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CHAPTER I 

_ INTRODUCTION 

Antagonistic effects produced by lactobacilli toward other organisms have 

been recognized since the report ofMetchenikoff(1908}; These inhibitory effects 

produced by lactobacilli may play an important role in maintaining a proper microbial 

balance in intestinal tract (Sandine, 1979) and preserving certain foods (Daeschel, 1989}. 

Major inhibitory factors produced by lactic acid bacteria include lactic acid and/or 

other organic acids produced by lactobacilli as a result of fermentation (Gilliland, 1985a). 

Formation and accumulation ofhydrogen peroxide during growth also can cause inhibition 

of other microorganisms including intestinal and foodbome pathogens (Gilliland and 

Speck, 1977). Other toxic metabolites includiJ:tg D-leucine (Gilliland and Speck, 1968} and 

diacetyl (Jay, 1982) can be inhibitory factors. 

Bacteriocin& are protein or protein related complexes with bactericidal mode of 

action directed against species that are usually closely related to the producer bacterium 

(Tagg et. al., 1976). Since Rogers (1928) first indicated the presence of antibiotics among 

lactic acid bacteria, a number oflactobacilli including strains of Lactobacillus acidophilus 

have been shown to produce bacteriocins or bacteriocin-like inhibitory substances 

(Klaenhammer, 1988). Most bacteriocin& are heat stable and sensitive to certain 

proteolytic enzymes. The inhibitory spectra ofbacteriocins generally is restricted to closely 

related species of bacteria. However, some bacteriocins have been found active against 

foodbome pathogens including Listeria monocytogenes(Schillinger and Luke, 1989; Ahn 

and Stiles, 1990a; Hoover et. al., 1988 Pucci et. al., 1988; Nielson et. al., 1990}, and 
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ClostridlG species (McCormick and Savage, 1983~ Daeschel and Klaenhammer, 1985~ 

Muriana and Klaenhammer, 1991a). 

2 

Many attempts have been made to purify bacteriocins produced by lactobacilli using 

various methods including ammonium sulfate precipitation, gel chromatography, ion 

exchange chromatography, and high pressure liquid chromatography. Bacteriocins can 

occur as complexes with lipid and carbohydrate (Barefoot and Klaenhammer, 1984, 

Upreti and Hinsdill, 1973~ Muriana and Klaenhammer, 1991a). Molecular weights of 

bacteriocins have been estimated as small as 1.7 KDa (Piard et. al., 1992) to 42 KDa 

(Rammelsberg et. al., 1990). 

The genetic determinants of bacteriocin production and host immunity can be either 

chromosomally controlled (Barefoot and klaenhammer, 1983~ Muriana Klaenhammer, 

1987 and 1991b~ Joerger and Klaenhammer, 1986 and 1990) or plasmid borne (Schillinger 

and Luke, 1989~ Graham and McKay, 1985; Daeschel and Klaenhammer, 1985; Gonzalez 

and Kunka, 1987). 

The objectives of this study were: 1) to assay the bacteriocin activity produced by 

various strains of Lactobacillus acidophilus isolated from intestinal source of different 

origins including humans, pigs, calves, chickens, and rodents; 2) to isolate and purify the 

bacteriocin(s) and investigate their properties to determine whether there were differences 

in bacteriocins produced by various strains of L. acidophilus. 



CHAPTER IT 

REVIEW OF LITERATURE 

Antagonistic Activity of Lactic Acid Bacteria 

Metchnikoff(1908) speculated that the acid producing lactobacilli could 

suppress the hann:ful bacteria normally occurring in the intestinal tract. A number of 

studies and reviews since then have been reported the factors related to the inhibitory 

effect oflactic acid bacteria (Hurst, 1973; Babel, 1977; Gilliland, 1985a; Ferreira and 

Gilliland, 1988; Gilliland, 1989; Daeschel, 1989). 

A major inhibitory factor produced by lactic acid bacteria is acid, which lowers the 

pH of environment to the point where other bacterial growth may be inhibited (Gilliland, 

1985a; Ferreira and Gilliland, 1988). In fermented food, reduction of pH resulting from 

acid production by fermentation is the primary preserving actions of these lactic acid 

bacteria (Daeschel, 1989). The type of acid produced by lactic acid bacteria is very 

important in regard to the intensity of the antagonistic action they produce (Gilliland, 

1985b). For example, acetic acid was more inhibitory toward the undesirable 

microorganisms than an equal concentration oflactic acid (Sorrells and Speck, 1970). 

Acid producing lactobacilli also appeared to be important in helping maintain a proper 

balance among microorganism in the intestinal tracts (Sandine et. al., 1972; Speck, 1976; 

Sandine, 1979). However, the intensity of the antagonistic action may not be directly 

related to the amount of acid produced (Gilliland and Speck, 1972; Gilliland and Speck, 

1977; Mitchell and Gilliland, 1983). It also has been recognized that lactic acid bacteria 
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are capable of producing inhibitory substances other than organic acids (Gilliland, 1985a 

and 1985b; Daeschel, 1989). 

Many lactic acid bacteria have the ability to produce hydrogen peroxide under 

aerobic conditions (Dahiya and Speck, 1968; Gilliland and Speck, 1969; Price and Lee, 

1970; Collins and Aramaki, 1980). Accumulation ofhydrogen peroxide in growth media 

can occur because lactic acid bacteria do not possess the enzyme catalase (Kandler and 

Weiss, 1986). The formation and accumulation of hydrogen peroxide has resulted in 

autoinhibition of some lactic acid bacteria (Gilliland and Speck, 1969; Keen, 1972; 

Stanley, 1977) and inhibition of other microorganisms such as Staphylococcus aureus 

(Wheater et. al., 1952; Dahiya and Speck, 1968), Pseudomonas spp.(Price and Lee, 

1970), and intestinal and foodborne pathogens (Gilliland and Speck, 1977). 

The accumulation of toxic metabolites other than hydrogen peroxide also can be 

important in controlling growth ofbacteria (Gilliland, 1985b). Gilliland and Speck (1968) 

reported that D-leucine produced by lactic streptococci was inhibitory to the culture. A 

metabolic end product diacetyl (2,3-butanediol) has been shown to be inhibitory to gram­

negative and non-lactic acid Gram-positive bacteria (Jay, 1982). 

Rogers (1928) first indicated the presence of antibiosis among lactic acid bacteria. 

Considerable efforts thereafter have been made to characterize the antibiotic substances 

(Babel, 1977). In 1944, Oxford extracted an inhibitory agent from cultures of 

Streptococcus cremoris and called the substance diplococcin. Mattick and Hirsh (1944) 

concentrated the inhibitory substance produced by S. lactis which completely inhibited 

several organisms even in considerably diluted solution. In their later report (Mattick and 

Hirsh, 194 7), the substance was designated as nisin, derived from Group N streptococci. 

Tagg et. al. (1976) defined these inhibitory substances as bacteriocins of Gram-positive 

bacteria. Bacteriocins are protein or protein related complexes with bactericidal mode of 

action directed against species that are usually closely related to the producer bacterium 

(Tagg et. al., 1976; Klaenhammer, 1988). 
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Properties ofBacteriocins 

Since Vincent et. al.(1959) characterized lactocidin, an antimicrobial agent 

produced by Lactobacillus acidophilus from various sources, bacteriocins have been 

characterized as proteinaceous compounds having bactericidal mode of action. The 

inhibitory protein produced by L. acidophilus AC 1 was a single peptide which was active 

over a wide range of pH and heat sensitive (Metha et. al., 1983). Barefoot and 

Klaenhammer (1983 and 1984) defined lactacin B produced by L. acidophilus N2 as a 

bacteriocin which was sensitive to proteolytic enzymes, and retained full activity after 60 

min at 1 oooc at pH 5. Lactacin F produced by L. acidophilus 88 was heat stable and 

sensitive to proteases (Muriana and Klaenhammer, 1987). The production oflactacin F 

was pH dependent in that it was produced at highest level in MRS broth cultures 

maintained at pH 7.0, whereas negligible bacteriocin activity was detected at pH 5.0 or 

7.5. 

Other species of lactobacilli also have been reported to produce bacteriocins. 

5 

Wheater et. al. (1951) reported that lactobacillin was produced by a strain of 

homofermentative Lactobacillus helveticus. They found, however, that hydrogen peroxide 

was involved in the inhibitory mechanisms, and withdrew the name 'lactobacillin' (Wheater 

et. al. 1952). Upreti and Hinsdill (1973) revealed that lactocin 27 was produced by L. 

helveticus LP27 among the strains oflactobacilli obtained from human and animal sources. 

They showed that lactocin 27 inhibited primary protein synthesis without affecting DNA, 

RNA, or ATP synthesis in a later study (Upreti and Hinsdill, 1975). Lactocin 27 appeared 

to act on the cell membrane and was adsorbed in a nonspecific way by the cells. Helveticin 

J, a bacteriocin produced by L. helveticus 481, was active at neutral pH under aerobic and 

anaerobic conditions, and was sensitive to proteolytic enzymes and heat (30 min at 

1 oooc). It also demonstrated a bactericidal mode of action against sensitive indicator 



strains. Production of helveticin J was maximized in an anaerobic fermentor held at a 

constant pH of 5.5 (Joerger and Klaenhammer, 1986) 

6 

De Klerk and Coetzee (1961) described antagonistic activities among the strains of 

lactobacilli isolated from many different sources including human saliva. The properties of 

inhibitory substance were different from those of phage suspensions. The activity was 

diffusible in agar and was not affected either by boiling for 15 min or by adjusting to pH 7. 

Activity was not diminished by the presence of catalase ruling out the possible direct 

involvement of hydrogen peroxide. In a later study, De Klerk (1967) concentrated the 

inhibitory activity by ammonium sulfate precipitation and confirmed the inhibitory activity 

as bacteriocins. De Klerk and Smit (1967) further characterized the bacteriocin produced 

by Lactobacillus fermenti 466 and demonstrated that the inhibitor was sensitive to trypsin 

and pepsin, but resistant to treatment with either heat (96° C for 30 min), urea or 

lysozyme. The bacteriocin was a macromolecular lipocarbohydrate protein and the 

biological activity of the complex was dependent on its structural integrity. 

Bacteriocins produced by Lactobacillus plantarum have been reported and 

characterized. Daeschel et. al. (1986) reported production of platacin A by a strain of L. 

plantarum isolated from cucumber fermentation. Platacin A was bactericidal, 

proteinaceous, heat stable (30 min at 1000 C), active over pH range from 4.0 to 6.5 and 

retained in dialysis membranes permeable below 8,000 Da. West and Warner (1988) 

suggested that platacin B produced by L. plantarum NCDO 1193 was a protein 

complexed with carbohydrate and/or lipid. Andersson et. al. (1988) reported the binding 

of plantaracin SIK-83, a bacteriocin produced by L. plantarum SIK-83 to the cell was 

specific for sensitive cells. 

Sakacin A (Schillinger and Luke, 1989) and lactocin S (Mortvedt and Nes, 1990), 

bacteriocins produced by strains of Lactobacillus sake, were proteinous in nature and 

demonstrated bactericidal mode of action. Lactocin S was moderately heat-stable and its 

activity was found in the growth medium during the late exponential phase of growth. 
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Lactobacillus sp. strain 100-37 isolated from murine gastrointestinal tract produced 

a bacteriocin (McCormick and Savage, 1983). The activity was not inducible with 

mitomycin C or UV light, but was stable in flowing steam (1 QQOC) for up to 50 min, in 

buffers over a range of pH 1.6 to pH 6.8. It was nondialyzable and inactivated by trypsin 

and papain. 

The bactericidal activity of the inhibitor produced by Lactobacillus casei ssp. 

rhamnosus GR-1 was retained when the cell free spent broth was adjusted to pH 7.0. The 

inhibitory substance was heat labile, not precipitated by up to 80% ammonium sulphate, 

and extractable in chloroform. The inhibitor was not lactic acid or hydrogen peroxide 

(McGroarty and Reid, 1988). Rammelsberg et. al. (1990) reported that L. casei B 80 

synthesizes a mitomycin C inducible polypeptide ( caseicin 80) with very specific 

bactericidal activity against the sensitive strain. The amount of secreted bacteriocin in the 

culture solution was low, about 111. mg/1. The bacteriocin also was detectable in cell 

extracts, although only 2% of total activity was retained intracellularly. More recently, 

Toba et. al. (1991a and 1991c) reported production ofbacteriocins from Lactobacillus 

delbrueckii subsp. lactis JCM 1106 and 1107, and strains of Lactobacillus gasserii 

isolated from infant feces. 

Several other researchers have reported production of heat-stable proteinaceous 

bacteriocins by species of lactobacilli and other lactic acid bacteria. These includes 

bacteriocins from Lactobacillus bulgaricus RS 902 (Sinha, 1991), Lactobacillus brevis 

B37 (brevicin: Rammelsberg and Radler, 1990), Bifidobacterium (Meghrous et. al., 

1990), Camobacterium piscicola L V17 isolated from vacuum-packed meat (Ahn and 

Stiles, 1990), Leuconostoc gelidium (Harding and Shaw, 1990~ Harding and Stiles, 1991), 

Leuconostoc mesentroides UL5 (Daba et.al., 1991), and Propionibacterium thoenii (Lyon 

and Glatz, 1991). 

Since Etchells et. al. ( 1966) reported that growth of L. plantarum was severely 

retarded in brined cucumber fermentations when the inoculum included Pediococcus 
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cereVlsiae FBB-61, bacteriocins from the strains ofpedicocci have been studied 

extensively. Fleming et. al. (1975) found that inhibitory agent other than acid or hydrogen 

peroxide was produced by P. cerevisiae FBB-61, and suggested that the production of 

this inhibitor might explain the appearance ,of pediococci during the first stage of natural 

fermentations ofbrined cucumbers and Spanish-type green olives. The antagonistic 

activity of this inhibitory agent was inactivated by pronase, but was resistant to heat 

treatment at I ooo C for 60 min (Rueckert, 1979). 

Gonzalez and Kunka (1987) reported pediocin PA-l produced by Pediococcus 

acidilactici PAC 1.0 was bactericidal in its mode of action and sensitive to various 

proteolytic enzymes. Pucci et. al. (1988) examined the action ofpediocin PA-l against 

Listeria monocytogenes using a dried powder prepared from P. acidilactici PAC 1.0 

culture supernatant fortified with 10% nonfat milk powder. Inhibition occurred over the 

pH range 5.5 to 7.0 and at both 4 and 320C. Later, Gonzalez (1989) obtained a patent for 

an invention relating to the use ofbacteriocin produced by P. acidilactici PAC 1.0 to 

inhibit bacterial spoilage by Gram positive bacteria, particularly lactobacilli in a food 

system (refrigerated salad dressing). 

Pediocin AcH, an antimicrobial peptide produced by P. acidilactici H was 

characterized first by Bhunia et. al. (1988). The bacteriocin was sensitive to proteolytic 

enzymes, resistant to heat and organic solvents, and active over wide range of pH. Bhunia 

et. al. (1990) examined the toxicity ofpediocin AcH and reported that the bacteriocin was 

nonimmunogenic in immunizing mice and a rabbit. It was also non-toxic to laboratory 

animals and was hydrolyzed by gastric proteolytic enzymes. They suggested that the 

nature of pediocin AcH may be considered favorable in its possible use as a food 

preservative. Biswas et. al. (1991) reported the maximum production ofpediocin AcH by 

P. acidilactici H in a broth medium (pH 6.5) within 16 to 18 hat 30 to 370C (final pH, 

3.6 to 3.7). Pediocin AcH production was negligible when the pH of the medium was 

maintained at 5.0 or above, even in the presence ofhigh cell mass. Yousefet. al. (1991) 



reported that in the presence of pediocin AcH or a derivative of P. acidilactici H, JBL 

1095, there was appreciable decrease in numbers of Listeria monocytogenes in exudative 

fluids from beef wieners throughout the storage period at 40C and 25oc. This suggests 

the possible use ofbacteriocins to control this pathogen in foods. 

Inhibitory Spectrum ofBacteriocin Activity 

The spectra of activity ofbacteriocins produced by most lactic acid bacteria 
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are limited to closely related species of bacteria (Klaenhammer, 1988; Tagg et. al., 1976). 

Most of bacteriocins produced by L. acidophilus displayed narrow inhibitory spectra 

(Vincent et. al., 1959; Barefoot and Klaenhammer, 1983; Muriana and Klaenhammer, 

1987; Muriana.and Klaenhammer, 199la). Metha et. al.(l983), however, reported that the 

protein produced by L. acidophilus ACt was active against both Gram-positive and 

Gram-negative bacteria. Helveticin J (Joerger and Klaenhammer, 1986) and lactocin 27 

(Upreti and Hinsdill, 1973), bacteriocins produced by L. helveticus, were active against 

closely related species. 

A number of studies have demonstrated the antagonistic activity of bacteriocins of 

lactic acid bacteria against L. monocytog~nes in addition to other lactic acid bacteria. 

Schillinger and Luke (1989) reported bactericidal activity ofsakacin A, a bacteriocin 

produced by L. sake Lb706, against L. monocytogenes. Carnobacterium piscicola L V17 

(Ahn and Stiles, 1990a), Leuconostoc ge/idium (Harding and Shaw, 1990), and 

Leuconostoc mesentroides UL5 (Daba et. al., 1991) also produced bacteriocins active 

against L. monocytogenes. Lactic acid bacteria isolated from various sources exhibited 

bacteriocin activity against L. monocytogenes. These sources include goats' milk (Hechard 

et. al., 1990), vacuum-packaged fresh meat (Ahn and Stiles, 1990b), and retail cuts of 

meat (Lewus et. al. 1991). Strains ofPediococcus species produced bacteriocins active 

against L. monocytogenes(Hoover et. al., 1988; Bhunia et. al., 1988; Pucci et. al., 1988; 

Spelhaug and Harlander, 1989; Nielsen et. al., 1990; Yousefet. al., 1991). Recently, 
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Foegeding et. al. (1992) indicated that pediocin produced by P. acidilactici PAC 1.0 was 

responsible for part of inactivation of L. monocytogenes during fermentation and drying 

process of sausage production. 

Inhibitory activity ofbacteriocins against other pathogenic and/or spoilage bacteria 

related to food also have been reported. McCormick and Savage (1983) detected the 

antagonistic effect by Lactobacillus sp. strain 100-37 isolated from murine gastrointestinal 

toward an obligate anaerobic Clostridium ramnosum H1 isolated from mouse feces. 

Pediocin A produced by P. pentosaceus FBB61 also was shown to be effective against 

Clostridium botulinum, C. perfringens, and C. sporogenes in addition to strains of 

Staphylococcus aureus and Streptococcus lactis (Daeschel and Klaenhammer, 1985: 

Spelhaug and Harlander, 1989). Bhunia et. al. (1988) reported that pediocin AcH 

produced by P. acidilactici H was active against C. perfringens and S. aureus. 

Enterococcus faecalis was reported to be sensitive to a bacteriocin produced by 

Leuconostoc gelidium (Hastings and Stiles,1991), and to lactacin F produced by L. 

acidophilus 11088 (Muriana and Klaenhammer, 1991a). 

Nisin exhibited a relatively wide range of inhibition of Gram positive bacteria 

including strains of streptococci, staphylococci, micrococci, and lactobacilli (Broughton, 

1990). It has been effective particularly against spore formers such as C. botulinum 

(Taylor et. al., 1990; Scott and Taylor, 1981), and C. sporogenes (Rayman et. al., 1981). 

L. monocytogenes also was sensitive to inhibitory action of nisin (Daeschel et. al., 1990; 

Williams and Tatini, 1990; Benkerroum and Sandine, 1988). Recently, Stevens et. al. 

(1991) reported the inactivati~n of Salmonella by nisin when used in combination with 

chelating agent EDT A. 

Purification and Estimated Molecular Weight ofBacteriocins 

Vincent et. al. (1959) purified lactocidin produced by L. acidophilus. 
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A 2,500 fold purification was achieved by the chromatography with silicic acid. Purified 

lactocin was unstable and was inactive in serum. Metha et. al. (1983) indicated that the 

inhibitory protein produced by L. acidophilus AC 1 was a single polypeptide with a 

molecular weight of 5. 4 KDa. Barefoot and Klaenhammer ( 1983) reported that molecular 

weight of lactacin B produced by L. acidophilus N2 was approximately 100 KDa for the 

crude inhibitor. They later purified lactacin B by ion-exchange chromatography, 

ultrafiltration, and successive gel filtration on Sephadex G-75 in the presence of 8 M urea 

and then 0.1% sodium dodecyl sulfate (Barefoot and Klaenhammer, 1984). The molecular 

weight oflactacin B was ca. 6.0 to 6.5 KDaand the purified compound showed maximum 

absorbance at 211 nm. Muriana and Klaenhammer (1991a) isolated lactacin F produced by 

L. acidophilus 11088 as a floating pellet from a broth culture supernatant brought to 35 to 

40% saturation with ammonium sulfate. The size of crude lactacin F was identified as 180 

KDa by gel chromatography. Electron microscopic examination of the active fraction 

showed micelle-like globular particles. Further purification by ammonium sulfate 

precipitation, gel filtration, and high performance liquid chromatography resulted in a 474 

fold increase in specific activity ofbacteriocin. The purified bacteriocin was identified as a 

2.5 KDa peptide by SDS polyacrylamide gel electrophoresis (SDS-PAGE). The lactacin F 

activity was retained after extraction from SDS-P AGE gel slices. Composition analysis 

indicated that lactacin F may contain as many as 56 amino acid residues. 

In 1973, Upreti and Hinsdill reported that lactocin 27 produced by L. helveticus 

LP27 was isolated and purified from the culture supernatant fluid as a protein­

lipopolysaccharide complex by the series of steps including chloroform precipitation and 

Sephdex G-200 column chromatography with and without SDS. In the presence of SDS 

the complex was dissociated, and the activity was found to reside in a small glycoprotein 

with molecular weight of 12.4 KDa. Joerger and Klaenhammer (1986) reported that 

helveticin I, an antimicrobial agent produced by L. helveticus 481, was present as an 

aggregate with a molecular weight in excess of300 KDa in its crude form. Helveticin I 
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was purified by ammonium sulfate precipitation followed by gel filtration chromatography 

in the presence ofSDS. SDS-PAGE of purified helveticin J resolved a 37,000 Da protein 

band with bacteriocin activity. 

De Klerk and Coetzee ( 1961) first indicated the inhibitory activity produced by L. 

fermenti was not extractable with ether but was precipitated by saturated ammonium 

sulfate and also by ethanol. Later, De Klerk (1967) purified the bacteriocin by dialysis, 

chromatography on Sephadex G-1 00 and calcium phosphate gel column. The bacteriocin 

was a macromolecular lipocarbohydrate protein which consists of 16 amino acids, 4 

sugars, hexosamine and phosphorus (De Klerk and Smit, 1967). 

Lactocin S, a bacteriocin produced by L. sake L45, was purified to homogeneity by 

ion exchange, hydrophobic interaction and reverse phase" chromatography, and gel 

filtration (Mortvedt et. al., 1991). The purification resulted in approximately a 40,000-fold 

increase in the specific activity of lactocin S and enabled the determination of a major part 

of its amino acid sequence. Exclusion of the nonionic detergent, Tween 80, from the MRS 

broth resulted in a high, reproducible recovery of lactocin S in the ammonium sulfate 

precipitation rather than foam or floating fraction as reported by Muriana and 

Klaenhammer (1991a). The amino acid composition indicated that lactocin S consisted of 

33 amino acids, of which about 50% were the nonpolar amino acids alanine, valine, and 

leucine. The 25 residue C-terminal part of lactocin S was sequenced and demonstrated 

highly non-polar characteristic. Three unidentified residues of25 C-terminal sequence 

were possibly modified forms of cystein and/or amino acids associated with cystein in a 

manner similar to that seen in lanthionine residues present in nisin. The hydrophobic nature 

of lactocin S and its homology with signal sequences suggested that the cell membrane as 

a possible target for lactocin S. 

Rammelsberg et. al. {1990) concentrated caseicin 80 produced by L. casei B80 by 

ultrafiltration and purified it by cation exchange chromatography. The molecular weight 

was in the range of 40 to 42 K.Da and the isoelectric point was pH 4.5. Daba et. al. {1991) 
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examined mesenterocin 5 produced by Leuconostoc mesentroices UL5 and found that the 

bacteriocin activity corresponded to an apparent molecular weight of about 4.5 KDa by 

SDS-PAGE. 

Lyon and Glatz (1991) partially purified propionicin PLG-1 produced by 

Propionibacterium thoenii from solid medium by ammoqium sulfate precipitation (60% 

saturation). It was purified further by gel filtration on Sephadex G-200. The results of gel 

filtration showed that bacteriocin was present as two protein aggregates with one having 

an apparent molecular weight of more than 150 KDa and the other approximately 10 KDa. 

Resolution of these protein aggregates by SDS-P AGE revealed the presence of a protein 

common to both with an apparent molecular weight of 10 KDa. The molecular weight of 

pediocin PA-l produced by P. acidilactici PACl.O (Gonzalez and Kunka, 1987) and 

pediocin AcH produced by P. acidilactici H (Bhunia et. al. 1988) have been identified as 

16.5 KDa and 2.7 KDa, respectively. 

Piard et. al. ( 1992) purified lactacin 481, a bacteriocin produced by Lactococcus 

lactis subsp. /actis CNRZ 481, by ammonium sulfate precipitation, gel filtration, and 

HPLC. The entire purification resulted in a 107,506 fold increases in the specific activity. 

The molecular weight was estimated as 1.7 KDa. Dimers of3.4 KDa also exhibited 

bacteriocin activity. 

Mode of Action ofBacteriocins 

In 1975, Upreti and Hinsdill examined the effect oflactocin 27 produced by 

L. helveticus LP27 on the sensitive cells. It ihhibited primarily protein synthesis without 

affecting DNA and RNA synthesis or ATP synthesis level. However, it caused a leakage 

of potassium ions and an influx of sodium ions, which suggested that it acted on the cell 

membrane. The adsorption oflactocin 27 was. non-specific. Andersson et. al. (1988) 

reported more detailed study of inhibitory mechanism ofplantaracin SIK-83 produced by 

L. plantarum SIK-83. The binding of bacteriocin to the cell was specific to sensitive cells. 
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Sensitive cells, after exposure to the bacteriocin, could be rescued by treatment with 

proteolytic enzymes. In buffer, plantaricin SIK-83 was adsorbed to the cell surface almost 

immediately, and morphological lesions were observed within 2 h after the cells were 

exposed to the bacteriocin. They suggested that the lethal m~de of action took place in 2 

steps: a comparatively rapid attachment of the bacteriocin to the cell surface, followed by 

killing of the cells and cell lysis. The :t>acteriocin acts, directly or indirectly, by damaging 

the cell membrane. 

Law and Dajani (1978) studied the inhibitory mechanism ofviridin B, a bacteriocin 

produced by Streptococcus mitis. Oxygen consumption by actively growing cultures of 

Niseria sicca ceased immediately upon exposure to viridin B. ATP production was slightly 

enhanced within 1 h of exposure to the bacteriocin but was subsequently repressed. The 

uptake and incorporation of glucose was prevented in the presence ofviridin B. The 

bacteriocin also blocked uptake of an amino acid mixture in cells pretreated with 

chloramphenicol. Although viridin B blocked protein and nucleic acid synthesis, no 

degradation of such macromolecules was observed. The inhibitory effect on 

macromolecular synthesis and on viability required the presence of sufficient nutrients to 

allow active metabolism. The bacteriocin did not inhibit viability or macromolecular 

synthesis in aerobically incubated cultures: On the basis of these findings, they proposed 

that the bacteriocin inhibits actively growing N. sicca by disruption of membrane-bound 

components responsible for oxygen-dependent electron transport, which in tum uncouples 

energy transduction necessary for accumulation of precursors. Cells which are not actively 

metabolizing or are metabolizing anaerobically utilize other methods of energy 

transduction which are unaffected by viridin B. Tagg and Wannamaker (1978) reported 

that the streptococcin A-FF22 produced by group A Streptococcus strain FF22 was 

associated with the cell walls of producer strain, and the nature of binding was nonspecific 

and was attributed to electrostatic interaction. More recently, Zajdel et. al. (1985) 

investigated the mechanism of bactericidal activity oflactostrepcin 5, a bacteriocin 
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produced by Streptococcus cremoris 202. The bacteriocin did not kill protoplasts of 

sensitive cells, and its activity was decreased about 10-fold after pretreatment of the cells 

with trypsin, suggesting the involvement of the cell wall in the activity of the bacteriocin. 

In susceptible cells, the bacteriocin slowed down and then stopped synthesis of DNA, 

RNA, and protein. Lactostrepcin also inhibited uridine transport in susceptible cells and 

induced leakage ofK+ and ATP. Survival of cells treated with the bacteriocin in 

phosphate buffer was higher in the presence ofK+, Ca2+, or Mg2+. They suggested that 

the primary target for the bacteriocin was a modification of permeability of the cell 

envelope. The bacteriocin effect on ATP, K+, and possibly also Ca2+ and Mg2+ render 

the cells unable to preserve their integrity and maintain the intracellular pH; therefore, 

deterioration of intracellular energy metabolism occurs, leading to cell death. 

The mode of action of nisin is one of most extensively studied among bacteriocins 

from Gram-positive bacteria (Broughton, 1990). The point of action of nisin on the 

vegetative cells is the cytoplasmic membrane. Its action causes disruption, either resulting 

in leakage of essential cellular material or in more severe cases lysis. The disruption is 

caused by nisin inactivating sulphydryl groups in the cytoplasmic membrane(Morris et. al., 

1984). Nisin action against spores is sporadic rather than sporostatic. Nisin inhibits the 

germination process at the stage of pre-emergent swelling (Hitchins et. al., 1963). Nisin 

had been shown to inhibit murein (peptidoglycan) synthesis (Reisinger et. al., 1980). This 

inhibition was caused by the formation of a complex between the antibiotic and lipid 

intermediate. Ruhr and Sahl {1985) indicated that nisin affected cytoplasmic membrane 

permeability properties. Nisin was al~o shown to cause a rapid efflux of amino acids and 

radioactively labeled Rb + (K+ analog) from the cytoplasm of Gram-positive bacteria. They 

concluded that the cytoplasmic membrane was the primary target and that membrane 

disruption accounts for the bactericidal action of nisin. Kordel et. al. (1989) reported that 

the cationic peptide nisin along with antibiotics Pep 5 and subtilin depolarized bacterial 

and artificial membranes by formation of voltage-dependent multi-state pores. The peptide 
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antibiotics did not span bilayer membranes in the absence of a membrane potential and 

therefore that the potential should be necessary to force the peptides into a transmembrane 

orientation during pore formation. Liu and Hansen ( 1990) demonstrated that the 

dehydroalanine and dehydrobutyrine residues in active nisin play an important role by 

reacting with nucleophiles in the cytoplasmic membrane of a sensitive cell. Recently, Gao 

et. al. {1991) studied the interaction of the peptide antibiotic nisin with liposomes. Nisin 

dissipated the membrane potential and the pH gradients. It also inhibited oxygen 

consumption by cytrochrome c oxidase. The dissipation of proton motive force was only 

to a minor extent due to a decrease of the oxidase activity. The membrane potential and/ or 

pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into 

the membrane and makes the membrane more permeable for ions. As a result, both the 

membrane potential and pH gradient are dissipated. The activity of nisin was found to be 

influenced by the phospholipid composition of the liposomal membrane. 

Although Gram-negative bacteria are not generally sensitive to nisin (Hurst, 1981 ), 

some researchers have studied methods to interrupt outer cell membrane of Gram-negative 

bacteria, so that the bacterium can be more susceptible to antibiotic agents. Kordel and 

Sahl (1986) showed that Esherichia coli exhibit.ed nisin sensitivity when the outer 

membrane was altered by treatments such as osmotic shock. Blakbum et. al. {1990) 

proposed that nisin can be used in combination with a chelating agent, surfactant, and/or 

other bacteriocilis to enhance a bactericidal effect towards both Gram-positive and Gram­

negative bacteria. Recently, Stevens et. al. (1991) reported that nisin in combination with 

chelating agent, disodium EDT A, was bactericidal to Salmonella species and other Gram­

negative bacteria. 



Genetic Determinants ofBacteriocins 

Chromosomal 

Barefoot and Klaenhammer (1983) attempted ~st to determine genetic 

determinants ofbacteri~cin production and host i~unity in strains of L. acidophilus. 

Plasmid DNA was not detected in L. acidophilus N2, suggesting that production of 
' ' 
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lactacin B may be chromosomally controlled. Muriana and Klaenhammer {1987) reported 

that the lactacin F production and immunity was not related to the 4, and 27 MDa plasmids 

detected in the L. ackjophilus 88. The conjugal transfer of determinants of the bacteriocin 

production and immunity implicated that the determinants of both genes were 

chromosomal, and transferred by the form of plasmids that reintegrated into the 

chromosome of the recipient following transfer. In a recent study, Muriana and 

Klaenhammer {1991b) showed the cloning, expression, and nucleotide sequence of a gene 

encoding a lactacin F production and immunity. A oligonucleotide probe specific for the 

lactacin F structural gene (Ia/) was synthesized based on the findings from the former 

study (Muriana and Klaenhammer, 1991a). Cloning experiment revealed that a 2.2 Kb Eco 

R1 fragment of a plasmid DNA (pTRK 162) of a lactacin F-producing transconjugant 

related to the laf gene, and this was. confirmed· by transformation via electroporation of 

pTRK 162 into lactacin F-negative strains. An 873-bp region of the 2.2 kb fragment was 

sequenced and t~e analysis of the resulting sequence identified an open reading frame 

(ORF) which could encode a protein of75 amino acids. The 25 N-terminal amino acids 

for lactacin F were identified within the ORF along with an N-terminal extension of 18 

amino acid residues, possibly a signal sequences. They suggested that the remainder of 57 

amino acid residue {6.3 KDa) portion of laf gene corresponds well to composition analysis 

of purified lactacin F thus indicating that the bacteriocin may contain as many as 56 amino 

acid residues (Muriana and Klaenhammer, 1991a). 
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L. helveticus 481 was subjected to plasmid curing experiments and the results 

provided no evidence for a plasmid harboring determinants for helveticin J production nor 

for host immunity (Joerger and Klaenhammer, 1986). Later, Joerger and Klaenhammer 

(1990) reported the DNA sequence of a contiguous 3,364-bp region on the chromosomal 

DNA from L. helveticus 481. for heiveticin J production. Two complete open reading 
' " 

frames (ORF), designated ORF2 and ORF3, were identified within the sequence. They 

suggested that ORF 3 could encode a 37,511-Da protein, whose molecular weight would 

be close to that ofhelveticin J (37,000 Da) as estimated from a previous study (Joerger 

and Klaenhammer, 1986). ORF 2, which potentially encodes a 11,808-Da protein, might 

be responsible for the immunity protein that binds to helveticin J and facilitates its export 

from the cell. The recombinant plasmid pTRK135.containing ORF2 and ORF3 was 

transformed into L. acidophilus via electroporation. Transformants produced a bacteriocin 

with same characteristic as that ofhelveticin J. 

Plasmid Borne 

Schillinger and Luke (1989) indicated that a plasmid of about 18 MDa may 

be involved in the formation of sakacin A, a bacteriocin produced by L. sake Lb706 as 

well as in host immunity. Lactocin S production and immunity (L. sake L45) also were 

reported to be related with a 50 Kb plasmid (Mortvedt and Nes, 1990). Ahn and Stiles 

(1990a) indicated the production of and resistance to the bacteriocin produced by 

Camobacterium piscicola L V17 were associated with two plasmids of 40 and 49 MDa. 

Hastings and Stiles (1991) examined a bacteriocin produced by Leuconostoc gelidium and 

determined that the loss of7.6 MDa plasmid resulted in loss of production and resistance 

to the bacteriocin. 

Graham and McKay (1985) demonstrated that the production of the bacteriocin 

correlated with the presence of a 10.5 MDa plasmid inP. cerevisiae FBB-63. It was not 

clear, however, if immunity to the bacteriocin was associated with this or other plasmids. 



Daeschel and Klaenhammer (1985) examined the bacteriocin-producing strains of P. 

pentosaceus for plasmid content and genetic stability of bacteriocin production and host 

cell immunity. They suggested that the loss of bacteriocin production and host cell 

immunity was closely linked on an unstable genetic determinants and the loss of these 

phenotypes was irreversible. Plasmid analysis ident~ed 13.6 MDa plasmid (pMD136) 

which encoded both bacteriocin i.nuriunity and production .. Gonzalez and Kunka (1987) 

provided evidence that the production ofpediocin A (P. acidilactici PACl.O) was 

associated with the presence of a 6.2 MDa plasmid. Hoover et. al. (1988) reported that 
' ' 
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the bacteriocin activity was harbored on a plasmid approximately 5.5 megadalton in three 

strains of P. faecalis and one strain of P. pentosaceus isolated from fermented sausage. 

Ray et. al. (1988) reported that pediocin AcH (P. acidi/actici H) activity and immunity 

phenotypes were correlated with a 7.4-MDa plasmid (pSMB74). In their later study, Ray 

et. al. (1989) suggested that the occurrence ofpSMB74 in Bac+Jlacr transconjugants, 

obtained from conjugal mating between the donor P. acidilactici H and the recipient P. 

acidi/actici LB42-315, established that this plasmid encoded both Bac+ and Bacr 

determinants. 



CHAPTER ill 

MATERIALS AND METHODS 

Sources and Maintenance of Cultures 

The cultures used in this study were obtained from the stock culture collection 

from the Dairy Food Microbiology Lab, Department of Animal Science at the Oklahoma 

State University, Stillwater. All cultures oflactobacilli were maintained by subculturing in 

lactobacilli MRS broth (DIFCO laboratories, Detroit, MI) using 1% inocula and 18 to 20 

h incubation at 37oc. The cultures were stored at 1-2oc between transfers. Prior to use in 

experiments, each culture was subcultured at least three times. For long term storage, the 

cells were harvested by centrifugation from MRS broth culture and resuspended in MRS 

broth containing 20% glycerol (Fisher, Pittsburgh, P A). The suspension was stored at -

70°C. 

Cultures of Listeria monocytogenes Scott A and V 7 and Esherchia coli 0 157:H7 
' 

(ATCC 43895) were maintained in Brain Heart Infusion (BID; Difco) broth and in 

Trypticase Soy Broth (TSB; Difco ), respectively. Other procedures for propagating and 

maintaining these cultures were the same as stated as for L. acidophilus. 

Preparation of Cell Free Spent Broth 

MRS broth cultures incubated at 3 70C for 18 h were harvested by centrifugation 

(8,000 x g, 10 min). The supernatant fluids were collected, and adjusted to pH 6.5 with 10 

NNaOH (Sigma, St. Louis, MO). The spent broths were filtered through sterile 0.45 J.Lm 

20 



acrodisc filters (Gelman, Ann_Arbor, MI) into sterile screw cap test tubes. The cell free 

spent broth was stored at refrigeration temperature (1 oc). 

Screening for Bacteriocin Production 

Agar Plate Assay 
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A five ml portion ofMRS agar inoculated (1%) with the desired indicator culture 

was poured into a 110 x 10 mm petri disft· After solidification, 10 J..ll portions of spent 

broths from producer cultures were aseptically placed on the surface of the seeded agar. 

The petri dishes were incubated upright for 24 hat 37oc. The presence of inhibitory 

material in the spent broth samples was indicated by clear inhibitory zones on the agar. 

Inhibitory activity of the samples obtained from purification steps were assayed 

against Lactobacillus delbrueckii subsp. lactis 4797 as a indicator strain throughout the 

.study. 

Serial Dilution Assay 

A serial dilution assay was utilized to determined the relative amounts of inhibitory 

activity. The samples were diluted in a series of twofold serial dilutions using sterile 

distilled water. A 10 J..Ll portion of each dilution was placed on the surface of seeded agar 

and incubated as stated in the agar plate assay procedure. The highest dilution which 

prevented growth was recorded and the reciprocal of the dilution was defined as the 

arbitrary inhibitory activity unit (AU). 

Effect of Heat on Inhibitory Action of the Spent Broth 

The inhibitory samples of spent broth were heated at 121oc for 15 min, cooled 

to room temperature and assayed for inhibitory activity by the agar plate assay. 



22 

Effect of Catalase and Proteases on Inhibitory Action 

To ascertain whether or not the inhibitory activity was due to hydrogen peroxide 

or protein, the following enzymes and pH values were used: A) Catalase (pH 6.0; E. C. 

NO. I. IT. I. 6) from bovine liver, B) Trypsin (pH 8.0; Type IT, crude), and C) Pepsin (pH 

3.0; E.C. NO. 3.4.23.1). All enzymes were obtained from Sigma Chemical Company (St. 

Louis, MO) 

Twenty five milligrams of each enzymes was added to 5 ml of cold distilled 

water,vortexed to dissolve, filtered through a sterile acrodisc filter (0.45J.lm, Gelman) into 

a sterile tube and kept in ice water for immediate use. Spent broth from the producing 

strains was adjusted to each pH value and filtered through sterile 0.45 J.lm filters. Ten ml 

aliquots of spent broth at each pH level were placed into sterile tubes and 0.5 ml of proper 

enzyme or distilled water as control was added. All tubes were incubated in a waterbath at 

37oc for 30 min. Following incubation, each sample was adjusted to pH 6.0 with IN of 

HCl or NaOH as required, filtered through a sterile acrodisc filter (0.45J.lm) again and 

assayed for bacteriocin activity by agar plate assay. The amounts of alkali and/or acid 

added were measured and compensated with distilled water so that the final volumes of all 

tubes were equal. If catalase had no effect and proteolytic enzymes eliminated the 

inhibitory activity, it was assumed to be due to bacteriocin(s). 

Ammonium Sulfate Precipitation 

The proper amount of ammonium sulfate (Sigma) was added slowly to spent 

broth from cultures that produced bacteriocin to make the solution 50% saturated with 

ammonium sulfate. The precipitated fraction was harvested by centrifugation at 10,000 x g 

for 20 min at 1 oc and resuspended in 2 ml of0.05 M Tris-HCl buffer (pH 8.0), with or 

without 0.1% sodium dodecyl sulfate (SDS; Sigma) as desired. The fractions were 

vortexed until completely dissolved and collected for further purification. The collected 
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samples were dialyzed overnight at 40C with stirring using No.2 dialyzing tubing (M.W. 

cut off, 12 to 14 KDa; Spectrum, Los Angeles, CA) against two liters of the same buffer. 

Sephadex G-200 Gel Column Chromatography 

Three grams of Sephadex G-200 (Pharmacia, Piscataway, NJ) powder per 100 ml 

of column volum~ was added slowly to warm distilled water (700C) with continuous 

stirring. The solution was heated for 5 h at 70 - 800C and then cooled at room 

temperature. After washing the gel with five times the column volume of distilled water 

two to three times, the gel was equilibrated with 0.05 M Tris-HCl buffer (pH 8.0), with or 

without 0.1% SDS as appropriate, overnight at 4°C. The slurry was poured into a 2.5 x 

50 em glass column (Bio-Rad, Richmond, CA) and enough volume of the buffer was 

eluted until the gel was settled completely. The f4tal gel volume in the column was 200 mi. 

The column was equilibrated with two to three times its volumes of buffer. A 1% Blu 

Dextran 2000 (Sigma) was used to ensure the homogeneity of column packing and to 

determine the void volume. General conditions of gel chromatography was practiced as 

recommended by Stellwagen (1990). 

The column outlet was attached to a pump (Cole-Parmer, Chicago, IL) which was 
I 

set to a flow rate of0.23 rnVmin. The sample of approximately 4% of total column volume 

was loaded onto column and eluted with the buffer. The eluent was collected in 5 ml of 

fractions and was monitored for absorbance·at 280 nm: Each fraction was assayed for 
' ' ' 

bacteriocin activity by the serial dilution method as described previously. Inhibitory 

activity and A280 nm were pl9tted against elution volumes to locate protein fractions that 

were inhibitory. 

Sodium azide (0.02%, Fisher) was added to the buffer to prevent microbial growth 

in the column for long term storage. Before a sample was loaded, more than two times the 

column volume of buffer was passed through the column to remove the sodium azide and 



the eluted buffer was examined for inhibition by the agar plate assay to ensure the 

complete removal of the sodium azide. 

Microconcentration 
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Contents of tubes containing each inhibitory fraction eluted from gel 

chromatography were pooled and concentrated with Centricell 60 concentration unit 

(Polysciences, Warrington, PA) with molecular retention limit of30,000 Da. The unit was 

centrifuged at 3,000 x g for 30 to 60 min at 4oc. Volumes of concentrates and filtrates 

were recorded. The bacteriocin activity was ~ssayed for both fractions as described 

previously. The units were rinsed with 0.1 M NaOH and distilled water and stored with 

membrane immersed in 0.05 M NaOH. 

DE52 Anion Exchange Column Chromatography 

Three grams of pre-swollen DE 52 anion exchange cellulose (Whatman, 

Clifton, NJ) per 10 ml of column volume were added into 0.05 M Tris-HCl buffer (pH 

8.0) as recommended by Whatman (1986). While stirring, the sluny was adjusted to pH 

8.0 with 1 N HCI. After washing and equilibrating with the buffer 2 to 3 times, the sluny 

was poured into 2.5 x 20 em glass column (Bio-Rad) and enough volume of the buffer 

was eluted until the conductivity measured by conductivity meter (Radiometer, 

Copenhagen, Denmark) and pH of the eluent were the same as the starting buffer. The 

final column volume was 50 mi. The flow rate of the eluent was set to 4.0 rnVmin by using 

a pump (Gilson, Middleton, WI) to obtain 48.9 mV hr/ cm2 of the internal cross sectional 

area. 

The concentrated samples from microconcentration were applied to column with 
~ 

50 ml of0.05 M Tris-HCl buffer (pH 8), activity was eluted with a linear gradient from 0 

to 1.5 MNaCl (200 ml each) in the same buffer. Fractions (4 ml) were collected and 

measured for absorbance at 280 nm. Each fraction was also assayed for bacteriocin 
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activity and monitored for conductivity using conductivity meter (Radiometer) to estimate 

the gradient concentration. 

Polyacrylamide Gel Electrophoresis 

Polyacrylamide gel electrophoresis (PAGE) in the presence of 0.1% SDS 

was carried out by the method ofLaemmli (1970) using Mini-Protein slab cell (Bio-Rad, 

Richmond, CA). The concentrations ofpoly~crylamide and N'N'-bis-methylene-acrylamide 

(Bio-Rad) were 12% and 0.32%, respectively in the separating gel, and in stacking gel 

they were 4% and 0.11 %, respectively. The concentration and pH of Tris-HCl buffer were 

0.375 M and pH 8.8 in separating gel, and 0.125 M and pH 6.8 in stacking gel. PAGE was 

conducted at a constant voltage of 200 V for 50 to 60 min. Gels were stained with 

Coomassie brilliant blue (Bio-Rad). Protein standards and their molecular weight included 

the following: Lysozyme, 14,400; Carbonic Anhydrase, 31,000; Ovaalbumin, 45,000; 

bovine serum albumin, 66,200; and phosphorylase B, 97,400 (Bio-Rad). 

Protein Determination 

The protein content of the fractions was determined by the method ofBradford 

(1976) using Bio-Rad protein assay reagent. Five ml of diluted dye reagent was added into 

tubes contain 0.1 ml of samples or distilled water as control. After vortexing gently, the 

optical density was measured at 595 nm within 1 h. The content of protein was determined 

by comparing with standard curve which was made using bovine gamma globulin (Bio­

Rad). 



CHAPTER IV 

RESULTS" 

Inhibitory Action of Spent Broth 

A total of92 strains of Lactobacillus acidophilus isolated from fecal contents 

of humans, pigs, calves, chickens, rodents, and turkeys were screened for the production 

of inhibitory activity (Table 1 ). Among these strains seventeen out of twenty eight from 

pigs, four out of twenty two from calves, three out of nineteen from humans, and three 

out of seven from turkeys exhibited inhibitory activity against indicator cultures (L. 

acidophilus La-1, NCFM:-F, and L. delbrueckii subsp. lactis4191). None of six from 

chickens or ten from rodents produced detectable inhibitory actions. 

The sensitivity of each strain to inhibitory action also was tested against all of the 

strains that produced inhibitory activity against indicator cultures. Among strains that did 

not produce inhibitor(s) against the indicator cultures shown in Table 1, the growth of five 

from pigs, two from calves, ten from humans, and one from each chicken, rodent, and 

turkey were inhibited by some· of the inhibitor(s) produced by the twenty seven inhibitory 

strains ofL. acidophilus (Table 2). This shows variations in the inhibitory spectra ofthe 

inhibitor(s) produced by these strains. None of those that produced inhibitory activity 

were sensitive to their own inhibitor or inhibitor(s) produced by other strains. 

All twenty seven of the inhibitory spent broths were tested for inhibitory action 

against Listeria monocytogenes Scott A and V7, and Esherichia coli 0157:H7 (ATCC 

43895). None were inhibitory toward these pathogens. Thus the inhibitory spectrum was 

considered to be most likely narrow and active against closely related strains or species. 

26 
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TABLE I 

TESTING STRAINS OF LACTOBACILLUS ACIDOPHIL US FOR PRODUCTION OF 
INHIBITORY ACTIVITY 

Indicator Cultures 
Origin Test Strains L. acidophilus L. acidophilus L. delbrueckii 

La-1 NCFM-F subsE. lactis 4797 

Pig 1-3 +A + + 
2-5 

107A + + + 
149C 
251 
A1 + + + 
A3 + + + 
A4 + + + 
A6 

C-1-3 
C-1-5 
C-1-6 
C-2-5 

D1 
GP1A + + + 
GP1B + + + 
GP1C + + + 
GP2A + + + 
GP2B + + + 
GP3A + + + 
GP3B + + + 
GP4A + + + 
Pl6 
P47 + + + 

RP32 
RP34 + + + 
RP42 + + + 
RP43 + + + 

Calf 25SB 
25SD 
27SC 
30SC + + + 
30SE 
36SC 
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TABLE 1 (Continued) 

Indicator Cultures 
Origin Test Strains L. acidophilus L. acidophilus L. delbrueckii 

La-1 NCFM-F subsE. lactis 4797 

Calf 381-DU0-20 + + + 
381-IL-23 
381-IL-25 
381-IL-27 
381-IL-28 + + + 
396-IL-28 

C28 
FR-1 
FR-2 + + + 
FR-3 
FR-4 
FR-5 
FR-6 
R-1 
R-2 
R-3 

Human 107 
223 + 
606 + 

4356 
4962 
HM2 
H35 
La 1 -
La2 
La3 
LaS 
LaS 
La 11 
La12 
La14 
La 15 
La20 

NCFM-L 
NCFM-M + + + 
NCFM-F 
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TABLE 1 (Continued) 

Indicator Cultures 
Origin Test Strains L. acidophilus L. acidophilus L. delbrueckii 

La-1 NCFM-F subsE. lactis 4797 

Chicken 5L3 
5S3 
6L4 
6S3 
6S4 
8L3 

Rodent NFa-3 
NFa-4 
NFa-5 
NFa:..s 
PLa-9 -
PLb-3 
PLb-5 
PLb-6 

PLb-10 
Rat-1 

Turkey T1 
T2 + + + 
T3 + + + 
T4 

A1-Turkey + + + 
A2-Turkey 
C2-Turkey 

A + indicates the presence of zone of inhibition; - indicates the absence of zone of 
inhibition on the agar seeded with each indicator cultures . 
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TABLE2 

CO:MP ARISON OF SENSITMTY TO THE INIDBITORY ACTMTY PRODUCED 
BY STRAUINS OF LACTOBACILLUS ACIDOPHIL US 

Producer NonQroducer Strains from Pigs 
Origin Strains 149C C-1~3 C-1-5 C-1-6 C-2-5 

Pig 1-3 +A + + + 
107A + + + + + 
Al + + + + 
A3 + + + + 
A4 + + + + + 

GP1A + 
GPlB + + + + 
GPlC + + .+ + + 
GP2A + + + + 
GP2B + + + + 
GP3A + + + + 
GP3B + + + + + 
GP4A + + + + 
P47 + + + + 

RP34 + + + + + 
RP42 + + + + 
RP43 + + + + + 

Calf 30SC + + + + + 
381-DU0-20 

381-IL-28 + 
FR-2 + + + + 

Human 223 NOB 
606 ND 

NCFM-M ND + + + + 

Turkey T2 ND ND ND 
T3 ND ND ND 

At-Turkey + ND ND ND 
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TABLE 2 (Continued) 

Producer NonEroducer Strains from Humans 
Ori~ Strains La-1 La-2 La-5 La-8 La-11 

Pig 1-3 + + + + + 
107A + + + + + 
A1 + +' + + + 
A3 + + + + + 
A4 + + + + + 

GP1A + + + + + 
GP1B + + + + + 
GP1C + + + + + 
GP2A + + + + + 
GP2B + + + + + 
GP3A + + + + + 
GP3B + + + + + 
GP4A + + + + + 
P47 + + + + + 

RP34 + + + + + 
RP42 + + + + + 
RP43 + + + + + 

Calf 30SC + + + + + 
381-DU0-20 + + 

381-IL-28 + + + + + 
FR-2 + + 

Human 223 
606 - - + + + 

NCFM-M + + + + + 

Turkey T2 + + + + + 
T3 + + + + + 

A1-Turkey + + + + + 
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TABLE 2 (Continued) 

Producer Noneroducer Strains from Humans 
Ori~ Strains La-12 La-14 La-15 La-20 NCFM-F 

Pig 1-3 + + + + + 
107A + + + + + 
AI + ,f + + + 

" 
A3 + ,·7 + + + 
A4 + ' ' ' + ,+ + + 

GPIA + + + + + 
GPIB + + + ,+ + 
GPIC + + + + + 
GP2A + + + + + 
GP2B + + + + + 
GP3A + + -r + + 
GP3B + + + + + 
GP4A + + + + + 
P47 + + + + + 

RP34 + + + + + 
RP42 + + + + + 
RP43 + + + + + 

Calf 30SC + + + + + 
381-DU0-20 - - - - + 

381-IL-28 - - - - + 
FR-2 - - - - + 

Human 223 - - + + 
606 - + + + 

NCFM-M + + + + + 

Turkey T2 ND ND ND ND + 
T3 ND ND ND ,ND + 

At-Turkey ND ND ND ND + 
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TABLE 2 (Continued) 

Nonproducer Strains 
Origin Producer Calf Chicken Rodent 

Strains 149C C-1-3 C-1-5 C-1-6 

Pig 1-3 ' + 
107A + '+' + + 
AI + 
A3 + + + + 
A4~ 

GPIA - + 
GPIB + 
GPIC + + 
GP2A -· + 
.GP2B + 
GP3A + 
GP3B + 
GP4A + 
P47 

RP34 + 
RP42 + + 
RP43 + + 

Calf 30SC + 
381-DU0-20 

381-ll.,-28 + 
FR-2 + 

Human 223 
606 + 

NCFM-M + + + + 

Turkey T2 + + 
T3 + + 

Al-Turkey + + 

A + indicates the presence of zone of inhibition; - indicates the absence of zone of 
inhibition on the agar seeded with each indicator cultures 

B Not determined 
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Effects of Catalase and Protease on Inhibition 

The cell-free spent broths of strains that produced inhibitory action were treated 

with the proteolytic enzymes pepsin and trypsin. The inhibitory substance for each strain 

was completely inactivated by treatment with eitper of these proteolytic enzymes (Table . . -

3). The results indicated that the ~bitoiy subs~ces w~re proteinous compounds. 

In addition, the spent broths ~ere treated wi~ catalase to eliminate any inhibitory 

effect of hydrogen peroxide. Inhibitory activity of the spent broths was not affected by 

catalase treatments (Table 3). 

Effects of Heat on Inhibitory Activity 

The inhibitory spent broths were heated at 121 oc for 15 min, and assayed for 

inhibitory activity (Table 4). No differences were observed in the formation of inhibitory 

zones on the produced by twenty seven strains of Lactobacillus acidophilus were heat 
'• 

' 
stable proteinous compounds. Neit~er hydrogen peroxide nor acid were responsible for 

inhibitory activity against indicator cultures. Antagonism by these inhibitors was restricted 
. -

agar plates seeded with indicator strains between heated- and unheated spent broth 

indicating that the inhibitory materials were heat stable. 

Purification ofBacteriocins 

Results from the above experiments demonstrated that the inhibitory substance(s) 

to closely related species. None of the strains that produced inhibitory substances was 

sensitive to its own inhibitors or inhibitor(s) produced by other strains. The inhibitory 

activity of spent broth was non-dialyzable in dialysis membrane tubing with molecular 

weight exclusion limits of 12 to 14 KDa. The activity was also retained when concentrated 

by microconcentrator with molecular weight limit of30 KDa. These results show the 



TABLE3 

EFFECTS OF CATALASE AND PROTEASE ON INIDBITORY ACTMTY 
PRODUCED BY STRAINS OF LACTOBACIUUS ACIDOPHIL US 

Test Enzyme Treatment 
Origin Strains Control· Catalase Trypsin PeEsin 

Pig 1-3 ~ + 
107A . + + 
AI + + 
A3 + + 
A4 ;+- + 

GPIA + + 
GPIB + + 
GPIC + + 
GP2A + + 
GP2B + + 
GP3A + + 
GP3B + + 
GP4A + + 
P47 + + 

RP34 + + 
RP42 + + 
RP43 + + 

Calf 30SC + + 
381-DU0-20 + + 

381-IL-28 + + 
FR-2 + + 

Human 223 + + 
606 + + 

·NCFM-M ·+ + 

Turkey T2 + + 
T3 + ·+ 

Al-Turkey + + 

A + indicates the presence of zone of inhibition; - indicates the absence of zone of 
inhibition on the agar seeded with L. de/brueckii subsp. lactis 4797 
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TABLE4 

EFFECTS OF HEAT ON INHIBITORY ACTMTY PRODUCED BY STRAINS OF 
LACTOBACILLUS ACIDOPHIL US 

Origin Test Strains Unheated Heated 

Pig 1-3 _A 

107A + + 
A1 + + 
A3 + + 
A4 + + 

GP1A + + 
GP1B + + 
GP1C + + 
GP2A + + 
GP2B + + 
GP3A + + 
GP3B + + 
GP4A + + 
P47 + + 

RP34 + + 
RP42 + + 
RP43 + + 

Calf 30SC + + 
381-DU0-20 + + 

381-IL-28 + + 
FR-2 + + 

Human 223 + + 
606 + + 

NCFM-M + + 

Turkey T2 + + 
T3 + + 

A1-Turkey + + 

A + indicates the presence of zone of inhibition; - indicates the absence of zone of 
inhibition on the agar seeded withL. delbrueckii subsp. lactis 4191. 



inhibitor(s) to be consistent to the definition ofbacteriocins as defined by Tagg et. al. 

(1976). 

Based on consistency in production of inhibitory activity,.and identity 

characteristics, (e.g. strain identification according tq Buchanan and Gibbson, 1974) 

throughout the study~ fourteen of the twenty seven inhibitory strains were selected for 
' ; v ' 
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further study. Attempts to purifY bacteriocins produced by them involved ammonium 

sulfate precipitation and Sephadex G-200 gel chromatography. The elution profiles are 

presented in Figures 5 through 17 in AppendiX B. The bacteriocins produced by some 

strains lost their activitY relatively faster than others after this series of purification steps. 

Bacteriocins produced by eight of the strains were stable through purification steps, and 

subjected to further purification. The eight strains mcluded of one from human origin (L. 

acidophilus 606), two strains from calves (L .. acidophilus 30SC and FR-2), and five 

strains from pigs (L. acidophilus A4, GPIB, .GP2A, GP4A, and RP42). 

Ammonium Sulfate Precipitation 

The results of purification ofbacteriocinsproduced by eight strains of L. 

acidophilus are given in Tables 7 through 14 in Appendix A. The specific activity was 

calculated as total activity (AU) of inhibitory activity per total protein (mg) in each 

fraction. The comparison of specific activities and degrees of purification of the eight 

strains ofL. acidophilus at each purqication step are shown in Tabl~ 5. A'50% ammonium 
., 

sulfate precipitation resulted in 6.3 (L. acidophilus GP4A), 9.8 (L. acidophilus 30SC), 

18.0 (L. acidophilus GP2A), 19.3 (L. acidophilus GPIB), 19.6 (L. acidophilus RP42), 

20.7 (L. acidophilus A4), 27.8 (L. acidophilus FR2), and 48.6 (L. acidophilus 606) fold 

increases in specific activities compared to spent broth.· 

Total activity (AU) of the fractions at ~h purification step was divided by total 

activity of spent broth to obtain the percentage of total activity recovered at each step 

(Tables 8 through 15 in Appendix A). The comparison of the percentage of bacteriocin 



TABLES 

COMPARISON OF SPECIFIC ACTIVITY A OF BACTERIOCIN FROM EACH 
STRAINS OF LACTOBACIUUS ACIDOPHIL US 
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Strain Spent Broth (NH4)zS04B 
Precipitation 

Gel Filtration Microconcentrate 

606 2,018.9 98,107.8 
(48.6)C 

30SC 627.5 6,159.4 
(9.8) 

FR2 39.2 1,089.4 
(27.8) 

A4 2,509.8 52,012.7 
(20.7) 

GPIB 336.8 6,501.6 
(19.3) 

GP2A 4,249.0 76,650.3 
(18.0) 

GP4A 11,058.3 70,204.6 
(6.3) 

RP42 42.1 825.8 
(19.6) 

A Total Activity (AU) per Total Protein (mg) 
B At 50% saturation 
C Values in Parentheses Indicate the Fold Purification 

78,056.2 330,876.0 
(38.7) (163.9) 

14,209.9 81,835.5 
(22.6) (130.5) 

797.4 6,154.8 
(20.3) (156.9) 

46,400.5 260,076.4 
(18.5) (103.6) 

5,404.2 42,010.3 
(16.0) (124.7) 

54,677.1 779,610.4 
(12.9) (183.5) 

65,878.6 509,017.5 
(6.0) (46.0) 

808.6 4,776.7 
(19.2) (113.4) 
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TABLE6 

COMPARISON OF% OF TOTAL BACTERIOCIN ACTMTY RECOVEREDA AT 
EACH PURIFICATION STEP FROM STRAINS OF LACTOBACILLUS 

ACIDOPHILUS 

Strain Spent Broth 

606 100.0 

30SC 100:0 

FR2 100.0 

A4 100.0 

GP1B 100.0 

GP2A 100.0 

GP4A 100.0 

RP42 100.0 

(NH4)2S04B 
Precipitation 

93.9 

76.5' 

89.6 

70.7 

81.9 

83.0 

83.5 

80.8 

Gel Filtration Microconcentrate 

72.5 68.3 

69.6 55.7 

72.5 68.3 

60.6 53.9 

67.0 59.5 

69.2 66.4 

69.6 55.7 

67.4 53.9 

A Total Activity (AU) ofEach Fraction per Total Activity (AU) of Spent Broth 
B At 50% saturation 
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activity recovered among the eight strains is presented in Table 6. A 70.7%(L. acidophilus 

A4) to a 93.9% (L. acidophilus 606) of activity were recovered by ammonium sulfate 

precipitation. 

The ammonium sulfate precipitation eliminated 86.9% (L. acidophilus GP4A), 

92.2% (L. acidophilus 30SC), 95.4% (L. acidophilus GP2A), 95.8% (L. acidophilus 

GP1B), 95.9% (L. acidophilusRP42), 96.6% (L. acidophilu~ A4), 96.8% (L. acidophilus 

FR2), and 98.1% (L. acidophilus 606) ofprotein in the spent broths. 

Sephadex G-200 Gel Column Chromatography 

The resolved portions of ammonium sulfate precipitate from spent broths of 

strains of L. acidophilus were applied to a Sephadex G-200 gel column and eluted with 

0.05 M Tris buffer (pH 8.0). The eluent w~s collected in 5 m1 fractions and the absorbance 

280 nm and the inhibitory activity were measured. The inhibitory activity was eluted as the 

void volume between two absorbance peaks of contaminating proteins as Figure 1 which 

shows the elution profile of L. acidophilus GP4A. Other strains also demonstrated similar 

elution pattern as L. acidophi/us GP4A (Data not shown). 

Gel chromatography of the ammonium sulfate precipitate fraction of spent broth 

from L. acidophilus GP4A in the pre&enc~ of 0.1% SDS resulted in the elution of a single 

peak of inhibitory activity corresponding to a single absorbance peak (Fig. 2). In addition, 

larger portion of material absorbing light at280 nm was fractionated as a second peak in 

which no inhibitory activity was detected. The inhibitory activity of thirteen other strains 

of L. acidophilus from pigs, three strains from cows, and one strain from human origin 

were subjected to gel chromatography in the presence of 0.1% SDS. As shown in Figures 

5 through 17 in Appendix B, the elution profiles of all strains tested were similar to that of 

L. acidophilus GP4A. The active fraction was coeluted with the first absorbance peak 

which was eluted right after the void volume. Other material that absorbed light at 280 nm 
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Figure 1. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus GP4A on Sephadex G-200 without SDS. Each 5 ml fraction was monitored at 
280 nm ( --) and was assayed for inhibitory activity ( - - - - ). 
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Figure 2. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus GP4A on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 
was monitored at 280 nm ( --) and was assayed for inhibitory activity ( - - - - ). 



appeared in the second peak. The highest points in absorbance and activity were not 

always eluted as a same fraction. 
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Table 5 shows that a 6.0 fold (L. acidophilus GP4A) to 38.7 fold (L. acidophilus 

606) purifications compared to the original spent broths were achieved by gel 

chromatography. The amounts of activity recovered were from 60.6% (L. acidophilus A4) 

to 72.5% (L. acidophilus FR2) of original activity in cell free spent broth (Table 6). 

The active fractions from gel chromatography were pooled and concentrated with 

Centricell microconcentrator. The resulting concentrated solutions yield a 46 (L. 

acidophilus GP4A) to 163.9 (L. acidophilus 606) fold purification (Table 5). Table 6 

shows percentages of original inhibitory activity (spent broth) recovered ranged from 

53.9% (L. acidophilus A4 and RP42) to 68.3% (L. acidophilus 606 and FR2). 

Ion Exchange Chromatography 

The inhibitory fraction from L. acidophilus GP4A obtained by gel filtration 

was microconcentrated and subjected to anion exchange column chromatography. Two 

absorbance peaks at 280 nm were detected. First peak was eluted before the sodium 

chloride gradient was applied. The inhibitory activity was eluted with second absorbance 

peak at A 280nm (Fig. 3). The conductivity of the active fraction was between 20 to 30 

ms which corresponded to 0.4 M sodium chloride. Diffusion of very weak activity 

throughout most fractions was observed. The elution profiles of the seven other strains of 

L. acidophilus on ion exchange chromatography are presented in Figures 18 through 24 

in Appendix C. All of strains exhibited similar elution patterns. The bacteriocin activity 

was coeluted with second absorbance peak which was at about 0.4 M NaCl. Diffusion of 

activity throughout the fractions also was observed for all strains. 

The ion exchange chromatography resulted in 15.7 (L. acidophilus 606) to 2.0 (L. 

acidophilus GP4A) fold increases in specific activity. The amounts of bacteriocin activity 
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Figure 3. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 

acidophilus GP4A on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M 

NaCI. Each 4 ml fraction was monitored for absorbance at 280 nm (--)and for 

conductivity ( ----- ), and was assayed for inhibitory activity (-- _ ). 



recovered were from 16.8% (L. acidophilus A4 and RP42) to 34.6% (L. acidophilus 

GP2A) of activity in the spent broths (Tables 7 through 14). 

SDS Polyacrylamide Gel Electrophoresis 
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The active fractions from the second peak of ion exchange columns were 

electrophoresed. As demonstrated in Figure 4, 72 KDa, bands appeared in common in the 

active fractions from all eight strains of L. acidophilus. 

Attempts to show inhibition zone on the indicator lawn of agar by' the bands from 

gels were not successful, possibly because of lack of sufficient inhibitory substances to 

produce inhibitory zone on the agar. 
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Figure 4. Coomassie blue stained SDS-PAGE gel of inhibitory activity 
fractions from DE 52 ion. exchange. Lane 1, L. acidophilus 
GPIB; Lane 2, L. acidophilus GP2A; Lane 3, L. acidophilus 
GP4A; Lane 4, RP42, Lane 5, L. acidophilus A4; Lane 6, L. 
aciaopilus 30SC; Lane 7, L.acidophilus FR-2; Lane 8, L: 
acidophilus 606; Lane 9,protein standard . 

.. 
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CHAPTER V 

DISCUSSION 

Bacteriocins are protein or protein related complexes with inhibitory action 

directed against species that are usually closely related to the producer bacterium (Tagg 

et. al., 1976 ). Since Rogers (1928) first indicated the presence of antibiotics among lactic 

acid bacteria, a number of lactic acid bacteria including strains of L. acidophilus (Barefoot 

and Klaenhammer, 1984; Muriana and Klaenhammer, 1991a), L. helveticus (Upreti and 

Hinsdill, 1975; Joerger and Klaenhammer, 1986), L.fermenti (De Klerk and Smit, 1967), 

L. plantarum (Daeschel et. al., 1986;West and Warner, 1988; Anderson et. al., 1988), L. 

sake (Schillinger and Luke, 1989; Mortvedt and Nes, 1990), and L. casei (Rammelsberg 

et. al., 1990) have been shown to produce bacteriocins or bacteriocin-like inhibitory 

substances. 

Twenty seven strains among 92 strains of L. acidophilus isolated from fecal 

contents of humans, pigs, calves, rodents , and turkeys demonstrated inhibitory activity 

against bacteriocin sensitive strains includingL. acidophilusLa-1, NCFM-F, andL. 

delbrueckii subsp. lactis 4797. No strain that produced inhibitory activity was sensitive to 

its own bacteriocin or bacteriocins produced by other strains. These results fit the 

description of bacteriocin in that the bacteriocin-producing strain has host cell immunity 

(Tagg et. al. 1976). 

The inhibitory activities produced by the strains of L. acidophilus in this study were 

not effective against strains of Listeria monocytogenes and E. coli. Ferreira and Gilliland 

(1988) and other researchers (Barefoot and Klaenhammer, 1983; Muriana and 

Klaenhammer, 1987) showed limited inhibitory activity ofbacteriocins produced by 

47 
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strains of L. acidophilus against closely related species. Tagg et. al. (1976) defined a 

narrow inhibitory spectrum as one characteristic of a bacteriocin. Although some cultures 

oflactobacilli (Schillinger and Luke, 1989; McCormick and Savage, 1983) and Pediococci 

species (Hoover et. al., 1988; Bhunia et. al., 1988; Pucci et. al., 1988; Spelhaug and 

Harlander, 1989; Nielsen et. al., 1990; Yousefet. al., 1991) exhibited the antagonistic 
' -

activity against Listeria monocytogenes and/or other forborne pathogens, only lactacin F 

(Muriana and Klaenhamm~r, 1991a) has been reported to be -~ctive against some 

pathogens among confirmed bacteriocins produced by strains of the species L. 

acidophilus. 

All inhibitory activity produced by twenty seven strains of L. acidophilus were 

sensitive to the proteolytic enzymes pepsin and trypsin, heat stable at 121 oc for 15 min, 

and resistant to destruction by catalase. These results meet the criteria described by Tagg 

et. al. (1976) ofbacteriocins from Gram-positive bacteria and confirm the identity of 

inhibitory materials produced by the cultures of L. acidophilus in the present study as 

bacteriocins. 

Vincent et. al. (1959) tried to purify a bacteriocin (lactocidin) produced by L. 

acidophilus. Since then many attempts have been made to purify bacteriocin& from L. 

acidophilus and othe~ lactobacilli (Barefoot and Klaenhammer, 1983 and 1984; Muriana 

and Klaenhammer, 1991a; Mortvedt et. al., 1991). Because the bacteriocins are proteinous 

compounds, several researchers have employed ammonium sulfate preCipitation as their 

initial purification step. A 60% saturation of spent media with ammonium sulfate solution 

was used to precipitate the diplococcin (Davey and Richardson, 1981), propionicin PLG-1 

(Lyon and Glatz, 1991), and l~ctacin 481 (Piard et. al., 1992). Helveticin J, a bacteriocin 

produced by L. helveticus 481; was precipitated by 50% saturation with ammonium 

sulfate (Joerger and Klaenhammer, 1986). Thirty five to forty% and twenty% saturation 

with ammonium sulfate were employed to purify lactacin F (Muriana and Klaenhammer, 

1991a) and lactocin S (Mortvedt et. al., 1991), respectively. The majority of the inhibitory 
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activity was recovered while a great portion of contaminating protein was eliminated 

through the ammonium sulfate precipitation (Mortvedt et. al., 1991; Muriana and 

Klaenhammer, 1991a; Piard et. al., 1992). In the present study, the bacteriocin(s) 

produced by strains of L. acidophilus was precipitated at 50% ammonium sulfate 

saturation. More than 70.7% of bacteriocin activity of original spent broth was recovered 

in the precipitate while more than 86.9% of protein from spent broth was eliminated. 

The inhibitory fraction recovered by ammonium sulfate precipitation of spent broth 

from L. acidophilus GP4A was subjected to gel filtration chromatography . The 

bacteriocin activity was eluted in the void volume in the absence of SDS. However, when 

the same fraction was eluted from the gel column with buffer containing 0.1% SDS, the 

activity was included in a peak corresponding to a single absorbance peak which eluted 

after the void volume. The detergent SDS denatures protein by association of the apolar 

tails of the SDS molecule with protein hydrophobic groups (Zubay, 1988). This 

denaturation resulted in dissociation of large aggregate of subunits of a protein. The 

results from the gel chromatographic purification of the bacteriocin in this study indicated 

that the bacteriocin was present as an aggregate and dissociated to smaller subunits when 

exposed to SDS. The presence oflarge molecular complex ofbacteriocins produced by 

lactobacilli has been reported including lactacin B (Barefoot and Klaenhammer, 1983 and 

1984), lactocin 27 (Upreti and Hinsdill, 1973), helveticin J (Joerger and Klaenhammer, 

1986), and lactacin F (Muriana and Klaenhammer, 1991a). Lyon and Glatz (1991) also 

observed that propionicin PLG-1 produced by Propionibacterium thoenii was present as 

two protein aggregates. Interestingly, the elution profiles oflactocin 27 produced by L. 

helveticus LP27 (Upreti and Hinsdill, 1973) on gel chromatography was very similar to 

those observed in the present study when eluted with or without SDS. 

The active fractions collected from gel chromatography were concentrated and 

applied to ion exchange chromatography for further purification. In preliminary 

experiments, the bacteriocin activity was absorbed to anion exchange resin at pH 8.0 and 
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eluted with sodium chloride gradient whereas the inhibitory activity was not absorbed to 

the cation exchange material. Anion exchange chromatography yielded two distinctive 

absorbance peaks (280 nm). Only one of these two fractions contained the inhibitory 

activity. However, a great portion of the bacteriocin activity was lost during this step. In 

addition, very weak inhipitory activity appeared throughout the fractions from ion 

exchange chromatography. Difficulties have been observed using ion exchange 

chromatography to purify some bacteriocins (Ferreira, 1986). Possible reasons suggested 

for the difficulties include either too strong absorption of bacteriocin to charged surfaces 

(Ellison and Kauter, 1970; Tagg and Russel, 1981), or denaturation of protein during 

passage through the ion exchange column (Clark and Switzer, 1977). The strong tendency 

ofbacteriocins to be absorbed to the charged surfaces may have attributed to loss and 

diffusion of activity. Barefoot and Klaenhammer (1984) also attempted ion exchange 

chromatography to purify lactacin B produced by L. acidophilus N2. However, a majority 

of the activity was lost during the process. They suggested that lactacin B had either been 

denatured or was not soluble in the acetate buffer system at high concentration. Caseicin 

80 produced by L. casei B80 was purified by cation exchange chromatography (up to 68 

fold increase in specific activity) but 50 to 80% of the activity was lost (Rammelsberg et. 

al., 1990). However, other researchers have successfully purified bacteriocins by ion 

exchange chromatography in~luding acidophilin (Shahani et. al., 1977), acidolin 

(Mikolajcik and Hamdan, 1975), and lactocin S (Mortvedt et. al., 1991). 

The active fractions from strains of L. acidophilus eluted from ion exchange 

chromatography were microconcentrated and applied on SDS-P AGE. A 72 KDa band 

commonly appeared for all eight strains of L. acidophilus. Since this band was only one 

common in the inhibitory fractions from the 8 strains tested, it appears that it was 

responsible for the bacteriocin activity of all eight strains. Many different molecular 

weights ofbacteriocins have been reported which include: 1. 7 KDa for lactacin 481 (Piard 

et. al., 1992), 2.5 KDa for lactacin F (Muriana and Klaenhammer, 1991a), 2.7 KDa for 



pediocin AcH (Bhunia et. al.), 4.5 KDa for mesentrocin 5 (Daba et. al., 1991), 5.4 KDa 

for a bacteriocin from L. acidophilus ACt. 6 to 6.5 KDa for lactacin B (Barefoot and 
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- Klaenhammer, 1984), 10 KDa for propionicin PLG-1 (Lyon and Glatz, 1991), 12.4 KDa 

for lactocin 27 (Upreti and Hinsdill, 1973)16.5 KDa for pediocin PA-l (Gonzalez and 

Kunka, 1987), 37 KDa for helveticin J (Joerger 'and Kla~nhammer, 1986), and 40 to 42 

KDa for caseicin 80 (Rammelsberg et. al., 1990). 

However, true comparisons of molecular weights and sizes of these bacteriocins 

still remains questionable. First, most of researchers employed different methods to 

prepare the samples and determined molecular weight under different conditions. Second, 

bacteriocins could easily be associated with other molecules or subunits to form complex 

compound (Muriana and Klaenhammer, 1991; Upreti and Hinsdill, 1973). Third, even 

when SDS-PAGE had been used under similar condition to estimate the molecular weight, 

factors other than size of the .Protein can affect the migration of protein on electrophoretic 

field and result in incorrect molecular weight estimations especially if the large native 

protein is present (Hames and Rickwood, 1981). In addition, Piard et. al. (1992) and Holo 

et. al. (1991) observed discrepancy in estimating molecular weight by SDS-PAGE or by 

amino acid composition analysis. 

Although there are differences in characteristics and properties of reported 

bacteriocins produced by lactobacilli, the results of this study indicated that the 

bacteriocins produced' by eigh~. strains of L. acidophi/us had similar characteristics. Further 

studies including amino acid sequence analyses and genetic determination of bacteriocin 

production and host immunity are needed to confirm whether there are differences in 

bacteriocins produced by various strains of L. acidophilus. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Twenty seven strains among 92 strains of Lactobacillus acidophilus isolated 

from fecal contents of humans, pigs, calves, rodents, and turkeys demonstrated inhibitory 

activity against bacteriocin sensitive strains including L. acidophilus La-1, NCFM-F, and 

L. delbrueckii subsp. lactis 4797. The inhibitory substance(s) produced by these strains of 

L. acidophil us were heat' stable and non-dialyzable proteinous compounds. Neither 

hydrogen peroxide nor acid were responsible for inhibitory actions. The inhibitor(s) 

exhibited narrow inhibitory spectra of activity. All of the producer strains were resistant to 

their own inhibitor or inhibitor(s) produced by other strains. The observed characteristics 

fit the description of bacteriocins produced by Gram-positive bacteria (Tagg et. al., 1976) 

so that the inhibitory substance(s) produced by 27 strains of L. acidophilus was classified 

as bacteriocin(s). 

The bacteriocin(s) was purified by ammonium sulfate precipitation at 50% 

saturation. More than 70.7% of bacteriocin activity was recovered in the precipitate while 

more than 86.9% of protein from spent broth was eliminated. 

Different patterns of elution were obtained when the ammo~um,sulfate precipitate 

from spent broth was applied to a Sephadex G-200 gel column and eluted with buffer with 

or without SDS. This result might indicated the presence of large aggregate of a protein. 

The elution profJJ.es of all strains tested on a Sephadex G-200 col~ resulted in two 

absorbance peaks. The active fraction was coeluted as first peak right after void volume. 

As much as 163.9 fold purification and 68.3% recovery of amount of activity were 
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achieved by gel column chromatography when the active fractions were concentrated 

with microconcentrator. 
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For further purification ofbacteriocin, DE-52 anion exchange column 

chromatography was employed. The bacteriocin activity was coeluted with second 

absorbance peak which was eluted at 0.4 M NaCl. There were some loss of activity and no 

improvement in degree of purification by the ion exchange chromatography. SDS-P AGE 

of the active fractions from ion exchange chromatography revealed a 72 KDa band which 

was common for all eight strains of L. acidophi/us tested. Because of the presence of only 

one band in common, it appears that this band was responsible for the bacteriocin activity 

of all strains tested. 

Great diversity in characteristic and properties ofbacteriocins produced by 

lactobacilli have been reported while they meet most of criteria set by Tagg et. al. (1976). 

In this study, however, the re~ults indicated that the bacteriocin(s) produced by strains of 

L. acidophi/us isolated from different origins exhibited similar characteristics. 

Future studies should include amino acid sequence analysis and genetic 

determination of bacteriocin production and host immunity to determine whether there are 

differences in bacteriocins produced by various strains of L. acidophilus. 
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TABLE? 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS ACIDOPH/LUS 606 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 3,000.0 11.0 17.0 0.5 5.0 

Protein Concn.(mg/ml) 0.13 0.67 0.42 3.17 0.10 

Total Protein(mg) 380.40 7.35 7.14 1.58 0.52 

Bacteriocin Activity '256 65,536 32,7~8 1,048,579 16,384 
(AU/ml) ',' 

Total Activity{AU) 768,000 720,896 557,Q56 524,290 81,920 

Specific Activity 2,018 98,107 78,056 330,876 158,207 
(AU/mg) 

Activity Recovered 100.0 93.9 72.5 68.3 10.7 
(%) 

Purification (fold) 1.0 48.6 38.7 163.9 78.4 

0\ 
Vl 



TABLES 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS ACJDOPHILUS 30SC 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 1,840.0 11.0 20.0 0.5 5.0 

Protein Concn.(mg/ml) 0.20 2.66 0.58 3.20 0.17 

Total Protein(mg) 375.4 29.3 11.5 1.6 0.84 

Bacteriocin Activity 128 16,384 8,192 262,144 4,096 
(AU/ml) 

Total Activity(AU) 235,520 180,224 163,840 131,072 20,480 

Specific Activity 627 6,159 14,209 81,853 24,381 
(AU/mg) 

Activity Recovered 100.0 76.5 69.6 55.7 8.7 
(%) 

Purification (fold) 1.0 9.8 22.6 130.5 38.9 

0\ 
0\ 



TABLE9 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS ACIDOPHIL US FR2 

.. Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 1,500.0 10.5 17.0 0.5 5.0 

Protein Concn.(mg/ml) 0.20 0.94 0.57 2.66 0.14 

Total Protein(mg) 306.0 9.9 9.7 1.3 0.71 

Bacteriocin Activity 8 1,024 512 16,384 256 
(AU/ml) 

Total Activity(AU) 12,000 10,752 8,704 8,192 1,280 

Specific Activity 39 1,089 797 6,154 1,802 
(AU/mg) 

Activity Recovered 100.0 89.6 72.5 68.3 10.7 
(%) 

Purification (fold) 1.0 27.8 22.9 156.9 46.0 

0\ 
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TABLE 10 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACIUUS ACIDOPHILUS A4 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 1,900.0 10.5 18.0 0.5 5.0 

Protein Concn.(mglml) 0.20 1.26 0.71 4.03 0.19 

Total Protein(mg) 387.6 13.2 12.7 2.0 0.96 

Bacteriocin Activity 512 65,536 32,768 1,048,576' 16,384 
(AU/ml) 

Total Activity(AU) 972,800 688,128 589,824 524,288 81,920 

Specific Activity 2,509 52,012 46,400 260,076 85,333 
(AU/mg) 

Activity Recovered 100.0 70.7 60.6 53.9 84 
(%) 

Purification (fold) 1.0 20.7 18.5 103.6 34.0 

0'\ 
00 



TABLE 11 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS AC/DOPH/LUS GP1B 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 1,720.0 11.0 18.0 0.5 5.0 

Protein Concn.(mg/ml) 0.19 1.26 0.76 3.12 0.19 

Total Protein(mg) 326.8 13.9 13.6 1.6 0.93 

Bacteriocin Activity 64 8,192 4,098 131,072 2,048 
(AU/ml) 

Total Activity(AU) 110,080 90,112 73,764 65,536 10,140 

Specific Activity 336 6,501 5.404 42,010 11,010 
(AU/mg) 

Activity Recovered 100.0 81.9 67.0 59.5 9.3 
(%) 

Purification (fold) 1.0 19.3 16.0 124.7 32.7 

0\ 
\0 



TABLE 12 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS ACIDOPHIL US GP2A 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 1,850.0 12.0 20.0 0.3 5.0 

Protein Concn.(mglml) 0.12 0.86 0.50 2.69 0.13 

Total Protein(mg) 222.93 10.26 10.00 0.81 0.67 

Bacteriocin Activity 512 65,536 32,768 2,079,152 32,768 
(AU/ml) 

Total Activity(AU) 947,200 786,432 655,360 629,146 163,840 

Specific Activity 4,249 76,650 655,360 779,610 24,5049 
(AU/mg) 

Activity Recovered 100.0 83.0 69.2 66.4 17.3 
(%) 

Purification (fold) 1.0 18.0 15.4 183.5 57.7 

......,J 
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TABLE 13 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS ACIDOPHIL US 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 920.0 12.0 '20.0 0.5 5.0 

Protein Concn.(mg/ml) 0.09 0.93 0.50 2.06 0.15 

Total Protein(mg) 85.2 11.2 9.9 1.0 0.75 

Bacteriocin Activity 1,024. 65,536 32,768 . 1,048,576 16,384 
(AU/ml) 

Total Activity(AU) 942,080 786,432 655,360 .524,288 81,920 

Specific Activity 11,058 70,204 65,878 509,017 109,226 
(AU/mg) 

Activity Recovered 100.0 83.5 69.6 55.7 8.7 
(%) 

Purification (fold) 1.0 6.3 6.0 46.0 9.9 
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TABLE 14 

PURIFICATION OF BACTERIOCIN PRODUCED BY LACTOBACILLUS AC/DOPHILUS RP42 

Spent Broth Precipitate Gel Filtration Micro- Ion exchange 

concentrate 

Volume 1,900.0 12.0 20.0 0.5 5.0 

Protein Concn.(rriglml) 0.19 1.24 0.63 3.43 0.17 

Total Protein(mg) 361.0 . 14.9 12.7 1.7 0.87 

Bacteriocin Activity 8 1,024 512 16,384 256 
(AU/ml) 

Total Activity(AU) 15,200 12,288 10,240 8,192 1,280 

Specific Activity 42 825 808 4776 1,471 
(AU/mg) 

Activity Recovered 100.0 80.8 67.4 53.9 8.4 
(%) 

Purification (fold) 1.0 19.6 19.2 113.4 34.9 

......:1 
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Figure 5. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus l-3 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction was 

monitored at 280 nm ( -- ) and was assayed for inhibitory activity ( - - - - ). 



A 280nm 
0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 lO 20 

I 
I· 
·I 
I· 

I . 
. I 
I . 
. I 
I . 
. \ 

\ . 
\ 

30 

Fractions 

40 50 

A.U. 
18000 

16000 

14000 

12000 

10000 

-- 8000 

- 6000 

4000 

2000 

60 

Figure 6. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophil us A l on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction was 

monitored at 280 nm (--)and was assayed for inhibitory activity (---- ). 
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Figure 7. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophil us A4 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction was 

monitored at 280 nm ( --) and was assayed for inhibitory activity ( - - - - ). 
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Figure 8. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus GPIA on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 

was monitored at 280 nm ( -- ) and was assayed for inhibitory activity ( - - - - ). 
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Figure 9. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus GP2A on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 

was monitored at 280 nm ( --) and was assayed for inhibitory activity ( - - - - ). 
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Figure 10. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 

acidophilus GP3A on Sephadex G-200 in the presence of O.l% SDS. Each 5 ml fraction 

was monitored at 280 nm (--)and was assayed for inhibitory activity (---- ). 
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Figure 11. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus GP1B on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 

was monitored at 280 nm (--)and was assayed for inhibitory activity (---- ). 
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Figure 12. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus RP34 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 
was monitored at 280 nm (--)and was assayed for inhibitory activity (- --- ). 
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Figure 13. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus RP42 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 

was monitored at 280 nm (--)and was assayed for inhibitory activity (---- ). 
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Figure 14. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophil us 30SC on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction 
was monitored at 280 nm ( -- ) and was assayed for inhibitory activity ( - - - - ). 
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Figure 15. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
addophilus 381-IL-28 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml 
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fraction was monitored at 280 nm ( -- ) and was assayed for inhibitory activity ( - - - - ). 
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Figure 16. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 
acidophilus FR2 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction was 

monitored at 280 nm (--)and was assayed for inhibitory activity (---- ). 
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Figure 17. Elution profile of ammonium sulfate precipitate of inhibitory activity produced by L. 

acidophilus 606 on Sephadex G-200 in the presence of 0.1% SDS. Each 5 ml fraction was 

monitored at 280 nm ( --) and was assayed for inhibitory activity ( - - - - ). 
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Figure 18. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus 606 on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M NaCI. 
Each 4 ml fraction was monitored for absorbance at 280 nm (--)and for conductivity 
( ----- ), and was assayed for inhibitory activity ( --- ). 
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Figure 19. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus 30SC on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M 

NaCI. Each 4 ml fraction was monitored for absorbance at 280 nm (--)and for 

conductivity ( ----- ), and was assayed for inhibitory activity (--- ). 

A.U. 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

00 
\0 



A 280nm 

0.4 

0.3 

0.2 

0.1 -

0 

I 

10 20 30 

I 
I 

I 

I I 
I 

I 
I 

i ~ 
I 

40 50 

Fractions 

60 

------------------

70 80 

--· 

90 

I.S. 

A.U. 
4500 

- 4000 

- 3500 

- 3000 

100 - 2500 

80 -- 2000 

60 1500 

40 1000 

20 - 500 

0 

Figure 20. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus FR2 on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M NaCI. 

Each 4 ml fraction was monitored for absorbance at 280 nm ( -- ) and for conductivity 

( ----- ), and was assayed for inhibitory activity ( -- - ). 
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Figure-21. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus A4 on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M NaCI. 

Each 4 ml fraction was monitored for absorbance at 280 nm ( -- ) and for conductivity 

( ----- ), and was assayed for inhibitory activity ( -- - ). 
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Figure 22. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus GPIB on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M 
NaCI. Each 4 ml fraction was monitored for absorbance at 280 nm ( --) and for 
conductivity ( ----- ), and was assayed for inhibitory activity (--- ). 
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Figure 23. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus GP2A on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M 

NaCI. Each 4 ml fraction was monitored for absorbance at 280 nm (--)and for 

conductivity ( ----- ), and was assayed for inhibitory activity (--- ). 
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Figure 24. Chromatography of inhibitory activity obtained from Sephadex G-200 produced by L. 
acidophilus RP42 on DE 52 anion exchange. The activity was eluted with 0 to 1.5 M 

NaCI. Each 4 ml fraction was monitored for absorbance at 280 nm ( -- ) and for 
conductivity ( ----- ), and was assayed for inhibitory activiti ( --- ). 



VITA 

Sa~hun Kim 

Candidate for the Degree of 

Doctor ofPhilosophy 

Thesis: BACTERIOCINS PRODUCED BY STRAINS OF LACTOBACIUUS 
ACIDOPHILUS ISOLATED FROM DIFFERENT ANIMAL SPECIES 

Major Field: Food Science 

Biographical: 

Personal Data: Born in Seoul, Korea, January 23, 1960, the son of Sung-Bae and 
Hyunsook Kim. Married to Eunkyoung 1m on November 1, 1986. 
Daughters, Una, born March 6, 1988, and Jeanna, born February 5, 1992. 

Education: Graduated from Kyung-K.i high school, Seoul. Korea, in February, 
1978; received the B.achelor of Science in Agriculture degree from Korea 
University, Seoul, Korea, in February, 1982; received Master of Science in 
Animal Science degree from Korea University, Seoul, Korea, in July, 1986; 
completed requirements for the doctor of Philosophy degree at Oklahoma 
State University in December, 1992. 

Professional Experience: Graduate Teaching Assistant, Animal Science 
Department, and The Graduate School ofFood and Agriculture, Korea 
University, 1984-1986 ; Researcher, Institute for Food Research, Korea 
University, 1985-1986; Research Associate, Animal Science Department, 
Oklahoma State University, July 1992 to present. 

Organizations: American Dairy Science Association, American Society for 
Microbiology, Institute of Food Technologists, Sigma Xi, Korean Society 
of Animal Science, Korean Association ofMilk Processing, Korean dairy 
Science Association, Korean Engineers and Scientists Association in 
America. 


