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PREFACE

Selection of a Dissertation Topic 
One of the factors considered during the selection of 

a dissertation topic was that the topic must be one for which 
a need exists in the aero-space industry. One of the docu
ments used to help determine this need was, "Important Re
search Problems in Advanced Flight Structures Design - 1960,"
(1) edited by Norris F. Dow in collaboration with the NASA 
Research Advisory Committee on Structural Design. The problem 
areas listed in this document (1) under the heading of Struc
tural Design Criteria are;

1. To devise methods of assessing the performance of 
the structure in quantitative terms which will per
mit the establishment of rational design criteria.
Such methods must take cognizance of the probabi
listic nature of failure phenomena and the factors 
which influence them.

2. To devise practical procedures whereby the knowl
edge which exists regarding environment, loads, and 
structural performance, may be brought together to 
determine reliability; or alternatively, whereby 
design requirements may be identified for a stipu
lated reliability.
Mangurian (2) has pointed out the inadequacy of the 

old factor of safety method in light of the advancements in 
structural and aerodynamic knowledge.

One of the most recent publications indicating
iii



increasing interest in structural reliability (3) was done by 
Bert and Hyler concerning large solid-propellant rocket-motor 
cases.

Based on these reports and personal contact by the 
writer with the aero-space industry, a dissertation topic of 
"Structural Design Criteria by Statistical Methods" was se
lected .

Objective and Scope
The object of this dissertation is to establish a 

structural design criterion using statistical methods such 
that for any desired structural reliability an allowable 
design stress level can be calculated.

The scope of this dissertation is limited to verti
cally rising boost vehicles. These particular vehicles were 
selected for several reasons:

1. It was desirable to select a vehicle for which 
the loads were caused by a random process or a 
process approximately so, such as the atmospheric 
winds as opposed to an airplane whose loads are 
greatly influenced by the pilot, and thus are not 
random,

2. It was also desirable to select a vehicle which 
would be of prime interest to the aero-space in
dustries located in Oklahoma. Two of the major 
aero-space companies located in Tulsa are

iv



Interested in large structures, such as boost ve
hicles, because they can make use of the Arkansas 
River Navigation Project, which will be completed 
in a few years, to ship large structures from 
Tulsa to the Gulf.
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STRUCTURAL DESIGN CRITERIA BY STATISTICAL METHODS

CHAPTER I 

INTRODUCTION

Although increased emphasis has been placed on statis
tical concepts of structural safety, some of the early ref
erences were published over thirty years ago. Ebner pointed 
out in reference {k) that work by Kussner and Thalau (5)» in 
1932» suggested that the required strength of an aircraft for 
a single load application should be based on the expectance of 
failure, determined statistically from load measurements during 
flight. This idea was developed further by Kussner (6) in a 
paper published in 1935* Similar proposals for statistical 
investigations of the strength of aircraft were made in England 
by Pugsley and Fairthorne t7) in 1939. Also, in 1939» Weibull, 
of Sweden, developed a statistical theory of the strength of 
materials (8).

Practically all work in this area was halted during 
the early 19^0's because of World War II. Since 19̂ 6', many 
publications have appeared on this topic; and because there 
are so many, only those that have a direct bearing on this 
dissertation will be listed. These works will be listed in 
later chapters where they apply.

1



CHAPTER II 

STATISTICAL APPROACH 

Introduction
The basic concept of how to attack this problem tras 

to se.eot the statistical distribution which best fits the 
loads data, select the statistical distribution which best 
fits the strength data, and combine these two distributions 
mathematically so that the structural probability of failure 
can be calculated.

Selection of the Statistical Distributions
It is, of course, not possible to investigate all 

distributions; and therefore, the few which are investigated 
should be selected with care.

The first distribution selected was the normal, or as 
it is sometimes called, the Gaussian distribution. This dis
tribution was selected because more phenomena in the sciences 
fit the normal distribution than any other single distribu
tion, hence the name "normal distribution." Also, several 
previous structural reliability investigators (3,9) have 
used the normal distribution.

The second distribution selected was the log-normal
2



3
distribution with somewhat the same reasoning as was used to 
select the first distribution, namely, that the log-normal is 
considered the second most used distribution, usually being 
tried after the data prove to be non-normal, and a previous 
investigator (10) used this distribution in a structural 
reliability study.

It was decided that the third distribution which would 
I ' ected would be the one which gave the best fit to loads 
data based on the results of the literature search. Press
(11), in his study of gust loads, found the double exponential 
distribution showed a good fit to gust loads when the maximum 
values were obtained from successive samples. Gumbel (12) 
gave mathematical proof that the double exponential distri
bution results if maximum values are selected from initial 
distributions of the exponential type. Since the normal and 
log-normal are both of the exponential type, it is felt that 
the possibility is very good that the initial distribution 
will be of the exponential type and the distribution of the 
maximum values, selected from the exponential type, will thus
be the double exponential.

The fourth and last distribution was selected to give 
the best fit to the strength data based on a literature search. 
The search disclosed that Weibull (8) developed a statistical 
distribution especially for the breaking strength of materials. 
Weibull based his selection of this distribution, idiich bears 
his name, not only on the excellent fit of the theory to the 
test data, but also on philosophical reasoning.
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Testa for Goodness of Fit
In order to mathematically determine the theoretical 

distribution which yields the best fit to the observed data, 
a Chi-Square test was attempted. It was found that in order 
to use the Chi-Square test, considerable lumping together of 
adjacent classes* at both tails of the distributions was nec
essary in order to have the calculated frequency be at least 
1.0. This procedure defeated the purpose of accurately 
fitting a theoretical distribution to the observed data be
cause of the greater importance of the tails of the distri
bution to -a structural reliability study.

The most important part of the strength distribution 
is its weakest, and the importance of the fit between the 
theoretical distribution and the observed distribution de
creases as the strength increases.

The reverse is true for the loads as the maximum load 
is the most important and minimum load is the least important 
from a structural reliability point of view. Thus it can be 
seen that the left hand (minimum) tail of the strength distri
bution and the right hand (maximum) tail of the load distri
bution are very important.

To be able to exactly weight this importance would 
require the answer to the complete structural reliability

*The selection of the number of class intervals is 
based on the Sturges method (13). The number of class in
tervals is the integer nearest the value 1 + 3.3 In (number 
of samples).
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study in advance. Since this is not known, it was decided 
to use a conventional goodness-of-fit test (the Kolaogorov- 
Smirnov nonparametric test) for the entire distribution and 
to supplement this test with a test which places greater 
importance on the tails of the distributions. This new cri
terion or test is based on an intuitive modification of the 

.Chi-Square test and will be called the Psi-Square test.
Similar to the Chi-Square test, a test was desired 

which was concerned with the discrepancy between the observed 
and the théoretical distribution. Also, here a relative dis
crepancy was desired, but unlike the Chi-Square test, the 
value was divided by the observed rather than the theoretical. 
This modification eliminated the possibility of having to lump 
adjacent classes together in order to have a frequency of 1.0. 
Next a method was needed for combining these relative discrep
ancies. One method would have been to sum all the relative 
discrepancies; however, these relative discrepancies had signs 
of plus and minus and their sum might have been very close to 
zero, even with large discrepancies, if the positive discrep
ancies approximately balanced the negative ones. This diffi
culty was overcome by using the same procedure as in the Chi- 
Square test, that of squaring the relative discrepancies. For 
the Chi-Square test the relative discrepancies were weighted 
because of the greater probability of scattor in the tails of 
the distributions. For the particular problem of structural 
reliability and the greater importance of the tails of the



6

distributions, the relative discrepancies were net weighted
a
for this test. Thus one arrives at the formula of the Psi- 
Square test:

,2

where is the observed frequency and
f^ is the theoretical frequency.

One additional change from the conventional Chi-Square test 
was necessary. In the form used, both tails of the distri
bution were quite significant and it was desired that only 
the left hand tail (minimum) of the strength distribution and 
the right hand tail (maximum) of the load be significant.

Therefore the Psi-Square test was applied only to
half of the classes, the lower half for the strength distri
butions and the upper half for the load distributions.

The preceding discussion is not a mathematical deri
vation, but rather a logical derivation of a method, to test 
the goodness of fit of the particular half of the distribution 
which is most significant for structural reliability. No 
probability can be qssigned to the Psi-Square test, however, 
one is not necessary as the Kolmogorov-Smirnov (l4) test will 
be used for this purpose. The Psi-Square test was merely a 
method of checking the Kolmogorov-Smirnov test to make sure 
that the theoretical distributions which gave the best fit to 
the entire observed data also gave the best fit when only the
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most significant half of the observed data was used. The 
Kolmogorov-Smirnov test is a nonparametric or "distribution- 
free" test which means that it is not necessary to know the 
statistical distribution of the population from which the 
sample was dra«m.

In order to have as large a sample size as possible, 
nonparametric tests, such as the Kruskal-Wallis test (l4), 
were used to determine if data from different sources were 
from the same population and could be combined.

Curve Fitting of Empirical Data 
In certain areas of structural stability, analytical 

theory has not been able to adequately predict the results of 
buckling. In these areas, empirical methods have been devel
oped. When only a few test results are available, the empir
ical design curve is generally constructed to approximate the 
test data by engineering judgment. However, when a larger 
number of data is available, it is desirable to use statisti
cal methods to aid in the construction of the design curve. 
The following method was used to construct all empirical 
curves necessary in this dissertation.

A regression line was fitted to the test data by a 
statistical technique such that the sum of the squares of 
the values of the individual test data to the computed mean 
value were a minimum. This technique is known as the method 
of least squares.
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In the method of least squares, a polynomial equation 
of the form,

y = Cq + Cjx + + . . . C„x”,
where y is the dependent variable,

X is the independent variable, and 
Cq, 0 ,̂ Cg, . . • Cp, are the computed coefficients, 

was fitted to the test data. Several polynomial equations are 
available; the first degree equation is y = C q  + C^x: the
second degree equation is y = Cq + C^x + C£X^j etc. Generally 
the higher the degree equation used the better the fit to the 
test data. It is possible to have an equation with the degree 
equal to one less than the number of test data and the equation 
will be a "perfect" fit since it will pass through every point. 
However, this is generally not the equation desired. For each 
increase in the degree of the equation, a degree of freedom is 
lost. The problem is then to decide when there is no longer a 
significant improvement in fit by going to the next higher 
degree polynomial equation. This is accomplished by an anal
ysis of variance. The most powerful and widely used analysis 
of variance test is the F test, named in honor of R. A. Fisher, 
who originated the method. However, one of the assumptions 
associated with the statistical model of the F test is that 
the observations are independently drawn from normally dis
tributed populations. Not wishing to restrict the analysis to 
normal distributions, nonparametric tests were investigated.
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The Kruskal-Vailis test was selected because of its high power 
efficiency, 95.5 per cent, when compared with the F test, the 
most powerful parametric test (l4).



CHAPTER III 

LOADS

Selection of Method for Determining Loads
There are three basic methods for determining the

loads on a vertically rising boost vehicle:
#1. The synthetic wind profile,

2. The wind statistic matrices,
3. The statistical load survey.
The first of these methods, the synthetic wind pro

file, is the oldest being first described by Sissenwine 
(15) in 1954. Sissenwine described his method as the first 
of the generally recognized, synthetic wind profiles and 
a "guestimate" of the 99% wind for the windiest season and 
the windiest launch location. A similar type of follow-on 
study was performed by Williams and Bergst (I6) of Lockheed 
Missile Systems Division in 1958. The Marshall Space Flight 
Center of the National Aeronautics and Space Administration 
has, within the last few years, published a number of re
ports on synthetic wind profiles based upon a wind speed 
and wind shear that is exceeded only a certain percentage of 
the time (17, 18, 19, 20, 21 and 22). One of the major reasons

10
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for the synthetic profile was to provide a method for handling 
the very large errors in the wind sounding collected in the 
years preceding 195^i which were less refined than today's 
AN/GND-1 equipment. This was accomplished by averaging the 
shears of approximately the same portion of the same type of 
soundings, in which case the random error in this part of the 
synthetic profile would be N”^ times the error in a single 
sounding, where N is the number of soundings used to obtain 
the synthetic profile.

Another reason for using the synthetic profiles in 
195^ was that high speed computers had much less capacity and 
could not be made available for the long periods of time re
quired for flying tentative designs through hundreds of 
soundings. Since these two arguments for the use of a syn
thetic wind profile are no longer valid, Sissenwine, who was 
one of the pioneers of synthetic profile, has now publicly 
declared he is against them (23).

The second of these methods, the wind statistic ma
trices, was pioneered by Bieber (24, 25) of Lockheed and 
Trembath (26) of Space Technology Laboratories. This method 
requires the following knowledge of the wind: a mean value,
standard deviation, and correlation coefficients as a function 
of altitude for each of. two orthogonal wind components and the 
cross correlation coefficients between the two components for 
the same and different altitudes.

Van Der Naas (27), also of Lockheed, conducted an
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extensive study into wind shear response of missiles and con
cluded that this procedure is entirely too complex and labo
rious to be used in the design of a missile. Another 
shortcoming of this method is that much subjectiveness is 
still required because estimates must be made in certain areas 
where little or no data are available.

The third method, the statistical load survey, was 
developed by Hobbs and his associates at AviDyne Research,
Inc. (28). This approach involves the simulation on a com
puter of missile flights through a statistically adequate 
sample of wind soundings. The maximum load is determined for 
each simulated flight. This approach is completely straight 
forward. The only objection to this method is that it re
quires a large amount of computer time to simulate 200 flights, 
approximately 25 hours on a 1103A (or ?04) computer or about 
2.5 hours on a 7090 computer.

The writer attended the American Institute of Aero
nautics and Astronautics and the American Meteorological 
Society Joint Meeting entitled "Meteorological Support for 
Aerospace Testing and Operation Meeting" held July 10-12, 1963, 
at Colorado State University, Fort Collins, Colorado, as well 
as the American Meteorological Society Meeting entitled, 
"Atmospheric Problems of Aerospace Vehicles" held March 2-6, 
196k, at Atlantic City, New Jersey. Based on the papers pre
sented, the discussions of the papers, and informal discussions 
with the other attendants, the writer is convinced that the
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statistical load survey method is the most accurate method 
known today.

Thus the statistical load survey was selected as the 
method for determining loads.

Determining the Loads
The wind soundings used in the statistical load survey 

for calculating vehicle loads were AN/GMD-1* meteorological 
balloon soundings taken by the United States Weather Bureau 
at seven locations within the United States:

1. Caribou, Maine,
2. Denver, Colorado,
3* Fort Worth, Texas,
U, International Falls, Minnesota,
5* Long Beach, California,
6. Montgomery, Alabama,
7> Seattle, Washington.

*The following brief description of the An/GMD-1 
equipment is taken from reference (29).

"Briefly, in the AN/GMD-1 system the elevation angle 
and azimuth of the balloon is computed from the temperature, 
pressure, and humidity data transmitted to the ground re
ceiver by the radiosonde. Wind speeds are then obtained by 
calculating the horizontal distances traversed in a given 
time, utilizing the elevation angle and the tangent law to 
obtain the horizontal distance to the balloon, and the hori
zontal angle to determine azimuth. The use of the law of 
tangents is considered responsible for the major inaccuracy 
in AN/oa)-l observed winds, since wind calculations are based 
on the formula that horizontal distance is equal to the alti
tude multiplied by the cotangent of the elevation angle. At 
low elevation angles, which correspond to maximum range and 
altitude, the cotangent value changes very rapidly for very 
small changes in the angle; therefore, any small elevation 
angle error due to hunting of the AN/GMD-1 antenna will result 
in erroneous wind calculations."
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A study of the seasonal variations of winds indicated 

that the most severe winds occurred during the winter and 
soundings were taken for five winters in order to account for 
the variation of wind severity from year to year. Soundings 
were selected at approximately three day intervals because of 
the known persistency of the winds. Thus for the four winter 
months, beginning with December and ending with March, a 
sample of Uo per year or 200 for the five year period was 
obtained.

The computer program for calculating missile loads 
from the raw wind sounding balloon data described above is 
completely explained in "Digital Computer Programs Relating 
to Wind Loads on Vertically-Rising Vehicles" by Hobbs of 
AviDyne (30). This is a six-degree-of-freedom rigid body 
program and is considered quite adequate for calculating the 
loads encountered by fairly rigid vehicles.

The loads were calculated using the previously de
scribed procedure for five actual vehicles:

1. Atlas,
2. Dyna-Soar,
3. Minuteman,
4. Thor,
5- Titan .
Since the performance of these vehicles is classified, 

the loads cannot be identified with the vehicle. Therefore, 
the loads were identified by a random selection as vehicle B,
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C| D, E, and F. These five vehicles were flown on 200 simu
lated flights for each of the seven locations with the excep
tion of Seattle, Washington, for vehicle C, and Montgomery, 
Alabama, for vehicle F, which were missing. This left 6,600 
simulated flights for loads data which was considered quite 
adequate for this study.

Selection of Loads Distribution 
In order to have as large a sample as possible to 

compare with the four selected statistical distributions, the 
Kruskal-Wallis (1^) nonparametric analysis of variance test 
was applied to determine whether there was a significant dif
ference in loads at the seven different locations studied.

Although the five different vehicles were flown on 
the same 200 simulated flights for each location, the re
sulting loads were quite different. This was due to the fact 
that the vehicles responded differently to different wind 
disturbances. Thus, one location which caused critical loads 
for one vehicle did not necessarily cause critical loads for 
another. Likewise two locations which caused loads that were 
not significantly different for one vehicle caused loads that 
were quite different for another vehicle. The results of the 
Kruskal-Wallis tests show that this was exactly what happened 
for the five vehicles and seven locations studied.

For vehicle B, there were four lor&ticni for which 
the loads were not significantly differentî Fort Worth, 

Seattle, Long Beach, and Caribou. This was based on a
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significance level of 0.05 for the Kruskal-Wallis test. For 
vehicle C, there were only two locations for which there was 
not a significant difference in the resulting loads: Denver
and International Falls. For vehicle D, three locations, 
Seattle, Denver, and Caribou were not significantly different. 
For vehicle E, three locations. Long Beach, Fort Worth, and 
Seattle were not significantly different. For vehicle F, 
three locations, Seattle, Long Beach, and Caribou were not 
significantly differentw

In order to establish which of the four theoretical 
distributions gave the best fit to the observed loads, the 
results of thé goodness-of-fit tests were examined for the five 
vehicle-combined locations (Figures 3-1, 3-9i 3-l6, 3-24,
3-32) and the thirty-three separate vehicle-location combina
tions (Figures 3-2 through 3-8, 3-10 through 3-15, 3-17 
through 3-23, 3-25 through 3-31» 3-33 through 3-38). Exami
nation of the combined locations for all five vehicles shows 
that, according to the Kolmogorov-Smirnov test, the double 
exponential distribution ghve the best fit for all five 
vehicles; and according to the Psi-Square test, the double 
exponential distribution gave the best fit to four of the five 
vehicles. For the fifth vehicle, which was vehicle E, the 
Weibull distribution ghve the best fit for the Psi-Square test. 
By assigning the distribution which gave the best fit the num
ber 1,0 and the distribution with the second best fit the number
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2.0, etc., these assigned numbers were averaged to give an 
indication of the average rank of the various distributions. 
For the Kolmogorov-Smirnov test, the average of the ranks were: 

Double Exponential 1.00,
Weibull 2.20,
Log-Normal 3.00,
Normal 3.80.

For the Psi-Square test, the average of the ranks were:
Double Exponential 1.60,
Weibull 2.00,
Log-Normal 3.00,
Normal 3.^0.

The above average ranks were for the vehicle-combined loca
tions. For the separate vehicle-location, the following 
average ranks occurred for the Kolmogorov-Smirnov test*

Weibull 1.64,
Double Exponential 2.09,
Log-Normal 2.?6,
Normal 3.32,

and for the Psi-Square test:
Double Exponential 1.42,
Weibull 2.24,
Log-Normal 2.82,
Normal 3.52.

By combining the separate vehicle-locations and the vehicle- 
combined locations, the following ranks were obtained for the
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KolaocoroT-Snirnov tests

Double Exponential 1.75,
Weibull 1.81,
Log-Eormal 2.83,
Normal 3.6o,

and for the Psi-Square tests
Double Exponential 1,48*
Weibull 2.17,
Log-Wormal 2.88,
Normal 3.48.
These results shoved the same order of ranking by 

both the NblmogoroT-Smirnov and Psi-Square tests. It should 
be pointed out that vhile the double exponential, log-normal, 
and normal distributions are tvo-parameter distributions; the 
Weibull is a three-parameter distribution and thus has one 
less degree of freedom. 'Hierefore, the Weibull distribution 
is probably not as close a second choice as the above rankings 
indicate. Since the double exponential vas the first choice 
as the theoretical distribution Vhich gave the best fit to 
the observed loads, it vas not necessary to investigate fur
ther the effects of the loss of a degree of freedom for the 
Weibull distritxition.

Gumbel has shovn in reference (12) that the double 
exponential distribution is the asymptotic distribution of the 
largest value vhere the initial distribution is an exponential 
type. This means that if the initial distribution of all the
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loads encountered during one flight is one of the exponential 
type, such as normal or log-normal, and the largest load is 
taken for each flight; then these largest loads have as an 
asymptote the double exponential distribution. Data were 
available for the initial distribution of vehicle D at Denver, 
Colorado, and vehicle E, at Long Beach, California. The 
Kolmogorov-Smirnov test was applied at a significance level 
of 0.05 and no significant difference was found for either 
the normal or log-normal distribution when compared to the 
observed load data. Thus it can be said that the initial 
distribution of the observed load is an exponential distribu
tion and the distribution formed by selecting the largest 
values of observed loads should have the double exponentail 
distribution as an asymptote. This adds further justification 
for the selection of the double exponential distribution as 
the one which best represents the observed maximum loads.

It should be pointed out that a check for significant 
difference at the 0.05 level using the Kolmogorov-Smirnov test 
indicated no significant differences between the observed loads 
and all four theoretical distributions for a majority of the 
thirty-three separate vehicle-location combinations and the 
five vehicle-combined locations combinations. For vehicles B 
and D, all four theoretical distributions showed no significant 
difference without exception. For vehicle C, the normal dis
tribution did not fit for Caribou, Maine, and Long Beach, 
California; and the log-normal distribution did not fit for
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Long Beach, California. For vehicle E, at Denver, Colorado, 
the normal distribution did not fit; at Seattle* Washington, 
only the Weibull distribution fit; and for the combined lo
cations for vehicle E, none of the distributions fit the 
observed loads. For vehicle F for the combined locations, 
the normal distribution showed a significant difference.

The distribution chosen to represent the loads was the 
double exponential; however, since the other distributions 
also fitted fairly well, the effect on the final structural 
reliability caused by using one of the other theoretical dis
tributions will be investigated further in a later chapter.

Applied Bending Moment 
In the previous sections the loads were given in terms 

of an equivalent bending moment. It was called an equivalent 
bending moment because the effect of the axial load caused by 
the engine thrust was included in the bending moment. This is 
done by setting the compressive stress caused by the axial 
load (stress = load/cross-sectional area) equal to the classic 
bending formula for stress in the extreme fiber (stress = 
moment x distance from the neutral axis/moment of inertia) 
and solving for'the moment,

£ = Me.A I
Solving for the moment gives;

M = £1.Ac
This fictitious bending moment was added to the real bending 
moment and the result was called an equivalent bending moment.



21

«»icx> • cauboo. ratr womm. ion bicr m  s u m

•o

»♦

•••

«o

BEHDIHG MOMENT IN IN. LB

NO. GP SAMPLES = 800 
NO. OP CLASS INTffîVALS 
MEAN = 2,136,300 
SIGMA = 328.786

• NORMAL
11 + LOG NORMAL

* DCDBI2 EXPONENTIAL 
oneIBOIL

PSI-SQ.
1.00000
1.00000
.9978041.00000

K-S
50.5198
22.3036
14.5730
33.1390

Figure 3-1



22

CM tM». ■»!«

BENDING MOMENT IN IN. LB
NO. OF SiUfflES = 200 
NO. OP CLASS INimVAIS 
MEAN = 2,120,130 
SIGMâ = 343,865

' NGBMAL 
= 9 + LOG NORMAL

« DODBIS EIPORENTIAL 
□ NEIEDIl.

PSI-SQ. 
3.91154 
2.58537 
1.41353 1.66676

K-S
23.4338
16.964410.7908
U.5200

Figure 3-2



23

«0«IOC #

f •

i
I

f
• iK
.#w
c
■
c
»

BEHDIHG NONEHT IH IH. LE

' NO. QF SAMPLES = 200 
NO. 6f class 1NTEK7AIS = 9 
MEAN = 2,042,290 
SIGMA = 241,212

* HOBMAL
+ LOGHOBMAL
* DGDBI£ 
OVEIBOLL

14 f VI , [AL

PSI-SQ.
1.74037
1.05158.112646
1.03053

K-S
9.41431
4.73750
4.69863
6.30047

figure 3-3



z k

->;■ ■ ! VCMICiJK • MBt HOimi WM) . J

Ja

o •

BENDINa MOMENT IH IH. UB

: NO. OF SAMPIES = 200 
I NO. QF GLASS INTER7AL3 
! MEAN = 2,160,300 
SICMA = 267,569

• NOBHAL
= 9 + LOO NORMAL

* DOOmg ] 
ONEIBOIL

;i9ITIAL

PSI-SQ.1.1?.056
.70890^
.276646
.353459

K-S
19.9643
15.4493
6.35978
10.5505

Figure 3-4



25

«tMICLt • tmCMkTIOMtL rMJLS

E•
wc
mcV

a#.#

BENDING MOMENT IH IH. LB

NO. QF SAMPIES = 200 
NO. QF CLASS INTERVALS 
•MEAN = 1,972,930 
iSIfflfA = 223,613

' NORMAL 
9 + LOO NORMAL

* DODBLB EXTOHENTIAL 
o WEIBOIL

ESI-SQ.
2.22081.87162
1.53115
1.698t5

E-S
18.4297
15.6758
6.55586
11.2065

Figure 3-5



26

«IMIOLK • .f

O#

BEHDIHG MONEHT IH H .  LB

NO. OF SAMPLES = 200 
NO. OF CLASS INTERFAIS 
MEAN = 2,129,680 
SICMA = 304,558

= 9

— — --  Ê5I-SQ. K-S
* NOBHAL 3.31958 20.5483
+ LOG HOBMAL 2.25^ 17.6120
* DOOBISR MIHMHUAL 1.34728 9.75369
o m m T X  1.73214 9.62735

Figure 3-6



27

-T" " r «OtlCK •

I • «
o*•o

• c

BEHDIKG MOMEHT IS IS. LB

NO. QF SAMPLES = 200 
NO. OF GLASS INIEBVAIS = 9 
MEAN = 2,212,640 SICMA = 298,301

* NOBHAL
+ LOGBGBHAL
* D O m E  
a WEIBULL

.'i>:niAL

KI-SQ.
1.75340
1.Q5495.361232
.654169

K—S 
11.9355 6.26500 4.28782 7.06461

Figure 3-7



28

«CNtCUC • KATTLC.

O»
I

*  •

BENDING MOMENT IN IN. LB

NO. QF SAMPLES = 200 
NO. OF GLASS INTERVALS = 9 
MEAN = 2,143,100 
SIGMA = 387,975

'NORMAL 
4L0GNGBMAL 
«OOOBLB ] 
IWEIERIIL

-I:':UAL

ESI-SQ. K-S 
.999997 11.4079 1.00000 2.58022 
.994857 7.87863
. 999699 10.3609

Figure 3-8



29

•«tMICtI c

mm#

mjm

BENDING MOMENT IN IN. LB

jMO. OF SAMPLES = 400 
jNO. OF CLASS INTERVALS 
jMEAN = .5,190,670 
jsiOtt = 355,046

. NCHHAL 
= 10 + LOG NORMAL

* DOUBLE ]
O WEXBUIaL

>'13m k L

PSI-SQ.
2.11599
1.86329

.466362
1.14748

K-S
37.5913 i 
31.9793 P 
9.32540 18.6196 !

Figure 3-9



30

« I M I M  C CAMIBOW

O •

#

BENDING MOMENT IN IW. LB-

10. OF SWiPLES = 200 
NO. OF CLASS INTERVALS = 9 
MEAN = 5,396,200 
SIGMA =» 480,887

• NORMAL
+ LOG NORMAL
* DOUBLE EXPONENTIAL 
a NEIBULL

PSI-SQ.
5.68336
4.53533
2.187511.99126

K-S28.1320
26.113816.202010.5616

Figure 3-10



31

« m a c  c MMcc

BENDING MOMENT IS IS. LB

NO. OF SAMPLES = 200 ,
NO. OF CLASS INTERVALS = 9
MEAN = 5,200,520
telGHA = 386,910 _____

• NŒOttL
+ LOGNCffilttL
* DOUBLE ] 
o SEIBOIl.

m A L

ESI-SQ.
1.51654
1.23319
.362032.592106

K-S 
13.3419 ( 
10.1843 i 
3.490171 
3.23983'

Figure 3-11



32

fCMtcxi « ro«r mokim

«#.#

!♦

BENDING MOMENT IN IN. LB

NO. OF SAMPLES = 200 
I NO. OF CLASS INTERVAIS = 9 
iMEAN = 5,540,010 
! SIGMA •=' 386,693 ______

* NORMAL
+ LOG NŒQCAL
* DOUBIE I 
a WEIBULL

TIAL

PSI-SQ.
.92ÔÔ2I
.717500
.307972
.244966

K-S
15.9990
13.4869
3.54378
4.33073

Figure 3-12



33

«NtOA e INTt«N»1IONftb r*U.»

o*o*« •.I o#

BENDING MOMENT IN IH. LB

NO. OF SAMPLES = 200 
iNO. GP CLASS mTEHFALS 
îMEAN « 5,100,820 
SIGMA = 3201,709

• NORMAL
= 9 + LOG NORMAL

* DOUBZ£ ; 
o WEIBULL

:iSNTIAL

PSI-SQ.
2.38390
2.20514
.449189
.523142

K-S
24.6585
22.2891
10.6423
11.6935

figure 3-13



3k

« n t M  c toN» macm

o*o*

BENDING MOMENT IN IH. LB

NO. QF SAMPLES = 200 
NO. OF CLASS INTERVALS 
■IffiAN = 5,442,490 
Sicatt = 396,294

• NORMAL
+ LOG NORMAL
* DOUBLE EXPONENTIAL 
o WEIBULL

Figure 3-14

PSi-SQ.
1.15333
1.06447
2.03741
2.45893

K-S
31.5169
29.9329
20.4872
17.2505



35

«KWtCLC C

J*

o<
•O«o

A
TT*

BENDING MOMENT IN IN. LB

NO. OF SAMPLES = 200 
NO. OF CLASS INTERVALS = 9 
mean = 5,630,930 
SICMA = 414,501

• NORMAL
+ LOG NORMAL
* DOUBLE EIPCmNTIAL 
o WEIBULL

PSI-SQ.
1.405491.15482
.304129
.439715

K-S
18.7012
15.5932
6.760518.9630?

Figure 3-15



36

■ «CMIOkC # CARIBOO, m n i  A »  SRAfni

•M .»

IM.S

tmj»

•H
ef*a
tf

”4-

%
a
o
o

a *

‘5î• i
«

»7«r

.2A.

9O
$
i

a**#
B**

%

BENDING MOMENT IN IH. LB.

iNO. QF SAMPLES = 600 
ÎNO. W  CLASS INTERVALS = 10 
ÎMEAN = 7,465,130 
jSIGMA = 588,040_________

• NORMAL
+ LOG NORMAL
* DOUBLE EIPCMENTIAL 
ONEIBULL

ESI-SQ.
1.84972
1.40124
.5Ô24Q3
.727283

K-S
33.2808
23.9946
8.83494
14.0107

Figure 3-16



37

«Miua • cm'iwm

9

Iî

t

BENDING MOMENT IN IN. LB

NO. OP SAMPLES = 200 
NO. OF CLASS 3NTER7AL5 
MEAN = 7,487,000 
SIGHÂ » 690,140

' NORMAL 
+ LOGNORMAL 
* DOUBLE 1 
a WEIBULL

UAL

FSI-SQ.3.20062
2Jk6654
1.128491.2L580

K-S
23.126719.0166
9Jk5326
9.30659

n

Rgure 3-17 T



38

WMtCkC # ot*>«c«

1* •-Sl

o

BENDING MOMENT IN IN. LB

NO. OF SAMP^S = 200
NO. OF CLASS INTERVALS = 9
•MEAN “ 7̂ -319,890
iSiaCA = 544,805_________

• NORMAL
-f LOG NORMAL
* DOUBLE EXPONIMTIAL 
a WEIBULL

PSI-SQ.
.924828-.792026
.705327
.853378

K-S
21.8521
20.7541
*33.8941
10.6145

Figure 3-18



39

«MIOA • PMt *o#m

p V

«o

s
BENDING MOMENT IN IN. LB

NO. OF SAMFIES = 200 
NO. OF CLASS IN1ER7AIS 
MEAN = 7,558,820 
SIGMA = 521,356

• NORMAL
+ LOG NORMAL
* DOUBLE 
o WEIBULL

UAL

■pSI-SQ.
.636506.466221
..248025
.375303

K-S
6.147734.64700
7.97785
3.99807

Figure 3-19



ko

mmiVLM. # iMrtWttttontk r*u.»

**•
4

o •

BENDING MOMENT IN IN. LB
NO. OF SAMPLES = 200 
NO. OF CLASS INTERTAIS 
MEAN = 7,200,240 
SIffiA « 489,485

* NORMAL
+ LOG NORMAL
* DOUBIZ EXPONENTIAL 
a WEIBULL

PSI-SQ.
1.43666
1.19583
.481194.636746

K-S19.0680
17.8504
9.68310
6.59511

FigurëT^O



kl

«K«ICLC # U9M» HACn

O ♦.

o«I .

BENDING MOMENT IN IN. LB
NO. OF SAMPLES = 200 
NO. OF GLASS INTERVA12 
MEAN = 7,447,360 • 
SIŒtt = 520,266

= 9
• NORMAL
+ LOG NORMAL
* DOUBLE EIFGNENTIAL 
a WEBUIL

PSI-SQ.
1.00162
.828293.660848
.868923

K-S
9.400476.88358
7.20503
6.47437

Figure 3-21



42

-«MICM • mtaoHtiT

«D

o V

Q'V

BENDING MOMENT IN IN. LB

NO. OF SAMPLES = 200 
NO. OF GLASS DnEKVAIg = 9 
MEAN = 7,686,960 
SIGMA = 545,593

. NORMAL 
+ LOG NORMAL
* DOUBLE EXPONENTIAL 
o WEIBUIl.

PSI-SQ.
1.07100
.940547
.9719791.12098

K-S
14.9959
12.43488.40182
6,49020

Rgure3“22



k j

«CNfCLt • ' KUKI

V«o
9

BENDING MOMENT IN IN. LB

NO. OF SAMPLES = 200 
HO. OF GLASS INTERVALS 
MEAN « 7,461,060 
SIfflA = 541,354

= 9
* NORMAL
+ LOG NORMAL
* DOUBLE 
a WEIBULL

SNTIAL

PSI-SQ.
.523269
.370978
.396959
.401544

K-S 
' 8.98978 
7.92358 
13.3950 
6.43485

Figure 3 -3



• WtCLt ■ FORT WCB3H, LOM BEACH AID 8BATT1X

r
c•wcac▼

MlMM T w Bo

* q
•o
ft®*

Ml

O
o
o

•Ï
A

o
o

n r*

V 
• »
# $1
#
#

•o

• *
»O

V

-s
o

BENDING MOMENT IN IN. LB

NO. OF SAMPLES = 600 
NO. OF GLASS INTEFIVALS = 10 
MEAN = 1,593,250 
SIGMA = 32,510

• NORMAL
+ LOG NORMAL
* DOUBLE EXPONENTIAL 
a WEIBULL

PSI-SQ.
46.0594
52.5165
56.967425.0196

K-S
72.6269
77.0425
61.444462.3661

Figure 3-24



k5

t(b
o
o

t I V

• o

m
m
■

<
V.

♦. o 
. o

• <

o
o
3

o * »

• o
fto

«P»

*

BEHOIRG MOMENT IN IN. LB

NO. OP SAMPLES = 200 
NO. CP GLASS m r m A L S  
MEAN =1,581,910 
SIGMA = 42,685

• NOTMAL
= 9 + LOG NORMAL

* OODBI£ EIPCNENTIAL 
ONEIBOII.

PSI-SQ.
1.27277
1.37772
<885224

i :T9870

K-S
15.5822
15.8380
9.45098
17.3045

Figure 3-25



k6

wmoj» c w w#

140000 l«HOe tl
BENDING MOMENT IN IN. LB

I NO. OF SAMFI£S = 200 
[ NO. OF CLASS INTERVALS = 9 
I MEAN = 1,453,040 
SIQtt = 33,377

. NORMAL 
4- LOG NCMiAL 
* DOUBLE 1 
ONEIBULL

STIAL

PSI-SQ. K-S 
1.58621 21.3737
1.46689 21.6201
.256790 22.5306 

3.12533 31.8189
T m r e T - 2 6



U7

« m a s  t MSI

#
cfb9 01

. o

•o

rca

o
o
0
1

• h
T - r
• «.0
« :

o *

\
a

BENDING MOMENT IN IN. LB

; HO. OF SAMPLES = 200 
i NO. OF CLASS IMEBVAIS 
; MEAN = 1,593,190 I SICMA « 33,390

• NORMAL
= 9 + LOG NORMAL

*  DOUBLE 
o WEIBOLL

l^Mgure 3 -^

1:4m A L

PSI-SQ.
5.42057
6.533952.733622.85826

K-S
15.3424
16.6332
26.9773
12.2947



48

w m oM  t trnnemminmL p tu jê 1

• #

<#

o
o

y
•*•
••

’ •

o
o

BESDING MOMENT IN IN. LB

I NO. OF 
NO. OF 
MEAN = 
SIGMA :

SAMPLES = 200 
GLASS INTERVALS 
1,558,250 
“40,301

' NORMAL 
+ LOG NORMAL 
*  DCUBI£ EXPONENTIAL 
a WEIBULL

PSI-SQ.
25.0011
32.056714.9808
18.1596

K-S
13.2668
15.4137
20.409310.4090

Rgure 3-28



1»9

«v<ioLt C vBm muo»

BENDING MOMENT IN IN. LB

HO. OP SAMFIES = 200 
NO. OP CLASS INTESVAIS 
MEAN = 1,595^680 
SIOCA = 28,502

* NORMAL
= 9 + LOG NOTHAL

* DOUBLE 
o WEIBULL

«TIAL

PSI-SQ.
274.280
294.408111.076
173.704

N-S
16,2807
16.4914
22.160522.1020

Figure 3-29



50

BBH0IH6 MOMENT IN IN. LB

NO. OP 
NO. OP 
MEAN =
snask =

SAMFI£S = 200 
GLASS INTESVAIS 
1,616,540 
'44.286

" NORMAL 
= 9 + LOO NORMAL

* DOUBLE EXFOHERTIAL 
o WEIBOLL

PSI-SQ.
5.29865
6.56401
6.79366
4.35652

K-S
20.8586
21.6199
24.236518.5060

TîgûreT-30



51

mM ojÉ t iuvitc

■

» 1

•

#
#

• £ 
• O

1
o

#
• j♦
• ?

•

*  
0 •
1

»
»
»' ,

o
o
0

•

«

• ; ® 
♦ »

- ♦ O 
♦ 0 
♦ O

#
•
•
1

a
*
« o•
»

•

-

o
p

%
01

» .♦
• «f
• ; •

t = / f

•1 11

c

«

BENDIHa MOMENT IN IN. LB

NO. OP SAMFI£S = 200 
NO. OP CLASS HnSS7ALS = 9 
MEAN = 1,590,870 
SIGMA = 35,248

- NŒMAl 
+ LOO NORMAL 
« DOUBI£ EXPONENTIAL 
ONEIBULL

PSI-SQ.
78.139389.4948
39.0193
42.9057

K-S
32.784434.3200
44.098019.8168

Figure 3-31



52

Câmoo. ion bich a» seatiui

/  "o-r
C
«
■
c»

3O «.

BENDING MOMENT IN IN. LE

NO. OP SAMFI£S = 600 
{ NO. (F CLASS 1N1ES7AL5 = 10
I  M E A N  =  10, 996,800 
i  S H a O L  =  1, 341*330

- NŒMAL 
+ LOG NGSMAL 
* DOUBLE ]
° WEIBULL

ISNTIAL

Figure 3-32

PSI-SQ.2.68156
2.15663.428260
1.37017

K-S
49.6491
33.8417
15.6827
32.4478



53

«BMCtf r CMtfiM

O • O #

# •* •C k

BENDING MOMENT IN IN. LE
PSI-SQ. K-S
2.76293 20.8172
1.93651 14.1469
.787201 11.4841 .871230 15.8878

i NO. OP SAMFISS = 200 * NŒIHAL
; NO. GP GLASS INTERVAIS = 9 + LOG NORMAL
j MEAN = 10,991*200 
I SIOA = 1,623*190

« DOUBLE EXPONENTIAL 
ONEIBOLL

I

Rgure 3-33



5k

9
m
c o#**•

o #c♦ jLK
o •

11 •• o
• #

w

BEHDIHG MOMENT IN IN. LB

: HO. OP SAKFIES = 200 
NO. GP CLASS IHTES7ALS 

I MEAN = 9,920,920 
; SKXA = 1,131,250

= 9
. NORMAL 
+ LOG NORMAL 
« DOUBLE 
« WEIBULL

TIAL

PSI-SQ.
2.054091.65292
.992708

1.61347

K-S
15.5711
10.73293.51346
6.53421

Figure 3-34



55

wMLK r xm

• o ••

o • o $

BSNDING MOMENT IN IN. LB

NO. OF SâMFLES = 200 
NO. OF CLASS IHTEHVMS = 9 
MEAN = H«388^KX)
SBXA = 1,206,820

. NORMAL 
+ LOG NORMAL
« double exponential
oftelbUiX

PSI-SQ. 
1.11609 ‘ .573220 
.681514 
.442139

K-S11.1892
10.3154
8.144295.13060

Rgure 3-35



56

mmaut r rauLs

V
K o«
mK 9m
c»

1= ♦.

BEHDIHG HGMEHT IH XH. LB

NO. W  SAKFI2S = 200 
NO. OP CLASS INTmMLS = 9 
MEAN = 10,235*000 
SKMA = 1,032,710

* HOBMAL
+ LOG NQ&MAL
* DGDBE2
o h e i b d u.

TIAL

PSI-SQ.
1.32S33 . 1.11083. 
.365663 .470990

K-S
21.3512
18.810710.2846
9.15972

Figure 3-36



57

9 vam

w # c • w c ■. c »

.BENDIHS MOMENT IW IW^ LB

NO. OP SAMPLES = 200 
NO. OF CLASS INTESFALS 
MEAN « 11,009,600 
SIGMA = 1,169,180

* NORMAL
+ LOG NŒMAL
* DODBUS EXPONENTIAL 
o WEIBULL

PSI-SQ.
1.72434
1.20674.469221
.612353

K-S
19.183117.2016
9.555066.68886

Figure 3-37



58

» «av»*

y
c

Mc»

o-
I*or

o •

I
«

B8HDIMG HOMEHT IM IH. LB

NO. GP SAMFI£5 = 200 
NO. CP GLASS HTSHILS = 9 
MEAN = 10,995,800 
SIGMA = 1,188,970

■ NQBMAL 
+  LOONOBMAL 
*  DODBUS 
oWKTHnU.

>r.i [AL

ESI-SQ.1.11582
1.29140
2.99102
2.19584

K-S
10.4199
6.2036310.2632
3.65250

Figure 3*18



CHAPTER IV

SIREHGTHS

Introduction
It is desirable to bave as large a sample of struc

tural strength data as possible. The results of tests on 
metal cylinders vill yield a sample size of approximately one 
hundred to aid in the selection of a statistical distribution; 
however, Veibu11 (31) has shown that approximately one thousand 
observations may be necessary to distinguish between the log
normal and the Veibull distribution of strength properties.
Thus it can be seen that on the basis of the cylinder test 
data alone it may not be possible to properly select the theo
retical distribution.

It would be possible, of course, to test more cylinders, 
however the cost associated with constructing and testing a 
thousand metal cylinders makes this approach impractical. An 
alternate approach, which was chosen for this study, was 
to select the statistical distribution based on the mechanical 
properties of the structural material from which it is antici
pated future boost vehicles will probably be constructed.

Thé assumption that the failure of a cylinder under a

59
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bending load has the same statistical distribution as the 
mechanical properties of the material from which the cylinder 
is constructed is not as far fetched as it might first appear. 
The structural shell of a boost vehicle is often pre-loaded 
in tension by applying an internal pressure. The buckling of 
the cylinder wall is delayed because the applied stress must 
first overcome the pretension due to the internal pressure 
before going into a state of compression. If the internal 

pressure is high enough, then the mode of failure changes from 

à buckling of the cylinder wall to a tensile failure on the 

opposite side of the cylinder. This type of failure is di

rectly related to the ultimate tensile strength of the cylinder 

material. The ultimate tensile, tensile yield, and sometimes 

the compressive yield strengths are the mechanical properties 

data which are available in large quantities. It should be 
quite accurate to represent the failure of h i ^ l y  pressurised 
cylinders by the statistical distribution which best fits 
these mechanical properties data.

For nonpressurized and slightly pressurized cylinders 
a better choice would be the elastic modulus in place of the 
ultimate or yield strengths. Insufficient elastic modulus 
data at this time (less than two hundred) nullifies this ap
proach. Therefore it is suggested, that until a more accurate 
approach can be found or more elastic modulus data can be ob

tained, that the same statistical distribution be used for both 

pressurized and nonpressurized cylinders. It is also suggested
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that this distribution be selected based on the currently 
available mechanical properties data.

Mechanical Properties Test Results
The three materials selected for investigation were 

aluminum, magnesium, and titanium.

Aluminum
Although numerous tests of mechanical properties have 

been conducted on aluminum alloys, the vast majority of these 

tests were conducted by the aluminum producers at their own 

expense. These producers are most cooperative in discussing 

the results of these tests in general terms, but they are 

reluctant to disclose specific test results as they consider 
this as proprietary information. A  search of publications 

reveals only a very limited amount of test results of mechan

ical properties of the aluminum alloys. Thus the aluminu* 
alloys were discarded as a possible source of a large number 
of test results of mechanical properties.

Magnesium
Efforts to obtain test results data from the magnesium 

producers proved more productive. As a part of the quality 
control program one of the magnesium producers conducted tests 
on the mechanical properties and was willing to supply a copy 

of the results. The tensile ultimate, the tensile yield, and 

sometimes the compression yield strengths are recorded in
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class Intervals of one ksl. This procedure does not give the 
actual test result but only a one ksl range within which the 
result occurred. By assuming that all failures occurred at 
the mid point of the one ksi range, the mean and standard 
deviation of the entire sample can be calculated. For ap
proximately symmetrical data (symmetrical with regard to the 
mean) this assumption should have little effect on the ac
curacy of the mean value; however, the standard deviation will 
be larger than actual. Fortunately the error in the standard 
deviation will result in conservative structural reliability 
calculations. Since the error in the analysis of the lumped 
data is considered small and in view of the large sample size, 
it was decided to use these data to help select the statisti
cal distribution.

Titanium
A review of the published information on titanium 

alloy mechanical properties disclosed that the Department of 
Defense conducted a Titanium Alloy Sheet-Rolling Program which 
started in 1956 and ran for approximately five years. The 
major goal of this program was to accelerate the development 
of high strength, heat treated titanium sheet alloys for air
frame and missile applications. As a, result of this concen
trated effort, a large number of tests were conducted on the 
mechanical properties of titanium sheet. The majority of the 
test results from this program were obtained from three
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sources: 1) The Defense Metals Information Center, 2) Hie
Statistical Analysis Department of Battelle Memorial Insti
tute, 3) The Technical Information Systems Division of 
Belfour Engineering Company.

Several months were spent transcribing the mechanical 
properties to IBM cards. After the first month, the litera
ture search for mechanical properties was limited to four 
alloys:

1. 2.5 A1 - 16 V,
2. 4 A1 - 3 Mo - 1 V,
3. 6 A1 - 4 V,
4. 3 A1 - 13 V - 11 Cr.
These alloys were selected for two reasons: first,

the results of the DOD Titanium Alloy Sheet-Rolling Program 
indicated these alloys showed the most promise for aircraft 
and missile applications, second, there were more test results 
of mechanical properties available for these four alloys than 
any other titanium alloys.

These alloys were subdivided by heat treatment, tension 
or compression loading, grain direction, gage, and producer. 
Using the Kruskal-Wallis test and a significance level of 0.05, 
a check was made for significant difference between producers 
for one thickness gage, one grain direction, one method of 
loading, one heat treatment, and one alloy. If the Kruskal- 
Wallis test shows no significant difference, the data frcm the 
titanium producers were combined; if not, then the producer
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with the largest sample sise %ras used. The second step in 
this procedure was to compare the various gages and test for 
significant difference. In this case, however, if there was 
a significant difference the gage with mechanical properties 
data the farthest removed from the properties of the other 
gages Was discarded. The gages were discarded one gage at a 
time until the Kruskal-Vallis test showed no significant dif
ference in mechanical properties for the remaining gages. The 
third step was to compare the mechanical properties data for 
the two grain directions, longitudinal and transverse. If 
therg was no significant difference, the two grain directions 
Were combined; if not, both were kept separate. The final 
step in this procedure was to run the mechanical properties 
data on the goodness-of-fit computer program. All the ti
tanium strength data finally used in this study were contained 
in references (32) through (4?).

Selection of Strength Distribution 
The results.of the goodness-of^fit computer runs can 

be seen in Figures 4-1 through 4-26. A close examination of 
the results of magnesium alloy AZ 31B-H24 tested in the longi
tudinal grain direction shows these three sets of mechanical 
properties data (ultimate tensile strength, tensile yield 
strength, and compressive yield strength) are truncated at the 
guaranteed minimum value. A check with the magnesium producer 
disclosed that the following procedure was used in recording
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the results of the strength tests.

1. If a strength test resulted in a value below the 
guaranteed minimum, two additional tests were con
ducted on the same material. If both of these 
tests were above the guaranteed minimum value, the 
material was passed as acceptable but the test re
sult below the guaranteed minimum was discarded.

2. If one of the additional tests was above the guar
anteed minimum and one below, then two more tests 
were conducted.

3. If the two additional tests were both below the 
guaranteed minimum, the material was rejected and 
reprocessed.

In the third case, no error will result in this pro
cedure because this material was not to be shipped to industry 
for use and therefore should not be considered as a part of 
the statistical distribution of mechanical properties. The 
first case does result in error as the material shipped can 
actually have some parts of it below the guaranteed minimum, 
and the test that records this was omitted. If in the second 
case, further testing results in rejection of the material, 
all test results above the guaranteed minimum are recorded and 
they should be discarded. This procedure results in a large 
number of test data just above the guaranteed minimum value 
and none just below it. Since this is not a true representa
tion of the magnesium material which is shipped to industry.
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these three samples had to be discarded. This vas regrettable 
as this was a large combined sample of ^0,205 test results.

Examination of the remaining magnesium alloys and the 
titanium alloys disclosed nothing unusual, and these test 
results were accepted as typical.

In order to establish which of the four theoretical 
distributions gàve the best fit to the observed strength test 
results, the same procedure used in establishing the loads 
distribution was used; namely, the distribution which gave 
the best fit was assigned the number 1.0, and the distribution 
which gave the second best fit the number 2.0, etc. These 
assigned numbers were averaged to give an indication of the 
average rank of the various distributions. For the magnesium 
strength data and the Kolmogorov-Smirnov test, the averages 
of the ranks were:

Normal l.bO,
Log-Normal 1.95»
Weibull 2.65,
Double Exponential 4.00.
For the magnesium strength data and the Psi-Square 

test, the averages of the ranks were:
Log-Normal 2.00,
Normal 2.20,
Double Exponential 2.65»
Weibull 3.15.
The strength data, unlike the loads data, were from
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different size samples and require some weighting. All the 
magnesium samples sizes were within 75 of 700, ranging from 
638 to 775; except two samples 990 and 987. The samples close
to 700 were not weighted, but the two larger samples were

»weighted by 1.5 since they were approximately 1.5 times the 
. size of the other samples.

For the titanium strength data, a similar weighting 
was required. The titanium sample sizes also were grouped 
around 700, ranging from 619 to 776 with four exceptions:
97^; 984, 1866, and 1874. The samples near 700 were not 
weighted, but the 9?4 and 984 samples were weighted by 1.5 
and the 1866 and 1874 samples were weighted by 3.0. For the 
titanium strength data and the Kolmogorov-Smirnov test, the 
averages of the ranks were:

Normal I.60,
Weibull 2,29,
Log-Normal 2.32,
Double Exponential 3.79»
For the titanium strength data and the Psi-Square test, 

the averages of the ranks were:
Normal I.76,
Weibull 2.03,
Log-Normal 2.50,
Double Exponential 3.71.
Combining the magnesium and titanium results and 

weighting the titanium by 2.0 since the titanium sample size
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was approximately twice that of the magnesium (12,699 titanium 
to 6,881 magnesium), the Kolmogorov-Smirnov test gave the 
following averages of the rankss

Normal 1.53*
Log-Normal 2.20,
Weibull 2.4l,
Double Exponential 3.86.
For the Psi-Square test the following averages of the 

ranks were obtained:
Normal 1.91»
Log-Normal 2,33,
Weibull 2.40,
Double Exponential 3.36.
These results showed the same order of ranking by 

both the Kolmogorov-Smirnov and Psi-Square tests. % e  normal 
distribution gave the best fit to the observed strength data, 
with log-normal a second choice, Weibull a close third, and 
double exponential last.

A check for significant difference at the 0.05 level 
using the Kolmogorov-Smirnov test showed that although the 
Weibull distribution was the third choice of the distributions
only twice out of the 23 sets of strength data was a signifi
cant difference indicated. The normal distribution showed a 
significant difference three times, the log-normal six times, 
and the double exponential distribution showed a significant 
difference lU- out of the 23 sets.
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Thus the normal distribution Was selected as the one 

irtiich best represented the observed strength test results.

Metal Cylinder Test Results 
Non-Pressurized

A review of the published reports on bending tests 
conducted on metal cylinders disclosed that data are available 
for three materials: aluminum, steel, and brass. It is
doubtful that brass will ever be used as a structural material 
for a missile. The number of test results on brass is small. 
For these two reasons, brass was discarded.

Of the remaining 125 aluminum and steel test cylinders, 
25 were discarded because the L^/rt ratio is less than 100,

where L = length of cylinder,
r = radius of cylinder,
t = skin thickness of cylinder.

This was done so that the cylinders analyzed will have struc
tural parameters typical of present day missiles.

Following the procedure of Peterson (48) the aluminum 
and steel cylinder test results were plotted using as ordinate 
and abscissa the parameters obtained by small deflection 
theory (49). The cylinder-theory parameters used are:

abscissa = Z = (if/rt) (1 -
and 9 . 2ordinate = K = (<rtL )/(DTT),

where |i = Poisson*s ratio.
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O * -  critical compressive stress,
D = flexural stiffness = Et^/l2 (1 - 
E = Young's modulus.

Plotted on log-log graph paper, theoretically the data should 

form a straight line with a ^5 degree slope. The "least 

squares" straight line established by the IBM computer has a 

slope of 0.966, which indicates very good agreement with the 

theoretical slope of 1.000, note Figure 4-2?.
Peterson (48) showed that in addition to the two 

cylinder-theory parameters, the buckling is also a function of 

the r/t ratio. This fact is also supported by Batdorf (49), 
Harris (50) and others. Since the buckling coefficient K is 

a function of both Z and r/t, in order to evaluate the effect 
of r/t it was necessary to cross-plot K as a function of r/t 
for a constant value of the geometrical parameter Z. This 
was accomplished by constructing a line parallel to the 
established straight line and passing through the test point.
A value of Z equal to 1,000 was arbitrarily chosen, and a 
cross-plot of the projected values of K vs. r/t is shown in 
Figure 4-28. The idea of plotting K on a logarithmic scale 
and r/t on a linear scale was proposed by Harris (50) and 
Suer (51). Using the Kruskal-¥allis test and the curve fitting 

technique described in Chapter II, it was established that for 

both Figure 4-2? and 4-28 there was no significant improvement 
by using a third degree equation over the second degree equa

tion. Checking the aluminum test results with the steel test
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results and using the Kruskal-Vallis test disclosed a signifi
cant difference at the 0.05 level between the aluminum and 
steel. Therefore, the steel test results were omitted. The 
aluminum data used were obtained from references (48), (52), 
(53), and (54).

Pressurized
The pressurized cylinders are analyzed following the 

procedure of Lo (55)» Harris (50), and Suer (51)• The test 
data are plotted in terms of two nondimensional parameters;

p = (p/E) (r/t)2, and 
?»= (Ô /e ) (r/t), 

where p = the internal pressure.
One difference discovered in the results of Lo (55), Harris 
(50), and Suer (51) and the present report, is that the pre
vious investigators found that the scatter in test results 
was decreased when was used in place of y,

where A<^= y  - •

However, for this investigation less scatter was found by 
using 5'as shown in Figures 4-29 and 4-30. Unlike the unpres
surized data, the pressurized data are not affected by the r/t 
ratio. As in the unpressurized cylinder tests, a significant 
difference was found between the aluminum and steel test re
sults and, therefore, the steel data were omitted. The test 
data on pressurized aluminum cylinders used in this report 
were obtained from reference (53).
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Allowable Bending Moment of Cylinders 

In the previous sections, the strength of circular 
cylinders has been investigated in terms of buckling or crip
pling stresses. The applied loads are given in terms of an 
equivalent bending moment. In order to compare the loads and 
strengths, they must be given in the same units. In this 
case, it was decided to convert the strength of the cylinders 
from buckling stresses to allowable bending moments. Using 
the classic bending equation, one obtains the bending moment 
in terms of the extreme compression fiber stress;

U-= M r/l, 
where critical buckling stress,

M = bending moment, 
r = radius of the cylinder,
I = moment of inertia.

For circular sections with the wall thickness very small com
pared to the radius, the moment of inertia is given by:

I = TTr] t.
Substituting into the classic bending equation one obtains:

~0-= M/ (W r^ t).
The critical buckling stress is related to the buckling coef
ficient K, by the equation given in references (48) and (49);

0-= E (t/L)2
12 (1 - p2)

Combining with the above equation and solving for the bending
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moment, one obtains:

N  = K E t^
12 (1 - m2) \? .
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CHAPTER V

STRUCTURAL REUABILITY’
Introduction

Structural reliability will be defined here as the 

probability of the strength, as determined according to Chapter 
IV, being greater than the loads, as determined according to 
Chapter III. This probability will be calculated using two 
different methods. The first method for the calculation of 
structural reliability will use the double exponential dis
tribution for the applied loads and the normal distribution 
for the stréngth. These two distributions gave the best fit 
to the loads and strengths data as shown in the previous 

chapters. Although these two distributions gave the best fit, 

a check for signifient difference at the 0.05 level using the 

Kolmogorov-Smirnov test indicated no significant differences 

between the loads and strengths data and all four theoretical 

distributions for a majority of the data examined. Therefore, 

the calculation of structural reliability by different distri

butions will be used for the second method. For ease of cal

culation, the second method for the calculation of structural 
reliability will assume that both the applied loads and the 

vehicle strength are normally distributed.
104
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Load Double Exponential and Strength Normal

Since both the double exponential and the normal dis

tributions are of the exponential type difficulties are en? 
countered trhen one attempts to Integrate these distributions.

In order to calculate the structural reliability using these 

distributions, the following numerical integration process was 
developed.

Referring to Figure 5-1» the probability of a strength 
occurring between and Xg is equal to the probability of a 
strength occurring between negative infinity and Xg minus the 
probability of a strength occurring between negative infinity 
and X^. Loads less than X^ will not cause failure. Loads 
between X^ and Xg will cause failure of some » and loads greater, 
than Xg will cause failure of all of the strengths between X^ 
and Xg. The location between X% and Xg for the loads causing 
failure is considered to be a second order magnitude factor 
and has been selected for convenience as half way between X^ 
and Xg and is called X^. For this analysis all loads less than 
X^ are considered not to cause failure, and all loads greater 
than X^ are considered to cause failure of all strengths be
tween X^ and Xg. Since the load and strength distributions 
are considered independent, the probability that a structural 
failure will occur between X2 and Xg is the product of the 
probability that the strength will be between X^ and Xg, and 
the probability that the load will be greater than X3. The 
total probability of structural failure is the sum of all the
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products for X on the interval ( + •  ). In actual prac

tice X is not taken to positive infinity, instead it is 

taken to a sufficiently large value so that the desired ac

curacy is obtained. This numerical integration process can 

be applied to any pair of distributions; the only limitation 
being that the probabilities of the distributions separately 

must be calculatable. An example of this number!cal inte
gration process is presented in the structural reliability 
example.

Load and Strength Both Normal 
Given normal probability density functions of strength 

Pg and load p^ a third normal probability density of failure 
P|» will be defined by:

Pf = Ps " Pl 
idiere p^ = 1 exp C-i [(X, - x^)rssf).

ss

and S is the sample standard deviation, X is the sample mean 

and the subscripts S and L refer to strength and load respec
tively.

Hoel (56) has shown that if pg and pĵ  are normally 
and independently distributed then pf = pg - pĵ  is noneally 
distributed, and

%  = > Xl
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s? = *5 * •
Therefore, the probability density of failure is:

i2.
Pf =

*f
Failure is defined here as any condition where the

o

load is greater than the strength, that is, when (S-L) is 
less than zero. Therefore, the probability of failure may be 
obtained by integrating over the negative range of p^.

Pf = “t  exp(-|[(X^ - Xf )/Sf Ÿ )
)2(2*!T:

let t = (X^ - 5Cf)/S^ = Xf/S^ - Xf/Sf 

dt = dx/S|. dx = dt

at X = 0 t = (0 - Xf)/Sf = - Xf/Sf

at X*^ - ** t “

p , .  e - » * ' a t
^ (2 ir)^

structural Reliabilitv Examples 

First Example
For the first example the loads were taken for vehicle 

C at the combined locations of Denver and International Falls.
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Thus

5^ “ 190,670 inch pounds,

= 355,046 inch pounds.

The Missile in this example is unpressurised and con
structed of 2024-T3 aluminum alloy with

a radius equal to 100 inches, 
a length between bulkheads of 100 inches, 
and a skin thickness of 0.100 inches.

The problem is to solve for the structural reliability,

Solution
For 2024-T3 aluminum alloy, reference (57) gives a 

value of Young's Modulus of 10,700,000. In reference (58) 
a value of 0.33 is given for Poisson*s Ratio. Following the 
procedure described in the previous chapter, the distribution 
of the buckling coefficient K is calculated for non
pressurised aluminum cylinders. The following results were 
obtained:

K = 369.96,:
Sg = 50.7157,

Using the allowable bending moment equation from the 
previous chapter,

M = K E t^ r^
12 (1 - ^2)

one obtains an average and standard deviation of the moment by
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substituting in the average and standard deviation of the 
buckling coefficient.

Thus

X = K (10.700.000) (0.1)^ (100)^
^ 12 (1 - 0.33^) (100)2

Xg = 27,648 K,

and

Sg = 27,648 S^.

Substituting in the values for K and Sg one obtains -

Xg = 27,648 (369.96) = 10,228,700,

and

Sg = 27,648 (50.7157) = 1,402,200.

Assuming the loads are double exponentially distri
buted and the strengths are normally distributed, one obtains 
the structural reliability by the following numerical inte
gration process.

The double exponential distribution, like the normal, 
is a two parameter distribution. The parameters are u and v , 

and are related to the mean and standard deviation by the fol

lowing equations:
u = X - 0.450053s and v = 0.779697S.

*In reference (11) this parameter is given as l/a.



110
For vehicle C loads: 

u = 5 ,190,670 - 0.450053 (355,046) = 5,030,880 
and V = 0.779697 (355,046) = 276,828.

The parameter u in the double exponential is similar 
to X in the normal distribution in that when both distribu
tions are transformed to their simpler forms, these two param
eters are the location of the zero point on the abscissa of 
the probability density function. The parameter v is similar 
to S in that S is the unit division of the abscissa of the 
probability density function for the normal distribution and 
V is the unit division of the abscissa of the probability 
density function for the double exponential distribution.

For the numerical integration a common reference 
point and common strip widths must be established for the two 
distributions. All of the strip widths will be the same size 
except the first. This first strip will start at negative 
infinity and be as wide as possible and still maintain the 
desired accuracy. Examination of the cumulative probability 
table for the double exponential distribution, given in ref
erence (11), shows that the point -2.5v, the probability is 
0.999995 that the loads will be greater than this value. Thus, 
it would be conservative to say that all strengths less than 
this value fail, and the conservative error would be less than 
0 .000005. The point -2.5v will be taken as the reference 
point and the first strip width will be from negative infinity 
to this reference point. All other strip widths are taken as
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0. 1 t .

For this numerical example the reference point is:
R.P. = u - 2.5t = 5,030,880 - 2.5 (276,828) = U,338,810.

In terms of the number of stwdard deviations from 
the mean for the strength:
t= (R.P.-Xg)/Sg = (4,338,810 - 10,228,7bO)/l,402,200 = -4.2004?. 

Ihe strip widths are:
S.¥. = O.Iv = 0.1 (276,8?9) = 27,683..

In terms of the standard deviations of the strength 
the width is:

S.W./Sg = 27,683/1,402,200 = 0.01974.
__ With the reference point and strip widths established. 

Table 5-1 is constructed to give the structural reliability. 
Column 1 is the number of standard deviations from the mean 
value of the strength data beginning with t and subtracting 
S.W./Sg each time. This gives the locations of and X2 
sho%m in Figure 5-1. In this step by step procedure, for the 
first step, the first number in Column 1 is X^ and the second 
number is X£. In the second step the second number in Column 
1 is X^ and the third is X£. Column 2 is determined from 
normal probability tables for the locations given in Column 1. 
Column 3 is the difference of consecutive probabilities given 
in Column 2 and thus represent the probability that a strength 
will occur between the X^ and Xg locations given in Column 1.
In terms of load data the locations of Xj and Xg are given as 
-2.5v, -2.4v, -2.3v, -2.2v, etc. Thus, in terms of the loading
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values, the location of is given by -2.45v, -2.35v, -2,25v, 
-2,15v, etc. Column 4 gives the probability that the loads 
will be greater than the X^'s given above. These probabili
ties were obtained from the double exponential probability 
table contained in reference (11). Column 5 is the product 
of Column 3 and Column U and thus represents the probability 
that a strength will occur between^ X^ and X2» and simulta-* 
neously the load will be greater than X*j and therefore result 
in a structural failure. The sum of Column 5 is the total 

probability of structural failure P^,

Assuming both loads and strengths are normally dis

tributed one obtains:

Xf = Xg -  Xl  = 1 0 , 2 2 8 , 3 4 9  -  5 , 1 9 0 , 6 7 0  = 5 , 0 3 7 , 6 7 9

and

s| = sf + s£ = (1,402,165)^ + (355,046)'^

= 1,446,418.

The structural reliability is equal to 1 - P^ and

«■f = — i-r- J.» dt,(2ir)2

and -Xf/Sf = -5,037,679 / 1,446,418 = -3.48287.

Using these limits and checking normal probability tables one 
obtains a structural reliability of 0.999748.
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Other Examples 

Missiles were also designed for the loads of vehicle 
B, vehicle D, vehicle E, and vehiùle F. The missile radii 
were selected such that the wall thicknesses for all vehicle 
loads would be approximately the same. The resulting wall 
thicknesses for various structural reliability levels for 
both methods of calculation are shoum, in Figure 5-2, Figure 
5-3 shows the percentage difference between the two methods 
of calculation. The maximum difference in wall thicknesses 
for the two methods of calculation is 7.6 per cent for 
vehicle B at a probability level of 0.999999» It should 
be noted that as the structural reliability level decreases 
the difference between the two methods of calculation de
creases. It should also be noted that the assumption that 
both loads and strengths are normally distributed results 
in unconservative wall thickness when compared to the other 
method.
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ERROR IN ASSUMING LOADS ARE NORMALLY DISTRIBUTED
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1 COL. 1.
-«i

COL. 2. COL. 3. COL. 4. COL. 5 !1
i -0.; -4.20046997 
‘ -4.18072796

1.00000000
0.99998659
0.99998537

0.00001341
0.00000121
0.00000132

0.999990720.99997206
0.99992422

0.00001340 : 
0.00000121 : 
0.0000013L

-4.16098595
-4.14124393

0.99998406 
0.99998263 0.#99*8108

0.00000143
0.000001550.00000168

0.99981308
0.99957690
0.99911390

0*00000142 
0.00000154 , 
0.00000168 1!-4.10175991 

; -4.08201790 
;-4.06227589

0.99997939
0.99997757
0.99997558

0.00000183
0.00000198
0.00000214

0.99827031
0.99683182
0.99452178

0.00000182 ! 
0.00000197 i 
0.00000212

i-4.04253387 
1-4.02279186 
{-4.00304985

0.99997345
0.99997112
0.99996861

0.00000232
0.00000251
0.00000271

0.99100842
0.98592157
0.97887763

0.00000230 i 
0.00000247 ; 
0.00000265

i-3.98330784 
1-3.96356583 
1-3.94382381

0.99996590
0.’99996296
0.99995977

0.00000294
0.00000318
0.00000343

0.96950951
0.95749743
0.94259645

0.00000285 
0.00000304 : 
0.00000323

{-3.92408180 
-3.90433979 
1-3.88459778

0.99995634
0.99995263
0.99994862

0.00000371
0.00000401
0.00000433

.0.92465728 
0.90363819 
0.87960758

0.00000343
0.00000362
0.00000381

-3.86485577
-3.84511375
-3.82537174

0.99994429
0.99993962
0.99993458

0.00000467
0.00000504
0.00000543

0.85273767
0.82329119
0.79160320

0.00000398 r 
0.00000415 1 
0.00000430 !

-3.80562973
-3.78588772
-3.76614571

0.99992914
0.99992329
0.99991697

0.00000586
0.00000632
0.00000679

0.75806031
0.72307949
0.68708813

0.00000443 i
0.00000457
0.00000466

;-3.74640369 
I-3.72666168 
<-3.70691967

0.99991018
0.99990285
0.99989497

0.00000732
0.^0000788
0.00000848

0.65050662
0.61373400
0.57713725

0.00000476 
0.00000484 ; 
0.00000489

j-3.68717766 
-3.66743565 
-3.64769363

0.99988649
0.99987738
0.99986757

0.00000911 
- 0.00000980 
0.00001054

0.54104380
0.50573716
0.47145532

0.00000492 : 
0.00000495 
0.00000496 •

-3.62795162
-3.60820961
-3.58846760

0.99985704
0.99984572
0.99983357

0.00001132
0.00001215
0.00001305

0.43839113
0.40669438
0.37647501

0.00000495 
0.00000494 : 
0.00000491

-3.56872559
-3.54898357
-3.52924156

0.99982052
0.99980653
0.99979152

0.00001399
0.00001501
0.00001609

0.34780706
0.32073297
0.29526801

0.00000487 
0.00000481 ■ 
0.00000475

i-3.50949955 
-3.48975754 
•-3.47001553

0.99977542
0.99975818
0.99973969

o.ooor1725 
0.00001848 
0.00001979

0.27140462
0.24911650
0.22836239

0.00000468 1 
0.00000460 i 
0.00000452

-3.45027351 
i-3.43053150 
-3.41078949

0.99971990
0.99969872
0.99967605

0.00002118
0.00002267
0.00002424

0.20908936
0.19123589
0.17473433

0.00000443 . 
0.00000433 : 
0.00000423

-3.39104748
-3.37130547
-3.35156345

0.99965180
0.99962588
0.99959816

0.00002593
0.00002772
0.00002961

0.15951315
0.14549865
0.13261652

0.00000414
0.00000403
0.00000393

Table 5-1
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-3.33182144 0.99956855 0.00003162 0.12079301 0.00000381
-3.31207943 0.99953693 0.00003376 0.10995583 0.00000371 i
-3.29233742 0.99950317 0.00003602 0.10003487 0.00000360 ;
-3.27259541 0.99946715 0.00003843 0.09096275 0.00000349 !
-3.25285339 0.99942872 0.00004098 0.08267516 0.00000338 1-3.23311138 0.99938774 0.00004368 0.07511114 0.00000328 '
-3.21336937 0.99934406 0.00004654 0.06821320 0.00000317
-3.19362736 0.99929752 0.00004958 0.06192736 0.00000307
-3.17388535 0.99924795 0.00005277 0.05620316 0.00000297
-3.15414333 0.99919517 0.00005617 0.05099361 0.00000286
-3.13440132 0.99913900 0.00005975 0.04625501 0.00000276 :
-3.11465931 0.99907925 0.00006354 0.04194698 0.00000266
-3.09491730 0.99901571 0.00006755 0.03803214 0.00000256: -3.07517529 0.99894816 0.00007177 0.03447606 0.00000247
-3.05543327 0.99887639 0.00007624 0.03124706 0.00000238
. -3.03569126 0.99880014 0.00008095 0.02831603 0.00000229 i
; -3.01594925 0.99871919 0.00008591 0.02565630 0.00000220 '
-2.99620724 0.99863328 0.00009115 0.02324338 0.00000212
:-2.97646523 0.99954213 0.00009667 0.02105495 0.00000203
-2.95672321 0.99844546 0.00010248 0.01907054 0.00000195 .
-2.93698120 0.99834298 0.00010859 0.01727151 0.00000187 :
-2.91723919 0.99823438 0.00011504 0.01564083 0.00000180 ,
-2.89749718 0.99811935 0.00012181 0.01416301 0.00000172 *
-2.87775517 0.99799754 0.00012893 0.01282390 0.00000165 I
-2.85801315 0.99786860 0.00013641 0.01161066 0.00000158 i
;-2.83827114 0.99773219 0.00014428 0.01051158 0.00000151 •
;-2.81852913 0.99758791 0.00015254 0.00951606 0.00000145 ;
; -2.79878712 0.99743538 0.00016120 0.00861439 0.00000139 1
: -2.77904510 0.99727418 0.00017029 0.00779783 0.00000133 i
-2.75930309 0.99710388 0.00017983 0.00705840 0.00000127
-2.73956108 0.99692406 0.00018982 0.00638885 0.00000121 ;
;-2.71981907 0.99673424 0.00020029 0.00578263 0.00000115
-2.70007706 0.99653395 0.00021126 0.00523380 0.00000110 !

1 -2.68033504 0.99632269 0.00022274 0.00473692 0.00000105 1
: -2.66059303 0.99609996 0.00023475 0.00428710 0.00000101 1
>' -2.64085102 0.99586521 0.00024731 0.00387992 0.00000095 !
-2.62110901 0.99561790 0.00026045 0.00351135 0.00000091 i
-2.60136700 0.99535745 0.00027417 0.00317774 0.00000086 r

i -2.58162498 0.99508327 0.00028850 0.00287577 0.00000083 :
-2.56188297 0.99479477 0.00030348 0.00260247 0.00000079 :
r-2.54214096 0.99449129 0.00031909 0.00235510 0.00000075 -
-2.52239895 0.99417220 0.00033539 0.00213122 0.00000071 !
-2.50265694 0.99383681 0.00035237 0.00192860 0.00000068 j
i-2.48291492 0.99348444 0.00037008 0.00174523 0.00000064 1
-2.46317291 0.99311437 0.00038851 0.00157929 0.00000061 -
 ̂-2.44343090 0.99272586 0.00040771 0.00142911 0.00000058 ;
; -2.42368889 0.99231815 0.000427-70 0.00129320 0.00000055
-2.40394688 0.99189045 . 0.00044848 0.00117020 0.00000052
-2.38420486 0.99144197 0.00047009 0.00105891 0.00000049 ,
-2.36446285 0.99097188 0.00049256 0.00095818 0.00000047
! -2.34472084 0.99047932 . 0.00051589 0.00086705 0.00000045 :

Table 5-1 (Continued)
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-2.32497983 0.98996343 0.00054012 0.00078458 0.00000042 '
-2.30523682 0.98942330 0.00056527 0.00070994 0.00000039
-2.28549480 0.98885804. 0.00059136 0.00064240 0.00000037 >
;-2.26575279 0.98826668 0.00061841 0.00058129 0.00000036 :-2.24601078 0.98764827 0.00064644 0.00052599 0.00000034 !
T*.22626877 0.98700183 0.00067548 0.0004759C _J).00000032
-2.20652676 0.98632634 0.00070556 0.00043066 0.00000030
-2.18678474 0.98562078 0.00073668 0.00038968 0.00000028-2.16704273 0.98488410 0.00076889 0.00035261 0.00000027
;-2.14730072 0.98411521 0.00080217 0.00031907 0.00000025
-2.12755871 0.98331304 0.00083659 0.00028870 0.00000024 :
<-2.10781670 0.98247645 0.00087213 0.00026124 0.00000022
j-2.08807468 0.98160432 0.00090883 0.00023638 0.00000021
' -2.06833267 0.98069549 0.00094671 0.00021389 0.00000020
:-2.04859066 0.97974879 0.00098578 0.00019353 0.00000019 i
'-2.02884865 0.97876301 0.00102606 0.00017512 0.00000018
: -2.00910664 0.97773695 0.00106757 0.00015847 0.00000016 ;
; -1.98936462 0.97666938 0.00111033 0.00014338 0.00000016
-1.96962261 0.97555905 0.00115436 0.00012974 0.00000015 !
;-1.94988060 0.97440469 0.00119966 0.00011740 0.00000013 !
■ -1.93013859 0.97320504 0.00124625 0.00010622 0.00000013 1
-1.91039658 0.97195879 0.00129414 0.00009612 0.00000012 i
; -1.89065456 0.97066465 0.00134336 0.00008697 0.00000011 '
-1.87091255 0.96932129 0.00139389 0.00007869 0.00000010 !

i -1.85117054 0.96792740 0.00144579 0.00007121 0.00000010 1
!-1.83142853 0.96648160 0.00149900 0.00006443 0.00000009 !
;-1.81168652 0.96498260 0.00155360 0.00005831 0.00000009 1
;-1.79194450 0.96342900 0.00160954 0.00005275 0.00000008 1
i -1.77220249 0.96181946 0.00166684 0.00004774 0.00000007 ;
-1.75246048 0.96015262 0.00172551 0.00004320 0.00000007
j-1.73271847 0.95842711 0.00176557 0.00003909 0.00000007
:-1.71297646 0.95664154 0.00184696 0.00003536 0.00000006 :
-1.69323444 0.95479458 0.00190976 0.00003201 0.00000006
-1.67349243 0.95288482 0.00197392 0.00002895 0.00000005
■ -1.65375042 0.95091090 0.00203940 0.00002620 0.00000005 :
-1.63400841 0.94887149 0.00210627 0.00002371 0.00000004 '
-1.61426640 0.94676522 0.00217447 0.00002146 0.00000004 :
-1.59452438 0.94459075 0.00224403 0.00001942 0.00000004 i
-1.57478237 0.94234673 0.00231487 0.00001757 0.00000004
-1.55504036 0.94003186 0.00238703 0.00001590 0.00000004 !
-1.53529835 0.93764482 0.00246052 0.00001438 0.00000003
•-1.51555634 0.93518431 0.00253522 0.00001301 0.00000003
-1.49581432 0.93264909 0.00261121 0.00001177 0.00000003
-1.47607231 0.93003788 0.00268842 0.00001065 0.00000002
;-1.45633030 0.92734946 0.00276684 0.00000964 0.00000002
-1.43658829 0.92458262 0.00284641 0.00000873 0.00000002 i
-1.41684628 0.92173621 0.00292716 0.00000790 0.00000002 :
-1.39710426 0.91880905 0.00300905 0.00000715 0.00000001
-1.37736225 0.91580000 0.00309198 0.00000647 .0.00000001
-1.35762024 0.91270802 0.00317594 0.00000586 0.00000001
-1.33787023 0.90953208 0.00326099 0.00000529 0.00000001 :

Table 5-1 (Continued)
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CHAPTER VI 

COICUI5ICHIS AMD RECOMMENDATIONS

The following conclusions were reached as a result of 
this study:

1). The distribution of maximum bending load on a 
vertically rising vdiicle is best represented by the double 
exponential distribution,

2}. The distribution of strengths is best represented 
by the normal distribution,

3). There is a signifient variation in structural 
reliability for one of tiie five examples depending on which 
theoretical distributions are used in the calculations,

4). It is concluded that for structural reliability 
calculations it should be assumed that the loads are double 
exponentially distributed and strengths are normally distri
buted.

It is recommended that additional investigations be 
conducted on structural cylinders to determine a more ac
curate method of combining axial and bending stresses.
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