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CHAPTER I 

INTRODUCTION 

Technological advances have produced significant changes in the field of computing. 

There are indications that by the end of this millennium, fundamental limitations (e.g., 

the speed of light) will have been encountered in circuit design [Seiworek 89] [Lea 87]. 

To attain higher processing speeds, computations must be moved to machines with 

multiple processors in order to defeat these physical limitations. Developing software for 

such machines generally can be classified as parallel programming. Parallel 

programming imposes certain constraints on computations which must be dealt with by 

both the future machines and programs (languages). 

The term parallel processing refers to the class of activities in which two or more 

processes execute on two or more processing elements simultaneously. It is possible for 

the involved processes to belong to different computations or to the same computation. 

In the former case, parallel processing helps only in increasing the overall throughput of 

the system. In latter case parallel processing allows for the realization of speed-up in the 

computation of a single program. Informally, parallelism can be defined as doing more 

than one thing at once. Other similar interpretations of parallelism are: performing n 

activities at once; carrying out one activity in n simultaneous parts; or doing n different 

activities staggered in a time frame [Desrochers 87]. The term "parallel events" is 

defined as the occurrence of events during the same interval, whereas the term 

"simultaneous events" is defined as occurrence of events at the same instant [Hwang and 

Briggs 84]. 

1 
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Parallel processing has been a topic of interest for decades. There exist in the 

literature proposals for parallel architectures as early as 1945 [Hockney and Jesshope 81]. 

Language aspects of parallel programming have been investigated also for over three 

decades [Conway 63] [Gill 58] [Dreifus 58]. The concept of parallelism is not new. 

John von Neumann initially envisioned a parallel architecture but abandoned the idea 

because of the unreliability and bulkiness of the technology of the time [Hockney and 

Jesshope 81]. Parallelism in practice is not a new topic either. Since the early 1970's, 

with the third generation architectures, additional processors (satellite processors or 

input/output channels) have been employed to improve the efficiency of the central 

processing unit. Later developments in parallel processing resulted in the introduction of 

array processors and vector processors and the employment of pipelining in these 

architectures to speed up computations further. 

With the advent of local area networks in the 1980's, distributed environments 

provided higher availability and reconfigurability which proved to be a promising field 

for attaining high performance computing. It is anticipated that the very high 

performance environments of the future will employ and integrate distributed processing, 

array processing and multiprocessing in order to take advantage of the best of what each 

of these approaches have to offer [Glenbe 91]. Although Amdahl's law [Minsky 70] 

[Amdahl 67] presents arguments against large systems, the limitations of the architectural 

and physical ingredients must be taken into consideration. Some typical limitations 

include the speed of light, the distances that cannot be shorter than certain possible 

lengths, and the component sizes. Unless radical and new technologies such as optics or 

superconductors are realized, semiconductor technology is reaching its peak 

performance. Therefore, it is the multiprocessing capability that offers unlimited 

computing speed. 

Advances in hardware design and subsequent availability of high-speed computing 
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power at reasonable cost seems to have accelerated the research in parallel programming 

to some extent. Unfortunately, the same trend observed in the late sixties, signified by a 

widening gap between rapid advances in hardware development and the relatively slow 

rate of progress in software development, can be observed today when one studies the 

progress in delivery of parallel processing hardware to the market and the software tools 

and techniques that can harness this new computing power. In fact, most parallel 

machines have greater capabilities than a programmer knows how to apply to a single 

concurrent program. 

A review of the literature reveals arguments favoring each of the two architectural 

styles of uniprocessing and multiprocessing. Coffman analyzed the performance of 

multiprocessors from a queuing theory point of view [Coffman 66] [Coffman 67]. He 

concluded that the average number of tasks processed is greater for C processors than 

Cl 2 processors whose average execution speed is twice the average speed of each one of 

the C processors. That is to say, distributing the computing power over a larger number 

of processors yields a better throughput than over machines with half the number of 

processors with twice the speed. Grosch's law [Ein-Dor 85] asserts that a most powerful 

uniprocessor delivers the best price/performance. This law, however, is no longer true 

based on the influence of new advances in parallel processing [Lea 87]. Additionally, as 

physical limitations in the design of circuits are being approached, uniprocessor systems 

will no longer be able to respond to the demand placed on computers today. Other 

factors that make parallel processing a more attractive alternative are extensibility, 

productivity, reliability, and fault tolerance [Trelevin 90]. 

Some applications that are particularly suited for parallel processing are signal 

processing [Hwang and DeGroot 89], graph problems [Hirchberg 82], and scientific 

computations [Wilhelmson 87] such as three dimensional partial differential equation 

solutions [Peterson 85], Monte-Carlo techniques in physics and chemistry [Kalos 87], 



4 

and weather forecasting. Due to advances in technology and the realization of new 

architectures that allow for delivery of multiprocessors to the market using affordable 

off-the-shelf processing elements (e.g., Sequent and WYSE computers), availability of 

high-speed supercomputing-class performance is becoming a reality to those users who 

find supercomputers unaffordable, e.g., see [Karin and Smith 87]. Two of the most 

challenging problems in multiprocessing are the detection of parallelism in different 

portions of a program (program partitioning) and scheduling of the resulting parallel 

components on a number of available processors (mapping of computations to 

processors). This dissertation concentrates on the latter problem. 

Multiprocessor scheduling has benefited greatly from the theoretical work done on the 

scheduling problem in other disciplines such as operations research and management 

science. What follows is a general discussion of the scheduling problem. More specific 

and targeted discussions of the scheduling problem, related to multiprocessor scheduling 

are presented in Section 1.4. Depending on the field of research, the term scheduling 

refers to different activities. For example, in operations research, there is a distinction 

between sequencing and scheduling [Noronha and Sarma 91]. The term sequencing 

refers to ordering of events without any reference to time constraints while scheduling 

involves specifying the exact start and finish times of operations. 

In general, scheduling can be defined as the process of designing a procedure for 

sequencing a set of desired activities that take place over a set of objects. This 

sequencing is based on the time constraints for the delivery of the results, or availability 

of the resources necessary for performing an action. Different taxonomies can be defined 

depending on the type and the number of machines available and also based on the type 

of jobs that must be scheduled on the given machine(s). The questions that generally 

must be answered are: 

1) How many machines are available? 
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2) Are the machines identical in their capabilities? 

3) Are there any precedence constraints among the jobs that affect the processing 

sequence of these jobs? 

The collection of answers to each of these questions defines the particular 

configuration of a system. The first question is aimed at determining whether the system 

is a single- or multiple-machine system. The answer to the second question reveals the 

interrelationship between the different machines. For example, if the system is composed 

of machines with different capabilities, we are probably dealing with a flow-line 

production system where each job possibly will go through every single machine (e.g., 

assembly lines and pipelining). However, if the system is composed of machines with 

identical capabilities, then unit jobs probably will complete on the same machine that 

they are assigned to. In this situation, we are dealing with a parallel-machine problem 

aimed at increasing the system throughput if the unit jobs are independent, or increasing 

the execution speed of the same job if the unit jobs are related and are in fact tasks 

constituting a single job. The answer to the third question reveals the interrelationships 

among the jobs to be scheduled. If there are no precedence relationships among the jobs, 

the sequencing of the jobs is done with regard to the delivery constraints and due dates (if 

any). In the absence of due date constraints, the overall performance of a schedule is 

measured by average turnaround time in the case of a single-machine problem, and 

minimum makespan (schedule length), and/or turnaround time, in the case of parallel 

machine problems. 

\Precedence relationships between pairs of jobs impose constraints on the order in 

which the jobs can be scheduled on machines. This problem is easier to deal with in a 

single-machine system than a multiple-machine environment. Typically, the complexity 

of devising an optimal and even a reasonable schedule increases exponentially as the 

number of machines and the jobs increase. Further discussion about scheduling 
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complexity is deferred to Section 1.2. 

The discussion so far concentrated on the general problem . of scheduling jobs on 

machines. This discussion could be applied to the problem of scheduling in many 

different fields such as job-shop scheduling [Coffman 76], project scheduling [Davis 73], 

mass-transit scheduling [Bodin 83], and multiprocessor and task scheduling [Coffman 

and Graham 72]. This research is concerned mainly with the scheduling of task systems 

on multiprocessors. However, a study of the problem of scheduling in other fields can be 

beneficial since there are many similarities between these problem domains. For 

example, bin packing algorithms applied to memory allocation and processor scheduling 

[Franklin 78] [Coffman et al. 78] were modeled after a more general problem known as 

the cutting stock problem in operations research [Gilmore and Gomory 61]. 

This dissertation is concerned with the scheduling of task systems on a computer with 

multiple identical processors. The task systems may contain precedence constraints. 

Heuristics are presented for scheduling of task systems on multiprocessors with the 

objective of creating schedules with near-optimal makespans. We define a makespan or 

schedule length to be the elapsed time between the time the first task is scheduled and the 

time the last task is completed. 

1.1 Statement of the Problem 

The main and most challenging task of multiprocessor systems is to increase the speed 

of execution of individual programs. An implicitly lower priority task, of course, is 

increasing the system throughput by keeping the processor utilization at maximum level. 

One way to increase the utilization is to increase the number of concurrent users on the 

system that run non-concurrent applications under time-sharing. However, this solution 

may increase the utilization but it probably will adversely impact the individual 

turnaround times because of the contention for system resources. Such users may be 
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better off on a serial time-shared machine. Therefore, parallel processors, arguably, are 

best suited for attaining higher speed for execution of individual jobs. 

In order to speed up the execution of programs or in other words, to minimize the total 

execution time required for processing a single job, different portions of a program must 

be assigned to different processors and executed concurrently. Each of the identified 

portions in such a program are referred to as a task. The problem of assignment of tasks 

to processors is referred to as mapping. We refer to the process of mapping and 

sequencing of tasks on processors as scheduling. 

One of the most critical issues in extracting good performance from a multiprocessor 

system is the scheduling mechanism used. We would like the scheduling scheme to be 

such that it devises schedules that minimize the total execution time of a program. 

Factors that affect the total execution time (schedule length) of a program, other than the 

balance in the individual workloads assigned to different processors, include 

synchronization and interprocessor communication costs. We refer to such costs as 

overhead, collectively. An additional overhead involves the processing time required by 

the scheduler itself in order to devise a schedule for a program. As discussed in the next 

section, the problem of scheduling of tasks on processors is a combinatorial optimization 

problem and is therefore, NP-complete. Because of this fact, research endeavors 

concentrate on sub-optimal or approximation algorithms for solving the scheduling 

problem by using heuristics. 

As discussed in the section on review of related work for chapters 4 and 5, some of the 

existing scheduling algorithms incur a high overhead in devising schedules and therefore 

create a bottleneck for the system. Ideally, we would like a scheduling algorithm to have 

a low run-time complexity and at the same time, produce good schedules. In order to 

execute a program on several processors, a scheduling mechanism must assign different 

tasks in a task system (the representation of a program after partitioning of the program) 
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to different processors. The problems faced in scheduling of the tasks in a task system 

involve i) scheduling the tasks in such an order that correct execution sequence (arising 

from dependencies between pairs of tasks) is guaranteed, and ii) balancing the workload 

among the available processors such that the total execution time for a program is 

minimized. 

This research concentrates on developing scheduling algorithms that are suitable for 

scheduling of dependent and independent task systems. Formal definitions of dependent 

and independent task sets are presented in chapter 3. Informally, an independent task 

system (or task set) is a task set in which individual tasks comprising the task set, do not 

exhibit any communication or data dependencies. On the other hand, dependent task 

systems are defined to contain tasks that exhibit communication, control, or data 

dependencies. Obviously, when scheduling dependent task sets, dependency constraints 

will have to be taken into consideration in order to satisfy the determinacy criteria 

[Coffman and Denning 73]. The determinacy property can be defined as follows. It is an 

accepted fact that in an operating system environment, no assumptions can be made 

about the relative speed of execution of different processors. Additionally, different 

partial orders may exist for execution of a given set of tasks. Given these two 

parameters, a task system is said to be determinate, speed-independent, or functional, if 

the uniqueness of results is guaranteed regardless of the partial execution order or the 

speed of execution. 

Satisfying the determinacy property is not a concern in scheduling of independent task 

sets. Therefore, the sole objective in scheduling of independent tasks is producing the 

shortest possible schedule length since the tasks in such a task system are mutually non

interfering. However, scheduling of dependent tasks is concerned with the same 

objective of producing shortest possible schedule lengths, with the additional constraint 

of satisfying the determinacy problem. The purpose of the current research is to develop 
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multiprocessor scheduling algorithms that address and solve the above problems. 

As discussed earlier, the overall goal of multiprocessor scheduling is devising 

schedules that produce the shortest possible schedule length. Task system characteristics 

as well as the particular architecture used for execution of programs affect the schedule 

length. This dissertation research investigates different task system topologies and 

present scheduling algorithms that are sensitive to the task system topology in order to 

produce near-optimal schedules. The suitability of the developed algorithms for different 

architectures is addressed and discussed as well. 

1.2 Scheduling Problem and NP-Completeness 

Multiprocessor scheduling, in the context of this dissertation, can be defined as the 

scheduling of a set of n tasks on p independent and identical processors. The execution 

sequence of the tasks may be constrained by certain precedence relations. The objective 

is to devise an assignment of tasks to processors, considering the precedence constraints, 

such that the overall execution length of the task system is minimized. Assignment and 

sequencing of tasks on processors is referred to as a schedule. 

The scheduling problem has a seemingly simple and straightforward solution in which 

every possible input sequence must be examined. The solution is the input sequence that 

optimizes the objective function (i.e, the shortest possible schedule length) while 

satisfying the constraints of the problem. Unfortunately, such an enumeration in search 

of an optimal schedule is not feasible in general since the computation time required 

grows exponentially as n and p grow, where n is the cardinality of the input set and p is 

the number of available processors. 

The dominant factor in the complexity of the scheduling problem is the input size n, 

the number of tasks to be scheduled. An algorithm is said to work in polynomial time if 

the complexity of the algorithm is a polynomial in n. If the complexity of an algorithm 
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is exponential in n, the algorithm is said to work in exponential time which results in 

classifying the algorithm as an NP-complete algorithm, indicating that the algorithm may 

yield a solution in non-polynomial time. The general problem of scheduling requires 

computational time that grows exponentially with the number of tasks in the task system 

and thus is known to be NP-hard [Ullman 67]. Classifying a problem to be NP-hard 

means that it is as difficult to solve as the hardest problem that belongs to the NP family. 

In light of the fact that optimal schedules cannot be found within a reasonable time 

frame, many research endeavors concentrate on finding near-optimal solutions in 

polynomial time. From among polynomial time solutions, those with relatively slower 

growth rate (as the input size increases) are rated to be superior to other cases (one such 

algorithm developed in this dissertation research is presented in Section 5.6). We are 

interested in developing scheduling algorithms that yield optimal solutions for a subset of 

the general problem domain and reasonable solutions for others in polynomial time. 

1.3 Review of Literature 

The two most important problems of interest that allow for the efficient use of parallel 

processing power, can be identified as the detection of parallelism in computer programs 

and the scheduling of the resulting parallel tasks on a target machine. Both of these 

problems have been the topic of numerous research endeavors since the early sixties. 

However, most of the earlier work concentrated on the first problem (i.e., that of 

parallelism detection). This was probably due to lack of widespread availability of 

multiprocessor machines in the 1960s and 1970s. 

However, some research was carried out in the area of measurement of the 

performance of parallel processing machines and scheduling techniques that minimize 

the total execution time of a task system on a multiprocessor. In some of these studies, 

analytical investigations were performed to measure the overall performance of 
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multiprocessors in terms of the system throughput. Coffman analyzed the performance 

of multiprocessors from a queuing theory point of view [Coffman 66] [Coffman 67]. 

McNaughton and Rothkopf [McNaughton 59] [Rothkopf 66] and several other 

researchers investigated the problem of multiprocessor scheduling using graph model 

analysis techniques. All these models represent programs as directed acyclic graphs 

(DAG) and use such attributes as time, the frequency of execution of tasks, and their 

deadlines and penalties. 

Hu's algorithm, famous for the optimal schedule it yields, was devised for scheduling 

of task systems represented as a tree [Hu 61]. Coffman and Graham devised an optimal 

scheduling algorithm for a two-processor system [Coffman and Graham 72]. their 

algorithm requires that the tasks in a task system have equal execution times. Also, the 

fact that the optimality of the resulting schedule is guaranteed for two processors only, 

seems restrictive even in the absence of computers with massive number of processors 

[Waltz 87]. Decomposing a program into equal-sized tasks for Coffman and Graham's 

algorithm is a major concern because the general problem of program decomposition into 

tasks for parallel execution has been proved to be recursively unsolvable [Bernstein 66]. 

Because of the NP-completeness of the general problem of scheduling, most sub

optimal scheduling algorithms use heuristics for producing near-optimal schedules (for a 

general survey of heuristic techniques see [Noronha and Sarma 91]). Some of the more 

well-known task scheduling algorithms in this genre are Longest-Processing-Time (LPT) 

[Graham 69] [Graham 76], Multifit [Coffman et al. 78], Divide & Fold (D & F) 

[Polychronopoulos 86], and CP/MISF [Kasahara and Narita 84]. 

Another class of scheduling algorithms is known as list scheduling [Coffman and 

Denning 73]. In a list scheduling algorithm, the tasks in a task system are sequenced in 

what can be described as a list based on a partial ordering. The partial ordering is 

achieved through imposing some type of priority scheme on the tasks. A list scheduler 
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operates by scanning the list and selecting tasks that satisfy certain priority constraints or 

urgency rules. Some of the urgency rules used in scheduling research are [Baer 73]: 

• Smallest processing time first; 

• Largest processing time first; 

• Greatest number of immediate successors first; and 

• Greatest number of successors first. 

Unlike earlier work that concentrated on program partitioning and general 

performance issues of parallel processing, recent research endeavors pay attention to 

other aspects of parallelism. Some current issues include developing optimal parallel 

algorithms [Guan and Langston 91], loop parallelization and scheduling [Saltz et al. 91], 

time-cost analysis of parallel computations [Qin et al. 91], graph-based partitioning and 

concurrency analysis [Long and Clarke 89] [Girkar and Polychronopoulos 88] [Agrawal 

and Jagadish 88] [Ammarguellat 90], measurement of parallel processor performance 

[Karp and Flatt 90], scheduling and task dependencies [Shang and Fones 91], Hardware 

concurrency extraction [Uht 91], parallelizing compilers and environments [Kuck et 

al. 86], parallel processing in distributed environments [Feitelson and Rudolph 90], and a 

number of other areas such as attempts at developing software tools for mapping 

computations to architectures [Lo et al. 90], and automatic detection and parallelization 

of programs [Terrano et al. 89] [McGreary and Gill89]. 

1.4 Background and Survey of Related Work 

General characteristics of scheduling schemes can be defined in terms of the following 

properties. A scheduling scheme is either exact or heuristic, uses either a static or a 

dynamic approach, and is performed either on a preemptive or non-preemptive basis. 

Discussion of the choice of exact and heuristic approaches was presented in Section 1.2, 

"Scheduling Problem and NP-Completeness". There are arguments in the literature 
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supporting both static and dynamic approaches. There are two major arguments against 

dynamic scheduling. The first argument states that since compile time information and 

general topology of the task system graphs are not used in the dispatching of tasks, the 

selection of tasks may not lead to the best possible choice. The second argument 

concentrates on the run-time overhead of dispatching which can be quite high. These 

arguments lead to two more favorable choices. One choice is quasi-static scheduling in 

which compile time information is used to produce a preliminary schedule, which is then 

adjusted through processor synchronization if the actual processing times vary from 

earlier estimates [Ha and Lee 91]. The other choice is auto-scheduling where compile 

time information is used for sequencing of task executions [Polychronopoulos 88]. The 

arguments against fully static scheduling are predicated on the fact that the compiler 

produces schedules based on estimates and that realistic schedules are not always 

possible except in cases where all necessary information is readily available at the time 

of scheduling (e.g., systolic arrays). 

A preemptive scheduling approach generally yields better results than a non

preemptive approach from a theoretical point of view. A preemptive schedule is more 

likely to yield an optimal schedule length. Under this approach, the idle time created 

between the scheduling of two tasks can be filled with running a portion of a ready task 

and therefore giving the scheduler a greater degree of flexibility in the scheduling of the 

tasks. However, in practice, preemptive scheduling has its own disadvantages, namely, 

incurring the overhead of context switching. 

McNaughton [McNaughton 59] was the first researcher to introduce parallel machine 

scheduling. He introduced a scheduling algorithm that performed a preemptive 

scheduling scheme on a set of jobs. He defined the minimum makespan for a set of 

preemptive jobs as max{tt, t2, ••• , tn, l: tiiP }which is known as the McNaughton 
1SiSn 

lower bound. McNaughton introduced three performance criteria for parallel execution 
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of jobs. He used the lower bound mentioned above as a measure for scheduling of 

preemptive jobs. He refers to this type of scheduling as completion time based 

scheduling (CI'B). He showed that his algorithm produces optimal schedules with a 

maximum of p -1 job preemptions, where p is the number of available machines. The 

other two performance measures defined are due-date based (DDB) and flow-time based 

(FTB) measures. In the DDB performance measure, the total weighted tardiness of the 

jobs is the performance measure. In the FfB measure, the due-dates are equal to zero 

and therefore, the flow time of the jobs is used as the performance measure. Most of the 

other approaches developed by researchers can be defined to belong to one of the three 

categories defined by McNaughton as discussed above. 

Because of the NP-completeness of the general problem of scheduling, most known 

optimal solutions owe their optimality to rigid conditions imposed on the problem. 

Three of the well-known scheduling algorithms yielding optimal solutions are due to Hu 

[Hu 61] , Coffman and Graham [Coffman and Graham 72], and Muntz and Coffman 

[Muntz and Coffman 69]. All three of these algorithms are completion time based 

algorithms. Hu's algorithm operates on a special class of graphs where the precedence 

relations define a directed singly-rooted tree in which (except for the root vertex that has 

a fan-out degree of zero) each vertex has a fan-out degree of exactly one. Additionally, 

the tasks (vertices) are assumed to have unit or uniform execution times. The urgency 

rule (the priority scheme defined for the selection of tasks) used in scheduling of tasks on 

the next available processor causes a task that has no predecessors and lies on a path with 

the longest distance from the root vertex to be selected. Hu's algorithm runs in 0 (n). 

Hu's method is referred to as the highest level first approach or the critical path method. 

Coffman and Graham's algorithm operates on directed acyclic graphs (DAG) with 

general precedence relations. They employ Hu' s highest level first approach for selection 

of the tasks for scheduling. The limitations of this algorithm lie in the fact that, 

analogous to Hu's algorithm, the tasks must have unit execution times and that optimality 
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of the schedule is guaranteed only with two processors. Coffman and Graham's 

algorithm has 0 (n 2) complexity. Muntz and Coffman's algorithm uses a preemptive 

approach and operates on arbitrary task systems (e.g., independent tasks, tree graphs, and 

DAGs). Their algorithm requires that tasks have commensurable execution times. This 

algorithm produces an optimal schedule of length T OPT= max {max { w Cti )}, 
l~i~n 

n 
Vp 1: w(ti)} where w(t;) denotes the processing time of task ti. It schedules then 

i=l 

tasks· with pn preemptions and runs in 0 (n 2 ). This algorithm does not guarantee 

optimality for p> 2. 

There are numerous algorithms and approaches that are based on Hu' s basic idea of 

highest level first approach. Motivated by Hu's approach, Graham [Graham 69] 

introduced a new approach for task scheduling known as list scheduling. Many 

scheduling algorithms in the literature, which use urgency rules for selection or 

dispatching of tasks, can be categorized as list scheduling algorithms. In list scheduling, 

tasks in a task system are sequenced in what can be described a list based on a partial 

ordering. The assignment of tasks to processors takes place by scanning the list and 

selecting a task that satisfies the defined urgency rule for dispatching of tasks. Some 

typical urgency rules are largest processing time first (LPT), shortest processing time first 

(SPT), and greatest number of immediate successors first 

Certain anomalies and bounds related to list scheduling [Graham 69] are listed below 

(item 5 below, is a new anomaly discovered in this dissertation research). 

1. There exist cases where no list scheduling scheme results in an optimal schedule for a 

given number of processors. 

2. The reduction of task weights may result in increased schedule length. 

3. Allocation of a larger number of processors may result in an increased schedule 

length( an example of this anomaly is shown in Figure 3). 
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4. A decrease in the number of arcs in a graph (i.e., relaxing the precedence constraints) 

may result in an increase/decrease in the schedule length. 

S. Switching the execution times of tasks in the same task graph (without changing the 

total processing time or the topology of the graph) may result in an increase/decrease in 

the schedule length (e.g., refer to the schedules for the task graph of Figure 8, in Figures 

20 and 21). 

Graham proves that in the worst case, list scheduling yields schedules that are twice as 

long as the optimal schedule. 

It was discussed earlier that scheduling schemes are either completion time based 

(CTB), due-date based (DDB), or flow-time based (FfB). FI'B performance measures 

are discussed in this dissertation. The reader is referred to a state-of-the-art review of 

machine scheduling by Cheng and Sin for DDB and CTB schemes [Cheng and sin 90]. 

Other survey studies done in the area of multiprocessor scheduling are those by 

Oonzalez[Oonzalez 77] and Baer [Baer 73]. 

Gonzalez performed a comprehensive survey of deterministic scheduling of jobs in 

uniprocessing, multiprocessing, and job-shop environments. He presents classification 

categories for characterizing scheduling algorithms for different environments that are 

discussed in his survey. The surveyed research work are evaluated in terms of the 

number of processors employed, task execution lengths, precedence graph structures, task 

interruptibility, introduction of processor idle times into scheduling of individual tasks, 

presense or absence of deadlines for delivery of results, homogeneity or heterogeneity of 

processors, and the boundedness of available resources necessary for the execution of 

jobs. 

The measures of performance used in Gonzalez's survey are such measures as 

minimization of finishing or completion times, minimization of the number of required 
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processors, minimization of mean flow times, maximization of processor utilization, and 

minimization of processor idle times. 

The survey done by Baer concentrates on the theoretical aspects of the general 

problem of multiprocessing. Baer's survey discusses early language features suitable for 

explicit exploitation of parallelism such as fork-join [Conway 63] [Denning 66], and loop 

parallelization [Gosden 66]. This survey also discusses representations used for 

modeling of parallel computation~. These models include different graph models such as 

directed graphs, directed acyclic graphs, flow graphs and their extensions, and Petri net

based models. Baer' s survey also presents some discussion on different performance 

evaluation techniques such as queuing theory analysis techniques and simulation and 

modeling techniques. 

More specific and targeted discussion of related work is presented m appropriate 

chapters. 

1.5 Dissertation Overview 

This dissertation is concerned with developing algorithms for scheduling of task 

systems on multiprocessors. Several different multiprocessor scheduling algorithms and 

approaches have been developed for scheduling of dependent and independent task 

systems. Performance of the developed algorithms has been compared to the 

performance of the best-known algorithms in the literature through simulation studies. 

The outline of this dissertation is as follows. The remainder of this chapter discusses the 

basic concepts, notation and the definitions used through out this dissertation. 

Chapter two discusses the issues of task granularity as affected by the implementation 

platform. This chapter also discusses different approaches used for detection of 

parallelism in computer programs. Different models for task system representations and 

communication and synchronization costs are also presented and discussed. 



18 

Chapter 3 concentrates on the topic of task system characteristics. Formal and 

informal definitions of dependent and independent task systems are given. Bounds on the 

schedule lengths for each of the two classes of task systems mentioned above are 

presented and discussed. 

Chapter 4 is devoted entirely to the issue of scheduling of independent serial tasks. A 

survey of related work is presented. A new algorithm for scheduling of independent serial 

tasks developed in this dissertation research, is presented in Section 4.3. The 

performance of this algorithm is compared to three of the best known algorithms. It is 

shown that our algorithm does at least as good as the best known algorithms and has a 

run-time complexity that is significantly better than those of the evaluated algorithms. 

Chapter 5 concentrates on the scheduling of dependent task systems. Three different 

approaches and algorithms that address different needs in different environments have 

been developed in this dissertation research. The suitability of the developed approaches 

in relation to the task system and the architectural characteristics are discussed. 

Performance of the developed algorithms has been measured through simulation studies. 

Chapter 6 presents a summary of the results and the conclusions reached in this 

research. Future work with respect to the current research is also discussed. 

1.6 Notation and Definitions 

In this section, the notation used in the discussion which follows is introduced. Given 

n independent, tasks each task is denoted by ti, l~i ~n. Therefore, the task system can 

be represented as a set, 't= {tt, t2, ... , tnl· Associated with each task ti is a non

negative integer value w (ti) which is the weight (normally, the execution time) of that 

task. Henceforth, w (ti) is referred to as the size, the weight, or the execution time of a 

task, interchangeably. The sequential execution time of task system 't, denoted by T8 , is 

defined to be 



n 
Ts = ~ w(ti) 

i=l 
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We are interested also in the time it takes to execute a given task system in parallel. 

This value is represented by Tp. We refer to Tp as the length of a schedule or execution 

length. A specific formula for Tp cannot be derived since it depends on the relative sizes 

of tasks, the particular scheduling algorithm used, the number of processors, and the 

nature of processing in the execution platform. However, some upper and/or lower 

bounds on the lengths of the schedules in various situations are presented in the 

subsequent chapters. 

Given a task system and a number of processors, we are interested in finding an 

optimal schedule length for the given task system. However, it was discussed in Section 

1.2 that determining an optimal schedule for the general case in polynomial time is not 

possible. We denote an optimal schedule (if one exists) as OPT and denote its length as 

ToPT· In order to measure the performance of different scheduling algorithms, we need 

to know the optimal schedule length for a given problem. Since Topr is not known for 

a general problem, we will use an approximation of the optimal schedule length and 

denote it as ToPT· Different approximations of Topr will be discussed in appropriate 

sections. Through out this dissertation, T OPT is referred to as an optimal schedule 

length if one is known or its approximation ToPT· 

We define a path through a graph to be a traversal through a sequence of nodes that 

starts at the first node (the source node or source) and leads to the last node of the graph 

(the sink node or sink). A critical path in a graph is a path that has the largest cumulative 

processing time, w (ti), of the nodes, ti, visited in such a traversal. We denote the length 

of a critical path by Tc. It should be noted that given a DAG, ToPT = T6 that is, given 

an unlimited number of processors, no scheduling algorithm can yield a schedule shorter 

than Tc. 
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In the discussion that follows, we are interested also in the speed-upS 't achieved for a 

task system 't, when executing that task system on several processors. This will be 

calculated using the formula 

The highest possible speed-up in parallel execution of the task system 't is denoted by 

S max and is calculated as 

where T OPT stands for the optimal schedule length or an approximation of the optimal 

* schedule length T OPT, defined through some bounds. 

As discussed in Section 1.2, the scheduling problem is in effect, a combinatorial 

optimization problem and is therefore, NP~complete. As a result, most practical 

scheduling algorithms that exist in the literature are approximation algorithms. In order 

to measure the performance of an approximation algorithm, the performance ratio is 

defined as follows [Coffman et al. 78]. 

where T A is the performance of an approximation algorithm A, for a given problem, and 

T OPT is the measure of performance for an optimal solution known for the same 

problem. 

Unless specified otherwise, the particular architecture assumed in the discussions that 

follow is a shared memory multiprocessor machine in which all processors are identical 

in their capabilities. 

(Other notation used in more targeted and specific discussions is introduced where 

appropriate.) 



21 

1.7 Summary 

Chapter 1 presents a broad overview of the significance of parallel processors. 

Arguments that establish the prevailing choice of employing a large number of (less 

powerful) processors as opposed to a single powerful processor are presented. Mapping 

of computations to processors is identified as one of the most critical issues in improving 

the performance of parallel processors with respect to minimizing the execution time of 

individual programs. The statement of the main problem addressed in this dissertation is 

presented in Section 1.1. Section 1.2 presents arguments for justifying the practice of 

using approximation algorithms for solving the scheduling problem as opposed to 

seeking exact optimal solutions. A general review of the scheduling problem and the 

early theoretical work as well as current directions in parallel processing are presented in 

Sections 1.3 and 1.4. Section 1.5 presents an overview of the dissertation. Notation and 

definitions used throughout the remainder chapters are presented in Section 1.6. 



CHAPTERTI 

PROGRAMPARTITIONING, TASK SYSTEMS AND 

INTERPROCESS COMMUNICATION 

2.1 Basic Definitions 

c!o speed up the execution of a program, portions of the program that potentially can 

be executed in parallel must be identified. This activity is referred to as partitioning. 

Different approaches used for program partitioning are discussed in Section 2.4. Each of 

the resulting blocks in such a partitioning is called a task. A task is defined as a set of 
,.-----..__ 

instructions that onceJl~Mi.rr~_JQ_a p~~~sor, is executed sequentially. Furthermore, a ---- ··-h·~ . ....,..,.. ____ ,..,.~ ..... 

set of clearly defined input and output parameters are associated with each task. Input 

dependencies determine the execution sequence of the tasks. Therefore, a task cannot be 
~----------- -

selected for execution until all of its predecessors have finished execution and thus 

deliver their output paramet~~ We show in chapter 5 how such a constraint can serve as 

the synchronization mechanism in scheduling of tasks under a variety of scheduling 

schemes proposed and examined in this dissertation. 

The collection of identified tasks in a program is referred to as a task system. 

Generally, task systems are represented through graph models. Some example 

representations of task systems can be found in [Ramamoorthy 66] [Estrin and 

Turner 63] [Girkar and Polychronopoulos 88] [Long and Clarke 79] [Agrawal and 

Jagadish 88]. A more detailed examination of graph models is presented in Section 2.3. 

A task system can be defined as the product of the application of a partitioning scheme 

to a program. A partitioning scheme can be viewed as an equivalence relation R, that 

22 
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divides the program into a number of equivalence classes. Some example equivalence 

classes in a task system are procedures and functions, basic blocks, loops, and code 
I 

segments that are separated from the rest of the program by branching actions. The 

equi~alence relation defined for the partitioning of programs depends on the desired 

degree of granularity. Program granularity is defined as the relative size of the identified 

tasks in a program. Determining the degree of granularity is itself dependent on the 

machine characteristics. 

2.2 Multiprocessor Architectures and Task Granularity 

Program partitioning and task granularity are two closely related terms. Task 

granularity refers to the relative size of the identified tasks after the application of a 

particular partitioning scheme to a program. Task granularity is affected by different 

objectives and constraints. Depending on these objectives, one might define each single 

statement in a program to be a task. We refer to such a partitioning as the finest-grained 

partitioning (of course, in some cases, for example, in data flow architectures, 

partitioning can be done at an even finer grain). At the opposite end of this spectrum, one 

might define an entire program to be a task. 

For the purpose of relating task granularity to machine characteristics, we will divide 

the machines based on their processor interconnection and communication schemes. 

Using the criterion of interprocessor communication, machines can be divided into two 

broad classes of loosely coupled and tightly coupled machines. In general, task 

granularity is coarser for loosely coupled or private memory machines, and may be finer 

for tightly coupled or shared memory machines. Therefore, in scheduling of jobs on a 

target machine, further consideration might warrant altering the degree of granularity of 

programs. For example, if a program is to be run on a machine with distributed memory 

on which communication between processors is proven to be costly, a coarser-grained 

partitioning might be desirable. On the other hand, shared memory machines allow for 



24 

finer-grained partitioning schemes. Regardless of the particular implementation 

platform, determining the degree of task granularity is affected by the communication 

cost involved in processing of input and output parameters, synchronization, and context 

switching costs. 

2.3 Graph-based Program Representations 

The majority of past and current work done in the area of detection of parallelism are 

based on graph models. Typically, these studies use as their first step, the control or data 

flow graph of a program. The control flow graph (which is most probably a directed 

cyclic graph due to the existence of loops) is then converted to a directed acyclic graph 

(DAG) using some loop removal algorithm (e.g., see [Ramamoorthy 66]). In order to 

convert a cyclic graph to a DAG, the boolean connectivity and precedence matrices of the 

graph must be created (for example by using Warshall 's algorithm [Warshall62]). Such 

models may attempt further to identify the input/output dependencies between pairs of 

statements using input and output matrices [Russel 69], to expose parallelism in loops 

[Volansky 70] [Muraoka 71], or to use the resulting DAG and concentrate only on those 

portions that can potentially be optimized and are amenable to parallel processing 

[Gonzalez and Ramamoorthy 71]. Other research work [Regis 72] [Keller 70] 

concentrate on using DAGs and utilizing the determinacy properties of graphs to 

represent a maximally parallel structure, or to create directed acyclic bilogic graphs 

(d.a.b) to represent the information structure of a graph by attaching labels such as "OR", 

"XOR", "FORK", etc., to the branches in a graph [Dennis 68] (d.a.b which is also known 

as the UCLA graph model [Estrin and Turner 63] is the basis for a number of other 

studies). 

Some more recent studies [Skedzielewski and Glauert 85] that use flow graphs in their 

analyses, use an intermediate form of data flow graphs which is subsequently used by a 

compiler for machine code generation. Other studies use task interaction graphs to 
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represent concurrency of execution [Long and Clarke 89] or program dependence graphs 

for optimization and detection of parallelism and partitioning [Ferrante et al. 83], [Kuck 

et al. 80], [Burke and Cytron 86], [Wang and Gannon 89], [Wolfe 82], and [Girkar and 

Polychronopoulos 88], or use control dependence graphs [Sarkar 91] for identifying 

non-loop parallelism (e.g., ffiM's PTRAN). 

2.4 Different Approaches to Program Partitioning 

General-purpose parallel machines (non-SIMD machines according to Flynn's 

Taxonomy [Flynn 72]) in _general can serve two broad categories of "competing" and 

"cooperating" computations. Competing computations can be defined as unrelated 

computations that compete for the resources of a system. Parallel machines only help in 

increasing the throughput of the system in such circumstances. The second category is 

that of cooperating computations in which portions of the same job are assigned to 

different processors to speed up the computation of the same job. This dissertation is 

concerned with the latter category of computations. 

In bre!!lting .JL _g!y~!l job into parallel subtasks, two different approaches can be 
~~----~-...... -· ~.-.-. ..... ,, -~- "'~"·-· ... ' 

employed: i) The program first can be written in the sequential (i.e., non-parallel) format 

using a conventional programming language. The program can be then passed through a 

parallelizi~_E~~~~I.~: ~o extract the potentially parallel operations, or ii) The 

programmer can use parallel programming cons1:!1-!c~s available in th,e hmguages 
-------~'-----·····---- .•. , ___________ -· ··- . . . - _,,._.,, . .,_, ____ ., ...... . 

su__pp_grled b~~Jc.ular machine in. the process <>f s()ft'YID.:~ 4~yelQp11:1ent. 

The two approaches of using parallelizing compilers or employing parallel 

programming constructs explicitly built into parallel programs have their advantages and 

disadvantages. The advantage of using parallelizing compilers is the portability of the 

code, but the generated code might not be as efficient as the program written with J!!~~id~ 

of parallel programmiJ:!g c:onstructs [Emrath 89]. To direct such compilers in recognizing 
-----------~~-~--.----~----~--,-----~-' -. -~------ .. -, ............... . 
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parallelism, comment-like statements called "assertions" must be inserted into the code 

manually. The code generated by parallelizing compilers must be examined repeatedly 

by the programmer, new assertions must be inserted if the programmer identifies any 

portion of the code whose potential for parallelism was not recognized by the compiler. 

As a result, some portions of the code may have to be modified and the program then 

must be passed through the compiler again. These iterations must continue until the 

desired degree of parallelism is achieved. Such an undertaking can become very time 

consuming and laborious. 

It should be noted that different compilers do not interpret assertions in the same way 

and therefore, even in the case of compiler-generated parallel code, portability is a 

problem. The lack of portability of parallel code is due to lack of standard languages as 

well as the existence of drastically different architectural styles and hardware features on 

parallel machines [Emrath 89] ... Due to the absence of standard languages, researchers 

and developers extend their own favorite language or write their own support libraries 

that are compatible with their own hardware and take advantage of the machine 

instructions and support the specific features available on their machines. When a 

program that utilizes such hardware support features is ported to a different machine, the 

absence of counterpart support has to be remedied in software, which might yield a 

version that is even slower than its sequential version [Emrath 89]. However, because of 

the relative inexperience in developing parallel programs and the current absence of 

standardized programming languages and/or efficient compiler support, one should not 

allow the issue of portability to get in the way of advancing o1her aspects of the field such 

as the issues of partitioning and decomposition of programs for parallel execution, and 

scheduling considerations of the program partitions. 

The second approach for programming parallel processors involves the use of explicit 

parallel programming constructs in programs. This type of explicit expression of 
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parallelism could be introduced at different levels. Some applications might call for 

parallelism at procedure level such as ''buffering mechanisms" and "producers and 

consumers" types of problems. 

In an earlier study by this author, procedure-level parallelism for an application of the 

producer-consume relationship was investigated [Samadzadeh 91]. The implementation 

platform was a Sequent S-81 with 16 processors. The particular problem studied 

involved a series of regular expression substitutions in a tri-buffer mechanism. The 

buffers used were bounded buffers and therefore synchronization was a major issue in 

solving the problem. Mutual exclusion had to be enforced in manipulating critical 

sections as well. Because of the particular nature_ .of .the ... question posed in this 

experiment, the problem could be solved most elegantly in a parallel processing 

environment. The purpose of this study was not the issue of execution efficiency and the 

speed up of computation, because in general, efficiency is a primary concern in 

computationally-intensive applications. "Pte purpose of this experiment was to 

investigate the ease of programming and debugging of parallel programs by novice 

programmers and the overall comprehensibility of such applications. 

In the experiment cited in the above paragraph, the unit of granularity in parallel 

execution was defined to be tasks represented as entire procedures which required 

synchronization and interprocess communication. Parallelism could be introduced at 

finer grains also in which the units of computation are composed of blocks of code that 

serve a particular purpose. This can be done by using parallel programming library 

s'!pport in which the units of computation could be blocks of code with clearly defined 

input and output. Subsequently, the identified, tasks in the resulting task system could be 

coordinated and executed using explicit parallel programming constructs. Another form 

of parallelism, which is not a topic of interest in this research, is parallelism at the 

statement level. At this level of parallelism, potentially parallel components of a single 
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statement are identified, each of which might be executed on a separate processor and the 

results combined. It should be mentioned however, that this is considered to be the 

lowest level of granularity which is handled by the compiler. One can imagine that 

manual techniques for this type of parallelism can be extremely tedious if not impossible. 

The problem with the use of explicit parallel programming constructs is identifying 

disjoint subcomputations within a program. This is done mostly on a trial and error basis 

until the desired degree of parallelism (usually measured by the number of independent 

tasks that can be executed concurrently) is achieved. Programmers, for example, might 
-- . , 

use a profiler to measure a program's behavior [Kwan et al. 90]. These measurements 

can then be used as a basis for altering the granularity of the program in terms of the 

number of tasks present until the desired degree of parallelism is achieved. 

Detecting parallelism in programs is at best an intuitive process. As a consequence, it 

seems that the less experienced a programmer is, the more serious the problem of 

introducing a reasonable degree of parallelism into programs becomes. Even in the case 

of more experienced programmers, there is more parallelism embedded in programs than . 

eyes can see [Ramamoorthy and Gonzalez 69]. Availability of methods and tools that 

allow for detection of parallelism in code can therefore take the guesswork out of the 

process of program design. 

2.5 Communication Costs and Interprocess Communication 
' 

It is argued that identifying the maximal degree of parallelism, i.e., isolating as many 

tasks in a program as possible, can potentially result in the greatest possible speed up. Of 

course Bernstein has shown that the general problem of partitioning programs into tasks 

is recursively unsolvable [Bernstein 66]. On the other hand, as the number of tasks in a 

task system increase, the overhead in scheduling of the resulting tasks increases 

accordingly, and probably not necessarily linearly. Additionally, the number of 
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concurrent tasks present at each level of the resulting task system or concurrency graph 

might exceed the number of available processing elements. If no further action in 

coarsening the degree of granularity is taken, communication overhead and the overhead 

of scheduling of the many tasks present in the program will result in degrading the 

performance of the given program. Consequently, further restructuring of the 

concurrency graph will be necessary in order to adjust the degree of parallelism for a 

target machine. 

Kwan, Bic, and Gajski [Kwan et al. 90] evaluate, in an experimental study, the 

improvement of the performance of parallel programs through the use of critical paths in 

a program. In their experiment, they define two measures, the data flow graph critical 

path and the scheduled critical path. They argued that the data flow critical paths 

represent the maximum possible parallelism available in a program. Using the data flow 

graph, they came up with the scheduled critical path which consists of some of the tasks 

present in the data flow graph. These tasks are assigned to a fixed number of processors. 

The scheduled program now has its own critical path which might be different from that 

of the control flow graph critical path because of the restructuring of the identified tasks 

in scheduling, based on their dependencies. It is possible that both critical paths are 

identical. 

Each task on a scheduled program critical path is a unit of execution with clearly 

defined input and output. The input/output of tasks are used as means for determining 

necessary synchronization between tasks. Kwan et al. define a scheme for assigning 

weights to the scheduled program critical paths. The weight of a node (task) on a path is 

defined to be equal to the amount of processor time necessary to complete the task. 

Edges that connect tasks (and represent flow of information) also have a weight 

associated with them. The weight of an edge corresponds to the communication overhead 

and consists of the amount of time required to access an input/output parameter. The 
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overall weight of a critical path is the sum of the weights of all nodes and edges that lie 

on that path. The computational weight of the critical path is the sum of the weights of 

the nodes on a critical path. The authors use these weights (critical path weight, which 

includes the communication overhead, and the computational critical path weight, which 

does not take into consideration the communication overhead) to evaluate the 

performance of related tasks when assigned to different processors (as opposed to being 

scheduled on the same processor) to see if the communication overhead dominates the 

computation time for each critical path in this type of scheduling. 

In this experiment, Kwan and his colleagues define a parameters P opt as the optimum 

number of processors to achieve the highest speed up. Since determining P opt could be 

an intractable problem [Bernstein 66], Kwan et al. define P mm as an approximation of 

P opt which represents the minimum number of processors for achieving maximum speed 

up. They designate P to represent the number of available processing elements. They 

then perform a series of experiments on solutions to the Gaussian elimination of a set of 

algebraic expressions and test the solutions with various degrees of granularity. The 

dependent variable in these series of experiments is the length of the critical paths on the 

scheduled programs. As they perform these experiments, they collect data about the 

weights of the scheduled critical paths and the computational weights of the critical 

paths. The collected data is used to test the effect of the level of granularity of tasks on 

the critical paths and the communication overheads of scheduling interdependent critical 

paths on different processors. 

The results of these experiments on various degrees of granularity demonstrates a 

trend. Kwan et al. report that if the number of available processing elements Pis much 

less than P mm• refining granularity degrades performance. The reported reduction in 

performance is apparently due to the fact that when the number of concurrent tasks is 

larger than the number of available processing elements, more than one concurrent task 
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gets assigned to some processors, thereby, reducing the pe:rformance because of the 

context switch time associated with the scheduling of the related tasks. On the other 

hand, if P~ Pmm, refining granularity results in execution speed up. 

In general, the number of independent paths in a data flow graph represent the 

maximum possible parallelism. However, this degree of parallelism also involves the 

highest amount of overhead in the execution of tasks because of the communication 

dependencies among different tasks that might lie on different paths or that lie on the 

same path but are assigned to different processors. If one rearranges these tasks and 

schedules them on one processor, it is true that the time needed for communication is 

reduced (because tasks can communicate through local memory), but on the other hand 

as the degree of granularity is refined and the number of related tasks assigned to the 

same processor increases, there is increased tendency towards sequential execution 

instead of parallel execution because unrelated tasks that could potentially run on 

different processors are now assigned to the same processor. It should be noted that even 

if program segments are written as clearly defined and separate tasks, but are not 

assigned to different processors for concurrent execution, their execution proceeds in a 

sequential manner, even on a multiprocessor machine. 

A signif!~~lJindillgjn the experimental studies, done by Kwan and his colleagues 
-------··' --"------------

[Kwan et al. 90], is that as granularity is refined and a program is divided into a larger 

number of tasks, it is true that the overhead in necessary communication between the 

related tasks increases (which is because each of a number of related tasks executes on a 

different processor), but the computation speed achieved by parallel execution of the 

related tasks offsets the communication overhead and furthermore results in overall 

program execution speed up. If the program designer is not bound by the availability of 

only a limited number of processors, then it is not the case that the finer the granularity, 

the higher the achieved speed up. Nonetheless, refining the granularity can lead to the 
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point of diminishing returns, in which the total execution time of a given task is less than 

or at best equal to the communication overhead involved between a given task and its 

related counterparts. It is also possible that the achieved speed up is not significant 

enough to justify the effort expended in taking advantage of the large number of 

processing elements that might be available on a target machine. 

2.7 Summary 

Chapter 2 discusses the issues related to the choice of task granularity as affected by 

the implementation platform. The two approaches of partitioning programs using 

parallelizing compilers (implicit parallelism) and using parallel processing constructs at 

the time of development of programs (explicit parallelism) are discussed. Overheads 

associated with the mapping of tasks to processors, such as interprocessor 

communication and synchronization costs, are discussed in the context of private 

memory and shared memory architectures. 



CHAPTER III 

SCHEDULING OF TASK SYSTEMS 

3.1 Basic Definitions 

We represent a program as a directed acyclic graph. Since the main focus of this 

dissertation is scheduling of a given task system on a multiprocessor, we do not concern 

owselves with the deUlils of producing the program graph. The program graph may be 

thought of as a graph representing the control flow of a program. Such information 

typically can be provided by a compiler. Additionally, it is assumed that the individual 

tasks (i.e., nodes in the program graph) are created using a bottom-up approach such that 

each task is created using "natural" boundaries (e.g., an outermost loop, a procedure call, 

or a basic block). Therefore, the resulting graph is indeed a DAG. A bottom-up 

approach is preferred to a top-down approach because of the following reasons. 

Synthesizing individual tasks, as individual statements are analyzed, yields faster results 

(by requiring fewer passes) and reveals dependencies between and among statements in a 

program better than starting the analysis from the top (outer) levels in a program 

[Polychronopoulos 86]. 

Task system scheduling involves the assignment and sequencing of tasks to 

processors. The length of a schedule is defined to be the elapsed time between the time 

the first task is assigned to a processor and the time the last task in a tasks system finishes 

execution. An optimal schedule length is the shortest time it takes to execute a task 

system on a given number of processors. The optimality criterion referred to in this 

research concerns producing optimal schedule lengths for individual jobs for the purpose 
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of program speed-up. Optimality of the schedule on a system-wide basis which is related 

to processor utilization and efficiency is not a focus of the current research. Bounds on 

optimal schedules will be discussed in this research along with the developed algorithms. 

Because of the NP-completeness of the scheduling problem, the goal of this research is to 

develop near-optimal scheduling algorithms that can schedule such task systems. 

3.2 Task System Representations 

The task system of a program (or a program segment) can be defined as G (V, E), 

where G is a DAG. The set of vertices V of G represents the individual tasks in the 

graph. The set of arcs E represents the dependencies between pairs of vertices in the 

graph and thus imposes an order (in general, an irreflexive partial order) on the execution 

of the tasks. Any scheduling algorithm suitable for scheduling of such a task system must 

be able to take the execution constraints imposed on the graph by the arcs into 

consideration and schedule the tasks accordingly. 

Once a job (a program) is divided into a number of tasks that can be assigned to 

different processors, depending on the functionality of each task, there are two 

possibilities: 

i) all tasks are disjoint, or 

ii) there are pairs of tasks that are dependent on one another. 

In the first case, the tasks only compete for the system resources and no synchronization 

and/or sequencing of execution of individual tasks is necessary because there are no data 

or communication dependencies. The second case involves tasks that communicate with 

one another. 

The problem of scheduling of task systems on a multiprocessor (consisting of a 

number of identical processors) can be divided coarsely into two categories which 

correspond to cases (i) and (ii) above, respectively. 
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a) Scheduling of n > 1 independent tasks on p ;::::1 processors. In this situation, the n 

tasks are independent of one another and they can be scheduled in any order 

(obviously, this is a special case of category (b) below). 

b) Scheduling of n > 1 tasks on p ;::::1 processors where there may be dependencies 

among tasks. Unlike the previous category, the tasks in such a task system cannot 

be scheduled in any arbitrary order. The scheduling mechanism must take the 

existing precedence constraints into consideration in scheduling such task 

systems. 

The main thrust of this research is developing algorithms that can produce schedules 

for each of the above categories of scheduling of a given task system. Since the general 

problem of producing optimal schedules has been proved to be NP-complete, the goal of 

this research is to develop algorithms that use heuristics to produce near-optimal 

schedules [Ullman 67] [Coffman et al., 78]. We refer to such a schedule as OPT and 

denote its length as T OPT. 

3.3 Task Systems with Independent Tasks 

We start our discussions by concentrating on the first category presented in the 

introductory section, that is, the scheduling of n independent tasks on p processors. In 

such a case, given G (V, E) which represents the task system, the edge set E = <j> and 

I V I = n. Independent tM.~---~ets are also known as mutuq.JlYJl911~i1J,lf!.lfgr.ing . .task. sets 
~---··-----· ·---···---···-····--·----· . . . . . ---·--

[Coffman and Denning 73]. Two tasks ti and lj are said to be non-interfering if i) ti is 

a successor or predecessors of lj, or ii) Rti (") Rti = Rti (") Dti = Rti (") Dti = <j>, 

where Rtk denotes the range, and D1k denotes the domain of task tk for 1 ::; k ::;n, A task 

system 't = {tt, t2, ... , tn} is said to be mutually non-interfering if tasks ti and lj are 

non-interfering for all i and j E {1 .. n} and i :I; j. The issue of determinacy of tasks 

systems was discussed in Section 1.1. Independent task systems are determinate because 
--------·--···-······-···-······· ............ ·····-·· ·········-···· .. 

thetas~ ~~!}~_entirely composed of mutually non-interfering tasks. 
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Since the tasks in an independent task system are mutually non-interfering, the case in 

which n 'S:p is trivial since task t; can be scheduled on processor Pi for 1'5:i '5:n and the J 

p-n other processors are idle or allocated to other task systems. The schedule length in 

this trivial case is the optimal schedule length represented as 

The cases where n >p are less straightforward. Given p, the goal is to produce 

schedules that are as close to T OPT as possible. The main goal is to reduce the schedule 

length as much as possible. Therefore, minimizing the number of processors needed is 

performed only if the resulting schedule does not increase in length. This is evidenced by 

the special case of n '5: p discussed above. 

Given p processors, we would like to balance the load on all processors such that, in 

the ideal case, all p processors finish execution of the assigned tasks at the same time. In 

other words, we would like to have Tp as close to T8 I p as possible. However, it is 

possible to have a task system with task weights assigned such that the execution time of 

the largest task on one processor exceeds the execution time of all n -1 other tasks on 

the p -1 other processors when n ~ p. Therefore, the following lower bound can be 

presented for the execution time of a task system, 

LB =max{fTs lpl, max{w(ti)}} 
lSiSn 

LB can be used as the ideal execution time or the schedule length on each of the p 

processors (occasionally, we refer to LB as Topr). Notice that in general Topr ~LB; 

i.e., our goal is to produce sche~ules that are as close to LB as possible. The scheduling 

algorithm described in Section 4.3 is a near-optimal scheduling algorithm that uses LB as 

the ideal length of the schedule for each of the p processors and balances the load on 

each of the p processors around LB. 
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3.4 Task Systems with Dependent Tasks 

A task system consists of a set of tasks. We define a task set with n tasks, as 

V = {tJ, t2, ... , tn}. The symbol < as a relation, represens a partial order on V. 

Therefore, a task system can be defined as 't = (V, <) where the partial order, <, 

represents the precedence relation. For example, ti < tj signifies that task ti must finish 

execution before task tj can begin. In cases where < = <j>, it is said that the task system 

is entirely composed of mutually non-interfering tasks. 

In the previous section, the graph representation of independent task systems was 

defined as G (V, E) where E = <j>. Using the same notation, a dependent task system 

may be viewed as a graph in which E '*-<I> or· in other words, based on the above 

definition of a task system, the partial order set< '*- <j>. 

In this dissertation, graph representation of task systems are assumed to be a DAG and 

that moreover, they are assumed to be precedence graphs. A precedence graphs is 

defined as follows. Define the arcs of a DAG by the ordered pair (ti, tj). The arc (ti, tj) 

is in the graph if and only if ti < tj with the added condition that there exists no tk such 

that ti < tk < tj. Informally, the above definition guarantees that there are no redundant 

edges or paths in the DAG for it to be a precedence graph. Figures 1 (a) and 1 (b) 

demonstrate a typical precedence graphs and a general DAG. As can be seen, the 

addition of the arc ( 1, 5) to the precedence graph in Figure 1 (b) creates a redundant path 

from vertex 1 to vertex 5. As mentioned in the statement of the problem in Section 1.1, 

existence of an arc between a pair of tasks indicates inter-task dependencies which 

demands imposition of a partial ordering on the execution sequence of tasks. Because of 

the dependency constraints imposed on the task system graph through the existence of 

arcs, the scheduling mechanism must schedule the tasks in such a way that correct 

execution of the program is guaranteed. 



38 

(a) A precedence graph 

(b) A directed acyclic graph (DAG) 

Figure 1. A sample precedence graph and a sample DAG 
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3.5 Summary 

This chapter presents a broad discussion of multiprocessor scheduling. Task systems 

are characterized in terms of the two classes of dependent task systems and independent 

task systems. Formal and informal definitions for each class are presented. Bounds on the 

length of schedules as related to the number of available processors are presented and 

discussed. 



CHAPTER IV 

SCHEDULING OF INDEPENDENT TASKS 

4.1 Introduction 

Given a task system (or a set of tasks) represented as a graph G (V, E), where the 

number of tasks n = I V I , the tasks are said to be independent of one another if the edge 

set E = <)>. That is, there are no communication or data dependencies between any pairs 

of tasks. Bounds on the schedule length for scheduling of n tasks on p processors was 

discussed in Section 3.3. This chapter concentrates on the discussion of practical issues 

related to scheduling of independent tasks on multiprocessors and presents an algorithm 

that is designed for performing such a task. 

Because of the absence of inter-task dependencies, scheduling of independent tasks 

can take place in any order. Additionally, no special considerations are necessary to 

determine the particular processor that a given task must be scheduled on in order to 

avoid or minimize the communication overhead. Such a concern is warranted in 

scheduling of tasks that are dependent on one another, particularly if the mapping of 

tasks to processors is attempted for distributed memory environments or machines. 

The main objective in scheduling of independent tasks on a given number of 

processors p, is to ~alance the load on all processors such that, in the ideal case, all p 

processors finish processing of their workload at the same time. If such a goal is reached, 

and optimal schedule length is achieved. We refer to such an ideal schedule as 'topt to 

indicate an optimal schedule for task system 't and denote its length as T OPT. 

40 
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The scheduling algorithm, Variant-Load algorithm, presented in Section 4.3 is 

designed for scheduling of independent tasks on a given number of processors p, with the 

objective of balancing the assigned workload to each of the p processors. Although this 

algorithms has been designed for scheduling of individual tasks constituting a single job, 

on multiprocessors, it also can be used effectively in a multiprogrammed multiprocessor 

environment for the purpose of load balancing. 

Variant-Load algorithm treats each available processor as a bin with a certain capacity 

(workload capacity) that is filled (packed) with variable-sized processing times associated 

with the tasks. This algorithm is developed based on concepts from bin packing 

[Coffman et al. 78] [Johnson et al. 74]. Bin packing is a general scheme in which items 

of different sizes must be packed into k bins of capacity C each where the sum of the 

sizes of the n items being packed is in general less than or equal to k*C. 

Bin packing is known as a combinatorial optimization problem [Johnson et al. 74]. 

Other similar problems include the traveling salesman problem, the least sum of squares 

problem, and the multiprocessor scheduling problem. A more formal statement of the 

bin packing problem can be stated as follows. Consider a list L = (e 1, e2, ... , en) of 

real numbers in the range [0 .. 1]. The objective is to place the n numbers into the 

smallest possible number of bins L"' such that the sum of the numbers assigned to any of 

the bins would not exceed 1. It is possible to define other variations for the bin capacity. 

One possible variation is to consider bins with different capacities. Such a problem is 

referred to as the variable-size bin packing problem. Bin packing is a problem that has 

its origin in operations research and job-shop scheduling. It is considered to be a special 

case of two other problems known as the cutting stock problem and the assembly line 

balancing problem [Gilmore and Gomory 61] [Conway 67]. 

The cutting stock problem can be describes as a problem in which a number of 

inventory item of various lengths L 1 , L 2, ... ,Lm are available for filling customer 
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orders. Each inventory item has a cenain cost and therefore, the cost of filling orders is 

determined by which stock is cut. To fill an order of Nt pieces of various sizes li, for 

lSi :s; m, inventory items must be selected for cutting. The problem to solve is which 

available inventory stock to cut in order to incur the lowest cost. This problem is also 

referred to as the trim problem. An instance of the cutting stock problem is demonstrated 

in Figure 2 where the numbers inside each box represents the size of the available 

inventory item or the ordered item. 

Customer Order 

14 

10 Do 
lnventroy Items 

17 
13 

12 
8 

11 9 

Figure 2. The Cutting Stock Problem 



43 

4.2 Survey of Related Work 

Coffman, Garey, and Johnson [Coffman et al. 84] in an update survey of bin packing 

problem, present a mathematical model for the classical one-dimensional bin packing 

problem as "given a positive bin capacity C and a set or list of items 

L = (P 1, P 2, ... ,P n), each Pi having a size S (Pi) satisfying 0 ~ S (Pi)~ C. What is 

the smallest integer m such that there is a partition 1t = B 1 U B 2 U · · · U Bm 

satisfying 

:E S(Pi) ~C 
P; E Bj 

for 1 ~ j ~ m." This definition characterizes many different problems that arise in real

life situations in which a collection of given objects of different sizes are to be fit into 

well-defined regions without the possibility of overlaps. Johnson and his colleagues 

[Johnson et al. 74], in an earlier survey, present several examples of situations in which 

the need for bin packing algorithms arises. Such examples include i) table formatting in 

which "bins" are assumed to be computer words that hold such items as half-word 

integers, bit strings of certain sizes, and character strings, ii) prepaging where the bins 

are assumed to be pages or page fractions, and iii) file allocation problem where the need 

for placing variable-sized files on as few disc tracks as possible is felt. 

Other variations of the classic one-dimensional bin packing problem are two 

dimensional bin packing problems in which objects are assumed to posses certain widths 

and heights, and three dimensional bin packing problems in which objects may be viewed 

as cubes with varying dimensions. Most computer science problems are best 

characterized as belonging to the class of one-dimensional bin packing. Brown 

[Brown 71] gives examples of applications for business and industry. 

As stated in the introduction section of this chapter, the bin packing problem is known 

to be a combinatorial optimization problem and therefore, the general problem of finding 
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an optimal packing solution requires a lengthy combinatorial search and is NP-complete 

[Cook 71]. As a result, similar to other attempts at finding reasonable solutions for other 

NP-complete problems, one must resort to finding heuristic solutions for creating 

acceptable packing of items into bins. We refer to such heuristic algorithms as 

approximation algorithms. Johnson and his colleagues [Johnson et al. 74] present some 

worst case performance bounds on four approximation algorithms for the one

dimensional bin packing problem. The heuristics used in these algorithms are first-fit 

(FF), best-fit (BF), first-fit-decreasing (FFD), and best-fit-decreasing (BFD). In the latter 

two cases, FFD and BFD, items are expected to be sorted in non-increasing order 

according to their sizes. Due to the sorting requirement in the case of FFD and BFD, 

these approximation algorithms can only be used for off-line bin packing where a static 

solution is reached before its implementation. A bin packing algorithm is said to be off

line if permutation of list items are allowed before processing. In contrast, on-line bin 

packing algorithms are capable of coming up with a packing of items on a dynamic basis 

as the item sizes become available. Therefore, such on-line algorithms, by their very 

nature, must be very fast and use simple heuristics. An investigation of on-line bin 

packing algorithms has been the topic of a dissertation by Ramanan [Ramanan 84] in 

which a linear-time on-line algorithm is presented and analyzed. It may be argued that 

off-line solutions may yield better results. However, one must also consider the overhead 

involved in preprocessing of the items. 

Johnson et al., in analyzing the worst case and average case behavior of the packing 

algorithms described in the above paragraph, conclude that FFD and BFD almost always 

behave better than the FF and BF heuristics. However, FFD and BFD are only reported 

as best off-line algorithms. These algorithms are reported to have a run-time complexity 

of 0 (n log n) and a performance ratio of 1.222... which is defined as the ratio of the 

performance of the given approximation algorithm to the performance of an optimal 

solution known for the same problem. 
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Another related work is one done by Coffman, Gary and Johnson [Coffman et al. 78] 

that develops a multiprocessor scheduling algorithm using the FFD heuristic, called 

multifit. Multifit is a non-preemptive scheduling algorithm for scheduling of n 

independent tasks on p identical processors. Given the number of available processors p, 

this algorithm operates by determining a bin capacity C, and attempts to schedule the 

given tasks on Sp processors. Coffman, et al. define a p-processors performance ratio, 

Rp (A) for a given algorithm A as: 

* Rp(A) =sup {FA ['t,p] I 'tp :all task sets 't} 

where 't and p represent the given task system and the available number of processors, 

respectively. Algorithm A creates a partition of 't into p subsets. The partitions are 

denoted by p A [ 't, p ]. FA [ 't, p], in the above performance formula, denotes the 

schedule length or the finishing time of PA [ 't, p ]. 't; is defined to be the optimal 

schedule length for a given task system 't on p processors. The goal is to find an efficient 

algorithm A such that the performance ratio, Rp (A), is as close to 1 as possible. 

Graham [Graham 69] [Graham 76] and Sahni [Sahni 76] discuss such algorithms. 

However, the computational time associated with these solutions make their practicality 

prohibitive. One of the polynomial time solutions that seems to have a good performance 

is the Largest Processing Time [LPT] algorithm [Graham 69] [Graham 76] that reports a 

performance ratio of Rp (LPT) = 4/ 3 - 1/ 3 p. Graham also reports in these studies 

that the performance of non-preemptive scheduling algorithms for scheduling of 

independent tasks is in general, never worse than twice the optimal solution in length, 

that is, FA ['t,p) S 2. t;. 
Coffman et al. [Coffman et al. 78] report that their iterative algorithm, multifit, out 

performs LPT on the average and improves on the worst case performance ratio of LPT. 

Given a task system 't, composed of independent tasks, bin capacity C, and the number 

of processors p, the multifit algorithm devises a packing of tasks for each of the 
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processors with the objective of minimizing the number of processors. However, it is 

described later that since Coffman et al. determine the bin capacity with regard top, it is 

never the case that the tasks are scheduled on less than p processors. Instead, whenever 

the workload has to spill over to more than p processors, the bin capacity is increased 

until a suitable capacity is reached for which the n tasks can be fit into the p processors. 

We demonstrate that the algorithm developed in this dissertation, the Variant-Load 

algorithm, achieves the same goal with less processing. 

Multifit algorithm determines the bin capacity C by defining the lower bound and the 

upper bound values on C with regard top. It then performs a binary search for finding a 

new value for C which minimizes the schedule length by performing a limited space 

search. Each new value for C is used for creating a packing of tasks on processors. If 

the new packing requires more than p processors, it is rejected and a new value for C 

that lies between the defined lower and upper bounds is determined. During the trial 

packings, new lower and/or upper bounds on C are defined until a packing of items into 

no more than p bins is achieved. Because of the expense involved in searching for a 

reasonable schedule, the multifit algorithm operates such that the number of trial 

packings in search of a suitable C can be specified by the user, where fewer iterations 

provide a less accurate capacity and therefore the algorithm may be unable to pack the 

items in less than p bins. In this work, the lower bound C L, is defined as: 

CL ['t,p] = max{(Vp) Ts(t), max{w(ti)}} 

where Ts ('C) is the sequential execution length of a task system 't, and w (ti) is the 

processing time of the largest tasks in 't. This quantity is known as McNaughton's lower 

bound [McNaughton 59] and is devised as an optimal schedule length for preemptive 

scheduling. The upper bound C u, is defined as: 

Cu [t,p] = max{(?/p) Ts{t), max{w(ti))}} 



47 

where the quantity ('2/p) Ts ('t) is based on Graham's findings that the worst case 

performance of non-preemptive scheduling algorithms for scheduling of independent 

tasks is never more than twice the optimal schedule length. Therefore, multifit algorithm 

searches for a C value in the range C L ~ C ~Cu. 

One interesting finding of the experiments done by Coffman et al. (which is also 

demonstrated in [Johnson 73]) is non-monotonocity of the devised packings with respect 

to the bin capacity and the number of employed bins. This anomaly is demonstrated in 

the example in Figure 3 which appears in [Coffman et al. 78]. Given a task system 't = 

{ 44, 24, 24, 22, 21, 17, 8, 8, 6, 6}, if the bin capacity is set to C = 60, the number of bins 

required to devise a non-overlapping packing is three while if the bin capacity is 

increased to 61, then packing of the same set of tasks (using the FFD heuristic) requires 

8 e 

e 17 17 
8 

8 

21 21 

22 
22 

Figure 3. Non-monotonocity of First-Fit-Decreasing heuristic 

in packing of items into bins 
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four bins. Johnson [Johnson 73], in his dissertation work on bin packing algorithms, 

demonstrates the same anomaly with regard to First-Fit heuristic. Figure 4 demonstrates 

packing of tasks 't1 ={.55, .70, .55, .10, .45, .15, .30, .20} and 't2 ={.55, .70, .55, .45, 

.15, .30, .20} in which the sum of the values of all items 'ts = 3 for both task systems. 

The bin capacity in Johnson's work is assumed to be 1. As seen in Figure 4 (which 

appears in [Johnson 73]), First-Fit heuristic comes up with an optimal solution for task 

system 'tt while 't2 is packed into four bins. Prior to the demonstration of non

monotonocity of FF and FFD heuristics, a more detailed study of scheduling anomalies 

was done by Graham [Graham 66] when discussing the list scheduling heuristics. A 

detailed discussion of Graham's findings was presented in chapter one. 

The issue of monotonocity of heuristic bin packing algorithms is the subject of a 

dissertation work by Murgolo [Murgolo 85]. It is reported in this work that from among 
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Figure 4. Non-monotonocity of First-Fit heuristic in 

packing of items into bins 
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the heuristics first-fit, best-fit, worst-fit, next-fit and their off-line variations, first-fit

decreasing, best-fit-decreasing, etc., only the next-fit heuristic and one of its variations 

next-fit-2, is reported to be monotonic. For such algorithms to be monotonic, it means 
I 

that given a list L and its variation L , which differs from L by containing items of 

smaller sizes and therefore, a smaller total for the sum of its individual item sizes, a 

packing of L' must require the same or fewer number of bins as L. Otherwise, the 

algorithm is not monotonic. 

Other combinatorial allocation problems related to the bin packing problem are the 

knapsack problem and the minimum sum of squares problem. Knapsack problem is 

analogous to multidimensional bin packing problem in the sense that the value of an item 

in the knapsack problem is determined as a ratio of different value factors attributed to 

the objects being packed into the knapsack. Different theoretical models for both of these 

problems are presented in the dissertation research by Neilsen [Neilsen 85]. 

Another related work designed for scheduling of independent tasks on a given number 

of processors is Divide & Fold (D&F) algorithm by Polychronopoulos 
--·~---.-~----~·---.. ·-·- --· ~- -~--~ ···-· .... - ----- ~"'·-~~--, 

[Polychronopoulos 86]. The main objective of D & F, same as other similar algorithms, 

is to devise a schedule with the shortest possible schedule length, given a set of 
/---------~-·-•--••--·•,.,,~.c·-"<•~·~··--~-._.,,_.,.,.,,~-·o-<,,~-- •. ,,,,' -•• "' ., e'•"'•'''" "' ••-•<'•'•'"~--·--• ''-"•• ~.~., ••• '' -~~~-.-.. .. -~.__ ... _..,_,_,,,_ 

independent tasks and .!1:--~l!~l:>t?r. of processors. D & F algorithm operates under two 
______ ,_ • ...----~-.-..... ,,»'"•' - '''"''"'" •. ~,-.. ,,.,.,,.,, •• "'''--·•·~"'"·'-'·'•"''"''""'' 

phases. It starts with a list that is sorted in non-ascending order based on the task 

processing times. During phase I, it repeatedly divides the sorted list in half and folds the 

two halves into one list. Assuming that the list starts with n partitions of one element 

each, after the first division and folding, the list consists of n/2 partitions, each with two 

elements. The dividing and foldings continue until the number of partitions created is 

equal to the number of processors and each partition contains nl p tasks. Figure 5 

demonstrates the first phase of the D & F algorithm for the task system 't = { 45, 41, 32, 

'·· 



28, 22, 20, 19, 17, 8, 5, 4, 1} to be scheduled on three processors. 

{45} {41} {32} {28} {22} {20} {19} (17} {8} {5} {4} {1} 

FOLD 

{45} {41} 
{1} {4} 

l 
{32} {28} {22} {20} 
{5} {8} {17} {19} 

MERGE and REORDER 

l 
{45, 1} {41, 4} {22, 17} {20, 19} {32, 5} f!B, 8} 

FOLD 

l 
{46, 1} {41, 4} {22, 17} 
{28, 8} {32, 5} {20,19} 

MERGE and REORDER 

l 
{45, 28, 8, 1} {41, 32, 5, 4} {22, 20, 19, 1} 

Figure 5. Phase I reordering of D & F 
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The second phase of the D & F algorithm is the balancing phase that performs three 

different tests in order to identify tasks from pairs of processors whose swapping will 

further balance the workload assigned to each of the processors. During the second 

phase, the workload assigned to pairs of processors (i, p-i+ 1) for i = 1, 2, ... , f pI 21 

is examined and if any tasks are found that can be swapped with tasks assigned to the 

other processors or transferred to the other processors in order to balance the load, such 

exchanges or transfers will take place. For example, in Figure 5, the workload assigned 
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to the three processors after phase I, is 82, 84, 78. One obvious transfer of assignment 

upon examination of tasks in the first and the third partition would be to move the task 

with the processing time of 1 in the first partition, to the third partition that has a lighter 

workload. The decision about which pairs of tasks to exchange or which task to reassign 

is done based on the outcome of three different tests that are performed during the second 

phase. 

The complexity of Divide & Fold algorithm is reported as follows. Given an initially 

sorted list, phase I of this algorithm requires 0 (log 2 (n/ p )) steps to complete. Each 

step consists of dividing, merging, and reordering of the newly created partitions. Phase 

II of D & F consists of comparison of the workloads assigned to pairs of processors. This 

phase of the algorithm is considered to be the bottleneck because of its 0 (n 2 I p 2) 

complexity. Polychronopoulos reports the same complexity for the multifit algorithm 

developed by Coffman et al. [Coffman et al. 78]. 

4.3 A Near-Optimal Scheduling Algorithm for 

Scheduling of Independent Tasks 

The scheduling algorithm presented in this section is based on concepts from bin 

packing [Coffman et al. 78] [Johnson et al. 74]. As discussed in the introduction section, 

bin packing is a general scheme in which n items of different sizes must be packed into k 

bins of capacity C each where the sum of the sizes of then items is in general less than 

or equal to k*C. 

In Variant-Load algorithm discussed below, the number of bins k is set to the number 

of available processors p. The initial capacity C of all the bins is set to LB, as defined in 

Section 3.3, before the process of assigning tasks to bins is initiated. The tasks in the 

task system 't are arranged in non-ascending order based on their sizes such that 

w(tt)~w(t2)~ · · · ~w(tn) where w(t;) represents the execution time (weight) of 
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tasks for 1 ~i ~. The tasks in each bin, bj. 1~j~. correspond to the set of 

independent tasks assigned to each of the p processors. Mter partitioning of the tasks 

into p sets, the tasks assigned to bin bj can be scheduled on processor Pj· 1~j~p. 

w (bj) will be used in the following algorithm to denote the sum of the weights 

(execution times) of all the tasks assigned to bin bj. 

The Variant-Load algorithm, presented in this section, performs the task of assigning 

the first P tasks of the given tasks set, one task per processor, to the p available 

processors through the first two steps of the algorithm. If n -5.p (the trivial case), then 

the assignment of tasks to processors is completed and the algorithm halts. The other 

non-trivial case where n ~ p is performed by going through step 4, or if required through 

steps 4 and 5 of the algorithm. 

After the initial assignment of the first p tasks to the p processors, the algorithm starts 

assigning the remaining n -p tasks as follows. Tasks p + 1 to n are assigned to the 

lowest indexed bin (processor) provided that the assigned workload, w (bj). for the 

lowest indexed bin, bj for l-5.j ~.does not exceed the defined bin capacity, LB. If this 

condition is satisfied, then task ti, p + 1 ~i ~n. is added to bin b j and the workload 

assigned to bin bj so far, is incremented by w(ti), the execution time for task ti. Step 4 

will be repeated until i = n, that is, all tasks are packed, or until the assignment of a new 

workload to a bin exceeds the bin capacity LB. The latter condition forces the algorithm 

to step 5, with the understanding that the current bin could not be packed with a new task. 

During step 5 of the algorithm, the simple initial"if' test determines if the current bin 

being packed has not been in fact the highest-indexed bin. If so, the algorithm simply 

moves to the next lowest-indexed bin and transfers the control back to step 4, for new 

attempts at packing the current task into the next bin in line. If j = p, that is attempt to 
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Input: A task system t, consisting of independent tasks, where the tasks are arranged in 

non-ascending order based on their execution weights, the number of tasks n in t, the 

number of available processors p, and the initial bin capacity LB. 

Output: A partitioning of t into p sets. 

Metbod: 

1. bk ~ {tk}, w (bk) ~ w (tk), 1~k~p. 

2. if n ~p then HALT. 

3. i ~p+1, j~l. 

4. ifw(bj)+w(ti)~LB 

then 

bj~biu {ti}, w(bj)~w(bj)+w(ti), 

i ~i+1, 

if i ~ n then go to Step 4, otherwise HALT. 

5. if j=p 

then 

find k such that w (bk) ~ w (bz), 1~1~. 

bk ~ bkU { ti }, w (bk) ~ w (bk) + w (ti), 

if i<n 

then 

i ~ i + 1, j ~ 1, go to Step 4, 

otherwise HALT. 

otherwise j ~ j +1, go to Step 4. 

Figure 6. The Variant-Load Algorithm 
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pack a task in the highest-indexed bin has failed, then step 5 of the Variant-Load 

algorithm recognizes that packing of the current task without exceeding the bin capacity 

is (probably) not possible. Therefore, it attempts to pack the current task ti into bin bko 

1~k~ that has the lightest workload w (bz) for 1~1~. Now, task ti has been added to 

bin bk. The algorithm halts when the number of iterations, i = n. Otherwise, the next 

task, t; + 1 , becomes the candidate for packing. After each failed attempt at packing a 

task, due to exceeding of the initial bin capacity, packing of subsequent tasks take place 

by examining the next lowest-indexed bin. Except for the initial assignment of the p 

largest tasks which is done using the scheme Largest-Processing-Time-First (LP1F), the 

scheduling of the remaining n -p tasks is done using the First-Fit-Decreasing (FFD) 

scheme [Coffman, et al. 78] [Johnson, et al. 74]. The schedule in Figure 7 shows the task 

assignments produced by Variant-Load algorithm for p = 3 and the task system 

't= {tJ, t2, ... , t12} in which the processing times for the tasks are (45, 41, 32, 28, 22, 

20, 19, 17, 8, 5, 4, 1). Processing times used for scheduling of the tasks typically are 

based on estimates provided by the compiler or the actual execution times obtained by 

sequential execution of the tasks. The lower bound on the schedule length for this 

particular task system is LB =max {81,45}. The schedule in Figure 7 is indeed 

optimal. If the packing scheme used in Variant-Load algorithm is changed either to a 

strict FFD or LPTF, the schedule increases in length from 81 to 82. 

The rationale for using the LP1F scheduling for the first p tasks followed by a switch 

to FFD instead of using the LP1F or FFD schemes strictly, is that by placing the first p 

largest tasks in separate bins, the packing of the remaining (smaller) n -p tasks will 

intuitively yield a more normalized distribution. 

The packing scheme presented in Variant-Load algorithm is using the rationale of the 

worst-fit placement strategy implicitly in the following sense. By choosing not to place 

tasks ti and ti+l> 1~ i ~pin the same bin, even if w (ti) +w (ti+l) ~LB, this 
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10 20 30 40 50 60 70 80 
I I I I I I I I 

45 28 8 

41 22 17 

32 20 19 5 4 1 

Figure 7. A schedule for task system 't' on three processors 

algorithm is in essence trying to maintain the largest possible remainder capacity in all 

the bins after the placement of the initial p tasks, with the expectation that it can still 

accommodate other incoming tasks with large weights. 

4.4 Performance Evaluation 

In order to evaluate the performance of the Variant-Load algorithm empirically, we 

compare the performance of this algorithm with several other comparable and well

known algorithms. The algorithms used in our simulation experiments are Longest 

Processing Time (LPT) [Johnson et al. 74], Multifit [Coffman et al. 78], and 

Divide & Fold (D & F) [Polychronopoulos 86]. All of these algorithms are suitable for 

scheduling of independent serial tasks. The performance of the three algorithms 

mentioned above, has been reported in the literature [Coffman et al. 78] 

[Polychronopoulos 86] in increasing order of performance as follows: LPT, Multifit, and 

D&F. 

4.4.1 Design Methodology 

The measure of performance in our empirical evaluation is the number of optimal 

schedules produced in a series of simulation experiments as well as the performance ratio 

of the measured algorithms. The variables used in these experiments are the processing 
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time of tasks, the number of available processors, and the number of tasks in the task 

system. More specifically, two types of experiments were conducted. The input ranges 

used in this experiment were the same as the ones used in the cited studies (namely, 

[Coffman et al. 78] and [Polychronopoulos 86]) in order to establish a baseline for further 

evaluation. 

Two different simulation experiments were performed. In the first experiment, the 

number of tasks were treated as the independent variable while the processing times and 

the number of processors were treated as dependent variables. That is, the number of 

tasks was kept constant at 128 while the processing times ranged in value from 1 to 100, 

and the number of processors used was in the range 2 to 21. This type of experiment 

involved a total of twenty runs for each of the algorithms. In the second experiment, the 

number of processors was the independent variable while the processing times and the 

number of tasks were treated as dependent variables. More specifically, the number of 

processors was kept constant at p = 10 while the number of tasks in each task set varied 

as 20, 30, 40, ... , 210, and the processing times were selected randomly in the range 1 to 

100. The processing time of tasks were produced using the normal distribution for both 

experiments. However, the same experiments were repeated with exponentially 

distributed processing times with the finding that the results were consistent with those of 

the normal distribution. The execution times of tasks were produced using the normal 

distribution for both experiments. 

4.4.2 Simulation Results 

The performance of the studied algorithms was measured in terms of two criteria, the 

number of optimal solutions achieved and the overall performance ratio of each 

algorithm. As described in Section 1.6, the performance ratio Rp(A), is defined as 
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where TA is the performance of an approximation algorithm A and T~PT is the 

performance measure for the approximation of an optimal solution known for the same 

problem. To compare the evaluated algorithms, we concentrated on the average 

performance ratio of these algorithms over all twenty runs. We denote the average 

performance ratio by Rp(A) which is the ratio of TA to T~PT representing the average 

performance for the approximation algorithm and the optimal solution, respectively. It 

should be stated that since it is difficult to determine exact values for T OPT for arbitrarily 

* . large task sets, T OPT was used as the preemptive measure and defined as 

where Ts denotes the sequential execution time of the task set and w (ti) for 1 -5: i -5:n, 

represents the individual processing time of tasks. Since the scheduling algorithms 

evaluated in this dissertation are non-preemptive, it can be asserted that in general, it is 

* possible that T A > T OPT and nontheless, still be an optimal solution under non-

preemption. 

TABLE I 
RESULTS OF EXPERIMENT I 

ALGORITHM NUMBER OF 
PERFORMANCE s8~~JL.l:s RATIO 

Variant-Load 18 1.0009 

LPT 3 1.0027 

D&F 16 1.0006 

Multifit 4 1.18 
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TABLE II 
RESULTS OF EXPERIMENT II 

ALGORITHM 
NUMBER OF PERFORMANCE 
s8~~'tl:s RATIO 

Variant-Load 17 1.0031 

LPT 0 1.0061 

D&F 15 1.014 

Multifit 0 1.031 

The results of experiments I and II are shown in TABLES I and II. As can be seen, the 

performance of the Variant-Load algorithm is slightly better than D & F algorithm in 

experiment II and is very close to D & F in experiment I. Even though these results are 

based on limited experimentation, we may conclude that, in terms of the quality of the 

produced schedules, our algorithm is at least as good as D & F which has been shown to 

improve over other best known algorithms (Multifit and LPT) in some respects. 

However, our algorithm possesses a major advantage over D & F and Multifit with 

respect to its run-time behavior. 

4.4.3 Complexity Analysis 

D & F devises schedules using a three-phased scheme. The first phase of D & F 

algorithm has been reported to require 0 (logz (nl p)) steps. Each step consists of 

dividing the list in half, merging of the two halves (folding), and reordering the newly 

created partitions according to the sum of the sizes of the tasks in each partion. The 

second phase of D & F has been reported to have a complexity of 0 (n 2 I p 2 ). The third 

phase of the algorithm, which performs further optimization through rather expensive 
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steps, has not been implemented by its developer when testing the performance of this 

algorithm. 

The Variant-Load algorithm has O(n) complexity in cases where n ~p. For n ?:.p, 

we evaluate the complexity of our algorithm as follows. Let us make the assumption that 

after the initial assignment of the first p tasks (one per processor), the remaining n -p 

other tasks do not fit in any of the bins without exceeding the bin capacity. This is a 

pessimistic worst case assumption since the initial bin capacity has been defined in terms 

of the processing times of the tasks and therefore, one may expect that the initial bin 

capacity will not be broken at this point. Nonetheless, this assumption is made to come 

up with a worst case behavior. Let us make another worst case assumption that all bins 

are examined before it is found out that a task does not fit into any bin for all the 

remaining n -p tasks and thus (n -p) p iterations are used in step 4. Again, this is a 

pessimistic assumption because in step 4 of the algorithm, the search does not start from 

the lowest indexed bin every time. Assuming a linear search, finding the least full bin 

(step 5 of the algorithm) involves p comparisons each time. Therefore, a pessimistic 

worst case for the run time behavior of the Variant-Load algorithm is (n-p)p 2. A 

more realistic behavior is (n - p )I 2 . p 2 where (n - p )I 2 of the tasks on the average 

may require examining of all p bins (in step 4 of the algorithm) before the search for 

finding a bin (without exceeding the initial bin capacity) may fail. A general worst case 

bound for the Variant-Load algorithm can be specified as 0 (np 2 ). Recall from Section 

1.2 that from among polynomial time approximation solutions for solving the scheduling 

problem, those with relatively slower growth rates (as the input size increases) are rated 

to be superior to others. The Variant-Load algorithm possesses such a characteristic. 

4.5 Summary 

Chapter 4 describes the general problem of scheduling of independent serial tasks and 

their schedule bounds. A review of related work and their results are presented which 
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includes early theoretical work on the scheduling problem in other disciplines such as 

operations research and its subfield job-shop scheduling, and management science. This 

review also includes the most recent work done in multiprocessor scheduling. 

A near-optimal scheduling algorithm, Variant-Load algorithm, developed in the 

current research is presented and discussed. An empirical evaluation of the developed 

algorithm in comparison to the best known algorithms in the literature is presented. 

Although the simulation studies performed are limited, it is shown that our algorithm is 

at least as good as one of the best-known algorithms (D & F) in terms of the optimality of 

the resulting schedules and is superior to D & F in terms of its run-time complexity. 



CHAPTERV 

SCHEDULING OF DEPENDENT TASKS 

5.1 Introduction 

This chapter concentrates on the problem of scheduling of n tasks on p processors in 

which the tasks exhibit inter-task dependencies. Using the notation defined in Section 

3.4, such task systems are defined as 't = (V, <) such that < -:t:. cj>, where the relation < is 

a partial order. Task systems are represented as graphs. Furthermore, they are assumed to 

be precedence graphs. Because of the dependency constraints imposed on the task 

system graphs through the existence of arcs, the scheduling mechanism must schedule 

the tasks in such a way that correct execution sequence of the program is guaranteed. 

This property is the determinacy property from Section 1.1. 

Two different approaches are used in addressing this problem. In the first approach, 

we demonstrate a method and present an algorithm that breaks the inter-task 

dependencies by partitioning the task system into sets of independent tasks. Each such 

partition or set is referred to as a layer. The tasks within each partition or layer are 

ordered and processed based on a partial order. However, the order in which the 

resulting layers are processed must obey a total order iii order to satisfy the determinacy 

property. Two algorithms have been developed that first use the above approach and 

eliminate inter-task dependencies by partitioning the task system into layers of 

independent tasks. These algorithms then schedule the tasks in the resulting independent 

layers according to certain criteria. The difference between these algorithms and their 

suitability for different environments is discussed in this chapter. 

61 
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The second approach developed is one in which sets of tasks are identified and treated 

as independent threads. Each thread is scheduled on a single processor. In this approach, 

an acyclic control flow graph of a program is used as a basis for detection of parallelism. 

Tasks in this model are treated as sequential blocks of code with no branching into or out 

of them except at the beginning and/or at the end, and with clearly defined input and 

output parameters. Parallelism in such a graph is manifested by the number of 

independent paths or threads of execution. The total number of independent paths in a 

graph is the nullity of the graph which is the number e-n +2, where e represents the 

number of edges and n represents the number of nodes in a graph [Berge 73] 

[Temperly 81]. Therefore, we define the nullity of the graph as the minimum number of 

processors needed for maximum execution speed. Further details on the approaches used 

in scheduling of dependent task systems will be presented in appropriate sections in this 

chapter. 

5.2 Task System Graphs and Schedule Bounds 

We represent task systems as directed acyclic graphs with no redundant paths (i.e., 

precedence graphs). Task graph representations that are not acyclic, can be convert to 

DAGs by merging the strongly connected components by using the graph's boolean 

connectivity matrix. DAGs with redundant paths can be converted to precedence graphs 

by using redundant path removal algorithms. Since this research is not concerned with 

program partitioning, it is assumed that a task system has been created using an optimal 

or near-optimal partitioning scheme and is therefore suitable for parallel processing. The 

algorithms presented in this chapter have been designed with precedence graphs in mind 

that start with a single root node (source) and end in a single terminal node (sink). In the 

absence of a single source and/or a single sink, a dummy node with a processing time of 

zero can be added to the graph. Thus, the algorithm can be applied to arbitrary 

precedence graph, including the tree graph considered in Hu's algorithm. A typical 
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precedence graph considered in this research is shown in Figure 8. 

(1) 

(2) 

(3) 

("') 

Figure 8. A task system precedence graph 

As before, task systems will be represented as G (V, E) where the set E:;:. cj> in the case 

of dependent task systems. The set of vertices represent the individual tasks. Associated 

with each vertex is a non-negative integer which represents the processing time of a task. 

Processing times are assumed to be compiler generated estimates or actual processing 

times obtained by running the tasks on actual processors. It is not possible to calculate 

the exact schedule lengths for non-preemptive scheduling schemes unless restrictive and 

sometimes unrealistic constraints are placed on the task and the machine characteristics. 

Calculation of the optimal schedule length is possible in preemptive schemes. Since the 

scheduling algorithm developed in this research uses a non-preemptive scheme, only 

loose bounds on the schedule length can be determined. Considering precedence graphs 

with a single source and a single sink (e.g., Figure 8), it is obvious that the source and the 

sink nodes cannot be executed in parallel with any other node. Therefore, that portion of 
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the task system which might be amenable to parallelization includes those tasks that are 

between the source and the sink. That is, parallel processable time at most is 

t8 - (tsource + tsink). Therefore, a lower bound for the execution of the parallel 

processable portion of such a task system can be defines as 

L 1 = ( ts - (tsource + tsink))l P 

However, considering a precedence graph such as the one in Figure 9, it can be observed 

that L 1 = 11, which is not achievable under a non-preemptive scheduling scheme. Thus, 

a second lower bound which is based on the critical path length, Tc, of a task system can 

be defined as follows 

L 2 = Tc- (tsource + tsink). 

Figure 9. A simple precedence graph 

Using these two bounds, a loose lower bound, LB, for the scheduling of the entire task 

system can be defined as: 

LB =max{L 1, L2}+ tsource + tsink 
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Thus the schedule length for the graph of Figure 9 is 28 and not 19. In the case of an 

unlimited number of processors, or in cases where the number of available processors is 

greater than or equal to the width of the graph, the schedule length would be equal to the 

critical path length. In that case, Tp = Tc= Topr and an optimal schedule length would 

be achieved. 

5.3 Task System Partitioning 

In order to eliminate inter-task dependencies in dependent task systems, many 

scheduling algorithms discussed in the literature make the assumption that the graph 

representation of the program has been partitioned into layers of independent tasks. 

There are very few algorithms (in fact only one) found in the literature that show how a 

task system graph is actually divided into layers. One such algorithm is MBFS 

[Polychronopoulos 86] which will be described in more detail later in this chapter. 

Partitioning of task system graphs can be done using two different approaches. In 

what we refer to as the earliest schedule partitioning (ESP), the task system graph is 

processed from top to bottom. In this approach, any initial tasks that have no 

predecessors are placed in a layer, /1. At this point, the arcs that lead to the immediate 

successors of the tasks in /1 are erased. The same approach is repeated for the next layer 

in which all tasks with an empty predecessor set are now placed in layer /2, followed by 

removal of outgoing arcs for the tasks in /2. Repeated applications of this scheme will 

result in a set of independent layers L = {/1, /2, ... , lk } where k represents the number 

of independent layers in a graph. For example, in the case of precedence graphs 

described in this research where task graphs are assumed to be single-entry and single

exit graphs, the source node is assumed to be in layer /1 and the sink node is placed in 

layer lk. Most other work, following Hu's convention [Hu 61], assign labels from 

bottom up where the deepest level in the graph is assigned label/1. We believe it is 



66 

more logical and practical to assign label lt to the first cut of the graph when the graph is 

processed from top down. We reserve the conventional labeling numbers for the next 

approach in which a graph is processed from bottom up. 

If the partitioning scheme described above is applied to a graph by processing the task 

system graph starting at the sink node and working up to the source, then the resulting 

partitions are referred to as the latest schedule partitioning (LSP). Again, such 

partitioning will result in a set of layers L = {It, l2, ... , h} where lk represents the first 

cut of the graph and lt represents a set containing the terminal node(s). In earliest 

schedule partitioning, presence of a task in a particular layer signifies the earliest time a 

task can be scheduled after all of its predecessors in lower-indexed layers have finished 

execution. Latest schedule partitioning, on the other hand, represents the latest time that 

a task must be scheduled without incurring a penalty, of course after all the tasks in the 

higher-indexed layers have finished execution. Figure 10 shows the result of earliest 

schedule partitioning applied to the task system precedence graph in figure 13. Figure 11 

demonstrates latest schedule partition for the same task system graph. The algorithm 

presented in the next section, ESP algorithm, is designed for partitioning of task system 

graphs into sets of independent tasks using the earliest schedule partitioning approach. 

However, a bottom up application of the ESP algorithm yields the latest schedule 

partition. 

5.4 An Algorithm for Task System Partitioning 

The algorithm presented in this section partitions a task system graph into k layers 

denoted by l;, 1 <iS k, such that all tasks t;, lSi< I VI , in layer l; are independent of 

one another. The ESP algorithm uses the concepts from topological sorting [Skvarcius 

and Robinson 86]. A topological sorting algorithm is an algorithm which imposes a total 

order on the nodes of a DAG by constructing a linearized list of the nodes in a DAG 

through relabeling its nodes. This algorithm, in its original form (i.e., before any 
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modifications), can be used as a scheduling algorithm for scheduling of the tasks in a task 

system graph on a single processor. 

Figure 10. Earliest Schedule Partition (ESP) for the task graph in Figure 13 
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Figure 11. Latest Schedule Partition (LSP) for the task graph in Figure 13 
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In a topological sort, whenever two or more nodes are identified as having no 

predecessors, one is chosen arbitrarily for deletion from the DAG for relabeling. To 

identify as many independent tasks as possible in a task system, a modified version of the 

topological sorting algorithm can be used such that any number of nodes, which are 

identified as having no predecessors, are added to a list li at iteration i. The output of 

this algorithm consists of k such lists with k as the number of layers containing the 

independent task sets. Each list li is identified as a layer. The identified tasks in each 

layer can be scheduled in parallel, each on a separate processor, if available. 

Polychronopoulos [Polychronopoulos 86] has developed an algorithm (MBFS) based 

on a modified breadth-first-search traversal in order to identify layers of independent 

tasks in a graph. MBFS relabels a vertex with higher label numbers until it is assigned its 

appropriate layer number. MBFS has an 0 (n 3) complexity where the main loop is 

executed exactly n times. The dominant computation inside the main loop is the removal 

of the edges incident to a node and has a complexity 0 (n 2 ). The main loop in our 

algorithm is executed exactly k times where k is the nuinber of layers in a task system 

graph. Unlike MBFS which identifies the tasks that belong in the same layer one at a 

time, ESP algorithm identifies such tasks during the same iteration of the outer loop. 

ESP has a worst case complexity of 0 (n 2). The worst case behavior occurs when there 

is no concurrency in the precedence graph (i.e., k = n). Under such a condition, the main 

loop is executed n times. As for the two nested for loops, the outer loop is executed 

exactly once because each layer consists of one task only. The inner loop, instead, is 

executed a maximum of n times for each of the n iterations of the while loop. The actual 

comparisons that take place in the inner for loop are (n -1, n -2, ... , 2, 1 ). Therefore, a 

more exact value representing the worst case behavior of ESP algorithm is n (n -1 Y2. 
The single for loop in the ESP algorithm is implemented as a list of sets, and therefore 

testing the loop condition requires a maximum of n comparisons. 
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Input: G (V, E), where G is a DAG, and the tasks are each already assigned a label. 

Output: Sets l1, l2, ... , lk of independent tasks where k is the number of independent 

task sets identified in G. 

Method: 1. Compute PRED(v;), 'V v;e V, lSi Sl VI. 
I 

2. v f- v; k f- 0. 
I 

3. while V :I: cp 

do 

k f- k + 1; lk f- <I> 

for all Vt e V' such that PRED(Vt ) = <I> do 
I I 

lk f- lk u {v;}; V f- V -{ v;} 

endfor 

for all Vt e lk do 
I 

for all u e V such that v; e PRED(u) do 

PRED(u) f- PRED(u)- {v;} 

cndfor 

cndfor 

end while 

Figure 12. The ESP Algorithm 
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The task system in Figure 13 corresponds to an arbitrary program. The numbers 

placed by each node represent the execution times, w (ti ), of each task ti. One possible 

output of the topological sorting algorithm could be the total order A through Z. 

Applying ESP algorithm to the same task graph produces as its output eight sets {A}, {B, 

C, D}, {E, F, G, H, I}, {J, K, L, M, N}, {0, P, Q, R, S, T}, {U, V, W}, {X, Y}, and {Z}, 

identified as layers It through lg, respectively. 

8 

Figure 13. A task system represented as a weighted directed acyclic graph 
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The scheduling approach, ESPNL, described in this section uses the ESP algorithm 

presented in the previous section, and the Variant-Load algorithm described in Section 

4.3. Variant-Load algorithm is a near-optimal algorithm that can be used for scheduling 

of independent serial tasks. The scheme presented in this section uses the partitions 

created by the ESP algorithm and schedules the tasks in the resulting layers using the 

Variant-Load algorithm. The tasks in each layer are scheduled in increasing order of 

enumeration of the indices assigned to the layers. That is, the tasks in layer li are 

scheduled (and must be finished) before the tasks in layer li+l start execution. A 

common problem associated with static scheduling of tasks in a multiprocessor 

environment arises with situations in which the actual processing time required by tasks 

is different from predicted ones. Typically, if the actual processing times are less than 

the predicted ones, the only undesirable outcome is wasted processor time and increased 

job flow time. However, if the actual time required for execution of a task is larger than 

the predicted value, then the problem of determinacy of the execution sequence of tasks 

must be handled in order to guarantee correct termination values. In other words, a 

mechanism for synchronization and delaying the execution of remaining tasks must be in 

place in order to guarantee program correctness. The scheduling scheme presented in 

this section is particularly useful for synchronization of the execution time of the tasks in 

each layer. In the event that one or more tasks in a given partition require longer 

processing times than anticipated, then the next scheduled partition will not be released 

for execution until the tasks in the currently running layer finish execution. This 

principle also holds in situations when the tasks in a layer finish execution before the 

expected time. In this case, the next batch of tasks constituting the next layer can start 

execution before the original release time. In order to provide such a synchronization 

mechanism, some form of run-time support is necessary. Such support could be 



73 

implemented in the form of special control code injected into the tasks at the time of 

compilation, or in the form of operating system run-time support. The first approach 

would be a less expensive one because of the lower overhead involved in comparison to 

the operating system support. 

To demonstrate how the ESPNL scheme for scheduling of task systems by using the 

Variant-Load and ESP algorithms works, the task system in Figure 13 will be used as an 

example in the following analysis. As shown in Section 5.4, applying ESP algorithm to 

the task system graph in Figure 13 yields eight independent layers, each with different 

number of elements. The width of a graph is defined to be equal to the number of 

elements in the largest layer. The example in Section 5.4 demonstrates that the width of 

the graph in Figure 13 is six, indicating that a maximum of six processors are necessary 

to run each task in parallel. In order to schedule this task system on a target machine, the 

number of processors available to a program needs to be considered. If there are as many 

processors as tasks in the largest layer, the task system can be scheduled on the target 

machine as partitioned by this algorithm. The length of the schedule in such a case is: 

k 
Tp = I: max {w (tu)} 

i=llSISmj ' 

where k denotes the number of layers in a graph and mj denotes the number of tasks in 

each layer j. 

However, as the results of our performance evaluations will demonstrate in the next 

section, Tp will yield an undesirable value, in relation to the performance ratio, in the 

case of task graphs in which the number of tasks in each layer is less than or equal to 

twice the number of available processors. 

Using the above formula, Tp =53 for parallel execution of the task system in Figure 

13. The sequential execution length for the task system is Ts = 138. The speed-up 

gained in this case, S, is approximately 2.6. Note that the critical path length in the graph 
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of Figure 13 is Tc = 45. Since no scheduling algorithm can yield a schedule length 

shorter than the critical path length, therefore T OPT = 45 for this task system graph. 

Given ToPT. the highest possible speed-up achievable in the execution, S max• assuming 

an unlimited number of processors, is approximately 3 for the task system graph in 

Figure 13. 

The solution for scheduling a task system consisting of independent tasks on a limited 

number of processors was discussed in Section 4.3. Variant-Load algorithm can be used 

for scheduling of the tasks in each of the layers of a program graph. If the number of 

tasks in any layer is greater than the number of processors available, then Variant-Load 

algorithm can be applied to each such layer to produce a schedule for the given layer. 

Figure 14 shows the resulting schedule for graph of Figure 13 assuming that there are 

only three processors available. 

10 

A D Q K T 0 

E F .I N p 

H L • Q 

Figure 14. A Schedule for the task system in Figure 13 on three processors 

As can be seen in Figure 14, the schedule length for p = 3 is Tp = 60. Variant-Load 

algorithm has been used for scheduling of the independent task sets {E, F, G, H, I}, { J, 

K, L, M, N}, and {0, P, Q, R, S, T} on three processors. As a result of decreasing the 

number of processors from six to three, the schedule length has increased by seven time 
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units. The scheduling of the task set {E, F, G, H, I} accounts for one unit of time 

increasing the length of the schedule for this set from nine to ten. The remaining six time 

units in increased schedule length are caused by scheduling of task set {0, P, Q, R, S, T}, 

whose schedule length increases form nine to fifteen time units, once scheduled on three 

processors. Scheduling of task set {J, k, L, M, N} on six processors incurs a schedule 

length of six which remains invariant when scheduled on three processors. 

In the introduction section of this chapter, it was argued that, since our main goal in 

scheduling of jobs is achieving the highest possible speed-up, as long as there are 

sufficient number of processors available, no attempts are made to decrease the number 

of processors required, unless utilizing fewer number of processors does not increase the 

schedule length. For example, in Figure 14, scheduling the task set {J, K, L, M, N} on 

three and six processors resulted in no change in the schedule length. 

In order to decrease the number of processors needed, an algorithm can be developed 

such that, before any actual processor assignments take place, Variant-Load algorithm is 

run on independent task sets with fewer than requested processors to determine whether 

decreasing the number of processors still yields the same schedule length. For example, 

scheduling the task set {P, P, Q, R, S, T} in Figure 13 with processing times {3, 8, 5, 7, 

8, 9} on five processors gives the same schedule length as scheduling these tasks on six 

processors. Utilizing fewer processors than five increases the schedule length. Therefore, 

it can be concluded that the minimum number of processors for maximum speed-up in 

execution of the tasks in the task system graph of Figure 13 using the ESPNL approach 

is five. 

5.5.1 Performance Evaluation 

To investigate the suitability of the approach described in the previous section, a 

number of experiments were performed in which the dependent variable was the number 
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of tasks in each layer. The measure of performance was defined to be the performance 

ratio defined in Section 1.6. 

5.5.1.1 Design Methodology 

Six experiments were performed in which there were four variables involved. The 

independent variables were the number of levels (layers) in a task system graph, the 

number of available processors, and the processing time of tasks. The dependent variable 

used was the number of tasks in each layer. The range of values used for the independent 

variables in all six experiments were constant. These values were defined as follows. 

The number of layers in each task graph ranged between 8 and 16, the range for the 

number of processors used was 16 to 32, and the task processing times were in the range 

1 to 100. The number of tasks in each layer of a task system are defined as a multiple of 

the number of processors. For example, in the first experiment, the number of task in 

each layer was defined to be ni ~p. and in the second experiment this number was 

2p ~ni S4-p, where ni represents the number of tasks at level i, 1 ~ i ~ k, of a task 

system with k levels. Twenty task systems were generated and scheduled for each of the 

six experiments. 

In order to establish the non-interference of the independent variables used, we also 

performed some experiments in which one or two of the independent variables were 

altered. For example, task graphs with fewer layers were generated and scheduled on a 

number of processors determined by a different range from the ones used in the reported 

experiments. The results were consistent with the ones in the six experiments reported in 

this section. Therefore, we conclude that using different sets of independent variables is 

not necessary because the ranges defined are scalable to problems of different size that 

are proportional to the ones used. 

The purpose of these experiments was to establish a relationship between the task 
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graph size and the performance of the scheduling approach used. The performance 

measure used was Rp(A) as defined in Section 1.6, which is the ratio of the performance 

of a given algorithm A, to the performance of an approximation for the same problem. 

The performance of our algorithm was taken to be the schedule length produced by our 

approach. The approximation of the schedule length used was determined by using the 

measure LB as defined in Section 5.2. The results of the experiment are discussed in the 

next section. 

5.5.1.2 Simulation Results 

The ESPNL approach described in Section 5.5, divides a task graph into sets of 

independent layers and schedules the tasks in each layer as independent tasks, using the 

Variant-Load algorithm discussed in Section 4.3. In Section 5.5, we defined the schedule 

length Tp, to be equal to the sum of the largest task in each layer, in situations when 

there are enough processors for the tasks in each layer (i.e., number of available 

processors is equal to the width of the graph). However, this schedule length is not very 

desirable in situations where Tc = Topr < < Tp. To establish a relationship between 

the number of available processors and the number of tasks in each layer of a task 

system, the experiments described in the previous subsection were conducted. The 

results of our experiments are reported in TABLE ill. The performance curve is shown 

in Figure 15. As described in the methodology, the measure of performance used was the 

performance ratio Rp(A). Ideally, we would want the performance ratio to be as close to 

1 as possible. TABLE III shows the range of the values used for the dependent and 

independent variables defined in these experiments. Also shown in this table, is the 

average performance ratio for each of the six experiments. As can be seen in Figure 15, 

the performance of the ESPNL approach is very poor for task systems in which the 

number of task in each layer is less than or equal to p. As the number of tasks in each 

layer is increased, the performance ratio exhibits a rapid improvement. For example, in 
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the first experiment, when ni :$; p, the performance ratio exhibits a 73% inefficiency 

while in the third experiment, when 2p :$; ni :$; 4p, the same percentage goes down to 5% 

which is a rapid improvement. The results of these experiments demonstrate that the 

scheduling approach described in this section is particularly suitable for applications with 

a large number of tasks that must be run on a limited number of processors. 

5.6 Ranked Weight Algorithm: A Heuristic Approach for 

Scheduling Dependent Task Systems 

In this section, we present another scheduling approach for scheduling of dependent 

task systems. Similar to the approach presented in Section 5.5, the new algorithm 

discussed in this section first partitions the task system graph into a number of 

independent layers. However, Unlike the previous approach in which the tasks in layer li 

must finish execution before tasks in layer li+l could be initiated, this new approach 

selects tasks (for scheduling) based on weight assigned to each task. The Ranked Weight 

algorithm described in this section can be characterized as a list scheduling algorithm in 

which the urgency rule for scheduling or dispatching of tasks is determined based on 

certain criteria. 

As described in the survey of related work in chapter 1, a majority of the scheduling 

algorithms found in the literature can be characterized as list scheduling algorithms. One 

of the best-known heuristic list scheduling algorithms for scheduling task systems that 

exhibit inter-task dependencies is the CP/MISF (Critical Path/Most Immediate 

Successors First) heuristic [Kasahara and Narita 84] which is motivated by Hu's labeling 

of tasks according to their distance from the root. Hu's method is known as the Critical 

Path approach. The CP/MISF heuristic combines the Critical Path approach and an 

additional heuristic which determines the priority of the tasks in a layer based on the 



TABLE III 
EXPERIMENTS WITH VARYING THE NUMBER OF TASKS 

EXPERIMENTS 

Levels 

No. of Tasks 
per Level 

No. of 
Processors 

Task Weights 

Performance 
Ratio 

1 

(8-16) 

p 

(18 .. 32) 

(1 •. 1 00) 

1.73 
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(&-16) (&-16) (8-16) (8-16) (8-16) 

2p (2 .. 4)p (4 .. 8)p (8 .. 16)p (16 .. 32)p 

(18 .. 32) (16 •. 32) (16 . .32) (18 .. 32) (18 .. 32) 

(1 .. 100) (1 •. 1 00) (1 .. 100) (1 .. 100) (1 .. 100) 

1.29 1.05 1.017 1.004 1.001 

EXPERIMENTS 

Figure 15. Performance of the ESPNL scheduling approach 
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number of their immediate successors. Tasks with a large number of immediate 

successors have higher priority. This algorithm is claimed to have incorporated the best 

heuristic for scheduling of DAGs. Polychronopoulos [Polychronopoulos 88] argues that 

tasks can be characterized as either serial or parallel tasks (where serial tasks contain a 

single execution thread while parallel tasks may be composed of a number of 

independent serial tasks). Therefore, using the number of immediate successors might 

not be a realistic priority scheme. He proposes a parameterized heuristic for assignment 

of priorities to tasks in his algorithm using the following rules. He gives priorities to 

- tasks that lie on the critical path, 

- tasks with long execution times, 

- tasks with largest number of immediate successors, and 

- tasks with successors that have long processing times. 

He then uses these rules to define three parameters that can be used for proportional 

allocation of processors to tasks. His allocation scheme assigns a single processor to 

each serial task. Any number of remaining processors are distributed to parallel tasks 

based on their priorities. The flexibility of Polychronopoulos' algorithm is due to the 

capability of altering the weight of the three parameters. By changing the relative weight 

of the parameters, the algorithm can assign different priority weights to the above stated 

rules. 

5.6.1 The Ranked Weight Heuristic 

It is demonstrated shortly that the rules described above [Polychronopoulos 88] are 

embedded in the Ranked Weight heuristic, presented in this section. The MISF heuristic 

in Kasahara and Narita's algorithm gives a higher priority to tasks with largest number of 

immediate successors. Unless it is used in the context of Hu's algorithm, where tasks 

have equal processing times, the disadvantage of the CP/MISF method is that the 

processing times of the tasks are not used as a factor for load balancing. The heuristic 
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used in the algorithm presented in this section takes into account the processing time 

required by a task and all its successors. For example, the processing time of the source 

node (assuming that the task system graph starts with a single node with no predecessors) 

will be equal to the total execution time of the entire task system. We refer to this 

number as the ranked weight of the task. Ready tasks are scheduled in the descending 

order of their ranked weights. This seems to be a stronger heuristic than the MISF 

heuristic because it selects the tasks that consume a larger amount of processor time 

through their successor path(s). This heuristic performs at least as well as the MISF 

heuristic because if a task with large number of successors also has a large ranked 

weight, it will be given a higher priority. On the other hand, however large the number 

of immediate successors of a task is, if the ranked weight of this task is less than that of 

some other ready task, this task will be given a lower priority (TABLE N shows the 

expected processing time, w(ti), and the ranked weight, rw(ti), of the tasks in the task 

graph of Figure 8). Additionally, the Ranked Weight heuristic gives priority to the tasks 

that lie on the critical path of a graph in a special sense. 

Giving priority to the tasks that lie on the critical path of a graph is an old heuristic 

that has been used by many [Baer 73] [Kwan et al. 91] [Polychronopoulos 88]. The 

Ranked Weight heuristic presented in this dissertation, looks at the critical path of a task 

graph in a new light. The rationale for giving priority to the critical path tasks in 

scheduling is meant to ensure that the execution of the tasks on the most expensive path 

of the graph will not "lag behind" such that their delayed execution will increase the 

schedule length. 

The general approach for scheduling of task graphs is as follows. Given task graph 

G, ready tasks in G (tasks with no predecessors) are scheduled and conceptually erased 
I 

from the graph. Lets call the resulting graph G which differs from G by removal of the 

scheduled tasks. Referring to the task graph in Figure 8 as G, the first ready task that can 
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I 

be selected for scheduling is the task with label A. The resulting task graph , G , after 

scheduling of A is shown in Figure 16. The critical path in graph G is the path that 

contains tasks with labels A, C, F, and I. Therefore, if an algorithm gives priority to the 

tasks that lie on the critical path, the above tasks will get the highest priority. However, 
II 

after the task with task label C is scheduled, the new graph G (shown in Figure 17) has 

a different critical path, namely, the tasks that lie on the path B, E, H, I. The Ranked 

Weight heuristic takes advantage of this dynamically created critical path and gives 

priority to the tasks that define the new critical path. Using the Ranked Weight heuristic, 

the next task selected for scheduling (after tasks with labels A and Care scheduled) is 

task B and therefore, tasks whose early execution does not contribute to the significant 

progress are delayed until they become the highest priority task for execution at a later 

point. 

(2) 

(3) 

(4) 

' Figure 16. Task graph G resulting from removal of task A in Figure 8 
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(2) 

(3) 

(4) 

" Figure 17. Task graph G resulting from removal of task C in Figure 16 

5.6.2 The Ranked Weight Algorithm 

In this section, an informal description of the Ranked Weight algorithm is presented and 

followed by several examples and a formal description. As discussed earlier, the labeling 

introduced in Hu's algorithm in which tasks are divided into levels according to their 

distance from the root, is known as the Critical Path or Highest Level First method. In 

the case of general precedence graphs, we refer to this approach as the Latest Schedule 

Partitioning (LSP). LSP produces layers of tasks according to the latest time a task can 

be scheduled ( see for example, Figure 11 in Section 5.3). It is also possible to partition 

the task precedence graph according to a task's distance from the source. This will 

produce layers of tasks according to the earliest time a task can be scheduled. We refer 

to this partitioning as the Earlist Schedule Partitioning (ESP) (see Figure 12, Section 5.3). 

The partitioning used by the algorithm presented in this section is based on the ESP 

scheme. 
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The Ranked Weight algorithm operates by selecting a task that is at the highest level, 

has the largest ranked weight, and whose predecessors all have finished execution. The 

implicit priority rules embedded in the Ranked Weight algorithm are as follows. By 

selecting tasks that are at the highest level, this algorithm takes advantage of the ESP 

partitioning. By using the ranked weight of tasks, this approach has implicitly 

incorporated several of the priorities discussed previously (namely, giving priority to 

a) tasks with long execution times, b) tasks with largest number of immediate successors, 

and c) tasks with successors that have long processing times). 

The Ranked Weight algorithm takes as input two adjacency lists (defined below), the 

ranked weight of each task (informally defined in the previous subsection and formally 

defined below), and the level associated with each task. This information can be extracted 

by a single pass through the graph. The ESP algorithm (presented in Section 5.4) was 

used and augmented with necessary parameters to supply the required input. The ESP 

algorithm uses the boolean connectivity matrix of the task graph (which is an upper 

triangular matrix representing a DAG). The successor and predecessor sets required by 

the ranked weight algorithm are readily available by the boolean matrix since the rows in 

this matrix correspond to the immediate successors and the columns correspond to the 

immediate predecessors of a given task. The ranked weights are calculated during the 

same pass that determines the task layers. 

One of the required input adjacency lists identifies the immediate successor(s) and the 

other list identifies the immediate predecessor(s) of a task. The ranked weight, rw (ti), 

of task ti is defined to be the sum of the weights of all descendants tasks of ti plus the 

weight of task ti defined as follows 

rw(ti) = w(ti) + (I: w(tj), for all t1 e {descendants of (ti)} ). 

The ranked weights are used as an urgency criterion for scheduling of the tasks. 



Input: Listsucc : The successor adjacency list. 

Listpred: The predecessor adjacency list. 

Q [k] : A multilevel list with k levels. 

level Cti) : The task system graph level associated with task ti. 

Output: An assignment of tasks to processors. 

Method: 

Q [l] f- ~' 'V 1-:;1-:;k where k =number of levels in the graph. 

Q [1] f- Q [1] u {source node}. 

1) Let l =min{ level number, l', such that Q [/1 :;C~ }, 

t f- head of Q [ l ] , 

Schedule task ton the first, lowest indexed, available processor, 

Q [l] f- Q [l]- {t}. 

2) For all t' e Listsucdt] do 

Listpred[t'] f- Listpred[t1- {t}, 

If Listpred[t1 = ~then 

Insert t' in the sorted list Q [level (t')] 

according to rw (t'). 

3) If Q [l] = ~. 'V 1-:; 1-:;k, then HALT, 

else GO TO Step 1. 

Figure 18. The Ranked Weight Algorithm 
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5.6.3 Algorithm Description 

The predecessor adjacency list in this algorithm is used to identify the tasks that are 

ready to be scheduled. A task is ready when its predecessor set is empty. The successor 

adjacency list is used to identify the successors(s) of a task after its completion. The use 

of the successor adjacency list eliminates the search involved in identifying ready tasks. 

The urgency rule used in the scheduling of tasks involves the selection of the ready task 

that is at the highest level (highest non-empty subqueue) and has the highest ranked 

weight. Ties are broken by selecting the task that has the highest processing time. Ready 

tasks are added to the subqueue with a subqueue number that corresponds to the task 

level. 

The Ranked Weight algorithm operates by threading the ready tasks (i.e., tasks whose 

predecessor sets are empty) to the appropriate subqueue. The tasks in subqueues are 

sorted based on the ranked weight of the tasks in each subqueue. Use of different 

subqueues cuts down on the cost of ordering the ranked weights. Initially, the multilevel 

queue Q, is empty. The Ranked Weight algorithm starts by placing the source node (the 

task with no predecessors) in the first subqueue, Q [1]. Step one of the algorithm finds 

the lowest indexed non-empty subqueue and schedules the task at the head of this 

subqueue (task t) on the lowest indexed available processors and deletes task t from the 

queue. Step two erases task t from the predecessor set of task t's successors. After this 

' deletion, if any task t , ends up with an empty predecessor set (which means task t has 

' ' been the only predecessor for t at that point), then t is added to the appropriate level in 

' ' the Q that corresponds to the graph level fort , task t is now ready. Steps 1 and 2 of 

the algorithm are repeated until all tasks are scheduled and Q [l] is empty for all 

1 ~~ ~k. 

The following example helps clarify the algorithm presented in this section. Let us 

consider the precedence graph in Figure 8. Numbers in parentheses identify the level of 
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the tasks. TABLE IV shows the ranked weights rw(ti) and the expected processing 

times, w(ti) of each task. Note that the tasks appear in sorted order based on the ranked 

weight of the tasks. 

TABLE IV 
RANKED WEIGHT AND EXPECTED PROCESSING 

TIMES OF THE TASKS IN FIGURE 8 

A C BED H F G I 

rw(ti) 76 42 34 27 26 24 18 12 4 

w(ti) 4 16 5 3 2 20 14 8 4 

The successor and predecessor adjacency lists of the graph in Figure 8 are shown in 

Figure 19. 

Initially, task A is added to subqueue one (the highest subqueue). After scheduling 

and completion of task A, the successors of A are identified through the successor list as 

tasks B and C, which serve as indices to the predecessor list. Task A is then deleted from 

the predecessor lists of tasks B and C. This leaves tasks B and C with empty predecessor 

lists and causes these tasks to be placed in subqueue two, Q [2], as ready tasks. Notice 

that in the case of a task with multiple predecessors, the completion and subsequent 

removal of, say, either task D orE alone from the predecessor set of task H does not 

cause the placement of task H into the ready queue. The schedule corresponding to the 
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precedence graph of Figure 8 on two processors is shown in Figure 20. The schedule in 

Figure 20 yields a makespan of Tp = 46. It should be mentioned that the above 

algorithm does not guarantee optimality in all cases. However, it can yield optimal non

preemptive schedules in some cases and some vary close to optimal schedules in other 

cases. The shortest non-preemptive schedule length for the given graph is 45, with 

sequencing tasks (A, B, D, C, F, I) on one processor and (E, H, G) on the other. 

(a) 

~G 
(b) 

~~ 0 
~~ 0 
~ 0 
~ ~ 
~ ~ 
~ ~ 
~ ~0 

~~0 

Figure 19. Successor list (a) and predecessor list (b) 



89 

Anomalies related to list scheduling algorithms were discussed in Section 1.4. We 

present a new anomaly in this type of scheduling in which the graph topology and the 

total processing time required by the graph is unchanged but the schedule length changes 

by rearranging some of the task processing times. Consider the task graph in Figure 8. 

By exchanging the processing times of tasks D and F and those of tasks E and G, the 

schedule length increases from 46 to 52. The schedule of the modified version of the task 

graph in Figure 8 in shown in Figure 21. This schedule is optimal for this particular task 

graph under non-preemption policy. 

A c F G 

B E D H 

Figure 20. A schedule for the task system of Figure 8 

A B D G F 

c E 

Figure 21. Schedule for the modified version of the task graph in Figure 8 
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Since finding the optimal schedule length on a case by case basis for a large number 

of task graphs is not possible, in order to evaluate the performance of the ranked weight 

algorithm, an approximation of the optimal schedule length is used in our evaluations. 

The approximation used was the lower bound on the schedule length, LB. The lower 

bound is calculated using the bounds defined in Section 5.2. For example, considering 

the task graph given in Figure 8 (whose task processing times are given in TABLE N), 

the sequential execution time for this graph is T8 = 76 and its critical path is Tc = 38. 

Using the above data, LB = max{34, 30} + 8 = 42 for the task graph of Figure 8, 

scheduled on two processors. Notice that in general T OPT ;?: LB. The schedule length 

produced for the task graph of Figure 8 using the Ranked Weight algorithm is Tp = 46, 

using two processors. Manual examination of all possible schedules for this task graph 

yields an optimal schedule length of 45. However, since determining the optimal 

schedule length for arbitrarily large task graphs is not possible, we use an approximation 

of the optimal schedule length ToPT and define it as ToPT =LB. Using ToPT as the 

optimal schedule length, the performance ratio Rp (A), for the graph in Figure 8, using 

two processors is R 2 (Ranked Weight) = 1.09 which indicates a nine percent error in the 

schedule length compared to the approximated optimal solution while the actual 

deviation from the optimal solution for this particular schedule is two percent when we 

consider T OPT = 45 instead of the approximation of ToPT = 42. 

5.6.4 Performance Evaluation 

In order to evaluate the performance of the Ranked Weight algorithm, performance 

modeling studies were conducted. A wide range of task system graphs were considered 

in this study that included randomized topologies as well as extreme cases involving 

different graph widths and heights. We define the width of a task graph to be the size of 

the independent task set (layer) with the largest number of tasks. The task graphs were 

generated by a parameterized algorithm that we developed for controlling the width and 
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height of the graph and the number of tasks in each layer. The maximum out-degree of a 

task could also be controlled in order to generate different graphs with different number 

of immediate successors. After these acyclic graphs are generated, they are converted to 

precedence graphs by removing the redundant paths. This is done to improve the run

time of processing the task graphs for the purpose of our simulation studies only, 

otherwise the produced schedules are not affected by removal of the redundant paths. 

Removal of the redundant paths did not relax any precedence constraints. 

5.6.4.1 Design Methodology 

Task graphs are generated using the approach described in the previous subsection. 

The generated graphs are partitioned into layers of independent serial tasks using the ESP 

algorithm (described in Section 5.4) augmented with parameters that calculate the ranked 

weight of tasks while partitioning the task system. 

Two experiments evaluate the performance of the Ranked Weight algorithm. In one 

experiment, the number of available processors is set to the width of the task system 

graph. In the second experiment, the number of available processors is defined by a 

random number as 2 ::::; p::::; width. There are six different groups of tasks involved in each 

of the experiments. The first three groups involved task graphs with a number of tasks 

ranging in 5 to 20 for the first group, 21 to 40 for the second group, and 41 to 60 for the 

third group. The last three groups consisted of task graphs with a fixed number of tasks 

each. The performance of the produced schedules was measured using the performance 

ratio Rp(A), defined in Section 1.6. 

5.6.4.2 Simulation Results 

In each of the two experiments, 300 task· graphs are generated and scheduled for each 

of the six different groups of task graphs. The first column in TABLE V and VI shows 

the range of the number of tasks in each task group. The numbers in parentheses 
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represent the average number of tasks over all 300 task graphs generated in that group. 

Columns 2 through 6 show the performance of the algorithm in comparison to ToPT 

where e represents the error rate. None of the 3600 task graphs scheduled had an error 

* rate of more than 25 percent compared toT OPT· 

The rows in TABLE V and VI represent the degree of optimality of the produced 

schedules. For example, in TABLE V, the row corresponding to task graphs with 5 to 20 

tasks, 287 or 95.67 percent of the 300 task graphs produce an optimal schedule and 8 or 

2.67 percent of the produced schedules are less than or equal to five percent longer than 

the optimal schedule. In the case of task graphs with 100 tasks each, 39.67 percent of the 

produced schedules indicate an optimal schedule length and 38 percent of the schedules 

are within five percent of the error bound. The last row in each table shows the average 

performance of all 1800 task graphs scheduled according to the error bounds in each 

column. 

Number 

of tasks 
n (Avg) 

5-20(12) 

21-40(31) 

41-60(57) 

80 

100 

200 

Total% 

TABLEV 
RESULTS OF 300 RUNS WHEN THE NUMBER OF 

PROCESSORS P =WIDTH 

e=O O.O~e~O.OS 0.05~e~0.10 0.10~£~0.20 0.20$e<0.25 
Number of Number of Number of Number of Number of 
cases(%) cases {%) cases(%) cases(%) cases (%) 

287(95.67) 8(2.67) 3(1.00) 1(0.33) 1(0.33) 

229(76.33) 42(14.00) 18(6.00) 11(3.67) 0 

174(58.00) 85(28.33) 26(8.67) 13(4.33) 2(0.67) 

129(43.00) 114(38.00) 35(11.67) 20(6.67) 2(0.67) 

119(39.67) 141(47.00) 28(9.33) 12(4.00) 0 

63(21.00) 166(55.33) 25(8.33) 45(15.00) 1(0.33) 

55.61% 30.89% 7.5% 5.66% 0.33% 
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TABLE V shows the results of the first experiment in which p =width of the graph. 

The number of cases listed in the column where £ = 0 indicate the cases that yielded an 

optimal schedule. As can be seen from this table, 55.61 percent of the 1800 task graphs 

scheduled produced an optimal schedule. If an error bound of less than or equal to ten 

percent is considered as an acceptable solution, then the degree of success of the 

produced schedules rises to 94 percent (although in statistics, a 5% error bound is defined 

to be the acceptable deviation, we believe it is permissible to relax this bound to 10% 

because of the pessimistic approximation used in our measurements). In the case of the 

groups of task graphs with a fixed number of tasks, the success rate was consistent with 

the overall performance. For example, for the task graphs consisting of 100 tasks each, 

96 percent of the produced schedules are within 10 percent error from the optimal 

solution. 

The lower bound, LB, used for measuring the degree of optimality of the produced 

schedules in this research is achievable under preemptive scheduling. The Ranked 

Weight algorithm is a non-preemptive scheduling algorithm and therefore produces 

optimal schedules that in some cases are larger than LB. In other words, the produced 

schedules for many of the cases that exhibit a larger error may indeed be the best non

preemptive schedule that can be produced. 

The results reported in TABLE VI show the case in which 2 S p S width of the graph. 

The results of the second experiment are less attractive than the first experiment in which 

p = width. However, these results are consistent with the performance of the best 

heuristic algorithm for scheduling of dependent task systems, CP/MISF [Kasahara and 

Narita 84] in which similar experiments using fewer than the required number of 

processors produced longer schedule lengths compared to schedules produced using an 

unlimited number of processors. 
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80 

100 

200 
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TABLE VI 
RESULTS OF 300 RUNS WHEN THE NUMBER OF 

PROCESSORS 2 ~ P~ WIDTH 

£=0 0.0 s; £ s; 0.05 o.oss;esO.lO 0.10 s e S0.20 0.20SeS0.25 
Number of Number of Number of Number of Number of 
cases (%) cases (%) cases(%) cases (%) cases (%) 

192(64.0) 38(12.67) 28(11.00) 33(11.00) 9(3.00) 

91(30.33) 67(23.00) 69(23.00) 69(23.00) 4(1.33) 

50(16.67) 93(31.00) 102(34.00) 53(17.67) 2(0.67) 

47(15.67) 109(36.33) 96(32.00) 48(16.00) 0 

41(13.67) 119(39.67) 93(31.00) 46(15.33) 1(0.33) 

14( 4.67) 111(37.00) 63(21.00) 111(37.00) 1(0.33) 

24.16% 29.83% 25.05% 20.00% 0.94% 

94 

TABLE VI shows that a total of 53.99 percent of the cases are either optimal solutions 

or are within five percent from the defined lower bound. If the acceptable error bound is 

relaxed to ten percent, then the success rate goes up to 79.04 percent of cases. The 

Ranked Weight algorithm produces very good schedules when there are enough 

processors to run the tasks. In extreme cases that involve task systems with very large 

number of tasks, it was shown that the ESPNL approach presented in Section 5.5 works 

best. 

5.7 Independent Path Scheduler 

Two different approaches are presented in this dissertation so far that can be used for 

scheduling of dependent task systems. Both of these approaches (Ranked Weight and 
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ESPNL) first divide the task system graph into layers of independent serial tasks. 

Strengths of each approach and their suitability for particular scheduling problems were 

discussed earlier. Both ESPNL and the Ranked Weight algorithms are suitable for 

scheduling of task systems in a shared memory environment because no special efforts 

are made in determining a particular processor to which a task is mapped. Therefore, the 

communication cost arising from the random assignment of tasks to processors (in the 

presence of intertask dependencies) in a distributed or private memory machine can offset 

the gain in employing multiple processors for executing a job. 

This section presents a new approach for partitioning of task system graphs called 

Vertical Partitioning that can be used both for distributed and shared memory 

environments. The objective of the Vertical Partitioning approach is to a) determine the 

minimum number of processors necessary for maximum speed up and b) an assignment 

and mapping of tasks to processors such that the communication cost is minimized. The 

program representation used in Vertical Partitioning is the control flow graph model. 

Tasks in this model are defined as sequential blocks of code with no branching into or out 

of them except at the beginning and/or at the end. Each task also has a clearly defined 

input and output. Given such a model, the number of independent paths or threads of 

execution represent the maximal degree of parallelism. This number is referred to as the 

nullity of the graph and is denoted by N. The nullity of a graph is defined as e -n + 2, 

where e represents the number of the edges and n represents the number of nodes in a 

graph [Berge 73] [Temperly 73]. Therefore, N represents the number of processors 

necessary. However, we show that after devising a schedule for a given task system, it is 

possible to optimize the number of required processors such that N ~ p. 

Consider the task graph in Figure 13. The number of edges in this graph is e = 31 and 

the number of nodes is n = 26. Using the formula N = e - n + 2, there are seven 

independent paths in the graph of Figure 13. It is clear that these are not a set of unique 



96 

paths. Depending on the Vertical Partitioning approach used, different sets of 

independent paths can be identified. We refer to each independent path as a vertical 

partition (as opposed to "horizontal partitions" or "task layers" discussed in Section 5.4). 

Each vertical partition may be viewed as a thread of execution. In scheduling the 

resulting threads on a machine, the ideal situation is for the target machine to have as 

many processors as the nullity of the graph corresponding to the program under 

consideration. One possible vertical partitioning of the task graph in Figure 13 and its 

schedule on seven processors is shown in Figure 22. It is worth mentioning that with 

availability of the required number of processors, the schedule length will be the same 

regardless of how the task graph is "sliced" vertically. Under such a condition, the 

schedule length for vertical partitioning is Tp = Tc = T OPT and the shortest possible 

schedule length is achieved. However, this assertion is true if the relative weight of the 

communication costs at certain fork and join points within the graph are ignored. We 

concentrate on this aspect shortly. 

7 
~~~~~~~~~~~~~~~~~~~~~ 

e~~~~r-~.---~~--~~~~~~~~~~~~~ 
s~~~~~~~~rL~~~~~~~~~~~~~ 
4 
~~~~~~~~~----~~~~~~~~ 

3 
~~~~~~r-~_,~~~~~~~~~~~~ 

2 
1~~~~~==~r---.-~~~~~~~~~~~~~~ 

Figure 22. Vertical Partitioning of the task system graph in Figure 13 
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One simple optimization that can be done before a mapping of tasks to processors takes 

place is to reduce the number of required processors if possible. For example, for the 

schedule shown in Figure 22, it is possible to map the workload assigned to processors 2 

and 7 onto one processor. Therefore, the minimum number of processors required for 

maximum speed up in scheduling of this task system graph is six. The schedule length 

under this condition is the optimal schedule ToPT = Tc = 45. Further optimization of 

the number of required processors is possible by considering the precedence constraints 

in scheduling of the tasks in each thread. The new schedule for task graph in Figure 13 

(on six processors) is shown in Figure 23. 

8~~~~~~~--~--~--~~~~~~~~~~~~~~~ 
5~~~~~~"-"""""~~~--~~~~~~~~~~~~~~ 
4 
~~~~~""""~""~~~------~~~~~~~~~~~~ 

3 
~~~""~~""~~--~~--~~~""""~""""~~~~~~~ 

2 
~~~~~~~~~--~--~-"~~~~~~~~~~~~~~ 

1 

Figure 23. A schedule for the task system graph in Figure 13 on six processors 

The communication overhead in vertical partitioning is only critical at two specific 

points in the task system graph. We refer to these points as Fork and Join latches (F&J 

latches). F-latches involve those tasks in the graph that have a fan-out degree of greater 

than one. Analogously, J-latches involve those tasks that have a fan-in degree of greater 

than one. For example, in the task graph of Figure 13, the task with label A is an F-latch 

of degree three and the task with label Z is aJ-latch of degree four. Associated with each 

edge in the graph is a cost that corresponds to the communication cost between the pair 

of tasks that it connects. 
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In order to determine the independent threads of execution in a task graph, these 

communication costs will have to be considered at F&J latches. For example in Figure 

13, lets suppose that task G is the task at the head of a new thread. In order to determine 

whether to choose tasks Land R or tasks M and S for the thread headed by F-latch G, the 

weight of the out-going edges at the F-latch will have to be considered. Assuming that 

the edge (G, L) is the more expensive edge, then Task M will itself be designated as the 

first task of a ne.w thread. This type of partitioning minimizes the communication 

overhead. 

It is possible that the number of available processors for scheduling of a task system is 

less than the nullity of the task graph. There are two possibilities under such a condition. 

One possibility is to attempt to schedule the tasks such that the execution threads are 

scheduled on the available processors without increasing the schedule length (for 

example, see the schedules in Figures 22 and 23). If scheduling of the task system 

without increasing the schedule length beyond the critical path length is not possible, 

then multiple threads must be mapped to the same processor and scheduled sequentially. 

Obviously, under such a condition we would like to provide a mapping that minimizes 

the communication overhead. In order to assign more than one thread to the same 

processor, we will have to concentrate on the F&J latches that minimize the 

communication cost and at the same time increase the schedule length the least. As 

describe in the beginning of this section, vertical partitioning can also be used for shared 

memory machines effectively where many of the issues discussed about minimizing the 

communication overheads are not a major concern. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Introduction 

To speed up the execution of computer programs, different portions of the program 

must be executed on separate processors. The problem of identifying parallel 

processable components of a program is referred to as program partitioning. Each 

identified partition, called a task, must be executed on a separate processor. 

Multiprocessor scheduling is concerned with sequencing and scheduling of tasks on 

processors with the objective of creating schedules with the shortest possible length. 

Task systems can be divided into two classes of dependent and independent tasks. 

Scheduling of independent tasks is concerned with producing shortest possible schedule 

length without any consideration given to the order of execution of the tasks constituting 

a task system. Dependent task system scheduling also is concerned with producing 

schedules with shortest possible length however, in this type of scheduling, the 

precedence constraints between pairs of tasks must be considered. 

The main objective of this dissertation research is to investigate and consider a variety 

of issues related to multiprocessor scheduling and to propose solutions for the scheduling 

problem. 

6.2Summary 

The general problem of multip~essor scheduling is. a combinatorial optimization 

problem and thus belongs to the family of NP-complete problems. Similar to other 

99 



100 

problems belonging to the NP family, in order to solve the scheduling problem we must 

resort to approximation algorithms that use heuristics for producing near-optimal 

solutions. A survey of exact and heuristic multiprocessor scheduling algorithms is 

presented through out this dissertation. Most exact algorithms that produce optimal 

schedules owe their optimality to the restrictive constraints imposed on the task system 

and/or the machine characteristics. Major characteristics of some of the major 

scheduling algorithms reviewed as well as the algorithms developed in this dissertation 

are shown in TABLE VII. 

TABLE VII 
CHARACfERISTICS OF SEVERAL MULTIPROCESSOR 

SCHEDULING ALGORITHMS 

No. of Pracas~<n Task Weight Precldlla PMmpllon Opllma 

Algorfthm 2 >-2 1 >-1 0 TrM General v .. No Y• No 

1 X X X X X 

2 X X X X X 

3 X X X X X 

4 X X X X X 

5 X X X X X 

e X X X X X 

7 X X X X X 

8 X X X X X X 

a X X X X X X 

10 X X X X X 

Algorithm a: i Varlant-Loeid R su e1] StRMkad Welgrt 2 LPT Johnaan • fill. 74) e umz 8nd Col'fmM g ESP/VL 
3 oJ ~~~loS~ catmen ald Graham~ 1 , CP/MISF [Kasnra ald Nartta14J MuMh~ et 81. 78) 
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Computer programs were represented using graph models. A variety of graph 

topologies were considered and solutions which yielded acceptable schedules were 

presented and discussed. A near optimal scheduling algorithm is developed that can be 

used for scheduling of independent serial tasks. Scheduling of dependent tasks systems is . 

less trivial than scheduling of independent tasks. Dependent task systems are studied and 

analyzed extensively. Three different approaches are presented for scheduling of 

dependent task systems. Factors that affect the quality of such schedules include the 

general task graph topology such as task graph height and width, number of tasks in each 

graph level, and the task processing times. Machine characteristics that affect the 

schedule length include the number of available processors and the particular nature of 

the implementation platform. Two scheduling algorithms are developed that can be used 

for task system scheduling for shared memory machines. A third approach is presented 

for scheduling of dependent task systems in a private memory environment that 

minimizes the communication costs and the number of required processors while 

maximizing the speed up of execution. 

The performance of the developed algorithms is compared to the best known 

algorithms in the literature through simulation studies. It is shown that the developed 

algorithms in this dissertation research do at least as well as the best-known algorithms 

with a significantly lower run-time complexity. Another significant algorithm developed 

in this research is an algorithm that can be used for identifying independent task sets in a 

task system graph. The complexity of this algorithm is considerably better than the best 

known algorithm for solving the same problem. 

6.3 Contributions 

The current research has made a number of significant contributions to the area of 

multiprocessor scheduling. These contributions include the development of numerous 

algorithms for scheduling of dependent and independent task systems that do as well as 
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or better than the best known algorithms while improving the complexity of the existing 

algorithms. The ESP algorithm used for partitioning of the task system graphs has a 

worst case complexity of 0 (n 2 ) compared to the best known algorithm, MBFS, that has 

complexity 0 (n 3). The Ranked Weight algorithm developed in this research, for 

scheduling of dependent task systems, demonstrate a performance comparable to the best 

known algorithms in terms of the optimality of the produced schedules. The complexity 

of the Ranked Weight algorithm is 0 (npk) where k is the number of layers in the graph 

while its best known counter part, CP/MISF, has a run time complexity of 0 (n 2 + pn ). 

An algorithm is developed for scheduling of independent serial tasks, Variant-Load 

algorithm. The performance of this algorithm is compared to three other algorithms, 

LPT, Multifit, and D & F. The performance of this algorithm is at least as good as the 

three algorithms it is compared to. The complexity of the Variant-Load algorithm is 

0 (np 2) in the worst case while its counter part, D & F has a complexity of 

0 (log2 (nl p)) for the first phase and 0 (n 2 I p 2) for its optimizing phase. 

A new task graph partitioning approach is developed which takes the communication 

cost of task executions into consideration and is therefore suitable for distributed 

environments. This approach can determine the minimum number of processors 

necessary for maximum speed up. 

6.4 Future Work 

A number of new and promising ideas have been developed and presented in this 

dissertation. The basic foundation for most of the future work has been established. The 

scheduling algorithms presented in this dissertation use the task processing times for 

creating static schedules. A major disadvantage in devising static schedules arises in 

situations in which the actual processing time of tasks at run time differ from the 

predicted ones. Under such conditions mechanisms for processor synchronization are 
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necessary in order to ensure program correctness. One component of the future work for 

this research involves developing strategies that allow for processor synchronization at 

run time for the developed algorithms. It has been already shown how such 

synchronization can be performed for the ESP/VL approach in which tasks are scheduled 

in separate waves and therefore run-time synchronization becomes quite manageable. 

We are interested in developing strategies for maintaining the precedence relationships 

between the tasks when using the Ranked Weight approach, in order to provide processor 

synchronization. 

As mentioned above, the Ranked Weight algorithm is developed for creating static 

schedules. However, this algorithm could be adapted such that the compile time 

estimates are used for determining the ranked weights while the actual dispatching of 

tasks take place at run time. Under this new technique the tasks whose predecessors 

finish execution will enter a scheduling queue. The ranked weights can now be used as a 

priority for run-time scheduling. There are two feasible approaches to implement this 

scheme. One approach involves providing operating system support to perform the task 

of dispatching of ready tasks. The second approach involves embedding synchronization 

constructs in tasks at the time of compilation. This approach is referred to as auto

scheduling or self-scheduling [Polychronopoulos 88]. Refinements needed for 

developing such a priority based scheduler include investigation of the overhead involved 

in operating system intervention if operating system support is employed for the 

implementation of this scheme, and developing synchronization mechanisms and 

constructs for auto-scheduling for compiler support. 

The current research has concentrated on optimizing schedules at the program level. 

No attempts have been made at the global level in order to increase the processor 

utilization. When executing a devised schedule for a task system, it is very likely that 

some of the processors allocated to a job at time to will be idle until a later time ti. The 
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same scenario holds for processors that are released at time tj while the last processor to 

finish execution will not finish until time tko j < k. 

It would be helpful to consider a meta-scheduler that attempts to optimize the system

wide schedule by trying to fit the "jagged ends" of the individual job schedules together 

and/or switch the assigned work to different processors in order to maximize processor 

utilization and increase the system throughput. 
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