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CHAPTER I 

INTRODUCTION 

On t~e average, pigs ovulate 14-16 ova, but litter size 

averages only about ten pigs per litter (Perry and Rowlands, 

1962; Pope and First 1985). Embryonic mortality, 

characterized by the difference between the number of 

corpora lutea (CL) and the number of live embryos present, 

averages approximately 30% prior to day 40 of pregnancy with 

an additional loss of 10-20% evident after day 40 of 

gestation (Flint et al., 1982; Pope and First, 1985). 

Maternal recognition and establishment of pregnancy 

involves the prolongation of the functional lifespan of the 

CL. In the pig, maintenance of CL function and the 

establishment of pregnancy depends upon conceptus estrogen 

production (Bazer and Thatcher, 1977; Heap et al., 1979). 

Estrogen functions to alter the direction of PGF2a secretion 

by the uterus from an endocrine (towards the uterine 

vasculature) to an exocrine (towards the uterine lumen) 

direction, thus preventing PGF2a from reaching the ovary and 

causing luteolysis. Estrogen release by the conceptus 

signals the maternal system on approximately day 11-12 thus 

extending CL function and maintaining pregnancy. 

1 
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During early development in swine, blastocysts undergo 

a rapid, morphological transformation from spherical to 

filamentous form by day 12 of pregnancy (Anderson, 1978; 

Geisert et al., 1982b) . Following trophoblast elongation 

and initiation of estrog~n production, conceptus attachment 

occurs between days 13 and 18 of gestation (King et al., 

1982) • 

Placentation in the pig involves a noninvasive 

interdigitation of uterine and trophoblastic microvilli 

(Dantzer, 1985) as well' as alterations in the uterine 

epithelia! glycocalyx. The glycocalyx is a carbohydrate 

coat present on the surface of most cells and has been 

impU cated in numerous cell-cell interactions (Alberts et 

al., 1983). Dantzer (1985) demonstrated that porcine 

uterine epithel1um is covered by a thick glycocalyx which 

becomes reduced in thickness 

microvillar interdigitation. 

glycocalyx appears to function 

during attachment and 

The uterine epithelial 

during placentation by 

extending fibers towards the trophoblast, thus anchoring the 

conceptus (Keys and King, 1990). A reduction in cell 

surface negativity of the mouse trophoblast (Jenkinson and 

Searle, 1977) and the endometrial epithelium of the rat 

(Hewitt et al., 1979) occur during implantation. Therefore, 

the uterine epithelial glycocalyx appears to play an 

important role 1n placental attachment. 

As mentioned earlier, conceptus-derived estrogen is the 

signal for maternal recognition of pregnancy in swine, 
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however premature exposure of gilts to estrogen results in 

early embryo death. Long and Diekman (1986) demonstrated 

that addition of zearalenone, an estrogenic mycotoxin, to 

the feed of sows between days 7-10 of gestation resulted in 

complete embryonic mortality. Pope et al. (1986) reported 

that administration of exogenous estrogen to gilts on days 9 

and 10 of gestation al,so resulted in complete embryo death 

by day 30 of pregnancy. Further studies by our laboratory 

have revealed that administration of estradiol valerate to 

gilts on days 9 and 10 of gestation resulted in degenerating 

conceptuses by day 16 of pregnancy (Morgan et al., 1987; 

Greis et al., 1989). 

The purpose of t}'le this thesis is ( 1) to examine 

surface and ultrastructural changes in uterine luminal 

epithelium during trophoblast attachment and characterize 

alterations associated with embryonic mortality due to early 

exogenous estrogen administration and ( 2) to characterize 

changes in uterine secretory activity which may be 

associated with the establishment of pregnancy in the pig. 



CHAPTER II 

LITERATURE REVIEW 

Anatomy and Histology of the Sexually 

Mature Gilt Reproductive Tract 

The reproductive system of the gilt consists of paired 

ovaries, oviducts, and uterine horns which open into a 

single uterine body, cervix, and vagina. The organs of the 

reproductive tract are suspended within the abdominal cavity 

by the broad ligament which consists of three major regions: 

the mesovarium, the mesosalpinx, and the mesometrium which 

support the ovaries, oviducts, and the uterus, respectively. 

The following section of this literature review will 

describe the functional anatomy and histology of the gilt 

reproductive system. 

The ovaries 

The ovary functions as both an exocrine (development 

and release of oocytes) and endocrine (synthesis and 

secretion of steroid and protein hormones) organ. Since 

4 



pigs are multiovulators (Corner, 

1962), the ovaries appear as 

5 

1921; Perry and Rowlands, 

a cluster of numerous 

protruding follicles and corpora lutea (Hafez, 1987). All 

functional ovar1es contain numerous small (2-5 mm) follicles 

and approximately 10-20 of these enlarge to a preovulatory 

size of 8-12 mm in diameter during the proestrous and 

estrous phases (Corner, 1921; Anderson, 1987). 

Akins and Morrissette (1968) reported that there are 

three major morphological phases during the ovarian cycle. 

During Phase 1, which extends from ovulation through day a, 

corpora lutea (CL) develop and attain maturity while corpora 

albicans (CA) from the previous cycle continue to regress. 

Follicular development is also evident during this phase. 

In Phase 2, days 9 through 14, CL attain maximum size while 

follicular size remains unchanged. Phase 3 begins 

approximately at day 15 when CL become slightly ischemic. 

Regression of CL and 1ncreased follicular development are 

characteristic of this phase. The results of Akins and 

Morrissette (1968) support the earlier results of Corner 

(1921) and Perry and Rowlands (1962). 

Histologically, the ovary consists of an inner medulla 

and an outer cortex and is covered by a simple cuboidal 

surface epithelium called the germinal epithelium. The 

medulla is loose connective tissue consisting of collagen 

and elastic fibers. It contains blood vessels, lymphatics, 

and nerves as well as some embryonic remnants (Banks, 1986; 

Hafez, 1987). The embryon1c remnants, the rete ovarii, are 
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cords of epithelial cells {Banks, 1986). During the estrous 

cycle, the cortex of the porcine ovary contains numerous 

follicles, corpora hemorrhagica, corpora lutea, and corpora 

albicans {Hafez, 1987). 

The mature ovarian follicle {Graafian follicle) is a 

fluid filled structure containg the primary oocyte. The 

follicle is composed of three major cell layers: theca 

externa, theca interna, and granulosa cells. The granulosa 

cell layer is approximately 6-9 cells and o .13-0.17 mm in 

thickness while the theca interna is about o. 09-0.10 mm 

thick {Corner, 1919). The two theca layers are separated 

from the granulosa layer by a basement membrane. The 

primary oocyte is immediately surrounded by a single layer 

of simple columnar cells, the corona radiata, and is 

supported by a mound of granulosa cells, the cumulus 

oophorus. For a more complete histological description of 

the follicle see Corner {1919)'. 

At ovulation, the oocyte and follicular fluid are 

expelled resulting in collapse of the follicle. With 

collapse of the follicle, the cavity becomes filled with 

blood thus forming the corpus hemorrhagicum {Banks, 1986; 

Anderson, 1987) . 

Within 6-8 days, corpora lutea have become 8-11 mm in 

size and weigh approximately 350-450 mg {Anderson, 1987). 

The CL consist of two distinct cell types, the large and 

small luteal cells. Corner {1919) first demonstrated that 

large and small porcine luteal cells originate from the 
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granulosa and theca interna cells, respectively. The 

transformation of granulosa and theca interna cells into 

luteal cells is characterized by hypertrophy of the cells, 

changes in cytoplasmic organelles, and accumulation of lip1d 

and lutein pigment (Peters and McNatty, 1980). 

If pregnancy is not established, corpora lutea regress 

and are replaced by connective tissue, and become corpora 

albicans. Regression of the CL allows increased follicular 

growth and a return to estrus. 

The Oviduct 

The porcine oviduct is approximately 30-40 em long 

(Rigby, 1968), extends from the anterior tip of the uterine 

horn to the ovary and may be divided into four major 

reg ions: the infundibulum, ampulla, isthmus, and utero­

tubal junction (Beck and Boots, 1974). 

The infundibulum is the funnel-shaped opening to the 

oviduct. Finger-like projections, the fimbria, surround the 

opening of the 1nfundibulum and function to direct recently 

ovulated oocytes 1nto the infundibulum (Hafez, 1987). The 

ep1thelium of the f1mbria consists of numerous ciliated 

cells (Stalhe1m et al., 1975; Wu et al., 1976) which aid in 

movement of oocytes. The infundibulum merges posteriorly 

with the remainder of the oviduct, the ampulla and isthmus. 

These two areas are readily distinguished due to the dilated 

lumen of the ampulla compared to the constricted lumen of 
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the isthmus. The isthmus is connected to the uterus by the 

utero-tubal junction (UTJ). The UTJ of the pig is 

characterized by mucosal folds of the isthmus that end in 

narrow villi with their tips oriented toward the uterus 

(Anderson, 1928; Beck and Boots, 1974). Villi of uterine 

origin are also present and in comb1nation with the 

oviductal villi form an arrangement of mucosal folds around 

the opening to the oviduct (Anderson, 1928; Beck and Boots, 

1974) • The wall of the oviduct consists of the tunica 

mucosa, tunica muscularis, and the tunica serosa. The 

lamina epithelialis and the lamina propria is a highly 

vascularized layer of loose connective tissue devoid of 

glands. The lamina epithelialis consists of a single layer 

of columnar cells, although this layer may also be 

pseudostratified in the pig (Banks, 1986). Ciliated, non­

ciliated, and peg cells are present within this layer (Beck 

and Boots, 1974; Anderson, 1987}. The tunica mucosa is 

highly folded, exhibiting primary, secondary, and tertiary 

folds in the infundibulum and ampulla. However, little 

folding is evident in the isthmus. The tunica muscularis 

consists of an inner circular and an outer longitudinal 

layer of smooth muscle. This layer is poorly developed in 

the ampulla, whereas the isthmus exhibits a highly developed 

tunica muscular1s (Beck and Boots, 1974; Banks, 1986). The 

tunica serosa surrounds the oviduct and consists of 

mesothelium and connective tissue (Beck and Boots, 1974; 

Banks, 1986). 
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The Uterus 

The uterus of the gilt is classified as bicornuate 

since it consists of two long uterine horns and a single 

short uterine body. Previous reports have demonstrated that 

the uterine horns are approximately 1. 5 m in length while 

the uterine body measures about 5 em long (Rigby, 1968; 

Corner, 1921). similar to the oviduct, the uterus consists 

of the tunica mucosa, tunica muscularis, and tunica serosa. 

However, these layers are referred to as the endometrium, 

myometrium, and perimetrium, respectively in the uterus. 

The endometrium is comprised of the lamina epithelialis 

and the lamina propria (Banks, 1986}. The lamina 

epithelialis consists of two populations of simple, cuboidal 

epithelium: luminal and glandular epithelial cells (Corner, 

1921; Stroband et al., 1986; 

1990} • Few ciliated cells 

Stroband and Van der Lende, 

are evident in the luminal 

epithelium, whereas ciliated cells become more numerous in 

the glandular epithelium (Corner, 1921; stroband et al., 

1986}. Stroband et al. (1986} reported that epithelial cell 

height ranged from 20-30 mm, but did not show any variation 

during the estrous cycle. However, Keys and King (1989) 

demonstrated a range in cell height from 17-25 um between 

days 10-19 of the gilts estrous cycle with a significant 

increase in cell height from day 16 to day 19. The 

ultrastructure of the porcine uterine luminal epithel1um 

between days 10-16 of the estrous cycle exhibit changes 
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indicative of increasing synthetic and secretory activity 

with a decrease in activity at day 19 (Stroband et al., 

1986; Keys and King, 1989}. 

Uterine glands are branched, tubular structures which 

extend into the lamina propria where they may become 

extensively coiled at their terminal ends (Banks, 

Hafez, 1987). Similar to the luminal epithelium, 

1986; 

the 

glandular epithelial cells exhibit characteristics of 

increased synthetic activity as the estrous cycle and 

pregnancy progress (Perry and Crombie, 1982; Geisert et al., 

1982a; Stroband et al., 1986}. 

The lamina propria, or endometrial' stroma, is a loose 

connective tissue consJ.sting of fibroblasts, macrophages, 

neutrophils, and plasma. cells {Corner, 1921}. The 

connective tissue immediately below the surface epithelium 

is vascularized by a subepi thelia! capillary plexus which 

becomes extensive during pregnancy (Heuser, 1927). The 

peripheral connective tissue of the lamina propria is less 

cellular and contaJ.ns the terminal ends of the uterine 

glands and large blood vessels. 

The myometrium is arranged in a similar manner as 

described in the ovJ.duct. The myometrium is composed of an 

inner circular and an outer +ongitudinal layer of smooth 

muscle. Between these two muscle layers is a network of 

blood vessels, lymph vessels, and nerves called the stratum 

vasculare (Banks, 1986; Hafez, 1987}. 

The perimetrJ.um consists of mesothelium and a thin 



layer of connective tissue. 

with the mesometr1um. 

The Cervix 

11 

The perimetrium is continuous 

The cervix of the gilt is approximately 10 em long and 

separates the uterus from the vagina. It is primarily 

composed of dense, fibrous connective tissue with only small 

amounts of smooth muscle (Eckste1n and Zuckerman, 1952; 

Hafez, 1987). The cerv1x of the gilt is characterized by a 

constricted lumen and interdigitating cervical pads arranged 

in a corkscrew fashion similar to the spiral tip of the 

boar's penis (Eckstein and Zuckerman, 1952). 

The cervical epithelium consists of ciliated and non­

ciliated secretory, columnar epithelial cells (Hafez, 1987) 

and is a non-glandular tissue (Eckstein and Zuckerman, 

1952) . During estrus, the cervical epithelium produces 

large amounts of th1n, watery mucus in response to estrogen, 

whereas the cervical mucus becomes highly viscous and forms 

a cervical plug during pregnancy (Eckstein and Zuckerman, 

1952; El-Banna and Hafez, 1972; Hafez, 1987). 

The cerv1x funct1ons as a sperm resevoir, facil1tates 

sperm transport, and prevents bacterial invasion during 

pregnancy (El-Banna and Hafez, 1972; Hafez, 1987). 
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The Vagina, Vestibule, and External Genitalia 

The vagina has a well developed tunica muscularis that 

consists of an inner circular and an outer longitudinal 

layer of smooth muscle. The surface epithelium is highly 

folded and is composed of non-glandular, stratified squamous 

epithelial cells (Banks, 1986; Hafez, 1987). In the gilt, 

the surface epithelium of the vagina increases in thickness 

at estrus and becomes thinnest at days 12-16 of the estrous 

cycle (Hafez, 1987). The vagina functions as the female 

organ of copulation, prevents bacterial invasion, and serves 

as the birth canal during parturition. 

The vestjbule is caudal to the vagina and the junction 

between these two regions is marked by the urethral opening. 

Similar to the vagina, the surface epithelium of the 

vestibule is stratified squamous (Banks, 1986). The 

vestibule also contains the glands of Bartholin which are 

branched, tubular mucus glands and produce a viscous fluid 

(Banks, 1986; Hafez, 1987). 

The external genitalia, vulva, consist of the labia 

majora, labia minora, and the clitoris. The clitoris is 

homologous to the male penis and is composed of cavernous 

tissue, adipose tissue, and smooth muscle (Banks, 1986}. 

During proestrus and estrus, the vulva redden and swell in 

response to estrogen production. 
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Endocrinology of the Estrous Cycle 

Attainment of sexual maturity (puberty) occurs at 

approximately 7 months of age, but may occur as early as 

four months of age (Corner, 1921; Anderson, 1987). Onset of 

puberty is characterized by recurrent periods of sexual 

receptivity, 'estrus, which lasts approximatley 40-60 hours 

and is characterized by lordosis (Signoret, 1970). 

Behavioral changes associated with estrus are due to high 

levels of estradiol produced from the preovulatory follicle. 

Van de Wiel et al. (1981) indicated that prolactin may also 

be involved in the behavioral aspects of estrus. The gilt 

is polyestrous, cycling throug~out the year, with cycle 

lengths ranging from 18-23 days with a mean interestrous 

interval of 21 days. Ovulation occurs 38-42 hours after the 

onset of estrus and requires about four hours (du Mesnil du 

Buisson et al., 1970). The estrous cycle can be divided 

into four stages: proestrus and estrus which comprise the 

foll1cular phase and metestrus and diestrus which compose 

the luteal phase. 

During the late luteal and early follicular phases, the 

ovary contains a pool of approximately 50 follicles between 

2-5 mm in diameter (Anderson, 1987). Experiments involving 

electrocautery of follicles (Clark et al., 1979) and 

unilateral ovariectomy (Coleman and Daily, 

al., 1982) have demonstrated that 

1979; Clark et 

recruitment of 

preovulatory follicles occurs between days 14-16 of the 
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estrous cycle. Grant et al. (1989) demonstrated a 

progress1ve decrease in follicle numbers from days 16-21 of 

the estrous cycle supporting previous data (Clark et al. , 

1973) which suggested the presence of a physiological block 

during the follicular phase which prevents replacement of 

atretic follicles in the proliferating pool. Foxcroft and 

Hunter (1985) also indicated that the dominant follicles on 

day 16 of the estrous cycle have elevated granulosa 

aromatase activity, luteinizing hormone (LH) binding to 

granulosa and theca cells, and are already producing 

estrogen. 

studies on steroidogenesis in porcine preovulatory 

follicles (Evans et al., 1981; Haney and Schomr'3rg, 1981) 

support the two-cell theory first proposed for the rat 

(Falck, 1959). Unlike the rat, porcine thecal cells 

synthesize and secrete estradiol (Evans et al., 1981; Haney 

and Schomberg, 1981) and due to the close proximity of the 

theca to ovarian capillaries, thecal estradiol production 

may be an important source of peripheral plasma estradiol 

(Evans et al., 1981). Porcine theca cells produce estradiol 

in quantities comparable to granulosa cells (Evans et al., 

1981; Haney and Schomberg, 1981). The addition of androgens 

increased theca cell production of estrogen, but not to the 

extent observed in the granulosa cells (Evans et al., 1981; 

Stoklosowa et al. , 1982; Tsang et al., 1985) . Estrogen 

production was greater in theca and granulosa cell co­

cultures compared to the estrogen produced from the 
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individual cell types (Evans et al., 1981; Haney and 

Schomberg, 1981; Stoklosowa et al., 1982). Granulosa cells 

are the primary source of progesterone but are unable to 

synthesize androgens (Evans et al., 1981; Tsang et al., 

1982), while theca interna cells produce large quantities of 

androgens (Evans et al. , 

Stoklosowa et al., 1982). 

1981; Haney and Schomberg, 1981; 

Tsang et al. (1987) demonstrated 

that granulosa cells secreted predominantly progesterone, 

whereas theca interna cells secreted mainly 17a­

hydroxyprogesterone and androstenedione. Inhibition of 

progesterone production resulted in the conversion of 

exogenous progesterone to 17a-hydroxyprogesterone and 

androst~nedione in theca interna, but not granulosa cells. 

These results suggest that the enzymes required for 

conversion of progesterone to androstenedione (17a­

hydroxylase and C17,20-lyase) reside within the theca 

interna cells, while aromatase activity is substantially 

higher 1n the granulosa cells (Tsang et al., 1987). These 

data support the original work by Bjersing and Carstensen 

(1967) which demonstrated a lack of 17a-hydroxylase in 

porcine granulosa cells. Therefore, current research 

supports the two-cell theory of follicular estrogen 

production in which androstenedione is produced in theca 

interna cells and transferred to granulosa cells where it is 

aromatized to estradiol. 

Estradiol product1on by the dominant preovulatory 

follicles results in the LH surge and ovulation. coincident 



with declining progesterone levels 

preovulatory follicles, peripheral 

16 

and maturation of 

plasma estradiol 

concentrations begin to increase between days 16-18 of the 

estrous cycle reaching a peak of approximately 40 pg/ml 

about 2 days prior to estrus (Guthrie et al., 1972). 

Flowers et al. (1991} also demonstrated an estradiol 

increase concomitant with declining progesterone, but prior 

to increasing LH concentrations suggesting that the decrease 

in progesterone may initiate follicular maturation, not the 

increase in LH. This sustained level of estradiol exerts a 

positive feedback on the hypothalamus and anterior pituitary 

resulting in the LH surge (Van de Wiel et al., 1981). The 

surge release of LH from t~e anterior pituitary occurs about 

40-42 hours prior to ovulation (Liptrap and Raeside, 1966; 

Foxcroft and Van de Wiel, 1982} and reaches a peak level of 

4-6 ngfml approximately 12 hours after the initiation of the 

LH surge (Van de Wiel et al., l981). 

Between days 16-20 of the porcine estrous cycle, 

increasing levels of estradiol are associated with 

decreasing concentrations of follicle stimulating hormone 

(FSH) (Van de Wiel et al., 1981}. The concentration of FSH 

becomes minimal approx1mately 1 hour before estradiol 

attains its maximum concentration; the subsequent decrease 

in estradiol results in a preovulatory surge of FSH 1-9 

hours after the initial rise in LH (Van de Wiel et al. , 

1981). Max1mum FSH levels ranged from 11-19 ng/ml between 

1-5 hours after maximum LH concentration were attained. A 
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secondary rise in FSH occurs on day 2-3 of the estrous cycle 

and reaches peak levels of approximately 20 ngjml coinc1ding 

with minimal estradiol concentrations. 

Ovulation occurs 38-42 hours after the onset of estrus 

and may involve prostaglandins (for review see Ainsworth et 

al., 1990). Ainsworth et al. (1975) and Tsang et al. (1979) 

demonstrated a dramatic increase in intrafollicular levels 

of prostaglandins E2 (PGE2) and F2a (PGF2a> shortly before 

ovulation and reached a maximum near the time of follicle 

rupture. It has been shown that both theca interna and 

granulosa cells produce PGE2 and PGF2a in vitro (Evans et 

al., 1983; Ainsworth et al., 1984). Inhibition of 

prostaglandin synthesis with indomethacin suppressed the 

preovulatory rise in prostaglandins and blocked ovulation 

(Ainsworth et al., 1979). Therefore, evidence suggests that 

prostaglandins play an important role in ovulation. For a 

more detailed review of follicular synthesis and 

intrafollicular actions of prostaglandins see Ainsworth et 

al. (1990). 

Upon ovulation, the oocyte, follicular fluid, and the 

cumulus mass are expelled resulting in collapse of the 

follicle (Corner, 1919; Anderson, 1987). Under the 

influence of LH, the granulosa and theca interna cells of 

the recently ruptured follicle are transformed into luteal 

cells to form the corpus luteum (Corner, 1919; Anderson, 

1987). The transformation of granulosa and theca cells into 

luteal cells involves cell hypertrophy, changes in cellular 
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organelles, and accumulation of lipid (Corner, 1919; Peters 

and McNatty, 1980}. Within 6-8 days, the corpus luteum 

becomes fully formed attaining a diameter of 8-11 mm 

(Corner, 1919} and weighing approximately 350-450 mg 

(Anderson, 1987} . Two distinct luteal cell types are 

present in the porcine corpus luteum: small and large 

luteal cells. Corner (1919} demonstrated that small luteal 

cells originated from theca interna cells, whereas large 

luteal cells derive from granulosa cells. Lemon and Loir 

(1977} demonstrated that both luteal cell types synthesize 

and secrete progesterone, but that large luteal cells 

produced significantly greater quantities of progesterone 

compared to small luteal cells in vitro. When LH was added 

to the luteal cell cultures, both cell types responded with 

increased progesterone production, however small luteal 

cells exhibited a greater response suggesting that small 

luteal cells contained a greater abundance of LH receptors 

(Lemon and Loir, 1977}. Although LH is necessary for 

ovulation and luteinization, Brinkley et al. (1964} and du 

Mesnil du Bu1sson (1966} indicated that secretion of LH 

after ovulation does not appear necessary for normal CL 

development and function until after day 12. 

Progesterone secretion increases with CL development, 

reaching a peak level of 35 ngjml on day 12 of the estrous 

cycle (Guthrie et al., 1972}. Plasma concentrations of 

progesterone 

secretion into 

closely correspond 

the ovarian venous 

to the 

blood 

progesterone 

throughout the 
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length of the estrous cycle (Masuda et al., 1967). During 

the luteal phase, when progesterone levels remain elevated, 

plasma concentrations of estrogen, FSH, and LH remain low 
' 

(Guthrie et al., 1972; Parvizi et al., 1976). If pregnancy 

is not established, progesterone levels decline beginning on 

day 15 of the estrous cycle (Masuda et al., 1967) and reach 

basal levels (< 1 ngfml) by day 17-18 (Guthrie et al., 

1972) • As progesterone levels decline, histological 

evidence of luteal regression becomes more apparent (Cavazos 

et al., 1969). 

Loeb (1923) first demonstrated, via hysterectomy of 

guinea-pigs during the late luteal phase of the estrous 

cycle, that the ut~rus was the source of a luteolytic 

substance which caused regression of the CL since 

hysterectomy resulted in prolonged CL maintenance. 

Hysterectomy of gilts also resulted in prolonged CL 

maintenance (Spies et al., 1958; Anderson et al., 1961) 

suggesting that the luteolytic substance 1n pigs also 

originated from the uterus. Destruction or congenital 

absence of the uterine endometrium also resulted in 

maintenance of CL function (Anderson et al., 1969), 

indicating that the endometrium was the source of this 

luteolytic agent. Melampy and Anderson (1968) identified 

prostaglandin as the luteolytic agent 

originating from the uterine endometrium. Further research 

supported the hypothesis that PGF2a is the luteolyt1c agent 

in swine. Administration of PGF2a after day 12 of the 
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estrous cycle to cyclic (Hallford et al., 1974), pregnant 

(Diehl and Day, 1974), and hysterectomized (Moeljono et al., 

1976) gilts resulted in regression of the CL, however 

administration of PGF2a prior to day 12 of the cycle 

resulted in no luteolytic activity (Diehl and Day, 1974; 

Hallford et al. , 197 4) . The porcine CL do not require 

additional pituitary support after the ovulatory LH surge 

until day 12-13 of the estrous cycle (du Mesnil du Buisson, 

1966). This autonomous nature of the porcine CL may explain 

their refractoriness to PGF2a prior to day 12 of the cycle. 

Henderson and NcNatty (1975) indicated that the CL remain 

refractory to PGF2a until after day 12 at which time LH 

begins to dissociate from its 111-t:eal cell membrane 

receptors; prior to day 12, LH remained tightly bound to its 

receptors. Sensitivity of CL to PGF2a is also enhanced by 

an increased number of high-affinity PGF2a receptors on 

large luteal cells after day 12 (Gadsby et al., 1988, 1990). 

Endometrial production of' PGF2a has been shown to 

increase after day 12 of the estrous cycle, corresponding to 

the increased sensitivity of the corpora lutea. Patek and 

Watson (1976, 1983) indicated that mid to late luteal phase 

endometrial tissue produced the highest levels of PGF2a in 

vitro. Guthrie and Rexroad (1980) also demonstrated that 

endometrial PGF2a secretion increased dramatically between 

days 14 and 16 of the estrous cycle. The increase in 

endometrial secretion of PGF2a (Patek and Watson, 1976,1983; 

Guthrie and Rexroak, 1980) and plasma concentrations of 
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PGF2a in the utero-ovarian vein {Gleeson et al., 1974; 

Moeljono et al, 1977) coincides with declining plasma 

progesterone levels from day 14-17 of the estrous cycle. 

Due to the close apposition of the ovarian artery and 

the uterine vein, PGF2a, produced by the uterine endometrium 

and secreted into the uterine venous system, is transferred 

into the ovarian artery (Del Campo and Ginther, 1973; 

Ginther, 1974). Kotwica {1980) also indicated that the 

lymphatic system may also be involved in this transfer in 

the pig. In the gilt, PGF2a not only has a local effect 

upon the ipsilateral ovary via counter-current transfer, but 

also has a systemic effect resulting in luteolysis of the CL 

on the contralateral ovary (du Mesnil du Buisson, 19~1; 

Anderson et al., 1966) . The lower metabolism of PGF2a in 

the lungs of swine compared to ruminants (Davis et al. , 

1979) may explain this systemic effect. 

Henderson and McNatty {1975) demonstrated that binding 

of PGF2a to its luteal cell receptor inactivates the adenyl 

cyclase system thus preventing continued progesterone 

production and activates lysosomal enzymes resulting in 

degradation of the corpora lutea. Morphological changes 

associated with CL regression include an increase in 

lysosomes, cytoplasmic disorganization, and invasion of 

connective tissue (Cavazos et al., 1969). 
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Pregnancy 

Endocrinological Response During Early Pregnancy 

Maintenance of pregnancy in the gilt is dependent upon 

the continued synthesis and secretion of progesterone from 

the corpora lutea. Removal of the ovaries at any stage of 

gestation results in pregnancy termination ( du Mesnil du 

Buisson and Dauzier 1 1957; Nara et al. 1 1981). Experiments 

utilizing luteectomy demonstrated that pregnancy can be 

maintained with as few as 2 to 5 CL present (Martinet al. 1 

1977; Thomford et al. 1 1984). Similar studies have 

demonstrated that the CL are the primary source of 

progesterone during pregnancy. Nara et al. (1981) reported 

a decrease in plasma concentrations of progesterone 

following removal of CL 1 , while Nase et al. (1985) 

demonstrated that luteectomy did not result in an increase 

in progesterone secretion by the placenta. Utilizing 

ovariectomized g1lts 1 Ellicott and Dziuk (1973) 

demonstrated that a minimum of 6.0 ngjml of progesterone is 

' necessary to ma1ntain pregnancy. Plasma progesterone 

concentrations increase to peak levels ranging from 20-30 

ngfml on day 12-14 of gestation and decline to 13-19 ngjml 

by day 27-28 (Tillson et al. 1 1970; Robertson and King 1 

1974; King and Rajamahendran 1 1985). Concentrations of 

progesterone remain constant through day 100 of pregnancy 

then decline to approximately 4.0 ngfml at parturition 
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(Robertson and King, 1974; Knight et al., 1977). 

Although the porcine corpus luteum does not require 

pituitary support until day 12-13 of the estrous cycle (du 

Mesnil du Buisson, 1966), hypophyseal luteotropic support is 

necessary for CL maintenance during pregnancy. 

Hypophysectomy after day 12-13 of gestation results in the 

termination of pregnancy (du Mesnil du Buisson et al., 1964; 

du Mesnil du Buisson and Denamur, 1969; Kraeling and Davis, 

1974). Spies et al. (1967) demonstrated that administration 

of anti-ovine LH to gilts between days 25-29 of gestation 

resulted in CL regression and termination of pregnancy. 

Plasma concentrat1ons of LH increase between days 13-18 of 

pregnancy to 2-3 ngf~l and then decline to basal levels for 

the duration of pregnancy (Parlow et al., 1964; Melampy et 

al., 1966). These results demonstrate that even though 

plasma concentrat1ons of LH are low during pregnancy, LH is 

necessary for CL maintenance and for successful maintenance 

of pregnancy. 

Plasma concentrations of estrogen differ between cyclic 

and pregnant gilts. Moeljono et al. (1977) reported that 

utero-ovarian venous plasma concentrations of estradiol were 

greater in pregnant compared to nonpregnant g1l ts between 

days 12-17. Guthrie et al. (1972) demonstrated that plasma 

concentrations of estrogen ranged from 16-28 pg/ml from days 

3-24 of pregnancy. Perlpheral plasma concentrations of 

estrone and estradiol remained low through day 70 of 

gestation at which point the concentrations of these 
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hormones increased to peak levels of 2-5 ngfml and 400 pgfml 

just prior to parturition, respect1vely (Robertson and King, 

1974). similar profiles of estrone and estradiol are 

evident in uterine venous plasma, although a small increase 

in these hormones was observed between days 20-30 of 

gestation (Knight et al., 1977; Robertson et al. , 1985) . 

Concentrations of estrone and estradiol were also higher in 

uterine lymph of pregnant compared to nonpregnant gilts 

between days 11-15 (Magness and Ford, 1982). 

ConJugated estrogens appear to be more prevalent during 

gestation compared to the unconjugated estrogens. Estrone 

sulfate is the major conjugated estrogen present in the 

maternal per1pheral plasma during preg~ancy (Robertson and 

King, 1974). 

exhibited 

The plasma concentration of estrone sulfate 

fluctuating levels during gestation. 

Concentrations of estrone sulfate initially increase about 

day 16-20 of gestation, reach peak levels of approximately 

3. o ngfml by day 3 0, decline to low levels of 35 pgfml 

around day 50 of pregnancy followed by a second peak at 3.0 

ngfml a day before parturition (Robertson and King, 1974; 

Robertson et al., 1985). In contrast, estradiol-17b sulfate 

remained low throughout pregnancy with a slight rise in 

uterine venous plasma levels on days 26 and 28 of gestation. 

The uterine endometrium is the source of the conjugated 

estrogens. It has been shown that estrogens are localized 

in both the trophectoderm and yolk sac endoderm between days 

10-16 with the yolk sac endoderm in the region of the 
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embryonic disc producing the greatest amounts {King and 

Ackerley, 1985; Bate and King, 1988). Estrone and estradiol 

produced by the porcine conceptus are metabolized to their 

conjugated forms by 17b-estradiol dehydrogenase and estrogen 

sulfotransferase activity present in the uterine endometrium 

and subsequently released into the maternal circulation 

{Pack and Brooks, 1974). 

Plasma concentrations of PGF2a in the utero-ovarian 

vein increase concomitantly with declining plasma 

progesterone levels from day 14-17 of the estrous cycle 

{Gleeson et al., 1974; Moeljono et al., 1977; Frank et al., 

1977) • In contrast, PGF2a concentrations in the utero­

ovarian vein were reduced in pregnant gilts {Mor~ljono et 

al., 1977). Frank et al. {1977) reported that induction of 

pseudopregnancy via administration of estradiol valerate to 

nonpregnant gilts between days 11-15 resulted in a similar 

pattern of PGF2a secretion evident in pregnant gilts. 

Plasma concentrat1ons of the PGF2a metabolite, 15-keto-

13 ,14-dihydro PGF2a {PGFM) are highly correlated to levels 

of PGF2a. Guthrie and Rexroad {1981) demonstrated an 

increase in PGFM during days 15-19 of the estrous cycle, 

whereas PGFM remained at basal levels during early 

pregnancy. 

Embryonic Migrat1on 

Intrauterine migration of porcine embryos prior to 
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attachment to the uterine endometrium is critical for embryo 

survival. Porcine embryos move to the ampullary-isthmic 

junction, the sJ.te of fertilization, within a few hours 

after ovulation where they remain for approximately 36 hours 

(Hunter, 1974). The embryos enter the tips of the uterine 

horns about 48 hours after ovulation and are then at the 4-

cell stage of development (Hunter, 1974). Transport of the 

porcine embryos through the oviduct appears to be hormonally 

mediated. It has been suggested that estrogen restricts 

passage of the embryo by constrJ.cting the isthmus; 

declining estrogen and rising progesterone levels after 

ovulation allow transport of the embryo through the isthmus 

(Dziuk, J985). Once in the uterus, intrauterine migration 

of the porcine blastocysts occurs between day 7-12 of 

pregnancy with migration between horns first evident around 

day 8-9 of gestation (Dhindsa et al., 1967). By day 12 of 

gestation, the embryos fully occupy both uterine horns 

(Dhindsa et al., 1967) and are evenly dispersed (Dziuk, 

1985). Polge and Dziuk (1970) demonstrated that embryonic 

migration ceases on day 12 of pregnancy. 

The precise mechanism(s) of intrauterine migration of 

the porcine embryos remains unknown, however peristaltic 

contractions of the uterine myometrium appear to be 

involved. The contractile activity of the uterine 

myometrium 

products. 

estradiol 

may be influenced by conceptus secretory 

Pope and Stormshak (1981) first indicated that 

may be involved in embryo migration since 
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estradiol-impregnated silastic beads migrated further than 

cholesterol-impregnated beads (384 ± 96.1 versus 68.8 ± 28.6 

em, respectively). Further research also demonstrated that 

estradiol-impregnated beads migrated farther than beads 

containing cholesterol (Pope et al., 1982b, 1986). 

Increased blastocyst estrogen synthesis coincided with an 

increased frequency of myometrial contractions in vitro 

suggesting that blastocyst-derived estrogen may be 

responsible for intrauterine embryo migration (Pope et al., 

1982a). Conceptus produced estrogen may also act upon the 

uterine myometrium indirectly via prostaglandins (Pope et 

al., 1982a) . Pope and co-workers (1982b) have also 

suggested that histamine produced by porcine blastocysts may 

influence myometrial contractility thereby facilitating 

embryonic migration. 

The equidistant distribution of the porcine blastocysts 

in the uterus by day 12 of gestation is essential for the 

the establishment of pregnancy. Polge et al. (1966) 

reported that a minimum of four embryos (two in each horn) 

must be present in the uterus to maintain pregnancy. 

Dhindsa and Dziuk (1968a) further demonstrated that embryos 

must be present in both uterine horns between days 10 and 12 

of gestation in order to maintain pregnancy, however when 

embryos were flushed from one uterine horn between days 12-

20, unilateral pregnancies (19/38) could be maintained after 

day 12 of gestation through at least day 30 of gestation. 

Studies utilizing uterine ligations have demonstrated that 
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as the proportion of the uterus that remains unoccupied 

increases, the less likely that the pregnancy will be 

maintained. Dhindsa and Dziuk (1968b) demonstrated that 50-

60% of the pregnancies can be maintained when only one-eigth 

of the uterus is unoccupied, however when one-fourth is 

unoccupied only 20-30% can be maintained and when one-half 

of the uterus is unoccupied pregnancy fails to be 

established. 

These data indicate that migration and the presence of 

porcine blastocysts by day 12 of gestation is critical for 

the establishment and maintenance of pregnancy. 

Early Conceptus Development 

Fertilization of porcine embryos occurs at the 

ampullary-isthmic junction with approximately 95-98% of the 

ova be1ng fertilized (Perry and Rowlands, 1962; Oxenreider 

and Day, 1965). Two-celled embryos can be seen 17-20 hours 

after ovulation, although this stage of development is 

relatively short, lasting only 6-8 hours (Hunter, 197 4) . 

However, after the second cleavage, the embryo remains in 

the four-cell stage for 20-24 hours (Hunter, 1974). The 

embryo enters the uterus during the four-cell stage 

approximately 46-50 hours after ovulation (Oxenreider and 

Day, 1965; Hunter, 1974). Up to this stage of development, 

little RNA synthesis by the embryo is evident. At the 

eight-cell stage of development, nucleoli and increased 
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ribosome numbers can be observed (Stroband and Van der 

Lende, 1990) while RNA synthesis appears to commence during 

the four-cell stage (Freitag et al., 1988). These 

developmental changes indicate activation of the embryonic 

genome. Initial signs of compaction become evident at the 

eight-cell stage (Hunter, 1974) with junctional complexes 

forming at the compacted morula stage around day 5 of 

pregnancy (Barends et al., 1989). 

In an extensive review of mouse early embryonic 

development, Johnson (1981) reported that a large amount of 

evidence suggests that the inner cells of cleavage and 

morula stage embryos w1ll differentiate into the embryo 

proper, while outer cells become the trophectoderm. A 

similar pattern of development is observed in porcine 

embryos. Papaioammou and Ebert (1988) demonstrated that 

inner and outer cells can be distinguished as early as the 

12-16 cell stage of develoment with the inner cells 

comprising approximately 14% of the cells at the morula 

stage of development. 

By day 6-7 of pregnancy, porcine embryos exhibit a 

conspicuous blastocoele cavity and inner cell mass and thus 

have attained the blastocyst stage of development (Perry and 

Rowlands, 1962; Hunter, 1974) with the cell number at this 

stage being approximately 32-64 cells or greater (Hunter, 

1974; Papaioannou and Ebert, 1988). Blastocysts hatch from 

the zona pellucida around day 7-8 of gestation (Perry and 

Rowlands, 1962; Hunter, 1974; Papaioannou and Ebert, 1988). 
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Just prior to hatching, inner cells attain a maximum of 25% 

of the total cell number (Papaioannou and Ebert, 1988). 

After hatching, porcine blastocysts undergo distinct 

morphological changes. It has been reported that spherical, 

tubular, and filamentous embryos can be observed within the 

same uterine horn (Perry and Rowlands, 1962; Anderson, 1978; 

Geisert et al., 1982b) • Geisert et al. (1982b) described 

the changes that occur in the porcine conceptus during the 

morphological transformation from the spherical to 

filamentous forms. Once the embryo hatches from the zona 

pellucida, the blastocyst increases in size to 10 mm in 

diameter by day 11-12 of gestation at a rate of .25 mm/hour. 

Shortly after attaining the 10 mm spherical stage of 

development, the porcine blastocyst rapidly elongates to a 

filamentous form at a rate of 30-45 mmfhour and reaches up 

to 150 mm in length within 2-3 hours. Geisert et al. 
' 

( 1982b) demonstrated that the increase in blastocyst 

diameter up to 10 mm involves cellular hyperplasia as 

indicated by an increase in the mitotic index, whereas 

elongation of the porcine conceptus to its filamentous form 

involves cellular remodeling. This cellular reorganization 

within the trophectoderm and endoderm results in the 

formation of an elongation zone, a dense band of cells which 

extends from the inner cell mass to the ends of the 

conceptus (Geisert et al., 1982b). Filapodia of endodermal 

origin are present between the endoderm and trophectoderm 

(Ge1sert et al., 1982b; Barends et al., 1989; Stroband and 
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Van der Lende, 1990) and may be involved with elongation of 

the porcine conceptus (Geisert et al., 1982b) . Albertini 

(1987) suggested that the endoderm may induce the formation 

of actin filaments within the trophoblast which may then 

contribute to cellular reorganization during rapid 

elongation. Stage-specific changes in actin distribution 

within the trophectoderm have been shown ,to occur between 

days 8-13 of pregnancy (Mattson et al., 1990). Mattson et 

al. (1990) have suggested that these actin filaments may be 

involved in microvillar reorganization, epithelial 

transport, and elongation of the trophectoderm. Barends et 

al. (1989) also suggested that the endoderm induces the 

formation of the basal lamina by the trophectoderm. Richoux 

et al. (1989) demonstrated the presence of fibronectin and 

laminin during early conceptus development. These 

researchers first detected fibronectin, located at the 

interface of the trophectoderm and the endoderm, prior to 

endodermal cell migration, while laminin is produced by the 

endodermal tissue and accumulates between these two cell 

layers. Richoux and co-workers (1989) suggested that 

fibronectin allowed migration of endodermal and mesodermal 

cells, whereas laminin probably functioned to stabilize 

interactions between the extraembryonic cell layers. 

Fibronectin has also been shown to increase the development 

of individual blastomeres from a-cell porcine embryos 

through the blastocyst stage of development in vitro (Saito 

and Niemann, 1991). The porcine conceptus continues to 
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elongate and will reach up to 1 meter in length by day 16-18 

of gestation {Perry and Rowlands, 1962; Anderson, 1978). 

For a more detailed description of early embryonic 

develpment in the gilt, see stroband and Van der Lende 

{1990). 

Conceptus Secretory Activity 

In order to establish pregnancy in the gilt, the 

corpora lutea must be protected from the luteolytic effects 

of PGF2a. In the gilt, maintenance of pregnancy and 

nourishment of the conceptus depends upon endometrial 

secretions and selective transport of serum factors. 

Steroids, proteins, and prostaglandins produced by the 

developing porcine conceptus are essential for the 

establishment and maintenance of pregnancy in the gilt. 

Steroids. The production of estrogens by the porcine 

conceptus was first reported by Perry et al. { 1973) , who 

demonstrated the production of estrone and estradiol-17b 

from androstened1one and dehydroepiandrostenedione {DHA) 

between days 14-16 of gestation. These results provided 

evidence for the presence of aromatase, 17,20-desmolase, and 

3-sulfatase within the porcine conceptus {Perry et al., 

1973). Further research also demonstrated the conversion of 

androstened1one, DHA, and testosterone to estrone and 

estradiol-17b by day 14-18 porcine conceptuses {Heap et al., 

1975; Gadsby et al., 1980). Pig blastocycsts can also 
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utilize progesterone to synthesize estrogens. Fischer et 

al. {1985) indicated that porcine conceptuses, ranging from 

7 mm spherical to tubular and filamentous forms, are able to 

convert progesterone to estrone and estradiol. Estrogen 

synthesis by the porcine conceptus has been localized to the 

trophectoderm and the yolk-sac endoderm with the yolk-sac 

endoderm producing substantially greater quantities {King 

and Ackerley, 1985). Estrone and estradiol-17b production 

by the yolk-sac endoderm is greatest in the region of the 

embryonic disc {Bate and King, 1988). Dantzer and svenstrup 

' {1986) reported that development of smooth endoplasmic 

reticulum observed in the basal region of the trophoblast 

was related to high levels of estrone, estradiol-17b and 

estrone sulfate. 

The ability of the porcine uterine endometrium to 

produce only limited amounts of estrogen {Fischer et al., 

1985) indicates that estrogen present in the uterine lumen 

reflects synthes1s and secretion by the conceptus. Estrogen 

content in uter1ne flushings is greater in pregnant compared 

to cyclic gilts between days 12-18 {Zavy et al., 1980; Ford 

et al., 1982a; Geisert et al., 1982a; stone and Seamark, 

1985). The content of estrogen in uterine flushings durine 

early pregnancy exhibits a biphasic profile. Zavy et al. 

{1980) reported that estrogen concentrations in uterine 

flushings increase between days 10 and 12 of gestation, 

decline by day 15, and increase again on day 18 of 

pregnancy. A similar pattern of conceptus estrogen 
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production was dem?nstrated by Ford et al. (1982a) who 

reported that estrogen content peaked at day 13 and then 

declined by day 15 of gestation. Although levels of 

estrogen were lower on day 15 compared to day 13 of 
< 

pregnancy, nadir concentrations of estrogen were actually 

observed on day 14 with levels increasing on day 15 of 

gestation (Stone and Seamark, 1985). Geisert et al. (1982a) 

demonstrated that uterine luminal content of estrogen 

increased with elongation of the porcine conceptus. Uterine 

flushings with tubular blastocysts had approximately a 4-

fold greater content of estrogen compared to uterine 

flushings containing spherical blastocysts. Uterine 

estrogen content was even grenter in flushings which 

contained filamentous conceptuses on day 12 of pregnancy, 

but sharply declined by day 14 (Geisert et al., 1982a) . 

Similar concentrations of conjugated estrogens, estrone 

sulfate and estradiol sulfate, were also evident in uterine 

flushings from pregnant females (Geisert et al., 1982a) • 

The sustained increase in estrogen secretion by the porcine 

conceptus after day 14 of gestation appears to be necessary 

for the maintencance of CL function beyond day 30 of 

gestation (Geisert et al., 1990 for review). 

Porcine conceptuses are also capable of synthesizing 

and releasing catecholestrogens, the hydroxylated 

metabolites of estradiol. Mondschein et al. (1985) 

demonstrated that estrogen-2/4-hydroxylase (E-2/4-H) 

converts estradiol to its hydroxylated forms, 2-0HE2 and 4-
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OHE2 • Production of catechol estrogens from estradiol 

occurs between days 10-14 of pregnancy (Mondschein et al., 

198S) during the period of conceptus elongation and 

establishment of pregnancy. The profile of catechol 

estrogen synthesis and release is similar to that observed 

for estradiol production during early pregnancy. Production 

of catechol estrogens increases from day 12-14 of gestation 

{Mondschein et al., 198S), declines by day lS and then 

increases between days 16-18 of gestation {Chakraborty et 

al., 1989). It has recently been reported that porcine 

conceptuses are also capable of an alternative pathway for 

hydroxylation of estradiol. Chakraborty et al. ( 1990a) 

demonstrated the conversion of estradiol to lSa­

hydroxyestradiol via estrogen !Sa-hydroxylase. The profile 

of blastocyst estrogen !Sa-hydroxylase is similar to that 

previously shown for E-2/4-H (Mondschein et al., 198S); 

estrogen !Sa-hydroxylase activity is greatest on days 12-13 

and lowest on day lS of gestation {Chakraborty et al., 

1990a). These authors suggest that lSa-hydroxyestradiol may 

be involved in the maternal recognition of pregnancy and 

implantation s1nce the enzyme is localized primarily in the 

extraembryonic membranes and is active during these time 

periods. Since catecholestrogens are rap1dly metabolized in 

the peripheral c1rculation, Mondschein et al. {198S) has 

suggested that they may act locally upon the uterus andfor 

conceptus. Decreased activ1ty of catechol-0-

methyltransferase in the conceptus during increased E-2/4-H 
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activity on days 11-13 is consistent with a possible role 

for catecholestrogens in the establishment of of pregnancy 

in swine (Chakraborty et al., 1990b). 

Although previous studies suggested that the porcine 

conceptus does not produce progesterone, since removal of 

the ovaries or CL resulted in termination of pregnancy (du 

Mesnil du Buisson and Dauzier, 1957; Martin et al., 1977; 

Nara et al., 1981; Thomford et al., 1984), recent 

experiments suggest that the porcine placenta is capable of 

producing progesterone. Knight and Kukoly (1990) 

demonstrated that porcine placental tissue was capable of 

producing progesterone in vitro. Progesterone levels 

increased linearly between days 25-40, plateaued between 

days 40-50, rose to peak levels at day 100, and then 

decreased abruptly at day 110 of gestation. The production 

of progesterone by the porcine placenta appears to be 

limited by the amount of pregnenolone available since 

supplementation of pregnenolone to porcine placental tissue 

cultures enhances progesterone production (Knight and 

Jeantet, 1991). Heap et al. (1975) demonstrated that the 

porcine conceptus lacks the necessary enzyme, C20-22 

desmolase, to convert cholesterol to pregnenolone, 

explaining the lack of placental progesterone production in 

vivo. 

Proteins. Porcine conceptuses recovered during early 

pregnancy and cultured in vitro synthesize and secrete a 

wide variety of proteins. From days 10-12 of gestation, the 
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porcine conceptuses primarily produce a group of low 

molecular weight, acidic proteins {Godkin et al., 1982a; 

Gries et al., 1989). These proteins are characterized by a 

molecular weight of 20,000-25,000 daltons and an isoelectric 

point (pi) rang1ng from 5.6-6.2. Gries et al. {1989) 

demonstrated that this group of proteins was present through 

day 18 of pregnancy, but in much reduced quantity. Harney 

et al. (1990) has recently demonstrated that porcine 

conceptuses synthesize and secrete retinol-binding protein 

(Mr=19,000-22,000; pi=5.6-6.5) between days 10-15 of 

gestation. This conceptus derived retinol-binding protein 

(RBP) is a major secretory product during this time period. 

Utilizing immunocytochemica~ localization, Harney et al. 

(1990) has shown that RBP is present primarily in the 

trophectoderm and yolk sac. Expression of RBP messenger 

ribonucleic acid {mRNA) present in the porcine trophoblast 

increased from day 12 to day 21 and was greater than RBP 

mRNA in the chor1oallantoic placenta which was present at 

low levels from days 30-90 and absent between days 105-112 

of pregnancy. Harney and co-workers ( 1990, 1991) suggest 

that secretion of RBP by the porcine conceptus may be 

important for local transport of retinoids to the developing 

conceptus and may play an important role in conceptus 

development throughout pregnancy. Cross and Roberts {1988) 

have demonstrated that porcine conceptuses secrete a group 

of proteins with a molecular weight of Mr=24,000 daltons and 

a pi=5. 2-5. 6. Characterization of this latter group of 
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proteins revealed the presence of antiviral activity and a 

sequence homology to alpha and gamma interferons (La 

Bonnardiere et al., 1991). ovine (Godkin et al., 1982b) and 

bovine (Helmer et al., 1987) conceptuses also produce a 

similar group of proteins during early pregnancy. The ovine 

and bovine polypeptides, ovine (oTP-1) and bovine (bTP-1) 

trophoblast protein-1, have a high sequence homology with 

alpha-interferons (Imakawa et al., 1987,1988) and are 

involved in the establishment of pregnancy in ruminant 

species. Mirando et al. (1990) demonstrated that proteins 

with antiviral activity are produced by porcine conceptuses 

from days 10-15 of pregnancy. These proteins were low 

during the period of establishment of pregnancy, days 10-12, 

but increased at days 14-15. La Bonnardiere et al. (1991) 

has recently shown that conceptus produced antiviral 

proteins are a combination of interferon-alpha and 

interferon-gamma like proteins. It does not appear that the 

conceptus derived antiv1ral proteins are involved with the 

establishment of pregnancy and extension of CL lifespan in 

the pig since the intrauterine infusion of porcine conceptus 

secretory proteins did not lengthen the interestrous 

interval in gilts (Harney and Bazer, 1989) and porcine 

antiviral proteins are produced after the period of maternal 

recogn1tion of pregnancy in the gilt (Mirando et al., 1990). 

Since interferon-gamma is an immune interferon produced by T 

lymphocytes (Stobo et al., 1974), the apparent production of 

this interferon by the porcine conceptus suggests that these 
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proteins may be J.nvolved in some immunological aspects of 

pregnancy (La Bonnardiere et al., 1991). 

After day 13 of gestation, the pattern of protein 

secretion by the porcine conceptus is altered. The major 

proteins secreted between days 13-16 of pregnancy exhibit 

molecular weights ranging from 35,000-50, ooo daltons and 

have pi's in the basic range (Godkin et al., 1982a; Powell­

Jones et al., 1984). Gries et al. (1989) reported that 

porcine conceptuses produce two major groups of polypeptides 

during early gestation. One of these proteJ.ns (Mr=40,000; 

pi=7.9-9.0) increases between days 14-18 of gestation; while 

the other polypeptide (Mr=22, 000; pi=6. 2) was present in 

dimi~ishing quantJ.ties from days 12-18 of gestation. 

Baumbach et al. (1988) demonstrated that day 14-17 porcine 

conceptuses produce a basic protein with a Mr=43,100 and a 

pi>?. Utilizing antJ.-sera to this protein, Baumbach et al. 

( 1988) showed that this basic protein was present in the 

conceptus trophectoderm at day 11 of gestation. It has been 

recently been demonstrated that this basic protein has 

sequence similarity to human cellular fibronectin and is 

antigenically similar to both human plasma and porcine 

embryonic fibronectin (Baumbach et al., 1991). 

The serine protease, plasminogen activator (PA) has 

been demonstrated to be released by porcine blastocysts in 

culture (Fazleabas et al., 1983) . Fazleabas et al. ( 1983) 

reported that the release of PA is biphasic in nature; 

conceptus production of PA increased from days 10-12, 
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declined to day 13, and again increased from days 14-16 of 

gestation. Plasminogen activator has been implicated in 

tumor invasiveness and migration (Ossowski et al., 1973) as 

well as tissue remodeling (Beers et al., 1975; Ossowski et 

al., 1979). The high level of PA production by the porcine 

conceptus coincides with early tissue remodeling and a later 

phase of tissue proliferation suggesting that PA may be 

involved in conceptus elongation in swine (Fazleabas et al., 

1983). 

The presence of growth factors in porcine conceptus 

tissue has also been reported. Insulin-like growth factor-1 

{IGF-1) content in porcine conceptus and uterine flushes 

increased from day 8, ~eaching a peak at day 12, and then 

declined at day 14 of gestation (Letcher et al., 1989) • 

Levels of IGF-1 mRNA were also evident in conceptus tissue 

between days 12-16 of gestation, however no temporal changes 

were evident 1n the mRNA levels (Letcher et al., 1989). The 

amount of IGF-1 and IGF-1 mRNA present in conceptus tissue 

was much lower than that observed in the uterine 

endometrium. Since conceptus IGF-1 mRNA remained constant, 

the changes in IGF-1 levels in uterine flushings primarily 

reflect endometrial synthesis and secretion whereas the 

change in conceptus IGF-1 content may reflect uptake of IGF-

1 from uterine secretions {Letcher et al., 1989). Porcine 

conceptuses respond to IGF-1,in culture with an increase in 

cytochrome P450 aromatase activity, though this response is 

stage dependent since day 12 conceptuses respond while day 
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10 conceptuses fail to respond (Hofig et al., 1991). These 

results suggest that IGF-1 may act through an 

autocrinejparacr1ne pathway to modulate conceptus 

steroidogenesis. Zhang et al. (1991) reported that porcine 

conceptuses contain high affinity epidermal growth factor 

binding sites between days 9-13 of gestation. The possible 

role(s) of growth factors upon conceptus growth and 

development in the piq require further elucidation. 

Prostaglandins. Both PGF2a and PGE2 are produced by 

porcine conceptuses. Watson and Patek (1979) reported that 

porcine embryos secrete PGF2a in vitro between days 16-22 of 

gestation. Utiliz1ng radiolabelled arachidonic acid, Lewis 

and Waterman (1983) demonstrated that day 16 porcine 

conceptuses synthesize and secrete PGF2a, PGE2 , and PGFM in 

vitro with PGE2 being the predominant prostaglandin 

produced. similar results were observed by Davis et al. 

(1983) who demonstrated that the content of PGE was greater 

than PGF on every day examined. Davis et al. ( 1983) also 

reported that phospholipase A2, the rate limiting enzyme in 

prostaglandin synthesis, increases with conceptus age. 

Stone and co-workers (1986) reported that porcine 

blastocysts between days 4-8 of pregnancy produce primarily 

PGE2 , but also produce low quanti ties of PGF2a and PGH2 • 

Culture of embryonal membranes from days 13, 16, and 19 of 

gestation produced more PGF2a per gram of tissue than 

uterine endometr1al tissue indicating that the conceptus may 

also actively produce PGF2a in vivo (Guthrie and Lewis, 
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1986) . 

It has been suggested that the synthesis and secretion 

of prostaglandins by the porcine conceptus may be involved 

in embryonic migration and conceptus elongation as well as 

alterations in uterine vascularity and blood flow during 

early pregnancy {Davis et al. , 1983; Lewis .. and Waterman, 

1983). Kraeling et al. {1985) indicated that treatment of 

gilts with indomethacin, an inhibitor of prostaglandin 

synthesis, from days 10-25 of pregnancy resulted in the 

inhibition of pregnancy. However, Geisert et al. {1986) 

demonstrated that indomethacin failed to block embryo 

development and elongation when administered between days 

10-13 of gestation. These results suggest that 

prostaglandins may be involved in placental attachment after 

day 13 of gestation, but do not appear to play a role in 

early conceptus development and elongation {Geisert et al., 

1986) . 

Maternal Recognition of Pregnancy 

ProlongatJ.on of the functional lifespan of the CL is 

dependent upon a sJ.gnal produced by the developing porcine 

conceptus. This phenomenon was originally described by 

Short {1969} and termed the "maternal recognition of 

pregnancy". 

establishment 

Since then, 

of pregnancy in 

maternal recognition and 

swine has been extensively 

reviewed {Bazer et al., 1982, 1984, 1986, 1989; Geisert et 
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al., 1990) . 

The per1od when porcine conceptuses signal the maternal 

system, thus extending CL function, has been determined by 

flushing embryos from the uterus on various days post­

estrus. Dhindsa and Dziuk (1968a) reported that flushing of 

porcine conceptuses from one uterine horn on or before day 

10 of gestat1on resulted in termination of pregnancy. 

However, flushing of embryos from day 12-20 of gestation 

resulted in maintenance of pregnancy suggesting that the 

critical period for pregnancy ma1ntenance is between day 10 

and 12 of gestation (Dhindsa and Dziuk, 1968a). Ford et al. 

(1982a) demonstrated that flushing conceptuses from the 

uterine horns oP days 13 and 15 of gestation increased the 

interestrous interval by approximately five days, whereas 

flushing the uterus on day 11 failed to increase 

interestrous 1ntervals. The time period critical for CL 

maintenance and establlshment of pregnancy was further 

defined when flushing porcine conceptuses from the uterus on 

days 11, 12, and 13 resulted in extension of CL function for 

3-13 days while flushing the uterus on day 10 did not extend 

CL function (van der Meulen et al., 1988). Therefore, the 

porcine conceptus signals the maternal system on 

approximately day 11-12, thus extending CL function and 

maintaining pregnancy. 

Co1nc1dent with this time period, day 11-12 of 

gestation, the porc1ne embryo undergoes a rapid elongation 

from spherical to tubular and filamentous forms (Geisert et 
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al., 1982b) and initiates estrogen production (Geisert et 

al., 1982a). Estrogen, produced by the developing porcine 

conceptus, has been implicated as the signal for maternal 

recognition of pregnancy in swine. Several studies have 

demonstrated that administration of estrogen, either 

intrauterine or systemic, results in extension of CL 

function (Ford et al., 1982b; Saunders et al., 1983; Frank 

et al., 1977; Ge1sert et al., 1987; King and Rajamahendran, 

1988) . Intrauterine administration of estradiol benzoate 

between days 10-14 of the estrous cycle increased 

interestrous intervals to approximataely 28 days (Saunders 

et al. , 1983) . Placement of silastic beads containing 

estradiol-17b into the uterine lumen of gilts also resulted 

in estrous cycles of 24-28 days in duration (King and 

Rajamahendran, 1988). In a previous experiment, Ford et al. 

(1982b) demonstrated that CL weight and utero-ovarian venous 

progesterone concentrations on day 18 of the estrous cycle 

were greater 1n sows treated with estradiol compared to 

control sows, thus providing ev1dence that estradiol 

maintains luteal function. Although estradiol 

administration 1ncreases the interestrous interval to 

approximately 24-28 days, these estradiol treatments failed 

to extend CL function beyond 30 days. As previously 

discussed, conceptus estrogen production is biphasic in 

nature. Estrogen production by the porcine conceptus 

increases from day 10.5-12 of pregnancy, decreases between 

days 13 and 14, and increases again after day 15 of 
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gestation {Fischer et al., 1985). This biphasic profile of 

estrogen release is reflected in the estrogen content of 

uterine flush1ngs (Zavy et al., 1980; Geisert et al., 1982a; 

stone and Seamark, 1985). To determine the role biphasic 

estrogen production has in the duration of the interestrous 

interval, Geisert et al. {1987) administered estradiol 

benzoate at various times during the estrous cycle. 

Estradiol treatment on day 11 or days 14-16 extended the 

interestrous interval to approximately 28 days, whereas 

estradiol treatment on day 11 and days 14-16 extended CL 

function beyond 60 days {Geisert et al. , 1987) . Similar 

results were reported by Frank et al. {1977) who 

demonstrated that administration of estradiol from days 11-

15 resulted in interestrous intervals greater than 60 days. 

During the secondary rise in conceptus estrogen production, 

the uterine endometrium exhibits an increase in the number 

of cells that express estrog~n receptors on day 18 of 

gestation {Geisert et al., 1990). These results suggest 

that the secondary increase in estradiol production by the 

porcine conceptus 1s essential for complete establishment of 

pregnancy {Geisert et al., 1990). In contrast to these 

data, van der Meulen et al. {1991) reported that 

intrauter1ne adm1nistration of physiological doses of 

estradiol between days 11-15 did not extend CL function 

indicating that other substances may also be required for CL 

maintenance in the pig. 

Maternal recognition of pregnancy in swine has been 
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hypothesized to be controlled by an estrogen-induced 

alteration of PGF2a secretion (Bazer and Thatcher, 1977) . 

This theory proposes that conceptus-derived estrogen alters 

the direction of PGF2a secretion from an endocrine 

direction, towards the uterine vasculature, to an exocrine 

direction, towards the uterine lumen, thus preventing PGF2a 

from reaching the CL and causing luteolysis. Studies 

designed to measure uterine luminal content of PGF2a have 

further supported, this theory. Frank et al. ( 1977) 

demonstrated that gilts treated with estrogen had higher 

levels of PGF2a present 1n 

cyclic gilts between days 

the uterine lumen compared to 

14-20 of the estrous cycle. 

Prostaglandin F2a concentrations in uterine flushings were 

greater in pregnant compared to cyclic gilts suggesting that 

PGF2a is sequestered in the uterine lumen of pregnant gilts 

(Zavy et al., 1980). Utilizing a bilateral perifusion 

system, Gross et al. (1988) was able to measure PGF2a 

secretion by the luminal and myometrial surfaces of the 

porcine endometr1um. Gross et al. (1988) demonstrated that 

PGF2a secretion was greater from the luminal surface for day 

12 and 14 pregnant gilts, whereas PGF2a secretion was higher 

from the myometrial surface for day 10 pregnant and day 14 

cyclic gilts, thus indicating that the shift in PGF2a 

secretion from an endocrine to an exocrine direction occurs 

between days 10 and 12 of pregnancy. The shift in PGF2a 

secretion is concomitant with initiation of conceptus 

estrogen production (Geisert et al. , 1982a) , however 
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alteration of PGF2a secretion is not entirely a result of 

conceptus estrogen production. 

Alteration of PGF2a secretion toward the uterine lumen 

appears Jto involve interactions between estrogen and 

prolactin as well as possible interactions between estrogen 

and porcine conceptus secretory proteins (pCSP) . Prolactin 

receptors have been dectected in the uterine endometrium of 

pigs (Dehoff et al., 1984; Young and Bazer, 1987, 1989). 

Young et al. (1990} demonstrated that prolactin receptors 

remain similar between days 8-15 in cyclic gilts. In 

contrast, prolactin receptors were similar between days 8-11 

of gestation, 

between days 

1ncreased on day 12, and remained elevated 

14-30 of pregnancy (Young et al., 1990). 

Prolactin has been shown to enhance the uterine secretory 

response to exogenous estrogen administered on day 11 of the 

estrous cycle (Young and Bazer, 1988) . This may be the 

result of an increase 1n prolactin receptors since 

administration of estradiol valerate increases endometrial 

prolactin receptors within six hours prior to the increase 

in uterine secretory activity (Young et al., 1990). Gilts 

treated with both prolactin and estradiol had higher levels 

of uteroferrin, glucose, and PGF2a in uter1ne flushings 

compared to gilts that received only estrogen (Young et al., 

1989). Sim1lar results were observed by Grosset al. (1990) 

who demonstrated that neither estrogen nor prolactin 

individually altered PGF2a secretion, however endometrium 

from estrogen-treated gilts perifused with prolactin 
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toward the uterine 

demonstrated that 

perifusion with calcium ionophore shifted secretion of PGF2a 

toward the luminal surface suggesting that endometrial 

calcium release may be 

secretion. Bazer et al. 

involved with alteration in PGF2a 

( 1989) reported that endometrium 

removed from gilts 6-12 hours after estrogen treatment and 

then perifused with prolactin responded with a shift in 

PGF2a secretion from an endocrine to exocrine direction 

within 30 minutes. These authors suggest that estrogen 

treatment may induce prolactin receptors in the uterine 

endometrium which allow prolactin to act upon the 

endometrium and induce calcium cycling across the 

epithelium. 

Interactions between estrogen and pCSP may also be 

involved in the maternal recognition of pregnancy in swine. 

Initial studies indicated that pCSP do not appear to 

interact with estrogen to prevent luteolysis since 

intrauterine infus1on of pCSP to gilts treated with a low 

level of estrogen between days 12-15 of the estrous cycle 

did not result in extended interestrous intervals (Harney, 

1988; Harney and Bazer, 1989). In contrast to these 

results, Dubois and Bazer (1988, 1991) 

alter endometr1al PGF2a secretion. 

indicated that pCSP 

Per1fusion of 

endometr1um from cyclic and pseudopregnant gilts with pCSP 

resulted in greater lum1nal secretion of PGF2a compared to 

myometrial secretion with the greatest response evident in 
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endometrium from pseudopregnant gilts. These results 

indicate that pCSP may enhance the ability of estrogen to 

shift PGF2a secretion from an endocrine to an exocrine 

direction (Dubo1s and Bazer, 1988, 1991). 

Present evidence supports the exocrine versus endocrine 

theory of maternal recognition of pregnancy in swine as 

originally proposed by Bazer and Thatcher (1977). Data 

indicate that prolactin and pCSP may mediate the role of 

conceptus-derived estrogen in the reorientation of PGF2a 

secretion. 

Comparative Placentation 

Placentation is defined as the intimate fusion or 

apposition of fetal membranes with the maternal uterine 

endometrium for the exchange of nutrients (Mossman, 1937). 

Histological classification of the mammalian placenta 

(Grosser, 1909; cited by Steven, 1975) is based upon the 

number of tissue layers separating the fetal and maternal 

vasculature. In the simplest classification, the 

epitheliochorial placenta, the following six tissue layers 

are present: ( 1) fetal capillary endothelium, (2) fetal 

connective tissue, (3) fetal chorionic epithelium, (4) 

maternal uter1ne epithelium, (5) maternal connective tissue, 

and (6) maternal capillary endothelium. Based upon this 

classification scheme (Grosser, 1909), mammalian placentae 

are classified as either epitheliochorial, syndesmochorial, 
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or haemochorial. Steven ( 1975) noted 

of the other organs of the body, the 

placenta shows a wide variety of species-specific structural 

modifications. The purpose of the following review will be 

to briefly examine placentat1on in rodents (mice and rats), 

ruminants (cattle and sheep), and swine. 

Rodents 

Placentation. Utilizing Grosser's (1909) 

classification scheme, placentation in mice and rats is 

described as haemochor1al. Haemochorial placentation is 

characterized by the loss of all three maternal tissue 

layers while all three fetal layers remain intact. 

Observations by Enders (1965) demonstrated that the placenta 

of rodents may be more correctly classified as 

haemotrichor1al since three layers of trophoblast separate 

maternal blood from fetal capillaries. The trophoblast 

tissue layers enclose maternal blood spaces thus providing a 

labryinthine appearance of the placenta (Amoroso, 1952). 

Implantation in rodents occurs eccentrically. This 

form of 1mplantat1on involves the movement of the embryo 

into the crypts and folds within the uterine endometrium 

(Mossman, 1937; Amoroso, 1952). During the apposition phase 

of implantation, the embryo aligns itself in the proper 

orientation. The blastocyst implants in an antimesometrial 

orientation with the 1nner cell mass oriented mesometrially 
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Amoroso, 1952). After apposition to the 

blastocyst continues development of 

extraembryonic membranes and attaches to the uterus, while 

the uterine endometrium undergoes the process of 

decidualization. 

Extraembryonic Membranes. Development of the rodent 

extraembryonic membranes is characterized by inversion of 

the embryonic germ layers. Rodent embryos develop both 

functional yolk-sac and chorio-allantoic placentae (Amoroso, 

1952; Steven, 1975). 

The yolk-sac placenta consists of the visceral and 

parietal walls and Reichert's membrane (Amoroso, 1952). The 

parietal wall, the bilaminar omphalopleure, consists of a 

layer of parietal endodermal cells and a layer of 

trophoblast, whereas the visceral wall, the vascular 

splanchnopleure, is composed of a layer of endoderm and 

mesoderm tissue (Wislocki and Padykula, 1953). In a recent 

review, Jollie (1990) described the development of the yolk­

sac placenta in rodents. At day 7 of gestation, the 

endoderm different1ates and proliferates from the inner cell 

mass and lines the blastocoele cavity of the embryo, thus 

forming the parietal wall of the yolk sac. Expansion of the 

amniotic cavity separates the inner cell mass from the 

developing ectoplacental cone on day 8 of pregnancy. 

Formation of the v1sceral wall of the yolk sac results from 

inversion of a portion of the yolk sac that conta1ns 

mesodermal tissue and movement of the embryonic disc away 
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from the ectoplacental cone. The mesodermal tissue 

proliferates between the layers of the visceral wall of the 

yolk sac to form a trilaminar structure. The area between 

the parietal and visceral walls of the yolk sac becomes the 

yolk sac cavity. By day 10 of pregnancy, the visceral wall 

of the yolk sac separates to form an extraembryonic coelom. 

On day 7-8 in mice (Batten and Haar, 1979) and day 10 in 

rats (Lambson, 1966), the mesodermal layer undergoes 

angiogenesis to vascularize the visceral wall of the yolk 

sac by a peripheral vitelline circulation. 

Reichert's membrane has been defined as a hyaline 

membrane between the trophoblast and the endoderm of the 

bilaminar omphalopleure (Mossman, 1937). In an extensive 

histochemical study of Reichert's membrane in rats, Wislocki 

and Padykula {1953) demonstrated that Reichert's membrane is 

composed of mucopolysaccharides or glycoproteins and 

exhibits properties similar to compacted collagenous fibers. 

Further research has shown that Reichert's membrane is the 

basal lamina of the parietal yolk sac endodermal epithelium 

{Clark et al., 1975; Minor et al., 1976). Welsh and Enders 

{1987) reported that by mid-gestation in the rat, the 

per1pheral trophoblast is extremely thin and highly 

fenestrated. Therefore, only Reichert's membrane separates 

maternal circulation from the yolk sac cavity suggesting a 

possible path for the transport of substances from the 

maternal circulat1on to the visceral endoderm (Welsh and 

Enders, 1987). 
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On days 8-10 of pregnancy in rodents, the allantois 

differentiates and evag1nates from the hindgut region of the 

embryo into the extraembryonic coelom (Steven and Morriss, 

1975; Jollie, 1990). The developing allantois fuses with 

the chorion of the ectoplacental cone and the allantoic 

blood vessels invade the chorionic endoderm thus forming the 

haemochorial chorio-allantoic placenta (Steven and Morriss, 

1975; Jollie, 1990). The yolk-sac placenta decreases in 

significance as the chorio-allantoic placenta becomes 

established. 

Two populations of trophoblast are present in the 

rodent conceptus, polar trophoblast and mural trophoblast. 

The haemochorial chorio-allantoic placenta is established 

from the polar trophoblast cells. The trophoblast cells at 

the embryonic pole of the embryo differentiates and 

proliferates to form the ectoplacental cone (Amoroso, 1952; 

steven and Morriss, 1975; Peel and Bulmer, 1977). On day 7 

of gestation, the ectoplacental cone invades into the 

uterine endometrium and destroys vascular endothelial cells 

(Amoroso, 1952) . Invasion of the ectoplacental cone into 

the uterine endometr1um results in maternal blood becoming 

enclosed in the trophoblastic tissue, therefore the 

ectoplacental cone contains lacunae of maternal blood 

(Amoroso, 1952; Steven and Morriss, 1975; Peel and Bulmer, 

1977). Fusion of the allantois to the chorion and loss of 

the ectoplacental cavity results in the formation of the 

chorio-allantoic placenta. 
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The peripheral, mural, trophoblast cells of the rodent 

embryo are involved in the adhesion and invasion of the 

embryo into the uter1ne endometrium 

1967; Potts, 1968; Tachi et al., 

trophoblast cells are initially 

(Enders and Schlafke, 

1970). The mural 

extremely thin with 

flattened nuclei; they are subsequently transformed into 

giant cells (Enders and Schlafke, 1967; Potts, 1968). 

Bevilacqua and Abrahamsohn (1988) demonstrated that 

transformation of flat trophoblast cells into giant cells is 

accompanied by an increase in their content of ribosomes, 

rough endoplasmic reticulum, golgi complexes, lysosome-like 

bodies, and heterophagosomes. Transformation into giant 

cells is associated with their abili~y to invade the uterine 

endometrium (Bevilacqua and Abrahamsohn, 1988). 

Attachment. Attachment of the embryo to the uterine 

endometrium involves two processes, adhesion and invasion. 

Several comprehensive studies have examined the attachment 

phase of implantation in rodents (Enders and Schlafke, 1969; 

Tachi et al., 1970; Schlafke and Enders, 1975). 

Adhesion of the trophoblast to the uterine luminal 

epithelium is one of the initial events involved in 

implantation. Using estrogen-conditioned uterine luminal 

epithelium which 1s necessary for implantation in rats, 

increased Nilsson (1967) first suggested that an 

adhesiveness of an unspec1fic type may be involved in 

attachment of mouse and rat embryos. Pinsker and Mintz 

(1973) originally suggested that changes in the cell surface 
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glycoproteins of mouse embryos may be involved in adhesion 

to the uterine luminal epithelium. These authors 

demonstrated that recovery of labeled surface material from 

blastocyst stage embryos was greater than that recovered 

from cleavage stage embryos and that the label was 

incorporated into the higher molecular weight components. 

These results suggest that an early alteration of the cell 

surface near the blastocyst stage of development may be 

responsible for the stage-specific ability of mouse embryos 

to attach to the uterine endometrium. Glycoproteins present 

on most cell surfaces are involved in cellular recognition 

and adhesion (Luft, 1976). The glycocalyx, a carbohydrate 

rich coat that covers the surface of most cells, has been 

implicated in cell-cell interactions (Alberts et al., 1983). 

Glycoproteins associated with the glycocalyx appear to be 

involved with trophoblast attachment to the uterine 

endometrium (Chavez and Enders, 1982; Richa et al., 1985; 

Chavez, 1986). Util1zing lect1n binding techniques, several 

studies have demonstrated that significant alterations occur 

in the blastocyst and endometrial cell surface carbohydrate 

composition prior to implantation in mice (Chavez and 

Enders, 1981, 1982; Lee et al., 1983; Chavez and Anderson, 

1985; Azuma et al., 1991). Temporal changes in the binding 

of Ricinus communis agglutinin-! (RCA-I} and peanut 

agglutinin (PNA) were observed on mouse embryos, however 

these changes could not be conclus1vely implicated in 

adhesion of the embryo to the uterus (Chavez and Enders, 
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1981). Chavez and Enders {1982) subsequently demonstrated 

the dissappearance of Dolichos biflorus agglutinin (DBA) 

binding sites from mouse trophoblast during the time of 

blastocyst adhesion. Recent results have demonstrated that 

certain galactose and/or N-acetylglucosamine glycoproteins 

on the cell surface of mouse trophoblast gi~nt cells change 

from day 8. 5 to day 10. 5 of gestation in association with 

implantation {Azuma et al., 1991). Lee et al. { 1983) and 

Chavez and Anderson ( 1985) demonstrated that the uterine 

luminal epithelium also undergoes alterations in cell 

surface glycoproteins prior to implantation and during 

pregnancy. 

Alterations in the surface charge of the blastocyst and 

endometrium in rodents has also been implicated in 

blastocyst adhesion to the uterine epithelium. Jenkinson 

and Searle ( 1977) demonstrated that the mouse trophoblast 

contains negatively charged surface groups which are reduced 

at implantation. Similar results were observed by Hewitt et 

al. {1979) on the rat uterine epithelial surface. These 

authors demonstrated a reduction of polycationic ferritin 

binding between days 2 and 6 of gestation in rats. A 

reduction of blastocyst and endometrial cell surface 

negativity may facilitate adhesion of the embyro to the 

uterine luminal epithelium. 

Glycosyltransferases may also be involved in adhesion 

(Roseman, 1970). Glycosyltransferases, enzymes that 

catalzye the addit1on of sugars to oligosaccharadies, would 
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function as a br1dge between the surface they reside on and 

the apposing sugar on the adjacent cell surface (Roth et 

al., 1971, Roth and White, 1972). Dutt et al. (1987) have 

demonstrated that cultured uterine epithelia! cells from 

mice synthesize lactosaminoglycans and that these 

polysaccharides appear to be involved in a 

galactosyltransferase-dependent cell adhesion system in the 

uterus. The lactosaminoglycans are synthesized in response 

to estrogen stimulation (Dutt et al., 1988), however 

estrogen alone appears insufficient to induce synthesis of 

lactospminoglycans by immature mouse uterine epithelial 

cells (Carson and Tang, 1989). It has been recently 

reported that fucosylated lactosaminoglycans are present on 

the apical surfaces of mouse uter1ne luminal epithelium and 

may be involved in the adhesion of mouse blastocysts to the 

uterine endometrium (Kimber et al., 1988; Lindenberg et al., 

1988) • 

Heparan sulfate proteoglycans are also present on the 

cell surface of preimplantation blastocysts and uterine 

epithelium in mice (Farach et al., 1987; Tang et al., 1987). 

Farach et al. (1987) demonstrated that heparan sulfate 

proteoglycans can mediate attachment and outgrowth of mouse 

embryos on uterine epithelial cells. Subsequent research 

has shown that mouse uterine epithelial cells cultured in 

vitro express high-affinity binding sites that bind 

heparinjheparan sulfate (Wilson et al., 1990). These 

authors demonstrated that these heparin-binding sites were 
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associated with firmly attached, cell surface components and 

that the majority of these binding sites were located 

basally with only 9-14% present on the apical surface of 

polarized epithelial cells. 

The second process of attachment involves invasion of 

the blastocyst into the uterine endometrium. In the early 

stages of attachment in the rat, day 5 of gestation, the 

trophoblast cells exhibit an intimate association with 

uterine epithelial cells as shown by the presence of 

interdigitating microvilli (Enders and Schlafke, 1967). By 

day 6 of pregnancy, microvilli were absent from uterine 

epithelial cells and the formation of tight junctions 

maintained contact between the trophoblast and the uterine 

epithelial cells (Enders and Schlafke, 1969; Tachi et al., 

1970). Schlafke and Enders (1975) described implantation in 

the mouse and rat as "Displacement 

invasion of the trophoblast results 

Implantation" since 

in displacement of 

uterine epithelium. At approximately day 7 of gestation, 

the displaced uterine luminal epithelial cells show varying 

degrees of degeneration (Enders and Schlafke, 1967). El­

Shershaby and Hinchliffe (1975) demonstrated that 

degeneration of mouse uterine epithelial cells was first 

noticeable at the ultrastructural level at 113 hours post 

coitum. This 1nitial degenerat1on was characterized by the 

presence of autophagosomes, vacuoles that contained granular 

material, membranous structures, and possibly deteriorated 

mitochondria. At 105 hours post mating, an increase in the 
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size of dense lysosomal bodies was evident in viable 

epithelial cells (El-Shershaby and Hinchliffe, 1975). These 

results indicate that uterine epithelial cells undergo 

autolytic breakdown around the invading blastocyst. Parr et 

al. (1987) demonstrated that degenerating uterine epithelial 

cells at implantation sites were characterized by surface 

blebbing, shrinkage, cell fragmentation, condensation of 

chromatin, and 1ndentation and fragmentation of nuclei. 

These character1stics suggest that uterine epithelial cell 

death during implantat1on in mice and rats is due to 

apoptosis and not necrosis {Parr et al., 1987}. The 

degenerating uterine luminal epithelia! cells of mice and 

rats are phagocytosed by the embryonic trophoblast (Finn and 

Lawn, 1968; Enders and Schlafke, 1969; Tachi et al., 1970; 

Schlafke and Enders, 1975). Bevilacqua and Abrahamsohn 

{1988) reported that transformation of flat trophoblast 
-

cells into giant trophoblast cells in mice is associated 

with cell activation and acquistion of phagocytic 

capabilities. In the early stages of invasion, day 7 of 

gestation, the trophoblast does not penetrate beyond the 

basal lamina of the uterine luminal epithelial cells (Enders 

and Schlafke, 1967, 1969; Tachi et al., 1970; Schlafke and 

Enders, 1975). By day 8 of gestation, the basal lamina was 

absent and trophoblast cells were in intimate contact with 

uterine stromal cells (Tachi et al., 1970). Schlafke and 

Enders (1975) have suggested that this pause in trophoblast 

invasion may represent a t1me when trophoblast growth is 
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undergoing alterations. Schlafke et al. (1985) demonstrated 

the presence of decidual cell flange-like processes that 

penetrate the basal lamina and form a flattened expansion of 

cytoplasm beneath the rat trophoblast. These data suggest 

that the decidual cells are responsible for disruption of 

the basal lamina and expansion of the implantation chamber 

(Schlafke et al., 1985). 

It has been hypothesized that the action of proteases 

may be involved in implantation (see Denker, 1980, 1981, 

1982 for reviews). Several trypsin- and chymotrypsin-like 

enzymes have been detected in mouse blastocysts (Dabich and 

Andary, 1976). Dabich and Andary (1974) also demonstrated 

that intrauterine admini.stration of proteinase inhibitors 

resulted in embryonic loss suggesting that proteinases may 

be involved in implantation in mice. The plasminogen 

activator-plasmin system may also be involved in mouse 

embryo implantation. Strickland et al. (1976) reported that 

plasminogen activator increased in cultured mouse 

trophoblast during implantation. These authors demonstrated 

that maximal plasminogen activator activity was present at a 

time equivalent to epithelial penetration (Stickland et al., 

197 6) . Another group of proteolytic enzymes that may be 

1n rodent implantat1on is the cathepsins. involved 

Cathepsins 

the most 

are lysosomal cysteine proteinases that may be 

active proteinases in the body (Barrett and 

Kirschke, 1981). 

that the level 

Elangovan and Moulton (1980a) demonstrated 

of cathepsin D in rat uterine luminal 
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epithel1um decreased during blastocyst implantation. The 

rate of cathepsin D synthesis in implantation sites was only 

half of the rate observed in inter-implantation areas 

(Elangovan and Moulton, 1980a) . Elangovan and Moulton 

(1980b) also demonstrated that progesterone specifically 

increased the synthesis of cathepsin D to maximal by 6 hours 

post-injection and that progesterone stimulated an increase 

in cathepsin D within the uterine endometrium as observed 

via immunohistochemical localization. Together, these data 

suggest that lysosomal catheps1n D may be involved in 

autolysis of the uterine luminal epithelium during 

blastocyst implantation in rats (Elangovan and Moulton, 

1980a, b). Cathepsins have also been implicated in 

blastocyst implantation in species other than rodents. 

Recent studies have demonstrated that cathepsin L is present 

in uterine glandular epithelial cells (Verhage et al., 1989) 

and in uter1ne flush1ngs (Li et al., 1991) of the cat. 

These results (Verhage et al., 1989; Li et al., 1991) and 

the proteolytic activity of cathepsin L as well as its 

affinity for collagen (Kirschke et al., 1982) and elastin 

(Mason et al., 1982) suggest that cathepsin L may be 

involved in implantation in cats. 

During adhesion and invasion of the blastocyst into the 

uterine endometrium, the uterine stroma undergoes 

decidualization. This process involves differentiation of 

stromal cells in preparation for blastocyst implantation. 

Decidualizat1on. Initiation of decidualization occurs 
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on approximately day 6 of gestation, about 24 hours after 

attachment of the blastocyst to the uterus (Enders and 

Schlafke, 1967; Finn, 1982}. One of the first signs of 

decidualization 1s edema in the uterine stroma as a result 

of an increase in vascular permeability (Finn, 1982). 

Proliferat1on of the decidua results primarily from cell 

division and enlargement of stromal fibroblasts as they 

transform into decidual cells (Abrahamsohn, 1989). Enders 

and Schlafke (1967) demonstrated that stromal fibroblasts 

accumulate fibr1llar material and glycogen during 

decidualization. The decidua can be separated into 

antimesometrial and mesometrial decidua. The 

a!ltimesometrial decidua is first evident below the basal 

lamina of the implantation sites (Welsh and Enders, 1985). 

The antimesometrial decidua reaches maximal development at 

day 8-9 in mice and day 10-11 in rats after which time the 

decidua regresses and is sloughed into the uterine lumen 

around day 16 of gestation (Welsh and Enders, 1985; 

Abrahamsohn, 1989}. For a more detailed examination of the 

antimesometrial decidua, 

mesometrial decidua is 

granular cells, however 

see Welsh and Enders (1985). The 

composed of decidual cells and 

these decidual cells are smaller 

than those observed 1n the antimesometrial decidua and are 

often binucleate (Abrahamsohn, 1989}. 

The process of decidualization is hormonally mediated. 

Psychoyos (1963} demonstrated that the uterus must be 

exposed to progesterone for a minimum of two days followed 
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by exposure to estrogen in order to become receptive to the 

blastocyst. Blastocyst implantation induces the decidual 

reaction and continuous secretion of progesterone and 

estrogen is necessary to maintain the decidual tissue 

{Yoshinaga, 1982). 

In a short review of rodent implantation, Finn {1982) 

briefly discussed possible functions of decidual tissue. 

The three primary functions hypothes1zed for decidual tissue 

were {1) protection of the fetus from immunological 

rejection, 

properties 

{ 2) protection of the uterus from the invasive 

of the trophoblast, and { 3) communication and 

movement of molecules between individual decidual cells. 

Ruminants 

Placentation. Placentation in cattle and sheep 

involves apposition, adhesion, and attachment of the 

conceptus to both caruncular and intercaruncular regions of 

the uterine endometrium. The majority of ruminant 

conceptuses initially attach approximately one-third the way 

up the uterine horn from the cervix {Lee et al., 1977). The 

conceptuses attach centrally such that they remain within 

the uterine lumen and do not invade into the uterine stroma 

{Steven and Morriss, 1975). 

immobilized at the area of 

The conceptus becomes 

attachment by extension of 

trophectodermal papillae into the uterine glands {Guillemot 

et al., 1981; Gu1llomot and Guay, 1982; Wooding et al., 
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1982). Based on the number of maternal and fetal tissue 

layers present, placentation in cattle and sheep was 

initially classified as syndesmochorial {Grosser, 1909). 

However, Steven {1975) indicated that placentation in 

ruminants is actually epitheliochorial in nature. Early in 

implantation in ruminants (days 18-20), binucleate cell 

migration into and fusion with the maternal epithelium 

results in the formation of a syndesmochorial placenta 

(Wooding, 1982). The syndesmochorial placenta is maintained 

in the placentomes of the ewe, however in the entire cow 

placenta and in the interplacentome regions of the ewe 

placenta the uterine epithelium is regenerated resulting in 

the formation of the epitheliochorjal placenta (Wooding, 

1982). Placentation in cows and ewes is initially diffuse 

through the first month of gestation with attachment 

becoming more intimate with the formation of placentomes at 

day 30-33 (King et al., 1982). 

Extraembryonic Membranes. Elongation of the bovine 

conceptus begins at approxi~ately days 12-13 of gestation 

and rapidly increases over the next several days (Betteridge 

et al., 1980). By day 21 of pregnancy in the cow, contact 

between the chorion and the uterine endometrium is evident 

in both the ipsilateral and contralateral uterine horns 

(King et al., 1982). 

Ruminant conceptuses initially develop a chorio­

vitelline placenta early in gestation. As the yolk sac 

develops, it fuses with the expanding chorion and 
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establishes a vitelline circulation which remains functional 

until about day 17 of gestation (Amoroso, 1952) . As the 

allantois develops from the hindgut region of the embryo and 

expands, the yolk sac starts to regress. By day 17 of 

pregnancy, the yolk sac has separated from the chorion 

(Amoroso, 1952). Expansion of the allantois and its 

subsequent fusion with the chorion results in the formation 

of the allanto-chorionic membrane. 

The allantois fuses with the entire surface of the 

chorion except in the region of the amnion and the tips of 

the chorion. The allantois of sheep and cattle conceptuses 

does not encompass the amnion, but instead is formed in a T­

shaped cavity (Amoroso, 1952; Steven and Morriss, 1975). 

The stalk of the allantois runs up one side of the amnion 

and separates into two arms of unequal length. The longer 

section of the allantois,extends into the non-gravid uterine 

horn (Steven and Morriss, 1975). In the areas where the 

allantois does not separate the amnJ.on from the chorion, 

these two membranes fuse to form the amniochorion (Amoroso, 

1952; Steven and Morriss, 1975). 

The extraembryonic membranes of sheep and cattle 

conceptuses develop modifications that facilitate attachment 

of the chorio-allantois to the uterine endometrium. The 

first of these modifications is the formation of trophoblast 

papillae. The chorJ.on of the ovine conceptus develops 

trophoblast papJ.llae around day 13 of gestation which extend 

into the lumen of uterine glands by the third week of 
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1981; Wooding et al., 1982). 

trophoblast papillae into the 
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1981; Wooding and Staples, 

The penetration of the 

uterine glands appears to 

function in immobilizing the conceptus within the uterine 

lumen. Another modification of the fetal membranes of sheep 

and cattle, compared to the sow and mare, is the presence of 

trophoblastic binucleate cells. Binucleate cells 

differentiate within the trophectoderm on approximately days 

14-15 of gestation in sheep and days 17-18 of gestation in 

cattle (Wooding and Morgan, 1989). The binucleate cells 

migrate out of the trophectoderm and form a syncytium with 

the uterine epithelial cells (Wooding, 1982). These cells 

have been implicated in the transport of placental lactogen 

to the maternal system (Wooding, 1984, 1987) • The third 

modification of ruminant extraembryonic membranes is the 

formation of cotyledons. Cotyledons are distinct villous 

areas present on both the allanto-chorion and the amnia­

chorion (Amoroso, 1952; Steven and Morriss, 1975) which 

interlock w1th the crypts of uterine endometrial caruncles 

to form structures called placentomes (Amoroso, 1952; steven 

and Morriss, 1975; Perry, 1981). Placentomes begin to 

develop during the fourth week of gestation in sheep 

(Wimsatt, 1950) and between days 30-33 in cattle (King et 

al., 1979). 

Attachment. Leiser (1975) reported that the apposition 

and attachment of bovine conceptuses commenced in the region 

near the embryo on approximately days 18-19 of gestation, 
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extending throughout the entire uterine endometrium by day 

27. King et al. (1982) observed initial attachment of the 

chorion to caruncular and intercaruncular uterine ep1thelium 

at day 19 of gestation, however discrete areas of contact 

were not evident throughout the uterus until day 21 of 

pregnancy. Similarly, Wathes and Wooding (1980) first 

reported contac,t between the 

epithelium at day 20 of gestation. 

that attachment of the bovine 

chorion and the uterine 

Therefore it is apparent 

conceptus to the uterine 

epithelium occurs on days 18-20 of gestation. Attachment of 

the sheep conceptus follows a s1milar pattern, but begins at 

an earlier stage of gestation. In sheep, adhesion between 

the conceptus and the uterine caruncular epithelium develops 

between days 16-18 of gestation (Guillemot et al., 1981) 

with the interdigitation of microvilli becoming evident 

around day 18 (King et al., 1982) to day 20 (Davies and 

Wimsatt, 1966). Attachment of ruminant conceptuses occurs 

in both caruncular and intercaruncular regions of the 

uterine endometrium. Ultrastructural changes in the 

conceptus and uterine epithelium during implantation in 

sheep and cattle have been extens1 vely studied (Wimsatt, 

1950; Bjorkman, 1954; Davies and Wimsatt, 1966; Boshier, 

1969; Wathes and Wooding, 1980; Guillemot et al., 1981; 

Guillemot and Guay, 1982; King et al., 1981, 1982}, 

therefore only a br1ef description of these changes will be 

included in this review. 

Early in gestation (day 17-19 in cattle and day 14-16 
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in sheep), the uterine epithelium is characterized by tall 

columnar ep1thelium while the chorion consists of cuboidal 

to low columnar epithelial cells (Wathes and Wooding, 1980; 

Guillemot et al., 1981; King et al., 1981,1982). As 

gestation progresses, a reduction in epithelial cell height 

becomes evident so that by day 18 in the ewe (King et al., 

1982) and day 21-23 in the cow (Wathes and Wooding, 1980; 

King et al., 1981,1982) the uterine epithelium consists of 

cuboidal to low columnar epithelial cells. By day 14-15 of 

gestation 1n sheep and day 17-18 1n cattle, binucleate cells 

differentiate from uninucleate trophoblast cells (Wooding 

and Morgan, 1989). Initially, the binucleate cells have no 

contact with the basement membrane or apical tight junctions 

(Boshier and Holloway, 1977; Wathes and Wooding, 1980; 

Wooding, 1984). At day 16 in the ewe, binucleate cells were 

only occassionally ev1dent in the chorion and none were 

evident in the uterine epithelium (Boshier, 1969; King et 

al. , 1982) . In contrast, binucleate cells compose 

approximately 6% and 3% of the cell population in the 

chorion and uterine epithelium, respectively, at day 18 of 

pregnancy in the cow (Wathes and Wooding, 1980). Migration 

of trophoblast binucleate cells involves the extension of a 

large, smooth pseudopod through the apical tight junction to 

contact and fuse with the uterine epithelium (Wathes and 

Wooding, 1980). By day 20 of gestation in the cow, 

binucleate cells constitute approximately 20% of the 

chorionic epithelium and are located adjacent to maternal 
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giant cells (Wathes and Wooding, 1980; King et al., 1981). 

Migration and fusion of trophoblast binucleate cells to 

uterine epithelial cells results in the formation of a 

syncytium which consists of trinucleate and multinucleate 

cells in both cattle and sheep (Amoroso, 1952; Boshier, 

1969; Wathes and Wooding, 1980; King et al., 1982). studies 

utilizing phosphotungstic acid staining (Wooding and Wathes, 

1980) and autoradiography (Wooding et al., 1981) indicated 

that migration and fusion of binucleate cells are the main 

source of new syncytial nuclei. The cells of the syncytium 

contain an odd number of nuclei due to the fusion of 

binucleate cells with an odd number of uninucleate uterine 

epitheljal cells. Migration of the binucleate cells and the 

subsequent syncytium formation is accompanied by the 

degeneration of maternal epithelial cells which are 

phagocytized by the chorionic epithelium (Davies and 

Wimsatt, 

Wooding, 

1966; 

1982) • 

Boshier, 1969; Wathes and Wooding, 1980; 

By days 26-27 of gestation 1n the cow, 

binucleate and mult1nucleate cells make up about 70% of the 

uterine luminal epithelium (Wathes and Wooding, 1980). From 

days 28-40 of gestat1on in the cow, the trinucleate and 

multinucleate cells disappear and are replaced by residual 

uninucleate epithelial cells (Wathes and Wooding, 1980; 

Wooding, 1982) . Wood1ng and Morgan ( 1989) reported that 

binucleate cell m1gration continues throughout 

but the trinucleate cells that are formed 

gestation, 

are only 

trans1ent. In the ewe, binucleate cells migrate in larger 
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quantities which may account for the persistence of the 

syncytium throughout gestation in sheep (Wimsatt, 1951). 

It has been suggested that binucleate cells may have 

several roles in placentation in ruminants (King et al., 

1982). Davies and Wimsatt (1966) hypothesized that the 

syncytium was formed for immunological protection, however 

Wooding and Mprgan (1989) believe that the syncytium would 

not provide an adequate immunological barrier since it is 

noncontinuous and, in the cow, only transient. Although 

binucleate cell mJ.gration and fusion continues throughout 

gestation in the cow, the resulting trinucleate cells are 

short lived (Wooding and Morgan, 1989). It has been 

demonstrated that cytoplasmic granules of sheep binucleate 

cells contain ovine placental lactogen (Wooding, 1981; 

Morgan et al., 1987). Since binucleate cell granules are 

carried into the syncytium with the binucleate cells and 

then exocytosed into the maternal stromal tissue (Wooding, 

1984, 1987), binucleate cell migration and syncytium 

formation may function to transport fetal products to the 

maternal system. King et al. (1982) suggested that 

binucleate cell migration may also function to stabilize the 

fetal membranes until interdigitation of microvilli 

develops. 

Placentation 1n ruminants also involves the formation 

of placentomes. Placentomes are formed by microvillous 

interdigitation between the fetal membrane cotyledons and 

the uterine caruncles. In the cow the caruncle is knob-
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shaped and the cotyledon attaches over it, whereas in the 

ewe the caruncle is cup-shaped and the chorionic tissue fits 

within it (Perry, 1981). According to Wimsatt (1950), 

placentomes begin initial development during the fourth week 

of pregnancy in sheep. King et al. (1982) reported that by 

day 14 of pregnancy in sheep, depressions were evident in 

some caruncles with ridges forming around day 15 of 

gestation. Although no junctions were evident between the 

chorion and the uterine endometrium, King et al. (1982) 

suggested that adhesion had taken place in caruncular 

regions by day 16 of gestation. In the cow, placentomes are 

recognizable on the uterine surface by day 20 of gestation 

as discrete oval structures (King et al., ~980). King et 

al. (1980) demonstrated that placentome size and attachment 

between the fetal membranes and the uterine endometrium 

increased by day 29, however chorionic villi and caruncular 

crypts had not yet formed in the placentomes. King et al. 

(1979) demonstrated that villous attachment in the 

placentomes developed between days 30-33 with the formation 

of villi and crypts becoming evident by day 33 of gestation. 

Placentomes become larger and more complex as gestation 

progresses (King et al., 1979). 

The inital adhesion of the chorion to the uterine 

endometrium appears to 1nvolve cell surface glycocon]ugates. 

( Wordinger and Amsler (1980) reported that the apical surface 

of the uterine luminal epithelium in the cow is covered by a 

thick glycocalyx. These authors demonstrated that the 



72 

uterine epithelial glycocalyx is composed of acidic 

glycoproteins with sulfated and sialic acid side groups with 

the sulfated res1dues being the predominate type. Wordinger 

and Amsler {1980) did not observe any variation in the 

uterine epithelial glycocalyx with the stage of the estrous 

cycle. Utilizing different staining techniques, Guillemot 

et al. (1982) demonstrated the presence of a glycocalyx on 

the trophoblast and uterine endometrial surfaces in sheep. 

similar to results in the cow (Wordinger and Amsler, 1980), 

Gu1llomot et al. (1982) did not observe any changes 1n the 

uterine endometrial glycocalyx during the estrous cycle or 

during attachment of the conceptus during pregnancy in the 

ewE>. However, al terat1ons in the trophoblast glycocalyx 

were evident at day 15 of gestation concomitant with 

trophoblast attachment (Guillemot et al., 1982). These 

authors observed a more uniform distribution of the 

glycocalyx on the trophoblast surface via ruthenium red and 

cationic ferritin staining. Utilizing lectin staining 

procedures, changes in the carbohydrate composition of the 

glycocalyx could be demonstrated (Whyte and Robson, 1984; 

Munson et al., 1989) • In sheep, Whyte and Robson ( 1984) 

reported that trophoblast reacted strongly with the 

Tetragonolobus purpureas (TP) lectin on both days 14 and 17 

of gestation indicating the presence of fucose residues on 

the trophoblast surface. Wheat germ agglutinin (WGA) 

sta1ning was not evident on day 14 of pregnancy, but by day 

17 of gestat1on intense WGA staining was present. This 
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increase in WGA reactivity occured during the time of 

implantation and was 1.ndicative of the production of N-

acetylglucosamine residues on the sheep conceptus. Sheep 

uterine endometr1.um showed only weak reactivity with WGA and 

Concanavalin-A (Con-A} (Whyte and Robson, 1984}. Using a 

wide variety of lectins, Munson et al. (1989} observed 

differences in lectin binding on the chorion and uterine 

endometrium during pregnancy in the cow. The intense 

binding of WGA and PNA to bovine endometrium and chorion 

observed by Munson et al. (1989} was similar to the WGA 

binding evident in the sheep trophoblast (Whyte and Robson, 

1984} . Munson et al. ( 1989} demonstrated high intensity 

binding of severaJ lectins to the arcade region of 

placentomes as well as the intercotyledonary chorion 

suggesting the possible presence of cell adhesion molecules 

in areas of the placenta which are not anchored by the 

villous interdigitation seen in the placentomes. Thus 

the alterations in the carbohydrate composition of 

trophoblast and endometrial glycocalyx may be involved in 

the initial adhesion of the ruminant conceptus to the 

uterine endometrium. 

Swine 

Placentation. Like the ruminant species, the porcine 

conceptuses align themselves along the mesometrial reg1.on of 

the uterus and attach centrally such that they remain within 
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the uterine lumen and do not invade into the uterine stroma 

(Amoroso, 1952; Steven and Morriss, 1975). In the pig, all 

six (three fetal and three maternal) tissue layers separate 

the fetal and maternal vasculature. Therefore, based upon 

Grosser's (1909) classification scheme, the porcine placenta 

is epitheliochorial in nature. since attachment of the 

porcine conceptus to the uterine epithelium extends over the 

entire surface of the chorion with the exception of the 

areas over uterine glands and at the tips of the chorion, 

the porcine placenta is referred to as diffuse (Perry, 

1981) . Therefore, the pig develops a diffuse, 

epitheliochorial placenta. 

Extraembryonic Membranes. The development of the 

porcine fetal membranes (chorion, amnion, allantois, and 

yolk sac) has been the subject of extensive research 

(Heuser, 1927; Heuser and Streeter, 1929; Amoroso, 1952; 

Steven and Morriss, 1975; Perry, 1981). 

The amn1on develops from the folding of the chorion 

over the embryo (Heuser and Streeter, 1929; Perry, 1981). 

The embryon1c disc remains exposed until after the initial 

development of the primitive streak and early neural fold 

(Heuser and Streeter, 1929). Cranial and caudal folds in 

the chorion raise above the embryo at the same time that 

lateral folds are developing. These amniotic folds fuse 

dorsally over the embryo (Heuser and Streeter, 1929; Perry, 

1981). By day 18 of gestation, the amniotic folds have 

fused together and the amn1on separates from the chorion 
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(Perry, 1981) . 

The yolk sac is in1tially formed by the proliferation 

of endoderm along the inner surface of the trophoblast 

ectoderm (Heuser, 1927; Steven and Morriss, 1975). On days 

11-12 of gestation, the porcine conceptus undergoes a rapid 

elongation from spherical to tubular and filamentous forms 

that involves cellular remodeling rather than cellular 

hyperplasia (Geisert et al., 1982b). Shortly after 

trophoblast elongation, mesodermal tissue proliferates from 

the embryonic disc and migrates between the ectoderm and 

endoderm (Perry, 1981) . Following proliferation, a split 

develops in the mesoderm such that one layer underlies the 

ectoderm while the other layer overlies the endoderm. The~e 

layers become the chorion and the yolk-sac splanchnopleure, 

respectively (Perry, 1981). The areas where the trilaminar 

omphalopleure, which consist 

mesoderm, and trophoblast 

of the yolk-sac 

ectoderm, remain 

endoderm, 

intact 

constitutes the yolk-sac placenta which appears to have 

absorptive and secretory capabilities (Heuser, 1927). The 

cavity formed by the split in the mesoderm is the 

extraembryonic coelom. As the extraembryonic coelom 

expands, the yolk sac becomes separated from the trophoblast 

around day 18 of gestation and is displaced by the 

develop1ng allantois (Perry, 1981}. 

The allantois becomes apparent at approx1mately day 14 

of gestation as an evagination from the hindgut region of 

the embryo and is composed of outer mesodermal and inner 
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endodermal tissue layers (Steven and Morriss, 1975; Perry, 

1981). The allantois expands rapidly and by day 17-18 of 

gestation extends towards the ends of the chorion (Steven 

and Morriss, 1975; Perry, 1981). At approximately day 19 of 

gestation, the allantoic mesoderm fuses to the mesoderm 

lining the chorion. The fusion of the allantois to the 

chorion initially occurs in the region opposite the 

allantoic stalk and subsequently spreads over the rest of 

the chorion (Heuser, 1927). The resulting allantochorionic 

membrane consists of inner endoderm, outer ectoderm, and 

intervening mesoderm. The mesodermal layer gives rise to 

the allantoic vasculature (Mossman, 1937; Amoroso, 1952). 

Expansion of the allantois presses the amnion against the 

chorion. Fusion occurs between the amn1on and chorion where 

these two membranes are in contact with each other (Heuser, 

1927; Amoroso, 1952). Fusion of the allantois to the 

chorion continues through day 24-26 of gestation at which 

time contact is established over the entire surface except 

in the extremit1es of the chorion and where the amnion has 

fused to the chorion (Heuser, 1927; Amoroso, 1952; Steven 

and Morriss, 1975). The allantois does not extend to the 

distal tips of the chorion which subsequently degenerates 

due to the lack of vascularization (Amoroso, 1952; Steven 

and Morriss, 1975). Fus1on of the allantois and the chorion 

results 1n the formatJ.on of the chorio-allantoic membrane 

which attaches to the uterine epithelium. 

Areolae are special1zed structures that develop on the 
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allanto-chorion at approximately the third to fourth week of 

gestation (Brambel, 1933). On day 30 of gestation, the 

areolae appear as small white spots on the allanto-chorion 

(Brambel, 1933; Heuser, 1927; Friess et al., 1981). The 

areolae initially develop in the central region and 

subsequently spread over the rest of the allanto-chorion by 

day 50 of gestation (Brambel, 1933). Two morphologically 

distinct types of areolae are present on the allanto­

chorion. The regular areolae are circular, opaque, and 

elaborately folded whereas the irregular areolae are 

translucent, have an irregular outline, and do not exhibit 

any complex folding (Amoroso, 1952; Perry, 1981). The 

irregular areolae are approximatley 15 times greater in 

diameter than regular areolae (Heuser, 1927; Brambel, 1933). 

Unlike the extens1ve folding of the chorion evident in 

regular areolae, formation of irregular areolae involves 

alterations in the uterine epithelium (Perry, 1981). Friess 

et al. (1981) reported that the lumen of the areolae 

contains uterine secretions, histotroph, 

ultrastructural examination indicates that the 

and that 

chorionic 

epithelium has a high absorptive capacity. It has also been 

demostrated that the areolae are the sites of absorption of 

uteroferrin secreted by the uterine glands (Chen et al., 

1975). Therefore, the areolae, which lie over the openings 

of uterine glands, appear to function in the absorption of 

uterine secretions for the nourishment of the developing 

conceptus. 
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Attachment. Corner (1921} first demonstrated that 

attachment of the porcine conceptus to the uterine 

epithelium 1s initiated on day 13 of pregnancy. More recent 

examinations of the conceptus-uterine interface confirm that 

attachment commences at approximately days 13-14 of 

gestation and is initiated in the region of the embryo and 

then progresses towards the extremities of the allanto­

chorion (Perry et al., 1976; Dantzer, 1985; Keys and King, 

1990). On day 13 of gestation, the uterine epithlial cells 

develop rounded protuberances on their apical surface (King 

et al., 1982; Dantzer, 1985; Keys and King, 1990). Initial 

attachment of the conceptus involves the apposition of the 

chorion to these epithelial protuberances. The epithelial 

protuberances may therefore serve to immobilize the porcine 

conceptus until a more intimate association can be 

established (Dantzer, 1985}. At this stage of pregnancy, 

the chorion also extends cytoplasmic projections between the 

adjacent uterine epithelial cells (King et al., 1982; 

Dantzer, 1985). These cytoplasmic projections do not appear 

to penetrate further than the maternal epithelial junctional 

complexes (King et al., 1982; Dantzer, 1985} and appear to 

be involved in the pinocytotic uptake of histotroph 

{Stroband et al., 1984). Dantzer {1985} demonstrated that 

the maternal epithelium was covered by a thick glycocalyx, 

whereas a thin glycocalyx was observed on the trophoblast. 

The maternal glycocalyx becomes reduced during attachment 

and microvillous 1nterd1g1tation (Dantzer, 1985). Keys and 
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King (1990) demonstrated that short microvilli and a thick 

glycocalyx evenly covered the uterine epithelium, but were 

scattered unevenly over the trophoblast. Initial apposition 

of the trophoblast to uterine epithelium appeared to be 

restricted to the smooth surface that developed due to the 

formation of epithelial protuberances and loss of microvilli 

(Keys and King, 1990). Extension of uterine epithelial 

glycocalyx fibers toward the trophoblast in these areas 

appeared to aid in anchor1ng the conceptus (Keys and King, 

1990). Therefore, the uterine epithelial glycocalyx may 

function in conceptus-uterine interactions to facilitate 

attachment early in gestation. 

By days 15-16 of gestation, the epithelial 

protuberances are reduced and interdigitation of uterine 

epithelial and trophoblast microvilli is developing 

(Dantzer, 1985). Keys and King (1990) reported that various 

stages of attachment could be observed at day 18 of 

gestation. In those areas exhibiting more advanced 

attachment, microv1llous interdigitation was well developed 

and apical doming had become less prominent. By day 24-26 

of gestation, attachment and microvillous interdigitation 

had spread over the majority of the conceptus-uterine 

interface (Amoroso, 1952; Dantzer, 1985). Further 

reinforcement of conceptus attachment is accomplished by the 

extensive folding of the uterus. King et al. (1982) 

demonstrated that the allantochorionic membrane at days 28-

30 of gestation develops numerous secondary ridges which 
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penetrate into endometrial troughs. Dantzer {1984) reported 

that as gestation progresses from days 20-100, the uterine 

endometrium undergoes extensive macroscopic and microscopic 

folding. The allanto-chorion develops non-permanent ridges 

and troughs that are complementary to the endometrial folds 

such that the allanto-chorion is 2.5-4.0 times the length of 

the corresponding endometrium (Dantzer, 1984). 

As previously mentioned, the uterine epithelial 

glycocalyx appears to function in conceptus attachment early 

in gestation. Alterations in the carbohydrate compostion of 

the glycocalyx may facilitate its role in attachment. Whyte 

and Robson {1984) demonstrated that porcine trophoblast 

reacted strongly with TP lectin on days 9 and 14 of 

gestation indicating that the trophoblast surface contains 

high levels of fucose. Day 9 and 14 porcine conceptuses did 

not bind Con-A or Ricinus communis types I and II lectins 

{RCA-I and RCA-II), however day 14 conceptuses did bind WGA. 

These results suggest that the porcine conceptus contains 

fucose residues at both days 9 and 14 of gestation and N­

acetylglucosam1ne res1dues at day 14, but do not appear to 

contain galactose or N-acetylgalactosamine residues (Whyte 

and Robson, 1984). The porcine endometrium did not react 

with TP, RCA-I, or RCA-II, but reacted weakly with WGA and 

Con-A. Rober and Holtz (1988} demonstrated that conceptus 

and endometrial tissue contained galactose, galactosamine, 

and fucose residues prior to conceptus attachment, but not 

after attachment was established. Further research will be 
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necessary to determine the changes that occur in the 

carbohydrate composition of the epithelia! glycocalyx and 

the role these carbohydrates may have during attachment. 

The porcine conceptus is noninvasive within the uterus, 

however when transplanted to ectopic locations it exhibits 

invasive properties (Samuel, 1971; Samuel and Perry, 1972). 

It has been demonstrated that the porcine conceptus produces 

several proteolytic enzymes including lysozyme, leucine­

aminopeptidase, and cathepsins B1 , D, and E (Roberts et al., 

1976) as well as plasminogen activator (Mullins et al., 

1980; Fazleabas et al., 1983) and two glycosidases, b­

hexosaminidase and b-galactosidase (Hansen et al., 1985) 

Proteases, especially plasminogen activator, have been 

impicated in implantation in rodents (Strickland et al., 

1976; Denker, 1980, 1981, 1982). Plasminogen activator 

functions through the conversion of plasminogen to plasmin 

which can then hydrolyze connective tissue, basement 

membrane components, and fibrin (Werb et al., 1980). 

Plasmin inhibitors are produced by the porcine uterus during 

the luteal phase of the estrous cycle and during pregnancy 

(Mullins et al., 1980; Fazleabas et al., 1983) and during 

pseudopregnancy (Fazlaeabas et al., 1982). Fazleabas et al. 

(1984) demonstrated that the major isoform of the plasmin 

inhibitor is predominantly synthesized by the uterine 

luminal epithelium. These uterine plasmin inhibitors may 

function to control proteolytic activity within the uterine 

lumen, thus protecting the uterine epithelium from the 
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invasive propert1es of the porcine conceptus. Lysozymes are 

hydrolytic enzymes that cleave the b1,4-glycosidic linkages 

of bacterial peptidoglycans (Roberts and Bazer, 1988). 

Roberts et al. (1976) demonstrated that lysozyme activity is 

present in porcine uterine secretions and that they may be 

progesterone-induced proteins. It has been hypothesized 

that these lysozymes have an antibacterial function in the 

uterine lumen to pigs (Roberts and Bazer, 1988). Roberts et 

al. (1976) also demonstrated that cathepsin B1 , D, and E 

activities are present in uterine flushings of 

ovariectomized, progesterone-treated gilts, but not in gilts 

that did not receive progesterone treatment. These data 

suggest that the catheps1ns may be progesterone induced. 

Cathepsins are lysosomal cyste1ne proteases (Barrett and 

Kirschke, 1981) that have been implicated in blastocyst 

implantation in rats (Elangovan and Moulton, 1980a,b) and 

cats (Verhage et al., 1989; Li et al., 1991). Farmer et al. 

( 1989) demonstrated that the porc1ne uterus also produces 

antileukoproteinase, a protease inhibitor that inhibits the 

activities of elastase and cathepsin G ( Seemuller et al., 

1986). Simmen and Simmen (1990) suggested that 

antileukoproteinase may function to maintain placental 

membrane 1ntegr1ty. In the gilt, cathepsins are only a 

minor component of uter1ne flush1ngs (Roberts et al., 1976). 

The role, if any, that cathepsins play in conceptus 

attachment 1n the p1g 1s presently unknown. 
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Early Embryonic Mortality 

Embryon1c mortality in gilts occurs at a higher 

frequency during the early stages of pregnancy. Embryonic 

mortality, characterized by the difference between the 

number of live embryos present and the number of CL, ranges 

from 20-40% between days 10-40 of pregnancy and averages 

approximately 30% (see Perry, 1954; Flint et al., 1982; Pope 

and First, 1985 for review). An additional loss of 10-20% 

is evident after day 40 of gestation. The majority of 

embryonic loss occurs prior to day 25 (Perry, 1954), during 

the time per1od of conceptus elongation and establishment of 

pregnancy. 

As previously discussed, conceptus-produced estrogen is 

the signal for maternal recognition of pregnancy in swine, 

however premature exposure of gilts to estrogen or 

estrogenic compounds results in early embryo death. Long 

and Diekman (1986) demonstrated that addition of 

zearalenone, an estrogenic mycotoxin produced by Fusarium 

roseum mold, to the diet of sows between days 7-10 of 

gestation resulted in complete embryonic mortality. At 

autopsy, day 30 of gestation, 3 of 4 sows treated with 

zearalenone between days 7-10 of gestation exhibited 

complete embryo loss and CL were regressing. When sows 

received zearalenone between days 2-6 or days 11-15 of 

gestation, pregnancy was uneffected (Long and Diekman, 

1986). These authors 1ndicated that embryonic loss was not 
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associated with changes in serum concentrations of LH and 

FSH. Administration of zearalenone to sows between days 7-

10 of gestation did not alter the number or spacing of 

embryos when exam1ned on days 9 and 11 of pregnancy, however 

alterations in the uterine environment were evident (Long et 
I 

al., 1987). Concentrations of magnesium and zinc in uterine 

flushings were higher on days 11 and 13 of gestation in 

zearalenone treated compared to control sows, whereas 

calcium was similar between treatments on days 9 and 13, but 

lower on day 11 in zearalenone treated sows (Long et al., 

1987) . Pope et al. (1986) demonstrated that early 

administration of estradiol-17b also resulted in embryo 

death by day 30 of gestation. Dosages ~f 2.0 mg estradiol-

17b per day administered on days 9 and 10 of pregnancy 

caused embryon1c death in the majority of gilts while 

dosages of 8.0 mgfday or greater resulted in complete embryo 

loss in all gilts by day 30 of gestation (Pope et al., 

1986). Administration of estradiol to gilts on days 9 and 

10 of gestation resulted in degenerating conceptuses by days 

14-16 of pregnancy (Morgan et al., 1987; Gries et al. , 

1989) . Gr1es et al. (1989) reported that embryonic death 

was associated w1th uterine secretory alterations. A group 

of basic polypept1des (Mr=30,000; pi=7.9-9.0) became 

attenuated with embryo death. The function of these 

proteins is currently unknown, but they may be involved with 

placental attachment (Morgan et al., 1987; Gr1es et al., 

1989). These data suggest that embryonic mortality as a 
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result of premature estrogen exposure may be due to a 

failure in placental attachment. 

The establishment of pregnancy in swine involves a 

multi tude of interactions between the conceptus and the 

uterus. Estrogen plays a critical role in the establishment 

of pregnancy in the pig, however premature exposure to 

estrogen during early pregnancy is detrimental to conceptus 

survival. The purpose of this dissertation was to 

characterize alterations in the uterine ultrastructure and 

secretory environment concomitant with embryonic death 

resulting from early administration of exogenous estrogen. 



CHAPTER III 

ENDOMETRIAL SURFACE AND SECRETORY ALTERATIONS 

ASSOCIATED WITH EMBRYONIC MORTALITY 

IN GILTS ADMINISTERED ESTRADIOL 

VALERATE ON DAYS 9 AND 10 

OF GESTATION 

Introduction 

The glycocalyx is a carbohydrate rich peripheral zone 

at the surface of most eukaryotic cells which, owing to its 

composition and exposed position on the cell surface, has 

been implicated in numerous cell-cell interactions (Alberts 

et al., 1983). Such interactions exist between the 

develop1ng embryo and the maternal endometrium for the 

establishment of pregnancy. Working with mice, Finn and 

Martin {1984) found that cell adhesion involving the uterus 

and embryo was influenced by the concentration of estrogen 

and progesterone. In addition, attachment of the conceptus 

appears to involve glycoproteins present on the 

trophoblastic and uterine epithelial cell surfaces (Chavez 

and Enders, 1982; Richa et al., 1985). Utilizing methods 

such as differential binding to lectins and cationic dyes, 

Schlafke and Enders (1975) and Sherman and Wudl {1976) 

86 
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demonstrated that significant alterations occur in the 

composition of endometrial cell surface carbohydrates prior 

to implantation. Similarly, Lee et al. (1983) used 

fluoresceinated lectin binding to show carbohydrate groups 

exposed on the uterine cell surface change during the 

preimplantation period. Dutt et al. (1987) have shown that 

cultured uterine epithelial cells from mice synthesize 

lactosaminoglycans. These oligosaccharides appear to 

function in a galactosyltransferase-dependent cell adhesion 

system within the uterus and are synthesized in response to 

estrogen stimulation (Dutt et al. , 1988) . Based on these 

observations and from those of Nelson et al. (1977) which 

showed the presence of cell surface gaJ a..ctosyl-transferase 

on syncytial trophoblast tissue of human placenta, Dutt et 

al. (1987) suggested that this system may be functional in 

the uteri of many species. Agents that would perturb 

galactosyl-transferase function, such as proteases, also 

~nterfere with epithel~al cell adhesion and cause a release 

of lactosaminoglycans from endometrial epithelium (Dutt et 

al., 1987). It was also shown that lactosaminoglycans are 

partially protected from proteolysis by the presence of 

divalent cations. 

Placentation in the pig is associated with a reduction 

of the uterine glycocalyx as well as interdigitation of 

trophoblastic and uterine m1crovilli (Dantzer, 1985). The 

level of cell surface negativity has also been implicated in 

conceptus attachment. A reduction of trophoblast cell 



surface negativity at the 
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and a reduction of 

epithelium occur 
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adhesion 

anionic 

during 

implantation (Hewitt et al., 1979). Thus, the uterine 

glycocalyx appears to play a vital role during placental 

attachment. 

During early development in swine, blastocysts undergo 

a rapid morphological transformation from spherical to 

filamentous form by day 12 of pregnancy (Anderson, 1978; 

Geisert et al., 1982b). In addition to these morphological 

changes, porcine blastocysts attaining a diameter of 10 mm 

on days 12 and 13 of gestation begin to synthesize and 

release large quanti ties of estrogen (Perry et al. , 1973; 

Gadsby et al., 1980; Fischer et al., 1985) and polypeptides 

(Godkin et al., 1982). Following embryo elongation and the 

initiation of estrogen production, conceptus attachment 

occurs between days 13 and 18 of gestation (King et al. , 

1982) • 

In experiments des1gned to examine the effect of a 

premature estrogen stimulation on embryonic development, 

Pope et al. (1986) demonstrated that gilts receiving 

exogenous estrogen on days 9 and 10 of gestation had 

complete embryonic death by day 30 of gestation. Further 

studies by our laboratory have revealed that administration 

of estradiol valerate on days 9 and 10 of gestation results 

in degenerating conceptuses by day 16 of pregnancy (Morgan 

et al., 1987; Greis et al., 1989). 
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The purpose of the present study was to examine uterine 

endometrial surface and secretory changes occurring in the 

endometrial epithelium of the pig during the period of 

trophoblast attachment in an attempt to characterize 

alterations associated with embryonic death due to early 

exogenous estrogen administration. 

Mater1als and Methods 

Animals 

Mature cyclic crossbred gilts were observed for estrous 

behavior twice daily (07:00 and 17:00) in the presence of 

intact boars. After displaying two estrous cycles of normal 

duration (17-22 days}, gilts were bred naturally at the 

onset of estrus (day 0} and 12 and 24 hours later. 

Gilts were randomly ass1gned to receive one of the 

following two treatments: control (n=10}, intramuscular 

injection (.25 ml} of sesame 

gestation or estrogen (n=10}, 

mg) of estradiol valerate on 

oil on day 9 and 10 of 

intramuscular injection (5.0 

day 9 and 10 of gestation. 

Following random ass1gnment to treatment groups, one uterine 

horn from each gilt was removed on either day 12 or day 16. 

In gilts from which the uterine horn was excised on day 12 

the remaining horn was removed on day 14, whereas in gilts 

which had the f1rst horn removed on day 16 the remain1ng 

horn was excised on day 18. 
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Surgical Procedures 

Gilts were unilaterally hysterectomized after induction 

of anaesthesia with a 5% solution of thiopentone sodium and 

maintained on a closed circuit system of halothane {5% 

Fluothane) and oxygen (1. 0 liters/min.). The uterus was 

exposed via midventral laparotomy and a randomly selected 

uterine horn, and its ipsilateral ovary, excised. After 

routine closure of the incision, gilts were postsurgically 

treated w1th antibiotics. 

General 

Following removal of a section of uterine horn for 

analysis by scanning (SEM) and transmission (TEM) electron 

microscopy, the remaining portion of the uter1ne horn was 

transported on ice to a sterile laminar flow hood. The 

ovary and broad ligament were trimmed from the uterine horn 

and the horn was flushed with 20 ml of sterile 0.9% 

physiological saline. Blastocysts recovered from control 

and estrogen treated g1lts were evaluated for viab1lity 

{i.e. intact vs. degenerative/fragmented embryos) under a 

binocular dissection microscope. 

centrifuged at 12,000 x g for 

Uterine f 1 ushings were 

15 min at 4 °C. The 

supernatant was decanted and stored at -20 °C until analyzed 
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for antiviral activ1ty (AVA) and proteins secreted as 

determined by two-dimensional polyacrylamide gel 

electrophoresis (20-PAGE). 

The pellet resulting from centrifugation of the uterine 

flushing was resuspended in 5. o ml of o. 9% saline. An 

aliquot (20 ml) of the cell suspension was added to a trypan 

blue solution, consisting of 40 ml of 0.9% saline and 40 ml 

of 0.2% Trypan Blue dye, and mixed thoroughly. A 10 ml 

aliquot of this suspension was transferred 

hemacytometer chamber, and leukocytes were counted. 

to a 

Endometrial tissue from control and estrogen treated 

gilts was dissected away from the myometrium, cut into 2-3 

mm explants, and placed in Eagle's minimum essential 1r..edium 

(MEM). Media was prepared with L-glutamine reduced to one­

tenth of normal concentration, filtered through a 0.20 

micron membrane and stored at '4 °C. Antibiotic and 

antimycotic solution conta1n1ng penicillin ( 100,000 U/ml) 

and streptomycin (10 mgfml) was added to media prior to 

culture. Endometrial explants (200 mg) were cultured in 7.0 

ml MEM supplemented with 25 uci [3H)-glucosamine (specific 

activity = 40 Ci/mmole) to detect de novo glycoprotein 

synthesis. Explants were cultured for 24 hours at 37 °C in 

an atmosphere of 5% co2 , 45% N2 , and 50% 02 • After 

incubation, culture media was separated from tissue and 

centrifuged at 12,000 x g for 15 m1n. The supernatant was 

decanted and stored at -20 °C until analyzed for (3H]­

glucosamine incorporation by 20-PAGE and fluorography. 
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Two-Dimensional Polyacrylamide Gel Electrophoresis. 

Media from endometrial cultures were dialyzed (Spectra/Por, 

molecular weight cut-off = 3,500; Spectrum Medical 

Industries, Inc.) against 10 mM tris-HCl buffer. An aliquot 

(100 ml) from each dialysate was used to determine the total 

dpm of [3H]-glucosamine retained. Uterine flushings and 

dialyzed culture media were lyophilized and redissolved in 5 

mM K2C03 containing 9.3 M urea, 2% (vfv) Nonidet P-40, and 

.5% (wfv) dithiothreitol. Reconstituted culture media and 

uterine flushings were subjected to 2D-PAGE (Basha et al., 

1979) . 

A volume of culture media containing approximately 

200,000 dpm was loaded onto each gel. Gels were stained 

with Coomassie Blue, impregnated with sodium salicylate, 

dried onto filter paper, and overlaid with Kodak XAR x-ray 

film. Fluorographs were developed after approximately 10 

weeks of exposure at -70 °C. 

Approximately 300 mg of protein from uterine flushings 

was loaded onto gels. Gels were silver stained as 

previously described by Wray et al. (1981). 

Antiviral Activity. Antiviral activity (AVA) in 

uterine flushings was determined as described by Fulton et 

al. (Fulton et al., 1986). Culture media containing a 

volume of uterine flushing was added to established 

monolayers of Madin-Darby bovine kidney (MDBK) cells in 24-

well tissue culture plates. Ves1cular stomatitis virus (0.1 

ml, VSV) was added and the culture incubated for 24 hours at 
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37 °C. Antiviral activity was assessed by inhibition of 

cytopathic effects of VSV by counting the number of plaque 

forming units {PFU). The amount of anti viral activity in 

flushings was expressed as the reciprocal of the dilution 

that resulted in 50% inhibition of plaque formation. 

Tissue , Preparation for Electron Microscopy. 

Immediately upon removal of the uterine horn, a 7-10 em 

section approximately 10-20 em anterior to the uterine body 

was excised and opened along the antimesometrial border. 

Endometrial tissue explants (6-10 mm sections) from control 

and estrogen treated gilts were dissected away from the 

myometrium and immersed in modified Karnovsky's fixative (2% 

glutaraldehyde and 1.6% paraformaldehyde; KF) as described 

by Karnovsky (1965). Endometrial explants were cut into 1-2 

mm pieces, immersed in fresh fixative, and placed on a 

rotating platform for 2 h at room temperature. After 

fixation, tissue samples were rinsed with 0.1 M cacodylate 

buffer and post-f1xed w1 th 1% osmium tetroxide in 0.1 M 

cacodylate buffer for 1 hour. Following post-fixation, 

tissue was rinsed w1th 0.1 M cacodylate buffer, dehydrated 

in a graded series of alcohol, and embedded in epon-araldite 
I 

(Mollenhauer, 1964). 

Ruthenium Red Staining. Endometrial tissue samples 

were fixed in KF + 0.2% ruthenium red (Polysciences, Inc.) 

for 2 h at room temperature on a rotating platform. 

Endometrial tissue was subsequently rinsed in 0.1 M 

cacodylate buffer and post-fixed in 1% osmium tetroxide + 
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0.05% ruthenium red for 1 h. Following post-fixation, 

tissue was stained en block with 1% uranyl acetate, rinsed 

repeatedly with distilled water, dehydrated in a graded 

series of alcohol solutions, and embedded in epon-araldite. 

To determine the specificity of ruthenium red staining, 

endometrial tissue was treated with trypsin. Trypsin 

{Sigma, St. Louis) was diluted to 5.0 mgjml in 0.1 M sodium 

phosphate buffer (pH=7.3). Tissue samples were immersed in 

enzyme solution for 3 0 min and then processed for TEM as 

described above. 

Cationic Ferritin Staining. Following primary fixation 

with KF, tissue samples were rinsed with o .1 M cacodylate 

buffer and incubated in cationic ferritin (CF, Polysciences 

Inc.) at a concentrat1on of 0.4 mgjml for 1 h on a rotating 

platform. Endometrial samples were subsequently rinsed with 

0.1 M cacodylate buffer, post-fixed in osmium tetroxide, 

dehydrated, and embedded. A sample of the endometrial 

tissue was treated with trypsin as described previously to 

determine the specificity of cationic ferritin binding. 

Electron micrographs were analyzed by image analysis to 

quantify the number of cationic ferritin granules bound to 

the epithelial glycocalyx. 

Transmission Electron Microscopy CTEMl. Tissue samples 

were sectioned on a Porter-Blum MT-2 ultramicrotome. Thin 

sections (60-90 nm) were collected on 200 mesh uncoated 

copper grids. 

stained with 

Ruthen1um red stained samples 

Sato•s lead stain (1967) while 

were post­

CF treated 
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tissue remained unstained after sectioning. Thin sections 

were observed on a JEOL 100 ex TEMSCAN transmission electron 

microscope at 80 KV. 

Scanning Electron Microscopy CSEM). Following 

dehydration, endometrial tissue samples were dried in a 

Samdri PVT-3 critical point dryer. Tissue samples were then 

mounted on aluminum studs and coated with gold-palladium 

(200 A0 ) 1n a Techniques Hummer II. Specimens were observed 

on a JEOL JSM-35 scanning electron microscope at 25 KV. 

Statistical Analysis. Data were analyzed by least 

squares analyses of variance using the General Linear Models 

procedures of SAS (1979). Antiviral activity, leukocyte 

counts. cationic ferritin binding, and dpm [3H]­

glucosaminejmg tissue wet we1ght from explant cultures were 

each analyzed for differences between treatment, day, and 

treatment by day interactions. 

Results 

Intact filamentous embryos were recovered from a 

uterine horn of control gilts on all days (5/5, 4/5, 5/5, 

and 5/5 on days 12, 14, 16, and 18 of gestation, 

respectively), whereas, 1ntact embryos were recovered from 

estrogen treated gilts only on day 12 (4/4) of pregnancy. 

Conceptus tissue from estrogen treated gilts on days 14, 16, 

and 18 of gestation was degenerat1ng and fragmented in all 

instances (4/4, 4/4, 3/3, respectively). One control gilt 
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exhibited degenerating conceptus tissue on day 14 of 

gestation, however the ovary ipsilateral to the uterine horn 

from which the embryos were recovered contained what 

appeared to be several follicular cysts and was thus 

classified as abnormal, subsequently this gilt was excluded 

from the analyses. Embryos were not recovered in four 

estrogen treated gilts, one on each day studied. One 

uterine horn recovered on day 18 from a treated animal had 

developed a uterine infection and was excluded from 

analysis. 

Treatment by day 1nteraction (P<O.Ol) was detected for 

antiviral activity (Table 1). Antiviral activity (AVA) in 

uterine flushings peaked on day 16 of gestation in control 

gilts and then declined by day 18. In contrast, AVA in 

estrogen treated gilts was similar to controls on day 12 

with an increase on day 14 but AVA did not increase from 

days 14-18 of pregnancy. Total content of AVA 1n uterine 

flushings from estrogen treated gilts was 10 fold less than 

controls on day 16 and 18. 

No day or treatment effects were indicated for total 

leukocytes present in uterine flushings. Mean leukocyte 

numbers were not different between control (509,970 ± 

175,999) and estrogen treated (297,588 + 157,418) gilts 

(P>. 10) . 

Fluorographs (Fig. 1} from 2D-PAGE gels of endometrial 

explants showed s1milar profiles of glycoprote1n synthesis 

between treatment groups. A band of three distinct basic 
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glycoproteins (Mr=30,000; pi 7.9-9.0) was present in culture 

media of both control (Fig. 1A) and estrogen treated (Fig. 

1B) animals. Two bands of acidic glycoproteins (Mr=47,000; 

pi 6. 2-7.0 and Mr=33, 000-44,000; pi 5. 0-7. 0) were similar 

between treatment groups. Analysis of de novo glycoprotein 

synthesis revealed no differences between control {9,626.28 

+ 1,480.13) and estrogen treated (12,045.59 + 1,569.92) 

gilts (P>.20) 

At day 12 of gestation, uterine epithelium of control 

gilts exhibits a uniform surface with no apical doming 

evident (Fig. 2a&b) . Uterine folding is also evident at 

this time in control gilts (Fig. 2b), though this folding is 

not extensive. Microvilli are abundant and cilia are often 

observed (Fig. 2a&b). Protrus~on of epithelial cell apical 

domes was first ev~dent on day 14 of gestation (Fig. 2c) . 

The epithelial cells are densely covered with microvilli 

(Fig. 2c) and trophoblast tissue was often found within the 

uterine folds (Fig. 2d). By day 16 of gestation, individual 

ep~thelial cells were more clearly observed due to extensive 

protrusion of their apical surfaces (Fig. 3a). This 

protrusion was even more prominent on day 18 of gestation 

(Fig. 3c). In areas of trophoblast apposition on days 16 

and 18 of gestat~on, epithelial cell apical domes were 

prominent and microv~lli were extremely short and sparse 
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(Fig. 3b&d) . 

In estrogen treated animals, the uterine epithelium was 

similar to the epithelial surface of control gilts at day 12 

of gestation (Fig. 4a&b). Initial differences between 

estrogen treated and control tissue were observed on day 14 

of gestation. Although some areas of the uterine epithelial 

surface of estrogen treated gilts (Fig. 4c) were similar to 

controls (Fig. 2c) at day 14, other tissue areas exhibited 

cells that appeared ruptured or had only sparse numbers of 

microvilli present (Fig. 4d). Areas of the uterine 

epithelium exhibiting extensive loss of microvilli are more 

evident by day 16 (Fig. Sa). In many instances, individual 

e-pithelial cells appear indistinct (Fig. 5b) and did not 

exhibit the prominent apical dome protrus1on observed in 

control gilts (Fig. 3a). The endometrial surface changes 

observed in estrogen treated gilts at day 16 of gestation 

were still evident at day 18 (Fig. 5c&d). 

Treatment of endometrial tissue with trypsin prior to 

fixation resulted 1n the loss of ruthen1um red staining 

(Fig.6a). At day 12 of gestation, the uterine glycocalyx is 

relatively th1n 1n both control (F1g. 7a) and estrogen 

treated (Fig. 7b) g1lts as indicated by ruthenium red 

staining. The glycocalyx progressively thickens and becomes 

more fibrous between days 14-18 of gestation (Fig. 7c and 
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Fig. 8a&c) in control gilts. On day 18 of pregnancy in 

control gilts, the glycocalyx thickens at the tips of the 

microvilli (Fig. Be). The density of the glycocalyx 

observed in control gilts was not evident in estrogen 

treated g1lts after day 12 of gestation. In contrast, the 

glycocalyx detaches from the epithelial microvilli on day 14 

of gestation {Fig. 7d). The glycocalyx remains sparse on 

days 16 and 18 of gestat1on in estrogen treated gilts (Fig. 

8b&d) compared to control gilts (Fig. 8a&c). 

Treatment of endometr1al tissue with trypsin prior to 

fixation and incubation with CF resulted in a reduction of 

the glycocalyx. Desp1te the thinning of the glycocalyx, CF 

binding rema1ned j ntense {Fig. 6b). Both an increased 

number of ferritin granules bound {627.00 + 31.13) and an 

increase in the countsjarea (. 273 ± . 01) are evident in 

trypsin treated tissue. Th1s 1ncrease in CF binding may be 

due to the exposure of more CF b1nding sites on the 

glycocalyx as suggested by Guillemot et al. (1982). Intense 

CF binding was evident on day 12 of gestation in control 

gilts (Table 2) with ferritin granules being evenly 

distributed over the microvilli (Fig. 9a) . By day 14 of 

gestation, CF b1nding was still abundant but became more 

concentrated at the tips of the microvilli (Fig. 9c) . A 

reduction in the intens1 ty of CF binding was ev1dent in 

estrogen treated gilts compared to controls on day 12 of 

pregnancy (Fig. 9b). Th1s was more apparent by day 14 of 

gestation in estrogen treated gilts which exhibited sparse 
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CF binding (Fig. 9d) . cationic ferritin binding remained 

sparse through days 16 and 18 of gestation in both control 

and estrogen treated gilts (Fig. lOa-d). Although CF 

binding was sparse, no differences were apparent between 

days 14-18 in either control or estrogen treated gilts 

(Table 2) • A reduction of the maternal glycocalyx was 

observed at areas of placental attachment (Fig. 11). 

Discussion 

Pope et al. {1986) first demonstrated that 

administration of estradiol-17B to gilts on days 9 and 10 of 

gestation resulted in embryonic death prior to day 30, 

however no effect was observed when estradiol-17B was 

administered on days 12 and 13. A similar effect was 

reported in sows fed zearalenone, an estrogenic mycotoxin 

(Long and Diekman, 1986). Sows fed zearalenone on days 7-10 

of gestation demonstrated complete embryonic mortality by 

day 30, while normally developing embryos are present on 

days 30-32 of pregnancy in sows 

either days 2-6 or days 11-15 

Diekman, 1986). 

receiving zearalenone on 

of gestation (Long and 

Morgan et al. (1987) reported that intact conceptuses 

were present on days 11 and 12 of gestation in gilts 

administered estrad1ol valerate on days 9 and 10, but were 

degenerating by day 16 of pregnancy. More recently, intact 

conceptuses were recovered on days 12 and 14 of gestation 
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from gilts receiving estradiol valerate on days 9 and 10, 

while embryonic tissue was degenerating on days 16 and 18 of 

pregnancy (Gre1s et al., 1989). In the present study, 

intact embryos were recovered only on day 12 of gestation in 

estrogen treated gilts. Degenerating embryos were recovered 

on all other days which supports the findings of earlier 

studies (Morgan et al., 1987; Greis et al., 1987). 

Media from porcine conceptus cultures have been shown 

to have antiviral activity (Cross and Roberts, 1988). 

Mirando et al. (1990) demonstrated that proteins with 

antiviral activity are secreted after day 10 of gestation, 

but do not appear to be involved in the establishment of 

pregnancy 1n the p1g (Harney and Bazer, 1989). Since these 

proteins possess ant1viral properties, they may function in 

maintaining conceptus viability and survival. Data from the 

present study has shown that AVA increased after day 12 to 

highest levels on day 16 and declined by day 18 in control 

gilts. Levels of AVA in the uterine fluid of estrogen 

treated and control gilts were similar only on day 12 when 

normal embryos were found in both treatments. However, AVA 

after day 12 in estrogen treated gilts was much lower than 

in control animals presumably due to a lack of viable 

embryos after day 12. 

An examination of the uterine fluid from estrogen 

treated and control gilts on days 12, 14, 16, and 18 of 

pregnancy revealed no differences in the distribution of 

leukocytes when examined on a treatment or day basis, 
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suggesting that conceptus death was not associated with 

leukocyte invasion. It is not known if the leukocyte 

distribution with1n the endometrial tissue was affected by 

either treatment or day since this was not determined in the 

present study. 

Greis et al. (1989) demonstrated differences in protein 

synthesis and secretion between control and estrogen treated 

gilts after estradiol valerate administration on days 9 and 

10 of gestation. A distinct band of three basic 

polypeptides {Mr=30,000; pi 7.9-9.0) was present in all 

control gilts, but was attenuated in estrogen treated gilts 

as indicated by [3H]-leucine incorporated endometrial 

explant cultures. A similar attenuation of an acidic 

polypeptide (Mr=100,000; pi 3.5-5.0) was evident in estrogen 

treated gilts compared to controls. In the present study, 

labeling with [3H]-glucosamine demonstrated that many of 

these proteins were glycoprote1ns though no differences were 

evident between treatments. The function of these 

glycoproteins during pregnancy are currently unknown. 

Luft {1971} used staining with ruthenium red to 

indicate the presence of ac1dic polysacchar1des on cell 

surfaces. In the present study staining with ruthenium red 

demonstrated that the uterine glycocalyx progressively 

thickens between days 12-18 of gestation in control gilts. 

The glycocalyx thickens between days 13-19 of the estrous 

cycle and becomes thicker and more fibrous at corresponding 

stages of pregnancy (Keys and King, 1990). In the present 



103 

study a reduction of the maternal glycocalyx was observed at 

areas of placental attachment. Previous studies have also 

reported a reduction in the uterine glycocalyx upon 

attachment of the conceptus 1n the mouse (Enders and 

Schlafke, 1974; Chavez and Anderson, 1985), rat (Hewitt et 

al. , 1979) , rabbit (Anderson and Hoffman, 1984) , and pig 

(Dantzer, 1985), suggesting that a reduction in the maternal 

epithelial glycocalyx may be an integral part of 

implantation in these species. 

Administrat1on of estradiol valerate on days 9 and 10 

of gestation resulted in loss of the uterine glycocalyx 

beginning on day 14. The loss of the glycocalyx coincided 

with the onset of embryonic mn~tality in estrogen treated 

gilts. Glycoproteins present on most cell surfaces are 

involved in cellular recognition and adhesion (Luft, 1976). 

Glycoproteins associated with the glycocalyx have also been 

implicated in trophoblast attachment to the uterine 

epithelium (Chavez and Enders, 1982; Richa et al. , 1985; 

glycocalyx appears to anchor the 

epithelia together during placental 

Chavez, 1986). The 

maternal and fetal 

adhesion (Keys and King, 1990). In rodents it is evident 

that estrogen induces synthesis of glycoproteins associated 

with the uterine glycocalyx (Takata and Terayama, 1979; Dutt 

et al. , 1988; Morr1s et al. , 1988; Takeda, 1988) . From 

these studies and the present dne, it is apparent that the 

maternal glycocalyx is involved in placental attachment. 

Binding of CF demonstrated the presence of anionic 
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sites on the endometrial glycocalyx. In the present study, 

CF binding was intense and uniformly distributed over 

microvilli on day 12 of gestation in control gilts. After 

day 12, the intensity of CF binding decreased through day 18 

of gestation indicating a reduction in epithelial cell 

surface negativity. These results are similar to those 

reported by Hewitt et al. (1979) who showed a reduction in 

polycationic ferritin (PCF) labeling between days 2-6 of 

gestation in rats. Evidence indicates that reduction of 

cell surface negativity enhances cell adhesion (Vicker and 

Edwards, 1972; Weiss et al., 1975; Grinnell, 1976), which 

suggests that a reduction of anionic sites on the uterine 

luminal epithelium may also facilitate trophoblast 

apposition in the pig. 

Although ferritin binding was reduced at day 14 of 

gestation in control gilts, binding had become more 

localized toward the tips of the microvilli. This is also 

evident at day 5 of pregnancy in the rat (Hewitt et al., 

1979) and has been previously reported at day 15 of 

gestation in the pig (Dantzer, 1985). These anionic sites 

could facilitate the 1nitial contact of the trophoblast with 

the uterine surface epithelium as well as being involved in 

conceptus-uterine interactions during implantation. 

Gilts receiving estradiol valerate on days 9 and 10 of 

gestation exhibited a reduct1on in CF binding as early as 

day 12 of gestat1on. Estrogen treated gilts display less CF 

binding than control g1l ts on day 12 of gestation, but no 
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differences were evident between control and estrogen 

treated gilts between days 14-18 of gestation. 

In areas of trophoblast apposition, little or no CF 

binding was evident on the uterine epithelium at day 18 of 

gestation in control gilts. Anderson and Hoffman ( 1984) 

reported a lack of PCF labeling on the mesometrial and 

antimesometrial aspects of rabbit endometrium at presumptive 

areas of implantation as well as a lack of PCF binding at 

non-implantation areas. These results are similar to the 

report of Hewitt et al. (1979) which indicated no difference 

in the loss of anionic sites between presumptive 

implantation sites and other areas of the luminal epithelium 

in the rat. Similarly, Guillemot et al. (1982) observed no 

differences in CF between caruncular and intercaruncular 

areas of uterine epithel1um in cyclic or pregnant ewes. 

Pope et al. ( 1982) suggested that embryonic death in 

swine may be a result of alterations in uterine secretory 

activity following estrogen exposure during early pregnancy. 

Estradiol admin1stration on day 11 of gestation advances 

uterine secretory activity (Geisert et al., 1982c; Morgan et 

al., 1987) resulting in asynchrony between the uterine 

environment and the developing conceptus which results in 

embryo death. Although embryonic death may be caused by 

different mechanisms, the results from these studies 

(Geisert et al., 1982c; Morgan et al., 1987) demonstrate the 

importance of synchrony between the conceptus and uterine 

environment. 
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Results from the present study indicate that the 

presence of the maternal glycocalyx and its subsequent 

modification during attachment appear to be essential for 

placental attachment and conceptus survival. Premature 

exposure of the uterus to estrogen stimulates alterations in 

the uterine epithelial surface resulting in failure of 

conceptus attachment and subsequent embryonic death. 
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TABLE I 

ANTIVIRAL ACTIVITY OF UTERINE FLUID FROM 
GILTS TREATED WITH ESTRADIOL VALERATE 

OR VEHICLE ON DAYS 9 AND 10 
OF GESTATION 

Treatmenta,b 

Gestation Vehicle Estradiol 
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Valerate 

12 < 200 < 200 

14 1440 ± 919 

16 5960 ± 1206 

18 3713 + 712 

a Treatment x Day interaction (P < 0.05) 

b Mean± S.E.; n=3 

726 + 64 

693 ± 593 

370 + 8 



Day of 

GestatJ.on 

Control 

Day 12 

Day 14 

Day 16 

Day 18 

EstradJ..ol 

Day 12 

Day 14 

Day 16 

Day 18 

Tryps1n 

Day 12 

aTreatment 

TABLE II 

MEAN CATIONIC FERRITIN BINDING IN GILTS 
TREATED WITH VEHICLE OR ESTRADIOL 

VALERATE ON DAYS 9 AND 10 
OF GESTATION 

Number of EpJ.thelJ.al 

FerrJ.tJ.n Surface 

108 

N Granulesa Area (mm2) Counts/Areaa 

11 223.27 ± 30.38 1976.27 + 125.08 .117± .009 

14 97.79 + 16.97 1779.80 ± 136.56 .053 ± .007 

7 35.43 + 3.36 1147.07 ± 116.12 .033 ± .004 

4 53.25 ± 4.42 847.88 + 117.08 .065 + .004 

5 74.40 ± 6.30 1917.40 + 131.78 .040 ± .005 

5 45.40 + 9.26 1380.20 ± 52.32 .033 ± .007 

6 39.50 + 10.59 1307.92 + 226.61 .028 ± .004 

4 104.50 + 38.67 1440.85 ± 287.69 .066 + .010 

3 627.00 + 31.13 2316.67 + 164.87 .273 + .012 
= 

X Day interaction (P < 0.05) 



Figure 1. Fluorographs from two-d1mensional polyacrylamide 
gel electrophoresis analysis of polypeptides 
secreted in vitro by uterine endometrial 
explants from control (a) and estrogen treated 
(b) gilts on day 14 of gestation. The group of 
polypeptides (arrowhead) remain unchanged 
irrespectivo of treatment. 



.8.9 
I 

. ~-

t••:~. 
II ' 

+ ••• l 

7.9 

pH 

. . , (' tt.:· . ,, 
. ~ .. : 

:~~ .... ·-~'· . 
~:.: 

110 

3.6 

(f) 

0 ..... 
- )( 

~ .... 
~ 
-• 0 
~ 

a 

• 

b 



Figure 2. Scanning electron micrographs of uterine 
epithel1al surfaces from control gilts on day 
12 (a&b) and day 14 (c&d) of gestation. (a) 
Trophoblast (T) is apposed to uterine 
epithelium (E). x300. (b) Uterine folding 
is evident. Cell apical surfaces are smooth 
and stereocilia are present. x1200. 
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Figure 3. Scanning electron m1crographs of uterine 
ep1thelial surfaces from control gilts on day 
16 {a&b} and day 18 (c&d} of gestation. (a&b} 
Apical protrusion of epithelial cells are 
evident, microvilli are dense and trophoblast 
tissue is present (a, x5400; b, x940). (c&d) 
Microvilli appear less dense, apical domes are 
prominent and trophoblast is apposed to the 
uterine ep1thel1um (c, x4000; d, x660). 



114 



Figure 4. Scanning electron m1crographs of uterine 
epithel1al surfaces from estrogen-treated gilts 
on day 12 (a&b} and day 14 (c&d} of gestation. 
(a&b} Uter1ne surface morphology is sim1lar to 
that observed on day 12 1n control gilts (a, 
x1000; b, x2200}. (c) Protrusion of apical 
surfaces and numerous microvilli are evident. 
x2200. (d) Epithelial cells appear degenerate 
and many cells are lack1ng microvilli. x2000. 
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Figure 5. Scann1ng electron m1crographs of uterine 
epithelial surfaces from estrogen-treated gilts 
on day 16 (a&b) and day 18 (c&d) 6f gestation. 
Loss of microvilli is extensive in some areas 
(a, x1800) while the uterine epithelium appears 
eroded and lacks apical doming in others (b, 
x6000). (c&d) The uterine epithelium exhibits 
similar morphology as on day 16 (c, x3000; d, 
x1300) . 
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Figure 6. Transm1ss1on electron m1crographs of uter1ne 
epithelial surfaces of control gilts at day 12 
of gestat1on after treatment with trypsin. 
Although the endometrial glycocalyx is removed, 
as demonstrated by a lack of ruthenium red 
staining (a, x36000), cationic ferritin binding 
rema1ns abundant (b, x36000). 
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Figure 7. Transm1ss1on electron m1crographs of uterine 
epithelial surfaces stained w1th ruthenium red. 
At day 12 of gestation, both control (a, 
x48000) and estrogen-treated (b, x36000) gilts 
have a thin f1brous glycocalyx covering 
microv1ll1. At day 14 of gestation, control 
gilts (c, 36000) exhibit a thickening of the 
glycocalyx whereas the glycocalyx becomes 
detached from the m1crov1lli of estrogen­
treated gilts (d, x29000). 
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Figure 8. Transmission electron micrographs of uterine 
epithelial surfaces stained with ruthenium red. 
Control g1lts (a, x36000) have a thick, fibrous 
glycocalyx compared to estrogen-treated (b, 
x36000) gilts which exhibit a sparse glycocalyx 
at day 16 of gestation. A similar morphology 
1s ev1dent at day 18 of gestation except th~t 
the glycocalyx is thicker at the tips of the 
microvilli in control gilts (c, x48000). The 
glycocalyx from day 18 estrogen-treated gilts 
remains sparse (d, x36000). 
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Figure 9. Transmission electron micrographs of uterine 
epithelial surfaces stained with cationic 
ferrit1n (CF). At day 12 of gestation, control 
gilts (a, x48000) exhibit abundant CF binding 
compared to estrogen-treated gilts (b, x48000) 
where CF binding is reduced. By day 14 of 
gestation CF binding is more abundant at the 
tips of the microvilli in control gilts (c, 
x48000), whereas CF binding is sparse in 
estrogen-treated gilts (d, x48000). 
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Figure 10. Transmission electron micrographs of uterine 
epithel1al surfaces stained with cationic 
ferritin. Sparse CF binding is observed at 
both day 16 {a, x48000; b, x48000) and day 18 
{c, x48000; d, x48000} with no apparent 
differences between control (a&c) and 
estrogen-treated (b&d) gilts. 
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Figure 11. TransmlSSlon electron micrograph of trophoblast 
(T) apposed to uterine eplthelium (E). Notice 
the reduced thlckness of the glycocalyx and 
helght of the mlcrovllli. x29000. 
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CHAPTER IV 

ULTRASTRUCTURAL EXAMINATION OF PORCINE UTERINE 

LUMINAL EPITHELIUM AFTER ESTROGEN 

ADMINISTRATION ON DAYS 9 AND 10 

OF GESTATION 

Introduction 

Upon attaining a diameter of 10 mm on day 12 of 

pregnancy, porcine blastocysts undergo a rapid morphological 

transformation from spherical to filamentous form {Anderson 

et al., 1978; Geisert et al., 1982). During this period of 

trophoblast elongation, porcine blastocysts secrete large 

quantities of estrogen {Perry et al., 1973; Gadsby et al., 

1980; Fischer et al., 1985) which are involved in the 

establishment of pregnancy in the pig {Bazer and Thatcher 

1977; Heap et al. , 1979) • Following trophoblast 

elongation, conceptus attachment occurs between days 13 and 

18 of gestation {King et al., 1982) beginning in the region 

of the embryonic disc and extending toward the periphery of 

the trophoblast by day 26 {Dantzer 1985). Placentation in 

the pig involves a noninvasive 1nterdigi tat ion of uterine 

131 
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and trophoblastic microvilli as well as a reduction of the 

uterine glycocalyx in areas of trophoblast apposition 

{Dantzer 1985}. 

Keys and King , (1988) indicated that estrogen 

administration between days 10 and 13 of the gilts' estrous 

cycle resulted 1n alterations in the uterine luminal 

epithelium. Estrogen administered systemically or into the 

uterine lumen resulted in increased uterine folding, 

glycogen accumulation, increased synthetic and secretory 

activity, and a thickening of the epithelial glycocalyx. 

These estrogen-induced alterations were similar to 

ultrastructural changes evident during early pregnancy 

(Stroband et al., 1986; Keys and King 1990). 

Pope et al. (1986) demonstrated that admin1stration of 

exogenous estrogen to g1lts on days 9 and 10 of gestation 

(which is two days prior to normal estrogen synthesis and 

release by the conceptus) resulted in complete embryonic 

loss by day 3 o of pregnancy. Further studies by our 

laboratory have revealed that administration of estradiol 

valerate to gilts on days 9 and 10 of pregnancy resulted in 

degenerating conceptuses by day 14 or 16 (Morgan et al., 

1987; Greis et al., 1989; Blair et al., 1991). Blair et 

al. (1991} demonstrated that embyonic death following 

premature exposure of gilts to estrogen was associated with 

a loss of the glycocalyx on the microvilli of the uterine 

surface epithelium on day 14 of gestation. 

The objective of the present study was to examine 
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ultrastructural changes in the uterine luminal epithelium of 

the pig during the period of trophoblast attachment and to 

characterize alterations which might by associated with the 

loss of the uterine epithelial glycocalyx ,and embryonic 

mortality due to early exogenous estrogen administration. 

Materials and Methods 

Animals 

Mature, cyclic crossbred 

estrous behavior twice daily 

gilts were observed 

(0700 and 1700 h) in 

for 

the 

presence of intact boars. 

cycles of normal duration 

After 

(17-22 

naturally at the onset of estrus 

later. 

exhibiting two estrous 

days), gilts were bred 

(Day 0) and 12 and 24 h 

Gilts were randomly 

following two treatments: 

assigned to receive one of the 

intramuscular injection (0.25 ml) 

of sesame oil on days 9 and 10 of gestation (Control; n=6) 

or intramuscular injection (5.0 mg) of estradiol valerate on 

days 9 and 10 of gestation (n=6). Following assignment to 

treatment groups, g1l ts were scheduled to be unilaterally 

hysterectom1zed on either days 12 and 14 or days 16 and 18 

of gestation. 
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surgical Procedures 

Gilts were unilaterally hysterectomized after induction 

of anesthesia with a 5% solution of thiopentone sodium as 

previously described (Blair et al. 1991). Anesthesia was 

maintained on a closed-circuit system of halothane (5% 

Fluothane; Halocarbon Industries Inc., North Augusta, SC) 

and oxygen (1.0 L/min). Once a surgical plane of anesthesia 

was attained, the uterus was exposed via mid-ventral 

laparotomy and a randomly selected uterine horn and its 

ips1lateral ovary were excised. After routine closure of 

the incision, gilts were treated post-surgically with 

ant1biotics. 

Tissue Preparation for Electron Microscopy 

Immediately upon removal of the uterine horn, a 7-10 em 

section approximately 10-20 em anterior to the uter1ne body 

was excised and opened along the antimesometrial border. 

Endometrial tissue explants from control 

treated gilts were dissected from the 

and estrogen­

myometrium and 

immersed 1n mod1f1ed Karnovsky's f1xat1ve (2% glutaraldehyde 

and 1. 6% paraformaldehyde; KF) as described by Karnovsky 

(1965). Endometrial explants were cut into 1-2 mm pieces, 

immersed in fresh fixative, and placed on a rotating 

platform for 2 h at room temperature. Follow1ng fixation, 

tissue samples were r1nsed with 0.1 M cacodylate buffer and 
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post-fixed with 1% osmium tetroxide in 0.1 M cacodylate 

buffer for 1 h. Following postfixation, tissue was rinsed 

with 0.1 M cacodylate buffer, dehydrated in a graded series 

of alcohol, and embedded in epon-araldite (Mollenhauer 

1964) • 

Transmission Electron Microscopy 

Tissue samples were sectioned on a Porter-Blum MT-2 

ultramicrotome (Sorvall Instruments, Norwalk, CT}. Thin 

sections (60-90 nm) were collected on 200-mesh uncoated 

copper grids. Thin sections were subsequently poststained 

with a 7. 5% uranyl acetate solution and Sato 1 s lead stain 

(Sato 1967) . Tissue samples were observed on a JEOL TEMSCAN 

transmission electron microscope (JEOL Ltd., Tokyo, Japan) 

at 80 KV. 

Volume Density of Organelles 

Volume dens1ty (V0 ) values for glycogen deposits, 

mitochondria, golgi complexes, rough and smooth endoplasmic 

reticulum (RER and SER, respectively), clear vesicles and 

dense bodies were estimated by point counting volumetry 

(We1bel 1979) . Point counts were performed by plac1ng a 

grid of equ1distant lines (0.5 mm2) over electron 

micrographs of uterine epithelial tissue. Line 
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intersections were regarded as sampling points. For each 

organelle, point count data was pooled from all micrographs 

within treatments and days of gestation. Values of v0 were 

calculated as percentages of the cytoplasmic compartment 

where V0 = [points over organelle]/[(total points) 

(nuclear points+ points not on uterine epithelial tissue)). 

Statistical Analysis 

Volume density of organelles was analyzed by least 

squares analysis of var1ance using General Linear Models of 

SAS ( 1987) • Data was analyzed for the main effects of 

treatment, day of gestation, and side (apical versus basal) 

as well as for interactions between the main effects. 

Polynomial contrasts were utilized to determine differences 

over days of gestation. 

Results 

On all days studied, uterine luminal epithelial cells were 

characterized by the presence of vesicular nuclei, prominent 

golgi complexes, and abundant mitochondria. Table 1 

provides the mean v0 of organelles from porcine uterine 

luminal epithel1al t1ssue from Control and E-treated gilts. 

In the present study, conceptuses were degenerated by day 14 

of gestation in E-treated gilts. Conceptus degeneration was 
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similar to that reported in previous studies by our 

laboratory (Morgan et al. 1987; Gries et al. 1989; Blair et 

al. 1991). 

Glycogen 

Figure 1 demonstrates the accumulation of glycogen 

deposits in the uterine epithelium. The amount of glycogen 

accumulated on day 12 of gestation was greater (P < 0.05) in 

E-treated compared to Control gilts while glycogen content 

on day 16 of gestation was greater (P < 0. 05) in Control 

compared to E-treated gilts (Table 1). However, glycogen 

content was similar between treatments on days 14 and 18 of 

pregnancy. The accumulation of glycogen increased (P < 

0.05) between days 12, 14, and 16 of gestation in Control 

gilts and then decreased on day 18 of gestation to levels 

similar to those observed on day 14 of gestation. In E­

treated gilts, glycogen content increased (P < 0. 05) from 

day 12 to day 14 of pregnancy and then remained constant 

through day 18 of gestation. Glycogen was present in 

greater amounts (P < 0.05) in the basal aspect compared to 

the apical aspect of uterine luminal ep1.thel1.al cells in 

Control and E-treated gilts on days 16 and 18 of gestation. 
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Mitochondria 

Mitochondria were abundant in both Control and E­

treated gilts on all days examined {Fig. 2). The mean v0 

of mitochondria (Table 1) was similar between treatments on 

days 12, 14, and 18 of pregnancy, whereas mitochondria 

comprised a greater (P < 0. 05) proportion of the uterine 

epithelial cytoplasm in E-treated compared to Control gilts 

on day 16 of gestation. In Control gilts, the mean v0 of 

mitochondria was similar bet1.veen days 12-16 of gestation, 

but increased on day 18 (P < 0.05). In E-treated gilts, 

mean v0 increased (P < 0.05) 

gestation and then ~emained 

between days 12 and 14 of 

similar through day 18 of 

gestation. No dl.fferences were evident in the mean v0 of 

mitochondria in the apical and basal aspects of the uterine 

epithelium. 

Golgi Complex 

Golgl. complexes had a supranuclear orientation {Fig. 

2), and were well developed and associated with vesicles on 

all days exam1.ned. No d1.fferences 1.n V0 were seen between 

treatments or between the days of gestation studied. 
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RER and SER 

Volume density of rough endoplasmic reticulum was not 

different between Control and E-treated g1lts on days 12-18 

of gestation (Fig. 3}. In Control gilts, V0 of rough 

endoplasmic reticulum was similar from days 12-16 of 

gestation, however day 12 was lower than day 18 of gestation 

(P < 0. 05) . In E-treated gilts, v0 of rough endoplasmic 

reticulum was higher (P < o. 05) on days 16 and 18 of 

gestation compared to day 12 of gestation. On each day 

examined, v0 of the rough endoplasmic reticulum was similar 

between the apical and basal compartments of the uterine 

epithelium, however when pooled over the days stud1ed v0 was 

greater (P < o. 05) in the apical compared to the basal 

aspect of the uterine luminal epithelium. The v0 of rough 

endoplasmic reticulum was similar between apical and basal 

regions in Control g1lts, whereas in E-treated gilts the v0 

was greater (P < 0.05) in the apical compared to the basal 

part of the cell. 

Smooth endoplasmic reticulum compr1sed only 

proportion of the uterine epithelial cytoplasm. 

(P < 

a small 

The v0 of 

o. 05) in smooth 

Control 

endoplasmic reticulum was greater 

gilts compared to E-treated gilts on day 12 of 

gestation, however the v0 was similar between treatments on 

days 14-18 of pregnancy. On day 12 of gestation, v0 of 

smooth endoplasm1c ret1culum was greater (P < 0.05) in the 

apical aspect of the uterine luminal epithelium compared to 
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the basal aspect in both Control and E-treated gilts; the 

v0 was similar between the apical and basal portion of the 

cells on days 14-18 of gestation. 

Vesicles and Dense Bodies 

On day 12 of gestation, v0 of clear vesicles was 

greater (P < 0. 05) in Control compared to E-treated gilts 

(Fig. 4), however one gilt did exhibit a large number of 

ves1cles underlying the apical cell membrane of the uterine 

luminal epithelium at day 12 of gestation (Fig. 6). Clear 

vesicles were similar between treatments on days 14-18 of 

gestation. In Control gilts, clear vesicles were more 

abundant on day 12 of pregnancy compared to days 14-18 (P < 

0.05) whereas V0 of clear vesicles was similar between days 

12-18 in E-treated gilts. On day 12 of pregnancy, vesicles 

were more abundant (P < 0.05) in the apical aspect of the 

uterine epithel1um compared to the basal aspect. On all 

other days of pregnancy, v0 of clear vesicles were similar 

between compartments. 

No treatment or day differences were evident in the v0 

of dense bod1es. However, dense bod1es were more abundant 

{P < 0.05) in the basal compared to the apical portion of 

the uterine epithelium in Control and E-treated gilts (Fig. 

5) • 
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Discussion 

Several recent reports have descr1bed ultrastructural 

changes of the porcine uterine luminal epithelium during the 

estrous cycle and early pregnancy (Dantzer 1985; Stroband 

et al., 1986; Keys and King 1989, 1990; Stroband and Van 

der Lende 1990). Previous studies (Morgan et al., 1987; 

Gries et al., 1989; Blair et al., 1991) have demonstrated 

that administration of estradiol valerate on days 9 and 10 

of gestation resulted in embryonic death by day 14-16 of 

pregnancy. In a previous report (Blair et al., 1991) we 

indicated that embryonic death in gilts prematurely exposed 

to estrogen was assoc1ated with a loss of the uterine 

epithelial glycocalyx on day 14 of gestation. 

In the present study, treatment of gilts with estradiol 

valerate increased the amount of glycogen accumulation in 

uterine surface epithelium on day 12 of gestation, but the 

glycogen content was similar between treatment groups on 

days 14-18 of pregnancy. Accumulation of glycogen in the 

uterine lum1nal epithelium increased between days 12, 14, 

and 16 of gestation and then decreased on day 18 of 

gestation in Control gilts. Previous studies have also 

reported a rapid increase in the amount of glycogen after 

day 12 of pregnancy (Dantzer 1985; Stroband et al., 1986; 

Keys and King 1990). Keys and King (1988) reported that 

estrogen stimulates an increase 1n glycogen 1n cyclic gilts 

suggesting that conceptus-derived estrogen may act to direct 
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glycogen deposi tJ.on J.n the pig. Estrogen has also been 

shown to increase glycogen accumulation 

epithelial cells in the rat (Boettinger 1946; 

by uterine 

Walaas 1952). 

In the present study, no differences in glycogen content 

were evident between days 12-18 of gestation in E-treated 

gilts. Lack of a difference in E-treated gilts is most 

likely due to a preemptive estrogen-induced increase in 

glycogen accumulation on day 12 of pregnancy compared to 

Controls. 

Mitochondria, which were 

luminal epithelium of Control 

abundant in the uterine 

and E-treated gilts, were 

evenly dispersed between the apical and basal regions of the 

uterine epithelium. Mitochondria increased between days 16-

18 of gestation in Control gilts and from day 12 to day 14 

of gestation in E-treated gilts. This early increase in 

mitochondria in E-treated gilts suggests a hastenJ.ng in the 

metabolic activJ.ty of the uterJ.ne lumJ.nal epithelium 

compared to Control gJ.lts. 

Rough endoplasmJ.c retJ.culum content was similar between 

Control and E-treated gilts, however rough endoplasmic 

reticulum was more abundant 'on day 18 of gestation compared 

to day 12 in both treatment groups. Stroband et al., (1986) 

demonstrated an increase in rough endoplasmic reticulum 

after day 8 of pregnancy whereas Keys and King (1989) showed 

extensive rough endoplasmJ.c reticulum after day 13 of 

pregnancy. In additJ.on, the present study has shown that 

rough endoplasmic reticulum was significantly more abundant 
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in the apical reg1on compared to the basal region by day 18 

of gestation. 

Dense bodies were present in greater amounts in the 

basal region compared to the apical region of the uterine 

luminal epithelium. Stroband et al., (1986) indicated 

increasing amounts of these structures after day 11 of 

gestation, however in the· present study no differences in 

dense bodies were evident between days 12-18 of gestation. 

These dense bodies appear to be associated with secretion 

(Dantzer et al., 1981; Fr1ess et al., 1981) as Stroband et 

al. ( 198 6) has previously indicated that at least some of 

these structures are secretory granules. 

Clear vesicles are abundant between days 8 anc 10 of 

gestation in porcine uterine luminal epithel1um, but are 

reduced after day 10 (Stroband et al., 1986; Keys and King 

1990). In the present study, clear vesicles were not very 

abundant in the uter1ne luminal epithelium between days 12-

18. A release of these vesicles from the surface epithelium 

during the period of trophoblast elongation in a similar 

fashion to release occurr1ng from glandular epithelial cells 

(Ge1sert et al., 1982a) may explain the low numbers later in 

gestation. Conceptuses from the gilt exhibiting large 

numbers of vesicles were still at the spherical stage of 

development, a stage of conceptus development which produces 

only low levels of estrogen, wh1ch may explain the numerous 

amount of vesicles st1ll present with1n the ep1thelium. 

The results of the present study show no major 
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alterations in the ultrastructure of the uterine luminal 

epithelium which were coincidental with the loss of the 

uterine epithelial glycocalyx or embryonic death. The 

morphological changes observed are consistent with increased 

synthetic and secretory 'activity of the uterine luminal 

epithelium as gestation progresses. Estrogen appeared to 

increase this secretory activity early in E-treated compared 

to Control gilts as indicated by earlier increases in 

glycogen accumulation, mitochondria and rough endoplasmic 

reticulum. These morphological results support previous data 

(Ge1sert et al., 1982c; Morgan et al., 1987) which 

demonstrated that exogenous estradiol administration 

advances uter1ne secretions. 



TABLE III 

Volume density of cellular organelles of porcine uterine luminal 
epithelium after estrogen administration on days 9 and 10 of 

gestation a 

Dal of Gestation 
Control E2-Treated 

Organelle 12 14 16 18 12 14 16 18 
Ap1cal 

Glycogen 1 15±0 62 9 71±3 86 15 92±5 71 10 51±2 95 6 34±4 72 13 52±4 28 7 85±1 61 11 18±3 81 

Mttochondna 6 31+1 58 7 00+1 02 7 11+0 68 9 08±113 5 86+0 33 741+011 8 84+0 04 8 82+0 96 
Golgi 1 80+0 74 1 66+0 69 2 27±1 06 1 01+0 03 1 00+0 30 1 99+0 32 142+0 72 1 48+0 34 
RER 1 38+0 17 1 97+0 54 1 99+0 18 2 54+0 20 1 35+0 36 2 08+0 39 2 49+0 32 218+0 07 
SER 1 57+0 49 0 94+0 22 0 68+0 33 0 89+0 08 0 59+0 05 0 71+0 08 1 09+0 07 091+002 
Vesicles 2 68+1 41 0 64+0 23 0 95+0 16 0 65+0 16 0 58+0 17 0 63+0 19 0 50+0 05 0 39+0 10 
Dense Bodies 0 75+0 10 0 49+0 13 0 94+0 43 0 62+0 23 0 49+0 05 0 62+0 22 110+0 40 0 80+0 53 

Basal 
Glycogen 3 82±1 58 17 19±1 87 26 73±4 OS 20 67±1 50 16 15±5 72 17 39+1 09 22 58±3 28 18 27±3 99 

Mttochondna 6 48+0 94 7 51+0 83 6 21+0 88 8 54+0 34 6 06+0 18 851+079 9 66+0 27 9 65+0 85 
RER 1 31+0 23 1 90+0 35 1 79+0 35 181+050 117+0 28 1 55+0 44 1 72+0 08 1 62+0 28 
SER 0 64+0 10 0 69±0 19 0 58+0 23 0 63+0 14 0 25+0 03 0 23+0 08 0 83+0 17 0 73+0 24 
Vesicles 0 30+0 05 0 04+0 02 0 23+0 02 0 22+0 05 0 15+0 02 0 11+0 04 0 28+0 05 0 28+0 02 
Dense Bodtes 1 45+0 20 2 33+0 98 2 00+0 69 2 65+0 38 2 69+0 24 231+048 2 32+0 42 2 17+1 35 

a Volume density represented as a percent of cytoplasm 

.... 
~ 
Ul 



Figure 12. Representat1ve photomicrograph of porcine 
endometr1um showing the basal portion of the 
surface epithelium from control gilts. A 
dramatic 1ncrease in glycogen (GL) occurred 
between days 14 (a, x13,300} and 16 (b, 
x12,500) in Control g1lts. Bar: 1.0 urn. 
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Figure 13. Mitochondr1a (M) were abundant on all days 
studied and were evenly dispersed between 
apical and basal reg1ons of the uterine 
luminal epithel1um. Golg1 complexes (G) were 
prominent and located in a supranuclear 
orientation. (x14,300). Bar: 1.0 um. 
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Figure 14. Rough endoplasmic ret1culum (arrows) increased 
dur1ng the later days of gestation in both 
Control and E-treated g1lts. (x13,800). Bar: 
1.0 urn. 
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Figure 15. Clear vesicles (arrow) are located in the ap1cal 
aspect of the uter1ne luminal ep1thel1al 
cells. At day 12 of gestation, the clear 
vesicles are more numerous in Control (a, 
x14,000) compared to E-treated (b, x13,300) 
gilts in which few vesicles are evident. Bar: 
1.0 um 
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Figure 16. Dense bod1es (arrows) were ev1dent on all days 
stud1ed, but were located predom1nantly in the 
basal region of the uter1ne luminal 
epithelium. (x13,750). Bar: 1.0 urn. 
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Figure 17. Numerous clear vesicles are ev1dent immediately 
below the ap1cal cell membrane. Conceptuses 
in this g1lt were still at the spherical stage 
of development. x15,000. Bar: 1.0 um 
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CHAPTER V 

CHARACTERIZATION AND PROTEOLYTIC ACTIVITY 

OF CATHEPSIN L IN ENDOMETRIUM AND 

UTERINE FLUSHINGS OF CYCLIC 

AND PREGNANT GILTS 

Introduction 

cathepsins are lysosomal cysteine proteases (Barrett 

and Kirschke, 1981) that have been implicated in blastocyst 

implantation in rats (Elangovan and Moulton, 1980 a,b) and 

cats (Verhage et al., 1989; Li et al., 1991). Jaffe et al. 

(1989) demonstrated that a progesterone-dependent protein 

secreted by the feline uterine endometrium has high 

nucleotide and amino acid sequence similarity to human, rat, 

and mouse cathepsin L. Recent studies have demonstrated 

that feline cathepsin L is present in uterine glandular 

epithelial cells (Verhage et al., 1989) and in uterine 

flushings (Li et al., 1989). The proteolytic activity of 

cathepsin L as well as its high affinity for collagen 

(Kirschke et al., 1982) and elastin (Mason et al., 1986) 

suggest that cathepsin L may be involved in implantation in 

158 



159 

cats. 

It has been demonstrated that several lysosomal enzymes 

are also produced by the uterine endometrium and secreted 

into the uterine lumen of pigs (Roberts et al., 1976), 

cattle (Roberts and Parker, 197 4) , and sheep (Roberts et 

al., 1976). Some of these lysosomal enzymes include 

lysozyme, leucine-aminopeptidase, and cathepsin B1 , D, and E 

(Roberts et al., 1976) as well as two glycosidases, 

B-hexosaminidase and B-glucosidase (Hansen et al., 1985). 

Both lysozyme and leucine-aminopeptidase are accumulated in 

the allantoic fluid. Lysozyme is believed to have a 

bactericidal function (Galask and Snyder, 1970; Sutcliffe, 

1975) due to its ability to cl?ave the 81,4-glycosidic 

linkages of bacterial peptidoglycans (Roberts and Bazer, 

1988). The function of leucine-aminopeptidase in the uterus 

remains unclear, however Basha et al. (1978) has 

hypothesized that am1nopeptidase may function to hydrolyze 

small peptides for uptake by the conceptus. Roberts et al. 

(1976) reported that the enzyme activ1ties of cathepsins B1 , 

D, and E are present 1n the uterine flushings of 

ovariectomized, progesterone-treated gilts, but not in gilts 

that did not rece1ve progesterone treatment suggesting that 

porc1ne uterine cathepsins may also be progesterone induced. 

Cathepsins appear to comprise only a minor component of 

porcine uterine secretory proteins. The function of 

catheps1ns dur1ng conceptus attachment in the pig is 

currently unknown. 
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The objective of the present study was to determine 

whether cathepsin L was present in porcine uterine 

endometrium and uterine flushings and to character1ze 

changes 1n cathepsin L and catheps1n L mRNA expression 

during the estrous cycle and early pregnancy. 

Materials and Methods 

Animals 

Crossbred gilts were observed for estrous behavior 

twice daily (0700 and 1700 h) in the presence of an intact 

boar. After exhibiting two estrous cycles of 17-22 days in 

duration, gilts were randomly assigned to remain cyclic or 

be mated at the onset of estrous (day 0) and 12 and 24 h 

later. Cyclic gilts (n=16} were hysterectomized on days 5, 

10, 12, 15, and 18 of the estrous cycle (3 g1ltsjday) w1th 

an additional gilt hysterectomized at estrus (day 0). 

Pregnant gilts (n=12} were hysterectomized on days 10, 12, 

15, and 18 (3 gilts/day). 

Gilts were hysterectom1zed after induct1on of 

anesthesia with a 5% solut1on of th1opentone sod1um and 

maintained on a closed-circuit system of halothane (5% 

Fluothane; Halocarbon Industries Inc., North Augusta, SC) 

and oxygen (1.0 L/min). Once a surgical plane of anesthesia 

was atta1ned, 

laparotomy and 

the uterus was exposed via midventral 

the entire uterus and both ovar1es were 
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excised. After routine closure of the incision, gilts were 

post-surgically treated with ant1biot1cs. 

Immediately upon removal, the uterus was trimmed free 

of the ovar1es and broad ligament. Uterine horns were 

flushed individually with 20 ml of sterile, 0.9% 

physiological saline. In pregnant gilts, uterine flushings 

were examined for the presence of conceptuses to confirm 

pregnancy. Uterine flushings were centrifuged at 12,000 x g 

for 15 min at 4 °C. The supernatant was decanted and stored 

at -20 °c until analyzed. 

After flushing, the uterus was opened along the 

antimesometrial border. Endometrial tissue was dissected 

away fro!" the myometr1um, washed in sterile, 0. 9% 

physiological saline, blotted on sterile surgical sponges 

and frozen in liquid nitrogen. Endometrial samples were 

stored at -75 °c until analyzed for mRNA content. 

Endometrium from two gilts (one day 15 cyclic gilt and 

one day 15 pregnant gilt) and the conceptuses recovered from 

the pregnant g1lt were placed in culture. For endometrial 

cultures, a section of the uterus was placed on ice, 

transported to the laboratory, and processed in a sterile 

laminar flow hood. Endometrial tissue was dissected from 

the myometrium, cut 1nto 2-3 mm explants and placed in 

Eagle 1 s min1mum essential medium (MEM) . Endometrial 

explants (200 mg) were cultured in 7.0 ml MEM for 24 hat 37 

0 c in an atmosphere of 5% co2 , 45% N2 , and 50% o2 . 

Following incubat1on, culture media was separated from the 



162 

endometrial tissue and centrifuged at 12,000 x g for 15 min 

at 4 °c. The supernatant was decanted and stored at -20 °C 

until analyzed. Conceptuses recovered from the pregnant 

gilt were cultured using the same procedure utilized for 

endometrial explants. 

Polyacrylamide Gel Electrophoresis 

(PAGE) and Western Blotting 

Uterine flushings and media from endometrial and 

conceptus cultures were dialyzed (SpectrajPor, molecular 

weight cut-off = 12,000-14,000, Spectrum Medical Industries, 

Inc.) against 10 mM tris-HCl buffer. Dialyzed uterine 

flushings and culture media were lyophilized and redissolved 

in 5mM K2co3 containing 9.3M urea, 2% (vjv) Nonidet P-40, 

and 0.5% (wjv) dithiothreitol. Reconstituted samples were 

subjected to one-dimensional (1-D, 100 mg protein) and two­

dimensional (2-D, 300 mg protein) sodium dodecyl sulfate 

(SDS)-PAGE. 

Proteins resolved by SDS-PAGE were subsequently 

transferred to Immobilon-PVDF transfer membranes (Millipore 

Corp., Bedford, MA) with a Milliblot-SDE Transfer system 

(Millipore Corp.). Transfer membranes were incubated with 

rabbit antisera to feline cathepsin L (produced and 

generously provided by Dr. Harold Verhage). Immunoreactive 

proteins were visualized with an Immuno-Blot horseradish 

peroxidase assay kit (Bio-Rad, Richmond CA). Incubations 
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were done with a 1:1000 dilution of the primary antiserum. 

RNA Extract1on and Analys1s 

Total RNA was extracted from 1 g of porcine uterine 

endometrium by acid guanidinium th1ocyanate-phenolchloroform 

extraction (Puissant and Houdebine, 1990). 

For slot blot analyses, 5, 10, and 20 mg samples of 

total RNA were immobilized on n1trocellulose membranes using 

a Bio-Dot SF Microfiltration Apparatus (Bio-Rad). Analysis 

of total RNA by Northern hybridization was accomplished 

using the method descr1bed by (Current Protocols In 

Molecular Biology, Vol. 1). Briefly, total RNA samples (10 

mg) were denatured in lOX MOPS, 37% formaldehyde, and 

formamide by incubating for 15 min at 55 °c. Samples were 

subjected to electrophoresis through a 1.2% agarose gel 

containing lOX MOPS and formaldehyde. Following 

electrophores1s, RNA was transferred to a nitrocellulose 

membrane by Northern transfer. Nitrocellulose membranes 

were baked at 80 °c for 2 h in a vacuum oven. Membranes 

were prehybr1d1zed at 42 °C for 4 h followed by a 24 

incubation at 42 °C in hybrid1zation buffer conta1ning 0.1 

mgjml feline cathepsin L eDNA (generously provided by Drs. 

Harold Verhage and Randall Jaffe; Jaffe et al., 1989). 

Feline cathepsin L eDNA had been nick translated and labeled 

with biotin using the BioNick Labeling System (Gibco BRL, 

Gaithersburg, MD). After hybridization, binding was 
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detected with the BluGene Nucleic Acid Detection System 

(Gibco BRL) according to the manfacturer. Membranes were 

washed tw1ce (3 minjwash) in 2X sod1um salt citrate (SSC)-

0.1% SDS and twice (3 minjwash) in 0.2X SSC-0.1% SDS at room 

temperature followed by two 15 min washes in 0.16X ssc-0.1% 

SDS at 42 °C. Following post-hybridization washes, 

membranes were incubated for 1 h at 65 °c in blocking 

solution (3% bovine serum albumin in 0.1 M tris-HCl, 0.15 M 

NaCl; pH=7.5). After blocking, the membranes were incubated 

with streptav1din-alkaline phosphatase conjugate for 10 min. 

at room temperature. Hybridization signal was detected by 

incubating the membranes in the detection reagent for 2-3 h 

at room temperature. 

Preparation of Cathepsin L eDNA Probe 

The catheps1n L eDNA provided was used to transform 

competent cells of E. coli DH5a as described by Hanahan 

( 1983) . Transformants were selected on LBA containing 50 

ugjml ampicillin. Plasmid DNA was isolated from 

trans formant E. coli cells 

procedure of Birnboim and 

by using the 

Doly (1979). 

rapid screening 

Three strains 

conta1n1ng recombinants of the expected size were isolated 

for large scale preparation. Large scale isolation of 

plasmid DNA was performed by the cleared lysate method of 

Clewell and Helensk1 ( 1970) and the DNA was purified by 

CsCl-ethidium brom1de density gradient centrifugation. 
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Gradient-purified plasmid DNA samples were extracted 

with isopropanol saturated with 5 M NaCl to remove the 

ethidium bromide, and desalted and concentrated in 10 mM 

Tris-HCl, 1 mM Na2EDTA, pH=7.5, by using a Centricon-30 

microconcentrator according to the manfacurer's instructions 

(Amicon Corp. Danvers, MA} . ' 

It was then necessary ,to remove the 430 bp insert from 

the plasmid DNA. In order to remove the eDNA insert, 

restriction endonuclease digestions were performed according 

to manfacturer's directions (Boehringer Mannheim 

Biochemicals, Indianapol1s, IN), and to methods described by 

Maniatis et al. (1982). Restriction fragments were 
I 

separated in hor1zontal 0.9% agarose gels run in Tris-borate 

buffer for 12 to 14 h at 55 V. Preparative agarose gels 

were loaded with 2.0 ml of digested plasmid DNA. The 430 bp 

DNA band of interest was located in the stained gel, cut 

out, and electroeluted from the agarose slice in an Elutrap 

chamber according to the manufacturer's instructions 

(Schleicher and Schuell Inc., Keene, NH). 

The purified 430 bp eDNA fragment was biotinylated with 

the BieNiek Translat1on K1t (Gibco, BRL). 

Enzvme Assay 

Proteolytic activity of cathepsin L in uterine 

flushings was assayed as described by Barrett and Kirschke 

(1981}. Samples of uter1ne flush1ngs contain1ng 7.5 mg of 
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total protein was diluted to 500 ml in 0.1% Brij solution 

{Sigma, St. Lou1s, MO) followed by the addition of 250 ml of 

assay buffer {340 mM sodium acetate, 60 mM acetic acid, 4 mM 

disodium EDTA, and 8 mM dithiothreitol; pH = 5.5). The 

mixture was incubated in a 40 °c water bath for 1 min to 

activate the enzyme. The enzyme reaction was started by 

adding 250 ml of 20 mM substrate solution. The 20 mM 

substrate solution was prepared by d1luting 1 mM Z-Phe-Arg­

NMethylcuomarln HCl {Sigma) in dimethyl sulfoxide. After 

incubating for 10 min at 40 °c, the reaction was stopped by 

the addition of 1.0 ml of stopping reagent (100 mM sodium 

monochloroacetate, 30 mM sodium acetate, and 70 mM acetic 

acid; pH = 4. 3) . The fluorescence of the samples was 

determined by excitation at 370 nm and emmission at 460 nm 

in a Farrand MK2 spectrofluorometer {Farrand Optical Co., 

Inc.). Proteolytic activity of cathepsin L in uterine 

flushings was expressed as units of fluorescencej7.5 mg 

total protein. 

Statistical Analysis 

Data were analyzed by least square analysis of variance 

using General L1near Models of SAS ( 1987). Cathepsin L 

proteolyt1c act1 Vl ty was analyzed for differences between 

treatment, day, and treatment by day interactions. 
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Results 

Enzyme activ1ty of cathepsin L in porcine uterine 

flushings was analyzed during the estrous cycle and early 

pregnancy. In cyclic gilts, cathepsin L proteolytic 

activity remained low through day 12 and then increased on 

day 15 of the estrous cycle (P<O .10), whereas proteolytic 

activity increased on day 12 (P<0.05) and remained elevated 

through day 18 in pregnant gilts (Fig. 1). On days 10 and 

15 proteolytic activ1ty in uterine flushings was similar 

between cyclic and pregnant gilts, while pregnant gilts 

exhibited greater proteolytic activity (P<0.05) on days 12 

and 18 compared to cyclic gilts. 

Western blot analysis of cathepsin L in uterine 

flushings using 2-D gels demonstrated that a group of 

proteins (Mr = 41,000; pi = 6.0-6.5) cross-reacted with 

feline cathepsin L ant1sera (Fig. 2) . These polypeptides 

were low on days o, 5, and 10 in both cyclic and pregnant 

gilts (Fig. 3). Immunoreactivity of uterine flushings to 

feline cathepsin L antisera increased on days 15 and 18 in 

both cyclic and pregnant gilts with pregnant gilts appearing 

to have a greater reactivity compared to cyclic gilts. 

Western blot analysis of 1-D gels on which endometr1al and 

embryo culture media were run along side uterine flushings 

demonstrated that endometrium of both cyclic and pregnant 

gilts secrete proteins that cross-react w1th antisera to 

fel1ne cathepsin L (F1g. 4). However, these proteins are of 
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a greater molecular weight (Mr = 45,000; pi = 6.0- 6.5) than 

those present in uter1ne flush1ngs. Embryo culture did not 
' 

produce any prote1ns that cross-reacted with feline 

cathepsin L (Fig. 4 1 lane 6). 

Changes in cathepsin L mRNA expression were analyzed 

via slot blot hybr1d1zation. Cathepsin L mRNA content was 

low on day 0 and 5 1 increased slightly on day 10 and was 

read1ly apparent on day 12 of the estrous cycle (Fig. 5a). 

Day 15 mRNA content was sim1lar to day 12, but 1ncreased 

sllghtly on day 18 of the estrous cycle. In pregnant gilts 

(Fig. 5b) 1 cathepsin L mRNA levels were sim1lar on day 10 1 

12 1 and 15 and were enhanced on day 18 compared to cyclic 

gilts. 

Discuss1on 

Several studies have reported that the porcine uterus 

secretes lysosomal enzymes 1nto the uterine lumen (Roberts 

et al., 1976; Basha et al. 1 1978; Bazer et al. 1 1981; Hansen 

et al. 1 1985; Roberts and Bazer, 1988) . Roberts et al. 

(1976) demonstrated that uterine flushings from 

progesterone-treated gilts contained lysozyme and 

leuc1neaminopeptidase as well as cathepsins B1 1 D 1 and E. 

Cathepsins B1 , D, and E have been considered to be minor 

components of porcine uter1ne secretory proteins (Roberts et 

al. , 1976; Bazer et al. , 1981; Roberts and Bazer 1 1988) 1 

however these catheps1ns have only been detected in porcine 
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uterine flushings by the1r enzymatic activities. 

In the present study, we have demonstrated that 

cathepsin L is present 1n porcine uterine flushings and 

cathepsin L mRNA 1s present 1n porcine uterine endometrium 

during the estrous cycle and early pregnancy. Cathepsin L 

proteolytic activity in porcine uterine flushings was low 

through day 12 1n cyclic gilts and increased on day 15, 

whereas cathepsin L proteolytic activity increased on day 12 

and remained elevated through day 18 of gestation in 

pregnant gilts. These changes in proteolyt1c activity 

correspond with the changes 1n cathepsin L observed by 

Western blot analysis. Immunoreactive polypeptides detected 

with antisera to fel1ne catheps1n L T.vere low through day 10 

and then increased 1n both cyclic and pregnant gilts. 

Western blot analysis revealed that cathepsin L in 

porcine uterine flush1ngs have a Mr = 41,000 Da and a pi = 

6. 0-6.5. In contrast, Verhage et al. ( 1989) reported that 

the predominant isoform of cathepsin L in cat uterine 

flushings exhibited a Mr = 36,000 Da and a pi = 6.0-6.5. The 

other two isoforms of cathepsin L observed in the cat (Mr = 

28,000, pi=5.5-6.0; Mr=41,000, pi=5.5-6.0) were both present 

in uterine flushings with the 28,000 Da isoform showing the 

least cross-reactiv1ty (Verhage et al., 1989). Results from 

endometrial and conceptus cultures in the present study 

revealed that cathepsin L 1s synthesized and secreted from 

the uterine endometr1um, but not porcine conceptuses. 

Unlike the results reported by Verhage et al. (1989), which 
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demonstrated that the 28,000 Da polypeptide was the 

predominant isoform 1n endometrial cultures while the 41,000 

Da isoform was absent, results from the present study 

indicate that the catheps1n L isoform observed in porcine 

endometrial cultures had a higher molecular weight than the 

isoform observed in uterine flushings. The higher molecular 

weight isoform in endometrial cultures may be a precursor 

form of cathepsin L. In mouse NIH 3T3 fibroblasts, the 

precursor form of cathepsin L (Mr = 39,000) is secreted in 

response to growth promoting agents, not the mature 

lysosomal form (Mr = 20,000) (Prence et al., 1990). 

Endometrial content of cathepsin L mRNA showed a slight 

increase on day 10 of the estrous cycle and was r~adily 

evident on day 12. Thus mRNA levels appeared to increase in 

cyclic gilts prior to the increase in uterine luminal 

content of cathepsin L and cathepsin L proteolytic activity. 

In pregnant gilts, catheps1n L mRNA was similar on days 10, 

12, and 15 of gestat1on and then increased on day 18. These 

results are consistent w1th cathepsin L content and 

proteolytic activ1ty in uterine flushings. 

Cathepsins have been implicated blastocyst 

attachment in rats (Elangovan and Moulton, 1980a,b) and cats 

(Jaffe et al., 1989; Verhage et al., 1989; Li et al., 1991). 

Elangovan and Moulton (1980a) demonstrated that the level of 

cathepsin D in rat uter1ne luminal ep1thelium decreased 

during blastocyst 1mplantation and that the rate of 

cathepsin D synthesis in implantation sites was only half 



that observed in 1nter-implantat1on areas. 

Moulton (1980b) also demonstrated that the 
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Elangovan and 

synthesis of 

cathepsin D attained maximal levels within 6 hours after 

progesterone administration. Thus, cathepsin D synthesis 

appears to be mediated by progesterone and may be involved 

in autolysis of uterine luminal epithelium during blastocyst 

implantation in the rat (Elangovan and Moulton, 1980a,b). 

Jaffe et al. (1989) demonstrated that a major feline 

progesterone-dependent endometrial secretory protein (PDP) 

has high nucleotide and amino ac1d homology to human, rat, 

and mouse catheps1n L. Verhage et al. (1989} reported that 

PDP is not present in uterine flushings, endometrial 

cultures, a~d glandular ep1thelium until after a minimum of 

2 days of progesterone treatment. Uterine content of 

cathepsin L, measured by enzymatic activity (Li et al., 

1991), was highly correlated with the presence of PDP in cat 

uterine flushings as detected by Western blot analysis 

(Verhage et al., 1989). Uter1ne endometrial content of PDP 

mRNA was also detected in ovar1ectomized cats only after 

estrogen priming followed by treatment with estrogen and 

progesterone (Jaffe et al., 1989). Therefore, it is 

apparent that synthesis of cathepsin L by the cat uterus is 

progesterone dependent. 

Uteroferr1n, a lysosomal acid phosphatase secreted by 

the porcine endometrium in response to progesterone, is 

synthesized and secreted by glandular epithelium and 

functions in the transport of 1ron to the developing fetus 
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(Chen et al., 1975), not as an ac1d phosphatase. Therefore, 

porcine catheps1n L may also have a role in the uterine 

environment that is d1fferent from 1ts role as a lysosomal 

protease. 

Recent evidence indicates that mouse cathepsin L is the 

major excreted prote1n (MEP) of transformed mouse 

fibroblasts as well as nontransformed mouse fibroblasts 

stimulated with platelet-derived growth factor {PDGF) and 

epidermal growth factor {EGF) (Frick et al., 1985; Chiang 

and Nilsen-Hamllton, 1986; Prence et al., 1990). Prence et 

al. {1990) demonstrated that PDGF alters the lysosomal 

protein transport system such that cathepsin L is secreted 

rather than stored within t'Je lysosomes. These authors 

suggest that mouse f1broblast cathepsln L may be secreted to 

hydrolyze extracellular matr1x components or cell surface 

proteins in preparation for cell growth. The porcine uterus 

produces several growth factors including insulin-like 

growth factor-I, -II, and an EGF-like peptide (see Simmen 

and Simmen, 1990 for review). Therefore cathepsin L might 

play a role in endometrial growth. 

Previous research 1n our laboratory (Greis et al., 

1989) demonstrated that a distinct band of three basic 

polypeptides (Mr = 30,000; pi = 7.9-9.0) are synthesized and 

secreted by the porcine endometr1um. Secretion of these 

proteins was attenuated concurrent with embryonic death in 

gilts treated w1th estrogen on days 9 and 10 of gestation. 

Recent ev1dence (Ge1sert, unpublished observations) 
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indicates that th1S group of polypeptides exhibits 

approximately 40% amino acid sequence similarity with human 

procollagen. Interactions between this group of endometrial 

polypeptides and the laminin and fibronectin present in the 

developing porc1ne conceptus (Richoux et al., 1989) may 

function in conceptus attachment. Since collagen 1s one of 

the primary substrates for cathepsin L (Kirschke et al., 

1982), it is possible that catheps1n L may also be involved 

the establishment of pregnancy in swine. 

In conclus1on, we have shown that the lysosomal enzyme, 

cathepsin L, is synthesized and secreted by the porcine 

uterine endometrium during the estrous cycle and early 

pregnancy. The role of cathepsin L in the pi'J uterus is 

presently unknown, but 1ts secret1on during 1mportant events 

of pregnancy is cons1st with a function during conceptus 

attachment and the establishment of pregnancy. 



F1gure 18. Catheps1n L proteolytic activity in porcine 
uterine flush1ngs from cyclic and pregnant 
gilts 
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Figure 19. (A) Western blott1ng of 2-D SDS-PAGE of uterine 
flushings from a day 15 cyclic gilt. 
Polypeptides (Mr = 40,000-45,000; pi = 6.0-
6.5) w1th immunoreactlvlty to antisera to 
feline cathepsin L are readily apparent 
(arrows). (B) Fluorograph of 2-D SDS-PAGE of 
endometrial culture media. Note ~l1e group of 
polypeptides (arrows) that correspond to the 
polypeptides which exhiblt cathepsln L 
immunoreactivity. 
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Figure 20. Western blot of 1-D SDS-PAGE of uterine 
flush1ngs from cycl1c and pregnant gilts 
collected on days 0 (lane 2), 5 (lane 3), 10 
(lane 4), 12 {lane 6), 15 (lane 8), and 18 
(lane 10) of the estrous cycle and days 10 
(lane 5), 12 (lane 7), 15 (lane 9), and 18 
(lane 11) ~f gestation. Lane 12 contains a 
sample of feline endometrial culture media as 
a positive control 
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F1gure 21. Western blot of 1-D SDS-PAGE of day 15 cylic 
(lane 2) and day 15 pregnant (lane 4) uterine 
flushings and day 15 cyclic {lane 3) and day 
15 pregnant (lane 5) endometrial culture media 
as well as day 15 embryo culture media {lane 
6). Lane 7 contains an aliquot of feline 
endometrial culture med1a as a pos1tive 
control. 
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Figure 22. Slot blot analys1s of cathepsin L mRNA from 
uter1ne endometr1um of cyclic gilts. 
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CHAPTER VI 

GENERAL DISCUSSION 

Placentation in the gilt occurs between days 13 and 18 

of gestation (King et al., 1982). Conceptus attachment is 

initiated on approximately day 13-14 of gestation in the 

region of the embryonic disc and extends toward the 

extremities of the allanto-chorion (Dantzer, 1985; Keys and 

King, 1990). Placentation in the pig involves the 

noninvasive interdigitation of uterine 

trophoblast microvilli (Dantzer, 1985) . 

epithelial glycocalyx becomes reduced 

trophoblast apposition (Dantzer, 1985). 

epithelia! and 

The uterine 

in areas of 

Keys and King 

(1990) demonstrated that uterine epithelial glycocalyx 

fibers extend toward the trophoblast in areas of apposition 

suggesting that the glycocalyx may function to anchor the 

conceptus and uterine epithelia together during placental 

adhesion. 

Maternal recognition and the establishment of pregnancy 

in the pig depends upon conceptus estrogen production (Bazer 

and Thatcher, 1977; Heap et al., 1979). However, premature 

exposure to estrogen or compounds containing estrogen 

activity results in early embryo death (Long and Diekman, 
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1986; Pope et al., 1986). Long and Diekman (1986) 

demonstrated that an estrogenic mycotoxin, zearalenone, fed 

to sows between days 7 and 10 of gestation resulted in 

complete embryonic loss by day 30 of gestation, however this 

loss was not the result of alterations in the number or 

spacing of embryos when examined on days 9 and 11 of 

pregnancy (Long et al., 1987). Pope et al. (1986) reported 

that administration of estradiol-17b on days 9 and 10 of 

gestation also resulted in complete embryo death by day 30 

of pregnancy. It has been demonstrated that this embryonic 

loss occurs at approximately days 14-16 of gestation as 

characterized by the presence of degenerating conceptuses 

(Morgan et al., 1987; Greis et al., 1989). since embryonic 

death occurs during the critical period of conceptus 

attachment, it is likely that the observed embryonic loss 

may result from failure of the conceptus to attach to the 

uterine epithelium. 

The present dissertation was designed to characterize 

surface and ultrastructural changes in the uterine luminal 

epithelium as well as alterations in the uterine secretory 

activity that may be associated w1th embryonic mortality due 

to early exogenous estrogen administration. As reported in 

previous studies (Morgan et al., 1987; Greis et al., 1989), 

the present study demonstrated that estrogen administration 

on days 9 and d10 of gestation resulted in embryonic death 

by days 14-16 of pregnancy. However, the present study 

demonstrated a loss of the uterine epithelial glycocalyx 



186 

concurrent with the incidence of embryonic death. This 

supports the possible involvement of the uterine glycocalyx 

in initial adhesion of the conceptus to the uterine 

epithelium as suggested by Keys and King (1990). 

Alterations in the carbohydrate composition of the 

porcine uterine epithelial glycocalyx may facilitate its 

role in conceptus attachment, however little research has 

focused on the uterine glycocalyx during placental 

attachment in the pig. Whyte and Robson (1984) demonstrated 

that the porcine endometrium reacted weakly with WGA and 

Con-A lectins and did not react to the lectins TP, RCA-I, 

and RCA-II. Conflicting results reported by Rober and Holtz 

(1988) demonstrated that the porcjne uterine epithelial 

glycocalyx contained galactose, galactosamine, and fucose 

residues prior to, but not after, conceptus attachment. The 

porcine trophoblast has been shown to contain N-acetyl­

glucosamine (Whyte and Robson, 1984), galactose and 

galactosamine (Rober and Holtz, 1988), and fucose (Whyte and 

Robson, 1984; Rober and Holtz, 1988). The glycocalyx has 

been implicated in numerous cell-cell interactions (Alberts 

et al., 1983). Therefore, changes in the carbohydrate 

composition of the glycocalyx may well be important in 

conceptus attachment. A more complet~ characterization of 

the specific carbohydrate mo1eties that compose the uterine 

and trophoblast glycocalyx is necessary to more accurately 

clarify the nature of this carbohydrate-rich cell surface 

coat. Further characterization of the glycocalyx would 
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facilitate a better understanding of the changes that occur 

in the uterine glycocalyx during the estrous cycle and early 

pregnancy. Interactions between the trophoblast and uterine 

epithelial glycocalyces will require further elucidation 

before the role of the glycocalyx in conceptus attachment 

can be determined. 

During the period of trophoblast elongation, porcine 

conceptuses synthesize and secrete large quantities of 

estrogen (Perry et al., 1973; Gadsby et al., 1980; Fischer 

et al., 1985). This conceptus-produced estrogen stimulates 

changes in the uterine ultrastructure and secretory 

activity. Keys and King (1988) demonstrated that 

administration of estrogen to cyclic gilts stimu 1_ated 

increased uterine folding, glycogen accumulation, increased 

synthetic and secretory activity, and a thickening of the 

uterine epithelial glycocalyx. The changes observed 

following estrogen administration are similar to the changes 

which occur dur1ng early pregnancy (Stroband et al., 1986; 

Keys and King, 1990). Estrogen also stimulates an increase 

in uterine secretory activity. Geisert et al. (1982c) 

demonstrated that estrogen administration results in an 

increase in calcium, prote1n, and prostaglandins in uterine 

flushings. These changes are s1milar to the uterine 

secretory response to conceptus-derived estrogen observed 

during early pregnancy. 

The adminstration of 

gestation as descr1bed in 

estrogen on 

the present 

days 9 and 10 of 

study resulted in 
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morphological changes similar to alterations observed during 

early pregnancy (Stroband et al., 1986; Keys and King, 

1990), however estrogen administration stimulated these 

changes to occur earlier than normal. Although the 

morphological changes did not appear to effect the uterine 

epithelial glycocalyx or embryonic death, the changes in the 

uterine ultrastructure are consistent with advanced uterine 

secretory activity induced by early estrogen administration 

(Geisert et al., 1982c; Morgan et al., 1987). 

The porcine uterine endometrium produces several 

proteolytic enzymes including cathepsins B1 , D, and E 

(Roberts et al., 1976). cathepsins are lysosomal cysteine 

proteases (Barrett and Kirschke, 1981) that have been 

implicate in blastocyst implantation in rats (Elangovan and 

Moulton, 1980 a,b) and cats (Verhage et al., 1989; Li et 

al., 1991) due to their high affinity for collagen (Kirschke 

et al., 1982) and elastin (Mason et al., 1986). However, 

cathepsins B1 , D, and E have only been considered minor 

components of porcine uterine secretions (Roberts et al., 

1976; Bazer et al., 1981; Roberts and Bazer, 1988) and have 

only been detected in uterine flushings by their enzymatic 

activities. 

Results from the present study demonstrate that 

cathepsin L is synthes1zed and secreted by the porcine 

uterine endometrium during the estrous cycle and early 

pregnancy. The secretory profile of cathepsin L suggests 

that cathepsin L 1s a progesterone-induced lysosomal protein 
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similar to uteroferrin. 

Evidence in the mouse indicates that cathepsin L is a 

major secretory product of NIH 3T3 fibroblasts stimulated 

with PDGF and EGF (Frick et al., 1985; Chiang and Nilsen­

Hamilton, 1986; Prence et al., 1990). Prence et al. (1990) 

suggested that cathepsin L may function to hydrolyze 

extracellular components in preparation for cell growth. 

Since the porcine uterus produces several growth factors 

(Simmen and Simmen, 1990), it is possible that one or more 

of these growth factors may stimulate the secretion of 

cathepsin L which may subsequently mediate the effects of 

growth factors upon endometrial growth. 

Recent investigations (Geisert, unpublished data) 

indicate that a group of polypeptides secreted by the uterus 

exhibits approximately 40% amino acid sequence similarity 

with human procollagen. Secretion of this polypeptide (Mr = 

30,000; pi = 7.9-9.0) becomes attenuated concurrent with 

embryonic death in gilts administered estradiol valerate on 

days 9 and 10 of gestation (Gre1s et al., 1989). Results 

from the present study identified these polypeptides as 

being glycosylated. At present, it remains unknown whether 

these glycoproteins are secreted from the uterine luminal or 

glandular epithelium or from the uterine stroma. Therefore, 

it is unclear whether these glycoproteins are components of 

the basement membrane or perhaps the uterine epithelial 

glycocalyx. If these glycoproteins are epithelial in origin 

and are integral components of the glycocalyx, thay may be 
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involved in interactions between the uterus and the 

attaching conceptus. since collagen is a major substrate of 

cathepsin L (Kirschke et al., 1982} and results from the 

present study indicate that cathepsin L is secreted from the 

porcine uterus during the period of conceptus attachment, 

this enzyme may play a role in possible interactions between 

the uterine glycocalyx and lamin~n and fibronectin present 

in the developing conceptus (Richoux et al., 1989). Further 

research utilizing purified cell cultures would enable one 

to determine what cell type produces these glycoproteins. 

If a specific antibody can be produced to this glycoprotein, 

it would be possible, via immunocytochemical methods, to 

determine whether the glycoprotein is present on ~ne uterine 

epithelial glycocalyx. If present on the glycocalyx, it 

would then be necessary to characterize any alterations that 

may occur during the estrous cycle and early pregnancy, thus 

providing insight to its possible role in the establishment 

of pregnancy. 

It is apparent that the uterine epithelial glycocalyx 

is involved in 

placentation is 

glycocalyx may 

placental 

non~nvas~ve 

be critical 

attachment in pigs. Since 

in the pig, the role of the 

for embryo attachment and 

survival. Further characterization will be necessary to 

determine the compos~tion of this carbohydrate-rich coat. A 

greater understanding of the nature of the ~lycocalyx will 

facilitate further research toward discovering the role the 

glycocalyx plays ~n conceptus attachment and survival as 
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well as determining what substrates regulate changes in the 

glycocalyx during early pregnancy. 
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