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PREFACE 

The present work represents an attempt to understand 

the complex cognitive processes which underlie the general 

class of human behaviors known as creative problem solving. 

More specifically, I will use inventiveness to represent the 

broader class of creative human behaviors. Therefore, my 

major aim will be to examine human inventiveness, and any 

implications for the more general class of creativity will 

be limited by the degree with which human inventiveness 

accurately represents the breadth of human creative problem 

solving. 

Two separate avenues of scientific inquiry were pursued 

during the course of the project. The first approach was an 

attempt to study human inventiveness in the laboratory. 

This investigative strategy attempted to extend classic 

research findings from traditional problem solving domains 

(e.g chess, game-playing) to the less constrained creative 

problem solving domain of invention. The technique used was 

a modification of the approach used by Chase and Simon 

(1973) to study Chess expertise. The first invest1gative 

strategy was also highly influenced by the techniques 

traditionally used in expert system development, knowledge 

engineering, and rule-oriented information processing 

analyses. 
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The second investigative tactic was to examine creative 

human problem solving at a more theoretical level in order 

to achieve three primary aims. First, I wished to provide 

an overview of what is now often referred to as the 

traditional symbolic approach to studying human problem 

solving which was advanced by Newell and Simon (1972). 

Next, I wished to examine a more recently developed approach 

to understanding human cognition known as neural or 

connectionist modeling. In doing so, I hoped to develop 

insights into human creativity and inventiveness that might 

be provided by this newer perspective on cognition. Lastly, 

I attempted to identify, describe, and integrate the 

advantages of both the traditional symbolic and 

connectionist perspectives, so that a more unified, and 

complete, view of human inventiveness and creativity might 

emerge. 

I wish to express sincere appreciation to the faculty 

and students of the 0. S. U. Psychology department for the 

support and inspiration I have received throughout my 

graduate program. Special thanks goes to Dr. Larry 

Hochhaus, Dr. Robert Stanners, Dr. Donald Fromme, and Dr. 

James Price for their advice, tutelage, and friendship which 

made the rigors of graduate study worthwhile and enjoyable. 

Likewise, I wish to express gratitude to Dr. Robert Weber 

for his mentorship, friendship, and encouraging me to follow 

my interests and instincts during the dissertation project. 

I also wish to thank the dissertation committee (Dr. Robert 
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Weber, Dr. Robert Stanners, Dr. Larry Hochhaus, and Dr. 

Charles Bacon) for their assistance, comments and support 

throughout the project. Many thanks go to my wife Katrena, 

my parents, my family, and my friends for bolstering my 

spirits during the seemingly endless effort to complete this 

project. Lastly, I would like to thank Jacob McCollum for 

continually putting my priorities in perspective. 
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Abstract 

Experimentation and a integrated perspective of current 

theories were used to investigate human inventiveness. 

During the experiment, two expert inventors and two 

novices replicated a mechanical object and a nonsense 

object. In accordance with Chase and simon (1973), 

experts were expected to outperform novices in the 

mechanical condition and perform equivalently to 

novices in the nonsense condition. No statistical 

difference, however, was found betwe~n experts and 

novices. Interpretation is complicated by a possible 

ceiling effect and the confounding of expertise with 

subject age due to difficulties obtaining expert 

inventors as subjects. An extended discussion section 

examines conventional models of problem solving, the 

fundamentals of parallel distributed processing models, 

and how the two might be integrated to produce a new 

perspective on inventiveness. Edison's invention of 

the electric light is examined from an integrated 

perspective to illustrate the insights that might be 

gained from unifying conventional and neural processing 

models. 
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Areas of expertise which are generally described 

as creative (e.g. musical composition, creative 

writing, invention, sculpture, painting) are 

intrinsically interesting and important because 

creative activity best exemplifies the human cognitive 

abilities which distinguish us from even our nearest 

cousins in the animal kingdom. Indeed, humanity's 

propensity for inventive and creative actions is 

largely responsible for our success as a species. 

Studying creativity may therefore provide insight into 

the human mind's unique capacities and facilitate the 

development of techniques which can improve human 

problem solving performance. Unfortunately, due to 

their unconstrained, intense, and often lengthy nature, 

creative behaviors are some of the most difficult to 

systematically study. 

Newell, Shaw, and Simon (1962) described four 

characteristics which distinguish creative problem 

solving from other forms of problem solving behavior. 

According to their view, creative problem solving is 

problem solving which produces a novel end-product by 
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using unconventional strategies, persistent, highly 

intense thought, and a loosely constrained problem 

formulation. In this view, the product of a creative 

act must be unique, or novel, and have value to the 

solver or others. The thinking must also be 

unconventional in that it requires modification or 

rejection of traditional approaches to similar 

problems. Creative problem solving further requires 

persistence and high motivation over a long period of 

time, and periods of intense concentration are 

necessary to arrive at a successful end product. This 

may be due to the fact that traditional approaches are 

wrong for the solution of a problem and the solver must 

work through those incorrect solutions in order to 

"create" a correct solution. Lastly, a creative 

problem must in large part be defined by the solver. 

That is, the problem is poorly defined and the 

constraints upon the problem are loose, at best. Thus, 

a large part of creative problem solving is discovering 

and formulating the specific problem, and sub-problems, 

to be solved. 

The trad1tional approach to studying problem 

solving has often been directed at examining the 

behaviors of experts performing in relatively well 

defined problem domains (e.g. chess playing, computer 
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programming, medical diagnosis, complex arithmetic 

calculations). A chess match or the writing of a 

computer program can be observed from start to finish 

in a few hours. on the other hand, a more creative 

activity, such as invention, may take weeks, months, or 

years to complete. One may also easily determine 

whether a computer program or a chess strategy was 

successful. An invention or a novel is not so easily 

judged as successful or unsuccessful and may well 

depend upon its placement in time and space (eg., works 

that are largely ignored until years, decades, or 

centuries after their creation; conversely, the 

creation of an incandescent light bulb would be seen as 

creative in the 1800's but rather conventional in the 

1990's). It is therefore, relatively simple to observe 

and manipulate initial states, intermediate states, and 

objectively-defined end states in problem solving 

domains such as chess playing or computer programming. 

Furthermore, the goals in traditional problem solving 

domains are usually well defined, and the solutions 

often result from recombinations of standard approaches 

(e.g. using the same I/O routines or similar algorithms 

in different programs, using the same opening or middle 

game strategies in different chess matches, etc.). 

Additionally, the constraints involved in a chess match 
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or the writing of a computer program are clearly 

defined {e.g. a king can move one square in any 

direction, each PASCAL statement must end with a 

semicolon, etc.). A substantial portion of the 

processes which allow for the successful solution to 

problems in these areas can therefore, be classified as 

conventional problem solving skills. 

The d1stinction between conventional and creative 

problem solving does not imply that one class of 

activity is completely devoid of creativity and that 

the other is a wholly creative enterprise. Generally 

speaking, when one begins to write a computer program, 

the programmer has a fairly clear idea of the function 

that the program is to perform, the computer language 

in which it will be written, many of the operational 

constraints (e.g. syntax, memory capacity, value 

ranges, limiting cases), the user audience, and may 

even know which previously written blocks of code will 

be reused in the new program. When an author begins a 

new work however, she may have only a few ideas about 

the characters, the actions they will take, the 

ultimate outcome, the purpose of the work, or who will 

read the text. Classifying a given problem solving 

activity as creative or convent1onal is determined by 

the degree of creative act1vity required to develop a 
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satisfactory result, and not the domain in which the 

problem solving is performed. From this perspective, 

computer programming is a problem solving domain that 

requires relatively fewer creative behaviors than 

invention or novel writing, but any specific problem 

solving activity within the programming domain cannot 

be judged as conventional, or creative, based solely 

upon the domain in which it occurs. The distinction 

between creative and conventional problem solving 

domains is the number and centrality of problems within 

a domain which require a novel solution by means of a 

difficult, poorly constrained, unconventional problem 

formation. The judgement of creative or conventional 

is therefore a relative distinction. That is, domains 

such as medical diagnoses and computer programming may 

be judged as conventional when compared to invention, 

but programming is certainly a creative domain when 

compared to solving two digit multiplication problems. 

Areas of expertise in which creativity plays a 

large, central role are difficult to study in a 

controlled laboratory environment because creative 

problem solving involves poorly defined starting 

states, subjectively-defined end products, poor, or 

loose, constraints on the variety of useable 

techniques, and may take place over long time spans. 
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Traditional approaches to the study of expertise, 

sometimes known as knowledge engineering, have involved 

four general steps (Hayes-Roth, Waterman, & Lenat; 

1983). (a) Interview and re-interview experts. (b) 

Observe experts performing skills of interest, and 

obtain protocols based upon observations and 

interviews. (c) Propose possible processes, 

characteristics, knowledge structures, and heuristics 

which would account for the superior performance of 

experts. (d) Build a system based upon those 

constructs, and verify that the system operates 

effectively in the domain of interest. 

Some researchers have questioned the reliability 

of findings based on interviews with experts (Nisbett & 

Wilson, 1977). Several other researchers, however, 

have indicated that verbal protocols can be quite 

reliable if subjects are asked to describe their 

actions and not explain or make inferences about their 

actions (Ericsson & Simon 1984, 1980; Kellog, 1982; 

Kellog & Holley, 1983). Furthermore, the utility of 

the knowledge engineering approach has also been 

successfully demonstrated several times by the creation 

of effective expert systems (e.g. Dendra!, Mycin, 

Prospector, to name just a few). 

Even with the issue of verbal report reliability 
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aside, creative activities, such as invention, take 

place over a long span of time and it is therefore 

difficult to develop meaningful, complete descriptions 

of invention which are based solely upon the verbal 

reports of experts. In addition, interview methodology 

is a labor intensive, tedious process which generally 

requires months to complete, even when used in rather 

restricted areas of conventional domains. The product 

of such efforts is usually large quantities of detailed 

information about highly specific realms of expertise. 

Consequently, using results from interview data to make 

meaningful comparisons across knowledge domains becomes 

an arduous, if not impossible, task. 

To further complicate matters, obtaining protocols 

can also be expensive in terms of materials due to the 

largely unconstrained nature of creative activity. An 

expert inventor, for example, may develop many 

prototypes before a satisfactory result is obtained. 

It would therefore be advantageous to develop short­

term laboratory methods, which use simple neutral 

stimuli, to collect more manageable data about the 

characteristics of expert creative problem solvers. 

In a related project, another researcher from our 

lab conducted preparatory interviews with expert 

inventors and proposed several processes that might be 
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important to invention (Weber, Moder, & Solie, 1990). 

One of the most promising constructs identified in the 

interview data was the ability to parse an object into 

its components. In short, parsing delineates the loci 

of variations within a particular object and yields a 

knowledge structure which is similar to the framework 

devised by Minsky (1975). In Minsky's framework 

(sometimes referred to as frames and slots), knowledge 

categories (e.g. fasteners) are defined by their 

various instances which contain at least one common 

characteristic. For example, safety pins, straight 

pins, buttons, snaps, screws, and velcro may range in 

their physical similarities, but they all share the 

common feature of being able to fasten two surfaces. 

Each device, therefore, is an instance of the category 

of fasteners. The instances of categories may be 

referred to as frames, and are in turn composed of 

various characteristics or slots (e.g. the slots of a 

safety pin might be spring, clasp, brace, pin). 

Parsing an object utilizes a similar type of 

knowledge structure. For example, if we wished to 

develop a new type of safety pin (frame), we might 

start by breaking down the safety pin into its 

components of a spring, clasp, brace, and pin (i.e., 

parsing the safety pin into its slots). We might then 



11 

alter those components in several ways: we may combine 

them with components of other objects, we may change 

their orientation to each other, we may replace the 

component with an analogous component, we may enlarge 

one or all of the components, etc. Furthermore, 

parsing may take place on several levels. Just as we 

can parse an object into components, we can also parse 

components into sub-components. For example, a clasp 

is a component of a safety pin. The material, size, 

shape, operation, or function of the clasp can also be 

parsed. Parsing simply provides the basic data 

structure upon which other transformational processes 

can operate and may therefore be a fundamental 

inventive process. 

We know by definition that expert inventors are 

better inventors than are novice inventors, and if 

parsing is an important inventive procedure, then 

experts may well have different parsing patterns than 

do novices. Furthermore, parsing patterns generated by 

experts should be "better" than those generated by 

novices. Experts may be faster at generating parses, 

or they may generate more parses than do novices. de 

Groot (1965, 1966), however, found that expert chess 

players did not generate more moves in a smaller amount 

of time, but instead, generated qualitatively better 



moves. That is, expert chess players generated moves 

with a greater chance of success or moves which more 

efficiently accomplished a goal. 

12 

Chase and Simon (1973) used an ingenious 

technique (sometimes known as the "quick glimpse" 

method) for accessing differences between expert and 

novice chess players. Both novice and expert players 

were presented with several chess board configurations 

and were asked to accurately reassemble the pattern 

onto a second chess board. The boards, however, were 

positioned so that the subjects could not look at both 

boards simultaneously. Therefore, the subjects were 

forced to hold the test pattern (or part of the 

pattern) in memory while they reconstructed the pattern 

on the answer board. In analogous terms, they were 

forced to "parse" the chess board configuration because 

the number of chess pieces exceeded short-term memory 

capacity. Furthermore, two types of patterns were used 

as test items: true board configurations, and nonsense 

configurations. True board configurations were 

arrangements which could actually occur during a chess 

match. Nonsense configurations were illegal and random 

patterns of chess pieces that would have a zero 

probability of occurring during a chess match. The 

experts performed no better in the nonsense condition 



than did novice chess players. In the true board 

condition, however, experts performed markedly better 

than did novices. 
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The Chase and simon (1973) study illustrates some 

important distinctions between novice and expert chess 

players. First, it indicates that chess experts do not 

possess a superior short-term memory relative to 

novices. Otherwise, the experts would have out 

performed the novices in both the true board and 

nonsense conditions. Second, the study indicates that 

expert chess players are better at remembering actual 

chess configurations than are novices. This is most 

likely because experts have seen the patterns many 

times and through practice, the configurations have 

been "chunked" (Miller, 1956) into meaningful units. 

This common result of practice and elaboration can be 

demonstrated easily by trying to remember and repeat 

the letter string: e, d, s, 1, u, e, c, h. This is a 

difficult task for most people, but the recall task 

becomes much easier when the same letters are combined 

to form a meaningful unit (e.g. s,c,h,e,d,u,l,e,). 

Thus, in a manner of speaking, chess masters have 

learned to read the chess board like a book, while the 

novices are still learning their ABC's. (Similar 

results have been obtained by de Groot 1965, 1966; 
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Charness, 1976; in computer programming by McKeithen, 

Reitman, Rueter, & Hirtle, 1981; and Shneiderman, 1980; 

in physics by Chi, Feltovich, & Glaser, 1981). 

Analogously, parsing may yield the memory chunks 

of expert inventors. The relationships among a 

specified pattern's components determine which 

components belong to which chunks, and the nature of 

the relationships, both within and between chunks, is 

determined by the subject's previous experience within 

the knowledge domain. Parsing identifies/generates 

groups of related components (chunks) present in a 

given pattern and makes the members of that parse 

(chunk) available for other transformational processing 

(in this case, replication). 

If the above findings in conventional problem 

solving domains can be generalized to the more creative 

problem solving realms such as invention then expert 

inventors should be able to divide objects into larger 

units which would allow them to remember the structure 

of those machines better than would novice inventors. 

That is, if the results of the Chase and Simon (1973) 

study are applicable to invention, and parsing is an 

important inventive process, then experts at machine 

invention should produce larger, and thereby fewer, 

parses than novices in reconstructing the same machine. 
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Furthermore, the experts and novices should require an 

equivalent number of parses to reconstruct a non­

functioning nonsense object. The current study was 

conducted to 1) further the understanding of cognitive 

processes used in the inventive process, 2) determine 

whether classic research findings from more 

conventional problem solving domains could be 

effectively demonstrated in a more creative area of 

human problem solving, and 3) use a short-term 

investigative strategy, which utilizes simple neutral 

stimulus materials, to yield data that would permit 

relatively straight forward comparisons with research 

findings in other problem solving domains. 

Method 

Subjects 

The sample consisted of two expert inventors {each 

had designed one patented mechanical device), and two 

novice inventors (senior level, university 

undergraduates who did not have a patent). All four 

subjects were males. The ages of the inventors were 47 

and 49. The ages of the novices were 19 and 22. The 

experts volunteered to participate and received no 

reimbursement for their participation. The novices 

were volunteers and received two extra credit po1nts in 

their experimental psychology course for participating. 
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All four volunteers stated that they had worked with 

Tinker Toys as children and that they spent an average 

of less than 30 minutes a day working with tools or 

machines. On a scale of one to seven with seven being 

the highest degree of enjoyment, both experts rated 

their enjoyment of working with tools as higher than 

average (5 & 6). Both novices rated their degree of 

enjoyment when working with tools as lower than average 

(1 & 3). The novices estimated their mechanical 

aptitude as near average (3 & 4; on a scale of 1 to 7 

with 7 being highest}. The experts also rated their 

mechanical aptitude as near average, although slightly 

higher than the novices' ratings (4 & 5). Both novices 

and one expert denied any formal training in mechanical 

design. The other expert had earned a Masters degree 

in mechanical engineering. 

Materials and Apparatus 

A Pentax color video camera (model# PC-K1500A) and 

a Pentax VHS format portable video cassette recorder 

(model# PZ-R1100A} with time stamping (accurate to .1 

sec.) were used to record the experiment. A Magnavox 

VCR (Model# VR9750AT01) with remote control for super 

slow motion and individual frame advance, connected to 

a KMC television (model# KMC-1921G) were used to score 

the tapes. 
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The two stimuli (mechanical and nonsense objects) 

were constructed from Tinker Toys (a building set sold 

by CBS Toys). The mechanical object was constructed 

using 79 Tinker Toys and was an operational model of a 

windmill. The mechanical object was operational in the 

sense that it was composed of a large fan which spun in 

response to certain forms of external forces (i.e. a 

breeze, spinning it with one's finger etc.). The 

energy of the fan was transferred, via two gears, to a 

vertical shaft which would spin as a result of the 

external energy applied to the fan blades. 

Insert Figure 1 about here 

The nonsense object was constructed of a set of 79 

Tinker Toys which was identical to the set used to 

build the mechanical object. The nonsense object 

resembled no discernable machine, had no moving parts, 

and did not model any obvious utilitarian activity. 

The nonsense object was designed by way of a pseudo­

random construction procedure. First, the set of 79 

pieces were placed in a box. The box was then shaken, 

opened, a piece drawn, and connected to whatever 

structure existed. If there was no place for a piece 

to be connected, it was set aside until an opportunity 
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to be connected arose. The process continued until all 

pieces had been removed from the box and connected to 

the structure. 

Insert Figure 2 about here 

The stimulus items (mechanical and nonsense 

models) were individually placed in a blind constructed 

of three white poster boards (side = 16"w x 34"h, front 

= 24"w x 34"h, top= 24"1 x 18"w). The front and side 

of the blind had slits (B"w x 6"h) which were covered 

by flaps of white poster board (10"w x 8"h). The blind 

was set atop a standard typing table which had one end 

leaf down. This placed the two slits at approximately 

eye level (46 11 from the floor) for an adult sitting in 

a standard four-caster office chair. 

Insert Figure 3 about here 

A wooden conference table (10 1 1 x 32"w) was 

placed length wise in the lab room (12'1 x 5'w). Two 

sets of Tinker Toys (building set #550; approx. 115 

various pieces per set) were placed at one end of the 

table. The subject sat in a four-caster, padded office 

chair at the same end of the conference table where the 
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Tinker Toys had been placed (Figure 3 is a sketch of 

the lab configuration). A line was drawn on the table 

in order to define the work area. None of the 

construction materials or the subjects' construction 

activities were to take place beyond the line because 

they would be outside of camera range. The blind was 

stationed 1' to the left of the table and 1.5' beyond 

the end of the table. The positioning of the table, 

work area, and blind allowed the subjects to easily 

move back and forth between either blind slit and the 

work area. The camera, VCR, and an Amdek Color-I 

monitor were placed at the opposite end of the testing 

room. The camera was placed on a tripod and was 

adjusted so that the subject, the work area, and the 

blind flaps could be simultaneously video taped. The 

monitor was placed so that only the experimenter could 

see the screen. 

Design and Procedure 

All subjects were tested individually, and 

replicated both the mechanical and nonsense objects. 

The order of presentation was balanced across both 

groups (i.e. half of the experts saw the nonsense 

object first as did half of the novices). 

Upon entering the laboratory, subjects were asked 

to read and sign a volunteer's consent form. After the 
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subject signed the consent form, the video camera and 

recorder were activated. The experimenter then asked 

several demographic questions. (The results of which 

are stated in the subjects sub-section.) After 

gathering this information, the experimenter read the 

task instructions to the subject and answered any 

questions. The instructions informed the subject that 

their task was to build a replica of the object which 

was in the box beside them. They were further informed 

that they could look in the box as often as they liked, 

but they could only look at the object through the two 

flaps. Participants were also instructed to work as 

quickly as possible, and not to remove the Tinker Toys 

from the work area of the table. This was done to 

prevent subjects from grabbing several materials, 

turning to the box, and assembling the parts in their 

hands while directly viewing the test object. Not 

allowing subjects to simultaneously view the replica 

and original, forced them to depend upon memory in 

order to complete the task. After subjects stated that 

they understood the instructions, subjects were given 

three minutes to familiarize themselves with the 

construction materials in the work area. Following the 

three minute period, the experimenter removed the top 

of the blind to illuminate the object within and asked 
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the subject to look through the side flap at the 

object. Both stimuli were viewed for 60 seconds 

through the side flap, but in the mechanical condition 

the experimenter turned the fan blades in order to 

demonstrate all the moving parts. At the end of the 

initial viewing, the subject was asked to lower the 

flap, return to the work area, and look toward the 

camera. The experimenter then responded to any 

remaining questions. When all questions were answered, 

the experimenter asked the subjects to begin and 

started the camera's internal clock. 

After the subjects had accurately replicated the 

object, they were asked to improve the replica in as 

many ways as they wished. Subjects were also asked to 

"think aloud" while they performed this portion of the 

task. After answering subjects' questions, the 

experimenter asked them to begin and started the clock. 

Upon completing their improvements, subjects were 

asked to completely "break down" the improved replica 

so that no Tinker Toys were connected. This was 

followed by a 10 minute rest period. During the rest 

period, the subject left the testing room, and the 

experimenter exchanged the object in the blind for the 

remaining object. After the 10 minute rest period was 

over, the subject returned to the testing room, and the 
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procedures used for the first object were repeated 

using the second object. Upon completion of the tasks 

involving the second object, subjects were notified of 

the specific purposes of the study, the experimenter 

answered any remaining questions, and the subjects were 

discharged. 

Results 

Scoring 

The video tapes were scored for number of looks, 

the elapsed time during each look, the number of 

connections made during each "look", the number of 

disconnections (errors), and the total time required to 

assemble each object. A "look" trial began when the 

subject's eyes were directed towards one of the two 

blind slits, the flap covering the slit was raised past 

the subjects eye level, and the subject's eyes were 

open. The look trial ended when the subject's eyes 

looked away from the slit, or the flap was lowered past 

eye level. The total assembly time was scored as the 

elapsed time between the experimenter saying "begin" 

and the subject completing his final connection. 

While on the surface the above definition of a 

look may seem complicated, it yielded very reliable 

scores. Two separate scorers scored randomly selected, 

three minute, segments of tape for each subject in each 
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condition. Both scorers generated identical scores for 

each tape segment. 

The mechanical object required 83 connections and 

the nonsense object required 80 connections. 

Extrapolating directly from the Chase and Simon (1973) 

methodology, the number of Tinker Toy pieces assembled 

during each trial seemed to be a reasonable dependent 

measure. When scoring began, however, it became 

apparent that some pieces were assembled when connected 

to one other piece while others required as many as 

nine connections to be considered assembled. For 

example, a short Tinker Toy rod which served as a gear 

tooth was fully assembled when one end was connected to 

the gear hub. The gear hub, however was not assembled 

until all eight gear teeth and an axle were inserted in 

the hub's available openings. That is, each gear tooth 

required only one connection while other materials had 

to be connected to as many 9 other pieces (gear hub) 

before they could be recorded as assembled. Thus, a 

subject might work on assembling parts of several 

pieces in the same look but not fully assemble any one 

piece. If number of pieces assembled was used as the 

dependent measure then these activities would generate 

a score of o for that look. It was also possible that 

a subject might only make three connections during a 
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look which would result in three fully assembled pieces 

and a score of three for a given trial. Thus, even 

though the subject was more productive in the previous 

situations, the dependent variable would indicate no 

subject activity for those trials. 

Number of pieces assembled, therefore, was not an 

accurate representation of the subjects' performance in 

each trial. The number of connections made, rather 

than the number of pieces assembled, was theref9re 

scored as the primary dependent measure. The number of 

disconnections was also recorded and treated as error 

data. 

Analysis 

The first analysis used a 2 (object) x 2 (order) 

analysis of variance for a mixed design to investigate 

order effects (mechanical-nonsense v. nonsense­

mechanical). No significant difference due to the 

order in which stimuli were presented to subjects was 

detected (F(l,2) = 5.76, n.s.). 

For the remaining analyses, a 2 (object) x 2 

(expertise) analysis of variances for a mixed design 

was computed for the average number of correct 

connections made during non-zero tr1als. On several of 

the look trials, subjects would look at the original 

and then look at their reproduction without connecting 
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any pieces. These were considered zero-trials and were 

excluded from the first analysis. The average number 

of correct connections was computed by dividing the 

number of connections required (83 for the mechanical 

object and 80 for the nonsense object) by the number of 

productive looks for that condition. In the nonsense 

condition, novices made an average of 1.84 correct 

connections per look while experts made 1.68 

connections. In the mechanical condition novices also 

outperformed experts, although the differences due to 

expertise were not statistically significant, F(1,2) = 

1.60. The nonsense object was significantly more 

difficult to replicate than the mechanical object, 

F(1,2) = 32.62, p<.05. 

Insert Figure 4 about here 

Figure 5 represents the outcomes when zero trials 

were included in the analysis. The variance due to 

object type increased (F(1,2) = 70.25, p < .025), but 

Insert Figure 5 about here 

novices still performed better than experts (F(1,2) = 

.33, n.s.), although to a lesser degree. In other 
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words, novices took more non-productive looks at the 

nonsense objects than did experts (see Figure 8). The 

interaction between expertise and object type were 

nonsignificant in both analyses {F{1,2) = 3.42) when 

zero trials were excluded; F{1,2) = 2.63 when zero 

trials were included). 

Experts took longer to complete both replication 

tasks than did novices {See Figure 6). The nonsense 

object required more time to complete even though it 

required fewer connections than the mechanical object. 

The effects due to expertise (F{1,2) = .1) and the 

interaction (F(1,2) = .03) were statistically non­

significant when elapsed time was used as the dependent 

measure. The only statistically significant difference 

in elapsed time was due to the object being replicated, 

F(1,2) = 41.05, Q<.025. 

Insert Figure 6 about here 

As is depicted in Figure 7, experts made more 

disconnections than did novices, and more disconnects 

were performed in the nonsense condition than in the 

mechanical condition. However, neither main effect was 

significant {F{1,2) = 1.18; F{1,2) = 2.95, 

respectively), nor was the interaction, F(1,2) = 1.2. 
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Insert Figure 7 about here 

The only condition in which experts outperformed 

subjects was the number of looks required to assemble 

the nonsense objects (Figure 9). Experts required an 

average of 131.5 looks to assemble the nonsense objects 

whereas novices required an average of 177.5. In the 

mechanical condition, however, experts averaged more 

looks than did novices. Once again the differences due 

Insert Figures 8 & 9 about here 

to expertise were non-significant, F(1,2) = .15. The 

differences due to object type (F(1,2) = 8.55) and the 

interaction between object type and expertise {F{1,2) = 

.5) were also statistically non-significant. 

Discussion of Empirical Findings 

The pattern of data resulting from the current 

study did not produce interaction and main effects 

consistent with the findings of Chase and Simon (1973). 

In the present study, novices consistently outperformed 

experts as measured by any of the various dependent 

measures. The mechanical object, however, was easier 

to replicate than the nonsense object, and the 



differences due to object type were the only effects 

that reached statistical significance. 
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Although sampling error is the most likely 

explanation for the statistically non-significant 

differences due to expertise, a few other extraneous 

influences may have also been at work. First, due to 

difficulties obtaining a sample of expert inventors, 

the average age of, the novices (20.5) was substantially 

less than the experts• mean age (48). The novices• 

younger eyes and hands may have provided a performance 

advantage during the replication task. Also, the 

younger novices may have been slightly more motivated 

because they were receiving extra credit in their 

psychology class, and the experts were volunteering 

their time with no form of reimbursement. During the 

experiment, however, all subjects appeared 

enthusiastic, cooperative, and equally motivated to 

perform the tasks. 

Even though the above mentioned factors were 

present, I believe that they had little, or no, effect 

on the experimental outcome. I think the lack of any 

statistical differences between experts and novices in 

this task is legitimate, and the task, therefore, was 

not able to distinguish between expert and novice 

inventors. Experts and novices performed at 
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approximately the same level in all object conditions, 

and the primary factor accounting for the lack of 

differences is most likely a ceiling effect. While the 

nonsense object appears to have been more difficult 

than the mechanical object, both objects may have been 

too simple and did not require the use of specialized 

knowledge to perform the replication task. Had the 

objects been more complex structures with a more 

sophisticated design then the task may have required 

the experts to utilize more unique knowledge 

structures. Likewise, a more sophisticated design may 

have pushed the novices to the limit of their 

mechanical knowledge. The novices, lacking any 

specialized inventive or mechanical abilities to cope 

with such complex stimuli, would demonstrate a 

performance deficit relative to the experts. Slight 

support for this view comes from the number of looks 

required to replicate each object (see Figure 8). The 

experts required fewer looks to replicate the nonsense 

item than did novices. One implication of this result 

is that the increased complexity of the nonsense object 

may have affected the experts less than the novices. 

While such a singular result is interesting it is still 

highly suspect. Again, one must remember that the 

result was statistically non-significant and the 



observed differences are most likely due to common 

sampling error. 
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One of the goals of this study was an attempt to 

develop a relatively simple, short term method to study 

the nature of human inventiveness. Thus, the choice of 

a simple, neutral machine versus a intricate 

specialized machine was made. There was no a priori 

means to determine how simple, or complex, that machine 

had to be, and the costs of the design complications 

introduced by the use of a more complex stimulus were 

much too high. Even now, it would be difficult to 

determine how sophisticated the machine should be. For 

example, most inventors from mechanical fields probably 

possess a general mechanical aptitude and a high degree 

of specialized knowledge within the field in which they 

have received patents. In the current study, one 

expert received a patent for an improvement in air 

conditioning design, and the other received a patent 

for a modification to a piece of agricultural 

equipment. While it is true that both of these 

subjects would probably have little trouble changing a 

faucet washer, it is also very difficult to say that 

the air conditioning expert could have as easily 

developed the agricultural invention and vice versa. 

The two experts, while possessing similar general 
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aptitudes, and perhaps similar inventive aptitudes, 

simply do not possess the same specialized knowledge 

that allowed them to create their respective 

innovations. Therefore, if a fair comparison is to be 

made, the mechanical object should be of substantial 

complexity to access any unique knowledge structures of 

the expert inventor. If the mechanical device is of 

such complexity then comparing the expert's performance 

to completely naive subjects would be an unfair 

comparison. It would be impossible to determine 

whether any observed performance advantage for the 

expert should be attributed to special inventive 

abilities or simply to greater familiarity with the 

mechanics of the test item. Therefore, the subject 

population would also need to be changed. For example, 

if one could assemble a sample of experts who had a 

patent in air conditioning design then an appropriate 

novice population might be a sample of air conditioning 

service technicians who possessed no patents. 

Obviously, using such procedures would add a great 

deal of time and expense to locate and reimburse such 

professionals for participating in the study. At the 

beginning of this study, it was my hope that such 

complicated studies could be avoided, and I therefore 

attempted to determine whether the use of a neutral, 
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simple machine could be used to demonstrate any 

cognitive abilities unique to inventors. 

Unfortunately, no concrete conclusions about the nature 

of human inventiveness have been uncovered as a result 

of the current study. 

The fact that experts and novices performed at an 

equivalent level when given neutral, relatively simple 

objects to replicate is, however, consistent with the 

idea that the specialized cognitive structures which 

make invention possible are most likely tightly bound 

to the specialized knowledge of the domain in which the 

inventor works. The possible exception to this rule 

may be those rare cases of particularly gifted 

inventors (e.g. Edison) who seem able to translate 

their inventive capacities to a variety of fields. 

Even in these rare cases, however, it seems clear that 

such inventors must exert great effort to become 

competent in a new domain, and only after a obtaining a 

relatively high level of understanding of a new domain 

can they develop truly unique inventions. (I will 

return to this point and attempt to describe why this 

may be the case in the last section of the paper.) 

While the primary goal of the research was to 

identify processes and abilities that distinguish 

inventors from the general population, a secondary goal 

/ 
' I V' 
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was to develop a methodology which would allow for 

relatively straightforward comparisons between this 

study and other studies of expertise in diverse 

domains. Furthermore, I wanted to develop a 

methodology which eliminated the complexities involved 

with protocol analyses of experts' verbal reports. The 

project was only partially successful in achieving 

these two secondary goals. Conceptually replicating 

the Chase and Simon (1973) study did provide data that 

allow reasonable comparison between this study and 

similar studies in other domains. Furthermore, I was 

able to investigate inventive expertise without the use 

of verbal reports. 

The present methodology unfortunately introduced 

an entirely new set of analytical difficulties. First, 

scoring the tapes was a time consuming process to put 

it mildly. Every minute of tape required approximately 

two hours of effort to score and verify. The present 

data represents approximately 160 hours of scoring not 

including analysis, time required to set up the scoring 

equipment, or breaks required to maintain accurate 

scoring. When all the other "real-time" factors were 

included, more than one semester of daily scoring 

activity was requ1red to score and verify the data from 

this study. Therefore, while the data generated from 
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the current methodology are somewhat more objective 

than the data commonly generated from experts' 

introspections about their actions, the scoring effort 

remains comparable to the effort required by protocol 

analyses. 

The major cause of the difficulty surrounding the 

scoring was the vigilance required to score the onset 

and offset of looks. Scoring the number of looks was 

originally planned to be a simple matter of counting 

flap openings and closings. Unfortunately, the scoring 

quickly became a process in which the scorer had to 

determine when the flap was raised past the eyes, the 

eyes were directed toward the flap, and the eyes were 

open. Simply counting the number of flap openings and 

recording the length of time that the flap is open 

would have resulted in inaccurate results. Subjects 

tended to open the flap and glance at the stimulus 

(look beginning), then glance at their replication 

(look ends), and then back at the stimulus (a new look 

begins). They would often look back and forth several 

times before closing the flap once and returning to the 

work table. Although determining the point at which a 

look begins, and ends, involves monitoring three 

conditions, and consumed much of the scoring effort, 

the use of a super slow motion VCR with frame advance 
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made the determination very accurate and reliable. 

As is generally the case in science, the result of 

the present study is a mixed bag. The research did not 

produce a methodology which accesses invention 

processes without requiring labor intensive scoring 

efforts. The study did, however, produce objective 

data that could be compared to studies from other 

knowledge domains. Unfortunately, the data did not 

produce results consistent with the Chase and Simon 

(1973) findings, but the results do hint at one 

potentially important characteristic of inventors. 

Before an interested individual can become an inventor, 

it may be necessary to acquire extensive knowledge of a 

domain before she can create a unique, patent quality, 

invention within that domain. While inventive ability 

and domain knowledge are hardly synonymous, they may be 

highly inter-related. That is, inventive processes are 

most likely high level processes that can only utilize 

knowledge structures which have a compatible level of 

sophistication. In other words, the inventor may have 

to obtain a fairly high level of comprehension within a 

domain before any useful, unique, inventive procedures 

can be effectively applied. Therefore, the development 

of experimental techniques, which can disentangle the 

inventive procedures from the domain specific 
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knowledge, may hold the greatest promise for unlocking 

the nature of human inventiveness. 

Theoretical Discussion 

Two Perspectives on Cognition 

Following World War II, a new technology, the 

computer, was beginning to proliferate throughout the 

scientific and technical community. The von Neumann 

architecture was, and still remains, the most widely 

applied computer architecture. A von Neumann machine 

contains two primary components: a central processing 

unit (CPU) and a central memory array. The CPU 

contains registers which are small memory elements that 

can contain one "chunk" of information (usually an 

address of a central memory location, or a numeric 

value read from an address in the central memory). The 

machine operates by executing a pre-programmed sequence 

of instructions which is stored in the central memory 

array. The CPU begins by fetching the first 

instruction in the sequence from the central memory 

array. Next, the CPU performs the operation indicated 

by the instruction and may write the result of the 

operation back out to a location in the central memory. 

The CPU then obtains the next instruction in the 

sequence and the process repeats itself until the final 

instruction in the sequence is executed. In the von 
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Neumann architecture, the CPU and memory are separate 

components and information is represented explicitly in 

individual memory locations. The processor of a von 

Neumann machine can, at any one time, perform only a 

single operation from a sequence of operations, and von 

Neumann computers are, therefore, best described as 

serial machines. 

The serial computer provided scientists and 

engineers with a tool which was flexible enough to 

model complex systems and thereby allowed them to 

build, control, and attain a higher understanding of 

such systems. The human brain is certainly one of the 

most complex systems known to science, and even though 

human cognition is probably far more intricate than the 

most sophisticated post-war computing process, it did 

not take long before researchers began drawing 

analogies between human thought and computer processing 

(Turing, 1950; von Neumann, 1958). By the mid 1960's 

the computer-mind metaphor was the dominate metaphor 

driving psychological investigations and the von 

Neumann machine was firmly entrenched as the dominate 

computing device. It should therefore come as no 

surprise, that human cognition had become characterized 

in terms of serial information processing stages. 

Viewing human cognition in terms of sequential symbolic 
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processes, resulted in substantial advances in computer 

language designs, human factors, linguistics, 

artificial intelligence, human learning and memory, 

cognition, and human problem solving. Almost from the 

beginning of the information processing revolution 

however, there were detractors who warned against 

taking the serial computer-mind metaphor too literally. 

A major criticism of the computer-mind metaphor 

arose from the differences between the actual 

neurological organization of the human brain and the 

dualistic organization of process and memory in the von 

Neumann computer. How could scientists, who were 

supposed to be concerned with truth and accuracy, so 

willingly embrace serial models of cognition when there 

existed such an obv1ous discrepancy between the models 

and the supposed underlying physiological mechanisms? 

The answer was, of course, that the information 

processing theories operated at a level of explanation 

which was higher than the level of explanation utilized 

by neurological theorists. The information processing 

camp affirmed the symbol as the fundamental component 

of human cognition and thus, their explanations 

supposedly did not extend to processes which operated 

below the symbolic level. The information processing 

investigators undertook the task of creating symbols 



for objects, relations, operations, and any other 

cognitive component that they deemed pertinent. The 

human mind was viewed as a symbol processor and any 

process which operated below the level of the symbol 

was seen as a topic more suited to neuroscience. 
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The last two decades of advances in AI/expert 

systems, human problem solving, cognitive psychology, 

and the information sciences serves as a testament to 

the power of explanation at the symbolic level. 

However, as all worthwhile paradigms must do 

eventually, the conventional information processing 

approach illuminated human cognitive capabilities which 

could not be adequately modeled with a sequential 

symbolic processor (e.g., continuous speech 

recognition, dynamic pattern recognition, visual scene 

interpretation, content addressable memory, and 

autonomous vehicles). The processing models of the 

neural realists had always seemed to possess the 

potential for dealing with such problems, and by the 

1980's the technology and computational models had 

developed sufficiently to use them successively in both 

applied and theoretical realms. 

The modern work on artificial neural models 

actually began more than 40 years ago with work done by 

Hebb (1949), McCulloch and Pitts (1943), and Rosenblatt 
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(1959) but, their efforts were stymied by a lack of 

technology and the early successes with symbolic 

processing systems. The recent resurgence in neural 

theories began in earnest during the mid 1980's with 

work by Hopfield (1982, 1984, 198G), Kohonen (1984), 

Grossberg (198Ga, 198Gb), Feldman & Ballard (1982), 

Hillis (198G), and Rumelhart and McClelland (198Ga, 

198Gb) and represents an exciting possibility for 

cognitive, neurologic, and computing research. 

Undoubtedly, neural net theories will be a great boon 

to those who are working on "monster" AI problems such 

as those mentioned above, and to neural scientists who 

wish to model human neural systems on a computer. One 

of the most exciting prospects for neural computing, 

however, lies in coupling the past successes of the 

symbolic serialists with the power provided by the new 

neural networks. For the first time, we may possess 

the theoretical rudiments necessary to begin developing 

a complete model of human cognition which encompasses 

the higher level, apparently sequential processes of 

the human mind and the highly parallel mechanisms which 

underlie those processes. The purpose of this portion 

of the dissertation is to explore how neural and 

traditional models may be integrated so that new 

insights might be gained about one aspect of high-level 
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cognitive processing, namely, human problem solving. 

The first section will provide an overview of 

Newell and Simon's (1972} influential work on human 

problem solving by discussing the underlying 

assumptions of traditional human problem solving 

theory, defining some basic terms, and describing the 

general process of problem solving. The following 

section will provide an overview of neural networks by 

discussing the underlying assumptions of neural 

computing, defining fundamental terminology, describing 

two representative neural nets, and lastly, 

highlighting the tasks which neural nets most easily 

lend themselves. The next section represents a first 

attempt at uniting the two views of cognition by 

describing a common data structure, formulating an 

integrated processing model for applied expert systems 

problems, and discussing a general, unified model of 

creativity and invention. The final section will 

summarize the previous sections and make some rather 

modest predictions for the future of neural computing 

and problem solving. 

The Conventional Information 

Processing Perspective 

In 1972 Allen Newell and Herbert Simon authored 

the highly influential book, Human Problem Solving, 
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which, as the title implies, was an effort to advance 

the understanding of human problem solving. The 

fundamental postulate of the Newell and Simon theory is 

that humans operate as an information processing system 

or IPS (p.19). According to Newell and Simon, an IPS 

consists of three primary components: I/O mechanisms, 

a processor, and a memory (see Figure 10). 

Furthermore, an IPS resides in an external world that 

contains the task information and all the physical 

entities with which the IPS must deal. 

Insert Figure 10 about here 

The three components of the IPS, (the I/O 

mechanisms, the processor, and the memory), comprise 

any IPS's general architecture. The I/0 mechanisms are 

divided into two general categories: receptors and 

effectors. The receptors receive information from the 

external world and pass it to the processor. If the 

IPS of interest is a human then the receptors are 

analogous to eyes, ears, and the other senses. If the 

processor selects an output which must be manifested in 

the external world, the action is performed by the 

effectors. Again, if the IPS of interest is a human 

then the effectors are abstractions of hands, feet, 
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mouth, or any other physical component which can 

directly affect the external world. Newell and simon 

divorce their problem solving theory from any detailed 

concern with the sensory mechanisms and it should be 

made clear that the primary components of an IPS 

operate at a level that is more abstract than the 

sensory or motor processes. The processor consists of 

three components: a fixed set of elementary information 

processes (eips); a small, limited short term memory 

(STM) that can hold only a few symbol structures at any 

one time; and an interpreter which determines the 

sequence of operations to be executed by the IPS. The 

last component of the IPS is the large, virtually 

unlimited long term memory which holds the symbol 

structures until the processor requires them in its 

short term memory. 

The IPS operates by accumulating information about 

the external world via the receptors. The input from 

the receptors is passed to the STM of the processor. 

The processor then locates, by invoking eips, symbol 

structures in memory that represent the external 

objects and events. The symbol structures are then 

passed to the processor and based upon the pattern of 

activated symbol structures (i.e. the context), the 

interpreter composes sequences of operations from the 
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set of available elementary information processes. The 

resulting operations may animate the effectors andfor 

cause the activation, modification, and/or creation of 

symbol structures in memory. 

In specifying an IPS capable of performing a 

desired task, one must first define a set of 

fundamental symbol manipulation procedures known as 

elementary information processes (eips). The eips 

combine with the symbol structures to define an IPS's 

total range of capabilities. The IPS's entire behavior 

is produced by executing sequences of the eips. These 

simple processes can be combined to build more and more 

complex procedures until an integrated problem solving 

behavior emerges. Just what makes a process an 

elementary process depends upon the purposes of the 

particular application. The eips must be general and 

powerful enough to generate the full range of behaviors 

necessary to solve a specified problem. Furthermore, 

the eips must be realizable by known mechanisms. For 

example, there is no reason to take problem solving as 

an eip for it would tell us nothing about how problem 

solving is accomplished. The set of possible eips is 

not unlimited, but a unique set of eips capable of 

resolving all problems does not currently exist. In 

fact, the quest for a limited set of eips capable of 
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resolving all symbolically representable problems is 

one of the computing sciences' cornerstones. 

Perhaps Newell and Simon's most ubiquitous 

theoretical element is the symbol, and a primitive 

symbol is the most basic form of a symbol. Like the 

eips, the definition of a primitive symbol depends upon 

the current application. For example, if one wished to 

define an IPS capable of understanding speech, then one 

might select the phonemes as the atomic structures of 

speech and assign a primitive symbol to each phoneme. 

By designating phonemes with primitive symbols, the 

resulting model of speech processing would disregard 

any process or knowledge which occurs below the 

phonemic level (e.g. sound wave forms, the 

physiological processes by which phonemes are detected, 

and the perceptual processes by which phonemes are 

recognized). In general, the definition of eips and 

primitive symbols is determined by the degree of 

specificity with which one wishes to define an IPS. 
' Primitive symbols perform three primary functions. 

First, primitive symbols designate specific events or 

structures in the external world. Such primitive 

symbols may be evoked when their referent occurs in the 

external world of the IPS, or their presence within the 

IPS may cause the IPS to create such events or 
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structures externally. Second, primitive symbols may 

designate eips or sequences of eips so that the 

referent can be activated by the interpreter. Lastly, 

primitive symbols can be connected via relations to 

produce more complex symbol structures. 

As an example, consider the action of turning on a 

light switch. First, one must define the eips for the 

IPS which is to perform the action. For present 

purposes, the IPS has four eips available to it 

(locate-switch, touch-switch, move-finger, return-to­

previous-state). It should be clear that the 

words/symbols which designate eips are just labels. 

That is, the symbols have no inherent meaning to the 

IPS other than being a unique designation for the 

action(s) to be performed. I could have labeled them 

Al, A2, A3, and A4, but I have instead chosen to 

designate them with symbols which more adequately 

describe their actions to us as external observers of 

the IPS. We can now combine these four actions (eips) 

into a sequence of actions and designate the sequence 

with the symbol "flip-switch". Now if the IPS 

encounters a situation in which the context requires 

the flipping of a light switch, it need only activate 

the symbol structure 11 flip-sw1tch" and the four step 

sequence of "locate-switch", "touch-switch", "move-



finger", and "return-to-previous-state" will be 

executed. 
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The advantage of viewing a problem solver as an 

information processing system lies in the fact that an 

IPS uses an interpreter which only requires a small, 

finite amount of mechanism (i.e. the eips). However, 

symbols, which can be used to designate eips, can be 

arranged in very complex ways. Therefore, the 

complexity of an IPS's behavior (sequences of eips) is 

limited only by the complexity of the symbol structures 

that can be built up in memory. 

The power of symbols lies in their ability to 

designate (i.e. to have a referent). The primary 

designatory relationship is between a symbol and a 

symbol structure • Thus, the symbol X2 may designate 

the symbol structure (CAT). The ability to designate 

means an information process can take a symbol as input 

and gain access to the referenced object, or action, in 

order to affect it or be affected by it in some way. 

For example, an information process is given the symbol 

TABBY which refers to the symbol structure (own cat 

black male). Likewise, if the information process is 

given the symbol structure (own cat black male) the 

symbol TABBY can be produced. Given the symbol or 

symbol structure an information process can then 
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operate on that symbol, the object in the external 

world to which it refers, or use that symbol structure 

to affect another symbol structure. In short, a symbol 

can be used to encode information about any conceivable 

thing and can hence operate as a surrogate for that 

thing within the IPS. 

In general, an IPS operates by locating symbols 

and performing sequences of actions (eips) based upon 

the context provided by the symbol patterns held in the 

processor's STM. The component of the processor which 

determines the sequence of operations is the 

interpreter. The fundamental assumption of the Newell 

and Simon theory is that an interpreter will operate in 

a lawful fashion. That is, given the exact situational 

context (same pattern of activated symbols), an 

interpreter will generate a functionally similar or 

exact sequence of operations. The behavior of an IPS 

is therefore predictable if one can determine the 

conditions under which certain sequences of behaviors 

are generated by its interpreter. In accordance with 

this assumption, a fundamental task for an inductive 

scientist, who wishes to study human problem solving, 

is to observe an IPS in order to hypothesize a program 

for the IPS's behavior. A program, in Newell and 

Simon's terms, is a set of rules and regularities that 



describe the sequences of eips which the interpreter 

executes as a function of its current informational 

context. 
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The second general obligation of problem solving 

theorists, according to Newell and Simon, is 

determining the extent to which the IPS actually runs 

according to the program which has been specified for 

it. It should be made clear that a program is purely 

external to the IPS. A program is our way, as external 

observers, of describing the system. A program should 

be understood as a theory which describes the operation 

of a system in information processing terms. If the 

interpreter of an IPS is a true interpreter (i.e. 

generates sequences of operations based upon symbolic 

structures in predictable ways), then we can also 

describe the internal structure of the interpreter with 

information processing terms. However, there may be 

nothing inside the system itself that corresponds 

directly to the program, but only a mechanism that 

behaves in the manner described by the program. For 

example, the behavior of a thermostat may be adequately 

described by the follow1ng program taken from Newell 

and Simon (1972, pp 31). 
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Insert Figure 11 about here 

The thermostat however, has no interpreter which 

processes symbolic structures. The thermostat contains 

only a simple mercury switch that behaves in the manner 

described by the program. At some level then, an 

interpreter is just a mechanism which directly 

accomplishes the actions described by the program. If 

the interpreter of an IPS is actually a mechanism that 

simply produces a sequence of behaviors (e.g. mercury 

switch) then we cannot describe its actual internal 

structure in information processing terms. Only 

examination of the microstructure of the system in 

question will determine the actual mechanisms at work 

within an IPS, but even in this case, a program will 

remain an adequate description and predictor of the 

IPS's behavior. 

Problem Solving Information Process1ng Systems 

A problem solving situation consists of two 

general constructs; a problem solving system and a task 

environment. A problem solving system is simply any 

IPS capable of selecting and executing actions in order 

to achieve specified goals. Although Newell and Simon 

never speak of a problem solving system in this way, it 
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is apparent that the problem solving system represents 

the lower limit of their theory and equates roughly to 

any physical platform capable of problem solving 

activity (i.e. selecting and executing actions to 

achieve goals). As they indicate several times, the 

physiology or the true underlying structure of the IPS 

is not important for describing the behavior of the 

system. The problem solving system, therefore, is left 

largely undefined and can be any system capable of 

meeting the generic description of an IPS (human, 

chimp, computer, thermostat, etc.). 

The task environment can be generally defined as 

an environment coupled with a task, goal, or problem 

for which a problem solver is adequately motivated to 

complete. The task environment contains all the 

information and objects necessary for the problem 

solver to produce a correct solution, but the task 

environment may also contain objects and information 

which may interfere with, disrupt, limit, and/or block 

some solution paths. It is natural, albeit incorrect, 

to think of the task environment as being entirely 

external to the subject. In fact, the inherit 

capabilities of the subject such as generalized 

intelligence and level of experience (master v. novice 

chess players) are also components of the task 
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environment. The task environment includes, but is not 

strictly limited to, the goal of the problem, the 

conditions under which the goal can be obtained, the 

legal tools and operations that can be used to obtain 

the goal, the inherit problem solving capacities of the 

solver, and the starting state of the problem. 

A problem exists when a goal is desired by a 

system that does not possess an immediately available 

method to obtain the goal. Even though all the tools 

and informat1on necessary to solve the problem may be 

immediately available in the task environment of the 

problem solver, a solution path to the goal may not be 

forthcoming because the TRUE problem does not exist in 

the external world, but is created within the problem 

solving system. To illustrate this point, consider 

what might happen if two people are presented with an 

identical problem in an identical external environment. 

It is quite possible, even likely, that the two 

individuals will perform the same task in different 

ways. In fact, a single individual is likely to 

perform different behavioral sequences during separate 

exposures to the same problem. If the problems are the 

same and the external environment of the subject is the 

same then the performance differences must be 

attributed to some variation within the problem solving 
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system. In Newell and Simon's framework, a problem 

solver is characterized as an IPS which builds an 

internal representation of the task environment in 

order to produce a solution to a given problem. The 

IPS's internal representation contains all the 

information relevant to the problem including tools, 

operations, capacities of the problem solver, problem 

states, goals, and any other useful concepts which the 

problem solving system may have available to describe 

the problem situation (e.g. knowledge gained from 

experience in other task domains). 

The internal representation of all the information 

relevant to the problem is labeled the problem space 

(see Newell & Simon, 1972; p. 56- 86). The problem 

space is not a physical space which can be pointed to, 

but is instead the essence of the problem which exists 

within the problem solver's cognitive machinery. 

Although a problem space can be represented externally 

with game trees, productions, magic squares, and other 

symbolic structures, these structures are not the true 

problem space. In linguistic terms, the game tree and 

other symbolic structures are analogous to the surface 

structure of language while the true problem space is 

analogous to the deep structure of language. The 

composition of the internal problem space determines 
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the nature of the TRUE problem, the behaviors that the 

system will perform in attempting to solve the problem, 

and whether or not the problem can be solved by a 

system operating within the given task environment. 

Attainment of a goal becomes a problem when the 

number of plausible routes to the goal is large or 

immense, the correct solution paths are widely 

dispersed throughout that huge set of plausible 

solutions, and the cost of obtaining and testing each 

possible solution is high. A problem solver therefore 

constructs an internal representation of all factors 

deemed pertinent (i.e. the problem space) in order to 

manage the immense amount of potentially relevant 

information. The task environment's relevant 

components (e.g. the goals, legal tools and operations, 

and the initial state of the problem) are all 

represented in the problem space. The problem space 

also provides various imagined intermediate steps 

towards a solution. The problem space can therefore be 

used to internally generate and test solution paths 

(sequences of mental and motor activity which may or 

may not lead to a goal) without actually having to 

perform the associated behaviors. The problem space 

thus represents the set of possible solution paths 

which are available to the problem solver. Learning is 
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therefore the process of composing, editing, and 

retaining an internal problem space which allows the 

problem solver to most effectively derive the correct 

solution path for any problem selected from a specified 

class of problems (e.g., 4*3 is a problem selected from 

the class of multiplication problems). Accordingly, 

problem solving is the process of deriving the correct 

solution path from the internal problem space, and is 

therefore internal to the problem solver. 

Consequently, the true problem (i.e. deriving the 

correct solution path(s) from the internal problem 

space) and the resultant problem solving behaviors are 

determined by the structure of the internal problem 

space. Furthermore, because the problem space is 

internal to the problem solver and thereby unknowable 

to an external observer, the true problem and the 

behavior of the problem solving system are likewise 

unknowable to an external observer prior to the 

execution of those behaviors. 

We can know, however, the external stimuli and 

some of the problem solver's intrinsic capacities (i.e. 

portions of the task environment), and based upon the 

demands of the task environment, one can fabricate a 

hypothetical problem space. Task demands are 

constraints on the behavior of the problem solver which 
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must be satisfied in order for the goal to be obtained 

(e.g., you must have three-in-a-row to win in tic-tac­

toe, sufficient IQ, level of experience, short-term 

memory capacity). An analysis of the task environment 

produces a description of the task demands which, in 

turn, establish possible solution paths while rendering 

other solution paths inaccessible to the problem 

solver. The inaccessible paths are not, therefore, 

components of the subject's problem space. 

For example, a subject may be placed in an 

environment where he must obtain $2000. The rules of 

the subject's society, and personal moral code, may 

provide task demands by disallowing homicide or theft 

as viable solution paths. The capacities of the 

problem solver may also provide task demands. If he 

cannot read or write, or if he has no collateral of 

value equal to $2000, he may not be able to obtain a 

loan from an accredited lending institution. Each of 

these constraints, and many more, may disallow certain 

solution paths while defining other paths. By 

carefully analyzing the task environment, which 

involves ident1fying capacities of the environment and 

the problem solver, one can build a hypothetical 

problem space devoid of irrelevant solution paths and 

generate a set of prototypic path features which could 
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lead a problem solver to a correct solution. 

A hypothetical problem space is a representation 

of the behavior demanded by the task environment given 

a perfectly rational problem solver operating at 

specified level of adaptivity. A problem solving 

system is considered perfectly rational if the behavior 

exhibited by the system in a specified problem solving 

situation is appropriate given the demands of the task 

environment. If a task environment demands certain 

behaviors and a problem solver exhibits those behaviors 

then those behaviors tell us more about the task 

environment than about the subject other than he/she is 

adequately motivated and equipped to perform the task. 

It is when actual human behavior deviates from the 

behavior predicted by the perfectly rational model that 

we begin to discover something about human rationality. 

The demands of the task environment and the 

psychology of the subject, are the components which 

Newell and Simon regard as the two most important 

aspects of human problem solving. Therefore, the first 

step of the general methodology proposed by Newell and 

Simon is analysis of the task environment in order to 

determine the task demands. Second, based upon the 

task demands, one constructs a hypothetical problem 

space from a specified set of eips and symbol 
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structures. Subsequently, a perfectly rational problem 

solving system is created by allowing an IPS to operate 

with the hypothetical problem space in the specified 

task environment. Next, one observes humans performing 

the same task in the same environment and identifies 

the differences between the behaviors of the humans and 

the perfectly rational IPS. Lastly, the differences 

between actual human behavior and the perfectly 

rational behavior of the IPS are used to develop a 

model of the human's actual problem space. 

As an example, given the following tic-tac-toe 

board configuration and model of a perfectly rational 

Insert Figure 12 about here 

problem solver, X's most rational next move should be 

in the lower center square. This is the move that is 

demanded by the task environment to achieve three-in-a­

row. It is when behavior deviates from this rational 

model of behavior that we learn something about the 

psychology of the subject. If the subject is motivated 

to win the game and has the cognitive capabilities to 

achieve that goal, then why would she play in the right 

hand center square? Perhaps she was looking for two 

contiguous squares that contained her pieces and when 



she did not find that configuration, she employed a 

rule that stated: if your opponent has marks on two 

contiguous squares and an open square in line with 

those two squares then place your mark in the open 

square. The subject's deviation from the perfectly 

rational model has given us a clue about her internal 

representation of the problem and allows us to modify 

our perfectly rational model. 

Insert Figure 13 about here 
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In the above case, the subject's representation is 

slightly flawed because it effectively omits the 

possibility that two non-contiguous pieces can 

represent a winning move. The study of problem solving 

need not, and should not, be limited only to those 

cases where we can build a superior rational model to 

that of the human subject. In fact, the study of human 

problem solving is most interesting and beneficial when 

our scrutiny turns to the task environments of experts 

who have obtained rare and superior abilities. For 

example, an investigator may be interested in 

determining the most successful chess strategies, and a 

sound investigative method would be to examine the play 

of a senior chess master. In most cases, an 
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investigator could not create a hypothetical problem 

space for chess which is superior to a senior chess 

master's internal representation. When the term 

"perfectly rational" is applied to a problem solving 

system, it refers only to the fact that the system's 

problem space is a reasonable description of the task 

environment and task demands, but implies nothing about 

the efficacy of the problem space. That is, a problem 

solving system can be perfectly rational without being 

perfectly successful. 

For example, a perfectly rational chess playing 

computer might operate by examining all possible board 

configurations following each of the opponent's moves 

in order to determine which of its available moves has 

the highest probability of success. The computer may 

be able to win, but due to the sheer number of possible 

combinations, a single match might take years to 

complete. Furthermore, if the computer were to compete 

in another chess playing domain, namely lightening 

chess, it would be soundly defeated. The hypothetical 

problem space and the perfectly rational behavior of an 

IPS are merely starting points, or straw-man 

constructs, to which human behavior can be compared. 

The behavior of the human experts will almost surely 

deviate from the behaviors predicted by the perfectly 
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rational models. One can then modify or create new and 

better models of human problem solving as one increases 

the understanding of exactly how the experts' behaviors 

differ from the predicted behaviors. After 

modifications based upon the experts' performance, the 

hypothetical problem spaces can be represented in a 

problem solving grammar (e.g. production systems, game 

trees) and made available to non-experts in order to 

increase their understanding of a particular task 

environment. In fact, the major benefit of Newell & 

Simon's approach to the study of human problem solving 

is not that it allows one to build automatons capable 

of performing tasks which have heretofore been 

considered uniquely human, but that the knowledge which 

results from their approach is communicable to other 

human beings and can therefore be used to enlighten, 

educate, and improve human performance. 

The Problem Solving Process 

The essential components of the problem solving 

situation, the task environment, the IPS, and the 

internal representation of the problem (problem space), 

have now been defined, and a general methodology for 

the study of human problem solving has been sketched. 

The only remaining preliminary construct that needs to 

be outlined is the process by which an IPS can actually 
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solve a problem within a specified task environment. 

The process of solving a problem begins with the 

act of input translation. During this phase of the 

process, the IPS creates an internal representation of 

the problem (i.e. the problem space) which may render 

solutions obvious, obscure, or even unattainable. 

After the problem is represented internally and based 

upon the formulation of the internal problem space, the 

IPS selects a problem solving method. A method can be 

viewed as a general strategy or a specified sequence of 

elementary information processes that, when executed, 

will achieve, or attempt to achieve, a desired goal. 

Once begun, a method controls both internal and 

external behav1ors of the IPS, but its control is not 

absolute. That is, a method can be halted and once it 

is stopped, the system has four options. First, 

another method may be selected and tried. Second, 

another internal representation may be selected and the 

entire problem reformulated. Third, all attempts to 

solve the problem may be discontinued (i.e. the problem 

solver gives up), and fourth, the method reaches a 

successful conclusion. 

As stated earlier, the IPS is fundamentally serial 

in nature. That is, an IPS is capable of selecting and 

executing only one method at a time. It should be made 
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clear, however, that at lower operational levels (e.g. 

perception), an IPS may have parallel capabilities. 

That is to say, an IPS may recognize many things at 

once, but responds to them with only a single action at 

a time. After settling on an internal problem space, 

the general behavior of a problem solving IPS can be 

described as iterative: select a goal; select a 

method; execute the method; evaluate results; select 

new goal (or subgoal). The behavior of an IPS, 

however, can also be characterized as recursive. 

During the course of its operation a method may produce 

more than one sequence of potentially successful 

behaviors. Therefore, the system may continue on one 

branch while retaining a stack of indexes to other 

pending branches so that control can return to a given 

point upon failure of the attempted subgoal. 

The process of problem solving, as posited by 

Newell and Simon, is controlled by two constructs; the 

problem formulation as determined by the structure of 

the problem space and the methods which, in turn, are 

selected upon the basis of the problem formulation. 

The subjects which Newell and Simon studied tended to 

be well rehearsed in their task domains and therefore, 

did not often change their internal representations of 

the problems. Consequently, their original theory 
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stated little about creating internal representations 

or shifting from one internal problem space to another. 

Most of their theoretical work therefore, did not focus 

on the specifics of the internal representation but 

focused instead on problem solving methods. 

In order for a method to be useful, it must be 

general enough to be applied to any problem selected 

from a specified class of problems. Generalizable 

methods are created by allowing the methods to contain 

variables which are instantiated with specific relevant 

information from the current problem space. The 

problem space, in most cases, represents more 

information than is required by the method. The 

problem formulation serves as the interface between the 

problem space and the methods by designating a specific 

method and the information contained in the problem 

space that is to be used by the method. In effect, a 

problem formulation and its associated method serve to 

reduce the portion of the problem space which must be 

considered in order to solve the problem. 

For example, a problem solver is given the goal of 

finding all the words which can be found in the word 

"xylophone". If the problem is formulated as "find the 

words which already exist in "xylophone"" then the 

method labeled read_words(x) may be activated. The 
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method read_words(x) would instantiate x to "xylophone 11 

and, by means of several elementary information 

processes (eips), would read the words which exist in 

xylophone (i.e. lop, hone, phone, one, on). on the 

other hand, if the problem were formulated as 

"rearrange the letters of "xylophone" to form all 

possible letter combinations that are words 11 , then the 

problem solver may use a different method (e.g. 

find_all_legal_combinations(x)). Both of the above 

cases require lexical searches, but the former problem 

formulation requires fewer lexical searches 

(9+8+7+6+5+4+3+2+1 or 45 possible combinations versus 

9!/2! (total permutations divided by permutations of 

duplicate letters) or 181,440 possible combinations). 

Consequently, the former problem formulation and method 

reduce the problem space by a greater degree and thus, 

define a problem which is easier to solve. 

The problem solving process can now be summarized 

as follows. A problem solver is placed in a task 

environment and forms an internal problem space which 

represents, but is not limited to, the initial state, 

the goal, and plausible intermediate steps towards that 

goal. Next, the problem solver formulates the problem 

based upon the information represented in the problem 

space (including relevant information gained from other 
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experiences). The problem formulation and its 

associated method may reduce the size of the problem 

space and thereby, the number of elements which need be 

considered in locating a solution. The problem solver 

then applies the method to all the elements in the 

remaining subspace, and if the problem is formulated 

correctly (i.e. the proper method is applied to the 

proper subset of elements), then the goal will be 

attained. 

Newell and Simon describe three general types of 

problem formulations and concomitant methods: 

recognition, set-predicatejgenerate-and-test, and 

heuristic search. Recognition is used in familiar task 

environments where a solution can be obtained 

immediately from memory by simply examining the 

knowledge gained from previous, often well rehearsed 

problem solving situations (e.g. 9*4=?). In general, 

problem solving proceeds by reducing the problem into 

more manageable tasks. Eventually, however, the 

reductionism must be stopped and sub-tasks performed. 

Recognition is a special case of problem solving and is 

important because it is often the method employed in 

the most elementary sub-tasks. That is, problem 

solving usually, if not always, proceeds by reducing 

the problem to tasks for which the problem solver 
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already possesses answers. Thus, reducing the problem 

to sub-tasks stops when a solution can be found by 

simple pattern matching (i.e. recognition). 

The second and most general type of problem 

statement is the set-predicate formulation. In this 

problem formulation, the problem solver is given a set 

of elements (E), and the goal of locating an element 

that has specified properties. As stated earlier, a 

method can use only that information which is 

designated by the problem formulation. The set­

predicate formulation only provides a method with the 

elements contained in set E and the properties which an 

element must possess in order to be judged as a member 

of the goal set (G). 

The method which makes the most obvious use of the 

information provided by the set-predicate formulation 

is known as the generate-and-test method. The method 

operates simply by generating the elements of E and 

testing each element for the properties required for 

membership in G. The generate-and-test method and the 

set-predicate problem formulation are quite general and 

will always be successful provided that the properties 

of the goal set are formulated correctly, the set of 

possible solutions is finite, and the generator is 

allowed to operate long enough. The amount of time 
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required to locate the solution(s) will depend upon the 

amount of time required to generate each element in the 

problem space, the time required to test each generated 

element, the size of the problem space, and the 

relative position of the solution(s) within the problem 

space. 

The third problem formulation type is the 

heuristic search formulation and is characterized as a 

search for a path through the problem space which will 

lead from an initial state to a goal state. In one 

sense, the set-predicate and heuristic search 

formulations are quite similar. Each view the problem 

space as a set of elements which must be tested in 

order to determine if that element is a member of the 

goal set. In the set-predicate formulation, however, 

the generate and test operations are binary and 

completely independent. That is, each element is 

simply judged as to whether it belongs to the goal set 

or not. No judgement is made or retained as to its 

similarity to the goal set or its adequacy as an 

intermediate step toward the goal. The power of the 

heuristic search formulation is that it makes use of 

information from previous generations and tests, and 

knowledge gained from other environments, in order to 

determine which element in the problem space to 
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generate and test next. 

To illustrate the distinction between the set­

predicate and heuristic search formulations, consider 

the problem of determining the combination of a safe 

(Newell & Simon, 1972 pp. 97-98). Given a safe with 10 

dials, each having 100 different settings, the problem 

space (E) would contain 10010 possible combinations. 

The generate-and-test method would require that each 

possible combination be generated and tested, thus 

placing an unrealistic time burden upon the problem 

solver (assuming each combination could be generated 

and tested in one second, it would take over 3 trillion 

years to try all possible combinations). If each dial, 

however, generated a faint click when its correct 

setting was selected, then it would not take a very 

sophisticated heuristic generator to "crack'' the safe. 

In fact, a problem solver using a heuristic search 

formulation would require, on average, only 500 

attempts to arrive at the correct combination. It 

should be noted, however, that unlike the generate-and­

test method, a heuristic search method does not 

guarantee a correct solution. For example, if the dial 

clicks were not indicative of the correct solution then 

the heuristic method described above might never 

generate the correct combination. 
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The basic cycle of the heuristic search method 

begins by selecting an element in the problem space. 

Next, the element is tested in order to determine 

whether it represents the solution. If not, the system 

may apply other operators to the current element which 

may suggest whether the element is a correct step 

towards the desired goal, and should thus be remembered 

for later use, or whether it should be rejected. The 

last cycle step is a three pronged decision of whether 

to apply other operators to the current element, 

advance the search by replacing the current element 

with a new element, or go back to an untried path. A 

heuristic search terminates"when a solution is found, 

resulting in reconstruction of the solution path, or 

the set of untried paths is exhausted. If the set of 

untried paths is exhausted then a new problem 

formulation must be created and a different method 

applied. For any one problem, there may exist several 

instances of heuristic search formulations each 

containing different sets of operators that could be 

applied to the problem space. For example, one may try 

meaningful number sequences to open the fore mentioned 

safe (e.g. birthdays, street addresses, or any other 

personally significant numbers). It should be clear 

that the heuristic search formulation and method, 



described above, represent a class of problem 

formulations that can be tailored to any particular 

problem, but it is not the only heuristic search 
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formulation possible. (e.g. Working-backward, working 

forward, means-ends, planning) 

Summary of Newell and simons' 

Human Problem Solving Theory 

Newell and Simon's (1972) theory of human problem 

solving was a largely successful attempt to specify a 

science of adaptive organisms. Adaptive organisms are 

adaptive because they are flexible enough to modify 

their internal processing and external behavior in 

order to fit a variety of task environments. 

Consequently, adaptive organisms may vary along any of 

several dimensions. Hence, Newell and Simon chose to 

restrict the scope of their study of aqaptive systems 

to a subset of human problem solving activities and 

described the scope of their study as follows (1972, 

pp. 3-4 & 790): 

The present study is concerned with the 

performance of intelligent adults in our own 

culture. The tasks discussed are short (half 

hour), moderately difficult problems of a 

symbolic nature. The three main tasks we use­

chess, symbolic logic, and algebra-like 



puzzles (called cryptarithmetic puzzles}­

typify this class of problems. The study is 

concerned with the integrated activities that 

constitute problem solving. It is not 

centrally concerned with perception, motor 

skill, or what are called personality 

variables. The study is concerned primarily 

with performance, only a little with learning, 

not at all with development, or differences 

related to age. Finally, it is concerned with 

integrated activities, hence de-emphasizes the 

details of processing on the time scale of 

elementary reactions (that is, half a second 

or less}. Similarly, long-term integrated 

activities extending over periods of days or 

years rece1ve no attention. 
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Even though Newell and S1mon based the1r theory on a 

rather restricted doma1n of study, the theory was, and 

remains, useful on a much broader scale. 

The theory addresses five fundamental assertions 

which are supported by evidence from the problem 

solving case studies discussed throughout the book. 

Newell and Simon's most fundamental assertion is that 

human problem solvers can be adequately represented as 

1nformation processing systems. In this view, all 
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adaptive systems (e.g. humans, monkeys, computers, 

cats, thermostats) are members of the IPS family and 

differ from one another only in respect to their memory 

organization, available elementary processes, and 

program organization. The theory put forth in the 

book, however, specifies an IPS in terms appropriate to 

the study of human behavior. Second, the IPS 

representation of a human problem solver can be carried 

to great detail with fidelity for any given person in 

any specific problem solving situation. This 

assumption implies that a complete and accurate theory 

of a particular problem solver in a particular 

environment can be constructed so that details as 

specific as memory retrieval processes, memory 

capacities, perceptual processes, and minute 

environmental details can be accounted for by using 

only symbolic information processing constructs. 

Third, substantial subject differences exist which are 

not simply parametric variations but involve 

differences of program structure, method, and content. 

Similarly, substantial task differences exist which are 

not simply parametric variations but also involve 

differences of structure and content. A theory must, 

however, contain some invariants and the two previous 

assertions indicate that there are only a few gross 
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characteristics of a human IPS which are invariant 

across subjects and tasks. The most notable invariants 

are the existence of symbol structures, a processor, 

eips, a short-term memory, a long-term memory, an 

external memory, goals, the serial nature of 

processing, and the rate at which eips operate (less 

than .5 seconds). Lastly, the largest determinant of a 

subject's behavior is the task environment which 

includes the intellectual and physical abilities of the 

problem solver. Thus, in Newell and Simons' view, the 

internal microstructure of a human IPS (e.g. 

operational details of sensory processes, perceptual 

processes, physiologic processes) are largely 

irrelevant to the study of human problem solving. They 

do acknowledge, however, that even though the 

microstructure of the IPS is not a central issue, a 

truly complete theory of human problem solving must 

also account for these processes. 

The general outline of Newell and Simon's theory 

of human problem solving begins with the assumption 

that human problem solvers can be adequately 

represented as information processing systems (IPS) 

which have a few, and only a few, gross characteristic 

that are invariant across tasks and subjects. The 

nature of the few invariant characteristics allows the 
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IPS to internally represent the task environment as a 

problem space and all problem solving takes place in 

that internal problem space. Furthermore, because the 

problem space is an internal representation of the task 

environment, the structure of the task environment 

determines the structure of the problem space. 

Likewise, the structure of the problem space 

determines, via the problem formulation, the possible 

programs that can be used in a specified task 

environment. The problem space invokes a problem 

formulation which in turn determines what methods 

(sequences of eips) can be utilized to solve the 

problem at hand. Lastly, the processing of an adaptive 

IPS can be adequately described by a program. 

We cannot know the structure of an individual's 

true problem space prior to their performance in a task 

environment. We can, however, hypothesize a reasonable 

program structure based upon the demands of the task 

environment. The behaviors which are predicted by this 

hypothetical problem space can then be modified in 

light of actual human behavior. The resulting program 

represents a theory of the actual internal problem 

space of the individual and can then be used to 

educate, enlighten, and improve human understanding and 

performance in a specified problem solving domain. 
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The Neural Network Perspective 

Neural Networks, as the term implies, are general 

purpose algorithms which possess operational properties 

that are analogous to the neural functioning of the 

human brain. That is not to say, however, that neural 

nets are wired, nor operate, exactly like the brain. 

Neural Nets are "neural" in so far as they are 

structured more like the brain than are traditional von 

Neumann computers. Advocates of neural computing claim 

to favor a brain-mind metaphor over the traditional 

computer-mind metaphor. Neural computers, however, are 

still computers and even the most zealous neural 

realist must therefore, see current neural models of 

cognition as neurally inspired rather than veridical 

models of neural processing. In a very real sense, 

neural realists are still using a computer-mind 

metaphor, but the computer portion of the metaphor has 

simply changed from a von Neumann computer to a fine­

grained massively parallel computer. Still, there are 

some very reasonable and very compelling neurological 

principles which speak for the development of cognitive 

models based upon a parallel distributed processing 

paradigm. According to Rumelhart and McClelland (1986, 

p. 130-136), some of the neural characteristics which 

provide the fundamental impetus for parallel 



distributed processing models are: 

The brain is composed of 10A10 to 10A11 

neurons. 

This is both a source of computing power 

and a constraint upon the possible models. 

Neurons are slow. 

Modern serial computers can operate in 

nanoseconds whereas, a neural cell operates in 

milliseconds or 10's of milliseconds. Neurons 

operate at 10 to the sixth times slower than 

do modern serial computers. Imagine slowing 

down modern AI software by a factor of 10A6. 

Much of human perceptual processing, intuitive 

reasoning and other processes occur in a few 

hundred milliseconds. This means that most of 

these processes must be accomplished in 

approximately 100 serial steps. 

Neurons are very simple processors. 

It seems unlikely that neurons compute 

functions that are much more complicated than 

a single digital computer instruction. Again, 

imagine trying to write an interesting program 

(e.g. one that recognizes visually displayed 

letters) with only 100 or even 1000 machine 

instructions. The mechanisms of mind are best 
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understood as resulting from the cooperative 

activity of a large number of relatively 

simple processing units operating in parallel. 

Neurons communicate by sending activation or 

inhibition through the synaptic connections. 

Neurons receive large number of inputs from 

other neurons and can send outputs to large 

numbers of other neurons. 

Each neuron can receive (fan-in) from 

1,000 to 100,000 signals and can likewise send 

(fan-out) 1,000 to 100,000 signals to other 

neurons. This means that even if every neuron 

is connected to only 1000 other neurons, each 

neuron is no more than four synapses away from 

any other neuron in the system. 

One or a small number of incoming action 

potentials is rarely enough to cause an 

individual neuron to output an action 

potential. 

This suggests that human computation does 

not 1nvolve the kind of log1c circuits out of 

which we make d1g1tal computers but, cognitive 

processing is the result of the cooperative 

action of many somewhat independent processing 

UnltS. 
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Graceful degradation 

There seems to be no single neuron whose 

loss contributes significantly to the overall 

performance of the brain. In fact, large 

numbers of neurons can be lost without 

appreciable differences in processing 

capabilities. Even in cases where there is 

sufficient damage to cause a performance 

deficient, there exists enough redundancy in 

the brain to allow the system to recover and 

achieve performance comparable to pre-injury 

performance. Such capacities are natural 

character1stics 1nherent in Neural Nets. 

Relaxation is the dominate role of 

computation. 

Computation in the brain is best 

understood as an iterative process in which 

the brain seeks to satisfy a large number of 

weak constraints. Neurons should not be 

thought of as wires in an logic circuit but 

should be seen as units which serve as 

constraints for one another. The brain is 

seen more as settling on a solution as opposed 

to calculating a solution. 

Learning involves modifying neural 
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connections. 

Knowledge is assumed NOT to be explicitly 

stored in given physical location, but is 

represented by the connect1ons among units. 

Therefore, the attainment of any new knowledge 

requires modification of the existing 

connections between units. 
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Three primary assumptions arise from these 

fundamental neurolog1cal characteristics. First, human 

cognition arises from the interaction of a large set of 

simple processing elements rather than the state of any 

single component of the system. Second, the simple 

processing elements function by mutually constraining 

one another and thus contribute in their own way to the 

overall performance of the system. The essential 

character of mental processes is thus viewed as a 

constraint satisfaction procedure where a very large 

number of constraints act simultaneously to produce a 

behavior rather than select a behavior from a pool of 

stored procedures. Lastly, all knowledge is stored in 

the connections between processing units. Only very 

short term storage can occur in the indiv1dual state of 

the processing elements and all long term storage is a 

result of the connections among the units. In other 

words, knowledge is implicit in the structure of the 
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processing system rather than explicitly stored in any 

particular processing element. 

These three fundamental assumptions intimate that 

there are two primary elements of any neural model; 

simple processing elements and the interconnections 

between the processing elements. Analogously to the 

human brain, neural computers have no central processor 

or central memory, but are instead composed of many, 

highly interconnected neurodes or nodes. Each neurode 

(or node) consists of a simple processor and a small 

amount of dedicated memory. Each neurode's memory 

holds an array of values which represent the strength 

of each incoming signal and an array of values which 

represent the relative importance (weight) of each 

incoming signal. Furthermore, like neurons, no neurode 

has access to the specific contents of any other 

neurode's memory and must communicate with one another 

by outputting signals which are indicative of their 

individual activation level. A neurode can therefore 

be characterized as a matrix operator which does no 

more than compute a weighted sum of the incoming 

signals and outputs a value based upon that we1ghted 

sum. Thus, the general behavior of any neurode can be 

described by the following equation: 
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where OJ is the output of neurode j. W1 is the 

relative importance (weight) of the signal being 

received from node i. S1 is the strength of the signal 

being received from node i. f is a nonlinear function 

which compares the weighted sum to a preset threshold 

and determines the actual output of the node based upon 

that comparison. 

For example, if a neural net was composed of three 

layers, and the first layer contained 25 neurodes, then 

each neurode on the second layer would receive one 

signal from each first layer neurode (25 signals) and 

store them in an array. Furthermore, each neurode on 

the second level would contain 25 connection strengths 

(one per incoming signal) in a second array. Each 

neurode would then multiply each value in the signal 

array by the appropriate value from the connection 

strength array. Next, the neurode would obtain a grand 

sum of the products of it's calculations. Lastly, the 

weighted sum would be passed through a function which 

compares the sum to some preset threshold and generates 

an output based upon that comparison. Each layer of 

the neural net would operate in parallel, thereby 

improving overall system performance by spreading the 
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huge number of calculations over many processors. 

After an input pattern is applied to the system, the 

neural net will generate the proper output based solely 

upon these simple calculations and the pattern of 

connections between neurodes. It should be made clear 

that a neural network does not execute a series of 

instructions as does a von Neumann machine, and 

information is not stored in a specific memory 

location. Instead, as it may be in the human neural 

system, knowledge is represented by the pattern of 

neural connectivity and the overall state of the system 

after it has settled into a temporary equilibrium 

condition. 

At this point, it is necessary to distinguish 

neural nets from the underlying hardware upon which 

they may actually operate. As stated in the 

introduction, one of the reasons for the resurgence in 

neural theories is due to recent of advances in 

computer technology namely, fine-grained, massively 

parallel or connectionist architectures (Hillis, 1986). 

Fine-grained massively-parallel architectures are 

computers that, like neural networks, have many small 

processors, each of which have a small dedicated array 

of memory. Most often, the processing elements 

(processors plus their memory arrays} of fine-grained 
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massively parallel machines are arranged in a two- or 

three-dimensional array so that each processor is 

connected to it's four surrounding neighbors (the so 

called North-South-East-West connection scheme). In 

some machines which use a three-dimensional array, the 

processors may also be connected to the processor 

immediately above and below them. Fine-grained 

massively parallel machines, however, are NOT neural 

networks. 

Neural networks are defined by the pattern of 

interconnection between neurodes, the rules that 

determine whether or not a neurode will fire (transfer 

function), and the rules governing changes in the 

relative importance of individual connections among 

processing elements (learning rules). Fine-grained 

massively parallel architectures provide a general 

purpose hardware platform upon which neural nets can 

operate efficiently, but the defining characteristics 

of a specific neural network are usually soft-coded. 

It would be impractical to rewire a fine-grained 

massively parallel computer every time one wished to 

change the interconnection scheme of a neural network. 

In most cases, it is the software (netware) which 

defines the neural network and the architecture of the 

neural net is independent of the underlying hardware 
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architecture. It is very possible to simulate neural 

networks on von Neumann machines or even with pencil 

and paper but, speed may become a serious limitation in 

both cases. For the purposes of this paper, neural 

net(works)s, neural computing, and parallel distributed 

processing (PDP) will refer to information processing 

models that are controlled by one or more general 

purpose algorithms which define the interconnection 

schemes between neurodes, the transfer function, and 

the learning rule that allows the system to learn, 

correctly classify, and properly respond to inputs 

without the benefit of predefined, explicitly coded, 

task knowledge. Furthermore, the present discussion 

will focus on the netware details and not the 

particulars of the hardware upon which the netware is 

implemented. This means that the algorithms described 

in this paper can be implemented on any system capable 

of handling matrices including fine-grained massively 

parallel machines, serial computers, and pencil and 

paper (although the latter two's appropriateness may be 

questioned on the basis of time constraints) . 

The Development of a Neural Network 

The development of a neural net can be 

characterized by four stages; engineering, training, 

testing, and operation. In the engineering stage of 
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development, the overall design of the neural network 

is determined. That is, the pattern of the 

connectedness among neurodes is defined, each neurode's 

set of connection weights are initialized, the transfer 

function is set, and a learning rule is selected. 

During the second phase of development, the neural 

network is trained with inputs which are representative 

of separate conceptual categories. Neural nets do not 

arrive at solutions by locating and executing an 

explicit set of task instructions, but are, instead, 

pre-programmed only with very general computational 

algorithms (transfer function & learning rule). Neural 

Nets must therefore, generate their own, internal set 

of transformations by learning through trial and error. 

The pre-programmed computational algorithms are general 

in that the same neural net which can classify pixel 

patterns as numerals could also learn to classify any 

concept (e.g. alphabetic characters) which could be 

represented in the same pixel grid. In order for the 

neural network to recognize the new patterns, the 

neural net would simply require additional training and 

neither the programming or design of the neural net 

would be changed. 

After a neural net is trained, it begins the 

testing stage. A neural net is most often tested with 
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the training patterns, as well as, new patterns to 

which it has never been exposed. One of the powers of 

neural nets is that they are capable of automatic 

generalization. That is, they do not need previous 

experience with a particular input or a huge memory of 

possible feature combinations in order to classify a 

particular input. Sequential pattern matching 

algorithms must often rely on explicit descriptions of 

the features and relationships between features in 

order to recognize a particular input. Neural nets 

operate by using the constraints inherent in the input 

and the connection weights, which are determined during 

training, to converge on a particular representation. 

If the input does not allow the system to converge on 

any of its known classes then the neural net will 

respond by creating a new class or responding "other". 

Lastly, if a neural net performs adequately during 

the testing phase it can be put into operation as a 

classifier, associative memory, or whatever task the 

system was designed to perform. In most cases, if the 

neural network does not perform adequately in the 

testing phase then it is simply given additional 

training. In some cases, however, the learning rules 

and/or transfer functions are altered and the system is 

completely retrained. 
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Two Representative Neural Networks 

Neural nets are distinguishable from one another 

upon the basis of three primary characteristics; the 

architecture of the interconnections among neurodes, 

the transfer function, and the learning rule. In this 

section, I will expand the discussion of these three 

defining aspects by describing the development of two 

representative and distinct neural nets; the Hopfield 

net and the Multi-layered perceptron. 

The Hopfield net is named for its creator, John 

Hopfield who has been instrumental in revitalizing 

neural net research during the 1980's (Hopfield 1982, 

1984, 1986). Hopfield (1982) is generally credited 

with correctly characterizing neural net behavior as a 

process of successive approximations in which the 

difference between the current system state and the 

desired system state is reduced. The technique is 

known as gradient descent and can be viewed as a type 

of "hill climbing" search heuristic. 

The now famous perceptron is one of the first 

systems ever designed which can be classified as a 

neural net (Rosenblatt, 1959; 1962). The early 

perceptrons consisted of a single layer of neurodes and 

were incapable of computing certain functions. Minsky 

and Papert (1969) wrote an elegant analysis of the 
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single-layered perceptron which exposed its 

computational weaknesses. The persuasiveness of the 

Minsky and Papert argument coupled with the early 

success of the serial symbolic processing approaches in 

artificial intelligence all but killed neural 

computing. The majority of Minsky and Papert's 

criticisms, however, applied only to the simple single­

layered perceptron models. Several researchers have 

now shown that the most severe enervations of the 

single-layered perceptron can be overcome by multi­

layered perceptrons (Rumelhart & McClelland, 1986a; 

chapters 5,7,8). Furthermore, many of the neural nets 

being used today are modified versions of multi-layered 

perceptrons (Brown, Garber, & Venable, 1988; Caudill 

1988, Jones & Hoskins, 1987; Kinoshita & Palevsky). 

The task of both networks will be to correctly 

classify inputs which represent the numerals 0 through 

9. For the current task, the numerals 0 - 9 will be 

represented by 10 separate 3 x 5 pixel grids. Each 

grid will be divided into 3 columns by 5 rows of 

pixels. Furthermore, each pixel can have one of two 

values; 1 (ON) or 0 (OFF). Each of the 10 numerals can 

therefore be represented by a unique pattern of 

activated pixels within the 3 x 5 grid. Following the 

training, the neural nets will be tested with both the 
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training patterns and a set of novel patterns. The 

novel patterns will be degraded versions of the 

training patterns and will be generated by changing the 

value of three randomly chosen pixels in each training 

grid. (For a more detailed account of a multi-layered 

perceptron which recognizes alphabetic characters, see 

Brown, Garber, & Venable 1988). 

Phase I: Engineering 

The Multi-layered Perceptron. Multi-layered 

perceptrons are described as fully-connected feed­

forward networks which contain one or more layers of 

neurodes between the input layer and the output layer. 

In a fully-connected network, all the neurodes on one 

level are connected to all the neurodes on the next 

level. Neurodes on the same level, however, are not 

connected to one another. Feed-forward networks are 

simply networks which pass the output from one layer of 

neurodes to the next higher layer. In contrast, a 

feedback network would send the output of a layer 

"back" to the next lower level. Multi-layered 

perceptrons have one or more hidden layers of neurodes 

between the input and output neurode layers. It has 

been shown that a perceptron with two hidden layers can 

produce arbitrarily complex decision regions (Lippmann, 

1987) but, for purposes of simplicity, the network 
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described here will contain only three layers of nodes 

(an input layer, an output layer, and one hidden 

layer). There will be 15 neurodes on the input layer 

so that each neurode on the input layer corresponds to 

one of the pixels in the 3 x 5 pixel grid. The hidden 

layer will consist of 10 neurodes based upon a rule of 

thumb that the hidden layer should contain 2/3 as many 

neurodes as the input or output layer which ever is 

largest (Similar heuristics exist for several types of 

neural nets (Lippmann, 1987)). The third layer, will 

contain 11 neurodes, one for each numeral plus one 

neurode to signify "other"., 

After training is complete, the neurodes will 

function by computing a weighted sum of all their 

individual inputs and then passing that input through a 

nonlinear sigmoid transfer function. When a pattern is 

presented to the network, each neurode on the input 

layer will output either a 1 (fires) or a 0 (doesn't 

fire) depending upon whether or not its corresponding 

pixel is on or off. The hidden neurodes and output 

neurodes can be viewed as matrixes of connection 

strengths. For the current example, a particular node 

(k) on the hidden layer (j) would contain 15 weights 

(connection strengths), one weight for each input node. 

Initially, the weight matrixes for the output nodes and 
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the hidden nodes are seeded with small (<.1) random 

values. The node (Ok,J) then multiplies the output of a 

node (i) on the previous layer (j-1) by the weight 

(W1 k). Next, a bias term (B), which roughly determines 
• 

the size of steps taken toward the solution, is 

subtracted from the product of the weight (W1 k) and the 
• 

node (0 1 .J_ 1} output. The neurode then sums the results 

for the i (# of nodes on the previous layer) 

calculations. Lastly, the sums for each neurode are 

passed through a non-linear sigmoid function (f(x}=1/(1 

+ eA-x). In actual practice however, the sums are 

often passed through a series of conditionals which 

mimic the nonlinear sigmoid function. For example, 

.999, if X >= +5.0; 

.001, if X <= -5.0; 
f (x) = (x+5)/9, if +1.0 <= X < +5.0; 

(x+3)/9, if -5.0 < X <= -1. o; 
(x+2)/3, otherwise; 

Thus, the output of any node (k) on level (j) can be 

given by the equation: 

n 

= f(L.(WI k * OI.J-1) - B) 
I =1 , 

where ok,J is the output of node k on level j. 

the relative importance (weight) of the connection 
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between node k on level j and node i on level j-1. 

0 1 .J_ 1 is the value output by node i on level j-1. B is 

a predefined bias term. For the hidden layer, n=15, 

and for the output layer, n=10. For the hidden layer, 

the maximum value of k is 10, and for the output layer, 

the maximum value of k is 11. 

The hidden layer nodes send their values to the 

output layer. The output nodes then perform the 

identical calculations as the hidden nodes but, do not 

have anywhere to pass their values. Instead, only the 

neurode with the highest value fires and that neurode 

should signify the appropriate class for the given 

input. 

The Hopfield Net. The Hopfield net is a single 

layered network in which all neurodes are connected to 

all other neurodes. The minimum number of neurodes in 

a Hopfield network is equal to the number of classes 

divided by 0.15. For the current task, there are 10 

classes (the numerals 0-9) and 10/.15 = 66.67. The 

number of neurodes is always rounded up. Thus, the 

minimum number of neurodes needed by a Hopfield net to 

solve the current problem is 67. The Hopfield net can 

be viewed as a grid of fully-connected binary nodes 

which have a direct one-to-one correspondence to the 

pixels of the input pattern. In other words, the number 
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of pixels in the input patterns should equal the number 

of neurodes in the Hopfield net. This means that the 

resolution of the input patterns should be increased 

from 15 because we need at least 67 neurodes to 

recognize 10 classes. For this example, the number of 

nodes will be increased to 70 in order to make a 

uniform two-dimensional pixel grid. Each of the 10 

numeral classes will thus be represented in a 7 x 10 

pixel grid and the network will likewise consist of 70 

neurodes. 

Following training, the neurodes of the Hopfield 

net, like the perceptron, will compute a weighted sum 

of their incoming signals and then pass that weighted 

sum through a nonlinear tran'sfer function. The 

transfer function used with the Hopfield net, however, 

is usually a hard-limiting nonlinearity instead of a 

sigmoid nonlinearity. That is, the output of any 

neurode in the Hopfield net will be one of two values 

as opposed to the perceptron where output values can be 

continuous and graded. Also, unlike the perceptron, 

the Hopfield net is a single'-layered network and must 

therefore go through several iterations in order to 

settle on the proper output pattern. In this sense, 

the Hopfield net is a feed-back network, because the 

output of each neurode is sent back into the system as 
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input for the next iteration. Initially, each neurode 

in a Hopfield net corresponds to one of the pixels in 

the input pattern. Each neurode, therefore is either 

on (+1) or off (-1) depending upon the value of its 

corresponding pixel. The Hopfield net begins its 

processing by having each neurode inform all the other 

neurodes of its initial state. Next, each neurode 

computes a weighted sum of all the incoming signals and 

passes the weighted sum through the hard-limiting 

nonlinearity. The transfer function of the Hopfield net 

is given by the equation: 

n-1 

oJ<t+1> = f(~(w,, 1 * o,<t>)) 
1=0 

where 0 1 is the output of node j and t is the current 

iteration. w,, 1 is the weight given node i by node j. 

0 1 is the output of node i and n=70. 

The neurodes transmit the new value generated by 

the transfer function to all other neurodes and each 

neurode then computes a new output. The process 

continues to iterate until the network converges on a 

stable output pattern. The Hopfield net is said to 

have converged on a solution when any two contiguous 
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iterations generate the same output pattern. Upon 

convergence, the combined output of the neurodes should 

represent the pixel pattern of the input pattern's 

class exemplar. 

Phase II: Training 

Multi-Layered Perceptron. Perceptrons are 

referred to as adaptive neural nets because they adapt 

to inputs via learning rules. The most common learning 

rules (LMS, Delta, Generalized Delta, and Back 

Propagation) use a gradient search method in order to 

reduce the mean squared difference between the current 

overall output of the network and the desired output of 

the network. 

A multi-layered perceptron is trained by presenting 

a series of class exemplars to the net. The net then 

performs the fundamental computations described by the 

transfer equation. In the training phase, however, a 

supervisor monitors the output of the system and 

notifies the system of what the correct output should 

be. For example, if the input to our perceptron is a 

"3" then the fourth node on the output layer should be 

.999 and all the other nodes on the output layer should 

be close to .001. If the output of node three is not 

close to .999 and the output of all other nodes is not 

close to .001 then the supervisor indicates the proper 
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values to the network. The nodes on the output layer 

then calculate an error term based upon the mean 

squared difference between their actual and desired 

outputs. The nodes on the output layer then adjust the 

connection strengths (weights) which are held in their 

local memories and are representative of the 

connections between the output layer and the hidden 

layer. Using the same transfer functions described in 

the previous section, the nodes on the output layer 

calculate a new value based upon the new weights and 

propagate the new values back to the nodes on the 

hidden layer. The nodes on the hidden layer then 

calculate an error term based upon the difference 

between their actual output and the new values from the 

output layer. Based upon the error term, each node on 

the hidden layer adjusts the connection strength 

between the hidden layer and the input layer. (For a 

more mathematically detailed discussion of learning 

rules, see Caudill 1988; Jones & Hoskins, 1987; 

Lippmann, 1987; Rumelhart & McClelland, 1986) 

All these operations, from the fundamental 

computations through execution of the learning rule, 

represent one training iteration. A perceptron is 

usually given many (100+) exposures to class exemplars 

before it reaches an acceptable level of performance. 
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If the system never reaches a desired asymptote or 

reaches asymptote too slowly then features of the 

network may need to be changed. For example, the 

learning rule contains a bias term which determines the 

size of the steps taken when locating the minimum mean 

squared error. If the bias is too small, it may take 

too long to find the ideal set of weights or it may get 

caught in a local minimum during the search. 

Conversely, if the bias is too large, the weight vector 

may begin to jump around excessively as the system 

approaches the ideal minimum which will significantly 

slow the settling process. After the necessary 

"tweaking" has been performed and the system reaches an 

acceptable performance level with the training 

patterns, the weights are "frozen" and the system is 

ready to be tested with novel patterns. 

The Hopfield Net. Some types of neural nets, such 

as the Hopfield net require training periods but do not 

require supervision and do not learn adaptively. Neural 

Nets which are not capable of adaptive learning require 

fixed weights which are calculated during single 

exposures to class exemplars. Furthermore, they do not 

generate any output during training and therefore, do 

not receive any tutoring from an outside monitor. 

Static neural nets such as the Hopfield net are 
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trained using class exemplars (for the current example, 

the non-degraded numerals o - 9 which are represented 

in a 7 x 10 pixel grid). Each numeral is presented to 

the network once. After each numeral exemplar is 

presented, each neurode adjusts its matrix of 

connection weights based upon the pattern of inputs. 

The weights are adjusted via the following equation: 

n 

wl,J = ~cxl,s * xJ,s>, 
1=1 

i <> j 

where W1 ,J is the connection strength between node i and 

node j. X1 scan be +1 or -1 and represents the value 
I 

of the ith element of the exemplar for class s. 

Likewise, XJ,s is the jth element of the exemplar for 

class s. 

It should be pointed out that in this equation, 

elements and neurodes are functionally equivalent 

because each neurode corresponds to one and only one 

element/pixel of the exemplar. After all exemplars 

have been presented once, the system is ready to be 

tested with unknown inputs. 

Phases III and IV: Testing and Operation 

The Multi-layered Perceptron. Testing the mult1-

layered perceptron is a straight forward procedure in 
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which novel stimuli are presented to the system. In 

this case, the system will be tested with a mixed set 

of patterns consisting of the normal exemplar training 

patterns and exemplar patterns which were degraded by 

random noise. Testing patterns, h~wever, can be 

different versions of the exemplar pattern. For 

example, the training exemplar for the number 11 3 11 might 

be represented by turning on all three pixels of the 

top and bottom rows, the five pixels in the third 

column, and the pixel in the third row of the second 

column. Serifs can be added to the testing pattern for 

the numeral "3" by turning on the second and fourth 

pixels in the first column. From the neural net's 

perspective, classifying a variation of an exemplar is 

the same as classifying a degraded version of an 

exemplar. In any case, the testing patterns are simply 

presented to the system and the system responds, 

hopefully, by firing the correct output neurode. If 

the system passes the testing phase then it can be put 

into operation. If it does not perform satisfactorily, 

then it will be returned to the training phase where 

its performance can be optimized. 

The Hopfield Network. The testing and operation 

phases for the Hopfield net are one in the same because 

there is no way to "tweak" a Hopfield net. If the 
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system does not perform satisfactorily once its weights 

have been set then there is no other option but to 

generate a new set of training materials and completely 

retrain the system with the new set of exemplars. The 

actual steps in testing/operating a Hopfield net also 

differ from the multi-layered perceptron in terms of 

its output format. As with the perceptron, a set of 

materials is selected and presented to the network. 

The Hopfield net however, cannot fire an individual 

node which represents the proper category of the input. 

Instead, the pattern of all the neurodal outputs 

depicts the proper class exemplar. For example, the 

input might be a degraded 11 3 11 • The system would 

iterate until it had settled on pattern of activated 

neurodes which corresponded to the exemplar pattern for 

the numeral "3". 

The advantage to non-adaptive neural nets is that 

they require very few training trials, but they have 

several drawbacks. First, the number of patterns which 

can be recognized by such a net is limited and if that 

limit is surpassed the system will settle on novel 

spurious patterns different from all exemplar patterns. 

Second, the number of neurodes and calculations needed 

to recognize even a small number of classes can be 

quite large. For example, the Hopfield net can only 
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recognize a maximum of .15 times as many classes (C) as 

there are nodes (N) in the system (C = .15N or N = 

6.67C). In other words, a Hopfield net capable of 

recognizing all the letters of the alphabet (24 

classes) would require a minimum of 160 nodes and 

25,600 connection weights! Lastly, an exemplar pattern 

will be unstable if it shares too many pixels in common 

with another exemplar. For example, a degraded "8" may 

be classified as a 11 311 by the system unless certain 

orthogonalization procedures are followed which may 

further increase the number of neurodes, weights, and 

calculations needed to solve even relatively simple 

classification problems. 

Conclusion 

Neural net research began nearly forty years ago, 

but due to a lack of technology, sufficient 

mathematical techniques and the early successes of 

sequential symbolic processing efforts, the field 

remained virtually dormant until recently. Neural 

networks are neurally inspired models of processing 

which are based loosely upon known fundamental 

operating characteristics of the human brain. Like the 

human brain, neural networks consist of many highly 

interconnected, simple processing units which take a 

weighted sum of their inputs and transmit an output 
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based upon that sum. The result of neural net 

processing is not a particular value stored at a 

specific memory address but is, instead, represented by 

the overall state of the system after it has converged 

on some equilibrium condition. 

The development of a neural net involves the four 

stages of engineering, training, testing, and 

operation. Many different types of neural nets exist 

and the structure of a particular neural net is defined 

by three characteristics; 1) the pattern of 

interconnection between the processing elements, 2) the 

rules that determine whether or not a processing 

element will fire (transfer function), and 3) the rules 

governing changes in the relative importance of 

individual connections to a processing element's output 

(trainingjlearning rules). The multi-layered 

perceptron is a type of neural net which is 

characterized as a fully-connected, feed-forward 

network which requires supervised training. The 

Hopfield network, on the other, hand is a single 

layered, feed-back network which does not require 

supervision. Even though the multi-layered perceptron 

and the Hopfield net have very different structures and 

operating characteristics, they can solve equivalent 

types of problems by virtue of their highly parallel, 
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fine grained architectures. 

Neural networks are computing techniques which may 

provide solutions to problems that traditional computer 

systems have, thus far, failed to solve efficiently. 

Neural networks seem to solve problems that humans can 

solve easily, even unconsciously. Problems such as 

identifying an entity given only a partial or degraded 

description, recognizing faces, recognizing continuous 

speech and any other task which would be solved most 

effectively with an associative, content addressable 

memory. Neural nets do not work by executing a 

specific set of explicit, sequential steps. Instead, 

they are trained, learn, self-organize and settle on 

solutions. All of the problems mentioned above are 

important problems for the computing and psychological 

sciences, but do neural models have anything to say 

about the nature of higher level human problem solving 

capacities which have been competently portrayed by 

traditional serial information processing models? In 

the next chapter, I will discuss the relationship 

between neural nets and serial problem solving models, 

how neural nets can be built to solve higher level 

problems, and what the advent of neural nets may mean 

for the future of human problem solving research. 
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Problem Solving Neural Nets 

In the previous section I presented an overview of 

Neural Networks and described how two different types 

of neural nets could be employed to perform a 

classification task typical of the class of problems to 

which neural nets are most readily applied. In the 

remaining"chapters however, I wish to focus on the 

application of neural net models to higher level 

cognitive processes. To begin the discussion, and in 

order to lay some ground work, I will describe the 

correspondence between neural networks and schemata. 

(Most of this ground work is essentially a summary of 

Chapter 14 in McClelland and Rumelhart (1986).) 

Whereas the previous chapter drew strongly on the 

work of many applied researchers in order to provide 

concrete examples of neural network fundamentals, the 

work of Rumelhart and McClelland (1986a; 1986b) is a 

much more theoretical endeavor. Their general goal was 

to explicate how human cognitive processing can be 

characterized by coalitions of highly interconnected 

processing elements that operate in parallel. ,They did 

not attempt to specify one type of neural computer 

which could account for most human thought processes 

but instead described a class of computing 

architectures which they refer to as parallel 
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distributed processing {PDP) systems. In their two 

volumes, Rumelhart and McClelland {1986a; 1986b) 

describe a variety of human cognitive and behavioral 

phenomenon and then fit one or more PDP systems to a 

given phenomenon in order to demonstrate how PDP 

systems can account for the specified phenomenon. Some 

of the PDP systems which they describe have operating 

characteristics which resemble perceptrons, Hopfield 

nets, Hamming nets or other specific neural network 

architectures, but all the systems described by 

Rumelhart and McClelland have the features commonly 

associated with neural networks such as high inter­

connectivity between processing elements, no explicitly 

coded instructions, all knowledge available to the 

system is represented by the weights of the connections 

between processing elements, and a high degree of 

parallel operation of processing units. (Rumelhart & 

McClelland's use of the term "units" is equivalent to 

the concepts of neurodes, nodes, and processing 

elements.) 

It should be noted that in the PDP framework units 

can vary in their level of abstraction. That is, units 

can represent low-level features such as points, lines, 

arcs, pixels, and edges, or they can represent concepts 

as complex as voltage, words, phonemes, resistance, 
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furniture or any other concept relevant to performing 

the task at hand. Thus, the unit becomes Rumelhart and 

McClellands' theoretical primitive and the level of 

explanation at which any PDP model operates is defined 

by the degree of abstraction employed at the unit 

level. 

The construction of a problem solving PDP model 

begins by specifying a set of primitives sometimes 

called knowledge atoms. These primitives are 

essentially mapped onto the processing units and the 

weights between the units are set based upon the "real 

world" relationships among the knowledge atoms. For 

example, if one were to construct a PDP model capable 

of classifying rooms based upon the contents of the 

room, one might select "furnishings" as the level of 

the primitives (see Rumelhart & McClelland, 1986, p. 

22-32, for a complete description of such a model). 

The unit representing "lounge chair" might give strong 

weight to the signal from the unit representing "couch" 

because lounge chairs and couches are often found in 

the same room (e.g., the living room). Thus, if a 

lounge chair is present the couch unit obtains a higher 

state of activation. Likewise, the units representing 

foot stool, fire-place, and television might also 

achieve a higher state of activation because they also 
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often co-occur with lounge chairs in living rooms. A 

unit representing "kitchen-sink" would have a high 

negative connection strength with the "lounge-chair" 

unit because a kitchen-sink rarely occurs in the same 

room as a lounge chair. Items such as carpet, windows, 

and drapes would probably have a positive connection 

strength with the "lounge chair" unit but, because they 

are likely to occur in several rooms (e.g. bedroom, 

den, family room, office) the connection strength would 

be weak. 

Essentially, each unit in a PDP model represents 

a hypothesis about the presence or absence of the 

concept to which the unit corresponds, and the 

connection strengths represent constraints among the 

hypotheses. The processing of a PDP system can 

therefore be characterized as a process of constraint 

satisfaction. Thus, if feature B (e.g. couch) is 

expected to be present when feature A (e.g. lounge­

chair) is present then there should be a positive 

connection between the unit representing the hypothesis 

that feature A is present and the unit representing the 

hypothesis that feature B is present. Likewise, if B 

never occurs with A then there should be a negative 

connection between units representing hypotheses about 

A and B. Furthermore, the strength of the connection 
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should reflect the degree to which the presence of A is 

a predictor of the presence of B. If B is very often, 

or very rarely, present when A is present, then the 

magnitude of the connection strength should be large. 

If the occurrence of A does not consistently predict 

the occurrence of B then the weight should have a small 

magnitude. Inputs to the system also provide 

constraints to the system. A positive input indicates 

that there is ev1dence from outside the system which 

supports the hypothesis that a particular unit is 

present and the value of the input signifies the 

strength of the evidence. Likewise, a high negative 

input provides strong evidence from outside the system 

that a particular unit is not present. 

If a system, designed in this way, was allowed to 

run then some units would gain enough evidence for 

their existence and would fire. After previously 

inactive units fire, the system possesses a new 

activation pattern which represents new evidence to the 

units as to the likelihood of their presence. This new 

evidence is equivalent to a new set of constraints and 

is reflected by the overall state of the system (i.e. 

the activation levels of all the units). On the next 

processing cycle, the new set of constraints would 

cause other units to fire, or not, which in turn 
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creates a new group of constraints with which the 

system must deal. Eventually, however, the system will 

settle or "relax" into a state which optimally 

satisfies as many of the constraints as possible with 

priority given to the strongest constraints. That is, 

the system will ultimately reach a point where the 

satisfaction of all impinging constraints cannot be 

improved, and, therefore, the activation pattern of the 

units no longer changes. 

In the human nervous system it is very unlikely 

that individual neurons account for abstract concepts 

such as couch or sofa. Nor do PDP theorists even 

remotely suggest such to be the case. In an ideal PDP 

environment, concepts such as sofas would be defined by 

other networks which use concepts such as padding, 

cushions, length, width, height, and upholstery as the 

level of abstraction. Likewise, these units would 

represent instantiations of sub-nets which define the 

elemental concepts (padding, cushions, etc), and so on, 

until some basic level of interpretation such as 

perceptual features (edges, points, etc.) is reached. 

Thus, when activated by input from the external world, 

the activation patterns of the units representing low­

level features will influence what is being interpreted 

at higher processing levels (bottom-up processing), and 
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the activation patterns at higher processing levels 

would, in turn, influence the activation patterns of 

the lower-level units (top-down processing). When the 

system finally relaxes (i.e. the constrains are 

optimally satisfied) an interpretation of the scene has 

been instantiated and is reflected by the overall 

pattern of activation across all the units. Therefore, 

a fundamental assumption inherent to PDP theory is that 

processing on any level is best characterized by 

coalitions of processing units whose microstructure is 

highly parallel, but whose collective actions may be 

viewed as sequential processes. 

While the specific operational details of the 

above processing scenario are somewhat new, the general 

data structure which emerges from this type of 

architecture has been bandied about by cognitive 

researchers for years and goes by many names (e.g. 

schema, scripts, and frames). The PDP group tends to 

use schema as the label for the data structure that 

emerges from constraint satisfaction networks. The 

concept of schema can be generally defined as a 

conceptual structure which represents generalized 

knowledge about objects, situations, and events. 

Schemata are sometimes difficult structures to 

implement because while they are generic 
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representations of the world, they must also have the 

capacity to represent specific instantiations of 

objects, situations, and events. 

One characteristic which allows schemata to 

represent both generic and specific information is that 

schemata contain variables (sometimes referred to as 

slots) . Schemata can be viewed as a group of 

characteristics that tend to co-occur with one another. 

If only partial information is available then a schema 

is capable of filling in the values of the empty slots 

based upon the values of the variables which have 

already been provided. 

A second important characteristic of schemata is 

that they can be embedded. That is, a schema, much 

like an idealized neural system, is a layered structure 

in which values in one schema are defined by sub­

schemata. For example, one may partially define a 

schema for a lounge chair by specifying slots such as 

padding, covering, and position-range with the values 

of 10 (high), leather, and upright-supine, 

respectively. The schema for lounge chair however does 

not exist in a vacuum, but resides in a structure which 

includes schematic representations for the more 

specific concepts of padding and covering. Likewise, 

the schema for lounge-chair may also be used by another 
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schema which defines a living room. In this case, the 

lounge chair would in effect become a slot in the 

living-room schema and would have the value of present. 

This would in turn activate all the slots of the lounge 

chair (padding, covering, etc.), which, in turn, would 

provide activation to the slots within the padding and 

covering schemas, and so on. 

This brings up the third important characteristic: 

schema represent knowledge at all levels. Whether a 

structure is a schema, a sub-schema, or a super-schema 

depends solely upon the viewer's perspective. If the 

perspective is set at the lounge chair then the living­

room is a super-schema and padding is a sub-schema. 

However, if the perspective is the living room then the 

lounge chair becomes a sub-schema and padding becomes a 

sub-sub-schema. There is nothing inherent in the 

structure of a schema that differentiates their general 

operating characteristics. In this sense, it is 

probably best to characterize schemata as a network 

rather than a hierarchy or tree structure. 

The last defining characteristic of a schema is 

that it should not be viewed as a static structure 

which is stored at some particular location. A schema 

is an act1ve structure wh1ch seeks to maximize the 

agreement between data input to the system and data 
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from previous experience which currently resides in the 

system as weights. In other words, schema are 

generative, self-organizing knowledge structures. Most 

symbolic implementations of schema (e.g. frames and 

scripts) are essentially static formalism which do not 

fully capture the generative, self-organizing nature of 

the theoretical schema. Neural networks do, however, 

provide the potential for implementing a generative, 

self-organizing data structure which captures many of 

the characteristics of the schema ideal. 

For illustrative purposes, consider the room 

classifier described in Rumelhart and McClelland (1986, 

Ch. 14). They asked subjects to imagine an office and 

then presented them with a list of 40 descriptors 

(desk-chair, ceiling, oven, telephone, drapes, etc) and 

asked whether each descriptor was accurate for an 

office. Using the same list of descriptors, they asked 

subjects to repeat the task when imagining a living 

room, a kitchen, a bathroom, and a bedroom. Each 

descriptor was represented by one unit in the network. 

The data obtained from the subjects' judgements were 

plugged into an equation that determined the weights 

for each unit based upon the probability of the 

presence of that unit predicting the presence of any 

other unit. For example, if the lounge-chair 
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descriptor was a highly, positive predictor of the 

couch descriptor then the unit representing the "couch" 

assigned a high positive value to the input from the 

"lounge-chair unit". Thus, if the "couch" unit 

received a strong positive value from the "lounge­

chair" unit, then the "couch" unit's activation level 

would increase. 

In the single-layered network described by 

Rumelhart and McClelland, each unit represented one of 

the 40 descriptors and each run began by "clamping-on" 

one of the descriptors (setting its activation value to 

1 and never letting it change). Thus, if the weights 

have been properly set, and oven was clamped on, then 

one would expect the system to settle on a pattern of 

activation that included refrigerator, coffee-pot, 

sink, stove, and toaster having a value of 1 and units 

representing the descriptors of sofa, bed, toilet, and 

desk of having a value of 0. In essence, the system 

settles on a pattern of activation that corresponds to 

a schematic representation of a kitchen. That is, the 

only units that will be activated will be the units 

that represent items commonly found in the kitchen. 

Likewise, if one clamps on bathtub, the system will 

settle on a activation pattern that represents a 

bathroom. In schema terminology, one could say that 
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given a certain input, the network is able to generate 

and fill in the slots of the room schema. 

It is important to realize that the ability of the 

system to settle on a given structure is in part 

determined by the definitional power of the clamped 

descriptor(s). Bathtub is a highly definitional 

descriptor of bathrooms, thus it has a high positive 

weighting for other bathroom descriptors and high 

negative weightings for non-bathroom descriptors. 

However, if one clamps on windows, for example, the 

system may settle on a less coherent set of active 

descriptors, because windows can occur in almost any 

room and will thus have moderate or low weights with 

nearly all other descriptors. Further, it should be 

made clear that schema are represented by the overall 

pattern of activation in a neural network and not in 

the state of any one unit. In a complete neural system 

the presence of any concept would be defined by the 

activation pattern of other networks of units. Thus, a 

complete neural system would consist of networks of 

networks much like a complete schematic representation 

would require networks of schemas. For the sake of 

simplifying the current case, however, the possible 

activation patterns of the descriptor networks have 

been collapsed and are represented by the units. 
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Although Rumelhart and McClelland used a single­

layered, fully-connected neural architecture to 

illustrate neural based schemas, it may also be 

possible to implement such a system on a multi-layered 

perceptron. In this case, the descriptors would be 

mapped onto the units of the input layer and the room 

types (or descriptors) would be mapped onto the output 

layer. The behavior of the network would not be as 

observable as in the case of the single-layered net 

because most of the processing would take place in the 

hidden layer(s) of nodes. Also, due to the processing 

characteristics of the hidden layers, one cannot easily 

pre-define the connection strengths between all layers. 

In the perceptron case, the network may use the data 

obtained from subjects as training and supervisory 

materials. Lastly, instead of a pattern of activated 

units being displayed when the system settles on a 

maxima, perhaps only one node, which represents the 

class/schema, might be activated on the output layer. 

While the multi-layer perceptron probably has less 

illustrative power for describing neural based schema, 

it remains an important processing model for many 

researchers. 

Synthesis: Integrating Neural Network and 

Traditional Problem Solving Perspectives 
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So far I have discussed how an important knowledge 

structure (schema) can emerge naturally from neural 

models and how neural networks can be used to classify 

information, create a "best fit" to the current data 

and data from past experience, are capable of 

spontaneous generalization, able to fill in missing 

data, and in general, characterize memory as a 

generative process rather than a selection process. 

While these are certainly important characteristics of 

neural systems and have a wide range of applicability 

in the study of cognition and memory processes, they 

provide little direct information about the nature of 

human problem solving. 

Human problem solving is a process that requires 

sequences of actions to be created in attempts to 

attain a desired goal. By its very definition, human 

problem solving has a prominent serial component, and 

serial models have already d'emonstrated their power for 

capturing the nature of human problem solving. If 

problem solving has an essential serial component and 

serial models have been successful in representing 

problem solving processes, then why should problem 

solving theorists concern themselves with neural 

models? 

The obvious answer is that even though serial 
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models are powerful tools, they are not perfect tools. 

As has already been described, serial models are not 

good at describing certain processes such as content­

addressable memories which are certainly utilized in, 

and are perhaps central to, the problem solving 

process. Both PDP and problem solving theorists agree 

that much of human problem solving involves the general 

process of generating adaptive sequences of elementary 

information processes. They also agree that elementary 

information processes are essentially parallel 

operations which take less than 250 ms to complete. 

Both camps further agree that the parallel and serial 

components must somehow be associated in order to 

influence one another's processing. Additionally, 

Newell and Simon recommend that elementary information 

processes should be defined on the basis of known 

mechanisms. Therefore, it seems very reasonable that 

elementary information processes should be defined in 

PDP terms. Consequently, any complete theory of human 

problem solving must contain parallel models of some 

processes. 

The second justif1cation for being concerned with 

problem solving neural models stems from the fact that 

the human mind does not operate on two different 

hardware platforms; one for high level rule-based 
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processing and a second for highly learned parallel 

processes. Most researchers in the brain and 

behavioral sciences view the human brain as a fine­

grained, massively parallel system and believe that all 

behavior results from highly parallel interactions of 

simple processing units (neurons) in the brain. We 

further assume that the parallel processes are not 

processing "packets" which are activated by some 

central, symbol-based executor. The high-level, 

symbol-based, problem solving processes somehow emerge 

from the same highly parallel human brain as do the 

elementary information processes. If we are concerned 

with increasing the parsimony of modern human problem 

solving theory then it is important to develop 

theoretical formalisms which can accurately account for 

both serial and parallel processes. We can no longer 

be satisfied with ignoring the importance of parallel 

processes by rationalizing that the essence of human 

problem solving is a high-level, symbol-driven, serial 

process and does not therefore require any parallel 

formalism to describe it. Therefore, a complete, 

modern, human problem solving theory should attempt to 

explicate how sequential, goal oriented, problem 

solving processes can emerge from a fine-grained, 

massively parallel system. 
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The last, and perhaps the most resilient, 

justification for problem solving theoreticians to 

concern themselves with neural models is that they 

represent a potential well-spring of new ways to 

conceptualize cognitive processes. Neural network 

architectures have several degrees of freedom which 

provide a great deal of flexibility in designing a 

given system. In addition to the Hopfield Net and the 

multi-layered perceptron which I summarized earlier, 

there are several other general types of networks and a 

variety of variations within each type. Therefore, the 

designer of a neural net has very few constraints on 

how she wants the neural net to operate. Because of 

this flexibility, neural nets can be designed to 

perform nearly any task that a serial model could 

perform. That is, they can be designed to solve 

problems which require serial solutions. 

A familiar cautionary note is necessary here, 

however. Like production systems, a danger exists in 

taking the PDP models too literally. For any one 

observable, psychological phenomenon, there exist many 

neural architectures that can reasonably model the 

process. Thus, one must be careful not to reason 

backwards. Simply because a neural net model exhibits 

behavior which is consistent with empirical 
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observations of people does not mean that the neural 

net is a valid model of human processing. In fact, 

most neural net solutions to applied problems will not 

represent the equivalent human cognitive process any 

better than a production system. Ironically, this 

apparent flaw in the neural network position is also 

the reason why we should pursue neural net solutions. 

The sheer number of possible ways to perform a given 

task using PDP techniques, plus the fact that so few of 

the possible neural models have yet been investigated, 

or even designed, indicates that the formalism might be 

rich enough to yield important insights to cognition, 

and consequently, how we understand the human problem 

solving process. In short, problem solving theorists 

should be concerned with developing problem solving 

neural nets because systematically investigating new, 

potential sources of insight is a fundamental task in 

any scientific field of inquiry. 

A Transitional Model of a Hybrid Problem 

Solving System that Integrates Neural 

and Symbolic Processes 

My fundamental theoretical position is that a 

general goal of modern human problem solving theory is 

to specify a highly parallel system which can produce 

ordered, goal-oriented, sequences of behaviors as 
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described by serial, symbolic models which have been 

derived from systematic observations of actual human 

problem solving activity. The goal of understanding 

serial processes as emergent properties of a highly 

parallel, distributed system, however, represents a new 

emphasis for the study of human problem solving, and 

complete understanding of the process is a long way 

off. In the meantime, it is important to develop 

applications and techniques which unite the symbolic 

and neural processing paradigms in order to maximize 

the strengths for both processing schemes while 

minimizing their respective shortcomings. Systems 

which use serial executors capable of calling massively 

parallel sub-systems are already available, and The 

America Association for Artificial Intelligence (AAAI) 

held its first workshop on integrating symbolic and 

neural systems,in 1990. Such transitional models seem 

to be a reasonable, and necessary, step on the road to 

building new theories, and in this section, I will 

sketch my own transitional model which integrates 

symbolic and neural processes. 

In accordance with the position taken in 

McClelland and Rumelhart (1986, Ch. 14), traditional 

schemes for representing problem solving processes, 

which have concentrated on representing relatively 
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long-lived (>250 ms), sequential, often conscious 

activities, still maintain their usefulness for 

describing higher level processes. However, the 

traditional formalisms do not capture the essence of 

the underlying fine-grained, passively parallel, 

microstructure of human mental activity. Neural models 

may provide new insights about human problem solving by 

demonstrating how many of the characteristics commonly 

associated with high level processes can emerge 

naturally from a highly parallel system. For example, 

neural networks have the potential of being more 

efficient pattern recognition systems, as compared to 

sequential models. If one understands problem solving 

to be the general process of dissolving large processes 

into pattern-matching sub-tasks (as both Newell & Simon 

and Rumelhart & McClelland do) then the natural way in 

which neural networks are able to perform pattern­

matching operations makes them potentially important 

theoretical constructs for the study of human problem 

solving. (I will expand this point in a later section.) 

Unfortunately, neural models use only weight 

matrices and general learning algorithms to describe 

the behavioral potential of a system. Thus, many, 

large matrices of data values must be sifted through in 

order for a human to derive a readily understood 
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description of the system's behavior. Furthermore, for 

a neural network to develop the capacity to perform any 

type of interesting problem solving task would require 

large amounts of effort to set the connection strengths 

either by training the system or by "seeding" the 

system with values obtained from statistical 

calculations. 
/ 

For example, if one were to build a checker 

playing neural network in a purely neural information 

processing environment, one would first present a game 

board to the system and allow the system to settle on a 

move. Next, an expert would have to provide feedback 

as to the propriety of the move, and allow the system 

to back-propagate this information. Finally this 

process would have to be repeated until the neural 

network had properly adjusted it's weight matrixes so 

that it would make the proper move given this 

particular board configuration. Furthermore, this 

process would need to be repeated for all possible 

board configurations. One-thousand training trials per 

pattern is not unusual and would make the endeavor 

impractical, if not impossible. One could imagine a 

similar scenario for a single-layered net. For 

example, one could present all possible board 

configurations to the network during training. Here 
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impractical. In fact, the time required just to 

calculate and construct all possible checker board 

configurations would be quite large. 
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Even if the training bottleneck was surmounted, 

the actual learning (changes in weight matrixes) and 

expertise (weight matrixes) utilized by the system 

would not be in a form that is readily understood by 

people. Knowledge-engineering, as inspired by the work 

of Newell and Simon, has well developed, relatively 

efficient techniques for deriving domain knowledge from 

experts. Furthermore, they are able to represent that 

knowledge in forms (production systems, frames, 

traditional programming languages, repertory grids) 

which are relatively easy to communicate to others and 

require no system training except for coding. 

Thus, my fundamental rationale for specifying a 

system which integrates neural and traditional 

knowledge engineering techniques can be summarized in 

six main points. First, traditional rule-bases are 

very effective at describing behavior and the 

conditions under which a behavior should occur. 

Second, it seems more natural to describe complex, 

sequential, human problem solving behavior with 

symbolic, serial models than with neural models which 
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use only weight matrices and general learning 

algorithms to describe the behavioral potential of a 

system. Third, modern knowledge engineers are already 

proficient in the use of symbolic representations for 

describing expertise and such a system would allow the 

use of neural processing without necessitating the 

retraining of the knowledge engineering work force. 

Fourth, using traditional formalisms means that 

currently installed rule-bases can be automatically 

converted to fine-grained, massively parallel platforms 

without requiring huge numbers of human-hours for the 

conversion. Fifth, the use of such a system would 

eliminate, or greatly reduce, the training bottleneck 

{i.e. setting the weights) required by most PDP 

systems. Lastly, I wish to determine what performance 

benefits and costs are realized when using neural 

models to process high-level, rule-based knowledge as 

compared to traditional, sequential processing 

architectures. 

As I stated earlier, my fundamental theoretical 

position is that the ultimate goal of modern human 

problem solving theory is to specify a highly parallel 

system which can produce ordered, goal oriented, 

sequences of behaviors as described by serial, symbolic 

models derived from studies of actual human problem 
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solving activity. Thus, there are three major reasons 

that traditional knowledge engineering techniques and 

symbolic formalisms are necessary for gathering and 

describing expertise in a given problem solving domain. 

First, traditional knowledge engineering techniques 

which result in some type of symbolic description 

(frames, productions, repertory grids) of the problem 

solving behavior have already been shown to be 

effective tools for gathering and summarizing 

knowledge. Second, the descriptions which result from 

traditional techniques can be used to generate a 

problem solving neural network. Lastly, and perhaps 

most importantly, the symbolic formalism can be used to 

test whether the resulting neural system operates in 

accordance to the description of actual human behavior 

(i.e. provides a validity verification tool). 

Therefore, the hybrid system that I wish to outline 

should be able to use a traditional symbolic 

description of human problem solving behavior (frames, 

productions, repertory grids) as input, parse the 

formalism, determine the inputs, output, number of 

nodes, and calculate the weight matrixes for each node 

based upon the information contained within the 

formalism. 

The process would begin with a knowledge engineer 
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conducting observations and interviews, analyzing the 

resulting protocols and building a rule base that 

performs successfully. For the sake of simplicity, I 

will use the tic-tac-toe rule base in Figure 13 to 

represent the output of the knowledge acquisition 

phase. As one can see from the figure, the rule base 

is composed of rules which are statements of the form 

IF <conditions> THEN <actions>. The rule base would be 

processed by an interpreter capable of parsing the 

rules into units and organizing the resulting units 

into a network. For example the system might extract 

units such as player, opp(onent), two marks, on column, 

on row, on diagonal, intersection, side, corner, etc. 

After distilling the units from the representation, the 

system would construct a matrix which represented all 

possible connections between the units. Next, for some 

architectures, the system would calculate the weights 

for each unit based upon the relationship among units 

in the rule base (how often any two units co-occur in 

the rules). This would be accomplished by using a 

formula comparable to Rumelhart and McClelland's 

probability of co-occurrence formula mentioned 

previously. In other architectures (e.g. multi-layered 

perceptrons), the system would construct a training set 

with some supervisory information. 
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Unfortunately, rule bases are efficient 

representations of knowledge and, as such, may not 

concretely represent all the information necessary to 

construct a neural network. In the current case, the 

events of opp=forking pattern and player=forking 

pattern would have the same activation level because 

the unit pairs occur equally often in the rule base. 

Thus, in the case where both conditions are true, the 

system would not be able to decide whether to block the 

opponent or to complete its own forking pattern. One 

solution to this problem would be to employ some type 

of weighting rule based upon which term appears first 

in the rule base. A second option would be to allow 

the user to manually alter the weights. Doing this, 

however, reduces the interpreter to a "roughing in" 

role in which it provides a rough outline of the units, 

the relationships among them, and the general 

architecture of the system. A user may, for example, 

examine the units extracted by the interpreter from the 

rule base and decide that he wishes to use a different 

general architecture. He would then be able to specify 

that he wants a multi-layered perceptron with 3 layers, 

18 input nodes and 9 outputs. The system would then 

map the extracted units onto the system specified by 

the user. In essence, the system would be able to 



automate the neural network engineering process, but 

the human designer would retain the ability to 

customize any component of the resulting network. 

131 

Another, even more promising, knowledge 

engineering technique known as repertory grids (Boose, 

1986) may provide another avenue for uniting neural and 

symbolic formalisms. Repertory grids were first used 

by psychologists to determine personality traits and 

have been used recently by AI workers to automate the 

knowledge acquisition phase of expert systems 

construction. Essentially, the knowledge engineer with 

the aid of an expert would identify the relevant 

components of a knowledge domain. These components are 

then organized into all possible pair-wise combinations 

and given to the expert(s) who simply make judgements 

about each pair's degree of relatedness. The expert(s) 

responses are then fed into a processing package which 

converts the relatedness ratings into rules. If one 

re-labels the components of the knowledge domain as 

units and the relatedness ratings as connection 

strengths among units then the raw data from a 

repertory grid represents the fundamental information 

necessary to build a neural network. Further, if one 

takes the units and weights data from the repertory 

grid and couples it with some knowledge about neural 
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net designs, then one has a system capable of 

automatically generating single-layered neural networks 

directly from information provided by experts. In the 

case of multi-layered perceptron architectures, the 

system may be able to identify inputs and outputs, but 

the values of the hidden layers would be difficult to 

determine on an a priori basis. Even in this case, 

however, the system might be able to automate much of 

the process by converting the experts ratings to 

training materials and playing the role of a supervisor 

during training. 

A maJor added benefit of using a repertory grid to 

collect expert knowledge is that the system would be 

capable of simultaneously generating a rule base and 

neural network. The rule base could then be used by 

humans to better understand the neural processing, and 

could also be used to verify the workings of the neural 

network. Inversely, rather than having to sift through 

large volumes of weight matrices, one might be able to 

alter the neural processing by simply changing the rule 

base. In effect, the system would reason backwards 

from the rule change and identify the neural data that 

should be modified in order to implement the rule 

change. 

Obviously, implementing all the capacities of an 
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integrated knowledge processing system, as outlined 

above, would require considerable processing power. 

However, the benefits of having a system which can use 

symbolic input in order to build, train, and operate a 

neural network might also be sizeable. If a knowledge 

base is quite large, for example, neural systems may be 

able to instantiate solutions faster than a traditional 

rule base. Generally speaking, if a neural network has 

been properly trained then it will always move towards 

a best-fit solution and never away from it. This means 

it is possible for a neural network to get caught in a 

local maximum, but, in most cases, a neural net will 

take a very direct route to a solution. Traditional 

rule systems which frequently use sequential search 

processes, however, often must first exhaust processing 

branches that lead away from the solution before the 

proper branch comes to the top of the search queue. 

Neural nets, therefore, are theoretically faster than 

traditional rule processing. 

In conclusion, the potential advantages resulting 

from a system that integrates symbolic and neural 

process1ng include reducing the neural net training 

bottleneck, enhancing the understandability of a given 

neural system's processing, facilitating the debugging 

and modification of a neural net, allowing existing 
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rule bases to be ported to neural processing platforms, 

and making the advantages of neural processing 

available to expert systems developers without 

requiring extensive re-training of the knowledge 

engineering work force. In general, neural network and 

traditional symbolic processing models tend to 

complement, rather than compete with, one another. 

Consequently, a primary goal for the next generation of 

AI technology should be the complementary integration 

of symbolic and neural processes so that each model's 

strengths are maximized and its weaknesses minimized. 

Sequential Neural Processing, Consciousness, 

Mental Models, and Creativity 

As is pointed out in Chapter 14 of Rumelhart and 

McClelland, the "distributed" in parallel distributed 

processing refers to the serial processing component of 

a highly parallel processing system. Take for example, 

the act of recognizing a room. Light reflected from 

the contents of a room enters the eyes and activates 

certain patterns of photo-receptors in the back of the 

eye. This pattern of activation is sent through the 

optic nerve to the occipital lobe in the back of the 

brain. The patterns of activations are processed, and 

lines, edges, and basic forms are extracted. These 

basic forms are then interpreted to indicate the 
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presence of walls, windows, drapes, furnishings, etc. 

The pattern of recognized objects are then interpreted 

as an entire room and a combination of rooms might 

further be recognized as a particular house. Each one 

of the steps is a parallel process in that it 

simultaneously processes a large number of inputs and, 

based upon the constraints provided by that input and 

past experience, is able to relax to a stable state 

which represents the interpretation of the input. 

However, the room cannot be identified until the 

furniture is identified, and the furniture cannot be 

identified until certain basic forms are recognized, 

and so on. Thus, the system is a highly parallel 

system, but the parallel processing has to be 

distributed such that processes which provide 

constraints for other processes must be completed 

before the secondary processes can complete their 

processing. Hence, the distinction between parallel 

and serial processing becomes a matter of the time 

frame in which the system is observed. If one looks at 

the system over a short time frame (< 250 ms) then the 

processing is best described as highly parallel. If, 

however, the system is observed over longer time 

frames, then the parallel processes can be seen 

operating in sequence. Thus, PDP models possess an 
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inherent, serial component which operates at every 

processing level from low-level perceptual processes up 

to the highest level conscious processes. 

So far I have discussed how a neural system might 

be able to recognize inputs, but not how it can use 

that information to execute sequences of actions. From 

the PDP perspective cognitive processing can be 

summarized in the following way. An input pattern 

enters the system and the system relaxes to a state 

which optimally satisfies the constraints provided by 

the input and past experience. As was indicated in the 

discussion of schemata, the pattern of activation 

across units represents the interpretation of the 

input. Therefore, each network can represent only one 

interpretation at a time, and the system maintains its 

pattern of activation until the stimulus conditions 

change. Once new data enter the system, it begins 

again to relax to a new stable state. 

In the PDP view of cognition, the contents of 

consciousness are represented by activation patterns 

which result when a large subset of the mind's total 

number of processing units relaxes to a stable state. 

Therefore, thinking operates on a time scale which 

corresponds to sequences of large-scale, stable states 

(i.e., when networks of networks of networks best 
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satisfy all their impinging constraints). Thus, serial 

thought processes are viewed as sequences of stable 

states which emerge from the relaxation of large 

coalitions of parallel architected, constraint 

satisfaction networks. 

One of the supposed problems with such a system is 

that it requires new input for the interpretation to 

change. This is not as big a problem as one might 

first expect. First, the environment is rarely, if 

ever, static. Thus, new input is continually entering 

the system. Even here, however, the model may be 

unsatisfactory because people don't simply sit by and 

monitor the world. People affect change in the 

environment based upon their interpretations of the 

environment. To account for this in PDP models, the 

environmental chang~s initiated by an individual are 

simply fed back into the system in order to provide a 

new set of constraints for the system to deal with. 

Consider the general processing of a game playing 

neural system described by Rumelhart and McClelland. A 

game board is presented to the system. The system 

takes the position of the pieces as constraints and 

settles to a stable state which represents the system's 

move. The new position may provide input to a second, 

opposing, neural system which settles on a move and, in 
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turn, provides a new set of constraints to the first 

neural system. The system can thereby generate a 

sequence of appropriate moves and play an entire game 

against an opponent. Even in this scenario, however, 

the system is entirely reactive and, in effect, deals 

with each move in a conceptual vacuum that has no 

expectations of future moves. 

One of the things that human players are 

particularly good at is trying to "out-smart" or 

anticipate what the opposing player is going to do 

given a particular board configuration. That is, we 

are good at creating mental models of opposing players 

and the accuracy of the mental models is a large 

determinant of our ultimate success in a given problem 

solving domain. This can be accomplished with neural 

nets by connecting two neural systems together 

(Rumelhart & McClelland, 198Gb, p.40). The output of 

the primary neural network would be sent as input to 

the second, "modeling" neural net. The modeling net 

would in turn produce an output which represents a 

guess about what an opponent might do given the 

system's move. The output of the modeling network can 

then be fed back into the primary neural network to 

determine whether the result of a selected move is 

desirable. In this fashion, the neural system could 



look several moves ahead and even "mentally" play an 

entire game. 
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The role of mental models is, in fact, central to 

the PDP view of thinking and reasoning. Both PDP and 

traditional problem solving theorists assert that 

problem solving/reasoning proceeds by breaking a 

problem down into sub-tasks to which we already possess 

solutions. In effect we attempt to break problems down 

into pattern-matching operations at which we are very 

good and that require minimal processing resources. 

Rumelhart and McClelland further assert that we have 

three essential abilities which allow us to perform 

logical tasks; pattern matching, mental modeling, and 

manipulating our environment. Take as an example task, 

the process of multiplying two three-digit numbers 

(343, 822). Most of us do not have the multiplication 

tables over-learned up to 822 so we must solve the 

problem by breaking it down into smaller, more 

manageable sub-tasks. Thus, we may have already 

learned to represent the problem by putting one number 

over the top of the other. We can then "see" that 

below the right-most column we can write a 6. Next we 

have learned to multiply the second number in the top 

row by the right most bottom number, so we write an 8 

below the second column of numbers. We repeat this 
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cycle for each number and start a new row when we begin 

multiplying by a new number on the bottom row. For 

each cycle the sequence is the same. First, manipulate 

the environment so that you create a representation of 

the problem. Next, use the power of our perceptual 

system to efficiently process the representation. 

Last, modify the environment to represent the results 

of the pattern processing and continue processing. Fn 

effect, we have reduced the task to a series of more 

manageable pattern-matching operations. 

Many adults, however, do not require physically 

representing the problem in order to solve it. They 

can do it "in their heads" because of the human ability 

to internalize the representations we create (i.e. 

build a mental model). Thus, we no longer need to 

physically write down well-learned problems, but can 

simply imagine manipulating the representation. Of 

course this does not apply solely to mathematics, but 

the entire spectrum of human thought. In the PDP view, 

human rationality is possible because of our ability to 

internalize or mentally model external events so that 

we can imagine manipulating the representations in 

analogous ways to how we might actually deal with the 

referent in the external world (Shepard's work on 

mental rotation seems to support this view as well). 
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In essence, PDP theorists suggest that human 

rationality is achieved by utilizing models which are 

represented by the activation patterns of large 

coalitions of PDP-like networks. 

There are some interesting traits which emerge 

from such a system. First, once a model is 

internalized, it can be manipulated in several ways. 

Normal operations can, of course, be performed on the 

representation because those operations are part of the 

internal representation of the referent. By normal, I 

mean operations that are normally done to the referent 

in the external environment. However, the 

representation can be combined with other internal 

representations which, based upon some selection 

criteria, possess traits which compliment one another. 

Thus, new, never before experienced, representations 

can emerge, and new objects which correspond to that 

representation can be tested mentally, and/or created, 

and tested, in the external world. 

New representations seem to evolve slowly from 

combinations of existing representations rather than 

being created anew. The same seems true of invention. 

That is, inventions slowly evolve from combinations 

and/or modifications of existing devices. In fact, it 

seems reasonable that before an invention can be 
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constructed, an internal representation of the 

invention must first be created. Once the invention is 

built in the external world, observations can be made 

about its true behavior, and the data from the 

observations can be fed back into the system so that 

the invention's internal representation can be altered 

accordingly. Similarly, modifying the internal 

representation then allows one to perform similar 

alterations on the external referent, and the cycle 

continues until some satisfactory result is obtained. 

To further clarify this point, consider the 

general process of problem solving as outlined by 

Newell and Simon. For a problem to exist, a task 

environment and an appropriately motivated problem 

solving system must be present. The problem solv1ng 

system must also desire another state of affairs than 

the one in which it currently resides, and that state 

must NOT be attainable by any complete, immediately 

executable, series of actions. In order for the system 

to determine possible action sequences that could lead 

to the goal state, the problem solving system forms an 

internal representation of the problem (i.e. the 

problem space). Based upon the internal problem space, 

the system activates a problem formulation which, in 

turn, allows the for the generation of a problem 
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solving method. The problem solving method is a 

sequence of elementary information processes that will 

hopefully lead to solution of the problem. If the 

method doesn't lead to a successful conclusion then the 

method may be modified or replaced with another. If 

enough methods fail then the problem may be 

reformulated, and if enough problem formulations are 

unsuccessful, then the problem space may need to be 

altered. 

It is my opinion that problem spaces, 

formulations, methods and eips are all processes which 

naturally emerge from coalitions of PDP-like processes. 

The problem space is a large, pervasive data structure 

that seems to be "settled on" very quickly. Likewise, 

the problem formulation and methods can also be 

generated rather rapidly. In fact, people seem to be 

able to begin generating possible solutions to problems 

almost immediately upon being presented with a problem. 

Considering the large amounts of data that have to be 

utilized in representing and formulating a problem, it 

is difficult to imagine that this feat could be 

accomplished by anything other than parallel 

distributed processes. In true problem solving 

conditions, the first attempted methods will probably 

not lead to a solution and will require modifying a 
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method, generating a new method, reformulating the 

problem, or altering the problem space. Furthermore, 

it seems reasonable to expect that problem difficulty 

may be directly related to the degree and level 

(method, problem formulati9n, problem space) of 

adjustment necessary to solve the problem. 

To illustrate, consider Edison's invention of the 

electric light. It is my assertion that the invention 

of the electric light, as recounted in Freidel and 

Israel (1986), represents one of the highest foFms of 

creative problem solving, as well as, intermediate and 

basic forms of problem solving. In 1876, Thomas Edison 

became interested in creating a reliable, economical 

lighting system and visited William Wallace's electric 

dynamo factory. It is reported that during his visit, 

Edison exhibited child-like enthusiasm for what he saw 

there, and 10 days after' re~urning to his Menlo Park 

lab, he boldly announced that he had the solution to 

the electric, incandescent light. Unfortunately, his 

proclamation was quite premature. 

By this time in his career, Edison had already 

been granted an impressive number of patents, many of 

which were in the field of telegraphy. Furthermore, 

many of the telegraphy patents involved the use of 

feedback loops to resolve a variety of problems, and it 
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was the feedback loop that Edison believed would allow 

for the development of an efficient incandescent light. 

The problem with the incandescent light was that it had 

a very short life. An incandescent light operates by 

passing a current through a filament which heats to 

glowing. However, very few materials can heat to 

glowing without melting or oxidizing. The two most 

promising materials, carbon and platinum, were 

resilient to melting. Carbon, however, was initially 

rejected because of its tendency to flame at lower 

temperatures. Platinum, on the other hand, had the 

problem of continuing to heat up past its meltlng point 

once its temperature had been raised to the point of 

incandescence. 

Edison, quite reasonably, viewed the problem as 

one of current control and thus designed several 

feedback loops to circumvent the problem of over 

heating. The feedback loop regulated the temperature 

of the platinum filament by restricting the current 

when the filament reached a certain temperature. When 

the temperature of the filament returned to an 

acceptable level, the current would be allowed to flow 

freely into the filament. Thus, Edison reasoned, the 

temperature of the filament would remain within 

acceptable limits, and never overheat. 
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While this is very reasonable approach to the 

problem, it did not work satisfactorily because the 

platinum elements would still distort and fail after 

remaining at the point of incandescence for a short 

period. Edison, and his Menlo Park staff, took the 

next year and four months to develop a new 

understanding of the elements required to build an 

efficient, reliable, incandescent light. That is, the 

initial problem space was faulty, and they spent the 

next 16 months creating a new one. During that time 

Edison gathered the some of the best technology, minds, 

and technicians for the assault on the light bulb. 

They performed literally thousands of experiments 

utilizing different designs and materials in one of the 

more intense technology development efforts ever 

undertaken. Finally, in October 1879, the Menlo Park 

team had developed a new understanding of the 

requirements for the electric light, had dropped the 

current regulator from the design completely, and now 

understood how carbon, thread, coils, and a vacuum 

could be combined to form a reliable incandescent 

light. 

Let me try to characterize this inventive process 

by integrating PDP and traditional problem solving 

perspectives. When presented with the task environment 
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(the development state of the incandescent bulb, state 

of technology, available resources, etc.), Edison's 

cognitive machinery settled on a problem space that 

activated a problem formation (call it the feedback­

loop formulation) which had been successful in the 

past. In fact, if PDP models are reasonable 

descriptions of problem solving, then Edison may not 

have had much choice than to characterize the problem 

in terms other than the feedback-loop formulation. 

A problem formulation is activated based on the 

interactions of connection strengths, which had been 

determined through a lifetime of experience, and the 

new problem components (overheating elements, wires, 

electric current, etc.). The new inputs possessed 

similarities to the components that existed in the 

telegraphy problems that he had solved successfully. 

Thus, the correspondence between the new data and the 

existing cognitive structures would tend to activate 

the highly successful, reliable feedback-loop problem 

formulation. In essence, the components of the 

incandescent light problem were mapped onto the pre­

existing feed-back loop formulation. 

Remember that in PDP theory, one can view 

cognitive structures as networks of schemas and 

coalitions of schema networks. Thus, mapping the 



148 

components of the incandescent light problem onto the 

feedback-loop formulation is equivalent to 

instantiating the slots of an already existing schema 

to the components of the incandescent light problem. 

Thus, the values of the slots (processing units) have 

changed but the relationships among the slots remain 

the same. The process of taking new domain knowledge 

and mapping it onto a pre-existing knowledge structure 

is probably one of the most fundamental problem solving 

techniques, as well as, the primary process by which we 

can understand the world around us. Simply stated, 

understanding does not exist until new information has 

been reconciled with the old. Thus, the model I have 

described, so far, represents a process by which 

initial understanding is achieved by analogy, and 

suggests that we may have no other choice but to 

initially attempt to solve novel problems by a form of 

analogical reasoning. 

In PDP terms, the process operates as follows. 

The weightings between the components that comprise a 

problem space, or formulation, are established by a 

lifetime of experience. Thus, when new data enter the 

system, the system attempts to find a pattern of 

activation which maximally satisfies all the impending 

constraints. The new inputs represent only a minority 
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of the total number of impinging constraints and the 

majority of constraints are provided by the pre­

existing internal connections between cognitive 

elements. Thus, the system will most likely activate a 

problem formulation which corresponds to previously 

experienced and successful activity. Because new 

information must first be mapped onto existing 

knowledge structures, new insights can only be achieved 

by modifying old representations. If the new data have 

a high degree of concordance with the old so that the 

existing data structure allows for reliable and 

accurate predictions about the new data (or in PDP 

terms the old structure is a good model for the new 

information), then only slight modifications may be 

needed in order to understand the new information. If, 

however, the information processing system does not 

have a pre-existing data structure which adequately 

models the new problem, then several possible 

formulations (or problem spaces) may be activated. 

This results in a "fuzzy" understanding of the new data 

in which different components of the new data may 

correspond to components of several different internal 

representations. The existing structure which fits 

best may then be modified and refined until a suitable 

representation is obtained. 
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In order to modify an existing structure, one must 

over-ride the influence of previous experience by 

having frequent experiences with the new data and 

concentrating considerable attentive and conscious 

effort on the new and old data. In effect, the 

experience and conscious effort will eventually allow 

new connections to be formed between units which will 

ad~quately represent the new information. 

Sometimes, however, a problem does not lend 1tself 

to any known problem formation (known at least to the 

person attempting to solve the problem). In this case, 

applying a previously learned representation to the 

problem only leads to plausible but ultimately 

ineffectual solutions. Edison was the victim of this 

when he settled on a solution that involved a feed-back 

loop to regulate the current, and it required an effort 

of historically monumental proportions to over-ride 

this powerful problem representation. When no existing 

representation is sufficient, the solver must create a 

new representation that is more than just a mutation of 

another previously learned representation. One may 

need to break down several representations, gather new 

data, and combine all those bits and pieces into a new 

representation. This is a very difficult process 

because the old representations are already 
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established, or to use PDP terminology, the weights 

have already been set. Therefore, any time the new 

information is presented, the system settles on the 

old, strongly connected, representations and blocks the 

new, weakly connected, structure. Furthermore, before 

the new knowledge will be fully assimilated, other 

related knowledge structures may need adjustment in 

order to maintain their accuracy and reliability. 

Thus, creating a new representation and gaining new 

insights is an intense pervasive process that requires 

a great deal of mental energy in order to over-ride the 

automatic inclinations of our cognitive machinery. 

At some point in the process of modifying weights 

(learning), the connection strengths between relevant 

and irrelevant units will be about equal, and the 

system will have a very difficult time locating a 

stable constraint satisfying maxima. The point at 

which both relevant and irrelevant components receive 

comparable activation is probably experienced as 

confusion. The combination of a system unable to 

settle on a stable activation pattern and the 

substantial effort required to change weights may 

explain why learning new, difficult information (i.e., 

information for which no adequate internal 

representation exists) sometimes results in discomfort, 
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agitation, and frustration. 

In this view of invention, all of the Menlo Park 

efforts from roughly September 1878 to August 1879 were 

fundamentally directed at constructing a more accurate 

internal representation of tne components and 

relationships necessary to build an incandescent light. 

In order to fully appreciate the difficulty required to 

create and disseminate anything new, one must remember 

that the true problem does not exist in the external 

world but within the problem solver's representation of 

the problem. Therefore, before an invention can 

emerge, the internal representation of that invention 

must first be created. A prototype can then be created 

in the external world and observations made about its 

true behavior which, in turn, feed back in to the 

problem solving system and allows alteration of the 

internal representation. 

Likewise, altering the internal model allows one 

to determine what modifications to the external 

referent may be fruitful. If a manipulation seems to 

work on the internal representation, then one may 

similarly modify the external working model and observe 

the results. If the modifications suggested by the 

internal representation result in too many failures 

then perhaps the internal representation needs to be 
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discarded and a new representation formed (as Edison 

had to do). It therefore seems feasible to expect the 

evolution of an internal model to be mirrored in the 

evolution of an invention. 

Likewise, the evolution of a technology over 

generations may reflect the development of a culture's 

general technological understanding. New inventions 

result from new internal representations, and new 

representations evolve from a highly effortful process 

of modifying existing representations. The new 

inventions will therefore reflect the changes in the 

internal models, and it seems reasonable that 

inventions would appear to slowly evolve from 

combinations and modifications of existing technology. 

To be precise, however, inventions do not evolve from 

existing technology, but emerge from the ever-evolving 

mental models which represent the current understanding 

of existing technology. 

For example, lighting systems have been employed 

since the advent of fire. Over time, lighting systems 

changed from a center fire, to torches, to candles, to 

kerosene lanterns, to gas lights, arc lights, and to 

the modern electric light. Each of these advances in 

lighting represents a new understanding of how lighting 

could be achieved. Thus, before any new lighting 
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technology could have emerged, a new internal 

representation of the process of lighting had to be 

developed in the mind of the inventor(s). The new 

representations were built by modifying previously 

acquired representations in light of new information. 

The new inventions were built based upon this new 

representation and reflected the change in the internal 

representation: Next, once the new representation and 

corresponding invention are developed, the new 

representation has to be distributed to other personnel 

who build, install, maintain, and use the new lighting 

technology. In order for these other people to 

effectively interact with the new technology, they must 

also modify their internal models of lighting. 

Therefore, disseminating new representations across a 

culture requires substantial time and effort by the 

individuals of that culture, and the degree of change 

required by the new representation determines the 

speed, and ease, with which a new technology can be 

absorbed by a given culture. Thus, in general, new 

inventions, which provide a user/operator interface 

that reduces the degree of effort that the 

userjoperator has to expend in understanding the 

workings of the new technology, should be accepted more 

readily than comparable technology which does not 
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user/operator. 
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As already described, modifying internal 

representations is an effortful process. Further, the 

amount of effort may be proportional to the level and 

degree of modification necessary to construct a new, 

appropriate representation, and may partially explain 

why most inventions evolve and gain acceptance slowly. 

However, it certainly seems easier to understand how 

the electric light works than it was to invent the 

electric light. If understanding, like invention, 

requires modification of the internal representation 

then why is it easier to understand the electric light 

than it was for Edison to invent it? If it is simply 

due to the newness of the information or the complexity 

of the solution then it should be just as difficult to 

understand someone else's new theory/representation as 

it is to create your own. This does not appear to be 

the case. It seems easier to understand someone else's 

ideas than to have created them myself. As an example, 

I readily understood most of Edison's work and the 

operation of the incandescent light. In fact, the 

electric light seems like a rather simple device. I 

doubt however, that I could have so easily created the 

electric light as I understood the writings about it. 
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Part of the answer surely lies in the fact that I 

do not exist in the same historical context as Edison. 

After Edison developed his light, the state of 

knowledge was forever changed. The people who taught 

science and technology to me had lived in a world where 

Edison's light had been around for some time. During 

the interim between Edison's work and my learning of 

his work, further clarifications, new works which built 

upon his, and simpler language had been developed to 

illustrate, explain, and demonstrate the concepts 

applied by Edison. My representation of electrical 

technology was therefore compatible with Edison's 

inventions because it had been partly shaped by 

Edison's inventions. Furthermore, devices such as 

dynamos, electric generators, efficient vacuum pumps, 

and high quality conductive materials are now common 

place. In Edison's times these devices were high-tech 

devices and the ultimate solution for electric lighting 

depended partly upon improvements made by the Menlo 

Park staff in these technologies. In other words, I 

simply do not have to, and perhaps never can, solve the 

same problem as Edison or his contemporaries. It is 

difficult to fully appreciate the difficulty of past 

advances without understanding what was not available 

to those pioneers. 
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Overcoming the subtle delusions caused by the 

current informational context is one of the greatest 

challenges facing those who wish to fully understand 

the significant developments of the past. That is, we 

most often have to view the past through the filter of 

current knowledge. We can, however, gain understanding 

about the past by making ourselves aware that certain 

pieces of information were not available, and, by 

looking at the form of a solution, we may be able to 

gain valuable insights about the problem representation 

and the method which generated the solution. 

Unfortunately, even when our knowledge of the context 

allows us to empathize with past problem solvers, our 

current representation of the contemporary world over­

rides our imagery of the past, because our 

representation of the past is still a part of our 

current knowledge state. Therefore, we are forced to 

view past advances through a subtle filter of current 

understanding, which impedes our ability to fully, and 

accurately, re-create the true problem spaces of past 

inventors, and we mistakenly over-simplify the nature 

of the true problem that had been solved. 

While the pitfalls of hindsight are partly 

responsible, the primary reason understanding is easier 

than creation, however, is most likely due to the fact 
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that I did not have to deal with as many details as 

Edison. As described earlier, identifying, and 

processing, the salient details of a problem are 

activities which require large amounts of time and 

effort in novel, or creative, problem solving. By 

definition,.the initial state of a creative problem is 

large, relatively unstructured, and contains many 

extraneous components. The essence,of problem solving 

is utilizing, or developing, a strategy which 

efficiently separates relevant from irrelevant problem 

elements. If a proven problem formulation (e.g., 

feedback-loop), which is an efficient means of 

distinguishing relevant details, fails on a large 

scale, then the problem solver is left with only weak 

methods to identify the relevant factors within the 

problem space (e.g., generate-and-test, do-it-and-see­

what-happens, if-carbon-based-then-try-it). This in 

fact seems to be the case with Edison's light. When 

his feedback-loop formulation failed, he involved the 

Menlo Park workers in an exhaustive series of materials 

tests in hopes of finding the right combination of 

materials to solve the oxidation and melting problems. 

(Edison's staff ran electric currents through materials 

as diverse as metals, coconut fiber, human hair, 

fishing line, and broom corn to name just a few.) 
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Once the problem has been solved and new 

representation for the problem emerges, however, there 

is no need to examine promising, but irrelevant, 

details. In fact, a successful formulation will ignore 

extraneous factors. Therefore, as I read of Edison's 

work, I concerned myself only with the most salient 

details. I simply will not have, and probably do not 

need, as detailed an understanding of all the problem 

components as Edison. Not having to attend to 

irrelevant details removes much of the processing 

burden from the student of an invention while it may 

have actually consumed much of the inventor's energy. 

Consequently, creating an invention differs 

qualitatively from understanding an invention much as 

discovering the Cumberland Gap differs from driving a 

car on the road which now runs through the pass. 

Although he probably didn't think in these terms, I 

believe Edison was referring to the severe processing 

burden imposed by weak methods, and the mechanics of 

constraint satisfaction processing in the human mind 

when he observed that, "There is no expedient to which 

a man will not resort in order to avoid the real labor 

of thinking." 

Much like the distinction between learning about 

and creating an invention, a similar question can be 
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asked of the distinction between creative and 

traditional problem solving. That is, if problem 

solving is really a matter of modifying and recombining 

old representations then what is the difference between 

traditional problem solving and creative problem 

solving? One of the possible distinctions between 

creative and traditional problem solving is the degree 

and manner in which a representation is modified. In 

the simplest case, problem solving is simply a matter 

of using a representation. Consider a second grader 

who is learning to multiply and applies the problem 

representation for 7x3= to 8x4=. The quantities of the 

problem change. However, if the problem representation 

is sound, then the operations should still be 

successful. There is very little change in this 

representation, but solving the problem still requires 

effort for the novice multiplier. 

At the other extreme may be the case of Edison, 

who had to reject a rich, reliable, and deceivingly 

promising representation, and create a new one by 

discovering new information, breaking apart pieces of 

old representations, and combining all the pieces to 

form a virtually unthought of representation for the 

physics, chemistry, and architecture of an incandescent 

electric lighting system. In the middle may lay the 
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cases where one makes moderately difficult 

modifications to an existing representation or applies 

an existing representation to a problem domain which it 

had never been applied. 

Problem difficulty may in large part be determined 

by the degree and level of modification necessary to 

resolve a given problem. Creativity, however, is not 

defined by the difficulty of the processing, but is 

defined by the rarity of the solution. In this view, 

traditional problem solving and creative problem 

solving may be operationally identical. That is, 

traditional problem solving usually requires 

modification of a method which is a relatively simple 

alteration process. However, if that modification 

results in signif1cant savings in time and/or effort 

required to accomplish a task and the solution is rare 

in the given cultural context then the act is said to 

be creative. The ability for the solver to generate a 

rare method may be indicative of the uniqueness of that 

individual's problem space. If the internal 

representation is unique, then, for the solver, the 

problem was relatively easy to solve. However, 

someone, who did not begin with a problem space that 

allowed for such a unique modification, would have to 

exert much effort to construct an internal problem 
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space that would facilitate a culturally rare solution. 

Conversely, it is possible for someone to exert mammoth 

efforts to construct a new understanding of a problem, 

but the ultimate solution may not be judged creative. 

For example, present a modern automobile to an 

individual, who has minimal auto maintenance 

experience. Furthermore, inform him that the car is 

"running rough" and it is his job to fix it. The naive 

mechanic may have to completely reformulate the problem 

of automobile maintenance in order to understand the 

nature of the malfunction and its remedy. That is, 

from the novice's perspective, the problem space is 

relatively large, unstructured, and few formulations 

exist for traversing the problem space. Thus, from the 

perspective of the novice's internal processing, 

learning to repair a car is an effortful, creative act, 

but from the perspective of our culture, it is not rare 

and is not, therefore, creative. 

Whether we judge the final product of processing 

as creative depends upon the product's rarity within 

its cultural context. In general, the highest forms of 

creativity will correspond to internal processing that 

requires disassembly of several internal 

representations, gathering of new information and 

assimilating all the information into a new internal 



163 

representation which generates some product of value to 

the solver or society. In many cases, however, a 

person may have to undertake this highly effortful 

process to solve a traditional problem. Likewise, 

there may be cases where a relatively simple 

modification results in a rare, creative solution. 

Therefore, while there is a degree of correspondence 

between creativity and problem difficulty, as 

determined by the magnitude and level of modification 

required by the internal representations, the 

correspondence is not perfect. 

Problem difficulty and creativity both involve 

modifying internal representations which are reflected 

in the activation patterns of large coalitions of 

neural networks. Neural networks are, in turn, 

composed of large coalitions of processing units (i. e. 

neurodes) and the data structure which emerges from 

this architecture can be described as a network of 

generative schema. Furthermore, it is my assertion 

that the judgement of creativity is based upon a 

cultural context and not upon the nature of the 

underlying processing. Therefore, the internal 

processes utilized in a large segment of creative 

problem solving is operationally equivalent to 

traditional problem solving processes in that both 
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utilize processes that modify pre-existing internal 

representations. A creative act, however, results when 

these same processes act to form a culturally unique 

problem representation that is effective at resolving a 

given problem. It therefore seems reasonable that an 

appropriate manner to study creativity is to uncover 

operations (heuristics) which might lead to unique 

problem representations. Interestingly, alterations 

which emerge naturally from the processing of 

constraint satisfaction networks generate heuristic­

like modifications of existing schema/internal 

representations. 

In the conceptual framework discussed so far, the 

task environment consists of everything available to 

the subject in the external environment plus the 

cognitive potential of the problem solving system as 

represented by all the connection strengths in the 

system. When the system is placed in a problem solving 

situation, the task environment activates a problem 

space which is represented by a pattern of activation 

across a large coalition of networks. 

Likewise, the activation pattern of the problem 

space, via the inputs from the external world and the 

internal connection strengths, activate a problem 

formulation. The problem formulation, subsequently 
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activates a method which, in turn, activates a series 

of eips. It should be made clear that even though only 

one problem representation, formulation, and method may 

fire, several may receive partial activation that does 

not meet the activation threshold. In a normal, 

relatively well learned, problem solving domain the 

system is able to settle on successful patterns 

quickly. That is, the external input is consistent 

enough with stored connection strengths, that the 

system can quickly settle on the appropriate pattern of 

activation and generate the corresponding behaviors. 

However, if the external problem constraints and the 

internal representations do not "fit" one another well 

enough to activate a known representation (i.e. a 

tightly bound coalition of networks and units), then 

the system settles on a spurious pattern of activation. 

For example, Rumelhart and McClelland clamped on 

two descriptors, sofa and bed, which were strongly­

predictive, but mutually contradictory, descriptors for 

the living room and bedroom, respectively. When both 

predictors were clamped-on, the resulting pattern of 

activation did not represent a normal living room or 

bedroom. Instead the pattern of activation defined 

what could be called a luxurious bedroom which was 

large, contained a bed, a lounge chair, a dresser, a 
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fireplace, and a sofa. The spurious patterns that can 

result, when strongly-predictive, contradictory 

constraints are activated, may take several forms which 

correspond, at least roughly, to some of the 

combinatorial possibilities outlined by Weber & Perkins 

(1989). The spurious patterns are important because 

they provide clues as to how the internal 

representation might be modified in order to resolve a 

given problem or create a new artifact. 

In the simplest case, the system activates a 

series of behaviors which do not successfully 

accomplish the goal. The system then receives 

information that notifies it of the failure and the 

system begins to search for a better representation. 

Parts of the representation and corresponding 

behaviors, may be judged as faulty based upon the 

external data and data from previous experience. The 

components which are deemed faulty are inhibited which 

results in a new pattern of system constraints. The 

system tries to relax to a new stable state which may 

result in simple omission of certain methods, in 

replacement of some methods, and/or reorganization of 

the methods. 

In more complex cases, however, previous 

experience and external data cannot combine to generate 
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a well defined, stable state. In this case, as in the 

Rumelhart and McClelland case, the system forms, after 

some substantial jumping around, a new coalition that 

is the raw data for one class of creative thought. In 

effect, no one representation, formulation, or method 

are fully instantiated. Therefore, only portions of 

several representations are activated. In one case, 

the spurious activation pattern may take the form of an 

ANDing operation in which two independent schemas are 

activated as one, or where only a few components of one 

representation are activated in unison with another, 

complete, schema. It is important to realize that 

while this process activates certain related 

components, it may also eliminate under-supported 

components and result in operations that are equivalent 

to ORing and XORing. 

The spurious pattern that results from this 

natural activity of constraint satisfaction networks is 

the raw data that may be used in the next, and perhaps 

most laborious, problem solving process. In most truly 

novel problem solving situations, the patterns of 

activation, which emerge from this process, will not be 

wholly complete or accurate. That is, some of the 

activated components will be unnecessary and even 

contradictory while other necessary patterns will not 
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reach threshold and will not, therefore, be part of the 

overall pattern of activation. The problem solving 

system must therefore engage in a process whereby it 

builds up connection strengths between relevant 

components and eliminates connections between 

undesirable, components. 

The process is a two pronged process involving 

conscious effort and experience. The connection 

strengths are accumulated through experience with the 

components and the relationships among the components. 

As components tend to co-occur with one another, the 

units which represent hypotheses about their presence 

become more tightly connected. Thus, experience with 

the components, in the form of repeated exposures to 

the units, is necessary for the proper connections to 

be built. 

Simple repetition and rehe~rsal, however, are 

probably not enough to account for the ability to form 

new representations. Due to the system's tendency to 

settle on a previously stored pattern of activation, 

simply exposing the system to the factors would 

probably require huge numbers of exposures, during many 

different states of activation, in order for the new 

information to be completely assimilated. 

Instead of presenting the system with massive 
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numbers of external exposures, humans are able to make 

multiple presentations of the factors by "imagining" 

the components in concert with other information. This 

conscious, effortful, activity allows for efficient 

multiple exposures to the system, so that weights can 

be changed more quickly than with the brute force 

required of multiple external exposures. It is also 

possible that consciousness allows for the adjustment 

of weights by activating, or in some way involving, a 

chemical "broadcast" process in the human brain which 

inhibits previously stored weights and facilitates 

construction of new connections across the system. 

Lastly, non-conscious attention probably plays a 

large role in resetting connections by allowing the 

system to operate on other problems while continuing to 

propagate the new data throughout the system. Such 

processing may account for insights that purportedly 

come after a period of incubation. 

If creative problem solving proceeds by refining 

spurious patterns of activation then insight may have 

several flavors. One type of insight may result when a 

spurious pattern of activation is activated and new 

combinations are therefore available to the system for 

further processing. A second form of insight may be 

experienced when the system gains enough experience 
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with a collection of phenomena that a new, stable, 

pattern of activation emerges. The third flavor of 

insight may result when a pattern of activation is 

edited such that it behaves consistently with all, or 

at least most, related representations (i. e. the 

representation has been fully assimilated). 

Summary and Conclusions 

My intent in the previous section was to outline 

the possible correspondence between neural and 

traditional problem solving models. My position is 

that both views have much to offer one another and are, 

in fact, much more complimentary perspectives than they 

are adversarial. The two theories mesh nicely in their 

level of explanation and can be combined to form rich, 

integrated, processing models that can be applied to 

real world information processing problems. I have 

also tried to describe how common, and creative, 

problem solving processes may emerge naturally from an 

underlying constraint satisfaction processing model. 

It has not been my intent to provide proof for the 

existence of such processes because such proofs may 

require career-long efforts. Instead, my goal has been 

to suggest reasonable processes which allow the reader 

to envision the varied, potentially important, insights 

that neural models can contribute to the study of human 
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problem solving and creativity. 

When I first became interested in the two general 

fields of neural networks and human problem solving, 

there seemed to be a battle raging in the cognitive 

sciences about the rightful places of traditional 

sequential and the newer neurally-inspired information 

processing models. Upon reading and studying two of 

the landmark works in both fields, I have come to the 

conclusion that the theories of the four predominate 

theorists (Newell & Simon and Rumelhart & McClelland) 

have relatively few points of dispute. In fact, there 

seems to be a great concordance between the paradigms 

with respect to their relative positions in the 

theoretical landscape, and their perspectives on the 

nature of human problem solving. 

First, it should be pointed out that the Newell 

and Simon theory is mainly concerned with describing 

behavior in order to deduce precise, abstract models 

(production systems/programs) of underlying human 

knowledge structures. It was their view that the 

programs which resulted from such investigations would 

accurately predict human behavior, but that the program 

itself should not be viewed as a specification of the 

actual processing mechanisms. Newell and Simon took 

great care in divorcing their theory of human behavior 
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from any detailed description of underlying 

physiological and computational processes, and in fact, 

acknowledged that much of the actual underlying 

mechanism of human behavior was most likely parallel. 

The Newell and Simon theory is concerned mainly 

with describing the outward behavior of humans in 

problem solving situations and inferring from that 

behavior a precise, accurate, parsimonious model of the 

individual's internal problem representation. Their 

theory is related to machinery only in that the 

computer metaphor provided them with a theoretical tool 

capable of the descriptive and predictive precision 

which they sought. 

The serial von Neumann computer provided them with 

the proper degree of precision because they viewed the 

essence of human problem solving to be a highly­

integrated, sequential process (a point with which most 

PDP theorists agree). The serial computer metaphor 

provided them with a flexible, powerful, "perfectly 

rational" problem solver to which human behavior could 

be compared and thereby provide a greater understanding 

of human rationality. Newell and Simon contend that a 

major goal of the study of human problem solving is not 

only to create machines which can mimic the problem 

solving proficiency of humans, but to describe and 
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precision as to be capable of disseminating the 

knowledge in a useful way to other humans; be they 

expert, novice, or theoretician. 
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The PDP theorists, on the other hand, are more 

concerned with specifying low-level cognitive 

mechanisms that are computationally powerful enough to 

produce the entirety of human behavior. Neural models 

have gained momentum in recent years due to three 

occurrences. First, connectionist computer 

architectures have become available which make highly­

parallel computing processes practical. Second, 

traditional serial architectures have proven too 

cumbersome, even at high processing rates, to 

efficiently solve "monster" AI problems such as 

content-addressable memory, speech recognition, scene 

interpretation, and any other process that requires 

pattern-matching processes that contain large 

quantities of data points. Lastly, learning-algorithms 

and transfer functions have been developed which 

overcome weaknesses of the earlier neural networks. 

Neurally inspired computing models overcome the 

weaknesses of serial processes by taking a different 

approach to data processing. In serial computing, the 

amount of time required to identify a pattern increases 
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with the number of data points to be interpreted. On 

the other hand, human beings, the most advanced PDP 

system we know about, seem to be able to produce 

solutions more quickly when given more information. 

Humans are able to make better use of context effects 

whereas serial computers must process each element in a 

virtual vacuum, thereby, increasing the time required 

to process all relevant information. Neural nets, 

analogously to humans, are able to make more effective 

use of the multiple constraints provided by the context 

instead of being burdened by them as are serial 

machines. 

PDP, or neural network, models are inspired by the 

architecture of the brain. First, they have no central 

processor, but are composed of a large number of 

highly-interconnected simple processors which interact 

and constrain one another in ways determined by the 

relative connection strengths that exist between them. 

Secondly, neural networks are not programmed but are 

trained. Thus, the essential character of processing 

is a constraint satisfaction procedure in which a very 

large number of constraints acts to produce behavior 

rather than select a behavior from a predefined pool of 

possible procedures. Lastly, no knowledge is 

explicitly coded in the system, but instead, exists 
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within the connection strengths between the processing 

elements. 

According to their books, Rumelhart & McClelland 

and Newell & Simon, agree on nearly all major topics 

concerning human problem solving. Both agree that a 

large portion of human cognition has a sequential 

nature and that much of human problem solving behavior 

can be captured in serial models. Further, they agree 

that human problem solving proceeds by dissolving the 

problems into sub-tasks for which the solver already 

possesses solutions. This is tantamount to saying that 

problem solving proceeds by reducing the problem into 

pattern matching tasks which are probably highly 

parallel operations (Newell and Simon refer to these 

processes as elementary information processes). Thus, 

the serial nature of problem solving results from 

executing sequences of these elementary, parallel 

processes as directed by a successful problem solving 

strategy. 

The two camps also agree that if a process takes 

less than half a second then it is probably parallel, 

and if it takes more than 500 ms then it probably has a 

serial nature. Of course there is a gray area (250 ms 

to 500 ms) in which both camps claim some dominance and 

it seems l1kely that some sequences of operations can 
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take place in less than 500 msec while some parallel 

processes may require longer than 250 ms to settle on a 

solution. They agree on the fact that the contents of 

consciousnessfSTM are probably the result of processes 

done in parallel (content addressable memory retrieval 

v. settling of large networks to a maxima). The two 

camps even agree to a large degree on their respective 

places in the theoretical landscape and is captured 

nicely by Rumelhart and McClelland. In essence, it is 

their view that at the low-end of cognitive processing 

there is a relatively high degree of understanding. 

That is, we tend to have relatively good models for low 

level processes such as color recognition, edge 

detectors and the like. Likewise, we also have a 

rather good understanding of the highest level, most 

conscious processes, because if we didn't, we would not 

be able to communicate with one another. In the middle 

between these two end points, however, there exists a 

sizeable hole in our understanding. Serial theorists 

attempt to illuminate this chasm by climbing DOWN into 

this pit with their methodological flashlights. PDP 

theorists attempt to climb UP into the breach with 

their methodological flashlights in hand. The hope is 

that the two will eventually meet someplace where their 

combined lights will illuminate the entirety, or at 
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least most, of the gulf that exists in our current 

understanding of human cognition. It is my hope that 

the current paper has provided some power to both 

theoretical lanterns and thereby helped to reduce the 

gulf that exists between the two paradigms' respective 

areas of illumination. 

People are confronted with a problem when they 

desire a goal and do not posses an immediately 

available method to obtain the goal. The problem 

solver must therefore formulate a strategy to obtain 

the goal. Formulating the strategy involves dissolving 

the problem into its components and performing a 

sequence of elementary processes upon those components 

which result in attainment of the goal. Each 

elementary processes is readily accessible to the 

solver, takes less than 500 ms to complete, is probably 

a pattern-matching process, and is most likely a highly 

parallel process, or a tightly-bound sequence of 

parallel processes. If the problem formulation is 

correct, and the solver is given enough time to 

complete the strategy, then the desired goal will be 

obtained. 

On the surface, it seems a straight-forward 

operation to combine these two processing models into 

one complete system. First, one needs only to specify 
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a serial executor which is capable of formulating a 

strategy and planning a sequence of actions. Second, 

couple the executor with a PDP architected memory and 

procedures and let the system run. Of course there are 

many technical issues that would have to be addressed 

before such a system were operational, but the general 

concept is sound. In fact, many firms are now looking 

to create such hybrid systems. Specifying applied 

systems which use both serial and neural processes is 

important for applied researchers, but may also prov1de 

a transitional model for cognitive theories. 

Eventually, however, our theoretical models will mostly 

describe serial processes in terms of parallel 

processes. 

I am not advocating discarding concepts such as 

problem space, heuristics, and internal 

representations. Nor am I denying the fact that the 

fundamental nature of human problem solving appears to 

sequential. Quite the contrary, these are important 

concepts and should be integrated with PDP models to 

develop a cohesive model which encompasses both the 

parallel microstructure and serial macrostructure of 

human problem solving. 

In fact, I believe that PDP models would be 

completely insufficient models of human problem solving 
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and the study of human problem solving would come to a 

halt if the only methodological tools available were 

the currently available PDP models. The two 

theoretical camps need each other if either is to 

advance. 

Newell and Simon have outlined an effective 

procedure for studying human behavior and have 

established an accepted and relatively understandable 

formalism for describing human performance. 

Unfortunately, that system does not adequately explain 

how such behaviors can be produced by a highly-parallel 

system such as the human nervous system. PDP models, 

on the other hand, have the potential of modeling a 

great deal of low level mechanism and explaining much 

of the phenomena which is observed in the cognitive 

psychology laboratory. However, pure PDP models of 

higher level processing are difficult to build and test 

because of the huge training overhead. 

Ironically, neural networks may model high-level 

human processes too accurately to be of direct use. 

Just as humans may take years to learn a high level 

skill (chess playing, invention, novel writing, etc) it 

might take a pure neural net just as long to be trained 

in the same high-level knowledge domain. Thus, a 

synthesis of the two approaches seems prudent. 
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First, much of the data collection techniques used 

in the study of human problem solving will remain 

unchanged. The procedures outlined by Newell and 

Simon, and refined by a myriad of other knowledge­

engineers, still seem adequate and useful. Likewise, 

much of the model building will still use production 

systems or other symbolic formalisms to describe 

problem solving behavior. In the short term, these 

systems will most likely be coupled with neural network 

sub-systems in order optimize certain pattern 

recognition operations. A second option for the 

applied world is to develop systems, such as the one 

described in the previous chapter, which can translate 

production systems/symbolic descriptions to neural 

network platforms and back again. In the pure research 

realm, similar hybrid model building will take place, 

but eventually, the theoretical vernacular will 

probably take on a more PDP-like flavor. While I do 

not propose tossing out important concepts such as 

problem space, problem formulation, and heuristics, I 

do think it is time that we began trying to specify in 

PDP-like terms just what it means for someone to be 

using a "means-ends heuristic" and how such a heuristic 

can be implemented on a highly parallel platform. 

Likewise, how does a highly parallel system formulate a 
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problem and plan a strategy for resolving that problem? 

These are all very complex problems and will not be 

resolved in the immediate future. They do, however, 

represent a general goal of cognitive science and the 

attainment of that goal will represent the merging of 

the two information processing paradigms into one. 

As scientists we are obligated to attempt to 

explain our findings at the level of greatest 

specificity available to us. After all, along with the 

ability to produce adequate explanations, precision and 

parsimony are two of the most important criteria by 

which a scientific theory is judged. Again, it is not 

reasonable to discard serial process models, because 

human behavior does have a strong serial component, and 

sequential, symbolic models represent an appropriate 

level of explanation. With the advent of PDP models 

however, we should not be content with the serial level 

of description. While it will take some time for the 

transition to occur, cognitive scientists, who study 

human problem solving, now need to attempt to take 

their models to another level of specificity by 

postulating how their serial models can be implemented 

on a highly parallel system. 

As I hope I have demonstrated in this paper, PDP 

models provide us with a potentially important avenue 
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to new insights and understanding of human problem 

solving, and I believe we should add one more goal to 

the goals outlined by Newell and Simon for the study of 

human problem solving. In order to further the study 

of human problem solving, we should now attempt to 

specify how a highly parallel, PDP-like system can 

produce ordered, goal-oriented, sequences of behavior 

which are consistent with human performance as 

described by serial, symbolic models derived from 

studies of actual human problem solving activity. 
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Figure Caption 

Figure ~. The silhouette of the mechanical object 

used in the experiment. Neither this drawing, or 

the drawing of the nonsense object, are complete 

technical drawings of the objects actually used. 

Both drawings, however, reasonably depict the 

relative visual complexity of the two stimulus 

items. 
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Figure Caption 

Figure 2. Silhouette of the nonsense object which is 

constructed of materials identical to the materials 

used in the mechanical object. 



Figure Caption 

Figure ~- Experimental lab arrangement. 

191 
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Figure Caption 

Figure ~. Average number of correct connections made 

during non-zero trials for experts and novices in 

the mechanical and nonsense conditions. 
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Figure Caption 

Figure ~. Average number of correct connections made 

when both zero and non-zero trials were included for 

experts and novices in the mechanical and nonsense 

condit1ons. 



Figure Caption 

Figure Q· Average elapsed time necessary to 

construct both objects by experts and novices. 
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Figure Caption 

Figure z. Average number of disconnects (errors) 

made by experts and novices in the mechanical and 

nonsense conditions. 
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Figure Caption 

Figure 8. Average number of zero trials for expert 

and novices in both conditions. The effects of 

expertise, object type, and the interaction were all 

non-significant (F(1,2) = .35; F(1,2) = 5.89; F(1,2) 

=.51; respectively). 
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Figure Caption 

Figure ~- Average number of looks taken by experts 

and novice~ during the construction of both objects. 
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Figure Caption 

Figure 10. Newell and Simon's (1972) schematic of an 

Information Processing System (IPS). 
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Figure Caption 

Figure 11. Program which describes the behavior of a 

thermostat. 
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Figure Caption 

Figure 12. Game state of a tic-tac-toe game in which 

the most successful move for X is the lower center. 
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Figure Caption 

Figure 13. The rule-base on the left represents what 

we, as external observers, may propose as a rational 

problem solver given the task demands of a tic-tac­

toe game. The rule base on the right represents the 

player's problem space which is inferred from her 

actual game playing behavior. 
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1. observe-temperature, 
if < 70 degrees go to 2 
if > 72 degrees go to 4 

go to 1; 

2. test if furnace-on 
if true go to 1; 

3. turn-furnace-on 
go to 1; 

4. test if furnace-on 
lf false go to 1; 

5. turn-furnace-off 
go to 1; 
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RATIONAL PROBLEM SOLVERS 
HYPOTHETICAL PROBLEM 
SPACE 

IF (move=opponent) 
THEN 

stop. 

IF (own=two marks on a row) 
&(blank square on hor~zon) 

THEN 
play blank square. 

IF (own=two marks on column) 
&(blank square on column) 

THEN 
play blank square. 

IF (own=two marks on d~ag.) 
&(blank square on d~ag.) 

THEN 
play blank square. 

IF (opp=two marks on a row) 
&(blank square on hor~zon) 

THEN 
play blank square. 

IF (opp=two marks on column) 
&(blank square on column) 

THEN 
play blank square. 

IF (opp=two marks on d~ag.) 
&(blank square on d~ag.) 

THEN 
play blank square. 

IF (own=fork~ng pattern) 
&(~ntersect~on blank) 

THEN 
play ~ntersect~on. 

IF (opp=fork~ng pattern) 
&(~ntersect~on blank) 

THEN 
play ~ntersect~on. 

IF (center ~s blank) 
THEN 

play center. 

IF (opp=s~de square) 
THEN 

play corner. 

IF (opp=corner) 
THEN 

play oppos~te corner. 

PLAYER'S HYPOTHETICAL 
PROBLEM SPACE INFERRED 
FROM BEHAVIOR 

IF (move=opponent) 
THEN 

stop. 
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IF (opp=two marks on a row) 
&(blank s~~are on hor~zon) 

THEN 
play blank square. 

IF (opp=two marks on column) 
&(blank square on column) 

THEN 
play blank square. 

IF (opp=two marks on d~ag.) 
&(blank square on d~ag.) 

THEN 
play blank square. 

IF (own=two marks on a row) 
&(blank square on hor~zon) 

THEN 
play blank square. 

IF (own=two marks on column) 
&(blank square on column) 

THEN 
play blank square. 

IF (own=two marks on d~ag.) 
&(blank square on d~ag.) 

THEN 
play blank square. 

IF (own=fork~ng pattern) 
&(~ntersect~on blank) 

THEN 
play ~ntersect~on. 

IF (opp=fork~ng pattern) 
&(~ntersect~on blank) 

THEN 
play ~ntersect~on. 

IF (center ~s blank) 
THEN 

play center. 

IF (opp=s~de square) 
THEN 

play corner. 

IF (opp=corner) 
THEN 

play oppos~te corner. 
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