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PREFACE 

Single sensors were investigated in the past for their potential for monitoring drill 

wear. Since, signals from different sensors may capture wear differently at different stages 

of its life, sensor fusion concept using multiple sensors was advanced recently. In this 

investigation, this concept was explored in drilling using four sensors, namely, thrust, 

torque, and strains in the X-direction (along the cutting process) in the Y-direction 

(perpendicular to the axis of the drill) on the table of a CNC milling machine. The signals 

were analyzed in the time and frequency domains. In the time domain mean and variance 

and in the frequency domain power spectral density (PSD) of sensor signals were 

calculated. For the calculation of PSD periodogram averaging, proposed by Bartlett and 

improved by Welch, was used. All sensor signals were sampled during the period when 

the industry recommended cutting speed and feed were used. For accelerating drill wear, 

the cutting speed was increased to twice the recommend speed. 

The Power Spectral Density (PSD) of sensor signals showed good correlation with 

drill wear while in the time domain no significant changes in mean and variance of sensor 

signals between a sharp and worn tool were found. Normalized PSD diagrams of each 

sensor signal indicated that the parameters of the drilling process did not change and the 

only parameter that might change was the gain of the system. Also, the signal-to-noise 

ratio analyses in the frequency domain at different states of drill wear indicated that as the 

drill wear increases the noise also increases. Three pattern classification techniques used in 

neural networks, namely, clustering, mapping, and decision surfaces were examined. It 

was shown that when noisy sensor signals were integrated (instead of using one sensor 

signal), using a neural network based the above techniques, it may actually result in the 
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deterioration of the correct classification or estimation of drill wear. Consequently, it 

appears that integration of the sensor signals under these conditions may not be appropriate 

and/or advantageous. 
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CHAPTER I 

INTRODUCTION 

Metal cutting is one of the most important manufacturing processes. Its importance 

can be realized when one considers the total share of this activity in the national economy. 

In the United States, the yearly cost associated with the material removal process has been 

estimated at about 10% of total gross national product (GNP) [1]. According to Metcut 

Research Associates [2], the total annual labor and overhead costs of operating metal 

cutting machine tools in the United States, in 1984, was estimated to be approximately 125 

billion dollars. To reduce these costs considerable efforts have been centered around 

automation of the metal cutting processes in the United States as well as in other countries. 

The traditional symbol of automation is mechanized transfer line. Chronologically, 

this was the first example of automated production to appear. Its origins can be traced 

largely to the work of Henry Ford in the manufacture of automobiles. In his efforts to 

improve the methods of automobile manufacture for reduced cost, he achieved such 

significant advances in assembly line mass-production techniques that the feasibility and 

potential of these methods were not only demonstrated but became a model to the rest of the 

industry. This in tum, led to subsequent developments of fully automated transfer lines. 

After the introduction of digital computers to manufacturing processes, new terms, 

like numerical control (NC), computer aided manufacturing (CAM) became a common 

usage to describe automation technology. Old words, such as mechanization have virtually 

disappeared from the technical vocabulary. Modem definition of automation, according to 

Groover [3] is the technology concerned with the application of complex mechanical, 

electronic, and computer-based systems in the operation and control of production. 
11, 
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Application of digital computer to metal cutting operations dates back to 1952, 

when the first NC machine tool was introduced [4]. Since then, the cost of 

microprocessors has decreased dramatically at the same time their computational power has 

increased significantly. In addition, the development of powerful but small size DC 

motors, led to in the reduction in the size of CNC machine tools. Inexpensive but powerful 

microprocessors and DC motors have contributed toward the development of industrial 

robots also. A combination of CNC machine tools, industrial robots, and other necessary 

automated systems has created a new production system known as flexible manufacturing 

systems (FMS). Although, the primary objective of FMS is batch production, 

advancements in this area can lead to economical mass-production of mechanical parts, 

which are produced by the traditional transfer lines. 

Probably the biggest obstacle in the path of successful FMS is its dependence on 

unattended machining. FMS provides flexible automation for the production of different 

parts i.e., it is aimed at handling manufacturing of small lot, random shaped parts. Such a 

manufacturing practice can involve many unexpected problems, such as, random breakage 

of tools that hamper attempts at untended machining. Lack of adequate solutions to these 

problems are due to inadequate knowledge regarding the cutting process. In fact, we are 

far from a quantitative description of the complex machining process since the introduction 

of a theoretical model by Merchant some fifty years ago. Even today, the basic theory 

developed by Merchant [5] is invoked while addressing the cutting process. 

Tool wear and tool breakage, for example, are some of the important aspects of the 
. •, 

cutting process that are not well understood. The extent of tool wear has a strong effect on 

the surface finish and dimensional accuracy of the workpiece as well as on the machine tool 

vibration. Tool wear may lead to catastrophic failure of the tool as a result of high forces 

and this may fmally damage the machine tool itself. Therefore, accurate monitoring of the 

tool condition and identification of the state of tool wear are important problems in 

machining, solutions to which can prevent unexpected events. Information regarding tool 
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condition is very important for a decision making system. The decision making system 

may be designed to optimize the cutting process by maximizing the metal removal rate 

(MRR) and minimizing the machine downtime (nonproductive time of machine). 

Downtime of a typical transfer line is about 25 to 35% of the total available time for 

production. Down time due to tool failure is estimated at a third of the total downtime [6]. 

In unmanned machining systems, the knowledge-base of an experienced human 

operator is transferred to a computer that monitors and controls the process. Sensors are 

devices that provide the required information regarding the ongoing process for a 

computerized monitoring system. Sensors, on one hand, should be accurate enough to 

gather reliable information and on the other be rugged enough to withstand harsh 

machining environment. The machine tool monitoring and control system must be able to 

interpret the received information and identify the relation between the sensor signals and 

such parameters as tool wear and breakage, surface finish, state of vibration etc. Success 

with such unmanned machining will depend to a large extent on the development of 

machine tool monitoring and control system involving adequate sensory devices [7]. 

Tool failure is a sudden event, which needs to be forecasted sufficiently in advance, 

so as to prevent any major damage to the workpiece and even to the machine tool. In 

contrast, tool wear is a slowly evolving phenomenon, and can be detected and identified by 

one or more sensor signals. For example, force, accelerometer, and acoustic emission 

(AE) sensors are some of the common sensors that have been investigated for monitoring 

the cutting process. Excellent reviews of tool wear sensors can be found in Micheletti [8] 

and Tlusty et al [9]. In the literature, the sensor signals are correlated more to the 

secondary p~eters, such as shear-plane angle, chip-tool contact length, effective friction 

coefficient over the chip-tool contact area, the chip width etc. These parameters in turn are 

related to primary parameters, such as cutting speed, feed rate, and depth of cut using 

simple analytical models (for example, Merchant's [5] model). Due to the difficulties 

involved in the cause and effect relationships, no sufficiently accurate model was developed 
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thus far that enables the identification of the nature and location of the tool wear from a 

sensor signal. 

The complexity of the machining process and the lack of sufficiently accurate model 

have led many researchers to seek alternate methods, such as pattern recognition techniques 

or artificial neural networks. Artificial neural networks mimic the computational 

architecture of a human brain in a crude way with a prespecified structure, have been 

successful in modeling many systems. Similar to a human brain, artificial neural network 

can receive signals from different sources (sensors). It is expected that this technique can 

integrate different sensor signals, remove irrelevant information, and use the most 

correlated ones during the learning process, similar to a human brain. The effort was 

aimed at investigating the feasibility of an artificial neural network to represent relationships 

between sensor signals and tool wear, surface finish, and component of cutting forces in 

turning. A hierarchically structured artificial neural network is commonly used to establish 

these relationships. 

Kannatey-Asibu [10] explored the possibility of using pattern recognition technique 

for monitoring the condition of the tool in a cutting operation using acoustic emission 

sensing as a specific example. Dornfeld and Pan [11] used the event rate of the RMS of an 

AE signal along with the feed rate and cutting velocity in order to provide a decision on the 

chip form produced during a turning operation. Emel and Kannaty-Asibu [12, 13] used 

spectral features of an AE signal to classify fresh and worn tools. Back-propagation type 

neural network was used by Rangwala and Dornfeld [ 14, 15] for the classification of tool 

wear. Selected bands of the force and AE spectrum were used as inputs to the network and 

a high level of accuracy was reported in detecting tool wear. 

Drilling is a common metal cutting operation. Estimates show that drilling accounts 

for nearly 40% of all the metal removal operations in the aerospace industry [16]. Drilling 

operation is conducted on a wide variety of machine tools including drilling machines, 

machining centers, milling machines, turning machines, and boring machines. Downtime 
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due to drill breakage is critical in the economics of the drilling operation. Breakage of a 

drill inside a hole can result in the part being rejected or in costly repair. 

The objective of this investigation is to analyze the correlation between the four 

sensor signals, namely, thrust, torque, and strains on the machine table in the cutting 

direction (X-direction) and perpendicular to axis of the drill (Y -direction), in both 

frequency and time domains. Background information on the drilling process is presented 

in Chapter IT. This includes the development of the relationships between various angles of 

the drill and the drilling parameters by comparing drilling process to oblique cutting. 

Review of literature , chiefly that of Soderberg et al [17], Kanai and Kanda [18] and 

Thangaraj and Wright [19], indicates that corner (margin) wear is the best criterion for 

monitoring drill wear and life. A review various techniques for monitoring drilling in 

particular and other cutting processes in general is also given in this chapter. 

In Chapter Ill, a review of the parameter estimation and pattern recognition and 

their application to metal cutting is given. The neural network techniques used for pattern 

recognition proposes are classified into the following three categories. They are: pattern 

classification using mapping, clustering, and decision surfaces techniques. 

A theoretical review of spectral estimation is given in Chapter IV. Periodogram, 

which is the square of the absolute of the Fourier transform, is a biased estimate of power 

spectral density (PSD) and its variance at each frequency is of the same order as its mean at 

the same frequency. It was shown that variance at each frequency may be reduced using 

either Bartlette or Welch methods. 

In Chapter V experimental results of this investigation are presented. Sensor 

signals in the time domain did not show good correlation with drill wear. PSD of the 

sensor signals for all four sensor signals as well as the signal to noise ratio at each 

frequency are all calculated. The frequencies with maximum signal-to-noise ratio were 

selected. PSD of three sensor signals, thrust, torque, and strain in the X-direction 
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independently showed good correlation with drill wear. The correlation between strain in 

the Y -direction and tool wear was not as good as the other sensor signals. 

Chapter VI deals with sensor integration techniques. It was shown that in the 

frequency domain, any two frequencies from one sensor or between two different sensors 

are uncorrelated. Signal to noise ratio analysis showed that noise increases with increase in 

drill wear. The integration of these uncorrelated noisy signals was investigated and 

concluded that sensor integration results in the deterioration of the drill wear estimation 

under the conditions of testing used. 



CHAPTER II 

LITERATURE REVIEW OF THE DRILLING PROCESS 

The performance of a cutting tool is determined by the intensity of wear experienced 

by the tool in the removal of a certain amount of the work material within a given time. 

Hence, in order to determine the tool performance, it is necessary to monitor its wear while 

cutting is in progress. A reliable method of tool wear estimation/tool failure prediction is 

necessary, if damage to the machine and parts is to be avoided. Moreover, in an 

unattended machining environment, an effective control scheme or a monitoring strategy is 

necessary in the optimization of cutting conditions and in the prediction of the failure under 

a given set of operating conditions. 

In recent years, research towards an understanding of the drilling process has 

established useful drill wear criteria [17, 18, 20, 21]. However, direct measurement of 

drill wear is not possible while cutting is in progress because the tool surfaces that are 

wearing out are hidden either by the workpiece or by the chip that is being produced. So, 

researchers have resorted to indirect means of measurement. Factors that are associated 

with the process, such as cutting forces, vibration, sound etc. have been used in the 

monitoring of drill wear [6, 22, 23, 24] with limited success. 

2.1 Cutting Process in Drilling 

Drilling is a metal removal process for producing holes in components. The 

process involves feeding a rotating cutting tool along its axis into a stationary workpiece. 

A circular hole is therefore generated in the workpiece. The feed velocity (or feed rate) is 

usually small compared to the peripheral velocity of the drill. While precision work can be 

7 
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conducted using a drill under very specified conditions, drilling is generally considered a 

roughing operation and the primary items of interest are usually long life and high 

penetration rate. In many, cases drilling is a preliminary operation to reaming, boring or 

grinding where final finishing and sizing takes place. 

Figure 2.1 gives the geometrical specification of a twist drill. Cutting occurs on the 

straight edges (lips) and on the chisel edge at the tip of the drill. Distance between the 

straight cutting edges, called the web thickness, is necessary to protect the drill point and to 

stiffen the drill. The chips generated at the cutting edge travel up the drill axis along the 

flutes. It is important to realize that no cutting occurs at the drill periphery, except near the 

outer corner, which corresponds to the secondary or end cutting edge of a lathe tool. In 

order to reduce frictional forces between the drill and the hole, the drill diameter is 

decreased over a portion of its circumference leaving a short land or margin at the full 

diameter to support the drill against the hole. It is also found necessary to slightly reduce 

the diameter along the length of the drill to give further clearance. The point angle may be 

compared to the side cutting edge angle of a lathe tool, since it gives the drill gradual entry 

into the work, influences the chip-flow direction (with respect to the work), and alters the 

forces on the cutting edges. The drill flank is comparable to the clearance face of a single­

point tool. The helix angle is an important variable which controls the slope of the drill 

face. If too l~&e a helix angle is used the cutting edge can be weakened. It is, thus seen 

that the drill consists of the usual cutting elements although it is vastly different in 

appearance. 

Since drilling is a complex three dimensional cutting process some researchers have 

simplified the drilling process to either orthogonal cutting [6] or oblique cutting [25]. In 

orthogonal cutting, the direction of relative motion between the tool and the workpiece is at 

right angle to the cutting edge of a wedge-shaped tool. Such a simple model of cutting is 

shown in Figure 2.2. 



9 

Depth of body clearance 

Body clearance Flute 

Lead of helix 
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In oblique cutting, cutting edge is inclined to the velocity vector (Figure 2.3). 

Inclination significantly alters the chip flow direction and hence the performance of a tool. 

The effective rake angle O.e, is a function of the geometry of the cutting tool and the 

direction of chip flow. In the next section geometry, of drill bit with respect to oblique 

cutting is presented. 

2.2 Drilling Geometry 

The important parameters of a drill are the following: diameter d (d = 2r), helix 

angle 'Yo (helix angle at outside diameter), point angle 'p', and web thickness 'W'. In this 

section relation between various angles at each point on the cutting edge and the drilling 

parameters is shown and the drilling process compared with oblique cutting. Helix angle is 

not constant along the radius of the drill and may be calculated as follows [26] 

tan y = 21tr L (2.1) 

where L is the lead of the helix angle which is constant for a given drill. Therefore 

tan 'Y = (r/R)tan 'Yo (2.2) 

The nominal clearance angle 'Cl' is given by 

tan Cl = [ sin oo -cos oo tan 8] cot p (2.3) 

Where sin ffi = W /r (2.4) 

The clearance at the periphery is denoted by C 10 • The normal rake angle O.n and 

normal clearance angle Cln are given respectively as 
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Figure 2.3 Geometrical Parameters of Oblique Cutting [1]. 



tan a 0 = t~n o [cos oo +sin oo tan oo (cos pf]- tan oo cos p 
smp 

tan Cln = cos RSin 001 tan 00- (tan 001 -tan C/0 tan p)] 

cos 001 +tan oo (cos p)~tan 001 -tan C/0 tan p] 

where sin 001 = W !R 

The angle of inclination is given by 

sin i = sin oo sm p 

1 3 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The variation of drill angles along the cutting edge is shown in Figure 2.4 [26]. Tlc 

is the chip flow direction along the rake face as for in oblique cutting. <Xe (equivalent rake 

angle) can be shown as [26] 

sin <Xe = sin i sin Tlc + cos i cos Tlc sin <Xn (2.9) 

In all the above equations the effect of feed velocity is ignored. However, this 

approximation is generally acceptable [26]. 

The mechanics of the cutting process in drilling is rather complicated as <Xe and i 

change along the cutting edge. Figure 2.5 shows the cutting process along the cutting edge 

and chisel edge. Along the cutting edge, cutting is similar to conventional cutting while at 

the chisel edge it is more like an extrusion process. The variation of chip flow angle (Tlc) 

with respect to the variation of obliquity angle is shown in Figure. 2.6 [26]. This figure 

shows that Tlc = f(i) and deviate from Stabler's rule, i. e.Tlc = i. Hence Stabler's rule for 

drilling is not generally valid. 
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Figure 2.5 Chip Formation in Drilling [26]. 
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Figure 2.6 Variation of Chip-Flow Angle with Angle of Obliquity for Drilling [26]. 
• = 980 point angle; o = 118° point angle; • = 1330 point angle; 3/4 
in. drill; f = 0.013 in./rev; N=250 rpm; work material AISI 3245 steel; 
fluid, CCl4 x = 133° point angle; 3/4 in. H. D. twist drill; f= 0.013 

' in./rev; N=250 rpm; work material, AISI 3245 steel; fluid, soluble oil. 
[J = 1180 point angle, 3/4 in. regular drill; f= 0.013 in./rev; N=200 
rpm; work material, Ti-150A; fluid, sulfurized oil. 



The geometry of a typical general purpose drills is given in the following: 

Helix angle 

Point angle 

= 28°-32° 

= 118° 

Clearance angle = 8°-12° 

2.3 Drill Wear and Failure 

1 6 

Cutting tools used in metal removal operations perform under extreme conditions of 

temperature and stress. The inevitable consequence of these harsh conditions which 

accompany most conventional chip formation is tool wear. Figure 2. 7 is a schematic of the 

areas where tool wear commonly occurs in orthogonal cutting, namely, flank and crater 

[28]. 

Wear on a given tool surface generally progresses in a series of three distinct stages 

as shown in Figure 2.8. During the initial stage, there is a rapid breakdown of the sharp 

cutting edge due to plastic deformation of the tool material. This is followed by a steady 

state stage where a nearly uniform wear rate occurs. Finally, in stage III, the presence of a 

.large wear land drastically increases the temperature of the cutting edge causing rapid 

deterioration of the tool point. 

Once the final stage of wear begins, catastrophic failure of the tool is imminent. It 

is often desirable from a manufacturing standpoint to replace the tool at some point prior to 

this final stage of wear. As wear progresses to this predetermined level, the tool is said to 

have reached the end of its useful life. 

2.3.1 Drill wear 

In drilling, the wear pattern changes along the cutting edge from the margin to the 

chisel edge due to complex geometry of the drill bit and the cutting process. At the drill 

point, in addition to the flute (crater wear) and the clearance face (flank wear), the chisel 

edge and the margin are subject to wear. Kanai and Kanda [ 18] have classified drill wear 

into seven types: outer corner wear W, two types of flank wear VB and V'B, margin wear 
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Figure 2.8 Characteristics ofthe Development of Wear With Cutting Time [1]. 
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Mw, crater wear KM and two types of edge wear CT and CM. The degree of chipping at the 

cutting edges is also observed in terms of PT and PM as shown in Figure 2.9. It is 

reported [18] that of all the types of wear mentioned above, wear at the outer comer is 

recommended as a performance index for drill life. Kaldor and Lenz [21] and Lenz and 

Mayer [20] recommended that the following dimensionless parameter be used as a drill life 

criterion (Figure 2.10): 

w=BIBT (2.10) 

where BT is the width of the margin of a new drill and B is the width of the wear land on 

the margin 

Soderberg et al [17] also come to similar conclusion based on experimental data 

using an M2 high speed drills on a SIS 1672 steel (-AISI 1045) and a SIS 2541 steel 

(-AISI 4337) work materials. A majority of failed drills were found to exhibit severe 

plastic deformation. Examination of the failed drills, which had been stopped at the instance 

of suddenly appearing, violent noise, clearly showed that the deformation begins at the 

periphery (flank-margin comer) but rapidly spreads towards the center. They explained 

this phenomenon by the following mechanism: Increase in wear area leads to an increase in 

the thrust force in order to maintain constant contact pressure over the increased wear area. 

This also increases the frictional work and hence generates more heat resulting in 

temperature rise. The temperature rise is the fastest at the drill comer, where cutting speed 

is maximum and contact area (wear area) the largest. The temperature rise also accelerates 

with increasing comer wear. As long as the temperature is below 600°C (boundary of 

secondary hardening zone of a HSS drill bit material) it is harmless to high speed steel. 

Above 6000C, mechanical strength of the tool material at drill comer drops rapidly, local 

plastic deformation takes place, which in tum leads to sudden drastic increase in contact 

area and feeding force. Therefore, plastic deformation rate again is increased because of 
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Figure 2.9 Various Types of Drill Wear [18]. 
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Figure 2.10 Drill Wear at Margin [20, 21] 
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higher temperature. At this stage wear area grows very rapidly until local seizure occurs at 

drill comer. 

Soderberg et al [ 17] also found that flank width value for which drill failure is 

initiated decreases with increasing drilling speed confrrming that drill temperature is 

determined by the combined effects of cutting speed and flank width. 

2.3.2 Temperature distribution alone- the cuttine- ede-e 

The determination of the temperature distribution in a cutting tool has been an area 

of interest to investigators of machining because of the strong correlation existing between 

temperature and the life of a cutting tool. Thangaraj and Wright [19] used an experimental 

technique based on the fact that certain high speed steels exhibit a loss of temper when 

heated above their secondary hardening temperature of approximately 6000C. 

In order to correlate the microhardness at any point in a section of the drill to the 

temperature at that point, Thangaraj and Wright found it necessary to prepare a reference 

heat treatment chart. This was achieved by preparing very thin sections (about 1 mm thick) 

from a unused drill of the same grade that was being analyzed. One set of these specimens 

was submerged for sometime in a salt bath maintain at a specified temperature in the range 

600-9000C. All specimens were water quenched, mounted in an epoxy resin, ground, and 

polished. The resulting specimens were subject to microhardness tests to prepare a 

reference hardness chart. 

Using the above chart, Thangaraj and Wright determined the temperature at 

different points of drill bit. An 8 mm D950 and D954 (drill bit material) drill bits were used 

to cut 24 mm deep holes in SS1672-01 steel (AISI 1045) at 66 m/min cutting speed and 

0.21 mm/rev feed rate. The drills used under these conditions were sectioned along a plane 

normal to the cutting edge. These sections were ground, polished, and microhardness tests 

were carried out on them. These were used to obtain the tool temperature distributions 

using the reference hardness chart. Figure 2.11. shows two examples of the temperature 
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Figure 2.11 Temperature Distribution Obtained From Microhardness Method 
at the Comer of Drill [19]. Drill material a) D950:Ill, b) D954:111 
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distributions obtained using this method. As seen, the temperature at the cutting edge near 

the margin of a drill is -800-8500C. 

Using the microstructure changes as a result of heating over the secondary 

hardening temperature developed by Wright and Trent [29], Thangaraj and Wright [19] 

measured the temperature of an 8 mm M33 drill bit used to cut 24 mm deep holes in 

AISI 1045 at 40 m/min cutting speed and 0.21 mm/rev feed rate. Figure 2.12 shows the 

distribution of temperature close to the margin on the flank face. It can be seen that the 

temperature near the margin is 9000C, which is well above the secondary hardening 

temperature of the work material (6000C). 

2.3.3 Drill wear mechanisms 

Optical microscopy of the flute surfaces of worn drills [19] showed different 

interactions between the chip and the drill at distinct regions along the length of the lip. For 

example in the vicinity of the chisel edge, the contact length is small and consists primarily 

of a siding zone. Along the lip, farther away from the chisel edge, three zones (referred to 

as a, band c) can be observed. Zone a is a region of sliding friction in the immediate 

vicinity of the lip. Zone b, which is towards the rear of zone a along the flute surface, is a 

region of sticking friction. Zone c, which is a continuation of zone b along the flute 

surface, is again a region of sliding friction. Near the margin of the drill the sliding zone 

(a) adjacent to the lip fades into a region where the tool material is found to undergo bulk 

plastic flow. Figure 2.12 shows that temperature in this region which is in the vicinity of 

9()()0C. Such a high temperature is to be expected to be determined considering the fact that 

heat is generated not only due to plastic deformation in the primary and secondary cutting 

shear zones, but also due to rubbing contact between the margin and the drilled surface. 

In summary, based on the works presented in this section, the flank wear at the 

margin appears to determine the end of useful life of a drill. Excessive wear at the 

intersection of the flank face and the margin leads to plastic collapse of this region. This 
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Figure 2.12 Temperature Distribution Obtained From Microstructural Change 
Method at the Comer of Drill. Drill Material M33 [19]. 
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occurs because of the high temperatures generated (>6QOOC) due to an increase in the area 

of contact as a result of the wear. 

2.4 Monitoring of the Drilling Process 

As mentioned earlier, once the final stage of the wear begins (stage III of Fig. 2.8), 

catastrophic failure of the tool becomes imminent. From a production standpoint it is 

necessary desirable to replace the tool at some point prior to this final stage of wear. As 

wear progresses to this predetermined level, the tool is said to have reached the end of its 

useful life. Unfortunately, this is not an easy task. Figiure 2.13 [18] shows the 

distribution of drill life (measured in number of holes drilled before failure) of a batch of 

70, 6 mm drill bits, cutting 15 mm deep blind holes at 33.9 m/min cutting speed and 0.22 

mm/rev feed rate. Tool material and work material were SKH 9 and S45C (Japanese 

standards) respectively. Wear at the outer comer is employed as a drill life criterion. 

Drilling was stopped when 0.3 mm wear was observed at the outer comer of a drill bit. 

From this figure it can be concluded that the number of holes generally can not be used as a 

drill life criterion. 

One way to determine the drill life is to evaluate drill wear at the comer of a drill bit. 

This can be done directly, i. e. measuring drill wear periodically after cutting a 

predetermined number of holes. This method is known as off-line monitoring. In this, the 

drill is removed periodically from the machine tool for measuring wear or a measuring 

device should be installed on the machine to accomplish the same. 

Liu [30] developed an automated visual inspection for determining the optimum 

drill life of a multifacet drill (MFD). For inspection, the drill bit is removed from the 

machine and paced on an instrument which replaces the human inspector and measures 

automatically the wear area of the drill flank. The drill bit is rejected when the wear area 

had exceeded some predetermined threshold. 
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Figure 2.13 Histogram of Drill Life for 70 Drill Bits 
(0.3 mm Comer Wear) [18]. 
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Amini and Winterton [31] determined wear during drilling by monitoring the 

radioactivity level of the tool that they had previously been exposed to the beam of charged 

particles in a cyclotron. Good correlation was found between the flank wear land inferred 

from the readings of radioactivity and microscopic measurements (see Fig. 2.14). Figure 

2.15 shows that wear increases rapidly within the first few holes and further increase is 

gradual with increasing number of holes drilled. Toward the end of the useful life of a 

drill, wear begins to increase rapidly until the tool fails. Although this method can be used 

to continuously monitor the wear of a tool, it poses a potential safety problem and may not 

be practical in a production environment. Moreover it is an inconvenient and difficult 

technique especially for transfer-line applications. The other technique called, on-line 

monitoring, is similar to the response of an experienced machinist who decides when to 

change the tool or the machining conditions based on the signals received by his sensory 

devices such his eyes (the color of the chip), ears (the noise) etc. In this method, different 

sensors, such as cutting force sensors (thrust and torque components for a drilling 

process), accelerometer for measuring vibration, acoustic emission sensors (AES) for 

measuring acoustic emission (AE) generated during drilling, strain elements for measuring 

the strains induced and so on may be used to obtain information regarding the cutting 

process. 

On-line monitoring has received more attention because of the ease with which it 

can be used on shop floors specially in transfer lines. To study the effect of tool wear on 

process.variables, such as torque, thrust and power, Subramanian and Cook [6] conducted 

a series of experiments using 13/32 in. high speed steel drills and Meehanite cast iron at a 

speed of 73.3 ft/min, a feed rate of 0.0065 in./rev. and hole depth of 1 in. It appears that 

Subramanian and Cook had used two fixtures: One is instrumented with a dynamometer. 

Holes were drilled in the workpiece in the first fixture till the drill attained certain stage of 

wear. It is then continued on the workpiece held in the second fixture which contained the 

dynamometer. This cycle was repeated till the drill failed. The results of their experiments 
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are shown in Figures 2.16 through 2.19. From these figures, it can be seen that the flank 

wear increases rapidly at the end of tool life and that torque, thrust, and power also 

reflected this situation. 

From these results , Subramanian and Cook concluded the existence of two distinct 

situations: (a) a gradual increase in flank wear accompanied by a similar increase in torque, 

thrust, and power and (b) a very rapid increase in flank wear near the end of tool life 

accompanied by large increase in torque, thrust, and power. 

Subramanian and Cook also found from their study that the drill life to be 

influenced significantly by the workpiece hardness. Consequently, the presence of a few 

random workpieces of high hardness may influence the drill life much more than a large 

number of workpiece of low hardness. Hence, in an industrial operation, drills may fail 

very early or after a long time, depending on the occurrence of these few workpieces of 

high hardness or even hardness variability within a given workpiece. This can explain to 

some extent the large variation in drill life in an industrial environment. 

Subramanian and Cook also found that the workpiece hardness had an influence on 

the thrust force and torque in a drilling operation. They found that if the variation in 

workpiece hardness is held within 5% of the mean hardness value then increases in the 

thrust force can be used as a measure of flank wear. 

Braun et al [32] measured torque, thrust, and radial force (perpendicular to the axis 

of the a drill) as well as sound in order to monitor the drilling process. They concluded that 

there was no correlation between the wear propagation of the drill and the thrust and torque 

generated in drilling. But they observed a periodic increase and decrease of the radial force 

(in the plane perpendicular to drill axis). They attributed this patten to the uneven wear of 

the lips due to production tolerances resulting from the asymmetric drill wear at one lip until 

the heights of both lips are equal. The second lip, which is now sharper then begins to cut. 

This alternating process continues until both lips have no more clearances at the margins. 

At this time, the drill adheres to the workpiece and breaks necessitating the drilling process 
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to stop in time. Figure 20 shows the uneven wear on the lips as drilling time progresses 

(after Braun et al). 

Typical signatures from a microphone and a force transducer are shown in 

Figures 2.21 and 2.22 respectively (after Braun et al). They consist of some background 

signals on which are superimposed sharp oscillatory waves. The authors observed sharp 

transients to occur mostly, but with increasing frequency as the drilling operation 

progressed. From a study of these signals they concluded that these are generated by a 

random nonstationary process. 

In the present investigation strains on the table of the machine in the lateral direction 

(perpendicular to axis of the drill) and along the cutting direction were measured. The 

results showed that strains signal in the lateral direction is less reliable than the signals from 

torque, thrust, and strain on the table of the machine in the cutting direction. This may be 

attributed to the uneven wear of the cutting edge observed in this study similar to that 

reported by Braun. As can be seen from Figure 2.20, the uneven wear on both sides of the 

drill may be attributed to a variety of reasons including differences in the hardness of drill 

and variability of geometry during the manufacture of the drill bit. 

Y ee and Blomquist [23] investigated vibration analysis technique for predicting drill 

breakage. They determined the drill wear and predicted drill breakage by applying time 

domain analysis to the signal from an accelerometer mounted on the workpiece. This 

method depends on detecting increased vibration patterns due to contact between the drill 

and the walls of the hole being drilled. They carried out experiments using a 1 mm 

diameter drills and reported successful prediction of failure. From this study, they 

concluded that signal to noise ratio gets smaller the further the accelerometer is mounted 

from the drilling action. This technique necessitates considerable tuning for use with 

different machine tools and different workpieces and applies basically for small diameter, 

long, slender drills. 
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In the early 80's, the use of acoustic emission (AE) signals was investigated for 

monitoring of tool wear and tool failure. AE is a high frequency vibration (100 

KHz-1 MHz) signal generated by the release of energy in any material under strain due to 

motion of dislocations. In machining, AE signals are generated in the deformation zones 

where plastic deformation of the work material takes place to form the chip. In addition, 

AE signals are generated by chip breakage, tool fracture and chipping. Moriwaki [33] used 

AE signal from the cutting process for in-process detection of tool failure in turning. He 

observed a large amplitude in the AE signal when tool failure (including cracking, chipping 

and fracture) took place during cutting. A major hurdle in the use of these signals is in the 

development of an appropriate filtering technique and algorithms to separate the signals for 

tool wear/breakage from the background noise generated in any metalworking process. In 

the present study, the entanglement of chips inside the drilled holes during the cutting 

process, had been found to provide additional source for the AE signals which makes this 

signal nondependable for monitoring the drilling process. 

Radhakrishnan and Wu [34] used the dynamic components of the thrust force 

obtained during drilling of a composite material to monitor the surface quality of the hole 

being drilled. From their study, they concluded that static aspects such as the mean and the 

peak forces are unreliable when a close monitoring of the hole quality is required. In 

comparison, the standard deviation of the thrust showed a better indication of the hole 

quality. They found very strong correlation between the change in the standard deviation 

of the lamination frequency component in the thrust and surface signals. Lamination 

frequency is the number of laminations that drill cuts per unit time. 

Thangaraj and Wright [24] and Fabris and Podder [35] proposed experimental 

thresholds for the gradient of thrust near the end of a drill life. This was based on the rapid 

change in the rate of change of wear with respect to time in the three regions described 

above (Figure 2.8). There is a marked difference from region I to region II and from 

region II to region III. More specifically, regions I and III have much greater rates of 
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change as compared to region II. This indicates that rate of change of wear is better suited 

for monitoring the conditions of a cutting tool than the absolute magnitude of the wear. In 

view of the correlation between the thrust force and the drill wear, the rate of change of 

thrust force was used in the prediction of drill failure. Thangaraj and Wright [24] reported 

they were able to find a threshold for the gradient of the thrust to check the end of drill life. 

As soon as the gradient of thrust exceeded the predetermined threshold, the drill was 

considered worn and removed from the machine tool. 

Nedess and Himburg [36] analyzed the signals of several sensors (thrust, torque, 

strain, and accelerometer) in drilling. Some of their findings are given in the following. 

1. The signal-to-noise ratio for a 8.5 mm drill for different sensors are given as: 

Thrust and torque: 100 

Strain: 1.3- 10 depending on the position 

Acceleration: 1.1 - 360 depending on the position. 

2. Tool wear is more correlated with the dynamic components of the thrust and 

torque than their mean values. 

3. There is no correlation between the flank wear and the dynamic components of 

the signals. 

4. Dynamic components of the thrust, torque and strain at the table unit are 

correlated to the margin wear of the drill. 

Neddess et al that reported corner wear was correlateed more with the dynamic 

components of the sensor signal than the mean. In the present investigation, signal-to­

noise ratios in the time domain for various sensors used in drilling were found as follows: 

Thrust: 45 

Torque: 16 

Strain on the machine table along the cutting process: 53 

Strain on the machine table perpendicular to drill axis: 45. 
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2.5 Sensor Integration Approaches to Tool Wear Monitoring 

An essential step in the design of and control of most mechanical systems requires 

modeling of the system which involves an analysis of the system dynamic. Some systems 

can be described directly on the basis of physical laws. There are, however, other systems 

such as metal cutting, due to the complex nature of the process involved, fully developed 

theoretical models may not be available. Recognizing this fact, some researchers in the last 

decade or so have concentrated on the tool wear estimation using pattern recognition or 

more advanced techniques called neural network which have general structures for most 

applications. 

Kannatey-Asibu [10] explored the possibility of using pattern recognition technique 

for monitoring the condition of a cutting tool in a machining operation using AE as a 

specific example. Dornfeld and Pan [11] used linear discrimination function for the 

classification of the chip forming state, i. e. for the classification of the chip produced in the 

cutting process to be either continuous· or discontinuous chip. Cutting speed, feed rate, 

depth of cut, and event rate of the RMS of AE signal were selected to characterize the state 

of the chip. Dornfeld and Pan also reported the use of linear discrimination function to 

distinguish between continuous and discontinuous chip conditions. They found the event 

rate of RMS of AE signal the most important parameter in the chip form classification. 

Depth of cut was reported not to be as crucial as the cutting speed and the feed rate. 

Emel and Kannatey-Asibu [12] used linear discrimination functions for the 

classification of chip noise (including sharp tool), tool breakage, and worn tool using AE 

sensing. The AE signal was transformed in the frequency domain using the FFT 

algorithms. Three feature selection methods were used to identify the best features of the 

signals which correlated well with the tool wear state. In the first method, a cost function 

was maximized based on minimizing the scatter of patterns between classes and 

maximizing the patterns within classes. In the second method, features were selected by 



39 

maximizing the sum of pairwise class-mean distances. In the last method, features with 

minimum normalized variance were selected. 

Emel and Kannatey-Asibu [12] adapted two approaches for verifying the results. 

In the first approach the same training set was used for testing the trained pattern 

recognition classifier. This approach was called resubstitution technique. In the second 

method, called leave-one-out , one pattern out of n patterns is separated from the data set, 

i.e. (n-1) pattern were used for training. The separated pattern was used for testing. After 

testing, the separated pattern was returned to the data set and another pattern was separated 

for testing. The new (n-1) patterns were used to train the pattern classifier. This procedure 

was repeated for all patterns. Emel and Kannatey-Asibu reported 97% to 100% for 

resubstitution method and 69% to 82% for the leave-one-out testing technique. In an 

extension of the above work Emel and Kannatey-Asibu [13] used a statistical pattern 

classification and reported success rates between 84% to 94%. 

Rangwala and Dornfeld [14, 15] applied a method based on back-propagation (BP) 

type neural network to predict the tool wear condition in turning on a lathe. The work 

material was AISI 1060 steel bar 2 in. diameter. Cutting conditions used were the 

following; feed rate 0.002 -0.008 ipr, depths of cut 0.01-0.03 inch; and cutting speed 278-

556 sfpm. The state of tool wear was divided into two classes, namely, sharp and worn 

tools. For a sharp tool, wear land was considered to be between 0 and 0.25 mm, and for 

the worn tool 0.5 and 0.75 mm. However, no signal was collected between 0.25-0.5 mm 

wear land. Cutting force and acoustic emission (AE) signals were sampled simultaneously. 

Cutting force was sampled at a rate of 1KHz for a length of 512 data points and AE at the 

rate of 5 .MHz for a length of 1024 data points. Force and AE signals were transformed in 

the frequency domain using the FFT algorithms. The dimension of the force vector was 

256 points (with a resolution of 2Hz) and that of AE vector was 512 data points (with a 

resolution of 5 KHz). These two vectors were concatenated and made to a measurement 

vector of length of 768 data points. It is assumed that some frequencies of the 
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measurement vector are more related to the tool wear than others. For selecting the most 

correlated signal, they have attempted to minimize the interclass distances and maximize the 

distance between classes, in an Euclidean space. A total of 123 samples were collected, 

each of length 7 68 data points. Using the above technique, three sets of six features were 

selected. For the first set, the concatenated vectors of force and AE were used and for the 

second set, three features from the force vector and three features from the AE vector were 

selected separately. For the third set, all the six features were selected from the AE vector. 

To these six features, two more features were added, namely, cutting speed and feed. 

Therefore the length of the feature vector came to 8. 

Altogether 30 samples, equally distributed between sharp and worn tools out of the 

123 samples were selected to train a single-layer perceptron. The rest of the samples (93) 

were used for checking the trained perceptron. A success rate of 88%, 87%, and 80% 

were reported for features for Set 1, Set 2, and Set 3 respectively. Due to better 

performance of the features from Set 1 and Set 2, which are a combination of features from 

AE and force signals, they concluded that feature sets compound of multiple sensor 

information provide better classification performance. 

The same 30 training samples were then used to train an 8X3X 1 BP type neural 

network. During training phase, the target of the output node was fixed for fresh tool and 

0.99 for the worn tool. During the testing stage, a pattern presented at the input layer was 

associated with a fresh tool decision if the output node was between 0 and 0.5 or else the 

pattern was associated with the worn tool. A success rate of 94%, 97%, and 84% were 

reported for features for Set 1, Set 2, and Set 3 respectively. Again feature sets compound 

of multiple sensor information provided better classification performance. The 

performance of BP type neural network was reported to be better than single-layer 

perceptron. A 100% success rate was reported when the network was trained to predict the 

actual wear (this case was not mentioned in Rangwala's Ph.D. Dissertation, but included in 

a paper published in 1987 [15]). 
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Chryssolouris and Domroese [37] described intelligent machining systems (IMS) 

which are different from the automated machining workstations is that the IMS are capable 

of making decisions based on significant information on the state of the system. The 

reaction of IMS to the system condition, such as tool wear, machine break downs, and 

other failures must be of the order milliseconds to a second in order to guarantee the safety 

and reliability of the process. 

Chryssolouris et al [37] explained that IMS should take the following steps for 

making a decision. 

Step 1: Intelligent controller should provide alternatives at any given instant when 

decision has to be made. 

Step 2: The required criterion such as machining time or machining cost should be 

established. 

Step 3: The criteria values for each of the proposed alternatives in Step 1 are 

estimated 

Step 4: By application of one or more decision making rules, the best alternative is 

selected. 

Two separate rule based systems were used to determine the criterion as well as the 

alternatives. The values of the alternatives for different criteria were obtained from the 

model of the cutting process associated with each sensor, sensor information, and part 

information from general manufacturing data-base. 

Chryssolouris et al [37] considered three different models based on the use of three 

sensors, namely, force, temperature, and acoustic emission (AE). Each of these models 

provide values for alternatives using additional information, such as part information and 

manufacturing data-base. A rule based system or some other technique is assumed to 

integrate the tool wear estimate of these three models and to provide more reliable tool wear 

estimation. A decision making rule determines the cutting conditions. 
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Chryssolouris et al [38] also compared three techniques, namely, neural network, 

multi-regression, and group method of data handling (GMDH) for integrating tool wear 

estimates by the three models mentioned above, using computer simulation. They 

concluded, that neural network was more effective in learning a relationship between 

sensor signals and tool wear estimate then the other two methods, especially when the 

relationship is nonlinear. Moreover, neural network showed that it is usually less sensitive 

to deterministic errors than other sensor integration techniques. 

In an another attempt, Chryssolouris et al [39] used experimental data for the 

estimation of the state variables in the machining process, such as power, surface 

roughness etc. for different feed rates, cutting speeds, rake angles, widths of cut, and flank 

wear of the tool. Three techniques mentioned above, namely, neural network, multi­

regression, and GMDH were used to estimate the state variables. Again, they concluded 

that neural network is superior to other methods. It is, however, not clear as to why 

Chryssolouris et al [38] used three models for tool wear estimation and then integrated the 

estimations using the neural network as the neural network would cover the function of the 

three models using direct sensor signals. 

Chryssolouris et al [ 40] used experimental data from three sensors, mentioned 

above, and fed them into three models for the estimation of tool wear. They used neural 

network and statistical method for the synthesis of the three estimates of tool wear from the 

three models. They reported that sensor integration based on statistical information did not 

provide better estimation than information from a single sensor. Similarly, the neural 

network provided better estimation of tool wear than using information from only one 

sensor. They ran computer simulation for test data composed of linear, sinusoidal, and 

random signals. They reported that integration of sensors provided better estimate of tool 

wear than when only one sensor was used. When the sensors operated properly and the 

models reflected the complexity the process, sensor integration using statistical methods 

was reported to provide better tool wear estimation than neural network. But, if the 
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process model does not adequately reflect the complexity of process then neural network 

provided better estimate of wear. In case of failure of one of the sensors, statistical method 

was found less sensitive than neural network. 

Tansel and McLaughlin [41] used ART2 neural network for the detection of tool 

breakage in the milling process. The resultant cutting force was fed into the network. The 

neural network first classified 780 simulation data in a series of cutting conditions, and 

gained experience. It continued to work on the experimental data by using previous 

experience and continued classifying the 36 experimental data. Tansel an McLaughlin 

reported that when vigilance of 0.98 was used, the network classified the unbroken tool 

input data into seven different categories and classified the broken tool input to four 

different categories. The success rate of the network on the experimental data was reported 

to be 97.2% 

Elanayar et al [ 42] have used neural networks to model the tool wear in machining 

using the sensor data from the three components of the cutting force. When both crater 

wear and flank wear were present, they reported that they could train their neural system to 

predict both, as well as surface roughness to an acceptable degree of accuracy. Kamarthi et 

al [43] used a method based on Kohonen's self organizing feature map for the classification 

of data from force and vibration sensors and the subsequent estimation of the degree of tool 

wear. It was reported that they could achieve 95% success rate of the detection of tool 

wear level. 

Neural networks are composed of many nonlinear computational elements operating 

in parallel. The computational elements or nodes are connected by adjusting weights. The 

knowledge is stored in neural network by adjusting the weights. Neural networks have 

shown potential in areas of pattern recognition and function approximation. These 

interesting features have attracted researchers in metal cutting for monitoring of tool wear. . ' 

As presented in this section, a considerable work was conducted by many researchers in 

this area. Different type of neural networks, such as BP, ART2, Kohonen's self 
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organizing map etc. have been used for monitoring tool wear. Chapter III presents neural 

network models using the following techniques, namely, clustering, mapping, and decision 

surfaces technique as well as their performance in tool wear monitoring. 

Artificial neural network structures are based on the present understanding of the 

biological nervous system [44]. Although an artificial neural network model with a crude 

brain-like structure, has great potential in the areas of pattern recognition and modelling of 

the highly nonlinear systems using general architecture, they are, however, far from 

reaching the performance of a brain [44] at this stage. In Chapter VI we will show that 

when multiple sensor signals are used to monitor different states of tool wear and sensor 

fusion approach is used, the three techniques, namely, clustering, mapping, and decision 

surfaces may not be able to defme the state of tool wear adequately. This is due to the fact 

that (as shown in Chapter VI) characteristics of sensor signals from different states of tool 

wear are mixed and the above techniques may not be able to classify sensor signals to the 

right state of tool wear. Although high success rates were reported by some researchers for 

sensor fusion techniques there are some real concerns, as will be discussed in Chapter VI, 

regarding the validity of approach. 

2.6 Problem Definition 

A feature common to most of the research reviewed here is the selected cutting 

speeds are considerably higher than the recommended cutting speeds used in industry (at 

least more than 1.5 times the cutting speed recommended by the Machining Data Hand 

Book [ 45]). As observed in the present investigation, if recommend cutting speeds are 

used drill life would be in the tens of thousands of holes which would be impractical in a 

laboratory environment. Therefore, most researchers have selected higher cutting speeds 

than recommended to limit the drill life merely a to few tens or rarely hundreds of holes 

that is feasible in a laboratory environment. In the present investigation a different strategy 

was used. This strategy involves the use of recommended cutting speed during the 
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collection of data and increased cutting speed (twice the recommended cutting speed) to 

accelerate wear to simulate different stages of drill life. This strategy is explained in detail 

in Chapter V. 

As mentioned earlier, the flank wear at the margin determines the end of a useful 

life of a drill in most cases. Excessive wear at the intersection of the flank face and the 

margin ·leads to plastic collapse of this region. This occurs because of the high 

temperatures generated (>6000C) due to increase in the area of contact as a result of wear. 

In the present investigation, flank wear at the margin is considered as a criterion for drill 

life. 

Sensor signals in the frequency domain have not been studied in depth in the past. 

Only one set of data (or three sets of data [24]) was used to calculate the power spectral 

density (PSD). As shown in Chapters IV and V, the variance of the estimate of power of 

periodogram at each frequency is grater than the power at that frequency. Therefore PSD 

of the sensor signals used in the previous research may not be reliable. In the present 

investigation, the variance is reduced by averaging the estimate of power which was 

obtained from every hole, at each frequency over a number of holes during which the drill 

wear development is negligible for each sensor signal. 

In this research, characteristics in the time and frequency domains for four sensor 

signals, namely, thrust, torque, and strains on the machine tool table in the cutting direction 

and perpendicular to the drill axis are studied and correlated with the corner wear of the 

drill. 

The possibility for the application of neural network for sensor integration is 

investigated. Three techniques, namely, clustering, mapping, and decision surfaces have 
,> 

been studied for classifying sensor signals to different states of drill wear. 



CHAPTER Ill 

REVIEW OF PARAMETER ESTIMATION AND PATIERN 

RECOGNITION AND THEIR APPLICATION 

TO METAL CUTTING 

Automation of the machining process requires the ability to monitor the tool 

condition reliably during the cutting operation. Tool wear monitoring relies on sensors 

which provide information to the decision making system. The decision making system is 

expected to interpret the information and provide corrective actions in the absence of a 

human operator. Safe, economical, and scrap free operation can be achieved by a good 

sensory and decision making system. 

Tool wear has a ·strong influence on the surface roughness and dimensional 

accuracy of the fmished product. A reliable tool wear monitoring system can eliminate the 

down time of the machine tool associated with tool breakage and reduces the overall cost of 

operation by optimizing the process. Tool wear is rather a complex process and is affected 

by a number of factors, such as temperature, cutting speed, feed, and cutting fluids used . 
• . J 

Because of this complexity, theoretical correlation between tool wear and operating 

conditions is not readily available. One of the ftrst attempts in this direction is the Taylor 

tool life formula, developed by F. W. Taylor. It is an empirical relation between cutting 

speed and tool life and given by 

VTn=C (3.1) 

46 
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where V is cutting speed, T is tool life in minutes, C and n are constants depending on the 

tool-work material combinations used. The difficulty associated with this equation is it 

requires considerable experimental data at different cutting conditions to determine C and n 

for a combination of tool and work materials. Due to the stochastic nature of the wear 

process, scatter in data can be expected which makes it difficult to apply the above equation 

to an on-line tool wear monitoring system. 

As mentioned earlier, sensors are important elements of any tool monitoring 

system. Excellent reviews of tool wear sensors can be found in Micheletti [8] and Tlusty 

et. al. [9]. Sensors can be classified as off-line and on-line sensors for monitoring the 

cutting process. Off-line sensors usually use optical, radioactive, or pneumatic techniques. 

These techniques are simple and easy to interpret but some of them may pose danger (radio 

active) or can be implemented only between cuts (such as optical optical techniques). 

On-line sensory devices, such as force sensors, accelerometers, and acoustic 

emission (AE) sensors can be used easily for they do not interfere with the cutting 

operation. But ,it is somewhat difficult to obtain a good correlation between tool wear and 

the sensor signals. The following three approaches were considered to obtain the 

correlation between the tool wear and sensor signals. 

1. Theoretical modeling: Some correlation between sensor signals, for example, 

force and tool wear is obtained by using the mechanics of the cutting process. 

2. Empirical modeling: The parameters of an empirical model are tuned using the 

experimental data. 

3. General modeling structure: The parameters of general modeling structures, 

such as pattern recognition techniques or mapping techniques, for example, 

back propagation (BP) network are tuned using the experimental data. 

Developing a reliable theoretical model (frrst method)that correlates tool wear and 

sensor signal is extremely difficult due to the complexity of the process. In the second 

method, an empirical model is proposed and its parameters are tuned using the experimental 
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data. An example of this technique is parameter estimation which will be discussed in 

Section 3.1. The third technique, the subject of Section 3.2, is pattern recognition and 

mapping techniques using neural network. No model is required to relate sensor data and 

tool wear. In this method, the problems may be approached in two ways. In the first 

approach, the problem of deciding whether or not the tool is worn is considered as one of 

associating pattern of senor signals with appropriate tool condition (sharp or worn). In the 

second approach, sensor signals are mapped to the state of tool wear using mapping 

techniques. In both approaches, learning algorithms are used to adjust the parameters of a 

pattern classifier or mapping techniques with a general predefined structure. 

3.1 Parameter Estimation 

As mentioned earlier, the mechanism of tool wear is rather complex and might be 

highly nonlinear. A solution proposed by Liang et al [46] and Takata et al [47] is based on 

the following assumptions. The cutting process, thought highly nonlinear, can be 

represented by a linear model at any given instant. The parameters of the linear model are 

functions of cutting conditions, such as cutting speed, feed rate, and depth of cut as well as 

the tool-work material combination,. During the cutting process, only tool wear is 
,, ,. 

changing and all other factors remain unchanged. Therefore, the change of parameters of 

the linearized model must be a function of tool wear. This method, thus suggests that tool 

wear can be evaluated by monitoring the change of parameters of the cutting process. 

The first formulation and its solution, as well as the application of parameter 

estimation was given by Gauss [ 48] in his famous determination of the orbit of the 

asteroid, Ceres. Gauss formulated the parameter estimation as an optimization problem and 

introduced the least square method based on minimization of the sum of the squares of the 

error. Since then, the least squares criterion has been used extensively. The least square 

method is rather simple and easy to understand. However, under some circumstances, it 

can estimate wrong mean values (bias estimate). However, this can be overcome by using 
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various extensions to this method. The least square method is restricted to model structures 

that are linear with unknown parameters. 

In parameter estimation, the inputs and the outputs of the system are used to 

evaluate the parameters. As there is no access to real inputs (for example actual cutting 

speed, feed rate etc., see Chapter V for details) many researchers [46, 47] have used 

autoregressive (AR) models which do not require such inputs. 

It will be shown in this investigation, (see Chapter V for details) that in the drilling 

process, the gain of the system may change while all other parameters of the system 

remain practically constant during the tool wear development. 

3.2 Pattern Recognition 

The motivation behind the application of pattern recognition to metal cutting arises 

from the fact that a human operator can sense whether a tool is sharp or worn by observing 

the machining operation. The sensory information used to make this decision is usually of 

various types: visual (observation of chip color, presence of smoke, detecting surface 

finish of the workpiece), audio (sound generated by rubbing action of the workpiece on the 

tool or vibrations occurring during the cutting process) and olfactory ( smell of smoke 

generated due to tool wear). These sensory signals are processed by the brain and act as 

memory triggers which facilitates the operator to decide on the status of tool wear in a 

qualitative manner. Correlation of the sensory signals with tool wear depends to a large 

extent on the knowledge and experience of the operator. But, human pattern recognition is 

highly developed but poorly understood. The task of simulating it on a computer is at best 

formidable. Human brain is able to integrate information from its different sensor signals 

to obtain a better picture of the process. If the information from a sensor signal, say 

vision, is inadequate to make a reliable decision, audio information may be used as a 
I , 

supplement to integrate with the visual sensor. Or, if one of the sensors fails to provide 

sufficient information, the other sensor information may be used in order to make a reliable 



50 

decision. For example, it is believed that touch sense of blind people becomes stronger to 

overcome blindness. In short, the brain seems to be extremely capable of capturing and 

integrating sensor signals and at the same time ignoring noise from one or more of these 

sensors. 

Artificial neural networks attempt to mimic the computational architecture of the 

human brain. The objective is to incorporate intelligent functions such as learning and 

pattern recognition in computers. The architecture of the human brain is highly complex 

and not well understood at present. Therefore, the current neural network architecture can 

only resemble the brain in a very coarse way. Artificial neural network, similar to a human 

brain, consists of many processing elements massively interconnected by links with 

variable weighing factors. Processing elements (or nodes) used in neural network models 
I ~. • 

are nonlinear. The massive parallel connection provide neural network with high 

computation rates. Neural network models are specified by the network topology, node 

characteristics, and training rules. Training rules specify an initial set of weights and 

indicate how weights should be adapted during use to improve performance. 

As mentioned earlier, human brain is capable of integrating sensor signals. This 

was the motivation behind many researcher's decision to use artificial neural network for 

integrating different sensor signals in machining to get a better estimation of tool wear. 

We will show in Chapter VI that there are concerns regarding the extent of applicability of 

artificial neural network for sensor integration in the presence of noise. As some neural 

network paradigms use clustering technique, this method is described below. 

3.2.1 Clusterin~ technique (nearest nei~hbor classifier) 

Nearest neighbor is one of the most intuitive approach to the problem of pattern 

recognition. The motivation for using distance function as a tool wear classification is as 

follows. The most obvious way of establishing a measure of similarity between pattern 

vectors, which also consider as points in Euclidean space, is by determining their 
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proximity. For example, in Figure 3.1, we may intuitively arrive at the conclusion that the 

pattern x belongs to class Ci solely on the basis that it is closer to the patterns of this class. 

To show this technique mathematically, consider M cluster centers ffil, m2, .. , ffiM (see 

Figure 3.1). The Euclidean distance between an arbitrary pattern vector x and the cluster 

centers is given by 

(3.2) 

A nearest neighbor classifier computes the distance from a pattern X of an unknown 

classification to all classes and assign the unknown vector to the class to which it is the 

closest. In other words, X is assigned to class Ci if Di < Dj for i -:t:. j. However, since 

the proximity of two patterns is a relative measure of similarity, it is usually necessary to 

establish a threshold in order to define the degrees of acceptance of similarity in the cluster-
~-:>· 

seeking process. Figure 3.2 shows three different cluster arrangements which have been 

obtained for the same data by varying the threshold, T. 

There is one problem associated with this technique, namely, all clusters must be 

linearly separable. In the other words, there is a hyperplane inn-dimensional space (n is 

the dimension of feature space) that separates every pair of clusters, i. e. there is no 

member of one class on the other side of the hyperplane. This problem can be solved by 

reducing the threshold and dividing a whole class into subclasses using some neural 

network paradigms which will be discussed in Section 3.3. 

3.2.2 ART 2 neural network 

The analog adaptive resonance theory (ART2), introduced by Carpenter and 

Grossberg [50] in 1987, is an extension of the binary adaptive resonance theory (ARTl ). 

It has emerged through the development of adaptive theory presented by Grossberg [51]. 



Figure 3.1 Classification of Patterns by Nearest Neighbor Concept 
(Clustering Technique) [49]. 
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Figure 3.2 Effect of the Threshold on Cluster Arrangements [49]. 
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ART2 is two layer nearest neighbor classifier (clustering method) that stores an analog 

arbitrary pattern. 

Ak = (af, a~, ..... , a~) k = 1, 2, ...... , m (3.3) 

ART2leams on-line and operates in both discrete and continuous times. 

Figure 3.3 shows the major components of an ART2 network with multi-inputs and 

multi-outputs. Matching scores are computed using feed forward and the maximum value 

is enhanced using lateral inhibition among the output nodes. 

ART2 network forms clusters and is trained without supervision. This network 

implements a clustering algorithm that is very similar to the sequential leader clustering 

algorithm described by Hartigan [52]. The leader algorithm selects the first input as the 

examplar for the first cluster. The next input is compared to the first cluster examplar. It 

follows the leader and is clustered with the first if the distance to the first is less than a 

threshold (which is defined by the value of vigilance parameter for ART2 network). 

Otherwise, it is the exemplar for a new cluster. This process is repeated for all the 

following inputs. The number of clusters thus grows with time and depends on both 

threshold and the distance used to compare inputs to cluster examplars. 

A matching threshold, called vigilance which is between 0 and 1, must be set to 

control the size of clusters. This threshold determines how close a new input pattern must 

?e to a stored examplar to be considered similar. A value near one requires a close match 

and smaller values accept a poorer match. New inputs are presented sequentially at the 

bottom of the net. After presentation, the input is compared to all stored examplars in 

parallel to produce matching scores. The examplar with the highest matching score is 

selected using' lateral inhibition. It is compared to the input by a or mathematical 

relationship. If the result is greater than vigilance threshold, then the input is considered to 

be similar to the best matching examplar and the input merges to that category. If the result 
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Figure 3.3 Major Components of ART2 Neural Network [53]. 
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is less than the vigilance parameter, the input is considered to be different from all the 

examplar and it is added as a new examplar. Each additional examplar requires one node 

and 2N new connections to compute matching scores (N is the number of inputs). 

Figure 3.4 shows the behavior of ART2 network for four patterns, namely A, B, 

C, and D for different values of the vigilance parameter P. For P = 0.95, the network 

classify all patterns correctly into different classes, while for P = 0 the network can not 

classify correctly . 

3.2.3 Kohonen 's self or~anizin~ maps 

Kohonen creates a vector quantizer by adjusting weights from common input nodes 

to M output nodes arranged in two dimensional grids as shown in Figure 3.5. Output 

nodes are extensively interconnected with many local connections. Continuous valued 

input vectors are presented sequentially in time without specifying the desired output. Mter 

enough input vectors have been presented, weights will specify clusters or vectors centers 

that sample the input space such that the point density function of vector centers tends to 

approximate the probability density function of the input vectors . In addition, the weights 

will be organized such that topologically close nodes are sensitive to inputs that are 

physically similar. Output nodes will thus be ordered in a natural manner. 

Figure 3.6 shows the algorithm that forms feature maps requiring neighborhood to 

be defined around each node. Thus, neighborhood slowly decreases in size with time 

(Figure 3.6). Weights between input and output nodes are initially set to small random 
·'il 

values. An input is presented, then the distances between the input and all nodes are 

computed. If the weight vectors are normalized to have constant length (the sum of the 

square weights from all inputs to each output are identical) then the node with the minimum 

Euclidean distance can be found by using the network (Figure 3.5) to form a dot product of 

the input and weights. The selection requires procedure for minimum Euclidean distance 

which is equivalent to a problem of finding the node with a maximum dot product of the 
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Figure 3.4 Function of ART2 neural Network for two Different Value of 
Vigilance Parameter a) p = 0.95, b) p = 0 [50]. 
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INPUT 

Figure 3.5 Two dimensional array of Output Nodes Used to Form Feature Maps [44]. 
Every input is connected to every output node via a variable connection 
weight. 
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Figure 3.6 Topological Neighborhoods at Different Times as Feature Maps 
are Formed [44]. 
NEj(t) is the set of nodes considered to be in the neighbor­
hoOd of node j at time t. The neighborhood starts large and 
slowly decreases in size over time. In this example 0< t1 < t2. 
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input and weight vector of the node. This node can be selected using extensive lateral 

inhibition. Once this node is selected, weights for it and to other nodes in its neighborhood 

are modified to make these nodes more responsive to current input. This process is 

repeated for further inputs. Weights eventually converge and are fixed. 

Figure 3. 7 presents an example of the behavior of this algorithm. The weights of 

576 output nodes are plotted in these four subplots when there are two random independent 

inputs uniformly distributed over the region enclosed by the boxed areas. Line 

intersections in these plots specify weights for one output node. Weights from input Xo are 

specified by the position along the horizontal axis and weights from x 1 are specified by the 

position along the vertical axis. Lines connect weight values for nodes that are topological 

nearest neighbors. Weights start at zero and clustered at the center of the plot. Weights 

then gradually expand in an orderly way until their point den§ity approximates the uniform 

distribution of the input samples. 

3.2.4 Back propaWion <BP) neural network 

(Multi-layer perga?tron) 

BP neural networks are feed-forward networks with one or more layers of nodes 

between the input and the output layers. These additional layers contain hidden units or 

nodes that are not directly connected to both the input nodes and output nodes. Figure 3.8 

shows a multi-layer BP network with two layers of hidden units. BP network overcomes 

many of the limitations of a single layer perceptron, but had not been used generally in the 

past because the effective training algorithms were not available. A training algorithm was 

developed by Rumelhart et al [54] in 1986. Although it can not be proven that these 

algorithms converge as with single layer perceptrons, they have been shown to be 

successful for many problems of interest [54]. 

The capability of multi-layer perceptrons stems from the nonlinearities used within 

the nodes. If nodes are linear elements, then a single-layer network with appropriately 

! • ~ 
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Figure 3.7 Four Frames for a Kohonen Self-Organizing map Neural Network [55]. 
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Hidden Layers 

Figure 3.8 Multi-layer BP Neural Network [54]. 
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chosen weights can exactly duplicate those calculations performed by any multi-layer 

network. Figure 3.9 illustrates the capabilities of a perceptron with one, two, and three 

layers that use hard limiting nonlinearities. The second column in this figure indicates the 

types of decision regions that can be formed with different networks. The next two 

columns present examples of decision regions which could be formed for exclusive OR 

problem and a problem with meshed regions. The rightmost column gives example of the 

most general decision regions that can be formed. 

Figure 3.9 shows a three-layer perceptron which can form arbitrarily complex 

decision regions and can separate the meshed classes. It can form regions as complex as 

those formed using mixture distributions and nearest-neighbor classifiers [44] and can be 

proven by construction. The proof depends on partitioning the desired decision region into 

small hypercubes (squares when there are two inputs). Each hypercube requires 2N nodes 

in the first layer (four nodes when there are two inputs}, one for each side of the 

hypercube, and one node in the second layer that takes the logical AND of the outputs from 

the frrst-layer nodes. The outputs of the second layer nodes will be 'high' only for inputs 

within each hypercube. Hypercubes are assigned to the proper decision regions by 

connecting the output of each second layer node only to the output node corresponding to 

the decision regions that node's hypercube is in and performing a logical OR operation in 

each output node. A logical OR operation will be performed if these connection weights 

from the second hidden layer to the output layer are one, and threshold in the output nodes 

are 0.5. This construction procedure can be generalized to use arbitrarily shaped convex 

regions instead of small hypercubes and capable of generating the disconnected and non­

convex regions shown in Figure 3.9. 

The above analysis demonstrates that not more than three layers are required in the 

perceptron like feed forward nets because a three layer network can generate arbitrarily 

complex decision region. It also provides some insight into the problem of selecting the 

number of nodes to be used in three layer perceptron. The number of nodes in the second 
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Figure 3.9 Types of Decision Regions That can be Formed by Single- and Multi­
Layer BP Neural Networks With one and two Layers of Hidden Units 
and two Inputs [44]. 



64 

layer must be greater than one, when decision regions are disconnected or meshed and 

cannot be formed from one convex area. The number of second layer nodes required in the 

worst case is equal to the number of disconnected regions in input distributions. The 

number of nodes in the first layer must typically be sufficient to provide three or more 

edges for each convex area generated by every second layer node. There should, thus, be 

more than three times as many nodes in the second as in the first layer. 

The above discussion centered primarily on multi-layer perceptrons with one output 

when hard limiting nonlinearities are used. Similar behavior is exhibited by BP network 

with multiple output nodes when sigmoidal nonlinearities are used and a decision rule is to 

select the class corresponding to the output node with the largest output. The behavior of 

these networks is more complex because decision regions are typically bounded by smooth 

curves instead of by straight line segments and analysis is thus more difficult. These 

networks, however, can be trained with back propagation algorithm. 

3.2.4.1 Function ap_proximation usinemulti-layer perceptron 

The first clear insight into the versatility of neural networks, for use in function 

approximation came with the discovery of Kolmogorov's theorem [55]. This theorem 

states that any continuous function of N variables can be computed using only linear 

summations and nonlinear but continuously increasing functions of only one variable. This 

result gave hope that neural networks would turn out to be able to approximate any 

functions that arise in the real world. The following results by Hatch-Nielson [55] and 

others showed that BP network capable of implementing any function of practical interest 

to any desired degree of accuracy. 

3.3 Application of Pattern Recognition in Tool Wear Monitoring 

An essential step in the design and control of many mechanical systems involves 

modeling of the system dynamics. As mentioned earlier, one method which does not 
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require any model is the pattern recognition and mapping technique using neural network 

paradigms. In this section, the methods of sensor integration using different neural 

network paradigms, discussed in the last section, are investigated. 

LetT and M be the sensor signals from two different sensors, e. g., the thrust and 

torque sensors. The problem is to monitor the tool wear progress. The signals from these 

two sources, can be assigned to one of the following classes. 

• Signals related to worn tool. 

• Signals due to tool fracture. 

• All other signals (including those from sharp tool). 

The partitioning or classification process can be implemented using one of the 

methods explained in the last section or other similar methods. There are three methods of 

sensor signal classification: 

1 . Classification using clustering technique. 

2. Classification using mapping technique. 

3. Classification using decision surfaces. 

These techniques are described in more details in the following. 

3.3.1 Classification usin~ clusterin~ techniQue 

Figure 3.10 shows the working principal of the clustering technique. As seen, the 

classes are not linearly separable. This is the main problem associated with this method. 

To solve this problem, the whole domain of each class is divided into small subclasses. 

Figure 3.10 shows the implementation of this technique. Table 3.1 shows the training data 

set. During the course of training, the state of tool wear for each set of sensor signals is 

known. For example, TN and MN belong to a worn tool (see Table 3.1). During training 

they may be merged to subclass number Sn (see Figure 3.10), for example, using ART2 

network. Therefore, whenever subclass number S n is set during operation, it is an 

indication of worn tool. Each state of tool wear, namely, worn tool, sharp tool, and tool 
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fracture are represented by a number of subclasses (for more clarification see Si , Sj. Sm. 

and Sn of Table 3.1 and Figure 3.10). 

The size of a subclass is a very important factor. The smaller the size of the 

subclasses, the finer the domain each class can be divided, and more accurate the 

classification . But as the size of the subclasses decreases, the structure of the neural 

network becomes more complicated due to increasing number of subclasses. The size of 

the subclasses is defined by vigilance parameter sources in ART2 network. In Kohonen 

network, the number of subclasses is determined before training. In this case, the sizes of 

the subclasses are not the same and the probability distribution of the data determines their 

sizes. 

3.3.2 Classification usin~ m!Wpin~ technique 

The second classification uses mapping technique. As mentioned in the last 

section, BP network is capable of approximating any function. Figure 3.11 shows how 

BP network can address the problem of tool wear classification. In this method, some 

value is assigned to each class of the state of tool wear. For example, a is assigned to a 

sharp tool, b to a worn tool and c to a fractured tool. During training of BP network a,b, 

and c are used as targets. When the network is operational, if the output of network is b 

then it indicates the tool is worn. 

3.3.3 Classification usin~ decision surfaces 

As shown in Figure 3.9, BP can classify any complicated region using decision 

surfaces. It is possible to design a BP network with three outputs (Figure 3.12), each of 

them represents one of the classes, namely, sharp tool, worn tool, and tool fracture. After 

training, one of these three outputs will be set to indicate the state of tool wear associated 

with the input signals. Figure 3.12 shows structure of BP network that classifies sensor 

signals using the decision surfaces technique. 
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3.4 Tool Wear Estimation Using Mapping Technique 

Sometimes we are interested in predicting the exact magnitude of the wear land on 

the tool. The magnitude of wear is useful for an artificial intelligent system (AI) to 

determine the optimum cutting speed and feed rate. In this case, wear may be estimated by 

the evaluation of sensor signals as shown by the following equation 

w = f(T,M) (3.4) 

As mentioned in the last section, BP network is able to approximate any type of 

function, i. e. map inputs to outputs. Therefore, one approach is to use BP network for 

this purpose. Clustering technique can also be used for this case. Figure 3.13 shows how 

the clustering technique can model the above equation. In the clustering technique, each 

magnitude of wear is assigned a class. For example, in Table 3.1, thrust and torque 

signals, TN and MN associated with WN, magnitude of wear. During training, these 

signals, namely, thrust and torque may be merged to class number Sn (see Figure 3.13). 

When the network is operational if class Sn is set. It means the magnitude of wear is WN. 

As can be seen, all three methods can address the problem of tool wear 

classification, and clustering and mapping techniques can estimate tool wear. The 

advantage of ART2 neural networks is, it uses an unsupervised learning (learning without 

teacher) and can learn on-line (while the network is operational). In contrast, BP network 

uses supervised learning and it should be trained before use. If the shape of the classes is 

very complicated, the size of the subclasses should be very small, which requires a 

considerable number of subclasses to cover each class. This leads to a large size ART2 

network. But BP network needs smaller size for this case. Therefore, if enough data for 

training is available, BP network is better than using networks based on clustering 

techniques. 
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3.5 Conclusions 

In this Chapter, a review of parameter estimation and pattern recognition and their 

application to tool wear monitoring in metal cutting are investigated. First, it was shown 

how parameter estimation works in the case of tool wear monitoring. This was followed 

by a review of the application of pattern recognition. Some researchers [ 43] have used a 

combination of both techniques. i. e. inputs to the neural network are estimated parameters 

of the system. In this investigation, it was shown that in a drilling process only gain of the 

system is changing while all the other parameters of the system remain constant with the 

development of tool wear (see Chapter V for details). It was also assumed that the classes 

can be separated by some boundaries. i. e. no member of a given class is in the domain of 

the other class. As long as this assumption is valid, pattern recognition technique may be 

applicable. In this investigation it was shown that in the drilling process, the member of 

different classes are mixed (see Chapter VI for details). Therefore the application of pattern 

recognition technique is somewhat difficult for drill wear estimation. 



CHAPTER IV 

REVIEW OF SIGNAL ANALYSIS 

Time domain representation of a signal which gives the temporal variation of the 

signal amplitude and may be transformed into the frequency domain through power spectral 

density (PSD) analysis. PSD analysis decomposes the original signal into a sum of powers 

of sinusoidal waveforms at different frequencies. The advantage of this decomposition is 

that it enables one to examine how the power of the signal at different frequencies varies 

with changes in the source mechanism generating the signal. Thus, it provides a 

description of the signal characteristics which may not be evident in the original time 

domain. 

Periodogram, which is the square of the absolute of the Fourier transform of a finite 

duration of a random process, is a biased estimate of PSD and its standard deviation at each 

frequency is of the same order as its mean at the same frequency. This fact was ignored by 

most of the researchers in metal cutting. This chapter gives an overview of the theories 

behind spectral estimation using the periodograms. 

4.1 Spectral Estimation 

Let XT(t) be a sample of a stationary random process x(t), then its PSD is given by 

(4.1) 

where 
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R('t) = E{x(t)x(t+'t)} = lim _l_lT--r x(t)x(t+'t)dt 
T--?oo T- 't 

0 
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(4.2) 

R( 1:) is the autocorrelation function of x(t). However, since x(t) is usually available only 

for a finite duration of time segment T, the above product is known for t < T - 1: (Figure 

4.1). Therefore, the above equation should be changed to 

RT('t) = E{x(t)x(t+'t)} = ___L_lT--r x(t)x(t+'t)dt 
T-1: 

0 

andPSD is 

(4.3) 

(4.4) 

sT (co) is not a reliable estimate of S( ro). Although R T('t) is an unbiased estimate 

ofR('t), 

l'tj < T (4.5) 

But, sT(ro) is not an unbiased estimate of S(ro) because its inverse is zero for l't! > T. 

However, this is not the main problem. In Equation 4.3, the length of integration equals 

T - l't! and it approaches zero as l't! approaches T. Hence, the variance of R T ( 1:) is large 

for l'tj close to T. And since all values of 1: are used in equation 4.4, the variances of 

sT(ro) is large for any T. In the following, the underlying theory using RT('t), as 

estimate ofR('t), a modified form of Equation 4.3 will be developed. 
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Figure 4.1 x(t) and x(t+'t) Signals [56]. 
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RT('t) = E{x(t)x(t+'t)} = i{·' x(t)x(t+'t)dt (4.6) 

This is so because, unlike ST(ro), the Fourier transform ofRT('t) is given by 

(4.7) 

and can be expressed directly in terms of XT(t). Indeed, the integral in Equation 4.6 equals 

the convolution of x(·) and x(·), i. e. 

(4.8) 

From this and the convolution theorem it follows that 

(4.9a) 

T 

XT(Ol) = i x(t)e-iro1dt (4.9b) 

The process so formed is called sample spectrum or periodogram. It should be noted that 

the limits of integral in Equation 4.6 are not infinity. However, since x(t) =0 fort< 0 

and t > T this limit can be changed to infinity. Applying, now the convolution theorem to 

Equations 4.6, we get Equations 4.8 and 4.9. The limits of the integral in Equation 4.9b 

are now changed from infinity to 0 and T due to the fact mentioned above. 
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It is usually convenient to represent a finite duration of a signal in discrete time 

form, x(n). The Fourier transform of such a representation is referred to as discrete 

Fourier transform (DFT) of the sequence. In this way, if x(n) is a sequence defined only 

over the interval from 0 to N-1, the DFT, X( COk), of x(n) is defined only over the same 

interval from 0 to N -1 by 

N-1 

XN( cok) = L x(n)e-jOOkn 
n=O 

(4.10a) 

where COk = 21tk/N which is the discrete time frequency and it is between -1t and 1t. The 

corresponding continuous time frequency is obtained by Qk = fsCOk where fs is sampling 

rate (frequency) of the signal in Hz. Discrete time periodogram is defined by 

for k= 0 or N/2 (4.10b) 

4.2 Mean and Variance of Periodogram 

The Fourier integral of a stochastic process x ( t) is a stochastic process in the 

variable CO given by [56] 

X( co)= J~ x(t)e-i"'1dt ( 4.11) 

The mean of X (CO) is 

E{X(co)) = J~ E{x(t)]e-i"''dt (4.12) 
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Therefore, if x(t) is a zero mean process then the mean of X( co) is also a zero 

process. Hereafter, without loss of generality, x(t) is assumed to be a zero mean 

stationary random process. Autocorrelation X (CO) is given by 

(4.13) 

* where X (ro2) is the conjugate of X(ro2) and r(ro~,ro2) is a two dimensional Fourier 

transform defined by 

(4.14) 

where x*(t2) is a conjugate of x(t2). For a stationary random process 

E{x(tt)x*(h)} = R(tt-h) (4.15) 

Ifx(t) is a wide sense stationary (WSS) random process (i.e. Eq. 4.15 is valid) 

then X(ro) is white noise. To show this, r(rot.-002) is evaluated assuming t1 = t2 + 't 

(see Eq. 4.13) 

r(COJ,-C02) = J~ J~ R(tt - t2)e·i(rottt-Olili)dttdh 

= f e·i(rot- ro,)b 1~ Re-irottd't)dt2 =S(ro1) L e-i<rot- ro,)"dt2 

(4.16) 
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Since X( COt) and x* ( C02) are uncorrelated, jX( COt)l2 and IX( C02)j2 are also uncorrelated. 

Estimation in Eq. 4.16 is unbounded when COt = C02 = CO because O(CO -co) is infinity. 

It can be shown that, by setting 't = tt - t2 and COt = C02 = CO 

(4.17) 

From Equations 4.1, 4.13, 4.9a and 4.17, we have 

S(co) =lim lrT(co,-co) = lim E {;!jXT(co~2 } = lim E{ ST(co)} (4.18) 
T-+oo T T-..+oo T T-..+oo 

It means that mean of ST(CO) approaches S(co) as T goes to infinity. Fourier transform of 
;' 

a process x(t) is, in general, complex 

X( co) = A( co) + jB(co) (4.19) 

and may be expressed in terms of the real and imaginary parts of the following two 

dimensional Fourier transforms (see Equations.4.13 and 4.14) 

(4.20) 

From Eq. 4.19 and 4.20, we can obtain 
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(4.21) 

The covariance of IX(ro)J2 can not, in most cases, be expressed in terms of 

r( rot ,ro2) because it involves fourth order moments. The normal case, however, is an 

exception. It can be shown that, the difference between the fourth order moment of x(t) 

and of the normal process with the same spectrum can be neglected if T is sufficiently large 

[56]. Therefore, x(t) is assumed to be normal with zero mean. Covariance of!X(ro)J2, 

using Equation 4.20, is 

cov {IX (rot )12 ,!XC ro2)l2} = E {IX( ro1 )!~X ( ro2)F}-E {IX ( ro1 )12} E {IX( ro2)l2} 

= E{ [A2(ro1)+B2(ro1)][A 2(ro2)+B2(ro2)]} 

-E{A2(oot)+B2(rot)} E{A 2(ro2)+B2(ro2)} (4.22) 

If x andy are jointly normal process, we can write [56] 

(4.23) 

Using Eq. 4.23, Eq. 4.22 can be simplified to 

cov{IXCrot)J2,JX(ro2)!2l = 2E2{A(rot)A(002)} + 2E2{B(rot)B(ro2)} 

+2E2 {A(rot)B(ro2)} 

+ 2E2{A(ro2)B(ro1)} (4.24) 
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Since A( ro) and B ( ro) are zero mean jointly normal process. Substituting Equation 4.20 

into Equation 4.24, we obtain 

(4.25) 

From Eq. 4.25, we have 

(4.26) 

From Eq. 4.17 

(4.27) 

and fmally from Eq. 4.18 and 4.9a, we have 

(4.28) 

This equation shows that variance of the periodogram is of the same order as the square of 

its mean. 

In summary, for a stationary random process, mean of ST( ro) converges to S( ro) 

as T goes to infinity (Eq. 4.17), var { ST( ro)} is very large, i. e. it is equal to or greater 

than the square of actual magnitude ofPSD ((S(ro))2) (Eq. 4.28), and finally ST(rot) and 

ST(~) are uncorrelated (Equations 4.16 and 4.9a). Therefore, it appears that the PSD 

analysis performed by other researchers in metal cutting [10,12,14,15] by not considering 

these facts may 'not be reliable. 
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4.3 Data Windowing 

As indicated in Section 4.1, a finite duration of the signal, x(n), is used, since the 

input to the discrete time Fourier transform (DFT) must be of a finite duration. This is 

called data windowing. For example, the mathematical representation of a rectangular 

window, which is just a simple selection of a finite selection of the signal, is given by 

v(n) = x(n)w(n) 

where w(n) for a rectangular window is given by 

( 
1 for 0 ~ n< N ) 

w(n) = 
0 otherwise 

The effect on frequency domain is a periodic convolution, i.e. 

V(eiro) =_Lilt X(ei9)W(ei<(l)-9))d8 
21t 

-It 

(4.29a) 

(4.29b) 

(4.30) 

W(ejro) for a 64 data points is shown in Figure 4.2a. Figures 4.2b to 4.2d show absolute 

ofDFI'for 

v(n) = Aocos(roon + <po) + Atcos(roin + <pt) (4.31) 

where Ao = 1. At = 0.75 and roo and COt change for different cases. For Figure 4.2b 

they are 21t/14 and 41t/15 respectively; for Figure 4.2c 21t/l4 and 21t/l2; and for 

Figure 4.2d 21t/l4 and 41t/25. In Figure 4.2b there is an overlap between the window 
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Figure 4.2 lllustration of Fourier Analysis of Windowed Cosines with Rectangular 
Window .(a) Fourier transform of window (b)-(d) Fourier transform of 
windowed cosines as the frequency spacing becomes progressively 
smaller. (b) roo= 21t/14, COt = 41t/14. (c) roo =21t/14, COt= 21t/12. 
(d) roo= 27t/14, COt =47t/25. [57] 
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replicates at roo and ro 1 while two distinct peaks are present, the amplitude of the spectrum 

at ro = roo is affected by the amplitude of the sinusoidal signal at ro = ro 1 and vice versa. 

This interaction is called leakage. i. e. the component at one frequency leaks into the 

vicinity of another component due to spectral smearing introduced by the window. Figure 

4.2c shows the case where the leakage is even greater and how sidelobes adding out of 

phase can reduce the height of the peaks. In Figure 4.2d, the overlap between the spectral 

windows at roo and ro1 is so significant that the two peaks visible in 4.2b and 4.2c have 

merged into one. In other words, with this window, the two frequencies corresponding 

to Figure 4.2d can not be resolved in the spectrum. 

Reduced resolution and leakage are the two primary effects on the spectrum as a 

result of applying a window to the signal. The resolution is primarily influenced by the 

width of the main lobe of W ( eiro), while the degree of leakage depends on relative 

amplitude of the mainlobe and the sidelobes of W ( eiro). The width of the mainlobe and 

the relative sidelobe amplitude depend primarily on the window length and the shape 

(amount of tapering) of the window. The rectangular window, with a Fourier transform 

(Figure 4.2a) 

(4.32) 

has the narrowest mainlobe for a given length. On the other hand, sidelobes of rectangular 

window is largest of the all commonly used windows. 

Some commonly used windows are shown in Figure 4.3. These windows are 

defined by the following equations (Equation is 4.29 for a rectangular window): 



Bartlett <trianwlar) 

2n/N for Q=:;n=:;N/2 \ 

w(n) = 
0
2-2n/N for N/2< n=:;M / 

otherwise 

Hannin~ 

I 0.5(1 - cos(21tn/N)) for 0 =:; n =:; N ·) 
w(n) =\ 0 otherwise 

Hammin~ 

( 
0.54 - 0.46cos(21tn/N) for 0 =:; n =:; N ) 

w(n) = 
0 otherwise 

Blackman 
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(4.33a) 

(4.33b) 

(4.33c) 

I 0.42-0.5cos(21tn/N)+0.08cos( 41tn/N) for 0 =:; n =:; N ) 
w. (n) =\ 0 (4.33d) 

otherwise 

Figures 4.4 (a) to (e) show the plots of the function 20 log1dW(ei00~ for each of 

these windows with N = 50. The rectangular window clearly has the narrowest mainlobe 

and thus, for a given length, it has the best resolution among these windows. However, 

the first sidelobe is only about 13 db below the main peak, resulting in highest degree of 

leakage. As can be seen from Figure 4.4 by tapering the widow smoothly to zero as with 

the Hamming, Hanning, and Blackman the sidelobes are greatly reduced; however, the 

trade off is a much wider mainlobe and thus worse resolution. 
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Figure 4.3 Commonly Used Windows [57]. 
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4.4 Smoothening the Periodogram 

The averaging of the periodograms by spectrum estimation was studied extensively 

by Bartlett; subsequently, after the fast algorithms for computing the DFf were developed, 

Welch [58] combined these computational algorithms with the use of a data window w(n) 

to develop the method of averaging modified periodograms (when window is not 

rectangular it is referred to as modified periodogram). 

In the periodogram averaging method proposed by Bartlett, the whole data 

sequence x(q) of length Q is divided into segments of data sequence, Xm(n) of length N 

data points (see Figure 4.5),i. e. 

Xm(n) = x(mN + n) m = 0, 1, 2 .. M and 0 ~ n ~ N -1 (4.34) 

where M is the integer part of ( Q/N) - 1. If the lengths taken consecutively as contiguous 

portions of one total length of series, the correlation between the two periodograms 

(SNl IDic) and SN/ ffik)) will be negligible as the length N of each portion increases, 

provided R(t) decreases fast enough as t increases. For example, even between adjacent 

portions, we have 

N 

E{XN1(rok)X~z(rok)} = L 
2N 
L x(n1)x(n2)e-j(o1 - 02)0% 

01 = 1 02 = N+l 

After some algebraic manipulations [59], we get 

(4.35) 

(4.36) 
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* where XN1(COk) and XNiCOk) are obtained from two consecutive portions, and this 

expression tends to zero as N increases, provided R(N+'t) is of the order of (1/N) for 

fixed 't. Therefore, periodograms of every two segments of data are uncorrelated. To 

examine the variance, we use the fact that in general the variance of the sum of M 

independent (uncorrelated), identically distributed, random variables is 1/M times the 

variance of each individual random variable . Therefore, the variance of the average 

periodogram is given by 

(4.37) 

where 

(4.38a) 

and 

(4.39b) 

XNm( COk) may be found from Equation 4.10a. The choice of N and M for a given length 

of data is a compromise between reducing the variance by the approximate factor 1/M and 

not reducing too much the resolving power which depends on the value of N. The 

periodogram estimated from Equation 4.38a is biased [56, 59]. But as N, the length of 

segment, increases the bias decreases [56, 59]. However, as the data length Q increases, 

both N and M can be allowed to increase, so that as Q approaches infinity, the bias and 

variance can approach zero. 
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4.4.1 Welch method 

In the Bartlett method, nonoverlapping rectangular windows were used for 

computing periodograms. Using different window shapes, Welch [60] showed that the 

standard deviation of each periodogram is still of the same order as its mean. The modified 

periodogram of each data segment is defmed by 

where 

N-1 

V N( ro) = L v(n)e·j<Okn 
n=O 

v(n) can be found from Equation 4.29a, and U is the normalizing factor [57, 58] 

N-1 

U = l L [w(n)]2 

Nn=O 

(4.40) 

(4.41) 

(4.42) 

Welch proposed overlapping of data segments which gives the smallest variance of 

the average modified periodogram per available length of data. Each segment can be 

represented by 

xm(n) = x(mL + n)w(n) m = 1, 2, ....... ,M (4.43) 

where L < N. Figure 4.5 shows the data segmentation for periodogram averaging when 

L = N/2. The first segments starts from data point 1 to data point 2L. The second 
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segment starts from the middle of first segment, i. e. L+ 1 to 3L. This procedure continues 

up to the end of the complete length of the data. The total number of segments can be 

found by 

M =integer part of [(Q-L)/L] (4.44) 

which is approximately twice the number of segments without overlapping when L=N/2. 

Welch showed that as these segments are not statistically independent, the variance is not 

reduced by a full factor of M, but by a factor of 9M/ll when L=N/2 and this is the 

maximum reduction. Greater overlap does not continue to reduce the variance because the 

segments are less and less independent as the overlapping increase. Although 9M/11 is 

smaller than M, and since the number of segments is approximately twice as many for a 

given length of data, Welch method is more effective than Bartlett method. 

Welch method can be summarized as follows: The modified periodogram of each 

data segment is calculated using Equations 4.40 through 4.42. The average modified 

periodogram is found by applying Equation 4.38a. Then, the variance of the estimate is 

given by 

(4.45) 

4.5 Conclusions 

In this Chapter power spectral density (PSD) calculations using periodogram (i. e. 

square of the absolute of Fourier transform of the sensor signal) averaging is described. It 

was shown that the mean of periodograms of sensor signals converges to a power of the 

signal at that frequency. Variance of the periodograms at each frequency was shown to be 

equal to or greater than the power at that frequency. To reduce the variance of the 
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estimation of PSD, periodogram averaging using Bartlett method (using non overlapped 

data segment) and Welch method (overlapped data segments) were recommended. 

Windowing data for the calculation of PSD was investigated. Problems associated 

with data windowing, namely, leakage, resolution for different window types were 

reviewed. 



CHAPTERV 

EXPERIMENTAL WORK AND DATA PROCESSING 

In Chapter II it was pointed out that the cutting speed used by most researchers in 

drilling is higher (sometimes more than 1.5 times the cutting speed recommended in the 

Machining Data Hand Book [ 45]) than the normal cutting speed used in industry . The 

reason for this is if one were to use the recommended cutting speed (which is very 

conservative), the drill life would be of the order of thousands of holes which is not 

generally feasible in a laboratory environment. To overcome this, the following strategy is 

developed in this investigation. Data was collected at the recommended cutting speed and 

feed. However for accelerating wear, higher cutting speed( ...... twice the recommended 

speed) is applied periodically. Details of this strategy will be explained in Section 5.2. 

In this investigation, the advantage of a very slow development of wear during 

normal cutting (using recommended speed and feed) was used. This gave adequate data 

over a number of holes with negligible wear development, which facilitated the use of a 

technique called averaging periodograms (discussed in Chapter IV) for the calculation of 

PSD. Good correlation is found between the change in the area under the PSD plots of 

sensor signals and the comer wear area of a drill bit. 

5.1 Experimental Setup 

Figure 5.1 is the schematic of the experimental setup used in this investigation. A 

3/8 in. diameter M2 high speed steel drill bit and a 8 in. long x 1 in. square section bar of 

AISI 1045 steel work material were chosen for the experiments. The depth of the holes 

was 0.45 in., cutting speed and feed were 50ft/min and 0.005 in/rev respectively (selected 
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from the Machining Data Hand Book [ 45]). The hole depth was selected such that holes 

could be cut on both sides of a 1 in. square bar to conserve the use of work material. 

Experiments were carried out on a Bridgeport CNC milling machine. Appendix A gives 

the specification of the machine tool and the instrumentation used in this investigation. A 

fixture was made to hold the workpiece and the latter was mounted on a Kistler 

piezoelectric (Model 9271A) two-component dynamometer (thrust and torque). Two 

piezoelectric strain elements were used to measure stains in the X and Y directions and 

secured.on the machine table. Workpiece was moved in the fixture after cutting each hole 

locate the put uncut part of the workpiece under the drill bit for cutting the next hole. The 

signals from the two component dynamometer and two piezoelectric strain elements were 

amplified by Kistler Charge Amplifiers and then passed through analog filters to avoid 

aliasing. The filters used are third order Butterworth active filters. The cut-off frequency 

and gain of the filters are adjusted by changing the appropriate resistors on the PC board of 

the filters. Signals were sampled by data acquisition board (Model Dash-16) on an ffiM 

AT compatible computer. The signal from the power transducer after passing through the 

power monitor is also sampled by the data acquisition board. All sampled data were saved 

on the hard disk of the computer. Figures 5.2 show typical sensor signals of thrust, 

torque, strains in the X and Y directions at the recommended cutting speed and feed for a 

3/8 in. drill bit. Sampling of the sensors signals for each hole commenced at a known 

depth (0.17 in.)· where the conical portion of the drill is completely inside the workpiece. 

The minimum depth is calculated as 

Required depth =(Drill diameter) cotg(Point angle/2)/2 

= (3/8) cotg(590)f2 = 0.12 in. 

To compensate for the possible geometrical errors of the drill bits, sampling commenced at 

0.17 in depth of each hole instead of the required depth of 0.12 in. To initiate the sampling 
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sensor signal at this depth, the following method was used: As can be seen from Figure 

5.2, the thrust signal has a very steep slope (approximately 90°) when the drill bit enters 

the work material. The computer samples the thrust signal until the thrust force passes 800 

N, it then waits for 4.08 sec., required for the drill bit to penetrate 0.17 in. inside the 

workpiece at the selected cutting speed and feed. At the end of this period the computer 

starts sampling all sensor signals at the same time. The signals are sampled at 5 KHz for 

0. 7 4 s~ond. The comer frequency of analog filters is set to 2500 Hz. It will be shown in 

Section 5.2, estimates of power at frequencies below 300 Hz have maximum signal-to­

noise ratio, therefore, they have been considered in this research. As power at frequencies 

above 300 Hz are not required, sampling rate is reduced to 1 KHz for 0.9 second and the 

comer frequency of analog filters is set to 450 Hz .. 

In this research, data are collected from 6500 holes and 156000 FIT calculation are 

performed as well as 3500 plots have been produced. Author developed, the necessary 

computer codes for performing calculations and plotting the graphs. In this report, the 

results of data from 1500 holes are presented, which involved 36000 FFf calculations. 

5 .1.1 Block diawm of the experimental setyp 

Figures 5.3 is a modified block diagram of Koren [4] of the experimental setup. 

There are two feedback loops. The first feedback returns with the actual cutting speed (for 

example through a tachometer or an encoder). A comparator compares the reference 

cutting speed and the feedback signal, then proper control command is sent to the spindle 

drive of a machine tool to adjust the cutting speed by the controller. However, the torque 

required to maintain the cutting at the reference cutting speed reduces the cutting speed. 

Therefore, actual cutting speed is different from the reference cutting speed. Similarly, the 

second feedback system controls the feed mechanism. 

As shown in Figure 5.3 drilling process is a two input-cutting speed and feed and 

two output-torque and thrust system. Each input has an effect on both outputs. For 
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example, an increase in the feed causes an increase in both the torque and the thrust force. 

Strains on the machine table along the cutting direction and perpendicular to the drill axis 

can be correlated with torque and thrust by an appropriate transfer functions. In this 

investigation, torque, thrust, strain in cutting direction (X-direction), and strain 

perpendicular to the drill axis (Y-direction) on the machine table are measured and are 

correlated with drill wear. 

5.2 Experiment Strategy 

Each drill is defined by two capital letters, for example drill AD or drill BF. In the 

first stage of the experiments a 3/8 in. drill bit (drill AC) was used to cut 0.45 in. deep 

holes in AISI 4150 steel (330 BHN) using the recommended cutting speed (50ft/min) and 

feed rate (0.004 in/rev) from the Machining Data Hand Book [45]. It was observed that 

after cutting 610 holes, the drill bit was still sharp. Therefore, it was decided to accelerate 

wear on the drill bit by using higher cutting speed on the same work material. The cutting 

speed was thus increased to twice the recommended speed (100ft/min) and the feed rate 

was increased to 0.005 in/rev. The hole depth was same as in the previous case, i.e. 0.45 

in. As a result, the drill life was reduced to 16-40 holes (drill AF, AG and AH) for this 

case. The following rough calculation was made to calculate the drill life using the Taylor 

tool life formula at the recommended cutting speed. Then value in the Taylor's Tool life 

formula for the drilling process was estimated by Kadlor et al [21] to be 0.14. Therefore, 

the Taylor tool life formula for the present case can be represented as 

VTO.l4 = c 

If each hole takes about Th cutting time, then the total cutting time is T = NTh, and the 

above equation will be modified to 
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where C1 = CTh- 0·14. From the above equation we can write 

It was found that the drill life at the cutting speed of 100 ft/min is 16 to 40 holes. 

Assuming the average drill life to be 30 holes at this cutting speed and using the above 

equation, the drill life for the drill bit at 50 ft/min is 4240 holes. This is a conservative 

estimate, because thermal softening reduces tool life drastically at the high cutting speed 

and 30 holes may not be the exact value for drill life to substitute in the Taylor tool life 

formula. It was, therefore, concluded that it could take thousands of holes for one drill bit 

to completely wear if the recommended cutting speeds and feeds were used. Based on the 

above discussion the following experimental strategy was developed (Figure 5.4). High 

cutting speed was used to accelerate drill wear. After the drill had reached a certain state of 

wear the recommended cutting speed and feed were used. During this stage, designated as 

normal cutting, progress of wear on the drill bit was found negligible. All of the sensor 

signals (thrust, torque, strain in the X andY directions) were sampled at the same time 

during this stage. Now, it was assumed that wear does not change during this stage and 

therefore all signals over these holes are associated with the same state of drill wear. In 

order to go to the next stage of wear, cutting speed was increased again to the higher speed 

(i. e. 100 ft/min). This procedure was repeated several times. 

Figures 5.4, 5.5a, and 5.5b show this procedure for drill BL. As can be seen from 

Figure 5.4, high cutting speed (100 fr/min) is used for holes 1 to 10, 111 to 120 and 221 to 

230 (steep slops). During high speed cutting no signal was sampled and the work material 

used was AISI 4150 (330 BHN). Normal cutting conditions were used for holes 11 to 

110, 121 to 220 and 231 to 330 and the work material was AISI 1045 steel (230 BHN). 
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Figure 5.4 Plot of Wear vs. the Hole No. for Drill BL. Drill bit 3/8 in. For Normal 
Cutting: Cutting Speed: 50 ft/min (Spindle Speed: 500 rpm), Feed: 0.005 
in/rev (2.5 in/min), Work Material AISI 1045 Steel (230 BHN). For High 
Speed Cutting: Cutting Speed: 100 ft/min (Spindle Speed: 1000 rpm), 
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BHN). 
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(I) Fresh Tool (VI) Hole 220 

(III) Hole No. 120 (VI) Hole No. 330 

Figure 5.5a SEM Photograph at Different Stage of Wear for Side A of Drill BL. (I)Side A of Fresh Drill, (ll) Side 
A, After Cutting 10 Holes, (III) After Cutting 120 holes. (IV) After Cutting 220 Holes, (V) After 
Cutting 270 Holes, (VI) After cutting 330 Holes. 
Drill bit 3/8 in., For nonnal cutting: Cutting speed: 50 ft/min (spindle speed: 500 rpm), Feed: 
0.005 in/rev (2.5 in/min), Work material AISI 1045 steel (230 BHN). for high speed cutting: 
Cutting speed: 100 ft/min (spindle speed: 1000 rpm), Feed: 0.005 in./rev (5 inJmin). Work 
material AISI 4150 steel (330 BHN). 
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(I) Fresh Tool (VI) Hole 220 

(III) Hole No. 120 (VI) Hole No. 330 

Figure 5.5b SEM Photograph at Different Stage of Wear for Side B of Drill BL. (I)Side B of Fresh Drill, (ll) Side 
B, After Cutting 10 Holes, (Ill) After Cutting 120 holes. (IV) After Cutting 220 Holes, (V) After 
Cutting 270 Holes, (VI) After cutting 330 Holes. 
Drill bit 3/8 in., For normal cutting: Cutting speed: 50 ft/min (spindle speed: 500 rpm), Feed: 
0.005 in/rev (2.5 in/min), Work material AISI 1045 steel (230 BHN). for high speed cutting: 
Cutting speed: 100 ft/min (spindle speed: 1000 rpm), Feed: 0.005 in./rev (5 in./min). Work 
material AISI 4150 steel (330 BHN). 
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On comparing the scanning electron microscope (SEM) photographs (Figures 5.5a and 

5.5b) of side A and side B of drill BLat hole No. 120 (which is at the end of high speed 

cutting) and hole No. 220 (which is at the end of normal cutting) are compared only minor 

changes of wear can be observed in drilling 100 holes during normal cutting. The same 

conclusion can be drawn by comparing SEM photographs of the same drill at holes 270 

and 330. 

Figure 5.4 shows one side of the drill is worn more than the other side. This 

uneven wear on different sides of the drill was also noticed by Braun et al [32] also. This 

might be due to geometrical errors in the manufacture of the drill bit as well as uneven 

hardness variation of the drills. Uneven hardness of drill bit, i. e. one side of the drill bits 

harder than the other can result from the problems associated with heat treatments of an 

intricate shaped drill bit. 

One observation can be made in the high cutting speed region. Although Figure 5.4 

shows that 10 holes were cut in the high cutting speed period, for example holes 111 to 

120, the exact number of holes was not shown in the figure. This is because, in high 

speed cutting, drill life can vary between 16 and 40 holes. Therefore, the following 

procedure was adapted during this period. After drilling a few holes, the drill bit was 

observed under an optical microscope for drill wear. If change of drill wear was sufficient 

then normal cutting was resumed. Otherwise the former procedure was repeated again. For 

simplicity and paying attention to the fact that no signal was sampled during high cutting 

speed period, this region was shown in Figure 5.4 only as 10 holes. 

5.3 Vibration Analysis of the Experimental Setup 

Before analyzing data in the frequency domain, it is necessary to examine some of 

the critical natural frequencies of the system. Documented data regarding natural frequency 

of the machine tool was not available from the machine tool builder. Rotberg et al [61] 

conducted vibration analysis of a drill bit using finite element method (FEM). They found 
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the torsional and axial natural frequency of a 100 mm long, 10 mm diameter drill bit 

(approximately similar to a 3/8 in. drill bit used in this investigation) to be 5KHz and 14 

KHz respectively. 

Torsional vibration of the dynamometer, including the fixture and the workpiece, 

may be calculated as follows: From Kistler Model 9271A users manual, natural frequency 

and torsional rigidity of dynamometer are given as fd = 3 KHz and Kd = 50 

N cm/J.Lrad respectively. Id, the moment of inertia of the dynamometer is 

I<J = ~ = 50x108 kg cm2/rad = 14_1 kg cm2 

(21tfdp (21tx3000)2 

Moment of inertia of a 8 in. long x 1 in. square bar in extreme position is 

I _ Ah3p _ (2.54)2(8x2.54)3(0.0078) _ 134 1 k 2 
w- - - • gem 

3 3 
I : 

Body of the fixture, made of aluminum, has a cylindrical shape with 9 em 

diameter and 5.5 em height. The cover of the fixture which is made of steel has a 

cylindrical shape also of the same diameter and with a 1 em height. Therefore, the moment 

of inertia of the fixture is 

I = 1tD4h1P1 + 1tD4h2P2 = 1t94x5.5x0.0027 + 1tX94x1x0.0078 
f 32 32 32 

= 14.6 kg cm2 

The total moment of inertia is 

It= Id + Iw + Ir = 134.9 + 14.1 + 14.6 = 163.5 kg cm2 

and 



50x10s =880Hz 
163.5 
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The moment of inertia of the workpiece is maximum at a location when the hole is at the 

end of the workpiece. However, in drilling most part of the workpiece the moment of 

inertia will be less than the calculated value in the extreme position. Consequently the 

natural frequency of the dynamometer including the fixture and the workpiece will be 

higher than 880 Hz. 

5.4 Analysis of the Sensor Signals in the Time Domain 

In the time domain, the mean and the variance of the sensor signals for each hole 

were calculated and plotted against the hole number. Figures 5.6 and 5.7 show these 

results. From Figure 5.4, it may be noted that the total corner wear for hole number 50 and 

hole number 250 are 0.076 mm2 and 0.43 mm2 respectively (see Section 5.6 for details of 

the calculation of the total corner wear area). But from Figures 5.6 and 5.7 no significant 

differences can be found in the mean and the variance of sensor signals for these two holes. 

Therefore, it can be concluded that sensor signals in the time domain do not show any 

correlation with drill wear. 

5.5 Analysis of the Sensor Signals in the Frequency Domain 

If the mean of a sensor signal is not subtracted from the total signal, its power 

spectrum will show a high value at zero frequency. If the mean is relatively large with 

respect to the variance of the signal (as can be seen from Figures 5.2, 5.6 and 5.7, of this 

investigation), this component will dominate the spectrum estimate causing low amplitude, 

low frequency component to be obscured by leakage [57]. Therefore, in this investigation, 
~ I ' 

mean of each data segment is estimated and 'the resulting estimate is subtracted from the 

sensor signal before computing the power spectrum estimate. It should be noted that the 
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Figure 5.7 Variance of Sensor Signals in the Time Domain for Drill BL. (I) Thrust, 
(II) Torque. For 3/8 in. drill bit, Cutting speed = 50 ft/min (500 rpm 
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mean of each data segment is only a rough estimate of the zero frequency component. 

Hence, some peak should be expected at zero frequency. However, the subtraction of the 

approximate mean from the total sensor signal leads to a better estimate at neighboring 

frequencies [57]. 

As mentioned earlier, no noticeable change was observed in drill wear over a 

number. of holes in normal cutting (Figure 5.4). On the other hand, the sources of noises, 

such as nonuniformity in hardness of the work material, built-up edge, and microcracks 

should have some probability distribution functions that do not change at the same state of 

drill wear and cutting conditions. Therefore, it is assumed that the process is a stationary 

random process over a number of holes with negligible wear development. Consequently, 

the estimate of PSD can be found by averaging the periodograms of data segments from the 

holes with negligible wear development (as shown in Chapter IV for stationary random 

process). 

At the beginning of the experimental work, relatively high sampling rate was 
• ~ I • 

used, i.e. 5KHz for 0.74 sec. The corner frequency of the analog filters was set to 2500 

Hz. The objective was to fmd the minimum sampling rate that gives the most information 

on the cutting process. For the calculation of FFT, 1024 data points were used which 

gives 4.88 Hz frequency resolution. Figure 5.8 shows the estimate of the PSD of the 

sensor signals for Hole No. 200 of drill AR. For estimating the PSD shown in Figure 5.8, 

Welch method (see Chapter N) was used to average six data segments with a 50% overlap 

from each hole. Hanning window was applied to each data segment. 

The reasons for the selection of the Hanning window for the calculation of the 

estimate PSD, among the windows shown in Figure 4.4, are as follows: Rectangular 

window has higher relative amplitude of the mainlobe and sidelobe and hence results in 

higher leakage. The reason for not considering the Blackman window is lower resolution 

due to wide mainlobe. Among the other windows discussed in Chapter IV, namely, 

Bartlett, Hanning, and Hamming, Hanning was considered as it has lower relative 
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(I) Thrust, (II) Torque. For 3/8 in. drill bit, Cutting speed = 50 
ft/min (500 rpm spindle speed), Feed rate =0.005 in/rev (2.5 
in./min), Work material AISI 1045 Steel (230 BHN). 
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amplitude mainlobe and sidelobes and hence less leakage, even though all of them have the 

same mainlobe width. 

Each estimate of the PSD plot in Figure 5.8 is an average of the modified 

periodograms of 6 data segment with a 50% overlap. As can be seen, the estimate of PSD 

of the sensor signals are rather noisy. Therefore, six data segments are insufficient to 

reduce the variance of the periodogram. To overcome this problem, the number of data 

segments should be increased which is impractical due to insufficient RAM space during 

data acquisition. As all the data has to be saved in the RAM during data acquisition due to 

high sampling rate; this would demand considerable RAM space. The data can not be 

transferred to the hard disk during data acquisition at the high sampling rate. Increasing the 

duration of the data collection means drilling deeper holes, this is not advisable due to the 

possibility of chip entanglement which affects the sensor signals. Therefore, it was 

decided to average the periodograms of the data segments of the sensor signals over a 

number of holes over which change of drill wear was negligible. The variance of the noises 

were reduced significantly. Figure 5.9 shows the results of the periodograms of data 

segments of sensor signals over 40 holes for drill AR (in this case each plot is the average 

modified periodograms of 240 data segments, i. e. 6 from each hole x 40 holes). At the 

same time signal-to-noise ratios for all sensors were calculated using the following 

equation: 

(5.1) 

This equation'has been adopted from a similar equation in the time domain [56] the results 

of which are shown in Figure 5.10. 

As can be seen in Figures 5.9, the torque signal shows high peaks at frequencies 

above 300Hz. The signal-to-noise ratio of the torque signal as in Figure 5.10 is very low 
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Figure 5.10 Signal-to-Noise Ratio of Sensor Signals in the Frequency Domain Over 
40 Holes (From Hole No. 200.to Hole No. 239) for Drill AR. 
(I) Thrust, (II) Torque. For 3/8 in. drill bit, Cutting speed = 50 ft/min 
(500 rpm spindle speed), Feed rate =0.005 in/rev (2.5 in./min), Work 
material AISI 1045 Steel (230 BHN). 
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at frequencies larger than 300 Hz. Vibration analysis in Section 5.3 indicates that torsional 

vibration of the dynamometer (including the workpiece) should be higher than 880 Hz. 

High peaks at these lower frequencies (lower than 880 Hz) might be associated with the 

vibration of a system consisting of the large mass of spindle drive connected to a drill bit 

with low torsional rigidity. Figure 5.3 shows that strains in the X- andY-directions are 

related to the torque signal by a transfer function. As can be seen in Figure 5.10, the 

signal-to-noise ratio of the strains in the X andY directions is lower for frequencies above 

300Hz. 

Frequencies with the least noise contamination are the most reliable frequencies. 

Frequencies with maximum signal-to-noise ratio are the most desirable and are selected. 

As can be seen from Figures 5.10, maximum signal-to-noise ratio is obtained for all sensor 

signals up to 300Hz. Therefore, sampling rate was reduced to 1 KHz for 0.9 sec., and 

comer frequency of analog filters was set to 450 Hz. For the calculation of FFT, 256 data 

points were used which gave 3.91 Hz frequency resolution and Hanning window again 

was used for the data windowing. This enabled smaller data files on the hard disk at the 

same time decreased the calculation time. 

It is interesting to compare the experimental results with theory. As can be seen 

from Figures 5.10, the signal-to-noise ratio up to 300 Hz for all sensors is -2.2. 

According to Equations 4.28, 4.45 and 5.1, the ratio for averaging six periodograms 

should be 

fff=N- ~ 2.2 

Which is the same as the values from signal-to-noise ratio of the plots. As 

mentioned in Chapter IV, the variance of the ,periodogram of each data segment of a signal 

is of the same order of magnitude as the power of the signal at that frequency. Therefore, 
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averaging the periodograms of 6 data segments reduces the standard deviation by an order 

of 2.2. The problem associated with signal-to-noise ratios at different states of drill wear 

will be addressed in Section 6.2. 

In order to check repeatability, i. e. to investigate if there is any change in the PSD 

of the signals at the same state of drill wear, three independent sets of holes at each state of 

drill wear were selected as follows (see Figure 5.4 for details of the selection of sets of 

holes and Section 5.6 for details of the calculation of total comer wear area) 

1) Total comer wear 0.076 mm2 

Set 1: hole no 11 to 40 

Set 2: hole no 41 to 80 

Set 3: hole no 81 to 110 

2) Total comer wear 0.28 mm2 

Set 4: hole no 121 to 150 

Set 5: hole no 151 to 190 

Set 6: hole no 191 to 220 

3) Total comer wear 0.43 mm2 

Set 7: hole no 231 to 260 

Set '8: hole no 261 to 300 

Set 9: hole no 301 to 330 

In Figure 5.1la, estimates of the PSD of data Sets 1, 2, and 3 (comer wear 0.076 

mm2) of drill BL are overlaid. It can be seen that the estimate of PSD' s for Sets 1, 2 and 3 

is approximately the same. This means that at the same state of wear, PSD of the sensor 

signals do not change. Figures 5.11b and 5.11c show the same plots over a number of 

holes for Sets 4, 5, and 6 (comer wear 0.28 mm2), and Sets 7, 8, and 9 (comer wear 0.43 

mm2) respectively. On examining Figures 5.1la through 5.11c and Figure 5.4, it can be 

concluded that PSD of the sensor signals must be functions of drill wear, because drill 

wear is the only factor that has changed during hole Sets 2, 5 and 8 which are at different 
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Figure 5.11a Estimate of PSD of Sensor Signals Over a Number of Holes at the Same 
State of Drill Wear. (1) Set 1: From Hole No. 11 to 40, (2) Set 2: From 
Hole No. 41 to 80, (3) Set 3: From Hole No. 81 to 110, for Drill BL. 
(I) Thrust, (II) Torque. For 3/8 in. drill bit, Cutting speed = 50 ft/min 
(500 rpm spindle speed), Feed rate =0.005 in/rev (2.5 in./min), Work 
material AISI 1045 Steel (230 BHN). 
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Figure 5.11 b Estimate of PSD of Sensor Signals Over a Number of Holes at the Same 
State of Drill Wear. (1) Set 4: From Hole No. 121 to 150, (2) Set 5: From 
Hole No. 151 to 190, (3) Set 6: From Hole No. 191 to 220, for Drill BL 
(I) Thrust, (II) Torque. For 3/8 in.drill bit, Cutting speed = 50 ft/min 

'(500 rpm spindle speed), Feed rate =0.005 in/rev (2.5 in./min), Work 
material AISI 1045 Steel (230 BHN). 
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Figure 5.11c Estimate of PSD of Sensor Signals Over a Number of Holes at the Same 
State of Drill Wear. (1) Set 7: From Hole No. 231 to 260, (2) Set 8: From 
Hole No. 261 to 300, (3) Set 9: From Hole No. 301 to 330, for Drill BL 
(I) Thrust, (ll) Torque. For 3/8 in.drill bit, Cutting speed= 50ft/min 
(500 rpm spindle speed), Feed rate =0.005 in/rev (2.5 in./min), Work 
material AISI 1045 Steel (230 BHN). 
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states of drill wear, while PSD' s of data sets at the same state of drill wear are coincident 

(repeatability). 

Figures 5.12 (I) to (N) are PSD's of one data set from each state of drill wear, i.e. 

Set 2, set 5 and Set 8 plotted together, for further clarification of change in PSD with drill 

wear. In this figure change of area with respect to drill wear is more apparent. This figure 

also suggests that there might be some proportional change among PSD's of data Sets 2, 5, 

and 8. Therefore, the PSD's of all three data sets are normalized, i.e. the area under each 

PSD plot is made equal to one. For this propose, the area under the PSD plot between two 

different frequencies, namely, f1 and fn is calculated using the trapezoid method (see 

Figure 5.13) as follows 

A = 8f (Power(f1)+2Power(f2)+2Power(f3) 
2 

+ .. +2Power(fn_1)+Power(fn)) (5.2) 

Where Af = fi+l - fi. is frequency resolution. The normalized power at each frequency is 

obtained by 

Normalized Power at fi = Power(fi)/A (5.3) 

This procedure reduces the area under the PSD plots between f1 and fn to one. Figure 

5.14 shows the normalized PSD plots for three sets, 2, 5, and 8, between 20 and 380Hz. 

As can be seen, all of the normalized PSD plots are coincident with each other. This means 

that the only change is the gain or the input to the system with respect to change of drill 

wear while all other parameters of the system remaining constant 

As mentioned earlier, the mean of each data segment was subtracted from the 

sensor Signal. Figure 5.9 shows that very high peaks are present at the low frequencies 

close to zero on the PSD plots of all sensor signals. Due to leakage, power at the lower 
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Figure 5.12 Estimate of PSD of Sensor Signals Over a Number of Holes at Different 
States of Drill Wear. (1) Set 2: From Hole No. 41 to 80, (2) Set 5: From 
Hole No. 151 to 190, (3) Set 8: From Hole No. 261 to 300, for Drill BL 
(I) Thrust, (II) Torque. For 3/8 in.drill bit, Cutting speed = 50 ft/min 
(500 rpm spindle speed), Feed rate =0.005 in/rev (2.5 in./min), Work 
material AISI 1045 Steel (230 BHN). 
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Figure 5.13 Calculation of the Area Under the PSD Using Trapezoidal Method. 
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Figure 5.14 Nonnalized PSD (Frequency Range 20 to 380Hz) of Sensor Signals Over a 
Number of Holes at Different State of Drill Wear. (1) Set 2: From Hole No. 
41 to 80, (2) Set 5: From Hole No. 151 to 190, (3) Set 8: From Hole No. 
261 to 300, for Drill BL (I) Thrust, (II) Torque. For 3/8 in.drill bit, 
Cutting speed= 50ft/min (500 rpm spindle speed), Feed rate =0.005 in/rev 
(2.5 in./min), Work material AISI 1045 Steel (230 BHN). 
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frequencies are, therefore, not reliable. Due to low signal-to-noise ratio of the estimate of 

the PSD of the sensor signals above 300 Hz, the area under the PSD at these regions are 

also not reliable. For normalizing the PSD plots, frequencies below 20 Hz and above 380 

Hz were not considered. As seen in Figure 5.14, the three sets of normalized PSD of 

torque signal above 300Hz (300-380 Hz) are not coincident. This is due to low signal-to­

noise ratio of the PSD of torque signal over these frequencies. 

5.6 Correlation of Wear With the Area Under the PSD Plots 

As shown in the previous sections, the PSD of sensor signals increases with 

increasing drill wear. From the normalized PSD plots (Figure 5.14) we can also see that all 

of the normalized PSD plots at different states of drill wear are coincident. It is well known 

that integration decreases the error. Therefore, instead of considering the variation of the 

PSD at any one frequency, we consider the change of area under the PSD plot as a criterion 

for drill wear. We can write 

6Apso = f(w) (5.4) 

Figures 5.4, 5.5a, and 5.5b show that wear extends from the comer to the center of 

the drill bit along the cutting edge. Figure 5.15 (I) and (II) show schematics of a sharp and 

a worn drill bit. From the Taylor tool life formula for cutting, we have 

(5.6) 

Let AT1 be wear area at which tool failure is initiated when cutting speed is V 1· Tool life 

associated with this cutting condition is T 1· If cutting speed is increased to V 2 (V 2 > V 1) 

according to Equation 5.6, tool life will decrease to T2 (T2 < Tt). Soderberg et al [17] 

found that drill failure is initiated at smaller wear area at higher cutting speed, i. e. 
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AT2 < AT1• If a linear correlation is assumed between T and AT then Equation 5.6 can 

be modified to 

(5.7) 

As tool failure is initiated by high temperatures due to the heat generated, constant C2 may 

be related to some level of generated energy (heat) at which cutting tool collapses. 

Therefore, it may be assumed that the generated energy, similarly to the change in the area 

under the PSD plots (which is energy of sensor signals) are function ofVmAT. For a drill 

bit, Equation 5.6 can be written as 

~Apso = f(J vmdA ) = f( L vpt ~Ai) 
Wear Area 

WeaxArea 

where v = 2rtpn then 

~Apso = f((2rtn)m L ppt~Ai) 
Wear Area 

(5.8) 

(5.9) 

Where Pi is the distance between the location of ~Ai on the cutting edge and the axis of the 
. 

drill bit. Figures 5.5a and 5.5b show that the worn area near the comer is larger than any 

other part of the drill wear and p gets its maximum value, r (radius of the drill) at the 

comer. If m is large (in Taylor tool life formula m is 10 for high speed steel for the 

turning process ) the following approximation can be made: 

(5.10) 
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(I) Sharp Drill 

(II) Worn Drill 

Figure 5.15 Schematic of a Sharp and a Worn Drill bit. (I) Sharp drill, (II) Worn Drill,the 
Sharp Drill is Overlaid and Shown by Dashed Line. 



138 

Where Acw is the projection of the total wear area of both corners of the drill bit on 

a plane perpendicular to the axis of a drill bit. Substituting Equation 5.10 in Equation 5.9, 

we have 

(5.11) 

Acw is calculated from the SEM micrographs of the drill bits at any given state of drill 

wear. 

Figure 5.15 shows a schematic of the corner wear area (shaded area). In this figure 

the sharp tool is overlaid on tool of the worn tool and indicated by dashed line. Distance a 

is measured from the corner of a sharp tool along the cutting edge. This area is calculated 

by adding up the areas of triangles and trapezoids that make up this area. Let Ap be the 

calculated area of both corners of the drill bit from the SEM micrograph. Then, the 

projection of this area on the plane perpendicular to the drill axis is given by 

(5.12) 

Where s is the scale of SEM micrographs designated on the picture and p is the point angle 

of the drill bit. The effect of clearance angle is neglected due to its small influence. 

Clearance angle is generally between 8°-12° and cos(l2°) = 0.978, therefore its effect can 

be neglected. 

In this investigation the wear areas of both corners are measured along 0.4 mm of 

the cutting edge for 3/8 in. drill. Figures 5.16 (I) to (IV) show plots of the wear area vs. 

the change of area under the PSD for drills BL, BO, BP and BQ. In this figure, the area 

under the PSD of senor signal is measured between 50 and 300 Hz. The frequencies 

above 300 Hz and below 50 Hz are not considered due to the consideration discussed in 

the previous section. 
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Figure 5.16 Plot of Wear Area vs. Change of Area UnderthePSD for Drills BL, BO, BP 
and BQ. 
Drill bit 3/8 in., Normal cutting: Cutting speed: 50ft/min (spindle speed: 
500 rpm), Feed: 0.005 in/rev (2.5 in/min), Work material1045 steel 
(230 BHN). . 
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5. 7 Conclusions 

In this Chapter time and frequency domains of four sensor signals, namely, thrust, 

torque, strains in the X- and Y -directions were investigated. It was observed that if the 

recommended cutting speed and feed are used, wear rate would be negligible over a 

number of holes. Therefore, signals from all of these holes may be considered to be from 

the same state of drill wear. For accelerating drill wear higher cutting speed than 

recommended speed was used. 

In the time domain mean and variance of the sensor signals of each hole were 

calculated and plotted against the number of holes. No significant change in the mean and 

variance of sensor signals was noted in the time domain with respect to the change of drill 

wear. 

In the frequency domain, Welch method (see Chapter IV for details) was used for 

the calculation of power spectral density (PSD). Average of the six periodograms (of six 

data segments from each hole for all sensor signals) was found to be noisy. It indicates 

that six periodograms are not sufficient for this propose. However, an average of the 

periodograms over a number of holes with negligible wear development would be 

satisfactory. Noise associated with the PSD of sensor signals was found to decrease 

significantly. In this investigation it was observed that the PSD plots of all sensor signals 

were coincident at any state of drill wear (repeatability, see Figures 5.lla to 51lc). Signal­

to-noise analysis indicated that power at frequencies between 50 and 300Hz have the 

highest value of signal-to-noise ratio, and hence, are the most reliable frequencies. 

Comparison of the PSD plots showed that power at each frequency increases with increase 
1 ' 

in drill wear. Normalized PSD plots of all of the four sensor signals at different states of 

drill wear were coincident. This indicates that power at all frequencies increases 

proportionally with increase in drill wear. Therefore, the change of area under the PSD 

plots was considered instead of power at one frequency, for integration decreases the error. 
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The change in the area under the PSD plots of all (four) sensor signals were plotted against 

the total comer wear. It was observed that change of area under the PSD plots of three 

sensor signals, namely, thrust, torque, and strain in the X-direction showed good 

correlation with drill wear. Correlation between change of area under the PSD plots of 

strain in the Y -direction and drill wear was not as good as those of the other three sensors. 



CHAPTER VI 

INVESTIGATION OF THE SENSOR INTEGRATION 

TECHNIQUE USING THE RESULTS 

OF THIS STUDY 

Tool wear monitoring is an essential component of an automated cutting process. 

As a result, considerable research in various research laboratories around the world is 

centered around this purpose. The machining process, in spite of its apparent simplicity, is 

quite a complex process and there are many aspects of it that are still not well understood. 

Sufficiently accurate model that enables one to identify the nature and location of tool wear 

by monitoring sensor signals has not been available. A number of techniques for sensing 

tool wear and for identifying tool fracture have been proposed, but a few, if any have 

found application in industry. Consequently, totally untended machining remains a far 

distant goal. While tool fracture is a sudden event, which needs to be forecasted 

sufficiently in advance, so as to prevent any major catastrophe to the part or the tool itself, 

tool wear is a slowly evolving phenomenon. 

Due to the complexity of the machining process and the lack of sufficiently accurate 

model of the process many researchers have sought methods of sensor integration, such as 

artificial neural networks, that do not need any theoretical or empirical model of the 

process. Artificial neural network, described is Chapter III, is a technique which mimics 

the computational architecture of a human brain. As mentioned earlier artificial neural 

network applied to metal cutting uses one of the following methods for pattern 

classification. 

1. Classification using clustering technique. 

143 



144 

2. Classification using mapping technique. 

3. Classification using decision surfaces. 

In chapter ill it was pointed out that for tool wear estimation, mapping and clustering 

techniques were used. 

In the last decade or so some researchers have concerned themselves with the 

control of the machining process using sensor fusion via neural network. Kannatey-Asibu 

[10] explored the possibility of using pattern recognition technique for monitoring the 

condition of the tool in a cutting operation using acoustic emission (AE) as a specific 

example. Dornfeld and Pan [11] used simple hyperplane decision surface for the 

determination of the chip forming state. Emel and Kannatey-Asibu [12, 13] and 

Balakrishnan et al [62] used the same technique for monitoring tool wear and fracture. 

After the introduction of a training algorithm by Rumelhart et al [54] for the multi-layer 

back propagation (BP) neural network which is able to approximate almost any function, 

mapping technique received considerate attention. Rangwala and Dornfeld [14, 15] used 

BP neural network for the tool wear monitoring. They reported a success rate of 95%. 

Mapping technique (see Figure 3.13 for clarification of the technique) for continuous 

function approximation was used by Chryssolouris and Domroese [63] for the evaluation 

of flank wear in orthogonal cutting, using RMS of AE signal, force, and temperature as 

inputs to the network . Clustering technique has also been applied to metal cutting 
: ~ 

problems [41, 43]. ART2 neural network (clustering technique) was used for tool wear 

monitoring by Tansel [ 41]. A combination of parameter estimation and Kohonen self 

organizing map was applied to tool wear monitoring by Kamarthi et al [43]. 

Artificial neural network structures are based on our present understanding of the 

biological nervous system [44]. Although an artificial neural network model, with crude a 

brain-like structure, has great potential in the areas of pattern recognition and modelling of 

highly nonlinear systems using general architecture, at this stage, they are, however, far 

from reaching the performance of a brain [44]. In this chapter, the necessity and 
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possibility of sensor integration for drill wear monitoring are investigated. Time domain 

sensor signals will not be considered, because they did not show good correlation with drill 

wear. Therefore, frequency domain of sensor signals will be investigated in detail. 

6.1 Necessity for the Application of Sensor Integration 

Examination of Figure 5.16 shows that change of area under PSD plots of thrust, 

torque and strain in the X direction have good correlation with drill wear. While strain in 

the Y direction showed some correlation with drill wear it is not found to be as good as 

those of the other sensors. In the design of any system one of the objectives is to design 

the simplest and the most effective system. This fact implies that it is not necessary to 

implement any sensor integration system when one sensor is adequate. Implementing a 

tool monitoring system with three sensor signals each of which has equally good 

correlation with drill wear as in the present investigation is making it more complicated. 

Therefore, signal from any one of these sensors, namely thrust, torque and strain in the X 

direction would be adequate for monitoring drill wear. 

6.2 Possibility of Using Mapping Technique for Drill 

Wear Evaluation 

As mentioned in Chapters IV and V, standard deviation of the estimate of power at 

each frequency of one periodogram of sensor signal is equal to or greater than the 

magnitude of mean of the power at that frequency of sensor signal. In Chapter V it was 

shown that the signal-to-noise ratio is 2.2 when periodograms of six data sets with a 50% 

overlap are averaged. Figures 6.1a through 6.1c show signal-to-noise ratio at different 

states of drill wear (total corner wear areas for drill BL 0.076 mm2, 0.28 mm2, and 0.43 

mm2 respectively) when periodogram of six ~ata sets with a 50% overlap are averaged. As 

can be seen, the ratio of 2.2 is valid for all states of drill wear. In Chapter V it was shown 

that the power of sensor signal at all frequencies increases with increase in tool wear. 
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Figure 6.1a Signal-to-Noise Ratio of the Sensor Signals in the Frequency Domain Over 
40 Holes (From Hole No. 41 to Hole No. 80), Comer Wear: 0.076 
mm2, for Drill BL. (I) Thrust, (II) Torque. 
For 3/8 in. drill bit, Cutting speed 50 ft/min (500 rpm spindle speed), 
Feed rate 0.005 in/rev (2.5 in./min), Work material AISI 1045 Steel 
(230 BHN). 
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Figure 6.1a (Continued) (III) Strain in the X Direction (IV) Strain in the 
Y direction. 
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Figure 6.1b Signal-to-Noise Ratio of the Sensor Signals in the Frequency Domain Over 
40 Holes (From Hole No. 151 to Hole No. 190), Corner Wear: 0.28 
mm2, for Drill BL. (I) Thrust, (II) Torque. 
For 3/8 in. drill bit, Cutting speed 50 ft/min (500 rpm spindle speed), 
Feed rate 0.005 in/rev (2.5 in./min), Work material AISI 1045 Steel 
(230 BHN). 
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Figure 6.1b (Continued) (Ill) Strain in the X Direction (N) Strain in the 
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Figure 6.1c Signal-to-Noise Ratio of the Sensor Signals in the Frequency Domain Over 
40 Holes (From Hole No. 261 to Hole No. 300), Comer Wear: 0.43 
mm2,for Drill BL. (I) Thrust, (II) Torque. 
For 3/8 in. drill bit, Cutting speed 50 ft/min (500 rpm spindle speed), 
Feed rate 0.005 in/rev (2.5 in./min), Work material AISI 1045 Steel 
(230 BHN). 
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Therefore, increase in tool wear results in increase in standard deviation of the estimate of 

power at each frequency of the sensor signals. 

Figures 6.2 (I) to (X) show the cross correlations of the estimate of power at 

various frequencies of the sensor signals either for the same sensor and or for two sensors. 

It can be seen from this figures that in the frequency domain, the estimate of power at any 

two frequencies either for one sensor or for two different sensors are uncorrelated. But 

some correlation may be observed between two different sensors at the same frequency. 

Therefore, all inputs from the frequency domain to neural network are contaminated with 

uncorrelated noises. The standard deviation of these noises is equal to or greater then the 

magnitude of power at each frequency. 

Figures 6.3 (1) to (X) show the cross correlation of the sensor signals in the time 

domain between any two holes either from one or two sensors. As shown, the noises in 

the time domain from thrust and torque sensor signals are also uncorrelated. Some 

correlation can be observed between strains in the X- andY-directions and other sensor 

signals .. 

LetT, M, and Sy be sensor signals from thrust, torque and strains in the X andY 

directions respectively in the frequency domain . From Figure 5.16 it follows 

Acw = ft(T) (6.1a) 

(6.1b) 

(6.1c) 

Sy did ,pot show good correlation with the drill wear. Thrust and torque sensors 
:' 

integration can be shown by 



153 

(I) Thrust and Thrust 

(II) Thrust and Torque 

Figure 6.2 Cross Correlation of the Estimate of Power of Sensor Signals Between 
0 and 425 Hz, for Holes From 240 to 279, For Drill BO. (I) Thrust and 
Thrust, (IT) Thrust and Torque. 
For 3/8 in. drill bit, Cutting speed 50ft/min (500 rpm spindle speed), 
Feed rate 0.005 in/rev (2.5 in./min), Work material AISI 1045 Steel 
(230 BHN). 
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(lll) Thrust and Strain in the X Direction 

2 

(IV) Thrust and Strain in the Y Direction. 

Figure 6.2 (Continued) (lll) Thrust and Strain in the X direction (IV) Thrust 
and Strain in the Y direction. 
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(V) Torque and Torque 

2 

§ 1 

J 
~0 

(VI) Torque and Strain in the X Direction. 

Figure 6.2 (Continued) (V) Torque and Torque (VI) Torque and Strain in 
the X direction. 
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(VII) Torque and Strain in the Y Direction 

(Vlli) Strain in the X Direction and Strain in the X Direction. 

Figure 6.2 (Continued) (VII) Torque and Strain in the Y Direction 
(VIII) Strain in the X Direction and Strain in the X Direction. 
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(IX) Strain in the X Direction and Strain in the Y Direction 

(X) Strain in the Y Direction and Strain in the Y Direction. 

Figure 6.2 (Continued) (IX) Strain in the X Direction and Strain in the Y Direction 
(X) Strain in the Y Direction and Strain in the Y Direction. 



2 

,fj 1 

I 
~0 

158 

(I) Thrust and Thrust 

(II) Thrust and Torque 

Figure 6.3 Cross Correlation of Sensor Signals in the Time Domain Between Holes 
240 and 264 for Drill BO. (I) Thrust and Thrust, (II) Thrust and Torque. 
For 3/8 in. drill bit, Cutting speed 50 ft/min (500 rpm spindle speed), 
Feed rate 0.005 in/rev (2.5 in./min), Work material AISI 1045 Steel 
(230 BHN). 



(III) Thrust and Strain in the X Direction 

(N) Thrust and Strain in the Y Direction. 

Figure 6.3 (Continued) (III) Thrust and Strain in the X direction (IV) Thrust 
and Strain in theY direction. 
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(V) Torque and Torque 

(VI) Torque and Strain in the X Direction. 

Figure 6.3 (Continued) (V) Torque and Torque (VI) Torque and Strain in 
the X direction. 
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(VII) Torque and Strain in the Y Direction 

2 

(Vlll) Strain in the X Direction and Strain in the X Direction. 

Figure 6.3 (Continued) (VII) Torque and Strain in the Y Direction 
(VIII) Strain in the X Direction and Strain in the X Direction. 
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(IX) Strain in the X Direction and Strain in theY Direction 

2 

(X) Strain in the Y Direction and Strain in the Y Direction. 

Figure 6.3 (Continued) (IX) Strain in the X Direction and Strain in the Y Direction 
(X) Strain in the Y Direction and Strain in the Y Direction. 



Acw = g(T,M) 

Function g(T ,M) can take many forms. Consider the following example: Let 

g(T,M) = ft(T) + cf2(M) 
c+l 

or in a more general form 

c :;t -1 
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(6.2) 

(6.3a) 

(6.3b) 

Depending on the value of c and m, Equation 6.3b represents different surfaces in 

a three dimensional space. It is clear that in any sensor integration c and m are not one of 

the inputs. In other words, it can be stated that states c and m are not accessible from the 

input. In the control literature such systems are designated as 'uncontrolable systems'. 

Therefore, independent of sensor integration method being used, in the absence of noise, 

modeling such a system is difficult, if not impossible, and in the presence of uncorrelated 

noises associated with each sensor signal it appears impossible. If the values of c and m 

are given as inputs to the modeling technique there are other equations similar to 6.3b that 

may represent integration of thrust and torque. For example 

(6.3c) 

Equations 6.3a through 6.3c represent surfaces in three dimensional space that intersect 

along a line shown by Equations 6.la and 6~lb. Let noisy thrust and torque signals be 

used for training BP network. For every value of thrust and torque signals (signal+ noise) 
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at any state of drill wear some value for c and m can be found that satisfies the Equation 

6.3b. i. e. any point in the three dimensional space can satisfy this equation or any similar 

equation such as 6.3c in the presence of noise. Therefore, are thrust and torque signals 

(signal + noise) at any state of drill wear are valid data for the BP network, and BP 

network converges to all data points if its topology is complex enough to do so. 

If another sensor signal is added, the sensor integration becomes more complicated. 

For example 

Acw = ( ft(T)m + ctf2(M)m + c~f3(Sx)m)~ 
cj+ c~ +1 

(6.4) 

This equation has more unknown parameters in comparison with Equation 6.3b. 

Therefore, adding one more sensor signal makes the modeling of the system more difficult. 

The main problem is there are several equations similar to 6.3b and 6.3c that have one 

common intersection along the line represented by Equation 6.1. 

Till now we considered the case when all sensor signals are correlated with tool 

wear. Let us assume that Sy has no correlation with tool wear. Integration of this sensor 

signal with thrust signals gives 

(6.5) 

For any value of the thrust signal T (signal plus noise), strain in theY direction Sy, and 

tool wear Acw there will be a value of c that can satisfy the above equation. Therefore, if 

one of the sensor signals do not correlate well with tool wear, the integration of that sensor 

with others will result in the deterioration of the sensor integration technique and hence it 

cannot model the system. 
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To illustrate the shortcomings of the neural network in sensor integration, the 

following computer simulation was made. Assume the correlation between the sensor 

signals thrust T and torque M and the drill wear w be given by the following equations. 

w = 0.2 + 0.775VT - 0.2 (6.6a) 

w = 0.2 + 0.85VM- 0.2 (6.6b) 

The nature of these equations are similar to that shown in Figure 5.16. A uniformly 

distributed random noise ( -0.25 to 0.25) with zero mean and standard deviation equal to 

0.14 were added to T and M for training, but exact values of w was used for tool wear. If 

the standard deviation of the noise (0.14) is compared with the magnitude of T and M, it 

can be seen that it is between 0.7 (T = 0.2) and 0.17 (T = 0.8) which is much smaller than 

the standard deviation of the noise of the estimate of power of the signals in the current 

study. For some 51 w values between 0.2 and 0.8, corresponding T and M values 

were obtained using the Equations 6.6 (a) and (b). To these T and M values, the above 

mentioned noises were added in order to prepare data for training a BP neural network with 

2 inputs, 2 hidden nodes, and one output (2x2xl). Figure 6.4 shows this neural 

network. Another 51 set of data points were used to test the network, using the same 

procedure, butwith different values. After 40 iterations, the mean square error (MSE) was 

4.547XI0-3 which improved to 4.353X J0-3 after 8741 iterations. The results of the 

computer simulation for training data on wear-thrust and wear-torque planes are shown in 

Figure 6.5al and 6.5all respectively. As can be seen, the trained BP network follows the 

training data (signal+ noise) very closely but do not converge to the mean of the signal. 

Figures 6.5bl and 6.5bTI show the function of a trained BP network for testing data set. It 

can be seen that the trained network can not follow the testing data (signal + noise) 

properly. These figures show that the output of the BP network covers almost the whole 
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Figure 6.4 . 2x2xl BP Neural Network Used for the Computer Simulation of 
Equations 6.6a and 6.6b. 
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Figure 6.5a Simulation of Equations 6.6a and 6.6b Using 2x2xl BP Neural Network 
for Training Data Set. 
(I) Wear-Thrust Plane, (II) Wear-Torque Plane,(-) Equation 6.6a or 
6.6b ( *) Training Data Set, (-) Response of Neural Network for Training 
Data Set. 
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band of noise at any state of wear for training as well as testing data sets. This is because, 

as already mentioned, for any noisy values of thrust and torque signals at any state of drill 

wear, there are some values of c and m that can satisfy Equations 6.3b and 6.3c or other 

similar equations. 

6.3 Possibility of Using Clustering, Decision Surfaces, and 

Mapping Techniques for Drill Wear Classification 

Figure 6.6 shows two dimensional distribution of the estimate of power of thrust 

signal at 121.1 Hz and the estimate of power of torque signal at 101.6 Hz for each hole of 

Set 1, Set 4, and Set 7 of Figure 5.4. Set 1, Set 4, and Set 7 at three states of drill wear 

(total corner wear area: 0.076 mm2, 0.28 mm2 and 0.43 mm2 respectively) of drill BL (see 

Figure 5.4 and Section 5.5 for clarification). Estimate of the power of a sensor signal 

from one hole of each sensor is average of six periodograms of signals with a 50% overlap 

from that hole. In this section, for simplicity, whenever powers of thrust and torque 

signals of a hole is mentioned, they refer to the average of periodograms of six data 

segments of thrust and toque signals at the 121.1 Hz and 101.6 Hz respectively. 

Figures 6.1a through 6.1c show that signal-to-noise ratio of powers of thrust and 

torque signals at all states of drill wear is about 2.2 for the average of six periodograms of 

sensor signals with a 50% overlap from one hole. This means that the standard deviation 

of the noise associated with the estimate of power of each sensor signal from one hole is 

about 0.48 times the mean of power of the sensor signal from each hole. Figure 6.2 

shows that powers of thrust and torque are uncorrelated. If it is assumed that they are 

independent , then the joint probability distribution of powers of thrust and torque signals 

at each state of drill wear is a product of their probability distribution. For example, the 

joint probability distribution at 0.28 mm2 tot~ corner wear is 

fo.2s(T,M) = fo.2s(T)fo.2s(M) (6.7) 
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where fo.2s(T), fo.2s(M), and fo.2s(T,M) are probability distribution functions for 

thrust and torque signals and joint probability distribution function of thrust and torque 

signals at 0.28 mm2 total corner wear respectively. All three joint probability distribution 

functions at three states of drill wear cover the complete first quarter of the thrust-torque 

plane. In Figure 6.6, the outer elements of each set are connected together by straight 

lines. Definitely these lines are not the boundaries ofthree states of drill wear. The size of 

the three sets may reflect variance of the noise associated with each of them. Figure 6.6 

shows Set 4 (0.28 mm2 total corner wear) is larger than Set 1 (0.0.076 mm2 total corner 

wear). And Set 7 (0.43 mm2 total corner wear) is larger than the other two sets. This 

means that variance increases with increase in drill wear. It is expected, as shown earlier, 

the variance is about 0.48 mean of the power of thrust and torque. 

Figure 6.6 shows that the any two sets among the three sets, namely Set 1, Set 4 

and Set 7 have common domains. Therefore, it is not clear that a signal from a common 

domain of Set 4 and Set 7 belongs to which of these two sets. This is true also for the other 

domains that are common . Figure 6.6 illustrates a point that signals from all three states of 

drill wear are present. In this case, the state of drill wear can not be identified from the 

signal. 

In the clustering technique no member of a subclass can be in the other subclass. 

Thus, each subclass may represent only one state of drill wear. Therefore, the common 

domains can not be divided into subclasses so that each subclass belongs to one state of 

drill wear. 

In decision surfaces technique, all the members of one class must be bounded by a 

closed boundary and no member of the other class may be inside the closed boundary. The 

boundaries shown in Figure 6.6 contain elements from the other two sets. 

Mapping technique cannot be used in drill wear classification because in common 

domain of all three states of drill wear, the target of the network should contain different 

values depending on the state of drill wear. For example, if we assume, the value a for Set 
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1, b for Set 4, and c for Set 7. The point shown in Figure 6.6 represents the signals from 

all three states of drill wear which imply all the three values a, b, and c to be the target of 

neural networks during training. But, only one value can be targeted at the same time 

during training which is explained in Section 3.3.2. 

6.4 Reevaluation of Some of the Previous Work on Sensor 

Integration Using Neural Network 

Application of neural networks to metal cutting was first proposed by Rangwala 

and Dornfeld [14, 15]. Work in this area was followed by other researchers, including 

Chryssolouris et al [38, 41] and others [43]. In this section, the results of Rangwala and 

Dornfeld [ 14, 15] and Chryssolouris et al [3 8] will be discussed in line of the results of this 

research. 

Rangwala and Dornfeld used BP network to classify sharp and worn tools in a 

turning operation on a lathe. The work material used was AISI 1060 steel bar 2 in. in 

diameter. Feed rate, depth of cut, and cutting speed were 0.002 ipr-0.008 ipr; 0.01-0.03 

inch and 278-556 sfpm respectively. The state of tool wear was divided into two classes­

sharp and worn tool. The wear land was considered to be 0-0.25 mm for a sharp tool, and 

for a worn tool 0.5-0.75 mm. No signal was collected between 0.25-0.5 mm wear land. 

Force and acoustic emission (AE) signals were sampled at the same time. Forces were 

sampled at a rate of 1 KHz for a length of 512 data points and AE at the rate of 5 MHz for a 

length of 1024 data points. PSD of the sensor signals (force and AE) was found by 

calculating the square of the absolute of FFT of the sensor signals. Therefore, the 

dimension of the force vector was 256 elements (with a resolution of 2Hz) and for the AE 

vector 512 elements (with a resolution of 5KHz). These two vectors were concatenated 

and made to a measurement vector of length of 768 elements. 

As mentioned in Chapter IV, the square of the absolute of FFT of a sensor signal is 

not PSD, but a periodogram or a sample spectrum. As shown theoretically in Chapter IV 
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and experimentally in Chapter V, the standard deviation of the periodogram at each 

frequency is equal to or greater than the mean of periodograms of the same frequency. 

Mean of the periodograms at each frequency converges to PSD at that frequency. The 

author of investigation while not attempting to generalize this fact, introduces an element of 

doubt regarding the sampled data in Rangwala's work. As for the force signal, only one 

vector of length 512 elements and for the AE one vector of length 1024 data points were 

used at each state of the tool wear. One would expect a large standard deviation of the 

noise associated with periodograms of both of the signals. Therefore, it appears that theses 

signals are not very reliable. 

Rangwala [14] assumed that some frequencies of the measurement vector are more 

related to the tool wear than others. For selecting the most correlated signal, we attempted 

to minimize the interclass distance and maximize the distance of in-between classes, in an 

Euclidean space. The following cost function was used for this purpose 

(6.8) 

where Sw is within-class scattered matrix and Sb is between-classes scattered matrix. 

If the average of the periodograms of AE and force signals of Rangwala' s work 

have the same pattern as the results of the current investigation, i. e. the power is changing 

proportionately at all frequencies with change of wear, then, power at any one frequency 

has no particular advantage over the power at any other frequency with respect to change of 

drill wear, i. e. there is no need for feature selection. 

Rangwala [14] collected 123 samples, each of length 768 frequencies of the 

periodograms of AE and force. Three sets of six features were selected, using the feature 

selection technique. For the first set, the concatenated vectors of force and AE were used 

and in the second set, three features from the force vector and three features from the AE 

vector were selected separately. In the third set, all the six features were selected from the 
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AE vector. To these six features, two more features were added, namely, cutting speed 

and feed. Therefore, the length of the feature vector came to 8. Out of the 123 total 

samples, 30 samples equally distributed between sharp and worn tools, were selected to 

train an 8X3Xl neural network. The remaining 93 samples were used for checking the 

neural network. During the training phase, the target of the output node was fixed at 0.01 

for the fresh tool and 0.99 for the worn tool. A success rate of 95% was reported for the 

tool wear condition mentioned above and 100% when the network was trained to predict 

the actual wear (this case was not mentioned in Rangwala's Ph.D. Dissertation [14] but 

mentioned in a paper published in 1987 [15]). 

As m~ntioned before, there appears to be no need for feature selection. A linear 

transformation applied in feature selection technique cannot reduce the variance of noise 

associated with the periodograms of sensor signals. As discused in Section 6.3, 

integration of the noisy estimate of power at different frequencies of periodograms of 

sensor signals may not be possible because of presence of common regions of sensor 

signals that should be simultaneously mapped to 0.01 for sharp and 0.99 for worn tool 

respectively. As can be seen, Rangwala and Dornfeld mapped the signals from a sharp 

(0.01) to a worn tool (0.99). During testing of the network these values were changed to 

below 0.5 and above 0.5 for sharp and worn tool respectively. In their work wear land for 

a sharp tool is between 0 and 0.25 mm for a worn tool between 0.5 and 0.75 mm however, 
,. 

no signal was collected for the wear land between 0.25- 0.5 mm. If the output is between 

0 and 0.5, they considered the signal to be associated with a sharp tool and if the output is 

greater than 0.? then the signal is associated with a worn tool. i. e. there is no signal 

available for 0.25 to 0.5 mm tool wear. In practice it is impossible to separate the regions 

from a sharp to a worn tool. By imposing such extreme impractical constraints for the 

separation of noisy signals from a sharp to worn tool region, i. e. absence of signals from 

0.25 to 0.5 mm tool wear, and change of mapping values during testing Rangwala claimed 
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a success rate of 95%. It is difficult to implement such a strategy in actual production 

conditions. 

Chryssolouris and Domroese [38] made a computer simulation for the integration 

of the estimates of tool wear from three models based on three sensors, namely, force, 

temperature, and AE. In one of the simulations, they assumed that the models estimated 

appropriate tool wear except with some random noises which are represented by the 

following i. e. 

where: 

Xi= y + random i= 1, 2, 3 

Xi = estimate of tool wear by the model based on sensor i. 

y =actual tool wear 

random = random noise. 

(6.9) 

The sensor integration can, then, be represented as (see Section 6.2 for details) 

y = X 1 + C2X2 + C3X3 

1 + C2 + C3 
(6.10) 

There are some noise associated with x 1, X2, and X3. As mentioned in Section 6.2 there is 

no access to C2 and C3 from input. During training, for any values of y, Xl, X2, and X3 

some there will be some values for C2 and C3 that can satisfy the above equation. It means 

that neurol n~~work can converge to any values of y, x 1, X2, and X3 Such a sensor 

integration introduces redundancy in the sensor integrator and in presence of noise causes 

tool wear estimation to deteriorate. 
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6.5 Conclusion 

In this section the necessity and possibility of sensor integration for drill wear 

monitoring was investigated. It was shown that PSD of three sensor signals, namely 

thrust, torque and strain in the X-direction have equally good correlation with drill wear. 

Therefore, there is no need for sensor integration and one sensor would be adequate for 

monitoring and controlling the drill wear. 

The possibility of the application of three classification techniques, namely, 

classification using mapping, clustering and decision surfaces technique were examined. 

Integration of the sensor signals can introduce redundancy in the sensor integration 

technique and in the presence of noise, results in the deterioration of the estimation of drill 

wear. Periodograms of sensor signals at different states of drill wear are mixed and 

therefore it is difficult to apply the clustering technique. Also, it was shown that inside the 

closed boundary of any one state of drill wear there are signals from the other states of drill 

wear. Hence application of the decision surface technique may not be possible. 



CHAPTER VII 

CONCLUSIONS 

In this thesis, the correlation between four sensor signals, namely, thrust, torque, 

and strains on the machine tool table in the cutting direction (X-direction) and perpendicular 

to the drill bit axis (Y -direction) in drilling had been investigated. This involved the study 

of sensor signals in the time and frequency domains. In the time domain, the mean and the 

variance of the signals were calculated. In the frequency domain, the power spectral 

densities (PSD's) of sensor signals were calculated using the Welch method. To find the 

most reliable frequencies of the sensor signals, signal-to-noise ratio analysis was carried 

out. From the PSD plots, power at frequencies with the highest signal-to-noise ratio (the 

most reliable frequencies) were used for the analysis. This chapter summarizes major 

conclusions of this study. 

7.1 Drill Wear 

This investigation has reinforced the validity of the corner wear as the predominant 

mode of drill wear and can be used for drill life criterion, as proposed by other researchers 

[17-21]. This is due to the high temperatures generated in drilling (above the secondary 

hardening zone (>6()()0C)), as reported by Thangaraj and Wright [19]. We have observed 

that in many cases one side of the drill to wear more than the other which was also noticed 

by Braun et al [32]. This might be due to geometrical errors in the manufacture of the drill 

bit as well as uneven hardness variation of the drills. Uneven hardness of drill bit, i.e. one 

side of the drill bits harder than the other can be due to the problems associated with heat 

treatments of a intricate shaped of drill bits. In this investigation, it was found that total 
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comer wear area, i. e. the summation of comer wear areas of both sides of the drill bit 

showed better correlation with the sensor signals than the width of the margin wear. 

7.2 Correlation of the Sensor Signals With Total Comer 

Wear of the Drill 

In the time domain, the mean and the variance of the sensor signals for each hole 

were calculated and plotted against the hole number (see Figures 5.6 and 5.7). Figure 5.4 

shows that total comer wear for hole number 50 and hole number 250 are 0.076 mm2 and 

0.43 mm2 respectively (see Section 5.6 for details of the calculation of total comer wear 

area). But, from Figures 5.6 and 5.7 no significant differences can be found in the mean 

and the variance of sensor signals for these two holes. Therefore, it can be concluded that 

sensor signals in the time domain do not show any correlation with drill wear. 

To obtain the estimate of PSD, of one sensor signal from a hole, the average of 

periodograms of six data segments of the sensor signals with a 50% overlap was 

calculated. estimates of PSD of all sensor signals from one hole was found to be rather 

noisy. It was observed that had recommended cutting speed was used, wear development 

would be negligible over a number of holes (no significant change of wear was observed 

for 100 holes at least). The data for 100 holes, over which change of wear was negligible, 

was divided into three sets: set one for, the first 30 holes; set two for the next 40 holes; and 

set three for last 30 holes. To obtain the estimate of PSD, periodograms of all the holes for 

each of the mentioned sets were averaged for each sensor signal. To demonstrate the 

repeatability, the estimates of PSD of all the three sets for each sensor was plotted on the 

same graph for each sensor signal. It was observed that for each sensor, the estimate of 

PSD plots of all three sets are coincident. This procedure was repeated for various states of 

drill wear and a similar result was obtained. 

To find the most reliable frequencies of the sensor signal, signal-to-noise ratio in 

the frequency domain for each frequency was calculated. It was observed that signal-to-
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noise ratio is maximum for frequencies between 50 to 300 Hz for all sensor signals, and 

its magnitude is about 2.2. This value compares favorably with the theoretical value 

calculated for the average of periodograms of six data segments with a 50% overlap. 

lt was observed that estimate of power of the sensor signals between 50 and 300 

Hz (shown on the estimate of PSD plots) increases with increase in drill wear. It is well 

known that integration decreases the error. Therefore, the change of area under the PSD 

plots for all sensor signals was plotted against the total corner wear for a given drill bit. 

These plots showed that change of area under the PSD plots of three sensor signals, 

namely, thrust, torque, and strain in the X -direction all had good correlation with the drill 

wear. Correlation between the change of area under the PSD plots of the strain in the Y­

direction and drill wear was found to be not as good as the other three sensors. 

7.3 Parameters of the System 

The estimates of PSD of the sensor signals for the three sets of holes at different 

states of drill wear were plotted on the same plot. Examination of each plot indicated that 

there should be proportional change of estimate of PSD at each frequency for all sensor 

signals. The estimate of PSD plots of all four sensors at different states of drill wear were 

normalized for each sensor. This is accomplished by proportional change of the estimate of 

power at each frequency, by considering the area under each PSD plot between 20 to 380 

Hz as unity. It was observed that the normalized PSD plots of each sensor signal for all 

three sets of holes at different states of drill wear were coincident. This indicates that all 

parameters of the system, except for the gain of the system, are the same at different states 

of drill wear. The proportional change at each frequency can be attributed a change in the 

gain of the system or inputs to the drilling process, namely, the actual cutting speed and the 

feed rate. 
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7.4 Sensor Integration 

In this investigation potential problems associated with sensor integration were 

investigated from two different view points- necessity and possibility of sensor integration. 

As observed, the PSD's of three sensor signals, namely, thrust, torque, and strain 

in the X-direction all showed good correlation with drill wear. It, therefore, appears that 

information from one sensor signal would be adequate for drill wear estimation and hence 

there Iml.Y not be any need for multiple sensors and their integration. 

Cross correlations in the frequency domain were found, at two different frequencies 

for one sensor or for two different sensors at any two frequencies (0-425 Hz). The results 

showed that noises at any two different frequencies of the same sensor or different sensors 

at two different frequencies are uncorrelated. Signal-to-noise ratio analyses in the 

frequency domain at different states of drill wear were also carried out. It was found that at 

different states of drill wear, the signal-to-noise ratio for all sensor signals to be about 2.2. 

As mentioned in Section 7 .2, power at each frequency increases with increase of drill 

wear. Therefore, noise in the frequency domain increases with increase of drill wear. 

The possibility of sensor integration by these methods, and classification using 

mapping, clustering, and decision surfaces techniques were also investigated. Integration 

of the sensor signals using a mapping technique (for classification of sharp and worn tool) 

adds redundancy to the sensor integration technique. It was shown that in the presence of 

redundancy and high variance (the same order as mean of the signal) uncorrelated noise 

results in deterioration of the correct estimation of drill wear. The same problem was 

observed for estimation of drill wear using the mapping technique. 

Clustering technique was not found to be applicable for the present investigation. 

In Chapter 3, Section 3.3.1 the principles of clustering technique were discussed. When 

two signals, such as thrust and torque were plotted for a sharp, a worn, and a fractured 

tool, it was assumed that within a class of each state of wear subclasses (clusters) may be 
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formed separate from the signals for the other states of wear. Figure 6.6 shows a plot of 

the experimental results. It can be seen that points corresponding to each state of drill wear 

was not clearly separated. A point in this graph may, therefore, belong to any state of drill 

wear. The same problem was observed for the estimation of drill wear using the clustering 

technique. Decision surfaces technique did not also work because it was not possible to 

separate signals by a boundary from two states of drill wear. 



CHAPTERVIll 

FUTURE WORK 

Based on the results of this investigation the following research is proposed for 

future investigation. 

8.1 Characteristics of the Actual Cutting Speed and Feed 

in the Time and Frequency Domains 

As discussed in Section 5.1.1 and shown in Figure 5.3, the actual cutting speed 

and feed during drilling can be lower than the reference cutting speed and feed due to 

resisting torque and thrust respectively. As mentioned in Section 5.5, the powers at all 

frequencies are increasing proportionally with respect to the increase in drill wear. 

Therefore, all the parameters of the system are constant, the increase in power can be due to 

the combined effect of input signals to the drilling process and change in the gain of the 

system. Based on the literature review, it appears that the characteristics of the input 

signals (actual cutting speed and feed) have not been investigated. The time and frequency 

domains characteristics of actual cutting speed and feed may show a much better correlation 

to drill wear than the output signals, such as torque and thrust, and other signals such as 

strains in the X- and Y -directions on the table of the machine tool. 

8.2 Transfer Function of the Drilling Process 

As shown in Figure 5.3, the drilling process has two inputs- actual feed and cutting 

speed, and two outputs- thrust and torque. As mentioned in the last section, only the 

outputs of this process have been investigated. Therefore, transfer function of this process 
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between inputs and outputs has not been studied due to lack of information regarding the 

actual cutting speed and feed signals. Transfer function of the drilling process can be 

obtained using the power spectral density (PSD) of the inputs, namely, actual cutting 

speed, and feed, and outputs, namely, torque and thrust of the drilling process. The effect 

of any of the inputs- actual cutting speed and feed, on both outputs- torque and thrust, can 

be studied. This study should provide a better appreciation of cutting in the drilling 

process and the effect of drill wear on the process parameters. 

8.3 Drill Wear Pattern at Recommended Cutting Conditions 

In this investigation high speed cutting (twice the recommended cutting speed) was 

used for accelerating drill wear. Therefore, data presented in this report regarding the 

patterns of tool wear are valid for the wear pattern obtained using high cutting speed. Wear 

patterns in drilling for normal cutting speed need to be studied. This has not been 

documented in the open literature because drill life would be of the order of thousands of 

holes which may not be feasible in a laboratory environment. 

in this study we observed uneven wear on the two sides of the drill at high cutting 

speed (during accelerated drill wear). A similar observation was reported by other 

researchers also [32] for high speed drilling. It is not clear if a similar phenomenon is 

present at the recommend cutting conditions. The temperature distribution on the corner of 

the drill was obtained by Thangaraj and Wright [19] for the cases where the cutting speed 

was 40 to 66 m/min, which is approximately two to three times the recommended cutting 

speed (23 m/min) given in the Machining Data Hand Book [ 45]. Therefore, for 

recommended cutting conditions, no information regarding the distribution of temperature 

on the corner of the drill bit is available. Temperature plays a very significant role in tool 

wear of HSS tools. This is especially so when the temperature exceeds the secondary 

hardening temperature ( 600°C) of the HSS tool material . Such a study is necessary 

because even if the margin on one side of the drill wears, the drill bit has to be replaced. 
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8.4 Monitoring Sensor Signals at Conventional Drilling Speed 

In this investigation monitoring of sensor signals was done at the conventional 

drilling speeds but wear was accelerated intentionally to accomplish different levels of wear 

by increasing the drilling speed to twice the recommended value. This approach was taken 

to limit the number of holes to be drilled and consequently the cost of the work material. 

However, wear under accelerated conditions will be different from gradual wear. In 

practice, drilling is conducted at the recommended speeds and the wear will be under more 

normal conditions. It would, therefore, be useful to investigate the correlation of drill wear 

with sensor signals at the recommended drilling speeds. This could be cost limited in an 

university setting. Hence, such a study should be conducted in an industrial environment, 

e. g. aerospace industry, where they routinely drill literally millions of holes. 
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APPENDIX 

EQUIPMENT SPECIFICATIONS 

A.1 Machine Iool 

Type 

Working Surface 

Travel Along the X Axis (Table) 

Travel Along the Y Axis (Saddle) 

Travel Along the Z Axial (Spindle) · 

Feed Rate Range (Z Axis) 

Feed Rate Range (XY Axis) 

Spindle Motor Power 

Spindle Speed Range 

Spindle Diameter 

Taper 

Control 

A.2 Two Component (Thrust and TOfQue) 

Drillin& Dynamometer 

Type 

Thrust Range 

190 

Interact 412 Bridgepon 

CNC Vertical Machining 

Center 

840 mm X 320 rnm 

450mm 

310mm 

300mm 

1 to 7.5 rn/min 

1 to 12 rn/min 

3.7KW 

40 to 4000 rpm 

65mm 

BT40 

Heidenhain TNC 151P 

Kistler 9271A 

-5 to20KN 



Torque Range 

Linearity 

Natural Frequency 

Axial Rigidity (Thrust Direction) 

Torsional Rigidity (Torque Direction) 

Axial Sensitivity (Thrust Direction) 

Torsional Sensitivity (Torque Direction) 

A.3 Piezoelectric Strain Element 

Type 

Range (Relative Strain) 

Linearity 

Natural Frequency 

Rigidity 

Torsional Sensitivity (Torque Direction) 

A.4 Char~e Amplifiers 

Type 

Input Impedance 

Output Voltage 

Output Current 

Output Impedance 

Frequency Range 

Time Constant 

Accuracy of Ranges 

-100 to 100 Ncm 

~± 1% 

:2:3 KHz 

4 KN/Jlm 

50 Ncm/llfad 

-1.8 pC/N 

-1.5 pC/Ncm 

Kistler 9233B 

-300 to 300 11£ 

~±1% 

:2:4 KHz 

-1.5 N/11£ 

--6pC/Il£ 

Kistler5004 

700hms 

±lOV 

~±SmA 

lOOOhms 

0 to 180KHz 

191 

1000 to 100000 sec (Long) 

1 to 5000 sec (Medium) 

0.01 to 50 sec (Short) 

~±1% 



Linearity 

A.5 Data ACQuistion Board 

Type 

Sampling Rate 

No. of AID Channels 

AID Resolution 

AID Input Rang 

Input Current 

Accuracy 

No. D/A Channels 

D/A Resolution 

D/A Output Range 

Maximum Output Current 

No. Digital I/0 Channels 

$ ±0.05% 

MetraByte DAS-16 

50000 Sample/Second 

192 

16 Single Ended/8 Differential 

Analog Input. 

12 Bits 

± 10 V, ± 5 V, ± 2.5 V, 

±1V 

0-10 V, 0-5 V, 0-2 V 

250 JlA max. at 25° C 

0.01% of Reading,± 1 Bit 

2 

12 Bits 

0-5V 

5mA 

8 ( 4 Input, 4 Output) 
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