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CHAPTER I 

INTRODUCTION 

Water distribution systems are formed by pipes, pumps, 

tanks and valves interconnected at junctions or nodes. The 

distribution network of a municipality can consist of 

hundreds of pipes or links with decreasing order of 

importance according to their diameter and location in the 

system. The hydraulic performance of the water distribution 

network is generally analyzed through the use of a 

mathematical model of the system. such models are 

representations of the real network and include functional 

relationships among the components of the network. A 

network is considered solved when the pressure and consumer 

demands at all nodes and the flow in the pipes are known 

(Shamir and Howard, 1977). 

Engineers and system operators rely on the model 

results and use them to make important and costly decisions. 

Due to the complexity of existing systems and the need to 

solve problems in a short period of time, the use of 

simulation models is becoming imperative. Although such 

models have been used for several decades, the evolution and 

extensive accessibility of computer hardware and software 

components makes it possible to apply modeling processes in 
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every aspect involved with water distribution networks. 

Model results are used for several purposes including: the 

design of a new system; the study of system performance 

under different network stresses; the design of pipe line 

extensions; the study of rehabilitation alternatives; the 

analysis of strategies for system operations under normal 

and emergency situations; etc. Due to the deterioration and 

aging of existing water systems which were placed in 

operation many decades ago, it is expected to be invested in 

the u.s. hundreds of millions of dollars for rehabilitation 

and expansion of these works. 

One of the most important problems concerning the use 

of mathematical simulators is determining whether the model 

is actually capable of representing the physical system 

under study. Proper calibration of model parameters is not 

an easy task and may be assessed by different methods. 

It is of most importance that the model be successfully 

calibrated before its results can be reliably used for any 

purpose. The cost of a conservative design increases with 

increasing uncertainty in pipe roughness (Lansey et al., 

1989), so a better calibration will result in less cost for 

the design. Unfortunately most calibration procedures have 

been deterministically based (Walski, 1983b, 1986). Little 

attention has been devoted to the impact of uncertainties in 

calibration efforts. Additionally, data collection is 

nearly universally overlooked because it requires great 

effort and is a costly process. However, this additional 
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cost may be insignificant if compared to the consequences of 

making important decisions based on inaccurate results. 

This research addresses the problem of improving the 

calibration of a water distribution network model. It 

focused on developing a basic framework for the calibration 

considering uncertainties in input data and model 

parameters. The calibration procedure incorporates a 

stochastic component to characterize the several sources of 

errors and to analyze their propagation through the modeling 

steps. The objective is to produce a calibrated model which 

will better represent the physical system. This is 

accomplished by assessing the uncertainties in model 

predictions resulting from the uncertainties in input 

variables and in calibrated parameters. 

The calibration assessment determines if the current 

knowledge of the parameters produces a model which is 

adequate for the purposes of its use or if it is necessary 

to collect more information to reduce parameter and model 

uncertainties. The methodology can also be used to define 

operational conditions for future data collection to improve 

the model predictive ability. 



CHAPTER II 

BACKGROUND INFORMATION AND REVIEW 

OF ESTIMATION TECHNIQUES 

Water Distribution Modeling 

A water distribution network is a system formed by a 

series of pipes which are connected at nodes. Water is 

supplied to the network from one or more sources named fixed 

grade nodes. It can be delivered by gravity or pumped into 

the network. Tanks may also be installed in the system to 

act as buffers to improve pumping energy efficiency or to 

function as contingency storage. The energy and flow 

supplied by pumps and tanks are usually known with only a 

small degree of uncertainty. 

The hydraulic performance of a water distribution 

network is generally analyzed through the use of a model of 

the system. Such models are mathematical representations of 

the real network and include functional relationships among 

the components of the network. Models are used for several 

purposes including the design of new systems; the study of 

system performance under different network stresses; the 

design of pipe line extensions; the study of rehabilitation 

alternatives; the analysis of strategies for system 

operations under normal and emergency situations; etc. 
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Two major types of parameters must be calibrated in the 

modeling process of a water network. The first type 

consists of the roughness coefficients of the pipes which 

are physical parameters and considered to be time invariant. 

The other type of parameters is related to the network 

operational condition consisting of consumer demands and 

pressure heads at the nodes. These parameters vary in the 

time domain according to the network usage. . Examples of 

demand conditions are normal, peak and fire loads. 

If the nodal demands and pipe characteristics are 

known, the flow distribution in the network can be computed 

by solving a system of nonlinear equations. As a system 

ages, the pipe characteristics, especially the roughness 

factor, change at an unknown rate and becomes a source of 

uncertainty to the modeling process. 

In order to model a water distribution system, it is 

convenient to adopt a simplified network to reduce the 

complexity of the real.system. One simplification is to 

adopt similar pipes. In this case, pipes of the same 

material, diameter and age are considered to have the same 

roughness coefficient. However, this coefficient may vary 

depending upon the pipe's location and amount of flow 

through their links. 

Another modeling practice is to use pipe network 

skeletonization. In such systems, single pipes are used to 

represent a group of small links. This may complicate the 

interpretation of results since the roughnesses of the 
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modeled pipes may not have a physical basis. The amount of 

system discretization is a function of the type of study to 

be developed and depends on the level of detail required for 

the analysis. 

Before a simulation model can be used it must be 

calibrated to the particular network of concern (Walski, 

1983a, 1987). In the calibration process, unknown 

parameters are adjusted by comparing model predictions with 

field observations. Once the model is calibrated, it can be 

used to predict system responses under selected operational 

conditions. 

Calibration Procedure 

The calibration procedure is developed based on 

measurements collected in the field which provide 

information on system usage and performance. These 

measurements consist of pressure heads, flow rates, tank 

levels, valve settings and concentrated demands which are 

taken at selected points in the system. Nodal demand data 

usually must be estimated. These data are called pseudo­

measurements. They cannot be directly measured because in 

most cases consumer demands are distributed throughout pipe 

links. For modeling purposes the distributed flows are 

lumped at node locations. Lumped demands must be estimated 

by the modeler or determined in the estimation process. 

A typical field test used to collect measurements 

consists in taking pressure head measurements at selected 
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points in the system under estimated demand conditions. In 

a second type of test, one or more fire hydrants are opened 

causing a fictitious fire demand. Pressure and flow 

measurements are taken at these points. Remote meters are 

placed at other locations to record pressure heads during 

the test. Additional information is available for tanks and 

pump stations whose pressure heads and flows are monitored. 

Besides performing system-wide tests, it is possible to 

attempt to isolate a single link and conduct a flow test to 

estimate the pipe roughness. A good estimate of a 

particular pipes' roughness can be useful in improving the 

estimation ability of a model. 

Hydraulic Equations for 

Distribution Network 

The hydraulic equations of the flow through pipe 

networks are based in the physical laws of conservation of 

mass and energy. The first law expresses mass continuity at 

each junction node. It requires the algebraic sum of flows 

going into and out of the node to equal zero. 

For each junction node j in the system a continuity 

relationship can be written as (Boulos and Ormsbee, 1991) 

Np 

L A]i q~ - Qj = 0 ( 2 .1) 
~=1 

where 

= the number of pipes 
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= o, if the i~ pipe is not connected to 

junction j 

= 1 or -1, depending whether the i~ pipe 

flow is towards junction j or away from it 

= the volumetric flow rate at pipe i 

= external demand at junction j. 

As water flows in the pipes it looses energy due to the 

friction with the pipe walls which appears as the pressure 

drop along the extension of the pipe. The second law 

requires the conservation of energy along each loop or path 

in the network. This law is verified when the energy put 

into the fluid by pumps inside the loop minus the 

accumulated pipe energy losses sum to zero. 

Each primary loop, which is an independent closed path, 

generates an energy conservation equation of the form (Mays 

and Tung, 1992) 

L hL1] - L Hpumpk = 0 (2.2) 
i,jEim kEJm 

where 

h 
L1J 

= energy loss in pipe linking nodes i and j 

Im = set of pipes in loop m 

Hpumpk = energy introduced by pump k 

m = loop number 

k = refers to pump 

Jm = set of pumps in loop m. 



9 

When there is no pump inside the loop, the sum of the 

energy losses around the loop equals zero. Energy 

conservation equations can also be written for paths of 

pipes between any two fixed grade nodes. If there are Np 

fixed grade nodes, Np-1 independent equations can be written 

as 

Jl.EFGN = ( 2. 3) 

where 

= difference in total energy grade between 

two fixed grade nodes {FGN) 

= set of pipes in the path connecting the two 

FGN 

= set of pumps in the same path. 

Equation (2.2) can be considered a special case of 

equation (2.3) where the difference in total grade ~E is 

zero for a path which forms a closed loop. 

The governing system equations can be expressed in 

terms of unknown pipe flow or nodal heads using loop {or 

path) equations or nodal equations. 

Loop Equations 

In a water distribution network the following equality 

must hold 

(2.4) 
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where 

Np = the number of pipes 

NJ = the number of junction nodes 

NL = the total number of independent loops 

Np = number of fixed grade nodes. 

The structure of the loop equations requires that each 

component of the path equations, Eq. (2.3), to be expressed 

in terms of the flow rate. The total energy loss, hL, in 

each pipe is due to two sources and may be expressed as 

where 

h~ = ~ qn, is the energy loss along the line 

h~ = Km q2 , is the localized loss due to special 

fittings 

(2. 5) 

~ = a coefficient of physical pipe characteristics 

Km = coefficient related to the fitting 

qn = the pipe flow raised to a power n. 

Coefficient ~ is a function of the pipe length, 

diameter and roughness. The computation of ~ as well as 

the value of the power n depends on whether the energy loss 

expression used in the analysis is the Hazen-Williams or 

Colebrook-White equation. 

The energy due to the pump in the line may be expressed 

as a function of its power as 
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( 2. 6) 

where 

~~ = energy added by the pump 

Z = 8.814 Pu/S (for English units) 

Pu = useful power of the pump 

S = specific gravity of the liquid. 

By expressing the energy losses in terms of the flow 

rate, equation (2.3) becomes 

llE = ~ ( K qn + K q2} - ~ z 
LJ p . m 4J q (2.7) 

Equations (2.1) and (2.7) form a set of Np simultaneous 

nonlinear algebraic equations with respect to unknown flow 

rates at each pipe. They are called the loop equations. 

Typically, the energy relationship for components of 

water distribution systems is written in terms of the Hazen-

Williams equation. Another equation expressing head loss in 

pipes is the Darcy-Weisbach equation used in conjunction 

with the Colebrook-White formula. Both flow models have 

been reported to be well suited for modeling distribution 

networks under certain conditions (Usman et al., 1988). The 

Hazen-Williams equation is not very precise in the laminar 

and transition flow regimes. The Colebrook-White equation 

incorporates temperature and flow regime dependent 

coefficients making its use adequate for modeling dynamic 

situations under varying flow conditions and seasonal 

variations. Additional review on both equations can be 



found in Tullis (1989) and American Society of Civil 

Engineers (1975). 

The Hazen-Williams equation was adopted in this 

research because of its wide acceptance in the USA and 

England and pipe flows in most water distribution systems 

are in the turbulent regime. To represent the energy loss 

in a pipe the Hazen-Williams equation can be expressed in 

terms of the flow rate as 

12 

(2.8) 

where 

q = pipe flow rate in cubic feet per second (cfs) 

Kt = 1.318 (for English units) 

CHW = Hazen-Williams roughness coefficient 

A = pipe cross section area in square feet (sq-ft) 

R = hydraulic radius of the pipe in feet (ft) 

Sr = hL/L, slope of the energy line 

hL = total energy loss between the pipe extremes (ft) 

L =length of the pipe (ft). 

Considering no pumps or special fittings in the pipe, 

the slope of the energy line, Sfl is due to the pipe losses 

only. The energy loss along the line can be computed as the 

difference in pressure between junctions at the pipe ends 

(H, - HJ). By expressing the area and hydraulic radius as 

functions of the pipe diameter, equation (2.8) becomes 

[ D2.63] [ (H -H.) ]0' 54 
q =KC 'It-- ~ 1 

1 HW 41.63 L (2.9) 
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where 

D = pipe diameter used to express the hydraulic radius. 

The above equation can be further simplified to 

q= 
(H.-H.) o.s4 

~ J c 
K.z HW 

(2 .10) 

where 

The energy loss in the pipe, hL, can be expressed in a 

similar form of Eq. (2.5) where n equal 1.852 and ~ equal 

CHW/K2. 

Node Equations 

The node (or head) equations use only continuity 

relations defined by Eq. (2.1) and consider nodal pressures 

as unknown instead of pipe flow rates. For the node 

represented in Figure 2.1, which has assumed flow directions 

defined by the arrows, an equation can be written of the 

form 

( 2. 11) 

where 

K is the coefficient defined in Eq. (2.5). 

Equation (2.11) can be written for each junction in the 

network forming a system of nonlinear equations with the 
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number of unknowns corresponding to the number of nodal 

heads. Since both the loop and node equations 

represent nonlinear algebraic relationships, no direct 

solution is possible. They are solved by applying iterative 

techniques. 

Network Simulator 

Several algorithms have been developed to solve the 

nonlinear equations of the flow through pipe networks and 

have been incorporated in network simulators. One of the 

most widely accepted of such programs, KYPIPE, the 

Figure 2.1. Junction Node with Three Pipes 



University of Kentucky water distribution simulation model 

(Wood, 1981), was used in this research. The program uses 

the linear method that has proved to be very reliable and 

efficient to solve these equations (Wunderlich and Giles, 

1986). 

15 

The algorithm used for the solution of the loop 

equations makes use of gradient methods to handle the 

nonlinear flow rate (q) terms in the energy equation (2.7). 

These equations are first linearized in terms of an 

approximate flow rate q,, in each pipe. Based on an 

arbitrary initial value for the flow in each line, the 

linearized equations are solved using routine matrix 

procedures for solving linear equations. A second solution 

is then obtained. The above procedure is repeated until the 

changes in flow rates obtained in successive trials are 

insignificant. Because all flows are computed 

simultaneously, convergence is expected and occurs within a 

few iterations. 

Parameter Estimation Techniques 

Common water distribution system modeling practice is 

to use ad hoc calibration procedures. Simply, the modeler 

adjusts pipe roughness coefficients and consumer demands 

arbitrarily or with judgment to force predictions of 

pressure heads and pipe flows to agree with measurements 

taken at a few points in the system. 

Walski (1983b, 1986) and Bhave (1988) proposed 
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equations for correcting c factors and nodal demands based 

on fire flow tests conducted in the network under both high 

and low water uses. Rahal et al. (1980) presented a process 

for adjusting pipe resistance parameters and parabolic pump ' 

coefficients for steady state simulations based on the 

sensitivity of the relative discrepancy between observed and 

calculated values. The procedure generates global 

adjustment factors to be applied only to network elements 

that are affected by the tests. They do not allow 

calibration of individual elements of the network. 

More robust techniques for parameter estimation in 

water distribution systems may be described as either 

analytic or optimization methods. Analytic approaches are 

also referred to as explicit or indirect methods and are 

frequently used in distribution network systems. 

Optimization techniques, also referred to as implicit or 

indirect solutions, have proved to be a powerful tool in the 

solution of the network equations. 

Uncertainty analysis methods, although of frequent use 

in groundwater and hydrologic systems, have been applied by 

few researchers as parameter estimation procedures for 

distribution networks. While the first two approaches are 

characterized as dealing only with exact values, these 

methods attempt to analyze the measurement, parameter and 

model uncertainties. An overview of the parameter 

estimation methods is presented below. 
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Analytical Methods 

The parameter estimation methods described in this 

category solve the mathematical formulation of the 

hydraulics of the water distribution network expressed as a 

deterministic system of nonlinear equations. This method is 

commonly used in network simulators considering known values 

of consumer demands and pipe resistance factors. The system 

is solved for the unknown pressure at nodes or flow rates in 

the pipes. The solution methodology consists of inverting 

the coefficient matrix of the parameters (or using its 

pseudo inverse). By redefining the unknowns and including 

field measurements as known information, it is possible to 

reformulate the equations and solve directly for other 

unknowns, such as pipe roughness coefficients. 

Shamir and Howard (1968) presented a method for solving 

the network node equations for a combination of unknown 

elements such as nodal heads, consumptions or pipe 

resistance factors. A first order Taylor expansion about a 

current state vector estimate is used to linearize the flow 

equations which are solved iteratively by the Newton-Raphson 

method. The system is solved for correction terms of the 

different unknown elements. The solution of the set of 

equations is dependent on the distribution of the unknown 

parameters in the physical system. A unique solution is 

guaranteed if the matrix formed by the coefficients of the 

unknown parameters and the constant vector are of full rank. 
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This criterion can be met if each node in the system has one 

unknown. The unknowns may be: {1) the external demand at 

the node, (2) the pressure head at the node or at adjacent 

node, or (3) the loss coefficient of a pipe which is 

connected to the node. 

Observability analysis for distribution networks 

attempts to determine a minimum set of measurements that 

will provide sufficient information for the computation of 

all other unknown parameters. Bargiela {1985) presented an 

algorithm for determining observability in water 

distribution system state estimation {i.e., demand 

estimation with known pipe parameters), based on the 

structure of a global matrix defined as a function of meter 

placement and network topology. His study introduces the 

concept of topological observability with respect to a given 

measurement set and suggests a method of finding an 

observable spanning tree of the network based on graph 

theory. 

Measurements are often scarce in water distribution 

collection efforts and it is necessary to add pseudo­

measurements so that the system of equations remains 

solvable. The pseudo-measurements introduced are obtained 

by estimation or interpolation between measurements. These 

estimates contribute to increase the qegree of uncertainty 

in the calibration process and to reduce model prediction 

accuracy. 

Ormsbee and Wood {1986) developed an explicit method 
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for the network calibration in which they solve the flow 

equations in terms of head loss coefficients. The original 

loop equation formulation considered a system of Np 

equations which were solved for Np unknown pipe flow rates. 

In the algorithm additional continuity and energy equations 

supplement the loop equations and allow an equal number of 

decision variables to be computed. The added variables can 

be either headloss adjustment factors or head loss 

calibration coefficients. The solution technique was based 

on the linear method and was capable of analyzing only a 

single loading condition. 

Cohen and Carpentier (1988) studied observability 

improvements by taking the dynamic behavior of the system 

into consideration. They assumed that a static demand 

condition could be measured at different times with 

measurements taken at different locations each time. This 

practice increases the number of measurements for each 

demand condition. With the additional measurements, the 

observability criterion may be met. The authors state that 

the main difficulty of the approach lies in the proper 

choice of the pseudo-measurements which must be selected 

according to the particular system. 

Parameter estimation under a single loading condition 

is not a reliable procedure due to compensating errors which 

might occur in setting parameter values, i.e., the solution 

is not unique. Several parameter estimation algorithms have 

been reported to improve calibration of distribution 
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networks considering multiple demand loads. Rahal and 

Sterling (1981) considered a dynamic approach for the 

calibration problem using data from extended period 

simulations. In this case the loading conditions varied 

with time and the dynamics of the reservoir hydraulics were 

included in the solution methodology. 

Optimization Methods 

Some authors have proposed implicit solutions to 

estimate parameters of hydraulic network models, based on 

mathematical programming. Such techniques seek the best 

values of parameters which minimizes an objective function 

expressed as a norm of the discrepancy between observed and 

computed values. These values can be nodal pressures, pipe 

flow rates, or tank levels, or any combination of the 

measurements. The procedure also allows one to impose 

physical limitations on parameters and to fix operating 

ranges for individual network components which are 

introduced in a form of constraints in the optimization 

problem. 

Powell et al. (1988) and Sterling and Powell (1989) 

applied an iteratively re-weighted least squares algorithm 

for the state estimation problem in which the weights are 

modified within each Newton-Raphson step to improve 

convergence. This method, although adequate for on-line 

monitoring, requires measurement redundancy levels that are 

not often obtained even in the best telemetry systems. It 
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also requires previous knowledge of the covariance matrix of 

the measurement error term which is used as the weight 

function. This method, however, did not address any 

uncertainty in estimation of consumer demands or nodal 

pressure head measurements. Since a linear regression 

analysis was performed at each step of the analysis, no 

limit was placed on the acceptable range of the demands. 

Ormsbee (1989) and Lansey and Basnet (1991) used 

nonlinear programming algorithms to estimate demands and 

pipe roughness coefficients considering individual and 

multiple loading conditions. Both authors used a problem 

reduction technique in which the number of constraints were 

decreased by the use of a simulation model. The simulation 

model is capable of solving the network equations for the 

unknown nodal pressure heads, pipe flows and/or tank levels, 

given a set of roughnesses coefficients and consumer demands 

which are the parameters to be calibrated. Simulation 

results are used to evaluate both the objective function and 

the implicit constraints for a set of calibration parameters 

generated at each optimization problem iteration. 

Lansey and Basnet's procedure allowed one to consider 

one or more demand pattern and extended period simulation 

simultaneously. The model's ability of finding optimal 

solutions is restricted by the type and number of 

measurements available and by the system observability. 

Boulus and Ormsbee (1991) extended Ormsbee's work to 

multiple demands and time varying conditions. 



Uncertainty Analysis 

The procedures described earlier did not consider the 

quality of the input values used for the calibration 

algorithm. They all attempt to find unique values for 

parameters without assessing their reliability. In a more 

realistic environment there are several sources of 

uncertainty present in the various phases of the parameter 

estimation process. 
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As discussed earlier the conceptual model of the 

network is itself a simplification of the real system being 

modeled. Measurements of heads and flow may contain errors 

due to the instrument precision and data acquisition and 

processing. Consumer usage may be over or underestimated. 

This reflects a disadvantage of the use of a deterministic 

estimator in that the resulting parameters may be invalid 

because errors in input data are not accounted for. The use 

of a purely deterministic estimator may compromise the 

application of the modeling results due to a lack of 

knowledge of the reliability of the parameter values and 

resulting model predictions. 

Few authors have addressed uncertainty considerations 

in modeling water distribution systems. Bargiela(l989) 

studied the propagation of uncertainty in measurements of 

pressure heads and estimation of consumer demands to other 

nodes in the network. He proposed methods for computing 

error bounds for the demands considering a complete 



23 

knowledge of the pipe roughnesses coefficients. The 

procedure, however, does not provide any information on the 

mean, variance and type of distribution for the error term 

nor does it address the issue of pipe roughness calibration. 

Leroy (1988) applied a simple Monte Carlo to examine 

uncertainty in pipe roughness which consisted basically of 

performing a sensitivity analysis for the pressure at a few 

points in the system, considering a highly parameterized 

network. 

Lansey and Basnet (1991) introduced errors in 

measurements and pseudo-measurements at selected nodes and 

attempted to calibrate pipe roughness and remaining demands 

using their gradient based optimization procedure. They did 

not, however, characterize the structure of the error term 

or assess the impact of the different magnitudes and types 

of errors. 

Other Applications of Parameter 

Estimation 

Statistical analysis has been applied to study the 

influence of the errors in the modeling of hydrologic 

systems (Troutman, 1985). Three types of uncertainties were 

identified: model errors, input errors, and parameter 

errors. The error was characterized as a-random variable 

associated with a probability distribution. The 

identification of the error term was restricted to the 

knowledge of the distribution of the parameters. 
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A survey of parameter identification procedures used in 

groundwater systems is presented by Yeh {1986). The 

solution methodologies are classified into two broad 

categories based on the equation error criterion and on the 

output error criterion. Equation error criteria are the 

procedures using analytic solutions. In this category model 

parameters appear as dependent variables and missing data 

are estimated to make the system solvable. Output error 

criteria are based on optimization algorithms which minimize 

a function containing the discrepancies between measured and 

computed values. A potential problem of not achieving a 

global optimum may arise since the minimization problem is 

usually nonlinear and nonconvex. The methods applied in 

water distribution analysis are similar in sophistication to 

those presented for modeling groundwater systems. 

Parameterization and Model Reduction 

Since system parameters must typically be inferred from 

few measurements, model simplification is commonly adopted. 

Usual practice is to remove pipes which are assumed to have 

small influence on system pressures and thus form a smaller 

network model (skeletonization) or assume that sets of pipes 

have the same roughness coefficient (parameterization). If 

pipe characteristics are known, then simple configurations 

(pipes in series or parallel) can be easily reduced to an 

equivalent pipe. Hamberg and Shamir (1988) developed a 

skeletonization procedure which reduces complex sets of 



pipes to an equivalent system. The method, however, 

requires the pipe and demand characteristics to be known. 

When the system characteristics are being determined, 

the above methods cannot be applied without assumptions. 
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Yeh and Yoon (1981) developed a method to examine the impact 

of parameterization in groundwater systems. Model error 

which increases with higher levels of parameterization and 

the parameter error which conversely decreases were computed 

assuming the complete system is known. The modeler can then 

define the acceptable tradeoff level. 

Data Collection and Optimal 

Experiment Design 

In many systems the structural configuration cannot be 

directly measured. They are inferred from limited 

observations of the system responses. These observations 

must be collected in a time and space domain and they 

contain errors. A need for an efficient data collection 

procedure for such systems motivated researchers to consider 

the problem of experimental design. Optimal experimental 

design is an active research area in control theory (Walter, 

1987). These techniques have been applied and extended in 

the groundwater area. 

The goal of an experimental design is to collect the 

most valuable information which will reduce the parameter 

uncertainty and improve the predictive ability of the 

simulation model. Several optimality criteria have been 
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applied in designing data collection for groundwater 

systems. They differ according to the measure of the system 

reliability adopted. The A-optimality criterion minimizes a 

trace of the covariance matrix of estimated parameters while 

satisfying all system constraints. The D-optimality 

criterion minimizes the determinant of the estimates• 

covariance matrix. These criteria had been used for 

scheduling pumping tests for identification purposes 

(Nishikawa and Yeh, 1989). Other criterion using the 

concept of maximum information is reported for determining 

placement of sampling wells for transport parameter 

identification (Cleveland and Yeh, 1990, 1991). 

The objective of these methods is to reduce parameter 

uncertainty which is not the overriding goal of the modeling 

effort. Several extended identifiability criteria have 

recently been introduced which focus on the prediction 

uncertainty {Chavent, 1987; Hsu and Yeh, 1989; and Sun and 

Yeh, 1990). These measures have been applied in groundwater 

estimation to select static experimental designs. 

The original work of Federov {1972) introduces the 

basic concepts of experimental design and presents several 

identifiability criteria. General algorithms for obtaining 

D-optimal designs were revised by st. John and Draper 

(1975). 



CHAPTER III 

RESEARCH OBJECTIVE AND SCOPE OF WORK 

The problem addressed in this research is to improve 

water distribution system modeling. It is desired to 

produce a model which best reproduces the responses of the 

physical system. This requires an understanding of the 

sources of uncertainties and how they propagate through the 

modeling process. The overall objective is to develop a 

framework for calibration of a model to the network system 

to achieve a desired level of accuracy in the model output 

values. The goal is to provide engineers and system 

operators with a reliable system representation allowing 

them to make more informed decisions. 

Scope of the Work 

The product of this research is a methodology for 

calibration of a model for water distribution network 

systems considering parameter estimation, data collection 

and techniques for analyzing the parameter estimates' and 

model predictions' uncertainties. To achieve the research 

objectives, a series of statistical procedures were linked 

to consider the effect of measurement uncertainty on the 

parameter estimates, to assess the impact of parameter 
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uncertainty on model prediction, and to assist in defining 

data collection conditions based on model prediction 

uncertainty. The additional information will be used to 

reduce parameter and model uncertainties. 
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The parameters to be estimated are the pipe roughness 

coefficients for a single pipe or a group of pipes in a 

skeletonized network. It was assumed that these parameters 

represent the total loss in each component including minor 

valve losses and reductions in pipe diameter. 

The collected field data are the nodal pressure heads, 

tank levels, and pump pressure and discharge. Nodal demands 

are assumed to be known exactly or their statistical 

distributions are known. Since data collection is expensive 

and time-consuming, ineffective measurements must be 

avoided. 

Specifically, the research consists of formulating a 

calibration procedure which considers errors in field 

measurements and their resulting impact on model 

predictions. To complete the calibration methodology the 

components developed were: 

1. A linear regression model for estimating system 

parameters using assumed and/or measured field data and 

their statistical distributions. 

2. An error analysis procedure for the regressed parameters 

using conditioned Monte Carlo analysis to determine their 

statistics and distributions. 

3. A technique for evaluating the propagation of parameter 
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errors to model predictive ability using Monte Carlo and 

first order second moment approaches. 

4. A procedure to analyze the worth of future data 

collection conditions. 

The resulting computer programs were then applied to 

various systems and for different system conditions to learn 

about the relative importance of the different information 

in the overall calibration process. 

Uniqueness of Research 

Most water distribution system models have been 

deterministically based and do not consider uncertainties 

introduced by modeling assumptions or errors in parameters. 

Also, methods for statistically evaluating the goodness of 

the modeling results are limited. 

Current calibration techniques for water distribution 

networks are insufficient to verify that the model 

represents reality. Representing reality is the basis upon 

which all models must be/judged and tools to assist modelers 

achieve these goals are lacking. 

This research is an initial effort to quantify the 

uncertainty in parameter estimates and model predictions. 

The integrated calibration approach provides guidance in 

collecting additional data to reduce these uncertainties. 

The result of applying this methodology will be system 

models which more closely represent reality. Better models 



will lead to more informed decisions regarding operations, 

design, maintenance and monitoring. 

This research is unique for the following reasons. 

1. No other published work has considered a comprehensive 

integrated process for calibrating a water distribution 

network. 

2. This effort is the first to consider the impacts of 

errors in field data on the model parameters and model 

predictive ability. 
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3. No other modeler has considered the parameters and model 

predictions of water distribution systems as statistical 

variables which can be represented by their mean and 

variance, and approximated by a probability distribution. 

4. This is the only procedure which examines the value of 

field information and uses that information to determine 

useful conditions to guide future data collection 

efforts. 



CHAPTER IV 

CALIBRATION PROCEDURE 

Basic Steps of the Calibration 

Methodology 

The methodology for the calibration of water 

distribution systems considering uncertainties is comprised 

of three basic steps: Data Collection, Parameter Estimation, 

and Assessment of the calibration. These steps are depicted 

in Figure 4.1. 

Data 
Collection 

Parameter 
Estimation 

Asse$Stnent 

Figure 4.1. Basic Steps in the Calibration Procedure 

31 



32 

The purpose of a data collection effort is to provide 

sufficient and reliable field measurements to be used as 

input data in the estimation of model parameters. several 

types of measurements can be collected at selected locations 

in the system. These measurements can be the pressure head 

at junctions, pipe flow rates, and a set of operating 

conditions on pump status and tank levels reflecting the 

system usage at the time the measurements were taken. So, 

additional information on estimation of consumer demands, 

pump discharges, and valve settings are needed to augment 

the real measurements and to complement the input data 

required to estimate the unknown parameters. 

Before being accepted as a valid information and used 

to estimate model parameters, the collected data needs to be 

filtered to identify and reject gross errors. This 

screening process determines if the measurements satisfy the 

physical constraints of the system. If too much information 

is rejected, observability problems may occur, since it may 

not be possible to collect the missing data again because 

the system's operating condition will likely have changed. 

The observability problem appears when the remaining 

information is not sufficient for stability of the 

estimation routine. 

The second step in the calibration procedure consists 

of estimating the unknown parameters. This process aims to 

determine the best values for the parameters such that model 

outputs agree with field measurements. In water 



33 

distribution systems a typical parameter is the roughness 

coefficient of pipes, specifically the C-factor in the 

Hazen-Williams equation. This parameter describes the loss 

of energy caused by the friction between flowing water with 

the pipe walls. 

Another parameter that must be calibrated is consumer 

demands which are lumped at node locations. The magnitude 

of these demands follow a cyclic pattern over the day and 

also vary with season, weather condition, and emergency 

situation. Examples of such situations are: high demands 

used to fight fires, pipe line breaks and pump shutoff 

caused by power failure. Although a parameter estimation 

procedure for a water distribution system may allow one to 

consider other types of unknowns, the procedure developed in 

this research concentrated primarily on determining values 

for unknown roughness coefficients. The demands and their 

statistics were generally assumed known values. 

Calibration alone does not provide a means of 

evaluating how well the model results reproduce the actual 

system behavior. Evaluation is usually accomplished by 

validating model results with field measurements which were 

not used for parameter estimation. To supply information 

for future data collection efforts an alternative is used in 

this research. 

The third step of the calibration procedure consists of 

assessing the impact of the calibrated parameters on model 

predictions. Assessment analysis will determine the 
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uncertainty in predicting system performance for critical 

demand conditions. The assessment is usually performed for 

a different loading condition than those used for 

calibration. A measure of the calibration assessment 

reliability must be defined for the specific system and 

purpose of the simulation model. For example, the variance 

of the computed pressure at nodes, Var(Ha), can be used to 

quantify the uncertainties in model outputs for individual 

junctions. An overall system measure can be defined as the 

summation of individual pressure variance at selected nodes. 

A vector of weights could also be adopted to stress the 

importance of critical nodes. Another assessment measure 

could be a norm of the covariance matrix of computed nodal 

pressures. If the trace of that matrix is adopted as a norm 

(trace cov(Ha))~ the measure would be computed by adding the 

pressure variances at all nodes. 

The reliability measure can be used as the criterion in 

a procedure to evaluate and select data collection 

strategies for taking new measurements. An algorithm can be 

formulated within the calibration loop to minimize this 

measure for all or selected nodes in the system. The 

objective of this procedure is to identify conditions that 

provide the maximum information to obtain reliable estimates 

of model parameters. It may be found that parameters are 

not being estimated with the required accuracy to assure a 

desired level of confidence in the model results. If this 

happens, the entire process is repeated from step one in 
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which more data is collected, possibly, under different 

conditions. The new measurements are expected to augment 

the available input data in such a way to improve parameter 

estimates. 

The use of more reliable parameters contribute to 

decrease the uncertainty levels of the results derived from 

the model. A straight forward validation is also possible 

to compare model results with field observed conditions. As 

for any modeling process, validation and calibration should 

continue to be performed over time after the initial 

calibration effort is completed. 

The assessment of the accuracy of the calibration 

results is important for design purposes especially in the 

analysis of nodes with low pressure. A larger variability 

in the pressure at these nodes is of great concern since 

there is a risk of not meeting the minimum required pressure 

for these nodes. When using simulation results to help in 

operation decisions, it would appear advantageous to have 

similar pressure uncertainties for all nodes and to have 

small uncertainty in tank level predictions. In this 

research the assessment was limited to steady state 

conditions but it can be extended to consider extended 

analysis through time. 

The methodology for calibration of water distribution 

systems implements the basic steps of the modeling process 

discussed: data collection, parameter estimation and 

calibration assessment. A calibration process diagram 
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showing the steps involved in the methodology is presented 

in Figure 4.2. Each block in the diagram represents a 

specific task which may be accomplished by a single routine 

or by a sequence of procedures. There may be alternative 

options to accomplish the tasks specified within each block, 

as described in detail in the next sections. 

As a preliminary step, initial estimates of parameter 

c•s and their variances are assumed based on the available 

information of the physical system. At this stage a large 

variance may be assigned to the c•s reflecting the high 

level of uncertainty in their estimates. This step 

corresponds to block 0 in the calibration diagram. Block o 

is only executed at the initial stage of the calibration 

effort. After one iteration is completed, parameter 

estimates are obtained from blocks 10 and 11. 

The purpose of a water distribution model is to 

represent the system so knowledgeable decisions can be made. 

Therefore, after the parameters and their uncertainties have 

been estimated, the impact of model reliability must be 

assessed. 

Calibration Assessment 

The calibration procedure starts in block 1 by 

selecting the network loading condition to be reproduced by 

the model when its calibration has been successfully 

accomplished. The methodology provides a means to evaluate 

the calibration accuracy by assessing the model's capability 
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of simulating the desired network condition (or conditions) 

such that the uncertainty in model outputs fall within a 

prescribed range. This range is determined based on the 

specific purpose of the application under consideration. 

The accepted range will define stopping criteria for the 

calibration loop. The selected loading condition, or set of 

conditions, are called the assessment demands. Usually, 

assessment demands contain high flows to stress critical 

nodes in the system. These demands are selected by 

assigning consumer withdrawals for a single period of time 

or for a sequence of patterns representing a typical period 

or an entire day. 

In the following module, corresponding to blocks 2 and 

3, the calibration assessment is performed for the network 

conditions specified in block 1 using the current knowledge 

of the parameters and their level of uncertainty. The 

assessment consists of looking at prediction uncertainties 

(or model outputs), in this case, the pressure heads at the 

nodes. Uncertainties are quantified by an adopted measure 

which will vary according to the specific calibration 

objectives and can be either related to the entire system or 

to individual nodes in the network. This measure can be 

used in the assessment module as a stopping criteria for the 

calibration loop. Examples of assessment measures for 

different calibration objectives are: 

1. Single system variance: Trace of the covariance matrix of 

the simulated nodal pressures for a single assessment 



load; 

2. Composite system variance: Composite trace of the 

covariance matrix of the simulated nodal pressures 

considering more than one assessment load. 
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3. Individual node variance: Variance of the simulated 

pressure head at a selected node for a single assessment 

load. 

4. Composite node variance: Composite variance of the 

simulated pressure heads at a selected node for a series 

of independent assessment loads. 

5. Multiple node variance: Weighted sum of the variances 

of the simulated pressures at selected nodes for a single 

assessment load. 

6. Composite multiple node variance: Composite pressure 

variance for several nodes for more than one assessment 

load. 

7. Maximum node variance: Maximum pressure variance at a 

node or a group of nodes during an extended period of 

time. 

To examine a model's ability to predict nodal 

pressures, first order second moment analysis or Monte Carlo 

analysis can be used for estimating variances. The 

distinctions between these procedures are computational time 

and accuracy. First order estimates require computing the 

gradients of the model output with respect to the 

parameters. A numerical gradient evaluation was applied to 
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compute the gradients in this research. A Monte Carlo 

analysis is time intensive particularly for complex network 

systems under a high degree of uncertainty. Its advantage 

is that it allows one to obtain some understanding of the 

distribution of the output which may be used to place 

confidence intervals on the model results. 

First Order Analysis 

The first order second moment approach (FOSM) estimates 

the mean, variance and covariance of model output by 

approximating the function with a Taylor series expansion 

around the mean value of the parameters and dropping the 

higher order terms (Benjamin and Cornell, 1970). 

Considering only uncertainties due to the C parameter, 

the model output uncertainties are computed as 

cov(Ha) = ~ cov(C) [ a:;r ( 4. 1) 

where 

cov(Hal = N1 x N1 covariance matrix of model outputs 

~ = N1 x Np matrix of partial derivatives of Ha 

evaluated at the mean value of the C's 

COV(C) = Np x Np covariance matrix of parameters 

= N1 x 1 vector of model outputs 

= Np x 1 vector of model parameters 

= number of junction nodes in the network 

= number of pipes in the network 

= transpose of matrix inside parenthesis. 
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Monte carlo Method 

The Monte Carlo approach consists of performing network 

hydraulic simulations repeatedly to compute the mean nodal 

pressures Ha. and the cov(Ha) matrix. At each simulation a 

vector of noise (measurement errors) is added to the mean 

value of the c parameters to account for the uncertainties 

in their estimates. The variability in the model output 

results from the uncertainties in the c parameters. When 

the procedure is executed for the first iteration, variances 

of C are assigned based on experience and knowledge of the 

system. 

Parameter correlation can result from field conditions 

(real correlation) or from the estimation procedure 

(statistical correlation). Both assessment methods have the 

capability to reproduce the parameter correlation. In the 

FOSM approach the cov(C) is used instead of var(C) to 

account for parameter correlation (equation 4.1). In the 

Monte Carlo method, multivariate normal deviates are 

generated to introduce errors in the C's which preserve the 

mean, standard deviation and correlation of parameter C's. 

The procedure to generate multivariate deviates is shown in 

Appendix c. It is similar to the procedure used by Borah 

and Haan (1991) to generate correlated random errors in a 

hydrologic modeling. 

The above methods have different input requirements and 
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assumptions. The first order, second moment approach 

requires an assumption on the distribution of model outputs. 

This assumption become less valid as system nonlinearity 

increases. It does not require an initial assumption on the 

distribution of the parameters and it requires few 

computations. The Monte Carlo method requires fewer 

assumptions on the transferring of uncertainties through the 

model. However, it requires the knowledge of the 

multivariate distribution of the input parameters. Also, it 

usually requires large computational effort. The purpose of 

using both methods is to compare the efficiency versus 

accuracy of the FOSM method of approximating the var(Ha). 

After computing the variance of Ha, the modeler must 

decide if the calibrated model is satisfactory for the 

intended use of the simulation results. This condition can 

be verified by adopting a measure to quantify model output 

uncertainties. one such measure can be the trace of the 

covariance matrix of model outputs, in this case, the 

computed pressures at the nodes. Other prediction error 

measures could be used such as the ones previously listed in 

the Parameter Estimation section. Assessment prediction 

errors based on the standard error, mean error, and mean 

absolute error have been used by Yeh (1987) to compare 

different approaches to estimate aquifer parameters. Yan 

and Haan (1991) used the trace and the determinant of the 

covariance matrix of the errors as a criterion to estimate 

parameters for a multiobjective hydrologic model. 
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If the reliability level is acceptable, the process 

stops and the estimates of the C's are the values obtained 

from blocks 10 and 11 in the last iteration. If the measure 

is not accepted in block 3, it is necessary to decrease the 

uncertainty in model outputs by improving the knowledge of 

the estimated parameters. This requires the use of 

additional, andfor more reliable, field measurements as 

available information for the estimation procedure. 

Data Collectiqn 

Before new data can be collected the modeler must 

define the demand .conditions which will p~ovide the maximum 

amount of information to improve the system's reliability 

measure. This step is developed in the Data Collection 

module corresponding to blocks 4 through 8 in the diagram 

depicted in Figure 4.2. 

The objective of block 4 is to define potential demands 

which should be induced in the network when collecting the 

new measurements. These demands cannot be arbitrarily 

selected. They must be achievable in the real system during 

the period of the data collection experiments. A sequence 

of demands and tank levels can also be used as additional 

information. 

Upon defining potential measurement loads, the model 

must be executed to compute the predicted nodal pressures 

and their reliabilities for each potential load. It is 

desired to identify the load which will provide the most 
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valuable information to achieve the calibration objectives. 

This task is accomplished in block 5 and will be explained 

in detail later in this chapter. The following step, 

represented by block 6, will identify potential locations in 

the network where pressure head measurements should be 

taken. This is done by selecting the nodes with larger 

pressure variability. There may be occasions where no point 

in the system can be measured with a higher degree of 

accuracy than the one already obtained from block 5. If 

this is the case, the predicted load is not valuable in 

providing additional information to improve parameter 

estimates and another load must be tried. This causes the 

procedure to return to block 4. A detailed explanation of a 

process of improving calibration efforts is presented below. 

Procedures to Improve Calibration 

Efforts 

Since data collection is a costly and time consuming 

process, it must be conducted in the most efficient way. 

The objective of the data collection module is to provide 

guidance for obtaining additional information to be used in 

the calibration algorithm. At each iteration of the 

calibration process, new measurements are added to the 

existing data set and used to estimate the unknown 

parameters. 

Alternatively, the new measurements may replace 

existing and less accurate data so that the available 
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information will assure the unknown parameters are estimated 

with less uncertainty. It is expected that the use of 

parameters with less variability will improve the quality of 

the simulation. These improvementp can be quantified by 

assessing the uncertainties in the model results, the nodal 

pressure heads. 

Two procedures are presented to improve the calibration 

efforts. The first procedure considers all system 

components as potentially active for improving the 

calibration objectives. The second procedure attempts to 

enhance the calibration by improving the knowledge of 

individual network elements such as the pipe roughnesses. 

Global System Tests 

To improve existing knowledge of all model parameters 

and consequently to improve the quality of the simulation 

results, system-wide tests can be conducted to obtain new 

information. The problem is to determine the best (or at 

least a worthwhile) loading condition (how much flow to 

induce and at which node) and to identify measurement type 

and locations that will be the most beneficial for providing 

information for the parameter estimation algorithm. This 

study focuses on identifying the demand conditions. 

Sensitivity vectors can be developed to identify 

potential network conditions and locations to stress the 

system demands. A fire test is a common way of stressing 

the distribution network in such a way to mimic an emergency 
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condition that affects the available flow and pressure at 

many nodes in the system. A measure related to the 

calibration objective must be adopted to guide the selection 

of the location, or locations, which would be the most 

beneficial for the additional field tests. One such measure 

could be the total system variance with respect to the 

simulated pressures. This measure is the trace of the 

covariance matrix of the simulated nodal pressures and is 

computed by taking the sum of the variances of the simulated 

pressures at the nodes. 

The procedure to determine field measurement conditions 

consists of two parts. The first is to select a network 

loading pattern under which measurements are taken. The 

second step is to identify the critical nodes where demands 

must be accurately determined. This can be done by 

installing flow meters if the demand is localized or by 

conducting a detailed estimation of the distributed demand 

which is lumped at the node. The complete procedure is 

illustrated in Figure 4.3 and will be discussed in the 

following sections. The sensitivity vectors to be used to 

identify the ideal loading condition are: 

(a) Sensitivity Vector A 

where 

A trace cov(HP) i = trace cov(Ha) - trace cov(HP) i 
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Each term trace cov{~). corresponds to a prediction of 

the assessment measure to be obtained if the potential 

measurement load ~. would be incorporated with the available 

information to estimate parameters. The trace of cov(H.) is 

the assessment measure at the current stage of the 

calibration. The modeler wants to improve this measure by 

collecting new field data under one of the QP, conditions. 

L is the total number of such conditions. The potential 

loading condition Q~ represents a vector containing 

individual nodal demands. 

(b) Sensitivity Vector B 

After selecting the most sensitive loading condition, 

the critical nodes can be identified by examining 

sensitivity vector B. For a selected node i, this vector is 

expressed by 

[ A trace cov(HP) il 1 ···I A trace cov(HP) ij 1 ···,A trace cov(HP) iNJ ] 

Each term of the sensitivity vector B corresponds to 

the difference of the trace of cov(H.) and the trace 

obtained if the potential measurement load QP, is used to 

estimate parameters C with the flow at node j increased by 

Aqu. If the induced flow can be varied for a node, the 

ideal flow to be induced at the critical node can also be 

determined by means of a sensitivity vector of the same 

form. The terms of this new vector would reflect different 

Aqu for the same node j. 
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It is desired that the flow at the most sensitive nodes 

with respect to the measure be most accurately determined 

since a bias in its estimate will cause a significant change 

in the system measure. It must be noted that the maximum 

improvement that can be obtained with new data is limited by 

the accuracy of the metering system. 

Identification of Loading Condition. The 

identification of an ideal network loading condition for the 

new measurements can be developed by means of sensitivity 

vectors. However, an ideal load may not be possible in the 

real system since it may rely on consumer demands which are 

to some extent uncontrollable. These demands can not be 

arbitrarily imposed on a real time basis. The problem is 

more complex due to the fact that although being distributed 

throughout the length of the pipe, for modeling purposes the 

demands are lumped at the nodes. Therefore, they can not be 

physically measured and their estimates rely on statistics 

developed on a regional and demographic basis. In very few 

cases, when the node represents a major user or a line 

diversion, it can be directly measured and their demands 

accurately determined. 

The identification of the ideal measurement load in the 

practical sense requires a simplification and some 

assumptions. In this application the measurement load will 

be selected from a series of pre-defined network loading 

conditions. These loadings are the result of forecasted 



demands for different scenarios expected to occur during a 

normal or emergency operation. They represent potential 

consumer usage that can be induced to the system at the 

measurement time. The nodal pressures will be obtained by 

KYPIPE using the current knowledge of the c•s for each 

loading condition. 
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Considering the dynamic behavior of consumer usage, the 

best approximation of the selected measurement load will be 

reproduced in the field during the collection period. If it 

is not possible to induce exactly the forecasted demands, at 

least the experiment can be conducted in a situation that 

closely approximates the desired loading condition. 

Criteria to Select the Measurement Load. The selection 

of the ideal load can be based on two criteria. The first 

considers the robustness of the new measurement load. This 

robustness can be quantified by looking at the sensitivity 

of the assessment measure to small variations in the nodal 

demands from that load. The measure sensitivity reflects 

the impact of possible measurements errors and the effects 

of the differences between predicted and actual nodal 

demands. 

The second approach is based on the improvement 

observed in the assessment measure when it is computed with 

the parameter estimates obtained if the new proposed 

measurement load is used as available information for the 

estimation procedure. In this case, selection of the 



measurement load can proceed in the following steps after 

the calibration objectives have been defined: 

(1) Define a series of potential network loadings for 

taking new measurements. The group of all possible such 

loads is represented by 

flE= [~,~····,£a,···,~] 
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where L stands for the number of potential measurement 

loads. This step corresponds to block 4 in Figure 4.2. 

(2) Select a measurement load ~ from flE; 

(3) Augment the available information ~ by 

incorporating the new proposed measurement load ~- The 

pressures corresponding to the new load, He, are determined 

by KYPIPE runs using the demands from £a and the current 

values of C's as obtained in block 10. This step 

corresponds to blocks ~a and Sb in Figure 4.3. The 

available information represents the collection of all 

measurement loads accessible for the estimation procedure 

~= [Qu,~,···,~] 

where M is the number of available measurement loads. 

The augmented measurement set is represented by 

OAaug, =[~,£a] i 



The uncertainty associated with the potential 

measurement load QP• is assigned based on the predicted 

errors that may occur as a function of the accuracy of the 

instruments. It may be suggested the use of more accurate 

meters to reduce such uncertainty. 

(4) Evaluate the available information and obtain 

pseudo-measurements if necessary using OAaug,; 
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(5) Estimate the unknown parameters (block Sc) and find 

Mau~ (block Sd), which represents the value of the 

assessment measure obtained by adding the potential 

measurement load ~; 

(6) Compute the improvements in the assessment measure 

M which was obtained using information from ~ (block Se) 

AMi = M- Maugi 

It is expected AMi to be a positive number. If it is 

negative, the load QP• must. be rejected (block Si) since it 

is not contributing to improve the measure M; 

(7) Repeat steps (1) to (6) considering all loads from 

~; 

{8) Assemble the sensitivity vector s of the form 

12 = [ AMl I AM2 I ••• I AMi I ••• I AML ] 

{9) Select the potential load ~ corresponding to the 

largest AMi as the new measurement load. The load ~ is 



the desired field condition to be present when conducting 

the data collection. It is the load which contributes the 

most for improving the calibration objective, expressed by 

the assessment measure (See block Sk). 
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(10) If there is no potential load that contributes to 

improve the assessment measure (block 51), the modeler has 

two options. He may try to improve estimates of C for 

individual pipes (procedure to be described later in this 

chapter) or he may accept the model as it is at least 

knowing the uncertainty expected in the results. 

Identification of Critical Nodes. After selecting the 

network demand for the new measurements, it is necessary to 

identify critical nodes based on their importance in 

achieving the calibration objectives. The demand at the 

nodes should be accurately metered by installing more 

precise instruments or carefully determined by conducting a 

detailed field investigation. The critical nodes can be 

found using the information provided by sensitivity vector 

B. This vector uses the trace of the covariance matrix of 

the predicted pressures as the assessment measure. Other 

measures that could be adopted depending on the calibration 

objective are: the maximum nodal variance; the average nodal 

variance or the total system variance divided by the maximum 

system headloss. The procedure to find the critical nodes 

for the selected measurement would perform the following 

steps: 
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(1) Preselect the new measurement load. This load is 

represented by a vector containing the demands at individual 

nodes, where N1 is the number of internal nodes in the 

network 

Opj= [qpi1 1 qpi2' ... , qpiN) 

Note that the above representation considers measurements on 

the nodal demands only. If the nodal pressures are also 

included, the measurement vector (MV) would take the form 

The remainder of this procedure will assume that only 

demands are considered; 

(2) Perform steps {3) to {7) below varying j from 1 to 

{ 3) Vary qP11 by a small increment Aqij. The increment 

will be added to the demand at node j for the measurement 

load i. This increment should be sufficiently large to 

cause changes in the assessment measure. The perturbed 

potential measurement load takes the form 

{4) Augment the available information by considering 

the perturbed load from (3). This step is preceded by 

running KYPIPE with the current knowledge of the C's and the 

load QPP• to obtain corresponding H' s; 



(5) Estimate parameter C's; 

(6) Perform the calibration assessment. Compute the 

assessment measure Mp ; 
jj 

(7) Compute the sensitivity term 

{8) Select the node j as the most sensitive node 

corresponding to the largest term from (7). The sensitive 
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nodes are the ones whose measurements affect the assessment 

measure the most. They are critical since an error in their 

measurements can propagate more intensively to the 

simulation results. 

The above procedure could be extended to determine the 

best distribution of demands to be induced at nodes, if more 

than one demand can be simultaneously considered. 

Once identified, the critical nodes must be checked to 

determine if they carry a real localized demand. If not, it 

would be desirable to incorporate a new measurement load 

with fire conditions at the critical nodes. This would 

allow the demand at that node to be directly measured. The 

same procedure could be used to identify critical nodes 

considering measurements of the pressure heads. 

In summary, this data collections procedure will assist 

in answering the following questions: 

.Where to induce high demands to simulate fire flows? 

.How much flow should be induced? 
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.Where to measure flows? 

The next section introduces an alternative approach to 

improve simulation results based on improvements in the 

knowledge of the roughness factor of pipes. 

Improving Knowledge of Individual Pipes 

A second procedure to improve the quality of the 

simulation results is by directly measuring individual pipe 

roughness coefficients which will reduce the uncertainty in 

the parameter related to that link. Higher certainty in 

parameters from major pipes, or groups of pipes, will 

improve the accuracy of the model predictions. This section 

investigates the impact of improving the knowledge of C for 

individual pipes or group of pipes and the effects of these 

improvements in the simulation results and in the measure of 

the calibration assessment. The magnitude of these 

improvements will guide the process of selecting critical 

pipes to conduct individual study. 

The gradients proposed below will be used to identify 

the pipe or group of pipes in the network that have a large 

contribution to the uncertainty of the simulated nodal 

pressures. Two types of gradients can be developed 

depending to the calibration objectives. They relate to the 

assessment of the simulated pressure at individual nodes 

(Gradient 1) or to the total system variance (Gradient 2). 

The gradient terms are defined as 



Gradient 1 

o(var Ha1 ) o ( var Ha1 ) o(var Ha1 ) 

o(var C1 ) o(var C2 ) o(var CN) 

o(var Ha2 ) o(var Ha2 ) o(var Ha2 ) 

o(var C1 ) o(var C2 ) O(Vai CN) 
p 

a (var HaN) 
J 

o(var Han) o(var HaN) 

o(var C1 ) o(var C2 ) o(var Cn) 

Gradient 2 

[ iltrace ( cov H.l otrace ( cov Ha.) ... Otrace(cov H.) l 
o(var C1 ) o(var C2 ) o(var Cn) 

A vector formed by a column of Gradient 1 indicates 

which nodes are most affected by errors in the estimate of 
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the roughness coefficient of a particular pipe. The vector 

formed by the transpose of each row of Gradient 1 can be 

used to quantify the sensitivity of the variance of the 

simulated pressures at a particular node with respect to 

each pipe roughness coefficient. 

Pipes having large gradient terms are critical links 

since a bias in their C value causes large changes in the 

uncertainty measure. It is desired to improve as much as 

possible the estimate of c for these pipes. This 

improvement can be obtained by conducting individual pipe 

field tests. The tests would induce flows at hydrants along 

the pipe line to determine the roughness coefficient more 

accurately. Once determined, these parameters can be taken 
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as constant in the estimation procedure reducing the number 

of unknowns. This will cause improvement in the estimates 

of the remaining parameters since it increases the level of 

system overdetermination. 

Gradient 1 helps identify the pipes to be selected for 

conducting individual field test to improve their estimates 

of C. It is also desirable to assess beforehand the 

magnitude of the improvements to be obtained with the field 

tests, so that judgements can be made as to the worth of the 

effort of conducting the actual field test. A sensitivity 

matrix showing changes in the trace of cov (Ha), or in the 

var (Ha.), as a function of the roughness coefficient of 

individual pipes can be used to build sensitivity curves. 

The sensitivity curves can be developed for individual 

pipes or for a group of pipes and would plot the trace of 

cov (Ha) (or the var (Ha.) if the measure relates to 

individual nodes) versus the coefficient of variation of c. 

Sensitivity curves for individual pipes would be obtained 

for discrete values of the coefficient of variation (CV) of 

C on individual pipes equal to 1, 5 and 10%. Figure 4.4 

shows the estimated form of these curves considering 

improvements for individual pipes and a CV equal to 10% for 

the remaining pipes. The x-axis reflects changes in the 

uncertainty level of the particular pipe considering the 

remaining pipes having the same cv. 
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Field Observations and 

Pseudo-Measurements 

If new measurements are successfully identified in 

block 6, the procedure follows its main stream as shown in 

Figure 4.2. Measurements are taken (block 7) and pseudo­

measurements are estimated (block 8). The pseudo-

measurements are the additional data required for the 

estimation procedure and are the unmeasured pressures in 

block 7. 

To obtain pseudo-measurements, a linear or quadratic 

interpolation could be used to estimate the missing H's 

considering the system is underdetermined. Another option 

would be to use non-linear regression. In this case the 

unknown H's (and maybe Q's) would be estimated at the same 

time as the C's by solving a non-linear optimization problem 

as proposed by Lansey and Basnet (1991). The optimization 

approach would use all information from the measured loads 

Trace Trace Trace 
cov(Ha) wv(Ha) wv(Ha) 

/ ( ~ 

1% 5% 10% CV (C1) 1% 5% 10% Cv(C2) 1% 5% 10% CV(C3) 

Pipe 1 Plpe2 Pipe 3 

Figure 4.4. Sensitivity Curves for Pipes 
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and the data collected in block 6. The current knowledge of 

the C's (as obtained in the last iteration from block 10) 

could be used as the starting condition for the calibration 

algorithm. The stability of the nonlinear regression 

improves with the level of system overdetermination. One 

way to improve this level is by parameterization. 

In block 9 the measurements are augmented based on 

assumed network demands and simulated pressures. This step 

will only be required in the first stages of the calibration 

when the information available is not enough to guarantee 

system observability. 

Parameter Estimation 

Two major parameters are considered to model a water 

distribution system as mentioned in Chapter II. They are 

the pipe roughness coefficient and the consumer demands. 

The procedure to estimate the unknown parameters in a 

network system is dependent on the type and number of the 

unknowns, their distribution throughout the system and the 

amount and characteristics of the input data available. 

For known values of nodal pressure heads and using the 

Hazen-Williams equations to express head loss terms, the 

flow rate in the pipe appears as a linear function of the 

roughness coefficient c (See equation 2.10). By expressing 

the system equations in terms of the nodal equations, one 

can write N1 independent continuity equations where N1 is the 

number of internal nodes in the network exclusive of the 
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fixed grade node or the supply node. 

When pipe roughnesses are unknown and considering a 

single demand, the number of the system equations is always 

smaller than the number of the pipes in the network (See Eq. 

2.4). Since these equations are being solved for the 

roughness factors, the solution is said to be 

underdetermined. Two options can be applied to overcome 

this problem. The first consists of reducing the number of 

unknowns by assigning the same C for a group of similar 

pipes (network parameterization). The second option uses 

additional input data from other demand conditions. Each 

new condition allows one to write N1 new equations while the 

number of unknown parameters, Np, remains the same. 

The use of information from multiple demands was 

considered in this research for the development of the 

parameter estimation procedure. The ability to consider 

network parameterization was also incorporated in the 

program developed and its benefits were investigated in 

Chapter VI as an alternative option to reduce computational 

effort. 

A linear regression approach was developed to estimate 

parameters as described below. Next, the process of 

handling uncertainties in input data is explained. The last 

sub-section introduces a procedure to transfer these 

uncertainties to the parameter estimates. The parameter 

estimation procedure is shown in blocks 10 and 11 in Figure 

4.2 and is expanded in Figure 4.5. 
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Linear Regression for Coefficient c 

Considering the pressure heads and external demands in 

the network as known values, the estimation of unknown 

parameters C can be obtained by solving a system of linear 

equations of the form 

where 

Q=XC (4.2) 

Q = NT x 1 vector of external nodal demands for all 

loads 

X = NT x Np matrix containing information regarding 

network physical characteristics, geometry and 

pressures. Their elements are the first term of 

Eq. (2.10) 

~ = Np X 1 vector of unknown parameters 

Np = number of parameters to be estimated 

NT = NI * NLoad 

NLoad = Number of measurement loads. 

The unknown roughness factors C can be estimated by the 

least squares method {Haan, 1977) as 

(4.3) 

where 

t = Np x 1 vector of estimates of parameter c 

Xt = Transpose of X 

( )-1 = inverse of the matrix inside parentheses. 
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The procedure requires the inversion of a Np by Np 

matrix. The multiple linear regression corresponds to block 

lOb in Figure 4.5. 

The regression approach requires knowledge of the 

pressures at all nodes and demands at most of the points in 

the system. It is possible to estimate C's for a limited 

number of unknown Q's. However, for each unknown Q one 

equation is lost for each load. If a pressure is unknown at 

a particular node, a number of equations equal to the number 

of pipes connecting to that node is also lost. Since X is a 

sparse matrix, care must be taken to keep the rank of the 

(Xt ~ matrix equal to Np after dropping the equations 

corresponding to the unknown Q's and H's. 

When some of the H's in the network are not known, a 

nonlinear optimization approach is available from the work 

of Lansey and Basnet (1991). The results, however, will be 

limited by the type and quantity of input data which will 

determine the system observability level. As noticed 

earlier the pressure head at unmonitored locations can be 

found using this procedure or another interpolation scheme. 

Uncertainty in Calibration Data 

Uncertainties in input data result from several 

sources. They can be caused by the accuracy of the metering 

device, the adequacy of the meter scale for the range being 

measured, and other aspects in the data collection and 

acquisition process (Simmonds and Laverty, 1980). It can 
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also reflect the criteria used to estimate the consumer 

demands. To model these uncertainties an error term was 

introduced to corrupt the mean values of the pressures and 

nodal demands. 

65 

The errors associated with input data were assumed 

normally distributed. To create the vector of perturbed 

demands, standard normal deviates were generated 

individually for each node from all loads. The magnitude of 

the error term was adjusted to reflect the prescribed level 

of confidence in estimating Q for that node, expressed by 

means of its coefficient of variation (CV). If E is the 

normal deviate, the perturbed demand is computed for each 

node as 

(4.4) 

where 

qp,J = q perturbed at node i, for load j 

q,J = mean q at node i, for load j 

E = standard normal deviate 

O"qlJ = cv,1 * q,J, is the standard deviation of q,J 

cv,J = coefficient of variation of q,J. 

The procedure of generating errors for pressure heads 

is similar to the one for the demands. The difference lies 

in the way of assigning the uncertainty levels for each 

pressure. In this case the level is specified by means of 

the standard deviation of the H's instead of the CV. The 
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perturbed pressure heads are computed as 

( 4. 5) 

where 

E 

aHtJ 

= perturbed pressure at node i, for load j 

= mean pressure at node i, for load j 

= standard normal deviate 

= standard deviation of H11 • 

Uncertainty in Estimated Parameters 

The procedure to find the uncertainty in the estimates 

of c requires the solution of the regression problem many 

times within a Monte Carlo approach. At each time, random 

deviates are introduced in the input variables according to 

the assumed distribution (See block lOa, Figure 4.5). A 

detailed description of Monte Carlo methods can be found in 

Beck and Arnold (1977) and Ang and Tang (1984). Before 

being accepted as valid results, the regressed C's are 

checked against feasibility limits, as shown in block lOc. 

If the regressed C's are not feasible, the series of input 

errors is rejected and the process is repeated again. This 

procedure is represented by the conditioned Monte Carlo loop 

in Figure 4.5. At each run the regressed parameters are 

saved (block lOd) and their statistics are computed at the 

end of the process (block 11). They refer to the mean; 

standard deviation; and covariance, correlation and factor 



loading matrices of the C's. Parameter uncertainty is 

quantified by the variances of c•s. 

67 

Because the parameter c is highly sensitive to changes 

in pressures and external flows, the process may require 

intensive computational efforts. However, once completed, 

it provides a good approximation to the mean and variance of 

the parameters and gives an idea of their distribution. 

A second way of computing the variance of the estimates 

of C's is directly from the regression performed in Block 10 

by means of the standard error of the estimates. This can 

only be done if the number of measured loads available to 

the parameter estimation process is large enough to provide 

enough information to assure an adequate level of system 

overdetermination. This condition, although theoretically 

possible, is constrained by the few data available due to 

the high costs involved with the current practices and 

available technology for data collection and acquisition 

systems. 

A third method for estimating the variance is to use 

first order approximation which is similar to the assessment 

procedure. For this highly nonlinear system these estimates 

were quite poor, particularly for individual nodes. However, 

the relative magnitudes were reasonable between nodes and it 

may be used to save computational time during early 

iterations of the calibration process. 

At this point the calibration loop is closed and a new 

iteration is completed. It is expected that the parameters 
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improve at each new iteration. The improvements are 

verified when the C's converge to the correct values and 

their uncertainties decrease. Since the C's are very 

sensitive to the measurements, changes in the measurements 

may cause large variability in the regressed values. An 

alternative to decrease such sensitivity is to reduce the 

number of unknown parameters by parameterizing the network. 

Network parameterization contributes to increase the 

level of system overdetermination and improve the regression 

results. Parameterization, however, may introduce modeling 

errors although improving parameter estimates. The trade­

off between the effects of both types of errors has been 

studied by Yeh and Yoon {1981) for aquifer systems and 

should be extended to the water distribution systems. 

It may be found for the network under study that it is 

not possible to meet the pressure requirements at all nodes. 

If this happens a question may arise whether the calibration 

process should stop or more data should be collected. A 

design revision may solve the problem (if there is one} so 

to insure good estimates of the mean C and to guarantee an 

accurate model as a basis for design decisions, the 

calibration procedure should be continued. 



CHAPTER V 

APPLICATION OF PARAMETER ESTIMATION 

AND ASSESSMENT PROCEDURES 

The purpose of this chapter is to present the 

methodology for parameter estimation and assessment 

introduced in Chapter IV. A simple network system 

containing 11 pipes is used to illustrate the several steps 

involved with the process and its input requirements and 

assumptions. 

The objectives of the application developed in this 

chapter are to: (1) apply the methodology to a small network 

to demonstrate the model's capability for handling 

uncertainty in input data and parameters, (2) show the 

usefulness and consistency of the measure adopted to 

quantify the uncertainties in the results derived from the 

model, (3) demonstrate the impact of different levels of 

uncertainty in calibration data and its effects in the model 

prediction uncertainty, and (4) compare different methods to 

assess the prediction ability of the model according to the 

goals set for the calibration. 

To accomplish the above objectives, the chapter is 

divided into four sections. The first section describes the 

physical characteristics of the distribution network used to 
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conduct experiments for the application. The second section 

presents the demand loads used as available information for 

the estimation of the unknown roughness parameters. This 

information consists of measurements and pseudo-measurements 

of pressure heads and of estimation of consumer demands. In 

the third section, the parameter estimation section, the 

assumptions made to model the uncertainties are given and 

how these uncertainties are transferred to the parameters is 

discussed. The last section assesses the model prediction 

uncertainty by the two methods described earlier in Chapter 

IV; Monte Carlo simulation and first order approximation of 

the variance. 

Network Description 

The water distribution system used to run experiments 

for this application is a hypothetical network formed by 11 

pipes, 7 internal nodes and 4 loops, and is called Network 

1. Figure 5.1 shows network characteristics and numbering 

scheme. The source of water is at node 8 which has a fixed 

grade at elevation 200 feet. The network is placed in a 

flat area with elevation of 100 feet at all nodes. 

Water is delivered to the network by gravity through a 

1500 ft, 22-inch pipe line corresponding to link 11. The 

total pipe length is 6200 feet. Consumer withdrawals from 

the system total 9 cubic feet per second (cfs) under normal 

conditions. 
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Figure 5.1. Geometry and Numbering Scheme-Network 1 
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A roughness factor for the pipes (Hazen-Williams 

coefficient C) equal to 100 was assigned to all links in the 

system. These values, considered as the true C's, are the 

unknown parameters to be estimated. They were not provided 

to the model at any time. The true C's were used to 

simulate measurements of nodal pressure. These pressures 

are used as input variables in the estimation procedure. 

Pipe characteristics for Network 1 are shown in Table 5.1. 

Considering the nodal pressures and demands as known 

for a loading_condition, the system configuration allows one 

to write 7 mass balance equations (one for each internal 

node). The unknowns are the 11 pipe roughness coefficients. 

So, having information from only one demand pattern makes 

the system underdetermined because there are 11 unknowns and 

only 7 equations. To overcome the problem of 

underdetermination, multiple demand patterns were considered 

as described in the following section. 

Demand Patterns 

The input data necessary to allow the estimation of the 

unknown roughness parameters consists of nodal pressure head 

measurements and consumer demand estimates. Measurements or 

pseudo-measurements of pressure head were considered known 

for all nodes for each load. In a real scenario, these 

values are measured during the data collection efforts at 

selected points in the system. The pseudo-measurements are 

interpolated or estimated pressures that were not directly 
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TABLE 5.1 

PIPE CHARACTERISTICS FOR NETWORK 1 

Pipe Diameter Length 
# (in) (ft) 

(1) (2) (3) 

1 10 800 
2 8 600 
3 6 600 
4 10 400 
5 16 800 
6 18 400 
7 12 600 
8 8 800 
9 6 721 

10 10 848 
11 22 1500 

measured. 

The other input data are the external nodal demands. 

External demands are usually estimated based on geographic 

location and consumer usage. They may be measured when 

representing a localized withdrawal or the consumption of a 

large water user. In the present application demands were 

adopted and pressures were simulated using the true value of 

the roughness parameters. The network simulator KYPIPE 

(Wood, 1981) was used to generate the necessary input data 

for the estimation procedure. 

Input information to estimate parameters for network 1 
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was considered for five loading conditions. The loading 

conditions available represented consumer withdrawals under 

the following usage patterns: normal (N), peak (P), fire at 

node 2 (F2), fire at node 3 (F3), and fire at node 5 (F5). 

The normal load corresponds to the average daily demand. 

Other demands reflect different operating conditions. The 

peak demand has considered nodal consumptions which are 

twice as high as the normal external flows. Fire fighting 

conditions were simulated at nodes 2, 3, and 5 which 

required flows equal to 5.5, 6.0 and 6.5 cfs, respectively. 

During this period, consumer withdrawals at remaining nodes 

were reduced proportionally to their normal values. Table 

5.2 shows demands and corresponding pressure for all nodes 

for each loading condition. 

The demands and pressures were used as mean values. 

Random errors were added to reflect uncertainties due to the 

data collection and processing and due to the estimation of 

pseudo-measurements. A technique to model these 

uncertainties is discussed in the next section. 

Estimation of Model Parameters with 

Uncertainty Data 

The structure of the error term to perturb the mean 

values of the input variables was assumed known. The errors 

introduced in the estimated consumer demands were considered 

normally distributed with zero mean. Their magnitude was 

adjusted by changing their standard deviation to reflect the 
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TABLE 5.2 

AVAILABLE INFORMATION USED TO ESTIMATE 
PARAMETERS FOR NETWORK 1 

Loading Node Demand Pressure 
Condition Number (cfs) (ft) 
( 1) (2) (3) (4) 

Normal 1 1.50 194.72 
2 2.50 186.82 
3 1.25 190.20 
4 1.25 193.22 
5 1.50 191.43 
6 o.oo 195.71 
7 1.00 192.62 
8 -9.00 200.00 

Peak 1 3.00 180.94 
2 5.00 152.42 
3 2.50 164.64 
4 2.50 175.52 
5 3.00 169.06 
6 0.00 184.52 
7 2.00 173.35 
8 -18.50 200.00 

Fire at node 2 1 1. 00 193.29 
2 5.50 167.85 
3 0.80 187.64 
4 0.90 191.61 
5 1.10 188.38 
6 0.00 194.59 
7 0.90 189.02 
8· -10.20 200.00 

Fire at node 3 1 0.75 194.18 
2 1.25 185.35 
3 6.00 169.08 
4 0.63 190.26 
5 0.75 189.17 
6 0.00 194.91 
7 0.50 192.71 
8 -9.88 200.00 



Loading 
Condition 
(1) 

Fire at node 5 

TABLE 5.2 (Continued) 

Node 
Number 
(2) 

1 
2 
3 
4 
5 
6 
7 
8 

Demand 
(cfs) 
(3) 

0.80 
1. 75 
0.90 
1.00 
6.50 
0.00 
0.80 

-11.75 

Pressure 
(ft) 
(4} 

191.66 
179.69 
183.29 
187.86 
179.68 
192.97 
189.31 
200.00 
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level of uncertainty in the estimation of the nodal demands. 

The coefficient of variation of the demands, CV of Q's, 

was used to assign the uncertainty level to be modeled at 

each node. This coefficient corresponds to a normalized 

standard deviation. It is computed by dividing the standard 

deviation of Q by its mean value. By using the coefficient 

of variation, the standard deviations of the consumer 

demands are scaled to the mean flow at each node. 

The Fortran program developed, as documented in 

Appendix D, has options to consider uncertainty in Q's by 

assigning: (a) the CV's individually for each node, (b) the 

same cv•s for the nodes from the same load, or (c) the same 

CV for all nodes for all loads. If the last two options are 

used, higher uncertainties will be assigned to the nodes 
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with larger withdrawals. The program has another option to 

limit the maximum standard deviation at the nodes to prevent 

unreasonably high values for the errors especially at the 

nodes carrying fire demands. 

The uncertainty in measurements of nodal pressures were 

simulated by the same process as described above. The error 

term was also assumed to be normally distributed. The only 

difference from the above procedure is that the standard 

deviation of the H's were used to assign the uncertainty 

levels. Three options have been provided in the program for 

accepting the uncertainty for the H's. The nodal standard 

deviation can be assigned: (a} individually for each node, 

(b) grouped for the nodes from the same load, or (c) a 

single value for all nodes from the several loading 

conditions. 

This application attempts to estimate roughness 

coefficients for each pipe given the uncertainties in the 

demands used as input data. Different levels of uncertainty 

for the Q's were considered to show their effects in the 

parameter estimate uncertainty. Coefficients of variation 

of the Q's equal to 1%, 5%, and 10% were considered. The 

pressures at all nodes were assumed. to be known with 

certainty. No error was added to their mean values. The 

uncertainty in both demands and pressures was incorporated 

in the application in Chapter VI. 

Two criteria were used for conditioning input data and 

the results of the regressions. The first limits the sigma 
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bounds of the normal distribution used to generate random 

errors to perturb the Q's. The sigma bounds are the number 

of standard deviations from the mean used to accept the 

error term which is applied to the nodal demands. If the 

randomly generated error falls within plus or minus n 

standard deviations it is accepted as a valid term. In this 

case the Q's perturbed will be within the n sigma bounds of 

the distribution (Haan, 1977, pg. 87). Choosing n equal to 

1 corresponds to 68% of the normal distribution. Most of 

the runs performed assigned n equal 3 corresponding to 

99.72% of the distribution. 

A second conditioning criterion was used to determine 

the acceptability of the errors introduced considering a 

valid solution for the system equations. This criterion 

introduces physical reasoning to accept the randomly 

generated errors added to the input data. The criterion 

establishes limits for the regressed parameter C's, 

according to the pipe material, diameter and age. If a 

regressed c has a value outside of the acceptable range, the 

regression is rejected and a new set of errors is generated 

to perturb all measurements. 

Statistical analysis for each pipe roughness 

coefficient was computed based on 500 regressions for 

parameter C's within the Monte carlo approach. The number 

of regressions required to assure convergence of the mean 

and standard deviation of the c•s is investigated in Chapter 

VI. 
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Table 5.3 shows estimates of C's for selected pipes. 

Appendix A contains results for all pipes. Column 1 of 

Table 5.3 shows the coefficient of variation of the Q's used 

to perturb the mean value of that variable. Column 2 states 

the type of statistics performed as the mean c or the 

standard deviation (std) of the c•s. Columns 3 to 8 show 

statistics for selected pipes. The trace of the covariance 

matrix of the regressed C's appears in column 9 as a measure 

of the total system variance. 

Values from Table 5.3 reveal that as the CV of Q 

increased so did the variability in C's and the magnitude of 

the trace of cov(C). The trace of the covariance matrix of 

the C's varied from 8.7 for CV of Q equal 1% to 888 for CV 

of Q equal to 10%. The standard deviation of c for pipe 3 

increased from 1.5 units to 15.6 units for CV of Q varying 

from 1% to 10%. For pipe 9 the variability in C changed 

from 1.4 to 13.2 units for the same conditions. 

Pipes 3 and 9 are considered weak pipes in the system. 

Since they carry low flow, the head loss through their links 

are small and a wider range of the c values does not 

significantly affect the pressure distribution through the 

system. The opposite occurs for pipes carrying large flows 

such as pipes 5 and 11. For these pipes, a small variation 

in their roughness can cause significant changes in the head 

loss affecting pressures at all nodes influenced by these 

links. Average standard deviation of c for pipe 11, as 

shown in column 8 from Table 5.3, is only 2.2 units for CV 
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TABLE 5.3 

ESTIMATED PIPE ROUGHNESS C FOR DIFFERENT 
LEVELS OF UNCERTAINTIES IN Q'S 

Pipe # 
cv 1 3 5 8 9 11 Trace 

Q Statistics cov(C) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1% mean c 99.9 100.0 99.9 99.9 100.0 99.9 
std. c 0.9 1.5 0.4 1.0 1.4 0.2 8.7 

5% mean c 99.9 99.9 99.9 99.8 100.2 99.9 
std. c 4.3 7.7 2.0 5.2 7.1 1.1 223 

10% mean c 100.6 101.3 99.5 99.8 100.0 99.9 
std. c 9.1 15.6 4.1 10.0 13.2 2.2 888 

TRUE c 100.0 100.0 100.0 100.0 100.0 100.0 

of Q equal to 10%. This means that there is less 

uncertainty in the C for that pipe as compared with those 

from pipes 3 and 9. 

It should be reiterated that the C's shown in Table 5.3 

are means based on 500 individual estimates. Individual 

estimates may deviate from the mean shown with the 

probability of a large deviation increasing as the std of C 

increases. 

Correlation among parameters was investigated based on 

data from 500 regressions used to compute parameter 

statistics. The correlation matrix of the C's for the 
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calibration run considering CV of Q equal 5% is listed in 

Table 5.4. It should be emphasized that this correlation has 

a statistical base and results from the effects of input 

data uncertainty. The errors introduced in the demand and 

pressure of a particular node cause proportional effects in 

the flow at pipes connected to that node, which influences 

the estimation of their parameters. The high values 

observed in Table 5.4 stress the importance to preserve the 

correlation among parameters when transferring parameter 

uncertainty to model outputs. 

The statistical correlation should be differentiated 

from physical correlation that may develop over a long 

period of time as roughness factors change due to 

incrustation in the pipes. 

In this application, the calibration accuracy can be 

directly assessed by comparing the estimates of c with their 

true values. However, this cannot be done in real 

applications nor does it provide any idea how well the 

calibrated model can predict pressures for other demand 

patterns. One way to overcome this problem is by looking at 

the state variable, Ha, the pressure head computed by the 

model using the knowledge of C's obtained with different 

calibration levels. This step is discussed in the next 

section. 
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Calibration Assessment 

The objective of calibration assessment is to find the 

uncertainty in the computed nodal pressure head based on the 

uncertainty of calibrated parameter c•s. Critical demands 

will be examined in this stage to judge the accuracy of the 

calibrated model. The modeler can then decide if the 

calibration is acceptable for the intended application. In 

the present application, the assessment was performed with 

parameter c•s obtained with levels of uncertainties 

reflecting CV of Q's equal to 1%, 5%, and 10%. 

The demand selected to assess the calibration 

reproduces the flow requirements to fight a fire located at 

node 2. The magnitude of the flow at that node is 7.5 cubic 

feet per second. The remaining nodes in the distribution 

network had their demands reduced to 80% of the normal 

values. Table 5.5 shows nodal demands for the assessment 

load. 

The calibration assessment was performed by Monte Carlo 

simulations and by first order estimation of the variance. 

Both methods considered correlation among parameters and the 

uncertainties associated with each parameter. As mentioned 

in Chapter IV, the Monte Carlo method generates multi­

variate c variables to preserve the parameter correlation 

found in the estimation module, as shown in Table 5.4. The 

procedure to find correlated random variables is shown in 

Appendix c. 



TABLE 5.4 

CORRELATION AMONG PARAMETERS FOR cv 

R 0 u G H N E s s p A RAM 
ct c2 c3 c4 Cs c6 c7 

ct 1.000 

c2 0.552 1. 000 

c3 0.517 0.093 1.000 

c4 -0.014 0.566 0.125 1.000 

Cs -0.249 0.263 0.056 0.760 1.000 

c6 0.596 0.139 0.096 -0.334 -0.370 1.000 

c7 -0.417 -0.360 -0.449 -0.191 -0.050 0.406 1.000 

Cg -0.456 -0.406 -0.487 -0.228 -0.052 0.325 0.932 

c9 -0.312 -0.123 -0.072 0.106 0.506 -0.158 0.147 

cto -0.387 -0.190 0.009 0.165 0.697 -0.244 0.125 

Cu 0.320 0.357 0.136 0.366 0.544 0.578 0.323 

OF Q EQUAL 5% 

E T E R 
Cs c9 

1. 000 

0.176 1.000 

0.165 0.762 

0.248 0.302 

cto 

1.000 

0.392 

Cu 

1.000 

()) 

w 



TABLE 5.5 

ASSESSMENT LOAD FOR NETWORK 1 WITH FIRE AT NODE 2 

Condition 
(1) 

Fire at node 4 

Node Number 
(2) 

1 
2 
3 
4 
5 
6 
7 
8 

Flow (cfs) 
(3) 

1.2 
7.5 
1.0 
1.0 
1.2 
0.0 
0.8 

-12.7 
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The FOSM approach accounts for the same correlation by 

using the full covariance matrix of the parameters, cov(C), 

in equation 4.1. This matrix would be replaced by the 

var(C) if correlatio~ among parameters would not be 

considered. 

To quantify the uncertainty in model predictions the 

trace of the covariance matrix of computed pressures, trace 

cov(Ha), was adopted as a measure representing the total 

system variance. This trace is obtained by adding the 

diagonal elements of the matrix which corresponds to the 

summation of the pressure variance at each node. Results 

obtained by applying Monte carlo and FOSM methods are 

presented and compared in the following sub-sections. 



Monte Carlo Method 

The Monte Carlo method requires knowledge of the 

multivariate distribution of the roughness parameters. c 

parameters were found to be normally distributed for all 

major pipes in the network. In this application it was 

assumed that all C's were normally distributed. This 

assumption was verified in Chapter VI. 
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The procedure for generating the multivariate 

distribution consists of drawing a random parameter C for 

each pipe from the normal distribution such as to preserve 

the mean, standard deviation and correlation among the C's. 

The parameters are then used in a network simulation model 

to compute pressure at the nodes for the selected assessment 

condition. The process is repeated many times to allow an 

approximation of the distribution of model outputs. In this 

way, the parameter uncertainty is transformed into model 

prediction uncertainty. 

Table 5.6 shows model predicted pressures and their 

uncertainty for the assessment load. These pressures were 

computed using parameters from different calibration runs. 

Before the generated C's were passed to the network 

simulator they were checked for consistency. This criterion 

requires the range of C's to be within acceptable limits. 

Values from this table represent the average of five 

realizations. For each realization the statistics were 

computed based on 1000 accepted simulation results. Table 



5.6 includes pressures for selected nodes. Appendix A 

contains results for the entire network. 
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The statistics presented in column 2 on Table 5.6 are 

the average of the mean pressures and the average of the 

standard deviations of the five realizations. These values 

show that using calibrated parameters with CV of Q equal to 

10%, the average standard deviations of the pressures ranged 

from 0.32 feet at node 6 to 4.0 feet at node 2. Node 2 has 

the simulated flow of 7.5 cfs and accounts for the majority 

of the total system variance. The high flow in pipes 

carrying water to node 2 causes high head loss through their 

links. Consequently, variability in the c•s will affect 

directly the pressures at nodes receiving water from these 

links. Column 7 shows the trace of the covariance matrix of 

computed pressure. This value expresses the total system 

variance which is used to quantify uncertainties in the 

results derived by the model. 

The standard deviation of pressures at individual nodes 

increased as the assessment was performed with parameters 

having more variability. Small variability was found for 

nodes 1 and 6, with standard deviations for CV on Q equal 

10% equal to 0.4 ft and 0.32 ft respectively. These nodes 

have low or no external flow. They are also located close 

to the source so the flow reaching the node only passes 

through a few pipes. 
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TABLE 5.6 

CALIBRATION ASSESSMENT FOR NETWORK 1 
BY MONTE CARLO METHOD 

Par. Estimation Mean and Std of Pressures at Nodes 

cv Q Statistics Node Number Trace 
% 1 2 3 6 cov(Ha) 

(feet) {ft2 ) 

(1) (2) (3) {4) (5) {6) {7) 

1 mean 189.9 145.8 180.8 191.9 0.18 
std 0.04 0.40 0.08 0.03 

5 mean 189.9 145.6 180.8 191.9 4.74 
std 0.20 2.03 0.42 0.16 

10 mean 189.9 145.2 180.8 191.9 18.44 
std 0.40 4.00 0.82 0.32 

True H 190.0 145.9 180.9 191.9 

First Order Analysis 

The first order, second moment approach estimates the 

covariance of the predicted pressures by means of the 

sensitivity matrix of the model responses with respect to 

the parameters and by the covariance matrix of the 

parameters (equation 4.1). This approach is used as an 

efficient method to compute the covariance matrix of 

predicted pressures, a matrix used to define a measure of 

uncertainty in model outputs. The mean values of the H's 
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were computed by using KYPIPE and assigning the mean value 

of the roughness parameters. The number of network 

simulations required to compute the sensitivity matrix is 

the same as the number of pipes in the system plus one. In 

this example 12 network simulations were performed to 

compute the sensitivity matrix. This number is 

insignificant if compared with the 1000 simulations 

performed for the Monte Carlo method. 

Predicted pressure heads, their uncertainties and the 

trace of the covariance matrix computed by FOSM method are 

presented in Table 5.7 for all calibration runs. The values 

compared well with the ones from Table 5.6 showing the Monte 

Carlo results. Both methods were capable of predicting 

pressures at all nodes within 1% of their true values. 

Appendix A includes pressures for all nodes. 

The standard deviations computed by the FOSM 

approximation were slightly higher than those computed by 

the Monte Carlo method. The maximum difference was found 

for node 2 which is a critical node carrying the fire 

demand. The standard deviation obtained by the Monte Carlo 

method was 4.0 ft for CV on Q equal 10% compared to 4.13 ft 

from the FOSM method. The difference in the trace computed 

by the two methods was between 5 and 7%. The savings in 

computational time by using FOSM appears to be worthwhile 

given the relative small difference in the computed values. 

The next chapter applies the calibration procedure to a 

larger network. The application developed investigates the 
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approximation of the distribution for the regressed 

parameters and for the model outputs. It also presents 

other aspects involved with the methodology. 

TABLE 5.7 

CALIBRATION ASSESSMENT FOR NETWORK 1 
BY FIRST ORDER METHOD 

Par. Estfmation Mean and std of Pressures at nodes 

cv Q statistics Node Number Trace 
% 

l2) 
1 2 3 6 cov(Ha) 

(feet) (ft2) 

{1) {3) (4) (5) {6) (7) 

1 I 189.9 145.8 180.8 191.9 0.19 mean 
std 
I 

0.04 0.41 0.08 0.03 

5 mean 189.9 145.7 180.8 191.9 5.08 
std 0.21 2.10 0.44 0.17 

10 mean 189.9 145.5 180.8 191.9 19.65 
std 0.42 4.13 0.85 0.34 

True H 190.0 145.9 180.9 191.9 



CHAPTER VI 

EVALUATION OF THE ASSESSMENT CRITERIA 

This chapter presents results of several applications 

developed to illustrate the calibration approach considering 

uncertainties in input variables, in parameters, and in 

simulation results. One of the purposes of the applications 

is to show the sensitivity of the measure of prediction 

uncertainty to different types and levels of input 

uncertainties. Also the applications demonstrate the 

usefulness of the assessment measure and how it can be used 

as a criteria to judge the calibration accuracy according to 

the intended use of the results. 

The experiments conducted in this chapter illustrate 

how the measure of the·models' prediction uncertainty is 

affected by: (a) different levels of uncertainty in 

estimation of consumer demands Q's; (b) different levels of 

uncertainty in measurements and pseudo-measurements of 

pressure heads H's; (c) different types of assessment 

demands; (d) calibration performed with measurements from a 

low stress network condition; (e) calibration performed with 

different amount of available information; and (f) 

calibration performed considering a parameterized network. 

An investigation was performed to examine the distribution 
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of the regressed roughness parameters and model output 

resulting from the distribution of the input variables. A 

second investigation was also conducted to find the number 

of simulations required for the Monte Carlo approach. 

Network Description 
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The distribution network used to run experiments for 

the application is formed by 16 pipes, 12 internal nodes and 

4 loops. The source of water is a at node 13 which has a 

fixed grade at elevation 50 feet. The highest point in the 

system is located at elevation 165 feet. The maximum 

difference in elevation between this node and the lowest 

point is 35 feet. The water is delivered to the network 

through a 10000 ft, 24-inch pipe line corresponding to link 

1. There is a pump in this line to provide enough energy 

such that the available pressure at all points in the 

network is within adequate limits. For modeling purposes, 

the effect of the pump was reproduced by adding its 

contributing pressure to the grade at node 13. 

The network comprises 75200 feet of pipe line. The 

total system demand is 29.6 cubic feet per second (cfs) 

under normal demand conditions. Figure 6.1 shows the 

network characteristics and numbering scheme. Pipe length 

and diameter are presented in Table 6.1. 

Measurements under five network loading conditions were 

considered to estimate the unknown pipe roughness 

coefficients. These loads are referred to as: Normal (N), 
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TABLE 6.1 

PIPE CHARACTERISTICS FOR NETWORK 2 

Pipe Diameter Length 
# (in) (ft) 

(1) (2) (3) 

1 24 10000 
2 18 5000 
3 16 5000 
4 14 5500 
5 12 3500 
6 14 5500 
7 12 4500 
8 6 2500 
9 12 3500 

10 15 2200 
11 18 6500 
12 4 5000 
13 12 5500 
14 14 3000 
15 12 4000 
16 16 4000 

Peak (P), Slack (S), Fire at node 3 (FJ), and Fire at node 8 

(F8). The normal load corresponds to the average daily 

demand. The peak demand considered normal external flows 

increased by 40%. The slack condition had the normal 

demands reduced by 60%. A fire fighting situation was 

simulated at node 3 with a required flow of 4.5 cfs. During 

this period, consumer withdrawals at remaining nodes were 

reduced to 80% of their normal values. A fire fighting 

condition with the same characteristics was reproduced at 
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node 8. Table 6.2 shows the demand for all nodes for each 

load. Pressure head and demands were made available for all 

nodes under each loading condition. 

To generate the required input data, the demands were 

adopted and pressures were simulated using KYPIPE with the 

true value of the roughness parameters. Random errors were 

added to reflect uncertainties in input variables in the 

same manner as described in Chapter v. 

Uncertainties in Nodal Demands 

Several runs were performed to study different levels 

of uncertainties in calibration data and their effects in 

the parameter estimates. In the previous chapter the 

pressures were considered as exact values. Now, 

uncertainties are introduced in Q's as well as in the H's. 

The effects of these different sources of uncertainties in 

input data were individually assessed. In the first series 

of runs a coefficient of variation {CV) on Q's equal to 1, 

5, 10, and 25% were considered. The uncertainty in the H's 

were kept constant with a standard deviation (std) of 0.25 

ft for all nodes. In the second series of runs uncertainty 

levels of the H's varied while the uncertainties in the Q's 

remained constant. Values for the std of the H's equal to 

0.1, 0.25, 0.5 and 1.0 ft were considered and a CV of Q's 

equal to 5% was used for all cases. The errors introduced 

in Q's and H's were assumed normally distributed. 

Statistical analysis for each pipe roughness 
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TABLE 6.2 

AVAILABLE INFORMATION USED TO ESTIMATE 
PARAMETERS FOR NETWORK 2 

Loading Node Demand Pressure 
Condition Number (cfs) (ft) 
(1) (2) (3) (4) 

Normal 1 0.00 474.76 
2 5.00 376.81 
3 2.60 348.74 
4 4.29 327.27 
5 3.71 328.89 
6 3.00 327.27 
7 5.00 335.59 
8 0.00 361.35 
9 2.00 -354.66 

10 2.00 376.02 
11 0.00 391.97 
12 2.00 389.19 
13 -29.60 617.00 

Peak 1 0.00 481.75 
2 7.00 299.10 
3 3.64 246.76 
4 6.01 206.72 
5 5.19 209.73 
6 4.20 206.71 
7 7.00 222.24 
8 0.00 270.28 
9 2.80 257.80 

10 2.80 297.63 
11 0.00 327.38 
12 2.80 322.18 
13 -41.44 747.00 

Slack 1 0.00 561.77 
2 3.00 523.74 
3 1.56 512.84 
4 2.57 504.51 
5 2.23 505.13 
6 1.80 504.50 
7 3.00 507.74 
8 0.00 517.74 
9 1.20 515.14 

10 1.20 523.44 
11 0.00 529.63 
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TABLE 6.2 (Continued) 

Loading Node Demand Pressure 
Condition Number (cfs) (ft) 
(1) (2) (3) (4) 

Slack (cont.) 12 1.20 528.55 
13 -17.76 617.00 

Fire at node 3 1 0.00 504.33 
2 4.00 423.99 
3 4.50 393.71 
4 3.43 386.86 
5 2.97 390.02 
6 2.40 387.50 
7 4.00 395.09 
8 0.00 417.14 
9 1. 60 413.12 

10 1. 60 430.55 
11 o.oo 441.64 
12 1. 60 439.80 
13 -26.10 617.00 

Fire at node 8 1 0.00 487.14 
2 4.00 404.21 
3 2.08 379.55 
4 3.43 356.92 
5 2.97 356.54 
6 2.40 356.96 
7 4.00 363.03 
8 4.50 368.71 
9 1. 60 365.55 

10 1. 60 391.96 
11 0.00 404.36 
12 1. 60 402.52 
13 -28.18 617.00 

coefficient was computed based on 500 regressions for 

parameter C's. A sigma bound equal to 3 standard deviations 

was used as the first conditioning criteria to generate 
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error terms. The regressed C's were also conditioned to be 

between 65 and 145 (Hazen-William coefficients). This may 

introduce a small bias in the parameter estimates but it 

provides a means of introducing physical reasoning to accept 

the randomly generated error term. Table 6.3 shows 

estimates of the C's and their standard deviations for 

selected pipes. Appendix B presents results for all pipes. 

Pipes 8 and 15 are the links with highest standard 

deviations in their C's. They carry low flow and are 

considered weak pipes. Standard deviations for these pipes 

were in the range of 20 units. 

Pipe 1 is the most important link in the network since 

it is the only pipe connected to the source of supply. Its 

variance was small since an error in its estimate affected 

the pressure head estimates for all nodes. As the CV of the 

Q's increased from 1% to 25% it caused the standard 

deviation of c for pipe 1 to increase from 0.2 to 4.6, as 

can be seen in column (3) on Table 6.3. For the same 

variation in the CV of the Q's, the increase in the standard 

deviation of c for pipe 10 was from 2.7 ft to 9.7. The 

standard deviation increased by a factor of 3.6. It also 

can be seen from column (5) that the estimates of the C's 

for the same pipe worsen as the CV of the Q's increased. 

The standard deviation of c for pipe 12 increased by 

the same factor observed for pipe 10, although there was 

more uncertainty associated with the estimates for this pipe 

(standard deviation equal to 4.0 ft for cv of Q's equal 1%). 
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TABLE 6.3 

ESTIMATES OF PIPE ROUGHNESS C FOR DIFFERENT LEVELS OF 
UNCERTAINTIES IN Q'S AND STD OF H'S EQUAL 0.25 FEET 

cv Roughness c 
Q Pipe # Trace 

(%) Statistics 1 8 10 11 12 15 cov{C) 
(1) (2) (3) {4) (5) (6) {7) (8) {9) 

1 mean c 109.7 108.8 110.0 109.7 108.8 84.1 
std. c 0.2 20.7 2.7 1.5 4.0 17.9 1255 

5 mean c 109.7 105.4 109.9 109.5 109.4 85.8 
std. c 0.9 22.7 4.4 2.8 6.7 17.6 1681 

10 mean c 109.6 108.1 109.2 109.2 109.7 92.2 
std. c 1.8 23.1 6.0 4.0 9.4 21.2 2303 

25 mean c 109.6 104.3 108.4 108.4 111.4 101.2 
std. c 4.6 22.4 9.7 7.1 14.7 23.3 3846 

TRUE c 110 110 110 110 110 110 

Uncertainties in Nodal Pressures 

The next set of runs considered CV on Q equal 5% and a 

standard deviation of H's varying from 0.1 to 1.0 ft. 

Results are presented in Table 6.4. As the CV of Q or the 

standard deviation of H increased so did the standard 

deviation of the C's. The standard deviation of C for pipes 

8 and 15 were high since they did not carry significant 

flow. These pipes are considered weak pipes in the system 

and they are less important than links carrying larger 
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TABLE 6.4 

ESTIMATES OF PIPE ROUGHNESS C FOR DIFFERENT LEVELS OF 
UNCERTAINTIES IN H'S AND CV OF Q'S EQUAL 5% 

Std Roughness c 
H Pipe # Trace 

(ft) Statistics 1 8 10 11 12 15 cov(C) 
{1) (2) {3) {4) (5) (6) (7) (8) (9) 

0.1 Mean c 109.9 107.9 110.0 109.9 109.9 91.8 
Std. c 0.9 21.3 3.8 2.5 5.6 19.5 1459 

0.25 Mean c 109.7 105.4 109.9 109.5 109.4 85.8 
Std. c 0.9 22.7 4.4 2.8 6.7 17.6 1681 

0.5 Mean c 109.0 106.9 108.5 107.6 109.2 83.9 
Std. c 1.2 22.3 5.3 3.6 8.6 17.3 1992 

1.0 Mean c 107.6 108.6 106.4 104.2 110.9 86.2 
Std. c 1.5 23.2 6.1 4.6 11.7 19.3 2666 

TRUE c 110 110 110 110 110 110 

flows. Thus, a wider range of c values for pipes 8 and 15 

do not greatly affect the pressure distribution throughout 

the system because the head drop through these links is not 

significant. 

The full covariance matrix of estimated parameters and 

their correlations for the run with std of H's equal 0.25 ft 

(bases run), can be seen in Appendix B. Parameters C's were 

found to follow a normal distribution for all major pipes in 

the network as will be discussed later in this chapter. 



Assessment of Calibration for a 

Different Demand 

100 

The demand selected to assess the calibration 

represents the flow requirements to fight a fire located at 

node 4. The magnitude of the flow at that node is 10 cfs. 

The remaining nodes in the network had their demands 

increased by 20% of their normal values. At this critical 

network operating condition we want to evaluate what the 

available nodal pressures will be. Table 6.5 shows the 

assigned flows for each node. The negative sign for the 

flow at node 13 indicates that it is a source of water 

supply for the network. Model prediction uncertainty was 

assessed by Monte Carlo and FOSM. Both methods considered 

correlation among parameter and the uncertainties associated 

with each parameter. 

The trace of the covariance matrix of computed 

pressures was used as a measure of the calibration accuracy. 

Values from Table 6.6 show the assessment measure using 

parameters obtained from different calibration runs computed 

by the Monte Carlo method. Values presented are the average 

of 5 realizations. The technique for obtaining such values 

is explained in Chapter v. The probability of occurrence of 

the predicted pressures followed the normal distribution. 

Each Monte Carlo realization represents results from 

1000 network simulations. Mean pressures and corresponding 

standard deviations computed by FOSM are presented in Table 



TABLE 6.5 

ASSESSMENT LOAD FOR NETWORK 2 

Condition 
(1) 

Fire at node 4 

Node Number 
(2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Flow (cfs) 
(3) 

0.000 
6.000 
3.120 

10.000 
4.452 
3.600 
6.000 
0.000 
2.400 
2.400 
0.000 
2.400 

-40.372 

6.7 for all calibration runs. Table 6.8 summarizes the 

results obtained from previous runs and compares the 

assessment measure obtained by both methods. Appendix B 

includes results for all nodes. 

Results from Monte Carlo and FOSM methods are very 

similar for most of the runs. The assessment measure 
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computed by the two methods, as shown in columns (4) and (5) 

in Table 6.8, diverges more with the increase in the level 

of the input uncertainty. This fact is caused because the 

first order method does not consider higher order terms when 

approximating the variances of the nodal pressures. 
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TABLE 6.6 

CALIBRATION ASSESSMENT FOR NETWORK 2 
BY MONTE CARLO METHOD 

Par. Estim. Mean and Std of Pressures at Nodes (ft) 

cv Q Std H Node Number Trace 
(%) (ft) Stat. 1 4 7 9 11 Cov(Ha) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 0.25 mean 492.9 202.0 238.4 279.6 346.5 
std 1.1 2.5 2.1 2.0 1.9 so 

5 0.25 mean 492.8 201.7 238.1 279.4 346.5 
std 3.8 8.5 7.8 7.0 6.0 598 

10 0.25 mean 492.6 201.6 237.2 279.2 346.4 
std 7.5 16.5 15.5 13.9 11.8 2301 

25 0.25 mean 490.9 197.6 233.1 275.0 343.5 
std 19.5 42.0 39.2 35.0 29.8 14834 

5 0.10 mean 493.5 203.7 239.2 280.9 347.8 
std 3.8 8.4 7.7 6.9 5.9 578 

5 0.25 mean 492.8 201.7 238.1 279.4 346.5 
std 3.8 8.5 7.8 7.0 6.0 598 

5 0.50 mean 490.0 196.1 233.5 274.5 341.6 
std 5.0 10.1 9.5 9.3 8.6 974 

5 1. 00 mean 483.9 184.5 222.4 262.9 330.1 
std 6.9 13.0 12.4 12.8 12.8 1788 

True H's 494.3 206.5 239.9 282.1 348.9 

Therefore, the difference in the results computed by FOSM is 

accentuated with the increase of the nonlinearity effects 

introduced by the high uncertainty levels. This was a 

reason to incorporate a conditioning criteria to reject 

values from the tails of the distribution when generating 

random deviates. However, at high uncertainty levels, exact 
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TABLE 6.7 

CALIBRATION ASSESSMENT FOR NETWORK 2 
BY FIRST ORDER METHOD 

Par. Estim. Mean and Std of Pressures at Nodes (ft) 

cv Q Std H Node Number Trace 
(%) (ft) Stat. 1 4 7 9 11 Cov(Ha) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 0.25 mean 492.9 202.0 238.6 279.6 346.5 
std 1.1 2.6 2.2 2.0 1.8 53 

5 0.25 mean 492.9 202.0 238.4 279.5 346.5 
std 3.8 8.5 7.9 7.0 6.0 600 

10 0.25 mean 492.8 202.1 237.7 279.5 346.5 
std 7.7 17.0 16.0 14.3 12.2 2451 

25 0.25 mean 492.5 202.8 236.7 278.6 346.0 
std 19.7 43.2 40.6 36.3 30.9 15859 

5 0.10 mean 493.6 204.0 239.5 281.0 347.9 
std 3.8 8.6 7.9 7.0 6.0 608 

5 0.25 mean 429.9 202.0 238.4 280.0 346.5 
std 3.8 8.5 7.9 7.0 6.0 600 

5 0.50 mean 490.0 196.4 233.6 274.6 341.6 
std 5.0 10.2 9.6 9.3 8.6 982 

5 1.00 mean 483.9 185.0 222.7 263.1 330.2 
std 6.9 13.1 12.4 12.9 12.8 1801 

True H's 494.3 206.5 239.9 282.1 348.9 

estimates are not of major concern if the measure is still 

consistent and robust. When the uncertainty is high, more 

data must be collected thus, as long as the measure shows 

the relative magnitude, it is adequate. 
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TABLE 6.8 

COMPARISON OF CALIBRATION ASSESSMENT 
COMPUTED BY DIFFERENT METHODS 

Parameter Estimation Calibration Assessment 

cv Q Std H Trace Trace cov(Ha) (ft2 ) 

(%) (ft) cov(C) Monte Carlo FOSM 
(1) (2) (3) (4) (5) 

1 0.25 1255 50 53 
5 0.25 1681 598 600 

10 0.25 2303 2301 2451 
25 0.25 3846 14834 15859 

5 0.10 1459 578 608 
5 0.25 1681 598 600 
5 0.50 1992 974 982 
5 1.00 2666 1788 1801 

Impact of Different Assessment Loads 

Different assessment loads can be selected according 

to the intended purpose of the calibration. This section 

shows how the measure of uncertainty in model results 

changes according to the loading condition used. Several 

assessment conditions will be studied using parameters 

estimated with CV of Q's equal to 5% and no uncertainty in 

the H's. The trace of the covariance matrix of the 

regressed C's in this case equals 1397 (Hazen-Williams 

roughness units). 
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The assessment loads considered fire fighting 

requirements at nodes 4, 7 and 10. Their magnitudes are 

presented in column (2) on Table 6.9. In all cases the 

demands at remaining nodes were increased by 20%. Column 

(3) shows the trace of the covariance matrix of computed 

pressures, trace cov(Ha), which has been used as a measure 

of the calibration assessment. Other measures such as the 

average, minimum and maximum standard deviations of nodal 

pressures were also included in columns (4), (5), and (7) 

respectively. Columns (6) and (8) show the nodes having 

minimum and maximum standard deviations. 

The first run in Table 6.9 contains a 10 cfs fire 

demand at node 4. The measure from column (3) shows a value 

of 541 ft2 for the trace of the covariance matrix of the 

pressures. In the subsequent run, the magnitude of the fire 

was reduced to 8 cfs causing a decrease in the measure to 

439 ft2 • The third run has the same condition of the first, 

except that the fire was located at node 7 instead of node 

4. This caused the measure to change from 541 ft2 to 488 

ft2 • A fire with less magnitude, 5 cfs, was simulated in 

node 10 as listed in the fifth run. The measure of 427 ft2 

obtained in this run is closer to the 439 ft2 obtained in 

run 2 when a larger flow was induced at node 4. 

Results from Table 6.9 stress the importance of the 

locations and magnitude of high critical demands selected 

for the calibration assessment. As an example, when the 

assessment was performed for the first loading condition 
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TABLE 6.9 

COMPARISON OF UNCERTAINTY MEASURES FOR 
DIFFERENT ASSESSMENT LOADS 

Assessment Load Uncertainty in Predicted Pressures 

critical Trace Mean Minim. Node Maxim. Node 
Node Demand Cov(Ha) Std(Ha) Std(Ha) # Std(Ha) # 

(cfs) (ft2 ) (ft) (ft) (ft) 
(1) (2) (3) (4) (5) (6) (7) (8) 

4 10.0 541 6.7 3.7 1 8.1 6 
4 8.0 439 6.0 3.4 1 7.1 6 
7 10.0 488 6.4 3.5 1 7.5 6 
7 8.0 398 5.8 3.2 1 6.5 10 

10 5.0 427 5.9 3.3 1 6.6 10 
10 3.8 377 5.6 3.1 1 6.2 6 

from Table 6.2 (Normal demand) the trace of the covariance 

matrix of computed pressures was only 165 ft2 compared to 

values in the range of 450 ft2 observed for the assessment 

demands listed in Table 6.9. 

Calibration with Measurements from 

Low Stress Conditions 

This section investigates the effects of calibrating a 

network using measurements obtained by stressing the system 

to different levels. The first set of calibration runs used 

input data information from the five loading conditions 

described earlier and presented in Table 6.2. They 
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correspond to the runs under the title of normal stress 

demands in Table 6.10. The second set of runs considered as 

available input data the previous loads reduced to 60%. In 

these runs the nodal demands from Table 6.2 were multiplied 

by a factor of 0.6 and the corresponding nodal pressures 

were acquired for this new condition. This would correspond 

to take field measurements while inducing less flow at the 

fire and ordinary nodes. To reduce the stress in the 

ordinary nodes, the data collection efforts should be 

carried early in the morning when consumer demands are low. 

Three calibration runs were performed under each 

condition described above. They correspond to different 

levels of uncertainty in the input data used to estimate 

parameters. These uncertainties are represented by the 

coefficient of variation of the nodal demands (CV of Q's) 

and by the standard deviation of the nodal pressures (std of 

H's). The same level of uncertainty was assigned for 

corresponding runs under both conditions of network stress. 

A constant CV of Q's and varying std of H's were considered 

for each of the three runs. The low stress condition had 

less uncertainty in the Q's since their standard deviations 

are scaled according to the magnitude of the mean value of 

the Q. Uncertainties for the H's, however, were at the same 

level for both stress conditions since their standard 

deviations are assigned independently of the mean value of 

the nodal pressure. 

A CV of Q's equal to 5% was used to express the 



TABLE 6.10 

COMPARISON OF CALIBRATION PERFORMED WITH MEASUREMENTS 
FROM DIFFERENT LEVELS OF NETWORK STRESS 

Parameter Estimation Calibration Assessment 

cv Q Std H Trace Trace CCV (Ha) (ft2 ) 

(%) (ft) cov(C) Load 1 Load 2 
(1) (2) (3) (4) (5) 

Normal Stress Demands 
5 0.10 1459 589 92 
5 0.25 1681 614 91 
5 0.50 1992 986 148 

Low Stress Demands 
5 0.10 1239 551 83 
5 0.25 2228 1515 228 
5 0.50 2952 3262 492 

uncertainty level of the Q's for all runs. The 
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uncertainties in the measurement of the pressures correspond 

to standard deviation of the H's equal to 0.1 ft, 0.25 ft 

and 0.5 ft. The uncertainty level used in each run is 

listed in columns (1) and (2) on Table 6.10. Parameter 

uncertainty is shown in column (3). 

Calibration assessment was performed for two 

assessment loads considering each calibration run. The 

first, Load 1, corresponds to the load previously utilized 

in this chapter and listed in Table 6.5. The second, Load 

2, corresponds to the previous load with demands reduced to 



60% of their original values. Calibration assessment for 

all runs were performed by FOSM method and are shown in 

columns (4) and (5} on Table 6.10. 
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Results from this investigation show that the 

calibration performed with low stressed demands gives better 

results at a small level of uncertainty in the measurements 

of the pressure heads. For example, considering the 

standard deviation of H's equal to 0.10 ft, the measure 

obtained with Load 1 was 551 ft2 , for the low stress 

demands, compared to 589 ft2 , for the normal stress demands. 

These values were 83 ft2 and 92 ft2 , respectively, with Load 

2. The standard deviation of H's equal to 0.10 ft was the 

only case in which the assessment measure was smaller when 

using calibrated parameters from low stress demands. The 

difference between the measures for different loads was in 

the range of 10%. 

When the standard deviation of the H's was 0.25 ft, 

the measure obtained for Load 1 was 614 ft2 for the 

calibration with normal stress demands compared to 1515 ft2 

for the less stress condition. The same measures 

considering Load 2 were 91 ft2 and 228 ft2 • The difference 

was approximately 150% more for the measure obtained with 

the low stress demands. For the third run, with standard 

deviation of H's equal to 0.5 ft, the same difference 

increased to 230%. These results reveal the importance of 

stressing more the network demands when taken measurements 

to be used for calibration purposes. Since the pipes in the 
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network carry less flow the error in measurements become 

more significant relative to the system's losses when using 

low stress demands. 

Different Amount of Available 

Information 

This section investigates the quantity of the 

available information used to estimate parameters and its 

impact on parameter and prediction uncertainty. Two 

conditions were considered. The first compared 

uncertainties resulting from calibration performed using 

data from three and five loads. The second condition used 

information from five loads to estimate parameters but in 

each run a particular nodal demand was considered as unknown 

for all measured loads. 

Parameter estimation runs in this section were 

completed after 500 regressions were performed to determine 

uncertainty in parameter C's. The uncertainty in the input 

data used to estimate parameters was the following: CV of 

Q's equal to 5% and standard deviation of H's equal to 0.25 

ft. Table 6.11 show results from all conditions analyzed. 

Column (1) lists the number of loading conditions available 

to estimate parameters. Column (2) figures the node with 

the unknown demand. This demand in an extra variable to be 

identified by the estimation procedure. 

The first run considered measurements under normal, 

peak and fire at node 8 conditions. The second and 



TABLE 6.11 

EFFECTS OF THE AMOUNT OF AVAILABLE INFORMATION 
IN THE ASSESSMENT MEASURE 

Assessment Measures 

Number Node wj Trace Trace Average Minim. Maxim. 
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of Missing cov(C) cov(Ha) Std(Ha) Std(Ha) Std(Ha) 
Loads Demand (ft2) (ft) (ft) (ft) 
(1) (2) (3) (4) (5) (6) (7) 

3 '- 1896 950 8.9 4.8 10.7 
5 1681 599 7.1 3.8 8.5 
5 2 1878 35318 54.2 34.3 67.8 
5 5 2077 5322 21.0 10.7 31.6 
5 8 2137 29698 49.7 26.8 61.9 
5 10 2205 3732 17.6 9.6 28.1 

subsequent runs considered input data from all 5 loads as 

listed in Table 6.2. The number of equations that can be 

written for the regression matrix is 36 in the first case 

and 60 in the second case. The number of unknown parameters 

in both cases is equal to 16, corresponding to the number of 

pipes in the network. 

The worth of the input data can be quantified by 

looking at the trace of the covariance matrix of the 

regressed parameters listed in column (3) on Table 6.11. It 

shows a value equal to 1681 obtained using 5 loads compared 

to 1896 with 3 loads. The uncertainty in the predictions 

also varied from 599 ft2 to 950 ft2 using 5 and 3 loads (See 
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column (4)). Other measures such as the average, minimum 

and maximum std (Ha) varied consistently with the changes in 

the amount of information as can be seen in columns (5) 

through (7). 

The second set of runs shows the importance of the 

correct estimation of the demands for critical nodes. It is 

convenient to mention again that each node without demand 

data causes the loss of NL equations in the regression 

matrix, where NL is the number of loads. In this 

application the number of equations lost due to a missing 

nodal demand was 5. The number of available equations 

decreased from 60 to 55. The estimation performed with less 

information generates parameters with more uncertainty. 

The trace of the covariance of C does not change much 

when information from different nodes is missing, as can be 

seen in column (3). However, the variances of estimates of 

C's for critical pipes may increase significantly and may 

influence the uncertainty in the resulting pressures. For 

example, if the demand at node 2 is not known (third run on 

Table 6.11), the measure in column (4) increases to 35318 

ft2 compared to 5322 ft2 if the demand is not known at node 

5. This happens because node 2 is located near the source 

of supply and at the intersection of three important links. 

Conversely, node 5 is located at the end of the network and 

is formed by the junction of only two less important pipes. 

This fact stresses the importance of the information at 

critical network locations and its contribution to the 



magnitude of the measure of uncertainty in model 

predictions. 

Network Parameterization 
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The effect of considering a group of pipes having the 

same c values was investigated. The purpose of 

parameterizing a network is to reduce the number of unknowns 

and consequently to increase the level of system 

overdetermination which improves the certainty of the 

regressed parameters. 

The uncertainty presented in the input data for the 

runs in this section were a CV of Q's equal to 5% and 

standard deviation of H's equal to 1.0 ft. A total of 500 

regressions were performed to estimate parameters for each 

run. The estimation procedure was conditioned to accept 

regressed C's ranging from 65 to 145 units. The first run 

was considered as a base run and it was completed in 72 

hours using an IBM compatible personal-computer with a 486-

25 MHZ CPU. 

Pipe 15 is a weak pipe in the network and has high 

uncertainty associated with the estimates of its roughness 

factor. In the subsequent runs this pipe was lumped with 

other pipes in an attempt to improve its estimates of C. 

Table 6.12 shows results for the base condition without any 

parameterization and three conditions with lumped 

parameters. 

The second and third runs considered pipe 15 lumped 
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TABLE 6.12 

EFFECTS OF NETWORK PARAMETERIZATION IN THE 
ESTIMATES OF ROUGHNESS FACTOR FOR PIPES 

Lump c Estimates of Roughness c Comput. 
at statistics Pipe # Trace Time 

pipes 5 12 13 14 15 cov(C) (hr) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

mean c 89.4 110.9 105.8 109.8 86.2 
std. c 19.0 11.7 19.5 13.3 19.3 2666 72 

14, mean c 93.5 107.0 104.5 101.0 101.0 
15 std. c 21.2 10.7 20.2 11.2 11.2 2333 2.5 

13, mean c 91.6 118.6 83.5 106.0 83.5 
15 std. c 20.4 8.6 15.4 11.4 15.7 2000 2.5 

5, mean c 79.7 120.6 79.7 106.7 79.7 
13, std. c 12.4 7.2 12.4 10.5 12.4 1352 -0.5 
15 

TRUE C 110 110 110 110 110 

with pipes 14 and 13 respectively. The last run considered 

pipes 5, 13 and 15 lumped together. Column (8) from Table 

6.12 shows the measure of uncertainty in the estimates of C. 

Column (9) shows the computational time to complete 500 

valid regressions. ' It is apparent that the measure of 

uncertainty and the computational time decreases as more 

pipes are lumped to the same c. 

When several pipes are considered as having the same 

roughness parameter, the number of unknowns in the system 
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reduces by the same number of pipes being parameterized 

while the number of equations remains the same. The 

improvement in the estimates is caused by the increase in 

the system's overdetermination level. Lumping a weak pipe 

with others having smaller variability contributes to reduce 

the variability of the first with the expense of increasing 

the variability of the other pipes. 

Convergence of the Mean and 

Standard Deviation of C's 

The number of Monte Carlo simulations performed to 

estimate the C's and their variability was based on the 

stochastic convergence of the mean and standard deviation of 

the C's observed for the base condition. This condition 

considered input data uncertainty equal to a CV of Q's at 

the 5% level and standard deviation for the H's equal to 

0.25 ft, as listed in Tables 6.3 and 6.4. Most of the runs 

presented in this chapter were-performed with 500 

simulations. This number was enough for the convergence of 

the mean c and standard deviation c of the major pipes in 

the network. The convergence of these statistics for weak 

pipes would probably require a larger number of runs. 

However, the improvements obtained are not worth the effort 

since these links do not significantly contribute to improve 

the calibration assessment measure. 

The program developed to estimate parameters has an 

option to compute the mean and standard deviations of the 
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C's after a specified number of simulations. These values 

can be saved and plotted to check the stochastic convergence 

of such variables. 

Figures 6.2 and 6.3 show stochastic convergence of the 

mean and standard deviation of pipe 1 for the base run. It 

can be seen that convergence for both were obtained within 

less than 500 simulations. Figures 6.4 and 6.5 show the 

same analysis for pipe 10. This pipe has a higher degree of 

uncertainty associated with its roughness parameter and so 

it requires more simulations to converge. Stochastic 

convergence for other pipes considering the base run is 

included in Appendix E. Based on these results the use of 

500 simulations was deemed as adequate. 
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Approximation of the Distribution 

of Parameters 

1000 

Parameter estimates from 500 regressions were used to 

approximate a distribution for the C's for the base run 

described in the previous section. The normal distribution 

was fitted to the data. Figures 6.6 and 6.7 show the 

distribution of C's from pipes 1 and 3, plotted against a 

normal distribution represented by the straight line. It 

can be seen that these data are well approximated by the 

normal distribution. A check of the normality for all pipes 

was performed in the same manner. 
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As an example, Figure 6.8 shows a fitting for pipe 9. 

Although the data deviated a little at the tails of the 

distribution, it did fit well at the center. It is noted 

that the estimate of pipe 9's c has higher standard 

deviation than those from pipes 1 and 3. Also, pipe 9 is 

located at the end of the network. 

Estimates of C's for important links more closely 

followed the normal distribution. Appendix F includes 

figures showing fittings for all pipes for the base 

condition. It was observed that only estimates for pipes 8 

and 15 did not fit well by a normal distribution. Since 
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these pipes are weak in the network and carry low flow, 

their C's do not influence significatively the pressure 

distribution throughout the system. Therefore, the normal 

distribution was assumed to generate the error term for all 

pipe parameters when assessing the model predictions' 

uncertainty performed by the Monte Carlo method. 

Distribution of Computed Pressures 

Using data from each simulation performed for the 

calibration assessment by the Monte carlo method, a 

normality check was conducted for the computed nodal 

pressure assuming that all C's were normally distributed. 

Figure 6.9 and 6.10 show plots of the pressure data from 

nodes 1 and 4 for the assessment load listed in Table 6.5, 

computed with parameters from the base run described earlier 

(See second run on Table 6.6). The data followed a straight 

line with the normal distribution. 

Data from all nodes fit the normal distribution well as 

can be seen in the figures included in Appendix G. This 

fact is important since it allows confidence limits to be 

placed on the likelihood of the occurrence of a certain 

pressure at the nodes. The confidence limit is another way 

of expressing the uncertainty of the pressure in the node 

such that it can be understood by the layman. 
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Appropriateness of the 

Assessment Measure 
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The variance of the computed nodal pressure was used to 

quantify the uncertainty in model predictions resulting from 

current knowledge of the calibrated parameters. The trace 

of the covariance matrix of the computed pressures, 

representing the sum of the variances of the pressures at 

all nodes in the network, is one way to express the total 

system variance. This quantity was selected as a measure to 

evaluate the calibration assessment. The purpose of this 

section is to justify the selection of the trace as a useful 

measure and to show its appropriateness to quantify 

uncertainties in model outputs for water distribution 

systems. 

The first point considered to select the trace as a 

measure was the need of a single value to represent the 

output uncertainties. A single value is a fast and easy way 

of evaluating and reporting the improvements in the 

prediction uncertainty after each iteration is completed. 

The applications developed in the present and previous 

chapters revealed the consistency of the measure represented 

by the trace. It changes in accordance with changes in the 

uncertainty levels of the input variables (Q's and H's). As 

the CV of Q or standard deviation of H increases, so does 

the trace. The magnitude of the changes in the trace is 

consistent with the changes in the uncertainty levels of the 
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measurements at critical nodes. These nodes are special by 

their strategic location in the network and because they 

carry high demands. Thus, the trace is an appropriate 

measure since it behaves well in regards to the type, 

magnitude and location of the changes in the uncertainty of 

input variables. 

The second consideration for selecting the trace is 

that it can be computed by either Monte Carlo simulation or 

first order approximation. While the first is more accurate 

because it accounts for the system nonlinearity, the second 

method is very efficient in terms of computational time. 

Results from both methods compared well as can be seen 

in Tables 5.6, 5.7 and 6.8. At high levels of uncertainty 

the difference in the trace computed by the two methods 

starts to deviate. However, the adopted measure can still 

be considered useful because, although not comparing 

exactly, the trace obtained by both methods are still close 

to each other. This makes this measure useful for the 

purposes of this study. If a node has high uncertainty 

associated with its predicted pressure, it is more important 

to identify that node and to work to reduce the uncertainty 

than to be able to compute the exact value of the 

uncertainty. 

In summary, the trace was found to be a consistent and 

robust measure that can be used to quantify the model 

prediction uncertainties. As the amount, type and location 

of the uncertainties in the input variables changes, the 
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trace also changes in the appropriate direction. It also 

can be efficiently computed by FOSM and, if necessary, 

accurately determined by using Monte Carlo simulations. As 

a single measure, it represents the total system variance 

and can be used as a criteria to evaluate the improvements 

obtained in the computed pressures at each calibration 

iteration. 

Other Useful Descriptive criteria 

Most of the applications developed in Chapters V and VI 

used the trace of the covariance matrix of computed pressure 

as the calibration assessment measure. This section 

discusses other measures that can be used as alternative 

criteria or to better represent different calibration 

objectives. 

The standard deviation of the nodal pressures presented 

similar properties as those described above for the trace of 

the covariance matrix. By using individual nodal standard 

deviation as a measure, the modeler can assure to meet 

pressure prediction reliability at selected points in the 

network. Tables 6.9 and 6.11 present other useful measures 

as the average standard deviation and the minimum and 

maximum standard deviation of the nodal pressures. All of 

them are acceptable measures which could be used to meet 

particular calibration objectives. 

Other measures could be defined to compare the 

uncertainty levels from different systems. This measure 
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would need to be normalized to reduce the effects of size 

and demands of the networks. Such measures could be defined 

as: (a) the average standard deviation divided by the total 

system headless; (b)the average standard deviation divided 

by the total length of the pipe line; (c) the average 

standard deviation divided by the total system demand. 

Another criteria to evaluate the calibration assessment 
-

could be defined based on the probability distribution of 

the computed pressure at the nodes. Since these pressures 

were well approximated by normal distributions, a criteria 

could be defined based on the confidence intervals to be 

placed on the mean of the predicted nodal pressure at a 

particular node. 

Confidence intervals could be placed on critical nodes 

and used as criteria to determine if the current level of 

the calibration is accepted or if it is required to collect 

more field measurements to improve the calibration accuracy. 

As an example, consider the predictions of the pressure 

at node 4 on Table 6.6. One may be interested in 

determining confidence intervals for the individual pressure 

considering the H's are normally distributed. Based on the 

properties of the normal distribution (1-a)% of the 

pressures are within the limits 

where 

= mean pressure (ft) 
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z 1 _~ = comes from the standard normal distribution 
2 

corresponding to the value of z such that 

the area under the standard normal density 

function from -~ to z is equal 1 - a 

=standard deviation of the pressure (ft). 

Considering the calibration run with CV of Q's equal 5% 

and standard deviation of H's equal 0.25 ft, the pressure at 

node 4 has a mean value of 201.8 ft and standard deviation 

of 8.5 ft (See column (5), Table 6.6). The 95% confidence 

interval for the predicted pressure at this node is computed 

as 

= 

= 201.8 + 1.96 * 8.5 

= 218.5 

= 

= 201.8 - 1.96 * 8.5 

= 185.1 

The value of Z0 ~5 equal 1.96 was obtained from the 

standard normal distribution. The lower and upper 

confidence limits computed as above are 185.1 ft and 218.5 

ft. This means that the probability is 95% that the 

interval 185.1 ft and 218.5 ft contains the true mean of the 

pressure at node 4. 

Considering the calibration run with CV of Q's equal 

10% and std of H's equal 0.25 ft (See Table 6.6) the 
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pressure at node 4 has a mean value of 201.6 ft and std of 

16.5 ft. The 95% confidence limits computed as above is 

169.3 ft and 233.9 ft. 

It can be seen that the 95% confidence interval 

increased from 33.4 ft in the first case to 64.6 ft as the 

uncertainty in the Q's used to estimate parameters increased 

from 5 to 10%. 



CHAPTER VII 

APPLICATION OF DATA COLLECTION PROCEDURE 

This chapter presents applications of data collection 

procedures and the outer calibration loop presented in 

Figure 4.2. In the first section a system wide approach 

will be used to improve the estimates of the roughness 

parameters. In the second section, the improvements in the 

calibration assessment will be obtained by performing 

individual pipe tests. 

System Wide Tests 

This section presents an approach to identify ideal 

network conditions under which the new field measurements 

should be collected. The new measurements should be taken 

such that they will contribute to improve the current 

knowledge of the model parameters and to decrease the 

uncertainty in the results to be derived from the calibrated 

model. 

For demonstration purposes, at the present stage, the 

calibration of the unknown roughness parameters has been 

performed using information from 4 measurement loads listed 

in Table 6.2: Normal, Peak, Fire at node 3, and fire at node 

8. The external nodal demands from the above table were 

129 
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estimated with a CV of Q equal to 5%. The corresponding 

pressure heads were measured or estimated with a standard 

deviation of 0.25 ft. With this information available, the 

estimates of parameter C were determined {See Table 7.1). 

These values reveal the current knowledge of the C for all 

pipes, represented by their mean and standard deviation. 

The trace of the covariance matrix of the estimates of c was 

found equal 1646. 

The calibration exercise consists of improving the 

model's ability to predict the nodal pressures for the 

assessment load listed in Table 7.2. This condition 

reflects a fire with a magnitude of 8 cfs located at node 6. 

In addition to this fire load, the external demands at all 

other nodes are increased by 20% of their normal values 

which are listed in Table 6.2 as the first loading condition 

(Normal). The calibration assessment measure is represented 

by the trace of the covariance matrix of the model predicted 

pressures. This value and individual nodal standard 

deviations computed by FOSM method are presented in Table 

7.3. 

The objective of the calibration is to decrease the 

uncertainty level of the predicted pressure which 

corresponds in reducing the trace of the covariance matrix 

{717 ft2). In order to improve the assessment measure, more 

field data will be collected and used to augment the 

available information used to estimate parameters. The 

problem to be solved consists of providing guidance so that 
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TABLE 7.1 

ESTIMATES OF PIPE ROUGHNESS c USING 
INFORMATION FROM 4 MEASUREMENT LOADS 

Pipe # Mean c Std C 
(1) (2) ( 3) 

1 109.8 1.0 
2 109.9 2.3 
3 110.2 3.6 
4 110.5 6.3 
5 106.4 16.6 
6 109.3 3.6 
7 111.9 11.3 
8 105.7 21.7 
9 108.7 6.0 

10 110.1 4.2 
11 109.6 2.6 
12 109.6 2.6 
13 110.4 12.6 
14 109.8 5.6 
15 89.6 19.6 
16 109.5 4.4 

Trace Cov (C) = 1646 

the new collected data will add the most information. This 

guidance refers to the identification of network conditions 

(magnitude and location of the fire demands) to be induced 

in the real system when new measurements are taken. 



TABLE 7.2 

ASSESSMENT LOAD FOR DATA COLLECTION EXAMPLE 

Condition 
(1) 

Fire at node 6 

Node Number 
(2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

TABLE 7.3 

Flow (cfs) 
(3) 

0.000 
6.000 
3.120 
5.148 
4.452 
8.000 
6.000 
0.000 
2.400 
2.400 
0.000 
2.400 

-39.920 

CALIBRATION ASSESSMENT WITH PARAMETERS 
ESTIMATED USING 4 MEASUREMENT LOADS 

Node 
# 

(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Mean Ha 
(ft) 
(2) 

498.6 
326.0 
274.9 
228.7 
237.3 
211.0 
241.1 
298.6 
290.5 
331.5 
355.7 
351.8 

Trace Cov (Ha) = 717.0 ft2 

Std Ha 
(ft) 
(3) 

4.1 
7.2 
8.2 
9.3 
8.9 
9.8 
8.7 
7.5 
7.5 
6.8 
6.4 
6.4 

132 
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Selection of Potential Measurement Loads 

This step corresponds to blocks 4 and 5 in the diagram 

from Figure 4.2. The procedure is explained in detail in 

"Criteria to Select the Measurement Load" in Chapter IV. 

In this example five potential network loadings have 

been determined as feasible conditions to be induced during 

the field experiments. They form the array Qp• Each load 

corresponds to a vector QP• which is composed of individual 

nodal demands q~, where j represents the node number. The 

magnitudes of these demands are listed in Table 7.4. The 

first load, QP1 corresponds to a fire flow equal 10 cfs at 

node 1 and the demands at other nodes reduced by 20% of 

their normal values. The second and third demands 

correspond to fire conditions of the same magnitude located 

at nodes 7 and 4 respectively. The above demands reflect 

single fire conditions located close to the source, in the 

middle, and at the extreme of the network. The fourth and 

fifth demands contain fire situations to be induced 

simultaneously at adjacent nodes in the east part of the 

network (nodes 4 and 5) and at the north and south parts of 

the network (nodes 2 and 9). The magnitude of the fire at 

node 9 is only 5 cfs because this node is a connection of 

pipes with small diameters. 

As a first step the load QP1 is investigated. When the 

demands qP1J are induced, the field tests will measure the 
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TABLE 7.4 

POTENTIAL MEASUREMENT LOADS FOR DATA COLLECTION 

Condition Node Predicted Estimated 
Number Demand Pressure 

(cfs) (ft) 
(1) (2) (3) (4) 

Qpl 1 10.00 567.7 
Fire at 2 4.00 500.7 
Node 1 3 2.08 482.1 

4 3.43 467.8 
5 2.97 468.9 
6 2.40 467.8 
7 4.00 473.4 
8 0.00 490.4 
9 1.60 486.0 

10 1.60 500.1 
11 0.00 510.7 
12 1. 60 508.8 
13 -33.68 747.0 (FGN) 

Qp2 1 o.oo 603.6 
Fire at 2 4.00 502.6 
Node 7 3 2.08 476.3 

4 3.43 451.3 
5 2.97 456.5 
6 2.40 437.3 
7 10.00 437.7 
8 0.00 487.7 
9 1.60 484.5 

10 1.60 510.0 
11 0.00 522.3 
12 1.60 520.5 
13 -29.68 747.0 (FGN) 

Qp3 1 0.00 598.4 
Fire at 2 4.00 494.3 
Node 4 3 2.08 455.4 

4 10.00 411.2 
5 2.97 428.1 
6 2.40 429.6 
7 4.00 447.8 
8 0.00 477.4 
9 1. 60 474.2 

10 1. 60 501.4 
11 0.00 513.9 
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TABLE 7.4 (Continued) 

Condition Node Predicted Estimated 
Number Demand Pressure 

(cfs) (ft) 
(1) (2) (3) (4) 

12 1. 60 512.0 
13 -30.25 747.0 (FGN) 

Qp4 1 o.oo 549.4 
Fires at 2 4.00 413.5 
Nodes 4 and 5 3 2.08 357.3 

4 10.00 284.9 
5 8.00 284.9 
6 2.40 323.6 
7 4.00 350.3 
8 o.oo 380.1 
9 1. 60 378.0 

10 1.60 420.0 
11 0.00 434.3 
12 1. 60 432.4 
13 -35.28 747.0 (FGN) 

QpS 1 o.oo 571.6 
Fire at 2 10.00 444.2 
Nodes 2 and 9 3 2.08 426.1 

4 3.43 412.6 
5 2.97 414.0 
6 2.40 412.6 
7 4.00 418.1 
8 o.oo 436.7 
9 5.00 393.0 

10 1. 60 459.6 
11 0.00 476.6 
12 1.60 474.7 
13 -33.08 747.0 (FGN) 

corresponding nodal pressure heads. The new data on both 

demands and pressures will be added to augment the available 
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information which is used to estimate parameter c•s. 

The second step of the data collection module consists 

of predicting the worth of the information provided by the 

potential measurement load before conducting field 

measurements. Since the actual test was not yet conducted, 

the nodal pressures are not available and must be estimated. 

This task is accomplished by computing the pressures with 

KYPIPE using the current values of the c•s from Table 7.1 

and the demands from ~~· The estimated nodal pressures 

obtained by this process are listed in column (4) on Table 

7.4 for the first iteration of the calibration loop. This 

value may change in subsequent iterations as the knowledge 

of the C's are improved. 

The proposed measurement load ~~ then supplements the 

available information QA and is used to estimate the unknown 

parameters. These projected parameters and their 

uncertainties are used to compute the assessment measure for 

the desired network condition. 

The process is repeated for all loads from Qp and a 

sensitivity vector is assembled (sensitivity vector A). 

This vector contains the difference in the assessment 

measure obtained with QA (trace cov (Ha) = 717 ft2) and the 

new measurement obtained when a potential load is considered 

to augment the available information (trace cov (Hp). Table 

7.5 lists results for the five potential measurement loads 

considered in this application. The trace of the cov (Hp) 

listed in column (5) was computed by FOSM. Column (6) shows 
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TABLE 7.5 

SELECTION OF THE MEASUREMENT LOAD 

Prediction of Uncertainty Measures 

Potential Fire Fire Trace Trace Sensit. 
Load Node Demand Cov(C) Cov(Hp) Vector A 

(cfs) (ft2 ) (ft2 ) 

(1) (2) (3) (4) (5) (6) 

Qpl 1 10 1470 520 197 
Qp2 7 10 1271 632 85 
Qp3 4 10 1180 564 153 
Qp4 4, 5 10, 8 861 504 213 
QpS 2, 9 10, 5 1163 553 164 

the sensitivity vector A. It can be seen that adding the 

load with fires at nodes 4 and 5(potential load Qp4) causes 

the largest decrease in the assessment measure which 

reflects in the largest element of the sensitivity vector A; 

therefore, this load is selected for a more careful 

investigation regarding the individual nodal demands. Since 

this load has the largest total demand and the fire node is 

located at a distant point from the source, the largest head 

loss occurs when it occurs. The high losses would likely 

provide the most information to the analysis and affects 

critical links to the largest degree. Better estimates of 

roughness factor for critical links provide the largest 

decrease in the trace of the covariance of Ha. 
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The next step of the data collection process is to 

adjust individual nodal demands in the selected measurement 

load. For the purpose of this example we will restrict the 

investigation to the two nodes carrying fire demands which 

are nodes 4 and 5. After perturbing the individual demands, 

a new potential load is formed and the process is repeated. 

The potential load is incorporated into the available 

measurement; the parameters are estimated; and the 

assessment is performed. Table 7.6 presents results from 

this new step which considered both fire demands increased 

and reduced by 2 cfs. It can be seen that the load with 

fires at nodes 4 and 5 equal to 10 cfs provides the largest 

decrease in the assessment measure. This corresponds to the 

original fire demand at node 4 and the fire demand at node 5 

increased by 2 cfs, as listed in column (3). A loading 

condition as close as possible to the one above selected 

{Q~, with adjusted flow at node 5) will be induced in the 

network at the time the new measurements are to be taken. 

It is noted that the load with the largest total demand 

and causing the largest total head loss provided the most 

information. This result follows the standard practice, 

which suggests inducing large demands to cause the maximum 

head loss when collecting field data for calibration. This 

analysis also revealed a location which has not been 

previously considered. 



TABLE 7.6 

ADJUSTMENT OF NODAL DEMANDS FOR 
THE SELECTED MEASUREMENT LOAD 

Prediction of Uncertainty Measures 

Node 4 Node 5 Trace Trace 
Demand Demand Cov(C) Cov(Hp) 
(cfs) (cfs) (ft2 ) 

{1) (2) (3) (4) 

10 8 861 504 
12 8 1044 491 
10 10 839 481 

8 8 1009 490 
10 6 1226 521 

Collection of New Measurements 

At this point the procedure would rely on the field 

data consisting of collecting field measurements of the 

actual induced flows in the network and the corresponding 
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nodal pressures, QM and HM. This corresponds to block 7 in 

the diagram on Figure 4.2. To generate this data the actual 

induced flows are assumed to be identical to those from the 

selected measurement load as listed in Table 7.7. The 

pressure heads are computed by KYPIPE using the true C's as 

shown in column (4) on Table 7.7. 

The next step consists of estimating the parameters 

with the available information augmented by adding the new 
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TABLE 7.7 

ADDITIONAL MEASUREMENT LOAD 

Condition Node Demand Pressure from 
Number KYPIPE 

(cfs} (ft) 
(1) (2) (3) (4) 

Fire at 1 0.00 528.9 
Nodes 2 4.00 379.2 
4 and 3 2.08 316.7 
5 4 10.00 233.5 

5 10.00 228.9 
6 2.40 272.6 
7 4.00 306.3 
8 0.00 340.0 
9 1.60 338.3 

10 1.60 386.5 
11 o.oo 401.6 
12 1.60 399.8 
13 -37.28 747.0(FGN) 

measurements. New estimates of c•s are presented in Table 

7.8. By comparing these values with those from Table 7.1 a 

decrease in estimated parameter uncertainty is apparent. 

The improvements in the parameters will contribute to the 

decrease in the uncertainty of the predicted pressures as 

can be seen by comparing results from Tables 7.9 and 7.3. 

It is expected that at each new iteration the C's converge 

to their true values and their uncertainty reduces. 



TABLE 7.8 

ESTIMATE OF PIPE ROUGHNESS C USING 
INFORMATION FROM 5 MEASUREMENT LOADS 

Pipe # Mean c Std C 
(1) (2) (3) 

1 109.8 0.8 
2 109.9 2.1 
3 110.2 3.2 
4 110.5 5.1 
5 107.0 10.2 
6 110.0 2.1 
7 109.9 9.3 
8 109.4 16.4 
9 109.7 5.1 

10 109.8 3.5 
11 109.7 2.5 
12 109.5 6.3 
13 109.5 12.2 
14 108.9 5.4 
15 106.7 9.8 
16 109.2 4.1 

Trace cov (C) = 882 

At some point in the process, the assessment measure 

will satisfy the modeler's objective and the calibration 

process is complete. In a second case, none of the 

potential loads from Qp can contribute to improvements in 

the assessment measure. If this happens, either improved 

data accuracy must be achieved, individual pipes can be 

examined,or the model is used as it is with its known 

predictions' uncertainty. 
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TABLE 7.9 

CALIBRATION ASSESSMENT WITH PARAMETERS 
ESTIMATED USING 5 MEASUREMENT LOADS 

Node # Mean Ha Std Ha 
(ft) (ft) 

(1) (2) (3) 

1 498.7 3.4 
2 326.2 5.9 
3 274.5 6.6 
4 227.4 7.3 
5 236.7 8.9 
6 213.1 7.2 
7 242.3 7.7 
8 298.7 7.0 
9 290.6 6.2 

10 331.7 5.7 
11 355.9 5.4 
12 351.9 5.4 

Trace Cov (Ha) = 472.2 ft2 

Throughout the data collection process estimated C's 

are used to determine improvements in the assessment 
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measure. The sensitivity vectors then are the estimates of 

the measurements true decrease and are likely conservative. 

As additional data is collected both the new value of C and 

Ha and their variances should improve. The above analysis, 

only accounts for reduction of the variance. A better 

estimate of the mean will further reduce the uncertainty in 

the results of this application. The data collection 
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procedure's goal is to identify useful field conditions for 

new measurement. The sensitivity vectors provide a 

comparison, which although not exact, does serve that 

purpose. 

Individual Pipe Tests 

This section investigates the effects of the 

improvements in the estimates of the roughness factor of 

individual pipes in the decrease of the measure of 

predictions• uncertainty. The network used to conduct 

experiments for this analysis is presented in Figure 6.1 and 

Table 6.1. The assessment load used is listed in Table 6.5. 

The calibration objective is to reduce the total system 

variance expressed by the trace of the covariance matrix of 

computed pressures, trace cov (Ha). 

The procedure starts by assigning a value for the 

estimates of the C and their uncertainty. This situation 

occurs at the beginning of the calibration efforts when no 

field measurements are yet available. At this point, the 

modeler seeks guidance to design data collection strategies 

and to plan the field experiments. 

A value of c equal to 110 with a coefficient of 

variation of 10% was considered as the best guess for all 16 

pipes from network 2. This corresponds to assigning a 

standard deviation of 11 units to all pipes. With this 

knowledge of the c•s, the measure of the total system 

variance for the predicted pressures was 32334 ft2 as can be 



seen in row 1, column (4) on Table 7.10. The average 

standard deviation for the pressures was 51.9 ft. 
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The selection of a pipe to conduct individual tests to 

improve the predicted pressures is based on the changes in 

the uncertainty measure which is used to assemble Gradient 2 

described in chapter IV. First, individual pipe roughness 

improvements to a cv equal to 2% will be considered and the 

corresponding decrease in the trace cov (Ha) examined. 

Second, the pipe which is giving the largest contribution to 

decreasing the trace cov (Ha), corresponding to the link 

with the largest gradient, will be selected. Third, the 

contribution provided by the improvements in the selected 

pipe will be investigated. 

Upon defining a level of uncertainty acceptable for the 

selected pipe, a step wise procedure follows. The improved 

pipe is held to its desired level and the process is 

repeated to identify the next pipe to be chosen for a 

carefully investigation. 

Table 7.10 presents results used to select the best 

among pipes 1, 6, 11, 12, and 15. These pipes are located 

scattered throughout the system. Column (4) shows the 

measure obtained when improving the CV of the particular 

pipe to 2% while holding the uncertainty for remaining pipes 

at the 10% level. It can be seen that when the c for pipe 1 

was improved the measure decreased to 7104 ft2 compared to 

29976 ft2 observed for the same improvement in pipe 11. The 

magnitude of the improvements are not unexpected, since pipe 
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TABLE 7.10 

COMPARISON OF CALIBRATION ASSESSMENT MEASURES FOR 
DIFFERENT LEVELS OF PARAMETER UNCERTAINTY 

Parameter Uncertainty Calibration Assessment Measure 

Individual Pipe Other Pipes Trace Average Minim. Maxim. 
Pipe cv C1 cv c Cov(Ha) Std(Ha) Std(Ha) Std(Ha) 

# (%) (%) (ft2 ) (ft) (ft) (ft) 
(1) (2) (3) (4) (5) (6) (7) 

10 32334 51.9 46.8 53.6 
1 2 10 7104 24.3 9.4 27.7 

11 2 10 29976 50.0 46.8 53.3 
12 2 10 32214 51.8 46.8 53.6 

6 2 10 32250 51.8 46.8 53.6 
15 2 10 32333 51.9 46.8 53.6 

1 5 10 12623 32.4 23.4 35.0 
1 1 10 6316 22.9 4.7 26.5 

cv c = 2% pipe 1 
11 2 10 4739 19.9 9.4 27.0 
12 2 10 6984 24.1 9.4 27.7 

6 2 10 7020 24.1 9.4 27.7 
15 2 10 7103 24.3 9.4 27.7 

1 carries the entire flow to the system. Pipes 6 and 15 

have small head loss because they carry low flow and so, 

they have a minor impact on the pressure distribution 

throughout the system. Pipe 1 was, then, selected to be 

more carefully studied. 

The effects of improvements in the uncertainty of the 

predictions measure can be assessed by performing the 
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analysis with different values for the CV of c for pipe 1. 

When the CV of C1 was changed to 5% the measure changed to 

12623 ft2 • This value reduced to 6316 ft2 when the CV of C1 

was fixed as 1%. Based on the previous results, it was 

decided that a cv of C1 equal 2% would be adequate 

corresponding to a standard deviation of 2.2 for the 

estimate of C1 • 

The next set of runs considered as starting point a CV 

of C1 equal 2% and CV of c equal 10% for the remaining 

pipes. It can be seen that the next pipe to be select is 

pipe 11 since it contributes to the next largest decrease in 

the measure. The improvement in terms of the standard 

deviation of individual pipes (Ha.) may not be significant, 

although, the decrease in the trace is high. Bath terms 

should be examined and one may decide not to pursue these 

localized tests. 

Gradient 2, reflecting the changes in the measure due 

to improvements in the uncertainty of individual pipe's 

roughness, is used to identify potential pipes to be 

studied. It corresponds to a point estimate at the current 

mean value of the C's. It may be that the means are not 

correct, but the relatively magnitude of these terms among 

pipes would be similar. Therefore, the analysis and 

decision process can continue as described here. 



CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

The increasing complexity of problems faced by 

hydraulic engineers necessitates obtaining optimized and 

fast solutions to hydraulic problems through the use of 

simulation models. It is of crucial importance that the 

model used is calibrated to represent the real system as 

close as possible. If models are not properly calibrated, 

their results may be biased and they may not reproduce the 

responses of the real system. It is a waste of valuable 

resources to base decisions on results that do not reflect 

reality of the physical system. 

This research has addressed the problem of improving 

the calibration procedure for water distribution networks. 

It provides a framework to assist modelers in obtaining more 

confident decisions, a task that can be achieved when the 

calibration effort produces a model which best approximates 

the real system. 

To date, only deterministic approaches have been used 

to calibrate distribution network simulation models. 

However, the modeling assumptions and the input information 

used to estimate parameters are not known with certainty. 

They contain errors which are propagated throughout the 
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steps performed for the calibration and to the results to be 

derived from the model. Quantification and a better 

understanding of the propagation of these errors is an 

important consideration in any modeling application. 

Conclusion 

A statistically based calibration methodology for a 

water distribution network model has been developed. The 

procedure considers three components of the modeling 

process: data collection, parameter estimation and 

calibration assessment. The process accounts for the 

uncertainty in measurements, their impact on model 

parameters and the effect of these uncertainties on the 

outputs of the network simulator. It also provides 

assistance in defining data collection strategies to improve 

the model predictive ability. 

The roughness parameters of the pipes are estimated 

based on the uncertainty of the measurements of nodal 

pressures and estimation of their demands. Parameter 

uncertainty is transferred to model prediction uncertainty. 

A measure of the calibration accuracy is defined based on 

the trace of the covariance matrix of the computed nodal 

pressures. This measure is assessed by two methods: Monte 

Carlo simulations and first order second moment (FOSM) 

approximation of the variance. The calibration methodology 

was applied to two distribution networks under several 

loading conditions. 
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Most water distribution calibration procedures have 

been deterministically based and do not consider the 

uncertainties associated with modeling parameters and input 

variables. This research is an initial effort to quantify 

these uncertainties and to consider data collection as an 

integrated component which contributes to improve model 

predictive ability. 

The major conclusions of this research are that: (a) a 

framework has been established to incorporate the error term 

in all steps of the modeling process of a water distribution 

system; (b) the trace of the covariance matrix of the 

computed pressures can be used as a consistent measure to 

represent in a single quantity, the uncertainties in model 

predictions; and (c) the FOSM approach can be used as an 

efficient method to compute prediction uncertainty for water 

distribution network models. Several practical results were 

also found including: (1) the level of the uncertainty of 

major pipes in the network affects significantly the measure 

of the calibration accuracy; (2) the need to stress the 

network to high demands to obtain more robust parameter 

estimates; (3) a linearity was observed in transferring 

uncertainties from parameter to model results in the two 

networks studied; (4) the sensitivity vectors and the 

gradients described in this dissertation can be used to 

guide future data collection efforts. 
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Future Work 

The analysis developed showed major points concerning 

the importance of the input information used to calibrate 

the network model. It revealed some areas that require 

further research. These included: 

1. Extend the parameter estimation procedure developed to 

use information from extended periods of time and to 

consider multiple sources of supply and storage. 

2. Extend the procedure to handle (a) other representations 

for the roughness parameter, besides the Hazen-Williams 

factor and (b) the case when all heads are not known. 

These situations would require the use of non-linear 

regression or other interpolation schemes. In these 

cases a new source of errors are introduced in the 

process and they must be quantified. 

3. Investigate the effects of the uncertainty introduced by 

common modeling practices such as network skeletonization 

(consider a simplified system) and network 

parameterization (reduce the number of parameters). 

4. Investigate the effects of different error distributions 

in input variables on the distribution of the results of 

the network simulation model. Also, investigate the 

effect of correlation among parameters in the output 

uncertainties. 

5. Apply sparse matrix techniques to avoid the propagation 

of round-off errors in the inversion of the regression 
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matrix used to estimate model parameters. 

6. Investigate analytic approaches to approximate the 

variance of roughness parameters, such as the first order 

approximation. 
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TABLE A.l 

ESTIMATED PIPE ROUGHNESS C FOR DIFFERENT 
LEVELS OF UNCERTAINTIES IN Q'S 

{Complement of Table 5.3) 

Statistics PIPE NUMBER 
cv of 1 2 3 4 5 6 7 8 9 10 11 

Q 

1% Mean c 99.9 100.0 100.0 99.9 99.9 99.9 99.9 99.9 100.0 99.9 99.9 
Std. c 0.9 1.1 1.5 0.6 0.4 0.4 0.7 1.0 1.4 0.6 0.2 

5% Mean c 99.9 99.7 99.9 100.0 99.9 99.9 99.9 99.8 100.2 99.8 99.9 
Std. c 4.3 5.1 7.7 3.6 2.0 1.9 3.3 5.2 7.1 3.0 1.1 

10% Mean c 100.6 99.1 101.3 99.0 99.5 100.3 99.8 99.8 100.0 99.7 99.9 
Std. c 9.1 11.5 15.6 6.8 4.1 3.6 6.2 10.0 13.2 5.8 2.2 
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TABLE A.2 

CALIBRATION ASSESSMENT FOR NETWORK 1 BY MONTE CARLO METHOD 
(Complement of Chapter V) 

Calibration 
Condition N 0 D E # 

1 2 3 4 5 6 7 

cv Q(%) 
Table 5.6 1 Mean H 189.9 145.8 180.8 185.5 182.2 191.9 183.7 
Monte Carlo Std. H 0.04 0.40 0.80 0.05 0.08 0.03 0.08 

5 Mean H 189.9 145.6 180.8 187.3 182.2 191.9 185.7 
Std. H 0.02 2.03 0.42 0.428 0.39 0.16 0.394 

10 Mean H 189.9 145.2 180.8 187.3 182.2 191.9 183.6 
Std. H 0.40 4.00 0.82 0.497 0.748 0.32 0.794 

Std H(ft) 
Table 5.7 1 Mean H 189.9 145.8 180.8 187.3 182.2 191.9 183.7 
FOSM Std. H 0.04 0.41 0.08 0.05 0.08 0.03 0.08 

5 Mean H 189.9 145.73 180.8 187.3 182.2 191.9 183.7 
Std. H 0.21 2.1 0.44 0.26 0.4 0.17 0.41 

10 Mean H 189.9 145.53 180.8 187.3 182.2 191.9 183.7 
Std. H 0.42 4.13 0.85 0.52 0.78 0.34 0.83 
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TABLE B.l 

ESTIMATES OF PIPES ROUGHNESS C FOR DIFFERENT 
LEVELS OF UNCERTAINTY IN CALIBRATION DATA 

(Complement of Tables 6.3 and 6.4) 

# Runs 
Data Calibration 

P I P E # 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Accepted Total 

in Condition 

Std H = 0.25 ft 
cv Q(%) 

Table 6.3 1 Mean c 109.7 109.71 110.3 110.7 106.4 109.0 110.2 108.8 109.5 110.0 109.7 108.8 111.6 109.5 84.11 108.5 500 8963 
Std. C 0.25 1.16 2.94 5.65 14.54 2.71 9.61 20.72 5.05 2.71 1.54 3.99 7.66 5.33 17.91 3.75 

5 Mean c 109.7 109.86 110.2 110.4 105.7 109.1 111.5 105.4 108.9 109.9 109.5 109.4 110.4 109.7 85.77 108.8 500 
Std. C 0.89 2.27 3.77 6.70 17.59 3.86 11.65 22.66 5.78 4.43 2.79 6.67 13.24 5.95 17.61 4.12 

8515 

10 Mean C 109.6 110.0 110.4 111.0 103.8 108.6 110.6 108.1 109.7 109.2 109.2 109.7 109.3 109.5 92.2 108.8 500 11119 
Std. C 1.79 3.64 5.14 7.90 20.09 5.71 13.26 23.07 7.01 6.03 3.97 9.35 17.89 7.26 21.16 6.64 

25 Mean C 109.6 110.6 110.4 110.6 106.0 110.0 109.5 104.3 108.4 108.4 108.4 111.4 104.8 109.5 101.2 108.5 500 76473 
Std. C 4.59 7.25 10.24 14.49 22.07 11.88 19.06 22.41 12.43 9.72 7.13 14.73 22.39 14.30 23.27 14.15 

cv Q = 5% 
Std H(ft) 

Table 6.4 0.1 Mean c 109.9 109.9 109.9 109.9 109.2 109.6 111.0 107.9 109.4 110.0 109.8 109.9 109.9 110.1 91.8 109.8 500 1353 
Std. C 0.90 2.06 2.60 4.12 15.06 3.36 11.05 21.27 5.65 3.76 2.49 5.56 11.42 3.67 19.51 3.20 

0.25 Mean c 109.7 109.9 110.2 110.4 105.7 109.1 111.5 105.4 108.9 109.9 109.5 109.4 110.4 109.7 85.8 108.8 500 8515 
Std. C 0.89 2.27 3.77 6.70 17.59 3.86 11.65 22.66 5.78 4.43 2.79 6.67 13.24 5.95 17.61 4.12 

0.5 Mean c 109.0 110.2 111.2 112.8 94.7 107.0 109.9 106.9 108.6 108.5 107.6 109.2 109.9 108.8 83.9 104.1 500 60796 
Std. C 1.15 2.64 4.92 9.07 18.56 4.70 11.74 22.30 6.14 5.32 3.63 8.61 16.55 9.10 17.31 8.14 

Mean c 107.6 110.4 110.3 111.7 89.4 105.8 107.4 108.6 108.1 106.4 104.2 110.9 105.8 109.8 86.2 93.2 500 1786480 
Std. C 1.53 3.28 6.93 13.14 18.97 5.43 12.38 23.19 6.33 6.09 4.64 11.74 19.53 13.32 19.34 13.49 
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TABLE B.2 

COVARIANCE MATRIX OF ESTIMATED C'S FOR CV OF 
Q EQUAL 5% AND STD OF H EQUAL 0.25 FT 

C1 

C1 • 78781 E+OO 
C2 .74303E+OO 
C3 .83364E+OO 
C4 .93120E+OO 
CS .57501E+OO 
C6 .98167E+OO 
C7 .90301E+OO 
C8 -.87696E+OO 
C9 .20620E+OO 
C10 .10549E+01 
C11 .82768E+OO 
C12 .57879E+OO 
C13 . 11806E+01 
C14 .61995E+OO 
C15 .81399E-01 
C16 .27546E+OO 

C9 

C9 .33459E+02 

R 0 U G H N E S S P A R A M E T E R 0 F P I P E S 
C2 C3 C4 CS C6 C7 cs 

.51311E+01 

.25171E+01 .14232E+02 

.36871E+01 .23537E+02 .44888E+02 
-.61250E+01 -.33910E+02 -.61286E+02 .30927E+03 
-.69338E+OO -.69014E+01 -.13214E+02 .50845E+02 .14900E+02 

.75554E+OO .19986E+01 .35481E+01 -.65342E+01 -.25594E+01 .13568E+03 
-.57253E+OO -.50877E+01 -.78325E+01 .13674E+02 .41905E+01 -.24231E+03 .51343E+03 
-.10970E+OO -.95047E+OO -.13085E+01 .29511E+01 .94898E+OO -.57930E+02 .12143E+03 
-.70763E+01 ·.15603E+01 -.31935E+01 .12565E+02 .41443E+01 .18430E+02 -.37802E+02 
-.47201E+01 -.12453E+01 -.24138E+01 .85789E+01 .29774E+01 .11905E+01 -.14718E+01 
.11199E+02 -.87387E+01 -.16385E+02 .22670E+02 .60171E+01 .24211E+OO .39781E+01 

-.22732E+02 .47044E+01 .88214E+01 -.39536E+02 -.95202E+01 -.61004E+01 .36803E+01 
-.40831E+OO -.12756E+02 -.24268E+02 .26765E+01 .21279E+01 -.21610E+01 .54444E+01 

.35759E+01 -.95861E+01 -.18804E+02 -.23634E+02 -.5735SE+01 -.87215E+01 .17902E+02 
-.69247E-01 .39170E+OO .21664E+OO -.10578E+01 .25521E+OO .65256E+OO -.31043E+01 

TABLE B.2 (Continued) 

R 0 U G H N E S S P A R A M E T E R 0 F P I P E S 
C10 C11 C12 C13 C14 C15 C16 

C10 -.89431E+01 .19614E+02 
C11 .45132E+OO .11223E+02 .77828E+01 
C12 .76279E+OO -.19582E+02 -.12819E+02 .44431E+02 
C13 .82481E+OO .46936E+02 .31209E+02 -.74527E+02 .17538E+03 
C14 .93142E+OO .24402E+01 .18835E+01 .13513E+02 .61212E+01 .35351E+02 
C15 .32750E+01 -.77963E+01 -.42375E+01 .21346E+02 ·.10289E+02 .30186E+02 .30996E+03 
C16 -.70389E-01 .34420E+OO .53754E+OO -.66530E+OO -.11517E+01 -.19384E+01 .50052E+OO .16940E+02 



C1 

C1 • 10000E+01 
C2 .36957E+OO 
C3 • 24896E+OO 
C4 .15659E+OO 
CS .36838E-01 
C6 .28653E+OO 
C7 .87342E-01 
C8 -.43604E-01 
C9 .40163E-01 
C10 .26837E+OO 
C11 .33426E+OO 
C12 .97829E-01 
C13 .10044E+OO 
C14 .11747E+OO 
C15 .52090E-02 
C16 .75404E-01 

C9 

C9 .10000E+01 
C10 -.34910E+OO 
C11 .27968E-01 
C12 .19784E-01 
C13 .10767E-01 
C14 .27082E-01 
C15 .32159E-01 
C16 -.29566E-02 

TABLE B.3 

CORRELATION AMONG PARAMETERS FOR CV OF Q 
EQUAL 5% AND STD OF H EQUAL 0.25 FT 

R 0 U G H N E S S P A R A M E T E R 0 F P I P E S 
C2 C3 C4 CS C6 C7 

.10000E+01 

.29455E+OO .10000E+01 

.24295E+OO .93122E+OO .10000E+01 
-.15376E+OO -.51113E+OO -.52015E+OO .10000E+01 
-.79302E-01 -.47393E+OO -.51097E+OO .74902E+OO .10000E+01 

.28635E-01 .45482E-01 .45464E-01 - .31899E-01 - .56924E-01 .10000E+01 
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C8 

-.11155E-01 -.59517E·01 -.51594E-01 .34316E·01 .47911E-01 -.91807E+OO .10000E+01 
-.8372SE-02 -.43556E-01 -.33763E-01 .29011E-01 .42503E-01 -.85978E+OO .92647E+OO 
-.70537E+OO ·.93388E-01 -.10763E+OO .16133E+OO .24243E+OO .35726E+OO -.37670E+OO 
-.74692E+OO -.11833E+OO ·.12914E+OO .17486E+OO .27649E+OO .36634E-01 -.23284E-01 

.74168E+OO -.34751E+OO ·.36690E+OO .19340E+OO .23386E+OO .31182E-02 .26339E-01 
-.75778E+OO .94162E-01 .99422E-01 -.16976E+OO -.18624E+OO -.39547E-01 .12264E-01 
-.30316E-01 -.56871E+OO -.60921E+OO .25598E-01 .92719E-01 -.31203E-01 .40411E-01 

.89667E-01 -.14433E+OO -.15941E+OO -.76334E-01 -.84399E-01 -.42529E-01 .44876E-01 
-.74274E-02 .25227E-01 .78562E-02 -.14615E-01 .16064E-01 .13611E-01 -.33286E-01 

TABLE B.3(Continued) 

R 0 U G H N E S S P A R A M E T E R 0 F P I P E S 
C10 C11 C12 C13 C14 C15 C16 

.10000E+01 

.9083SE+OO • 10000E+01 
-.66334E+OO - .68935E+OO .10000E+01 

.80026E+OO .84473E+OO -.84427E+OO .10000E+01 

.92670E-01 . 11355E+OO .34095E+OO .77739E-01 .10000E+01 
-.99990E-01 -.86276E-01 .18190E+OO -.44129E-01 .28837E+OO .10000E+01 

.18883E-01 .46815E-01 -.24250E-01 -.21129E·01 ·.79209E-01 .69073E-02 .10000E+01 



TABLE B.4 

CALIBRATION ASSESSMENT FOR NETWORK 2 BY MONTE CARLO METHOD 
(Complement of Table 6.7) 

Calibration N 0 D E N U M B E R 
Concfi ti on 2 3 4 5 6 7 8 9 10 11 12 TRACE 

cv Q Std H 
% (ft) 

1 0.25 Mean H 492.9 316.5 258.4 202.0 216.2 214.4 238.4 287.6 279.6 322.1 346.5 342.5 so 
Std. H 1.1 1.7 2.0 2.5 2.5 2.5 2.1 2.0 2.0 1.9 1.8 1.9 

5 0.25 Mean H 492.8 316.4 258.3 201.7 216.1 214.0 238.1 287.5 279.4 322.1 346.5 342.5 599 
Std. H 3.8 6.6 7.5 8.5 8.4 8.4 7.9 6.9 7.0 6.4 6.0 6.0 

10 0.25 Mean H 492.6 315.8 257.7 201.6 216.1 212.7 237.2 287.3 279.2 322.0 346.4 343.2 2301 
Std. H 7.5 12.8 14.6 16.5 16.4 16.4 15.5 13.7 13.9 12.5 11.8 11.9 

25 0.25 Mean H 490.9 313.0 254.3 197.6 212.6 207.9 233.1 283.9 275.0 318.3 343.5 339.3 14835 
Std. H 19.0 32.9 37.3 42.0 41.8 41.5 39.2 34.6 35.0 31.9 29.8 30.0 

5 0.10 Mean H 493.6 317.4 259.7 203.7 217.6 215.1 239.2 288.9 280.9 233.4 347.8 343.8 578 
Std. H 3.8 6.5 7.5 8.4 8.1 8.2 7.7 6.8 6.9 6.3 5.9 5.9 

5 0.25 Mean H 492.8 316.4 258.3 201.7 216.1 214.0 238.1 287.5 279.4 322.1 346.5 342.5 599 
Std. H 3.8 6.6 7.5 8.5 8.4 8.4 7.9 6.9 7.0 6.4 6.0 6.0 

5 0.50 Mean H 490.0 312.1 253.1 196.1 211.7 209.1 233.5 282.8 274.5 317.0 341.6 337.2 974 
Std. H 5.0 7.9 9.0 10.1 10.3 10.2 9.5 9.2 9.3 8.9 8.6 8.8 

5 1.00 Mean H 485.9 303.1 243.1 184.5 200.3 197.6 222.4 271.4 262.9 305.1 330.1 324.6 1788 
Std. H 6.9 10.3 11.5 13.0 13.0 13.1 12.4 12.7 12.8 12.9 12.8 13.6 

...... 
0\ 
01 



TABLE B.S 

CALIBRATION ASSESSMENT FOR NETWORK 2 BY FIRST ORDER METHOD 
(Complement of Table 6.7) 

Calibration N 0 D E N U M 8 E R 
Condition 2 3 4 5 6 7 8 9 10 11 12 TRACE 

cv Q Std H 
% (ft) 

1 0.25 Mean H 492.9 316.5 258.3 202.0 216.0 214.7 238.6 287.6 279.6 322.1 346.5 342.5 53 
Std. H 1.1 1.7 2.1 2.6 2.5 2.7 2.2 2.0 2.0 1.9 1.8 1.9 

5 0.25 Mean H 492.9 316.5 258.4 202.0 216.1 214.4 238.4 287.6 279.5 322.2 346.5 342.6 600 
Std. H 3.8 6.6 7.5 8.5 8.4 8.4 7.9 6.9 7.0 6.4 6.0 6.0 

10 0.25 Mean H 492.8 316.1 258.1 202.1 216.2 213.4 237.7 287.5 279.5 322.2 346.5 342.5 2451 
Std. H 7.7 13.2 15.0 17.0 17.0 17.0 16.0 14.1 14.3 12.9 12.2 12.3 

25 0.25 Mean H 492.5 315.9 258.4 202.8 216.7 212.3 236.7 286.9 278.6 321.5 346.0 341.9 15859 
Std. H 19.7 34.0 38.5 43.2 42.9 43.1 40.6 35.9 36.3 33.0 30.9 31.1 

5 0.10 Mean H 493.6 317.6 259.9 204.0 217.6 215.4 239.5 289.0 281.0 232.5 347.9 344.0 608 
Std. H 3.8 6.6 7.6 8.6 8.4 8.5 7.9 7.0 7.0 6.4 6.0 6.1 

5 0.25 Mean 492.9 316.5 258.4 202.0 216.1 214.4 238.4 287.6 279.5 322.2 346.5 342.6 600 
Std. H 3.8 6.6 7.5 8.5 8.4 8.4 7.9 6.9 7.0 6.4 6.0 6.0 

5 0.50 Mean H 490.0 312.1 253.2 196.4 211.7 209.3 233.6 282.8 274.6 317.0 341.6 337.3 982 
Std. H 5.0 8.0 9.1 10.2 10.3 10.2 9.6 9.2 9.3 9.0 8.6 8.9 

5 1.00 Mean H 483.9 303.2 243.2 185.0 200.8 198.2 222.7 271.6 263.1 305.3 330.2 324.9 1801 
Std. H 6.9 10.3 11.5 13.1 13.1 13.1 12.4 12.7 12.9 13.0 12.8 13.7 

~ 
0'1 
0'1 
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GENERATION OF MULTIVARIATE NORMAL 

RANDOM VARIABLES (Haan, 1977) 

Multivariate normally distributed random variables can 

be generated so that the means, variances and correlations 

are preserved for all of the variables. The starting point 

is the correlation matrix B of the random variables. The 

equation 

(B-~I).a = o 

is solved to obtain the characteristic roots ~ and vectors ,a 

of B· Another matrix z is generated as 

Z= (~u Z.z, • • • ' k) 

where ~~ is a vector composed of elements Z 1J. The elements 

Z1J are generates from a normal distribution with a mean of 0 

and a variance of ~· 

ZIJ - N ( 0 '~J) 

A matrix X is the computed from 

X= Z A' 

The elements of X are X1J and are normally distributed with 

a mean 0 and a variance of 1. Further 

X'X = (n-1)R 

Finally Y1J is computed from 

YIJ = O'J XIJ + /JJ 

The yiJ are normally distributed with a mean of /JJ and a 

variance of a/. The matrix X is made of elements Y1J and has 
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the property 

X'X = (n-1).§ 

where ~ is the variance-covariance matrix that is to be 

preserved in the generation process. Thus the matrix X 

contains the desired simulated random variables that have 

the correct means, variances and correlations. 

If multivariate lognormally distributed random 

variables are desired, the matrices B and .§ must refer to 

the logarithms of the variables. An additional step is 

required to get the antilog of the generated data. this 

step is to compute a matrix .Y composed of elements u,,J 

determined from 
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01. List of programs and subroutines 

Routine· 

JVPIPE5 
JVASSMC 

JVASSFO 

SPPC 
SMAKEB 
SNCON 
SMAKEX 
SST AT 
SPERTQ 
SPERTH2 
SPERTH3 
SMREGIA1 
SCORR 
SAVEC 
SFLOAD 
TRED2 
TQLI 
EIGSRT 
SPRTMAT 
DECOMPOS 

SAUGMAT 

SINVMAT 
SMULTMAT 
SOLVE 
STRANMAT 
SCONDR 

SNOISEC 
GASDEV 
STATJV 
INDATA ... 
GENMPNL•• 
SIM•• 

Objective 

Main program for parameter estimation 
Main program for calibration assessment by Monte 

Carlo method 
Main program for calibration assessment by first 

order approximation 
Compute Physical Parameters for pipes 
Generate constant vector B(external nodal demands) 
Identify pipes connected to a node 
Generate coefficient matrix for regression 
Compute mean and variance 
Introduce noise in Q's 
Introduce noise in H's 
Compute DC/DH 
Perform multiple-linear regression 
Compute statistics of parameter estimates 
Save estimates of c after each regression 
Compute component loadings 
Reduce a symmetric matrix to a tridiagonal form 
Find eigenvalues and eigenvectors 
Sort the eigenvalues 
Prints a matrix or vector 
Decompose a matrix into lower and upper form using 

scaled partial pivoting 
Augment the coefficient matrix of regression to 

include intercept coefficient 
Inverts a matrix 
Perform matrix multiplication 
Solves a system of linear equation 
Compute the transpose of a matrix 
Check criteria to accept estimates of c in the 

conditional Monte carlo method 
Generates normally distributed noise and perturb C 
Generates a gaussian deviate 
Compute correlation matrix 
Reads geometry file (KYPIPE format) 
Interface subroutine for KYPIPE 
Perform network hydraulic simulation 

• 

•• 

Some routines are modifications of routines found in 
Press et al. (1986) and Wolfe and Koelling (1983) • 
From Lansey and Basnet (1991). 



D2. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Program to Perform Parameter Estimation 

***************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

PROGRAM 
AUTHOR 
DATE 

REMARKS 

VARIABLES 
========== 

* N 
* NP 
* NUMPERT 
* ICONS 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

XCN,NP) 
YCN) 

B(NP+ICONS) 
LIMIT 
TOLER 

NINP 
NOUT 
NOUC 
NOUH 

ISAVEC 
ISAVEH 
TITLE 

QJV(NN*NL) 
QPCNN*NL) 

CJV 
CSAVEC , ) 

CSTATC2,NP) 
cv 
IQH 

* XNODECNL,NN,2) 
* xmstd(i,j) 
* STDI 
* STD 
* nstda 
* ndrop(i) 
* nundrop : 
* xmcv(i,j): 
* indlq(i) 
* indnq(i) 
* icv 
* 
* 
* 
* 
* 
* 
* 

nsave 
fsave 

igap 
iseedjv 

dcdh(np) 
icondr 

JVPIPES 
JOSE VICENTE GRANATO DE ARAUJO 
APRIL 8, 1990 CJVPIPE) 
Oklahoma State University 

Last Revision Dec 29, 1991 

This program calls subroutine Smregia to 
find the least squares estimates for coef. C 
by solving: 
qi= c1Xi1 + C2Xi2 + ••• + CpXip 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

NUMBER OF OBSERVATIONS FOR REGRESSION CNN*NL) * 
NUMBER OF VARIABLES IN THE EQUATION * 
NUMBER OF PERTURBATIONS FOR Q * 
0 = REGRESSION THROUGH (0,0) * 
1 = COMPUTES Y INTERCEPT * 
MATRIX OF COEFFICIENTS OF IND. VARIABLES * 
VECTOR OF COEFF. OF DEPENDENT VARIABLE * 
COEFFICIENTS OF REGRESSION EQUATION * 
ARRAY DIMENSION (must be > N) * 
DEFINE TOLERANCE TO APPROXIMATE ZERO * 
# OF INPUT FILE * 
# OF OUTPUT FILE * 
# OF OUTPUT FILE TO SAVE C FOR STATISTICS * 
# OF OUTPUT FILE TO SAVE h perturbed " * 
=1 TO SAVE C PERTURBED IN THE FILE "SAVEC.DAT"* 
=1 SAVE PERTURBED H's FOR STATISTICS * 
TITLE OF RUN * 
CONSTANT VECTOR FOR REGRESSION(ORIGINAL) * 
CONSTANT VECTOR FOR REGRESSION(PERTURBED) * 
regressed c•s * 
SAVE VALUES OF Cjv's TO COMPUTE STATISTICS * 
DIMENSIONS (NUMPERT,NP) * 
CONTAINS STATISTICS(MEAN,VAR) OF C's * 
COEFF. OF VARIATION = Sx/Xmean to perturb Qi * 
= 0 PERTURB Q * 
= 1 PERTURB H * 
= 2 PERTURB Q & H * 
= 3 Compute dC/dHm * 
= 4 Compute dC/dQ * 
= 5 Compute dC/dM = [dC/dHm,dC/dQ] * 
C , ,1>= Q(nl,nn>; C , ,2)= HCnl,nn) * 
Std to perturb node j from load i * 
Stand. Dev. used to pert H converted to psig * 
Stand. Dev. used to pert H in feet * 
Label for type of statistics 1=mean, 2=std * 
Vector with nodes do drop equation * 
Number of nodes to be drop (must be >0) * 
Coef. of variation for node j, from load i * 
contains the load# corresponding to Q(i) * 
contains the node# corresponding to Q(i) * 
indicates the selected CV type to perturb Qs * 
output file# to save results for later use * 
output file name to save results * 
interval to compute mean & std to check conver* 
seed to generate random deviates * 
0 to initialize from clock * 
save column of dc/dh (or dC/dQ) matrix * 
1=condition regression, O=not conditioned * 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

* 
* 
* 
* 
* 

icondq 
icondh 
xnstdq 
qmaxS 

xnstdh 
* clowb,cupb : 
* nviocl,nviocu: 
* nvioql,nvioqu: 
* nvioq,nvioh 
* INPUT FILE 

1=condition noise on Q, O=not conditioned 
1=condition noise on H, O=not conditioned 
# of std to condition noise on Q 
Q limit to compute std of Q in spertq 
# of std to condition noise on H 
lower and upper bounds to accept C 
# of violations for lower and upper bounds 
# of violations of Q's 
# of violations of H's 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* ========== * 
* TITLE CA60) * 
* NL, NN, NP, INODECNN,2), PIPE(NP,2),IPIPECNP,2)* 
* XNOOE(NL,NN,2) * 
***************************************************************** 
IMPLICIT REAL*B(A-H,O-Z) 
INTEGER NUMP,NUMN 
INTEGER JX,IP,M,JA,JB,IX,MPL,KC,KCLO,KIP,KPI,JIJ,JJI 

PARAMETER CLIMIT=70,NUMP=51,NUMN=51,NUML=S,NPERT=1000) 
DIMENSION XNOOE(NUML,NUMN,2),INOOE(NUMN,8),1PIPECNUMP,2), 

*XCLIMIT,LIMIT),PIPE(NUMP,2),PIPEKCNUMP),QJV(LIMIT),CJVCLIMIT), 
*QP(LIMIT),CSAVE(NPERT,20),CSTATC2,20),XNOOEP(NUML,NUMN,2), 
*choice(6),nsta(3),ndrop(10),indlq(limit),indnq(limit), 
*xmcv(numl,numn),dcdh(nump),XL(LIMIT,LIMIT),LVEC(nump), 
*xmstd(numl,numn) ' 

COMMON /jvga/NOUT,nouh,iseedjv 

COMMON/SINDAT/JEC100),JGC100) 
COMMON /SHARI BM(1100), IX(2200), IP(100,13), AL(100), GFH(700), 

• AM(3800), JP(100), JX(4500) 
COMMON/SSIMIN/ JTAN(50),EMAX(50),EMIN(50),DIAM(50),NFUL(50), 

1 LY(32),LZ(32),E(100),KPI(100),J0(100),JF(100) 
1,MPL(4500),NAC80),NBC80),JJUN(80),JPIP(80), 
1 NPOC50),NJ0(50),L10(10),L11(10),L12(10),XGR0(10),XGR01(10), 
1 XGR02(10),00Q,IOUT,JSKIP,KJ,KTEP,MAXT,NJOUT,NMOM,NXX 
1 ,NPOUT,NPRP,NQ,NR,NTANK,NTEP,P,SW,TPER,TPPP 
COMMON/SALL/QEXTKC50),AAC50),BB(50),CCC50),00(50),EE(50),FF(50), 

1 KIPC1000),JIJ(1000),KC(100),B(100),C(100),0(100),Q(100),JC(100) 
1,R(100),S(100),VC100),ENGYC100),JJIC100),KCL0(100),JA(100),JBC100) 
1 ,GG(50),A1,A2,A3,A4,CQ,I3,KN,NEPS,TIME,TNEXT,TPERI,TTT,UU,NJFIX 
1 ,IEPS,KK,CHECK,ZQ(60),NABEL,NPUMP,NCOOE 

COMMON/PENAL/YMIN(100),YMAX(100) 
COMMON/SNAME2/M(100) 
COMMON /SINREV/ BI(100),JFIXC50),TNCO,JNCG,NPCG,NNP,LABEL,FAC, 

1 XPER,NQEX 
COMMON /INITBK/ INIT,LASTCL 

CHARACTER*1 NFILEIN*20,NFILEOU*20,NFILEOC*20,TITLE*70,choice*5 
character*11 TIMEOUT,DATEOUT*8,nfileoh*20,fsave*20,FSAVEM*20, 

*FSAVEST*20,findata*20,fdcdh*20,fdcdq*20 
data choice/'Q','H','Q&H' ,'dC/dH' ,'dC/dQ','dC/dM'/, 

*nsta/'mean' ,'std' ,•var'/ 

c----These lines are from nlcode setupCWadsop) 
do 1 j=1,1100 

bm(j)=O.O 
ix(j)=O 

continue 
init=1 
igap=S 
deltaq=O.O 
deltah=O.O 
nviocu=O 
nviocl=O 
CV=O.O 
stdi=O.O 
xnstdq=O.O 
xnstdh=O.O 
nviohl=O 
nviohu=O 
nvioql=O 
nvioqu=O 
WRITEC*,8001) 

8001 FORMAT(1H1,/,5X,' LEAST SQUARES ESTIMATION OF COEFFICIENTS FOR A' 
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*,'PREDICTIVE EQUATION ',//,SX,' Author: Jose Vicente Araujo'/, 
*Sx,'PROGRAM JVPIPE4'/) 

WRITE(*,*) 1 INPUT FILE NAME FOR OPTIONS AND FLOWS(or device)? 1 

READ (*,2)NFILEIN 
2 FORMATCA20) 

write(*,*)' OUTPUT FILE NAME Cor device)? ' 
READ C*,2)NFILEOU 

4 WRITEC*,*) ' Noise on QCO), H(1), Q&HC2), or compute gradients(3) 
* ?' 

READ(* I *)IQH 
IF ((IQH .GT. 3) .OR. (IQH .LT. O))GOTO 4 
IF (IQH .EQ. 3)THEN 

290 continue 
write(*,*) ' Select gradient: dC/dH(3), dC/dQ(4) or dC/dM(5)?' 
read(*,*)iqh 
if( Ciqh.lt.3) .or. Ciqh.gt.S))goto 290 
ifCCiqh .eq. 3) .or. Ciqh .eq.S))then 

291 continue 
write(*,*)' Compute sensitivity matrix dC/dH ' 
write(*,*>' Give Delta H : ' 
readC*,*)deltah 
ifCdeltah .eq. O.O)goto 291 

endif 
ifCCiqh .eq. 4) .or. Ciqh .eq.S))then 

292 continue 
write(*,*)' Compute sensitivity matrix dC/dQ ' 
write(*,*)' Give Delta Q : ' 
read(*,*)deltaq 
ifCdeltaq .eq. O.O)goto 292 

end if 
nundrop=1 
ndropC1>=nn 

END IF 
NINP=S 
NOUT=6 
NOUC=7 
NOUH=8 
nindata=9 
nsave=66 
NSAVEM=67 
NSAVEST=68 
ndcdh=61 
ndcdq=62 
fdcdh='for061.dat' 
fdcdq='for062.dat' 
findata='for009.dat' 
fsave='for066.dat' 
FSAVEM='FOR067.DAT' 
FSAVEST='FOR068.DAT' 

c-----Read Geometry data from Kypipe format 
WRITE(*,*>' Reading Network Geometry from For009 1 

open(unit=nindata,file=findata,status='old') 
openC45) 
open(unit=10,file='indata.out') 
call indata 
close(nindata) 
closeC45) 
close(10) 

c-----check if units=cfs 
if (nq .ne. O)then 

write(*,*)' ******************************************' 
write(*,*)' Units must be in CFS Cnq=O) in file For009' 
write(*,*)' ******************************************' 
stop 

end if 
OPENCUNIT=NINP,FILE=NFILEIN,STATUS='OLD') 
OPENCUNIT=NOUT,FILE=NFILEOU) 

C******************************* 
C READ INPUT VARIABLES 
C******************************* 

WRITE(*,*) 1 ENTER TITLE OF THE PROBLEMCMAX60):' 
3 FORMATCA70) 

READ (NINP,3)TITLE 
WRITE(*,*> I NUMBER OF LOADS CNL) : I 

READ CNINP,*)NL 
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CCC WRITE(*,*) I NUMBER OF NOOES (NN) : I 

CCC READ (NINP,*)NN 
ccc WRITE(*,*) 1 NUMBER OF PIPES CNP) 
CCC READ (NINP,*)NP 
c----Get values from indata 
c----CThis is valid when there is only one FGN present in the system) 

NN=KN+1 
NP=KK 
if ((iqh .eq. 0) .or. Ciqh .eq. 2))then 

c--24/10/91 generate matrix xmcv to allow individual noise 
300 continue 

write(*,*)' Give Q limit to compute std: QMAXS(cfs)' 
read(*,*)qmaxS 
write(*,6300) 

6300 format(' Select: CO) Same CV to perturb all Qs.', 
*/,Bx,'C1> Individual CV for each load.', 
*/,8x,'C2) Individual CV for each noad.',/) 

readC*,*)icv 
if (icv .eq. O)then 

write(*,*>' Give CV to perturb all nodes :' 
read(*,*)cv 
do 310 i=1,nl 

do 310 j=1,nn 
xmcv(i,j)=cv 

310 continue 
goto 390 

end if 
if Cicv .eq. 1)then 

do 320 i=1,nl 
write(*,*>' Give CV to perturb nodes from load ',i,':' 
read(*,*)cv 
do 320 j=1,nn 

xmcv(i,j)=cv 
320 continue 

goto 390 
endif 
if (icv .eq. 2)then 

do 330 i=1,nl 
do 330 j=1,nn 
write(*,*)' Give CV to perturb node ',j,' from load' ,i,':' 
read(*,*)cv 

xmcv(i,j)=cv 
330 continue 

goto 390 
end if 
write(*,*>' Invalid Selection' 
goto 300 

390 continue 
write(*,*)' Condition noise on Q? No(O), Yes(1) ' 
read(*,*) i condq 
if(icondq .ne.1)icondq=O 
if(icondq .eq. 1)then 

write(*,*)' Give# of std to accept noise on Q ' 
read(*,*)xnstdq 

end if 
endif 

if ((iqh .eq. 1) .or. (iqh .eq. 2))then 
write(*,*>' Option valid only when FGN is the last node' 
write(*,*)' ***FGN will not be perturbed****' 

7000 CONTINUE 
write(*,7300) 

7300 format(' Select:(O) Same STD to perturb all Hs.', 
* /,8x,'(1) Individual STD for each load.', 
* /,8x,'C2) Individual STD for each noad.' ,/) 

read(*,*)istd 
if (istd .eq. O)then 

write(*,*)' Give STD to perturb Hs from all nodes :' 
read(*,*)std 
do 7310 i=1,nl 

do 7311 j=1,nn-1 
xmstd(i,j)=std 

7311 continue 
xmstd(i,nn)=O.O 

7310 continue 
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goto 7390 
end if 
if (istd .eq. 1)then 

do 7320 i=1,nl 
write(*,*>' Give std to perturb Hs from load ',i,':' 
read(*,*)std 
do 7321 j=1,nn-1 

xmstd(i,j)=std 
7321 continue 

xmstd(i,nn)=O.O 
7320 continue 

goto 7390 
endif 
if Cistd .eq. 2)then 

do 7330 i=1,nl 
do 7331 j=1,nn-1 
write(*,*)' Give Std to perturb node',j,' from load ',i,':' 

read(*,*)std 
xmstd(i,j)=std 

7331 continue 
xmstd(i,nn)=O.O 

7330 continue 
goto 7390 

endif 
write(*,*)' Invalid Selection' 
goto 7000 

7390 continue 

ccc write(*,*) ' STD to perturb H (in feet)? ' 
ccc read(*,*)std 
c----- Convert STD of pressure from psig to feet 

stdi=std/2.3076923 
write(*,*)' Condition noise on H ? No(O), Yes(1) ' 
read(*,*)icondh 
if(icondh .ne.1)icondh=O 
if(icondh .eq. 1)then 

write(*,*)' Give# of std to accept noise on H ' 
read(*,*)xnstdh 

endif 
end if 

c----Define default variables for option iqh > 2 
icondr=O 
igap=S 

c----Read simulation options for optics iqh=0,1 or 2 
if(iqh .Lt. 3)then 
WRITE(*,*) ' NUMBER OF MONTE CARLO RUNS ?' 
READ (*,*)numpert 
IF (NUMPERT .GT. NPERT)then 

write(*,*)' **WARNING: Maximum allowable is 1 ,npert 
NUMPERT=NPERT 

end if 
write(*,*) 'Give initial seed for random generator :' 
write(*,*) ' CEnter 0 for arbitrary seed ) ' 
read(*,*)iseedjv 
write(*,*> 'Condition Monte Carlo for regressed Cs ?No(0),Yes(1):' 
readC*,*)icondr 
if(icondr .ne. 1)icondr=O 
if(icondr .eq.1)then 

write(*,*)' Give lower bound to accept c ' 
read(*,*)clowb 
write(*,*)' Give upper bound to accept c ' 
read(*,*)cupb 

endif 
WRITE(*,*) ' interval to compute statistics to check convergence ' 
READ C*,*)igap 
if(igap .lt. 2)igap=2 
if(igap .gt. numpert)igap=numpert 

c----end of simulation options for iqh < 
endif 

WRITE(*,*) ' Save regressed Cs from each run? NO(O), YES(1):' 
READ C*,*)ISAVEC 
if (isavec .gt. O)then 

WRITE(*,*) ' Name of file to save Cs ?' 
READ (*,2)nfileoc 
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endif 
c----Modified 17/8/90 to save H's perturbed 

WRITE(*,*) 1 Save Hs perturbed? NO(O), YES(1):' 
READ (*,*)ISAVEH 
if (isaveh .gt. O)then 

endif 

WRITE(*,*) ' Name of file to save Hs ?' 
READ (*,2)nfileoh 

7777 write(*,*>' Print Regression Matrix? NO(O), YES(1):' 
read(*,*)iprint 
if ((numpert .gt. 2) .and. (iprint .gt.O))then 

write(*,*)' You must not print matrix X at each run' 
WRITE(*,*}' since you selected ',numpert,' runs' 
goto 7777 

endif 

if (isaveh .gt. O)open(unit=nouh,file=nfileoh) 
IF(IQH.GT.2)GOTO 31 

19 continue 
i=O 

20 continue 
i=i+1 

c----*****This is Limiting to drop at most 10 equations per load.********* 
if(i .gt. 10)goto 30 
WRITE(*,*)' DROP EQUAT. AT NODE# ?(0 to stop ) 1 

c----Read from console 
READ (*,*)NDROP(i) 
if(ndrop(i) .eq. O)goto 30 
IF(NDROP(i) .GT. NN)THEN 

WRITE(*,*)' TRYING TO DROP INVALID NOOE ',NDROP,NN 
i=i-1 
GOTO 20 

ENDIF 
goto 20 

30 continue 
nundrop=i-1 

31 CONTINUE 
c----Test to see if is dropping at Least one equation (redundant) 

if (nundrop .eq. O)then 
write(*,*)' At Least one equation must be dropped 1 

goto 19 
end if 
1=0 
WRITECNOUT,*)' LUMP PIPES :' 

33 CONTINUE 
1=1+1 
IF(I .GT. NP)GOTO 35 
WRITE(*,*)' Lump cat pipe? (0 to stop): 1 

read(*,*)Lvec(i) 
if(Lvec(i) .eq. O)goto 35 
if((lvec(i) .gt. np).or.(Lvec(i) .Lt. O))then 

write(*,*>' Invalid pipe 1 

i=i-1 
goto 33 

endif 
if(i.gt.1)then 

if(Lvec(i) .Le. Lvec(i-1))then 
~r!te(*,*)' Invalid pipe, try again ' 
1=1-1 
goto 33 

endif 
endif 
WRITE(NOUT,*)' PIPE I ,LVEC(I) 
goto 33 

35 continue 
write(*,*)' Number of iterations to show time : ' 
read(*,*)nshow 

c-----Check dimension of arrays and solvability of system 
IF ( NP .GT. ((NN-nundrop)*NL)) THEN 

WRITE(*,*)' Undetermined System ',NL,NN,nundrop,NP 
GO TO 9999 

END IF 
IF ( (NL .GT. NUML) .OR. (NN .GT. NUMN) .OR. (NP .GT. NUMP))THEN 
WRITE(*,*)' ARRAY OVERFLOW (Recompile) 1 ,NL,NUML,NN,NUMN,NP,NUMP 
GO TO 9999 
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END IF 
write(*,*)' Print statistics matrices from scorr? NO(O), YESC1)' read(*,*)iprt 

c-----Get physical characteristics of pipes and nodes from indata ccc WRITE(*,*) 1 GIVE GR. ELEV. FOR EACH NODE :' ccc READ(NINP,*)(INODE(I,1),I=1,NN) 
do 6 i=1,kn 

6 inode(i,1)=e(i) 
ccc WRITE(*,*) 1 GIVE PIPE DIAM,LENGTH,NODE FROM, NODE TO' DO 5 I=1,NP 
CCC WRITE(*,*) I PIPE ',I 
ccc READ(NINP,*)PIPE(I,1),PIPECI,2),IPIPE(I,1),IPIPE(I,2) c--------Valid to convert to feet/inches 

PIPECI,1)=d(i)*12. 
PIPE(I,2)=r(i) 
IPIPECI,1)=ja(i) 
IPIPE(I,2)=jb(i) 

c-------Get elevation of FGN 
if(ja(i) .eq. O)then 

ipipe(i,1)=nn 
inode(nn,1)=engy(i) 

endif 
5 CONTINUE 

c-----Read node information for parameter estimation 
WRITE(*,*) ' GIVE NODE FLOW AND PIEZ. PRESSURE Cf10.5,f14.7): 1 
DO 10 K=1,NL 

WRITE(*,*)' LOAD ',K,':' 
DO 10 I=1,NN 

READ(NINP,8801)XNODE(K,I,1),XNODECK,I,2) 8801 format(f10.5,f14.7) 
10 CONTINUE 

write(*,*)' Computing constant for the pipes ••• ' c-----Identify pipes connected to a node 
CALL SNCONCNP,NN,IPIPE,INODE) 

c----Compute constant for pipes 
CALL SPPCCNP,PIPE,PIPEK) 

C*********************** 
C PRINT VARIABLES 
C*********************** 

WRITE(NOUT,*)' WATER DISTRIBUTION NETWORK ' 
WRITECNOUT,*)' *** Program Jvpipe4 ***' 
WRITECNOUT,*)' *Estimation of C using MLR*' c*** OK for F77L MS-Fortran 

ccc CALL DATE(DATEOUT) 
ccc CALL TIME(TIMEOUT) 
c---Ok for MS-Fortran 

call getdat(iyr,imon,iday) 
call gettimCihr,imin,isec,i100th) 

ccc WRITECNOUT,*)' EXECUTED ON ',DATEOUT,' ',TIMEOUT write(nout,8002)imon,iday,iyr,ihr,imin 
8002 format(5x,'Executed on ',i2,'/' ,i2,'/',i4,2x,'at ',i2,':' ,i2) WRITECNOUT,1111) 
1111 FORMAT(5X,'INPUT VARIABLES') 

WRITE(NOUT,1009) 
1009 FORMAT(4X,16C'=')) 

WRITE(NOUT,1115)NL,NN,NP,(NDROP(i),i=1,nundrop) 
1115 FORMAT(5X,'NUMBER OF LOADS, NL = ',I4/, 

*5X,'NUMBER OF NODES, NN = 'I4,/, 
*~X,'NUMBER OF PIPES, NP = 1 ,I4,/, 
*5X,'DROP EQUATION AT NODE(s) ',10I5) 

WRITECNOUT,1116> 
1116 FORMAT(5X,'NODE DATA',/,5X,44('=')) 

WRITE(NOUT,*)' NODE ELEV. #PIPES CONNECTED PIPES' DO 50 I=1,NN 
WRITE(NOUT,5000)I,(INODE(I,J),J=1,8) 50 CONTINUE 

WRITECNOUT,1216) 
1216 FORMAT(5X,44C'=')) 
5000 FORMATC5X,I3,4X,8(I3,2X)) 

WRITE(NOUT,*)' LOAD NODE FLOW TOTAL HEAD(ft)' DO 55 K=1,NL 
WRITE(NOUT,5006)k,CI,XNODE(K,I,1),XNODE(K,I,2),I=1,1) 55 WRITE(NOUT,5005)(I,XNODECK,I,1),XNODE(K,I,2),I=2,NN) 5005 FORMAT(11X,I3,F12.3,2X,f14.7) 

5006 format(5x,i3,3x,I3,F12.3,2X,f14.7) 
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WRITE(NOUT,1117) 
1117 FORMAT(5X,'PIPE DATA',/,5X,53('=')) 

WRITE(NOUT,*)' PIPE DIAMETER LENGTH FROM TO K' 
DO 60 I=1,NP 

60 WRITE(NOUT,6001)I,PIPE(I,1),PIPE(I,2),IPIPE(I,1),IPIPECI,2), 
*PIPEK(I) 

WRITECNOUT,1217) 
1217 FORMAT(5X,53('=')) 
6001 FORMAT(5X,I3,2X,2(F9.2,3X),2(I3,3X),E12.5) 

WRITE(NOUT,*)' I 

c************************************************************ 
c Decrease NN to account for at least 1 redundant equation 
c Note: last node must be the FGN 
c************************************************************ 
ccccccc NN=NN-1 
c--The above statements is not needed since the user selects the nodes to drop 
c----Compute coefficients for regression 

if Cnundrop .eq. O)then 
N=NL*NN 

else 
n=nl*(nn-nundrop) 

endif 
write(nout,1120)n 

1120 format(Sx,'NUMBER OF EQUATIONS, N= ',15,/) 
write(nout,1121)nfilein,nfileou,iqh,deltah,deltaq,qmax5,icv 

1121 format(Sx,'Simulation options:',/Sx,'nfilein ',a12,'fnileou •,a12, 
*' iqh ',i1,' deltah ',f8.5,/,Sx,' deltaq ',f8.5,' qmaxS ',f8.3, 
8 1 i CV I 1 i3) 
write(nout,1122)icondr,igap,isavec,isaveh,iprint,iprt,icondq, 

*xnstdq,icondh,xnstdh 
if(icondr.eq.1)write(nout,1123)clowb,cupb 

1122 format(Sx,'icondr ',i1,' igap ',i3,' isavec ',i1,' isaveh ',11, 
*' iprint ',i1,' iprt ',i1,/,Sx,'icondq ',i1,' xnstdq ',f7.3, 
*' icondh ',i1,' xnstdh ',f7.3) 

1123 format(25x,'clowb ',f10.5,' cupb ',f10.5) 
if(icv .eq. 0)write(nout,1024)icv,xmcv(1,1) 
if(icv .eq. 1)write(nout,1024)icv,Cxmcv(i,1),i=1,nl) 
if(icv .eq. 2)write(nout,1024)icv,CCxmcv(i,j),j=1,nn),i=1,nl> 

1024 format(Sx,'icv ',i2,' xmcv ',10(1x,f7.4>> 
if(istd .eq. 0)write(nout,1025)istd,xmstd(1,1) 
if(istd .eq. 1)write(nout,1025)istd,(xmstd(i,1),i=1,nl) 
if(istd .eq. 2)write(nout,1025)istd,((xmstd(i,j),j=1,nn),i=1,nl) 

1025 format(Sx,'istd ',i2,' xmstd ',10C1x,f7.4)) 
CALL SMAKEBCNL,NN,ndrop,XNODE,QJV,indlq,indnq) 
write(*,*>' Processing Simulations ••• ' 

c----Compute Sensitivity Matrix dC/dH-----
ifCCIQH .eq. 3) .or. (iqh .eq.S))then 

numpert=nl*(nn-1)+1 
i=O 
do 800 il=1 ,nl 

do 800 in=1,nn-1 
i=i+1 
write(*,*)' Regression# ',i, 'For dC/dH' 
call sperth3Cnl,nn,xnode,xnodep,isaveh,il,in,deltah) 
CALL SMAKEX(NL,NN,NP,ndrop,XNODEP,lNODE,lPIPE,PlPEK,X) 

c----- Run regression ON XNODEP for roughness coefficient "C" 
CALL SMREGIA1CN,NP,X,QJV,CJV,O,iprint) 

c----- Save values of C to compute statistics 
call savec(np,i,csave,cjv) 

800 CONTINUE 
c-------- Generate C's for base run(no noise) 

CALL SMAKEX(NL,NN,NP,ndrop,XNODE,lNODE,IPIPE,PlPEK,X) 
c----- Run regression ON XNODE for roughness coefficient "C" 

CALL SMREGIA1(N,NP,X,QJV,CJV,O,iprint) 
c----- Save values of C to compute statistics 

i=i+1 
call savec(np,i,csave,cjv) 
if(numpert .ne. i)then 

write(*,*)' Error numpert ne i ',numpert,i 
goto 9999 

endif 
c----- Compute and save matrix dc/dh transpose 

open(unit=ndcdh,file=fdcdh) 
write(ndcdh,*)nl*kn,np 
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do 801 j=1,nl*kn 
do 802 i=1,np 

dcdh(i)=(csave(j,i)-csave(numpert,i))/deltah 
802 continue 

write(ndcdh,6040)(dcdh(i),i=1,np) 
6040 formatC10(e13.7,1x)) 
801 continue 

close(ndcdh) 
if(iqh .ne.5)goto 900 

endif 

c----Compute Sensitivity Matrix dC/dO 
if((!QH .eq. 4) .or. Ciqh .eq.S))then 

numpert=nl*Cnn-1)+1 
CALL SMAKEX(NL,NN,NP,ndrop,XNODE,INODE,IPIPE,PIPEK,X) 
DO 810 I=1,NUMPERT-1 

do 811 j=1,numpert-1 
811 qp(j)=qjv(j) 

qp(i)=qjv(i)+deltaq 
write(*,*)' Regression# ',i, 'For dC/dO' 

CALL SMREGIA1CN,NP,X,QP,CJV,O,iprint) 
c----- Save values of C to compute statistics 

call savec(np,i,csave,cjv) 
810 CONTINUE 

c-------- Generate C's for base run(no noise) 
CALL SMREGIA1(N,NP,X,QJV,CJV,O,iprint) 
call savec(np,i,csave,cjv) 

c----- Save matrix dc/dq transpose 
open(unit=ndcdq,file=fdcdq) 
write(ndcdq,*)numpert-1,np 

do 812 j=1,numpert-1 
do 813 i=1,np 

dcdh(i)=(csave(j,i)-csave(numpert,i))/deltaq 
813 continue 

write(ndcdq,6040)(dcdh(i),i=1,np) 
812 continue 

close(ndcdq) 
goto 900 

endif 

IF (IQH .EQ. 1)THEN 
c----- Introduce noise on H's 

DO 600 I=1,NUMPERT 
c----- Re-set np to its original value at each iteration 

if((i-i/nshow*nshow) .eq. O)then 
call gettim(ihr,imin,isec,i100th) 
WRITE(*,*)' REGRESSION# 1 ,!,' time : 1 ,ihr,imin 

endif 
601 CONTINUE 

np=kk 
CALL SPERTH2(NL,NN,xmstd,XNODE,XNODEP,isaveh,icondh,xnstdh, 

*nviohl,nviohu) 
CALL SMAKEX(NL,NN,NP,ndrop,XNODEP,INODE,IPIPE,PIPEK,X) 
if Clvec(1) .gt. O)then 

call slumpcCx,n,np,lvec,xl,nplump) 
c ------- Set np to the new value after lumping C's 

np=nplump 
else 

do 605 i ig=1 ,n 
do 605 jjg=1,np 

xlCiig,jjg)=xCiig,jjg) 
605 continue 

end if 

c----- Run regression ON XNODEP for roughness coefficient 11C11 

CALL SMREGIA1(N,NP,XL,QJV,CJV,O,iprint) 
IF(ICONDR .EQ. 1)THEN 

CALL SCONDRCNP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU,lREJECT) 
IF(IREJECT .EQ. 1)GOTO 601 

END IF 
C----- Save values of C to compute statistics 

call savec(np,i,csave,cjv) 
600 CONTI NUE 

GOTO 900 
END IF 
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if (iqh .eq. O)then 
ccc print *,' Entering iqh = 0' 

CALL SMAKEX(NL,NN,NP,ndrop,XNOOE,INODE,IPIPE,PIPEK,X) 
ccc print *,' Smakex processed OK 1 

ccc print*,' Lvec(1) = ',lvec(1) 
if Clvec(1) .gt. O)then 

ccc print *,' Calling slumpc ' 
call slumpc(x,n,np,lvec,xl,nplump) 

ccc print*,' Stumpe processed OK. nplump = ',nplump 
np=nplump 

ccc print*,' np dropped to ',np 
else 

do 105 i=1,n 
do 105 j=1,np 

xl(i,j)=x(i,j) 
105 continue 

endif 

c-------Loop to generate noise on Q 
DO 100 1=1,NUMPERT 

if((i·i/nshow*nshow) .eq. O)then 
call gettim(ihr,imin,isec,i100th) 
WRITE(*,*)' REGRESSION# ',1,' time ',ihr,imin 

endif 
101 CONTINUE 

ccc print *,' Calling Spertq' 
CALL SPERTQ(N,XMCV,QJV,QP,indlq,indnq,qmaxS,icondq,xnstdq, 

*nvioql,nvioqu) 
c----- Run regression ON QP for roughness coefficient "C" 
ccc print*,' Calling Smregia1' 

CALL SMREGIA1(N,NP,XL,QP,CJV,O,iprint) 
c----- print*,' After Calling smregia1 

IF(ICONDR .EQ. 1)THEN 
CALL SCONDR(NP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU,IREJECT) 
IF(IREJECT .EQ. 1)GOTO 101 

END IF 
c---- Save values of C to compute statistics 

call savec(np,i,csave,cjv) 
100 CONTINUE 

goto 900 
endif 

c----- Introduce noise on H's and Q's 
if Ciqh .eq. 2)then 

DO 700 I=1,NUMPERT 
if((i·i/nshow*nshow) .eq. O)then 

call gettim(ihr,imin,isec,i100th) 
WRITE(*,*)' REGRESSION# ',I,' time: ',ihr,imin 

endif 
701 CONTINUE 

ccc CALL SPERTH2(NL,NN,std,XNOOE,XNOOEP,isaveh) 
CALL SPERTH2(NL,NN,xmstd,XNOOE,XNODEP,isaveh,icondh,xnstdh, 

*nvi oh l, nvi ohu) 
np=kk 
CALL SMAKEXCNL,NN,NP,ndrop,XNOOEP,INODE,IPIPE,PIPEK,X) 

if (lvec(1) .gt. O)then 

else 

call slumpc(x,n,np,lvec,xl,nplump) 
np=nplump 

do 705 iig=1,n 
do 705 jjg=1,np 

xl(iig,jjg)=x(iig,jjg) 
705 continue 

end if 
ccccc CALL SPERTQ(N,XMCV,QJV,QP,indlq,indnq) 

CALL SPERTQ(N,XMCV,QJV,QP,indlq,indnq,qmax5,icondq,xnstdq, 
*nvioql,nvioqu) 

c-----

c-----

Run regression ON XNODEP and Qp for roughness coefficient "C" 
CALL SMREGIA1(N,NP,XL,QP,CJV,O,iprint) 
IF(ICONDR .EQ. 1)THEN 

CALL SCONDR(NP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU,IREJECT) 
IF(IREJECT .EQ. 1)GOTO 701 

END IF 
Save values of C to compute statistics 
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call savec(np 1 i 1 csave 1 cjv) 
700 CONTINUE 

end if 
c -------------- Write C1 s for posterior statistics 
900 CONTINUE 

IF (isavec .gt. O)then 
open (unit=nouc,file=nfileoc) 
write(nouc 1 *)np 1 1 ,' ,numpert 

c write(nouc,2021)(1,1=1,NP) 
c-------------format ready for 10 pipes 

2021 FORMA H20( "'PIP' I 121 Ill I I)) 
do 200 i=1,numpert 

cccccccc write(nouc 1 6000)i 1 (csave(i 1 j) 1 j=1 1 np) 
ccccc 6000 formatC5x,i3,10(f7.2,1x)) 

write(nouc,6010)(csave(i,j),j=1,np) 
6010 formatC10Cf9.5 1 1X)) 
200 continue 

close(nouc) 
END IF 

WRITE(* I *)TITLE 
WRITECNOUT,1110)TITLE 

1110 FORMAT(5X 1 A70 1 /) 

c-----Compute statistics on C's 

CALL SSTAT(NUMPERT,NP,CSAVE,CSTAT) 
write(nout,*)' # regressions noise on cv for Q STD for H' 
write(nout, 1090)numpert 1 choice(iqh+1),CV,stdi,std 

1090 format(2x,i5,13x,a5,2x 1 f7.3 1 2X,f9.5,2x,' psig',f7.3,' ft',/) 
write(nout 1 *) 1 STATISTICS OF C VALUES 1 

write(nout,6002)(i,i=1,np) 
6002 format(1x'Pipe # 1 1 11(2x,i6,2x)) 
6004 format(1x,a6 1 1x,11Cf9.3,1x)) 

i=1 
write(nout 1 6004)nsta(i),(cstat(i,j) 1 j=1,np) 

i=2 
write(nout,6004)nsta(i),(sqrt(cstat(i,j)),j=1,np) 

if(iprint .eq. O)call scorr(csave,numpert,np 1 nsave 1 fsave,iprt) 
c---Save statistics to check convergence 

OPEN(UNIT=NSAVEM,FILE=FSAVEM) 
OPEN(UNIT=NSAVEST,FILE=FSAVEST) 

DO 8000 I=IGAP,NUMPERT,IGAP 
CALL SSTAT(I,NP,CSAVE,CSTAT) 
WRITE(NSAVEM 1 6700)1,(CStat(1,J),J=1,NP) 
WRITE(NSAVEST,6800)1 1 (dsqrt(CStat(2,J)) 1 J=1,NP) 

8000 CONTINUE 
IF((I-IGAP) .NE. NUMPERT)THEN 

CALL SSTAT(NUMPERT,NP,CSAVE,CSTAT) 
WRITE(NSAVEM,6700)NUMPERT,(CStat(1,J),J=1,NP) 
WRITE(NSAVEST,6800)NUMPERT,(dsqrt(CStat(2,J)) 1 J=1 1 NP) 

END IF 
CLOSECNSAVEM) 
CLOSE(NSAVEST) 

6700 FORMAT(i5,16(1x,f13.6)) 
6800 FORMATCi5 1 16(1x,f13.8)) 

c-----Write statistics of violations if condition MC 
write(nout 1 1124)nviocl,nviocu,nvioql 1 nvioqu,nviohl,nviohu 

1124 format(Sx,'Statistics on condition MC',/,Sx,•nviocl ',i7, 
*' nviocu ',i7 1 ' nvioql ',i7,' nvioqu ',i7,' nviohl ',i7, 
*' nviohu ',i7) 

9999 continue 
WRITE(*,*)' (NORMAL END OF PROGRAM 11 JVPIPE4 11 ) 1 

CLOSE(NINP) 
CLOSE(NOUT) 
STOP 
END 

SUBROUTINE SPPCCNP,PIPE,PIPEK) 
c ****************************************************** 
C COMPUTES CONSTANT K1 - PHYSICAL PARAMETER FOR PIPES 
c ****************************************************** 

IMPLICIT REAL*8CA-H 1 0-Z) 
INTEGER NUMP 1 NUMN 
PARAMETER (NUMP=51,NUMN=51) 

182 



DIMENSION PIPE(NUMP,2),PIPEK(NUMP) 
c----Define constants for: Q=cfs, H=ft 
C------C1=2.63, C2=0.54··········-···· 

C1=4.87/1.852 
C2=1./1.852 

c ------modified 20-08-90 C3=2.3136 
c3=2.3123067 

c-----Pressure in feet of water, diameter in inches 

c 
c 
c 
c 

DO 10 I=1,NP 
PIPEK(I)=((PIPE(I,1)/12.)**C1)/(PIPE(I,2)**C2)/C3 

10 CONTINUE 
RETURN 
END 

SUBROUTINE SMAKEB(NL,NN,ndrop,XNOOE,B,indlb,indnb) 
************************************************** 
Generates constant vector 8 for regression 

(external demands) 
************************************************** 
IMPLICIT REAL*8(A-H,O·Z) 
INTEGER NUMP,NUMN 
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5) 
DIMENSION XNOOE(NUML,NUMN,2),8(LIMIT),ndrop(10), 

*indlb(limit),indnb(limit) 
c--- Generate vectors b, indlb and indnb 

do 5 i =1, Limit 
b( i)=O.O 
indlb(i)=O 
indnb(i)=O 

5 continue 
c----·Generate constant vector B (External flow at nodes) 

INC=1 
DO 10 K=1,NL 
icont=1 

DO 10 J=1,NN 
c----- Drop equation at node NDROP 

if(j .eq. ndrop(icont))then 
icont=icont+1 
goto 9 

endif 
B(INC)=XNODE(K,J,1) 

c-- 24/10/91 save Load and node corresponding to each element of B 
indlb(inc)=k. 
indnb(inc)=j 
INC=INC+1 

9 continue 
10 CONTINUE 

RETURN 
END 

SUBROUTINE SNCON(NP,NN,IPIPE,INODE) 
c ******************************************************** 
c * SUBROUTINE: SNCON (Node Connections) * 
c * * 
c * REMARKS Identifies pipes connected to a node * 
c * * 
c * VARIABLES * 
c * ========= * 
c * NP # OF PIPES * 
c * NN # OF NODES * 
c * I PIPE MATRIX (from node, to node) * 
c * !NODE MATRIX (G.E.,# conn,pip1,pip2, .•• ) * 
c * IND(i) STORE next available position * 
c * NODEN : Get node nlJTber * 
c ******************************************************** 

IMPLICIT REAL*B(A·H,O·Z) 
INTEGER NUMP,NUMN,NUML 
PARAMETER (NUMP=51,NUMN=51,NUML=5) 
DIMENSION 1NODE(NUMN,8),IPIPE(NUMP,2),IND(NUMN) 

c-----lnitialize index for next free position 
DO 10 1=1,NN 

10 lND(I)=O 
c-----Generate node connections 

DO 20 I=1,NP 
DO 20 J=1,2 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

20 

NODEN=IPIPE(l,J) 
INODE(NODEN,IND(NODEN)+3)=1 
IND(NOOEN)=INDCNODEN)+1 
INODE(NODEN,2)=IND(NOOEN) 

CONTINUE 
RETURN 
END 

SUBROUTINE SMAKEX(NL,NN,NP,ndrop,XNOOE,INODE,IPIPE,PIPEK,X) 
******************************************************** 
* SUBROUTINE: SMAKEX * 
* * 
* REMARKS Generates coefficient matrix for regres * 
* sian. * 
* 
* VARIABLES 

* 
* 

* ========= * 
* NP # OF PIPES * 
* NN # OF NODES * 
* NL # OF LOADS * 
* ndrop(i) drop equation at this node * 
* !PIPE MATRIX (from node, to node) * 
* INODE MATRIX (G.E.,# conn,pip1,pip2, ••• ) * 
* XNODE MATRIX (Load, Flow, Head) * 
* X Matrix (Coeffic. for regression) * 
* INC Row index * 
* HI Pressure head at node i (from) * 
* HJ Pressure head at node j (to) * 
* PIPEN Get pipe number * 
* NC # of pipes connected to the node * 
* SMULT -1 flow is leaving node * 
* 1 flow is entering node * 
******************************************************** 

IMPLICIT REAL*8CA-H,O-Z) 
INTEGER NUMP,NUMN,NUML,PIPEN 
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5) 
DIMENSION XNODE(NUML,NUMN,2),1NOOE(NUMN,8),1PIPE(NUMP,2), 

*X(LIMIT,LIMIT),PIPEK(NUMP),ndrop(10) 
C2=1./1.852 

c-----Initialize matrix X 
DO 10 1=1,NL*NN 
DO 10 J=1,NP 

X(I,J)=O.O 
10 CONTINUE 

INC=O 
DO 100 K=1,NL 
icont=1 
DO 100 I=1,NN 

c---- Drop equation at node NDROP 
if (i .eq. ndrop(icont))then 

icont=icont+1 
goto 90 

endif 
INC=INC+1 
NC=INODE(I,2) 

c----------Loop for each pipe connecting to node I 
DO 200 J=1,NC 

PIPEN=INODE(I,J+2) 
c--- Node in question is I 

NODEN=IPIPE(PIPEN,1) 
c---- Get the other extreme of the pipe 

if (noden .eq. i)NODEN=IPIPE(PIPEN,2) 
HI=XNODE(K,NODEN,2) 
HJ=XNODE(K,I,2) 
AUX=DABS(HI-HJ)**C2*PIPEK(PIPEN) 
X(INC,PIPEN)=DSIGN(AUX,HI-HJ) 

200 CONTINUE 
90 continue 

100 CONTINUE 
c---- display matrix X 
c write(6,*)' Matrix X' 
c call sprtmat(x,inc,np,limit) 
c ni=O 
c do 900 i=1,inc 
c ni=ni+1 
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c if (ni .gt. nn)then 
c ni=1 
c Ln=(i+nn-1)/nn 
c write(6,*)' Load ',Ln 
c endif 
c write(6,1000)ni,(x(i,j),j=1,np) 
c 900 continue 
c 1000 format(1x,I1,10(1x,e14.6)) 

RETURN 
END 

SUBROUTINE SSTAT(NUM,NP,XMAT,VECT) 
c ******************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

* SUBROUTINE: SST AT * 
* * 
* REMARKS COMPUTES MEAN AND VARIANCE OF VALUES * 
* FROM QP AND C * 
* * 
* VARIABLES * 
* ========= * * NP # OF PIPES * 
* NUM # PERTURBATIONS * 
* XMAT MATRIX (NUM,NP) * 
* (CONTAINS VALUES OF COEF. FOR EACH * 
* PERTURBATIONS) * 
* VECT SAVES STATISTICS FOR XMAT * 
* VECT(1,J)=MEAN OF XMAT(l,J) * * VECT(2,J)=VARIANCE OF XMATCI,J) * 
* SUMCJ): SAVE PARTIAL RESULTS * 
* * 
* * 
******************************************************** 

IMPLICIT REAL*8CA-H,O-Z) 
INTEGER NP,NUM 
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5,NPERT=1000) 
DIMENSION XMAT(NPERT,20),VECT(2,20),SUM(20) 
IF (NUM .GT. NPERT) THEN 

WRITE(*,*) 1 #OF PERT. EXCEEDS DIMENSION OF XMAT ',NUM,NPERT 
GOTO 999 

END IF 
DO 10 J=1,NP 

SUM(J)=O.O 
10 continue 

c------computes mean 
DO 100 I=1,NUM 

DO 100 J=1,NP 
SUM(J)=SUM(J)+XMAT(I,J) 

1 00 CONTINUE 
DO 110 J=1,NP 

VECT(1,J)=SUM(J)/CNUM) 
SUM(J)=O.O 

110 CONTINUE 
c------computes variance 

DO 200 I=1,NUM 
DO 200 J=1,NP 

SUM(J)=SUM(J)+(XMAT(I,J)·VECT(1,J))*(XMAT(I,J)·VECTC1,J)) 
200 CONTINUE 

DO 210 J=1,NP 
VECT(2,J)=SUM(J)/(NUM·1) 

210 CONTINUE 
ccc WRITE(*,*)' <NORMAL END SSTAT>' 

c 
c 
c 
c 
c 
c 
c 
c 
c 

999 RETURN 
END 

SUBROUTINE SPERTQ(N,XMCV,Q,QP,indlq,indnq,qmaxS,icondq,xnstdq, 
*nvioql,nvioqu) 

******************************************************** 
* SUBROUTINE: SPERQ 
* 
* REMARKS 
* 
* 
* VARIABLES 
* ========= 
* N 

GENERATES NORMALLY DISTRIBUTED NOISE 
AND PERTURB Q VECTOR 

#OF NODES 

* 
* 
* 
* 
* 
* 
* 
* 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

* Q VECTOR OF ORIGINAL VALUES * 
* QP CONTAINS Q+NOISE * 
* xmcv( l ,n) contains individual cv for each node * 
* cv DESIRED COEFFICIENT OF VARIAT!ON * 
* indlq( i) load of the ith element of Q * 
* indnq(i) noad of the ith element of Q * 
* STD STANDARD DEVIATION OF NOISE * 
* = cv * Q(l) * 
* QMAX5 : LIMIT TO GENERATE MAXIMUM STD OF ERR.* 
* icondq : 1-Condition noise on Q;O-Not cond. * 
* xnstdq : # of std to reject noise * 
* nvioql.nvioqu : #of violations upper and lower * 
******************************************************** 

IMPLICIT REAL*8CA-H,O-Z) 
INTEGER N 
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5) 
DIMENSION Q(LIMIT),QP(LIMIT),xmcv(numl,numn),indlq(limit), 

*indnq( limit) 
C-----GENERATE NOISE MEAN 0, STD=CV*Q 

DO 10 I=1 ,N 
c-- 24/10/91 retrieve individual CV for each node and load 

iload=indlq(i) 
inoad=indnq(i) 
cv=xmcv(iload,inoad) 
STD=CV*Q(!) 
IF (Q(I) .GT. QMAX5)STD=CV*QMAX5 

5 XNOISE=GASDEVCI) 
c--- Test of condition MC 

IF(ICONDQ .EO. 1)THEN 
if(xnoise .Lt. C-1.0*xnstdq))then 

nvioql=nvioql+1 
goto 5 

endif 
if(xnoise .gt. xnstdq)then 

nvioqu=nvioqu+1 
goto 5 

endif 
END IF 
QP(I)=Q(I)+XNOISE*STD 

10 CONTINUE 
CCC write(*,*)' Normal end spertq' 

RETURN 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

END 

SUBROUTINE SPERTH2CNL,NN,XMSTD,XNODE,XNODEP,isaveh,icondh,xnstdh, 
*nviohl,nviohu) 

******************************************************** 
* SUBROUTINE: SPERTH2 (Aug 2,1990) * 
* REMARKS GENERATES NORMALLY DISTRIBUTED NOISE * 
* AND PERTURB H VALUES by a desired STD * 
* 6/8/90 modified * 
* VARIABLES * 
* ========= * 
* NL : # OF LOADS * 
* NN : # OF NODES * 
* XNODE(NL,NN,2): MATRIX CONTAINING Q's & H's * 
* XNODEPCNL,NN,2):NEW MATRIX WITH NOISE IN H's * 
* XMSTD(I,J) STD OF Hj from load I in ft * 
* icondh : 1=condition noise on H; O=not cond. * 
* xnstdh : # of std to condition reject noise * 
* nviohl,nviohu : statistics on the violations of noise* 
******************************************************** 

IMPLICIT REAL*8CA-H,O-Z) 
INTEGER NL,NN 
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5) 
DIMENSION XNODE(NUML,NUMN,2),XNODEPCNUML,NUMN,2),xmstd(numl,numn) 
COMMON /jvga/NOUT,nouh 

C-----GENERATE NOISE MEAN 0, Standard Deviation =STD AND PERTURB H's 
DO 10 K=1,NL 

DO 20 I=1,nn-1 
21 XNOISE=GASDEV(l) 

IF(ICONDH .EQ. 1)THEN 
if(xnoise .Lt. C-1.0*xnstdh))then 

nviohl=nviohl+1 
goto 21 
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endif 
if(xnoise .gt. xnstdh)then 

nviohu=nviohu+1 
goto 21 

endif 
END IF 
std=xmstd(k,i) 
XNODEP(K,I,2)=XNODE(K,I,2)+XNOISE*STD 

C-------- Check if Hpert. is greater than the FGN:H(nn) 
c-------- Modified 6/8/90, 11/26/91 

if (XNODEP(K,I,2) .GT. XNODE(K,NN,2))then 
write(*,*)' invalid noise on node ',i,' load ',k 
goto 21 

endif 
XNODEP(K,I,1)=XNOOE(K,I,1) 

20 continue 
c--------Node nn is a FGN and is not being perturbed 

XNOOEP(K,nn,2)=XNOOE(K,nn,2) 
XNODEP(K,nn,1)=XNODE(K,nn,1) 

10 CONTINUE 
c--------modified 17/08/90 to save H's for statistics 

if (isaveh .gt. O)then 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

do 100 k=1,nl 
write(nouh,8000)k,(xnodep(k,i,2),i=1,nn) 

100 continue 
endif 

8000 format(1x,i2,1x,20(f9.5,1x)) 
RETURN 
END 

SUBROUTINE SPERTH3(NL,NN,XNODE,XNOOEP,isaveh,IL,IN,DELTAH) 
******************************************************** 
* SUBROUTINE: SPERTH3 (May 9, 1991) * 
* REMARKS PERTURB H'S BY DELTAH TO COMPUTE dC/dH * 
* VARIABLES * 
* ========= * 
* NL : # OF LOADS * 
* NN : # OF NODES * 
* XNODE(NL,NN,2): MATRIX CONTAINING Q's & H's * 
* XNODEP(NL,NN,2):NEW MATRIX WITH NOISE IN H's * 
* DELTAH : PERTURBATION ON H'S (IN FEET) * 
******************************************************** 

IMPLICIT REAL*8(A·H,O·Z) 
INTEGER NL,NN 
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5) 
DIMENSION XNOOE(NUML,NUMN,2),XNODEP(NUML,NUMN,2) 
COMMON /jvga/NOUT,nouh 
DO 10 K=1,NL 
DO 10 1=1,nn 

XNODEP(K,I,2)=XNODE(K,I,2) 
XNODEP(K,I, 1)=XNOOE(K,l,1) 

10 continue 
XNODEP(IL,IN,2)=XNODE(IL,IN,2)+DELTAH 
if (isaveh .gt. O)then 

do 100 k=1,nl 
write(nouh,8000)k,(xnodep(k,i,2),i=1,nn) 

100 continue 
end if 

8000 format(1x,i2,1x,20(f9.5,1x)) 
RETURN 
END 

SUBROUTINE SMREGIA1(N,NP,X,Y,B,ICONS,iprint) 
c ******************************************** 
C PERFORM MULTIPLE LINEAR REGRESSION 
c ******************************************** 

IMPLICIT REAL*8(A-H,O-Z) 
REAL*8 MSE,MSR 
INTEGER LIMIT 
PARAMETER (LIMIT=70) 
DIMENSION XCLIMIT,LIMIT),Y(LIMIT),XT(LIMIT,LIMIT), 

*XTX(LIMIT,LIMIT),XTY(LIMIT,1),B(LIMIT),XTXINV(LIMIT,LIMIT), 
c------ *bt(limit,limit),yt(limit,limit),yty(limit),btxty(limit), 

*covmat(limit,limit),cormat(limit,limit),ypred(limit),e(limit), 
*xmean(l imi t) 
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COMMON /jvga/NOUT,nouh 
c--Write initial values to check regression 
CCC print*,' SMREGIA1: Entering Smregia1 1 

if (iprint .gt. O)then 
write(nout,*)' Subroutine Smregia-Run regression' 
write(nout,*)' N = ',n,' NP = 1 ,np 
write(nout,*)' Matrix X used for regression' 
do 5 i=1,n 

write(nout,6)Cx(i,j),j=1,np) 
6 format(11(e14.6,1x)) 
5 continue 

write(nout,*)' Constant vector Y' 
write(nout,6)(y(j),j=1,n) 

endif 
c-----Check range for ICONS (repeated below) 
ccc IF (ICONS .LT. O)ICONS=O 
ccc IF (ICONS .GT. 1)ICONS=1 
CCC NP1=NP+ICONS 
c------Compute mean of observations 

YMEAN=O.O 
DO 10 J=1,NP 

10 XMEAN(J)=O.O 
DO 20 I=1,N 

YMEAN=YMEAN+Y(I) 
DO 20 J=1,NP 

20 XMEAN(J)=XMEAN(J)+X(I,J) 
YMEAN=YMEAN/N 
DO 30 J=1,NP 

30 XMEAN(J)=XMEAN(J)/N 

c------Compute covariance matrix 
DO 40 I=1,N 

40 

45 

47 

46 
CCC 
CCC 
CCC 
CCC 
CCC 

CCC 
CCC 

49 

X (I I NP+1 )=Y (I) 
DO 45 I=1,Np+1 
DO 45 J=1,Np+1 

COVMAT( I I J )=0.0 
XMEAN(NP+1)=YMEAN 
DO 46 K=1,NP+1 
DO 46 J=1,K 

SUM=O.O 
DO 47 I=1,N 
SUM=SUM+(X(I,K)-XMEAN(K))*(X(I,J)-XMEAN(J)) 

COVMAT(K,J)=SUM/float(n-1) 
CONTINUE 

write(nout,*) ' ' 
write(nout,*) ' Covariance matrix' 
write(nout,*) ' =================' 
call sprtmat(covmat,np+1,np+1,limit) 

PRINT *, 1 SMREGIA1: Compute correlation matrix' 
DO 49 I=1,NP+1 
DO 49 J=1,I 

print *,'Generating Cormat: i/j ',i,j 
print*,' Covmat(i,i)=',covmat(i,i),covmat(j,j) 

CORMAT(I,J)=COVMAT(I,J)/SQRT(COVMAT(I,I))/SQRT(COVMAT(J,J)) 
if(iprint .gt. O)then 
write(nout,*) ' ' 
write(nout,*) ' Correlation matrix' 
write(nout,*) 1 ==================' 
call sprtmat(cormat,np+1,np+1,limit) 
write(nout,*) ' 1 

enclif 
c----Make augmented matrix X= (1,xi1,xi2, •.. xinp) 

IF (ICONS .LT. O)ICONS=O 
IF (ICONS .GT. 1)ICONS=1 
NP1=NP+ICONS 
IF (ICONS .EQ. 1) CALL SAUGMAT(X,N,NP) 

c----Compute transpose of matrix X 
ccc print *,'SMREGIA1: Calling Stranmat' 

CALL STRANMAT(X,N,NP1,XT) 

C----Compute products 

CALL SMULTMAT(XT,NP1,N,X,N,NP1,XTX) 
if(iprint .gt. O)then 

write(nout, *>' MATRIX (XtX) ' 
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write(nout,*)' ============ • 
call sprtmat(xtx,np1,np1,limit) 

endif 
CALL SINVMAT(NP1,XTX,XTXINV) 
if(iprint .gt. O)then 

WRITE(NOUT,*)' MATRIX (XtX) Inverse 1 

write(nout,*)' ==================== • 
call sprtmat(xtxinv,np1,np1,limit) 

end if 
CALL SMULTMAT(XT,NP1,N,Y,N,1,XTY) 

C write(nout,*)' VECTOR XtY' 
C write(nout,*)' ==========' 
c call sprtmat(xty,np1,1,limit) 
c------Compute coefficients of regression b 

call smultmat(xtxinv,np1,np1,xty,np1,1,b) 
write(nout,*)' VECTOR b' 
write(nout,*)' ========' 

c 
c 
c 
C----Calculate Ypred, 

SSR=O.O 
SSE=O.O 

call sprtmat(b,np1,1,limit) 
E(Residuals),SSR,SSE,SSTO 

60 

SSTO=O.O 
DO SO I=1 ,N 

YPRED(I)=O.O 
DO 60 J=1,NP1 

YPRED(I)=YPRED(I)+B(J)*X(I,J) 
E(l)=Y(l)-YPRED(I) 
SSR=SSR+(YPRED(I)-YMEAN)*(YPRED(l)-YMEAN) 
SSE=SSE+E(l)*E(I) 
SSTO=SSTO+(Y(I)-YMEAN)*(Y(l)-YMEAN) 

SO CONTINUE 

c-----Compute MSR, MSE, S, F, RR 
c MSR=SSR/(NP) 
c MSE=SSE/(N-NP1) 
c S=SQRT(MSE) 
c F=MSR/MSE 
c RR=SSR/SSTO 

c write(nout,1000)RR,S 
c 1000 FORMAT(1H ,SX,'MULTIPLE COEFF. OF DETERMINATION, RA2 = 1 ,F12.3, 
c */,SX,' STANDARD ERROR OF ESTIMATE, S = ',f12.3) 
c WRITE(NOUT,100S) 
c 1005 FORMAT(/,SX, 1 VARIABLE',3X,'COEFFICIENT',3X,'VARIANCE ',3X, 
c *'STD. ERROR 1 ,6X,'T') 
c WRITE(NOUT,1006) 
c 1006 FORMAT(5X,65(' 1 )) 

c DO 200 1=1,NP1-
c VAR=MSE*XTXINV(I,I) 
c SB=SQRTCVAR) 
c T=B(l)/SB 
c WRITE(NOUT,1007)1-ICONS,B(I),VAR,SB,T 
c 1007 FORMAT(7X,'b(',l2,')',4X,f12.3,1X,f12.3,1X,f12.3,3X,f12.3) 

200 CONTINUE 
c WRITE(NOUT,1006) 

c WRITE(NOUT,1010) 
c 1010 FORMAT(//,15X,'ANALYSIS OF VARIANCE- ANOVA ',//, 
c *SX,'SOURCE D.F. SUM-OF-SQUARES MEAN-SQUARE') 
c WRITE(NOUT,1011)NP,SSR,MSR,N-NP1,SSE,MSE,N-ICONS,SSTO 
c 1011 FORMATCSX,'REGRESSION ',12,6X,f12.3,7X,f12.3,/ 
c *SX,'ERROR I ,12,6X,F12.3,7X,f12.3,/ 
c *SX,'TOTAL' I ,12,6X,f12.3,f) 
c WRITE(NOUT,*)' SSTO-(SSR+SSE) I ,SSTO-SSR-SSE 
c WRITE(NOUT,1015)F 
c 101S FORMAT(/,' F-RATIO = ',f12.3) 
c write(nout,2000) 
c 2000 format(/,Sx,' ESTIMATE RESIDUAL') 
c DO 300 I=1,N 
c 300 WRITE(NOUT,2020)YPRED(I),E(I) 
c 2020 FORMAT(6X,F9.3,6X,F9.3) 
9999 continue 

CCC WRITE(*,*)' (NORMAL END OF SUBROUTINE 11Smregia1")' 
RETURN 
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c 
c 
c 
c 
c 

END 

SUBROUTINE Scorr(XX,N,NP,nsave,fsave,iprt) 

****************************************************************** 
Compute statistics on regressed values and save special 

file with np,meanc, stdC, covmat c, trace (covmat C), corrmatC, 
and np. 

****************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
INTEGER LIMIT 
PARAMETER (npert=1000,limit=70,nump=51) 
DIMENSION XX(npert,20),covmat(nump,nump),cormat(nump,nump), 

*xmean(nump),factor(nump,nump) 
COMMON /jvga/NOUT,nouh 
character*20 fsave 

c---- variable iprt=O suppress output of results from scorr in unit nout 
c------Compute mean of observations 

DO 10 J=1,NP 
10 XMEANCJ>=O.O 

DO 20 1=1,N 
DO 20 J=1,NP 

20 XMEAN(J)=XMEAN(J)+XX(I,J) 
DO 30 J=1,NP , 

30 XMEAN(J)=XMEAN(J)/float(N) 
if(iprt .ne. O)then 

write(nout,*)' ' 
write(nout,*)' Values computed and printed by scorr ' 
write(nout,6004)(xmean(j),j=1,np) 

6004 format(1x,'mean ',10Cf13.6,1x)) 
write(nout,*)' ' 

endif 
c------Compute covariance matrix 

DO 45 1=1,Np 
DO 45 J=1,Np 

45 COVMAT(I,J)=O.O 
DO 46 K=1,NP 
DO 46 J=1,K 

SUM=O.O 
DO 47 1=1,N 

47 SUM=SUM+(XX(I,K)-XMEAN(K))*(XX(I,J)·XMEAN(J)) 
COVMAT(K,J)=SUM/float(n-1) 

46 CONTINUE 

if(iprt .ne. O)then 
write(nout,6005)(sqrt(covmat(j,j)),j=1,np) 

6005 format(1x,'std ',10(f13.8,1x>> 
write(nout,*) ' ' 
write(nout,*) ' Covariance matrix' 
write(nout,*) ' =================' 
call sprtmat(covmat,np,np,nump> 

endif 
c----Compute Trace of covmat 

trace=O.O 
do 100 i=1,np 

trace=trace+covmat(i,i) 
100 continue 

write(nout,6008)trace 
6008 format(/,1x,' Trace of COV C = ',e13.7) 

c------Compute correlation matrix 
DO 49 1=1,NP 
DO 49 J=1,1 

49 CORMAT(I,J)=COVMAT(I,J)/SQRT(COVMAT(I,I))/SQRT(COVMAT(J,J)) 
if(iprt .ne. O)then 

write(nout,*) ' ' 
write(nout,*) ' Correlation matrix' 
write(nout,*) ' ==================' 
call sprtmat(cormat,np,np,nump) 
write(nout,*) ' ' 

endif 
write(*,*)' Calling sfload' 

c----Compute component loadings 
call sfload(cormat,NP,NUMP,factor,iprt) 

write(*,*)' Saving results for later use ' 
c----Save statistics for later use: file=for066.dat 
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open(unit=nsave,file=fsave) 
write(nsave,6010)np 

6010 format(i5) · 
write(nsave,6020)(xmean(j),j=1,np) 

6020 format(10(f13.6,1x)) 
write(nsave,6030)(dsqrt(covmat(j,j)),j=1,np) 

6030 format(10(f13.8,1x)) 
do 105 i=1,np 

write(nsave,6040)(covmat(i,j),j=1,i) 
105 continue 

write(nsave,6040)trace 
6040 format(10(e13.7,1x)) 

do 110 i=1,np 
write(nsave,6040)(cormat(i,j),j=1,i) 

110 continue 
do 120 i=1,np 

write(nsave,6040)(factor(i,j),j=1,np) 
120 continue 

write(nsave,6010)np 
close(nsave) 

ccc write(*,*)' Normal end Scorr' 
RETURN 
END 

SUBROUTINE SAVEC(NP,I,CSAVE,C) 
c ********************************* 
c SAVE ESTIMATES OF C FOR ANALYSIS 
c ********************************* 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IMPLICIT REAL*8(A-H,O-Z) 
PARAMETER (LIMIT=70,NPERT=1000) 
DIMENSION C(LIMIT),CSAVE(NPERT,20) 
COMMON /jvga/NOUT,nouh 
DO 100 J=1,NP 

CSAVE(I,J)=C(J) 
if(c(j) .lt. O.O)write(nout,*)' C=' ,c(j),' at pipe' ,j, 

*' in run ', i 
100 CONTINUE 

return 
end 

SUBROUTINE SFLOAD(CORR,NPIPES,NMAX,A,iprt) 
********************************************************* 
* SUBROUTINE: SFLOAD * 
* 
* REMARKS 
* 
* 
* 
* VARIABLES 
* ========= 

Computes the component loadings of the 
Correlation matrix of regressed 
parameters c 

* 
* 
* 
* 
* 
* 
* 

* CORR CORRELATION MATRIX OF C SHOWING ONLY * 
* LOWER TRIANGULAR ELEMENTS * 
* NPIPES DIMENSION OF MATRIX CORR & A * 
* NMAX PHYSICAL DIMENSION OF MATRIX CORR & A* 
* A COMPONENT LOADINGS OF CORR: * 
* SQRT(ALPHA(J)) * A(I,J) Where: * 
* alpha=eigenvalues; a=eigenvectors * 
* IPRT : = 0 : SUPPRESS OUTPUT TO UNIT NOUT * 
********************************************************* 

implicit real*8(a-h,o-z) 
PARAMETER(LIMIT=70,NUMP=51) 

DIMENSION A(NMAX,NMAX),D(Nump),E(Nump),CORR(NMAX,NMAX) 
common /jvga/nout 

C CHECK COMPATIBILITY OF ARRAY DIMENSION 
IF(NMAX .NE. NUMP)THEN 

WRITE(NOUT,*)' *******************************************' 
WRITE(NOUT,*)' CHECK ARRAY DIMENSIONS IN SUBROUTINE SFLOAD:' 
WRITE(NOUT,*)' NMAX = ',NMAX, ' NUMP = ',NUMP 
WRITE(NOUT,*)' *******************************************' 

END IF 
c-----Create working matrix A 

do 10 i=1,npipes 
do 10 j=1,i 

a(i,j)=corr(i,j) 
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10 continue 
c-----Rename variables for eigen subroutines 

n=npipes 
np=nllllp 

c---- set limit to round eigenvalue to zero 
zerolim=0.0000001 
write(nout,*) ' zerolim to set eigenvalues to zero is: ', 

*zerol im 

c--- fill the upper diagonal of A 
do 20 i=1,n-1 

do 20 j=i+1,n 
A(i,j)=A(j,O 

20 continue 
if(iprt .ne. O)then 

write(nout,*)' Matrix WITH Corr C from sfload' 
call sprtmat(A,n,n,np) 

end if 
call TRED2CA,n,NP,D,E) 
ifCiprt .ne. O)then 

write(nout,*)' Results from tred2: tridiagonal matrix' 
call sprtmat(A,n,n,np) 

end if 
call TQLICD,E,N,NP,A) 

c----Check for negative eigenvalues and if small set them to zero 
do 50 i=1,n 

if(D(i) .Lt. O.O)then 
if( abs(D(i)) .le. zerolim)then 

D(i)=O.O 
else 

write(nout,*)' eigenvalue' ,i,' = ',d(i) 
write(nout,*)' ***value was set to 0***' 

· d(i)=O.O 
endif 

end if 
50 continue 

c---Sort eigenvalues in ascending order 
CALL EIGSRT(D,A,N,NP) 
if(iprt .ne. O)then 

write(nout,*)' Matrix of eigenvalues of C' 
cccccc print *,Cd(i),i=1,n) 

call sprtmat(D,N, 1,np) 
write(nout,*)' Matrix of eigenvectors of C' 
call sprtmat(A,n,n,np) 

endif 
c---compute component loadings 

do 100 i=1,n 
do 100 j=1,n 

aux=d(j) 
a(i,j)=a(i,j)*dsqrt(aux) 

100 continue 
if(iprt .ne. O)then 

write(nout,*)' Matrix of Component loadings of C' 
call sprtmat(A,n,n,np) 

end if 
return 
END 

SUBROUTINE TRED2(A,N,NP,D,E) 
******************************************************** 
* SUBROUTINE: TRED2 
* 
* REMARKS 
* 
* 
* VARIABLES 
* ========= 

Reduction of a symmetric matrix to a 
Tridiagonal Form 

* 
* 

* 
* 
* 
* 

* 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

* A INITIAL SYMMETRIC MATRIX TO BE REDUCED* 
* FOR OUTPUT A IS REPLACED BY TRIDIAG. * 
* N DIMENSION OF MATRIX A * 
* NP PHYSICAL DIMENSION OF MATRIX A * 
* D DIAGONAL ELEMENTS OF A * 
* E OFF DIAGONAL ELEMENTS WITH EC1)=0 * 
******************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 
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DIMENSION A(NP,NP),D(NP),E(NP) 
I F(N .GT. 1 )THEN 

DO 18 I=N,2,-1 
L=I-1 
H=O.O 
SCALE=O. 
IF(L .GT. 1)THEN 

DO 11 K=1,L 
SCALE=SCALE+ABS(A(I,K)) 

11 CONTINUE 
IF (SCALE .EQ. O)THEN 

E(I)=A(I,L) 
ELSE 

DO 12 K=1,L 
A(I,K)=A(I,K)/SCALE 
H=H+A(l,K)**2 

12 CONTINUE 
F=A(I,L) 
G=-SIGN(SQRT(H),F) 
E ( I) =SCALE*G 
H=H-F*G 
A(l ,L)=F-G 
F=O. 
DO 15 J=1,L 

A(J,I)=A(I,J)/H 
G=O. 
DO 13 K=1,J 

G=G+A(J,K)*ACI,K) 
13 CONTINUE 

IF(L .GT. J)THEN 
DO 14 K=J+1,L 

G=G+A(K,J)*A(I,K) 
14 CONTINUE 

END IF 
E(J)=G/H 
F=F+E(J)*A(I,J) 

15 CONTINUE 
HH=F/CH+H) 
DO 17 J=1,L 

F=A(I,J) 
G=E(J)-HH*F 
E(J)=G 
DO 16 K=1,J 

A(J,K)=A(J,K)-F*E(K)-G*A(l,K) 
16 CONTINUE 
17 CONTINUE 

END IF 
ELSE 

E(I)=A(I,L) 
END IF 
D(l )=H 

18 CONTINUE 
END IF 
D(1)=0. 
E(1)=0. 
DO 23 1=1,N 

L=I-1 
I F(D( I) .NE. O)THEN 

DO 21 J=1,L 
G=O. 
DO 19 K=1,L 

G=G+A(I,K)*A(K,J) 
19 CONTINUE 

DO 20 K=1 ,L 
A(K,J)=ACK,J)-G*A(K,I) 

20 CONTINUE 
21 CONTINUE 

END IF 
D(I)=A(I,I) 
A(l,l)=1 
IF(L .GE. 1)THEN 

DO 22 J=1,L 
ACI,J)=O. 
A(J,I)=O. 

22 CONTINUE 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

23 

11 

12 

2 

13 

END IF 
CONTINUE 
RETURN 
END 

SUBROUTINE TQLI(D,E,N,NP,Z) 
********************************************************** 
* SUBROUTINE: TQLI * 
* 
* REMARKS 
* 
* 
* VARIABLES 
* ========= 
* D(N) 

FINDS THE EIGENVALUES AND EIGENVECTORS 
OF A SYMMETRIC, TRIDIAGONAL MATRIX 

* 
* 

* 
* 
* 

DIAGONAL ELEMENTS OF TRIDIAGONAL MAT. * 

* 

* ON OUTPUT RETURNS THE EIGENVALUES * 
* ECN> OFF DIAGONAL ELEMENTS WITH E(1)=0 * 
* N DIMENSION OF MATRIX Z * 
* NP PHYSICAL DIMENSION OF MATRIX Z * 
* Z(N,N) MATRIX OUTPUT BY TRED2 * 
* RETURNS THE NORMALIZED EIGENVECTOR * 
* IN THE KTH COLUMN CORRESPONDING TO * 
* D(K) * 
********************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION D(NP),E(NP),Z(NP,NP) 
IF (N .GT. 1)THEN 

DO 11 1=2,N 
E(l-1 )=E(I) 

CONTINUE 
E(N)=O. 
DO 15 L=1,N 

ITER=O. 

CONTINUE 
DO 12 M=L,N-1 

DD=ABS(D(M))+ABS(D(M+1)) 
IF ((ABS(E(M))+DD) .EQ .DD) GOTO 2 

CONTINUE 
M=N 
IF(M .NE. L)THEN 

IF(ITER .EQ. 30)PAUSE ' Too many iterations' 
iter=iter+1 
G=(D(L+1)-D(L))/(2.*E(L)) 
R=SQRT(G**2+1.) 
G=D(M)-D(L)+E(L)/(G+SIGN(R,G)) 
S=1. 
C=1. 
P=O. 
DO 14 I=M-1,L,-1 

F=S*E(l) 
B=C*E(I) 
IF( ABS(F) .GE. ABS(G))THEN 

C=G/F 
R=SQRTCC**2+1.) 
E(l+1 )=F*R 
S=1./R 
C=C*S 

ELSE 
S=F/G 
R=SQRT(S**2+1.) 
E(I+1)=G*R 
C=1./R 
S=S*C 

END IF 
G=D( 1+1) -P 
R=(D(I)-G)*S+2.*C*B 
P=S*R 
D(l+1 >=G+P 
G=C*R-B 
DO 13 K=1,N 

F=Z(K,I+1) 
Z(K,I+1)=S*Z(K,I)+C*F 
Z(K,I)=C*Z(K,I)-S*F 

CONTINUE 
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14 CONTINUE 
DCL)=D(L)·P 
ECL)=G 
E(M)=O. 
GOTO 1 

END IF 
15 CONTINUE 

END IF 
RETURN 
END 

SUBROUTINE EIGSRT(D,V,N,NP) 
c ******************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

11 

12 

13 

* SUBROUTINE: EIGSRT * 
* * 
* REMARKS SORTS THE EIGENVALUES INTO DESCENDING * 
* ORDER AND REARRANGES THE COLUMNS OF V * 
* (Sorts results from Jacobi or Tqli) * 
* VARIABLES * 
* ========== * 
* D EIGENVALUES * 
* v EIGENVECTORS * 
* N DIMENSION OF ARRAYS * 
* NP PHYSICAL DIMENSION OF ARRAYS * 
******************************************************** 

IMPLICIT REAL*B(A·H,O·Z) 
DIMENSION D(NP),V(NP,NP) 
DO 13 1=1,N-1 

K=l 
P=D(l) 
DO 11 J=I+1,N 

IF(D(J) .GT. P)then 
K=J 
P=D(J) 

END IF 
CONTINUE 
IF CK .NE. !)THEN 

DCK>=D(I) 
D(I)=P 
DO 12 J=1,N 

P=VCJ, I) 
VCJ,I)=VCJ,K) 
V(J,K)=P 

CONTINUE 
END IF 

CONTINUE 
RETURN 
END 
SUBROUTINE SPRTMAT(A,M,N,mlimit) 

******************************************************** 
* SUBROUTINE: SPRTMAT * 
* 
* REMARKS 
* 
* 
* VARIABLES 

PRINTS A MATRIX OR VECTOR(transposed) 
FOR VECTOR USE N = 1 

* 
* 
* 
* 
* 

* ========= * 
* A ARRAY TO BE PRINTED * 
* M # OF LINES * 
* N # OF COLUMNS * 
* MLIMIT ARRAY DIMENSION * 
* NOUT : OUTPUT FILE * 
******************************************************** 

IMPLICIT REAL*BCA-H,O·Z) 
INTEGER N,M,mlimit 
DIMENSION ACMLIMIT,MLIMIT) 
COMMON /jvga/NOUT 

C WRITECNOUT,8000) 
C 8000 FORMAT(!) 
C·----PRINTS A COLUMN VECTORCTRANSPOSED) 

IF CN .EQ. 1) THEN 
WRITE(NOUT,9000)(A(I,1),1=1,M) 
GO TO 9999 

END IF 
C-----PRINTS A MATRIX (MxN) 
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DO 10 1=1 ,M 
WRITE(NOUT,9000)(A(l,J),J=1,N) 

9000 FORMAT(11(1X,E12.5,1x)) 
10 CONTINUE 
9999 CONTINUE 

RETURN 
END 

SUBROUTINE DECOMPOS(A,N,PIVOT) 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

******************************************************** 
* 
* SUBROUTINE: DECOMPOS 
* 
* REMARKS 
* 
* VARIABLES 
* ========= 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

A (I I J) 
B (k) 

N 
LIMIT 
PIVOT 
D(J) 
ROW 

PC 
Cl 

!TEMP 
TEMP 

XM 

DECOMPOSE MATRIX A = LU USING 
SCALED PARTIAL PIVOTING 

COEFFICIENT MATRIX 
CONSTANT VECTOR 
# OF COLUMNS 
ARRAY DIMENSION 
SAVE PIVOT OPERATIONS 
LARGEST ELEMENT IN A ROW 
STORE INITIAL PIVOT POINT 
INITIAL SCALING 
CHECK VALUES FOR SCALING 
STORE VALUE FOR EXCHANGING 

II II II II 

RATIO USED IN REDUCTION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

******************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
INTEGER PIVOT,N,ROW,I,J,K,ITEMP 
REAL*8 A,D,CI,PC,TEMP,XM 
PARAMETER (LIMIT=70) 
DIMENSION A(LIMIT,LIMIT),PIVOT(LIMIT),D(LIMIT> 
common /jvga/nout 

C******************************************************* 
C DETERMINE LARGEST ELEMENT IN EACH ROW d(i) 
C******************************************************* 
c call sprtmat(a,n,n) 

DO 10 1=1 ,N 
PIVOT(! )=1 
D(l )=0.0 
DO 10 J=1,N 

c write(nout,*)' dabs a(1,j)' ,DABS(A(I,J)),' d(i)',D(l) 
IF (DABS(A(l,J)) .GT. DABS(D(I))) D(l)=A(I,J) 

10 CONTINUE 
c do 20 i=1,n 
c if (d(i) .eq. O.O)then 
c write(*,*>' **maximum equal zero in row= ',i 
c endif 
c 20 continue 
C******************************************************* 
C START OF REDUCTION LOOP IN MATRIX DECOMPOSITION 
C******************************************************* 

DO 1000 K=1,N-1 
C----- START OF ALGORITHM FOR PIVOTING 

PC=DABS(A(K,K)/D(K)) 
ROW=K 

C----- IDENTIFY MAX. VALUE FOR REMAINING ROWS 
DO 200 I=K+1 ,N 

CI=DABS(A(I,K)/D(I)) 
IF (Cl .GT. PC) THEN 

PC=CI 
ROW= I 

END IF 
200 CONTINUE 

C----- SWITCH ELEMENTS FOR NEW PIVOT ROW 
IF (ROW .GT. K) THEN 

ITEMP=PIVOTCK) 
PIVOT(K)=PIVOT(ROW) 
PIVOT(ROW)=ITEMP 
TEMP=D(K) 
D(K)=D(ROW) 
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DCROII)=TEMP 
DO 300 J=1,N 

TEMP=ACK,J) 
ACK,J)=ACROII,J) 
A(ROII,J)=TEMP 

300 CONTINUE 
END IF 

C******************************************************* 
C SOLVE FOR UPPER & LOIIER MATRIX DECOMPOSITION 
C******************************************************* 

DO 400 I=K+1,N 
XM=ACI,K)/ACK,K) 
ACI,K)=XM 
DO 400 J=K+1,N 

ACI,J)=ACI,J)-XM*ACK,J) 
400 CONTINUE 
1 000 CONTINUE 

CCC write(*,*)' Normal end Subroutine Decompos' 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

20 

10 
CCC 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

RETURN 
END 

SUBROUTINE SAUGMATCA,NR,NC) 
******************************************************** 
* SUBROUTINE: SAUGMAT * 
* * 
* REMARKS THIS SUBROUTINE AUGMENTS A MATRIX OF * 
* OBSERVATIONS OF DEPEN,DENT VARIABLES TO * 
* INCLUDE A INTERCEPT COEFFICIENT bo OF * 
* THE REGRESSION EQUATION * 
* * 
* VARIABLES * 
* ========= * 
* 
* 
* 

ACNR,NC) : MATRIX A 
NR : # OF ROllS OF A 
NC : # OF COLUMNS OF A 

* 
* 
* ******************************************************** 

IMPLICIT REAL*BCA-H,O-Z) 
parameter Climit=70) 
common /jvga/nout 
DIMENSION AClimit,limit) 
DO 10 I=1,NR 

DO 20 J=NC+1,2,-1 
A (I I J )=ACI I J -1) 
CONTINUE 

ACI, 1)=1.0 
CONTINUE 
WRITE(*,*)' <NORMAL END SUBROUTINE 11Saugmat11> ' 

RETURN 
END 

SUBROUTINE SINVMAT(N,A,AINV) 
******************************************************** 
* SUBROUTINE: SINVMAT * 
* * 
* REMARKS • THIS SUBROUTINE INVERTS A MATRIX * 
* VARIABLES * 
* ========= * 
* A( N, N) MATRIX A * 
* N ORDER OF A * 
* PIVOT(N) * 
* X(N) * 
* B(N) * 
* AINV(N) : INVERSE OF A * 
******************************************************** 

IMPLICIT REAL*B(A-H,O-Z) 
integer pivot 
parameter Climit=70) 
common /jvga/nout 
DIMENSION A(limit,limit),AINV(limit,limit),PIVOTClimit),X(LIMIT), 

*BCLIMIT) 

c-----Decompose matrix A into upper and lower components 

CALL DECOMPOS(A,N,PIVOT) 
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c---- Set initial elements in identity vector 

DO 10 1=1 ,N 
10 B(I)=O.O 

c----- loop for each column of inverse matrix 
DO 100 J=1,N 

c-----------------Set only nonzero value 
B(J)=1.0 
CALL SOLVECA,N,PIVOT,B,X) 
B(J)=O.O 
DO 100 1=1 ,N 

AI NV(! ,J)=X(I) 
1 00 CONTINUE 

CCC WRITE(*,*)' <NORMAL END SUBROUTINE "sinvmat"> ' 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

RETURN 
END 

SUBROUTINE SMULTMATCA,MA,NA,B,MB,NB,C) 
******************************************************** 
* SUBROUTINE: SMULTMAT * 
* * * REMARKS 
* 

THIS SUBROUTINE PERFORMS MATRIX MULTIPLI* 
CATION: AxB=C * 

* VARIABLES * 
* ========= * 
* A(MA,NA) MATRIX A * 
* MA # OF ROWS OF A * 
* NA # OF COLUMNS OF A * 
* BCMB,NB) MATRIX B * 
* NB # OF ROWS OF B * 
* NB # OF COLUMNS OF B * 
* C(MA,NB) : PRODUCT MATRIX C * 
******************************************************** 

IMPLICIT REAL*8CA-H,O·Z) 
parameter Climit=70) 
common /jvga/nout 
DIMENSION A(limit,limit),B(limit,limit),C(limit,limit) 

c---- Check compatibility of matrices 
IF CNA .NE. MB) THEN 

c 

WRITE (NOUT,1)MA,NA,MB,NB 
FORMAT (3X,' ***MATRICES ARE NOT COMPATIBLE FOR MULTIPLICATION', 

*' AC' ,13,'x' ,13,')' ,' BC' ,13,'x' ,13,') ***') 
GO TO 99 

END IF 

c---- Performs multiplication 

DO 10 1=1,MA 
DO 10 J=1,NB 

C(I,J)=O.O 
DO 10 K=1,NA 

C(I,J)=CCI,J)+A(I,K)*BCK,J) 
10 CONTINUE 
99 CONTINUE 

CCC WRITE(*,*)' <NORMAL END SUBROUTINE 11smultmat"> ' 
RETURN 
END 

SUBROUTINE SOLVE(A,N,PIVOT,B,X) 
c ******************************************************** 
c * * 
c * SUBROUTINE : SOLVE * 
c * * 
c * REMARKS SOLVES A SYSTEM OF THE FORM LU x= b * 
c * 1st step: L z = b * 
c * 2nd step: U x = z * 
c * * 
c * VARIABLES * 
c * ========= * 
c * A (I, J) COEFFICIENT MATRIX * 
c * B (J) CONSTANT VECTOR * 
c * N # OF COLUMNS * 
c * LIMIT ARRAY DIMENSION * 
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c 
c 
c 
c 
c 
c 

* ROW STORE INITIAL PIVOT POINT * 
* SUM LINE SUMMATION * 
* z(J) TEMPORARY SOLUTION = U x * 
* X(J) SOLUTION VECTOR * 
* * 
******************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 
INTEGER PIVOT,R0\.1 
PARAMETER (LIMIT=70) 
DIMENSION A(LIMIT,LIMIT),B(LIMIT),X(LIMIT),Z(LIMIT),PIVOT(LIMIT) 

C******************************************************************* 
C LOOP TO DETERMINE TEMPORARY VECTOR Z BY FORWARD SUBSTITUTION 
C******************************************************************* 

RO\.I=PIVOT(1) 
Z(1)=BCRO\.I) 
DO 200 K=2,N 

ROW=PIVOT(K) 
SUM=B(ROW) 
DO 100 J=1,K-1 

SUM=SUM-A(K,J)*Z(J) 
100 CONTINUE 

Z(K)=SUM 
200 CONTINUE 

C****************************************** 
C SOLVE FOR X USING BACK-SUBSTITUTION 
C****************************************** 

X(N)=Z(N)/A(N,N) 
DO 400 K=N-1,1,-1 

SUM=Z(K) 
DO 300 J=K+1,N 

SUM=SUM-A(K,J)*X(J) 
300 CONTINUE 

XCK)=SUM/A(K,K) 
400 CONTINUE 

CCC write(*,*)'Normal end Solve' 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

10 

CCC 

RETURN 
END 

SUBROUTINE STRANMAT(A,NR,NC,C) 
******************************************************** 
* SUBROUTINE: STRANMAT 
* 

* 
* 

* REMARKS THIS SUBROUTINE COMPUTES THE TRANSPOSE * 
* OF THE MATRIX A * 
* VARIABLES * 
* ========= * 
* ACNR,NC) MATRIX A * 
* NR # OF RO\.IS OF A * 
* NC # OF COLUMNS OF A * 
* C(NC,NR) MATRIX C = A' * 
******************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 
parameter Climit=70) 
common /jvga/nout 
DIMENSION A(limit,limit),C(limit,limit) 
DO 10 1=1,NC 

DO 10 J=1,NR 
C(I,J)=A(J,I) 

CONTINUE 
CONTINUE 

WRITE(*,*)' <NORMAL END SUBROUTINE 11stranmat 11> ' 
RETURN 
END 

FUNCTION GASDEVCIDUM) 
c ******************************** 
C GENERATES A GAUSSIAN DEVIATE 
c ******************************** 

IMPLICIT REAL*8(A-H,O-Z) 
real*4 ranval 
common /jvga/nout, nouh,iseedjv 
DATA ISET/0/,INIT/0/ 

e------lf first time randomize initial seed for rnd 
cc------This function generate a gaussian number using F77L 
c IF Cinit .eq. O)xdum=rrand() 
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c init=1 
c IF (!SET .EQ. 0) THEN 
c 1 V1 = 2.*RND()-1. 
c V2 = 2.*RND()-1. 
c R = V1*V1+V2*V2 
c IF (R .GT. 1.) GOTO 1 
c FACT = SQRT(-2.*LOG(R)/R) 
c GSET=V1*FACT 
c GASDEV=V2*FACT 
c ISET=1 
c ELSE 
c GASDEV=GSET 
c ISET=O 
c ENDIF 
c---This works forMS-Fortran ver 5.1 

IF (init .eq. O)then 
if(iseedjv .eq. O>then 

call gettim(ihr,imin,isec,i100th) 
else 

i100th=iseedjv 
endif 
call seed(i100th) 
write(nout,*)' INITIAL SEED FOR GASDEV2 IS :' ,i100th 
wri te(nout, *>' 
init=1 

END IF 

IF (!SET .EQ. 0) THEN 
call random(ranval) 
V1 = 2.*ranval-1. 
call random(ranval) 
V2 = 2.*ranval-1. 
R = V1*V1+V2*V2 
IF (R .GT. 1.) GOTO 1 
FACT = SQRT(-2.*LOG(R)/R) 
GSET=V1*FACT 
GASDEV=V2*FACT 
ISET=1 

ELSE 
GASDEV=GSET 
ISET=O 

END IF 
c---This works for MS-Fortran ver 5 

RETURN 
END 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE SCONDR(NP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU,ICOO) 
******************************************************** 

10 

20 

* REMARKS THIS SUBROUTINE TESTS THE ACCEPTANCE * 
* OF REGRESSED C'S BASED ON THE ACCEPTABLE* 
* PHYSICAL BOUNDS * 
* VARIABLES * 
* ========= * * CJV(NP) VECTOR OF REGRESSED Cs * 
* NP # OF PIPES * 
* CLOWB,CUPB LOWER AND UPPER BOUNDS FOR C * 
* NVIOCL,NVIOCU # OF VIOLATIONS FOR LOWER AND UPPER * 
* ICOO : O=NO VIOLATIONS; 1=REJECT REGRESSION * 
******************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 
parameter (limit=70) 
DIMENSION CJV(limit) 
ICOO=O 
DO 10 1=1,NP 

IF(CJV(I) .LT. CLOWB)THEN 
NVIOCL=NVIOCL+1 
GOTO 20 

END IF 
IF(CJV(I) .GT. CUPB)THEN 

NVIOCU=NVIOCU+1 
GOTO 20 

END IF 
CONTINUE 
RETURN 
CONTINUE 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CCC 

5 
CCC 

CCC 

CCC 

10 

* 

* 

ICOD=1 
RETURN 
END 

SUBROUTINE Slumpc(X,N,NP,LVEC,XL,NPLUMP) 
******************************************************** 
* SUBROUTINE: Slumpc 
* 

* 
* 

* REMARKS THIS SUBROUTINE AUGMENTS A MATRIX OF * 
* OBSERVATIONS OF DEPENDENT VARIABLES TO * 
* INCLUDE A INTERCEPT COEFFICIENT bo OF * 
* THE REGRESSION EQUATION * 
* * 
* VARIABLES * 
* ========= 
* A(NR,NC) : MATRIX A 
* 
* 

NR : # OF ROWS OF A 
NC : # OF COLUMNS OF A 

* 
* 
* 
* 

******************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
parameter (limit=70,nump=51) 
common /jvga/nout 
DIMENSION X(limit,limit),XL(limit,limit),LVEC(nump) 

print *, 1 Starting slumpc n= 1 ,n, 1 np= 1 ,np 
DO 5 I=1,N 

DO 5 J=1,NP 
XL(l,J)=O.O 

CONTINUE 
print *, 1 End of do 5 1 

ind=LVEC(1) 
print *, 1 ind =1 ,ind 

DO 10 I=1,N 
JL=1 
INC=O 

DO 10 J=1,np 
print *, 1 Inside do 10 i,j,inc 1 ,i,j,inc 

IF((LVEC(JL)) .EQ. J) THEN 
XL(I 1 ind)=XL(I 1 ind)+X(I,J) 
IF(JL .EQ. 1)INC=INC+1 
JL=JL+1 

ELSE 
INC=INC+1 
XL(l,INC)=X(l,J) 

END IF 
CONTINUE 
NPLUMP=INC 
RETURN 
END 

SUBROUTINE INDATA 

SUBROUTINE GENMPNL(MPL,M,JA,JB,KN,JIJ) 

* Subroutines from Lansey and Basnet(1991) 
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202 

03. Program to perform calibration assessment by 
Monte Carlo Method. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PROGRAM 
AUTHOR 
REMARKS 

JVASSMC. 
JOSE ARAUJO - OSU OCT/1991 
COMPUTES ASSESSMENT OF CALIBRATION BY MONTE CARLO 
SIMULATIONS 

11/14/91: Included condition MonteCarlo (2 criteria)subr. Snoisec 

Last revision Dec 17, 1991 

VARIABLES 
========= 

NRUNS 
ISEEDJV 

RCORC 

rsavec 

nmax 
iopt 

fsavec 
nsavec 
icondmc 

xnstd 
cmin,cmax 
KN 
KK 
NPJV 
cmeanjv 
cout 
c 
stdjv 
fsaveh 
finp 
ninp 

update 12!17/91 

Number of Monte Carlo runs 
Seed for pseudo random generator 
0 will start from clock i100th 
y - generate correlated noise for c 
n - generate uncorrelated noise 
y - save perturbed C's for posterior analysis 

(file name: for075.dat) 
define array dimension 
define level of output from subroutine SIM 
0 = restricted output, 1 = full output 
(output of geometry data from INDATA can be disabled 
by setting nsd = 1 in file for009.dat) 

name of file to save C's 
number of unit to save C's 

0 no restriction for noise on C 
1 Condition MonteCarlo-2 criteria 
Number of std to reject noise 
Minimum and maximum bounds to rejectC 
# of nodes (Kypipe routine) 
# of pipes ( 11 11 ) 

#of pipes (JVASSMC.for) 
mean C from estimation 
cmeanjv + noise 
same as cout(used for simulation) 
std c from estimation 
name of file to save H's 
input file for JVASSMC options 

: II Unit II II II 

to compute additional statistics in statjv 

parameter(nmax=100) 
implicit real * 8 (a-h, o-z) 
dimension cout(nmax),cmeanjv(nmax),stdjv(nmax), 

*covmatjv(nmax,nmax),cormatjv(nmax,nmax),factorjv(nmax,nmax) 
character*1 rcorc,rsavec,fsavec*20,fsaveh*20,resp,finp*20 
COMMON/SREVISE/JS(400) 
COMMON/SINDAT/JE(100),JG(100) 
COMMON /SHARI BM(1100), IX(2200), IP(100,13), AL(100), GFH(700), 

• AM(3800), JP(100), JXC4500) 
COMMON/SSIMIN/ JTAN(50),EMAX(50),EMIN(50),01AM(50),NfUL(50), 

1 LY(32),LZ(32),E(100),KPIC100),JD(100),JF(100) 
1,MPL(4500),NA(80),NB(80),JJUN(80),JPIP(80), 
1 NP0(50),NJ0(50),L10(10),L11(10),L12(10),XGRD(10),XGRD1(10), 
1 XGRD2(10),DDQ,IOUT,JSKIP,KJ,KTEP,MAXT,NJOUT,NMOM,NXX 
1 ,NPOUT,NPRP,NQ,NR,NTANK,NTEP,P,SW,TPER,TPPP 
COMMON/SALL/QEXTK(50),AA(50),BB(50),CC(50),D0(50),EE(50),FF(50), 

1 KIP(1000),JIJ(1000),KC(100),8(100),C(100),D(100),Q(100),JC(100) 
1,R(100),S(100),V(100),ENGY(100),JJI(100),KCL0(100),JA(100),JB(100) 
1 ,GG(50),A1,A2,A3,A4,CQ,I3,KN,NEPS,TIME,TNEXT,TPERI,TTT,UU,NJFIX 



1 ,IEPS,KK,CHECK,ZQ(60),NABEL,NPUMP,NCODE 
COMMON/PENAL/YMIN(100),YMAX(100) 
COMMON/SNAME2/M(100) 
COMMON /SINREV/ BI(100),JFIX(50),TNCD,JNCG,NPCG,NNP,LABEL,FAC, 

1 XPER,NQEX 
COMMON /INITBK/ INIT,LASTCL 
COMMON/SSIM/Y(100),YY(100),NEX(320),NIX(320), 

1 KCHNG,NTRS,IOPT,IERR 
common /JVGA/NOUT,ISEEDJV 
INTEGER JX,IP,M,JA,JB,IX,MPL,KC,KCLO,KIP,KPI,JIJ,JJI 

c----this lines were from nlcode setup 
do 1 j=1,1100 

bm(j)=O.O 
ix(j)=O 

continue 
init=1 

ninp=4 
write(*,*>' Input file for JVASSMC ?(CON for keyboard):' 
read(*,6022)finp 
open(ninp,file=finp,status= 1 old1 ) 

write(*,*>' Number of Monte Carlo runs? 1 

read(ninp,*)nruns 
write(*,*)' Select initial seed for random generator:' 
write(*,*)' (enter 0 for arbitrary seed )' 
read(ninp,*)iseedjv 

5 write(*,6000) 
6000 format(' Do you want to generate correlated noise for C ?(Y/N)') 

read(ninp,6001)rcorc 
6001 format(a1) 

if((rcorc .ne. 'Y') .and. (rcorc .ne. 'Y') .and. (rcorc .ne. 1 N1 ) 

*.and. (rcorc .ne. 'n'))goto 5 
icondmc=O 
xnstd=O.O 
write(*,*)' Condition Monte Carlo (Y/N) ? ' 
read(ninp,6001)resp 
if ((resp .eq. 'Y') .or. (resp .eq. 'Y'))then 

icondmc=1 
write(*,*)' Number of STD to reject noise ?1 

read(ninp,*)xnstd 
endif 
write(*,*)' Give minimum acceptable c ' 
read(ninp,*)cmin 
write(*,*>' Give maximum acceptable c ' 
read(ninp,*)cmax 

6 WRITE(*,*)' Save C perturbed for posterior statistics ?(Y/N) 1 

read(ninp,6001)rsavec 
if(( rsavec .ne. 'Y 1 ) • and. ( rsavec • ne. 1 y') • and. ( rsavec .ne. 'N') 

*.and. (rsavec .ne. 'n'))goto 6 
6022 format(a20) 

write(*,*)' Select desired level of simulation results 1 

write(*,*)' (0) restricted output; (1) full output : 1 

read(ninp,*)iopt 
c----define units for input/output files 
c unit 4 input file for jvassmc simulation options 
c unit 6 main output from jvassmc.for 
c unit 9 network geometry input file (Kypipe format) 
c 10 " simulation results (Kypipe output) 
c 66 results from parameter simulation (input file) 
c 75 save perturbed C's 
c 76 save simulated H1 s 

n66=66 
nout=6 
nsavec=75 
nsaveh=76 
fsavec= 1 for075.dat 1 

fsaveh='for076.dat' 
open(unit=nout,file='for006.dat 1 ) 

open(unit=10,file='for010.dat 1 ) 

c---open temp files used by Kypipe modules 
open(45) 
open(49) 

c----write simulation options 
call getdat(iyr,imon,iday) 
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call gettim(ihr,imin,isec,i100th) 
write(nout,7000)imon,iday,iyr,ihr,imin 

7000 format(5x, 'PROGRAM JVASSMC, Perform Assessment of calibration', 
*'by Monte Carlo method' ,/,5x,'Execution: ',i2,'/' ,;2,'/',i4, 
*3x, i2, I: I I i2,/) 
write(nout,7001)nruns,iseedjv,rcorc,rsavec,iopt,cmin,cmax 

7001 format(5x,'SIMULATION OPTIONS:',/,5x,'nruns ',i4,3x,'iseedjv ', 
*i4,3x,'rcorc ',a1,3x,'rsavec ',a1,3x,'iopt ',i3,' cmin ',f10.3, 
*3x,' cmax ',f10.3) 

if(icondmc .eq. 1)write(nout,7002)xnstd 
7002 format(5x,'*Condition Monte Carlo option* xnstd ',f10.3) 

write(*,*>' Reading network geometry · INDATA' 
c··· Read network geometry (Kypipe file) 

open(unit=9,file='for009.dat',status='old') 
call indata 
close(9) 

write(*,*)' Reading results from parameter estimation' 
c---Read results from parameter estimation 

open(unit=n66,file='for066.dat' ,status='old') 
read(n66,6010)npjv 

6010 format(i5) 
read(n66,6020)(cmeanjv(j),j=1,npjv) 

6020 format(10Cf13.6,1x)) 
read(n66,6030)(stdjv(j),j=1,npjv) 

6030 format(10(f13.8, 1x)) 
do 105 i=1,npjv 

read(n66,6040)(covmatjv(i,j),j=1,i) 
105 continue 

read(n66,6040)tracejv 
6040 format(10(e13.7,1x)) 

do 110 i=1,npjv 
read(n66,6040)(cormatjv(i,j),j=1,i) 

110 continue 
do 120 i=1,npjv 

read(n66,6040)(factorjv(i,j),j=1,npjv) 
120 continue 

read(n66,6010)npjv2 
close(n66) 

c---check integrity of file 66 

6050 

if(npjv .ne. npjv2)then 
write(*,*)' Error in file For066 from Estimation module' 
pause 
goto 9999 

endif 
if(npjv .ne. kk)then 

write(*,*)' Number of pipes different in for009 & for066' 
pause 
goto 9999 

endif 
if((rsavec .eq. 'Y') .or. (rsavec .eq. 'Y'))then 

open(unit=nsavec,file=fsavec) 
write(nsavec,6050)npjv,nruns 
format(i5, 1x, i5) 

endif 
open(unit=nsaveh,file=fsaveh) 
write(nsaveh,6050)kn,nruns 

C··---MONTE CARLO LOOP 

c--

* c----

200 
c---

6060 

c----

write(*,*)' Performing Monte Carlo Simulations' 
DO 1000 ILOOP=1,NRUNS 

Generate noise in coefficient C 
call snoisec(npjv,nmax,stdjv,factorjv,rcorc,cmeanjv,cout, 

icondmc,xnstd,cmin,cmax) 
Update C for simulation 
do 200 i=1,npjv 

c(i)=cout(i) 
continue 
Save C i f .des i red 
if((rsavec .eq. 'Y') .or. (rsavec .eq.- 'Y'))then 

write(nsavec,6060)(cout(i),i=1,npjv) 
format(10Cf13.6,1x)) 

endif 
Perform network hydraulic simulation 

c------ Reseting nrts to allow more than 8 executions of SIM 
ntrs=O 

CCC write(*,*)' Calling Sim' 
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call sim 
ccc write(*,*)' Saving Hs' 
c---- Save H's 

write(nsaveh,6070)(y(i),i=1,kn) 
6070 format(10Ce13.8,1x)) 
1000 CONTINUE 

close(nsavec) 
close(nsaveh) 

c------Perform statistics on H's 
ccc nnjv=kn 

write(*,*)' Calling statjv ' 
call statjv(kn,nruns,nsaveh,fsaveh) 

e------lf condition MC print statistics of violations 
if(icondmc .eq. 1)call snoisec(npjv,nmax,stdjv,factorjv,rcorc, 

*cmeanjv,cout,9,xnstd,cmin,cmax) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

write(*,*)' **NORMAL END JVASSMC**' 
9999 continue 

stop 
end 

SUBROUTINE SNOISECCNP,NMAX,STDC,FACTOR,RCORC,CINP,COUT,icondmc, 
*xnstd,cmin,cmax) 

******************************************************** 
* SUBROUTINE: SNOISEC 
* 
* REMARKS 
* 
* 
* VARIABLES 
* ========= 

GENERATES NORMALLY DISTRIBUTED NOISE 
AND PERTURB COEFFICIENT C 

* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

NP 
NMAX 
CINP 
COUT 
STDC 
factor: 

# of pipes * 
array dimension * 
mean value of c from par. estimation * 
contains cout + noise * 
contains std of c from par. estim. * 
Component loading of Core 11 11 * 
sqrt(lambda(j)*a(i,j) * 

RCORC Y = generate correlated noise on c * 
N = 11 uncorrelated noise * 

* w gaussian noise 
* x multivariate noise 
* iseedjv: seed for random generator 
* ( 0 will start from clock) 
* icondmc: 0 no restriction for noise on C 
* 1 Condition MonteCarlo-2 criteria 
* 9 print statistics on violations 
* xnstd : Number of std to reject noise 

* 
* 
* 
* 
* 
* 
* 

* cmin,cmax : Minimum and maximum bounds to rejectC* 
******************************************************** 

IMPLICIT REAL*8CA-H,O-Z) 
INTEGER NP 
PARAMETER CNUMP=100) 

* 

DIMENSION STDC(nmax),factor(nmax,nmax),cinp(nmaX),COUT(NMAX), 
*w(nump),X(nump),iviostdl(nump),iviostdu(nump),ivioub(nump), 
*iviolbCnump),vio(4) 
character*1 rcorc,vio*20 

COMMON /JVGA/NOUT,ISEEDJV 
data iviostdl/nump*O/,iviostdu/nump*O/,ivioub/nump*O/, 

*iviolb/nump*O/,vio(1)/'#nstdv lower'/,vio(2)/'#nstdv upper'/, 
*vio(3)/'cmin'/,vio(4)/'cmax'/ 

c----This option will be used at the end of the program just to print 
c----Statistics of violations 

if Cicondmc .eq. 9)goto 98 
c Check array dimensions 

if(nmax .gt. nump)then 
write(*,*)' Array dimension exceeded in snoisec 1 

pause 
goto 99 

end if 
2 continue 

c This procedure will generate gaussian noise 
do 3 i=1,np 

w(i)=gasdev(i) 
3 continue 

c This procedure will generate correlated noise 
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do 1000 k=1,np 
X(k)=O. 
do 2000 j=1,np 

x(k)=x(k)+w(j)*factor(k,j) 
2000 continue 
1000 continue 

C-----GENERATE NOISE MEAN 0, STD=STDC(i) 
DO 10 1=1,NP 

c----------check if c is within feasible limits 
IF ((CINP(i) .LT. cmin) .OR. (CINP(i) .GT. cmax))GOTO 90 
STD=STDC(I) 
if((rcorc .eq. 'Y') .or. (rcorc .eq. 'Y'))then 

error=x(i)*std 
else 

error=w(i)*std 
endif 
Cout(i)=CINP(i)+error 

10 CONTINUE 
c----Test if condition MC was selected 

if(icondmc .eq. O)goto 99 
c----Test rejection criteria for all pipes 

do 30 i=1,np 
31 continue 

c-----Test criteria 1; noise within nstd 
if (cout(i) .Lt. (cinp(i)·xnstd*stdc(i))) then 

iviostdl(i)=iviostdl(i)+1 
goto 35 

endif 
c-----Test of criteria 2, upper and lower bounds 

if (cout(i) .gt. (cinp(i)+xnstd*stdc(i))) then 
iviostdu(i)=iviostdu(i)+1 
goto 35 

end if 
if (cout(i) .Lt. cmin)then 

iviolb(i)=iviolb(i)+1 
goto 35 

endif 
if (cout(i) .gt. cmax)then 

iviolb(i)=iviolb(i)+1 
goto 35 

end if 
e-----lf no violation go to check next pipe 

goto 29 
e-----lf violation and correlated c needs to start all over again 
35 continue 

if((rcorc .eq. 'Y') .or. (rcorc .eq. 'Y'))goto 2 
c-----if not correlated c's generate new noise for that pipe 

w(i)=gasdev(i) 
error=w(i)*stdc(i) 
cout(i)=cinp(i)+error 
goto 31 

29 continue 
30 continue 

GOTO 99 
90 CONTINUE 

WRITE(*,*) 'CHECK RANGE FOR C=',CINP(I),' AT PIPE ',1 
pause 
goto 99 

98 continue 
c-----print statistics on violations 

do 9000 i=1,np 
if(iviostdl(i) .gt. 0)write(nout,9001)vio(1),iviostdl(i),i 
if(iviostdu(i) .gt. 0)write(nout,9001)vio(2),iviostdu(i),i 
ifCivioub(i) .gt. 0)write(nout,9001)vio(3),ivioub(i),i 
if(iviolb(i) .gt. 0)write(nout,9001)vio(4),iviolb(i),i 

9000 continue 
9001 format(/,' Criteria ',a20,' #of violations ',i4,' pipe', 

*i4) 
99 RETURN 

END 

FUNCTION GASDEVCIDUM) 
(Previously listed) 

c ***************************************************************** 
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c * Subroutine: STATJV * 
c * AUTHOR JOSE VICENTE GRANATO DE ARAUJO * 
c * DATE NOV 5, 1991 * 
c * REMARKS This subroutine computes the covariance and * 
c * correlation matrices of the values in a file * 
c * Updated from statisti.for from April 22, 1991 * 
c * VARIABLES * 
c * ========== * 
c * N NUMBER OF realizations * 
c * NP NUMBER OF VARIABLES * 
c * XCN,NP): MATRIX OF Values to compute statistics * 
c * nn : node nl.llber * 
c * q : node flow * 
c * press: node pressure * 
c * * 
c * INPUT FILE * 
c * ========== * 
c * nn, q, press * 
c ***************************************************************** 

SUBROUTINE STATJV(kn,nruns,nsaveh,fsaveh) 
IMPLICIT REAL*8(A-H,O-Z) 
INTEGER LIMIT 
PARAMETER (numv=50) 
DIMENSION covmatCnumv,numv),cormat(numv,numv),xmean(numv), 

*hjv(numv) 
COMMON /JVGA/NOUT,issedjv 
character*20 fsaveh 

ccc write(*,*)' Entering statjv' 
open(unit=nsaveh,file=fsaveh,status='old') 
read(nsaveh,6050)np,n 

6050 format(i5,1x,i5) 
if(np .ne. kn) then 

write(*,*)' Number of variables do not match in file',fsaveh 
pause 
goto 999 

end if 
if(n .ne. nruns) then 

write(*,*>' Number of runs do not match in file',fsaveh 
pause 
goto 999 

end if 
c------Compute mean of observations 
c DO 10 J=1,NP 
c 10 XMEAN(J)=O.O 
c DO 20 1=1,N 
c read(nsaveh,6070)(hjv(j),j=1,np) 
c 6070 format(10(e13.8,1x)) 
c DO 20 J=1,NP 
c XMEAN(J)=XMEAN(J)+hjv(J) 
c 20 continue 
c 
c close(nsaveh) 
c write(*,*)' Opening again ',fsaveh 
c open(unit=nsaveh,file=fsaveh,status='old') 
c read(nsaveh,6050)np1,n1 
c DO 30 J=1,NP 
c 30 XMEAN(J)=XMEAN(J)/N 
c write(nout,*)' Mean values 1 

c write(nout,6004)(xmean(j),j=1,np) 
c 6004 format(10(1x,f7.3)) 
c write(nout,*)' 1 

c------Compute covariance matrix 
c DO 45 1=1,Np 
c DO 45 J=1,Np 
c cormat(i,j)=O.O 
c 45 COVMAT(I,J)=O.O 
c do 100 i=1,n 
c read(nsaveh,6070)(hjv(j),j=1,np) 
c DO 200 K=1,NP 
c DO 200 J=1,K 
c covmat(k,j)=covmat(k,j)+(hjv(IC)-XMEAN(IC))*(hjv(J)-XMEAN(J)) 
c 200 continue 
c 100 continue 
c close(nsaveh) 
c do 300 k=1,np 
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c do 300 j=1,k 
c COVMAT(K,J)=covmat(k,j)/float(n-1) 
c 300 CONTINUE 
c 
c------lnitialize arrays 

DO 45 1=1,Np 
XMEAN(i)=O.O 

DO 45 J=1,Np 
cormat(i,j)=O.O 
COVMAT( I I J )=0.0 

45 continue 
DO 100 J=1,N 

read(nsaveh,6070)(hjv(k),k=1,np) 
6070 format(10(e13.8,1x)) 

DO 200 1=1,NP 
XMEAN(l)=XMEAN(l)+hjv(l) 

do 200 k=1,i 
covmat(i,k)=covmat(i,k)+hjv(i)*hjv(k) 

200 continue 
100 continue 

close(nsaveh) 
do 300 i=1,np 
do 300 k=1,i 

c write(*,*)covmat(l,k) 
COVMAT(i,k)=(covmat(i,k) -xmean(i)*xmean(k)/float(n))/ 

&float(n-1) 
300 CONTINUE 

write(nout,*)' Mean values ' 
write(nout,6004)((xmean(j)/float(n)),j=1,np) 

6004 format(10(1x,f7.3)) 
write(nout,*)' ' 
write(nout,*) 1 Covariance matrix' 
write(nout,*) ! =================' 
call sprtmat(covmat,np,np,numv) 

c---- Compute trace 
c trace=O.O 
c do 48 i=1,np 
c trace=trace+covmat(i,i) 
c 48 continue 
c write(nout,2000)trace 
c 2000 format(/,Sx,'Trace = ',f13.4,/) 
c---- Compute trace---Modified 12/17/91 

valmin=+1e09 
valmax=-1e-09 
trace=O.O 
do 48 i=1,np 

trace=trace+covmat(i,i) 
if(covmat(i,i) .gt. valmax)valmax=covmat(i,i) 
if(covmat(i,i) .Lt. valmin)valmin=covmat(i,i) 

48 continue 
traceav=trace/float(kn) 
write(nout,2000)trace,traceav,valmin,valmax 

2000 format(/,5x,'Trace = ',f13.4,5x,'Average Cov Hp = ',f13.4, 
*Sx,'Min value= ',f13.4,5x,'Max value= ',f13.4) 

c--Updated 12/17 to compute additional measures 
valmin=+1e09 
valmax=-1e-09 
trace=O.O 
icont=O 

do 400 i=2,np 
do 400 j=1,i-1 

icont=icont+1 
trace=trace+covmat(i,j) 
if(covmat(i,j) .gt. valmax)then 

valmax=covmat(i,j) 
imax=i 
jmax=j 

endif 
if(covmat(i,j) .Lt. valmin)then 

valmin=covmat(i,j) 
imin=i 
jmin=j 

endif 
400 continue 

traceav=trace/float(icont) 
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write(nout,2005)trace,traceav,valmin,imin,jmin,valmax,imax,jmax 
2005 format(Sx,•sum lower triangular Covhp = ',f13.4,2x, 

*'Average Cov Hp = ',f13.4,2x,'Min value= ',f13.4,2x, 
*'at row ',I3,2x,'col ',13,/,Sx,'Max value= ',f13.4,' at row', 
*i3,2x,', col ',13) 

c------Compute correlation matrix 
DO 49 1=1,NP 
DO 49 J=1,1 

49 CORMAT(I,J)=COVMAT(I,J)/DSQRT(COVMAT(I,I)*COVMAT(J,J)) 
write(nout,*) ' ' 
write(nout,*) ' Correlation matrix' 
write(nout,*) ' ==================' 
call sprtmat(cormat,np,np,numv) 
write(nout,*) ' ' 

999 continue 
ccc write(*,*)' Exiting statjv' 

RETURN 
END 

SUBROUTINE SPRTMATCA,M,N,mlimit) 
(See List in previous program) 

* The following subroutines are from Lansey and Basnet(1991) 

SUBROUTINE INDATA 

SUBROUTINE GENMPNLCMPL,M,JA,JB,KN,JIJ) 

SUBROUTINE SIM 

SUBROUTINE REVISECNSWIT, nepload) 

SUBROUTINE NAMECKK,W9,J) 

SUBROUTINE MA18A (A,IND,IW,N,NP,G,U,IA) 

SUBROUTINE MA18B (A,IRN,IP,N,NP,AWS,AVECT,MTYPE) 

SUBROUTINE MA18C(A,IRN,IP,N,NP,AGRO) 

SUBROUTINE MA18D (A,IRN,IP,N,NP,AWS,NAME) 
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04. Program to perform calibration assessment by 
First Order Approximation of the variance. 

c 
c 
c 
c 
c 
c 
c 

PROGRAM 
AUTHOR 
REMARKS 

JVASSFO.for 
JOSE ARAUJO - OSU NOV/1991 
COMPUTES ASSESSMENT OF CALIBRATION BY FIRST ORDER 
APPROXIMATION OF THE VARIANCE OF SIMULATED PRESSURES 

Last revision Dec. 17, 1991 

C VARIABLES 
c ========= 
C NRUNS Number of Monte Carlo runs 
C ISEEDJV Seed for pseudo random generator 
c 0 will start from clock i100th 
C RCORC y - generate correlated noise for C 
c n - generate uncorrelated noise 
c rsavec y - save perturbed C's for posterior analysis 
c (file name: for070.dat) 
c nmax define array dimension 
c iopt define level of output from subroutine SIM 
c 0 =full output, 1 = limited output 
c (output of geometry data from INDATA can be disabled 
c as an option in the for009 input data) 
c fsavec name of file to save C's 
c nsavec number of unit to save C's 
c hjv(i,j) pressure at node J caused by using (C+deltaC) at 
c pipe I 
c dhpdc(i,j) : dHPj/dCi 
c deltaC finite difference used to perturb C 
c 
c update 12/17/91 : Print mean H from base run (Cmean from for066) 
c 

parameter(nmax=100,nmax1=101,n50=50) 
implicit real * 8 (a-h, o-z) 

c dimension cmeanjv(nmax),stdjv(nmax),hjv(nmax,SO), 
c *covmatjv(nmax,nmax),cormatjv(nmax,nmax),factorjv(nmax,nmax), 
c *dhpdc(SO,nmax) 

dimension cmeanjv(nmax),stdjv(nmax),hjv(nmax1,n50), 
*covmatjv(nmax,nmax),cormatjv(nmax,nmax),factorjv(nmax,nmax), 
*dhpdc(nSO,nmax) 

character*1 rsavec,fsavec*20,fsaveh*20 
COMMON/SREVISE/JS(400) 
COMMON/SINDAT/JE(100),JG(100) 
COMMON /SHARI BM(1100), IX(2200), IP(100, 13), AL(100), GFH(700), 

• AM(3800), JP(100), JX(4500) 
COMMON/SSIMIN/ JTAN(50),EMAX(50),EMIN(50),DIAM(50),NFUL(50), 

1 LYC32),LZ(32),E(100),KPI(100),JD(100),JF(100) 
1,MPL(4500),NA(80),NB(80),JJUN(80),JPIP(80), 
1 NP0(50),NJ0(50),L10(10),L11C10),L12(10),XGRD(10),XGRD1(10), 
1 XGRD2(10),DDQ,IOUT,JSKIP,KJ,KTEP,MAXT,NJOUT,NMOM,NXX 
1 ,NPOUT,NPRP,NQ,NR,NTANK,NTEP,P,SW,TPER,TPPP 
COMMON/SALL/QEXTK(50),AA(50),BB(50),CC(50),DD(50),EE(50),FF(50), 

1 KIP(1000),JIJ(1000),KCC100),B(100),C(100),D(100),Q(100),JC(100) 
1,R(100),S(100),V(100),ENGY(100),JJI(100),KCL0(100),JA(100),JB(100) 
1 ,GG(50),A1,A2,A3,A4,CQ,I3,KN,NEPS,TIME,TNEXT,TPERI,TTT,UU,NJFIX 
1 ,IEPS,KK,CHECK,ZQ(60),NABEL,NPUMP,NCODE 

COMMON/PENAL/YMIN(100),YMAX(100) 
COMMON/SNAME2/M(100) 
COMMON /SINREV/ BI(100),JFIX(50),TNCD,JNCG,NPCG,NNP,LABEL,FAC, 

1 XPER,NQEX 
COMMON /INITBK/ INIT,LASTCL 
COMMON/SSIM/YC100),YY(100),NEXC320),NIX(320), 

1 KCHNG,NTRS,IOPT,IERR 
common /JVGA/NOUT,ISeEDJV 



INTEGER JX,IP,M,JA,JB,IX,MPL,KC,KCLO,KIP,KPI,JIJ,JJI 
c----this lines were from nlcode setup 

do 1 j=1, 1100 
bm(j)=O.O 
ix(j )=0 

continue 
init=1 

write(*,*)' Give deltaC to perturb C? ' 
read(*,*)deltac 

6001 format(a1) 
6 WRITE(*,*)' Save C perturbed for posterior statistics ?CY/N) ' 

read(*,6001)rsavec 
i fC ( rsavec • ne. 'Y') .and. ( rsavec .ne. 'y') .and. ( rsavec. ne. 'N') 

*.and. (rsavec .ne. 'n'))goto 6 
write(*,*)' Select desired level of simulation results ' 
write(*,*)' (0) restricted output; (1) complete output : 1 

read(*,*)iopt 
c----define units for input/output files 
c unit 80: output from jvassfo.for 
c unit 9 network geometry input file (Kypipe format) 
c 11 " simulation results CKypipe output) 
c 66 : results from parameter simulation (input file) 
c 85 : save C's perturbed 
c 86 : save H's simulated 

n66=66 
nout=6 
nsavec=85 
nsaveh=86 
fsaveh='for086.dat' 
fsavec='for085.dat' 
open(unit=nout,file='for080.dat 1 ) 

open(unit=10,file='for081.dat') 
c---open temp files used by Kypipe modules 

open(45) 
openC49) 

c----write input options: 
call getdat(iyr,imon,iday) 
call gettim(ihr,imin,isec,i100th) 
write(nout,7010)imon,iday,iyr,ihr,imin 

7010 format(5x, 'PROGRAM JVASSFO, Perform Assessment of calibration', 
*'by First Order Aproximation of the Variance method',/,5x, 
*'Execution: ',i2,'/' ,i2,'1' ,i4,3x,i2,':' ,i2,/) 

write(nout,7011)deltac,rsavec,iopt 
7011 formatC5x, 1 SIMULATION OPTIONS:',/,5x,'deltac ',f10.6,3x, 

*'rsavec 1 a1 3x 'iopt ' i3) 
c--- Read netwo~k ge~etry (KyPipe file) 

open(uni t=9, f i le='for009 .dat', status=' old') 
call indata 
close(9) 

c---Read results from parameter estimation 
openCunit=n66,file='for066.dat•,status='old') 
read(n66,6010)npjv 

6010 format(i5) 
read(n66,6020)Ccmeanjv(j),j=1,npjv) 

6020 format(10Cf13.6,1x)) 
read(n66,6030)(stdjv(j),j=1,npjv) 

6030 format(10(f13.8,1x)) 
do 105 i=1 ,npjv 

read(n66,6040)(covmatjvCi,j),j=1,i) 
105 continue 

read(n66,6040)tracejv 
6040 format(10Ce13.7,1x)) 

do 110 i=1,npjv 
read(n66,6040)(cormatjv(i,j),j=1,i) 

110 continue 
do 120 i=1,npjv 

read(n66,6040)(factorjv(i,j),j=1,npjv) 
120 continue 

read(n66,6010)npjv2 
closeCn66) 

c---check integrity of file 66 
if(npjv .ne. npjv2)then 

write(*,*)' Error in file For066 from Estimation module' 

211 



pause 
goto 9999 

end if 
if(npjv .ne. kk)then 

write(*,*)' Number of pipes different in for009 & for066' 
pause 
goto 9999 

endif 
if((rsavec .eq. 'Y') .or. (rsavec .eq. 'Y'))then 

open(unit=nsavec,file=fsavec) 
write(nsavec,6050)npjv,npjv+1 

6050 format(i5,1x,i5) 
end if 

open(unit=nsaveh,file=fsaveh) 
write(nsaveh,6050)kn,npjv+1 

c--·PHASE I - Compute DHPDC by finite differences 
c-----Loop to perturb each c by deltaC 

write(*,*>' Performing Hydraulic simulations' 
do 1000 iloop=1,npjv 

c---- Update C for simulation 
do 200 i=1,npjv 

c(i)=cmeanjv(i) 
200 continue 

c---- Perturb C(iloop) by deltaC 
c(iloop)=c(iloop)+deltac 

c--- Save C if desired 
if((rsavec .eq. 'y') .or. (rsavec .eq. 'Y'))then 

write(nsavec,6060)(c(i),i=1,npjv) 
6060 format(10Cf13.6,1x)) 

endif 
c-··- Perform network hydraulic simulation 

ntrs=O 
ccc write(*,*)' Calling Sim' 

call sim 
ecce write(*,*)' Saving Hs' 
c---- Save H's 

do 250 i=1,kn 
hjv(iloop,i)=y(i) 

250 continue 
write(nsaveh,6070)(y(i),i=1,kn> 

6070 format(10Ce13.8,1x)) 
1000 continue 

c----- Perform the base run 
do 300 i=1,npjv 

c(i)=cmeanjv(i) 
300 continue 

if((rsavec .eq. 'y') .or. (rsavec .eq. 'Y'))then 
write(nsavec,6060)(c(i),i=1,npjv) 

end if 
write(*,*)' Calling Sim for base run• 
call sim 

ccc write(*,*>' Saving Hs' 
do 350 i=1,kn 

hjv(npjv+1,i)=y(i) 
350 continue 

write(nsaveh,6070)(y(i),i=1,kn) 
close(nsavec) 
close(nsaveh) 
write(nout,*)' Mean values of H (FOSM) 1 

write(nout,6004)(y(i),i=1,kn) 
6004 format(10(1x,f7.3)) 

c------Compute sensitivity matrix dHp/dC 
c **Note Line NPjv+1 is the base run** 

do 500 i=1,npjv 
do sao j=1 ,kn 

Dhpdc(J,I)=(Hjv(NPjv+1,J)-Hjv(I,J))/DELTAC 
500 CONTINUE 

WRITE(NOUT,6011)NPjv,kN,DELTAC 
6011 FORMAT(5x,'# OF PIPES= ',I3,/,Sx,'# OF NODES= 1 ,I3,!, 

*Sx,'DELTAC = ',F12.6,/) 

c---PHASE II -Compute CovHp = dHP/dC *Cove* [dHP/dC]' 
call scovhp(kn,npjv,dhpdc,covmatjv) 

9999 continue 
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write(*,*>' **Normal end JVASSFO**' 
stop 
end 

c ***************************************************************** 
c 
c 
c 
c 
c 
c 
c 

* 
* 
* 
* 
* 
* 
* 

Subroutine: 
AUTHOR 
DATE 
REMARKS 

VARIABLES 
========== 

SCOVHP * 
JOSE VICENTE GRANATO DE ARAUJO * 
NOV 19, 1991 * 
This subroutine computes the covariance matrix * 
CovHp = dHP/dC * Cove * [dHP/dCl' * 

* 
* 

C * KN NUMBER OF NODES * 
C * NPjv NUMBER OF VARIABLES(pipes) * 
C * DHPDC(KN,NPJV) Partial dHP/dC * 
c * COVC(NPJV,NPJV): Lower triangular of Cov.of C from P.Est. * 
C * COVHP(KN,KN) Cov. matrix of HP = ab * dhpdct * 
C * DHPDCT(NPJV,KN): dhpdc' * 
C * AB(KN,NPJV) : dhpdc * cove * 
c ***************************************************************** 

SUBROUTINE Scovhp(kn,npjv,dhpdc,covc) 
IMPLICIT REAL*8(A-H,O-Z) 
PARAMETER (nmax=100,n50=50) 
DIMENSION dhpdc(n50,nmax),covc(nmax,nmax),covhp(n50,n50), 

*dhpdct(nmax,n50),ab(n50,nmax),cormat(n50,n50) 
COMMON /JVGA/NOUT,issedjv 

ccc character*20 fsaveh 
ccc write(*,*>' Entering scovhp' 
c-----Check dimension of arrays and solvability of system 

IF ( (npjv .GT. nmax) .OR. CKN .GT. n50))THEN 
WRITE(*,1)npjv,nmax,kn,n50 
format(1x,'DIMENSION OF ARRAYS EXCEEDED IN SCOVHP ',4(i5)) 
write(*,*)npjv,nmax,kn,nSO 
STOP 

END IF 
c----Form the upper part of matrix cove 

do 30 i=1,npjv 
do 30 j=i+1,npjv 

covc(i,j)=covc(j,i) 
30 continue 

C-----Compute CovHp = dHp/dC * Cov C * [dHp/dC]' 

call smultmat(dhpdc,kn,npjv,covc,npjv,npjv,AB,nSO,nmax,nmax,nmax) 
CALL STRANMAT(dhpdc,kn,npjv,dhpdcT,nSO,nmax) 
CALL SMULTMAT(AB,kn,npjv,dhpdcT,npjv,kn,COVHP,nSO,nmax,nmax,nSO) 

c----print input/output values 
write(nout,*) ' Sensitivity matrix dHp/dC' 
write(nout,*) ' =========================' 
call sprtmat(dhpdc,kn,npjv,nSO,nmax) 
write(nout,*) 1 ' 

write(nout,*) ' Cov C matrix' 
write(nout,*) 1 =============' 
call sprtmat(covc,npjv,npjv,nmax,nmax) 
write(nout,*) 1 1 

write(nout,*) 1 Cov Hp matrix' 
write(nout,*) 1 ==============' 
call sprtmat(COVHP,kn,kn,n50,n50) 
write(nout,*) 1 ' 

c---- Compute trace---Modified 21/07/91 
valmin=+1e09 
valmax=-1e-09 
trace=O.O 
do 48 i=1,kn 

trace=trace+covhp(i,i) 
if(covhp(i,i} .gt. valmax}valmax=covhp(i,i} 
if(covhp(i,i) .lt. valmin)valmin=covhp(i,i) 

48 continue 
traceav=trace/float(kn) 
write(nout,2000)trace,traceav,valmin,valmax 

2000 format(/,Sx,'Trace = ',f13.4,5x,'Average Cov Hp = ',f13.4, 
*Sx,'Min value= ',f13.4,5x,'Max value= •,f13.4) 

c--Updated 20/07 to compute additional measures 
valmin=+1e09 
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valmax=-1e-09 
trace=O 
icont=O 

do 100 i=2,kn 
do 100 j=1,i-1 

icont=icont+1 
trace=trace+covhp(i,j) 
if(covhp(i,j) .gt. valmax)then 

valmax=covhp(i,j) 
imax=i 
jmax=j 

end if 
if(covhp(i,j) .Lt. valmin)then 

valmin=covhp(i,j) 
imin=i 
jmin=j 

endif 
100 continue 

traceav=trace/float(icont) 
write(nout,2005)trace,traceav,valmin,imin,jmin,valmax,imax,jmax 

2005 format(Sx,•sum lower triangular CovHp = •,f13.4,2x, 
*'Average Cov Hp = ',f13.4,2x,'Min value= ',f13.4,2x, 
*'at row 1 ,13,2x,•col 1 ,13,/,Sx,'Max value= ',f13.4, 1 at row 1 , 

*i3,2x,•, col ',13) 
c------Compute correlation matrix 

DO 149 1=1,kn 
DO 149 J=1, I 

149 CORMAT(I,J)=COVHP(l,J)/DSQRT(COVHPCI,l)*COVHP(J,J)) 
write(nout,*) 1 1 

write(nout,*) 1 Correlation matrix• 
write(nout,*) • ==================' 
call sprtmat(cormat,kn,kn,n50,n50) 
write(nout,*) 1 ' 

999 continue 
ccc write(*,*)' Exiting scovhp' 

RETURN 
END 

SUBROUTINE SMULTMAT(A,MA,NA,B,MB,NB,C,max,nax,mbx,nbx) 
(Subroutine list is shown in previous program) 

SUBROUTINE STRANMAT(A,NR,NC,C,max,nax) 

SUBROUTINE SPRTMATCA,M,N,mlimit,nlimit) 
(See list in previous program) 

* The subroutines below are from Lansey and Basnet (1991) 

SUBROUTINE INDATA 

SUBROUTINE GENMPNL(MPL,M,JA,JB,KN,JIJ) 

SUBROUTINE SIM 

SUBROUTINE REVISE(NSWIT, nepload) 

SUBROUTINE NAMECKK,W9,J) 

SUBROUTINE MA18A (A,IND,IW,N,NP,G,U,IA) 

SUBROUTINE MA18B CA,IRN,IP,N,NP,AWS,AVECT,MTYPE) 

SUBROUTINE MA18C(A,IRN,IP,N,NP,AGRO) 

SUBROUTINE MA18D (A,JRN,IP,N,NP,AWS,NAME) 
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APPENDIX E 

STOCHASTIC CONVERGENCE OF THE MEAN AND STANDARD 

DEVIATION OF ROUGHNESS PAR&~ETERS 
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Figure G.4. Probability Distribution of H4 
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Figure G.5. Probability Distribution of H5 
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Figure G.6. Probability Distribution of H6 
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Figure G.7. Probability Distribution of H7 
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Figure G.S. Probability Distribution of H8 
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Figure G.9. Probability Distribution of H9 
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Figure G.lO. Probability Distribution of Hw 
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Figure G.ll. Probability Distribution of H11 
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Figure G.12. Probability Distribution of H12 
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