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CHAPTER I 

INTRODUCTION 

In many areas of engineering, steel tubular joints are used widely as standard 

structural components. The most fatigue-sensitive location in a conventional fixed jacket 

platform is the weld toe area of a tubular joint '[1 ]. Continuous long-term random wave 

and wind action causes unavoidable weld toe fabrication defects to become starters for 

crack initiation and propagation. For most welded components and joints, the propagation 

phase often dominates [2,3]. Therefore, fracture mechanics can be used to describe the 

fatigue life and the critical condition of failure of joints with detected cracks. 

Fracture mechanics has been applied extensively in aerospace and nuclear power 

engineering. It is a reliable technique for assessing the influence of defects on structural 

behavior [ 4,5]. The stress intensity factor (SIF), indicating the magnitude of the crack 

tip stress field, is th~ essential parameter for linear elastic fracture mechanics. Realistic 

fracture fatigue life calculation demands reliable stress intensity factor solutions. 

However, there is no closed-form analytical solution available for semi-elliptical cracks 

in tubular joints. Laboratory tests often show that a typical tubular joint weld toe crack 

grows along the weld toe contour on the joint surface and curves in the tube-wall 

direction. Therefore, such a fatigue crack is a doubly warped crack surface with a curved 

crack front in space, as shown in Figure 1 for a Y -tubular joint. 

1 
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Weld 

Right End' 

2c / 

/\: 21. 
Left End 

Figure 1. Geo~etry of Weld Toe Defect 

It is extremely difficult to calculate the stress intensity factor solutions, because of the 

complicated joint/crack geometry and loading conditions. In addition to mode I 

deformation, mopes II and ill appear to exist as well [6]. Complete descriptions of 

fracture modes are presented in the beginning of Chapter III. Most of the theoretical and 

experimental work on mixed mode fracture are for two-dimensional flat plates with an 

inclined crack subjected to in-plane tension on brittle materials. Tests in a simple 

specimen [7,8] indicate that a mixed mode crack tends to transform into a mode I crack 

under fatigue loading. However, the same type of rapid mode transformation has not 
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been clearly observed in tubular joints. It is not known for certain how to use stress 

intensity factors for cracks that are initially in a mixed mode. 

For fracture and fatigue analysis of tubular joints in the offshore industry, many 

simplified methods for SIF solutions were proposed on the basis of many uncertain 

assumptions for joint/crack geom~try and stress distributions. In most cases, the validity 

of the assumptions have not or cannot be verified. Most of th~se methods are suitable 

for tensile stress only. Destructive shear stresses which are common at the crack location 

of a tubular joint are ignored. 

To develop rational and efficient fracture mechanics analysis procedures for tubular 

joints, it is necessary to understand the weld toe fracture behavior through accurate SIF 

solutions. Various general approaches in the open literature and their limitations to obtain 

stress intensity factors were reviewed recently by Shields et al. [9]. One approach for 

calculating the SIF solutions for tubular weld toe cracks is the finite element method with 

the three-dimensional solid elements. The procedure developed by Rhee [10] is the most 

general for engineering problems with crack-like defects. This procedure has been 

validated by other researchers as mentioned in the end of Chapter II. With advanced 

development in finite element pre-/post-processing computer software such as PRETUBE 

[11] and KAARL [12], and rapid development in computer hardware technology [13], 

reliable 3-D FEM is a pragmatic approach for solving engineering fracture and fatigue 

problems. This is because experimental determination of SIF's is extremely difficult and 

expensive. On the basis of efficiency and practicality, the stress intensity factor solutions 

for cracks at tubular joint weld toe are much easily obtainable by numerical rather than 

experimental methods. 
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There is considerable interest in the application of fracture mechanics methods to 

predict fatigue crack growth in offshore tubular joints [1-3]. The need and motivation for 

reliable SIF solutions and for better understanding of the fracture mechanics behavior of 

tubular joints, using the 3-D finite element method, has been demonstrated through a Joint 

Industry Project (JIP) sponsored by nine American oil companies and British Gas in 

England. 

Some of the important issues in the fracture mechanics application in tubular joints 

are how to calculate the SIF solutions for the weld toe defects, and what the solutions 

imply about the physical behavior of the defects. The motivation for this work is to 

resolve these issues using the most rigorous procedure available. The objectives of this 

dissertation are to generate a significant number of stress intensity factor solutions under 

various practical conditions, and to investigate the physical behavior and some 

implications of these solutions to fatigue crack growth in tubular joints from the 

viewpoint of fracture mechanics. Various models have been analyzed to study the 

sensitivity of the stress intensity factor solutions to the 3-D finite element models for 

tubular joint weld toe defects. A set of empirical formulas for the SIF solutions will be 

developed to demonstrate the potential of some practical application for tubular T-joint 

saddle cracks. 

All of the 3-D finite element analyses were performed on a VAX 3600 computer, 

using the TUJAP system [11,14]. Rhee's procedure [10] for SIF calculation was applied 

through the computer program, .KAARL. Figure 2 shows the T, Y, and K tubular joints 

used in this work. 
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T-Jomt 

Y-Joint 

K-Joint 

Figure 2. T-, Y-, and K-Tubular Joints 
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Some important future research problems have been identified in Chapter VII. The 

proposed recommendations should prove useful to the structural integrity assessment of 

offshore tubular joints through fracture mechanics method. 



CHAPTER II 

LITERATURE REVIEW 

Fatigue Assessment of Tubular Joints 

Tubular joints are the primary members in steel offshore structures. Ocean waves 

and winds cause fluctuations of the stress levels at the joints, leading to fatigue crack 

growth and eventual failure. Therefore, in addition to static strength, tubular joints 

require fatigue strength. Fatigue life is defined as the number of stress cycles taken to 

reach a pre-defined failure criterion. Fatigue design rules for welded tubular structures 

are published by many agencies such as the American Welding Society (AWS) [15], the 

American Petroleum Institute (API) [16], the British Standard Institute [17], the 

Department of Energy in UK [18], Lloyds Register of Shipping [19], Norwegian 

Petroleum Directorate Design Rules [20], and Det Norske Veritas (DnV) in Norway [21]. 

Two basic approaches, the S-N curve method, and the fracture mechanics method, 

are available for fatigue strength assessment of tubular joints [3]. The conventional S-N 

curves (stress versus number of cycles to failure) are based on test data and rely on 

empirical relationships between applied stress ranges and fatigue life. Applied stress has 

been taken as the punching shear stress, which is shear stress in the wall of the chord 

equivalent to the load distribution component normal to the chord surface along the 

brace/chord intersection. However, hot spot stress [22], which is defined as a local 

7 
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maximum stress in a tubular joint, yields more consistent results [2,3, 23]. The current 

practice for fatigue strength design is to use the hot spot stress in conjunction with S-N 

curves [3, 24]. 

Although the conventional S-N curve method has been used successfully in fatigue 

design, the success has been due primarily to engineering judgements. One of the serious 

problems associated with S-N curves is that the effect of a crack-like defect in the joint 

weld toe cannot be considered. The assessment of defect propagation behavior and of the 

remaining life of an existing structure with detected fatigue cracks requires the fracture 

mechanics approach. The fracture mechanics approach is also used to investigate critical 

joints in a structure at the design stage. For offshore structures, subcritical fatigue crack 

growth is the primary fracture mechanics concern. The brittle fracture is considered in 

the design stage only in association with fatigue crack propagation [1]. In the tubular 

joints of offshore structures, the environmental temperature of the sea and the external 

wave load are low enough to justify. the assumption of linear elastic fracture mechanics 

behavior. 

Paris and Erdogan (25] developed a well known equation, often referred to as the 

Paris law, for crack growth rate in linear elastic fracture mechanics. 'I)le crack growth 

rate is expressed as a function of the crack-tip· stress intensity factor range L\K. The Paris 

law is in the form: 

da =C(AK)111 

dN [. 
(1) 

where C and m are material constants, obtained from simple pre-cracked specimen test, 
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da/dN is the crack growth rate, and .M<.1 is the mode I stress intensity factor range 

between the maximum SIF and minimum SIF in a fatigue cycle (L\K1 = K1max - K1min)· 

The relationship between crack growth rate (da/dN) and .M<.1 observed for many structural 

metals, when tested in a non-corrosive environment and under constant amplitude cyclic 

loading is shown in Figure 3. The Paris law in its simplest form provides an adequate 

description of crack growth at an intermediate range of growth rates under mode I 

loading. Various modified forms of the Paris ,law, to consider the environment, mean 

stress (R ratio), and threshold effects, was reviewed in Reference 26. Based on different 

hypotheses, mixed mode crack propagation problems were converted to an equivalent 

mode I case, and several modified Paris laws were used for tubular joint fatigue strength 

assessment. Rhee [27] used an effective SIF defined by the crack energy release rate 

[4,5] of a self-similar crack growth to calculate the fatigue life of a K-tubular joint, while 

Kim and Tsai [28] applied the concept of energy density factor [29,30] in a T -tubular 

joint. In most simplified methods, only a mode I SIF is calculated as to be discussed in 

the following, and used in conjunction with the Paris law. 

Simplified Methods for Stress Intensity Factors 

Obtaining the stress intensity' factor (SIF) solutions is extremely difficult because of 

the complicated geometry and stress distribution of tubular joints. There is no closed 

form analytical solution available for semi-elliptical cracks in tubular joints. Therefore, 

many simplified methods were proposed and applied to approximate the SIF solutions for 

fracture and fatigue analyses in the offshore industry. Th,ese methods can be classified 

as modified handbook solution method, weight function method, line spring element 
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Figure 3. Schematic Illustration of Fatigue-Crack Growth in Steel (from Design of Tubular 
Joints for Offshore Structures, Volume 2, UEG Publication UR33, 1985) 

method, and others including the experimental method, the Aptech method, compliance 

method, virtual crack extension method, and alternating method. 

Various simplified assumptions have been made for the stress distributions along the 

tubular joint weld toe and in the wall-thickness direction. The curvature of the crack 

surface is normally ignored. It is difficult to assess the uncertainties resulting from these 

oversimplifications [1 ]. Agreement between different solution methods is often poor for 

tubular joints [31 ]. Little information is available regarding the assessment and validation 
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of these simplified methods. To clarify the problems caused by theses assumptions, the 

essential approach and the limitations of these simplified methods will be reviewed in the 

following sections. 

Modified Handbook Solutions 

The SIF solutions for a simple and regular crack and geometry are readily available 

in handbooks (32-34]. Two popular formulas are developed by Newman and Raju (35], 

and Scott and Thorpe (36]. Using the results of three-dimensional finite element analyses, 

Newman and Raju derived an empirical stress intensity factor formula for semi-elliptical 

surface cracks. The formula applies for cracks of arbitrary aspect factor in finite sized 

plate under bending or uniform tension. 

(2) 

where ot and ob are tensile stress and bending stress, respectively, Q, H, and F are 

functions of a, c, b and T as shown in Figure 4. 

Scott and Thorpe (36] reviewed several crack tip stress intensity factor solutions for 

semi-elliptical surface cracks in plates. They proposed a set of SIF formulas for surface 

cracks in plate strips. The solution for a pure membrane stress om, and a pure bending 

stress ob, may be written respectively, as 



T I I I I I IT 

k 2c ~ 
2h 

2b ' 

~I I I I I I w 

Figure 4. Surface Crack in a Finite Plate 

Km(6) =am{ita Ym(6) 

Kb(6) =a b{ita Yb(6) 

v 
M 

12 

(3) 

where Y m and Yb are the total correction factors for a surface crack in an infinite plate 

under a pure membrane load and under a pure bending load, respectively, and e is the 

angle in parametric equations describing the position along the crack front starting from 

the free surface. The total SIF is the sum of the SIF due to bending and membrane load 

components. Note that membrane stress here also implies uniform tensile stress. 

To apply these formulas, the stress along brace and chord intersection of a tubular 

joint is assumed to be split into membrane and bending components: 
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(4) 

However, the actual stress distribution is nonlinear due to severe stress concentration 

along the weld toe on the outer surface. , 

In Reference 37, Equation 2 was modified by introducing several factors to consider 

the influence of weld geometry (MJ, non-uniform stress field over a through-thickness 

crack in a plate, and non-straight crack, etc. All these factors were based on 2-D 

analytical solutions. 

Aaghaakouchak et el. [31] mentioned that it seemed reasonable to apply flat plate 

solutions for analysis of relatively deep (i.e. a{f > 0.2) cracks in tubular joints. Equation 

2 was used to calculate the SIF for cracks in tubular T and Y joints. The tensile om and . 

bending ob stresses for several configurations were calculated by decomposing the hot­

spot stress using the ratio of bending to membrane stress. A correction factor was 

introduced for moment redistribution as a crack grows in an indeterminant structure. 

Some comparative study [31] indicated that the SIF for a semi-elliptical crack at the weld 

toe subjected to a normal tension or bending are significantly different from a similar 

crack in a flat plate under the same nominal loading when the relative crack depth (a/f) 

is< 0.2. 

Hsu [38] modified Scott and Thorpe's solution by applying two correction factors, 

Mk and Me. The Mk factor, similar to the existing notch correction factor, accounts for 

the influence of local weld toe geometry. The Me factor accounts for stress variation 

around the tubular weld connection. The finite element method (2-D constant strain 
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elements) was used for the calculation of Mk, and 3-D finite element stress analysis for 

the Me calculation. 

Scott and Thorpe's formula was also used in Reference 39. The influence of the 

weld geometry was taken into account by a magnification factor Mk > 1.0. A fictive 

crack length was added to the. actual crack length for . the stress intensity factor 

calculation, since small cracks at a notch tend to grow faster than the rates predicted by 

the Paris equation. However, the values of Mk were from those determined for a constant 

depth surface crack ( a/c = 0) instead of a semi -elliptical crack. The actual structure is a 

shell intercepted by another shell. The Mk values were for a tensile loaded plate type 

structure. For plate bending, the Mk values may be different. Furthermore, the influence 

of the plate width was not taken into account. 

Recently, Stacey [ 40] applied the Newman and Raju solutions of the SIF, in 

conjunction with 2-D finite element stress analysis, to fatigue assessment of a tubular 

joint. He indicated that realistic predictions could be obtained using SIF solutions for 

tubular joints, and a considerable amount of further work in this area is required. 

Weight Function Methods 

Rice [ 41] described a weight function method to calculate the stress intensity factor 

K1 for a through-thickness crack in a plate under symmetrical loading. The weight 

function method was further studied in References 42 and 43 for some particular cracks 

in infinite solid and for crack in plates. In order to apply this weight function method, 

a reference analytical solution must be known for the stress intensity factor ~ and the 
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crack opening displacement field ur(x,y) in the plate for a reference load. The difficulty 

is that only a few solutions for the crack opening displacement field are available, though 

there are many K1 solutions. 

Based on the general weight function concept [42], Oore and Bums [44] studied the 

weight functions for embedded planar cracks in infinite 3-D solids with known solutions, 

and proposed that these weight functions could be written in the following general form: 

(5) 

where, as shown in Figure 5, Q' is the location where K1 is desired, and Q is the 

application point of load P, a pair of symmetric opening forces. The length locy and p0 

are the distance between Q and Q', and the distance from Q to the centroid of an 

elemental length ds along the crack boundary,. respectively. Therefore, using the weight 

function W 00, at each point on the surface of a crack, and the stresses at the crack 

location in the fictitiously uncracked-material, one can calculate the stress intensity factor 

K1 from the area integral: 

(6) 

where dA denotes an infinitesimal element of crack surface area centered at Q. 
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Figure 5. Crack Embedded in an Infinite Solid 

The resulting stress intensity factor K1 at Q' due to a concentrated load P at point Q 

is given by 

(7) 

It has been shown [ 44] that the integral in Equation 6 could be used to obtain ~ for a 

variety of embedded cracks under normal loading compared with published K1 solutions 

available. Equation 6 is also referred to as the 0-Integral. Except for the embedded 

circular crack, and embedded infinitely long straight fronted crack, numerical quadrature 

techniques must be used to solve Equation 6. 

The weight function method has been used to obtain the stress intensity factors for 

surface cracks in tubular joints in several references [45-47]. In order to apply Equation 

5 to surface cracks, the following assumption was made: 
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(8) 

where it is postulated that Mf is independent of the applied stress field. Formulas by 

Newman and Raju [35] and others [48] can be used to obtain ~ace for a semi-elliptical 

surface crack in a plate under uniform tension. ~mbedded is the SIF for the corresponding 

elliptical crack in an infinite, uniformly stressed solid [ 49]. 

Several alternatives have been proposed on the basis of surface correction and 

simplification of stress distribution along the tubular weld toe. With the stresses 

measured on the inner and outer tube surfaces, stress through the thickness is divided into 

bending and membrane stresses as in Equation 4. Using this information and a hot-spot 

stress range ( oh) assumed constant around the intersection (weld toe), one can model the 

through-thickness stress distribution. However, this assumption makes no account for 

decreasing stress field along the intersection away from the hot-spot stress site. An 

average stress distribution was derived [50] by 

(9) 

for axial and Out-of-Plane Bending (OPB), and 

1 f'lt/2 SAv=- S(tp)dtp 
1t -n(l 

(10) 

for In-Plane Bending (IPB). S(<p) is the stress concentration factor as a function of the 
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angular position around the intersection (Figure 6). It is said that this average stress 

distribution places too much emphasis on the stress distribution away from the hot-spot 

stress site. Dover and Connolly [47] used an exponential function to provide an average 

stress weighted for the distance from the hot spot stress site. 

Chord/Brace Intersection 

I 
-1&(2 I 

oQ)--: 
cp 1&/2 

Figure 6. Angular Position around Chord/Brace Intersection 

Forbes et al. [51] critically reviewed several weight functio~ methods. Stress 

intensity factors for semi-elliptical surface cracks in butt-welded T-joints have been 

obtained using these weight functions. They mentioned that Equation 8 significantly 

underpredicted K1 when bending contribute more than 25% of the stress at the crack's 

originating surf~ce. To take into account this effect, an improved surface correction 

scheme was proposed for the application of Equation 6. 
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Line Spring Element Methods 

Rice and Levy [52] proposed the concept of line springs for a plate containing a 

part-through surface crack under bending and tensile loading. The line spring element 

method is a relatively easy approximation technique for assessing a surface crack in a 

plate or shell structure. As Rice and Levy stated, the approximation relies heavily on the 

known solution for an edge cracked strip in plane strain (Figure 7), subjected to an axial 

force N and moment M per unit length in the direction of plane-strain constraint. 

m '*'1 
a 1'11TT 

Figure 7. Edge Cracked Strip of Plain Strain 
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To determine the SIF CKI only) at points along the crack front, the force and moment 

transmitted across the cracked section are needed. These forces and moments are 

obtained through the simple approximate theor!es of generalized plane stress and 

Kirchhoff-Poisson plate bending, applied in conjunction with a representation of the 

surface crack as a continuously distributed line spring with compliance coefficients chosen 

to match the compliance of an edge cracked strip iri plane strain. For a given net force 

and moment on the strip (Figure 7), the presence of the crack will cause the displacement 

and rotation of one end relative to the other to increase over the values which would 

result in an uncracked strip. The increased compliance due to the crack is lumped into 

the continuously distributed spring. Line spring elements have been incorporated into the 

ABAQUS [53] finite element program. 

Brown [54] mentioned that calibration of the line spring method for a surface-flawed 

plate in tension was done against the results of Raju and Newman [55]. The resulting 

distribution of K1 along the crack was overestimated with reference to the results of Raju 

and Newman. A calibration factor must be applied. However, Brown did not present any 

data relevant to the line spring element method. 

The adaptation of line spring elements to a tubular joint was made for simple joint 

types by Kim et al. [56] and Huang et al. [57]. Recently, Rice's line spring element 

method was modified by Kim et al. [28] to calculate the mixed mode stress intensity 

factors, K1, Ku and Km. Following Rice's assumption, additional displacements are 

extended for rotations and shear deformations to other axes for an inclined surface crack 

as shown in Figure 8. Twisting effect on displacement components in t and z directions 

(61 and 62), and in-plane bending moment, are not considered. A circumferential cracked 
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tube was analyzed using the line spring element method, and compared with Raju and 

Newman solution (58]. The agreement is good at the deepest crack point when the radius 

becomes large. However, no SIF value was given at the crack surface point. The SIFs 

of a surface crack at the crown of aT tubular joint were also given. 

Nl 

M2~ 
~ N2 

Ml N3 

T 

Figure 8. Edge Strip with an Inclined Surface Crack 

Other Simplified Methods 

In the experimental method [59-61], the mode I stress intensity factor K1 for a crack 

in a tubular joint is written as 
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(11) 

where a is the crack depth or half length, a is the applied stress, and Y is a correction 

factor. 

A typical material crack growth curve can be generated by fatigue-testing small 

pre-cracked specimens. The Paris law is applied to relate the stress intensity factor range 

M<.1 to the fatigue crack growth rate, as in Equation 1. In Reference 60, 'a' in Equation 

11 represents crack depth at the deepest point along the crack front, and values C = 

4.5xl0-12 (with K1 in MPav'm), and m = 3.3. Therefore, A~xp can then be found from the 

experimental da/dN data at various crack depths, and 

l:iKexp 1 da 1/m 
Y = =(--) /(!:ia{jUJ) 

e:t~~ !:i a{iW C dN 
(12) 

for any crack depth. 

The experimental method is very expensive. Furthermore, the K.,xp may not be the 

solution to the mode I stress intensity factor, since mixed mode fatigue crack behavior 

may exist along the tubular joint weld toe. 

The Aptech method was used in a joint industry project [62]. This method applies 

a two-dimensional slice of the complex 3-D geometry present in a tubular joint to 

calculate the SIF K1• These two-dimensional slices correspond with the A WS tubular 

joint weld details (ANSI/AWS Dl.l.82). Finite element method was used in the 2-D slice 

with load and boundary conditions being selected such that the resulting stress distribution 

matched as closely as possible to empirical data and results from 3-D finite element 
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analyses of similar joints. Therefore, the flaw models assume that the cracks are 

infinitely long. No details of this method have been published because of its proprietary 

nature. A computer program (TJLIFE) using this method has been developed to assess 

the fatigue crack propagation life of typical tubular joints in offshore structures. The 

program was verified by data observed in tubular joint'tests. At each location, the stress 

state is defined in terms of the uncracked hot-spot stress,membrane stress, and punching 

shear. This computer program cannot solve the through-thickness crack problem. 

Kam and Vinas-Pich [63] mentioned a slice-displacement compatibility method, on 

the assumption that the global stiffness of tubular joints does not change until the deepest 

crack has penetrated the wall thickness. The slice compatibility method involves only a 

cross section containing the deepest point of the loading crack. All three modes of SIF 

can be obtained by using a thin three dimensional slice (Figure 9). The displacement 

field around the section is prescribed and obtained from the initial stress analysis of the 

joint. The slice compatibility method is still under development. The effect of section 

size and crack shape correction are not available. 

Another 2-D finite element method to approximate K1 was proposed in Reference 64 

on the assumption that an isolated part o~ a T -joint in the cracked area is in plane strain. 

Brown [54] applied a compliance approach to calculate K1 for through-wall cracks of 

different lengths. The final results for brace axial tension were 

and for in-plane bending were 

KI z a Ec(U 
(-) =-(-) 

p c3a 2t 
(13) 
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Figure 9. Schematic Diagram of Slice Compatibility Method 
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(14) 

where Cax = b/P, with P = brace axial tension force, b = average axial displacement of 

brace end; Ca = 8/M, with M = brace in-plane bending moment, 8 = average rotation of 

brace end; and E =Young's Modulus, t =tube wall thickness. 

The exponent 2 was missing in Reference 54. It is important to note that the strain 

energy release rate for a mode I crack in a plane stress plat·e, G = aU/aa, was used in the 

derivation. It was also assumed that all the increased work input was used to drive the 

through-wall crack in pure mode I only. However, this is inappropriate when mixed 

mode crack growth is possible. 

Rhee [1] also mendoned the virtual crack extension method [65,66], and the finite 

element alternating method [ 67 -69] used for only plate T joints and cruciform weld plate 
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joints. 

Concluding Remarks 

As it can be seen from the previous sections, most simplified methods are developed 

by assuming that stress is linear across the tube wall-thickness containing the crack and 

by incorporating the influence of local weld-toe geometry into the SIF solutions for a 

surface crack in a plate. It is usual to ignore any crack curvature in the wall-thickness 

or along the weld toe direction. 

There are several problems inherent in the application of a simplified method. The 

first major one is in the handling of shear stresses. Since most of these methods are 

suitable for tensile stress only, destructive shear stresses which are common at the crack 

location of a tubular joint are ignored. The second problem is that no known SIF 

solutions are available to cracks with warped crack surfaces. Thirdly, there exists a 

difficulty that results from the arbitrariness of the stress distribution and the three 

dimensionality of the local stress common at the joint weld toe crack. Consequently, the 

SIF solutions based on simplified methods can contain significant uncertainty. 

The most rigorous among these simplified methods is the modified line spring 

element method [28] used for a T-joint fatigue analysis. A}though this method employs 

mixed mode line spring elements to calculate the mixed mode SIF of the joint weld toe 

crack, the line spring element is based on the assumption that only plate and shell types 

of stress states exist along the crack growth path. The line spring element may not be 

suitable for the determination of the stress state in the weld toe area. 
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Three-Dimensional Finite Element Method 

Due to its current development as an engineering analysis technique, the finite 

element method (FEM) is the most practical and reliable approach to obtain the SIFs for 

tubular joint weld toe cracks. Although 3-D finite element analysis was perceived in the 

past as prohibitively expensive in the industry, it has been indicated to be practical for 

many classes of tubular joint integrity problems. A fatigue crack growth study was 

performed for an X-sh~ped tubular joint under tension loading in Reference 70. Fracture 

mechanics fatigue life estimation procedures have been developed for offshore structural 

tubular joints through analyzing a K-joint under the North Sea environment in Reference 

27. 

Among the various finite element procedures [8,9, 71, 72] for the SIF solutions, two 

different approaches can be identified. One is the direct method in which the stress 

intensity factor solution follows from the stress field or from the displacement field near 

a crack [5]. The second is an indirect method in which the SIF solution is obtained 

through its relation with other quantities such as compliance, the elastic energy, or the 

J-integral as commonly discussed in many text books [ 4,5, 73-75]. However, for problems 

of mixed mode fracture, the indirect method usually does not allow a distinct separation 

of the stress intensity factors K1, K11 and Km. 

In the early works of FEM, an element with an embedded singularity was developed 

for elastic problems by Wilson [76] and for elastic-plastic crack problems by Hilton and 

Sib [77]. This method directly incorporates both the finite element method and the 

analytical crack tip displacement expansions, and requires special analysis computer 
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programs. On the other hand, a number of hybrid finite elements with embedded 

singularities [78, 79] have also provided well documented FEM approaches to calculate 

the SIFs for a crack in three-dimensional structures. Since no commercial computer 

program with hybrid elements is readily available on the current market, the hybrid finite 

element techniques are not practical for engineering applications. 

The displacement-based FEM programs available on the market provide a very 

versatile and reliable numerical tool when the quarter-point crack tip element [80-82] is 

utilized. In this element, the appropriate crack tip square root singularity can be achieved 

by locating the mid-side nodes near the crack tip of a collapsed isoparametric element at 

the quarter point position. Ingraffea and Manu [83] developed a consistent method for 

computing stress intensity factors from three-dimensional quarter-point element nodal 

displacement. This method permits functional evaluation of the SIFs along the crack 

front. Embedded, surface, and comer cracks with flat crack surfaces were analyzed 

successfully using the method. 

Only recently the quarter-point finite element method has been used to calculate the 

mixed mode SIFs for tubular joint weld toe crack with a curved crack front [6] or with 

a warped crack surface and curved crack front [10]. The method in Reference 6 is a 

special case of that in Reference 10 which is the most versatile among the direct 

three-dimensional finite element methods. 

Limited SIF solutions using this method through the TUJAP system was compared 

with those inferred from experimental fatigue crack growth behavior in a large scale 

offshore tubular T -joint specimen under brace tension loading [84]. The experimental 

data was from stage of primarily mode I crack growth. The agreement between the 
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calculated and inferred stress intensity factors is generally very consistent and gives 

considerable confidence in the finite element fracture mechanics method to predict fatigue 

crack growth accurately in tubular joints. 



CHAPTER III 

FRACTURE 1\ffiCHANICS BEHAVIOR OF WELD TOE 

DEFECTS OF TUBULAR JOINTS 

Concept and Procedure 

The fundamental principle of linear elastic fracture mechanics is that the stress field 

or displacement field ahead of a sharp crack in a structural member can be characterized 

in terms of a single set of parameters, K1, K11, and K111, the stress intensity factors. They 

are functions of sizes and shapes of the crack and structural member, and the nominal 

stress. Each of these three SIFs co'rresponds to a type of relative movements of two crack 

surfaces as shown in Figure 10. These displacement modes represent the local 

deformation in an infinitesimal element containing a crack front. Each of these modes of 

deformation corresponds to a basic type of stress field in the vicinity of crack front. In 

any problems the deformations at the crack front can be treated as one or a combination 

of these local displacement modes. The concept of small-scale yielding and the existence 

of a "K dominant" region forms the modem view of linear elastic fracture mechanics [4]. 

For a given material, the susceptibility of a structural member with crack-like defects to 

fracture and fatigue is determined by 'the SIFs. 

The displacement field in the vicinity of a point along the crack front under mixed 

modes are given by [5, 85], 
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Figure 10. The Three Basic Modes of Crack Surface Displacements 
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(15) 

where E and v are Young's modulus and Pois~on's ratio, respectively, c = cos(8/2), and 

s = sin(8/2); u', v', and w' are the displacement components in the crack front local 

coordinate system. This equation can also be written in short form as, 

«1 = .frBK + O(r) (16) 

The components a,J of the crack tip stress field are representable in the form [85-87], 

(17) 
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where f,/(8), fi1(8), and ~Jm(B) are dimensionless functions that correspond to modes I, 

II and III, and depend on the orientation angle e only. These field equations show that 

the distributions of the elastic-stress fields and of the deformation fields in the vicinity 

of the crack tip are invariant in all components subjected to a given mode of deformation 

and that the magnitudes of these fields can be described uniquely by the stress intensity 

factors. 

The crack local displacement vector !! = [ u, v, w ]T in global coordinate directions 

along a crack tip radial line (A-B-C, as shown in Figure 11) direction in a collapsed 3-D 

quarter point element has been shown [6,10] to be, 

(18) 

where 

-« = 4vb-3vA-vc 

4wB-3wA-wc 

with l being the arc length of AC, ui, vi, and w, (i = A, B, C) being the ith nodal 

displacements in the global X, Y, and Z coordinate directions, respectively. The stress 

field of Equation 17 is realized only when the collapsed nodes at each location of the 

quarter point element are constrained to have the same displacements. The displacements 

!! can be transformed into those in crack-tip local coordinate system (n, z, t) displacement 

!!' as 

u1 =l;:;lB.i. +O(r) (19) 

where R is the coordinate transformation matrix between the global X, Y, Z and the 

crack-tip n, z, t systems. 
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Figure 11. Crack-Tip Radial Line in Quarter Point Element 

Comparison of Equations (16) and (19) leads to [6, 10], 

or 

where 
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(20) 

K111 cannot be calculated from Equation 20, because of s = 0 with 8 = 0°. The SIF can 

be calculated from any crack tip radial directions. In this work, 8 = -180°, -135°, -90°, 
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-45°, 0°, 45°, 90°, 135°, and 180° have been used. Young's modulus E is 210,000 

MPa, and the Poission's ratio v is 0.3 for the steel tubular joints. 

A user-friendly computer program, KAARL [12], has been developed based on this 

procedure to convert the common finite element displacement solutions to the SIF 

solutions for complex crack and joint geometries. KAARL calculates the fully mixed 

mode SIFs along arbitrarily selected crack-tip radial lines. It can also generate plots of 

the SIF solutions using the DISSPLAY [88] graphics package. Various debugging 

features are built into KAARL program so that the SIF solution and its intermediate 

results can be checked. 

Stress Distribution in Tubular Y -Joints 

In order to obtain stress distribution information along the chord/brace intersection 

without defects under brace axial tension arid in-plane bending, two Y -joints with 

different brace diameters (Table 1) were analyzed. In Table 1, the chord diameter is D 

= 1000.0, 8 = 60°, and the chord and brace lengths are 6000 and 3000. The length unit 

is mm. 

One of the Y -joint finite element models is shown in Figure 12. Both of the chord 

ends were fixed. The weld zone was modeled using 20-noded solid elements. The weld 

profiles were constructed according to the A WS specification for full penetration from 

one side (ANSI/AWS Dl.l.82). The weld is somewhat larger than the AWS minimum 

requirement, primarily to maintain the continuity around the chord/brace intersection 

curve. The default profile was used, and the minimum gap between the two steel parts 

was set to 4 mm. Other parts of the tubular joint mesh were modeled with 8-noded 
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thick-shell elements. Transition elements between the 20-node and 8-node elements were 

also utilized. 

TABLE 1 

Y -JOINTS WITH DIFFERENT BRACE DIAMETER 

0.6 

0.8 

d 

600.0 

800.0 

21.7 

21.7 

T 

33.3 

33.3 

Figure 12. Typical Finite Element Model of Y-Joint 
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A general purpose FEM post-processor, POSTFEM [89], was used to obtain the stress 

distributions. The stress concentration factor (SCF) at a point is defined as the point 

maximum principal stress (in magnitude) divided by the nominal stress at the brace end, 

as given in Table 2. 

TABLE 2 

DEFINITION OF NOMINAL STRESSES 

Loading Mode 

Axial Tension (AT) 

Out-of-Plane Bending (OPB) 

In-Plane Bending (IPB) 

In-Plane Shear (IPS) 

Out-of-Plane Shear (OPS) 

Torsion (TOR) 

Nominal Stress 
p 

ON =x 
dMo 

ON=2J 

dM. 
a - ' N-2J 

p, 
ON =-x 

Po 
ON= A 

dMT 
ON=2J 

where A=~ (d2 - (d- 2t)2), I =t4 [d4 - (d- 2ttJ, J = 2I, 

=AT force, 
= IPB moment, 
= OPS force, 
= brace outer diameter, 

Unit of f9rce: N 
Unit of moment: N•mm 
Unit of length: mm 

Mo = OPB moment, 
Pi = IPS force, 
Mr = TOR moment, 
t = brace wall-thickness. 



36 

Figure 13 shows the SCF distributions on the outer surface of the chord/brace 

intersection of two Y joints ((3 = 0.6 and 0.8) under brace axial tension. The two curves 

in this figure confirm the well known fact that the hot spot under brace axial tension is 

near the weld toe saddle. 
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Figure 13. SCF Distributions under Brace Axial Tension 
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Figures 14 and 15 are the SCF distributions on the outside and inside surfaces of the 

intersection under brace in-plane bending (IPB), respectively. The hot spot is near the 

crown toe and the crown heel. The SCF at the toe is slightly greater than that at the heel. 

The effect of brace diameter is not significant,, though the SCF for (3 = 0.8 is a little less 

than that for (3 = 0.6. However, the hot spot on the inner surface of the chord/brace 

intersection is near the mid-point between the crown toe and the saddle, since the state 

of the stress in the intersection is three dimensional. 
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Figure 14. SCF Distributions of Two Y-Joints under In-Plane Bendmg 
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Figure 15. Inner and Outer Surface SCF Distributions 

Figure 16 shows the SCF distribution in the chord wall-thickness direction, at the 

crown toe, saddle point and the crown heel locations, respectively, under brace axial 

tension (AT). The SCF distribution in the chord wall is not linear due to the high stress 

concentration on the outer chord surface. 

Figure 17 shows the SCF on the outside surface of the brace and chord weld toes 

for the Y joint with 13 = 0.6 under brace axial tension. A similar trend is found for the 

SCF on the outside surface of the chord and brace weld toes of the Y joint with 13 = 0.8. 

The SCF on the chord side surface is higher than that on the brace side surface. 
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Figure 16. SCF Distributions in Chord Wall-Thickness 
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Figure 17. SCF Distribution on Brace and Chord Outer Surface 
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The comparison of the SCF on the brace side weld toe between the two Y joints (~ 

= 0.6 and 0.8) under brace axial tension is shown in Figure 18. At most locations along 

the weld toe, the SCF of the smaller brace. diameter ((3 = 0.6) is greater than that for the 

large brace diameter ((3 = 0.8). 
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Surface Crack-like Defects Along the Weld Toe 

A significant amoun~ of SIF solutions for varipus surface weld toe cracks of Y- and 

K-joints have been developed in this work. These solutions provide insights for the 

understanding of the weld toe defect behavior of tubular joints and can also clarify 

confusion of the tubular jo~nt fracture behavior in the offshore industry. This chapter 

summarizes the obtained data and discusses their implication in the tubular joint fracture 

mechanics problem. As parameters indicating the status of the complex stress 

distributions along the crack front of a surface crack, these SIF solutions are intended to 

be guiding parameters to understand the physical behavior of cracked tubular joints with 

similar configurations to those analyzed. 

The following six different problems of the tubular joint fracture mechanics were 

investigated. Tubular Y joints (Figure 2) were chosen for this investigation. 

Surface cracks at theY-joint saddle to understand the behavior of shallow and deep 

weld toe cracks in common tubular joints. 

Comparison of the stress intensity factor solutions of cracks on the chord and brace 

to understand the differences of the fatigue behavior of the chord and brace of a 

joint. 

Study of the stress intensity factor solutions between joints with a single crack and 

double cracks to assess the joint stiffness effects on the stress intensity factor 

solutions. 

SIFs of surface cracks at crown toe, saddle point, and the middle point between the 

crown heel and the saddle to study the crack location effect. 
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An identical surface crack on the saddle of various Y -joints to investigate the joint 

dimension and geometry effect. 

Mixed mode stress intensity factor solutions to understand the mixed mode behavior 

of tubular joint weld toe cracks under complex loading aJ1d geometric conditions. 

For all models, the crack region was modeled with solid 20~node elements. Crack 

tip singular quarter-point elements [81] were used around and along the crack front to 

simulate the crack tip singular ,stress behavior accurately. More Hi~m 450 solid elements 

were generally used to model the crack region. Other parts of the tubular joint were 

modeled as those in the stress analysis mentioned in the previous session. The number 

of the 8-node shell elements in the joint model is generally more than 900. The boundary 

conditions used depend on the analyzed models. The chord and brace lengths in the 

previous section were used. Different brace loading cases, i.e., axial tension (AT), in- and 

out-of-plane bending (IPB and OPB, respectively), in- and out-of-plane shear forces (IS 

and OS, respectively), and torsion (TOR) were applied in each finite element analysis. 

Owing to the voluminous data generated from these analyses, only typical results (those 

of AT and IPB) are discussed. Discussion of the results corresponding to each of the 

above six issues is given in the following section. 

Small and Large Cracks 

To study the stress intensity factor behavior for various surface cracks, a single Y­

joint was used in the analyses with cracks of different sizes at the joint saddle. The 

dimension of theY -joint and a typical finite element mesh pattern in the crack region are 

shown in Figure 19. The chord was fixed at its both ends. 



d/D = 600.0/1000.0 
t!I' = 21.7/33.3 
e = 60° 

Figure 19. Y-Joint Sizes and Finite Element Mesh of a Weld Toe Crack 
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Twelve different sizes of cracks were analyzed, one at a time. The parametric values 

of these cracks are given in Table 3, while Table 4 lists the real dimensi9ns of crack 

depth (a) and half crack length (c). The symbols Sl, S2, ... , S6, and Ll, L2, ... , L6 are 

the names of analysis models, respectively, for small and large cracks. Large and small 

cracks are modeled similarly with PRETUBE. When the crack is very deep, e.g., a!f = 
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0.80, one extra layer of elements over the crack front was used to obtain a refined and 

balanced mesh in the top part of the crack region. For the convenience of data 

presentation, a normalized SIF is used. Let K1, K2, and K3 (or simply Kl, K2 and K3 for 
- ' ' 

convenience in some of the figures) denote the normalized SIF, which is dimensionless 

and defined as K/(aN..f1ta), where K; is the SIF v~lue (inMPav'iiiffi) of Mode I, Mode II, 

and Mode III, respectively. The nominal br~ce stress aN is defined in Table 2 and a is 

the crack maximum depth. 

TABLE 3 

SURFACE CRACKS IN PARAMETRIC VALUES 

(~· :) 
a/c 0.40 0.30 0.20 0.10 

arr 

0.05 S1 S4 

0.12 S2 ss 
0.20 L1 S3 L4 S6 

0.50 L2 L5 

0.80 L3 L6 

In this dissertation, symbols K1a, K2a, and- K3a (or Kla, K2a and K3a) denote, 

respectively, the normalized SIF of modes I, II and III at the crack deepest point, while 

K1cL• K2cL and K3cL (or KlcL, K2cL and K3cL) represent those at the left crack end as 

shown in Figure 1, respectively. 
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TABLE4 

CRACK DEPTII AND HALF CRACK LENGTII (mm) 

c 5.50 13.20 16.67 22.00 33.35 40.00 41.67 66.65 66.70 83.35 133.33 
a 

1.67 Sl S4 

4.00 S2 ss 
6.67 L1 S3 L4 S6 

16.67 · L2 L5 

26.67 L3 L6 

Under Axial Tension (AD. For a constant crack depth an increase in the half crack 

length (c) leads the crack surface ends away from the hot spot, the saddle region. 

Consequently, the normalized SIF at the crack end decreases with an increase in c, as 

shown in Figure 20 for a = 6.67 mm (Models Ll, S3, L4 and S6 in Table 4). Note that 

in this figure, K2cL and K3cL are very low relative to K 1cL· Ratio c/d is used as the 

horizontal axis, where d is the brace diameter. For the SIF at the crack front center (the 

deepest point), Figure 21 shows that K1 is dominant, and increases with c, because of the 

crack size effect on the SIF. The general trends of K2 and K3 are similar, but the rate of 

change is very low comparing to that of K1• 

Define Rk = K1a/K1c, the ratio of value of Kl' at the crack front center to that at the 

crack left end. Figure 22 shows the trend of Rk with crack half length (c), from Rk < 1.0, 

~ = 1.0, to Rk > 1.0. When Rk > 1.0, the crack tends to grow faster in the wall-thickness 

direction than that along the weld toe. Figure 22 implies that for relatively long ( c/d > 
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Figure 20. ~c (i = 1, 2, 3) for Cracks of Constant Depth under AT 
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0.08) and shallow (a!f = 0.20) cracks, the growth in the wall-thickness direction tends to 

be faster than that along the weld toe, while for relatively short cracks ( c/d < 0.08), the 

crack grows faster along the weld toe than that in the wall-thickness. 
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Figure 22. Trend of RK versus Relative Crack Half Length ( c/d) 

The behavior of the stress intensity factor for cracks with different aspect ratio a/c, 

under brace axial tension, are shown in Figures 23 to 27. Note that the SIF in these 

figures are normalized using a common crack depth, a= 6.67 mm. Figure 23 shows the 

values of K1 at the crack front center versus relative crack depth a{f. Each curve 

corresponds to a specific ale ratio. This figure indicates that for relative shallow (a!f < 
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0.20) cracks, the value of Kl at the crack front center CKta) increases with arr. For 

relatively deep cracks ( a{f > 0.5), the value of K1a may increase or decrease. The rate 

of change depends on the shape ratio a/c. This is because of the combined effects of 

crack sizes (a and c) and the stress applied to the cracked region. While increases in 

crack sizes will make the K1a greater, these increases will lead the deepest crack front 

point into a less stressed area (i.e., away from the hot spot on the chord surface), as 

shown in Figure 16. 
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Figure 23. K1a versus a{f 
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The trends of K2a and K3a with a(f are shown in Figures 24 and 25, respectively. 

These values and their changes are not significant comparing to those for K13 (dash lines). 

Negative signs of K2 and Kg means that the directions of the Mode II and Mode ill 

movement of the two crack surfaces are opposite to the chosen local coordinate system 

along the crack front (Figt!.re 11 ). 
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Figure 25. K3a versus a{f 
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On the left end of the crack surface, the changing trends of the values of K1 for 

various ratios of a/c are shown in Figure 26. These curves indicate increasing trends with 

a(f, though the crack surface end moves away from the hot-spot region. This implies that 

the crack size effect of a and c on K1 at the crack surface end (i.e., K1cJ is dominant 

relative to the stress effect. The absolute values of K2cL and K3cL are much less than K1cu 

and generally increase with a(f. The effect of shape ratio a/c on K2cL is also much less 

compared to that on K1cu and K2cL is within 15 percent of K1cL· 
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Figure 26. K1c versus a(f 
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The above analyses indicate that for not very small saddle cracks under brace axial 

tension, stress intensity factor K1 is always dominant, while K2 and K3 are relatively 

small. Consider the ratio ~ = KtafK1ci. for these cracks: The results of Rk versus crack 

depth a(f are shown in FigUre 27. This figUr~ implies that very shallow (aff < 0.20) and 

relatively long cracks (a/c = 0.10) tend to grow faster in the wall-thickness direction than 

along the weld toe since Rk > 1.0. For all the other cases analyzed, Rk < 1.0, a saddle 

crack tends to grow faster along the weld toe, though the ratio a/c may also decrease. 
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Figure 27. RK: versus a!f 
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Under In-Plane Bending (IPB). · The high stress concentration region of the Y-joint 

before a crack is introduced is located near the crown and heel (Figure 14). For cracks 

with constant depth (a= 6.67 mm), the trends of the SIFs versus c/d are shown in Figures 

28 to 29. The trends indicate that the effects of K2cL and K3cL decrease for longer cracks, 

and KkL increases with crack length (Figure 28). The values of K1a and K3a are of the 

same order, while K2a is very low. The stress intensity factors at the crack front center 

increase with crack length, as shown in Figure 29. 
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Figure 30 shows the ratio Rk of equivalent stress intensity factor at the crack front 

center to that at the crack left end. The equivalent SIF is defined from equal energy 

release rate of a fully mixed mode in a plannar propagation, to consider the contribution 

of each mode. This curve is for cracks with constant depth (a = 6.67 mm) but different 

crack lengths. For Rk < 1.0, these saddle cracks tend to grow faster along the weld toe 

than along the wall-thickness direction. 
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Figure 30. Trend of RK versus Relative Crack_ Half Length (c/d) 

In an actual crack growth situation, both length (2c) and depth (a) increase 

simultaneously. Figures 31 and 32 show the normalized (using a= 6.67 mm) SIF values 

at the crack front deepest point. Each curve corresponds to a specific a/c ratio. The 
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trends in Figure 31 indicate that for shallow cracks ( a(f < 0.20), K1a increases with a(f, 

and for deep cracks ( aff > 0.20), K1a may increase or decrease with a(f. The shape ratio 

a/c has a strong effect on the SIF trend. As in the brace axial tension, both the crack 

sizes (a and c) and the applied stress field near the crack area contribute to the value of 

the stress intensity factor. A low ratio a/c- (e.g., 0.20) has a greater c size effect on K1a 

than a high ratio a/c (e.g., 0.40). For deep cracks, the combined effect of crack depth and 

the applied stress field through the wall-thickness is to reduce K1a. The K2a is not 

significant compared to K1a (dash lines). Except for' shallow cracks (e.g., a(f < 0.20), K3a 

in Figure 32 increases much faster than K1a (dash lines) and becomes dominant. 
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Figure 31. K1• and Kz. versus a{f under IPB 
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The behavior of the normalized SIF (using a= 6.67 mm) at the crack left surface end 

is shown in Figures 33 and 34. For a constant a/c ratio, an increase in a leads to an 

increase in 'c'. A greater 'c' makes the crack left end come closer to the joint crown 

region, the hot-spot area under in-plane bending. This causes K1cL (Figure 33) to increase 

with a/f. The absolute values of K2cL (Figure 33) are of comparable order of K1cL and 

increase with a(f. The effect of a/c ratio on K3c~ seems not significant, as shown in 

Figure 34. 

In summary, for saddle cracks under in-plane bending, modes ill and I at the deepest 

point are of similar order in shallow cracks, and mode III becomes dominant in deep 

cracks, while at the crack surface end, modes I and II appear to be significant. 
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Chord Side Crack versus Brace Side Crack 

Six Y tubular joint models (Table 5), each with a saddle surface crack were studied, 

two for the chord crack and four for the brace crack, as illustrated in Figure 35. TheY-

joint with dimensions shown in Figure 19 was 1,1sed for joint models with 13 = 0.60. To 

study the effect of brace diameter on the SIF, the brace diameter was modified to 800 mm 

for Y -joint models, with ~ = 0.80. Both ends of the chord were fixed as the boundary 

conditions. The SIF solutions under axial brace tension will be discussed. 

0.60 

0.80 

TABLE 5 

MODELS FOR CHORD SIDE AND BRACE SIDE CRACKS 

Chord Crack (mm) 

a/c = 4.0/40.0 
(S5) 

a/c = 6.67/33.35 
(L4) 

Brace Crack (rom) 

a/c = 4.0/40.0 
(BY2SF) 

a/c = 4.0/40.0 
(BY4F) 

6.67/33.35 
(BYlF) 

6.67/33.35 
(BY3F) 

In general, the SIFs for crack on the chord side are higher than those of the brace 

side cracks. Figure 36 shows the normalized SIF solutions along the crack front (from 

right to left) with a/c = 4.0/40.0 (mm) from two models (i.e. SS and BY2SF). Three 

curves of square symbols are the SIF'for the crack' on the chord side, the other three 

curves of diamond symbols are the SIF for the crack on the brace side, under brace axial 

tension. The trends from other two Y -joint models with saddle crack a/c = 6.67/33.35 

mm on the ch9rd and on the brace sides are similar to those in this figure. These results 

are consistent with the SCF trends shown in Figure 17. 
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Chord Chord 

Figure 35. Crack on Chord and on Brace Side 

10+---~~---+--~--1---+---~-1---+---t 

8 

6 

K 
4 

2 
.e- -e- -e- -e- -e- -G--e-e- -B- a-. 

/ 
.~··· 

0 ·::::~::::-•• ~ .. : .. ~ .. : •• ;e.,;,,~,,;-,,~::;::~::::::@"::::::::@:::::::~--==-··· 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

crack Front from Right to Left Surface End 

--D-- Kl (Chord, 55) 
- -G- K2 (Chord, 55) 
·····0···· K3 (Chord, 55) 

--¢-- Kl (Brace, BY2SF) 
- -<>- - K2 (Brace, BY2SF) 
·····<>···· K3 (Brace, BY2SF) 
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The SIF for the smaller brace diameter has higher values. Figure 37 shows two 

sets of normalized SIF curves, one for a saddle crack (a/c = 4.0 mm/40.0 mm) on the 

surface of the brace with ~ = 0.60, the other for the same crack on the brace with ~ = 

0.80. The mode I SIF is dominant. Similar trends were found for another saddle crack 

with size a/c = 6.67 mm/33.35 mm, since the stress at the saddle of a small brace 

diameter is greater than that of a larger brace diameter (Figure 18). 
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Figure 37. SIF Distributions of Brace Cracks 

In summary, both stress distributions in the wall-thickness direction and on the weld 

toe surface affect the SIF solutions. The SIF is generally higher on the chord side. This 

is consistent with the fact that a fatigue crack initiates more likely along the weld toe on 
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the chord side. It also indicates that the SCF distribution on the joint surface has a 

significant effect on the SIF for a crack, since the SCF partially represents the local stress 

on the tube surface. 

Single versus Double Cracks on Saddle Point 

Four cracked Y-joint models (Table 6) were analyzed. TheY-joint geometry is as 

shown in Figure 19. The locations of the single crack and the double cracks are 

illustrated in Figure 38. The sizes of the chord surface crack are a/c = 16.67 mm/200 

mm. This is a rather large crack, covering about 40 percent of the weld toe length on one 

side of the Y joint. Both ends of the chord were fixed as the boundary conditions. Two 

loading modes, brace axial tension (AT) and in-plane bending (IPB), were applied 

separately. Owing to symmetry of theY -joint model with double cracks, only half of the 

Y -joint was modelled for the analyses. 

TABLE 6 

Y-JOINTS WITH SINGLE CRACK OR DOUBLE CRACKS 

Crack 

Single Crack 

Double Crack 

No Rigid Ring 

SYC 

DBC. 

Rigid Ring at Brace End 

SYCR2 

·' DBC2 

The normalized SIFs (K1, K2, K3) for double cracks (Model DBC) under AT are 

shown with circled lines in Figure 39. The lines with triangles are for the single crack 

model (SYC). K1 of the double cracks is about 4.2 percent lower than that for the single 
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Single Crack 

--------~--------

Double Crack 

---------$--------
Figure 38. Illustration of Single and Double Cracks 

crack at the crack front center. This is because of the out-of-plane bending effect due to 

lack of symmetry in the single saddle. crack model. This effect was confirmed by 

analyzing another single crack model (SYCR2) in which "rigid ring" was used at the 

brace end where the out-of-plane bending freedom was removed. The new SIF results 

from model SYCR2 are shown in pointed lines. 

Under the condition of no global out-of-plane bel)ding, K1, from single crack (the 

lines with points) is 2.5 percent lower than that for the double cracks (the lines with. 

circles) at the crack front center. The out-of-plane bending effect increases K1 by 6.7 

percent. To check the effect of the rigid ring, another model for double cracks with the 

rigid ring at the brace end was analyzed using FEM. The results indicated that the effect 

of the rigid ring on SIF solutions was negligible. Therefore, double saddle cracks may 
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produce higher or lower SIF than single crack, depending on the brace end displacement 

conditions. However, the double crack effect on the SIF appear not to be very significant. 

Under in-plane bending, the effect of one saddle crack on the other is not significant, as 

shown in Figure 40. 
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Figure 40. SIF Distributions of Single and Double Cracks under IPB 

Crack Location Effect 

A crack with the same nominal sizes (a and c) will behave differently at different 

locations along the chord;brace intersection, because of the effects of local stress and 

geometry. To study these effects, six Y-joint models, each having a crack on one of the 

three locations (Figure 41), were used to calculate the SIF solutions. These six models 

consist of two sets of Y-joint dimensions as given in Table 1. 



, C: Crown-toe 
S: Saddle point 

H: Crown-Heel 

c 

----------·-·-

M: Middle point between S and H 

Figure 41. Definition of Crack Locations 
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Figure 42 shows the trends of the SIF at the deepest point factored by the brace 

nominal stress under axial tension~ Modes II and III are not significant. The trends of 

mode I for cracks on these two joints are consistent with those of the SCF shown in 

Figure 13. At locations with greater SCF, the SIF is also greater. Figure 42 also 

indicates that it is more convenient to use the brace nominal stress than the brace total 

load to study the weld toe cracks. Similar trends are shown in Figure 43 for the factored 

SIF at the crack left surface ends. Since the crack sizes (mm) used here are not very long 

and deep, a(f = 0.20 for a/c= 6.67/33.35, the effect due to change in local geometry and 

stress over chord thickness from location to location is not significant for this crack of 
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relative small sizes. Under brace in-plane bending, the factored SIFs at the deepest point, 

~J(Mi d/21), for these cracks are shown in Figure 44. These trends are consistent with 

those of the stress shown in Figure 14. The factored SIF at the crack left surface ends 

for these cracks are given in Figure 45. This figure also indicates that for the same crack 

sizes, local stress is the only dominant factor affecting the SIF solutions. 
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Joint Dimension Effect 
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Previously, various cracks on a tubular joint have been investigated to understand the 

effect of crack sizes on the crack fracture behavior. To study the effect of tubular joint 

dimensions on the SIF behavior of a crack, twenty-sevep, different cracke.d Y -joints (Table 

7) with f3 = 0.4, 0.6, 0.8, y = 10, 15, 20, 't = 0.3, 0.65, 1.0, and 8 = 60° were analyzed 

using the 3-D finite element ~rocedure. The parameters are defined as f3 = d/D, y = 

D/(2T), and 't = t{f, with D and T being the chord outer diameter and wall-thickness, and 

d and t being defined in Table 2. A surface crack of sizes (mm) a/c = 6.67/33.35 is 

located at the saddle of each tubular joint in Table 7. 
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TABLE 7 

Y-JOINTS WITH A SADDLE CRACK 

Model y 't' 

YS1 10.0 0.30 

YS2 20.0 1.00 

YS3 15.0 0.30 

YS4 15.0 0.65 

YS5 0.40 10.0 1.00 

YS6 10.0 0.65 

YS7 15.0 1.00 

YS8 20.0 0.65 

YS9 20.0 0.30 

YS10 15.0 0.30 

YSll 20.0 0.65 

YS12 10.0 0.30 

YS13 20.0 0.30 

YS14 0.60 15.0 1.00 

YS15 15.0 0.65 

YS16 20.0 1.00 

YS17 10.0 0.65 

YS18 10.0 1.00 

YS19 15.0 0.65 

YS20 20.0 0.30 

YS21 10.0 1.00 

YS22 15.0 1.00 

YS23 0.80 10.0 0.65 

YS24 10.0 0.30 

YS25, 15.0 0.30 

YS26 20.0 1.00 

YS27 20.0 0.65 
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The real dimensions (in mm) of these joints are listed in Table 8. 

TABLE 8 

DIMENSIONS (mm) OF THE 27 Y-JOINTS 

D = 1,000, T = 50.0 

t 15.0: 32.5 50.0 
d 

400 'YS1 YS6 YS5 

600 YS12 YS17 YS18 

800 YS24 YS23 YS21 

D = 1000, T = 33.3 

t 10.0 21.7 33.3 
d 

400 YS3 YS4 YS7 

600 YS10 YS15 YS14 

800 YS25 YS19 YS22 

D = 1000, T = 25.0 

t 7.5 16.3 25.0 
d 

400 YS9 YS8 YS2 

600 YS13 YSll YS16 

800 YS20· YS27 YS26 

Figure 46 shows the mode I SIF at the deepest crack point, K1a, under axial tension 

AT = 10000 N, for cracked Y-joints with f3 = 0.60. This figure contains the combined 

effects of joint dimensions in terms of local stress and relative crack sizes. Relatively 

deep cracks (a/f = 0.27) have higher SIF solutions than shallow cracks (a/f = 0.13). 

Joints with greater 't' (or t!f) cause higher SIP solutions due to the higher local stressening 
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along the chord/brace intersection [3]. Factored SIPs at the deepest crack point, ~a' = 

K1J[aN(a!T)(c/d)], is used to measure the joint dimension effect on the SIF behavior. 
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Figure 46. Joint Dimension 'Effect on K1• under AT= 10" N ((3=0.6) 

Figure 47 shows ~a' for joints with ~ = 0.60. Only 't effect is significant. This 

figure indicates that y does not generally affect the factored SIF. Joints with ~ = 0.4 and 

0.8 yield this similar trends, which are shown in Figure 48. The first number in the 

legend is y value, and the second is the 't value. For the "same" relative cracks and the 

same nominal stress, large joints ( d/D = 0.8) cause higher SIFs than those of small joints 
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( d/D = 0.40 and 0.60). This appears to corroborate the size effect commonly mentioned 

in experimental investigation of tubular joint fatigue behavior. 
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Relative to the t(f effect, the chord wall-thickness T still has a strong effect on SIF. 

The factored SIFs, Ka', under IPB are shown in Figure 49 for joints with (3 = 0.6. This 

strong effect, probably due to the difference in stress distribution in the chord wall, is also 

shown on Kc' in Figure 50. The similar trends can be seen for other different joints, as 

shown in Figures 51 and 52. In general, th~ factored SIF for IPB is much less than that 

for AT, since the saddle crack is far away from the stress hot spot under IPB loading. 

350 

300 

250 

200 .. 
RS 
~ 

150 

100 

so 

0 
0.0 

• 

--0 

0.2 0.4 0.6 

t/T 

0.8 

e KI-T=SO.Omm, a/T=0.13 
-A- KI-T=33.3mm, a/T=0.20 

+ KI-T=25.0mm, a/T=0.27 
- -o- KII-T=SO.Omm, ajT=0.13 
--6.-- KII-T=33.3mm, a/T=0.20 
-'--<)-- KII-T=25. Omm, a/T=O. 27 
-----0···- KIII-T=SO.Omm, ajT=0.13 
····-6.·--·- KI I I-+=3 3. 3mm, ajT=O. 20 
··--·<>···· KI I I-T=25. Omm, a/T=O. 2 7 

Figure 49. Ka' for Y-Joints with 13 = 0.6 under IPB 

1.0 



550 
500 

400 

300 

200 

u 
100 ~ 

0 

-100 

-200 

-300 
0.0 

• 

~?};;;; ;;;; ;;;;;:; ::;::::::::::~ a-. •······ .............. ~ y;;;;;.~.,.:n•· . -

0.2 0.4 0.6 0.8 

t/T 

e KI-T=50.0mm, a/T=0.13 
--~-- KI-T=33.3mm, a/T=0.20 

• KI-T=25.0mm, a/T=0.27 - ..r~- 'KII-T=SO.Omm, a/T=0.13 
- -L-- KII-T=33. 3mm, a/T=O. 20 --<---- KII-T=25.0mm, a/T=0.27 
·····0···· KIII-T=SO.Omm, a/T=0.13 
·····L-···· KIII-T=33.3mm, a/T=0.20 
····<~·-·· KIII-T=25.0mm, a/T=0.27 

Figure 50. Kc' for Y -Joints with ~ = 0.6 under IPB 

1.0 

75 



76 

SOOT----+----+----+----+----+----~--~----+ 

400 

300 
... 
ItS 
H 
::.c: 

200 ><> 
/ 

/ 
/ 0 / ...... ...... ....... 

100 

0 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

d/D 

.............. ( 10 1 0 . 3 ) 
---- ( 10 1 0. 6 5) 

( 10 1 1 . 0 ) 
·····0-···· ( 15 1 0 . 3 ) 
--<)-- ( 15 1 0. 6 5) 
--0-- ( 15 1 1. 0) 
·····0···· ( 2 0 1 0. 3) 
--()-- (201 0.65) 
---1:)-- (201 1. 0) 

Figure 51. K1a' versus (3 = d/D for Joints under IPB 



77 

400 

350 

300 

250 
.. 
RS 
H 200 
H 
H 
:.::: 

150 

100 

50 

0 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

d/D 

....................... ( 10 1 0. 3) 
---- ( 10 1 0.65) 

( 10 1 1. 0) 
-----<>----- ( 15 1 0. 3) 
--<>-- ( 15 1 0. 6 5) 
-"._r-- (151 1'. 0) 
-----1:)----- ( 2 0 1 0. 3) 
- -0-- ( 2 0 1 0.65) 
-o-- ( 2 0 1 1. 0) 

Figure 52. K111 ' versus f3 = d/D for Joints under IPB 



78 

Mixed Mode Behavior of Weld Toe Cracks 

In general, the three modes of relative movement between the two crack surfaces can 

exist for a Y-joint saddle surface crack. It is difficult to justify the assumption that a 

·saddle crack has only relative crack opening movement due to the complicated geometry 

and stress distribution in the weld toe area, especially in the real ocean environment. The 

significance of the mixed mode behavior depend on the loading conditions, the crack 

location, and size. 

The modeled .crack surfaces are curved along the weld toe, and straight normal to the 

tube surface. Such a crack could be an initial defect. For relative shallow cracks, the 

models may represent fatigue cracks which were observed growing normal to the tube 

surface and only later in life turning curved in the· weld [84]. The mixed mode behavior 

at two particular locations (the deepest point and the left surface end) on the crack front 

have been mentioned. This section will .. present the SIP along crack front where the 

mixed mode is possible. 

Figure 53 shows the SIF solutions of model Ll, L2 and L3 of Table 3, under axial 

brace tension. For a short and deep crack shown by the lines with points, the K1 values 

in the deepest region may be very close to the K2 values there. Under in-plane bending 

at brace end, the values of K1, K2,,and K3 for a small crack (Model S3) are shown in 

Figure 54. The SIF values of these three modes are rather close: This implies that even 

under simple loading, the mixed mode behavior may be significant. Further study is 

needed to understand how a crack growth direction affects the SIF, and how, in tum, the 

mixed-mode SIF influences the crack propagation behavior physically. 
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Through-Wall Cracks inK-Joint 

In a simple geometry, such as a plate with an inclined central crack, an initially 

mixed mode crack grows into a Mode I crack under stable fatigue loads by changing the 

crack growing direction [8]. This mode transformation may not be possible for a through­

wall crack along the weld toe of a tubular joint because of the complex geometry and 

loading conditions. 

Tubular joint weld toe cracks usually grow along the chord/brace intersection, and 

at the final statge of crack propagation they intend _to grow on· the chord away from the 

intersection [28]. To investigate the fatigue and fracture })ehavior of tubular joint defects 

after the wall penetration due to fatigue crack propagation, three K joint models, each 

with a through-wall crack of different size, as in Figure 55, were analyzed. The three K 

joints have the same dimensions as those shown in Figure 56. The sizes of the three 

through-wall cracks are c = 41.67 mm (model RK2F), c = 83.35 mm (model RK3F), and 

c = 160.0 mm (model K4F2), respectively. 

A typical cracked K-joint FE model away from the crack region is shown in Figure 

57 with boundary conditions. The through-wall crack was assumed on the chord side, 

with the two crack fronts straight and normal to the chord outer and inner surfaces. The 

mesh pattern near the cr~ck front and opening is shown in Figure S8 with local coordinate 

systems along the two crack fronts. 
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The SIFs at the left outer and inner crack tips on the chord surface versus crack half 

length c, under axial tension on brace 1, are shown in Figures 59 and 60, respectively. 

Normalized SIFs, using a = T, have been used. Symbol K1w denotes K1 at the left crack 

end outside chord surface; Ku.i represents K1 at the left crack tip of the inner chord 

surface, and other symbols have similar meaning. Model I (i.e. K1) is dominant for short 

cracks ( c < 80 mm), while mixed mode behavior appear to exist for long cracks (Figure 

59). The mixed mode SIF seams to be more significant at the inner surface left crack tip, 

as shown in Figure 60. 
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The dashed lines indicate that mode I is negative, implying that contact and 

penetration of the crack model surfaces occurred during the loading. Contact behavior 

of crack surfac~s is very complicated because of its highly nonlinear nature and the 

surface friction involved. The subject of surface, contact is beyond the scope of this work. 

A preliminary study of a cracked K-tubular joint 'with friction-free contact element 

indicates that the K1 solutions in the contact region are zero, and solutions away from the 

contact region are close to the K1 solutions without using c~ntact element. Mode IT and 

lli SIFs are not affected significantly by the friction-free contact. Further studies are 

needed to understand the contact effect on the SIF. The effects of modes II and III in 
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Figure 59 increase with crack length. For the K~oint models under discussion, it seems 

that mixed mode SIF behavior may also occur and becomes significant at some crack 

front locations. 

Multi-Axial Load Effects on K-Joint Weld Toe Crack 

Various combinations of loading magnitudes and directions from marine 

environments produce many complicated load situations in a tubular joint. It is important 

to have systematic procedures to calculate the stress intensity factors efficiently for a 

crack under multi-axial loading conditions, so that minimum number of finite element 

analyses is performed. In the following discussion, a K-joint was used to demonstrate a 

superposition procedure which is efficient to calculate SIF solutions under multi-axial 

loads. The geometry dimensions of the joint are given in Figure 56. Only the chord right 

end was fixed as the model boundary condition. The other two brace and chord ends 

were subjected to loads. 

The original joint can be treated as the superposition of three K joints, each having 

a single axial load, as illustrated in Figure 61. The three K-joint models in this figure 

were named MK.l, MK2, and MK3, respectively. Each of these three models yields the 

stress intensity factors (K1, Kn, Km) at a point along the crack front. For example, the SIF 

solution at the crack front center (i.e. the deepest point) from Model MK.l under axial 

brace tension can be written as 
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Figure 61. Superposition Procedure for Multi-Axial Load Effect 

KI =CnPl 

Kn = Czt P1 

Km = c;t P1 
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ORIGINAL 

MKl 

MK2 

MK3 

(21) 

where coefficients Cw Cz1, and c;1 represent the contribution of unit load of P 1 to K1, K11, 
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and Km at the crack front center, respectively. These coefficients are called influence 

coefficients at crack front center from load P 1• The finite element method was used to 

obtain these coefficients. Similarly, the SIFs at the same location as above for models 

MK2 and MK3 can be written as 

and 

KI = c12 Pz 

Kn = Czz Pz 

Km = c;2 Pz 

KI = Cn P3 

Kn = Cn P3 

Km = c;3 P3 

(22) 

(23) 

respectively, where ~2 and Ci3 (i = 1, 2, 3) are the influence coefficients at the crack front 

center due to tension loads P2 and P3, respectively. Therefore, total SIFs at the crack 

front center of the original K-joint are obtained by combining the above components, i.e., 

KI = Cu pl + c12 Pz + Cn p3 

Kn = Cz1 P1 + Czz Pz + C23 P3 

Kn = C31 P1 + C32 Pz + c;3 P3 

(24) 

One of the advantages of this procedure is that once the influence coefficients ~i are 

obtained for the K tubular joint with the saddle crack from FE analyses, the SIFs for any 

load combinations can be readily obtained without using FE analysis. These equations 
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can be generalized for other crack front locations, and for any other load combinations. 

This procedure can also be generalized for other tubular joints with more complicated 

configurations. The superposition procedure is applicable as long as there is no crack 

surface contact under the final combined loads. 

The first row in Table 9 lists influence coefficients, ~iL in the above equations. The 

superscript symbol L indicates loading mode, L = 1 for AT, axial tension. Results for 

the other five loading modes are also given in these two tables. The load directions 

_corresponding to cijL in Table 9 are given in Table 10. The positive directions for each 

tube are shown in Figure 62. A positive sign ( +) indicates that the applied load is in the 

same direction as the corresponding positive coordinate system direction. A negative sign 

(-) indicates that the applied load is in the opposite_ direction. 
' ' ' 

To examine the accuracy and reliability of the proposed superposition procedure, 

several different loading cases on the K-joint have been applied in the following two 

examples. 

Table 11 shows the SIF results (K1a), of example 1, with the K joint under multiple 

axial tensions P1 = 34000 N, P2 = -34000 N, and P3 = 60000 N as shown in Figure 61, 

from the superposition procedure using the influence coefficients of load AT in Table 9, 

and the direct FEM on the original model (with all the forces applied at the same time), 

respectively. The two sets of SIF solutions are in very good agreement, with slight 

difference due to rounding errors of the coefficients in Table 9. 

Table 12 shows SIF results (K1J, of example :2, for the K-joint with six modes of 

' 
loading at each of the three tube ends. The superposition and the direct FEM analysis 

also provide very close SIF solutions. The load vector applied at joint end i relative to 



Models 

Load 

AT 

OPB 

IPB 

TOR 

OPS 

IPS 

CuL 

7.0564xl0·4 

4.2857xl0·6 

1.5788x10·7 

2.4992xlo·6 

1.0131xl0·2 

-1.566lxl0·4 

MKl 

c21L 

0.8540xl0·4 

0.4774xl0-6 

0.0500x10-7 

0.2906xl0·6 

0.1141x10.2 

-0.5778x10"4 

TABLE9 

SIF INFLUENCE COEFFICIENTS AT TIIE 
DEEPEST CRACK FRONT POSillON 

MK2 

c31L C L, 
12 CzzL ~ c32L 

0.0326x10-4 3.4956xl0·4 0.4215xl0·4 0.6528xlo·4 

-0.0858xl0·6 1.4897xlo·6 O.l32lxlo-6 0.0687xl0·6 

2.7286x10-7 3.666lxlo·7 0.6096xl0·7 0.4885xlo-7 

0.2572xl0·6 0.6626xlo·6 0.0548xl0-6 O.OS25xl0-6 

-0.0118x10-2 _0.3426xl0-2 0.0308xl0·2 0.0301xl0·2 

6.112lxl0-4 7.6667xl0·4 1.3696xl0·4 0.8453x10-4 

Units: For AT, OPS and IPS: C.~ unit is MPa · .Jmm/N 

For OPB, IPB, and TOR: C.~ unit is MPa · .Jmm/N•mm 

MK3 

c13L CzJL 

-0.3488xlo·6 1.1627xl0·6 

0.0833xlo-s 0.2916x10"8 

0.1795xlo-7 , -0.0376xl0-7 

- o.1229x1o·7 0.0312xl0·7 

0.6685xlo-s 1.3487xlo-s 

0.5383xl0·4 -0.0872x10-4 

c33L 

-1.7440xl0-6 

-0.4582xl0·8 

0.0543xl0-7 

1.1122x10"7 

6.5632xlo-s 

0.7987x10-4 

\0 
0 
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TABLE 10 

CHORD AND BRACE LOADING DIRECTIONS 

Model 

MKl 

MK2 

IPS 

:MK3 + 

z2 

y 
Brace2 

® Into the paper 

• Out of the paper 

OPS 

+ 

x2 

Load 

AT OPB IPB TOR 

+ + 

+ + 

zl 

xl 

Brace 1 

Chord 

Figure 62. Brace Local Coordinate Systems of the K-Joint 
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the local coordinate axes are written as: 

TABLE 11 

!<a UNDER MULTIPLE AXIAL TENSION 

Units: MPa-fmm 

Method K, Kn Km 

SuperpositiOn 12.0858 1.5403 -2.2133 

FEM Analysis 12.1235 1.5984 -2.2160 

Difference -0.31% -3.63% -0.12% 

TABLE 12 

K18 UNDER COMBINED LOADING AT MULTIPLE ENDS 

Method K, Ku ~II 

From SuperpositJ.on 15.6427 1.9263 -1.4574 

From FEM Directly 15.6834 1.9805 -1.4579 

Difference -0.26% -2.74% 0.03% 

The SIF (K1, K11, K111) unit is MPa{ mm 

The loads used for the SIF solutions in Table 12 are given by: 

F 1 = { -850.0, -220.0, 34000.0, 65000.0, -360000.0, -4600.0} T 

F 2 = { -700.0, 120.0, -34000.0, -25000.0, -250000.0, 1600.0} T 

F 3 = { 430.0, -320.0, -60000.0, -85000.0, -620000.0, -7600.0} T 

The units of force and moment are N and N •mm, respectively. 
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CHAPTER IV 

. SENSITIVITY STUDY OF FINITE ELEMENT MODELS 

Introduction 

The effects of model dimensional sizes and the finite element mesh are important 

issues for experimental and numerical studies of tubular joint weld toe cracks. Proper 

chord and brace lengths are needed to eliminate end effects on joint strength. However, 

insufficient test data are available to evaluate the effects of chord length for T/Y joint 

strength [3]. Previous work [90] on stress concentration factors (SCF) along tubular joint 

weld toe indicates that the chord length effect can be ignored when the ratio of chord 

length to chord diameter (2L/D) is greater than 13.1. However, no data are available to 

assess the effects of chord length and brace length on the SIF solution of tubular joint 

weld toe defects. 

Reliable SIF solutions and computing cost considerations from the finite element 

method require a reasonable distribution of the finite element mesh over the tubular joint. 

To assess the effects of chord/brace length and element mesh on the SIF solutions, 

twenty-one cracked Y-joint n;todels have been studied using 3-D finite element method. 

The results will be discussed in the following sessions. 
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Chord and Brace Length Effect 

Various joint models of different chord lengths with crack sizes (in mm) a/c = 

6.67/33.35 were studied. Six FE analysis results of the SIF for Y joints with saddle 

surface cracks were calculated. Symbols Kia, KIIa and KIIIa (or K1a, Kna• and K111J 

represent the SIF at the deepest crack point, while Klc, KITe and Kille (or K1c, ~Ic• and 

K111c) represent the SIF at the left crack end. The SIF under AT increases with chord 

length or a (Figures 63 and 64), since longer chord results in greater bending moment for 
' ' 

a constant brace, axial tension. Under constant OPB, the SIF increases slightly but 

similarly to that in Figure 63 with the chord length. 

10+--------+--------+--------+--------~~ 

9 • Kia 
• KIIa 

8 --A-- KIIIa 

7 

6 

• 

l!s 
4 

~ 
~ 3 .. 
'i<"' 2 

1 

0 

-1 
.___•a--------~•~--~--------~• 

-2+-------~------~-r--------r--------+--~ 
0 5 10 15 2 0 2L/D 

Figure 63. K,a (i =I, II,III) versus a = 2LID under AT= 104 N 



95 

10 

9 --o-- Kic 
-D-- KIIc 

8 -D.- KIIIc 

7 

6 

l! 
5 

4 
~ 
~ 3 
... 2 t:< ... 

1 er---6 6 6. 
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-2 
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Figure 64. ~ (i = I, II,III) versus a = 2UD under AT = 104 N 

For constant IPB, the SIF decreases with chord length (Figures 65 and 66), since 

longer chord releases the in-plane bending stress in the joint intersection area. In general, 

the chord length of a tubular joint a:ffec~ the SIF solution of a weld toe defect. However, 

the effect is not significant for all these loading modes when a > 12.0. 

The effect of brace length on the SIF of cracks on chord side is not significant for . . 

a brace long enough to allow its external applied end force distribution to "smooth out", 

since the brace primarily transfer load to the chord. For the two Y joint models with 

saddle cracks in Figure 67, the SIF versus brace length (LJD) under AT is shown in 

Figure 68. The effect of brace length on the SIF solutions under OPB and IPB have also 



5+-------r-------~----~r-----~--. 

4 

1 

• Kia 
• KIIa 

-:A- KIIIa 

o+o------~s~----~1~o~----~1t5------~2~o~~ 

2L/D 

Figure 65. ~. (i = I, II, III) versus a = .2Un under IPB = 107 N mm 
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Figure 66. ~c (i = I, II, III) versus a = 2L!D under IPB = 107 N mm 
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been examined and similar trends exist. These solutions indicate that the effect of brace 

length is not significant even for I.JD > 1.5. 

.. 
~0 

-------I D 

Figure 67. Y -Joints with Different Brace Length 
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Figure 68. Brace Length Effect on K,a (i = I, II, III) under AT = 104 N 
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Finite Element Mesh Effect 

The finite element mesh density generally affects the accuracy of solutions. For a 

conventional structural analysis (i.e., without a crack), the smaller element sizes yield 

better accuracy. This may not be true for FEM solutions of a cracked structure. Previous 

research by others [83] on a simple standard configuration (the ASTM E399 standard 

three-point bend) indicates that the optimum 3-D crack tip quarter-point element size (Le) 

for that problem appears to be about Lefa = 0.06. However, the optimum crack tip 

element size is controlled by the size of the K dominant zone, which is problem 

dependent. 

For the sensitivity study of the FEM for tubular joints with cracks, the finite elements 

were classified as two groups: one group ~cal elements) consists of the elements in the 

crack region where cubic solid elements and quarter-point 3-D elements were used. The 

other group (Global elements) cc:msists of the elements away from the crack region, where 

thick-shell elements for the tubes and cubic solid elements for the weld, as well as 

transition elements, were used. To isolate the mesh effect from each group, mesh in one 

group was modified while the other group unchanged. Fifteen FE models of theY joint 

YS15 in Table 8 have been analyzed to investigate the sensitivity effect. The 

combinations of the local and the global elements are listed in Table 13, where Ge 

represents the number of global elements, and SEN1S, SEN2S, ... etc., are model names. 

The sizes (in mm) of the crack are a/c = 6.67/33.35. In the following, the results under 

brace axial tension (AT) will be discussed. 
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TABLE 13 

Y-JOINT MODELS WITII VARIOUS GLOBAL 
AND LOCAL ELEMENTS 

Lja 
G. 2.5% 5% 10% 15% 20% 

750 SEN3S SEN2S SEN1S SENB1 SENB2 

1200 SEN6S SEN5S SEN4S ~ENB3 SENB4 

1593 SEN9S SEN8S SEN7S SEN10 SEN11 

Figure 69 shows the solutions of the normalized SIFs at the crack deepest point. The 

horizontal axis represents the ratio Lela. The symbol Ge in the figure represents the 

number of the global elements. This figure indicates that for Lja between 0.025 and 

0.20, the global element effect (Ge = 750 to 1593) on the SIFs is not significant. By 

comparison, the effect of crack-tip element size is more significant than that of global 

element sizes. A similar plot for the normalized SIFs at the left crack end were also 

obtained. 

The SIF values at the crack front center were the average of the SIF solutions from 

crack-tip radial lines. A typical set of normalized SIF soJutions along Y-Joint weld toe 

crack front under AT (Model YS19 in Table 7) is given in Figure 70. They are consistent 

with each other for most of the radial directions throughout the crack front, except for 

crack front points at t~e tubular surface where the normal plane cannot be defined and 

the crack tip radial lines are curved [10]. These solutions would be the same if the FEM 
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Figure 69. Sensitivity of K.a under Axial Brace Tension 
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0.25 

were exact. Therefore, the scatter (standard deviation} of the solutions about the average 

can be used as another alternative measurement of accuracy and reliability of SIF 

solutions. 
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Figure 71 shows averaged Kcscatter (or the standard deviation, STD _K1) on the five-

points near the crack front deepest point. Lower scatter implies better results of K 1• The 

curves in Figure 72 are the K2-scatters (i.e. STD _K2) of Kz around the crack deepest 

point. The K3-scatters around the crack deepest point are less than 10% of the K1-

scatters. K2-scatters are generally less than .K1-scatters, but the relative scatter (i.e., 

relative error, or deviation coefficient) of Kz is often slightly greater than those of K 1 and 

K3, respectively. This is due to the fact that mode I is dominant under AT. 

Cl 
E-t 
til 

0.25+----------------~---------------r-----------~----------------T----------------r 

0.20 -o-- STDl<l Ge = 1200) 
-----•- STD K1 ~Ge = 750) 
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0.15 

0.10 

0.05 

o.oo+----------+-------+-------+-------+--------T 
0.00 0.05 0.10 0.15 0.20 0.25 

Lja 

Figure 71. Standard Deviation of K1 around Crack Front Center 
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Figure 72. Standard Deviation of K2 around Crack Front Center 

Concluding Remarks 

The crack-tip element size in the previous chapter were around L8/a = 0.05 to 0.10, 

and the number of the global element (Ge) were generally greater than 900. These results 

in this chapter indicate that for LJa = 0.05 to 0.10, the SIFs have the least scatter for the 

15 analyses performed. The sensitivity study provides confidence in the three-

dimensional finite element models used in this work. 



CHAPTER V 

EMPffiiCAL FORMULAS FOR THE STRESS INTENSITY 

FACTORS OF T-TUBJ]LAR JOINTS 

Introduction 

Empirical formulas of the SIF solutions for tubular joint weld toe surface cracks are 

useful in the fatigue crack growth simulation analysis or crack instability analysis. Unlike 

the situation for stress concentration factors, it is impractical to determine the SIF 

solutions required for such empirical formula development through experiments. The use 

of simplified methods is not reliable for this purpose, since the trends of such solutions, 

as well as the accuracy of isolated solution data, are not certain. The three-dimensional 

finite element procedures appear to be the only practical approach at this time [91]. 

For the first time, these SIF empirical formulas were developed for weld toe surface 

cracks at the saddle points ofT -joints, covering a wide range of practical joint dimensions 

of existing jackets. The considered loading conditions are the brace axial tension (A1) 

and in-and out-of-plane bending (IPB and OPB) loads. The procedures for the 

development include: 

An experimental design to select a set of crack and joint dimensions to be analyzed 

for SIF data required for statistical curve fitting of empirical formulas. 

The calculation of SIF data for this selected set through three-dimensional finite 
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element analyses. 

Regression analyses to fit the SIF data into the selected formulas. 

The validation and discussion of the developed formulas. 
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The factor ranges for the empirical SIF formulas are given as: 0.4 s ~ s 0.8, 10.0 

s y s 20.0, 0.30 s 1: s 1.00, 0.05 s a' s 0.80, and Q.05 s c' s 1.20, where a = 2L/D, (3 

= d/D, andy = D/(2T). The parameter a'.= a/f, and c' is defined as 3c/d for numerical 

convenience. Details of each step will be explained in the following sections. 

Experimental Design and Data Base Generation 

The experimental design was carried out to minimize the data need and optimize the 

accuracy of the empirical equations. Classical design methods are simple and 

recommended when the conditions of an experiment are suitable. However, classical 

designs have constraints on the number of factor settings, the position of sample cases, 

and the number of sample size. For this, experimental design, D-Optimal method in the 

general purpose statistical analysis program, RS/DISCOVER [92] was used. The D­

Optimal design is a computer generated .design that maximizes the determinant XIX for 

a given prediction model, over specified factor ranges, and in a fixed sample size. Each 

row of the design matrix, X, is created by using the proposed model to expand the setting 

for each factor in each sample case (i.e., experimental run). As a result, D-Optimal 

designs minimize the region of uncertainty of the unknown coefficients in the model [92]. 

To create aD-Optimal design, a set of factors and their settings, as well as a design 

model have to be identified. On the basis of understanding of the tubular joint weld toe 

defects, five setting levels of a' and c', and three setting levels of (3, y, and -r were 



selected as, 

{3: 0.40, 0.60, 0.80 

y: 10.0, 15.0, 20.0 

1:: 0.30, 0.65, 1.00 

a': 0.05, 0.10, 0.20, 0.40, 0.80 

c': 0.05, 0.10, 0.35, 0.70, 1.20 
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The value of parameter a is set at 12 which is considered great enough to neglect the 

effect of the chord length as shown in Chapter IV. 

The stress intensity factor ~ is a function of the load and geometry. For the weld 

toe crack ofT -joints, the ~ solution can be expressed by 

K. =F(p, y, -r:,a 1,c1)aFa (25) 

The logarithms of the F function was approximated with 

Ln(F) =P(q) + H(p) (26) 

where P(q) is a quadratic polynomial of the logarithms of all factors {3, y, 1:, a', and c', 

respectively. Symbol H(p) represents some combined polynomial terms of Ci, Ai, (i = 3, 

4), and the other factors, where C = Ln(c'), and A = Ln(a'). About five terms were 

selected for H(p). Unknown coefficients in Equation 26 were determined by statistical 

regression. The selected form of the empirical formulas (i.e. design models) is in a 

modified power law form, since a power law can generally fit experimental data with 

reasonable accuracy. Table 14 lists the 40 cracked joints selected by D-Optimal design 
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method [93] for data generation. 

The finite element modeling and analysis procedures are similar to those mentioned 

in Chapter III. The post-processor, KAARL, was used to calculate the SIF solutions. 

Both ends of the chord were fixed as boundary conditions. The surface crack is semi­

elliptical on the rectangular strip, which results from mapping the plane defined by the 

brace-chord intersection and the chord thickness along the normal to the chord surface. 

In this work, the cracks are placed at the joint saddle only. The crack surface in the 

crack depth direction is flat and normal to the chord wall surface while'in the longitudinal 

direction, the crack surface is along the weld toe. 

Figure 73 presents the SIF solutions along the crack front (from left to right) of Case 

4 of Table 14 under IPB. The horizontal axis of the figures is the crack front length in 

mm. The vertical axis of each plot represents the non-dimensional SIF, K.J(oNvrta), 

where~ is the Mode i SIF (i=I, II, and III), a is the crack depth, and oN is the nominal 

stress defined as in Table 2. 

Negative K1 solutions of Figures 73a under IPB load occurred due to the fact that a 

contact algorithm was not utilized in the finite element analysis. Consequently, the crack 

surface contacted and penetrated each other due to compressive stresses. As mentioned 

in the section on through-wall cracks inK-tubular joints (Chapter III), SIF solutions away 

from the contact region will not be affected significantly. In the contact region, K1 is 

zero, Ku and K.II remains approximately the same as those of non-contact solutions. For 

AT and OPB loading, K1 and Ku solutions along the crack front are closely symmetric, 

and Km solutions are closely anti-symmetric, which is consistent with the symmetric 

nature of the problem. 
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TABLE 14 

DIMENSIONS (mm) OF ANALYZED CRACKS 

Run No. d T a c 

1 400.0 25.00 7.50 20.00 160.00 
2 400.0 25.00 7.50 1.25 93.33 
3 400.0 25.00 7.50 1.25 6.67 
4 400.0 :25.00 25.00 5.00 93.33 
5 400.0 '·25.00 25.00 1.25 160.00 
6 400.0 25.00 25.00 20.00 6.67 
7 400.0 33.33 10.00 26.67 13.33 
8 400.0 33.33 33.~3 3.33 13.33 
9 400.0 50.00 15.00 40.00 6.67 

10 400.0 50.00 15.00 2.50 160.00 
11 400.0 50.00 15.00 10.00 93.33 
12 400.0 50.00 32.50 20.00 46.67 
13 400.0 50.00 50.00 40.00 160.00 
14 400.0 50.00 50.00 2.50 6.67 
15 600.0 25.00 7.50 10.00 70.00 
16 600.0 25.00 7.50 2.50 10.00 
17 600.0 25.00 25.00 1.25 20.00 
18 600.0 33.33 21.67 6.67 20.00 
19 600.0 33.33 21.67 6.67 70.00 
20 600.0 33.33 21.67 3.33 190.00 
21 600.0 33.33 21.67 6.67 70.00 
22 600.0 33.33 21.67 20.00 190.00 
23 600.0 33.33 21.67 3.33 70.00 
24" 600.0 50.00 15.00 2.50 70.00 
25 600.0 50.00 50.00 20.00 20.00 
26 800.0 25.00 7.50 1.25 320.01 
27 800.0 25.00 7.50 20.00 13.33 
28 800.0 25.00 16.25 20.00 26.67 
29 800.0 25.00 25.00 2.50 93.34 
30 800.0 25.00 25.00 1.25 13.33 
31 800.0 25.00 25.00 20.00 320.01 
32 800.0 33.33 10.00 1.67 26.67 
33 800.0 33.33 33.33 13.33 13.33 
34 800.0 50.00 15.00 2.50 13.33 
35 800.0 50.00 15.00 20.00 320.01 
36 800.0 50.00 15.00 40.00 186.67 
37 800.0 50.00 32.50 5.00 26.67 
38 800.0 5.0.00 50.00 2.50 186.67 
39 800.0 50.00 50.00 2.50 320.01 
40 800.0 50.00 50.00 40.00 13.33 

Note: Chord Diameter D = 1000.000 
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An equivalent SIF based on the energy release rate is defined as, ~ = [K12 + K112 + 

K11// (1 - v)] 112, which is assumed as a crack driving force parameter for a mixed mode 

fracture problem. For all load cases, the SIF empirical formulas were developed for ~· 

For T-Joints under IPB, a 20 percent increase of the ~ at the crack surface end was 

incorporated into ~ to consider the effects of partial crack surface contact on the 

solutions. At the surface crack front point where solution curves have a large scatter, the 

inside solutions were extrapolated, guided by the data distribution at the location, to 

obtain the corresponding SIF solution. 

Curve Fitting by Regression Analyses 

The modified power law curve fitting of the 40 equivalent SIF solutions was per-

formed with computer software RS/EXPLORE [94 ], using the logarithmic values of these 

solutions as 

Ln ( K. J = f(Ln~, Lny, Ln't, Lna 1, Lnc~ 
aditiz 

to determine the f functions. This equation is equivalent to 

K. = aN .;:;a ef<LnP. Lny, LnT, LM'. Lnc'> 

= F(~, y, 't, a 1, c 1) aN {ita 

(27) 

(28) 

where F = Fg Fs F1, with Fg being a joint geometry factor, Fs being a crack size factor 
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and F. being joint and crack coupling factor, and aN being nominal stress, as defined 

previously. The f functions of Equation 27 were grouped and converted into three F 

functions of Equation 28. The validation of the developed empirical formulas was carried 

out using the RS/EXPLORE programs. 

Depending on the~ value used in curve fitting of Equation 27, the resulting Fg, F8 , 

and F1 have different expressions for the empirical formulas. For each of the three load 

cases, two crack front points were selected to develop the ~ expression of Equation 28 

to result in a total of six empirical formulas. One is the deepest crack front point Ka and 

the other is the surface crack front point K,;. Since the cracked joint is symmetric for 

symmetric loading, the two surface crack front solutions should be identical. When the 

load is anti-symmetric (IPB), the higher~ value was selected as the surface crack front 

point solutions. Figures 74 through 76 present the expressions of functions Fg, F8 , and 

Fi at the deepest and surface crack front points for all three load cases. 



Model AKAl : Deepest Crack Front Point <Ka) 

F g = 0.2749~-0.6225-1.26851n~ y1.3191-0.16611rrr- 't'1.6621 +0.37041n~ 

F1 = ~0.3561A-0.0956C 10.0983A+0.2298C+0.0817C2 .-0.0762A 

F8 = (a')P(c'l 

p = -0.8669-0.2198A-0.0162A2-0.4750C2-0.1667C3-0.0193c4 

r = 0.0777+1.0531A+0.5820A2+0.0810A3-0.7001C-0.0604C2+0.0060C3 

A = Ina' and C = Inc' 

Model AKC2 : Surface Crack Front Point (Kc) 

Fg = 204.08p-0.5858-0.74921n~ y-2.6713-0.2884ln~+0.56461ny 
't'1.1491-0.29361ny-0.50431rrr 

Fi = ~0.0680A 10.0478A-0.5344C-0.1218C2 't'-0.1299A-0.0370C 

F8 = (a')P(c'l 

p = 1.0787+0.6397A+0.1569A2+0.0186A3-(0.0770+0.0478A+0.0099A2)C2 

r = 0.8617 +0.4888A+0.1816A 2+0.0123A3 -0.3252C -0.2210C2-0.0275C3 

A = Ina' and C = Inc' 

Flgure 74. SIF Empirical Formula of T-Jomt under Brace Tension 
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Model OKA2: Deepest Crack Front Pomt <Ka) 

F g = 0_1718~o.9626-0.50031n~ 1'1.5274 .o.6488+0.33531n~-0.29621m: 

F1 = f30.3066A-0.0598C (a')O.l3151ny-0.0775ln't 

F8 = (a')P(c)f 

p = -1.3130-0.4253A-0.0584A2+0.9843C-0.3278C2-0.0308C3 

A = loa' and C = lnc' 

Model OKCl: Surface Crack Front Point (Kd 

Fg = 4 .7016f3o.7362-0.95231n~ 1o.2227-0.71691n~ .o.6663-0.10401ny-0.38021n• 

Fi = f30.1388A-0.2143C 1o.0573A-0.5026C-0.1175C2 .-0.1548A 

F8 = (a')P(cY 

p = 1.5044+0.8350A+0.1258A2+0.6624C-0.0202C2 

r = 0.2954+0.3328A2+0.0453A3-0.6990C-0.3648C2-0.0473C3 

A = loa' and C = lnc' 

Figure 75. SIF Emprrical Formula of T-Jomt Under OPB 
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Model IKAS: Deepest Crack Front Point (!<a) 

Fg = o.0887f31.3433-0.47981nf3 15.2247-0.55551nf3-0.83101ny ,;0.6928-0.43021nf3 

" .. . 2 
Fi = 0.0887p-0.0758A-0.2391C 10.1406A+0.4341C+0.1543C ,;-0.1771A 

F8 = 0.0887(a')P(c'l 

p = 1.8586+2.2859A+0.9035A2+0.1215A3-1.0918C-0.4785C2 

r = -1.3298-0.3040A2+0.4834C+0.7030C2+0.1130C3-0.1207A2C 

A = lna' and C = lnc' 

Model ICK3: Surface Crack Front Point (Kc) 

Fg = 0.1395p-0.6498-1.18831nf3 1L0779-0.3414lnj3 ,;0.8168-0.21491nf3 

Fi = p0.0422A-0.2452C 1L4558A+0.4173A2-0.9276C-0.3297C2 ,;-0.0905A-0.0338C 

F8 = (a')P(c'l 

p = -2.4921-0.0063A+0.2056A2+0.9804C+0.3916C2+0.0620c3-0.0110C4 

r = 2.8298+0.5682A2+0.0704A3+0.6562C-0.0453C2+0.0022c' +A2C(0.1621 +0.0384C) 

A = lna' and C = Inc' 

Ftgure 76. SIF Em pineal Formula of T-Jomt Under IPB 
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Figure 77 (or 78) shows the error plot of developed empirical formula for Ka under 

the brace tension (or in-plane bending) load, in the form of Equation 27, when it is 

compared with the 40 input data. The residual/1 is defined as 

K . K K 
4 = Ln( ) - Ln( " ) = Ln(-) 

aJtfita aJtfita K, 

where K is the equivalent SIF from the empirical formulas AKAl and IKAS, and Ka is 

the SIF computed from the FEM for the 40 cases listed ip. Table 14. The relative error 
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Figure 77. Error Residual of Formula AK.Al 
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is obtained by E = (K - Ka)fKo = e6 - 1. The maximum fitting error on the worksheet is 

within 14 percent (or 16 percent), while the majority of the errors are within 10 percent 

for both cases. Although the error plots of other formulas are not presented, Figure 78 

shows the worst case. 

0.24-----~---+----~----~---4----~----+-----+ 

. 15 1-

+ 
+ 

+ + + 
0.1 

+ + + + .OS + 
+ 

+ + 
0 • 0 ,.... - - - +- -!::.. "T - + +- - - -+- - .++- - - - - - + +-+ 

+ 
+ + 

+ + + -.05 + 
+ + + + 

+ + 
-0.1 

+ 
-0.15 + 

-0.2 I 

0 5 10 15 20 25 30 35 40 

Case Number 

Figure 78. Error'Residual of Formula IKA5, 

Discussion of the Empirical Formulas 

The developed six SIF formulas have been analyzed to assess their reliability, using 

a joint with the following dimensions: (3 = 0.60, y = 15.00, 't = 0.65, T = 33.3 mm, and 
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d = 600 mm. The load is AT = 103 N, OPB = IPB = 106 N•mm. With the aid of 

computer program MACSYMA [95], the equivalent SIF solutions, Ka and Kc, were 

calculated from the empirical formulas for cracks with depths, a = 3.33, 6.67, and 13.33 

mm and lengths, c = 20, 70, and 190 mm, and their trends were examined. The non­

dimensional crack size parameters of these cracks are: a' = 0.1, 0.2, and 0.4; and c' = 0.1, 

0.35, and 0.95. The SIF results of finite element analyses for several identical cracks 

from the 40 cases which were analyzed for the data generation, were compared with the 

empirical solutions. The finite element solutions are presented with various symbols in 

the plots for comparison. Most of the cases agree well with the corresponding empirical 

formula solutions. 

The plots of equivalent SIF K.. versus crack depth for the joint under the brace axial 

tension, from formula AKA1, are presented in Figure 79. There are two contradicting 

factors to control the magnitude of the stress intensity factor as the crack grows deeper 

with fixed crack length. The stress intensity factor tends to increase with the crack depth, 

while the predominantly bending stress distribution along the chord wall of the T-joint 

tends to reduce the stress intensity factor as the crack grows deeper. For this reason, the 

trend of the stress intensity factor with respect to the crack depth depends on the crack 

tip location in the joint. Figure 79 indicates that, for shallow cracks K.. increases with the 

crack depth. However, from a certain crack depth, the trend reverses to decrease with 

crack depth. This effect is especially apparent with shorter cracks. Figure 79 also shows 

that an increase in crack length will result in an increase in the value of K.. which is 

physically reasonable. 
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The equivalent SIF Ka versus crack length of the solutions, from formula AKAl, is 

plotted in Figure 80. The equivalent SIF Ka increases· with the crack length, when the 

crack tip location is fixed in depth. When the cracks are short, SIFs for cracks with the 

largest depths are lower than those with the medium depth, since the crack tip stresses 

of deeper cracks are lower than those of shallow ones. However, the size effects on the 

SIF overcome those of the stress to make SIFs greater for the deeper cracks as cracks 

grow longer. 
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The plots of equivalent SIF ~versus <the crack depth for the joint under the brace 

axial tension from formula AKC2 are shown in Figure 81. The monotonic increase of 

SIF with the crack depth, while the crack length is fixed, is consistent with the size 

effects on the SIF magnitude. Because of the higher stress concentration near the saddle 

point, the shortest crack has the highest SIF when the crack depth is small. As the crack 

grows deeper, the size effect~ on the SIF magnitude overcome those of the stress and the 

gradients of:£<.: for longer cracks (e.g., c = 70 and 190 mm) exceed those of the shortest 

crack. 
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The equivalent SIF Ke versu~ half crack length for the three crack depths under the 

axial tension (AK.C2) are plotted in Figure 82. All these curves indicate that Ke decreases 

as the crack grows in length. This is due to the fact· that, as the crack grows longer, the 

surface crack front moves away from the hot spot region, resulting in a reduced stress at 

the crack tip location. The size effects on the SIF magnitude cannot overcome those of 

stress for the SIF at the surface crack front point. 

Since the stress patterns of aT-joint under the OPB' loading are similar to those of 

the brace axial tension loading, the general trends of the SIF (i.e., from formulas OKA2 

and OKCl) of these two load cases are also similar. Detailed discussions about OPB 

cases are omitted for this reason. 
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The SIF solutions~ from formula IKA5 versus crack depth for the joint under the 

in-plane bending load are shown in 'Figure 83; It is apparent from Figures 73a and 73b 

that only the ~11 component exists at the deepest crack front point for the IPB case. At 

this location, Km generally increases with crack depth, when Jhe crack ·length is fixed. 

In Figure 83, the longest crack has lower SIF than shorter cracks at all crack depth, 

except for the medium crack depth range. Such a possibility can exist due to the complex 

nature of the tearing mode of-IPB loading, although it is not immediately clear whether 

it is a fact or the result of errors originating from statistical data analyses, particularly for 

small crack depths. 
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The plots of Ka versus the crack length from formula IKA5 are shown in ,Figure 84. 

The general trend of these plots is that the SIF increases with the crack depth. The mild 

fluctuation of the SIF with crack length increase can be considered to be unreasonable if 

the loading were AT or OPB, which is dominantly Mode I. However, for the IPB 

problem whose crack driving force is dominated by shear components (Modes II and Til), 

it is not simple to determine intuitively the effects of crack size and shape on the SIF 

solutions. Although the crack size increases, the change in crack front line direction 

resulted by the change in crack aspect ratio ~an decrease the effects of a particular shear 

stress component on the SIF solutions. Differently from the Mode I, the SIF magnitude 

under Modes II and III loading can be affected by the crack front orientation with respect 
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to the load, as well as by crack size. Under the dominantly tearing mode of loading of 

IPB, the crack front orientation change originating from the crack aspect ratio change can 

result in unpredictable changes in crack driving force distribution along the crack front. 

Nevertheless, it requires further close examinations with more solution data to confirm 

this observation. 
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The ~ solutions from formula IKC3 for· the same cracks under the IPB loading 

(Figures 85 and 86) consist of all three mo~es of SIF, with the sliding mode (Mode II) 
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contribution as the highest (Figure 73). For a mixed mode problem, this trend can be 

possible. Curves in Figure 85 show strong similarity to those in Figure 84, since Kt1 

makes a significant contribution to ~- The trend of the SIF solutions at the surface crack 

front point <Kc) that generally increases with crack size appears to be reasonable. As 

previously stated, it is necessary to investigate closely to further understand the behavior 

of mixed mode SIF solutions. 
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Focus was placed on the development of the stress intensity factor empirical formulas 

to make the fracture mechanics method efficient and inexpensive for tubular joint 

engineering. At the present time, for the lack of reliable approximate methods, the three-

dimensional finite element method appears to be the only credible approach to generate 

data for the reliable defect assessment and development of stress intensity factor empirical 

formulas for tubular joints. 
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The use of SIF empirical formulas is not as simple as those of SCF, since the 

location of in-service fatigue crack development does not necessarily coincide with the 

crack location for which the formulas have been developed. For design analyses, if the 

dominant brace loading component is identified, the SIF empirical formulas based on the 

hot spot location can easily be developed following the procedures of the present work. 

In the general case where the critical location is uncertain, the development of the 

appropriate SIF empirical formulas is not a simple matter, even for a limited class of joint 

configuration. For this reason, a single set of SIF formulas will have limited applications. 

To be applicable to general problems of fracture mechanic,s in-service structural integrity 

assessment, many sets of SIF formulas have to be developed, as the offshore industry has 

invested in the development of SCF formulas for tubular joint engineering by the 

conventional approach. The SIF empirical formulas. presented here are significant as a 

starting point of such development. 

The conclusions of this chapter are summarized as follows: . 

The empirical formulas of the stress intensity factors required for tubular joint fatigue 

life analyses can be developed by procedures similar to those of the stress 

concentration factors. 

Statistical data analyses can minimize the data required for the development of stress 

intensity factor empirical formulas of offshore tubular joints. 

The three-dimensional finite element method is suitable for the stress intensity factor 

solutions required for the empirical formula development. 

The empirical formulas obtained by curve fitting of 40 different crack solutions agree 

favorably with the physical behavior of weld toe cracks ofT-joints and cover a wide 
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range of joint dimensions. 

The SIF empirical formulas can make the fracture mechanics fatigue life assessment 

of a tubular joint simple and inexpensive. 



CHAPTER VI 

CONCLUSIONS 

Fracture Mechanics method is the o~ly rational approach to assess the integrity of 

structural components with defects. For ·tubular joint weld toe defects in fixed offshore 

jacket platforms, closed-form stress intensity factor 'solutions are not available. It is 

difficult to calculate the SIF solutions dtie to the complexity of joint/crack geometry and 

loading conditions. Many simplified methods ip.volve uncertainties. To develop rational 

and efficient fracture mechanics analysis procedures for tubular joint fatigue assessment, 

a sophisticated computer post-processor, KAARL, using Rhee's procedure [10], has been 

designed to obtain the SIF solutions from finite element analysis efficiently. A significant 

number of SIF solutions have been calculated and studied for a good understanding of the 

behavior of weld toe defects through accurate SIF solutions. The following conclusions 

can be drawn: 

1. A simplified method to calculate the stress inte.nsity factors of weld toe surface 

cracks of tubular joints involves uncertainties. Experimental methods can determine 

an effective crack driving force parameter of mixed mode tubular joint weld toe 

cracks, but it does not necessarily represent the crack tip singular stress magnitude 

as the stress intensity factors do. 

2. The trends of the SIF solutions obtained through the finite element analyses are 
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consistent with the physical behavior of tubular joint weld toe cracks, as well as with 

the SCF distribution of an uncracked tubular joint. 

3. The three-dimensional finite element method is reliable and practical for the 

calculation of the stress intensity factors of tubular joint weld toe cracks of various 

forms. 

4. Finite element model sensitivity study in_dicates that relative crack tip element size 

LJa = 0.05 to,O.lO provide adequate SIF solutions. 
·-

5. Empirical formulas for the SIF of tubular joint weld toe defects can be developed 

through statistical design and 3-D finite element analyses. These formulas are useful 

for fracture and fatigue life assessment of tubular joint with crack-like defects. 

6. The superposition procedure is efficient for the SIF c~lculation of a weld toe defect 

in a multi-brace joint subjected to combined multi-axialloads. 

7. The mixed mode behavior is a possible mode of fatigu~ and fracture of tubular joint 

weld toe cracks. However, _the modelling and practical. aspects of the mixed mode 

behavior should be further studied tlu:oti.gh numerical and experimental investigations. 



CHAPTER VII 

RECOMMENDATIONS FOR FUTURE WORK 

Introduction 

Two major issues concerning tubular joint fatigue assessment are when the mixed 

mode behavior becomes too significant to be ignored and how ~o deal with it. Obtaining 

reliable and accurate SIF solutions of weld toe cracks is essential to the first issue. 

Solution of the second issue demands knowledge of crack instability criterion (for critical 

condition and growth direction), fatigue crack growth control parameter and growth 

model. The determination of these factors requires further experimental and analytical 

studies of material and structural behavior [96]. The recommendations in this chapter 

focus on the first issue. 

SIF Over Realistic Fatigue Crack Profiles 

Significant mode IT and Ill components relative to mode I of the SIF in a planar 

crack would suggest that the crack should grow asymmetrically, forming a curved profile 

for the crack surfaces. The situation for weld toe defects of a tubular joint is much more 

complicated than the planar crack, because of the complex geome!ry and stress conditions. 

Some crack propagation profiles of tubular joint weld toe defects are available from 

laboratory tests. Calculation of the SIFs for these realistic crack profiles using the 3-D 
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finite element procedure [10] is a feasible means to examine the mixed mode behavior. 

However, the option in TUJAP to model doubly curved cracks has not been validated. 

Future research to study the reliability of this option and to use it to investigate realistic 

crack profiles are required. 

Multiple Boundary Condition Effect 

As a member in an integrated jacket frame, the tubular joint is subjected to both 

multi-axialloads (f?rces and moments) and'constraints (displacements and rotations) from 

neighboring structural members. Because of the complicated marine loading environment, 

various combinations of loading magnitudes and directions lead to many load and 

constraint combinations at the ends of a tubular joint. The multi-axial load effect can be 

treated using the superposition method discussed in Chapter ill. A reliable and efficient 

method to treat the multi-axial end constraints are also needed for understanding and 

calculating the fatigue behavior of the tubular joint. 

Consider a two-dimensional frame as shown in Figure 87, where a K-tubular joint 

is located at B. The loads and constraints at the ends of the joint are illustrated in Figure 

88. This problem can be solved efficiently by first studying the models in Figures 89 and 

90, and then combining the results from the two models. 

In Figure 89, loads F / (i = 1, 2, 3) are to be determined later. Once these F / are 

known, this model can be solved using the multi-axjal load method in Chapter III, i.e., 
I 

(29) 
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Loads 

Figure 87. A Two-Dimensional Frame with K Joints 

2 1 

3 
4 

Figure 88. A K-Joint with Multiple Boundary Conditions 
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Figure 89. The Load Model of the K-Joint 
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4 

In Figure 90, .!At= [0 0 0 ex ey ez]T is the rotational displacement vector at end 4 in 

Figure 88. The translational displacement components have no effect. The reactional 

loads at each end can be calculated as, 

(30) 

where ~ij is the reactional load influence coefficient vector at end i due to unit rotation 

8j (j = X, y, z) at all the joint ends. 
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2 1 

( ) 
3 4 

Figure 90. The Constraint Model of the K-:Joint 

The SIF at a crack front location can be written as, 

K11=t6+t6+t6 
% % y y .t .t 

(31) 

where~ G = x, y, z) is the SIF influence coefficient vector due to unit rotation 6j at all 

the joint ends. 

It has been shown by the author that for the model in Figure 89, 

E'-:d E - E" 
1 1 1 

F1=F-F11 
~.,, 

(32) 

where F 1 (i = 1, 2, 3) are given in Figure 88, and F i" (i = 1, 2, 3) are given by Equation 

30. 
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The SIF at a crack front location of the problem in Figure 88 can be obtained by 

combining Equations 29 and 31, i.e. 

K= K1+K11 (33) 

This procedure is systematic and efficient. To take into account the boundary effect of 

a tubular joint, only the coefficients ~j and 1 need to be calculated using FEM. The 

boundary rotation condition ~t is arbitrary, but in small deformation. 

The TUJAP system can be modified to apply the' non-zero boundary conditions of 

rotational displacement. Alternatively, another general purpose FE program, like 

ABAQUS, can be used to perform the FE analysis of tubular joint. 
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