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THE SYNTHESIS AND ANALYSIS OF FLUID CONTROL NETWORKS
CHAPTER I
INTRODUCTION

This study is concerned with the synthesis and analysis of fluid
power and fluid control systems of a digital nature in which logic
methods serve to implement the requirements rather than intuition.

Thé term fluid power refers to a system in which a fluid medium
is u;ilized for the force that it is capable of exerting. The fluid
medium inferred includes both gas and liquid. A fluid power system
can be controlled by manual, mechanical, electrical, or fluid means.
The control systems can be classified broadly as either analog or digi-
tal. In analog systems, the variables to be controlled are physically
characterized by parameters which may vary continuously over a limited
range. The functional units comprising an analog'system are operation-
ally interconnected to provide continuous feedback information and
error detection. A digital system on the other hand operates with data
represented aé a series'or set of charactérs which attain only certain
discrete values. The functional components of a digital system are
capable of représenting only a relatively few discrete conditions --

certainly not a continuous function.
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Fluid power is not a new field; it can be traced back to 1785
when an Englishman, Joseph Bramah, built the first hydraulic press.
After World War I, when serious seal problems were partially solved,
fluid power became acceptable for numerous applications, Technical
advancements during World War II fostered the fluid-servo era which
satisfied the basic requirements of many control problems. It is
apparent that the space age struggle has cultivated the need for fluid
digital control systems to supplement and replace conventional elec-
trical hardware in many areas, Sophisticated fluid control elements
capable of being packaged 6000 per cubic inch, of withstanding
50,000 g's, and operating with freqﬁencies of from 10-100 KC presently
exist. Fluid digital computers or control system; using such elements
would not be heat genefhtors,wwould be immune to ionizing radiation,
and would perform satisfactorily at extremely high or low temperatures.

It may be surmised that the continued increase in popularity of
fluid power is largely due to the fact that a confined fluid is one of
the most versatile means of modifying motion and transmitting power.
The future of fluid power and control systems is limited only by our
imagination and our techﬁiéal abilities,

Although a major part of the fluid controls currently used are
digital, no logical method for the synthesis and analysis of fluid
circﬁits has been réported.' Hence, fluid power digital control is
presently in the same historical period that electrical controls weré
. prior to World War II. The fIuid circuit designer has been required
to depend upon his ingenuity and perseverance to employ the intuitive

method of circuit synthesis and analysis. There exist many reminders
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of the defeat of fluid designers in the form of electro-hydraulic
machines. Knowing that the electrical engineers could usually offer
control solutions to their problems engendered a deplorable attitude
among fluid circuit designers.

Engineers invested with the respohsibility'of the design and
operation of fluid control systems need a logical method to assist
them in performing their work, The most likely field in which to
-locate such a method is electrical switching circuit theory. The
fluid designer cannot expéct those versed in electrical theory to be
cognizant of the problems inherent in fluid circuits; therefore, many
investigations by fluid power engineers, comparable to this study,
are necessary to exploit fully the vast wealth of knowledge available
for interpretation. Such investigations will result in the establish-
ment of a f?undation for the evélution of digital fluid circuit theory.
The mastery of the logical synthesis and analysis of fluid switching

»circuits will direct the way to operational fluid computers and

sophisticated control networks,



CHAPTER II
PREVIOUS INVESTIGATIONS

The synthesis and gnalysis of fluid circuits have been accom-
plishéd by intuitive'processés. . For an experienced designer, these
processes can be applied appropriately to develop effective solutions
to simple circuits, As the complexity of the circuit problem increases,
the intuitive method becomes strictly an iterative game of trial and
error. Although the ingenuity of the designer is challenged, his
plight becomes analogous to "looking for a needle in a haystack."

The problem encountered by an engineer attempting to design a
cifquit_involving sequential operations can be demonstrated using a
timing chart. A timing chart consists of vertical divisions repre-
senting sequential time (display of events). Each time division cor-
responds to a change of the input states. Consider a circuit specifi-
cation in which two inpyts, x; and xp, and one output Z are involved.
The sequential cycle is as follows: 1) no inputs or output, 2) input
X is energized, 3) inputs x; and x, are both energized, 4) input xp
is on while x; is off, 5) inputs xp and x; are on and the outpﬁt Z is
actuated, 6) only x5 is on, and 7) all inputs are off and no output.
The timing chart for the above éequence is given in Fig. 2-1.

The solution to a circuit problem such as the one shown in

L
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Z

Fig. 2-1. Timing Chart for Sequential Cycle Example

Fig‘ 2-1 involves the establishment of unique conditions for each se-
quential divisioh. In other words, the circuits must be capable of
differentiating between time intervals having the same inpu states
but differenf output conditions. Since the input states in this ex-
ampie do not create unique circuit conditions, a secondary circuit is
reqhired to provide the necessary distinguishing property. One solu-
tion to the example problem would be to have two secondaries emit sig-
nals as shown in Fig. 2-2, The uniqueness of the critical divisions

on the timing chart are established, arid the design of the network can

be initiated.

o<
e o

Fig. 2-2. Complete Timing Chart for Sequential Cycle Example.
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Although the need to have unique states can be recognized from
the timing chart and the requirements for a particular secondary net-
work can eventually be established, no assistance is received from' the
chart concerning the appropriate circuit configuration. The timing
chart merely permits the development of the circuit specifications
with no aésurance given whether an optimum network will result.

A limited quantity of work has been reported on organizing and
implementing the intuitive method. Mr, Paul Rolnick (1) published an
- extensive collection of basic circuits and proceeded to classify them
according to purpose as an aid in synthesizing fluid circuits, Similar
circuits, as well as more applied circuits, appear annually in the

Fluid Power Index published by the Industrial Publishing Company,

Cleveiand, Ohio.
Several attempts have been made by the author to outline circuit

synthesis methods for fluid designers. In Reference Manual for Hydrau-

lic Circuits (2), a selected group of fluid components were introduced

and classified; and special application circuits associated with agri-
cultural mobile equipment were presented. Symbolic notation of the
JIC (Joint Industry Conference) was used exclusively which resulted in
the simplification of both design and analysis., These concepts were

rigorously applied in Fluid Power and Control Systems (3) which covered

all basic components and circuits. In addition, a conscientious
attempt was made to reveal the nature of circuit design and present a
criterion of design consistent with established practice. Although,
considerable success was noted, the complicated memory circuits

included were almost beyond intuitive reasoning. Logic functions



were presented to stimulate thought in the area, but fo general use
was exhibited.

An extensive literature survey conducted in conjunction with this
study yielded 216 pertinent articles and revealed that Mr. H. R. Ronan
(4) was the first reported person to attempt the transition from in-
tuitive to logical design of fluid switching circuits, Although Mr.
Ronan's presentation must be recognized as a pioneer effort, the vague-
ly outlined scheme proposed had no practical value over intuitive

methods. Since no work has been published on the logic design of hy-

draulic cifcuits subsequent to Mr. Ronan's paper, it can be assumed
fﬂat fluid designers fournd the method impractical.

In preparation for this study, the author initiated and directed
a number of research projects cn fluid switching circuits which aided
in establishing the requirements of this study. Mr. A. G. Comer (5)
in 1957, conducted an experimental investigation on the switching cir-
cuit fluid network required to produce the intermittent feeding of a
slave cylinder. In 1958, Mr. J. M. Case (6) conducted an experimental
study on the digital positioning of a hydraulic cylinder. Also in
1958, Mr. W. R. Matthews (7) investigated the high speed cycling
char#cteristics of hydraulic cylinders using fluid switching networks.
Mr. J, F. Gormley (8) conducted a study in 1959 to compare thé response
characteristics of electro-hydraulic control with that of fluid switch-
ing circuit control.
Having the advantage of tﬁe results of the above mentioned re-

search studies, the author initiated two concurrent investigations.
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One study involved the electro-hydraulic analogy of switching circuits,
and the second study pursued the applicaéion of Boolean algebra for
synthesizing fluid networks. The first study conducted and reported
with Mr., J. M. Case (9) attempted to bridge the gap between electrical
civcuits and fluid circuits by using appropriate analogies and a cir-
cuit reduction scheme. Although successfully accomplished and com-
pletely verified experimentally, the intuitive approach still prevailed
to a large extent; and the method made the fluid designer completely
dependent upon the attainment of the corresponding electrical circuit.
Such a situation would not be a major improvement over the present
condition. The second study was conducted by Mr. O'Neill Burchett (10)
and resulted in an analytical deﬁonstration of simple switching circuit
design along the same lines of Mr. Ronan's. No basis was gained for
future efforts, and a general feeling of discouragement prevailed.,

No major attempt has been reported on the application of knowledge
from other disciplines to the solution of fluid network problems. The
significant progress made in the field of electrical engineering to
establish a switching theory for electrical networks must be recog-
nized. The modern theory of electrical switching circuits was initi-
ated in 1938 by Claude E., Shannon (11) who introduced the use of alge-
braié logic in dgsigning simple electrical relay circuits. A rigorous
logical method for;designing sequential circuits did not appear until
1954 when ﬁf. D. A. Huffman (12) presented his now famous flow table
procedure to display sequential circuit behavior. The details involved
in the evolution of switching theory must be accompanjed by the charac-

teristic nature of Boolean algebra; therefore Chapter IV will expound



the development of this theory,

The general status of fluid circuit synthesis and analysis as
revealed in.this chapter purports the obvious need for studies in this
field. Since the requirements imposed on electrical switching circuits
parallel those of fluid switching circuits, a possible solution to
the fluid circuit design dilemma appears to be in electrical switch-

ing circuit theory. This is the direction pursued by the author in

this investigation.



CHAPTER III

STATEMENT OF PROBLEM

The-purpose—of-this—investigation was to advance a logical method¥

for the synthesis and analysis of fluid switching networks to replacé
the intuitive procedures currently being applied. The general plan
of attack was to study the statz of the art of electrical switching
theory and to determine its possible application to fluid control cir-

cuits., An appropriate method has been deduced and will be demonstrated

both analytically and experimentally.

10



CHAPTER IV
EVOLUTION OF SWITCHING CIRCUIT THEORY AND CONCEPTS

Switching circuit theory owes its existence to formal logic which
was founded by Aristotle (40O B.C.) when he formalized his system of
syllogisms. There are many reports throughout history of attempts
by philosophers to find a manageable symbolism for the formalization
of logic, Traditionally, the science of the philosopher, logic, has
only been of interest to the mathematician in the past century or so.
In 1854, an English mathematician, George Boole (1815-1864) presented
the first practical system of logic in algebraic form. Boole's publi-

cations, the Mathematical Analysis of Logic (13) and The Laws of

Thought (14), established a new mathematics called Boolean algebra

whereby the problems in logic can be represented and solved in a manner

similar to conventional'algebra; Since the injection of algebraic

logic by Boole, many mathematicians including Augustus DéMorgan,

Gottlob Frege, and Russel and Whitehead have made major contributions

to what is recogniéed and employed today as Modern Boolean Algebra.
Algebraic logic was conceived for the purpose of implementing

the solution of logic problems concerned with the nature or form of

the passage from evidence to conclusions. It Qas,not invented with

any technical application in mind. ' For eighty years, symbolic logic

11
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wae generally regarded as an interesting but useless coﬁcept with no
practical application. In 1938, while still a graduate research
assistant at M. I. T., Mr. Claude E. Shannon recognized that the logi-
cal sfructure of an electrical switching circuit was comparable to the
structure of symbolic logic -- an instrument of exact thought both
analytic and constructive. This logic structure was that Boolean alge-
bra is a two-valued or binary algebra wherein every term has just two
exemplary values with systematic rules for the use of three fundamen-
tal connectives, AND, OR, and NOT. Shannon's paper (11) demonstrated
the application of classical Boolean algebra of symbolic logié by pro-
viding an orderly algebraic procedure for the treatment of relay con-
tact networks and thus gstablished him as being the initiator of modern

switching theory.

Switching Equations

A Boolean switching equation completely describes the intercon-
nection of switching elements and the required binary components. The
_variables associated with a Boolean equation are the various letters
comprising the function. Each individual entry of an equation is
termed a literal of the function. If the equation describes an elec-
trical switching circuit, the literals represent individual switches
A, B, C, etc. A literal can only possess two values, O and 1, in the
same manner that a binary switch can be either off (0) or on (1).
The fundamental conﬁectives, AND, OR,-and NOT, describe the
interconnection of the literale or switches. These ''connectives" are

commonly referred to as logic functions and have the following customary
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symbols: AND = * as in conventional multiplication, OR = + as in con-
ventional addition, and NOT = ~ with the complementation sign above
the indicated literal. Both the AND and OR connectives a¥e binary
operations whereas the NOT connective is a unary operation.

In a Boolean equation containing only literals and AND functions
(such as ABC), the equation has a value of one if A = 1 AND B = 1 AND
C = 1. Relating this concept to a switching circuit, an output is
produced only when all of a given number of input signals are'applied.
Hence, A must be-closed AND B must be closed AND C must be closed to
obtain an output signal. The switching éircuit representing the equa-
tion X = ABC is shown in Fig. k-1 (a).

An OR logic equation (such as A + B + C) has a value of one if
A= 1O0RB=10RC=1; therefore, to obtain an output from the
1nferréd'circuit, A must be closed OR B must be closed OR C must be
c;osed; The electrical circuit describing the OR equation X = A + B +
C is illustrated in Fig. 4-1 (b).

From Fig. L4-1, it can be surmised that the AND function describes
series connected switches while tée OR function describes parallel con-
nected switches. In a Boolean equation consisting of only a comple-
mented literal (such as A), the equation has a value of one if A = 0
with the described electrical circuit having an output if A is NOT
actuated as exhibited in Fig. -1 (c). Thus, an uncomplemented literal
suggests a normallyfopen switch while a complemented literal is a

normally-closed switch.
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(a) Electrical Circuit for X = ABC
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(b) Electrical Circuit for X = A + B + C
A X
T Nq A, —=
b — .

(¢) Electrical Circuit for X = A~

Fig. 4-1. Circuit Configurations for Logic Functions

Application of Logic Processes

It has been demonstrated that a Boolean equation is a logic ex-.
pression for a circuit configuration whereby the output is described
in terms of the variables. Complete confidence must be established
in the relationship between a logic expression and its corresponding
circuit confiéuration. In order to promote this confidence, the cir-
cuit illustrated in Fig; 4-2 will be discussed. |

It can be seen that the excitation 6f solenoid X in Fig. 4-2 is
accomplished by exciting A AND either B OR NOT C or in another way by

exciting C AND NOT B. The Boolean expression for the above logic
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X

Fig. k-2, Circuit for the Expression X = A(B + C) + CB

statement is

X =A(B+ C) + CB b-1
This circuit interpretation concept involving electrical contacts is
both simple and fundémental and can be applied to eleétrical circuits
in every case. However, the question arises whether the circuit repre-
sented by a given Boolean expression contains redundancies which could
be eliminatéd to yield a simpler configuration, There are several pro-
cedures which can be employed to minimize circuit cqnfigurations.
The procedures to be presented have been selected not Enly for their
utility value in simplifying circuit equations but for demonstrating
several basic concepts and relations of Boolean algebra.

The simplification of Eq. L4-1 can be achieved by employing the
fundamental theorems of Boolean algebra presented in Appendix A. The
theorems of Boolean algebra establish the fundaméntal rearrangements
which are possible without affecting the equivalence of the eéuation
or circuit. These theorems are often classified in terms of the

number of variables involved; for example, single variable theorems,
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two variable. theorems, etc. Expanding Eq. L-1 by.the use of Theorem
T-11 (a) results in

X = AB + AC + CB h-2
Using Theorem T-14(a) gives the identity

AC + CB = AC + CB + AB 4-3
Substituting the identity (Eq. 4-3) into Eq. k-2, yields

X = AB + AC + CB + AB L=
Applying Theorem T-11 (a) gives

X=A(B+ B)+AC +CB . L-5
The reduction of Eq. 4-5 can be accomplished by using Tﬁeorem T-4 (b)
which produces

X = A+ AC + CB 4-6
By -employing Theorem T-7 (a), the final simplified equation becomes

X=A+CB b7

Another method for achieving the simplification of a circuit
equation as well as gaining an‘insight into the fundamental character-
istics of Boolean algebra is the applicatior of the truth table. A
truth table is a display of all the possible combinations of.values
"of the variables and the resulting effect of each combination on the
output value. The specification: for the operation of solenoid X in
Fig. 4-2 is given by the circuit equation (Eq. 4-1). Since three
variables (A; B and C) are involved, there are 23 or 8 combinations
of values for the three binary variables. The truth table for Eg. L-1
is shown in Table k-1, |
In the ‘truth table shown in Table L-1, the first three columns

merely depict all the ways in which the two values O and 1 can be
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assigned to the variables A, B, C. The fourth éolumn shows the result
of the particular values of the variables on the value of the output
(X) as indicated by the circuit equation (Eq. h-l)._rThe fostulates
of Boolean algebra as presénted in Appendix A are required to evalu-

ate the output condition (value of the equation) for prescribed
TABLE 4-1

TRUTH TABLE FOR X = A(B + C) + CB

A B c X

=0 000
~ROOMHKFOO
O OO RO
=0 O =0

;nputs (values of the variables). For example, the value of X for
input values of A = 0, B = 0, and C = 1 can be evaluated by substi-
tuting the values of the variables in the equation as follows:
X = A(B +C) + CB TS |
X = 0(0+0)+ 1(1)
Using Postulate P-2 (b), gives
X =o(0) + 1(1) . ,
Applying Postulates P-2 (a) and P-3 (a) ylelds
X=0+1
Using-Postulate P-4 (b) gives X = 1 which is recorded in the X column

of the truth table opposite the corresponding input variable values.
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The truth table shown in Table 4-1 reveals that the excitation of
X is desired when any one of five input conditions is satisfied; hence,
the following equatioﬁ satisfies the truth table:
X=ABC+ABC+ABC+ABC+ABC | L4-8
The simplification of Eq. 4-8 using the fundamental theorems of Boolean
algebra can be accoﬁplished as follows:
By the distributive law Theorem T-11 (a)
X=ABC+ AB(C + C) + AB(C +.¢C) k-9
Using theorem T-4 (b)
X=ABC+ AB + AB 4-10
Applying Theorems T-11 (a) and T-4 (b) again gives
| X=ABC+A b-11
Using Theorem T-8 (a) or Theorem T-13 (a) results in
| X = A+ BC 4-7
The circuit described by Eq. 4-7 and shown in Fig. h-3 represents
the simplest form of the original equation (Eq. 4-1). It should be
noted that the circuit possesses the sume characteristics as the

original circuit (Fig. L4-2).

®
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Fig. 4-3. Circuit for X = A + BC
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Grgbhicai Simplification

There have been a number of methods proposed -- Quine (15, 16),
McCluskey (17), and Veitch (18) -- for accomplishing the simplifica-
tion of Boolean equations without resorting to the repeated applica-
tion of Boolean theorems. It is not the purpose of this exposition
to present and criticize Quch methods, but there is one particular
method that is most useful and provides a basis for future considera-
tions of concern to this study. This method is termed the Karnaugh
Map Method and is based principally on Theorem T-9 (a), i.e.,

XY + XY + X. The Karnaugh map utilizes the reflected binary (Gray
Code) ordering system for the rows and columns of the map rather than
a straight binary ordering system. A Gray Code is a method of count-
ing in a binary number system such that only one binary bit changgs at
a time. A comparison of'th% two code systeﬁs can be observed in

Table 4-2,

TABLE 4-2

STRAIGHT AND REFLECTED BINARY CODES
000 00O
001 . oo1
01l1lo0 Reflected o1l1l1
Straight o011 Binary 010
Binary loo ,or 110
Code 101 Gray 111
110 ‘Code 101
111 10 0

Karnaugh maps represent circuit. or Boolean expression in their

fully expanded form much like truth tables. However, a map in contrast
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t§ the truth table exhibits basic patterns which permit the simplest
expression to be read directly. Using the procedures for developing
the Karnaugh map as outlined in Appendix B, Eq. 4-8 can be expressed
in map form as shown in Fig. b-l,

BC
A 0001 11 10
0

Fig. L4-4. Karnaugh Map for Eq. 4-8

Employing the reading technique presented in Appendix B, Eq. L4-7
can be read directly from the map by letting all entries in row 1 be
-represented by A and the entries in column 0l be represented by BC.
Furthermore, it can be seen that the original equation represented by
Fig. 4-2 is not the simplest form because it was obtained by consider-
ing three separate group patterns on the map rather than two. The
three patterns are: 1) row 1 -- columns 00 and 10; 2) row 1 --
colums 11 and 10, and 3) rows O and 1 -- column Ol.

Although the Karnaugh map completely describes a Boolean equation
in all of its forms, a reasonable amount of practice is reqyired to
appreciate its effectiveness. A Karnaugh map can be read very fast
and proficiently for equations having four or less variables; but since
the map doubles in size for each variable included, it becomes almost
prohibitive above eight or ten vafiables.

From the discussion already presented on the characteristics and

interpretation of Boolean equations, it should be apparent that it is
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possible to manipulate a function into many different algebraic forms
without changing the equ{valence. Also, for every algebraic form of
an expression, a correspondingly different circuit is obtained.
Symbolic logic has, theréfoie, provided the means to achieve circuit

uniqueness with logical identity.

Types of Circuits

The application of Boolean algebra to switching circuit design
has been a major contributing factor to the successful synthesis of
complex electrical control and computer systems. It became the instru-
ment for increasing the reasoning power of design éngineers and can be'
credited for many baffling devices in present day use. The phedomenal
gro&th>of many control areas such theAelectronic computer has resulted
from the cascading of rather simple, module-type circuits to form com-
plex machine nctworks.

Fortunately, the type circuitry needed to formulate many control
systems of interest in the past has been of a type which could be cas-
caded and synthesized by a reasonable extension of binary algebraic
theory. The type circuit referred to is designated as combinational
circuits. Combinational logic is characterized by functional values
wﬁich are dependent only on the existing values of the independent
variables. This type circuit establishes a definite combination of
output conditions for a given combination of input conditions regard-

‘less of inéut order; hence, the output is completely dependent upon
preéent input conditions.

The synthesis of electrical combinational circuits has become a
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mature field, Many detailed studies -- see (19, 20, 21, 22, 23) --
have been reported in the literature on the logical design of almost
all clqsées of these circuits including series-parallel networks,
multi-terminal contact networks, and non-series-parallel networks,
Based on these studies, the design of many classes of combinational
circuits has reached a point of being almost a routine procedure for
switching circuit engineers. The technique used to develop the asso-
ciated networks of combinational circuits involves the requirements
for each output and the necessary inputs to achieve the desired out-‘i
put condition.

The initiation of a switching circuit design by intuitive or
logical means requires a rigorous formulation of the conditions neces-
sary to activate each output. Such a formulation means a firm set of
specifications which is logically meaningful in a manner that is
unambiguous and non-contradictory. Simple statements are needed cov-
ering every combination: of logical conditions as to what is reqdired,
what is not required, and what is of no concern or importance. A
proficient method for insuring that’ all possible combinations of states
have been considered is to prepare a truth tabie or Karnaugh map
whereby the desired output conditions can be considered for all comé.
binations of input variables;, Contradictory statements can also be
discovered with such a logic tool and rectiﬁied in the formulative
stage. Any table of combinations such as the truth table or Karnaugh
map which contains each of the 2" possible combinations of values of
the variables will specify the Boolean functions needed to develop the

prescribed network, Furthermore, such a table can always be satisfied



23
by a combinational circuit.

The synthesis of switching circuits presents two basic problems
to the engineer. First, a circuit must be designed which will satis-
fy the specifications of the input-output relations. Second, the
circuit should contain the most economical selection and arrangement
of functional hardware. The accomplishment of the second problem has
occupied the minds of many designers,. and a substantial degree of
success has been achieved through the recognition of basic circuit
forms in combinational circuit equations. New.and efficient techniques
are constantly appearing in the literature for obtaining circuits con-
taining a minimum number of binary elementé. Although considerable -
work still remains to be accomplished on designing minimal networks,
substantial contributions are already in evidence. A literature sur-
vey conducted for ;his studj revealed that over 250 different people
working with switching circuit theory have reported their findings.
Adding to this total the many unknown investigators, results in a
fabulous concentration of brains in one area which is developing be#
yond comprehension,

Combinational switching logic, although representing a very im-
portant type in electrical control systems, does not satisfy the re-
quirements for circuits involving memory or sequential action. All
switching circuits can be classifed as either combinational or se-
quential, and it is the latter type that has a great potential in other
associated fields. Sequential logic is charaéterized by -functions
which depend not only on the immediate values of the variables but m

also on the values of variables at some previous time, Therefore, by
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definition, a sequential circuit is one in which the output is related
not only to the present inputs but also the past history of the inputs,
A sequential logic requirement: presents a far more difficult
problem to the engineer than one which can be satisfied by combination-
al logic. Prior to 1954, there was no method which was universally
_applicable to sequential problems. D. A. Huffman (12) was the first

to develop a method by which the past input conditions of a system
could be recorded and become an integral part of the solution. He pre-
sented a chart, called a "flow table,"” that could be used to register -
the past input conditions and define the operation of the desired
ciréuitry. Thé horizontal raws of a flow table represent the internal
states of a system whereas the vertical columns represent all-possibie
input conditions, The entries in the flow table are the various states
of the system which are implied by the circuit specification. The flow
table is systematically transformed into Karnaugh maps which describe
the memory and output circuits which can be read in terms of individual
combinational circuit expressions.

Concurrently and independently of Mr. Huffman, E, A, Moore (25)
studied the pfoperties of sequential machines and developed a theory
which parallels many aspects of the Huffman Method. Another- note-
worthy publication having a pioneer influence on sequential logic
methods is that of George H. Mealy (26). Mealy's extensive report was
directed more along the lines required in telephone switching circuits,
but he clarifies several aspects on reduction techniques of concern
in the Huffman-Moore Model.

Since the principal objective of this dissertation is the analysis
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and synthesis of hydraulic sequential circuits, a detailed discussion
of sequential logic as applicable to hydraulic circuits is contéined
in the next chapter. The concepts of electrical sequential logic
theory as purported by the above cited references and others (26, 27)
. have been instrumental in providing thg basis for the hydraulic cir-
cuit synthesis and analysis methods to be presented. Without this
basis, an unpredictable and élmost insurmountable amount of work would

have been added to this investigation.



CHAPTER V
CIRCUIT SYNTHESIS FOR FLUID DIGITAL NETIWORKS

Synthesis is the process of putting together to form a whole and
is the opposite of analysis. In relation to this study, the process
consists of finding a netﬁork that satisfies a prescribed set of re-
quirements. The utilization of logic techniques capable of producing
complete descriptions of complex fluid networks will require a signifi-
cant extension of ordinary fluid signal system concepts. A demand for
fluid power systems to be controlled by secondary signal networks is
expressed. Such power systems must be responsive to control by fluid
signals and must report their output conditions in the form of fluid
signals. The above requirements are not necessarily incongfuent with
éhe current genera14philosophy of fluid system design because automatic
and semi-automatic electrical-coﬁtrolled, fluid-powered machines receive
and emit electrical signals.

In order to provide-a'baéis'fbrtthe'further discussion of fluid
signal control, an example of & fluid-powered system exhibiting fluid
signal admittance'énd emittance characteristics is shown in Fig. 5-1.
and the corresponding eleetrical-controlled system in Fig. 5-2. Both
motor systems have provisions for generating signals to report load

and position information and possess appropriate transmission valves

26
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for directing the motor. 1Ihe,hyd:aulic circuit symbols af.-the ASA-
(American Standards Association) will be used for all fluid circuit

illustrations.
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Fig. 5-1. A Fluid-Powered-Fluid-Controlled Motor System.
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Fig. 5-2. A Fluid-Powered Electrical-Controlled Motor System
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A fluid system may require the use of several fluid motor systems
with various inputsoutput characteristics to accomplish the objectives
of the machine., To implemeht specific operational requirements, many
different valve configurations are available and considered standard
components. Reference is made particularly to two-position, three-
and four-way valves, also to three-posftion, four-way. (block center,
open center, center bypass, etc.) valves. The power valves in Figs.
5;1 and 5-2 are three-position, block-centered, spring-centered, four-
way valves.,

Establishing the specific types of fluid powered motor systems
for a machine enables the operational apecificatioﬁ to be defined. A
firm set of specifications must contain precise statements as to the
desired output for each and every combination of input-output-condition.
The formulation of such a specification is undoubtedly one of the most
difficult problems in control network synthesis. However, if the de-
signer can obtain a decision on the necessary output for e;ch (2")
combination of inputs, plus information of a sequential nature on the
~order of events, a logical synthesis process can be initiated.

A letter symbol is assigned to each output from the £luid motor
system (an input to EheA¢onir01 network) and to each inputbrequired by
the motor system (an output of the control network). It is conven-
tional to assign network inputs as x;, x5, etc., and network outputs
as Z;, Zp, etc. In relation to network outputs, the motor power valve
can be incorporafed into the control network with Z; and Z, becoming |
the transmission lines to actuate the fluid motor instead of signal

fluid.



29

The output from a valve could have three distinct transmission
conditions: 1) connected to pressure, 2) connected to tank, and
3) blocked to pressure and tank, To implement this study, valves
possessing block port characteristics will not be considered as suite
able control network elements. No major limitation is inferred by
this restriction which makes possible the criteria that the binary
value 1 means open or pressurized while O means a tanked condition.

One important. aspect which ﬁust be recognized is termed the
stability characteristics of a valve. This characteristic refers to
the excitation and Eransmission of a valve. A time delay always exists
between the time a valve is signalled to operate (excited) and the time
when transmission is actually,accomplished."A valve is considered to
be in a stable condition during the period when a signal is applied
and when transmission occurs. The stable condition occurs when the
transmission function agrees with the excitation, This concept of
‘stability can also be extended to control network operation -- the
time delay between network excitation and network transmission. 1In a
network, the time deiay,of several valves maylbe'involvéd.which,gifes

rise to network instability.

Fluid Circuit Description

The fluid circuit synthesis techniqué which.will be discussed is
based on the flow table method originated by Huffman (14). The tech-
nique establishes a general approach to the logical. synthesis of fluid
networks and does not require intuitive reasoning. Iﬁ has application

to the broad class of fluid swiﬁching-circuits involving memory and
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possesses the necessary characteristics to effect a comprehensive
understanding of the system.,

The procedure used to synthesize fluid circuits involves a number
of steps which require various describing charts to develop a solu-
tion, The complexity of the technique is such that a written presen-
tation becomes almost meaningless without the simultaneous demonstra-
_tion of the rules; therefore, a specific problem will be considered
throughout the discourse to illustrate the procedure. Let it be .
assumed that a fluid network is required to control the two-cylinder
motor circuit shown in Fig. 5-3. The desired operation of the cylin-
ders is: cylinder A cycles once (A,A); cylinder B extends (B); cyl-
inder A cycles again (A,A); and cylinder B retracts (B). The short-
hand circuit operation is then A,A,B,A,A,B. The detent valves have
mechanical sp;ing locks to hold the last position of the valve until
a fluid signal overcomes the detent.force and repositions the valve's
actuating element. The network to be designed will receive two inputs:
(x1, X2) and excrete two outputs (Z,, Zp) as indicated by the diagram.

The network synthesis is initiated by the development of a primi-
tive flow table which depicts the various states thevnetwork must
satisfy for the specified input and outputs. The primitive flow table
is constfuctéd from the word statement of the problem and exhibits the
desired operational sequence in accordance with both input and output °
conditions. The primitive flow table reveals any cbntradictory or
incomplete specifications, and the acceptance of its implications

becomes irrevocable beyond this point.



31

CAM - CAM

ECH

PR =

P

'!'_} fvars;
:)(LL-M A=t iy
P~ $mzP——|
sy

I
ol ieEm OET 5ET
X l_"y(e ""—Xz

angh
2

Fig. 5-3. Two-Cylinder System with Operation A,A,B,A,A,B

The flow table is comprised of rows and columns. The combinations
of allgigputs are reéréﬁented in.Gray code form and are the headings
for the basic columns. The rows cﬁn be considered as representing the
secondary states of the netﬁork. The state ﬁositions (operational’
events) both stable and unstable become entries in the table. The
output conditions corresponding to each state entered in the tablg are
listed in alspecial column on the right in the appropriate -row. The
stable étates are circled with only one stable state assigned to a
row. It will be evident thatia change in an input condition repre-
sented on the flow table results in a state change in another secon&ary.

In other words, when an input change occurs, the network moves from a

stable state to an unstable state in the same row. and then transfers
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to a stable state in another row,

To initiate the recording of the operational description of the
circuit action, a starting point must be selected., It is convenient
for the cited example problem to assume that the cylinders have just
arrived in the position shown in Fig, 5-3. At this point, the network
input is x5 = 0 and x, = 0, and the output of the network must be
Z, =1 and 23 = 0 to extend cylinder A, After cylinder A extends, the
input changés to x; = 1 and x» = 0; and the output changes to Z, = 0
and Zp = 0. This process of regsoning;pontinues until the full opera-

tional specification has been described as shown in Table 5-1.
TABLE 5-1

PRIMITIVE FLOW TABLE FOR 2-CYLINDER PROBLEM

Xy X2 Inputs Qutputs
Row 00 ol 11 10 2, 2
1 @ 2 10
2 3 ' ® 00
3 @ b ol
L ® 5 11
5 : 6 ©) ol
6 1 ® - | 00

Flow Table Reduction

The second step in a network synthesis problem is the reduction
of the primitive flow table.  Flow table simplification is an impor- _
tant phase of network synthesis because the design evolves from this

table. Since the rows of a flow table represent the various internal
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states required within the control network, it is worthwhile to apply
~methods that will minimize the number of rows. One method which should
be applied is the check for redundant states. Such states are duplica-
tions and have their equivalence already represented on the table,
Establishing the eqdivalence of two stable states results in the eiimi-
nation of one row from the flow table. Three requirements must be
satisfied before an equivalence exists between two stable states:
1. They are in the same columm
2. They have the same output state

%, The states in each column of both rows must be the same
or equivalent '

. Since the blanks in the primitive flow table represent unspecified
entries or optional étates, it is permissible to utilize their option-
al behgvior to establish an equivalence whenever possible. No redun-
dancies are evident in the flow table for the two-cylinder circuit
examplé. This can be recognized because two stable states having the
same output conditions do not exist in the same column.

Another means for achieving flow table simplification is termed
merging. The merging process does not reduce the number of stable
states in the table but eliminates some of the rows. This is accom-
Vplished by having more than one stable state assigned to a row as
originally established by the flow table. Merging the rdws of a primi-
tive flow table to form a merged flow table is not dependent upon the
output states. The rules for merging two rows of a flow table are: .

1. The state numbers in both rows within each colummn must
coincide, or
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2. A state number in one row coincides with an optional term
or blank space in the same column, or

3. Optional terms (blank spaces) are contained in both rows
within corresponding columns,

Applying the above rules for merging the rows of a primitive flow
table to the problem example, it can be observed that row 1 could merge
with any one of rows 4, 5, or 6. Likewise, row 2 could merge with
rows 3, 4, or 5; row 3 with row 4; and row 5 with row 6. In most
instances, there are several ways to accomplish a merger; but for com-
ponent. and circuit economy, an optimum merger is desirable. In order
to achieve such a merger, it is helpful to prepare a table of possible
mergers and finally a merger diagram. A table of possible mergers for

the example problem is shown in Table 5-2.
TABLE 5-2

TABLE OF POSSIBLE MERGERS FOR 2-CYLINDER: PROBLEM

ROW WITH ROW

NN PO PO N g pd
O\ £\ £\ O\

Using the table of possible mergers, a diagram can be drawn which
graphically displays the merging characteristics of the rows. The
merger diagram consists of a circular array of circled numbers --
each number representing-a row or stable state numger on the primitive

flow table. For each possible merger between two rows, a connecting
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line is drawn on the diagram between the appropriate numbers. Applying
this procedure to the example problem yields a merger diagram as shown

in Fig, 5-L.

Fig. 5-4, Merger Diagram for 2-Cylinder Problem

The primary purpose for merging is to achieve an optimum configu-
ration which generally can be interpreted to mean a minimum number of
rows in the final merged flow table. To obtain this minimal value.
requires that the merger diagram be studied and manipulated to derive
the most appropriate combinations of row mergers. The merger diagram
,aids.in the identification of '‘clustered" and interconnected points.

A merged combination is adequate when each number comprising the com-
bination is linked with each and every other number in the combination.
In many instances, there are more than one combination which would
yield a minimum row merger. When such a situation exists and it is
important to achieve the most economical circuit, all minimum row com-
binations should be explored. The most optimum merged groups for the
2-cylinder problem are rows 1, 5, and 6 and rows 2, 3, and k. Using
these two groups, the merged flow table for the example problem is as

illustrated in Table 5-3.
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TABLE 5-3

MERGED FLOW TABLE FOR 2-CYLINDER PROBLEM

Xy X2

00 o1 11 10

al © | ® | ®| -
bl @ | ® | 5 | @

The output colum cf the primitive flow table ddeé not appear in
the merged flow table because the outputs are associated with the
stable sfates and not with the rows. The specified outputs have not
been_changed during the merger; however, they éan no longer be exhib-
ited on the flow table.

If the primitive flow table can be reduced to a merged flow table
containiné only one row, the desired output of the circuit is a func-
tion of only the input conditions and therefore becomes a combinational
type circuit. When more than one row exists in the merged flow table,
it indicates that the desired outputs are a function of not only the
input conditions but also of the secondary states of the circuit, 1In
such a situation, the circuitry must possess memory elements and be of
the sequential logic type. Each row of the merged flow table must be
represented by a different secondary state in the same manner as the
colums of the flow table are uniquely specified. Two rows require one
secondary specification (y = O and y = 1); whereas three or four rows
require two secondaries (yy = 0 and 1 and y» = O and 1). In the case
of an odd number of rows greater than one, a secondary state is pro-

vided -- one row containing only blank entries. In essence, the
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existence of secondary rows in the merged flow table means that the
circuit logic is such that the outputs cannot be described by. simply
the input functions, and that-an internal circuit is required to gen-

erate 'pseudo inputs" to perform the memory action.

' The Operational Flow Table

Possessing the merged flow table and having established the num-
ber of secondaries required, it is necessary to label the rows appro-
priately in order to obtain thevoperational flow table. This process
is termed ''making secondary assignments.'" No secondary assignment
problem exists with a two row merged flow table because only one
secondary is required which means that one row is labeled O and the
other 1. This is the sitpation with the 2-cylinder example under con-
sideration; therefore, the corresponding flow table with secondary
~assignments is as shown in Table 5-&. In accordance with the inferences
of Table 5-l, the logic action of the 2-cylinder problem can be accom-

plished with one binary-secondary circuit.
TABLE 5-4

OPERATIONAL FLOW TABLE FOR 2-~CYLINDER PROBLEM
Xy %z
y 00 -0l 11 10
of @ -® ® 2
11 ® ® 5

Merged flow tables having three or more rows generally present a

problem in labeling tﬁe rows, The problem stems from:the need to obtain
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the '"next state" by a unary action of the secondary. In other words,
a necessary transition from one row to another should be accomplished
by a single change in the secondary. Since the order or arrangement of
the rows is arbitrary in the merged flow table, any reshuffling of row
positions is permissible to accomplish proper circuit action. The

transition problem can be illustrated by the use of the hypothetical

merged flow table shown in Table 5-5.
TABLE 5-5

MERGED FLOW TABLE FOR A HYPOTHETICAL ACTION

Xy Xz
00 ol 11 10
ad @ 2 5 6
b : @ 8 ©) 4
¢ 7 ® 3 ®
d 1 ® 5 ®

By the inspection of Table 5-5, it can be seen that a number of
transitions exist between non-adjacent rows; for éxample, in the tran-
sition from unstable state 2 to stable state 2, row "b" must be " jumped"
and similarly for state 6. Such a "jump" would necessitate the inter-
nal state of two secondaries to change simultaneously. An action which
is dependent upon the simultaneous response of two circuits is unpre-
dictable and should not be considered. To avoid this transition
problem, the rows of the flow table should be arranged so that " jumping'

is unneceéssary. The proper arrangement can be discovered with the aid
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of a transition map. Such a map consists of columns and rows describ-
ing the required combinations of secondary states together with map
entries representing the row numbers or letters. The initiation of
row entries into the transition map is made by arbitrarily assigning
row "a" to the "all-zero" position. Subsequent row designations are
entered in the map to accdmplish proper adjacent relaﬁions -= no
diagonal transitions on the map. The transition map for the merged

flow table shown in Table 5-5 is exhibited imn fig. 5=5.
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Fig. 5-5. Transition Map for Hypothetical Problem

Employing .the transition:rmap shown in Fig. 5-5 to arrange and
label the rows of the flow table in Table 5-5, yields a properly
assigned secondary. The operational flow table for the hypothetical
problem with indicated secondary assignments is shown in Table 5-6.
This flow table satisfies all adjacency requirements which means that
all row-to-row excursions for a given state can be'achieved b; the

change of only one secondary variable. It should be pointed out that

the top and bottom rows are, by the definition above, adjacent rows.
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TABLE 5-6

OPERATIONAL FLOW TABLE FOR HYPOTHETICAL PROBLEM
Xy Xo
_— 00 ol 11 10
00 ) 2 ® 6
o1 1 5 4
11 Q) 8 ©) L
1o 7 ® 3 ®

The Secondary Network

The -operational flow table containing secondary states with
assigned values becomes the basis for obtaining the logic circuit equa-
tions. Two types of circuits are involved in a sequential system --
secondary circuits and output circuits, In order to derivg'the equa-
tions for the secondary circuit, an excitation map must be obtained.
This map is equivalent to the operational flow table except that the
map entries are the desired secondary states for the appropriate map
locations. The entr;és for the excitation map are -designated as
follows:

1. The entry for a stable state position indicated on the opera-

tional flow-table is the same as the existing secondary state

(operational event).

2. The éntry for a given unstable state is the same as the next
desired secondary state.

Applying the above procedure for making map entries to form the
excitation map results in a completely specified binary valued map.

The excitation map shown in Fig. 5-6, for the 2-cylinder problem
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example was obtained from Table 5-4, and the excitation map for the
hypothetical problem, exhibited in Fig. 5-7, was derived from Table

5-6.
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Fig. 5-6. Excitation Map for.2-Cylinder Problem
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Fig. 5-7. Excitation Map for Hypothetical Problem

The exéitation map represents the secondary states which must
exist to satisfy the sequence specification of a circuit; therefore,
the Boolean expressions deduced from the map are the circuit equations
of the secondary excitation network. Using the Karnaugh Map technique

for obtaining the Boolean equations (see Appendix B), the equation of

the secondary circuit for the-2-cylinder problem is

Y = yx = x3%2 5-1
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The interpretation of this circuit equation in terms of fluid compo-
nents is reserved for the next chapter.

Excitation maps containing more than one entry in a map location
are diffiéult to read. To overcome this difficulty, individual exci-
tation maps for each secondary can be drawn to simplify the map read-
ing. The fadividual excitation maps for the hypothetical problem are

shown in Fig. 5-8.
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Fig. 5-8. Individual Excitatian Maps for Hypothetical Problep
There are many different equations which can represent the entry
patterns of a Karnaugh Map, In circuit synthesis, each.minimal equa-~
tion.satisfying the map should be considered. The iﬁdividual excita-
"~ tion maps fof the hypothetical problem emphasize the various éombina-

tions which could be written to represent the entries of the map. A

specific equation satisfying the Y, excitation map in Fig. 5-8 is
Y) = yiXyXp + yoXiXz + yixa¥e + yaXiXa ' 5-2
An expression for the Yy excitation circuit is

Yo = yiXiXp + yoXiXz + yiXixo + yoxiXo 5-3
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The Output Network

The Boolean equations for the output circuits are derived in a
similar manner as the secondary circuit equations. The operational
flow table is again utilized, but the map entries are the desired out-
put states instead of the desired secondary states. Since the desired
output states of a circuit are recorded in the primitive flow table
for each stable and unstable state designated, this table is eﬁployed
for making the entries in the output map. As in‘the operational flow
table, the columns of the output map are the input states and the rows
are the secondary states. The rules for making entries in the output
map are as follows: _

1. Enter the output state associated with each stable state shown
on the primitive flow table in the location of the corres-
ponding stable state on the operational flow table.

2. Between two stable states having the same output states, all
unstable states involved in the transition must be assigned

~ the same corresponding output state. .

3. The output state corresponding to an unstable state is op-
tional when the output state is changed between two stable
states. A dash is entered in the map location to represent
the optional output state.

The completed output map describes the conditions under which the
prescribed outputs will occur. Applying the rules given above to for-
mulate the output map for the 2-cylinder problem results’in a map as

shown in Fig. 5-9. Although the output Boolean circuit equations can
be deduced directly from the composite output map, individual output
maps for the two outputs (Zl and Z5) simplify the map reading. The
individual output:maps for the 2-cylinder problem are:shown in Fig..

S?ION:;The output map.  for the hypothetical: problem cannot be formulated
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because the output states are unknown -- the primitive flow table was
not presented, |
X|X2..
Y 00 Ol I K¢
of 10 00 Ol -0
iI| Ol I -1 00
Fig, 5-9, Compos;te Output Map for 2-Cy11nder’Prob1em
X %X
4 68 .01 11 10 y 0 o1 11 10
oy | 0|1 0] — 0] 010 I 0}
] O I - 0 ‘ I I I | 0

Zl' .Zz

Fig. 5-10. Individual Output Maps for 2-Cylinder Problem

In a combinational logic circuit, the output equations are func-

tions of ohly the input states; whereas for sequential logic circuits,

the output equations are - -always functions of the secondary states

and

generally certain existing input states. The Boolean equations for

_the output circuits of the 2-cylinder problem obtained from the indi-

vidual output maps are as follows:
Zy=yxa+y %z

Zp = x3% + y %3

The contribution of the secondary circuit output is an integral part
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bf the output equations. Neglecting the hardware aspects of the system,
the logic requirements of the 2-cylinder control circuit have been
sati#fied by the three circuit equations (5-1, 5-4, and 5-5), These
equations réquire further study before they are ready for hardware in-
terpretation as will be pointed out in the remaining part of this chap-

ﬁer.

Logical Complications

There are some inherent pitfalls in the synthesis technique that
must be récognized and avoiaed when they restrict or otherwise jeoparAZ
dize the successful ogperation of the circuit. An experienced designer
having é compr ehensive understanding of machine cycle problems and the
non-ideal characteriétics of circuit components would be cognizant of
ithe "practical" limitations of pure logic interpretations. It is impor-
tant, however, to be able to recognize the application problems of the
logic method as they appear in the synthesis procedure and in a form
not requiring a vést amount of experience to correct. The five basic
characteristics to be discussed should be ‘recognized in the logic de-
sign of circuits. These characteristics are called 1) lockups, 2) os-

cillations, 3) cycles, 4) races, and 5) hazards.

Lockups
A lockup can be recognized on the flow table by a row which has
not been provided with an accessible unstable state. It results in a
situation where some state cannot be obtained more than once without
. a complete interruption of the power. The solution for such a problem

is the proper rearrangement of the state entries to insure an unstable
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state escape route from the locked-up row or rows. The problem will
never occur in a properly developed pfimitive flow table. Two simpli-
fied flow tables are.pfesented in Fig. 5-11 to illustrate a single row

lockup and a multi-row lockup.

X

0

O)
3

)

S+ O~ -

®|8|«|O|°

W

®
3

|

2
@
4
@
6
®

Fig. 5-11, Examples of Single-and Multi-Row Lockup Conditions

Oscillations

An oscillation in a circuit stems from an input which makes an
unstable state seek a non-existent stable state. Such a condition
initiates a row-to-row excursion which cannot be stopped except by
another input change. Input changes effect column shifts while un-
stable states provide the mechanism to cause row excursions. An os-
cillatioﬁ cah be detected on a flow t;ble by Ibcating»an,accessible
colﬁmn~consisting of only unstable states. Osciliations, as with lock-
ups, result from impropefly constructed primitive flow tables. An

example of a flow table yielding an oscillation is given in Fig. 5-12.
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ClSINSIE

Fig. 5-12. A Circuit Oscillation Example

Cycles

‘A cycle refers to a ciclic secondary action such as described
for an oscillation. An oscillation is a con;inuous type cycle which
usually has a parasitic nature, but it could have some practical value
in the production of output.pulses or signals. A gelf-terminating
cycle is one in which an unstable state initiates an excursion past
more than one row but terminates at a stable state. A cycle bf this
type is often introduced infentionally to produce time delays for ob-
taining a prescribed circuit actionm. i

An unstable state is one in which the entry in the excitation map
does not agree in value with the designated row value. The'unstable
state is ordered fo react by the appropriate input éombination, and it
seeks to satisfy its state value; hence, it will move to the row whose’
labeled value agrees with the unstable state value. A self-terminating
~cycle is a succession of secondary state designations that generates

a cyclic action. Such a cycle can be illustrated as shown in Fig, 5-12

using a simplified flow table and excitation map. The cycle shown in
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Fig. 5-13 is a good example of an intentional time delay inclusion in

a circuit,

| 0 |
2, %'gz oo | ol
2‘\ ol |y
2* |l 10
® 10| ool 1o

+Fig. 5-13, A Self-Terminating Cycle Example

Races

The distinguishing feature of a race is a gecondary transition
which rgquires the simultaneous change of two or more seéon&ary states,
There are essentially ;wo'types of races -~ the-critical type and the
non-critical type, A critical type race-.can terminate in any of two
or more different stable states; hence, a situation exists where an
undesired operation may resﬁlt. It is important to be-able to recog-~
nize and avoid critical race conditions during the synthesis proEess )
because the-outcome is not predictable. A race condition exists when-
ever the value of a map entry representing an unstable- state diéégrees
with the value of thé row by more than one binary digit. A critical
race exists when the results of the race between the two or more second-
ary variables cannot be predicted, The characteristics of a critiéal

race are demonstrated in Fig. 5-14. The operation depicted in the

illustration indicates that after the input (x) changes from O to 1,
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stable state 11 is desired; however, both secondaries must change

simultaneously to accomplish the proper shift.

0o X |

YY.

00| OO | 1
oty ot | 10
|1 Ol i
IOf OO 10

Fig. 5-14. A Critical Race Condition

The critical race problem can always be solved by the proper
. application of the.transition map during the.synthesis process., 1In
certain cases, extra secondary states must be added to avoid transi-
tions which would result in critical races. However, in many cases
a cycle-can be established that will terminate the secondary excursion
on the desired row or on a row where the row value differs from the
desired row value by only one binary digit. An example of the use of
a cycle to avoid a critical race is éiven in Fig. 5-15. Several situ-
ations are exhibited in the illustration for preventing a critical
race. Two useful cycles were inserted starting at row ll to obtain
row 00 in colums 00 and 10. A third cycle was introduced betwéeh
rows Ol and 10 in column 11l. These cycles directed the secondary to
the desired position when a two variable change in the secondary was
required.

A non-critical race is a predictable event. No matter which vari-

able wins the race, the outcome is the same. A non-critical race
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%%roo oI 11 10

00 | 01 | 00 | 00

oifoo ol |11 |00

tifor [ 11 10| ol

loj 1o 11 J1o] 10
Fig. 5-15.

condition is established when the unstable counterpart of the desired

§tate or an equivalent substitute is:entered in the:map locations where
the race could finish.. A non-critical race is indicated in Fig. 5-16 |
in column 0O: between.row 11 and 00.
will still yield the desired result.
mentdl to the operation of the circuit because they have-a predictable

destination, and they tend to shorten the transition time of the

secondaries,

Critical Races Eliminated with Cycles

“The winner of the Ol and 10 race

Non-critical races are not detri-

X|‘xq. .

00 01 |1 10
‘é\‘h

O] 0O | Ol 10 ] 00
Ol] 00| Ol 10 -
1] 00| 11 | O -
10] OO P | O -
Fig. 5-16. A Kon-Critical Race

The discussion of races so far has been restricted to those -
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affecting row-to-row or secondary operation. A second class of races
could be considered for the input characteristics in certain problems.
Such races may develop when simultaneous operations are desired which
could yield a two variable input change. An example of a column race
would be when the initial inputs are 00 and the next input condition
is theoretically 11. In‘this case, unstable states existing in columns
Ol or 10 could initiate a row-to-row excursion before the second in-
put signal is registered,: and a conceivable state of circuit confusion
could result, Column races can be avoided through proper recognition
- andirearrangement 6f the fTow table logic. The proper interpretation
of the basic circuit specifications can usually resolve the problems

associated with column races.

Hazards
Static hazards in circuits are somewhat similar to races because
they arise due to the imperfect timing that accompanies non-ideal com-
ponents, However, hazards refer to the operational problems encountr
tered in parallel circuits. Consider the circuit represented by the

Boolean equation
Y = %% + X35 - 5-6

The equation implies that if x, and y are both actuated (equal to 1),
then the circuit should transmit regardless of the state of the valve
X3. But since valve x; is not-a perfect switching element, during the
period of time that xl.shifts or changes its state, it would be possi-
ble for the circuit to lose transmission momentarily, Any unplanned

interruption of circuit transmission constitutes a potential hazard
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which could affect the entire intended logic of the system.

The excitation map rep;esented by Eq. 5-6 is shown in Fig. 5-17.
Each parallel branch of the circutt is identified on the map, in .
accordance with Appendix B, as a subcube. The two subcubes that con-
stitute the given circuit are both functions oé the same variable
(xy and x,). This condition is one of the describing- features of a
potential hazard. The transmission of a circuit must always be inde-
pendent of the variable undergoing a change.

X Xa
do" o1 11 10
| o 0

Lo N D

Fig. 5-17. Excitation Map Illustrating Potential Hazard.

Ok

To eliminate a potential static hazard, the circuit equation must
possess terms that make the transmission independent of a changing
varigble. Although Eq. 5-6 accurately describes the logic cbndi;ibns
implied by the map in Fig. 5-17, an alternate route (parallel path)
must be provided to maintain transmission during the-period when the
dependent variable changes. This route-or path is termed the "haz#r&
subcube,” and it connects the subcubes required by the logic conditions
of the proBlem. The hazard subcube which eliminates the hazard in"
Fig. 5-17 is shown dashed in Fig. 5-18 and modifies the circuit equa-

tion as follows:

Y = X% + X35 + X2y 5-7
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X Xa
4y 00 01 1t 10
0| o [/ o] o
| (0] 1 1) |

Fig. 5-18. Hazard Subcube for Eliminating:Potentiai Hazards -

Employing the concept of hazard subcubes to eliminate potential
hazards in the excitation maps for the hypotheticai problem shown in
Fig. 5-8 results in a subcube for Y, of the entire (10) row and for
Yo of the entire (11) row. The subcubes for this problem are shown
in Fig. 5-19. The excitation equations previously derived must be

modified to include the hazard subcube terms as follows:

Yy = yiXiXp + yoXaxz + yixixs + yoxiXs + yi¥o 5-8
Yo = yiX1Xz + yoXixo + yiXaxs + yaxaXs + yiy2 5-9

X Xe .

00l 11 10 00 01 11 10
Yy \ [ Bt _
00| 0 N/ o N colo|o|o]o
oifo]o]o]o oo 1Y of Ty
nynorinyo| . AN T\

ONS A NN Y |o\|>o 1] 0

P d

\ !

Y, \F

Fig. 5-19. Hazard Subcubes for Hypothetical Problem
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The excitation map for the 2-cylinder problem (Fig. 5-6) contains
a potential hazard which can be eliminated by the subcube yx» which is
shown in Fig. 5-20. Adding the hazard subcube term to Eq. 5-1, gives

as the final secondary circuit equation, the following:

Y. = yx; + x3% +tyxa -5-10
X\ Xe .

y 00 o1 11 10

(Dd ) ()A ) | i

P

1L > D o (

Fig. 5-20. Hazard Subcube for 2-Cylinder Problem

The output maps for the 2-cylinder problem shown in Fig. 5-10
also indicate potential hazards. The hazard for Z, can be eliminated
by adding the-subcube term yxp to Eq. 5-5 giving an operational out-

put equation in the form
Zz = x3%2 + yx3 + yxa ' 5-11

The potential hazard in the Z, output map cannot be eliminated
by a subcube because of the peculiar alternating characteristic of the
mép entries. If a hazard actually exists in the Z; output circuit, a
different floW‘tableimergér combination is :equired and a new set of
equations derived. Since the merger selected was the most optimum, a
different combination will necessitate the use of a-second secondary
circuit, Before such "drastic" act;oﬁ is initiated,'the circuit opera-

tion should be studied to determine whether a change in the vgriéble
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is expected during the-cycle which would result in a hazard.

Analyzing Eq. 5-4 shows that a hazard would be epcountered in the
Z, output circuit if, during tbe operational sequence, it is necessary
to transfer from.a condition y x» directly to a condition yxs. Using
Table 5-4, an operational table can be written for the two variables
in question to determine their logic behavior in the systemias shown
in Table 5-7. Table 5-7 indicates that the system does not require
§‘§2 to change immediately to yxp; therefore, no hazard could result
in using the circuit. The output equation for Z; is acceptable in the
form shown in Eq. 5-4 which eliminates'the need for redesigning the

system.
TABLE 5-7

OPERATIONAL TABLE FOR 2-CYLINDER PROBLEM

Operation p. y
ls 0 0
2u 0 0
2s 0 1
3 s 0 1
ks 1 1
5u -1 1
5 s 1 0
6 s 1 0

The methods and procedures discussed in this chapter are complete
enough to serve as a basis for the synthesis of both combinational and
sequential type fluid circqitry. Although ;he—example illustrations
employed to demonstrate the synthesis process were simple, the impor-
tant aspects of the subject were emphasized. One of the purposes of

this chapter was to provide some insight into the orderly method of
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synthesizing fluid sequential circuits by logic means. The implementa-
tion of this method of flﬁid switching circuit design into general
practice can offer a useful and powerful tool for the fluid power

engineer.



.~ CHAPTER V1
FLUID LOGIC INTERPRETATION

The interpretation of logic expressions in terms of fluid switch-
ing hardware presents a complex problem to the engineer. The obscure
solution to the problem has undoubtedly contributed to the genéral
_acceptance that intuitive.methods of circuit synthesis are mandatory.
Based on the extensive literature sﬁrvey conducted as part of this
study, no rigorqus interpretive method for fluid logic networks exists.
The basic characteristics of fluid components ana the physical behavior
of fluid power systems are sufficiently,diffetent from their electrical
counterparts that a simple solution to the.interpretation problem is
impossible. However, a method will be presented in this chapter which
yilelds an orderly approach to the establishment of appropriate hard-
ware_for a fluid circuit., A by-product of the method is a composite
operational chart that provides a complete inéight into the logic im-
_piiéﬁtions of the circuit,

In order to appreciate the interpretation problem involved in
developing an operational fluid switching network from.a Boolean logic
equation, an understanding m;st be gained of the demands imposed by such
systems. In electrical contact cir&uits, an uncomplemented literal

means that the contact transmits when energized while a complemented

o7
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literal means that the contact transmits until it is energized. This
concept, although quite suitable for electrical applications, is not
realistic for fluid control systems. In order to apply a binary logic
system to fluid networks, the logic element must maintain fluid trans-
mission in both the enérgized and non-energized states. The above
statement means that an uncomplemented literal for a fluid system is
transmitting to tank before energization and transmitting pressure
afterwards. Likewise, an element represented by a complemented litefal
is transmitting pressure before actuation and to tank afterwards,

The fluid transmission concept must be adhered to throughout the
logic synthesis and interpretive process. The importance of maintain-
ing fluid transmission can be illustrated in Fig. 6-1 (a).. The desired
output (2), described by the equation Z = X;X X3, is accomplished for
the first actuation of the AND Circuit, Hoﬁever, no provision has been
made to tank the fluid in the locked line between the two valves which
results in Z being a function of only X3. The binary valves used in
Fig. 6-1 (a) do not satisfy the transmission criteria; because in the
cbmplemented condition, transmission is blocked with no tank transmis-
sion. The transmission concept for fluid logic circuits requires a
configuration such as shown in Fig.i6-1 (b) to.accomplish the necessary
AND circuit aétion.

The logic expfessed by a giveﬁ Boolean equation can usually be -
satisfied by a number of component and circuit configurations. The
exact class or type of fluid valve or valves to be used in a giQén cir-
cuit should reflect the general philosophy of the individual designer

or company. In this respect, the components discussed and employed in
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W — MH1~\l }f;-‘:xz

% . X,

(a) (b)

Fig. 6-1. 1Illustration of Fluid Transmission Concepts

this study haverbeen selected for the purpose of demonstrating princi-
* ples and not for advocating any particular hardware configurations.
‘In order to use a given type valve in a fluid logic circuit, the logic
characteristics of the valve must be recognized in a form compatible
with the circuit equation. An appropriate group of valves are pre-
sented to demonstrate the interpretive process of circuit synthesis

and to exhibit examples of describing characteristics of valves.

Fluid Logic Elements

The AND and OR logic functions are fundamental in circuit equations
and need appropriate interpretation in fluid systems. Three types of
fluid AND circuits are shown in Fig. 6-2 with different degrees of
simplicity. In general, the simplest circuit configuration has the
greatest operational limitation and is demonstfated by the circuits in

Fig. 6-2. Circuit (a) can only be used as an AND circuit if the tanking
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of signal y through x does not occur when signal y is needed elsewhere
in the circuit. Siqilarly; circuit (b) can be used only when the tank-
ing transmission for Xy, is coordinated with the tanking of x., Circuit
(¢) requires a higher valued awitching element than circuits (a) or
(b), but it is a perfect AND logic element. Considering the economic
factor, circﬁit'(a) should be used whenever possible while circuit (c)’
is the last resort. "It should be realized that the actual selection
of the type AND circuit to be used in the circuit must follow a thorough

-~

analysis of the operational characteristics of the-system.
§XY A XYy txq
1 | -
b Y Tr\m

| W

X

X |

X

(a) check type (b) pilot check type (e) 3-way type

Fig., 6-2. Fluid AND Circuits

The OR function presents a difficult problem in fluid circuit
interpretation. Although undef special conditions various valve -con-
'figurations-can be employed to sétisfy‘an OR circuit requirement,
simpleAconfigurations are ﬁot generally feasible. However, a perfect
OR function for a fluid circuit exists in the form shown in Fig. 6-3.

A combinational AND-OR circuit worthy of consideration is shown

in Fig. 6-4. This circuit places certain restrictions .on the system



61

X+ 9
r B
/BBy
- =%,
| I - l__ 1’\ _]
e | i
(a) two-signal type (b) three-signal type

Fig. 6-3. Fluid OR Circuits

'X| : - | ) X|(X2+XB)

'S X3

Fig. 6-4. A Combinational AND-OR Circuit

pbut offers énough sfmplici;y that its possible use should. always be

investigated.

* ‘Fiuid Flip Flops

A memory element such . as a flip filep gives a circuit the power to
remamber decisions even though the information on which these were
based is no longer available. A flip flop is a device which will
assume one of two possible output stgtes when actuated by an appropriate

signal. Once the output state is established, the flip flop remains
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fixed until a secoﬁd input is applied to produce the second output state.
Numerous valve configurations are possible to accomplish a flip flop
action in fluid circuits. Some types are classical examples of perfect
flip flop characteristics while others require interpretation,

Consider the pilot-operated, spring offset, four-way valve as a
flip flop element -- see Fig. 6-5, The output Z, in (a) is described
by the relation 2, = x, while the output Zz is Zp = x;. Therefore,
the classical complementation as presented in Appeﬁdix A, of one output
gives the second output or 2, = Z,. Even in the full flip flop form,
Fig. 6-5 (b), the classical complement gives the tanking transmission

equation as follows:

Zy=Zyx+y 6-1
Zy = (Zy+ x)y 6-2
2o = 22y + xy = (22 + x)y 6-3

Letting Z, = Z5, in Eq. 6-2, gives Eq. 6-3 which demonstrates the

classical behavior of this type valve.
aningy® |
7] [‘“ZZ MWH 1 >Q Q X

P —Y%

(a) valve bnly (b) £flip flop

Fig. 6-5. Spring Offset Type Memory Element
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‘Significant deviations from classical valve behavior exist in.
many forms, and the recognition of these differences is very important
in utilizing their characteristics. A simple example of the failure
of classical complementation can be demonstrated by referring to the
pilot-operated, four-way valve shown in Fig. 6-6. The output equations

and their respective complements are

Z, = x3%> 6-4
Zy =% + % 6-5
Za = x2%; ' 6-6

6-7

i2=§2+xl

1f the classical complement were ‘valid, then'Z; = Z, .and 25 = Z;. "The
significance of this complementing characteristics is ﬁhat‘Eq. 6-5 does
not describe ‘how the output Z; can transmit to tank -- this is described
by the Zp output equation. Thus, the classical complement of a function
is not necessarily the operational or tanking function. An appropriate
solution to the problem can be obtained by defining a term.called the
"fluid complement." The fluid complement of a function is always the
tanking function without régsrd to.:he-classical complement., This con-
cept has implemented the general interpretation technique and has no
apparent limitations,

The usefulness of the fluid complement concept. can be appreciated
when consideration is given to the perfect fluid flip flop -- a pilot-

operated, detent held, four-way valve -- illustrated in Fig. 6-7. The
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Fig. 6-6. Pilot-Operated Valve

L~ %2
eTit

x— L I RPE

o JS

Fig. 6-57. The Perfect Fluid Flip-Flop

output equations are

Zl = xl;ia + zl}-(a 6"'8
Za = X2§1 + Zail 6"'9

The fluid complement of the output Z; is equal to the output equation
for Z5; however; the classical complement of Z, is

Zy = (X3 % %2)(2, + x2)
or, by T-11(b) Z, = %o + %32, 6-10

Equation 6-10 represents an incorrect description of the tanking trans-
mission for Z,. The complementing characteristics of a valve can be

-checked easily and should be done before it is employed in a circuit.
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No detrimental effects have been exhibited by the use of the fluid
complement, and its continued use is recommended.

A detent equa#ion, such as Eq. 6-8, can be readily recognized be-
cause the value of the equation under certain conditions is dependent
upon the most recent value of the equation. In other words, a detent
equation-is, in part, a function of itself; for example, in Eq. 6-8,
the equation value, Z,, appears.as a variable in the equation and modi-
fies ‘an AND term. The AND term such as x» in Eq. 6-8; modified by

the equation value is referred to as the detent éart-of the equation.

The interpretation of a detent equation in terms of fluid hardware can

be rigorously expressed by applying ﬁﬂ;hﬁnﬁoaified part of thé equation
to one side of a detent valve and applying the classical complement of
the detent part of the equation to the opposite side. This concept can
be demonstrated by considering a detent equation having the followiﬁg
form: |

Wy = X Xa W2 ya + Wa(xz + w2 + y2 + ya) 6-11

The classical complement of the detent part of Eq. 6-11 is xzWayays.
Using a detent valve, Eq. 6-11 is completely satisfied by the applica-
tion of signals as shown in Fig. 6-8. Since the detent element dis- .
plays the flip flop memory characteristic, its appearance is common in
secondarf circuit equations.

A final illustration shown in Fig. 6-9 will suffice to demonétrage
‘yalve interpretation and fluid complementation. The pilot check valve_

has an outputcequation of the form

Z. = x;%p 6-12
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Fig. 6-8. The Detent Equation Interpretation
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Fig. 6-9. Pilot Check Valve

Classically complementing this equation gives an erroneous tanking

transmission function of

Z =%, + % - 6-13

The fluid complement is the true tanking function and is

‘ Z- Xy . 6-14

The- Composite Operational Chart

The interpretation of the logic specifications déscribed by the
synthesis equations in ;erms of a fluid circuit requires a complete
knowledge of the operational behavior of the system. An insight into
the sequential characteristicé of the circuit can %e-obtained by - list-
ing the order in which each part of the.circuit equations contributes

toward accomplishing the over-all system logic. Such an orderly record
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of the system operation is termed the composite operational chart,

The composite operational chart consists of appropriate columns
for the various input, secondary, and output states as well as columns
for recording the contributions of the secondary and output equations.
The rows of the chart describe the sequential behavior of the network
with a row being assigned for each input-secondar&-output combination.
An example of a composite operational chart is shown in Table 6-1
which represents the operation of the two-cylinder problem developed
in Chapter V. This chart was formed from information obtained from

Table 5-1, Fig. 5-6, Fig. 5-9, Eq. 5-10, Eq. 5-4, and Eq. 5-11.
TABLE 6-1

COMPOSITE OPERATIONAL CHART FOR 2-CYLINDER PROBLEM

Operation Inputs | Secondary | Outputs quation Contributions
XyXp Y "éJZZ‘ : Y Z, Zp

1 A 00 0 10 | Y Xz

2 A 10 1 00 X)X Z,=y

3 B 00 1 Lol yRotyia yX1

b A 01 1 11 Y1 yx2 | yxatyxa

5 A 11 0 01 Ymxy | Z,=y X3Xp

6 B 01 0 00 ZomXy

The excitation equatibn for the two-cylinder problem can be writ-

ten in the form

Y= xl;(z + Y(il + }-(2) 6-15
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Performing the classical complement on the detent part of the equa-
tion results in a signal application as shown in Fig. 6-10. A second
valve is needed to transforq the basic input signals into appropriate
combinations required in Fig. 6-10. The final secondary circuit is

shown in Fig, 6-11,
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Fig. 6-10. Two-Cylinder Secondary Valve
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‘Fig. 6-11. Two-Cylinder Secondary Circuit

"The first output equation for the two-cylinder problem is given

by the equation

<1

Zy =y xa+ Y2 - . 5=k

The output equation describes a circuit in which two signals must be

either tanked or-energiied to give-a transmission. One appropriate

interpretation of the output equation requires two valves in series as
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‘A’.
p—

Fig. 6-12. First Output Circuit for 2-Cylinder Problem

ghown in Fig. 6-12.
The second output equation for the two-cylinder problem is given
by the equation

Zo = x1%2 + yX3 + yxo - 5-11

Without employing a composite operational chart, the.interpretation of
this equation in terms of fluid hardware would be a major problem. A
circuit which Qill always provide the-appropriate pfessure and tadkiﬁg'
transmission can be developed with the aid of Table 6-1. Using pure
binary valves, the pressure transmission can be-accomplished by the
circuit shown in Fig. 6-13 less the check valve. By referring to the
composite operational chart, the tanking of Z; must not be initidted
until the x; signél is de-energized; therefore, the tanking of Z,
through x» must be prevented by the use of a check valve as indicated
in Fig. 6-13. -

Two valves in a circuit having the same output and input signéls
can usually be coﬁbine@. This is the case of the x; valves in Fig.

6-13, The final circuit describing the second 6utput equation for the
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Fig. 6-13. Second Output Circuit (Binary) for 2-Cylinder Problem

two-cylinder problem is shown in Fig. 6-1L,

The control network for the two-cylinder problem can now be syn-
thesized by combining Figs. 6-11, 6-12, and 6-14. The final network
shown in Fig. 6-15 will accept the-signals generated in the power cir-
cuit-of Fig. 5-~3%.and produce output signals to control tﬁe'Sequé;Eial
order for the two'cylinders as originally specified. The signals x,
and X shown in Fig. 5-3 were not needed in the final control network

to simplify the circuit; therefore, these valve ports could be plugged

9
T

4

or a three-way valve substituted.

- ——,

ol
R
)

Fig. 6-14, Second Output-Circuit;fqr‘2-Cy1inder‘Prob1em
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Fig. 6-15. Fluid Control Network for 2-Cylinder Problem

The interpretation of logic expressions in terms of fluid compo-
nents presents a differéhtvsitugt§9éﬂfpr each proélem éongidered. Rec~
ognizing the logic ch#racteriétiqs.of vaﬁves permits their ugiliihtion :
in fluid networks. The reducpiéﬁ of circuit configurations can be im-
plemented by the use of the composite operétional.chart. The chart
exhibits the:;eqhential order of'signal states and diéplays the con-
t?ibutions of ;he-circuit eqﬁat%qns in achieving the specified logic.

In synthesis problems involying:complex equations, ‘the operational

chart is almost a necessity.



CHAPTER VII
- FLUID NETWORK ANALYSIS

The analysis of fluid switching networks is the pr;éess of deter-
mining the opqrap}onal logic of a system by dériviﬁg the characteristic
algebraic equations of the circuit, 1In analysis, an existing cifcuit
is available, and the transmission functions are unknown. fhe purpose
of a network analysis is to discover the logic implications and the
inherent limitations of the system. Such information is needed for
the appropriate selection of circuit components, trouble-shooting, and
circuit modifications (network reduction and changing or enlarging the
control capability).

Control networks which have been intuitively designed are entirely
satisfactory if they operéte and require no changes; however, such
ideal situations are the exception rather than the rule, Since the
logic synthesis of fluid circuits has not been introduced and practiced,
a need will be recognized for obtaining the algebraic expressions of
existing circuits, It is the objective of this chapper to demonstrate
a means by which such circuits can be analyzed and the appropriate syn-
thesis maps obtained. In order to'accomplish this goal, an example

problem will be studied and discussed.

T2
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Selection of a Network

Considerable attention has been given to the selection of a suit-
able network that would exemplify a complex system of sufficient rigor
to indicate whether the analysis method would hold for any conceivable
application. It is difficult to single out a given circuit for refer-
ence because such a selection would be arbitrary and subject to the
influence of personal opinion. The need for demonstrating the analy-
sis technique for fluid networks, however, made such a chéice necessary.
The circuit to be considered in this chapter was intuitively designed
and experimentally tested to secure a known operational circuit con-
figuration possessing a typical random légic characteristic. A con-
scientious effort was made to achieve maximum network simplification
for the eventual comparison of intuitive versus logic design methods.

.The final circuit configuration as experimentally tested is shown
in Fig. 7-1. It consists of two cylinders controlled by three-position,
spring centered, power control valves. The cylinders, by means of
appropriately -designed cams, actuated signal valves which emitted posi-
tion information type fluid signals to a control network, The control
network utilized these signals to control the sequential behavior of
the cylinders. The operational characteristics of the cylinders can
be described by the shorthand sequential cylinder notation discussed
in Chapter V. as A, B, B, A, B, A, A, B. This sequéntial pattern estab-
lished the need for memory eiements because operation B does not always

follow operation A and A does not always follow B, etc.
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General Circuit Equations

The logical anaiysis of an existing fluid network is initiated by
labeling the signals emitted by each control valve. The origin of all
signals actuating the control valves must be determined and appropri-
ately identified at each valve. The technique of labeling and iden-
tifying fluid signals is exhibited on the intuitive circuit diégram'
in Fig. 7-1. The signals E; and éa refer to the extension signals for
cylinders 1 and 2, respectively; likewise, signals R, and Ry are con-
cerned with the associated retraction signals. The Y signals are
assigned to all valves which could be considered as secondary circuit -
elements. The output signals to the cylinders are labelediusing the
conventional Z designations.

After all lines afe labeled and identified, general logic expres-
sions are written to descrige'the conditions under ;hich each valve
output will be obtained. Such equations can be derived by circuit in-
spection if the dperational characteristics of the valves are known.
Sufficient background was presented in Chapter VI to write these equa-
tions. The general logic expressions for the'in;uitive circuit are aé

follows:

Z1 = Ry(ys + E1)(yeRayzRy + yiR1YgE2) 7-1
Zp = yE3Ri(ys + Rz + y2 + Ry)(yg + E2 + y1 + Ry) ' T7-2
Zé = Ro(y; + E2)(ysEiYeRz + yiRiysRa) 73 -
Zy = y,ExRa(ys + Ey + ys + B2)(y1 + Ry + yg + Rz) T-b
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Yy = ygRoBz + yiE2 | 7-5
Y2 = yiEiBa(ys + R2) + ya(ys + Rz) 7-6
Y3 = yeRa(ys + Rz2) + ya(ys + ﬁa) : 7-7
Ye = ysRa(Ye + R2) + yi(ye * Ro) 7-8
Ys = y,EzEi(y2 + Ry) + ys(y2 + ﬁl) 7-9
Yg = yoRiE; t yeEi : 7-10
Y, = yzR1(Ry + y1) + y7(Ry + ¥1) 7-11
fh~' yaRi(y2 + Ry) + ya(y= + Ry) , T-12

Having obtained the general logic expressions for the circuit,
every means should be employed to reduce the number of variables and
literals in the equations. An obvious way of achieving this>goal is
through the complementary characteristics of the f1lip flops or four-
way valves, In other words, if a component possesses a dual trans-
mission characteristic whereby one output is pressurized while the
other is tanked, a literal and its complement can represent the asso-
ciated outputs. For the circuit in Fig., 7-1, the following complemen-

tary relations are established:

wy = EjR; and wy, = EjR,
wo = EoRo and v = ExRp
Y2 = ¥1 and Y2 = v
Y3 = Vs and Y3 = Vs
Ys = Ya and Ys = Ve

Y7 = Ys _and Y7 = Yy8
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The complementary relations are substituted in the general cir-

cuit equations to reduce the number of variables and permit the gen-

eral simplification of the equations. The simplification process and

the resulting logic relations for the secondary and output circuits

of the example problem are as follows:

Z,

Za =
since the term yaw;

Ze'

N
w
"

N
W
[}

Z‘H

since the term y,wo

24'

wy(ys + W1)(¥sWayawy + YaW1y,v2)

(Wiys + w1)(¥sWaya + Ya¥rva)

w1 (FsWayza:+ yayswz)

YaYsWiwz + Ya¥,Wive 7-13
yawawa(¥g + wa + y2 + wa)(yy + w2 + ya + wy)
satisfies the equation,

;'3"1‘ o T-1%
52(5’7»"‘ v2)(yaw1¥s¥a + YaWiysWwa)

‘(‘;2;'7 + w2)(yawa¥s T ¥2Wi¥s)

wa(yawiys + Ya¥iys)

Ya¥gWivz + Yays¥iva 7-15

Yowowa(yas + wy + yg + wa)(y2 + wi + y5 + wa2)

satisfies the equation,

Y7¥2 T7-16
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Yo = yawawa(ys + w2) + ya(ys + w2)

Y2 = yawaways + Yawavz + ya(¥s t+ w2)

Yz = yawawz + ya(ys + w2) T7-17

Yo = Fewalis + va) + va(Fs + v2)

Y3 = §5‘T’2 + Ys(;'s + wp)

Y3 = Ygwa + yawz + Ya¥s 7-18

Y5 = ypwawi(yz + wi) + yg(y2 + w1)

Ys = yp¥aWawy + Yowawy + ¥g(ya + wi)

Y = yywawy ¥+ Ye¥2 + Ys¥a 7-19
Y, = yawy(wy + y2) + yo(wy + y2)

Y, = yawy + yp (w1 + y2)

Y, = yawy + ?7“1 + yayqy T-20

Analysis Diagrams

The general specifications of the circuit are sufficient to es-
tablish the primitive flow table for the system. The logic implied
by this flow table must be satisfied regardless of the uethod used to
.synthesize the circuit. The primitive flow table for the intuitive

circuit is shown in Tabie,?-l.
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TABLE 7-1

PRIMITIVE FLOW.TABLE FOR INTUITIVELY DESIGNED.CIRCUIT

Operation W) W2

00 or 1 10 2125 23 2,
1 A @ 2l 1000
2 B ' 3 0010
3 B ® L c 001
L A 5 01 oo
5 B ©) 6 0010
6 A ® ( 1000
7 A 8 1 @ 0100
8 B 1 ® 000 1

** The ‘secondary state values needed in conjunction with the indi;uu
cated input states to produce the desired output states shown on the
primitive flow table must be evaluated, The secondary states corres-
ponding to the stable states are determined with the aid of the general
output equations already derived. The actual procedure can be demon-
strated by considering a given output. requirement exhibited on the
primitive flow table and examine the appropriate output equations to
establish the necessary secondary values. By referring to the primitive
flow table (Table 7-1), operation 1 (extension stroke of A) requires
that Z, = 1; therefore, it can be seen from the Z, equation (Eq. 7-13)
that since wy = O and wo = O then y> = 1 and yg = O before Z; = 1.

Similarly, for operation 2 (extension of B) to occur, Zz = 1 and Eq.

’
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7-15 must be satisfied; therefore, since wy = 1 and wp = O, then y3 = 1
and ys = 0. This evaluation procesé can be repeated until the condi%
tions for each operation have been determined. The results of this
process arereco;ded on an intermediate sequence table as illustrated

in Table T-2.
TABLE T-2

INTERMEDIATE SEQUENCE TABLE FOR INTUITIVE CIRCUIT

JOperation Inputs < - Secondary Outputs
Wy W2 Y2 Y3 Y Yo | 22 22 Zé Z,
1 A olo 1 0 1 0 0 0
2 B 10 i 0 0 0 1 0
3 B 1|1 1 o] of o 1
L A 1]o0 0 0 1 0 0
5 B ofo g 1 0 0 1 0
6 A 0|1 0 0 1 0 0 0
7 A 1]1 0 0 1 0 0
8 B| o1 1JL o | o o 1

.

The binary values of the secondary states that: are missing in the
inﬁerﬁediate sequencé'tablé are determined by evaluating each second-
ary circuit equation., For example, it can be confirmed by Eq. T7-17
that Y, = 1 in operation 2 because y» was transmitting in the pre-
?ious operation and Yg = O. Siﬁilarly, in operatién 3, Y2 = 1 because

wo> = 1 and &2 was transmitting in the previous operation. However, in
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operation i, the value of yg must be determined before a decision can
be made concerning the value of y> because only yg = O can continue
the yo transmission with the existing input states. The determina-
tion of the missing secondary.state values by-evaluating the general
circuit equations is a critical phase of the circuit analysis and can
be deduced by the application of the above procedure. After the
values have been determined,‘they_are eﬁtered in their corresponding -
locations in the intermediate sequence table to form the final sequence
table for the circuit. The final sequence table for the intuitive

circuit is shown in Table 7-3.
TABLE T-3

FINAL SEQUENCE TABLE FOR INTUITIVE CIRCUIT

Inputs Sécondary Outputs
Operation |w, wa | Yo Ya Y5 Y, | Zi Zo Zs  Z,
1 A o |o 1 1 | o 1 1 0 0 0
P B 1 }o 1 1 0 1 0 0 1 0
3 B 1 |1 1 1 1 1 0 0 0 1
ly A 1 |o 0 0 1 1 0 1 0 0
5 B o |o 0 0 1 0 0 0 1 0
6 A o |1 0 0 1 0 1 0 0 0
7 A 1|1 1 0 1 0 0 1 0 0
8 B 0 |1 1 0 0 1 0 0 0 1

Based on the input and secondary state information contained in
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the final sequence table, an excitation map for the circuit can be
drawn., The excitation map for the intuitively designed circuit must
be a six variable type because of the four secondary and“:two input
variables. The composite excitation map is illustrated in Fig. 7-2.
' The stable and unstable operational numbers are entered with their

corresponding excitation entry to provide -continuity.
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—

Fig. 7-2. Excitation Map for Intuitively Designed Circuit,
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Possessing the excitation map for the intuitively designed circuit
permits the simplest secondary circuit exp;essions to be determined.
It should be emphasized that any simplification éf equations obtained
from the excitation map,-which is derived from the -analysis method
being discussed, is completely dependent upon the existing operational
pattern displayed on the map. In the logic synthesis method, the map
pattern is optimized by the merging technique described in Chapter V.
The simplest map equations for the secondary circuits can be written
using the Karnaugh technique described in Appendix B, For the excita-
tion map shown in Fig. 7-2, the simplest expressions are identical to
the secondary equations already derived except for Y. The map indi—

cates that the simplest Yo equation is
Yz = yg + wyva t+ yawa 7-21

and not the expression given by Eq. T7-17. However, the simplest equa-
tion does not always yield the simplest circuit. In the case of Eq.
7-21, a four-way, pilot-operated, defent valve is still required as

shown in Fig. T-3.

YZG?—» I—bYZ

LD_E_leT

— —— — —

i 5,

Fig. 7-3. Circuit Required to Satisfy Eq. T-21.

It can be shown that the circuit configurations required to produce
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the signal §5 + wywa in Fig. 7-3 is comparable to that originally em-
ployed to give the signals ysﬁa'and Wayg; therefore, the secondary
circuit analysis did not reveal any profitable modifications in the
secondary circuit, A better understanding of the operation of the cir-
cuit is provided, however, because of the insight given by the excita-
tion map. For example, the term ysys in the Y3 equation (Eq. 7-18) and
the term yoy, in the Y, relation (Eq. 7-20) are hazard eliminating fac-
tors. The need for these factors was intuitively recognized without
realizing their actual logic significance, In the eveﬁt the: circuit
had not performed experimentally, this analysis qould havé provided
the answer for hazard elimination and aiso a thoréugﬁ'évaluation
whether the desired logic specifications were satisfied.

The final step in the analysis is to develop the output map for
the system. Such a map can be formed from the information contained
in the final sequence table. Again the stable and ﬁnétable operational
numbers are entered in the map with their corresponding output state
values. The output state values associated with a given stable state
are fixed; however, the values corresponding to the unstable states .
usually contain optional terms. For example, referring to the primi-
tive flow table (Table 7-1) consider the operation involved in shift-
ing to stable state 3 from stable state 2. The values of Z; and Z_
remain fixed while the values of Zg and Z, are changed; therefore, the
actual values of Zz and Z, are arbitrary at unstable state 3. The
arbitrary or optional yalues are marked on the output map in order to
permit simplification of the output equations. The composite output

map for the intuitively designed circuit is shown in Fig. T7-4.
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Fig. 7-4. Composite Dutput Map for Intuitively Designed Circuit

. An examination of the output map (Fig. T=k) for the intuitively
_designed circuit indicates that no hazards are involved in the output
circuit equations. The equations for Zp and Z, are optimum for the

output map configuration. According to the output map, the simplest



Z, equation is
Zy = waya + Wiys 7-22

This equation contains half the number of literals involved in the
original equation (Eq. 7-13) and represents a significant reduction.
However, an inspection of the signals generated by the existing sec-
ondary circuit reveals that a major chanée of the entire circuit would
be required to implement Eq, 7-22 with some reservations as to the
over-all economy. The simplest Z3 equation which can be deduced from

the output map is
Zz = wyys + WaWaya t way, T-23

This equation contains only one less literal than the original Z5 equa-
tion (Eq. 7-15) and adds an extra OR term (Woy,) to eliminate a poten-
tial hazard. No apparent advantage is gained by using this equation
in preference to the originél circuit equation.

The analysis of the. intuitively designed circuit has shown that
the circuit is free of hazards and would be an operational configura-
tion. The experimental verification of this circuit revealed that the
circuit would operate over the full capacity range of the fluid power
stand (variable up to a maximum éressure and flow rate of 1500 psi and
20 gpm, respectively). Every effort was made during the experimental
testing to confuse the incorporated logic of the system by stopping
and starting the circuit. at various points in its cycle, but the cir-
cuit would always continue the proper action even when left idle for
long periods of time. The physical arrangement of the circuit compo-

nents is shown in Fig. 7-5.



Fig. 7-5. Physical Arrangement of Intuitively Designed Circuit,




CHAPTER VIII
VERIFICATION OF SYNTHESIS METHOD .

The logic synthesis metyéglgggwglgid control networks presented
in this thesis offers a means of extending the normal reagoning power
of an engineer. It enables the designer to pursue a synthesis problem
in a logical and orderly manner with a minimum amount of dependence
on_creativity. These claims are open for criticism unless a rigorous
demonstration can be evidenced of the power and practicalify_of this
'method. It is the purpose of this chapter to justify these-claims and
permit the general appraisal of the method.

Engineers who haye designed complicated fluid systems can appre-
ciate the problems involved in the synthesis of sequential type circuits,
The design of these circuits poses a tremendous challenge that is nbt
always accepted by fluid power engineers. It is therefore important
that the demonstration of the synthesis method presented herein be of
a sequential logic type. Since the logic implications of the intuitive-
ly designed circuit presented in Chapteér VII satisfies all major require-
ments of a complex sequential circuit, this two-cylinder system will be
synthesized and studied.

An additional benefit can be realized by employing the lbgic speci-
fications of the intuitively designed circuit in 'a synthesis study

88
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because a comparison can be drawn of the final network conﬁigurations.
It was mentioned in Chapter VII that considerable attention was glven
to the simplification of the circuit for the purpose of obtaining the
most optimum circuit which could be intuitively designed. A direct
comparison between the intuitively designed circuit and the logically
designed circuit should reveal some measure of the degree of optimiza-

tion achieved.

Circuit Synthesis fnitiation

The specifications for the seqﬁential circuit to be synthesized
are established by the primitive flow table in Table 7-1. Using the
synthesis te;hnique presented .in Chapter V, thé circuit equations for
the operational netwofk will be derived. No redundant states are evi-
dent in the flow table because two stable states having the same out-
put conditions do not exist in the same column. ﬁased on the rules
for merging two rows of a flow table, a table of possible mergers can
be completed as shown in Table B8-1. | |

| A merger diagram can be drawn based on the table of possible mer-
gers and the procedure given in Chapter V., This diagram which displays
graphically the merging characteristics of the rows of the primitive
flow table permits a visual rccognition of the appropriéte row combina-~
tions. The merger diagram for the sequential problem is an array of
eight numbers and is illustrated in Fig. 8-1.

A merger camﬁination must comprise numbers.in the merger diagram
which are linked with each and every other number in the combination.

The diagram shown-in Fig. 8-1, displays a pattern that requires a
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TABLE 8-1

TABLE OF POSSIBLE MERGERS FOR SEQUENTIAL FROBLEM

ROW WITH ROW
1 2
1 6
1 T
1 8
2 b
2 8
3 3
3 pl
3 8
L 5
L 6
b 7
5 6
T 8

Fig, 8-1, Merger Diagram for the Sequential Problem

minimum of four rows in the hergedﬂflow table. " There-are eight differ-
ent merging combinations possible to achieve the four row table., These
.combinations are shown in Table 8-2. In order to obtain the optimum
circuit from a four row merged flow table, each possible combination

which would produce such a table requires consideration. The circuit
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TABLE 8-2

. TABLE OF MERGERS FOR SEQUENTIAL PROBLEM

1. 1-2 3 -4 _5-_6 7-8
é. 1 -7 2-8 3 -4 5-6
5[ 1-7 2 -8 3-5 4 -6
| 1-6 2-8 | 3-5 b-17
5.] 1-6 2 -5 3-8 b -7
6. 1-7-8 2 3-4-5 6

7./1-2-8 3 b -5-6 7

8./!1-7-8 2 3 4 -5 -6

equations which are derived from the synthesis diagrams are different
for each merged combination. An analysis will be presented for each
possible merging combination to obtain the most optimum circuit con-
figuration. Also, an appyaisal method will be introduced for the pur-
pose of comparing the circuit equations for detefmining the relative

complexity of the various circuits,

Merger No. 1
The merged flow table for the first combination of row mergers
given in Table 8-2 is shown in Table 8-3. From Table 8-5, it can be
observed that no non-adjacent row transitions occui; therefore, using
the procedure given in Chapter V, an excitation map can be drawn as
shown in Fig, 8-2. The output map for the first merger, presented in

Fig. 8-3, is based on the secondary assignments or Fig. 8-2 and the
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TABLE 8-3

MERGED FLOW TABLE NO. 1 FOR SEQUENTIAL PROBLEM
Wy W2

00 0l 11

af @ 3 ®
| ®

®@
Q

Wiy
TR 00 01 b e)
00| 00 | 0! 00
01 I Ol Ol
|| Il 1 | O
10| 00 1 O o)

Fig. B-2. Excitation Map No. 1 for Sequential Problem

W, We - _

: 00 0| | | 10
38’|ooo oo--[(oo010
ol|lo--0 oooi|oio0o0

1100 10[1000|=-=00
10[-00-|0001|0100

Fig. 8-3. Composite>0utput:Map No. 1l:for Sequential Problem
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output states given in Table T-1 for the corresponding stable state
numbers.
The secondary and output circuit equations are obtained from Figs.
8-2 and 8-3, respectively, using the Karnaugh map reading technique
presented in Appendix B, The following equations are the network re-

lations in factored form.and contain the appropriate hazard eliminat-

-ing terms.

Yy = yawy + w2 8-1
Yo = yawa + ya(wy + ¥1) 8-2
Zy = wi(¥ya¥2 + yoWz + yiwa) 8-3
Zz = wi(yy + yaw2) . 8-4
23 = wa(y1¥2 + yaw1 + yiw1) ‘ 8-5

2y = wa(yawy + Yiy2 + ¥iw1) 8-6

The diagrams and equaﬁions for the remaining merger combinations
are obtained in the same manner as given for Merger No. 1. Therefore,
no- further detailed explanation is given concerning the resulting dia-

gfams and equations,

) WW Mgrger No. 2

m 00" 01 || 1 O
00| 00 | o1 00 01
ot| oo | o1 || 0l
vt [ 1o | | | I
1 O | O | O 00 .

Fig. 8-4. Excitation Map No. 3 for Sequential Problem
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TABLE 80k

MERGED FLOW TABLE NO, 2 FOR SEQUENTIAL PROBLEM
Wy ¥a
00 o1 11 10
| © 8 @
b 1 3
c 5 | ©)
dl O ® 7

%‘62 (Ol | |

O|®| »

| O

Yi Yo

OO0O|1000|0O-0~-|{0100|-0-0

Ol |-00-|0001I|OO0O—-—-|0010

11 ]o--0 “loootjo100

101001 0|1000}--00

Fig. 8-5. Composite Output Map No. 2 for Sequential Problem

Yy = yawwp + ya(wi + y2) 8-7
Yo = wywp + yawywe + ya(wy + wa) 8-8
2y = yiyaWo + YiYoWz + yi¥awy + yawiwa 8-9
Za = y1yaWs + WiWaY2 + yi1¥owy + yawawe 8-10
Zg = wo(yiyz + yava + yowi) 8-11
Zy = YoWo 8-12
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Merger No. 3
TABLE 8-5

MERGED FLOW TABLE NO. 3 FOR SEQUENTIAL PROBLEM

Wy Wp
00 ol 11 10
a J@) 8 @ -
b 1 ® | 3 ®
c | G 6 ® b
a [ s © 7 ®
‘88‘ %lg" Ol || | O
00 | o1 | oo | ol
Ol OC Ol b Ol
1| I | O I 1 I O
o[ r1 | to | oo | 10
Fig. 8-6. Excitation Map No. 3 for Sequential Problem
. B8 o || Ko
2)'31 f000|0O-0-|010O0 -O-Q
Ol |-00—-|000 1|00 —- OOIQ
1 1 loo1o[-o-0looo1]|o-0-
1010--0J]1000|--00]|0100

Fig. 8-7. Composite Output Map No. 3 for Sequential Problem
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Yy = yowawp + yi(wy + wyawa + y2)
Yo = éannOt eliminate haczard

Z, = cannot eliminate hazard

Zo = wi(yawz + ¥152)

Z3 = wa(yiyz + yaw,)

Z4 = wa(yiya + yawi)

Merger No. L.

TABLE 8-6

MERGED FLOW TABLE NO. 4 FOR SEQUENTIAL PROBLEM

Wy W2
00 or 11 10
a @ ® T 2
b 1 ® 3 ®
- | ® 6 G y
d | s 8 ) ®

An inspection of Table 8-6 reveals that two transitions occur

-8-13

8-14

8-15

8-16

8f17

8-18

between non-adjacent rows. Also, no arrangement of the rows can be

made to eliminate the transitions. Therefore, this merger combination

would rnot yield an appropriate solution to the sequential problem and

will not be further considered.
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Merger No. 5

TABLE 8-7

MERGED FLOW.TABLE NO. 5 FOR SEQUENTIAL PROBLEM
Wy Wa

0} 11 10

2

00
® 7 |
b |G 6 3 ®
1
5

.® ® L
8 Q) ®

Merger-No. 5 is discarded for the same transition problem exist-

N

ing in Merger-No. 4. No suitable rearrangement of rows is possible.

Merger No. 6

TABLE 8-8

MERGED FLOW.TABLE NO. 6 FOR SEQUENTIAL PROBLEM

Wy Wa
00 | 0l 11 10
+ | O ©)
b 3 @
c |® |6 ® ®
d ® 7
Yy = yawz + ya(yz2 + w,) | - 8-19 |

Y2 = Wl“ig + YQ(WJ_ + 0-72) 8‘20
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Y thp 20 0| | | O
00| 00 | oo | oo | o1
0| 11 | ol
il v o | K
10 10 | 00
Fig. 8-8. Excitation Map No. 6 for Sequential Problem

| 30" Ol . 1 0
%gloooooololQo-QFQ
o | 0o--[o0io0
1 1Joo10[-0-0]000OI[0100
10 1000|=-00

Fig. 8-9. Composite Output Map No. 6 for Sequential Problem
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2y = wy(y1y2 + yavwa)

Zz = wy(yawa + yiwa + yiya),

23 = wa(Jaya + yoW1)

Ze = walyawy + Javy * Y1y=2)

8-21

8-22

8-23

© 8-2l
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Merger No. 7

TABLE 8-9

MERGED FLOW TABLE NO. 7 FOR SEQUENTIAL PROBLEM

Wy W2

.00 o1 11 10
a| @ ® @ 2
b 3 @

1| @

® 7

Yl %%’_ou |1 1 O
00 00 00 O |
olyf ° |1 0l
|1 | | | | | O
1 O | O 10 00 10
Fig. 8-10. Excitation Map No. 7 for Sequential Problem
Wy
hy OO0 Ol |1 1 0
OO0 |1 000|000 1|01 00Of(=-0-0
01 00--]0010
I 000 1|0 -0~
10 OOIOLQOOf—OOOIOO

Fig., 8-11.

Composite Output Map No. 7 for Sequential Problem
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Yy = yawz + yi(wy + w2) . 8-25
Yo = yywave + ya(wa + ¥;) 8-26
Zy = wy(wayy + ways + y2) 8-27
22 = wy(way2 + y1y2) 8-28
Zg = wa(yiy2 + yawy + y2w1) 8-29
Zy = wa(ya + yawy) | 8-30

Merger No. 8

TABLE 8-10

MERGED FLOW TABLE NO. 8 FOR SEQUENTIAL PROBLEM

Wi

W2

00

0l

11

a | @ 3 | @
b @ N
< | ® © 7 ®
d 8 @
™ %9%9‘ 01 |1 | O
00 00 00 Ol 00
0| 01l |
|1 I | e ||
1 O 00 1 O

Fig. 8-120

Excitation Map No. 8 for Sequential Problem
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8¢ o) || 1 O
3&|000000|00—-00|0
01 0001{0-0-
l 1{loO10[1l 0O00O|--00|0100
| O 0-0-|0100

Fig. 8-13. Composite Output Map No. 8 for Sequential Problem

Yy = yawz + ya(yz + wi) 8-31
Y2 = yawawaz + ya(wa + Wy + ¥1) 8-32
Zy = wi(yzvz + 12 + yiy2) 8-33
Zz = w1y, 8-3k
Zs.‘ wa(yiwy + y2wi + ¥1¥2) 8-35
Z, = Wayy - 8-36

Appraisal of Circuit Equations

In order to appraise the relative compléxitonf the circuits repre-
sented by the various combinations of equatioﬁs, a criteria must be es-
tablished that would reflect the resulting circuit complexity. The
form of the secondary equations for each merging combination is charac-
teristic of a detent valve; therefore, two four-way, detent valves are
needed to.satisfy the secondary memory action in each combination. The
. Z, and Zp output equations as well as the Zg and.Z4'equations for each:

combination are implemented by three-position, four-way, spring-centered,
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block-centered, pilot-operated valves, Therefore, the most probable
basis for appraising the circuit equations would be on the number of
AND and OR valves required to generate the proper signals to operate
the secondary and output valves,

Since the relative cost of an AND function component is comparable
to that of the OR function component, no consideration need be given to
the frequency of occurrence of one over the other. Furthermore, ft
can be rightfully assumed that each indication in the cir;uit equation
of an AND or OR function requires the use of only one valve. In other
wofds, no advantage can be given to operational patterns in éhg equa-
tions. The va;idity of this statement can be demonstrated by.consider-

ing the following equation:
T = a;(apgby + agbzc; + apca) 8-37

Equation 8-37 describes a circuit having seven logic operations --
either AND or OR. This equation can be illustrated by function blocks
as shown in Fig. 8-14, Sincé the perfect fluid logic elements are bi-
nary -- a function of only two signals -- a logic block is required
for éach 6peration.

The concept of needing a logic block or valve for each operation
indicated inra circuit equation can be used to establish a quantitative
basis for appraising the complexity of an equation. Thus, Eq. 8-37
would have a complexity value of seven, It is important in comparing
two equations on the complexity value basis that both equations have
equivalent fﬁrms (nonffactored,.uni-factored, or multi-factored forms).

Special consideration was given to the form of the equations derived
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AND

Qs —» | }_
o, AND @

AN E> T

C—» ANDI—»

Qp — ,"’
AND o,

Fig. 8-14, Logic Representation for Eq. 8-37

for the sequential circuit problém in order that a direct comparison
.for each group of equations could be made. An examination of the sec-
ondary and output equations for each merger reveals the following com-

plexity values for the sequential circuit problem:

28

CV,=3+L4L+6+3+6+6

CVo=5+ 7T+ 11+ 11+6+ 1=1L4l

«CV3 = hazard

CV, = transitions
CVg = transitions
CVg =4+ Lb+hb+6+4+6=28
CVp =3+5+5+L+6+3=26

CV =h+6+6+1+6+1=24
It should be recognized that the complexity value of a network
represents the number of AND and OR operations required to implement

the logic of the system. Each AND and OR operation indicated in the
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network equations means that a valve must be used. Therefore, in order
to obtain the simplest network of switching valves, the circuit combi-
nation having the lowest complexity value is the best. To further em-
phasize this concept, an inspection of the complexity values for the
various merger combinations reveals some remarkable differences. The
second merger’combination has a network complexity value of 41 which
infers that 41 AND and OR valves are required to provide the appropriate
.signals to the output and secondary systems. In comparison, the ei:h;h
merger combination only requires 24 AND and OR valves to facilitate the
proper signal emissions, The circuit configuration: for Merger No. 8
is shown in Fig, 8-15.

The complexity value must be considered. as representing the maxi-
mum number of AND and OR components required to implement the network.
In many cases, a significant reduction of the circuit components can be
accomplished by employing valve interpretation techniques and taking
the maximum advantage of multiple signalirequirements. An example of
vaive interpretation for simplification purposes can be seen in Fig,
8-15 where two spring-offset valves are employed in the secondary sig-
nal circuit. The use of these valves eliminated four AND valves from
the system and provided an independent tanking line for the secondary
~valves, The multiple use of a generated signal for simplifying a cir-
cuit can be observed in the Y, secondary signal circuit. According to
the characteristics of detent valves presented in Chapter VI, the Y,
relation (Eq. 8-32) is interpreted as shown in Fig. 8-16. Thus, the
signallwlwg is needed to actuate both ends of the valve. By eliminating

duplication of this signal, the circuit is reduced by one AND valve.
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GO

W

Fig. 8-15. Circuit Configuration for Merger No. 8 Sequential Problem,



106
There are undoubtedly several ﬁlaces'in the circuit (Fig. 8-15) where
network reduction could be- achieved; however, the complete optimiza-

tion of the logic circuit was not the objective of this presentation.

Y. — Y.
o XE—;ﬂ

— ) Wy (D2

Qlewz —
P

Fig. 8-16. The Yo Secondary Circuit for Merger No. 8

Since the circuit equations for the intuitively designed problem
analyzed.in Chapter VII are presented in the same form as the sequential
“circuit equations, éhe complexity value of the equations should be of
inter;ét. The complexity value of Egs. 7-13, 7-14, T7-15, 7-16, 7;17,

7-18, 7-19, and 7-20 is
CV=T7+1+7+1+6+5+6+5=38

Based on the cémplexity values of thevintuitively and logically de-
signed circuit equations, a ;espectable simplification of the control
network can be realized. Comparing the circuit configuration for
Merger No. 8 (Fig. 8-15) with that for the intuitively designed circuit
-(Fig, 7-1) does not indicate any major difference in simplicity. It
should be recoé;ized, however, that Fig., 7-1 represents a highly opti-
mized circuiq in which maximum advantage was taken of all signals (note
that pump pressure is not applied to tﬁe secondary and output signal

circuits)._ In contrast, Fig. 8-15 represents a circuit that was
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obtained directly from the logic synthesis and interpretation method.
It is highly probable that the circuit in Fig. 8-15 can be reduced
substantially whereas it is highly unlikely that the initutively de-
signed circuit can be reduced in any fashion.

It should be emphasized that this chapter has demonstrated that a
complicated sequential circuit can be synthesized logically and in its
basic form can be expected to compare favorably with an intuitively de-
signed circuit. Another aspect‘which has not been emphasized is the
time element involved in the design procedure. Several weeks are some-
times required to intuitively design sequential fluid circuits whereas
equivalent circﬁits can be logically synthesized in a few hours. Fur-
thermore, a logic solution can consider all possible problems which
may create operational difficulties and eliminate their effects before

the circuit is fabricated.

Experimental Verification

The circuit shown in Fig, 3715, together with the cylinders and
signal systems illustrated in Fig. 7-1, was fabricated and the logic
and operational characteristics experimentally verified. The physical
arrangement of the circuit is shown in Fig. 8-17. Back-pressure load
valves were installed in the cyiinder power lines to simulate fully

loaded cylinder rod conditions. System pressure was varied to a maxi-
mum of 1600 psi, and the flow rate ranged from 2 gpﬁ to 18 gpm. The
logic network performed perfectly from the start and continued to co-
vordinate the movements of the cylinder rods properly throughout the
test program. No external action éould confuse the incorporated logic

of the circuit short of blocking signal lines.
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CHAPTER IX
CONCLUSIONS

The ceontrol of-machines by fluid power syétems has become an im-
portant facet of modern control technology. The field of fluid servo-
mechanisms has been one of the most rapidly growing fields of controls
engineering and haé already aéhieved a high degree of sophistication.

In contrast, the design and analysis of fluid switching networks has
not experienced any major growth; and its presant application is still
dependent upon the ingenuity of the enginzer. This dissertation is con-
cerned with an investigation of logic metﬂods for fluid switching cir-
cuit synthesis and analysis which should help alleviate the recognized
inadgquacy of current intuitive procedures,‘

Fluid control netwcrks incorporating fluid switching circuits have
been univarsally applied in many machine areas such as mobile equipment,
machine tools, and automatic transfer machines. New applications for
digital fluid circuits are constancly being reported. The recent inter-
* jection of fluid amplifiers as potential logic glements in fluid net-
works has created industry-wide interest in fluid digital systems and
fluid computer applicatioms.

The primary goal in the selection of a specific control system is
to achieve many of the advantages inherent to fluid systems. Some of

100
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these advantages are as follows:
1. Component reliability and long life
2. Low heat generation
3. High signal amplification
4. Insensitivity to vibrational effects
5. Insensitivity to extremes of temperature
6. Versatile output power and motion.

In order to realize the advantéges offered by fluid systems in-
volving fluid switching circuits, a non-intuitive method must be ad-
vanced for their synthesis and analysis. Such a method has not been
reported, and its absence is evidenced by the relatively simple net-
works currently in use., A general logic method would permit the syn-
thesis of complex fluid networks possessing "decision-making" ability
and would provide the means of extending the reasoning power of the
design engineer.

This dissertation presents a logic method for the synthesié and
analysis of fluid switching networks which satisfies the requirements
of a universal design method. The contributions to the fluid power
engineering field resulting from this study are as follows:

1. Recognition of the logic analogy existing between elec-
trical switching elements and fluid switching elements.

2. A fluid transmission concept was introduced which pro-
vided the means needed to establish a practical correla-
tion between electrical and fluid switching theory.

3. A concept of fluid complementation was proposed which
provided the means of recognizing and describing the
fundamental logic characteristics of non-classical fluid
components. '
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k., A fundamental basis was established and demonstrated for
interpreting all types of fluid switching components.

5. A composite operational chart was developed to verify the
logic and operational behavior of fluid networks by re-
vealing the contributions of each part of the circuit
equations,

6. An analysis method was developed which would yield the
logic equations and the characteristic synthesis maps for
an existing network.

7. An appraisal method was introduced to give a quantitative
comparison of equivalent circuit simplicity.

To the author's knowledge, this dissertation has demonstrated for
the first time that a fluid network involving sequential operations
could be synthesized and analyzed logically. The method proposed for
analytically interpreting and implementing network equations has satis-
fied the requirements of a general design method.

The objectives of this investigation have been fulfilled to a
degree far exceeding the initial expectations of the author. It is
firmly believed that this study will incite fluid power engineers to
pursue the logic synthesis of fluid circuits in many advanced areas.
Such action will guarantee the introduction of many novel devices in

the near future,
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APPENDIX A
POSTULATES AND THEOREMS OF BOOLEAN ALGEBRA

The Postulates of Boolean algebra are simple, independent, and
consistent statements which relate the concepts of binary algebraic

logic. They can be listed as follows:

P-1(a) X=0 ifX=1 (b) X=1 ifX#0
P-2 (a) 1-1=1 (b) o+o0=0

P-3 (a) 0-0=0 ) (b) 1+ 1=1

P-b (a) 0.1=1.0=0 (b) 1+0=0+1=1
P5(a) 1I=0 - () 0=1

The theorems of Boolean algebra are deduced from the postulates
and show the relationshiﬁs among‘the concepts, The theorems establish
the genefal rules for equivalent expressions involving variables. The
theorems are listed in groups of the number of variables involved.

Single Variable Theorems

L]
[

T-1(a) 0-X=0 (b) 1+X

T-2 (a) 1- X=X (b) o+X=X
T-3 (a) XX = X - (b) X+X=X
T-4 (a) xi-d (b) . X+X=1
T-5 (a) (X) = X (b) (%) =X
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Two Variable'Theorems

T-6 (a) XY + ¥X (b) X+Y.-Y+X
T-7 (a) X+ XY =X (b) X(X+Y)=X
T-8 (a) X+ Xy =X+Y (b) X(X + Y) = XY
T-9 (a) xr+x'§=x‘ (b) (X+Y) (X+%) =X

Three Variable Thgorems

T-10 (a) XYZ = X(Y2) = (XY)Z (b) X+Y+Z = X+(¥42) = (X+Y)+2
T-11 (a) XY + XZ = X(v42) (b) (X+Y)(X42) = X + YZ

T-12 (a) XYZ = X+ Y+ Z (b) X+¥+2 =X Y Z

T-15 (a) X +EZ =X + W (b) (X42)(R#v42) = (%+2)(¥+2)

T-14 (a) XY + Y2 + XZ = XY + X2 (b) (X+Y)(¥#2)(X+2) = (X+Y)(X+2)

T-15 (a) XY + X2 = (X+2)(X+Y)  (b) (X+¥)(F+zZ) = Xz + Xy

The posﬁulates and theorems which have been presented were listed
as dual relations; in other words, Theorem T-6 (b) is the dual of
Theorem T-6 (a). The dual of a Boolean expression is obtained by chang-
ing all AND's to OR's, changing all O's to 1's and vice versa. Another
form of a Boolean expression is the complementary expression. The com-

kplemént of a Boolean expression always equals one when the expression
equals zero. The complement is obtained in the same manner as the dual
except that each literal is complémented; for example, consider the

._expression XY + XYZ. The dual is (X+¥)(X+Y+Z); whereas its complement
is (X+Y)(X+¥42). |

The theorems of Boolean algebra can be proved from the postulates
by using the method of "perfect induction.'" This method consists of

listing all combination of values the variables of the theorem .could
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possess and making substitutions of these values in both sides of the
relation. If the value of both sides is the séme after each substitu-
tion, then the theorem is valid. An example of the method is illus-

trated in Table A-1 using Theorem T-15 (a).
TABLE A-1

PROOF OF THEOREM T-15 (a)

Variables Left Side Right Side
X Y z XYHXZ (X+2 ) (R+Y)
0 0 o© 0-0+ 1.0=0 (o+0)(14+0) = 0
o 0 1 0-0+ 1l.1=1 (o+1)(1+0) = 1
o 1 o 0'l+ 1.0=0 (0+0)(1+1) = 0
o 1 1 0-1+1.1=1 (0+1)(1#+1) = 1
1 o o 1.0+ 0-0=0 (1+0)(0t0) = 0
1 o 1 1.0+ 0-1=0 (1+1)(0t0) = 0
1 1 o 1.1+ 0.0=1 (1+0)(otl) = 1

1 1 1 1-'1+0-1=1 (H1)(otl) = 1

The vélidity of a proposed equivalence, includihg theorems, can
be ascertained by circuit reasoning., To illustrate this process, the-
circuits described by both sides of the expression of Theorem T-15 (a)
are‘developéd;as.shown'in”Fig. A-1, 7$1nce}the>opéré£iﬁé characteristics
of both circuits arevidentical,'the validity of the theorem can be

accepted.
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(b) Right Side of Expression

Fig. A-1. Circuit Configuration for Theorem T-15 (a)
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APPENDIX B
THE KARNAUGH MAP

The Karnaugh map technique, developed by Karnaugh (28), pravides
a means‘of representing and simplifying switching circuit functions by
applyiné elementary geometrical concepts which are related to the alge-
braic properties‘gf the equations. This simp1e~and rapid technique
minimizes the number of appearances of algebraic'variables in the asso-
ciated equation. Aithough the theorems of Boolean algebra can be-rig-
orously applied to simplify binary relations, it is a tedious procedure
for-all but the most trivial cases.

The Karnaugh Map technique for generating near-minimal forms of
algebraic equations depends upon the recognition of certéin basic pat-
terms of map entries. The map, itself, must contain a sufficient number
of rows and columns to provide appropriately a map location for each of
the 2" possible combinations of variable values., A distinguishing fea-
ture of this map.is the use of the reflected binary (Gray code) code
for labeling the rows and columns. The blocks composing the map created
by the intersections of the rows and colums are called "cells." The
basic patterns displayed by cells containing entries are called "sub-
cubes." More specifically, a subcube is a set of cells possessing aﬁ
adjacency relation. Such a relation can only occur when one or more of
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the variables defining the cells of the subcube have constant values.

A Karnaugh map is concerned basically with algebraic equations
having a two-stage form (the sum of products). A given equation is
satisfied (equal to 1) when the values of the variables comply with
the requirements of any product (AND) group in the equation. A specif-
ic entry in a cell of the map prescribes the combination of variables
required to give one solution to the equation. Hence, a (1) is entered
in a cell that describes the proper values of the variables needed by
a particular product group to yield a solution,

The technique of making map entries can be demonstrated by consid-

ering the equation (T-1lka) given by
A=XY+ YZ + R : B-1

This equation is satisfied by the variable combination X AND Y, OR Y
AND Z, OR NOT X AND Z, Three variables are involved; therefore, the
‘Karnaugh map can be illustrated as shown in Fig. B-1. A (1) is entered
in the cell or cells describing each product term. Therefore, for the
term XY, a (1) is entered in the cell or cells of row X = 1 where Y = 1.
The appropriate entries for the terms YZ and %2 are also inserted to

complete the map.

O X

Fig. B-1l. Karnaugh Mab for Eq. B-1
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Interpreting the Karnzugh map to obtain near-minimal expressions
requires the recognition of optimum subcﬁbe patterns, The simplest
equations are normally obtained by using the largest subcubes. The
expression required to locate a single cell involves every variable
on the map; whereas a two-cell subcube eliminates one of the variables.
Likewise, a four-cell subcube reduces the describing variables by two.
and an eight-cell eliminates the three variables. This subcube concept
for elimiﬁating the number of describing variables can be demonstrated
by Fig. B-2, The equation representing the map requires a four vari-
able, a three variable, and a two variable product term to include the
single cell, the two-cell subcube, and the four-cell subcube, respec-

tively. The equation exhibited by Fig. - B-2 1is

Y-abzafa5c+§d B-2
88 o111 1o

3 AR
\_|

Ol
o T TG D

Fig. B-2. Karnaugh Map for Eq. B-2

The map in Fig. B-1 contains two subcubes which can be described
by the equation

A=XY+ X2 B-3

This equation is a simpler relation than Eq, B-1l, and its equivalence
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can be verified by Theorem T-14% (a). The subcubes used to obtain
Eq. .B-3 satisfy the requirement that it is necessary to include a
given cell only once. The three (2-cell) subcubes used for Eq, B-1
contain the redundant subcube YZ,

The properties of adjacency patterns'which establish subcubes can
be illustrated by the maps in Fig. B-3. The four maps display cell.
patterns of the same type ~-- a four-cell subcube described by two vari-
ables. The subcubes can be represented as follows: 1) map (a) - WX,
2) map (b) - WY, 3) map (c¢) - XZ, and 4) map (d) - X Z. The charac-
-teristics of peripheral cells to combine with cells on the opposite

side should be noted.
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Fig. B-3. Properties of Adjacency Patterns.



