, the majority of the KIC 

produced in adipose tissue is in the cytosol (Busboom et al., 1984a, 1984b). 

The activity of BCKAD, the enzyme which catabolizes KIC, is very low in 

ruminant adipose tissue and may be rate limiting. Thus, KIC may accumulate in 

the cytosol and stimulate KIC Oxygenase activity to produce HMB. In turn, when 

HMB is fed, this exogenous source may inhibit adipose tissue which may 

decrease fat synthesis. 
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Alterations in Cholesterol. Cholesterol biosynthesis occurs in the 

cytosol of the cell; HMB is the only metabolite of KIC that exists in the cytosol. 

HMB has direct access to the compartment of the cell to competitively inhibit J3-

hydroxy-J3-methyl glutaryl Coenzyme A (HMG CoA) reductase, the committed 

step enzyme in cholesterol synthesis. The similarity in structure between HMB 

and HMG, differing only by the presence of an extra carboxyl group on HMG, 

gives support to the theory of competitive inhibition. Volumes of data exit about 

HMG CoA reductase inhibition. Several compounds competitively inhibit HMG 

CoA reductase. These include compactin and ML-2368, isolated fungal 

metabolites, and lavastatin, pravastatin, fluindostatin, BMY-21950 and BMY-

22089. These synthetic and non-synthetic agents that have been shown to 

competitively inhibit HMG CoA reductase (Brown et at., 1978; Parker et at., 

1990). Whether the mechanism of cholesterol reduction by HMB is similar to 

such compounds is not yet known, but the current evidence strongly supports 

the theory that competitive inhibition of HMG CoA reductase can decrease 

cholesterol synthesis and concentration in both blood and tissue 
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EFFECTS OF J3-HYDROXY-J3-METHYL BUTYRATE ON PERFORMANCE AND 

CARCASS QUALITY OF FEEDLOT STEERS 

M.T. Van Koevering, H.G. Dolezal, D.R. Gill, F.N. Owens, C.A. Strasia, 

D.S. Buchanan, R. Lake and S. Nissen 

ABSTRACT 

Beta-hydroxy-J3-methyl butyrate (HMB), a compound formed in vivo during 

catabolism of leucine, was fed to 256 crossbred steers as 0 or .03% of diet dry 

matter. Effects on performance, carcass characteristics and tissue composition 

were measured. Groups of 32 steers per diet were slaughtered after 1 05, 119, 133 

and 147 days on feed. HMB was fed only during the final 82 days on feed. 

Averaged across slaughter date, animal performance was not altered by HMB; 

however, an interaction between HMB and time on feed was detected. Daily gain 

was greater (P<.01) for steers fed HMB when slaughtered at 105 d but depressed 

(P<.01) by HMB when st~ers were fed for 147 d. Steers fed HMB had numerically 

higher marbling scores resulting generally in higher carcass quality grades. Steers 

receiving HMB had less (P<.08) s.c. fat and fewer steers with yield grades of 4 or 

greater (1.56 vs 4.69%). Supplementation of HMB to feedlot steers tended to 

increase (P<.07) the intramuscular fat to subcutaneous fat ratio. Steers fed HMB 

had higher (P<.001) plasma concentrations of HMB (3.06 vs 1.70 mg/1) and lower 

(P<.03) concentrations of cholesterol (108.4 vs 118.7 mg/dl). Total lipid content 

within the longissimus muscles (LM) tended (P<.1 0) to be greater for steers fed 

HMB when slaughtered after 1 05 d on feed. 

(Key Words: Feedlot Steers, Marbling, Fat.) 
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Introduction 

To improve productivity of cattle, producers in the U.S. have utilized 

various anabolic implants to improve rate and efficiency of growth. Over 90% of 

the cattle slaughtered annually in the US in 1989 were treated with an anabolic 

implant (NCA, 1989). However, anabolic implants depress marbling score and 

the percentage of cattle with U.S. Choice quality grades (Foutz et al., 1990; 

Trenkle, 1990; Wagner et al., 1990). Current trends in US beef consumption 

favor products containing less fat, particularly trimmable waste fat; in contrast, 

moderate or high amounts of intramuscular fat or marbling have been related to 

improved taste and tenderness. 

HMB, a compound produced in vivo during catabolism of the amino acid 

leucine, is in an experimental stage and has not yet been approved for 

commercial use by the U.S. Food and Drug Administration. In lambs and pigs, 

HMB was produced directly from the oxidation of either leucine or its keto acid, 

a-ketoisocaproate (KIC; Van Koevering and Nissen , 1992). KIC feeding did not 

alter plasma levels of KIC but increased plasma concentrations of HMB 

suggesting that HMB is an intermediate and active metabolite. 

Carcasses from feedlot cattle fed KIC have had increased marbling 

scores, more U.S. Choice quality grades, and less excess fat (yield grades of 4 

or greater; Van Koevering et al., 1989a, 1989b) than carcasses from control 

cattle. When steers were fed KIC, cholesterol concentration (mg/1 OOg of wet 

tissue) in the longissimus muscle (LM) was reduced (P<.08) even though 

intramuscular fat deposition was increased (P<.07; Van Koevering et al., 1989b). 
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Because HMB is formed during oxidation of KIC the biological alterations 

observed from KIC may be the result of its metabolite, HMB. Based on this 

theory, a serial slaughter feedlot study was designed to determine the effect of 

dietary HMB on performance, carcass quality, and tissue composition of feedlot 

steers. 

Materials and Methods 

Animals and Diets. Two hundred and fifty-six crossbred steers (329 kg) 

were selected from a larger group (n=570) based on uniformity in size, weight 

and breed-type. Steers visually appraised as having greater than 25% 8os 

lndicus or Angus characteristics were removed, leaving steers of primarily British 

x Continental breed-type. This was done to reduce variability in marbling 

scores. Steers were processed by routine feedlot practices and implanted with 

an estrogenic implant (24 mg estradiol; Compudose®) at a commercial feedlot 

prior to arrival at Panhandle State University in Goodwell, OK. Upon arrival, 

individual steers were weighed, identified, and blocked into groups based on 

initial weight. Steers were assigned randomly to pens and allotted to treatments 

in a serial slaughter 2 x 4 factorial arrangement. One-half the pens (16) of cattle 

received the basal diet (controls); the other 16 pens of cattle received the same 

diet supplemented with HMB at .03% of the diet dry matter. Sets of four pens 

were assigned to be fed for a different number of days; these steers were fed for 

either 105, 119, 133 or 147 d after arrival. HMB was fed for only the final 82 d of 

each feeding period; HMB was removed from the diet 5 d prior to slaughter, the 

withdrawal time specified by the U.S. Food and Drug Administration for this 

experimental compound. 
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Steers were given ad libitum access to their high concentrate diets for the 

entire feeding period. Cottonseed hulls and chopped alfalfa, used as roughage 

sources, were removed stepwise from the diet to adapt cattle to their final diet. 

Diet compositions and analyses are shown in Table 1. Steers were receiving 

their final ration by day 19 of the study. 

Cattle were weighed initially directly off the truck; these weights were 

used for allocation. Weight gain and feed efficiency were calculated based on 

initial shrunk weight and final live weights which were calculated from hot 

carcass weight /.6495, the mean dressing percentage for all cattle. Net energy 

values were calculated for each treatment using the 1977 yearling steer 

equation as reported by Hays et al. 1986. Cattle were trucked to Dodge City, 

Kansas for slaughter. At slaughter, livers were examined for the presence and 

severity of abscesses. 

Plasma Sampling. Plasma was obtained 16 h post-feeding on the last 

day that HMB was fed to each of the respective slaughter groups. Plasma was 

collected in non-silicone coated Na2EDTA tubes and stored at -2ooc until 

analyzed. HMB and KIC concentrations were determined using the method 

described by Nissen et al. (1990). Cholesterol concentrations were determined 

using Sigma Kit# 352 (Sigma Chemical, St. Louis, MO.). 

Carcass Data and Longissimus Muscle Sampling. Carcass data for all 

slaughter groups were obtained approximately 48 hr postmortem; yield and 

quality grades were determined (USDA, 1989). A 20 em thick section of the LM 

corresponding to the 9 through 12th rib section was removed from the left side of 

each carcass; it was vacuum packaged, and shipped to the Oklahoma State 

University Meat Laboratory. LM sections were aged at 2oc for 14 d postmortem. 

Ribeye samples subsequently were frozen ( -300C) and faced (uneven portion 

removed from the posterior end) before being fabricated into steaks for 
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determining composition. A 1.3 em thick LM steak was removed from the 

posterior end of each LM section; it was denuded of exterior fat and epimysia I 

connective tissue, and stored for proximate analysis. Immediately anterior to the 

steak used for proximate analysis, the remaining LM was cut into 2.5 em thick 

steaks to be used for cholesterol analysis. 

Longissimus Muscle Chemical Analysis. Samples were prepared in 

duplicate for chemical analysis by immersing them in liquid nitrogen and 

powdering them in a Waring Commercial Blendor® (Model 348 122; Waring, 

New Hartford, CN). A frozen 3 g sample of powdered LM was subjected to 

proximate analysis according to procedures outlined by AOAC (1984). 

Cholesterol content was determined through a modification of Lepage and Roy 

(1986). 

Data Analysis. Data were analyzed on a pen basis using least squares 

analysis (SAS, 1988) with a linear model that included the main effects of HMB 

presence (df = 1 ), weight block (df = 3}, slaughter date (df = 3) and all two way 

interactions. Least squares means were calculated and these were compared 

using T -tests. Three steers were removed from the data set for reasons not 

related to dietary treatments. 

Results and Discussion 

Steer Performance. Main effects of HMB feeding on animal performance 

are shown in Table 2. Averaged across days on feed, animal performance was 

not altered by treatment; however controls tended (P<.1 0) to have heavier final 

live weights. Significant treatment by slaughter date interactions were detected 

for final live weight, daily gain, feed intake, feed efficiency and calculated net 

energy content of the diet indicating that slaughter groups had reacted differently 

to HMB feeding. These interactions were examined further (Table 3). 
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For steers fed a total of 105 d, those fed HMB had higher (P<.01) daily 

gains, feed intakes (P<.1 0) and improved feed efficiencies (P<.1 0) when final 

live weight was calculated from carcass weight (Table 3). However, for steers 

fed a total of 147 d, those that received HMB the final 82 d (day 60 to 142) had 

lower daily gains (P<.01 ), higher feed intakes (P<.1 0) and poorer (P<.01) feed 

efficiencies (carcass adjusted basis) than control steers. Note that steers 

allotted to the HMB treatment in the 147 d period also had 11% lower (P<.OS) 

daily gains during the pre-HMB period; this indicated that steers allocated to 

HMB were lower even before HMB was fed. Steers fed HMB and slaughtered at 

1 05 d, gained 8% faster during the pre-HMB period. When Pre-HMB values 

were included as a covariate in the statistical analysis of overall ADG, the main 

effect of HMB was not significant, but the HMB X days fed interaction was still 

significant. Improved ADG and feed efficiency of steers fed HMB for 1 05 d were 

similar to results of Flakoll et al. (1987) for feedlot steers fed KIC, the precursor 

of HMB. Flakoll et al. (1987) reported that ADG and feed/gain ratios were 

improved (20% and 13% respectively) during the first 58 d of a 161 d trial, with 

an overall increase in ADG of 14%. 

Calculated net energy values were not significantly altered by HMB when 

averaged across days on feed (Table 2), but calculated net energy values were 

lower (P<.01) for steers fed HMB and slaughtered after 147 days on feed (Table 

3); this reflects a poorer feed efficiency. The interaction between HMB with 

slaughter date is difficult to explain. Perhaps effects of HMB may differ with 

animal age or carcass fatness. 

Carcass Traits. The main effect of HMB averaged across days on feed 

are presented in Table 4. Carcass weight was lower (P<.OS) for HMB steers 

(Table 4); however, again an interaction of slaughter date and HMB was 

detected (P<.01 ). Carcass data for treatment by slaughter date subclasses are 
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presented in Table 5. Among steers fed for 105 d, those fed HMB had heavier 

(P<.05) carcass weights, whereas for steers fed 147 d, those fed HMB had 

lighter (P<.01) carcass weights. These effects match the treatment effects on 

live animal performance. Averaged across slaughter dates (Table 4), carcasses 

from steers supplemented with HMB had less thick (P<.OB) s.c. fat, this effect 

was consistent for all slaughter dates as illustrated in Figure 1. When analyzed 

within slaughter dates for steers fed 147 d, those fed HMB had less (P<.10) s.c. 

fat. Consumers are demanding beef cuts with less s.c. fat; this has resulted in 

large surpluses of trimmed beef fat. Feeding HMB to feedlot steers may help 

decrease the amount of s.c. fat present on beef carcasses, and reduce the 

amount of external fat that needs to be trimmed from carcasses. 

Figure 2 illustrates the effects of HMB on the percentage of carcasses in 

each yield grade for each slaughter group. Carcasses from steers fed HMB 

tended to have more (31% vs 26%) yield grade 1 's (YG 1 ) and fewer yield grades 

of 4 or greater (YG4). For steers fed 147 d, those fed HMB tended to have a 

greater (47 vs 31; P<.1 0) number of carcasses with yield grades of 2 (YG2) and 

fewer (16% vs 3%; P<.05) YG4 (Table 6). Fat thickness has a large influence 

on yield grades; the decrease (P<.10; Table 5) in s.c. fat thickness with steers 

fed HMB during the 147 d slaughter group may be responsible for the increase 

in YG2 and decrease in YG4 carcasses. Within a given U.S. quality grade 

(Table 7), carcasses from steers fed HMB had more YG1 and fewer YG4 than 

control carcasses. This upward shift in yield grades further demonstrates that 

steers fed HMB had leaner carcasses than controls. 

Ribeye area was not altered by HMB, except for the 147 d slaughter 

group in which steers fed HMB had smaller (P<.05; Table 5) ribeye areas than 

controls. This may reflect our concern that smaller framed, earlier maturing 

animals happened to be assigned randomly to HMB. The treatment by slaughter 
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group interaction was not significant for the percentage of condemned livers; 

however, animal groups with higher daily gains tended to have a higher 

percentage of condemned livers (r=.31 ; P<.09). No differences due to HMB 

were detected in dressing percentage, percentage of kidney, pelvic and heart 

fat, overall maturity or average USDA yield grade (Table 4). 

Marbling scores were numerically higher (432 vs 422) for steers fed HMB 

(Table 8). This resulted in fewer (P<.01) HMB cattle receiving the quality grades 

of U.S. Standard (1.6 vs 6.0%; Table 8). Cattle receiving HMB tended to have a 

greater number of U.S. Select quality grades (42 vs 34%; P<.10). There were 

no significant differences in the percentage of steers with U.S. Choice or U.S. 

Prime quality grades. When quality grades were divided into thirds (Table 8), 

steers supplemented with HMB were more prevalent in the upper one-third of the 

Select (15.6 vs 8.6%; P<.09) and Choice (8.6 vs 5.5%) quality grades. When 

the high Choice and low Prime steers were combined into one category 

classified as "High Quality", HMB fed steers were more prevalent than controls 

within this category (9.5 vs 5.5). Table 9 illustrates the marbling scores and 

quality grades for HMB by slaughter date subclasses. In contrast to the animal 

performance data, no significant HMB by slaughter group interactions were 

apparent for marbling score or quality grade, except for U.S Standards. Trends 

with HMB followed those observed previously with KIC, the precursor of HMB. 

Van Koevering et al. (1989b) noted that marbling score increased linearly with 

increasing dietary KIC. In that study, KIC increased the percentage of cattle 

grading U.S. Choice or higher. 

Changes in s.c. fat thickness and marbling may indicate that the rate 

and site of fat deposition is altered by HMB. The slope of the regression of 

marbling score on s.c. fat thickness was altered (P<.01) by HMB (Figure 3). 

Based on confidence intervals, the Y intercepts were similar with and without 
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HMB but the slope of the line was greater (P<.07) for steers fed HMB. The rate 

of deposition of intramuscular fat was greater for steers fed HMB indicating that 

more fat was deposited intramuscularly per unit increase in s.c. fat when HMB 

was fed. 

Using the regression equations in figure 3, all steers were adjusted to 

constant quality grade of low U.S. Choice (marbling score= 400); following 

adjustment, steers fed HMB had less (.78 vs .82 em) s.c. fat than controls. 

When all steers were adjusted to a constant s.c. fat thickness of 1.27 em, steers 

fed HMB had higher (473 vs 440) marbling scores. Based on the mean 

marbling score, standard deviation, and adjusted marbling scores (constant s.c. 

fat thickness ;1.27 em) for control and HMB, the percentage of steers grading 

U.S. Choice were calculated to be 57% and 66% respectively. Intramuscular fat, 

which is advantageous to carcass quality, normally is considered to be 

deposited only after a substantial amounts of s.c. fat is deposited. The ability of 

HMB to alter fat partitioning between these sites seems unique and cannot be 

explained metabolically at present. 

Plasma and Tissue Composition. The main effects of HMB averaged 

across slaughter date is illustrated in Table 10. Plasma concentrations of HMB 

were greater (P<.001) in samples obtained 16 h post-feeding for steers fed 

HMB; concentrations of KIC were not different due to treatment. Plasma 

cholesterol concentrations were lower (108.4 vs 118.7; P<.03) for steers fed 

HMB. Data for HMB and slaughter date subclasses are presented in Table 11. 

Plasma concentrations of HMB were higher (P<.OS) for every slaughter group 

except when steers were fed for 133 d. Plasma concentrations of chqlesterol 

tended to be lower in every slaughter group except steers fed for 1 05 d. 
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For steers fed 105 d, those fed HMB had higher (P<.1 0; Table 11) 

amounts of total lipid within the LM. No other differences due to HMB were 

detected in tissue concentrations of total lipid, protein or moisture. However 

when averaged across slaughter dates (Table 1 0}, no differences in LM 

composition due to HMB were detected. Steers fed HMB tended to have more 

(4%) lipid deposited within the_ LM as noted previously by Van Koevering et al. 

(1989b} with KIC. In contrast to results of Van Koevering et al. (1989b} where 

KIC reduced LM cholesterol content, the cholesterol content of the LM was not 

significantly affected by HMB. In the former study, KIC was fed until steers were 

slaughtered. The 5 d withdrawal period for HMB in this study may have relieved 

any inhibition of (3-hydroxy-(3-methylgutaryl CoA reductase by HMB and 

permitted cholesterol biosynthesis to increase so that values were normal. 

Implications 

Beta-hydroxy-(3-methylbutyrate enhance carcass quality by altering the 

site of fat deposition and enhancing the intramuscular/subcutaneous fat ratio in 

feedlot steers. This change could improve quality grade while reducing the 

amount of trimmable s.c. fat. The effects of HMB on live animal performance 

remain unclear. With an increased consumer demand for high quality but Jean 

beef, feeding HMB to steers may prove beneficial. 
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Table 1. Composition of diets (dry matter basis) 

Ingredient 1 2 

Com, rolled 40.20 50.20 
Alfalfa hay, pelleted 25.00 20.00 
Cottonseed hulls 25.00 20.00 
Molasses, cane . 4.00 4.00 
Pelleted supplementa 5.80 5.80 

Calculated Composition: 

Final Diet 

Nutrients 

Dry matter, % 
NEm, Meal/kg 
NEg, Meal/kg 
Crude protein,% 
K,% 
Ca,% 
P,% 

OM% 

100.00 
2.09 
1.33 

11.90 
.70 
.54 
.32 

As Fed% 

87.80 
1.84 
1.17 

10.45 
.62 
.48 
.28 

Diet Sequence 

3 4 

(%) 
60.20 70.20 
15.00 10.00 
15.00 10.00 
4.00 4.00 
5.80 5.80 

Final 

82.20 
4.00 
4.00 
4.00 
5.80 

a Supplement composition: Cottonseed meal, 65.9%; calcium carbonate, 
16.6%; urea, 9.49%; salt, 6.04%; dicalcium phosphate, 1.22%; ~-hydroxy-~­
methyl butyrate 0 or .52%; vitamin A, D, E, .20%; Manganese Dioxide .02%. 
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Table 2. Effects of P-Hydroxy-p-Methylbutyrate (HMB) on performance of 
feedlot steers averaged across days on feeda 

Control 

Pens, no. 16 
Steers, no. b 126 

Live weight, kg 
Initial 329 
Finale 508 

ADG, kg d 
Pre HMB 1.64 
Overall 1.42 

DMI, kg/da~ 
Pre HMB 10.32 
Overall 10.18 

Feed/Gain d 
Pre HMB 6.38 
Overall 7.21 

Calc. energy in diet, overall 
ME, Meal/kg OM 2. 79 
NEm, Meal/kg OM 1.77 
NEg, Meal/kg OM 1.17 

HMB 

16 
127 

329 
503 

1.62 
1.39 

10.28 
10.11 

6.41 
7.27 

2.77 
1.75 
1.15 

SEM 

.07 
1.61 

.03 

.01 

.08 

.08 

.11 

.06 

.01 

.01 

.01 

Observed Significance 

HMB 

.10 

Level (P<) 

HMBx 
Days fed 

.01 

.09 

.01 

.04 

.04 

.01 

.02 

.02 

.02 

a Least squares means; SEM with n = 16. 
b Two control steers and one HMB steer were removed for reasons unrelated 

to treatments. 
c Calculated as hot carcass weighU.6495 (mean dressing percentage for all 

steers). 
d Pre HMB = Time before HMB was fed. 
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Table 3. Effects of 13-Hydroxy-p-Methylbutyrate (HMB) on performance of feedlot steersa 

Time on feed, d 

Diet 

Pens, no. 
Steers, no.b 

Live weight, kg 
Initial wt 
Final wtC 

ADG, kg 
Pre HMBd 
Overall 

DMI, kg/da¥. 
Pre HMBu 
Overall 

Feed/Gain d 
Pre HMB 
Overall 

Calc. energy of diet 
ME, Meal/kg 
NEm, Meal/kg 
NEg, Meal/kg 

105 119 133 147 

Control HMB Control HMB Control HMB Control HMB 

4 
30 

4 
32 

330 330f 
464e 479 

1 0.48. 1 0.88. 
9.681 10.161 

7.32. 7.10. 
7.481 7.121 

2.70 2.76 
1.68 1.74 
1.10 1.14 

4 
32 

4 
31 

329 330 
504 498 

1.80 1.72 
1.47 1.42 

4 
32 

4 
32 

330 329 
515 518 

1.62 1.72 
1.40 1.42 

4 
32 

4 
32 

329 329f 
548e 519 

1.66g 1.48r 
1.51e 1.31 

10.36~ 9.75~ 10.21 10.48 10.21. 10.02. 
10.261 9.81J 10.28 10.46 10.511 10.021 

5.77 5.66 
7.00 6.94 

2.81 2.84 
1.79 1.81 
1.19 1.20 

6.30 6.12 
7.37 7.38 

2.76 2.76 
1.74 1.73 
1.15 1.14 

6.13i 6 761. . f 
6.97e 7.65 

2.88e 2.73~ 
1.85e 1.72 
1.23e 1.13f 

SEM 

.14 
3.23 

.06 

.03 

.16 

.16 

.22 

.12 

.03 

.03 
·02 

a Least squares means; SEM with n = 4. 
b Two control steers and one HMB steer were removed for reasons unrelated to treatments. 
c Calculated as hot carcass weight/.6495 (mean dressing percentage for all steers). 
d Pre HMB = Time before HMB fed. 
efghij Means within a slaughter group with different superscripts differ (ef, P<.01; gh, P<.05; ij, P<.10). 



Table 4. Effects of J3-Hydroxy-f3-Methylbutyrate (HMB) on carcass 
characteristics averaged across days on feeda 

Control 

Pens, no. 16 
Steers, no.b 126 

Carcass weight, ~c 330 
Dressing percent 65.21 
Longissimus area, cm2 85.0 
Fat thickness, em 1.07 
KPH,% 1.78 
Overall maturitye 145 
Yield Grade 2.46 
Condemned liver % 10.27 

HMB 

16 
127 

327 
65.15 
83.6 

.99 
1.77 

144 
2.42 

12.50 

SEM 

1.07 
.18 
.85 
.03 
.04 

1.04 
.06 

3.81 

Observed Significance 
Level (P<) 

HMB 

.05 

.08 

HMBx 
Days fed 

.01 

a Least square means; SEM with n = 16. 
b Two control steers and one HMB steer were removed for reasons unrelated 

to treatments. 
c Carcass weight adjusted for trimming loss. 
d Calculated by dividing (final shrunk live weight by hot carcass weight)x1 00. 
e Calculated by averaging lean and skeletal maturities; 1 OO="A"; USDA, 1989. 
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Table 5. Effects of P-Hydroxy-p-Methyl Butyrate (HMB) on carcass characteristics of feedlot steers& 

Time on feed, d 105 119 133 147 

Diet Control HMB Control HMB Control HMB Control HMB SEM 

Pens, no. 4 4 4 4 4 4 4 4 
Steers, no. b 30 32 32 31 32 32 32 32 

Carcass weight, ~c 303h 312i 328 323 335 336 356f 337g 2.14 
Dressing percent 64.70 65.45 65.44 65.12 64.85 64.77 65.86 65.24 .35 
Longissimus area, cm2 83.0 82.1 83.7 84.1 85.4 86.4 87.8h. 81.91 k 1.70 
Fat thickness, em .91 .81 1.02 .97 1.12 1.07 1.24J 1.09 .06 
KPH,% 1.48 1.47 1.61 1.61 2.00 2.06 2.02 t.95 .07 
Overall maturitye 137 139 147 143 148 147 149 148 2.08 
Yield Grade, % 2.11 2.13 2.42 2.31 2.56 2.50 2.76 2.73 .12 
Condemned liver, % 3.57 21.88 9.38 12.50 6.25 12.50 21.88 3.13 7.62 

ol:a 
ol:a a Least square means; SEM with n = 4. 

b Two control steers and one HMB steer were removed for reasons unrelated to treatments. 
c Carcass weight adjusted for trim loss. 
d Calculated by dividing (final shrunk live weight by hot carcass weight)x1 00. 
e Calculated by averaging lean maturity and skeletal maturities; 1 OO="A"; USDA, 1989). 
fghijk Means within a slaughter group with different superscripts differ (fg, P<.01; hi, P<.05; jk, P<.1 0). 



Table 6. Effects of J3-Hydroxy-J3-methyl Butyrate (HMB) on yield grades of feedlot steersa 

Time on feed, d 105 119 133 147 

Diet Control HMB Control HMB Control HMB Control HMB SEM 

Pens, no. 4 4 4 4 4 4 4 4 
Steers, no. b 30 32 32 31 32 32 32 32 

Yield Grade 1, % 34.82 40.63 18.75 32.14 21.88 37.50 28.13 15.63f 6.92 
Yield Grade 2, % 58.04 53.13 56.25 45.09 50.00 40.63 31.25e 46.88 5.93 
Yield Grade 3, % 7.14 3.13 21.88 22.77 21.88 21.88 25.00 34.38 d 7.53 
Yield Grade 4, % 0 3.13 0 0 3.13 0 15.63C _ 3.13 3.90 

a Least square means; SEM with n = 4. 
b Two control steers and one HMB steer were removed for reasons Mnrelated t~ treatments. 
cdef Means within a slaughter group with different superscripts differ (C , P<.05; e, P<.10). 
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Table 7. Effects of U.S. quality grades and J3-Hydroxy-J3-Methyl Butyrate (HMB) on yield grades of feedlot 
steers a 

U.S. Quality Grade Choice or> Select 

Diet Control HMB Control HMB 

Steers, no. 76 71 42 54 

Yield Grade 1, % 7.60 14.95 48.53 50.77 
Yield Grade 2, % 56.00 52.32 42.21 40.93 
Yield Grade 3, % 28.12 30.29 6.10 7.72 
Yield Grade 4, % 5.87 2.56 2.90 .35 

a Least square means; SEM averaged across quality grade and treatment. 

Standard 

Control HMB 

7 2 

80.00 100 
15.58 -14.90 

.49 16.18 
3.37 -1.45 

SEM 

11.62 
14.15 
11.03 
4.61 



Table 8. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on marbling score 
and U.S. quality grades of steers averaged across days on feeda 

Steers, no. b 
Pens, no. 

Marbling Scorec 
Prime,% 

Low,% 
Total 

Choice,% 
High Qualityd, % 
High,% 
Average,% 
Low,% 

Total 

Select,% 
High,% 
Average,% 
Low,% 

Total 

Standard,% 
High,% 

Total 

Control 

126 
16 

422 

0.00 
0.00 

5.47 
5.47 

13.39 
41.07 
59.93 

8.59 
14.73 
10.38 
34.04 

6.03 
6.03 

HMB 

' 127 
16 

432 

0.89 
.89 

9.49 
8.59 
8.71 

37.95 
55.25 

15.63 
11.83 
14.84 
42.30 

1.56 
1.56 

SEM 

8.12 

.63 

.63 

2.02 
2.15 
2.54 
3.47 
3.91 

2.45 
3.28 
2.37 
3.14 

1.04 
1.04 

Observed Significance 
Level (P<) 

HMB 

.09 

.10 

.01 

.01 

HMBx 
Days fed 

.02 

.02 

a Least squares means; SEM with n= 16. 
b Two control steers and one HMB steer were removed for reasons unrelated 

to treatments. 
c 300 to 399, Slight; 400 to 499, Small. 
d High Quality = a combination of High Choice and Low Prime. 
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Table 9. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on marbling score and U.S. quality grades of steersa 

Time on feed, d 

Diet 

Pens, no. 
Steers, no. b 
Marbling Scorec 

Prime, 
low,% 

Total 

Choice, 
High Qualityd,% 
High,% 
Average,% 
Low,% 

Total 

Select, 
High,% 
Average,% 
Low,% 

Total 

Standard, 
High,% 

Total 

105 119 133 147 

Control HMB Control HMB Control HMB Control HMB 

4 
30 

371 

0.00 
0.00 

3.13 
3.13 
6.70 

20.54 
30.36 

10.71 
21.43 
16.52 
49.55 

20.98e 
20.98e 

4 4 
32 32 

383 428 

o.oo o.oo! 
0.00 0.001 

3.13 
3.13 
3.13 

31.25 
37.50 

3.13 
3.13 

15.63 
46.88 
65.63 

15.63 12.50 
12.50 12.50 
28.13 9.38 
56.25 34.38 

6.25f 0.00 -f-6.25 0.00 

4 4 
31 32 

438 453 

3.57J 0.00 
3.57J 0.00 

9.82 
6.25 

12.95 
33.04 
52.24 

6.25 
6.25 

18.75. 
53.131 
78.13 

15.63 3.13g 
12.95 15.63 
15.63 3.13 
44.20 21.88 

0.00 0.00 
0.00 0.00 

4 4 4 
32 32 32 

451 437 454 

0.00 0.00 0.00 
0.00 0.00 0.00 

12.50 
12.50 
12.50. 
34.381 
59.38 

9.38 
9.38 

12.50 
43.75 
65.63 

21.88h 9.38 
9.38 9.38 
9.38 12.50 

40.63 31.25 

0.00 3.13 
0.00 3.13 

12.50 
12.50 
6.25 

53.13 
71.88 

9.38 
12.50 
6.25 

28.13 

0.00 
0.00 

SEM 

16.2 

1.26 
1.26 

4.04 
4.29 
5.08 
6.94 
7.82 

4.89 
6.57 
4.74 
6.29 

2.07 
2.07 

a Least squares means; SEM with n = 4. . 
b Two control steers and one HMB steer were removed for reasons unrelated to treatments. 
c 300 to 399 = Slight; 400 to 499 = Small. 
d .. High Quality= a combination of High Choice and Low Prime. 
efghiJ Means within a slaughter group with different superscripts differ (ef, P<.01; gh, P<.05; ij, P<.10). 



Table 10. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on composition of 
plasma and longissimus muscle averaged across days on feeda 

Pens, no. 
Steers, no. b 

Plasma: 
HMB, ug/ml 
KIC, ug/ml 
Cholesterol, mg/dL 

Longissimus Muscle: 
Proximate Analysis, % 

Total lipid 
Protein 
Moisture 

Cholesterol, 
mg/1 OOg wet tissue 

Control 

16 
126 

1.70 
10.73 

118.7 

3.53 
22.51 
73.34 

48.98 

HMB 

16 
127 

3.06 
10.80 

108.4 

3.68 
22.36 
73.28 

49.71 

SEM 

.22 

.47 
2.86 

.13 

.08 

.09 

.57 

Observed Significance 
Level (P<) 

HMBx 
HMB Days fed 

.001 

.03 

a Least square means; SEM with n = 16. , 
b Two control steers and one HMB steer were removed for reasons unrelated 

to treatments. 
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Table 11. Effects of f3-Hydroxy-f3-Methyl Bu~rate (HMB) on composition of plasma and longissimus muscle 
averaged across slaughter dates. 

Time on feed, d 105 119 133 147 

Diet Control HMB Control HMB Control HMB Control HMB SEM 

Pens, no. 4 4 4 4 4 4 4 4 
Steers, no. 30 32 32 31 32 32 32 32 

Plasma: 
3.12d 3.45d HMB, ug/ml 1.36C 1.80C 2.18 2.60 1.47C 3.o6d .44 

KIC, ug/ml 11.96 12.29 10.58 10.25 11.08 11.44 9.29 9.23 .95 
Cholesterol, mg/dL 94.88 98.22 124.96 111.35 125.01C 106.46d 129.90 117.45 5.73 

Longissimus Muscle: 
U1 Proximate Analysis, % 
0 Total Lipid 2.69e 3.33f 3.69 3.63 3.93 3.58 3.81 4.19 .25 

Protein 22.83 22.57 22.42 22.46 22.12 22.12 22.69 22.31 .16 
Moisture 73.84 73.44 73.23 73.23 73.23 73.57 73.06 72.87 .17 

Cholesterol 
mg/1 OOg wet tissue 48.65 45.85 46.31 47.69 50.01 51.60 50.96 53.69 1.14 

a Least square means; SEM with n = 4. 
b Two control steers and one HMB steer were removed for reasons unrelated to treatments. 
cdef Means within a slaughter group with different superscripts differ (cd, P<.05; ef, P<.10). 



Legend for Figure 

Figure 1. Effects of 13-Hydroxy-13-Methylbutyrate (HMB) on s.c. fat thickness of 

feedlot steers. 

Figure 2. Effects of 13-Hydroxy-13-Methylbutyrate (HMB) on calculated yield grades 

of feedlot steers averaged across days on feed. 

Figure 3. Relationship between s.c. fat thickness (12th rib) and marbling 

deposition with in the longissimus muscle (marbling score: 100 = Practically 

Devoid; 800 = Moderately Abundant). 
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EFFECTS OF J3-HYDROXY-J3-METHYLBUTYRATE ON THE TENDERNESS OF 

RIBEYE STEAKS FROM FEEDLOT STEERS 

M.T. Van Koevering, H.G. Dolezal, D.R. Gill, F.N. Owens, 

D.S. Buchanan, and S. Nissen 

ABSTRACT 

Beta-hydroxy-~-methylbutyrate (HMB), a compound formed during in vivo 

catabolism of leucine, was fed to 256 crossbred steers at a rate of 0 or 0.03% of 

diet dry matter. Groups of 32 steers per diet were slaughtered after 1 05, 119, 133 

and 147 days on feed. Effects HMB on the cooking properties, tenderness, and 

composition of ribeye steaks were evaluated. Averaged across slaughter date, the 

cooking properties of ribeye steaks were not altered due to HMB feeding; however, 

Warner-Bratzler shear force values were reduced {P<.004) by HMB feeding. 

Fewer (P<.02) steaks from HMB fed steers were considered tough{> 4.54 kg force/ 

1.27 em core). Steaks from steers fed HMB for 133 and 147 d were reduced most 

dramatically, being 8.6% {P<.08) and 9.6% (P<.05) lower than for control steers, 

respectively. This resulted in fewer HMB steaks being considered tough, with the 

largest difference (P<.05) at 147 d. Averaged across slaughter group, total lipid 

and moisture content within the longissimus muscles (LM) was not changed by 

HMB feeding; however, the protein content tended (P<.09) to be lower when steers 

were fed HMB. Compared with control steers, steers fed HMB for 105 d tended 

(P<.07) to have a greater amounts of total lipid within the LM, while steers fed HMB 

for 147 d had less (P<.05) protein(%) within the LM. Correlation coefficients were 

low and could only account for a maximum of 20% of the variation in shear force. 

(Key Words: Tenderness, Fat, Feedlot Steers.) 
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INTRODUCTION 

Increased consumer demand for leaner products, has lead into the 

investigation of compounds that increase protein accretion and decrease fat 

synthesis (Moseley et al., 1990; Lanna et al., 1992; Wheeler and Koohmaraie, 

1992). The use of compounds like f3-adrenergic agonists and somatotropin in 

various species has increased production of lean meat in cattle (Carroll et al., 

1990; Fabry and Sommer, 1990; Moseley et al., 1990), sheep (Hamby et al., 1986), 

swine (Jones et al., 1985) and poultry (Gwartney et al., 1992). However, the use of 

f3-adrenergic agonists and somatotropin, generally has decreased muscle 

tenderness. Increased amounts of shear force (kg force/1.27 em core) are required 

to shear muscle of cattle (Fabry et al., 1990; Vestergaard eta;., 1990; Wheeler and 

Koohmaraie, 1992), sheep (Hamby et al., 1986; Pringle et al., 1991), swine (Jones 

et al., 1985; Solomon et al., 1991 ; Chang et al., 1992) and poultry (Morgan et al., 

1989; Gwartney et al., 1992) fed these products; this is believed to be caused 

primarily by the reduced proteolytic enzyme activity due to increased calpastatin 

activity and increased fiber diameter (Morgan et al., 1989; Pringle et al., 1991; 

Solomon et al., 1991; Wheeler and Koohmaraie, 1992). 

HMB is a compound produced during in vivo catabolism of the amino acid 

leucine (LEU). Van Koevering and Nissen (1992) found that in lambs and pigs, 

HMB was produced directly from the oxidation of either leucine or its keto acid, a­

ketoisocaproate (KIC). More specifically, the oxidation of KIC to HMB has been 

demonstrated to occur in the liver via the cytosolic enzyme KIC oxygenase 

(Sabourin and Bieber 1982a, 1982b). The effect HMB has on muscle tissue has 

not yet been assessed; therefore, the objective of this study was to determine if 

feeding HMB to feedlot steers would alter the tenderness of ribeye steaks. 
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MATERIALS AND METHODS 

Animals and Diets. Two hundred and fifty-six crossbred steers (329 kg) 

were selected from a larger group (n=570) based on uniformity in size, weight and 

breed-type. Steers visually appraised as having greater than 25% Bos lndicus or 

Angus characteristics were removed, leaving steers of primarily British x 

Continental breed-type. This was done to reduce variability in marbling scores. 

Steers were processed by routine feedlot practices and implanted with an 

estrogenic implant (24 mg estradiol; Compudose®) at a commercial feedlot prior to 

arrival at Panhandle State University in Goodwell, OK. Upon arrival, individual 

steers were weighed, identified, and blocked into groups based on initial weight. 

Steers were assigned randomly to pens and allotted to treatments in a serial 

slaughter 2 x 4 factorial arrangement. One-half the pens (16) of cattle received the 

basal diet (controls); the other 16 pens of cattle received the same diet 

supplemented with HMB at .03% of the diet dry matter. Sets of four pens were 

assigned to be fed for a different number of days; these steers were fed for either 

1 05, 119, 133 or 147 d after arrival. HMB was fed for only the final 82 d of each 

feeding period; HMB was removed from the diet 5 d prior to slaughter, the 

withdrawal time specified by the U.S. Food and Drug Administration for this 

experimental compound. 

Carcass Data and Longissimus Muscle Sampling. Carcass data for all 

slaughter groups were obtained approximately 48 hr postmortem; yield and quality 

grades were determined (USDA. 1989). A 20 em thick section of the LM 

corresponding to the 9 through 12th rib section was removed from the left side of 

each carcass; it was vacuum packaged, and shipped to the Oklahoma State 

University Meat Laboratory. LM sections were aged at 2oc for 14 d postmortem. 

Ribeye samples subsequently were frozen (-300C) and faced (uneven portion 

removed from the posterior end) before being fabricated into steaks for determining 
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composition. A 1.3 ern thick LM steak was removed from the posterior end of each 

LM section; it was denuded of exterior fat and epimysia! connective tissue, and 

stored for proximate analysis. Immediately anterior to the steak used for proximate 

analysis, the remaining LM was cut into 2.5 ern thick steaks to be used for Warner­

Bratzler shear force determinations. 

Longissimus Muscle Cooking Properties and Shear Force. Cooking 

properties and shear force determinations were conducted as described in AMSA 

(1978). LM steaks used to determine shear force were thawed at 2oc for 24 h, 

trimmed of s.c. fat, weighed and broiled on a Faberware® (Faberware, Bronx, NY) 

open hearth broiler to a final internal temperature of 700C. Cooking time to a 

medium degree of doneness (minutes/100 g raw steak) and cooking shrinkage 

(percentage weight loss) were calculated for each steak. Steaks were allowed to 

cool to 2soc, after which six cores (1.27 em diameter) were removed parallel to the 

longitudinal direction of the muscle fibers. Cores then were individually sheared 

using a lnstron® Model SD-50 Warner-Bratzler shear apparatus(lnstron, Canton, 

MA) to determine the peak force required. 

Data Analysis. Data were analyzed on a individual animal basis using least 

squares analysis (SAS, 1988) with a linear model that included the main effects of 

HMB presence (df = 1·), weight block (df = 3), slaughter date (df = 3) and all two 

way interactions. Least squares means were calculated and treatment means were 

compared using T -tests. Three steers were removed from data set for reasons not 

related to dietary treatments. 

RESULTS AND DISCUSSION 

Cooking Properties of Ribeye Steaks. Averaged across slaughter date no 

differences due to HMB with respect to the cooking properties of ribeye steaks 

were significant (Table 1 ). Steaks form control steers fed for 147 d (Table 2) 

tended to have greater (P<.08) raw weights than steers fed HMB. This increase in 
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raw weight may have be a result of the increase in carcass weight and in REA in 

control steers fed for 147 d. Cooking shrink, which would be a indicator of relative 

changes, was not affected by HMB for steers fed 147 d. Cooking time (min./1 00 g 

raw tissue) was less (P<.05) for steaks taken from HMB steers fed for 105 d (Table 

2), and may be the result of an increased amount of total lipid within these steaks. 

Cooking properties,also were determined for dietary treatment by quality grade 

subclasses (Table 3). No differences due to HMB were observed between steaks 

of different quality grades. 

Tenderness of Ribeye Steaks: Tenderness of the LM in this study was 

measured by determining Warner-Bratzler shear force. Averaged across days on 

feed, shear force (Table 1) was much lower (P<.004) in steaks from HMB-fed 

steers. The nonsignificant HMB x days fed interaction indicates that this effect was 

consistent across all slaughter groups as is illustrated in Table 2. Although the 

HMB x days fed interaction was nonsignificant, comparisons within each slaughter 

group were made as orthogonal contrasts. Shear force in steaks from HMB-fed 

steers were numerically lower at each slaughter date (Table 2), with the difference 

being most dramatic for steers fed for 133 d (P<.08) and 147d (P<.05). The 

decrease in shear force averaged across days fed (Table 1) resulted in steaks from 

HMB fed steers being more predominantly classified as very tender(< 3.86 kg 

force/1.27 em core) and tender (3.86 <tender< 4.54 kg force/1.27 em core), while 

fewer (P<.02) steaks from HMB fed steers were considered to be tough (> 4.54 kg 
( 

force/1.27 em core; P<.02). Similar to shear force, the HMB x days fed interaction 

was not significant for the percentage of very tender, tender and tough steaks. The 

treatment by slaughter date subclasses are illustrated in !able 2; the effects were 

most dramatic among steers fed for 147 d, with the steaks from the control steers 

having a greater (P<.05) percentage of tough steaks. Several factors may affect 

the tenderness of the LM. These include differences in fiber diameter, amount and 
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solubility of collagen, and the activity of postmortem proteases. Without additional 

measurements, it is difficult to determine how HMB increased tenderness of the LM 

steaks. 

Table 3 illustrates the HMB by quality grade subclasses. Carcasses grading 

U.S. Choice or greater from steers fed HMB had lower (P<.04) shear force values 

as compared to the controls. A similar pattern existed for carcasses grading U.S. 

Select and Standard (P<.04) to have lower shear force values. This decrease in 

shear force resulted in an concomitant increase (P<.04) in the number of steaks be 

considered very tender(< 3.86 kg force/1.27 em core) from steers fed HMB and 

grading both U.S. Choice and Standard. These data would suggest that feeding 

HMB to feedlot steers could reduce the amount of variation in and improve the 

consistency of tenderness between ribeye steaks of different U.S. quality grades. 

Chemical Composition of Longissimus Muscle: Averaged across slaughter 

date (Table 1 ), there was a tendency for HMB to increase in lipid content of the LM; 

however, the trend was not consistent enough to reach statistical significance. The 

percentage of protein within the LM tended (P<.09) to be decreased for steers fed 

HMB. The negative correlation (r = -.28; P<.01) between lipid and protein content 

of the LM supports the directional increase in lipid deposition. The moisture 

content of the LM was not significantly changed by HMB. For steers fed 105 d, 

those fed HMB had higher (P<.08; Table 2) amounts of total lipid and numerically 

lower amounts of protein within the LM. Similarly for steers fed 147 d, those fed 

HMB had lower (P<.OS) amounts of protein and numerically more lipid deposited 

within the LM. Once again, the moisture content of the LM was not significantly 

altered by HMB. Dietary HMB did not alter the chemical composition of steaks from 

steers within the different U.S. quality grades (Table 3). 

Correlation Coefficients: Correlation coefficients averaged across HMB and 

slaughter group are illustrated in Tables 4 and 5. Shear force and the cooking 
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properties of ribeye steaks were low but significantly correlated (Table 4; P<.01 ); 

cooking shrink(%) accounted for the largest (19%) amount of the variation in shear 

force. Shear force and LM composition also were correlated (Table 4), with the 

total amount of lipid being associated negatively with shear force in contrast to a 

positive association with protein and moisture. However, when carcass 

characteristics and daily gains were averaged across HMB and slaughter group, 

shear force was correlated with marbling score (P<.01) and overall maturity 

(P<.OS). 

When correlation coefficients were separated by HMB, and averaged across 

slaughter group (Tables 6 and 7), resp~nses between shear force and the cooking 

properties and composition of LM steaks were similar as when compared to the 

overall average. However, when correlation coefficients for shear force and 

carcass characteristics were determined for HMB treatments (Tables 8 and 9), 

responses were found to differ. Shear force values from HMB fed steers were 

correlated (P<.01) to marbling score, LM area and yield grade whereas for control 

steers, no correlation was detected. Shear force values from control steers were 

found to be correlated (P<.OS) more ·Closely with overall carcass maturity, whereas 

in HMB-fed steers, no such correlation was detected. 

Although certain correlations between shear force and various traits were 

found to be significant, no more than 20% of the variation in shear force values 

could be attributed to any single trait such as cooking shrink. Even when all 

independent class variables and carcass traits were combined, only about 20% of 

the total variation in shear force could be accounted for. 
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IMPLICATIONS 

Feeding HMB to feedlot steers enhanced the quality of ribeye steaks by 

increasing tenderness; fewer steaks were classified as tough. HMB enhanced the 

tenderness of ribeye steaks from carcasses of different quality grades. Because 

tenderness is an important factor in the overall acceptability of beef products, 

addition of HMB to feedlot diets may improve the quality of beef produced. 
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Table 1. Effects of J3-Hydroxy-J3-Methyl Butyrate (HMB) on Cooking 
Properties, Wamer-Bratzler shear force and longissimus muscle 
composition of feedlot steers averaged across days on feeda 

Observed Significance 
Level (P<) 

HMBx 
Control , HMB SEM HMB Days fed 

Steers, no. b 126 127 

Cooking Properties 
Raw weight, g 305.97 304.43 2.79 .70 .23 
Cooked weight, g 217.66 217.91 2.19 .94 .25 
Cooking Shrink,% 28.92 28.42 .28 .21 .44 
Cooking Timec 7.02 6.85 .15 .42 .21 

Shear Force, kg d 4.44 4.13 .08 .004 .90 
Very Tender, % 30.07 39.51 4.16 .11 .68 
Tender, ~e , 28.66 32.37 4:07 .52 .67 
Tough,% 41.27 27.32 4.08 .02 .61 

Proximate Analysis, % 
Total lipid 3.53 3.68 .12 .41 .19 
Protein 22.51 22.36 .06 .09 .25 
Moisture 73.34 73.28 .11 .71 .42 

a Least square means; SEM averaged across treatments. 
b Two control steers and one HMB steer were removed for reasons unrelated 

to treatments. 
c Cooking time = min./1 00 g raw tissue. 
d Very Tender< 3.86 kg force/1.27 em core. 
e Tender= 3.86 <tender <4.54 kg force/1.27 em core. 
f Tough > 4.54 kg force/1.27 em core. 
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Table 2. Effects of P-Hydroxy-(3-Methyl Butyrate (HMB) 'and slaughter group on cooking properties, Warner-
Bratzler shear force, and longissimus muscle composition of rib steaks from feedlot steersa 

Time on feed, d 105 119 133 147 

Diet Control HMB Control HMB Control HMB Control HMB SEM 

Steers, no. b 30 32 32 31 32 32 32 32 

Cooking Properties 
307.66h 293.99i Raw weight, g 290.32 297.43 292.49 297.48 333.42 328.79 5.59 

Cooked weight, g 202.15 210.29 208.95 213.61 240.80 235.59 218.74 212.16 4.37 
Cooking Shrigk, % 30.43f 29.31 28.57 28:22 27.80 28.30 28.90 27.85 .56 
Cooking time 8.07 7.19g 7.02 6.81 6.38 6.71 6.60 6.68 .30 

Shear Force, kg 4.57 4.34 4.52 4.29 4.3oh 3.93i 4.37f 3.95g .33 
Very Tender, %C 23.41 34.38 28.13 26.78 34.38 53.13 34.38 43.75 8.26 

0\ Tender %d 24.00 25.00 37.50 38.88 28.13 25.00 25.00 40.63 8.08 I 

40.63f 0\ Tough, %e 52.60 40.63 34.38 31.17 37.50 21.88 15.63g 8.10 

Proximate Analysis, % 
2.69h 3.33i Total Lipid 3.69 3.62 3.93 3.58 3.81f 4.19 .25 

Protein 22.83 22.57 22.42 22.46 22.12 22.12 22.69 22.31g .12 
Moisture 73.83 73.44 73.23 73.24 73.23 73.57 73.06 72.87 .23 

a Least square means; SEM averaged across treatment and slaughter group. 
b Cooking time = min./1 00 g raw tissue. 
c Very Tender< 3.86 kg force/1.27 em core. 
d Tender= 3.86 <tender <4.54 kg force/1.27 em core. 
e Tough > 4.54 kg force/1.27 em core. . 
fghi Means within a slaughter group with different superscripts differ (fg, P<.05; hi, P<.08). 



Table 3. Effects of U.S. quality grades and J3-Hydroxy-J3-Methyl Butyrate (HMB) on cooking properties, Warner-
Bratzler shear force, and longissimus muscle composition of ribeye steaks from feedlot steersa 

U.S. Quality Grade Choice or> Select Standard 

Diet Control HMB Control HMB Control HMB SEM 

Steers, no. 76 71 42 54 7 2 

Cooking Properties 
Raw weight, g 305.81 301.45 305.07 309.44 312.56 275.07 8.92 
Cooked weight, g 217.16 215.58 217.58 221.48 222.99 204.45 7.00 
Cooking Shri~, % 29.08 28.50 28.70 28.41 28.61 25.73 .90 
Cooking time, 7.32 6.90 6.57 6.76 6.78 7.08 .49 

Shear Force, kg 4.39~ 4.04g 4.50 4.28 4.62f 3.12g .24 
Very Tendar, %c 29.94 45.02g 31.61 29.75 23.1of 106.57g 13.19 

0'1 Tender,% 30.06 27.18 26.02 39.80 29.37 17.26 13.04 
-.J Tough, %e 40.01 27.61 42.43 28.89 47.19 -25.36 13.07 

Proximate Analysis, % 
Total Lipid 4.18 4.40 2.84 2.78 1.56 2.12 .34 
Protein 22.41 22.23 22.66 22.53 22.68 22.94 .20 
Moisture 72.83 72.67 73.93 74.04 75.03 74.47 .32 

a Least square means; SEM averaged across quality grade and treatment. 
b Cooking time = min./1 00 g raw tissue. 
c Very Tender< 3.86 kg force/1.27 em core. 
d Tender= 3.86 <tender <4.54 kg force/1.27 em core. 
e Tough > 4.54 kg force/1.27 em core. 
fg Means within a quality grade with different superscripts differ P<.04. 



Table 4. Simple correlation coefficients for cooking properties, Wamer-Bratzler shear force, and longissimus 
muscle composition averaged across treatment and slaughter groupa 

Shear Raw Cooked Cooking Cooking Proximate Analysis 
Force Weight Weight Shrink Time Fat Protein Moisture 

Marbling Score -0.16 -0.04 -0.03 -0.03 0.02 0.70 -0.30 -0.62 
Moisture,% 0.17 0.10 0.05 0.08 -0.01 -0.88 -0.10 
Protein,% 0.19 0.04 0.03 0.02 0.01. -0.28 
Fat,% -0.22 -0.11 -0.06 -0.09 0.03 
Cooking Timeb 0.22 -0.37 -0.51 0.42 
Cooking Shrink, % 0.44 -0.02 -0.41 
Cooked Weight, g -0.13 0.92 
Raw Weight, g 0.04 

a Correlation coefficients ~ 0.13 and ~0.15 differ from zero (P<.05),and ~ 0.16 differ from zero (P<.01 ); n = 252. 
b Cooking time = min./1 00 g raw tissue: . 



Table 5. Simple correlation coefficients Wamer-Bratzler shear force, carcass characteristics, and daily gain 
averaged across treatment and slaughter groupa 

Shear Daily Yield LM S.C. Fat Overall Dressing Carcass 
Force Gains Grade area Thickness Maturity Percent Weight 

Marbling Score -0.16 0.08 0.47 -0.24 0.48 0.13 0.10 0.15 
Carcass Weight, kgb 0.07 0.95 0.17 0.40 0.27 -0.25 0.26 
Dressing, %C -o.o3 0.26 -0.14 0.35 0.04 0.04 
Overall Maturityd -0.13 -0.28 0.13 -0.20 0.12 
S.C. Fat thickness, c~ -0.08 0.23 0.85 -0.36 
Longissimus area, em 0.07 0.41 -0.74 
Yield Grade -0.06 0.13 
Daily Gain, kg 0.10 

a Correlation coefficients ;;:: 0.13 and ~ 0.14 differ from zero (P<.05),and ;;:: 0.15 differ from zero (P<.01 ); n = 252. 
b Carcass weight adjusted for trimming loss. 
c Calculated by dividing (final shrunk live weight by hot carcass weight)x1 00. 
d Calculated by averaging lean and skeletal maturities; 1 OO=A; USDA, 1989. 



Table 6. Simple correlation coefficients for cooking properties, Wamer-Bratzler shear force, and longissimus 
muscle composition for control steers averaged across slaughter groupa 

Shear Raw Cooked Cooking Cooking Proximate Analysis 
Force Weight Weight Shrink Time Fat Protein Moisture 

Marbling Score -0.12 -0.01 -0.02 0.04 0.03 0.65 -0.27 -0.56 
Moisture,% 0.10 -0.01 -0.07 0.15 -0.02 -0.85 -0.17 
Protein,% 0.22 0.07 0.14 -0.20 -0.06 -0.22 
Fat,% -0.20 0.01 0.05 -0.12 0.06 
Cooking Timeb 0.20 -0.33 -0.43 0.35 
Cooking Shrink, % 0.40 .;.0.07 -0.45 
Cooked Weight, g -0.22 ~o.92 

Raw Weight, g -0.08 

ab Correlation coefficients~ .20 and~ .21 differ from zero (P<.05),and ~ .22 differ from zero (P<.01 ); n = 125. 
Cooking time = min./1 00 g raw tissue. 



Table 7. Simple correlation coefficients for cooking properties, Wamer-Bratzler shear force, and longissimus 
muscle composition for steers fed 13-Hydroxy-p-methyl Butyrate (HMB) averaged across slaughter 
groupa 

Shear Raw Cooked Cooking Cooking Proximate Analysis 
Force Weight Weight Shrink Time Fat Protein Moisture 

Marbling Score -0.22. -0.10 -0.06 -0.07 0.02 0.74 -0.28 -0.66 
Moisture,% 0.26 0.18 0.15 0.04 -0.02 -0.90 -0.07 
Protein,% 0.12 0.03 -0.04 0.17 0.01 -0.30 
Fat,% -0.25 -0.19 -0.15 -0.07 0.03 
Cooking Timeb 0.27 -0.47 -0.64 0.52 
Cooking Shrink, % 0.44 0.02 -0.37 
Cooked Weight, g -0.03 0.92 
Raw Weight, g 0.16 

a Correlation coefficients~ .18 and~ .22 differ from zero (P<.05),and ~ 0.23 differ from zero (P<.01); n = 127. 
-.J b Cooking time = min./1 00 g raw tissue . .... 



Table 8. Simple correlation coefficients Wamer-Bratzler shear force, carcass characteristics, and daily gain 
for control steers averaged across slaughter groupa 

Shear Daily Yield LM S.C. Fat Overall Dressing Carcass 
Force Gains Grade area Thickness Maturity Percent Weight 

Marbling Score -0.12 0.17 0.43 -0.25 0.38 0.11 -0.07 0.22 
Carcass Weight, kgb 0.01 0.96 0.31 0.29 0.38 -0.19 0.18 
Dressing, %c 0.04 0.21 -0.16 0.35 -0.01 -0.08 
Overall Maturityd -o.19 -0.22 0.14 -0.17 0.16 
S.C. Fat thickness, c~ -0.02 0.35 0.88 -0.41 
Longissimus area, em -0.11 0.31 -0.74 
Yield Grade 0.07 0.27 
Daily Gain, kg 0.06 

a Correlation coefficients ;?: .19 and :::; .21 differ from zero (P<.05),and ;?: .22 differ from zero (P<.01 ); n = 125. 
b Carcass weight adjusted for trimming loss. 

-.J c Calculated by dividing (final shrunk live weight by hot carcass weight)x1 00. 
~ d Calculated by averaging lean and skeletal maturities; 1 OO=A; USDA, 1989. 



Table 9. Simple correlation coefficients Wamer-Bratzler shear force, carcass characteristicsL and daily gain 
for steers fed (3-Hydroxy-p-Methyl Butyrate (HMB) averaged across slaughter groupa 

Shear Daily Yield LM S.C. Fat Overall Dressing Carcass 
Force Gains Grade area Thickness Maturity Percent Weight 

Marbling Score -0.21 0.01 0.50 -0.22 0.56 0.13 0.21 0.08 
Carcass Weight, kgb 0.10 0.95 0.01 0.52 0.15 -0.31 0.36 
Dressing, %C -o.o7 0.34 -0.13 0.35 0.01 0.09 
Overall Maturityd 0.02 -0.34 0.10 -0.21 0.06 
S.C. Fat thickness, c~ -0.14 0.10 0.83 -0.31 
Longissimus area, em 0.23 0.52 -0.73 
Yield Grade -0.21 -0.03 
Daily Gain, kg 0.12 

a Correlation coefficients = 0.21 differ from zero (P<.05),and ~ 0.22 differ from zero (P<.01 ); n = 127. 
b Carcass weight adjusted for trimming loss. 

-..J c Calculated by dividing (final shrunk live weight by hot carcass weight)x1 00. 
w d Calculated by averaging lean and skeletal maturities; 1 OO=A; USDA, 1989. 



EFFECT OF SLAUGHTER DATE ON PERFORMANCE, CARCASS 

CHARACTERISTICS, AND TISSUE COMPOSITION OF FEEDLOT STEERS 

M.T. Van Koevering, D.R. Gill, F.N. Owens, 

H.G. Dolezal and C.A. Strasia 

ABSTRACT 

Two hundred and fifty-six (256) crossbred yearling steers initially 

weighing 329 kg were used to study the effect of slaughter date on live 

performance, carcass characteristics, tissue composition and tenderness. 

Steers were divided into four slaughter groups (64 steers) and fed for either 105, 

119, 133 or 147 d. Daily gains (carcass adjusted basis) tended (P<.07) to 

increase in a quadratic manner while feed intake increased (P<.03) linearly as 

cattle were fed more days. Efficiency of feed conversion {carcass adjusted 

basis), greatest {P<.05) for steers fed 119 d, responded in a cubic fashion 

(P<.01) across slaughter groups. Carcass weight, s.c. fat thickness, KPH, 

overall carcass maturity, and yield grade increased linearly (P<.01) with 

slaughter date. Marbling score and the percentage of cattle grading U.S. Choice 

increased {linearly; P<.01) with time on feed but at a decreasing rate {quadratic; 

P<.05). Cholesterol and total lipid concentrations increased linearly {P<.01) in 

longissimus muscle as time on feed increased. While the percentage of protein 

and moisture decreased (L; P<.1 0 and P<.01 ). Tenderness of ribeye steaks 

tended to increase linearly {P<.07) with slaughter date. 

{Key Words: Feedlot Steers, Cholesterol, Tenderness.) 
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INTRODUCTION 

The length of time cattle are fed a high concentrate diets is dependent 

primarily upon economics. Seasonal changes in feed and cattle costs dictate 

the length of time cattle are fed. Longer feeding periods for cattle of a given 

starting weight will increase final live weight, hot carcass weight, longissimus 

area, s.c. fat thickness, yield grade and quality grades (Zinn et al., 1970a; Hicks 

et al., 1987; Dolezal et al., 1982), only some of which increase the value of 

cattle. Increases in s.c. fat thickness and yield grade are not conducive to 

increases in carcass quality and consumer interest. Additional quality factors 

include cholesterol content and tenderness of ribeye steaks. Tenderness 

increases with time to a point ( 139 d Epley et al., 1968; 150 to 180 d Zinn et al., 

1970b), after which animal age may have a greater influence, resulting in 

reduced tenderness. The objective of this study was to evaluate the effects of 

different slaughter dates on performance, carcass quality, tenderness and 

cholesterol content. 

Materials and Methods 

Animals and Diets. Two hundred and fifty-six crossbred steers (329 kg) 

were selected from a larger group (n=570) based on uniform size, weight and 

breed-type. Steers with great~r than 25% Bos lndicus or Angus characteristics 

were removed, leaving steers of primarily British x Continental breed-type. 

Steers were processed routinely and implanted with an estrogenic implant (24 

mg estradiol; Compudose®) at a commercial feedlot prior to arrival at Panhandle 

State University in Goodwell, OK. Upon arrival, steers were individually 

weighed, identified, and blocked into 4 weight groups based on initial. weight. 
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Sixteen (16) steers from each weight group were randomly assigned to pens (8 

steers/pen) and pens were assigned to specific slaughter dates. Eight pens (2 

from each weight group) were assigned to be fed for a different number of days. 

Steers were fed for either 105, 119, 133 or 147 days after arrival. 

Steers were given ad libitum access to their high concentrate diets for the 

entire feeding period. Cottonseed hulls and chopped alfalfa, used as roughage 

sources, were removed stepwise from the diet to adapt cattle to their final diet. 

Diet compositions and anaiY.ses are shown in Table 1. Steers were receiving 

their final ration by day -19 of the study. 

Cattle were weighed initially directly off the truck; these weights were 

used for allocation. Weight gain and feed efficiency were calculated based on 

initial shrunk weight and final live weights which were calculated from hot 

carcass weight /.6495, the mean dressing percentage for all cattle. Net energy 

values were calculated for each treatment using the 1977 yearling steer 

equation as reported by Hays et al. 1986. Cattle were trucked to Dodge City, 

Kansas for slaughter. At slaughter, livers were examined for the presence and 

severity of abscesses. 

Plasma Sampling. Plasma was obtained 16 h post-feeding 5 d prior to 

slaughter for each respective slaughter group. Plasma was collected in non­

silicone coated Na2EDTA tubes and stored at -2ooc until analyzed. Cholesterol 

concentrations were determined using Sigma Kit# 352 (Sigma Chemical, St. 

Louis, MO.). 

Carcass Data and Longissimus Muscle Sampling. Carcass data for all 

slaughter groups were obtained approximately 48 hr postmortem; yield and 

quality grades were determined (USDA, 1989). A 20 em thick section of the LM 

corresponding to the 9 through 12th rib section was removed from the left side of 

each carcass; it was vacuum packaged, and shipped to the Oklahoma State 
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University Meat Laboratory. LM sections were aged at 2oc for 14 d postmortem. 

Ribeye samples subsequently were frozen ( -300C) and faced (uneven portion 

removed from the posterior end) before being fabricated into steaks for 

determining composition. A 1.3 em thick LM steak was removed from the 

posterior end of each LM section; it was denuded of exterior fat and epimysia! 

connective tissue, and stored for proximate analysis. Immediately anterior to the 

steak used for proximate analysis, the remaining LM was cut into 2.5 em thick 

steaks to be used for cholesterol analysis and shear force determination. 

Longissimus Muscle Chemical Analysis.' Samples were prepared in 

duplicate for chemical analysis by immersing them in liquid nitrogen and 

powdering them in a Waring Commercial Blendor® (Model 348122; Waring, 

New Hartford, CN). A frozen 3 g sample of powdered LM was subjected to 

proximate analysis according to procedures outlined by AOAC (1984). 

Cholesterol content was determined through a modification of Lepage and Roy 

(1986). 

Longissimus Muscle Cpoking Properties and Shear Force. Cooking 

properties and shear force determinations were conducted as described in 

AMSA (1978). LM steaks used to determine shear force were thawed at 2oc for 

24 h, trimmed of s.c. fat, weighed and broiled on a Faberware® (Faberware, 

Bronx, NY) open hearth broiler to a final internal temperature of 7ooc. Cooking 

time to a medium degree of doneness (minutes/100 g raw steak) and cooking 

shrinkage (percentage weight loss) were calculated for each steak. Steaks were 

allowed to cool to 250C, after which six cores (1.27 em diameter) were removed 

parallel to the longitudinal direction of the muscle fibers. Cores then were 

individually sheared using a lnstron® Model SD-50 Warner-Bratzler shear 

apparatus(lnstron, Canton, MA) to determine the peak force required. 
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Data Analysis. Beta-hydroxy-~-methyl butyrate (HMB), a metabolite of 

leucine, was imposed across this experiment to evaluate the effects of HMB on 

performance, carcass characteristics and tissue composition. Data were 

analyzed on a pen basis using least squares analysis (SAS , 1988) with a linear 

model that included effects of HMB presence (df = 1 ), weight block (df = 3), 

slaughter date (df = 3) and all two way interactions being included in the model. 

Carcass data, chemical composition and shear force values of LM were 

regressed against the mean carcass weight and s.c. fat thickness. When a 

slope was significant, but the interaction was not significant, the adjusted means 

were reported. Least squares means were calculated and slaughter group 

means were compared using T-tests and linear, quadratic and cubic contrasts. 

Results and Discussion 

Steer Performance. The effects of slaughter date on live animal 

performance are presented in Table 2. Initial weights were not different between 

slaughter group, even though a linear decrease (L; P<.01) was detected. Final 

live weight increased (P<.05) resulting in a L increase (P<.01) across slaughter 

group, but weight increased at a decreasing rate giving a quadratic (Q; P<.03) 

response. Hicks et al. (1987) fed steers of similar weight for either 100, 114, 

128 or 142 d, and reported similar L increases in final live weight. Zinn et al. 

(1970a) fed steers and heifers between 0 and 270 d with slaughter dates at 30 d 

intervals. They reported that final live weights increased from 90 to 210 d. May 

et al. (1992) found similar results, with L increases (P<.01) in slaughter weight 

from steers fed between 0 and 196 d and slaughter dates at 28 d intervals. 

Carcass adjusted ADG (Table 2) was the greatest for steers fed 119 d, being 5.7 

%greater (P<.05) than steers fed for 105 d but not significantly different from 

ADG of steers fed for 133 or 147 d. This was similar to the findings of Zinn et al. 

(1970a) where ADG increased with increasing time on feed; however, as in our 
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study ADG was not significantly increased after 120 d on feed. In contrast, 

Hicks et al. (1987) found that ADG on a live weight basis decreased (L; P<.OS) 

as time on feed increased. May et al. (1992) found no differences in ADG 

among slaughter groups. In the present study, daily feed intake of steers 

appeared to increase (L; P<.03) across slaughter groups, with steers fed 105 d 

having lower (P<.OS) feed intakes than those fed for 133 d. Hicks et al. (1987) 

found no differences in feed intake of cattle fed a comparable amount of time. 

Because feed intake generally is lower the first month than thereafter (Hicks et 

al. 1990), longer feeding times will dilute this effect and give a higher mean feed 

intake for the total feeding period. 

Steers fed for 119 d had superior (P<.OS) efficiency in feed conversion 

(carcass adjusted basis) as compared to all other groups (Table 2). The cubic 

(C; P<.01) effect observed in this trait is difficult to explain. Hicks et al. (1987) 

reported that feed efficiencies became poorer (L; P<.OS) across a similar feeding 

period. Dietary calculated net energy tended to increase (L; P<.08) with 

slaughter groups; however, the best fit appeared to be C (P<.01) as for feed 

efficiency. 

Carcass Traits. The effects of time on feed on carcass traits are 

illustrated in Table 3. Hot carcass weights increased L (P<.01) but less at later 

times (P<.OS) with slaughter date, which is similar to linear responses previously 

reported (Zinn et al., 1970a; Hicks et al., 1987; May et al., 1992). Once again, 

as with final live weights, hot carcass weight increased at a decreasing rate, 

resulting in a Q (P<.06) response across slaughter group. Dressing percentage 

was not altered by slaughter group in this study. In contrast Hicks et al. (1987) 

reported that dressing percentage increased L between 1 00 and 142 d on feed. 
I 

Williams et al. (1989) fed medium framed, crossbred steers for 84, 112, or 142 d 

and found that dressing percent was constant until142 d! With cattle fed for 
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longer amounts of time (196 or 270 d) dressing percent has increased with time 

on feed (Zinn et al., 1970a; May et al., 1992). When dressing percent was 

adjusted to a mean carcass weight, dressing percent actually decreased (Q; 

P<.04) with increasing time on feed. This means that the effect of weight on 

dressing percentage differs from the effect of time on feed on dressing 

percentage. 

Although carcass weights increased, LM area was not altered by 

slaughter group. These data are not in agreement with the results of Hicks et al. 

(1987), Williams et al. (1989) and May et al. (1992); they all observed an 

increase in LM area with an increase in time on feed. Subcutaneous fat 

thickness (Table 3), however, increased (L; P<.01) together with mean USDA 

yield grades and percentage of yield grades of 4 or greater {P<.07). This is 

similar to other reports (Hicks et al., 1987; Miller et al., 1987; May et al., 1992) .. 

The percentage of kidney, pelvic and heart fat (KPH) increased (L; P<.01) with 

time on feed; with steers fed for less than 119 d having less {P<.OS) KPH than 

steers fed more than 133 d (Table 3). Hicks et al. (1987) found similar results, 

with steers being fed for 114 d or less having lower percentage of KPH than 

steers being fed for 128 d or greater. However, the C effect (P<.01) of KPH we 

detected is difficult to explain. 

The maturity of steer carcasses (Table 3) was greater {P<.OS) for steers 

fed 119 d or greater than steers fed 1 05 d. Overall maturity increased at a 

decreasing rate, producing both L (P<.01) and Q responses (P<.08). In contrast, 

Miller et al. ( 1987) detected no increase in lean, skeletal or overall maturity when 

cattle where fed up to 168 d. When overall carcass maturity was adjusted to a 

mean fat thickness, the effect of slaughter group became C (P<.04), this is 

difficult to explain. The percentage of condemned livers was not affected by 

slaughter group; which is similar to the findings of Hicks et al. (1987). 
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When time on feed is extended, marbling scores and percentage of U.S. 

Choice cattle generally increase (Dolezal et al., 1982; May et al., 1992; Miller et 

al., 1987). In this present study, marbling scores and the percentage of cattle 

grading choice (Table 4) increased (L; P<.01) across slaughter group, but the 

values were not highest for steers fed 147 d; consequently, we detected a Q 

(P<.02) response. Steers fed for 105 d were lower (P<.05) in both marbling 

score and percentage of cattle grading U.S. Choice than any other slaughter 

group. Inversely, the percentage of steers grading U.S. Select and Standard 

decreased (L; P<.01) with increased time on feed. Steers used by Hicks et al. 

1987 were of similar breed-type, weight and slaughter dates; their results are 

very consistent ours for marbling score and percent U.S. Choice cattle. When 

marbling scores were adjusted to a mean fat thickness, marbling scores were the 

greatest ( P<. 05) for steers fed between 119 and 133 d. Steers in our population, 

similar to those of Hicks et al. (1987), continued to deposit fat subcutaneously, 

but did not deposit an increased amount of intramuscular fat after 133 days on 

feed. When marbling scores were adjusted for s.c. fat thickness, there was no 

advantage from feeding steers more than 119 d. Thus, steers in both studies 

may have reached their genetic potential to grade U.S. Choice between 119 and 

133 d. This agrees with results of Williams et al. (1989), in which steers fed for 

112 d had similar U.S. quality grades as those fed for 140 d. 

Chemical composition of longissimus muscle. Table 5 illustrates the 

chemical composition of the LM. Cholesterol concentrations (mg/dl) in plasma 

increased (L; P<.01) across slaughter group, with steers fed for 105 d having the 

lowest (P<.05) concentration of any slaughter group. This was similar to the 

increase (L; P<.01) in the cholesterol concentration (mg/1 00 g wet tissue) within 

the LM. Steers being fed for 119 or less had lower (P<.05) amounts of 

cholesterol in the LM than steers fed for 133 d or more. Total lipid present within 
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the LM also increased (L; P<.01) across slaughter groups, with steers being fed 

for 105 d having less (P<.05) LM lipid than any other slaughter group. 

Regression equations using the percent fat deposited within the LM to determine 

the cholesterol content have been reported by Rhee et al. (1982) and Tue et al. 

(1967). Both of those equations predict cholesterol concentrations (mg/1 OOg 

wet tissue) between 15,and 25% higher than we determined in this study. This 

could be due to decreased precision in the colorimetric assays used in the 

previous studies. Hoelscher et al. (1988) reported that approximately 90% of the 

total cholesterol found in adipose tissue was present in the storage fraction, 

leaving approximately 1 0% of the total cholesterol in the membrane fraction. 

Thus, increasing the amount of lipid found in the storage form, as would be the 

case with increased amounts of marbling, should increase the amounts of 

cholesterol present within the LM. When quality grade was regressed against 

cholesterol content of the LM, no significant quality grade by slaughter date 

interaction was detected. Thus, neither slaughter date or age was a factor in 

cholesterol deposition of the LM; instead increases in cholesterol content within 

the LM appear to be caused by a increase in fat content. This contrasts with 

work by Stromer et al. (1966) and Rhee et al. (1982), where no differences in LM 

cholesterol concentration were detected between carcasses of different quality 

grades. 

With time on fed, LM moisture content decreased linearly (P<.01) while 

moisture and protein responded Q (P<.02). If fat replaced the moisture and 

protein within the LM as slaughter date increased, the amount of cholesterol 

within the LM would increase. When protein content of the LM was adjusted to a 

mean s.c. fat thickness, the Q effect of slaughter date disappeared. Hence, for 

our steers, feeding high concentrate diets for more than 119 d may be 

detrimental due to increased concentrations of cholesterol. 
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Cooking properties of rib steaks. Although LM area was not altered by 

slaughter group, raw weight and cooked weight of LM steaks increased (L; 

P<.01) with slaughter group (Table 6). Without precise control over thickness 

when cutting steaks, changes in raw and cooked weight of LM steaks may 

indicate merely that the thickness of steaks varied. However, the percent 

cooking shrink, a better indicator of relative changes, decreased (L; P<.02) at a 

decreasing rate (Q; P<.04) across slaughter date. The cooking time 

(minutes/1 00 g raw tissue) required to cook LM steaks to a medium degree of 

doneness also decreased (L; P<.01) with slaughter group. 

Tenderness of Ribeye Steaks. As time on feed increases, tenderness 

increases (Dolezal et al., 1982; Miller et al., 187); however, this increase may be 

limited with a maximum at 139 d (Epley et al., 1968) or between 150 and 180 d 

(Zinn et al., 1970b); after this time, the effect of animal age may decrease 

tenderness. May et al. (1992) fed steers between 0 and 196 d and reported that 

the lowest shear force value was at 112 d; with shear force values at 28 and 196 

d both were greater. Tenderness of the LM in this study, measured by Warner­

Bratzler shear force, tended to increase (L; P<.07; Table 6) continuously with 

increasing days on feed. This contrasts with results of Matthews and Bennett 

(1962), Moody et al. (1970) and Dinius and Cross (1978) who reported that 

tenderness, as measured by taste panel or Warner-Bratzler shear force, did not 

change as time on feed increased. In our study, the percentage of steaks being 

considered very tender(< 3.86 kg) and tender (3.86 <tender <4.54 kg) where 

unaffected by time on feed. However, the percentage of steaks being 

considered tough (> 4.54 kg) decreased (L; P<.03) with increased time on feed; 

steers fed for 105 d had a higher (P<.05) percentage of tough steaks than steers 

fed for 147 d. Even though tenderness tended to increase with time on feed, no 

differences were detected between 119 and 147 days on feed for shear force, or 
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the percentage of steaks being considered tough. Thus, steers fed 119 d should 

have been fed long enough to be considered satisfactory in tenderness and 

palatability as was reported previously by Dolezal et al. (1982). 

Implications 

Many performance and carcass traits increased with increasing time on 

feed. Steers fed for 119 d had the highest ADG and feed efficiency (carcass 

adjusted basis) and acceptable levels of s.c. fat, KPH, yield grades and 

marbling. Concentrations of cholesterol in both plasma and LM increased with 

longer times on feed. This may be due to the increased amount of fat deposited 

within the LM. Tenderness of rib steaks also tended to increase with time on 

feed. With increased consumer demand for high quality but lean beef, feeding 

cattle more than 119 d may not be advantageous because s.c. fat and 

cholesterol deposited within the LM increased without improvements in quality 

grade or tenderness. Although the length of time cattle are kept on feed usually 

is determined by the feeders desire to maximize profit, effects on quality and 

acceptability of beef also need to be considered to maintain consumer appeal of 

beef products. 
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Table 1. Composition of diets (dry matter basis) 

Ingredient 1 2 

Corn, rolled 40.20 50.20 
Alfalfa hay, pelleted 25.00 20.00 
Cottonseed hulls 25.00 20.00 
Molasses, cane 4.00 4.00 
Pelleted supplementa 5.80 5.80 

Calculated Composition: 

Final Diet 

Nutrients 

Dry matter,% 
NEm, Meal/kg 
NEg, Meal/kg 
Crude protein, % 
K,% 
Ca,% 
P,% 

DM% 

100.00 
2.09 
1.33 

11.90 
.70 
.54 
.32 

As Fed% 

87.80 
1.84 
1.17 

10.45 
.62 
.48 
.28 

Diet Sequence 

3 4 

(%) 
60.20 70.20 
15.00 10.00 
15.00 10.00 
4.00 4.00 
5.80 5.80 

Final 

82.20 
4.00 
4.00 
4.00 
5.80 

a Supplement composition: Cottonseed meal, 65.9%; calcium carbonate, 
17.1%; urea, 9.49%; salt, 6.04%; dicalcium phosphate, 1.25%; vitamin A, 
D, E, .20%; Manganese Dioxide .02%. 
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Table 2. Effects of days on feed on performance of feedlot steersa 

Days on feed Observed Significance (P<) 

105 119 133 147 SEM Linear Quadratic Cubic 

No. of Pens 8 8 8 8 
No. of Steers 61 -63 64 64 

Initial wt., k~ 330 330d 329 329 .10 .01 .44 .77 
Final wt., kg 472C 501 516e 533f 2.28 .01 .03 .16 

ADG, kg 1.36C 1.44d 1.41Cd 1.41Cd .01 .22 .07 .10 

DIM, lb./day 9.92C 1o.ocd 10.4d 10.3Cd .05 .03 .37 .24 

Feed/Gain 7.3od 6.97C 7.38d 7.31d .08 .26 .15 .01 
(X) 
(X) Calc. energy in diet 

ME, Meal/kg DM 2.73C 2.83~ 2.76C9 2.81de .02 .08 .25 .01 
NEm, Meal/kg DM 1.71C 1.80d 1.74ce 1.78de .02 .07 .29 .01 
NEg Meal/kg DM 1.12C 1.19 1.15ce 1.18de .01 .08 .21 .01 

a Least squares means; SEM n = 8. 
b Calculated as hot carcass weight/.6495 (average dressing% for all steers). 
cdef Means within a row with different superscripts differ (P<.05). 



Table 3. Effects of slaughter group on carcass characteristicsa 

Days on Feed Observed Significance level (P<) 

105 119 133 147 SEM linear Quadratic Cubic 

No. Pens 8 8 8 8 
No. Steers 61 63 64 64 

· Carcass wt., kg. b 308g 325h 335i 347j 3.34 .01 .06 .24 
Dressing, %C d 65.1 65.3 64.8 65.6 .25 .85 .30 .12 
Dressing~ %C 68.7 65.2 65.6 61.4 1.37 .74 .04 .47 

·REA, em . 82.6. 83.9 h' 85.9 h 184.8 .19 .14 .36 .51 
· S.C. Fat. Thick., em .86h .99 I 1.09g 1.17g .02 .01 .60 .89 
·KPH,% 1.48 1 61h 2h03g 1h98g .05 .01 .10 .01 
·Maturitye 138g 14511 148 149 1.47 .01 .08 .61 
• Maturityef 138g 146gh 148h 144gh 2.12 .51 .38 .04 

()) ·USDA Yield Grade 2.12h 2.35hi 2.53~h 2.75~ .09 .01 .89 .75 
ID ·Percent YG4 1.56 og 1.56 9.38 2.76 .07 .12 .81 

Condemned liver, % 12.72 10.94 9.38 12.50 5.39 .93 .66 .86 

a least square means; SEM n = 8. 
b Carcass weight adjusted for trimloss. 
c Calculated by dividing final live weight by carcass weight. 
d Adjusted for carcass weight as a covariate. 
e Calculated by averaging lean and skeletal maturity. 
f Adjusted for fat thickness as a covariate. 
ghij Means within a row with different superscripts differ (P<.05). 



Table 4. Effects of days on feed on USDA quality grades of steersa 

Days on Feed Observed Significance Level (P<) 

105 119 133 147 SEM linear Quadratic Cubic 

No. Pens 8 8 8 8 
No. Steers 61 63 64 64 

Marbling Scoreb 377d 433e 452e 446e 11.48 .01 .02 .82 
Marbling Scorebc 391d 442e 436e 410d 8.16 .21 .37 .73 

Prime,% 0 1.79 0 0 .89 .67 .34 .21 
Choice,% 33.93~ 58.93e 68.75e 68.75e 5.52 .01 .05 .83 
Select,% 52.46d 39.29de 31.25e 29.69e 4.45 .01 .22 .95 
Standard,% 13.62 oe oe 1.56e 1.47 .01 .01 .10 

\0 a Least squares means. 
0 b 300-399, slight; 400499, small 

c Adjusted for fat thickness as a covariate. 
de Means within a row with different superscripts differ (P<.05). 



Table 5. Effects of slaughter group on plasma cholesterol and longissimus muscle compositiona 

Days on Feed Observed Significance Level (P<) 

105 119 133 147 SEM Linear Quadratic Cubic 

No. Pens 8 8 8 8 
No. Steers 61 63 64 64 

Plasma: 
118.15d 115.74d 123.67d Cholesterol, mg/dL 96.55C 4.05 .01 .13 .09 

Proximate Analysis, % 
3.01C 3.66d 3.75~ 4.00~ Total Lipid .18 .01 .28 .39 

Protein 22.70Cd 22.44Cd 22.12 22.50d .12 .10 .02 .18 
Proteinb 22.78C 22.38cd 22.19~ 22.94 .18 .19 .72 .24 
Moisture 73.64C 73.23de 73.40 72.97e .12 .01 .93 .06 

\D Cholesterol, 
50.81d 52.33d 1-' mg/1 OOg wet tissue 47.26C 47.00C .80 .01 .32 .12 

a Least square means; SEM = 8. 
b Adjusted for fat thickness as a covariate. 
cde Means within a row with different superscripts differ (P<.05). 



Table 6. Effects of slaughter group on cooking properties and shear forcea 

Days on Feed Observed Significance Level {P<) 

105 119 133 147 SEM Linear Quadratic Cubic 

No. Pens 8 8 8 8 
No. Steers 61 63 64 64 

Raw weight, g 293.78e 294.96e 331.1Qf 300.a3r 2.46 .01 .01 .01 
Cooked weight, g 206.16e 211.27ef 238.19g 215.45f 1.87 .01 .01- .01 
Cooking Shrink, % 29.86e 28.39~ 28.05~ 28.38f :~~ .02 .04 .79 
Cooking time, min. 7.63e 6.91 6.54 6.64 .01 .11 .93 

Shear Force, kg. b 4.45 4.42 4.11 4.16 .13 .07 .73 .34 
Very Tender,% 29.51 26.98 43:75--- 39.06 6.15 .13 .81 .19 
Tender, %C 24.59 38.10 f 26.56 32.81 5.18 .58 .50 .10 

\0 Tough, %d 45.9oe 33.33e 29.69ef 28.13f 5.17 .03 .27 .71 
I!IJ 

a Least square means; SEM n = 8. 
b Very Tender< 3.86 kg. 
c Tender= 3.86 <Tender< 4.54 kg. 
d Tough > 4.54 kg. 
efg Means within a row with different superscripts differ (P<.05). 
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