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CHAPTER 1 

INTRODUCTION AND STATEMENT OF RESULTS 

Dirichlet Series and the Riemann Zeta-function 

We introduce the class of functions called Dirichlet series by outlining some standard 

facts about the Riemann zeta-function. The functions we are concerned with in this thesis, 

known as "Dirichlet series associated with cusp forms," share all of the key properties of 

the (-function, and historically the progress made on these functions has been attained 

by transferring the techniques which have been successfully applied to the (-function. We 

continue this process in this thesis. In this section we outline the relevant results for the 

Riemann (-function. In the next section we define our class of Dirichlet series and then 

describe the new results for these functions. 

A Dirichlet series is a function which can be written in the form 

where s = a + it is a complex variable and the series is absolutely convergent in some 

half-plane 0' > ao. The classic example is the Riemann zeta-function 

00 1 
((s)=Lns' 

n:::;;l 

the se.ries being absolutely convergent for a> 1. 

Since we assume that our Dirichlet series converges absolutely in some half-plane, 

the series defines a holomorphic function there. The Dirichlet series studied in number 

1 
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theory have in common several properties which we illustrate by considering the Riemann 

zeta-function in some detail. Further details of the following material can be found in 

Titchmarsh's book [T). First, ((s) has a meromorphic continuation to the whole s-plane 

with a single simple pole at s = 1. The function 

~(s) = H(s)((s), 

where 

H(s) = !s(l- s)7r-tr(f) 

is entire and satisfies the functional equation 

~(s) = ~(1- s). 

Finally, (( s) has the Euler product representation 

(( S) = II (1- p-s)-1, 
p 

where the product is over all primes and is absolutely convergent for u > 1. 

Of major significance in number theory is the location of the zeros of (( s ), and the 

facts given above already give information about this. Since ~( s) is entire we see that (( s) 

is zero for s = -2, -4, -6, ... , these zeros· being necessary to cancel the poles of the 

f-function. We refer to these as the trivial zeros ofthe (-function. From the Euler product 

representation we see that ((s) does not vanish for u > 1, and so by the functional equation 

it also does not vanish for u < 0, except for the trivial zeros. The remainder of the zeros, if 

any, are referred to as nontrivial zeros, and must lie in the region 0 ::; u ::; 1, which we refer 

to as the critical strip. In fact, the nontrivial zeros must lie in the open strip 0 < u < 1, 

as was shown by Hadamard and de la Vallee Poussin in the course of proving the prime 
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number theorem. We denote a nontrivial zero of the (-function by p = f3 + i'y, and we define 

the zero counting function by 

N(T) = L 1, 
0<-y<T 

where the sum is over the nontrivial zeros, and zeros are counted according to their multi-

plicity. Von Mangoldt proved that 

T T T 
N(T) =-log---+ O(logT). 

211" 211" 211" 

The main conjecture about the location of the nontrivial zeros of the (-function is the 

Riemann Hypothesis, which is the conjecture that all of the nontrivial zeros of the zeta-

function are of the form p = t + it. That is, all of the nontrivial zeros lie on the critical 

li 1 ne, u = 2 . 

-

One step towards proving the Riemann Hypothesis is to establish lower bounds for the 

number of zeros of (( s) which are on the critical line. To this end, let 

No(T) = L 1, 
O<-r<T 
p=~+i-r 

that is, No(T) counts zeros in the critical line. The first result on N0(T) was given by Hardy 

in 1914. He showed that No(T) -+ oo as T -+ oo. This was established by considering the 

integrals 
00 J 1:( 1 . ) tn cosh at d 

~, 2 + zt 2 1 t. 
t +-

0 4 

In 1921 Hardy and Littlewood improved this result to N0 (T) > AT for some A > 0. The 

method used was different, but it involved considering integrals similar to the above. While 

this result shows that there are many zeros on the critical line, it falls short of showing that 

a positive proportion of the zeros are critical. Such a result was first obtained by Selberg in 

1942, specifically, he proved that No(T) > ATlogT for some (very small) A> 0. The key 
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ingredient in his proof was that instead of considering an integral of (( t +it) he considered 

integrals of (( t +it)¢( t +it), where ¢( s) is an approximation to 1/(( s ). The function ¢( s) 

is called a "molli:fier" because, as an approximation to 1/ (( s ), it helps dampen the wild 

behavior of (( s) near the critical line. 

Mollifiers ofthe (-function also play a key role in Levinson's method of detecting simple 

zeros of (( s) on the critical line. This will be the subject of the remainder of this section. 

First we describe the molli:fier B,(s). We wish to approximate 

1 ~ fJ-(n) 
((s) = L....t --;;:;-' 

n=1 

where M( n) is the Mobius function. Let 

= ( )h(logBfa) 
9a fJ- a log B 

and 

B,(s) = L 9{3/3-S, 
{3<B 

where h(x) = l:amxm is a real polynomial with h(O) = 0 and h(1) = 1. Then B,(s) is 

the necessary mollifier, and the most difficult step in applying Levinson's method is the 

evaluation of the following integral: 
T J ((t + u +it) ((t + v- it) /B,(! + it)/ 2dt 

1 

(0.1) ,..... T (1 + ~ !1 
r-y( u+v) dy _!!:__ _!!:__ B-au-f3v !1 

h( X + a) h( X+ f3)dx) 
() da d/3 

0 0 
a=O 
/3=0 

This formula is a special case of Theorem 2 in [C3], written in slightly different notation, 

and is valid for 0 <()<~and /u/ + /v/ < 1/logT. We now describe the results obtainable 

from Levinson's method, and we outline the ideas behind the method. 

Let r~j) denote the proportion of zeros of ~(j) ( s) which are simple and on the critical 

line. That is, if we let 

N~i)(T) = #{s = t +it/ ~(j)(s) = 0, ~(j+l)(s) =j:: 0, 0 < t < T} 
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then 

· NU)(T) 
r(J) = lim inf 1 . 

1 T-+oo N(T) 

We now indicate how Levinson's method obtains lower bounds for r~j) from formula (0.1). 

One starts with 

17(s) =in (~(n)(s) + _>._~(n+l)(s)) 
logT 

where >.is real. Since ~(n)( t +it) is real when n is even and pure imaginary when n is odd, 

in~(n)(~ +it)= Re17(t +it). Therefore one can count zeros of ~(t +it) by looking at the 

change in the argument of 17(t +it). Furthermore, if Re17(t +it)= 0 but 17(t +it) "I 0 

then t +it is a simple zero of ~(n) ( s ). A zero of 17( s) on the t-line only contributes half as 

much change in argument as a zero to the right of a = t, while Littlewood's lemma detects 

zeros with all zeros counted with equal weight. Thus we can arrange to find zeros which 

are both simple and on the critical line. Essentially, one replaces 17(s) by H(s)V(s) where 

Q( x) = (1 + >.x )(1 + 2x )n with >. real, and 

V(s) = Q (lo~ T :s) ((s). 

This is sensible because 

(0.2) 

Then Littlewood's lemma and the arithmetic-geometric mean inequality gives 

Putting a= t- io:T and dividing by 2~TlogT we get 
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We may differentiate the asymptotic formula in Theorem 1, so it is possible to evaluate the 

right hand side ofthe inequality above. Since Q ( d~ )exy = Q (y )exy we :find that 

(0.3) 
1 1 

~~n) ~ 1-~ log(1+1 j j d~ d~Q,(y+a0)Q,(y+j3B)eR(2y+a9+/3fi) h(x+a)h(x+f3) dxdy )a=o 
0 0 13=0 

To obtain lower bounds for ~~n) one is given (} and then chooses the free parameters 

h(x), R, and .A so as to make the right side of (0.3) as large as possible. Recall that T 8 is 

the length of our mollifying polynomial. Intuitively, one would expect that in order to get 

good results one would want to use the longest possible molli:fier. We will investigate this 

dependence on e. Expanding the term inside the logarithm in (0.3), ie., differentiating with 

respect to a and j3, results in an expression of the form 

1 1 

(0.4) 1 +ex J h(x)2 dx + Y(h2(1)- h2(0)) +! j h'(x)2dx. 
0 0 

Here X, Y, and Z each depend only on R, .A, and n. We wish to make this expression as 

small as possible. It is clear that when 8 is very small then an increase in (} will result in 

a decrease in (0.4). Perhaps it is not so clear that this in fact holds even for large values 

of e. The polynomial h( x) is only restricted by the requirement h( 0) = 0 and h( 1) = 1. 

Clearly we can relax the polynomial condition on h( x) and merely require it to be a smooth 

function. Thus we may choose h( x) optimally by the calculus of variations, and this choice 

will depend continuously on R, .A, n, and e. As e becomes large the best choice of h( x) will 

obviously have J0
1 h2(x)dx small. Of course the boundary conditions on h(x) will then force 

J0
1 h' ( x )2 dx to be large. It may not be immediately obvious that these competing factors 

result in an overall decrease in (0.4), but in Section 8, formula (8.1), the optimal expression 

is given and the reader will easily see that it is monotonically decreasing in e (actually, 

(8.1) is a related expression, but the effect is the saine). We also have a free choice in the 
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parameters R and A. The optimal choices for these is easily made once 8 and n are fixed 

and h( x) has been chosen. 

To better illustrate the key role which 8 plays we present a graph of 8 vs. the right 

hand side of (0.3) when n = 0. This graph shows the lower bound we obtain for r}0 l as 

a function of 8. For each value of 8 the function h( x) and the parameters R and A were 

chosen optimally by a computer calculation. The decimal values given are truncations of 

the actual values. 

Lower bound 
for -tr> 

.5865 

.5 

.4021 

.3562 

8 

Figure 1. Lower Bound for t~O) as a Function of Mollifier Length 

Originally Levinson [Lev] used 8 = t with h( x) = x and A = 1 and chose R optimally 

to obtain r}0l > 0.34 7 4. As can be seen from the graph, this is not far from best possible. 

Small improvements on this were made in [C2] and [A]. These involved using 8 = t and then 

making better choices for the other parameters. A significant improvement was made by 

Conrey (C3). He showed that one may take 8 =tin (0.1). This gives the best kn~wn lower 

bound for r}0l. At this stage any improvement in our knowledge of r}0 l using Levinson's 

method would require showing that one can take a yet larger value of 8. The bounds 

obtainable for T~n) using 8 = t are as follows: r}0l > 0.40219, r}1l > 0.7987, r} 2l > 0.9346, 
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(3) (4) (5) 
T1 > 0.9673, T1 > 0.9800, and T1 > 0.9863. 

We mention one other mean value result for the (-function. Let 

with a( m) <(:€ m€ for all f > 0, and define 

T 

I(T) = J l((t + itWIA(t + it)i 2dt. 
1 

Then a special case of Theorem 1 of [BCH-B] is the formula 

(0.5) I(T) "'T ""' a( h) a(k) (h k) 1 (T(h, k)2) 
~ h k ' og hk ' 

h,k$M 

this being valid for M <t: T 9 with () < t. 

The subject ofthis thesis is the extension of the above results, in particular (0.1), (0.3), 

and (0.5), to another class of Dirichlet series. The class of Dirichlet series, and the results, 

are described in the next section. 

Cusp Forms and Dirichlet Series 

We denote the upper half plane by 1i = {z = x + iy I y > 0}, and f(1) = SL(2, ~) 

denotes the full modular group. Let k be a positive even integer. Then a holomorphic cusp 

form of weight k for f(l) is a holomorphic function F on 1i which satisfies 

( az +b) F cz+d =(cz+d)kF(z) 

for all ( ~ ~) E f(1 ), and which has a Fourier expansion of the form 

00 

F(z) = L fne(nz), 
n=l 
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where e(z) = e21l"iZ. The space of all such functions is denoted sk (f(l)). The Heeke 

operators are maps Tn: Sk (f(l))-+ Sk (f(l)) given by 

(TnF)(z) = nk-1 L ~ F ( nz; bd). 
djn b=O 

We fix F(z) E Sk (f(l)) and further assume that F(z) is an eigenfunction of all the 

Heeke operators and ft = 1. Heeke showed that this implies that fn is multiplicative, that 

is, !alb= lab whenever (a, b)= 1. Define 

1-k 
f(n) = fnn-2 • 

If p is a prime and d( n) is the divisor function we have 

(1.1) lf(n)l ~ d(n) 

and 

(1.2) 

The inequality above was proved by Deligne [Del]. The identity was established by Mordell 

[M] when f is the Ramanujan r-function, and by Heeke [Heel] in general. The Dirichlet 

series associated to the cusp form F( z) is defined by, 

00 

LF(s) = L f(n)n- 8 • 

n;;;:;l 

This Dirichlet series is the subject of the remainder of the thesis. 

As mentioned in the :first section, L F( s) is in the class of Dirichlet series which have 

properties similar to the Riemann (-function. We now describe these properties in the case 

at hand. By ( 1.1) the series for L F( s) converges absolutely for a > 1, and so L F( s) defines 

a holomorphic function in that half plane. The function L F( s) can be continued to an entire 

function, and the function 
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where Hp(s) = (211")-sr( k2l + s), is also entire. We have a functional equation 

~p(s) = ~F(1- s), 

and an Euler product 

Lp(s) = IJ (1- f(p)p-s + p-2s) -1. 

p 

The shape of the Euler product comes directly from (1.2), and by (1.1) it converges abso-

lutely for (j > 1. Thus all ofthe nontrivial zeros of L F( s) lie in the critical strip 0 ~ (j ~ 1, 

and the analog of the lliemann Hypothesis for L F( s) is the conjecture that all of the non-

trivial zeros lie on (j = t. In 1939 Rankin [R] showed that Lp(s) does not vanish on the 

boundary of the critical strip, this result coming 45 years after the corresponding result for 

the lliemann (-function. To study the nontrivial zeros of Lp(s) we adopt the same notation 

as used for the (-function. While the notation is formally the same, no confusion should 

result because for the rest of this paper we are concerned only with the Dirichlet series 

Lp(s). 

A nontrivial zero of Lp(s) is denoted by p = j3 + i-y, and we have the zero counting 

function 

N(T) = 2: 1, 
O<I'<T 

where the sum is over the nontrivial zeros, and zeros are counted according to their mul-

tiplicity. The same methods as used in the case of the lliemann (-function show that 

N(T)"' ~TlogT, so Lp(s) has twice as many zeros as the (-function. Let 

N0(T) = L 1 
O<-,<T 
p=,+h· 

be the counting function for zeros on the critical line. Lekkerkerker [Lek] showed in 1955 

that No(T) > AT for some A> 0, this result coming 34 years after the corresponding result 



11 

for the (-function. Hafner [H) showed in 1983 that No(T) > ATlogT for some A> 0, 41 

years after Selberg showed the corresponding result for the (-function. 

What has yet to be done is the extension of Levinson's method to Lp(s). The main 

step in this is evaluating the analog of (0.1), and this is the main result of this thesis. First 

we need the appropriate molli:fier of Lp(s). With this in mind letT be a large parameter, 

B = T 9 , and J.L f be the Dirichlet inverse of f, ie. for 0' > 1 we have 

From the Euler product representation of Lp we see that if pis a prime then J.LJ(P) = - f(p) 

then the molli:fier is 

b = ( ) h (log B /a) 
a J.l 1 a log B ' 

B(s) = L b13 f3-s, 
/35.B 

where h( x) = :E amxm is a polynomial with h(O) = 0 and h(1) = 1. Then the analog of 

(0.1) is 

Theorem 1. If 0 < 8 < l and lui+ ivl ~ 1/logT, then 

T J Lp(t + u +it) Lp(t + v- it) IB(t + itWdt 
1 

,..., T (1 + ~ !2 
r-y(u+v)dy ..!!:_..!!:_B-cxu-/3v /

1 
h(x +a) h(x + f3)dx) 

() da df3 
0 0 

uniformly in u and v. 

a=O 
/J=O 

Note that both sides of the above formula are holomorphic as functions of u and v. Since 

the error term is uniform in u and v Cauchy's theorem implies that the asymptotic formula 
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holds after differentiating any number of times with respect to u and v, for lui + lvl <{:: 

1/ logT. 

Comparing Theorem 1 with (0.1), and recalling that Lp(s) has twice as many zeros 

as the Riemann (-function (equivalently, Lp has twice as many f-factors in its functional 

equation), there is an obvious conjecture to be made about the shape of the mean square 

of LB where L has A times as many zeros as ( and B is the appropriate mollifier of L. 

However, some additional conditions are needed. If 

then define 

L(s) = ~ a(n) 
~ n6 
n=l 

2L(s) = ~ ja(n)IZ 
~ ns 
n=l 

Both 2((s) and 2Lp(s) have simple poles at s = 1, and this fact plays a key part in the 

proofs of the asymptotic formulas. The function ( 2 ( s ), for example, does not have this 

property and we would not expect the mean square of ( 2 B to look like the main term in 

Theorem 1. Conjecturally, if L( s) is in the Selberg class (see [Sel2] or [CG2]) then the 

condition that 2 L( s) has a simple pole at s = 1 is equivalent to L( s) being primitive, and 

so only for those functions is it reasonable to expect that the analogous asymptotic formula 

holds. 

Now we illustrate some applications of Theorem 1. Let pW = j3 + i; denote a zero of 

the jth derivative ~V)(s), and denote its multiplicity by m(;). Define 

NW(T) = 2: 1 N(T) = N<0>(T) 
pUl =.B+i-r 

NJi>(T) = 2: 1 N1i)(T) = 2: 1 
p(i)=!+i-r p(i)=!+i-r 

m(-,)=1 

Mr(T) = 2: 1 M<r(T) = 2: 1 
p( 0 )=13+i-, p( 0 )=13+i"Y 

m(-y)=r m("Y):Sr 
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where all sums are over 0 < 1 < T, and zeros are counted according to their multiplicity. 

Let 
(j) 

(j) li . f No (T) 
~0 = .]!!:}! N(j)(T)" 

Thus, ~~j) is the proportion of zeros of ~Y) ( s) which are on the critical line, and ~~i) is the 

proportion which are simple and on the critical line. Lekkerkerker [Lek] has shown that 

NW(T)"' ~TlogT and NJi)(T) >AT as T-+ oo, and Hafner [Hafl] showed that ~~o) > 0, 

but he did not obtain an explicit lower bound. It is immediate from Rolle's Theorem that 

~(j+l) > ~(j) > ~(j). We have now the following 
0 - 0 - 1 

Corollary la. With ~~j) as defined abo~e we have ~P) > 0.326, ~~2 ) > 0.582, ~~3) > o:no, 

(4) 20 (5) d . a1 (n) 0( -2) ~1 > 0.8 , ~1 > 0.879, an Jn gener ~1 = 1 + n . 

Corollary lb. For T sufficiently large, M9(T) > 0.165N(T), M5:4(T) > 0.325N(T), 

M 9 (T) > 0.460N(T), and M$6 (T) > 0.576N(T). 

In an unpublished work Conrey, Ghosh, and Gonek have used Montgomery's pair 

correlation method to show that if all of the nontrivial zeros of L F are on a = t then 

where the sum is over the zeros of ~F· We have 

Thus, 

L 1 ~ 152N(T). 
0<"Y<T 

m-y=1, 2 

That is, M 9 (T) > 0.416N(T). We also have M9 (T) > 0.6llN(T), M 9 (T) > 

0.708N(T), M$s(T) > 0.766N(T), and M$6 (T) > 0.805N(T). These results are condi-

tional on the Riemann Hypothesis for L F. 
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Corollary lc. Let Nd(T) denote the number of distinct zeros of ~F( s) in 0 < t < T. Then 

if T is sufficiently large 

Nd(T) > 0.253N(T). 

Corollary 2. Let p = f3 + if represent a zero of L F( s) with f3 > t. Then 

L (/3- t) < (0.204 + o(1))T. 
O<'Y<T 

It is interesting to compare the above results to the corresponding statements for the 

Riemann (-function. Corollary 1a is just Levinson's method [Lev] applied to LF. The only 

difference which occurs is for the Riemann ~-function, ~(s) = H(s)((s) where 

(1.3) 

while in our case ~F(s) = HF(s)LF(s) where 

(1.4) 

The factor of 2 difference in the above equations will change some of the constants in our 

formulas. The same analysis goes through as before and the result is that 

(1.5) 
2 1 

K~n) ~ 1-2._ log (1 + ~ JJ ..!!:._ ..!!:_Q(y+odJ)Q(y+f38)eR(Zy+cxli+f3!1) h( x+a )h( x+f3) dxdy ~ 
2R e da df3 A a=O 

0 0 fJ=O 

In light of the discussion of Levinson's method in the previous section, one might think 

that since we may take 8 = 0.166 in (1.5) we could obtain a positive value for x:~o). However, 

the change of variable y ~--+ 2y in (1.5) results in an expression identical to (0.3) with the 

substitutions 

In other words, it is "twice as hard" to get a result for LF, and one would need 8 > 0.327 

to obtain a positive value for K~o) by this method. This seems far beyond reach of present 
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technology. The correspondence O(for L F) ~ 0 /2(for () is also apparent in the asymptotic 

formulas. 

While our work does not show that a positive proportion of the zeros of ~F are simple 

and on the critical line, some results in this direction are already known. Hafner [Hafl] has 

shown that a positive proportion of the zeros of ~F have odd multiplicity and are on the 

critical line. This involved applying to ~F the method which Selberg [Sell] used to show the 

corresponding result for the Riemann ~-function. Conrey and Ghosh [CGl] showed that 

there exist arbitrarily large T such that for any f > 0, L(s) has >e rt-e _simple zeros in 

the region 0 < t < T. Here 

L(s) = ~ r(n) 
~ ns 
n=l 

is the Dirichlet series formed with the Ramanujan 7-function. This result is stated only for 

the 7-function because the last step in their argument involves verifying that L(s) has at 

least one nontrivial simple zero, and this is done in an ad hoc manner. Their proof uses 

Good's [G3] result ~F( t +it) <{:: t!+e as t --+ oo, and an improvement in this estimate would 

yield an improvement in the simple zeros result. 

We state one more result, namely, the analog of formula (0.5) Let 

A(s) = L a~rr;) 
m-5,M 

and define 
T 

I(T) = J ILF(~ + it)I 2 IA(~ + it)i 2dt. 
1 

We have 

Theorem 2. Suppose a(m) <{::me for any E > 0, and M <{:: T 8 with()< ~· Then 



where :F is the multiplicative function defined by 

:F(p) = f(p) p: 1 

and 

for p prime, and D-1 is the residue at s = 1 of the function 

D(s) = ~ j2(n). 
~ ns 
n=l 

16 

In [BCH-B] it is conjectured that in the (-function case the asymptotic formula (0.5) 

should be valid for () < 1, and an example is given which shows that, at least for some 

choices of the a(n), the formula fails to hold when()> 1. As can be seen from the graph 

previously given, the "() = 1" conjecture implies that more than 58.6% of the zeros of 

(( s) are simple and on the critical line. In view of the large sieve inequality for Dirichlet 

polynomials the () = 1 conjecture appears reasonable. Since the large sieve inequality is 

essentially best possible, the failure of the formula to hold in general for () > 1 is expected .. 

The same reasoning would lead us to conjecture that the formula in Theorem 2 should hold 

for () < 1, and should not hold in general for () > 1. 

There is the potential that for certain sequences a( n) the formula may hold over a larger 

range, and if so, the case where A( s) is a molli:fier of the given Dirichlet series would be a 

likely candidate for this possibility. It may be that in the mollified case, that is, Theorem 1 

or (0.1), the asymptotic formula remains valid for arbitrarily large values of 0. This would 

imply that almost all of the zeros of these primitive Dirichlet series are simple and on the 

critical line. 



CHAPTER II 

OUTLINE OF THE PROOF 

We present the main ideas of the paper: Suppose "\li u is a smooth function with support 

in the interval [1-1/U, 2+1/U] such that "\liu(t) = 1 for 1+1/U < t < 2-1/U and wg) ~ Ui 

for all j. Theorem 1 will follow directly from 

Proposition 1. If B < T, lui+ ivi ~ 1/logT and 

00 

I(T;u,v)= J "\liu(;)LF(t+u+it)LF(t+v-it)IB(t+it)i2 dt 
-oo 

then 

where 

M(T·u v)"'T (1+ logT /
2 

T-y(u+v)dy_!!:__!!:_B-au-{3vj
1 

h(x+a)h(x+f1)dx) 
' ' log B da dj3 

0 0 a=f3=0 

The beginning of the proof of Proposition 1 is similar to [G3] where Good obtains an 

asymptotic representation for Jt ILI 2 with the best known error term, and [Hafl] where 

Hafner bounds J1T ILI 2 IBI4 • Hafner did not need to obtain an asymptotic expression, nor 

did he need to use a long mollifying polynomial, while in our case both of these are critical. 

Nevertheless, our initial reductions closely follow Hafner's treatment, so we refer there for 

additional details. In Chapter 3 we begin the proof of Proposition 1. We start by squaring 

an approximate functional equation for LB. A trick of Good allows us to eliminate the 

cross terms. We are left with essentially three pieces. The terms far from the diagonal are 

17 
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disregarded by repeated integration by parts in a standard way. The terms on the diagonal 

provide the main term; this is done via Proposition 2. The near diagonal terms provide 

an error term; this is done by Proposition 3. Thus it remains to prove Propositions 2 and 

3. In Chapter 4 we provide the background information and lemmas needed to prove the 

Propositions. In Chapter 5 we prove Proposition 2 using techniques of Conrey [C1] to 

extract an asymptotic expression. In Chapter 6 we prove Proposition 3. We transform the 

near diagonal terms into an expression involving Eisenstein series, Maass forms, and their 

Fourier coefficients. A lemma of Hafner [Haf2] along with theorems of Iwaniec [Iwa] and 

Deshouillers and Iwaniec [DI] are then used to bound this in a nontrivial way. In Chapter 7 

we put the pieces together to :finish the proof of Proposition 1, and so that of Theorem 1. 

The proof of Theorem 2 involves a very slight modification of the proof just given, and this 

is done in the last part of Chapter 7. In Chapter 8 we evaluate our formula for specific 

choices of h, u, v, and e to obtain the corollaries. 



CHAPTER III 

INITIAL REDUCTION 

This chapter contains the first part of the proof of Proposition 1. 

We start with Good's [G1] approximate functional equation for LF. Suppose <p E 

C(f(JR) satisfies cp(t) = cp( -t), and 

(3.0) ~(t) = {: 
ltl ~ ~ 

ltl ~ ~-

For g E C(f(JR) define g0 (t) = 1 - g(ljt), and note that <po satisfies (3.0). Then for 

0 < (J < 1 we have the approximate functional equation 

(3.1) 

where for € > 0, 

and 

f(lli.- s) 
X(s) = (21r)2s-l 2 . 

r(k21 + s) 

By multiplying (3.1) by B(t +it) and replacing x by xja we get 

19 
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Lemma 1. If lui <t:: 1/ logt then for any E > 0 

Lp(! + u +it) B(! +it) ="' f~n) b~ (na)-it<p(2rrna) 
L..t n2+ua2 tx 
n,a 

Q(u it)"' f(m) b13 (m) it (2rrmx) + + L..t/3m!-up! ,8 <po t,8 
m, 

= A1(t, u, <p) + Q(u + it)Az(t, u, <po) + E1(t; u, x), 

where Q(s) = xct + s), and EI(t; u, x) <t:: r!+e ( x! + Bx-t). 

Ultimately we will choose x = B. By Stirling's formula and the restriction on u, 

(3.2) 

k2 k 1 where ck = 4 - 2 + 6 . 

From Lemma 1 and Cauchy's inequality we have 

(3.3) I(T; u, v) = I'+~(T; u, v) + E2(T; u, v, x) 

1 1 1 1 
+ O(IEl (T; u, u, x)I$(T; u, u)l +lEi (T; v, v, x )I$(T; v, v)j), 

where for E > 0, 

00 

(3.4) Lp(T;u,v) = j \£1u(~) (A1(t,u,<p)+ Q(u+ it)A2(t,u,<p0 )) 

-oo 

x (A1( -t, v, <p) + Q(v- it)A2 ( -t, v, 'Po)) dt 

and 
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We employ a trick of Good ([G2] p. 23) to break Irp into manageable pieces. Write 

r.p = 'Pl + 'P2 where 'Pl and 'P2 are smooth even functions satisfying 'Pl(t) = 0 if ltl > i and 

'P2(t) = 0 if ltl < ~· To make things look nicer, choose r.p, r.p1 , r.p2 so that r.p(t) = r.p0(t) and 

'P2(t) = 'P2(1/t), and note that (r.p+r.p2)o = r.p-f.P2· Now r.p+r.p2 satisfies (3.0), so Lemma 1 

gives 

A1(t, u, r.p) + Q( u + it)A2(t, u, r.p) = A1(t, u, r.p + 'P2) + Q( u + it)A2(t, u, r.p- 'P2) + E1 (t; u, x ). 

Therefore, 

(3.5) 

The usefulness of (3.5) is this: when we multiply out the integrand in (3.4) we obtain cross 

terms, ie. terms containing exactly one Q as a factor, which shouldn't contribute anything 

to our main term. The usual trick of repeated integration by parts to show that these terms 

are small fails when tis close to 1. But this is exactly where r.p2 is supported, so that (3.5) 

allows us to exchange terms which contain one Q factor for terms which contain zero or two 

Q factors with the introduction of a reasonable error term. 

Using (3.5) four times we get 

00 4 

Irp(T;u,v)= J wu(;)Lsi(t;u,v)dt 
-oo J=l 
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where 

S1(t; u, v) = A1(t, u, cp)A1( -t, v, cp) + A1(t, u, cp)A1( -t, v, 'P2) + A1(t, u, 'P2)A1( -t, v, 'Pl) 

S2(t; u, v) = Q( u + it)Q( v- it) (A2(t, u, cp )A2( -t, v, cp) 

+ A2(t, u, cp)A2( -t, v, 'P2) + A2(t, u, 'P2)A2( -t, v, 'Pl)) 

S4(t; u, v) ~ IEl(t; u, X )I (IAl (t; v, cpl)l + IQ( v + it)A2(t; v, cp )I) 

+ IEl(t; v, X )I (IAl(t; u, 'Pl)l + IQ( u + it)A2(t; u, cp )I) 

We have expanded I(T; u, v) into a large number of pieces, most of which we eliminate 

by 

Lemma 2. With the notation above, iff > 0 then 

lcp(T; u, v) ~ Tl+e B 

and 
00 

j q,u (;) (S3(t; u, v) + S4(t; u, v)) dt = E3(T; u, v, x ), 
-oo 

where 

The details are in [Hafl] so we just give a sketch. The integral involving S3 is small 

because the restriction of the support of cp1 to the interval [- i, ~] permits repeated inte-

gration by parts, as on page 140 of Hafner's paper. For Icp and the integral involving S4 we 
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use the Cauchy-Schwarz inequality. Then integration by parts leads to an expression which 

we bound using familiar techniques; see page 139 of [Hafl), or [T), section 7.2. 

The above Lemma, along with (3.3) and (3.4) brings us to 

00 

I(T; u, v) = j 'ltu (;) (S1 (t; u, v) + S2(t; u, v)) dt + 0 ( Tt+eut E/ (T; u, v, x)). 
-oo 

The error term above is far from best possible, but we will see that it is not the limiting 

step in what we do. 

To save on notation let q,( x, y) = <p( x) <p(y) + <p( x) <p2(y) + <p2 ( x) <p1(y). Note that the 

support of q,(x, y) is contained in [-~, ~] x [-~,~],and q,(x, x) satisfies (3.0). We have 

St(t;u,v)= 2:: f(n)J(rr:)b)jf3 (na)-itq,(2rrna,2rrmf3) 
(mnaf3)2numv m/3 tx tx 

n,m,c.,(j 

and 

S( . )-Q( ')Q( -·) L f(n)f(m)b))f3 (nf3)it.m.(2rrnx 2rrmx) 
2 t, u, v - u + zt v zt l. '-~-' , • 

(mna!3)2n-um-v ma to: t/3 
n,m,c.,(j 

And by (3.2) 

Just as in the proof of Lemma 2, repeated integrations-by-part permit us to eliminate 

those terms in S1 and S2 which are "far from the diagonal," giving 

( l.l.~ ) I(T; u, v) = I 1(T; u, v) + I2(T; u, v) + 0 T 2 U2E:j (T; u, v,x) , 

where for € > 0, 

and 
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The 1/t term from Q( u+it)Q( v-it) does not appear in the expression for h; the restriction 

on the summation allowed us to incorporate it into the error term. 

The main term in 11 comes when no: = mj3; the rest will become an error term. In 

the error terms write l = mj3- no:, or l = no:- mj3, whichever happens to be positive, and 

eliminate m to get 

h(T; u, v) = M1(T; u, v) + R1(T; u, v, x) + R1(T; v, u, x) 

where 

"' bc)j~ "'J(n)J(n~a) !00 (t) (21l"no:) 
Ml (T; u, v) = ~ o:l+v j3-V ~ ni+u+v -qJ u T <P ""tX dt 

a,~ n _ 00 

and 

-00 

We have put Cl>(z) = CI>(z, z). Similarly, 

I2(T; u, v) = M2(T; u, v) + R2(T; u, v, x) + R2(T; v, u, x ), 

where 

b - f(n)J (.rur) 00 
( ) ( ) -2(u+v) ( ) 

M (T· u v) = "' ab~ "' ~ J -ql .!_ .!__ <P 21l"nx dt 
2 ' ' ~ al-Vj3V ~ nl-u-v u T 211" to: 

a,~ n _ 00 

and 

bab~ f(n)f ( n{tl) 
R2(T;u,v,x)= 2:-1-L L l._ l._ 

a,~0:2j3v n l::;l<naT-l+•n2 u(no:+/)2 v 

X /oo -wu(!..)(na:+l)-it(.!_)-2(u+v) <P(21l"nx 21l"(na:+l)x)dt. 
T no: 211" tj3 ' ta:j3 

-oo 
All that remains is to get an asymptotic expression for M1 and M2 and to obtain bounds 

for R1 and R2• We evaluate Mj by Proposition 2, and we bound Rj via Proposition 3. After 

proving the Propositions we return to finish this proof. 



CHAPTER IV 

NOTATION AND LEMMAS 

In this chapter we begin with terminology and results from the spectral theory of the 

Laplacian and Poincare series. For more details on this material see Kubota's book [K]. 

After we have the necessary notation we present the lemmas needed in the sequel. 

Let 1-l = { z = x + iy : y > 0} be the complex upper half plane. The group G = 

SL(2, JR) acts on 1{. by linear fractional transformation, and we equip 1{. with the G-invariant 

measure dw = y-2 dxdy. Let r C f(1) = SL(2, 7.l)/{±I} be a congruence subgroup of :finite 

index p(f) = [f(1), f]. Let A be a set of inequivalent cusps for r, and set h(f) = #A. For 

'rf E A let f '1 = { <1 E f : O"'rf = 'rf}, which is nontrivial by assumption. Note that 

R is called the width of infinity for r. For each 'Tl E A choose <1 11 E S L( 2,JR) such that 

u17 oo = 'Tl and 

Note that <1~1 x = xj R. Of importance to us are the congruence subgroups 

fo(,B, a)= { ( ~ ! ) E SL(2, 7.l) : ,Biz, aiy} 

and fo.(N) = fo(N, 1). We have 

( 4.1) p(fo(,B,a)) = a,B IT (1 + ~) <e (a,B)l+e 
pjc.!) 

25 
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and 

( 4.2) h(fo(,B,a)) = L r.p((d, af)) <e (a,BY(a,,B). 
dja/3 

Let :F be a fundamental domain for the action of f; when convenient we will identify 

:F with f\1-l. We are concerned with the spectral theory of the G-invariant Laplacian 

acting on L 2 (f\ 1-l). There are two parts to this theory. 

The discrete part of the spectrum is characterized by an orthonormal basis of Maass 

wave forms ej(z), j = 0, 1, ... which are f-invariant and satisfy 

and 

(4.3) 

JJ ei(z) ej(z) dw = 8ij· 
:F 

ej(a11 z) = y'y :2:: Pj11 (m) K 8i_!(27rlmly) e(mx) 
m:;tO 

where K v is the modified Bessel function. 

The continuous part of the spectrum is characterized by the Eisenstein series E 11 ( z, s), 

where for 1] E A and a> 1 we have 

E17 (z,s) = :2:: ~8 (a;;- 1 Mz). 
MEf"\f 

These satisfy D..E11 (z,s) = s(1- s)E11(z,s) and, as a function of z, E11 (z,s) is f-invariant. 

We have the expansion 

(4.4) E11 (a~r.z, s) = 8'TI~r.Y 8 + r.p 11~r.(s)y 1 -s + y'y L am11 ~r.(s) K8 _t(27rlmly) e(mx). 
m:;tO 



If f E L2 (f\ Jt) is bounded then we have the spectral decomposition 

where the Petersson inner product is defined by 

(f,g)k = JJ ykf(z)g(z)dw 
:F 

whenever this integral exists. We put ( ·, ·) = ( ·, · )o. 

Next we have non-holomorphic Poincare series. Form 2: 1 and"' E A put 

U77 ,m(z,s) = L G'8 (a; 1rz)e(ma;1rz). 
rEr'1\r 

As a function of z, U11 ,m(z,s) is f-invariant. Also, 

27 

The above formula is easily obtained from the definition of U77 ,m( z, s) and the spectral de-

composition formula. One important use of Poincare series is to exhibit Fourier coefficients 

of cusp forms. Suppose 
00 

H(z) = L hn e(nz) 
n=l 

is a cusp form of weight k for f(l) and 

00 

G(z) = Lgne(nz/R) 
n=l 

is a cusp form of weight k for the congruence subgroup r, where R is the width of infinity 

for r. We have 
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Lemma 3. In the notation above 

<U (· ) HG} _ Rk f(k + s -1) ~ hnYnR+m 
oo,m ,s, k- (4rr)k+s-1 ~(nR+m)k+s-1" 

Proof. We compute: 

oo R 

= R-s J yk+s-2 f ~ hnUj e( x(nR i + m)) e-211"y(nR+j+m)/R dx dy 

0 0 n,J 

00 00 

= R-s+l L hnYnR+m f yk+s-2 e-411"y(n+m/R) dy 
n=l 0 

as claimed. 

We will apply Lemma 3 in the following case. With F( z) as in Chapter 1 let H ( z) = 

F(z) and G(z) = F(f3zfa). Then G(z) is a cusp form for fo(/3, a). The Fourier coefficients 

of G(z) satisfy 

9n = fn/{3 
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and 

1-k 

g(n)=/3-2 f(n//3), 

so by Lemma 3 

oo J(n)J(llidl(3 I) • 1 f3-T-(47r)k+s-1 _ L 1-• o-1+ =akf(k+s- 1){Uoo,l(·,s),FG)k. 
n=l n-2-(na + l)-2- 8 

(4.6) 

In the proof of Proposition 3 we will use the above formula along with ( 4.5) to express our 

error terms as a sum of Maass forms, Eisenstein series, and their Fourier coefficients. The 

next four lemmas are then used to bound the resulting expression. 

Additional notation: The expression L means that the sum is over N ::; n < 2N. If 

we are summing over the spectrum of~ on f\1{ we indicate the dependence on the group 
r (N) 

by writing Lor L if r = f 0 (N). If b = (bn) is a sequence of complex numbers then we 

write 

Lemma 4. (Hafner [Haf2], Lemmas 3 and 4) In the notation above, with r = fo(/3, a), we 

have 

and 

I{~ E (·,!+it), FG)kl 2 <t: h(f) (1 + ltl)k+E (::) k 
~ 7J 2 cosh 1rt f3 
7JE>. 

Lemma 5. (Deshouillers and Iwaniec [DI], Theorem 6) Let X, Q, N, and € be positive 

numbers, and a a sequence of complex numbers. Then one has 
( q) 

L L X 4 iK; I L anPjoo(nW <t:e (QNY(Q + N + N X)llaNII~· 

Lemma 6. (Deshouillers and Iwaniec [DI], Theorem 2) Suppose J( > 1, N > t, € > 0, and 

a is a sequence of complex numbers. Then each of 

( q) 1 

L h '( 1 ) I L anPjoo(n)l 2 
. ,, COS 7rZ Sj - -2 N 
ZKj <~' n"" 
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and 

is majorized by 

Lemma 7. (Iwaniec [Iwa], Theorem 1) In tbe notation above, 

(N) 

L N4iK; ~ Nl+e. 

iK;>O 

Lemmas 5, 6, and 7 are stated in the context off0 (N). Their proofs rely on Kuznetsov's 

trace formula, which relates Fourier coefficients of automorphic forms on a congruence group 

to Kloosterman sums defined over the group. If two congruence groups are conjugate-then 

the sets of Kloosterman sums defined over them are exactly the same, so the proofs of the 

Lemmas, and so the Lemmas themselves, hold in the context of any group conjugate to 

f 0 (N). We will apply the Lemmas in the context of f 0 (13, a), which is conjugate to f 0 (,8a). 

Now we give the background needed for the proof of Proposition 2. We need to under-

stand the function 

A simple calculation finds that 

where 

D(s) = f !2.~) = IJ (f j2r:)) 
j=l J p j=l p 

and 

P(M,s) = ( L f(m~~f(m)) .( L ~~r:)) -1 

mJM00 mJM00 
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fl (f f(pH2f(pi)) (f J2(~)) -t 
prjjM j=l p j=l pJ 

The notation miM00 means that the prime divisors of mare divisors of M. We collect the 

important facts about D and Pin 

Lemma 8. We have the following: D( s) is regular for u > t except for a simple pole at 

s = 1 with residue D_t, say. Fort < u < 1 we have D(s) ~ ltl 2- 2o+e for itl > 1, and 

D(s) > log-1 (2 + t) for 1- u ~ log-1 t. For fixed s, P(n, s) is a multiplicative function 

function of n, and if p is prime then 

pll 
P(p, s) = f(p) pS + 1' 

and 

P(pn, s) = f(p) P(pn-1' s)- P(pn-2' s). 

Consequently, P(n,s) ~ ne foru > t. 

The assertions about Dare classical and are essentially contained in [R] and [Mn]. The 

assertions about Pall follow directly from (1.1), (1.2) and the definition of P. 

Finally, when we apply Propositions 2 and 3 the connection to the specific objects we 

have will be made through 

Lemma 9. Suppose that 

00 

G(A,B,C) = j \llu(t)tAeiBt/Cq> (~) dt, 
-oo 

00 

M(B, s) = J q>(~)eiB/€e- 1 d~, 
0 

and 
00 

Mu(X) = j \llu(t)tx dt. 
-oo 



Then 
00 J G(A,B,~)C-1d~ = M(B,s)Mu(A+ s). 

0 

In particular, by the Mellin inversion formula, for c > 0, 

G(A, B, C)= 2~i J M(B, s)Mu(A + s)C- 8 ds. 

(c) 
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Furthermore, for real a, M( a, s) is regular in (j > ~, except when a = 0 in which case it 

has a simple pole at s = 1 with residue 1. Mu(s) is entire and both M(a,s) and Mu(s) 

decrease rapidly in any vertical strip. 

All of the statements in Lemma 9 are easily checked. 



CHAPTER V 

MAIN TERMS 

With ba and P( n, s) as in the previous chapters we prove 

Proposition 2. If lwl <I vi+ lui < 1/ logE and 

then 

and 

bab/3( a, ,B)l+w ( a ) ( ,B ) 
S(v, u, w) = cr~B al+v,Bl+u P (a, ,B)' 1 + w P (a, ,B), 1 + w , 

1 
S(v,u,w) <logE 

1 

S( v, u, v + u)"' D ~ dd ddf.IEcrv+fJu j h(x +a) h(x +,B) dxl 
_ 1 og E a fJ cr=fJ=O 

0 

Proof: For convenience let Pw(n) = P(n, 1 + w). By the Mobius inversion formula 

1+w ( a ) ( ,8 ) _ """ l+w""" J.L(e) (ae) (,Be) (a,,B) Pw (a,,B) Pw (a,,B) - L..t d L..t el+w Pw d Pw d . 
dl(cr,/3) eid 

Thus, 

""" 1 """J.L(e) = L..t dl+v+u-w L..t el+wX(d,e,v,w)X(d,e,u,w), 
d5,B eld 

say. 

Recall that 

~ (logEfn)m 
bn = J.Lt(n) L..t am lo E 

m=1 g 
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Withy= Bjd we have 

~ am '""'f-lJ(ad)Pw(ae) m 
X(d,e,v,w)=L-lomB£- al+v log (yja). 

m=1 g a~y 

We will use Perron's formula to evaluate the inner sum of X. Let Pe ( resp Pd) denote 

the order to which the prime p divides e (resp d), and recall that ejd and Pw is multiplicative. 

Thus, 

= f!w(s)Fw(d,e,s), 
say. 

Perron's formula and the residue theorem give, for c > 1 + jvj, 

X(d ) _ Loo am m! J f!w(s)Fw(d,e,s)ys- 1-v d 
'e, v, w - 1 m B 2 . ( 1 ) +1 s og 1rZ s- - v m 

m=1 (c) 

~ am m! J f!w(s)Fw(d,e,s)ys-1-v d 
+ L- logm B 211'i (s- 1- v)m+l 8 ' 

m::1 C 

where Cis the piecewise linear path with vertices [1- ioo, 1- ilog10 y, 1- b- ilog10 y, 1-

b + ilog10 y, 1 + ilog10 y, 1 + ioo], and b = 8/ log logy for some small 8. We require nw to 

have properties similar to (-1 so that the methods of [C1) can be directly applied to bound 

the contribution of the integral above. Specifically, f!w(s) has a simple zero at s = 1 and 

f!w ~ log(2 + jtj) on C. It is straightforward to check that f!w(s) = lJ!w(s)JD(s) where 

( 
(p4s _ p3s+l _ p3s + p2s+l) p (p) ) 

lJ!o(s) =II 1 + (p2s+l + p2s)(p3s + p2s _ p2s J2(p) + psf2(p) _ ps -1) · 
p 
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The product is absolutely convergent for (j > ~'and w0 (1) = 1. Thus nw(s) inherits the 

desired properties from those of D( s) mentioned in Lemma 8. Since X ( d, e, v, w) is part 

of the inner sum of S( v, u, w ), bounding the contribution of the integral is not trivial, but 

by virtue of the properties of D(s) we obtain an acceptable error term, just as in [C1], 

pages 55-56. The main term comes from the residue of the pole at s == 1 + v. Since 

!1w(1 + v)"' v!1~(1)"' vfD_1 there are two main terms from the residue: 

( ~ am logm y ( ( ( 1 1 ( ) X d,e,v,w)"" L....t l m B nw 1+v)Fw d,e,1+v)+ l nw 1)Fw(d,e,1+v) 
m=1 og m ogy 

""' D~1 Fw(d, e, 1 + v) ( v h(:::~) + lo~B h' (:::~)). 
We now have 

1 ~ 1 ~ f.L(e) 
S( v, u, w) = D2 L....t dl+v+u-w L....t el+w Fw( d, e, 1 + v )F w( d, e, 1 + u) 

- 1 d~B eid 

X (vuh(logy)2 + v+u hh' (logy) +-1-h' (logy)2). 
log B log B log B log2 B log B 

To finish the calculation we must evaluate expressions of the form 

s:;:(v,u) = L dl+V:tL-W L ~~2Fw(d,e,1+ v)Fw(d,e,l+ u)logm(B/d). 
d~B eid 

First consider the case m ~ 1. If 

~ 1 ~ f.L(e) 
H(v,u,w,s)= L....t ds L....t ei+wFw(d,e,1+ v)Fw(d,e,1+ u) 

d=1 eld 

then for c > 1 + lvl +lui+ lwl we have 

(5.1) S m( ) _ m. v,u,w,s d I J H( )Bs-1-v-u+w 
w v, u - . +1 s. 2n ( s- 1- v- u + w )m 

(c) 

Again the main terms come from poles of the integrand. Much as before, H ( v, u, w, s) = 

D(s)w(v,u,w,s) where W(v,u,w,1)"' 1 and W has an Euler product representation con-

verging absolutely for (j > t· Thus by Lemma 8, H(s) has a simple pole at s = 1 with 
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residue D_1, and H(s) ~ (1 + jtl)!+e for (f > i· We move the path of integration to the 

i-line. The resulting integral is easily seen to be bounded by B-t, so the main term comes 

from the residues of the poles. In the case w = v + u the integrand has a pole of order 

m + 2, whence when m ~ 1 we have 

(5.2) S m ( ) D-1 l m+l B v+u v,u rv -- og . 
m+1 

For m = 0 and € > 0 write 

l+e+iY 
So ( )=-1- J H(v,u,v+u,s)BB-ld o(Bl+E) 

v+u v, U 2 . 1 S + Y . 1rt s-
l+e-iY 

The same analysis as above gives S~+u(v, u) rv D_dog B + O(Bl+ey-1 + BiY!). By 

choosing Y = Bt we see that (5.2) holds form= 0 also. This is all we need: 

( 
1 1 1 ) 

S(v,u,v+u)rv D~1 vulogB Jh(x) 2 dx+(v+u) Jhh'(x)dx+lo~Bfh'(x)2 dx 
0 0 0 

1 

= D ~ B dd ddf3Betv+f3u J h(x +a) h(x + (3) dxl 
-1 og a et=/3=0 

0 

In the case of arbitrary w the above computation, slightly complicated by the fact that 

the integrand in (5.1) has two poles, will give an asymptotic expression. The estimate 

is easily seen to hold and is sufficient for our purposes. This completes the proof of Propo-

sition 2. 



CHAPTER VI 

ERROR TERMS 

In this chapter we continue to use the notation of Chapter 4. We prove 

Proposition 3. Suppose W,y E cgo(JR) with WlY(~) ~ ((lY)i + zi) ~-j, and ILYI + 

IZI ~ xe for all € > 0. If L ~ Q ~ X and ba,IJ is a sequence of complex numbers with 

L !.=.!LL f(n)!(¥-) (na+l) ba (.!a 2 til WIY -X ,,..., 1-k 

aiJ .... Q l"'L n n-2- ( na + l) 2 

Proof. Write E(X, Y) for the expression in the proposition. By Mellin's formula 

(6.1) W,y ( naX+ l) = 2~i j WIY(s) ( n~+ l) -s ds 
(c) 

for c > 1, where 
00 

WlY(s) = j w,y(~)e-1 d~. 
0 

Repeated integration by parts and the conditions on WlY give that there exists a sequence 

w1y such that for all j ~ 0 

(6.2) 

and WlY ~ xe. 
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By (6.1), (4.6), and (4.5) we have, for c > 1, 

k-1 1 s f(n)f(n~+l) 
E(X, Y) = L ba,13a-2 L 21ri j X WIY(s) L 1.;::!. 41-+s ds 

a/3-Q J .... L (c) n n 2 (na + l) 

k 

-1 ba,/3 (a) -2 J xs ( 47ri)k-lts -~X L !(? 73 L r(k-1+s) WIY(s-l)(Uoo,l(·,s),FG)ds 
a{3""Q V u/3 I""L(c) 

The ~ signs above just reflects our omission of various absolute constants. We move the 

path of integration left to the ( t + E)-line, E > 0, encountering poles of the r-function at 

the exceptional eigenvalues of r 0 (f3, a). By the residue theorem 

k 

E(X, Y) ~ x-1 L b~ (~) - 2 (Res(a,/3) + C(a,/3)) 
a/3-Q V u/3 

where 

and 

J X 8 

= r(s)r(k-l+s)(Er(a,f3,s) + Ec(a,f3,s))ds, 
(~±e) 



say. 

By the Cauchy-Schwarz inequality we have 

where 

and 

k 

x- 1 L b~ (~) - 2 Res(a,j3) ~ x-~ (V(X, Y) W(X, Y)) ~ 
a/3-Q Y u/3 

-k-1 (f3,a) 
'""" a '""" 4· - 2 V(X, Y) = L.J j3-k+ 1 L.J Q z~t; J(ej, FG)J 

a/3-Q iK; >e 

By Lemma 4, (4.1) and (4.2), and Lemma 7 we have 

(/3,a) 

V(X,Y) ~ L (a,j3)(af3t L Q4i~t; 
af3-Q i~t; >0 

And by (6.2) and Lemma 5 

Thus 
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Next we bound the contribution of C( a, j3). Suppose s = t + E + it, E > 0. We first 

have by Cauchy's inequality, (6.2), Lemmas 4 and 6, Stirling's formula, and the Selberg 



Trace formula 

k 

4:. xeL~ (~) 2 (a,8)1+e(a,,L3)te-11"1t1. 

(iJ,a) 

In the 2nd step we used the Selberg trace formula in the form L 1 4:. ( a,6)1+e M. 
>. <M J_ 

The same analysis gives 

k 

Ec(a,,6,s) 4:. XeLt (~) 2 (a,L3)t+e(a,,L3)te-11"1tl. 

Thus 

This completes the proof of Proposition 3. 
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CHAPTER VII 

THE END OF THE PROOF 

We use Proposition 2 to obtain asymptotic expressions for M1 and M 2 , and use Propo-

sition 3 to bound R1 and R2 , and so complete the proof of Proposition 1. 

In the notation of Lemma 9, 

" bab{3 "f(n)f(n;) ( 21l"na) 
M1 (T; u, v) = T ~ al+v {3-v ~ ni+u+v G 0, 0, -;y;-

a,f3 n 

Putting the above together with Lemma 9 and the calculation preceeding Lemma 8, and 

writing w = u + v, we get, for c > 1 + JwJ, 

Ml (T; u, v) = 211" (~)w" bcJ{3 1 . 1 (Tx( a, {3)) s 
x Tx ~ a-u {3-v 2n 21l"af3 

a,{3 (c) 

X M(O,s -1- w)Mu(s -1- w)PCa~f3)'s) P((:,f3)'s) D(s)ds 

and 

We move the path of integration to the ( t + e}line, f > 0. By Lemmas 8 and 9 the 

resulting integral is easily seen to be bounded by r!+e B!, so that the main term comes 
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from the residues of poles of the integrand. Recall that M(O, s) has a simple pole at s = 0 

with residue 1 and D(s) has a simple pole at s = 1 with residue D_1 • Thus, 

M1(T; u, v) f'V 21r ( 21r )w"' bo,b/3 
x Tx L..J. a-u {3-v 

a,/3 

{ Tx(a,/3) ( a ) ( f3 ) x 21ra/3 M(O, -w)Mu( -w) P (a,/3), 1 P (a,/3), 1 D_1 

( Tx(a,f3))1+w ( a ) ( f3 ) } + 21ra{3 Mu(O)P (a,f3)'1+w P (a,f3)'1+w D(1+w) 

and 

( 21r )w"' bab/3 
M2(T; u, v) f'V 21rx Tx L- a1-vj31-u 

a,/3 

{ T( a, {3) ( a ) ( f3 ) 
X 21rx M(O, w)Mu( -w) P (a,/3), 1 P (a,/3), 1 D_1 

( T(a,/3))1
-w ( a ) ( f3 ) } + 21rx Mu(-2w)P (a,/3)'1-w P (a,/3)'1-w D(1-w). 

Now 

Mu(w) f'V Mu(O) = 1 + 0(1/U), 

and 

D(1 + w) f'V D_tfw. 

So in the notation of Proposition 2, 

(M1 + M2)(T; u, v) f'V D_1T (S(v, u, u + v)- r-2(u+v) S( -v, -u, -v- u)) 
u+v 

(7.1) 

+ T (Tx)-u-v S( -u, -v,O)(M(O, -w) + M(O, w)) + O(T/U) 

....., D_1T (S(v, u, u + v)- r-2(u+v) S( -v, -u, -v- u)) + O(T/U). 
u+v 



It is easy to see from Proposition 2 that 

Thus, if U ~ logT, 

u + ?J 
S(v,u,u+v)rvS(-v,-u,-u-v)+-D . 

-1 

( 
1 _ y-2(u+v) ) 

(M1 + M 2 )(T; u, v),...., T 1 + D:...1S( -v, -u, -u- v) 
u+v 

2 1 
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,...., T (1 + log T J y-y( u+v) dy ~ _!:_ B-au-{3v Jh( X + a )h( X + {3) dx) I 
log B da d{3 a=O 

0 0 1=0 

which is the main term in Proposition 1. 

Finally, we use Proposition 3 to bound the error terms. In the notation of Lemma 9, 

• ~ _ k;-1 " " f(n)f(~) ( 1 21r(na+l)) 
R1(T,u,v,x)4:.. T L..Jbcxbf3a L..J L..J 1 _k ll!. G 0,-, x 

cx,{3 l:SI<xT• n n-2- (na + l) 2 X 

and 

B _ k-1 f(n)J (ncx/1) 

R 2(T; u, v, x) 4:.. T L bcxbf3a 2 L L 1_k ll!. 
cx,{3 1$i<cxf3T•fx n n-2- ( na + l) 2 

G(-2( ) ~ 21r(na + l)x) 
x u + v , a{3, a{3 . 

We write Rt as a sum of terms, where in each term the sums are l ,...., 2-mxTe and 

a{3 ,...., 2-n B2 • By partial integration, 

so that if U =log T then Proposition 3 is applicable with X = Tx, Y = x-1 , L = 2-mxT', 

and Q = 2-n B 2 with 

We obtain 



44 

In almost the same way 

The best choice is x = B. This :finishes the proof of Proposition 1. 

Since '11 u could be chosen to be either a majorant or minorant of the characteristic 

function of [1, 2], the formula in Proposition 1 holds for J~T ILI2 IBI2 , whence Theorem 1 

follows by summing over intervals of the form [2-mT, 2-m+1TJ. We observe that on the 

Selberg eigenvalue conjecture the terms involving rt in the bounds for R1 and R2 can be 

eliminated, but this does not result in an improvement in Theorem 1. It is possible that 

the :first estimate in Lemma 4 can be reduced by a factor of J.L(f), if so, Theorem 1 could 

be improved to 0 < fJ < t· 
To prove Theorem 2 we observe that in the proof just given only the application of 

Proposition 2 relied on information about ba other than ba <t:: ae. Thus, in the notation of 

Theorem 2, we have by (7.1) 

I(T)"" D_+1T (S(v,u,u+ v)- r-<u+vls(-v,-u,-v- u)) 
u v 

for()< k· Set u = v = x, take the limit as x--+ 0, and note that F(n) = P(n, 1) to :finish 

the proof of Theorem 2. 



CHAPTER VIII 

PROOFS OF THE COROLLARIES 

We evaluate (1.5) for specific values of the parameters to obtain Corollary 1a. As in 

[C3] the function h( x) can be chosen optimally by the calculus of variations. The treatment 

there transfers to our situation almost without modification, so we do not repeat it. The 

result is that with Q(x) = (1 + >.x)(1 + x)n, w(y) = eRYQ(y), and a= -JC1A where 

and 

then 

(8.1) 

2 

A= J e2RyQ2(y) dy 

0 

2 

C = ()2 J e2Ry(RQ(y) + Q'(y))2dy 

0 

Corollary 1a n?W follows by letting () = ~ - €, t -4 o+' and making the choices in Table I. 

TABLE I 

CHOICES USED TO OBTAIN COROLLARY 1a 

n 1 2 3 4 5 

>. 0.53 0.52 0.51 0.51 0.50 

R 1.12 1.03 0.99 0.95 0.92 

(n) 
x;l .3261 .5829 .7301 .8203 .8791 
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This method also gives a lower bound of -.182 for x:~o). This is vacuous, but it indicates 

how far we are from an actual result in this case. It is interesting to note that the pair 

correlation method gives a lower bound of -.166 for x:~o). The last statement in Corollary 

1a is proven exactly as in [C1], page 73. 

To obtain Corollary 1 b we note that if p is a zero of ~F of order m ~ n + 2 then p is a 

zero of order m- n ~ 2mj(n + 2) ~ 2 for~~). Thus, 

which gives 

(8.2) M~n(T) ~ ( ~~n-1) ( n +21)- n + 1) N(T). 

The bounds for x:F) in Corollary 1a now give the result. 

Next we obtain Corollary 1c. As a consequence of formula (A6) in the Appendix we 

have 

N·(T) ~ ( Kr) + 2-j~~j) + ~2-·-~~~·~)N(T), 

for T sufficiently large. Put j = 5 and use the bounds for x;~n) in Corollary 1a to obtain 

Corollary 1 c. 

Corollary 2 is slightly simpler. By Littlewood's lemma and the arithmetic-geometric 

mean inequality, 

,6>~ 
O<')'<T 

LF(i3+h)=O 

(/3- t) 
,6>~ 

O<')'<T 
BLF(i3+i')')=O 

T 

= 2~ J log I ELF( t +it) I dt + O(log T) 
1 

<; :, log ( ~ liBLF(!+ it)12 dt) + O(logT) 

"' !..._log (1 + 2log T). 
41r log B 
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Put B = T t -e, € -t o+, to get the result. 

We have not attempted to give an exhaustive list of the corollaries which can be ob­

tained from our mean value theorem. Except for differences in numerical constants, results 

previously obtained for the Riemann (-function from the corresponding mean value theo­

rem transfer over with little difficulty. For example, a zero-density estimate similar to that 

given by Jutila [J], but with a weaker exponent, can be obtained. It is also possible to use 

the methods in [LM] to rephrase Corollary lain terms of the proportion of zeros of L~) to 

the left of the t-line. 
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APPENDIX 

THE COMBINATORICS OF DISTINCT ZEROS 

In this appendix we discuss the combinatorics involved in extracting information from 

data on the zeros of the derivatives of a function. The discussion is specialized to the 

lliemann ~-function, but most of our discussion is general. This Appendix is self-contained 

and only formula (A6) is used in the main body of this Thesis. 

The lliemann ~-function is defined by ~(s) = H(s)((s) where H(s) = ts(s-l)7r-tr(~). 

The zeros of ~( s) and its derivatives are all located in the critical strip 0 < u < 1 and as 

H(s) is regular and nonzero for u > 0 the nontrivial zeros of ((s) exactly correspond to 

those of ~( s ). Let pU> = (3 + i-y denote a zero of the jth derivative ~(j) ( s ), and denote its 

multiplicity by m( 'Y ). Define 

NU>(T) = 2: 1 N(T) = N< 0>(T) 
pU)=f3+h 

N~i)(T) = 2: 1 NUl(T) = 2: 1 
s,2 

.,en =!3+h .,<n=}+;"l 
m("l)=l m("t )=1 

Mr(T) = 2: 1 Ms,r(T) = 2: 1 
.,(o)=/3+;"1 .,(o) =J3+h 

m("t)=r m("l)~r 

where all sums are over 0 < 'Y < T, and zeros are counted according to their multiplicity. 

It is well known that NU>(T)"' 2\.Tlog T. Let 

NUl(T) 
aj = liminf ~'·)c ) . 

T-+oo NJ T 

Thus, (3j is the proportion of zeros of ~U>(s) which are simple, and Ctj is the proportion which 

are ·simple and on the critical line. The best currently available bounds are a 0 > 0.40219, 
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a 1 > 0.79874, a 2 > 0.93469, a3 > 0.9673, a4 > 0.98006, and 0!5 > 0.9863. These bounds 

were obtained by combining Theorem 2 of [C3] with the methods of [C2]. Trivially, /3j ;:::: O!j. 

Let N d(T) be the number of distinct zeros of~( s) in the region 0 < t < T. That is, 

N d(T) = f Mn~T). 
n::::l 

We will use the bounds on /3j to obtain the following 

Theorem. For T sufficiently large 

Nd(T) > k N(T), 

with k = 0.63952 .... Furthermore, given the bounds on (3j, this result is best possible. 

We present two methods for determining lower bounds for Nd(T). These methods em-

ploy combinatorial arguments involving the {3j. Our result is best possible in the sense that 

any improvement in the value of k in the Theorem would implicitly require an improvement 

in the lower bound for some f3j· We also note that the added information that aj detects 

zeros on the critical line is not of any use in improving our result. To save on notation 

we adopt the convention that all inequalities contain an implicit o(N(T)) as T- oo. For 

example, N~j)(T);:::: {3jN(T) means that N~j)(T);:::: (f3j + o(l))N(T) as T-oo. 

Our first method starts with the following inequality of Conrey, Ghosh, and Gonek 

[CGG]. A simple counting argument yields 

(Al) 
R 

N (T) >'""' M<r(T) + M<R+t(T). 
d -~r(r+l) R+l 

To obtain lower bounds for M<r(T) we note that if pis a zero of ~(s) of order m;:::: n + 2 

then pis a zero of order m- n;:::: 2mf(n + 2);:::: 2 for ~(n)(s). Thus, 

N~n\T) ~ N(T)- - 2-(N(T)- M<n+t(T)), 
n+2 -
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which gives 

(A2) M~n(T) ~ (J3n-1(n + ;) - n + 1) N(T). 

Using the bounds for ai we :find: M9(T) > 0.40219N(T), M~2(T) > 0.69812N(T), 

M9 (T) > 0.86938N(T), M~4 (T) > 0.91825N(T), Mss(T) > 0.94019N(T), and :finally 

M~6 (T) > 0.9520N(T). Inserting these bounds into inequality (Al) with R = 5 gives 

Nd(T) > 0.62583N(T). We note that our lower bounds for M~n(T) are best possible in 

the sense that, for each n separately, equality could hold in (A2). However, it need not 

hold that (A2) is simultaneously sharp for all n, and this possibility imparts some weakness 

to the result. A lower bound for Nd(T) was calculated in [CGG] in a spirit similar to the 

above computation, but it was mistakenly assumed that M~n(T) ~ J3n_1N(T), rendering 

their bound invalid. 

Our second method eliminates the loss inherent in the :first method. It is easy to show 

that 

(A3) 

Therefore 

(A4) 

Let In denote the inequality (A4). Then, in the obvious notation, a straightforward calcu-

lation :finds that the inequality 

J-1 
iJ + L 2J-n-1 In 

n=1 

is equivalent to 

(A5) 
J+1 J-1 

(2J- l)Nd(T) + L Mn(T) > 2J-1 M1(T) + Nf>(T) + L 2J-n-1 N!n)(T). 
n=1 n n=1 
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This implies 

(A6) 

. Choose J = 5 and use the bounds for a-i to obtain the Theorem. 

Finally, we show that our result is best possible. We will show that there exists a 

function which satisfies the bounds given for /3j and which has the number of distinct zeros 

as close to the bound given by (A6) as we wish. Suppose we have bounds of the form 

/3j;:::: Oj, for 0::::; j::::; J, with 0::::; Oj ::::; 1. Let K;:::: J + 2 and suppose 

M1(T) = o0 N(T), 

and for 2 ::::; n ::::; J, 

00 

and Mj(T) = 0 otherwise. Then L Mj(T) = N(T) and for 0::::; n::::; J we have 
j=l 

(A7) 
n+l oo M·(T) L Mj(T) + n L 3 . = OnN(T), 
j=l j=n+2 J 

and 
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If the values given for Mj(T) could arise from an actual function then since the left side 

of ( A8) is N d( T) we can find a function whose number of distinct zeros is as close to the 

bound given by (A6) as we like by choosing J( sufficiently large. And by (A3) and (A7) the 

function will satisfy our bounds on /3j· The only thing remaining to be checked is that the 

values given for Mj(T) are nonnegative when J( is large. One can easily verify that this 

is the case for J = 5 and 6j equal to our bounds for O:j, so our result is best possible. By 

computing further values of O:j, enabling us to take a larger value of J in (A6), we could 

improve the result slightly: this is due to a decrease in the loss in passing from (A5) to (A6). 

The bound M~6 (T) > 0.952N(T) implies that this improvement could increase the lower 

bound we obtained by at most 0.00021N(T). 
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