THE ECONOMIC DESIGN AND EVALUATION

OF THREE VARIABLES CONTROL CHARTS

By
CHUANCHING HO

Bachelor of Business Administration
National Chen-Kung University
Taiwan, Republic of China
1982

Master of Business Administration
National Chen-Kung University
Taiwan, Republic of China
1984

Submitted to the Faculty of the
Graduate College of the
. Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
July, 1992



~—
-S>
-

~

=
=N

,

esi3
ap
18 <



Oklahoma Sta1, Univ, Libeary

THE ECONOMIC DESIGN AND EVALUATION

OF THREE VARIABLES CONTROL CHARTS

Thesis Approved:

/é£:;1¢%£2§/“fffzzﬁﬁp

Thesis Advisor

MOVN\MOUUJ\ Kmmdﬂfx

QM/ e
[ (/(’/M/ﬂ/u
/ﬁ%m C. (’;.%rw

Deani of the Graduate College

ii



PREFACE

The objective of this research is to provide optimal
economically-based control éharts for monitoring a process
in a realistic environment. Three variables control charts
are considered. They are the (1) X-bar control chart with
AT&T runs rules, (2) Exponentially Weighted Moving Average
chart, and (3) Zone control chart. The economic models of
these three variables control charts are developed. The
cost structure of these models follows Duncan's approach to
the economic design of the X-bar control chart. Interactive
computer programs are developed to help theoreticians and
practitioners in design and evaluation of these three
charts. Ecopomic comparisons, analyses, and sensitivity
analyses are then performed. Some useful guidelines in the
economic selection and use of the control charts are
provided.
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CHAPTER 1
THE RESEARCH PROBLEM
Purpose

Concepts of cpntrol charting are formally introduced
in the documents prepared by Dr. Walter Shewhart in 1924
(1931). They differentiate between the common causes
(random causes, chance causes) and the special causes
(nonrandom causes, assignable causes) affecting a process.
If common causes only are at work, the process is stable
and statistically predictable. If special causes are also
present, the process is unstable and unpredictable; the
special causes should be détected and eliminated.

The most commonly used control chart is the Shewhart
X-bar control chart with 3-sigma control limits used to
monitor the process mean. A subgroup is sampled from a
process over time and the sample mean is calculated and
plotted on the X-bar control chart. If a plotted point
falls outside either one of the control limits, it is
assumed that a special cause affects the process. An
attempt is made to identify and reﬁove the cause(s).

It is well known that the Shewhart X-bar chart is not

sensitive enough to detect a small shift in the process



mean. Therefore, modifications and extensions to Shewhart
control charts have been developed to improve their
sensitivity to detect a shift in the process mean. Three of
the most important modifications and extensions are the X-
bar control chart using AT&T runmns rules, the Exponentially
Weighted Moving Average (EWMA) chart, and the Zone control
chart (ZCC). Thesé three variables control charting
techniques have been declared to possess better statistical
performance than the standard Shewhart X-bar control
scheme.

On the other hand, the economic performance is of much
interest to practitioners and researchers. The use of any
control chart is basically an economic activity. The
design of a control chart which is statistically desirable
may not necessarily be economically optimal. Therefore,
the economic aspects of a process should be explicitly
considered when statistical process control procedures are
utilized.

The main purpose of this research is to economically
design and evaluate the

a. X-bar control chart using AT&T runs rules,

b. Exponentially Weighted Moving Average chart, and

c. Zone control chart,
used for monitoring the shifts in the process mean,
assuming that the process variance remains the same
throughout production. It is important to note that the

basic difference between these three variables control



charts and the standard X-bar control chart is that these
three charts utilize, more or less, historical data in
making a decision instead of using only the current
observation. For a standardlx-bar control chart, each
subgroup taken is assumed independent of the previous
subgroups. A decision is made about the stability of the
process based only on the most fecent observation. This is
not the case in the three variables control charts
considered here; rather, historical data are part of their
decision making process. An effort is needed to develop the
economic models for these charts and to provide insights,

from an economic viewpoint, for their selection and use.

Problems Of The Economic Design
Of Quality Control Charts When
Historical Data Are Part Of

The Decision Making Process

It was not until 1956 that Duncan introduced the
profit maximization concept into control charting
techniques. The design Qf an economically-based control
chart considers the following economic consequences: (1)
the cost of operating the process under an out-of-control
condition; (2) the cost of looking for a special cause when
one does not exist (false alarm cost);‘(3) the cost of
looking for a special cause whgn‘one exists (true alarm
cost); and, (4) the cost of sampling, inspection, and

plotting a point. All of these factors are affected by



selection of the control chart design parameters. Duncan's
(1956) pioneering work on the economic design of X-bar
control charts provides an’approach for determining the
control chart design parameters of subgroup size (n),
sampling interval (h), and width of control limits (k)
which maximize the average ﬁet income of a process.

An approximation method which determines the optimal
values of n, h, and k for the economic design of the X-bar
control chart is developed by Duncan (1956). He shows, by
giving 25 examples, that the designs of the control charts
deviate considerablly from Shewhart's recommendations.
Control charts based on economic models can therefore
result in substantial cost savings. Considerable work has
since focused on the economic designs of process control
charts, but none of them are designs for the X-bar control
chart using AT&T runs rules, the Exponentially Weighted
Moving Average chart, or the Zone control chart.

The reason for this void is that the Type I error and
Type 11 error probabilities associated with these three
types of variables control charts are unclear and have
never been formally defined. This causes the difficulty in
estimating the expected number of false alarms and, hence,
the false alarm cost.

A possible solution to this difficulty is to use the
average run length (ARL), which is defined as the expected

number of subgroups inspected until a process mean shift



signal is given. There are two ARLs which need to be
distinguished. The first is the ARL when the process is
really in a state of statistical control (SOSC). The second
is the ARL when the process actually goes out-of-control
(00C); that is, when the prdcess mean actually shifts away
from its target value. Idéally, it is desirable to have an
infinite ARL when the process is in a SOSC in order to have
no false alarms (signals). It is desirable to have an ARL
of one when the process is‘OOC in order to immediately
detect the shift in the process mean. In aétual practice,
these ideals cannot be achieved;

The voids and problems described above lead to the
need for further research on economically designed process
control models. The aim of this research is to fill these

voids.
Research Objectives

The primary objective of this research is:

Objective: To provide optimal‘economically—based control
charts, including the (1) X-bar chart using AT&T
runs rules, (2) Exponentially Weighted Moving
Average chart, and (3) Zone control chart for
monitoring a process in a realistic environment.

In order to accomplish this objective, several
subobjectives must be met.)The subobjectives are:

(1) To develop an analytical model to evaluate and

optimize, from an economic viewpoint, the



(2)

(3)

(4)

(5)

(1)

(2)

a. X-bar control chart using AT&T runs rules,

b. Exponentially Weighted Moviné Average chart, and,

c. Zone control chart.

To increase knowledge concerning the relationships
between the sthtisticalxperformance aﬁd economic
performance of a controi chart.

To economically compare the performance of the three
control charts to gain insights into applying these
control charting techniqueé.

To develop computer programs to economically design and
evaluate these three variables control charts.

To conduct sensitivity analyses to systematically study
the effects of the costs andkoperating parameters on
both the control chart design parameters and the
resulting operating loss, using aﬂdesign of experiments

(DOE) approach.
Contribution

The contributions of this research are as follows.
This research becomes thé first of its kind to provide
an economfc design of (a) the X-bar control chart using
AT&T runs rules, (b) the Exponentially Weighted Moving
Average chart, and (c) the Zone control chart. Both
theoreticians and practitioners can benefit from this
research and its results.

This research provides guidelines on how to construct

prediction equations for both the control chart design



parameters and the resulting loss associated with
operating the process.

(3) The prediction equations provided in this research
clearly indicate the magnitude and direction of‘the
effect when one or more<factors are misspecified.

(4) The prediction equations prbvided in this research help
the user to (a) determine the initial values of the
control chart design parameters, and (b) provide an
estimated value of the resulting operating loss.

(5) The results of the sensitivity analyses provide
guidance for the selection of search regions for design
parameters which need to be optimized.

(6) Suggestions are provided regarding the selection of (a)
the runs rules used in combination with an X-bar chart,
and (b) the a value for an Exponentially Weighted
Moving Average chart. These aid the user in selection
of the initial values of the design parameters.

(7) This research provides the relationships between the
statistical performance and economic performance of a
control chart. This helps the user in the selection of
(a) a better set of design éarameters within a control
scheme, and/or (b) a control scheme (chart), which
possesses better statistical (power of detection) and
economic performance.

(8) This research identifies, from an economic viewpoint,
the minimum magnitude of shift in the process mean

which is of real concern.



(9) Computer programs are developed to help the
theoreticians and practitioners in the design and
evaluation of the economic models of the three variable
control charts addressed.

(10) This research extends Duncan's (1956) economic model
of the X-bar chart to the (a) X-bar chart with AT&T
runs rules, (b) Exponentially Weighted Moving Average
chart, and (c¢) Zone control chart. Average run length
is used to construct the fully economic model so that
Duncan's approach is adaptive to these three variables

control charts.



CHAPTER 11
LITERATURE SURVEY
Introduction

Dr. Sheyhart (1931) developed the quality control
chart in 1924. Since then, various techﬁiqhes)have evolved
to deal with different process control situations. Most of
the existing control charting techniques are based on the
assumption of a normal process generating independent and
identically distributed (iid) observations. The basic
principle is that the variation in measurement data
pertaining to a process cah be sepﬁrated into two sources:
inherent process variation due to chance (common) causes
and vari;tion due to special (assignable) causes. For each
technique, criteria are established to determine if the
process is in a state of statistical control.

This chapter reviews the literature which relates to
the three variables control charts studied in this
research. This chapter is divi&ed into two sections:

(1) Statistical design of Vari;bles control charts; and,

(2) Economic design of X-bar control charts.
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Statistical Design of Variables

Control Charts

Shewhart X-bar Control Chart

And Its Enhancements

Shewhart's (1931)>recommendation§ for the three
parameters of the X-bar control chart are (1) subgroup
size, n, equal to 4 or 5, (2) the factdr for control limit
spread, k, equal to 3, and (3) the sampling interval, h,
not specified, leaving this as a choice for the
practitioner at a site. Assuming normalfty of the
production process, there is a probability of 0.0027 that a
plotted point will fall outside either of the control
limits. If a plotted point falls outside either of the
control limits, it is inferred that one or more special
causes exist in the process.

The ARL is used to evaluate the performance of a
contrcel chart and is dgfined as the expected number of
subgroups inspected until a shift signal is given. Due to
the assumption of a normal process and independence of the
subgroups taken, the underlying distribution of run length
of the X-bar control chart is the geometric distribution
when a stability decision is made baéed only on the current
observation.

1t is found that the Shewhart X-bar control chart is
not sensitive in detecting small to moderate amounts of

shift in the process mean. Thus, many enhancements have
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been suggested during the past four decades. Weiler (1953)
suggests, in order to detect small changes in the process
mean, that control by runs of the sample means above or
below certain control limits makes it possible to use small
subgroups and yet maintain the advantage of a reduced
amount of inspection.

Page (1955) develops the control charting technique
using both warning limits and action (control) limits.
Samples of fixed size are taken at regular intervals and a
statistic of the sample (for example, the sample mean) is
plotted on the chart. If a sample point falls outside
control limit(s) drawn on the chart, a corrective action is
taken. He gives four different runs rules to determine if
the process is in a state of statistical control. The ARLs
of the control charts, combined with these four rules, are
developed and evaluated using discrete Markov chains. As
Page points out, the ARL of the runs rules can be evaluated
by enumerating the possible combinations of the (n-1)
points on the chart such that action has not been required,
and treating the combinations as the states of a discrete
Markov chain. This leads the way to the study and
evaluation of the ARLs of the Shewhart X-bar control chart
with supplementary runs rules (which includes AT&T runs
rules) by Champ and Woodall (1987).

I Weindling, Littauer, and Oliveira (1970) suggest that
the Shewhart control chart for the sample mean can be made

more sensitive to small changes by adding a pair of warning
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limits, located inside the action limits, and taking action
when a run of a specified number of consecutive sample
means falls between the warning and action limits. They
recognize that when the cost of searching for the cause of
a shift is high, a chart havfﬁéwa idrge value of the ARL
(or Mean Action Time, MAT) in control is preferred. When
the cost of producing off-spec items is high, a small value
of the ARL is desired when some certain amount of shift in

the process mean is most likely to occur.

The X~-bar Control Chart

With AT&T Runs Rules

Western Electric Company (now AT&T, 1958) presents
four runs rules to improve the sensitivity of quality
control charts. The X-bar control chart with AT&T runmns
rules is employed to maintain the production process in a
state of statistical control. The statistic of interest is
the sample average*whicﬁ is’issumed to be normally
distributed. The region from the lower control limit (LCL)
to the upper control limit (UCL) of a control chart is
divided into six equal zones, shown as Fjgure 2.1.

An out-of-control signal is given when a specified
situation is met, which depends on the rules that are used.
The AT&T runs rules are summarized below for a one-sided
control chart. The rules apply equally to each side.

Rule 1: A single point falls outside of the 3-sigma control

limit (beyond zomne A).
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UCL
zone A
zone B
zone C

CL
zone C
zone B
zone A

LCL

Figure 2.1 Zones Of A Control Chart
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Rule 2: Two out of three successive points fall in zone A
or beyond; the other point may be anywhere.

Rule 3: Four out of five successive points fall in zone B
or beyond; the other point may be anywhere.

Rule 4: Eight successive points fall in zone C or
beyond.

Wheeler (1983) provides expressions for up to 10 run-
length probabilities for some one-sided Shewhart X-bar
charts with supplementary runs rules. Champ and Woodall
(1987) provide a recursive method using Markov chains,
which can be used with a one-sided or a two-sided chart, to
evaluate the ARLs of the X-bar control chart with
supplementary runs rules. Their method can be applied to
calculate any number of run-length probabilities. Champ and
Woodall are the first two researchers to use an exact
method to evaluate the ARLs of the X-bar control chart with

AT&T runs rules.

The EWMA Chart

Roberts (1959) develops a control chart using the
Exponentially Weighted Moving Average (EWMA, there called
the Geometric Moving Average) technique. It gives the most
recent observation the greatest weight with all previous
observations weights decreasing in a geometric progression
from the most recent back to the first. The basic formulae
for calculating the EWMAs and the control limits are listed

as follows:
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(1) Calculation of the EWMAs

EWMA: = (1 - a) * EWMAt-1 + a * y:
where,

0a=s1, t =1, 2, ...,

el smooihing constant ,

yt: sample average observed at time t, and

EWMAO: the nominal value of the process mean.

(2) Calculation of the control limits (CLs)

CLs = Nominal % k * ogwua
where,

oewua = o * {a/[n*(2-a)]}0.5

o: process standard deviation

Roberts evaluates the ARLs of the EWMA control scheme
using simulation. A comparison of the properties of control
chart tests based on the EWMAs and the ordinary moving
averages is performed. He concludes that tests based on the
EWMAs compare most favorably with multiple run tests and
moving average tests with reéard to simplicity and
statistical properties. Roberts also realizes that the use
of the EWMA control scheme is an economic one due to the
complexity of the EWMA chart comparéd to the standard
Shewhart X-bar control chart.

Robinson and Ho (1978) develop numerical procedures
utilizing recursive techniques and an Edgeworth expansion
to formulate the probability law for the time of the first
passage of the EWMA variable across either the upper or

lower control limit. Both one- and two-sided ARLs are
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calculated and tabulated for various settings of the
control limits, smoothing constant, and shifts in the
nominal level of the process mean.

Crowder (1987a, 1987b, 1989) presents a general
methodology for studying the EWMA procedures assuming an
iid normal process. The approach uses a Fredholm integral
equation of the second kind for moments of run-length
distribution with an EWMA chart. An intensive study of the
ARLs of the EWMA charts has been carried out and the ARLs
are tabulated for various settings of control chart
parameters. A set of procedures is given for the
statistical desiéns of the EWMA charts. Crowder (1989)
declares that his design procedures are optimal because,
for a given in-control ARL, the parameters chosen by his
procedures minimize the out-of-control ARL for a specified
shift in the process mean.

Ng and Case (1989) propose methodologies to construct
the EWMA control charts used for monitoring the sample
means (SM), sample ranges (SR), individual observations
(ID), and moving ranges (MR). Four control charts are
developed; they are EWMASM, EWMASR, EWMAID, and EWMAMR.
Extensive tables of factors for control limits of each
chart are given. They find that a systematic and consistent
derivation of the EWMA of variables is possible and may be
more easily understood.

Lucas and Saccucci (1990) evaluate, using Markov

chains, the ARLs of the EWMA chart used to monitor the mean
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of a normally distributed process that may experience
shffts away from the target value. Tﬁey give detailed
discussions about the zero-state ARLs and the steady-state
ARLs. Several enhancements‘afe;given, such ;s the Fast
Initial Response iFIR)*fgaﬁufgyﬁhiqh makes the scheme more
sensitive at start-upi aﬁcpmbined Shewhart-EWMA scheme that
provides protection ggainst bothAla}ge and small shifts in
the process mean; and, a robust EWMA scheme that provides
extra protection against outliers. A set\of“the statistical
design proce&ures for the EWMA control scheme is presented.
Basically, their design prdgeduresnare the same as
Crowder's. Their results show that the properties of EWMA's
are very close to those of the Cumulative Sum (CUSUM)

schemes.
The Zone Control Chart

Jaehn (1987a, 1987b, 1987c, 1989) proposes the Zone
control chart technique as‘a‘further development in the
area of sensitizing coﬁtrol charts, but with a minimum of
mathematical analysis. The Zone control chart,‘Shown in
Figure 2.2, looks likeva Sﬁéwhart control chart with AT&T
runs rules.

In this technique, either side (from center line to
UCL or LCL) of the control‘chart>is divided=intoAthree
equal zones. Zone scores of 1, 2, 4, and 8 are employed
with critical values being set equal to the scopé of the

outermost zone. A special cause is considered existing in
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Zone
Zone. Score
D(U) 8
h UCL
c(u) 4
B(U) 2
A(U) 1
CL
A(L) 1
B(L) 2
Cc(L) 4
LCL
Cum. D(L) 8

Score: 13 2 1 3 T 8

Figure 2.2 Example Of A Zone Control Chart
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the process when the cumulative zone score is greater than
or equal to the critical value. It is reported that the
Zone control chart is simpler and more sensitive than the
Shewhart X-bar control chart when the shift in the process
mean is small. The ARLs of this particular scheme are
obtained by simulation.

Hendrix (1989) introduces the use of the Zone control
charts. He uses simulation to obtain the ARLs of the Zone
control charts with different sets of zone scores and
compares them against the Shewhart X-bar control charts. No
mathematical analysis and evaluation of the performance of
the Zone control charts are given by either Jaehn or
Hendrix.

The problem of the Zone control chart proposed by
Jaehn is that it gives a high false alarm rate when the
process is in a SOSC. Recall that one of the properties
desired when constructiﬁg a control chart is the low
(nearly zero) false alarm rate when the process is really
stable. Therefore, an improvement in the Zone control chart
is needed.

In order to solve the broblem described above, Fang
and Case (1990) mathematically formulate the‘Zone control
chart. An analytical model using Markov chains is given to
evaluate the ARLs of the Zone control chart. A suggested
improvement to the Zone control chart is given.

Independently, Davis, Homer, and Woodall (1990) also

mathematically evaluate the performance of the Zone control



20

charts)using Markov chains. They conclude that the assigned
zone scores can greatly affect the performance of the Zone
control charts. When zone scores are properly assigned, the
Zone control charts outperform, based on the ARLs, the

competing Shewhart X-bar control charts with supplementary

runs rules.

Economic Design Of X-bar

Control Charts

Duncan (1956) is the first to introduce profit
maximization concepts into control qharting techniques.

His pioneering work leads the way in the study of this
area. In his procedures, subgroups of size n are taken from
the production process every h hours. The sample means of
these subgroups are calculafed and plotted on the X-bar
control chart with control limits symmetrically placed tk-
sigma away from the center line. The subgroup size (n),
sampling interval (h),‘and the spread of the control limits
(k) are the control chart design parameters which need to
be optimized. A loss function in terms of expected loss per
hour is constructed to evaluate the optimal design.

The expected loss per hour is defined as the expected
loss per production cycle divided by the expected length of
a production cycle. The expected loss per production cycle
consists of four elements as follows:

(1) Penalty cost: The cost due to operating the process

under an OOC condition.
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(2) False alarm cost: The cost due to looking for a special
cause when none exists;

(3) True alarm cost: The cost dge to looking for a special
cause when one exists; |

(4) Control chari’mﬁiﬁtbnance‘cqét} The cost due to
saméling, inspection, and plotting on the conirol
chart. | |

The length qf'a production cycle is defined'as the total

time from which the process»stafts in a‘SOSC, shifts to an

00C condition;lthe 00C ¢onditf6n is detécted, and' the

special cause is identified.

An approximation methoa iS‘deQeloped to evaluate the
optimal values of the coﬂtrdﬁichart design parameters.
Twenty five humerical example§ are'given and evaluated
which essentially‘represent'a one-factor-at-a-time type of
sensitivity analysis. In Adﬁition to his original. work,
Duncan (1971) develoés*fﬁé"bébﬁomic model for the X-bar
control chart subject to ; ﬁuitipliéity of special causes.

. Goel, Jain, and Wu (1968) develop an algorithm for the
determination of the economic design of the X-bar control
chart based on Duncan's model.’The Aigo;ithm\éonsists of
solving an impliciﬁ\equatioh in n and k, and anyexplicit
equation in h. Duncan's (1956) assumptions to simplifying
the calculation of the expectédtlength~of~a produgtion
cycle are still applied to Goel, Jain, and Wu's model.
Therefore, their model is still an approximation. They

declare that their algorithm yields designs with smaller
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cost and, in many cases, the differences from Duncan's
(1956) results are quite significant.

Chiu and Wetherill (1974) propose a simple semi-
economic scheme for the design of the X-bar control chart.
In this scheme, control chart design parameters (n, h, k)
are determined under the coneifion that a consumer's risk
point on the OC curve must be selected to protect against
inferior quality. One may then determine the value of k and
n from a table by rule of thumb. The value of h is
calculated by a very simple algebraic formula. Chiu and
Wetherill declare that their method permits a rapid
determination of the control parameters which generally
yield an average cost close to the exact minimum. They also
demonstrate that, in most cases, despite its simplification
of the problem, their method gives better solutions than
Duncan's with the advantage that the OC-curve can be
partially controlled by the user.

Gordon and Weindling (1975) propose a cost model for
the economic design of centrol charts with warning limits.
The production rate is assumed to be constant in their
model. The average number‘of geod products being produced
during a production cycle and the,eipected costs generated
within a production cycle can then be calculated. Gordon
and Weindling build their model based on the average cost
per good part produced, instead of using Duncan's (1956)
approach. The reason is to avoid the difficulty of

neglecting the effects of lost production when the process
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is stopped to search for the possible special cause(s).

Chiu and Cheung (1977) investigate the economic design
of X-bar control charts with both warning and action
limits. Vﬁrious comparisonssgpé performed amongbthe minimum
cost designs of_the.X4bar é§ntroi charts (with and without
warning limits) and CUSUM ;harts. They declare that, when
each of these three qh;rts‘has the minimum poét design for
the same cost andvbperating’papameters,'the X-bar control
chart with warning limits and the CUSUM charts are almost
identically efficient in most economic respects; and, both
are only slightly better than fhe 6p&ingry X~-bar control
chart. He thus recommends the X-#an control chart with
warning limjts for'practical applicatiog as they are much
easier to handle than the CUSﬁM‘charts. Chiﬁ and Cheung
also find, from an econﬁmic viewpbint,‘that the warning
limits should be placed At'about‘0.85 times the distance
between the center liné‘ané the upper or lower control
limit, instead of the commonly ﬁsed two thirds of that
distance. |

Krishnamoorthi (1985) points out that economic control
charts are not weli accépted by QC proféssionalsiin the
field due to the complexity of the eCoﬁomic models and the
way they are presented in the liieratufe. Therefore,
Krishmoorthi (1935) presents a tutorial paper to introduce
the concepts and use of the economically-based X—bgr

control chart, necessary data requirements, and the benefit
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of using economically designed control charts. Duncan's
(1956) pioneering economic model of thg X-bar chart is
employed for illustration. Montgomery's (1982) computer
program is used to determine the optimél design parameters
(subgroup sizé,.samplihg in}erval, And qidth of the control
limits) ;nd the reéultingvbperating‘ioss.

Krishnamoorthi -(1985) also presents a simple method to
estimate the magnitudé of shift in the process mean,
utilizing the data 6btained for the control chart, The X-
bar values, which are obtained from pre;iously maintained
X-bar chart with 3—sigma‘contr61j1imits} thét are outside
the control limits are used. falsélalarms are omitted. If
the process mean shifts abo{e tﬁé nominal value, then, the
average value of those X-bar's above the control limits is

given by

x + 80 + (o/fn) * {[¢(3-8/n)] / [1-8(3-8/n)]}.
If the process mean shiftslbelow the\nominal value, then;~

it is given by

x - 80 - (o/{n) *‘{[¢(6(fn)-3)j / [1-8(8(in)-3)1},

where g(.) and'i(.);are the probabiiity density function
and distribution function of tﬁe standard normal
distribution, respectively, and & is the magnitude of shift
in the process mean meésufed in numbBer of process standard
deviaiions. |

As stated previously, the economic models of process

control charts are complex. Therefore, one direction of the
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study of economic designsJis to’ftnd simpler ways to
determine optimal control chart design parameters. Chung
(1990) adopts McWilliams' (1989)lsugéestion to use
[(expected time the process is in control / sampling
1nterva1) - 0.5] to approx1mate the quantlty of the
expected number of. subgroups taken whlle the process is in
control. This leads Chung to derlve a s1mp11f1ed procedure
for solving the optimal desxgn parameters of an
economlcally-based X-bar chart. An expllclt equation for
solving the sampiing interval is then obtained. By solving
this equation, close-to—optimal'controi chart design
parameters ana iower opeiating‘loss are obtained. The
assumptions made in Duncan's (1956) paper in order to solve
for near-optimal design parameters are avoided. The results
are compared to those of Goel,'Jain} and Wu's (1968) and it
is reported that Chung;s‘sesuits are better than Goel's et
al. B

In the literature'of the economic design of process
control charts, there ase two differeﬁt manufacturing
process models often cited. Duncan's (195€) original paper
assumes that the production prooess is qot stopped while
the investigation of a possible,special cause is
undertaken; some others assume*tﬂe process is stopped.
Panagos, Heikes, and Montgomery (1985) investigate the
effects of these two assumptions. They designate their
"continuous" model as the one without stopping the process

while an investigation of a special cause is in progress;
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the "discontinuous” model assumes the process is stopped.
The hourly-based expected loss is used as a criterion for
determining the optimal designs.

Panagos et al. use a designed experiment and the
approach of analysis of variance (ANOVA) to conduct
sensitivity analyses regarding the effects of the cost and
operating parameters on the optimal design parameters and
the resulting operating loss. In their continuous model,
there are 9 cost and operating parameters considered and a
28-4 fractional factorial (FF) experiment with resolution
IV is carried out. In their discontinuous model, 13 factors
are considered and a 213-8 FF experiment also with
resolution IV is conducted. Their work concentrates on the
main effects only, due to the fact that the resolution of
the experiments is IV and the two-way linear interactions
are confounded with each other. They show that the choice
of the proper manufacturing process model is critical
because selection of an inappropriate model may result in
significant economic penalties. They also observe that to
stop the process while investigation of a special cause is
in progress results in larger subgroup §izes,‘wider control
limits and longer sampling intervals.

Other than the fully economic models developed
(Montgomery, 1980; Panagos, Heikes, and Montgomery, 1985),
Montgomery and Storer (1986) also develop an alternative
approach to economically design process control charts.

Instead of using 9 cost and operating parameters, a
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simplified model with only’5'cost and operating parameters
is proposed. An example is demonstrated’to show the little
difference in loss between the optimal design from the full
economic model and the simplifi?d,une.

Various assumptioné negérdingiﬁhe manufgcturing
processes and the cost and”opefating.parameters have been
made since 1956. For exampie, aé Shqyn{previously, some
authors assume that the process ié sfopped when the
investigation of aypossible specialpcausg is in progress,
others -do not; some authoré“choﬁse to iﬁcluae the down-time
cost and repairing cost in their models, while others do
not. Also, notation used is nofAunified.

Loreﬁzen and Vapce (1986) provide # unified approach
to the economic desién‘of process control charts. A general
process model isyconside:ed. An effort is made to unify the
notation used. Theii modeltincludeg 12 cost and operating
parameters, 2 indicator variabieé{which determine if the
manufacturing activities confinue during the search or
repair stage, and 3 control chaft'design parameters
(subgroup sizg, sampling interval, and width of the control
limits) which need to be optimi;ed,in order tb minimize the
hourly-based expected loss. An examﬁle ié gfvenyand a
sensitivity analysis iS conducted. They find that the
expected minimum loss per hour is sensitive to the change
of the magnitude of the process mean shifts (8); however,
the sampling plan itself is not sensitive to the change of

8. Therefore, a crude approximation of the process
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parameters can be made to design/a good sampling plan.
Collani (1988) also proposes a unified approach to the
optimal design of process control chérts. A different
approach is adopied,‘however.ylg his(model, the process is
assumed to operate)gnder oqé\ofjtws ;tates. State I
represents "satisfactory", in which no corrective action is
thought tolbe necegsary} State ii represents
"unsatisfaékpry", in which a éorrecfive action;is thought
to be necessary. Three différeni policies (monitoring,
inspecting, and renewai/ replacement) arevdefined and
incorporated into his model. An example using the X-bar
chart is giyen. The objecfive is to‘find the optimal design
parameters in ofder to maximize the net profit per item
produced. This ﬁodel is repprted to be applicable to both
the statisticallquafity ponfrol and the reliability areas.
Collani (1986) also pgobbées{a different prdcedure to
determine the econoﬁic\désigh‘of the X-bar control chart.
In this procedure, other tﬁgﬂ emp1oying the regular X-bar
chart, the author also includes periodic inspection of the
process without performing sampling insﬁection as an
alternative. Thérefore,'thére are fwb,stratégies in
determination of the optiﬁal design. The first one is to
use the regular X-bar chart prqcédure in which a subgroup
of size n21 is taken from the process every h hours. The
quality characteristic of tﬁis sdbénoup is then computed
and plotted on the X-bar chart with control limits §1aced

at tk-sigma away from the center line. The second strategy
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calls for inspection of the process every h hoﬁrs without
sampling a suﬁgroup. Therefore, n and k are zeroes.

In Collani's modei, it is assumed that (1) the
production rate is constant; (i) the process is shut down
during search and repair ope;gtiénsﬁ (3) thg overall loss
due to the down time'of‘thélprdcesé is considered; and (4)
the time required io»sqmple and‘interpret one item is
negligible. The optimél design for egch strétegy is
determined. Thehove}all optimal design is then determined
by selecting the émaller loss per ifem of'fhese‘two
strategies.

Comparisons. are made aéainst Mbntgomery's (1982)
results using the‘économic désién of the X-bar chart and
Chiu and Wetherill's (1974) results using semi-economic
design of the X-B;r chart. Collani (1986) reports that his
results are very clﬁse«to the optimal aesigns in terms df
minimum cost. In some caseé;;this.holds for even sub-
optimal designs. It is glso reported that his procedure is
superior to Chiu andéWefherill's semi-economic scheme when
sampling is expensive.

Traditidnal eéonomic~design)of the X-bar control
charts use equidistant control limits. This is due to the
assumptions of (1) éonstanf proces§ variance, (2) perfect
measurement of the quality characteristic, and (3) equal
probabilities of ubward and downwarq shifts in the process
mean. Tagaras (198%9a) relaxes these three assumptions in

developing and studying, from both the statistical and
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economic viewpoints, the X-bar chart with asymmetric
control limits. He assumes that the process variance
changes with the process mean and the coefficient of
variation of the process remains constant throughout
production. The hourly—based‘éxpected loss is employed for
determining the optimal design.

Comparisons between X-bar charts with symmetric and
asymmetric control limits are performed. A sensitivity
analysis is conducted regarding the effects of
misspecification of the cost and opefating parameters and
the model parameters (probabilities of shifts, rate of
error of constant variance, and rate of error of
measurement) on the optimal design parameters and the
resulting operating loss. It is reported that the
probability of shift in the process mean and the accuracy
of measurement have notiéeable effects on the optimal
design and the resulting loss; however, the assumption of
constant variance is shown to be relatively unimportant.
Tagaras (1989a) also provides some advice on estimating the
model parameters: (1) if uncertainty exists about the
accuracy of the estimate of the probabilities of shifts in
the process mean, a value close to 0.5 should be used from
the economic viewpoint; and (2) it is better to assume a
large value of coefficient of variation.

The basic assumptions when constructing control chart
limits are: (1) the distribution of the measurable quality

characteristic is normal; and (2) the inspection of the
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quality characteristic is not subject to measurement error.
These assumptions, however, may be violated in the physical
environment. Rahim (1985) explores the effects of non-
normality and measurement error on the design of the X-bar
chart. The underlying distribution of the measurable
quality characteristic is assumed to be non-normal by
explicitly considering the skewness and kurtosis of the
distribution; The measurement error is considered to be
normally distributed. An economic model is developed in
which the subgroup size, sampling interval, and the control
limits are determined based on minimizing the expected
loss. Rahim (1985) shows, by giving some numerical
examples, that the conventional control plans with
normality assumption will result in misleading values of
the optimal design parameters and a resulting operating
loss when the process is markedly non-normal and subject to
measurement errors.

Most of the work of the economic design of quality
control charts assumes that the underlying distribution of
the process failure mechanism is exponential. That is, the
times between occurrences of successive special causes are
exponentially distributed with a specified mean value. The
exponential distribution has the "memoryless" property.
Therefore, it is a truly random shock because by assuming
an exponential distribution, a constant failure rate for
the process is implied. For some processes which

deteriorate with time, the exponential assumption may not
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be appropriate. A rich distribution must be employed for
more complex situations.

Hu (1984, 1986) modifies Duncan's (1956) model to
employ the Weibull distribution as the underlying
distribution of the prbcess failure mechanism. The process
deterioration can then be simulated by varying the shape
parameter of the distribution. The situations with shape
parameter set from 1 to 4 are'selected for study, while the
scale parametér is adjusted to maintain the same mean
duration of the in-control period. The control chart design
parameters (subgroup size, sampling interval, and width of
the control limits) are kept constant throughout
production. The objective is to optimizefthe design
parameters in order t{o minimize the expected loss. It is
reported that Duncan's (1956) economic model is insensitive
to misspecification of thg process failure rate.

Baner jee and Rahim (1988) point out that the
assumption of a constant sampling interQaI is
counterintuitive in the case of an increasing failure rate
of the process. A more realistic approach is to shorten the
sampling interval because the process deteriorates further
as time goes by. Therefore, they propose an economic model
of the X-bar chart under Weibull shock using a varying
sampling interval. They define the sampling interval to
keep the probability of a shift in an interval, given no
shift up to the start of the interval, constant for all

intervals.
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Comparisons are made among three cases: (1) a Weibull
shock model with a varying sampling interval scheme; (2) a
Weibull shock model under a constant sampling interv#l
scheme; and (3) an exponential shock model under a constant
sampling interval scheme. ft is found,»based on the
expected loss per hour, tha?“the results of case 1 are
superior to both case 2 and 3. The differences of the
losses between case 2uand 3 are negligible.\This means that
if a constant sampling scheme is employéd, thén, different
assumptions regarding the process failure mechanism do not
affect the expected loss much. If a v#rying‘sampling
interval scheme is employed, then, the proper process
failure mechanism should be;carefully investigated and
determined because a substantial loss will incur if the
wrong distribution is assumed.

A sensitivity analysis is also conducted regarding the
effects of the variation 6f the Weibull parameters on the
optimal control design parameters and the resulting
operating loss. They find that the optimal design
parameters are not sepsitive to a moderate degree of
misspecificati&n of the Weibull parameters.

Baner jee and Bahim (1987) also propose another
approach to design and evaluate economically-based control
charts. Their purpose is to\study the role of the Markovian
assumption. A renewal theory approach is employed to
formulate and calculate the expected cycle length and the

expected loss per cycle. In their model, the possible
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system states are viewed at the end of the first sampling
interval. At that point of time, the expected residual
cycle length and the associated probability for each
possible state of the system is determined. The renewal
equation is formulated and.then solved to obtain the
expected cycle length. The expected loss per cycle is
obtained using a similar approach. Examples are given for
the situations where the distributions of the process
failure mechanism are geometric and Poisson. The case of
the Gamma shock model is thoroughly discussed. They show
that certain non-Markovian models can be analyzed by
adopting a renewal equation appfoach.

McWilliams (1989) conducts a sensitivity analysis of
the effects of misspecification of the underlying
distribution of the process failure mechanism on the
optimal control chart design parameters and the resulting
operating loss. The Weibull distribution is selected to
represent the underlying distribution of the process
failure mechanism and it is implemented in Lorenzen and
Vance's (1986) model. He finds that, by assuming that the
mean value of the in—control\time is correctly specified,
the economic control chart design is not sensitive to the
shape of the Weibull distribution.

Due to the fact that the Weibull distribution is a
rich distribution, McWilliams concludes that the above
result will occur in general when considering the various

economic control chart models and other distributions for
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the in-control time; hence, the existing economic models
are more widely applicable than their assumptions would
indicate. He then emphasizes that (1) the expected time of
occurrence of a special cause, within a sampling interval,
should be approximated by one-half of the sampling
interval; and (2) the expected number of subgroups taken
while the process is in control be approximated by
[(expected time the process is in-control/sampling
interval) - 0.5] in order to simplify the economic models.
Note, however, in this study, the control chart design
parameters are kept constant throughout production.
Parkhideh and Case (1989) develop a more general
economic model for the design of an X-bar chart. They, in
addition to adopting the rich Weibull failure mechanism,
allow the control chart design parameters to vary over
time. Therefore, it is an economically-based dynamie X-bar
chart. Duncan's (1956) approach to the economic design of
an X-bar chart is employed. The subsequent values of the
control chart design parameters (subgroup size, sampling
interval, and width of the control limits) are assumed to
be functions of their initial values. Therefore; the
objective is to find the optimal initial vaiues of the
design parameters in order to minimize the expected loss
per time unit. Comparisons are made between the dynamic X~
bar chart and the traditional X-bar chart under a wide
range of situations. They report that the dynamic X-bar

chart is always superior to Duncan's (1956) X-bar chart
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when the distribution of the process failure is Weibull.

Duncan (1971) develops an economic model for the X-bar
chart subject to a multiplicity of special causes. This
problem has also been addressed by several other
researchers. All of them use only one set of control limits
to maintain the process under control. There are
situations, however, where different special causes will
shift the'process mean by different amounts; also,
different cost and restoration procedures are required to
repair the process for different shifts. Therefore, there
is a need to develop a model which can distinguish between
different status of the process and thus reduce the
resulting loss.

Jaraied and Zhuang (1991) provide a computer program
to economically determine the optimal control chart design
parameters and the resulting operating loss when the
process is subject to a'mﬁltiplicity of special causes.
This program is developed based on Duncan's (1971) model.
The partial derivative of the loss function with respect to
h (sampling interval) is set equal to zero to solve for h.
A Fibonacci search technique is then applied to the
subgroup size and the width of the control limits to
determine the optimal values.

Tagaras and Lee (1988) propose an economic model of
multiple control limits with multiple corresponding levels
of process shifts. The design parameters that need to be

optimized are the subgroup size, sampling interval, and
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multiple sets of control limits. The criterion used for
determining the design parameters is the expected loss per
time unit. A large number of\numerical examples are
presented and a sensitivityﬂanalysis is performed on these
examples. A comparison is ﬁédé between the proposed model
and an approximately matched\single cause model. It is
reported that the proposed mode1 shows 'a significant
improvement.

As meniioned before, even though much of the work of
the economic designs reports the benefits and savingé
through the use of economically-based control charts, théir
implementation is'still limited in the practical
environment due to the complexity of the economic models
and the optimization technfques required. Therefore,
several efforts have been devoted to developing the
approximation methods.

One of the approxiﬁation‘methods is developed(by
Tagaras (1989b) whb‘ppoposes a log-power function to
estimate the power of'detecfion of the control chart at
optimality. Multiple linear regression is employed for/the
derivation of the approximate formula expressing the power
of the control chart as a function of the cost and
operating parameters.‘Duncan's (1956, 1971) models with
single and multiple special éauseé are studied. It is shown
that, in the case of the X-bar chart and a single special
cause, the approximation provides solutions which are very

close to the true optima.
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In almost all of the literature of the economic design
of process control charts, it is assumed that the cost and
operating parameters of the process are known or can be
precisely“estimated. In many céses, this information is not
available or is difficult to oﬁtain. Therefore,
Pignatiello anﬂ Tsai (1988) propose,antébonomic model which
explicitiy'considers the imprecision of the estimation of
the cost and operating parameteré.

Duncan's (1956) economic X-bar chart is selected to
implement this idea. An approach similar to the use'of a
Taguchi robust designed experiment (Kackar, 1985) is
employed. The subgroup size, sampling interval, and width
of the control limits are treated as controllable variables
and the cost and operating parameters are treated a; noise
factors. The precise values of the noise factors are not
known; however, if is assumed that a prior distribution can
be specified for these‘fac£OPSa The low-cost, robust
,design for the X-bar éhart is then formulated. It is
reported that the loss funcfion formulated under this new
approach performs markedly better than the onevwithout
considering thevimplementation of'a measure of thei
imprecision, especially when the rates of error of
estimation of the noise factors are-greater than 20%.

Most of the‘applibations of the X-bar chart are in a
piece-part manufacturing environment. Koo and Case (1990)
apply the X-bar control chart procedure to a continuous

flow process and develop an economic model. In their
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procedure, a sample of size 1 is taken from the process
every h hours. A subgroup of size n is formed from these
samples. Therefore, a subgroup consists of n samples each
taken h hours apart. The control chart design parameters
which need to .be optimized ape'fheyéubgroup size, n,
sampling integval,‘h, andejath ofrtheycoptrol limits, k.
The objective is to minimize the hourl&-based expected
loss. A detailed derivation;fOilthe expéctgd loss function
is given. The Nelder-Mead ée;rch technique is employed to
determine the optimal desién pgrameterS’and the loss. A
sensitivity analysis regarding"the effects of the cost and
operating parameters on the optimal designs is éarried out.
Montgomer& (1980) containstreferences to earlier work
on economic deéign\of control charts. Vance (1983) provides
a bibliography fér economic design of éontrol charts of the
period 1970-1980. Both are good references for the economic

design of control charts. '
AShmmary

A literature survey of the problems, contributions,
and needs related to ihe objectives of this research is
presented. It is obvious that there has been no work done
for the economic»designs of the X-bar control chart with
AT&T runs rules, the EWMA chart, and the Zone control
chart. All three of these control schemes are used in
industry. But, the tasks of formulating an economic model

for each one of the three control schemes is yet to be
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accomplished.

One of the key elements in gaining competitiveness in
the international marketplace is to produce products of
higher quality at lower costs. As mentioned before, the use
of quality control charts fof process control is an
economic activity. Therefaré, this survey indicates that a
need exists to:

(1) Provide economic models for the proposed

a. X-b#r control chgrt with AT&T runs rules,
b. EWMA chart, and,
c. Zone control chart.

(2) Provide guidelines as to which cost and operating
parameters have effects on the design parameters and
the resulting operating loss.

(3) Gain insights of the economic use of the proposed three
variables control,charfs.

(4) Develop computer programs to help the design and
evaluation of the economic models of the proposed three

variables control charts.



CHAPTER 111

DEVELOPMENT OF THE ECONOMIC MODELS
OF THREE VARIABLES

CONTROL CHARTS
Introduction

The Shewhart X-bar control chart with AT&T runs rules
has been available since its development in 1956. However,
its statistical performance was not evaluated until 1987.
The EWMA control scheme was introduced in 1959. Yet, it
received little attention until 1986. The Zone control
chart is a new deveiopment in the area of sensitizing the
performance of quality control charts. The Zone control
chart is reported to be widely used in different areas
(Jaehn, 1989).

These three variables control charts are employed for
study in this research. A general economic model is
developed for these three variables control charts. The
ARLs are used to estimate both the expected length of a
production cycle and the expected false alarm cost per hour
of operation. The ARLs are funqtions of control chart
design parameters except h (sampling interval) for each

type of control chart. Therefore, the number of design

41
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parameters, which need to be optimized in order to minimize
the loss, depends on the number of parameters needed to
calculate the ARLs.

For the Shewhart X-bar cohtrol chart with AT&T runs
rules, the ARL is a function of subgroup size and width of
the control limits for a specified runs rule. Therefore,
four variables need to be optimized in the économic design
in order to minimize the loss. They are subgroup size (n),
sampling interval (h), width of the control limits (k), and
the combination of the four AT&T ruhs rules (RULE).

For the EWMA chart, the ARL is a function of subgroup
size (n), width of the control limits (k), and the weight
() used on the current observation. Therefore, there are
four variables which need to be optimized in the economic
design in order to minimize the loss. They are n, h, k, and
«.

For the Zone control’chart, the ARL is a function of
the subgroup size (n), widfh of the control limits (k), and
the (four) zone scores (S1, S2, S3, and S4). Therefore,
there are seven variables which need tp be optimized in the
economic design. Théy are n, h, k, S1, S2, S3, and S4.

Due to the complexity of the calculations of both the
ARLs and the loss function, nice expressions of the partial
derivatives of the loss function with respect to control
chart design parameters are not available. Thus, computer

search procedﬁres must be developed to optimize the design
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parameters for each of these three variables control
charts.

Duncan's (1956) cost assumptions and approach have
proven to be the most practical and appealing (Parkhideh
and Case, 1989). Therefore, the economic model developed in
this research uses the same cost structure as Duncan's
economic design to the X-bar control chart. It is Duncan's
economically-based X-bar control chart that is used to
compare the proposed economic designs of these three

variables control charts.
Assumptions

The basic assumptions underlying this research are as
follows: \
(1) The measurable quality characteristic (it can be the

subgroup mean or individual observations) of interest
is normally distributed.

(2) There is only a single special cause. The occurrence of
the special cause shifts the process mean to a/known
value.

(3) The shift in the process mean is instantaneous.

(4) The process is not self-correcting. That is, once the
process mean has shifted, it stays there until being
detected. The process can only be brought back to a

state of statistical control by management

intervention.



(5)

(8)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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The occurrence time of the special cause is
exponentially distributed with mean 1/6.
The process standard deviation remains unchanged
throughout production. -
The process is not shuf down while the inyestigation of
a poss}ble special cause is in'progiéss.
Sampiing inspection is not subject‘to measurement
error.
Action is iaken when a pre-specified criterion of an
O0C condition is met.
The costs of adjustment, repair, and bringing the
process bagk to a state of statistical control when it
shifts are not considered. This is because all these
three costs are assumed to be fixed and they apply to
all three charts.
The time required to fake, inspect, compute, and plot
a point ig proportignal to subgroup size.
The process is prppéfly centered originally so that no
matter whether the pfoéess shifts upward or downward;
the average loss per hour of operation is the same.
The océurrences of sucéessive false alarms are
independent of each other.
It is assumed that the probability of occurrence of a
special cause during the taking of a subgrpup can be
neglected. This is due to the requirement of
homogeneity within a subgroup in order to construct

meaningful control chart limits.
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(15) Subgroups are taken from the production proéess at
intervals of h hours, where h is a constant throughout
production.

(16) For the Zone control chart, the critical value is set

equal to the zone score of the outermost zdhe.
Formulation Of The Economic Model

Duncan's (1956) approach to the economic design of the
X-bar control chart is adopted for the development of the
economic models of the (1) X-bar control chart with AT&T
runs rules, (2) EWMA chart, and (3) Zone control chart.

The criterion used to evaluate the optimal designs is the
expected loss per hour of operation. Duncan (1956)
expresses this as

E[loss/hour of operation] =

E[costs generated within a production cycle]

, (3.1)
E[length of a production cyclel

The length of a productioh cycle is defined as the
total time from whichvthe process starts in a SOSC, shifts
to an O0OC condition, the OOC condition is detected, and the
special cause is identified. Figure 531 shows the length of
a production cycle.

The expected costs generated within a production cycle
can be categorized into four elements. They are:

(1) Penalty coét: the cost due to operating the process
under an OOC condition;

(2) False alarm cost: the cost of searching for a special
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cause when none exists;

(3) True alarm cost: the cost of searching for a special
cause when one exists; and,

(4) Control chart maintenance cost: the cost of taking,
inspecting, calculating, and plotting on the control

chart.

Discussion Of The Expected Loss

Per Hour Of Operation

It is well known that if X and Y represent two random
variables, then E[Y/X] is not equivalent to E[Y]/E[X].
Therefore, the exact expression for the expected cost per
hour of operation should be given as

E[lloss/hr] =

costs generated within a production cycle
E (3.2)
length of a production cycle

instead of that given in (3.1).

A quality control process, however, is a "renewal
reward process”". In a quality control system, every
production cycle is a renewal event (because whenever a
special cause is identified, management intervention can
bring the process back to a SOSC). The length of a
production cycle is the renewal time. A loss function can
be associated with each production cycle. This loss
function is crucial in the operation of the quality

monitoring process. Bhat (1984) proves that the average
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loss of a quality monitoring process (a renewal reward
process) can be expressed as

Average Loss = E[G/Z] = E[G] / E[Z],
where G represents the expected loss generated within a
production cycle and Z rep;esénts the expected length of a
production cycle. That is, Eq. (3.1) is équivalent to Eq.

(3.2).

Derivation Of The Economic Model

The economic model consists of two important elements.
One is the expected length of a production cycle measured
in hours; the other is the expected costs generated within
a production cycle. After the expected length of a
production cycle is determined, the costé can be converted

to an hourly—based loss.

Expected Length bf A Production Cycle. From Figure

3.1, it is observed that a production cycle consists of two
portions. One is the length of time when the process is in
control, denoted by Ta; the other is the length of time
when the process is out of control,\denoted by Tr. Time T;
can be divided into three parts. The first is the length of
time from the occurrence of a special cause to the first
subgroup tak;n after the occurrence of the special cause,
denoted by T2. The‘secoﬁd is the length of time between the
first subgroup taken after the occurrence of a special

cause and the "detecting" subgroup, denoted by Tsz. The
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third is the time required to identify the special cause,
denoted by Ts:.

From assumption 5, the time of the occurrence of a
special cause is exponentially distributed with mean 1/6.
The expected length of timefwﬁén the brocess is in control
is given by |

E[Ta] = 1/6.

According to assumption 14, the probability of an
occurrence of a special cause during the time a‘subgroup is
taken can be neglected. Therefore, a special cause will
occur only between subgroups. From assumption 15, subgroups
are taken from the production prdcess every h hours. The
average time of the occurrence of a special cause within an
interval between subgroups, given that the occurrence of
the speciai cause‘is between nth and n+lst subgroup, is

given by (Duncan, 1956)

[(n+1)h
6(t-nh)e-°ot dt
Jnh
E[T1] =
[(n+1)h
fe-0t dt
Jnh

Let x =t - nh ==> t = x + nh ==> dt = dx.

Substituting into E[T1] gives

Oxe-0(x+nbh) dx

E[T:1] =

fe-0(x+nh) dx

) | e
o rFleo &
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e-onh Oxe-9x dx

e-9nh 6e-0x dx

[ b Ed
= o r

Oxe-0x d(0x)

Jo

0(1 - e-9ot)

Applying integration by paris to the numerator, let
u = 0x, dv = e-9x J(6x).
The numerator becomes 1 - (1+6h)e-®h, therefore,

1 - (1+6h)e-©h

E[T1]
0(1 - e-9h)

E[T2 ] h - E[T1]

1 - (1+6h)e-©h

0(1 - e-oh)
6h(1 - e-®bh) - [1 - (1+6h)e-0h]

0(1 - e-°h)
6h - [1 - e-oh]

0(1 - e-9h)
h -1
1 - e-0h 0

Recall that the definition of the ARL is the expected
number of subgroups inspected until the process signals an
00C condition. The expected length of time from the
occurrence of a special cause to the "detecting" subgroup

is h * (ARL2 -1) + E[T2], where ARL2 represents the ARL
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when the process mean has shifted. Therefore,
E[Ts] = h * (ARL2 - 1).

According to assumption 11, the time required to take,
inspect, calculate, and plot on the control chart is
proportional to the subgroqp éize. Let this be e*n.

Suppose after plotting, thé point is idenjified as a true
signal. It then takes, on the average, D hours to identify
the special cause. Then,

E[T4] = en + D.

The expected length of a production cycle (ELOPC) then
becomes |

ELOPC = E[Ta] + E[T2] + E[T3] + E[T4]

1 h 1
= — + - + h(ARL2 - 1) + en
0 1 - e"0h (]
+ D
h
= + h ¥ ARL2 - h + en + D
1 - e-0h
1
= h % — - 1 + ARL2 + en + D
1 - e-9b
| e-0h
= h * —— + ARL2 + en + D
1 - e-®h

I

Expected Costs Within A Production Cycle

The economic model considered consists of four cost
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elements. They are the (1) penalty cost, (2) false alarm
cost, (3) true alarm cost, and (4) control chart

maintenance cost.

Expected Penalty Cost Per Hour Of Operation (EPC).
The penalty cost is generaféd’due to operating the process
under an OOC condition. Let Vg denote the average income
per hour when the process operates under a SOSC and Vi
denote the average income per hour when the)process ‘
operates under aﬁ 00C condition. Then, M = (Vo - Vi)
denotes the expected cost per hour when the process
operates under an OOC condition.

The expected length of a production cycle is ELOPC.
On the average, the process will be in a SOSC for 1/6
hours. Thus, the proportion of time a process is in control
per hour of operation is given by

g = (1/6) / ELOPC.

The expected penalty cost per hour of operation is given by

EPC = M * (1 - B)

1

M * (1 -

6 * ELOPC

Expected False Alarm Cost Per Hour Of Operation
(EFAC). The EFAC is defined as ihe multiplication of the
expected number of false alarms (ENFA) and the cost of
searching for a false alarm (T). A false alarm is defined
as the process signals an 0O0C condition when, in fact, it

is in a SOSC.
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The expected number of subgroups taken between two
successive false alarms is called the ARL in control,
denoted as ARL1. The proportion of time a process will
signal a false alarm is approximately 1/ARL1, given that
the process operates under a SOSC.

The process may go out of control at any interval
between subgroups. The underlying distribution of the
occurrence of a special cause is exponential with rate
parameter 6. Thus, the expécted nuﬁber of subgroups taken

while the process is in control (Y) is given by

© F(i+1)h
Y= 2 i Oe-9k dt
i=0 Jih
® i+1)h
— (i
= T i -e-%h :]
i=0 s ih
[} —
= 2 1 —e‘O(i'i'l)h - (—-e“ei.ll)1
i=0 — | —
o — —
= ¥ i e-9ih - (-e-9(it1)h)
i=0 — —_
= (e-®h - e-20h) + 2(e-20h - g-30h)
+ 3(8'3°h - e-4°h) + L)

= e-0h 4+ e~20h 4 e-30h 4+ .,
= e-®h * [1 + e-0h + e-20h 4 e-36h 4+ ]

e-9h

1 - e-9%h
Therefore,
ENFA = Y / ARL1,

and, the false alarm cost generated within a production



54

cycle is (T * Y / ARL1). The EFAC is given by

EFAC = (T * Y) / (ARL1 * ELOPC).

Expected True Alarm Cost Per Hour Of Operation (ETAC).

The expected length of a production cycle is ELOPC. The
average numbér of times per‘hour that the process actually
goes out of control is 1 / ELOPC. Let W denote the expected
cost of looking for a special cause when one exists. Then,

ETAC = W / ELOPC.

Expected Control Chart Maintenance Cost Per Hour Of

Operation (EMC). Two types of cost are considered. One is

the fixed cost (b) associated with a subgroup taken; the
other is the variable cost per unit sampled (c). The
sampling interval is h hours. Therefore,
EMC = (b + cn) / h.
The expected loss per hour of operationiof a process
(ELOSS) is given by

EPC + EFAC + ETAC + EMC

ELOSS =
1 T ¥ Y
=M ¥ 1 - +
6 * ELOPC ARL1 * ELOPC
W b + cn
+ +
ELOPC h

This ELOSS is used as the criterion for determining
the optimal economic design of these three variables

control charts. Note that all three of these charts use the
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same economic model, the only difference is the calculation

of the ARLs.
Average Run Length

Aver#ge run leﬁgth (ARL) has wfdely been used as a
criterion for statistically cgmparing the performance of
control charts. The economic modellproposed in this
research employs: the ARL as part of the calcuiation of the
ELOSS. The ARL is a function of control chart design
parameters, except h. The number of parameters needed to
compute the ARLs is different for each iype of control
chart. This makes the number of parameters which need to
be optimized in each of these three economically-based

control charts different.

Shewhart X-bar Control Chart

With AT&T Runs Rules

Champ and Woodall (198?) evaluate the ARLs of the
Shewhart X-bar control chart with supplementary runs rules
using Markov chains. Suppose rule i is used, they denote
this rule as T(ki, mi, ai, bi), mi > 1, which means that an
00C condition is assumed if ki out of mi consecutive points
fall in region (ai, bi). ﬁsing AT&T rule 2 as an example
and let ai and biy represent the 2-sigma and 3-sigma limits,
respectively. The AT&T rule 2, for the upper part of the

control chart, can be expressed as T(2, 3, 2, 3).



56

The states of the Markov chains indicate the status of
the chart with respect to each runs rules. Only one
absorbing state is used which corresponds to the 00C

condition. Champ and Woodall (1987) define the vectors

W's = (Wi,14 ey Wi.n.-l)
and, :

X't = (X1,19 ooy Xi,m'-i)
where, l

Wi,; =1 if the jth previous observation was in

(a1, bi)
=0 otherwise

and,

j
Xi,3 = Wi, if 2 (1 - Wi,n) <m -~ ki +1
h=1

=0 otherwise

The vector X'y indicates by 1s only those observations
falling in (ai, bi) that may contribute to an 00C
condition. Therefore, a transient state of a chart using t
rules can be represented by S' = (X'ty «..y X't), where the
subvector X'y is defined as previously for the rule T(ki,
mi, a1, bg), i =1, 2, ..., t.

The one-step transition probability matrix can then be
constructed as P = [P;,3], where Pi,; is the one-step
transition probability of moving from state i to state j.
The states are numbered from 1 to s, where state 1 is the
initial state and state s is the absorbing state. After

the transition probability matrix, P, has been constructed,
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cross out the last row and last column of P and define this
new matrix as Q. Let I denote the identity matrix. The ARL1
is obtained by summing the elements of the first row of the
matrix (I - Q)-!, suppose there is no shift in the process
mean. Different ARL2s corresponding to different amounts of
shift in the process mean are obtained by chanéing the
probability that a point will fall in (ai, bi). Note,
always use the first row pf the matrix (I - Q)-1 to
calculate the ARLs regardless of whether it is ARL1l or
ARL2. Also note that the ARL is equivalent to the average
time to absorption in a M;rkov chains process. For more
information regarding the calculation of the ARL, see Brook
and Evans (1972).

This research uses Champ and Woodall's approach in
calculating the ARLs used for calculation of the ELOSS.

The objective function to be minimized in the economic
design of the X—b#r control chart with AT&T runs rules is
the ELOSS, which is a function of the subgroup size (n),
sampling interval (h), width of control limits (k), and the
runs rules (RULE) used. Therefore, there are four design
parameters which need to be optimized.

Note that the design parameter, RULE, is not a
quantitative variable. There are eight combinations of the
four AT&T runs rules which are commonly used in industry.
They are, iﬁ Champ and Woodall's (1987) notation, C1, Cl12,

c13, Cc14, Cc123, C124, C134, and C1234, where, for example,



58

C1234 represents that all four AT&T runs rules are employed

at the same time.

The EWMA Chart

Champ and Rigdon (1991) compare the Markov chains and
the integral equation approaches for evaluating the run
length distribution of quality control charts. They
conclude that these two approaches are equivalent.

Usually, there exists more than one way to numerically
approximate an integral equation. Therefore, Champ and
Rigdon suggest the use of the integral equation approach to
solve for the run length and average run length of a
control chart, whenever an integral equation is available.
Hence, Crowder's (1987a) approach is employed to calculate
the ARL of an EWMA chart.

Crowder (1987a) gives the following equation and uses
numerical approximation to obtain the ARL of an EWMA chart,

q ‘ w - (1-a)u
L(u) =1 + (1/a) J L(w)f dw
CLE ]

a

where,
L(u): the ARL given that the EWMA starts with value u;
a: the weight for the current observation.
The equation can be obtained by the following reasoning.
Let the probability density function of the random variable
Y = {y1}, i=1, 2, ..., be £(y). Recall that the
calculation of the EWMA is given by

EWMAt = (l_a)EWMAt-I + ayt, 0 < a = 1, t = 1, 2, LRI
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Let L(u) be the ARL, given that the EWMA starts with value
u. Let EWMAo be u. If the first observation y1 is such that
| (1-a)u+eyi| is greater than a specified value q (q =
koewua ), an OOC signal is given. Otherwise, the run
continues from (1-a)u+ay: with L[(1-a)u + ayi] representing
the additional expected run length. Therefore,
L(u) = 1 * Pr(|(1-e)u + ay1| > q)
+ J (1 + L[(1-0)u + ay1])f(y) dy
{|](1-a)u + ay1|=q}

= Pr(|(1-a)u + ay1| > q) + Pr(|(1-a)u + ay1| = q)

+ Li(1-a)u + ay1 1f(y) dy
J{](1-e)u + ay1|=q}

=1 + - LI[(1-a)u + ay1 1£(y) dy
J{](1-e)u + ay1|=q}

Let w = (1-a)u + ay
then, dw = ady
and, y = [w - (1-a)u] / (3

The above equation then becomes

L(u) 1+ J Liwlf([w - (1-a)u] / &) (1/a) dw
|w|=aq

1+ (1/a) Jq Liwlf([w - (1-a)u] / a) dw
-q

The equation is called Fredholm integral equation of
the second kind (Crowder, 1987a). This is an approximation
because L(.) is approximated numerically. The objective
function to be minimized in the economic design of an EWMA

chart is the ELOSS, which is a function of n, h, k, and a
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(weight). Therefore, there are four design variables that

need to be optimized.

The Zone Control Chart

Figure 3.2 shows the structure of a Zone control
chart. The region between’iCL and UCL are divided into six
equal zones. Zone scores (S1, S2, S3, and S4) are assigned
to each of the four zones at the same side of the center
line. The critical value which determines the criterion of
an 0O0C condition is set equal to the zone score of the
outermost zone. Probabilities of each zone (pil, ..., p8)
are determined depending on the amounts of shift in the
process mean.

Fang and Case (1990) develop a set of simultaneous
linear equations to evaluate the ARLs of the Zone control
chart. The simultaﬁeous linear equations are

E(i) = 1 + pl*E(i+S1) + p3*E(i+S2) + p5*E(i+S3)
+ p2¥F(S1) + pA%F(S2) + pG*F(S3)
F(i) = 1 + pl*E(S1) + p3*E(S2) + p5*E(S3)
+ p2*F(i+S1) + p4*F(i+S2) + p6*F(i+S3)
i=0,1, 2, ..., S4-1
E(0) = F(0)
where, E(i) represents the expected number of additional
subgroups required until an 0OOC cdndition is signaled,
given that the current cumulative score is i and the

currently plotted point is above the center line. The
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Zone Score Probability
D(U) sS4 pT
UCL
c(u) S3 PS5
B(U) S2 p3
A(U) S1 pl
CL
A(L) S1 P2
B(L) S2 p4
Cc(L) S3 p6
LCL
D(L) sS4 p8

Figure 3.2 Structure Of A Zone Control Chart
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definition of F(i) is the same as E(i) except that it is
for the situation when the currently plotted point is below
the center line.

The objective function to be optimized in the economic
design of the Zone control chart is ELOSS, which is a
function of n, h, k, and the four zone scores. Therefore,

there are seven variables which need to be optimized.
Optimization Search Technique

The objective function to be minimized in the economic
designs of the three variables control charts is ELOSS,
which is a non-linear function of multiple control chart
design parameters. Due to the complexity of the
calculations involved, nice expressions of the first
derivatives of the objective function with respect to the
control chart design parameters are not available.
Therefore, a direct search technique must be employed to
help identify the economic design.

The Nelder-Mead simplex procedure (Nelder and Mead,
19653 it is also known as the Flexible Polyhedron Search,
see Himmelblau, 1972) is utilized as the search algorithm.
Olsson and Nelson (1975) show the generality of the Nelder-
Mead simplex method, its accuracy, and the simplicity of
the information required for the computer input statement.
This method is developed for minimization of a
multivariable function without constraints. No derivatives

of the objective function are required.
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The simplex procedure forms a simplex and moves along
the response surface in search of the minimum. It
approaches the minimum by moving away from the highest
value of the objective function rather than by trying to
move in a line toward the minimum. The procedure is
operated by reflection, extenéion, or contraction so as to
conform the characteristics,ofjihe response surface. The
operation continues until either a spécified number of
evaluations has been reached or succeséjve function values
differ by less than a specified amount.

In this Eésearch, three variables control charts are
studied. Each has a different number of variables which
need to be optimized. Some of them are integers (for
example, n, Sl, S2, S3, and S4), some are real values.
Even more, there is a non4quantitative variable, which is
RULE. The search methods employed by each type of control

charts are described as follows.

Shewhart X-bar Control Chart

With AT&T Runs Rules

There are four variables to be optimized, they are (n,
h, k, RULE). The RULE is not a quantitative variable.
Therefore, there are three quantitative variables, and one
of them, n, is an integer. In order to deal with an integer
and a non-quantitative variable, and to find the optimal
solution, the following search methods are employed.

A. The user selects a RULE to be used in combination with
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the X-bar control chart.

B. With a starting point and step sizes, do a three
variable search. Find the optimal point of real values
of n, h, and k.

C. The n found in step B is truncated to an integer and
treated as a constanf: bd a two variable search on h
and k. The optimal point (h, k) found with this
truncated n forms the best solution so far.

D. Do a line search on n, employing the Nelder-Mead
algorithm, to find the minimum loss. For each n
considered, optimize (h, k). The (n, h, k) point found
with the minimum loss is the optimal economic design
of the X-bar control chart with a combination of some

specified AT&T runs rules.

The EWMA Chart

There are fourlvafiables, (n, h, k, &), to be
optimized. The subgroup size (n) is an integer, others are
real values. The folloﬁing\procedures are adopted to
minimize the objective function.

A. With a starting point and step sizes, do a four
variable search. Find the optimal point of real values

of n, h, k, ana a.

B. The n found in step A is truncated to an integer and
treated as a constant. Do a three variable search on

h, k, and «. The optimal point (h, k, @) found with

this truncated n forms the best solution so far.
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C. Do a line search on n, employing the Nelder-Mead
algorithm, to find the minimum loss. For each n
considered, optimize (h, k, @). The (n, h, k, a) point
found with the minimum loss is the optimal economic

design of the EWMA charﬁ.l
The Zone Control Chart.

There are sévén variables, (n, h, k, S1, S2, S3, S4),
to be optimized in the econdmic‘desigh:of the 2one control
chart. The subgroup size (ﬁ)‘énd the four zone scores (s1,
S2, S3, S4) are integers, others are‘real values. In order
to simplify the computer search technique and use integer
zone scores to calculate the ARLs, the real value zone
scores found us{ng the Nelder-Mead technique are truncated
to integers. No line search dp zone scores is performed. An
implicit assumption is alsbjmﬁde such that 0 = S1 < S2 < S3
< S4. This assumption has ﬁ;ver been explicitly cited but
is always employed in ;xistinérliterature.

The follow@ng prdcedurés are adopted to opﬁimize the
economic design of the Zone control chart.

A. With a starting point and §tep sizes, do a seven
variables search. Find the optimal point of real
values of (n, h,:k,_Sl, s2, S3, s4).

B. The n found in step A is truncated to an integer and
treated as a constant. Do a six variables search on h,
k, S1, S2, S3, and S4. Note when applying the Nelder-

Mead algorithm, the zone scores are treated as real
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values. They are truncated to integers only when they
are employed in the ARL calculation subroutine to
calculate the ARLs. The optimal point (h, k, S1, S2,
S3, S4) found with this truncated n forms the best
solution so far.

C. Do a line search on n,‘employing the Nelder-Mead
algorithm, to find the minimum cost. For each n
considered, optimize (h, k, S1, S2, S3, S4). The (n,
h, k, Si, S2, S3, S4) point found with the minimum
cost is the optimal economic design of the Zone

control chart.
Summary

An economic model of the X-bar control chart with AT&T
runs rules, the EWMA chart, and the Zone control chart is
developed. The model is developed using Duncan's (1956)
approach to the economic design of the X-bar control chart.
The mathematical development and derivation of the hourly-
based loss for these three variables control charts are
discussed. The expression of the loss functions of these
three variable charts are the same. The only difference is
in the calculation of the ARLs for each chart. The ARL
calculation for each chart is briefly introduced.

The Nelder-Mead simplex search technique is employed
to optimize the economic design of these three variables
control charts. Based on the experience gained in this

research, multiple starting points are suggested when using



67

the direct search technique in order to lend confidence to
that the optimal or near-optimal point has been reached.
For example, the user might want to repeat the search
technique at least twice by starting at an arbitrary point,
and then, repeat the search technique using the optimal
point found in the first run as the inputs of the second
run. Also, the user migﬁt want to start from multiple

arbitrary points.



CHAPTER 1V
USING THE INTERACTIVE COMPUTER PROGRAMS
Introduction

This chapter illustrates the use of the interactive
computer programs which permit easy economic design and
evaluation of the (1) X-bar control chart with AT&T runs
rules, (2) EWMA chart, and (3) Zone control chart. The
FORTRAN programs appear in Appendices A, B, and C. These
programs are developed and implemented on an IBM PC.

There are three common control chart design parameters
which need to be optimized in the economic design of these
three variable control charts. They are the subgroup size
(n), the sampling interval (h), and the width of control
limits (k). In addition to these, the user has to select
the runs rules (RULE) used in combination with the X-bar
control chart in order to minimize the loss. The weight (a)
needs to be optimized in order to minimize the loss in the
economic design of the EWMA chart. The four zone scores
need to be optimized in order to minimize the loss in the
economic design of the Zone control chart. Evaluations of
the (1) X-bar control chart with AT&T runs rules, (2) EWMA

chart, and (3) Zone control chart refer to the calculation

v
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of the loss for a set of specified design parameters for
each type of control chart.

The programs are interactive. The user is prompted for
all necessary inputs by the programs. The uéer can choose
to enter the cost and oéerating‘parameters either from an
existing file or manually. Other typical and/or often-used
values are pre-programmed. All these values are presented
to the user for either verification or change. Only when a
set of values has been verified by the user does the

program proceed.

Economic Design And Evaluation Of
The X-bar Control Chart With

AT&T Runs Rules

The program prompts the user for the main menu:

REEKEEERERXELKEREREKREKR KK KR

%% MAIN  MENU %%
EEXXXEXRKREEKXEERKEREKKS

(1) ECONOMIC DESIGN OF X-BAR CONTROL CHARTS
WITH AT&T RUNS RULES,
(2) EVALUATION OF X-BAR CONTROL CHARTS
WITH AT&T RUNS RULES,
(3) EXIT THE PROGRAM.
==> PLEASE ENTER YOUR OPTION (1, 2, 3)! <K<K
1 By selecting "1" from this menu, the program leads to the
economic design of the X-bar control chart with AT&T runs

rules.
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Economic Design Of The X-bar Control
Chart With AT&T Runs Rules

The program prompts the user to enter the cost and
operating parameters. They are the (1) amount of shift in
the process mean measured in number of process standard
deviations (delta), (2) occurrence fate of the special
cause (theta), (3) penalty cost per hour of operation (M),
(4) expected time required tq sample a unit (e), (5)
expected time required to identify the special cause (D),
(6) expected cost of searching for a false alarm (T), (7)
expected cost of searching for a true alarm (W), (8)
expected fixed cost per subgroup taken (b), and (9)
expected variable cost per unit sampled.

The user can choose either to enter these values from
an existing file or to enter them manually. The user has to
build a file storing the cost and operating parameters
before he can choose to enter the data from an existing
file. An example of the data file which contains the 9 cost
and operating parameters from Duncan's (1956) example 1 is
given as follows. The name of this file is "CASE1".

2 0.01 100 0.05 2 50 25 0.5 0.1
A space is needed to separate each individual data value.
This set of data has to be saved as an ASCII file for later
use.

By selecting "1", the program then prompts the user to

enter the filename that contains the cost and operating



parameters. A selection of "2" will lead to asking the

to enter the values manually.

¥x%¥ INPUT COST PARAMETERS ***

DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?
==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <<X

*%* PLEASE INPUT THE FILENAME THAT
CONTAINS THE COST PARAMETERS.
CASE1
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user

In this example, Duncan's (1956) example 1 is selected

for trial and this set of parameters has been built as

a

data file. After entering the filename that contains the

cost and operating parameters of Duncan's example 1, the

program then prompts the user to verify the values

received. A selection of "1" leads the program to continue.

A selection of "2" leads the program to prompt the user to

enter the filename which contains the desired values of the

cost and operating parameters.

** VALUES RECEIVED ARE:

DELTA = 2.0000 THETA = .0100
M = 100.0000 E = .0500
D = 2.0000 T = 50.0000
W = 25.0000 B = .5000
C = .1000

==> ARE THESE DATA CORRECT?

==> PLEASE ENTER 1 = YES, 2 = NO. <<X

The program then suggests a starting point used to

execute the Nelder-Mead search method. Here, the user is

asked to accept or reject the suggested point. If the user

rejects the suggestion, the program then prompts the user
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a new starting point. After the starting point has

been accepted and verified, the program then suggested step

sizes for each variable which needs to be optimized. The

user is also asked to accept or reject the suggestions. A

verification of the step sizes is also desired. Finally,

the runs

rules used in combination with the X-bar control

chart need to be selected.

The

accepted

suggested starting point and step sizes are

in this example. The rule C1 (which corresponds to

the standard Shewhart X-bar control chart) is selected.

Z w3 "nou
= nn
[T 5] v Vv

v Vv

K%

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

xxE

The

solution

L5

THE SUGGESTED STARTING POINT IS:
5, H = 1.00, K = 3.00

DO YOU ACCEPT THIS POINT?
ENTER 1 = YES, 2 = NO. <K

SUGGESTED STEP SIZES ARE:
1.00, H = .90, K = .50

DO YOU ACCEPT THESE SUGGESTIONS?
PLEASE ENTER 1 = YES, 2 = NO. <K<K

PLEASE SELECT RUNS RULES. *%**
Cc1,

c12,

Cc13,

Cilsa,

c123,

Cl124,

C134,

C1234.

PLEASE ENTER YOUR OPTION (1-8)! *xx

optimization is then performed and the optimal
is printed.

THE OPTIMAL POINT FOUND IS **%
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N = 4.8188, H = 1.4222, K = "3.0357
LOSS = 4.012059

*%% OPTIMIZATION ITERATION **%

1 N H K LOSS
1 4 1.2945 - 2.9651 4.036269
2 5 1.3953 3.0701 | 4.012948
3 6 1.5103 3.2182 4.047357
*%% THE OPTIMAL DESIGN IS: ;
N = 5, H = 1.39531, K = 3.07102
*%x* THE MINIMUM LOSS PER HOUR IS: 4.012948

An experiment is carried out by manually entering the
cost and operating parameters, a new starting point, and
step sizes. The interactive procedures are shown as

follows.

*¥%% JNPUT COST PARAMETERS *#*%

DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?

==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <<K

** INPUT VALUES OF DELTA,THETA,M,E,D,T,W,B,C ¥%
2 0.01 100 0.05 2 50 25 0.5.0.1

** VALUES RECEIVED ARE:

DELTA = 2.0000 THETA = .0100
M = 100.0000 E = .0500
D = 2.0000 T = 50.0000
L = 25.0000 B = .5000
C = .1000

==> ARE THESE DATA CORRECT? ‘
==> PLEASE ENTER 1 = YES, 2 = NO. <KX

1 | g
*%%* THE SUGGESTED STARTING POINT IS:
N = 5, H = 1.00, K = 3.00
==> DO YOU ACCEPT THIS POINT?
==> ENTER 1 = YES, 2 = NO. <LK

2

*%% PLEASE INPUT NEW STARTING POINT ¥*%



(8)

xE%

Lt x 3
N =

LOSS

xE%

T4

KEY IN VALUES FOR N, H, K

NEW STARTING POINT IS:

4 H = 2.0000 K = 2.0000
ARE THEY CORRECT?
PLEASE ENTER 1 = YES, 2 = NO. <X
SUGGESTED STEP. SIZES ARE:

1.00, H = .50, K = .50

DO YOU ACCEPT THESE SUGGESTIONS?
PLEASE ENTER 1 = YES, 2 = NO. <<<

PLEASE INPUT NEW STEP SIZES **%
PLEASE ENTER VALUES FOR N, H, K. <<X<

NEW STEP SIZES ARE:
1.00, H = 1.00, K = .50

ARE THEY CORRECT?
PLEASE ENTER 1 = YES, 2 = NO. <<X

PLEASE SELECT RUNS RULES. #*#*%¥
c1,

c12,

Ci3,

Ci4,

c123,

Cl24,

Ci34,

C1234.

PLEASE ENTER YOUR OPTION (1-8)! #*x%
THE OPTIMAL POINT FOUND IS ¥*¥
4.7953, H = 1.3650, K = 3.0578
= 4.011755 :

OPTIMIZATION ITERATION #*%%*

N H K LOSS

4 1.2618 2.9700 4.036453
5 1.4230 3.0887 4.012947
6 1.4941 3.2448 4.047721

*%* THE OPTIMAL DESIGN IS:



N = 5, H = 1.42303, K = 3.08868
**x* THE MINIMUM LOSS PER HOUR 1IS: 4.012947

Economic Evaluation Of The X-bar Control

Chart With AT&T Runs Rules

A selection of "2" from the main menu leads to the
economic evaluation of the X-bar control chart with AT&T
runs rules. The interactive procedﬁres are shown as
follows.

EEERRBEERRRERRREE KRR R RRR

k%% MAIN  MENU bl
REERKEFRRERERRERREERERKE

(1) ECONOMIC DESIGN OF X-BAR CONTROL CHARTS
WITH AT&T RUNS RULES,

(2) EVALUATION OF X-BAR CONTROL CHARTS
WITH AT&T RUNS RULES,

(3) EXIT THE PROGRAM.

==> PLEASE ENTER YOUR OPTION (1, 2, 3)! <<X

2
*x%* INPUT COST PARAMETERS **#
DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?
==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <<<
1
** PLEASE INPUT THE FILENAME THAT
CONTAINS THE COST PARAMETERS.
CASE1
%% VALUES RECEIVED ARE:
DELTA = 2.0000 THETA = .0100
M = 100.0000 E = .0500
D = 2.0000 T = 50.0000
w = 25.0000 B = .5000
c = .1000
==> ARE THESE DATA CORRECT?
==> PLEASE ENTER 1 = YES, 2 = NO. <<
1

*%%* PLEASE INPUT N, H, K. #*%%
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5 1.41 3.2

11

*** THE CONTROL CHART PARAMETERS ARE:

N = 5, H = 1.4100, K = 3.2000
==> ARE THEY CORRECT?

==)

ENTER 1 = YES, 2 = NO. <<<
*** PLEASE INPUT # OF RUNS RULES! *%

**¥* PLEASE INPUT THE RULES! **%¥

** INPUT K, M, A, B, FOR RULE 1:

3.2 9

** INPUT K, M, A, B, FOR RULE . 2:

2.134 3.2

** INPUT K, M, A, B, FOR RULE 3:

_312 —2.134

¥% INPUT K, M, A, B, FOR RULE 4:

-9 -302

**%* THE FOLLOWING RULES ARE USED:

T( &, 1, 3.0000, 9.0000)
T( 2, 3, 2.1340, 3.2000)
T( 2, 3,-3.2000,-2.1340)
T 2, 3,-9.0000,-3.2000)

ARE THEY CORRECT?
PLEASE ENTER 1 = YES, 2 = NO. <X

i u
v v

x*%* THE LOSS OF THE CURRENT DESIGN IS:
4.040455 '

One thing to ndte. When the computgr program prompts

the user to enter the runs rules used, it is noted that "9"

is used to represent infinity ().
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Economic Design And Evaluation

Of The EWMA Chart

The interactive procedures of the economic design and
evaluation of the EWMA chart follow are very similar to
those of the X-bar control chart with AT&T runs rules. The

procedures and result are shown as follows.

Economic Design Of The EWMA Chart

BERREERERRERRRERRR KRR KR

% MAIN  MENU kkx
EREREKERKKXEFRKRKKXEKRRS

(1) ECONOMIC DESIGN OF EWMA CONTROL CHART,
(2) EVALUATION OF EWMA CONTROL CHART,
(3) EXIT THE PROGRAM.

==> PLEASE ENTER YOUR OPTION (1, 2, 3)! <«X

1
*%¥% INPUT COST PARAMETERS ¥*%%
DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?
==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <K<K
1
** PLEASE INPUT THE FILENAME THAT
CONTAINS THE COST PARAMETERS.
CASE1l
** VALUES RECEIVED ARE:
DELTA = 2.0000 THETA = .0100
M = 100.0000 E = .0500
D = 2.0000 T = 50.0000
W = 25.0000 B = .5000
C = .1000
==> ARE THESE DATA CORRECT?
==> PLEASE ENTER 1 = YES, 2 = NO. <<X
1

#*% THE SUGGESTED STARTING POINT IS:
N = 5, H = 1.00, K = 3.00, ALPHA = «5



DO YOU ACCEPT THIS POINT?
ENTER 1 = YES, 2 = NO. <«X

Vv Vv

THE SUGGESTED . STEP SIZES ARE: -
N = 1.00, H = .90, K = .50, ALPHA = .10

==> DO YOU ACCEPT THESE STEP SIZES?
==> PLEASE ENTER 1 = YES, 2 = NO. <<X

¥%% THE OPTIMAL POINT FOUND IS **%
N =4.7647, H = 1.4128, K = 3.0390, ALPHA = ,9094
LOSS = 4.010300

*¥%% OPTIMIZATION ITERATION **%¥

1 N H X ALPHA LOSS

1 4 1.3044 2.9515 .8895 4.029860

2 5 1.3956 3.1047  .9343 4.011464

3 6 1.5137 3.2176  .9576 4.047058

*%%* THE OPTIMAL DESIGN IS:

N= 5, H= 1.39564, K = 3.10466, ALPHA = .9343

*** THE MINIMUM LOSS PER HOUR IS: 4.011464

Economic Evaluation Of The EWMA Chart -

BREEEKRRERREEREEEXREKRKEXEK

*¥%x  MAIN MENU %%
EREREEREEERRKRKEREXRKKKKREKEK

(1) ECONOMIC DESIGN OF EWMA CONTROL CHART,
(2) EVALUATION OF EWMA CONTROL CHART,
(3) EXIT THE PROGRAM.

==> PLEASE ENTER YOUR OPTION (1, 2, 3)! <KX

2
*%% INPUT COST PARAMETERS *¥#%
DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?
==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <<«
1

*¥ PLEASE INPUT THE FILENAME THAT
CONTAINS THE COST PARAMETERS.
CASE1

78
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¥%* VALUES RECEIVED ARE:

DELTA = 2.0000 THETA = .0100
M = 100.0000 E = .0500
D = 2.0000 T = 50.0000
W = 25.0000 B = .5000
C = .1000

> ARE THESE DATA CORRECT?
> PLEASE ENTER 1 = YES, 2 = NO. <KX

¥** PLEASE INPUT N, H, K, ALPHA. ¥¥%¥%
5 1.3956 3.1047 0.9343

**%* THE CONTROL CHART PARAMETERS ARE:
N = 5 H = 1.3956,

9
K = 3.1047 ALPHA = 0.9343
==> ARE THEY CORRECT?
==> ENTER 1 = YES, 2 = NO. <<X

*¥*¥ THE LOSS OF THE CURRENT DESIGN IS:
4.011464

Economic Design And Evaluation

Of The Zone Control Chart

Economic Design Of The

Zone Control Chart

AREBRERRERRRERRRRREKRREE KK

¥%% MAIN  MENU k%%
KERERRERKKKRERRRKRKKKK KK

(1) ECONOMIC DESIGN OF ZONE CONTROL CHART,
(2) EVALUATION OF ZONE CONTROL CHART,
(3) EXIT THE PROGRAM.

==> PLEASE ENTER YOUR OPTION (1, 2, 3)! <K

*x* INPUT COST PARAMETERS ¥¥*¥

DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?
==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <<X



*¥*% PLEASE INPUT THE FILENAME THAT

CASE1l

C

ONTAINS THE COST PARAMETERS.

**%* VALUES RECEIVED ARE:

DELTA

O=EouR

"nu
nnu
Vv v

kK%

N =
SCORE
SCORE
LOSS

2.0000 THETA
100.0000 E
2.0000 T
25.0000 B
.1000

50

ARE THESE DATA CORRECT?
PLEASE ENTER 1 = YES, 2 = NO. <<X

THE SUGGESTED STARTING POINT IS:
5, H = 1.00, K = 3.00,
= .0, S(2) = 1.0, S(3) = 2.0,

DO YOU ACCEPT THIS POINT?
ENTER 1 = YES, 2 = NO. <«X

SUGGESTED STEP SIZES ARE:
1.00, H = .90, K
= 1.0, S(2) = 1.0, S(3)

DO YOU ACCEPT THESE STEP SIZES?
PLEASE ENTER 1 = YES, 2 = NO. <«X

THE OPTIMAL POINT FOUND IS *¥*¥
4.8105, H = 1.3688, K 3.0620,
.0, SCORE 2 1.2,
2.3, SCORE 5 15.1,
4.011720

1
3

**%% OPTIMIZATION ITERATION **¥

H K S(1) s(2) sS(3) s(4

.0100
.0500
.0000
.5000

S(4) = 15.0

) LOSS

4 1.2803 2.9432 0 1 2 15
2 5 1.4256 3.0853 0 1 2 15
6 1.4973 3.2057 0 1 2 16

4.036212
4.012943
4.047313

*¥%* THE OPTIMAL DESIGN IS:

N =
SCORE 1
SCORE 3

5, H = 1.42556, K 3.08534,
= 0, SCORE 2 = 1,
= 2, SCORE 4 = 15,

#¥%*%¥ THE MINIMUM LOSS PER HOUR 1IS: 4.

012943
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Economic Evaluation Of The

Zone Control Chart

HEREKERRRBRERREREERRRRFKRREK

xE% MAIN  MENU  *%x
****#*#***#******#******

(1) ECONOMIC DESIGN OF ZONE CONTROL CHART,
(2) EVALUATION OF ZONE CONTROL CHART,
(3) EXIT THE PROGRAM.

==> PLEASE ENTER YOUR OPTION (1, 2, 3)! <K

¥%% INPUT COST PARAMETERS ¥*%%

DO YOU WANT TO INPUT FROM A FILE OR MANUALLY?
==> PLEASE ENTER 1 = FILE, 2 = MANUALLY. <<<

** PLEASE INPUT THE FILENAME THAT
CONTAINS THE COST PARAMETERS.
CASE1

*% VALUES RECEIVED ARE:
DELTA 2.0000 THETA
100.0000 » E
2.0000 T
25.0000 B
.1000

.0100
.0500
50.0000
.5000

N2
([N TINTINTINT]

ARE THESE DATA. CORRECT?
PLEASE ENTER 1 = YES, 2

Vv v

NO. <LK

**%x PLEASE INPUT N, H, K, SCORE 1,
SCORE 2, SCORE 3, SCORE 4.**#
51.42 3.1 0 1 2 15

*** THE CONTROL CHART PARAMETERS ARE:

N = 5, H = 1.4200, K = 3.1000
SCORE 1 = 0, SCORE 2 1,

SCORE 3 2, SCORE 4 15,

> ARE THEY CORRECT?
> ENTER 1 = YES, 2 = NO. <«<

*** THE LOSS OF THE CURRENT DESIGN 1IS:
4.013132
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Summary

Most of the features of the interactive computer
programs of this research havg been illustrated in this
chapter.,Examples are given\to‘describe the capabilities of
the programs. These progr#ms provide eaéy and convenient
approachés to the design and evaluation of the (1) X-bar
control chart Qith AT&T runs rules, (2) EWMA éhart, and (3)
Zone control chart. Therefore, these programs are useful

tools for both practitioners and theoreticians.



CHAPTER  V
RESULTS COMPARISON“AND ANALYSES
Introduction

This chapter provides the economic comparisons and
analyses among the (1) X-bar controi chart with AT&T runs
rules, (2) EWMA chart, and (3) Zone control chart. In
order to economically compare the optimal designs of these
three variables charts, 22 out of 25 examples from Duncan's
(1956) paper are selected for study. These 22 examples are
listed in Table 5.1. The example numbers used in this
research correspond to the original example numbers in
Duncan's paper.

Sensitivity analyses are performed using designed
experiments (DOE). The Plackeft—Burman design with 12 runs
(L12), the Taguchi L12 design, the 29'1 fractional
factofial (FF) design, andvtﬁe‘Ceﬂtrai Comp;site Faced
Design (CCFD) (Schmidt and Lgunsby, 1989) are employed to
compare and verify the‘validity of the analyses and to
obtain the prediction equations for the optimal design
parameters and the resulting operating loss. Duncan's
(1956) example 1 is chosen as the basis or real environment

for study and illustration.
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TABLE 5.1

COST AND OPERATING PARAMETERS OF DUNCAN'S 22 EXAMPLES

Ex Cost and Operation Parameters

no. & 0 M e D T L b c
1 2 0.01 100 0.05 2 50 25 0.5 0.1
2 2 0.02 100 0.05 2 50 25 0.5 0.1
3 2 0.03 100 0.05 2 50 25 0.5 0.1
4 2 0.01 50 0.05 2 50 25 0.5 0.1
5 2 0.01 1000 0.05 2 50 25 0.5 0.1
6 2 0.01 10000 0.05 2 50 25 0.5 0.1
T 2 0.01 100 0.50. 2 50 25 0.5 0.1
8 2 0.01 100 0.05 20 50 25 0.5 0.1
9 2 0.01 100 0.05 2 5 2.5 0.5 0.1
10 2 0.01 100 0.05 2 500 250 0.5 0.1
12 2 0.01 100 0.05 2 50 25 5.0 0.1
13 2 0.01 100 0.05 2 50 25 0.5 1.0
14 2 0.01 100 0.05 2 50 25 0.5 10
15 2 0.01 1000 0.05 2 50 25 0.5 1.0
16 1 0.01 12.87 0.05 2 50 25 0.5 0.1
17 i 0.01 128.7 0.05 2 50 25 0.5 0.1
18 1 0.01 12.87 0.05 2 500 250 0.5 0.1
19 1 0.01 12.87 0.05 2 50 25 5.0 0.1
20 1 0.01 12.87 0.05 2 50 25 0.5 1.0
21 .5 0.01 2.25 0.05 2 50 25 0.5 0.1
22 .5 0.01 225 0.05 2 50 25 0.5 0.1
24 .5 0.01 2.25 0.05 2 50 25 5.0 0.1
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TABLE 5.1 (Continued)
Ex ‘
no. Remarks
1 Basis
2. Same as #1 except theta increased
3 Same as #1 except theta increased
4 Same as #1 except M decreased
5 Same as #1 except M increased
6 Same as #1 except M increased
7 Same as #1 except e increased
8 Same as #1 except D increased
9 Same as #1 except T & W decreased
10 Same as #1 except T & W increased
12 Same as #1 except b increased
13 Same as #1 except c increased
14 Same as #1 except ¢ increased
15 Same as #1 except M & ¢ increased
16 Same as #1 except 6 & M decreased
17 Same as #16 except M increased
18 Same as #16 except T & W increased
19 Same as #16 except b increased
20 Same as #16 except ¢ increased
21 Same as #1 except 8§ & M decreased
22 Same as #21 except M increased
24 Same as #21 except b increased
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Verification Of The Employed

Search Technique

It is noted that the Shewhart X-bar control chart is
equivalent to the X-bar contfol chart with AT&T rule one
(i.e.; RULE C1) only. ?he gconomic deéign of these three
variables control charts in this researqh uses Duncan's
(1956) approachlto the economic design of the X-bar control
chart. Therefore, the results of the econoﬁically-based X-
bar control chart with RULE Cl1 obtained from the economic
model developed in this research ghduld be at least as good
as those of Duncan's.

In order to get his results, Duncan (1956) simplifigs
his model by making some assumptions. This makes Duncan's
model become an approximation. However, Duncan does provide
exact solutions fof some of his examples. Goel, Jain, and
Wu (1968), and Koo (19&7) provide the lésseslof part or all
of those 25 examples and_show that there are errors in
Duncan's (1956) calculatipns. Even though Goel, Jain, and
Wu (1968) provide an algorithm to c;lculate the loss of the
economically-based X-baf control chaft, Duncan's (1956)
assumptions in estimating the expected length of a
production cycle are still applied in their algorithm.

Only Koo (1987) provides the resulfs of the economically -
based X-bar control chart using‘Duncaﬁ's (1956) exact
model. Therefore, Koo's calculations are used to compare

against the results obtained from the proposed model in
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order to verify the adequacy of the search technique
discussed in chapter III.

The losses of these 22 examples obtained from Koo's
calculations and the calcﬁlations using the proposed model
are listed in Tabie’5.2.w1t/islobserved from Table 5.2 that
the results obtained are vgry\close. The percentages of
differences\for all 22 examples are‘lésé th#n 0.005% which
is small eﬁough to be neglected. All the resuits obtained
from the proposed model show smaller losses than both
Duncan's and éoel, Jain, and Wu's results (Note that both
Koo and Goel et al. show that the exact result of example 8
given by Duncan is not corrépt. The correct value is given
by Koo). Therefo;e, it can be said that the search

procedures employed in this research are adequate.

Economic Comparison Among The X-bar
Control Chart With AT&T Runs Rules,
The EWMA Chart, And The

Zone Control Chart

In order to provide an economic comparison among the
(1) X-bar control chart with AT&T runs rules, (2) EWMA
chart, and (3) Zone control chart, the 22 examples listed
in Table 5.1 are considered. Taﬁle 5.3 shows the optimal
design parameters and the losses of the economically-based
X-bar control chart with AT&T runs rulesj; Table 5.4 shows
the results of the EWMA chart; and Table’5.5 shows the

results of the Zone control chart. Table 5.6 shows the
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TABLE 5.2

COMPARISON OF THE LOSSES OBTAINED FROM KOO'S CALCULATION
AND THE CALCULATION FROM THE PROPOSED MODEL(*)

Ex. no. n h k Loss

5 1.4032 | 3.0853 4.0128 *

! 5 1.3953 | 3.0701 4.0129
5 1.0216 | 3.0787 6.9460 *

’ 5 1.0045 | 3.0695 6.9464
4 0.7832 | 2.9366 9.5924 *

> 4 0.7920 | 2.9448 9.5926
5 1.4617 | 3.0713 4.1527 *

! 5 1.4678 | 3.0877 4.1529
4 0.4050 | 2.9574 26.9753  *

° 4 0.3970 | 2.9705 26.9763
2 0.0913 | 2.6914 228.8060 *

° 2 0.0903 | 2.7005 228.8069
2 0.9385 | 2.6856 5.4005 *

! 2 0.9491 | 2.6859 5.4007
5 1.6554 | 3.0575 18.3716 *

’ 5 1.6988 | 3.0522 18.3720
3 1.2650 | 2.2082 3.6087 *

’ 3 1.2600 | 2.2000 3.6087
6 1.4527 | 3.6731 6.3670 *

0 6 1.4709 | 3.6744 6.3671
6 3.4650 | 2.8777 5.8669 %

12 6 3.4309 | 2.8831 5.8670

Note: "*" represent results from Koo (1987).



TABLE 5.2 (Continued)

89

Ex. no. n h k Loss

3 2.5963 | 2.4243 5.6313

' 3 - 2.5973 | 2.4237 5.6313
1 4.6928 | 1.4424 9.8733

H 1 4.7086 | 1.4474 9.8733
3 0.8120 | 2.4257 31.7500

' 3 0.8299 | 2.4305 31.7524
14 5.4897 | 2.6754 1.4159

18 14 5.5014 | 2.6671 1.4159
11 1.4552 | 2.5962 6.2759

1 11 1.4579 | 2.5948 6.2759
21 7.1429 | 3.3953 3.6409

+e 21 7.1431 | 3.3957 3.6409
18 11.0205 | 2.5451 1.9551

e 18 11.1019 | 2.5556 1.9551
8 12.3708 | 1.8864" 2.4207

20 8 12.2994 | 1.8440 2.4207
38 23.5481 | 2.1258 0.8308

2 38 23.1217 | 2.1700 0.8309
20 1.2451 | 2.1053 13.5571

22 20 1.2556 | 2.1073 13.5571
45 37.4997 | 2.0253 0.9772

“ 46 38.2675 | 2.0250 0.9772

Note: "*" represent results from Koo (1987).



RESULTS OF THE 22 EXAMPLES OF THE ECONOMICALLY-BASED

TABLE 5.3

X~-BAR CONTROL CHART WITH AT&T RUNS RULES
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Ex.
no. n h k RULE Loss
1 5 1.3953 3.0701 C1 4.0129
2 5 1.0045 3.06985 C1 6.9464
3 4 0.7920 2.9448 C1 9.5926
4 5 1.4678 3.08717 C1 4.1529
5 4 0.3970 2.9705 C1 26.9763
6 2 0.0900 2.9200 Ci12 227.7351
1 2 0.8608 2.9952 C12 5.2894
8 5 1.6988 3.0522 Ct 18.3720
9 3 1.2600 2.2000 C1 3.6087
10 6 1.4709 3.6744 C1 6.3671
12 6 3.4309 2.8831 C1 5.8670
13 3 2.5970 2.42317 C1 5.6313
14 1 4.7086 1.4474 C1 9.8734
15 3 0.8299 2.4305 C1 31.7524
16 14 5.5014 2.6671 C1 1.4159
17 11 1.4579 2.5948 C1 6.2759
18 21 7.1431 3.3957 C1 3.6409
19 18 11.1019 2.5556 C1 1.9551
20 8 12.2994 | 1.8440 C1 2.4207
21 38 23.1217 2.1700 C1 0.8309
22 17 0.9519 2.4344 C12 13.3473
24 46 38.2675 2.0250 C1 0.9772




TABLE 5.4

RESULTS OF THE 22 EXAMPLES OF THE

ECONOMICALLY-BASED EWMA CHART
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Ex.
no. n h k a Loss
1 5 1.3956 3.1047 0.9394 4.0114
2 4 0.9228 2.9895 0.9099 6.9434
3 4 0.7930 2.9491 0.9053 9.5823
4 5 1.4361 3.0902 0.9490 4.1514
5 4 0.4102 2.9671 0.9032 26.9545
6 2 0.0817 2.8540 0.6938] 227.3700
1 2 0.8665 2.8441 0.6836 5.2616
8 5 1.6900 3.0500 0.9500 18.3708
9 3 1.2696 2.2152 0.9042 3.6087
10 6 1.4729 3.68717 0.9175 6.3633
12 6 3.4342 2.8676 0.9855 5.8670
13 3 2.5955 2.4318 0.8950 5.6196
14 1 4.4659 1.4920 0.7073 9.7683
15 3 0.7968 2.4609 0.8930 31.7120
16 14 5.4500 2.7000 0.9000 1.4131
17 11 1.4171 2.6412 0.82617 6.2431
18 20 6.8600 3.4000 0.9100 3.6379
19 18 11.0911 2.5398 0.9593 1.9549
20 1 11.1981 1.8823 0.8327 2.4098
21 37 23.2301 2.1827 0.8531 0.8283
22 11 0.6139 2.4288 0.3976 12.9841
24 45 37.8068 2.0168 0.9016 0.9768




RESULTS OF THE

TABLE 5.5

22 EXAMPLES OF THE ECONOMICALLY-BASED
ZONE CONTROL CHART
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Ex.
no. n h k S1 S2 S3 S4 Loss
1 5 1.4256]13.0853 0 1 2 15 4.0129
2 5 1.025513.0693 0 1 2 19 6.9460
3 4 0.7863]2.9440 0 1 4 16 9.5922
4 5 1.4588(3.0739 0 1 2 19 4.1526
5 4 0.4131]12.9443 0 1 4 16 26.9756
6 2 0.0836(2.8615 0 1 8 16 227.9304
7 2 0.89062.7880 0 1 6 18 5.3370
8 5 1.6603(3.0568 0 1 2 23 18.37186
9 3 1.2652]2.2088 0 1 2 21 3.6087
10 6 1.4619(3.6870 0 1 8 24 6.3663
12 6 3.429412.8872 0 1 2 20 5.8670
13 3 2.614312.4218 0 1 2 20 5.6313
14 1 4.7352]1.4374 0 1 2 23 9.8733
15 3 0.8290(2.4259 0 1 2 22 31.7518
16 |14 5.482712.6764 0 1 2 19 1.4159
17 {11 1.4319{2.6232 0 1 1 21 6.2700
18 |20 7.1315]13.3616 0 1 1 21 3.64086
19 {18 [11.1092]2.5563 0 1 2 21 1.9551
20 8 ]12.2589]1.8849 0 1 2 24 2.4208
21 38 {23.1331]2.1688 0 1 2 23 0.8309
22 |16 0.925812.4383 0 1 8 16 13.2636
24 |45 [38.0622[2.0122 0 1 2 24 0.9772




TABLE 5.6

LOSSES OF THREE VARIABLES CONTROL CHARTS

Ex. X~bar Chart With
No. AT&T Runs Rules EWMA Chart Zone Chart
1 4.0129 4.0114 4.0129
2 6.9464 6.9434 6.9460
3 9.5926 9.5823 9.5922
4 4.1529 4.1514 4.1526
5 26.9763 26.9545 26.9756
6 227.7351 227.3700 227.9304
(f 5.2894 5.2616 5.3370
8 18.3720 18.3708 18.3716
9 3.6087 3.6067 3.6087
10 6.3671 6.3633 6.3663
12 5.8670 5.8670 5.8670
13 5.6313 5.6196 5.6313
14 9.8734 9.7683 9.8733
15 31.7524 31.7120 31.7518
16 1.4159 1.4131 1.4159
17 6.2759 6.2431 6.2700
18 3.6409 3.6379 3.6406
19 1.9551 1.9549 1.9551
20 2.4207 2.4098 2.4208
21 0.8309 0.8283 0.8309
22 13.3473 12.9841 13.2636
24 0.9772 0.9768 0.9772
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losses of these three variables control charts in order to

make a clear comparison.

(1)

(2)

(3)

(4)

(5)

(1)

It is observed from Tables 5.3 to 5.6 that
The economically-based EWMA chart is superior to both
the economicall&-based X-bar control chart with AT&T
runs rules and the economically-based Zone control
chart.
The economically-based Zone control chart performs
better than, or as good as, the economically-based X-
bar control chart with AT&T runs rules in 16 out of 22
examples.

In the economic design of the X-bar control chart with
AT&T runs rules, 19 out of 22 examples which yield
smaller losses use RULE Cl. The other three use Ci2.
The a values in all 22 examples are large. The smallest
& value is approximately 0.4, which occurs in example
22.

In the economic design of the Zone control chart, 0 and
1 are used as zone score 1 (S1) and zone score 2 (S2),
respectively, in all 22 examples.

Some other observations are:
Three out of 22 examples of the economically-based X-
bar chart use RULE C12; others use Cl, as shown in
Table 5.3. Among these three examples, two of them have
relatively high penalty cost, M. This can be seen by
comparing example 1 with example 6 and example 21 with

example 22. The increase in M is 100 times. The other



(2)

(3)

(4)
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example using Cl12 has a large value for the delay
factor (e). For example, comparing example 1 with
example 7, the increase in e is 10 times. Therefore, it
can be said that if the value of the penalty cost or
delay factor is relatively large, ﬁdre rules should be
considered for use in combination withwan X-bar chart.
Examining Table 5.3, it is found that those examples
using C12 have values of &/n fairly close to the width
of the control limits. Others have values of &n
greater than the width of the control limits.

Examining the statistical property (power of detection
of a shift in the process mean) of those three examples
using C12, it is found that, based on the same ARL1,
RULE C12 produces the smallest ARL2 among all 8
combinations of runs rules.

The a values of the economically-based EWMA chart are
large in all 22 exampleé. Even though there is not any
recommendation being made regarding the selection of an
& value, the most often used a values in industry
ranges from 0.15 to 0.3. Table 5.4'shows that the
economically optimal &« values differ noticeably from
the commonly used values.

The economically-based ZCC has similar performance to
the economically-based X-bar control chart with AT&T
runs rules. But, the ZCC has the advantage of
flexibility. The number of the combinations of the four

AT&T runs rules is limited; however, the combinations
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of the four zone scores are virtually infinite.

Sensitivity Analyses Of The Effects
Of Variation In Cost And
Operating Parameters On

The Optimal Design

In the last four decades, researchers have conducted
sensitivity analyses regarding the'effects of variation in
the cost and operating parameters on the economic design
parameters and the resulting operating loss, following
Duncan's (1956) approach. Duncan's approach is a one-
factor-at-a-time type of analysis. This type of analysis
is known to be highly‘inefficient because only one factor
is changed at one run while all the others are kept
constant. Once an optimal solution is found for that
factor, it is held at that’value and another factor is
manipulated. Therefore, the design is not orthogonal and
the traditional statistical methods can not be employed for
analysis. The one-factor-at-a-time analysis also assumes no
interaction between variables, and prediction equations for
responses are not available.

Panagos, Heikes, and Montgomery (1985) conduct a 29%-4
fractional factorial experiment to study the effects of the
cost and operating parameters. The traditional analysis of
variance (ANOVA) approach is adopted. Panagos et al. assume
that the interactions between variables can be neglected.

The emphasis is put on the study of main effects.
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Therefore, all the unused terms are pooled together to
estimate the error term. This error term is then used to
evaluate the significance of main effects. No prediction
equations are given. One question then arises. Since the
experiment is conducted using a computer and the economic
model is fixed, there is no variation in the responses if
replications are considered. Therefore, there is no
meaningful explanation as what the error term means. Also,
regardless of whether it is a one-factor-at-a~time type of
analysis or a fractional factorial analysis, the
sensitivity analysis is always conducted using the
following procedures. After the level of each factor is
determined, the associated optimal design parameters and
loss associated with this particular design are obtained.
The sensitivity analysis is then carried out using all the
data so obtained. This approach is appropriate for the
optimal design parameters; however, it is not appropriate
for the resulting operating loss.

Collins, Case, and Bennett (1978) propose a more
realistic and rgasonable approach for conducting the
sensitivity analysis regarding the resulting operating
loss. They propose that whenever the level of each factor
is determined, a set of optimal design parameters can be
obtained. This set of design parameters is then implemented
into the "real” environment and an associated resulting
operating loss is obtained. The sensitivity analysis is

then conducted based on the losses so obtained. This
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research adopts this latter approach to sensitivity

analysis.

Procedures For Sensitivity Analysis

The procedupes for conducting the sensitivity analyses
are outlined as follows:

(1) Determine a designed experiment . to examineksensitivity.

(2) Determine the levels for each factor (cost and
operating parameters) and the total number of
experimental runs.

(3) Find optimal design parameters }or each run.

(4) Implement the optimal design parameters found in (3)
into the "real" environment and determine the loss
associated with operating the system.

(5) Conduct the sensitivity‘analysis based on the data

obtained in (3) and (4).

DOE Techniques Employed

Duncan's (1956) e#ample 1 is chosen as the basis or
"real"” environment. There are 9 factors to be studied in
this research. Following Panagos, Heikes, and Montgomery's
(1985) work, main effects are of concern during the first
stage of the sensitivity study. Therefore, some simple
designs are employed initially. Schmidt and Launsby (1989)
point out that the Plackett-Burman (P-B) designs are
developed for evaluating main effects with few or no

interactions of interest. Also, if one's objective is to
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screen out factors which are thought to be important using
2-level unreplicated designs, then the non-geometric P-B
designs are more efficient than the geometric P-B designs.
The disadvantage of the non-geometric P-B designs is that
the confounding patterns are not available. Since it is
assumed initially that the interaction between variables
are not of interest, a non-geometric P-B design with 12
runs (L12) (Plackett and Burman, 1946; Schmidt and Launsby,
1989) is employed for study.

In order to ensure that the results from different
analysis techniques are indifferent, a theoretically
equivalent Taguchi L12 design (Kackar, Lagergren, and
Filliben, 1991) is also employed. It is shown later that
the conclusions regarding the control chart design
parameters are almost the same as those obtained from the
P-B L12 design; however, the conclusion regarding the loss
is different. This suggests that the interactions or non-
linear effects should be explicitly considered.

The disadvantage of the P-B L12 and Taguchi L12
designs is that the confounding patterns are not available.
Therefore, the information obtained previously can not be
utilized for further experimentation. In order to study the
effects of all the 2-way interactions, a design with
resolution V is desired. Therefore, a 22-1 FF experiment is
carried out at the second stage. A central composite faced
design (CCFD) is also carried out to improve the analysis

and prediction equations obtained in the 29-1 FF
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experiment. The results indicate thgt a designed experiment
with 2 levels for each factor is sufficient fdr conducting
the sensitivity analysis.

For the P-B L12 design apd"Taguchi L12 design, the
rates of érror of estimatioh of);he 9'cost and operating
parameters are as;umed to be 110%, +30%, and *50% away from
the true values. Due to the faét that fhe conclusions
regarding fhe effects of the cost and operating parameters
on the design parameters are the-same no matter what rate
of error of estimation is used, oniy the‘e¥ample with $£30%
error of estimation is used for illust;ation. When the 29-1
FF desién and CCFD (using the results of the 29-1
experiment in combination wiih 19 more runs) are employed,
only the case with #30% error of estimation on the cost and

operating parameters is conducted.

Plackett-Burman L12 Deéign o

Table 5.7 shows the design matrix of the P-B L12
design with both coded and non-coded values. Duncan's
(1956) example 1 is chosen for démonstration. Thepefore;
tﬁe true values of fhe 9 cost aﬁd ope;atfng parameters are:
6=2.0, 6=0.01, M=100, e=0.05, D$2.0,‘T=50, W=25,"b=0.5, and

c=0.1.

The X-bar Control Chart With AT&T Runs Rules. Table
5.8 shows the optimal design parameters and resulting

operating losses in the "real" environment of these 12
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T

~ CODED AND NON-CODED VALUES FOR
THE P-B L12 DESIGNS
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Non-Coded

No.| & 6, M e DT w b c
1 {2.6/0.007|130{0.035|1.4}35{32.5{0.65{0.13
2 |2.6j0.013] 70/0.065}1.4}35}17.5{0.65}0.13
3 {1.4/0.013{130]0.035{2.6}35}17.5}{0.35(0.13
4 12.6{0.0071130{0.065)1.4}65]17.5]0.35]0.07
5 12.6]0.013} 70/0.065|2.6}35|32.5}{0.35}0.07
6 12.6]0.013}130]0.035}2.6}65]17.5{0.65}0.07
7 11.410.013{130}0.065/1.4](65{32.5(0.35(0.13
8 [1.4]0.007]130]0.065}2.6]35]32.5{0.65]0.07
9 11.4{0.007| 70]0.065|2.6|65{17.5{0.65}0.13

10 |2.6{0.007] 70]|0.035/2.6}65]32.5/0.35}0.13

11 [1.4(0.013} 70{0.035]1.4]65(132.5/0.65{0.07 .

12 }1.4]0.007} 70}0.035}1.4]35]17.5]0.35]0.07

Coded
1 1 =1 1 -1 -11-1 1 1 1
2 1 1 -1 1 -11-1} -1 1 1
3 |-1 1 1] -1 1]-1 -1 j-1 1
4 1 -1 1 -1 -1} 1 -1 |-1 -1
5 1 1 -1 1 11-1 1 }|-1 -1
6 1 1 1 -1 1| 1 -1 1 -1
7 1-1 1 1 1 -1] 1 1 |-1 1
8 |-1 -1 1 1 1(-1 1 1 -1
9 |-1 -1 -1 1 1] 1 -1 1 i

10 1 -1 -1 -1 11’1 1 }-1 1

11 |-1 1 -1 -1 -11 1 1 1 -1

12 41‘ -1 -1 | -1 -1]-1 -1 |-11] -1




THE OPTIMAL DESIGN PARAMETERS AND THE RESULTING

TABLE

5. 8

OPERATING LOSSES OF THE X-BAR CHART
WITH AT&T RUNS RULES
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# n h k RULE Loss |% increase

: - lin loss

1 3 [1.5049| 3.0244| C1 | 4.3696|8.88883
2.1 3 1.516] 2.9988} C1 4.3538)8.49510

3 7 |1.2117| 2.6879} C1 4.3936]9.48690

4 3 ]11.0737] 3.2898] C1 4.413619.98529

5 3 [1.1183] 3.1179| C1 | 4.2788|6.62613

6 4 11.0827| 3.4203| C1. | 4.1699|3.91238

7 T 11.1532] 2.8341] C1 4.328 |7.852117

8 8 |1.6149| 2.7827| C1 | 4.3205]7.66527

9 8 |2.5642| 2.8347| C1 4.395419.53176
10 3 |1.7163] 3.2233] C1 | 4.7518]18.4131
11 9 11.6949| 3.0092} C1 4.3388|8.12130
12 9 |1.9655] 2.9434] C1 | 4.3569|8.57235

basis 5 |1.3953} 3.0701] C1 4.0129 0

Note: The resulting operating losses are obtained by

1mp1ement1ng the - optlmal des1gn parameters into the

"real"”

env1ronment.t

no 1Nl
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runs. Instead of applying the traditional analysis of
variance (ANOVA) approach and using the F-test, this
research uses half effect plots (Schmidt and Launsby, 1989)
to identify the important effects. The 9 cost and operating‘
parameters are treated as the independent variables in the
experimentation. The optimal design parameters and the
resulting operating lossesAare the responses (dependent
variables). The half effects are obtained by calculating
half the difference between the mean responses of the high
levels and low levels for each factor. The half effect plot
is obtained by first taking the absolute values of those 9
half effects, then plotting the half effects versus the
corresponding factors in a descending order.
Figures 5.1 - 5.4 show the half effect plots of n, h,
k, and loss, respectively,‘of the X-bar chart with AT&T
runs rules. It is observed that
(1) The optimal subgroup size, n, is primarily determined
by &, the magnitude of shift in the process mean
measured in terms of the number of process standard
deviations.
(2) The vglues of 8§, 6, M, b, and ¢ have significant
effects on the optimal sampling interval, h.
(3) The value of 8, e, T, and ¢ have effects on the optimal
width of control limits, k.
(4) All 9 factors have effects on the resulting loss.

(5) RULE C1 is used (optimal) in all 12 runs.
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The EWMA Chart. Table 5.9 shows the optimal design

parameters and‘the resulting losses of the economically-

based EWMA chart. Figures 5.5 - 5.9 show the half effect

plots of n, h, k, a, and loss, respectively. The

conclusions are:

(1) The value of & has a major effect on subgroup size, n.

(2) The values of 8§, 6, M, b, and c have significant
effects on the optimal sampling interval, h.

(3) The values of 86, e, T, and ¢ have effects on the
optimal width of control limits, k.

(4) Except for D and 6, all the other 7 factors have
effects on the weight, a. However, & has a major effect
on a.

(5) Except for 8, all the other 8 factors have effects on
the resulting loss.

Other than the observations above, it is also found that e

increases when & n increases.

The Zone Control Chart. Tgble 5.10 shows the optimal

design parameters and the resulting losses of the
economically-based ZCC. Figures 5.10 - 5.13 show the half
effect plots for n, h, k, and loss. The conclusions are:
(1) The value of & has a major effect on subgroup size, n.
(2) The values of 8§, 6, M, b, and ¢ have noticeable effects

on the optimal sampling interval, h.



THE OPTIMAL DESIGN PARAMETERSVAND THE RESULTING

TABLE 5.9

OPERATING LOSSES OF THE EWMA CHART

109

h.

# n k alpha Loss |% increase
in loss
1 3 1.499 12.9996] 0.9295 4.302 |T7.24435
2 3 {1.5201 [3.0017f 0.9525 |4.3252 |7.82270
3 7 11.1594 ]2.7191 0.885 }14.4028 |9.75719
4 3 |1.0549 |3.3046] 0.9209 (4.3381 [8.14428
5 3 11.1092 |3.1565] 0.9319 |4.2535 |6.03529
6 4 11.0635 [3.3861] 0.9329 (4.1285 [2.91918
(f 6 |1.0343 [2.8523 0.82 14.2715 |6.48402
8 T 11.5222 |2.7365] 0.8931 (4.2535 [6.03529
9 8 |2.5443 |2.8743} 0.9011 }4.3815 |9.22620
10 3 11.7241 13.2328) 0.9034 |4.6478 [15.8647
11 9 1]1.6628 |3.0133 0.916 |4.3401 [8.19414
12 8 11.8478 [2.8606] 0.9194 [4.2793 |6.67846
base 5 11.3956 |3.1047| 0.9343 (4.0114 0

Note: The resulting operating losses are obtained by
implementing the optimal design parameters into the
environment.

"real"
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TABLE 5.10

THE OPTIMAL’DESLGN PARAMETERS AND THE RESULTING
OPERATING LOSSES OF THE ZONE CONTROL CHART

# n . h k | scores Loss % increase
: . ]in loss
-1 3 |1.4913] 2.9986}0,1,2,16}4.3414 |8.18609
2 3 |1.5243) 3.0179(0,1,2,15| 4.374 ]8.99847
3 7T 11.2012) 2.6728}0,1,2,15]4.2392 |5.63931
4 3 }|1.0757¢{ 3.2677(0,1,2,15(4.3907 {9.41463
5 3 j1.1121} 3.12280,1,2,15]/4.2801 |6.65852
6 4 1.067} 3.4221}0,1,2,15]4.1704 [3.92484
1 7T j1.1471} 2.835510,1,2,14]4.3308 |7.92195
8 8 |1.6137| 2.78450,1,2,16}4.3198 |7.64783
9 8 |2.5596] 2.8466}0,1,2,16}4.3913 [9.42958
10 3 j1.7177} 3.224710,1,2,15| 4.754 {18.4679
11 9 |1.6374]  2.999}0,1,2,15|4.3459 |8.29823
12 9 11.9831] 2.9112}0,1,2,15/4.3665 |8.81158
base 5 ]11.4256 3.0853 0,1,2,15{4.0129 0

Note: The resulting operating losses are obtained by
implementing the optimal design parameters into the
"real”" environment.
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(3) The values of 8, e, T, and ¢ have effects on the
optimal width of control limits, k.

(4) Except for D, all the other 8 factors have effects on
the resulting operating losses.

(5) The first three zone scores are not affected by any of
the 9 factors; however, the fourth‘zone score has
slight variatidn. |

Comparing the conclusions fromlall thrgezfypes of
control charts, it is observed that the(conclusions
regarding the control chart design paramefers n, h, and k
are consistent; however, it is not the case for the
resulting operating loss. The results suggest that the
interaction between variables #hd/or non-linear effects
must be explicitly considered.

In order to study thé"effects of the rates of error of
estimation of those 9 bqst and operating parameters, the
experiments are also conduéied yith the rates of error of
estimation being +10% and i50%..The results show
indifference in the conclusions regarding the design
parameters; however, they do show differences regarding the

resulting operating loss.

Taguchi Design

In order to ensure that the results of analyses
obtained are not affected by design techniques employed, a
Taguchi L12 designed experiment is also carried out. Note

that the Taguchi L12 design is theoretically equivalent to
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the P-B L12 design. The layout of the design matrix of the
Taguchi L12 design is different from tﬁat of the P-B L12
design. However, by changing the low levels to high levels
and vice versa in ceftain coiumns, and then manipulating
the rows #nd colﬁmns; the;iaguéhi5L12 design becomes
exactly the same as the’P;ﬁnLIZ design. .The details are
given by Kacker, Lagergren, and Fillﬁbeh‘(léQl).

The layout of this dgsigned matrix' is Shown in Table
5.11. The procedures for tﬁe sensitivify'aﬂalysis in this
experiment a;é the same as‘thosé in the P-B L12 design. The
results show the same conciusions, regarding the design
parameters, as those ofjthe~P4B L12 desién; however,
different conclusions are obtaiﬁed regarding the résulting
operating loss.

9-1 , -
2 Fractional Factorial Design

The confounding patté}ns‘of the Taguchi L12 design and
the P-B L12 design are not gvailable. Therefore, in order
to explicitly consider all the 2-way linear interaction
between Qariables, a 28-1 fr#ctiona1<factorial (FF) design
is empléyed. The défining relgtionship (Séhﬁidt and
Launsby, 1989) is I = 8§6MeDTWbc.

The cost and operatiné paraméters, optimal design
parameters, and resulting operating léés of these 256 runs
using the X-bar control chart with AT&T runs rules are

listed in Appendix D. It is interesting to note that the
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TABLE 5.11

DESIGN MATRIX OF THE TAGUCHI L12 EXPERIMENT

vl v v e v e v v v v ]
Q ] [ | [ | i
vl vl v e v v v v e v
L 1 | | ] 11
P R i [P g p—
= o 1 1 (I
vl oy v v v v v v v v v
B | [ | | [} I
vl vl v v v v v v v v v
(=] I [ | [}
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optimal RULE used in all 256 runs is C1, which is not
listed in Appendix D. The procedures employed for the
sensitivity study ares exactly the same as those in the
Taguchi L12 and PjB L12 experiments. Thé rates of error of
estimation of the 9 cost gn? opebgting parameters are
assumed to be +30%. ‘ r

The results regarding*the c§ntro1\chart design
parameters n and h sﬁow the ;amé conclnsiphs as those
obtained in/the P-B L12 and Taguchi L12 designs. A slight
difference exists in the aﬁal&sis of k. It is noted that 6
and M (and b &n the EWMA chart)'havehan effect on k. The
result of the analysis regarding tBe resulting operating
loss shows noticeable diffeéence from the pfevious
conclusions. The effects which show significant in the
analysis of the loss»ane 5M, 86, &6c, OM, M, se, 6, Mc, Oc,
c, 8T, Mb, 6b, bc, and 8b (in the EWMA chart, 8b is not
included), in a descendingaﬁ}dér of importance. Due to the
hierarchy rule, thé maiq’effé;fs &, e, T and b are also
included when constructing the prediction equations in

later sections. Note that W and D are not included.

Central Composite Faced Design

In order to improve the results of the sensitivity
analyses and prediction equations, a CCFD using all the
results from those 256 runs of the 2¢-1 design, plus one
run of the center point, and 18 more runs of the axial

points (because there are 9 factors) i; carried out. Since
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all the factors have been set at their extreme values when

conducting the 29%-1 FF experiment, the "a¢" (this is not the
same & as that in the economic design of the EWMA chart)
values for the 9xia1 points gré,il in this experiment. This
is why it is called a centrai‘quposite "faced" design. One
thing to note is that sihcé fhis analysis is conducted
using SAS (Schlotzhauer and Littell, 1987),(the unused
columns are pooled to estiﬁate the erfor terﬁ." This is
different from previous analysés in this research.

The conclusions are close to thse obtained in the 29-
1 FF experimeﬁt, as shown in Table 5.12. The 3?level design
does not improve the results much. Therefore, a 2-level
design is sufficient for condﬁcting the sensitivity

analysis. All the significant effects identified by each of

these four designs are tabulated in Table 5.12.

Prediction Equations

Previous work of the economic design of quality
control charts use one-factor-at-a-time (Duncan, 1956) or
fractional factorial (Qanagos, Heikes, and Montgomery,
1985) experiment to‘conduct the senéitivity anaiyses. All
previous research identifies only the direction of the
important factors (cost and oper;tihg parameters) which
show significant effects on the optimal control chart
design parameters and the resulting loss. The magnitude of
the effects cannot be obtained. The prediction equations

constructed in this research provide the
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SUMMARY OF CONCLUSIONS OF THE SENSITIVITY ANALYSES
OF THE P-B L12 DESIGN, TAGUCHI L12 DESIGN,
29-1 FF DESIGN, AND CCFD

Significant Effects
Response P-B Taguchi 29-1 FF CCFD (for
: <1> only)
n 5 & ) )
h 8,0,M,b,c|5,8,M,b,c| 5,0,M,b,c | 5,0,M,b,c
k 6,e,Ty,c |8,,Tyc |5,0,M,e,T,c}|5,0,M,e,T,c
'(and b in
<2>)
loss <1>
5,0,M,e,}|0,M,e,D, 5,0,M,e, The same
D, T,W,b,|T,W,b,c T,b,c, as those
c ' éM,80,56c, in 28-1
&e,8T,&b, FF design
6M,0c,0b, plus §°
Mc,Mb,bc
2>
o,M,e,D, T{0,Mye,D,T|same as <1>
W,b,c ‘IW,b,c except &b
N/A
3>
5,06,M,e,T|6,M,e,D,T|same as <1>
W,b,c. W,b,c
% of The same conclusions as tﬁose for loss
Difference
Note: A. "<1>" represents the X-bar control chart with AT&T
runs rules;
B. "<2>" represents the EWMA chart;
C. "<3>" represents the ZCC.
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following advantages:

(1)

(2)

(3)

(4)

(5)

They identify the important factors;

They indicate both the magnitude and direction of the
important factors;

They provide easy identification of joint effect when
more than one factors are misspecified at the same
time;

They help the user to (i) Aetermine the initial values
for the control chart desigp parameters; and, (ii)
provide regions for search of the optim#l values of the
design parameters. For example, if the levels of each
factor are‘determined, and if the user wishes to
optimize the design parameter, say k, then, he can
search within the range of [kprea ¥ (1 £ 0.05)]; and,
Substantial savings can be obtained by using the
predicted values as initial values, instead of using
the ¢ommonly used values (e.g., for the X-bar chart,
n=5, h=1, k=3, see Duncan, i956) as the control design
parameters. For example, suppose 6=2, 6=0.01, M=100,
e=0.05, D=2, T=50, W=25, b=0.5, and c=0.1 (Duncan's
example 1). Then, the coded values for all 9 cost and
operating parameters are zeroes. Take the X-bar
control chart using RULE Cl1 as an example. The loss
using the commonly used design values is 4.1234. The
losses using the predicted values, (i) n=5 (truncated),
h=1.51898, k=3.02165, and (ii) n=6 (rounding),

h=1.51898, k=3.02165, are 4.0171 and 4.0613,
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respectively. The savings are 2.65% and 1.53%,
respectively.

The prediction equations fog the optimal design
parameters and the resulting‘loss for each chart are
obtained‘uéing the results_of the 29-1 fractional factorial
experiment. Nofe that ;he‘r;te of error of estimation of
the 9 cost and operating parameters is +30%. Therefore, the
ranges of the values for each factér (non—coded) are:

6: 1.4 - 2.6,

0: 0.007 - 0.013,

M: 70 - 130,

e: 0.035 - 0.065,

D: 1.4 - 2.6,

T: 35 - 65,

w: 17.5 - 32.5,

b: 0.35 - 0.65, and,

c: 0.07 - 0.13.
The coded values are +1 and -1 for the highest and the
lowest values of each factor; respectively. The experiment
is set up within the operating range.

The calculated half effects for the optimal design
parameters and the resulting loss for each chart are
provided in Appendix E. Also provided are the comparisons
of the true values and the predicted values for the first

40 runs of the 29-1 experiment for each chart.

The X-bar Control Chart With AT&T Runs Ruleé. The

prediction equations are:
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(1) Prediction equation for the design parameter n,

Npred = 5-60546 -

2.277348

(2) Prediction equation for the design parameter h,

hprea = 1.51898 -

+

0.1469486 - 0.236296 - 0.25168M
0.13811b + 0.09446c

(3) Prediction equation for the design parameter k,

kpred = 3.02165 +

+

0.183456 - 0.016036 - 0.01683M
0.03396e - 0.09415T - 0.07298¢c

(4) Prediction equation for the resulting operating loss,

ELOSSprea = 4.35245 + 0.003796 - 0.0273806 -0.03143M

+

+

+

+

0.00215e + 0.0077T + 0.00533b
0.01896c - 0.042506 - 0.045635M
0.02912%8e + 0.018248T -0.0093158b
0.0409986c + 0.040936M - 0.014896Db
0.0226806c - 0.01807TMb - 0.02564Mc
0.00988bc

(5) Prediction equation for the percentage of increase in

the true minimum loss,

¥ored = 8.46151 +
+

+

+

0.0945886 - 0.682536 -0.78342M
0.0538e + 0.19208T + 0.13297b
0.47252c - 1.046886 - 1.137088M
0.725898e + 0.454718T -0.232058b
1.0214650 + 1.020176eM - 0.371096b
0.565176c - 0.45043Mb - 0.63894Mc

0.24642bc

The maximum percentages of deviation between the

optimal values and the predicted values for n, h, k, and
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the loss, in all 256 runs, are 21.17%, 26%, 4.3%, and

2.82%, respectively.

The EWMA Chart. The prediction equations are:

(1) Prediction equation for the design parameter n,
Npred = 5.46093 - 2.14843%
(2) Prediction equation for the design parameter h,
hprea = 1.49475 - 0.1268856 - 0.233150 - 0.24943M
+ 0.14133b + 0.09202¢
(3) Prediction equation for the design parameter k,
Kprea = 3.02435 + 0.179968 - 0.014870 - 0.01345M
+ 0.02944e - 0.10214T - 0.01865b
+ 0.06957c
(4) Prediction equation for the design parameter a,
Gpred = 0.91505 + 0.019438
(5) Prediction equation for the resulting operating loss,
ELOSSpred = 4.32175 + 0.001916 - 0.025766 -0.02793M
+ 0.00283e + 0.00712T + 0.01163Db
+ 0.01031c - 0.04245806 - 0.045035M
+ 0.032448e + 0.013558T + 0.036726¢c +
0.044016M - 0.020926b - 0.0216560 -
0.02079Mb - 0.02239Mc + 0.01044bc
The maximum percentages of deviation between the
optimal values and the predicted values for n, h, k, &, and
the loss, in all 256 runs, are 23.9%, 25.24%, 4.24%, 2.6%,

and 2.7%, respectively.

The Zone Control Chart. The prediction equations are:
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(1) Prediction equation for the design parameter n,
Npred = 5.60156 - 2.289065
(2) Prediction equation for the design parameter h,
hprea = 1.51891 - 0.140968 - 0.238150 - 0.25462M
| + 0.13953b + 0.09582c
(3) Prediction equation for the design parameter k,
kprea = 3.01846 + 0.180438 - 0.020986 - 0.01619M
+ 0.02927e - 0.09587T - 0.06909c
(4) Prediction equations for the four zone scores,
Siprea = Si-bar
where i=1, 2, 3, 4; and, S1-bar = 0, S2-bar = 1, S3-bar
= 2.05859, and S4-bar = 17.2421.
(5) Prediction equation for ihe resulting operating loss,
ELOSSprea = 4.35523 + 0.005376 - 0.028346 -0.02898M
+ 0.00024e + 0.00647T + 0.00692b

+ 0.01904c - 0.0423980 - 0.044138M

+

0.02936e + 0.01678T - 0.008636Db

+ 0.04078c + 0.041336M - 0.015936b

0.024096c - 0.01833Mb - 0.02372Mc
+ 0.00943bc

The maximum percentages of deviation between the
optimal values and the predicted values for n, h, k, S1,
s2, S3, S4, and the loss, in all 256 runs, are 21.09%, 29%,
3.73%, 0%, 0%, T4%, 29% and 3.9%, respectively. For S3,
there are only 2 (out of 256) cases which deviate from the
optimal values with 74%, others are 0%. For S4, there are

also 2 cases which deviate from the optimal value with 29%;
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others are within 13.33%.

The prediction equations obtained in combination with

Appendix E provide guidelines for practitioners and

theoreticians as to how to conduct the sensitivity

analysis. The following information is provided.

(1)

(2)

(3)

A 2-level desighed experiment is sufficient to conduct
the sensitivity analysis; even though the true
relationships between the cost and operating parameters
and the optimal design parameters are not known, and
the relationship between the cost and operating
parameters and the resulting operating loss is non-
linear.

Some simple designed experiments, such as the P-B L12
and Taguchi L12 designs, can be employed to study and
build the predictions for the optimal design
parameters.

A smaller designed experiment can be selected for an
initial study of the effects of the cost and operating
parameters on the resulting operating loss. Also,
prediction equations can be built. For example, a 29%-4
FF experiment can be employed, including those 12 2-way
linear interactions in the design matrix, to conduct
the analysis.

Some important conclusions are also obtained from the

prediction equations. Keep in mind, however, that the

conclusions are drawn under the assumption that the rate of

error of estimation is £30%. The conclusions are:?



(1)

(2)

(3)

(4)

(5)

(8)
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The optimal subgroup size is primarily determined by
the magnitude of the shift in the process mean (§)
measured in the number of process standard deviations.
When & increases, n decreasés.

The magnitude of the shift»fn the process mean (8), the
rate of occurrence”of the special cause (0), the
penalty cost (M), the fixed cost per subgroup taken
(b), and the variable cost per unit sambled (c) have
their effécts on the optimal sampling interval, h. An
increase:in &, 8, or M will decreaée h, and an increase
in b or ¢ will increasenh.

The optimal width of control -limits (k) is affected by
variations in &, M, e (dela& factor), T (false alarm
cost), and c. An increase in & or T will widen k, and
an increase in M, e, of c wiil narrow down k. In the
case of the EWMA chart, b also shows noticeable effect
on k. Wider k is preferfed if b decreases.

The effects of the cost and operating parameters on the
resulting operating loss are not precisely known
because interactions betweep variables are present.

In the economically—baséd EWMA chart; the weight, a, is
primarily determined by the amount of shift in the
process mean, &.

In the economically-based Zone control chart, the four
zone scoreslare not affected by the variation of the

cost and operating parameters.
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Some Comments

There are two questions which have been asked
frequently. One is "Under what cond1t1ons will one control
scheme perform better than the others from an economic
viewpoint?"; the other is "What is the minimum magnitude of
shift in the process mean that is of real concern?" In this

section, the above questions are answered.

Analysis Of The Relationship Between

The Statistical Performance And

The Economic Performance Of

Control Charts

A study of ‘the relationship betweeﬁ the cost and
operating parameters and the ARLs is carried out in this
section. This study reveals that if several types of
control charting techniques:are presented for selection
under the situation-of (approximately) the same n, h, ARL
in control, and cost and operating parameters, the one
which possesses the smallest ARL when tﬁe process mean
shifts by ; certain amount is preferred when a certain
condition is met. This condition is that
{(M/G)+W+[(T*Y)/ARL1]} must be less than zero.

Recall that the loss function is given by

1 T*Y W b + ¢cn

L= (1 -———)M+ + -+
0%B B*ARL1 B h
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where B = h(ARL2+Y)+en+D is the expected length of a
production cycle. Let

Lo: the original loss

Lx: the new loss

ARLlo: the ériginal ARL‘ip‘control

ARL20: the original ARL whén tﬁe proéess mean has shifted

by a specified amount
ARL1x: the new ARL in control
ARL2x: the new ARL when thg process mean has shifted by a

specified amount

Bo = h(ARL20+Y)+en+D: the original expected length of a
production cycle
Bx = h(ARL2x+Y)+en+D: the new expected length of a

production cycle
Based on the same design parameters n and h),anq the same
cost and operating pardmetgrs,}Lo and Lx can be expressed
as follows. |

1 A T*Y w b + cn

Lo = (1 - —)M + + = +
6%Bo Bo*ARL1o Bo h
1 T*Y w b + cn
Lx = (1 - —)M + : + — +
0*Bx Bx*ARL1x Bx h

It is desired that Lx - Lo < 0. Therefore,

Lx - Lo =
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T *Y T * Y
+ -
Bx*ARL1x Bo*ARL1lo
] W
+ -
Bx Bo
S

= [(1/Bx)-(1/Bo) 1 [(M/0)+W]
+ T*Y{[1/(Bx*ARL1x)] - [1/(Bo*ARL10)]}
<0
Let the following comparison be based on the same ARL

in control. That is, let ARL1x = ARLio = ARL1. Then, the
desired situation is |
[(1/Bx)-(1/Bo) ][ (M/8)+W]
+ T*Y{[1/(Bx*ARL1x)] - [1/(Bo*ARL10)]}

Lx - Lo

[(1/Bx)-(1/Bo) [ (M/0)+W+(T*Y/ARL1) 1]
<0

Let DET = (M/0)+W+(T*Y/ARL1), then,

(A) If DET > 0, then [(1/Bx)-(1/Bo)] < 0.

This implies that Bx > Bo, which also implies that ARL2x
> ARL20. That is, given the same n, h, ARL1, and cost and
operating parameters, & new plan will yield a smaller loss
if it produces a larger ARL when the process mean shifts to
8 specified amount, under the condition that DET is greater
than zero.

(B) If DET < 0, then [(1/Bx)-(1/Bo)] > O.
This implies Bx < Bo, which also implies that ARL2x <

ARL20. That is, given the same n, h, ARL1l, and cost and
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operating parameters, a new plan will yield a smaller loss
if it produces a smaller ARL when the process mean shifts
to a specified amount, under the condition that DET is less
than zero.

These results are applicable both "within" a control
chart for selection of a different set of design parameters
(for example, the (a,k) combination in an EWMA chart) which
yields a smaller ARL2 (i.e., better statistical
performance), and "between" control charts. These results
reveal the relationship between the statistical performance
and economic performance of control charts. In all 22
examples employed in this research, the DETs are all
negative. This indicates that a smaller loss is obtained if
a control chart (scheme) possesses better statistical
performance (power of detection) when the mean shifts by a
certain amount, given (approximately) the same n, h, ARL1,

and cost and operating parameters.

Minimum Magnitude Of Shift

In The Process Mean

Examples 1, 16, and 21 have been selected for study.
Table 5.13 presents the optimal results of these three
examples for the X-bar chart with AT&T runs rules. It is
observed that when & is really small, such as 0.1, the
optimal design parameters indicate that the best policy is
to leave the process alone. Note that in example 21, the

optimal design parameters also indicate, to some extent, to
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TABLE 5.13

OPTIMAL DESIGN PARAMETERS OF EXAMPLES 1, 1€, AND 21
WHEX & IS SMALL

Ex. no.| n h - k RULE
0.1 | 1 69.9995/ 0.0009 | ~ct
' 0.2 7 51.0911] 1.1036 c1
0.1 1 69.9989| 0.0838 c1
e 0.2 | 17 56.7808| 1.0747 c1
’ 0.1 1 69.9749| 0.5623 c1

0.2 59 69.9963| 1.04 C1
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leave the process alone when & is 0.2. This is because the
penalty cost, M, in this example is very small (2.25)
compared to the false alarm cost (50) and the true alarm
cost (25). Therefore, it makes sense to leave the processi
alone whén & is small, becaﬁse if one tries to interrupt
the process, the loss will increaseldue to both the
increase in false alarm cost and the expense involved in
finding a true alarm. The same conclusions are also
observed in the economically-based EWMA chart and ZCC.

For the above conclusions, two conditions need to be
clarified. The first is that, in the coﬁpufer programs, the
upper limit on h is specified to be 70 hours. That is, if
h=70, it implies infinity. The second is that, when
searching for the optimal design parameters, the penalty
cost is assumed to be éropontional to the number of
nonconforming items produced, and fhe specs of the products
are assumed to be placeéd at +30 away from the nominal

value.
Summary

An economic c&mparison’among ﬁhé—(l) X~bar control
chart with AT&T runs rules, (2) EWMA chart, and (3) Zone
control chart is performed. Twenty two examples from
Duncan's (1956) paper are ﬁsed in this comparison. The
results are shown in Tables 5.3 toK5.6.'An analysis of
these results shows, from the economic viewpoint, that the

EWMA chart is superior to both the X-bar control chart with
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AT&T runs rules and the Zone cohtrol chart. The Zone
control chart is slightly better than the X-bar control
chart with AT&T runs rules.

Sensitivity analyses have been carried out using the
(1) Plackett-Burman L12 design, (2) Taguchi L12 design, (3)
29-1 fractional factorial design, and (4) central composite
faced design. The results indicate that a fractional
factorial designed experiment with 2 levels for each factor
is sufficient for conducting the sensitivity analysis. The
prediction equations for the optimal design parameters and
the resulting operating losses are given. The analysis
regarding the effects of the cost and operating parameters
to the resulting operating loss adopts the approach

proposed by Collins, Case, and Bennett (1978).



CHAPTER VI
SUMMARY, CONCLUSIONS, AND FUTURE WORK

This chapter summarizes all the steps carried out in
order to fulfill the objective and subobjectives of this
research. Conclusions are then provided, and finally,
possible future work and extensions of this research are

outlined.
Summary

Chapter I of this research provides the problem
statements. It includes the purpose of this research, the
problems of the economic design of quality control charts
when historical data are part of the decision making
process, the research objective and the contributions of
this research.

Chapter II provides an extensivg literature survey of
statistically- and economically-based control charts used
to monitor the process mean. In chapter 111, the economic
models of the (1) X-bar control chart with AT&T runs rules,
(2) EWMA chart, and (3) Zone control chart are developed.
Chapter IV introduces the use of interactive computer
programs which help theoreticians and practitioners in

design and evaluation of the economically-based (1) X-bar

140
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control chart with AT&T runs rules, (2) EWMA chart, and (3)

Zone control chart. Chapter V provides economic

comparisons and sensitivity analyses among these three

variables control charts.

(1)

(2)

(3)

(4)

(5)

The following accomplishments have been achieved:

An analytical model to economically optimize and
evaluate the (i) X-bar control cﬁart with AT&T runs
rules, (ii) EWMA chart, and,(iii) Zone control chart is
developed.

Economic comparisons are performed among these three
variables control charts.

Sensitivity analyses are carried out for all three
types of control charts. Prediction equations are
provided for the obtimal design parameters and the
resulting operating loss.

An analysis of the reiationship between the statistical
performance and economic performance is carried out.
The result of this analysis explicitly reveals that a
control scheme which has a better statistical
performance also has a better economic performance.
Interactive computer programs are developed and
implemented to help theoreticians and practitioners in
the design and evaluation of the proposed economically-

based three variables control charts.
Conclusions

Based on the results obtained in this research, the
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conclusions are as follows:

(1)

(2)

(3)

(4)

(5)

(6)

The EWMA chart is superior to, from an economic
viewpoint, both the X-bar control chart with AT&T runs
rules and the Zone control chart. The superiority is
especially significant when thg amount of shift in the
process mean is small to moderate.

The economically-based Zone control chart is slightly
better than the economically-based X-bar control chart
with AT&T runs rules.

If the economically-based X-bar control chart with AT&T
runs rules is to be used for monitoring the process
mean, then RULE Cl1 is recommended for use unless (i)
the penalty cost is relatively high compared to the
false alarm cost and true alarm cost, and/or (ii) the
value of delay factor is relatively large, in which
cases RULE C12 is recommended.

If the shift in the process mean is small, such as 0.1
process standard deviation, then the optimal policy is
to leave the process alone except under most unusual
conditions. |

A fractional factorialyexperiment with 2 levels for
each factor is sufficient to conduct a sensitivity
analysis and construct prediction equations.

The optimal subgroup size is primarily determined by
the magnitude of shift in the process mean (8) measured
in number of process standard deviations. When &

increases, n decreases. That is, if the shift in the
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process mean becomes large, a smaller subgroup size can
be used to catch the shift.

The magnitude of shift in the process me;n (8), the
rate of occurrence of tﬁe special cause (6), the
penalty cost (M), the fixed cost‘per subgroup taken
(b), and the variable cost per unit sampled (c) have
their effects on tﬂe optimal sampling interval, h. An
increaée in S,VO,‘or M will decreQSe h, and an increase
in b or ¢ will increase h: That is, if the shift in
process mean is large, orvthe\occurrence rate of the
special cause is high,‘or the cost of operating the
process under an 00C conditién is high, then shorter
sampling intervals are pref;rred in order to catch the
changes earlier and‘reducg the loss. If the fixed cost
per subgroup taken, or the variable cost per unit
sampled is high, thén a longer sampling interval is
preferred in order to £¢duce the loss.

The optimal width of control limits (k) is affected by
variations in 8§, M, e (delay factor), T (false alarm
cost), and c¢. The increase in 8 or T will widenwk and
the increase in M, e, or ¢ will narrow down k. That is,
wider control limits are preferred if the shift in the
process mean is large, or the false alarm cost is high.
Wider control limits reduce the number of false alarms
and hence false alarm cost. Tighter control limits are
preferred if the penalty cost is high, or the time

required to sample, compute, and plot on the control
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chart is long, or variable cost per unit sampled is
high.

The effects of the cost and operating parameters on the
resultingiloss are not b;ecisely known because

interaction between variables is present.
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