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Abstract
A backpropagation neural network and discriminant analysis were
compared for their efficacy in the brediction of violent
behavior. Forty-eight‘predictofivariables including demographic
data, criminal histgry, psychomefric data, substance abuse
history, and situational factors were collected from official
records of male criminal offenders (N = 392) and used to predict
the violent or nonviolent nature of the offense for which each
subject was incarcefated. Both neural network (NN) and
discriminant analysis (DA) models showed statistically
significant prediction accuracy of about 77% total hits on
cross-validation. As decision thresholds for classification
were made increasingly stringent, however, the NN models held
their accuracy better- than the DA models. The highest levels of
accuracy were achieveq\for bothyNN énd DA models with a
collection of 17 variables éhat/included demographic data (age,
income, race, unskilled labor),wcriminal history (probation and
parole status, previous violent arrests), psychometric data
(MMPI scales 1, 3, 8, 0; IQ), situational factors (being
" married, living with a mate, irreqular work history, supporting

a family), and substance abuse (benzodiazepines).
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A NEURAL NETWORK APPROACH TO THE
PREDICTION OF VIOLENCE

Artificial neural networks, otherwise known as parallel
distributed processing models (Rumelhért & McClellénd, 1986) or
conhectionist*models (feldman &5Baliard, 1982); aré a form of
adaptive computer information processing system that associates
input patterns with oufput patterns.‘ This assoéiatiqn, or
"mapping," is said to be "learned" by the network as the input-
output associétions are formed by induction, that is, by
repeatedly processing examples of input-output pairs and
gradually adjusting a set of nﬁmerical weights, until the
network can generate the correct outputbfor each input used in
the "training" pr@cess. ‘

Neural networks diffef in fundamental ways from traditional
forms of artificial (computer) information prOcessing systems.
Unlike traditional artificial intelligence (AI), such as expert
systems, neural networks contain no ‘'separate knowledge base of
rules; 1in fact, the understanding of the rules for mapping
inputs to outputs is not reduired of the programmer--they are
generated in the training phase by the network. Many problems
in AI have been intractable because oﬁ the lack of knowledge
necessary for constructing explicit rules, even though large
sets of examples based on experience exist. Furtherméré, rule-
based systems often fail when applied to real-world data that is

corrupted with noise (Hecht-Nielson, 1988). Neural networks



have offered an alternative means of solving such ﬁroblems,
without the need for explicit rules. In contrast Qo traditional
computing in general, neural networks are comprised of many
simple distributed processing uhi;sé>rather than a single
complex central processing unit: Furfhermofe, thelresult of
processing 1is not‘storeQ‘ih'a specifié memory logation, but
consists of the overall state of the network (matrices of
weights) aftéf it has converged_to a criteri&nucondition of
equilibrium (Caudill, 1987).

Neural networks were inspired by the neufal architecture of
the human brain, originally conceived‘bvacCulloch and Pitts
(1943) in a paper ‘entitled, "A logical calculus of the ideas
immanent in nervous activity." The adaptive nature and, hence
the learning capabilities, were :added 15 years later by
Rosenblatt (1958). Thevﬁomputational units are highly
interconnected, arrahged'in hierarchical layers, and operate in
a metaphorical sense as neuroné connected together into a
functioning whole (Klimasauskas, i991a). That is, each
"neurode" sums the excitatory (+) or inhibitory (-) input
received from each neurode in the preceding layer via a weighted
"synaptic" connection, transforms that input, and pfoduceé ah
output, which is then receiveq as input by each neurode in the
successive layer, and processed in a similar fashion.

Many different types of neural network architectures exist

(at least 50, 13 of which are in common usage; Hecht-Nielson,



1988), differing in topology (number of layers, number of
neurodes per layer, degree of interconnectivity among and
between neﬁrodeé in different layers); "learning" algorithms
(specifying how the weight§ are‘fo beiadjusted); and transfer,
or "activatién" functions (for the within-neurode
transformation). This study préppses the most popular form of
network for pattern classification, a’"backpropagation" neural
network (Werbos, 1974; Parker, 1982), as an appropriate model
for individual behévioral prediction..

Implementation of neural networks‘may be realized in
several different ﬁérms. Hardware implementations operate in
parallel at very fast speeds via simple processors and parallel
circuitry. "Neurocomputers" combine partially parallel hardware
and software which simﬁlateé the parallel processing of its
elements. Strictly‘séftware forms of neural networks, such as
the one employed in this study[ simulate the parallel processing
of elements, but run on conventidﬁar serial computers (Kinoshita
& Palevsky, 1987).

The last decade has seen a surge of interesp in neural
networks on the bartrdf researchers in a highly:diverse range of
disciplines, inéiuding artificial intelligence; compufer
science, electrical engineering, physiqs,»neurobiology,
philosophy, linguistics, and psychology. This excitement,
evident by the hundreds of talks and papers on the subject each

year (Caudill, 1989), may be attributed to the widespread and



often dramatic success recently achieved by applying neural
networks to an impressive variety of pattern recognition,
classification, nonlinear feature detection, and prediction
problems (White, 1989a, 1989b), many of wﬁich had previously
been intractable, or solved only by very difficult conventional
approaches. Hornik, Stinchcombe, ana White (1989) have provided
a theoretical foundation which establishes that these successes
are not just "flukes," rather'they‘reflect the capabilities of
backpropagation networks as general universal approximators of
unknown nonlinear regression functions (p. 364).

Backpropagation neural networks are potentially applicable
to any situation that requires the acquisition of a complex
nonlinear mapping (Simpson, 1990). Successful applications have
included speech processing (e.g., Elman & Zipser, 1987), image
recognition (e.g., Cottrell, Munro, & Zipser, 1987), temporal
processing (e.g., Elman, 1988),Jknowledge processing (e.q.,
Hinton, 1986; Pollack, 1988), te%t and sentence processing
(e.g., Sejnowski & Rosenberg, 1987), optical character
recognition (e.g. Becker & Hintop, 1991; Caudill, 1988), medical
diagnosis (e.g., Weiss & Kulikowski,,l99lf, as well as
diagnostics and robotic control. These examples are by no means
exhaustive, but were selected to illustrate the tremendous
diversity of recent work encompassed by the field (see Simpson,
1990, for an extensive bibliography).

Another area that has seen many successful neural network



applications is prediction. Prediction application% include
Latin Americah conflict (Werbos & Titus, 1978), coﬁporate bond
rating (Moody & Utans, 1991), bankruptcy (Odom & SHarda, 1990),
cancer recurrence (Weiss & Kulikowski, 1991){ timeiseries
prediction (Sharda & Patil, 1990), fime‘seriescof Qunspots
(Weigend, Rumelhart, &’Huberman, 1991), solar flares (Fozzard,
Bradshaw & Ceci, 1989), and Mackenylassvchaoticitime series
(Crowder, 1991; Lépedes & Farber, 1987; Sanger, 1991).

Predictioﬁ is one of the most f@ndamental objectives of
basic and applied science. Survival of early civilization
depended on such.problems: the prediﬁtion of weather cycles for
planting and harvest, and of animal migration among the earliest
examples. Success at prediction is taken as validation of
theoretical explanationé of phenémena.

One of the goais of psychoiogical science is to predict
human behavior. Literature on ;he applied predictién of human
behavior reveals essentially'three types of behavior that
psychological science has triéd to predict (Meehl, 1954):
success in some type of trainihq or schooling, recovery from
psychological disorders, and criminal recidivism.

AAlthdugh neural networks have been used in psycﬁolégy to
model perceptual, cognitive, and neurobiological processes,
hﬁhere has been no previous psychological study done, to this
author’s knowledge, whiéh has applied neural ﬁetworks to

individual behavioral prediction. Examples of psychological
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modeling efforts include models of word recognition and context
effects (McClelland & Rumelhart, 1981; McClelland, 1991), memory
(McClelland & Rumelhart, 1985), human categorization (Kruschke,
1991), speech (Mccielland»& Elmén,.1986), cerebral cortical
processing (Crick & Asanuma, 1986;)Séjnowski,)l986), place
recognition and goal location (Zipser, 1986), and neural
plasticity (Munro, 1986). Thus; although neural networks have
proven quite useful in psychology, and in other types of
prediction, they have not yet been evaluated as a tool for
predicting individual behavior, a primary objective‘in
psychology.

A pressing, long-term probiem in behavioral prediction,
which has thus far proven intracféble (Monahan, 1981; Wenk,
Robison, & Smith, 1972) with traditional techniques is the
prediction of violence. This problem was selected as a test
case for a neural network approach to behavioral prediction for
several reasons., First, it is an old problem (e.g., Burgess,
1928), which has a history of'previous attempts (to be reviewed
in a later section), that can serve as a baseline for comparison
with a neural network approach. Second, not much progress has
been made in the more than sixty years of documented attempts,
thus, the potential for improvement over previouslattempts is
feasible. Third, violent behavior occurs'with a very low base
rate (proportion of the population that actually commits violent

acts), a characteristic that plagues prediction attempts (Meehl,



1954), and one that, it will be argued, may be more tractable
with neural networks than with traditional prediction methods.
Fourth, any potential improvement reélized would carry a very
high societal vélue, as this problem . is- still a very important
concern of the public, asﬂwell as of fﬁe criminal justice
system; any contribution that would at least lead in a positive
direction could eventually help solve some vefy serioﬁs
practical problemg. Fifth, a large data base exists in the
official records of incarcerated offenders. »

The focus of this research is on two fundamental issues.
First, the aim is to empirically evaluate the potential
contribution of neural ﬁetwork technology to an area important
to psychology——behévioral prediction. A secbndary aim is to
attempt to predict, in a practical sense, an instance of low
base rate behavior——violent!behavior.

Traditional Aéproaches to Prediction

Traditional approéches to prédicting criminal behavior have
relied upon two general modes of combining data--clinical and
statistical/actuarial mefhods. This section will give an
overview of the processes involved in clinical and statistical
prediction. -

Clinical Prediction Methods

Clinical prediction invblves hypothesis formulation

concerning the structure and dynamics of theAparticular

individual for whom the prediction will be made (Meehl, 1954),.



This method entails an intuitive or subjective combination of
factors deemed relevant by the clinician (Elstein, 1976). Such
relevance is often determined per individual case from a study
of occurr;nceé in tthindividual’gllife (Meehl, 1954; Monahan,
1981). Factors are,selected f;&m*intef&iéw(impressions, case
history, and'psychometric informétion, oftenJin the absence of
any exact knowledge of the»statistical'reiationships between
predictive information and the‘Cfitérionlbehavior (Meehl,
1954) . |

Accuracy of clinical prediction rarely exceeds accuracy
obtainable by chance (Meehl, 1954). This method is particularly
" prone to overpredict,'that is, to generate many "false
positives," cases predicted to exhibit the criterion behavior
which in fact 'do not display such behavior. This “léniency
error" (Sarbin, 1942) has been demonstrated in the prediction of
grade point averages, and virtually every study predicting
success on parole (Meehl, 1954;\Monahan, 1981; Steadman, 1980).

Overprediction is not unique to the clinical method of
prediction, buf stems from a pfoblem of base rate in the
criterion behavior, which plagugs any attempt to predict a
behavior that occurs only rarely; Base rate refers to the
proportion of cases exhibiting a particular criterion behavior
in a given population. This rate is critical in prediction,
with the likelihood of maximal prediction accuracy occurring in

criterion behaviors with a base rate of 50% (Meehl & Rosen,



1955) .

H
|

Blind gquessing, in a criterion distribution with a base
rate of 50%, results in 50% correct decisions. In this case, a
prediction method with only'weak 6f'modenate valid%ty is likely
to improve upon this-base rate accuracy. Blind prediction in a
skewed distribution, however, with a base iate,)fgr example, of
20%, can achieve 80% correct decisions simply'by predicting all
cases to belong to‘thé more frequent class kMéehl, 1954; Meehl &
Rosen, 1955). Therefore, considerably higher levels of
predictive validity are required for discrimination above base
rate accuracy, as the base rate deviates from 50%.

The extreme manifestation of the base rate problem in
clinical predictioﬁ results from the fact that it is often
ignored in this méthoq‘of prediction (Meehl, 1954; Meehl &
Rosen, 1955). This tendency has been documented by Tversky and
Kahneman (1974), who labelléd ﬁt tﬁe "representativeness
heuristic,” the tendency to predict the outcome that appears
most representative of the available evidence even when that
outcome is statistically less likély than others. This
heuristic is especially prominent when case—specifiq
infbrmatidn, thé sole basis for much cliniéal prediction, is
present. In spite of this lack of accuracy inherent in clinical
prediction, the criminal justice system has relied heavily on
the clinical judgment of psychologists and psychiatrists for

predictions of dangerousness (Monahan, 1981).
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Statistical Prediction Methods

In contrast, statistical methods of prediction determine
expectancies about future behavior on the basis of class
membership, resulting in a probability figuie'that is an
empirically determined relatiﬁe‘fréqﬁency (Meehl, 1954). The
data are méthematically combined by mechanistic decision rules
for the purpose of classification (Meehl, 1954; Monahan, 1981).
Actuarial tables containing the distribution of frequencies in
cells represent complex conjunctions of data (Meehl, 1954). 1In
contraét to the giinical method of selecting relevant factors on
a per case basis, statistical methods dictate‘precisely the
factors to be considered fér every instance of a specified type
of case (Monahan, 1981).

Statistical prediction can often be more efficient than
clinical prediction, taking less time, less effort, and
requiring lower level personnel tb carr& out (Meehl, 1954). 1In
addition to greater efficiency, virtually all studies comparing
the relative efficacy of the two methods find statistical
prediction more accurate than the clinical approach (Meehl,
1954; Steadman, 1980; Monahan, 1981). -Despite findings of.
vastly improved accuracy, reliability, and consistency;
statistical methods have been neglected in the predictién of
violent behavior (Shah, 1978; Monahan, 1981).

The most commonly usedlétafistical methods for prediction

are additive linear models. Two such methods of historical
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significance, the Burgess method (1928) and the Glueck method
(1950) have held up relatively well in the prediction of
criminal récidivism. A third linear model, the standard tool
for prediction, is multiple regfésSion‘anaiysis, or its variant
for use with dichotomous criterion variables, discriminant
function analysis. |

The Burgess method is a simple point scoring hethod, in
which each pfedictor variable is’dichotomized at fhe median. If
an individual’s status on a given predictor variaBle falls into
the category associated with success on' the criterion, his score
is incremented by 1 point; if in the category associated with
failure on the criterion, the individual scores 0 on that
variable (Wilbanks, 1985). A totai score is obtained by summing
points for each predictor variable; thus the maximum possible
score is equal to the number of predictor variables included.
Scores for all subjects in a Coﬁstruction sample are
cross-tabulated with the ciiterion Qa;iable to yield the
proportion of successes and-failures associated with each
possible score, and appropriate categories of risk are thereby
assigned (Wilbanks, 1985).

The Salient factdr Score, a modern variant of the Burgeés
method is used by the United States Board of Parole as an aid in
predicting success on parole (Wilbanks, 1985). Possible scores
range from zero (high likelihood of Qiolétion, hence poor risk)

to ten (low likelihood of violation, hence good risk). Hoffman
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and Beck (1985) used the Salient Factor Score to p#edict serious
parole violation within a five-year follow-up perigd.

Recidivism was cérrectly predicted in 40% of indiv;duals
claésifiéd as "poor risk,"‘whereas dnlyv14% of those classified

as "good risk" seriously violated parole ' (see Table 1).

Insert Table 1 about here .

A second statistical method of historical importance in
criminological prediction was developed by Glueck and Glueck
(1950) in a well-known study of juvenile delinquency. The
Gluecks compared 560 institutionalized juvenile males with 500
unconvicted juvenile males, studied at an average age of 14 - 15
years (Farrington & Tarling, 1985). A prediction table based on
five factors concerhing discipline, supervision, affection, and
cohesiveness among faﬁily membérs showed remarkable
discrimination. Of thosé scoriﬁg in the high risk range, 98.1%
were delinquent and in the low risk range, 97.1% were
nondelinquent. There were many serious flaws with the Gluecks’
study, however, .such as the use of eitreme groups,¢an
unrealistically high proportion of delinquents (50%),
interviewer bias, and the absence of a Vélidation sample
(Farrington & Tarling, 1985). Although the Gluecks’ results
must be discouhtedvdﬁe to these flaws; their méthod has held up

in comparison to other methods and is therefore worthy of
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mention.

The Glueck method is similar to the Burgess method, but
more precise in the weighting of)p:edictor variables (Wilbanks,
1985). The weight assigned to eéch dichotomized predictor
variable is equal to the proportion of subjects in a
construction sample who‘fail on the criterion~ﬁariable and
possess that attribute. Thus total scores for all subjects,
derived by summing these percentage weights across all predictor
variables, are divided into intervaléfassociated with increasing
levels of risk (Wilbanks, 1985). Wilbanks (1985) applied both
the Glueck method and the Burgess method to a criterion of
parole success bésed on twenty predictor variables. He found
the methods to produce very similér results: 108 and 100 errors
made, respectively, in the construction sample} 100 errors made,
by both methods, in the validation sample. Copas and Tarling
(1984) demoﬁstrated that both the Burgess and Glueck models are,
in fact, the same simple loglineaf model in which all predictor
variables are treated as independent.

Familiar multiple regreésion techniques rely on an ordinary
least squares method (Tarling & Perry, 1985) to derive weights
for each predictor‘variablé baséd on itswrélativé contribution
to the explained variance, while holding constant the effects of
other predictor variaﬁles in the equétion (Wilbanks, 1985).
Unlike the simpler point methods of Burgess aﬁd Glueck, multiple

regression takes intercorrelations between predictor variables
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into account. A subject’s score is the linear comsination of
weighted scores on each predictor variable and soms constant.
Two variatisns of the multiple regression approach include
discriminant analysis, for use with dichotomous criterion
variables, and logistic regression. It has been sﬁown (e.qg.,
Copas, 1985) that multiple regression, with dichotomous
criterion Variables, is mathematically equivalent to
discriminant analysis. Weiss and Kulikowski (1991) cite
empirical comparisons of discriminant analysis and logistic
regression and conclude that they usually givs similar results.
With a large number of categorical predictor variables, however,
it was suggested that logistic regression may produce a slightly
more optimal (in terms of greater classification accuracy) model
(Weiss & Kulikowski, 1991).

Regression models, including discriminant analysis, have
been the standard tools for pfédiction studies. It has been
asserted (e.g., Lippmann, 1987; Weiss & Kulikowski, 1991) that
these models, in contrast with nedral network models, require
fairly restrictive assumptions about the distributions of both
criterion and predictor variables--normal distribution
underlying the error csmponent of the criterion variable; joint
multivariate normal distribution of the predictor variables; and
homoscedascity of variance, or constant error variance across

different levels of the predictor variables (e.g., Neter,

Wasserman, & Kutner, 1989). These assumptions apply, however,
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only when the model will be used for purposes of m?king
inferences to populations, by atfaching probabilit§ values to
inferential statistics. It is not on this basis that the neural
network and regression models in fhis study will b? compared.
These models will be evaluated in strictly a descriptive sense,
that is, in terms of their respective adcuraéy in deriving a
prediction’m&del equation which can be appliéqwto néw'cases for
the purpose of predicting membership in one of two classes.

Even if one did intend to use regression methodé in an
inferential sense, thewF test has been shown to be robust with
respect to violations of these assumptions, except in extreme
cases, especially when‘large sample sizes are used (Cohen, 1968;
Hair, Anderson, & Tatham, 1987).

Of more significant concern for behavioral prediction is
the number of, and intercorrelations among, the predictor
variables used in the model. It is a common findipg that more
error is generated and little’pfédictive power is gained by the
inclusion of more than the first se&eral variables in the linear
model equation (Farrington, 1985; Gottfredson & Gottfredson,
1985; Tarling & Pérry, 1985). That is, little predictive power
is gained when variables, intercorrelated\with those already in
the equation, are added. Each additional variable édds a
further increment of error that is unique to the construction
sample and cannot be expected to exist iﬁ a new sample, and thus

adds to the shrinkage (reduction in explained variation) of the
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equation when applied to this new sample. This is?a significant
problem in the prediction of criminal behavior whiéh involves a
large number of potential predictor variables.

Finally, data relefant tgithe prediction of criminal
behavior aré potentially ridden with multilevel inéeractions,
that is, nonadditive combinationé of variables; although these
have yet to be emﬁiricélly demonstrated (Beverly, 1964). It is
theoretically plausible that this lack of evidence for
significant in£eractions in criminological dataxis inherent in
the statistical method which requires that each potential
interaction be specified and included in the equation as a
separate term. When the number of predictor variables is large,
theoretical knowledge of interactions, lacking in criminology,
is necessary to guide a systematic investigation of such
interactions (Palmer & Carlgon,{1976). Without knowledge of
which variables interact, and the nature of the combinatorial
process, one faces a combinatorial explosion of the number of
possible interactions; For example, if there were a total of
ten predictor variable§, all possible combinétions involving 1
to 10 variables would result in a total of 1,023 possible
combinations of predictor variables. Obviously, it would be
feasible to empirically investigate only a few of these
possibilities.

A Neufal‘Netwofk Approach to Prediction

Neural networks offer a fundamentally different statistical
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approach to prediction problems. White (1989) is éne of the few
statisticians involved in analyzing the learning p£ocedures of
feedforward neural networks. He concluded that the method of
backpropagation can be viewed as an:application of the Robbins-
Monro (1951) stochastic approxiﬁation procedure to solving a
novel class of multidimensional‘honlinear regression problems
(p. 449). "Approximations" are used in place of 'the true
response function éf a nonlinear least équares framework (White,
1981) . White (1989b) further sdggests that neural networks are
applicable to regression problems requiring some type of
"flexible function form" (p. 1011).

Gallinari, Thiria, Badran,*and'Fogelman—Soulie (1991) have
recently analyzed the relations/between discriminant analysis
and neural networkg, analytically for linear neural networks,
and empirically for the nonlinear case. The empirical
investigation compared the two models on problems increasing in
degree of nonlinearity. Their results showed an advantage for
nonlinear networks over tﬁe discriminant analysis models thét
increased in magnitude as the noniinearity of the problem
increased. Furthermore the advantage of the neural network
models extended to generalization on new‘cases. . They
established that each layer of weights in a network performs a
nonlinear discriminant énalysis from the states obtained in the
previous layer. Thus each layer increases the separation and

the clustering of the different classes and the last layer
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classifies the final projection (p. 357).

Thus, although neural networks employ several preexisting
concepts from the statistical literature, it is the combination
of these that is novel (White, 1989b). The net input to a given
hidden unit in a neural network is a famili;r linear
discriminant function which, when subjected to a honlinear
transformation within ‘the hidden unit, acts as a noﬁlinear
feature detector. The outputs of all feature detectors in the
hidden layer are then inputs to’another linear discriminant
function and another nonlinear transformation at each unit in
the output layer. "The approximation benefits from the use of
nonlinear feature detectors, while retaining many of the
advantages of linearity in a particularly elegant ménner“
(White, 1989, p. 1004). |

Mechanics

Backpropagation neural networks "learn" to classify a
pattern through induction, by repeatedly processing examples of
each class. The network is arrénged in successive layers of
simple computational devices called neurodes, or simply "units."
The network consists minimally of three suqh layers of neurodes:
an input layer, a hidden layer, and an output layer (see Figure
1). The intermediate layer consists of neurodes which receive
neither direct input from the outside world, nor a direct
training signal, and hence are "hidden." .The number of neurodes

that can be contained in any layer of the network, and the
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number of hidden layers used, are constrained only’by the power
of the particular software package used, computational limits of
a given hardware system, and praétical considerations of

training time.

Insert Figure 1 about here

Examples are coded as input-output pattern pairs, in the
form of two n-dimensional vectors. The input vectors represent
patterns of "activation" values distributed across all neurodes
in the input layer. The output vectors represent the correct
output for each cor;esponding input pattern. The pattern of
activation on the input laygr is propagated in a forward
direction (hence, a "feedforward" network) to the hidden layer.
The resulting pattern of activation on the hidden layer is then
propagated on to the next layer, the output layer if it is a
three-layer network. Each 'neurode, ér unit, receives inputs
from all neurodes in the previous layer, each of which is
weightgd by a value representing the "connection strength"
between each pair of between-layer neurodes. The receiving
neurode computes a linear combination of these inputs, resulting
in a scalar value, or net input, which is‘then subjected to a
nonlinear transformation, or "activation function." The
backpropagation algorithm requires the activation function to be

continuous and differentiable at all points (Rumelhart, Hinton,
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& Williams, 1986). Typically a sigmoidal, or logistic,
function, which meets this requirement, is used (Eéuation 2
below) . M
The net input to "receiving" unit j, for inpu?/output

pattern pair p is:

net, = Ywo, + 6 : (1)

where I =1 to the number of sending units;
j= 1 to the number of receiving units;
w, = the connection weight between sending unit I and
receiving unit };
o_. = the output of sending unit I, produced by the

pi
presentation of input pattern p;

Qi = a bias, which functions as a threshold, in the
form of a weigﬁt to receiving unit j, from an
"extra" sending unit that always has an
output = 1.
The output of receiving unit j, or its "activation" value, for

input pattern p is:

3 _ 1
opj - j;(netpi) - 1+ e_(m Pi) (2)

where ﬁ = a nonlinear function, sigmoidal in form.
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This activation value is then output to all neurodes in the next
layer (see Figure 2). The nonlinear activation function serves
to constrain the output of each neurode to a value between 0 and
1, filtering out noise (vefy low valﬁes), and preventing output

values from reaching very large magnifudes (Carpenter, 1989),

Insert Figure 2 about here

Knowledge is represented in the values of weights assigned
to the connections. between neurodes on different layers. These
connection weights are initially set to small random values in
the range [—0.1,+0.1].:\Upon presentation of a single input
pattern, the forward propagation through the network proceeds as
described, resulting in a final activation value for each output
node. This output value (o) is compared to a target value (¢)
for that node, that is, the éorfect output for the input
pattern. The difference betﬁéen‘the output and the target
(t - o) is thus the error measure for the network’s processing
of the input pattern.

"Learning", via weight modification, takes place as this
error is propagated backward through the network in a recursive
fashion. The magnitude of the error in classifying input
pattern p is used to determine the amount of change (A) needed
in each weight (w) in order to reduce the error on the next

presentation of pattern p. Each connection weight is modified
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according to the "generalized delta rule" (Rumelhart, Hinton, &

Williams, 1986a):

Awm+1) = n(S,0,) + cAw,(n) (3)

where Aﬁ“% the change in weight from unit 7 to j after

processing input pattern p;

n = the presentation number for input pattern p;

n = learning rate, a constant of
proportionality;

o = momentum term, a consfant that determines
the magnitude of the effect of past weight
change on éurrent weight change;

5. =

wi = (0 0,(1-0,)
‘where 5w = the error signal;
ﬂﬁ = target, or correct output for

unit 7, for input pattern p,
for the weights connecting the output layer and hidden layer

units, and

8, = 0,(1-0,) %5;»&“’&' ()

where 4 = number of units in the layer

above unit 7,
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for weights connecting the hidden layer and inputglayer units.
All weights in the connection matrix are thus upda£ed according
to this "learning rule" (Equation 3), a procedure which is
recursive by layers, in such a way as to improve performance of
the network on the next occasion it receives simil;r input.

Over many, perhaps thousands, "epochs" (one complete
presentation of'all input/output pattern‘pairs in training file)
the total error, summed over the entire set of exampie patterns,
is reduced to a minimal level in this implementation of a local
gradient descent procedure, and the network is said to be
"trained." Although the generalized delta rule does not
guarantee that this minimum is the global minimum, and not a
local one, empirical teéts have demonstrated that convergence to
a local minimum is quite rare (Rumelhart & McClelland, 1986a;
Weiss & Kulikowski, 1991).

The trained network produces a matrix of connection
weights, a complex mathematicai model underlying the patterns of
association inherent in the,training data. Once trained, the
learning mechanism is disabled, and the network can receive any
pattern as input, from the training set or otherwise, and
classify it accérding to the model developed from all the
connection weights. Although several have referred to this
matrix as a "black box" (e.g., Bailey & Thompson, 1990; Garson,
1991), meaning its weights are opaque to interpretation,

researchers are actively seeking methods for interpreting the
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connection matrix in terms of the phenomenon beingjmodelled.
Garson (1991), for example, suggests a method for Gsing the
connection weights to partition the relative share of the output
associated with eacg input variable, by which the relative
importance of input variables in a model can be an;lyzed.
Klimasauskas (1991b) suggests using a nonparametric statistical
technique, "sensitivity analysis," to investigate the relative
importance of each input to a giveﬁ'output. These and other
recently published methods (Arnaldo, Miiler, & Gonzalez, 1990;
Howell, 1990; Nelson & Illingworth, 1991; White, 1989) suggest
that weight matrix analysis has the potential to contribute to
the theoretical knowledge underlying the fitted model.

For behavioral prediction, a neural network can be trained
with a construction sample of pattern pairs, with each input
pattern representing the values of all predictor variables for
one individual, and each output pattern representing the correct
classification for that individﬁal. Consider an example
prediction net comprised of\50 inputs, 10 hidden units, and 2
output units. The input units might represent measurements on,
for example, 20 predictor variables. Tﬁe‘less than one-to-one
representation of predictor variables on input nodes results
from a "distributed" coding scheme, in which the value of a
single predictor variable may be coded across several binary

units, each representing a different category of a given

variable. Marital status, for example, might be represented by
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three binary units, each coding the presence or absence of one
of three categories: single, married, or divorcedj The use of
three units allows the option of representing "unknown" as the
absence of all cétegories. "Local" coding, using a single node
to represent a single variable, may be incorporated as well.
Current age might, for example, be represented’by only one input
unit, continuously valued. Input values are norﬁaiized, based
on the dynamic range of values for a particular input, to values
on a scale of 0 - 1. In this manner, the input units may
represent variables of any level of measurement, categorical or
continuous.

The two output units might represent the two levels of
classification, "A" or "not A." Once the network is trained,
new cases from the validation sample, not processed by the
network in the training procedure, can be given as input, and
the value of each output node, ranging from 0 to 1, may be
interpreted as representingvthe conditional probability of
membership in each class (White; 1989), or a continuous
gradation of "certainty" of the classification decision (Jones &
Hoskins, 1987; Williams, 1986).' Using a "Best-One-Wins"
decision rule, the output node with the higher value répresents
the network’s classification of the givenzinput pattern.

The hidden units are the unique feature of a neural network
prediction scheme. The input patterns are mapped to (i.e.,

associated with) the output patterns via this layer of units,
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which represent the inputs at a higher level of abstraction
!
(than the level of the input units), and may be conceptualized

as representing salient features of the data (Rumelhart, Hinton,
& Williams; 1986b) . In other words, new "hidden" variables are

l
created from combinations of the input variables.

Neural networks offer some potential advantages over

traditional statistical prediction methods. The first advantage
lies in the interconnectivity of the network architecture. Each
input neurode is connected to each hidden neurode, which is
connected to each output neurode. This between-layer
interconnectivity- allows the network the opportunity to assign
weights to any combination of variables necessary to reduce the
output error, in the pfocess of mapping input values to hidden
units, and hidden unit valﬁes to output units. There is no
counterpart to these hidden units in multiple regression or
discriminant analysis.

Second, whereas traditional methods have generally
restricted their models to linear\relationships, this
restriction is somewhat arbitrary (Thorndike, 1918) andfip seems
implausible to assume fhat the factors influencing human
behavior combine in only a linear fashion. Neural network
activation values are subjected to nonlinear transformation
locally at each neurode in the network. Inherent in this

transfer function is the nonlinear combination of many predictor
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variables. This nonlinear processing that occurs within the
neurodes gives neural networks the capability of forming
nonlinear separatiens of classesfih the multidimensional
decision space created by the netWofk (Lippmann, 1987). It has
been well-established that backpropagation ﬁetworks with only a
single hidden layer can approx1mate any arbitrarily complex
nonlinear mapping, to any desired degree of ‘accuracy, provided a
sufficient number of hidden units- are used (Hecht-Nielsen, 1988;
Hornik, Stinchcombe, & White, 1989; Lippmann, 1987; Simpson,
1990; White, 1989). Thus, a neural network has the potential
for outperforming a linear discriminant function in classifying
a criterion behavior which is an ‘unknown nonlinear function of a
given set of predictor variables. Lapedes and Farber (1987)
have shown that the backpropagation learning algorithm provides
a natural extension of linear methods into a nonlinear domain.

Third, rather than developing a prediction equation based
on central tendencies and variabiiity derived from the
simultaneous processing of the training data (Lippmann, 1987),
neural networks gradually fit a complex model by trial and
error, as they process one example at a time, and adjust the
connection weights in very small increments (Gallinari et al.,
1991).

Fourth, neural networks have been demonstrated to be quite
robust with regard to handling input corrupted by random noise,

both in training and in generalization (Hartzberg, Stanley, &
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Lawrence, 1990; Lippmann, 1987; Weiss & Kulikowski* 1991).
Features that appear noisy, as a result of measureﬁent error,
when considered individually, may ﬁrove to be highly predictive
when combined with ptheryféaturesjénd mapped to a new set of
higher order features (Weiss & Kﬁlikdwéki, 1991). \The same may
be true of featurés that, ihdividﬁally, are only weakly
correlated w;th the criterion. Neural networks are able to
accurately generalize, that is, to classify new patterns, not
seen in the training procedure, by interpolating between
training examples (Gallinari et al., 1989; Hartzberg, et al.,
1990; Lapedes & Farber, 1987), or in the case of noisy data,
approximating the surface function between data points (i.e.,
where there are no exaﬁples; Poggio & Girosi, 1990).
Generalization accuracy is a function of the number of hidden
units used and number of examples in the training set, and thus
is a criterion by which the éppropriate number of hidden units
is determined (achievipg an optimum number of hidden units is
the object of the complexity fit procedure, to be described in a
subsequent section). Increased generalization ability suggests
that neural networks can reduce the size of shrinkage (that
occurs when applying a model developed on a construction sample
to a validation sample) inherent in statistical prediction
methods. Reduced shrinkage results in greater predictive
accuracy for the validation sample and hence gieater external

validity of the model.
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Fifth, there is some evidence from preliminarx simulation
work (Gordon, 1991a) to suggest that neural networﬁs may excel
over linear discriminant models witb increasingly stringent
thresholds, or decision rules,lfdr class membershiﬁ. A decision
threshold refers to a cutting score, a minimum score which must
be reached or exceeded for classification into one of two
classes. In this case, two decision thresholds were used in
each simulation; a lower score at or below which a case was
classified Nonviolent, and an upper score at or above which a
case was classified as Violent.

Simulation data (N = 200) were generated randomly and then
transformed, to have intercorrelatioﬂs among ten inputs
comparable to those found among the ten clinical scales of the
Minnesota Multiphasic Personality Inventory-2 (MMPI-2) for males
(Hathaway & McKinley, 1989, p. 99). Correlations between each
of the ten inputs and the criterion varied from -.25 to +.25,
thus reflecting varying degrees of weak relationship with the
criterion violence.

A neural network with ten input neurodes, ten hidden
neurodes, and two output neurodes, was trained with one-half of
the simulated data (N = 100; 50 Violent, 50 Nonviolent), and
tested with the other half (N = 100; 50 Violent, 50 Nonviolent).
A discriminant analysis model was similarly developed on the

same training data set, and applied to the same testing data

set.
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The output from the neural net and the discriminant
|

i

analysis models on the testing data set, were compared in terms
of proportion correct classificationg, at decision thresholds
(cutting scores) of .50/.50, .40/.60, .30/.70, .20/.80, .10/.90,
for inclusion in the respective ﬁredicted classes,lNonviolent
and Violent. Neural net and diécriminant analysis accuracy, in
terms of proportion correct decisions, were quite comparable at
thresholds of .50 to .70, but beyond a .80 classification
threshold, the neural network maintained its accuracy on a
validation sample, while discriminant function analysis fell at
a steep decline (see Figure 3). Both the network output and
discriminant model output, at thresholds more stringent than
.50/.50, result in a band of undecidable cases, with probability
near .50, much as human decision makers have been found to do

(Meehl, 1954).

Insert Figure 3 about here

Additional pilot work (Gordon, 1991b) compared the accuracy
of a backpropagation net and discriminant analysis on problems
with decreasing base rates. A training file of 100 input
patterns, each composed of three randomly selected values, in
the range [0,1], was created. .Each input pattern was then
randomly assigned a target va;ue of lv(Violent) or 0

(Nonviolent), in such a way to assure either a 50% base rate of
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violent targets, or a 20% base rate of violent taréets. Thus,
two nets could be trained and two linear discriminakt models
could be developed, with differént training patterﬂ files, each
having a different base rate of the target behavior.

Note that the random generation of inpufvpatt;rns and the
random assignment of target patterns to inputhpatterns, resulted
in a near zero correlation (M = -.06 across the tﬁree inputs,

BZ = .02) betweén the input patterns and targets. That is,
there was virtually no linear information present for the net to
learn. Ten additional sets of randomly generated inputs were
similarly created for running the trained net and applying the
discriminant analysis model. The ten test sets consisted of
input patterns only--no targets were provided. The objectivé of
this simulation was to investigate the proportion of outputs in
each of the two classes generated by each model, relative to the
base rate of the training set, rather than assessing the
accuracy of classifying patterns for which the targets were
known.

In both base rate conditions, the neural nets classified a
similar proportion of cases in the validation samples (test
patterns) as waé present in the construction sample (training
patterns), as belonging to the Violent class (see Table 2).
Discriminant analysis, on the other hand, performed well with a

base rate of .50, but with the small base rate of .20,

classified all test patterns as belonging to the more frequent,
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Nonviolent, class. Thus, in the condition of greater interest
|

(due to the low base rate), the neural network outperformed the

discriminant analysis model, even in the absence of significant

’

linear information.

Insert Table 2 about here

One further stepiwas taken, to determine if the neural
network had developed a bias based solely on thé distribution of
target signals, independent of the input patterns, or rather had
learned the mapping from the small amount of information, linear
or nonlinear, present‘in the training set, which discriminant
analysis was unable to learn. Another set of 100 training
patterns was created. This time, however, all input values were
held constant, at a value of .50. This was done to ensure that
absolutely no information was present from which the net could
learn. The base rate of Violént'targets was held at the same
low value of 20%. The result was that now the neural net, as
discriminant analysis had done before, classified all patterns
as Nonviolent, the more frequent class.

The results of this pilot work, although preliminary, would
imply a sixth ﬁnique advantage, in that the neural network was
capable of discriminating between classes, even with a base rate
as low as 20%. Furthermore, this discrimination was based on a

set of three predictor variables which contained virtually no
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linear information. It was determined however, by;removing all
linear information, the network performed at merel§ base rate
level, as- the discriminant analeis haq performed in the earlier
condition. These preliminary results .provide suppdrt for the
notion that neural networks may outperform discrimgnant analysis
on problems of predicting low base rate behaviors.

Finally, the neural network literature (Hartzberg et al.,
1990) suggests that there is no significant disadvantage, other
than length of training time, in”including a large number of
predictor variables. The network will "disregard" variables
that are not associated with the output, by not adjusting the
weights connected to the inputs representing those variables,
hence leaving them at or near their initial near zero values.
Furthermore, it suggests that intercorrelation among predictor
variables does not detract from the goodness of fit. This would
seemingly make neural networks a suitable tool for use on
problems where the number of potential predictor variables is
great, and the intercorrelation among those variables is high.

Relative Accuracy ofAPrediction Methods
¢ predicti 2

Any classification model results in four possible’ outcomes
for a given case: correct positive, correct negative, false
positive, and false negative. A Correct Positive (CP) is a case
which is predicted to exhibit the criterion behavior, and in

fact does so. A Correct Negative (CN), on the other hand, is a
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case which is predicted not to exhibit the behavio#, and in fact
does not. In most classification problems, the ob%ective is to
maximize these two cases. Errors are committed when either of
the following cases occurs: a case predicted to e?hibit the
criterion behavior does not. do so (False‘Positive, or FP), or a
case predicted not to display the behavior, does display the
behavior (False Negative, or FN). Thus, predictions of violent
behavior, when implemented, result in errors of either
restricting an individual’s freéd§m without cause (FP), or
releasing an iﬁdividual who will bring harﬁ.to an innocent
member of the community (FN). Depending on one’s perspective
(community at risk vs. civil liberty) the relative value placed
on these errors may be quite different.

Many researchers (e.g., Steadman, 1980; Monahan, 1981) from
the civil liberty perspective, have focused on the ratio of
False Positives to Correct Positives. Predictive accuracy from
this viewpoint is dismal (Steadman, 1980). This ratio is
directly a function of two parameteré in the prediction scheme:
base rate and selection ratio (proportion predicted positive of
the total sample ([(CP + FP) / N]; Meehl & Rosen, 1955; Brown,
1976) . Selection ratio is determined by the particular decision
threshold employed. Farrington and Ta;ling (1985) point out
that only when base rate and selection ratio are equal can every
case be correctly predicted. As base rate and selection ratio

diverge, the maximum number of correct predictions decreases.
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False positives will occur to the extent that the sélection
ratio exceeds the base rate. For example, if the bgse rate for
violence were .60, and 60% of the total sample were selected to
be predicted violent (selection ratio = .60) on the?basis of a
test with perfect validity, 100% correct predictiong could be
made. If, on the other hand, with the same base rate and
perfect validity, the selection ratio were .80, the maximum
proportion of correct violent predictions. would be only .75
(Brown, 1976, p. 117). ﬁ

Many different measures of predictive accuracy appear in
the literature (see Farrington & Tarling, 1985, for a review of
14 such measures). One category of accuracy measures is the
degree of association between the predicted outcomes and the
actual outcomes. This is a measure of the internal validity of
the model. A second category of accuracy measures, is the error
rate of the prediction model. The error rate may be considered
the measure with the most pracfical significance, that is, a
measure of whether a predictioﬁ model should be considered for
implementation. It is conceivable that a significant degree of
association may be measured for a éiven model, but that- the
false positive error rate is tooylarge to consider
implementation of the model.

Error rate analysis may be approached from two different
perspectives. The total error rate [(FP + FN)/N] is the

simplest and most comprehensive measure, giving equal weight to
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the two different types of errors, false positives 'and false
negatives. Error can also be analyzed separately $y type (FP or
FN), for the purpose of weighting these types differentially.
False positive error rates, as pfeViQUSly mentioned, have
received much attention in the criminology literat&re because of
their implications for restricting individual liberty. It is
this measure that has been the primary focus in{studies that
have concluded tﬁat violence cannot be predicted (e.g., Wenk,
Robison, & Smith, 1972).

Many and varied measures of association appear in the
criminological prediction literature, each with some advocates
(Loeber & Dishion, 1983; Copas, 1985; Farrington & Tarling,
1985; Tarling & Perry, 1985; Wilbanks, 1985). Each
correlational measure makes certain assumptions about the nature
of the variables, and this must be considered in selecting a
measure of association. Other measures have been shown to be
very closely related mathematically, such as Mean Cost Rating,
Kendall’s r, Receiver Operating Characteristic Curve, and
Goodman & Kruskal Y (Tarling, 1982).

The variety of reportgd accuracy measures, along with gross
differences in definitions of the criterion behaviors, as well
as varying lengths of follow-up periods, make direct comparisons
of accuracy across studies a difficult task. Follow-up periods
range from six months (Klassen & O’Connor, 1988) to five years

(Hoffman & Beck, 1985). Another salient weakness in the
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criminological prediction literature is the lack of
cross-validation of many of the prediction models.[ Klassen and
0’ Connor, for example, report 93% correct classification (22%
CP, 71% CN), with an accompanying‘:i‘false positivﬁ for every
one correct positive. This is énloutstandihg ;esult, but there
was no attempt to cross-validate the discfiminant analysis model
on a new sample. This weakness, aloné with a lérge‘number of
predictors (64), renders these résults in the prediction of
short-term violence in non-schizophrenic mental patients
somewhat meaningless.

It is essenfial to measure the accuracy of a prediction
model, not only on the construction éample, but on a validation
sample as well. Weiss and Kulikowski (1991) refer to the two
resulting categories of error as "apparent" error and
"cross-validation" error, respectively. Apparent error is the
error as measured on a particular construction sample.
Cross-validation estimates_trﬁé error, that is, the expected
value of error in the population from which the samples are
drawn. A prediction model may be "overfitted" (with a large
number of predictors) to the construction sample and produce a
very small measure of apparent error. Thisvfit reflects not the
potential usefulness of the model on a new sample, or external
validity, but capitalization on the measurement error and random
fluctuations in the particular sample used. Any model with a

high enough level of complexity (number of free parameters) can



38

closely fit these idiosyncratic characteristics in}a single
sample. |

A more meaningful test of a model is one that is applied to
a new sample for cross-validation. Most models do not hold up
well on new samples, that is, there is a tremendoug reduction in
accuracy over the accuracy attained on the coqstruction sample.
It is this reduction in performance from construction sample to
validation sample that is referred to as "shrinkage" in
regression analysis, and it is a function of the number of
predictor variables used in the model, combined with the
construction sample size (Copas, 1985). For ﬁhe purposes of
clarity and evaluation of methods, this discussion will be
restricted to those relatively few studies which include both a
construction sample, on which the predictive equation is
developed, and a validation samplé, on which the efficacy of the
equation is assessed.

As described previously, base rate affects the accuracy of
any prediction scheme. Base rate is affected by definitions of
criterion behaviors, éampling procedures, and length of the
follow-up, periods.

A series of three studies by Wenk, Rébison, & Smith (1972)
is often cited as evidence that violence cannot be predicted.
Wenk and colleagues defined violence QUite restrictively, as
reconviction and reimprisonment for a violent parole violation.

The base rates across these 3 studies ranged from 0.3% to 5%.
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With such small targets, observed over follow-up périods of only
12 to 15 months, their models could produce no mor; than 0.42%
correct positives (CP / Total predictions) in their total
population of offeﬁders, and 14% correct positivesf[CP / (CP +
FP)] of those predicted to be "Most Violent™ (lesslthan 3% of
the total population). Extreme false positive rates accompany
these low base rates, with 6, 8, and 19 false positives per one
correct positive, for base rates of 5%, 2.5%, and 0.3%,
respectively.

Other studies demonstrate a linkage between definition of
violence and base rate. A considerablyless restrictive
definition of violence was adopted by the State of Michigan
(1978) in their study of parole violation. The criterion was
defined as arrest for violent crime. Within a follow-up period
of 14 months, 10.5% of the sample was arrested for a violent
crime. Parolees had been previously classified into risk
categories on the basis of a decision tree with six binary
decision nodes, derived froﬁ an analysis of 350 predictor
variables. Recidivism rates during the 14 month follow-up
period were calculated for each risk category: Very high (40%),
High (20.7%), Middle (11.8%), Low (6.3%), and Very low (2%).

A third study conducted by the U.S. Parole Commission, and
replicated by Hoffman and Beck (1985), defined violation as any
new commitment of 60 days or longer, or return to prison for

parole violation (including technicalities). The follow-up
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period was two years. This definition yielded a base rate of
26% violators.

As a further illustration of the effects of length of
follow-up period, and definition of recidivism, Megargee and
Bohn (1979) followed a prisoner cohort of i,Oll prisoners
(entering prison within a two-year interval) as they were
released into the community. The follow-up period for/
determination of recidivism was extremely variant, ranging from
18 to 67 months (mean = 42.8 months, standard deviation = 10.7
months). Recidivism rates were assessed according to three
definitions of recidivism: rearrest.(for any cause),
reconviction (for a new offense); and reincarceration (for
parole violations as well as new convictions). The base rates
of recidivism for these three categories were 52.6%, 26.7%, and
26.2%, respectively. As is apparent from this and previous
examples, the range of basé rates across studies is quite lafge,
from 0.3% (Wenk et al., 1972) to 52.6% (Megargee & Bohn, 1979).

The decision threshold, or cutting score, for membership in
the "Predicted Violent" class, also has direct implications for
the magnitude of fhe two types of prediction error, ' and 'hence
social implications in the desired balance of community risk and
individual liberty. The proper decision threshold for
implementation of any prediction method must be determined for
each specific application--its concomitant base rate in the

specific population, and any externally imposed constraints on
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selection ratio (Brown, 1967).

Comparative Studies

Two bodies of reSgarch exiéf which compare the relative
accuracy of prediction‘methodoloéies,‘as applied tg the same
data. Farrington and Tarling (1985) hgve edited a collection of
these studies, eyaluating statistical methods of prediction in
criminology.' The methods include the simple point scoring
methods of Burgess and Glueck, multiple reg;ession models and a
variety of less-known methods of clustering, or binary
segmentation techniques. |

The earliest such study was conducted by Simon (1971) to
assess the relative efficacy of seven prediction methods,
including simple pointxscoring methods, multiple regression, and
five other statistical techniques. The study employed a sample
of 539 prisoners released on pfobation, divided into equal
construction and validatidn samples, to predict reconviction in
a three-year follow-up period. Simon’s best procedure (stepwise
multiple regression) resulted in a multiple correlation of .17,
prediction error of 42% [(FP + FN) / total predictions], and a
Goodman and Kruskal Y of .24, as measured on the validation
sample. No other method produced significantly different
results. She concluded that no method was superior to any other
method in identifying the 43% actual recidivism.

Tarling and Perry (1985) extended this study, using Simon’s
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data and a more recent sample with a base rate of 58%, to
include three additional methods, one of which was‘logistic
regression. They also concluded equal efficiency in the
performance of the ten ﬁéthods;~reborﬁing no results
significantly different f‘rom‘tkylolse”of Simon. |

Wilbanks (1985) used five methods, aiso including Burgess,
Glueck, and multiplé regressioﬁ, to(predict féilure on parole.
Parole failure occurred with a high base rate of 67% in a
follow-up period of five years. He attained 77% correct
/classifications‘(prediction error of 23%), with an average false
positive ratio of .21 to 1, and a multiple correlation of .57.
Once again, no méthod was found consistently superior to any
other in cross-validation.

Other researchers have reached the same conclusion; all of
the methods involvéd in the comparisons perform about equally
well when applied to the same d?ta and cross-validated
(Gottfredson & Gottffedson, 1985;LFarring£on, 1985; Farfington &
Tarling, 1985). These consistent reéults support using the most
mathematically developed of ihese methods, multiple regression,
or rather its variant, discriminant analysis, as a-single
baseline measure for comparison‘with a neurél«network ééproach.

The second collection of comparative  studies used Fisher’s
(1936) method of linear‘discriminant analysis, a variant of the

linear regression approach, as a baseline for comparison with

newer methods that take advantage of the increased processing
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and searching capabilities of modern computers. Weiss and
Kulikowski (1991) used four sets of data for an eméirical
comparison of statistical pattern recognition, neural networks,
and machine learning systems. The four data sets include
Fisher’s original iris problem, a standard test fo; discriminant
analysis, which discriminates between thfee classes.of iris’
using four predictor variables representing.physical
characteristics of the flowers. The second data set involved a
prediction of appendicitis from seven laboratory tests. A third
data set was based on nine tests for breast cancer recurrence,
each of weak predictive value. Fourth, data collected on 22
medical tests were used to diagnose hypothyroidism, which occurs
with a very low base rate of 8% in individuals suspected of the
disease. Extensive cross-validation was conducted on each of
five statistical methods, two neural network methods, and two
classes of machine learning methods. It is beyond the scope of
this project to include the detéils of many of these methods.
Therefore, this discussion will be restricted to the results of
extensive cross-validation obtained in the comparison of the
linear discriminant model and a backpropagation neural network.

Figure 4 displays the error rates of each of these two
methods and base rate prediction, across all four data sets.
Base rate error is the degree of error resulting from predicting
all cases to fall into the modal class (Hair et al., 1987; Meehl

& Rosen, 1954). The iris data are clearly the most
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discriminable data, resulting in striking improvemgnt over base
rate with either method. This is hardly surprisiné for the
linear model, since these data are those used originally by
Fisher in his development of the lihear discriminant model.

Notice that the accuracy of the’linear model ;nd neural net
model was quite similar with the iris, cancer, and appendicitis
data. The most interesting result was found with the thyroid
data. This data set had an extremely low base rate, of only 8%.
The linear model was only slightly superior to base rate
accuracy, whereas the neural net model was substantially more
accurate, with an error rate of .0146. Another difference in
the thyroid problem is that it used a much larger set of
predictor variables (21) than did the iris problem (4), the
cancer problem (7), or the appendicitis problem (9). This
supports the contention that neural networks are potentially
useful for fitting a model to data with very low base rates and
a large set of predicto; variables, both characteristic of the
prediction of violence. |

Odom and Sharda (1990) compared the efficiency of a
backpropagation neural network and discrimihant analysis on the
prediction of bankruptcy. Using five financiai ratios as
inputs, five hidden units, and one output unit, the neural net
was found to outperform the lineér discriminant model on three

samples, varying in base rate of bankrupt firms from .50 to .10.

The superiority of their neural net model held on all measures
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of performance, demonstrating greater robustness, ?igher
consistency across decreasing base rates, and lowef false
positive rates. They concluded that neural nets hold promise
for problems of prediction.

The relative performance of a neural network ;odel and a
Box-Jenkins automatic forecasting expert system was conducted by
Sharda and Patil (1990). For a set of 75 time series
predictions, the two methods performed about equally as well,
which was an important result considering the high level of
complexity and expertise involved in the Box-Jenkins forecasting
system, and the relative simplicity of the neural net procedure.
Given the potential theoretical advantages, and empirical
support for the promise of neural nets as a prediction
methodology, there is sufficient support for proposing a neural
net approach to the prediction of human behavior as well.

Issues in the Prediction of Violence

The prediction of violence has received the attention of
researchers across several disciblines for more than sixty years
(e.g., Borden, 1928; Burgess, 1928; Walker, Hammond, & Steer,
1971; Jones, Beidleman, & Fowler, 1981; Black & Spinks, 1985;
Klassen & O’Connor, 1988), yet it remains "the greatest unsolved
problem the criminal justice system faces" (Rector, 1973; cited
in Monahan, 1981, p. 21). The problem of judging the likelihood
that an individuai will engage in future violence is ubiquitous

in the criminal justice system.
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Shah (1978) delineates fifteen different occasions in the
legal process at which such likelihood judgments must be
considered, including, for example, decisions concerning bail,
sentenciné, parole, and involuntaf§ commitment. The system
relies heavily on the judgment of mental health‘professionals
for such estimates of dangerousness, in spite of the fact that
these professionals generally acknowledge their lack of ability
to reliably make such judgments.

Equally impressive is the gheer volume of cases requiring
such decisions. Consider that in 1988, nearly 14 million
arrests were made in the United States (Flannagan & Maguire,
1990), each requiring decisions of detention or release,
prosecution or not. In 1975, 1.5 million adults were placed on
trial, of which 1 million were convicted (Gottfredson,
Hindelang, and Parisi, 1978), each requiring a decision of
penalty. Of those convicted, 190,014 were incarcerated,
requiring many placement and security decisions (Megargee &
Bohn, 1979). Decisions regérding parole for those already in
prison, 600,000 on an average day in 1988, add to this number,
as do decisions regarding the appropriate conditions for the
316,326 prisoners released into the éommunity the same year
(Flannagan & Maguire, 1990).

Thus, any tool for use in this massiﬁe number of decisions
must be practical in terms of its applicability, efficiency, and

economy (Megargee & Bohn, 1979). A valid and reliable
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instrument for the prediction of violent behavior ﬁhat meets
these practical criteria would be of immeasurable éocietal
value.

There is much discussion and no agreement upon a definition
of violence in the criminology literature (reviewed by
férrington, 1982; Megargee, 1979, 1982; Monahan, 1981).
Definitional issues include terminology ("violence" vs.
"dangerousness"), the scope of behaviors considered violent,
types of violence ("angry," "instrumental," "criminal"),
legality, intentionality, and targets (persons, property,
animals) .

For the purposes of this project, the following operational
definition of violence will be adopted. Violence is
operationally defined, for ease of implementation, according to
the type of crime of which an individual has been convicted, and
for which he was incarcerated (the "instant offense"). A subset
of offenses previously selected from the National Crime
Information Center Uniform Offense Codes by Megargee (1982), was
selected for this project. This list of violent offenses
includes offenses committed against one or more other persons,
that carry a high probability of relatively serious physical
injury, or actual physical harm to the pe;son(s). Six

categories of such offenses include all forms of homicide

(except negligent manslaughter), kidnapping, sexual assault



48

(except nonforcible statutory rape), robbery, aggrévated

assault, and those forms of arson which endanger life (see

Appendix A for a complete list of specific offenseé).
Rrﬁdmgr_lanahlga 1

Although there exist many potential variables (e.q.,
testosterone levels, genetic variables, skin conductivity, EEG
abnormalities) that have béen found significantly related to
violent behavior, this discussion will be restricted to those
variables most likely available in offiéial records, and
therefore plausibie for use in this application.

Demographic variables

Gender is somewhat trivial in consideration; violent crime
is almost exclusively a male phénomenon (Monahan, 1981).
Whereas males comprise 48% of the general population, 95% of the
prison population is male (Langan, 1991), and nine out of ten
violent crimes are committédlby males (Webster, 1978). This
factor will be held constantiin the present study, which will
use exclusively male subjects.

Age is one of the most powgrful‘predictors of violence
(Monahan, 1981; Petersilia, Greenwood, &JLavin, 1977; Black &
Spinks, 1985; e.g.). The relationship of age to violence is an
inverted U-shaped function, héavily skewed to the young (Hoffman
& Beck, 1985)., Males in their twenties comprise 24% of the
population, and 50% of the prison population (Langan, 1991).

With regard to homicide, in particular, 59.3% of all arrests in
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1973 were of males aged 15 to 29 (Shah, 1978). |

Race, although a sensitive factor with regardrto the
implementation of any prediction device, must not be ignored as
a factor in research. Silberman (1978) found that;the racial
difference (nonwhite vs. whitef was at least four times greater
for violent offenses than for nonviolent offenses, across all
ages. Blacks, in particular, cdmprise 11% of the population,
48% of the prison population, and 46% of all arrests for violent
crimes (Langan, 1991).

Other demographic/socioeconomic factors gleaned from the
literature include preprison income level (Wolfgang, Figlio, &
Sellin, 1972; 8 of 9 studies reviewed by Pritchard, 1977),
occupation (Wolfgang & Ferracuti, 1967), and geographic location
(Newman, 1979).

History of violence

By far the most ubiquitous factor found significant in the
prediction of violent crime, is an individual’s history of
violence (American Psychiatric Association, 1974; Shah, 1978;
Steadman et al., 1978; Wolfgang, 1978). Historical factors that
have been considered include past convictions, in terms of both
frequency (Monahan, 1981) and type (Black & Spinks, 1985), and
number of previous arrests (for any cause; Shah, 1978; Monahan,
1981; Klassen & O’Connor, 1988). Wolfgang (1978) found that for

individuals with four previous arrests (for any reason), the

probability of a subsequent arrest was 80%; for ten previous
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arrests, the probability was 90%. Shah (1978) detérmined that
with five previous arrests, the probability. of a fdture arrest
approached unity.

Wolfgang (1972; 19785 followe@‘a birth cohortﬁ comprised of
all males born in a sinéle yeaf in thé city oflPhiladelphia. He
followed these males until they were 30‘years of age, and found
that 6% of the cohort were chronic criminal offenders.

Moreover, this 6% of the sample accounted for 71% of all
homicides, 77% of all rapes, 70% of all robberies, and 69% of
all aggravated assaults committed by the age cohort as a whole.
This suggests that violence is somewhat concentrated in a small
subset of offenders. Are there distinctive markers that
distinguish this groupvfrom other criminal offenders?

Prior convictions also predict subsequent conviction
(Walker, Hammond, & Steer, 1967; Hirschi & Hindilang, 1977;
Farrington, 1982; Hoffman & Beck, 1985): 40% probability with
two priors, 44% with three, and 55% with four or more prior
convictions (Walker et al., 1967). The number of previous
commitments of more than 30 days in either a juvenile or adult
institution (Wenk et al, 1972; Hoffman & Beck, 1985), length of
the most recent commitment free period, and criminal status
(Hoffman & Beck, 1985) such as probation, parole, confinement,
or escape at time of current offense, all merit consideration as
relevant predictors.

Further factors concerning history of violence are age at
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first police contact; before age 15 is highly pred%ctive of
future violence (Wolfgang, 1972). The mean age atjfirst arrest
was found to be‘14.4 years for violgnt‘offenders (Hamparian,
Schuster, Dinitz, & Conrad, 1978; Siate of Michigan, 1978).
Finally, with regard to histdry variébles, child aguse and
parents engaging in physical fights'ére(COnsidered relevant by
Klassen and O’Connor (1988). 7

] . {ab]

Two general categories of psychometric factors have been
found significantly associated with violent behavior:
intelligence and personality traifs. ‘Low intelligence (Wolfgang
et al., 1972; Hirschi & Hindelané, 1977; Farrington, 1982) and
mental retardation (Klassen & O’Connor, 1988) are correlated
with violence.

The Minnesota Multiphaéic Personality Inventory (MMPI) has
been used as the basis of a typology which differentiates ten
different types of criminal offenders (Megargee & Bohn,’1979).
The resultant ten types were‘subsequently found to differ
significantly on fiveymeasures of recidivism (Megargee & Bohn,
1979). When the types were used to seg;eéate‘predétory inmates
from those most likely to be victimized, significant reductions
in the overall amount of violence in the érison resulted, and
assaults that did occur were isolated to predictable areas of
the prison (Bohn, 1978). Although the ten types did not differ

significantly in the violence of the offenses for which they
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were incarcerated, they did differ on other measur?s of criminal
behavior patterns (Megargee & Bohn, 1979). These fesults would
suggest that at least some markers or traits that distinguish
inmates with &iolent tendéncies can be detected onithe basis of
MMPI profiles. |

The MMPI is an empirically derived inventory, researched
over five decades. It consists of ten clinical écales measuring
various personality dimensions, and three validity scales
measuring test taking attitudes that could influence the
validity of scores on the clinical scales (Dahlstrom, Welsh, &
Dahlstrom, 1972), Characteristics of individuals with elevated
scores are well known. MMPI research concerning the prediction
of aggressive behévior distinguishes between two categories of
the clinical scales. Scales 4, 6, 8, and 9, are thought to
suggest lack of impulse control. Scales 1, 2, 3, 5, 7, and O,
suggest control and inhibition of impulses (Graham, 1977). The
classic "49" code (scales 4 aﬂd 9 most elevated) has long been
associated with impulsive, hedonistic, and delinquent
behavior--generally asocial or antisocial tendencies (Graham,
1977; Megargee & Bohn, 1979). Yet more recent research has
revealed that the "49" code‘does not necessarily suggest
physical harm to others. This evidence points to a "43" code as
most associated with violent, assaultive behavior (Davis &

Sines, 1971; Persons & Marks, 1971). A person with this profile

is expected to be excessively inhibited until hostility reaches
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1

a level such that these inhibitions are overwhelmed, resulting
in bursts of aggressive, assaultive behavior (Grah;m, 1977;
Megargee, 1973). This characteristic is referred to as
"Overcontrolled-Hostility" and an auxiliary scale,ithe O-H scale
(Megargee, Cook, & Mendelsdhn, 1967), can Be scored from the
MMPI items to measure thié characteristic. ‘

A study conducted by Jones, Beidleman, and Fowler (1981)
was successful in accounting for 34.9% of the varianée between
prisoners who\weré violent while in prison, and those prisoners
who were not violent, on the basis of 22 MMPI scales (basic &
auxiliary scales) and demographic data. The following basic
scales contributed most to group membership (discriminant load
values greater thén .40): F, Pa (6), Pt (7), and Sc (8):
followed by Ma (9), and auxiliafy scales PaV, HOS, and FAM (load
values greater than .35). PaV is a parole violation scale
developed by Panton (1962). Manifest Hostility (HOS) and Family
Problems (FAM) are two of Wiggin’s (1969) content scales. Jones
and colleagues report correct classification of 72.9% of the
violent, and 80.6% of the nonviolent. It should be noted,
however, that this fit was obtained on the construction sample,
and not cross-validated. (

The three validity scales have also been found related to
antisocial or criminal behavior. Megargee and Bohn (1979)
suggest that the F scale is second only to scale 4 + .4K

(correction term) in such prediction. They further suggest that
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the "?" scale (Cannot say), in which items are marked both True

and False, or omitted, is relevant for criminal ofgenders.

Finally, Black and Spinks (1985) also determined the F scale to

be a significant correlate of criminal reéidiyism.\
:

Although the abuse of substances is not intrinsically
criminogenic, it is thought to interact with socioeconomic
factors (Mednick,'Pollock, Volavka, & Gabrielli, 1982), and has
been found a significant correlate of criminal violence in
numerous studies. Heroin or opiate use was significant in nine
of nine studies reviewed by. Pritchard (1977), and at least six
other studies reviewed by this author. Alcohol abuse has
received a similar level of attention in the literature in its
relationship to criminal violence (Farrington, 1982; Mednick et
al., 1982; Petersilia et al., 1977; Pritchard, 1977: Wolfgang,
1958) . Monahan (1981) and Mednick et al. (1982) suggest that
both opiate and alcohol abuse may suppress factors that would
otherwise inhibit violence.

Other substances considered relevant in promoting violence
include amphetamines (Ellinwood, 1971; Moyer, 1976),
phencyclidine, or PCP (Smith, 1980), barbiturates (Mednick et
al., 1982), and benzodiazepines (Moyer, 1976). Therefore it
would seem reasonable to include any information that is

available regarding inmates’ history of substance abuse.
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The most recent trend in the p;ediction of violence is to
emphasize the need to include situational\variables (Klassen &
0’ Connor, 1988; Monahan, 1981)} éspécially interactions between
situational and personality‘facforS’(e,g}} Bem & Allen, 1974;
Mischel, 1973). Although there has been extensive discussion
(Monahan, 1981, e.g.), there has been very little empirical
effort. Such information is simply‘&er?,difficult to obtain
through traditional means (official fecofds), ahd very
expensive, if available, through alternative means (extensive
interviews, etc.). |

Theoreticaliy, an individual, bredicted to be dangerous, if
released into a stable, supportive environment is likely to
become a false positive (Cohen, Qroth, & Siegel, 1978; Waller,
1974) . The same individual, on' the other hand, if released into
a stressful environmént will 6f£en recidivate (Klassen &

0’ Connor, 1988; Monahan, 1981)2

It is apparent that somé situations serve as an
environmental stimulus leading to a violent response in some
individuals, while the .same situation doés notvihstigate
violence in other individuals. This would argue against radical
situationalism. The purpose of this projéct is to identify
traits that differentiate these two classes of individuals.
Thus, as a means'fo this end, it would seem apbfopriate to glean

from the available records any information that is present,
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representing situational factors that pertained toiindividual
inmates at the time of their offense. [

Situational factors may be roughly categorized into three
categories: family faétors, peef group factors, aﬂd employment
factors. Some information regarding‘these three c;tegories may
be obtained from an instrument named the Checklist for Analysis
of Life History of Adult Offenders (CALH), developed by Quay
(1984) as part of a battery of instruments designed to classify
offenders into five groups, for the purpose of institutional
custodial and prbgram placement decisions. Information for this
instrument is obtained by a case manager, who utilizes
information contained in a presentence report to complete the
checklist.

The following CALH items would seem to reflect situational
information in the aforementioned categories.

Family Factors:

15, Claims offense was motivated by family
problemg.
___20. single marriaée
Peer Group Factors:
1. Has few, if any, friends.

16. Close ties with criminal elements

Employment Factors:

11. Irregular work history (if not student)

14, Supported wife and children
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23. Suffered financial reverses, priof to
commission of offense for whiéh
incarcerated.

Each of these factors, or at least a similar 6ne, has been
found signifiganf in one br mee étudies; /currentlrelationships
with parents and sibiings (Klassen & 0’ Connor, 1988); marital
status (State of Michigan, 1978); peer influence (Bandura,
1969), and ahti—sqcial/beer groups (West & Farrington, 1977), or
gang involvement (Redl & Winemah, 1957; Wheeler & Caggiula,
1966; Monahan, 1981); and preprison emplo?ment instability
(Klassen & 0O’Connor, 1988; Pritchard, 1977; West & Farrington,
1975).

Statement oﬁ‘Purpose

The general purpose of this dissertation is to evaluate the
potential contribution  of artificial neural networks to problems
in the prediction of human behavior. Speéifically, it is
designed to answer two questioﬁs:

a. Will a backpropagation neural network model offer
higher relative efficécf in the prediction of a low
base rate criterion, violent behavior, than a linear
discriminant model?

b. Will the resultanf weigﬁt matrix from the trained
neural network model offer information of value
concerning the relative contribution of individual

predictor variables?
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METHOD
Subjects
A preexisting database maintained by the Oklahoma

Department of Corrections (DOC) served as a subject pool for
this study. The database comprised a random éamplé (N = 1233)
of all prisoners who were received ﬁor aésessmént and placement
in state prison facilities during the 1983 calendar year. Each
of the prisoners in the database was administered a battery of
achievement, inFelligence, and personality assessments during a
10-day routine assessment procedure conducted upon reception
into the prison system. Only the results of the MMPI were
preassembled, the rest of the assessment results were contained
in the personal files for each individual subject, located at 32
different state correctionél facilities. Access to the personal
files was obtained, by pefmission of DOC (see Appendix E), to
three of the 32 facilities: Joseph Harp Correctional Center
(Lexington, Oklahoma), 'a medium-security facility; Mabel
Bassett Correctional Center (Oklahoma City, Oklahoma), which
housed the "Closed" classification files for subjects discharged
from the prison system (via termination of sentence, parole,’ or
death); and the Assessment and Reception facility (Lexington,
Oklahoma), which housed the "Closed" medical files for
discharged subjects. A subset of the DOC database was selected
according to the following criteria: . (a);male; (b) currently

either incarcerated at Joseph Harp Correctional Center (n = 28),
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OR discharged from the prison system (n = 788). :

Subjects (N = 400) were randomly selected frog the DOC
database subset for use in this study by the DOC identification
number, without knowledge of the prisoners’ status on the
criterion measure. Subjects were eliminéted from ghis sample,
and replaced from thé remaining subject pool, if (a) their MMPI
was invalid (n = 39) (Lachar, 1974; validity criteria: "?"[raw
score] £ 30, F minus K [raw scores] £ 16, F[t-score] < 100), or
(b) files were misplaced or incomplete (o = 4). Eight
additional subjects were eliminated from the sample due to
missing data on five or more of the selected predictor variables
(n = 4), or ambigquous status on the criterion variable (pn = 4),
resulting in a total sample size (N) of 392 subjects.

hic CI teristi f Samp]

Demographic characteristics of the sample include a mean
age of 28 years (SD = 9.38), and mean education (highest grade
completed) of 11 years (SD = 1.86). Race of subjects was 77%
Caucasian, 17% Black, 5% Native American, and 1% Other. Income
of the sample subjects was distributed as Less than $10,000,
74%; $10,000 - 19,999, 21%; $20,000 - 29,999, 4%; $30,000 and
over, 1%. Occupation was distributed’as 19% Unemployed, 47%
Unskilled labor, 30% Skilled labor, 1% Professional, 2% Other,
2% Unknown. Subjects came from residential communities with
populations of less than 4,000, 18%; 4,000 - 15,999, 18%;
16,000 - 49,999, 12%; 50,000 - 300,000, 9%; and over 300,000, 42%.
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Procedure
] . f predict Variabl

An initial sample of 20 inmate files was examined to
determine the degree to which each potential predictor variable,
discussed above in the review of the violence pred;ction
literature, was consistently available. Forty-eight predictor
variables (see Appendix B) were selected, based on their
previous significance in predictioﬁ models and their
availability from DOC official records. Dummy-coding of
categorical variables (creating a separate dichotomous variable
for each level of the variable) resulted in a total of 60
predictor variableé, which were - -used to develop both neural
network and discriminant analysis models. Subsets of the total
set of 60 predictor variables were selected by two methods:
stepwise discriminant analysis and neural network weight matrix
analysis. Each subset of prediétor variables was also used to
develop both types of models. |

Resampling Procedure

A 3-fold cross-validation fesampling technique was employed
(Weiss & Kulikowski, 1991). The resampling technique makes
optimal use of the sample to (a) estimate the true (population)
hit rate and (b} use as much of the sample as possible to
construct and validate the prediction models. The total sample
(N = 392) was randomly divided into three test samples: testl (n
= 131), test2 (n = 131), and test3 (n = 130). Three training
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samples were then constructed by forming all possiéle
combinations of two of the test samples: trainl (A = 261) was
formed-by coﬁbining test2 and tést3, train2 (n = 261) was formed
by combining testl and test3, and'frain3 (n = 261)iwas formed by
combining testl and test2 (and randomly selecting one
observation from train3 to move to test3 to equalize the
subsample sizes). Thus three pairs of Train-Test files were
created, and each model (neural network and discriminant
analysis) was replicated three‘timeé, using a different Train-
Test pair to construct and subsequently c;oss—validate the model
for each replication. All results reported are averaged across
the three replications. |

Data Collection

The procedure for data collection consisted of examining
two files per subject: ka medical file containing substénce
abuse and psychometric‘data}(ana~a classification file
containing demographic inqumatidn, FBI/OSBI "rap sheets"
(criminal history), a consolidaféd record card including offense
and‘incarceration history, presentence and parole eligibility
investigation reports.' A tdtal of 62 observationslwaé recorded
for each subjecf using a data colledtioﬁ form constructed to
accommodate all observations for a single subject. The
observations included demographic information (8 items),
psychometric measures (22 items), crihinal/Violence histbry (11

items), situational factors (8 items), substance abuse (12
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items), and the violent/nonviolent nature of the instant offense
(1 item).

N 1 N k Traini
Apparatus ,

All neural network éomputér Simulations were conducted on
an 80386 personal computer, with a math coprocessor. A
commercially available neural network Software\paékage was used
to run the simulations. The sofﬁwaré uses the standard
backpropagation feedforward architectureland training algorithm.
Neurodes on adjacent layers (e.g., Input lLayer and Hidden Layer,
Hidden Layer and Output Layer) are fully interconnected, that
is, there exists a numerical weight representing the strength of
the connection between each possible between-layer pair of
neurodes.

Connection weights are adjusted according the generalized
delta learning algorithm, which is affected by two learning
parameters, the learning rate (n) and the momentum term (ea).

The software allows the user to set and adjust these parameters
to reduce tréining time and incréase the likelihood of
convergence to a global minimum error value.

A third parameter, the training tolerance bandwidth, is set
by the user to determine the degree of error that is tolerated
for each input-output £raining pattern, in order for the
software to count thaf pattefn as "correct" during the training

procedure. A training tolerance of .10, for example, will count
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an output for a single training pattern as cor;ect; if the
absolute value of the difference between the outpué and target
is less than or eqdal to .10. Qﬁtputg counted as correct cause
no adjustment of‘thefweighﬁs.” Foliowing each epocﬁ, the numbers
of "correct" and "incorrect" patterné ére¢displayeé.
Convergence of the network is attained when all patterns are
designated as correct. The update per epoch of this display
allows the user the ébility to monitor the network’s progress as
it trains. |

The softwaré’interface also pfOVides‘on—screen histograms,
displaying the frequency distributions of connection weights
across their range of -8.0 to +8.0, separately for each layer of
connections. These histograms also serve as visual aids by
which to monitor the progress of training in terms of capacity
for further weight adjustment, and hence improvement in accuracy
of classification. )

Architecture

Input Laver. The input\léyer of each neural network
comprised one neurode for each continuously valued predictor
variable, taking on the valﬁe of the‘prediétor'measuré, such as
intelligence test score or number of violent arrests. Missing
values were replaced with the mean value of that measure for the
entire sample (see Appendix B for a list of predictor variables,

and the number of cases lacking values on each predictor

variable). Rank-ordered categorical predictor variables, such
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as income, were similarly represented with one neurode per
variable, taking on values indicating the number of the interval
category in which the observation fell, or the mean value of
that measure for the entire sample if missing. Dtirete
categorical variables, such as marifal status, were represented
with a group of neurodes, one neurode per level of the variable,
with each neurode taking a value of 1 to‘indicate category
membership, 0 to indicate non-membership, and 0 on all neurodes
in the group if the value were missing. Dichotomous predictor
variables were répresented with one neurode, taking values of 1
("present"), 0 ("absent"), or overall sample mean if missing.

The decision to represent missing data with the overall
sample mean of each variable was made based on the results of a
two-tailed test for significant differences of two proportions,
the proportion of data missing for Violent cases and the
proportion of data miésing for Nonviolent cases. Of the ten
variables for which there were missiqg data, three significant
differences in proportions per eategory were found: <child abuse
(p < .05), irregular work history (p < .05), and Beta IQ (p <
.01). The mean of each variable used to replace cases with
missing values was calculated on the entife sample (N =392},
rather than on the separate groups, to avoid biasing the results
in favor of the category for which there was a smaller
proportion of data missing.

Different networks were trained with input layer sizes of
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60 neurodes representing the entire set of predictér variables,
and subsets of 53, 29, 17, and 10 neurodes represeﬂting selected
subsets of the entire set of predictor variables. Methods for
selection of subsets of variables are described in a subsequent
section of this report. ‘ , |

Hidden Laver. Networks with input layérsﬂof 60, 53, 29,
17, and 10 neurédes‘were each trained with é single hidden
layer. The number of neurodes in £he hidden layer fo; each
network of different-sized input layers, waéldeterminéd by an
empirical "complexity fit" procedure. The objective of the
complexity fit was to find the smallest number of hidden units
necessary to yield the best generalization, 'as measured by
proportion correct classification on the test samples.:

Preliminary network construction, using fhe entire set of
60 input neurodes, indicated rather small differences in hit
rates with very different sized hidden layers. Therefore, a
wide range of values for the number of hiddenrneurodes was
tested for each value of input neurodes. If a network produced
a substantially better fit‘(e.g;n M + 2 SD), then smaller steps
were used in the procedure in an attempt to close in on an ’
optimum number. The results of this procedure were that for 60-
input networks, 15 different hidden layer values were tésted
(ranging from 5 to 200 neurodes), producing a mean hit rate of

0.71 (SD = 0.04). Hidden layer sizes of 25 and 10 neurodes

produced the best performance on testl, with 79.4% and 73.3%
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correct classifications, respectively. Therefore, Eor
replications 2 and 3, only hidden layer sizes of 25 and 10
neurodes were trained and tested. A similar search procedure
was used to achieve the best compleXity fi? for 17Jinput
networks, resulting in an optimUm'hidden layer siz; of 12
neurodes. |

The networks with 53, 29, and 10 inputs were trained with
hidden layer sizes equal to one-half the number of inputs, or
26, 15, and 5 hidden neurodes, respectively. The use of the
"one-half the number of inputs" rule to determine the hidden
layer sizes of these latter networks was based on the relatively
small variation in accuracy found in the previous two complexity
fits (when averaged across the three replications), and to
reduce the overall number of networks to be trained in order to
evaluate differences in networks with varying number of inputs.

The effect of adding a seqond hidden layer to a network
with the same 60 inputs was,teéfed by training nine additional
networks, with varying combinations of numbers of neurodes in
each of two hidden layers. Networks with the following
combinations of hidden layer sizes (Hidden Layer 1/Hidden Layer
2) were tested on Replication-1: 30/15, 25/10; 15/10; 10/10,
10/5, 12/8, 12/6, 13/9, and 6/3. The three combinations which
produced the best results on testl data (15/10, 13/9, and 12/8)
were then replicated with test2 and test3 data.

Qutput Laver. The output layer of every network comprised
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two neurodes, one for each class of the criterion measure, as
recommended by Weiss and Kulikowski (1991) and others (e.q.,
Lippmann, 1987; Rumelhart & McClelland, 1986). During training,
the outputs of these two neurodéé”were compared to target values
of 1 and 0,'re$pectively, for Viblent)caées, ahd,O and 1 for
Nonviolent cases.

Learning Parameters

No consistent rule-of-thumb exists for determining the
optimal values for the two learning parameters; the learning
rate, and the momentum term. The choice for learning rate
typically affects only training time, not whether convergence is
actually achieved. The momentum’ term is included to reduce the
likelihood of convergence to a local minimum. Optimization is
particular to the appiication. Therefdre, some preliminary
networks were trained using the entire data set (N = 392), for
the purpose of investigating values of these parameters. Values
of .5 for the learning rate,-and .94for the momentum term; were
found to lead to rapid convergence aﬁd stable training
characteristics. Several\other combinations were tried, with no
improvement in trainiqg, therefdre the values of .5 and .9’were
used throughout trainihg for all networks.
Extent of Training

Each network was trained until it cénverged at its minimum
training tolerance level. The minimum training tolerance for

most of the networks was .02, that is, the network converged at
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.02 but failed to do so at .01 training tolerance. With
extended training, some of the networks converged ét a training
tolerance of .0l1. Each network was saved nine or ten times at
decreasing training toleranées,‘béginning with .49; and saving
at successively smaller tréining tolerances Qf J40i .30, .20,
.10, .05, .04, .03, .02, and occasionally .01. The purpose of
these successivg "saves" was to allow for testing after each
network’s training was complete, and to capture the optimum
degree of training in terms of the network’s performance on the
test data set, without "overfitting* the network model to the
training data. Overfitting of a neural net model may be thought
of as the network’s "memorization" éf the training data, to the
detriment of performance on the test data (Klimasauskas, 1991c).
Each saved state of the network was later tested on the test
data; the state which yieldgd the highest cross-validation
accuracy was selected for further analysis.
ial ix Analysi

A separate network was trained, using the entire data set
(N = 392) and all 60 predictor variables, for the purpose of
analyzing the trained weight matrix for information regarding
the relative influence of each input variable on the output of
the network. The énalysis was conducted according to Garson’s
(1991) technique for partitioning the weights connecting each
hidden neurode to the‘output neurodes into the relative

proportion, or "share," contributed by each input neurode
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according to the following equation (p. 50):

n,, IW
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where n, = the number of input variables,

the number of hidden units,

S
I

the wéight connecting input unit i and hidden unit j,

-
]

= the weight connecting hidden unit j and the output

unit.

oL ion Variabl
The criterion measure of violent behavior was determined by
the offense for which each subject was convicted and
incarcerated at the time of assessment in 1983. This "instant
offense" was classified as. Violent according the previously
described categories of violent offenses (see Appendix A for a
list of offenses classified as Violent). Any other offense was
classified as Nonviolent. The mean time elapsed between the
date of arrest for the crime and date of assessment was 175 days
(SD = 250) for the entire sample; 164 days (SD = 239) for the
nonviolent cases, and 204 days (SD = 275) for the violent cases.

The difference between mean time elapsed for the two groups was
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nonsignificant, £(390) = 1.392, p > .05.
Design

For reasons of practical necessity, this study employed a
retrospective design. That is, rather than actually predicting
future occurrences of violent behavior, the modelslwere
developed to "postdict" violence for cases in which the outcome
was already known. |

A retrospective design is not without inherent weaknesses,
the most important of which is retrospective bias. This source
of bias, associated with the knowledge of the outcome of the
criterion behavior, however, was minimized in this study in
three ways. First, by restricting the source of predictor
variables to official records, one can presume that the
personnel entering data in the fecords did so in a clerical
fashion, independent of the nature of the conviction. Second,
predictor variables were composed of pre-offense data, or data
for which an individual’s status remains unchanged as a result
of the nature of the offense. Third, it is not in the nature of
machine learning to process the validation sample data any
differently depending on the outcome, of which the machine is,
of course, ignorant.

A second potential weakness of a retrospective design is
one of sampling bias. This source of bias was controlled by
selecting subjects randomly from the prison population, without

concern for their status on the criterion. Rather, random
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subject selection was affected only by the presencé or absence
of the set of predictor variables of interest. Thére was no a
priori reason to suppose that this availability was in any way
contingent upon the violence status of the instant offense for a
given subject. |

Although these reductions in retrospective biaé do not
equate the validity of the design to that of a prospective
design, this design had the potential for extracting useful
variables that might be incorporated' in the future, in a

longitudinal prospective study. To this extent, the

retrospective design is defensible.
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RESULTS
Base Rates

The overall base rate of violent cases for the entire
sample (N = 392) was .27. Although divided randomly, the three
test data sets (n = 131) resulted ih very similar ;roportions of
violent cases: .27, .28, and .25 for testl, test2, and test3
data sets, respectively. Please note that, unless specifically
stated otherwise, all results reported are averagéd across these
three replications.

Selection of Subsets of Predictor Variables

A stepwise discriminant analysis of the entire data set,
yielded a subset of 17 variables, using an F statistic (p <
0.15) as the criterion for selection. The discriminant model
developed by the stepwise procédure using the 17 predictor
variables accounted for 31.7% of the total variance in the
criterion variable. This subset of 17 predictor variables was
then used to develop both neural network and discriminant
analysis models.

Three further subsets of predictor variables were selected
based on the Garson (1991) method of anaiyzingrthe weight matrix
from a neural network. The result of the analysis was a rank-
ordering of the 60 predictor variables, based on the relative
influence of each variable on the oufput bf the network.

Subsets of 53, 26, and 10 variables were chosen based on cutoff

values of the proportions, greater than or equal to .01, .015,
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and .02, respectively. Each of these subsets was ?lso used to
develop both neural network and discriminant analysis models.

For ease of presentation, the notation adopted for

Hl1

referencing individual models will take the form: \MnI- Ny ™ Doy

where M represents the Model type (D=Discriminant Analysis,

= number

H1

N=Neural Net); n; = number of Inputs for the model; n

of units in Hidden Layer 1, and Ny, = number of units in Hidden
Layer 2, if the model is a neural network. For example, "D60O,"
"N60-25," and "N60-15-10", refer to Diécriminant Anaiysis Model
with 60 inputs, Neural Network Model with 60 inputs and 25
hidden units, and Neural Network Model with 60 inputs, 15 units
in Hidden Layer 1, and 10 units in Hidden Layer 2, respectively.
Neural Network Training Characteristics

A total of 112 neural netwérks was trained during the
course of this study, each of which was saved and tested at
approximately ten different training tolerance levels. As a
result of training each netwofk to produce the highest Total
Group Hit Rate based onvcross—validation (testl) results, the
extent of training across the "best" networks of different sizes
varied considerably. The mean number of epochs necessary for
achieving this criterion was 2,549 (ﬁinimum [N60-15-10] = 138,
maximum [N17-12] = 6,042). The mean numberﬁof epochs for each
network to achieve the maximum hit rate and to reach the minimum
training tolerance was 3,270 epochs (minimum [N53-26] = 1,244;

maximum [N17-12] = 6,568). The training tolerance levels that
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produced the best test results also varied over thg three cross
validations. For N60-25, optimum training toleranée levels were
.04, .05, and .02; for N53-26, .10, .02, and .02;§for N29-15,
.10, .10, .05; for N17-12, .05, .10, and .10; and For N60-15-10,
.40, .40, and .20; for testl, test2, ahd test3 of each model,
respectively. |

Total Group Hit Rates
Concept of Chance

For classification systems with classes of unequal
proportions, the meaning of "chance" accuracy of prediction is
ambiguous. Two different criteria have been recommended
(Huberty, 1984), neither of which seems completely appropriate
for judging the improvement of a particular prediction model
over the accuracy one could expect by chance alone. Therefore,
a discussion of each criterion, and the position on this issue
adopted for purposes of this study seems warranted.

The first criterion, the maximum "chance" criterion
(Huberty, 1984; Meehl & Rosen, 1955; Weiss & Kulikowski, 1991)
is equal to the accuracy one could achieve by simply applying
the base rate alone to the problem, and predicting all cases to
belong to the more frequent class, .73 in the present study.

The problem with adopting this criterion is that it is not based
on a prediction system at all, and is useless in any practical
prediction situation, where the cost of false negative

predictions would be far too high to consider its application.
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Consider the results if one were to predict all paﬁole
candidates to be Nonviolent, and therefore suitablé for release;
or all patients suspected of cancer to be negative, and
therefore unnecessary to conduct a biopsy. The maiimum
criterion is thus a hypothetical entity, which overestimates a
more realistic chance criterion.

The second criterion, recommended by Huberty (1984), is a
proportional "chénce"’criterion. By this criterion the total-
group chance hit rate is equal to the sum (overJgroups) of the
products of the sample proportion for ééch group, and the number
of sample cases in each group, divided by the total sample size,
or [(.73 x 287)+(.27 x 105)1/392 = .61 in this study. This
level of accuracy would result from é prediction system which
had a classification bias equal to the base rate, but né valid
information on which to base its)predictions. This criterion
also constitutes a hypotheticéllentity; it would produce worse
total-group accuracy than the maximum criterion, but at least it
would detect gsome of the members of .each class.

Although, neither the maximum nor the proportional
criterion seems appropriate as a proper baseline for comparison
of the prediction models ig this study, the more realistic
alternative is not available. On this basis, both criteria will
be used to "bracket" the decision spaée in which one could
expect a prediction system to operate, and will thus be referred

to as the "expected hit rates" per each criterion. The standard
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error of measurement calculated on the base rate information,
was used to calculate normal (z) statistics to quantify,
separately, the differences between each model’s total group hit

rate and the two criteria. The standard error of measurement
. : : |
[SE = VIE(A-E)YN, yhere £ = .27 ‘as defined by the base rate] is

0.022,
Entire Set of Predictor Variables

The neural network (N60-25) which produced the best
results, given the entire set of predictor variébles represented
by 60 inputs, used a single hidden layer of 25 neurodes, and
produced a Total Group Hit Rate of 1.0 on the training data, and
.756 on the test data. (The Hit Rate on the training data was
1.0 for all neural nét models, therefore, will not be reported
in future results.) The best 2-hidden layer network (N60-15-10)
did not perform any better (Hit Réte = .751) than the l-hidden
layer network, therefore its results and other 2-hidden layer ‘
networks were excluded from further analyses. A discriminant
analysis model (D60), developed on the basis of the identical 60
inputs, produced a Total Group Hit Rate of .843 on the training
data, and .730 on the test data. This model, D60, accounted for
38% of the variance in the criterion. |

sul £ predi Variabl

Sel | by S . Di P analysi

A stepwise discriminant analysis (p < .15 to enter, p £ .15

to stay) produced a subset of 17 variables of the original set
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of 60 predictor variables (see Appendix C for a liﬁt of this
subset of variables). When the 17 variables thus éelected were
used to construct a second discriminant analysis model (D17), a
Total Group Hit Rate pf .920" was achieved on the training data,
.791 on the test data. A second neural network(N{7-12), using
the same set of 17 inputs produced a Total Group Hit Rate on the
test data was .761. l

Of this subset of 17 predictor variables, ten were
positively associated with violent behavior (income; violent
arrests; MMPI clinical scales 3, 8, and 0; two levels of marital
status--married and "live with"; supported family; irregular
work history; and use of benzodiazepines). The remaining seven
predictor variables were negatively associated with violent
behavior (age; one level of raqe¥-Native American; unskilled
labor; two levels of criminal status——probation and parole;
Beta-IQ; and MMPI clinical scale 1).

] B ] k Weight Matriz Analvsi

The neural network weight matrix analysis produced a list
of the 60 inputs, rank-ordered with respect to the relative
contribution ("share") of each input to the dqtput of each of
the two output neurodes (see Aépendix D).

Neural network and discriminant analysis models were
developed using each of three subsets of they60 inputs: 53
inputs (share > .01), 29 inputs (share > .015), and 10 inputs

(share > .02). Total Group Hit Rates for the neural network



1 78
models were .720 (N53-26), and .743 (N29-15). The %etwork
trained with 10 inputs (N10-5) failed to converge Qith a
training tolerance of .49 after extended training, hence its
results were excluded from furthér analyses. Discﬁiminant
analysis models developed with the same subsets of 53 variables,
29 variables, and 10 variables, produced Total Group Hit Rates
of .743 (D53), .740 (D29), and .740 (D10). Tablg 4 summarizes
the Total Group Hit éates, on both the training data and test
data, for each of the four neural nefwork models and five
discriminant anélysis models. All models pfoduced Cross-
validation hit rates that were significantly greater than the
proportional criterion (.608), p < .0001, one-tailed. One
model, D17, produced a hit rate that significantly exceeded the
maximum criterion (.732), p < .005, one-tailed. Tests for
differences between correlated proportions (McNemar, 1947) were
nonsignificant for the difference between the NN and DA hit
rates for a particular number of inputs, X2(1, N=392) = 1.184
for the 60-input models, and .007 for the 29-input models, p >
.05, one-tailed. All other NN - DA hit rates were opposite of
the hypothesized direction. Amoﬁg the DA results, D17 produced
a significantly higher hit rate than D60,‘X2(1, N=392f = 12.5, p
< .0005; D53, X*(1, N=392) = 6.56, p < .005; D29, p < .005; or
D10, p < .005; all one-tailed tests. Tests for differences
between N17 and N60, and between N17 and N29, were

nonsignificant. Thus among the NN models, none of the subsets
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of variables produced better classification resultg than the
entire set of predictor variables. Table 3 displafs the
frequencies of the four possible classification outcomes for
each of the models, from which the Total Group Hité Rates were
calculated. Figqure 5 displays‘these results in relationship to
the Total Group Hit Rates expected as per the maximum and

proportional criteria.

Insert Table 3 about here

Insert Table 4 about here

Insert Figure 5 about here

Conditional Probabilities

The pfobability of a correct classification can be
conditionalized in four ways: (a) a case was actually violent
[p(corr|V) = CP/(CP+FN)], (b) a case was actually nonviolent
[p(corr|NV) = CN/(CN+FP)], (c) a case was predicted violent
[p(corr|"V") = CP/(CP+FP)], or (d) a case was predicted
nonviolent [p(corr|"NV") = CN/(CN+FN)]. Conditional
probabilities (a) and (b) are equivalent to what Huberty (1987)

calls Separate Group Hit Rates for the violent and nonviolent
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groups, respectively. ‘

Table 5 displays these conditional probabilities as derived
from the classification results of each of the nine (4 neural
net, 5 discriminant analysis) models. Also included in Table 5
are the expected hit rates (proportional criteria)\for separate
groups (Huberty, 1987). The probabilities correct for the
Violent and Nonviolent groups were significantly greater (z
statistic) than the respective expected separaté group hit rates
(.27 and .73), p < .05 or .01 (see Table 5), for all models,
with the exception of D10, which failed to meet the expected
value for the Violent group and was greater than the expected
value for the Nonviolent group. There were no distinguishable
patterns of differences between model types. Two results do
stand out: the probability correct, given a case was predicted
"Violent" was .66 for D17, and given a case was actually
Nonviolent was .95 for D10; both results were greater than two

standard deviations above the means for the respective

conditions.

Insert Table 5 about here

False Positive and False Negative Ratios
Figure 6 shows the ratios of false positive to correct
positive predictions (FP/CP) and false negative to correct

negative (FN/CN) predictions across each of the nine models.
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The minimum false positive ratio across all models:was .53 for
|

D17 (approximately one FP for every two CPs, or 1:2), and the
maximum false positive ratio was 1.13 (approximately 1:1). The
minimum false negative ratio was .20 for N17 (1:5)[ and the

\
maximum false negative ratio was .32 (1:3).

Insert Figure 6 about here

Increasing Decision Thresholds
The performance of each of the models was further compared
at decision thresholds of increasing stringency. For the
purposes of this comparison, the values of the two output nodes

were combined according to the following formulas:

oy + (1 - 0p)
2

Combined Output = (6)

where o, = Violent output, and oy = Nonviolent output,

for positive predictions (OV'> oN); and

+ (1 - .
Combined Output = X (2 OV),‘ (7

for negative predictions (oN,> Oy)-

Positive predictions were counted as correct for a
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particular threshold level if: (a) the case was a?tually
violent and (b) the Combined Output was greater thén or equal to
the decision threshold. All other positive predictions were
counted as incorrect. Negative predictions were classified as
correct or incorfect in the same fashion. |

Figures 7 and 8 display the proportions of correct positive
predictions‘[CP/(CP + FN)] and correct pegatiVe predictions

[CN/(CN + FP)], respectively, at decision thresholds of .50,
.60, .70, .80, and .90.

Insert Figure 7 about here

Insert Figure 8 about here

Notice the general trend toward superior performance of the
neural network models, over the discriminant analysis models, as
the decision threshold incieases. This trend held for both
positive and negétive predictions. The proportiohs correct at
decision thresholds of .70 or greater for positive predictions,
and .80 or greater for negative predictions, were higher for
every neural net model than for any discriminant model. Also
observe that the proportion of correct positives generated by
the best neural net mpdel (N17-12) decreased by only .13 from

the least stringent threshold (.50) to the most stringent (.90)



83

threshold. The corresponding decreases for the beft (at .50
threshold) discriminant analysis models, D17 and D53, were .43
and .36, respectively. For correct negative prediétions, the
degree of separation between the best neural net models and the
best discriminant analysis models also increased w;th increasing
decision thresholds of .70, .80, and .90, with separations .03,

.12, and .24, respectively.
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DISCUSSION
"Best-One-Wins"

The performance of two classes of prediction models, neural
network (NN) and discriminant analyéis (DA), was fi%st compared,
using a "Best-One-Wins" (ﬁOW) décisiqn rﬁle.r”Both classes of
models significantly exceeded the accuracy expected on the basis
of the proportional criferion. The results for the models using
the entire set of predictor variabies (60 inputs) showed
substantially better classification by the NN model (16% higher
hit rate) over the accuracy of the DA model for the construction
sample (as was true for all NN models), but no statistically
significant advantage in classification accuracy for the NN
model over the DA model on the cross-validation sample. The
entire set of predictor variablés accounted for 38% of the
variance in the criterion as calculated on three cross-
validation samples--a level 3% greater than that obtained by
Jones and colleagues (1981) on their construction sample, using
the 22 MMPI scales and demographic data to predict intra-prison
violent behavior.

Although it would be highly desirable to be able:to
directly compare the hit rates obtained in this study to those
of previous studies, the gross differences in terms of factors
discussed previously (e.g., definitions of violence, base rates)
preclude any direct comparisons. One prospective study

(Wilbanks, 1985), however, did produce comparable classification
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accuracy in predicting parole violation for 427 pafolees.
Wilbanks achieved a 77% total group hit rate, quité comparable
to the 76% (NN) and 79% (DA) achieved in this study. It should
be noted, hoﬁever, that in the'Wilbank’s étudy, the base rate of
failure on parole was 67% (half of which-were ?eargests for
felony chérges, and half were reincarcerations for technical
parole violations), nearly the complement of the 27% violent
base rate in the present study. '

When the best subset of variables (17) selected by stepwise
discriminant analysis was used to develop both classes of
models, the NN performed as well as it had using the full set of
predictor variables. This lends some support to the claim
(e.g., Hartzberg et al., 1990) that using a large set of
intercorrelated predictor variables does not detract from the
goodness-of-fit of a NN model. The DA model, however, showed a
significant 6% gain in accuracy on the cross-validation sample
over the 60 variable model, providing a total group hit rate
statistically equivalent to the NN hit rate. This DA model
(D17) was the only model that was significantly better in
accuracy than expected on the basis of the bage'rateJ(mawawm
criterion. When three additional subsets of predictor variables
(53, 29, 10) were selected on the basis of Garson’s (1991)
method of analyzing the NN weight matrix, all models (NN and DA)
performed equally well, but no better than the accuracy obtained

with the entire set of predictor variables.
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Although the performance of the neural net models did not
significantly differ from the performance of the discriminant
analysis models overall, one capability of the neural network
models 1is imporfant to note concerning the issue of predicting a
low base rate criterion. All of the discriminant ;nalysis
models had a built-in advantage, in that' the prior probabilities
for each class, Violent and Nonviolent, were given as a priori
information £o the models. Thus the discriminant analysis model
could use this base rate information in computing Bayesian
posterior probabilities. The neufal net models, in contrast,
had to "learn" this information, simply by processing a given
number of examples of each class. This would seem to document
an attribute of neural nets that is not possessed by the linear
discriminant models. Had the discriminant model been given
equal prior probabilities for the two criterion classes, it is
unlikely that it would have achieved such high classification
accuracy. In most prediction applications, however, the base
rate is known a priori, at least to the extent it can be
estimated from the sample at hand; thus although this attribute
of neural networks is interesting, it may not result in any
practical advantage for neural networks over the discriminant
analysis models in application.

Three conclusions may be drawn from this first set of
results using a.BOW decision ruie. First, in terms of cross-

validation total\group hit rates, the linear (DA) approach



87
worked about as well as the nonlinear (NN) approachL Second,
stepwise discriminant analysis proved to be a usefdl strategy
for selecting a subset of predictor variables for use with
either class of models. Third, using a large set of
intercorrelated predictor variables did not detracg from the
goodness-of-fit of the NN model.

The results of conditionaiizing the probability of a
correct classification showed that both classes of models
significantly exceeded the expected separate group hit rates
[p(corr|V) and p(corr|NV)]. These two conditions may be
considered to be of greater consequence, in terms of
implementing a prediction model, than the remaining two
conditions [p(coril“V") and p(corr|"NV")]. The separate group
hit rates indicate the types of errors that were actually
committed by the models, by quantifying the probability that the
model detected those, cases that were actually violent and
actually nonviolent. The remaining two conditional
probabilities measured the accuracy of the model in terms of its
internal predictive validity, that is, the probability that a
"violent" prediction was correct, or a "nonviolent" prediction
was correct. Overall, thef17—input’models produced the highest
accuracy with reépect to all four conditions (with one
exception), but there were no distinguishable patterns of

differences between the two classes of models. The exception

was for model DlO, which detected 95% of the Nénviolent cases,
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4% higher than the rate for D17. Further inspectién, however,
reveals that this result was at the expense of theNViolent group
hit rate which was only 17% for D10, detecting 30% fewer Violent
cases than D17. In other words, model D10 approac?ed the
results one would obtgin by classifying all cases as
"Nonviolent," therefore, the high Nonviolent group hit rate
should be disregarded as a measure of sﬁperiority for model D10.

In terms of false positive rqtes, once again, model D17
produced the best results, with a rate of .56, or approximately
one false positive for every two correct positive predictions.
This result, compared to those reported throughout the‘violence
prediction literature (e.g. Steadman, 1980) is quite good,
reflecting the quality of the subset of 17 predictor variables.
Indeed, nearly all of the models produced less than one false
positive for every one correct pésitive. The results do not,
however, demonstrate consistent superiority of one class of
models over the other, in terms of false positive rates. False
negative rates were comparatively very low, with D17 and N17
producing approximately equal rates of about one false negative
prediction for every five correct negative predictions.

‘Increasing Decision Thresholds

When the performance of NN and DA models were compared at
decision thresholds of .50, .60, .70, .80, and .90, a different
pattern of results was observed. As the decision threshold

increased, the NN models retained their accuracy in terms of
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both correct positives and correct negatives, wheréas the DA
models dropped in accuracy at each successively hiéher threshold
level. This result was consistent with previous résults
obtained by Gordon (1991a).‘ N17-12, . the best NN médel in terms
of correct positive predictions, was only 13% lesslaccurate in
classifying violent offenders with a decision threshold of .90
(41% CP), than with a threshold of .50 (54% CP). Model D17, on
the other hand, fell in accuracy from 48% CP predictions at a
threshold of .50 to only 5% at a threshold of .90." This general
trend held for both positive aﬁd negative predictions. Correct
negative predictions produced by D17 fell from 91% correct at
.50 threshold, to only 41% correct at the most stringent
threshold. The corresponding dgcrease for N17-12 was from 84%
to 74%. Performance of all of the NN models exceeded the
accuracy of all of the DA models at or above decision thresholds
of .70 and .80 for positivé and negative predictions,
respectively. Thus, when performance of the prediction models
was analyzed at increasing levels of decision thresholds, the
neural networks showed substahtially more accurate‘prediction
than the linear discriminant models, . providing strong support
for the hypothesis thét neural networks can offer more relative
efficacy in prediction, given that there is reason to produce
predictions with higher degrees of certainty.

The advantage for NN prediction accuracy stems from the

capacity of a NN model to be trained to any arbitrary degree of
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accuracy {(White, 1989). DA models, on the other hand, construct
the best model possible in a single procedure of simultaneous
processing of the data, minimizing the error in one "epoch."
Moreover, these results suggest that prediction accuracy with
high certainty may require, for some behavioral prediction
problems, a nonlinear model. The linear discriminant model
apparently didn’t fit the underlying patterns in the data to a
degree comparable to that which was obtained with a nonlinear
fit. |

The practical implications of this set of results would
seem substantial. Any agency that would want to implement a
prediction device for violent behavior, would surely want to
have the highest degree of confidence possible in its
predictions. A NN model offers this advantage, and does so in
such a way as to allow a given agency the capécity to set its
desired decision threshold, and make decisions to release or
retain an individual based, in part, on outputs that meet, or
fail to meet this threshold, respectively.

Predictor Variables

The second research question posed for this project was to
determine if the weight matrix from a NN could proVide'useful
information concerning the relative contribution of each of the
individual predictor variables. The Garson (1991) method of
weight matrix analysis produced information in the form of a

rank ordering of the relative contributions of the predictor
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variables, which was used to select subsets of var#ables.
However, the subsets selected from this analysis did not produce
better classification results than the entire set of variables.
Nor were the results of the weight matrix subsets ?f predictor
variables as good as the subset produced by stepwise DA. Thus,
although the weight matrix analysis produced information
regarding each of the predictor variables, no support was found
for the hypothesis that this information was "usefﬁl." The
best subset was selected by stepwise DA; and the best DA model,
as well as the best NN model, were developed with this subset of
17 variables. This would suggest that stepwise DA is a
profitable method for selecting a subset of the total set of
predictor variablés, to be followed with the development of a NN
model on the basis of that subset of variables. When one
compares the ranked list generated by the weight matrix analysis
to the subset of 17 variables selected by stepwise discriminant
analysis, however, one gets a somewhat different picture of
which variables were most predictive of violence. The Spearman
correlation between the rankinés of the top 17 variables from
stepwise DA, and rankings for the same variables produced by the
weight matrix analysis was .56. This discrepancy in rankings
was expected, since stepwise DA was limited to selecting
variables on the basis of their linear relationships to the

criterion; whereas the NN model had the capacity to select

variables in terms of whatever nonlinear relationships produced
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the best results. |

Seven of the best 17 predictor variables seleéted by the
stepwise DA procedure, also ranked in the toé 17 of the
variables ranked by the weight matrix gnalysis. These seven
predictors included four positiveipredictorsvof vi;lence:
income, married, living with a mate; and benzodiazepine use; and
three negative predictors of violence: Nati&e Amefican race,
probation and parole status. Apparently, these seven variables
were of relatively high predictive‘power for both types of
models. Further interpretation of the regults of the weight
matrix analysis would be premature, sincé the Garson method has
yet to rigorously analyzed; but the results of this study
suggest that further evaluation of the Gérson method is
warranted. The conclusion to be drawn, however, is that the two
classes of models were each relying on different variables, yet
produced very similar resultg in terms of overall accuracy (BOW)
of classification.

Further inspection bf the 17 variables selected by the
stepwise analysis reveals that violent offenders in this sample
were less likely than nonviolent felons fo have been on
probation for a previous offense at the time of arrest for the
instant offense; more likely to be younger, to have more
previous arrests for violent acts, ‘to-score higher on MMPI
clinical scale 0, and to be married than nonviolent offenders.

These five variables were ranked as the top five, respectively,
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in terms of partial correlations, and accounted for 20% of the
variance combined. Four additional variables, ranked six
through nine accounted fof an additional 5% of the variance;
violent offenders more ffequently used benzodiazepines, "lived
with" a mate, and were less likely to be Native American, or to
have performed unskilled labor than nonviolent offenders. The
remaining eight variables in this subset accounted for another
6% of the variance. Those variables positively associated with
the criterion weré income, irregular work history, MMPI clinical
scales 3 and 8, and supported family; parole status, Beta IQ,
and MMPI scale 1 were negatively associated with violent
offenders. A total of 32% of the criterion variance in the
entire data set was accounted for with this subset of 17
predictor variables.

It is interesting to note that all categories of predictor
variables were represented‘in the best 17: demographic (income,
age, Native American, unskilled labqr), criminal history
(probation and parole status, pﬁevious violentfarrests),
psychometric (Beta IQ, MMPI clinical scales 1, 3, 8, and 0),
sifuational factors (being married, or "living with" a mate,
irreqular work history, and supporting a family), and substance
abuse (benzodiazepines). It was surprising, however that
substance abuse was not more discriminating, given the extensi&e
support in the violence literature:(é.g., Mednick et al., 1982;

Pritchard, 1977; Smith, 1980). This result may be due to a
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confound present in the only available measure of substance
abuse. Although the information came from a medical interview
at the time of a physical examinétion (which should lend
credence to the information), the subjects were asked if they
had used each substance, recenfly or at anytime in their past.
Thus, the measure did not distinguish between use and abuse,
which, in the case of alcohol, for example, would clearly
diminish its discriminatory power. It is also conceivable that
benzodiazepine use, the one substance measure that was
discriminating, was confounded by the prescribed use of such a
drug for individuals after they had committed a violent act.
This possibility, although speculative, should detract attention
away from benzodiazepine use as a predictor of violence,
although there was support for its role as such in previous
literature (Moyer, 1976); perhaps, at least in this study, it
was an "aftereffect" of violent behavior. R

Other discrepancies between the variables found predictive
in this study and previous literature include the lack of a
white-nonwhite racial difference (e.g., Silberman, 1978), child
abuse (Klassen & O’Connor, 1988), and age of first arrest
(Hamparian et al., 1978; State of Michigan; 1978; Wolfgang,\
1972). The direction of association of marital status was
opposite of that reported by the State of Michigan study (1978),
whose risk assessment scale used single or divorced status as a

positive correlate of parole violation (not necessarily by
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violence). The negative relationship of being mar#ied or living
with a mate, to violent behavior, might be explainéd if one
views the responsibility level involved in such a commitment as
increasing the general stress level an individual would
experience in providing fof another person. This ;ould seem
even more likely if the individual were of low intelligence
level. Another opposite effect was obtained for income level;
previous literature (Pritchard, 1977; Wolfgang et al., 1972)
indicated low socioeconomic status was a correlate of violent
behavior--this study found income to be positively associated
with violent offenses. The "highest" level of income for this
study was relatively low, however--$30,000 and above constituted
the highest categofy.

MMPI scales 1, 3) 8, énd 0 ranked in the top 17 variables
of the stepwise DA subset. Scale 1 was negatively associated
with violent behavior in this study. Low scores on scale 1 are
generally indicative of a lack df somatic preoccupation, or
concern with physical problems or health (Graham, 1977;
Dahlstrom et al., 1972). Scale 3; a positive predictor in this
study, is indicative of psychological immaturity, desire for
attention and affection, and a tendency to deny these and other
troubling feelings (Graham, 1977; Dahlstrom et al., 1972).
Dahlstrom and colleagues further suggest that scale 3 measures
social facility; that high scorers frequently claim that others

are untrustworthy, irresponsible, and unlikable. Perhaps more
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directly relevant to violent behavior, Graham suggests that high
scorers occasionally act out in a sexual or aggreséive manner,
and furthermore tend to have problems with authority fiqures,
often including a "rejecting father to whom males reacted with
rebellion or;overt hostility" (p. 40). Scales 1 a;d 3 are
highly correlated; 20 of the 33 items comprising scale 1 are
also included in scoring scale 3 (r = .46; Dahlst;om et al.,
1972) . The opposite direction of the relationship of scales 1
(-) and 3 (+) to violent behavior, therefore, is somewhat
puzzling. One might consider, however, that the lack of
admission to physical problems {(low scores on scale 1) and a
tendency to deny, or "repress" problems (high scores on scale 3)
is consistent.

High scores on MMPI scale 8 seem more logically consistent
with violent behavior in that the scale represents a factor of
general maladjustment, anxiety, distress, and thought
disturbance (Dahlstrom et al., 1972). High scorers tend to be
socially isolated and alienated f;om peers, impulsive, and
lacking in problem solving skills (Graham, 1977). Scale 8 was
the only one of these scales that had previously been associated
with ﬁiolent behavior, and then usually in combination with
scale 4 (Jones et al., 1981), which did not appear in the
selected subset of predictor variables. Furthermore, elevated

scores on scale 8 were characteristic of the two types of

criminal offenders found by Megargee and Bohn (1979) to have the
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highest rates of recidivism (reconviction or reincarceration
after release from custody), and of the four types ranking the
highest (of 10 types) in intra-institutional violent
disciplinary infractions. The absenée of scale 4 as a
significant predictor of violence in this study may be partially
explained by its degree of item overlap with scale 8 (10 of 50
items comprising scale 4, L = .16; Dahlstrom et al., 1972).

Finally, high scores on scale 0 indicate social
introversion, general maladjustment and self-depreciation
(Graham, 1977). Such individuals ‘tend to withdraw from social
contacts and responsibilities (Dahlstrom et al., 1972). These
descriptors, as well, seem to fit iogically with the other MMPI
indicators of geneial maladjustment as predictive of individuals
who might resort to violence.

Limitations of a Neural Network Approach

The very empirical nature of applying neural networks to
behavioral prediction problems limits the confidence one can
achieve in terms of knowing whether better results could have
been achieved if the network had been designed differently.
This limitation results from the lack of consistent rules for
designing a netwérk in terms of its architecture, complexity
fit, learning rule, and activation function. One must rely
either on rules-of-thumb suggested by other investigators as a
result of their experience with different sorts of problems, or

trends that can be discerned in the course of obtaining one’s
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own results.

Backpropagation is only one of many existing neural network
architectures. The conclusions drawn from this study are
limited in generalizatioﬁ to thié pé:ticular architecture. One
cannot, on the basis of this study, make any statement about the
efficacy of neural networks in general.

\ Future Research

The results of this study suggest that a prospective study
of the prediction of violence, using a neural network approach,
would be worthwhile. Further research may identify variations.
in neural network architectures, learning rules, or activation
functions, that would improve the efficacy of a neural network
approach to predicting Qiolence( or other low base rate human

behaviors.
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Appendix A

£ : g | Viol E NCIC Unif 0ff 1
(modified from Megargee, 1982, p. 168-170)

NCIC Code
Homicide (0900)
Homicide--willful. killing--family--gun 0901
Homicide--willful killing--family--(other weapon) 0902
Homicide--willful killing--nonfamily--qun . » 0903
Homicide--willful killing--nonfamily--(other weapon) 0904
Homicide--willful killing--public official--qun 0905

Homicide--willful killing--public official--(other weapon) 0906
Homicide--willful killing--police officer--qun 0907

Homicide--willful killing--police officer--(other weapon) 0908

Homicide--willful killing--gun 0911
Homicide--willful killing--(other weapon) 0912
Kidnapping (1000)

Kidnap minor for ransom . 1001
Kidnap adult for ransom : 1002
Kidnap minor to sexually assault 1003
Kidnap adult to sexually assault 1004
Kidnap minor ’ ‘ 1005
Kidnap adult 1006
Kidnap hostage for escape - 1007

Kidnap--hijack aircraft 1009



Sexual Assault (1100)

Rape--gun

Rape-- (other weapon)

Rape--strong arm

Sex assault--sodomy--boy--gun

Sex assault--sodomy--man--gun

Sex assault--sodomy--girl--gun

Sex assault——sodpmy——Qoman—-gun

Sex assault--sodomy--boy--(other weapon)
Sex assault--sodomy--man--(other weapon)
Sex assault--sodomy--girl--(other weapon)
Sex assault——sodqmy-—woman--(other weapon)
Sex assault—-sodomy-—boy—-stroné-arm

Sex assault--sodomy--man--strong-arm

Sex assault--sodomy--girl--strong-arm
Sex assault--sodomy--woman--strong-arm
Sex assault--carnal abuse

Robbery (1200)

Robbery--business--gun
Robbery--business--(other weapon)
Robbery--business--strong-arm |
Robbery--street--qun
Robbery--street--(other weapon)
Robbery--street--strong-arm

Robbery--residence--qun
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1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1117

1201
1202
1203
1204
1205
1206
1207



Robbery--residence--(other weapon)

Robbery--residence~--strong-arm

Forcible purse-snatching

Robbery--banking-type institution

assault--family--(other weapon)

assault--family--strong-arm

assault--nonfamily--(other weapon)

assault--nonfamily--strong-arm

officials--gun
officials--(other weapon)
officials--strong-arm
officer--qun
officer--(other weapon)

officer--strong-arm

weapon)

Assault (1300)

Aggravated assault--family--gqun
Aggravated

Aggravated

Aggravated assault--nonfamily--gun
Aggravated

Aggravated

Aggravated assault--public
Aggravated assault--public
Aggravated assault--public
Aggravated assault--police
Aggravated assault--police
Aggravated assault--police
Aggravated assault--gun
Aggravated assault--(other
Arson (2000)

Arson--business--endangered life

Arson——residence--endangered life

Arson--public building--endangered life
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1208
1209
1210
1211

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1314
1315

2001
2002
2008



Variable
Demographic
1. Age
2. Education
3. 1Income
4, Population
5. Occupation
6. Race
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Appendix B
Predi Variabl
] 1 ] ) {th missi 1

Years 0
Years 3
1 - < $10,000 12

2 - $10,000 to 19,999
3 - 520,000 to 29,999
4 - > $30,000
1 -< 4,000 0
2 - 4,000 to 15,999
3 - 16,000 to 49,999
4 - 50,000 to 300,000
5 - > 300,000
Unemployed 8
Unskilled Labor
Skilled Labor
Professional
Caucasian 0
Black

Native American



Psychometric

7. Beta IQ

8-25.

Criminal/Violence History

26. Age First Arrest

27. Arrests |

28.

29. Convictions

30. |

31. Commitments

32. Status

33. Time Free

34. Child Abuse
Situational

35. Marital Status

36. Single Marriage

MMPT

Score

3 Validity scales
10 Clinical scales

5 Auxiliafy/scales

Years

# Violent

# Nohviolént
# Violent

# Nonviolent
#

Free
Probation
Parole

Escape

Months

Present/Absent

Single

- Live With

Common Law
Married
Divorced

Present/Absent

o o o

o o o

54

26
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37.
38.
Substance Abuse History
39. |
40.
41,
42,
43,
44,
45,
46.
47,
48.

Supported Family

Irreqular Work

Alcohol
Amphetamines
Barbiturates
Heroin

Other Opiates
Marijuana
Mescaline
Benzodiazepines
LSD

Inhaling Vapors

Present/Absent

Present/Absent

. Present/Absent

Present/Absent
Present/Absent
Present/Absent
Present/Absent
Present/Absent
Present/Absent
Presept/Absent

Present/Absent

Present/Absent

31
130

121



Appendix C
Predictor Variables (17) Selected by
Variable Partial R*
Probation 0.0597
Age 0.0411
Violent Arrests 0.0405
MMPI-0 0.0397
Married 0.0214
Benzodiazepines |, 0.0149
Live With 0.0136
Native American 0.0122
Unskilled Labor 0.0103'
Parole 0.0097
Income 0.0094
Irregular Work History 10.0088
Supported Family 0.0078
Beta IQ 0.0077
MMPI-3 -0.0077
MMPI-1 0.0068
MMPI-8 0.0061

0.0001
0.0001
0.0001
0.0001
0.0039
0.0163
0.0217
0.0304
0.0466
0.0538
0.0585
0.0668
0.0865
0.0873
0.0885
0.1082
0.1305
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Appendix D
Predi Variabl Ranked by I 1 N |
Weicht Matrix Analysi
Rank Variable ~Share of Viglent Qutput
1 ~ Professional +0.0442
2 Escape 0.0361
3 Heroin 0.0360
4 Live With t 0.0342
5 Native American / 0.0312
6 Probation 0.0253
7 Violent Convictions 0.0251
8 Inhaling Vapors 0.0224
9 Unemployed , 0.0213
10 Alcohol 0.0206
————————————————————————— Subset of 10-----------m—mom—mmm o
11 Married ‘ 0.0196
12 Skilled Labof 0.0188
13 Parole 0.0185
14 Nonviolent Convictions 0.0184
15. Benzodiazepines 0.0184
16 Common Law Marriage | 0.0180
17 Income 0.0178
18 Unskilled Labor 0.0177

19 LSD 0.0176
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20 Single 0.0173
21 Divorced 0.0173
22 Violent Arrests 0.0169
23 Mescaline : 0.0167
24 Barbiturates . 0.0166
25 Child Abuse | 0.0163
26 MMPI-K ’ 0.0162
27 Single Marriage | ‘ 0.0162
28 Other Opiates - 0.0161
29 Time Free 0.0152

30 Amphetamines ‘0.0148
31 Irregular Work History 0.0148
32 Education 0.0147
33 Population 0.0145
34 Prior Commitments 0.0145
35 MMPI-FAM 0.0141
36 Caucasian 0.0140
37 Black ' 0.0137
38 Nonviolent Arrests 0.0136
39 Supported Family ‘ 0.0135
40 Marijuana 0.0134
41 MMPI-L 0.0132
42 Free 0.0131
43 MMPI-9 0.0127
44 MMPI-HC 0.0123

45 MMPI-OH 0.0123



46
47
48
49
50
51
52
53

54
55
56
57
58
59
60

MMPI-4
Age

MMPI-0
MMPI-8
MMPI-7
MMPI-3
MMPI-F

MMPI-HOS.

Age at First Arrest
MMPI-1

MMPI-PV

MMPI-5

MMPI-2

_MMPI-6

Beta IQ

.0120
.0119
.0119
.0110
.0108
.0107
.0105
.0104
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o O o o

.0099
.0097
.0096
.0094
.0093
.0091
.0089
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Appendix E

Oklahoma Department of Corrections Approval Forms

Attachaent 4

REQUEST FOR ACCESS FORM :

Requast f£oT sccess to corrsctional client criminal case history iaformation

maintained by Oklahoma Dspartment of Corrections, from

Jolene R. Scully Gordon suthorized and duly rapresenting
({ndividual) ‘

Oklahoma Etate University » hersinafzer called zequestor.
- {sgeney)

1. Informatiocn requastad:

Demographic information, psychometric data, craminal history,
substance abuse history:; strictly archival data

2. Ragquestor request this information

on 8 continuing basis - until completion of my research (expected
() eon & one-time basis May ‘'1992)

3. The purpose for which information is requasted:
() 7o implement 2 statute, ordinanca, or executive order. (Submit copy
ov give citaticn)
() To provide services required for ths administration of criminal
justice pursuant to an agresmen?’ with a crimival justice agency.
(Attach sgresmest) ,
Research, evaluative or ststistical activities

()  Such purposss as suthorized by court rule, decision, or order. (Attach
or cite)

() Other purposs Explain:

 P-14-9
ﬁgl‘//

ture Reguestor zésantative

Request Granted \( © BRaquest Denied

1

/
If denied, reason denied:

é 7Y42L
te
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Attactment 3

HON-DISCLOSURE AGREEMENT

This agresment 1is made #nd entered goto bg sud betveen (Oklahoms &;urtunt of Corrsctions)

bereinafter called Agency; and (Jolene
bereisafcer called Recipient,

A,

3.
C.

D,

z.
¥.

1.

Scully Gordon

This agreement 1s to provide administratively ereated correctionsl client crimipal
case history informstion for rasesrch, evalustive, or ststistical activitiss. The
recipient agrees that the information will mot be used to the dstriment of ths record
subject nor for amy purpose other than thoss stated in the resesrch plan. The reci-
pient sgraes further to abide by the confidentiality and security provisicas of
Ssction 524 (a) of the Omnidbus Crims Conmtrol and $afa Streecs Act of 1973 asnd any
Tegulaticns issued pursusnt to that sectioa.

Agency sgrses to provide Recipient with the corrvectiocmal client case history informa-
ticn requested in the attachsd access reguest.

Recipient sgrses to limit the wae of this informstion to the purpose for which it was
provided and to destrey the source documsnts when theay are no longer nasded for the
purposes for vhieh it vas providad.

Recipient agress tbat the only perscoas allowed access to this infeormation are:

recipient and advigor , and agress 20t to disseainsts or re-disclose the informa-
tion to any other sgsmcy OT parson.

Recipient sgrees to implenant reasonable procedures to protect this information frow
unavthorized access, aiteration, or destruction.

Recipient agrees to abide dy the laws or regulations of this state and the federa!
government, any present or future rules, policiss, or procedures adopted by Agency o1
adopted by NCIC sfter approval by the NCIC Policy Board to the extent that they ar(
spplicable to the information provided undar this agresment.

Recipient agrees t0 iundemnify and save harmless this state, Agency, other crimima:
Justice agencies a5 dsfinsd by the Code of Tederal Regulations, Title 28, Chzpter 1.
Part 20, tbe electronic dats processing sgencies with vhom this stats has comtract:
to process correctiocnal client criminal case information and the employses of any o:
the above entities (1) from and against any aud sl]l causes of sction, demands, suits
and other proceedings of wvhatsosver naturs, (2) agsinst all liadbility to other
dpcluding soy liadilities or damages by reason of or arising out ¢f any arrast, o
imprisonment or any cause of action, vhatsoaver, and (3) sgsinst any loss, cost
expense and damsge rssuiting thevefrom, ariaing out of or involving sny negligence o
the part of the recipisat in the exercise or enjoyment of this agresment.

1f the agreement is to provide correctionsl cliant crimimal case history informetior
o8 a continuing basis, Agancy rssarves the right ‘to immediately suspend furnishin
information undar this agresment when any ruls, policy, procedure,. regulation, or ls
dascribed in Section F 12 violated or Sppears to bs violated, =

If this agreement is to provida correctional client criminal case history informstio
on a continuing basis, then either Agency or Rscipient may, upon 30 days notice 4
vriting, terminate this agreemsnt.

m.j- 14-9]

, ,

ture of Recipient Tesantative

_ S/4-9




Table 1
p le Violati | Sali F S

128

Risk S Pgrcent Percent
SFS category non-recidivists  recidivists N
10 - 6 Very Good/Good 86 14 766
5 -4 Fair 71 29 423
3-0 Poor 60 40 614
All cases 74 26 1806

Note. Adapted from "Recidivism Among Released Federal

Prisoners: Salient Factor Score and Five-Year Follow-Up" by

P. B. Hoffman and J. L. Beck, 1985, Criminal Justice and

Behavior, 12, p. 505.



129
Table 2

Parf - , ¢ Neural N { Discrini Analysi
b LEr ; 10 i ‘ on i

Proportion Classified "Violent”

Construction Sample

Base Rate ("Violent") Neural Net Discrim- Anal
Mean Bangﬁ‘ Mean Range
.50 , .60 (.56 - .67) .48 (.38 - .54)

.20 .15 - (.11 - .18) 0 (0)
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N | Discrimi Analusis (D) o]

ctruction Sample-  Yaliddty

Predicted

Model Predicted
Viol NonV  Correct Viol NonV Correct

N60-25 _ ‘
Actual Viol 70 0 15 20
Actual NonV 0 191 } 11 84

261 . 99
D60 o
Actual Viol 41 29 16 19
Actual NonV 12 179 16 80

220 96
N17-12
Actual Viol 70 0 19 16
Actual NonV 0 191 15 81

261 100
D17
Actual Viol 33 37 17 18
Actual NonV 11 180 9 87

/ 213 104
N53-26
Actual Viol 70 0 15 20
Actual -NonV 0 191 17 79
| 261 94

D53
Actual Viol 40 30 17 18
Actual NonV 13 178 - 15 81 :

218 98
N29-15 K
Actual Viol 70 0 17 - 18
Actual NonV 0 191 16 80

261 97
D29
Actual Viol 30 40 12 23
Actual NonV 12 179 11 85 v

209 97
D10
Actual Viol - 17 53 6 29
Actual NonV 10 181 5 91

198 97
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Table 4
Total Group Hit Rates z
Training Data Tdst Data
\

Inputs Neural Net Discrim Anal Neural Net Discrim Anal
60 1.000 0.843 0.756 0.730 P
17 1.000 0.813 0.761 P 0.791 ®"
53 1.000 0.836 0.720 ® 0.743 P
29 1.000 0.798 0.743 ® 0.740 F
10 —- 0.759 - 0.740 P

"-p nax < -005, one-tailed

R proport < .00001, One-\tailed
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Table 5

itional Probabilities by Model Tvpe: N 1 |
| Discrimi Analysis (DA

p(corr|V) p(corr|NV)}) - p(corr|"V") p(corr|"NV")
.27 F .13 P :

Inputs NN DA NN DA NN DA NN DA
60 .42 .46 .88 .83 54 .49 .81 .81
17 .547 47"t 8" 1™ .56 .66 .83 .83
53 .43"" 48" 83" 84" 47 .53 .80 .81
29 .50 .33 . .83 .89"" " .52 .51 .82 .79
10 — .17 — 95" - .55 -— .76

P Separate group hit rates expected by proportional criterion

p < .05, one-tailed

* *

p < .01, one-tailed
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Figure 1
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Figure 2
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Figure 3
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Figure 6
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Figure 7
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Figure 8

. : N \ve Predicti : . .
Thresholds

Proportion Correct Negatives

0.5 : SRR
.4 R Model
0.4 — ~ 3 %~ N60-25
I - N17-12
0.3 T —0— N53-26
| =< N29-16
02+ < el | @ peo
’ ¥ D17
0.1 +- D53
, -e- D29
0 } % %
.50 .60 .70 .80 = .90

Decision Thresholds
p(CN) = CN/(CN+FP)



VITAF(
Jolene Sculiy'Gordon
Candidate for the Degree of

Doctor of Philosophy -

Thesis: A NEURAL NETWORK APPROACH TO THE PREDICTION OF VIOLENCE
Major Field: Psychology
Biographical:

Personal Data: Born in Independence, Missouri, September 5,
1957, the daughter of R. Harold and Lois V. Scully; married
Richard T. Gordon, Auqust 11, 1979; mother of Ashley D.
Gordon, born September 26, 1985.

Education: Graduated from Van Horn High School, Independence,
Missouri, in May, 1974; received Bachelor of Arts Degree in
Education from the University of Missouri-Kansas City in
May, 1978; received a Master of Science in Education Degree
in Educational Psychology and Research from the University
of Kansas in May, 1983; received a Master of Science Degree
in Psychology in July, 1989; completed requirements for the
Doctor of Philosophy Degree from Oklahoma State University
in July, 1992. ‘

Professional Experience:

Research: Research Assistant, Department of Psychology,
Oklahoma State University, 1989-1990, partial funding
from Martin-Marietta Electronic Systems, Inc.:
Research Assistant, School of Civil Engineering,
Oklahoma State University, 1991. o

Teaching: Teacher, regular classroom, Fort Osage School
District, Independence, Missouri, 1978-1981; Master
Teacher, gifted/talented students, North Kansas City
School District, Kansas City, Missouri, 1981-1988;
Teaching Assistant, Department of Psychology, Oklahoma
State University, 1988-1992.

Professional Organizations: American Psychological Society,
Cognitive Science Society, International Neural
Network Society, Southwestern Psychological
Association, Oklahoma Psychological Society. -



