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PREFACE

Single sensors were investigated in the past for their potential for monitoring drill
wear. Since, signals from different sensors may capture wear differently at different stages
of its life, sensor fusion concept using multiple sensors was advanced recently. In this
investigation, this concept was explored in drilling using four sensors, namely, thrust,
torque, and strains in the X-direction (along the cutting process) in the Y-direction
(perpendicular to the axis of the drill) on the table of a CNC milling machine. The signals
were analyzed in the time and frequency domains. In the time domain mean and variance
and in the frequency domain power spectral density (PSD) of sensor signals were
calculated. For the calculation of PSD periodogram averaging, proposed by Bartlett and
improved by Welch, was used. All sensor signals were sampled during the period when
the industry recommended cutting speed and feed were used. For accelerating drill wear,
the cutting speed was increased to twice the recommend speed.

The Power Spectral Density (PSD) of sensor signals showed good correlation with
drill wear while in the time domain no significant changes in mean and variance of sensor
signals between a sharp and worn tool were found. Normalized PSD diagrams of each
sensor signal indicated that the parameters of the drilling process did not change and the
only parameter that might change was the gain of the system. Also, the signal-to-noise
ratio analyses in the frequency domain at different states of drill wear indicated that as the
drill wear increases the noise also increases. Three pattern classification techniques used in
neural networks, namely, clustering, mapping, and decision surfaces were examined. It
was shown thét when noisy sensor signals were integrated (instead of using one sensor

signal), using a neural network based the above techniques, it may actually result in the
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deterioration of the correct classification or estimation of drill wear. Consequently, it
appears that integration of the sensor signals under these conditions may not be appropriate
and/or advantageous.
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CHAPTER 1
INTRODUCTION

Metal cutting is one of the most important manufacturing processes. Its importance
can be realized when one considers the total share of this activity in the national economy.
In the United States, the yearly cost associated with the material removal process has been
estimated at about 10% of total gross national product (GNP) [1]. According to Metcut
Research Associates [2], the total annual labor and overhead costs of operating metal
cutting machine tools in the United States, in 1.984, was estimated to be approximately 125
billion dollars. To reduce these costs considerable efforts have been centered around
automation of the metal cutting processes in the United States as well as in other countries.

The traditional symbol of automation is mechanized transfer line. Chronologically,
this was the first example of automated production to appear. Its origins can be traced
largely to the work of Henry Ford in the manufacture of automobiles. In his efforts to
improve the methods of automobile manufacture for reduced cost, he achieved such
significant advances in assembly line mass-production techniques that the feasibility and
potential of these methods were not only demonstrated but became a model to the rest of the
industry. This in turn, led to subsequent developments of fully automated transfer lines.

After the introduction of digital computers to manufacturing processes, new terms,
like numerical control (NC), computer aided manufacturing (CAM) became a common
usage to describe automation technology. Old words, such as mechanization have virtually
disappeared from the technical vocabulary. Modern definition of automation, according to
Groover [3] is the technology concerned with the application of complex mechanical,

electronic, and computer-based systems in the operation and control of production.
[



Application of digital computer to metal cutting operations dates back to 1952,
when the first NC machine tool was introduced [4]. Since then, the cost of
microprocessors has decreased dramatically at the same time their computational power has
increased significantly. In addition, the development of powerful but small size DC
motors, led to in the reduction in the size of CNC machine tools. Inexpensive but powerful
micropfocessors and DC motors have contributed toward the development of industrial
robots also. A combination of CNC machine tools, industrial robots, and other necessary
automated systems has created a new production system known as flexible manufacturing
systems (FMS). Although, the primary objective of FMS is batch production,
advancements in this area can lead to economical mass-production of mechanical parts,
which are produced by the traditional transfer lines.

Probably the biggest obstacle in the path of successful FMS is its dependence on
unattended machining. FMS provides flexible automation for the production of different
parts i. e., it is aimed at handling manufacturing of small lot, random shaped parts. Such a
manufacturing practice can involve many unexpected problems, such as, random breakage
of tools that hamper attempts at untended machining. Lack of adequate solutions to these
problems are due to inadequate knowledge regarding the cutting process. In fact, we are
far from a quantitative description of the complex machining process since the introduction
of a theoretical model by Merchant some fifty years ago. Even today, the basic theory
developed by Merchant [5] is invoked while addressing the cutting process.

Tool wear and tool breakage, for example, are some of the important aspects of the
cutting process that are not well understood. The extent of tool wear has a strong effect on
the surface finish and dimensional accuracy of the workpiece as well as on the machine tool
vibration. Tool wear may lead to catastrophic failure of the tool as a result of high forces
and this may finally damage the machine tool itself. Therefore, accurate monitoring of the
tool condition and identification of the state of tool wear are important problems in

machining, solutions to which can prevent unexpected events. Information regarding tool



condition is very important for a decision making system. The decision making system
may be designed to optimize the cutting process by maximizing the metal removal rate
(MRR) and minimizing the machine downtime (nonproductive time of machine).
Downtime of a typical transfer line is about 25 to 35% of the total available time for
production. Down time due to tool failure is estimated at a third of the total downtime [6].

In unmanned machining systems, the knowledge-base of an experienced human
operator is transferred to a computer that monitors and controls the process. Sensors are
devices that provide the required information regarding the ongoing process for a
computerized monitoring system. Sensors, on one hand, should be accurate enough to
gather reliable information and on the other be rugged enough to withstand harsh
machining environment. The machine tool monitoring and control system must be able to
interpret the received information and identify the relation between the sensor signals and
such parameters as tool wear and breakage, surface finish, state of vibration etc. Success
with such unmanned machining will depend to a large extent on the development of
machine tool monitoring and control system involving adequate sensory devices [7].

Tool failure is a sudden event, which needs to be forecasted sufficiently in advance,
so as to prevent any major damage to the workpiece and even to the machine tool. In
contrast, tool wear is a slowly evolving phenomenon, and can be detected and identified by
one or more sensor signals. For example, force, accelerometer, and acoustic emission
(AE) sensors are some of the common sensors that have been investigated for monitoring
the cutting process. Excellent reviews of tool wear sensors can be found in Micheletti [8]
and Tlusty et al [9]. In the literature, the sensor signals are correlated more to the
secondary parameters, such as shear-plane angle, chip-tool contact length, effective friction
coefficient over the chip-tool contact area, the chip width etc. These parameters in turn are
related to primary parameters, such as cutting speed, feed rate, and depth of cut using
}simple analytical models (for example, Merchant’s [5] model). Due to the difficulties

involved in the cause and effect relationships, no sufficiently accurate model was developed



thus far that enables the identification of the nature and location of the tool wear from a
sensor signal.

The complexity of the machining process and the lack of sufficiently accurate model
have led many researchers to seek alternate methods, such as pattern recognition techniques
or artificial neural networks. Artificial neural networks mimic the computational
architecture of a human brain in a crude way with a prespecified structure, have been
successful in modeling many systems. Similar to a human brain, artificial neural network
can receive signals from different sources (sensors). It is expected that this technique can
integrate different sensor signals, remove irrelevant information, and use the most
correlated ones during the learning process, similar to a human brain. The effort was
aimed at investigating the feasibility of an artificial neural network to represent relationships
between sensor signals and tool rwcar, surface finish, and component of cutting forces in
turning. A hierarchically structured artificial neural network is commonly used to establish
these relationships.

Kannatey-Asibu [10] explored the possibility of using pattern recognition technique
for monitoring the condition of the tool in a cutting operation using acoustic emission
sensing as a specific example. Dornfeld and Pan [11] used the event rate of the RMS of an
AE signal along with the feed rate and cutting velocity in order to provide a decision on the
chip form produced during a turning operation. Emel and Kannaty-Asibu [12, 13] used
spectral features of an AE signal to classify fresh and worn tools. Back-propagation type
neural network was used by Rangwala and Dornfeld [14, 15] for the classification of tool
wear. Selected bands of the force and AE spectrum were used as inputs to the network and
a high level of accuracy was reported in detecting tool wear.

Drilling is a common metal cutting operation. Estimates show that drilling accounts
for nearly 40% of all the metal removal operations in the aerospace industry [16]. Drilling
operation is conducted on a wide variety of machine tools including drilling machines,

machining centers, milling machines, turning machines, and boring machines. Downtime



due to drill breakage is critical in the economics of the drilling operation. Breakage of a
drill inside a hole can result in the part being rejected or in costly repair.

The objective of this investigation is to analyze the correlation between the four
sensor signals, namely, thrust, torque, and strains on the machine table in the cutting
direction (X-direction) and perpendicular to axis of the drill (Y-direction), in both
frequency and time domains. Background information on the drilling process is presented
in Chapter II. This includes the development of the relationships between various angles of
the drill and the drilling parameters by comparing drilling process to oblique cutting.
Review of literature , chiefly that of Soderberg et al [17], Kanai and Kanda [18] and
Thangaraj and Wright [19], indicates that corner (margin) wear is the best criterion for
monitoring drill wear and life. A review various techniques for monitoring drilling in
particular and other cutting processes in general is also given in this chapter.

In Chapter III, a review of the parameter estimation and pattern recognition and
their application to metal cutting is given. The neural network techniques used for pattern
recognition proposes are classified into the fbllowing three categories. They are: pattern
classification ;sing mapping, clustering, and decision surfaces techniques.

A theoretical review of spectral estimation is given in Chapter IV. Periodogram,
which is the square of the absolute of the Fourier transform, is a biased estimate of power
spectral density (PSD) and its variance at each frequency is of the same order as its mean at
the same frequency. It was shown that variance at each frequency may be reduced using
either Bartlette or Welch methods.

In Chapter V experimental results of this investigation are presented. Sensor
signals in the time domain did not show good correlation with drill wear. PSD of the
sensor signals for all four sensor signals as well as the signal to noise ratio at each
frequency are all calculated. The frequencies with maximum signal-fo—noise ratio were

selected. PSD of three sensor signals, thrust, torque, and strain in the X-direction



independently showed good correlation with drill wear. The correlation between strain in
the Y-direction and tool wear was not as good as the other sensor signals.

Chapter VI deals with sensor integration techniques. It was shown that in the
frequency domain, any two frequencies from one sensor or between two different sensors
are uncorrelated. Signal to noise ratio analysis showed that noise increases with increase in
drill wear. The integration of these uncorrelated noisy signals was investigated and
concluded that sensor integration results in the deterioration of the drill wear estimation

under the conditions of testing used.



CHAPTER I
LITERATURE REVIEW OF THE DRILLING PROCESS

The performance of a cutting tool is determined by the intensity of wear experienced
by the tool in the removal of a certain amount of the work material within a given time.
Hence, in order to determine the tool performance, it is necessary to monitor its wear while
cutting is in progress. A reliable method of tool wear estimation/tool failure prediction is
necessary, if damage to the machine and parts is to be avoided. Moreover, in an
unattended machining environment, an effective control scheme or a monitoring strategy is
necessary in the optimization of cutting conditions and in the prediction of the failure under
a given set of operating conditions.

In recent years, research towards an understanding of the drilling process has
established useful drill wear criteria [17, 18, 20, 21]. However, direct measurement of
drill wear is not possible while cutting is in progress because the tool surfaces that are
wearing out are hidden either by the workpiece or by the chip that is being produced. So,
researchers have resorted to indirect means of measurement. Factors that are associated
with the process, such as cutting forces, vibration, sound etc. have been used in the

monitoring of drill wear [6, 22, 23, 24] with limited success.
2.1 Cutting Process in Drilling

Drilling is a metal removal process for producing holes in components. The
process involves feeding a rotating cutting tool along its axis into a stationary workpiece.
A circular hole is therefore generated in the workpiece. The feed velocity (or feed rate) is

usually small compared to the peripheral velocity of the drill. While precision work can be



conducted using a drill under very specified conditions, drilling is generally considered a
roughing operation and the primary items of interest are usually long life and high
penetration rate. In many, cases drilling is a preliminary operation to reaming, boring or
grinding where final finishing and sizing takes place.

Figure 2.1 gives the geometrical specification of a twist drill. Cutting occurs on the
straight edges (lips) and on the chisel edge at the tip of the drill. Distance between the
straight cutting edges, called the web thickness, is necessary to protect the drill point and to
stiffen the drill. The chips generated at the cutting edge travel up the drill axis along the
flutes. It is important to realize that no cutting occurs at the drill periphery, except near the
outer corner, which corresponds to the secondary or end cutting edge of a lathe tool. In
order to reduce frictional forces between the drill and the hole, the drill diameter is
decreased over a portion of its circumference leaving a short land or margin at the full
diameter to support the drill against the hole. It is also found necessary to slightly reduce
the diameter along the length of the drill to give further clearance. The point angle may be
compared to the side cutting edge angle of a lathe tool, since it gives the drill gradual entry
into the work, influences the chip-flow direction (with respect to the work), and alters the
forces on the cutting edges. The drill flank is comparable to the clearance face of a single-
point tool. The helix angle is an important variable which controls the slope of the drill
face. If too la;ge a helix angle is used the cutting edge can be weakened. It is, thus seen
that the drill consists of the usual cutting elements although it is vastly different in
appearance.

Since drilling is a complex three dimensional cutting process some researchers have
simplified the drilling process to either orthogonal cutting [6] or oblique cutting [25]. In
orthogonal cutting, the direction of relative motion between the tool and the workpiece is at
right angle to the cutting edge of a wedge-shaped tool. Such a simple model of cutting is

shown in Figure 2.2.
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In oblique cutting, cutting edge is inclined to the velocity vector (Figure 2.3).
Inclination significantly alters the chip flow direction and hence the performance of a tool.
The effective rake angle O, is a function of the geometry of the cutting tool and the
direction of chip flow. In the next section geometry, of drill bit with respect to oblique

cutting is presented.
2.2 Dirilling Geometry

The important parameters of a drill are the following: diameter d (d = 2r), helix
angle Yo (helix angle at outside diameter), point angle ‘p’, and web thickness ‘W". In this
section relation between various angles at each point on the cutting edge and the drilling
parameters is shown and the drilling process compared with oblique cutting. Helix angle is

not constant along the radius of the drill and may be calculated as follows [26]

tan y = 2nrL 2.1
where L is the lead of the helix angle which is constant for a given drill. Therefore

tan y = (r/R)tan Y, . (2.2)
The nominal clearance angle ‘C!’ is given by

tan Cl = [ sin ® - cos  tan 6] cot p (2.3)

Where sin @ = W/r (2.4)
The clearance at the periphery is denoted by Cl,. The normal rake angle O, and

normal clearance angle Cl;, are given respectively as
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tan o = 400 5 [cos ® + sin ® tan ® (cos p)2] - tan ® cos p 2.5)
sin p

cos plsin ®; tan ® - (tan @; - tan Cl, tan p)]

tan Cl, =
cos ®; + tan ® (cos p)qtan ®; - tan Cl, tan p] (2.6)
where Sin ®; = W/R 2.7
The angle of inclination is given by
sini =sin ® sinp (2.8)

The variation of drill angles along the cutting edge is shown in Figure 2.4 [26]. M.
is the chip flow direction along the rake face as for in oblique cutting. O (equivalent rake

angle) can be shown as [26]

sin 0, =sinisin 1. + cos i cos M. sin O, (2.9)

In all the above equations the effect of feed velocity is ignored. However, this
approximation is generally acceptable [26].

The mechanics of the cutting process in drilling is rather complicated as Ol and i
change along the cutting edge. Figure 2.5 shows the cutting process along the cutting edge
and chisel edge. Along the cutting edge, cutting is similar to conventional cutting while at
the chisel edge it is more like an extrusion process. The variation of chip flow angle (1)
with respect to the variation of obliquity angle is shown in Figure. 2.6 [26]. This figure
shows that Tc = f(i) and deviate from Stabler’s rule, i. e. M|c = i. Hence Stabler’s rule for

drilling is not generally valid.
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The geometry of a typical general purpose drills is given in the following:
Helix angle =28°-32° Clearance angle = 8°-12°
Point angle =118°

2.3 Drill Wear and Failure

Cutting tools used in metal removal operations perform under extreme conditions of
temperature and stress. The inevitable consequence of these harsh conditions which
accompany most conventional chip formation is tool wear. Figure 2.7 is a schematic of the
areas where tool wear commonly occurs in orthogonal cutting, namely, flank and crater
[28].

Wear on a given tool surface generally progresses in a series of three distinct stages
as shown in Figure 2.8. During the initial stage, there is a rapid breakdown of the sharp
cutting edge due to plastic deformation of the tool material. This is followed by a steady
state stage where a nearly uniform wear rate occurs. Finally, in stage III, the presence of a

large wear land drastically increases the temperature of the cutting edge causing rapid
deterioration of the tool point.

Once the final stage of wear begins, catastrophic failure of the tool is imminent. It
is often desirable from a manufacturing standpoint to replace the tool at some point prior to
this final stage of wear. As wear progresses to this predetermined level, the tool is said to

have reached the end of its useful life.

2.3.1 Drill wear

In drilling, the wear pattern changes along the cutting edge from the margin to the
chisel edge due to complex geometry of the drill bit and the cutting process. At the drill
point, in addition to the flute (crater wear) and the clearance face (flank wear), the chisel
edge and the margin are subject to wear. Kanai and Kanda [18] have classified drill wear

into seven types: outer corner wear W, two types of flank wear Vg and V’g, margin wear
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Mw, crater wear Ky and two types of edge wear Cr and Cy. The degree of chipping at the
cutting edges is also observed in terms of Pt and Py as shown in Figure 2.9. It is
reported [18] that of all the types of wear mentioned above, wear at the outer corner is
recommended as a performance index for drill life. Kaldor and Lenz [21] and Lenz and
Mayer [20] recommended that the following dimensionless parameter be used as a drill life

criterion (Figure 2.10):
w = B/BT (2.10)

where BT is the width of the margin of a new drill and B is the width of the wear land on
the margin

Soderberg et al [17] also come to similar conclusion based on experimental data
using an M2 high speed drills on a SIS 1672 steel (~AISI 1045) and a SIS 2541 steel
(~AISI 4337) work materials. A majority of failed drills were found to exhibit severe
plastic deformation. Examination of the failed drills, which had been stopped at the instance
of suddenly appearing, violent noise, clearly showed that the deformation begins at the
periphery (flank-margin corner) but rapidly spreads towards the center. They explained
this phenomenon by the following mechanism: Increase in wear area leads to an increase in
the thrust force in order to maintain constant contact pressure over the increased wear area.
This also increases the frictional work and hence generates more heat resulting in
temperature rise. The temperature rise is the fastest at the drill corner, where cﬁtting speed
is maximum and contact area (wear area) the largest. The temperature rise also accelerates
with increasing corner wear. As long as the temperature is below 600°C (boundary of
secondary hardening zone of a HSS drill bit material) it is harmless to high speed steel.
Above 600°C, mechanical strength of the tool material at drill corner drops rapidly, local
plastic deformation takes place, which in turn leads to sudden drastic increase in contact

area and feeding force. Therefore, plastic deformation rate again is increased because of
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higher temperature. At this stage wear area grows very rapidly until local seizure occurs at
drill corner.

Soderberg et al [17] also found that flank width value for which drill failure is
initiated decreases with increasing drilling speed confirming that drill temperature is

determined by the combined effects of cutting speed and flank width.
2.3.2 Temperature distribution along the cutting edge

The determination of the temperature distribution in a cutting tool has been an area
of interest to investigators of machining because of the strong correlation existing between
temperature and the life of a cutting tool. Thangaraj and Wright [19] used an experimental
technique based on the fact that certain high speed steels exhibit a loss of temper when
heated above their secondary hardening temperature of approximately 600°C.

In order to correlate the microhardness at any point in a section of the drill to the
temperature at that point, Thangaraj and Wright found it necessary to prepare a reference
heat treatment chart. This was achieved by preparing very thin sections (about 1 mm thick)
from a unused drill of the same grade that was being analyzed. One set of these specimens
was submerged for sometime in a salt bath maintain at a specified temperature in the range
600-900°C. All specimens were water quenched, mounted in an epoxy resin, ground, and
polished. The resulting specimens were subject to microhardness tests to prepare a
reference hardness chart.

Using the above chart, Thangaraj and Wright determined the temperature at
different points of drill bit. An 8 mm D950 and D954 (drill bit material) drill bits were used
to cut 24 mm deep holes in SS1672-01 steel (AISI 1045) at 66 m/min cutting speed and
0.21 mm/rev feed rate. The drills used under these conditions were sectioned along a plane
normal to the cutting edge. These sections were ground, polished, and microhardness tests
Were carried out on them. These were used to obtain the tool temperature distributions

using the reference hardness chart. Figure 2.11. shows two examples of the temperature
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distributions obtained using this method. As seen, the temperature at the cutting edge near
the margin of a drill is ~800-850°C.

Using the microstructure changes as a result of heating over the secondary
hardening temperature developed by Wright and Trent [29], Thangaraj and Wright [19]
measured the temperature of an 8 mm M33 drill bit used to cut 24 mrn.deep holes in
AISI 1045 at 40 m/min cutting speed and 0.21 mm/rev feed rate. Figure 2.12 shows the
distribution of temperature close to the margin on the flank face. It can be seen that the
temperature near the margin is 900°C, which is well above the secondary hardening

temperature of the work material (600°C).

2.3.3 Drill wear mechanisms

Optical microscopy of the flute surfaces of worn drills [19] showed different
interactions between the chip and the drill at distinct regions along the length of the lip. For
example in the vicinity of the chisel edge, the contact length is small and consists primarily
of a siding zone. Along the lip, farther away from the chisel edge, three zones (referred to
as a, b and ¢) ;:an be observed. Zone a is a region of sliding friction in the immediate
vicinity of the lip. Zone b, which is towards the rear of zone a along the flute surface, is a
region of sticking friction. Zone ¢, which is a continuation of zone b along the flute
surface, is again a region of sliding friction. Near the margin of the drill the sliding zone
(a) adjacent to the lip fades into a region where the tool material is found to undergo bulk
plastic flow. Figure 2.12 shows that temperature in this region which is in the vicinity of
900°C. Such a high temperature is to be expected to be determined considering the fact that
heat is generated not only due to plastic deformation in the primary and secondary cutting
shear zones, but also due to rubbing contact between the margin and the drilled surface.

In sumrhary, based on the works presented in this section, the flank wear at the
margin appears to determine the end of useful life of a drill. Excessive wear at the

intersection of the flank face and the margin leads to plastic collapse of this region. This
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occurs because of the high temperatures generated (>600°C) due to an increase in the area

of contact as a result of the wear.
2.4 Monitoring of the Drilling Process

As mentioned earlier, once the final stage of the wear begins (stage II1 of Fig. 2.8),
catastrophic failure of the tool becomes imminent. From a production standpoint it is
necessary desirable to replace the tool at some point prior to this final stage of wear. As
wear progresses to this predetermined level, the tool is said to have reached the end of its
useful life. Unfortunately, this is not an easy task. Figiure 2.13 [18] shows the
distribution of drill life (measured in number of holes drilled before failure) of a batch of
70, 6 mm drill bits, cutting 15 mm deep blind holes at 33.9 m/min cutting speed and 0.22
mm/rev feed rate. Tool material and work material were SKH 9 and S45C (Japanese
standards) respectively. Wear at the outer corner is employed as a drill life criierion.
Drilling was stopped when 0.3 mm wear was observed at the outer corner of a drill bit.
From this figure it can be concluded that the number of holes generally can not be used as a
drill life criterion.

One way’ to determine the drill life is to evaluate drill wear at the corner of a drill bit.
This can be done directly, i. e. measuring drill wear periodically after cutting a
predetermined number of holes. This method is known as off-line monitoring. In this, the
drill is removed periodically from the machine tool for measuring wear or a measuring
device should be installed on the machine to accomplish the same.

Liu [30] developed an automated visual inspection for determining the optimum
drill life of a multifacet drill (MFD). For inspection, the drill bit is removed from the
machine and paced on an instrument which replaces the human inspector and measures
automatically the wear area of the drill flank. The drill bit is rejected when the wear area

had exceeded some predetermined threshold.
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Amini and Winterton [31] determined wear during drilling by monitoring the
radioactivity level of the tool that they had previously been exposed to the beam of charged
particles in a cyclotron. Good correlation was found between the flank wear land inferred
from the readings of radioactivity and microscopic measurements (see Fig. 2.14). Figure
2.15 shows that wear increases rapidly within the first few holes and further increase is
gradual with increasing number of holes drilled. Toward the end of the useful life of a
drill, wear begins to increase rapidly until the tool fails. Although this method can be used
to continuously monitor the wear of a tool, it poses a potential safety problem and may not
be practical in a production environment. Moreover it is an inconvenient and difficult
technique especially for transfer-line applications. The other technique called, on-line
monitoring, is similar to the response of an experienced machinist who decides when to
change the tool or the machining conditions based on the signals received by his sensory
devices such his eyes (the color of the chip), ears (the noise) etc. In this method, different
sensors, such as cutting force sensors (thrust and torque components for a drilling
process), accelerometer for measuring vibration, acoustic emission sensors (AES) for
measuring acoustic emission (AE) generated during drilling, strain elements for measuring
the strains induced and so on may be used to obtain information regarding the cutting
process.

On-line monitoring has received more attention because of the ease with which it
can be used on shop floors specially in transfer lines. To study the effect of tool wear on
process .variables, such as torque, thrust and power, Subramanian and Cook [6] conducted
a series of experiments using 13/32 in. high speed steel drills and Meehanite cast iron at a
speed of 73.3 ft/min, a feed rate of 0.0065 in./rev. and hole depth of 1 in. It appears that
Subramanian and Cook had used two fixtures: One is instrumented with a dynamometer.
Holes were drilled in the workpiece in the first fixture till the drill attained certain stage of
Wear. It is then continued on the workpiece held in the second fixture which contained the

dynamometer. This cycle was repeated till the drill failed. The results of their experiments
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are shown in Figures 2.16 through 2.19. From these figures, it can be seen that the flank
wear increases rapidly at the end of tool life and that torque, thrust, and power also
reflected this situation.

From these results , Subramanian and Cook concluded the existence of two distinct
situations: (a) a gradual increase in flank wear accompanied by a similar increase in torque,
thrust, and power and (b) a very rapid increase in flank wear near the end of tool life
accompanied by large increase in torque, thrust, and power.

Subramanian and Cook also found from their study that the drill life to be
influenced significantly by the workpiece hardness. Consequently, the presence of a few
random workpicces of high hardness may influence the drill life much more than a large
number of wdrkpiece of low hardness. Hence, in an industrial operation, drills may fail
very early or after a long time, depending on the occurrence of these few workpieces of
high hardness or even hardness variability within a given workpiece. This can explain to
some extent the large variation in drill life in an industrial environment.

Subramanian and Cook also found that the workpiece hardness had an influence on
the thrust force and torque in a drilling operation. They found that if the variation in
workpiece hardness is held within 5% of the mean hardness value then increases in the
thrust force can be used as a measure of flank wear.

Braun et al [32] measured torque, thrust, and radial force (perpendicular to the axis
of the a drill) as well as sound in order to monitor the drilling process. They concluded that
there was no correlation between the wear propagation of the drill and the thrust and torque
generated in drilling. But they observed a periodic increase and decrease of the radial force
(in the plane perpendicular to drill axis). They attributed this patten to the uneven wear of
the lips due to production tolerances resulting from the asymmetric drill wear at one lip until
the heights of both lips are equal. The second lip, which is now sharper then begins to cut.
This alternating process continues until both lips have no more clearances at the margins.

At this time, the drill adheres to the workpiece and breaks necessitating the drilling process
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to stop in time. Figure 20 shows the uneven wear on the lips as drilling time progresses
(after Braun et al).

Typical signatures from a microphone and a force transducer are shown in
Figures 2.21 and 2.22 respectively (after Braun et al). They consist of some background
signals on which are superimposed sharp oscillatory waves. The authors observed sharp
transients to occur mostly, but with increasing frequency as the drilling operation
progressed. From a study of these signals they concluded that these are generated by a
random nonstationary process.

In the present investigation strains on the table of the machine in the lateral direction
(perpendicular to axis of the drill) and along the cutting direction were measured. The
results showed that strains signal in the laterﬂ direction is less reliable than the signals from
torque, thrust, and strain on the table of the machine in the cutting direction. This may be
attributed to the uneven wear of the cutting edge observed in this study similar to that
reported by Braun. As can be seen from Figure 2.20, the uneven wear on both sides of the
drill may be attributed to a variety of reasons including differences in the hardness of drill
and variability of geometry during the manufacture of the drill bit.

Yee and Blomquist [23] in\}estigated vibration analysis technique for predicting drill
breakage. They determined the drill wear and predicted drill breakage by applying time
domain analysis to the signal from an accelerometer mounted on the workpiece. This
method depends on detecting increased vibration patterns due to contact between the drill
and the walls of the hole being drilled. They carried out experiments using a 1 mm
diameter drills and reported successful prediction of failure. From this study, they
concluded that signal to noise ratio gets smaller the further the accelerometer is mounted
from the drilling action. This technique necessitates considerable tuning for use with
different machine tools and different workpieces and applies basically for small diameter,

long, slender drills.
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In the early 80’s, the use of acoustic emission (AE) signals was investigated for
monitoring of tool wear and tool failure. AE is a high frequency vibration (100
KHz-1 MHz) signal generated by the release of energy in any material under strain due to
motion of dislocations. In machining, AE signals are generated in the deformation zones
where plastic deformation of the work material takes place to form the chip. In addition,
AE signals are generated by chip breakage, tool fracture and chipping. Moriwaki [33] used
AE signal from the cutting process for in-process detection of tool failure in turning. He
observed a large amplitude in the AE signal when tool failure (including cracking, chipping
and fracture) took place during cutting. A major hurdle in the use of these signals is in the
development of an appropriate filtering technique and algorithms to separate the signals for
tool wear/breakage from the background noise generated in any metalworking process. In
the present study, the entanglement of chips inside the drilled holes during the cutting
process, had been found to provide additional source for the AE signals which makes this
signal ndndependable for monitoring the drilling process.

Radhakrishnan and Wu [34] used the dynamic components of the thrust force
obtained duﬁng drilling of a composite material to monitor the surface quality of the hole
being drilled. From their study, they concluded that static aspects such as the mean and the
peak forces are unreliable when a close monitoring of the hole quality is required. In
comparison, the standard deviation of the thrust showed a better indication of the hole
quality. They found very strong correlation between the change in the standard deviation
of the lamination frequency component in the thrust and surface signals. Lamination
frequency is the number of laminations that drill cuts per unit time.

Thangaraj and Wright [24] and Fabris and Podder [35] proposed experimental
thresholds for the gradient of thrust near the end of a drill life. This was based on the rapid
change in the rate of change of wear with respect to time in the three regions described
above (Figure 2.8). There is a marked difference from region I to region II and from

region II to region III. More specifically, regions I and III have much greater rates of
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change as compared to region II. This indicates that rate of change of wear is better suited
for monitoring the conditions of a cutting tool than the absolute magnitude of the wear. In
view of the cbrrelation between the thrust force and the drill wear, the rate of change of
thrust force was used in the prediction of drill failure. Thangaraj and Wright [24] reported
they were able to find a threshold for the gradient of the thrust to check the end of drill life.
As soon as the gradient of thrust exceeded the predetermined threshold, the drill was
considered worn and removed from the machine tool.

Nedess and Himburg [36] analyzed the signals of several sensors (thrust, torque,
strain, and accelerometer) in drilling. Some of their findings are given in the following.

1. The signal-to-noise ratio for a 8.5 mm drill for different sensors are given as:

| Thrust and torque: 100
Strain: 1.3 - 10 depending on the position
Acceleration: 1.1 - 360 depending on the position.

2. Tool wear is more correlated with the dynamic components of the thrust and

torque than their mean values.

3. There is no correlation between the flank wear and the dynamic components of

the signals.

4. Dynamic components of the thrust, torque and strain at the table unit are

correlated to the margin wear of the drill.

Neddess et al that reported corner wear was correlateed more with the dynamic
components of the sensor signal than the mean. In the present investigation, signal-to-
noise ratios in the time domain for various sensors used in drilling were found as follows:

Thrust: 45

Torque: 16

Strain on the machine table along the cptting process: 53

Strain on the machine table perpendicular to drill axis: 45.
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2.5 Sensor Integration Approaches to Tool Wear Monitoring

An essential step in the design of and control of most mechanical systems requires
modeling of the system which involves an analysis of the system dynamic. Some systems
can be described directly on the basis of physical laws. There are, however, other systems
such as metal cutting, due to the complex nature of the process involved, fully developed
theoretical models may not be available. Recognizing this fact, some researchers in the last
decade or so have concentrated on the tool wear estimation using pattern recognition or
more advanced techniques called neural network which have general structures for most
applications.

Kannatey-Asibu [10] explored the possibility of using pattern recognition technique
for monitoring the condition of a cutting tool in a machining operation using AE as a
specific example. Dornfeld and Pan [11] used linear discrimination function for the
classification of the chip forming state, i. e. for the classification of the chip produced in the
cutting process to be either continuous or discontinuouS chip. Cutting speed, feed rate,
depth of cut, and event rate of the RMS of AE signal were selected to characterize the state
of the chip. Dornfeld and Pan also reported the use of linear discrimination function to
distinguish between continuous and discontinuous chip conditions. They found the event
rate of RMS of AE signal the most important parameter in the chip form classification.
Depth of cut was reported not to be as crucial as the cutting speed and the feed rate.

Emel and Kannatey-Asibu [12] used linear discrimination functions for the
classification of chip noise (including sharp tool), tool breakage, and worn tool using AE
sensing. The AE signal was transformed in the frequency domain using the FFT
algorithms. Three feature selection methods were used to identify the best features of the
signals which correlated well with the tool wear state. In the first method, a cost function
was maximized based on minimizing the scatter of patterns between classes and

maximizing the patterns within classes. In the second method, features were selected by
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maximizing the sum of pairwise class-mean distances. In the last method, features with
minimum normalized variance were selected.

Emel and Kannatey-Asibu [12] adapted two approaches for verifying the results.
In the first approach the same training set was used for testing the trained pattern
recognition classifier. This approach was called resubstitution technique. In the second
method, called leave-one-out , one pattern out of n patterns is separated from the data set,
i. e. (n-1) pattern were used for training. The separated pattern was used for testing. After
testing, the separated pattern was returned to the data set and another pattern was separated
for testing. The new (n-1) patterns were used to train the pattern classifier. This procedure
was repeated for all patterns. Emel and Kannatey-Asibu reported 97% to 100% for
resubstitution method and 69% to 82% for the leave-one-out testing technique. In an
extension of the above work Emel and Kannatey-Asibu [13] used a statistical pattern
classification and reported success rates between 84% to 94%.

Rangwala and Dornfeld [14, 15] applied a method based on back-propagation (BP)
type neural network to predict the tool wear condition in turning on a lathe. The work
material was AISI 1060 steel bar 2 in. diameter. Cutting conditions used were the
following; feed rate 0.002 -0.008 ipr; depths of cut 0.01-0.03 inch; and cutting speed 278-
556 sfpm. The state of tool wear was divided into two classes, namely, sharp and worn
tools. For a sharp tool, wear land was considered to be between 0 and 0.25 mm, and for
the worn tool 0.5 and 0.75 mm. However, no signal was collected between 0.25-0.5 mm
wear land. Cutting force and acoustic emission (AE) signals were sampled simultaneously.
Cutting force was sampled at a rate of 1 KHz for a length of 512 data points and AE at the
rate of 5 MHz for a length of 1024 data points. Force and AE signals were transformed in
the frequency domain using the FFT algorithms. The dimension of the force vector was
256 points (with a resolution of 2 Hz) and that of AE vector was 512 data points (with a
resolution of 5 KHz). These two vectors were concatenated and made to a measurement

vector of length of 768 data points. It is assumed that some frequencies of the
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measurement vector are more related to the tool wear than others. For selecting the most
correlated signal, they have attempted to minimize the interclass distances and maximize the
distance between classes, in an Euclidean space. A total of 123 samples were collected,
each of length 768 data points. Using the above technique, three sets of six features were
selected. For the first set, the concatenated vectors of force and AE were used and for the
second set, three features from the force vector and three features from the AE vector were
selected separately. For the third set, all the six features were selected from the AE vector.
To these six features, two more features were added, namely, cutting speed and feed.
Therefore the length of the feature vector came to 8.

Altogether 30 samples, equally distributed between sharp and worn tools out of the
123 samples were selected to train a single-layer perceptron. The rest of the samples (93)
were uséd for checking the trained perceptron. A success rate of 88%, 87%, and 80%
were reported for features for Set 1, Set 2, and Set 3 respectively. Due to better
performance of the features from Set 1 and Set 2, which are a combination of features from
AE and force signals, they concluded that feature sets compound of multiple sensor
information provide better classification performance.

The same 30 training samples were then used to train an 8X3X1 BP type neural
network. During training phase, the target of the output node was fixed for fresh tool and
0.99 for the worn tool. During the testing stage, a pattern presented at the input layer was
associated with a fresh tool decision if the output node was between 0 and 0.5 or else the
pattern was associated with the worn tool. A success rate of 94%, 97%, and 84% were
reported for features for Set 1, Set 2, and Set 3 respectively. Again feature sets compound
of mulﬁple sensor information provided better classification performance. The
performance of BP type neural network was reported to be better than single-layer
perceptron. A 100% success rate was reported when the network was trained to predict the
.actual wear (this case was not mentioned in Rangwala’s Ph.D. Dissertation, but included in

a paper published in 1987 [15]).
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Chryssolouris and Domroese [37] described intelligent machining systems (IMS)
which are different from the automated machining workstations is that the IMS are capable
of making decisions based on significant information on the state of the system. The
reaction of IM_S to the system condition, such as tool wear, machine break downs, and
other failures must be of the order milliseconds to a second in order to guarantee the safety
and reliability of the process.

Chryssolouris et al [37] explained that IMS should take the following steps for
making a decision.

Step 1: Intelligent controller should provide alternatives at any given instant when

decision has to be made.

Step 2: The required criterion such as machining time or machining cost should be

established.

Step 3: The criteria values for each of the proposed alternatives in Step 1 are

 estimated

Step 4: By application of one or more decision making rules, the best alternative is

selected.

Two separate rule based systems were used to determine the criterion as well as the
alternatives. The values of the alternatives for different criteria were obtained from the
model of the cutting process associated with each sensor, sensor information, and part
information from general manufacturing data-base.

Chryssolouris et al [37] considered three different models based on the use of three
sensors, namely, force, temperature, and acoustic emission (AE). Each of these models
provide values for alternatives using additional information, such as part information and
manufacturing data-base. A rule based system or some other technique is assumed to
integrate the tool wear estimate of these three models and to provide more reliable tool wear

estimation. A decision making rule determines the cutting conditions.
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Chryssolouris et al [38] also compared three techniques, namely, neural network,
multi-regression, and group method of data handling (GMDH) for integrating tool wear
estimates by the three models mentioned above, using computer simulation. They
concluded, that neural network was more effective in learning a relationship between
sensor signals and tool wear estimate then the other two methods, especially when the
relationship is nonlinear. Moreover, neural network showed that it is usually less sensitive
to deterministic errors than other sensor integration techniques.

In an another attempt, Chryssolouris et al [39] used experimental data for the
estimation of the state variables in the machining process, such as power, surface
roughness etc. for different feed rates, cutting speeds, rake angles, widths of cut, and flank
wear of the tdol. Three techniques mentioned above, namely, neural network, multi-
regression, and GMDH were used to estimate the state variables. Again, they concluded
that neural network is superior to other methods. It is, however, not clear as to why
Chryssolouris et al [38] used three models for tool wear estimation and then integrated the
estimations using the neural network as the neural network would cover the function of the
three models using direct sensor signals.

Chryssolouris et al [40] used experimental data from three sensors, mentioned
above, and fed them into three models for the estimation of tool wear. They used neural
network and statistical method for the synthesis of the three estimates of tool wear from the
three models. They reported that sensor integration based on statistical 'information did not
provide better estimation than information from a single sensor. Similarly, the neural
network provided better estimation of tool wear than using information from only one
sensor. They ran computer simulation for test data composed of linear, sinusoidal, and
random signals. They reported that integration of sensors provided better estimate of tool
wear than when only one sensor was used. When the sensors operated properly and the
models reflected the complexity the process, sensor integration using statistical methods

was reported to provide better tool wear estimation than neural network. But, if the
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process model does not adequately reflect the complexity of process then neural network
provided better estimate of wear. In case of failure of one of the sensors, statistical method
was found less sensitive than neural network.

Tansel and McLaughlin [41] used ART2 neural network for the detection of tool
breakage in the milling process. The resultant cutting force was fed into the network. The
neural network first classified 780 simulation data in é series of cutting conditions, and
gained experiénce. It continued to work on the experimental data by using previous
experience and continued classifying the 36 experimental data. Tansel an McLaughlin
reported that when vigilance of 0.98 was used, the network classified the unbroken tool
input data into seven different categories and classified the broken tool input to four
different categories. The success rate of the network on the experimental data was reported
to be 97.2%

Elanayar et al [42] have used neural networks to model the tool wear in machining
using tﬁe sensor data from the three components of the cutting force. When both crater
wear and flank wear were present, they reported that they could train their neural system to
predict both, as well as surface roughness to an acceptable degree of accuracy. Kamarthi et
al [43] used a method based on Kohonen’s self organizing feature map for the classification
of data from force and vibration sensors and the subsequent estimation of the degree of tool
wear. It was reported that they could achieve 95% success rate of the detection of tool
wear level.

Neural networks are composed of many nonlinear computational elements operating
in parallel. The computational elements or nodes are connected by adjusting weights. The
knowledge is stored in neural network by adjusting the weights. Neural networks have
shown potential in areas of pattern recognition and function approximation. These
interestihg fea{mes have attracted researchers in metal cutting for monitoring of tool wear.
As presented in this section, a considerable work was conducted by many researchers in

this area. Different type of neural networks, such as BP, ART2, Kohonen’s self
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organizing map etc. have been used for monitoring tool wear. Chapter III presents neural
network models using the following techniques, namely, clustering, mapping, and decision
surfaces technique as well as their performance in tool wear monitoring.

Artificial neural network structures are based on the present understanding of the
biological nervous system [44]. Although an artificial neural network model with a crude
brain-like structure, has great potential in the areas of pattern recognition and modelling of
the highly nonlinear systems using general architecture, they are, however, far from
reaching the performance of a brain [44] at this stage. In Chapter VI we will show that
when multiple sénsor signals are used to monitor different states of tool wear and sensor
fusion approach is used, the three techniques, namely, clustering, mapping, and decision
surfaces may not be able to define the state of tool wear adequately. This is due to the fact
that (as shown in Chapter VI) characteristics of sensor signals from different states of tool
wear are mixed and the above techniques may not be able to classify sensor signals to the
right stafe of tool wear. Although high success rates were reported by some researchers for
sensor fusion techniques there are some- real concerns, as will be discussed in Chapter VI,

regarding the validity of approach.
2.6 Problem Definition

A feature common to most of the research reviewed here is the selected cutting
speeds are considerably higher than the recommended cutting speeds used in industry (at
least more than 1.5 times the cutting speed recommended by the Machining Data Hand
Book [45]). As observed in the present investigation, if recommend cutting speeds are
used drill life would be in the tens of thousands of holes which would be impractical in a
laboratory environment. Therefore, most researchers have selected higher cutting speeds
than recbmmended to limit the drill life merely a to few tens or rarely hundreds of holes
that is feasible in a laboratory environment. In the present investigation a different strategy

was used. This strategy involves the use of recommended cutting speed during the
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collection of data and increased cutting speed (twice the recommended cutting speed) to
accelerate wear to simulate different stages of drill life. This strategy is explained in detail
in Chapter V.

As mentioned earlier, the flank wear at the margin determines the end of a useful
life of a drill in most cases. Excessive wear at the intersection of the flank face and the
margin leads to plastic collapse of this region. This occurs because of the high
temperatures generated (>600°C) due to increase in the area of contact as a result of wear.
In the present investigation, flank wear at the margin is considered as a criterion for drill
life.

Sensor signals in the frequency domain have not been studied in depth in the past.
Only one set of data (or three sets of data [24]) was used to calculate the power spectral
density (PSD). As shown in Chapters IV and V, the variance of the estimate of power of
periodogram at each frequency is grater than the power at that frequency. Therefore PSD
of the sensor signals used in the previous research may not be reliable. In the present
investigation, the variance is reduced by averaging the estimate of power which was
obtained from every hole, at each frequency over a number of holes during which the drill
wear development is negligible for each sensor signal.

In this research, characteristics in the time and frequency domains for four sensor
signals, namely, thrust, torque, and strains on the machine tool table in the cutting direction
and perpendicular to the drill axis are studied and correlated with the corner wear of the
drill.

The possibility for the application of neural network for sensor integration is
investigated. T:hree techniques, namely, clustering, mapping, and decision surfaces have

been studied for classifying sensor signals to different states of drill wear.



CHAPTER Il

REVIEW OF PARAMETER ESTIMATION AND PATTERN
RECOGNITION AND THEIR APPLICATION
TO METAL CUTTING

Automation of the machining process requires the ability to monitor the tool
condition reliably during the cutting operation. Tool wear monitoring relies on sensors
which provide information to the decision making system. The decision making system is
expected to interpret the information and provide corrective actions in the absence of a
human operator. Safe, economical, and scrap free operation can be achieved by a good
sensory and decision making system.

Tool wear has a strong influence on the surface roughness and dimensional
accuracy of the finished product. A reliable tool wear monitoring system can eliminate the
down time of the machine tool associated with tool breakage and reduces the overall cost of
operation by optimizing the process. Tool wear is rather a complex process and is affected
by a number of factors, such as temperature, cutting speed, feed, and cutting fluids used.
Because of tﬂis complexity, theoretical correlation between tool wear and operating
conditions is not readily available. One of the first attempts in this direction is the Taylor
tool life formula, developed by F. W. Taylor. It is an empirical relation between cutting

speed and tool life and given by

VTn=C ’ 3.1

46
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where V is cutting speed, T is tool life in minutes, C and n are constants depending on the
tool-work material combinations used. The difficulty associated with this equation is it
requires considerable experimental data at different cutting conditions to determine C and n
for a combination of tool and work materials. Due to the stochastic nature of the wear
process, scatter in data can be expected which makes it difficult to apply the above equation
to an on-line tool wear monitoring system.

As mentioned earlier, sensors are important elements of any tool monitoring
system. Excellent reviews of tool wear sensors can be found in Micheletti [8] and Tlusty
et. al. [9]. Sensors can be classified as off-line and on-line sensors for monitoring the
cutting process. Off-line sensors usually use optical, radioactive, or pneumatic techniques.
These techniques are simple and easy to interpret but some of them may pose danger (radio
active) or can be implemented only between cuts (such as optical optical techniques).

On-line sensory devices, such as force sensors, accelerometers, and acoustic
emission (AE) sensors can be used easily for they do not interfere with the cutting
operation. But ,it is somewhat difficult to obtain a good correlation between tool wear and
the sensor signals. The following three approaches were considered to obtain the
correlation between the tool wear and sensor signals.

1. Theoretical modeling: Some correlation between sensor signals, for example,

force and tool wear is obtained by using the mechanics of the cutting process.

2. Empirical modeling: The parameters of an empirical model are tuned using the
experimental data.

3. General modeling structure: The parameters of general modeling structures,
such as pattern recognition techniques or mapping techniques, for example,
back propagation (BP) network are tuned using the experimental data.

Developing a reliable theoretical model (first method)that correlates tool wear and
sensor signal is extremely difficult due to the complexity of the process. In the second

method, an empirical model is proposed and its parameters are tuned using the experimental
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data. An example of this technique is parameter estimation which will be discussed in
Section 3.1. The third technique, the subject of Section 3.2, is pattern recognition and
mapping techniques using neural network. No model is required to relate sensor data and
tool wear. In this method, the problems may be approached in two ways. In the first
approach, the problem of deciding whether or not the tool is worn is considered as one of
associating pattern of senor signals with appropriate tool condition (sharp or worn). In the
second approach, sensor signals are mapped to the state of tool wear using mapping
techniques. In both approaches, learning algorithms are used to adjust the parameters of a

pattern classifier or mapping techniques with a general predefined structure.
3.1 Parameter Estimation

As mentioned earlier, the rﬁechanism of tool wear is rather complex and might be
highly nonlinear. A solution proposed by Liang et al [46] and Takata et. al [47] is based on
the following assumptions. The cutting process, thought highly nonlinear, can be
represented by a linear model at any given instant. The parameters of the linear model are
functions of cutting conditions, such as cutting speed, feed rate, and depth of cut as well as
the tool-work mateﬁal combination,. During the cutting process, only tool wear is
changing and :all other factors remain unchanged. Therefore, the change of parameters of
the linearized model must be a function of tool wear. This method, thus suggests that tool
wear can be evaluated by monitoring the change of parameters of the cutting process.

The first formulation and its solution, as well as the application of parameter
estimation was given by Gauss [48] in his famous determination of the orbit of the
asteroid, Ceres. Gauss formulated the parameter estimation as an optimization problem and
introduced the least square method based on minimization of the sum of the squares of the
error. Since then, the least squares criterion has been used extensively. The least square
method is rather simple and easy to understand. However, under some circumstances, it

can estimate wrong mean values (bias estimate). However, this can be overcome by using
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various extensions to this method. The least square method is restricted to model structures
that are linear with unknown parameters.

In parameter estimation, the inputs and the outputs of the system are used to
evaluate the parameters. As there is no access to real inputs (for example actual cutting
speed, feed rate etc., see Chapter V for details) many researchers [46, 47] have used
autoregressive (AR) models which do not require such inputs.

It will be shown in this investigation, (see Chapter V for details) that in the drilling
process, the gain of the system may change while all other parameters of the system

remain practically constant during the tool wear development.
3.2 Pattern Recognition

The motivation behind the application of pattern recognition to metal cutting arises
from the fact thgt a human operator can sense whether a tool is sharp or worn by observing
the machininghblperation. The sensory information used to make this decision is usually of
various types: visual (observation of chip color, presence of smoke, detecting surface
finish of the workpiece), audio (sound generated by rubbing action of the workpiece on the
tool or vibrations occurring during the cutting process) and olfactory ( smell of smoke
generated due to tool wear). These sensory signals are processed by the brain and act as
memory triggers which facilitates the operator to decide on the status of tool wear in a
qualitative manner. Correlation of the sensory signals with tool wear depends to a large
extent on the knowledge and experience of the operator. But, human pattern recognition is
highly developed but poorly understood. The task of simulating it on a computer is at best
formidable. Human brain is able to integrate information from its different sensor signals
to obtain a better picture of the process. If the information from a sensor signal, say
vision, is inadequate to make a reliable clieqision, audio information may be used as a
supplement to integrate with the visual sensor. Or, if one of the sensors fails to provide

sufficient information, the other sensor information may be used in order to make a reliable
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decision. For example, it is believed that touch sense of blind people becomes stronger to
overcome blindness. In short, the brain seems to be extremely capable of capturing and
integrating sensor signals and at the same time ignoring noise from one or more of these
Sensors.

Artificial neural networks attempt to mimic the computational architecture of the
human brain. The objective is to incorporate intelligent functions such as learning and
~ pattern recognition in computers. The architecture of the human brain is highly complex
and not well understood at present. Therefore, the current neural network architecture can
only resemble the brain in a very coarse way. Artificial neural network, similar to a human
brain, consists of many processing elements massively interconnected by links with
variable weighing factors. Processing elements (or nodes) used in neural network models
are nonlinear. .. The massive parallel connection provide neural network with high
computé.tion rates. Neural network models are specified by the network topology, node
characteristics, and training rules.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>