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PREFACE 

The aim of this research is to prepare side chain polymers that will exhibit liquid 

crystalline properties. Liquid crystal (LC) is the intermediate phase between the crystalline 

solid and isotropic liquid. The molecules in the LC phase are free to move about in the 

same fashion as in liquids, but as they do so, they tend to remain oriented in a certain 

direction. Liquid crystals are commonly known for their application as displays for 

watches, clocks, calculators and other digital displays. 

In this work, the side chain polysiloxanes were prepared by the hydrosilylation of 

a preformed polymer with a terminal alkene which becomes the side chain. The flexibility 

of the polysiloxane backbone allows the preparation of polymers having low glass 

transition temperature, T g· With flexible alkylene spacer, which partially decouples the 

motions of the side chains and the polymer backbone, production of a room-temperature 

LC phase can be realized. High isotropization temperature and broad LC phase transition 

temperature range are also observed. 

The characterization of side chain liquid crystalline polysiloxanes with 4-arnino-4'

stilbenecarboxylic ester meso gens was undertaken using differential scanning calorimetry, 

polarizing microscope, and high temperature X-ray diffraction. The utilization of these 

materials for nonlinear optical applications were also examined. The monolayer behavior 

of the side chain polysiloxanes were investigated by Langmuir-Blodgett (LB) methods. 

The deposition of monolayers of the polysiloxanes onto a substrate (e.g. quartz glass) was 

also performed. 
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ABS1RACf 

Solid, liquid, and gas are the three states of matter. A solid consists of molecules 

or ions that are fixed in a specific position. Strong attractive forces hold the molecules in 

place. Hence, three-dimensional order is maintained in a crystalline solid. On the other 

hand, the forces holding the molecules together in the liquid state are much weaker. Thus, 

the molecules are free to move randomly and the order is much less than in a solid. Solids 

are hard and difficult to deform while liquids flow and are easily deformed. In a gas, the 

molecules move randomly as in liquids, but the attractive forces are not strong enough to 

hold the molecules close together. A gas can be deformed even more easily than a liquid. 

A phase is a sample of matter with uniform properties. A state of matter can have one or 

more phases. Increasing the temperature of a substance increases the molecular motions 

and the phase is changed at a precise temperature. A completely disordered phase is called 

isotropic. Thus, most liquids and gases are isotropic. Liquid crystal (LC) is an 

intermediate phase between the crystalline solid and the isotropic liquid. When a solid 

melts to an LC phase, the material flows as a liquid, but the molecules retain order in one 

or two dimensions. Although, an LC phase is anisotropic, it is more similar to a liquid 

than to a crystalline solid because it only possesses a small amount of order. 

The purpose of this work was to prepare and understand the properties liquid 

crystal polymers (LCPs) which have the shape of a comb. A polymer is a substance 

consisting of giant molecules formed as chains or networks from smaller molecules 

(monomers) of the same kind. In the comb-shaped LCPs, relatively long rod-shaped side 

branches bound to the main chain comprise the teeth and the backbone of a comb, 

respectively. The comb polymers were made by a reaction that binds the teeth to a 

preformed polymer backbone ofpoly(methylhydrosiloxane), a polymer similar to that of 

1 
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silicone oil and silicone rubber which is among the most flexible polymers known. The 

flexibility of the backbone allows the preparation of polymers having low glass transition 

temperature, T g (the temperature at which a rubbery liquid changes to a glass or vice 

versa). A spacer chain was placed between the main chain and the side chain to allow 

main chain motion without disturbing the orientation of the side chains which gives the LC 

properties of the polymers. 

The LC properties of the comb-shaped polymers were examined using a 

differential scanning calorimeter (DSC), a polarizing microscope, and a high temperature 

X-ray diffractometer. DSC detects the temperatures at which change of phase occurs and 

measures the energy change of a phase transition. A LC phase is best observed by a 

microscope. Due to the orientational order of LCs, polarized light is transmitted. The 

arrangement of the molecules in different phases is obtained from the X-ray 

diffractometer. One or two LC phases were observed for each polymer depending on the 

size of the side chains. 

LCs are commonly known for their application as displays (LCD) for watches, 

calculators and other digital displays. In this work, the polymers were investigated for 

possible nonlinear optical applications. The polymers prepared in the laboratory showed 

promising nonlinear optical response which can be compared to materials currently used as 

laboratory standards. 



CHAPTER I 

INTRODUCTION 

Liquid Crystals 

Liquid crystal (LC) refers to a phase which is intermediate between the crystalline 

solid and the isotropic liquid.l A substance in this state is strongly anisotropic in some of 

its properties although it exhibits a certain degree of fluidity, which in some cases may be 

comparable to that of an ordinary liquid.2 A substance having long-range order of the 

molecular positions in one or two dimensions but not the three dimensional order of a 

solid state crystal is called a liquid crystal. 

The melting of a crystalline substance is a familiar phase transition. The highly 

structured solid melts to the isotropic liquid phase at a well-defined temperature and with a 

characteristic heat of fusion. However, a number of organic compounds do not melt 

directly from crystalline solid to isotropic liquid. Instead, the substance passes through an 

intermediate phase, a mesophase. In this case, two phase transitions are involved: at a 

lower temperature, a transition from crystalline solid to mesophase, and at a higher 

temperature, a transition from mesophase to isotropic liquid. The term LC phase has been 

used interchangeably with mesophase. The molecular units that lead to mesophases are 

called mesogens. Transitions into these phases may be brought about by purely thermal 

processes (thermotropic mesomorphism) or by the influence of solvent (lyotropic 

mesomorphism). Thermotropic LCs are pure substances, and temperature changes cause 

the appearance and disappearance of the mesophases. Lyotropic LCs are mixtures of two 

3 



different substances, and the mesophase is dependent on the concentration of one 

component in another. 

4 

The first obseiVations of mesomorphic behavior were made towards the end of the 

nineteenth century by F. Reinitzer3 and 0. Lehmann4. The person generally given credit 

for discovering LCs is Reinitzer. In 1888, he noted that a carefully purified sample of 

cholesteryl benzoate melted at 146.6 OCto give a cloudy liquid, and when further heated, 

turned into a clear liquid at 180.6 °C. The following year, Lehmann confirmed Reinitzer's 

obseiVations using a polarizing microscope equipped with a hot stage. Lehmann remained 

the dominant figure in LC research in the early twentieth century. After years of 

experiments, it has become clear what type of compound is likely to be liquid crystalline at 

some temperature. 5 First of all, the molecule must be elongated in shape, that is, it must 

be significantly longer that it is wide. Second, the molecule must have some rigidity in its 

central region. Finally, it seems to be advantageous if the ends of the molecules are 

somewhat flexible. In 1977, it was established that relatively flat, disc-shaped molecules 

with flexible side chains may also form stable mesophases. 6 

The great majority of liquid crystalline substances are based on the following 

general structure: 7 

These structures possess a) two terminal groups, X and Y, usually on the long axis of the 

molecule, b) two or more (a and b) aromatic, usually benzene rings, (or more rarely, 

heteroaromatic and/or cycloaliphatic rings), and c) one or more bridging groups, A-B, that 

bind the rings together. A range of terminal substituents such as alkyl, alkoxy and cyano 

has been used and studied intensively. The nature of the central linkage is of great 

importance and it usually contains multiple bonds (e.g.-CH=N-, -N=N-, and -C02-) that 



maintain the rigidity and linearity of the molecules. Several biphenyl systems with no 

central unit other than the inter-ring C-C bond were also found to exhibit LC properties. 

5 

Depending on the detailed molecular geometry, a system may pass through one or 

more mesophases before it transforms into the isotropic liquid. In 1922, G. Freidel8 

proposed the classification of the different LC phases into three types: nematic, cholesteric 

and smectic, based mainly on optical studies. The nematic LC (from the Greek word 

nematos, meaning thread) has a high degree of long range translational order. The 

molecules are on the average oriented with their long axes approximately parallel with one 

another. The cholesteric mesophase is also a nematic type of LC except that it is 

composed of optically active molecules. A more proper name for this phase is chiral 

nematic LC (chiral simply means twisted). Mesophases in which the molecules are 

approximately packed together in layers are known collectively as smectic phases (from 

smectos, meaning soap). In these phases, not only is the small amount of orientational 

order of LCs present but there is also a small amount of positional order. In the early 

1960s, systematic studies of the classification of smectic LCs were undertaken by H. 

Sackmann and D. Demus.9,10 They developed the "miscibility rule", which states that 

LCs are of the same type if they are miscible in all proportions (i.e., all liquid crystalline 

modifications which exhibit an uninterrupted series of mixed crystals in binary systems 

without contradiction can be marked with the same symbol). Microscopic textures, the 

order in which different phases appear in compounds with more than one smectic phase, 

and X-ray diffraction patterns were also used in their classification work. They introduced 

the now-common identification of different smectic phase types by capital letters: A, B, C, 

etc. Smectic A (SA) phase is the least ordered of all smectic phases. The molecules in this 

phase have their long axes on the average perpendicular to the layer plane. Smectic B (SB) 

phase differs from SA in that the molecular centers in each layer are hexagonally close 

packed. Smectic C (Sc) phase is a tilted form of SA, that is, the molecules are tilted with 



respect to the layer planes. The most common LC phases with rod-shaped meso gens (N, 

SA and Sc) are shown in Figure 1.11 

6 

Thermal analysis is important in characterizing LC phases. A knowledge of both 

the temperature and the heat of transition is necessary for the evaluation of the type and 

degree of order present in a system. Differential scanning calorimetry (DSC) has greatly 

facilitated the determination of temperatures, heats of transition~ and heat capacity of 

various phases. DSC involves the comparison of the sample with an inert reference 

(indium is usually used) during a dynamic heating or cooling program. By comparing the 

transitions between the various types of phases, certain regularities are observed. The 

melting enthalpies always possess the highest values. The transition enthalpies connected 

with the LC phases do not exceed about 7.08 kJ/mol, in most cases, they are considerably 

smaller. Phase transitions connected with strong structural changes are connected with 

high transition enthalpies while phase transitions with small structural changes are 

represented with small dH. Identification of liquid crystalline phases begins with an 

investigation of the textures of the phases by means of microscopic observations in 

polarized light on a heated stage. Changes in texture within a temperature range indicate 

the occurrence of phase transitions. However, the generation of typical textures is not 

always possible. Sometimes transitions between LC phases are accompanied by only 

slight changes. The textures that appear are often those of the phase which resulted from 

cooling (paramorphism). The features of the various textures are caused by the existence 

of different kinds of defects. To obtain an impression of the structure of the unit 

aggregates of a phase, the thermal data and microscopic textures must be combined with 

the X-ray findings. X-ray diffraction provides information concerning the arrangement 

and mode of packing of molecules and the types of order present in a mesophase. The X

ray diffraction pattern of nonoriented samples (powder pattern) can be divided into inner 

rings at small angles, and outer rings at large angles. The inner rings are indicative of 

longer layer spacings while the outer rings correspond to shorter preferred 
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spacings occurring in the lateral packing arrangement of the molecules. The spacings are 

calculated using Bragg's equation. 

nA. = 2dsin8 

8 

where n is an integer number and in normal usage is considered to be one, A. is the 

wavelength of the radiation in use, d is the distance between spacings, and e is the angle 

of incidence or diffraction. The appearance of a broad halo or a sharp ring furnishes a 

qualitative indication of the degree of order. This method gives the principal reticular 

spacings but no information about the spatial orientation of these planes. Reliable 

characterization of molecular arrays by X-ray diffraction is possible only in oriented 

samples. The X-ray patterns of nematics and smectics differ mainly in their characteristics 

at small angles. Nematic patterns present a diffuse ring corresponding to distances equal 

to the molecular length, which indicates that there is no order in the direction of the 

molecular long axes. In contrast, X-ray patterns obtained from smectics present one or 

several sharp rings (usually two orders are observed) which are indicative of a periodic 

lamellar structure, corresponding to the smectic layers. 

The spontaneous, anisotropic orientation of low molecular weight meso genic 

molecules in the LC state inspired some interest in introducing these LC properties into 

macromolecules. This brought out a new aspect in polymer science, that is, the realization 

of LC polymers. The combination of the polymer-specific characteristics of mechanical 

strength and processability with the anisotropic, physical characteristics of the LC state 

promises interesting and novel materials. A general introduction to LC polymers will be 

presented and the types of thermotropic LC polymers will be pointed out. The discussion 

will concentrate on LC polymers containing rod-like meso genic groups in the side chains 

of macromolecules. 
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The definition of the LC state of low molar mass LCs and LC polymers does not 

differ. The positional and orientationallong range order for low molar mass LCs is related 

to the single molecules, whereas the order for polymers can be related either to the entire 

macromolecule or to the monomer unit of the macromolecule, depending on the chemical 

constitution of the LC polymers. LC polymers have wider mesophase temperature ranges 

and often more ordered LC phases than low molar mass LCs. In contrast to low molar 

mass LCs, which usually crystallize on cooling, noncrystallizable polymers harden to 

anisotropic glasses upon cooling from a LC phase. The LC structure characteristic of the 

mesophase is then preserved in a glassy state. As in low molar mass LCs, the LC 

properties can be examined by differential scanning calorimetry, polarizing microscopy, 

X-ray diffraction and other techniques. However, the high viscosity and the broad phase 

transition temperature ranges of the LC polymers make the investigation difficult due to 

slow change in their supramolecular structures. 

L. Onsager (1949)12 and P. Flory (1956)13 adapted conventional lattice methods 

to describe a theory of non-melting, rigid, rod-shaped polymers. They predicted that a 

solution of hard, asymmetric polymers should separate into two phases, an ordered 

mesophase and an isotropic phase, above a threshold concentration. In the case of rod

like polymers, the ratio of the length of the longitudinal molecular axis to the length of the 

transverse axis of the macromolecules was found to govern the concentration at which 

phase separation occurs. This was experimentally confirmed in 1956 for a polypeptide 

which formed a stable, rod-shaped helical conformation in solution.14 In the 1960s, 

researchers at Du Pont discovered that certain aromatic polyamides such as poly(p

phenylene terephthalamide) exhibited anisotropic properties in concentrated solution. As a 

result, the well-known ultra-high-modulus Kevlar aramid fiber which forms an LC phase 

only in solution was developed.15 

The first reported observations of thermotropic LC behavior in polymers were 

made in the mid-1970s by A. Roviello and A. Sirigu16 and by W. Jackson and H. 
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Kuhfuss17. The former study dealt with the preparation and characterization ofpoly

alkanoates from p,p'-dihydroxy-a,a'-dimethyl benzalazine and diacyl chlorides while the 

materials described in the latter study were aromatic-aliphatic copolyesters prepared by the 

reaction of p-acetoxybenzoic acid and poly( ethylene terephthalate). Since then there has 

been considerable research on polymers of this type which are called main chain liquid 

crystal polymers (MCLCPs). 

The preparation ofMCLCPs can be realized by linking together suitable mesogenic 

monomers.18 The units are linked together through suitable functional groups, A and B, 

located at the ends of the meso genic monomer. The monomers usually undergo a 

condensation reaction to form the polymer. 

---A--c=:J-BA~BA~B---

The linkages between B and A and the mesogen cores (c::=J) may be direct, giving a 

rigid type of backbone or of a flexible nature, e.g., an alkylene chain, giving a polymer 

backbone with alternating rigid (mesogenic) and flexible segments. 

The basic structures in MCLCPs are benzene rings interlinked at para positions: 

0 0 

--L"-Q-'' ~~ \ c \ /) c-~- Jn 

These rod-like polymers are insoluble and do not fuse without the occurrence of 

decomposition. Hence, it is necessary to lower the melting point to a melt processable 

range without destroying LC formation. There are three possible ways of modifying the 

rigid, rod-shaped basic structure.19,20 First, the linearity of the macromolecule can be 

reduced by a less symmetric comonomer unit or a voluminous aromatic side group. 

Second, the rigid mesogenic groups are attached via a flexible spacer, e.g., alkyl or alkoxy 



1 1 

chain. With increasing length of the flexible chain between the meso genic groups, not 

only is the melting point of the polymer lowered, but the mesogenic groups have an 

increasing tendency to order in a layer-like manner. Finally, linear macromolecules are 

substituted laterally with mesogenic groups via a flexible chain. These groups behave as 

chemically-bound solvent molecules and thereby reduce the polymer-polymer interactions 

and thus the melting point. 

A great many aromatic polyesters and copolyester which show thermotropic LC 

behavior have been synthesized because they can be prepared by the traditional methods of 

condensation polymerization.21 Although, other MCLCPs such as polyazomethines22, 

polyesteramides23, polyamides24, and polyethers25,28 have also been prepared. Recently, 

MCLC polyhydrocarbons have been synthesized for the first time.27 

Prior to 1978, numerous investigations concerning the synthesis of polymers with 

low molar mass LC compounds attached directly to their backbones were reported, 

although these materials failed to exhibit LC behavior. Direct linkage, except in a few 

cases, gives only glasses with an anisotropy of structure that is lost at the glass transition. 

Coupled with steric interactions between the side groups, the tendency toward a statistical 

distribution of chain conformations hinders the ordered arrangement of the mesogenic 

groups and LC formation is suppressed. 

In 1977, Shibaev and Plate28 proposed that for the formation of an LC structure, a 

certain mobility of the side groups is required, which, in spite of the presence of the main 

chain, permits attainment of a definite order in the arrangement of the meso genic side 

chains. In order to overcome steric hindrance to packing of the side chains, it is necessary 

to remove the meso genic side groups some distance away from the main chain. To prove 

their proposal, thermotropic polymers containing cholesterol were synthesized and 

characterized. 



Table I. a Transition Temperatures of Cholesterol Containing Polymersb 

n Tg, °C Tf, °C Ta-i, °C 

2 185 decomp. 

5 130 200 220 
6 130 190 215 
8 130 180 200 
10 125 150 185 
11 120 135 180 

RRef. 28. lYf g =glass temperature, Tf =flow temperature, T a-i =temperature of 

transition from anisotropic to isotropic melt 
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At temperatures below Ta-i, the polymers (where n 2::. 5) were in the flow state, in the form 

of a mobile, viscous, anisotropic liquid. The flow caused movement of the birefringent 

regions, similar to the behavior of low molar mass LCs. Thus, the authors were the first 

to bring about and observe formation of an LC phase in cholesterol containing polymers in 

the high elastic and viscous flow states. They noted that the temperature interval covering 

the appearance of segmental mobility combined with optical anisotropy is dependent on the 

length of the methylene "bridge" joining the cholesterol group to the main chain. 

Finkelmann and his coworkers29 in 1978 introduced their model considerations for 

the realization of SCLCPs. They postulated that in the liquid state, the motions of the 

polymer main chain have to be decoupled from those of the anisotropically oriented 



meso genic side chains. The decoupling is then possible if flexible spacer groups are 

inserted between the main chain and the rigid meso genic side chains. 

R -fcH2-!-1: Main Chain 
n 

Spacer Group 

Mesogenic Group 
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On the basis of this model, they expected that in spite of the statistical conformation of the 

main chain, an anisotropic orientation of the mesogenic side chain is possible. 

Furthermore, the main chain imposes little or no restriction on the orientation of the 

mesogenic side chains. To prove their model considerations, they synthesized SC 

polymers using suitable monomers of benzoic acid phenyl esters. 

Table II shows that the SC polymers exhibit enantiotropic nematic or smectic phases 

depending on the substituent, thereby confmning their model considerations. The 
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decoupling of the side groups by using a flexible spacer allows the main chain motion to 

occur without disturbance of the anisotropic arrangement of the side chains. The polymer 

then may exhibit LC properties. 

Table II. a Structures and Properties of Spacer Carrying Liquid Crystalline Monomers 
and Polymers 

n R Phase transitionb (OC) 
Monomer Polymer 

2 OCH3 c 69 I g 101C N 121 I 

2 OC3H7 c 67 I g 120d s 129 I 

2 CN c 84 I amorphous 

2 OC6H13 c 59 I g 100ct S 140 I 

2 C6I4-0CH3 c 108 N211 I e N 177 I 

3 C6Hs c 105 I e s 170 N 187 I 

3 C6l4-0C2H5 c 123 N 202 I g 120C s 300 I 

6 OCH3 c 47 I g 95C N 105 I 

6 OC6H13 c 47 N 53 I g 60C s 115 I 

6 C6Hs c 64 s 68 N 92 I g 130d s 164 N 184 I 

aRef. 29. be= crystal, N =nematic, S = smectic, I= isotropic liquid, g =glass 

transition. CGlass transition was determined by DSC measurement. dolass transition was 

determined as softening points with the polarizing microscope. e not determined. 

Further investigation by the same group of researchers used polymers with 

biphenyl moieties as mesogenic group.30 
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With the exception of the p'-unsubstituted biphenyl derivative, all polymers exhibit the 

postulated thermotropic LC phases. If the biphenyl group is substituted with a short 

spacer (n = 2) and the short substituent (m = 1), a nematic polymer phase is observed, 

whereas the polymers with n = 6 and m > 1 showed smectic phases. The results are 

consistent with the behavior of low molar mass LC biphenyl derivatives. Therefore, they 

were able to verify the validity of the model considerations that LC polymer phases can be 

routinely realized analogous to conventional LCs. 

Following the introduction of the spacer model of SCLCPs, numerous SCLCPs 

have been synthesized using a variety of different polymer backbones31,32 and a large 

number of known meso genic molecules7 as side chain components. Typical spacer 

groups consist between 3 and 12 methylene units. However, oligooxyethylene33 or 

oligosiloxane34 units may be used to enhance the degree of decoupling through a more 

flexible spacer. 

SCLCPs can be prepared by three different types of polymerization as shown in 

Figure 2.35 The most common method is to introduce into a meso genic molecule a 

reactive group capable of undergoing addition polymerization.36 In most cases, the 

polymerizable group is a methacrylate or an acrylate, which forms a flexible backbone. 

This type of SCLCPs have been the most widely synthesized by free radical 

polymerization in solution with common initiators such as azobisisobutyronitrile (AffiN). 

Anionic37,38, group transfer39 and cationic40,41 polymerizations have been used to obtain 

different tacticities, molecular weights and polydispersities and to vary the nature of the 

polymer backbone. 

The second possibility is to introduce into the low molecular weight mesogen a 

reactive group capable of undergoing a polycondenzation reaction. In this way, polymers 

containing heteroatoms in the backbone can be synthesized. Polycondensation reactions 

have been successfully applied to the preparation of SCLC polyesters42 with flexible, 

semiflexible and rigid backbones. 
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The third synthesis route starts with reactive polymers. They can be modified to 

mesogenic side-chain polymers by using suitable reactive mesogenic monomers.43 SCLC 

polysiloxanes are usually prepared by an addition process, commencing with a preformed 

polymer backbone which contains reactive functional groups (Si-H) to which the 

meso genic groups are appended. In this case, a quantitative addition reaction can be easily 

detected by the disappearance of the Si-H vibrational absorption. This type of reaction is 

carried out in the presence of an appropriate platinum catalyst, e.g. H2PtC]Q·6H20 in 

isopropyl alcohoi44-46 (Speier's catalyst), or divinyltetramethyldisiloxane platinum47, or 

dicyclopentadienylplatinum (II) chloride48. 

The replacement of the hydrocarbon polymer main chain by a polysiloxane main 

chain, which is characterized by high flexibility of the chain segments, is expected to 

produce polymers with glass transitions at low temperatures. Finkelmann and Rehage49 

prepared SCLC polysiloxanes with benzoic acid 4-substituted phenyl esters in the side 

chains. 

In Table III, the phase transitions for the purified polysiloxanes are summarized. This is 

the first case that LC homopolymers are obtained , which exhibit LC phase at room 

temperature. A nematic polymer exists if the benzoic acid phenyl ester group is substituted 

with a methoxy group, whereas smectic phases exist if a nitrile or hexyloxy group is the 
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substituent. According to these results, the type of the LC phase of the polysiloxanes is 

determined by the substituents of the mesogenic moiety. This is in accordance with results 

obtained for SCLC polymethacrylates. 

Table In. a Phase Transitions of Monomers and Their Corresponding Polysiloxanes 

R 

OCH3 

OC6fl13 

CN 

Phase transition temperaturesb (OC) 
Monomers Polysiloxanes 

c 89 I g 15 N 61 I 

c 61 N 77 I g 15 s 112 I 

c 103 I g 20 s 61 I 

aRef. 49. be= crystalline, N =nematic, I= isotropic liquid, g =glass transition, S = 

smectic. 

The glass transition temperatures were not lowered to a great extent, as expected 

from the glass transition temperature of pure poly(dimethylsiloxane) (Tg = -127 °C). For 

an effective lowering ofT g. the interactions of the meso genic side groups have to be 

weakened. One possible way is to dilute the mesogenic groups along the main chain with 

non-mesogenic segments. This was realized by the preparation of side chain 

copolysiloxanes. 50 

where x = 3, 5, 10 

R= OCH3, CN 

n = 3, 5, 11 
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Insertion of a short dimethylsiloxane segment (x = 3) into the main chain between the 

meso genic group resulted in a decrease ofT g (range from -22 to -45 °C). However, only 

polymers with longer spacer chains (n = 5 or 11) exhibited LC phases (smectic). With 

further reduction of the contents of meso geniC groups in the polymer (x = 5 or 10), T g is 

lowered continuously towards the value of pure poly(dimethylsiloxane). Reported glass 

transition temperatures of the copolysiloxanes ranges from -46 to -53 °C for x = 5 and 

-112 to -119 °C for x = 10. From the results, the authors found that short spacer (n = 5) 

do not contribute very much to the stability of the LC phase, and the phase disappears at a 

dilution of x = 10. With long alkyl spacer (e.g., n = 11), the range of liquid crystallinity 

is not influenced by the dilution of the meso genic groups in the main chain. 

In a recent study, Percec and Tomazos51 reported the synthesis and 

characterization of polymethacrylates and polyacrylates containing meso genic groups 

based on 4-hydroxy-4'-methoxy-a.-methylstilbene and the corresponding polysiloxanes. 

The authors observed that all of their polymethacrylates exhibit enantiotropic liquid 

crystalline mesophases. The isotropization transition temperature decreases with the 

decrease of the flexible spacer length from n =11 ton= 6 and then increases again. The 

isotropization enthalpy increases with the increase in the spacer length. The 

polymethacrylate containing only two methylenic units in the spacer displays only a 

nematic mesophase. Polymers containing intermediate spacer length display both smectic 

and nematic mesophases, while the polymethacrylate with n = 11 displays only a smectic 

mesophase. The polymethacrylate with n =11 is the only one to exhibit side-chain 

crystallization. This side-chain crystallization is strongly kinetically controlled and can be 

best observed during the first heating scan. An increase in the degree of polymerization 

gives rise to a decrease in the rate of crystallization. Crystallization is depressed so much 

that it does not appear at temperatures above T g when the polymer is scanned on both 

heating and cooling at 20 °C/min. Attainment of equilibrium, which would lead to a 



20 

CH3 

OCH3 

n = 2, 3, 6, 8, 11 n = 3, 6, 8, 11 

crystalline polymer, would require careful annealing and involve an extended period of 

time. The polyacrylates behave similarly to the polymethacrylates with the exception that 

all undergo side-chain crystallization. For long spacers, this crystallization is observable 

on any DSC scan. However, for shorter spacers, it can be observed mostly on the first 

heating scan or upon annealing. All of the polysiloxanes undergo side-chain 

crystallization, and their isotropization transition temperatures are higher than those of the 

corresponding polymethacrylates or polyacrylates. When making the latter comparison, 

one has to be aware of the fact that the flexible spacer of polysiloxanes contain only the 

methylenic units while the flexible spacer in polymethacrylates and polyacrylates contains 

the methylenic units plus an oxygen and a carbonyl group. Therefore, the flexible spacer 

of the polysiloxanes is in fact shorter than the one of the polymethacrylates or 
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polyacrylates. The type of mesophase displayed by polysiloxanes is determined, as in the 

case of other backbones, only by the length of the spacer. However, the ease of side

chain crystallization can transform the highest temperature mesomorphic phase from 

enantiotropic (mesophase observed, as reversible, both on heating and on cooling) into 

monotropic (mesophase which can be observed only on cooling). This is the case of the 

polysiloxanes containing eight and six methylenic units within their spacer. 

The general conclusion derived from this study is that the spacer length dictates the 

nature of the mesophase exhibited by a certain polymer. However, the nature of the 

polymer backbone dictates the thermal stability of the mesophase and the ease of side

chain crystallization. Flexible backbones tend to give rise to higher thermal stability of the 

mesophase and simultaneously increase ease of side-chain crystallization. This last effect 

may lead to the transformation of enantiotropic mesophases into monotropic mesophases. 

The systematic investigations of SCLCPs show that a long spacer group allows the 

side chain to be relatively independent of the backbone, and hence show that the same 

regularities with respect to LC properties for SCLCPs and their low molar mass 

analogues. This is particular true for the order parameters and the behavior in the electric 

field. A short spacer length results in less organizational freedom and hence the phase 

transitions of the meso genic side chain are influenced more by the backbone. 

The orientationallong-range order of the molecules in the nematic phase is 

described by the order parameter S 

8=+(3 cos2e -1) 

The angle e denotes the mean deviation of molecular axis with respect to the symmetry 

axis of the orientational distribution function of the molecular axes. This description can 

also be applied to SCLCPs, if the polymer main chain is neglected and only the meso genic 
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side groups are considered. This order parameter directly reflects the anisotropy of the 

polymers. The order parameter of LCPs can be determined from the data on IR- and UV

dichroism of added dye, isomorphic (same mesophase) to liquid crystal, from X-ray 

analysis, from NMR or ESR measurements_31,32 The values of S for some LCPs are 

given in Table IV.32 

Table JV.a Values of Order ParameterS for Some LCPs Determined by Different 
Methods. 

X=X R n mesophaseb s method of 
determination 

CN 5 N 0.45 NMR 

CH=N CN 6 N 0.50 guest-host dichroism 

coo OCH3 2 N 0.65 ESR 

coo OCH3 6 s 0.92 ESR 

coo OCH3 6 s 0.85 NMR 

CH=N CN 11 s 0.91 X-ray analysis 

aRef. 32. hN = nematic, S = smectic. 

Polymers exhibit lower values of S at a fixed reduced temperature (T m/f c. where T m is the 

measuring temperature and T c is the clearing temperature) compared with that of the 

corresponding monomers, while the slope of the temperature dependence curve is very 

similar. S remains constant at temperatures below T g· This is one of the most important 

properties of SCLCPs. The LC order freezes in at Tg and remains unchanged in the 

glassy state of the system. Therefore, anisotropic glasses having anisotropic physical 

properties are obtained. 
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LC molecules can possess permanent or induced dipole moments both along and 

across the long axis of the molecule. The molecule will orient so the larger of the two 

dipoles lies along the electric field. If the dipole moment is along the long axis of the 

molecule, then an electric field causes the molecular long axis of the liquid crystal to lie 

parallel to the field. However, if the dipole moment lies across the long axis, then the 

presence of electric field causes the molecular long axis to orient perpendicular to the field. 

The strength of the electric field necessary to orient the director (direction of preferred 

orientation of molecular long axis) of a liquid crystal is relatively low since the director of 

a liquid crystal is usually free to orient in any direction. The freedom of liquid crystal 

molecules to change orientation while maintaining some orientational order among the 

molecules produces this delicate response to electric fields. Polymers with a flexible 

spacer of sufficient length(> 4 -CH2-) have similar responses to electric field.31 The field 

strength for the reorientation is directly related to the anisotropy of the dielectric constants 

of the meso genic monomer unit of the polymer. 

The combination of electric field-induced orientation in the LC state and the durable 

storage of the alignment in the glassy state of polymers offers new prospects for 

applications. The preparation and characterization SCLCPs with polarized mesogenic 

moieties which can be processed in the form of optically clear films and exhibit nonlinear 

optical properties have generated tremendous interest 

Langmuir-Blodgett Films 

The Langmuir-Blodgett (LB) technique52-54 is a useful tool for systematic 

preparation of well-defmed thin films of side chain polymers. An insoluble monolayer is 

usually characterized by its pressure Cm- area (A) curve (or isotherm). The isotherm 

shows the relationship between the observed surface pressure (related to the average 

interaction between neighboring molecules) and the area occupied on the liquid surface by 

the molecules of the film. Most LB films are made by spreading surface active molecules 
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(surfactants) at an air/water interface (Figure 3), and measurements can be performed by a 

film balance while varying the film area by compression between barriers. 

The apparatus (shown in Figure 3) generally used consists of a surface pressure 

measuring device mounted on a trough equipped with suitable barriers. Most often, a 

rectangular trough is used, with the pressure detector near one end. The two 

fundamentally different film balances are the Wilhelmy type (shown in Figure 3) and the 

Langmuir type. In the Wilhelmy method, an absolute measurement is made by 

determining the force due to surface tension on a plate or other object suspended so that it 

is partially immersed in the liquid, and this is compared with a similar absolute 

measurement on a clean surface. The Langmuir method, on the other hand, utilizes a 

film 
bal a nee 

film 
balance 

______ .. " / ______ .. 
(a) 

trough 
(b) 

Figure 3. Monolayer of a surfactant on a water surface: (a) the monolayer before 
compression and (b) the monolayer after compression. 

direct differential measurement. A clean portion of the liquid surface is separated from the 

monolayer-covered area by a partition and the force acting on this is measured. The 

partition usually consists of a movable float connected to a conventional balance with 

which the magnitude of the force is determined. 

The molecules in monolayers could exist in three different states, more or less 

analogous to three dimensional liquids, solids or gases. Various monolayer states 



represent different degrees of molecular freedom or order, resulting from the 

intermolecular forces in the film and the subphase. In the case of low molar mass 

substances, the three film states are generally referred to as condensed (solid) films, 

expanded films (liquid) and gaseous films. 
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A generalized n-A isotherm for a film of simple molecules may be represented as 

in Figure 4.54 The gaseous state of monolayers is conceptually the simplest and has 

followed a two-dimensional analysis corresponding to that of the ordinary three

dimensional matter. The molecules in such films are floating about in the surface layer far 

apart so that they exert relatively little force on one another. Such monolayers are 

characterized experimentally by a surface pressure which approaches zero asymptotically, 

as the area available to the film is increased, and by a constant surface potential, showing 

no variation from place to place in the film. The surface viscosity of gaseous monolayers 

is also very low. In principle, any monolayer-forming substance will exist as a gaseous 

film if the molecules are sufficiently widely separated. It is suggested that the average 

conformation of a flexible chain molecule in the gaseous monolayer is more nearly parallel 

to the water surface than vertically extended. 

At the opposite extreme from the gaseous monolayers are the condensed films in 

which the molecules are arranged in nearly their closest possible packing. This type of 

film, which can be thought of as much like a two-dimensional crystal, is common, easily 

studied and is usually thought of as the typical monolayer. In this film, the molecules 

stand nearly upright with their terminal polar groups in the water and their long chains 

closely packed. Then-A plots are nearly straight and very steep, indicating low 

compressibility in the condensed monolayers. This reflects the presence of strong chain

chain interactions which hold the molecules in their closest-packed arrangement, with little 

dependence on surface pressure. Condensed films are highly incompressible and often 

exhibit high surface viscosity. 
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Figure 4. A general II-A isotherm of a monolayer of a simple molecule. (Taken from 
Ulman, ref. 54). 
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Intermediate in molecular area between gaseous and condensed fllms of simple 

molecules are the expanded monolayers. The IT-A diagrams of these films show 

considerable curvature, although they approach the IT = 0 axis at a fairly steep angle, rather 

than asymptotically as in the case of gaseous monolayers. The films have low surface 

pressure with little tendency for the film-forming molecules to become widely separated on 

the surface. The molecular area is typically two or three times as large as the molecular 

cross section. The surface potential does not show fluctuation, indicating that the films are 

homogeneous and the surface viscosity is low. Apparently, in expanded fllms, the 

conformation is in some way intermediate between the condensed fllms and the gaseous 

films. The hydrophobic portions of the molecules in an expanded film are in random, 

rather than regular, orientation, only the polar functional groups being constrained to be in 

contact with the subphase. 

In general, the IT-A diagrams for well-spread polymer films on aqueous subphases 

are rather featureless by comparison with the variety of curves which have been obtained 

for monolayers of smaller molecules. The curves are smooth, without marked 

discontinuities, and show no evidence of phase transformation in the stable monolayer 

region. The surface pressure is low at large specific areas, but increases more or less 

rapidly when the film is compressed to the point where the macromolecules themselves 

occupy most of the available surface. The polymer films can be divided into condensed 

and expanded classes. Monolayers of the expanded type are fluid and exhibit a gradual 

rise in surface pressure on compression and a well-defmed and complete collapse. 

Condensed polymer fllms are best identified by their high viscosity or rigidity, together 

with a much steeper IT-A isotherm. Qualitative interpretation of the IT-A characteristics of 

polymer monolayers have generally been proposed in terms of compressibility or 

rearrangement of the polymer chains on compression in the film. 
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The classical materials of monolayer studies are surfactants, which have a 

molecular structure composed of a large nonpolar or hydrophobic portion, the 

hydrocarbon chain, and at one end a polar or hydrophilic functional group, such as 

-COOH or -OH. The polar groups tend to confer water solubility, while the hydrophobic 

part prevents it. The balance between them determines whether a molecule will form an 

insoluble monolayer. Interactions between and within the monolayer-forming molecules, 

both in the film and in bulk phases are important. Better packings of the molecules 

enhance intermolecular dispersion forces between the chains in adjacent molecules, thus 

stabilizing the molecules in the film. However, if intermolecular attractions are too strong, 

it will be difficult to produce a monolayer even when a suitable polar group is present. 

Another factor which must be considered is volatility; the substance must not evaporate too 

rapidly for measurements to be made. 

In the case of high polymeric substances, somewhat different criteria apply. 

Formation of stable monolayers of macromolecules depends on sufficient attraction for the 

subphase surface to overcome bulk cohesion. A high degree of insolubility is not 

required. It is only necessary that the individual monomer units have a finite free energy 

of adsorption from the bulk solution to the surface for a monolayer to be stable. It is also 

possible to spread monolayers of insoluble polymers. In this case, the criteria of 

spreadability are similar to those for simple, nonpolymeric materials. 

Many monolayers can be compressed to pressures considerably higher than their 

equilibrium spreading pressures. Eventually, however, it is found impossible to increase 

the surface pressure further, and the area of the film decreases if the pressure is maintained 

constant, or the pressure falls if the film is held at constant area. This condition is referred 

to as the collapse point of the monolayer under the given experimental conditions. When 

collapse occurs, molecules are pushed up from the surface, maintaining the integrity of the 

two-dimensional array, in a ridge two molecules thick. The ridge finally breaks off and 



lies on the remaining monolayer film as a collapsed film. The collapse pressure is the 

pressure at which molecules are first pushed out of the monolayer. 
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In the case of large polymeric molecules, over-compression of a stable monolayer 

may lead to rearrangements of the polymer chains. It seems reasonable to expect that on 

compression some molecules or parts of molecules could be displaced from the surface. 

The LB method is a mechanical means of forming an oriented monomolecular thin film 

which can be subsequently deposited on solid plate (or substrate). A schematic diagram 

illustrating a common form of LB deposition is shown in Figure 5. 55 In this example, the 

substrate is hydrophilic and the first monolayer is transferred as the substrate is raised 

through the subphase. The substrate may be placed in the subphase before the monolayer 

is spread, or may be lowered into the subphase through the compressed monolayer. Since 

the spread molecules are usually amphiphilic in nature, there is often a strong tendency for 

theY-type deposition to form multilayers having head-to-head and tail-to-tail stacking and 

a center of symmetry. In the example shown in Figure 5, a multilayer structure containing 

only an odd number of layers can be produced. However, if the solid substrate is 

hydrophobic, a monolayer will be deposited as it is first lowered into the subphase, thus a 

Y -type film containing an even number of mono layers can be fabricated. 

Noncentrosymmetric films are difficult to obtain by classical LB techniques (X

type or Z-type deposition, where transfer occurs only on the downstroke or upstroke, 

respectively) and frequently much synthetic effort is necessary to find ways to induce this 

behavior. Schematic diagrams and the expected molecular arrangement for the two types 

of layers are shown in Figure 6. 55 

Nonlinear Optical Materials 

If electric, magnetic or electromagnetic (optical) fields act on materials, the building 

blocks of the materials (atoms, ions, electrons) will experience forces and be displaced 

through translation or rotation by those forces. When an electromagnetic field interacts 
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Figure 5. Deposition of multilayers onto a hydrophilic substrate by the LB technique 
withY-type structure: (a) compressed monolayer, (b) first upstroke, (c) subsequent 
downstroke, (d) head-to-head and tail-to-tail configuration (Y-type). (Taken from Petty 
and Barlow, ref. 55). 
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Figure 6. X-type (a) and Z-type (b) deposition with their respective structures. (Taken 
from Petty and Barlow, ref. 55). 
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with a molecule or a medium consisting of many molecules, the oscillating field polarizes 

the materials. The positive and negative charges in the constituent molecules move in 

opposite directions, so that an oscillating electric dipole is induced in the materials. The 

induced dipole per unit volume is called polarization, P. For small applied field strengths, 

the polarization is linearly proportional to the strength of the electromagnetic field and the 

optical response is linear. 

Nonlinear optical (NLO) materials exhibit nonlinear polarizations when subjected 

to the above mentioned fields. The induced polarization depends on higher orders of the 

field strength. Generally, only applied field strengths as strong as those of lasers lead to 

observation of such nonlinearities. Nonlinear electric polarizations in materials can give 

rise to a number of optically nonlinear phenomena such as frequency doubling, frequency 

tripling and four-wave mixing. 

The fundamental concepts56 of nonlinear optics and their relationships to chemical 

structures will be briefly summarized. In the dipolar approximation, the polarization Pi 

induced in an atom or molecule by an external field E can be written as 

where the subscripts i, j, k, and 1 refer to the molecular coordinate system, Ej, Ek, and Et 

denote components of the applied field, and the tensor quantities a, ~. andy, are often 

referred to as the polarizability, hyperpolarizability, and second hyperpolarizability, 

respectively. The analogous expression for macroscopic or bulk media is 

where the coefficients x(l), x<2), and x<3), are similar in meaning to their microscopic 

counterparts. The even tensors ~ and x<2) are zero in centrosymmetric media. This 
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restriction plays an important role in the development of second order NLO materials. The 

odd order tensors have no symmetry restriction. NLO effects are called resonant when the 

material absorbs the incident laser light and nonresonant when the light is not absorbed. 

The history of NLO effects in organic materials goes back about two decades. 

Urea was one of the early organic systems to demonstrate the potential of achieving large 

optical nonlinearities in organic crystals. To obtain a xP> response, an organic crystal 

must be noncentrosymmetric, or a noncrystalline organic material must be polarized into a 

noncentrosymmetric order by an electric field. Various theoretical approaches to calculate 

microscopic second order nonlinearities, ~. have been used. One such calculation is a 

perturbation approach using a two-level model. Within the concept of perturbation 

expansion, a two-level model predicts large~ for molecular structures having large 

transition dipole moments and large differences between the permanent dipole moments of 

the ground and excited states. Therefore, materials composed of molecules having 

conjugated n-electron donor and acceptor substituents at the ends of a delocalized 1t

electron system have significant second order xP> properties. 57 The low lying charge

transfer states in the donor-acceptor substituted structures such as 4-dimethylamino-4'

nitrostilbene (DANS) 

provide such a large change in the dipole moment upon excitation, and hence DANS is 

expected to exhibit large ~. Second order polarizabilities are known for a large number of 

organic structures and can be estimated for new structures from ground state dipole 

moments, solvatochromic UV -visible spectral data, and the lowest energy electronic 

transition frequency relative to the incident laser frequency. A common technique for 
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measuring the value of ~ is electric field induced second harmonic generation (EFISH). In 

this method, a de electric field is applied across a solution of the compound to be tested, a 

laser beam is passed through the solution, and the intensity of the generated second 

harmonic light is measured. Note that EFISH does not measure the individual tensor 

components ~ijk, but measures ~x which is the sum of certain ~ijk components. 

~x = ~xxx + 1/3 (~xyy + 2~yxy + ~xzz + 2~zxz) 

The most commonly studied second order NLO property of solid materials is 

second harmonic generation (SHG) or frequency doubling, a practical technique in laser 

technology. The SHG nonlinear coefficient dis often reported and is related to x(2) by 

The nonlinear coefficient d33 (d333 or dzzz) does not contribute to phase-matched SHG and 

is the largest nonlinear coefficient in poled polymers. Using a 1064 nm pulsed Nd-YAG 

laser, the absolute second harmonic conversion efficiency is determined by measuring the 

ratio of the 532 (J20l) and the 1064 (JOl) nm signal intensities and applying corrections for 

the relative responses of the monochromator and photomultiplier tube to the two 

wavelengths. 

In recent years, it has been found that organic molecules or polymers show larger 

second order NLO responses than the conventional inorganic materials. Poled polymers 

are one of the most promising approaches to the development of new materials for second 

order NLO applications. This approach could lead to early utilization of polymers in 

devices. Processing of polymers is relatively easy and inexpensive compared with 

conventional substrates derived from materials such as LiNb03, and the choice of NLO

active materials is large and not limited to compound crystallizing noncentrosymmetrically. 
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Disadvantages of this approach include the need for the relatively complex and difficult 

electric field poling process, the broad orientational distribution function, the dilution of 

the nonlinear chromophore in the matrix, and concerns about long-term stability of the 

metastable poled state. Much of the efforts are focused on the preparation of materials 

with significantly high concentration of NLO-active species, readily attainable orientational 

order, and best thermal stability. 

Several researchers reported58-61 the observation of SHG in glassy polymers such 

as polystyrene (PS) and poly( methyl methacrylate) (PMMA) doped with optically 

characterized second harmonic generating dyes such as 4-dimethylamino-4'-nitrostilbene 

(DANS), 2-methyl-4-nitroaniline (MNA) and 4-[ethyl(2-hydroxyethyl)-amino]-4'

nitroazobenzene (disperse red- DR). The second harmonic coefficient, d33, of spin 

coated f:tlms ( -4 Jlm) of the azo dye in PMMA, measured at a fundamental wavelength of 

1580 nm, was 6.0 ± 1.3 x IQ-9 esu.58 This value is approximately five times that of 

potassium dihydrogen phosphate (KDP). Films of PS and PMMA with DANS showed 

d33 value of about 2 x IQ-9 esu (fundamental wavelength of 1064 nm).59,60 This can be 

compared to the d33 values of 0.55 x IQ-9 esu for KDP or 7.1 x IQ-9 esu for lithium 

niobate, current inorganic industry standards. 

The optical quality of the spin-coated films onto indium tin oxide (ITO) coated 

glass are extremely important. The films must be defect and pinhole free, so that the 

sample does not break down under the high applied electric field and the amount of the 

scattering due to surface ripples or other defects must be minimal for proper measurement. 

The films were coated with a thin layer of gold to improve contact with the poling 

apparatus electrodes. The electric field is applied perpendicular to the f:tlm. The ITO 

substrate served as the bottom electrode, and a second piece of ITO glass served as the top 

electrode. The NLO-chromophores in the polymer matrix were aligned using a strong de 

electric field (from 0.3 to 0.5 MV/cm) at temperatures near or above (about 5 OC) Tg, and 

the aligned materials have been hardened into the glassy state with the field still on. 
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Corona poling has also been used to align doped glassy polymers. Hampsch and 

coworkers62,63 used corona discharge generated by a sharp tungsten needle biased with 

up to 5000 V and placed 0.6 em above and normal to the polymer film spin-coated onto 

soda-lime glass. The corona current was between 1-3 ~A. Typical film thicknesses 

ranged from 1.8 to 2.5 ~m. Gas (air, He or N2) continually flowed across the film 

throughout the entire measurement. The intense electric field generated at the needle tip 

during the corona process accelerates nearby free electrons to velocities high enough to 

impact-ionize gas molecules in their path, creating ions with the same polarity as the 

needle. Ion current carriers form a space charge between the electrodes, since the ambient 

gases are good insulators. The reactive ions accelerate toward the grounded film and 

accumulate near the surface, generating a very high electric field across the film. This field 

orients the dopants thereby inducing second order nonlinear activity. For in situ 

measurement of the SHG intensity, poling was performed at ambient temperature in a 

controlled atmosphere of air or nitrogen using a Plexiglas box with quartz windows. 

Significant SHG signal can be observed even when poling doped PMMA films at room 

temperature. This was not observed when using contact poling. Corona poling is a 

powerful method for creating a large potential across the film that efficiently orients the 

NLO dopants noncentrosymetrically in the polymer matrix. The major advantage of this 

method is the fact that only the bare, low conductivity polymer surface is charged. 

Impurities, defects, and pinholes, therefore, cause only relatively small local currents and 

do not result in short circuiting the whole sample. As a consequence, very high 

breakdown field strengths are readily achieved. 

Films of such dyes in glassy polymers give strong SHG signals but lack temporal 

stability in the glassy state at room temperature. The loss in SHG intensity with time is 

due to the rotation of the dye molecules in areas of locally high free volume and/or 

mobility and relaxation of the polymer chains after poling, thus giving the dopant 
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molecules greater freedom to rotate. Moreover, the low solubility of the dye in the 

polymer limits the number density of the active NLO component. 
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The use of polyimide as host in a guest-host thin film was demonstrated to exhibit 

electro-optic response stable at temperature up to 150 oc.64 The polyimide which is 

imidized at 250 °C with a de poling field between coplanar electrodes aligns the nonlinear 

optical guest. The imidization process involves the generation of water, and so the electric 

current across the electrodes was monitored to check for dielectric breakdown. 

Better temporal stability is obtained in dyes dissolved in a LCP instead of a non 

meso genic amorphous polymer such as PMMA.65 This is because the stable state of a 

LCP is anisotropic, and the long molecular axis of the dye aligns with director of the liquid 

crystal. 

Another alternative is to connect the active NLO chromophore to the polymer 

backbone. These materials have greater effectiveness because they have a higher molar 

concentration of the NLO species (for larger nonlinear susceptibility), decreased mobility 

(for greater temporal stability) and greater overall film homogeneity (for less scattering 

loss).66-68 NLO polymers provide a number of advantages over low molar mass organic 

molecules, including lower dielectric constant, greater processing flexibility, and improved 

mechanical properties. Thin films from an amorphous polyacrylate that incorporated p

nitroaniline as side groups with one methylene spacer chain exhibited a very high second 

order nonlinear coefficient, d33 = 31 prnN.69 The films were poled by a corona discharge 

and the SHG intensities were simultaneously (in situ) measured. The d33 coefficient 

decreased approximately 40% after 5 days (from the time the poling field was turned off at 

temperature below T g) and then stabilized. Methyl methacrylate copolymers with 

nonlinear optical4-alkoxy-4'-alkylsulfone stilbene side chains70, which are transparent 

down to 410 nm resulted in a reasonably high nonlinearity (d33::; 9 pmN).71 Thin-film 

samples were prepared by spin coating onto ITO covered glass substrate. A fairly stable, 

polar orientation has been obtained by means of electric field poling with a corona 
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discharge at temperatures which are about 20 K below the T g's of these polymers. The 

side chain concentration was limited by the occurrence of semi-crystallinity, giving rise to 

large scattering losses. 

+ CH2 
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Cl-ls+ CO-(Cf-1:,).,---

11 
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Incorporation of the dye into a highly cross-linked epoxy network can significantly 

enhance the temporal stability but does not prevent entirely decay of the SHG with 

time.72,73 Eich and his coworkers74 reported cross-linked polymers with NLO molecules 

covalently incorporated into a rigid network. The NLO moieties are cemented in their 

positions and cannot undergo local reorientational movements like doped or side group 

NLO polymers, where none or only one geometrical position of each NLO group is linked 

to the polymer backbone. In this method, a soluble prepolymer is first prepared that 

contains cross-linking sites attached to the NLO-active groups. Films of the prepolymer 

prepared by spin coating or from the melt, are heated (precured) to enable some chemical 

cross-linking and thus increase T g to an optimum for poling. The precured polymer is 

then heated above its T g and subjected to a high electric field to obtain the desired 

alignment of NLO moities. Subsequent chemical cross-linking (curing) under electric field 

continues to advance the Tg. Hence, the freezing-in of the noncentrosymmetric order is 

achieved. 
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Films of high optical quality showed d33 = 13.5 and d31 = 3 pmN for the corona poled, 

cured polymer, which remained completely stable after over 500 hours at ambient 

temperature. Furthermore, no tendency of decay in SHG signal even at 85 oc was 

observed. 

Jungbauer and coworkers 75 reported forming a network polymer from two NLO

active monomers, bifunctional N,N-(diglycidyl)-4-nitroaniline and trifunctional N-(2-

aminophenyl)-4-nitroaniline. In this case, every NLO moiety is connected to the network 

by a single covalent bond. After full cure under corona poling at 120 °C, the sample 

exhibited at ambient temperature d33 =50 pm/V and d31 = 16 pm/V at 1064 nm 

fundamental wavelength. The nonlinear coefficients were stable even at 80 °C. The same 

group observed that films of an epoxy polymer containing 4-amino-4'-nitrotolane 

chromophores, which were poled by corona discharge, showed very large nonlinear 

coefficients of d33 = 89 pm/V, which is three times as large as that oflithium niobate (d33 

= 30 pmN), and d31 = 25 pm/V for incident light of 1060 nm wavelength.76 The large 

d33 value can be accounted for by the long conjugated length and a large contribution from 

the resonance enhancement in the tolane moiety. 
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Another class of polymers was obtained by photo-crosslinking reactions between 

the photosensitive chromophores functionalized into NLO molecules and the same or 

related chromophores appended into a polymer, acting as the matrix.77-79 New cross

linking materials with NLO moieties, where the nonlinear species has a large molecular 

hyperpolarizability (e.g., donor, acceptor derivatized azo, stilbene and azomethine dyes) 

were investigated.77,78 
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Noncentrosymmetric organization ofNLO molecules in the polymer matrix was 

introduced by corona poling and the system was photo-crosslinked in the poled state, 

which yields material with excellent optical quality and stable, and large nonlinear 

coefficients. The second harmonic coefficient of the polymer film, d33, was in the range 

of 15 to 30 prn/V. Orientation of the chromophore showed stability for over long period 

of time at temperatures ranging from 60 °C to 85 °C. 

Temporal stability is also expected to improve when the NLO structure is the 

mesogen of a LCP. A LCP retains anisotropic structure indefinitely, whereas an 

ammphous polymer relaxes after electrical poling. The advantage of using LCPs is that 

these polymers can be ordered in the liquid crystalline phase at elevated temperature and 

this oriented mesophase may be cooled rapidly to below its glass transition temperature 

(T g) to freeze in the mesophase order. For an ideal smectic LC, there is an ordering factor 

of about 0.9 (Table IV), giving an enhanced polar order and the possibility of increasing 

the macroscopic second order susceptibility by a factor of 5 over amorphous polymers 

poled at the same field strength. This is due to spontaneous alignment of the dipoles 

above T g. giving natural axial order and hence greater ease of alignment. 

SCLCPs are more promising than MCLCPs because they have thermotropic 

mesophases at lower temperatures (typically 25 - 200 °C) and their responses to applied 

electric and magnetic fields are faster. Low temperature mesophases allow rapid alignment 

of samples at temperatures where they are chemically stable, and films can be prepared 

without the need for solvent SCLC copolymers containing dyes can be macroscopically 

oriented and the orientation can be locked in below T g· Moreover, the order parameters of 

these SCLC copolymers are higher than monomeric dyes dissolved in LCP.80,81 

A typical NLO side chain liquid crystalline polymer is illustrated below. 
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The structure consists of a mesogenic side chain which is also a NLO chromophore. The 

NLO side chains are usually conjugated stilbenes, or analogous diazo or azomethine 

systems with donor and acceptor groups at opposite ends of the conjugated system. The 

addition of a hydrocarbon chain produced a long rod-like anisotropic molecule with the 

desired LC properties. For SHG experiments, it is important that the LCPs possess polar 

side chains of positive dielectric anisotropy. Most of the SCLCPs that are known to form 

efficient SHG films have the donor substituent in the spacer chain and the acceptor at the 

end of the side chain. 82,83 

Leslie and his coworkers84 investigated the first series of NLO side chain liquid 

crystalline polymers. The mesogen/NLO unit is 4-hydroxy-4'-nitrobiphenyl. 
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Table v.a NLO Side Chain Polymer Properties. 

n Phaseb Tg (°C) Ti (°C) 

2 I 

3 N 85 100 
5 N 45 72 
6 N 40 64 

8 N 35 75 
11 SA 20 95 
12 SA 10 80 

aRef. 84. bJ =isotropic, N =nematic, SA= smectic A, T g =glass transition temperature, 

Ti = isotropization temperature. 

Free-standing films were prepared by pressing the polymer melt between two conductive 

glass surfaces. Poling was done by applying an electrical field across the samples at 

elevated temperature. The authors reported that the polymer films showed SHG signals. 

McCulloch and Bailey85 studied a series of polymers based on the polystyrene 

backbone with different mesogenic/NLO side chains. 

where n = 6, 8 or 1 0 
A= CH orN 
B = CH orN 



44 

The polystyrene was chosen due to its high optical transparency over a wide frequency 

range, its high dielectric strength and its relatively high T g· Polystyrene has a much higher 

refractive index than polyacrylates and polysiloxanes. The polystyrene system also has 

good film-forming ability and is chemically stable. Relatively high T gs were observed 

especially for the shorter spacer lengths (n = 6). As the spacer length increased, the 

relatively large enthalpy change at the isotropization temperature CTi) indicated a smectic 

LC phase. An estimate of the magnitude of ~ was made using the solvatochromic shift 

technique. The values obtained were found to be dependent on the solvent system 

employed. Using the solvent shift from THF to cyclohexane, the following values for the 

3 main polymer systems relative to p-nitroaniline were obtained. 

Table VI. a ~Values from Solvatochromic Method. 

Compound 

p-nitroaniline 

stilbene (CH=CH) 

diazo (N=N) 

azomethine (CH=N) 

aRef. 85. 

~ (expt) 

10 

28 

25 

16 

Preliminary electrical poling work was carried out. Partial alignment was achieved as 

confirmed by optical microscopy and SHG at 1064 nm, but considerable difficulty was 

encountered with dielectric breakdown, probably due to impurities in the backbone 

polymers. 

A recent study by Pfeiffer and Haase86 used LC polymethacrylates with a 

nitrostilbene mesogen in the side chain. 
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In order to achieve a LC material with high T g and only a nematic phase, the spacer length 

should be small. The authors showed that the SCLC polymethacrylates can be easily 

aligned using strong magnetic fields. A superconducting magnet with a field strength of 7 

Twas used and a completely transparent film of 75 jlm thickness was obtained. In the 

glassy state (above room temperature), no relaxation could be found in the frequency 

range under investigation. This means that once an orientation of the meso gens is 

achieved, this can be frozen in the glassy state. 

An earlier experiment by our group reported SHG responses on films of a SCLC 

polyacrylates with stilbene mesogen in which the donor substituent (amino group) is at the 

end of the side chain and the acceptor (ester group) in the spacer chain. 87 Absolute SHG 

conversion efficiencies approached I0-7, which are typical values for organic films. 

+ yH2 0 
I II H+. C0-(C~h0-0C II 

X 0 
N(CHsb 

Acentric Langmuir-Blodgett (LB)55,56 films represent a promising approach to 

high-efficiency SHG materials. This approach offers the advantage of being able to 

assemble a film layer by layer. Considerable effort has gone into the synthesis of 
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amphiphiles, characterization of mono- and multilayered films and measurement of their 

second NLO properties. 

Aktsipetrov and his coworkers88 in 1983 were the first to report on SHG from LB 

multilayers, using 4-octadecylamino-4'-nitroazobenzene as the amphiphile. 

02N-o-N~ _ 
N--o-NH-C,afia7 

In this experiment, they measured SHG in reflection from the surface, thus learning about 

molecular orientation in two dimensions. The monolayer on the surface has a x<2) value 

of 2.8 x 10-8 esu . They also reported the preparation of Y- and Z-type LB films from this 

compound. For the centrosymmetric Y-type five-layer film, deposited onto Si02 

hydrophilic surface, the measured J2ro was an order of magnitude lower than that of the 

monolayer. However, for the Z-type five-layer film, deposited onto a hydrophobic 

surface, they found that J2ro increased with the number of layers. 

The amphiphilic properties of the molecule were improved by adding a carboxylate 

group.89,90 Another important change was to shorten the alkyl chain from 18 to 12 

carbons, thus increasing the surface energy of the monolayer. 

As a result, the energy difference between the head-group and tail-group surfaces 

decreased and the stability ofZ -type film increased. Z-type films with and without Cd_2+ 

in the subphase were obtained. Cd2+ often gives more stable monolayers of carboxylic 

acids on water. The SHG measurements for the Cd2+ -stabilized film at an incident angle 
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of 450 yielded a large signal (532 nm). A x}2) value of 6.7 x lQ-6 esu was obtained for 

the film, the largest reported so far in the literature. This major enhancement is due both to 

the proximity of the second harmonic frequency (2co = 532 nm) to the absorption 

maximum (Amax = 504 nm without Cd2+ and 464 nm with Cd2+) and to the large number 

of 7t-electrons in the molecule. 

Multiple dippings of 4-[N-(4-carboxypentyl)-N-methylamino ]-4'-nitrostilbene 

resulted in suspected Z-type deposition with the molecules oriented in a head-to-tail, head

to-tail fashion, where the carboxylic acid group is the head.91 

Deposition occurred on the withdrawal only and the quantity of monolayer transferred was 

equivalent to 60% substrate coverage for each dip. Dipping (20 times) gave a clearly 

visible red coating which for the hydrophilic microscope slide exhibited strong SHG with 

a 1064 nm Nd!Y AG laser. The coated substrate still showed areas of similar strong SHG 

after 12 weeks when testing ceased. 

Noncentrosymmetric multilayer structure of merocyanine amphiphiles were first 

reported by Daniel and Smith.92 They introduced long-chain amines (C1sH37NH2) as the 

counter layer in their ABAB system. The monolayers were exposed to ammonia or 

methylamine to deprotonate the dyes. Girting and his coworkers93 reported the first SHG 

measurements on merocyanine LB film. They alternated layers of the C22 derivative with 

layers of co-tricosenoic acid as the intermediate layer and obtained ~z of 2.42 x I0-27 esu 

for the dye, which is resonance-enhanced at 2co (533 nm). 
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The chromophore that has received the most attention for fabrication of LB mono

and multilayers is that of the hernicyanine.94,95 The first report on LB films from 

hernicyanine was given by Girling and his coworkers.96 Both monolayers and ABAB 

multilayers with (1)-tricosenoic were prepared and the tilt angle of the chromophore in the 

monolayer was estimated to be 37°, and a ~z value of 2.29 x 19-28 esu. 

Ashwell prepared LB Y-type film structures of the Cts derivative hernicyanine 

interleaved with 4,4'-dioctadecyl-3,5,3',5'-tetramethyldipyrrylrnethene hydrobrornide.97 

This two-legged arnphiphilic molecule was synthesized specifically as a compatible spacer, 

the principle being that the hernicyanine tail might penetrate and fasten the interleaving LB 

layers. Quadratic SHG enhancement has been obtained for 300 layer films. 
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LB films of 2-docosylamino-5-nitropyridine have been introduced as 

noncentrosymmetric multilayers, exhibiting strong SHG. 98 

N02Y') 
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Films were found to display significant anisotropy with respect to the dipping direction. 

Preferential orientation of the chromophore was established by SHG measurements and by 

polarized UV-vis spectroscopy of monolayer and multilayer (40 layers) samples. At 20 

mN/m, monolayers showed their maximum absorption at 387 nm. The polarized spectra 

demonstrated that the monolayer was isotropic. The optical densities for parallel and 

perpendicular absorption are identical within experimental error. In contrast, the polarized 

spectra of the 40 layered-film showed a ratio of optical densities parallel and perpendicular 

to the dipping direction to be 1.6. A tilt angle of the alkyl chains of 37° obtained from X-

ray measurements is in good agreement with the calculated value of 36.50, obtained from 

the area per molecule (32 A2) found for monolayers on the water surface. Well-ordered 

Y -type LB multilayers of the same compound were reported to exhibit second order NLO 

effects, although they have a Y -type, herringbone-like structure.99 

one bilayer = 44.2 A 
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It is believed that this structure is the reason for the nonlinear optical properties of the LB 

films, which yielded d33 = 7.8 prnN for A =1064 nm and d33 = 2.0 for A= 1318 nm. 

For these experiments, samples of different thickness (880, 1770 and 2210 A) derived 

from X-ray measurements were used. The order within the layers is most likely caused by 

interlayer hydrogen bridging between the amino and the nitro groups of adjacent 

molecules. 

The formation of LB films from low molar mass amphiphiles and their SHG 

responses have been studied.55,56,100,101 However the use of polymeric amphiphiles 

either in the Y- or Z-type deposition is becoming attractive because of the thermal stability 

and possibly, amorphous nature of the films. 

Carr and Goodwin 102 reported the first SHG signal from an LB film of a side 

chain copolysiloxane. 

The interesting features in this system are the lack of a long alkyl chain and the fact that the 

hydrophilic head group (OH) is on the pendant chromophore, thus allowing for the 

polymer to serve as a hydrophobic blanket in the monolayer. A condensed phase is 

formed at ll = 20 mN/m and the average area occupied per chromophoric side group is 

approximately 38 A2 at ll = 30 mN/m. Furthermore, when the monolayers were 

maintained at this surface pressure, no significant change in the surface area was detected 

over a period of 64 hours, indicating no tendency for film rearrangement, collapse or 



5 1 

dissolution. Thus, the side chain polysiloxane forms exceptionally stable monolayers. A 

~z value of 8.4 x lQ-29 esu for the repeat unit was obtained. 

Anderson and his coworkersl03 prepared two hydrophilic side chain copolyethers 

with hemicyanine as pendant groups extending toward the hydrophobic region. 

A 

0 
I 

~~CI IH2 

--{-CH-CH2-0~)r--x -+-( CH-CH2-0~x 

B 

'I 
~ 

N cr I+ 
IH2CI ~~ 

--{-CH-CH2-0-)+-x-+( CH-CH2-0~x 



52 

In polymer A, the alkyl chain is connected to the pyridine acceptor, while in polymer B, it 

is connected to the oxygen donor. The compression isotherms for the two polymers 

showed that at a surface pressure of 35 mN/m, the surface area per chromophore unit is 27 

A2 for polymer A and 40 A2 for polymer B. These values are reasonable since A has 43 

repeat units with 47% chromophore load, and B has 11 repeat units with 33% load. The 

area per molecule for the hemicyanine chromophore is approximately 30 A2 at 35 mN/m. 

The results suggested that the hydrophilic polyether repeat units that do not have a 

chromophore side chain may be looping down into the subphase and not occupying any 

space at the air-water interphase. This is the first true noncentrosymmetric, stable Y-type 

multilayer of a polymeric amphiphile, where the chromophores are with their dipole 

pointing in the same direction, i.e., they have additive effect. They prepared films up to 

eight monolayers (four AB bilayers). Second harmonic radiation (532 nm) was detected 

for the optically active bilayers which are interleaved with an optically inert material such 

as arachidic acid. The SHG response increased quadratically with respect to the number 

of AB bilayers. The ability to probe the orientation and concentration dependence of the 

harmonic intensity makes SHG a useful structural probe. 

Monolayer film formation has been observed for a liquid crystalline copolymer 

containing a second order NLO side chain.104 The isotherm is generally smooth and 

rather featureless and does not display any phase transitions in the stable monolayer 

region. The film was pictured as having an orientation on the subphase that would be 

governed by the polar groups of the side chains of the copolymer. The authors assumed 

that the polar groups were lying flat on the subphase surface while the hydrocarbon 

backbone protruded away from the surface as shown below. The isotherm showed the 

film beginning to condensed at about 67 A2 per monomer unit which is in excellent 

agreement with the value (67 A2) obtained from the calculations using standard bond 

lengths and thicknesses, thus confirming the orientational model. The films 



were successfully transferred via the horizontal dipping technique. Results from UV

visible and attenuated total reflection-IR (A TR-IR) spectra have shown that the films 
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transferred onto substrates exhibit the inherent orientational properties of LB films. Due to 

the high viscosity of polymers, using horizontal lifting to transfer mono layers may be the 

approach to allow mass production of high quality NLO devices. 

The degree of alignment of LB films of two SCLC copolymerslOO,lOl were 

studied by Tredgold, Hodge and coworkers)07 These copolymers formed good LB 

layers by Y -deposition with deposition ratios near unity for both up and down strokes. 

Films approximately 670 monolayers thick (0.9 to 1.4 f.!m) were made with both 

copolymers. Comparison of apparently equivalent peaks, from X-ray diffraction patterns, 

for cast and LB materials always leads to the layer spacing of the LC film being rather 



54 

HO~ 

larger than the layer spacing of the equivalent cast film, due to the incorporation of water 

in the LB films. The layer spacing is reduced by heating, which drives off the water. LB 

films having similar thickness as the cast films were totally unresponsive to a magnetic 

field. 

The LB technique is an important method of providing oriented assemblies of 

organic molecules and side chain polymers, giving rise to the fabrication of large second 

order NLO films. This technique can be used to prepare ultrathin noncentrosymmetric 

films of SCLCPs having NLO chromophores for the study of SHG. Unfortunately, these 

films, particularly the alternating layer type, involve a painfully tedious method of 

preparation. They tend to be fragile and the nonlinear component is quite diluted by the 

ineffective aliphatic chains. Thermal and photochemical stability of the NLO-active moiety 

is also a major concern. Much progress remains to be made in molecular and polymer 

design and synthesis as well as in deposition processes before this approach constitutes a 

practical alternative for second order nonlinear materials. Therefore, their use is 

recommended primarily as models to probe nonlinearities of various molecular species 

incorporated into a film. 
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CHAPTER IT 

SYNTHESES AND CHARACTERIZATION OF LIQUID 

CRYSTALLINE SIDE CHAIN POL YSILOXANES 

WITH 4-AMIN0-4'-STILBENECARBOXYLIC 

ESTER MESOGENS 

Introduction 

Organic compounds, polymers and liquid crystalline polymers (LCPs) have 

generated considerable interest as potential materials for nonlinear optical (NLO) 

applications.! Side-chain liquid crystalline polymers (SCLCPs)2 are interesting materials 

because they combine the properties of polymers and those of liquid crystals of low 

molecular weight. 

SCLCPs with polarizable aromatic mesogens are good candidates for thin-film 

second order NLO materials. Most of the polymers that have been prepared and known to 

form second harmonic generation (SHG) films have the donor substituent in the spacer 

chain and the acceptor at the end of the side chain. 3-12 A series of side-chain polyacrylates 

with polarized 4-(dimethylarnino)-4'-stilbenecarboxylic ester mesogens,13 with the donor 

substituent at the end of the side chain and the acceptor in the spacer chain, was reported to 

form optically clear thin films and one of them exhibited a strong SHG response.l4 

Problems were encountered in the development of the liquid crystalline phases of these 

side chain polyacrylates. Long annealing times were needed to observe phase transitions 

in the DSC and microscopic textures. It is therefore of some interest to exchange the 
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hydrocarbon polymer main chain by a polysiloxane main chain, which is characterized by 

high flexibility of the chain segments. It is hoped that the change in the polymer backbone 

will give easily developed liquid crystalline phases. 

My research focuses on the preparation of liquid crystalline polysiloxanes with 

polarized 4-amino-4'-stilbenecarboxylic ester mesogens in the side chains. The transition 

temperatures and phase assignments of both the monomers and the polysiloxanes have 

been determined by thermal analysis, optical microscopy, and X-ray diffraction. 

Monolayer behavior of the polysiloxanes has been investigated by LB methods. LB Films 

were prepared from the monolayers of the polysiloxanes for future SHG studies. 

The SCLC polysiloxanes prepared are given below. 

R= -N(CH3h HPS-1, n = 60, m = 0 
CPS-1, n = 9, m = 8 

-NJ---O(CH2)5CH3 HPS-2, n = 60, m = 0 
CPS-2, n = 9, m = 8 

Experimental Section 

Materials. 4-Hydroxypiperidine, acetic anhydride, 80% NaH dispersed in 

mineral oil, 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5), bromohexane, 4-

fluorobenzaldehyde, methyl4-(hydroxymethyl)benzoate, thionyl chloride, triethyl 
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phosphite, 4-(N,N-dimethylamino )benzaldehyde, 10-undecen-1-ol, nickel acetylacetonate 

hydrate, and hexachloroplatinic acid were obtained from Aldrich and were used without 

further purification. Purities of the reagents were checked by 1 H NMR and Be NMR. 

Syntheses were run in air unless otherwise stated. Kodak chromagram sheets (silica gel 

with fluorescent indicator) were used for all thin layer chromatography (TLC) 

experiments. 

The poly(hydromethyl)siloxane (PHMS) with a reported DP of 45 to 90, was 

obtained from Wacker while the poly(hydromethylsiloxane-co-dimethylsiloxane) (PHMS

PDMS) (50 - 55 wt% hydromethyl) with a reported molecular weight of 900 - 1000, was 

obtained from Petrarch. Table VII reports the average molecular weights, Mw/Mn, and 

DP of the two polysiloxanes, PHMS and PHMS-PDMS, used in the experiment as 

obtained by GPC and 29Si NMR analyses. 

Table Vll. Characterization of Commercial Polysiloxanes 

Polymer a pea 29SiNMRb 
(Source) 

Mn Mw Mw/Mn Mn DP 

PHMS 3800 10 400 2.7 3762 60± 3 
(Wacker) 

PHMS-PDMS 1050 1800 1.8 1294 17 ± 1 (9: 8) 
(Petrarch) 

a Analyses in toluene solution at 25 °C and flow rate of 1 mL/min. A refractive index 

detector (Waters Differential Refractometer R401) was used and calibration was based on 

cubic fit values using polystyrenes of Mn = (0.800 - 100) x 103 as standards. bEnd 

group analysis (see appendix, spectrum 15). 

Measurements. 1 H NMR and Be NMR spectra were recorded on a Varian XL-

300 instrument at 300 MHz and 75 MHz, respectively. 29Si NMR spectra were recorded 
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on a Varian XL-400 instrument at 79 MHz, and the experimental conditions are reported 

in Table VIII. IR spectra were obtained on a Perkin-Elmer 681 instrument. A Varian 

DMS 200 spectrophotometer was used for UV -visible measurements. Synthesized 

materials were sent to Galbraith Laboratories, Inc. for elemental analyses. 

Table Vlll. 29Si NMR Experimental Conditions 

Solvent CDCl3 

Reference TMS (0.05%) 

Polymer concentrationa 10- 20% (w/v) 

Paramagnetic relaxation 1% (w/v) 

agent, Cr(acac ha 

Acquisition temperature ambient 

Acquisition time 1.989 s 

Pulse width 20.0 JlS 

Pulse delay 1.500 s 

Transients 1600- 26 500 

Decoupler modea NNYb 

a As reported by Gray and coworkers. IS b Decoupler is on only during 

spectral acquisition. 

Molecular weights obtained by gel permeation chromatography (GPC) were 

conducted with a Waters 590 pump equipped with a Rheodyne injector with a 20-J.LL 

sample loop, a Beckman 153 analytical254-nm UV detector, and an Interactive Microware 

data station. GPC analyses were performed at 25 °C using three PL gel columns of 102, 

1Q3, 1o4 A obtained from Polymer Laboratories, Ltd. THF was the solvent at a flow rate 

of 1 rnL/min and polystyrenes ofMn = (0.8- 600) x 1Q3 were the standards for 

calibrations using the cubic fit values. Solutions ( ...... lQ mg polymer/rnL THF) were filtered 

through a 0.5 Jlm PTFE membrane (Alltech Associates, Inc.) before injection into the 

chromatograph. 
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Differential scanning calorimetry (DSC) measurements were performed with a 

Perkin Elmer DSC-2 instrument equipped with aT ADS 3600 data station. Two separate 

scans were done for each of the side chain polysiloxanes. The baseline on each scan was 

optimized. The first scan was done from -123 °C to 77 °C with the use of liquid nitrogen 

as coolant. Helium was used as purge gas for the sample holder enclosure while the dry 

box was purged with nitrogen. The second scan was performed from 37 °C to about 250 

oc, using nitrogen as purge gas for both the sample holder enclosure and dry box. For 

the second scan, the temperatures and heats of transitions were calibrated with indium as 

the standard. Scans were typically done at a rate of 20 K/min. Glass transition 

temperatures (f g) were read at the midpoint of the change in the heat capacity. 

The phase transition behaviors and mesomorphic textures were observed with a 

Nikon OPTIPHOT-POL microscope with crossed polarizers and equipped with a Mettler 

FP82 hot stage controlled by a Mettler FP80 thermoregulator. Observations were made at 

rates between 10 and 1 K/rnin and transition temperatures quoted are from extrapolation to 

zero rate. In many cases the polymeric samples were quite viscous in the mesophase, and 

annealing at elevated temperatures for several hours was necessary to obtain good 

textures. 

X-ray diffraction powder measurements were performed with Cu-Ka. radiation, 

using a Philips APD 3720 high temperature X-ray diffractometer equipped with a tantalum 

heating plate controlled by a thermoregulator. The sample chamber was purged with 

helium gas during each measurement. Prior to the X-ray measurements, the sample was 

heated above the clearing point to erase any previous thermal history and then cooled to the 

desired temperatures for measurement. 

LB measurements were performed with KSV 5000 instruments equipped with one 

barrier for unsymmetrical compression and both floating barrier and Wilhelmy plate 

surface pressure sensors. Monolayers were spread on the water subphase from 

chloroform solutions (approx. 0.5 mg/mL) and were compressed at barrier speeds of 25 
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to 5 mm/min. All measurements were done at about 27 to 30 °C. The monolayers were 

characterized at the air-water interface by measurement of the film surface pressure, n, vs 

mean molecular area, Mma, isotherms. The hysteresis behavior by compression and 

subsequent expansion of the monolayer was also investigated. The temporal stability of 

the monolayers was checked by isobaric creep measurements as well as pressure drop 

measurements at constant surface area. 

Quartz microscope slides (25 mm x 25 mm x 2 mm) were used for dipping 

experiments. They were thoroughly cleaned with chromic acid solution and rinsed five to 

six times with deionized water to provide hydrophilic surfaces. For hydrophobic 

substrates, the cleaned slides were first soaked in a chloroform-methanol (1 :2) solution for 

one hour and chloroform for another hour. The slides were then treated with a silanization 

solution (containing 70 mL of decahydronaphthalene, 30 mL chloroform and 

approximately 5 mL of octadecyltrichlorosilane) for 24 h at room temperature. The 

hydrophobized slides were stirred in chloroform, chloroform-methanol (1:2) solution and 

methanol, each for 15 min. The success of the hydrophobization was tested by dipping 

the treated slide into water. When it was quickly pulled out, the hydrophobic slide looked 

dry. The cleaning and the hydrophobization of the slides were all done in covered wide

mouth bottles and slides were stored in cleaned, dried bottles. 

Monolayers were spread on the water subphase and were symmetrically 

compressed using two barriers at a speed of 5 mm/min. Monolayer transfer was carried 

out at constant surface pressure of 20 mN/m and at this time, the barrier speed was 

reduced to a maximum of 1.0 mm/min. The monolayers were allowed to stabilize for 

about 30 min before dipping the substrate at a slow speed of 1.0 mm/min. The substrate 

was withdrawn at the same speed as the dipping speed. 

N-Acetyl-4-hydroxypiperidine (2). To a solution of 4-hydroxypiperidine 

(247 mmol, 25.0 g) and acetic anhydride (247 mmol, 23.5 mL), an equivalent amount of 

anhydrous K2C03 was added. The reaction mixture was stirred at room temperature for 6 
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h under dry air. The progress of the reaction was monitored by TLC using ethyl acetate : 

acetone (1:1) as eluant. After 12 h, no 4-hydroxypiperidine was detected. The product 

was extracted with CH2C12 and the solid K2C03 was filtered off. The solvent was 

removed by rotavap and the pure product was collected by distillation at approximately 

130 °C and 0.25 mmHg. The yield was 28.47 g (81 %). lH NMR (CDCl3) o 1.52 and 

1.87 (2m, 4 H, CH2), 2.09 (s, 3 H, CH3C=O), 3.21, 3.72 and 4.04 (3m, 4 H, NCH2), 

3.90 (m, 1 H, OCH), 4.31 (s, 1 H, OH). Be NMR (CDCl3) o 21.2 (CH3C=O), 33.5 

(CH2), 34.2 (CH2), 38.8 (NCH2), 43.6 (NCH2), 66.2 (OCH), 168.9 (C=O). IR (neat, 

cm-1) 3060- 3700 (0-H), 2940, 2890, 1630 (C=O), 1490, 1460, 1440, 1370, 1270, 

1240, 1090, 1050. Anal. Calcd for C7H13N02: C, 58.72; H, 9.15; N, 9.78. Found: C, 

58.67; H, 9.37; N, 9.68. 

N-Acetyl-4-hexyloxypiperidine (3). A sample of 88 mmol (2.64 g) 80% 

NaH dispersed in mineral oil was washed three times with pentane under N2. To a stirred 

slurry of NaH in 20 mL of dry DMF, 80 mmol (11.45 g) of compound 2 (dried at room 

temperature under vacuum prior to the reaction) and 5 mmol (1 mL) of 15-crown-5 were 

added under N2 and the mixture was stirred at room temperature for 15 min. An 

equimolar amount of 1-bromohexane (80 mmol; 11.25 mL) was added and the mixture 

was allowed to stand at room temperature for 48 h. The mixture was poured into 150 mL 

ice-water and the product was extracted three times with ether. The combined ether 

extracts were washed three times with H20 and the final extract was dried over anhydrous 

Na2S04. The ether was removed by rotavap and the pure product was collected by 

reduced pressure distillation. at 120 °C and 0.25 tnmHg. The yield was 7.46 g (41 %). lH 

NMR (CDCl3) o 0.90 (t, 3 H, CH3), 1.31 (m, 6 H, (CH2)3CH3), 1.57 (m, 4 H, 

OCH2CH2 and OCHCH2), 1.83 (m, 2 H, OCHCH2), 2.09 (s, 3 H, CH3C=O), 3.27, 

3.65 and 3.90 (3m, 4 H, NCH2), 3.47 (overlapping t and m, 3 H, OCH and OCH2). 

13C NMR (CDCl3) o 14.1 (CH3), 21.5 (CH3C=O), 22.6 (CH3CH2), 25.9 ((CH2hCH2), 

30.0 (OCH2CH2), 30.6 (OCHCH2), 31.7 (CH3CH2CH2 and OCHCH2), 38.8 (NCH2), 



43.7 (NCH2), 68.2 (OCH2), 73.8 (OCH), 168.8 (C=O). IR (neat, cm-1) 2940, 2860, 

1650 (C=O), 1440, 1360, 1280, 1240, 1110, 1050. Anal. Calcd for C13H2sN02: C, 

68.68; H, 11.08; N, 6.16. Found: C, 69.36; H, 10.69; N, 6.04. 
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4-Hexyloxypiperidine (4). A mixture of compound 3 (30 mmol; 6.82 g) and 

3.5 M H2S04 (300 mmol, 86 mL) was refluxed overnight. The mixture was poured into 

150 rnL ice-water. NaOH pellets were added to make the solution basic. The product was 

extracted three times with ether and the combined ether extracts were washed three times 

with H20. The final extract was dried over anhydrous Na2S04 and concentrated by 

rotavap. The pure product was collected by reduced pressure distillation at 80 oc and 

0.25 mmHg. The yield was 4.68 g (84%). lH NMR (CDCl3) 8 0.90 (t, 3 H, CH3), 

1.34 (m, 6 H, (CH2)3CH3), 1.41 and 1.91 (2m, 4 H, OCHCH2), 1.54 (s, 1H, NH), 

1.56 (quintet, 2 H, J = 7 Hz, OCH2CH2), 2.60 and 3.08 (2 m, 4 H, NCH2), 3.32 (m, 1 

H, OCH), 3.44 (t, 2 H, J = 7 Hz, OCH2). 13C NMR (CDCl3) 8 14.1 (CH3), 22.7 

(CH3CH2), 25.9 ((CH2)2CH2), 30.1 (OCH2CH2), 31.7 (CH3CH2CH2), 33.2 

(OCHCH2), 44.7 (NCH2), 67.8 (OCH2), 75.6 (OCH). IR (neat, cm-1) 3280 (N-H), 

2940, 2860, 2740, 1470, 1450, 1360, 1320, 1160, 1110, 1040, 1000, 770. Anal. Calcd 

for CnH23NO: C, 71.30; H, 12.51; N, 7.56. Found: C, 70.89; H, 12.23; N, 7.59. 

4-(4'-Hexyloxy-1-piperidino)benzaldehyde (5). Equimolar quantities of 

compound 4 (27.8 mmol, 5.15 g) and 4-fluorobenzaldehyde (27.8 mmol, 3.45 g) with 

3.84 g of anhydrous K2C03 in 5 rnL of DMSO were stirred and heated under N2 at 90 °C 

for 48 h. The progress of the reaction was monitored by TLC using CHCl3 : hexane (1: 1) 

as eluant. After 48 h, the absence of the starting aldehyde was noted. The reaction 

mixture was then poured into 250 rnL of H20 and the precipitate was filtered. Mter 

several recrystallizations from ethanol-water, the yield was 5.88 g (73%) and the melting 

point was 42-44 °C. lH NMR (CDCl3) 8 0.89 (t, 3 H, CH3), 1.33 (m, 6 H, 

(CH2)3CH3), 1.57 (quintet, 2 H, J =7Hz, OCH2CH2), 1.70 and 1.94 (2m, 4 H, 

OCHCH2), 3.21 and 3.70 (2m, 4 H, NCH2), 3.47 (t, 2 H, J =7Hz, OCH2), 3.61 (m, 1 



H, OCH), 6.91 (d, 2 H, J =9Hz, Ar H3 and H5), 7.73 (d, 2 H, J =9Hz, Ar H2 and 

H6), 9.76 (s, 1 H, HC=O). 13C NMR (CDCl3) B 14.1 (CH3), 22.6 (CH3CH2), 25.9 
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((CH2)2CH2), 30.1 (OCH2CH2), 30.6 (OCHCH2), 31.7 (CH3CH2CH2), 44.9 (NCH2), 

68.2 (OCH2), 73.9 (OCH), 113.4 (Ar C3 and C5), 126.5 (Ar C1), 132.0 (Ar C2 and 

C6), 154.8 (Ar C4), 190.3 (C=O). IR (KBr, cm-1) 2960, 2940, 2860, 1680 (C=O), 

1620 (C=C), 1380, 1250, 1230, 1180, 1120, 1100, 1080, 810. UV-vis (CHCl3) Amax = 

338 nm (e = 2.79 x 104 M-1 cm-1). Anal. Calcd for C1sH27N02: C, 74.70; H, 9.40; N, 

4.84. Found: C, 74.98; H, 9.62; N, 4.86. 

Methyl 4-(chloromethyl)benzoate (7). Methyl 4-(hydroxymethyl)benzoate 

(100 mmol, 16.96 g) was dissolved in 110 mmol (8.10 mL) ofthionyl chloride. The 

reaction mixture was allowed to stand in the hood under dry air for 16 hand was refluxed 

for 30 min in an oil bath. The solution was poured into 100 mL of ice-water and the 

product was extracted three times with 60 mL portions of ether. The combined ether 

extracts were washed twice with 60 mL portions of saturated aqueous sodium bicarbonate 

and once with 60 mL of H20. The final extract was dried over anhydrous Na2S04. The 

ether was distilled off by rotavap and the product was obtained by distillation at 109 °C 

and 10 mmHg. The melting point of the product was 39-40 °C (lit.16 mp 39 - 40 °C) and 

the yield was 15.88 (55%). lH NMR (CDCl3) B 3.90 (s, 3 H, OCH3), 4.60 (s, 2 H, 

ClCH2), 7.45 (d, 2 H, Ar H3 and H5), 8.02 (d, 2 H, Ar H2 and H4). 13C NMR 

(CDCl3) 8 43.5 (ClCH2), 52.0 (OCH3), 124.5 (Ar C3 and C5), 130.0 (Ar C1, C2 and 

C6), 142.0 (Ar C4), 166.5 (C=O). 

Diethyl p-(methoxycarbonyl)benzylphosphonate (8). A mixture of 40 

mmol (7.38 g) of compound 7 and 50 mmol (8.66 mL) of triethyl phosphite was refluxed 

for 1 h using an oil bath. At the end of the reflux period, the phosphate ester was allowed 

to cool to room temperature. The excess triethyl phosphite was distilled off under reduced 

pressure and then the product was obtained at 185 °C and 5 mmHg. The yield was 10.47 

g (93%). Spectral analyses agreed with previous literature.l3 
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4-(N ,N -dimethylamino )-4 1 -carbomethoxy-trans-stilbene (9). A sample 

of 30 mmol (0.90 g) 80% NaH dispersed in mineral oil was washed three times with dry 

pentane under N2. A solution of 30 mg of 15-crown-5 in 60 mL of dry THF was added. 

This reaction was done in the dark under N2. To this stirred slurry, a solution of 4-(N,N

dimethylamino)benzaldehyde (40 mmol, 5.98 g) and compound 8 (40 mmol, 11.40 g) in 

30 mL of THF was added dropwise at 0 °C. During the course of the reaction, a yellow 

precipitate formed. The mixture was stirred for 2 h at room temperature and poured into 

400 mL of ice-water. The precipitate was filtered and washed with ether. Mter 

recrystallization from DMF, 9.16 g (81 %) of greenish yellow powder was obtained. The 

melting transition temperature, obtained from the DSC, was 226 °C (lit.l3 T m 229 DC). 

Spectral analyses agreed with previous literature.l3 UV-vis (CHCl3) Amax = 383 nm (e = 

2.94 x 1o4 M-1 cm-1). Anal. Calcd for CtsH19N02: C, 76.84; H, 6.81; N, 4.98. Found: 

C, 76.76; H, 6.85; N, 4.96. 

4-( 4-Hexyloxy-1-pi peridino )-4 1 -carbomethoxy-trans-stilbene (10). 

The same procedure was followed as described above for 9 using a solution of 5 (20 

mmol, 5.79 g) and compound 8 (20 mmol, 5.72 g) in 30 mL THF. After recrystallization 

from DMF, 7.07 g (84%) of greenish yellow powder was obtained. Three phase 

transitions were observed from the DSC scan (C 178 °C M1 227 °C M2 252 oc I). 

No microscopic texture was obtained due to the decomposition of the material at the 

isotropization temperature, which was not observed in the thermal analysis because this 

was done under nitrogen. lH NMR (CDCl3) o 0.89 (t, 3 H, CH3), 1.31 (m, 6 H, 

(CH2)3CH3 ), 1.57 (quintet, 2 H, J =7Hz, OCH2CH2), 1.71 and 1.97 (2m, 4 H, 

OCHCH2), 2.99 and 3.59 ( 2m, 4 H, NCH2), 3.47 (overlapping t and m, 3 H, J = 7 Hz, 

OCR and OCH2), 3.91 (s, 3 H, C02CH3), 6.91 (d, 2 H, J = 8.4 Hz, Ar H3 and H5), 

6.95 (d, 1 H, J = 16.5 Hz, =CHArC02R), 7.12 (d, 1 H, J = 16.5 Hz, =CHArNR2), 

7.42 (d, 2 H, J = 8.4 Hz, Ar H2 and H6), 7.51 (d, 2 H, J = 8.2 Hz, Ar H2' and H6'), 

7.99 (d, 2 H, J = 8.2 Hz, Ar H3' and H5'). 13C NMR (CDCl3) o 14.1 (CH3), 22.6 



73 

(CH3CH2), 25.9 ((CH2)2CH2), 30.1 (OCH2CH2), 30.9 (OCHCH2), 31.7 

(CH3CH2CH2), 46.6 (NCH2), 52.0 (C02CH3), 68.1 (OCH2), 74.4 (OCH), 115.8 (Ar 

C3 and C5), 124.2 (=CHArC02R), 125.8 (Ar C2' and C6'), 127.3 (Ar C1), 127.9 (Ar 

C2 and C6), 128.1 (Ar C4'), 129.9 (Ar C3' and C5'), 131.1 (=CHArNR2), 142.6 (Ar 

C1'), 151.1 (Ar C4), 167.0 (C=O). IR (KBr, cm-1) 2960, 2940, 2860, 1720 (C=O), 

1600(C=C), 1520,1440,1410,1370,1290,1190,1180,1110,960,840,810,770. 

UV-vis (CHCl3) A-max= 370 nm (e = 3.38 x 104 M-1 cm-1). Anal. Calcd for 

C27H3sN03: C, 76.92; H, 8.37; N, 3.32. Found: C, 76.80; H, 8.42; N, 3.31. 

10-Undecen-1-yi-4-(N ,N-dimethylamino )-trans-stil bene-4 '· 

carboxylate (MNR-1). A mixture of 5.0 mmol (1.41 g) of compound 9 and 25 mmol 

(5 mL) of ro-undecylenyl alcohol in 20 mL of xylene was treated with 1.0 mmol (0.27 g) 

of nickel acetylacetonate hydrate. The mixture was refluxed in the dark until no more of 

compound 9 could be detected by TLC using 15% ethyl acetate in hexane as eluant. The 

mixture was allowed to pass through a filter paper to filter off the black solid that was 

formed. The black solid was washed several times with ethyl acetate using a total volume 

of 300 mL. The filtrate was washed three times with H20. The organic layer was dried 

over anhydrous Na2S04 and then the solvent was removed by rotavap. The crude product 

was recrystallized from ethyl alcohol with a yield of 1.39 g (66% ). 1 H NMR (CDCl3) o 

1.37 (m, 12 H, (CH2)6), 1.76 (quintet, 2 H, J = 7 Hz, C02CH2CH2), 2.04 (q, 2 H, J = 

7 Hz, =CHCH2), 2.99 (s, 6 H, NCH3), 4.30 (t, 2 H, J = 7 Hz, C02CH2), 4.97 (m, 2H, 

=CH2), 5.80 (m, 1 H, =CH), 6.71 (d, 2 H, J = 8.8 Hz, Ar H3 and H5), 6.92 (d, 1 H, J 

= 16.2 Hz, =CHArC02R), 7.15 (d, 1 H, J = 16.3 Hz, =CHArNR2), 7.43 (d, 2 H, J = 

8.8 Hz, Ar H2 and H6), 7.51 (d, 2 H, J = 8.4 Hz, Ar H2' and H6'), 7.98 (d, 2 H, J = 

8.3 Hz, Ar H3' and H5'). 13C NMR (CDCl3) o 25.9, 28.6, 28.8, 29.0, 29.1, 29.2 and 

29.3 ((CH)7), 33.6 (=CHCH2), 40.2 (NCH3), 64.8 (C02CH2), 112.1 (Ar C3 and C5), 

114.0 (=CH2), 122.9 (=CHArC02R), 124.9 (Ar C1), 125.5 (Ar C2' and C6'), 127.8 (Ar 

C2 and C6), 128.1 (Ar C4'), 129.8 (Ar C3' and C5'), 131.2 (=CHArNR2), 139.1 
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(=CH), 142.6 (Ar C1'), 150.3 (Ar C4), 166.5 (C=O). IR (KBr, cm-1) 2920, 2860, 1710 

(C=O), 1600 (C=C), 1530, 1360, 1280, 1200, 1180, 1110, 820. UV-vis (CHCI3) Amax 

= 381 nm (E = 3.05 x 104 M-1 cm-1). Anal. Calcd for C2sH37N02: C, 80.15; H, 8.89; 

N, 3.34. Found: C, 80.52; H, 8.97; N, 3.31. 

10-U ndecen-1-yl-4-( 4-hexyloxy -1- piperidino )-trans-stilbene-4'

carboxylate (MNR-2). The same procedure was followed as described above for 

MNR-1 using a mixture of 5.0 mmol (2.10 g) of compound 10 and 25 mmol (5 mL) of 

ro-undecylenyl alcohol in 20 mL of xylene treated with 1.0 mmol (0.27 g) of nickel 

acetylacetonate hydrate. Recrystallization from ethyl alcohol gave a yield of 1.94 g (69%). 

1H NMR (CDCl3) o 0.89 (t, 3 H, CH3), 1.37 (m, 18 H, (CH2)6 and (CH2)3CH3), 1.57 

(quintet, 2 H, J = 7 Hz, OCH2CH2), 1.73 (m, 4 H, C02CH2CH2 and OCHCH2), 2.02 

(m, 4 H, =CHCH2 and OCHCH2), 2.99 and 3.59 (2m, 4 H, NCH2), 3.47 (overlapping 

t and m, 3 H, J =7Hz, OCH and OCH2), 4.30 (t, 2 H, J =7Hz, C02CH2), 4.97 (m, 

2H, =CH2), 5.80 (m, 1 H, =CH), 6.91 (d, 2 H, J = 8.7 Hz, Ar H3 and H5), 6.96 (d, 1 

H, J = 15.6 Hz, =CHArC02R), 7.14 (d, 1 H, J = 16.1 Hz, =CHArNR2), 7.42 (d, 2 H, J 

= 8.7 Hz, Ar H2 and H6), 7.51 (d, 2 H, J = 8.4 Hz, Ar H2' and H6'), 7.99 (d, 2 H, J = 

8.3 Hz, Ar H3' and H5'). Be NMR (CDCl3) o 14.1 (CH3), 22.6 (CH3CH2), 25.9 

((CH2hCH2), 26.0, 28.7, 28.9, 29.1, 29.2, 29.4, 29.5 ((CH2)7), 30.1 (OCH2CH2), 

30.9 (OCHCH2), 31.7 (CH3CH2CH2), 33.8 (=CHCH2), 46.6 (NCH2), 65.0 

(C02CH2), 68.1 (OCH2), 74.4 (OCH), 114.1 (=CH2), 115.8 (Ar C3 and C5), 124.2 

(=CHArC02R), 125.8 (Ar C2' and C6'), 127.3 (Ar C1), 127.8 (Ar C2 and C6), 128.5 

(Ar C4'), 129.9 (Ar C3' and C5'), 131.0 (=CHArNR2), 139.2 (=CH), 142.4 (Ar C1'), 

151.1 (Ar C4), 166.6 (C=O). IR (KBr, cm-1) 2930, 2860, 1710 (C=O), 1600 (C=C), 

1520, 1470, 1370, 1280, 1180, 1110, 820, 770. UV-vis (CHCl3) Amax = 369 nrn (E = 

2.97 x 104 M-1 cm-1). Anal. Calcd for C37H53N03: C, 79.38; H, 9.54; N, 2.50. Found: 

C, 78.86; H, 9.76; N, 2.42. 
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Polyhydrosilylation reaction procedure. The starting polysiloxane and a 

10 mol% excess of the appropriate monomers, MNR, with respect to the Si-H bonds 

were dissolved in 30 ml of dry toluene (freshly distilled and dried over molecular sieves). 

A solution of equimolar amounts of chloroplatinic acid catalyst CH2PtClt;) and 

triethylamine in 2-propanol was added to give aPt: alkene ratio of 0.0001. The reaction 

was carried out in the dark at 100 °C for about 48 h under Ar, until negligible Si-H 

absorption (2160 cm-1) was detectable by IR spectroscopy. When no change in the Si-H 

absorption was observed, an equimolar amount of 1-octene to the original Si-H was added 

to the reaction mixture. The reaction was then allowed to proceed for several hours. The 

polymer was precipitated from a solution of chloroform by the slow addition of methanol 

with continuous stirring. Approximately 2 g of polymer was dissolved in about 30 mL of 

chloroform and a total of about 300 mL of methanol was consumed. The polymer was 

vacuum filtered through a fritted disc (fine porosity) Buchner funnel. The precipitation 

step was done six to seven times. In each precipitation, the purity of the polymers was 

checked by gel permeation chromatography, GPC. The side-chain polysiloxanes obtained 

were characterized and the data are listed below. 

HPS-1. The procedure was followed as described above using a mixture of 0.41 

g (6.5 mmol (Si-H)) ofpoly(hydromethylsiloxane) and 3.00 g (7.15 mmol) ofMNR-1 in 

30 mL of dry toluene. Toluene was used in the precipitation process since the polymer is 

soluble in hot toluene while insoluble in cold toluene. Approximately 2.5 g of HPS-1 

was dissolved in about 25 mL of hot toluene. The hot solution was filtered quickly 

through a fluted filter paper. The solution was cooled to room temperature and then placed 

in an ice-bath. The polymer was vacuum filtered through a fritted disc (fine porosity) 

Buchner funnel. After the final precipitation, 2.15 g ( 69%) of greenish yellow powder 

was obtained. lH NMR (CDCI3) 8 0.04 (Si-CH3), 0.12 (terminal Si-CH3), 0.49 (Si-

CH2), 0.84 (CH3), 1.32 ((CH2)6 and (CH2)3), 1.69 (C02CH2CH2), 2.88 (NCH3), 4.45 

(C02CH2), 6.64 (Ar H3 and H5), 6.86 (=CHArC02R), 7.06 (=CHArNR2), 7.35 (Ar H2 
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and H6), 7.42 (Ar H2' and H6'), 7.92 (Ar H3' and H5'). 13C NMR (CDCl3) 8 17.7 (Si

CH2), 23.1, 26.1, 28.8, 29.5, 29.6, 29.7, 29.8, 32.0 and 33.6 ((CH2)6 and (CH2)9), 

40.3 (NCH3), 65.0 (C02CH2), 112.1 (Ar C3 and C5), 123.0 (=CHArC02R), 125.0 (Ar 

C1), 125.6 (Ar C2' and C6'), 128.0 (Ar C2 and C6), 128.2 (Ar C4'), 129.9 (Ar C3' and 

C5'), 131.2 (=CHArNR2), 142.6 (Ar C1'), 150.3 (Ar C4), 166.5 (C=O). 29Si NMR 

(CDCl3) 8 -21.3 to -22.9 (CH3-Si-CH2). IR (KBr, cm-1) 2920, 2850, 2150 (small peak, 

Si-H), 1710 (C=O), 1600 (C=C), 1520, 1410, 1360, 1280, 1260, 1180, 1100- 1010 

(Si-0), 840, 810, 770. UV-vis (CHCl3) Amax = 382 nm. Anal. Calcd for HPS-1: C, 

72.45; H, 8.63; N, 2.90; Si, 6.02. Found: C, 71.32; H, 9.69; N, 2.12; Si, 7.87. 

CPS-1. The procedure was followed as described above using a mixture of 0.93 

g (6.5 mmol (Si-H)) ofpoly(hydromethyl-dimethylsiloxane) and 3.00 g (7.15 mmol) of 

MNR-1 in 30 mL of dry toluene. After the final precipitation, 2.29 g (63%) of greenish 

yellow powder was obtained. lH NMR (CDCl3) 8 0.04 (Si-CH3), 0.12 (terminal Si-

CH3), 0.48 (Si-CH2), 0.85 (CH3), 1.25 ((CH2)6 and (CH2)s), 1.72 (C02CH2CH2), 

2.96 (NCH3), 4.26 (C02CH2), 6.67 (Ar H3 and H5), 6.88 (=CHArC02R), 7.11 

(=CHArNR2), 7.39 (Ar H2 and H6), 7.46 (Ar H2' and H6'), 7.95 (Ar H3' and H5'). 

13C NMR (CDCl3) 8 1.1 (Si-CH3), 1.2 (terminal Si-CH3), 17.6 (Si-CH2), 23.1, 26.1, 

28.8, 29.4, 29.5, 29.7, 32.0 and 33.5 ((CH2)6 and (CH2)9), 40.3 (NCH3), 65.0 

(C02CH2), 112.3 (Ar C3 and C5), 123.0 (=CHArC02R), 125.0 (Ar C1), 125.6 (Ar C2' 

and C6'), 128.0 (Ar C2 and C6), 128.2 (Ar C4'), 129.9 (Ar C3' and C5'), 131.3 

(=CHArNR2), 142.7 (Ar C1'), 150.4 (Ar C4), 166.6 (C=O). 29Si NMR (CDCl3) 8-

21.8 to -23.0 (CH3-Si-CH2 and CH3-Si-CH3), 6.8, 6.9, 7.1 and 7.2 (terminal Si). IR 

(KBr, cm-1) 2960, 2920, 2850, 2150 (small peak, Si-H), 1710 (C=O), 1600 (C=C), 

1520, 1410, 1360, 1280, 1260, 1180, 1100-1010 (Si-0), 840, 810, 770. UV-vis 

(CHCl3) Amax = 382 nm. Anal. Calcd for CPS-1: C, 67.00; H, 8.64; N, 2.48; Si, 

10.52. Found: C, 66.05; H, 8.45; N, 2.30; Si, 10.39. 
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HPS-2. The procedure was followed as described above using a mixture of 0.25 

g (4.0 mmol (Si-H)) ofpoly(hydromethylsiloxane) and 2.50 g (4.47 mmol) ofMNR-2 in 

30 mL of dry toluene. After the final precipitation, 1.38 g (55%) of greenish yellow 

powder was obtained. 1 H NMR (CDCl3) o 0.05 (Si-CH3), 0.51 (Si-CH2), 0.86 (CH3), 

1.29 ((CH2)3, (CH2)6 and (CH2)g), 1.54 (OCH2CH2), 1.69 (C02CH2CH2 and 

OCHCH2), 1.94 (OCHCH2), 2.94 and 3.54 (NCH2), 3.44 (OCH and OCH2), 4.25 

(C02CH2), 6.87 (Ar H3, H5 and =CHArC02R), 7.08 (=CHArNR2), 7.38 (Ar H2 and 

H6), 7.46 (Ar H2' and H6'), 7.96 (Ar H3' and H5'). 13C NMR (CDCI3) o 14.1 (CH3), 

17.7 (Si-CH2), 22.6 (CH3CH2), 23.1, 25.9, 26.1, 28.8, 29.5, 29.7, 29.8, 30.1, 30.2 

and 33.6 ((CH2)2, (CH2)6 and (CH2)9), 30.9 (OCHCH2), 31.7 (CH3CH2CH2), 46.6 

(NCH2), 65.0 (C02CH2), 68.0 (OCH2), 74.5 (OCH), 115.8 (Ar C3 and C5), 124.2 

(=CHArC02R), 125.8 (Ar C2' and C6'), 127.3 (Ar C1), 127.8 (Ar C2 and C6), 128.4 

(Ar C4), 129.9 (Ar C3' and C5'), 130.9 (=CHArNR2), 142.4 (Ar C1'), 151.1 (Ar C4), 

166.5 (C=O). 29Si NMR (CDCl3) o -21.4 to -23.2 (CH3-Si-CH2), 6.7 (terminal Si). IR 

(KBr, cm-1) 2920, 2850, 2150 (small peak, Si-H), 1710 (C=O), 1600 (C=C), 1520, 

1470, 1410, 1370, 1280, 1260, 1190, 1180, 1110-1010 (Si-0), 840, 810, 770. UV-vis 

(CHCl3) Amax = 371 nm. Anal. Calcd for HPS-2: C, 73.48; H, 9.28; N, 2.25; Si, 4.66. 

Found: C, 70.02; H, 9.04; N, 1.66; Si, 7.59. 

CPS-2. The procedure was followed as described above using a mixture of 0.58 

g (4.0 mmol (Si-H)) ofpoly(hydromethyl-dimethylsiloxane) and 2.50 g (4.47 mmol) of 

MNR-2 in 30 mL of dry toluene. After the final precipitation, 1.70 g (60%) of greenish 

yellow powder was obtained. lH NMR (CDCl3) 0 0.04 (Si-CH3), 0.49 (Si-CH2), 0.89 

(CH3), 1.30 ((CH2)3, (CH2)6 and (CH2)s), 1.56 (OCH2CH2), 1.72 (C02CH2CH2 and 

OCHCH2), 1.95 (OCHCH2), 2.96 and 3.55 (NCH2), 3.44 (OCH and OCH2), 4.27 

(C02CH2), 6.89 (Ar H3 and H5), 6.94 (=CHArC02R), 7.11 (=CHArNR2), 7.40 (Ar H2 

and H6), 7.48 (Ar H2' and H6'), 7.97 (Ar H3' and H5'). 13C NMR (CDCl3) o 1.2 (Si-

CH3), 1.9 (terminal Si-CH3), 14.1 (CH3), 17.6 (Si-CH2), 22.6 (CH3CH2), 23.1, 25.9, 



26.1, 28.8, 29.4, 29.7, 30.1, 30.2 and 33.5 ((CH2h, (CH2)6 and (CH2)9), 30.9 

(OCHCH2), 31.7 (CH3CH2CH2), 46.6 (NCH2), 65.0 (C02CH2), 68.0 (OCH2), 74.4 

(OCH), 115.8 (Ar C3 and C5), 124.2 (=CHArC02R), 125.8 (Ar C2' and C6'), 127.3 

(Ar C1), 127.8 (Ar C2 and C6), 128.5 (Ar C4'), 129.9 (Ar C3' and C5'), 131.0 

(=CHArNR2), 142.4 (Ar C1'), 151.1 (Ar C4), 166.5 (C=O). 29Si NMR (CDCl3) o-
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21.8 to -22.9 (CH3-Si-CH2 and CH3-Si-CH3), 6.8, 6.9, 7.1 and 7.2 (terminal Si). IR 

(KBr, cm-1) 2960, 2910, 2850, 2140 (small peak, Si-H), 1710 (C=O), 1600 (C=C), 

1520, 1470, 1410, 1370, 1280, 1260, 1190, 1180, 1110-1010 (Si-H), 840, 810, 770. 

UV-vis (CHCl3) Amax = 369 nm. Anal. Calcd for CPS-2: C, 69.01; H, 9.21; N, 1.99; 

Si, 8.42. Found: C, 67.65; H, 9.09; N, 1.64; Si, 9.12. 

Results 

Synthesis. 4-(4'-n-Hexyloxy-1-piperidino)benzaldehyde, 5, which is needed 

for the preparation of the stilbene precursor was synthesized as shown in Scheme 1. The 

success of each of the reactions was clearly monitored by 1 H NMR (Table IX). The first 

step was employed to protect the amino group of 4-hydroxypiperidine, 1, prior to the 

alkylation of the hydroxyl group. Anhydrous potassium carbonate was needed to 

neutralize both the acetic acid formed in the reaction and any protonated amine. This 

would ensure that the amino group is free to react with the acetic anhydride, thus allowing 

the reaction go to completion. The reaction mixture was not washed with H20 because the 

product is more soluble in H20 than in any organic solvents. The acylated product 2 was 

white crystal and highly hygroscopic. The lH NMR spectrum showed the splitting of one 

of the multiplets corresponding to H1 and H5 into two multiplet signals and shifted 

downfield at 3. 72 ppm and 4.04 ppm. 
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Table IX. lH NMR Chemical Shifts of Compounds 1-5 

compound chemical shift, ppm 

H1 and H5 H2 andH4 H3 H6 

1 2.60 3.08 1.40 1.89 3.68 

2 3.21 3.72 4.04 1.52 1.87 3.90 

3 3.27 3.65 3.90 1.57 1.83 3.47 3.47 

4 2.60 3.08 1.41 1.91 3.32 3.44 

5 3.21 3.70 1.70 1.94 3.61 3.47 

For the conversion of 2 to 3, NaH dispersed in mineral oil was used instead of 

NaH powder since in an earlier experiment where NaH powder was used, a very small 

amount of the product was obtained. Added 15-crown-5 increased the reactivity of the 

alkoxide ion. The Na+ was effectively trapped by the crown ether, making the alkoxide 

exposed to the alkyl halide. Due to the hygroscopic nature of 2, the second step has to be 

done immediately after its collection from distillation. Otherwise, one has to keep it under 

nitrogen and prior to the second reaction, one has to dry 2 at room temperature under 

vacuum. This reaction produced a viscous colorless liquid. The 1 H NMR spectrum of 3 

showed the upfield shifting of H3 from 3.90 ppm to 3.47 ppm with the overlapping of the 

triplet corresponding to H6. 

The deprotection of 3 was a simple acid-catalyzed hydrolysis reaction. During the 

work-up, it is important to make the solution basic to extract the amine product in the ether 
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layer. After reduced pressure distillation, a colorless liquid was obtained. The lH NMR 

spectrum of 4 showed the two multiplet signals of H1 and H5 at the same positions as in 

1. The multiplet at 3.32 ppm for H3 separated from the triplet at 3.44 ppm of H6. 

The final step is the production of 5 which was carried out under standard 

experimental conditions.l7 Anhydrous K2C03 in the mixture was needed to neutralize the 

HF formed during the reaction. When the solution was poured into H20, it is necessary 

to stir the mixture thoroughly to remove the DMSO clinging to the precipitate. After 

several recrystallizations, a white feather-like solid was obtained. The lH NMR spectrum 

showed the downfield shifting of the multiplets corresponding to H1 and H5 from 2.60 

ppm to 3.11 ppm and 3.08 ppm to 3.70 ppm. Moreover, one of the multiplets of H2 and 

H4 shifted downfield from 1.41 ppm to 1.70 ppm. 

The preparation of the methyl stilbenes, 9 and 10, and the monomers, MNR-1 

and MNR-2 was performed as illustrated in Scheme 2. The phosphonate 8 was prepared 

from chlorinated methyl ester 7 with triethyl phosphite. All succeeding reactions should 

be carried out in the dark because of possible trans to cis isomerization of the stilbenes. 

As shown in the lH NMR spectra of the methyl stilbenes, 9 and 10, only the trans 

isomers were present. The solubility of 10 in organic solvents has improved dramatically 

as compared to 9 because of the incorporation of the n-hexylpiperidino group at one end 

of the stilbene. During the preparation of NMR solutions, it was observed that 9 was 

slightly soluble in chloroform while 10 was very soluble in chloroform. 

The transesterification of the methyl esters, 9 and 10, was performed with the use 

ofNi(acac)218 as the catalyst instead of concentrated H2S04, which is commonly used. 

For this reaction to proceed faster, vigorous refluxing was needed to drive off the methyl 

alcohol which is formed in the reaction. It was also important not to use an excess of 

solvent. At the end of the reaction, TLC showed the absence of the starting methyl ester, 

thus making it easy to get pure products and high yields. The entire synthesis proceeded 
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without detectable isomerization of the stilbene double bond as shown in the 1 H NMR 

spectra of the monomers, MNR-1 and MNR-2. 
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Hydrosilylation of the monomers with either poly(hydromethyl)siloxane or the 

copolymer of 50% (hydromethyl)siloxane - 50% (dimethyl)siloxane in dry toluene was 

carried out in the presence of chloroplatinic acid in isopropyl alcohol (Scheme 3). An 

amount of triethylamine equivalent to the H2PtCl6 was added to this catalyst solution to 

neutralize the HCl, which otherwise would protonate the amino group of the monomers. 

Upon the addition of triethylamine, the solution became cloudy. Even after refluxing the 

mixtures for 48 hours, a small residual2160 cm-1 band remained in theIR spectrum of the 

mixture, so 1-octene equimolar to the original amount of Si-H in the starting polysiloxane 

was added to try to consume remaining Si-H groups. This would enable most if not all 

the Si-H to react with the smaller alkene molecule. The 29Si NMR spectra of the final 

side-chain polysiloxanes showed no peak at -37 ppm for the Si-H groups. However, lH 

NMR spectra indicated that 100 % conversion was not attained as shown by the presence 

of a small peak at 4.7 ppm for Si-H groups in the starting polysiloxanes. The% of 

unreacted Si-H groups in the polymers was estimated, by cut and weigh method. The 

octyl side-chain of HPS-1 and CPS-1 can also be estimated from the methyl signal of 

the octyl group in the lH NMR. However, this signal is superimposed with the methyl 

signal of the hexyl group for HPS-2 and CPS-2, and so no estimate can be done on the 

octyl side-chain content. The percent conversion and the octyl side-chain content were 

also estimated from the results of elemental analyses of the polysiloxanes. Different 

combinations of Si-H, Si-octyl and Si-mesogen (Si-methyl was included for the 

copolymers) repeat units were considered, and the% C, H, Nand Si were calculated. 

The combination that best fit the values (all elements were considered) obtained from the 

elemental analyses was selected. A summary of the calculated values is shown in Table 

X. 
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Table X. Analyses of Side-Chain Polysiloxanes on lH NMR and Elemental Analysis 

polymer % conversion of SiH % octyl side-chain % mesogen side chain 
lHNMR FA lHNMR FA 1HNMR FA 

HPS-1 91 96 12 29 79 67 

CPS-1 93 100 10 11 83 89 

HPS-2 94 85 27 58 

CPS-2 93 100 11 89 

GPC was used to check the purity of the polymers in each precipitation. At the 

final precipitation, HPS-1 and CPS-1 showed less than 1% monomer content while 

HPS-2 and CPS-2 showed 2 and 5% monomer content, respectively. GPC analyses of 

the molecular weights based on polystyrene standards and residual monomer contents are 

reported in Table XI. 

Scheme III 

Pt Catalyst 

toluene 
100 °C 

48 h 

side-chain 
polysiloxanes 

The purified polymers have molecular weight distributions, Mw/Mn, values ranging from 

1.4 to 1.9. The Mw/Mn values for the SCLC homopolysiloxanes were lower than the 

starting polysiloxanes (Table I), which is due to the fractionation of oligomers. The same 

thing was observed for the SCLC copolysiloxanes. It has been reported that GPC 

analyses using polystyrene standards underestimate the molecular weights of SCLCPs 



because the hydrodynamic volume of a comb-like polymer is smaller than that of 

polystyrene of the same weight.19 

Table XI. GPC Analyses of Side-Chain Polysiloxanes 

polymer Mn Mw Mw/Mn %monomer 

HPS-1 6800 9800 1.4 <1 

CPS-1 5400 8800 1.5 <1 

HPS-2 19400 37 600 1.9 2 

CPS-2 7200 10 500 1.5 5 
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Liquid Crystal Phases. Phase transitions of the monomers and the 

polysiloxanes measured by DSC and microscopy are summarized in Table XII. The phase 

assignments are based on powder X-ray diffraction and polarizing microscopy. 

Table XII. Phase Transition Temperatures of Monomers and Polysiloxanes 

Sample 

MNR-1 

HPS-1 

CPS-1 

MNR-2 

HPS-2 

CPS-2 

Phase transition temperaturea, °C (i\H, kcal/mol of mesogen) 

c 146 I 

C 167-195 (4.84) N 215h 

G -35 C 146-178 (7.06) SA 183b 

c 109 (0.54) SB 172 (1.52) 

I 

I 

SA 183 I 

C 110-118 (0.15) SBc 192-211 (1.0) N 258b I 

G -43 C 112-126 (0.27) SB 182-197 (1.04) SA 220h I 

a C = orthorhombic crystal or smectic E, I = isotropic liquid, N = nematic, G = glass, 

SA= smectic A, SB = smectic B. b Transition temperatures were determined by 

microscopy. All other data is from DSC. c Possibly an ordered nematic. 
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Two highly ordered mesophases of MNR-2 were observed by thermal analysis 

while only a melting transition was observed for MNR-1. This shows that the 

hexyloxypiperidino chain increased the flexibility of the alkyl amino end of the dipolar 

stilbene, thus giving it a wider range of liquid crystalline properties. The powder X-ray 

diffraction pattern of the high temperature transition phase, Figure 7, of MNR-2 showed 

a sharp peak at the small angle region, which is an indication of the presence of layers, and 

a diffuse peak at the wide angle region, which meant that the molecules are randomly 

arranged within the layers. This X-ray pattern is characteristic for smectic A or C. Figure 

8 shows the X-ray pattern at 165 °C, which exhibits a sharp peak in the wide angle region 

in addition to the sharp peaks in the small angle region. This outer reflection corresponds 

to 110 and 200 reflections which indicates an ordered structure of the molecules within the 

smectic layers. The mesophase assigned at this temperature is smectic B. MNR-2 

exhibited the distinctive simple focal conic texture of a smectic A phase as shown in 

Figures 9A and 9B. The characteristic feature of the X-ray pattern of the powder-like 

sample of MNR-1, shown in Figure 10, pointed out a well-ordered structure in which the 

molecular long axes are orthogonal to layer planes. At first, this phase is thought to be a 

smectic E phase. However, the texture obtained in the microscope under crossed 

polarized light (Figure 11) suggests an orthorhombic crystalline structure. 

There was no evidence of any glass transition for HPS-1 by DSC in the range 

from -123 °C to 146 °C. This might be due to the small volume fraction of the siloxane 

backbone compared to the side-chain mesogen, making the glass transition too weak to 

detect. With strong dipole-dipole interactions between the mesogenic side chains, the 

polymers tend to behave as semicrystalline rather than glassy. Moreover, with the long 

flexible methylene spacer chain, the decoupling of the mesogenic moieties and the polymer 

backbone was maximized, thus promoting partial crystallization of the side chain. Due to 

the high viscosity of the polymer, broad peaks are observed in DSC scans. There is a 

tendency of the meso genic side chains to behave differently from one domain to the other 
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Figure 9A. Focal conic texture between crossed polarizers (300x) of MNR-2 obtained 
at 165 oc upon cooling from the isotropic phase. 
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Figure 9B. Microscopic texture (300x) of MNR-2 at 100 °C under crossed polarized 
light. 
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Figure 11. Microscopic texture between crossed polarizers (300x) of MNR-1 at 
139 °C. 
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and could experienced different heats of transition. Figures 12A and 12B show 

thermo grams of HPS-1 at different scan rates. Except for the first heating and cooling 

curves, there is no significant change in the phase transition temperatures and no 

resolution of the overlapping peaks. Therefore, only one mesophase was assigned for 

HPS-1, although the thermograms show three overlapping transitions at about 167 °C to 

195 oc. I first thought that the lone transition was isotropization. However, when 

observed under the microscope with crossed polarized light, the isotropization temperature 

was much higher than that obtained in the DSC thermogram. The thermogram of a blend 

containing 90 wt% HPS-1 and 10 wt% MNR-1 was investigated to check the effect of 

having a substantial amount of monomer in the polymer sample. On the first heating scan, 

the melting transition of the monomer was evident (Figure 12C). However, in the second 

heating scan, this transition disappeared and only the overlapping peaks are observed. 

The phase transition temperature range recorded in the second heating is almost the same 

as the one obtained in "pure" HPS-1. The textural analysis of HPS-1 was very difficult, 

due mainly to the high viscosity of the polymer even just below the isotropization 

temperature. Annealing at the desired temperature for hours or even days did not give a 

recognizable texture as shown in Figure 13. This is typical of high molecular weight 

smectic polymers. The powder X-ray diffraction pattern of the homopolysiloxane, HPS-

1, showed the presence of a nematic phase. Figure 14 shows a diffuse peak in the wide 

angle region, which indicates the disordered arrangement of the molecules, although there 

is orientational order of the long molecular axes along the director. The absence of any 

sharp peaks in the small angle region meant the absence of translational periodicity along 

any direction. The DP of the homopolysiloxanes is 60, thus giving a very viscous 

polymer. The side-chain mesogens have difficulty in arranging themselves in layers, and 

so the less ordered mesophase was observed. 

A very weak, wide glass transition with a midpoint at -35 oc, shown in Figure 15, 

was observed for CPS-1 in the low temperature DSC scan. At the high temperature scan 
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Figure 13. Microscopic texture between crossed polarizers (300x) of HPS-1 after 
overnight annealing at 190 oc. 
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(Figure 16), only one mesophase was assigned, although it shows two overlapping peaks. 

As explained earlier, this is due to the high viscosity of the polymer and the way the 

meso genic side chains order themselves. Similar thermograms were obtained at different 

scan rates. The X-ray pattern at 177 °C, shown in Figure 17, showed sharp peaks in the 

small angle region which is an indication of smectic layers, and a diffuse peak in the wide 

angle region, characteristic of the SA phase. Figure 18 shows a fine grained texture under 

the microscope with plane polarized light. 

The hexyloxypiperidinostilbene containing homopolysiloxane, HPS-2, like 

HPS-1 showed no glass transition. At the high temperature DSC scan (Figure 19), two 

phase transitions and the usual overlapping of peaks were observed Varying the scan rate 

did not show significant change in the thermo grams. HPS-2 had both a high temperature 

nematic and an ordered phase initially assigned as SB from the powder X-ray diffraction 

pattern at 120 °C. However, this phase of HPS-2 did not show any reflections in the 

small angle region, Figure 20, which means the absence of layers. This gives doubts on 

the presence of smectic B phase. It is possible that this mesophase is an ordered nematic 

with hexagonal structure rather than smectic B. Friedzon and his coworkers20 reported a 

similar X-ray pattern and suggested that it was due to a new phase, NB, in which the 

meso genic groups were packed in a hexagonal array but without translational order in the 

direction of their long axes. Again, no sharp peaks were observed in the small angle 

region for the crystalline structure of HPS-2 as shown in Figure 21. As in HPS-1, no 

microscopic texture was obtained for HPS-2. 

Figure 22 shows a similar weak, wide glass transition with midpoint at -43 °C for 

CPS-2. As in HPS-2, two phase transitions, with overlapping peaks, were observed 

for CPS-2 as shown in Figure 23. There was no significant change in the thermo grams 

with varying scan rates. In addition to the observed high temperature SA phase, which 

was assigned from the X-ray diffraction at 205 °C (Figure 24), a low temperature 

mesophase was observed for CPS-2, and assigned an SB structure. The powder X-ray 
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Figure 18. Microscopic texture between crossed polarizers (300x) of CPS-1 after 
overnight annealing at 145 oc. 



" 0 a 
Gi 

u 
w 
CJ) 8.25 
........ 

~ 
u 
:::E 

WTa 8.5121 mg 
SCAN RATEa 2121.121121 deg/min 

~ , 
....... -----------.._ I ....... ---- ~ __./ -------------------- '\ ( 

~ 

----
...,.,. .. ......--

B. II! 328. SH 349.SH 300.11! aao.se 400.SH 428.00 «8.99 469.SH 480.00 588.99 

TEMPERATURE (K) osc 
Figure 19. DSC thennograms of HPS-2 at 20 K/min. 1--' 

0 
~ 



x1o 2 
7.50 

6.07 

4.80 

3.68 

2.70 

1.87 

1.20 

0.68 

0.30 

0.07 

0.0 5.0 10.0 15.0 
Figure 20. Powder X-ray diffraction pattern of HPS-2 at 120 °C. 

20.0 25.0 30.0 28 
...... 
0 
U\ 



x1o 2 
7.50 

6.07 

4.80 

3.68 

2.70 

1.87 

1.20 

0.68 

0.30 

0.07 

0.0 5.0 10.0 15.0 
Figure 21. Powder X-ray diffraction pattern of HPS-2 at 50 °C. 

20.0 25.0 30.0 29 

"'""" 0 
0'1 



A a a z 
w 

u 
w 
(f) 1.25 

" _.J 

< u 
:::E 

B. "'151. "' 

WTa lB. BB mg 
SCAN RATE• 2B.BB deg/min 

--
-""' .... - ... ·y ...... -- I 

-~,...._J .. _ .. _ I .. _ --~--.. _ ;' --------- _,/ .. ----------~--,---

178."' 198."" 211."' 231."' 25B.Ii!O 278."" 29B.m! 311."" mBB 3SB."' 

TEMPERATURE (K) 
Figure 22. Subambient DSC thermograms of CPS-2 at 20 K/min. 

osc -0 
-....) 



A 
0 
0 z w 

u 
w 
UJ 8.25 

' _J 

< u 
~ 

wr. 1~. ~~ ms 
SCAN RATE• 2~.~~ deg/min 

. ,.,,-· 
---~ . /~ 

/' , ................ ----------........... / ,_______ --- \. -----
... ~ \....... ,------

B. 00 ~. BB ----· 358. BB ---+------+-
300.11'1 41B. 00 

-----t-
440.00 

TEMPERATURE (K) 
Figure 23. DSC thermo grams of CPS-2 at 20 K/min. 

\ f \, 

478.BO 
·--t-------f-

511l. BB 53B. 00 

DSC 
~ 

0 
00 



x1o 2 
8.50 

7.65 

6.80 

5.95 

5. 10 

4.25 

3.40 

2.55 

1. 70 

0.85 

----,..----..----·.,..-----,- ··r-----.- ----, 
30.0 29 0.0 5.0 10.0 15.0 20.0 25.0 

Figure 24. Powder X-ray diffraction pattern of CPS-2 at 205 oc. ,_. 
0 
\0 



110 

diffraction pattern at 171 °C (Figure 25) showed the typical sharp peaks in the small angle 

region denoting the presence of layers and a strong sharp peak in the wide angle region 

which corresponds to 110 and 200 reflections. Figures 26A and 26 B show the 

microscopic structure under crossed polarized light of CPS-2 which is a typical fan

shaped for SA phase. 

The isotropization temperatures of all the side-chain polysiloxanes, which were not 

obsetved in the DSC, were obtained from the microscopic data. The heats of transition 

from the mesophase to the isotropic liquid phase are too small to obsetve in the DSC. 

All of the polysiloxanes exhibited a low temperature crystalline phase identified by 

X -ray diffraction patterns and reported in Table XII. The long flexible methylene chain as 

spacer has efficiently decoupled the motions of the mesogenic group and the main chain, 

thus the polymers experienced side chain crystallization. Flexible backbones such as 

polysiloxanes tend to give rise to side chain crystallization. Figure 27 shows a sample X

ray pattern of this crystalline phase, taken at 150 oc for HPS-1. Three sharp peaks were 

obsetved in the wide angle region corresponding to 110, 200 and 210 reflections, which 

are characteristic wide angle reflections of an orthorhombic crystal. Sharp peaks were also 

obsetved in the small angle region which indicate that the molecules are arranged in layers. 

There is the possibility that this phase might be a SE phase, which also gives the three 

reflections in the wide angle region. Though, to distinguish a smectic E phase from an 

orthorhombic crystal, X-ray diffraction studies would need to be performed on oriented 

samples. 

Monolayers. The monolayers of the polysiloxanes were characterized by 

measurement of the film pressure (ll) vs mean molecular area (Mma, A 2) isotherms. In 

this work, mean molecular area is defmed as area per meso genic repeat unit of the 

polysiloxane. The room temperature isotherms are shown in Figures 28 to 31 and were 

reproducible. The cutves obtained for HPS-1 and CPS-1 were smooth, without any 
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Figure 26A. Fan-like texture between crossed polarizers of CPS-2 after overnight 
annealing at 17 5 oc. 



Figure 26B. Microscopic texture (300x) of CPS-2 after 30 min at 106 oc under 
crossed polarized light. 
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observable discontinuities, and showed no evidence of phase transformations. The 

surface pressure was low at large surface areas, but increased more or less rapidly when 

the film was compressed to the point where the macromolecules occupied most of the 

available surface. Upon extrapolation of the steeply sloping linear region to zero surface 

pressure, the intercept gives the area per molecule of a closely packed monolayer. The 

minimum stable areas per repeat unit were ..... 23 A2 and ..... 34 A2 for HPS-1 and CPS-1, 

respectively. The isotherms for HPS-2 and CPS-2 showed evidence of phase 

transitions just above 30 A2 to about 50 A2. HPS-2 and CPS-2 gave the same mean 

molecular area per repeat unit which is ..... 30 A2. Because the side-chain polysiloxane films 

exhibited high viscosities, it was necessary to use a Langmuir balance, rather than a 

Wilhelmy plate to measure surface pressure. The films can be compressed to about 40 

mN/m with no apparent collapse. Only CPS-1 showed a possible collapse of the 

monolayer at about 53 mN/m, which alternatively could be just a rearrangement of the 

polymer chains or side chains. The copolysiloxanes, CPS-1 and CPS-2, showed less 

hysteresis upon compression and subsequent expansion of the monolayers on water than 

the homopolysiloxanes, HPS-1 and HPS-2 (Figures 32-35). Further compression

expansion runs showed a much improved hysteresis behavior than the first one for CPS

I and CPS-2. There was a bigger drop in the surface pressure for the 

homopolysiloxanes when the barriers were stopped for 1 minute before decompression. 

Figures 36-39 show the isobaric, 15 mN/m, surface areas as a function of time. The 

monolayers are stable at the given surface pressure, and similar behavior was observed for 

all polysiloxanes. There was a bigger decre~se of the mean-molecular area during the first 

30 minutes with HPS-1 than with CPS-1. The same trend was observed in HPS-2 as 

compared to that of CPS-2. Due to the greater movement of the long alkyl flexible side

chain mesogens, the drop of the mean molecular area for the first 30 minutes in HPS-2 

and CPS-2 was much bigger than that in HPS-1 and CPS-1. It took more time for the 



.@ 
z 
E 

ci 

40 

20 

f f. 
l\ . ·. 

I • 

e ·1··· . .._ 
·. ·. . . . . . . ·:. · .. ·~ • .r, • • 

d •i' .. . . . 
\ . ·. 

·.c._:-t. ::~::~:\ .. 
il •' • . '·· ':·. · .. .... ' .... , ~ .. 

b ["·2h~\ ... ::\·. 
a l~.. · .. \:\.:_..~·.:\~~: .. 

··.. . ":-:·.·':.·.. ·.::::~· 
'··.::. ·::z~,···'· ··. -.~::-.. 

I .. Ill •. ·..... ' •• ·,"'·~~-
1 :·.. \\.."'• .............. ,. .. . 

. ·~.--..... ··~·c::.rr..,:.·~~if!!!J!!I.ID!I!!t" ...... ~:'t:===~· • ., ,,,,•,.!t-!K!'-'''•~!Ia.:;;:•.....,..,. .. ,~ ....... ,.,..~.--t ... ,.t..,..at:l \,, -.--....:::.;:.,a.!Sc:.-.,;::;~=======:ta~:~:::~l:ll .._ __ , ________ ;::: ........ c..,.,. •• n:r.··l'(l~--·-··--"'"'••••-0 I j I r#t - •••-•-.. •••--•·•-••u•j 

15 25 
2 

Mma, A 
35 45 

Figure 32. Hysteresis behavior of HPS-1 monolayer at room temperature: barrier stopped at (a) 8 mN/m; (b) 12 mN/m; 
(c) 16 mN/m; (d) 20 mN/m; (e) 24 mN/m; (t) 30 mN/m. ~ 

N 
0 



~ z e 
ci 

60 

40 

20 

gt.. 
.. . . 
t r.. .. . ·::. 

'·::'1,. 
e ·r~. 1·:. - ... -· .. d ~.::::: •• 

:.1'3::.·~. 
t., -~;: ...... ,. c ... '1· .. • "I!• rl I -... , 

b • ·:;_::.:-·-.. ··:.,, 
•. ···-N"':. ·:· 

.. II, • .:,lj~-~1., ·~. 
l . =::. • ••• • ·t.-t·..:· ........ a" ·:, ···~ ··~··., '''•· ':. ~ '- I . .. ....... .. ;,, ....,t'·r a: 

0 I I - ........ •<<--" .. .. . .. ··-·-·--:::ir ' 

25 35 
2 

Mma, A 
45 55 

Figure 33. Hysteresis behavior of CPS-1 monolayer at room temperature: barrier stopped at (a) 8 mN/m; (b) 12 mN/m; 
(c) 16 mN/m; (d) 20 mN/m; (e) 24 mN/m; (f) 30 mN/m; (g) 40 mN/m. 

"'""" N 

"'""" 



.@ 
z 
a 
t:: 

40 

20 

f ~-
[\ 

\ . ·. 
eLl'\ . . \\ · .. \\ · .. "' . ,, 

d 1\\\ 

c 

\ . 
\ \ 

\ \ 

'· .. '. ,, 
\\ ... 

\ . "'· .... • • 
'· 

a 

ol;--~~~~ 
20 40 60 80 2 

Mma, A 

Figure 34. Hysteresis behavior of HPS-2 monolayer at room temperature: barrier stopped at (a) 8 mN/m; (b) 12 mN/m; 
(c) 16 mN/m; (d) 20 mN/m; (e) 24 mN/m; (f) 30 mN/m. ,...... 

N 
N 



-E 
:z: 
= 
~ 

60 

40 

20 

a 

'"'.... ·-.. ~--:::~ .... ~~--....... ~ --"~- ~ ~ mill 
0 - ~~.......... =--~----.-..... -.. _ 
30 50 2 

Mma, A 
70 90 

Figure 35. Hysteresis behavior of CPS-2 monolayer at room temperature: barrier stopped at (a) 8 mN/m; (b) 12 mN/m; 
(c) 16 mN/m; (d) 20 mN/m; (e) 24 mN/m; (t) 30 mN/m; (g) 40 mN/m. 1-o-" 

N 
w 



26 17 

24-

~ 22 
n ... 

15 
co e 
~ 

20 

Mma 

18. 

16 13 
0 40 80 120 

Time, min 

Figure 36. Isobaric creep measurement of HPS-1 monolayer at room temperature. 

~ 
z e 

... 
t:::: 

....... 
N 
+:>-



~ u 

34 
I I 

16 
Mma 

32 
n .e ~ 

z 
15 E 

.. 
~ e .. 

t::: ~ 
30 

1-14 
28. 

26 13 
0 40 80 120 

Time, min 

Figure 37. Isobaric creep measurement of CPS-1 at room temperature. -N 
Ul 



~ 17 

32 

~ 30 

ci 

~ 
INII.w ., .... G • ........, .... M..,.,~fl4··...,h-t~ 15 

28 

26 

241 I : Mm~ 13 
0 40 80 120 

Time, min 

Figure 38. Isobaric creep measurement of HPS-2 monolayer at room temperature. 

~ z 
E 

t: 

....... 
N 
0\ 



32 17 

30 

~ Mma 

- .... ,....... ,.,.,... 

~ 
28 

n ... 
15 = e 

::E 26 

24 

22 13 
0 40 80 120 

Time, min 

Figure 39. Isobaric creep measurement of CPS-2 monolayer at room temperature. 

e -z e 
... 

t= 

...... 
N 
-....l 



128 

meso gens to arrange themselves in the most stable conformation. Thus, it is necessary to 

wait for 30 minutes or more so as to allow the side-chain meso gens to orient themselves 

on the water subphase before any deposition is carried out. 

Preliminary deposition experiments were performed on the polysiloxanes. Films 

were primarily deposited onto hydrophobic, octadecyltrichlorosilane-treated quartz slides. 

There was no deposition of the mono layers of the polysiloxanes onto a hydrophilic 

substrate. LB multilayers of CPS-1 were obtained on hydrophobic substrate with a 

transfer ratio of 0.8 during the first dip, 0.3 during the first upstroke and a decreasing 

transfer ratio on succeeding dips, from 0.4 to 0.2. Thus, dipping was stopped after six 

layers were obtained. Monolayers of CPS-2 also showed deposition, although the 

transfer ratios of the first dip and the first upstroke were only 0.5 and 0.2. Dipping was 

stopped after 4 layers. When the transferred mono layers were investigated by UV -vis, the 

CPS-2 LB film showed spectrum, Figure 40, with an absorbance of 0.040 at Amax = 

336 nm and 0.035 at Amax = 336 nm. Figure 41 presents the UV-vis spectrum of the 

CPS-1 LB film. There is a considerable absorption in the range of 300 to 400 nm and an 

absorbance of approximately 0.070 at Amax = 250 nm. HPS-1 and HPS-2 did not 

deposit onto the hydrophobic substrate. 

Discussion 

Synthesis. The protection of the amino group of 1 was necessary so as not to 

compete with the alkylation reaction of the hydroxyl group with bromohexane. The 

alkylation of 2 worked well when DMF was used as a solvent rather than THF. There 

was no product formed when THF was the solvent. It can be concluded that DMF is a 

better solvent for Na alkoxide, thus facilitating the contact of the alkoxide with the alkyl 

halide in solution. The yield of 3 was improved considerably because of the addition of 

catalytic amount of 15-crown-5. Crown ethers have the ability to solvate cations such as 
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Na+ and in doing so yields anions, unencumbered by strong solvation forces, which are 

potent nucleophiles. Sulfuric acid was chosen for the hydrolysis reaction of 3 because of 

the possible reaction of hydrochloric acid with the ether functional group. 

Previously, the alkylation reaction was performed to the product, 4-( 4-

hydroxypiperidino)benzaldehyde, obtained from the reaction of 1 and 4-

fluorobenzaldehyde. In this case, low yield of 5 was obtained because it was necessary to 

remove unreacted bromohexane and starting material by column chromatography before it 

could be recrystallized from ethanol-H20 mixture. After this step, the amount of 5 

decreased considerably. Moreover, the presence of a competing reaction which involved 

the aldehyde functional group was evident from the 1 H NMR. It showed a smaller peak 

ratio of the aldehydric H. With the presence of a small amount of H20, NaH is converted 

to NaOH which can eventually be used for Cannizzaro reaction of benzaldehyde. 

Therefore, the alkylation should be done prior to the reaction of the amine to 4-

fluorobenzaldehyde. The route chosen to synthesize 5 was found to work well since the 

crude product precipitated when the reaction mixture was poured into H20. The crude 

solid can then be recrystallized without the removal of excess bromohexane by 

chromatography. 

In the classic version of the Wittig reaction, arylmethyl halides are treated with 

triphenylphosphine and the corresponding phosphorus ylide is then reacted with aryl 

aldehydes. The stilbenes usually are formed as a mixture of cis and trans isomers. Some 

of the drawbacks of the classic Wittig reaction are avoided in the Homer-Emmons and 

Wadsworth-Emmons reaction.21 The arylmethyl halides are heated with trialkyl 

phosphites to give the phosphonates. Reaction of aryl aldehydes with the anion of 

phosphonates formed in situ with sodium hydride or an alkoxide gives trans-stilbenes, 

with only a small amounts or none of the cis isomers. Baker and Sims22 reported that the 

addition of a catalytic amount of 15-crown-5 in the formation of the stilbene greatly 

facilitates the reaction. Reactions are carried out in short reaction times (about two hours) 
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and at lower temperatures than those conventionally used (0 - 25 oc instead of 80 OC). 

The preparation of the stilbene methyl esters, 9 and 10, was performed using the modified 

Wittig reaction. This procedure has proved to be useful in preparing sensitive olefms not 

preparable by standard Wittig synthesis. In addition, it is not particularly sensitive to 

atmospheric oxygen, thus allowing simpler experimental procedures, is, in general, less 

expensive, and furnishes the trans isomers stereospecifically. 

Transesterification reaction is usually conducted under acidic or basic conditions. 

In an earlier experiment, the use of concentrated H2S04 as catalyst gave low yield for 

monomer, MNR-1. On the other hand, the 1 H NMR spectrum of the product obtained 

from the transesterification of 10 showed the decomposition of the starting material. The 

four doublets in the aromatic region corresponding to the 8 aromatic H's disappeared. 

N,N-Dimethylaminopyridine (DMAP)23 as catalyst was also used for 9 but failed to give 

the corresponding product DMAP is used in the transesterification of the more reactive 

acid derivatives, acid halides and acid anhydride. The failure of the previous procedures 

made me look for a better catalyst that would involved the use of substrates with similar 

functional groups present in our materials. Tak:ai and Shibata18 patented a 

transesterification procedure using nickel acetylacetonate, Ni(acac)z, as catalyst for the 

reaction of methyl acrylate and 2-(N, N-dimethylamino )ethanol. This procedure was 

followed and it gave high yields and good purity of the monomers, MNR-1 and MNR-

2. In this reaction, the Ni coordinates with the carbonyl oxygen, making the carbonyl 

carbon susceptible to nucleophilic attack. 

The commercial poly(hydromethyl)siloxane (PHMS) and the copolymer of 50 -

55% (hydromethyl)siloxane- 45 -50% (dimethyl)siloxane (PHMS-PDMS) used in the 

preparation of the side-chain polysiloxanes are normally polydisperse. There is also the 

question of statistical distribution of the SiMe2 and Si(Me)H groups for the copolymer 

backbone. The 29Si NMR spectrum of PHMS-PDMS indicated that the repeat units are 

arranged statistically, which is comparable to previously reported spectrum15 of random 
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copolymers of PHMS-PDMS. These materials are usually manufactured to meet some 

viscosity requirement, and not to have a specific value ofDP or Mw/Mn.24 The reported 

Mw/Mn for commercial PHMS is normally 2.3 while Mw/Mn for PHMS-PDMS is 1.9.25 

These Mw/Mn values are similar to what I have obtained, as presented in Table VII. The 

DP values are usually quite low, particularly for copolymer backbones (DP < 30). Even 

for commercial PHMS, the DP ranges from 35 to 60 (Petrarch) or 45 to 90 (Wacker). 

Thus, the SCLC polysiloxanes produced are in the molecular weight range in which their 

liquid crystalline properties are dependent upon DP. It is, therefore, important that the 

characterization of the polysiloxanes used and the side chain polymer are specified. 

In the hydrosilylation reaction of my SC polysiloxanes, hexachloroplatinic acid 

(H2PtC16·xH20) was chosen as a catalyst instead of divinyltetramethyldisiloxane 

platinum. The latter catalyst has been used successfully in other laboratories26-28 for the 

preparation of SCLC polysiloxanes. However, in my case, several attempts at 

hydosilylation failed to give the desired polymers. During the reaction of MNR-1 with 

either the homo- or the copolysiloxane in the presence of the latter catalyst, precipitation of 

the polymer occurred. Since the yellow solid obtained was also insoluble in all organic 

solvents including chloroform, it is concluded that a cross-linked polymer was made. The 

nature of the cross-linking is not clear. Gray and his coworkers29 have suggested that 

cross-linking could involve Pt catalyzed reactions leading to the splitting of Si-C bonds or 

a reaction such as 

2 -SiH + Pt (II) + [ 0] -Si-0-Si- + Pt (0) + H2 i 

The problem of cross-linking can be overcome by the use of freshly prepared Speier's 

catalyst (H2PtCl6·xH20 in isopropyl alcohol) and the use of no more catalyst than is 

needed to give an effective hydrosilylation. If fresh solutions are used, it was suggested 

that PtC162- may be the catalyst whereby SCLCP without blackish color may be made 
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reproducibly and without cross-linking. However, with aged catalyst, most of the Pt is in 

the form of Pt (ll). Then, metallic Pt appears to form and makes the polymer dark. It is 

therefore important to prepare the Speier's catalyst just before the hydrosilylation step. 

The yellow color of our polymer showed no evidence of metallic Pt forming in our 

reaction. The low solubility of HPS-1 in most organic solvents is due to its 

semicrystalline character. With the degree of polymerization (DP) equal to 60 and having 

a strong dipole-dipole interaction of the stilbene meso gens, solvent must overcome a 

sizeable crystal lattice energy to dissolve the polymer. The improved solubility of HPS-2 

is due to the increased flexibility of the hexyloxypiperidino end of the side chain. 

Doping studies show that very small amount of low-molecular weight materials 

have a profound effect on the polymer properties. The phase transitions of polymer 

contaminated with monomer, as observed in the DSC, show broad peaks, and the 

transition temperatures are lower than the polymer alone. Total removal of the SC 

precursor depends critically on the nature of the polymer and the number and efficiency of 

the precipitations used in the work-up. Gray and his coworkers30 showed that three 

precipitations (the number often regarded as sufficient) of the SCLC polysiloxane, shown 

below, are usually not enough to rid the polymer of the alkene. 

rHs 
Me3SiO+Si-OtSiMe3 I X 

(C~)s- CN 

The above mentioned authors showed that after three precipitation in which alkene is still 

detectable by TLC, the glass transition temperature, T g. and the isotropization temperature, 

Ti, values varied appreciably and the peak widths obtained at several analyses for the 

isotropization transition were fairly broad. However, after 8 - 10 precipitations (no alkene 
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detectable by TLC), the T g values were more or less constant, and 3-10 oc higher than the 

reported values after three precipitations. The Ti values were also 5-9 °C higher, and 

represented a narrower distribution. The peak widths were also narrower, that is, the 

biphasic peak was narrowed through the removal of alkene. There is no evidence that the 

removal of alkene causes any change in DP or Mw/Mn of the polymer. In my case, the 

work-up and six or seven precipitations did not remove all of the unreacted alkene as 

detected by GPC. The highest monomer content is in HPS-2 and CPS-2. Apparently, 

the solubility of MNR-2 is very much the same as that of the corresponding 

polysiloxanes. This was evident on the GPC analysis of the polymer obtained after each 

precipitation. There was very small amount of monomer removed in each precipitation. 

Therefore, it is important to be aware of the possible effects of these unreacted alkenes on 

the glass transitions and mesophase transition temperatures. 

The molecular weights of the SC polysiloxanes are only relative since they were 

determined by GPC using a calibration plot constructed with polystyrene standards. 

These values are much lower that the real molecular weights. The theoretical Mn of HPS-

1 with a DP of 60 and taking into account the end groups, unreacted Si-H groups and the 

octyl groups as side chain, is either 27 500 (lH NMR analysis) or 22 500 (EA). On the 

other hand, the value obtained by GPC measurements is only 6800. The same 

observation holds true for HPS-2 in which the theoretical Mn is 36 200 (lH NMR 

analysis) or 25 000 (EA), while the value obtained by GPC is 19 400. The difference in 

the GPC and calculated Mn is much bigger in HPS-1 than in HPS-2 because the 

meso genic side chains of the former polymer are less solvated, giving rise to a compact 

shape. This resulted to a smaller effective volume in solution, thus lower value of Mn. 

On the other hand, the side chains of the latter polymer are more flexible because of the 

incorporation of the hexyloxypiperidino end, making the structure more of a random coil. 

The meso genic side chains of HPS-2 experienced greater solvation, giving rise to a larger 

effective volume in solution. There was not much difference between the theoretical Mn 
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and the GPC values for CPS-1 and CPS-2. Duran and Strazielle19 reported that the 

molecular weights of a series of SCLC polymethacrylates which were measured by the 

classical size exclusion chromatography (SEC) technique calibrated with polystyrene 

standards, were systematically lower than those obtained by light scattering (LS) methods. 

OCH3 

n = 0-4 

The LS Mw values were 1.5-2.5 times larger than the SEC Mw values. This large 

difference is understandable when one considers that the SEC separation process is not 

governed by the mass but by the hydrodynamic volume, that is, the product ['ll]iMi of the 

fraction, where ['ll]i is the intrinsic viscosity of a fraction of mass (Mi) associated with an 

elution volume (Ve)i. In another study, Lang and Burchard31 showed that for the same 

molecular weight, V e is shifted to larger values as the average number of branches is 

increased (using linear PMMA chains as the reference polymer). 

It is important to define the DP, Mw/Mn and purity of SCLCPs. Otherwise the 

structural correlations with liquid crystal and other physical properties are uncertain. The 

trend that is generally accepted consists of the enlargement of the temperature range of the 

mesophase with an increase of the polymer molecular weight. Sagane and Lenz32-34 

illustrated that SCLC poly( vinyl ether)s display various mesophases at different molecular 

weights in the range of 1300 to 18000. A broad Mw/Mn polymer sample showed the 

disappearance of smectic phase, and all the observed transition temperatures (e.g., Tg and 
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R 

Ti) were higher than those for the narrower Mw/Mn polymer sample. Percec and Lee35 

observed that SCLC poly( vinyl ether)s with cyanobiphenyl meso genic groups having DP 

from 1 to 30 and Mw/Mn approximately equal to 1.1, showed a continuous change ofthe 

mesomorphic - isotropic phase transitions (i.e., from nematic - isotropic to smectic -

isotropic) on increasing their molecular weight. Stevens and his coworkers36 investigated 

the extent to which the degree of polymerization influences the liquid crystalline state of 

SCLC oligomers with siloxane backbone. With each additional lengthening of the 

siloxane backbone, Ti increased steeply up to DP ~ 10. Thereafter, DP has a slight effect 

on Tj. The T g and the mesophase-to-mesophase transition temperature (Tic) also shift to 

higher temperatures with increasing DP, but not as strongly as the corresponding Tj. 

yHs 
Mess;o+r-o-+,zsiMe3 

(CI-I,)m-cr-0-coo-0-R 

m = 3-6 
R = OCH3 , COOCH2C*H(CH3)(C2H5) 

At DP > 10, T g and T1c remained nearly constant. The authors demonstrated that at DP > 

100, the liquid crystal range remained constant and the phase transition temperatures were 

independent of DP. Varying the molecular weight has little influence on the nature and 

number of mesophases exhibited by polymers with very flexible backbones such as 

polysiloxanes, except when comparing oligomers with very low molecular weights. 
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Similar results were obtained by Gray and his coworkers25 for the SCLC polysiloxane, 

shown below, in which the transition temperatures increased with increasing DP at 

approximately constant Mw/Mn values and approached constancy only at around DP 

of 100. It has been found by the same group that the effect of Mw/Mn for SCLC 

polysiloxanes was different in that there was an increasing trend ofT g and Ti as the 

Mw/Mn values decreased Changes in Mw/Mn from 1.9 to 1.25 caused increases in T g 

and Ti by approximately 5 °C. Since the molecular weights of my SC polysiloxanes are 

relative, they can only be used to estimate whether they are below or above the minimum 

needed for molecular weight independent phase transitions. HPS-1 and HPS-2 have 

high enough molecular weights to expect little dependence of phase transitions on 

molecular weight. It is thus possible to discuss in a semiquantitative manner the effect of 

the change of the amino groups on the phase transitions for the SC homopolysiloxanes. 

The addition of 1-octene to mop up the remaining Si-H will make little difference in the 

physical properties of the polymers made because less than 12% of the substituted Si-H 

contained the octyl group as calculated from the 1 H NMR. Aside from the slight influence 

of molecular weight on the phase behavior of CPS-1 and CPS-2 due to low DP, the side 

chain composition also affects the phase transitions of the copolymers. Since the 

copolymers are mixtures with different SC distributions, the mesophase transitions are 

likely to be associated with broader biphasic regions. Percec and Lee37 demonstrated that 

the transition temperatures and mesophases depend on the composition of SCLC 



139 

copolymers at constant Mn and Mw/Mn equal to 1.1. Thus, it is essential to be aware of 

these effects when discussing the phase behavior of the SC copolysiloxanes. 

Liquid Crystal Phases. It is not surprising that MNR-1 does not form a 

liquid crystalline phase. Compounds exhibiting liquid crystalline properties usually have 

an anisotropic rigid core and flexible chains on each end of the core. The dimethylamino 

group in MNR-1 is not long enough to make it flexible. However with the change to 

hexyloxypiperidino group, the required flexibility at the amino end is fulfilled. The 

appearance of only smectic phases in MNR-2 was consistent of what has been observed 

by Dave and Patel.38 When the alkyl chains are short, the systems are either non

mesomorphic or nematic. As the chain length increases, smectic properties begin to 

appear and as the smectic phase increases, the nematic phase decreases with each 

successive chain increment until in the higher homologous series, only smectic phases are 

found. However, it is hard to postulate the exact length of the alkyl chain in which the 

appearance of the smectic phases is observed. The long undecylenyl ester and 

hexyloxypiperidino groups on each side of the stilbene segment were enough to induce the 

smectic properties of MNR-2. 

In some cases, the attachment of non-mesogenic molecules like MNR-1 as side 

chains on a polymer main chain leads to liquid crystalline properties. The polymer 

backbone enhances the tendency of low molar mass compounds toward mesomorphism 

by depressing or even canceling the ability of low molar mass compounds to crystallize 

after polymerization. Percec and Keller39 illustrated that Ti (i.e., the mesophase-isotropic 

transition temperature) is less than the melting temperature, Tm, (i.e., crystal-isotropic 

transition temperature) for low molecular weights. Since the Ti is below the 

corresponding T m for monomer, the monomer displays only a virtual mesophase 

(pontentially possible mesophase, which is thermodynamically less stable than the 

crystalline phase at the same temperature, therefore unrealizable both on the heating and on 

cooling). Therefore, the production of nematic HPS-1 can be explained by the 
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attachment of MNR~1 to a polymer backbone and by the restriction of packing 

possibilities of the side chains due to the large DP. Because of the polar substituents, 

antiparallel dipole attraction between the side chains is expected. However, with the large 

DP, the dipolar attraction of the side chains is affected by steric hindrance and so ordering 

in layers is less favored (Figure 42a). The insertion of SiMe2 segments in CPS-1 gives it 

a larger volume fraction of flexible chains, compared with HPS-1, which in turn allows 

more ordered packing of the side chains, as shown in Figure 42b, into the smectic phase. 

If, however, the monomer already shows liquid crystalline properties, the SC polymer 

will show a shift to more ordered mesophases compared to the side-chain precursor, or if 

both show the same phases, the SCLCP isotropization transition temperature may be 

higher and the crystal to LC transition lower. Contrary to what is expected, nematic phase 

was observed in the high temperature mesophase of HPS-2, instead of SA phase as 

observed in MNR-2, which can be attributed to insufficient volume fraction of flexible 

chains for the mesogens to order into smectic layers. Although, the less ordered nematic 

phase was observed, the SB to nematic phase transition and isotropization temperatures of 

HPS-2 are higher than those observed in MNR-2. The specific volume of the material is 

lowered by polymerization, that is, the packing density of the meso genic groups 

increases.36 The specific volume at constant temperature decreases with increasing DP. 

An analogy in the behavior of the phase transition temperatures can be observed for low 

molar mass LCs, where specific volume decreases with increasing pressure and for 

oligomers, where the specific volume decreases with increasing DP. Consequently, the 

phase transition temperatures shift considerably to higher values. Percec and Keller39 

explained that upon increasing the molecular weight from monomer to polymer, the 

entropy of the isotropic phase (Si) decreases. However, the decrease of entropies of LC 

(Stc) and crystal (Sc) is lower than that of Si. Therefore, the phase transition temperatures 

increase with increasing molecular weight up to a certain range of molecular weight 
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Figure 42. (a) Lack of molecular ordering of HPS-1 in a bilayer packing. 
(b) Molecular ordering in the bilayer smecti.c A phase of CPS-1. 
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values, and the increase in Ti is steeper than that that of Tic with respect to molecular 

weight, as shown in Figure 43.36 This effect has been repeatedly labeled the "polymer 

effect", especially in the.case of SCLCPs. As expected, CPS-2 showed the same smectic 

phases as in MNR-2 and exhibited higher transition temperatures. It is generally 

observed that homopolymers exhibit higher phase transition temperatures than copolymers 

T/K 
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260 
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Figure 43. Phase transition temperatures as a function of degree of polymerization, DP. 
(Taken from Stevens and coworkers, ref. 36). 

because the packing density is great in homopolymers. HPS-1 and HPS-2 showed high 

viscosities even in the isotropic state as observed in the polarizing microscope in which the 

flowing of the material was very slow above the isotropization temperature. The low 

mobility present in homopolysiloxanes explains the difficulty in producing recognizable 

microscopic textures even after annealing the polymer for days at 5 °C below Ti. 

The identification of nematic and different smectic phases by optical microscopy is 

more difficult for polymers than for low molecular weight materials due to high viscosity 
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of polymers. Therefore, X-ray data are very important in reaching unambiguous 

classifications. For powder samples which were used in my study, the X-ray patterns 

give all the reticular spacings but no information about the spatial orientation of these 

planes. Thus, it is possible to distinguish between the nematic and smectic phases of 

liquid crystals but difficult to differentiate an SA phase from an Sc phase. However, 

because of the tilt angle in Sc phase, the layer spacings, d, are smaller than the molecular 

length. Therefore, to have a way of understanding the molecular packing within the 

layers, the molecular length of the most stable conformation of the molecule was calculated 

by computer molecular modeling program (PCMODEL, Version 4.3). The calculated 

molecular length is used as comparison with the d spacings obtained from the X-ray data. 

The observed d spacings (see Table XIIIA) for MNR-1 at 135 °C and at 40 °C with an 

orthorhombic crystal structure are greater than the calculated length of the molecule (-27 .8 

A). The molecules are thought to be arranged in an antiparallel orientation in such a way 

that a small portion ofthe flexible undecylenyl ester end is sticking out, as shown in 

Figure 44a, giving rise to an increase in the layer spacing as compared to the molecular 

length. The d spacing increased as the temperature is increased. The possible explanation 

is that the molecules have a little mobility at higher temperature and the intermolecular 

attraction is reduced, allowing the molecules to protrude (Figure 44b) thus, the layer 

spacing is increased. On the other hand, the d spacings for MNR-2 at 177 °C and 165 

°C in SA and SB phases, respectively, are smaller than the calculated molecular length 

(-37.5 A) as shown in Table XIIIB. The molecules are thought to be completely aligned 

antiparallel with each other, as shown in Figure 45, however, the flexible ends on each 

side of the rigid stilbene core are somewhat bent, thus the layer spacings are smaller than 

what is calculated. The d spacing for MNR-2 at 30 °C, having an orthorhombic crystal 

structure, is almost equal to the molecular length. This is consistent with the proposed 

packing in which the molecules lie completely antiparallel with each other and at lower 

temperature the flexible ends are fully extended in an all-trans conformation. 
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Figure 44. Depiction of antiparallel ordering of molecules such- that (a) the layer spacing 
is slightly greater than the molecular length; (b) the layer spacing increased as the 
temperature is increased. 
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Figure 45. Depiction of antiparallel ordering of molecules such that the layer spacing is 
equal to the molecular length. 
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Table XIIIA. X-ray Diffraction Data of MNR-1, HPS-1 and CPS-1 

Sample Temp, °C d spacing, A (hkl) unit cella 

MNR-1b 135 32.49 (001) a(A) = 8.0 

16.49 (002) b(A) = 5.5 

10.97 (003) c(A) = 32.5 

8.28 (004) V(A3) = 1430.0 

4.55 (110) Dx (g/cm) = 0.97 

3.99 (200) 

3.24 (210) 

40 30.26 (001) a(A) = 7.8 

15.34 (002) b(A) = 5.6 

10.28 (003) c(A) = 30.3 

4.55 (110) V(A3) = 1323.5 

3.88 (200) Dx (g/cm) = 1.05 

3.19 (210) 

HPS-1 210 4.87 

150 35.35 (001) a(A) = 7.9 

18.72 (002) b(A) = 5.4 

4.47 (110) c(A) = 35.4 

3.94 (200) V(A3) = 1510.0 

3.22 (210) Dx (g/cm) = 1.06 

CPS-1 180 37.44 (001) 

4.63 

136 40.90 (001) a(A) = 7.9 

20.84 (002) b(A) = 5.5 

4.52 (110) c(A) = 40.9 

3.95 (200) V(A3) = 1777.0 

3.22 (210) Dx (g/cm) = 1.02 

ay and Dx were calculated from the values of a, b, c. Z = 2, which was obtained from 

the product of a and b ( -43 A2, which is equal to the molecular area of two molecules or 

mesogenic side chains per unit cell). bCalculated length= 27.8 A. 
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Table XIIIB. X-ray Diffraction Data of MNR-2, HPS-2 and CPS-2 

Sample Temp, °C d spacing, A (hkl) unit cella 

MNR-2b 177 33.72 (001) 

18.26 (002) 

4.86 

165 34.25 (001) 

18.72 (002) 

4.53 

30 38.09 (001) a(A) = 8.2 

19.04 (002) b(A) = 5.4 

11.95 (003) c(A) = 38.1 

9.49 (004) V(A3) = 1687.0 

4.54 (110) Dx (g/cm) = 1.10 

4.08 (200) 

3.26 (210) 

HPS-2 230 4.61 

120 4.47 

30 45.08 (00 1) a(A) = 8.2 

4.52 (110) b(A) = 5.4 

4.11 (200) c(A) = 45.1 

3.20 (210) V(A3) = 1997.0 

Dx (g/cm) = 1.03 

CPS-2 205 40.90 (001) 

21.87 (002) 

4.65 

171 45.53 (00 1) 

24.54 (002) 

4.57 

30 50.19 (00 1) a(A) = 8.2 

24.41 (002) b cA) = 5.5 

4.58 (110) c(A) = 50.2 

4.11 (200) V(A3) = 2264.0 

3.26 (210) Dx (g/cm) = 1.01 

ay and Dx were calculated from the values of a, b, c. Z = 2, which was obtained from 

the product of a and b ( .-.44 A2, which is equal to the molecular area of two molecules or 

meso genic side chains per unit cell). bCalculated length ""' 37.5 A. 
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Several studies40-43 on the X-ray diffraction of some SCLC polysiloxanes showed 

that the d spacings were much smaller than the calculated length between two polysiloxane 

backbones. They gave a number of possible explanations for the reduction in the spacing 

which involve either tilting or interdigitation. There are three possible arrangements and 

these are shown in Figure 46. The first involves the tilting of the mesogenic side chains 

which is typical of a Sc phase. The second also involves tilting but this has a herring 

bone motif. The third involves interdigitation in which there is overlapping of the 

mesogenic side chains. Sutherland and his coworkers44 observed that the interlayer 

spacings of a series of terminally cyano-substituted side chain polysiloxanes in the smectic 

A phase were considerably smaller than twice the calculated length of the mesogenic side 

chains, assuming that the mesogenic groups lie perpendicular to the main polymer chain. 

They eliminated smectic C phase since there was no evidence for this from the X-ray 

photographs. For the herring bone motif, a tilt angle between 44° and 520 is required to 

explain the observed d spacing. These tilt angles would greatly reduce the contact between 

the polarizable side chains of neighboring meso genic units. Thus, the proposed model is 

that of the interdigitated bilayer SA structure with the overlap of the polarizable side 

chains. On the basis of packing, an interdigitated structure is favored for a number of 

polymeric materials which showed a similar reduction in the layer spacing, especially with 

polar side chains. The observed d spacing for the CPS-1 at 180 °C is considerably 

smaller than the distance between polysiloxane backbones. For a smectic C phase or 

herring bone motif, the obtained d spacing would mean that the tilt angle of the meso genic 

side chains with respect to the layer plane need to be on the order of 60°, an unreasonably 

large angle, thus restricting the dipole-dipole interactions of the side chains. The most 

sensible structure at this temperature is the interdigitated bilayer SA which can easily 

account the d spacing and it allows the overlap of the polar side chains. The same 

mesophase is assigned for CPS-2 at 205 °C because of the significant reduction of the d 

spacing as compared to the calculated distance between the backbones. 
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Figure 46. Schematic representation of the molecular packing: (a) tilted as in a smectic C phase; (b) tilted with a herring 
bone motif; (c) interdigitated bilayer smectic A structure. ....... 
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The low temperature smectic phase was assigned Ss for MNR-2 and CPS-2 

because of the strong reflection in the wide angle region, indicating hexagonal order of the 

molecules within the smectic layers. Smectic B and not smectic F or I was chosen for this 

phase because it has been observed with other substances that dimorphism can be realized 

with the transformation of an Ss phase to an SA phase with increasing temperature but not 

with transformation of an Sp or S1 phase to an SA phase. The explanation to this 

observation is that the mesogenic groups in both SA and Ss phases are oriented normal to 

the smectic layers. On the other hand, Sp and S1 phases are tilted and so the 

transformation of either of these phases to an SA phase is accompanied with the change of 

orientation of the molecules. When these phases are present, the sequence of liquid 

crystalline phase is Sp phase, S1 phase, Sc phase and SA phase, if present. Trimorphism 

having the sequence SE Ss SA is also possible. There is no substance known with a SE 

phase that also possesses smectic H, G, For I phases.45 Therefore, I cannot rule out the 

possibility that the assigned orthorhombic crystalline structure is a SE phase. Like the 

orthorhombic crystalline structure, the powder X-ray diffraction pattern of SE phase also 

shows the three peaks in the wide angle region corresponding to the 110, 200 and 210 

reflections. Sutherland and Ali-Adib46 also observed these three reflections below the SA 

phase of terminally bromo-substituted SCLC polysiloxanes and interpreted it either as SE 

phase or orthorhombic crystal. 

Monolayers. The small mean molecular area per repeat unit obtained for HPS-

1 corresponds to the expected value of a close-packed array of benzene rings arranged 

perpendicular to the water surface. The II- A isotherm of 4-cyano-4"-n-pentyl-p

terphenyl was reported by Daniel and his coworkers47 and showed the collapse of the 

monolayer at 22 mN/m with 

CN 
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an average molecular area of 23 A2/molecule. A space-filling molecular model showed 

that the estimated minimum cross-sectional area is about 20 A2/molecule. Albrecht and his 

coworkers48 studied monolayers of rod-shaped liquid crystalline compounds. The II - A 

c,al-l:r7o--Q-N~ -o-
N \ !J R 

R = COOH I N02 I CN 

diagrams showed a tight packing of the hydrocarbon chains at the collapse point. They 

explained that the collapse area of 20 A2 could be related to the vertical orientation of the 

aromatic chromophores at the water surface. This agrees with what I have postulated 

earlier about the large hydrodynamic volume ofHPS-1. The strong dipolar interactions 

of the mesogenic side chains give rise to an extended orientation of the side chains. 

However, the mean molecular areas of the other three SC polysiloxanes are very much 

higher than the expected value. The II- A isotherms of alkyl-cyano biphenyl monolayers 

were reported to show collapse areas in the range of 34 to 36 A2/molecule.49 The increase 

in collapse area relative to that of the terphenyl compound indicated that the CN biphenyl 

cores are tilted further from the layer normal at the collapse point. In the case of CPS-1, 

the side chains have more available space due to the SiMe2 segment and can assume a 

tilted arrangement of the aromatic chromophores at the water space. The amino group at 

the end of the side chain of my polysiloxanes is assumed to be attracted to the water 

surface with the stilbene core also slightly attracted, giving rise to a tilted orientation. The 

polysiloxane backbone is located away from the water surface. UV/vis spectroscopic 

studies on monolayers of a cyano-substituted azobenzene pointed to such arrangement of 

the chromophores at the water surface.48 The addition of the piperidino ring in HPS-2 

and CPS-2 has a marked effect on the molecular packing. The bulky ring system reduced 
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packing efficiency, giving a much larger mean molecular area. The SiMe2 segment in the 

SC copolysiloxanes reduced the swface viscosity of the polymers and so there is little 

hysteresis observed in isotherms of CPS-1 and CPS-2. Furthermore, the stability of the 

monolayers of the SC copolysiloxanes is better than the SC homopolysiloxanes, although 

Figures 31 and 33 showed an unusual behavior of the monolayers of CPS-1 and CPS-

2. CPS-1 showed an increase in the mean molecular area from about 40 minutes to about 

80 minutes. This may possibly be due to temperature fluctuations or rearrangement of the 

polymer chains or side chains. The discontinuity observed at about 53 mN/m in the II -

area isotherm (Figure 23) of CPS-1 might not be due to the collapse of the monolayer, 

but instead the polymer might just be undergoing reorientation of the main chains or side 

chains. The isotherm was reproducible thus, the discontinuity in the isotherm cannot be 

attributed to temperature variations. CPS-2 also showed this unusual behavior in the 

isobaric experiment, however, it is not as obvious as in CPS-1. 

Conclusion 

All of the SC polysiloxanes showed thermotropic liquid crystalline properties from 

their thermal analysis, optical microscopy, and X-ray diffraction. HPS-1 and CPS-1 

exhibited enantiotropic nematic and smectic A (SA) phases, respectively. With the 

replacement of the dimethylamino group with n-hexyloxypiperidino group, an additional 

low transition temperature mesophase, smectic B (SB), was observed for HPS-2 and 

CPS-2. With DP = 60 in SC homopolysiloxanes, the anti parallel dipole attraction of the 

mesogenic side chains is restricted, thus layer formation is less favored. HPS-1 and 

HPS-2 exhibited the less ordered nematic mesophase while the SC copolysiloxanes, 

CPS-1 and CPS-2, exhibited the more ordered smectic A phase. The low molecular 

weight mesogen, MNR-2 showed similar liquid crystalline phases (SB and SA phases) as 

the corresponding SC polysiloxanes while MNR-1 showed only melting transition. 
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The monolayers of CPS-1 and CPS-2 showed better stability on water as 

compared to the monolayers of HPS-1 and HPS-2. The small mean molecular area per 

repeat unit of HPS-1 indicates vertical orientation of the aromatic chromophore at the 

water surface while the other three polysiloxanes are somewhat tilted with the stilbene core 

also attracted to the water surface. Low transfer ratios of CPS-1 and CPS-2 monolayers 

onto hydrophobic substrate were obtained. The addition of a small amount of monomer 

was thought to help stabilize the monolayers but the opposite was observed. When the 

dipping rate was reduced, I was able to transfer monolayers of the copolysiloxanes. 

Thus, slower dipping might still improved the deposition of the monolayers of my 

polysiloxanes. Carr and Goodwin 50 used aqueous subphase of pH 5.5 at 20 °C on their 

LB experiments on SCLC copolysiloxanes. It is then possible that the lowering of the 

temperature will greatly improve the stability of the monolayers. Another possibility is the 

lowering of the pH of the subphase (water), which will proton ate the amino group. If the 

latter case improve the stability of the monolayers, it can be concluded that the amino 

group is attracted to the water surface and the polysiloxane backbone is sticking out of the 

water-air interface. Horizontal lifting method was used by Carpenter and his coworkers51 

when transferring SCLCP onto a glass substrate. This might also be a better method for 

my SCLC polysiloxanes, specially for the homopolysiloxanes which have high viscosity. 

However, it is also possible that the failure to deposit multilayers of the polymers onto a 

substrate is simply because not all stable monolayers can be transferred onto a substrate. 

Spin-coated films from dibromomethane solution of the polysiloxanes gave cloudy 

samples. Thus, these polymers cannot be used for SHG measurements, unless the optical 

quality of the films will improve once the chromophores are oriented by de electrical 

poling, either contact or corona poling. Therefore, the preparation of acentric LB films is 

the best bet for possible study of the SHG response of my polysiloxanes. 
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CHAPTER III 

ESTIMATION OF SECOND ORDER NONLINEAR 

OPTICAL POLARIZABILITY 

Introduction 

The design of new materials for second order nonlinear optical (NLO) applications 

requires a knowledge of the contribution of the molecules constituting the medium to its 

nonlinear polarization. The common technique for measuring molecular second order 

polarizabilities, 13, is electric field induced second harmonic generation (EFISH).l The 

value of 13 for molecules is determined from measurements on liquids or solutions. In this 

method, a strong de electric field is applied across a solution of the compound causing a 

bias on the average orientation of the molecules due to the interaction of the field with the 

permanent dipoles of the molecules. A laser beam is passed through the solution, and the 

intensity of the generated second harmonic light is then measured. However, this method 

requires elaborate and expensive instruments to make these time-consuming 

measurements. The equipment for EFISH is as complicated as the one used for second 

harmonic generation (SHG) measurements on poled polymer films since both require the 

use of high-voltage power supply and laser beam. 

An alternative approach is the calculation of 13 by the use of the two-level model 

which takes into account the contribution to 13 of charge-transfer resonance states within a 

molecule containing delocalized n-electron system. 2,3 This model assumes that the 

electronic properties of the molecule are determined by a ground state and a low-lying 

charge-transfer excited state. For most organic molecules that are of interest for SHG, 
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this model is a good approximation because the energy difference between the ground and 

the frrst excited state is considerably less than that between the ground and higher excited 

states: there is a frrst excited state low in energy. For molecules having electron-donor and 

acceptor groups linked through a 7t-electron system, the transition to the low-lying charge-

transfer state (first excited state) is usually in the visible or near-UV region of the 

spectrum. Also, most of these molecules have the donor and acceptor groups located such 

that the charge transfer takes place primarily along the axis of the permanent ground state 

dipole moment of the molecule (x-axis). Thus, the dominant component of the tensor f3ijk 

is f3xxx· The second-order polarizability of a molecule arising from the charge-transfer 

contributions using the two-level model can be approximated by using the following 

equation4 

2 2 
Jleg (Jle - Jlg) COeg 

(1) 

where co is the angular frequency of laser beam, COeg is the angular frequency of transition 

from ground to frrst excited state, Jleg is the transition dipole moment between ground and 

excited state, Jlg is the permanent dipole moment of the ground state, Jle is the permanent 

dipole moment of the excited state, co is the laser frequency, and ii is Planck's constant 

divided by 27t. A simple method for evaluating the parameters in eq 1 is based on 

solvatochrornism, which is the solvent-dependence of electronic spectra.5 That is, the 

UV -vis absorption or emission spectrum of a compound (particularly with large dipole 

moments) in the vapor state can exhibit characteristic differences in the positions and 

intensities of the bands from the spectrum of the same compound in solution, and these 

differences depend on the solvent. 

A macroscopic second order nonlinearity can be induced in certain polymeric 

materials containing dipolar chromophores.6 To achieve noncentrosymmetric ordering of 
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the chromophores, electric field poling of the bulk medium can be used. The poling 

process involves raising the temperature of a film of the polymer to near its glass transition 

temperature and applying a de electric field to the film. The permanent dipoles experience 

a force tending to align them in the direction of the field The system is cooled under the 

influence of the field and the alignment is retained in the rigid state. The conversion 

efficiency to the second harmonic frequency of a thin uniaxial film on a substrate can then 

be determined as follows. 7,8 

where 

= 
sin2 { ~L } 

{ ~L }2 

d (d Sl.n2r1Jl + d31 cos2aCO\ st'n°200 eff = 33 o v J o 

(2) 

(3) 

is the effective nonlinear optical coefficient, Lis the film thickness, I is the light intensity, 

& is the phase mismatch between the incident fundamental and generated second 

harmonic wave, 11 is the refractive index, c is the speed of light, Eo is the permittivity of 

vacuum, and d33 and d31 are the nonlinear coefficients parallel and perpendicular to the 

poling directions, respectively. The transmitted second harmonic intensity, J2ro, depends 

upon the angle e between the incident fundamental beam and the film normal. In this 

method, the thin film is rotated about an axis perpendicular to the laser beam, giving rise to 

a fringe (Maker fringe) pattern. The fringes are caused by the angular dependence of the 

& between the incident and harmonic waves. 

This study presents the estimation of~ of the monomers, MNR-1 and MNR-2, 

by the solvatochromic method of Paley and coworkers.9 Preliminary results on the SHG 
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experiments on films of a SCLC polyacrylate containing a (CH2ho spacer chain and a 4-

dimethylaminostilbene-4'-carboxylic ester mesogen, P-10, are given. 

Experimental 

Solvatochromic method. Solutions of each monomer, MNR-1 and MNR-2, 

at four concentrations were prepared using eight solvents (dried for 24 hover 5 A 

molecular sieve, 8-12 mesh) of different polarity. The solvents selected for this 

experiment were cyclohexane (C6H12), ethyl acetate (EtOAc), acetonitrile (CH3CN), 

methyl ethyl ketone (MEK), toluene (C7Hg), chloroform (CHCh), N,N

dimethylformamide (DMF), and dimethyl sulfoxide (DMSO). UV -vis spectra were 

scanned in the range of 200 - 600 nm using a Varian DMS 200 spectrophotometer. 

Preparation of poled polymer. A transparent film of P-10 with a thickness 

of 1.5 J..Lm was obtained by spin coating a solution of the polymer in 1,4-dioxane onto an 

indium tin oxide (ITO)-coated glass. The film was covered with a second sheet of ITO

coated glass, and wires were cemented to each of the conductive surfaces with electrically 

conductive epoxy resin (Zymet SL 100-ZX:). On a microscope hot stage the film was 

heated above its isotropization temperature (Ti = 125 °C) for 10 min, and a de electric field 

of 800 kV/cm was applied. The sample was cooled at 0.2 °C/min to a temperature 5 °C 

below Ti, maintained there for 24 h, and then cooled quickly to room temperature before 

the field was turned off. After poling, the sample was clear at the center with small ripples 

near the edges. The SHG experiments were performed after the sample had been kept at 

room temperature for 3 days. After hundreds of laser pulses at 1064 nm, the film showed 

visible damage in the form of black spots. All data reported were obtained at exposures 

well below the damage threshold. 
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Results 

Determination of J.leg· The frequency of transition, u99, for each monomer in 

each solvent was determined from the band maximum of the UV -vis absorption. The 

molar extinction coefficient, ~. was obtained by means of linear regression fit of the data 

to Beer's Law. The transition dipole moment, J.leg. is related to the intensity of the 

transition and is obtained from the area under the band by means ofS 

area= J~Mdro = 
21C2 Ueg No 11 J.leg 2M 

3 (2.303) E0 C h 
(4) 

where M is the concentration, N0 is the Avogadro's number, 11 is the solvent refractive 

index, and the integral is over the entire absorption band (MKS units). The area (m-2) was 

calculated from the extinction coefficient, a, at the maximum and the half width at half 

maximum, L\X l/2• of the band. The band shape was treated as a Lorentzian function, 

hence the area under the band was obtained using eq 510 

area = + 1t a ~X112 (5) 

where both a and L\X 112 have the unit of m-1. The value of J.leg of each monomer in the 

eight solvents was then computed by means of eq 4. The results are summarized in Tables 

XIV A and XIVB. 

Determination of J.le· The frequency of transition, u99, for each monomer in 

each solvent was measured from the absorption maximum. The solvatochromic shift is 

expressed as followsll 



Table XIV A. UV -vis Absorption Data for Calculation of the Transition Dipole Moment, Jleg, of MNR-1 

solvent '()99 (106 m-1) a (l0-2 m-1) AX1/2 (105 m-1) area (107 m-2) concn (10-2 mol m-3) 

C6H12 2.6681 0.781 4.567 5.603 2.11 

EtOAc 2.6434 0.855 4.807 6.456 2.11 

CH3CN 2.6302 0.721 4.889 5.537 1.78 

MEK 2.6199 0.775 4.681 5.698 2.00 

C7Hs 2.6123 0.605 4.681 4.448 1.85 

CHCl3 2.6110 1.104 4.681 8.117 3.08 

DMF 2.5800 0.678 4.700 5.006 1.88 

DMSO 2.5517 0.587 4.777 4.405 1.66 

Jleg (10-29 C m) 

2.673 

2.939 

3.002 

2.842 

2.510 

2.674 

2.718 

2.682 

~ 

0'\ 
N 



Table XIVB. UV -vis Absorption Data for Calculation of the Transition Dipole Moment, J.leg. of MNR-2 

solvent Ueg (106 m-1) a. (10-2 m-1) ..1X1f2 (105 m-1) area (107 m-2) concn (10-2 mol m-3) 

EtOAc 2.7130 0.667 5.231 5.480 1.72 

CH3CN 2.7042 0.887 5.384 7.501 2.23 

MEK 2.6882 0.705 5.159 5.714 2.02 

CHCl3 2.6932 0.815 5.384 6.892 2.18 

DMF 2.6504 0.770 5.169 6.252 2.10 

DMSO 2.6205 0.495 5.210 4.051 1.88 

J.leg (10-29 C m) 

2.961 

3.079 

2.795 

2.884 

2.836 

2.385 

-0"1 
w 
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where u!9 is the frequency of transition in vacuum (gas phase), e is the dielectric constant 

of the solvent, A and B are constants. The dielectric constants and refractive indices of the 

solvents at 25 °C (Table XV) were obtained from Riddick, Bunger and Sakano's Organic 

Solvents.12 

Table XV. Dielectric Constants and Refractive Indices of Solvents at 25 °C 

solvent 11 E 

C6H12 1.42354 2.015 

EtOAc 1.36978 6.02 

CH3CN 1.34163 35.94 

MEK 1.37685 18.51 (20) 

C7Hs 1.49413 2.3807 

CHCl3 1.44293 4.806(20) 

DMF 1.42817 36.71 

DMSO 1.47754 46.45 

The data were substituted in eq 6 and the best-fit values of A and B, reported in Table 

XVI, were obtained using least squares approximate solution. 

Table XVI. Best-fit Values of A, B and i>~ in Equation 6* 

parameters 

A 

B 
_§ 
Ueg 

MNR-1 

-1.8149 X 104 

-0.1049 X 104 

3.0215 X 104 

MNR-2 

-1.8042 X 104 

-0.1238 X 104 

3.1021 X 104 

*Equations from cyclohexane and toluene are not included. 
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The dipole moment change, llg - Jle, was then calculated from the expression for B which 

isll 

B=( (7) 

where a is the radius of a spherical cavity in the solvent occupied by the molecule (MKS 

units). The value of a (8.7 A) was obtained from the reported a for 4-N,N

dimethylamino-4'-nitrostilbene (DANS) by Paley and his coworkers.9 They assumed that 

a equals 0.7 times the donor-to-acceptor length of the molecule. An estimate of the ground 

state dipole moment, Jlg, was calculated from the Hammett substituent constants, O'p.13 

Ulman14 plotted calculated dipole moments, f.lcalcd. of several donor-acceptor substituted 

stilbenes as function of L.crp and observed a linear relationship between f.lcalcd and LO'p. 

llcalcd = 3.76 LO'p + 2.87 (r = 0.97) (9) 

He also found a linear relationship between the gas-phase calculated and experimental 

dipole moments, llexpt (measured in benzene or dioxane) of mono and disubstituted 

stilbenes. 

llexpt = 0.8 llcalcd + 0.13 (r = 0.97) (10) 

Using both eqs 9 and 10, the approximate value of llg of the stilbene chromophore was 

obtained. 
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Determination of ~xxx· The data for COeg, !leg, llg, and lle were then used to 

calculate values of ~xxx from eq 1 for each monomer in the six solvents for laser 

wavelength 1064 nm, and the results are summarized in Table XVII. 

Table XVII. Second Order Polarizabilities of the Monomers in Different Solvents 
Calculated by the Solvatochrornic Methoda 

solvents 

MNR-1 

C6H12 5.0259 

EtOAc 4.9794 

CH3CN 4.9545 

MEK 4.9351 

C7Hg 4.9208 

CHCl3 4.9184 

DMF 4.8599 

DMSO 4.8066 

MNR-2 

5.1105 

5.0939 

5.0637 

5.0732 

4.9926 

4.9363 

~xxx (10-3° esu) 

MNR-lb 

85 

107 

114 

104 

82 

93.6 

102 

104.6 

MNR-2C 

115 

126 

106.4 

112.4 

116.3 

86.5 

aThe fundamental wavelength, A, = 1064 nm, and the ground state dipole moment, 

llg, = 2.0904 x lQ-29 C m. hThe excited state dipole moment, lle, = 5.7445 x lQ-29 C m. 

c!le = 6.4013 x lQ-29 C m. 

Sample Calculation 

1 . Calculation of ground state dipole moment, llg 

L,crP = crP (C02CH2CH3) - crP [N(CH3)2] 

L,crp = 0.45 - (-0.83) = 1.28 

llcalcd = 3.76 LO"p + 2.87 

Jlcalcd = 3.76 (1.28) + 2.87 = 7.68 D 



flexpt = 0.8 flcacld + 0.13 

flexpt = 0.8 (7.68 D) + 0.13 = 6.78 D 

flexpt = 6.78 D x 3.334 x 10-30 C mID = 2.0904 x 10-29 C m 

2. Calculation of dipole moment change, flg - fle 

(flg - fle) = B ( 4 1t E 0 c h a3 ) ( 1 I 2 flg) 

Consider parameters for MNR-1 

parameters: B = -0.1049 x 104 cm-1 

e 0 = 8.854 x 10-12 C2 N-1 m-2 

c = 2.998 x 1010 em s-1 

h = 6.626 x 10-34 N m s 

a = 8.7 x 10-10 m 

unit analysis: (cm-1) [(C2 N-1 m-2) (em s-1) (N m s) (m3)] (C-1 m-1) = C m 

(flg- fle) = (-0.1049 X 104) (41t) (8.854 X 10-12) (2.998 X 1010) (6.626 X 10-34) 

(8.7 X 10-10)3 [1/ 2 (2.0904 X 10-29)] = -3.6525 X 10-29 C m 

3. Calculation of transition dipole moment , fleg 

fleg = (area I 't>eg TJ M)112 [3 (2.303) E 0 c hI 2 1t2 N0 ] 112 

Consider parameters for MNR-1 in ethyl acetate 

parameters: area = 6.4557 x 107 m-2 

1>99 = 2.6434 x 106 m-1 

TJ = 1.36978 

M = 2.11 x 10-2 mol m-3 

N0 = 6.022 x 1023 moi-l 

unit analysis: [m-2 I m-1 (mol m-3)]112 [(C2 N-1 m-2) (m s-1) (N m s) I (moi-1)]112 

=Cm 
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Jleg = [(6.4557 X 107) I (2.6434 X 106) (1.36978) (2.11 X 10-2)] l/2 [3 (2.303) 

(8.854 X 10-12) (2.998 X 1010) (6.626 X 10-34) I 21t (6.022 X 1023)]112 

= 2.9391 x 10-29 C m 

4. Calculation of molecular second order polarizability, f3xxx(2co) 
2 2 

~eg (~e - ~g) COeg 

Consider parameters for MNR-1 in ethyl acetate 

parameters: Jleg = 2.9391 x 10-29 C m (2.998 x 109 cm3/2 gl/2 s-1 I C) (102 em I m) 

= 8.8114 x 10-18 cm5/2 gl/2 s-1 

O>eg = u99 (21t) = 4.9794 x 1015 s-1 

(~e- ~g) = 3.6525 x 10-29 C m = 1.0950 x 10-17 cm5/2 gl/2 s-1 

co = (1 I 1064 nm) (107 nm I 1 em) (2.998 x 1010 em Is) (21t) 

= 1.7704 x 1015 s-1 

ft = hI 21t = 1.0546 x10-34 kg m2 s-1) (1000 g I 1 kg) (104 cm2 I m2) 

= 1.0546 x10-34 g cm2 s-1 

unit analysis: [(cm10/2 g2/2 s-2) (cm5/2 g1/2 s-1) (s-2)] I [(g412 cm8/2 s-2) (s-2) (s-2)] 

= em 712 g-1/2 s = cm4 I statvolt = esu 

where statvolt = cm1/2 g112 s-1 

f3xxx(2co) = [3 I 2 (1.0546 x10-34)2] [(8.8114 x 10-18)2 (1.0950 x 10-17) 

(4.9794 X 1015)2] I {[(4.9794 X 1015)2- (1.7704 X 1015)2] 

[(4.9794 x 1015)2- 4 (1.7704 x 1015)2]} = 107.09 x 10-30 esu 

Determination of J2rofJro)5 SHG experiments on P-10 were performed by 

Dr. Roger Reeves of the Physics Department with a modelocked Nd:YAG laser producing 

20 ps single pulses at 1064 nm. The absolute conversion efficiency was determined by 

measuring the ratio of the 532 and the 1064 nm signal intensities and applying corrections 
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for the relative responses of the monochromator and photomultiplier tube to the two 

wavelengths. 

The conversion efficiency of P-10 film sample was measured as function of input 

intensity at an angle of e = 500 , and the results obtained are shown in Figure 1. Absolute 

efficiencies approach 10-7, which are typical values for organic polymer films. 

Figure 47. SHG efficiency of a film of P-1() as a function of input intensity at 
e = soo. 

Discussion 

The measurements from cyclohexane and toluene were not included in the 

calculation of the best-fit values of A, B, and u!9 in eq 6 because the values obtained from 

{[(e - 1) I (e + 2)]- [(112- 1) I (112 + 2)]}, the coefficient ofB in eq 6, for the two 
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solvents are so close to zero that the calculated value of B could have a large random error. 

Although, the inclusion of C6Ht2 and C7Hg data gives better solvatochromic data because 

it covers a greater range of polarity, there was no significant change in the value of B 

when data from C6Ht2 and C7Hg were included. Therefore, these two solvents were not 

used in the solvatochromic measurements of MNR-2. 

The expression for the solvatochromic shift that Paley and his coworkers9 found 

useful is that of McRaell (eq 6). In the calculation of the ~. eq 7, they have assumed that 

the cavity radius, a, equals 0.7 times the length of the donor-to-acceptor length of the 

molecule; this is somewhat arbitrary choice gives good fit to McRae's equation and gives 

values of J.le that compare well with available literature values. In a paper by Stiegman and 

his coworkers16, the constant B is equal to 2 J.lg (J.lg - ~)I h c a2 and the unit of B is esu. 

The Onsager radius, a, was estimated from crystal structure data as the volume of an 

ellipse whose long axis was taken as the donor-to acceptor length of the molecule and 

whose short axis was taken as the in-plane width of the molecule at the largest point It is 

the uncertainty in estimating a, as well as the various assumptions made in deriving eq 6, 

that make the solvatochromic method of calculating ~ less accurate than EFISH 

measurements. I have chosen the method of Paley and his coworkers in evaluating the 

value of J.le· The values of ~xxx. obtained from solvatochromic method, are not expected 

to be equal to those of ~x. obtained by EFISH, eq 11. They are two different quantities; 

~x is the vector part of a tensorial property, whereas ~xxx is only one component of the 

tensor. 

~x = ~xxx + 1/3 (~xyy + 2 ~yxy + ~xzz + 2 ~zxz) (11) 

A direct comparison of the absolute magnitudes of these two quantities is not very 

informative. Paley and his coworkers compared the trend in the values of ~xxx with the 

trend in the values of ~x· They observed an excellent agreement at 1064 and 1907 nm. 



Thus, ~xxx can be used as well as ~x for evaluating the relative merit of small organic 

compounds for SHG. The ~xxx values obtained were found to be dependent on the 

solvents employed. 
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The position and intensity of an electronic spectra can be influenced by solvents. 

In a solution, molecules having a permanent dipole moment cause an electric dipole field 

and this field acts on the surrounding solvent molecules. If the solvent molecules have a 

permanent dipole moment, they orient themselves with their dipole moment parallel to the 

field. Although, not all the solvent molecules are ideally oriented at any time since 

orientation is opposed by thermal motion. If the solvent molecules have no permanent 

dipole moment, a dipole moment is induced in the dipole field of the dissolved molecule. 

From the permanent and induced dipole moments of the solvent molecules, this in turn 

produces a dipole field in its environment and acts on the dissolved molecule in the same 

way as an external field. The extinction coefficient of an absorption band whose transition 

moment is parallel to the dipole moment increases in a field, while that of a band whose 

transition moment is perpendicular to the dipole moment decreases. The electronic 

excitation of a molecule is also associated with the change in the dipole moment, J.lg - Jle, 

which leads to a field-dependent shift of the band. The band shift leads to a broadening of 

the absorption band in a field, and since this broadening is unsymmetrical, the maximum 

of the band is also shifted. 

The energy absorbed in the ultraviolet region produces changes in the electronic 

energy of the molecule resulting from transitions of valence electrons in the molecule. 

These transitions consist of the excitation of an electron from an occupied molecular orbital 

to the next higher energy orbital. The energy absorbed is dependent on the energy 

difference between the ground state and the excited state; the smaller the difference in 

energy, the longer the wavelength of absorption. In the six solvents, the Amax of MNR-1 

is always about 10 nm greater than the corresponding Amax of MNR-2. This means that 

the energy difference between the ground state and the excited state of MNR-1 is less 
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than that of MNR-2. The chromophore of MNR-1 is flat, thus the delocalization of the 

1t-electrons from the amino to the ester groups is effective, giving rise to lower energy of 

the 1t~1t* transition. On the other hand, the piperidino ring in MNR-2 must be twisted, 

as shown in Figure 48, to obtain a flat conformation of the chromophore. At times when 

the piperidino ring is not in the twisted conformation, the delocalization of the 1t-electrons 

is not as effective as it should be, therefore MNR-2 absorbs at a shorter wavelength. 

(a) 

(b) 

Figure 48. Computer drawings of the most. stable conformation of MNR-2, viewed 
from (a) the side and {b) the top. 

Preliminary experiments showed that P-10 has strong picosecond SHG responses 

at 1064 nm. The molecular contribution d33 to xP> of P-10, after it was corrected for 

path length and number density, is a factor of 5.6 less than that of DANS doped in 

PMMA. This is not surprising since DANS has a strongly electron-withdrawing nitro 

group as compared to a moderately electron-withdrawing carboxylic ester group in P-10. 
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This agreed with the solvatochromic data in which the Pxxx values obtained for MNR-1 

and MNR-2 are 3x less than that of the Pxxx obtained for DANS (300 x 10-30 esu). The 

SCLC polysiloxanes do not give transparent films when spin coated onto indium tin oxide 

(ITO)-coated glass. It is not known whether these translucent film will become 

transparent upon alignment of the chromophore. Unless these films become transparent, 

there is no way one can use this method for SHG experiments. The polysiloxanes will not 

have problems in attaining high degree of alignment. However, maintaining alignment for 

a long period after electrical poling might not be possible since the T g's of the 

polysiloxanes are below room temperature, unless the anisotropic ordering can be frozen 

in the crystalline phase, which is observed at room temperature. 

In comparison to the SCLC copolysiloxanes studied by Carr and Goodwin17, in 

which they reported a Pz value of 8.4 x I0-29 esu for the repeat unit, I believed that the LB 

films of my copolysiloxanes will give higher SHG signal because it has better electron 

donor-acceptor substituents on each end of the stilbene. In addition, the UV -vis spectrum 

(Figure 40) of the LB film of CPS-2 showed a shift in the Amax to a lower wavelength, 

which will possibly give a nonresonant x<2). 
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