
MAPPING SIGNAL PROCESSING ALGORITHMS 

ON PARALLEL ARCIDTECTURES 

By 

NIDAL M. SAMMUR 

Bachelor of Science 
The University of Tulsa 

Tulsa, Oklahoma 
1984 

Master of Science 
The University of Tulsa 

Tulsa, Oklahoma 
1986 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOROFPHUDSOPHY 

July, 1992 





MAPPING SIGNAL PROCESSING ALGORITHMS 

ON PARALLEL ARCIDTECTURES 

Thesis Approved: 

--06~(14--L~ 
Dean of the Graduate College 

11 



ACKNOWIEOOMENTS 

I thank God for the persistence, determination, and faith He 

gave throughout my years of study. Like everyone who has reached 

this point in his education, I could not have gotten here without the 

help, encouragement, and support of a lot of people. 

My deepest love, thankfulness and appreciation goes to my 

mother. She always stood by me, supported me, and inspired me. I 

dedicate this dissertation to her. The most important contributor to 

my success, however, did not live to see me complete my education 

- my father. He always stressed the value of education and hard 

work - this dissertation could not have been done without that 

example. My sincere love and appreciation goes to my sisters and 

my brother and the rest of my family. 

I would like to express my appreciation to my adviser and 

friend Dr. Martin Hagan for the guidance and insight he provided me 

throughout my study. His delightful and informative discussions, his 

views, and his approaches added a depth to my understanding 

which could not have been obtained elsewhere. I have known Dr. 

Hagan for more than ten years and he never stopped amazing me. 

He is so knowledgeable, friendly, honest, and yet humble. Thank 

you Dr. Hagan for being such a wonderful friend and teacher. You 

are simply the best. 

iii 



I would like to thank Dr. Bacon, Dr. Teague, Dr Baker, and Dr. 

Lu for serving on my committee. 

I would like to acknowledge the machine time, technical 

support, and encouragement given by NASA/Goddard Space Flight 

Center and various members of its staff, including James Fischer and 

Judy Devaney. I would like to acknowledge the National Center for 

Supercomputing Applications and the Los Alamos National 

Laboratory for allowing us time on their machines. 

Finally, I would like to thank all my wonderful friends in 

Stillwater and Tulsa for all their help, encouragement, and support. 

iv 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

Page 

1 

Inverse Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

II. BATCHINVERSEFJLTERINGALGORITHMS . . . . . . . . . . . . 8 

The Levinson Algorithm . . . . . . . . . . . . . . . . . . . . . . . 8 
The Burg Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 
The Method of Least Squares . . . . . . . . . . . . . . . . . . 1 6 
The Lp Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 
Selection of a Representative Algorithm . . . . . . . . . 2 6 

III. PARALLEL PROCESSING COMPUTER ARCIDTECTURES . . . . 2 8 

IV. 

Computer Architecture Classification Scheme . . . . . 2 9 
Description of Selected Advanced 

Computer Systems . . . . . . . . . . . . . . . . . . . . . 3 4 
The Heterogeneous Element Processor . . . . . . . 3 4 
The Cray X-MP/48 . . . . . . . . . . . . . . . . . . . . . 3 9 
The Intel iPSC/2 Hypercube . . . . . . . . . . . . . . 4 3 
The Alliant FX/8 . . . . . . . . . . . . . . . . . . . . . 4 7 
The Massively Parallel Processor (MPP) . . . . . . 5 0 
The Connection Machine Model CM-2 . . . . . . . 6 5 
The Cray-2 Supercomputer . . . . . . . . . . . . . . 7 3 

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 

IMPLEMENTATIONS OF THE BURG ALGORITHM 77 

Sequential Implementation . . . . . . . . . . . . . . . . . . . . 7 8 
Parallel Implementations . . . . . . . . . . . . . . . . . . . . . . 7 9 

MPP Implementation . . . . . . . . . . . . . . . . . . . . . 8 0 
Hypercube Implementation . . . . . . . . . . . . . . 8 6 
Cray X-MP/48 Implementation . . . . . . . . . . . . 8 9 , 
HEP Implementation . . . . . . . . . . . . . . . . . . . . . 9 0 
Alliant FX/8 Implementation . . . . . . . . . . . . . . 9 2 

v 



Chapter Page 

Connection Machine Model CM-2 
Implementation . . . . . . . . . . . . . . . . . . . . . 9 5 

The Cray-2 Implementation . . . . . . . . . . . . . . 9 7 
Preliminary Comparison . . . . . . . . . . . . . . . . . . . . . . 9 7 

V. PERFORMANCE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

Timing Equations ............................. 102 
Ranking of Machines . . . . . . . . . . . . . . . . . . . . . . . . . 109 
Future Machines .............................. 117 

VI. SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . 121 

REFERENCES 

APPENDIXES 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

APPENDIX A - SEQUENTIAL BURG LISTINGS ......... 131 

APPENDIX B -GENERATE WHITE NOISE LISTINGS ..... 133 

APPENDIXC -SIMULATE ARMA LISTINGS .......... 135 

APPENDIX D - HEP LISTINGS ...................... 137 

APPENDIX E - iPSC/2 LISTINGS .................... 141 

APPENDIX F - ALLIANT FX/8 LISTINGS ............. 148 

APPENDIX G - MPP LISTINGS . . . . . . . . . . . . . . . . . . . .. . . 150 

APPENDIX H - CM-2 LISTINGS ...................... 154 

APPENDIX I - CRA Y X-MP/48 LISTINGS ............. 156 

APPENDIX J - CRAY-2 LISTINGS .................... 158 

VI 



LIST OF TABLES 

Table 

3.1 Reduction Functions 

3. 2 Permutation Functions 

3. 3 Comparison of Cray Supercomputers 

Page 

64 

65 

74 

4.1 Summary of Parallel Burg Algorithm on the MPP . . . . . . 8 5 

4.2 Burg Implementation on the FX/8 
(no FX/Fortran Constructs) . . . . . . . . . . . . . . . . . . .. . . . . 9 4 

4.3 Burg Implementation on the FX/8 
(FX/Fortran constructs) . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 

4. 4 Comparison of Burg Execution Time . . . . . . . . . . . . . . . . . . 9 8 

5.1 iPSC/2 Deviation Term ............................ 105 

5 . 2 iPSC/2 Actual and Predicted Times . . . . . . . . . . . . . . . . . 106 

5.3 Comparative Figures for the Computers Used .......... 110 

5. 4 Comparative Figures in Terms of the Four Factors ...... 111 

5. 5 The Six Measures ................................. 113 

5. 6 Results of Applying the Six Measures (All Machines) ... 113 

5. 7 The Ranking Results (All Machines) .................. 114 

5 . 8 Comparative Figures (without HEP) ................... 11 5 

5. 9 Results of the Six Measures (without HEP) ............ 115 

5.10 The Ranking Results (without HEP) . . . . . . . . . . . . . . . . . . 116 

Vll 



LIST OF FIGURES 

Figure Page 

1.1 Autoregressive Process of Order p 5 

2. 1 Lattice Filter Implementation of a 2nd Order 
AR Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 

3.1 Flynn's Classification of Computer Architectures 3 1 

3. 2 Organizational Space of Parallel Computer Systems 3 4 

3.3 Four-Processor HEP System 36 

3.4 Routing Control in the 3-ported Switch Node . . . . . . . . . 3 7 

3.5 HEP Position in the Organizational Space 39 

3.6 The Cray X-MP/48 Overall System Organization... . . . . 4 1 

3.7 

3.8 

Cray Position in the Organizational Space 

The Hypercube Topology 

43 

44 

3. 9 Hypercube Position in the Organizational Space . . . . . . 4 7 

3 . 1 0 The Architecture of the Alliant FX/8 

3.11 Alliant Position in the Organizational Space 

3 .12 Overall Block Diagram of the MPP 

3.13 The ARU 

3.14 Topologies Available on the MPP's ARU 

3. 15 The Processing Element 

3. 16 The Array Control Unit 

48 

50 

52 

53 

55 

56 

58 

3 .1 7 MPP Position in the Organizational Space . . . . . . . . . . . 6 1 

3 .18 Example of MPP Pascal Code and Storage 63 

viii 



Figure Page 

3.19 The Connection Machine CM-2 Overall 
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 

3. 2 0 The Architecture of a Sequencer . . . . . . . . . . . . . . . . . . . 6 8 

3. 2 1 CM-2 Position in the Organizational Space . . . . . . . . . . . 7 3 

4.1 Sequential Implementation of the Burg Algorithm . . . . 7 9 

4. 2 Maximally Parallel Graph for M=5 and MAX=3 . . . . . . . 8 0 

4. 3 Mapping a Linear Array on a Mesh . . . . . . . . . . . . . . . . . 8 1 

4.4 Data Movement for the Burg Filter in a 
Linear Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 

4.5 

4.6 

Procedure Snake_shift (x) 

Mapping a Linear Array on a 3-D Hypercube 

4. 7 Data Movement for the Burg Filter in a 

85 

86 

Linear Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 

4.8 

4.9 

Speedup on the Hypercube 

Algorithm Speedup on the HEP 

89 

92 

4.10 Comparison of HEP and Hypercube Speedups ....... 100 

IX 



CHAPTER I 

INTRODUCTION 

Digital signal processmg IS a field of study concerned with the 

processmg of information represented in digital form. Certain 

techniques m the field can be traced back to numerical algorithms 

performed in the seventeenth and eighteenth century. However, the 

advent of modern high-speed digital computing devices has caused a 

revolution in applications of the theory to a variety of problems. 

Signal processing is used in such areas as biomedical data processmg 

[1], sonar and radar processing [2], speech processing [3], data 

communication [4], seismic signal processing [5], adaptive system 

identification [6], adaptive control applications [7], and a host of 

other applications [8-11]. One of the most interesting aspects of 

digital signal processing is this wide variety of applications. This has 

served to create a vitality in the field that is often missing in other 

scientific fields of study. 

Digital signal processing has become an increasingly significant 

field because of the technology associated with digital computers. A 

digital computer used to process signals offers a tremendous 

advantage in flexibility. The emergence of parallel processing and 

very large scale integration (VLSI) motivated the researchers in the 

field of digital signal processing to find and explore new ways to 

1 



implement and design efficient and highly parallel algorithms [ 11-

18]. 

The conventional sequential digital computers suffer from one 

serious drawback: the von Neumann bottleneck. This phenomenon 

accounts for the sometimes slow and inefficient use of conventional 

serial processor resources. In a sequential computer, a single 

memory buffer serves as the only gate between the high-speed 

memory and the central processing unit (CPU). This makes it 

necessary to organize all computational tasks in a strictly sequential 

fashion. Processing speed is limited not by the speed of the CPU but 

the narrow pathway between the CPU and memory. Parallelism is 

one of the major innovations in the hardware design of digital 

computers that have permitted the circumventing of the von 

Neumann bottleneck so as to attain high speeds [19-20]. 

2 

A parallel processing computer, simply defined, 1s one that can 

perform operations using more than one processor simultaneously. 

The central problem parallel processing systems face is how to 

effectively and efficiently use more than one processor at the same 

time. The effectiveness of the system depends on whether one can 

identify a problem that lends itself to parallelism, determine the 

algorithm, and map it onto a suitable architecture. There are no 

established principles revealing how to automate the arduous 

manual task of partitioning any real-world problem so that it can be 

parcelled out to many processors simultaneously [21-22]. 

The main objective of this research is to explore the different 

techniques of mapping digital signal processing algorithms onto 

advanced computer architectures. It is impossible to cover all 



3 

algorithms and all architectures. The spectrum of the algorithms 

covered was limited to those which can be characterized as one 

dimensional, batch, and time domain. As for the architectures, the 

availability of such systems was the major limitation. The goal of 

this research is to discover the types of computer architectures 

which are best suited for signal processing. 

This dissertation contains six chapters each of which Is dedicated 

to present a concise set of ideas. The rest of this chapter 

concentrates on presenting a preliminary system identification 

theory that sets the stage for the second chapter. Chapter II 

discusses the batch algorithms that are used for inverse filtering and 

concentrates on the similarities between these algorithms. An 

algorithm is selected for parallel implementation since it IS a good 

representative of this group of algorithms. Chapter III presents the 

different advanced computer architectures and discusses in detail 

those architectures that are used in this research. Chapter IV 

discusses the implementations of the algorithm chosen on a selected 

number of advanced computer architectures. Chapter V contains the 

performance analysis performed on the results obtained in chapter 

IV. A ranking of the machines is presented. Finally, chapter VI 

summarizes the main ideas presented in this work followed by some 

general conclusions. 

Inverse Filtering 

A problem of great importance is determining the parameters of 

a model given observations of the physical process being modeled 



4 

[23]. In control theory this problem is often called the system 

identification problem [6]; one of the most important applications of 

identification methods is adaptive estimation and control. Parameter 

identification problems also arise in several digital signal processing 

algorithms; applications include seismic signal processing and the 

analysis, coding, and synthesis of speech. In seismic signal 

processing the problem is termed deconvolution [3], while it is 

termed linear prediction in speech processing [5]. Other names have 

been used like parameteric spectrum analysis and inverse scattering 

[8-9]. Inverse filtering is a more natural term to use and is adopted 

throughout this report. 

In this report we address the problem of inverse filtering for a 

particular underlying time series model, namely the autoregressive 

(AR) process . The general form for an AR process of order p is given 

by equation (1-1). 

(1-1) 

The current .value of the process zt 1s expressed as a weighted sum of 

past values plus a random white noise et with a variance of cr e 2. 

Thus zt can be considered to be regressed on the p previous z's, 

hence the name. The weights on the previous z' s are called the AR 

parameters. The right hand side of equation (1-1), excluding the 

white noise, is called the prediction of zt based on Zt-1 thru Zt-p. 

and the white noise is termed the prediction error. The inverse 

filtering problem is summarized as follows: given the set of 



observations for the process, or the time series zt, find the 

underlying AR parameters that best characterize the process. 

The AR process given by equation ( 1-1) can be represented m a 

block diagram form as shown in Figure 1.1. The blocks with z- 1 

indicate unit delay., The structure depicted here is sometimes 

referred to as a tapped delay line or direct form I implementation. 

z 
t 

l"e---e 
t 

White Noise 
Driving Sequence 

Observed Sequence 

Figure 1.1 Autoregressive Process of Order p 

It should be noted that an AR process has an all-pole transfer 

function given by equation (1-2). This property justifies the use of 

AR processes to model spectra with sharp peaks. 

5 



1 
H~)=------------------

1 + tl>Iz-1+q,2z-2 + ... +$pz-P 

6 

(1-2) 

A plethora of inverse filtering methods are discussed in the 

literature which are based on the autocorrelation function, the 

partial autocorrelation function, and the generalized partial 

autocorrelation function [24-25]. The methods based on the first two 

functions are of major interest in this research. 

The autocorrelation function of the AR process g1ven by equation 

(1-1) can be determined by first multiplying equation (1-1) by Zt-k 

to get equation (1-3), then taking the expected values to get 

equation ( 1-4). 

(1-3) 

'Yk = <P1 'Yk-1 + <P2 'Yk-1 + ··· + $p 'Yk-p + { cr:
0
e , k=O} 

, k>O (1-4) 

If the estimated order of the process is denoted by m we can rewrite 

equation (1-4) with an extra index for the q,'s as shown in equation 

(1-5). 

'Yk = <Pmt 'Yk-1 + <Pm2 'Yk-1 + ··· + <Pmm 'Yk-m + { cr:Oe • k=O} 
, k>O (1-5) 

The parameter <Pmm is called the partial autocorrelation function at 

lag m. If we let k vary from 0 to m in equation (1-5) we get a set of 



7 

linear equations for the 4>'s in terms of the y's. Equation (1-6) shows 

the resulting equations organized within matrices. 

'Yo 'Yl ... 'Ym 

'Yt 'Yo ... 'Ym-1 

1 

<l>mt 

'Ym 'Ym-1 ... 'Yo n. 
'l'mm 

= a; 
0 

0 (1-6) 

Equation (1-6) is called the Yule-Walker or normal equation [23]. 

The matrix that contains the autocorrelations is called the 

autocorrelation matrix. This matrix is both symmetric and Toeplitz. 

If m is the true order of the AR process (i.e., m=p) then 

<l>m1 =$1 , ... ,<\>mm=«Pm· Therefore one technique for inverse filtering is 

to substitute estimated values for the autocorrelation function in 

equation (1-6) and to solve for <l>m 1 , ... ,$mm and cre2. 

In chapter II, we explore several algorithms for mverse 

filtering. We will be investigating these algorithms looking for the 

commonality among them and choosing an algorithm that represents 

this class of algorithms. 



CHAPTER IT 

BATCH INVERSE FILTERING ALGORITHMS 

The previous chapter presented the problem of inverse filtering 

and the Yule-Walker or normal equation was discussed. This chapter 

presents some batch algorithms that solve the normal equation 

efficiently. By solving the normal equation, an estimate of the AR 

process parameters can be obtained thus achieving the goal of the 

mverse filtering problem. 

The objective of this chapter Is to study the batch algorithms, 

identify their similarities and differences, and finally, choose one 

algorithm that is representative of this class of algorithms. The 

selected algorithm will be the one to be implemented on advanced 

computer architectures. The results of implementing the selected 

algorithm on the different machines will be applicable to other batch 

algorithms. 

The Levinson Algorithm 

The Levinson algorithm is an efficient algorithm for solving the 

normal equation without inverting the autocorrelation matrix. 

Instead of solving the normal equation directly, the Levinson 

algorithm imbeds this problem into a whole class of similar 

problems; namely, of determining the best linear predictors of 

8 



9 

ascending orders. The name linear prediction originate from the 

formulation of the model; the basic assumption is that the next 

sample in a sequence can be estimated from a linearly weighted sum 

of previous samples [26-28]. 

The solution is obtained in an iterative manner, by solving a 

family of matrix equations of lower dimensionality. Starting at the 

upper left corner of the autocorrelation matrix (the first element in 

the first row), 1.e. first order equation, and successively increasing 

the order until the desired dimension is reached. The solution of 

each problem is obtained in terms of the solution of the previous one. 

In this manner, the final solution is gradually built up. In the 

process, one also finds all the lower order prediction error filters. 

Order- determination is inherently performed by the Levinson 

algorithm. 

The iteration Is based on two key properties of the 

autocorrelation matrix: first, the autocorrelation matrix of a given 

size contains as subblocks all the lower order autocorrelation 

matrices; and second, the autocorrelation matrix is symmetric and 

Toeplitz, i.e., it is reflection invariant [29]. 

Equation (2-1) is the AR process of mth order discussed in the 

previous chapter [30]. 

Xn + a~Xn-1 + · · · + a~Xn-m = e~ (2 -1) 

Using the approach followed m the previous chapter. the normal 

equation can be rewritten as shown in equation (2-2). This equation 

is equivalent to equation ( 1-6) but uses different variable names. 



10 

R(k) is the autocorrelation function, the a's are the AR parameters, 

and Pm is the variance of the white noise em 
n 

R(O) R(-1) R(-m) 1 Pm 

0 R(1) R(O) R(1-m) a~ 
= (2-2) 

R(m) R(m-1) R(O) am 
m 0 

Consider the case of having solved equation (2-2) and wanting to 

increase the order of the model. Equation (2-3) shows the AR 

process of increased order , namely, m+ 1. 

(2-3) 

Using equation (2-3) the new normal equation is shown by 

equation (2-4 ). 

R(O) R(-1) R(-m) R(-m-1) 1 Pm+1 

R(1) R(O) R(1-m) R(-m) a~+1 0 

= (2-4) 

R(m) R(m-1) R(O) R(-1) am+1 
m 0 

R(m+1) R(m) R(1) R(O) am+1 
m+1 0 

Comparing equations (2-2) and (2-4) it is clear that the new 

autocorrelation matrix consists of the old matrix plus an extra row 

and column. Equation (2-4) can be rewritten as shown in equation 

(2-5). This expression is valid since the first and last rows of the 

autocorrelation matrix are reverses, the second and next to last 

rows are reverses, etc. ( R(k) = R( -k) ). 



1 1 

R(O) R(-1) R(-m) R(-m-1) 1 0 
R(1) R(O) R(1-m) R(-m) a~ am m 

+Cm+1 
R(m) R(m-1) R(O) R(-1) am m a~ 

R(m+1) R(m) R(1) R(O) 0 1 

Pm Om+1 
0 0 

= +Cm+1 (2-5) 

0 0 

Om+1 Pm 

By inspection of equation (2-5) the following equation can be 

written: 

m 

Om+1 = :L,R(m+1-n)a~ (2-6) 
n=O 

Now let 

Q C _ m+1 m+1 ___ _ 
Pm 

or (2-7) 

Equation (2-5) will have the same form as equation (2-4), m which 

the first element of the left hand column vector is unity and the last 

m+ 1 elements of the right hand column vector are zero. We have 

thus found a solution to equation (2-4), and if we assume that the 

autocorrelation matrix is positive definite the solution must be 

umque [30] . The solution is given by equation (2-8): 



12 

1 1 0 
a1+1 a1 a~ 

= +Cm+1 (2-8) 
am+1 

m am m a~ 
am+1 

m+1 0 1 

where Cm+ 1 is obtained from equation (2-7). By comparmg 

equations (2-4) and (2-5) we can also see that: 

(2-9) 

The parameter em+ 1 is called the reflection coefficient or the 

partial autocorrelation function. Equation (2-8) indicates the 

relationship of the reflection coefficients to the AR parameters. If 

the reflection coefficients are used instead of the AR parameters to 

realize an AR process, an interesting filter structure results as shown 

in Figure 2.1. Figure 2.1 is the lattice form realization of the AR 

process as opposed to Figure 1.1 that illustrates the direct form I 

realization. The lattice filter is an important structure in signal 

processing due to its modular structure and special features. The 

derivation of the Burg algorithm in the next section describes the 

equations that result in this interesting filter structure. 

To summarize, the Levinson algorithm consists of equations (2-

6), (2-7), (2-8), and (2-9). It is a recursive algorithm for 

estimating the coefficients of an AR process without a-priori 

knowledge of the process order. At the k-th iteration of the 

algorithm we obtain the AR coefficients of the k-th order model: 
k k k 

a1 , a2 , ··· , ak 



Figure 2.1 Lattice Filter Implementation 
of a 2nd Order AR process 

The Burg Algorithm 

1 3 

The Burg algorithm is similar to the Levinson algorithm in that it 

estimates the coefficients of an AR process which are updated 

recursively using equation (2-8). The Burg differs from the Levinson 

algorithm in the way it calculates the reflection coefficients [30-31]. 

To derive the Burg algorithm, first consider the forward 

prediction error of the m+ 1 th order AR model: ( the prediction is 

forward in the sense that the prediction for the current data sample 

is a weighted sum of previous samples) 

If equation (2-8) IS used to obtain the coefficients, equation (2-10) 

can be rewritten as: 



14 

(2 -11) 

Now consider the forward prediction error of the mth order model: 

There is an equivalent backward prediction model: ( the prediction 

is backward in the sense that the prediction for the current data 

sample is a weighted sum of future samples) 

b m m m 
n-m-1 = Xn-m-1 +a1 Xn-m + ··· +amXn-1 (2-13) 

It can be shown that the statistics of this model are equivalent to 

those of the forward prediction model. 

By comparing equation (2-11) with equations (2-12) and (2-13), 

we can see that: 

m+1 bm m 
en = Cm+1 n-m-1 +en 

Likewise, we could show: 

bm+1 bm m 
n-m-1 = n-m-1 + Cm+1 en 

(2-14) 

(2-15) 

The Burg algorithm chooses em+ 1 so as to minimize the sum of 

squares of the forward and backward prediction errors: 



1 5 

M 
J = ~(em+1)2 + (bm+1 )2 £..J n n-m-1 (2 -16} 

n=m+2 

If equations (2-14) and (2-15) are used m equation (2-16) we can 

rewrite the latter as: 

M 
~( m m )2 ( m m)2 J = £..J en + Cm+1 bn-m-1 + bn-m-1 +Cm+1 en (2-17} 

n=m+2 

To mm1m1ze equation (2-17) we take its derivative with respect 

to Cm+ 1 , set it equal to zero, and solve for Cm+ 1 . The derivative is 

given by: 

(2 -18} 

Rearranging equation (2-18) and setting it equal to zero result m 

equation (2-19). 

(2-19) 

Solving for cm + 1 result in the reflection coefficients that minimize 

the sum of squares of the forward and backward errors: 

(2 -20) 



16 

To summarize, the Burg algorithm consists of two steps: 1) 

update the forward and backward prediction errors using equations 

(2-14) and (2-15); 2) calculate the reflection coefficient using 

equation (2-20) and then repeat step 1) . If the AR parameters are 

desired they are calculated using equation (2-8), as in the Levinson 

algorithm. This implies that the lattice filter implementation of the 

AR process is valid when the Burg algorithm is used. In fact, the 

forward and backward prediction errors given by equations (2-14) 

and (2-15) constitute the lattice structure shown in Figure 2.1. 

The Burg algorithm uses equation (2-8) from the Levinson 

algorithm to update the coefficients of the AR model, but it differs 

from the Levinson algorithm in that it chooses the reflection 

coefficient, em+ 1 , so as to minimize the sum of squares of the 

forward and backward prediction errors. 

Notice that equations (2-14) and (2-15) involve a time shift of 

the b sequence relative to the e sequence, and that equation (2-20) 

involves three inner product operations. This combination of 

operations is found in all algorithms which use convolution or 

correlation. 

The Method of Least Squares 

The least squares method is one of the most popular and useful 

techniques for obtaining parameter estimates of an unknown system 

or signal model. The convergence properties of least squares 

estimates have been well established [23]. 



We begin by discussing the general problem and the proposed 

solution. Consider the problem of finding a vector x e 9tn such that 
romxn rom Ax=b where A e .;/\ and b e .;/\ are given and m>n. When there 

17 

are more equations than unknowns, we say that the system Ax=b is 

overdetermined. Usually an overdetermined system has no exact 

solution. 

This suggests that we strive to minimize lAx -blp for some 

suitable choice of p. Different norms render different optimum 

solutions. Minimization in the 1-norm and oo-norm is complicated by 

the fact that the function IAx-blp is not differentiable for those 

values of p. However, the next section discuss the case where 

1 ~ P < 2 and present efficient techniques to solve the problem. On 

the other hand, 1Ax-bl2 is a continuously differentiable function of x 

[32]. 

The least squares formulation can be applied to the problem of 

estimating the parameters of an autoregressive process. Assume the 

data sequence x0 , ... , XN -1 is used to find the m th order AR 

parameter estimates. Recall equation (2-1) that describes an m t h 

order AR process. Equation (2-21) is equivalent to equation (2-1) 

rewritten to express the output in terms of the weighted sum of the 

previous output values and the white noise process. 

(2-21) 

m 
We can evaluate en m equation (2-21) for n=1 to n=N+m-2 if 

one assumes the terms outside the measurements are zero, 1.e., 

xn=O for n<O and n>N-1. Notice the existence of an implied 



1 8 

windowing of the data sequence in order to extend the index range 

from 1 to N+m-2. Using a matrix formulation we can rewrite 

equation (2-21) for the specified range as shown in equation (2-22). 

y X E 

A 

a~ 

+ (2-22) 

~+m-2 

Recall that the forward linear predictor will have the usual form: 

m 

Xn = -{a~xn-1 + ··· +a~xn-m) =-Lar Xn-i 
i=1 

and the forward linear predictor error or residual is given by: 

; where a~= 1 

(2-23) 

(2-24) 

Notice that the forward linear predictor error is equivalent to the 

white process, i.e. the E vector in equation (2-22), given that the 

process is autoregressive. 

Using equation (2-22), we can solve for the residual vector: 

E=Y-XA (2-25) 



1 9 

Notice that ETE is simply the sum of squares of the residuals or 

errors. In the least squares method the objective is to minimize the 

sum of squares of the errors, i.e. ETE. Thus the cost function to be 

minimized is given by: 

(2-26) 

Differentiating J with respect to the vector A, setting it to zero, and 

rearranging will give the following system of normal equations: 

(2-27) 

The subscript k indicates which data matrix is used. There are four 

different possibilities, illustrated in equation (2-22), for the 

selection of the data matrix [28]. Hence, k takes on the values 1, 2, 

3, or 4 depending on our windowing choice to indicate the selection 

of the covariance, the autocorrelation, the prewindowed, or the 

postwindowed formulation, respectively. Solving for A in equation 

(2-27) will result in the least squares solution given by: 

(2-28) 

In practice, the vector A is not computed using equation (2-28) smce 

the computation of the inverse is fraught with numerical difficulties. 

Instead, the normal equation (2-27) is solved using numerically 

stable algorithms that involve orthogonal transformations. Hence, 



equation (2-28) 1s a useful "theoretical" formula but is not a useful 

computational formula [23]. 

Equation (2-27) has the same structure as the Yule-Walker 

equations; however, the data matrix product (Xk TXk) is not 

necessarily Toeplitz as are the Yule-Walker equations [32]. Notice 

that the subscript k 1s used to indicate the data matrix selected as 

mentioned earlier. 

If the data matrix X 1 is selected, the normal equations are 

20 

termed the covariance equations or formulation, often encountered 

in linear predictive coding (LPC) of speech [28]. The (X 1 Tx 1) matrix 

is symmetric but not Toeplitz. The square root method or Cholesky 

decomposition is used in this case for computing the A vector [33]. 

The Cholesky decomposition factors the data matrix product, which 

has the properties of a covariance matrix, to solve the system given 

by equation (2-22). Cholesky decomposition states that: if a matrix 

A is symmetric positive definite, then there exists a lower triangular 

matrix G with positive diagonal entries such that [32] : 

(2-29) 

To avoid square root computations, the factors L and D are computed 

rather than the factor G. L is a unit lower triangular and D is a 

diagonal matrix with positive elements. The elements of L and D can 

be determined by equating the elements of both sides in equation 

(2-29). If the first i-1 columns of L and D have been determined 

then the i-th column can be determined as: 



21 

(2- 30) 

i-1 

l;i = (aji-I, dk l;k lik) I di (2- 31) 
k=1 

The Cholesky decomposition requires n3 /6 operations which is more 

than required by the Levinson algorithm, namely, 2n2 operations 

[32]. 

If the data matrix X2 is selected, the normal equations are 

called the autocorrelation equation or formulation since the product 

matrix (X2 Tx2)/N reduces exactly to the Yule-Walker equations, for 

which the biased autocorrelation estimator has been used instead of 

the known autocorrelation function [28]. Notice that a data window 

has been assumed for this case. In this case, the (X2 Tx2) matrix is 

Toeplitz and the A vector can be solved for using the Levinson 

algorithm discussed in section 2.1 . 

If the data matrix X3 is selected, the normal equations are 

termed the prewindowed normal equations due to the zero value 

assumptions made for the missing data prior to x0 . 

If the data matrix X4 is selected, the normal equations are 

termed the postwindowed normal equations since a zero data 

assumption is made for the data beyond xN- 1 . 

It would appear that only the data matrix X2 will yield normal 

equations with Toeplitz structure to permit an efficient recursive 

solution (namely, the Levinson algorithm). However, even though 



the product matrix (Xk Txk) may not be Toeplitz, each of the four 

matrices Xk have Toeplitz structure. 

The Lp Techniques 

22 

In the previous section the least squares method was 

investigated to explore the possibilities of using such method m 

inverse filtering. The main idea in setting up the least squares 

formulation is to minimize the sum of squared residuals or errors. 

The residuals are the difference between the actual data and the 

model. The solution obtained is the least squares solution which can 

be termed the L2 solution. The number 2 indicates the residual 

terms are raised to the second power before summing. 

In the previous section it was indicated that in general, one 

could raise the residual terms to some arbitrary pth power and 

perform the minimization to get the Lp solution. In Lp techniques, 

the values of p other than two may offer some advantages in a 

number of ways. For example, the Ll (absolute value) solution 

tends to ignore outliers while the L2 solution tries to satisfy all 

points as best it can. In general, values of p between one and two 

blend these characteristics somewhat [34-39]. 

Other values for p, such as p<l and even negative p, can be 

considered but unfortunately the results obtained for this range do 

not have a mathematical basis, as Lp is not a normed linear space. 

The solutions for p>2 are more sensitive to aberrant noise. The 

parameter p controls the trade-off between emphasizing and 



deemphasizing aberrant nOise. The L 1 solution is considered to be 

robust for its low sensitivity to aberrant noise [38]. 

23 

The previous section described some of the algorithms to_ get the 

least squares solution efficiently. Unfortunately there is no simple 

solution for the Lp case but special iterative algorithms were 

developed to efficiently obtain the solution. Linear programming 

was used to get the Ll solution but could not be used to obtain the 

general Lp solution. The iterative reweighted least squares (IRLS) 

algorithm can be used to get the Lp solution, but in general, the p

normed solution can be efficiently solved by using the residual 

steepest descent (RSD) algorithm which IS a steepest descent method 

with an adaptive stepsize [34,37 ,39]. 

Linear programming formulations have two drawbacks: for a 

large data set linear programming requires an excessive amount of 

memory, in addition, it does not guarantee selection of a reasonable 

prediction error filter from tp.e several possible solutions. By 

contrast, the IRLS algorithm starts 'from the least squares solution 

and iterate toward a solution from there. Each iteration solves a new 

L 2 problem by employing the weighted residuals of the previous 

iteration in the current one [34, 37, 39]. The rest of this section will 

describe the IRLS and the RSD algorithms. 

The IRLS algorithm is based on the least squares solution. It is 

an iterative algorithm that uses a weighted least squares to solve the 

Lp formulation. The equation (2-22) , used in the prevwus section 

to set up the least squares problem, IS also used here as the basis to 

set up the formulation. Equation (2-32) is equivalent to equation (2-

22) repeated here in matrix notation. 



24 

Y = X A + E (2-32) 

The problem again is to estimate the A vector. The IRLS algorithm 

estimates the A vector for a selected p value iteratively. The first 

step in the IRLS is to compute [34,37,39]: 

A(k+1) = (XT W(k) xT)-1 xTW(k) y (2-33) 

-

where W(k) is a diagonal matrix with its diagonal entries, Wii(k), 

given by: 

W·(k) ={I G(k) I p-2 ' I G(k) I > £ 

n eP-2 ' I ~(k) I :s; E 
(2-34) 

where ri(k), the residual, IS given by: 

n(k) = ( Y - X A(k) )i (2-35) 

and e. is some small positive number. Notice that if p=2, the W 

matrix will be equivalent to the identity matrix and equation (2-33) 

will be equivalent to the least squares solution given by equation (2-

28). In fact the least squares solution can be used as an initial vector 

to solve for an arbitrary Lp solution. 

Although the IRLS is a fast convergent algorithm, it still 

requires the computation of an inverse for a matrix at each stage k. 

Fast IRLS algorithms, based on fast Fourier transforms, were 



25 

developed to reduce the number of computations where the matrix X 

takes a special form [34]. 

The RSD algorithm uses fewer number of operations per iteration 

than the IRLS algorithm. The RSD solves the problem iteratively by 

the recursion [34,37,39]: 

A(k+1) = A(k)- .1k (XTX)-1 xT v(k) (2-36) 

where 

v(k) = col [ V1 (k) v2(k) . .. VN+m-2(k) ] . (2-37) 

with 

vi(k) = I (X A(k) - Y) i lp-1 sgn(X A(k) - Y) i (2- 38) 

where sgn(t)=+1 (-1) if t>O (t<O). When t=O, one can arbitrarily 

choose sgn(t) to be either +1 or -1. The step size or the scale factor 

.1 k is determined by minimizing: 

11 -Y + x A(k) - .1k x (XTxt1 xT v(k) lip (2-39) 

with respect to .1k in the Lp sense. In equation (2-39), since the 

only unknown is .1k and it is a scalar, we can use the IRLS algorithm 

to solve for .1k . Notice that in the RSD algorithm we need to compute 

the matrix inverse only once, thus, reducing dramatically the 

number of computations required when compared to the IRLS 

algorithm. 



26 

Selection of a Representative Algorithm 

In this chapter a description of the various batch inverse 

filtering algorithms was presented. The algorithms were derived to 

study their computational structure to select the algorithm that best 

represents this class of algorithms. 

The algorithms seem to have a common computational structure, 

namely, a time shift/inner product operation. In fact, this operation 

is a key step in performing all signal processmg algorithms which 

involve convolution or correlation. 

The Burg algorithm is selected to represent this class of 

algorithms for several reasons. The time shift/inner product 

operation constitutes a large portion of the algorithm. The Burg 

algorithm generates models that are always stable and yield a 

solution in terms of reflection coefficients. The lattice structure 

embedded in the Burg algorithm makes it modular and stable. 

The Levinson recursion was shown to be embedded in the Burg 

algorithm. The least squares solution using the autocorrelation 

formulation can be solved efficiently using the Levinson algorithm. 

Notice that the least squares autocorrelation formulation is always 

guaranteed to yield a stable filter, by contrast, the covariance 

formulation does not. 

In .. the general Lp problem, no formulation mentioned so far can 

assure stability except for the autocorrelation form with p=2; other 

values of p may yield unstable models, no matter which method is 

used. In particular, the autocorrelation model is always stable for p 

less than three and greater or equal to two, but there may exist 



27 

some p0 in the interval l<p0 <2 for which the prediction filter may 

not be stable. In that case, stability is not assured for any model 

generated in the range l<p<p0 [37,38]. Filter stability can be assured 

by using a different formulation of the linear prediction problem, 

namely, the lattice or Burg algorithm. In fact, generalized Burg 

algorithms which ensure filter stability for the L 1 solution were 

investigated in the literature [37 ,40]. 



CHAPTER Ill 

PARAlLEL PROCESSING COMPUTER 

ARCHITECfURES 

The basic definition of parallelism is the ability to do more than 

one activity at once. Doing n different activities at once; doing one 

activity in n simultaneous parts; doing n activities staggered in time; 

using k resources for n jobs; and k resources for one job - all of the 

above represent instances of parallelism. The common thread that 

runs through these examples is the utilization of multiple resources 

in an instance of time to increase the amount of work performed per 

unit of time. 

Despite early intellectual flirtations with parallelism, until 

recently it has remained largely a concept. During the past two 

decades, several parallel processor prototypes have been built. One 

of particular note was the ILLIAC IV, conceived at the University of 

Illinois by Daniel Slotnick in 1966 as quadrants of 64 processing 

elements, but reduced down to one by 1972 because of technical 

difficulties. Recently, we are starting to see more and more parallel 

designs successfully executed and commercially available. 

This chapter describes a classification scheme for computers and 

selectively describes, in detail, seven advanced computer systems. 

The seven computer systems described represent different 

architectures: the Denelcor HEP, a shared memory (tightly coupled) 

28 



29 

multiple-instruction stream multiple-data stream (MIMD) machine 

with switch network interconnect architecture; the Cray X-MP/48, a 

shared memory (tightly coupled) MIMD supercomputer with direct 

connect interconnect architecture; the Intel iPSC/2 hypercube 

computer, a distributed memory (loosely coupled) MIMD machine; 

the Alliant FX/8, a shared memory (tightly coupled) MIMD machine 

with a bus interconnect architecture; the NASA/Goodyear MPP, a 

massively parallel SIMD machine with mesh interconnect 

architecture; the Connection Machine model CM-2, a massively 

parallel SIMD machine with hypercube interconnect architecture; 

and the Cray-2 supercomputer, a tightly coupled MIMD machine 

with direct connect interconnect architecture and is the latest Cray to 

be produced. These architectures are considered to be 

representative of the commercially available parallel computer 

architectures. The selected algorithm was implemented on these 

machines and the results are reported in chapter IV. 

All of the architectures described in this chapter have one goal, 

to increase computational power by using replicated processmg 

elements that are connected to and can communicate over some type 

of network. This goal results from the bounds on performance in 

traditional von Neumann architectures. 

Computer Architecture Classification 

Scheme 

One of the oldest and still most widely used methods of 

classifying computer systems was developed by Flynn in 1966[19]. 



30 

Figure 3.1 illustrates Flynn's classification which is based on program 

and data parallelism, i.e. the multiplicity of instruction streams and 

data streams in a computer system. In a conventional sequential 

computer, at any instant of time, there can be but a single command 

in the command register, and this command can effect an arithmetic 

or logical operation upon a single datum stored in the accumulator. 

Such a machine organization is termed single-instruction stream, 

single-data stream, or SISD [ 19]. Most SISD machines are pipe lined 

and can have more than one functional unit under the supervision of 

one control unit. 

In one widely used approach to parallelism, a multiplicity of 

concurrently operating processing elements is provided, where each 

processing element consists of an ALU and a memory unit. The 

arithmetic and memory units are interconnected to form a network 

or an array. The system contains only one program control unit 

which can activate any or all of the arithmetic units. Each active 

element of the array performs the same arithmetic or logic operation 

under command of the control unit. Each arithmetic element may be 

operating on different data in executing the instruction resident in 

the control unit. For this reason, this type of structure is termed 

single-instruction stream, multiple-data stream, or SIMD. SIMD 

machines are also called array processors [19]. 



3 1 

IS 

I 
cu IS ·I PU 

1 ... 
DS ·I MM 

(~) SISD Computer 

6J -- PU1 
_ns1_ 

p 

I MM2 1 

DS 2 - PU 2 -~ ·-
IS ... __. cu 

~ • • 
• SM • 
• • 

~- PUn 
_osn_ 5] 

IS 
I 

(b) SIMD Computer 

6J - cu1 
IS1 .. PU1 

..DS 1 .. IS 1 .. - ... - - -
IS2 ~ I MMz I 

IS2.. DS 2 .. cu 2 PU 2 - ... ... ~ 

• • • • • 
• • • SM • • 
• • • • • 

IS _Dsn_ 5J 
IS 

~ CUn n- PUn ~ 

(c) MIMD Computer 

Figure 3.1 Flynn's Classification of Computer Architectures 



32 

In the third approach, each processing element contains a 

control unit as well as an ALU and memory unit. The elements of the 

network can therefore function as full-fledged independent digital 

computers, and during any instruction cycle each processing element 

can carry out a different arithmetic or logic operation. For this 

reason systems of this type are termed multiple-instruction stream, 

multiple-data stream, or MIMD. Most multiprocessor systems and 

multiple computer systems can be classified in this category. MIMD 

machines are considered tightly coupled if there is a shared memory 

and the degree of interactions among the processors is high, 

otherwise, they are considered loosely coupled. Loosely coupled 

systems employ distributed memory with a low degree of 

interactions among the processors. 

Since Flynn published his classification scheme, new parallel 

computer architectures have emerged which incorporated a variety 

of new architectural concepts. Currently, Flynn's classification 

scheme 1s still used but other classification schemes were developed 

mainly to augment Flynn's classification scheme making it more 

complete and accurate when used to classify new architectures. 

Some of the classification schemes are based on data sharing 

mechanism, synchronicity of operation, or granularity of 

computations [41]. Other schemes have emphasized a particular class 

of machines, like MIMD machines categorizing them as either 

switched systems or networks [42-43]. 

The aforementioned classification schemes of advanced 

computer architectures are only a few of the currently existing 

schemes. A variety of other classification schemes exist that adds to 



33 

the complexity of placing a given computer system within a definite 

class. The science of computer classification schemes is by no means 

complete and the necessity for a more clear and accurate scheme still 

exists. 

In this research, Flynn's classification is used along with a new 

classificatiop. scheme [21]. The classification scheme is based on 

three essential issues that must be considered for a parallel 

architecture: the granularity of the processing elements; the 

topology of the interconnections between processing elements; and 

the distribution of control across the processing elements. 

Granularity refers to the power of each processing element in the 

architecture ranging from many single-bit processors to a few 

powerful general purpose ones. Topology refers to the pattern and 

density of the connections that exist between the processing 

elements. Control distribution is concerned with allocating tasks to 

the processing elements and synchronizing their interactions. Figure 

3.2 illustrates the so called organizational space of parallel computer 

systems with these three variables as the axes. 

In describing each computer architecture in this chapter, an 

attempt is made to place each system in relative perspective by 

illustrating their approximate position within the space. The criteria 

used in placing these systems are somewhat subjective and 

qualitative. The architectures described are so different in their 

structure and operations that it is virtually impossible to establish a 

one-to-one comparison of their features. It should be emphasized 

that the placing criteria largely depend on the way each machine is 

used in this research. 



Fine 

Granularity 

Coarse 

/ 
/ 

Lightly 

Interconnected 

/ 
/ 

Topology 
Interconnected 

Figure 3.2 Organizational Space of Parallel 
Computer Systems 

Description of Selected Advanced 

Computer Systems 

34 

In this section a selected group of advanced computer 

architectures are described in detail. The hardware, software, and 

classification of each system are discussed in detail. The computer 

systems described here represent a variety of interesting 

architectures. 

The Heterogeneous Element Processor CHEP) 

The Heterogeneous Element Processor (HEP) was first developed 

for the Army Ballistic Research Laboratories at Aberdeen by 



35 

Denelcor, Inc. The HEP is a large scale scientific parallel computer 

employing shared resource (tightly coupled) MIMD architecture. The 

processors used in the HEP are pipelined to support many concurrent 

processes, with each pipeline segment responsible for a different 

phase of instruction interpretation. Each processor has its own 

program memory, general purpose registers, and functional units; a 

number of these processors are connected to shared data memory 

modules by means of a very high speed pipelined packet switching 

network [ 19,44]. 

The extensive use of pipelining in conjunction with the shared 

resource idea result in a flexible and effective architecture. For 

example, the switch used to interconnect processors and memories Is 

modular, and is designed to allow a given system to be expanded as 

needed. The increased memory access times that result from greater 

physical distances can be compensated for by using more processes 

m each processor because the switch is pipelined. 

An overall block diagram of a typical HEP configuration IS shown 

m Figure 3.3. The switch network shown has 28 nodes; it 

interconnects four processors, four data memory modules, and I/0 

processor and devices. Systems of this kind can be built to include as 

many as 16 processors and 128 data memory modules. Each 

processor performs 10 million instructions per second (MIPS), and 

the switch bandwidth is 10 million 64 bit words per second per 

network link. All instructions and data words in the HEP are 64 bits 

wide, although data references within each processor can access 

halfword, quarterword, and bytes [19,44]. 



36 

Parallel processing and MIMD architecture, as implemented in 

HEP, allow up to 100 independent (or cooperating) instruction 

streams executing in parallel at any given time. In the HEP, these 

instructions are called processes, and 50 processes can be active at 

one time in a single processor. Each process can have its own unique 

data stream. With a number of processes executing concurrently, it 

is practical to separate an application problem into its component 

parts and execute the parts in parallel, with intermediate results 

passed between the cooperating processes as necessary [19,44,45]. 

To I/O 

Figure 3.3 Four-Processor HEP System 



Figure 3.4 illustrates the routing control in the bidirectional 3-

ported switch node. The switch is synchronous and modular 

employing packet switching. Each node is connected by three full 

duplex ports. Each node receives three message every 1 OOns and 

route them for optimal destination, i.e. with minimal delay. Each 

node has three routing tables, one per port; tables are indexed by 

destination address and contain the identification of the preferred 

port out of which the packet should be sent [19,44]. 

37 

A unique feature of each switching node is it does not enqueue 

messages in case a conflict for a port occurs; instead, it routes all 

messages immediately to output ports. It is the responsibility of the 

neighbors of the node to make sure that incorrectly routed messages 

eventually reach their correct destinations. 

Porte Input 

Routing Logic 

Figure 3.4 Routing Control m the 3-ported Switch Node 



38 

The HEP main programming language is HEP/UPX FORTRAN 77 

which incorporates two kinds of extensions to FORTRAN 77: CREATE 

and RESUME statements which are syntactically equivalent to CALL 

and RETURN statements in FORTRAN 77 but used here for the 

creation and termination of processes, and access states of the 

asynchronous variables for synchronization between processes. 

Synchronization is required for handling data dependencies among 

user-created instruction streams. The user is responsible for 

establishing proper synchronization within his program using 

asynchronous variables that can be set to an access state, namely full 

or empty. PURGE statement is used to unconditionally set the access 

state of a synchronous variable to empty. Reading and writing to a 

synchronous variable will set it empty and full respectively. The 

HEP read and write instructions are controlled by these access states. 

By manipulating the access states, multiple instruction streams can 

be synchronized to access common memory locations [ 45]. 

Figure 3.5 illustrates the position of the HEP system in the 

organizational space. The packet switched network connecting the 

processors and the resources is considered to be lightly 

interconnected while the granularity of the HEP is relatively coarse 

since each 64 · bit processor is general purpose. The resources within 

the system are shared making the control of communications among 

resources relatively tight. 



Fine 

Granularity 

Coarse 

Lightly 

Interconnected 

Loose 
Heavily 

Topology Interconnected 

Figure 3.5 HEP Position in the Organizational Space 

The Cray X-MP/48 

39 

The Cray-1 computer was first delivered in 1976 to Los Alamos 

National Laboratory and since then it has been the industry standard 

in very high-speed computing. The success of the Cray-1 can be 

attributed to its innovative vector architecture, dense packaging, 

and advanced cooling technology [19-22,46]. 

The Cray-1 design employs many state-of-the-art architectural 

features such as: pipelining in memory acc~ss and function units, 

utilization of vector registers and operations chaining, concurrent 

execution of multiple functional units, interleaved memory, 

instruction cache and lookahead, and massive use of parallel logic to 

shorten the execution time of functional units. 



40 

The Cray X-MP/48 or Experimental Multi-Processor is a 

multiprocessor extension of the Cray-1 that was completed in 1983. 

The Cray X-MP/48 is a tightly coupled MIMD supercomputer. It 

contains four Cray-1 like processors that share memory and 1/0 

subsystems and has a clock cycle of about 9.5 nanoseconds (vs. 12.5 

nanoseconds of Cray-1). Most often the four CPU's function 

independently, but their instruction streams can be synchronized. 

Figure 3.6 illustrates the overall system of the X-MP/48. 

Although built upon the basic architecture of the Cray-1, the X

MP/48 processor is totally redesigned. All processors share a central 

memory of 8 million (64-bit) words, organized in interleaved 

memory banks. All banks can be accessed independently and in 

parallel during each machine clock period. Each processor has four 

parallel memory ports (four times that of Cray-1) connected to the 

central memory: two for memory loads, one for memory stores, and 

one for independent 1/0 operations. 

The multiport memory has built-in conflict resolution hardware 

to minimize access delay and to maintain the integrity of all memory 

references from different ports to the same bank at the same time. 

The n:lUltiport memory design, coupled with a shorter memory cycle 

time, provides a high performance memory organization with up to 

16 times the memory bandwidth of a Cray-1. The improved memory 

bandwidth balances the multiple-pipelined computing power of the 

CPU and the data streaming ability of the memory. For each 

processor, this capability, coupled with reduced clock period, gives 

a performance speedup over the Cray-1 of up to 4 [19-22,46]. 



1/0 
SUBSYS'IEM 

CENTRAL MEMORY 

INTER-CPU 
COMMUNICA'llON 

ANDCONIROL 

FRONT-END 
SYSTEM 

DISK 

41 

~ 

CPU I/0 

Figure 3.6 The Cray X-MP/48 Overall System Organization 

The processors, which share the 1/0 ports, are controlled 

synchronously by a central clock. The scalar performance of each 

processor is improved through faster machine clock, shorter 

memory access, larger instruction buffers ( twice that of the Cray-1), 

multiple data paths, and multiple processors. The vector 

performance of each processor is improved through faster machine 

clock, parallel memory ports, and a hardware automatic flexible 

chaining feature. The machine allows simultaneous memory fetches, 

a sequence of computations, and memory store in a series of related 

vector operations. 

The Cray X-MP/48, like the Cray-1, achieves low-level 

parallelism through vectorization. The Cray FORTRAN compiler (CFT) 



42 

analyzes innermost DO loops to detect vectorizable sequences and 

then generates code to take advantage of the processor organization. 

The vectorization performed by the compiler is automatic, providing 

increased performance without restructuring or handcoding. In 

addition, the Cray X-MP/48 can achieve high-level parallelism via 

multitasking. All of the processors can cooperate to solve a problem 

by running separate tasks in parallel. 

Any required synchronization must be specified by the 

programmer via calls to the multitasking library. Multitasking 

requires careful consideration of the algorithm at hand and data 

dependencies that may exist. A variety of facilities are provided to 

support multitasking: compiler linkage protocols, utilities, memory 

management facilities, and multitasking synchronization routines. 

A task is defined as a program unit capable of being 

independently assigned a . processor. All tasks of a program share the 

same FORTRAN common memory area, but each task is allocated a 

private environment for its local variables. All programs consist 

initially of one task. Any task can create a number of other tasks. 

All tasks created as descendants of the initial task run logically in 

parallel, but actual parallel processing across the two processors 

depends on instantaneous machine loading and available resources. 

Hence, it is not possible to easily determine for a particular run 

whether separate tasks actually ran in parallel. 

Finally, Figure 3.7 illustrates the position of the Cray X-MP/48 

in the organizational space. Low-level parallelism is used in 

determining the approximate placement location. The processors are 

of fine granularity because they operate on multibit elements. The 



43 

topology is fairly heavily interconnected, because communication Is 

performed at a low level and without the need for contention to 

access a communication path. The operation of the X-MP/48 is 

tightly coupled. 

Fine 

Granularity 

/ 

Coarse / 

Lightly 

lntercomected 

/ 
/ 

/ 
/ 

/ / D/ / 
__/_ 

/ / 

Topology 
Itterconnected 

Figure 3.7 Cray Position in the Organizational Space 

The Intel iPSC/2 Hypercube 

A cube is defined as a set of n processors, where n is a power of 

two, that are interconnected in such a way that the processors are 

located at the comers of a cube and the interconnections form the 

cube edges. There are several types of cubes, all variations on the 



44 

basic architecture, called the Boolean n cube, or binary cube. Each 

of the n nodes contains log n connections to its neighbor nodes. Each 

node is numbered in such a way that there is one binary digit 

difference between any node and its log n neighbors. 

Cubes with dimensions greater than three are generally called 

hypercubes. Higher dimension cubes/hypercubes are constructed 

using lower dimension cubes/hypercubes as shown in Figure 3.8. 

Dimension Nodes Channels/Node Channels 
OD 1 0 0 

1D 2 1 1 

2D 4 2 4 

3D 8 3 12 

4D 16 4 32 

Topology 

e 
®------® 

Figure 3.8 The Hypercube Topology 



45 

The basic concept for the Intel iPSC computer was proposed by 

and developed at the California Institute of Technology, under a 

project called the Cosmic Cube [47]. The project was sponsored by 

the United States Department of Energy and DARPA. Under a license 

from Caltech, Intel developed its own hypercube-based architecture, 

utilizing existing Intel microcomputer and communication 

components. 

The Intel iPSC/2 computer consists of a hypercube based 

architecture along with an associated host processor called the cube 

manager. The iPSC/2 used in this research is a five dimensional 

hypercube. The iPSC/2 is expandable to a seven dimensional 

hypercube. The connection scheme of the hypercube is robust smce 

there are several different paths that exist between any two nodes in 

the cube [21]. 

Each iPSC/2 node contains a 32-bit microcomputer based on the 

Intel 80386 processor with a fast scalar floating-point unit. Each 

node has its own memory and therefore the iPSC/2 is considered to 

be loosely coupled MIMD ·machine. 

Nodes communicate with other nodes by sending and receiving 

messages. Message passing is the only means available for internode 

communication and synchronization, since the iPSC/2 has no shared 

memory. A Direct-Connect routing module is present in each node 

for high-speed message passing within the system's hypercube 

communication network. Each routing module provides an eighth 

channel for high-speed external communication (only seven are 

needed to connect up to 128 nodes). Messages on the iPSC/2 can 

either be synchronous or asynchronous. A call to the synchronous 



46 

message passmg routines blocks until the message is sent or received 

before returning and allowing program execution to continue. On the 

other hand, a call to the asynchronous message passing routines 

returns immediately and does not block until the message is sent or 

received. The user has complete control over message passing using 

FORTRAN or C language extensions. 

Figure 3.9 places the iPSC/2 hypercube architecture in the 

organizational space. The node processors are capable of performing 

a full range of operations since they incorporate general-purpose 32-

bit microprocessors. For this reason, the iPSC/2 is considered to be 

fairly coarse grained. Since the complexity of the interconnection at 

each node is a maximum of five channels (for the 5-dimensional 

hypercube), and the communication between nodes does not have to 

be synchronized, the topology of the hypercube is of medium 

interconnection complexity. The iPSC/2 is an MIMD machine with 

each node having its own local instruction stream and communication 

is locally controlled making the overall system loosely coupled. 



Fine 

I : 

I : 

Granularity 
I ~ 

Coarse 
~~------------~~~ ~e Lightly Heavily 

Inrerconnected Topology Interconnected 

Figure 3.9 

The Alliant FX/8 

Hypercube Position in the 
Organizational Space 

47 

Tight 

The Alliant FX/8 was designed to exploit parallelism found in 

scientific programs automatically. The intent was to allow parallel 

processing on existing FORTRAN programs with minimal or no 

changes to the source code. Figure 3.10 illustrates the hardware 

architecture of the Alliant FX/8. It consists of eight processors called 

Computational Elements (CBs), and 12 Interactive Processors (IPs). 

A common memory bus is employed for communication among 

resources. The CBs are connected via a crossbar switch to the cache 

modules attached to the memory bus. All access by the CBs and IPs 

to the bus occurs through cache memory modules. The CBs are also 



48 

connected directly to each other VIa a concurrency control bus. The 

Alliant FX/8 is a tightly coupled MIMD machine. 

The CE is the computational building block of the Alliant FX/8 

system. Each CE is a microprogrammed pipelined processor 

(compatible with MC68000 architecture) with integrated floating 

point and vector instruction sets. In general, the CEs are used to 

perform computation-intensive processes that can benefit from 

vectorization or loop-level concurrency, whereas the IPs are used to 

perform interactive processes and handle 1/0 between the memory 

and peripherals. The CEs are referred to as the computational 

complex and can be devoted to the execution of a single program . 

• • • 

• • • • 

CE · Computational Element 

Concurrency Control Bus IP· Interactive Processor 

Figure 3.10 The Architecture of the Alliant FX/8 



49 

FORTRAN , C, and Pascal are supported on the FX/8 but only the 

FX/FORTRAN compiler provides optimization for concurrency and 

vectorization. Concurrency refers to the concurrent execution of 

loops and array operations by more than one CB. Vector operations 

are distributed across the CBs for concurrent execution in the same 

way as scalar operations. 

When the FX/FORTRAN compiler recognizes an opportunity for 

concurrency, it generates concurrent code only as long as it can 

guarantee that this will not change the outcome of the program. In 

most cases, the compiler is very conservative in this regard. It 

bases its decision on the type of statements within a loop and the 

way variables are used, since the latter often affects the degree to 

which the iterations of the loop can be overlapped. 

Concurrency is applied to DO loops by executing the different 

iterations on different CBs. Since there are eight processors, up to 

eight iterations can be active at one time. If necessary, the compiler 

inserts synchronization points into the object code to ensure that 

variables within a loop are updated and accessed in the correct order 

and to guarantee that the program statements following a loop do not 

execute until all iterations of the loop are finished. 

Figure 3.11 illustrates the position of the Alliant FX/8 m the 

organizational space. The computer is a tightly coupled MIMD 

machine. The CBs are powerful processors that employ pipelining 

and vectorization suggesting that the FX/8 is of medium granularity. 

The interconnection between the CBs is simply a bus (concurrency 

bus). The CBs are connected via a crossbar switch to the cache 

memory modules which in turn connected to the shared memory via 



50 

a bus. For these reasons, the FX/8 is considered to be lightly 

connected. The control is fairly tight since a shared memory is used. 

Fme 

Granularity 

/ 

Coarse / 

Lightly 

Interconnected 

/ 
/ 

Topology 

-----?1 
--:J) 

Interconnected 

Figure 3.11 Alliant Position in the 
Organizational Space 

The Massively Parallel Processor CMPP) 

Among the experimental machines successfully built is the 

massively parallel processor (MPP) which was designed to process 

satellite imagery at high rates. In 1971, NASA Goddard Flight Center 

in Greenbelt,Md., initiated research for a high speed computer to 

process the data generated by orbital imaging sensors. Data rates of 



1013 bits/day is expected to result in 109-1010 operations/sec 

workload. Designed and built for $6.7 million by the Goodyear 

Aerospace Corp. in Akron, Ohio, the MPP was delivered to NASA in 

May 1983. 

51 

One of MPP's first tests involved analyzing data from the 

"thematic mapper" aboard Landsat 4. By studying the million or so 

pixels making up a typical image, the MPP automatically finds out 

whether each spot represents watet: or land, forest or field, stream or 

street - all in 20 seconds. A conventional computer would take hours 

to analyze the same picture and produce a similar classification 

scheme. 

The MPP Architecture [481 

The MPP owes its speed to the unusual way in which the 

machine's parts are organized. Its network of 16384 simple 

processors allows a problem to be divided up so that each processor 

performs the same operation on different pieces of data at the same 

time (SIMD architecture). 

Figure 3.12 depicts the overall system block diagram. There are 

five main subsystems: The array unit (ARU), the array control unit 

(ACU), the program and data management unit (PDMU), the staging 

memories (SM), and the host computer. 



52 

- -- ..... 
INPUT OUTPUT 

INTERFACE INTERFAC E 
(/) C/) w w :a: :a: 0 A RU 0 t- t-
~ ~ C/) C/) 

, I , , I 
STAGING ACU STAGING 
MEMORY ~ MEMORY 

~ l j ~ 
, 

PDMU --
j 4 - 1/0 
1 - DEVICES 

HOST --
Figure 3.12 Overall Block Diagram of the MPP 

The Array Unit. The ARU of the MPP is organized with a 

number of 16384 -element planes to handle the two-dimensional 

data processing at high speed. Each plane is a square with 128 rows 

and 128 columns. Figure 3.13 shows 1 column of the ARU. The ARU 

contains one S-plane (used to handle data input and output for the 



ARU), 1024 memory planes, and 35 processing planes for a total of 

1060 planes. Each plane also has 4 spare columns to bypass faulty 

hardware. 

S-PLANE 

1024 
MEMORY ~...----.., 
PLANES 

Figure 3.13 The ARU 

53 



54 

Instructions operate on a whole plane of data in parallel. The 

ARU can treat data of arbitrary precision since the processing is bit

serial. Black-white images are stored and processed as arrays of 

single-bit pixels, images with 256 grey levels are stored and 

processed as arrays of 8-bit pixels. 

Each plane is organized in a mesh with nearest neighbor 

communication between the elements in that plane. This architecture 

facilitates data accessability and is easy to implement in hardware. 

The edge connectivity is programmable offering the user eight 

different topologies. Figure 3.14 illustrates these topologies. For the 

East-West edges there are 4 possible options: open, cylindrical, open 

spiral, or closed spiral. For the North-South edges there are 2 

possible options: open or connected. 

Programmability is achieved using the topology register in the 

ACU. Note that topologies 4-7 convert the two-dimensional ARU into 

one-dimensional structure that can be used for one-dimensional 

signal processing problems. 

Processing elements in the ARU are designed with two-row by 

four-column custom made VLSI chips (HCMOS technology). The 

processing element array has 128 rows and 132 columns that are 

divided into 33 groups, each of which consists of 128 rows by 4 

columns. Each of the 33 groups has an independent group-disable 

control line from the ACU that is activated if a faulty processing 

element is detected. Arbitrary disable is used if no fault is detected. 

The programmer does not need to alter the program when the 

disabled group is changed since logical addresses are used. 



55 

0) Flat 1) Vertical Cylinder 

2)Horizontal Cylinder 3)Torus 

• ..... 0 

0~ r 
4)Helical String S)Endless Loop 

-- 0 

0~ 
L 

G)Torus(ends separated) 7)Toroid 

Figure 3.14 Topologies Available on the MPP's ARU 



56 

Figure 3.15 shows one processing element (PE) in the ARU. The 

PE has six 1-bit registers (A,B,C,G,P,and S), a planar shift register with 

a programmable length (2,6,10,14,18,23,26,or 30), RAM, data bus, 

full adder, and some logic circuits. The S-register is part of the S

plane that handles data input and output for the ARU. On input, the 

S-plane accumulates a plane of data, column by column and then 

transfers the data plane to a memory plane. On output, the S-plane 

receives the contents of a memory plane and then transfers the 

plane out column by column. Input and output can be handled 

simultaneously. 

I J ' ~SUM CARRY~ 
fUll ADDER c 

,. • 'l H 

-- N-BIT -- A 
~s-

B -- SHIFf REGISTEF 
... 

p G -
h LOGIC 

'~ 
1 r 

DATA BUS '~ 1 r n 

... ~ .. .. ., ,. .,,. 
FROMPE .... ~,TOPE RAM ON LEFT s ON RIGHT 

Figure 3.15 The Processing Element 

-

• r 



57 

The A-register is part of the A-plane that recetves the output of 

the planar shift register. It can be considered to be a one-plane 

extension to the depth of the planar shift register. The B-plane is the 

sum plane in arithmetic operations, while the C-plane is the carry 

plane. The G-plane is used to mask activity in the other processing 

planes, while the P-plane is used for logic and routing operations. 

The RAM stores 1024 bits per PE with addresses in the range 0 

to 1023. The ACU generates 16-bit addresses so that ARU storage can 

be expanded to 65536 bits per PE. Memory faults are detected using 

parity check that sets an error flip-flop associated with the 2 by 4 

subarray. 

The S-plane and the processmg planes are implemented with 

2112 custom VLSI circuits. The memory planes are implemented 

with 4752 standard bipolar RAM integrated circuits- each RAM 

circuit contains 4 data bits or 4 parity bits of all 1024 memory 

planes. Twenty four VLSI circuits and 54 RAM circuits are packaged 

on one printed-circuit board to make up a 16 row by 12 column 

section of the ARU planes. The 128 row by 132 column ARU requires 

88 printed-circuit boards. Another 8-boards are used for the 

topology switches around the edges of the P-plane and to distribute 

the control signals from the ACU. 

The Array Control Unit. The ACU controls the operations in the 

ARU and performs the arithmetic on any scalars required to support 

operations on data arrays in the ARU. Figure 3.16 shows a block 

diagram of the ARU that consists of: the processing element control 



unit (PECU), the input/output control unit (IOCU), the mam control 

unit(MCU), a queue, and memory for both the PECU and the MCU . 

M FRO 
PO MU 

M FRO 
PO MU 

.. ... 
.. 

PECUMEMORY ... PECU 
roo--

~~ 

QUEUE 

t ~~ 

/ MCU 

MCUMEMORY 

' 
,, 

IOCU 

Figure 3.16 The Array Control Unit 

.. -

-... 

TO 
ARU 

TO 
ARU 

58 

The PECU controls operations in the processmg planes of the 

ARU. It generates all ARU instructions except those pertaining to the 

S-register. It executes microcoded routines stored in its program 

memory to perform all array operations required by application 

programs. The PECU contains 8 index registers, a 64 bit common 

register for scalar data, a topology register, a program counter, a 

subroutine stack, and an instruction register. 

The IOCU controls the shifting of 1/0 data through the ARU S

registers as well as the transfer of l/0 data between the S-registers 



and the ARU memory. It executes l/0 channel control programs 

stored in the MCU program memory. 

59 

The MCU executes the application program stored in its program 

memory. It performs the scalar arithmetic operations required, calls 

the PECU for all array logic and arithmetic operations. Both sets of 

calls are queued to await execution while the MCU moves on to 

generate other calls. 

The queue holds calls to the array processmg routines until they 

are executed by the PECU. A call enters the queue when inserted by 

the MCU and remains there until the PECU has executed all 

previously called routines, then the PECU jumps to the called 

routine. Up to 16 calls can be held in the queue at one time. 

The Pro&ram and Data Mana&ement Unit. The PDMU is a DEC 

PDP11/34A minicomputer. It controls the overall flow of 

programmed data in the system and it has the RSX-llM real time 

multiprogramming operating system. The PDMU executes the 

program development software package written in FORTRAN. This 

package includes the main assembler, the PE control assembler, a 

linker, and a control and debug module. 

The main assembler is used to develop application programs 

executing in main control, while the PE control assembler is used to 

develop array processing routines for PE control. The linker is used 

to form load modules for the ACU. Finally, the control and debug 

module is used to load programs into the ACU, control and supervise 

the execution, and facilitate debugging. 



60 

The Staging Memories. The MPP system includes a staging 

memory for buffering ARU data. This memory provides both the 

"corner turning" function, which converts conventional byte or word 

oriented data into the bit plane form needed by the AR U, and the 

"multi-dimensional access" function which allows large multi

dimensional arrays of data located in the staging memory to be read 

out or written in along arbitrary orderings of array dimensions. The 

current capacity of the staging memory is 32 Mbytes and is 

upgradable to 64 Mbytes. 

Data moves between the ARU and the staging memory v1a 128 

parallel lines. The upper limit on the transfer rate is 1.28 billion 

bits/second. The MPP currently supports 64 billion bits/second. Data 

movement in both directions can be overlapped with processing. 

The Host Computer. The host computer is a DEC VAX 11!780 

minicomputer. It manages data flow between the MPP units, loads 

programs into the ACU, executes system test and diagnostic routines. 

The MPP is interfaced to the host through a 5Mbytes/second DR-780 

channel. The custom interface is used to switch the MPP from PDMU 

to host and is facilitated by the DEC UNIBUS. 

MPP Classification 

The MPP is situated in the organizational space as shown in 

Figure 3.17. The MPP is a bit-slice machine with relatively special 

purpose processing elements and therefore considered finely 

grained. The topology of interconnection between processing 

elements is fairly dense and highly synchronized making the MPP 



61 

heavily interconnected. As previously mentioned, the operation of 

all processing elements is synchronized so that a single operation 1s 

performed on all data at once. The control of this action resides 

within the control unit at all times and is always synchronized with 

the main processor clock. For this reason, the MPP is classified as 

tight. 

Fine 

Granularity 

/ 

Coarse / 

Lightly 

lnte:n:omecled 

/ / 

/ 

Tight 

/ 

Topology 1ttercoooected 

Figure 3.17 MPP Position in the Organizational Space 

The MPP Programming Environment 

The initial high level language implemented in 1983 was Parallel 

Pascal. It was designed to be independent of computer architecture, 



thus allowing portability of application programs between diverse 

parallel computers having Parallel Pascal compilers. Experience m 

the development and use of this approach showed that the 128 by 

128 square grid architecture of the MPP could not be hidden from 

the programmer using current compiler writing technology. 

62 

A modified language, MPP Pascal, was then implemented that is 

architecture dependent and that possesses important semantic 

features allowing the programmer to make efficient use of the 

hardware capabilities. This compiler is sufficiently flexible to allow 

easy modifications. 

The compiler accepts most of the standard Pascal code but after 

some modifications to handle parallel arrays. A parallel array 1s 

stored in array memory and all operations on the array are 

performed in parallel. The following instruction declares "parray" as 

a parallel array of integer values with dimensions 128 by 128: 

type 
parray=parallel array [1..128,1..128] of integer; 

Notice that the parallel arrays on the MPP must have the last two 

dimensions equal to 128. Figure 3.18 illustrates an example of a 

simple addition of two parallel arrays and the way they are stored m 

the ARU. Parallel array 'A' is a two dimensional array while 'B' is 

three dimensional. 



Var 
A:Parallel Array [1 .. 128,1 .. 128] of Real; 
B :Parallel Array [1 .. 2, 1 .. 128, 1 .. 128] of 1 .. 256; 
l:lnteger; 

Begin 
A::O.O; 
For 1::1 to 2 Do 

A::A+B[I]; 

End 

0 
0 

Figure 3.18 Example of MPP Pascal Code and Storage 

There are two classes of standard functions that have been 

defined in Parallel Pascal: reduction functions and permutation 

63 



64 

functions. Reduction functions reduce the rank of an array. The first 

argument of such a function specifies the array to be reduced and 1s 

followed by arguments that specify which dimensions are to be 

reduced. Table 3.1 summarizes these functions. 

Table 3.1 

Reduction Functions 

Syntax 

sum( array, 01 , ... ,On) 
prod(array,D1 , ... ,Dn) 
all(array,D1 , .. ,Dn) 
any(array,D1 , ... ,Dn) 
max(array,D1 , ... ,Dn) 
min(array,D1 , ... ,Dn) 

Meaning 

arithmetic sum 
arithmetic product 
Boolean AND 
Boolean OR 
arithmetic maximum 
arithmetic minimum 

Permutation functions are primitive operations that involve data 

movement. Four functions are available and tabulated in Table 3.2. 

Finally, special block structures were added to the Standard 

Pascal. An interesting one is the "when-do-otherwise" structure 

which is the equivalent to the combination of "for-do" and "if-then-

else" structures. 



Table 3.2 

Permutation Functions 

Syntax 

shift(array,S1 ,52, 1 .. ,Sn) 
rotate(array,S1 ,52, 1 .. ,Sn) 
transpose(array,D1 ,02) 
expand{array ,d im,range) 

Meaning 

End-off shift data In array 
Circularly rotate data in array 
Transpose two dimensions 
Expand array along dimension 

The Connection Machine Model CM-2 

65 

The Connection Machine was conceived at MIT's AI Laboratory 

for concurrent manipulation of know ledge stored in semantic 

networks. Figure 3.19 shows the block diagram of the system 

constructed by Thinking Machines Corporation at Cambridge, 

Massachusetts. This is an SIMD machine having 64K simple 

processor/memory cells linked by a 12-dimensional hypercube 

network. The hypercube topology is distinguished by its symmetry, 

small diameter, and multiplicity of paths between any two nodes. It 

is amenable to a layout with high packing density and short average 

wire length. 

A full CM-2 is made up of four sections of 16K processors each. 

Each section is termed a sequencer and can be used separately, m 

paus, or as one massive processor unit. 



N ex us 
fFront} 
IEndO 

y Front~ 
End 1 

CMParallel I Processing Unit 
Front~ 
End2 

Connection Connection 
~ re Machine Machine e-~ Front~ 

Processors Processors End3 

I Sequencer 0 • 1e Sequencer 3 I Ne twork 

I Sequencer 1 • !e Sequencer 2 I 
Connection Connection 

,..... re Machine Machine .... 
Processors Processors 

I I I I 
Connection Machine I/0 System I 
I I 

Data: I ~~=tl Data I Graphic I 
Vault Vault Display 

Figure 3.19 The Connection Machine CM-2 Overall 
Block Diagram 

66 

Aside from its processors, each section contains interprocessor 

communication hardware, a sequencer, and optionally, a set of 

peripherals. The interprocessor communication hardware is used for 

communication between any processors controlled by one host. A 

sequencer receives macroinstructions from the front end and 

broadcasts sequences of microinstructions to all the processors in its 



67 

section. A typical macroinstruction would be to add two 32-bit 

numbers and store them in a particular location. Because of the 

simplicity of the processors, each macroinstruction is typically 

implemented by many microinstructions. Thus the microcontroller 

acts effectively as a bandwidth amplifier for the instruction stream 

coming from the host. 

The front end computer, or host, attaches to the microcontroller 

through a bidirectional crossbar called a Nexus, and controls one, 

two, or four 16K processor sections. 

Although the front end can be used to supply data to the CM-2 

computer, in many applications the CM-2 processors can process 

data much faster than the front end can supply it. For this reason, 

the CM-2 processors are connected to a high-speed bidirectional bus. 

Special disk drives, frame buffers, frame grabbers, and specialized 

l/0 devices are connected to this high bandwidth bus. 

Pointer referencing (or referencing the data in one data object 

from another) on the CM-2 computer requires interprocessor 

communication. Since a CM-2 processor needs to be able to access 

data fr<;>m any other processor, this intercommunication system has 

to handle a large load at high speed. This is achieved by the use of a 

router which is integrated into the architecture so that every 

processor's memory is easily accessible to every other processor. 

The result is that the application programmer does not have to worry 

about physical processor geometry since the router handles all 

interprocessor communication efficiently regardless of layout. Figure 

3.20 examines the sequencer architecture more closely. 



Front-End ~Instructions 
Computer ~d data 

results ....-------. 
j Microcontrolle1 j 

~ rn ~ rn ~CM~~o~ 
M M M M M 

Processor 
M Memory 

Figure 3.20 The Architecture of a Sequencer 

68 

Suppose a processor P(i,j) on chip i wants to communicate with 

processor P(k,l) on chip k. It first sends the message to the router 

R(i) on its own chip, using a simple hand-shaking mechanism. This 

router forwards the message to router R(k) on chip k. Finally, R(k) 

delivers the message to the appropriate memory location. The 

routing algorithm used by the router moves messages across each of 

the 12 dimensions of the hypercube in sequence. If there are no 

conflicts, a message will reach its destination within one cycle of this 

sequence, smce any vertex of the cube can be reached from any 

other by traversing no more than 12 edges. 

Along with general pointer referencing, two-dimensional 

interprocessor communication is supported. In this type of 



communication, termed NEWS, each data object can communicate 

with its two-dimensional neighbor ( to the north, east, west, or 

south). This intercommunication is handled by a slightly different 

mechanism and is faster than using the general communication 

mechanism. Image processing applications often use this ability to 

move data from one pixel the next. 

69 

The Connection Machine Model CM-2 is a data parallel computing 

system. Data parallel computing associates one processor with each 

data element. This computing style exploits the natural 

computational parallelism inherent in may data-intensive problems. 

It can significantly decrease the execution time of a problem, as well 

as simplify its programming. In the best cases, execution time can 

be reduced m proportion to the number of data elements in the 

computation. 

The central element in the system 1s the CM-2 parallel 

processing unit, which contains: 

• thousands of data processors 

• an interprocessor communication network 

• one or more sequencers 

• one interface to one or more front-end computers 

• zero or more 1/0 controllers and/or frame buffers 

As previously mentioned, a parallel processmg unit may contain 

64K, 32K, or 16K data processors. Each data processor has 64 K bits 

(8Kbytes) of bit-addressable local memory and an arithmetic-logic 

unit that can operate on variable-length operands. Each data 

processor can access its memory at a rate of at least 5Mbits per 



70 

second. A fully configured CM-2 thus has 512 Mbytes of memory 

that can be read or written at about 300 gigabits per second. When 

64K processors are operating in parallel, each performing a 32-bit 

integer addition, the CM-2 parallel processing unit operates at about 

2500 Mips. In addition to the standard ALU, the CM-2 parallel 

processing unit has an optional parallel floating point accelerator that 

performs at 3500 MFlops (single precision) or 2500 MFlops (double 

precision). 

The CM-2 parallel processing unit contains thousands of data 

processors. Each data processor contains: 

• an ALU and associated latches 

• 64K bits of bit-addressable memory 

• four 1-bit flag registers 

• optional floating point accelerator 

• router interface 

• NEWS grid interface 

• 1/0 interface 

The data processors are implemented usmg four chip types. A 

proprietary custom chip contains the ALU, flag bits, router 

interface, NEWS grid interface, and l/0 interface for 16 data 

processors, and also contains proportionate pieces of the router and 

NEWS grid network controllers. The memory consists of commercial 

RAM chips. The floating point accelerator consists of a custom 

floating point interface chip and a floating point execution chip; one 

of each is required for every 32 data processors. A fully configured 

parallel processing unit contains 64K data processors, and therefore 



7 1 

contains 4096 processor chips, 2048 floating point interface chips, 

and 2048 floating point execution chips, and half a gigabyte of RAM. 

The CM-2 ALU consists of a 3-input, 2-output logic element and 

associated latches and memory interface. The basic conceptual ALU 

cycle first reads two data bits from memory and one data bit from a 

flag; the logic element then computes two result bits from the three 

input bits. Finally, one of the two results is stored back into 

memory and the other result into a flag. One additional feature Is 

that the entire operation is conditional on the value of a third flag; if 

the flag is zero, then the results for that data processor are not 

stored after all. 

The logic element can compute any two boolean functions on 

three inputs; these functions are simply specified (by the sequencer) 

as two 8-bit bytes representing the truth tables for the two 

functions. 

Since each cell can perform only extremely simple tasks, the 

real power of the CM derives from its ability to store information m 

the reconfigurable virtual interconnection patterns among the cells, 

and from the concurrent execution of the same simple operation on a 

very large number of cells. 

The Connection Machine (CM-2) system consists of a collection of 

simple processors, each with its own memory, all acting under the 

direction of the front end. Since many data sets are larger than even 

the largest CM, the system uses a virtual processing mechanism, 

whereby each physical processor simulates some number of virtual 

processors by subdividing its memory, to ensure that a unique 

processor is assigned to each element of the data. 



72 

Virtual processors are a software abstraction, implemented at 

the microcode level, which allows a programmer to write programs 

that are independent of the number of physical processors that the 

CM-2 hardware contains. Virtual processors are implemented using 

three separate mechanisms: one for storage, one for processing, and 

another for communication. First, the memory of each physical 

processor is divided evenly among the virtual processors assigned to 

it. The number of virtual processors per physical processor is 

referred to as the virtual processor ratio. 

The second mechanism necessary to support virtual processors is 

time-multiplexing of the physical processors among the virtual 

processors assigned to it. Every macroinstruction sent by the front 

end is run on each of the virtual processors within each physical 

processor. The overhead for switching context is extremely small 

(about the time to execute a 2-bit add) because each processor is so 

simple. 

The third mechanism of communication allows the CM-2 

processors to communicate with one another without regard to 

virtual processors. Grid communication is handled by the microcode 

by sharing the grid wires. General communication (pointer 

reference) is handled by the router hardware. The length of a 

processor address changes based on the number of virtual processors 

m the machine. This virtual address is used by the router hardware 

to deliver messages to the correct processor. 

The CM-2 is situated in the organizational space as shown in 

Figure 3.21. The CM-2 is an SIMD machine with massive number of 

simple processors and therefore considered very finely grained. The 



73 

topology of interconnection is a 12 dimensional hypercube and is 

considered heavily interconnected. Notice that because there is only 

one instruction stream, the CM-2 processors are naturally 

synchronized. No processor can proceed to the next instruction until 

all have finished the current instruction. Therefore, the CM-2 is 

classified as tightly controlled architecture. 

Fine 

Granularity 

/ 
/ 

Coarse / 

Lightly 

lntercomected 

/ 

/ 
/ 

/ 
/ 

- --- ---/ 
/ 

Topology 
Interconnected 

Figure 3.21 CM-2 Position in the Organizational 

The Cray-2 Supercomputer 

Tight 

Space 

The Cray-2 supercomputer IS the latest Cray to be produced. It 

is a tightly coupled MIMD supercomputer that contains four Cray-1 



like processors that share memory and l/0 subsystems and has a 

clock cycle of about 4.5 nanoseconds. The architecture IS very 

similar to that of the Cray X-MP/48 but with much improved and 

faster vector processors. Table 3.3 compares the different Cray 

computer showing the number of CPU's used, individual processor 

potential (Cray-1 processor is used as a baseline), and finally the 

total system potential. 

Table 3.3 

Comparison of Cray Supercomputers 

Model #of CPU Proc. Pot. Tot. Sys. Pot. 

Cray-1 1 1 1 
Cray X-MP 2 1.32 2.64 
Cray X-MP 4 1.47 5.88 
Cray 2 4 3. 05 12.20 

74 

The designer of the Cray supercomputers is Seymour Cray who 

concentrated on the science and art of arranging chips on circuit 

boards and plotting the interconnections among those boards in a 

way that minimizes the physical distance that electrical signals must 



75 

travel along the data path. The importance of packaging is magnified 

in supercomputers because the processors are so fast that one of the 

main constraints on speed is the time required for signals to pass 

through wires. Light travels about a foot per nanosecond, but due to 

the resistance of wiring, electrical pulses can manage 4 to 9 inches. 

The longest wire in a Cray-1 is 4 feet, but in the Cray-2 that distance 

has dropped to about 18 inches. 

There is a price to pay for increased speed, however. The 

power consumption of the machine is enormous for its size and most 

of that is converted to heat. In order to dissipate the heat generated 

by the 300K integrated circuit chips in the Cray-1, the refrigerant 

Freon is circulated through channels in each layout board. To 

perform the same task in the more densely packed Cray-2, the 

entire system must be immersed in a bath of liquid fluorocarbon. 

The position of the Cray-2 in the organizational space is similar 

to that of the Cray X-MP/48 illustrated in Figure 3.7. The main 

difference is the improved processor capability. 

Chapter Summary 

This chapter described a new classification scheme for computer 

architectures and described several commercially available 

machines. Throughout the chapter, these machines were classified 

according to the new classification scheme. The new classification 

scheme maps each architecture into a box in a defined three 

dimensional space. The results of the classification show that the 

architectures occupy a substantial volume of the three dimensional 



76 

space making them good representatives of the available computer 

systems. 

In the next chapter, implementation results of the selected 

algorithm on the computer systems described in this chapter are 

reported. A preliminary judgement on performance is also reported. 



CHAPTERN 

IMPLEMENTATIONS OF THE 

BURG ALGORITHM 

The Burg algorithm, described in chapter II, is a procedure for 

fitting an autoregressive model to a time series data set. It is widely 

used in such areas as seismic data processmg, spectral estimation, 

speech signal analysis, and biomedical signal processing. The mam 

step in this algorithm is a time shift/inner product operation. This 

step is also a key to a number of other signal processing algorithms; 

any algorithm which involves a convolution or a correlation 

operation will have this step as a major component. Because it is 

representative of such a large class of signal processing algorithms, 

the Burg algorithm was chosen for this study of the mapping of batch 

signal processing algorithms onto general purpose parallel 

computers. 

Seven parallel machines, described in chapter III, were 

chosen for this study, representing a variety of available modem 

computer architectures. The Burg algorithm has been implemented 

on each of these machines: the Intel iPSC/2 hypercube computer, a 

distributed memory (loosely coupled) MIMD machine; the Denelcor 

HEP, a shared memory (tightly coupled) MIMD machine with switch 

network interconnect architecture; the NASA/Goodyear MPP, a 

massively parallel SIMD machine with mesh interconnect 

77 



78 

architecture; the Cray X-MP/48, a shared memory (tightly coupled) 

MIMD supercomputer with direct connect interconnect architecture; 

the Alliant FX/8, a shared memory (tightly coupled) MIMD machine 

with a bus interconnect architecture; the Connection Machine model 

CM-2, a massively parallel SIMD machine with hypercube 

interconnect architecture; and the Cray-2 supercomputer, a tightly 

coupled MIMD machine with direct connect interconnect architecture 

and is the latest Cray to be produced. These seven architectures 

provide a variety of interesting mapping problems for the algorithm. 

An analysis of the algorithm's performance on these machines will 

assist in the determination of the optimal architecture for this 

problem. 

This chapter describes the parallel implementation of the 

algorithm on the seven architectures and gives an analysis of 

speedup characteristics. Finally, there will be a preliminary 

comparison of the performances of the seven machines and a 

discussion of the results. 

Sequential Implementation [30,49-51] 

A standard sequential implementation of the Burg algorithm, 

which was described in section 2.2 is shown in Figure 4.1. In this 

figure the individual computations, or tasks, are labeled Tin (1), 

T n(l), Tin(2), Tnn(2), Tin(3). 

Tasks Tin(l) are the computations of the inner products which 

are found in the numerator and denominator of Equation (2-20). 

Task Tn(l) is the simple division needed to compute cm+ 1· This task 

can cause a bottleneck in the parallel implementations, as is 



discussed in later sections. Tasks Tin(2) update the autoregressive 

coefficients. (These tasks may not always be necessary.) Tasks 

Tin(3) update the forward and backward prediction errors using 

Equations (2-14) and (2-15). 

1. INITIALIZATION 

FOR i=1 TOM DO 
e(i)=x(i) 
b(i)=x(i) 

2. THE MAIN LOOP 

FOR n=1 TO MAX DO 
s1=0.0; s2=0.0 
FOR i=n+ 1 TOM DO 

s1 =s1 +e(i)*b(i-n) 
s2=s2+e(i)**2+b(i-n)**2 

c(n)=-2.0*sl!s2 
IF n>1 THEN DO 

FOR i=1 TO n-1 DO 
a1(i)=a(i)+c(n)*a(n-i) 

FOR i=1 TO n-1 DO 
a(i)=al(i) 

a(n)=c(n) 
FOR i=n+1 TOM D 

temp=e(i)+c(n)*b(i-n) 
b(i-n)=b(i-n)+c(n)*e(i) 
e(i)=temp 

T nn(2) 

Figure 4.1 Sequential Implementation 
of the Burg Algorithm 

Parallel Implementations [ 49,51] 

79 

To implement the Burg algorithm using parallel techniques we 

need to determine which tasks can be performed in parallel. Figure 



4.2 illustrates the relationships between the various tasks for the 

case where there are 5 data points (M=S) and 3 coefficients to be 

calculated (MAX=3). Any tasks which are on the same level can be 

performed at the same time. 

Figure 4.2 Maximally Parallel Graph 
for M=S and MAX=3. 

MPP Implementation [ 49,51] 

80 

As illustrated by the maximally parallel graph, we would need 

to have M processors (where M is the number of data values) to take 

full advantage of the parallel nature of the algorithm. This is clearly 



81 

infeasible on machines like the Denelcor HEP or the Intel iPSC/2 

hypercube computer, but is feasible on the NASA/Goodyear MPP due 

to its massive number of processors - 16,384. 

The MPP is a two dimensional mesh-connected architecture 

with nearest neighbor communication between the processing 

elements in the array unit· (ARU). This type of architecture is most 

suitable for the processing of two-dimensional images; the Burg filter 

is a one-dimensional signal processing algorithm. The 

implementation problem reduces to finding a way to map the one

dimensional structure inherent in the Burg filter onto the two

dimensional architecture of the MPP. 

A miniature (16 elements) ARU is shown in Figure 4.3, with 

arrows representing the required connections or communication 

channels needed to view the mesh architecture as a linear array of 

processors, which would be most suitable for this implementation of 

the Burg filter. 

.. .. 11 1 2 13 14 Is L 114115 116 1 

Figure 4.3 Mapping a Linear Array on a Mesh 



82 

Figure 4.4 illustrates the data movement for the Burg filter in a 

linear array of eight processing elements. In stage 0 the linear array 

is loaded with both the forward and backward prediction errors, 

which are equal to the observed time series at this stage. To calculate 

the first reflection coefficient the forward prediction errors are 

shifted to the left by one, as shown in stage 1. Now the reflection 

coefficients can be determined by forming the two sums; the first IS 

the sum of the products of the two elements in each processing 

element, the second is the sum of the squares of the two elements m 

each processing element. Equation (2-20) can then be used to 

calculate the reflection coefficient that will be broadcast to all the 

processing elements, where it will be used to update the forward and 

backward prediction errors. To calculate the second reflection 

coefficient the updated forward prediction errors are again shifted to 

the left by one, as shown in stage 2. The above sequence of 

operations will be repeated until all reflection coefficients are 

computed. 



E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(S) 

STAGEO 
8(1) 8(2) 8(3) 8(4) 8(5) 8(6) 8(7) 8(8) 

E(2) E(3) E(4) E(5) E(6) E(7) E(S) 0 
STAGE1 

8(1) 8(2) 8(3) 8(4) 8(5) 8(6) 8(7) 0 

E(3) E(4) E(5) E(6) E(7) E(S) 0 0 

STAGE2 
8(1) 8(2) 8(3) 8(4) 8(5) 8(6) 0 0 

Figure 4.4 Data Movement For The Burg 
Filter in a Linear Array 

The MPP Pascal code used to implement the described 

sequences Is: 

for n:=1 to max do 
be gin 

e:= snake_shift(e); 
where (col_index = 127) do 

where (row_index = 128-n) do 
b:= 0.0; 

s1:= e*b; 
s2:= sqr(e)+sqr(b); 
sum1:= sum(s1,1,2); 
sum2:= sum(s2,1 ,2); 
c[n]:= -2.0*sum1/sum2; 
temp:= c[n] *b+e; 
b:= c[n]*e+b; 
e:= temp; 

end; 

83 

The where statement is similar to the if statement except the latter 

causes conditional execution while the former causes conditional 



assignment. The sum function is a reduction function used to 

compute the arithmetic sum of a given parallel array. 

84 

The procedure snake_shift is used to simulate the effect of 

shifting the forward prediction errors to the left by one in the linear 

array mapped onto the MPP. The MPP Pascal code for the main part 

of snake_shift 1s: 

r2:= shift(x,O,l); 
rl:= rotate(x,l,l); 
where (col_index=127) do 

where (row_index<127) do 
r2:=rl; 

snake_shift: =r2; 

The shift function performs an end-off shift of the entire array 

memory with data being lost in the rows or columns along the 

perimeter in the direction toward which the data movement is being 

done. The rotate function causes the array memory to be logically 

wrapped around so that data being shifted off an array edge is 

moved into the opposite edge of the array. Figure 4.5 illustrates the 

procedure snake_shift(x). 

The parallel Burg algorithm was implemented on the MPP as 

described above. The number of data points was 16,384 and the 

number of reflection coefficients to be calculated was varied from 

one to 100. The results are shown in Table 4.1. Notice the linear 

relationship illustrated here. 



85 

X 

1 2 3 4 

5 6 7 8 

9 10 11 12 
5 6 7 8 

13 14 15 16 
9 10 11 12 

13 14 15 16 
z J ~ 0 

1 2 3 4 
i 1 H 0 

lJ! ll 12 0 r1 T 
14 15 16 !! 6 7 8 ~ 

10 11 12 2 z l ~ ~ 
14 15 16 13 

~ 1 ~ 2 
2 3 4 1 

10 11 12 13 

~ ~ Jj Q 

snake_ sbift(:x 

Figure 4.5 Procedure Snake-shift (x) 

Table 4.1 

Summary of Parallel Burg Algorithm on The MPP 

MAX 1 2 5 10 40 80 100 

TIME(msec) 5.5 11.1 27.6 55.2 220.8 441.6 552.1 



86 

Hypercube Implementation [49-51] 

The Burg filter is a one-dimensional signal processing 

algorithm, while the hypercube is an n-dimensional architecture (n 

varies from 1 to 5 for the iPSC/2). The implementation problem 

reduces to finding a way to map the one-dimensional structure 

inherent in the Burg filter onto the n-dimensional architecture of the 

hypercube. Such a mapping is illustrated in Figure 4.6. The arrows 

represent the required connections, or communication channels, 

needed to view the hypercube architecture as a linear array of 

processors. 

5 

...... 
7 

2 3 

Figure 4.6. Mapping a Linear Array on a 3-D Hypercube 

Figure 4. 7 illustrates the data movement for the Burg filter if a 

linear array topology is mapped on a 2-D hypercube and the number 



87 

of data points is M (assume M is divisable by 4). In stage 0 the linear 

array is loaded with both the forward and backward prediction 

errors, which are equal to the observed time ser,ies. To calculate the 

first reflection coefficient the forward prediction errors are shifted to 

the left by one as shown in stage 1. Each node will calculate two 

partial sums: the first is that of the products of each pair of the 
G 

forward and backward prediction errors and the second is that of 

their squares. Node zero receives the partial sums from the rest of 

the nodes (i.e. up-loading is performed) and produces the final sums 

needed to calculate the reflection coefficient given by equation(2-

20). Each node receives the calculated reflection coefficient from 

node zero (i.e. down-loading is performed) and updates the forward 

and backward prediction errors. To calculate the second reflection 

coefficient the updated forward prediction errors are shifted to the 

left by one, as shown in stage 2. The above sequence of operations 

will be repeated until all reflection coefficients are computed. 

Figure 4. 7 also shows how the static load balancing is 

performed. All the nodes except the last one in the linear array will 

always perform the same number of computations every iteration. 

The number of computations performed by the last node in the 

linear array (node 2 in Figure 4. 7) will be decremented every 

iteration. In real life applications the number of reflection 

coefficients (MAX) is much less than the length of the data sequence 

(M) so the last node will still be performing approximately the same 

number of computations as the rest of the nodes. 



88 

NodeO Nodel Node3 Node2 

STAGEO e(l) .. e(M/4) e(M/4+1) ... e(M/2) e(M/2+ 1) .. e(3M/4) e(3M/4+ 1) ... e(M) 

b(1) ... b(M/4) b(M/4+1) ... b(M/2) b(M/2+1) ... b(3M/4) b(3M/4+ 1) .. b(M) 

NodeO Node1 Node3 Node2 

STAGE 1 e(2) ... e(M/4+1) e(M/4+2) ... e(M/2+1) e(M/2+2) ... e(3M/4+ 1) e(3M/4+2) ... e(M) ,0 

b(1) .. b(M/4) b(M/4+1) ... b(M/2) b(M/2+1) ... b(3M/4) b(3M/4+l) ... b(M-1), 0 

NodeO Node1 Node3 Node2 

STAGE2 e(3) ... e(M/4+2) e(M/4+3) ... e(M/2+2) e(M/2+3) ... e(3M/4+2) e(3M/4+ 3) ... e(M) ,0,0 

b(1) ... b(M/4) b(M/4+1) ... b(M/2) b(M/2+1) ... b(3M/4} b(3M/4+ 1) ... b(M-2},0,0 

Figure 4. 7 Data Movement for the Burg Filter in a Linear Array 

Examining the maximally parallel graph it is noted that the 

part of the algorithm that calculates the reflection coefficient at each 

iteration is serial and creates a bottleneck that limits the algorithm 

performance. Another limiting factor is the four byte message 

between the nodes which has the worst communication overhead. 

Figure 4.8a illustrates the speedup achieved by the algorithm 

on the hypercube (iPSC/2 with scalar processors). Linear speedup is 

only observed for low numbers of nodes and large numbers of data 

points. Speedup reaches a maximum then decreases, or stays at the 

same value. 

Simply increasing the number of nodes will not result in a 

higher speedup due to communication overhead and bottleneck time. 

Figure 4.8b shows the speedup curves after subtracting the reflection 



coefficient calculation time and the data shifting time. Notice the 

linear nature of the resulting modified speedup curves. 

10 

s 
p 8 

e 
e 6 
d 
u 4 
p 

2 

0 

20000 
:·. 

1000 

10 20 30 
# Processors 

a) Algorithm Speedup 

s2 
p 
e 
e 
d 
u1 

p 

0 10 20 30 
#Processors 

b) Algorithm Modified Speedup 

Figure 4.8. Speedup on The Hypercube 
(number of data points used are 
indicated on the plots) 

Cray X-MP/48 Implementation [49,51] 

89 

The Cray X-MP/48 is used here without multitasking, only the 

vector processing capability IS used. The compiler detects parallelism 

in the sequential program and converts the code appropriately. The 

major source of parallel code is found in DO-loops. The compiler 

analyzes the DO-loops found in the program and vectorizes them 

when possible. To be vectorizable, a DO-loop must manipulate or 



90 

perform computations on the contents of one or more arrays. Loops 

containing a GO TO, CALL, an I/0 statment, or some form of IF 

statement are not vectorizable. In the case of the Burg algorithm all 

DO-loops are vectorizable. 

Work loads on the Cray X-MP/48 are characterized by three 

types of execution requirements; scalar mode, vector mode, and 

concurrent mode. In the Burg implementation the vector mode is 

mainly used. In this mode the process code is executed in the vector 

section of the processor (process granularity is small). 

The Cray X-MP/48 took 0.016887 sec to perform the Burg 

algorithm on 16,384 data points and 10 reflection coefficients. 

HEP Implementation [30,49,51]] 

The Burg algorithm was implemented on the HEP so that if 

NPROC processors are available, then those tasks which can be 

performed in parallel are performed NPROC at a time. The parallel 

implementation is: 

PURGE $K,$DONE1,$DONE2 
Sl=O.O 
S2=0.0 
$K=NPROC 
IF (NPROC.NE.l) THEN 

DO J=l,NPROC-1 
JJ(J)=J 
CREATE EB(JJ(J)) 

END DO 
CALL EB(NPROC) 
DUM:MY=$DONE1 
C(N)=-2.0*S l/S2 

• 
• 
• 
• 
• 



9 1 

SUBROliTINE EB(J) 
CO:MMON/EC/E(5000),B(5000),A(50),C(50),N,M,NPROC,$K,$DONE1,$DONE2 
CO:MMON/EB 1/S 1 ,S2 
SUM1=0.0 
SVM2==0.0 
DO l=N+J,M,NPROC 

SUM1=SUM1 +E(I)*B(I-N) 
SUM2=SUM2+E(I)*E(l)+B(I-N)*B(I-N) 

END DO 
K1=$K-1 
Sl=Sl+SUMl 
S2=S2+SUM2 
IF (Kl.EQ.O) $DONEl=.TRUE. 
$K=Kl 
RETURN 
END 

Each CREATE statement generates a new parallel process. The tasks 

are shuffled evenly between the processes. 

Notice that the asynchronous variables $K and $DONE1 are used 

for synchroniztion on the HEP. Initially $K is set to NPROC and 

$DONE1 is purged so that it cannot be read. $K is decremented each 

time a process is completed. When $K is equal to zero (all processes 

have completed) the variable $DONE1 is set to .TRUE., thereby setting 

its state to full so that it can be read. Meanwhile, in the main 

program, the line - DUMMY =$DONE1 - acts as a barrier so that all 

processes will be completed before the program proceeds. 

The algorithm was implemented on the HEP while varying the 

number of processors from one to twelve, and the number of data 

points from 1024 to 4096. Figure 4. 9 illustrates the speedup 

obtained. It shows that this implementation of the Burg algorithm IS 

highly parallel and that speedup increases linearly up to 6 or 7 

processes. When more than 8 processes are used the speedup levels 

off, as the pipeline becomes full. The speedup of the algorithm 

increases somewhat as the number of data points increases. Each 



process has more computations to perform, and a correspondingly 

smaller percentage of time would be spent on synchronization. 

10~----------------------------~ 

8 
s 
p 6 
e 
e 
d 4 
u 
p 

2 ... 

0 2 

409 
204 
102 

4 6 8 10 12 14 
# Processors 

Figure 4.9 Algorithm Speedup on the HEP 
(number of data points used 
are indicated on the plots) 

Alliant FX/8 Implementation [51] 

92 

The FX/8 is a tightly coupled MIMD machine with bus 

architecture. The results of implementing the Burg on the FX/8 

should be used for comparison with those obtained on the HEP since 

the major difference in the two architectures is bus versus packet 

switched network. 

The FX/8, through the use of FX/Fortran, allows the user to 

select between three forms of parallelism and other performance 



93 

enhancements: concurrency, vectorization, and scalar optimizations. 

Concurrency refers to the concurrent execution of loops and array 

operations by more than one processor. Vectorization refers to 

vector rather than scalar aggregates for processing data in loops and 

array constructs. And scalar optimizations refer to optimizations at 

the scalar level, such as redundant expression elimination and 

invariant code motion. 

Program optimization typically increases the execution speed of 

a loop or array operation by a factor approaching the number of 

computational elements for concurrency and two to four for 

vectorization. The total increase in speed can be over 30 times the 

speed of the operation in scalar mode. Notice that the programmer 

has to use all the computational elements if concurrency is selected. 

The Burg algorithm was implemented on the FX/8 while 

selecting different forms of parallelism. The results of the 

implementation are shown in Table 4.2 and Table 4.3. The results 

shown in Table 4.2 are those obtained when the Burg program was 

written using no FX/Fortran constructs, while the results shown in 

Table 4.3 are those obtained whe~ using such constructs. 



Table 4.2 

Burg Implementation on the FX/8 
(no FX/Fortran Constructs) 

Optimization Type 

None 
Global 
Global and vector 
Global and concurrency 
Global, vector, & concurrency 
With associative transformations 

Table 4.3 

Execution Time 

4.064 sec 
1.369 sec 
1.129 sec 
0.465 sec 
0.543 sec 
0.071 sec 

Burg Implementation on the FX/8 
(FX/Fortran Constructs) 

Optimization Type 

None 
Global 
Global and vector 
Global and concurrency 
Global, vector, & concurrency 
With associative transformations 

Execution Time 

0.835 sec 
0.573 sec 
0.554 sec 
0.422 sec 
0.354 sec 
0.071 sec 

94 



95 

Connection Machine Model CM-2 Implementation 

The CM-2 is a massively parallel computer system that employs 

a 12-dimensional hypercube architecture. The efficient parallel 

implementation of the Burg algorithm requires the availability of an 

equal number of processors to that of the number of data points 

used. This concept was illustrated earlier using the maximally 

parallel graph. Thus, the CM-2 is a suitable machine for 

implementing the Burg algorithm and is expected to be very 

efficient. 

The CM-2 used has 32K processors divided among four 

sequencers. Since the number of data points used in this study IS 

16K, we only used two sequencers. The programming language used 

is Fortran 90 which offers a rich selection of operations aJ.ld intrinsic 

functions for manipulating arrays. An array can be referenced by 

name in an expression or assignment or passed as an argument to 

any Fortran intrinsic function, and the operation is performed on 

every element of the array. 

The main loop of the Burg algorithm Is given by: 

DO N=l,MAX 
E=E(2:M-N+ 1) 
B=B(l:M-N) 
C(N)= -2.0 * SUM(E*B)/SUM(E**2+B**2) 
TEMP= E+C(N)*B 
B=B+C(N)*E 
E=1EMP 

ENDOO 

Notice that Fortran 90 supports selecting a particular section of an 

array which is used in the above code to actually replace do-loops. 



96 

The resulting code Is efficient and very clear. The intrinsic function 

SUM performs the summation of all the elements of the array 

specified in the function argument. . 

The CM-2 Fortran program is actually directing two CM-2 system 

components with different memory organizations. An array can 

have its home either in the centralized memory of the front end or m 

the distributed memory of the CM-2. The CM-2 Fortran compiler 

allocates arrays on one machine or the other depending on how they 

are used. Arrays that are used only in Fortran 77 constructions in a 

program unit, and all scalar data, reside on the front end. Arrays 

that are used in array operations anywhere in a program unit reside 

on the CM-2. Programmers should avoid using an array both as an 

array object and as a subscripted array. Such an array has a CM-2 

home, but the system moves it to the front end, one element at a 

time, to perform the serial operation. This data transfer is very 

expensive. 

The E and B arrays have their home on the CM-2 distributed 

memory while the C array resides on the front end. Notice that the 

SUM intrinsic function returns a scalar, hence when calculating the 

reflection coefficients the two scalar numbers resulting from 

invoking the SUM function are passed to the front end where they 

are used to calculate the C array. 

When using two sequencers for a total of 16,384 processors, the 

CM-2 completed the Burg algorithm successfully in 0.00763257 sec. 

The number of data points is 16,384 and the order of the filter is ten. 

When using one sequencer for a total of 8192 processors, the CM-2 

completed the same Burg problem in 0.0101474 sec. Notice that in 



97 

the former case where two sequencers were used the CM-2 did not 

create any virtual processors, while in the latter case 8192 virtual 

processors were created. When comparing the two results it Is 

obvious that the implementation of the virtual processors on the CM-

2 is very fast and efficient. 

The Cray-2 Implementation 

Similar to the Cray X-MP/48, the Cray-2 is used here without 

multitasking but taking advantage of the powerful and improved 

vector processing capability. The discussion given in section 4.2.3 for 

the Cray X-MP/48 is also valid here for the Cray-2. 

The Cray-2 took 0.00755184 sec to perform the Burg algorithm 

on 16,384 data points and 10 reflection coefficients. 

Preliminary Comparison 

A number of conclusions can be drawn from the results of this 

study. This section discusses some general conclusions about the 

relative performance of the seven machines used in this research. 

The next chapter, chapter V, builds on the preliminary comparison 

performed here and addresses more detailed aspects of the relative 

performance of the seven machines. 

Table 4.4 is a comparison of algorithm execution times for the 

four machines, with 16,384 data points and 10 reflection coefficients. 



Table 4.4 

Comparison of Burg Execution Time 

Machine 

Denelcor HEP 
Intel iPSC/2 
Alliant FX/8 
NASA/Goodyear MPP 
Cray X-MP/48 
CM-2 
Cray-2 

Execution Time (sec) 

1.679 
0.24 (16 nodes) 
0.07084 
0.05522 
0.016887 
0.00763257 
0.00755184 

98 

Based on the mapping techniques used to implement the Burg 

algorithm on the seven machine and the underlying architectures, 

we introduce an implementation classification that will facilitate the 

discussion of the relative performance of the machines. Class one 

machines are the " true " MIMD computers and include the HEP, the 

iPSC/2, and the FX/8. Class two machines are the MIMD computers 

that were used for their vector processing capabilities and include 

the Cray X-MP/48 and the Cray-2 supercomputers. Finally, class 

three machines are the massively parallel SIMD computers and 

include the MPP and CM-2. 

In class one machines, the number of processors is limited: 16 

in the HEP, 32 in the iPSC/2, and 8 in the FX/8. The data set used 

contains many more data points than processors, so it was necessary 

to divide the data set equally among the processors. In doing so, 



99 

each processor must sequentially repeat the same calculations for the 

data points assigned to it. 

Studying the results of mapping the Burg algorithm on class 

one machines, the FX/8 gave the fastest execution time followed by 

the iPSC/2 and finally the HEP. The FX/8 has a tightly coupled bus 

architecture that seems to work well for the Burg algorithm. The 

iPSC/2 is usually efficient when the interaction between the nodes Is 

kept minimal, while the HEP can tolerate a higher degree of 

interactions between tasks without significant deterioration in 

performance. One of the limitations of the HEP is the switch network 

speed. Communication overhead imposed by the message passing 

communication scheme is a major disadvantage of the hypercube 

architecture. In the case of the HEP, communication is not a problem, 

but memory or bus contention is. 

Figure 4.10 compares speedups achieved by the iPSC/2 and the 

HEP. The HEP shows much better speedup - almost linear. For both 

machines the speedup goes up as the number of data points 

increases. Since more data is loaded for computation on the 

processors, the processors spend more time computing partial sums 

than on communication or synchronization. 



10~----------------------------~ 

8 
s 
p 6 
e 
e 
d 4 
u 

HEP 

. 

.. / 

./ 

. . 

·::.:-.;.. ~-~~ 409 
204 
102 

HYPERCUBE 

/ ··: 
p 

2 

0 2 

Figure 4.10 

4 6 8 10 12 14 
# Processors 

Comparison of HEP and iPSC/2 
Speedups (number of data 
points used are indicated on 
the plots) 

100 

Class two machines are the Cray supercomputers: the Cray X

MP/48 and the Cray-2. These machines were used for their vector 

processing capabilities. The results show very fast execution times 

and indicate good utilization of the vector processing capabilities on 

the Cray computers. The performance of the Cray machines is 

limited by the vector size, namely 64. The main difference between 

the two Cray supercomputers used is the individual processor 

potential (see Table 3.3). The ratio of the processor potential of the 

Cray-2 to that of the X-MP/48 is about 2.08, 1.e., the processor used 

in the Cray-2 has about double the capabilities or power of the 

processor used in the X-MP/48. Table 4.4 supports this ratio and m 

fact results in a higher number, namely, 2.17 . 



101 

Class three machines are the MPP and CM-2. Both machines 

are massively parallel and the results show fast execution times. 

Earlier in this chapter, the maximally parallel graph, given in Figure 

4.2, suggested that we would need to have M processors (where M 

is the number of data points) to take the full advantage of the 

parallel nature of the Burg algorithm. When the Burg algorithm was 

implemented on class three machines, one data point was assigned 

to one processor so that maximum parallelism was possible. In fact, 

class three machines, due to their massive number of processors and 

flexibility, are the only machines that can implement the Burg 

algorithm with maximum parallelism. Therefore, class three 

machines are clearly the best machines for implementing the Burg 

algorithm. 

This section discussed some preliminary conclusions drawn 

from the results reported in this chapter. The next chapter examines 

the relative performance of all machines used and presents an 

overall ranking. 



CHAPTERV 

PERFORMANCE ANALYSIS 

In the previous chapter we concluded by presenting a 

preliminary comparison of the implementation results. The 

discussion was meant to setup the stage for a more thorough analysis 

of the relative performance of the seven machines. In this chapter 

we present the complete performance analysis based on the results 

reported in chapter IV. 

This chapter is divided into three maJor sections: the first 

contains the serial and parallel timing equations, the second 

presents a ranking system for the seven machines used, and the 

third contains a discussion of some of the guidelines to be used when 

designing future machines. 

Timing Equations 

When implementing any algorithm on a parallel machine it is 

important to predict the time it takes to run the algorithm. Such 

time can only be calculated if appropriate equations are developed 

that take into consideration the underlying architecture and the 

speed at which it performs different operations needed to implement 

the algorithm. The importance of developing the timing equations IS 

that they can be used to compare the performance of all the 

102 



architectures theoretically. The predicted time can be used along 

with the actual time to judge the efficiency of the underlying 

computer system. When examining the timing operations we can 

identify the parts of the algorithm that run efficiently and thus 

discuss the suitability of implementing the algorithm on that 

particular architecture. 

103 

The time to perform the sequential Burg algorithm is given by 

equation (5-l). This equation is considered to be the baseline timing 

equation when comparing the performance of the different advanced 

parallel architectures studied in this research. 

[ 
MAX ] 

Tserial = 5M*MAX+ ~{1-5i) tmul + 

[ 
MAX } 

4M*MAX+ t;,(4i+2) add +tdiv (5-1) 

To check the validity of this equation, the iPSC/2 was used 

while activating only one node. Two examples were run on the 

iPSC/2: the first with M=1024 and MAX=lO and the second with 

M=30000 and MAX=lO. 

For the first example, equation (5-l) indicates that the 

predicted serial time is given by 91656 tnop where tnop is the time 

to perform a floating point operation like multiplication, addition, or 

division. Knowing that tflop for the iPSC/2 with the W aitek chip is 

approximately 1.4 J.Lsec, equation (5-l) predicts the time to be 0.128 

sec. The actual program running time was 0.125 sec which 

corresponds to 2% error. 



104 

For the second example, equation (5-l) indicates that the 

predicted serial time is 2699490 tflop or 3. 7793 seconds. The actual 

program running time was 3.783 sec corresponding to 0.1% error. 

The two examples clearly verify equation (5-l). 

In the next part of this section we examine the parallel timing 

equations for the seven machines used in this research. We first 

examine class one machines, namely, the iPSC/2, the HEP and the 

Alliant FX/8. As previously mentioned in chapter IV these machines 

are " true" MIMD machines with limited number of processors. 

We start by presenting the iPSC/2 timing equation given by: 

Tparallel = Tserial + (12 * p- 4) * tinit + (2 * p + 2) * tflop 
p 

(5-2) 

where p is the number of processors used, tinit is the time to initiate 

a message ( time to send a message is negligible), and tnop is the 

time to perform a floating point operation ( add, subtract, multiply, 

or divide). The values of tinit and tflop are 0.5 msec and 1.4 J.LS ec 

respectively. 

The parallel time in equation (5-2) consists of two parts: The 

first part , which is the first term, simply represents the linear 

speedup and the second part , the remaining terms, represent the 

deviation from this linear speedup. In other words, simply 

increasing the number of processors will not result in a higher 

speedup due to the communication overhead. Table 5.1 gtves the 

deviation values in terms of tinit and tnop in one column and m 



105 

terms of seconds m another column while varymg the number of 

processors. 

Table 5.1 

iPSC/2 Deviation Term 

p Deviation Expression Deviation (sec) 

2 20 t. 't + 6 tfl m1 op 0.01 

4 44 tinit + 10 tflop 0.022 

8 92 t. 't + 18 tfl m1 op 0.046 

16 188 timt + 34 tflop 0.094 

32 380 tinit + 66 tflop 0.1901 

Finally, Table 5.2 compares actual to predicted execution times 

for the case of M=30000 and MAX=10. The table illustrates the 

validity of equation (5-2). 

Equation (5-3) gives the parallel timing equation for the HEP. 

The structure of this equation is similar to that of the iPSC/2 but in 

this case the overhead time or the deviation from the linear speedup 

is caused by different factors. 

T par = T serial I P + OtiEP(P) (5-3) 



106 

Table 5.2 

iPSC/2 Actual and Predicted Times 

p Actual (sec) Predicted (sec) IErrorl 

1 3. 783 3. 78 0.003 
2 1. 985 1.9 0.085 
4 1.029 0.967 0.062 
8 0. 611 0. 519 0.092 
1 6 0. 3 38 0. 3 3 0.008 
32 0.354 0. 31 0.044 

In equation (5-3), the variable 0HEP(P) is the overhead time and 

IS a function of the number of processors used. As the number of 

processors increases, more time is needed to establish a path 

between the processors and memory. 

In the case of the iPSC/2, a loosely coupled architecture with 

local memory, the technique for sharing information is mainly done 

usmg message passing that requires setting up a channel for 

communication thus requiring communication overhead. In the case 

of the HEP, a tightly coupled architecture with shared memory, the 

overhead is a result of setting up the processes, using the 

asynchronous variables, and memory contention through the packet 

switch network. 



107 

Equation (5-4) shows the parallel timing equation for the Alliant 

FX/8, a tightly coupled architecture with shared memory, which Is 

similar in structure to the equations for the iPSC/2 and the HEP. 

T par = T serial I 8 + ()pX/8 (5-4) 

In equation (5-4), the variable OFX/8 is the overhead time. The 

overhead represents the time to access the shared memory through 

the crossbar switch and the memory bus and the time to synchronize 

the processors using the concurrency bus. A shortcoming of the 

implementation on the FX/8 is the inflexibility of choosing the 

number of processors to be used. The compiler uses the eight 

available processors most of the time. 

This concludes the discussion of the timing equations for class 

one machines. It was demonstrated that the equations are similar in 

structure and an increase in the number of processors does not result 

in improved speedup since there is an overhead in implementing the 

algorithm. The overhead is a function of the number of processors 

used. Class one machine are therefore considered to be fairly 

suitable for implementing the selected algorithm. 

Shifting our attention to class two machines we now consider the 

MPP and CM-2. Examining the Pascal code implementation of the 

algorithm we could write the following parallel timing equation for 

the MPP: 

T par = MAX [ 6tpmul + 6tpequ + 2tpadd + 2tsum + 

2tshift + 2trotate + tmul + tadd ] (5-5) 



108 

where tpmul is the time to execute a parallel multiplication (76 J..LSec), 

tpequ time to equate, tpadd time to perform a parallel addition (39 

J..Lsec), tsum time to perform the reduction function sum, tshift 

time to perform the array memory manipulation function shift, 

trotate time to perform the function rotate, tmul time to perform a 

serial multiplication, and tadd time to perform a serial addition. Tpar 

is not a function of the number of data points unless it exceeds 

16384. Typical stationary time series length will not reach this 

upper bound. Notice that MAX is the only algorithm variable used m 

equation (5-5). 

Examining Table 4.1 it is clear that a linear relationship exists 

and validates equation (5-5). It is obvious that the MPP 

implementation of the Burg filter is an efficient one due to its 

massive number of processors and its SIMD architecture. 

Equation (5-6) gives the parallel timing equation for the CM-2. 

It is similar in structure to that of the MPP. All the parallel 

operations are done on the CM-2 while the scalar multiply and divide 

were performed on the front end computer. 

T par = MAX [ 5tpmul + 3tpequ + 3tpadd + 2t8 u m 

+ tmul + tdiv ] (5-6) 

In general, class two machines seem to be the most suitable -

machines for implementing the Burg algorithm. The flexibihty of 

these machines and their massive number of processors enable them 

to use one processor per data point thus achieving maximum 



109 

parallelism taking full advantage of the parallel nature of the Burg 

algorithm. 

We now consider the implementation on the Cray machines, 

namely, the Cray X-MP/48 and the Cray-2. These machines were 

classified as class three machines. The vector mode was mainly used 

on these machines where the process code was executed in the 

vector section of the processor ( process granularity is small). Time 

to perform operations, in this mode, on vectors of length N ( assume 

that N is a multiple of 64) is given by: 

T = Tstart + N ( Tstartstrip I 64 + Tvcomp ) (5-7) 

where T start is the startup time for the vector operation, T starts trip IS 

the startup time for stripmining the vectors (vectors of length 

greater than 64 are stripmined in sections of length 64), and Tvcomp 

is the single vector computation time per element. It can be stated 

that class three machine are not suitable for implementing the Burg 

filter since only the vector capabilities were used while the 

multiprocessing capabilities were not used for their high overhead 

cost. 

Ranking of Machines 

In chapter IV, Table 4.4 showed that the Cray-2 is the fastest 

machine to execute the Burg filter. Is the speed the only measure we 

should use to evaluate the machines? The answer is definitely no. 

In the previous section we argued that class two machines are the 



110 

most suitable machines to implement the Burg filter from an 

architectural point of view. Other important factors are the cost of 

each machine and the technology used in the design. To make the 

comparison fair, all the aforementioned factors must be considered. 

It is important to consider the speed of execution since some 

applications have time limitations on the execution time. It is vital to 

consider the suitability of implementation since it is a measure of the 

efficiency of the underlying architecture and because general 

purpose machines were used. The technology is important since it 

can compensate for the reduction in execution speed. Finally, the 

cost is of major importance, whether buying the system or buying 

time. 

In this section we take all these factors into consideration and 

try to come up with a ranking system for the different machines 

used. Table 5.3 gives some comparative figures that are used in 

creating the ranking system. 

Table 5.3 

Comparative Figures for the Computers Used 

X-MP Cray-2 HEP MPP iPSC/2 FX/8 CM-2 

Year 83 85 81 82 87 87 88 
# Proc 4 4 16 16K 32 8 64K 
Price 10M 15M 3M 3M 1M 1M 3M 
Network Fully Fully Switch Mesh h-cube Bus h-cube 
Arch. MIMD MIMD MIMD SIMD MIMD MIMD SIMD 
Time 0.06887 0.00755 1.679 .05522 0.24 0.07084 0.00763 



1 1 1 

Table 5.4 shows the comparative figures for all the machines 

used with relation to technology, cost, suitability, and execution 

time. To come up with the figures, each factor is mapped between 

zero and one and each machine is assigned a number proportional to 

its relative location within this interval. For example, the year 88 is 

assigned a zero while year 81 is assigned a one. In this way old 

technologies are compensated for their age. Suitability figures were 

assigned based on the discussion in the previous section: class two 

machines are the best followed by class one and finally class three 

machines. 

Table 5.4 

Comparative Figures in Terms of the Four Factors 

X-MP Cray-2 HEP MPP iPSC/2 FX/8 CM-2 

Tech. 0.714 0.429 1 0.857 0.143 0.143 0 
Cost 0.357 0 0.857 0.857 1 1 0.857 
Suit. 0 0 0.5 1 0.5 0.5 1 
Time 0.994 1 0 0.971 0.861 0.962 0.99995 

To setup the ranking system s1x different performance measures 

are used where each measure corresponds to a different weighting 

system of the four factors given in Table 5.4. Each measure has the 

following computational structure: 



112 

Mx = a1 Tech. + a2 Cost + a3 Suit. + a4 Time (5-8) 

where at, a2 , a3 , and a4 are weighting constants and their sum is 

one. The variable x represents the measure number and can be one 

through six to indicate the six measures used. 

The first measure, Mt, is simply the execution time, where the 

values of a 1 thru a 3 are zero and the value of a4 is one. This is to 

emphasize the importance of the execution time. 

The second measure, M2, weighs the first three factors 

equivalently and weighs the execution time twice as much. This 

measure corresponds to the following assignment of the weighting 

constants: at=a2=a3=0.2 and a4=0A . 

The third measure, M3, weighs all the four factors equivalently. 

All of the weights are simply assigned to 0.25. 

The fourth measure, M4, is similar to M3 except that the 

suitability factor is neglected. The measure in this case corresponds 

to the following assignment: a1 =a2=a4=0.3 and a3=0 . 

The fifth measure, Ms, weighs cost and execution time twice as 

much as the technology and suitability. The constants are assigned 
I 

as: at =a3=1/6 and a2=a4=1/3 . 

The sixth and final measure, M6, is similar to Ms except that the 

suitability factor is neglected. This measure corresponds to using the 

following values: at =0.2, a2=a4=0A, and a3=0. Table 5.5 

summarizes the s1x measures. 

The results of these measures are tabulated in Table 5.6. The 

last entry in the table is simply the average of all the measures for 

each machine. 



113 

Table 5.5 

The Six Measures 

a1 ~2 aa a4 

Ml 0 0 0 1 
M2 1/5 1/5 1/5 2/5 
M3 1/4 1/4 1/4 1/4 
M4 1/3 1/3 0 1/3 
Ms 1/6 1/3 1/6 1/3 
M6 1/5 2/5 0 2/5 

Table 5.6 

Results of Applying the Six Measures (All Machines) 

X-MP Cray-2 HEP MPP iPSC/2 FX/8 CM-2 

Ml 0.994 1 0 0.971 0.861 0.962 0.99995 

M2 0.6118 0.4858 0.4714 0.9312 0.673 0.7134 0.77138 

M3 0.51625 0.35725 0.58925 0.92125 0.626 0.65125 0.71424 

M4 0.68833 0.47633 0.619 0.895 0.668 0.70167 0.61898 

Ms 0.56933 0.40483 0.53567 0.91883 0.7275 0.76117 0.78565 

M6 0.6832 0.4858 0.5428 0.9026 0.773 0.8134 0.74278 

Avg. 0.67715 0.535 0.45969 0.'92331 0. 72142 0.76715 0.77216 



114 

The measures used were selected for their importance and that 

does not imply that other measures can not be used. We found these 

measures fair and representative of the comparative performance of 

the seven machines used. Table 5.7 shows the ranking of all the 

machines and is directly created from Table 5.6. 

Table 5.7 

The Ranking Result's (All Machines) 

1 2 3 4 5 6 7 

Ml Cray-2 CM-2 X-MP MPP FX/8 iPSC/2 HEP 

M2 MPP CM-2 FX/8 iPSC/2 X-MP Cray-2 HEP 

M3 MPP CM-2 FX/8 iPSC/2 HEP X-MP Cray-2 

M4 MPP FX/8 X-MP iPSC/2 HEP CM-2 Cray-2 

M5 MPP CM-2 FX/8 iPSC/2 X-MP HEP Cray-2 

M6 MPP FX/8 iPSC/2 CM-2 X-MP HEP Cray-2 

Avg. MPP CM-2 FX/8 iPSC/2 X-MP Cray-2 HEP 

Clearly the MPP and the CM-2 are ranked first and second 

respectively almost consistently. This enforces the earlier conclusion 

about class two machines that indicates their efficiency in 

implementing the algorithm due to their architecture that 

incorporates massive number of processors. 



115 

Examining Table 5.6 one can argue that the HEP, with its old 

technology and its slow execution time, represents an outlier that 

affects the comparison. Tables 5.8 through 5.10 are similar to 

Tables 5.5 through 5.7 respectively except that the HEP is not 

included in the comparison. 

Table 5.8 

Comparative Figures (without HEP) 

X-MP Cray-2 MPP iPSC/2 FX/8 CM-2 

Tech. 0.833 0.5 1 0.167 0.167 0 
Cost 0.357 0 0.857 1 1 0.857 
Suit. 0 0 1 0.5 0.5 1 
Time 0.9598 1 0.7949 0 0. 7277 0.99995 

Table 5.9 

Results of the Six Measures (without HEP) 

X-MP Cray-2 MPP iPSC/2 FX/8 CM-2 

Ml 0.9598 1 0.7949 0 0. 7277 0.99995 

M2 0.62192 0.5 0.88936 0.3334 0.62448 0.77138 

M3 0.53745 0.375 0.91298 0.41675 0.59868 0.71424 

M4 0.7166 0.5 0.88397 0.389 0.63157 0.61898 

M5 0.5777 0.41667 0.88397 0.4445 0.68707 0.78565 

M6 0.69332 0.5 0.86076 0.4334 0.72448 0.74278 

Avg. 0.68448 0.54861 0.87099 0.33618 0.66556 0.77216 



116 

Notice that the results of performing the complete analysis 

without considering the HEP are similar to those done earlier where 

all the machines were considered. Class two machines are again the 

top performers. In fact, the CM-2 numbers improved compared to 

the FX/8, i.e., the gap between the CM-2 and the FX/8 was 

amplified. 

Table 5.10 

The Ranking Results (without HEP) 

1 2 3 4 5 6 

Ml Cray-2 CM-2 X-MP MPP FX/8 iPSC/2 

M2 MPP CM-2 FX/8 X-MP Cray-2 iPSC/2 

M3 MPP CM-2 FX/8 X-Mp iPSC/2 Cray-2 

M4 MPP X-MP FX/8 CM-2 Cray-2 iPSC/2 

Ms MPP CM-2 FX/8 X-MP iPSC/2 Cray-2 

M6 MPP CM-2 FX/8 X-MP Cray-2 iPSC/2 

Avg. MPP CM-2 X-MP FX/8 Cray-2 iPSC/2 

We believe that the final ranking given by Table 5. 7 is a 

reasonable ranking and should be adopted. It is consistent with the 

preliminary analysis performed in chapter IV and the analysis 

performed in the previous section. The MPP is clearly the best 

machine to implement the Burg algorithm followed by the CM-2. In 



117 

general, small-grain massively parallel SIMD architectures are the 

most suitable machines for implementing the selected algorithm. 

Future Machines 

In this section, we discuss some of the guidelines that should be 

used when designing future machines. The guidelines are based 

mostly on the experience acquired throughout this research and 

directed towards solutions that will rmprove the mapping of the class 

of signal processing algorithms discussed in this research. 

Parallel processing is the key to high performance in modem 

advanced computer architectures. All architectures used in this 

research employ parallel processing in several different ways and 

proved to be fast and efficient. Future machines must continue to 

use parallel processing techniques to achieve higher speed and 

improved performance. 

Newer and faster technologies must be developed, investigated, 

and used in future machines to improve the overall computational 

efficiency of parallel processing machines. The concept of wafer 

scale integration (WSI) appears to have a great potential in designing 

regularly structured computers that can implement the class of 

signal processing algorithms addressed in this work. Lower 

submicron technologies that use shorter interconnects should be 

investigated for their potential in increasing the speed and 

decreasing the overall computer size. 

Examining the overall performance results presented earlier m 

this chapter, it is clear that small-grain massively parallel SIMD 



118 

architectures are the most suitable for the selected algorithm. 

Although a linear architecture is most suitable for the selected 

algorithm, a hypercube architecture appears to be a better choice for 

its ability of matching the different algorithms within the selected 

class. The concept of the data parallel model is a relatively simple 

and natural one. When compared to an MIMD arcrhitecture, SIMD 

machines perform synchronization implicitly and do not suffer from 

the memory contention problem. This does not imply that current 

massively parallel SIMD machines are perfect. In fact, there are 

several obstacles and problems that must be overcome and solved 

before utilizing all the capabilities of the SIMD architecture model. 

Based on the work done in this research, we list four problems 

with current SIMD architectures: first, the inflexibility in memory 

addressing; second, the inefficiency in numerical operations since 

reduced instruction set computer (RISC) technology is used; third, 

the slowness in routing data from one processor to another; and 

finally, the presence of a bottleneck in input and output. 

Considering the first problem, current SIMD computers require 

that each processor access its own local memory at the same address 

as all the other processors. Table lookup and indirect addressing 

operations are usually employed in current systems to solve the 

problem but these operations are currently very slow and inefficient. 

By providing indexed and indirect addressing in future SIMD 

computers, it becomes possible to implement efficient table lookup 

operations that will result in overall improved efficiency. 

Considering the second problem, almost all of the current SIMD 

computers use processors that can add only 1-bit numbers in a single 



machine cycle. This indicates that multibit arithmetic must be 

performed in bit-serial fashion, resulting in a particularly long 

computing times for floating-point operations. To overcome this 

problem, future SIMD computers must use more powerful 

processors that might employ more than 1-bit operations. 

119 

Discussing the third problem, general routing in some current 

SIMD machines must be performed through combinations of near

neighbor moves. The processors in these systems must perform the 

same routing direction. In essence, if one processor is getting data 

from its north neighbor the other processors must do the same thing, 

that is, getting data from their north neighbors. A solution might be 

found in making the memory and the routing control more tightly 

integrated and probably running at their own clock speed. A dual 

ported memory can be used so that accesses by the router would 

proceed independently from those by the processors. 

The fourth problem is concerned with the input and output to 

the specialized architecture that form a main bottleneck in usage of 

current architectures. Logical and arithmetic operations might 

requue nanoseconds to be performed while transferring arrays from 

the front end to the specialized architecture can easily require 

milliseconds, that is, one million times as long. A solution to the 

problem might involve the use of a bimodal memory system. In 

such a system, data can be accessed on either of two ports that 

employ different data formatting. The memory system performs the 

task of implicit formatting. The processor array can access the 

memory from one port where it is utilized as part of the address 

space for the local memories of the processor elements. In the same 



120 

fashion, the front end computer can access the same memory from 

the other port where it utilizes a multibit layer of the bimodal 

memory as if it were part of the address space. 

Aside from the aforementioned problems and obstacles that face 

current SIMD architectures, research must continue in exploring the 

possibilities of using optical and/or neural technologies to improve 

the overall performance. Both technologies are reported to have 

faster switching speed and emphasize massive parallelism and fine 

granularity. 

Research must continue in the area of software development, 

especially that of designing compilers for such complex systems. 

Virtualizing compilers can be of great importance when used in such 

systems. Such compilers are able to automatically map parallel data 

structures onto processor arrays which would allow the development 

of machine independent programs neglecting the details of the host 

architecture. 



CHAPTER VI 

SUMl\1ARY AND CONCLUSION 

The field of digital signal processing has a wide variety of 

applications that has served to create a vitality that is often missing 

in other scientific fields of study. With the invention of digital 

computers and, more recently parallel architectures, the field of 

digital signal processing has become an increasingly significant field. 

A problem of great importance has emerged: what is the best 

way to map a digital signal processing algorithm onto a given parallel 

architecture? The answer is by no means simple since there are no 

established principles to govern the mapping techniques. It was the 

ultimate objective of this research to establish some of these 

principles. 

The main objective of this work was to explore the different 

techniques of mapping digital signal processing algorithms onto 

parallel computer architectures. It was impossible to cover all 

algorithms and all architectures. The algorithms were limited to 

those which can be characterized as one dimensional, batch, and 

time domain. As for the architectures, the availability of such 

systems was the major limitation. The goal of this research was to 

discover the types of computer architectures that are the best suited 

for digital signal processing. 

121 



122 

In chapter I, the problem of inverse filtering was presented and 

selected for further investigation in this work. The inverse filtering 

problem was selected because it is of great importance in the field of 

digital signal processing and is used in many other fields such as 

control theory, parametric spectrum analysis, estimation theory, 

seismic signal processing, and speech processing. The basic idea 

behind inverse filtering is to determine the parameters of a model 

given observations of the physical process being modeled. The time 

senes model selected was the autoregressive process. Chapter I 

concluded with a setup of the so called Yule-Walker or normal 

equation which is considered to be the basis for developing the 

solution of the inverse filtering problem. 

In chapter II, batch inverse filtering algorithms were presented 

to identify their similarities and differences. Finally, one algorithm 

was chosen which is representative of this class of algorithms. The 

algorithms have a common computational structure, namely, a time 

shift I inner product operation. In fact, this operation is a key step 

in performing all digital signal processing algorithms which involve 

convolution or correlation. The Burg algorithm was selected for 

implementation on advanced parallel computer architectures. 

Most previous studies of parallel signal processing have been 

concerned with the design of special purpose hardware for real-time 

signal processing using recursive algorithms. In contrast, the goal of 

this work was the efficient implementation of batch signal processmg 

algorithms on general purpose parallel machines. In many signal 

processing applications, it is not necessary to process the data in 

real-time, and it is clear that even with new special purpose signal 



processing chips, there will still be a need to perform signal 

processmg on large, general purpose, main frame computers. 

123 

Chapter III discussed in detail the seven advanced computer 

architectures used in this research: the Denelcor HEP, a shared 

memory (tightly coupled) multiple-instruction stream multiple-data 

stream (MIMD) machine with switch network interconnect 

architecture; the Cray X-MP/48, a shared memory (tightly coupled) 

MIMD supercomputer with direct connect interconnect architecture; 

the Intel iPSC/2 hypercube computer, a distributed memory (loosely 

coupled) MIMD machine; the Alliant FX/8, a shared memory (tightly 

coupled) MIMD machine with a bus interconnect architecture; the 

NASA/Goodyear MPP, a massively parallel SIMD machine with mesh 

interconnect architecture; the Connection Machine model CM-2, a 

massively parallel SIMD machine with hypercube interconnect 

architecture; and the Cray-2 supercomputer, a tightly coupled 

MIMD machine with direct connect interconnect architecture and IS 

the latest Cray to be produced. 

It was important to show that the architectures used in this 

research represent a good portion of the available parallel machines. 

This was accomplished by using two computer classification schemes. 

Flynn's computer classification and a new classification scheme were 

presented. The new scheme is based on three essential issues: the 

granularity of the processing elements; the topology of the 

interconnections between the processing elements; and the 

distribution of control across the processing elements. The so called 

organizational space of parallel computer systems was presented 

with these variables as the axes. An attempt was made to place each 



124 

computer system presented in chapter II in its approximate position 

within the space. The results of the classification show that the 

architectures occupy a substantial volume of the three dimensional 

space making them good representatives of the available computer 

systems. 

In chapter IV we described the parallel implementation of the 

Burg algorithm on the seven architectures and presented a 

preliminary analysis of the results. To take full advantage of the 

parallel nature of the Burg algorithm, the maximally parallel graph 

showed that we would need to have the number of processors equal 

to the number data points. An implementation classification was 

presented to facilitate the discussion of the relative performance of 

the machines. It was shown that class three machines, namely, the 

MPP and the CM-2, are clearly the best machines for implementing 

the Burg algorithm. Class three machines are characterized by their 

massive number of processors, which takes full advantage of the 

parallel nature of the Burg algorithm. 

Chapter V examined the relative performance of all machines 

used and presented an overall ranking. The ranking system was 

based on four essential Issues: the technology used, the cost of the 

system, the mapping suitability, and finally the execution time. The 

results of the ranking enforce the aforementioned preliminary 

analysis, namely, the MPP and the CM-2 are the best machines for 

implementing the Burg algorithm. Small-grain massively parallel 

SIMD architectures are the most suitable for the selected algorithm. 

Guidelines for designing future machines were included and are 

based mostly on the experience acquired throughout this research 



125 

and directed towards solutions that will Improve the mappmg of the 

selected signal processing algorithms. 

This research addressed an important problem that is 

encountered when using advanced computer architectures to 

implement signal processing algorithms, namely, the mapping 

problem. The solutions presented in this manuscript can be 

generalized to the class of algorithms selected and will help in 

solving algorithms of similar computational structure. As more 

architectures become available, the need for such research grows so 

as to cover these newly developed parallel machines and establish 

guidelines to efficiently map signal processing algorithms. 



REFERENCES 

[1] A. Macovski, Medical Imaging Systems, Prentice-Hall, 
Englewood Cliffs, N.J., 1983. 

[2] B. D. Steinberg, Principles of Aperture and Array System 
Design, John Wiley and Sons, N.Y., 1976. 

[3] L. Rabiner and R. Schafer, Digital Processing of Speech Signals, 
Prentice-Hall, 1978. 

[4] K. Feher, Advanced Digital Communications, Prentice-Hall, 
1987. 

[5] E. Robinson and S. Treitel, Geophysical Signal Analysis, 
Prentice-Hall, 1980. 

[6] L. Ljung, System Identification: Theory for the User, Prentice
Hall, 1987. 

[7] G. Goodwin and K. Sin, Adaptive Filtering Prediction and 
Control, Prentice-Hall, 1984. 

[8] S. Kay, Modern Spectral Estimation: Theory and P~actice, 
Prentice-Hall, 1988. 

[9] L. Marple, Digital Spectral Analysis with Applications, 
Prentice-Hall, 1987. 

[ 1 0] A. Giordano and F. Hsu, Least Square Estimation with 
Applications to Digital Signal Processing, John-Wiley and Sons, 
New York, 1985. 

[11] S. Y. Kung, H. J. Whitehouse and T. Kailath (Eds.), VLSI and 
Modern Signal Processing, Prentice-HAll, 1985. 

[12] B. A. Bowen and W. R. Brown, VLSI System Design for Digital 
Signal Processing, Prentice-Hall, 1982. 

[ 13] P. Denyer and D. Renshaw, VLSI Signal Processing: A Bit Serial 
Approach, Addison-Wesley Publishing Company, Reading, 
MA, 1985. 

126 



[14] U. Schendel, Introduction to Numerical Methods for Parallel 
Computers, Ellis Horwood Limited, London, 1984. 

127 

[15] D. Heller, " A Survey of Parallel Algorithms in Numerical Linear 
Algebra," SIAM Review, No. 4, p.740, October 1978. 

[ 16] J. Jover and T. Kailath, " A Parallel Architecture for Kalman 
Filter Measurement Update and Parameter Estimation," 
Automatica, Vol. 22, No. 1, p.43, 1986. 

[ 17] H. M. Ahmed, " Signal Processing Algorithms and 
Architectures," Ph.D. Dissertation, Stanford University, June 
1982. 

[ 18] H. M. Ahmed, J. M. Delsome and M. Morf, " Highly Concurrent 
Computing Structures for Matrix Arithmetic and Signal 
Processing," Computer, Vol. 15, No.1, pp 65-80, January 1982. 

[19] K. Hwang and F. A. Briggs, Computer Architecture and Parallel 
Processing, McGraw-Hill, New York, NY, 1984. 

[20] K. Hwang and D. Degroot (Eds.), Parallel Processing for 
Supercomputers and Artificial Intelligence, McGraw-Hill, New 
York, NY, 1989. 

[21] G. Desrochers, Principles of Parallel and Multiprocessing, 
McGraw-Hill, New York, NY, 1987. 

[22] K. Hwang, "Advanced Parallel Processing with Supercomputer 
Architectures," Proceedings of the ffiEE, Vol. 75, No. 10, 
p1348, October 1987. 

[23] J. Mendel, Lessons in Digital Estimation Theory, Prentice-Hall, 
1987. 

[24] G. E. Box and G. M. Jenkins, Time Series Analysis Forecasting 
and Control, Holden Day, San Francisco, CA, 1967. 

[25] 0. D. Anderson, Time Series Analysis and Forecasting: The 
Box-Jenkins Approach, Butteworth and Co. , London, 1975. 

[26] J. Makhoul, " Linear Prediction: A Tutorial Review," Proc. lEE, 
Vol 63, pp. 561-580, April 1975. 

[27] T. Kailath, " A View of Three Decades of Linear Filtering 
Theory," ffiEE Trans IT, Vol IT-20, No. 2, pp. 146-181, March 
1974. 



[28] S. Kay and S. Marple, " Spectrum Analysis- A Modem 
Perspective," Proceedings of the IEEE, Vol 69, No. 11, 
November 1981, p1380. 

[29] S. Orfanidis, Optimal Signal Processing: An Introduction, 
MacMillan Publishing, New York, 1988. 

[30] M. Hagan, H. Demuth, and P. Singgih, " Parallel Signal 

128 

Processing Research on the HEP," Proceedings of the 1985 
International Conference on Parallel Processing, St. Charles, ILL, 
pp. 599-606, August 20-23, 1985. 

[31] J. Burg," Maximum Entropy Spectral Analysis," Ph.D. 
Dissertation, Stanford University, May 1975. 

[32] G. Golub and C. Van Loan, Matrix Computations , The Johns 
Hopkins University Press, Baltimore, MD, 1983. 

[33] B. Dickinson, " Estimation of Partial Correlation Matrices Using 
Cholesky Decomposition," IEEE Trans AC, Vol AC-24, No.2, April 
1979. 

[34] R. Yarlagadda, J. Bednar, and T. Watt, " Fast Algorithms for Lp 
Deconvolution," IEEE Trans ASSP, Vol ASSP-33, No. 1, pp.174-
182, February 1985. 

[35] J. Shroeder, " Linear Predictive Spectral Analysis Via the Lp 
Norm," Ph.D. Dissertation, Oklahoma State University, 
Stillwater, OK, 1985. 

[36] C. Kriel, " Lp -Norm Estimation Techniques Applied to Multiple 
Emitter Location," Ph.D. Dissertation, Oklahoma State 
University, Stillwater, OK, 1985. 

[37] J. Lansford," Lp models in Speech Coding and Markov Chains in 
Speech Recognition," Ph.D. Dissertation, Oklahoma State 
University, Stillwater, OK, 1988. 

[38] J. Bednar, R. Yarlagadda, and T. Watt, " L1 Deconvolution and 
its Application to Seismic Signal Processing," IEEE Trans ASSP, 
Vol ASSP-34, No. 6, pp.1655-1658, December 1986. 

[39] R. Yarlagadda and J. Hershey, " Signal Processing, General," 
Encyclopedia of Physical Science and Technology Vol 12, 
Academic Press, pp. 626-646, 1987. 



129 

[ 40] R. Denoel and J.P. Solvay, " Linear Prediction of Speech with a 
Least Absolute Error Criterion," IEEE Trans ASSP, Vol ASSP-
33, pp. 1397-1403, December 1985. 

[ 41] G. Lipovski, " Computer Architecture," Encyclopedia of Physical 
Science and Technology Vol. 3, Academic Press, pp377-389, 
1987. 

[42] D. Skillicom, " A Taxonomy for Computer Architectures," IEEE 
Computer, Vol 21, No.ll, p 46, November 1988. 

[ 43] R. Duncan, " A Survey of Parallel Computer Architectures," IEEE 
Computer, Vol 23, No. 2, p 5, February 1990. 

[44] B. Smith, " Architecture and Applications of the HEP 
Multiprocessor Computer System," Real Time Signal Processing 
IV, Proceedings of SPIE, 1981, pp. 241-248. 

[45] "HEP FORTRAN 77 Reference Manual," Denelcor Inc Report, 
June 1984. 

[46] J. Larson, " Multitasking on CRAY XMP-2 Multiprocessor," IEEE 
Computer, Vol. 17, No. 7, July 1984. 

[47] C. Seitz, " The Cosmic Cube," Communications of the ACM, Vol 
28, No. 1, January 1985, pp. 22-33. 

[48] K. Batcher, " Design of a Massively Parallel Processor," IEEE 
Trans Computers, Vol C-29, No. 9, p 836, 1980. 

[49] N. Sammur and M. Hagan, " Parallel Implementation 
Considerations for a Class of Signal Processing Algorithms," 
Proc. 2nd Symposium on the Frontiers of Massively Parallel 
Computation, Fairfax, VA, Oct. 10-12, 1988. 

[50] N. Sammur and M. Hagan, " Mapping Signal Processing 
Algorithms on the Hypercube," Proc. Fourth Conference on 
Hypercube Concurrent Computers and Applications, Monterey, 
CA, Mar. 1989. 

[51] N. Sammur and M. Hagan, " Mapping Signal Processing 
Algorithms on Parallel Architectures," Journal of Parallel and 
Distributed Computing, Vol 8, No. 2, February 1990, pp. 180-
185. 



APPENDIXES 

130 



APPENDIX A 

SEQUENTIAL BURG LISTINGS 

131 



132 

PROGRAM BURG 
DIMENSION E(20000),B(20000),A(50),A1(50),C(50),X(20000) 
OPEN(2,FILE='ARMASEQ.DAT',STATUS='OLD') 

PRINT *,'ENTER MAX' 
READ *,MAX 
PRINT *, 1 ENTER M' 
READ *,M 
DO 10 I=1,M 

READ(2,*)X(I) 
10 CONTINUE 

DO 100 I=1,M 
E(I)=X(I) 
B (I) =X (I) 

1 0 0 CONTINUE 

DO 500 N=1,MAX 

SUM1=0. 
SUM2=0. 

PRINT *,N+1,M,N+1-N,M-N 
DO 200 I=N+1,M 

SUM1=SUM1+E(I)*B(I-N) 
SUM2=SUM2+E(I)*E(I)+B(I-N)*B(I-N) 

200 CONTINUE 
C(N)=-2.*SUM1/SUM2 

IF(N.LE.1) GOTO 350 
DO 300 I=1,N-1 

A1(I)=A(I)+C(N)*A(N-I) 
300 CONTINUE 

DO 310 I=1,N-1 
A(I)=A1(I) 

310 CONTINUE 
350 A(N)=C(N) 

DO 360 I=1,N 
WRITE(10,*)I,A(I) 

360 CONTINUE 

DO 400 I=N+1,M 
TEMP=E(I)+C(N)*B(I-N) 
B(I-N)=B(I-N)+C(N)*E(I) 
E(I)=TEMP 

400 CONTINUE 

500 CONTINUE 

STOP 
END 



APPENDIXB 

GENERATE WillTE NOISE USTINGS 

133 



134 

PROGRAM WHITENOISE 

* 
*this program generates a sequence of white random noise. 
* 

* 

OPEN(9,FILE='RNDATA.DAT',STATUS='NEW') 

PRINT *,'ENTER VARIENCE,LENGTH OF SEQUENCE, AND ROOT' 
READ *,VAR,LEN,INIT 

DO 100 I=l,LEN 
CALL RANDOM(INIT,Y,VAR) 
WRITE (9,*) Y 

100 CONTINUE 

STOP 
END 

*SUBROUTINE TO GENERATE RANDOM NOISE WITH A GIVEN VARIENCE 
* 

SUBROUTINE RANDOM(INIT,Y,VAR) 

INIT=MOD(3125*INIT,65536) 
Y=INIT 
Y=Y/65536 
Y=(Y-.5)*SQRT(12.)*SQRT(VAR) 

RETURN 
END 



APPEND.IXC 

SIMULATE ARMA LISTINGS 

135 



136 

PROGRAM S IMARMA 
* 
*this program simulates an ARMA process. 

* 
DIMENSION Z(-10:50000),A(-10:50000) 
DIMENSION PRAR(10},PRMA(10} 

OPEN (9,FILE='RNDATA.DAT',STATUS='OLD') 
OPEN (10,FILE='ARMASEQ.DAT',STATUS='NEW') 

PRINT *,'ENTER ORDER OF AR,ORDER OF MA,&SEQUENCE LEN' 
READ *,ORAR,ORMA,LEN 

DO 10 I=1,0RAR 
PRINT*, 'FOR AR PROCESS, ENTER COEFFICIENTS #',I 
READ *, PRAR (I} 

10 CONTINUE 

DO 20 I=1,0RMA 
PRINT*, 'FORMA PROCESS, ENTER COEFFICIENTS #',I 
READ *, PRMA (I) 

20 CONTINUE 

DO 30 I=O,LEN-1 
READ (9, *) A(I) 

30 CONTINUE 

DO 40 M=O,LEN-1 
TEMP1=0. 

DO 50 K=1,0RAR 
TEMP1=TEMP1+PRAR(K}*Z(M-K) 

50 CONTINUE 
TEMP2=A(M) 
DO 60 K=1,0RMA 

TEMP2=TEMP2+PRMA(K)*A(M-K) 
60 CONTINUE 

Z(M)=TEMP1+TEMP2 
WRITE(10,*) Z(M) 

40 CONTINUE 
STOP 
END 



APPENDIXD 

HEP LISTINGS 

137 



DIMENSION X(5000),JJ(20) 
CHARACTER*64 FNAME 
LOGICAL $DONE1,$DONE2,DUMMY 
COMMON/EC/E(5000),B(5000),A(50),C(50),N,M,NPROC, 

1 $K,$DONE1,$DONE2 
COMMON/EB1/S1,S2 

T=15. 
CREATE TIMOUT(T) 

C READ IN INPUT PARAMETERS 

READ(5,25) NPROC 
READ(5,25) MAX 
READ(5,25) M 
READ ( 5 , 50 ) (X ( I ) , I= 1 , M) 

25 FORMAT (IS) 
50 FORMAT(F10.0) 

C INITIALIZING 

DO 100 I=1,M 
E(I)=X(I) 
B(I)=X(I) 

100 CONTINUE 

C MAIN LOOP 

CALL CLOCK(ITIMO) 

DO 500 N=l,MAX 

C CALCULATE C(N) 

PURGE $K,$DONE1,$DONE2 
S1=0.0 
S2=0.0 
$K=NPROC 
IF (NPROC.EQ.l) GO TO 210 
DO 200 J=1,NPROC-1 
JJ(J)=J 

CREATE EB ( JJ (J)) 
200 CONTINUE 
210 CALL EB(NPROC) 

DUMMY=$DONE1 
C(N)=-2.*S1/S2 

C CALCULATE A(1), .. ,A(N) 

CREATE AUTO 

c UPDATE E AND B 

PURGE $K,$DONE1,$DONE2 

138 



$K=NPROC 
IF(NPROC.EQ.1) GO TO 410 
DO 400 J=1,NPROC-l 

JJ(J)=J 
CREATE EBUPDAT(JJ(J)) 

400 CONTINUE 
410 CALL EBUPDAT(NPROC) 

DUMMY=$DONE1 
DUMMY=$DONE2 

SOO CONTINUE 

C PRINT OUT RESULTS 

CALL CLOCK(ITIM1) 
TTIME=(ITIM1-ITIM0)*1.0E-7 
WRITE(6,S2S) M,MAX,NPROC,TTIME 

S2S FORMAT(10X,'NUMBER OF DATA POINTS =',IS/ 
1 lOX,'NUMBER OF REFLECTION COEFFICIENTS =',IS/ 
1 lOX, 'NUMBER OF PROCESSORS =',I4/ 
1 lOX, 'TOTAL TIME FOR THIS RUN =',F10.S//) 
DO 600 I=1,MAX 

WRITE(6,SSO) I,C(I) ,I,A(I) 
sso 

FORMAT(10X, 'C(',I3, ')=',F10.S,SX, 'A(',I3, ')=',F10.S) 
600 CONTINUE 

STOP 
END 

C SUBROUTINE EB 
c 
C THIS SUBROUTINE IS USED IN THE CALCULATION OF C(N) 

SUBROUTINE EB(J) 
COMMON/EC/E(S000),B(S000),A(SO),C(50),N,M,NPROC, 

1 $K,$DONE1,$DONE2 
COMMON/EB1/S1,S2 
LOGICAL $DONE1,$DONE2 

SUM1=0.0 
SUM2=0.0 
DO 10 I=N+J,M,NPROC 

SUM1=SUM1+E(I)*B(I-N) 
SUM2=SUM2+E(I)*E(I)+B(I-N)*B(I-N) 

10 CONTINUE 
K1=$K-1 
IF(K1.EQ.0) $DONE1=.TRUE. 
Sl=Sl+SUMl 
S2=S2+SUM2 
$K=K1 

RETURN 
END 

C SUBROUTINE AUTO 

139 



c 
C THIS SUBROUTINE IS USED TO CALCULATE THE 
C AUTOREGRESSIVE COEFFICIENTS 

SUBROUTINE AUTO 
DIMENSION A1(50) 
COMMON/EC/E(5000),B(5000),A(50),C(50),N,M,NPROC, 

1 $K,$DONE1,$DONE2 
LOGICAL $DONE1,$DONE2 
IF(N.LE.1)GO TO 300 
DO 100 I=1,N-1 

A1(I)=A(I)+C(N)*A(N-I) 
100 CONTINUE 

DO 200 I=1', N-1 
A (I) =A1 (I) 

200 CONTINUE 
300 A (N) =C (N) 

$DONE2=.TRUE. 
RETURN 
END 

C SUBROUTINE EBUPDAT (J) 
c 
C THIS SUBROUTINE UPDATES THE FORWARD AND 
C BACKWARD PREDICTION ERRORS 

SUBROUTINE EBUPDAT(J) 
COMMON/EC/E(5000),B(5000),A(50),C(50),N,M,NPROC, 

1 $K,$DONE1,$DONE2 
LOGICAL $DONE1,$DONE2 

DO 100 I=N+J,M,NPROC 
TEMP=E(I)+C(N)*B(I-N) 
B(I-N)=B(I-N)+C(N)*E(I) 
E(I)=TEMP 

100 CONTINUE 
K1=$K-1 
IF(K1.EQ.O) $DONE1=.TRUE. 
$K=$K1 

RETURN 
END 

140 



APPENDIXE 

iPSC/2 LISTINGS 

141 



142 

PROGRAM HOST 
c 
c The following tasks are performed: 
c 
c 

1- initialize the variables used in the program 
2- prompt user for # reflection coeffs,length of 

c 
c 
c 
c 
c 
c 

input data sequence,and number of nodes. 
3- decides on the size of the cube to be allocated 
4- gets the cube,set the hostpid,& load the nodes 
5- sends the user input to node zero(root node) 
6- receives the AR pars and the time elapsed 
7- print the results. 

INTEGER*4 
INTEGER*4 
CHARACTER*4 
CHARACTER*5 
REAL*4 
INTEGER*4 

APPLPID,ALLNODES,HOSTPID,NN 
KEEP,TYPEA,TYPEB,TYPEC,TYPELENX,TYPEZ 
CUBE TYPE 
CUBENAME,SRMNAME 
X ( 3 0 0 0 0 ) , A ( 50 ) , C ( 50 ) , A1 ( 50 ) 
M,MAX,NN,IY(3),IT 

OPEN(2,FILE='armaseq.dat',STATUS='OLD') 

C initialiaze the program variables 
HOSTPID=l 
KEEP=O 
CUBENAME='hyper' 
ALLNODES=-1 
APPLPID=1 
TYPEA=10 
TYPEB=20 
TYPEC=30 
TYPELENX=200 
TYPEZ=80 

C prompt user for input 
PRINT *,' PLEASE ENTER # REFLECTION COEFFICIENTS' 
READ *,MAX 
PRINT *,' PLEASE ENTER LENGTH OF DATA SEQUENCE' 
READ *,M 
PRINT *,' PLEASE ENTER NUMBER OF NODES' 
READ *,NN 
DO 10 I=1,M 

READ (2,*)X(I) 
10 CONTINUE 

PRINT *,X (1) 
PRINT *,X(M) 

and set CUBETYPE accordingly 
CUBETYPE='d1ml' 
CUBETYPE='d2ml' 
CUBETYPE='d3m1' 

C determine the size of the cube 
IF ( (NN. GE . 1) . AND . (NN. LE . 2) ) 
IF ( (NN. GT. 2) . AND. (NN. LE. 4) ) 
IF ( (NN. GT . 4) . AND . (NN. LE . 8) ) 
IF ( (NN. GT . 8) . AND. (NN. LE . 16) ) 
IF ( (NN. GT. 16) . AND. (NN. LE. 32) ) 

CUBETYPE='d4m1' 
CUBETYPE='d5m1' 

C get the cube, set host pid, and load the nodes 



PRINT *,'GETTING THE CUBE ... ' 
CALL GETCUBE(CUBENAME,CUBETYPE,SRMNAME,KEEP) 
CALL SETPID(HOSTPID) 
PRINT*, 'LOADING THE CUBE ... ' 
CALL LOAD('node',ALLNODES,APPLPID) 
PRINT *,'LOAD SUCCESSFUL ... ' 

C send data to node zero 
IY(1)=MAX 
IY(2)=M 
IY(3)=NN 
LENX=M*4 
CALL CSEND(TYPELENX,IY,12,0,APPLPID) 
CALL CSEND(TYPEA,X,LENX,O,APPLPID) 

C receive reflection coefficients and calculate the AR 
parameters 

DO 20 N=1,MAX 
CALL CRECV(TYPEB,C(N),4) 
IF (N.GT.1) THEN 
DO 15 I=1,N-1 

A1(I)=A(I)+C(N)*A(N-I) 
15 CONTINUE 

DO 18 I=1,N-1 
A (I) =A1 (I) 

18 CONTINUE 
END IF 
A(N)=C(N) 

20 CONTINUE 

C receive time elapsed and print results 
CALL CRECV(TYPEZ,IT,4) 
TIME=FLOAT(IT)/1000. 
PRINT *,'TIME ELAPSED(in sec.)=',TIME 
PRINT *,'AR COEFFICIENTS ARE:' 
DO 30 N=1,MAX 

PRINT *,N,A(N) 
30 CONTINUE 

PRINT *,'CLEARING THE CUBE ... ' 
CALL RELCUBE(CUBENAME) 

END 

PROGRAM NODE 

INCLUDE '/usr/include/fcube.h' 
C 1-if node zero do the following: 
C a- receive data from host 
C b- start timing 

143 

c c- calculate the ranges of indices for data to be 



144 

C sent to other nodes 
C d- send the appropriate data to the assigned node 
C and perform calculation on node 0 data 
C e- receive partial sums from nodes and sum them 
C f- stop timer & send the sum & time to host 
C 2-if other nodes do the following: 
C a-receive data from node zero 
C b-calculate partial sums & send to node 0 

INTEGER*4 
TYPEA,TYPEB,TYPEC,TYPED,TYPEE,TYPEF,TYPELENX,TYPELXS 
INTEGER*4 HOSTPID,APPLPID,HOST 
REAL*4 XS(l5000) 
INTEGER*4 M,MAX,NN,IY(3) 
INTEGER*4 LL(31),LU(31) 
INTEGER*4 LSEND(3) 
REAL*4 E(30000),B(30000),SUM(2),C(50) 
INTEGER*4 TYPES,TYPEEl,TYPER,TYPEZ 
INTEGER*4 ITS,ITF,IT 

C initialize the variables 
HOSTPID=l 
TYPEA=lO 
TYPEB=20 
TYPEC=30 
TYPED=40 
TYPEE=SO 
TYPEF=60 
TYPEZ=80 
TYPELENX=200 
TYPELXS=210 
TYPEE1=299 
HOST=MYHOST () 
ME=MYNODE () 
APPLPID=l 

IM2=0 
C if this is node zero 

IF (ME.EQ.O) THEN 
C receive data from host 

CALL CRECV(TYPELENX,IY,12) 
C ITS=MCLOCK() 

LENX=IY(2)*4 
CALL CRECV(TYPEA,E,LENX) 
MAX=IY (1) 
M=IY(2) 
NN=IY(3) 

C CALCULATE LOWER AND UPPER LIMITS FOR X TO BE SEND TO NODES 
NUM=M/NN 
NADD=M-NUM*NN 
DO 10 I=l,NN-1 

LL(I)=I*NUM+l 



LU(I)=LL(I)+NUM-1 
IF (I.EQ.NN-1) LU(I)=LU(I)+NADD 

10 CONTINUE 

C SETUP THE ARRAYS TO BE SENT TO NODES AND SEND THEM 
DO 20 I=1,NN-1 

DO 15 J=LL(I),LU(I) 
XS(J-LL(I)+1)=E(J) 

15 CONTINUE 
LXS=(LU(I)-LL(I)+1)*4 

ND=GRAY(I) 
LSEND(1)=LXS 
LSEND(2)=MAX 
LSEND(3)=NN-1 
CALL CSEND(TYPELXS,LSEND,12,ND,APPLPID) 
CALL CSEND(TYPED,XS,LXS,ND,APPLPID) 

20 CONTINUE 

C done initializing 

C set E and B equal to X 
DO 31 I=l,NUM 

B (I) =E (I) 
31 CONTINUE 

ITN2=0 

CCCCCCCCMAIN LOOPCCCCCC 
TYPES=2 
ITS=MCLOCK () 
DO 50 N=1,MAX 

C shifting if more than one node used 
ITN1=MCLOCK () 
IF(NN.GT.1) THEN 

IHNDEX1=NUM+N 
CALL CRECV(TYPES,E(NUM+N),4) 

ELSE 
INDEXl=NUM 

END IF 
ITN2=MCLOCK()-ITN1+ITN2 

C calculate partial sums 
SUM1=0. 
SUM2=0. 
DO 35 I=N+l,INDEXl 

SUM1=SUM1+E(I)*B(I-N) 
SUM2=SUM2+E(I)*E(I)+B(I-N)*B(I-N) 

35 CONTINUE 
c receive partial sums and produce the final 2 sums 

IMl=MCLOCK () 
DO 40 I=1,NN-1 

CALL CRECV(TYPEE1,SUM,8) 

145 



SUMl=SUMl+SUM(l) 
SUM2=SUM2+SUM(2) 

40 CONTINUE 
C IM2=MCLOCK()-IM1+IM2 
C calculate reflection coef and broadcast to other nodes 

C(N)=-2.*SUM1/SUM2 
DO 45 I=l,NN-1 

CALL CSEND(TYPEF,C(N),4,GRAY(I),APPLPID) 
45 CONTINUE 

CALL CSEND(TYPEB,C(N),4,HOST,HOSTPID) 
IM2=MCLOCK()-IM1+IM2 

C update forward and backward reflection coefficients 
DO 48 I=N+l,INDEXl 

TEMP=E(I)+C(N)*B(I-N) 
B(I-N)=B(I-N)+C(N)*E(I) 
E(I)=TEMP 

48 CONTINUE 
50 CONTINUE 

C stop clock and send time to host 
ITF=MCLOCK () 
IT=ITF-ITS 
IM2=IM2+ITN2 
TIME=FLOAT(IM2)/1000. 
PRINT*, 'TIME',TIME 
CALL CSEND(TYPEZ,IT,4,HOST,HOSTPID) 

cccccccccccccccccccccccccccccccccc 
C if any other node but node zeroC 
cccccccccccccccccccccccccccccccccc 

ELSE 

C receive the partial aray XS 
CALL CRECV(TYPELXS,LSEND,12) 
LXS=LSEND(l) 
MAX=LSEND(2) 
NNMOD=LSEND(3) 
CALL CRECV(TYPED,XS,LXS) 

C done initialization 
C set E and B equal to XS 

DO 76 I=l,LXS/4 
E(I)=XS(I) 
B(I)=XS(I) 

76 CONTINUE 

C assign types for send and receive 
IF(MOD(GINV(ME),2) .EQ.O) THEN 

TYPES=l 

ELSE 

END IF 

TYPER=2 

TYPES=2 
TYPER=l 

146 



C assign some useful variables 
MEGGIN=GRAY(GINV(ME)-1) 
MEGIN=GINV(ME) 

CCCCCCCMAIN LOOPCCCCCCC 

DO 51 N=1,MAX 
C shift 

CALL CSEND(TYPES,E(N),4,MEGGIN,APPLPID) 
C taking care of the last node to the right 

IF(MEGIN.NE.NNMOD) THEN 

c 

INDEX=LXS/4+N 
CALL CRECV(TYPER,E(INDEX),4) 
ELSE 
INDEX=LXS/4 
END IF 

C calculate partial sums 
SUM(1)=0. 
SUM(2)=0. 
DO 36 I=N+1,INDEX 

SUM(1)=SUM(1)+E(I)*B(I-N) 
SUM(2)=SUM(2)+E(I)*E(I)+B(I-N)*B(I-N) 

36 CONTINUE 
C send partial sums to node 0 and receive reflection coef 

CALL CSEND(TYPEE1,SUM,8,0,APPLPID) 
CALL CRECV(TYPEF,C(N),4) 

C update forward and backward prediction errors 
DO 49 I=N+1,INDEX 

TEMP=E(I)+C(N)*B(I-N) 
B(I-N)=B(I-N)+C(N)*E(I) 
E(I)=TEMP 

49 CONTINUE 

51 CONTINUE 

END IF 

END 

147 



APPENDIXF 

ALLIANT FX/8 LISTINGS 

148 



program burg 

real etime1,etime2,etimeoh 
real ustimel(2),ustime2(2),utimeoh,stimeoh 
dimension e(l6384),b(16384),x(l6834),temp(16384) 
dimension a(10),al(10),c(l0) 
open(lO,file='armaseq.dat',status='old') 

print *,'enter number of reflection coefficients' 
read *,max 
print *,'enter length of data sequence' 
read *,m 

do 2 i=l,m 
read(10,*)x(i) 

2 continue 
do 3 i=1,m 

e(i)=x(i) 
b(i)=x(i) 

3 continue 

do 5 i=1,3 
etime1=etime(ustime1) 
etime2=etime(ustime2) 
etimeoh=etime2-etime1 
utimeoh=ustime2(1)-ustime1(1) 
stimeoh=ustime2(2)-ustime1(2) 

5 continue 

etimel=etime(ustime1) 
do 100 n=1,max 

sl=O.O 
s2=0.0 
s1=sum (e (n+1 :m), *b (1 :m-n)) 
s2=sum(e(n+l:m)**2+b(l:m-n)**2) 
c(n)=-2.0*sl/s2 
if(n.gt.l)then 

endif 

a1(1:n-l)=a(l:n-l)+c(n)*a(n-1:1) 
a(1:n-1)=a1(1:n-1) 

a(n)=c(n) 
temp(l:m-n)=e(n+l:m)+c(n)*b(l:m-n) 
b(l:m-n)=b(l:m-n)+c(n)*e(n+l:m) 
e(n+1:m)=temp(1:m-n) 

100 continue 
etime2=etime(ustime2) 
print*, 'total time=',etime2-etime1-etimeoh 
do 200 i=l,max 

print *, 'i,a(i) ',i,a(i) 
200 continue 

stop 
end 

149 



APPENDIXG 

MPP LISTINGS 

150 



program VAX_prog(input,output,vax_x_file); 

(*Program to generate matrices on front end*) 

type 
a_record=array[0 .. 127] of real; 

var 
vax_x_file: file of a_record; 

function random(var init:integer) :real; 
begin 

end; 

init:=(3125*init) mod 65536; 
random:=((init/65536)-0.5)*sqrt(12); 

procedure gen_VAX_file; 

type 

var 

begin 

arr=array [0 .. 16384} of real; 

ranum,z:arr; 
prar:real; 
init,i,j: integer; 
vax_x_array,vax_y_array: a record; 

open(vax x file,file name:='xfile.dat'); 
rewrite(vax x file); 
init:= 983;--
for i:=1 to 16384 do 

ranum[i] :=random(init); 
prar:=0.1; 
z [ 0] : =0. 0; 
for i:=1 to 16384 do 

z[i] :=prar*z[i-1]+ranum[i]; 
for i:=O to 127 do 

end; 

begin 
for j:=O to 127 do 

begin 
vax_x_array[j] :=z[j+i*128]; 

end; 
write(vax_x_file,vax_x_array); 

end; {of procedure} 

begin {of program} 
gen_VAX._file; 

end. {of program} 

1 5 1 



(*$d+*) 
program burg(input,output,vax_x_file); 

const 
top=B; 
listsize=32; 

%include 'type.dat' 

152 

par array= parallel array[O .. 127,0 .. 127] of real; 
stag array=stager array[0 .. 127,0 .. 127] of real; 
arr ~array [0 .. 100] of real; 

var 
vax x file; file of stag array; 
section: unsigned; 
e,b,x,s1,s2,temp:par_array; 
c: arr; 
max,m,n:integer; 
sum1,sum2:real; 

procedure pfm init;EXTERN; 
procedure pfm-close;EXTERN; 
procedure pfm-start(VAR section: unsigned); EXTERN; 
procedure pfm=stop(VAR section: unsigned); EXTERN; 

function snake_shift(var x : par_array) :par_array; 
var 

r1,r2:par array; 
row index;col index:par array; 

begin - - -
r2:=shift(x,O,l); 
rl:=rotate(x,l,l); 
where (col index=127) do 

where-(row index< 127) do 
r2: =rl; 
snake shift:=r2; 

end; {snake_shift} 

begin {burg} 

(*Open VAX files for reading*) 
reset(vax_x_file); 

(*Read the VAX file and load data int.o stager*) 
get(vax_x_file); 

(*Move data from stager tp array*) 
transfer(vax_x_file,x); 
waitio; 

writeln('enter max'); 
readln (max) ; 
pfm_init; 
e:=x; 
b:=x; 



(*Perform computations in array*) 
for n:=l to max 

do begin 
e:=snake_shift(e); 
sl:=e*b; 
s2:=sqr(sl); 
suml:=sum(s1,1,2); 
sum2:=sum(s2,1,2); 
c[n] :=-2.0*suml/sum2; 
temp:=c[n]*b+e; 
b:=c[n]*e+b; 
e:=temp; 

end; {for} 
pfm_close; 

(*Print Results*) 
for n:=l to max do 

writeln(c[n]); 
end. 

153 



APPENDIXH 

CM-2 LISTINGS 

154 



PROGRAM BURG 
DIMENSION E(16384),B(16384),TEMP(16384),X(16384) 
DIMENSION A(50),C(50) 
OPEN(2,FILE='ARMASEQ.DAT',STATUS='OLD') 

PRINT *,'ENTER MAX' 
READ *,MAX 
PRINT *,'ENTER M' 
READ * ,M 
DO 10 I=1,M 

READ(2,*)X(I) 
10 CONTINUE 

E=X 
B=X 

CALL CM TIMER CLEAR(O) 
CALL CM-TIMER-START(O) 
DO 500 N=1,MAX 

E=E (2 :M-N+1) 
B=B(l:M-N) 
C(N)=-2.0*SUM(E*B)/SUM(E**2+B**2) 
IF(N.EQ.1)THEN 

A ( 1) =C (1) 
ELSE 

A(1:N-1)=A(1:N-1)+C(N)*A(N-1:1) 
END IF 
TEMP=E+C(N)*B 
B=B+C(N)*E 
E=TEMP 

500 CONTINUE 
CALL CM TIMER STOP(O) 
CALL CM=TIMER=PRINT(O) 

DO 300 N=1,MAX 
PRINT *' 'c ( I 'N' I ) =I 'c (N) 

300 CONTINUE 
STOP 
END 

155 



APPENDIX I 

CRAY X-MP/48 LISTINGS 

156 



157 

PROGRAM BURG 
DIMENSION E(16384),B(16384),A(10),A1(10),C(10),X(16384) 
OPEN(2,FILE='ARMASEQ.DAT',STATUS='OLD') 

PRINT *,'ENTER MAX' 
READ *,MAX 
PRINT*,' ENTER M' 
READ *,M 
DO 10 I=1,M 

READ(2,*)X(I) 
10 CONTINUE 

DO 100 I=1,M 
E(I)=X(I) 
B(I)=X(I) 

100 CONTINUE 

IVAR1=ITMUCPU () 
DO 500 N=1,MAX 

SUM1=0. 
SUM2=0. 
DO 200 I=N+1,M 

SUM1=SUM1+E(I)*B(I-N) 
SUM2=SUM2+E(I)*E(I)+B(I-N)*B(I-N) 

200 CONTINUE 
C(N)=-2.*SUM1/SUM2 
IF(N.LE.1) GOTO 350 
DO 300 I=1,N-1 

A1(I)=A(I)+C(N)*A(N-I) 
300 CONTINUE 

DO 310 I=1,N-1 
A(I)=A1(I) 

310 CONTINUE 
350 A(N)=C(N) 

DO 400 I=N+1,M 
TEMP=E(I)+C(N)*B(I-N) 
B(I-N)=B(I-N)+C(N)*E(I) 
E(I)=TEMP 

400 CONTINUE 
500 CONTINUE 

IVAR2=ITMUCPU () 
ITIME=IVAR2-IVAR1-4 

*TIME IN MICROSECONDS(NOTE:4 IS OVERHEAD) 
PRINT*, 'TIME(usec)=',ITIME 
PRINT *,'C(1)=',C(1) 
STOP 
END 



APPENDIXJ 

CRA Y -2 LISTINGS 

158 



159 

PROGRAM BURG 
DIMENSION E(16384),B(l6384),A(10),A1(10),C(10),X(16384) 
OPEN(2,FILE='ARMASEQ.DAT',STATUS='OLD') 

PRINT *,'ENTER MAX' 
READ *,MAX 
PRINT *, 1 ENTER M' 
READ *,M 
DO 10 I=l,M 

READ(2,*)X(I) 
10 CONTINUE 

DO 100 I=1,M 
E (I) =X (I) 
B (I) =X (I) 

100 CONTINUE 

CALL SECOND(S1) 

DO 500 N=1,MAX 

SUM1=0. 
SUM2=0. 
DO 200 I=N+1,M 

SUM1=SUM1+E(I)*B(I-N) 
SUM2=SUM2+E(I)*E(I)+B(I-N)*B(I-N) 

200 CONTINUE 
C(N)=-2.*SUM1/SUM2 

IF(N.LE.l) GOTO 350 
DO 300 I=l,N-1 

A1(I)=A(I)+C(N)*A(N-I) 
300 CONTINUE 

DO 310 I=1,N-1 
A(I)=A1(I) 

310 CONTINUE 
350 A(N)=C(N) 

DO 360 I=1,N 
PRINT *,A (I) 

360 CONTINUE 

DO 400 I=N+1,M 
TEMP=E(I)+C(N)*B(I-N) 
B(I-N)=B(I-N)+C(N)*E(I) 
E(I)=TEMP 

400 CONTINUE 

500 CONTINUE 

CALL SECOND ( S2) 
PRINT*, 'TIME=',S2-S1 
PRINT *,'C(1)=',C(1) 
STOP 
END 



VITA~ 

Nidal M. Sammur 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: MAPPING SIGNAL PROCESSING ALGORITHMS ON PARALLEL 
ARCHITECIURE 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in Amman, Jordan, June 5, 1963, the son 
of Musa and Fatima Sammur. 

Education: Graduated from Terra Santa College, Amman, 
Jordan in May 1980; received Bachelor of Science degree 
in Electrical Engineering from the University of Tulsa in 
May of 1984. Received Master of Science degree in 
Electrical Engineering from the University of Tulsa in 
December of 1986; completed requirements for the 
Doctor of Philosophy degree at Oklahoma State University 
in July, 1992. 

Professional Experience: Graduate Teaching Assistant, The 
University of Tulsa, 1984 to 1986; Graduate Research 
Assistant, Oklahoma State University, 1986 to 1991. 




