
COGNITIVE DIMENSIONS OF HUMAN PROBLEM SOLVING,

INVENTION, AND CREATIVITY FROM CONVENTIONAL,

CONNECTIONIST, AND INTEGRATED

PERSPECTIVES

By

TIM P . 1~cCOLLUM

Bachelor of Science
in Arts and Sciences

Oklahoma State University
1982

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
1n partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1992

COGNITIVE DIMENSIONS OF HUMAN PROBLEM SOLVING,

INVENTION, AND CREATIVITY FROM CONVENTIONAL,

CONNECTIONIST, AND INTEGRATED

PERSPECTIVES

I

Thesis Approved:

Dean of the Graduate College

ii

C 0 P Y R I G H T

by

Timothy Patrick McCollum

May, 1992

PREFACE

The present work represents an attempt to understand

the complex cognitive processes which underlie the general

class of human behaviors known as creative problem solving.

More specifically, I will use inventiveness to represent the

broader class of creative human behaviors. Therefore, my

major aim will be to examine human inventiveness, and any

implications for the more general class of creativity will

be limited by the degree with which human inventiveness

accurately represents the breadth of human creative problem

solving.

Two separate avenues of scientific inquiry were pursued

during the course of the project. The first approach was an

attempt to study human inventiveness in the laboratory.

This investigative strategy attempted to extend classic

research findings from traditional problem solving domains

(e.g chess, game-playing) to the less constrained creative

problem solving domain of invention. The technique used was

a modification of the approach used by Chase and Simon

(1973) to study Chess expertise. The first invest1gative

strategy was also highly influenced by the techniques

traditionally used in expert system development, knowledge

engineering, and rule-oriented information processing

analyses.

iii

The second investigative tactic was to examine creative

human problem solving at a more theoretical level in order

to achieve three primary aims. First, I wished to provide

an overview of what is now often referred to as the

traditional symbolic approach to studying human problem

solving which was advanced by Newell and Simon (1972).

Next, I wished to examine a more recently developed approach

to understanding human cognition known as neural or

connectionist modeling. In doing so, I hoped to develop

insights into human creativity and inventiveness that might

be provided by this newer perspective on cognition. Lastly,

I attempted to identify, describe, and integrate the

advantages of both the traditional symbolic and

connectionist perspectives, so that a more unified, and

complete, view of human inventiveness and creativity might

emerge.

I wish to express sincere appreciation to the faculty

and students of the 0. S. U. Psychology department for the

support and inspiration I have received throughout my

graduate program. Special thanks goes to Dr. Larry

Hochhaus, Dr. Robert Stanners, Dr. Donald Fromme, and Dr.

James Price for their advice, tutelage, and friendship which

made the rigors of graduate study worthwhile and enjoyable.

Likewise, I wish to express gratitude to Dr. Robert Weber

for his mentorship, friendship, and encouraging me to follow

my interests and instincts during the dissertation project.

I also wish to thank the dissertation committee (Dr. Robert

iv

Weber, Dr. Robert Stanners, Dr. Larry Hochhaus, and Dr.

Charles Bacon) for their assistance, comments and support

throughout the project. Many thanks go to my wife Katrena,

my parents, my family, and my friends for bolstering my

spirits during the seemingly endless effort to complete this

project. Lastly, I would like to thank Jacob McCollum for

continually putting my priorities in perspective.

v

TABLE OF CONTENTS

COGNITIVE DIMENSIONS OF HUMAN PROBLEM SOLVING
INVENTION, AND CREATIVITY FROM CONVENTIONAL
CONNECTIONIST AND INTEGRATED PERSPECTIVES.

Abstract.
Introduction.
Method.

Subjects
Materials and Apparatus.
Design and Procedure.

Results .
Scoring.
Analysis

Discussion of Empirical Findings•.
Theoretical Discussion.

Two Perspectives of Cognition. . . •
The Conventional Information

Processing Perspective . . .
Problem Solving Information

Processing Systems • • .
The Problem Solving Process. .
A Summary of Newell and Simons' Human

Page

1

2
3

15
15
16
19
22
22
24
27
36
36

41

50
61

Problem Solving Theory . . • 71
The Neural Network Perspective . . • . 76
The Development of a Neural Network. . 85
Two Representative Neural Networks • . • . 88
Phase I: Engineering. • . 90

Multi-layered Perceptrons . . • . 90
The Hopfield Net. • • . . 93

Phase II: Training. • . 96
Multi-Layered Perceptron. . . . • 96
The Hopfield Net. • 98

Phases III and IV: Testing and Operation. 99
Multi-layered Perceptron. 99
The Hopfield Net. . . . • . • 100

Conclus1on 102
Problem Solving Neural Nets. . . . • . 105
Synthesis: Integrating Neural Network and

Traditional Problem Solving Perspectives •• 117
A Transitional Model of a Hybrid Problem

Solving System that Integrates Neural
and Symbolic Processes 122

vi

Sequential Neural Processing,
Consciousness, Mental Models,
and Creativity 134

Summary and Conclusions. 170

REFERENCES . . • 183

vii

LIST OF FIGURES

Figure

1. Silhouette of the Mechanical Object .

2. Silhouette of the Nonsense Object

3. Laboratory Arrangement. .

4. Average Number of Correct Connections
During Non-Zero Trials

5. Average Number of Correct Connections During
Both Zero and Non-Zero Trials • •

6. Average Elapsed Construction Times. . .

7. Average Number of Disconnects (Errors) .

8. Average Number of Zero Trials . . .

9. Average Number of Looks . .

Page

17

18

18

25

25

26

27

27

27

10. Schematic of an Information Processing System . 42

11. Thermostat Program. . . . 50

12. Tic-Tac-Toe Game State. . 58

13. Hypothetical Problem Spaces for Tic-Tac-Toe . . 59

viii

Cognitive Dimensions of Human Problem Solving,

Invention, and Creativity from Conventional,

Connectionist, and Integrated

Perspectives

Tim P. McCollum

Oklahoma State University

1

Running Head: PERSPECTIVES ON INVENTION AND CREATIVITY

2

Abstract

Experimentation and a integrated perspective of current

theories were used to investigate human inventiveness.

During the experiment, two expert inventors and two

novices replicated a mechanical object and a nonsense

object. In accordance with Chase and simon (1973),

experts were expected to outperform novices in the

mechanical condition and perform equivalently to

novices in the nonsense condition. No statistical

difference, however, was found betwe~n experts and

novices. Interpretation is complicated by a possible

ceiling effect and the confounding of expertise with

subject age due to difficulties obtaining expert

inventors as subjects. An extended discussion section

examines conventional models of problem solving, the

fundamentals of parallel distributed processing models,

and how the two might be integrated to produce a new

perspective on inventiveness. Edison's invention of

the electric light is examined from an integrated

perspective to illustrate the insights that might be

gained from unifying conventional and neural processing

models.

Cognitive Dimensions of Human Problem Solving,

Invention, and Creativity from Conventional,

Connectionist, and Integrated

Perspectives

3

Areas of expertise which are generally described

as creative (e.g. musical composition, creative

writing, invention, sculpture, painting) are

intrinsically interesting and important because

creative activity best exemplifies the human cognitive

abilities which distinguish us from even our nearest

cousins in the animal kingdom. Indeed, humanity's

propensity for inventive and creative actions is

largely responsible for our success as a species.

Studying creativity may therefore provide insight into

the human mind's unique capacities and facilitate the

development of techniques which can improve human

problem solving performance. Unfortunately, due to

their unconstrained, intense, and often lengthy nature,

creative behaviors are some of the most difficult to

systematically study.

Newell, Shaw, and Simon (1962) described four

characteristics which distinguish creative problem

solving from other forms of problem solving behavior.

According to their view, creative problem solving is

problem solving which produces a novel end-product by

4

using unconventional strategies, persistent, highly

intense thought, and a loosely constrained problem

formulation. In this view, the product of a creative

act must be unique, or novel, and have value to the

solver or others. The thinking must also be

unconventional in that it requires modification or

rejection of traditional approaches to similar

problems. Creative problem solving further requires

persistence and high motivation over a long period of

time, and periods of intense concentration are

necessary to arrive at a successful end product. This

may be due to the fact that traditional approaches are

wrong for the solution of a problem and the solver must

work through those incorrect solutions in order to

"create" a correct solution. Lastly, a creative

problem must in large part be defined by the solver.

That is, the problem is poorly defined and the

constraints upon the problem are loose, at best. Thus,

a large part of creative problem solving is discovering

and formulating the specific problem, and sub-problems,

to be solved.

The trad1tional approach to studying problem

solving has often been directed at examining the

behaviors of experts performing in relatively well

defined problem domains (e.g. chess playing, computer

5

programming, medical diagnosis, complex arithmetic

calculations). A chess match or the writing of a

computer program can be observed from start to finish

in a few hours. on the other hand, a more creative

activity, such as invention, may take weeks, months, or

years to complete. One may also easily determine

whether a computer program or a chess strategy was

successful. An invention or a novel is not so easily

judged as successful or unsuccessful and may well

depend upon its placement in time and space (eg., works

that are largely ignored until years, decades, or

centuries after their creation; conversely, the

creation of an incandescent light bulb would be seen as

creative in the 1800's but rather conventional in the

1990's). It is therefore, relatively simple to observe

and manipulate initial states, intermediate states, and

objectively-defined end states in problem solving

domains such as chess playing or computer programming.

Furthermore, the goals in traditional problem solving

domains are usually well defined, and the solutions

often result from recombinations of standard approaches

(e.g. using the same I/O routines or similar algorithms

in different programs, using the same opening or middle

game strategies in different chess matches, etc.).

Additionally, the constraints involved in a chess match

6

or the writing of a computer program are clearly

defined {e.g. a king can move one square in any

direction, each PASCAL statement must end with a

semicolon, etc.). A substantial portion of the

processes which allow for the successful solution to

problems in these areas can therefore, be classified as

conventional problem solving skills.

The d1stinction between conventional and creative

problem solving does not imply that one class of

activity is completely devoid of creativity and that

the other is a wholly creative enterprise. Generally

speaking, when one begins to write a computer program,

the programmer has a fairly clear idea of the function

that the program is to perform, the computer language

in which it will be written, many of the operational

constraints (e.g. syntax, memory capacity, value

ranges, limiting cases), the user audience, and may

even know which previously written blocks of code will

be reused in the new program. When an author begins a

new work however, she may have only a few ideas about

the characters, the actions they will take, the

ultimate outcome, the purpose of the work, or who will

read the text. Classifying a given problem solving

activity as creative or convent1onal is determined by

the degree of creative act1vity required to develop a

7

satisfactory result, and not the domain in which the

problem solving is performed. From this perspective,

computer programming is a problem solving domain that

requires relatively fewer creative behaviors than

invention or novel writing, but any specific problem

solving activity within the programming domain cannot

be judged as conventional, or creative, based solely

upon the domain in which it occurs. The distinction

between creative and conventional problem solving

domains is the number and centrality of problems within

a domain which require a novel solution by means of a

difficult, poorly constrained, unconventional problem

formation. The judgement of creative or conventional

is therefore a relative distinction. That is, domains

such as medical diagnoses and computer programming may

be judged as conventional when compared to invention,

but programming is certainly a creative domain when

compared to solving two digit multiplication problems.

Areas of expertise in which creativity plays a

large, central role are difficult to study in a

controlled laboratory environment because creative

problem solving involves poorly defined starting

states, subjectively-defined end products, poor, or

loose, constraints on the variety of useable

techniques, and may take place over long time spans.

8

Traditional approaches to the study of expertise,

sometimes known as knowledge engineering, have involved

four general steps (Hayes-Roth, Waterman, & Lenat;

1983). (a) Interview and re-interview experts. (b)

Observe experts performing skills of interest, and

obtain protocols based upon observations and

interviews. (c) Propose possible processes,

characteristics, knowledge structures, and heuristics

which would account for the superior performance of

experts. (d) Build a system based upon those

constructs, and verify that the system operates

effectively in the domain of interest.

Some researchers have questioned the reliability

of findings based on interviews with experts (Nisbett &

Wilson, 1977). Several other researchers, however,

have indicated that verbal protocols can be quite

reliable if subjects are asked to describe their

actions and not explain or make inferences about their

actions (Ericsson & Simon 1984, 1980; Kellog, 1982;

Kellog & Holley, 1983). Furthermore, the utility of

the knowledge engineering approach has also been

successfully demonstrated several times by the creation

of effective expert systems (e.g. Dendra!, Mycin,

Prospector, to name just a few).

Even with the issue of verbal report reliability

9

aside, creative activities, such as invention, take

place over a long span of time and it is therefore

difficult to develop meaningful, complete descriptions

of invention which are based solely upon the verbal

reports of experts. In addition, interview methodology

is a labor intensive, tedious process which generally

requires months to complete, even when used in rather

restricted areas of conventional domains. The product

of such efforts is usually large quantities of detailed

information about highly specific realms of expertise.

Consequently, using results from interview data to make

meaningful comparisons across knowledge domains becomes

an arduous, if not impossible, task.

To further complicate matters, obtaining protocols

can also be expensive in terms of materials due to the

largely unconstrained nature of creative activity. An

expert inventor, for example, may develop many

prototypes before a satisfactory result is obtained.

It would therefore be advantageous to develop short­

term laboratory methods, which use simple neutral

stimuli, to collect more manageable data about the

characteristics of expert creative problem solvers.

In a related project, another researcher from our

lab conducted preparatory interviews with expert

inventors and proposed several processes that might be

10

important to invention (Weber, Moder, & Solie, 1990).

One of the most promising constructs identified in the

interview data was the ability to parse an object into

its components. In short, parsing delineates the loci

of variations within a particular object and yields a

knowledge structure which is similar to the framework

devised by Minsky (1975). In Minsky's framework

(sometimes referred to as frames and slots), knowledge

categories (e.g. fasteners) are defined by their

various instances which contain at least one common

characteristic. For example, safety pins, straight

pins, buttons, snaps, screws, and velcro may range in

their physical similarities, but they all share the

common feature of being able to fasten two surfaces.

Each device, therefore, is an instance of the category

of fasteners. The instances of categories may be

referred to as frames, and are in turn composed of

various characteristics or slots (e.g. the slots of a

safety pin might be spring, clasp, brace, pin).

Parsing an object utilizes a similar type of

knowledge structure. For example, if we wished to

develop a new type of safety pin (frame), we might

start by breaking down the safety pin into its

components of a spring, clasp, brace, and pin (i.e.,

parsing the safety pin into its slots). We might then

11

alter those components in several ways: we may combine

them with components of other objects, we may change

their orientation to each other, we may replace the

component with an analogous component, we may enlarge

one or all of the components, etc. Furthermore,

parsing may take place on several levels. Just as we

can parse an object into components, we can also parse

components into sub-components. For example, a clasp

is a component of a safety pin. The material, size,

shape, operation, or function of the clasp can also be

parsed. Parsing simply provides the basic data

structure upon which other transformational processes

can operate and may therefore be a fundamental

inventive process.

We know by definition that expert inventors are

better inventors than are novice inventors, and if

parsing is an important inventive procedure, then

experts may well have different parsing patterns than

do novices. Furthermore, parsing patterns generated by

experts should be "better" than those generated by

novices. Experts may be faster at generating parses,

or they may generate more parses than do novices. de

Groot (1965, 1966), however, found that expert chess

players did not generate more moves in a smaller amount

of time, but instead, generated qualitatively better

moves. That is, expert chess players generated moves

with a greater chance of success or moves which more

efficiently accomplished a goal.

12

Chase and Simon (1973) used an ingenious

technique (sometimes known as the "quick glimpse"

method) for accessing differences between expert and

novice chess players. Both novice and expert players

were presented with several chess board configurations

and were asked to accurately reassemble the pattern

onto a second chess board. The boards, however, were

positioned so that the subjects could not look at both

boards simultaneously. Therefore, the subjects were

forced to hold the test pattern (or part of the

pattern) in memory while they reconstructed the pattern

on the answer board. In analogous terms, they were

forced to "parse" the chess board configuration because

the number of chess pieces exceeded short-term memory

capacity. Furthermore, two types of patterns were used

as test items: true board configurations, and nonsense

configurations. True board configurations were

arrangements which could actually occur during a chess

match. Nonsense configurations were illegal and random

patterns of chess pieces that would have a zero

probability of occurring during a chess match. The

experts performed no better in the nonsense condition

than did novice chess players. In the true board

condition, however, experts performed markedly better

than did novices.

13

The Chase and simon (1973) study illustrates some

important distinctions between novice and expert chess

players. First, it indicates that chess experts do not

possess a superior short-term memory relative to

novices. Otherwise, the experts would have out

performed the novices in both the true board and

nonsense conditions. Second, the study indicates that

expert chess players are better at remembering actual

chess configurations than are novices. This is most

likely because experts have seen the patterns many

times and through practice, the configurations have

been "chunked" (Miller, 1956) into meaningful units.

This common result of practice and elaboration can be

demonstrated easily by trying to remember and repeat

the letter string: e, d, s, 1, u, e, c, h. This is a

difficult task for most people, but the recall task

becomes much easier when the same letters are combined

to form a meaningful unit (e.g. s,c,h,e,d,u,l,e,).

Thus, in a manner of speaking, chess masters have

learned to read the chess board like a book, while the

novices are still learning their ABC's. (Similar

results have been obtained by de Groot 1965, 1966;

14

Charness, 1976; in computer programming by McKeithen,

Reitman, Rueter, & Hirtle, 1981; and Shneiderman, 1980;

in physics by Chi, Feltovich, & Glaser, 1981).

Analogously, parsing may yield the memory chunks

of expert inventors. The relationships among a

specified pattern's components determine which

components belong to which chunks, and the nature of

the relationships, both within and between chunks, is

determined by the subject's previous experience within

the knowledge domain. Parsing identifies/generates

groups of related components (chunks) present in a

given pattern and makes the members of that parse

(chunk) available for other transformational processing

(in this case, replication).

If the above findings in conventional problem

solving domains can be generalized to the more creative

problem solving realms such as invention then expert

inventors should be able to divide objects into larger

units which would allow them to remember the structure

of those machines better than would novice inventors.

That is, if the results of the Chase and Simon (1973)

study are applicable to invention, and parsing is an

important inventive process, then experts at machine

invention should produce larger, and thereby fewer,

parses than novices in reconstructing the same machine.

15

Furthermore, the experts and novices should require an

equivalent number of parses to reconstruct a non­

functioning nonsense object. The current study was

conducted to 1) further the understanding of cognitive

processes used in the inventive process, 2) determine

whether classic research findings from more

conventional problem solving domains could be

effectively demonstrated in a more creative area of

human problem solving, and 3) use a short-term

investigative strategy, which utilizes simple neutral

stimulus materials, to yield data that would permit

relatively straight forward comparisons with research

findings in other problem solving domains.

Method

Subjects

The sample consisted of two expert inventors {each

had designed one patented mechanical device), and two

novice inventors (senior level, university

undergraduates who did not have a patent). All four

subjects were males. The ages of the inventors were 47

and 49. The ages of the novices were 19 and 22. The

experts volunteered to participate and received no

reimbursement for their participation. The novices

were volunteers and received two extra credit po1nts in

their experimental psychology course for participating.

16

All four volunteers stated that they had worked with

Tinker Toys as children and that they spent an average

of less than 30 minutes a day working with tools or

machines. On a scale of one to seven with seven being

the highest degree of enjoyment, both experts rated

their enjoyment of working with tools as higher than

average (5 & 6). Both novices rated their degree of

enjoyment when working with tools as lower than average

(1 & 3). The novices estimated their mechanical

aptitude as near average (3 & 4; on a scale of 1 to 7

with 7 being highest}. The experts also rated their

mechanical aptitude as near average, although slightly

higher than the novices' ratings (4 & 5). Both novices

and one expert denied any formal training in mechanical

design. The other expert had earned a Masters degree

in mechanical engineering.

Materials and Apparatus

A Pentax color video camera (model# PC-K1500A) and

a Pentax VHS format portable video cassette recorder

(model# PZ-R1100A} with time stamping (accurate to .1

sec.) were used to record the experiment. A Magnavox

VCR (Model# VR9750AT01) with remote control for super

slow motion and individual frame advance, connected to

a KMC television (model# KMC-1921G) were used to score

the tapes.

17

The two stimuli (mechanical and nonsense objects)

were constructed from Tinker Toys (a building set sold

by CBS Toys). The mechanical object was constructed

using 79 Tinker Toys and was an operational model of a

windmill. The mechanical object was operational in the

sense that it was composed of a large fan which spun in

response to certain forms of external forces (i.e. a

breeze, spinning it with one's finger etc.). The

energy of the fan was transferred, via two gears, to a

vertical shaft which would spin as a result of the

external energy applied to the fan blades.

Insert Figure 1 about here

The nonsense object was constructed of a set of 79

Tinker Toys which was identical to the set used to

build the mechanical object. The nonsense object

resembled no discernable machine, had no moving parts,

and did not model any obvious utilitarian activity.

The nonsense object was designed by way of a pseudo­

random construction procedure. First, the set of 79

pieces were placed in a box. The box was then shaken,

opened, a piece drawn, and connected to whatever

structure existed. If there was no place for a piece

to be connected, it was set aside until an opportunity

18

to be connected arose. The process continued until all

pieces had been removed from the box and connected to

the structure.

Insert Figure 2 about here

The stimulus items (mechanical and nonsense

models) were individually placed in a blind constructed

of three white poster boards (side = 16"w x 34"h, front

= 24"w x 34"h, top= 24"1 x 18"w). The front and side

of the blind had slits (B"w x 6"h) which were covered

by flaps of white poster board (10"w x 8"h). The blind

was set atop a standard typing table which had one end

leaf down. This placed the two slits at approximately

eye level (46 11 from the floor) for an adult sitting in

a standard four-caster office chair.

Insert Figure 3 about here

A wooden conference table (10 1 1 x 32"w) was

placed length wise in the lab room (12'1 x 5'w). Two

sets of Tinker Toys (building set #550; approx. 115

various pieces per set) were placed at one end of the

table. The subject sat in a four-caster, padded office

chair at the same end of the conference table where the

19

Tinker Toys had been placed (Figure 3 is a sketch of

the lab configuration). A line was drawn on the table

in order to define the work area. None of the

construction materials or the subjects' construction

activities were to take place beyond the line because

they would be outside of camera range. The blind was

stationed 1' to the left of the table and 1.5' beyond

the end of the table. The positioning of the table,

work area, and blind allowed the subjects to easily

move back and forth between either blind slit and the

work area. The camera, VCR, and an Amdek Color-I

monitor were placed at the opposite end of the testing

room. The camera was placed on a tripod and was

adjusted so that the subject, the work area, and the

blind flaps could be simultaneously video taped. The

monitor was placed so that only the experimenter could

see the screen.

Design and Procedure

All subjects were tested individually, and

replicated both the mechanical and nonsense objects.

The order of presentation was balanced across both

groups (i.e. half of the experts saw the nonsense

object first as did half of the novices).

Upon entering the laboratory, subjects were asked

to read and sign a volunteer's consent form. After the

20

subject signed the consent form, the video camera and

recorder were activated. The experimenter then asked

several demographic questions. (The results of which

are stated in the subjects sub-section.) After

gathering this information, the experimenter read the

task instructions to the subject and answered any

questions. The instructions informed the subject that

their task was to build a replica of the object which

was in the box beside them. They were further informed

that they could look in the box as often as they liked,

but they could only look at the object through the two

flaps. Participants were also instructed to work as

quickly as possible, and not to remove the Tinker Toys

from the work area of the table. This was done to

prevent subjects from grabbing several materials,

turning to the box, and assembling the parts in their

hands while directly viewing the test object. Not

allowing subjects to simultaneously view the replica

and original, forced them to depend upon memory in

order to complete the task. After subjects stated that

they understood the instructions, subjects were given

three minutes to familiarize themselves with the

construction materials in the work area. Following the

three minute period, the experimenter removed the top

of the blind to illuminate the object within and asked

21

the subject to look through the side flap at the

object. Both stimuli were viewed for 60 seconds

through the side flap, but in the mechanical condition

the experimenter turned the fan blades in order to

demonstrate all the moving parts. At the end of the

initial viewing, the subject was asked to lower the

flap, return to the work area, and look toward the

camera. The experimenter then responded to any

remaining questions. When all questions were answered,

the experimenter asked the subjects to begin and

started the camera's internal clock.

After the subjects had accurately replicated the

object, they were asked to improve the replica in as

many ways as they wished. Subjects were also asked to

"think aloud" while they performed this portion of the

task. After answering subjects' questions, the

experimenter asked them to begin and started the clock.

Upon completing their improvements, subjects were

asked to completely "break down" the improved replica

so that no Tinker Toys were connected. This was

followed by a 10 minute rest period. During the rest

period, the subject left the testing room, and the

experimenter exchanged the object in the blind for the

remaining object. After the 10 minute rest period was

over, the subject returned to the testing room, and the

22

procedures used for the first object were repeated

using the second object. Upon completion of the tasks

involving the second object, subjects were notified of

the specific purposes of the study, the experimenter

answered any remaining questions, and the subjects were

discharged.

Results

Scoring

The video tapes were scored for number of looks,

the elapsed time during each look, the number of

connections made during each "look", the number of

disconnections (errors), and the total time required to

assemble each object. A "look" trial began when the

subject's eyes were directed towards one of the two

blind slits, the flap covering the slit was raised past

the subjects eye level, and the subject's eyes were

open. The look trial ended when the subject's eyes

looked away from the slit, or the flap was lowered past

eye level. The total assembly time was scored as the

elapsed time between the experimenter saying "begin"

and the subject completing his final connection.

While on the surface the above definition of a

look may seem complicated, it yielded very reliable

scores. Two separate scorers scored randomly selected,

three minute, segments of tape for each subject in each

23

condition. Both scorers generated identical scores for

each tape segment.

The mechanical object required 83 connections and

the nonsense object required 80 connections.

Extrapolating directly from the Chase and Simon (1973)

methodology, the number of Tinker Toy pieces assembled

during each trial seemed to be a reasonable dependent

measure. When scoring began, however, it became

apparent that some pieces were assembled when connected

to one other piece while others required as many as

nine connections to be considered assembled. For

example, a short Tinker Toy rod which served as a gear

tooth was fully assembled when one end was connected to

the gear hub. The gear hub, however was not assembled

until all eight gear teeth and an axle were inserted in

the hub's available openings. That is, each gear tooth

required only one connection while other materials had

to be connected to as many 9 other pieces (gear hub)

before they could be recorded as assembled. Thus, a

subject might work on assembling parts of several

pieces in the same look but not fully assemble any one

piece. If number of pieces assembled was used as the

dependent measure then these activities would generate

a score of o for that look. It was also possible that

a subject might only make three connections during a

24

look which would result in three fully assembled pieces

and a score of three for a given trial. Thus, even

though the subject was more productive in the previous

situations, the dependent variable would indicate no

subject activity for those trials.

Number of pieces assembled, therefore, was not an

accurate representation of the subjects' performance in

each trial. The number of connections made, rather

than the number of pieces assembled, was theref9re

scored as the primary dependent measure. The number of

disconnections was also recorded and treated as error

data.

Analysis

The first analysis used a 2 (object) x 2 (order)

analysis of variance for a mixed design to investigate

order effects (mechanical-nonsense v. nonsense­

mechanical). No significant difference due to the

order in which stimuli were presented to subjects was

detected (F(l,2) = 5.76, n.s.).

For the remaining analyses, a 2 (object) x 2

(expertise) analysis of variances for a mixed design

was computed for the average number of correct

connections made during non-zero tr1als. On several of

the look trials, subjects would look at the original

and then look at their reproduction without connecting

25

any pieces. These were considered zero-trials and were

excluded from the first analysis. The average number

of correct connections was computed by dividing the

number of connections required (83 for the mechanical

object and 80 for the nonsense object) by the number of

productive looks for that condition. In the nonsense

condition, novices made an average of 1.84 correct

connections per look while experts made 1.68

connections. In the mechanical condition novices also

outperformed experts, although the differences due to

expertise were not statistically significant, F(1,2) =

1.60. The nonsense object was significantly more

difficult to replicate than the mechanical object,

F(1,2) = 32.62, p<.05.

Insert Figure 4 about here

Figure 5 represents the outcomes when zero trials

were included in the analysis. The variance due to

object type increased (F(1,2) = 70.25, p < .025), but

Insert Figure 5 about here

novices still performed better than experts (F(1,2) =

.33, n.s.), although to a lesser degree. In other

26

words, novices took more non-productive looks at the

nonsense objects than did experts (see Figure 8). The

interaction between expertise and object type were

nonsignificant in both analyses {F{1,2) = 3.42) when

zero trials were excluded; F{1,2) = 2.63 when zero

trials were included).

Experts took longer to complete both replication

tasks than did novices {See Figure 6). The nonsense

object required more time to complete even though it

required fewer connections than the mechanical object.

The effects due to expertise (F{1,2) = .1) and the

interaction (F(1,2) = .03) were statistically non­

significant when elapsed time was used as the dependent

measure. The only statistically significant difference

in elapsed time was due to the object being replicated,

F(1,2) = 41.05, Q<.025.

Insert Figure 6 about here

As is depicted in Figure 7, experts made more

disconnections than did novices, and more disconnects

were performed in the nonsense condition than in the

mechanical condition. However, neither main effect was

significant {F{1,2) = 1.18; F{1,2) = 2.95,

respectively), nor was the interaction, F(1,2) = 1.2.

27

Insert Figure 7 about here

The only condition in which experts outperformed

subjects was the number of looks required to assemble

the nonsense objects (Figure 9). Experts required an

average of 131.5 looks to assemble the nonsense objects

whereas novices required an average of 177.5. In the

mechanical condition, however, experts averaged more

looks than did novices. Once again the differences due

Insert Figures 8 & 9 about here

to expertise were non-significant, F(1,2) = .15. The

differences due to object type (F(1,2) = 8.55) and the

interaction between object type and expertise {F{1,2) =

.5) were also statistically non-significant.

Discussion of Empirical Findings

The pattern of data resulting from the current

study did not produce interaction and main effects

consistent with the findings of Chase and Simon (1973).

In the present study, novices consistently outperformed

experts as measured by any of the various dependent

measures. The mechanical object, however, was easier

to replicate than the nonsense object, and the

differences due to object type were the only effects

that reached statistical significance.

28

Although sampling error is the most likely

explanation for the statistically non-significant

differences due to expertise, a few other extraneous

influences may have also been at work. First, due to

difficulties obtaining a sample of expert inventors,

the average age of, the novices (20.5) was substantially

less than the experts• mean age (48). The novices•

younger eyes and hands may have provided a performance

advantage during the replication task. Also, the

younger novices may have been slightly more motivated

because they were receiving extra credit in their

psychology class, and the experts were volunteering

their time with no form of reimbursement. During the

experiment, however, all subjects appeared

enthusiastic, cooperative, and equally motivated to

perform the tasks.

Even though the above mentioned factors were

present, I believe that they had little, or no, effect

on the experimental outcome. I think the lack of any

statistical differences between experts and novices in

this task is legitimate, and the task, therefore, was

not able to distinguish between expert and novice

inventors. Experts and novices performed at

29

approximately the same level in all object conditions,

and the primary factor accounting for the lack of

differences is most likely a ceiling effect. While the

nonsense object appears to have been more difficult

than the mechanical object, both objects may have been

too simple and did not require the use of specialized

knowledge to perform the replication task. Had the

objects been more complex structures with a more

sophisticated design then the task may have required

the experts to utilize more unique knowledge

structures. Likewise, a more sophisticated design may

have pushed the novices to the limit of their

mechanical knowledge. The novices, lacking any

specialized inventive or mechanical abilities to cope

with such complex stimuli, would demonstrate a

performance deficit relative to the experts. Slight

support for this view comes from the number of looks

required to replicate each object (see Figure 8). The

experts required fewer looks to replicate the nonsense

item than did novices. One implication of this result

is that the increased complexity of the nonsense object

may have affected the experts less than the novices.

While such a singular result is interesting it is still

highly suspect. Again, one must remember that the

result was statistically non-significant and the

observed differences are most likely due to common

sampling error.

30

One of the goals of this study was an attempt to

develop a relatively simple, short term method to study

the nature of human inventiveness. Thus, the choice of

a simple, neutral machine versus a intricate

specialized machine was made. There was no a priori

means to determine how simple, or complex, that machine

had to be, and the costs of the design complications

introduced by the use of a more complex stimulus were

much too high. Even now, it would be difficult to

determine how sophisticated the machine should be. For

example, most inventors from mechanical fields probably

possess a general mechanical aptitude and a high degree

of specialized knowledge within the field in which they

have received patents. In the current study, one

expert received a patent for an improvement in air

conditioning design, and the other received a patent

for a modification to a piece of agricultural

equipment. While it is true that both of these

subjects would probably have little trouble changing a

faucet washer, it is also very difficult to say that

the air conditioning expert could have as easily

developed the agricultural invention and vice versa.

The two experts, while possessing similar general

31

aptitudes, and perhaps similar inventive aptitudes,

simply do not possess the same specialized knowledge

that allowed them to create their respective

innovations. Therefore, if a fair comparison is to be

made, the mechanical object should be of substantial

complexity to access any unique knowledge structures of

the expert inventor. If the mechanical device is of

such complexity then comparing the expert's performance

to completely naive subjects would be an unfair

comparison. It would be impossible to determine

whether any observed performance advantage for the

expert should be attributed to special inventive

abilities or simply to greater familiarity with the

mechanics of the test item. Therefore, the subject

population would also need to be changed. For example,

if one could assemble a sample of experts who had a

patent in air conditioning design then an appropriate

novice population might be a sample of air conditioning

service technicians who possessed no patents.

Obviously, using such procedures would add a great

deal of time and expense to locate and reimburse such

professionals for participating in the study. At the

beginning of this study, it was my hope that such

complicated studies could be avoided, and I therefore

attempted to determine whether the use of a neutral,

32

simple machine could be used to demonstrate any

cognitive abilities unique to inventors.

Unfortunately, no concrete conclusions about the nature

of human inventiveness have been uncovered as a result

of the current study.

The fact that experts and novices performed at an

equivalent level when given neutral, relatively simple

objects to replicate is, however, consistent with the

idea that the specialized cognitive structures which

make invention possible are most likely tightly bound

to the specialized knowledge of the domain in which the

inventor works. The possible exception to this rule

may be those rare cases of particularly gifted

inventors (e.g. Edison) who seem able to translate

their inventive capacities to a variety of fields.

Even in these rare cases, however, it seems clear that

such inventors must exert great effort to become

competent in a new domain, and only after a obtaining a

relatively high level of understanding of a new domain

can they develop truly unique inventions. (I will

return to this point and attempt to describe why this

may be the case in the last section of the paper.)

While the primary goal of the research was to

identify processes and abilities that distinguish

inventors from the general population, a secondary goal

/
' I V'

33

was to develop a methodology which would allow for

relatively straightforward comparisons between this

study and other studies of expertise in diverse

domains. Furthermore, I wanted to develop a

methodology which eliminated the complexities involved

with protocol analyses of experts' verbal reports. The

project was only partially successful in achieving

these two secondary goals. Conceptually replicating

the Chase and Simon (1973) study did provide data that

allow reasonable comparison between this study and

similar studies in other domains. Furthermore, I was

able to investigate inventive expertise without the use

of verbal reports.

The present methodology unfortunately introduced

an entirely new set of analytical difficulties. First,

scoring the tapes was a time consuming process to put

it mildly. Every minute of tape required approximately

two hours of effort to score and verify. The present

data represents approximately 160 hours of scoring not

including analysis, time required to set up the scoring

equipment, or breaks required to maintain accurate

scoring. When all the other "real-time" factors were

included, more than one semester of daily scoring

activity was requ1red to score and verify the data from

this study. Therefore, while the data generated from

34

the current methodology are somewhat more objective

than the data commonly generated from experts'

introspections about their actions, the scoring effort

remains comparable to the effort required by protocol

analyses.

The major cause of the difficulty surrounding the

scoring was the vigilance required to score the onset

and offset of looks. Scoring the number of looks was

originally planned to be a simple matter of counting

flap openings and closings. Unfortunately, the scoring

quickly became a process in which the scorer had to

determine when the flap was raised past the eyes, the

eyes were directed toward the flap, and the eyes were

open. Simply counting the number of flap openings and

recording the length of time that the flap is open

would have resulted in inaccurate results. Subjects

tended to open the flap and glance at the stimulus

(look beginning), then glance at their replication

(look ends), and then back at the stimulus (a new look

begins). They would often look back and forth several

times before closing the flap once and returning to the

work table. Although determining the point at which a

look begins, and ends, involves monitoring three

conditions, and consumed much of the scoring effort,

the use of a super slow motion VCR with frame advance

35

made the determination very accurate and reliable.

As is generally the case in science, the result of

the present study is a mixed bag. The research did not

produce a methodology which accesses invention

processes without requiring labor intensive scoring

efforts. The study did, however, produce objective

data that could be compared to studies from other

knowledge domains. Unfortunately, the data did not

produce results consistent with the Chase and Simon

(1973) findings, but the results do hint at one

potentially important characteristic of inventors.

Before an interested individual can become an inventor,

it may be necessary to acquire extensive knowledge of a

domain before she can create a unique, patent quality,

invention within that domain. While inventive ability

and domain knowledge are hardly synonymous, they may be

highly inter-related. That is, inventive processes are

most likely high level processes that can only utilize

knowledge structures which have a compatible level of

sophistication. In other words, the inventor may have

to obtain a fairly high level of comprehension within a

domain before any useful, unique, inventive procedures

can be effectively applied. Therefore, the development

of experimental techniques, which can disentangle the

inventive procedures from the domain specific

36

knowledge, may hold the greatest promise for unlocking

the nature of human inventiveness.

Theoretical Discussion

Two Perspectives on Cognition

Following World War II, a new technology, the

computer, was beginning to proliferate throughout the

scientific and technical community. The von Neumann

architecture was, and still remains, the most widely

applied computer architecture. A von Neumann machine

contains two primary components: a central processing

unit (CPU) and a central memory array. The CPU

contains registers which are small memory elements that

can contain one "chunk" of information (usually an

address of a central memory location, or a numeric

value read from an address in the central memory). The

machine operates by executing a pre-programmed sequence

of instructions which is stored in the central memory

array. The CPU begins by fetching the first

instruction in the sequence from the central memory

array. Next, the CPU performs the operation indicated

by the instruction and may write the result of the

operation back out to a location in the central memory.

The CPU then obtains the next instruction in the

sequence and the process repeats itself until the final

instruction in the sequence is executed. In the von

37

Neumann architecture, the CPU and memory are separate

components and information is represented explicitly in

individual memory locations. The processor of a von

Neumann machine can, at any one time, perform only a

single operation from a sequence of operations, and von

Neumann computers are, therefore, best described as

serial machines.

The serial computer provided scientists and

engineers with a tool which was flexible enough to

model complex systems and thereby allowed them to

build, control, and attain a higher understanding of

such systems. The human brain is certainly one of the

most complex systems known to science, and even though

human cognition is probably far more intricate than the

most sophisticated post-war computing process, it did

not take long before researchers began drawing

analogies between human thought and computer processing

(Turing, 1950; von Neumann, 1958). By the mid 1960's

the computer-mind metaphor was the dominate metaphor

driving psychological investigations and the von

Neumann machine was firmly entrenched as the dominate

computing device. It should therefore come as no

surprise, that human cognition had become characterized

in terms of serial information processing stages.

Viewing human cognition in terms of sequential symbolic

38

processes, resulted in substantial advances in computer

language designs, human factors, linguistics,

artificial intelligence, human learning and memory,

cognition, and human problem solving. Almost from the

beginning of the information processing revolution

however, there were detractors who warned against

taking the serial computer-mind metaphor too literally.

A major criticism of the computer-mind metaphor

arose from the differences between the actual

neurological organization of the human brain and the

dualistic organization of process and memory in the von

Neumann computer. How could scientists, who were

supposed to be concerned with truth and accuracy, so

willingly embrace serial models of cognition when there

existed such an obv1ous discrepancy between the models

and the supposed underlying physiological mechanisms?

The answer was, of course, that the information

processing theories operated at a level of explanation

which was higher than the level of explanation utilized

by neurological theorists. The information processing

camp affirmed the symbol as the fundamental component

of human cognition and thus, their explanations

supposedly did not extend to processes which operated

below the symbolic level. The information processing

investigators undertook the task of creating symbols

for objects, relations, operations, and any other

cognitive component that they deemed pertinent. The

human mind was viewed as a symbol processor and any

process which operated below the level of the symbol

was seen as a topic more suited to neuroscience.

39

The last two decades of advances in AI/expert

systems, human problem solving, cognitive psychology,

and the information sciences serves as a testament to

the power of explanation at the symbolic level.

However, as all worthwhile paradigms must do

eventually, the conventional information processing

approach illuminated human cognitive capabilities which

could not be adequately modeled with a sequential

symbolic processor (e.g., continuous speech

recognition, dynamic pattern recognition, visual scene

interpretation, content addressable memory, and

autonomous vehicles). The processing models of the

neural realists had always seemed to possess the

potential for dealing with such problems, and by the

1980's the technology and computational models had

developed sufficiently to use them successively in both

applied and theoretical realms.

The modern work on artificial neural models

actually began more than 40 years ago with work done by

Hebb (1949), McCulloch and Pitts (1943), and Rosenblatt

40

(1959) but, their efforts were stymied by a lack of

technology and the early successes with symbolic

processing systems. The recent resurgence in neural

theories began in earnest during the mid 1980's with

work by Hopfield (1982, 1984, 198G), Kohonen (1984),

Grossberg (198Ga, 198Gb), Feldman & Ballard (1982),

Hillis (198G), and Rumelhart and McClelland (198Ga,

198Gb) and represents an exciting possibility for

cognitive, neurologic, and computing research.

Undoubtedly, neural net theories will be a great boon

to those who are working on "monster" AI problems such

as those mentioned above, and to neural scientists who

wish to model human neural systems on a computer. One

of the most exciting prospects for neural computing,

however, lies in coupling the past successes of the

symbolic serialists with the power provided by the new

neural networks. For the first time, we may possess

the theoretical rudiments necessary to begin developing

a complete model of human cognition which encompasses

the higher level, apparently sequential processes of

the human mind and the highly parallel mechanisms which

underlie those processes. The purpose of this portion

of the dissertation is to explore how neural and

traditional models may be integrated so that new

insights might be gained about one aspect of high-level

41

cognitive processing, namely, human problem solving.

The first section will provide an overview of

Newell and Simon's (1972} influential work on human

problem solving by discussing the underlying

assumptions of traditional human problem solving

theory, defining some basic terms, and describing the

general process of problem solving. The following

section will provide an overview of neural networks by

discussing the underlying assumptions of neural

computing, defining fundamental terminology, describing

two representative neural nets, and lastly,

highlighting the tasks which neural nets most easily

lend themselves. The next section represents a first

attempt at uniting the two views of cognition by

describing a common data structure, formulating an

integrated processing model for applied expert systems

problems, and discussing a general, unified model of

creativity and invention. The final section will

summarize the previous sections and make some rather

modest predictions for the future of neural computing

and problem solving.

The Conventional Information

Processing Perspective

In 1972 Allen Newell and Herbert Simon authored

the highly influential book, Human Problem Solving,

42

which, as the title implies, was an effort to advance

the understanding of human problem solving. The

fundamental postulate of the Newell and Simon theory is

that humans operate as an information processing system

or IPS (p.19). According to Newell and Simon, an IPS

consists of three primary components: I/O mechanisms,

a processor, and a memory (see Figure 10).

Furthermore, an IPS resides in an external world that

contains the task information and all the physical

entities with which the IPS must deal.

Insert Figure 10 about here

The three components of the IPS, (the I/O

mechanisms, the processor, and the memory), comprise

any IPS's general architecture. The I/0 mechanisms are

divided into two general categories: receptors and

effectors. The receptors receive information from the

external world and pass it to the processor. If the

IPS of interest is a human then the receptors are

analogous to eyes, ears, and the other senses. If the

processor selects an output which must be manifested in

the external world, the action is performed by the

effectors. Again, if the IPS of interest is a human

then the effectors are abstractions of hands, feet,

43

mouth, or any other physical component which can

directly affect the external world. Newell and simon

divorce their problem solving theory from any detailed

concern with the sensory mechanisms and it should be

made clear that the primary components of an IPS

operate at a level that is more abstract than the

sensory or motor processes. The processor consists of

three components: a fixed set of elementary information

processes (eips); a small, limited short term memory

(STM) that can hold only a few symbol structures at any

one time; and an interpreter which determines the

sequence of operations to be executed by the IPS. The

last component of the IPS is the large, virtually

unlimited long term memory which holds the symbol

structures until the processor requires them in its

short term memory.

The IPS operates by accumulating information about

the external world via the receptors. The input from

the receptors is passed to the STM of the processor.

The processor then locates, by invoking eips, symbol

structures in memory that represent the external

objects and events. The symbol structures are then

passed to the processor and based upon the pattern of

activated symbol structures (i.e. the context), the

interpreter composes sequences of operations from the

44

set of available elementary information processes. The

resulting operations may animate the effectors andfor

cause the activation, modification, and/or creation of

symbol structures in memory.

In specifying an IPS capable of performing a

desired task, one must first define a set of

fundamental symbol manipulation procedures known as

elementary information processes (eips). The eips

combine with the symbol structures to define an IPS's

total range of capabilities. The IPS's entire behavior

is produced by executing sequences of the eips. These

simple processes can be combined to build more and more

complex procedures until an integrated problem solving

behavior emerges. Just what makes a process an

elementary process depends upon the purposes of the

particular application. The eips must be general and

powerful enough to generate the full range of behaviors

necessary to solve a specified problem. Furthermore,

the eips must be realizable by known mechanisms. For

example, there is no reason to take problem solving as

an eip for it would tell us nothing about how problem

solving is accomplished. The set of possible eips is

not unlimited, but a unique set of eips capable of

resolving all problems does not currently exist. In

fact, the quest for a limited set of eips capable of

45

resolving all symbolically representable problems is

one of the computing sciences' cornerstones.

Perhaps Newell and Simon's most ubiquitous

theoretical element is the symbol, and a primitive

symbol is the most basic form of a symbol. Like the

eips, the definition of a primitive symbol depends upon

the current application. For example, if one wished to

define an IPS capable of understanding speech, then one

might select the phonemes as the atomic structures of

speech and assign a primitive symbol to each phoneme.

By designating phonemes with primitive symbols, the

resulting model of speech processing would disregard

any process or knowledge which occurs below the

phonemic level (e.g. sound wave forms, the

physiological processes by which phonemes are detected,

and the perceptual processes by which phonemes are

recognized). In general, the definition of eips and

primitive symbols is determined by the degree of

specificity with which one wishes to define an IPS.
' Primitive symbols perform three primary functions.

First, primitive symbols designate specific events or

structures in the external world. Such primitive

symbols may be evoked when their referent occurs in the

external world of the IPS, or their presence within the

IPS may cause the IPS to create such events or

46

structures externally. Second, primitive symbols may

designate eips or sequences of eips so that the

referent can be activated by the interpreter. Lastly,

primitive symbols can be connected via relations to

produce more complex symbol structures.

As an example, consider the action of turning on a

light switch. First, one must define the eips for the

IPS which is to perform the action. For present

purposes, the IPS has four eips available to it

(locate-switch, touch-switch, move-finger, return-to­

previous-state). It should be clear that the

words/symbols which designate eips are just labels.

That is, the symbols have no inherent meaning to the

IPS other than being a unique designation for the

action(s) to be performed. I could have labeled them

Al, A2, A3, and A4, but I have instead chosen to

designate them with symbols which more adequately

describe their actions to us as external observers of

the IPS. We can now combine these four actions (eips)

into a sequence of actions and designate the sequence

with the symbol "flip-switch". Now if the IPS

encounters a situation in which the context requires

the flipping of a light switch, it need only activate

the symbol structure 11 flip-sw1tch" and the four step

sequence of "locate-switch", "touch-switch", "move-

finger", and "return-to-previous-state" will be

executed.

47

The advantage of viewing a problem solver as an

information processing system lies in the fact that an

IPS uses an interpreter which only requires a small,

finite amount of mechanism (i.e. the eips). However,

symbols, which can be used to designate eips, can be

arranged in very complex ways. Therefore, the

complexity of an IPS's behavior (sequences of eips) is

limited only by the complexity of the symbol structures

that can be built up in memory.

The power of symbols lies in their ability to

designate (i.e. to have a referent). The primary

designatory relationship is between a symbol and a

symbol structure • Thus, the symbol X2 may designate

the symbol structure (CAT). The ability to designate

means an information process can take a symbol as input

and gain access to the referenced object, or action, in

order to affect it or be affected by it in some way.

For example, an information process is given the symbol

TABBY which refers to the symbol structure (own cat

black male). Likewise, if the information process is

given the symbol structure (own cat black male) the

symbol TABBY can be produced. Given the symbol or

symbol structure an information process can then

48

operate on that symbol, the object in the external

world to which it refers, or use that symbol structure

to affect another symbol structure. In short, a symbol

can be used to encode information about any conceivable

thing and can hence operate as a surrogate for that

thing within the IPS.

In general, an IPS operates by locating symbols

and performing sequences of actions (eips) based upon

the context provided by the symbol patterns held in the

processor's STM. The component of the processor which

determines the sequence of operations is the

interpreter. The fundamental assumption of the Newell

and Simon theory is that an interpreter will operate in

a lawful fashion. That is, given the exact situational

context (same pattern of activated symbols), an

interpreter will generate a functionally similar or

exact sequence of operations. The behavior of an IPS

is therefore predictable if one can determine the

conditions under which certain sequences of behaviors

are generated by its interpreter. In accordance with

this assumption, a fundamental task for an inductive

scientist, who wishes to study human problem solving,

is to observe an IPS in order to hypothesize a program

for the IPS's behavior. A program, in Newell and

Simon's terms, is a set of rules and regularities that

describe the sequences of eips which the interpreter

executes as a function of its current informational

context.

49

The second general obligation of problem solving

theorists, according to Newell and Simon, is

determining the extent to which the IPS actually runs

according to the program which has been specified for

it. It should be made clear that a program is purely

external to the IPS. A program is our way, as external

observers, of describing the system. A program should

be understood as a theory which describes the operation

of a system in information processing terms. If the

interpreter of an IPS is a true interpreter (i.e.

generates sequences of operations based upon symbolic

structures in predictable ways), then we can also

describe the internal structure of the interpreter with

information processing terms. However, there may be

nothing inside the system itself that corresponds

directly to the program, but only a mechanism that

behaves in the manner described by the program. For

example, the behavior of a thermostat may be adequately

described by the follow1ng program taken from Newell

and Simon (1972, pp 31).

50

Insert Figure 11 about here

The thermostat however, has no interpreter which

processes symbolic structures. The thermostat contains

only a simple mercury switch that behaves in the manner

described by the program. At some level then, an

interpreter is just a mechanism which directly

accomplishes the actions described by the program. If

the interpreter of an IPS is actually a mechanism that

simply produces a sequence of behaviors (e.g. mercury

switch) then we cannot describe its actual internal

structure in information processing terms. Only

examination of the microstructure of the system in

question will determine the actual mechanisms at work

within an IPS, but even in this case, a program will

remain an adequate description and predictor of the

IPS's behavior.

Problem Solving Information Process1ng Systems

A problem solving situation consists of two

general constructs; a problem solving system and a task

environment. A problem solving system is simply any

IPS capable of selecting and executing actions in order

to achieve specified goals. Although Newell and Simon

never speak of a problem solving system in this way, it

51

is apparent that the problem solving system represents

the lower limit of their theory and equates roughly to

any physical platform capable of problem solving

activity (i.e. selecting and executing actions to

achieve goals). As they indicate several times, the

physiology or the true underlying structure of the IPS

is not important for describing the behavior of the

system. The problem solving system, therefore, is left

largely undefined and can be any system capable of

meeting the generic description of an IPS (human,

chimp, computer, thermostat, etc.).

The task environment can be generally defined as

an environment coupled with a task, goal, or problem

for which a problem solver is adequately motivated to

complete. The task environment contains all the

information and objects necessary for the problem

solver to produce a correct solution, but the task

environment may also contain objects and information

which may interfere with, disrupt, limit, and/or block

some solution paths. It is natural, albeit incorrect,

to think of the task environment as being entirely

external to the subject. In fact, the inherit

capabilities of the subject such as generalized

intelligence and level of experience (master v. novice

chess players) are also components of the task

52

environment. The task environment includes, but is not

strictly limited to, the goal of the problem, the

conditions under which the goal can be obtained, the

legal tools and operations that can be used to obtain

the goal, the inherit problem solving capacities of the

solver, and the starting state of the problem.

A problem exists when a goal is desired by a

system that does not possess an immediately available

method to obtain the goal. Even though all the tools

and informat1on necessary to solve the problem may be

immediately available in the task environment of the

problem solver, a solution path to the goal may not be

forthcoming because the TRUE problem does not exist in

the external world, but is created within the problem

solving system. To illustrate this point, consider

what might happen if two people are presented with an

identical problem in an identical external environment.

It is quite possible, even likely, that the two

individuals will perform the same task in different

ways. In fact, a single individual is likely to

perform different behavioral sequences during separate

exposures to the same problem. If the problems are the

same and the external environment of the subject is the

same then the performance differences must be

attributed to some variation within the problem solving

53

system. In Newell and Simon's framework, a problem

solver is characterized as an IPS which builds an

internal representation of the task environment in

order to produce a solution to a given problem. The

IPS's internal representation contains all the

information relevant to the problem including tools,

operations, capacities of the problem solver, problem

states, goals, and any other useful concepts which the

problem solving system may have available to describe

the problem situation (e.g. knowledge gained from

experience in other task domains).

The internal representation of all the information

relevant to the problem is labeled the problem space

(see Newell & Simon, 1972; p. 56- 86). The problem

space is not a physical space which can be pointed to,

but is instead the essence of the problem which exists

within the problem solver's cognitive machinery.

Although a problem space can be represented externally

with game trees, productions, magic squares, and other

symbolic structures, these structures are not the true

problem space. In linguistic terms, the game tree and

other symbolic structures are analogous to the surface

structure of language while the true problem space is

analogous to the deep structure of language. The

composition of the internal problem space determines

54

the nature of the TRUE problem, the behaviors that the

system will perform in attempting to solve the problem,

and whether or not the problem can be solved by a

system operating within the given task environment.

Attainment of a goal becomes a problem when the

number of plausible routes to the goal is large or

immense, the correct solution paths are widely

dispersed throughout that huge set of plausible

solutions, and the cost of obtaining and testing each

possible solution is high. A problem solver therefore

constructs an internal representation of all factors

deemed pertinent (i.e. the problem space) in order to

manage the immense amount of potentially relevant

information. The task environment's relevant

components (e.g. the goals, legal tools and operations,

and the initial state of the problem) are all

represented in the problem space. The problem space

also provides various imagined intermediate steps

towards a solution. The problem space can therefore be

used to internally generate and test solution paths

(sequences of mental and motor activity which may or

may not lead to a goal) without actually having to

perform the associated behaviors. The problem space

thus represents the set of possible solution paths

which are available to the problem solver. Learning is

55

therefore the process of composing, editing, and

retaining an internal problem space which allows the

problem solver to most effectively derive the correct

solution path for any problem selected from a specified

class of problems (e.g., 4*3 is a problem selected from

the class of multiplication problems). Accordingly,

problem solving is the process of deriving the correct

solution path from the internal problem space, and is

therefore internal to the problem solver.

Consequently, the true problem (i.e. deriving the

correct solution path(s) from the internal problem

space) and the resultant problem solving behaviors are

determined by the structure of the internal problem

space. Furthermore, because the problem space is

internal to the problem solver and thereby unknowable

to an external observer, the true problem and the

behavior of the problem solving system are likewise

unknowable to an external observer prior to the

execution of those behaviors.

We can know, however, the external stimuli and

some of the problem solver's intrinsic capacities (i.e.

portions of the task environment), and based upon the

demands of the task environment, one can fabricate a

hypothetical problem space. Task demands are

constraints on the behavior of the problem solver which

56

must be satisfied in order for the goal to be obtained

(e.g., you must have three-in-a-row to win in tic-tac­

toe, sufficient IQ, level of experience, short-term

memory capacity). An analysis of the task environment

produces a description of the task demands which, in

turn, establish possible solution paths while rendering

other solution paths inaccessible to the problem

solver. The inaccessible paths are not, therefore,

components of the subject's problem space.

For example, a subject may be placed in an

environment where he must obtain $2000. The rules of

the subject's society, and personal moral code, may

provide task demands by disallowing homicide or theft

as viable solution paths. The capacities of the

problem solver may also provide task demands. If he

cannot read or write, or if he has no collateral of

value equal to $2000, he may not be able to obtain a

loan from an accredited lending institution. Each of

these constraints, and many more, may disallow certain

solution paths while defining other paths. By

carefully analyzing the task environment, which

involves ident1fying capacities of the environment and

the problem solver, one can build a hypothetical

problem space devoid of irrelevant solution paths and

generate a set of prototypic path features which could

57

lead a problem solver to a correct solution.

A hypothetical problem space is a representation

of the behavior demanded by the task environment given

a perfectly rational problem solver operating at

specified level of adaptivity. A problem solving

system is considered perfectly rational if the behavior

exhibited by the system in a specified problem solving

situation is appropriate given the demands of the task

environment. If a task environment demands certain

behaviors and a problem solver exhibits those behaviors

then those behaviors tell us more about the task

environment than about the subject other than he/she is

adequately motivated and equipped to perform the task.

It is when actual human behavior deviates from the

behavior predicted by the perfectly rational model that

we begin to discover something about human rationality.

The demands of the task environment and the

psychology of the subject, are the components which

Newell and Simon regard as the two most important

aspects of human problem solving. Therefore, the first

step of the general methodology proposed by Newell and

Simon is analysis of the task environment in order to

determine the task demands. Second, based upon the

task demands, one constructs a hypothetical problem

space from a specified set of eips and symbol

58

structures. Subsequently, a perfectly rational problem

solving system is created by allowing an IPS to operate

with the hypothetical problem space in the specified

task environment. Next, one observes humans performing

the same task in the same environment and identifies

the differences between the behaviors of the humans and

the perfectly rational IPS. Lastly, the differences

between actual human behavior and the perfectly

rational behavior of the IPS are used to develop a

model of the human's actual problem space.

As an example, given the following tic-tac-toe

board configuration and model of a perfectly rational

Insert Figure 12 about here

problem solver, X's most rational next move should be

in the lower center square. This is the move that is

demanded by the task environment to achieve three-in-a­

row. It is when behavior deviates from this rational

model of behavior that we learn something about the

psychology of the subject. If the subject is motivated

to win the game and has the cognitive capabilities to

achieve that goal, then why would she play in the right

hand center square? Perhaps she was looking for two

contiguous squares that contained her pieces and when

she did not find that configuration, she employed a

rule that stated: if your opponent has marks on two

contiguous squares and an open square in line with

those two squares then place your mark in the open

square. The subject's deviation from the perfectly

rational model has given us a clue about her internal

representation of the problem and allows us to modify

our perfectly rational model.

Insert Figure 13 about here

59

In the above case, the subject's representation is

slightly flawed because it effectively omits the

possibility that two non-contiguous pieces can

represent a winning move. The study of problem solving

need not, and should not, be limited only to those

cases where we can build a superior rational model to

that of the human subject. In fact, the study of human

problem solving is most interesting and beneficial when

our scrutiny turns to the task environments of experts

who have obtained rare and superior abilities. For

example, an investigator may be interested in

determining the most successful chess strategies, and a

sound investigative method would be to examine the play

of a senior chess master. In most cases, an

60

investigator could not create a hypothetical problem

space for chess which is superior to a senior chess

master's internal representation. When the term

"perfectly rational" is applied to a problem solving

system, it refers only to the fact that the system's

problem space is a reasonable description of the task

environment and task demands, but implies nothing about

the efficacy of the problem space. That is, a problem

solving system can be perfectly rational without being

perfectly successful.

For example, a perfectly rational chess playing

computer might operate by examining all possible board

configurations following each of the opponent's moves

in order to determine which of its available moves has

the highest probability of success. The computer may

be able to win, but due to the sheer number of possible

combinations, a single match might take years to

complete. Furthermore, if the computer were to compete

in another chess playing domain, namely lightening

chess, it would be soundly defeated. The hypothetical

problem space and the perfectly rational behavior of an

IPS are merely starting points, or straw-man

constructs, to which human behavior can be compared.

The behavior of the human experts will almost surely

deviate from the behaviors predicted by the perfectly

61

rational models. One can then modify or create new and

better models of human problem solving as one increases

the understanding of exactly how the experts' behaviors

differ from the predicted behaviors. After

modifications based upon the experts' performance, the

hypothetical problem spaces can be represented in a

problem solving grammar (e.g. production systems, game

trees) and made available to non-experts in order to

increase their understanding of a particular task

environment. In fact, the major benefit of Newell &

Simon's approach to the study of human problem solving

is not that it allows one to build automatons capable

of performing tasks which have heretofore been

considered uniquely human, but that the knowledge which

results from their approach is communicable to other

human beings and can therefore be used to enlighten,

educate, and improve human performance.

The Problem Solving Process

The essential components of the problem solving

situation, the task environment, the IPS, and the

internal representation of the problem (problem space),

have now been defined, and a general methodology for

the study of human problem solving has been sketched.

The only remaining preliminary construct that needs to

be outlined is the process by which an IPS can actually

62

solve a problem within a specified task environment.

The process of solving a problem begins with the

act of input translation. During this phase of the

process, the IPS creates an internal representation of

the problem (i.e. the problem space) which may render

solutions obvious, obscure, or even unattainable.

After the problem is represented internally and based

upon the formulation of the internal problem space, the

IPS selects a problem solving method. A method can be

viewed as a general strategy or a specified sequence of

elementary information processes that, when executed,

will achieve, or attempt to achieve, a desired goal.

Once begun, a method controls both internal and

external behav1ors of the IPS, but its control is not

absolute. That is, a method can be halted and once it

is stopped, the system has four options. First,

another method may be selected and tried. Second,

another internal representation may be selected and the

entire problem reformulated. Third, all attempts to

solve the problem may be discontinued (i.e. the problem

solver gives up), and fourth, the method reaches a

successful conclusion.

As stated earlier, the IPS is fundamentally serial

in nature. That is, an IPS is capable of selecting and

executing only one method at a time. It should be made

63

clear, however, that at lower operational levels (e.g.

perception), an IPS may have parallel capabilities.

That is to say, an IPS may recognize many things at

once, but responds to them with only a single action at

a time. After settling on an internal problem space,

the general behavior of a problem solving IPS can be

described as iterative: select a goal; select a

method; execute the method; evaluate results; select

new goal (or subgoal). The behavior of an IPS,

however, can also be characterized as recursive.

During the course of its operation a method may produce

more than one sequence of potentially successful

behaviors. Therefore, the system may continue on one

branch while retaining a stack of indexes to other

pending branches so that control can return to a given

point upon failure of the attempted subgoal.

The process of problem solving, as posited by

Newell and Simon, is controlled by two constructs; the

problem formulation as determined by the structure of

the problem space and the methods which, in turn, are

selected upon the basis of the problem formulation.

The subjects which Newell and Simon studied tended to

be well rehearsed in their task domains and therefore,

did not often change their internal representations of

the problems. Consequently, their original theory

64

stated little about creating internal representations

or shifting from one internal problem space to another.

Most of their theoretical work therefore, did not focus

on the specifics of the internal representation but

focused instead on problem solving methods.

In order for a method to be useful, it must be

general enough to be applied to any problem selected

from a specified class of problems. Generalizable

methods are created by allowing the methods to contain

variables which are instantiated with specific relevant

information from the current problem space. The

problem space, in most cases, represents more

information than is required by the method. The

problem formulation serves as the interface between the

problem space and the methods by designating a specific

method and the information contained in the problem

space that is to be used by the method. In effect, a

problem formulation and its associated method serve to

reduce the portion of the problem space which must be

considered in order to solve the problem.

For example, a problem solver is given the goal of

finding all the words which can be found in the word

"xylophone". If the problem is formulated as "find the

words which already exist in "xylophone"" then the

method labeled read_words(x) may be activated. The

65

method read_words(x) would instantiate x to "xylophone 11

and, by means of several elementary information

processes (eips), would read the words which exist in

xylophone (i.e. lop, hone, phone, one, on). on the

other hand, if the problem were formulated as

"rearrange the letters of "xylophone" to form all

possible letter combinations that are words 11 , then the

problem solver may use a different method (e.g.

find_all_legal_combinations(x)). Both of the above

cases require lexical searches, but the former problem

formulation requires fewer lexical searches

(9+8+7+6+5+4+3+2+1 or 45 possible combinations versus

9!/2! (total permutations divided by permutations of

duplicate letters) or 181,440 possible combinations).

Consequently, the former problem formulation and method

reduce the problem space by a greater degree and thus,

define a problem which is easier to solve.

The problem solving process can now be summarized

as follows. A problem solver is placed in a task

environment and forms an internal problem space which

represents, but is not limited to, the initial state,

the goal, and plausible intermediate steps towards that

goal. Next, the problem solver formulates the problem

based upon the information represented in the problem

space (including relevant information gained from other

66

experiences). The problem formulation and its

associated method may reduce the size of the problem

space and thereby, the number of elements which need be

considered in locating a solution. The problem solver

then applies the method to all the elements in the

remaining subspace, and if the problem is formulated

correctly (i.e. the proper method is applied to the

proper subset of elements), then the goal will be

attained.

Newell and Simon describe three general types of

problem formulations and concomitant methods:

recognition, set-predicatejgenerate-and-test, and

heuristic search. Recognition is used in familiar task

environments where a solution can be obtained

immediately from memory by simply examining the

knowledge gained from previous, often well rehearsed

problem solving situations (e.g. 9*4=?). In general,

problem solving proceeds by reducing the problem into

more manageable tasks. Eventually, however, the

reductionism must be stopped and sub-tasks performed.

Recognition is a special case of problem solving and is

important because it is often the method employed in

the most elementary sub-tasks. That is, problem

solving usually, if not always, proceeds by reducing

the problem to tasks for which the problem solver

67

already possesses answers. Thus, reducing the problem

to sub-tasks stops when a solution can be found by

simple pattern matching (i.e. recognition).

The second and most general type of problem

statement is the set-predicate formulation. In this

problem formulation, the problem solver is given a set

of elements (E), and the goal of locating an element

that has specified properties. As stated earlier, a

method can use only that information which is

designated by the problem formulation. The set­

predicate formulation only provides a method with the

elements contained in set E and the properties which an

element must possess in order to be judged as a member

of the goal set (G).

The method which makes the most obvious use of the

information provided by the set-predicate formulation

is known as the generate-and-test method. The method

operates simply by generating the elements of E and

testing each element for the properties required for

membership in G. The generate-and-test method and the

set-predicate problem formulation are quite general and

will always be successful provided that the properties

of the goal set are formulated correctly, the set of

possible solutions is finite, and the generator is

allowed to operate long enough. The amount of time

68

required to locate the solution(s) will depend upon the

amount of time required to generate each element in the

problem space, the time required to test each generated

element, the size of the problem space, and the

relative position of the solution(s) within the problem

space.

The third problem formulation type is the

heuristic search formulation and is characterized as a

search for a path through the problem space which will

lead from an initial state to a goal state. In one

sense, the set-predicate and heuristic search

formulations are quite similar. Each view the problem

space as a set of elements which must be tested in

order to determine if that element is a member of the

goal set. In the set-predicate formulation, however,

the generate and test operations are binary and

completely independent. That is, each element is

simply judged as to whether it belongs to the goal set

or not. No judgement is made or retained as to its

similarity to the goal set or its adequacy as an

intermediate step toward the goal. The power of the

heuristic search formulation is that it makes use of

information from previous generations and tests, and

knowledge gained from other environments, in order to

determine which element in the problem space to

69

generate and test next.

To illustrate the distinction between the set­

predicate and heuristic search formulations, consider

the problem of determining the combination of a safe

(Newell & Simon, 1972 pp. 97-98). Given a safe with 10

dials, each having 100 different settings, the problem

space (E) would contain 10010 possible combinations.

The generate-and-test method would require that each

possible combination be generated and tested, thus

placing an unrealistic time burden upon the problem

solver (assuming each combination could be generated

and tested in one second, it would take over 3 trillion

years to try all possible combinations). If each dial,

however, generated a faint click when its correct

setting was selected, then it would not take a very

sophisticated heuristic generator to "crack'' the safe.

In fact, a problem solver using a heuristic search

formulation would require, on average, only 500

attempts to arrive at the correct combination. It

should be noted, however, that unlike the generate-and­

test method, a heuristic search method does not

guarantee a correct solution. For example, if the dial

clicks were not indicative of the correct solution then

the heuristic method described above might never

generate the correct combination.

70

The basic cycle of the heuristic search method

begins by selecting an element in the problem space.

Next, the element is tested in order to determine

whether it represents the solution. If not, the system

may apply other operators to the current element which

may suggest whether the element is a correct step

towards the desired goal, and should thus be remembered

for later use, or whether it should be rejected. The

last cycle step is a three pronged decision of whether

to apply other operators to the current element,

advance the search by replacing the current element

with a new element, or go back to an untried path. A

heuristic search terminates"when a solution is found,

resulting in reconstruction of the solution path, or

the set of untried paths is exhausted. If the set of

untried paths is exhausted then a new problem

formulation must be created and a different method

applied. For any one problem, there may exist several

instances of heuristic search formulations each

containing different sets of operators that could be

applied to the problem space. For example, one may try

meaningful number sequences to open the fore mentioned

safe (e.g. birthdays, street addresses, or any other

personally significant numbers). It should be clear

that the heuristic search formulation and method,

described above, represent a class of problem

formulations that can be tailored to any particular

problem, but it is not the only heuristic search

71

formulation possible. (e.g. Working-backward, working

forward, means-ends, planning)

Summary of Newell and simons'

Human Problem Solving Theory

Newell and Simon's (1972) theory of human problem

solving was a largely successful attempt to specify a

science of adaptive organisms. Adaptive organisms are

adaptive because they are flexible enough to modify

their internal processing and external behavior in

order to fit a variety of task environments.

Consequently, adaptive organisms may vary along any of

several dimensions. Hence, Newell and Simon chose to

restrict the scope of their study of aqaptive systems

to a subset of human problem solving activities and

described the scope of their study as follows (1972,

pp. 3-4 & 790):

The present study is concerned with the

performance of intelligent adults in our own

culture. The tasks discussed are short (half

hour), moderately difficult problems of a

symbolic nature. The three main tasks we use­

chess, symbolic logic, and algebra-like

puzzles (called cryptarithmetic puzzles}­

typify this class of problems. The study is

concerned with the integrated activities that

constitute problem solving. It is not

centrally concerned with perception, motor

skill, or what are called personality

variables. The study is concerned primarily

with performance, only a little with learning,

not at all with development, or differences

related to age. Finally, it is concerned with

integrated activities, hence de-emphasizes the

details of processing on the time scale of

elementary reactions (that is, half a second

or less}. Similarly, long-term integrated

activities extending over periods of days or

years rece1ve no attention.

72

Even though Newell and S1mon based the1r theory on a

rather restricted doma1n of study, the theory was, and

remains, useful on a much broader scale.

The theory addresses five fundamental assertions

which are supported by evidence from the problem

solving case studies discussed throughout the book.

Newell and Simon's most fundamental assertion is that

human problem solvers can be adequately represented as

1nformation processing systems. In this view, all

73

adaptive systems (e.g. humans, monkeys, computers,

cats, thermostats) are members of the IPS family and

differ from one another only in respect to their memory

organization, available elementary processes, and

program organization. The theory put forth in the

book, however, specifies an IPS in terms appropriate to

the study of human behavior. Second, the IPS

representation of a human problem solver can be carried

to great detail with fidelity for any given person in

any specific problem solving situation. This

assumption implies that a complete and accurate theory

of a particular problem solver in a particular

environment can be constructed so that details as

specific as memory retrieval processes, memory

capacities, perceptual processes, and minute

environmental details can be accounted for by using

only symbolic information processing constructs.

Third, substantial subject differences exist which are

not simply parametric variations but involve

differences of program structure, method, and content.

Similarly, substantial task differences exist which are

not simply parametric variations but also involve

differences of structure and content. A theory must,

however, contain some invariants and the two previous

assertions indicate that there are only a few gross

74

characteristics of a human IPS which are invariant

across subjects and tasks. The most notable invariants

are the existence of symbol structures, a processor,

eips, a short-term memory, a long-term memory, an

external memory, goals, the serial nature of

processing, and the rate at which eips operate (less

than .5 seconds). Lastly, the largest determinant of a

subject's behavior is the task environment which

includes the intellectual and physical abilities of the

problem solver. Thus, in Newell and Simons' view, the

internal microstructure of a human IPS (e.g.

operational details of sensory processes, perceptual

processes, physiologic processes) are largely

irrelevant to the study of human problem solving. They

do acknowledge, however, that even though the

microstructure of the IPS is not a central issue, a

truly complete theory of human problem solving must

also account for these processes.

The general outline of Newell and Simon's theory

of human problem solving begins with the assumption

that human problem solvers can be adequately

represented as information processing systems (IPS)

which have a few, and only a few, gross characteristic

that are invariant across tasks and subjects. The

nature of the few invariant characteristics allows the

75

IPS to internally represent the task environment as a

problem space and all problem solving takes place in

that internal problem space. Furthermore, because the

problem space is an internal representation of the task

environment, the structure of the task environment

determines the structure of the problem space.

Likewise, the structure of the problem space

determines, via the problem formulation, the possible

programs that can be used in a specified task

environment. The problem space invokes a problem

formulation which in turn determines what methods

(sequences of eips) can be utilized to solve the

problem at hand. Lastly, the processing of an adaptive

IPS can be adequately described by a program.

We cannot know the structure of an individual's

true problem space prior to their performance in a task

environment. We can, however, hypothesize a reasonable

program structure based upon the demands of the task

environment. The behaviors which are predicted by this

hypothetical problem space can then be modified in

light of actual human behavior. The resulting program

represents a theory of the actual internal problem

space of the individual and can then be used to

educate, enlighten, and improve human understanding and

performance in a specified problem solving domain.

76

The Neural Network Perspective

Neural Networks, as the term implies, are general

purpose algorithms which possess operational properties

that are analogous to the neural functioning of the

human brain. That is not to say, however, that neural

nets are wired, nor operate, exactly like the brain.

Neural Nets are "neural" in so far as they are

structured more like the brain than are traditional von

Neumann computers. Advocates of neural computing claim

to favor a brain-mind metaphor over the traditional

computer-mind metaphor. Neural computers, however, are

still computers and even the most zealous neural

realist must therefore, see current neural models of

cognition as neurally inspired rather than veridical

models of neural processing. In a very real sense,

neural realists are still using a computer-mind

metaphor, but the computer portion of the metaphor has

simply changed from a von Neumann computer to a fine­

grained massively parallel computer. Still, there are

some very reasonable and very compelling neurological

principles which speak for the development of cognitive

models based upon a parallel distributed processing

paradigm. According to Rumelhart and McClelland (1986,

p. 130-136), some of the neural characteristics which

provide the fundamental impetus for parallel

distributed processing models are:

The brain is composed of 10A10 to 10A11

neurons.

This is both a source of computing power

and a constraint upon the possible models.

Neurons are slow.

Modern serial computers can operate in

nanoseconds whereas, a neural cell operates in

milliseconds or 10's of milliseconds. Neurons

operate at 10 to the sixth times slower than

do modern serial computers. Imagine slowing

down modern AI software by a factor of 10A6.

Much of human perceptual processing, intuitive

reasoning and other processes occur in a few

hundred milliseconds. This means that most of

these processes must be accomplished in

approximately 100 serial steps.

Neurons are very simple processors.

It seems unlikely that neurons compute

functions that are much more complicated than

a single digital computer instruction. Again,

imagine trying to write an interesting program

(e.g. one that recognizes visually displayed

letters) with only 100 or even 1000 machine

instructions. The mechanisms of mind are best

77

understood as resulting from the cooperative

activity of a large number of relatively

simple processing units operating in parallel.

Neurons communicate by sending activation or

inhibition through the synaptic connections.

Neurons receive large number of inputs from

other neurons and can send outputs to large

numbers of other neurons.

Each neuron can receive (fan-in) from

1,000 to 100,000 signals and can likewise send

(fan-out) 1,000 to 100,000 signals to other

neurons. This means that even if every neuron

is connected to only 1000 other neurons, each

neuron is no more than four synapses away from

any other neuron in the system.

One or a small number of incoming action

potentials is rarely enough to cause an

individual neuron to output an action

potential.

This suggests that human computation does

not 1nvolve the kind of log1c circuits out of

which we make d1g1tal computers but, cognitive

processing is the result of the cooperative

action of many somewhat independent processing

UnltS.

78

Graceful degradation

There seems to be no single neuron whose

loss contributes significantly to the overall

performance of the brain. In fact, large

numbers of neurons can be lost without

appreciable differences in processing

capabilities. Even in cases where there is

sufficient damage to cause a performance

deficient, there exists enough redundancy in

the brain to allow the system to recover and

achieve performance comparable to pre-injury

performance. Such capacities are natural

character1stics 1nherent in Neural Nets.

Relaxation is the dominate role of

computation.

Computation in the brain is best

understood as an iterative process in which

the brain seeks to satisfy a large number of

weak constraints. Neurons should not be

thought of as wires in an logic circuit but

should be seen as units which serve as

constraints for one another. The brain is

seen more as settling on a solution as opposed

to calculating a solution.

Learning involves modifying neural

79

connections.

Knowledge is assumed NOT to be explicitly

stored in given physical location, but is

represented by the connect1ons among units.

Therefore, the attainment of any new knowledge

requires modification of the existing

connections between units.

80

Three primary assumptions arise from these

fundamental neurolog1cal characteristics. First, human

cognition arises from the interaction of a large set of

simple processing elements rather than the state of any

single component of the system. Second, the simple

processing elements function by mutually constraining

one another and thus contribute in their own way to the

overall performance of the system. The essential

character of mental processes is thus viewed as a

constraint satisfaction procedure where a very large

number of constraints act simultaneously to produce a

behavior rather than select a behavior from a pool of

stored procedures. Lastly, all knowledge is stored in

the connections between processing units. Only very

short term storage can occur in the indiv1dual state of

the processing elements and all long term storage is a

result of the connections among the units. In other

words, knowledge is implicit in the structure of the

81

processing system rather than explicitly stored in any

particular processing element.

These three fundamental assumptions intimate that

there are two primary elements of any neural model;

simple processing elements and the interconnections

between the processing elements. Analogously to the

human brain, neural computers have no central processor

or central memory, but are instead composed of many,

highly interconnected neurodes or nodes. Each neurode

(or node) consists of a simple processor and a small

amount of dedicated memory. Each neurode's memory

holds an array of values which represent the strength

of each incoming signal and an array of values which

represent the relative importance (weight) of each

incoming signal. Furthermore, like neurons, no neurode

has access to the specific contents of any other

neurode's memory and must communicate with one another

by outputting signals which are indicative of their

individual activation level. A neurode can therefore

be characterized as a matrix operator which does no

more than compute a weighted sum of the incoming

signals and outputs a value based upon that we1ghted

sum. Thus, the general behavior of any neurode can be

described by the following equation:

82

where OJ is the output of neurode j. W1 is the

relative importance (weight) of the signal being

received from node i. S1 is the strength of the signal

being received from node i. f is a nonlinear function

which compares the weighted sum to a preset threshold

and determines the actual output of the node based upon

that comparison.

For example, if a neural net was composed of three

layers, and the first layer contained 25 neurodes, then

each neurode on the second layer would receive one

signal from each first layer neurode (25 signals) and

store them in an array. Furthermore, each neurode on

the second level would contain 25 connection strengths

(one per incoming signal) in a second array. Each

neurode would then multiply each value in the signal

array by the appropriate value from the connection

strength array. Next, the neurode would obtain a grand

sum of the products of it's calculations. Lastly, the

weighted sum would be passed through a function which

compares the sum to some preset threshold and generates

an output based upon that comparison. Each layer of

the neural net would operate in parallel, thereby

improving overall system performance by spreading the

83

huge number of calculations over many processors.

After an input pattern is applied to the system, the

neural net will generate the proper output based solely

upon these simple calculations and the pattern of

connections between neurodes. It should be made clear

that a neural network does not execute a series of

instructions as does a von Neumann machine, and

information is not stored in a specific memory

location. Instead, as it may be in the human neural

system, knowledge is represented by the pattern of

neural connectivity and the overall state of the system

after it has settled into a temporary equilibrium

condition.

At this point, it is necessary to distinguish

neural nets from the underlying hardware upon which

they may actually operate. As stated in the

introduction, one of the reasons for the resurgence in

neural theories is due to recent of advances in

computer technology namely, fine-grained, massively

parallel or connectionist architectures (Hillis, 1986).

Fine-grained massively-parallel architectures are

computers that, like neural networks, have many small

processors, each of which have a small dedicated array

of memory. Most often, the processing elements

(processors plus their memory arrays} of fine-grained

84

massively parallel machines are arranged in a two- or

three-dimensional array so that each processor is

connected to it's four surrounding neighbors (the so

called North-South-East-West connection scheme). In

some machines which use a three-dimensional array, the

processors may also be connected to the processor

immediately above and below them. Fine-grained

massively parallel machines, however, are NOT neural

networks.

Neural networks are defined by the pattern of

interconnection between neurodes, the rules that

determine whether or not a neurode will fire (transfer

function), and the rules governing changes in the

relative importance of individual connections among

processing elements (learning rules). Fine-grained

massively parallel architectures provide a general

purpose hardware platform upon which neural nets can

operate efficiently, but the defining characteristics

of a specific neural network are usually soft-coded.

It would be impractical to rewire a fine-grained

massively parallel computer every time one wished to

change the interconnection scheme of a neural network.

In most cases, it is the software (netware) which

defines the neural network and the architecture of the

neural net is independent of the underlying hardware

85

architecture. It is very possible to simulate neural

networks on von Neumann machines or even with pencil

and paper but, speed may become a serious limitation in

both cases. For the purposes of this paper, neural

net(works)s, neural computing, and parallel distributed

processing (PDP) will refer to information processing

models that are controlled by one or more general

purpose algorithms which define the interconnection

schemes between neurodes, the transfer function, and

the learning rule that allows the system to learn,

correctly classify, and properly respond to inputs

without the benefit of predefined, explicitly coded,

task knowledge. Furthermore, the present discussion

will focus on the netware details and not the

particulars of the hardware upon which the netware is

implemented. This means that the algorithms described

in this paper can be implemented on any system capable

of handling matrices including fine-grained massively

parallel machines, serial computers, and pencil and

paper (although the latter two's appropriateness may be

questioned on the basis of time constraints) .

The Development of a Neural Network

The development of a neural net can be

characterized by four stages; engineering, training,

testing, and operation. In the engineering stage of

86

development, the overall design of the neural network

is determined. That is, the pattern of the

connectedness among neurodes is defined, each neurode's

set of connection weights are initialized, the transfer

function is set, and a learning rule is selected.

During the second phase of development, the neural

network is trained with inputs which are representative

of separate conceptual categories. Neural nets do not

arrive at solutions by locating and executing an

explicit set of task instructions, but are, instead,

pre-programmed only with very general computational

algorithms (transfer function & learning rule). Neural

Nets must therefore, generate their own, internal set

of transformations by learning through trial and error.

The pre-programmed computational algorithms are general

in that the same neural net which can classify pixel

patterns as numerals could also learn to classify any

concept (e.g. alphabetic characters) which could be

represented in the same pixel grid. In order for the

neural network to recognize the new patterns, the

neural net would simply require additional training and

neither the programming or design of the neural net

would be changed.

After a neural net is trained, it begins the

testing stage. A neural net is most often tested with

87

the training patterns, as well as, new patterns to

which it has never been exposed. One of the powers of

neural nets is that they are capable of automatic

generalization. That is, they do not need previous

experience with a particular input or a huge memory of

possible feature combinations in order to classify a

particular input. Sequential pattern matching

algorithms must often rely on explicit descriptions of

the features and relationships between features in

order to recognize a particular input. Neural nets

operate by using the constraints inherent in the input

and the connection weights, which are determined during

training, to converge on a particular representation.

If the input does not allow the system to converge on

any of its known classes then the neural net will

respond by creating a new class or responding "other".

Lastly, if a neural net performs adequately during

the testing phase it can be put into operation as a

classifier, associative memory, or whatever task the

system was designed to perform. In most cases, if the

neural network does not perform adequately in the

testing phase then it is simply given additional

training. In some cases, however, the learning rules

and/or transfer functions are altered and the system is

completely retrained.

88

Two Representative Neural Networks

Neural nets are distinguishable from one another

upon the basis of three primary characteristics; the

architecture of the interconnections among neurodes,

the transfer function, and the learning rule. In this

section, I will expand the discussion of these three

defining aspects by describing the development of two

representative and distinct neural nets; the Hopfield

net and the Multi-layered perceptron.

The Hopfield net is named for its creator, John

Hopfield who has been instrumental in revitalizing

neural net research during the 1980's (Hopfield 1982,

1984, 1986). Hopfield (1982) is generally credited

with correctly characterizing neural net behavior as a

process of successive approximations in which the

difference between the current system state and the

desired system state is reduced. The technique is

known as gradient descent and can be viewed as a type

of "hill climbing" search heuristic.

The now famous perceptron is one of the first

systems ever designed which can be classified as a

neural net (Rosenblatt, 1959; 1962). The early

perceptrons consisted of a single layer of neurodes and

were incapable of computing certain functions. Minsky

and Papert (1969) wrote an elegant analysis of the

89

single-layered perceptron which exposed its

computational weaknesses. The persuasiveness of the

Minsky and Papert argument coupled with the early

success of the serial symbolic processing approaches in

artificial intelligence all but killed neural

computing. The majority of Minsky and Papert's

criticisms, however, applied only to the simple single­

layered perceptron models. Several researchers have

now shown that the most severe enervations of the

single-layered perceptron can be overcome by multi­

layered perceptrons (Rumelhart & McClelland, 1986a;

chapters 5,7,8). Furthermore, many of the neural nets

being used today are modified versions of multi-layered

perceptrons (Brown, Garber, & Venable, 1988; Caudill

1988, Jones & Hoskins, 1987; Kinoshita & Palevsky).

The task of both networks will be to correctly

classify inputs which represent the numerals 0 through

9. For the current task, the numerals 0 - 9 will be

represented by 10 separate 3 x 5 pixel grids. Each

grid will be divided into 3 columns by 5 rows of

pixels. Furthermore, each pixel can have one of two

values; 1 (ON) or 0 (OFF). Each of the 10 numerals can

therefore be represented by a unique pattern of

activated pixels within the 3 x 5 grid. Following the

training, the neural nets will be tested with both the

90

training patterns and a set of novel patterns. The

novel patterns will be degraded versions of the

training patterns and will be generated by changing the

value of three randomly chosen pixels in each training

grid. (For a more detailed account of a multi-layered

perceptron which recognizes alphabetic characters, see

Brown, Garber, & Venable 1988).

Phase I: Engineering

The Multi-layered Perceptron. Multi-layered

perceptrons are described as fully-connected feed­

forward networks which contain one or more layers of

neurodes between the input layer and the output layer.

In a fully-connected network, all the neurodes on one

level are connected to all the neurodes on the next

level. Neurodes on the same level, however, are not

connected to one another. Feed-forward networks are

simply networks which pass the output from one layer of

neurodes to the next higher layer. In contrast, a

feedback network would send the output of a layer

"back" to the next lower level. Multi-layered

perceptrons have one or more hidden layers of neurodes

between the input and output neurode layers. It has

been shown that a perceptron with two hidden layers can

produce arbitrarily complex decision regions (Lippmann,

1987) but, for purposes of simplicity, the network

91

described here will contain only three layers of nodes

(an input layer, an output layer, and one hidden

layer). There will be 15 neurodes on the input layer

so that each neurode on the input layer corresponds to

one of the pixels in the 3 x 5 pixel grid. The hidden

layer will consist of 10 neurodes based upon a rule of

thumb that the hidden layer should contain 2/3 as many

neurodes as the input or output layer which ever is

largest (Similar heuristics exist for several types of

neural nets (Lippmann, 1987)). The third layer, will

contain 11 neurodes, one for each numeral plus one

neurode to signify "other".,

After training is complete, the neurodes will

function by computing a weighted sum of all their

individual inputs and then passing that input through a

nonlinear sigmoid transfer function. When a pattern is

presented to the network, each neurode on the input

layer will output either a 1 (fires) or a 0 (doesn't

fire) depending upon whether or not its corresponding

pixel is on or off. The hidden neurodes and output

neurodes can be viewed as matrixes of connection

strengths. For the current example, a particular node

(k) on the hidden layer (j) would contain 15 weights

(connection strengths), one weight for each input node.

Initially, the weight matrixes for the output nodes and

92

the hidden nodes are seeded with small (<.1) random

values. The node (Ok,J) then multiplies the output of a

node (i) on the previous layer (j-1) by the weight

(W1 k). Next, a bias term (B), which roughly determines
•

the size of steps taken toward the solution, is

subtracted from the product of the weight (W1 k) and the
•

node (0 1 .J_ 1} output. The neurode then sums the results

for the i (# of nodes on the previous layer)

calculations. Lastly, the sums for each neurode are

passed through a non-linear sigmoid function (f(x}=1/(1

+ eA-x). In actual practice however, the sums are

often passed through a series of conditionals which

mimic the nonlinear sigmoid function. For example,

.999, if X >= +5.0;

.001, if X <= -5.0;
f (x) = (x+5)/9, if +1.0 <= X < +5.0;

(x+3)/9, if -5.0 < X <= -1. o;
(x+2)/3, otherwise;

Thus, the output of any node (k) on level (j) can be

given by the equation:

n

= f(L.(WI k * OI.J-1) - B)
I =1 ,

where ok,J is the output of node k on level j.

the relative importance (weight) of the connection

93

between node k on level j and node i on level j-1.

0 1 .J_ 1 is the value output by node i on level j-1. B is

a predefined bias term. For the hidden layer, n=15,

and for the output layer, n=10. For the hidden layer,

the maximum value of k is 10, and for the output layer,

the maximum value of k is 11.

The hidden layer nodes send their values to the

output layer. The output nodes then perform the

identical calculations as the hidden nodes but, do not

have anywhere to pass their values. Instead, only the

neurode with the highest value fires and that neurode

should signify the appropriate class for the given

input.

The Hopfield Net. The Hopfield net is a single

layered network in which all neurodes are connected to

all other neurodes. The minimum number of neurodes in

a Hopfield network is equal to the number of classes

divided by 0.15. For the current task, there are 10

classes (the numerals 0-9) and 10/.15 = 66.67. The

number of neurodes is always rounded up. Thus, the

minimum number of neurodes needed by a Hopfield net to

solve the current problem is 67. The Hopfield net can

be viewed as a grid of fully-connected binary nodes

which have a direct one-to-one correspondence to the

pixels of the input pattern. In other words, the number

94

of pixels in the input patterns should equal the number

of neurodes in the Hopfield net. This means that the

resolution of the input patterns should be increased

from 15 because we need at least 67 neurodes to

recognize 10 classes. For this example, the number of

nodes will be increased to 70 in order to make a

uniform two-dimensional pixel grid. Each of the 10

numeral classes will thus be represented in a 7 x 10

pixel grid and the network will likewise consist of 70

neurodes.

Following training, the neurodes of the Hopfield

net, like the perceptron, will compute a weighted sum

of their incoming signals and then pass that weighted

sum through a nonlinear tran'sfer function. The

transfer function used with the Hopfield net, however,

is usually a hard-limiting nonlinearity instead of a

sigmoid nonlinearity. That is, the output of any

neurode in the Hopfield net will be one of two values

as opposed to the perceptron where output values can be

continuous and graded. Also, unlike the perceptron,

the Hopfield net is a single'-layered network and must

therefore go through several iterations in order to

settle on the proper output pattern. In this sense,

the Hopfield net is a feed-back network, because the

output of each neurode is sent back into the system as

95

input for the next iteration. Initially, each neurode

in a Hopfield net corresponds to one of the pixels in

the input pattern. Each neurode, therefore is either

on (+1) or off (-1) depending upon the value of its

corresponding pixel. The Hopfield net begins its

processing by having each neurode inform all the other

neurodes of its initial state. Next, each neurode

computes a weighted sum of all the incoming signals and

passes the weighted sum through the hard-limiting

nonlinearity. The transfer function of the Hopfield net

is given by the equation:

n-1

oJ<t+1> = f(~(w,, 1 * o,<t>))
1=0

where 0 1 is the output of node j and t is the current

iteration. w,, 1 is the weight given node i by node j.

0 1 is the output of node i and n=70.

The neurodes transmit the new value generated by

the transfer function to all other neurodes and each

neurode then computes a new output. The process

continues to iterate until the network converges on a

stable output pattern. The Hopfield net is said to

have converged on a solution when any two contiguous

96

iterations generate the same output pattern. Upon

convergence, the combined output of the neurodes should

represent the pixel pattern of the input pattern's

class exemplar.

Phase II: Training

Multi-Layered Perceptron. Perceptrons are

referred to as adaptive neural nets because they adapt

to inputs via learning rules. The most common learning

rules (LMS, Delta, Generalized Delta, and Back

Propagation) use a gradient search method in order to

reduce the mean squared difference between the current

overall output of the network and the desired output of

the network.

A multi-layered perceptron is trained by presenting

a series of class exemplars to the net. The net then

performs the fundamental computations described by the

transfer equation. In the training phase, however, a

supervisor monitors the output of the system and

notifies the system of what the correct output should

be. For example, if the input to our perceptron is a

"3" then the fourth node on the output layer should be

.999 and all the other nodes on the output layer should

be close to .001. If the output of node three is not

close to .999 and the output of all other nodes is not

close to .001 then the supervisor indicates the proper

97

values to the network. The nodes on the output layer

then calculate an error term based upon the mean

squared difference between their actual and desired

outputs. The nodes on the output layer then adjust the

connection strengths (weights) which are held in their

local memories and are representative of the

connections between the output layer and the hidden

layer. Using the same transfer functions described in

the previous section, the nodes on the output layer

calculate a new value based upon the new weights and

propagate the new values back to the nodes on the

hidden layer. The nodes on the hidden layer then

calculate an error term based upon the difference

between their actual output and the new values from the

output layer. Based upon the error term, each node on

the hidden layer adjusts the connection strength

between the hidden layer and the input layer. (For a

more mathematically detailed discussion of learning

rules, see Caudill 1988; Jones & Hoskins, 1987;

Lippmann, 1987; Rumelhart & McClelland, 1986)

All these operations, from the fundamental

computations through execution of the learning rule,

represent one training iteration. A perceptron is

usually given many (100+) exposures to class exemplars

before it reaches an acceptable level of performance.

98

If the system never reaches a desired asymptote or

reaches asymptote too slowly then features of the

network may need to be changed. For example, the

learning rule contains a bias term which determines the

size of the steps taken when locating the minimum mean

squared error. If the bias is too small, it may take

too long to find the ideal set of weights or it may get

caught in a local minimum during the search.

Conversely, if the bias is too large, the weight vector

may begin to jump around excessively as the system

approaches the ideal minimum which will significantly

slow the settling process. After the necessary

"tweaking" has been performed and the system reaches an

acceptable performance level with the training

patterns, the weights are "frozen" and the system is

ready to be tested with novel patterns.

The Hopfield Net. Some types of neural nets, such

as the Hopfield net require training periods but do not

require supervision and do not learn adaptively. Neural

Nets which are not capable of adaptive learning require

fixed weights which are calculated during single

exposures to class exemplars. Furthermore, they do not

generate any output during training and therefore, do

not receive any tutoring from an outside monitor.

Static neural nets such as the Hopfield net are

99

trained using class exemplars (for the current example,

the non-degraded numerals o - 9 which are represented

in a 7 x 10 pixel grid). Each numeral is presented to

the network once. After each numeral exemplar is

presented, each neurode adjusts its matrix of

connection weights based upon the pattern of inputs.

The weights are adjusted via the following equation:

n

wl,J = ~cxl,s * xJ,s>,
1=1

i <> j

where W1 ,J is the connection strength between node i and

node j. X1 scan be +1 or -1 and represents the value
I

of the ith element of the exemplar for class s.

Likewise, XJ,s is the jth element of the exemplar for

class s.

It should be pointed out that in this equation,

elements and neurodes are functionally equivalent

because each neurode corresponds to one and only one

element/pixel of the exemplar. After all exemplars

have been presented once, the system is ready to be

tested with unknown inputs.

Phases III and IV: Testing and Operation

The Multi-layered Perceptron. Testing the mult1-

layered perceptron is a straight forward procedure in

100

which novel stimuli are presented to the system. In

this case, the system will be tested with a mixed set

of patterns consisting of the normal exemplar training

patterns and exemplar patterns which were degraded by

random noise. Testing patterns, h~wever, can be

different versions of the exemplar pattern. For

example, the training exemplar for the number 11 3 11 might

be represented by turning on all three pixels of the

top and bottom rows, the five pixels in the third

column, and the pixel in the third row of the second

column. Serifs can be added to the testing pattern for

the numeral "3" by turning on the second and fourth

pixels in the first column. From the neural net's

perspective, classifying a variation of an exemplar is

the same as classifying a degraded version of an

exemplar. In any case, the testing patterns are simply

presented to the system and the system responds,

hopefully, by firing the correct output neurode. If

the system passes the testing phase then it can be put

into operation. If it does not perform satisfactorily,

then it will be returned to the training phase where

its performance can be optimized.

The Hopfield Network. The testing and operation

phases for the Hopfield net are one in the same because

there is no way to "tweak" a Hopfield net. If the

101

system does not perform satisfactorily once its weights

have been set then there is no other option but to

generate a new set of training materials and completely

retrain the system with the new set of exemplars. The

actual steps in testing/operating a Hopfield net also

differ from the multi-layered perceptron in terms of

its output format. As with the perceptron, a set of

materials is selected and presented to the network.

The Hopfield net however, cannot fire an individual

node which represents the proper category of the input.

Instead, the pattern of all the neurodal outputs

depicts the proper class exemplar. For example, the

input might be a degraded 11 3 11 • The system would

iterate until it had settled on pattern of activated

neurodes which corresponded to the exemplar pattern for

the numeral "3".

The advantage to non-adaptive neural nets is that

they require very few training trials, but they have

several drawbacks. First, the number of patterns which

can be recognized by such a net is limited and if that

limit is surpassed the system will settle on novel

spurious patterns different from all exemplar patterns.

Second, the number of neurodes and calculations needed

to recognize even a small number of classes can be

quite large. For example, the Hopfield net can only

102

recognize a maximum of .15 times as many classes (C) as

there are nodes (N) in the system (C = .15N or N =

6.67C). In other words, a Hopfield net capable of

recognizing all the letters of the alphabet (24

classes) would require a minimum of 160 nodes and

25,600 connection weights! Lastly, an exemplar pattern

will be unstable if it shares too many pixels in common

with another exemplar. For example, a degraded "8" may

be classified as a 11 311 by the system unless certain

orthogonalization procedures are followed which may

further increase the number of neurodes, weights, and

calculations needed to solve even relatively simple

classification problems.

Conclusion

Neural net research began nearly forty years ago,

but due to a lack of technology, sufficient

mathematical techniques and the early successes of

sequential symbolic processing efforts, the field

remained virtually dormant until recently. Neural

networks are neurally inspired models of processing

which are based loosely upon known fundamental

operating characteristics of the human brain. Like the

human brain, neural networks consist of many highly

interconnected, simple processing units which take a

weighted sum of their inputs and transmit an output

103

based upon that sum. The result of neural net

processing is not a particular value stored at a

specific memory address but is, instead, represented by

the overall state of the system after it has converged

on some equilibrium condition.

The development of a neural net involves the four

stages of engineering, training, testing, and

operation. Many different types of neural nets exist

and the structure of a particular neural net is defined

by three characteristics; 1) the pattern of

interconnection between the processing elements, 2) the

rules that determine whether or not a processing

element will fire (transfer function), and 3) the rules

governing changes in the relative importance of

individual connections to a processing element's output

(trainingjlearning rules). The multi-layered

perceptron is a type of neural net which is

characterized as a fully-connected, feed-forward

network which requires supervised training. The

Hopfield network, on the other, hand is a single

layered, feed-back network which does not require

supervision. Even though the multi-layered perceptron

and the Hopfield net have very different structures and

operating characteristics, they can solve equivalent

types of problems by virtue of their highly parallel,

104

fine grained architectures.

Neural networks are computing techniques which may

provide solutions to problems that traditional computer

systems have, thus far, failed to solve efficiently.

Neural networks seem to solve problems that humans can

solve easily, even unconsciously. Problems such as

identifying an entity given only a partial or degraded

description, recognizing faces, recognizing continuous

speech and any other task which would be solved most

effectively with an associative, content addressable

memory. Neural nets do not work by executing a

specific set of explicit, sequential steps. Instead,

they are trained, learn, self-organize and settle on

solutions. All of the problems mentioned above are

important problems for the computing and psychological

sciences, but do neural models have anything to say

about the nature of higher level human problem solving

capacities which have been competently portrayed by

traditional serial information processing models? In

the next chapter, I will discuss the relationship

between neural nets and serial problem solving models,

how neural nets can be built to solve higher level

problems, and what the advent of neural nets may mean

for the future of human problem solving research.

105

Problem Solving Neural Nets

In the previous section I presented an overview of

Neural Networks and described how two different types

of neural nets could be employed to perform a

classification task typical of the class of problems to

which neural nets are most readily applied. In the

remaining"chapters however, I wish to focus on the

application of neural net models to higher level

cognitive processes. To begin the discussion, and in

order to lay some ground work, I will describe the

correspondence between neural networks and schemata.

(Most of this ground work is essentially a summary of

Chapter 14 in McClelland and Rumelhart (1986).)

Whereas the previous chapter drew strongly on the

work of many applied researchers in order to provide

concrete examples of neural network fundamentals, the

work of Rumelhart and McClelland (1986a; 1986b) is a

much more theoretical endeavor. Their general goal was

to explicate how human cognitive processing can be

characterized by coalitions of highly interconnected

processing elements that operate in parallel. ,They did

not attempt to specify one type of neural computer

which could account for most human thought processes

but instead described a class of computing

architectures which they refer to as parallel

106

distributed processing {PDP) systems. In their two

volumes, Rumelhart and McClelland {1986a; 1986b)

describe a variety of human cognitive and behavioral

phenomenon and then fit one or more PDP systems to a

given phenomenon in order to demonstrate how PDP

systems can account for the specified phenomenon. Some

of the PDP systems which they describe have operating

characteristics which resemble perceptrons, Hopfield

nets, Hamming nets or other specific neural network

architectures, but all the systems described by

Rumelhart and McClelland have the features commonly

associated with neural networks such as high inter­

connectivity between processing elements, no explicitly

coded instructions, all knowledge available to the

system is represented by the weights of the connections

between processing elements, and a high degree of

parallel operation of processing units. (Rumelhart &

McClelland's use of the term "units" is equivalent to

the concepts of neurodes, nodes, and processing

elements.)

It should be noted that in the PDP framework units

can vary in their level of abstraction. That is, units

can represent low-level features such as points, lines,

arcs, pixels, and edges, or they can represent concepts

as complex as voltage, words, phonemes, resistance,

107

furniture or any other concept relevant to performing

the task at hand. Thus, the unit becomes Rumelhart and

McClellands' theoretical primitive and the level of

explanation at which any PDP model operates is defined

by the degree of abstraction employed at the unit

level.

The construction of a problem solving PDP model

begins by specifying a set of primitives sometimes

called knowledge atoms. These primitives are

essentially mapped onto the processing units and the

weights between the units are set based upon the "real

world" relationships among the knowledge atoms. For

example, if one were to construct a PDP model capable

of classifying rooms based upon the contents of the

room, one might select "furnishings" as the level of

the primitives (see Rumelhart & McClelland, 1986, p.

22-32, for a complete description of such a model).

The unit representing "lounge chair" might give strong

weight to the signal from the unit representing "couch"

because lounge chairs and couches are often found in

the same room (e.g., the living room). Thus, if a

lounge chair is present the couch unit obtains a higher

state of activation. Likewise, the units representing

foot stool, fire-place, and television might also

achieve a higher state of activation because they also

108

often co-occur with lounge chairs in living rooms. A

unit representing "kitchen-sink" would have a high

negative connection strength with the "lounge-chair"

unit because a kitchen-sink rarely occurs in the same

room as a lounge chair. Items such as carpet, windows,

and drapes would probably have a positive connection

strength with the "lounge chair" unit but, because they

are likely to occur in several rooms (e.g. bedroom,

den, family room, office) the connection strength would

be weak.

Essentially, each unit in a PDP model represents

a hypothesis about the presence or absence of the

concept to which the unit corresponds, and the

connection strengths represent constraints among the

hypotheses. The processing of a PDP system can

therefore be characterized as a process of constraint

satisfaction. Thus, if feature B (e.g. couch) is

expected to be present when feature A (e.g. lounge­

chair) is present then there should be a positive

connection between the unit representing the hypothesis

that feature A is present and the unit representing the

hypothesis that feature B is present. Likewise, if B

never occurs with A then there should be a negative

connection between units representing hypotheses about

A and B. Furthermore, the strength of the connection

109

should reflect the degree to which the presence of A is

a predictor of the presence of B. If B is very often,

or very rarely, present when A is present, then the

magnitude of the connection strength should be large.

If the occurrence of A does not consistently predict

the occurrence of B then the weight should have a small

magnitude. Inputs to the system also provide

constraints to the system. A positive input indicates

that there is ev1dence from outside the system which

supports the hypothesis that a particular unit is

present and the value of the input signifies the

strength of the evidence. Likewise, a high negative

input provides strong evidence from outside the system

that a particular unit is not present.

If a system, designed in this way, was allowed to

run then some units would gain enough evidence for

their existence and would fire. After previously

inactive units fire, the system possesses a new

activation pattern which represents new evidence to the

units as to the likelihood of their presence. This new

evidence is equivalent to a new set of constraints and

is reflected by the overall state of the system (i.e.

the activation levels of all the units). On the next

processing cycle, the new set of constraints would

cause other units to fire, or not, which in turn

110

creates a new group of constraints with which the

system must deal. Eventually, however, the system will

settle or "relax" into a state which optimally

satisfies as many of the constraints as possible with

priority given to the strongest constraints. That is,

the system will ultimately reach a point where the

satisfaction of all impinging constraints cannot be

improved, and, therefore, the activation pattern of the

units no longer changes.

In the human nervous system it is very unlikely

that individual neurons account for abstract concepts

such as couch or sofa. Nor do PDP theorists even

remotely suggest such to be the case. In an ideal PDP

environment, concepts such as sofas would be defined by

other networks which use concepts such as padding,

cushions, length, width, height, and upholstery as the

level of abstraction. Likewise, these units would

represent instantiations of sub-nets which define the

elemental concepts (padding, cushions, etc), and so on,

until some basic level of interpretation such as

perceptual features (edges, points, etc.) is reached.

Thus, when activated by input from the external world,

the activation patterns of the units representing low­

level features will influence what is being interpreted

at higher processing levels (bottom-up processing), and

111

the activation patterns at higher processing levels

would, in turn, influence the activation patterns of

the lower-level units (top-down processing). When the

system finally relaxes (i.e. the constrains are

optimally satisfied) an interpretation of the scene has

been instantiated and is reflected by the overall

pattern of activation across all the units. Therefore,

a fundamental assumption inherent to PDP theory is that

processing on any level is best characterized by

coalitions of processing units whose microstructure is

highly parallel, but whose collective actions may be

viewed as sequential processes.

While the specific operational details of the

above processing scenario are somewhat new, the general

data structure which emerges from this type of

architecture has been bandied about by cognitive

researchers for years and goes by many names (e.g.

schema, scripts, and frames). The PDP group tends to

use schema as the label for the data structure that

emerges from constraint satisfaction networks. The

concept of schema can be generally defined as a

conceptual structure which represents generalized

knowledge about objects, situations, and events.

Schemata are sometimes difficult structures to

implement because while they are generic

112

representations of the world, they must also have the

capacity to represent specific instantiations of

objects, situations, and events.

One characteristic which allows schemata to

represent both generic and specific information is that

schemata contain variables (sometimes referred to as

slots) . Schemata can be viewed as a group of

characteristics that tend to co-occur with one another.

If only partial information is available then a schema

is capable of filling in the values of the empty slots

based upon the values of the variables which have

already been provided.

A second important characteristic of schemata is

that they can be embedded. That is, a schema, much

like an idealized neural system, is a layered structure

in which values in one schema are defined by sub­

schemata. For example, one may partially define a

schema for a lounge chair by specifying slots such as

padding, covering, and position-range with the values

of 10 (high), leather, and upright-supine,

respectively. The schema for lounge chair however does

not exist in a vacuum, but resides in a structure which

includes schematic representations for the more

specific concepts of padding and covering. Likewise,

the schema for lounge-chair may also be used by another

113

schema which defines a living room. In this case, the

lounge chair would in effect become a slot in the

living-room schema and would have the value of present.

This would in turn activate all the slots of the lounge

chair (padding, covering, etc.), which, in turn, would

provide activation to the slots within the padding and

covering schemas, and so on.

This brings up the third important characteristic:

schema represent knowledge at all levels. Whether a

structure is a schema, a sub-schema, or a super-schema

depends solely upon the viewer's perspective. If the

perspective is set at the lounge chair then the living­

room is a super-schema and padding is a sub-schema.

However, if the perspective is the living room then the

lounge chair becomes a sub-schema and padding becomes a

sub-sub-schema. There is nothing inherent in the

structure of a schema that differentiates their general

operating characteristics. In this sense, it is

probably best to characterize schemata as a network

rather than a hierarchy or tree structure.

The last defining characteristic of a schema is

that it should not be viewed as a static structure

which is stored at some particular location. A schema

is an act1ve structure wh1ch seeks to maximize the

agreement between data input to the system and data

114

from previous experience which currently resides in the

system as weights. In other words, schema are

generative, self-organizing knowledge structures. Most

symbolic implementations of schema (e.g. frames and

scripts) are essentially static formalism which do not

fully capture the generative, self-organizing nature of

the theoretical schema. Neural networks do, however,

provide the potential for implementing a generative,

self-organizing data structure which captures many of

the characteristics of the schema ideal.

For illustrative purposes, consider the room

classifier described in Rumelhart and McClelland (1986,

Ch. 14). They asked subjects to imagine an office and

then presented them with a list of 40 descriptors

(desk-chair, ceiling, oven, telephone, drapes, etc) and

asked whether each descriptor was accurate for an

office. Using the same list of descriptors, they asked

subjects to repeat the task when imagining a living

room, a kitchen, a bathroom, and a bedroom. Each

descriptor was represented by one unit in the network.

The data obtained from the subjects' judgements were

plugged into an equation that determined the weights

for each unit based upon the probability of the

presence of that unit predicting the presence of any

other unit. For example, if the lounge-chair

115

descriptor was a highly, positive predictor of the

couch descriptor then the unit representing the "couch"

assigned a high positive value to the input from the

"lounge-chair unit". Thus, if the "couch" unit

received a strong positive value from the "lounge­

chair" unit, then the "couch" unit's activation level

would increase.

In the single-layered network described by

Rumelhart and McClelland, each unit represented one of

the 40 descriptors and each run began by "clamping-on"

one of the descriptors (setting its activation value to

1 and never letting it change). Thus, if the weights

have been properly set, and oven was clamped on, then

one would expect the system to settle on a pattern of

activation that included refrigerator, coffee-pot,

sink, stove, and toaster having a value of 1 and units

representing the descriptors of sofa, bed, toilet, and

desk of having a value of 0. In essence, the system

settles on a pattern of activation that corresponds to

a schematic representation of a kitchen. That is, the

only units that will be activated will be the units

that represent items commonly found in the kitchen.

Likewise, if one clamps on bathtub, the system will

settle on a activation pattern that represents a

bathroom. In schema terminology, one could say that

116

given a certain input, the network is able to generate

and fill in the slots of the room schema.

It is important to realize that the ability of the

system to settle on a given structure is in part

determined by the definitional power of the clamped

descriptor(s). Bathtub is a highly definitional

descriptor of bathrooms, thus it has a high positive

weighting for other bathroom descriptors and high

negative weightings for non-bathroom descriptors.

However, if one clamps on windows, for example, the

system may settle on a less coherent set of active

descriptors, because windows can occur in almost any

room and will thus have moderate or low weights with

nearly all other descriptors. Further, it should be

made clear that schema are represented by the overall

pattern of activation in a neural network and not in

the state of any one unit. In a complete neural system

the presence of any concept would be defined by the

activation pattern of other networks of units. Thus, a

complete neural system would consist of networks of

networks much like a complete schematic representation

would require networks of schemas. For the sake of

simplifying the current case, however, the possible

activation patterns of the descriptor networks have

been collapsed and are represented by the units.

117

Although Rumelhart and McClelland used a single­

layered, fully-connected neural architecture to

illustrate neural based schemas, it may also be

possible to implement such a system on a multi-layered

perceptron. In this case, the descriptors would be

mapped onto the units of the input layer and the room

types (or descriptors) would be mapped onto the output

layer. The behavior of the network would not be as

observable as in the case of the single-layered net

because most of the processing would take place in the

hidden layer(s) of nodes. Also, due to the processing

characteristics of the hidden layers, one cannot easily

pre-define the connection strengths between all layers.

In the perceptron case, the network may use the data

obtained from subjects as training and supervisory

materials. Lastly, instead of a pattern of activated

units being displayed when the system settles on a

maxima, perhaps only one node, which represents the

class/schema, might be activated on the output layer.

While the multi-layer perceptron probably has less

illustrative power for describing neural based schema,

it remains an important processing model for many

researchers.

Synthesis: Integrating Neural Network and

Traditional Problem Solving Perspectives

118

So far I have discussed how an important knowledge

structure (schema) can emerge naturally from neural

models and how neural networks can be used to classify

information, create a "best fit" to the current data

and data from past experience, are capable of

spontaneous generalization, able to fill in missing

data, and in general, characterize memory as a

generative process rather than a selection process.

While these are certainly important characteristics of

neural systems and have a wide range of applicability

in the study of cognition and memory processes, they

provide little direct information about the nature of

human problem solving.

Human problem solving is a process that requires

sequences of actions to be created in attempts to

attain a desired goal. By its very definition, human

problem solving has a prominent serial component, and

serial models have already d'emonstrated their power for

capturing the nature of human problem solving. If

problem solving has an essential serial component and

serial models have been successful in representing

problem solving processes, then why should problem

solving theorists concern themselves with neural

models?

The obvious answer is that even though serial

119

models are powerful tools, they are not perfect tools.

As has already been described, serial models are not

good at describing certain processes such as content­

addressable memories which are certainly utilized in,

and are perhaps central to, the problem solving

process. Both PDP and problem solving theorists agree

that much of human problem solving involves the general

process of generating adaptive sequences of elementary

information processes. They also agree that elementary

information processes are essentially parallel

operations which take less than 250 ms to complete.

Both camps further agree that the parallel and serial

components must somehow be associated in order to

influence one another's processing. Additionally,

Newell and Simon recommend that elementary information

processes should be defined on the basis of known

mechanisms. Therefore, it seems very reasonable that

elementary information processes should be defined in

PDP terms. Consequently, any complete theory of human

problem solving must contain parallel models of some

processes.

The second justif1cation for being concerned with

problem solving neural models stems from the fact that

the human mind does not operate on two different

hardware platforms; one for high level rule-based

120

processing and a second for highly learned parallel

processes. Most researchers in the brain and

behavioral sciences view the human brain as a fine­

grained, massively parallel system and believe that all

behavior results from highly parallel interactions of

simple processing units (neurons) in the brain. We

further assume that the parallel processes are not

processing "packets" which are activated by some

central, symbol-based executor. The high-level,

symbol-based, problem solving processes somehow emerge

from the same highly parallel human brain as do the

elementary information processes. If we are concerned

with increasing the parsimony of modern human problem

solving theory then it is important to develop

theoretical formalisms which can accurately account for

both serial and parallel processes. We can no longer

be satisfied with ignoring the importance of parallel

processes by rationalizing that the essence of human

problem solving is a high-level, symbol-driven, serial

process and does not therefore require any parallel

formalism to describe it. Therefore, a complete,

modern, human problem solving theory should attempt to

explicate how sequential, goal oriented, problem

solving processes can emerge from a fine-grained,

massively parallel system.

121

The last, and perhaps the most resilient,

justification for problem solving theoreticians to

concern themselves with neural models is that they

represent a potential well-spring of new ways to

conceptualize cognitive processes. Neural network

architectures have several degrees of freedom which

provide a great deal of flexibility in designing a

given system. In addition to the Hopfield Net and the

multi-layered perceptron which I summarized earlier,

there are several other general types of networks and a

variety of variations within each type. Therefore, the

designer of a neural net has very few constraints on

how she wants the neural net to operate. Because of

this flexibility, neural nets can be designed to

perform nearly any task that a serial model could

perform. That is, they can be designed to solve

problems which require serial solutions.

A familiar cautionary note is necessary here,

however. Like production systems, a danger exists in

taking the PDP models too literally. For any one

observable, psychological phenomenon, there exist many

neural architectures that can reasonably model the

process. Thus, one must be careful not to reason

backwards. Simply because a neural net model exhibits

behavior which is consistent with empirical

122

observations of people does not mean that the neural

net is a valid model of human processing. In fact,

most neural net solutions to applied problems will not

represent the equivalent human cognitive process any

better than a production system. Ironically, this

apparent flaw in the neural network position is also

the reason why we should pursue neural net solutions.

The sheer number of possible ways to perform a given

task using PDP techniques, plus the fact that so few of

the possible neural models have yet been investigated,

or even designed, indicates that the formalism might be

rich enough to yield important insights to cognition,

and consequently, how we understand the human problem

solving process. In short, problem solving theorists

should be concerned with developing problem solving

neural nets because systematically investigating new,

potential sources of insight is a fundamental task in

any scientific field of inquiry.

A Transitional Model of a Hybrid Problem

Solving System that Integrates Neural

and Symbolic Processes

My fundamental theoretical position is that a

general goal of modern human problem solving theory is

to specify a highly parallel system which can produce

ordered, goal-oriented, sequences of behaviors as

123

described by serial, symbolic models which have been

derived from systematic observations of actual human

problem solving activity. The goal of understanding

serial processes as emergent properties of a highly

parallel, distributed system, however, represents a new

emphasis for the study of human problem solving, and

complete understanding of the process is a long way

off. In the meantime, it is important to develop

applications and techniques which unite the symbolic

and neural processing paradigms in order to maximize

the strengths for both processing schemes while

minimizing their respective shortcomings. Systems

which use serial executors capable of calling massively

parallel sub-systems are already available, and The

America Association for Artificial Intelligence (AAAI)

held its first workshop on integrating symbolic and

neural systems,in 1990. Such transitional models seem

to be a reasonable, and necessary, step on the road to

building new theories, and in this section, I will

sketch my own transitional model which integrates

symbolic and neural processes.

In accordance with the position taken in

McClelland and Rumelhart (1986, Ch. 14), traditional

schemes for representing problem solving processes,

which have concentrated on representing relatively

124

long-lived (>250 ms), sequential, often conscious

activities, still maintain their usefulness for

describing higher level processes. However, the

traditional formalisms do not capture the essence of

the underlying fine-grained, passively parallel,

microstructure of human mental activity. Neural models

may provide new insights about human problem solving by

demonstrating how many of the characteristics commonly

associated with high level processes can emerge

naturally from a highly parallel system. For example,

neural networks have the potential of being more

efficient pattern recognition systems, as compared to

sequential models. If one understands problem solving

to be the general process of dissolving large processes

into pattern-matching sub-tasks (as both Newell & Simon

and Rumelhart & McClelland do) then the natural way in

which neural networks are able to perform pattern­

matching operations makes them potentially important

theoretical constructs for the study of human problem

solving. (I will expand this point in a later section.)

Unfortunately, neural models use only weight

matrices and general learning algorithms to describe

the behavioral potential of a system. Thus, many,

large matrices of data values must be sifted through in

order for a human to derive a readily understood

125

description of the system's behavior. Furthermore, for

a neural network to develop the capacity to perform any

type of interesting problem solving task would require

large amounts of effort to set the connection strengths

either by training the system or by "seeding" the

system with values obtained from statistical

calculations.
/

For example, if one were to build a checker

playing neural network in a purely neural information

processing environment, one would first present a game

board to the system and allow the system to settle on a

move. Next, an expert would have to provide feedback

as to the propriety of the move, and allow the system

to back-propagate this information. Finally this

process would have to be repeated until the neural

network had properly adjusted it's weight matrixes so

that it would make the proper move given this

particular board configuration. Furthermore, this

process would need to be repeated for all possible

board configurations. One-thousand training trials per

pattern is not unusual and would make the endeavor

impractical, if not impossible. One could imagine a

similar scenario for a single-layered net. For

example, one could present all possible board

configurations to the network during training. Here

again, however, system constraints would make this

impractical. In fact, the time required just to

calculate and construct all possible checker board

configurations would be quite large.

126

Even if the training bottleneck was surmounted,

the actual learning (changes in weight matrixes) and

expertise (weight matrixes) utilized by the system

would not be in a form that is readily understood by

people. Knowledge-engineering, as inspired by the work

of Newell and Simon, has well developed, relatively

efficient techniques for deriving domain knowledge from

experts. Furthermore, they are able to represent that

knowledge in forms (production systems, frames,

traditional programming languages, repertory grids)

which are relatively easy to communicate to others and

require no system training except for coding.

Thus, my fundamental rationale for specifying a

system which integrates neural and traditional

knowledge engineering techniques can be summarized in

six main points. First, traditional rule-bases are

very effective at describing behavior and the

conditions under which a behavior should occur.

Second, it seems more natural to describe complex,

sequential, human problem solving behavior with

symbolic, serial models than with neural models which

127

use only weight matrices and general learning

algorithms to describe the behavioral potential of a

system. Third, modern knowledge engineers are already

proficient in the use of symbolic representations for

describing expertise and such a system would allow the

use of neural processing without necessitating the

retraining of the knowledge engineering work force.

Fourth, using traditional formalisms means that

currently installed rule-bases can be automatically

converted to fine-grained, massively parallel platforms

without requiring huge numbers of human-hours for the

conversion. Fifth, the use of such a system would

eliminate, or greatly reduce, the training bottleneck

{i.e. setting the weights) required by most PDP

systems. Lastly, I wish to determine what performance

benefits and costs are realized when using neural

models to process high-level, rule-based knowledge as

compared to traditional, sequential processing

architectures.

As I stated earlier, my fundamental theoretical

position is that the ultimate goal of modern human

problem solving theory is to specify a highly parallel

system which can produce ordered, goal oriented,

sequences of behaviors as described by serial, symbolic

models derived from studies of actual human problem

128

solving activity. Thus, there are three major reasons

that traditional knowledge engineering techniques and

symbolic formalisms are necessary for gathering and

describing expertise in a given problem solving domain.

First, traditional knowledge engineering techniques

which result in some type of symbolic description

(frames, productions, repertory grids) of the problem

solving behavior have already been shown to be

effective tools for gathering and summarizing

knowledge. Second, the descriptions which result from

traditional techniques can be used to generate a

problem solving neural network. Lastly, and perhaps

most importantly, the symbolic formalism can be used to

test whether the resulting neural system operates in

accordance to the description of actual human behavior

(i.e. provides a validity verification tool).

Therefore, the hybrid system that I wish to outline

should be able to use a traditional symbolic

description of human problem solving behavior (frames,

productions, repertory grids) as input, parse the

formalism, determine the inputs, output, number of

nodes, and calculate the weight matrixes for each node

based upon the information contained within the

formalism.

The process would begin with a knowledge engineer

129

conducting observations and interviews, analyzing the

resulting protocols and building a rule base that

performs successfully. For the sake of simplicity, I

will use the tic-tac-toe rule base in Figure 13 to

represent the output of the knowledge acquisition

phase. As one can see from the figure, the rule base

is composed of rules which are statements of the form

IF <conditions> THEN <actions>. The rule base would be

processed by an interpreter capable of parsing the

rules into units and organizing the resulting units

into a network. For example the system might extract

units such as player, opp(onent), two marks, on column,

on row, on diagonal, intersection, side, corner, etc.

After distilling the units from the representation, the

system would construct a matrix which represented all

possible connections between the units. Next, for some

architectures, the system would calculate the weights

for each unit based upon the relationship among units

in the rule base (how often any two units co-occur in

the rules). This would be accomplished by using a

formula comparable to Rumelhart and McClelland's

probability of co-occurrence formula mentioned

previously. In other architectures (e.g. multi-layered

perceptrons), the system would construct a training set

with some supervisory information.

130

Unfortunately, rule bases are efficient

representations of knowledge and, as such, may not

concretely represent all the information necessary to

construct a neural network. In the current case, the

events of opp=forking pattern and player=forking

pattern would have the same activation level because

the unit pairs occur equally often in the rule base.

Thus, in the case where both conditions are true, the

system would not be able to decide whether to block the

opponent or to complete its own forking pattern. One

solution to this problem would be to employ some type

of weighting rule based upon which term appears first

in the rule base. A second option would be to allow

the user to manually alter the weights. Doing this,

however, reduces the interpreter to a "roughing in"

role in which it provides a rough outline of the units,

the relationships among them, and the general

architecture of the system. A user may, for example,

examine the units extracted by the interpreter from the

rule base and decide that he wishes to use a different

general architecture. He would then be able to specify

that he wants a multi-layered perceptron with 3 layers,

18 input nodes and 9 outputs. The system would then

map the extracted units onto the system specified by

the user. In essence, the system would be able to

automate the neural network engineering process, but

the human designer would retain the ability to

customize any component of the resulting network.

131

Another, even more promising, knowledge

engineering technique known as repertory grids (Boose,

1986) may provide another avenue for uniting neural and

symbolic formalisms. Repertory grids were first used

by psychologists to determine personality traits and

have been used recently by AI workers to automate the

knowledge acquisition phase of expert systems

construction. Essentially, the knowledge engineer with

the aid of an expert would identify the relevant

components of a knowledge domain. These components are

then organized into all possible pair-wise combinations

and given to the expert(s) who simply make judgements

about each pair's degree of relatedness. The expert(s)

responses are then fed into a processing package which

converts the relatedness ratings into rules. If one

re-labels the components of the knowledge domain as

units and the relatedness ratings as connection

strengths among units then the raw data from a

repertory grid represents the fundamental information

necessary to build a neural network. Further, if one

takes the units and weights data from the repertory

grid and couples it with some knowledge about neural

132

net designs, then one has a system capable of

automatically generating single-layered neural networks

directly from information provided by experts. In the

case of multi-layered perceptron architectures, the

system may be able to identify inputs and outputs, but

the values of the hidden layers would be difficult to

determine on an a priori basis. Even in this case,

however, the system might be able to automate much of

the process by converting the experts ratings to

training materials and playing the role of a supervisor

during training.

A maJor added benefit of using a repertory grid to

collect expert knowledge is that the system would be

capable of simultaneously generating a rule base and

neural network. The rule base could then be used by

humans to better understand the neural processing, and

could also be used to verify the workings of the neural

network. Inversely, rather than having to sift through

large volumes of weight matrices, one might be able to

alter the neural processing by simply changing the rule

base. In effect, the system would reason backwards

from the rule change and identify the neural data that

should be modified in order to implement the rule

change.

Obviously, implementing all the capacities of an

133

integrated knowledge processing system, as outlined

above, would require considerable processing power.

However, the benefits of having a system which can use

symbolic input in order to build, train, and operate a

neural network might also be sizeable. If a knowledge

base is quite large, for example, neural systems may be

able to instantiate solutions faster than a traditional

rule base. Generally speaking, if a neural network has

been properly trained then it will always move towards

a best-fit solution and never away from it. This means

it is possible for a neural network to get caught in a

local maximum, but, in most cases, a neural net will

take a very direct route to a solution. Traditional

rule systems which frequently use sequential search

processes, however, often must first exhaust processing

branches that lead away from the solution before the

proper branch comes to the top of the search queue.

Neural nets, therefore, are theoretically faster than

traditional rule processing.

In conclusion, the potential advantages resulting

from a system that integrates symbolic and neural

process1ng include reducing the neural net training

bottleneck, enhancing the understandability of a given

neural system's processing, facilitating the debugging

and modification of a neural net, allowing existing

134

rule bases to be ported to neural processing platforms,

and making the advantages of neural processing

available to expert systems developers without

requiring extensive re-training of the knowledge

engineering work force. In general, neural network and

traditional symbolic processing models tend to

complement, rather than compete with, one another.

Consequently, a primary goal for the next generation of

AI technology should be the complementary integration

of symbolic and neural processes so that each model's

strengths are maximized and its weaknesses minimized.

Sequential Neural Processing, Consciousness,

Mental Models, and Creativity

As is pointed out in Chapter 14 of Rumelhart and

McClelland, the "distributed" in parallel distributed

processing refers to the serial processing component of

a highly parallel processing system. Take for example,

the act of recognizing a room. Light reflected from

the contents of a room enters the eyes and activates

certain patterns of photo-receptors in the back of the

eye. This pattern of activation is sent through the

optic nerve to the occipital lobe in the back of the

brain. The patterns of activations are processed, and

lines, edges, and basic forms are extracted. These

basic forms are then interpreted to indicate the

135

presence of walls, windows, drapes, furnishings, etc.

The pattern of recognized objects are then interpreted

as an entire room and a combination of rooms might

further be recognized as a particular house. Each one

of the steps is a parallel process in that it

simultaneously processes a large number of inputs and,

based upon the constraints provided by that input and

past experience, is able to relax to a stable state

which represents the interpretation of the input.

However, the room cannot be identified until the

furniture is identified, and the furniture cannot be

identified until certain basic forms are recognized,

and so on. Thus, the system is a highly parallel

system, but the parallel processing has to be

distributed such that processes which provide

constraints for other processes must be completed

before the secondary processes can complete their

processing. Hence, the distinction between parallel

and serial processing becomes a matter of the time

frame in which the system is observed. If one looks at

the system over a short time frame (< 250 ms) then the

processing is best described as highly parallel. If,

however, the system is observed over longer time

frames, then the parallel processes can be seen

operating in sequence. Thus, PDP models possess an

136

inherent, serial component which operates at every

processing level from low-level perceptual processes up

to the highest level conscious processes.

So far I have discussed how a neural system might

be able to recognize inputs, but not how it can use

that information to execute sequences of actions. From

the PDP perspective cognitive processing can be

summarized in the following way. An input pattern

enters the system and the system relaxes to a state

which optimally satisfies the constraints provided by

the input and past experience. As was indicated in the

discussion of schemata, the pattern of activation

across units represents the interpretation of the

input. Therefore, each network can represent only one

interpretation at a time, and the system maintains its

pattern of activation until the stimulus conditions

change. Once new data enter the system, it begins

again to relax to a new stable state.

In the PDP view of cognition, the contents of

consciousness are represented by activation patterns

which result when a large subset of the mind's total

number of processing units relaxes to a stable state.

Therefore, thinking operates on a time scale which

corresponds to sequences of large-scale, stable states

(i.e., when networks of networks of networks best

137

satisfy all their impinging constraints). Thus, serial

thought processes are viewed as sequences of stable

states which emerge from the relaxation of large

coalitions of parallel architected, constraint

satisfaction networks.

One of the supposed problems with such a system is

that it requires new input for the interpretation to

change. This is not as big a problem as one might

first expect. First, the environment is rarely, if

ever, static. Thus, new input is continually entering

the system. Even here, however, the model may be

unsatisfactory because people don't simply sit by and

monitor the world. People affect change in the

environment based upon their interpretations of the

environment. To account for this in PDP models, the

environmental chang~s initiated by an individual are

simply fed back into the system in order to provide a

new set of constraints for the system to deal with.

Consider the general processing of a game playing

neural system described by Rumelhart and McClelland. A

game board is presented to the system. The system

takes the position of the pieces as constraints and

settles to a stable state which represents the system's

move. The new position may provide input to a second,

opposing, neural system which settles on a move and, in

138

turn, provides a new set of constraints to the first

neural system. The system can thereby generate a

sequence of appropriate moves and play an entire game

against an opponent. Even in this scenario, however,

the system is entirely reactive and, in effect, deals

with each move in a conceptual vacuum that has no

expectations of future moves.

One of the things that human players are

particularly good at is trying to "out-smart" or

anticipate what the opposing player is going to do

given a particular board configuration. That is, we

are good at creating mental models of opposing players

and the accuracy of the mental models is a large

determinant of our ultimate success in a given problem

solving domain. This can be accomplished with neural

nets by connecting two neural systems together

(Rumelhart & McClelland, 198Gb, p.40). The output of

the primary neural network would be sent as input to

the second, "modeling" neural net. The modeling net

would in turn produce an output which represents a

guess about what an opponent might do given the

system's move. The output of the modeling network can

then be fed back into the primary neural network to

determine whether the result of a selected move is

desirable. In this fashion, the neural system could

look several moves ahead and even "mentally" play an

entire game.

139

The role of mental models is, in fact, central to

the PDP view of thinking and reasoning. Both PDP and

traditional problem solving theorists assert that

problem solving/reasoning proceeds by breaking a

problem down into sub-tasks to which we already possess

solutions. In effect we attempt to break problems down

into pattern-matching operations at which we are very

good and that require minimal processing resources.

Rumelhart and McClelland further assert that we have

three essential abilities which allow us to perform

logical tasks; pattern matching, mental modeling, and

manipulating our environment. Take as an example task,

the process of multiplying two three-digit numbers

(343, 822). Most of us do not have the multiplication

tables over-learned up to 822 so we must solve the

problem by breaking it down into smaller, more

manageable sub-tasks. Thus, we may have already

learned to represent the problem by putting one number

over the top of the other. We can then "see" that

below the right-most column we can write a 6. Next we

have learned to multiply the second number in the top

row by the right most bottom number, so we write an 8

below the second column of numbers. We repeat this

140

cycle for each number and start a new row when we begin

multiplying by a new number on the bottom row. For

each cycle the sequence is the same. First, manipulate

the environment so that you create a representation of

the problem. Next, use the power of our perceptual

system to efficiently process the representation.

Last, modify the environment to represent the results

of the pattern processing and continue processing. Fn

effect, we have reduced the task to a series of more

manageable pattern-matching operations.

Many adults, however, do not require physically

representing the problem in order to solve it. They

can do it "in their heads" because of the human ability

to internalize the representations we create (i.e.

build a mental model). Thus, we no longer need to

physically write down well-learned problems, but can

simply imagine manipulating the representation. Of

course this does not apply solely to mathematics, but

the entire spectrum of human thought. In the PDP view,

human rationality is possible because of our ability to

internalize or mentally model external events so that

we can imagine manipulating the representations in

analogous ways to how we might actually deal with the

referent in the external world (Shepard's work on

mental rotation seems to support this view as well).

141

In essence, PDP theorists suggest that human

rationality is achieved by utilizing models which are

represented by the activation patterns of large

coalitions of PDP-like networks.

There are some interesting traits which emerge

from such a system. First, once a model is

internalized, it can be manipulated in several ways.

Normal operations can, of course, be performed on the

representation because those operations are part of the

internal representation of the referent. By normal, I

mean operations that are normally done to the referent

in the external environment. However, the

representation can be combined with other internal

representations which, based upon some selection

criteria, possess traits which compliment one another.

Thus, new, never before experienced, representations

can emerge, and new objects which correspond to that

representation can be tested mentally, and/or created,

and tested, in the external world.

New representations seem to evolve slowly from

combinations of existing representations rather than

being created anew. The same seems true of invention.

That is, inventions slowly evolve from combinations

and/or modifications of existing devices. In fact, it

seems reasonable that before an invention can be

142

constructed, an internal representation of the

invention must first be created. Once the invention is

built in the external world, observations can be made

about its true behavior, and the data from the

observations can be fed back into the system so that

the invention's internal representation can be altered

accordingly. Similarly, modifying the internal

representation then allows one to perform similar

alterations on the external referent, and the cycle

continues until some satisfactory result is obtained.

To further clarify this point, consider the

general process of problem solving as outlined by

Newell and Simon. For a problem to exist, a task

environment and an appropriately motivated problem

solving system must be present. The problem solv1ng

system must also desire another state of affairs than

the one in which it currently resides, and that state

must NOT be attainable by any complete, immediately

executable, series of actions. In order for the system

to determine possible action sequences that could lead

to the goal state, the problem solving system forms an

internal representation of the problem (i.e. the

problem space). Based upon the internal problem space,

the system activates a problem formulation which, in

turn, allows the for the generation of a problem

143

solving method. The problem solving method is a

sequence of elementary information processes that will

hopefully lead to solution of the problem. If the

method doesn't lead to a successful conclusion then the

method may be modified or replaced with another. If

enough methods fail then the problem may be

reformulated, and if enough problem formulations are

unsuccessful, then the problem space may need to be

altered.

It is my opinion that problem spaces,

formulations, methods and eips are all processes which

naturally emerge from coalitions of PDP-like processes.

The problem space is a large, pervasive data structure

that seems to be "settled on" very quickly. Likewise,

the problem formulation and methods can also be

generated rather rapidly. In fact, people seem to be

able to begin generating possible solutions to problems

almost immediately upon being presented with a problem.

Considering the large amounts of data that have to be

utilized in representing and formulating a problem, it

is difficult to imagine that this feat could be

accomplished by anything other than parallel

distributed processes. In true problem solving

conditions, the first attempted methods will probably

not lead to a solution and will require modifying a

144

method, generating a new method, reformulating the

problem, or altering the problem space. Furthermore,

it seems reasonable to expect that problem difficulty

may be directly related to the degree and level

(method, problem formulati9n, problem space) of

adjustment necessary to solve the problem.

To illustrate, consider Edison's invention of the

electric light. It is my assertion that the invention

of the electric light, as recounted in Freidel and

Israel (1986), represents one of the highest foFms of

creative problem solving, as well as, intermediate and

basic forms of problem solving. In 1876, Thomas Edison

became interested in creating a reliable, economical

lighting system and visited William Wallace's electric

dynamo factory. It is reported that during his visit,

Edison exhibited child-like enthusiasm for what he saw

there, and 10 days after' re~urning to his Menlo Park

lab, he boldly announced that he had the solution to

the electric, incandescent light. Unfortunately, his

proclamation was quite premature.

By this time in his career, Edison had already

been granted an impressive number of patents, many of

which were in the field of telegraphy. Furthermore,

many of the telegraphy patents involved the use of

feedback loops to resolve a variety of problems, and it

145

was the feedback loop that Edison believed would allow

for the development of an efficient incandescent light.

The problem with the incandescent light was that it had

a very short life. An incandescent light operates by

passing a current through a filament which heats to

glowing. However, very few materials can heat to

glowing without melting or oxidizing. The two most

promising materials, carbon and platinum, were

resilient to melting. Carbon, however, was initially

rejected because of its tendency to flame at lower

temperatures. Platinum, on the other hand, had the

problem of continuing to heat up past its meltlng point

once its temperature had been raised to the point of

incandescence.

Edison, quite reasonably, viewed the problem as

one of current control and thus designed several

feedback loops to circumvent the problem of over

heating. The feedback loop regulated the temperature

of the platinum filament by restricting the current

when the filament reached a certain temperature. When

the temperature of the filament returned to an

acceptable level, the current would be allowed to flow

freely into the filament. Thus, Edison reasoned, the

temperature of the filament would remain within

acceptable limits, and never overheat.

146

While this is very reasonable approach to the

problem, it did not work satisfactorily because the

platinum elements would still distort and fail after

remaining at the point of incandescence for a short

period. Edison, and his Menlo Park staff, took the

next year and four months to develop a new

understanding of the elements required to build an

efficient, reliable, incandescent light. That is, the

initial problem space was faulty, and they spent the

next 16 months creating a new one. During that time

Edison gathered the some of the best technology, minds,

and technicians for the assault on the light bulb.

They performed literally thousands of experiments

utilizing different designs and materials in one of the

more intense technology development efforts ever

undertaken. Finally, in October 1879, the Menlo Park

team had developed a new understanding of the

requirements for the electric light, had dropped the

current regulator from the design completely, and now

understood how carbon, thread, coils, and a vacuum

could be combined to form a reliable incandescent

light.

Let me try to characterize this inventive process

by integrating PDP and traditional problem solving

perspectives. When presented with the task environment

147

(the development state of the incandescent bulb, state

of technology, available resources, etc.), Edison's

cognitive machinery settled on a problem space that

activated a problem formation (call it the feedback­

loop formulation) which had been successful in the

past. In fact, if PDP models are reasonable

descriptions of problem solving, then Edison may not

have had much choice than to characterize the problem

in terms other than the feedback-loop formulation.

A problem formulation is activated based on the

interactions of connection strengths, which had been

determined through a lifetime of experience, and the

new problem components (overheating elements, wires,

electric current, etc.). The new inputs possessed

similarities to the components that existed in the

telegraphy problems that he had solved successfully.

Thus, the correspondence between the new data and the

existing cognitive structures would tend to activate

the highly successful, reliable feedback-loop problem

formulation. In essence, the components of the

incandescent light problem were mapped onto the pre­

existing feed-back loop formulation.

Remember that in PDP theory, one can view

cognitive structures as networks of schemas and

coalitions of schema networks. Thus, mapping the

148

components of the incandescent light problem onto the

feedback-loop formulation is equivalent to

instantiating the slots of an already existing schema

to the components of the incandescent light problem.

Thus, the values of the slots (processing units) have

changed but the relationships among the slots remain

the same. The process of taking new domain knowledge

and mapping it onto a pre-existing knowledge structure

is probably one of the most fundamental problem solving

techniques, as well as, the primary process by which we

can understand the world around us. Simply stated,

understanding does not exist until new information has

been reconciled with the old. Thus, the model I have

described, so far, represents a process by which

initial understanding is achieved by analogy, and

suggests that we may have no other choice but to

initially attempt to solve novel problems by a form of

analogical reasoning.

In PDP terms, the process operates as follows.

The weightings between the components that comprise a

problem space, or formulation, are established by a

lifetime of experience. Thus, when new data enter the

system, the system attempts to find a pattern of

activation which maximally satisfies all the impending

constraints. The new inputs represent only a minority

149

of the total number of impinging constraints and the

majority of constraints are provided by the pre­

existing internal connections between cognitive

elements. Thus, the system will most likely activate a

problem formulation which corresponds to previously

experienced and successful activity. Because new

information must first be mapped onto existing

knowledge structures, new insights can only be achieved

by modifying old representations. If the new data have

a high degree of concordance with the old so that the

existing data structure allows for reliable and

accurate predictions about the new data (or in PDP

terms the old structure is a good model for the new

information), then only slight modifications may be

needed in order to understand the new information. If,

however, the information processing system does not

have a pre-existing data structure which adequately

models the new problem, then several possible

formulations (or problem spaces) may be activated.

This results in a "fuzzy" understanding of the new data

in which different components of the new data may

correspond to components of several different internal

representations. The existing structure which fits

best may then be modified and refined until a suitable

representation is obtained.

150

In order to modify an existing structure, one must

over-ride the influence of previous experience by

having frequent experiences with the new data and

concentrating considerable attentive and conscious

effort on the new and old data. In effect, the

experience and conscious effort will eventually allow

new connections to be formed between units which will

ad~quately represent the new information.

Sometimes, however, a problem does not lend 1tself

to any known problem formation (known at least to the

person attempting to solve the problem). In this case,

applying a previously learned representation to the

problem only leads to plausible but ultimately

ineffectual solutions. Edison was the victim of this

when he settled on a solution that involved a feed-back

loop to regulate the current, and it required an effort

of historically monumental proportions to over-ride

this powerful problem representation. When no existing

representation is sufficient, the solver must create a

new representation that is more than just a mutation of

another previously learned representation. One may

need to break down several representations, gather new

data, and combine all those bits and pieces into a new

representation. This is a very difficult process

because the old representations are already

151

established, or to use PDP terminology, the weights

have already been set. Therefore, any time the new

information is presented, the system settles on the

old, strongly connected, representations and blocks the

new, weakly connected, structure. Furthermore, before

the new knowledge will be fully assimilated, other

related knowledge structures may need adjustment in

order to maintain their accuracy and reliability.

Thus, creating a new representation and gaining new

insights is an intense pervasive process that requires

a great deal of mental energy in order to over-ride the

automatic inclinations of our cognitive machinery.

At some point in the process of modifying weights

(learning), the connection strengths between relevant

and irrelevant units will be about equal, and the

system will have a very difficult time locating a

stable constraint satisfying maxima. The point at

which both relevant and irrelevant components receive

comparable activation is probably experienced as

confusion. The combination of a system unable to

settle on a stable activation pattern and the

substantial effort required to change weights may

explain why learning new, difficult information (i.e.,

information for which no adequate internal

representation exists) sometimes results in discomfort,

152

agitation, and frustration.

In this view of invention, all of the Menlo Park

efforts from roughly September 1878 to August 1879 were

fundamentally directed at constructing a more accurate

internal representation of tne components and

relationships necessary to build an incandescent light.

In order to fully appreciate the difficulty required to

create and disseminate anything new, one must remember

that the true problem does not exist in the external

world but within the problem solver's representation of

the problem. Therefore, before an invention can

emerge, the internal representation of that invention

must first be created. A prototype can then be created

in the external world and observations made about its

true behavior which, in turn, feed back in to the

problem solving system and allows alteration of the

internal representation.

Likewise, altering the internal model allows one

to determine what modifications to the external

referent may be fruitful. If a manipulation seems to

work on the internal representation, then one may

similarly modify the external working model and observe

the results. If the modifications suggested by the

internal representation result in too many failures

then perhaps the internal representation needs to be

153

discarded and a new representation formed (as Edison

had to do). It therefore seems feasible to expect the

evolution of an internal model to be mirrored in the

evolution of an invention.

Likewise, the evolution of a technology over

generations may reflect the development of a culture's

general technological understanding. New inventions

result from new internal representations, and new

representations evolve from a highly effortful process

of modifying existing representations. The new

inventions will therefore reflect the changes in the

internal models, and it seems reasonable that

inventions would appear to slowly evolve from

combinations and modifications of existing technology.

To be precise, however, inventions do not evolve from

existing technology, but emerge from the ever-evolving

mental models which represent the current understanding

of existing technology.

For example, lighting systems have been employed

since the advent of fire. Over time, lighting systems

changed from a center fire, to torches, to candles, to

kerosene lanterns, to gas lights, arc lights, and to

the modern electric light. Each of these advances in

lighting represents a new understanding of how lighting

could be achieved. Thus, before any new lighting

154

technology could have emerged, a new internal

representation of the process of lighting had to be

developed in the mind of the inventor(s). The new

representations were built by modifying previously

acquired representations in light of new information.

The new inventions were built based upon this new

representation and reflected the change in the internal

representation: Next, once the new representation and

corresponding invention are developed, the new

representation has to be distributed to other personnel

who build, install, maintain, and use the new lighting

technology. In order for these other people to

effectively interact with the new technology, they must

also modify their internal models of lighting.

Therefore, disseminating new representations across a

culture requires substantial time and effort by the

individuals of that culture, and the degree of change

required by the new representation determines the

speed, and ease, with which a new technology can be

absorbed by a given culture. Thus, in general, new

inventions, which provide a user/operator interface

that reduces the degree of effort that the

userjoperator has to expend in understanding the

workings of the new technology, should be accepted more

readily than comparable technology which does not

attempt to reduce the learning curve of the

user/operator.

155

As already described, modifying internal

representations is an effortful process. Further, the

amount of effort may be proportional to the level and

degree of modification necessary to construct a new,

appropriate representation, and may partially explain

why most inventions evolve and gain acceptance slowly.

However, it certainly seems easier to understand how

the electric light works than it was to invent the

electric light. If understanding, like invention,

requires modification of the internal representation

then why is it easier to understand the electric light

than it was for Edison to invent it? If it is simply

due to the newness of the information or the complexity

of the solution then it should be just as difficult to

understand someone else's new theory/representation as

it is to create your own. This does not appear to be

the case. It seems easier to understand someone else's

ideas than to have created them myself. As an example,

I readily understood most of Edison's work and the

operation of the incandescent light. In fact, the

electric light seems like a rather simple device. I

doubt however, that I could have so easily created the

electric light as I understood the writings about it.

156

Part of the answer surely lies in the fact that I

do not exist in the same historical context as Edison.

After Edison developed his light, the state of

knowledge was forever changed. The people who taught

science and technology to me had lived in a world where

Edison's light had been around for some time. During

the interim between Edison's work and my learning of

his work, further clarifications, new works which built

upon his, and simpler language had been developed to

illustrate, explain, and demonstrate the concepts

applied by Edison. My representation of electrical

technology was therefore compatible with Edison's

inventions because it had been partly shaped by

Edison's inventions. Furthermore, devices such as

dynamos, electric generators, efficient vacuum pumps,

and high quality conductive materials are now common

place. In Edison's times these devices were high-tech

devices and the ultimate solution for electric lighting

depended partly upon improvements made by the Menlo

Park staff in these technologies. In other words, I

simply do not have to, and perhaps never can, solve the

same problem as Edison or his contemporaries. It is

difficult to fully appreciate the difficulty of past

advances without understanding what was not available

to those pioneers.

157

Overcoming the subtle delusions caused by the

current informational context is one of the greatest

challenges facing those who wish to fully understand

the significant developments of the past. That is, we

most often have to view the past through the filter of

current knowledge. We can, however, gain understanding

about the past by making ourselves aware that certain

pieces of information were not available, and, by

looking at the form of a solution, we may be able to

gain valuable insights about the problem representation

and the method which generated the solution.

Unfortunately, even when our knowledge of the context

allows us to empathize with past problem solvers, our

current representation of the contemporary world over­

rides our imagery of the past, because our

representation of the past is still a part of our

current knowledge state. Therefore, we are forced to

view past advances through a subtle filter of current

understanding, which impedes our ability to fully, and

accurately, re-create the true problem spaces of past

inventors, and we mistakenly over-simplify the nature

of the true problem that had been solved.

While the pitfalls of hindsight are partly

responsible, the primary reason understanding is easier

than creation, however, is most likely due to the fact

158

that I did not have to deal with as many details as

Edison. As described earlier, identifying, and

processing, the salient details of a problem are

activities which require large amounts of time and

effort in novel, or creative, problem solving. By

definition,.the initial state of a creative problem is

large, relatively unstructured, and contains many

extraneous components. The essence,of problem solving

is utilizing, or developing, a strategy which

efficiently separates relevant from irrelevant problem

elements. If a proven problem formulation (e.g.,

feedback-loop), which is an efficient means of

distinguishing relevant details, fails on a large

scale, then the problem solver is left with only weak

methods to identify the relevant factors within the

problem space (e.g., generate-and-test, do-it-and-see­

what-happens, if-carbon-based-then-try-it). This in

fact seems to be the case with Edison's light. When

his feedback-loop formulation failed, he involved the

Menlo Park workers in an exhaustive series of materials

tests in hopes of finding the right combination of

materials to solve the oxidation and melting problems.

(Edison's staff ran electric currents through materials

as diverse as metals, coconut fiber, human hair,

fishing line, and broom corn to name just a few.)

159

Once the problem has been solved and new

representation for the problem emerges, however, there

is no need to examine promising, but irrelevant,

details. In fact, a successful formulation will ignore

extraneous factors. Therefore, as I read of Edison's

work, I concerned myself only with the most salient

details. I simply will not have, and probably do not

need, as detailed an understanding of all the problem

components as Edison. Not having to attend to

irrelevant details removes much of the processing

burden from the student of an invention while it may

have actually consumed much of the inventor's energy.

Consequently, creating an invention differs

qualitatively from understanding an invention much as

discovering the Cumberland Gap differs from driving a

car on the road which now runs through the pass.

Although he probably didn't think in these terms, I

believe Edison was referring to the severe processing

burden imposed by weak methods, and the mechanics of

constraint satisfaction processing in the human mind

when he observed that, "There is no expedient to which

a man will not resort in order to avoid the real labor

of thinking."

Much like the distinction between learning about

and creating an invention, a similar question can be

160

asked of the distinction between creative and

traditional problem solving. That is, if problem

solving is really a matter of modifying and recombining

old representations then what is the difference between

traditional problem solving and creative problem

solving? One of the possible distinctions between

creative and traditional problem solving is the degree

and manner in which a representation is modified. In

the simplest case, problem solving is simply a matter

of using a representation. Consider a second grader

who is learning to multiply and applies the problem

representation for 7x3= to 8x4=. The quantities of the

problem change. However, if the problem representation

is sound, then the operations should still be

successful. There is very little change in this

representation, but solving the problem still requires

effort for the novice multiplier.

At the other extreme may be the case of Edison,

who had to reject a rich, reliable, and deceivingly

promising representation, and create a new one by

discovering new information, breaking apart pieces of

old representations, and combining all the pieces to

form a virtually unthought of representation for the

physics, chemistry, and architecture of an incandescent

electric lighting system. In the middle may lay the

161

cases where one makes moderately difficult

modifications to an existing representation or applies

an existing representation to a problem domain which it

had never been applied.

Problem difficulty may in large part be determined

by the degree and level of modification necessary to

resolve a given problem. Creativity, however, is not

defined by the difficulty of the processing, but is

defined by the rarity of the solution. In this view,

traditional problem solving and creative problem

solving may be operationally identical. That is,

traditional problem solving usually requires

modification of a method which is a relatively simple

alteration process. However, if that modification

results in signif1cant savings in time and/or effort

required to accomplish a task and the solution is rare

in the given cultural context then the act is said to

be creative. The ability for the solver to generate a

rare method may be indicative of the uniqueness of that

individual's problem space. If the internal

representation is unique, then, for the solver, the

problem was relatively easy to solve. However,

someone, who did not begin with a problem space that

allowed for such a unique modification, would have to

exert much effort to construct an internal problem

162

space that would facilitate a culturally rare solution.

Conversely, it is possible for someone to exert mammoth

efforts to construct a new understanding of a problem,

but the ultimate solution may not be judged creative.

For example, present a modern automobile to an

individual, who has minimal auto maintenance

experience. Furthermore, inform him that the car is

"running rough" and it is his job to fix it. The naive

mechanic may have to completely reformulate the problem

of automobile maintenance in order to understand the

nature of the malfunction and its remedy. That is,

from the novice's perspective, the problem space is

relatively large, unstructured, and few formulations

exist for traversing the problem space. Thus, from the

perspective of the novice's internal processing,

learning to repair a car is an effortful, creative act,

but from the perspective of our culture, it is not rare

and is not, therefore, creative.

Whether we judge the final product of processing

as creative depends upon the product's rarity within

its cultural context. In general, the highest forms of

creativity will correspond to internal processing that

requires disassembly of several internal

representations, gathering of new information and

assimilating all the information into a new internal

163

representation which generates some product of value to

the solver or society. In many cases, however, a

person may have to undertake this highly effortful

process to solve a traditional problem. Likewise,

there may be cases where a relatively simple

modification results in a rare, creative solution.

Therefore, while there is a degree of correspondence

between creativity and problem difficulty, as

determined by the magnitude and level of modification

required by the internal representations, the

correspondence is not perfect.

Problem difficulty and creativity both involve

modifying internal representations which are reflected

in the activation patterns of large coalitions of

neural networks. Neural networks are, in turn,

composed of large coalitions of processing units (i. e.

neurodes) and the data structure which emerges from

this architecture can be described as a network of

generative schema. Furthermore, it is my assertion

that the judgement of creativity is based upon a

cultural context and not upon the nature of the

underlying processing. Therefore, the internal

processes utilized in a large segment of creative

problem solving is operationally equivalent to

traditional problem solving processes in that both

164

utilize processes that modify pre-existing internal

representations. A creative act, however, results when

these same processes act to form a culturally unique

problem representation that is effective at resolving a

given problem. It therefore seems reasonable that an

appropriate manner to study creativity is to uncover

operations (heuristics) which might lead to unique

problem representations. Interestingly, alterations

which emerge naturally from the processing of

constraint satisfaction networks generate heuristic­

like modifications of existing schema/internal

representations.

In the conceptual framework discussed so far, the

task environment consists of everything available to

the subject in the external environment plus the

cognitive potential of the problem solving system as

represented by all the connection strengths in the

system. When the system is placed in a problem solving

situation, the task environment activates a problem

space which is represented by a pattern of activation

across a large coalition of networks.

Likewise, the activation pattern of the problem

space, via the inputs from the external world and the

internal connection strengths, activate a problem

formulation. The problem formulation, subsequently

165

activates a method which, in turn, activates a series

of eips. It should be made clear that even though only

one problem representation, formulation, and method may

fire, several may receive partial activation that does

not meet the activation threshold. In a normal,

relatively well learned, problem solving domain the

system is able to settle on successful patterns

quickly. That is, the external input is consistent

enough with stored connection strengths, that the

system can quickly settle on the appropriate pattern of

activation and generate the corresponding behaviors.

However, if the external problem constraints and the

internal representations do not "fit" one another well

enough to activate a known representation (i.e. a

tightly bound coalition of networks and units), then

the system settles on a spurious pattern of activation.

For example, Rumelhart and McClelland clamped on

two descriptors, sofa and bed, which were strongly­

predictive, but mutually contradictory, descriptors for

the living room and bedroom, respectively. When both

predictors were clamped-on, the resulting pattern of

activation did not represent a normal living room or

bedroom. Instead the pattern of activation defined

what could be called a luxurious bedroom which was

large, contained a bed, a lounge chair, a dresser, a

166

fireplace, and a sofa. The spurious patterns that can

result, when strongly-predictive, contradictory

constraints are activated, may take several forms which

correspond, at least roughly, to some of the

combinatorial possibilities outlined by Weber & Perkins

(1989). The spurious patterns are important because

they provide clues as to how the internal

representation might be modified in order to resolve a

given problem or create a new artifact.

In the simplest case, the system activates a

series of behaviors which do not successfully

accomplish the goal. The system then receives

information that notifies it of the failure and the

system begins to search for a better representation.

Parts of the representation and corresponding

behaviors, may be judged as faulty based upon the

external data and data from previous experience. The

components which are deemed faulty are inhibited which

results in a new pattern of system constraints. The

system tries to relax to a new stable state which may

result in simple omission of certain methods, in

replacement of some methods, and/or reorganization of

the methods.

In more complex cases, however, previous

experience and external data cannot combine to generate

167

a well defined, stable state. In this case, as in the

Rumelhart and McClelland case, the system forms, after

some substantial jumping around, a new coalition that

is the raw data for one class of creative thought. In

effect, no one representation, formulation, or method

are fully instantiated. Therefore, only portions of

several representations are activated. In one case,

the spurious activation pattern may take the form of an

ANDing operation in which two independent schemas are

activated as one, or where only a few components of one

representation are activated in unison with another,

complete, schema. It is important to realize that

while this process activates certain related

components, it may also eliminate under-supported

components and result in operations that are equivalent

to ORing and XORing.

The spurious pattern that results from this

natural activity of constraint satisfaction networks is

the raw data that may be used in the next, and perhaps

most laborious, problem solving process. In most truly

novel problem solving situations, the patterns of

activation, which emerge from this process, will not be

wholly complete or accurate. That is, some of the

activated components will be unnecessary and even

contradictory while other necessary patterns will not

168

reach threshold and will not, therefore, be part of the

overall pattern of activation. The problem solving

system must therefore engage in a process whereby it

builds up connection strengths between relevant

components and eliminates connections between

undesirable, components.

The process is a two pronged process involving

conscious effort and experience. The connection

strengths are accumulated through experience with the

components and the relationships among the components.

As components tend to co-occur with one another, the

units which represent hypotheses about their presence

become more tightly connected. Thus, experience with

the components, in the form of repeated exposures to

the units, is necessary for the proper connections to

be built.

Simple repetition and rehe~rsal, however, are

probably not enough to account for the ability to form

new representations. Due to the system's tendency to

settle on a previously stored pattern of activation,

simply exposing the system to the factors would

probably require huge numbers of exposures, during many

different states of activation, in order for the new

information to be completely assimilated.

Instead of presenting the system with massive

169

numbers of external exposures, humans are able to make

multiple presentations of the factors by "imagining"

the components in concert with other information. This

conscious, effortful, activity allows for efficient

multiple exposures to the system, so that weights can

be changed more quickly than with the brute force

required of multiple external exposures. It is also

possible that consciousness allows for the adjustment

of weights by activating, or in some way involving, a

chemical "broadcast" process in the human brain which

inhibits previously stored weights and facilitates

construction of new connections across the system.

Lastly, non-conscious attention probably plays a

large role in resetting connections by allowing the

system to operate on other problems while continuing to

propagate the new data throughout the system. Such

processing may account for insights that purportedly

come after a period of incubation.

If creative problem solving proceeds by refining

spurious patterns of activation then insight may have

several flavors. One type of insight may result when a

spurious pattern of activation is activated and new

combinations are therefore available to the system for

further processing. A second form of insight may be

experienced when the system gains enough experience

170

with a collection of phenomena that a new, stable,

pattern of activation emerges. The third flavor of

insight may result when a pattern of activation is

edited such that it behaves consistently with all, or

at least most, related representations (i. e. the

representation has been fully assimilated).

Summary and Conclusions

My intent in the previous section was to outline

the possible correspondence between neural and

traditional problem solving models. My position is

that both views have much to offer one another and are,

in fact, much more complimentary perspectives than they

are adversarial. The two theories mesh nicely in their

level of explanation and can be combined to form rich,

integrated, processing models that can be applied to

real world information processing problems. I have

also tried to describe how common, and creative,

problem solving processes may emerge naturally from an

underlying constraint satisfaction processing model.

It has not been my intent to provide proof for the

existence of such processes because such proofs may

require career-long efforts. Instead, my goal has been

to suggest reasonable processes which allow the reader

to envision the varied, potentially important, insights

that neural models can contribute to the study of human

171

problem solving and creativity.

When I first became interested in the two general

fields of neural networks and human problem solving,

there seemed to be a battle raging in the cognitive

sciences about the rightful places of traditional

sequential and the newer neurally-inspired information

processing models. Upon reading and studying two of

the landmark works in both fields, I have come to the

conclusion that the theories of the four predominate

theorists (Newell & Simon and Rumelhart & McClelland)

have relatively few points of dispute. In fact, there

seems to be a great concordance between the paradigms

with respect to their relative positions in the

theoretical landscape, and their perspectives on the

nature of human problem solving.

First, it should be pointed out that the Newell

and Simon theory is mainly concerned with describing

behavior in order to deduce precise, abstract models

(production systems/programs) of underlying human

knowledge structures. It was their view that the

programs which resulted from such investigations would

accurately predict human behavior, but that the program

itself should not be viewed as a specification of the

actual processing mechanisms. Newell and Simon took

great care in divorcing their theory of human behavior

172

from any detailed description of underlying

physiological and computational processes, and in fact,

acknowledged that much of the actual underlying

mechanism of human behavior was most likely parallel.

The Newell and Simon theory is concerned mainly

with describing the outward behavior of humans in

problem solving situations and inferring from that

behavior a precise, accurate, parsimonious model of the

individual's internal problem representation. Their

theory is related to machinery only in that the

computer metaphor provided them with a theoretical tool

capable of the descriptive and predictive precision

which they sought.

The serial von Neumann computer provided them with

the proper degree of precision because they viewed the

essence of human problem solving to be a highly­

integrated, sequential process (a point with which most

PDP theorists agree). The serial computer metaphor

provided them with a flexible, powerful, "perfectly

rational" problem solver to which human behavior could

be compared and thereby provide a greater understanding

of human rationality. Newell and Simon contend that a

major goal of the study of human problem solving is not

only to create machines which can mimic the problem

solving proficiency of humans, but to describe and

explain human problem solving performance with such

precision as to be capable of disseminating the

knowledge in a useful way to other humans; be they

expert, novice, or theoretician.

173

The PDP theorists, on the other hand, are more

concerned with specifying low-level cognitive

mechanisms that are computationally powerful enough to

produce the entirety of human behavior. Neural models

have gained momentum in recent years due to three

occurrences. First, connectionist computer

architectures have become available which make highly­

parallel computing processes practical. Second,

traditional serial architectures have proven too

cumbersome, even at high processing rates, to

efficiently solve "monster" AI problems such as

content-addressable memory, speech recognition, scene

interpretation, and any other process that requires

pattern-matching processes that contain large

quantities of data points. Lastly, learning-algorithms

and transfer functions have been developed which

overcome weaknesses of the earlier neural networks.

Neurally inspired computing models overcome the

weaknesses of serial processes by taking a different

approach to data processing. In serial computing, the

amount of time required to identify a pattern increases

174

with the number of data points to be interpreted. On

the other hand, human beings, the most advanced PDP

system we know about, seem to be able to produce

solutions more quickly when given more information.

Humans are able to make better use of context effects

whereas serial computers must process each element in a

virtual vacuum, thereby, increasing the time required

to process all relevant information. Neural nets,

analogously to humans, are able to make more effective

use of the multiple constraints provided by the context

instead of being burdened by them as are serial

machines.

PDP, or neural network, models are inspired by the

architecture of the brain. First, they have no central

processor, but are composed of a large number of

highly-interconnected simple processors which interact

and constrain one another in ways determined by the

relative connection strengths that exist between them.

Secondly, neural networks are not programmed but are

trained. Thus, the essential character of processing

is a constraint satisfaction procedure in which a very

large number of constraints acts to produce behavior

rather than select a behavior from a predefined pool of

possible procedures. Lastly, no knowledge is

explicitly coded in the system, but instead, exists

175

within the connection strengths between the processing

elements.

According to their books, Rumelhart & McClelland

and Newell & Simon, agree on nearly all major topics

concerning human problem solving. Both agree that a

large portion of human cognition has a sequential

nature and that much of human problem solving behavior

can be captured in serial models. Further, they agree

that human problem solving proceeds by dissolving the

problems into sub-tasks for which the solver already

possesses solutions. This is tantamount to saying that

problem solving proceeds by reducing the problem into

pattern matching tasks which are probably highly

parallel operations (Newell and Simon refer to these

processes as elementary information processes). Thus,

the serial nature of problem solving results from

executing sequences of these elementary, parallel

processes as directed by a successful problem solving

strategy.

The two camps also agree that if a process takes

less than half a second then it is probably parallel,

and if it takes more than 500 ms then it probably has a

serial nature. Of course there is a gray area (250 ms

to 500 ms) in which both camps claim some dominance and

it seems l1kely that some sequences of operations can

176

take place in less than 500 msec while some parallel

processes may require longer than 250 ms to settle on a

solution. They agree on the fact that the contents of

consciousnessfSTM are probably the result of processes

done in parallel (content addressable memory retrieval

v. settling of large networks to a maxima). The two

camps even agree to a large degree on their respective

places in the theoretical landscape and is captured

nicely by Rumelhart and McClelland. In essence, it is

their view that at the low-end of cognitive processing

there is a relatively high degree of understanding.

That is, we tend to have relatively good models for low

level processes such as color recognition, edge

detectors and the like. Likewise, we also have a

rather good understanding of the highest level, most

conscious processes, because if we didn't, we would not

be able to communicate with one another. In the middle

between these two end points, however, there exists a

sizeable hole in our understanding. Serial theorists

attempt to illuminate this chasm by climbing DOWN into

this pit with their methodological flashlights. PDP

theorists attempt to climb UP into the breach with

their methodological flashlights in hand. The hope is

that the two will eventually meet someplace where their

combined lights will illuminate the entirety, or at

177

least most, of the gulf that exists in our current

understanding of human cognition. It is my hope that

the current paper has provided some power to both

theoretical lanterns and thereby helped to reduce the

gulf that exists between the two paradigms' respective

areas of illumination.

People are confronted with a problem when they

desire a goal and do not posses an immediately

available method to obtain the goal. The problem

solver must therefore formulate a strategy to obtain

the goal. Formulating the strategy involves dissolving

the problem into its components and performing a

sequence of elementary processes upon those components

which result in attainment of the goal. Each

elementary processes is readily accessible to the

solver, takes less than 500 ms to complete, is probably

a pattern-matching process, and is most likely a highly

parallel process, or a tightly-bound sequence of

parallel processes. If the problem formulation is

correct, and the solver is given enough time to

complete the strategy, then the desired goal will be

obtained.

On the surface, it seems a straight-forward

operation to combine these two processing models into

one complete system. First, one needs only to specify

178

a serial executor which is capable of formulating a

strategy and planning a sequence of actions. Second,

couple the executor with a PDP architected memory and

procedures and let the system run. Of course there are

many technical issues that would have to be addressed

before such a system were operational, but the general

concept is sound. In fact, many firms are now looking

to create such hybrid systems. Specifying applied

systems which use both serial and neural processes is

important for applied researchers, but may also prov1de

a transitional model for cognitive theories.

Eventually, however, our theoretical models will mostly

describe serial processes in terms of parallel

processes.

I am not advocating discarding concepts such as

problem space, heuristics, and internal

representations. Nor am I denying the fact that the

fundamental nature of human problem solving appears to

sequential. Quite the contrary, these are important

concepts and should be integrated with PDP models to

develop a cohesive model which encompasses both the

parallel microstructure and serial macrostructure of

human problem solving.

In fact, I believe that PDP models would be

completely insufficient models of human problem solving

179

and the study of human problem solving would come to a

halt if the only methodological tools available were

the currently available PDP models. The two

theoretical camps need each other if either is to

advance.

Newell and Simon have outlined an effective

procedure for studying human behavior and have

established an accepted and relatively understandable

formalism for describing human performance.

Unfortunately, that system does not adequately explain

how such behaviors can be produced by a highly-parallel

system such as the human nervous system. PDP models,

on the other hand, have the potential of modeling a

great deal of low level mechanism and explaining much

of the phenomena which is observed in the cognitive

psychology laboratory. However, pure PDP models of

higher level processing are difficult to build and test

because of the huge training overhead.

Ironically, neural networks may model high-level

human processes too accurately to be of direct use.

Just as humans may take years to learn a high level

skill (chess playing, invention, novel writing, etc) it

might take a pure neural net just as long to be trained

in the same high-level knowledge domain. Thus, a

synthesis of the two approaches seems prudent.

180

First, much of the data collection techniques used

in the study of human problem solving will remain

unchanged. The procedures outlined by Newell and

Simon, and refined by a myriad of other knowledge­

engineers, still seem adequate and useful. Likewise,

much of the model building will still use production

systems or other symbolic formalisms to describe

problem solving behavior. In the short term, these

systems will most likely be coupled with neural network

sub-systems in order optimize certain pattern

recognition operations. A second option for the

applied world is to develop systems, such as the one

described in the previous chapter, which can translate

production systems/symbolic descriptions to neural

network platforms and back again. In the pure research

realm, similar hybrid model building will take place,

but eventually, the theoretical vernacular will

probably take on a more PDP-like flavor. While I do

not propose tossing out important concepts such as

problem space, problem formulation, and heuristics, I

do think it is time that we began trying to specify in

PDP-like terms just what it means for someone to be

using a "means-ends heuristic" and how such a heuristic

can be implemented on a highly parallel platform.

Likewise, how does a highly parallel system formulate a

181

problem and plan a strategy for resolving that problem?

These are all very complex problems and will not be

resolved in the immediate future. They do, however,

represent a general goal of cognitive science and the

attainment of that goal will represent the merging of

the two information processing paradigms into one.

As scientists we are obligated to attempt to

explain our findings at the level of greatest

specificity available to us. After all, along with the

ability to produce adequate explanations, precision and

parsimony are two of the most important criteria by

which a scientific theory is judged. Again, it is not

reasonable to discard serial process models, because

human behavior does have a strong serial component, and

sequential, symbolic models represent an appropriate

level of explanation. With the advent of PDP models

however, we should not be content with the serial level

of description. While it will take some time for the

transition to occur, cognitive scientists, who study

human problem solving, now need to attempt to take

their models to another level of specificity by

postulating how their serial models can be implemented

on a highly parallel system.

As I hope I have demonstrated in this paper, PDP

models provide us with a potentially important avenue

182

to new insights and understanding of human problem

solving, and I believe we should add one more goal to

the goals outlined by Newell and Simon for the study of

human problem solving. In order to further the study

of human problem solving, we should now attempt to

specify how a highly parallel, PDP-like system can

produce ordered, goal-oriented, sequences of behavior

which are consistent with human performance as

described by serial, symbolic models derived from

studies of actual human problem solving activity.

References

Anderson, J. A. (1977). Neural models with

cognitive implications. In D. Laberge & s. J.

Samuels (Eds.), Basic processes in reading

perception and comprehension, 27-90,

NJ: Erlbaum.

Hillsdale,

183

Anderson, J. A. (1983). Cognitive and psychological

computation with neural models. IEEE Transactions Qn

Systems, Man k Cybernetics, 13, 799-815.

Anderson, J. R. {1985). cognitive psychology and its

implications. New York: W. H. Freeman and Company.

Boose, J. {1986). Expertise transfer for expert

system design. New York: Elsiver.

Brown, J. R., Garber, M. M., & Venable, s. F. {1988).

Artificial neural network on g SIMD architecture.

Martin Marietta Electronic Systems technical report.

Caudill, M. (1988). Neural networks primer. a series in

AI Expert, December 1987 - November 1988.

Charness, N. (1976). Memory for chess positions:

resistance to interference. Journal of Experimental

Psychology: Human Learning and Memory, ~' 641-6 53.

Chase, w. G. & simon, H. A. (1973). The mind's eye in

chess. In w. ~Chase (Ed.), Problem solving. New

York: Academic Press.

184

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981).

Categorization and representation of physics

problems by experts and novices. Cognitive Science,

~' 121-152.

de Groot, A. D. (1965). Thought and choice in chess: An

overview of a study based on Selzean theory. InN.

H. Frijda & A. D. de Groot (Eds.), Otto Selz: his

contribution to psychology. New York: Mouton

Publishers The Hague.

de Groot, A. D. (1966). Perception and memory versus

thought. In B. Kleinmuntz (Ed.), Problem solving.

New York: Wiley.

Ericsson, K. A. & Simon, H. A. (1980). Verbal reports

as data. Psychological Review, 87(3), 215-251.

Ericsson, K. A. & Simon H. A. (1984). Protocol

analysis. Cambridge, MA: MIT Press.

Feldman, J. A. & Ballard, D. H. (1982}. Connectionist

models and their properties. Cognitive Science, Q,

205-254.

Feldman, J. A. (1985). Connectionist models and their

applications: Introduction. Cognitive Science, ~,

1-2.

Freidel, R. & Israel, P. (1987). Edison's electric

light: Biography of an invention. New Brunswick, New

Jersey: Rutgers University Press.

185

Grossberg, s. (1986a). The adaptive brain I: Cognition,

learning, reinforcement, and rhythm. Amsterdam:

Elsevier-North Holland.

Grossberg, s. (1986b). The adaptive brain II: Vision,

speech, language, and motor control. Amsterdam:

Elsevier-North Holland.

Hayes-Roth, F., Waterman, D., & Lenat, D. (1983).

(Eds.) Building expert systems. Reading, Mass.:

Addison-Wesley.

Hebb, D.o. (1949). The organization of behavior. New

York: Wiley and sons.

Hillis, D. (1985). The connection machine. Cambridge,

Mass.: MIT Press.

Hopfield, J. J. (1982). Neural networks and physical

systems with emergent collective computational

abilities. Proceedings of the National Academy of

Science USA, 79, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded response

have collective computational properties like those

of two-state neurons. Proceedings of the National

Academy of Science USA, 81, 3088-3092.

Hopfield, J. J. & Tank D. w. (1986). Computing with

neural circuits: A model. Science, 233, 625-633.

Jones, W. P. & Hoskins, J. (1987). Back Propagation: A

generalized learning rule. Byte, october, 155-161.

186

Kellog, R. T. {1982). When can we introspect accurately

about mental processes? Memory and Cognition, 10,

141-144.

Kellog, R. T. & Holley, C. S. (1983). Interference of

introspection with thinking ~n concept

identification. Perceptual and Motor Skills, 56,

641-642.

Kohonen, T. (1984). Self organization and associative

memory. New York: Springer-Verlag.

Lippmann, R. P. (1987). An introduction to computing

with neural nets. IEEE ASSP Magazine, April, 4-22.

McCulloch, W. s. & Pitts, W. (1943). A logical calculus

of the ideas immanent in nervous activity. Bulletin

of Mathematical Biophysics, ~' 115-133.

Mckeithen, K. B.,

Hirtle, s. c.

Reitman, J. s., Reuter, H. H., &

(1981). Knowledge organization and

skill differences in computer programmers. Cognitive

Psychology, 13, 307-325.

Miller, G. A. (1956). The magical number seven plus or

minus two: some limits on our capacity for

processing information. Psychological Review, 63,

81-97.

Minsky, M. (1975). A framework for representing

knowledge. In P. H. Winston (Ed.), The psychology of

computer vision, 211-277, New York: McGraw-Hill.

187

Minsky, M. & Papert, s. (1968}. Perceptrons. Cambridge,

Mass.: MIT Press.

Newell, A., Shaw, J. c. & Simon, H. A. (1958). Elements

of a theory of human problem solving. Psychological

Review, 65, 151-166.

Newell, A., Shaw, J. c., & Simon, H. A. (1962). The

process of creative thinking. In H. E. Gruber, G.

Terrell, & M. Wertheimer (Eds.), Contemporary

approaches to creative thinking, 63-119, Englewood

Cliffs, New Jersey: Prentice-Hall.

Newell, A. (1973). Production systems: Models of

control structures. In W. G. Chase (Ed.), Visual

information processing, New York: Academic Press.

Newell, A. & Simon H. A. (1972). Human problem solving.

Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Nisbett, R. E. & Wilson, T. D. (1977). Telling more

than we can know and verbal reports on mental

processes. Psychological Review, 84, 231-259.

Posner, M. I. & Synder, c. R. R. (1975). Attention and

cognitive control. In R. L. Solso (Ed.), Information

processing and cognition: The Loyola Symposium,

55-85, Hillsdale, NJ: Erlbaum.

Rosenblatt, F. (1959). Two theorems of statistical

separability in the perceptron. In Mechanisation of

thought processes: Proceedings of g symposium held

188

at the National Physical laboratory, November 1958.

421-456. London: HM Stationary Office.

Rosenblatt, F. (1962). Principles of neurodynamics. New

York: Spartan.

Rumelhart D. & McClelland, J. (1986a). Parallel

distributed processing, explorations in the

microstructures of cognition volume 1: Foundations.

Cambridge, Mass.: The MIT Press.

Rumelhart D. & McClelland, J. (1986b). Parallel

distributed processing, explorations in the

microstructures of cognition volume 2:

psychological and biological models. Cambridge,

Mass.: The MIT Press.

Shneiderman, B. (1980). Software psychology. Cambridge,

MA: Winthrop.

Turing, A.M. (1950). Computing machinery and

intelligence. Mind, 59, 433-450.

Von Neumann, J. (1958). The computer and the brain. New

Haven, Conn.: The Yale University Press.

Weber, R. J., Moder, c. L., & Solie, J. B. (1990).

Invention heuristics and mental processes underlie

the development of a patent for the application of

herbicides. New Ideas in Psychology, ~, 321-336.

Weber, R. J. & Perkins D. N. (1989). How to invent

artifacts. New Ideas in Psychology, 1, 49-72.

Figure Caption

Figure ~. The silhouette of the mechanical object

used in the experiment. Neither this drawing, or

the drawing of the nonsense object, are complete

technical drawings of the objects actually used.

Both drawings, however, reasonably depict the

relative visual complexity of the two stimulus

items.

189

190

Figure Caption

Figure 2. Silhouette of the nonsense object which is

constructed of materials identical to the materials

used in the mechanical object.

Figure Caption

Figure ~- Experimental lab arrangement.

191

192

Figure Caption

Figure ~. Average number of correct connections made

during non-zero trials for experts and novices in

the mechanical and nonsense conditions.

193

Figure Caption

Figure ~. Average number of correct connections made

when both zero and non-zero trials were included for

experts and novices in the mechanical and nonsense

condit1ons.

Figure Caption

Figure Q· Average elapsed time necessary to

construct both objects by experts and novices.

194

Figure Caption

Figure z. Average number of disconnects (errors)

made by experts and novices in the mechanical and

nonsense conditions.

195

196

Figure Caption

Figure 8. Average number of zero trials for expert

and novices in both conditions. The effects of

expertise, object type, and the interaction were all

non-significant (F(1,2) = .35; F(1,2) = 5.89; F(1,2)

=.51; respectively).

197

Figure Caption

Figure ~- Average number of looks taken by experts

and novice~ during the construction of both objects.

198

Figure Caption

Figure 10. Newell and Simon's (1972) schematic of an

Information Processing System (IPS).

199

Figure Caption

Figure 11. Program which describes the behavior of a

thermostat.

200

Figure Caption

Figure 12. Game state of a tic-tac-toe game in which

the most successful move for X is the lower center.

201

Figure Caption

Figure 13. The rule-base on the left represents what

we, as external observers, may propose as a rational

problem solver given the task demands of a tic-tac­

toe game. The rule base on the right represents the

player's problem space which is inferred from her

actual game playing behavior.

202

203

MONITOR

WORK
RRER

[]

D CRHERR

204

c
0
n
n
e
c
t
I
0
n
s

p
e
r

I
0
0
k

6

AVG # OF CORRECT CONNECTIONS
(DURING NON-ZERO TRIALS)

I {4 94)

5 I .. I ~Experts - • Nov1ces- j

4

3

2 (1 84)

(1 68)

1

0
MECHANICAL NONSENSE

OBJECT TYPE

(\J

0
01

c
0
n
n
e
c
t
I

0
n
s

p
e
r

I
0
0
k

AVG # OF CORRECT CONNECTIONS
(INCLUDING ZERO & NON-ZERO TRIALS)

3

(2 43) I -+--Experts NOVIC~ -B

2 5
~

L_

2

I (1 8

1.5

1
~ (61)

05l (59)

0
MECHANICAL NONSENSE

OBJECT TYPE

N
0
0'1

1600

T 1400

I

m 1200 j
e

1000
I

n
800

s
e 600 l c
0
n 400
d

200 ~ s

I
0

(82 4)

(698)

Average Elapsed Time
(thru last connection)

~

~

I -+-- Experts
_ _.,

MECHANICAL

OBJECT TYPE

(1502)

~

(ll67)

NOVICe~

NONSENSE N
0
-...J

D
I

s
c
0
n
n
e
c
t
I

0
n
s

Average # of Disconnections

20 -1
I, 7 _:: \

- l - Experts----=- -N ov1ces I

\ ' I - I

15

I (1

D

10 l ~ - - -
(10)

(g)

5

0~--
MECHANICAL NONSENSE

OBJECT TYPE

[\.)

0
00

a
v
e
r
a
g
e

NUMBER OF ZERO TRIALS
(132)

140
I

120 l f_ I Experts 8 Nov1ces
---~-~

100

80

I ~ (81 5)

60

40
I

20---1
(1~~

0 1\J \._/

MECHANICAL NONSENSE

OBJECT TYPE

N
0
1.0

210

Ll.J
------ (j) U' LC)

V?l ~
z

(') Ll.J
~

Q)
,- () (j)
--~ - z >

0 0
z z
<l'

(f)
~ V?

+-'

0
1...
(!)
Q.

0 >< UJ
Ll.J a..
' _J t >-

1-
lL 1-
0 ()

UJ

~
J
co
0

CD
~

...J
<:
(.)

.co z
<: (')
:c
(.)
w
~

r-- ' I
0 0 0 0 0
0 l() 0 l()

N r- r-

* 0'+- -00~(1)

c:
0
CJ)
CJ)
w u
0 c:
CL

(I)

.9- E -Q) (I)

_J

<:(0
z_J

a: a: wo
><~ w

211

:....
G) -G)
:....
a.
:....
G) -c

212

1. observe-temperature,
if < 70 degrees go to 2
if > 72 degrees go to 4

go to 1;

2. test if furnace-on
if true go to 1;

3. turn-furnace-on
go to 1;

4. test if furnace-on
lf false go to 1;

5. turn-furnace-off
go to 1;

213

top

RATIONAL PROBLEM SOLVERS
HYPOTHETICAL PROBLEM
SPACE

IF (move=opponent)
THEN

stop.

IF (own=two marks on a row)
&(blank square on hor~zon)

THEN
play blank square.

IF (own=two marks on column)
&(blank square on column)

THEN
play blank square.

IF (own=two marks on d~ag.)
&(blank square on d~ag.)

THEN
play blank square.

IF (opp=two marks on a row)
&(blank square on hor~zon)

THEN
play blank square.

IF (opp=two marks on column)
&(blank square on column)

THEN
play blank square.

IF (opp=two marks on d~ag.)
&(blank square on d~ag.)

THEN
play blank square.

IF (own=fork~ng pattern)
&(~ntersect~on blank)

THEN
play ~ntersect~on.

IF (opp=fork~ng pattern)
&(~ntersect~on blank)

THEN
play ~ntersect~on.

IF (center ~s blank)
THEN

play center.

IF (opp=s~de square)
THEN

play corner.

IF (opp=corner)
THEN

play oppos~te corner.

PLAYER'S HYPOTHETICAL
PROBLEM SPACE INFERRED
FROM BEHAVIOR

IF (move=opponent)
THEN

stop.

214

IF (opp=two marks on a row)
&(blank s~~are on hor~zon)

THEN
play blank square.

IF (opp=two marks on column)
&(blank square on column)

THEN
play blank square.

IF (opp=two marks on d~ag.)
&(blank square on d~ag.)

THEN
play blank square.

IF (own=two marks on a row)
&(blank square on hor~zon)

THEN
play blank square.

IF (own=two marks on column)
&(blank square on column)

THEN
play blank square.

IF (own=two marks on d~ag.)
&(blank square on d~ag.)

THEN
play blank square.

IF (own=fork~ng pattern)
&(~ntersect~on blank)

THEN
play ~ntersect~on.

IF (opp=fork~ng pattern)
&(~ntersect~on blank)

THEN
play ~ntersect~on.

IF (center ~s blank)
THEN

play center.

IF (opp=s~de square)
THEN

play corner.

IF (opp=corner)
THEN

play oppos~te corner.

VITA

Tim P. McCollum

Candidate for the Degree of

Doctor of Philosophy

Dissertation: COGNITIVE DIMENSIONS OF HUMAN PROBLEM SOLVING,
INVENTION, AND CREATIVITY FROM CONVENTIONAL,
CONNECTIONIST, AND INTEGRATED PERSPECTIVES

Major Field: Psychology

Biographical:

Personal Data: Born in Ponca City, OK, March 24, the
son of O.L. and Eletha McCollum.

Education: Graduated from Shidler Senior High School,
Shidler Oklahoma, in May 1977; received Bachelor
of Science Degree in Psychology from Oklahoma
State Un1versity in May 1982; completed Master of
Science degree at Oklahoma State University in
December 1983. Finished degree requirements for
Doctor of Philosophy in May 1992 at Oklahoma state
University.

Professional Experience: Peer Instructor, College of
Arts and Sciences, Oklahoma State University,
August 1978 - May 1982; Teaching Assistant,
Department of Psychology, Oklahoma State
University, August 1982 - December 1983; Teaching
Ass1stant, Department of Psychology, Oklahoma
State University, August 1985 - May 1986; Human
Factors Scientist, IBM Santa Teresa Laboratories,
San Jose, California, August 1986 - September
1987; Faculty, Department of Psychology,
Un1vers1ty of Texas - Pan American, Edinburg TX,
August 1988 - May 1992.

