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PREFACE 

The identification of systems with signal-dependent 

parameters is considered in this thesis. The main 

difficulty of such a problem is to estimate the dependence 

between the signal and system parameters which is usually 

not in an explicit or simple equation especially when 

working in the discrete-time domain. 

One possible approach to solve the problem is to 

parameterize the signal dependence into a simplified 

function in the sense of curve-fitting approximation. Based 

on such an idea, previous identification methods were not 

sufficiently robust for a range of applications. Therefore, 

a new, systematic, and more robust method is introduced in 

this thesis. 
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CHAPTER I 

INTRODUCTION 

Background 

System identification theory has been well developed 

for linear systems for decades. The process of system 

identification basically includes three stages which are 

system modeling (or model structure selection), parameter 

estimation, and model validation [24]. However, problems 

may arise in each stage of the process if an extension of 

the linear theory to the identification of nonlinear systems 

is desired. 

First, the stage of nonlinear systems modeling is 

difficult to be generalized since diverse nonlinear systems 

exist in real life. First principles and physical insights 

of systems are important to achieve a pertinent model 

structure in which the parameters can be adequately 

estimated using an estimator available. 

Basically, nonlinear model structures can be classified 

into two categories which are linear and nonlinear in terms 

of the model parameters respectively. Parameters are more 

easily estimated by implementing many well-known 

1 
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least-squares based estimators [46, 55] if a nonlinear 

system can be properly modeled into the former category. 

But, for some applications, it is necessary to consider a 

model structure which is nonlinear in its parameters. 

Models resulting from the stages of system modeling and 

parameter estimation may still be inadequate for prediction 

accuracy or application purpose. The stage of model 

validation concerns the use or development of techniques to 

test the validity of the resulting models. 

For linear models, many model validation methods such 

as correlation methods [11, 49], statistical hypothesis 

tests [24, 43] and the famous Akaike's Information Criterion 

[40, 42] have been well developed. However, the methods 

assume the system to be identified is within a selected 

model structure. Such an assumption is too restricting in 

the validation of nonlinear models [6, 8]. 

Literature Survey 

The problem of nonlinear system identification is too 

broad to be treated in a general manner. It is the trend in 

literature to narrow down the problem for some specific 

classes of nonlinear systems which include : 

1. Volterra series 

y(t) • 2: I ···I 
ht 0 

n 

h(-rt, ••• ,-r) 
n n 

( 1.1) 
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2. Bilinear systems 

y(t) = 2 a 1 y(t-i) + 2 b. u(t-j) + 
i•1 ja::1 J 

~ ~ c y(t-i)u(t-j) 
i ~1 j~1 i j 

( 1. 2) 

3. Block-Oriented systems 

(a) Hammerstein systems 

(b) Wiener systems 

(c) Generalized Hammerstein (Wiener) systems 

4. Nonlinear auto-regressive-moving-average (NARMA) 

systems 

y(t) = ~(y(t-1), .•• ,y(t-n),u(t-1), ••• ,u(t-m)) ( 1. 3) 

5. "Linear" systems with signal-dependent parameters 

Volterra series can be regarded as a generalization of 

impulse responses for linear systems [Volterra 1930, Sagaspe 

1979, Parker 1982]. As shown in Equation (1.1), the series 

is a mapping from the system past inputs into present 

output. Such a modeling approach normally requires a large 

number of Volterra kernels h to characterize the system 
n 

process that may cause problems in the estimation of 

Volterra kernels [Stoica 1982, Billings 1984]. 

Bilinear systems are a special class of nonlinear 

systems. Due to the mathematical simplicity and close 
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relation to linear systems, bilinear systems were considered 

good examples to exploit the problem of nonlinear system 

identification [Ahmed 1986, Gabr 1986, Fnaiech 1987]. 

Block-oriented systems form another special class of 

nonlinear systems where system nonlinearities are static and 

can be modeled separately from the system dynamics. Some 

typical block-oriented systems are shown in Figure 1, where 

the system nonlinearities are denoted by the functions f(u) 

and/or g(x). 

A Hammerstein system can be conceived as a system with 

a nonlinear input component. Henceforth, the system 

dynamics will change as the input varies. Practical 

examples of Hammerstein systems can be found in [Hsia 1968] 

and [Corlis 1969]. 

The identification of Hammerstein systems was first 

investigated by Narendra et. al. [47]. Since then, the 

problem has received much attention from many researchers, 

for example, Chang [13], Haist [33], Gallman [22], Stoica 

[57], Greblicki [26-28], Hwang [35], Jiang [37], and Krzyzak 

[39]. However, most researchers assumed the nonlinear 

function f(u) is polynomial or can be approximated by a 

finite order polynomial. It can be shown that the 

assumption could be inadequate for some applications. 

On the other hand, Wiener system nonlinearities can be 

conceived as due to the nonlinear output measurement device. 

Although the structure of a Wiener system is simply the 
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(a) Hammerstein Systems 

-1 -Ill 

J I v b 1q + ••• + b~q 
___ .,._1 f ( U) 1.....__..,.. ------1--------n t----+ 

1- a 1q - ,,. - anq 

u y 

(b) Wiener Systems 

-1 -m 
b1 q + • '• + bm q X J I 

---M _ ___; ____ 1 ___ __;;,;....._ ___ n ....._ _ _..1 g (X) 11----+ 

1- a1q - ••• - anq 

u y 

(c) Generalized Hammerstein (Wiener) Systems 

u v 
- ..... ~: f(u).,..._ ~ ..... 

-1 -Ill 
b1q + ••• + blllq 

-1 -n 
1-a1q- ••• -anq 

X y 
1--.. :: g (X )1--:-+ 

Figure 1. Typical Block-Oriented Systems. 



reverse of that of a Hammerstein system, the identification 

problem for the former is in general more complicated than 

that for the latter [Billings 1982, Pajunen 1985] as 

explained in Chapter III of this thesis. 

6 

A generalized Hammerstein system has dynamics depending 

on the system input and the system output. Due to the 

complexity of system dynamics, it is difficult to develop a 

feasible identification algorithm for such a class of 

systems. Interested readers may refer to the paper by 

Falkner [18]. 

The class of NARMA systems was introduced by Billings 

et. al. [4, 6, 7, 8, 9], Chen [14] and Korenberg [38]. In 

Equation (1.3), ~denotes the degree of system 

nonlinearities and the function ~ is a linear combination of 

its arguments. Such a class of systems is more broad than 

the class of bilinear systems. 

In practice, system identification using NARMA models 

works just like a "black-box" approach. A model validation 

method is required to determine proper values of m, n and ~. 

In this respect, Billings et. al. [6, 8] proposed a 

correlation-based validation method by testing higher-order 

correlation functions between the system inputs and outputs. 

But, the method could fail if the system concerned does not 

belong to the class of NARMA systems. 

"Linear" systems with signal-dependent parameters are 

ubiquitous in real life. Indeed, system nonlinearities are 
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mostly caused by the variation of some signal such as system 

input, state variables and/or environmental temperature. 

Examples of such a class,of systems are illustrated in 

Chapter IV and refer to [Haber, 1979] for more examples. 

Modeling nonlinear systems using signal-dependent 

parameters is a more general approach than using 

block-oriented structures. For example, the nonlinearities 

of a Hammerstein system and Wiener system are caused by the 

variation of system inputs and outputs respectively. It 

will be shown in Chapter II that a Hammerstein system can be 

considered as a "linear" system with input-dependent 

parameters, whereas a Wiener system can be considered as a 

"linear" system with output-dependent parameters. 

The so-called sinusoidal-input describing function 

models are input amplitude dependent [59-61]. Such a 

modeling approach is based on an assumption that the system 

nonlinearities can be lumped into an input-dependent 

function such as those of Hammerstein systems. 

Also, the signal-dependent modeling concept gives a 

clear description of system dynamics. Many well-known 

terminologies such as system zeros/poles and damping ratio, 

and stability concept for linear systems can be extended for 

systems with signal dependent parameters. 

Previous Studies 

One approach to estimate system parameters is the use 



of classical linear identification method by neglecting the 

signal dependence. But, the resulting model could be 

inadequate when the required working range is large. 

Another approach called gate function method by Haber 

et. al. [30, 31] was developed based on the concept of 

piecewise linear modeling which fits a nonlinear system by 

using a number of linear models and each linear model is 

used to describe the system local dynamics. 

8 

In gate function method, the working range of the 

nonlinearity-related signal is quantified into intervals. 

For each quantification interval, a set of gated signals is 

extracted from the identification data collected. Then, a 

linear model is formed based on each set of gated signals by 

using a classical linear estimator such as the recursive 

least-squares. However, the quantification intervals cannot 

be too small to guarantee the success of parameter 

estimation for each model [Haber, 1985]. In other words, 

the number of linear models to fit the nonlinear system is 

limited. This means the global modeling accuracy could be 

limited (see Chapter III for further discussion). 

The third possible approach to estimate system 

parameters having uncertain signal dependence is to assume 

the relationship between the system parameters and the 

signal is approximately polynomial. However, as mentioned 

earlier, such an assumption may not be adequate for a wide 

range of applications. 
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Scope of Study 

The literature survey conducted by the author shows 

that although the modeling concept using signal-dependent 

parameters is more general than using block-oriented 

structures, the corresponding identification problem for the 

former have received much less attention from researchers 

than for the latter. 

The signal-dependent modeling concept may not be well 

known or widely accepted. This study shows a favor to such 

a modeling concept by illustrating some industrial systems 

which have no block-oriented structures but can be 

adequately modeled into "linear" structures with 

signal-dependent parameters (Example 2 and Example 3 in 

Chapter IV). 

Also, some promising advantages accompanied with the 

signal-dependent modeling concept are revealed. They 

include an useful insight into the system input design 

problem for persistent excitation and improvement of the 

robustness of classical model-based linear controllers to 

system nonlinearities. The former is practically important 

in the issue of nonlinear system identification. For the 

latter, a linear control methodology is used as an example 

to design a controller with signal-dependent gains. The 

demonstration of the robustness of such a signal-dependent 

controller to system nonlinearities was carried out 



experimentally. 

In the previous methods, the signal-dependent 

parameters were approximated by constants (i.e. classical 

linear method), piecewise constants (i.e. gate function 

method), or polynomials. It will be shown that those 

methods may not be adequate for systems with complicated 

signal-dependent parameters. In this respect, a new 

identification method with better flexibility to handle 

diverse complicated system nonlinearities is proposed 

(Appendix D). 

10 

In the proposed identification method, the 

approximation of system signal-dependent parameters is 

developed using the fuzzy linguistic description. The 

resulting model structure is a combination of the linguistic 

description and "linear" dynamic equation(s) (Chapter II). 

A parameter estimation method, which works cyclically and 

iteratively between the Complex Method [12, 53] and 

recursive least-squares estimator, is introduced to estimate 

the model parameters (Chapter III). 

Finally, the scope of this study includes comparison 

studies among the above identification methods across a 

range of different systems which are conducted either by 

simulation or by experiment. 



CHAPTER II 

"LINEAR" SYSTEMS WITH SIGNAL-DEPENDENT 

PARAMETERS 

A "linear" system with signal-dependent parameters 

means that the values of the system parameters (or 

coefficients) can change with some signal(s) which can be 

the system input, state variables and/or an environmental 

signal such as temperature. In other words, the system 

considered has signal-dependent dynamic properties, such as 

signal-dependent poles, zeros, damping ratio and so on. 

System Equations and Definitions 

It is assumed that the class of systems to be 

identified can be described by the following discrete 

input-output equation : 

(2.1a) 

where 

(2.lb) 

(2.1c) 

or state-space equations 

11 
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~(t+l) = A(~) ~(t) + Q(~) u(t) (2.2a) 

where 

~(t) [x1(t), x 2 ( t), T = ••• ,x(t)] n (2.2b) 

att(~) at2(21) ••• a (21) 1n 
azt(~) a22(21) a (~) 

A( !I) 2n = • • (2.2c) 
• • • • • 

a (!I) nt a (!I) n2 .•• ·a (21) nn 

Q(~) = [~1(~), ~2(!J), • • •' ~ (!I))T n (2.2d) 

The script parameters as and 's denote signal-dependent 

parameters. 

The above system equations are very similar to their 

linear counterparts. The only difference is that the 

parameters involved depend on the signal ~ which is the 

system dynamic variable. Since the system parameters are 

functions of the dynamic variable, they are sometimes called 

parameter functions in the ensuing context. 

The relation between the system parameters and the 

dynamic variable is assumed uncertain, and the functional 

forms of as and 's are unknown. 

Also, it is assumed that the system inputs are 

available for handling and design, and the system output (or 

the state variables if a state-space model is required) and 

the dynamic variable (if it differs from the signals already 

measured) are available for measure. 
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Practical Examples 

Many physical systems have signal-dependent parameters. 

For instance, the parameters of a gas-turbine engine are 

direction dependent [23]. An aircraft flight system during 

the stall/post-stall regions has parameters which are 

functions of the angle of attack [56] (Example 2, Chapter 

IV). For a hydraulic system, the bulk modulus of the system 

working fluid depends on pressure and temperature [45] 

(Example 3, Chapter IV). Further examples can be found in 

[Haber 1979]. 

Special Examples Block-Oriented Systems 

As shown in Figure l(a), a Hammerstein system has 

static nonlinearities on the input side. It can be easily 

shown that the system equations can be written in a "linear" 

structure with input-dependent parameters : 

(2.3a) 

where 

0 0 0 (2.3b) 

(2o3c) 

~j(u(t-j)) = bJf(u(t-j))/u(t-j), j = 1, ••• ,m (2.3d) 
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In Equations (2.3), only part of the system parameters 

depend on the input or its past signals; the system poles 

are fixed but the zeros depend on the system inputs. The 

parameter functions have the same form and are related to 

the nonlinear element f(u) according to Equation (2.3d). 

Such information is useful in the later parameter estimation 

(Example 1, Chapter IV). 

On the other hand, a Wiener system (Figure 1(b)) can be 

conceived as a linear system along with an output 

measurement device which has significant nonlinearities in 

the normal operating range. A practical example of Wiener 

systems is considered in Example 4, Chapter IV while the 

system equations are 

(2.4a) 

where 

-1 -1 
A(q ,y) = 1 - a 1 (y(t) ,y(t-1) )q - ••• -

a (y(t) ,y(t-n) )q-n 
n 

(2.4b) 

(2.4c) 

i = 1, ••• ,n (2.4d) 

j = 1, .•• ,m (2.4e) 
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(2.4f) 

Note that the system nonlinear element g(x) is assumed 

invertible with the inverse denoted by g- 1 (y). 

As shown in Equations (2.4), Wiener system parameters 

depend on the system output and/or its past signals. The 

dependence is characterized by the function 1/g*(y) which is 

related to the reciprocal of the inverse of the nonlinear 

function g(x). 

In general, the parameter functions of a Wiener system, 

compared with a corresponding Hammerstein system, are more 

complicated and difficult for estimation. Furthermore, for 

Wiener systems, the input design problem to guarantee 

persistent excitation is more complicated. This will be 

explained in Chapter III. 

By combining Equations (2.3) with Equations (2.4), the 

system equations of a generalized Hammerstein system shown 

in Figure l(c) are 

-1 -1 A(q ,y) y{t) = B(q ,y,u) u(t) (2.5a) 

where 

-1 -1 A(q ,y) = 1 - a 1 (y(t) ,y(t-1) )q - ••• -

a (y(t),y(t-n))q-n 
n 

(2.5b) 



16 

B(q-\u) = ~1 (y(t),u(t-l))q- 1 + ••• + 

~ (y(t) ,u(t-m) )q- 111 
Ill 

(2.5c) 

a.(y(t),y(t-i)) = a.g~(y(t-i))/g~(y(t)) , 
1 1 

i = l, ..• ,n (2.5d) 

~J(y(t),u(t-j)) = bJf(u(t-j))/(u(t-j)g*(y(t))) 

j = l, ... ,m (2.5e) 

g*(y(t)) = g- 1 (y(t))/y(t) (2.5f) 

It has been shown that typical block-oriented systems 

can be considered as "linear" systems with input- and/or 

output-dependent parameters. If the signal dependence is 

uncertain, the system parameter functions cannot be 

estimated unless they are parameterized. In this respect, 

some parameterization approaches such as curve-fitting 

approximation are considered in this study. 

For instance, a possible approach is to parameterize 

each system parameter function in terms of a proper order 

polynomial. Also, one may fit a piecewise constant function 

in each parameter function (Chapter III). Both 

parameterization approaches are conceptually simple and easy 

to implement. However, it will be shown later that they are 

not adequate for a range of applications. For this reason, 

a more general parameterization approach is proposed. 



17 

Parameterization of System Parameter 

Functions Using Fuzzy Linguistic 

Description 

Fuzzy linguistic description based on the pioneer work 

by Zadeh [64] has been applied in many engineering areas 

such as system identification and control [58]. In this 

study, fuzzy description is used to parameterize the 

uncertain relation between the system parameters and dynamic 

variable. 

Consider the following linguistic rules 

If ~ is small then 

~ 

at(~) = ~s(~) (2.6a) 

If ~ is large then 

~ 

at(~) = ~L(~) (2.6b) 

~ 

where ~ is the input of the linguistic rules, at(~) denotes 

an estimate of at(~) in Equation (2.lb) which is the output 

of the rules. "Small" and "large" are the so-called 

membership functions and are denoted by M8 (~) and ML(~) 

respectively. 

Note that each membership function will be accompanied 

by a function (i.e. ~8 (~) or ~L(~) for this case) which is 

referred to as a shape function. By the definitions in the 

next section, each equal sign in Equations (2.6) does not 



exactly hold unless either ~8 (~) = 0 orAL(~) = 0. 

Definitions 

The output of Equations (2.6) is defined to be a 

combination of ~8 (~) and ~L(~) with signal-dependent 
weights, i.e. 

A 
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at(~) • rs(~) ~s(~) + rL(~) ~L(~) (2.7a) 

where 
A (2') 

{ M.S(11)0! M.L(11) 
, if A5 (2') + AL (7J) '¢ 0 

rs(7J) • (2.7b) 

, otherwise 

ML ( 7J) 
, if ~8 (~) + ML(~) '¢ 0 

{ M.8 (11) + M.L (11) 
rL(~) • (2.7c) 

0 , otherwise 

and F8 (7J) and FL(~) will be called weighting functions. 

By the above definitions, the meaning of the linguistic 

description of Equations (2.6) should be clear. The degrees 

of truth of the premise statements are given by the images 

of the corresponding membership functions which are in turn 

used to calculate F8 (") and FL(7J) according to Equations 

(2.7b) and (2.7c). 

The result of Equations (2.6) is determined by the 

membership functions and shape functions to be used. 
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Although the selection of membership functions and shape 

functions could be application dependent, a simple and 

systematic approach which has been proven adequate for a 

range of applications is provided here. 

Membership Functions 

Typical membership functions considered in this study 

are shown in Figure 2. 

(a) Linear membership functions 

{ :fs(1J) t if " i s " < llt 
A.s(1J) 

111 n 
= 

0 , otherwise 

{ :fL(!I) ' if ~-t 2 < 1J s D 
.J.L (!I) 

1118X 
= 

0 , otherwise 

(b) Quadratic membership functions 

where 

= { (1-0il3) z: + ll3 :fs ' if "lllins " < llt 

, otherwise 

= { (1-0il4) :f~ + ll4 :fL ' if ll2 < " s "lllax 

, otherwise 

(2.8a) 

(2.8b) 

(2.9a) 

(2.9b) 
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(a) Linear Membership Functions 

(b) Quadratic Membership Functions 

Figure 2. Typical Membership Functions. 
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(2.10a) 

(2.10b) 

" 111in (2.11a) 

(2.11b) 

Note that the bounds of the operating range of the 

dynamic variable (i.e. !I 1 and !I ) are required in the 
111 n max 

above equations. If the bounds do not naturally arise as 

part of the problem formulation, then proper estimates are 

necessary. 

Without loss of generality, the values of membership 

functions can be normalized between 0 and 1 as shown in 

Figure 2. A linear membership function is characterized by 

one parameter and a quadratic membership function by two. 

Membership function ~L(!I) is zero if !!min s !Is ~2 (i.e. 
A 

!I is "very" small) that in turn means at (!I) = 3'8 (!1) • 
..... 

Similarly, at(!!) = 3'L(!I) if !I is "very" large (i.e. ~t s 1J s 

!l1118 x). In Equation (2.1lb), the constraints on ~3 and ~4 

are just to assure 0 s ~8 (~), ~L(!I) s 1. The best values of 

the parameter ~s are still unknown but they will be 

determined (or estimated) with the constraints of Equations 

(2.11) in some optimal sense. 
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Shape Functions 

The selection of shape functions cannot be arbitrary to 

be in tune with the parameter estimation algorithm proposed 

in Chapter III. First, adequate shape functions must be 

linear : 

(2.12a) 

(2.12b) 

Secondly, in above equations {1,,8 1 , ••• ,,8 N} and 
• • 

{1,,L t'''''~L N} should be two bases in RN+t, i.e. 
• • 

0 then (J = (J 
S,O S,t 

= ••• = (J = 0 
S,lf 

(2.13a) 

0 then (J = (J 
L,O L,t = ••• (2.13b) 

The requirements of Equations (2.12) and (2.13) can be 

simply satisfied by using polynomial shape functions so that 

i = l, •.. ,N (2.14) 

In short, the result of Equations (2.6) along with the 

use of the membership functions shown in Figure 2 is 

summarized as : 
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(2.15) 

... { -'s(!J) · ' if "•in ;s; !J ;s; llz 

a1(!J) : FS(~)~S(!J)+FL(~).1L(!J), if #l2 < ~ < ll1 

:1 (!J) ' if ll ;s; ~ ;s; ~ L 1 111ax 

' if !J ;s; ~ < ll 
1111 n 1 

if ll 1 ;s; ~ ;s; ll 2 

' if ll~ < ~ ;s; ~ 
" 1118X 

(2.16) 

(2.17) 

(2.18) 

and some mathematical properties of the proposed linguistic 

description are summarized in the following remarks 

... 
Remark 1. Geometrically, a 1 (!J) is composed of three 

elements. It can be piecewise continuous with the 

constraint of ll1 > #l2 or discontinuous with the constraint 

of ll1 < #l2• 

Remark 2. An increase in the order of the membership 
... 

functions only results in an improvement of a1 (~) at the 

subspace [#l2 , ll1 ] as shown in Equation (2.16). However, an 

increase in the order of the shape functions may lead to a 
... 

global improvement of a1 (~). 
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Remark 3. An intriguing advantage of the proposed 

parameterization approach is its ease for extension. 

Indeed, the whole dynamic variable space can be first 

divided into two or more subspaces. Then, a pair of 

membership functions and shape functions are defined over 

each subspace. Such an extension is important in case the 

system parameter functions are very complicated or high 

accurate modeling is required (Examples 2 and 4, Chapter 

IV). 

Proposed Nonlinear Model Structures 

A 

Perform the similar parameterization of a1 (~) as in the 

previous section for the estimates of the other system 

parameter functions. The following nonlinear model 

structures m1 and •z are proposed for those systems 

expressed by Equations (2.1) and (2.2) respectively 

m1 
A -1 
A( q ,!I) y(t) 

A -1 = B(q ,~) u(t) 

If !I is small then 

A 

a1(!1) = !I (!I) 
S,a1 

"' a (~) = !I (!I) 
n S,a 

n 
A 

.&1(!1) = !Is b (!I) 
• 1 

... 
.& (!I) = !! (!I) 

Ill S,b 
Ill 

(2.19a) 

(2.19b) 



where 

and 

If !I 

A -1 
A(q ,!1) = 

is large then 

A 

at (!I) = !/ L a (!I) 
' 1 

A 

a (!I) = !/ (!I) 
n L,a 

n 
A 

~1 (!I) = !/ L b (!I) 
' t 

A 

~ (!I) = !/ Ill L,b 

A -t 
1 - a (!l)q -

1 

Ill 

A A 

(!I) 

. . . -

~(t+l) = A(!l) ~(t) + h(!l) u(t) 

If !I is small then 

A 

att(!l) = !/ S,att 
(!I) 

• • • 
A 

a (!I) = !/ (!I) 
nn S,a 

nn 
A 

~1 (!I) = !Is b (!I) 
• 1 . 

• • 
A 

~ (!I) = !/ (!I) 
n S,b 

n 
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(2.19c) 

(2.19d) 

(2.19e) 

(2.20a) 

(2.20b) 
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tf !) is large then 

"' 
au(!J) = :1 (!)) 

L,a11 

"' a (!!J) = :1 nn L,a ( 7.1) 
nn 

... 
~1(7.1) = :JL b (!J) 

• 1 

... 
~ (7.1) = :1 (,) 

n L,b (2.20c) 
n 

where 

.... "' "' 
a11(7J) a12(7J) ••• a ( 7.1) 

1n 
A A A 

A 

a21(!J) a22(7J) a2n(!!J) 1\(7.1) = . . . (2.20d) 
• • 

A • A • A 

a (7.1) a (!!J) . . . a (!!J) 
n1 n2 nn 

... 
}l(!J) = (2.20e) 

In the proposed model structures, it is not necessary 

for all estimated parameter functions to share the same set 

of membership functions. Theoretically, a different set of 

membership functions can be used to form each estimated 

parameter function. But, for computation efficiency and 

feasible estimation of parameters, this is not recommended. 

Instead, the estimated·parameter functions will be 

distinguished by using different shape functions as : 



27 

~ ( !») = I:T A , i = 1, •.. , n (2.21a) 
s,a - S a -i • i 

j> ( ") = I:T A i = 1, •.• , n (2.21b) 
L,a. - L a 

1 I i 

:1 (21) = I:T A j = 1, ••• , m (2.21c) 
s 'b j - s b • j 

~ (21) = I:T A j = 1, •.• , m (2.21d) 
L, b j - L b -• j 

where 

I:T = [os o' • • • ,as NJ i = 1 , •.• , n (2.22a) 
- S a 

I i ~ail ,ai, 

I:T = (aL o' • • • ,aL N) i = 1, ••• , n (2.22b) 
- L a • i ~ail ,ai, 

I:T = [as b o' • • • ,as b NJ j = 1, ••• ,m (2.22c) - s b • j • j. • j ' 

I:T = (aL b o' • • • ,aL b N) j = 1, ••• ,11 (2.22d) 
- L b • j -'jl 'j' 

AT [ 1' 21, z !fiN) (2.22e) = 21 , ••• , 

and 

~ (!f) = I:T A i = 1, ••• , n 
s,aij - S,a 1 j - j = 1, ••• , n (2.23a) 

~ (!f) = I:T A i = 1, ••• , n 
L,a 1 j - L a -

I f j j = 1, ••• , n (2.23b) 

~ (!f) T A i 1, ••• , n (2.23c) = ~ s b ' = s,b 1 -, i 

~ (!f) = I:T A i = 1, ••• , n (2.23d) 
L,b 1 - L b 

I 1 

where 
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ET = (OS a O, ••• ,OS a N], i = 1, ••• , n 
- S a • ij • i j • 1 j , j = 1 , .•. , n (2.24a) 

ET = [oL a o' • • • ,o L a N]' i = 1, ••• , n 
- L a • i j • i j. , i j ' j = 1, ••• , n (2.24b) 

ET = [os b o' • • · ' 0 s b N] i = 1, ••• , n (2.24c) 
- S,b. 

1 • i • • i , 

ET = [oL b o'"""' 0 L b N] i = 1, ••• , n (2.24d) - L,b 1 , 1 • i , 

Pseudolinear Regression 

For the presentation followed, the model structure W1 

is rewritten in the following regression form 

• y(t) = !T ( t) a (2.25a) 
1 

where 

!T (t) = [J' s y(t-1) flT - , J'L y(t-1) flT - , . . . ' 
J' y(t-n) /lT J'L y(t-n) /lT 

s - , - ' 
J's u(t-1) /lT 

- ' J'L u(t-1) flT 
- ' . . . , 

J's u(t-m) /lT 
- ' J'L u(t-m) ~T) (2.25b) 

aT = [ ET ET ... ' ET , ET 
' - S a ' - L a ' - S,a - L,a • 1 • 1 n n 

ET ET . . . ' ET 
' 

ET ] (2.25c) 
- s b ' - L b ' - S,b - L b • 1 • 1 Ill • Ill 



The model structure • 1 is in a pseudolinear regression 

form in that not only the parameters os in the parameter 

vector e and the parameters ~s in the regression vector ! 

are unknown and must be estimated. 

Similar pseudolinear regression form for model 

structure •z can also be derived if all related state 

variables are available. The derivation of ~2 follows the 

above straightforwardly. 

Identifiability Properties 

Identifiability is a concept that is central in 

identification problems. The concept concerns the unique 

representation of a given system description in a model 

structure. A framework on the proof of the identifiability 

of some linear model structures is given in [Ljung, 1987]. 

This framework will be followed to exploit the 

identifiability of the proposed model structures. 

Consider the model structure • 1 as an example. For 

convenience, introduce 
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e = e 
-L • [~1' ~2' ~T)T (2.26a) 

or 

e = e 
-N • [~1' ~2' ~3' ~4' 

~T)T (2.26b) 

where e is given in Equation (2.25c). 
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Definition 2. 1. Two models 111 < 1>, 111 <
2 > E !R1 are equal 

( . m <1 > = ll <2 >) 1.·f J..e. 1 2 

i = l, ••. ,n (2.27a) 

j = l, .•• ,m (2.27b) 

Definition 2.2. The model structure ll1 is globally 

identifiable at!* if m1 (!) = ll1 (!*> , ! E ~M ~! = !* 

M 
where ~ denotes a set of values over which ! ranges in the 

model structure ll1 • 

Definition 2.3. The model structure ll1 is strictly 

globally identifiable if it is globally identifiable at all 

e* E ~M • 

Definition 2.4. The model structure ll1 is globally 

a* identifiable if it is globally identifiable at almost all v 

E ~M. 

Definition 2.3 is quite demanding. It is difficult to 

construct model structures that are strictly globally 

identifiable. This is especially true for nonlinear cases. 

Definition 2.4 is weaker but more realistic. It means that 

ll1 is globally identifiable at all e* E IM C ~M where 

(2.28) 

is a set of Lebesgue measure zero in Rn where n =dim(!). 



Theorem 2.1. The model structure • 1 with linear 

membership functions and the parameters ~s subject to 

Equation (2.11a), is globally identifiable at almost all~~ 
M 

E :lL where 
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~:l~ = { ~LI the elements of !L subject to 

Equations (2.30)} (2.29) 

I:T : 0 
s,a 1 

I:T : 0 
- L a 

' i 

and ~Ts b = 0 , 
' j 

i = 1, ••• ,n and j = 1, ••• ,m 

and 
T 

I: = 0 , 
- L b , j 

i = l, ••• ,n and j = 1, ••• ,m 

: I:T 
- L a 

' i 

and 

i = 1 , • • • , n and j = 1 , ••• , m 

(2.30a) 

(2.30b) 

(2.30c) 

Theorem 2.2. The model structure • 1 , with quadratic 

membership functions and the parameters ~s subject to 

Equations (2.11) and (2.15), is globally identifiable at 
M . 

almost all !: E :lN where 

&.1: = { !NI the elements of !" subject to 

Equations (2.30)} (2.31) 

Proofs of Theorems 2.1 and 2.2 are given in Appendix A. 
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Also, it can be shown that the model structure S2 is 

globally identifiable since each state-space equation can be 

handled independently and the concept for proof exactly 

follows that given in Appendix A. 

Models with More Than One Dynamic Variables 

It is possible to extend the linguistic description 

introduced in Equations (2.6) for systems with more than one 

dynamic variable such as generalized Hammerstein systems 

Suppose the system parameters depend on ~1 and ~2 • An 

extension of Equations (2.6) could be 

If ~1 is small and ~2 is small then 

A 

a1(~1'~2) = .1 ss ( ~ 1 ' ~ 2 ) 

If ~1 is large and ~2 is small then 

... 
at <~1 '~2) : .1LS(!J1,~2) 

If ~1 is small and ~2 is large then 

... 
a1(~1'~2) = .1 SL ( ~ 1 ' ~ 2 ) 

If ~1 is large and ~2 is large then 

... 
at(~1,!12) : .1LL(~1'~2) 

Here, both ~1 and ~2 are the inputs of the linguistic 

description whose output can be defined : 

(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 



where 

... 
a1(~1'~~) • rss<~1'~2) Yss<~1'~2) + rLs<~1'~2) 

r <~ ,~ > • ss 1 2 
{ 

.I.S1 ( 2J 1) .I.S2 ( ~2) 
SM , if SM ¢ 0 

0 , otherwise 

{ 
.I.L1(!11) .I.S2(2J2) 

SM , if SM ¢ 0 

0 , otherwise 

{ 
.I.S1(~1) .I.L2(2!2) 

SM , if SM ¢ 0 

0 , otherwise 

0 , otherwise 

SM = .l.s1<~1) .l.s2<~2) + .I.L1<~1) .l.sz<'-'z) + 

.I.S1(~1) .I.L2(~2) + .I.L1(~1) .I.L2(2J2) 
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(2.33) 

(2.34a) 

(2.34b) 

(2.34c) 

(2.34d) 

(2.34e) 

Note that for each dynamic variable space a set of 

membership functions is required (e.g • .1.81 (~), .I.L 1 (~) for 

211-space and .1.82 (21), .I.L2(21) for ~2-space). The membership 
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functions can be linear or quadratic as in Equations (2.8) 

or ( 2. 9). 

On the selection of shape functions, recall that the 

requirements of Equations (2.12) and (2.13) must be 

fulfilled. Based on this, a natural option might be 

3' ss ( 211 ' 212 ) = 1 J. (1 211 21j (2.35a) SS,i,j 1 2 

J'LS(2I1 ,2l2) = 11 (1 
LS, 1 , j 

21i 
1 

21j 
2 

(2.35b) 

"'sL (2l1 ,2~2) = 1 J. (1 211 21j (2.35c) SL,i,j 1 2 

3'LL(2I1,!J2) = 1 Jt (1 
LL,t,J 

211 
1 

!Jj 
2 (2.35d) 

Some mathematical properties of the above linguistic 

description are given in [Lin 1990]. Further discussion on 

the identifiability of model structures with more than one 

dynamic variable is beyond the scope of this study. 



CHAPTER III 

PARAMETER ESTIMATION METHODS 

Some previous parameter estimation methods and a 

proposed new method for the class of systems described by 

Equations (2.1) or (2.2) are introduced. Among all the 

methods, it is assumed that a batch of data ~n has been 

collected for the need of parameter estimation and 

~n = {u(t),y(t),~(t)l t = l, ••• ,n} (3.1a) 

or 

~n = {u(t),~(t),~(t)l t = l, ••• ,n} (3.1b) 

where n denotes the number of data points collected. 

It is understood that the data ~n play a dominant role 

on the identification results. Roughly speaking, good 

identification data should contain sufficient information 

about the system dynamics. A proper selection (or design) 

of system inputs is required to generate such informative 

identification data. In this respect, a new point of view 

based on the signal-dependent modeling concept is presented 

in this chapter. 

35 
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Previous Methods 

It is a common idea to fit a nonlinear system using 

piecewise linear models each of which governs a part of the 

working range. Applying such an idea to systems with 

signal-dependent parameters, Haber et. al. [30, 31] proposed 

the so-called gate function method. 

The gate function method begins by quantifying [~ 1 , 
111 n 

~ 1 into some intervals. 
max 

where 

[~mln'~max1 = [~[0] ,1J[1] 1 U [1J[1] ,1J[2] 1 U • • • 

u (~[d-1) ,~[d] 1 

~ 
min 

= ,[0] < "[ 1] • • • < ~[d) = 1J 
max 

and d denotes the number of intervals quantified. 

(3.2a) 

(3.2b) 

For each quantification interval, a locally linear 

model is to be formed, i. e., within each quantification 

interval the system parameter functions are treated as 

constants. 

In Haber's paper [31], a locally linear model was 

called an elementary gate model (EGM). The parameters of 

each EGM were estimated based on data called gated signals 

which were extracted from the original identification data 
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For instance, the gated input and output signals 

corresponding to the ith quantification interval are defined 

as 

[u(t)] 1 M { 

[y(t)J, ~ { 

u(t) 

0 

y(t) 

0 

' if !1[ 1 - 11 s "s "[i] 

(3.3a) 
, otherwise 

' if " [ i - 1 1 s !I s !I[ i 1 

(3.3b) 
, otherwise 

So, there are d sets of gated signals as a result of 

the quantification in Equations (3.2). Theoretically, each 

set of gated signals can be used to form an EGM model. For 

the system described by Equations (2.1), it seems reasonable 

to consider the following model structures : 

where 

i = l, ••. ,d 

AA ( -1) 1 - A [ i 1 -1 
1 q = a1 q 

"" [ i 1 -n 
• • • - an q 

,. -1 
Bi ( q ) 

... [ i ] - 1 b ... [ i 1 -Ill 
-- b q + + q 1 • • • Ill 

(3.4a) 

(3.4b) 

(3.4c) 
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It is a well-known problem to estimate the parameters 

in Equations (3.4). Many classical estimators developed for 

linear systems [43, 44, 55] such as the recursive 

least-squares estimator are adequate for use. 

The gate function method is simple and requires no 

further effort to develop new parameter estimation 

algorithms. Theoretically, the overall modeling accuracy 

seems able to be improved by increasing d. Unfortunately, 

such a hypothesis is not correct as explained in the next 

two paragraphs. 

As shown in Equations (3.3), the gated signals are 

formed by intermittent subsets of zero and non-zero signals. 

Every non-zero subset to be useful for parameter estimation 

must have sufficient length (here, the length of a subset is 

defined as the number of data points contained in the 

subset). The minimum length required depends on the model 

order chosen. For Equations (3.4), the minimum length 

required is n+l or m, whichever is larger. 

Due to the above minimum length requirement, the 

quantification intervals cannot be arbitrarily small. Such 

a limitation cannot be effectively reduced by increasing the 

number of identification data ~n• As pointed out by Haber 

et. al. [31], to permit a successful parameter estimation 

procedure between the gated input/output signals, the 

quantification intervals have to be chosen sufficiently 
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large. 

Another approach to handle the uncertainty of signal 

dependence is to parameterize the dependence into a 

polynomial. For convenience, this approach is called 

polynomial function method in the ensuing context. 

For the system described by Equations (2.1), a model 

structure with polynomial parameter functions is 

"' -1 "' -1 
A(q ,:PJ) y(t) = B(q ,:PJ) u(t) (3.6a) 

where 

(3.6b) 

(3.6c) 

"' !'J" ai (:PJ) = ai o + ai 1 :PJ + . . . + ai ,N , , I 

i = 1 , ... , n (3.6d) 

"' A 

:PJ" .& . (:PJ) = bJ,O + bj,1 :PJ + • • • + bj,N ' J 

j = 1 , ... , m (3.6e) 

which also can be written in a linear regression form 

(3.6a) 

where 
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!T ( t) [y(t-1) ,~ N 
y(t-1), = y(t-1), ..• ,~ 

y(t-n) ,~ y(t-n), ••• ,~ N 
y(t-n), 

u(t-1),~ u(t-1), ••• ,~ N 
u(t-1), . • 

u(t-m) ,~ u( t-m), .•. , ~ N 
u(t-m) 1 (3.6b) 

T ... ... ... 

e = £ a1 o'a1 1' · • • ,a1 N' , ~ ~ 

" . ... . 
a o'a 1, ••. ,a N' n, n, n, 

... . ... . 
b o'b 1, ••• ,b N] 

Ill, Ill~ ... 
(3.6c) 

One advantage to parameterizing system parameter 

functions into polynomials is the resulting linearity in 

model parameters. Henceforth, least-squares based 

estimators can be used in a straightforward manner to 

estimate the parameters in Equation (3.6c). However, as 

illustrated in Chapter IV, many system parameter functions 

are too complicated to be adequately approximated by 

polynomial expansions. Despite its simplicity, the 

polynomial function method may be adequate only for a 

limited range of applications. 

Proposed Method 

In Chapter II, it has been shown that parameterization 
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of system signal-dependent parameters using fuzzy linguistic 

rules is more flexible than that using polynomial functions. 

But, the model structures resulting from the use of fuzzy 

parameterization are no longer in linear regression forms. 

A new and reliable parameter estimation method is proposed 

in this section to estimate the model parameters. 

In Equations (2.25), the unknown parameters ~s in the 

weighting functions of the regression vector ! cause the 

difficulty to use classical linear estimators. However, if 

the parameters ~s are pre-determined by some method, the 

linear estimators become applicable and can be incorporated 

to estimate the remaining parameters. 

The above idea was borrowed from Takagi et. al. [1985] 

where the identification of static nonlinear systems using 

fuzzy linguistic rules was studied. The model structures 

presented in Takagi's paper have the basic form similar to 

Equations (2.19b) and (2.19c), but have no dynamic equation 

such as Equation (2.19a). Henceforth, this study may be 

considered as an extension of Takagi's work to the 

identification of nonlinear systems with dynamics. 

The parameter estimation algorithm proposed by Takagi 

et. al. is a combination of the so-called Complex Method 

[12, 53] and the recursive least-squares estimator. For 

this application, the Complex Method is used to optimize the 

values of the parameters ~s while the recursive 



least-squares estimator is used to estimate the parameters 

in Equation (2.25c). The estimation of parameters is 

performed in a cyclically iterative manner. 
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In the Complex Method, the set of parameters ~s is 

called a point in the ~-space. If the point is within the 

domain satisfying the constraints such as Equations (2.11), 

(2.15), or (2.17), it is referred to as a feasible point. 

Then, the task of parameter estimation is to ultimately seek 

a feasible point in the ~-space and this point, in turn, 

results in a model with the best performance. 

For seeking such a "best" point, the Complex Method 

begins with a proper number of working points which are 

pre-assigned in the feasible domain. During the Complex 

Method's searching, each feasible point can be conceived as 

a model with a performance index indicating its prediction 

accuracy. The upgrade of these working points is based on 

their corresponding performance indices and feasibility 

involved. 

A flowchart of the proposed parameter estimation method 

is shown in Figure 3. Further details about the Complex 

Method are presented in Appendix B. 

Convergent Properties 

As with most optimization methods, there is no 



Initialize a set of feasible 
points in the 11-space 

! 
For each feasible point, calculate 

the estimation of the parameter 
vector ~ in Equation (2.25c) using 

the recursive Least-Square estimator 

_! 
Evaluate each model performance for 

the set of feasible points and 
determine which point results in 

the "poorest" model performance 

J 
~ .. 

Upgrade the "poorest" point 
based on the Complex Method 

Estimate the parameters 
in the vector e -

! 
N Check for 

Convergence 

y! 
I Terminate I 

Figure 3. A Flowchart of the Proposed Parameter 
Estimation Method. 
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guarantee the Complex Method will always converge to a local 

minimum. Indeed, the original version of the Complex Method 

[53] sometimes would fail to converge. A minor modification 

of the Complex Method is necessary to prevent such a failure 

of convergence (Remark Bl in Appendix B). 

Since no gradient of any problem function is required 

in the Complex Method, the convergent rate is, in general, 

slow especially when the dimension of the ~-space is large. 

The computational time required in the proposed method may 

be 5-100 times (Table XIV) that required in other parameter 

estimation methods. 

The Complex Method permits several terminations and 

subsequent restarts to occur before actually terminating the 

search. Thus, the "best" point in the previous searching, 

even it is not the globally best, can be saved and assigned 

as one of initial points for the subsequent searching. This 

device is useful to improve the overall convergence rate of 

the algorithm. 

If computer time is not the major concern, a 

comprehensive grid net covering the whole working domain can 

be defined and then for each grid point the corresponding 

model performance is evaluated. By doing such exhaustive 

searching, it seems more likely to result in the globally 

optimal point. 
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Persistence of System Excitation 

The issue of persistence of system excitation as a 

result of the design of system inputs to generate a batch of 

data is vital to provide sufficient information about the 

system dynamics. A relative question is whether the data 

generated permits one to distinguish between different 

models in the chosen model structure. 

Consider a linear regression model structure such as 

(3.7a) 

where 

(3.7b) 

(3.7c) 

A persistent excitation condition [3, 25, 44] is that the 

matrix 

•T(t)•(t) is positive definite (3.8a) 

where 

= [ (3.8b) 

The above excitation condition is less meaningful for a 

pseudo~inear regression model structure such as Equations 
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(2.25). As some elements in the matrix tT(t)~(t) are still 

unknown, it is not possible to determine whether Equation 

(3.8a) holds. However, one can present a new insight into 

the input design problem based on the signal-dependent 

modeling concept. 

First, consider a system with a signal-dependent 

parameter described by 

y(t) = a(u(t-1)) y(t-1) + u(t-1) (3.9a) 

where 

a(u) (3.9b) 

and for illustrative purpose, the exact system structure is 

used as the model structure, i.e. 

A 

y(t) = a(u(t-1)) y(t-1) + u(t-1) (3.10a) 

where 

A 

a(u) = (3.10b) 

If pseudo-random binary signals with magnitude, say u 1 

and u 2 , are used as system inputs, the estimates will not be 

unique, because the following inference does not necessarily 

hold : 
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.. 
a(u 1 ) = a(u1 ) and a(u 2 ) = a(u2 ) ~ 

(3.11) 

What the system inputs should be to achieve persistent 

excitation obviously depends on the shapes of system 

parameter functions. From the above example, a necessary 

condition for the data ~n to be informative is that ~n must 

be able to distinguish among different sub-functions within 

the structure of a(u). 

In practice, the shapes or structures of system 

parameter functions are normally not known beforehand and 

they will not be as simple as that in Equation (3,9b). It 

might be a good idea to have the system inputs uniformly 

distributed over the whole input domain of interest to 

assure Equation (3.11) holds. 

Henceforth, if the system to be identified has 

input-dependent parameters such as a Hammerstein system, the 

input design problem may be easily solved by choosing 

uniformly distributed pseudo-random signals as the system 

inputs. But, for those systems with a non-input dynamic 

variable (e.g. Wiener systems), it would be difficult to 

generate uniformly distributed dynamic variable. 

Although the distribution of the system dynamic 

variable is not so controllable, its variation range under 
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excitation may be extended to cover the entire range of 

interest. It should be understood that the data generated 

with a large variation of the dynamic variable would be more 

informative than those generated with a small variation of 

the dynamic variable. 

Assume that the dynamic variable is one of the system 

states. In the design of system inputs, a suggested class 

of signals which are synthesized from uniformly distributed 

random signals with proper "time re-scaling" will be used. 

By time re-scaling, each input signal is permitted to 

excite the system for more than one sampling interval. An 

example of the suggested class of input signals is shown in 

Figure 4. The subscript of V denotes the number of 
n 

sampling intervals for which each input signal acts. In the 

ensuing context, the suggested class of input signals will 

be named V -class signals. 
n 

The aim of time re-scaling of the system input signals 

is to achieve a large ratio of the system dynamic variable 

to the input. By doing so, more information about the 

system parameter functions can be gained. 

The concept to achieve a large system output-to-input 

ratio through input time re-scaling can be explained in the 

frequency domain. Let the discrete Fourier transform of 

V -class signals denoted by~ (f). 
n n 
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Figure 4. The Suggested Class of Input Excitation 
Signals for Nonlinear System 
Identification. 
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~ (f) = 
n 

V (t) exp(j27ttf) 
n 

(3.12) 

t•O 

where h denotes the sampling interval, f the frequency. 

From Equation (3.12), it can be shown that the 

following equation holds : 

(3.13) 

Equation (3.13) states that a time scaling of signals 

results in a frequency scaling of the signal spectrum. As n 

increases, the spectrum of V -class signals will be 
n 

"compressed" to the side with lower frequency and the power 

of the spectrum is increased proportionally (Figure 24). In 

other words, the dominant frequency band of V -class signals 
n 

is shifted. It will eventually converge to the system 

resonant frequency (i.e. the frequency at which the peak 

resonance occurs) if sampling time interval has been 

properly chosen. Therefore, large output-to-input signal 

ratios can be achieved. 

Certainly, the use of V -class signals as system inputs 
n 

is just a suboptimal solution. However, V -class signals 
n 

have been found quite promising in a practical application 

(Example 3, Chapter IV). 

Finally, it must be emphasized that the problem of 

input design in nonlinear system identification is still not 
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completely solved. 

Model Validation 

In the process of system identification, once model 

structures have been chosen, parameter estimation methods 

provide several models in competition, and 

which model among all competitive ones is the best, or 

whether the "best" model is good enough for the intended 

application purpose. Such testing is known as model 

validation. 

Since by hypothesis, system parameter function forms 

are not known, model structure errors due to the 

parameterization of system parameter functions are 

inevitable. Classical linear model validation tests [11, 

24], or higher-order correlation tests [6, 8] have been 

found inadequate. Indeed, a model which fails to pass those 

tests does not necessarily mean it is an unacceptable model. 

A simple alternative for model validation is called 

cross-validation method [44]. The model performance is 

evaluated based on a batch of "fresh" data !I~ which were not 

used in the estimation of parameters. 

or 

1t = l, .•. ,n} (3.14a) 



* l, ••• ,n} 
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(3.14b) 

The idea of model cross validation can be implemented 

in the identification method proposed in this chapter. 

During the Complex Method's searching, the evaluation of 

model performance for each feasible point can be done based 

on a batch of fresh data. The incorporation of such on-line 

model validation sometimes is advantageous to prevent 

falsely data fitting. 

In the use of cross validation, the selection of fresh 

data certainly is problem dependent. Normally, the data can 

be generated with standard input signals (e.g. a step input) 

but should cover the entire working range of the system 

dynamic variable. 

The model validation methods mentioned above only serve 

to pick the "best" model from the competitive models. In 

practice, there is always an intended purpose behind system 

identification such as for system control. It would be 

necessary to check whether the "best" model is sufficiently 

good for the purpose (Example 3, Chapter IV, for an 

illustration). 



CHAPTER IV 

ILLUSTRATIVE EXAMPLES 

In this chapter, the identification methods presented 

in Chapter III are investigated through some illustrative 

examples. The example studies include simulations and an 

experiment (Example 3). The systems considered are a 

Hammerstein system, a simplified nonlinear stall/post-stall 

aircraft system, a hydraulic servovalve/motor system and an 

industrial Ph process. 

In the ensuing context, Equations (2.19) and (2.20), or 

their corresponding pseudolinear regressions (e.g. Equations 

(2.25)) are referred to as the proposed model structures. 

Fuzzy linguistic description of system parameter functions 

such as Equations (2.6) is the proposed parameterization 

approach. The proposed (identification) method means that 

the estimation of the parameters in the proposed model 

structures is performed using the recursive least-square 

routine and Complex Method (Chapter III). 

Throughout this chapter, the proposed parameterization 

approach is very flexible to meet diverse applications. 

Among the identification methods considered, the proposed 

method has good robustness across a range of different 

53 
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systems and henceforth deserves to receive the most 

attention. 

Example 1 - Hammerstein System with Saturating Gain 

Assume the system to be identified is described as 

(Figure 1 (a) ) : 

n = m = 3 (4.1a) 

a1 = -0.9 ' a2 = -0.15 ' a3 = -0.002 (4.1b) 

b1 = 1.0 ' b2 = 0.7 ' b3 = -1.5 (4.1c) 

and 

f(u) = { :.S , for -o. 5 < u < 0. 5 
(4.2) 

, for o-. 5 ~ I ul ~ 1. 0 

where the system data are excerpted from the Narendra's 

paper [ 47]. 

Assume Equation (4.1a) is known. The working range of 

the system inputs is [ -1 , 1] (i.e. u . = -1 and u = 1) m1n max 

in that the nonlinearities due to input saturation have been 

considered. 

Gate Function Method 

Assume four EGMs are to be formed. Each of them has 

the same model structure as : 
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[y(t)]. 
1 

"'[i] "'[i] = a 1 [y(t-1)] 1 + a 2 [y(t-2)] 1 + 

;;11 [y(t-3)] 1 + b~ 11 [u(t-1)] 1 + b; 11 [u(t-2)] 1+ 

where 

i = 1, ••• ,4 

[u(t)J 1 = { 
u(t) , if uli-t1 s u(t) s uliJ 

0 , otherwise 

[y(t)J, = { 
y(t) , if u£i-1J s u(t) s u£iJ 

0 , otherwise 

[ i] 
u = (u - u ) i/d + u max min 111in 

Polynomial Function Method 

Let f(u) be parameterized into a fourth-order 

polynomial function without constant term, i.e • 

... 
f(u) = 

Of course, in practice some efforts are required to 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

(4.4) 

investigate other possible polynomial parameterization with 

different order. However, the determination of the use of 

Equation (4.4) simply follows Narendra et. al. [47] • 
... 

Replace f(u) in Equations (2.3) by the above f(u). 
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After arrangement, 

(4.5a) 

where 

,!T(t) = [y(t-1),y(t-2),y(t-3),u(t-1),u2 (t-1), 
3 4 A A 

u (t-l),u (t-1),f(u(t-2)),f(u(t-3))] (4.5b) 

(4.5c) 

Strictly speaking, Equation (4.5a) is not a linear 
A A 

regression because f(u(t-2)) and f(u(t-3)) in the regression 

vector ,!(t) are not known. However, during the recursive 

least-squares estimation they can be approximated by their 

existing available estimates. 

Proposed Method 

Assume f(u) is parameterized by 

If u(t-1) is small then 

... 
f(u(t-1) = 0'1 (4.6a) 

If u(t-1) is large then 

A 

f(u(t-1) = 0'2 (4.6b) 

where linear membership functions and constant shape 

functions are appropriate for use. However, such 

understanding requires knowledge of the mathematical 
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properties of the proposed linguistic description. 

From Equations (2.3) and (4.6), the proposed model 

structure has the following pseudo-linear regression form 

(4.7a) 

where 

_!T(t) = [y(t-1),y(t-2),y(t-3),J"s(u(t-1)), 
... ... 

J"L(u(t-1)),f(u(t-2)),f(u(t-3))] (4.7b) 

(4.7c) 

... 
f(u(t-1)) = J"s(u(t-1)) o1 + J"L(u(t-1)) o2 (4.7d) 

and J"s(u) and J"L(u) are given in Equations (2.7b), (2.7c), 

(2.8), and (2.10) with~ replaced by u. 

Simulation Results 

The estimation of parameters was performed based on 300 

input/output data points. Uniformly distributed measurement 

noise with zero mean, and variance 0.00342 was assumed 

additive to the system real output. 

For the simulation of the proposed method and 

polynomial function method, V1-class signals distributed 

over the range of [-1, 1] were used as the system inputs. 

But, for the simulation of the gate function method V4-class 

input signals were used to guarantee each nonzero subset of 
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gated signals has enough length. 

The simulation results of using the above 

identification methods are summarized in Tables I, II and 
A 

III respectively. Comparison of f(u) and f(u) is shown in 

Figure 5. 

The gate function method was found not appropriate. 

First, the estimation results based on part of 

identification data are more sensitive to measurement noise 

than those based on the whole identification data (compare 

the estimates for i = 2, 3 in Table I with those in Table II 

and III). Another reason is that in the use of the gate 

function method the parameter function to be estimated is 

not f(u) but f(u)/u which has hyperbolic shapes at the 

saturation intervals (i.e. -1 ~ u < -0.5 and 0.5 < u ~ 1). 

Obviously, the number of EGMs is extremely demanding to 

achieve reasonable modeling accuracy for system saturation 

dynamics. 

The mean square errors between the system and model 

outputs produced by the proposed method and polynomial 

function method are 0.006538 and 0.009357 respectively 

(compared with the additive noise variance 0.00342). As 

shown in Figure 5, the estimates of f(u) for both methods 

are equivalent in accuracy. But, the proposed method is 

more promising if measurement noise can be reduced or a 

noise model is considered. 
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TABLE I 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 1 
(GATE FUNCTION METHOD) 

A ( i ] A ( i ] A ( i ] b ( i] b ( i ] b [ i ] 
a1 a2 a3 1 2 3 

i=1 -0.427 0.282 0.064 0.069 -0.088 0.097 

i=2 -0.540 0.171 0.079 0.991 0.475 -1.365 

i=3 -0.807 -0.190 0.033 1.351 0.054 -1.148 

i=4 -0.341 0.355 0.104 0.174 -0.002 -0.123 

1 -1.0 s u < -0.5 3 o.o s u < 0.5 
2 . -0.5 s u < o.o 4 . 0.5 s u s 1.0 . . 



TABLE II 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 1 
(POLYNOMIAL FUNCTION METHOD) 

A A 

b2 b3 

-0.89937 -0.14961 -0.00070 0.66658 -1.42761 

1.03984 0.03265 -0.57089 -0.00448 

TABLE III 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 1 
(THE PROPOSED METHOD) 

A A 

b2 b3 

-0.92197 -0.17386 -0.00983 0.72466 -1.47982 

0.51974 -0.51755 -0.53242 0.43958 
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Figure 5. A Comparison Between f(u) and Its 
Estimates Obtained Using the 
Specific Identification Methods. 
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Example 2 - Simplified Nonlinear Stall/Post-Stall 

Aircraft System 

The identification of an aircraft dynamic system in a 

large range of angle-of-attack flights is studied in this 

example. The following empirical model (excerpted from 

[Stalford, 1987]) determined from measured wind tunnel 

values of a T-2C airplane is the system to be identified 

i 1 = 9.168 c(x1 ) + x 2 - 1.8336 u - 5.473296 (4.8a) 

i 2 = -5.73 x 1 - 8.595 u + 2.865 (4.8b) 

where 

x 1 the angle of attack in degrees 

x 2 the pitch rate in degrees per second 

u the elevator control in degrees 

In Equation (4.8a), c(x1 ) denotes the system plunging force 

coefficient and 

1. x 1 s 14.36 (the pre-stall region) 

c(x1 ) = -0.07378494 x 1 

2. 14.36 s x 1 s 15.6 (the stall region) 

2 = 0.09722 x 1 - 2.8653 x 1 + 20.03846 

3. 15.6 s x 1 s 19.6 (the stall/post-stall region) 

2 
c(x1 ) = -0.01971 x 1 + 0.74391 x 1 - 7.80753 

(4.9a) 

(4.9b) 

(4.9c) 
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4. 19.6 s x 1 s 28.0 (the post-stall region) 

c(x1 ) = -0.47333 - 0.01667 x 1 (4.9d) 

It would require much wind tunnel and flight test time 

to measure the system coefficients and achieve the above 

empirical model. 

In Stalford's paper, there is another piecewise linear 

model available which is described by Equations (4.8) but 

with the following piecewise linear plunging force 

coefficient : 

1. x 1 s 14.74 (the pre-stall region) 

c(x1 ) = -0.07281587 x 1 (4.10a) 

2. 14.74 s x 1 s 17.4 (the stall region) 

c(x1 ) = 0.088470922(x1-14.74) - 1.073305924 (4.10b) 

3. 17.4 s x 1 s 18.87 (the stall/post-stall region) 

c(x 1 ) = 0.03309905(x 1-17.4) - 0.8308956 (4.10c) 

4. 18.87 s x 1 s 28.0 (the post-stall region) 

c(x1 ) = -0.016633734(x1-18.87) - 0.7882234 (4.10d) 

How accurate the piecewise linear model matches the 

system can be seen from a plot of Equations (4.9) and (4.10) 

in Figure 6. Now, can one estimate the system coefficients 

including the plunging force coefficient simply by measuring 
f 

the system inputs and outputs ? This problem will be 
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Figure 6. Nonlinear and Piecewise Linear 
Plunging Force Coefficients. 
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investigated in the discrete-time domain. 

First, applying the z transform to Equations (4.8), 

[ :: L. = [ ::: JJ::L· [::Lu(t). 

[ :: L (4.11) 

and all the discrete parameters above depend on xt. The 

dependence is in general more complicated than that in the 

continuous-time domain. For instance, 

(4.12a) 

where 

1 
A h A2h 

kt (e 
t 

) = At + A2 
- e (4.12b) 

k2 
1 

(At 
A2h 

- A 
A1h 

) = A + A2 
e e 2 

1 
(4.12c) 

and h denotes the sampling time interval, At and A2 are the 

system signal-dependent poles in the continuous-time domain, 

i.e. 

where 

1 ± I 12 - 22.92 
2 (4.12d) 

(4.12e) 



In this example, h = 0.1 second is considered. 

Step-input responses of the system and piecewise linear 

model for u = -9.2 and -9.4 with initial conditions x 1 (0) = 
11.0 and x 2 (0) = 0.0 are shown in Figure 7. It is obvious 

that the system would exhibit a longitudinal limit cycle 

when it is excited by a step input with magnitude somewhere 

in between -9.2 and -9.4. But, it is surprising that even 

though it is so accurate, the piecewise linear model does 

not provide a good prediction of the system longitudinal 

limit cycle. So, it is conceivable that the estimation 

accuracy for this example would be quite demanding if an 

improvement of the above prediction of the longitudinal 

limit cycle is required. 

It should also be noted that although exact 

parameterization of system parameter functions can be 

derived as shown in Equations (4.12), they are too 

complicated to be useful. The problem is the difficulty to 

estimate the coefficients involved if the system parameter 

functions are parameterized in that manner. Simplified 

parameterization in the sense of system approximation seems 

necessary to render the problem useful. 

Gate Function Method 

Assume the dynamic variable space [x , x 1 1 is 1,min ,max 
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quantified into d intervals with equal length. Each EGM has 
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the same model structure : 

L: [ ] [ 
i = l, ••• ,d (4.13a) 

where 

[u(t)] 1 

= { u(t) , if x~i-1] =' x 1(t) =' x~iJ 

0 , otherwise 
(4.13b) 

"f [i-11 =' x (t) =' £11 
' 1 x1 1 x1 

, otherwise 

j = 1,2 (4.13c) 

= ( x1 - x1 i ) i/d + x1 i ,max ,111 n ,111 n 
(4.13d) 

Polynomial Function Method 

Consider the following model structure 

A 

au a12 ]J 
x1 ]+[:•]u(t)+ 

a21 a22 x2 t 2 t 

A 

[ c1 L (4.14) 
c2 

A 

where the parameter functions as and ~s are parameterized in 

terms of third-order polynomial functions : 
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A 2 3 
att(t) = pt 1+ Pt 2x1 ( t) + Pt 3xt ( t) + Pt 4xt ( t) (4.15a) , , , , 
A 2 3 
at2(t) = pt 5+ Pt sxt (t) + Pt ?xt(t) + Pt, Bxt ( t) (4.15b) , , , 
A 2 

+ Pt 12x~ ( t) ~t(t) = P 1 9 + P 1 toxt ( t) + Pt ttxt(t) (4.15c) , , , , 
A 2 

+ p2 , 4x~(t) a2t(t) = P2 1+ P2 2xt ( t) + P2 3xt ( t) (4.15d) , , , 
A 2 3 
a22(t) = P2 5+ P2 6xt(t) + P2 7xt(t) + P2 ext ( t) (4.15e) , , , , 
A 2 

+ P2, t2x~ ( t) ~2(t) = P2 9+ P2 toxt(t) + P2 ttxt(t) (4.15f) , , , 

Note that in Equation (4.14), the signal dependence of 

c 1(x1) and c 2(x1) have been assumed negligible. Such an 

assumption is for ensuring the identifiability of the model 

structure chosen. 

Substituting Equations (4.15) into Equation (4.14) 

i = 1,2 (4.16a) 

where 

2 3 4 = [x1 (t) ,x1 (t) ,x1 (t) ,x1 (t) ,x 2 (t) ,x2(t)x1 (t), 

2 3 
x 2(t)x1(t),x2(t)x1(t),u(t),u(t)x1(t), 

2 3 
u(t)x1(t),u(t)x1(t),l.O] (4.16b) 

A 

PI,?'PI,B'Pl,9'Pi,10'Pi,11 ,pi, 12'c1) ( 4 .l6c) 

Equations (4.16) are two linear regressions. For each 

linear. regression, the estimation of parameters can be 
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performed independently. 

Proposed Method 

Equation (4.14) along with the following linguistic 

parameterization of system parameter functions is considered 

as the proposed model structure : 

If x 1(t) is small then 

If x 1(t) is 

... 
~1(t) 
... 
a21 ( t) 
... 
a22 ( t) 
... 
~2( t) 

(J 
1,1 

(J 
1, 8 

= (J 1,15 

= (J 
2,1 

= (J 
2,8 

= (J 2,15 

medium-! then 
... 
a11 ( t) = (J 

1., 2 
... 
a12 ( t) = (J 

1,9 
... 
~1(t) = (J 1,16 
... 
a21 ( t) = (J 

2,·2 
... 
a22 ( t) = (J 

2,9 
... 
~2(t) = (J 2,16 

+ 0 1 3 x1 ( t) 
• 

+ (J 1 10 , x 1 ( t) 

+ 0 1 17 , x 1 ( t) 

+ 0 2 3 x1(t) , 

+ (J 2 10 , x 1 ( t) 

+ (J 2,17 x 1 (t) 

If x 1(t) is medium-2 then 

0 1 4 + 0 1 5 x1 ( t) , , 
... 
a12(t) = 0 1 11 + 0 1 12 x1(t) , . 
... 
~1 (t) = 01,18 + 01,19 x1(t) 

(4.17a) 

(4.17b) 
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A 

a21(t) = (} + 0 2 5 x1 ( t) 2,4 
' A 

a22 ( t) = (} + 0 2 12 x1(t) 2,11 
' A 

~2( t) = (} + (} x 1 ( t) (4.17c) 2,1B 2,19 

If x 1(t) is large then 
A 

a11(t) = (} + 0 1 7 x1 ( t) 1,6 
' A 

a12(t) = 0 1 13 + 0 1 14 x1(t) 
' ' A 

~1(t) = 0 1 20 + 0 1 21 x1(t) 
' ' A 

a21(t) = 0 2,6 + 0 2,1 x1(t) 

0 2 13 + 0 2 14 x1 ( t) 
' ' 

(} 
2,20 

where the membership functions are shown in Figure 8. 

(4.17d) 

The introduction of additional membership functions 

"medium-1" and "medium-2" is intended to improve modeling 

accuracy of the proposed method. Such an intention, however, 

causes an increase of the ~-space dimension and henceforth 

would sacrifice the convergent rate in the Complex Method's 

optimization. 

Moreover, the use of constant shape functions in 

Equation (4.17a) is warranted by the assumed linear system 

pre-stall dynamics (Figure 6). 

The parameter functions in Equations (4.17) will be 

defined similar to those defined in Equations (2.7). For 

instance, 
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M. 

0 
x1 . 

,IIIlO 

1 

s M. M.H2 M. 
H1 

111 112 113 115 114 

Figure 8. The Membership Functions Defined 
in Example 2, Chapter IV. 
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A 

a 11 (t) = Ws(t) a 1 + WM 1(t)(a2+ a 3x 1(t)) + 

where 

FM 2 (t)(a4 + a 5 x 1 (t)) + WL(t)(a6 + a 7 x 1 (t)) 

W (t) = A (t)/S (t) 
S S M 

.M.s = { (l..t1-x1)/(l11-x1,min), if x1,min S x1 < 111 

0 , otherwise 

= { 
0 , otherwise 

•Hz = { (~.-x,)o/(114-113) ' if 113 s x1 < 114 

, otherwise 

0 , otherwise 
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(4.18a) 

(4.18b) 

(4.18c) 

(4.18d) 

(4.18e) 

(4.18f) 

(4.18g) 

(4.18h) 

(4.18i) 

(4.18j) 

and the following constraints must hold to ensure SM is 

nonzero 

x1,min < 112 < 111 < 113 < 115 < 114 < x1,max (4.19) 
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Final!~, Equations (4.14) and (4.17) can be combined 

and arranged into two pseudo-linear regressions : 

i = 1,2 (4.20a) 

where 

2 
[Ws(t)x 1 (t),WM 1 (t)x 1 (t),WM 1 (t)x 1 (t), 

2 
WM 2 (t)x 1 (t),WM 2 (t)x 1 (t),WL(t)x 1 (t), 

2 
WL(t)x 1 (t),Ws(t)x2 (t),WM 1 (t)x2 (t), 

WM 1 (t)x1 (t)x2 (t),WM 2 (t)x2 (t),WM 2 (t)x 1 (t)x2 (t), 

WL(t)x 2 (t),WL(t)x 1 (t)x2 (t),Ws(t)u(t),WM 1 (t)u(t), 

WM 1 (t)x 1 (t)u(t),WM 2 (t)u(t),WM 2 (t)x 1 (t)u(t), 

(4.20b) 

6T : (<7° 1'0' 0 2'0' 0 3'0' 4'0' 0 s'O'o 6'0' 0 7'0' 0 B'O'o 9' -i 1 1 1 1 1 1 i 1 1 1 1 1 1 I 1 1 1 1 

0' i • 10 '0' i • 11 '0' i • 12 '0' i • 13 '0' i • 14 '0' i • 15 '0' i • 16 ' 
... 

0' 0 17 '0' 0 1 8 '0' 0 19 '0' 0 20 '0' 0 21 ' c 0 
] 1, 1, 11' 1, 1, 1 

(4.20c) 

Simulation Results 

V2 -class signals distributed over [-8.0,-11.0] were 

used as the system inputs. All the identification methods 

considered were performed based on the same identification 

data which are plotted in Figure 9. 

First of all, from the collected x 1 data, arbitrarily 

choose x 1 0 = 0.0 and x 1 = 28.0. For gate function ,m1n ,max 

method, two sub-cases with d = 5 and d = 10 in Equations 



• (t) 

~(t) 

~(t) 

·7 

., ~ ~ 
·lt 

rJ ~ 
·11 

·U • t• • • U.ltepl 

28 .: 

•.-------------------------------------------------~ 

... •• 

Figure 9. The Data Used for the Parameter 
Estimation in Example 2. 
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(4.13) were considered. As shown in Figure 9, x 1 vs. t data 

was plotted as symbols and with 10 quantification intervals 

so that one may have a rough idea about the number of data 

in each set of gated signals. 

Simulation results for the studying identification 

methods are summarized in Table IV, V and VI respectively. 

As shown in Table IV, the quantification of [x 1 1 , x 1 ] ,m n ,max 

into 10 intervals results in a meaningless EGM (i.e. d = 10 

and i = 1). Such a situation is not uncommon in the use of 

gate function method if the quantification intervals are too 

small. 

For comparison reason, a new term called estimation 

error function is introduced. For each system parameter 

function, it is defined : 

A 

A att(xt) • (att(xt)-att(xt))/latt(xt)l (4.21a) 

A 

A at2(x1) • (at2(xt)-at2(xt))/lat2(xt)l (4.21b) 

A 

A a2t(x1) • (a2t(xt)-a21(xt))/la2t(xt)l (4.21c) 

A 

A a22(xt) • (a22(xt)-a22(x1))/la22(xt)l (4.21d) 

A 

A ~t(xt) • (~t(xt)-~t(xt))/l~t(xt)l (4.21e) 

A 

A ~2(xt) • (~2(xt)-~2(xt))/l~2(xt)l (4.21f) 

A 

A c 1{x1 ) • (c1(x1 )-c1 (x1))/lc1(x1)1 (4.21g) 

A 

A c2(x1) • (c2(x1 )-c2(x1))/lc2(x1 )1 (4.21h) 
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TABLE IV 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 2 
(GATE FUNCTION METHOD) 

... [ i ] ... [ i ] ... [ l ] ... [ i ] 

8 11 8 12 b1 c1 

d=5 
i=1 0.90732560 0.09577142 -0.21742235 -0.51015185 
i=2 0.90733185 0.09577199 -0.21742975 -0.51023933 
i=3 0.95108825 0.09542130 -0.21583963 -1.05756369 
i=4 0.97001668 0.09714150 -0.21763249 -1.18167471 
i=5 0.95690338 0.09742015 -0.22085342 -0.94101728 

d=10 
i=1 0.00000000 0.00000000 0.00000000 0.00000000 
i=2 0.90732848 0.09577067 -0.21741736 -0.51012899 
i=3 0.90732682 0.09577181 -0.21742807 -0.51019086 
i=4 0.90732879 0.09577188 -0.21742843 -0.51019743 
i=5 0.90732987 0.09577186 -0.21742946 -0.51021083 
i=6 1.04045997 0.09573199 -0.21958527 -2.46837741 
i=7 0.99597572 0.09707773 -0.21877153 -1.66383482 
i=8 0.95705884 0.09729108 -0.22071813 -0.94361770 
i=9 0.95692184 0.09740083 -0.22084484 -0.94141759 

i=10 0.93997860 0.09773161 -0.15707872 0.02678130 
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TABLE IV (Continued) 

.. [ i 1 .. [ i 1 .. [ i 1 .. [ i 1 
a21 a22 b2 c2 

d=5 
i=1 -0.54876886 0.97211852 -0.80033281 0.43635802 
i=2 -0.54877322 0.97211815 -0.80032790 0.43641695 
i=3 -0.56156581 0.97223421 -0.80080108 0.59637444 
i=4 -0.56704457 0.97185794 -0.80056949 0.62983565 
i=5 -0.56327776 0.97179958 -0.79969116 0.56035060 

d=10 
i=1 0.00000000 0.00000000 0.00000000 0.00000000 
i=2 -0.54876989 0.97211879 -0.80033460 0.43634980 
i=3 -0.54876935 0.97211828 -0.80032910 0.43638050 
i=4 -0.54877083 0.97211823 -0.80032887 0.43638479 
i=5 -0.54877162 0.97211825 -0.80032812 0.43639411 
i=6 -0.58748238 0.97217364 -0.79978076 1.00492537 
i=7 -0.57456103 0.97186487 -0.80021272 0.76967075 
i=8 -0.56330412 0.97182456 -0.79971451 0.56080816 
i=9 -0.56327390 0.97180380 -0.79969027 0.56028161 

i=10 -0.55417667 0.97166729 -0.83337221 0.04482194 



a 
11 

a 
12 .. 

.t; 
1 

a 
21 

a22 .. 
.t; 

2 

TABLE V 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 2 
(POLYNOMIAL FUNCTION METHOD) 

0 1 2 3 
x1 x1 xt x1 

1.19719465 -0.03760372 0.00196954 -0.00003221 

0.09806676 -0.00066160 0.00004907 -0.00000094 

-0.28680736 0.01797868 -0.00141486 0.00003434 

-0.63302178 0.01091662 -0.00067206 0.00000936 

0.97167922 0.00012984 -0.00000964 0.00000018 

-0.78006512 -0.00522606 0.00041012 -0.00000997 

.. 
c1 = -1.30534990 c 2 = 0.66849212 
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TABLE VI 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 2 
(THE PROPOSED METHOD) 

(] -+ (] 
1 I 1 1 I 7 

0.90742266 

0.86629843 

0.00293430 

0.90720378 

0.00065796 

0.93395594 

0.00012834 

(] -+ (] 
1,8 1114 

0.09576598 

0.09277416 

0.00021786 

0.08612706 

0.00063288 

0.09470412 

0.00012287 

ll1 = 14.57666 

#l2 = 13.39307 

ll3 = 14.93013 

#l4 = 18.09663 

ll5 = 15.37638 

c 1 = -0.51359686 

c 2 = 0.43739901 

(] -+ (] (] -+ (] 
1115 1121 2,1 2,7 

-0.21769196 -0.54879983 

-0.25877918 -0.53678030 

0.00292692 -0.00085762 

-0.02112072 -0.54842878 

-0.01239269 -0.00021476 

-0.17724961 -0.55661942 

-0.00204623 -0.00003922 

(] -+ (] (J -+ (] 
2,8 2114 2,15 2,21 

0.97211993 -0.80025126 

0.97293421 -0.78819312 

-0.00005937 -0.00085902 

0.97437652 -0.85664371 

-0.00014657 0.00354794 

0.97245908 -0.81208475 

-0.00003022 0.00058257 
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The estimation error functions for each model are 

plotted in Figure 10 through Figure 17. From the figures 

(notice the change of the vertical scales), the results 

produced by polynomial function method are the poorest among 

all. No improvement of the estimation accuracy can be 

achieved by increasing the order of the polynomials in 

Equations (4.15). Therefore, it is not advisable to search 

for a single polynomial relationship which governs flight 

behavior in the total envelope spanning pre-stall, stall, 

and post-stall flight. 

The gate function method is adequate for the pre-stall 

region where the system parameter functions are constant. 

However, as shown in Figures 10, 12, 16, and 17, the 

estimation accuracy for the stall and post-stall regions is 

poor. Further improvement is possible by quantifying the 

regions into finer intervals. But, the improvement is 

limited due to the required minimum length of nonzero gated 

signals. 

In the proposed method, the dynamic variable space 

indeed was quantified into six intervals (Figure 8). The 

length and position of each interval is not determined by 

the user as in gate function method but by an optimization 

method. For each quantification interval, shape functions 

or their combinations with weighting functions are used to 

fit the system parameter functions instead of just using a 
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constant. Although the proposed method may not produce the 

best estimates for all system parameter functions as shown 

in Figures 14 and 15, it is globally the best among the 

system identification methods. 

For further investigating model predictions of the 

system longitudinal limit cycle, let a prediction error be 

defined by 

~ X • X - x 1 1 1 
(4.22) 

where x 1 denote a model output. 

The prediction errors for u = -9.2 and -9.4 are shown 

in Figures 18 and 19 respectively. As expected, the model 

achieved by the proposed method has better prediction 

accuracy than those achieved by the other methods. But, it 

is surprising that the model achieved by the proposed method 

is superior to the piecewise linear model. The reason is 

that the latter does a poor job in modeling of system 

pre-stall dynamics (Figures 10, 11, 12 and 13) and results 

in a poor prediction of the system longitudinal limit cycle. 

Example 3 - Hydraulic Servovalve/Motor System 

An experimental study of the identification of an 

hydraulic servovalve/motor system (Figure 20) is provided in 

this example including a follow-up control application. The 

study will examine the adequacy of those identification 
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Figure 20. The Hydraulic Servovalve/Motor System 
Studied in Example 3, Chapter IV. 
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methods mentioned previously and a classical linear 

identification method. 

The system is described by [45] 

N 1 
#1 N - T ) = --(-C D + D p 

Jt d m .. t (4.23a) 

..!..l...(Q 
c D 

p - D N - 8 m 
P) = v .. #1 

0 

(4.23b) 

Q = c I (P - IPI)-r 
v 8 

(4.23c) 

where 

N angular velocity, the system output (rad/sec) 

P load pressure (psig) 

I valve input current, the system input (mA); 

P supply pressure (psig) 
s 

Q : load flow rate (in3 /sec) 

Tt: total friction torque (in-lb) 

and Jt, cd, n .. , #1, vo, cs, cv, -r, and~ denote system 

coefficients with proper units. 

Temperature effects are assumed negligible here. The 

above coefficients are assumed constant except the bulk 

modulus ~ which is considered to be pressure dependent. 

Coulomb and viscous frictions can be considered and included 

in the friction term Tt in Equation (4.23a). 

First, neglect Tt temporarily and rewrite Equations 
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(4.23) into the following matrix form 

. 
[ ::· :It 

[ ~ ] a12 ] [ : ] + [ :; ] I = :It 

21 a22 
(4.24a) 

where 

* - cd Dm ll/Jt au = (4.24b) 

* D._/Jt a12 = (4.24c) 

:It 
- 2 D P( IPI )/V a21 = Ill 0 

(4.24d) 

* - 2 c D P( IPI )/(IJ V ) a22 = 8 ftl 0 
(4.24e) 

t,* = 2 c P ( I PI )( P -I PI ) T: /V 2 v 8 0 
(4.24f) 

Taking the z transform of Equation (4.24a) gives 

(4.25) 

From the system input/output point of view, Equation 

( 4. 25) is equivalent to 

[ : L. [ a 11 a12 L [ : L+ [ :: LI(t) (4.26) = 
a21 a22 

if 

/,t = ~ 1 (4.27a) 

.... .... 
(4.27b) a11 + a22 = au + a22 
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,.., 'V ,..., ,..., 

a11a22 = a12a21 + a11a22 - a12a21 (4.27c) 

~a +a~=~- a~ 1 22 12 2 1a22 + 12 2 (4.27d) 

Note that the solutions a 11 , a 22 , ~1 and ~2 exist uniquely 

for any given as, ~s, a12 and a21. 

Moreover, the pressure dependence of P is usually 

measured under an experimental condition. When the 

condition changes, the measured pressure dependence could no 

longer be adequate due to the change of the amount of gas 

entrained in the working fluid. So, the dependence must be 

treated as unknown and parameterized. 

The structure of Equation (4.26) instead of that of 

Equation (4.25) will be selected as the working model 

structure in the use of the proposed method and polynomial 

function method. Such a selection of model structure is 

beneficial to the resulting model accuracy since the 

mean-square estimation error typically increases with the 

number of estimated parameters. 

Classical Linear Method 

The identification of systems based on a linear model 

structure is a classical method. For this example, a linear 

model structure can be formed by neglecting the pressure 

dependence involved and linearizing Equation (4.23c) around 

a nominal working point. With further consideration of the 
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process delay, one has 

[: L.= [ (4.28) 

where td denotes the process delay time hereafter. 

Gate Function Method 

The dynamic variable space [I PI 1 , I PI ] is 
111 n max 

quantified into d intervals with equal length. Each EGM has 

the same model structure : 

[ [N) i] [ 
... [ i ] 

;.:~)] [ [NJ,] [ b!'J] au 
[I(t-td)] 1 , = "[i] .. [ i] 

[P]i t+ 
.. [i] 

[P]i t+1 a21 a22 b2 

i = 1' ..• 'd (4.29a) 

where 

{ N( t), if p[i-1]:!1: IP(t)l :!!: Plil 
[N(t)] 1 = (4.29b) 

0 , otherwise 

{ P( t), if p[i-1]:!1: IP(t)l :!!: Plil 
[P(t)] 1 = (4.29c) 

0 , otherwise 

{ I ( t), if p[i-1]:!1: IP(t)l :!!: Plil 
[I(t)] 1 = (4.29d) 

0 , otherwise 
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P[iJ = ( IPI - IPI . ) i/d + 1Pim 1·n 
max 1111 n 

(4.29e) 

Polynomial Function Method 

Consider the following model structure and parameterize 

each parameter function involved into a third-order 

polynomial in terms of IP(t)l : 

[: L: [ ~:: (4.30) 

where 

(4.31a) 

(4.31b) 

(4.31c) 

(4.31d) 

Proposed Method 

Two model structures are considered. One includes 

friction but the other does not. For the latter, the 

proposed model structure is the same as that of Equation 

(4.30) with the following linguistic parameterizations : 
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If IP(t)l is small then 

,. 
~1 = o1 5 + o1 6 1P(t)l 

' ' ... 
a 22 = o2 1+ o2 2 1P(t)l 

' ' ,. 

~2 = o2 5 + o2 6 1P(t)l 
' ' 

(4.32a) 

If IP(t)l is large then 

... 
~1 = 01 7+ 01 BIP(t)l 

' ' ,. 

a22 = o2 3+ o2 41P(t)l 
' ' " 

~2 = 02 7+ 02 BIP(t)l 
' ' 

(4.32b) 

For the former, the following model structure is considered. 

[: L,= [ 
[ ~ 1 ] sgn(N(t)) 

c2 t 

If IP(t)l is small then 

... 
~1 = 

c1 = o1 9 + o1 10 1P(t)l 
' ' ,. 

a22 = o2 1+ o2 21P(t)l 
' ' ,. 

~2 = o2 5 + o2 6 1P(t)l 
' ' 

(4.33) 

(4.34a) 
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If IP(t)l is large then 

au = 0 1 3+ o 1 4 1P(t)l 
' ' A 

.& = 0'1 7+ 0'1 BIP(t)l 1 
' ' 

c = 0' 1 11+ <1 1 12 1P(t)l 1 
' ' 

a = o + o 2 4 1P(t)l 22 2,3 
' A 

.&2 = 0'2 7+ 0'2 BIP(t)l 
' ' 

c2 = 0 2 11+ 0 2 12IP(t)l (4.34b) 
' ' 

For both proposed model structures, the membership 

functions defined are shown in Figure 21. The bounds of 

dynamic variable space are defined I PI = P and I PI . = 111ax s au n 

0 and will be used in Equation (4.29e). 

Preliminary Considerations 

System identification in practice usually requires some 

preliminary work. For the example, in addition to the 

analysis work mentioned above, some issues such as 

measurement of process delay, selection of sampling time 

interval, and system input design deserve contemplation 

beforehand. 

Theoretically, process delay time td can be measured 

from a system step-input response. For the system, such an 

approach is not feasible because system stiction and 

hysteresis·will introduce an uncertain time delay between 

the system input and output and a problem of repeatability 

between runs. Instead, using experimental tests for 
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Figure 21. The Membership Functions Defined 
in Example 3, Chapter IV. 
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different possible values of t during parameter estimation 

process or other techniques such as correlation methods 

would be more feasible. 

For a specific system, the value of td depends on 

sampling time interval. If sampling time interval is 

relatively large, the effects due to process delay can be 

negligible. Proper selection of sampling interval is 

application dependent. Nevertheless, for control 

applications a good rule of thumb in the selection of 

sampling interval is to sample between 6 to 10 data points 

per system natural period (i.e. inverse of system natural 

frequency) [20]. 

A Bode plot of the studied system is shown in Figure 

22. From the plot of IN(jw)/I(jw)l), the system bandwidth 

is observed at approximately four Hz. Although the system 

bandwidth and natural frequency are pressure dependent, 20 

msec sampling interval is believed adequate for system 

102 

control. It was found in the above experimental tests of td 

that process delay time is negligibly small in comparison 

with 20 msec sampling time interval. 

With the sampling interval selected, the spectral 

density of V -class signals can be determined. For this, 
n 

some heuristic plots are shown in Figure 23. As explained 

in Chapter III, informative identification data may be 

achieved if the dominant frequency band of the input signals 
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Figure 22. Bode Plot of the Hydraulic System 
Studied in Example 3, Chapter IV. 
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\71 -Class signals 

10 lS 2» 
Hz 

2S 10 lS 2» 
Hz 

Figure 23. Power Spectral Density of Some Suggested 
Classes of System Input Signals 
(Sampling Interval= 20 msec). 
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coincides with the system resonant frequency. Among the 

classes of signals illustrated in Figure 23, V12-class 

signals are the best selection as system inputs. 

105 

Indeed, the selection of input signals among V classes 
n 

also can be carried out by investigating the amplitudes of 

IP(t)l under excitations where the input signals have the 

same distribution range. Whenever larger amplitude of 

IP(t)l is excited, the corresponding input signals are more 

likely to be persistent excitation signals. 

Experimental Results 

Six hundred identification data collected are plotted 

in Figure 24. The supply pressure P was set at 500 psig. 
8 

Input distribution range is [0 mA, 4.5 mA] which covered the 

servovalve operating range. 

All the data collected were used for parameter 

estimation purposes except that in the proposed method the 

first 300 data points were used for that purpose but the 

remaining data were used for model cross validation during 

the Complex Methods's optimization. The estimation results 

are summarized in Table VII to Table X. 

For the gate function method, unacceptable EGMs were 

achieved as the number of quantification intervals were 

increased from 5 to 10 (i.e. d = 10 and i ~ 6 in Table 

VIII) •. These EGMs have either unreasonable estimated 
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TABLE VII 

A SUMMARY OF EXPERIMENTAL RESULTS OF EXAMPLE 3 
(CLASSICAL LINEAR METHOD) 

0.856 0.044 -3.627 0.802 1. 237 53.135 

TABLE VIII 

A SUMMARY OF EXPERIMENTAL RESULTS OF EXAMPLE 3 
(GATE FUNCTION METHOD) 

.... [ i 1 .... [ i 1 ... [ i 1 ... [ i 1 b [ i 1 A [ i 1 
a11 a12 a21 a22 1 b2 

d=5 
i=1 0.910 0.033 -1.961 0.677 0.687 32.426 
i=2 0.783 0.040 -4.148 0.797 2.238 58.266 
i=3 0.835 0.042 -3.883 0.867 1.298 44.841 
i=4 0.876 0.049 -1.105 0.946 0.415 8.628 
i=5 0.823 0.054 -1.614 0.930 4.978 31.732 

d=10 
i=1 0.916 0.038 -1.404 0.716 0.551 23.438 
i=2 0.919 0.026 -2.446 0.719 0.748 38.420 
i=3 0.699 0.036 -3.495 0.863 3.539 51.429 
i=4 0.698 0.036 -2.728 0.871 3.327 36.178 
i=5 0.813 0.041 -2.579 0.887 1.827 34.210 
i=6 0.904 0.047 -0.649 1.012 0.083 -0.057 
i=7 1.020 0.055 1.253 1.068 1.414 -22.098 
i=8 0.786 0.049 -1.978 0.936 0.000 0.000 
i=9 1.191 0.071 2.522 1.145 0.082 0.177 

i=10 -0.001 0.014 -0.048 0.998 0.000 -0.000 
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TABLE IX 

A SUMMARY OF EXPERIMENTAL RESULTS OF EXAMPLE 3 
(POLYNOMIAL FUNCTION METHOD) 

Po IPI p2 IP3 1 

a 0.88502 -0.000336 -0.00000012 0.00000000 
11 

a22 1.14509 -0.003524 0.00001119 -0.00000001 
... 
~1 1.01462 0.001119 0.00002048 -0.00000007 
... 
~ 59.51332 -0.128545 0.00059506 -0.00000103 

2 
,. 

8 12 = 0.04418 a 21 = -3.77454 



TABLE X 

A SUMMARY OF EXPERIMENTAL RESULTS OF EXAMPLE 3 
(THE PROPOSED METHOD) 

Without Friction 

(} -+ (} 

111 = 342.18 

#12 = 74.044 

a 12 = 0.045 

a 21 = -3.794 

(} -+ (} 
1,1 1,8 2,1 2,8 

0.869 
0.000 
0.402 
0.001 
1. 320 

-0.003 
8.733 

-0.023 

1.032 
-0.002 

1.076 
-0.001 
61.791 
-0.132 
120.21 
-0.232 

With Friction 

#11 = 450.16 

#12 = 100.05 

a 12 = 0.045 

a 21 = -3.957 

(} -+ (} 
1,1 1,12 

0.902 
0.000 
0.806 
0.000 
1. 263 

-0.001 
5.085 

-0.013 
1. 570 

-0.002 
1.006 
0.000 

(} -+ (} 
2,1 2,12 

1.133 
-0.003 
1.897 

-0.003 
61.970 
-0.127 
162.92 
-0.337 
-3.912 
-0.045 
91.983 
-0.199 
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parameters and/or unstable poles. Such poor estimation 

results can be foreseen from the plot of P(t) vs. t in 

Figure 24. For IP(t)l > 250 psig, very few gated signals 

are useful and available for parameter estimation. 

Open-Loop Step-Input Responses. All resulting models 

are now validated by comparing their step-input responses 

with those of the system for I(t) = 4 mA, 2 mA, and 0.5 mA 

as shown in Figures 25, 26 and 27 respectively. 

110 

In the figures, the system responses are plotted in 

broad solid lines. Different dynamic characteristics of the 

responses are achieved for the selected step inputs. 

Basically, the smaller is the step-input level, the less 

damped is the system response. Such a nonlinear phenomenon 

cannot be described properly by a single linear model. 

As shown in Figure 26, the linear model achieved by 

using the classical identification method may fit into the 

system properly when the step input is around 2 mA. 

However, it is no longer adequate when the input level has 

large deviation from 2 mA as shown in Figures 25 and 27. 

For this example, the improvement of model accuracy by 

using gate function method is very minor. EGMs built based 

on gated signals (i.e. part of identification data) would be 

more sensitive to measurement noise than a classical linear 

model built based on the whole identification data. This is 
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especially true for those EGMs built based on gated signals 

having low IP(t)l due to the high noise-to-signal ratios. 

This is believed to be the main reason why the gate function 

method are poor in prediction of the system response for 

I(t) = 0.5 mA. 

On the other hand, the improvement of model accuracy by 

using the proposed method or polynomial function method is 

obvious. The system nonlinear phenomenon are well 

predicted. Among all achieved models, the one with friction 

using the proposed method (called the proposed model with 

friction) provides the best prediction of system step-input 

responses. Note that in Figure 27 the phase shift between 

the system response and that of the proposed model with 

friction is primarily due to stiction. 

Closed-Loop Velocity Controls. As mentioned in Chapter 

I, one advantage of the modeling concept using 

signal-dependent parameters is the ease of applying linear 

control theory to design nonlinear system controllers. The 

goal here is to improve the robustness of classical linear 

controllers to system signal-dependent dynamics by 

re-designing the controllers based on models with 

signal-dependent parameters. The proposed model with 

friction is validated against this goal. 

For illustration, a linear controller called SV&UO 
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feedback controller (Appendix C) is used as an example. 

SV&UO feedback controller with signal-dependent gains 

where 

and 

2(t) 

~(t) 

T 
= [ 91 ( t) ' 92 ( t) ' 93 ( t) 1 

= [N(t), P(t), E(t)]T 

E(t+1) = E(t) + Nd(t) - N(t) 

(4.35a) 

(4.35b) 

(4.35c) 

(4.36) 

Substituting Equations (4.35) into Equation (4.33) with 

td= 0 and then with Equation (4.36), 

~(t+1) = ~(t) ~(t) + b Nd(t) - ~(t) sgn(N(t)) (4.37a) 

where 
A A A A A 

[ a _jl 9 a12-~192 -~ 9 

] 
11 1 1 1 3 

;21-~291 
A A A 

~ = a -~ 9 -~ 9 22 2 2 2 3 

-1 0 1 

(4.37b) 

b = [ 0' o, 1)T (4.37c) 

A A 

O]T c = [c1, c2, - (4.37d) 

Let the desired closed-loop poles be the roots of 

Equation (C.4). After manipulation, 

1 T = ~ £ (t) S(t) (4.38) 
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where 

(4.398) 

[ ~11(t) -o12(t) 8 13 ] S(t) = -o21(t) -o22(t) -o 23 ( t) 

.031 ( t) .032( t) 8 33 

(4.39b) 

"' "' 
Jt,1 .. -~ ~ 1 2 

(4.39c) 

"2 
It . ~ 

2 1 
(4.39d) 

A. A A A A A A A A A 

Jt3 • ~1( 821~1+ a22~2> - ~2(au~1+ 812~2) (4.39e) 

"' "' "' 
8 128 21(a22+ ~1) + ~3 (4.39f) 

( "2 A ~2 + C (A A ) 
-o12 • a11+ a11a22+ 22 .,.1 au+ azz + 

8 128 21 + ~2) 8 12 (4.39g) 

(4.39h) 

(4.39i) 

A A A 

8 128 21(a11+ ~1) + ~3 (4.39j) 

(4.39k) 

"' "' 
-o32 • -(au+ a22+ 1 + ~1) 8 12 (4.391) 

(4.39m) 
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(4.39n) 

and ~s are the coefficients of Equation (C,4). 

The control gains 9s are pressure dependent. They must 

be updated at each sampling time instance. Equation (4.38) 

becomes Equation (C.5) if the signal-dependent parameters in 

Equation (4.33) are replaced by their corresponding ones in 

Equation (4.28), 

The measurement of system load pressure is required in 

the above updating of control gains. But, the signals can 

be estimated using the Luenberger observer 

A A. A A A A 

P(t+l) = a 22P(t) + a 21N(t) + ~2I(t) - c 2sgn(N(t)) + 
A A 

90 (t) {N(t+l) - a 11N(t) - ~1 I(t) + 
A A A 

c 1sgn(N(t)) - a 12P(t)} (4.40) 

" " 
where 90 denotes the observer gain and (a22- 90 a 12 ) the 

observer pole. 

Measured angular velocity N(t) is filtered through a 

triple exponential digital filter (i.e. three first-order 

digital filters in cascade). The filtered signal is denoted 

by Nr(t). Without further considering the filter dynamics, 

N(t) is replaced by Nr(t) in the above controller and 
A 

calculations of E(t+1) and P(t+1). A block diagram of the 

velocity control system is given in Figure 28. 

Two cases of tracking controls which cover a range of 
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Figure 28. A Block Diagram of Velocity 
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working conditions were carried out experimentally. The 

experiments were simulated by assuming either the proposed 

model with friction or the classical linear model to be the 

system. For each case, the results are shown in Figures 29 

and 30 respectively where closed-loop poles were assigned at 

0.6 ± 0.1j and 0.6, an observer pole assigned at 0.85, and a 

filter cut-off frequency of 10 Hz. 

For medium-speed controls, both controllers with proper 

system and observer pole assignments work equally well as 

shown in Figure 29. Because of good matching between the 

models and the system as shown in Figure 26, the simulation 

and measured responses also reasonably match. 

As the working condition changes, without re-assigning 

pole locations, the linear controller is no longer adequate 

and the measured response is shown in Figure 30(a). The 

compensation of system signal-dependent dynamics by using a 

controller with signal-dependent gains seems more feasible. 

As shown in Figure 30(b), the tracking accuracy has been 

significantly improved. 

The simulation response generated by using the linear 

model is too idealized to predict what will happen 

practically, whereas the prediction by using the proposed 

model with friction is more reasonable. Note that the 

initial delay of the measured response in Figure 30(b) is 

due to system stiction. 



(a) controller desiped based on the linear model 

1M 

(b) controller desiped baaed on the proposed model with friction 

Nr 
(rH/sec) N • 

•• 101 

Figure 29. Measured and Simulation Responses of 
SV&UO Control with Luenberger 
Observer, Case 1. 
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Example 4 - Ph Process 

Consider the Ph process shown in Figure 31 [50]. The 

notations and assumptions are introduced below. The fluid 

volume V of the tank is constant. The quantities Q., Q, 
1 r 

and Q denote the volumetric flow rates of the influent, the 
e 

chemical reagent, and the effluent. Assume that mixing in 

the stirred tank is perfect so that the fluid phases are 

homogeneous. + The concentrations of H and OH ions are 

denoted by c: and C~ where the subscript k identifies the 

fluid phase in question according to Figure 31. No change 

of specific volume of fluid occurs in the process, i.e. 

(4.41) 

It is also assumed that all of the relevant acids and 

bases are completely dissociated in each fluid phase, and H+ 

and OH ions react only according to the following equation 

(4.42) 

The mass balance of the ionic components of the process 

gives [50] 

(4.43a) 



•Reagent 

o c+ c-
~, r' r 

Influent 1------i 1-----1 

.... 
q ,c+,c~ 

1 1 

v 
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o c+ c
Stirred tank "e' e' e 

Figure 31. Schematic of a Ph Process. 
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v c- = - Q c + Q. c~ + Q c + R 
e e e 11 r r (4.43b) 

where R denotes the net reaction rate. 

For a dilute solution, the equilibrium condition can be 

described by 

c+ c = K 
e e w 

(4.44a) 

and 

K = 10- 14 , for water at 25°C 
w 

(4.44b) 

Introduce x = C+ -C-. Then, 
e e 

(4.45) 

or 

(4.46) 

Subtracting Equation (4.43b) from Equation (4.43a), one has 

x = -(q1 + q) x + q (c+- c-) + q 1 (c~- c-1 ) 
r r r r 1 

(4.47) 

where qk = Qk/V. 

Because the reagent is concentrated, its flow rate is 

always much smaller than that of the influent. So, Equation 

(4.47) is simplified to be 

(4.48) 
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In the measurement of fluid acidity, a standard method 

is based on the measurement of voltage produced by a Ph 

electrode where the voltage is linearly dependent on the Ph 

value of the fluid. For convenience, the measured output 

denoted by y is given in units of Ph. Therefore, 

+ y = -log10ce 

= -log 10 [0.5(x + / x 2 + 4 K ) ] 
w 

= g(x) (4.49) 

Equation (4.48) provides a linear model for capturing 

the main features of the Ph process, whereas Equation (4.49) 

is the so-called titration curve. A plot of g(x) vs. x is 

shown in Figure 32 where K = 10- 14 . From the figure, it is 
w 

not surprising that it is difficult to neutralize the mixing 

fluid [ 36, 63]. 

In this example, c;, C~, C-, and q. in Equation 
r 1 

(4.48) are assumed unknown. The titration curve g(x) in 

Equation (4.49) is assumed uncertain because K could change 
w 

under different environmental temperature. 

Taking the z transform of the system equations with 

the sampling time interval, h, results in 

x(t+l) = a x(t) + b u(t) + c (4.50a) 

y(t) = g(x(t)) (4.50b) 
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Figure 32. Titration Curve forK = l0- 14 • w 
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where 

(4.50c) 

a = -q.h e 1 (4.50d) 

(4.50e) 

c = (4.50f) 

Obviously, the Ph process belongs to the class of 

Wiener systems, and Equations (4.50) can be arranged into 

the followings with signal-dependent parameters : 

y(t) = a(y(t),y(t-1)) y(t-1) + ~(y(t)) u(t-1) + 

c(y(t)) (4.51a) 

where 

a(y(t),y(t-1)) =a g*(y(t-1))/g*(y(t)) (4.5lb) 

~(y(t)) = b/g*(y(t)) (4.51c) 

c(y(t)) = c/g*(y(t)) (4.51d) 

Jl: -1 
g (y(t)) = g (y(t))/y(t) (4.51e) 

Due to the relationship between the signal-dependent 

parameters, the identification of the process requires only 

the estimation of ~(y(t)), a, and cb = c/b. 

Parameter values to be used for simulations are given 

in Table XI. ForK given in Equation (4.44b), a plot of 
w 

~(y) vs. y is shown in Figure 33. From the figure, ~(y) is 
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singular at the neutral point (i.e. y = 7) around which the 

variation of ~(y) is extremely large. 

Obviously, from the conclusions in the previous 

examples, the gate function method is not suitable for the 

identification of systems with parameters varying abruptly. 

It is not adequate to parameterize ~(y) into a polynomial 

because of the discontinuity of ~(y). However, the 

parameterization problem can be overcome by using fuzzy 

linguistic rules such as Equations (4.17). 

Proposed Method 

Consider the following model structure : 

... A ... 
y(t+1) = ~(t+1) { a (y(t)-~3 )/~(t) + u(t) + 

... 

129 

cb} + ~3 (4.52a) 

If y(t) is small then 
... 
~( t) = a 1 + a 2 ( Y ( t) -~3) (4.52b) 

If y(t) is medium-1 then 
... 
~(t) = a3 + a4(y(t)-~3) (4.52c) 

If y(t) is medium-2 then 
... 
~( t) = a5 + a 6 ( Y ( t ) -~3 ) (4.52d) 

If y(t) is large then 
... 
~(t) = a + 7 a B ( Y ( t ) -~3 ) (4.52e) 

where the membership functions are shown in Figure 8 and the 
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weighting functions are given in Equation (4.18b) through 

Equation (4.18j) with x 1 replaced by y. 

Note that the position of the neutral point is assumed 

not available and it is to be estimated and determined by 

the value of ~3 • It was found beneficial to estimation 

accuracy if the scale of output variable y(t) is shifted by 

~3 as shown in Equations (4.52) which are rewritten in the 

following pseudo-linear regression : 

where 

y(t+l) = T 
! (t+l) e + ~3 

A A 

!T(t+l) = [~(t+l)(y(t)-~3 )/~(t), W8 (t+l)u(t), 

W8 (t+l)u(t)(y(t+l)-~3 ), WM 1 (t+l)u(t), 

WM 1 (t+l)u(t)(y(t+l)-~3 ), WM 2 (t+l)u(t), 

WM2 (t+l)u(t)(y(t+l)-~3 ), WL(t+l)u(t), 
A 

(4.53a) 

WL(t+l)u(t)(y(t+l)-~3 ), ~(t+l)] (4.53b) 

(4.53c) 

Simulation Results 

V20-class input signals distributed over [-0.005, 0.005] 

were used. Three hundred input/output data collected are 

plotted in Figure 34. Simulation results are summarized in 

Table XII. 

Since the high sensitivity of the Ph electrode to the 
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Figure 34. The Data Used for the Parameter Estimation 
in Example 4, Chapter IV, Where g(x) Is 
Given in Equation (4.49). 
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TABLE XI 

PARAMETER VALUES FOR SIMULATIONS IN EXAMPLE 4 

h = 0.04 qi = 0.1 

c+ - -20.0 c~ c~ 0.01 - c = - = r r 1 1 

a = 0.9960 cb = -0.00005 

TABLE XII 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 4 
FOR g(x) GIVEN IN EQUATION (4.49) 

J.L1 -+ J.L (} -+ (} (} -+ (} 
5 1 4 1 4 

6.93428 3045.97 0.01000 

3.63581 475.917 -0.01000 

7.26513 6088.60 2072.34 

10.0563 700.942 -359.776 

9.43702 

a = 0.9767 cb = -0.00061 
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concentration of H+ when the process output is around the 

neutral point, it is very difficult to acquire informative 

data about the system neutralization dynamics. As shown in 

Figure 34, the identification data collected do not have 

system dynamic information for 4 ~ y(t) ~ 10. 

The comparison between g(x) and its estimate is shown 
A 

in Figure 35. Basically, g(x) provides a reasonable shape 
A 

about the titration curve. The curve of g(x) looks as if it 

were discontinuous. In fact, the value of x calculated 

based on the estimate of ~(y) is out of the range shown in 

the figure. This means the estimate of ~(y) is unacceptable 

at the dynamic interval where the discontinuous curve 

happens. This is due to the identification data collected 

not being informative. 

It is concluded that the difficulty to identify a Ph 

process is primarily due to the high nonlinearity of the 

titration curve such that informative identification data 

cannot be easily achieved. 

Since K depends on temperature, so does the titration 
w 

curve g(x). If it is possible to control environmental 

temperature and reduce the measurement sensitivity of the Ph 

electrode, good identification data are more likely to be 

achieved. 

For example, consider the following titration curve 
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Figure 35. Comparison Between g(x) and Its Estimate 
in Example 4, Chapter IV, Where g(x) 
Is Given in Equation (4.49). 
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g ( x) = 7. 0 - 15. 0 sgn ( x) I xI 0 · 4 (4.54) 

For the same input signals used.above, the corresponding 

system outputs along with the input signals are shown in 

Figure 36. Compared with those in Figure 34, more data 

about system neutralization dynamics have been achieved. 

Simulation results are summarized in Table XIII. The 

comparison between g(x) here and its estimate is shown in 

Figure 37, and good estimation of g(x) is available 

globally. 
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Figure 36. The Data Used for the Parameter Estimation 
in Example 4, Chapter IV, Where g(x) Is 
Given in Equation (4.54). 
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TABLE XIII 

A SUMMARY OF SIMULATION RESULTS OF EXAMPLE 4 
FOR g(x) GIVEN IN EQUATION (4.54) 

111 -+ 115 I] -+ I] 1]1 -+ I] 
1 4 4 

6.55361 241.903 223.376 

4.77047 35.7716 6.09751 

6.76957 159.468 223.813 

10.0425 -289.833 -30.5499 

8.86962 
A 

a = 0.9661 cb = 0.000048 

137 



14r-----------------------------~ 

7 

-0.04 0.00 
X 

0.04 0.08 

14 . .-------------------------------~ 

- .08 -0.04 0.00 
X 

0.04 0.08 

Figure 37. Comparison Between g(x) and Its Estimate 
in Example 4, Chapter IV, Where g(x) 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A new, systematic, and feasible method for the 

identification of "linear" systems with signal-dependent 

parameters is introduced in this thesis. The method 

involves parameterization of system parameter functions 

using fuzzy linguistic description. Such a parameterization 

approach results in model structures in pseudolinear 

regressions where the parameters were estimated cyclically 

and iteratively between the Complex Method and the recursive 

least-squares estimator. 

In Chapter II, some physical systems which have 

signal-dependent parameters were mentioned. Each system can 

be precisely modeled in a "linear" structure but the 

parameters involved depend on some signal (Equations (2.1) 

and (2.2)). It was also mentioned that the modeling concept 

using signal-dependent parameters is useful in the 

interpretation of system nonlinear dynamics based on the 

well-defined linear terminology and the concept is more 

general than that of block-oriented modeling. 

Although the dependence of system parameters on the 

dynamic variable could be derived, the resulting equations 

are usually too complicated to be useful for parameter 
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estimation. A practical approach is to assume the 

uncertainty of the signal dependence and parameterize the 

system parameters in the sense of a curve-fitting 

approximation. 

Three approaches were considered to approximate system 

parameters in terms of piecewise constant functions, 

polynomial functions, and fuzzy linguistic rules, 

respectively. The advantage of using the first two 

approaches is the linear regression properties of their 

resulting model structures. The third was proposed as a 

more general approach. But, the resulting model structure 

is not a linear regression. 

As shown in Equations (2.19) or (2.20), the proposed 

model structure is a combination of a "linear" model 

structure and linguistic description of system parameters. 

The determination of the "linear" model structure (i.e. the 

values of nand m in Equations (2.19d) and (2.19e)) is a 

traditional problem, whereas the determination of the 

linguistic rules requires proper selection of membership 

functions and shape functions. Such selection could be 

flexible. However, the use of linear membership functions 

(Figure 2(a)) along with polynomial shape functions 

(Equations (2.12) and (2.14)) are adequate for many 

applications. 

The global identifiability of the input/output model 
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structure m1 with linear membership functions or quadratic 

membership functions is assured according to Theorem 2.1 and 

Theorem 2.2, and proofs of the ~heorems are given in 

Appendix A. It also can be shown that the global 

identifiability of the state-space model structure m2 is 

assured. 

At the end of Chapter II, an extension of the above 

signal-dependent modeling concept to systems with more than 

one dynamic variable was mentioned briefly. But, more work 

is needed to investigate the identifiability of the 

resulting model structures. 

In Chapter III, the estimation of model parameters was 

considered. The idea of the gate function method is to fit 

a nonlinear system using piecewise linear models each of 

which governs a local operating region. Each local model 

was synthesized based on a different set of gated signals 

which were extracted from the collected identification data 

through a quantification process. However, there is lack of 

a systematic quantification approach to guarantee the success 

of parameter estimation for each local model. In fact, the 

number of local models cannot be arbitrarily increased. 

Such a limitation is due to the lack of informative gated 

signals and/or the effect of measurement noise. 

As shown in Equations (3.6), the model structure as a 

result of polynomial parameterization of system parameters 
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is linear regression in that the recursive least-squares 

estimator is available for the parameter estimation. 

Nonetheless, the polynomial function method is not feasible 

for systems with singular or piecewise continuous parameter 

functions (Examples 2 and 4, Chapter IV). 

The approximation of system parameters in terms of 

linguistic rules showed promising flexibility to fit diverse 

shapes of system parameter functions. Nonetheless, the 

resulting model structure is a pseudolinear regression. 

Effort is required to develop a new parameter estimation 

method. The method which is cyclically iterative between 

the Complex Method and the recursive least-squares estimator 

was introduced and it showed good robustness for a range of 

systems. 

A new point of view on the design of system inputs to 

achieve informative identification data was presented based 

on the signal-dependent modeling concept. A conclusion is 

that a necessary condition to achieve good identification 

data requires the system dynamic variable have uniform 

distribution over its working range. Based on this, the 

solution of input design is obvious for systems with input 

dynamic variable. For systems with non-input dynamic 

variable, V -class signals formed by a proper time rescaling 
n 

of uniformly distributed random signals were suggested. 

However, such a solution is just suboptimal. 
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In Chapter IV, comparison studies of the identification 

methods discussed in Chapter III were conducted based on 

three simulation examples and one experimental example. A 

summary of the results, which show the feasibility of each 

method for the systems considered and the computer time 

required (roughly estimated), is given in Table XIV. 

The gate function method was found feasible for the 

simplified stall/post-stall aircraft system. The resulting 

model gave a reasonable prediction of the system 

longitudinal limit cycle (d = 10, Figure 18 and Figure 19). 

But, the method is not recommended for the identification of 

other systems. The polynomial function method is only 

adequate for the Hammerstein system with saturating gain and 

may be used to identify the hydraulic system. 

The superiority of the proposed identification method 

is obvious. The reason is the use of linguistic description 

of system parameter functions. Nonetheless, the proposed 

method takes much computer time due to the slow convergent 

rate of the Complex Method and the computer time required 

increases significantly when the number of ~ parameters is 

increased. 

Contributions of Most Significance 

The concept of modeling nonlinear systems using 

signal-dependent parameters was not well known or widely 



TABLE XIV 

THE FEASIBILITY OF THE IDENTIFICATION METHODS 
CONSIDERED AND THE COMPUTER TIME REQUIRED 

FOR A RANGE OF NONLINEAR SYSTEMS 

y : Feasible 
Gate Polynomial Proposed 

N : Infeasible 
Function Function 

T : Ti111e Unit 
Method Method Method 

(Col!lputer Time} 

Hammerstein System y y 
with N 

Saturating Gain T 5xT 

Simplified Nonlinear Y? y 
Stall/Post-Stall N 
Aircraft System T lOOxT 

Hydraulic Servo- N Y? y 
valve/Motor System T 20xT 

PH Process N N Y? 
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accepted. Some advantages of such a modeling concept were 

not revealed. One of the contributions of this study is 

determining the relationship between the signal-dependent 

interpretation of system parameters and the design of 

persistent excitation signals which is important in 

nonlinear system identification. 

Another contribution is the introduction of a new and 

systematic identification method which has been shown 

feasible and robust for a range of nonlinear systems. This 

thesis also conducts a comparison study to show the 

advantages and disadvantages of the new method versus other 

methods based on some simulation examples and one 

experimental example. 
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One extra contribution goes to the field of system 

control. Based on a "linear" model with signal-dependent 

parameters, the design of a system controller with 

signal-dependent gains was demonstrated using a linear 

control methodology (Appendix C). Such a controller is able 

to compensate the system signal-dependent dynamics which was 

confirmed by experiment (Example 3, Chapter IV). 

Suggestions for Further Study 

Following are suggestions for further study 

1. Research for improving the convergent rate of the Complex 

Method or find another optimization method as an 



alternative. 

2. Extend the comparison study conducted in this thesis to 

including other identification methods such as neural 

networks [48]. 
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3. Consider system stochastic dynamics into models, and 

examine the feasibility to extend the proposed 

identification method to systems with dominant stochastic 

dynamics. 

4. Extend the proposed identification method to systems with 

more than one dynamic variable or multiple-valued 

nonlinearities (e.g. stiction). 
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APPENDIX A 

PROOFS OF THEOREM 2.1 AND THEOREM 2.2 

Proof of Theorem 2.1 

By definitions 2.1, 2.2 and 2.4, it is equivalent to 

proving that if Equations (2.27) hold then 

= E<2> 
- S a 

' i 

<1> <2> 
111 = 111 

and E<1> 
- s b 

' j 

- E<2> 
- - s b ' 
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1 

and E<1> 
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But, owing to Equations (2.29) and (2.30), 

or E< k > ~ 0 
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' j 
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(A.1a) 

(A.1b) 

(A.1c) 

(A.1d) 

(A.2a) 
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3 i = 1 , •• , n or 3 j = 1 , •• , m , k = 1 , 2 
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(A.2b) 

(A.2c) 

Although it may exist the following relations between 

the parameters #J1 and #J2 

<1> 
< 

<1> 
and 

<2> 
< 

<2> 
(A.3a) #J1 #J2 #Jl 112 

<1> 
1!1 > 

<1> 
and #J2 

<2> 
111 > 

<2> 
#J2 (A.3b) 

<1> 
< <t> 

and #J1 112 
<2> 

#J1 > 
<2> 

#J2 (A.4a) 

<1> 
#J1 > 

<1> 
#J2 and 

<2> 
#J1 < 

<2> 
#J2 (A.4b) 

Equations (A.4) indeed result in conflict with Equations 

(A.2a) and (A.2b) if Equations (2.27) hold. For example, it 
A 

is not possible to have the function at(~) in Equation 
A 

(2.16) equal to that in Equation (2.18) unless at(~) = 0. 

So, one just needs to investigate each condition of 

Equations (A.3). 

1. In case Equation (A.3a) holds 

Claim that Equation (A.1a) holds, otherwise there will 

. . t 1 [ <1> <2>1 -lf <2> <1> [ <2> <1>1 
ex~ t an ~n erva #J1 , #Jt ... #J1 > 1!1 or #lt , 11 1 

if #l:t> > 11: 2 > such that 



y<k> (2') 
S,a, 

1 

= !;T< k > l>. = S,a, -
1 
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y<k> (2') = !;T<k> 
s' b. - S,bj 

J 

l>. = 0 

i = 1, •• , n 
' 

j = 1, •. , m ' k = 1,2 (A. 5) 

Since the elements of ll are mutually orthogonal, Equation 

(A.5) results in conflict with Equation (A.2a). 

Similarly, claim Equation (A.1b) holds, otherwise there 

"11 "t . t 1 [ <1> <2>] "f <2> <1> [ <2> w1 ex1 an 1n erva 112 , 112 1 112 > 112 or 112 , 

11; 1 >] if 11; 1> > 11;2 > such that 

y<k> <"> = ET< k > l>. = y<k> (,) = ET<k> l>. = 0 
L,a. L,a. - L, b. - L, b. 

l 1 J J 

i = 1, •. , n 
' 

j = 1, •• , m ' k = 1,2 (A. 6) 

Equation (A.6) results in conflict with Equation (A.2b). 

Moreover, from Equations (2.27) one has 

y<1> = y<2> y<1> = y<2> 
S,a. S,a, S,b. S,bj 

1 1 J 

i = 1, •• , n and j = 1, •• , m (A.7a) 

y<1> • :~<2> :~<1> = !/<2> 
L,a, L,a. L,bj L,b, 

1 1 J 

i = 1 , •• , n and j = 1, •. , m (A.7b) 

Again, By applying the mutual orthogonality of the elements 

of~' Equations (A.1c) and (A.1d) obviously hold. 

2. In case Equation (A.3b) holds 

Claim that Equation (A.1b) holds. Otherwise consider 
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th • 1. [CIII <2>] d [ <2> <1>] "f <1> ) <2> e ~nterva s om in, ll2 an ll2 , ll2 ~ ll2 . ll2 

( . . 1 f th . f < 2 > < 1 > ) F h f s~m~ ar or e case ~ 11 2 > 112 • or t e ormer 

interval, 

ET < 1 > 
- S a • i 

ET<1> 
- s b • j 

l>. = ET<2> l>. 
- S a • i 

l>. = ET<2> 
- s b • j 

For the latter interval, 

ET < 1> l>. = r< 2 > < ,_,) ET<2> 
S,a 1 s S,a 1 

ET < 1> !::. = r<2> (!I) ET<2> 
- s b s S,b. • j J 

i = 1, ..• ,n 

j = 1, ..• , m 

l>. + r< 2 > < ,_,) ET<2> !::. 
L - L, a. 

1 

i = 1, •.. , n 

!::. + r< 2 > < ,_,) ET<2> !::. 
L - L, b j 

j = 1, ..• , m 

(A. Sa) 

(A.8b) 

(A.9a) 

(A.9b) 

From Equations (A.8) and (A.9), it is easy to show that 

ET<2> = ET<2> and ET<2> = ET<2> 
s.a. - L a - S,b. - L b 

1 • i J • j 

i = 1, .• , n and j = 1, •• , m (A.10) 

that is in conflict with Equation (A.2c). 

Similarly, claim Equation (A.1a) holds. 

<2> <1> <1> consider the intervals [IJ1 , 111 1 and [ll1 • 

< 2 > ( • • 1 f th . f < 2 > > < 1 > ) > 1-'1 s~m~ ar or e case ~ 111 111 • 

latter interval, 

Otherwise 

,_, ] if <1> 
max 111 

For the 
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ET < 2> A = ET<1> A 
L, a . L,a. 

i = 1, ••. ,n (A.11a) 
1 1 

ET<2> A = ET<1> A - L, b. L, b. 
j = 1, ... ,m (A.11b) 

J J 

For the former interval, 

ET <2> A = r< 1 > (!I) ET<1> A + .. <1>(21) ET<1> A 
L,a 1 s s.a. L - L, a 1 1 

i = 1 , ••• , n (A.12a) 

ET <2> A = r< 1> ( "> ET<1> A + r< 1 > (" > ET<1> A - L,bj s S,b. L - L,b. 
J J 

j = 1 , ••• , m (A.l2b) 

Equations (A.11) and (A.12) further lead to 

ET<1> = ET<1> and ET<1> = ET<1> 
S, a. L,a. - S,bj - L b 

1 1 • j 

i = 1, •• , n and j = 1, .• ,m (A.13) 

that is again in conflict with Equation (A.2c). 

The reason why Equations (A.lc) and (A.ld) hold is 

exactly the same as that having been given for the case of 

Equation (A.3a). Henceforth, the proof is completed. 

Proof of Theorem 2.2 

Continue the proof of Theorem 2.1. With the constraint 

of Equation (2.15) and for ~2 < 7J < ~1 , one has 



and 

In Equation (A.2c), sup~ose that 

E<k> 
- S a 

' 1 

~ E<k> 
- L a 

' 1 

By Equations (2.27), one has 

k = 1,2 

Combining Equations (A.15), (A.l6) and (A.17), it is 

straightforward to show that 

r<1> (!PJ) = r<2> {!PJ) 
s s 

Furthermore, Equations (A.14) and (A.l8) lead to 
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(A.14a) 

(A.l4b) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.l9) 

where the membership functions were given in Equations (2.9) 

and (2.10) and are rewritten here. 
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(1 - <k>) ~2 <k> ~ 
= 113 .t...s + 113 .t...s k = 1,2 (A.20a) 

..«<k> (21) ( 1 <k>) !f2 <k> 
!fl = - 11 + 114 L 4 L k = 1,2 (A.20b) 

where 

!fs(2J) = (a} + (a}2 2J 1 (A.20c) 

!fl(2J) = (a}3 + (a} 21 
4 (A.20d) 

and 

(a}1 = 111/(111 - 21 ) 
ll'lin 

(A.2la) 

(a} = -1/(111 - 21 ) 2 Ill in 
(A.21b) 

(A.21c) 

(A.2ld) 

For convenience, the superscripts of 111 and 112 in Equations 

(A.21) have been omitted. 

Substituting Equations (A.20) into Equation (A.19) and 

after arrangement, one has : 

<1> <2> <1> <2> <2> <1> <2> <1> 
113 + 114 - 113 114 = 113 + 114 - 113 114 (A.22a) 

(a} (1- <1>) <2> (a} (1- <2>) <1> = 2 113 114 + 4 114 113 

(a} (1- <2>) <1> (a} (1- <1>) <2> 
2 11 3 11 4 + 4 114 113 (A.22b) 
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(1 <1>) <2> (1 <2>) <1> <1> <2> 
(a) 1 -JJ3 #J. 4 + c.>3 -IJ. 4 IJ3 + Jl.3 11 4 = 

(A.22c) 

By canceling all cross-product terms in Equations (A.22), 

one has 

A [ 

<1> 

l· [ 
<2> 

] 113 ,.. 113 

<Z> < 1> 
114 114 

(A.23a) 

where 

[ wz w ] ,.. 4 = 
w -1 w -1 

1 3 

(A.23b) 

The proof is completed since 11\1 ~ 0 and henceforth 

(A.24a) 

<1> <2> 
114 = 114 (A.24b) 



APPENDIX B 

THE COMPLEX METHOD 

The Complex Method [M.J. Box 1965] is an algebraic 

optimization algorithm which, strictly speaking, requires a 

convex working space (i.e. if for any two points in the 

space, the line joining those two points is also in the 

space). 

For this application, the working space is a subspace 

1ft 
of R (also called ~-space in the context) satisfying some 

constraints such as Equations (2.11), (2.15) and (2.17) 

where 1ft denotes the number of ~s involved in the membership 

functions. The method begins with an initial point denoted 

by ~<t> = {~~ 1 >1i = 1, •• ,'ft} which can be arbitrarily 
1 

assigned in the working space. 

A summary of the Complex Method is given below [53] 

Step 1. Determine another~- 1 initial feasible points by 

using the following equation : 

~~j}= " + d (27 - " ) 
1 min max min ' 

i = 1 , • . . , 1ft and j = 2 , • • • , ~ ( B .1) 

where d is a random number uniformly distributed over the 
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interval [0,1]. 

During the calculations of Equation (B.1), If a point 

H(j) generated is not within the working space (say, an 

* infeasible point), calculate the centroid H of the current 

set of points and reset 
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(B. 2) 

Repeat and until H(j) becomes feasible. 

For each feasible point H<j>, a corresponding model 

within the working model structure can be formed by 

incorporating the Least-Squares estimator (see also Chapter 

III). Henceforth, each feasible point indeed comes with an 

associated model performance index ~(H<j>). 

Step 2. Determine the point H<o> which results in the 

poorest performance index (say, • ). Calculate 
ma¥ 

h · d * d h · t \n) t e centro1 H an t e new po1n H • 

(B. 3) 

where a is a reflection constant. 

(a) If H<n> is feasible but •<H<n>) > •max' retract half the 

distance to the centroid. Continue until •cu<n>) < • 
.t: max 

and then go to Step 4. 

(b) If ~<n> is feasible and •<H(n)) < ~ , go to Step 4. 
max 
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(C) If -11 ( n) 1.- S ' f · bl t St 3 ~ 1n eas1 e, go o ep • 

Step 3. Adjust for feasibility. 

(a) If !!(n) > !lJ 
max set 

(n) 
!f) !! = max 

If !!(n) < !!)min set 
(n) 

!f) !! = . min 

(b) If -,(n)1.S · f 'bl t t h lf h d' h ~ 1n eas1 e, re rae a t e 1stance to t e 

centroid. Continue until !!<n> is feasible and then go 

to Step 4. 

Step 4. Check for termination. If 

l-8 - -8 :S E: max min i (B.4a) 

and/or 

I !! ( j) - H*ftmax :S E:d ' 
j = 1 ' ••• ''Ill. (B.4b) 

terminate. Otherwise go to Step 2. e:i and e:d are small 

numbers. 

Remark Bl. In Step 2(a), during the retracting process 

the condition -8(!!<n>) < -8 could be never met. A proper 
max 

modification of this step is suggested below in case the 

condition still doesn't be met after a pre-set number of 

times of retracting : 

Determine the point which has the corresponding best 

performance index -8min· Retract all the other points 

half the distance to the "best" point. Repeat until the 

conditions (B.4) are met and then terminate. 



Remark B2. According to the numerical experiments 

[M.J. Box 1965], a= 1.3 and m = 2n are recommended. 

However, good results could be achieved by choosing a = 1.3 

and m = n + 2. 

Remark B3. Upper and lower bounds of the dynamic 

variable~ must be known to carry out Step 1. If such 

bounds do not naturally arise as part of the problem 

formulation, then it is necessary to provide some estimated 

values, and for computational efficiency the bounds should 

be as tight as possible. 

Remark B4. The Complex Method does not require 

continuity of the problem functions, since it makes no use 

of function value difference. That's why the proposed 

identification method is able to deal with systems with 

discontinuous parameter functions. 
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APPENDIX C 

STATE VARIABLE & UNITY OUTPUT (SV&UO) 

FEEDBACK CONTROL 

State variable feedback control based on pole 

assignment is a well-known technique to shape system 

transient dynamics. For tracking control applications, the 

technique was extended by introducing a co-state in the 

feedforward path along with an unity output feedback 

[Christensen et. al. 1986]. 

A block diagram of SV&UO feedback controller is shown 

in Figure C.1. 

SV&UO feedback controller 

I(t) 
T = - .& 2£(t) (C.1a) 

where 

(C.1b) 

~(t) = [N(t), P(t), E(t)]T (C.1c) 

and 

E(t+1) = E(t) + Nd(t) - N(t) (c. 2) 

The reason to introduce the co-state E(t) is to 
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N(t) 

Figure C.l. A Block Diagram of SV&UO Feedback 
Control with Observer 
[Christensen et. al. 1986]. 
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guarantee that the system output N(t) will track the desired 

output Nd(t), so long as the closed-loop system is stable or 

the feedforward loop reaches steady state (i.e. E(t+1) = 
E ( t) , as t ~ c:.o) • 

Substituting Equations (C.1) into Equation (4.28) with 

t = 0 and then with Equation (C.2), one has 
d 

where 

[ 

~11-b1g1 

1\ = a21-b2g1 

-1 

b = [0, 0, 1)T 

a12- b1g2 

a22-b2g2 

0 

(C.3a) 

(C.3b) 

(C.3c) 

Let the desired closed-loop poles be the roots of the 

following characteristic equation : 

-1 -2 -3 
1 + ~1 q + ~2 q + ~3 q = 0 (C.4) 

Then, after manipulation, one has the following for 

calculation of the control gains gs in Equation (C.lb) 

T 1 T .s. =sr s (c. 5) 

where 

(C.6a) 
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(C.6b) 

(C.6c) 

(C.6d) 

A A.A. A A A A A A A 

r3 • b1(az1b1+ azzbz) - b2(a11b1+ a12b2) (C.6e) 

... ... ... 

a12a21<a22+ ~1) + ~3 (C.6f) 

(C.6g) 

(C.6h) 

... 
s21 = s12a21/ a12 (C.6i) 

... ... ... 
a12a21<a11+ ~1) + ~3 (C.6j) 

... ... 
(a12a21+ 1 + ~1+ ~2) (C.6k) 

... ... 

s32 =-(au+ a22+ 1 + ~1) a12 (C.61) 

(C.6m) 

A A A A A2 A A 2 A. A A A A 

0 = (a12b2+ b1)(a12b2- a21b1) + b1b2a11<a12b2+ 
... 
b ) -

1 
A A2 A A A A2 

b1a22( 2 a12b2+ b1bz- az1b1) + 
A 2"' A A A 

b1b2a2z(a22- a11> (C.6n) 

P(t) is required to measure in the above controller. 

However, it can be estimated by using Luenberger observer 
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and the observer dynamics are determined independently as 

below : 

A A A A A 

P(t+l) = a 22P(t) + a 21 N(t) + b 2 I(t) + 
A A A. A. 

a 11N(t) - b 1 I(t) - a 12P(t)} 

where g denotes the observer gain. 
0 

g {N(t+l) -
0 

(c. 7) 



APPENDIX D 

A SUMMARY OF THE PROPOSED SYSTEM 

IDENTIFICATION METHOD 

As mentioned in Chapter I, the process of system 

identification includes three stages which are system 

modeling, parameter estimation, and model validation. In 

this appendix, the proposed method for each stage is defined 

in a block diagram as shown in Figure D.1. 

In the stage of system modeling, a "linear" model 

structure with signal-dependent parameters such as Equations 

(2.19) or (2.20) is proposed. The model structure is a 

combination of "linear" dynamic equation(s) and fuzzy 

linguistic rules which describe the signal dependence of the 

system parameters (Chapter II). 

In the stage of parameter estimation, the proposed 

method is a combination of the Complex Method and the 

recursive least-squares estimator. Basically, the model 

parameters are divided into two sets; in one set the 

parameter values are optimized in the sense of the Complex 

Method whereas in the other set the parameter values are 

estimated using the recursive least-square estimator. 

Since in the optimization process of the Complex 
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"Linear" system with 
signal-dependent 

parameters 

·--r·····-··················· ····-····-··- . . ... . ··-······························· ····························································· 

System 
Modeling 

"Linear" model structure with 
fuzzy linguistic description 

of the system signal
dependent parameters 

..... ········································ .. ..... ,.....-------' .................................. ···························· 

Parameter 
Estimation 

Model 
Validation 

The Complex 
Method 

Model cross 
validation 
technique 

The recursive 
least-squares 

estimator 

Figure D.l. A Block Diagram of the Proposed 
System Identification Method. 
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Method, a technique to evaluate model performance is 

required. In this respect, one called model cross 

validation is applied. Finally, the model resulting from 

the previous two stages is validated by checking with the 

intended purpose behind system identification such as for 

system control. 
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