
SCHEDULING ALGORITHMS FOR
PARALLEL EXECUTION OF

COMPUTER PROGRAMS

BY

FARIDEH ANSARI-JAFARI SAMADZADEH

Bachelor of Arts
College of Mass Communication

Tehran, Iran
1979

Master of Science
' University of Southwestern Louisiana

Lafayette, Louisiana
1982

Master of Science
University of Southwestern Louisiana

Lafayette, Louisiana
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHll..OSOPHY

July, 1992

. · •:.
• • < '? · ·~- :. ·.

' '

0/t/ahoma State Univ. library

SCHEDULING ALGORITHMS FOR
PARALLEL EXECUTION OF

COMPUTER PROGRAMS

Thesis Approved:

Thesis Advisor

~ U }u~

co..

Dean of the Graduate College

11

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. G. E. Hedrick, for his trust in my work during

the course of this research. I would also like to thank the members of my dissertation

committee, Drs. Meg Kletke, Keith Teague, and Blayne Mayfield. I owe special thanks

to Dr. Kletke for pointing out several helpful articles early in my research work.

I would like to express my most sincere appreciation and admiration to my mother,

Ms. Esmat Haji-Ahmadi, who cheerfully devoted one whole year of her life to caring for

my three daughters (Shahrzad, Nozlee, and Shereen) while I was completing my

dissertation research. I have always been fortunate in having her full support in all my

professional endeavors. Finally, I thank my best friend, colleague, and husband, Mansur,

whose encouragements and deep trust in me was instrumental in completion of this

research.

The future work on this dissertation topic will be partly funded by an NSF grant, with

the author of this dissertation serving as the Principal Investigator.

iii

TABLE OF CONTENTS

Chapter Page

I. IN1'RODUCI10N .. 1
1.1 Statement of the Problem 6
1.2 Scheduling Problem and NP-Completeness 9
1. 3 Review of the Literature 10
1.4 Background and Survey of Related Work ... 12
1.5 Dissertation Overview 17
1.6 Notation and Definitions .. 18
1.7 Summary ... 21

IT. PROGRAM PARTITIONING, TASK SYSTEMS AND
INTERPROCESS COMMUNICATION

2.1 Basic Definitions 22
2.2 Multiprocessor Architectures and Task Granularity 23
2.3 Graph-Based Program Representations .. 24
2.4 Different Approaches to Program Partitioning 25
2.5 Communication Costs and Interprocess Communication 28
2.6 Summary ... 32

ill. SCHEDULING OF TASK SYSTEMS

3.1 Basic Definitions 3 3
3.2 Task System Representations 34
3.3 Task Systems with Independent Tasks ... 35
3.4 Task Systems with Dependent Tasks 37
3.5 Summary 39

IV. SCHEDULING OF INDEPENDENT TASKS

4.1 Introduction 40
4.2 Survey of Related Work ... 43
4.3 A Near-Optimal Scheduling Algorithm for

Scheduling of Independent Tasks 51

iv

Chapter Page

4.4 Performance Evaluation .. 55
4.4.1 Design Methodology 55
4.4.2 Simulation Results 56
4.4.3 Complexity Analysis .. 58

4.5 Summary 59

V. SCHEDULING OF DEPENDENT TASKS

5.1 Introduction 61
5.2 Task System Graphs and Schedule Bounds .. 62
5.3 Task System Partitioning ... 65
5.4 An Algorithm for Task System Partitioning .. 66
5.5 ESPNL: A Scheduling Algorithm for

Scheduling Independent Task Layers .. 72
5.5.1 Performance Evaluation ... 75

5.5.1.1 Design Methodology .. 76
5.5.1.2 Simulation Results .. 77

5.6 Ranked Weight Algorithm: A Heuristic Approach for
Scheduling Dependent Task Systems .. 78
5.6.1 The Ranked Weight Heuristic .. 80
5.6.2 The Ranked Weight Algorithm .. 83
5.6.3 Algorithm Description .. 86
5.6.4 Performance Evaluation .. 90

5.6.4.1 Design Methoc;lology ... 91
5.6.4.2 Simulation Results ... 91

5.7 Independent Path Scheduler ... 94

VI. SUMMARY AND CONCLUSIONS

6.1 Introduction 99
6.2 Summary ... 99
6.3 Contributions ... 101
6.4 Future Work .. 102

REFERENCES AND
SEI..ECTED BffiLIOGRAPHY ... 105

v

LIST OF TABLES

Table Page

I. Results of Experiment I .. 57

II. Results of Experiment II ... 58

ill. Experiments with varying the number of tasks .. 79

N. Ranked weight and expected processing times of tasks in Figure 8 87

V. Results of 300 Test Runs where the Number of
Processors P =Width. ofDAG .. 92

VI. Results of 300 Test Runs where the Number of
Processors 2 <= P <= Width of D A 0 94

VII. Characteristics of Several Multiprocessor Scheduling Algorithms 100

vi

LIST OF FIGURES

Figure Page

1. A Sample Precedence Graph and a Sample DAG 38

2. The Cutting Stock Problem 42

3. Non-monotonocity of First-Fit-Decreasing
Heuristic in packing of items into bins .. 47

4. Non-monotonocity of First-Fit Heuristic
in packing of items into bins 48

5. Phase I reordering of D&F algorithm .. 50

6. The Variant-Load Algorithm .. 53

7. A schedule for task system on three processors .. 55

8. A task system precedence graph 63

9. A simple precedence graph 64

10. Earliest Schedule Partition (ESP) for the task graph in Figure 13 67

11. Latest Schedule Partition (LSP) for the task graph in Figure 13 68

12. The ESP Algorithm ... 70

13. A task system represented as a weighted directed acyclic graph 71

14. A schedule for the task system in Figure 13 on three processors 7 4

15. Performance of the ESPNL scheduling approach .. 79

16. Task graph a· resulting from removal of task A in Figure 8 82

17. Task graph G" resulting from removal of task C in Figure 16 83

vii

Figure

18. The Ranked Weight Algorithm

19. Successor list (a) and predecessor list (b)

20. A schedule for the task system of Figure 8

21. Schedule for the modified version of the task system in Figure 8

22. Vertical Partitioning of the task system graph in Figure 13

23. A schedule for the task system graph in Figure 13 on five processors

viii

Page

85

88

89

89

96

97

CHAPTER I

INTRODUCTION

Technological advances have produced significant changes in the field of computing.

There are indications that by the end of this millennium, fundamental limitations (e.g.,

the speed of light) will have been encountered in circuit design [Seiworek 89] [Lea 87].

To attain higher processing speeds, computations must be moved to machines with

multiple processors in order to defeat these physical limitations. Developing software for

such machines generally can be classified as parallel programming. Parallel

programming imposes certain constraints on computations which must be dealt with by

both the future machines and programs (languages).

The term parallel processing refers to the class of activities in which two or more

processes execute on two or more processing elements simultaneously. It is possible for

the involved processes to belong to different computations or to the same computation.

In the former case, parallel processing helps only in increasing the overall throughput of

the system. In latter case parallel processing allows for the realization of speed-up in the

computation of a single program. Informally, parallelism can be defined as doing more

than one thing at once. Other similar interpretations of parallelism are: performing n

activities at once; carrying out one activity in n simultaneous parts; or doing n different

activities staggered in a time frame [Desrochers 87]. The term "parallel events" is

defined as the occurrence of events during the same interval, whereas the term

"simultaneous events" is defined as occurrence of events at the same instant [Hwang and

Briggs 84].

1

2

Parallel processing has been a topic of interest for decades. There exist in the

literature proposals for parallel architectures as early as 1945 [Hockney and Jesshope 81].

Language aspects of parallel programming have been investigated also for over three

decades [Conway 63] [Gill 58] [Dreifus 58]. The concept of parallelism is not new.

John von Neumann initially envisioned a parallel architecture but abandoned the idea

because of the unreliability and bulkiness of the technology of the time [Hockney and

Jesshope 81]. Parallelism in practice is not a new topic either. Since the early 1970's,

with the third generation architectures, additional processors (satellite processors or

input/output channels) have been employed to improve the efficiency of the central

processing unit. Later developments in parallel processing resulted in the introduction of

array processors and vector processors and the employment of pipelining in these

architectures to speed up computations further.

With the advent of local area networks in the 1980's, distributed environments

provided higher availability and reconfigurability which proved to be a promising field

for attaining high performance computing. It is anticipated that the very high

performance environments of the future will employ and integrate distributed processing,

array processing and multiprocessing in order to take advantage of the best of what each

of these approaches have to offer [Glenbe 91]. Although Amdahl's law [Minsky 70]

[Amdahl 67] presents arguments against large systems, the limitations of the architectural

and physical ingredients must be taken into consideration. Some typical limitations

include the speed of light, the distances that cannot be shorter than certain possible

lengths, and the component sizes. Unless radical and new technologies such as optics or

superconductors are realized, semiconductor technology is reaching its peak

performance. Therefore, it is the multiprocessing capability that offers unlimited

computing speed.

Advances in hardware design and subsequent availability of high-speed computing

3

power at reasonable cost seems to have accelerated the research in parallel programming

to some extent. Unfortunately, the same trend observed in the late sixties, signified by a

widening gap between rapid advances in hardware development and the relatively slow

rate of progress in software development, can be observed today when one studies the

progress in delivery of parallel processing hardware to the market and the software tools

and techniques that can harness this new computing power. In fact, most parallel

machines have greater capabilities than a programmer knows how to apply to a single

concurrent program.

A review of the literature reveals arguments favoring each of the two architectural

styles of uniprocessing and multiprocessing. Coffman analyzed the performance of

multiprocessors from a queuing theory point of view [Coffman 66] [Coffman 67]. He

concluded that the average number of tasks processed is greater for C processors than

Cl 2 processors whose average execution speed is twice the average speed of each one of

the C processors. That is to say, distributing the computing power over a larger number

of processors yields a better throughput than over machines with half the number of

processors with twice the speed. Grosch's law [Ein-Dor 85] asserts that a most powerful

uniprocessor delivers the best price/performance. This law, however, is no longer true

based on the influence of new advances in parallel processing [Lea 87]. Additionally, as

physical limitations in the design of circuits are being approached, uniprocessor systems

will no longer be able to respond to the demand placed on computers today. Other

factors that make parallel processing a more attractive alternative are extensibility,

productivity, reliability, and fault tolerance [Trelevin 90].

Some applications that are particularly suited for parallel processing are signal

processing [Hwang and DeGroot 89], graph problems [Hirchberg 82], and scientific

computations [Wilhelmson 87] such as three dimensional partial differential equation

solutions [Peterson 85], Monte-Carlo techniques in physics and chemistry [Kalos 87],

4

and weather forecasting. Due to advances in technology and the realization of new

architectures that allow for delivery of multiprocessors to the market using affordable

off-the-shelf processing elements (e.g., Sequent and WYSE computers), availability of

high-speed supercomputing-class performance is becoming a reality to those users who

find supercomputers unaffordable, e.g., see [Karin and Smith 87]. Two of the most

challenging problems in multiprocessing are the detection of parallelism in different

portions of a program (program partitioning) and scheduling of the resulting parallel

components on a number of available processors (mapping of computations to

processors). This dissertation concentrates on the latter problem.

Multiprocessor scheduling has benefited greatly from the theoretical work done on the

scheduling problem in other disciplines such as operations research and management

science. What follows is a general discussion of the scheduling problem. More specific

and targeted discussions of the scheduling problem, related to multiprocessor scheduling

are presented in Section 1.4. Depending on the field of research, the term scheduling

refers to different activities. For example, in operations research, there is a distinction

between sequencing and scheduling [Noronha and Sarma 91]. The term sequencing

refers to ordering of events without any reference to time constraints while scheduling

involves specifying the exact start and finish times of operations.

In general, scheduling can be defined as the process of designing a procedure for

sequencing a set of desired activities that take place over a set of objects. This

sequencing is based on the time constraints for the delivery of the results, or availability

of the resources necessary for performing an action. Different taxonomies can be defined

depending on the type and the number of machines available and also based on the type

of jobs that must be scheduled on the given machine(s). The questions that generally

must be answered are:

1) How many machines are available?

5

2) Are the machines identical in their capabilities?

3) Are there any precedence constraints among the jobs that affect the processing

sequence of these jobs?

The collection of answers to each of these questions defines the particular

configuration of a system. The first question is aimed at determining whether the system

is a single- or multiple-machine system. The answer to the second question reveals the

interrelationship between the different machines. For example, if the system is composed

of machines with different capabilities, we are probably dealing with a flow-line

production system where each job possibly will go through every single machine (e.g.,

assembly lines and pipelining). However, if the system is composed of machines with

identical capabilities, then unit jobs probably will complete on the same machine that

they are assigned to. In this situation, we are dealing with a parallel-machine problem

aimed at increasing the system throughput if the unit jobs are independent, or increasing

the execution speed of the same job if the unit jobs are related and are in fact tasks

constituting a single job. The answer to the third question reveals the interrelationships

among the jobs to be scheduled. If there are no precedence relationships among the jobs,

the sequencing of the jobs is done with regard to the delivery constraints and due dates (if

any). In the absence of due date constraints, the overall performance of a schedule is

measured by average turnaround time in the case of a single-machine problem, and

minimum makespan (schedule length), and/or turnaround time, in the case of parallel

machine problems.

\Precedence relationships between pairs of jobs impose constraints on the order in

which the jobs can be scheduled on machines. This problem is easier to deal with in a

single-machine system than a multiple-machine environment. Typically, the complexity

of devising an optimal and even a reasonable schedule increases exponentially as the

number of machines and the jobs increase. Further discussion about scheduling

6

complexity is deferred to Section 1.2.

The discussion so far concentrated on the general problem . of scheduling jobs on

machines. This discussion could be applied to the problem of scheduling in many

different fields such as job-shop scheduling [Coffman 76], project scheduling [Davis 73],

mass-transit scheduling [Bodin 83], and multiprocessor and task scheduling [Coffman

and Graham 72]. This research is concerned mainly with the scheduling of task systems

on multiprocessors. However, a study of the problem of scheduling in other fields can be

beneficial since there are many similarities between these problem domains. For

example, bin packing algorithms applied to memory allocation and processor scheduling

[Franklin 78] [Coffman et al. 78] were modeled after a more general problem known as

the cutting stock problem in operations research [Gilmore and Gomory 61].

This dissertation is concerned with the scheduling of task systems on a computer with

multiple identical processors. The task systems may contain precedence constraints.

Heuristics are presented for scheduling of task systems on multiprocessors with the

objective of creating schedules with near-optimal makespans. We define a makespan or

schedule length to be the elapsed time between the time the first task is scheduled and the

time the last task is completed.

1.1 Statement of the Problem

The main and most challenging task of multiprocessor systems is to increase the speed

of execution of individual programs. An implicitly lower priority task, of course, is

increasing the system throughput by keeping the processor utilization at maximum level.

One way to increase the utilization is to increase the number of concurrent users on the

system that run non-concurrent applications under time-sharing. However, this solution

may increase the utilization but it probably will adversely impact the individual

turnaround times because of the contention for system resources. Such users may be

7

better off on a serial time-shared machine. Therefore, parallel processors, arguably, are

best suited for attaining higher speed for execution of individual jobs.

In order to speed up the execution of programs or in other words, to minimize the total

execution time required for processing a single job, different portions of a program must

be assigned to different processors and executed concurrently. Each of the identified

portions in such a program are referred to as a task. The problem of assignment of tasks

to processors is referred to as mapping. We refer to the process of mapping and

sequencing of tasks on processors as scheduling.

One of the most critical issues in extracting good performance from a multiprocessor

system is the scheduling mechanism used. We would like the scheduling scheme to be

such that it devises schedules that minimize the total execution time of a program.

Factors that affect the total execution time (schedule length) of a program, other than the

balance in the individual workloads assigned to different processors, include

synchronization and interprocessor communication costs. We refer to such costs as

overhead, collectively. An additional overhead involves the processing time required by

the scheduler itself in order to devise a schedule for a program. As discussed in the next

section, the problem of scheduling of tasks on processors is a combinatorial optimization

problem and is therefore, NP-complete. Because of this fact, research endeavors

concentrate on sub-optimal or approximation algorithms for solving the scheduling

problem by using heuristics.

As discussed in the section on review of related work for chapters 4 and 5, some of the

existing scheduling algorithms incur a high overhead in devising schedules and therefore

create a bottleneck for the system. Ideally, we would like a scheduling algorithm to have

a low run-time complexity and at the same time, produce good schedules. In order to

execute a program on several processors, a scheduling mechanism must assign different

tasks in a task system (the representation of a program after partitioning of the program)

8

to different processors. The problems faced in scheduling of the tasks in a task system

involve i) scheduling the tasks in such an order that correct execution sequence (arising

from dependencies between pairs of tasks) is guaranteed, and ii) balancing the workload

among the available processors such that the total execution time for a program is

minimized.

This research concentrates on developing scheduling algorithms that are suitable for

scheduling of dependent and independent task systems. Formal definitions of dependent

and independent task sets are presented in chapter 3. Informally, an independent task

system (or task set) is a task set in which individual tasks comprising the task set, do not

exhibit any communication or data dependencies. On the other hand, dependent task

systems are defined to contain tasks that exhibit communication, control, or data

dependencies. Obviously, when scheduling dependent task sets, dependency constraints

will have to be taken into consideration in order to satisfy the determinacy criteria

[Coffman and Denning 73]. The determinacy property can be defined as follows. It is an

accepted fact that in an operating system environment, no assumptions can be made

about the relative speed of execution of different processors. Additionally, different

partial orders may exist for execution of a given set of tasks. Given these two

parameters, a task system is said to be determinate, speed-independent, or functional, if

the uniqueness of results is guaranteed regardless of the partial execution order or the

speed of execution.

Satisfying the determinacy property is not a concern in scheduling of independent task

sets. Therefore, the sole objective in scheduling of independent tasks is producing the

shortest possible schedule length since the tasks in such a task system are mutually non­

interfering. However, scheduling of dependent tasks is concerned with the same

objective of producing shortest possible schedule lengths, with the additional constraint

of satisfying the determinacy problem. The purpose of the current research is to develop

9

multiprocessor scheduling algorithms that address and solve the above problems.

As discussed earlier, the overall goal of multiprocessor scheduling is devising

schedules that produce the shortest possible schedule length. Task system characteristics

as well as the particular architecture used for execution of programs affect the schedule

length. This dissertation research investigates different task system topologies and

present scheduling algorithms that are sensitive to the task system topology in order to

produce near-optimal schedules. The suitability of the developed algorithms for different

architectures is addressed and discussed as well.

1.2 Scheduling Problem and NP-Completeness

Multiprocessor scheduling, in the context of this dissertation, can be defined as the

scheduling of a set of n tasks on p independent and identical processors. The execution

sequence of the tasks may be constrained by certain precedence relations. The objective

is to devise an assignment of tasks to processors, considering the precedence constraints,

such that the overall execution length of the task system is minimized. Assignment and

sequencing of tasks on processors is referred to as a schedule.

The scheduling problem has a seemingly simple and straightforward solution in which

every possible input sequence must be examined. The solution is the input sequence that

optimizes the objective function (i.e, the shortest possible schedule length) while

satisfying the constraints of the problem. Unfortunately, such an enumeration in search

of an optimal schedule is not feasible in general since the computation time required

grows exponentially as n and p grow, where n is the cardinality of the input set and p is

the number of available processors.

The dominant factor in the complexity of the scheduling problem is the input size n,

the number of tasks to be scheduled. An algorithm is said to work in polynomial time if

the complexity of the algorithm is a polynomial in n. If the complexity of an algorithm

10

is exponential in n, the algorithm is said to work in exponential time which results in

classifying the algorithm as an NP-complete algorithm, indicating that the algorithm may

yield a solution in non-polynomial time. The general problem of scheduling requires

computational time that grows exponentially with the number of tasks in the task system

and thus is known to be NP-hard [Ullman 67]. Classifying a problem to be NP-hard

means that it is as difficult to solve as the hardest problem that belongs to the NP family.

In light of the fact that optimal schedules cannot be found within a reasonable time

frame, many research endeavors concentrate on finding near-optimal solutions in

polynomial time. From among polynomial time solutions, those with relatively slower

growth rate (as the input size increases) are rated to be superior to other cases (one such

algorithm developed in this dissertation research is presented in Section 5.6). We are

interested in developing scheduling algorithms that yield optimal solutions for a subset of

the general problem domain and reasonable solutions for others in polynomial time.

1.3 Review of Literature

The two most important problems of interest that allow for the efficient use of parallel

processing power, can be identified as the detection of parallelism in computer programs

and the scheduling of the resulting parallel tasks on a target machine. Both of these

problems have been the topic of numerous research endeavors since the early sixties.

However, most of the earlier work concentrated on the first problem (i.e., that of

parallelism detection). This was probably due to lack of widespread availability of

multiprocessor machines in the 1960s and 1970s.

However, some research was carried out in the area of measurement of the

performance of parallel processing machines and scheduling techniques that minimize

the total execution time of a task system on a multiprocessor. In some of these studies,

analytical investigations were performed to measure the overall performance of

11

multiprocessors in terms of the system throughput. Coffman analyzed the performance

of multiprocessors from a queuing theory point of view [Coffman 66] [Coffman 67].

McNaughton and Rothkopf [McNaughton 59] [Rothkopf 66] and several other

researchers investigated the problem of multiprocessor scheduling using graph model

analysis techniques. All these models represent programs as directed acyclic graphs

(DAG) and use such attributes as time, the frequency of execution of tasks, and their

deadlines and penalties.

Hu's algorithm, famous for the optimal schedule it yields, was devised for scheduling

of task systems represented as a tree [Hu 61]. Coffman and Graham devised an optimal

scheduling algorithm for a two-processor system [Coffman and Graham 72]. their

algorithm requires that the tasks in a task system have equal execution times. Also, the

fact that the optimality of the resulting schedule is guaranteed for two processors only,

seems restrictive even in the absence of computers with massive number of processors

[Waltz 87]. Decomposing a program into equal-sized tasks for Coffman and Graham's

algorithm is a major concern because the general problem of program decomposition into

tasks for parallel execution has been proved to be recursively unsolvable [Bernstein 66].

Because of the NP-completeness of the general problem of scheduling, most sub­

optimal scheduling algorithms use heuristics for producing near-optimal schedules (for a

general survey of heuristic techniques see [Noronha and Sarma 91]). Some of the more

well-known task scheduling algorithms in this genre are Longest-Processing-Time (LPT)

[Graham 69] [Graham 76], Multifit [Coffman et al. 78], Divide & Fold (D & F)

[Polychronopoulos 86], and CP/MISF [Kasahara and Narita 84].

Another class of scheduling algorithms is known as list scheduling [Coffman and

Denning 73]. In a list scheduling algorithm, the tasks in a task system are sequenced in

what can be described as a list based on a partial ordering. The partial ordering is

achieved through imposing some type of priority scheme on the tasks. A list scheduler

12

operates by scanning the list and selecting tasks that satisfy certain priority constraints or

urgency rules. Some of the urgency rules used in scheduling research are [Baer 73]:

• Smallest processing time first;

• Largest processing time first;

• Greatest number of immediate successors first; and

• Greatest number of successors first.

Unlike earlier work that concentrated on program partitioning and general

performance issues of parallel processing, recent research endeavors pay attention to

other aspects of parallelism. Some current issues include developing optimal parallel

algorithms [Guan and Langston 91], loop parallelization and scheduling [Saltz et al. 91],

time-cost analysis of parallel computations [Qin et al. 91], graph-based partitioning and

concurrency analysis [Long and Clarke 89] [Girkar and Polychronopoulos 88] [Agrawal

and Jagadish 88] [Ammarguellat 90], measurement of parallel processor performance

[Karp and Flatt 90], scheduling and task dependencies [Shang and Fones 91], Hardware

concurrency extraction [Uht 91], parallelizing compilers and environments [Kuck et

al. 86], parallel processing in distributed environments [Feitelson and Rudolph 90], and a

number of other areas such as attempts at developing software tools for mapping

computations to architectures [Lo et al. 90], and automatic detection and parallelization

of programs [Terrano et al. 89] [McGreary and Gill89].

1.4 Background and Survey of Related Work

General characteristics of scheduling schemes can be defined in terms of the following

properties. A scheduling scheme is either exact or heuristic, uses either a static or a

dynamic approach, and is performed either on a preemptive or non-preemptive basis.

Discussion of the choice of exact and heuristic approaches was presented in Section 1.2,

"Scheduling Problem and NP-Completeness". There are arguments in the literature

13

supporting both static and dynamic approaches. There are two major arguments against

dynamic scheduling. The first argument states that since compile time information and

general topology of the task system graphs are not used in the dispatching of tasks, the

selection of tasks may not lead to the best possible choice. The second argument

concentrates on the run-time overhead of dispatching which can be quite high. These

arguments lead to two more favorable choices. One choice is quasi-static scheduling in

which compile time information is used to produce a preliminary schedule, which is then

adjusted through processor synchronization if the actual processing times vary from

earlier estimates [Ha and Lee 91]. The other choice is auto-scheduling where compile

time information is used for sequencing of task executions [Polychronopoulos 88]. The

arguments against fully static scheduling are predicated on the fact that the compiler

produces schedules based on estimates and that realistic schedules are not always

possible except in cases where all necessary information is readily available at the time

of scheduling (e.g., systolic arrays).

A preemptive scheduling approach generally yields better results than a non­

preemptive approach from a theoretical point of view. A preemptive schedule is more

likely to yield an optimal schedule length. Under this approach, the idle time created

between the scheduling of two tasks can be filled with running a portion of a ready task

and therefore giving the scheduler a greater degree of flexibility in the scheduling of the

tasks. However, in practice, preemptive scheduling has its own disadvantages, namely,

incurring the overhead of context switching.

McNaughton [McNaughton 59] was the first researcher to introduce parallel machine

scheduling. He introduced a scheduling algorithm that performed a preemptive

scheduling scheme on a set of jobs. He defined the minimum makespan for a set of

preemptive jobs as max{tt, t2, ••• , tn, l: tiiP }which is known as the McNaughton
1SiSn

lower bound. McNaughton introduced three performance criteria for parallel execution

14

of jobs. He used the lower bound mentioned above as a measure for scheduling of

preemptive jobs. He refers to this type of scheduling as completion time based

scheduling (CI'B). He showed that his algorithm produces optimal schedules with a

maximum of p -1 job preemptions, where p is the number of available machines. The

other two performance measures defined are due-date based (DDB) and flow-time based

(FTB) measures. In the DDB performance measure, the total weighted tardiness of the

jobs is the performance measure. In the FfB measure, the due-dates are equal to zero

and therefore, the flow time of the jobs is used as the performance measure. Most of the

other approaches developed by researchers can be defined to belong to one of the three

categories defined by McNaughton as discussed above.

Because of the NP-completeness of the general problem of scheduling, most known

optimal solutions owe their optimality to rigid conditions imposed on the problem.

Three of the well-known scheduling algorithms yielding optimal solutions are due to Hu

[Hu 61] , Coffman and Graham [Coffman and Graham 72], and Muntz and Coffman

[Muntz and Coffman 69]. All three of these algorithms are completion time based

algorithms. Hu's algorithm operates on a special class of graphs where the precedence

relations define a directed singly-rooted tree in which (except for the root vertex that has

a fan-out degree of zero) each vertex has a fan-out degree of exactly one. Additionally,

the tasks (vertices) are assumed to have unit or uniform execution times. The urgency

rule (the priority scheme defined for the selection of tasks) used in scheduling of tasks on

the next available processor causes a task that has no predecessors and lies on a path with

the longest distance from the root vertex to be selected. Hu's algorithm runs in 0 (n).

Hu's method is referred to as the highest level first approach or the critical path method.

Coffman and Graham's algorithm operates on directed acyclic graphs (DAG) with

general precedence relations. They employ Hu' s highest level first approach for selection

of the tasks for scheduling. The limitations of this algorithm lie in the fact that,

analogous to Hu's algorithm, the tasks must have unit execution times and that optimality

15

of the schedule is guaranteed only with two processors. Coffman and Graham's

algorithm has 0 (n 2) complexity. Muntz and Coffman's algorithm uses a preemptive

approach and operates on arbitrary task systems (e.g., independent tasks, tree graphs, and

DAGs). Their algorithm requires that tasks have commensurable execution times. This

algorithm produces an optimal schedule of length T OPT= max {max { w Cti)},
l~i~n

n
Vp 1: w(ti)} where w(t;) denotes the processing time of task ti. It schedules then

i=l

tasks· with pn preemptions and runs in 0 (n 2). This algorithm does not guarantee

optimality for p> 2.

There are numerous algorithms and approaches that are based on Hu' s basic idea of

highest level first approach. Motivated by Hu's approach, Graham [Graham 69]

introduced a new approach for task scheduling known as list scheduling. Many

scheduling algorithms in the literature, which use urgency rules for selection or

dispatching of tasks, can be categorized as list scheduling algorithms. In list scheduling,

tasks in a task system are sequenced in what can be described a list based on a partial

ordering. The assignment of tasks to processors takes place by scanning the list and

selecting a task that satisfies the defined urgency rule for dispatching of tasks. Some

typical urgency rules are largest processing time first (LPT), shortest processing time first

(SPT), and greatest number of immediate successors first

Certain anomalies and bounds related to list scheduling [Graham 69] are listed below

(item 5 below, is a new anomaly discovered in this dissertation research).

1. There exist cases where no list scheduling scheme results in an optimal schedule for a

given number of processors.

2. The reduction of task weights may result in increased schedule length.

3. Allocation of a larger number of processors may result in an increased schedule

length(an example of this anomaly is shown in Figure 3).

16

4. A decrease in the number of arcs in a graph (i.e., relaxing the precedence constraints)

may result in an increase/decrease in the schedule length.

S. Switching the execution times of tasks in the same task graph (without changing the

total processing time or the topology of the graph) may result in an increase/decrease in

the schedule length (e.g., refer to the schedules for the task graph of Figure 8, in Figures

20 and 21).

Graham proves that in the worst case, list scheduling yields schedules that are twice as

long as the optimal schedule.

It was discussed earlier that scheduling schemes are either completion time based

(CTB), due-date based (DDB), or flow-time based (FfB). FI'B performance measures

are discussed in this dissertation. The reader is referred to a state-of-the-art review of

machine scheduling by Cheng and Sin for DDB and CTB schemes [Cheng and sin 90].

Other survey studies done in the area of multiprocessor scheduling are those by

Oonzalez[Oonzalez 77] and Baer [Baer 73].

Gonzalez performed a comprehensive survey of deterministic scheduling of jobs in

uniprocessing, multiprocessing, and job-shop environments. He presents classification

categories for characterizing scheduling algorithms for different environments that are

discussed in his survey. The surveyed research work are evaluated in terms of the

number of processors employed, task execution lengths, precedence graph structures, task

interruptibility, introduction of processor idle times into scheduling of individual tasks,

presense or absence of deadlines for delivery of results, homogeneity or heterogeneity of

processors, and the boundedness of available resources necessary for the execution of

jobs.

The measures of performance used in Gonzalez's survey are such measures as

minimization of finishing or completion times, minimization of the number of required

17

processors, minimization of mean flow times, maximization of processor utilization, and

minimization of processor idle times.

The survey done by Baer concentrates on the theoretical aspects of the general

problem of multiprocessing. Baer's survey discusses early language features suitable for

explicit exploitation of parallelism such as fork-join [Conway 63] [Denning 66], and loop

parallelization [Gosden 66]. This survey also discusses representations used for

modeling of parallel computation~. These models include different graph models such as

directed graphs, directed acyclic graphs, flow graphs and their extensions, and Petri net­

based models. Baer' s survey also presents some discussion on different performance

evaluation techniques such as queuing theory analysis techniques and simulation and

modeling techniques.

More specific and targeted discussion of related work is presented m appropriate

chapters.

1.5 Dissertation Overview

This dissertation is concerned with developing algorithms for scheduling of task

systems on multiprocessors. Several different multiprocessor scheduling algorithms and

approaches have been developed for scheduling of dependent and independent task

systems. Performance of the developed algorithms has been compared to the

performance of the best-known algorithms in the literature through simulation studies.

The outline of this dissertation is as follows. The remainder of this chapter discusses the

basic concepts, notation and the definitions used through out this dissertation.

Chapter two discusses the issues of task granularity as affected by the implementation

platform. This chapter also discusses different approaches used for detection of

parallelism in computer programs. Different models for task system representations and

communication and synchronization costs are also presented and discussed.

18

Chapter 3 concentrates on the topic of task system characteristics. Formal and

informal definitions of dependent and independent task systems are given. Bounds on the

schedule lengths for each of the two classes of task systems mentioned above are

presented and discussed.

Chapter 4 is devoted entirely to the issue of scheduling of independent serial tasks. A

survey of related work is presented. A new algorithm for scheduling of independent serial

tasks developed in this dissertation research, is presented in Section 4.3. The

performance of this algorithm is compared to three of the best known algorithms. It is

shown that our algorithm does at least as good as the best known algorithms and has a

run-time complexity that is significantly better than those of the evaluated algorithms.

Chapter 5 concentrates on the scheduling of dependent task systems. Three different

approaches and algorithms that address different needs in different environments have

been developed in this dissertation research. The suitability of the developed approaches

in relation to the task system and the architectural characteristics are discussed.

Performance of the developed algorithms has been measured through simulation studies.

Chapter 6 presents a summary of the results and the conclusions reached in this

research. Future work with respect to the current research is also discussed.

1.6 Notation and Definitions

In this section, the notation used in the discussion which follows is introduced. Given

n independent, tasks each task is denoted by ti, l~i ~n. Therefore, the task system can

be represented as a set, 't= {tt, t2, ... , tnl· Associated with each task ti is a non­

negative integer value w (ti) which is the weight (normally, the execution time) of that

task. Henceforth, w (ti) is referred to as the size, the weight, or the execution time of a

task, interchangeably. The sequential execution time of task system 't, denoted by T8 , is

defined to be

n
Ts = ~ w(ti)

i=l

19

We are interested also in the time it takes to execute a given task system in parallel.

This value is represented by Tp. We refer to Tp as the length of a schedule or execution

length. A specific formula for Tp cannot be derived since it depends on the relative sizes

of tasks, the particular scheduling algorithm used, the number of processors, and the

nature of processing in the execution platform. However, some upper and/or lower

bounds on the lengths of the schedules in various situations are presented in the

subsequent chapters.

Given a task system and a number of processors, we are interested in finding an

optimal schedule length for the given task system. However, it was discussed in Section

1.2 that determining an optimal schedule for the general case in polynomial time is not

possible. We denote an optimal schedule (if one exists) as OPT and denote its length as

ToPT· In order to measure the performance of different scheduling algorithms, we need

to know the optimal schedule length for a given problem. Since Topr is not known for

a general problem, we will use an approximation of the optimal schedule length and

denote it as ToPT· Different approximations of Topr will be discussed in appropriate

sections. Through out this dissertation, T OPT is referred to as an optimal schedule

length if one is known or its approximation ToPT·

We define a path through a graph to be a traversal through a sequence of nodes that

starts at the first node (the source node or source) and leads to the last node of the graph

(the sink node or sink). A critical path in a graph is a path that has the largest cumulative

processing time, w (ti), of the nodes, ti, visited in such a traversal. We denote the length

of a critical path by Tc. It should be noted that given a DAG, ToPT = T6 that is, given

an unlimited number of processors, no scheduling algorithm can yield a schedule shorter

than Tc.

20

In the discussion that follows, we are interested also in the speed-upS 't achieved for a

task system 't, when executing that task system on several processors. This will be

calculated using the formula

The highest possible speed-up in parallel execution of the task system 't is denoted by

S max and is calculated as

where T OPT stands for the optimal schedule length or an approximation of the optimal

* schedule length T OPT, defined through some bounds.

As discussed in Section 1.2, the scheduling problem is in effect, a combinatorial

optimization problem and is therefore, NP~complete. As a result, most practical

scheduling algorithms that exist in the literature are approximation algorithms. In order

to measure the performance of an approximation algorithm, the performance ratio is

defined as follows [Coffman et al. 78].

where T A is the performance of an approximation algorithm A, for a given problem, and

T OPT is the measure of performance for an optimal solution known for the same

problem.

Unless specified otherwise, the particular architecture assumed in the discussions that

follow is a shared memory multiprocessor machine in which all processors are identical

in their capabilities.

(Other notation used in more targeted and specific discussions is introduced where

appropriate.)

21

1.7 Summary

Chapter 1 presents a broad overview of the significance of parallel processors.

Arguments that establish the prevailing choice of employing a large number of (less

powerful) processors as opposed to a single powerful processor are presented. Mapping

of computations to processors is identified as one of the most critical issues in improving

the performance of parallel processors with respect to minimizing the execution time of

individual programs. The statement of the main problem addressed in this dissertation is

presented in Section 1.1. Section 1.2 presents arguments for justifying the practice of

using approximation algorithms for solving the scheduling problem as opposed to

seeking exact optimal solutions. A general review of the scheduling problem and the

early theoretical work as well as current directions in parallel processing are presented in

Sections 1.3 and 1.4. Section 1.5 presents an overview of the dissertation. Notation and

definitions used throughout the remainder chapters are presented in Section 1.6.

CHAPTERTI

PROGRAMPARTITIONING, TASK SYSTEMS AND

INTERPROCESS COMMUNICATION

2.1 Basic Definitions

c!o speed up the execution of a program, portions of the program that potentially can

be executed in parallel must be identified. This activity is referred to as partitioning.

Different approaches used for program partitioning are discussed in Section 2.4. Each of

the resulting blocks in such a partitioning is called a task. A task is defined as a set of
,.-----..__

instructions that onceJl~Mi.rr~_JQ_a p~~~sor, is executed sequentially. Furthermore, a ---- ··-h·~,..,.. ____ ,..,.~

set of clearly defined input and output parameters are associated with each task. Input

dependencies determine the execution sequence of the tasks. Therefore, a task cannot be
~----------- -

selected for execution until all of its predecessors have finished execution and thus

deliver their output paramet~~ We show in chapter 5 how such a constraint can serve as

the synchronization mechanism in scheduling of tasks under a variety of scheduling

schemes proposed and examined in this dissertation.

The collection of identified tasks in a program is referred to as a task system.

Generally, task systems are represented through graph models. Some example

representations of task systems can be found in [Ramamoorthy 66] [Estrin and

Turner 63] [Girkar and Polychronopoulos 88] [Long and Clarke 79] [Agrawal and

Jagadish 88]. A more detailed examination of graph models is presented in Section 2.3.

A task system can be defined as the product of the application of a partitioning scheme

to a program. A partitioning scheme can be viewed as an equivalence relation R, that

22

23

divides the program into a number of equivalence classes. Some example equivalence

classes in a task system are procedures and functions, basic blocks, loops, and code
I

segments that are separated from the rest of the program by branching actions. The

equi~alence relation defined for the partitioning of programs depends on the desired

degree of granularity. Program granularity is defined as the relative size of the identified

tasks in a program. Determining the degree of granularity is itself dependent on the

machine characteristics.

2.2 Multiprocessor Architectures and Task Granularity

Program partitioning and task granularity are two closely related terms. Task

granularity refers to the relative size of the identified tasks after the application of a

particular partitioning scheme to a program. Task granularity is affected by different

objectives and constraints. Depending on these objectives, one might define each single

statement in a program to be a task. We refer to such a partitioning as the finest-grained

partitioning (of course, in some cases, for example, in data flow architectures,

partitioning can be done at an even finer grain). At the opposite end of this spectrum, one

might define an entire program to be a task.

For the purpose of relating task granularity to machine characteristics, we will divide

the machines based on their processor interconnection and communication schemes.

Using the criterion of interprocessor communication, machines can be divided into two

broad classes of loosely coupled and tightly coupled machines. In general, task

granularity is coarser for loosely coupled or private memory machines, and may be finer

for tightly coupled or shared memory machines. Therefore, in scheduling of jobs on a

target machine, further consideration might warrant altering the degree of granularity of

programs. For example, if a program is to be run on a machine with distributed memory

on which communication between processors is proven to be costly, a coarser-grained

partitioning might be desirable. On the other hand, shared memory machines allow for

24

finer-grained partitioning schemes. Regardless of the particular implementation

platform, determining the degree of task granularity is affected by the communication

cost involved in processing of input and output parameters, synchronization, and context

switching costs.

2.3 Graph-based Program Representations

The majority of past and current work done in the area of detection of parallelism are

based on graph models. Typically, these studies use as their first step, the control or data

flow graph of a program. The control flow graph (which is most probably a directed

cyclic graph due to the existence of loops) is then converted to a directed acyclic graph

(DAG) using some loop removal algorithm (e.g., see [Ramamoorthy 66]). In order to

convert a cyclic graph to a DAG, the boolean connectivity and precedence matrices of the

graph must be created (for example by using Warshall 's algorithm [Warshall62]). Such

models may attempt further to identify the input/output dependencies between pairs of

statements using input and output matrices [Russel 69], to expose parallelism in loops

[Volansky 70] [Muraoka 71], or to use the resulting DAG and concentrate only on those

portions that can potentially be optimized and are amenable to parallel processing

[Gonzalez and Ramamoorthy 71]. Other research work [Regis 72] [Keller 70]

concentrate on using DAGs and utilizing the determinacy properties of graphs to

represent a maximally parallel structure, or to create directed acyclic bilogic graphs

(d.a.b) to represent the information structure of a graph by attaching labels such as "OR",

"XOR", "FORK", etc., to the branches in a graph [Dennis 68] (d.a.b which is also known

as the UCLA graph model [Estrin and Turner 63] is the basis for a number of other

studies).

Some more recent studies [Skedzielewski and Glauert 85] that use flow graphs in their

analyses, use an intermediate form of data flow graphs which is subsequently used by a

compiler for machine code generation. Other studies use task interaction graphs to

25

represent concurrency of execution [Long and Clarke 89] or program dependence graphs

for optimization and detection of parallelism and partitioning [Ferrante et al. 83], [Kuck

et al. 80], [Burke and Cytron 86], [Wang and Gannon 89], [Wolfe 82], and [Girkar and

Polychronopoulos 88], or use control dependence graphs [Sarkar 91] for identifying

non-loop parallelism (e.g., ffiM's PTRAN).

2.4 Different Approaches to Program Partitioning

General-purpose parallel machines (non-SIMD machines according to Flynn's

Taxonomy [Flynn 72]) in _general can serve two broad categories of "competing" and

"cooperating" computations. Competing computations can be defined as unrelated

computations that compete for the resources of a system. Parallel machines only help in

increasing the throughput of the system in such circumstances. The second category is

that of cooperating computations in which portions of the same job are assigned to

different processors to speed up the computation of the same job. This dissertation is

concerned with the latter category of computations.

In bre!!lting .JL _g!y~!l job into parallel subtasks, two different approaches can be
~~----~-...... -· ~.-.-. ,, -~- "'~"·-· ... '

employed: i) The program first can be written in the sequential (i.e., non-parallel) format

using a conventional programming language. The program can be then passed through a

parallelizi~_E~~~~I.~: ~o extract the potentially parallel operations, or ii) The

programmer can use parallel programming cons1:!1-!c~s available in th,e hmguages
-------~'-----·····---- .•. , ___________ -· ··- . . . - _,,._.,, . .,_, ____ .,

su__pp_grled b~~Jc.ular machine in. the process <>f s()ft'YID.:~ 4~yelQp11:1ent.

The two approaches of using parallelizing compilers or employing parallel

programming constructs explicitly built into parallel programs have their advantages and

disadvantages. The advantage of using parallelizing compilers is the portability of the

code, but the generated code might not be as efficient as the program written with J!!~~id~

of parallel programmiJ:!g c:onstructs [Emrath 89]. To direct such compilers in recognizing
-----------~~-~--.----~----~--,-----~-' -. -~------ .. -,

26

parallelism, comment-like statements called "assertions" must be inserted into the code

manually. The code generated by parallelizing compilers must be examined repeatedly

by the programmer, new assertions must be inserted if the programmer identifies any

portion of the code whose potential for parallelism was not recognized by the compiler.

As a result, some portions of the code may have to be modified and the program then

must be passed through the compiler again. These iterations must continue until the

desired degree of parallelism is achieved. Such an undertaking can become very time

consuming and laborious.

It should be noted that different compilers do not interpret assertions in the same way

and therefore, even in the case of compiler-generated parallel code, portability is a

problem. The lack of portability of parallel code is due to lack of standard languages as

well as the existence of drastically different architectural styles and hardware features on

parallel machines [Emrath 89] ... Due to the absence of standard languages, researchers

and developers extend their own favorite language or write their own support libraries

that are compatible with their own hardware and take advantage of the machine

instructions and support the specific features available on their machines. When a

program that utilizes such hardware support features is ported to a different machine, the

absence of counterpart support has to be remedied in software, which might yield a

version that is even slower than its sequential version [Emrath 89]. However, because of

the relative inexperience in developing parallel programs and the current absence of

standardized programming languages and/or efficient compiler support, one should not

allow the issue of portability to get in the way of advancing o1her aspects of the field such

as the issues of partitioning and decomposition of programs for parallel execution, and

scheduling considerations of the program partitions.

The second approach for programming parallel processors involves the use of explicit

parallel programming constructs in programs. This type of explicit expression of

27

parallelism could be introduced at different levels. Some applications might call for

parallelism at procedure level such as ''buffering mechanisms" and "producers and

consumers" types of problems.

In an earlier study by this author, procedure-level parallelism for an application of the

producer-consume relationship was investigated [Samadzadeh 91]. The implementation

platform was a Sequent S-81 with 16 processors. The particular problem studied

involved a series of regular expression substitutions in a tri-buffer mechanism. The

buffers used were bounded buffers and therefore synchronization was a major issue in

solving the problem. Mutual exclusion had to be enforced in manipulating critical

sections as well. Because of the particular nature_ .of .the ... question posed in this

experiment, the problem could be solved most elegantly in a parallel processing

environment. The purpose of this study was not the issue of execution efficiency and the

speed up of computation, because in general, efficiency is a primary concern in

computationally-intensive applications. "Pte purpose of this experiment was to

investigate the ease of programming and debugging of parallel programs by novice

programmers and the overall comprehensibility of such applications.

In the experiment cited in the above paragraph, the unit of granularity in parallel

execution was defined to be tasks represented as entire procedures which required

synchronization and interprocess communication. Parallelism could be introduced at

finer grains also in which the units of computation are composed of blocks of code that

serve a particular purpose. This can be done by using parallel programming library

s'!pport in which the units of computation could be blocks of code with clearly defined

input and output. Subsequently, the identified, tasks in the resulting task system could be

coordinated and executed using explicit parallel programming constructs. Another form

of parallelism, which is not a topic of interest in this research, is parallelism at the

statement level. At this level of parallelism, potentially parallel components of a single

28

statement are identified, each of which might be executed on a separate processor and the

results combined. It should be mentioned however, that this is considered to be the

lowest level of granularity which is handled by the compiler. One can imagine that

manual techniques for this type of parallelism can be extremely tedious if not impossible.

The problem with the use of explicit parallel programming constructs is identifying

disjoint subcomputations within a program. This is done mostly on a trial and error basis

until the desired degree of parallelism (usually measured by the number of independent

tasks that can be executed concurrently) is achieved. Programmers, for example, might
-- . ,

use a profiler to measure a program's behavior [Kwan et al. 90]. These measurements

can then be used as a basis for altering the granularity of the program in terms of the

number of tasks present until the desired degree of parallelism is achieved.

Detecting parallelism in programs is at best an intuitive process. As a consequence, it

seems that the less experienced a programmer is, the more serious the problem of

introducing a reasonable degree of parallelism into programs becomes. Even in the case

of more experienced programmers, there is more parallelism embedded in programs than .

eyes can see [Ramamoorthy and Gonzalez 69]. Availability of methods and tools that

allow for detection of parallelism in code can therefore take the guesswork out of the

process of program design.

2.5 Communication Costs and Interprocess Communication
'

It is argued that identifying the maximal degree of parallelism, i.e., isolating as many

tasks in a program as possible, can potentially result in the greatest possible speed up. Of

course Bernstein has shown that the general problem of partitioning programs into tasks

is recursively unsolvable [Bernstein 66]. On the other hand, as the number of tasks in a

task system increase, the overhead in scheduling of the resulting tasks increases

accordingly, and probably not necessarily linearly. Additionally, the number of

29

concurrent tasks present at each level of the resulting task system or concurrency graph

might exceed the number of available processing elements. If no further action in

coarsening the degree of granularity is taken, communication overhead and the overhead

of scheduling of the many tasks present in the program will result in degrading the

performance of the given program. Consequently, further restructuring of the

concurrency graph will be necessary in order to adjust the degree of parallelism for a

target machine.

Kwan, Bic, and Gajski [Kwan et al. 90] evaluate, in an experimental study, the

improvement of the performance of parallel programs through the use of critical paths in

a program. In their experiment, they define two measures, the data flow graph critical

path and the scheduled critical path. They argued that the data flow critical paths

represent the maximum possible parallelism available in a program. Using the data flow

graph, they came up with the scheduled critical path which consists of some of the tasks

present in the data flow graph. These tasks are assigned to a fixed number of processors.

The scheduled program now has its own critical path which might be different from that

of the control flow graph critical path because of the restructuring of the identified tasks

in scheduling, based on their dependencies. It is possible that both critical paths are

identical.

Each task on a scheduled program critical path is a unit of execution with clearly

defined input and output. The input/output of tasks are used as means for determining

necessary synchronization between tasks. Kwan et al. define a scheme for assigning

weights to the scheduled program critical paths. The weight of a node (task) on a path is

defined to be equal to the amount of processor time necessary to complete the task.

Edges that connect tasks (and represent flow of information) also have a weight

associated with them. The weight of an edge corresponds to the communication overhead

and consists of the amount of time required to access an input/output parameter. The

30

overall weight of a critical path is the sum of the weights of all nodes and edges that lie

on that path. The computational weight of the critical path is the sum of the weights of

the nodes on a critical path. The authors use these weights (critical path weight, which

includes the communication overhead, and the computational critical path weight, which

does not take into consideration the communication overhead) to evaluate the

performance of related tasks when assigned to different processors (as opposed to being

scheduled on the same processor) to see if the communication overhead dominates the

computation time for each critical path in this type of scheduling.

In this experiment, Kwan and his colleagues define a parameters P opt as the optimum

number of processors to achieve the highest speed up. Since determining P opt could be

an intractable problem [Bernstein 66], Kwan et al. define P mm as an approximation of

P opt which represents the minimum number of processors for achieving maximum speed

up. They designate P to represent the number of available processing elements. They

then perform a series of experiments on solutions to the Gaussian elimination of a set of

algebraic expressions and test the solutions with various degrees of granularity. The

dependent variable in these series of experiments is the length of the critical paths on the

scheduled programs. As they perform these experiments, they collect data about the

weights of the scheduled critical paths and the computational weights of the critical

paths. The collected data is used to test the effect of the level of granularity of tasks on

the critical paths and the communication overheads of scheduling interdependent critical

paths on different processors.

The results of these experiments on various degrees of granularity demonstrates a

trend. Kwan et al. report that if the number of available processing elements Pis much

less than P mm• refining granularity degrades performance. The reported reduction in

performance is apparently due to the fact that when the number of concurrent tasks is

larger than the number of available processing elements, more than one concurrent task

31

gets assigned to some processors, thereby, reducing the pe:rformance because of the

context switch time associated with the scheduling of the related tasks. On the other

hand, if P~ Pmm, refining granularity results in execution speed up.

In general, the number of independent paths in a data flow graph represent the

maximum possible parallelism. However, this degree of parallelism also involves the

highest amount of overhead in the execution of tasks because of the communication

dependencies among different tasks that might lie on different paths or that lie on the

same path but are assigned to different processors. If one rearranges these tasks and

schedules them on one processor, it is true that the time needed for communication is

reduced (because tasks can communicate through local memory), but on the other hand

as the degree of granularity is refined and the number of related tasks assigned to the

same processor increases, there is increased tendency towards sequential execution

instead of parallel execution because unrelated tasks that could potentially run on

different processors are now assigned to the same processor. It should be noted that even

if program segments are written as clearly defined and separate tasks, but are not

assigned to different processors for concurrent execution, their execution proceeds in a

sequential manner, even on a multiprocessor machine.

A signif!~~lJindillgjn the experimental studies, done by Kwan and his colleagues
-------··' --"------------

[Kwan et al. 90], is that as granularity is refined and a program is divided into a larger

number of tasks, it is true that the overhead in necessary communication between the

related tasks increases (which is because each of a number of related tasks executes on a

different processor), but the computation speed achieved by parallel execution of the

related tasks offsets the communication overhead and furthermore results in overall

program execution speed up. If the program designer is not bound by the availability of

only a limited number of processors, then it is not the case that the finer the granularity,

the higher the achieved speed up. Nonetheless, refining the granularity can lead to the

32

point of diminishing returns, in which the total execution time of a given task is less than

or at best equal to the communication overhead involved between a given task and its

related counterparts. It is also possible that the achieved speed up is not significant

enough to justify the effort expended in taking advantage of the large number of

processing elements that might be available on a target machine.

2.7 Summary

Chapter 2 discusses the issues related to the choice of task granularity as affected by

the implementation platform. The two approaches of partitioning programs using

parallelizing compilers (implicit parallelism) and using parallel processing constructs at

the time of development of programs (explicit parallelism) are discussed. Overheads

associated with the mapping of tasks to processors, such as interprocessor

communication and synchronization costs, are discussed in the context of private

memory and shared memory architectures.

CHAPTER III

SCHEDULING OF TASK SYSTEMS

3.1 Basic Definitions

We represent a program as a directed acyclic graph. Since the main focus of this

dissertation is scheduling of a given task system on a multiprocessor, we do not concern

owselves with the deUlils of producing the program graph. The program graph may be

thought of as a graph representing the control flow of a program. Such information

typically can be provided by a compiler. Additionally, it is assumed that the individual

tasks (i.e., nodes in the program graph) are created using a bottom-up approach such that

each task is created using "natural" boundaries (e.g., an outermost loop, a procedure call,

or a basic block). Therefore, the resulting graph is indeed a DAG. A bottom-up

approach is preferred to a top-down approach because of the following reasons.

Synthesizing individual tasks, as individual statements are analyzed, yields faster results

(by requiring fewer passes) and reveals dependencies between and among statements in a

program better than starting the analysis from the top (outer) levels in a program

[Polychronopoulos 86].

Task system scheduling involves the assignment and sequencing of tasks to

processors. The length of a schedule is defined to be the elapsed time between the time

the first task is assigned to a processor and the time the last task in a tasks system finishes

execution. An optimal schedule length is the shortest time it takes to execute a task

system on a given number of processors. The optimality criterion referred to in this

research concerns producing optimal schedule lengths for individual jobs for the purpose

33

34

of program speed-up. Optimality of the schedule on a system-wide basis which is related

to processor utilization and efficiency is not a focus of the current research. Bounds on

optimal schedules will be discussed in this research along with the developed algorithms.

Because of the NP-completeness of the scheduling problem, the goal of this research is to

develop near-optimal scheduling algorithms that can schedule such task systems.

3.2 Task System Representations

The task system of a program (or a program segment) can be defined as G (V, E),

where G is a DAG. The set of vertices V of G represents the individual tasks in the

graph. The set of arcs E represents the dependencies between pairs of vertices in the

graph and thus imposes an order (in general, an irreflexive partial order) on the execution

of the tasks. Any scheduling algorithm suitable for scheduling of such a task system must

be able to take the execution constraints imposed on the graph by the arcs into

consideration and schedule the tasks accordingly.

Once a job (a program) is divided into a number of tasks that can be assigned to

different processors, depending on the functionality of each task, there are two

possibilities:

i) all tasks are disjoint, or

ii) there are pairs of tasks that are dependent on one another.

In the first case, the tasks only compete for the system resources and no synchronization

and/or sequencing of execution of individual tasks is necessary because there are no data

or communication dependencies. The second case involves tasks that communicate with

one another.

The problem of scheduling of task systems on a multiprocessor (consisting of a

number of identical processors) can be divided coarsely into two categories which

correspond to cases (i) and (ii) above, respectively.

35

a) Scheduling of n > 1 independent tasks on p ;::::1 processors. In this situation, the n

tasks are independent of one another and they can be scheduled in any order

(obviously, this is a special case of category (b) below).

b) Scheduling of n > 1 tasks on p ;::::1 processors where there may be dependencies

among tasks. Unlike the previous category, the tasks in such a task system cannot

be scheduled in any arbitrary order. The scheduling mechanism must take the

existing precedence constraints into consideration in scheduling such task

systems.

The main thrust of this research is developing algorithms that can produce schedules

for each of the above categories of scheduling of a given task system. Since the general

problem of producing optimal schedules has been proved to be NP-complete, the goal of

this research is to develop algorithms that use heuristics to produce near-optimal

schedules [Ullman 67] [Coffman et al., 78]. We refer to such a schedule as OPT and

denote its length as T OPT.

3.3 Task Systems with Independent Tasks

We start our discussions by concentrating on the first category presented in the

introductory section, that is, the scheduling of n independent tasks on p processors. In

such a case, given G (V, E) which represents the task system, the edge set E = <j> and

I V I = n. Independent tM.~---~ets are also known as mutuq.JlYJl911~i1J,lf!.lfgr.ing . .task. sets
~---··-----· ·---···---···-····--·----· ---·--

[Coffman and Denning 73]. Two tasks ti and lj are said to be non-interfering if i) ti is

a successor or predecessors of lj, or ii) Rti (") Rti = Rti (") Dti = Rti (") Dti = <j>,

where Rtk denotes the range, and D1k denotes the domain of task tk for 1 ::; k ::;n, A task

system 't = {tt, t2, ... , tn} is said to be mutually non-interfering if tasks ti and lj are

non-interfering for all i and j E {1 .. n} and i :I; j. The issue of determinacy of tasks

systems was discussed in Section 1.1. Independent task systems are determinate because
--------·--···-······-···-······· ·····-·· ·········-···· ..

thetas~ ~~!}~_entirely composed of mutually non-interfering tasks.

36

Since the tasks in an independent task system are mutually non-interfering, the case in

which n 'S:p is trivial since task t; can be scheduled on processor Pi for 1'5:i '5:n and the J

p-n other processors are idle or allocated to other task systems. The schedule length in

this trivial case is the optimal schedule length represented as

The cases where n >p are less straightforward. Given p, the goal is to produce

schedules that are as close to T OPT as possible. The main goal is to reduce the schedule

length as much as possible. Therefore, minimizing the number of processors needed is

performed only if the resulting schedule does not increase in length. This is evidenced by

the special case of n '5: p discussed above.

Given p processors, we would like to balance the load on all processors such that, in

the ideal case, all p processors finish execution of the assigned tasks at the same time. In

other words, we would like to have Tp as close to T8 I p as possible. However, it is

possible to have a task system with task weights assigned such that the execution time of

the largest task on one processor exceeds the execution time of all n -1 other tasks on

the p -1 other processors when n ~ p. Therefore, the following lower bound can be

presented for the execution time of a task system,

LB =max{fTs lpl, max{w(ti)}}
lSiSn

LB can be used as the ideal execution time or the schedule length on each of the p

processors (occasionally, we refer to LB as Topr). Notice that in general Topr ~LB;

i.e., our goal is to produce sche~ules that are as close to LB as possible. The scheduling

algorithm described in Section 4.3 is a near-optimal scheduling algorithm that uses LB as

the ideal length of the schedule for each of the p processors and balances the load on

each of the p processors around LB.

37

3.4 Task Systems with Dependent Tasks

A task system consists of a set of tasks. We define a task set with n tasks, as

V = {tJ, t2, ... , tn}. The symbol < as a relation, represens a partial order on V.

Therefore, a task system can be defined as 't = (V, <) where the partial order, <,

represents the precedence relation. For example, ti < tj signifies that task ti must finish

execution before task tj can begin. In cases where < = <j>, it is said that the task system

is entirely composed of mutually non-interfering tasks.

In the previous section, the graph representation of independent task systems was

defined as G (V, E) where E = <j>. Using the same notation, a dependent task system

may be viewed as a graph in which E '*-<I> or· in other words, based on the above

definition of a task system, the partial order set< '*- <j>.

In this dissertation, graph representation of task systems are assumed to be a DAG and

that moreover, they are assumed to be precedence graphs. A precedence graphs is

defined as follows. Define the arcs of a DAG by the ordered pair (ti, tj). The arc (ti, tj)

is in the graph if and only if ti < tj with the added condition that there exists no tk such

that ti < tk < tj. Informally, the above definition guarantees that there are no redundant

edges or paths in the DAG for it to be a precedence graph. Figures 1 (a) and 1 (b)

demonstrate a typical precedence graphs and a general DAG. As can be seen, the

addition of the arc (1, 5) to the precedence graph in Figure 1 (b) creates a redundant path

from vertex 1 to vertex 5. As mentioned in the statement of the problem in Section 1.1,

existence of an arc between a pair of tasks indicates inter-task dependencies which

demands imposition of a partial ordering on the execution sequence of tasks. Because of

the dependency constraints imposed on the task system graph through the existence of

arcs, the scheduling mechanism must schedule the tasks in such a way that correct

execution of the program is guaranteed.

38

(a) A precedence graph

(b) A directed acyclic graph (DAG)

Figure 1. A sample precedence graph and a sample DAG

39

3.5 Summary

This chapter presents a broad discussion of multiprocessor scheduling. Task systems

are characterized in terms of the two classes of dependent task systems and independent

task systems. Formal and informal definitions for each class are presented. Bounds on the

length of schedules as related to the number of available processors are presented and

discussed.

CHAPTER IV

SCHEDULING OF INDEPENDENT TASKS

4.1 Introduction

Given a task system (or a set of tasks) represented as a graph G (V, E), where the

number of tasks n = I V I , the tasks are said to be independent of one another if the edge

set E = <)>. That is, there are no communication or data dependencies between any pairs

of tasks. Bounds on the schedule length for scheduling of n tasks on p processors was

discussed in Section 3.3. This chapter concentrates on the discussion of practical issues

related to scheduling of independent tasks on multiprocessors and presents an algorithm

that is designed for performing such a task.

Because of the absence of inter-task dependencies, scheduling of independent tasks

can take place in any order. Additionally, no special considerations are necessary to

determine the particular processor that a given task must be scheduled on in order to

avoid or minimize the communication overhead. Such a concern is warranted in

scheduling of tasks that are dependent on one another, particularly if the mapping of

tasks to processors is attempted for distributed memory environments or machines.

The main objective in scheduling of independent tasks on a given number of

processors p, is to ~alance the load on all processors such that, in the ideal case, all p

processors finish processing of their workload at the same time. If such a goal is reached,

and optimal schedule length is achieved. We refer to such an ideal schedule as 'topt to

indicate an optimal schedule for task system 't and denote its length as T OPT.

40

41

The scheduling algorithm, Variant-Load algorithm, presented in Section 4.3 is

designed for scheduling of independent tasks on a given number of processors p, with the

objective of balancing the assigned workload to each of the p processors. Although this

algorithms has been designed for scheduling of individual tasks constituting a single job,

on multiprocessors, it also can be used effectively in a multiprogrammed multiprocessor

environment for the purpose of load balancing.

Variant-Load algorithm treats each available processor as a bin with a certain capacity

(workload capacity) that is filled (packed) with variable-sized processing times associated

with the tasks. This algorithm is developed based on concepts from bin packing

[Coffman et al. 78] [Johnson et al. 74]. Bin packing is a general scheme in which items

of different sizes must be packed into k bins of capacity C each where the sum of the

sizes of the n items being packed is in general less than or equal to k*C.

Bin packing is known as a combinatorial optimization problem [Johnson et al. 74].

Other similar problems include the traveling salesman problem, the least sum of squares

problem, and the multiprocessor scheduling problem. A more formal statement of the

bin packing problem can be stated as follows. Consider a list L = (e 1, e2, ... , en) of

real numbers in the range [0 .. 1]. The objective is to place the n numbers into the

smallest possible number of bins L"' such that the sum of the numbers assigned to any of

the bins would not exceed 1. It is possible to define other variations for the bin capacity.

One possible variation is to consider bins with different capacities. Such a problem is

referred to as the variable-size bin packing problem. Bin packing is a problem that has

its origin in operations research and job-shop scheduling. It is considered to be a special

case of two other problems known as the cutting stock problem and the assembly line

balancing problem [Gilmore and Gomory 61] [Conway 67].

The cutting stock problem can be describes as a problem in which a number of

inventory item of various lengths L 1 , L 2, ... ,Lm are available for filling customer

42

orders. Each inventory item has a cenain cost and therefore, the cost of filling orders is

determined by which stock is cut. To fill an order of Nt pieces of various sizes li, for

lSi :s; m, inventory items must be selected for cutting. The problem to solve is which

available inventory stock to cut in order to incur the lowest cost. This problem is also

referred to as the trim problem. An instance of the cutting stock problem is demonstrated

in Figure 2 where the numbers inside each box represents the size of the available

inventory item or the ordered item.

Customer Order

14

10 Do
lnventroy Items

17
13

12
8

11 9

Figure 2. The Cutting Stock Problem

43

4.2 Survey of Related Work

Coffman, Garey, and Johnson [Coffman et al. 84] in an update survey of bin packing

problem, present a mathematical model for the classical one-dimensional bin packing

problem as "given a positive bin capacity C and a set or list of items

L = (P 1, P 2, ... ,P n), each Pi having a size S (Pi) satisfying 0 ~ S (Pi)~ C. What is

the smallest integer m such that there is a partition 1t = B 1 U B 2 U · · · U Bm

satisfying

:E S(Pi) ~C
P; E Bj

for 1 ~ j ~ m." This definition characterizes many different problems that arise in real­

life situations in which a collection of given objects of different sizes are to be fit into

well-defined regions without the possibility of overlaps. Johnson and his colleagues

[Johnson et al. 74], in an earlier survey, present several examples of situations in which

the need for bin packing algorithms arises. Such examples include i) table formatting in

which "bins" are assumed to be computer words that hold such items as half-word

integers, bit strings of certain sizes, and character strings, ii) prepaging where the bins

are assumed to be pages or page fractions, and iii) file allocation problem where the need

for placing variable-sized files on as few disc tracks as possible is felt.

Other variations of the classic one-dimensional bin packing problem are two

dimensional bin packing problems in which objects are assumed to posses certain widths

and heights, and three dimensional bin packing problems in which objects may be viewed

as cubes with varying dimensions. Most computer science problems are best

characterized as belonging to the class of one-dimensional bin packing. Brown

[Brown 71] gives examples of applications for business and industry.

As stated in the introduction section of this chapter, the bin packing problem is known

to be a combinatorial optimization problem and therefore, the general problem of finding

44

an optimal packing solution requires a lengthy combinatorial search and is NP-complete

[Cook 71]. As a result, similar to other attempts at finding reasonable solutions for other

NP-complete problems, one must resort to finding heuristic solutions for creating

acceptable packing of items into bins. We refer to such heuristic algorithms as

approximation algorithms. Johnson and his colleagues [Johnson et al. 74] present some

worst case performance bounds on four approximation algorithms for the one­

dimensional bin packing problem. The heuristics used in these algorithms are first-fit

(FF), best-fit (BF), first-fit-decreasing (FFD), and best-fit-decreasing (BFD). In the latter

two cases, FFD and BFD, items are expected to be sorted in non-increasing order

according to their sizes. Due to the sorting requirement in the case of FFD and BFD,

these approximation algorithms can only be used for off-line bin packing where a static

solution is reached before its implementation. A bin packing algorithm is said to be off­

line if permutation of list items are allowed before processing. In contrast, on-line bin

packing algorithms are capable of coming up with a packing of items on a dynamic basis

as the item sizes become available. Therefore, such on-line algorithms, by their very

nature, must be very fast and use simple heuristics. An investigation of on-line bin

packing algorithms has been the topic of a dissertation by Ramanan [Ramanan 84] in

which a linear-time on-line algorithm is presented and analyzed. It may be argued that

off-line solutions may yield better results. However, one must also consider the overhead

involved in preprocessing of the items.

Johnson et al., in analyzing the worst case and average case behavior of the packing

algorithms described in the above paragraph, conclude that FFD and BFD almost always

behave better than the FF and BF heuristics. However, FFD and BFD are only reported

as best off-line algorithms. These algorithms are reported to have a run-time complexity

of 0 (n log n) and a performance ratio of 1.222... which is defined as the ratio of the

performance of the given approximation algorithm to the performance of an optimal

solution known for the same problem.

45

Another related work is one done by Coffman, Gary and Johnson [Coffman et al. 78]

that develops a multiprocessor scheduling algorithm using the FFD heuristic, called

multifit. Multifit is a non-preemptive scheduling algorithm for scheduling of n

independent tasks on p identical processors. Given the number of available processors p,

this algorithm operates by determining a bin capacity C, and attempts to schedule the

given tasks on Sp processors. Coffman, et al. define a p-processors performance ratio,

Rp (A) for a given algorithm A as:

* Rp(A) =sup {FA ['t,p] I 'tp :all task sets 't}

where 't and p represent the given task system and the available number of processors,

respectively. Algorithm A creates a partition of 't into p subsets. The partitions are

denoted by p A ['t, p]. FA ['t, p], in the above performance formula, denotes the

schedule length or the finishing time of PA ['t, p]. 't; is defined to be the optimal

schedule length for a given task system 't on p processors. The goal is to find an efficient

algorithm A such that the performance ratio, Rp (A), is as close to 1 as possible.

Graham [Graham 69] [Graham 76] and Sahni [Sahni 76] discuss such algorithms.

However, the computational time associated with these solutions make their practicality

prohibitive. One of the polynomial time solutions that seems to have a good performance

is the Largest Processing Time [LPT] algorithm [Graham 69] [Graham 76] that reports a

performance ratio of Rp (LPT) = 4/ 3 - 1/ 3 p. Graham also reports in these studies

that the performance of non-preemptive scheduling algorithms for scheduling of

independent tasks is in general, never worse than twice the optimal solution in length,

that is, FA ['t,p) S 2. t;.
Coffman et al. [Coffman et al. 78] report that their iterative algorithm, multifit, out

performs LPT on the average and improves on the worst case performance ratio of LPT.

Given a task system 't, composed of independent tasks, bin capacity C, and the number

of processors p, the multifit algorithm devises a packing of tasks for each of the

46

processors with the objective of minimizing the number of processors. However, it is

described later that since Coffman et al. determine the bin capacity with regard top, it is

never the case that the tasks are scheduled on less than p processors. Instead, whenever

the workload has to spill over to more than p processors, the bin capacity is increased

until a suitable capacity is reached for which the n tasks can be fit into the p processors.

We demonstrate that the algorithm developed in this dissertation, the Variant-Load

algorithm, achieves the same goal with less processing.

Multifit algorithm determines the bin capacity C by defining the lower bound and the

upper bound values on C with regard top. It then performs a binary search for finding a

new value for C which minimizes the schedule length by performing a limited space

search. Each new value for C is used for creating a packing of tasks on processors. If

the new packing requires more than p processors, it is rejected and a new value for C

that lies between the defined lower and upper bounds is determined. During the trial

packings, new lower and/or upper bounds on C are defined until a packing of items into

no more than p bins is achieved. Because of the expense involved in searching for a

reasonable schedule, the multifit algorithm operates such that the number of trial

packings in search of a suitable C can be specified by the user, where fewer iterations

provide a less accurate capacity and therefore the algorithm may be unable to pack the

items in less than p bins. In this work, the lower bound C L, is defined as:

CL ['t,p] = max{(Vp) Ts(t), max{w(ti)}}

where Ts ('C) is the sequential execution length of a task system 't, and w (ti) is the

processing time of the largest tasks in 't. This quantity is known as McNaughton's lower

bound [McNaughton 59] and is devised as an optimal schedule length for preemptive

scheduling. The upper bound C u, is defined as:

Cu [t,p] = max{(?/p) Ts{t), max{w(ti))}}

47

where the quantity ('2/p) Ts ('t) is based on Graham's findings that the worst case

performance of non-preemptive scheduling algorithms for scheduling of independent

tasks is never more than twice the optimal schedule length. Therefore, multifit algorithm

searches for a C value in the range C L ~ C ~Cu.

One interesting finding of the experiments done by Coffman et al. (which is also

demonstrated in [Johnson 73]) is non-monotonocity of the devised packings with respect

to the bin capacity and the number of employed bins. This anomaly is demonstrated in

the example in Figure 3 which appears in [Coffman et al. 78]. Given a task system 't =

{ 44, 24, 24, 22, 21, 17, 8, 8, 6, 6}, if the bin capacity is set to C = 60, the number of bins

required to devise a non-overlapping packing is three while if the bin capacity is

increased to 61, then packing of the same set of tasks (using the FFD heuristic) requires

8 e

e 17 17
8

8

21 21

22
22

Figure 3. Non-monotonocity of First-Fit-Decreasing heuristic

in packing of items into bins

48

four bins. Johnson [Johnson 73], in his dissertation work on bin packing algorithms,

demonstrates the same anomaly with regard to First-Fit heuristic. Figure 4 demonstrates

packing of tasks 't1 ={.55, .70, .55, .10, .45, .15, .30, .20} and 't2 ={.55, .70, .55, .45,

.15, .30, .20} in which the sum of the values of all items 'ts = 3 for both task systems.

The bin capacity in Johnson's work is assumed to be 1. As seen in Figure 4 (which

appears in [Johnson 73]), First-Fit heuristic comes up with an optimal solution for task

system 'tt while 't2 is packed into four bins. Prior to the demonstration of non­

monotonocity of FF and FFD heuristics, a more detailed study of scheduling anomalies

was done by Graham [Graham 66] when discussing the list scheduling heuristics. A

detailed discussion of Graham's findings was presented in chapter one.

The issue of monotonocity of heuristic bin packing algorithms is the subject of a

dissertation work by Murgolo [Murgolo 85]. It is reported in this work that from among

.16

.10

.55

.90
.46

.15

.90

.70
.55 .55

.70

Figure 4. Non-monotonocity of First-Fit heuristic in

packing of items into bins

49

the heuristics first-fit, best-fit, worst-fit, next-fit and their off-line variations, first-fit­

decreasing, best-fit-decreasing, etc., only the next-fit heuristic and one of its variations

next-fit-2, is reported to be monotonic. For such algorithms to be monotonic, it means
I

that given a list L and its variation L , which differs from L by containing items of

smaller sizes and therefore, a smaller total for the sum of its individual item sizes, a

packing of L' must require the same or fewer number of bins as L. Otherwise, the

algorithm is not monotonic.

Other combinatorial allocation problems related to the bin packing problem are the

knapsack problem and the minimum sum of squares problem. Knapsack problem is

analogous to multidimensional bin packing problem in the sense that the value of an item

in the knapsack problem is determined as a ratio of different value factors attributed to

the objects being packed into the knapsack. Different theoretical models for both of these

problems are presented in the dissertation research by Neilsen [Neilsen 85].

Another related work designed for scheduling of independent tasks on a given number

of processors is Divide & Fold (D&F) algorithm by Polychronopoulos
--·~---.-~----~·---.. ·-·- --· ~- -~--~ ···-· - ----- ~"'·-~~--,

[Polychronopoulos 86]. The main objective of D & F, same as other similar algorithms,

is to devise a schedule with the shortest possible schedule length, given a set of
/---------~-·-•--••--·•,.,,~.c·-"<•~·~··--~-._.,,_.,.,.,,~-·o-<,,~-- •. ,,,,' -•• "' ., e'•"'•'''" "' ••-•<'•'•'"~--·--• ''-"•• ~.~., ••• '' -~~~-.-.. .. -~.__ ... _..,_,_,,,_

independent tasks and .!1:--~l!~l:>t?r. of processors. D & F algorithm operates under two
______ ,_ • ...----~-.-..... ,,»'"•' - '''"''"'" •. ~,-.. ,,.,.,,.,, •• "'''--·•·~"'"·'-'·'•"''"''""''

phases. It starts with a list that is sorted in non-ascending order based on the task

processing times. During phase I, it repeatedly divides the sorted list in half and folds the

two halves into one list. Assuming that the list starts with n partitions of one element

each, after the first division and folding, the list consists of n/2 partitions, each with two

elements. The dividing and foldings continue until the number of partitions created is

equal to the number of processors and each partition contains nl p tasks. Figure 5

demonstrates the first phase of the D & F algorithm for the task system 't = { 45, 41, 32,

'··

28, 22, 20, 19, 17, 8, 5, 4, 1} to be scheduled on three processors.

{45} {41} {32} {28} {22} {20} {19} (17} {8} {5} {4} {1}

FOLD

{45} {41}
{1} {4}

l
{32} {28} {22} {20}
{5} {8} {17} {19}

MERGE and REORDER

l
{45, 1} {41, 4} {22, 17} {20, 19} {32, 5} f!B, 8}

FOLD

l
{46, 1} {41, 4} {22, 17}
{28, 8} {32, 5} {20,19}

MERGE and REORDER

l
{45, 28, 8, 1} {41, 32, 5, 4} {22, 20, 19, 1}

Figure 5. Phase I reordering of D & F

50

The second phase of the D & F algorithm is the balancing phase that performs three

different tests in order to identify tasks from pairs of processors whose swapping will

further balance the workload assigned to each of the processors. During the second

phase, the workload assigned to pairs of processors (i, p-i+ 1) for i = 1, 2, ... , f pI 21

is examined and if any tasks are found that can be swapped with tasks assigned to the

other processors or transferred to the other processors in order to balance the load, such

exchanges or transfers will take place. For example, in Figure 5, the workload assigned

51

to the three processors after phase I, is 82, 84, 78. One obvious transfer of assignment

upon examination of tasks in the first and the third partition would be to move the task

with the processing time of 1 in the first partition, to the third partition that has a lighter

workload. The decision about which pairs of tasks to exchange or which task to reassign

is done based on the outcome of three different tests that are performed during the second

phase.

The complexity of Divide & Fold algorithm is reported as follows. Given an initially

sorted list, phase I of this algorithm requires 0 (log 2 (n/ p)) steps to complete. Each

step consists of dividing, merging, and reordering of the newly created partitions. Phase

II of D & F consists of comparison of the workloads assigned to pairs of processors. This

phase of the algorithm is considered to be the bottleneck because of its 0 (n 2 I p 2)

complexity. Polychronopoulos reports the same complexity for the multifit algorithm

developed by Coffman et al. [Coffman et al. 78].

4.3 A Near-Optimal Scheduling Algorithm for

Scheduling of Independent Tasks

The scheduling algorithm presented in this section is based on concepts from bin

packing [Coffman et al. 78] [Johnson et al. 74]. As discussed in the introduction section,

bin packing is a general scheme in which n items of different sizes must be packed into k

bins of capacity C each where the sum of the sizes of then items is in general less than

or equal to k*C.

In Variant-Load algorithm discussed below, the number of bins k is set to the number

of available processors p. The initial capacity C of all the bins is set to LB, as defined in

Section 3.3, before the process of assigning tasks to bins is initiated. The tasks in the

task system 't are arranged in non-ascending order based on their sizes such that

w(tt)~w(t2)~ · · · ~w(tn) where w(t;) represents the execution time (weight) of

52

tasks for 1 ~i ~. The tasks in each bin, bj. 1~j~. correspond to the set of

independent tasks assigned to each of the p processors. Mter partitioning of the tasks

into p sets, the tasks assigned to bin bj can be scheduled on processor Pj· 1~j~p.

w (bj) will be used in the following algorithm to denote the sum of the weights

(execution times) of all the tasks assigned to bin bj.

The Variant-Load algorithm, presented in this section, performs the task of assigning

the first P tasks of the given tasks set, one task per processor, to the p available

processors through the first two steps of the algorithm. If n -5.p (the trivial case), then

the assignment of tasks to processors is completed and the algorithm halts. The other

non-trivial case where n ~ p is performed by going through step 4, or if required through

steps 4 and 5 of the algorithm.

After the initial assignment of the first p tasks to the p processors, the algorithm starts

assigning the remaining n -p tasks as follows. Tasks p + 1 to n are assigned to the

lowest indexed bin (processor) provided that the assigned workload, w (bj). for the

lowest indexed bin, bj for l-5.j ~.does not exceed the defined bin capacity, LB. If this

condition is satisfied, then task ti, p + 1 ~i ~n. is added to bin b j and the workload

assigned to bin bj so far, is incremented by w(ti), the execution time for task ti. Step 4

will be repeated until i = n, that is, all tasks are packed, or until the assignment of a new

workload to a bin exceeds the bin capacity LB. The latter condition forces the algorithm

to step 5, with the understanding that the current bin could not be packed with a new task.

During step 5 of the algorithm, the simple initial"if' test determines if the current bin

being packed has not been in fact the highest-indexed bin. If so, the algorithm simply

moves to the next lowest-indexed bin and transfers the control back to step 4, for new

attempts at packing the current task into the next bin in line. If j = p, that is attempt to

53

Input: A task system t, consisting of independent tasks, where the tasks are arranged in

non-ascending order based on their execution weights, the number of tasks n in t, the

number of available processors p, and the initial bin capacity LB.

Output: A partitioning of t into p sets.

Metbod:

1. bk ~ {tk}, w (bk) ~ w (tk), 1~k~p.

2. if n ~p then HALT.

3. i ~p+1, j~l.

4. ifw(bj)+w(ti)~LB

then

bj~biu {ti}, w(bj)~w(bj)+w(ti),

i ~i+1,

if i ~ n then go to Step 4, otherwise HALT.

5. if j=p

then

find k such that w (bk) ~ w (bz), 1~1~.

bk ~ bkU { ti }, w (bk) ~ w (bk) + w (ti),

if i<n

then

i ~ i + 1, j ~ 1, go to Step 4,

otherwise HALT.

otherwise j ~ j +1, go to Step 4.

Figure 6. The Variant-Load Algorithm

54

pack a task in the highest-indexed bin has failed, then step 5 of the Variant-Load

algorithm recognizes that packing of the current task without exceeding the bin capacity

is (probably) not possible. Therefore, it attempts to pack the current task ti into bin bko

1~k~ that has the lightest workload w (bz) for 1~1~. Now, task ti has been added to

bin bk. The algorithm halts when the number of iterations, i = n. Otherwise, the next

task, t; + 1 , becomes the candidate for packing. After each failed attempt at packing a

task, due to exceeding of the initial bin capacity, packing of subsequent tasks take place

by examining the next lowest-indexed bin. Except for the initial assignment of the p

largest tasks which is done using the scheme Largest-Processing-Time-First (LP1F), the

scheduling of the remaining n -p tasks is done using the First-Fit-Decreasing (FFD)

scheme [Coffman, et al. 78] [Johnson, et al. 74]. The schedule in Figure 7 shows the task

assignments produced by Variant-Load algorithm for p = 3 and the task system

't= {tJ, t2, ... , t12} in which the processing times for the tasks are (45, 41, 32, 28, 22,

20, 19, 17, 8, 5, 4, 1). Processing times used for scheduling of the tasks typically are

based on estimates provided by the compiler or the actual execution times obtained by

sequential execution of the tasks. The lower bound on the schedule length for this

particular task system is LB =max {81,45}. The schedule in Figure 7 is indeed

optimal. If the packing scheme used in Variant-Load algorithm is changed either to a

strict FFD or LPTF, the schedule increases in length from 81 to 82.

The rationale for using the LP1F scheduling for the first p tasks followed by a switch

to FFD instead of using the LP1F or FFD schemes strictly, is that by placing the first p

largest tasks in separate bins, the packing of the remaining (smaller) n -p tasks will

intuitively yield a more normalized distribution.

The packing scheme presented in Variant-Load algorithm is using the rationale of the

worst-fit placement strategy implicitly in the following sense. By choosing not to place

tasks ti and ti+l> 1~ i ~pin the same bin, even if w (ti) +w (ti+l) ~LB, this

55

10 20 30 40 50 60 70 80
I I I I I I I I

45 28 8

41 22 17

32 20 19 5 4 1

Figure 7. A schedule for task system 't' on three processors

algorithm is in essence trying to maintain the largest possible remainder capacity in all

the bins after the placement of the initial p tasks, with the expectation that it can still

accommodate other incoming tasks with large weights.

4.4 Performance Evaluation

In order to evaluate the performance of the Variant-Load algorithm empirically, we

compare the performance of this algorithm with several other comparable and well­

known algorithms. The algorithms used in our simulation experiments are Longest

Processing Time (LPT) [Johnson et al. 74], Multifit [Coffman et al. 78], and

Divide & Fold (D & F) [Polychronopoulos 86]. All of these algorithms are suitable for

scheduling of independent serial tasks. The performance of the three algorithms

mentioned above, has been reported in the literature [Coffman et al. 78]

[Polychronopoulos 86] in increasing order of performance as follows: LPT, Multifit, and

D&F.

4.4.1 Design Methodology

The measure of performance in our empirical evaluation is the number of optimal

schedules produced in a series of simulation experiments as well as the performance ratio

of the measured algorithms. The variables used in these experiments are the processing

56

time of tasks, the number of available processors, and the number of tasks in the task

system. More specifically, two types of experiments were conducted. The input ranges

used in this experiment were the same as the ones used in the cited studies (namely,

[Coffman et al. 78] and [Polychronopoulos 86]) in order to establish a baseline for further

evaluation.

Two different simulation experiments were performed. In the first experiment, the

number of tasks were treated as the independent variable while the processing times and

the number of processors were treated as dependent variables. That is, the number of

tasks was kept constant at 128 while the processing times ranged in value from 1 to 100,

and the number of processors used was in the range 2 to 21. This type of experiment

involved a total of twenty runs for each of the algorithms. In the second experiment, the

number of processors was the independent variable while the processing times and the

number of tasks were treated as dependent variables. More specifically, the number of

processors was kept constant at p = 10 while the number of tasks in each task set varied

as 20, 30, 40, ... , 210, and the processing times were selected randomly in the range 1 to

100. The processing time of tasks were produced using the normal distribution for both

experiments. However, the same experiments were repeated with exponentially

distributed processing times with the finding that the results were consistent with those of

the normal distribution. The execution times of tasks were produced using the normal

distribution for both experiments.

4.4.2 Simulation Results

The performance of the studied algorithms was measured in terms of two criteria, the

number of optimal solutions achieved and the overall performance ratio of each

algorithm. As described in Section 1.6, the performance ratio Rp(A), is defined as

57

where TA is the performance of an approximation algorithm A and T~PT is the

performance measure for the approximation of an optimal solution known for the same

problem. To compare the evaluated algorithms, we concentrated on the average

performance ratio of these algorithms over all twenty runs. We denote the average

performance ratio by Rp(A) which is the ratio of TA to T~PT representing the average

performance for the approximation algorithm and the optimal solution, respectively. It

should be stated that since it is difficult to determine exact values for T OPT for arbitrarily

* . large task sets, T OPT was used as the preemptive measure and defined as

where Ts denotes the sequential execution time of the task set and w (ti) for 1 -5: i -5:n,

represents the individual processing time of tasks. Since the scheduling algorithms

evaluated in this dissertation are non-preemptive, it can be asserted that in general, it is

* possible that T A > T OPT and nontheless, still be an optimal solution under non-

preemption.

TABLE I
RESULTS OF EXPERIMENT I

ALGORITHM NUMBER OF
PERFORMANCE s8~~JL.l:s RATIO

Variant-Load 18 1.0009

LPT 3 1.0027

D&F 16 1.0006

Multifit 4 1.18

58

TABLE II
RESULTS OF EXPERIMENT II

ALGORITHM
NUMBER OF PERFORMANCE
s8~~'tl:s RATIO

Variant-Load 17 1.0031

LPT 0 1.0061

D&F 15 1.014

Multifit 0 1.031

The results of experiments I and II are shown in TABLES I and II. As can be seen, the

performance of the Variant-Load algorithm is slightly better than D & F algorithm in

experiment II and is very close to D & F in experiment I. Even though these results are

based on limited experimentation, we may conclude that, in terms of the quality of the

produced schedules, our algorithm is at least as good as D & F which has been shown to

improve over other best known algorithms (Multifit and LPT) in some respects.

However, our algorithm possesses a major advantage over D & F and Multifit with

respect to its run-time behavior.

4.4.3 Complexity Analysis

D & F devises schedules using a three-phased scheme. The first phase of D & F

algorithm has been reported to require 0 (logz (nl p)) steps. Each step consists of

dividing the list in half, merging of the two halves (folding), and reordering the newly

created partitions according to the sum of the sizes of the tasks in each partion. The

second phase of D & F has been reported to have a complexity of 0 (n 2 I p 2). The third

phase of the algorithm, which performs further optimization through rather expensive

59

steps, has not been implemented by its developer when testing the performance of this

algorithm.

The Variant-Load algorithm has O(n) complexity in cases where n ~p. For n ?:.p,

we evaluate the complexity of our algorithm as follows. Let us make the assumption that

after the initial assignment of the first p tasks (one per processor), the remaining n -p

other tasks do not fit in any of the bins without exceeding the bin capacity. This is a

pessimistic worst case assumption since the initial bin capacity has been defined in terms

of the processing times of the tasks and therefore, one may expect that the initial bin

capacity will not be broken at this point. Nonetheless, this assumption is made to come

up with a worst case behavior. Let us make another worst case assumption that all bins

are examined before it is found out that a task does not fit into any bin for all the

remaining n -p tasks and thus (n -p) p iterations are used in step 4. Again, this is a

pessimistic assumption because in step 4 of the algorithm, the search does not start from

the lowest indexed bin every time. Assuming a linear search, finding the least full bin

(step 5 of the algorithm) involves p comparisons each time. Therefore, a pessimistic

worst case for the run time behavior of the Variant-Load algorithm is (n-p)p 2. A

more realistic behavior is (n - p)I 2 . p 2 where (n - p)I 2 of the tasks on the average

may require examining of all p bins (in step 4 of the algorithm) before the search for

finding a bin (without exceeding the initial bin capacity) may fail. A general worst case

bound for the Variant-Load algorithm can be specified as 0 (np 2). Recall from Section

1.2 that from among polynomial time approximation solutions for solving the scheduling

problem, those with relatively slower growth rates (as the input size increases) are rated

to be superior to others. The Variant-Load algorithm possesses such a characteristic.

4.5 Summary

Chapter 4 describes the general problem of scheduling of independent serial tasks and

their schedule bounds. A review of related work and their results are presented which

60

includes early theoretical work on the scheduling problem in other disciplines such as

operations research and its subfield job-shop scheduling, and management science. This

review also includes the most recent work done in multiprocessor scheduling.

A near-optimal scheduling algorithm, Variant-Load algorithm, developed in the

current research is presented and discussed. An empirical evaluation of the developed

algorithm in comparison to the best known algorithms in the literature is presented.

Although the simulation studies performed are limited, it is shown that our algorithm is

at least as good as one of the best-known algorithms (D & F) in terms of the optimality of

the resulting schedules and is superior to D & F in terms of its run-time complexity.

CHAPTERV

SCHEDULING OF DEPENDENT TASKS

5.1 Introduction

This chapter concentrates on the problem of scheduling of n tasks on p processors in

which the tasks exhibit inter-task dependencies. Using the notation defined in Section

3.4, such task systems are defined as 't = (V, <) such that < -:t:. cj>, where the relation < is

a partial order. Task systems are represented as graphs. Furthermore, they are assumed to

be precedence graphs. Because of the dependency constraints imposed on the task

system graphs through the existence of arcs, the scheduling mechanism must schedule

the tasks in such a way that correct execution sequence of the program is guaranteed.

This property is the determinacy property from Section 1.1.

Two different approaches are used in addressing this problem. In the first approach,

we demonstrate a method and present an algorithm that breaks the inter-task

dependencies by partitioning the task system into sets of independent tasks. Each such

partition or set is referred to as a layer. The tasks within each partition or layer are

ordered and processed based on a partial order. However, the order in which the

resulting layers are processed must obey a total order iii order to satisfy the determinacy

property. Two algorithms have been developed that first use the above approach and

eliminate inter-task dependencies by partitioning the task system into layers of

independent tasks. These algorithms then schedule the tasks in the resulting independent

layers according to certain criteria. The difference between these algorithms and their

suitability for different environments is discussed in this chapter.

61

62

The second approach developed is one in which sets of tasks are identified and treated

as independent threads. Each thread is scheduled on a single processor. In this approach,

an acyclic control flow graph of a program is used as a basis for detection of parallelism.

Tasks in this model are treated as sequential blocks of code with no branching into or out

of them except at the beginning and/or at the end, and with clearly defined input and

output parameters. Parallelism in such a graph is manifested by the number of

independent paths or threads of execution. The total number of independent paths in a

graph is the nullity of the graph which is the number e-n +2, where e represents the

number of edges and n represents the number of nodes in a graph [Berge 73]

[Temperly 81]. Therefore, we define the nullity of the graph as the minimum number of

processors needed for maximum execution speed. Further details on the approaches used

in scheduling of dependent task systems will be presented in appropriate sections in this

chapter.

5.2 Task System Graphs and Schedule Bounds

We represent task systems as directed acyclic graphs with no redundant paths (i.e.,

precedence graphs). Task graph representations that are not acyclic, can be convert to

DAGs by merging the strongly connected components by using the graph's boolean

connectivity matrix. DAGs with redundant paths can be converted to precedence graphs

by using redundant path removal algorithms. Since this research is not concerned with

program partitioning, it is assumed that a task system has been created using an optimal

or near-optimal partitioning scheme and is therefore suitable for parallel processing. The

algorithms presented in this chapter have been designed with precedence graphs in mind

that start with a single root node (source) and end in a single terminal node (sink). In the

absence of a single source and/or a single sink, a dummy node with a processing time of

zero can be added to the graph. Thus, the algorithm can be applied to arbitrary

precedence graph, including the tree graph considered in Hu's algorithm. A typical

63

precedence graph considered in this research is shown in Figure 8.

(1)

(2)

(3)

("')

Figure 8. A task system precedence graph

As before, task systems will be represented as G (V, E) where the set E:;:. cj> in the case

of dependent task systems. The set of vertices represent the individual tasks. Associated

with each vertex is a non-negative integer which represents the processing time of a task.

Processing times are assumed to be compiler generated estimates or actual processing

times obtained by running the tasks on actual processors. It is not possible to calculate

the exact schedule lengths for non-preemptive scheduling schemes unless restrictive and

sometimes unrealistic constraints are placed on the task and the machine characteristics.

Calculation of the optimal schedule length is possible in preemptive schemes. Since the

scheduling algorithm developed in this research uses a non-preemptive scheme, only

loose bounds on the schedule length can be determined. Considering precedence graphs

with a single source and a single sink (e.g., Figure 8), it is obvious that the source and the

sink nodes cannot be executed in parallel with any other node. Therefore, that portion of

64

the task system which might be amenable to parallelization includes those tasks that are

between the source and the sink. That is, parallel processable time at most is

t8 - (tsource + tsink). Therefore, a lower bound for the execution of the parallel

processable portion of such a task system can be defines as

L 1 = (ts - (tsource + tsink))l P

However, considering a precedence graph such as the one in Figure 9, it can be observed

that L 1 = 11, which is not achievable under a non-preemptive scheduling scheme. Thus,

a second lower bound which is based on the critical path length, Tc, of a task system can

be defined as follows

L 2 = Tc- (tsource + tsink).

Figure 9. A simple precedence graph

Using these two bounds, a loose lower bound, LB, for the scheduling of the entire task

system can be defined as:

LB =max{L 1, L2}+ tsource + tsink

65

Thus the schedule length for the graph of Figure 9 is 28 and not 19. In the case of an

unlimited number of processors, or in cases where the number of available processors is

greater than or equal to the width of the graph, the schedule length would be equal to the

critical path length. In that case, Tp = Tc= Topr and an optimal schedule length would

be achieved.

5.3 Task System Partitioning

In order to eliminate inter-task dependencies in dependent task systems, many

scheduling algorithms discussed in the literature make the assumption that the graph

representation of the program has been partitioned into layers of independent tasks.

There are very few algorithms (in fact only one) found in the literature that show how a

task system graph is actually divided into layers. One such algorithm is MBFS

[Polychronopoulos 86] which will be described in more detail later in this chapter.

Partitioning of task system graphs can be done using two different approaches. In

what we refer to as the earliest schedule partitioning (ESP), the task system graph is

processed from top to bottom. In this approach, any initial tasks that have no

predecessors are placed in a layer, /1. At this point, the arcs that lead to the immediate

successors of the tasks in /1 are erased. The same approach is repeated for the next layer

in which all tasks with an empty predecessor set are now placed in layer /2, followed by

removal of outgoing arcs for the tasks in /2. Repeated applications of this scheme will

result in a set of independent layers L = {/1, /2, ... , lk } where k represents the number

of independent layers in a graph. For example, in the case of precedence graphs

described in this research where task graphs are assumed to be single-entry and single­

exit graphs, the source node is assumed to be in layer /1 and the sink node is placed in

layer lk. Most other work, following Hu's convention [Hu 61], assign labels from

bottom up where the deepest level in the graph is assigned label/1. We believe it is

66

more logical and practical to assign label lt to the first cut of the graph when the graph is

processed from top down. We reserve the conventional labeling numbers for the next

approach in which a graph is processed from bottom up.

If the partitioning scheme described above is applied to a graph by processing the task

system graph starting at the sink node and working up to the source, then the resulting

partitions are referred to as the latest schedule partitioning (LSP). Again, such

partitioning will result in a set of layers L = {It, l2, ... , h} where lk represents the first

cut of the graph and lt represents a set containing the terminal node(s). In earliest

schedule partitioning, presence of a task in a particular layer signifies the earliest time a

task can be scheduled after all of its predecessors in lower-indexed layers have finished

execution. Latest schedule partitioning, on the other hand, represents the latest time that

a task must be scheduled without incurring a penalty, of course after all the tasks in the

higher-indexed layers have finished execution. Figure 10 shows the result of earliest

schedule partitioning applied to the task system precedence graph in figure 13. Figure 11

demonstrates latest schedule partition for the same task system graph. The algorithm

presented in the next section, ESP algorithm, is designed for partitioning of task system

graphs into sets of independent tasks using the earliest schedule partitioning approach.

However, a bottom up application of the ESP algorithm yields the latest schedule

partition.

5.4 An Algorithm for Task System Partitioning

The algorithm presented in this section partitions a task system graph into k layers

denoted by l;, 1 <iS k, such that all tasks t;, lSi< I VI , in layer l; are independent of

one another. The ESP algorithm uses the concepts from topological sorting [Skvarcius

and Robinson 86]. A topological sorting algorithm is an algorithm which imposes a total

order on the nodes of a DAG by constructing a linearized list of the nodes in a DAG

through relabeling its nodes. This algorithm, in its original form (i.e., before any

67

modifications), can be used as a scheduling algorithm for scheduling of the tasks in a task

system graph on a single processor.

Figure 10. Earliest Schedule Partition (ESP) for the task graph in Figure 13

68

Figure 11. Latest Schedule Partition (LSP) for the task graph in Figure 13

69

In a topological sort, whenever two or more nodes are identified as having no

predecessors, one is chosen arbitrarily for deletion from the DAG for relabeling. To

identify as many independent tasks as possible in a task system, a modified version of the

topological sorting algorithm can be used such that any number of nodes, which are

identified as having no predecessors, are added to a list li at iteration i. The output of

this algorithm consists of k such lists with k as the number of layers containing the

independent task sets. Each list li is identified as a layer. The identified tasks in each

layer can be scheduled in parallel, each on a separate processor, if available.

Polychronopoulos [Polychronopoulos 86] has developed an algorithm (MBFS) based

on a modified breadth-first-search traversal in order to identify layers of independent

tasks in a graph. MBFS relabels a vertex with higher label numbers until it is assigned its

appropriate layer number. MBFS has an 0 (n 3) complexity where the main loop is

executed exactly n times. The dominant computation inside the main loop is the removal

of the edges incident to a node and has a complexity 0 (n 2). The main loop in our

algorithm is executed exactly k times where k is the nuinber of layers in a task system

graph. Unlike MBFS which identifies the tasks that belong in the same layer one at a

time, ESP algorithm identifies such tasks during the same iteration of the outer loop.

ESP has a worst case complexity of 0 (n 2). The worst case behavior occurs when there

is no concurrency in the precedence graph (i.e., k = n). Under such a condition, the main

loop is executed n times. As for the two nested for loops, the outer loop is executed

exactly once because each layer consists of one task only. The inner loop, instead, is

executed a maximum of n times for each of the n iterations of the while loop. The actual

comparisons that take place in the inner for loop are (n -1, n -2, ... , 2, 1). Therefore, a

more exact value representing the worst case behavior of ESP algorithm is n (n -1 Y2.
The single for loop in the ESP algorithm is implemented as a list of sets, and therefore

testing the loop condition requires a maximum of n comparisons.

70

Input: G (V, E), where G is a DAG, and the tasks are each already assigned a label.

Output: Sets l1, l2, ... , lk of independent tasks where k is the number of independent

task sets identified in G.

Method: 1. Compute PRED(v;), 'V v;e V, lSi Sl VI.
I

2. v f- v; k f- 0.
I

3. while V :I: cp

do

k f- k + 1; lk f- <I>

for all Vt e V' such that PRED(Vt) = <I> do
I I

lk f- lk u {v;}; V f- V -{ v;}

endfor

for all Vt e lk do
I

for all u e V such that v; e PRED(u) do

PRED(u) f- PRED(u)- {v;}

cndfor

cndfor

end while

Figure 12. The ESP Algorithm

71

The task system in Figure 13 corresponds to an arbitrary program. The numbers

placed by each node represent the execution times, w (ti), of each task ti. One possible

output of the topological sorting algorithm could be the total order A through Z.

Applying ESP algorithm to the same task graph produces as its output eight sets {A}, {B,

C, D}, {E, F, G, H, I}, {J, K, L, M, N}, {0, P, Q, R, S, T}, {U, V, W}, {X, Y}, and {Z},

identified as layers It through lg, respectively.

8

Figure 13. A task system represented as a weighted directed acyclic graph

5.5 ESPNL: A Scheduling Algorithm for

Scheduling Independent Task Layers

72

The scheduling approach, ESPNL, described in this section uses the ESP algorithm

presented in the previous section, and the Variant-Load algorithm described in Section

4.3. Variant-Load algorithm is a near-optimal algorithm that can be used for scheduling

of independent serial tasks. The scheme presented in this section uses the partitions

created by the ESP algorithm and schedules the tasks in the resulting layers using the

Variant-Load algorithm. The tasks in each layer are scheduled in increasing order of

enumeration of the indices assigned to the layers. That is, the tasks in layer li are

scheduled (and must be finished) before the tasks in layer li+l start execution. A

common problem associated with static scheduling of tasks in a multiprocessor

environment arises with situations in which the actual processing time required by tasks

is different from predicted ones. Typically, if the actual processing times are less than

the predicted ones, the only undesirable outcome is wasted processor time and increased

job flow time. However, if the actual time required for execution of a task is larger than

the predicted value, then the problem of determinacy of the execution sequence of tasks

must be handled in order to guarantee correct termination values. In other words, a

mechanism for synchronization and delaying the execution of remaining tasks must be in

place in order to guarantee program correctness. The scheduling scheme presented in

this section is particularly useful for synchronization of the execution time of the tasks in

each layer. In the event that one or more tasks in a given partition require longer

processing times than anticipated, then the next scheduled partition will not be released

for execution until the tasks in the currently running layer finish execution. This

principle also holds in situations when the tasks in a layer finish execution before the

expected time. In this case, the next batch of tasks constituting the next layer can start

execution before the original release time. In order to provide such a synchronization

mechanism, some form of run-time support is necessary. Such support could be

73

implemented in the form of special control code injected into the tasks at the time of

compilation, or in the form of operating system run-time support. The first approach

would be a less expensive one because of the lower overhead involved in comparison to

the operating system support.

To demonstrate how the ESPNL scheme for scheduling of task systems by using the

Variant-Load and ESP algorithms works, the task system in Figure 13 will be used as an

example in the following analysis. As shown in Section 5.4, applying ESP algorithm to

the task system graph in Figure 13 yields eight independent layers, each with different

number of elements. The width of a graph is defined to be equal to the number of

elements in the largest layer. The example in Section 5.4 demonstrates that the width of

the graph in Figure 13 is six, indicating that a maximum of six processors are necessary

to run each task in parallel. In order to schedule this task system on a target machine, the

number of processors available to a program needs to be considered. If there are as many

processors as tasks in the largest layer, the task system can be scheduled on the target

machine as partitioned by this algorithm. The length of the schedule in such a case is:

k
Tp = I: max {w (tu)}

i=llSISmj '

where k denotes the number of layers in a graph and mj denotes the number of tasks in

each layer j.

However, as the results of our performance evaluations will demonstrate in the next

section, Tp will yield an undesirable value, in relation to the performance ratio, in the

case of task graphs in which the number of tasks in each layer is less than or equal to

twice the number of available processors.

Using the above formula, Tp =53 for parallel execution of the task system in Figure

13. The sequential execution length for the task system is Ts = 138. The speed-up

gained in this case, S, is approximately 2.6. Note that the critical path length in the graph

74

of Figure 13 is Tc = 45. Since no scheduling algorithm can yield a schedule length

shorter than the critical path length, therefore T OPT = 45 for this task system graph.

Given ToPT. the highest possible speed-up achievable in the execution, S max• assuming

an unlimited number of processors, is approximately 3 for the task system graph in

Figure 13.

The solution for scheduling a task system consisting of independent tasks on a limited

number of processors was discussed in Section 4.3. Variant-Load algorithm can be used

for scheduling of the tasks in each of the layers of a program graph. If the number of

tasks in any layer is greater than the number of processors available, then Variant-Load

algorithm can be applied to each such layer to produce a schedule for the given layer.

Figure 14 shows the resulting schedule for graph of Figure 13 assuming that there are

only three processors available.

10

A D Q K T 0

E F .I N p

H L • Q

Figure 14. A Schedule for the task system in Figure 13 on three processors

As can be seen in Figure 14, the schedule length for p = 3 is Tp = 60. Variant-Load

algorithm has been used for scheduling of the independent task sets {E, F, G, H, I}, { J,

K, L, M, N}, and {0, P, Q, R, S, T} on three processors. As a result of decreasing the

number of processors from six to three, the schedule length has increased by seven time

75

units. The scheduling of the task set {E, F, G, H, I} accounts for one unit of time

increasing the length of the schedule for this set from nine to ten. The remaining six time

units in increased schedule length are caused by scheduling of task set {0, P, Q, R, S, T},

whose schedule length increases form nine to fifteen time units, once scheduled on three

processors. Scheduling of task set {J, k, L, M, N} on six processors incurs a schedule

length of six which remains invariant when scheduled on three processors.

In the introduction section of this chapter, it was argued that, since our main goal in

scheduling of jobs is achieving the highest possible speed-up, as long as there are

sufficient number of processors available, no attempts are made to decrease the number

of processors required, unless utilizing fewer number of processors does not increase the

schedule length. For example, in Figure 14, scheduling the task set {J, K, L, M, N} on

three and six processors resulted in no change in the schedule length.

In order to decrease the number of processors needed, an algorithm can be developed

such that, before any actual processor assignments take place, Variant-Load algorithm is

run on independent task sets with fewer than requested processors to determine whether

decreasing the number of processors still yields the same schedule length. For example,

scheduling the task set {P, P, Q, R, S, T} in Figure 13 with processing times {3, 8, 5, 7,

8, 9} on five processors gives the same schedule length as scheduling these tasks on six

processors. Utilizing fewer processors than five increases the schedule length. Therefore,

it can be concluded that the minimum number of processors for maximum speed-up in

execution of the tasks in the task system graph of Figure 13 using the ESPNL approach

is five.

5.5.1 Performance Evaluation

To investigate the suitability of the approach described in the previous section, a

number of experiments were performed in which the dependent variable was the number

76

of tasks in each layer. The measure of performance was defined to be the performance

ratio defined in Section 1.6.

5.5.1.1 Design Methodology

Six experiments were performed in which there were four variables involved. The

independent variables were the number of levels (layers) in a task system graph, the

number of available processors, and the processing time of tasks. The dependent variable

used was the number of tasks in each layer. The range of values used for the independent

variables in all six experiments were constant. These values were defined as follows.

The number of layers in each task graph ranged between 8 and 16, the range for the

number of processors used was 16 to 32, and the task processing times were in the range

1 to 100. The number of tasks in each layer of a task system are defined as a multiple of

the number of processors. For example, in the first experiment, the number of task in

each layer was defined to be ni ~p. and in the second experiment this number was

2p ~ni S4-p, where ni represents the number of tasks at level i, 1 ~ i ~ k, of a task

system with k levels. Twenty task systems were generated and scheduled for each of the

six experiments.

In order to establish the non-interference of the independent variables used, we also

performed some experiments in which one or two of the independent variables were

altered. For example, task graphs with fewer layers were generated and scheduled on a

number of processors determined by a different range from the ones used in the reported

experiments. The results were consistent with the ones in the six experiments reported in

this section. Therefore, we conclude that using different sets of independent variables is

not necessary because the ranges defined are scalable to problems of different size that

are proportional to the ones used.

The purpose of these experiments was to establish a relationship between the task

77

graph size and the performance of the scheduling approach used. The performance

measure used was Rp(A) as defined in Section 1.6, which is the ratio of the performance

of a given algorithm A, to the performance of an approximation for the same problem.

The performance of our algorithm was taken to be the schedule length produced by our

approach. The approximation of the schedule length used was determined by using the

measure LB as defined in Section 5.2. The results of the experiment are discussed in the

next section.

5.5.1.2 Simulation Results

The ESPNL approach described in Section 5.5, divides a task graph into sets of

independent layers and schedules the tasks in each layer as independent tasks, using the

Variant-Load algorithm discussed in Section 4.3. In Section 5.5, we defined the schedule

length Tp, to be equal to the sum of the largest task in each layer, in situations when

there are enough processors for the tasks in each layer (i.e., number of available

processors is equal to the width of the graph). However, this schedule length is not very

desirable in situations where Tc = Topr < < Tp. To establish a relationship between

the number of available processors and the number of tasks in each layer of a task

system, the experiments described in the previous subsection were conducted. The

results of our experiments are reported in TABLE ill. The performance curve is shown

in Figure 15. As described in the methodology, the measure of performance used was the

performance ratio Rp(A). Ideally, we would want the performance ratio to be as close to

1 as possible. TABLE III shows the range of the values used for the dependent and

independent variables defined in these experiments. Also shown in this table, is the

average performance ratio for each of the six experiments. As can be seen in Figure 15,

the performance of the ESPNL approach is very poor for task systems in which the

number of task in each layer is less than or equal to p. As the number of tasks in each

layer is increased, the performance ratio exhibits a rapid improvement. For example, in

78

the first experiment, when ni :$; p, the performance ratio exhibits a 73% inefficiency

while in the third experiment, when 2p :$; ni :$; 4p, the same percentage goes down to 5%

which is a rapid improvement. The results of these experiments demonstrate that the

scheduling approach described in this section is particularly suitable for applications with

a large number of tasks that must be run on a limited number of processors.

5.6 Ranked Weight Algorithm: A Heuristic Approach for

Scheduling Dependent Task Systems

In this section, we present another scheduling approach for scheduling of dependent

task systems. Similar to the approach presented in Section 5.5, the new algorithm

discussed in this section first partitions the task system graph into a number of

independent layers. However, Unlike the previous approach in which the tasks in layer li

must finish execution before tasks in layer li+l could be initiated, this new approach

selects tasks (for scheduling) based on weight assigned to each task. The Ranked Weight

algorithm described in this section can be characterized as a list scheduling algorithm in

which the urgency rule for scheduling or dispatching of tasks is determined based on

certain criteria.

As described in the survey of related work in chapter 1, a majority of the scheduling

algorithms found in the literature can be characterized as list scheduling algorithms. One

of the best-known heuristic list scheduling algorithms for scheduling task systems that

exhibit inter-task dependencies is the CP/MISF (Critical Path/Most Immediate

Successors First) heuristic [Kasahara and Narita 84] which is motivated by Hu's labeling

of tasks according to their distance from the root. Hu's method is known as the Critical

Path approach. The CP/MISF heuristic combines the Critical Path approach and an

additional heuristic which determines the priority of the tasks in a layer based on the

TABLE III
EXPERIMENTS WITH VARYING THE NUMBER OF TASKS

EXPERIMENTS

Levels

No. of Tasks
per Level

No. of
Processors

Task Weights

Performance
Ratio

1

(8-16)

p

(18 .. 32)

(1 •. 1 00)

1.73

1

0

~
w
(.)

~
a:
~ a: w
D.

2 3 4 5 8

(&-16) (&-16) (8-16) (8-16) (8-16)

2p (2 .. 4)p (4 .. 8)p (8 .. 16)p (16 .. 32)p

(18 .. 32) (16 •. 32) (16 . .32) (18 .. 32) (18 .. 32)

(1 .. 100) (1 •. 1 00) (1 .. 100) (1 .. 100) (1 .. 100)

1.29 1.05 1.017 1.004 1.001

EXPERIMENTS

Figure 15. Performance of the ESPNL scheduling approach

79

80

number of their immediate successors. Tasks with a large number of immediate

successors have higher priority. This algorithm is claimed to have incorporated the best

heuristic for scheduling of DAGs. Polychronopoulos [Polychronopoulos 88] argues that

tasks can be characterized as either serial or parallel tasks (where serial tasks contain a

single execution thread while parallel tasks may be composed of a number of

independent serial tasks). Therefore, using the number of immediate successors might

not be a realistic priority scheme. He proposes a parameterized heuristic for assignment

of priorities to tasks in his algorithm using the following rules. He gives priorities to

- tasks that lie on the critical path,

- tasks with long execution times,

- tasks with largest number of immediate successors, and

- tasks with successors that have long processing times.

He then uses these rules to define three parameters that can be used for proportional

allocation of processors to tasks. His allocation scheme assigns a single processor to

each serial task. Any number of remaining processors are distributed to parallel tasks

based on their priorities. The flexibility of Polychronopoulos' algorithm is due to the

capability of altering the weight of the three parameters. By changing the relative weight

of the parameters, the algorithm can assign different priority weights to the above stated

rules.

5.6.1 The Ranked Weight Heuristic

It is demonstrated shortly that the rules described above [Polychronopoulos 88] are

embedded in the Ranked Weight heuristic, presented in this section. The MISF heuristic

in Kasahara and Narita's algorithm gives a higher priority to tasks with largest number of

immediate successors. Unless it is used in the context of Hu's algorithm, where tasks

have equal processing times, the disadvantage of the CP/MISF method is that the

processing times of the tasks are not used as a factor for load balancing. The heuristic

81

used in the algorithm presented in this section takes into account the processing time

required by a task and all its successors. For example, the processing time of the source

node (assuming that the task system graph starts with a single node with no predecessors)

will be equal to the total execution time of the entire task system. We refer to this

number as the ranked weight of the task. Ready tasks are scheduled in the descending

order of their ranked weights. This seems to be a stronger heuristic than the MISF

heuristic because it selects the tasks that consume a larger amount of processor time

through their successor path(s). This heuristic performs at least as well as the MISF

heuristic because if a task with large number of successors also has a large ranked

weight, it will be given a higher priority. On the other hand, however large the number

of immediate successors of a task is, if the ranked weight of this task is less than that of

some other ready task, this task will be given a lower priority (TABLE N shows the

expected processing time, w(ti), and the ranked weight, rw(ti), of the tasks in the task

graph of Figure 8). Additionally, the Ranked Weight heuristic gives priority to the tasks

that lie on the critical path of a graph in a special sense.

Giving priority to the tasks that lie on the critical path of a graph is an old heuristic

that has been used by many [Baer 73] [Kwan et al. 91] [Polychronopoulos 88]. The

Ranked Weight heuristic presented in this dissertation, looks at the critical path of a task

graph in a new light. The rationale for giving priority to the critical path tasks in

scheduling is meant to ensure that the execution of the tasks on the most expensive path

of the graph will not "lag behind" such that their delayed execution will increase the

schedule length.

The general approach for scheduling of task graphs is as follows. Given task graph

G, ready tasks in G (tasks with no predecessors) are scheduled and conceptually erased
I

from the graph. Lets call the resulting graph G which differs from G by removal of the

scheduled tasks. Referring to the task graph in Figure 8 as G, the first ready task that can

82

I

be selected for scheduling is the task with label A. The resulting task graph , G , after

scheduling of A is shown in Figure 16. The critical path in graph G is the path that

contains tasks with labels A, C, F, and I. Therefore, if an algorithm gives priority to the

tasks that lie on the critical path, the above tasks will get the highest priority. However,
II

after the task with task label C is scheduled, the new graph G (shown in Figure 17) has

a different critical path, namely, the tasks that lie on the path B, E, H, I. The Ranked

Weight heuristic takes advantage of this dynamically created critical path and gives

priority to the tasks that define the new critical path. Using the Ranked Weight heuristic,

the next task selected for scheduling (after tasks with labels A and Care scheduled) is

task B and therefore, tasks whose early execution does not contribute to the significant

progress are delayed until they become the highest priority task for execution at a later

point.

(2)

(3)

(4)

' Figure 16. Task graph G resulting from removal of task A in Figure 8

83

(2)

(3)

(4)

" Figure 17. Task graph G resulting from removal of task C in Figure 16

5.6.2 The Ranked Weight Algorithm

In this section, an informal description of the Ranked Weight algorithm is presented and

followed by several examples and a formal description. As discussed earlier, the labeling

introduced in Hu's algorithm in which tasks are divided into levels according to their

distance from the root, is known as the Critical Path or Highest Level First method. In

the case of general precedence graphs, we refer to this approach as the Latest Schedule

Partitioning (LSP). LSP produces layers of tasks according to the latest time a task can

be scheduled (see for example, Figure 11 in Section 5.3). It is also possible to partition

the task precedence graph according to a task's distance from the source. This will

produce layers of tasks according to the earliest time a task can be scheduled. We refer

to this partitioning as the Earlist Schedule Partitioning (ESP) (see Figure 12, Section 5.3).

The partitioning used by the algorithm presented in this section is based on the ESP

scheme.

84

The Ranked Weight algorithm operates by selecting a task that is at the highest level,

has the largest ranked weight, and whose predecessors all have finished execution. The

implicit priority rules embedded in the Ranked Weight algorithm are as follows. By

selecting tasks that are at the highest level, this algorithm takes advantage of the ESP

partitioning. By using the ranked weight of tasks, this approach has implicitly

incorporated several of the priorities discussed previously (namely, giving priority to

a) tasks with long execution times, b) tasks with largest number of immediate successors,

and c) tasks with successors that have long processing times).

The Ranked Weight algorithm takes as input two adjacency lists (defined below), the

ranked weight of each task (informally defined in the previous subsection and formally

defined below), and the level associated with each task. This information can be extracted

by a single pass through the graph. The ESP algorithm (presented in Section 5.4) was

used and augmented with necessary parameters to supply the required input. The ESP

algorithm uses the boolean connectivity matrix of the task graph (which is an upper

triangular matrix representing a DAG). The successor and predecessor sets required by

the ranked weight algorithm are readily available by the boolean matrix since the rows in

this matrix correspond to the immediate successors and the columns correspond to the

immediate predecessors of a given task. The ranked weights are calculated during the

same pass that determines the task layers.

One of the required input adjacency lists identifies the immediate successor(s) and the

other list identifies the immediate predecessor(s) of a task. The ranked weight, rw (ti),

of task ti is defined to be the sum of the weights of all descendants tasks of ti plus the

weight of task ti defined as follows

rw(ti) = w(ti) + (I: w(tj), for all t1 e {descendants of (ti)}).

The ranked weights are used as an urgency criterion for scheduling of the tasks.

Input: Listsucc : The successor adjacency list.

Listpred: The predecessor adjacency list.

Q [k] : A multilevel list with k levels.

level Cti) : The task system graph level associated with task ti.

Output: An assignment of tasks to processors.

Method:

Q [l] f- ~' 'V 1-:;1-:;k where k =number of levels in the graph.

Q [1] f- Q [1] u {source node}.

1) Let l =min{ level number, l', such that Q [/1 :;C~ },

t f- head of Q [l] ,

Schedule task ton the first, lowest indexed, available processor,

Q [l] f- Q [l]- {t}.

2) For all t' e Listsucdt] do

Listpred[t'] f- Listpred[t1- {t},

If Listpred[t1 = ~then

Insert t' in the sorted list Q [level (t')]

according to rw (t').

3) If Q [l] = ~. 'V 1-:; 1-:;k, then HALT,

else GO TO Step 1.

Figure 18. The Ranked Weight Algorithm

85

86

5.6.3 Algorithm Description

The predecessor adjacency list in this algorithm is used to identify the tasks that are

ready to be scheduled. A task is ready when its predecessor set is empty. The successor

adjacency list is used to identify the successors(s) of a task after its completion. The use

of the successor adjacency list eliminates the search involved in identifying ready tasks.

The urgency rule used in the scheduling of tasks involves the selection of the ready task

that is at the highest level (highest non-empty subqueue) and has the highest ranked

weight. Ties are broken by selecting the task that has the highest processing time. Ready

tasks are added to the subqueue with a subqueue number that corresponds to the task

level.

The Ranked Weight algorithm operates by threading the ready tasks (i.e., tasks whose

predecessor sets are empty) to the appropriate subqueue. The tasks in subqueues are

sorted based on the ranked weight of the tasks in each subqueue. Use of different

subqueues cuts down on the cost of ordering the ranked weights. Initially, the multilevel

queue Q, is empty. The Ranked Weight algorithm starts by placing the source node (the

task with no predecessors) in the first subqueue, Q [1]. Step one of the algorithm finds

the lowest indexed non-empty subqueue and schedules the task at the head of this

subqueue (task t) on the lowest indexed available processors and deletes task t from the

queue. Step two erases task t from the predecessor set of task t's successors. After this

' deletion, if any task t , ends up with an empty predecessor set (which means task t has

' ' been the only predecessor for t at that point), then t is added to the appropriate level in

' ' the Q that corresponds to the graph level fort , task t is now ready. Steps 1 and 2 of

the algorithm are repeated until all tasks are scheduled and Q [l] is empty for all

1 ~~ ~k.

The following example helps clarify the algorithm presented in this section. Let us

consider the precedence graph in Figure 8. Numbers in parentheses identify the level of

87

the tasks. TABLE IV shows the ranked weights rw(ti) and the expected processing

times, w(ti) of each task. Note that the tasks appear in sorted order based on the ranked

weight of the tasks.

TABLE IV
RANKED WEIGHT AND EXPECTED PROCESSING

TIMES OF THE TASKS IN FIGURE 8

A C BED H F G I

rw(ti) 76 42 34 27 26 24 18 12 4

w(ti) 4 16 5 3 2 20 14 8 4

The successor and predecessor adjacency lists of the graph in Figure 8 are shown in

Figure 19.

Initially, task A is added to subqueue one (the highest subqueue). After scheduling

and completion of task A, the successors of A are identified through the successor list as

tasks B and C, which serve as indices to the predecessor list. Task A is then deleted from

the predecessor lists of tasks B and C. This leaves tasks B and C with empty predecessor

lists and causes these tasks to be placed in subqueue two, Q [2], as ready tasks. Notice

that in the case of a task with multiple predecessors, the completion and subsequent

removal of, say, either task D orE alone from the predecessor set of task H does not

cause the placement of task H into the ready queue. The schedule corresponding to the

88

precedence graph of Figure 8 on two processors is shown in Figure 20. The schedule in

Figure 20 yields a makespan of Tp = 46. It should be mentioned that the above

algorithm does not guarantee optimality in all cases. However, it can yield optimal non­

preemptive schedules in some cases and some vary close to optimal schedules in other

cases. The shortest non-preemptive schedule length for the given graph is 45, with

sequencing tasks (A, B, D, C, F, I) on one processor and (E, H, G) on the other.

(a)

~G
(b)

~~ 0
~~ 0
~ 0
~ ~
~ ~
~ ~
~ ~0

~~0

Figure 19. Successor list (a) and predecessor list (b)

89

Anomalies related to list scheduling algorithms were discussed in Section 1.4. We

present a new anomaly in this type of scheduling in which the graph topology and the

total processing time required by the graph is unchanged but the schedule length changes

by rearranging some of the task processing times. Consider the task graph in Figure 8.

By exchanging the processing times of tasks D and F and those of tasks E and G, the

schedule length increases from 46 to 52. The schedule of the modified version of the task

graph in Figure 8 in shown in Figure 21. This schedule is optimal for this particular task

graph under non-preemption policy.

A c F G

B E D H

Figure 20. A schedule for the task system of Figure 8

A B D G F

c E

Figure 21. Schedule for the modified version of the task graph in Figure 8

90

Since finding the optimal schedule length on a case by case basis for a large number

of task graphs is not possible, in order to evaluate the performance of the ranked weight

algorithm, an approximation of the optimal schedule length is used in our evaluations.

The approximation used was the lower bound on the schedule length, LB. The lower

bound is calculated using the bounds defined in Section 5.2. For example, considering

the task graph given in Figure 8 (whose task processing times are given in TABLE N),

the sequential execution time for this graph is T8 = 76 and its critical path is Tc = 38.

Using the above data, LB = max{34, 30} + 8 = 42 for the task graph of Figure 8,

scheduled on two processors. Notice that in general T OPT ;?: LB. The schedule length

produced for the task graph of Figure 8 using the Ranked Weight algorithm is Tp = 46,

using two processors. Manual examination of all possible schedules for this task graph

yields an optimal schedule length of 45. However, since determining the optimal

schedule length for arbitrarily large task graphs is not possible, we use an approximation

of the optimal schedule length ToPT and define it as ToPT =LB. Using ToPT as the

optimal schedule length, the performance ratio Rp (A), for the graph in Figure 8, using

two processors is R 2 (Ranked Weight) = 1.09 which indicates a nine percent error in the

schedule length compared to the approximated optimal solution while the actual

deviation from the optimal solution for this particular schedule is two percent when we

consider T OPT = 45 instead of the approximation of ToPT = 42.

5.6.4 Performance Evaluation

In order to evaluate the performance of the Ranked Weight algorithm, performance

modeling studies were conducted. A wide range of task system graphs were considered

in this study that included randomized topologies as well as extreme cases involving

different graph widths and heights. We define the width of a task graph to be the size of

the independent task set (layer) with the largest number of tasks. The task graphs were

generated by a parameterized algorithm that we developed for controlling the width and

91

height of the graph and the number of tasks in each layer. The maximum out-degree of a

task could also be controlled in order to generate different graphs with different number

of immediate successors. After these acyclic graphs are generated, they are converted to

precedence graphs by removing the redundant paths. This is done to improve the run­

time of processing the task graphs for the purpose of our simulation studies only,

otherwise the produced schedules are not affected by removal of the redundant paths.

Removal of the redundant paths did not relax any precedence constraints.

5.6.4.1 Design Methodology

Task graphs are generated using the approach described in the previous subsection.

The generated graphs are partitioned into layers of independent serial tasks using the ESP

algorithm (described in Section 5.4) augmented with parameters that calculate the ranked

weight of tasks while partitioning the task system.

Two experiments evaluate the performance of the Ranked Weight algorithm. In one

experiment, the number of available processors is set to the width of the task system

graph. In the second experiment, the number of available processors is defined by a

random number as 2 ::::; p::::; width. There are six different groups of tasks involved in each

of the experiments. The first three groups involved task graphs with a number of tasks

ranging in 5 to 20 for the first group, 21 to 40 for the second group, and 41 to 60 for the

third group. The last three groups consisted of task graphs with a fixed number of tasks

each. The performance of the produced schedules was measured using the performance

ratio Rp(A), defined in Section 1.6.

5.6.4.2 Simulation Results

In each of the two experiments, 300 task· graphs are generated and scheduled for each

of the six different groups of task graphs. The first column in TABLE V and VI shows

the range of the number of tasks in each task group. The numbers in parentheses

92

represent the average number of tasks over all 300 task graphs generated in that group.

Columns 2 through 6 show the performance of the algorithm in comparison to ToPT

where e represents the error rate. None of the 3600 task graphs scheduled had an error

* rate of more than 25 percent compared toT OPT·

The rows in TABLE V and VI represent the degree of optimality of the produced

schedules. For example, in TABLE V, the row corresponding to task graphs with 5 to 20

tasks, 287 or 95.67 percent of the 300 task graphs produce an optimal schedule and 8 or

2.67 percent of the produced schedules are less than or equal to five percent longer than

the optimal schedule. In the case of task graphs with 100 tasks each, 39.67 percent of the

produced schedules indicate an optimal schedule length and 38 percent of the schedules

are within five percent of the error bound. The last row in each table shows the average

performance of all 1800 task graphs scheduled according to the error bounds in each

column.

Number

of tasks
n (Avg)

5-20(12)

21-40(31)

41-60(57)

80

100

200

Total%

TABLEV
RESULTS OF 300 RUNS WHEN THE NUMBER OF

PROCESSORS P =WIDTH

e=O O.O~e~O.OS 0.05~e~0.10 0.10~£~0.20 0.20$e<0.25
Number of Number of Number of Number of Number of
cases(%) cases {%) cases(%) cases(%) cases (%)

287(95.67) 8(2.67) 3(1.00) 1(0.33) 1(0.33)

229(76.33) 42(14.00) 18(6.00) 11(3.67) 0

174(58.00) 85(28.33) 26(8.67) 13(4.33) 2(0.67)

129(43.00) 114(38.00) 35(11.67) 20(6.67) 2(0.67)

119(39.67) 141(47.00) 28(9.33) 12(4.00) 0

63(21.00) 166(55.33) 25(8.33) 45(15.00) 1(0.33)

55.61% 30.89% 7.5% 5.66% 0.33%

93

TABLE V shows the results of the first experiment in which p =width of the graph.

The number of cases listed in the column where £ = 0 indicate the cases that yielded an

optimal schedule. As can be seen from this table, 55.61 percent of the 1800 task graphs

scheduled produced an optimal schedule. If an error bound of less than or equal to ten

percent is considered as an acceptable solution, then the degree of success of the

produced schedules rises to 94 percent (although in statistics, a 5% error bound is defined

to be the acceptable deviation, we believe it is permissible to relax this bound to 10%

because of the pessimistic approximation used in our measurements). In the case of the

groups of task graphs with a fixed number of tasks, the success rate was consistent with

the overall performance. For example, for the task graphs consisting of 100 tasks each,

96 percent of the produced schedules are within 10 percent error from the optimal

solution.

The lower bound, LB, used for measuring the degree of optimality of the produced

schedules in this research is achievable under preemptive scheduling. The Ranked

Weight algorithm is a non-preemptive scheduling algorithm and therefore produces

optimal schedules that in some cases are larger than LB. In other words, the produced

schedules for many of the cases that exhibit a larger error may indeed be the best non­

preemptive schedule that can be produced.

The results reported in TABLE VI show the case in which 2 S p S width of the graph.

The results of the second experiment are less attractive than the first experiment in which

p = width. However, these results are consistent with the performance of the best

heuristic algorithm for scheduling of dependent task systems, CP/MISF [Kasahara and

Narita 84] in which similar experiments using fewer than the required number of

processors produced longer schedule lengths compared to schedules produced using an

unlimited number of processors.

Number

of tasks
n (Avg)

5-20(12)

21-40(31)

41-60(57)

80

100

200

Total%

TABLE VI
RESULTS OF 300 RUNS WHEN THE NUMBER OF

PROCESSORS 2 ~ P~ WIDTH

£=0 0.0 s; £ s; 0.05 o.oss;esO.lO 0.10 s e S0.20 0.20SeS0.25
Number of Number of Number of Number of Number of
cases (%) cases (%) cases(%) cases (%) cases (%)

192(64.0) 38(12.67) 28(11.00) 33(11.00) 9(3.00)

91(30.33) 67(23.00) 69(23.00) 69(23.00) 4(1.33)

50(16.67) 93(31.00) 102(34.00) 53(17.67) 2(0.67)

47(15.67) 109(36.33) 96(32.00) 48(16.00) 0

41(13.67) 119(39.67) 93(31.00) 46(15.33) 1(0.33)

14(4.67) 111(37.00) 63(21.00) 111(37.00) 1(0.33)

24.16% 29.83% 25.05% 20.00% 0.94%

94

TABLE VI shows that a total of 53.99 percent of the cases are either optimal solutions

or are within five percent from the defined lower bound. If the acceptable error bound is

relaxed to ten percent, then the success rate goes up to 79.04 percent of cases. The

Ranked Weight algorithm produces very good schedules when there are enough

processors to run the tasks. In extreme cases that involve task systems with very large

number of tasks, it was shown that the ESPNL approach presented in Section 5.5 works

best.

5.7 Independent Path Scheduler

Two different approaches are presented in this dissertation so far that can be used for

scheduling of dependent task systems. Both of these approaches (Ranked Weight and

95

ESPNL) first divide the task system graph into layers of independent serial tasks.

Strengths of each approach and their suitability for particular scheduling problems were

discussed earlier. Both ESPNL and the Ranked Weight algorithms are suitable for

scheduling of task systems in a shared memory environment because no special efforts

are made in determining a particular processor to which a task is mapped. Therefore, the

communication cost arising from the random assignment of tasks to processors (in the

presence of intertask dependencies) in a distributed or private memory machine can offset

the gain in employing multiple processors for executing a job.

This section presents a new approach for partitioning of task system graphs called

Vertical Partitioning that can be used both for distributed and shared memory

environments. The objective of the Vertical Partitioning approach is to a) determine the

minimum number of processors necessary for maximum speed up and b) an assignment

and mapping of tasks to processors such that the communication cost is minimized. The

program representation used in Vertical Partitioning is the control flow graph model.

Tasks in this model are defined as sequential blocks of code with no branching into or out

of them except at the beginning and/or at the end. Each task also has a clearly defined

input and output. Given such a model, the number of independent paths or threads of

execution represent the maximal degree of parallelism. This number is referred to as the

nullity of the graph and is denoted by N. The nullity of a graph is defined as e -n + 2,

where e represents the number of the edges and n represents the number of nodes in a

graph [Berge 73] [Temperly 73]. Therefore, N represents the number of processors

necessary. However, we show that after devising a schedule for a given task system, it is

possible to optimize the number of required processors such that N ~ p.

Consider the task graph in Figure 13. The number of edges in this graph is e = 31 and

the number of nodes is n = 26. Using the formula N = e - n + 2, there are seven

independent paths in the graph of Figure 13. It is clear that these are not a set of unique

96

paths. Depending on the Vertical Partitioning approach used, different sets of

independent paths can be identified. We refer to each independent path as a vertical

partition (as opposed to "horizontal partitions" or "task layers" discussed in Section 5.4).

Each vertical partition may be viewed as a thread of execution. In scheduling the

resulting threads on a machine, the ideal situation is for the target machine to have as

many processors as the nullity of the graph corresponding to the program under

consideration. One possible vertical partitioning of the task graph in Figure 13 and its

schedule on seven processors is shown in Figure 22. It is worth mentioning that with

availability of the required number of processors, the schedule length will be the same

regardless of how the task graph is "sliced" vertically. Under such a condition, the

schedule length for vertical partitioning is Tp = Tc = T OPT and the shortest possible

schedule length is achieved. However, this assertion is true if the relative weight of the

communication costs at certain fork and join points within the graph are ignored. We

concentrate on this aspect shortly.

7
~~~~~~~~~~~~~~~~~~~~~ 

e~~~~r-~.---~~--~~~~~~~~~~~~~ 
s~~~~~~~~rL~~~~~~~~~~~~~ 
4 
~~~~~~~~~----~~~~~~~~ 

3
~~~~~~r-~_,~~~~~~~~~~~~ 

2 
1~~~~~==~r---.-~~~~~~~~~~~~~~ 

Figure 22. Vertical Partitioning of the task system graph in Figure 13 



97 

One simple optimization that can be done before a mapping of tasks to processors takes 

place is to reduce the number of required processors if possible. For example, for the 

schedule shown in Figure 22, it is possible to map the workload assigned to processors 2 

and 7 onto one processor. Therefore, the minimum number of processors required for 

maximum speed up in scheduling of this task system graph is six. The schedule length 

under this condition is the optimal schedule ToPT = Tc = 45. Further optimization of 

the number of required processors is possible by considering the precedence constraints 

in scheduling of the tasks in each thread. The new schedule for task graph in Figure 13 

(on six processors) is shown in Figure 23. 

8~~~~~~~--~--~--~~~~~~~~~~~~~~~ 
5~~~~~~"-"""""~~~--~~~~~~~~~~~~~~ 
4 
~~~~~""""~""~~~------~~~~~~~~~~~~ 

3
~~~""~~""~~--~~--~~~""""~""""~~~~~~~ 

2 
~~~~~~~~~--~--~-"~~~~~~~~~~~~~~ 

1

Figure 23. A schedule for the task system graph in Figure 13 on six processors

The communication overhead in vertical partitioning is only critical at two specific

points in the task system graph. We refer to these points as Fork and Join latches (F&J

latches). F-latches involve those tasks in the graph that have a fan-out degree of greater

than one. Analogously, J-latches involve those tasks that have a fan-in degree of greater

than one. For example, in the task graph of Figure 13, the task with label A is an F-latch

of degree three and the task with label Z is aJ-latch of degree four. Associated with each

edge in the graph is a cost that corresponds to the communication cost between the pair

of tasks that it connects.

98

In order to determine the independent threads of execution in a task graph, these

communication costs will have to be considered at F&J latches. For example in Figure

13, lets suppose that task G is the task at the head of a new thread. In order to determine

whether to choose tasks Land R or tasks M and S for the thread headed by F-latch G, the

weight of the out-going edges at the F-latch will have to be considered. Assuming that

the edge (G, L) is the more expensive edge, then Task M will itself be designated as the

first task of a ne.w thread. This type of partitioning minimizes the communication

overhead.

It is possible that the number of available processors for scheduling of a task system is

less than the nullity of the task graph. There are two possibilities under such a condition.

One possibility is to attempt to schedule the tasks such that the execution threads are

scheduled on the available processors without increasing the schedule length (for

example, see the schedules in Figures 22 and 23). If scheduling of the task system

without increasing the schedule length beyond the critical path length is not possible,

then multiple threads must be mapped to the same processor and scheduled sequentially.

Obviously, under such a condition we would like to provide a mapping that minimizes

the communication overhead. In order to assign more than one thread to the same

processor, we will have to concentrate on the F&J latches that minimize the

communication cost and at the same time increase the schedule length the least. As

describe in the beginning of this section, vertical partitioning can also be used for shared

memory machines effectively where many of the issues discussed about minimizing the

communication overheads are not a major concern.

CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Introduction

To speed up the execution of computer programs, different portions of the program

must be executed on separate processors. The problem of identifying parallel

processable components of a program is referred to as program partitioning. Each

identified partition, called a task, must be executed on a separate processor.

Multiprocessor scheduling is concerned with sequencing and scheduling of tasks on

processors with the objective of creating schedules with the shortest possible length.

Task systems can be divided into two classes of dependent and independent tasks.

Scheduling of independent tasks is concerned with producing shortest possible schedule

length without any consideration given to the order of execution of the tasks constituting

a task system. Dependent task system scheduling also is concerned with producing

schedules with shortest possible length however, in this type of scheduling, the

precedence constraints between pairs of tasks must be considered.

The main objective of this dissertation research is to investigate and consider a variety

of issues related to multiprocessor scheduling and to propose solutions for the scheduling

problem.

6.2Summary

The general problem of multip~essor scheduling is. a combinatorial optimization

problem and thus belongs to the family of NP-complete problems. Similar to other

99

100

problems belonging to the NP family, in order to solve the scheduling problem we must

resort to approximation algorithms that use heuristics for producing near-optimal

solutions. A survey of exact and heuristic multiprocessor scheduling algorithms is

presented through out this dissertation. Most exact algorithms that produce optimal

schedules owe their optimality to the restrictive constraints imposed on the task system

and/or the machine characteristics. Major characteristics of some of the major

scheduling algorithms reviewed as well as the algorithms developed in this dissertation

are shown in TABLE VII.

TABLE VII
CHARACfERISTICS OF SEVERAL MULTIPROCESSOR

SCHEDULING ALGORITHMS

No. of Pracas~<n Task Weight Precldlla PMmpllon Opllma

Algorfthm 2 >-2 1 >-1 0 TrM General v .. No Y• No

1 X X X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X

e X X X X X

7 X X X X X

8 X X X X X X

a X X X X X X

10 X X X X X

Algorithm a: i Varlant-Loeid R su e1] StRMkad Welgrt 2 LPT Johnaan • fill. 74) e umz 8nd Col'fmM g ESP/VL
3 oJ ~~~loS~ catmen ald Graham~ 1 , CP/MISF [Kasnra ald Nartta14J MuMh~ et 81. 78)

101

Computer programs were represented using graph models. A variety of graph

topologies were considered and solutions which yielded acceptable schedules were

presented and discussed. A near optimal scheduling algorithm is developed that can be

used for scheduling of independent serial tasks. Scheduling of dependent tasks systems is .

less trivial than scheduling of independent tasks. Dependent task systems are studied and

analyzed extensively. Three different approaches are presented for scheduling of

dependent task systems. Factors that affect the quality of such schedules include the

general task graph topology such as task graph height and width, number of tasks in each

graph level, and the task processing times. Machine characteristics that affect the

schedule length include the number of available processors and the particular nature of

the implementation platform. Two scheduling algorithms are developed that can be used

for task system scheduling for shared memory machines. A third approach is presented

for scheduling of dependent task systems in a private memory environment that

minimizes the communication costs and the number of required processors while

maximizing the speed up of execution.

The performance of the developed algorithms is compared to the best known

algorithms in the literature through simulation studies. It is shown that the developed

algorithms in this dissertation research do at least as well as the best-known algorithms

with a significantly lower run-time complexity. Another significant algorithm developed

in this research is an algorithm that can be used for identifying independent task sets in a

task system graph. The complexity of this algorithm is considerably better than the best

known algorithm for solving the same problem.

6.3 Contributions

The current research has made a number of significant contributions to the area of

multiprocessor scheduling. These contributions include the development of numerous

algorithms for scheduling of dependent and independent task systems that do as well as

102

or better than the best known algorithms while improving the complexity of the existing

algorithms. The ESP algorithm used for partitioning of the task system graphs has a

worst case complexity of 0 (n 2) compared to the best known algorithm, MBFS, that has

complexity 0 (n 3). The Ranked Weight algorithm developed in this research, for

scheduling of dependent task systems, demonstrate a performance comparable to the best

known algorithms in terms of the optimality of the produced schedules. The complexity

of the Ranked Weight algorithm is 0 (npk) where k is the number of layers in the graph

while its best known counter part, CP/MISF, has a run time complexity of 0 (n 2 + pn).

An algorithm is developed for scheduling of independent serial tasks, Variant-Load

algorithm. The performance of this algorithm is compared to three other algorithms,

LPT, Multifit, and D & F. The performance of this algorithm is at least as good as the

three algorithms it is compared to. The complexity of the Variant-Load algorithm is

0 (np 2) in the worst case while its counter part, D & F has a complexity of

0 (log2 (nl p)) for the first phase and 0 (n 2 I p 2) for its optimizing phase.

A new task graph partitioning approach is developed which takes the communication

cost of task executions into consideration and is therefore suitable for distributed

environments. This approach can determine the minimum number of processors

necessary for maximum speed up.

6.4 Future Work

A number of new and promising ideas have been developed and presented in this

dissertation. The basic foundation for most of the future work has been established. The

scheduling algorithms presented in this dissertation use the task processing times for

creating static schedules. A major disadvantage in devising static schedules arises in

situations in which the actual processing time of tasks at run time differ from the

predicted ones. Under such conditions mechanisms for processor synchronization are

103

necessary in order to ensure program correctness. One component of the future work for

this research involves developing strategies that allow for processor synchronization at

run time for the developed algorithms. It has been already shown how such

synchronization can be performed for the ESP/VL approach in which tasks are scheduled

in separate waves and therefore run-time synchronization becomes quite manageable.

We are interested in developing strategies for maintaining the precedence relationships

between the tasks when using the Ranked Weight approach, in order to provide processor

synchronization.

As mentioned above, the Ranked Weight algorithm is developed for creating static

schedules. However, this algorithm could be adapted such that the compile time

estimates are used for determining the ranked weights while the actual dispatching of

tasks take place at run time. Under this new technique the tasks whose predecessors

finish execution will enter a scheduling queue. The ranked weights can now be used as a

priority for run-time scheduling. There are two feasible approaches to implement this

scheme. One approach involves providing operating system support to perform the task

of dispatching of ready tasks. The second approach involves embedding synchronization

constructs in tasks at the time of compilation. This approach is referred to as auto­

scheduling or self-scheduling [Polychronopoulos 88]. Refinements needed for

developing such a priority based scheduler include investigation of the overhead involved

in operating system intervention if operating system support is employed for the

implementation of this scheme, and developing synchronization mechanisms and

constructs for auto-scheduling for compiler support.

The current research has concentrated on optimizing schedules at the program level.

No attempts have been made at the global level in order to increase the processor

utilization. When executing a devised schedule for a task system, it is very likely that

some of the processors allocated to a job at time to will be idle until a later time ti. The

104

same scenario holds for processors that are released at time tj while the last processor to

finish execution will not finish until time tko j < k.

It would be helpful to consider a meta-scheduler that attempts to optimize the system­

wide schedule by trying to fit the "jagged ends" of the individual job schedules together

and/or switch the assigned work to different processors in order to maximize processor

utilization and increase the system throughput.

REFERENCES AND SELECTED BIBLIOGRAPHY

[Agrawal and Jagadish 88] P. Agrawal and H. V. Jagadish, "Partitioning Techniques
for Large-Grained Parallelism," Proceedings of the 7th International Phoenix
Conference on Computers and Communication, Mar. 1988, Scottsdale, AZ.,
pp. 31-38.

[Allen and Kennedy 82] J. R. Allen and K. Kennedy, "PFC: A Program to Convert
Fortran to Parallel Fortran," Technical Report MASC-TR82-6, Rice University,
Houston, TX, March 1982.

[Amdahl67] G. M. Amdahl, "Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities," AFIPS Computer Science
Conference, Vol. 30, 1967.

[Ammarguellat 90] Z. Ammarguellat, "A Control-Flow Normalization Algorithm
and its Complexity," Technical Report CSRD-1024, Center for
Supercomputing Research and Development, University of Illinois, Urbana, IL.
Jun. 1990.

[Axford 89] T. Axford, Concurrent Programming: Fundamental Techniques for '"'
Real-Time and Parallel Software Design, John Wiley & Sons Ltd., Chichester,
England, 1989.

[Bacon and Storm 91] D. F. Bacon and R. E. Storm, "Optimistic Parallelization of
Communicating Sequential Processes," Proceedings of the Third ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP), Williamsburg, VA, 1991, pp. 155-166.

[Baer 73] J. L. Baer, "A Survey of some Theoretical Aspects of Multiprocessing,"
Computing Survey, Vol. 5, No. 1, March 1973, pp. 31-80.

[Berge 73] Graphs and Hypergraphs, Amsterdam, The Netherlands, North-Holland,
9173.

[Bernstein 66] A. J. Bernstein, "Analysis of Programs for Parallel Processing," IEEE
Transactions on Computers, Vol. EC-15, No.5, Oct. 1966, pp. 757-762.

[Bodin 83] L. Bodin, "Routing and Scheduling of Vehicles and Crews," Computers
and Operations Research, Vol. 10, No. 2, 1983.

[Brown 71] A. R. Brown, Optimum Packing and Depletion, Elsevier Press, New
York, 1971.

[Burke and Cytron 86] M. Burke, and R. Cytron, "Inter-procedural Dependence
Analysis and Parallelization," Proceedings of the I986 Compiler Construction
Conference, August 1986, pp. 52-64.

105

106

[Carey 89] G. F. Carey (Ed.), Parallel Supercomputing: Methods, Algorithms and
Applications, John Wiley & Sons Ltd., Chichester, England, 1989.

[Cheng 89] T. C. E. Cheng, "A Heuristic for Common Due Date Assignment and
Job Scheduling of Parallel Machines," Journal of the Operational Research
Society, No. 40, 1989, pp. 1129-1135.

[Cheng and Sin 90] T. C. E. Cheng and C. C. S. Sin, "A State-of-the-Art Review of
Parallel-Machine Scheduling Research," European Journal of Operational
Research, Vol47, Elsevier Science Publishers, North-Holland, 1990, pp. 217-
292.

[Coffman 66] E. G. Coffman, "Stochastic Models of Multiple and Time Shared
Computer Operations," Ph.D. Dissertation, Department of Electrical
Engineering, University of California, Los Angeles, CA. 1966.

[Coffman 67] E. G. Coffman, "Bounds on Parallel Processing of Queues with
Multiple Jobs," Naval Research Logic Quarterly, Vol. 14, Sept. 1967, pp.
345-366.

[Coffman 76] E. G. Coffman (Ed.), Computer and Job-Shop Scheduling Theory,
John Wiley and Sons, New York, 1976.

[Coffman and Denning 73] E. G. Coffman and P. J. Denning, Operating Systems
Theory, Prentice-Hall Publishing Co., N. J., 1973.

[Coffman and Graham 72] E. G. Coffman, and R. L. Graham, "Optimal Scheduling
for Two-Processor Systems," Acta Informatica, Vol. 1, No.3, 1972, pp. 200-
213.

[Coffman et al. 84] E. G. Coffman, M. R. Garey, and D. S. Johnson, "Approximation
Algorithms for Bin-Packing - An Updated Survey," in Algorithm Design for
Computer System Design, G. Ausiello, M. Lucertini, and P. Serafini (Eds.),
Springer-Verlag New York, 1984, pp. 49-106.

[Coffman and Gilbert 85] E. G. Coffman and E. N. Gilbert "On the Expected
Relative Performance of List Scheduling." Operations Research, No. 33, 1985,
pp. 548-561.

[Coffman et al. 78] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, "An
Application of Bin-Packing to Multiprocessor Scheduling," SIAM Journal of
Computing, Vol. 7, No. 1, Feb. 1978, pp. 1-17.

[Conway 63] M. Conway, "A Multiprocessor System Design," Proceedings of the
AFIPS Fall Joint Computer Conference, 1963, pp. 139-146.

[Conway et al. 67] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of
Scheduling, Addison-Wesley Publishing Co., Reading, MA, 1967.

[Cook 71] S. A. Cook, "The Complexity of Theorem-Proving Procedures,"
Proceedings of the Third Annual ACM Symposium on the Theory of
Computing, 1971, pp. 151-158.

[Cytron et al. 90] R. Cytron, J. Ferrante, and V. Sarkar, "Experiences Using Control

107

Dependence in PTRAN, 11 in Languages and Compliers for Parallel Computing,
D. Gelernter, A. Nicolau and D. Padua (Ed.), The MIT Press, Cambridge,
Mass. 1990, pp. 186-412.

[Davis 73] E. W. Davis, 11Project Scheduling under Resource Constraints -
Historical Review and Categorization of Procedures, .. AilE Transactions, Vol.
5, No.4, 1973, pp. 297-313.

[De and Morton 80] P. De and T. E. Morton, .. Scheduling to Minimum Makespan
on Unequal Parallel Processors, .. Decision Science, No. 11, 1980, pp. 586-602.

[de Bakker 89] J. W. de Bakker (Ed.), Languages for Parallel Architectures:
Design, Semantics, Implementation, Models, John Wiley & Sons Ltd.,
Chichester, England, 1989.

[Dennis 68] J. B. Dennis, .. Programming Generality, Parallelism and Computer
Architecture, .. Proceedings of the IFIP Congress 1968, North Holland,
Amsterdam, The Netherlands, pp. 1-7.

[Desrochers 87] G. R. Desrochers, Principles of Parallel and Multiprogramming,
Intertext Publishing Co., McGraw-Hill Publishing Co., New York, N.Y., 1987.

[Dogramasi and Surkis 79] A. Dogramasi and J. Surkis, .. Evaluation of a Heuristic
for Scheduling Independent Jobs on Parallel Identical Processors, ..
Management Science, No. 23, 1979, pp. 1208-1216.

[Dreifus 58] P. Dreifus, .. System Design of the GAMMA-60 Computer, ..
Proceedings of the 1958 Western Joint Computer Coriference, Spartan Books,
New York, pp. 130-133.

[Dror and Stern 87] M. Dror and H. I. Stern, 11Parallel Machine Scheduling:
Processing Rates Dependent on Number of Jobs in Operation, .. Management
Science, No. 33, 1987, pp. 1001-1009.

[Dumond and Mabert 88] J. Dumond and V. A. Mabert, .. Evaluating Project
Scheduling and Due date Assignment Procedures: An Experimental Analysis, ..
Management Science, Vol34, No. 1, Jan. 1988, pp. 101-118.

[Ein-Dor 85] P. Ein-Dor, .. Grosch's Law Revisited, .. Communications of the ACM,
Vol. 28, No.2, Feb. 1985, pp. 142-151.

[Eisemann 57] K. Eisemann, 11The Trim Problem, .. Management Science, No. 3,
1957, pp. 279-281.

[Emrath 89] P. Emrath, .. Program Laborious, .. UNIX Review, April1989, pp. 51-60.

[Emrath et al. 88] R. Emrath, D. Padua, and P. C. Yew, 11Cedar Architecture and its
Software, .. Technical Report No. 796, Center for Supercomputing Research
and Development, University of Illinois, Urbana, IL, 1988.

[Estrin and Turner 63] G. Estrin and R. Turner, .. Automatic Assignment of
Computations in a Variable Structure Computer System, .. IEEE Transactions
on Electronic Computers, Vol. EC-12, Dec. 1963, pp.756-773.

108

[Feitelson and Rudolph 90] D. G. Feitelson and L. Rudolph, "Distributed
Hierarchical Control for Parallel Processing," Computer, Vol. 23, No. 5, May
1990, pp. 65-78.

[Ferrante et al. 83] J. K. Ferrante, K. Henstein, and J. Warren, "The Program
Dependence Graph and its Uses in Optimization," IBM Technical Report RC
10208, August 1983.

[Flynn 72] M. J. Flynn, "Some Computer Organizations and Their Effectiveness,"
IEEE Transactions on Computers, Vol. C-21, No.9, Sept. 1972, pp. 948-960.

[Franklin 78] M. A. Franklin, G. S. Graham, and R. K. Gupta, "Anomalies with
Variable Partition Paging Algorithms," CACM, Vol. 21, No. 3, 1978, pp.
232-236.

[Gehani and McGettrick 88] N. Gehani and A. D. McGettrick, Concurrent
Programming, Addison Wesley Publishing Co., Reading, MA, 1988.

[Gill 58] S. Gill, "Parallel Programming," Computer Journal, Vol. 1, April 1958,
pp. 2-8.

[Gilmore and Gomory 61] P. C. Gilmore and R. E. Gomory "A Linear
Programming Approach to the Cutting Stock Programs," Operations Research,
Vol. 9, 1961, pp. 849-859.

[Girkar and Polychronopoulos 88] M. Girkar, and C. Polychronopoulos,
"Partitioning Programs for Parallel Execution," Proceedings of 1988 ACM
International Conference on Supercomputing, St. Malo, France, July 1988, pp.
216-229.

[Glenbe 89] E. Glenbe, Multiprocessor Performance John Wiley & Sons Ltd.,
Chichester, England, 1989.

[Gonzalez 77] M. J. Gonzalez, "Deterministic Processor Scheduling," ACM
Computing Survey, No. 9, 1977, pp. 173-204.

[Gonzalez and Ramamoorthy 71] M. J. Gonzalez and C. V. Ramamoorthy,
"Program Suitability for Parallel Processing," IEEE Transactions on
Computers, Vol. C-20, June 1971, pp. 647-654.

[Gosden 66] J. A. Gosden, "Explicit Parallel Processing Description and Control in
Programs for Multi- and Uni-Processor Computers," Fall Joint Computer
Science Conference, Vol. 29, 1966, pp. 651-660.

[Graham 69] R. L. Graham, "Bounds on Multiprocessor Timing Anomalies," SIAM
Journal of Applied Mathematics, Vol. 17, No.2, Mar. 1969, pp. 416-429.

[Graham 76] R. L. Graham, Bounds on the Performance of Scheduling Algorithms,
Computer and Job/Shop Scheduling Theory, (E. G. Coffman, Ed.), John Wiley,
New York, 1976.

[Guan and Langston 91] X. Guan and M. A. Langston, "Time-Space Optimal
Merging and Sorting," IEEE Transactions on Computers, Vol. 40, No.5, May
1991, pp. 596-602.

109

[Ha and Lee 91] S. Ha and E. A. Lee, "Compile-Time Scheduling and Assignment
of Data-Flow Program Graphs with Data-Dependent Iterations," IEEE
Transactions on Computers, Vol. 40, No. 11, Nov. 1991, pp. 1225-1238.

[Hirschberg 82] D. S. Hirschberg, "Parallel Graph Algorithms without Memory
Conflicts," Proceedings of the 20th Allerton Conference, 1982, pp. 257-263.

[Hockney and Jesshope 81] R. W. Hockney and C. R. Jesshope; Parallel
Computers, Hilger Press, Bristol, 1981.

[Hu 61] T. C. Hu, "Parallel Sequencing and Assembly Line Problems," Operations
Research, Vol. 9, Nov.-Dec. 1961, pp. 841-848.

[Hwang and Briggs 84] K. Hwang and F. A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill Publishing Co., New York, N.Y., 1984.

[Hwang and DeGroot 89] K. Hwang and D. DeGroot, Parallel Processing and
Supercomputers and Artificial Intelligence, McGraw-Hill Series in
Supercomputing and Parallel Processing, McGraw-Hill Publishing Co., New
York, N.Y., 1989.

[Johnson 73] D. S. Johnson, "Near-Optimal Bin Packing Algorithms," Doctoral
Dissertation, MIT, Cambridge, MA., 1973.

[Johnson et al. 74] D. S. Johnson, A. Demers, J.D. Ullman, M. R. Garey, and R. L.
Graham, "Worst-Case Performance Bounds for Simple One-Dimensional
Packing Algorithms," SIAM Journal of Computing, Vol. 3, No.4, December
1974, pp. 299-326.

[Kalos 87] M. H. Kalos "Monte Carlo Methods and the Computers of the Future,"
Supercomputers, Algorithms, Architectures, and Scientific Computation, Edited
by F. A. Matsen and T. Tajima, University of Texas Press, 1987.

[Karin and Smith 87] S. Karin and P. N. Smith, The Supercomupter Era, Hartcourt
Brace Jovanovich Publishers, Boston, MA.,1987.

[Karp and Flatt 90] A. H. Karp and H. P. Flatt, "Measuring Parallel Processing
Performance," CACM, Vol. 33, No.5, May 1990, pp. 539-543.

[Kasahara and Narita 84] H. Kasahara and S. Narita, "Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel Processing," IEEE Transactions
on Computers, Vol. C-33, No. 11, Nov. 1984, pp. 1023-1029.

[Keller 70] R. M. Keller, "On Maximally Parallel Program Schemata," Proceedings
of the 11th Symposium on Switching and Automata Theory, 1970, pp. 33-50.

[Kuck 78] D. J. Kuck, The Structure of Computers and Computations, John Wiley
& Sons, New York, NY, 1978.

[Kuck et al. 80] D. Kuck, R. Kuhn, B. leasure, and M. Wolfe, "The Structure of an
Advanced Vectorizer for Pipelined Processors," Proceedings of the 4th
International Computer Software and Application Coriference, October 1980,
pp. 709-715.

110

[Kuck, et al. 86] D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sameh,
"Parallel Supercomputing Today and the Cedar Approach," Science, Vol. 231,
No. 4740, Feb. 1986, pp. 967-974.

[Kwan et al. 90] A. W. Kwan, L. Bic, and D. D. Gajski, "Improving Parallel
Program Performance Using Critical Path Analysis," In Languages and
Compilers for Parallel Computing, D. Gelemter, and A. Nicolau (Eds.), The
MIT Press, 1990, pp. 358-373.

[Lea 87] R. M. Lea, "An Overview of the Influence of Technology on Parallelism,"
Major Advances in Parallel Processing, Edited by C. Jesshope, 1987, pp. 3-
12.

[Li and Yew 88] Z. U and P. C. Yew, "Interprocedural Analysis for Parallel
Computing," Technical Report No. 734, Center for Supercomputing Research
and Development, University of Illinois, Urbana, IL, 1988.

[Li and Yew 1990] Z. U and P. C. Yew, "Some Results on Exact Data Dependence
Analysis," in Languages and Compliers for Parallel Computing, D. Gelemter,
A. Nicolau and D. Padua (Ed.), The MIT Press, Cambridge, Mass. 1990, pp.
374-401.

[Lo et al. 90] V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. Mohamed, and J.
Telle, "ORIGAMI: Software Tool for Mapping Parallel Computations to
Parallel Architectures," Technical Report CIS-TR-89-18, Department of CIS,
University of Oregon, Eugene, OR. Jan. 1990.

[Long and Clarke 89] D. L. Long and L. A. Clarke, "Task Interaction Graphs for
Concurrency Analysis," Proceedings of the 11th International Conference on
Software Engineering, 1989, pp. 44-52.

[McGreary and Gill89] C. McGreary and H. Gill, "Automatic Determination of
Grain Size for Efficient Parallel Processing," CACM, Vol. 32, No. 9, Sept.
1989,pp. 1073-107R

[McNaughton 59] R. .11cNaughton, "Scheduling with deadlines and Loss
Functions"' Management Science, Vol. 6, Jan. 1959, pp.1-12.

[Midkiff et al. 1990] S. P. Midkiff, D. A. Padua, and R. Cytron, "Compiling
Programs with User Parallelism," in Languages and Compliers for Parallel.
Computing, D. Gelemter, A. Nicolau and D. Padua (Ed.), The MIT Press,
Cambridge, Mass. 1990, pp. 402-422.

[Minsky 70] M. Minsky, "Form and Computer Science," ACM Turing Lecture,
JACM, Vol. 17, No.2, February 1970, pp. 197-215.

[Muntz and Coffman 69] R. R. Muntz and E. G. Coffman, "Optimal Multiprocessor
Scheduling on Two-Processor Systems," IEEE Transactions on Computers,
Vol. C-18, No. 11, Nov. 1969, pp. 1014-1020.

[Muraoka 71] Y. Muraoka, "Parallelism Exposure and Exploitation in Programs,"
Ph.D. Dissertation, Department of Computer Science, University of Illinois,
Urbana-Champaign, IL. 1971.

111

[Neilsen 85] T. N. Neilsen, "Combinatorial Bin Packing Problems," Doctoral
Dissertation, The University of Arizona, Tucson, AZ, 1985.

[Noronha and Sarma 91] S. J. Noronha and V. V. S. Sarma, "Knowledge-Based
Approach for Scheduling Problems: A Survey," IEEE Transactions on
Knowledge and Data Engineering, Vol. 3, No.2, Jun. 1991, pp. 160-171.

[Murgolo 85] F. D. Murgolo, "Approximation Algorithms for Combinatorial
Optimization Problems," Doctoral Dissertation, University of California at
Irvine, 1985.

[Peterson 85] V. L. Peterson, "Use of Supercomputers in Computational
Aerodynamics," Proceedings of the 1985 Science and Engineering Symposium,
Cray Research Inc., Minneapolis, 1985.

[Polychronopoulos 86] C. D. Polychronopoulos, "On Program Restructuring,
Scheduling, and Communication for Parallel Processor Systems," Ph.D.
Dissertation, Computer Science Department, University of Illinois at Urbana­
Champaign, Champaign, IL, 1986.

[Polychronopoulos 88] C. Polychronopoulos, Parallel Programming and
Compilers, Kluwer Academic Publishing, Norwel, MA, 1988.

[Qin et al. 91] B. Qin, H. A. Sholl, and R. A. Ammar, "Micro Time Cost Analysis of
Parallel Computations," IEEE Transactions on Computers, Vol. 40, No. 5,
May 1991, pp. 613-628.

[Ramamoorthy 66] C. V. Ramamoorthy, "Analysis of Graphs by connectivity
considerations," JACM, Vol. 13, No.2, April1966, pp. 211-222.

[Ramamoorthy and Gonzales 69] C. V. Ramamoorthy and M. J. Gonzalez, "A
Survey of Techniques for Recognizing Parallel Processable Streams in
Computer Programs," Proceedings of the AFIPS Fall Joint Computer
Conference, 1969, pp. 1-15.

[Ramanan 84] P. V. Ramanan, "Topics in Combinatorial Algorithms," Doctoral
Dissertation, University of Illinois, Urbana, IL, 1984.

[Rothkopf 66] M. A. Rothkopf, "Scheduling Independent Tasks on Parallel
Processors," Management Science, Vol. 12, Jan 1966, pp. 437-447.

[Russel69] E. C. Russel, Automatic Program Analysis," Ph. D. Dissertation,
Department of Electrical Engineering, University of California, Los Angeles,
CA., 1969.

[Sahni 76] S. Sahni, "Algorithms for Scheduling Independent Tasks," JACM, No.
23, 1976,pp. 116-127.

[Sahni 77] S. Sahni, "General Techniques for Combinatorial Approximation,"
Operations Research, Vol. 27, 1977, pp. 920-927.

[Saltz et al. 91] J. R Saltz, R. Mirchandaney, and K. Crowley, "Run-Time
Parallelization and Scheduling of Loops," IEEE Transactions on Computers,
Vol. 40, No. 5, May 1991, pp. 603-612.

112

[Samadzadeh 91] Farideh A. Samadzadeh, "Implementation of Cooperating and
Competing Algorithms on Sequent S81," The 29th ACM Southeast Regional
Conference, Auburn, Alabama, April1991, pp. 356-358.

[Samadzadeh and Hedrick 91a] F. Samadzadeh and G. E. Hedrick, "Near-Optimal
Multiprocessor Scheduling," The Proceedings of The 1992 ACM Computer
Science Conference, Kansas City, MO. 1992, pp. 477-484.

[Samadzadeh and Hedrick 91b] F. Samadzadeh and G. E. Hedrick, "A Heuristic
Multiprocessor Scheduling Algorithm for Creating Near-Optimal Schedules
Using Task System Graphs," The Proceedings of The 1992 ACM Symposium
on Applied Computing, Kansas City, MO. 1992, pp. 711-718.

[Sarkar91] V. Sarkar, "PTRAN: The ffiM Parallel Translation System," in Parallel
Functional Languages and Compilers, B. K. Szymanski (Ed.), Addison­
Wesley Publishing Co., Reading, MA, 1991.

[Seiworek 89] D. Sieworek, "Complex Tasks, Higher Powers," UNIX Review, April
1989, pp. 40-49.

[Sevcik 89] K. C. Sevcik, "Characterization of Parallelism in Applications and Their
Use in Scheduling," Performance Evaluation Review, Vol. 17, No. 1, May
1989, pp. 171-180.

[Shang and Fortes 91] W. Shang and J. A. B. Fortes, "Time Optimal Linear
Schedules for Algorithms with Uniform Dependencies," IEEE Transactions on
Computers, Vol. 40, No.6, Jun. 91, pp. 723-742.

[Shen et al. 90] Z. Shen, Z. Li, and P. C. Yew, "An Empirical Study of Fortran
Programs for Parallelizing Compilers," Technical Report No. 983, Center for
Supercomputing Research and Development, University of lllinois, Urbana, IL,
April1990.

[Skedzielewski and Glauert 85] S. Skedzielewski and J. Glauert, "IF1 - An
Intermediate Form for Applicative Languages," Manual M-170, Lawrence
Livermore National Laboratory, Livermore, CA. July 1985.

[Skvarcius and Robinson 86] R. Skvarcius and W. B. Robinson, Discrete
Mathematics with Computer Science Applications, Benjamin/Cummings
Publishing Co. Melno Park, CA, 1986.

[Temperly 81] H. N. V. Temperly, Graph Theory and Applications, Ellis Horwood
Series in Mathematics and Its Applications, England, 1981.

[Terrano, et al. 89] A. E. Terrano, S. M. Dunn, and J. E. Peters, "Using and
Architectural Knowledge Base to Generate Code for Parallel Computers,"
CACM, Vol. 32, No.9, Sept. 1989, pp. 1065-1072.

[Towsley et al. 90] D. Towsley, C. G. Rommel, and J. A. Stankovic, "Analysis of
Fork-Join Program Response Time on Multiprocessors," IEEE Transactions on
Parallel and Distributed Systems, Vol. 1, No. 3, July 1990, pp. 286-303.

[Trelevin 90] P. C. Trelevin, Ed., Parallel Computers: Object-Oriented, Functional,
Logic, John Wiley and Sons, New York, N. Y., 1990.

113

[Uht 91] A. K. Uht, "A Theory of Reduced and Minimal Procedural Dependencies,"
IEEE Transactions on Computers, Vol. 40, No.6, Jun. 91, pp. 681-692.

[Uht et al. 87] A. K. Uht, C. D. Polychronopoulos, and J. F. Kolen, "On the
Combination of Hardware and Software Concurrency Extraction Methods,"
Technical Report No. 694, Center for Supercomputing Research and
Development, University of Illinois, Urbana, ll..., 1987.

[Ullman 67] S. D. Ullman, "Complexity of Sequencing Problems," in Computers
and Job-Shop Scheduling, E. G. Coffman, Ed., John Wiley and Sons, N. Y.,
1967.

[Volansky 70] S. A. Volansky, "Graph Model Analysis and Implementation of
Computational Sequences," Ph.D. Dissertation, Department of Electrical
Engineering, University of California, Los Angeles, CA. 1970.

[Waltz 87] D. L. Waltz, "Applications of the Connection Machine," Computer, Vol,
20, No. 1, Jan. 1987, pp. 85-99.

[Wang and Gannon 89] K. Wang and D. Gannon, "Applying AI Techniques to
Program Optimization for Parallel Computers," In Parallel Processing for
Supercomputers and Artificial Intelligence, K. Hwang and D. DeGroot (Eds.),
McGraw-Hill Series in Supercomputing and Parallel Processing, McGraw-Hill
Publishing Co., New York, N.Y., 1989.

[Warshall62] S. Warshall, "A Theorem on Boolean Matrices," JACM, Vol. 3, No.
1, Jan. 1962, pp. 11-12.

[Wilhelmson 87] R. Wilhelmson, (Ed.), High Speed Computing: Scientific
Applications and Algorithm Design, University of Illinois Press, 1987.

[Williams 89] S. A. Williams, Programming Models for Parallel Systems, John
Wiley & Sons Ltd., Chichester, England, 1989.

[Wolfe 82] M. Wolfe, "Optimizing Supercompilers for Supercomputers," Ph.D.
Dissertation, Department of Computer Science, University of Illinois, Urbana­
Champaign, ll...., Report No. UIUDCS-R-82-1105, 1982

[Wouk 86] A. Wouk (Ed.) Parallel Processing and Medium-Scale Multiprocessing
Siam, Philadelphia, PA, 1986.

VITA~

Farideh Ansari-Jafari Samadzadeh

Candidate for the Degree of

Doctor of Philosophy

Thesis: SCHEDULING ALGORITHMS FOR PARALLEL EXECUTION OF
COMPUTER PROGRAMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Tehran, Iran, January 22, 1957.

Education: Bachelor of Arts in Public Relations and Social Affairs from the
College of Mass Communication, Tehran, Iran in May 1979; Master of
Science in Interpersonal and Intercultural Communication from University
of SW Louisiana, Lafayette, Louisiana in December 1982; Master of
Science in Computer Science from The Center for Advanced Computer
Studies, University of SW Louisiana, Lafayette, Louisiana in May 1987;
completed the requirements for the degree of Doctor of Philosophy at
Oklahoma State University in July 1992.

Professional Experience: Instructor of English as a second language,
Shokouh's English Institute, Tehran, Iran, December 1975 to July 1979;
Teaching Assistant, Communication Department, University of SW
Louisiana, Lafayette, Louisiana, August 1980 to May 1982;
Teaching/Research Assistant, The Center for Advanced Computer Studies,
University of SW Louisiana, August 1986 to May 1987; Lecturer/Instructor
of Computer Science, Computer Science Department, Oklahoma State
University, Stillwater, Oklahoma, January 1988 to June 1992, Assistant
Research Computer Scientist, Computer Science Department, Oklahoma
State University, Stillwater, Oklahoma, July 1992- present.

Professional Organizations: Voting member of the Association of Computing
Machinery (ACM), member of the Scientific Research Society Sigma Xi.

