
NEURAL NE1WORKS

FORCON1ROL

By

GISELE GUIMARAES

Bachelor of Science
Universidade Federal de Gohis

Goiania, Brazil
1984

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOROFPIDLOSOPHY

July, 1992

.. ·: . , ~ . ' ' . ' .

Oklahoma State Univ. library

NEURAL NETWORKS

FORCON1ROL

Thesis Approved:

Dean of the Graduate College

11

ACKNOWLEDGl\ffiNTS

I wish to express my gratitude to Dr. Martin T. Hagan, my

major adviser for his interest, guidance, dedication, counseling,

patience, invaluable suggestions and, notably, his friedship. My

appreciation is also extended to Dr. Ronald Rhoten, Dr. Keith Teague,

Dr. James Baker and Dr. John Wolfe for being members of my

committee. Special thanks to Nidal Sammur and Mohammad

Menhaj for their help and encouragement, and to all those who

made this research possible.

I am most greatful to my husband Jose Vicente for bringing me

here and, above all, for his patience and loving support. My thanks

to mom and dad for making it possible for us to come, for their

many letters and inspirations. Thank you Gilson and Gislene for

being helpful and a company to our parents.

I would also like to thank my mother-in-law, my brothers and

sisters-in-law for understanding my husband's absence during our

studies.

Finally, I would like to thank all persons who somehow

contributed to this accomplishment. I hope that my effort in the

completion of this work corresponds to theirs.

Ill

TABLE OF CON1ENTS

Chapter

I. INTRODUCTION .. _ _______ -·--·---·---------·-·---······------···········---.................... .

II. BACKPROPAGATION_~-- ·-----~-----

Neural Networks ____________ ·------------·-·----.. ··--·
Function Approximation with

Neural Networks __________ _
The Backpropagation Algorithm __________ _

III. MODIFICATIONS TO BACKPROPAGATION ~-----~~

Methods for Acceleration~ ... ~~·----------·
Case Studies. ______________ _

Basic Test Setup _________ _
Convergence Parameters
The Number of Neurons and Layers __
Initial Conditions ______ ,
Initial Normalization

·----~-------Conjugate Gradient. ________ ~

IV. CONTROL APPLICATIONS~-~-------~

Neural Networks in Control. _________ _
Training Methods.... -.-------.--. _

Widrow's Training Method. _____ _
Narendra's Training Method. ____ _

V. WID ROW'S METHOD APPLIED TO THE
EX1ENDED RANGE GUN

Elevation Model~~~-·-wa~.---.. -w.·-···~-·-.. ··-~-·w-.-...... ,.w,w·--······---~·---~·
The Backpropagation Algorithm
The Conjugate Gradient Algorithm
State Variable Feedback Controller.~ ... ----··-

lV

Page

1

3

3

4
8

21

21
23
24
25
30
34
36
38

43

43
55
57
59

63

66
72
74
79
86

Chapter Page

VI. NARENDRA'S METHOD APPLIED TO THE
EXTENDED RANGE GUN ____________________ ~·

Feedback Linearization __ ·--------~~---.. ~
Reference Model,.,__ ________ _

Azimuth Model·-·-----~-~-~-·---···-~·-···---··-············
Elevation Model.~---~~---~

State Variable Feedback

9 1

9 1
93
94
96

Controller 9 8
General Method 1 0 1

Second Order Models·--~·---·--····----·-····~-············· 1 0 4
Reference Model_ 1 0 4
Azimuth Model 1 0 7
Elevation Model.. 1 1 2

Simple Feedback
Controller 1 2 2

Fourth Order Models~ 1 2 6
Reference Model 1 2 8
Azimuth Model__ 1 2 9

Simple Feedback
Controller~------ 1 3 1

VII. SUMMARY AND FUTURE WORK~---~~-~---

REFERENCES_~-~--------~------------
APPENDIX- THIRD-ORDERRUNGE-KUTTAINTEGRATION

135

137

MElliOD ----~----~~~~--~---·-----·-----·~--···-··-·- 1 3 9

v

LIST OF FIGURES

Figure Page

2.1. Simple Model of a Biological Neuron.~~------~~·-···- .. ---- 3

2.2. Single-Layer Perceptron and Transfer Function_~-~-· 4

2.3. Single Input/Single Output Two Layer Perceptron·-~·--··· 5

2.4. Response of Perceptron in Figure 2.3 7

2.5. Response of Perceptron in Figure 2.3 as w11 1
is Varied 9

2.6. Minimum Search in a Quadratic Function 11

2. 7. Network Learning Behavior for Standard
Backpropagation 1 4

2.8. Single Input/Single Output Two Layer
Perceptron with its Input/Output Characteristic............. 1 5

2.9. Error Surfaces for Network in Figure 2.8~-----·------... 1 7

2.10. elt and e2t Convergence for Different
Initial Conditions·--~-----------

2.11. e11 and w11 1 Convergence to Global Minimum. ___ _

2. 12. w 11 1 and w 11 2 Convergence for Different

3.1.

3.2.

3.3.

3.4.

3.5.

Initial Conditions
------------------~

Network Learning Behavior as a IS Varied

Network Learning Behavior as loopmax IS Varied __

Network Learning Behavior as perover IS Varied _

Network Learning Behavior as ~ IS v aried .. .__. w.·~~---~-~--.-..
Network Learning Behavior as q, IS Varied ___ ~--.. ------~-----

3.6. Mapping Capabilities of a 1-3-1 Network"--------

VI

18

1 8

1 9

26

28

28

29

30

32

Figure Page

3. 7. Network Mapping Capabilities 3 3

3.8. 1-6-3-1 Network Convergence to Global Minimum~~~~~ 3 5

3.9. 1-6-3-1 Network Convergence to Local Minimum.~-··~····.. 3 5

3.10. Network Learning Behavior with Weight
Normalization~ 39

3. 11. Golden Section Search~~-- 41

3.12. Network Learning Behavior for Conjugate
Gradient Method'----~------------- 42

4.1. Inverted Pendulum System 4 5

4.2. Response of System with Linear Controller 4 6

4.3. Multilayer Neural Network Controller 4 7

4.4. Training Mode 4 8

4.5. Response of the Linear Controller and the
Neural Network as Each Input is Varied
(After 300 Iterations) 50

4.6. Response of the Linear Controller and the
Neural Network as Each Input is Varied
(After 600 Iterations) 5 1

4. 7. Pendulum System Response With a
3-Layer Neural Network Controller 52

4.8. Single Neuron Controller 52

4. 9. Response of the Linear Controller and the
Neural Network as Each Input is Varied
(After 50 Iterations). _______ ~·---·----~--~~-~- 53

4.10. Pendulum System Response With a
Single Layer Neural Network Controller.""'""""'-"···~.w.···w·········w.··· 54

4.11. Plant Identificationw----~~~--~~--·w~----~---~------~---··--~---·.w·····-····----·~· 56

4.12. Controller/Plant Box

4.13. Neural Network Controller

Vll

57

58

Figure Page

4.14. Controller Training Mode 60

4.15. Neural Network Controller with Nonlinear Plant._~~·-· .. ·~ 6 2

5.1. Schematic of the Extended Range Gun~-----------~·--·.~~· 6 3

5. 2. Simplified Model of the Extended Range Gun 6 4

5.3. Azimuth ModeC~~ _._. ... _. ... -.-----~---·-·-·-·~·------.. --· 6 7

5.4. Plant and Controller Architecture 6 8

5. 5. Learning Curve for Plant (e = rc/2)_ ... __. _........................... 6 9

5.6. Learning Curve for the Saturation Network_ .. __ .._ -............. 7 0

5. 7. Saturation Transfer Function~--··-~-.............. __ . ___ 70

5. 8. Learning Curve for the Controller~----... -· ... -----·-·-·- 7 1

5. 9. Operational Mode of the System __ _... 7 2

5.10. Response for Initial Condition [3 O]T ~~~----.~ ~ 7 3

5 .11. Elevation Model 7 3

5. 12. Plant and Controller Architecture~-. 75

5.15. Learning Curve for Controller (Case 1) ~ ... -.

5.16. Learning Curve for Controller (Case II) ...

5.17. Learning Curve for Controller (Case 111) ..

5.18. Learning Curve for the Plant -~.._._. -""-"-' _ _ _._.OJ._..

5.19. Learning Curve for Controller (Case 11) ... _.

5.20. Learning Curve for Controller (case I and case III)

Vlll

Figure

5.23. Response for Initial Positions 3.0, 1.7 and
0.5 Radians_~·~--

5.24. Response for Initial Condition [1.7 O]T

5.25. Comparison of Controllers for Initial
Condition [1. 7 O]T

5.26. Comparison of Controllers for Initial

Page

87

88

90

Condition [0.5 O]T -···-·-·-····-··-·~-·-·~····· .. ·--.......... ~-.. -·-··-··~·-···~············-... 9 0

6.1. Operational Mode of the System ~-·-~· 93

6.2. Response for Initial Condition [3 O]T -··~·~-----·~·-····-············-··.. 9 7

6.3. Learning Curve for Neural Network Nt... 9 9

6.4. Response for Initial Condition [0.5 O]T....... 10 0

6.5. Comparison of Controllers---___ .~-----.... ~~.---------

6.6. Plant Training,_~~~~--.---~-.~-~~---·

102

103

6. 7. Controller Training_ ~-···--·-··----·---·---··-··--····-------··-······-··... 1 0 5

6.8. Operational Mode of the System ... 106

6.9. Learning Curve for Neural Network Np (8t=O.l)~-··~ 109

6.10. Learning Curve for Neural Network Nc (8t=0.1t 109

6.11. Response for Initial Position 3.0 (8t=0.1t ... -..-.............. 110

6.12.

6.13.

6.14.

Learning

Learning

Learning

Curve

Curve

Curve

for Neural

for Neural

for Neural

Network Np (8t=0.0 1 >... 1 1 1

Network Np (8t=O.O 1 t ~ 113

Network Nc (8t=O.O 1 >.. 113

6.15. Response for Initial Position 3.0 (~t=0.01} ~-·~····-·-· 114

6.16. Learning Curve for Neural Network NP (8t=0.1) 11 5

6.17. Learning Curve for Neural Network Nc (~t=0.1 } 116

6.18. Learning Curve for Neural Network Np (8t=0.1) 117

6.19. Learning Curve for Neural Network Nc (8t=0.1L 118

ix

Figure Page

6.20. Response for Initial Position 0.5 (~t=0.1)~~·---~-~---~- 119

6.21. Learning Curve for Neural Network NP (~t=0.01L.~ .. ·~ 120

6.22. Learning Curve for Neural Network Nc (~t=O.Ol} ~~-~ 120

6.23. Response for Initial Position 0.5 (~t=0.01L~ .. ·---.................... 121

6.24. Response for Initial Position 0.5, 1.7 and

122

6.26. Comparison of Controllers. _______ . 125

6.27. Block Diagram of Resonant System_ ----·-·-~_ ~ 127

6.28. Learning Curve for Neural Network N p ... - ~ 130

6.29. Learning Curve for Neural Network N .
c------------~~-

131

6.30. Response for Initial Position 3.0
··~-·~-O.L<.O,._..._..._ .. ._._._,,_..,_..._._._._._._._,_......,._._,.._,.., 132

6.31. Root Locus 133_._..,..,..._._......._

6.32. Response for Initial Position 3.0 (Simple Controller) 134

X

CHAPTER I

INTRODUCTION

Design methods of control systems for linear systems are well

known. However, design methods for nonlinear systems are still an

active area of research. This research studies the feasibility of

using neural networks as controllers for nonlinear systems. A

particular nonlinear system, the Extended Range Gun (ERG), has

been selected. The adaptive stabilization of the ERG is considered m

this research. Two design techniques, using neural network

controllers, developed by B. Widrow and K. Narendra have been

studied for the stabilization of the ERG.

This report contains 7 chapters. Chapter II explains how

neural networks can be used as function approximators and

describes in detail the backpropagation algorithm. This algorithm IS

used in both design techniques mentioned above. Preliminary

results showed that training time for this algorithm, even for

simple problems, can be excessive. Modifications to the

backpropagation algorithm in order to reduce learning time are

discussed in Chapter III.

Chapter IV describes how neural networks can be used as

system controllers. First, it is assumed that prior information about

the input/output characteristics of the controller is known. In this

case, function approximation is applied. Next, it is assumed that the

1

input/output characteristics of the controller are not known. To

handle that situation, the techniques developed by Widrow and

N arendra are described.

The control design techniques presented in Chapter IV are

applied to the ERG. Results of these techniques are shown in

Chapters V and VI. They test the feasibility of using neural

networks in this application and help determine the best

implementation of the algorithms. Chapter V presents the

technique developed by Widrow, while Chapter VI contains

Narendra's method.

2

Finally, Chapter VII provides a summary of the findings of this

research and gives recommendations for future work.

CHAPTER II

BACKPROPAGATION

Neural Networks

Artificial neural networks are simplified models of biological

neural networks found in the brain [1]. They are composed of

thousands of neurons connected together. An idealized biological

neuron IS shown in Figure 2.1. The information arriving from

thousands of other neurons are the inputs. These inputs are

weighted by the synapses, which connect axons to dendrites. The

weighted inputs are summed by the dendrites. The cell body

converts this sum into an output through a nonlinear relationship.

The output is carried by the axon to other neurons connected to it.

Axon

'
Figure 2.1. Simple Model of a Biological Neuron

3

4

The artificial neuron, a single layer perceptron, is shown m

Figure 2.2. The xi's are the inputs. The wi's are the weights, which

mmuc the strengths of the connections (synapses). The dendrites

and cell body are represented by the sum and the nonlinearity.

The nonlinearity modeled throughout this work is shown in Figure

2.2. The output is y (axon). There are other forms of nonlinearities

that can be used, for example

and

1
-arctan(x)
1t

~~~ 
• 
• 

f (x)= 

N 
Y=f(LW.X-9) 

. 1 1 1 
1= 

(11.1) 

1 1 -----

Figure 2.2. Single-Layer Perceptron and Transfer Function 

Function Approximation with Neural Networks 

Many single layer perceptrons (single "neurons") organized in 

layers constitute a multilayer perceptron. Figure 2.3 shows a two 

layer perceptron. A two layer perceptron is capable of 



5 

approximating any square integrable function [2,3]. Inputs in a 

compact set U c 9t n map to outputs in a set V c 9t m. The function 

ghat(w): 9tn -> 9tm will approximate g: U -> V by identifying the 

parameter w* e 9tk (weight vector) which gives the best 

approximation of g. An example bellow illustrates the power of the 

multilayer perceptron in implementing functions. 

X 

e 1 
3 

Figure 2.3. Single Input/Single Output 
Two Layer Perceptron 

The weights shown below are for a two layer perceptron with 

one input, one output and 3 neurons in the first layer. This 

network is shown in Figure 2.3. Changes in the value of the weights 

and the offsets cause variations in the form of the function g: x-> y. 



6 

Figure 2.4 shows the response of the perceptron as these changes 

occur. 

1 
W 11 =5 

1 
e 1 = -5 2 

W 11 = .5 
1 

W21 = 10 
1 

e 2 =O 2 w12 = .5 2 
e1 = o 

1 w31 = 15 
1 

e 3 = 15 2 
W 13 = .5 

Each step in the curves is caused by one particular neuron of 

the perceptron. The slope of the step is not only determined by the 

weight connecting the input to the neuron but also by the weight 

connecting this neuron to the output neuron (e.g. w111 and w112 

determine the slope caused by neuron 1). The center of the step 1s 

determined by the negative of the ratio of the offset and the input 

weight (e.g. the center of the curve determined by neuron 1 is 

-(-5/5) = 1). 

Figure 2.4 a) shows how the function changes as the value of 

w 211 is varied. This weight connects the input to the second neuron 

in the first layer. It takes on the values {-10, -3, 0, 3, 10}. As one 

can see, changes in this weight affect the slope of the middle step. 

Figure 2.4. b) illustrates the function as the offset 831 of the 

third neuron varies : {7.5, 11.25, 15, 18.75, 22.5}. Changes in this 

offset shift the center of the first step, compressing or expanding 

the function in the x axis. 

In Figure 2.4 c) changes m the weight of the second layer can 

be seen. The weight w132 is varied over the range { -1, -0.5, 0, 0.5, 

1 } . This weight affects the slope of the first step of the function and 

also shifts the entire function up or down. 



,4.--------,--,---,----,.--,----, 
I , 

.3 ...... o •••••• -··-···!: ·-- j ........ ··+-··----.. ·•·· t···-""''-·+·· .. -· '. 

.2 I· ............................. " ................. , .................. 1 

.1 1-·-··-·-+-----------·-----i .......... -j 

y or-~-7~~~~~~-T~ 

-.1 

-.2 ................. : ................. ; ................. ..j .................. l----- - : ................... +-·-- ........... ;............. I 

i ' i -.3 -----r--........................... i .................... , __ ,_t--------+-............... !-----.. ----1 

-.4 

.4r-~--,-~--~~--~~--, 
l 

.3 --·---f-----·-·i------·-+-- --··-·-1·-·······-··,.---·---+·--···· 

:~ =+-t-t=~----~~··~-·~ 
y 0 ! ' ~~ 

-.1 --·-----;l<?W _________ , ____ _ 
-.2 ............... .L ... =l·······--=J••·~~··~t-··-····· .. ·+- .. ···-- ........ , ................. , ................ .. 

-.3 ! I I 

-.4 

7 

-2 -1.5 -1 -.5 0 .5 1 1.5 2 -2 -1.5 -1 -.5 0 .5 1 1.5 2 

X 

a) Perceptron Response as w211 
is varied 

:: ----l .............. i,l_ ........... ...1 ............................ _1--------+·""'"""""l·---·-·-
: : ; 

~ +=~-;~ge~ 
Y o ' \'! i - /v ' , .. -, _ _../", Y 

:~~#~ 
-.3 ................. ; ................. ! ........................... -j-.................. j.--.. ······1·-······--

-.4 . 
-2 -1.5 -1 -.5 0 .5 1 1.5 2 

X 

c) Perceptron Response as w 13 2 
is varied 

X 

b) Perceptron Response as 931 
is varied 

.4.--~-------,---r--~~--~~ 

.3 ·-------+-+ 

.2 

.1 

-.1 

-.2 

-.3 ................. [-· 

-.4 l..u...L..L..l.Ju...t..J...i..J..J ..................... ...I...I...< .......... ..W.....I...I..i...J..J..I..W......s...J..J..J 

-2 -1.5 -1 -.5 0 .5 1 1.5 2 

X 

d) Perceptron Response as 91 2 
is varied 

Figure 2.4. Response of Perceptron in Figure 2.3 

Finally, Figure 2.4 d) shows the effect of the offset of the 

second layer neuron, e 12. The entire curve 1s shifted up or down as 

this weight is varied from { -1, -0.5, 0, 0.5, 1 }. 

Figure 2.5 illustrates changes in the weight w 11 1. The values 

that this weight takes are { -10,-5,0,5,10 }. Since this weight affects 



8 

the center of the step, as explained above, when it is negative the 

center of the step is shifted to the other side of the y axis. The 

center of neurons 1 and 3 then coincide and their efforts are added 

to shape the first step of the function. This exemplifies how small 

changes in only one weight can produce complex changes in the 

form of the function. 

Figures 2.4 and 2.5 illustrate that the multilayer perceptron 

can approximate very complex functions. Although a two layer 

network can approximate any function, three or even four layers 

may be needed to reduce the number of neurons in the network. 

Determining the number of neurons and the number of layers 

needed to approximate a given function is difficult and is generally 

done by trial and error. The development of analytical procedures 

for this task is an active area of research. 

Once a network structure has been chosen, the weight values 

which provide the closest approximation to the desired function 

must be determined. The most popular method for computing the 

optimal weights is the backpropagation algorithm [4], which is 

discussed in the next section. 

The Backpropagation Algorithm 

The backpropagation algorithm is widely used m the 

determination of the strength of the connections in the multilayer 

perceptron. The procedure minimizes the squared error obtained 

from the difference between the output of the network ( o(x)) and 

the desired output (yd) summed over all training pairs. The 



9 

mmrmum IS obtained by applying steepest descent to the following 

error measure 
1 E = 2 L(yd - o(x))T(yd - o(x)) 

xeU (II.2) 

where o(x) is the output of the network for input x and yd is the 

corresponding desired output. The error measure goes to zero as 

the network approximates the function yd more closely . 

.4 

.3 

.2 

.1 

y 0 

-.1 

-.2 

-.3 

-.4 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 

X 

2 

Figure 2.5. Response of Perceptron in Figure 2.3 as wul Is Varied 



10 

The method of steepest descent [5] uses only first derivatives, 

the gradient of the error measure. The gradient is a vector that 

points in the direction of growth of the function. If the direction 

opposite to the gradient (i.e. the steepest descent direction) IS 

taken, then the path used will decrease the function. 

The gradient gives the direction that decreases the function but 

does not give the magnitude of the step to be taken in that 

direction. The methods used to calculate the magnitude of the step 

distinguish the various procedures of steepest descent. Many steps 

must be taken in the direction of steepest descent, since one step 

may not be sufficient to reach the minimum of the function. 

Different methods can be used to select the step size. One of 

them is to use a fixed step size. If the step size is too small many 

iterations may be necessary to reach the minimum. If the step size 

is too large, oscillations around the minimum point may occur. 

Thus, it is better to use a variable step size. Large steps are taken 

in the first iterations. At each iteration the step size is reduced so 

that when the minimum is approached the step size is small. 

Figure 2.6 shows the quadratic function f(x) = x2 -3*x + 2 when 

variable and fixed step sizes are used to search for the minimum. 

In Figure 2.6 a) the step size is fixed at 0.1, a small value. The 

minimum is reached in 49 iterations of the algorithm. A large step 

size of 1.0 is used in Figure 2.6 b). The mmrmum IS never reached. 

Oscillations occur between the values of x = { 0, 3}. 



f 

1 1 

4 ~-----,-----,------,------,-----,,-----.------.------, 

3 

2 

0 E------r----~----~~~--~----~~----4------+----~ 
' 

-0.5 0 0.5 1.5 2.0 2.5 3.0 3.5 

X 

a) Fixed Step Size at 0.1 

0 0.5 1.0 1.5 2.5 3.0 3.5 
X 

b) Fixed Step Size at 1.0 

X 

c) Variable Step Size 

Figure 2.6. Minimum Search in a Quadratic Function 



12 

Finally, Figure 2.6 c) shows the effect of using a variable step 

size. Only 12 iterations of the algorithm are necessary to reach the 

minimum. The initial value of the step size was 1.0, while the final 

value was 0.086. At each iteration the value of the step size was 

reduced by 20%. 

The backpropagation algorithm is a steepest descent algorithm 

which is unique in the manner in which it computes the gradient. 

The training process consists of presenting the network with inputs 

x e U which are propagated forward through the network to 

produce an output o(x) at the last layer. This output is compared to 

desired outputs yd, obtaining an error whose derivative Is 

propagated backwards through the network in order to compute 

the gradient. This process is repeated until the errors are small. 

The following equations are part of one iteration of the 

backpropagation algorithm. Equation 11.3 determines the output of 

each neuron 
o. = f cr w .. o. + e.) 

J JI 1 J (II. 3 ) 

where Oj is the output of neuron j, ej is the offset of neuron j, Wji 

is the weight connecting neuron i to neuron j, and f is the 

nonlinearity. The nonlinearity used here is the logistic function 

shown in Figure 2.2 and expressed here again 

f (x) = 1 _ _! 
l+e-x 2 

The weights are adjusted by the formula 

L\Wji (n+l) = 11 Oj oi +a L\Wji (n) 

(11.4) 

(11.5) 



1 3 

where n denotes an iteration of the training algorithm, 11 is the 

learning rate, Bj is the error signal of neuron j, Bj oi is the gradient 

and a is the momentum factor. 

The momentum factor (a), together with the variable step siZe, 

helps reduce the number of iterations in the search for the 

minimum of the function, without introducing oscillations. It 

determines the percentage of past weight changes that will be 

incorporated in the new weight changes. It is similar to a low pass 

filter. If the error surface has a sharp curvature this may cause 

divergent oscillations in narrow valleys, so small step sizes are 

necessary. Furthermore, small step sizes lead to slow convergence, 

as shown above. Therefore, the momentum factor effectively 

increases the step size by filtering out these sharp curvatures. 

The error signal for an output neuron is calculated as 

Oj = (ydj - Oj) f(oj) 

where ydj is the desired output for neuron j and f(oj) is the 

derivative of the nonlinearity (logistic function) which is 

f(x) = (0.5 + f(x))*(O.S - f(x)) 

(11.6) 

(II. 7) 

For neurons which are not output neurons, the error signal 

depends on the error signal of neurons that it connects to. The 

derivative is then backpropagated according to the following 

formula 
o . = f' < o . ) 2: ok wk. 

J J k J (11.8) 

Figure 2. 7 shows the learning behavior using the 

backpropagation algorithm of a two layer network with one input, 

one output and 12 neurons in the first layer. The function being 



14 

approximated is a sme wave. The erratic learning occurs because of 

the randomness of the inputs presented to the network as the 

learning process proceeds. As one can see, the network's learning is 

slow. Around 60,000 iterations were necessary for the network to 

reach an error of 0.001. 

.01 

.001 

.0001 

~ g 1e-5 
G) 

"0 1e-6 
~ 
g. 1e-7 
Cll 

1e-8 

1e-9 

1e-10 

1 10 100 1000 10000 
iteration number 

Figure 2. 7. Network Learning Behavior for Standard 
Backpropagation 



The slow convergence of backpropagation occurs not only 

because of the randomness of the inputs but also because of the 

shape of the error surface, as will be illustrated next. 

1 5 

Figure 2. 8 shows the architecture of a 2 layer network along 

with its input/output characteristic. The following are the nominal 

weight values of the network 

1 
W 11 = 10 

1 e1 = -5 
1 

W 21 = 10 
1 e2 =5 

The nonlinearity used is 

f(x) = 1 
l+e-x 

X 

2 w11 = 1 
2 w12 = 1 

.25-2 

2 e1 = -1 

-1 0 
X 

1 

(II. 9) 

2 

Figure 2.8. Single Input/Single Output Two Layer Perceptron 
with its Input/Output Characteristic 



16 

An experiment was performed to observe how 

backpropagation is affected by initial condition values. For this 

experiment the desired output is the output of the nominal 

network, shown in Figure 2.8. In order for the error surface to be 

displayed graphically, only two weights were allowed to change at 

one time. Figure 2. 9 shows the different error surfaces obtained as 

different weights were selected to vary. 

Figure 2.9 a) shows the error surface as weights wul and w211 

are varied. Figure 2.9 b) has offsets e 11 and e21 varying. Figure 2.9 

c) varies offset e 11 and weight w11 1. While in Figure 2.9 d) weights 

w 111 and w112 are varying. 

As different initial conditions are selected, convergence to 

different final conditions occur, except for the case shown in Figure 

2.9 a), in which convergence to the global minimum occurs no 

matter what values are chosen for the initial conditions. 

The case shown in Figure 2.9 b) is illustrated in Figure 2.10. 

Convergence to three different points can occur. Two of these 

points, (5,-5) and (-5,5), result in the same network because of 

symmetry. The third point is a saddle point at (0,0) which only 

happens when the initial conditions are exactly identical. This is 

rare since initial conditions are normally random. 

Figure 2.11 shows convergence to a global minimum of the 

error surface of Figure 2.9 c). If the initial parameter values fall m 

the area of the plateau surrounding point (0,-15), the 

backpropagation algorithm will not converge to a solution. This 

plateau is very shallow so its derivative is very small, affecting the 

performance of the backpropagation algorithm. 



a) Error surface as w111 and 

wzll is varied 

c) Error surface as e 11 and w111 
is varied 

E 

10 10 

b) Error surface as ell and ezl 

is varied 

1 
wu 

d) Error surface as w111 and w11 2 
is varied 

Figure 2.9. Error Surfaces for Network m Figure 2.8 

3 

2 

E 

17 

18 

15 

12 

9 

6 

3 

0 



18 

Figure 2.10. ell and e21 Convergence for Different Initial Conditions 

-10 -5 0 5 10 
1 

Wu 

15 20 25 

Figure 2.11. e11 and wul Convergence to Global Minimum 

30 



19 

Figure 2.12 shows case of Figure 2. 9 d) for different initial 

conditions. One initial condition converges to the nominal value of 

the weight w11 1 = 10 and w11 2 = 1, but the other drifts away. This 

error surface shows two valleys, one local minimum where the 

second initial condition converges to and one global minimum - the 

nominal weight value. Error surfaces can look even more 

complicated than these and convergence to the global minimum Is 

not guaranteed. 

I I \ \ 

-10 -5 0 5 10 
1 wu 

15 20 25 30 

Figure 2.12. Wttl and w11 2 Convergence for Different Initial 
Conditions 



20 

The backpropagation algorithm is characterized by slow 

convergence because of the complex error surfaces, and because of 

its gradient descent nature. In the next chapter a number of 

modifications suggested by other authors are described and 

analyzed [6]. 



CHAPTER Ill 

MODIFICATIONS TO BACKPROPAGATION 

A number of methods have been suggested to accelerate the 

backpropagation algorithm [6]. Some of these methods are 

investigated in this chapter. 

The backpropagation training method consists of presenting at 

each iteration one input of the training set, obtaining the network's 

output and correcting the weight matrix based on this particular 

input. 

The magnitude of the correction IS proportional to the learning 

rate, 11 . A high 11 can result in faster convergence but it can also 

lead to oscillations. A small 11 will increase convergence time, but a 

decrease in the oscillations may occur. This sensitivity of 11 to the 

error surface is a major concern in selecting the value of 11 for the 

learning process. The error surface could be quite complex as was 

shown in the previous chapter. 

Methods for Acceleration 

Initially, four modifications to the standard backpropagation 

algorithm were considered. These four methods for acceleration 

are described below. 

2 1 



22 

First, the weights are updated only after a certain number of 

inputs have been presented to the network [ 6]. Although changes 

to the weights are calculated after each input is presented to the 

network, the overall change is only applied after all inputs are 

presented. A sum of the changes is used to update the weight 

vector. Loopmax is the number of inputs used to generate this 

sum. 

Second, the learning rate 11 is varied dynamically [6]. As 

explained above, 11 is very sensitive to the error surface. Thus, if a 

change in the weights results m a smaller error, the new weights 

are accepted and the value of 11 is increased by a factor tj). If the 

error increases, the new weights are rejected and the value of 11 is 

decreased by a factor of ~. If the error increased but is below some 

percentage, the new weights are accepted and the value of 11 is 

unchanged. Perover is the term used here to define this 

percentage. 

Third, the momentum factor a is also modified according to the 

dynamic variations of 11 [ 6]. The momentum factor weighs 

previous changes of the corrections. If the error decreases then the 

previous changes will aid convergence; the optimization direction is 

correct. But if the error increases, a change in optimization 

direction is necessary and a is set to zero. 

Finally, the normalization of the initial weight values can also 

help to increase the convergence rate of backpropagation [7]. The 

weights are normalized such that each neuron is assigned an 

interval of the input range. This will be described later. 



23 

In the next section these modifications will be used when a 

sinusoidal function is to be approximated. The effects of the 

parameters a., loop max, per over, j3, (j>, and the effect of the initial 

weight values are investigated. In addition, the effects of the 

number of neurons and the number of layers on the algorithm 

convergence and on network performance is analyzed. Also, the 

conjugate gradient method will be compared with modified 

backpropagation. 

Case Studies 

Next a senes of experiments which were performed on the 

perceptron neural network, in combination with the 

backpropagation learning algorithm, are delineated. First, the basic 

test setup is described, then two sets of tests are discussed. The 

first set of tests investigates parameters which affect the 

convergence of the learning algorithm. The second set of tests 

studies the effect of the numbers of neurons and layers on network 

performance. 

The purpose of these experiments is to gain additional insight 

into how algorithm parameters (e.g., the momentum factor, the 

learning rate) can be selected or modified to improve the 

performance of the network and/or convergence of the algorithm. 

For this study the performance of the network is measured by the 

sum of squared errors (see Equation 11.2). 



24 

Basic Test Setup 

The function to be approximated by the neural network in 

these experiments is a sine wave. The reason for selecting this 

function is two-fold: first, this nonlinear function is well known and 

results can directly be interpreted from Figure 2.4, and second, 

sinusoidal functions are typical of robotic applications. The exact 

function is given by 

1 1 . (1t ) y = '2+ 4 sm 2 nx 
-1< X< 1 (Ill. I) 

where: x - input 

y - output 

n - frequency parameter 

The parameter n adjusts the frequency of the sine wave and can be 

used to investigate certain properties and capabilities of the neural 

network under study. 

The backpropagation algorithm is known for its slow 

convergence time and the large computational power it requires. 

For this study the algorithm was implemented on the Intel iPSC/2 

5-dimensional hypercube computer, a distributed memory (loosely 

coupled) MIMD machine. This required that the algorithm be 

parallelized. The basic idea is to equally divide the number of 

inputs over the hypercube and have each node calculate the 

corresponding errors. These errors are sent to the root node where 

a sum is calculated, and weight updates are determined and 

a broadcast back to all other nodes. The weights on all the nodes are ,. 

identical. 



25 

The inputs presented to the network are random numbers 

uniformly distributed in the interval selected by the user (in the 

examples below the chosen interval was [-1,1]). A total of 

loopmax inputs are presented to the network before the errors are 

summed and the weight updates are calculated. 

Convergence Parameters 

It was shown above that several parameters influence the 

learning algorithm convergence. The effects of these parameters 

are described next. 

The network used in the following tests is a two-layer 

perceptron with one input, one output and 12 neurons in the first 

layer, i.e. a 1-12-1 configuration. The following parameters were 

fixed to the values indicated, unless otherwise specified: 

a = .99 

-loop max = 320 

perover = 1.15 

~ = 0.9 

cp = 1.11 

The first parameter tested was the momentum factor, a. This 

parameter controls the percentage of the previous change m the 

weights that shall be incorporated in the new weight values (see 

Equation II.5). The values tested were: 0.25, 0.5 and 0.99. Figure 

3.1 shows the performance of the network when a changes. The 

highest OJ gives the fastest convergence time, about 200 iterations. 

Even though a almost doubles from one value to the next, the 



26 

convergence rate does not improve in the same ratio. Also observe 

that higher values of a result in less noise in the sum of squared 

errors. 

.1 !! i 1\.: ~- i'\. 
I"""' 

I···· 

I···· 
..._ ,, 

\ ;-::. ~ \ 
\ \.... 

" ~~~:~ ~~ ~~., 1:::: 

.99 :\-= .5 1 ~~- :-~, ... 25 ' 

~ I l'fii .!J i 

.001 : \ 
~ 

l lll l ~ I 
1 .10 100 

iteration number 

Figure 3.1. Network Learning Behavior as a is Varied 

Figure 3.1 might suggest that even larger values for a might 

improve performance even more. Larger values were tested, 

however, and 0.99 was found to be optimal for this experiment. 

1000 



27 

The second parameter tested was loopmax - the number of 

inputs that are presented to the network before corrections are 

made to the weights. By altering loopmax the performance of the 

algorithm is modified, as shown in Figure 3.2. The numbers 

examined were: 80, 160 and 320. There was nothing special about 

these numbers, except for the fact that they are exactly divisible by 

the number of nodes of the hypercube, 16. The minimum 

convergence time was 200 iterations, given by the maximum value 

of loopmax. With this value less noise was introduced in the sum 

of squared errors. This was expected since the algorithm is 

effectively averaging over more inputs. One can also notice that the 

effect of doubling loopmax does not improve the performance in 

the same amount. Higher values for loopmax were also tested, and 

it was found that 320 was optimal for this experiment. 

The next parameter tested was perover. This parameter 

regulates when a., the momentum factor, is set to zero, as described 

above. It also controls when to reject the new set of weight values. 

Figure 3.3 shows the performance of the network when perover is 

1.01, 1.05 and 1.15. The highest value of perover gave faster 

convergence time, about 200 iterations. However, as perover is 

increased further more noise is found in the sum of squared errors. 

Therefore, the effect, with respect to noise, of increasing perover is 

the opposite of that in increasing a. or loopmax, i.e. the noise 

increases while in the others the noise decreases. Values of 

perover larger than 1.15 were tested but did not improve 

performance. 



28 

10 100 1000 
iteration number 

Figure 3.2. Network Learning Behavior as loopmax is Varied 

. 1 
i ~ ~ ~ I 1 ~ 

~ ..... --'\. 
, ...... , 

............... .............. , 
~ 

.............. , l l l C""' N \ l ~ l l l l 
j ! ! ! T .\.... ! ! ~ l ! l .............. , 

i i ~ ~ a...~ .IIIla ..... : .. 
::::::::::::::: :1.01 •··· 

.,. .... .... ............... 
.L. .:-... l.05 ....... i ......... , , ' ........ , .... , 
\ \ ...... \ ... r H·· 

............. 1 

I I ~ 11 ..... ..!. ....... ..!. I I I :jus \ -\ \J ; ; 1 
. . ..... ...... ~ ~ ... l..) ...... 
::::::::::::::: ..... 

.001 

............... •··· ~·t·t·················· 

""" ............ ...... ~ ..... ~ ..... ······!· ......... ! .. ····· ~····+ , ... ·+· : ~ ............. ; •.... u: ; 
·1···t·· .. ! .. ···············!·······!······-!- r ........... 

L .. +··+ ~ ~ ......... 

l ! ll l ···········r····· l ~ l ················r······T···l ! Ill 
1 10 

iteration number 
100 1000 

Figure 3.3. Network Learning Behavior as perover Is Varied 



29 

The next parameter tested was ~, the factor by which 11 is 

decreased when performance is poor. The values tested were: 0.8, 

0.9 and 0.99. Figure 3.4 illustrates the performance of the network 

as ~ varies. The best performance was obtained for ~ = 0.8. Other 

values of ~ were tested but convergence was not improved . 

. 1 f:::····· ·r:: ...... ~··t··t·t· 
f··· ~···~··t-t· 

r····· -r·· 
~-

l . .l 
i i i i i -.... 

r········· 

'""' ~ 1~ J1 
>··· 

::? LJ. ... ',4}1,_ .~ 
f········· "!!I 'lf 

r········ · ... 99 
, ......... ~ 

, .. , -l : : Iii.. 11 
; i , .... ~ ~~ 

i ! l ~~ 
~It w . ~ l . 001 

.......... ..... 
::~ .L 

.8 ...... 
~ 

i i ~ 

l i i i I ! 
1 10 100 1000 

iteration number 

Figure 3.4. Network Learning Behavior as ~ is Varied 

When performance is good the parameter cp increases the value 

of 11· Figure 3.5 shows how the performance of the network 

changes for values of cp of 1.05, 1.11 and 1.20. The value of 1.05 



gave faster convergence. Other values of cp were tested and 1.05 

was found to produce best results . 

. 1 .::::. . ... 
~:: 

~ 

~ ; 
--.... l ~ l ~ ~ ! ! ; ! : ; ~ ~ ! -.. 

30 

1 ~,~ ~ ; A. & .. L .. Ll.J1. ~r::: :::±: -·~ 6..-. .. h 
: : ~r 'V 

1:::: . ,;,;~. 1.20 ::::::::: 
1 .... 

:"' , ' l 'IU ~ 
\l.lW 

l L'l. \1 

i!!! ! ~ ! f f ! ! \\. '1 

I j ! ! 1 1 ! ! ,. ~-~ 
r .. 

....... ~ ......... 1.11 .001 ....... , 
'f' I ' . . .. ; 1.05 !"' !l' • 0 •• . . . . ........................................... . . .. 

~ • 0 •• 
0 • 0 • . . .. ........................................... 
0 • • • 

~ l 0 • 0 0 
I 0 0 I 

~ . . .. . . . . . . . . ........................................... 

I I l ~ 
• 0 0 • 

dj 
~ I 

. . . . . . . . 
• 0 0 • 

j j j j ~ ~ ~ ~ ~ ~ ~ ~ ~ 
1 10 100 1000 

iteration number 

Figure 3.5. Network Learning Behavior as cp 1s Varied 

The Numbers of Neurons and Layers 

The above tests help in better choosing the mam parameters 

for training the network. With these parameters set appropriately, 

the next step is to see how the frequency of the sine wave (the last 

parameter) affects the performance of a particular network. The 



configuration used was a two layer network with one input, one 

output and three neurons in the first layer, i.e. a 1-3-1 network. 

3 1 

Figure 3.6 shows the approximation given by the neural 

network after it was trained for 10000 iterations when different 

frequencies are selected for the sine wave. The frequencies chosen 

were multiples of 1t (0.57t, 1t, 27t and 47t) giving the frequency 

parameter, n, the values: 1, 2, 4 and 8 respectively. As can be seen 

for n equal to 1 and 2, the approximation matches the desired sme 

wave very well. For n equal to 4, the network is reaching its 

maximum capability. As was discussed above (see Figure 2.4), with 

a 1-3-1 network a limited number of inflection points can be 

obtained. Therefore, for n equal to 8, the figure shows that the 

network can only match a part of the curve. Even though there are 

many other solutions which the algorithm might have converged to, 

they would not match the desired sine wave better than the one 

presented here. 

The 1-3-1 network could not approximate the higher 

frequency sine wave, unless more neurons were added in the 

second layer. Next a case will be shown where a 1-3-1 network 

does not converge, but a network with more neurons does 

converge. The network used was a two layer network with one 

input, one output and 2, 3, 4 or 5 neurons in the first layer, i.e. 

configurations 1-2-1, 1-3-1, 1-4-1 and 1-5-1 respectively. Figure 

3.7 shows the approximation given by the networks 1-2-1, 1-3-1, 

1-4-1 and 1-5-1 after they were trained for 10000 iterations for a 

fixed frequency. 



32 

0.8 0.8 

0.7 0.7 

0.6 0.6 

0.5 0.5 

0.4 0.4 

0.3 n=1 0.3 n=2 

0.2 0.2 
-1 0 1 -1 0 1 

0.8 0.8 

0.7 0.7 ~ " n J\ 

" 0.6 0.6 

0.5 0.5 

0.4 0.4 

0.3 0.3 ~ 
n=4 v v v v n=S 

0.2 0.2 
-1 0 1 -1 0 1 

Figure 3.6. Mapping Capabilities of a 1-3-1 Network 

The 1-2-1 network has a maximum of 3 inflection points, and it 

cannot match the desired sine wave. As the number of neurons, 

and therefore the number of inflection points, increases the 

approximation improves. Therefore, if the frequency increases, the 

number of neurons must also increase, to achieve an accurate 

approximation. 



0.8 -r-------------, 
0.7 

0.6 

0.5 

0.4 

0.3 1-2-1 

0.2 ...L---L--.....__.....__.....__..._____. 

-1 0 1 

0.8 ,------------~ 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 ..__...~.-_.___----J_......a.. _ _.__ ..... 

-1 0 1 

33 

0.8,-------------, 

0.7 

0.6 

0.5 

0.4 

0.3 1-3-1 

0.2 -'---..L-.----J'------1-......a..-_.__ ..... 

-1 0 1 

0.8 -r--------------. 
0.7 

0.6 

0.5 

0.4 

0.3 1-5-1 

0.2 _.___-'--_ ........ _-'--_ ........ _.....____, 

-1 0 1 

Figure 3.7. Network Mapping Capabilities 

So far all of the cases shown here converged to the best 

possible performance of the network. Hecht-Nielson [3] proves that 

a two layer network can approximate any square integrable 

function, if there are enough neurons. But, he also mentions that 

sometimes the necessary weights cannot be determined through 

any training algorithm. The following example will illustrate the 



34 

sensitivity of the backpropagation algorithm. One network will be 

tested with two different choices for the initial weights. In one case 

the algorithm will converge to an optimum solution. In the other 

case the algorithm will converge to a suboptimum solution. 

Initial Conditions 

In this example, the network was a three-layer network with 

one input, one output, six neurons in the first layer and three 

neurons in the second layer (i.e., a 1-6-3-1 configuration). Two 

different random initial weights are given to the algorithm, and the 

results of the convergence process are shown in Figures 3.8 and 3.9. 

The mappings given by the initial weights are labeled 0. 

Succeeding numbers indicate network mappings in later iterations. 

In each case, the curve labeled 4 is the result of 2000 iterations. A 

total of 10000 iterations was performed, but little further change 

was seen in the shape of the functions (although, the case 

illustrated in Figure 3.8 did come to match the sine wave exactly). 

As one can see from these figures, the mappings given by the 

different initial weights evolved to very different final results. It 

was found that as the numbers of layers and neurons increased, the 

likelihood of convergence to a local minimum also increased 

significantly. In some cases it was necessary to try many different 

initial conditions before a satisfactory result was obtained, 

especially if more than two layers were used. Even when a neural 

network of a specified architecture does exist, which can accurately 



35 

0.8-

0.6-

0.4 -

0.2-

-1 0 1 

Figure 3.8. 1-6-3-1 Network Convergence to Global Minimum 

0 

0.8 

-1 0 1 

Figure 3.9. 1-6-3-1 Network Convergence to Local Minimum 



36 

approximate a gtven function, it may be difficult, or impossible, to 

determine the weights which can produce the correct mapping. 

Initial Normalization 

To reduce training time, normalization of the initial weight 

values is helpful [7]. The method consists of assigning overlapping 

intervals of the input range (active region) of the function being 

approximated to each hidden neuron in the network. This is done 

by first adjusting the magnitude of the weight vectors and then 

determining the offset so that the center of each sigmoid will fall m 

the active region. 

For example, let the function being approximated be 

g(x)=sin(x) for x e [-1,1]. The length of the active region is 2. If the 

network configuration is 1-2-1, then the number of inputs, n, is 1; 

the number of hidden units, K:, is 2 and the number of outputs is 1. 

The sigmoid for each hidden neuron is centered at -9i/wi (ei -

offset and wi - weight from input to neuron i) and should be 

approximately linear over some subset of the active region. Since 

the active region should be distributed evenly among the hidden 

neurons, each subset should be of length 2/K:. 

The sigmoid is approximately linear in the interval -1 to 1. For 

the case of one input, the linear region for a neuron would be 

-1 < Wi X + 9i < 1 

or 

The length of this interval is 2/wi. Since each neuron should be 

linear over an interval of length 2/K: this would require wi = K:. To 



37 

have overlapping intervals choose wi = 0.7 K, for example. The 

intervals for each neuron are then spaced randomly throughout the 

active region by selecting each ei randomly in the interval [ -wi, wi]. 

In the case of n inputs, wi and x are vectors of dimension n. 

The active region falls in a hypercube in 9\n. In the case of only 

one input this hypercube was in 9\ , a line. 

The direction of each wi determines the direction of the 

sigmoid for each neuron in the hidden layer. In the case of only 

one input all w i' s were in the same direction. 

The magnitude of each wi is proportional to the size of the 

interval in each direction. Since each input ranges from -1 to 1, the 

length of each interval would be 2/l, where I is the number of 

intervals per input. Let the magnitude of the weight vector of 

neuron i in layer k be expressed as 

lw~~2 = I,(w~ )2 
1 j lJ 

(111.2) 

The magnitude of the weight vector would be adjusted such that 

lwfi=I 
Since there are n inputs, there are a total of Jn intervals in the 

hyperplane in 9\ n. Each hidden neuron is responsible for one 

interval so, 

Jn = K or I= l\.1/n 

where K is the number of hidden neurons. Therefore, 

lwfl = Kljn 
(III. 3) 

In the case of only one input, wik = K and there are K intervals in 

one direction, one for each hidden neuron. These sigmoids are then 



38 

distributed randomly in the hyperplane by choosing the offset as a 

random number in the interval [ -lwikl tlwikl]. 

Initially the weights are assigned random numbers from -1 to 

1. The normalization is done by multiplying each weight Wijk by 

Kl/n~ 

/ plwfl (III.4) 

where p is the lower of the maximum of the n input values 

(p=min(max(xt)tmax(x2)t-••tmax(x0 )). Then the input range (active 

region) is distributed among the hidden neurons. 

During training the weights are free to change according to the 

learning scheme presented above. Figure 3.10 shows the improved 

performance of the algorithm when normalization is done. 

Conjugate Gradient 

Another well known algorithm of steepest descent nature is the 

conjugate gradient method [5t8]. In this method steps are taken in 

conjugate directions instead of in the direction of steepest descent. 

The initial direction is selected arbitrarily t e.g. the gradient 

direction. The next direction is the conjugate of the previous 

directiont 1.e. 

where: p 0 - the new direction 

p 0 - the previous direction 



39 

.1 

.01 

.001 

.0001 

iteration number 

Figure 3.10. Network Learning Behavior with Weight Normalization 

V 2 E ( w 0 ) - the Hessian of the performance index 

evaluated at w 0 

w 0 - the weight values 

One characteristic of conjugate gradient methods is the 

quadratic termination, i.e. if this method is used to minimize a 

quadratic objective function with n independent variables then 

only n steps are required to obtain the minimum if one exists. 

One of the many conjugate gradient methods is Fletcher-Reeves 

[9]. A property of the Fletcher-Reeves conjugate gradient method is 

that the sequence of search directions are linear combinations of 

the current steepest descent direction and previous search 



40 

directions. The new search direction is computed by usmg only the 

current gradient direction and the gradient direction obtained in 

the previous iteration. So, the new search direction Pn is 

determined as 

gradTgrad 
p =grad +p n n 

n n o gradT grad 
0 0 

where: grad0 - current gradient direction 

grad0 - previous gradient direction 

(Ill. 5) 

The gradient directions are obtained through backpropagation (see 

Equation 11.5), but without using the momentum term. 

At each iteration a search is performed to locate the new 

weight values, wn, as the minimum of the performance index in 

that direction. The golden section search is performed here. First, 

an interval is obtained where a minimum of the performance index 

lies, say [a,b] where a = w0 and b = w0 • Next, this interval is split 

into 3 segments. Points c and d are located on the interval between 

a and b such that c = a + (1-t)(b-a) and d = b - (1-t)(b-a) where t = 
0.62. Finally, the next interval is computed as follows 

if E(c) < E(d) then 

b = d; d = c; c = a + (1-t)(b-a) 

else 

a = c; c = d; d = b - (1-t)(b-a) 

end 

repeat until b - a < E, where E is a small constant. 

This IS illustrated in Figure 3 .11. 



41 

The mam property of this search is that the ratio of the whole 

interval to the larger segment is the same as the ratio of the larger 

segment to the smaller one. Also, the number of iterations need not 

be determined in advance, a termination criterion stops the search 

process at any iteration. 

E 

.62(bt-at) 

X 
at • cl 

az cz ~ 

Js(b2 -a!) 
Figure 3.11. Golden Section Search 

In Figure 3.12 the performance of the conjugate gradient is 

compared with that of modified backpropagation for the 1-12-1 

network. Conjugate gradient takes more computing time than 

backpropagation for each iteration, but it takes fewer iterations to 

converge. Overall, it appears that the conjugate gradient method 



42 

often takes less computer time, on a serial computer, than does 

backpropagation, even when acceleration methods are employed . 

. . . :. : : :: 

.1 

.01 

m 
'0 

~ 
~ .001 
'S 

~ 

.0001 

1 

Figure 3.12. 

10 100 

iteration number 

Network Learning Behavior for Conjugate 
Gradient Method 



CHAPTER IV 

CONTROL APPLICATIONS 

The multilayer perceptron, with the backpropagation learning 

algorithm, is the most commonly proposed neural network 

architecture for control systems. This chapter will begin with a 

simple example of the use of a perceptron to approximate a linear 

control law. Following this introduction, three more complex 

techniques for implementing control laws with feedforward neural 

networks will be described. 

Neural Networks in Control 

Consider a system described by the following ordinary 

differential equation 

x = g(x, u) (IV.l) 

where x is the state of the system and u is the system input. The 

goal is to drive the plant from an initial state x0 to a final desired 

state xd. Measurements of the states of the plant are available and 

are used to determine the control input according to the feedback 

equation 

u = h(x) (IV.2) 

The first step in the standard design of a linear controller for a 

nonlinear system is the linearization of the plant around an 

43 



44 

operating point x0 • Then, the controller is designed for the 

linearized model. This controller is finally used with the nonlinear 

system. Pole positioning is one of the many methods used in 

designing a controller [10]. 

Pole positioning consists of positioning the poles of the closed 

loop system at desired locations by allowing the feedback input to 

be a linear combination of the states x 

u = -k*x 

If the linearized model of the system 1s 

X= AL X+ BL u 

(IV.3) 

(IV.4) 

then the eigenvalues of the closed loop system (AL - BL *k) are the 

new pole locations. 

An example of a simple nonlinear system is the inverted 

pendulum shown in Figure 4.1. The cart-pendulum system runs m 

a horizontal plane with friction and is controlled by applying to the 

cart the horizontal force u. There is no friction at the pivot point. 

The equations of the system are 
.. . 

Ms=u-J.Ls 
.. g 1 .. 
~- - sin ~ + - s cos ~ = 0 

A A (IV .5) 

A= J +mL2 

where m L , M - mass of the cart, 1.1 - friction coefficient, L 

- distance from pivot to center of gravity of the pendulum, g -

acceleration due to gravity, m - mass of the pendulum, u - force 

applied to the cart, J - moment of inertia of the pendulum, s - first 

derivative with respect to time, s - second derivative with respect 



to time. The goal is to balance the pendulum (s,;=O) and take the 

cart to the origin (s=O). 

U---1~ 

Figure 4.1. Inverted Pendulum System 

Consider a linear controller g1ven by 

45 

u = k1 * cp + k2 * dcp/dt + k3 * s + k4 * ds/dt (IV .6) 

where k1 through k4 are constants. Figure 4.2 illustrates the 

system response for a particular linear controller (k1 = 65.65, k2 = 

11, k3 = -72.6, k4 = -21.27) when the pendulum is initially tilted by 

30 degrees. This controller was designed for the linearized system 

about s,;=O and such that all closed loop poles were at location -3. 



46 

4~----------------------------------------------~ 

3 

2 

1 

-1 

-2 

/" 
( : 

3 

\ 

6 9 12 15 18 21 24 27 

Figure 4.2. Response of System with Linear Controller 

The linear controller can be seen as a sum of four linear 

functions fb fz, f3, f4 

30 

u = f1 (s, ds/dt, cp, dcp/dt) + fz (s, ds/dt, cp, dcp/dt) + 

+ f3 (s, ds/dt, cp, dcp/dt) + f4 (s, ds/dt, cp, dcp/dt) (IV.7) 

where: f1 (s, ds/dt, «!>, dcp/dt) = k1 s 

fz (s, ds/dt, q,, d$/dt) = kz ds/dt 

f3 (s, ds/dt, lj>, dij>/dt) = k3 ~ 

f4 (s, ds/dt, cp, dcp/dt) = k4 d~/dt 

Therefore, each function fi is a linear function of one of the state 

variables with slope ki. 

The backpropagation algorithm was used to train a three layer 

neural network to reproduce the linear control law [ 11]. The 



47 

network used is shown in Figure 4.3. It has four inputs (the four 

state variables), 16 neurons in the input layer, four neurons in the 

hidden layer and one output neuron (control input). All neurons 

have the sigmoid nonlinearity 
1 

f(x)=--
l+e-x 

The output of the network is scaled to obtain the force applied to 

the cart ranging between specified limits, -F to F. 

state 
variables 

~-xl 

~-x2 

s=x3 

S=x4 

Input 
Layer 

( 16 neurons) 

Middle 
Layer 

Output 
Layer 

Figure 4.3. Multilayer Neural Network Controller 



48 

Figure 4.4 illustrates how this network was trained to 

reproduce the linear controller. Inputs were random in a range 

compatible to those of the operation of the system. The neural 

network is attempting to approximate the mapping performed by 

the linear controller. It is to match the functions f1, f2, f3, f4 as 

closely as possible. 

s ... 
RANDOM ds/dt -... LINEAR Force to 
NUMBER c!> .. 

Cart SCALING 1-

GENERATOR dll/dt - CONTROLLER -- , 

\ ) ... h 
... NEURAL .. 

NETWORK -... -
Weight A_ BACK-

Adjustment PROPAGATION --
ALGORITHM Erro 

Figure 4.4. Training Mode 

In order to illustrate how well the neural network can 

rs 

approximate the linear controller it is useful to plot the output of 

the network as each one of the input variables is varied (the others 

are set to zero), and compare that with a plot of the linear 



49 

controller. Figures 4.5 and 4.6 show the output of the linear 

controller (line 1) and the output of the neural network controller 

(line 2) as the input is varied from -4 to +4. Figure 4.5 was 

obtained after 300 iterations of the backpropagation algorithm 

were performed while Figure 4.6 was made after 600 iterations. 

Convergence of the algorithm is observed by comparing these two 

figures. 

Figure 4. 7 shows the response of the system when the neural 

network is used to implement the control law. A comparison with 

Figure 4.2 verifies that the performance of the neural network is 

similar to that of the linear controller. 

A linear combiner (single neuron) would also learn a linear 

control law. Figure 4.8 shows a single neuron network that 

replaced the three layer neural network when the same training 

procedure was performed. 

A plot of the output of the linear controller (line 1) and the 

output of the neural network (line 2) as each one of the state 

variables is varied from -4 to +4 is shown in Figure 4. 9. This figure 

was made after 50 iterations of the backpropagation algorithm. A 

better performance is obtained compared to Figure 4.6. Also, 

convergence time was reduced because the neural network 

structure was simpler. 

Figure 4.10 shows the response of the system when the 

pendulum is initially tilted by 30 degrees. This controller (single 

neuron) approximates better the linear controller than the three 

layer neural network because of its linearity. For weights of small 

magnitude the neural network operates in the linear region of the 



50 

sigmoid. A companson with Figure 4.2 shows that the performance 

is similar to that of the linear controller. 

fi (s, ds/dt, q>, dq>/dt) = ki s f2 (s, ds/dt, (\>, dq>/dt) = k2 ds/dt 
.2 .1 

,.~ .. -·- .08 .,;~-·--·--·-·-.,, 

.15 ~·/'' /2 .1 
2 .06 

~/ 
/ .04 

.05 
1 .02 1 

0 
0 

-.05 -.02 
-.1 -.04 
-.15 -.06 
-.2 -.08 

-.25 -.1 
4 -3 -2 -1 0 1 2 3 4 4 -3 -2 -1 0 1 2 3 4 

s ds/dt 

f3 (s, ds/dt, {\>, dq>/dt) = k3 S?S f4 (s, ds/dt, {\>, dq>/dt) = k4 ds;;/dt 
5 A 

.4 

.3 

.2 

.1 

0 

-.1 

-.2 

-.3 

1 

1 

.2 

.1 

0 

-.1 

-.2 

-.3 
............. 

,_,. •• ,_J' 

,•' 2 

-----·--------~ i' -.4 Lw...Ju...J..J.-'-'-l...l-J....w'-I....W.-L.L..L.l...J....L.w....LJ.-'-'-'-.l...J...!....w....LJ....J....i...J.. -.4 
4 -3 -2 -1 0 

¢ 
1 2 3 4 4 -3 -2 -1 0 

d¢/dt 
1 2 3 

Figure 4.5. Response of the Linear Controller and the Neural 
Network as Each Input is Varied (After 300 
Iterations) 

4 



.04 

.03 

.02 

.01 

0 

-.01 

-.02 

-.03 

5 1 

fl (s, ds/dt, <j>, d<j>/dt) = kl s f2 (s, ds/dt, <j>, d<j>/dt) = k2 ds/dt 

_..,.,...,-·-· 

~w ~~ 
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 

s ds/dt 

f3 (s, ds/dt, <j>, d<j>/dt) = k3 !iS f4 (s, ds/dt, <1>, d<j>/dt) = k4 d!iS/dt 
.4r-------r---------. .16 

.3 

.2 

.1 

0 

-.1 

-.2 

-.3 

/ 

,.__.. 
;_,./ 2 ' 

.13 
,. .. ~· 

2 /<""' .1 

/,/ 1 .07 
/ .04 

.01 

/ -.02 

-.05 

-.08 
-.11 

-.4 l...J....I....I...J..J....L..&....L.J...I..I...J..&...J.I...J....J...J-'-"l...J....I....I...W.......L..J....L..JL.L..I...l..W......J..I...L.J -.14 
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 

fi} dfl}/dt 

Figure 4.6. Response of the Linear Controller and the Neural 
Network as Each Input is Varied (After 600 
Iterations) 



52 

3~----------------------------------------------~ 
('"'\ 

2 r ~ 
dt 

\-----
1 

-1 

-2 

~~----~--~~--------~~._~----~--~~~--~~ 0 3 6 9 12 15 18 21 24 27 30 

Figure 4.7. Pendulum System Response With a 3-Layer Neural 
Network Controller 

f2S xl 

~ x2 

s x3 . 
s x4 

Figure 4.8. Single Neuron Controller 



53 

fl (s, ds/dt, $, d<j)/dt) = kl s f2 (s, ds/dt, <j), d<j)/dt) = k2 ds/dt 

.04 .06 

.03 

.02 

.01 

0 

-.01 

-.02 /.~·· 

-.03 " 1 

h .. -·· 

.04 

.02 

, .. #'' 
,/}'' 

0 

-.02 

-.04 

-.04 -.06 ..................................................................................................................................... ....... 
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 

s ds/dt 

f3 (s, ds/dt, $, d<j)/dt) = k3 f5 f4 (s, ds/dt, <j), d<j)/dt) = k4 df5/dt 
.4 r------r-------- .1 

.3 / .08 

2 ~· : 
.1 6 

.02 
0 0 

-.1 -.02 

-.2 -.04 
-.06 

-.3 .. i 
-.08 

-.4 L...J....I...JU....U. ...................................... ..u...J...J.....I..L...I...J..I....L..L..J...L......................................... -.1 
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 

~ d~/dt 

Figure 4.9. Response of the Linear Controller and the Neural 
Network as Each Input is Varied (After 50 
Iterations) 



54 

4~------------------------------------------------~ 

3 

2 

1 

---~-----
0~~~--~~~~--~~·-~·---~~~~==--~-~~~~~~-~----~ ___ ._. ___ _..-·--·.---· 

__..J-·-·_,. . ..--
............. .._ ___ ,,_.,...,-.~···~· 

-1 

-2 

-3 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 3 6 9 12 15 18 21 24 27 30 

Figure 4.10. Pendulum System Response With a Single Layer 
Neural Network Controller 

This illustrates, in a simple way, how neural networks can be 

implemented in control systems. The configuration of the neural 

network will depend largely on the function which it 1s 

approximating as was shown here and in Chapter II. 

For a nonlinear plant the design of a controller is very time 

consuming and a substantial amount of work in the design is 

necessary. In the next section, neural networks are used as 

controllers when there is little or no knowledge of a suitable 

controller for the system under study. Two methods used to train 

these controllers are explained. Both methods have plant 

identification by a neural network as part of the algorithm. 



55 

Training Methods 

Two training methods for control applications are going to be 

fully discussed in this section: Widrow's [12,13] and Narendra's 

[14,15]. All methods use a neural network for plant identification. 

Before discussing each method, plant identification is explained. 

Before training the controller, a neural network is trained to 

imitate the plant. Since the true plant is positioned between the 

neural network controller and the measurable error, indirect 

methods of training have to be used [15]. Therefore, plant 

identification is done first. The plant neural network will be used 

to propagate back the measurable error to train the controller, 

backpropagation cannot be done through the true plant. Thus, in 

the training of the controller, the true plant and the neural network 

model of the plant are both used. 

Figure 4.11 illustrates how the neural network model of the 

plant is identified. The states of the plant are assumed to be 

observable without noise [13]. The number of inputs of the neural 

network is the same as the number of states plus the number of 

control inputs to the plant. The number of outputs is equal to the 

number of states of the plant. 

The neural network inputs are generated randomly with a 

uniform distribution. At each iteration of the learning algorithm, 

plant inputs uk and states xk are presented to the neural network 

and the plant. The plant gives the values of the next state x *k + 1 

which is the desired output of the neural network. The neural 



56 

network predicts the next state xk+l, and the error (x*k+l - xk+l) is 

backpropagated to adjust the weights of the neural network model 

of the plant. 

Input 
and 

Plant 
Error 

states ....__-----~f·l&rjl~-----
weight 

adJ·ustments · · · · · · · · · · · · · ~ · · '-- .. ackpropagatlon 
: : : Al:g~f:i~ : : : 

Figure 4.11. Plant Identification 

When the neural network model of the plant is sufficiently 

accurate, the next step is to use this network in training the neural 

network controller. The neural network model of the plant will be 

used to backpropagate the measurable error so the weights of the 

controller can be adjusted. 



57 

Widrow's Training Method 

In training the controller, the neural network model of the 

plant which now accurately simulates the plant dynamics, is used. 

The controller will be trained to give the correct input u that will 

drive the plant from an initial state x0 to a final desired state xd. 

The training process determines the weight values of the 

controller such that the performance measure J is minimized. 
- 1 T J--2~(xd-xNi) (xd-xNi) 

1 (1".8) 

where XNi is the final state of the plant after N time steps for each 

initial state i. The sum is obtained over a set of initial states x0 • 

Figure 4.12 shows the controller/plant box used in Figure 4.13 

which illustrates the training process of the controller. The neural 

network controller has as many inputs as there are states and as 

many outputs as there are control inputs u to the true plant. 

r----------------------~-~--------, xk+l 
Plant 

xk J\~~~~\1 u 
-

,.--..,..---tA 

-----+-+-~ ··:::: Network >-.!. 
::::Controller ::. 
:::::::::::::::{::::::::::::{:::::::::::::::::::::::::::::?:::::::::::::::::::::: ::- ........... · .. ·.····.······················.··•··.·.· .....•. ·.· xk 1 •··· ~y].lra.l t ------------. NetWork 

Figure 4.12. Controller/Plant Box 

... 



"""""'''"·'"! ' ' 
xo ControllerA x 1 ~ 

----·~ ~.--~ Plant : 
' ' ' 
' 

::: ::Back ·r.o :a· atiori: AI oritfuri::::::: .......... P. _p_g_ ....... g_ ............ . 

Figure 4.13. Neural Network Controller 

58 

desired 
state 

xd 

The plant and the neural network model of the plant are used 

m training the controller. The plant is used to determine the output 

x N after N time steps. The neural network is used to backpropagate 

the error (xd - XN) to adjust the weights of the controller. 

The controller, initially with random weights, gives an output 

u 0 to the plant. The plant moves to the next state x1. This process 

continues for N time steps when the plant finally reaches state xN. 

The designer needs to determine the number of steps N. 

To train the controller directly, the error at the output of the 

controller needs to be known so it can be backpropagated. 

Unfortunately, the desired control input to the plant is not known, 

so this error cannot be determined. Thus, indirect methods of 

training are used. The error that is known is at the output of the 

plant after N time steps. Since the neural network model of the 



59 

plant is also used, this error can be backpropagated through the 

neural network model of the plant and the controller to adjust the 

weights of the controller. The weights of the neural network model 

of the plant are fixed throughout the learning process of the 

controller. 

The error Is then backpropagated through the N steps (see 

Figure 4.13). The weight changes due to each step are calculated 

and added. The original weights of the controller are then updated. 

Another approach for training the controller is discussed below. 

Narendra's Training Method 

The training method proposed by Narendra [14,15] begins with 

the procedure of plant identification, as in Widrow's method. The 

procedure adopted in training the controller is model reference 

adaptive control. In model reference control the output of the plant 

follows the output of a reference model. Figure 4.14 shows how 

this can be accomplished using a neural network model for the 

plant and a neural network for the controller. The neural network 

model of the plant and the controller receive the actual outputs of 

the true plant as feedback signals. The reference input is a 

bounded signal. The plant together with the controller should 

behave like the reference model. 

The algorithm used to train the controller is backpropagation. 

The error between the reference model and the plant is 

backpropagated through the neural network model of the plant. It 



60 

is assumed that the order of the plant is known and the reference 

model has the same relative degree as that of the plant. 

r 

CONTROLLER 

IDENTIFI 
M 

NETWORK) 

(NEURAL 1--1--....... . 

NETWORK) .......... .........,........,.......,.. 

y 

Figure 4.14. Controller Training Mode 

e· 1 

The plant is assumed to belong to one of the following models 

model (i) 

y(k+ 1) = I, ai y(k-i) + g[u(k), ... , u(k-m)] 

model (ii) 

y(k+l) = f[y(k), ... , y(k-n)] + I, Bj u(k-j) 



model (iii) 

y(k+l) = f[y(k), ... , y(k-n)] + g[u(k), ... ,u{k-m)] 

model (iv) 

y(k+l) = f[y(k), ... , y(k-n),u(k), ... , u(k-m)] 

where f and g are differentiable functions and m ::;; n. The plant 

and reference model are assumed to be BIBO stable. 

61 

Depending on the available knowledge of the plant, different 

steps in the training procedure are taken. For example, a plant 

described by model (iii) was identified successfully by two neural 

networks, one for f(.) and one for g(.), Nr and N8 respectively. So, 

y(k+l) = f[y(k), ... , y(k-n)] + g[u(k)] 

= Nr[y(k), ... , y(k-n)] + N8[u(k)] 

The reference model is 

(IV.9) 

Ym(k+l) = Li B(i) Ym(i) + r(k) (IV.lO) 

In model reference control the output of the plant IS equal to the 

output of the reference model, therefore 

y(k+l) = Ym(k+l) (IV.ll) 

Substituting Equations IV.9 and IV.lO in Equation IV.ll gives 

Nr[y(k), ... , y(k-n)] + N8[u(k)] = Li B(i) Ym(i) + r(k) 

Rearranging 

N 8[u(k)] = -Nf[y(k), ... , y(k-n)] + Li B(i) Ym(i) + r(k) (IV.12) 

If Nc is the neural network obtained such that Nc[N 8(u)] = u, then 

N g composed with Nc is an identity mapping. Applying Nc to both 

sides of Equation IV.12 one obtains 

Nc[N8[u(k)]] = Nc[-Nr[y(k), ... , y(k-n)] + Li B(i) Ym(i) + r(k)] 

Therefore, 

u(k) = Nc[ -Nr[y(k), ... , y(k-n)] + Ym(k+ 1)] 



62 

Figure 4.15 illustrates how this controller is implemented where z-1 

represent delays. For a numerical example of this procedure, see 

[14]. 

r Reference Y m 
----------------~ ~----~--------------~ Model 

·. •, •, 

f 

Figure 4.15. Neural Network Controller with Nonlinear Plant 

Widrow's method assumes that there is no knowledge of the 

plant, therefore in Narendra's classification the plant is of class (iv) 

(a general nonlinear system). In the next Chapters these two 

methods will be used to determine a controller for a simplified 

model of the Extended Range Gun. 



CHAPfERV 

WID ROW'S 1\ffiTHOD APPLIED TO 

THE EXIENDED RANGE GUN 

The Extended Range Gun (ERG) is a flexible weapon with a large 

unbalance. Figure 5.1 shows a schematic of the ERG. The control of 

this weapon is made difficult because of its flexibility and its 

distributed nature. Its vibrational modes are numerous, densely 

packed, and relatively low frequency. The control problem is 

further complicated by the need to design a controller which has 

low enough order so that it can be implemented on an onboard 

computer and yet of high enough order to provide accurate control. 

Azimuth 
cp 

Elevation 
9 

Figure 5.1. Schematic of the Extended Range Gun 

63 



64 

The simplest model of the ERG is shown in Figure 5.2. It 

represents the ERG as a completely rigid system. This model will be 

used in this chapter and the following chapter to illustrate the 

control design process for neural network controllers. In the next 

stage of this research more complex models will be used. In these 

more complex models, the elastic modes of the ERG, will be 

included. 

__..... mv 2 

t r 

mg 

m(l sin e d<l>/dt) 2 

1 sine 

Figure 5.2. Simplified Model of the Extended Range Gun 

This chapter describes the design of a nonlinear controller to 

provide the motor which drives the gun with the correct input 

current. It is desired that the controller drive the gun from any 

initial position to a desired final position. In this research a neural 

network controller is used. This neural network is trained using 

the algorithms discussed in Chapter IV. Widrow's and Narendra's 



65 

methods are compared as the neural network is trained to control 

the simplified model of the ERG. Widrow's method will be 

presented in this chapter, and Narendra's method will be studied in 

the next chapter. 

It will be assumed that the equations that govern the 

movement of the ERG are the following 

~(J (9) d<l>) = -~ d<j> + k u 
dt a dt a dt a a 

J e d2
: =-Pede+ keue + mgl * sin(9) +ml2sin(9)cos(9)(d<1>)2 

dt dt dt (V.l) 

where: e - elevation angle (radians) 

cj> - azimuth angle (radians) 

m - mass of the gun concentrated at the endpoint (=2 kg) 

1 - length of gun (=1 m) 

f3a and f3e - viscous friction coefficient (=4 Nms) 

ka and ke - motor torque constant (=2 Nm/A) 

g - acceleration due to gravity ( = 10 m/s2) 

Ja - moment of inertia about the azimuth (=ml2 sin2(e)) 

Je - moment of inertia about the elevation (=ml2) 

ua - input current to the motor that moves the gun m e 

u e - input current to the motor that moves the gun in $ 

It is assumed that the ERG is allowed to rotate completely 

around the $ axis but e is only allowed to go from O+j.t to 7t-j.l, where 

1-l is a small number. The elevation limits are larger than would be 

practical, but they do not significantly affect the results which are 



66 

reported in this chapter. Also, the input current to the motors that 

drive the gun are assumed to saturate at 20A. 

Substituting the values of the constants into Equation V .I, the 

state variable form of the model can be written as follows. Let the 

state variables be: x1 = e, x2 = d9/dt, x3 = cp, x4 = dcp/dt then 

dx 1/dt = x2 

dx2/dt = 10 sin(xl) - 2 x2 + x42 sin(xl) cos(xl) + Ue 

dx3/dt = x4 

dx4/dt = (-2 x2 x4 sin(xl) cos(xl) - 2 x2 + ua)/sin2(xl) (V.2) 

This is the complete reduced model of the ERG. In the 

simulations that follow either the elevation angle or the azimuth 

angle is held constant. When the elevation angle is constant, the 

azimuth model is obtained. The elevation model is derived when 

the azimuth angle is constant. 

Azimuth Model 

The azimuth model (9 fixed) is shown in Figure 5.3. It is a 

second order linear system. The equations in state variable form 

that describe this system are 

dx1/dt = x2 

dx2/dt = (- 2 x2 + u)/sin2(e) (V.3) 

where: x 1 = cp 

x 2 = dcp/dt 

u - input current to the motor that moves the gun in cp 



67 

I..,.. 1 sin 9 .,._I 

Figure 5.3. Azimuth Model 

In this study e is fixed at rt/2 (90°) and Euler's integration 

method is used to obtain x1 and xz where x(k+l) = x(k) + dt * dx/dt 

with dt = 0.01 sec, the sampling interval. 

As described in Chapter IV both methods used to train the 

controller have two stages. The first stage is plant identification 

and the second stage is the actual training of the controller. Figure 

4.11 shows a sketch of the procedure for plant identification. 

The neural network plant has a single layer, with 3 inputs 

which correspond to the 2 state variables and the input current, 

and 2 outputs which correspond to the 2 state variables as shown 

in Figure 5.4. Figure 5.4 also shows the architecture of the 

controller. It has a single layer with one neuron. The 2 inputs 

correspond to the 2 state variables, and the output corresponds to 

the input current. All neurons have a linear transfer function, 



68 

f(x) = x. The saturation of the controller's output at 20 A IS handled 

by a separate network. 

Figure 5.4. Plant and Controller Architecture 

In training the plant, inputs and states are generated randomly. 

These are presented to the neural network plant and true plant to 

obtain the predicted and desired next states. An error is calculated 

and backpropagated allowing the weights of the neural network to 

be adjusted. This is done for many iterations until a performance 

criterion is satisfied. The learning curve for the plant is shown m 

Figure 5.5. The plant neural network is then used to train the 

controller. 

The output of the controller is saturated. Therefore, the 

saturation function must be first learned by a neural network 

before training the controller. This is necessary so that the output 

error can be backpropagated and the weights of the controller 

changed. The saturation network has two layers, with four neurons 

in the hidden layer. There is only one input and one output. 



69 

10 ~::-, 

~ 
.i. 

·-:-· 
1 : : 

F"'"'' 
r···· : .L .L .l .U.L .L ......_ .L .L .l LL .1 
i;::;:: ;;;i :;;::;: 

.01 
1:::::: 

1 10 100 1000 
iteration number 

Figure 5.5. Learning Curve for Plant (9 = TC/2) 

Figure 5.6 shows the learning curve for the saturation network and 

Figure 5. 7 shows the transfer function for the saturation function, 

f(x), and saturation network, N[x]. As one can see the neural 

network learned to reproduce the saturation function. The 

saturation network is then used to obtain the controller. 

Figure 4.13 schematically shows the training of the controller 

when Widrow's method is used. The initial state vector x0 IS 

generated randomly. The controller calculates the input current to 

the motor. The saturation network saturates this current and the 

plant moves to the next state. This cycle proceeds for N steps (N is 

fixed at 200, chosen arbitrarily). The final state xN is then 



70 

1······ .... ~~-·;_, ___ ,;,,, .. ,: ... , .• .,..;-:: ............... ; ........ :, .... , .... ;,_,._,. .. ;,;.::: ............. ,;,,, .... , ........ .,. ... ; ; ; ; ;; 
......... \;._~ i" ;.: ........................ ~ ......... ,: .. i· t( ......... l ~ ... , ..... ,.,! ............... : ....... i .... f ... i)+l··=~-; .......... ~ 

10 .......... "";-:... :.......... ll.. .......... : ...... ,.... ... . ........ : ............. .. : .......... 
e= :::::::::::::;::::: .. :::::.t:t· ,.......... ~~ :r;:::::::;;; ...... t'" ... t" ......... ::::::;;:;;;; ~::: 5 ::::::::::::::::::::; .................... ,.,'" .. ' .. "." .... '" .... ,, ................. , .. J[:~ ........... , ............ ,, ....... , .. , .... ,., ........... · ........ , ............. .. 

:::::::::::: 
:::::::::::: 

"'0 .................... , ..... r ... ~... , .......... t ·t : ~ ........... , ....... , ..... '!' ... , 
~ 1 .......... f .... ~r-1: ...................... 1, ............ f.. .. ....... u-... ..., ....................... , ....... , 

, ......... .. 
........... 
........... 

'0 

~ 

. 01 .. ...... ~11 .......... . 
::::::::::: ""'":: .. 

'"'t"; :::: ......... ; .. ; ..... ;.;-........... ; ........ ; ..... t ... . ; ... .;. .. ; .. ; .. .;..;.; . 

............. ....... i .... t ... r .. t· . ~-~ .......... i· r .......... + ...... f .. -+ .. H 

............. 

::::::l::t .. 
.. ........ , ....... 

............. : .......... 
:::::::::: ... 

.... , ... ~:: ::::::::::: , .......... 
....... , .......... . ........... .... , .. ·~ ... , .......... ············ , .......... .. .......... , ...... , .... ............ ....... , .......... .. .......... , ...... , .... 

........... 

1 10 100 1000 10000 20000 
iteration number 

Figure 5.6. Learning Curve for the Saturation Network 

25~----~------~------~------~------~------------~------~ 

20 

15 

'"'"""l'"'"'""""'"'"l""""""""''"" ..................... r ..................... r .................... .. 10 

......., 5 
:B: 
z 0~----~----~------+-----~------~----~----~------1 

...................... i ...................... L ..................... i......... .. .............................. r ..................... r .................... r ................... .. 
··::::·::·::::··:::::!:::::::.::::::::::::1 :::::··:::: :.; ::::::::::::·:: ::::::·:: :::.::::r::::.:::::::··::::r:::::::::· ·::r·:·:··:··· :·: 

· - , ...................... 1 ............................................ r ..................... r ..................... 1 .................... .. 
-25 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-10 

-15 

-20 

-40 -30 -20 -10 0 10 20 30 40 

X 

Figure 5.7 Saturation Transfer Function 



7 1 

compared with the desired state xd = [0 O]T to obtain the error 

which is backpropagated to adjust the weights of the controller. 

The error is backpropagated through the neural network plant but 

the true plant is used to determine the output error itself. This 

process is repeated by choosing another initial condition. 

The weights of the controller are initially random. They remain 

constant throughout the N steps. The weights are allowed to change 

by the backpropagation algorithm only after the N steps are 

performed. The learning curve for the controller is shown in Figure 

5.8. The mcrease m the sum of squared errors at 50 iterations is 

due to an mcrease m the range of the initial conditions of the plant . 

. 1 

til .01 
~ 
5 
] 
g. 
.: .001 
0 

~ 
"' 

.0001 

1 10 

iteration number 

Figure 5.8. Learning Curve for the Controller 

100 



72 

This controller was tested to control the true plant (azimuth 

angle only). Figure 5.9 shows the operational mode of the system, 

where z-1 represents a delay, with the saturation and neural 

network controller. The response of the system for an initial 

condition of [3 O]T is given in Figure 5.10 where x1 is the azimuth 

angle, x2 = dx1/dt is velocity, dx2/dt is acceleration and u is the 

controlled input. As one can see all states go to zero as desired. 

xk 
r--!~· ........ /Netwol"k i ~---~~ 

i UpijijhJ()IJer ··• 
Plant 

-1 z 

Figure 5.9. Operational Mode of the System 

Elevation Model 

The elevation model ( <1> fixed) is shown in Figure 5 .11. It is a 

second order nonlinear system. The equations in state variable 

form that describe this system are 

dx1/dt = x2 

(V.4) 



73 

: ~st~·;·t ···!· ····-·t·······-·;-··-··-·t·········j·····-······] 

~~ ~::-b± .. ± .. ::..l.:::::::::.:::::=-1-=::::::-: .. ::::.J:: .. ::=:·::::::::J.:-:::_:··::.:::::::J 

o~r: i ~r ! ~ l : 1 
-10 ==L ~:2 i···················+···············-f···········-···+····-··-·······1!; ··-··-··-··-··1···········-··-: 

_.:...___ I I I I I I I :..___ I I I o I I I I I I I I , I I I I ~ I I I I _ 

: :f ~:~€I ·::_::::::_:·:: t ·:::::::::::::_:t:::::·::_~::: t :·:::~::.~:::::J ::::~:::~:::·::j:-::::~::~:::::::::1 
0 .5 1 1.5 2 2.5 3 3.5 4 

time (sec) 

Figure 5.10. Response for Initial Condition [3 O]T 

Figure 5.11. Elevation Model 



74 

where: xl = e 

x2 = de/dt 

u - input current to the motor that moves the gun m e 

The integration method used to obtain x 1 and x2 was Euler's 

method where x(k+1) = x(k) + At * dx/dt with At = 0.01 sec. 

Two algorithms were used when Widrow's method was 

employed: modified backpropagation and conjugate gradient. 

These two algorithms are compared in the following section. 

The Backpropagation Algorithm 

The backpropagation algorithm was applied first to train the 

plant and controller. The neural network plant has two layers, with 

24 neurons in the hidden layer. There are 3 inputs corresponding 

to the 2 state variables and the input current, and 2 outputs 

corresponding to the 2 state variables as shown in Figure 5.12. 

Figure 5.12 also shows the architecture of the controller. It has two 

layers with 24 neurons m the hidden layer. The 2 inputs 

correspond to the 2 state variables and the output corresponds to 

the input current. All neurons have a sigmoid transfer function. 

In training the plant, inputs and states are generated randomly. 

These are presented to the neural network plant and true plant to 

obtain the predicted and desired next states. The output of the 

plant needs to be scaled in order to obtain the error. This error Is 

backpropagated allowing the weights of the neural network to be 

adjusted. This is done for many iterations until a performance 

criterion is satisfied. The learning curve for the plant is shown in 



Figure 5.13. The plant neural network 1s then used to train the 

controller. 

(24 neurons) 

Figure 5.12. 

(24 neurons) 

Plant and Controller Architecture 

75 

Figure 4.13 schematically shows the training of the controller 

when Widrow's method is used. The initial state vector x0 is 

generated randomly. The controller calculates the input current to 

the motor. The current is scaled and input to the plant. The plant 

moves to the next state. This cycle proceeds for N steps where N 

depends on the initial state x0 with a maximum value of 120. The 

final state XN is then compared with the desired state xd = [1t/2 O]T 

to obtain the error which is backpropagated to adjust the weights of 

the controller. The error is backpropagated through the neural 

network plant but the true plant is used to determine the output 

error itself. This process is repeated by choosing another initial 

condition. 



.01 

~ 
] .001 

g. 
rl.l 

4-t 
0 

§ 
rl.l 

.0001 

76 

r---....._ l l l ll 
r ............... ... ~·' 
r··············· .,.... 
r··············· ; ....... ; l l l ll r··············· v ~ ~ 

}_ M ; 
:····· .L 

~ ~~ 
~ j 

~:::::::::::::: 
:v. 

r ............... 
: r\", 

i··l· 
... 

+··+ .... , ....... , ..... ..... !'\ll. 
i'~r-. i 

~ .. ~··l "'i··· 
~~~~ il 

l .l

-
... ~·········-!-

t·

i···
l .l .l .l.l

1 50 500 5000
iteration number

Figure 5.13. Learning Curve for Plant

The weights of the controller are initially random. They remam

constant throughout the N steps. The weights are allowed to change

by the backpropagation algorithm only after the N steps are

completed.

The elevation angle e can only have values ranging from O+J.L to

1t-J.L where J.l is a small number. If the elevation angle goes beyond

these limits the system stops. The learning of the controller is

affected by the criterion chosen to determine xN when the gun hits

a limit. If the gun hits a limit during training, three different final

conditions can occur as shown in Figure 5.14.

77

Position I occurs when the final position of the gun is taken at

the stops. In this case xN = limit and N = · L where L is the number

of steps taken when the limit is passed. Position II occurs when the

final position of the gun is taken before the stops, which gives xN =

x L-l and N · = L - 1. Finally, position ill occurs when the final

position of the gun is taken after the stops, which gives xN = XL and

N = L. Figure 5.15 shows the learning curve for the controller when

case I is considered. The learning curve for case II is shown in

Figure 5.16. Finally, case ITI is shown in Figure 5.17.

I
fmal positions

initial
position

Figure 5.14. Final Positions of the Gun

78

1

.1

.01

.001

1 10 100 1000

iteration number

Figure 5.15. Learning Curve for Controller (case I)

:::::::~~~~~~~~~::~~~~~~r~~~r~~r~rrnl~~~~~~~~~~~~~~~r~~~~~~~r~~~r~~rrrflf~~~~~~~~~~~~~~~~r~~~~~~r~~~~F~~~~~rnl
1~~~~~~~~~++~~~~~~~~~~~~~~~~~~

.001

.0001

1 10 100 1000

iteration number

Figure 5.16. Learning Curve for Controller (case II)

79

1

.1

.01

.001

1 10 100 1000

itenltion number

Figure 5.17. Learning Curve for Controller (case Ill)

The Conjugate Gradient Algorithm

The elevation model was also trained using the conjugate

gradient algorithm with line search. The equations m state variable

form that describe the system are again shown below.

dx1/dt = xz

dxz/dt = 10 sin(xl) - 2 xz + u

where: Xl = 9

xz = d9/dt

(V.5)

u - input current to the motor that moves the gun m e

The integration method used to obtain x 1 and x2 was Euler's

method where x(k+1) = x(k) + ~t * dx/dt with ~t = 0.01 sec.

80

The neural network plant and neural network controller have

two layers, with 24 neurons in the hidden layer as shown in Figure

5.12 above. The three inputs of the plant correspond to the 2 state

variables and the input current, and the 2 outputs correspond to

the 2 state variables. The two inputs to the controller are the 2

state variables and the output corresponds to the input current.

The hidden neurons have a sigmoid type transfer function and the

output neurons have a linear transfer function.

In training the plant, inputs and states are generated randomly.

These are presented to the neural network plant and true plant to

obtain the predicted and desired next states. Since the output layer

is linear, no scaling is necessary. An error is calculated and

backpropagated allowing the weights o~ the neural network to be

adjusted. This is done for many iterations until a performance

criterion is satisfied. The learning curve for the plant is shown m

Figure 5.18. The plant neural network is then used to train the

controller.

In training the controller, the initial state x0 is generated

randomly. The controller calculates the input current to the motor.

This current is saturated and input to the plant. The plant moves to

the next state. This cycle proceeds for N steps where N depends on

the initial state x0 with a maximum value of 120. The final state xN

is then compared with the desired state xd = [1t/2 O]T to obtain the

error which is backpropagated to adjust the weights of the

controller. The error is backpropagated through the neural

81

network plant and saturation but the true plant IS used to

determine the output error itself. This process is repeated by

choosing another initial condition.

1 10 100
iteration number

1000 10000 20000

Figure 5.18. Learning Curve for the Plant

To backpropagate the error to the controller· the saturation

function needs to be identified by a neural network. The learning

of the saturation function is shown in Figure 5.6. Figure 5.7

illustrates the transfer function for the saturation function and the

saturation neural network.

82

As explained earlier, the elevation angle e can only have values

ranging from O+J.L to 7t-J.L. If the elevation angle goes beyond these

limits the system stops. This stopping criterion allows the final

position xN of the gun to be selected in different ways. Figure 5.14

shows the three different final conditions that the gun can take

when a limit is hit. When the conjugate gradient algorithm is used

this criterion does not affect the learning of the controller as

illustrated in Figures 5.19 and 5.20.

1 10 100
iteration number

Figure 5.19. Learning Curve for Controller (case II)

83

Figure 5.19 shows the learning of the controller when case II

occurs, the gun hits a limit but the final position Is taken before the

stops. Figure 5.20 shows the learning curve for the controller when

case I and III occur. Case I, shown in Figure 5.20. a), occurs when

the gun hits a limit and the final position is taken at the stops. Case

III, shown in Figure 5.20 b), occurs when the gun hits a limit and

the final position is taken after the stops.

1 10
iteration number

a) Case I

100 1 10
iteration number

b) Case III

100

Figure 5.20. Learning Curve for Controller (case I and case III)

84

The training curves above were obtained when the initial

positions of the gun were in the interval [1.35, 1.77], a small range.

This range was slowly increased so the controller would learn from

easier to harder tasks. This training, when the controller gradually

learns to stabilize the plant, is shown in Figure 5.21. Here case II is

considered; when the gun hits a limit the final position is taken

before the stops.

I I I i

.1

1 10 100 200
number of iterations

Figure 5.21. Learning Curve for Controller

First, the initial positions of the gun were kept in the interval

[1.37, 1.77], but the gun was only allowed to move for 0.2 sec or

when the stops were hit. Then, at the third iteration the range of

the initial positions increased to [0.94, 2.20] and the gun was

permitted to move for 0.3 sec. Finally, at the 20th iteration, the

initial positions were in the interval [0.16, 2.99], a bigger range.

85

At this point the gun was allowed to move for only 0.35 sec. From

there on, the range of the initial positions remained fixed, but the

gun could gradually move further. In the last iterations the gun

moved forward for 4 sec or until stops were hit.

The controller obtained was used to control the true plant

(elevation angle only). Figure 5.9 shows the operational mode of

the system with the neural network controller and the saturation

function. The response of the system (x 1 and x2) for an initial

condition of [0.5 Q]T is given in Figure 5.22. The control input is u,

dx 2/dt is the acceleration and r is the final desired position.

The controller was able to stabilize the plant, even for a large

initial position, but the steady state position is offset from the

desired position of rc/2. This leads one to believe that the bias of

the output neuron has not been fully learned. By adjusting this

bias the responses of the system (position only) for three different

initial positions (0.5, l. 7 and 3.0) were obtained as illustrated in

Figure 5.23. All positions settle to the desired value of rc/2. This

shows the robustness of the controller to initial conditions.

86

10.---~----~----~--~~--~----~----~--~----~--~

0 3 6 9 12 15

time (sec)

18 21 24 27

Figure 5.22 Response for Initial Condition [0.5 Q]T

State Variable Feedback Controller

30

For comparison purposes a linear controller was used on the

elevation model. The linear controller is a state variable feedback

controller. It is designed such that if it were applied to the

linearized elevation model the response of the system to an initial

87

3.0 : : : : :

0 3 6 9 12 15 18 21 24 27 30

time (sec)

Figure 5.23. Response for Initial Positions 3.0, 1.7 and 0.5 Radians

condition close to the linearization point would roughly give the

same settling time as would the system with the neural network

controller.

The linearized elevation model about a position of Tt/2 and a

velocity of zero is

dx1/dt = x2

dx2/dt = 10 - 2*x2 + u

or

(V.6)

88

Figure 5.24 shows the response (position only) of the neural

network controller to an initial condition of [1.7 O]T. The reference

position, r, and 5% of the error to the steady state position is also

shown. The settling time for this case is about 9 seconds with no

oscillation. -This requires S = 1 and s*ro0 = 3/9 = 0.33 (t8 = 3/sro0).

Therefore the two poles of the closed loop system should be located

at -sron = -0.33.

1.7.---~----~----,---~~--~----~----~--~----~----,

1.68

1.66

1.64

1.62

1.60

1.58

3 6 9 12 15

time (sec)

18 21 24 27

Figure 5.24. Response for Initial Condition [1.7 O]T

30

89

The form of the state variable feedback controller Is

u = -(F*x + H*r + G) (V.7)

Substituting the above equation m equation V.6 gtves

dx/dt =Ax- B(Fx + Hr +G)+ D

= (A - BF)x - BHr - BG + D (V.8)

The eigenvalues of the closed loop system described by equation

V.8 should be located at -0.33, -0.33. Therefore

F = [0.11 1.33], H = -0.11 and G = 10 (V.9)

Then the appropriate controller is of the form

u = -([0.11 1.33]*x - 0.11 *r + 10) (V.10)

Figure 5.25 shows the response (position only) of the neural

network controller (x 1) and the state variable feedback controller

(xv) for an initial condition of [1. 7 O]T. As one can see, the linear

controller response is slower than the neural network controller.

However, when the initial position was increased to 0.5 radians the

state variable controller was not able to stabilize the gun, as

illustrated in Figure 5.26. The stop at zero was hit in less than 1

sec. It is also shown that the neural network is capable of

controlling the gun.

In the next chapter Narendra's method will be applied to the

azimuth and the elevation models.

90

1.7r----~----~----=---~----~----~----~--~----~----.

1.68

1.66

1.64

1.62

1.60

1.58

1.56 I:--'L--I---::--L.--'-~.....I-...L-~"--I-:-':--'--I.~--I-.....I-~-'--.J..-:-_._L..-1--:-::--L.--'--:-::-....L-..L..::-:J:
0 3 6 9 12 15 18 21 24 27 30

time (sec)

Figure 5.25. Comparison of Controllers for Initial Condition [1.7 O]T

2 1- : :

r--·-· r -·-.. ·--r~ :===::-r:· -==T-==T--T'--t---r--r-1 1- : -•: :

1

-1

-2

-3

-5
0 3 6 9 12 15

time (sec)

18 21 24 27 30

Figure 5.26. Comparison of Controllers for Initial Condition [0.5 O]T

CHAPTER VI

NARENDRA'S METHOD APPLIED TO

THE EXIENDED RANGE GUN

In the previous chapter neural network controllers for the

models of the Extended Range Gun (ERG) were designed using

Widrow's ·method. A linear model and nonlinear model of the

system were considered. In this chapter these same models are

again examined. Here the design of the neural network controller 1s

done using Narendra's method (see Chapter IV).

Feedback Linearization

In this first approach for developing a neural network

controller for the ERG (plant), all states are considered measurable.

It is also assumed that there is enough information about the plant

that one can describe it as belonging to model (ii) of Narendra's

classification. Model (ii) assumes that states and inputs are

separable functions, in particular,

y(k+l) = f(y(k), ... , y(k-n)) + u(k) (VI.l)

The model is also considered to be in controllable canonical form

where its dynamics are given by

91

Xn-1 (k+l) = x0 (k)

x0 (k+l) = f(x(k)) + u(k)

x0 (k)]T and y(k) = x(k)

92

(VI.2)

Feedback linearization can easily be applied to a model given in

this form. The idea of feedback linearization is to cancel the

nonlinearities in a nonlinear system so that the closed loop

dynamics will be linear.

Define the control signal as

u(k) = -sTx(k) - f(x(k)) + b*r(k) (VI.3)

where s is a vector of constants. Substituting this equation into

equation Vl.2 the closed loop dynamics can be obtained as

x1 (k+l) = xz(k)

Xn-1 (k+l) = x0 (k)

x0 (k+l) = -sTx(k) + b*r(k) (VI.4)

and the nonlinearity is cancelled. Therefore, if a neural network Nf

can be obtained to approximate the nonlinearity, f(x(k)), of the

plant then this nonlinearity is nullified. The operational mode of

the system is shown in Figure 6.1 where z-1 represents a delay.

By choosing s appropriately a closed loop system with desired

dynamics (a reference model) can be obtained. Model reference

control is the method used by N arendra. The reference model

determines how the output of the plant behaves. The relative

order of the reference model should be at least equal to the relative

93

order of the plant (in this case, 2). Therefore, the reference model

defined below was chosen as a second order system.

_1 x(k)
z Plant x(k+1)

Figure 6.1. Operational Mode of the System

Reference Model

The second order reference model used here was chosen to

obtain a response with a settling time (ts) of 1 sec and no

oscillations. This required s = 1 and s *con = 3/1 = 3 (t8 = 3/scon).

Consequently, COn = 3.

The output of the reference model and the output of the plant

should describe the same quantity. The outputs of the plant are

position and velocity. When a step input is applied to the reference

94

model it is desired that the steady state value of the output position

settles to the value of the reference input and the output velocity

goes to zero. This results in the following transfer function for the

reference model between position and input

m2 ~ 9
--:::---=n'----..,- -=-----~ - --=----
82 +2~mn8+m~ 82 +2(3)8+32 82 +68+9 (VI.5)

Velocity is the other output of the plant. If one of the state

variables is position then the reference model is subject to the

constraint that Xm2 = dxmifdt where Xmt is the state variable

position and xm2 is the state variable velocity. This results in the

state variable form of the reference model as shown below

~:: =[! !61=:~]+[~}
dt (VI.6)

Discretizing with a sampling interval of 0.01 sec and using

Euler's integration method, the following equation is obtained for

the discrete time system

xm (k + 1) = [-~: ~ ~: ~!]xrn (k) + [~:9 }(k)
(VI. 7)

where Xm(k) = [xml (k) Xm2(k)]T are the states of the reference

model and r(k) is the reference input.

Azimuth Model

The azimuth model (e fixed) is shown in Figure 5.3. It is a

second order linear system. The equations in state variable form

that describe this system are

dx1/dt = x2

dx 2/dt = (- 2 x2 + u)/sin2(e)

where: x 1 = cp

x2 = dcp/dt

95

(VI.8)

u - input current to the motor that moves the gun in cp

In this study e is fixed at rc/2 (90°) and Euler's integration

method where x(k+1) =x(k) + at*dx/dt is used to obtain x1 and x2

with at = 0.01 sec, the sampling interval. Therefore,

x1(k+l) = x1(k) + at*x2(k)

x2(k+1) = x2(k) - 2*at*x2(k) + at*u(k) = f(x(k)) + at*u(k) (VI.9)

As described above, feedback linearization requires plant

identification. Figure 4.11 shows a sketch of the procedure for

plant identification.

With this particular linear plant, if the control input u is set to

zero y(k+1) = f(x(k)) = Nf[x(k)] = N[x(k),O] where N[] is the neural

network plant identified earlier in Chapter V (Figure 5.5). The

neural network plant has a single layer, with 3 inputs which

correspond to the 2 state variables and the input current, and 2

outputs which correspond to the 2 state variables as shown in

Figure 5 .4. All neurons have a linear transfer function, f(x) = x.

Here only the second output (x2) will be used.

The control input is then

u(k) = (1/.01)*(-[0.09 -0.94]*x(k) - Nf[x(k)] + 0.09*r(k)) (VI.1 0)

This controller was used to control the true plant. Figure 6.1

illustrates the operational mode of the system. Figure 6.2 shows

the response of the system and the reference model to an initial

condition [3 O]T when a constant reference input, r(k), of zero is

96

applied. The response of the system (x 1 and x2) is identical to that

of the reference model (xm 1 and Xm2)· The controller's output is u

and dx2/dt is the acceleration of the plant.

Elevation Model

The elevation model (<1> fixed) is shown in Figure 5 .11. It is a

second order nonlinear system. The equations in state variable

form that describe this system are

dx 1/dt = x2

dx2/dt = 10 sin(x1) - 2 x2 + u

where: Xl = 9

x2 = d9/dt

(V1.11)

u - input current to the motor that moves the gun m e
The integration method used to obtain x 1 and x2 was Euler's

method where x(k+1) = x(k) + ilt*dx/dt with .Llt = 0.01 sec.

Therefore,

x1(k+1) = x1(k) + ilt*x2(k)

x2(k+1) = IO*ilt*sin(x1) + (1 - 2*ilt)*x2(k) + ilt*u(k)

= f(x(k)) + ilt*u(k) (V1.12)

As described earlier, feedback linearization requires plant

identification. The conjugate gradient algorithm with line search

was the only algorithm employed to identify the nonlinearity,

f(x(k)), in the plant.

97

3 i l ! J l l l
! ! i I i I I 2.4 ········ xml ·t······················l······················t······················~······················t······················t·····················r······················

1.8

1.2

.6 , ; ! ! I
······················t······················,··········· ······-r······················;· .. ···················t······················ ·····················

0 • ' I

o~------T1 -------.,------~1,-----~c·=======ri------~i-------.,-------.

-1

-3

2~----~------~------~------~------~----~------~------~

0~--~-----t====~==--~---t-----r----t----j
-2

-6

-10

-6

-10

-14
0 0.5 1 1.5 2 2.5 3 3.5 4

time(sec)

Figure 6.2. Response for Initial Condition [3

The neural network Nf has two layers, with 12 neurons in the

hidden layer. It has two inputs, corresponding to the two state

variables, and one output, corresponding to x2(k). The hidden

neurons have a sigmoid type transfer function, and the output

neurons have a linear transfer function.

N f is trained offline. During the training process, states are

generated randomly. These are presented to the neural network

and the true plant to obtain the predicted and the desired next

state. An error is calculated and backpropagated allowing the

weights of the neural network to be adjusted. This is done for

many iterations until a performance criterion is satisfied. The

learning curve for Nf is shown in Figure 6.3.

98

The neural network Nf is then used as part of the controller,

where the control input u is given by equation Vl.lO. The

operational mode of the system is illustrated in Figure 6.1. Figure

6.4 shows the response of the system (x1 and x2) and the reference

model (xml and Xm2) to an initial condition [0.5 O]T when a constant

reference input (xd), r(k), of rc/2 is applied. It also shows the

controlled input u to the plant and the acceleration of the plant,

dx2/dt. The response of the system is identical to that of the

reference model.

State Variable Feedback Controller

For comparison purposes a linear controller was used on the

elevation model. The linear controller is a state variable feedback

10

1

.1

.01

.001

1 10 100
iteration number

1000 10000

Figure 6.3. Learning Curve for Neural Network Nt

controller. It is designed such that if it were applied to the

linearized elevation model the closed loop system would respond

like the reference model given above.

The linearized elevation model about a position of 1t/2 and a

velocity of zero Is

dx1/dt = x2

or

99

(VI.13)

The form of the state variable feedback controller is

u = -(F*x + H*r + G) (VI.14)

100

:·: t=::=::= __ :=::=-= .• ·.=-==:::=::tf;=:::=-·=~=:=1= ___ =:::=:.y:l=-=_:_=~=-=:=-=::=.~t=!=:::::·:::::::::::;::·~=:::::::::ff=;;;:::;;::;;:::;;:::;;:::=:::=:::~jF::=::·=_::= .. :=·-=::·=:::=::=:::f!=·::=:::= __ =_::= __ :=.:=:::=JIF:.=::.=::=.:_=_:_=·:.=: .. = .. =J:·

. y 1- - + ·i . -+-- - + -+
.8 ---······ xm1 ·i······················f······················l······················f······················l··········---·········+--···················1·······················

i ! I I I I !
.4 ------- ········-···t··-------------------t·······--------·------~---------------·----·t-·········-----------~----------------------r··--·--------·------~-----··---·····---·--·-

1.2 .---~~-,--------.---------~--------,.-------,i.--------.,-------,1.-------•

. 8 -······I··· xm2 =. ::ml ••••••!••·····-···· :r•·····r···············r··················~···················· ! ~-..!...... ~ ! l I I

.4 _·· _ _._._._._._._-_-_-_-_-_-_-_-_-_-_-_·_r_._._._.._. .. _._._._._._. ___ t·:·····:···J~--~----_--_._._._._._._._._._._.Tt_-.-_-_._._._._._._._._._._._._._._._._..r_._._._._._._._. _ _._._._._._._._-_._._._.r_._._._._-_-_._._._._._._._._._._._._-_-.r-.--_. _ _._._._._._._._._._._._._._._~~
I ! 2 dt I I I

.................... .1. 1................ ---i---···················t····················--L J J
I I 1 I I I

O~~~~~~L'~~~~ ~~~~==d'~--~L' ~~~·~~~

2.-----~~----~------~------~------~----~------~------~

0~,------~----~------~------+-----~------~------+-----~

-2

-6

-10
0 0.5 1 1.5 2

time(sec)
2.5 3 3.5

Figure 6.4. Response for Initial Condition [0.5 O]T

4

Substituting the above equation in equation VI.13 gives

dx/dt = Ax - B(Fx + Hr + G) + D

= (A - BF)x - BHr- BG + D

If F, H and G are chosen as

F = [9 4], H = -9 and G = 10

Then the appropriate controller is of the form

u = -([9 4]*x -9*r + 10)

And perfect model following is achieved.

101

(VI.15)

(VI.16)

(VI.17)

Figure 6.5 shows the response (position only) of the neural

network controller (x1), the reference model (xml), the reference

position (r = n/2) and the state variable feedback controller (xc 1)

for an initial condition of [0.5 O]T. As one can see, all positions go

to the reference input but the linear controller response is slower

than the neural network controller and the reference model.

General Method

In the above discussion all states of the plant are measurable.

But it is common to find that not all the states are assessable. In

this case Narendra's general method is applied and the plant can be

described as belonging to model (iv).

Model (iv) assumes that states and inputs are not separable

functions. The equation describing this general model is

y(k+l) = f(y(k), ... , y(k-n), u(k), ... , u(k-n)) (VI.l8)

Here it will be considered that the only measurable state IS position.

102

1.6 .-----------,---------.----.....-----------.

1.4

1.2

1.0

.5 1 1.5 2
time (sec)

2.5 3

Figure 6.5. Comparison of Controllers

3.5 4

A neural network is then trained to imitate the plant. During

the training process, inputs (u(k)) and initial positions (y(O)) are

generated randomly. All other states are set to zero. Past values of

y are set to y(O) and past values of u(k) are set to zero. These are

presented to the neural network and the true plant. The plant Is

then allowed to move forward for m steps, or until stops are hit. At

this point, new random initial positions are generated and the

system moves forward once more. Inputs are random at each step.

This is done for many iterations until a performance criterion is

satisfied. Figure 6.6 shows a schematic diagram of the training of

the plant.

103

u k \.. ,,_. .. , \.. "'" .. :'<\:
~~------,--------------1"''< PLANT Z:

• • •

Neural Network Plant

"' "'·"'"-~ \..~
y(k+1)

weight
changes

··-::·:.-:-.·:.::::.:::.- . .· -.. _.<::.::::-:::

···•··/n~~pr~]Ja3'~#(ln•.AigoJ"jtbm•··•·"i<"•···.r·d.~----e(;...k+_..;..1)__.

Figure 6.6. Plant Training

After the neural network plant has learned the true plant's

transfer function it is used in training the controller. The controller

will be trained to give the correct input u that will drive the plant

in accordance with a reference model. The neural network plant IS

used to backpropagate the error (Ym(k+1) - y(k+1)) to adjust the

weights of the controller.

The equation that describes the controller is

u(k) = Nc[y(k), ... , y(k-n), u(k-1), ... , u(k-n), r(k), ... , r(k-n)] (VI.19)

where Nc is the neural network obtained through the training

process depicted below.

During the controller training process initial positions (y(O))

and reference inputs (r(k)) are generated randomly. All other

104

states are set to zero. Past values of y are set to y(O) and past

values of u(k) are set to zero. The system (controller and plant) is

then allowed to move forward for m steps, or until stops are hit. At

this point, new random initial positions are generated and the

system moves forward once more. After each step an error is

calculated and backpropagated so that the weights of the neural

network controller are adjusted. This IS done for many iterations

until a performance criterion is satisfied. Figure 6. 7 shows the

schematic for training the controller. This neural network

controller is then used in the operational mode of the system as

shown in Figure 6.8.

Second Order Models

In this section the above method is applied to develop a neural

network controller for the previous given models of the ERG. Here

the only measurable state is position (x 1). It is assumed that the

order of the system is known, in this case 2. Therefore, the neural

network plant is

y(k+1) = Np[y(k), y(k-1), u(k), u(k-1)] (VI.20)

and the neural network controller is

u(k) = Nc[r(k), r(k-1), y(k), y(k-1), u(k-1)]

Next, the reference model is defined.

Reference Model

(VI.21)

The reference model should have the same relative order as the

plant. Therefore, a second order system was chosen. This system is

r(k)

weight
changes

• • •

Neural Network Controller
u(k)

• • •

• • • • • •

Neural Network Plant

Figure 6. 7. Controller Training

105

yn{k+l)

106

r(k)

• • • • • •

Neural Network Controller
u(k)

• • •

Figure 6.8. Operational Mode of the System

the same one described in a section above. The state variable form

of the reference model is

dxml
dt

dxm2
dt (VI.22)

Discretizing with a sampling interval of 0.01 sec the following

equation is obtained

[0.9996 0.0097] [0.0004]
xm(k+l)= -0.08734 0.09413 xm(k)+ 0.08734 r(k)

(VI.23)

where Xm(k) = [xml (k) xmz(k)]T are the states of the reference

model and r(k) is the reference input.

The following transfer function can be obtained between

position, y m (k), and the reference input, r(k)

Ym _ (4.411*z+4.3237)*.0001
R- z2 -1.9409*z+0.9417

which gives

Ym(k+1) = 1.9409*ym(k) - 0.9417*ym(k-1)

107

(VI.24)

+ (4.411 *r(k) + 4.3237*r(k-1))* .0001 (VI.25)

In this section a sampling interval of 0.1 sec is also used. The

following discrete system is obtained

[0.9631 0.0741] [0.0369]
xm(k+ 1)= -0.6667 0.5186 xm(k)+ 0.6667 r(k)

(VI.26)

where xm(k) = [xml (k) Xm2(k)]T are the states of the reference

model and r(k) is the reference input. Therefore, the transfer

function between position, Ym(k) = Xml (k), and the reference input

IS

Ym _ 0.0369z+0.0302
R- z2 -1.4816z+0.5488

which results

Ym(k+1) = 1.4816*ym(k) - 0.5488*ym(k-1)

+ 0.0369*r(k) + 0.0302*r(k-1)

Azimuth Model

(VI.27)

(VI.28)

The azimuth model (9 fixed) is shown in Figure 5.3. It is a

second order linear system. The equations in state variable form

that describe this system are

dxtfdt = x2

dx2/dt = (- 2 x2 + u)/sin2(9) (VI.29)

where: x 1 = <1>

108

u - input current to the motor that moves the gun in 4>

In this study 9 is fixed at 1t/2 (90°) and third-order Runge

Kutta integration (see Appendix) is used to obtain x 1 and x2 with a

sampling interval of 0.1 and 0.01 sec.

The plant can be described as

y(k+1) = f(y(k), y(k-1), u(k), u(k-1)) (VI.30)

A neural network NP with one layer of linear neurons having four

inputs (y(k), y(k-1), u(k) and u(k-1)) and one output (y(k+1)) was

trained to imitate the plant. First, a sampling interval of 0.1 sec

was used. The learning curve for NP is shown in Figure 6.9. This

neural network was then used to define a controller for the plant.

The controller can be represented as

u(k) = Nc[r(k), r(k-1), y(k), y(k-1), u(k-1)] (VI.31)

Neural network Nc has one layer of linear neurons with five inputs

and one output. It was trained to control the plant. The learning

curve for Nc is shown in Figure 6.10.

This controller was then used to control the plant. Figure 6.8

shows the operational mode of the system. The response of the

system (x 1 and xz) and the reference model (xm 1) to an initial

position of 3.0 radians when a constant reference input of zero is

applied is illustrated in Figure 6.11. The controlled input is u and

dx 2/dt is the acceleration of the plant.

1

.1

"' .01

~ 1 .001

g. 1e-4
"S
~
"' 1e-5

1e-6

...
\

\

[!!'
f

! ... ::"

!

~!_l_l}.l,i,'
~

:::::::::.

1

>············: •............ ,

......
i ~ i

:::::
·\: .. ~;
\: :

....
(\'"" / l \

.......

......'.'.'.'.''

~ i ~

... ,

'";"
·t·:t:·!··············

ll' ., ... , .• '!' :::::::

i i : T ,
;;:;;::

::!: ,
l : :

~:i
/l \ l l IV ~h

I

...................
i i :

...................

i ; :
·m::.

10

number of iterations

109

. : ~:::::::::::: , l ; ; 1 ··············· ,

;_;_l}.l_l_l}.l}.l_l_l_l}.l_i
:::::::::::::

..... '""'!'""
················

··················
i l l l 1

1}.1,1 ~.'!.'!!. f_:_:y_:_: ~.i.i.~.'~::.?:·+·· 1}}}}.'.'-'·'·'·'·'·'·'·''''':f:'.'.'.'.'.'.'.'.'.'.'.'l
:::r::::::::::

:

:r.:· ti":WI","
ll.l}.i}}},i}}}}.

I .Ill ,

I~ 'I

I
L llJ

:::: '" it '!' 'lll
Ill

:8: im;mm!:li !.i_ji

100

Figure 6.9. Learning Curve for Neural Network Np (~t=0.1)

100

1

"' !5
~ .01

]
g.1e-4
en

"S
~ 1e-6
en

1e-8

1e-10

1 100
number of iterations

1000

Figure 6.10. Learning Curve for Neural Network Nc(~t=0.1)

110

3 I I I ! i I I

:H!t~~tlllmll--1~!!1 -11; m
: ~~-~ =·~: ::i-_··:-~::+=:~:.~::·t~:.::·::::·+~:·~~~~:.j:::~~:~:=~-f~:~::-~···.1:::_:-::::::~.:

-1: ~ ••• j~ ••••••••••• j ••••••••••• : •.• l ••••••••••• :.•i·=···=•••::••i=···=·······i··=•••:••••:•l•••••:••·······i··········•:•
,,... ,;..

::

0 t .. t . .-:::r l:::: .. ::::.~·t:~: . .J. ::: · .. : :t:.:.:: ... ::.t.:: .. ··:·:J .. ::::.:.::·:: .. i:: ... :.::::::.
0 .5 1 1.5 2 2.5

time (sec)
3 3.5 4 4.5

Figure 6.11. Response for Initial Position 3.0 (~t=0.1)

5

Next, a sampling interval of 0.01 sec is used. The learning

curve for NP is shown in Figure 6.12. Although the error decreased

to 1e-6, the weights of the plant did not reach their true value.

More iterations were performed without success, the weights of the

plant remained unchanged. When the sampling interval of 0.1 sec

was used the final weights of the plant did converge to their true

value.

1 1 1

1
.....

~
....
~

l ~:::::!::::: ' .. ~ .. ~~~ r:::::
·.-.-.J: >···

:~X'!.'/' :,:¢:-.-:-~~¢:·;~':r :,:,:\':'p':': ;·:vr x ~:;'x'i'?ti'"''"'''''
~-~·~·~·~·~·Y·t''''''$" ,,, :::: :::::: ~==== ::: ··········-:-···· >····

~

.... ~
: : ::

·~
; ;

""' ~"" ~ m: :: = ' '' : ::: ~=
::::~:.=.=.~

.1

.01

t .,,, .. ,~ r:::.~
::::::<:::: "' !s .001

..........
·+· : ,

·;;;;;;;;.-: \
: :::::: """ ~

'.'.'.'.'.'.'.'.'.'.'.'.'. ::::
··:::.t:::.

l, ; : ; ; ··;·

.............

5
] 1e-4

g.
"' 1e-5
'E
~ 1e-6 \ ~ J lJJ

-,:··~· ,r ! ~ . J : ••\1"~ 11 1 Ul 1e-7

; ::f::: :
::: * ·1'1

; : ; H U! I I' 'II 'If~
::::~

1e-8

1 10 100
number of iterations

Figure 6.12. Learning Curve for Neural Network Np (~t=0.01)

The algorithm used to train the neural networks above was the

conjugate gradient. Next, a neural network plant and controller are

trained with the Levenberg-Marquardt algorithm. This agorithm is

a variation of backpropagation and proved to be more efficient in

the training of these networks.

The Levenberg-Marquardt algorithm IS based on least squares

optimization. The algorithm is derived from the Gauss-Newton

method of minimization which requires the computation of the

inverse of JTJ where J is the Jacobian matrix. The JTJ matrix can be

singular, therefore its inverse may not exist. The Levenberg

Marquardt includes a technique to overcome this problem [8].

112

A neural network Np is trained to imitate the plant using a

sampling interval of 0.01 sec. The learning curve for NP is shown in

Figure 6.13. As one can see, faster convergence is obtained. The

final weights of the plant corresponded to their true values. This

neural network is then used to define a controller for the plant.

The learning curve for Nc is shown in Figure 6.14.

This controller was then used to control the plant. Figure 6.8

shows the operational mode of the system. The response of the

system (x 1 and x2) and the reference model (xm 1) to an initial

position of 3.0 radians when a constant reference input of zero 1s

applied is illustrated in Figure 6.15. The controlled input is u and

dx2/dt is the acceleration of the plant.

Elevation Model

The elevation model (<1> fixed) is shown in Figure 5 .11. It is a

second order nonlinear system. The equations in state variable

form that describe this system are

dx1/dt = x2

dx2/dt = 10 sin(x1) - 2 x2 + u

where: xl = e

x2 = de/dt

(VI.32)

u - input current to the motor that moves the gun in e

The integration method used to obtain x1 and x2 was third-

order Runge-Kutta (see Appendix) with a sampling interval of 0.1

and 0.01 sec.

113

number of iterations

Figure 6.13. Learning Curve for Neural Network NP (dt=O.Ol)

.............

1 ,

1e-8

1e-9
1

:::::

::::::::::::::::

10

number of iterations

.......... ,

Figure 6.14. Learning Curve for Neural Network Nc (dt=O.Ol)

80

114

::

0 ~ ~ :::f":::·: j::::::: ::i:::::=:::=:::i:::=:::::::::i:::····:···:::::i::··::: ::!:=::·::····.!::::::::·:::

0

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

Figure 6.15. Response for Initial Position 3.0 (~t=0.01)

The plant can be described as

y(k+1) = f(y(k), y(k-1), u(k), u(k-1)) (VI.33)

Neural network N P has two layers, with 5 neurons in the hidden

layer. It has four inputs (y(k), y(k-1), u(k) and u(k-1)) and one

output (y(k+1)). The hidden neurons have a sigmoid type transfer

function and the output neurons have a linear transfer function. It

was trained to imitate the plant. First, a sampling interval of 0.1

115

sec was used. The learning curve for NP is shown in Figure 6.16.

This neural network was then used to define a controller for the

plant.

1 10 100 1000 10000
number of iterations

Figure 6.16. Learning Curve for Neural Network NP (at=0.1)

The controller can be represented as

u(k) = Nc[r(k), r(k-1), y(k), y(k-1), u(k-1)] (VI.34)

Neural network Nc has two layers, with 12 neurons in the hidden

layer. It has five inputs (r(k), r(k-1), y(k), y(k-1) and u(k-1)) and

one output (u(k)). The hidden neurons have a sigmoid type

116

transfer function and the output neurons have a linear transfer

function. It was trained to control the plant. The learning curve for

N c is shown in Figure 6.17. The weights of the plant did not change

when more iterations were performed. Different initial weight

values were investigated, either the same type of curve was

produced or the weights became very large. Therefore, a different

algorithm, the Levenberg-Marquardt algorithm, is employed in

training the neural networks.

! ·+ · rlti!I JII
: : : :

1 10 100 1000
number of iterations

Figure 6.17. Learning Curve for Neural Network Nc (Llt=O. l)

117

Next, the neural network plant and controller is trained with

the Levenberg-Marquardt algorithm. First, a sampling interval of

0.1 sec is used. A neural network NP is trained to imitate the plant.

The learning curve for NP is shown in Figure 6.18. This neural

network is then used to define a controller for the plant. The

learning curve for Nc is shown in Figure 6.19.

1 10 100

number of iterations

Figure 6.18. Learning Curve for Neural Network Np (dt=O.l)

118

.01

.001

Ul le-4
~
5

'"0 1e-5 Q.)

~
Ul

tz le-6

~
Ul

le-7

le-8

1 10 80

number of iterations

Figure 6.19. Learning Curve for Neural Network Nc (Llt=O.l)

This controller was then used to control the plant. Figure 6.8

shows the operational mode of the system. The response of the

system (x 1 and xz) and the reference model (xm 1) to an initial

position of 0.5 radians when a constant reference input of TC/2 is

applied is illustrated in Figure 6.20. The controlled input is u and

dx 2/dt is the acceleration of the plant.

Next, a sampling interval of 0.01 sec IS used. A neural network

N P is trained to imitate the plant. The learning curve for NP is

shown in Figure 6.21. This neural network is then used to define a

controller for the plant. The learning curve for Nc is shown in

Figure 6.22.

119

::-{ ~-~-$=+-:-········l········i·-···-···1·········+ ·-·+··-···
0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (sec)

Figure 6.20. Response for Initial Position 0.5 (~t=0.1)

This controller was then used to control the plant. Figure 6.8

shows the operational mode of the system. The response of the

system (x 1 and xz) and the reference model (xm 1) to an initial

position of 0.5 radians when a constant reference input of rt/2 is

applied is illustrated in Figure 6.23. The controlled input is u and

dx2/dt is the acceleration of the plant.

II)

5
~ a g.
II)

'Cl
®
"'

.1

.01

.001

1 10

number of iterations

120

Figure 6.21. Learning Curve for Neural Network NP (~t=O.Ol)

le-4
'"'/·

_..,-
" '~ T 1 : ~ 1

"""""" :::::::::::: o~oooooooooooo•ooouoo :----~--······----··
le-5 '\

!JJJJJJJJ.iJJ.i}J}
............

..... ;::;
.. ::::::

1e-6
't , ii:;M

! ~~ ::;:':'-'" 1
"'" :;:;: ;;;::;

::::::::::::::" ::::::: .. ±--·
,

f::::' :::::::::::::::::::::: ,
1e-7 :::::; ~:::::: ::::::

:::::::::::::.

1e-8

:::::::::::::.

~
..

L, l .. . ~ ,
:!!:::::::::: :::::::::: ::::: :::::::' ::::

::::::

·:::::.
:

le-9 1imw H11mmmm111m=~:::: ; !
;;;::;: ~{1,t!}_!_!}.!_i}.i} ['}_:_:_:_:_:_:_:_:_:_:! •.. ::::: ::::::::::

: , . ::::::::::::: r ! ..
1e-10 ! .L ; ! ! ! : ! ::·~~

1 10 100

number of iterations

Figure 6.22. Learning Curve for Neural Network Nc (.1t=O.Ol)

121

::_: ;mm:';;.mm.·~m1~ 1m:~1 m~ l•mm:, .. mm•
,4 I - ,

-: v+:~ ~~-- -~-- -_·· .;.~~ : :t· ~--· ~-~--~~~--: : J·--~-----:~-!--: :.:.~-1----·. ~ .

5 ~: .. ············T················-r················T················r················r-················r······ .. ········r-······ .. ·······T················-r·················
o=\ = = ' : : : : = =

-S ... _\ ~-· ... -···!·············+ ····-···1············-t·· ·······+--······+ -······!·-·············!··
-10 ~.._ ___,,.;. __,__.i;.+lf. ____ _

.
0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (sec)

Figure 6.23. Response for Initial Position 0.5 (At=0.01)

The controller was able to stabilize the plant, even for a large

initial position, but the steady state position is offset from the

desired position of Tt/2. Figure 6.24 a) shows the response of the

system (position only) for three different initial positions (0.5, 1.7

and 3.0). All responses settle to the same steady state. This fact

suggests that the bias of the output neuron has not yet been fully

learned. After adjusting this bias the response of the system for

the three initial positions above is illustrated in Figure 6.24 b). All

positions settle to the desired value, r, of rr./2. This shows the

robustness of the controller to initial positions.

3

2.7

2.1

1.5

.9

122

.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (sec)
a) Before Adjusting the Output Neuron Bias

3~---------,~---.-----.----~----~-----,----.-----.-----.

::: ~~~E~t;::_::t~~:~:: ___ t;;;;~:~~~-~::_;:l;;;-;-1~; -;;;::
L: ~~ -_ -_ :;~~ ~:~r;::; :;~!~:; :;:~1 :; ~ 1:; ~ ~~~

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

b) After Adjusting the Output Neuron Bias

Figure 6.24. Response for Initial Position 0.5, 1.7 and 3.0 Radians

Simple Feedback Controller. For companson purposes a linear

controller was used on the elevation model. The linear controller is

a simple feedback controller where just position (the only

measurable state) is used as feedback to control the plant. It is

designed such that if it were applied to the linearized elevation

model the closed loop system would respond like the reference

model given above.

123

The linearized elevation model about a position of Tt/2 and a

velocity of zero is

dx1/dt = x2

dx2/dt = 10 - 2*x2 + u

or

(VI.35)

Let u be chosen of the form

u = -(k*y + H*r +G)= -(F*x + H*r +G) (VI.36)

where F = [k 0]. Then, substituting u in equation VI.35 gives

dx/dt = Ax- B(Fx + Hr + G) + D

= (A - BF)x - BHr - BG + D

If G = 10 then BG = D giving

dx/dt = (A-BF)x - BHr

Substituting the values for A and B g1ves

!~ =[~k !2]x-[~}

(VI.37)

(VI.38)

For perfect model following, k (i.e. F) should be obtained such

that equation VI.38 would equal equation VI.22 (the reference

model). This is not possible since -2 * -6 (element a22). Therefore,

the system cannot respond like the reference model.

124

The root locus for the above system is shown in Figure 6.25.

From this figure, the smallest settling time with no oscillation is

achieved when the poles of the closed loop system are located at -1.

This requires k = 1. With this value the settling time is 3 sec

(=3/1). If H is chosen equal to -1, then the controller is

u = -(xi - r +10) (VI.39)

1.2 ..------..--------:-----:r--------:-----...,-------,

J or~--~----~---+----~--~~~
~ I
.§ -.3

-.6

-.9

-1.2_...__..__.:......J.___.--&.,__.__.___,__.__.___.___..._____.__.___.___.__,.__.___.__.___.___.____,
-2.5 -2 -1.5 -1

real

-.5

Figure 6.25. Root Locus

0 .5

Figure 6.26 shows the response (position only) of the neural

network controller (xi), the simple feedback controller (xci) and the

125

reference model (xm 1) for an initial position of 0.5 and 1. 7 radians.

As one can see, the neural network controller responds faster than

the simple feedback controller for an initial position of 1. 7 radians.

For an initial position of 0.5 radians the simple feedback controller

is unable to stabilize the plant, the plant hits a stop at 0.5 sec.

1.7 r;:""c;:---.----~,-----.,----.------,-------,--------,----.---.----.

1.66

1.62

1.58

' ~ i ~ ' ' ' ' i i

-~:!·~·····~~=+- -+······1----1·----····---·---
~·:··;··~-~~F~-~=-~-~-~=~-~-~-=~-~-~-i~~=··-~·-·~t·······--·-----~-L. ·---'-~---=·;;:~-------·-----=1::;;:=.-·;··--·--·--··-··---

o .5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

a) Response for Initial Position 1.7 Radians

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

b) Response for Initial Position 0.5 Radians

Figure 6.26. Comparison of Controllers

126

Fourth Order Models

In this section Narendra's general method is applied to design a

neural network controller for a fourth order model of the ERG. The

fourth order model is obtained when one of the vibrational modes

of the ERG is added to the second order systems above.

These vibrational modes, developed because of the flexibility of

the gun, are resonances excited by the weapons large unbalance. It

affects the pointing accuracy of the weapon which is very strict.

This is also found in large space structures. They are distributed

parameter systems with a low resonant frequency, a small damping

ratio and a high pointing accuracy. Their control has been studied

and is still an active area of research [16,17].

Here the resonances are modeled as second order systems with

a frequency of 19.8 Hz and a damping ratio of 0.05. It is added to

the acceleration of the ERG. These parameters give the following

transfer function between the resonant acceleration and input

0.5s2

s2 + 12.461s+ 15527 (VI.40)

which m state variable form is

dv = [-12.461 -121.3047] [8]
dt 128 0 v+ 0 u

w = [-0.7788 -7.5815]v + 0.5 u (VI.41)

The block diagram in Figure 6.27 illustrates how this resonance

IS added in the azimuth model and the elevation model given

earlier. Here the only measurable state is position. These plants

can be described as

y(k+1) = f(y(k), y(k-1), y(k-2), y(k-3),

u(k), u(k-1), u(k-2), u(k-3))

and the neural network controller is

u(k) = N c[r(k), r(k-1), r(k-2), r(k-3), y(k), y(k-1),

127

(VI.42)

y(k-2), y(k-3), u(k-1), u(k-2), u(k-3)] (VI.43)

resonance

2
s

2 s + 12. 461s + 15527

a) Azimuth Resonant Model

resonance

2
s

s2 + 12. 46ls + 15527

b) Elevation Resonant Model

1

s position

Figure 6.27. Block Diagram of Resonant System

128

Next, the neural network controller Nc is designed for the

azimuth model. The elevation model 1s left for future work.

Reference Model

The reference model determines how the output of the plant

behaves. The relative order of the reference model should be at

least equal to the relative order of the plant (in this case, 4).

Therefore, a fourth order reference model was chosen.

The fourth order reference model selected is depicted below.

The discrete time transfer function of the second order reference

model, equation VI.24, was squared and the constant C obtained

such that if a step input were applied the steady state value of Ym

would be one. Therefore, the transfer function for the fourth order

reference model is

Ym = c((4.411*z+4.3237)*.0001)2

R z2 -1.9409*z + 0.9417

_ (z3 +2.97z2 +2.9403z+0.970299)*2.0303e-8

z4 - 3. 92z3 + 5. 7 624z2 - 3. 7 64 7 68z + 0. 92236816

which gives

Yro(k+l) = 3.92*yro(k) - 5.7624*yro(k-1) +

+ 3.764768*yro(k-2) - 0.92236816*yro(k-3) +

+ (r(k) + 2.97*r(k-1) + 2.9403*r(k-2) +

+ 0.970299*r(k-3))*2.0303e-8

(VI.44)

(VI.45)

129

Azimuth Model

The azimuth model (6 fixed) is shown in Figure 5.3. Here the

second order resonance is added to the second order system giving

a fourth order linear system. The equations in state variable form

that describe this system are

0 1 0 0 0
dx 0 -2 -0.3894 -3.7908 1.5
dt 0 0 -12.461 -121.3047

x+
16

u

0 0 128 0 0 (V1.46)

where: x 1 = <1>

x2 = d<j>/ dt

u - input current to the motor that moves the gun in <1>

The method used for integration is third-order Runge-Kutta (see

Appendix) with ~t=0.01 sec, the sampling interval.

As described above, the first stage in designing the controller

is to obtain a neural network that imitates the plant. Figure 6.6

shows a sketch of the procedure for plant identification.

The plant can be described as in equation VI.42. A neural

network Np with one layer of linear neurons having eight inputs

(y(k), y(k-1), y(k-2), y(k-3), u(k), u(k-1), u(k-2), u(k-3)) and one

output (y(k+ 1)) was trained to mimic the plant. The learning curve

for NP is shown in Figure 6.28. This neural network was then used

to define a controller for the plant.

130

.1

.01

.001

le-4
Ul ...
0 5 le-5

~
~ le-6
0"
Ul

'8 1e-7
8
~ 1e-8

le-9

1e-10
1 10 100 1000

number of iterations

Figure 6.28. Learning Curve for Neural Network NP

The controller is detailed in equation VI.43. Neural network Nc

has one layer of linear neurons with eleven inputs (y(k), y(k-1),

y(k-2), y(k-3), u(k-1), u(k-2), u(k-3), r(k), r(k-1), r(k-2), r(k-3))

and one output (u(k)). It was trained to control the plant. The

learning curve for Nc is shown in Figure 6.29.

This controller was then used to control the plant. Figure 6.8

shows the operational mode of the system. The response of the

system (x 1 and x2) and the reference model (xm 1) to an initial

position of 3.0 radians when a constant reference input of zero is

applied is illustrated in Figure 6.30. The controlled input is u and

dx2/dt is the acceleration of the plant. As one can see, the

controller was able to stabilize the plant and also damp out the

resonance improving pointing accuracy.

1e+9

"'
~ .1

11e-4

0: 1e-7 =========~=~===~* 0

~1e-10
1e-13

1e-16

1 10 100

number of iterations

Figure 6.29. Learning Curve for Neural Network Nc

1 3 1

Simple Feedback Controller. For comparison purposes a linear

controller was used on the azimuth model. The linear controller is a

simple feedback controller where just position (the only

measurable state) is used as feedback to control the plant. It is

designed such that the fastest settling time without oscillation is

obtained.

132

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

Figure 6.30. Response for Initial Position 3.0

Let u be chosen of the form

u = -(k*y + H*r) (V1.47)

The root locus for the. azimuth model is shown in Figure 6.31.

From this figure, the smallest settling time with no oscillation is

achieved when the poles of the closed loop system are located at -1.

This requires k = 1. If H is chosen equal to -1, then the controller is

u = -(x1 - r) (VI.48)

150

120

90

60

30

J 0
bO

"' .§ -30

-60

-90

-120

-150
-7 -6 -5 -4 -3

real

-2

Figure 6.31. Root Locus

133

-1

Figure 6.32 shows the response of the system (x1 and x2) and

the reference model (xm 1) to an initial position of 3.0 radians when

a constant reference input of zero is applied. The controlled input

is u and dx2/dt is the acceleration of the plant. As one can see, the

controller was able to stabilize the plant but was mot capable of

damping out the resonance in the acceleration.

In the next chapter, a summary and topics for future work are

presented. Future work includes applying the general method to a

controller for the elevation model of the ERG with resonance.

134

-l:;*g::~·=~*1:~::::~::::~l·::~~--::_j-::·:~~-:~-~f~::~_:-~
3

i -··:ct .. ~!::::::::::::=::!:::: ::: :::j::::::::::::::::j: :::::::::::1=:::=:::=:::1::::: :::::::::j::::=:::=:::i::::::::::::

-1 -··--········-!--····· ·······j···-········-·-1- .. ·········i...... ,........... +-··-··-+· ··-··· ·;····-····-··+·················

-Z -··-········:· ··· -~-r ···-l··· ··· ··t··-········1.. ··········!-··-·- ···!······ ···· I· ·-·-····!· ··· ···· ·
-3L-~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

Figure 6.32. Response for Initial Position 3.0 (Simple Controller)

CHAPTER VII

SUMMARY AND FUTURE WORK

This research investigated the use of neural networks as

controllers for dynamical systems, with particular emphasis on the

stabilization of the Extended Range Gun (ERG). Two design

techniques using neural network controllers, developed by Widrow

and N arendra, have been studied. The backpropagation algorithm,

which is used in both techniques, was explained in detail in Chapter

II.

Chapter III described modifications to the backpropagation

algorithm to reduce training time. Some reduction in training time

was obtained, but it was still high. Therefore, another algorithm,

the conjugate gradient with line search, was suggested. This

algorithm decreased the number of iterations a significant amount.

The use of neural networks in control systems was described m

Chapter IV. Here, the two techniques used to design neural

network controllers were explained. Widrow developed the first

technique while the second one was established by Narendra. In

Chapter V Widrow's technique was used to control a simple model

of the ERG. Narendra's feedback linearization method used on the

simple model was presented in Chapter VI. Results showed that

both techniques were able to provide good control of the weapon.

135

136

Chapter VI also included defining a controller for the simple

model of the ERG using the general method developed by Narendra.

With this training method, the conjugate gradient algorithm was not

able, in many cases, to determine a controller for the gun. A

variation of the backpropagation algorithm, the Levenberg

Marquardt algorithm, was capable of finding a controller for the

gun.

In this research only the linear azimuth model with one

resonant mode was included. More complex models were left as

future work. These models would include the addition of more

resonant modes to the simple gun systems used in this research.

Another aspect to be explored in future research would be to find a

controller for the nonlinear elevation model with resonances.

Another area of future work is on-line learning. When the modes

cannot be adequately modeled, the controller could adjust to the

unmodeled dynamics after installation. Narendra's method is

promising in this area.

REFERENCES

[1] R.P. Lippmann, "An Introduction to Computing with Neural
Nets," IEEE ASSP Magazine, vol. 4, no. 2, p 4-22, April 1987.

[2] R. Hecht-Nielsen, "Theory of the Backpropagation Neural
Network," presented at the International Neural Networks
Society Annual Meeting, Sept 1988.

[3] R. Hecht-Nielsen, Neurocomputing. Addison-Wesley (1990).

[4] D.E. Rumelhart, G.B. Hinton, and R.J. Williams, Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, vol. 1: Foundations. MIT Press (1986).

[5] D.M. Himmelblau, Applied Nonlinear Programming. McGraw
Hill (1972).

[6] T.P Vogl, et. al., "Accelerating the Convergence of the
Backpropagation Method," Biological Cybernetics, vol. 59, p
257-263, 1988.

[7] D. Nguyen and B. Widrow, "Improving the Learning Speed of
2-Layer Neural Network by Choosing Initial Values of the
Adaptive Weights," Proceedings of the IEEE International Joint
Conference on Neural Networks, vol. III, p.21-26, July 1990.

[8] L.E. Scales, Introduction to Non-Linear Optimization.
Springer-Verlag (1985).

[9] R. Fletcher and C.M. Reeves, "Function Minimization by
Conjugate Gradients," Computer Journal, vol. 7, no. 2, p 149-
153, 1964.

[10] W.L. Brogan, Modern Control Theory. Prentice-Hall (1985).

[11] A. Guez and J. Selinsky, "A Trainable Neuromorphic
Controller," Journal of Robotic Systems, vol. 5, no. 4, p 363-
388, 1988.

137

138

[12] D. Nguyen and B. Widrow," The Truck Backer-Upper: An
Example of Self-Learning in Neural Networks," Proceedings of
the IEEE International Joint Conference on Neural Networks,
vol II, p.357-363, 1989.

[13] D. Nguyen and B. Widrow," Neural Networks for Self-Learning
Control Systems," IEEE Control Systems Magazine, vol. 10, no.
3, p 18-23, April 1990.

[14] K. S. N arendra and K. Parthasarathy, "Identification and
Control of Dynamical Systems Using Neural Networks," IEEE
Transactions on Neural Networks, vol. 1, no. 1, p 4-27, March
1990.

[15] K.S. Narendra, E.G. Kraft and L.H. Ungar, Neural Networks in
Control Systems, workshop at the American Control
Conference, Boston, MA, May 1991.

[16] M.J. Balas, "Trends in Large Space Structure Control Theory:
Fondest Hopes, Wildest Dreams," IEEE Transactions on
Automatic Control, vol. 27, no. 3, p 522-535, June 1982.

[17] B.A. Czajkowski, A. Preumont and R. T. Haftka, "Spillover
Stabilization of Large Space Structures," Journal of Guidance,
Control, and Dynamics, vol.13, no. 6, p 1000-1007, Nov-Dec
1990.

[18] B. Carnahan, H.A. Luther and J.O. Wilkes, Applied Numerical
Methods. John Wiley & Sons, Inc (1969).

APPENDIX

TIITRD-ORDER RUNGE-KUITA

IN1EGRATION :METHOD

The method of integration used to obtain the solution of the

differential equation describing the plant was third-order Runge

Kutta [18]. This algorithm gives approximations as accurate as

higher-order Taylor formulas but only include first-order

derivatives.

The third-order approximation is equivalent in precision to

Taylor's expansion that include terms up to (&t)3. It requires the

evaluation of the function at three points in the interval [t, t+.6. t].

If

x = f(t,x)

then the approximation is of the form

Xi+l =Xi+ .6-t*<Hti,Xi,.dt) (A.1)

where <1> is the increment function by Henrici, an approximation to

f(t,x).

Let <1> be a weighted sum of k1, k2 and k3, derivative

evaluations on the interval [t,t+.6.t]

<1> = a*k1 + b*k2 + c*k3

Substituting in equation A.l gives

xi+l =xi+ .6.t*(a*k1 + b*k2 + c*k3)

139

(A.2)

(A.3)

140

Let

kt = f(t, Xi)

k2 = f(t + p*at, Xi+ p*at*k1)

k3 = f(t + r*at, Xi+ s*at*k1 + (r-s)*at*k2) (A.4)

where p, r and s are constants.

These constants are obtained by expanding k2, k3 and f() about

(t,xi) in a Taylor's series, dropping the terms having the exponent of

at greater than 3 and equating the expressions. The following

equations are then obtained

a+b+c=1

b*p + c*r = 1/2

b*p2 + c*r2 = l/3

c*p*s = 1/6 (A.5)

There are more unknowns (6) (a, b, c, p, r, s) than equations (4),

therefore two of the constants are chosen arbitrarily. If the

constant values are

a = 1/6, b = 1/6, c = 4/6, p = 1, r = 1/2, s = 1/4

then the third-order Runge-Kutta is given by

where

Xi+l =Xi+ at*(kt + k2 + 4*k3)/6

kt = f(t, Xi)

k2 = f(t + at, xi+ at*k1)

k3 = f(t + at/2, Xi+ (lf4)*at*kt + (1/2-1/4)*at*k2)

= f(t + at/2, Xi+ (l/4)*at*(kl + k2))

(A.6)

The above equation is the formula used for integration of the

differential equation describing the plant specified in Chapter VI.

VITA¥

Gisele Guimaraes

Candidate for the Degree of

Doctor of Philosophy

Thesis: ·NEURAL NETWORKS FOR CONTROL

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Goiania, Gohis, Brazil, January 31,
1961, the daughter of Jerson D. Guimaraes and
Balbina A.S. Guimaraes.

Education: Received the Bachelor of Science degree in
Electrical Engineering from Universidade Federal de
Gohis, Goiania, Gohis, Brazil, in October 1984; received
the Master of Science degree in Electrical Engineering
from Oklahoma State University in December 1988;
completed the requirements for the Doctor of
Philosophy degree at Oklahoma State University in
July1992.

Professional Experience: Graduate Research Assistant,
Department of Electrical Engineering, Oklahoma State
University, from January 1988; Teaching Assistant,
Department of Electrical Engineering, Oklahoma State
University, January 1989 to May 1989; Software
implementation and student assistant for a graduate
course at Universidade Cat61ica de Goias, Goiania,
Gohis, Brazil, March 1985 to December 1985.

Membership in Professional Societies: Institute of Electrical
and Electronics Engineers in Control Systems, Neural
Networks, Computer Societies.

Membership in Honorary Societies: Tau Beta Pi and Eta
Kappa Nu.

