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CHAPTER I
INTRODUCTION

Water distribution systems are formed by pipes, pumps,
tanks and valves interconnected at junctions or nodes. The
distribution network of a municipality can consist of
hundreds of pipes or links with decreasing order of
importance according to their diameter and location in the
system. The hydraulic performance of the water distribution
network is generally analyzed through the use of a
mathematical model of the system. Such models are
representations of the real network and include functional
relationships among the components of the network. A
network is considered solved when the pressure and consumer
demands at all nodes and the flow in the pipes are known
(Shamir and Howard, 1977).

Engineers and system operators rely on the model
results and use them to make important and costly decisions.
Due to the complexity of existing systems and the need to
solve problems in a short period of time, the use of
simulation models is becoming imperative. Although such
models have been used for several decades, the evolution and
extensive accessibility of computer hardware and software

components makes it possible to apply modeling processes in



every aspect involved with water distribution networks.
Model results are used for several purposes including: the
design of a new system; the study of system performance
under different network stresses; the design of pipe line
extensions; the study of rehabilitation alternatives; the
analysis of strategies for system operations under normal
and emergency situations; etc. Due to the deterioration and
aging of existing water systems which were placed in
operation many decades ago, it is expected to be invested in
the U.S. hundreds of millions of dollars for rehabilitation
and expansion of these works.

One of the most important problems concerning the use
of mathematical simulators is determining whether ;he model
is actually capable of representing the physical system
under study. Proper calibration of model parameters is not
an easy task and may be assessed by different methods.

It is of most importance that the model be successfully
calibrated before its results can be reliably used for any
purpose. The cost of a conservative design increases with
increasing uncertainty in pipe roughness (Lansey et al.,
1989), so a better calibration will result in less cost for
the design. Unfortunately most calibration procedures have
been deterministically based (Walski, 1983b, 1986). Little
attention has been devoted to the impact of uncertainties in
calibration efforts. Additionally, data collection is
nearly universally overlooked because it requires great

effort and is a costly process. However, this additional
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cost may be insignificant if compared to the consequences of
making important decisions based on inaccurate results.

This research addresses the problem of improving the
calibration of a water distribution network model. It
focused on developing a basic framework for the calibration
considering uncertainties in inpﬁt data and model
parameters. The calibration procedure incorporates a
stochastic component to characterize the several sources of
errors and to analyze their propagation through the modeling
steps. The objective is to produce a calibrated model which
will better represent the physical system. This is
accomplished by assessing the uncertainties in model
predictions resulting from the uncertainties in input
variables and in calibrated parameters.

The calibration assessment determines if the current
knowledge of the parameters produces a model which is
adequate for the purposes of its use or if it is necessary
to collect more information to reduce parameter and model
uncertainties. The methodology can also be used to define
operational conditions for future data collection to improve

the model predictive ability.



CHAPTER II

BACKGROUND INFORMATION AND REVIEW

OF ESTIMATION TECHNIQUES
Water Distribution Modeling

A water distribution network is a system formed by a
series of pipes which are connected at nodes. Water is
supplied to the network from one or more sources named fixed
grade nodes. It can be delivered by gravity or pumped into
the network. Tanks may also be installed in the system to
act as buffers to improve pumping energy efficiency or to
function as contingency storage. The energy and flow
supplied by pumps and tanks are usually known with only a
small degree of uncertainty.

The hydraulic performance of a water distribution
network is generally analyzed through the use of a model of
the system. Such models are mathematical representations of
the real network and include functional relationships among
the components of the network. Models are used for several
purposes including the design of new systems; the study of
system performance under different network stresses; the
design of pipe line extensions; the study of rehabilitation
alternatives; the analysis of strategies for system

operations under normal and emergency situations; etc.

4
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Two major types of parameters must be calibrated in the
modeling process of a water network. The first type
consists of the roughness coefficients of the pipes which
are physical parameters and considered to be time invariant.
The other type of parameters is related to the network
operational condition consisting of consumer demands and
pressure heads at the nodes. These parameters vary in the
time domain according to the network usage. Examples of
demand conditions are normal, peak and fire loads.

If the nodal demands and pipe characteristics are
known, the flow distribution in the network can be computed
by solving a system of nonlinear equations. As a system
ages, the pipe characteristics, especially the roughness
factor, change at an unknown rate and becomes a source of
uncertainty to the modeling process.

In order to model a water distribution system, it is
convenient to adopt a simplified network to reduce the
complexity of the real system. One simplification is to
adopt similar pipes. In this case, pipes of the same
material, diameter and age are considered to have the same
roughness coefficient. However, this coefficient may vary
depending upon the pipe's location and amount of flow
through their links.

Another modeling practice is to use pipe network
skeletonization. 1In such systems, single pipes are used to
represent a group of small links. This may complicate the

interpretation of results since the roughnesses of the
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modeled pipes may not have a physical basis. The amount of
system discretization is a function of the type of study to
be developed and depends on the level of detail required for
the analysis.r

Before a simulation model can be used it must be
calibrated to the particﬁlar network of concern (Walski,
1983a, 1987). 1In the calibration process, unknown
parameters are adjusted by comparing model predictions with
field observations. Once the model is calibrated, it can be
used to predict system responses under selected operational

conditions.

Calibration Procedure

The calibration procedure is developed based on
measurements collected in the field which provide
information on systém usage and performance. These
measurements consist of pressure heads, flow rates, tank
levels, valve settings and concentrated demands which are
taken at selected points in the system. Nodal demand data
usually must be estimated. These data are called pseudo-
measurements. They cannot be directly measured because in
most cases consumer demands are distributed throughout pipe
links. For modeling purposes the distributed flows are
lumped at node locations. Lumped demands must be estimated
by the modeler or determined in the estimation process.

A typical field test used to collect measurements

consists in taking pressure head measurements at selected
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points in the system under estimated demand conditions. 1In
a second type of test, one or more fire hydrants are opened
causing a fictitious fire demand. Pressure and flow
measurements are taken at these points. Remote meters are
placed at other locations to record pressure heads during
the test. Additional information is available for tanks and
pump stations whose pressure heads and flows are monitored.

Besides performing system-wide tests, it is possible to
attempt to isolate a single 1link and conduct a flow test to
estimate the pipe roughness. A good estimate of a
particular pipes' roughness can be useful in improving the

estimation ability of a model.

Hydraulic Equations for

Distribution Network

The hydraulic equations of the flow through pipe
networks are based in the physical laws of conservation of
mass and energy. The first law expresses mass continuity at
each junction node. It requires the algebraic sum of flows
going into and out of the node to equal zero.

For each junction node j in the system a continuity

relationship can be written as (Boulos and Ormsbee, 1991)

NP
Y A;q, -0;=0 (2.1)
1=1

where

Np = the number of pipes



A, = 0, if the i® pipe is not connected to

junction j

A, = 1 or -1, depending whether the i™ pipe

flow is towards junction j or away from it

q, the volumetric flow rate at pipe i

Q

external demand at junction j.

As water flows in the pipes it looses energy due to the
friction with the pipe walls which appears as the pressure
drop along the extension of the pipe. The second law
requires the conservation of energy along each loop or path
in the network. This law is verified when the energy put
into the fluid by pumps inside the loop minus the
accunulated pipe energy losses sum to zero.

Each primary loop, which is an independent closed path,
generates an energy conservation equation of the form (Mays

and Tung, 1992)

E hy =Y Hymp, =0 (2.2)
i,J€I, ked,
where
Ls, = energy loss in pipe linking nodes i and j
I, = set of pipes in loop m
E&w@k = energy introduced by pump k
m = loop number
k = refers to pump

I = set of pumps in loop m.



When there is no pump inside the loop, the sum of the
energy losses around the loop equals zero. Energy
conservation equations can also be written for paths of
pipes between any two fixed grade nodes. If there are N;
fixed grade nodes, Ny-1 independent equations can be written

as
ABpey = Z b, - Hpump, (2.3)
i,7€I,

where
AEpgn = difference in total energy grade between

two fixed grade nodes (FGN)

I, = set of pipes in the path connecting the two
FGN
J, = set of pumps in the same path.

Equation (2.2) can be considered a special case of
equation (2.3) where the difference in total grade AE is
zero for a path which forms a closed loop.

The governing system equations can be expressed in
terms of unknown pipe flow or nodal heads using loop (or

path) equations or nodal equations.

Loop Equations

In a water distribution network the following equality
must hold

N, + N, +(N - 1) = N, (2.4)
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where
N, = the number of pipes
N, = the number of junction nodes
N, = the total number of independent loops
Ng = number of fixed grade nodes.

The structure of the loop equations requires that each
component of the path equations, Eqg. (2.3), to be expressed
in terms of the flow rate. The total energy loss, h;, in

each pipe is due to two sources and may be expressed as

h, = h, + hy, (2.5)
where

h,, =K, g, is the energy loss along the line

h,, = K, ¢, is the localized loss due to special

fittings

K, = a coefficient of physical pipe characteristics

K, = coefficient related to the fitting

q = the pipe flow raised to a power n.

Coefficient K, is a function of the pipe length,
diameter and roughness. The computation of K, as well as
the value of the power n depends on whether the energy loss
expression used in the analysis is the Hazen-Williams or
Colebrook-White equation.

The energy due to the pump in the line may be expressed

as a function of its power as
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Hoump = Tzz (2.6)
where

Hum = energy added by the pump

Z = 8.814 Pu/S (for English units)

Pu = useful power of the pump

S = specific gravity of the liquid.

By expkessing the energy losses in terms of the flow

rate, equation (2.3) becomes

AE =Y (K, an+ K, @) -E—g (2.7)

Equations (2.1) and (2.7) form a set of N, simultaneous
nonlinear algebraic equations with respect to unknown flow
rates at each pipe. They are called the loop equations.

Typically, the energy relationship for components of
water distribution systems is written in terms of the Hazen-
Williams equation. Another equation expressing head loss in
pipes is the Darcy-Weisbach equation used in conjunction
with the Colebrook-White formula. Both flow models have
been reported to be well suited for modeling distribution
networks under certain conditions (Usman et al., 1988). The
Hazen-Williams equation is not very precise in the laminar
and transition flow regimes. The Colebrook-White equation
incorporates temperature and flow regime dependent
coefficients making its use adequate for modeling dynamic
situations under varying flow conditions and seasonal

variations. Additional review on both equations can be
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found in Tullis (1989) and American Society of Civil
Engineers (1975).

The Hazen-Williams equation was adopted in this
research because of its wide acceptance in the USA and
England and pipe flows in most water distribution systems
are in the turbulent regime. To represent the energy loss
in a pipe the Hazen-Williams equation can be expressed in

terms of the flow rate as

q = K, Cyy A R*S sg% (2.8)
where

q = pipe flow rate in cubic feet per second (cfs)

K, = 1.318 (for English units)

Cyw = Hazen-Williams roughness coefficient

A = pipe cross section area in square feet (sg-ft)

R = hydraulic radius of the pipe in feet (ft)

S¢ = h; /L, slope of the energy line

h; = total energy loss between the pipe extremes (ft)

L = length of the pipe (ft).

Considering no pumps or special fittings in the pipe,
the slope of the energy line, S;, is due to the pipe losses
only. The energy loss along the line can be computed as the
difference in pressure between junctions at the pipe ends
(H

, - H). By expressing the area and hydraulic radius as

functions of the pipe diameter, equation (2.8) becomes

D2.53] { (H,-H,) ]o.54

41-63 L (2.9)

g==E;<;m1t[
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where

D = pipe diameter used to express the hydraulic radius.

The above equation can be further simplified to

- (Hi_Hj) 0.54

A Caw (2.10)

where

L0.54

K2 =1.755 Kl W

The energy loss in the pipe, h;, can be expressed in a
similar form of Eq. (2.5) where n equal 1.852 and K, equal

Node Equations

The node (or head) equations use only continuity
relations defined by Eq. (2.1) and consider nodal pressures
as unknown instead of pipe flow rates. For the node
represented in Figure 2.1, which has assumed flow directions
defined by the arrows, an equation can be written of the

form

H.-H. 0.54 H.-H. 0.54 H.-H 0.54

where
K is the coefficient defined in Eq. (2.5).
Equation (2.11) can be written for each junction in the

network forming a system of nonlinear equations with the
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number of unknowns corresponding to the number of nodal
heads. Since both the loop and node equations
represent nonlinear algebraic relationships, no direct
solution is possible. They are solved by applying iterative

techniques.
Network Simulator

Several algorithms have been developed to solve the
nonlinear equations of the flow through pipe networks and
have been incorporated in network simulators. One of the

most widely accepted of such programs, KYPIPE, the

Figure 2.1. Junction Node with Three Pipes
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University of Kentucky water distribution simulation model
(Wood, 1981), was used in this research. The program uses
the linear method that has proved to be very reliable and
efficient to solve these equations (Wunderlich and Giles,
1986) .

The algorithm used for the solution of the loop
equations makes use of gradient methods to handle the
nonlinear flow rate (q) térms in the energy equation (2.7).
These equations are firs£ linearized in terms of an
approximate flow rate q,, in each pipe. Based on an
arbitrary initial value for the flow in each line, the
linearized equations are solved using routine matrix
procedures for solving linear equations. A second solution
is then‘obtained. The above procedure is repeated until the
changes in flow rates obtained in successive trials are
insignificant. Because all flows are computed
simultaneously, convergence is expected and occurs within a

few iterations.
Parameter Estimation Techniques

Common water distribution system modeling practice is
to use ad hoc calibration procedures. Simply, the modeler
adjusts pipe roughness coefficients and consumer demands
arbitrarily or with judgment to force predictions of
pressure heads and pipe flows to agree with measurements
taken at a few points in the system.

Walski (1983b, 1986) and Bhave (1988) proposed
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equations for correcting C factors and nodal demands based
on fire flow tests conducted in the network under both high
and low water uses. Rahal et al. (1980) presented a process
for adjusting pipe resistance parameters and parabolic pump °
coefficients for steady state simulations based on the
sensitivity of the relative discrepancy between observed and
calculated values. The procedure generates global
adjustment factors to be applied only to network elements
that are affected by the tests. They do not allow
calibration of individual elements of the network.

More robust techniques for parameter estimation in
water distribution systems may be described as either
analytic or optimization methods. Analytic approaches are
also referred to as explicit or indirect methods and are
frequently used in distribution network systems.
Optimization techniques, also referred to as implicit or
indirect solutions, have proved to be a powerful tool in the
solution of the network equations.

Uncertainty analysis methods, although of frequent use
in groundwater and hydrologic systems, have been applied by
few researchers as parameter estimation procedures for
distribution networks. While the first two approaches are
characterized as dealing only with exact values, these
methods attempt to analyze the measurement, parameter and
model uncertainties. An overview of the parameter

estimation methods is presented below.
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Analytical Methods

The parameter estimation methods described in this
category solve the mathematical formulation of the
hydraulics of the water distribution network expressed as a
deterministic system of nonlinear equations. This method is
commonly used in network simulators considering known values
of consumer demands and pipe resistance factors. The system
is solved for the unknown pressure at nodes or flow rates in
the pipes. The solution methodology consists of inverting
the coefficient matrix of the parameters (or using its
pseudo inverse). By redefining the unknowns and including
field measurements as known information, it is possible to
reformulate the equations and solve directly for other
unknowns, such as pipe roughness coefficients.

Shamir and Howard (1968) presented a method for solving
the network node equations for a combination of unknown
elements such as nodal heads, consumptions or pipe
resistance factors. A first order Taylor expansion about a
current state vector estimate is used to linearize the flow
equations which are solved iteratively by the Newton-Raphson
method. The system is solved for correction terms of the
different unknown elements. The solution of the set of
equations is dependent on the distribution of the unknown
parameters in the physical system. A unique solution is
guaranteed if the matrix formed by the coefficients of the

unknown parameters and the constant vector are of full rank.
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This criterion can be met if each node in the system has one
unknown. The unknowns may be: (1) the external demand at
the node, (2) the pressure head at the node or at adjacent
node, or (3) the loss coefficient of a pipe which is
connected to the node.

Observability analysis for distribution networks
attempts to determine a minimum set of measurements that
will provide sufficient information for the computation of
all other unknown parameters. Bargiela (1985) presented an
algorithm for determining observability in water
distribution system state estimation (i.e., demand
estimation with known pipe parameters), based on the
structure of a global matrix defined as a function of meter
placement and network topology. His study introduces the
concept of topological observability with respect to a given
measurement set and suggests a method of finding an
observable spanning tree of the network based on graph
theory.

Measurements are often scarce in water distribution
collection efforts and it is necessary to add pseudo-
measurements so that the system of equations remains
solvable. The pseudo-measurements introduced are obtained
by estimation or interpolation between measurements. These
estimates contribute to increase the degree of uncertainty
in the calibration process and to reduce model prediction
accuracy.

Ormsbee and Wood (1986) developed an explicit method
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for the network calibration in which they solve the flow
equations in terms of head loss coefficients. The original
loop equation formulation considered a system of N,
equations which were solved for N, unknown pipe flow rates.
In the algorithm additional continuity and energy equations
supplement the loop equations and allow an equal number of
decision variables to be computed. The added variables can
be either headloss adjustment factors or head loss
calibration coefficients. The solution technique was based
on the linear method and was capable of analyzing only a
single loading condition.

Cohen and Carpentier (1988) studied observability
improvements by taking the dynamic behavior of the system
into consideration. They assumed that a static demand
condition could be measured at different times with
measurements taken at different locations each time. This
practice increases the number of measurements for each
demand condition. With the additional measurements, the
observability criterion may be met. The authors state that
the main difficulty of the approach lies in the proper
choice of the pseudo-measurements which must be selected
according to the particular system.

Parameter estimation under a single loading condition
is not a reliable procedure due to compensating errors which
might occur in setting parameter values, i.e., the solution
is not unique. Several parameter estimation algorithms have

been reported to improve calibration of distribution
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networks considering multiple demand loads. Rahal and
Sterling (1981) considered a dynamic approach for the
calibration problem using data from extended period
simulations. In this case thevloading conditions varied
with time and the dynamics of the reservoir hydraulics were

included in the solution methodology.

Optimization Methods

Some authors have proposed implicit solutions to
estimate parameters of hydraulic network models, based on
mathematical programming. Such techniques seek the best
values of parameters which minimizes an objective function
expressed as a norm of the discrepancy between observed and
computed values. These values can be nodal pressures, pipe
flow rates, or tank levels, or any combination of the
measurements. The procedure also allows one to impose
physical limitations on parameters and to fix operating
ranges for individual network components which are
introduced in a form of constraints in the optimization
problem.

Powell et al. (1988) and Sterling and Powell (1989)
applied an iteratively re-weighted least squares algorithm
for the state estimation problem in which the weights are
modified within each Newton-Raphson step to improve
convergence. This method, although adequate for on-line
monitoring, requires measurement redundancy levels that are

not often obtained even in the best telemetry systems. It
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also requires previous knowledge of the covariance matrix of

the measurement error term which is used as the weight
function. This method, however, did not address any
uncertainty in estimation of consumer demands or nodal
pressure head measurements. Since a linear regression
analysis was performed at each step of the analysis, no
limit was placed on the acceptable range of the demands.
Ormsbee (1989) and Lansey and Basnet (1991) used
nonlinear programming algorithms to estimate demands and

pipe roughness coefficients considering individual and

multiple loading conditions. Both authors used a problem

reduction technique in which the number of constraints were

decreased by the use of a simulation model. The simulation

model is capable of solving the network equations for the

unknown nodal pressure heads, pipe flows and/or tank levels,

given a set of roughnesses coefficients and consumer demands

which are the parameters to be calibrated. Simulation

results are used to evaluate both the objective function and

the implicit constraints for a set of calibration parameters

generated at each optimization problem iteration.

Lansey and Basnet's procedure allowed one to consider
one or more demand pattern and extended period simulation
simultaneously. The model's ability of finding optimal
solutions is restricted by the type and number of
measurements available and by the system observability.
Boulus and Ormsbee (1991) extended Ormsbee's work to

multiple demands and time varying conditions.
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Uncertainty Analysis

The procedures described earlier did not consider the
quality of the input values used for the calibration
algorithm. They all attempt to find unique values for
parameters without assessing their reliability. In a more
realistic environment there are several sources of
uncertainfy present in the various phases of the parameter
estimation process.

As discussed eérlier the conceptual model of the
network is itself a simplification of the real system being
modeled. Measurements of heads and flow may contain errors
due to the instrument precision and data acquisition and
processing. Consumer usage may be over or underestimated.
This reflects a disadvantage of the use of a deterministic
estimator in that the resulting parameters may be invalid
because errors in input data are not accounted for. The use
of a purely deterministic estimator may compromise the
application of the modeling results due to a lack of
knowledge of the reliability of the parameter values and
resulting model predictions.

Few authors have addressed uncertainty considerations
in modeling water distribution systems. Bargiela(1989)
studied the propagation of uncertainty in measurements of
pressure heads and estimation of consumer demands to other
nodes in the network. He proposed methods for computing

error bounds for the demands considering a complete
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knowledge of the pipe roughnesses coefficients. The
procedure, however, does not provide any information on the
mean, variance and type of distribution for the error term
nor does it address the issue of pipe roughness calibration.

Leroy (1988) applied a simple Monte Carlo to examine
uncertainty in pipe roughness which consisted basically of
performing a sensitivity analysis for the pressure at a few
points in the system, considering a highly parameterized
network.

Lansey and Basnet (1991) introduced errors in
measurements and pseudo-measurements at selected nodes and
attempted to calibrate pipe roughness and remaining demands
using their gradient based optimization procedure. They did
not, however, characterize the structure of the error term
or assess the impact of the different magnitudes and types

of errors.

Other Applications of Parameter

Estimation

Statistical analysis has been applied to study the
influence of the errors in the modeling of hydrologic
systems (Troutman, 1985). Three types of uncertainties were
identified: model errors, input errors, and parameter
errors. The error was characterized as a random variable
associated with a probability distribution. The
identification of the error term was restricted to the

knowledge of the distribution of the parameters.
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A survey of parameter identification procedures used in
groundwater systems is presented by Yeh (1986). The
solution methodologies are classified into two broad
categories based on the equation error criterion and on the
output error criterion. Equation error criteria are the
procedures using analytic solutions. In this category model
parameters appear as dependent variables and missing data
are estimated to make the system solvable. Output error
criteria are based on optimization algorithms which minimize
a function containing the discrepancies between measured and
computed values. A potential problem of not achieving a
global optimum may arise since the minimization problem is
usually nonlinear and nonconvex. The methods applied in
water distribution analysis are similar in sophistication to

those presented for modeling groundwater systems.
Parameterization and Model Reduction

Since system parameters must typically be inferred from
few measurements, model simplification is commonly adopted.
Usual practice is to remove pipes which are assumed to have
small influence on system pressures and thus form a smaller
network model (skeletonization) or assume that sets of pipes
have the same roughness coefficient (parameterization). If
pipe characteristics are known, then simple configurations
(pipes in series or parallel) can be easily reduced to an
equivalent pipe. Hamberg and Shamir (1988) developed a

skeletonization procedure which reduces complex sets of



25
pipes to an equivalent system. The method, however,
requires the pipe and demand characteristics to be known.

When the system characteristics are being determined,
the above methods cannot be applied without assumptions.
Yeh and Yoon (1981) developed a method to examine the impact
of parameterization in groundwater systems. Model error
which increases with higher levels of parameterization and
the parameter error which conversely decreases were computed
assuming the complete system is known. The modeler can then

define the acceptable tradeoff level.

Data Collection and Optimal

Experiment Design

In many systems the structural configuration cannot be
directly measured. They are inferred from limited
observations of the system responses. These observations
must be collected in a time and space domain and they
contain errors. A need for an efficient data collection
procedure for such systems motivated researchers to consider
the problem of experimental design. Optimal experimental
design is an active research area in control theory (Walter,
1987). These techniques have been applied and extended in
the groundwater area.

The goal of an experimental design is to collect the
most valuable information which will reduce the parameter
uncertainty and improve the predictive ability of the

simulation model. Several optimality criteria have been
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applied in designing data collection for groundwater
systems. They differ according to the measure of the system
reliability adopted. The A-optimality criterion minimizes a
trace of the covariance matrix of estimated parameters while
satisfying all system constraints. The D-optimality
criterion minimizes the determinant of the estimates!'
covariance matrix. These criteria had been used for
scheduling pumping tests for identification purposes
(Nishikawa and Yeh, 1989). Other criterion using the
concept of maximum information is reported for determining
placement of sampling wells for transport parameter
identification (Cleveland and Yeh, 1990, 1991).

The objective of these methods is to reduce parameter
uncertainty which is not the overriding goal of the modeling
effort. Severél extended identifiability criteria have
recently been introduced which focus on the prediction
uncertainty (Chavent, 1987; Hsu and Yeh, 1989; and Sun and
Yeh, 1990). These measures have been applied in groundwater
estimation to select static experimental designs.

The original work of Federov (1972) introduces the
basic concepts of experimental design and presents several
identifiability criteria. General algorithms for obtaining
D-optimal designs were revised by St. John and Draper

(1975) .



CHAPTER III
RESEARCH OBJECTIVE AND SCOPE OF WORK

The problem addressed in this research is to improve
water distribution system modeling. It is desired to
produce a model which best reproduces the responses of the
physical system. This réquires an understanding of the
sources of uncertainties and how they propagate through the
modeling process. The overall objective is to develop a
framework for calibration of a model to the network system
to achieve a desired level of accuracy in the model output
values. The goal is to provide engineers and system
operators with a reliable system representation allowing

them to make more informed decisions.
Scope of the Work

The product of this research is a methodology for
calibration of a model for water distribution network
systems considering parameter estimation, data collection
and techniques for analyzing the parameter estimates' and
model predictions' uncertainties. To achieve the research
objectives, a series of statistical procedures were linked
to consider the effect of measurement uncertainty on the

parameter estimates, to assess the impact of parameter

27
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uncertainty on model prediction, and to assist in defining
data collection conditions based on model prediction
uncertainty. The additional information will be used to
reduce parameter and model uncertainties.

The parameters to be estimated are the pipe roughness
coefficients for a single pipe or a group of pipes in a
skeletonized network. It was assumed that these parameters
represent the total loss in each component including minor
valve losses and reductions in pipe diameter.

The collected field data are the nodal pressure heads,
tank levels, and pump pressure and discharge. Nodal demands
are assumed to be known exactly or their statistical
distributions are known. Since data collection is expensive
and time-consuming, ineffective measurements must be
avoided.

Specifically, the research consists of formulating a
calibration procedure which considers errors in field
measurements and their resulting impact on model
predictions. To complete the calibration methodology the
components developed were:

1. A linear regression model for estimating system
parameters using assumed and/or measured field data and
their statistical distributions.

2. An error analysis procedure for the regressed parameters
using conditioned Monte Carlo analysis to determine their
statistics and distributions.

3. A technique for evaluating the propagation of parameter
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errors to model predictive ability using Monte Carlo and
first order second moment approaches.

4. A procedure to analyze the worth of future data

collection conditions.

The resulting computer programs were then applied to
various systems and for different system conditions to learn
about the relative importance of the different information

in the overall calibration process.

Uniqueness of Research

Most water distribution system models have been
deterministically based and do not consider uncertainties
introduced by modeling assumptions or errors in parameters.
Also, methods for statistically evaluating the goodness of
the modeling results are limited.

Current calibration techniques for water distribution
networks are insufficient to verify that the model
represents reality. Representing reality is the basis upon
which all models must be ‘judged and tools to assist modelers
achieve these goals are lacking.

‘This research is an initial effort to quantify the
uncertainty in parameter estimates and model predictions.
The integrated calibration approach provides guidance in
collecting additional data to reduce these uncertainties.
The result of applying this methodology will be system

models which more closely represent reality. Better models
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will lead to more informed decisions regarding operations,

design, maintenance and monitoring.

This research is unique for the following reasons.
No other published work has considered a comprehensive
integrated process for calibrating a water distribution
network.
This effort is the first to consider the impacts of
errors in field data on the model parameters and model
predictive ability.
No other modeler has considered the parameters and model
predictions of water distribution systems as statistical
variables which can be represented by their mean and
variance, and approximated by a probability distribution.
This is the only procedure which examines the value of
field information and uses that information to determine
useful conditions to guide future data collection

efforts.



CHAPTER IV
CALIBRATION PROCEDURE

Basic Steps of the Calibration

Methodology

The methodology for the calibration of water
distribution systems considering uncertainties is comprised
of three basic steps: Data Collection, Parameter Estimation,

and Assessment of the calibration. These steps are depicted

in Figure 4.1.

Data
LCollection

Parameter
Estimation

|

Asseossmeont

Figure 4.1. Basic Steps in the Calibration Procedure
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The purpose of a data collection effort is to provide
sufficient and reliable field measurements to be used as
input data in the estimation of model parameters. Several
types of measurements can be collected at selected locations
in the system. These measurements can be the pressure head
at junctions, pipe flow rates, and a set of operating
conditions on pump status and tank levels reflecting the
system usage at the time the measurements were taken. So,
additional information on estimation of consumer demands,
pump discharges, and valve settings are needed to augment
the real measurements and to complement the input data
required to estimate the unknown parameters.

Before being accepted as a valid information and used
to estimate model parameters, the collected data needs to be
filtered to identify and reject gross errors. This
screening process determines if the measurements satisfy the
physical constraints of the system. If too much information
is rejected, observability problems may occur, since it may
not be possible to collect the missing data again because
the system's operating condition will likely have changed.
The observability problem appears when the remaining
information is not sufficient for stability of the
estimation routine.)

The second step in the calibration procedure consists
of estimating the unknown parameters. This process aims to
determine the best values for the parameters such that model

outputs agree with field measurements. In water
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distribution systems a typical parameter is the roughness
coefficient of pipes, specifically the C-factor in the
Hazen-Williams equation. This parameter describes the loss
of energy caused by the friction between flowing water with
the pipe walls.

Another parameter that must be calibrated is consumer
demands which are luﬁped at node locations. The magnitude
of these demands follow a cyclic pattern over the day and
also vary with season, weather condition, and emergency
situation. Examples of such situations are: high demands
used to fight fires, pipe line breaks and pump shutoff
caused by power failure. Although a parameter estimation
procedure for a water distribution system may allow one to
consider other types of unknowns, the procedure developed in
this research concentrated primarily on determining values
for unknown roughneés coefficients. The demands and their
statistics were generally assumed known values.

Calibration alone does not provide a means of
evaluating how well the model results reproduce the actual
system behavior. Evaluation is usually accomplished by
validating model results with field measurements which were
not used for parameter estimation. To supply information
for future data collection efforts an alternative is used in
this research.

The third step of the calibration procedure consists of
assessing the impact of the calibrated parameters on model

predictions. Assessment analysis will determine the
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uncertainty in predicting system performance for critical
demand conditions. The assessment is usually performed for
a different loading condition than those used for
calibration. A measure of the calibration assessment
reliability must be defined for the specific system and
purpose of the simulation model. For example, the variance
of the computed pressure at nodes, Var(Ha), can be used to
quantify the uncertainties in model outputs for individual
junctions. An overall system measure can be defined as the
summation of individual pressure variance at selected nodes.
A vector of weights could also be adopted to stress the
importance of critical nodes. Another assessment measure
could be a norm of the covariance matrix of computed nodal
pressures. If the trace of that matrix is adopted as a norm
(trace cov(Ha)), the measure would be computed by adding the
pressure variances at all nodes.

The reliability measure can be used as the criterion in
a procedure to evaluate and select data collection
strategies for takihg new measurements. An algorithm can be
formulated within the calibration loop to minimize this
measure for all or selected nodes in the system. The
objective of this procedure is to identify conditions that
provide the maximum information to obtain reliable estimates
of model parameters. It may be found that parameters are
not being estimated with the required accuracy to assure a
desired level of confidence in the model results. If this

happens, the entire process is repeated from step one in
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which more data is collected, possibly, under different
conditions. The new measurements are expected to augment
the available input data in such a way to improve parameter
estimates.

The use of more reliable parameters contribute to
decrease the uncertainty levels of the results derived from
the model. A straight forward validaéion is also possible
to compare model results with field observed conditions. As
for any modeling process, validation and calibration should
continue to be performed over time after the initial
calibration effort is completed.

The assessment of the accuracy of the calibration
results is important for design purposes especially in the
analysis of nodes with low pressure. A larger variability
in the pressure at these nodes is of great concern since
there is a risk of not meeting the minimum required pressure
for these nodes. When using simulation results to help in
operation decisions, it would appear advantageous to have
similar pressure uncertainties for all nodes and to have
small uncertainty in tank level predictions. In this
research the assessment was limited to steady state
conditions but it can be extended to consider extended
analysis through time.

The methodology for calibration of water distribution
systems implements the basic steps of the modeling process
discussed: data collection, parameter estimation and

calibration assessment. A calibration process diagram
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showing the steps involved in the methodology is presented
in Figure 4.2. Each block in the diagram represents a
specific task which may be accomplished by a single routine
or by a sequence of procedures. There may be alternative
options to accomplish the tasks specified within each block,
as described in detail in the next sections.

As a preliminary'step, initial estimates of parameter
C's and their variances are assumed based on the available
information of the physical system. At this stage a large
variance may be assigned to the C's reflecting the high
level of uncertainty in their estimates. This step
corresponds to block 0 in the calibration diagram. Block 0
is only executed at the initial stage of the calibration
effort. After one iteration is completed, parameter
estimates are obtained from blocks 10 and 11.

The purpose of a water distribution model is to
represent the system so knowledgeable decisions can be made.
Therefore, after the parameters and their uncertainties have
been estimated, the impact of model reliability must be

assessed.
Calibration Assessment

The calibration procedure starts in block 1 by
selecting the network loading condition to be reproduced by
the model when its calibration has been successfully
accomplished. The methodology provides a means to evaluate

the calibration accuracy by assessing the model's capability
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of simulating the desired network condition (or conditions)
such that the uncertainty in model outputs fall within a
prescribed range. This range is determined based on the
specific purpose of the application under consideration.

The accepted range will define stopping criteria for the
calibration loop. The selected loading condition, or set of
conditions, are called the assessment demands. Usually,
assessment demands contain high flows to stress critical
nodes in the system. These demands are selected by
assigning consumer withdrawals for a single period of time
or for a seéuence of patterns representing a typical period
or an entire day.

In the following module, corresponding to blocks 2 and
3, the calibration assessment is performed for the network
conditions specified in block 1 using the current knowledge
of the parameters and their level of uncertainty. The
assessment consists of looking at prediction uncertainties
(or model outputs), in this case, the pressure heads at the
nodes. Uncertainties are quantified by an adopted measure
which will vary according to the specific calibration
objectives and can be either related to the entire system or
to individual nodes in the network. This measure can be
used in the assessment module as a stopping criteria for the
calibration loop. Examples of assessment measures for
different calibration objectives are:
1. Single system variance: Trace of the covariance matrix of

the simulated nodal pressures for a single assessment
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load;
Composite system variance: Composite trace of the
covariance matrix of the simulated nodal pressures
considering more than one assessment load.
Individual node variance: Variance of the simulated
pressure head at a selected node for a single assessment
load.
Composite node variance: Composite variance of the
simulated pressure heads at a selected node for a series
of independent assessment loads.
Multiple node variance: Weighted sum of the variances
of the simulated pressures at selected nodes for a single
assessment load.
Composite multiple node variance: Composite pressure
variance for several nodes for more than one assessment
load.
Maximum node variance: Maximum pressure variance at a
node or a group of nodes during an extended period of

time.

To examine a model's ability to predict nodal

pressures, first order second moment analysis or Monte Carlo

analysis can be used for estimating variances. The

distinctions between these procedures are computational time

and accuracy. First order estimates require computing the

gradients of the model output with respect to the

parameters. A numerical gradient evaluation was applied to
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compute the gradients in this research. A Monte Carlo
analysis is time intensive particularly for complex network
systems under a high degree of uncertainty. Its advantage
is that it allows one to obtain some understanding of the
distribution of the output which may be used to place

confidence intervals on the model results.

First Order Analysis

The first order second moment approach (FOSM) estimates
the mean, variance and covariance of model output by
approximating the function with a Taylor series expansion
around the mean value of the parameters and dropping the
higher order terms (Benjamin and Cornell, 1970).

Considering only uncertainties due to the C parameter,

the model output uncertainties are computed as

T
(Ha) = OHa (C) OHa (4.1)
where
cov (Ha) = N; x N; covariance matrix of model outputs

_8___5{ :'? = N; x N, matrix of partial derivatives of Ha

evaluated at the mean value of the C's

cov(C) = Np X N, covariance matrix of parameters
Ha = N; x 1 vector of model outputs

c = N, x 1 vector of model parameters

N, = number of junction nodes in the network
N, = number of pipes in the network

[ 17 = transpose of matrix inside parenthesis.
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Monte Carlo Method

The Monte Carlo approach consists of performing network
hydraulic simulations repeatedly to compute the mean nodal
pressures Ha, and the cov(Ha) matrix. At each simulation a
vector of noise (measurement errors) is added to the mean
value of the C parameters to account for the uncertainties
in their estimates. The variability in the model output
results from the uncertainties in the C parameters. When
the procedure is executed for the first iteration, variances
of C are assigned based on experience and knowledge of the
system.

Parameter correlation can result from field conditions
(real correlation) or from the estimation procedure
(statistical correlation). Both assessment methods have the
capability to reproduce the parameter correlation. In the
FOSM approach the cov(C) is used instead of var(C) to
account for parameter correlation (equation 4.1). In the
Monte Carlo method, multivariate normal deviates are
generated to introduce errors in the C's which preserve the
mean, standard deviation and correlation of parameter C's.
The procedure to generate multivariate deviates is shown in
Appendix C. It is similar to the procedure used by Borah
and Haan (1991) to generate correlated random errors in a
hydrologic modeling.

The above methods have different input requirements and
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assumptions. The first order, second moment approach
requires an assumption on the distribution of model outputs.
This assumption become less valid as system nonlinearity
increases. It does not require an initial assumption on the
distribution of the parameters and it requires few
computations. The Monte Carlo method requires fewer
assumptions on the transferring of uncertainties through the
model. However, it requires the knowledge of the
multivariate distribution of the input parameters. Also, it
usually requires large computational effort. The purpose of
using both methods is to compare the efficiency versus
accuracy of the FOSM method of approximating the var(Ha).

After computing the variance of Ha, the modeler must
decide if the calibrated model is satisfactory for the
intended use of the simulation results. This condition can
be verified by adopting a measure to quantify model output
uncertainties. One such measure can be the trace of the
covariance matrix of model outputs, in this case, the
computed pressures at the nodes. Other prediction error
measures coula be used such as the ones previously listed in
the Parameter Estimation section. Assessment prediction
errors based on the standard error, mean error, and mean
absolute error have been used by Yeh (1987) to compare
different approaches to estimate aquifer parameters. Yan
and Haan (1991) used the trace and the determinant of the
covariance matrix of the errors as a criterion to estimate

parameters for a multiobjective hydrolegic model.
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If the reliability level is acceptable, the process
stops and the estimates of the C's are ﬁhe values obtained
from blocks 10 and 11 in the last iteration. If the measure
is not accepted in block 3, it is necessary to decrease the
uncertainty in model outputs by improving the knowledge of
the estimated parameters. This requires the use of
additional, and/or more reliable, field measurements as

available information for the estimation procedure.
Data Collection

Before new data can be collected the modeler must
define the demand conditions which will provide the maximum
amount of information to improve the system's reliability
measure. This step is developed in the Data Collection
module corresponding to blocks 4 through 8 in the diagram
depicted in Figure 4.2.

The objective of block 4 is to define potential demands
which should be induced in the network when collecting the
new measurements. These demands cannot be arbitrarily
selected. They must be achievable in the real system during
the period of the data collection experiments. A sequence
of demands and tank levels can also be used as additional
information.

Upon defining potential measurement loads, the model
must be executed to compute the predicted nodal pressures
and their reliabilities for each potential load. It is

desired to identify the load which will provide the most
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valuable information to achieve the calibration objectives.
This task is accomplished in block 5 and will be explained
in detail later in this chapter. The following step,
represented by block 6, will identify potential locations in
the network where pressure head measurements should be
taken. This is done by selecting the nodes with larger
pressure variability. There may be occasions where no point
in the system can be measured with a higher degree of
accuracy than the one already obtained from block 5. If
this is the case, the predicted load is not valuable in
providing additional information to improve parameter
estimates and another load must be tried. This causes the
procedure to return to block 4. A detailed explanation of a

process of improving calibration efforts is presented below.

Procedures to Improve Calibration

Efforts

Since data collection is a costly and time consuming
process, it must be conducted in the most efficient way.
The objective of the data collection module is to provide
guidance for obtaining additional information to be used in
the calibration algorithm. At each iteration of the
calibration process, new measurements are added to the
existing data set and used to estimate the unknown
parameters.

Alternatively, the new measurements may replace

existing and less accurate data so that the available
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information will assure the unknown parameters are estimated
with less uncertainty. It is expected that the use of
parameters with less variability will improve the quality of
the simulation. These improvements can be quantified by
assessing the uncertainties in the model results, the nodal
pressure heads.

Two procedures are presented to improve the calibration
efforts. The first procedure considers all system
components as potentially active for improving the
calibration objectives. The second procedure attempts to
enhance the calibration by improving the knowledge of

individual network elements such as the pipe roughnesses.

Global System Tests

To improve existing knowledge of all model parameters
and consequently to improve the quality of the simulation
results, system-wide tests can be conducted to obtain new
information. The problem is to determine the best (or at
least a worthwhile) loading condition (how much flow to
induce and at which node) and to identify measurement type
and locations that will be the most beneficial for providing
information for the parameter estimation algorithm. This
study focuses on identifying the demand conditions.

Sensitivity vectors can be developed to identify
potential network conditions and locations to stress the
system demands. A fire test is a common way of stressing

the distribution network in such a way to mimic an emergency
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condition that affects the available flow and pressure at
many nodes in the system. A measure related to the
calibration objective must be adopted to guide the selection
of the location, or locations, which would be the most
beneficial for the additional field tests. One such measure
could be the total system variance wifh respect to the
simulated pressures. This measure is the trace of the
covariance matrix of the simulated nodal pressures and is
computed by taking the sum of the variances of the simulated
pressures at the nodes.

The procedure to determine field measurement conditions
consists of two parts. The first is to select a network
loading pattern under which measurements are taken. The
second step is to identify the critical nodes where demands
must be accurately determined. This can be done by
installing flow meters if the demand is localized or by
conducting a detailed estimation of the distributed demand
which is lumped at the node. The complete procedure is
illustrated in Figure 4.3 and will be discussed in the
following sections. The sensitivity vectors to be used to
identify the ideal loading condition are:

(a) Sensitivity Vector A

[ Atrace cov(H,),,~,Atrace cov(H,),,~,Atrace cov(H) |

where

Atrace cov(H,); = trace cov(H,) - trace cov(Hp)
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Each term trace cov(H,), corresponds to a prediction of
the assessment measure to be obtained if the potential
measurement load Q, would be incorporated with the available
information to estimate parameters. The trace of cov(H,) is
the assessment measure at the current stage of the
calibration. The modeler wants to improve this measure by
collecting new field data under one of the Q, conditions.
L is thertotallnumber of such conditions. The potential
loading condition Q, represents a vector containing
individual nodal demands.
(b) Sensitivity Vector B

After selecting the most sensitive loading condition,
the critical nodes can be identified by examining
sensitivity vector B. For a selected node i, this vector is

expressed by

[ Atrace cov(H) ;,,~,Atrace cov(Hp) ;;,~,Atrace cov(Hy) ;y ]
Each term of the sensitivity vector B corresponds to
the difference of the trace of cov(H,) and the trace
obtained if the potential measurement load Q, is used to
estimate parameters C with the flow at node j increased by
Aq,. If the induced flow can be varied for a node, the
ideal flow to be induced at the critical node can also be
determined by means of a sensitivity vector of the same

form. The terms of this new vector would reflect different

Aq, for the same node j.
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It is desired that the flow at the most sensitive nodes
with respect to the measure be most accurately determined
since a bias in its estimate will cause a significant change
in the system measure. It must be noted that the maximum
improvement that can be obtained with new data is limited by

the accuracy of the metering system.

Identification of lLoading Condition. The
identification of an ideal network loading condition for the
new measurements can be developed by means of sensitivity
vectors. However, an ideal load may not be possible in the
real system since it may rely on consumer demands which are
to some extent uncontrollable. These demands can not be
arbitrarily imposed on a real time basis. The problenm is
more complex due to the fact that although being distributed
throughout the length of the pipe, for modeling purposes the
demands are lumped at the nodes. Therefore, they can not be
physically measured and their estimates rely on statistics
developed on a regional and demographic basis. In very few
cases, when the node represents a major user or a line
diversion, it can be directly measured and their demands
accurately determined.

The identification of the ideal measurement load in the
practical sense requires a simplification and some
assumptions. In this application the measurement load will
be selected from a series of pre-defined network loading

conditions. These loadings are the result of forecasted
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demands for different scenarios expected to occur during a
normal or emergency operation. They represent potential
consumer usage that can be induced to the system at the
measurement time. The nodal pressures will be obtained by
KYPIPE using the current knowledge of the C's for each
loading condition.

Considering the dynamic behavior of consumer usage, the
best approximation of the selected measurement load will be
reproduced in the field during the collection period. If it
is not possible to induce exactly the forecasted demands, at
least the experiment can be conducted in a situation that

closely approximates the desired loading condition.

Criteria to Select the Measurement IL.oad. The selection

of the ideal load can be based on two criteria. The first
considers the robustness of the new measurement load. This
robustness can be quantified by looking at the sensitivity
of the assessment measure to small variations in the nodal
demands from that load. The measure sensitivity reflects
the impact of possible measurements errors and the effects
of the differences between predicted and actual nodal
demands.

The second approach is based on the improvement
observed in the assessment measure when it is computed with
the parameter estimates obtained if the new proposed
measurement load is used as available information for the

estimation procedure. 1In this case, selection of the
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measurement load can proceed in the following steps after
the calibration objectives have been defined:

(1) Define a series of potential network loadings for
taking new measurements. The group of all possible such

loads is represented by

0= [Qu1+ Opzv s Qpi s+ Qi
where L stands for the number of potential measurement
loads. This step corresponds to block 4 in Figure 4.2.

(2) Select a measurement load from Q,;

©ni
(3) Augment the available information Q, by

incorporating the new proposed measurement load The

Opi -
pressures corresponding to the new load, H,, are determined

by KYPIPE runs using the demands from and the current

pi
values of C's as obtained in block 10. This step
corresponds to blocks 5a and 5b in Figure 4.3. The

available information represents the collection of all

measurement loads accessible for the estimation procedure

Oa [ghuékelmfghﬂ

where M is the number of available measurement loads.

The augmented measurement set is represented by

Qnaug, = [Qar Onil i
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The uncertainty associated with the potential
measurement load Q, is assigned based on the predicted
errors that may occur as a function of the accuracy of the
instruments. It may be suggested the use of more accurate
meters to reduce such uncertainty.
(4) Evaluate the available information and obtain

pseudo-measurements if necessary using Q,... i

(5) Estimate the unknown parameters (block 5c) and find

Mg, (block 5d), which represents the value of the

assessment measure obtained by adding the potential

measurement load Q. ;;
(6) Compute the improvements in the assessment measure

M which was obtained using information from Q, (block 5e)

AMi = M-M

aug
It is expected AM; to be a positive number. If it is

negative, the load Q, must be rejected (block 5i) since it
is not contributing to improve the measure M;

(7) Repeat steps (1) to (6) considering all loads from

Opi

(8) Assemble the sensitivity vector S of the form

.S = [ AerAle"'IAM'I"'IAML ]

1

(9) Select the potential load corresponding to the

Lpi

largest AM; as the new measurement load. The load Q,; is
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the desired field condition to be present when conducting
the data collection. It is the load which contributes the
most for improving the célibration objective, expressed by
the assessment measure (See block 5k).

(10) If there is no potential load that contributes to
improve the assessment measure (block 51), the modeler has
two options. He may try to improve estimates of C for
individual pipes (procedure to be described later in this
chapter) or he may accept the model as it is at least

knowing the uncertainty expected in the results.

Identification of Critical Nodes. After selecting the
network demand for the new measurements, it is necessary to
identify critical nodes based on their importance in
achieving the calibration objectives. The demand at the
nodes should be accufately metered by installing more
precise instruments or carefully determined by conducting a
detailed field investigation. The critical nodes can be
found using the information provided by sensitivity vector
B. This vector uses the trace of the covariance matrix of
the predicted pressures as the assessment measure. Other
measures that could be adopted depending on the calibration
objective are: the maximum nodal variance; the average nodal
variance or the total system variance divided by the maximum
system headloss. The procedure to find the critical nodes
for the selected measurement would perform the following

steps:
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(1) Preselect the new measurement load. This load is
represented by a vector containing the demands at individual
nodes, where N; is the number of internal nodes in the

network

Q_pi= [gpj_lr qpizt ty qpiNJ]

Note that the above representation considers measurements on
the nodal demands only. If the nodal pressures are also

included, the measurement vector (MV) would take the form

MVI- = [_Q..P.J.’ Hpill Hpiz’ "t HpiNJ]

The remainder of this procedure will assume that only
demands are considered;

(2) Perform steps (3) to (7) below varying j from 1 to
N;;

(3) Vary @, by a small increment Ag;;. The increment

will be added to the demand at node j for the measurement
load i. This increment should be sufficiently large to
cause changes in the assessment measure. The perturbed

potential measurement load takes the form

QEE = [qpu, qpizl"'l (qpij"'Aq_iJ) [ 2] qp\mJ] H

(4) Augment the available information by considering
the perturbed load from (3). This step is preceded by
running KYPIPE with the current knowledge of the C's and the

load Q,, to obtain corresponding H's;
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(5) Estimate parameter C's;
(6) Perform the calibration assessment. Compute the

assessment measure M, ;

(7) Compute the sensitivity term

AM;, MM,
- ’

Aqi, Aqb

(8) Select the node j as the most sensitive node
corresponding to the largest term from (7). The sensitive
nodes are the ones whose measurements affect the assessment
measure the most. They are critical since an error in their
measurements can propagate more intensively to the
simulation results.

The above procedure could be extended to determine the
best distribution of demands to be induced at nodes, if more
than one demand can be simultaneously considered.

Once identified, the critical nodes must be checked to
determine if they carry a real localized demand. If not, it
would be desirable to incorporate a new measurement load
with fire conditions at the critical nodes. This would
allow the demand at that node to be directly measured. The
same procedure could be used to identify critical nodes
considering measurements of the pressure heads.

In summary, this data collections procedure will assist
in answering the following questions:

.Where to induce high demands to simulate fire flows?

.How much flow should be induced?
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.Where to measure flows?
The next section introduces an alternative approach to

improve simulation results based on improvements in the

knowledge of the roughness factor of pipes.

Improving Knowledge of Individual Pipes

A second proqedure to improve the quality of the
simulation results is by directly measuring individual pipe
roughness coefficients which will reduce the uncertainty in
the parameter related to that link. Higher certainty in
parameters from major pipes, or groups of pipes, will
improve the accuracy of the model predictions. This section
investigates the impact of improving the knowledge of C for
individual pipes or group of pipes and the effects of these
improvements in the simulation results and in the measure of
the calibration assessment. The magnitude of these
improvements will guide the process of selecting critical
pipes to conduct individual study.

The gradients proposed below will be used to identify
the pipe or group of pipes in the network that have a large
contribution to the uncertainty of the simulated nodal
pressures. Two types of gradients can be developed
depending to the calibration objectives. They relate to the
assessment of the simulated pressure at individual nodes
(Gradient 1) or to the total system variance (Gradient 2).

The gradient terms are defined as
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Gradient 1
[ d(var Ha;) Od(var Ha,) d(var Ha;) |
d(var C,) d(var C,) d(var Cy)
d(var Ha,) 0(var Ha,) d(var Ha,)
d(var C,) d(var c,)  d(var Cy,)
d(var Hay) OJ(var Hay) d(var Hay)
d(var C,) d(var ¢,)  od(var Cy,)
Gradient 2
dtrace(cov H,) dtrace(cov H,)  dtrace(cov H,)
d(var C,) d(var C,) ' d(var Cy)

A vector formed by a column of Gradient 1 indicates
which nodes are most affected by errors in the estimate of
the roughness coefficient of a particular pipe. The vector
formed by the transpose of each row of Gradient 1 can be
used to quantify the sensitivity of the variance of the
simulated pressures at a particular node with respect to
each pipe roughness coefficient.

Pipes having large gradient terms are critical links
since a bias in their C value causes large changes in the
uncertainty measure. It is desired to improve as much as
possible the estimate of C for these pipes. This
improvement can be obtained by conducting individual pipe
field tests. The tests would induce flows at hydrants along
the pipe line to determine the roughness coefficient more

accurately. Once determined, these parameters can be taken
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as constant in the estimation procedure reducing the number
of unknowns. This will cause improvement in the estimates
of the remaining parameters since it increases the level of
system overdetermination.

Gradient 1 helps identify the pipes to be selected for
conducting individual field test to improve their estimates
of C. It is also desirable to assess beforehand the
magnitude of the improvements to be obtained with the field
tests, so that judgements can be made as to the worth of the
effort of conducting the actual field test. A sensitivity
matrix showing changes in the trace of cov (Ha), or in the
var (Ha,), as a function of the roughness coefficient of
individual pipes can be used to build sensitivity curves.

The sensitivity curves can be developed for individual
pipes or for a group of pipes and would plot the trace of
cov (Ha) (or the var (Ha,) if the measure relates to
individual nodes) versus the coefficient of variation of C.
Sensitivity curves for individual pipes would be obtained
for discrete values of the coefficient of variation (CV) of
C on individual pipes equal to 1, 5 and 10%. Figure 4.4
shows the estimated form of these curves considering
improvements for individual pipes and a CV equal to 10% for
the remaining pipes. The x-axis reflects changes in the
uncertainty level of the particular pipe considering the

remaining pipes having the same CV.
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Field Observations and

Pseudo-Measurements

If new measurements are successfully identified in
block 6, the procedure follows its main stream as shown in
Figure 4.2. Measurements are taken (block 7) and pseudo-
measurements are estimated (block 8). The pseudo-
measurements are the additional data required for the
estimation procedure and are the unmeasured pressures in
block 7.

To obtain pseudo-measurements, a linear or quadratic
interpolation could be used to estimate the missing H's
considering the system is underdetermined. Another option
would be to use non-linear regression. In this case the
unknown H's (and maybe Q's) would be estimated at the same
time as the C's by solving a non-linear optimization problem
as proposed by Lansey and Basnet (1991). The optimization

approach would use all information from the measured loads

Trace Tracs ’ Trace
cov (Ha) cov (Ha) ) cov (Ha)
1% 5% 10% Cv(Cl) 1% 5% 10% Cv(C2 1% 5% 10% Cv(C3)
Pipe 1 Pipe 2 Pips 8

Figure 4.4. Sensitivity Curves for Pipes
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and the data collected in block 6. The current knowledge of
the C's (as obtained in the last iteration from block 10)
could be used as the starting condition for the calibration
algorithm. The stability of the nonlinear regression
improves with the level of system overdetermination. One
way to improve this level is by parameterization.

In block 9 the measurements are augmented based on
assumed network demands and simulated pressures. This step
will only be required in the first stages of the calibration
when the information available is not enough to guarantee

system observability.
Parameter Estimation

Two major parameters are considered to model a water
distribution system as mentioned in Chapter II. They are
the pipe roughness coefficient and the consumer demands.
The procedure to esﬁimate the unknown parameters in a
network system is dependent on the type and number of the
unknowns, their distribution throughout the system and the
amount and characteristics of the input data available.

For known values of nodal pressure heads and using the
Hazen-Williams equations to express head loss terms, the
flow rate in the pipe appears as a linear function of the
roughness coefficient C (See equation 2.10). By expressing
the system equations in terms of the nodal equations, one
can write N; independent continuity equations where N; is the

number of internal nodes in the network exclusive of the



61
fixed grade node or the supply node.

When pipe roughnesses are unknown and considering a
single demand, the number of the system equations is always
smaller than the number of the pipes in the network (See Eq.
2.4). Since these equations are being solved for the
roughness factors, the solution is said to be
underdetermined. Two options can be applied to overcome
this problem. The first consists of reducing the number of
unknowns by assigning the same C for a group of similar
pipes (network parameterization). The second option uses
additional input data from other demand conditions. Each
new condition allows one to write N; new equations while the
number of unknown parameters, N,, remains the same.

The use of information from multiple demands was
considered in this research for the development of the
parameter estimation procedure. The ability to consider
network parameterization was also incorporated in the
program developed and its benefits were investigated in
Chapter VI as an alternative option to reduce computational
effort.

A linear regression approach was developed to estimate
parameters as described below. Next, the process of
handling uncertainties in input data is explained. The last
sub-section introduces a procedure to transfer these
uncertainties to the parameter estimates. The parameter
estimation procedure is shown in blocks 10 and 11 in Figure

4.2 and is expanded in Figure 4.5.
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Linear Regression for Coefficient C

Considering the pressure heads and external demands in

the network as known values, the estimation of unknown

parameters C can be obtained by solving a system of linear

equations of the form

where

I

Q=XC (4.2)

N; x 1 vector of external nodal demands for all
loads

Nr x N, matrix containing information regarding
network physical characteristics, geometry and
pressures. Their elements are the first term of
Eq. (2.10)

N x 1 vector of unknown parameters

number of parameters to be estimated

Ny * Nyio

Number of measurement loads.

The unknown roughness factors C can be estimated by the

least squares method (Haan, 1977) as

where

o

Xt

(

)—1

I

=X XXt 0 (4.3)

Np x 1 vector of estimates of parameter C
Transpose of X

inverse of the matrix inside parentheses.
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The procedure requires the inversion of a N, by N,
matrix. The multiple linear regression corresponds to bloék
10b in Figure 4.5.

The regression approach requires knowledge of the
pressures at all nodes and demands at most of the points in
the system. It is possible to estimate C's for a limited
number of unknown Q's. However, for'each unknown Q one
equation is lost for each load. If a pressure is unknown at
a particular node, a number of equations equal to the number
of pipes connecting to that node is also lost. Since X is a

sparse matrix, care must be taken to keep the rank of the

(X* X) matrix equal to N, after dropping the equations

corresponding to the unknown Q's and H's.

When some of the H's in the network are not known, a
nonlinear optimization approach is available from the work
of Lansey and Basnet (1991). The results, however, will be
limited by the type and quantity of input data which will
determine the system observability level. As noticed
earlier the pressure head at unmonitored locations can be

found using this procedure or another interpolation scheme.

Uncertainty in Calibration Data

Uncertainties in input data result from several
sources. They can be caused by the accuracy of the metering
device, the adequacy of the meter scale for the range being
measured, and other aspects in the data collection and

acquisition process (Simmonds and Laverty, 1980). It can
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also reflect the criteria used to estimate the consumer
demands. To model these uncertainties an error term was
introduced to corrupt the mean values of the pressures and
nodal demands.

The errors associated with input data were assumed
normally distributed. To create the vector of perturbed
demands, standard normal deviates were generated
individually for each node from all loads. The magnitude of
the error term was adjusted to reflect the prescribed level
of confidence in estimating Q for that node, expressed by
means of its coefficient of variation (CV). If E is the

normal deviate, the perturbed demand is computed for each

node as

api; = dy; + [E * ofIzj] (4.4)
where

ap, = q perturbed at node i, for load j

q, = mean q at node i, for load j

E = standard normal deviate

O = CV, * q,, is the standard deviation of q,

cv, = coefficient of variation of q,.

The procedure of generating errors for pressure heads
is similar to the one for the demands. The difference lies
in the way of assigning the uncertainty levels for each
pressure. In this case the level is specified by means of

the standard deviation of the H's instead of the CV. The
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perturbed pressure heads are computed as

Hp;j; = Hy; + [E * 0y (4.5)
where

Hp, = perturbed pressure at node i, for load j

H, = mean pressure at node i, for load j

E = standard normal deviate

Ony = standard deviation of H,.

Uncertainty in Estimated Parameters

The procedure to find the uncertainty in the estimates
of C requires the solution of the regression problem many
times within a Monte Carlo approach. At each time, random
deviates are introduced in the input variables according to
the assumed distribution (See block 10a, Figure 4.5). A
detailed description of Monte Carlo methods can be found in
Beck and Arnold (1977) and Ang and Tang (1984). Before
being accepted as valid results, the regressed C's are
checked against feasibility limits, as shown in block 10c.
If the regressed C's are not feasible, the series of input
errors is rejected and the process is repeated again. This
procedure is represented by the conditioned Monte Carlo loop
in Figure 4.5. At each run the regressed parameters are
saved (block 10d) and their statistics are computed at the
end of the process (block 11). They refer to the mean;

standard deviation; and covariance, correlation and factor
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loading matrices of the C's. Parameter uncertainty is
quantified by the variances of C's.

Because the parameter C is highly sensitive to changes
in pressures and external flows, the process may require
intensive computational efforts. However, once completed,
it provides a good approximation to the mean and variance of
the parameters and gives an idea of their distribution.

A second way of computing the variance of the estimates
of C's is directly from the regression perforﬁed in Block 10
by means of the standard error of the estimates. This can
only be done if the number of measured loads available to
the parameter estimation process is large enough to provide
enough information to assure an adequate level of system
overdetermination. This condition, although theoretically
possible, is constrained by the few data available due to
the high costs involved with the current practices and
available technology for data collection and acquisition
systems.

A third method for estimating the variance is to use
first order approximation which is similar to the assessment
procedure. For this highly nonlinear system these estimates
were quite poor, particularly for individual nodes. However,
the relative magnitudes were reasonable between nodes and it
may be used to save computational time during early
iterations of the calibration process.

At this point the calibration loop is closed and a new

iteration is completed. It is expected that the parameters
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improve at each new iteration. The improvements are
verified when the C's converge to the correct values and
their uncertainties decrease. Since the C's are very
sensitive to the measurements, changes in the measurements
may cause large variability in the regressed values. An
alternative to decrease such sensitivity is to reduce the
number of unknown parameters by parameterizing the network.

Network parameterization contributes to increase the
level of system overdetermination and imérove the regression
results. Parameterization, however, may introduce modeling
errors although improving parameter estimates. The trade-
off between the effects of both types of errors has been
studied by Yeh and Yoon (1981) for aquifer systems and
should be extended to the water distribution systems.

It may be found for the network under study that it is
not possible to meet the pressure requirements at all nodes.
If this happens a question may arise whether the calibration
process should stop or more data should be collected. A
design revision may solve the problem (if there is one) so
to insure good estimates of the mean C and to guarantee an
accurate model as a basis for design decisions, the

calibration procedure should be continued.



CHAPTER V

APPLICATION OF PARAMETER ESTIMATION

AND ASSESSMENT PROCEDURES

The purpose of this chapter is to present the
7methodology for parameter estimation and assessment
introduced in Chapter IV. A simple network system
containing 11 pipes is used to illustrate the several steps
involved with the process and its input requirements and
assumptions.

The objectives of the application developed in this
chapter are to: (1) apply the methodology to a small network
to demonstrate the model's capability for handling
uncertainty in input data and parameters, (2) show the
usefulness and consistency of the measure adopted to
quantify the uncertainties in the results derived from the
model, (3) demonstrate the impact of different levels of
uncertainty in calibration data and its effects in the model
prediction uncertainty, and (4) compare different methods to
assess the prediction ability of the model according to the
goals set for the calibration.

To accomplish the above objectives, the chapter is
divided into four sections. The first section describes the

physical characteristics of the distribution network used to

69



70
conduct experiments for the application. The second section
presents the demand loads used as available information for
the estimation of the unknown roughness parameters. This
information consists of measurements and pseudo-measurements
of pressure heads and of estimation of consumer demands. 1In
the third section, the parameter estimation section, the
assumptions made to model the uncertainties are given and
how these uncertainties are transferred to the parameters is
discussed. The last section assesses the model prediction
uncertainty by the two methods described earlier in Chapter
IV; Monte Carlo simulation and first order approximation of

the variance.
Network Description

The water distribution system used to run experiments
for this application is a hypothetical network formed by 11
pipes, 7 internal nodes and 4 loops, and is called Network
1. Figure 5.1 shows network characteristics and numbering
scheme. The source of water is at node 8 which has a fixed
grade at elevation 200 feet. The network is placed in a
flat area with elevation of 100 feet at all nodes.

Water is delivered to the network by gravity through a
1500 ft, 22-inch pipe line corresponding to link 11. The
total pipe length is 6200 feet. Consumer withdrawals from
the system total 9 cubic feet per second (cfs) under normal

conditions.
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Figure 5.1. Geometry and Numbering Scheme-Network 1
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A roughness factor for the pipes (Hazen-Williams
coefficient C) equal to 100 was assigned to all links in the
system. These values, considered as the true C's, are the
unknown parameters to be estimated. They were not provided
to the model at any time. The true C's were used to
simulate measurements of nodal pressure. These pressures
are used as input variables in the estimation procedure.
Pipe characteristics for Network 1 are shown in Table 5.1.

Considering the nodal pressures and demands és known
for a loading condition, the system configuration allows one
to write\7 mass balance equations (one for each internal
node). The unknowns are the 11 pipe roughness coefficients.
So, having information from only one demand pattern makes
the system underdetermined because there are 11 unknowns and
only 7 equations. To overcome the problem of
underdetermination, multiple demand patterns were considered

as described in the following section.
Demand Patterns

The input data necessary to allow the estimation of the
unknown roughness parameters consists of nodal pressure head
measurements and consumer demand estimates. Measurements or
pseudo-measurements of pressure head were considered known
for all nodes for each load. In a real scenario, these
values are measured during the data collection efforts at
selected points in the system. The pseudo-measurements are

interpolated or estimated pressures that were not directly
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TABLE 5.1

PIPE CHARACTERISTICS FOR NETWORK 1

Pipe Diameter Length
# (in) (ft)
(1) (2) (3)

1 10 800
2 8 600
3 6 600
4 10 400
5 16 800
6 18 400
7 12 600
8 8 800
9 6 721
10 10 848
11 22 1500

measured.

The other input data are the external nodal demands.
External demands are usually estimated based on geographic
location and consumer usage. They may be measured when
representing a localized withdrawal or the consumption of a
large water user. In the present application demands were
adopted and pressures were simulated using the true value of
the roughness parameters. The network simulator KYPIPE
(Wood, 1981) was used to generate the necessary input data
for the estimation procedure.

Input information to estimate parameters for network 1
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was considered for five loading conditions. The loading
conditions available represented consumer withdrawals under
the following usage patterns: normal (N), peak (P), fire at
node 2 (F2), fire at node 3 (F3), and fire at node 5 (F5).
The normal load corresponds to the average daily demand.
Other demands reflect different operating conditions. The
peak demand has considered nodal consumptions which are
twice as high as the normal external flows. Fire fighting
conditions were simulated at nodes 2, 3, and 5 which
required flows equal to 5.5, 6.0 and 6.5 cfs, respectively.
During this period, consumer withdrawals at remaining nodes
were reduced proportionally to their normal values. Table
5.2 shows demands and corresponding pressure for all nodes
for each loading condition.

The demands and pressures were used as mean values.
Random errors were added to reflect uncertainties due to the
data collection and processing and due to the estimation of
pseudo-measurements. A technique to model these

uncertainties is discussed in the next section.

Estimation of Model Parameters with

Uncertainty Data

The structure of the error term to perturb the mean
values of the input variables was assumed known. The errors
introduced in the estimated consumer demands were considered
normally distributed with zero mean. Their magnitude was

adjusted by changing their standard deviation to reflect the



TABLE 5.2

AVATLABLE INFORMATION USED TO ESTIMATE
PARAMETERS FOR NETWORK 1

Loading Node Demand Pressure
Condition Number (cfs) (ft)
(1) (2) (3) (4)
Normal 1 1.50 194.72
2 2.50 186.82
3 1.25 190.20
4 1.25 193.22
5 1.50 191.43
6 0.00 195.71
7 1.00 192.62
8 =9.00 200.00
Peak 1 3.00 180.94
2 5.00 152.42
3 2.50 164.64
4 2.50 175.52
5 3.00 169.06
6 0.00 184.52
7 2.00 173.35
8 -18.50 200.00
Fire at node 2 1 1.00 193.29
2 5.50 167.85
3 0.80 187.64
4 0.90 191.61
5 1.10 188.38
6 0.00 194.59
7 0.90 189.02
8 =10.20 200.00
Fire at node 3 1 0.75 194.18
2 1.25 185.35
3 6.00 169.08
4 0.63 190.26
5 0.75 189.17
6 0.00 194.91
7 0.50 192.71
8 -9.88 200.00
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TABLE 5.2 (Continued)

Loading Node Demand Pressure
Condition Number (cfs) (ft)
(1) (2) (3) (4)
Fire at node 5 1 0.80 191.66
2 1.75 179.69
3 0.90 183.29
4 1.00 ' 187.86
5 6.50 179.68
6 0.00 192.97
7 0.80 189.31
8 -11.75 200.00

level of uncertainty in the estimation of the nodal demands.

The coefficient of variation of the demands, CV of Q's,
was used to assign the uncertainty level to be modeled at
each node. This coefficient‘corresponds to a normalized
standard deviation. It is computed by dividing the standard
deviation of Q by its mean value. By using the coefficient
of variation, the standard deviations of the consumer
demands are scaled to the mean flow at each node.

The Fortran progfam developed, as documented in
Appendix D, has options to consider uncertainty in Q's by
assigning: (a) the CV's individually for each node, (b) the
same CV's for the nodes from the same load, or (c) the same
CV for all nodes for all loads. If the last two options are

used, higher uncertainties will be assigned to the nodes
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with larger withdrawals. The program has another option to
limit the maximum standard deviation at the nodes to prevent
unreasonably high values for the errors especially at the
nodes carrying fire demands.

The uncertainty in measurements of nodal pressures were
simulated by the same process as described above. The error
term was also assumed to be normally distributed. The only
difference from the above procedure is that the standard
deviation of the H's were used to assign the uncertainty
levels. Three oétions have been provided in the program for
accepting the uncertainty for the H's. The nodal standard
deviation can be assigned: (a) individually for each node,
(b) grouped for the nodes from the same load, or (c) a
single value for all nodes from the several loading
conditions.

This application attempts to estimate roughness
coefficients for each pipe given the uncertainties in the
demands used as input data. Different levels of uncertainty
for the Q's were considered to show their effects in the
parameter estimate uncertainty. Coefficients of variation
of the Q's equal to 1%, 5%, and 10% were considered. The
pressures at all nodes were assumed to be known with
certainty. No error was added to their mean values. The
uncertainty in both demands and pressures was incorporated
in the application in Chapter VI.

Two criteria were used for conditioning input data and

the results of the regressions. The first limits the sigma
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bounds of the normal distribution used to generate random
errors to perturb the Q's. The sigma bounds are the number
of standard deviations from the mean used to accept the
error term which is applied to the nodal demands. If the
randomly generated error falls within plus or minus n
standard deviations it is accepted as a valid term. In this
case the Q's perturbed will be within the n sigma bounds of
the distribution (Haan, 1977, pg. 87). Choosing n equal to
1 corresponds to 68% of the normal distribution. Most of
the runs performed assigned n equal 3 corresponding to
99.72% of the distribution.

A second conditioning criterion was used to determine
the acceptability of the errors introduced considering a
valid solution for the system equafions. This criterion
introduces physical reasoning to accept the randomly
generated errors added to the input data. The criterion
establishes limits for the regressed parameter C's,
according to the pipe material, diameter and age. If a
regressed C has a value outside of the acceptable range, the
regression is rejected and a new set of errors is generated
to perturb all measurements.

Statistical analysis for each pipe roughness
coefficient was computed based on 500 regressions for
parameter C's within the Monte Carlo approach. The number
of regressions required to assure convergence of the mean
and standard deviation of the C's is investigated in Chapter

VI.
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Table 5.3 shows estimates of C's for selected pipes.
Appendix A contains results for all pipes. Column 1 of
Table 5.3 shows the coefficient of variation of the Q's used
to perturb the mean value of that variable. Column 2 states
the type of statistics performed as the mean C or the
standard deviation (std) of the C's. Columns 3 to 8 show
statistics for selected pipes. The trace of the covariance
matrix of the regressed C's appears in column 9 as a measure
of the total system variance.

Values from Table 5.3 reveal that as the CV of Q
increased so did the variability in C's and the magnitude of
the trace of cov(C). The trace of the covariance matrix of
the C's varied from 8.7 for CV of Q equal 1% to 888 for CV
of Q equal to 10%. The standard deviation of C for pipe 3
increased from 1.5 units to 15.6 units for CV of Q varying
from 1% to 10%. For pipe 9 the variability in C changed
from 1.4 to 13.2 units for the same conditions.

Pipes 3 and 9 are considered weak pipes in the systemn.
Since they carry low flow, the head loss through their 1links
are small and a wider range of the C values does not
significantly affect the pressure distribution through the
system. The opposite occurs for pipes carrying large flows
such as pipes 5 and 11. For these pipes, a small variation
in their roughness can cause significant changes in the head
loss affecting pressures at all nodes influenced by these
links. Average standard deviation of C for pipe 11, as

shown in column 8 from Table 5.3, is only 2.2 units for CV



80

TABLE 5.3

ESTIMATED PIPE ROUGHNESS C FOR DIFFERENT
LEVELS OF UNCERTAINTIES IN Q'S

Pipe #

cv 1 3 5 8 9 11 Trace
Q Statistics cov (C)
(1) (2) (3) (4) (5) (6) (7) (8) (9)
1% mean C 99.9 100.0 99.9 99.9 100.0 99.9

std. C 0.9 1.5 0.4 1.0 1.4 0.2 8.7
5% mean C 99.9 99.9 99.9 99.8 100.2 99.9

std. C 4.3 7.7 2.0 5.2 7.1 1.1 223
10% mean C 100.6 101.3 99.5 99.8 100.0 99.9

std. C 9.1 15.6 4.1 10.0 13.2 2.2 888

TRUE C 100.0 100.0 100.0 100.0 100.0 100.0

of Q equal to 10%. This means that there is less
uncertainty in the C for that pipe as compared with those
from pipes 3 and 9.

It should be reiterated that the C's shown in Table 5.3
are means based on 500 individual estimates. Individual
estimates may deviate from the mean shown with the
probability of a large deviation increasing as the std of C
increases.

Correlation among parameters was investigated based on
data from 500 regressions used to compute parameter

statistics. The correlation matrix of the C's for the
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calibration run considering CV of Q equal 5% is listed in
Table 5.4. It should be emphasized that this correlation has
a statistical base and results from the effects of input
data uncertainty. The errors introduced in the demand and
pressure of a particular node cause proportional effects in
the flow at pipes connected to that node, which influences
the estimation of their parameters. The high values
observed in Table 5.4 stress the importance to preserve the
correlation among parameters when transferring parameter
uncertainty to model outputs.

The statistical correlation should be differentiated
from physical correlation that may develop over a long
period of time as roughness factors change due to
incrustation in the pipes.

In this application, the calibration accuracy can be
directly assessed by comparing the estimates of C with their
true values. However, this cannot be done in real
applications nor does it provide any idea how well the
calibrated model can predict pressures for other demand
patterns. One way to overcome this problem is by looking at
the state variable, Ha, the pressure head computed by the
model using the knowledge of C's obtained with different
calibration levels. This step is discussed in the next

section.
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Calibration Assessment

The objective of calibration assessment is to find the
uncertainty in the computed nodal pressure head based on the
uncertainty of calibrated parameter C's. Critical demands
will be examined in this stage to judge the accuracy of the
calibrated model. The modeler can then decide if the
calibration is acceptable for the intended application. 1In
the present application, the assessment was performed with
parameter C's obtained with levels of uncertainties
reflecting CV of Q's equal to 1%, 5%, and 10%.

The demand selected to assess the calibration
reproduces the flow requirements to fight a fire located at
node 2. The magnitude of the flow at that node is 7.5 cubic
feet per second. The remaining nodes in the distribution
network had their demands reduced to 80% of the normal
values. Table 5.5 shows nodal demands for the assessment
1oad;

The calibration assessment was performed by Monte Carlo
simulations and by first order estimation of the variance.
Both methods considered correlation among parameters and the
uncertainties associated with each parameter. As mentioned
in Chapter IV, the Monte Carlo method generates multi-
variate C variables to preserve the parameter correlation
found in the estimation module, as shown in Table 5.4. The
procedure to find correlated random variables is shown in

Appendix C.



TABLE 5.4

CORRELATION AMONG PARAMETERS FOR CV OF Q EQUAL 5%

ROUGHNESS PARAMETER

C G, Cs Cy Cs Cs ¢ Cs Co Cio Cu
c, 1.000
c, 0.552 1.000
C; 0.517 0.093 1.000
Cc, -0.014 0.566 0.125 1.000
C; -0.249 0.263 0.056 0.760 1.000
Cs 0.596 0.139 0.096 -0.334 -0.370 1.000
C; -0.417 -0.360 -0.449 -0.191 -0.050 0.406 1.000
C; -0.456 -0.406 -0.487 -0.228 -0.052 0.325 0.932 1.000
¢ -0.312 -0.123 -0.072 0.106 0.506 -0.158 0.147 0.176 1.000
Co -0.387 -0.190 0.009 0.165 0.697 -0.244 0.125 0.165 0.762 1.000
C, 0.320 0.357 0.136 0.366 0.544 0.578 0.323 0.248 0.302 0.392 1.000

€8
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TABLE 5.5

ASSESSMENT LOAD FOR NETWORK 1 WITH FIRE AT NODE 2

Condition Node Number Flow (cfs)

(1) (2) (3)

Fire at node 4

PNV B WN R
NOOKRKHRKEIH
NwoNvoouN

I
=

The FOSM approach accounts for the same correlation by
using the full covariance matrix of the parameters, cov(C),
in equation 4.1. This matrix would be replaced by the
var(C) if correlation among parameters would not be
considered.

To quantify the uncertainty in model predictions the
trace of the covariance matrix of computed pressures, trace
cov(Ha), was adopted as a measure representing the total
system variance. This trace is obtained by adding the
diagonal elements of the matrix which corresponds to the
summation of the pressure variance at each node. Results
obtained by applying Monte Carlo and FOSM methods are

presented and compared in the following sub-sections.
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Monte Carlo Method

The Monte Carlo method requires knowledge of the
multivariate distribution of the roughness parameters. C
parameters were found to be normally distributed for all
major pipes in the network. 1In this application it was
assumed that all C's were normally distributed. This
assumption was verified in Chapter VI.

The procedure for generating the multivariate
distribution consists of drawing a random parameter C for
each pipe from the normal distribution such as to preserve
the mean, standard deviation and correlation among the C's.
The parameters are then used in a network simulation model
to compute pressure at the nodes for the selected assessment
condition. The process is repeated many times to allow an
approximation of the distribution of model outputs. In this
way, the parameter uncertainty is transformed into model
prediction uncertainty.

Table 5.6 shows model predicted pressures and their
uncertainty for the assessment load. These pressures were
computed using parameters from different calibration runs.
Before the generated C's were passed to the network
simulator they were checked for consistency. This criterion
requires the range of C's to be within acceptable limits.
Values from this table represent the average of five
realizations. For each realization the statistics were

computed based on 1000 accepted simulation results. Table
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5.6 includes pressures for selected nodes. Appendix A
contains results for the entire network.

The statistics presented in column 2 on Table 5.6 are
the average of the mean pressures and the average of the
standard deviations of the five realizations. These values
show that using calibrated parameters with CV of Q equal to
10%, the average standard deviations of the pressures ranged
from 0.32 feet at node 6 to 4.0 feet at node 2. Node 2 has
the simulated flow of 7.5 cfs and accounts for the majority
of the total system variance. The high flow in pipes
carrying water to node 2 causes high head loss through their
links. Conséquently, variability in the C's will affect
directly the pressures at nodes receiving water from these
links. Column 7 shows the trace of the covariance matrix of
computed pressure. This value expresses the total system
variance which is used to quantify uncertainties in thé
results derived by the model.

The standard deviation of pressures at individual nodes
increased as the assessment was performed with parameters
having more variability. Small variability was found for
nodes 1 and 6, with standard deviations for CV on Q equal
10% equal to 0.4 ft and 0.32 ft respectively. These nodes
have low or no external flow. They are also located close
to the source so the flow reaching the node only passes

through a few pipes.
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TABLE 5.6

CALIBRATION ASSESSMENT FOR NETWORK 1
BY MONTE CARLO METHOD

Par. Estimation Mean and Std of Pressures at Nodes
CV Q Statistics Node Number Trace
% 1 2 3 6 cov (Ha)
(feet) (£t?)
(1) (2) (3) (4) (5) (6) (7)
1 mean 189.9 145.8 180.8 191.9 0.18
std 0.04 0.40 0.08 0.03
5 mean 189.9 145.6 180.8 191.9 4.74
std 0.20 2.03 0.42 0.16
10 mean 189.9 145.2 180.8 191.9 18.44
std 0.40 4.00 0.82 0.32
True H 190.0 145.9 180.9 191.9

First Order Analysis

The first order, second moment approach estimates the
covariance of the predicted pressures by means of the
sensitivity matrix of the model responses with respect to
the parameters and by the covariance matrix of the
parameters (equation 4.1). This approach is used as an
efficient method to compute the covariance matrix of
predicted pressures, a matrix used to define a measure of

uncertainty in model outputs. The mean values of the H's
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were computed by using KYPIPE and assigning the mean value
of the roughness parameters. The number of network
simulations required to compute the sensitivity matrix is
the same as the number of pipes in the system plus one. 1In
this example 12 network simulations were performed to
compute the sensitivity matrix. This number is
insignificant if compared with the 1000 simulations
performed for the Monte Carlo method.

Predicted pressure heads, their uncertainties and the
trace of the covariance matrix computed by FOSM method are
presented in Table 5.7 for all calibration runs. The values
compared well with the ones from Table 5.6 showing the Monte
Carlo results. Both methods were capable of predicting
pressures at all nodes within 1% of their true values.
Appendix A includes pressures for all nodes.

The standard deviations computed by the FOSM
approximation were slightly higher than those computed by
the Monte Carlo method. The maximum difference was found
for node 2 which is a critical node carrying the fire
demand. The standard deviation obtained by the Monte Carlo
method was 4.0 ft for CV on Q equal 10% compared to 4.13 ft
from the FOSM method. The difference in the trace computed
by the two methods was between 5 and 7%. The savings in
computational time by using FOSM appears to be worthwhile
given the relative small difference in the computed values.

The next chapter applies the calibration procedure to a

larger network. The application developed investigates the
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approximation of the distribution for the regressed

parameters and for the model outputs. It also presents

other aspects involved with the methodology.

TABLE 5.7

CALIBRATION ASSESSMENT FOR NETWORK 1
BY FIRST ORDER METHOD

Par. Estimation Mean and std 6f Pressures at nodes
CV Q Stgtistics Node Number Trace
% 1 2 3 6 cov(Ha)
(feet) (£t2)
(1) \(2) (3) (4) (5) (6) (7)
1 #ean 189.9 145.8 180.8 191.9 0.19
?td 0.04 0.41 0.08 0.03
5 mean 189.9 145.7 180.8 191.9 5.08
std 0.21 2.10 0.44 0.17
10 mean 189.9 145.5 180.8 191.9 19.65
std 0.42 4.13 0.85 0.34

True H 190.0 145.9 180.9 191.9




CHAPTER VI
EVALUATION OF THE ASSESSMENT CRITERIA

This chapter presents results of several applications
developed to illustrate the calibration approach considering
uncertainties in input variables, in parameters, and in
simulation results. One of the purposes of the applications
is to show the sensitivity of the measure of prediction
uncertainty to different types and levels of input
uncertainties. Also the applications demonstrate the
usefulness of the assessment measure and how it can be used
as a criteria to judge the calibration accuracy according to
the intended use of the results.

The experiments conducted in this chapter illustrate
how the measure of the models' prediction uncertainty is
affected by: (a) different levels of uncertainty in
estimation of consumer demands Q's; (b) different levels of
uncertainty in measurements and pseudo-measurements of
pressure heads H's; (c) different types of assessment
demands; (d) calibration performed with measurements from a
low stress network condition; (e) calibration performed with
different amount of available information; and (f)
calibration performed considering a parameterized network.

An investigation was performed to examine the distribution

90
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of the regressed roughness parameters and model output
resulting from the distribution of the input variables. A
second investigation was also conducted to find the number

of simulations required for the Monte Carlo approach.
Network Description

The distribution network used to run experiments for
the application is formed by 16 pipes, 12 internal nodes and
4 loops.r The source of water is a at node 13 which has a
fixed grade at elevation 50 feet. The highest point in the
system is located at elevation 165 feet. The maximum
difference in elevation between this node and the lowest
point is 35 feet. The water is delivered to the network
through a 10000 ft, 24-inch pipe line corresponding to link
1. There is a pump in this line to provide enough energy
such that the available pressure at all points in the
network is within adequate limits. For modeling purposes,
the effect of the pump was reproduced by adding its
contributing pressure to the grade at node 13.

The network comprises 75200 feet of pipe line. The
total system demand is 29.6 cubic feet per second (cfs)
under normal demand conditions. Figure 6.1 shows the
network characteristics and numbering scheme. Pipe length
and diameter are presented in Table 6.1.

Measurements under five network loading conditions were
considered to estimate the unknown pipe roughness

coefficients. These loads are referred to as: Normal (N),
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TABLE 6.1

PIPE CHARACTERISTICS FOR NETWORK 2

Pipe Diameter Length
# (in) (ft)
(1) (2) (3)

1 24 10000
2 18 5000
3 16 5000
4 14 5500
5 12 3500
6 14 5500
7 12 4500
8 6 2500
9 12 3500
10 15 2200
11 18 6500
12 4 5000
13 12 5500
14 14 3000
15 12 4000
16 16 4000

Peak (P), Slack (S), Fire at node 3 (F3), and Fire at node 8
(F8). The normal load corresponds to the average daily
demand. The peak demand considered normal external flows
increased by 40%. The slack condition had the normal
demands reduced by 60%. A fire fighting situation was
simulated at node 3 with a required flow of 4.5 cfs. During
this period, consumer withdrawals at remaining nodes were
reduced to 80% of their normal values. A fire fighting

condition with the same characteristics was reproduced at
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node 8. Table 6.2 shows the demand for all nodes for each
load. Pressure head and demands were made available for all
nodes under each loading condition.

To generate the required input data, the demands were
adopted and pressures were simulatgd using KYPIPE with the
true value of the roughness parameters. Random errors were
added to reflect uncertainties in input variables in the

same manner as described in Chapter V.
Uncertainties in Nodal Demands

Severai runs were performed to study different levels
of uncertainties in calibration data and their effects in
the parameter estimates. In the previous chapter the
pressures were considered as exact values. Now,
uncertainties are introduced in Q's as well as in the H's.
The effects 6f these different sources of uncertainties in
input data were individually assessed. In the first series
of runs a coefficient of variation (CV) on Q's equal to 1,
5, 10, and 25% were considered. The uncertainty in the H's
were kept constant with a standard deviation (std) of 0.25
ft for all nodes. In the second series of runs uncertainty
levels of the H's varied while the uncertainties in the Q's
remained constant. Values for the std of the H's equal to
0.1, 0.25, 0.5 and 1.0 ft were considered and a CV of Q's
equal to 5% was used for all cases. The errors introduced
in Q's and H's were assumed normally distributed.

Statistical analysis for each pipe roughness



TABLE 6.2

AVAILABLE INFORMATION USED TO ESTIMATE
PARAMETERS FOR NETWORK 2

Loading Node Demand Pressure
Condition Number (cfs) (ft)
(1) (2) (3) (4)
Normal 1 0.00 474.76
2 5.00 376.81
3 2.60 348.74
4 4.29 327.27
5 3.71 328.89
6 3.00 327.27
7 5.00 335.59
8 0.00 361.35
° 2.00 -354.66
10 2.00 376.02
11 0.00 391.97
12 2.00 389.19
13 -29.60 617.00
Peak 1 0.00 481.75
2 7.00 299.10
3 3.64 246.76
4 6.01 206.72
5 5.19 209.73
6 4.20 206.71
7 7.00 222.24
8 0.00 270.28
9 . 2.80 257.80
10 2.80 297.63
11 0.00 327.38
12 2.80 322.18
13 -41.44 747.00
Slack 1 0.00 561.77
2 3.00 523.74
3 1.56 512.84
4 2.57 504.51
5 2.23 505.13
6 1.80 504.50
7 3.00 507.74
8 0.00 517.74
9 1.20 515.14
10 1.20 523.44
11 0.00 529.63
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TABLE 6.2 (Continued)

Loading Node Demand Pressure
Condition Number (cfs) (ft)
(1) (2) (3) (4)
Slack (cont.) 12 B 1.20 528.55
13 -17.76 617.00
Fire at node 3 1 0.00 504.33
2 4.00 423.99
3 4.50 393.71
4 3.43 386.86
5 2.97 390.02
6 2.40 387.50
7 4.00 395.09
8 0.00 417.14
9 1.60 413.12
10 1.60 430.55
11 0.00 441.64
12 1.60 439.80
13 -26.10 617.00
Fire at node 8 1 0.00 487.14
2 4.00 404.21
3 2.08 379.55
4 3.43 356.92
5 2.97 356.54
6 2.40 356.96
7 4.00 363.03
8 4.50 368.71
9 1.60 365.55
10 1.60 391.96
11 0.00 404.36
12 1.60 402.52
13 -28.18 617.00

coefficient was computed based on 500 regressions for
parameter C's. A sigma bound equal to 3 standard deviations

was used as the first conditioning criteria to generate
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error terms. The regressed C's were also conditioned to be
between 65 and 145 (Hazen-William coefficients). This may
introduce a small bias in the parameter estimates but it
provides a means of introducing physical reasoning to accept
the randomly generated error term. Table 6.3 shows
estimates of the C's and their standard deviations for
selected pipes. Appendix B presents results for all pipes.

Pipes 8 and 15 are the links with highest standard
deviations in their C's. They carry low flow and are
considered weak pipes. Standard deviations for these pipes
were in the range of 20 units.

Pipe 1 is the most important link in the network since
it is the only pipe connected to the source of supply. Its
variance was small since an error in its estimate affected
the pressure head estimates for all nodes. As the CV of the
Q's increased from 1% to 25% it caused the standard
deviation of C for pipe 1 to increase from 0.2 to 4.6, as
can be seen in column (3) on Table 6.3. For the same
variation in the CV of the Q's, the increase in the standard
deviation of C for pipe 10 was from 2.7 ft to 9.7. The
standard deviation increased by a factor of 3.6. It also
can be seen from column (5) that the estimates of the C's
for the same pipe worsen as the CV of the Q's increased.

The standard deviation of C for pipe 12 increased by
the same factor observed for pipe 10, although there was
more uncertainty associated with the estimates for this pipe

(standard deviation equal to 4.0 ft for CV of Q's equal 1%).
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TABLE 6.3

ESTIMATES OF PIPE ROUGHNESS C FOR DIFFERENT LEVELS OF
UNCERTAINTIES IN Q'S AND STD OF H'S EQUAL 0.25 FEET

cv Roughness C
Q Pipe # Trace
(%) sStatistics 1 8 10 11 12 15 cov(C)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 mean C 109.7 108.8 110.0 109.7 108.8 84.1

std. C 0.2 20.7 2.7 1.5 4.0 17.9 1255
5 mean C 109.7 105.4 109.9 109.5 109.4 85.8
std. C 0.9 22.7 4.4 2.8 6.7 17.6 1681
10 mean C 109.6 108.1 109.2 109.2 109.7 92.2
std. C 1.8 23.1 6.0 4.0 9.4 21.2 2303
25 mean C 109.6 104.3 108.4 108.4 111.4 101.2
std. C 4.6 22.4 9.7 7.1 14.7 23.3 3846
TRUE C 110 110 110 110 110 110

Uncertainties in Nodal Pressures

The next set of runs considered CV on Q equal 5% and a
standard deviation of H's varying from 0.1 to 1.0 ft.
Results are presented in Table 6.4. As the CV of Q or the
standard deviation of H increased so did the standard
deviation of the C's. The standard deviation of C for pipes
8 and 15 were high since they did not carry significant
flow. These pipes are considered weak pipes in the system

and they are less important than links carrying larger
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TABLE 6.4

ESTIMATES OF PIPE ROUGHNESS C FOR DIFFERENT LEVELS OF
UNCERTAINTIES IN H'S AND CV OF Q'S EQUAL 5%

std Roughness C
H Pipe # Trace
(ft) Statistics 1 8 10 11 12 15 cov(C)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.1 Mean C 109.9 107.9 110.0 109.9 109.9 91.8

std. ¢ 0.9 21.3 3.8 2.5 5.6 19.5 1459
0.25 Mean C 109.7 105.4 109.9 109.5 109.4 85.8

std. ¢ 0.9 22.7 4.4 2.8 6.7 17.6 1681
c.5 Mean C 109.0 106.9 108.5 107.6 109.2 83.9

std. C 1.2 22.3 5.3 3.6 8.6 17.3 1992
1.0 Mean C 107.6 108.6 106.4 104.2 110.9 86.2

std. ¢ 1.5 23.2 6.1 4.6 11.7 19.3 2666

TRUE C 110 110 110 110 110 110

flows. Thus, a wider range of C values for pipes 8 and 15
do not greatly affect the pressure distribution throughout
the system because the head drop through these links is not
significant.

The full covariance matrix of estimated parameters and
their correlations for the run with std of H's equal 0.25 ft
(bases run), can be seen in Appendix B. Parameters C's were
found to follow a normal distribution for all major pipes in

the network as will be discussed later in this chapter.
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Assessment of Calibration for a

Different Demand

The demand selected to assess the calibration
represents the flow requirements to fight a fire located at
node 4. The magnitude of the flow at that node is 10 cfs.
The remaining nodes in the network had their demands
increased by 20% of their normal values. At this critical
network operating condition we want to evaluate what the
available nodal pressures will be. Table 6.5 shows the
assigned flows for each node. The negative sign for the
flow at node 13 indicates that it is a source of water
supply for the network. Model prediction uncertainty was
assessed by Monte Carlo and FOSM. Both methods considered
correlation among parameter and the uncertainties associated
with each parameter.

The trace of the covariance matrix of computed
pressures was used as a measure of the calibration accuracy.
Values from Table 6.6 show the assessment measure using
parameters obtained from different calibration runs computed
by the Monte Carlo method. Values presented are the average
of 5 realizations. The technique for obtaining such values
is explained in Chapter V. The probability of occurrence of
the predicted pressures followed the normal distribution.

Each Monte Carlo realization represents results from
1000 network simulations. Mean pressures and corresponding

standard deviations computed by FOSM are presented in Table
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TABLE 6.5

ASSESSMENT LOAD FOR NETWORK 2

Condition Node Number Flow (cfs)
(1) (2) (3)

Fire at node 4 1 0.000
2 6.000
3 3.120
4 10.000
5 4.452
6 3.600 -
7 6.000
8 0.000
9 2.400
10 2.400
11 X 0.000
12 2.400
13 -40.372

6.7 for all calibration runs. Table 6.8 summarizes the
results obtained from previous runs and compares the
assessment measure obtained by both methods. Appendix B
includes results for all nodes.

Results from Monte Carlo and FOSM methods are very
similar for most of the runs. The assessment measure
computed by the two methods, as shown in columns (4) and (5)
in Table 6.8, divergés more with the increase in the level
of the input uncertainty. This fact is caused because the
first order method does not consider higher order terms when

approximating the variances of the nodal pressures.
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TABLE 6.6

CALIBRATION ASSESSMENT FOR NETWORK 2
BY MONTE CARLO METHOD

Par. Estim. Mean and Std of Pressures at Nodes (ft)
CV Q Std H Node Number Trace
(%) (ft) Stat. 1 4 7 9 11 Cov(Ha)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 0.25 mean 492.9 202.0 238.4 279.6 346.5
std 1.1 2.5 2.1 2.0 1.9 50

5 0.25 mean 492.8 201.7 238.1 279.4 346.5
std 3.8 8.5 7.8 7.0 6.0 598

10 0.25 mean 492.6 201.6 237.2 279.2 346.4
std 7.5 16.5 15.5 13.9 11.8 2301

25 0.25 mean 490.9 197.6 233.1 275.0 343.5
std 19.5 42.0 39.2 35.0 29.8 14834

5 0.10 mean 493.5 203.7 239.2 280.9 347.8
std 3.8 8.4 7.7 6.9 5.9 578

5 0.25 mean 492.8 201.7 238.1 279.4 346.5
std . 3.8 8.5 7.8 7.0 6.0 598

5 0.50 mean 490.0 196.1 233.5 274.5 341.6
std 5.0 10.1 9.5 9.3 8.6 974

5 1.00 mean 483.9 184.5 222.4 262.9 330.1
std 6.9 13.0 12.4 12.8 12.8 1788

True H's 494.3 206.5 239.9 282.1 348.9

Therefore, the difference in the results computed by FOSM is

accentuated with the increase of the nonlinearity effects

introduced by the high uncertainty levels. This was a

reason to incorporate a conditioning criteria to reject

values

from the tails of the distribution when generating

random deviates. However, at high uncertainty levels, exact
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CALIBRATION ASSESSMENT FOR NETWORK 2
BY FIRST ORDER METHOD
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Par. Estim. Mean and Std of Pressures at Nodes (ft)
CV Q Std H Node Number Trace
(%) (ft) Stat. 1 4 7 9 11 Cov(Ha)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 0.25 mean 492.9 202.0 238.6 279.6 346.5
std 1.1 2.6 2.2 2.0 1.8 53

5 0.25 mean 492.9 202.0 238.4 279.5 346.5
std 3.8 8.5 7.9 7.0 6.0 600

10 0.25 mean 492.8 202.1 237.7 279.5 346.5
std 7.7 17.0 16.0 14.3 12.2 2451

25 0.25 mean 492.5 202.8 236.7 278.6 346.0
std 19.7 43.2 40.6 36.3 30.9 15859

5 0.10 mean 493.6 204.0 239.5 281.0 347.9
std 3.8 8.6 7.9 7.0 6.0 608

5 0.25 mean 429.9 202.0 238.4 280.0 346.5
std 3.8 8.5 7.9 7.0 6.0 600

5 0.50 mean 490.0 196.4 233.6 274.6 341.6
std 5.0 10.2 9.6 9.3 8.6 982

5 1.00 mean 483.9 185.0 222.7 263.1 330.2
std 6.9 13.1 12.4 12.9 12.8 1801

True H's 494.3 206.5 239.9 282.1 348.9

estimates are not of major concern if the measure is still

consistent and robust.

When the uncertainty is high, more

data must be collected thus, as long as the measure shows

the relative magnitude,

it is adequate.
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TABLE 6.8

COMPARISON OF CALIBRATION ASSESSMENT
COMPUTED BY DIFFERENT METHODS

Parameter Estimation Calibration Assessment

CV Q Std H Trace Trace cov(Ha) (ft?)

(%) (ft) cov(C) Monte Carlo FOSM
(1) (2) (3) (4) (5)
1 0.25 1255 50 53
5 0.25 1681 598 600
10 0.25 2303 2301 2451
25 0.25 3846 14834 15859
5 0.10 1459 578 608
5 0.25 1681 598 600
5 0.50 1992 974 982
5 1.00 2666 1788 1801

Impact of Different Assessment Loads

Different assessment loads can be selected according
to the intended purpose of the calibration. This section
shows how the measure of uncertainty in model results
changes according to the loading condition used. Several
assessment conditions will be studied using parameters
estimated with CV of Q's equal to 5% and no uncertainty in
the H's. The trace of the covariance matrix of the
regressed C's in this case equals 1397 (Hazen-Williams

roughness units).
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The assessment loads considered fire fighting
requirements at nodes 4, 7 and 10. Their magnitudes are
presented in column (2) on Table 6.9. 1In all cases the
demands at remaining nodes were increased by 20%. Column
(3) shows the trace of the covariance matrix of computed
pressures, trace cov(Ha), which has been used as a measure
of the calibration assessment. Other measures such as the
average, minimum and maximum standard deviations of nodal
pressures were also included in columns (4), (5), and (7)
respectively. Columns (6) and (8) show the nodes having
minimum and maximum standard deviations.

The first run in Table 6.9 contains a 10 cfs fife
demand at node 4. The measure from column (3) shows a value
of 541 ft? for the trace of the covariance matrix of the
pressures. In the subsequent run, the magnitude of the fire
was reduced to 8 cfs causing a decrease in the measure to
439 ft?’. The third run has the same condition of the first,
except that the fire wasylocated at node 7 instead of node
4. This cdused the measure to change from 541 ft? to 488
ft?. A fire with less magnitude, 5 cfs, was simulated in
node 10 as listed in the fifth run. The measure of 427 ft?
obtained in this run is closer to the 439 ft? obtained in
run 2 when a larger flow was induced at node 4.

Results from Table 6.9 stress the importance of the
locations and magnitude of high critical demands selected
for the calibration assessment. As an example, when the

assessment was performed for the first loading condition
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TABLE 6.9

COMPARISON OF UNCERTAINTY MEASURES FOR
DIFFERENT ASSESSMENT LOADS

Assessment Load Uncertainty in Predicted Pressures

Critical Trace Mean Minim. Node Maxim. Node

Node Demand Cov(Ha) Std(Ha) Std(Ha) # Std(Ha) #

(cfs) (£2) (ft) (ft) (ft)

(1) (2) (3) (4) (5) (6) (7) (8)
4 10.0 541 6.7 3.7 1 8.1 6
4 8.0 439 6.0 3.4 1 7.1 6
7 10.0 488 6.4 3.5 1 7.5 6
7 8.0 398 5.8 3.2 1 6.5 10
10 5.0 427 5.9 3.3 1 6.6 10
10 3.8 377 5.6 3.1 1 6.2 6

from Table 6.2 (Normal demand) the trace of the covariance
matrix of computed pressures was only 165 ft? compared to
values in the range of 450 ft? observed for the assessment

demands listed in Table 6.9.

Calibration with Measurements from

Low Stress Conditions

This section investigates the effects of calibrating a
network using measurements obtained by stressing the system
to different levels. The first set of calibration runs used
input data information from the five loading conditions

described earlier and presented in Table 6.2. They
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correspond to the runs under the title of normal stress
demands in Table 6.10. The second set of runs considered as
available input data the previous loads reduced to 60%. In
these runs the nodal demands from Table 6.2 were multiplied
by a factor of 0.6 and the corresponding nodal pressures
were acquired for this new condition. This would correspond
to take field measurements while inducing less flow at the
fire and ordinary nodes. To reduce the stress in the
ordinary nodes, the data collection efforts should be
carried early in the morning when consumer demands are low.

Three calibration runs were performed under each
condition described above. They correspond to different
levels of uncertainty in the input data used to estimate
parameters. These uncertainties are represented by the
coefficient of variation of the nodal demands (CV of Q's)
and by the standard deviation of the nodal pressures (std of
H's). The same levei of uncertainty was assigned for
corresponding runs under both conditions of network stress.
A constant CV of Q's and varying std of H's were considered
for each of the three runs. The low stress condition had
less uncertainty in the Q's since their standard deviations
are scaled according to the magnitude of the mean value of
the Q. Uncertainties for the H's, however, were at the same
level for both stress conditions since their standard
deviations are assigned independently of the mean value of
the nodal pressure.

A CV of Q's equal to 5% was used to express the
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TABLE 6.10

COMPARISON OF CALIBRATION PERFORMED WITH MEASUREMENTS
FROM DIFFERENT LEVELS OF NETWORK STRESS

Parameter Estimation Calibration Assessment
CVQ StdH Trace Trace cov (Ha) (ft?)
(%) (ft) cov(C) Load 1 Load 2

(1) (2) (3) (4) (5)

Normal Stress Demands

5 0.10 1459 589 92

5 0.25 1681 614 91

5 0.50 1992 : 986 148
Low Stress Demands

5 0.10 1239 551 83

5 0.25 2228 1515 228

5 0.50 2952 3262 492

uncertainty level of the Q's for all runs. The
uncertainties in the measurement of the pressures correspond
to standard deviation of the H's equal to 0.1 ft, 0.25 ft
and 0.5 ft. The uncertainty level used in each run is
listed in columns (1) and (2) on Table 6.10. Parameter
uncertainty is shown in column (3).

Calibration assessment was performed for two
assessment loads considering each calibration run. The
first, Load 1, corresponds to the load previously utilized
in this chapter and listed in Table 6.5. The second, Load

2, corresponds to the previous load with demands reduced to
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60% of their original values. Calibration assessment for
all runs were performed by FOSM method and are shown in
columns (4) and (5) on Table 6.10.

Results from this investigation show that the
calibration performed with low stressed demands gives better
results at a small level of uncertainty in the measurements
of the pressure heads. For example, considering the
standard deviation of H's equal to 0.10 ft, the measure
obtained with Load 1 was 551 ft?, for the low stress
demands, compared to 589 ft?, for the normal stress demands.
These values were 83 ft? and 92 ft?, respectively, with Load
2. The standard deviation of H's equal to 0.10 ft was the
only case in which the assessment measure was smaller when
using calibrated parameters from low stress demands. The
difference between the measures for different loads was in
the range of 10%.

When the standard deviation of the H's was 0.25 ft,
the measure obtained for Load 1 was 614 ft? for the
calibration with normal stress demands compared to 1515 ft?
for the less stress condition. The same measures
considering Load 2 were 91 ft? and 228 ft’. The difference
was approximately 150% more for the measure obtained with
the low stress demands. For the third run, with standard
deviation of H's equal to 0.5 ft, the same difference
increased to 230%. These results reveal the importance of
stressing more the network demands when taken measurements

to be used for calibration purposes. Since the pipes in the
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network carry less flow the error in measurements become
more significant relative to the system's losses when using

low stress demands.

Different Amount of Available

Information

This section investigates the quantity of the
available information used to estimate parameters and its
impact on parameter and prediction uncertainty. Two
conditions were considered. The first compared
uncertainties resulting from calibration performed using
data from three and five loads. The second condition used
information from five loads to estimate parameters but in
each run a particular nodal demand was considered as unknown
for all measured loads.

Parameter estimation runs in this section were
completed after 500 regressions were performed to determine
uncertainty in parameter C's. The uncertainty in the input
data used to estimate parameters was the following: CV of
Q's equal to 5% and standard deviation of H's equal to 0.25
ft. Table 6.11 show results from all conditions analyzed.
Column (1) lists the number of loading conditions available
to estimate parameters. Column (2) figures the node with
the unknown demand. This demand in an extra variable to be
identified by the estimation procedure.

The first run considered measurements under normal,

peak and fire at node 8 conditions. The second and
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TABLE 6.11

EFFECTS OF THE AMOUNT OF AVAILABLE INFORMATION
’ IN THE ASSESSMENT MEASURE

Assessment Measures

Number Node w/ Trace Trace Average Minim. Maxim.

of Missing cov(C) cov(Ha) Std(Ha) Std(Ha) Std(Ha)

Loads Demand (£t2?) (ft) (ft) (ft)
(1) (2) (3) (4) (5) (6) (7)

3 L - 1896 950 8.9 4.8 10.7
5 - 1681 599 7.1 3.8 8.5
5 2 1878 35318 54.2 34.3 67.8
5 5 2077 5322 21.0 10.7 31.6
5 8 2137 29698 49.7 26.8 61.9
5 10 2205 3732 17.6 9.6 28.1

subsequent runs considered input data from all 5 loads as
list;dfin Table 6.2. The number of equations that can be
written for the regression matrix is 36 in the first case
and 60 in the second case. The number of unknown parameters
in both cases is equal to 16, corresponding to the number of
pipes in the network.

The worth of the input data can be quantified by
looking at the trace of the covariance matrix of the
regressed parameters listed in column (3) on Table 6.11. It
shows a value equal to 1681 obtained using 5 loads compared
to 189% with 3 loads;$ The uncertainty in the predictions

also varied from 599 ft? to 950 ft? using 5 and 3 loads (See
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column (4)). Other measures such as the average, minimum
and maximum std (Ha) varied consistently with the changes in
the amount of information as can be seen in columns (5)
through (7).

The second set of runs shows the importance of the
correct estimation of the demands for critical nodes. It is
convenient to mention again that each node without demand
data causes the loss of N; equations in the regression
matrix, where N; is the number of loads. 1In this
application the number of equations lost due to a missing
nodal demand was 5. The number of available equations
decreased from 60 to 55. The estimation performed with less
information generates parameters with more uncertainty.

The trace of the covariance of C does not change much
when information from different nodes is missing, as can be
seen in column (3). However, the variances of estimates of
C's for critical pipes may increase significantly and may
influence the uncertainty in the resulting pressures. For
example, if the demand at node 2 is not known (third run on
Table 6.11), the measure in column (4) increases to 35318
ft? compared to 5322 ft? if the demand is not known at node
5. This happens because node 2 is located near the source
of supply and at the intersection of three important links.
Conversely, node 5 is located at the end of the network and
is formed by the junction of only two less important pipes.
This fact stresses the importance of the information at

critical network locations and its contribution to the
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magnitude of the measure of uncertainty in model

predictions.
Network Parameterization

The effect of considering a group of pipes having the
same C values was investigated. The purpose of
parameterizing a network is to reduce the number of unknowns
and consequently to increase the level of system
overdetermination which improves the certainty of the
regressed parameters.

The uncertainty presented in the input data for the
runs in this section were a CV of Q's equal to 5% and
standard deviation of H's equal to 1.0 ft. A total of 500
regressions were performed to estimate parameters for each
run. The estimation procedure was conditioned to accept
regressed C's ranging from 65 to 145 units. The first run
was considered as a base run and it was completed in 72
hours using an IBM compatible personal-computer with a 486-
25 MHz CPU.

Pipe 15 is a weak pipe in the network and has high
uncertainty associated with the estim;tes of its roughness
factor. In the subsequent runs this pipe was lumped with
other pipes in an attempt to improve its estimates of C.
Table 6.12 shows results for the base condition without any
parameterization and three conditions with lumped
parameters.

The second and third runs considered pipe 15 lumped
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TABLE 6.12

EFFECTS OF NETWORK PARAMETERIZATION IN THE
ESTIMATES OF ROUGHNESS FACTOR FOR PIPES

Lump C Estimates of Roughness C Comput.
at Statistics ‘ Pipe # Trace Time
pipes 5 12 13 14 15 cov(C) (hr)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

- mean C 89.4 110.9 105.8 109.8 86.2

std. C 19.0 11.7 19.5 13.3 19.3 2666 . 72
14, mean C 93.5 107.0 104.5 101.0 101.0
15 std. C 21.2 10.7 20.2 11.2 11.2 2333 2.5
13, mean C 91.6 118.6 83.5 106.0 83.5
15 std. C 20.4 8.6 15.4 11.4 15.7 2000 2.5
5, mean C 79.7 120.6 79.7 106.7 79.7
13, std. C 12.4 7.2 12.4 10.5 12.4 1352 -0.5
15

TRUE C 110 110 110 110 110

with pipes 14 and 13 respectively. The last run considered
pipes 5, 13 and 15 lumped together. Column (8) from Table
6.12 shows the measure of uncertainty in the estimates of C.
Column (9) shows the computational time to complete 500
valid regressions. It is apparent that the measure of
uncertainty and the computational time decreases as more
pipes are lumped to the same C.

When several pipes are considered as having the same

roughness parameter, the number of unknowns in the system
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reduces by the same number of pipes being parameterized
while the number of equations remains the same. The
improvement in the estimates is caused by the increase in
the system's overdetermination level. Lumping a weak pipe
with others having smaller variability contributes to reduce
the variability of the first with the expense of increasing

the variability of the other pipes.

Convergence of the Mean and

Standard Deviation of C's

The number of Monte Carlo simulations performed to
estimate the C's and their variability was based on the
stochastic convergence of the mean and standard deviation of
the C's observed for the base condition. This condition
considered input data uncertainty equal to a CV of Q's at
the 5% level and standard deviation for the H's equal to
0.25 ft, as listed in Tables 6.3 and 6.4. Most of the runs
presented in this chapter were performed with 500
simulationé. This number was enough for the convergence of
the mean C and standard deviation C of the major pipes in
the network. The convergence of these statistics for weak
pipes would probably require a larger number of runs.
However, the improvements obtained are not worth the effort
since these links do not significantly contribute to improve
the calibration assessment measure.

The program developed to estimate parameters has an

option to compute the mean and standard deviations of the



116

C's after a specified number of simulations. These values
can be saved and plotted to check the stochastic convergence
of such variables. 7

Figures 6.2 and 6.3 show stochastic convergence of the
mean and standard deviation of pipe 1 for the base run. It
can be seen that convergence for both were obtained within
less than 500 simulations. Figures 6.4 and 6.5 show the
same analysis for pipe 10. This pipe has a higher degree of
uncertainty associated with its roughness parameter and so
it requires more simulations to converge. Stochastic
convergence for other pipes considering the base run is

included in Appendix E. Based on these results the use of

500 simulations was deemed as adequate.
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Approximation of the Distribution

of Parameters

Parameter estimates from 500 regressions were used to
approximate a distribution for the C's for the base run
described in the previous section. The normal distribution
was fitted to the data. Figures 6.6 and 6.7 show the
distribution of C's from pipes 1 and 3, plotted against a
normal distribution represented by the straight line. It
can be seen that these data are well approximated by the
normal distribution. A check of the normality for all pipes

was performed in the same manner.
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As an example, Figure 6.8 shows a fitting for pipe 9.
Although the data deviated a little at the tails of the
distribution, it did fit well at the center. It is noted
that the estimate of pipe 9's C has higher standard
deviation than £hose from pipes 1 and 3. Also, pipe 9 is
located at the end of the network.

Estimates of C's for important links more closely
followed the normal distribution. Appendix F includes
figures showing fittings for all pipes for the base
condition. It was observed that only estimates for pipes 8

and 15 did not fit well by a normal distribution. Since
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these pipes are weak in the network and carry low flow,
their C's do not influence significatively the pressure
distribution throughout the system. Therefore, the normal
distribution was assumed to generate the error term for all
pipe parameters when assessing the model predictions'

uncertainty performed by the Monte Carlo method.
Distribution of Computed Pressures

Using data from each simulation performed for the
calibration assessment by the Monte Carlo method, a
normality check was conducted for the computed nodal
pressure assuming that all C's were normally distributed.
Figure 6.9 and 6.10 show plots of the pressure data from
nodes 1 and 4 for the assessment load listed in Table 6.5,
computed witﬁ parameters from the base run described earlier
(See second run on Table 6.6). The data followed a straight
line with the normal distribution.

Data from all nodes fit the normal distribution well as
can be seen in the figures included in Appendix G. This
fact is important since it allows confidence limits to be
placed on the likelihood of the occurrence of a certain
pressure at the nodes. The confidence limit is another way
of expressing the uncertainty of the pressure in the node

such that it can be understood by the layman.



122

510
r—
500
T
490
) : . i . )
480 NPT B BT FOTTTITIN PPV POV P N
0.1 1 10 30 50 70 90 99 99.9
Probability Greater Than
Figure 6.9. Probability Distribution of H,
230
g
<+ 200
T
b (?
1 10 30 50 70 90 99 99.9

0.1

Probability Greater Than
Figure 6.10. Probability Distribution of H,



123
Appropriateness of the

Assessment Measure

The variance of the computed nodal pressure was used to
quantify the uncertainty in model predictions resulting from
current knowledge of the calibrated parameters. The trace
of the covariance matrix of the computed pressures,
representing the sum of the variances of the pressures at
all nodes in the network, is one way to express the total
system variance. This quantity waé selected as a measure to
evaluate the calibration assessment. The purpose of this
section is to justify the selection of the trace as a useful
measure and to show its appropriateness to quantify
uncertainties in model outputs for water distribution
systems.

The first point considered to select the trace as a
measure was the need of a single value to represent the
output uncertainties. A single value is a fast and easy way
of evaluating and reporting the improvements in the
prediction uncertainty after each iteration is completed.

The applications developed in the present and previous
chapters revealed the consistency of the measure represented
by the trace. It changes in accordance with changes in the
uncertainty levels of the input variables (Q's and H's). As
the CV of Q or standard deviation of H increases, so does
the trace. The magnitude of the changes in the trace is

consistent with the changes in the uncertainty levels of the
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measurements at critical nodes. These nodes are special by
their strategic location in the network and because they
carry high demands. Thus, the trace is an appropriate
measure since it behaves well in regards to the type,
magnitude and location of the changes in the uncertainty of
input variables.

The second consideration for selecting the trace is
that it can be computed by either Monte Carlo simulation or
first order approximation. While the first is more accurate
because it accounts for the system nonlinearity, the second
method is very efficient in terms of computational time.

Results from both methods compared well as can be seen
in Tables 5.6, 5.7 and 6.8. At high levels of uncertainty
the difference in the trace computed by the two methods
starts to deviate. However, the adopted measure can still
be considered useful because, although not comparing
exactly, the trace obtained by both methods are still close
to each other. This makes this measure useful for the
purposes of this study. If a node has high uncertainty
associated with its predicted pressure, it is more important
to identify that node and to work to reduce the uncertainty
than to be able to compute the exact value of the
uncertainty.

In summary, the trace was found to be a consistent and
robust measure that can be used to quantify the model
prediction uncertainties. As the amount, type and location

of the uncertainties in the input variables changes, the
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trace also changes in the appropriate direction. It also
can be efficiently computed by FOSM and, if necessary,
accurately determined by using Monte Carlo simulations. As
a single measure, it represents the total system variance
and can be used as a criteria to evaluate the improvements
obtained in the computed pressures at each calibration

iteration.

Other Useful Descriptive Criteria

Most of the applications developed in Chapters V and VI
used the trace of the covariance matrix of computed pressure
as the calibration assessment measure. This section
discusses other measures that can be used as alternative
criteria or to better represent different calibration
objectives.

The standard deviation of the nodal pressures presented
similar properties as those described above for the trace of
the covariance matrix. By using individual nodal standard
deviation as a measure, the modeler can assure to meet
pressure prediction reliability at selected points in the
network. Tables 6.9 and 6.11 present other useful measures
as the average standard deviation and the minimum and
maximum standard deviation of the nodal pressures. All of
them are acceptable measures which could be used to meet
particular calibration objectives.

Other measures could be defined to compare the

uncertainty levels from different systems. This measure
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would need to be normalized to reduce the effects of size
and demands of the networks. Such measures could be defined
as: (a) the average standard deviation divided by the total
system headloss; (b)the average standard deviation divided
by the total length of the pipe line; (c) the average
standard deviation divided by the total system demand.

Another criteria to evaluate the calibration assessment
could be defined based on the érobability distribution of
the computed pressure at the nodes. Since these pressures
were well approximated by normal distributions, a criteria
could be defined based on the confidence intervals to be
placed on the mean of the predicted nodal pressure at a
particular node.

Confidence intervals could be placed on critical nodes
and used as criteria to determine if the current level of
the calibration is accepted or if it is required to collect
more field measurements to improve the calibration accuracy.

As an example, consider the predictions of the pressure
at node 4 on Table 6.6. One may be interested in
determining confidence intervals for the individual pressure
considering the H's are normally distributed. Based on the
properties of the normal distribution (1-a)% of the

pressures are within the limits

where

Tl
I

mean pressure (ft)
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z,_ = comes from the standard normal distribution

vle

corresponding to the value of z such that
the area under the standard normal density
function from -» to z is equal 1 - «

Sg = standard deviation of the pressure (ft).

Considering the calibration run with CV of Q's equal 5%
and standard deviation of H's equal 0.25 ft, the pressure at
node 4 has a mean value of 201.8 ft and standard deviation
of 8.5 ft (See column (5), Table 6.6). The 95% confidence
interval for the predicted pressure at this node is computed

as

Hy = H+z _ 0.205 Sp

= 201.8 + 1.96 * 8.5

= 218.5

H = H-2, _o0.05 Sy
2

I

201.8 - 1.96 * 8.5
= 185.1

The value of 2,45 equal 1.96 was obtained from the
standard normal distribution. The lower and upper
confidence limits computed as above are 185.1 ft and 218.5
ft. This means that the probability is 95% that the
interval 185.1 ft and 218.5 ft contains the true mean of the
pressure at node 4.

Considering the calibration run with CV of Q's equal

10% and std of H's equal 0.25 ft (See Table 6.6) the
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pressure at node 4 has a mean value of 201.6 ft and std of
16.5 ft. The 95% confidence limits computed as above is
169.3 ft and 233.9 ft.

It can be seen that the 95% confidence interval
increased from 33.4 ft in the first case to 64.6 ft as the
uncertainty in the Q's used to estimate parameters increased

from 5 to 10%.



CHAPTER VII

APPLICATION OF DATA COLLECTION PROCEDURE

This chapter presents applications of data collection
procedures and the outer calibration loop presented in
Figure 4.2. In the first section a system wide approach
will be used to improve the estimates of the roughness
parameters. In the second section, the improvements in the
calibration assessment will be obtained by performing

individual pipe tests.

System Wide Tests

This section presents an approach to identify ideal
network conditions under which the new field measurements
should be collected. The new measurements should be taken
such that they will contribute to improve the current
knowledge of the model parameters and to decrease the
uncertainty in the results to be derived from the calibrated
model.

For demonstration purposes, at the present stage, the
calibration of the unknown roughness parameters has been
performed using information from 4 measurement loads listed
in Table 6.2: Normal, Peak, Fire at node 3, and fire at node

8. The external nodal demands from the above table were

129
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estimated with a CV of Q equal to 5%. The corresponding
pressure heads were measured or estimated with a standard
deviation of 0.25 ft. With this information available, the
estimates of parameter C were determined (See Table 7.1).
These values reveal the current knowledge of the C for all
pipes, represented by their mean and standard deviation.

The trace of the covariance matrix of the estimates of C was
found equal 1646.

The calibration exercise consists of improving the
model's ability to predict the nodal pressures for the
assessment load listed in Table 7.2. This condition
reflects a fire with a magnitude of 8 cfs located at node 6.
In addition to this fire load, the external demands at all
other nodes are increased by 20% of their normal values
which are listed in Table 6.2 as the first loading condition
(Normal). The calibration assessment measure is represented
by the trace of the covariance matrix of the model predicted
pressures. This value and individual nodal standard
deviations computed by FOSM method are presented in Table
7.3.

The objective of the calibration is to decrease the
uncertainty level of the predicted pressure which
corresponds in reducing the trace of the covariance matrix
(717 ft?). 1In order to improve the assessment measure, more
field data will be collected and used to augment the
available information used to estimate parameters. The

problem to be solved consists of providing guidance so that



TABLE 7.1

ESTIMATES OF PIPE ROUGHNESS C USING

INFORMATION FROM 4 MEASUREMENT LOADS

Pipe # Mean C std C

(1) - (2) (3)

1 109.8 1.0

2 109.9 2.3

3 110.2 3.6

4 110.5 6.3

5 106.4 16.6

6 109.3 3.6

7 111.9 11.3

8 105.7 21.7

9 108.7 6.0

10 110.1 4.2

11 109.6 2.6

12 109.6 2.6

13 110.4 12.6

14 109.8 5.6

15 89.6 19.6

16 109.5 4.4
Trace Cov (C) = 1646

the new collected data will add the most information.
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This

guidance refers to the identification of network conditions

(magnitude and location of the fire demands) to be induced

in the real system when new measurements are taken.
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TABLE 7.2

ASSESSMENT LOAD FOR DATA COLLECTION EXAMPLE

Condition Node Number Flow (cfs)
(1) (2) (3)

Fire at node 6 1 0.000
2 6.000
3 3.120
4 5.148
5 4.452
6 8.000
7 6.000
8 0.000
9 2.400
10 2.400
11 0.000
12 2.400
13 =-39.920

TABLE 7.3

CALIBRATION ASSESSMENT WITH PARAMETERS
ESTIMATED USING 4 MEASUREMENT LOADS

Node Mean Ha Std Ha
# (ft) (ft)
(1) (2) (3)
1 498.6 4.1
2 326.0 7.2
3 274.9 8.2
4 228.7 9.3
5 237.3 8.9
6 211.0 9.8
7 241.1 8.7
8 298.6 7.5
9 290.5 7.5
10 331.5 6.8
11 355.7 6.4
12 351.8 6.4

Trace Cov (Ha) = 717.0 ft?
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Selection of Potential Measurement lLoads

This step corresponds to blocks 4 and 5 in the diagram
from Figure 4.2. The procedure is explained in detail in
"Criteria to Select the Measurement Load" in Chapter IV.

In this example five potential network loadings have
been determined as feasible conditions to be induced during
the field experiments. They form the array Q,. Each load
corresponds to a vector Q, which is composed of individual
nodal demands q,, where j represents the node number. The
magnitudes of these demands are listed in Table 7.4. The
first load, Q,; corresponds to a fire flow equal 10 cfs at
node 1 and the demands at other nodes reduced by 20% of
their normal values. The second and thira demands
correspond to fire conditions of the same magnitude located
at nodes 7 and 4 respectively. The above demands reflect
single fire conditions located close to the source, in the
middle, and at the extreme of the network. The fourth and
fifth demands contain fire situations to be induced
simultaneously at adjacent nodes in the east part of the
network (nodes 4 and 5) and at the north and south parts of
the network (nodes 2 and 9). The magnitude of the fire at
node 9 is only 5 cfs because this node is a connection of
pipes with small diameters.

As a first step the load Q, is investigated. When the

demands q,, are induced, the field tests will measure the
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TABLE 7.4

POTENTIAL MEASUREMENT LOADS FOR DATA COLLECTION

Condition Node Predicted Estimated
Number Demand Pressure
* (cfs) (ft)
(1) (2) (3) (4)
Qﬂ 1 10.00 . 567.7
Fire at 2 4.00 500.7
Node 1 3 2.08 482.1
4 3.43 467.8
5 2.97 468.9
6 2.40 467.8
7 4.00 473.4
8 0.00 490.4
9 1.60 486.0
10 1.60 500.1
11 0.00 510.7
12 1.60 508.8
13 -33.68 747.0 (FGN)
Q2 1 0.00 603.6
Fire at 2 4.00 502.6
Node 7 3 2.08 476.3
4 3.43 451.3
5 2.97 456.5
6 2.40 437.3
7 10.00 437.7
8 0.00 487 .7
9 1.60 484 .5
10 1.60 510.0
11 0.00 522.3
12 1.60 520.5
13 -29.68 747.0 (FGN)
Q3 1 0.00 598.4
Fire at 2 4.00 494.3
Node 4 3 2.08 455.4
4 10.00 411.2
5 2.97 428.1
6 2.40 429.6
7 4.00 447.8
8 0.00 477 .4
9 1.60 474.2
10 1.60 501.4
11 0.00 513.9
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TABLE 7.4 (Continued)

Condition Node Predicted Estimated
Number Demand Pressure
(cfs) (ft)
(1) (2) (3) (4)
12 1.60 512.0
13 -30.25 747.0 (FGN)
Qu 1 0.00 549.4
Fires at 2 4.00 413.5
Nodes 4 and 5 3 2.08 357.3
4 10.00 284.9
5 8.00 284.9
6 2.40 323.6
7 4,00 350.3
8 0.00 380.1
9 1.60 378.0
10 1.60 420.0
11 0.00 434.3
12 1.60 432.4
13 -35.28 747.0 (FGN)
Qﬂ 1 0.00 571.6
Fire at 2 10.00 444.2
Nodes 2 and 9 3 2.08 426.1
4 3.43 412.6
5 2.97 414.0
6 2.40 412.6
7 4.00 418.1
8 0.00 436.7
9 5.00 393.0
10 1.60 459.6
11 0.00 476.6
12 1.60 474.7
13 -33.08 747.0 (FGN)

corresponding nodal pressure heads. The new data on both

demands and pressures will be added to augment the available
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information which is used to estimate parameter C's.

The second step of the data collection module consists
of predicting the worth of the information provided by the
potential measurement load before conducting field
measurements. Since the actual test was not yet conducted,
the nodal pressures are not available and must be estimated.
This task is accomplished by computing the pressures with
KYPIPE using the current values of the C's from Table 7.1
and the demands from Q,. The estimated nodal pressures
obtained by this process are listed in column (4) on Table
7.4 for the first iteration of the calibration loop. This
value may change in subsequent iterations as the knowledge
of the C's are improved.

The proposed measurement load Q, then supplements the
available information Q, and is used to estimate the unknown
parameters. These projected parameters and their
uncertainties are used to compute the assessment measure for
the desired network condition.

The process is repeated for all loads from Q, and a
sensitivity vector is assembled (sensitivity vector A).

This vector contains the difference in the assessment
measure obtained with Q, (trace cov (Ha) = 717 ft?) and the
new measurement obtained when a potential load is considered
to augment the available information (trace cov (Hp). Table
7.5 lists results for the five potential measurement loads
considered in this application. The trace of the cov (Hp)

listed in column (5) was computed by FOSM. Column (6) shows
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TABLE 7.5

SELECTION OF THE MEASUREMENT LOAD

Prediction of Uncertainty Measures

Potential Fire Fire Trace Trace Sensit.
Load Node Demand Cov(C) Cov(Hp) Vector A
(cfs) (ft?) (£t2?)
(1) (2) (3) (4) (5) (6)
Qm 1 10 1470 520 197
Qﬂ 7 10 1271 632 85
Qﬂ 4 10 1180 564 153
QM 4, 5 10, 8 861 504 213
Qs 2, 9 10, 5 1163 553 164

the sensitivity vector A. It can be seen that adding the
load with fires at nodes 4 and 5(potential load Q,) causes
the largest decrease in the assessment measure which
reflects in the largest element of the sensitivity vector A;
therefore, this load is selected for a more careful
investigation regarding the individual nodal demands. Since
this load has the largest total demand and the fire node is
located at a distant point from the source, the largest head
loss occurs when it occurs. The high losses would likely
provide the most information to the analysis and affects
critical links to the largest degree. Better estimates of
roughness factor for critical links provide the largest

decrease in the trace of the covariance of Ha.
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The next step of the data collection process is to
adjust individual nodal demands in the selected measurement
load. For the purpose of this example we will restrict the
investigation to the two nodes carrying fire demands which
are nodes 4 and 5. After perturbing the individual demands,
a new potential load is formed and the process is repeated.
The potential load is incorporated into the available
measurement; the parameters are estimated; and the
assessment is performed. Table 7.6 presents results from
this new step which considered both fire demands increased
and reduceq by 2 cfs. It can be seen that the load with
fires at nodes 4 and 5 equal to 10 cfs provides the largest
decrease in the assessment measure. This corresponds to the
original fire demand at node 4 and the fire demand at node 5
increased by 2 cfs, as listed in column (3). A loading
condition as close as possible to the one above selected
(Qu, with adjusted flow at node 5) will be induced in the
network at the time the new measurements are to be taken.

It is noted that the load with the largest total demand
and causing the largest total head loss provided the most
information. This result follows the standard practice,
which suggests inducing iarge demands to cause the maximum
head loss when collecting field data for calibration. This
analysis also revealed a location which has not been

previously considered.
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TABLE 7.6

ADJUSTMENT OF NODAL DEMANDS FOR
THE SELECTED MEASUREMENT LOAD

Prediction of Uncertainty Measures

Node 4 Node 5 Trace Trace
Demand Demand Cov(C) Cov (Hp)

(cfs) (cfs) (£t2)

(1) (2) (3) (4)

10 8 861 504

12 8 1044 491

10 10 839 481

8 8 1009 490

10 6 1226 521

Collection of New Measurements

At this point the procedure would rely on the field
data consisting of collecting field measurements of the
actual induced flows in the network and the corresponding
nodal pressures, Qy and Hy. This corresponds to block 7 in
the diagram on Figure 4.2. To generate this data the actual
induced flows are assumed to be identical to those from the
selected measurement load as listed in Table 7.7. The
pressure heads are computed by KYPIPE using the true C's as
shown in column (4) on Table 7.7.

The next step consists of estimating the parameters

with the available information augmented by adding the new
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TABLE 7.7

ADDITIONAL MEASUREMENT LOAD

Condition Node Demand Pressure from
Number KYPIPE
(cfs) (ft)
(1) (2) (3) (4)
Fire at 1 0.00 528.9
Nodes 2 4.00 379.2
4 and 3 2.08 316.7
5 4 10.00 233.5
5 10.00 228.9
6 2.40 272.6
7 4.00 306.3
8 0.00 340.0
9 1.60 338.3
10 1.60 386.5
11 0.00 401.6
12 1.60 399.8
13 -37.28 747 .0 (FGN)

measurements. New estimates of C's are presented in Table
7.8. By comparing these values with those from Table 7.1 a
decrease in estimated parameter uncertainty is apparent.
The improvements in the parameters will contribute to the
decrease in the uncertainty of the predicted pressures as
can be seen by comparing results from Tables 7.9 and 7.3.
It is expected that at each new iteration the C's converge

to their true values and their uncertainty reduces.
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TABLE 7.8

ESTIMATE OF PIPE ROUGHNESS C USING
INFORMATION FROM 5 MEASUREMENT LOADS

Pipe # Mean C std ¢
(1) (2) (3)
1 109.8 0.8
2 109.9 2.1
3 110.2 3.2
4 110.5 5.1
5 107.0 10.2
6 110.0 2.1
7 109.9 9.3
8 109.4 16.4
9 109.7 5.1
10 109.8 3.5
11 109.7 2.5
12 109.5 6.3
13 109.5 12.2
14 108.9 5.4
15 106.7 9.8
16 109.2 4.1
Trace Cov (C) = 882

At some point in the process, the assessment measure
will satisfy the modeler's objective and the calibration
process is complete. In a second case, none of the
potential loads from Q, can contribute to improvements in
the assessment measure. If this happens, either improved
data accuracy must be achieved, individual pipes can be
examined,or the model is used as it is with its known

predictions' uncertainty.
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TABLE 7.9

CALIBRATION ASSESSMENT WITH PARAMETERS
ESTIMATED USING 5 MEASUREMENT LOADS

Node # Mean Ha Std Ha
(ft) (ft)
(1) (2) (3)

498.7
326.2
274.5
227.4
236.7
213.1
242.3
298.7
290.6
10 331.7
11 355.9
12 351.9
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Trace Cov (Ha) = 472.2 ft?

Throughout the data collection process estimated C's
are used to determine improvements in the assessment
measure. The sensitivity vectors then are the estimates of
the measurements true decrease and are likely conservative.
As additional data is collected both the new value of C and
Ha and their variances should improve. The above analysis,
only accounts for reduction of the variance. A better
estimate of the mean will further reduce the uncertainty in

the results of this application. The data collection
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procedure's goal is to identify useful field conditions for
new measurement. The sensitivity vectors provide a
comparison, which although not exact, does serve that
purpose.

Individual Pipe Tests

This section investigates the effects of the
improvements in the estimates of the roughness factor of
indivigual pipes in the decrease of the measure of
predictions' uncertainty. The network used to conduct
experiments for this analysis is presented in Figure 6.1 and
Table 6.1. The assessment load used is listed in Table 6.5.
The calibration objective is to reduce the total system
variance expressed by the trace of the covariance matrix of
computed pressures, trace cov (Ha).

The procedure starts by assigning a value for the
estimates of the C and their uncertainty. This situation
occurs at the beginning of the calibration efforts when no
field measurements are yet available. At this point, the
modeler seeks guidance to design data collection strategies
and to plan the field experiments.

A value of C equal to 110 with a coefficient of
variation of 10% was considered as the best guess for all 16
pipes from network 2. This corresponds to assigning a
standard deviation of 11 units to all pipes. With this
knowledge of the C's, the measure of the total system

variance for the predicted pressures was 32334 ft? as can be
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seen in row 1, column (4) on Table 7.10. The average
standard deviation for the pressures was 51.9 ft.

The selection of a pipe to conduct individual tests to
improve the predicted pressures is based on the changes in
the uncertainty measure which is used to assemble Gradient 2
described in chapter IV. First, individual pipe roughness
improvements to a CV equal to 2% will be considered and the
corresponding decrease in the trace cov (Ha) examined.
Second, the pipe which is giving the largest contribution to
decreasing the trace cov (Ha), corresponding to the link
with the largest gradient, will be selected. Third, the
contribution provided by the improvements in the selected
pipe will be investigated.

Upon defining a level of uncertainty acceptable for the
selected pipe, a step wise procedure follows. The improved
pipe is held to its desired level and the process is
repeated to identify the next pipe to be chosen for a
carefully investigation.

Table 7.10 presents results used to select the best
among pipes 1, 6, 11, 12, and 15. These pipes are located
scattered throughout the system. Column (4) shows the
measure obtained when improving the CV of the particular
pipe to 2% while holding the uncertainty for remaining pipes
at the 10% level. It can be seen that when the C for pipe 1
was improved the measure decreased to 7104 ft? compared to
29976 ft? observed for the same improvement in pipe 11. The

magnitude of the improvements are not unexpected, since pipe
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COMPARISON OF CALIBRATION ASSESSMENT MEASURES FOR
DIFFERENT LEVELS OF PARAMETER UNCERTAINTY

Parameter Uncertainty

Calibration Assessment Measure

Individual Pipe Other Pipes Trace

Average Minim.

Maxim.

Pipe CV C, CvV C Cov(Ha) Std(Ha) Std(Ha) Std(Ha)
# (%) (%) (£t?) (ft) (ft) (ft)
(1) (2) (3) (4) (5) (6) (7)
- - 10 32334 51.9 46.8 53.6
1 2 10 7104 24.3 9.4 27.7
11 2 10 29976 50.0 46.8 53.3
12 2 10 32214 51.8 46.8 53.6
6 2 10 32250 51.8 46.8 53.6
15 2 10 32333 51.9 46.8 53.6
1 5 10 12623 32.4 23.4 35.0
1 1 10 6316 22.9 4.7 26.5
Cv C = 2% pipe 1
11 2 10 4739 19.9 9.4 27.0
12 2 10 6984 24.1 9.4 27.7
6 2 10 7020 24.1 9.4 27.7
15 2 10 7103 24.3 9.4 27.7

1 carries the entire flow to the system.

Pipes 6 and 15

have small head loss because they carry low flow and so,

they have a minor impact on the pressure distribution

throughout the system.

more carefully studied.

Pipe 1 was, then, selected to be

The effects of improvements in the uncertainty of the

predictions measure can be assessed by performing the
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analysis with different values for the CV of C for pipe 1.
When the CV of C, was changed to 5% the measure changed to
12623 ft?. This value reduced to 6316 ft? when the CV of C,
was fixed as 1%. Based on the previous results, it was
decided that a CV of C, equal 2% would be adequate
corresponding to a standard deviation of 2.2 for the
estimate of C,.

The next set of runs considered as starting point a CV
of C, equal 2% and CV of C equal 10% for the remaining
pipes. It can be seen that the next pipe to be select is
pipe 11 since it contributes to the next largest decrease in
the measure. The improvement in terms of the standard
deviation of individual pipes (Ha,) may not be significant,
although, the decrease in the trace is high. Both terms
should be examined and one may decide not to pursue these
localized tests.

Gradient 2, reflecting the changes in the measure due
to improvements in the uncertainty of individual pipe's
roughness, is used to idéntify potential pipes to be
studied. It corresponds to a point estimate at the current
mean value of the C's. It may be that the means are not
correct, but the relatively magnitude of these terms among
pipes would be similar. Therefore, the analysis and

decision process can continue as described here.



CHAPTER VIII
CONCLUSION AND FUTURE WORK

The increasing complexity of problems faced by
hydraulic engineers necessitates obtaining optimized and
fast solutions to hydraulic problems through the use of
simulation models. It is of crucial importance that the
model used is calibrated to represent the real system as
close as possible. If models are not properly calibrated,
their results may be biased and they may not reproduce the
responses of the real system. It is a waste of valuable
resources to base decisions on results that do not reflect
reality of the physical systenmn.

This research has addressed the problem of improving
the calibration procedure for water distribution networks.
It provides a framework to assist modelers in obtaining more
confident decisions, a task that can be achieved when the
calibration effort produces a model which best approximates
the real systenm.

To date, only deterministic approaches have been used
to calibrate distribution network simulation models.
However, the modeling assumptions and the input information
used to estimate parameters are not known with certainty.

They contain errors which are propagated throughout the

147
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steps performed for the calibration and to the results to be
derived from the model. Quantification and a better
understanding of the propagation of these errors is an

important consideration in any modeling application.
Conclusion

A statistically based calibration methodology for a
water distribution network model has been developed. The
procedure considers three components of the modeling
process: data collection, parameter estimation and
calibration assessment. The process accounts for the
uncertainty in measurements, their impact on model
parameters and the effect of these uncertainties on the
outputs of the network simulator. It also provides
assistance in defining data collection strategies to improve
the model predictive ability.

The roughness parameters of the pipes are estimated
based on the uncertainty of the measurements of nodal
pressures and estimation of their demands. Parameter
uncertainty is transferred to model prediction uncertainty.
A measure of the calibration accuracy is defined based on
the trace of the covariance matrix of the computed nodal
pressures. This measure is assessed by two methods: Monte
Carlo simulations and first order second moment (FOSM)
approximation of the variance. The calibration methodology
was applied to two distribution networks under several

loading conditions.
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Most water distribution calibration procedures have
been deterministically based and do not consider the
uncertainties associated with modeling parameters and input
variables. This research is an initial effort to quantify
these uncertainties and to consider data collection as an
integrated component which contributes to improve model
predictive ability.

The major conclusions of this research are that: (a) a
framework has been established to incorporate the error term
in all steps of the modeling process of a water distribution
system; (b) the trace of the covariance matrix of the
computed pressures can be used as a consistent measure to
represent in a single quantity, the uncertainties in model
predictions; and (c) the FOSM approach can be used as an
efficient method to compute prediction uncertainty for water
distribution network models. Several practical results were
also found including: (1) the level of the uncertainty of
major pipes in the network affects significantly the measure
of the calibration accuracy; (2) the need to stress the
network to high demands to obtain more robust parameter
estimates; (3) a linearity was observed in transferring
uncertainties from parameter to model results in the two
networks studied; (4) the sensitivity vectors and the
gradients described in this dissertation cén be used to

guide future data collection efforts.
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Future Work

The analysis developed showed major points concerning
the importance of the input information used to calibrate
the network model. It revealed some areas that require
further research. These included:

1. Extend the parameter estimation procedure developed to
use information from extended periods of time and to
consider multiple sources of supply and storage.

2. Extend the procedure to handle (a) other representations
for the roughness parameter, besides the Hazen-Williams
factor and (b) the case when all heads are not known.
These situations would require the use of non-linear
regression or other interpolation schemes. 1In these
cases a new source of errors are introduced in the
process and they must be quantified.

3. Investigate the effects of the uncertainty introduced by
common modeling practices such as network skeletonization
(consider a simplified system) and network
parameterization (reduce the number of parameters).

4. Investigate the effects of different error distributions
in input variables on the distribution of the results of
the network simulation model. Also, investigate the
effect of correlation among parameters in the output
uncertainties.

5. Apply sparse matrix techniques to avoid the propagation

of round-off errors in the inversion of the regression
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matrix used to estimate model parameters.
6. Investigate analytic approaches to approximate the

variance of roughness parameters, such as the first order

approximation.
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TABLE A.1

ESTIMATED PIPE ROUGHNESS C FOR DIFFERENT
LEVELS OF UNCERTAINTIES IN Q’S
(Complement of Table 5.3)

Statistics PIPE NUMBER
CV of 1 2 3 4 5 6 7 8 9
Q
1% Mean c/ 99.9 100.0 100.0 99.9 99.9 99.9 99.9 99.9 100.0
std. C 0.9 1.1 1.5 0.6 0.4 0.4 0.7 1.0 1.4
5% Mean C 99.9 99.7 99.9 100.0 99.9 99.9 99.9 99.8 100.2
std. C 4.3 5.1 7.7 3.6 2.0 1.9 3.3 5.2 7.1
10% Mean C 100.6 99.1 101.3 99.0 99.5 100.3 99.8 99.8 100.0
std. C 9.1 11.5 15.6 6.8 4.1 3.6 6.2 10.0 13.2
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TABLE A.2

CALTBRATION ASSESSMENT FOR NETWORK 1 BY MONTE CARLO METHOD
(Complement of Chapter V)

Calibration
Condition NODE #
1 2 3 4 5 6 7
CV Q(%)
Table 5.6 1 Mean H 189.9 145.8 180.8 185.5 182.2 191.9 183.7
Monte Carlo std. H 0.04 0.40 0.80 0.05 0.08 0.03 0.08
5 Mean H 189.9 145.6 180.8 187.3 182.2 191.9 185.7
std. H 0.02 2.03 0.42 0.428 0.39 0.16 0.394
10 Mean H 189.9 145.2 180.8 187.3 182.2 191.9 183.6
std. H 0.40 4.00 0.82 0.497 0.748 0.32 0.7%94
Std H(ft)
Table 5.7 1 Mean H 189.9 145.8 180.8 187.3 182.2 191.9 183.7
FOSM std. H 0.04 0.41 0.08 0.05 0.08 0.03 0.08
5 Mean H 189.9 145.73 180.8 187.3 182.2 191.9 183.7
std. H 0.21 2.1 0.44 0.26 0.4 0.17 0.41
10 Mean H 189.9 145.53 180.8 187.3 182.2 191.9 183.7
std. H 0.42 4,13 0.85 0.52 0.78 0.34 0.83
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TABLE B.1

ESTIMATES OF PIPES ROUGHNESS C FOR DIFFERENT
LEVELS OF UNCERTAINTY IN CALIBRATION DATA
(Complement of Tables 6.3 and 6.4)

Data Calibration
in Condition

PIPE #
2 3 4 5 6 7 8 9 10 11 12 13 14 15

# Runs
16 Accepted Total

Std H = 0.25 ft

CV Q(%)

Table 6.3 1 Mean C
Std. C
5 Mean C
Std. C
10 Mean C
Std. C
25 Mean C
Std. C

CvV Q= 5%

Std H(ft)
Table 6.4 0.1 Mean C
Std. C
0.25 Mean C
Std. C
0.5 Mean C
Sstd. C
1 Mean C
std. C

109.7
0.25

109.7
0.89

109.6
1.79

109.6
4.59

109.9
0.90

109.7
0.89

109.0
1.15

107.6
1.53

109.71 110.3 110.7 106.4 109.0 110.2 108.8 109.5 110.0 109.7 108.8 111.6 109.5 84.11
1.16 2.94 5.65 14.54 2.71 9.61 20.72 5.05 2.71 1.54 3.99 7.66 5.33 17.91

109.86 110.2 110.4 105.7 109.1 111.5 105.4 108.9 109.9 109.5 109.4 110.4 109.7 85.77
2.27 3.77 6.70 17.59 3.86 11.65 22.66 5.78 4.43 2.79 6.67 13.24 5.95 17.61

110.0 110.4 111.0 103.8 108.6 110.6 108.1 109.7 109.2 109.2 109.7 109.3 109.5 92.2
3.64 5.14 7.90 20.09 5.71 13.26 23.07 7.01 6.03 3.97 9.35 17.89 7.26 21.16

110.6 110.4 110.6 106.0 110.0 109.5 104.3 108.4 108.4 108.4 111.4 104.8 109.5 101.2
7.25 10.24 14.49 22.07 11.88 19.06 22.41 12.43 9.72 7.13 14.73 22.39 14.30 23.27

109.9 109.9 109.9 109.2 109.6 111.0 107.9 109.4 110.0 109.8 109.9 109.9 110.1 91.8
2.06 2.60 4.12 15.06 3.36 11.05 21.27 5.65 3.76 2.49 5.56 11.42 3.67 19.51

109.9 110.2 110.4 105.7 109.1 111.5 105.4 108.9 109.9 109.5 109.4 110.4 109.7 85.8
2.27 3.77 6.70 17.59 3.86 11.65 22.66 5.78 4.43 2.79 6.67 13.24 5.95 17.61

110.2 111.2 112.8 94.7 107.0 109.9 106.9 108.6 108.5 107.6 109.2 109.9 108.8 83.9
2.64 4.92 9.07 18.56 4.70 11.74 22.30 6.14 5.32 3.63 8.61 16.55 9.10 17.31

110.4 110.3 111.7 89.4 105.8 107.4 108.6 108.1 106.4 104.2 110.9 105.8 109.8 86.2
3.28 6.93 13.14 18.97 5.43 12.38 23.19 6.33 6.09 4.64 11.74 19.53 13.32 19.34

108.5 500 8963
3.75

108.8 500 8515
4.12

108.8 500 11119
6.64

108.5 500 76473
14.15

109.8 500 1353
3.20

108.8 500 8515
4.12

104.1 500 60796
8.14

93.2 500 1786480
13.49
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TABLE B.2

COVARIANCE MATRIX OF ESTIMATED C’S FOR CV OF
Q EQUAL 5% AND STD OF H EQUAL 0.25 FT

163

ROUGHNESS PARAMETER OF PIPES
c1 c2 c3 c4 c5 c6 c7 c8
C1  .78781E+00 -
€2 .74303E+00  .51311E+01
C3  .83364E+00 .25171E+01 .14232E+02
C4  .93120E+00  .36871E+01 .23537E+02 .44888E+02
C5 .57501E+00 -.61250E+01 -.33910E+02 -.61286E+02 .30927E+03
C6  .98167E+00 -.69338E+00 -.69014E+01 -.13214E+02 .50845E+02 .14900E+02
C7  .90301E+00  .75554E+00 .19986E+01 .35481E+01 -.65342E+01 -.25594E+01 .13568E+03
C8 -.87696E+00 -.57253E+00 -.50877E+01 -.78325E+01 .13674E+02 .41905E+01 -.24231E+03 .51343E+03
€9  .20620E+00 -.10970E+00 -.95047E+00 -.13085E+01 .29511E+01 .94898E+00 -.57930E+02 .12143E+03
C10 .10549E+01 -.70763E+01 -.15603E+01 -.31935E+01 .12565E+02 .41443E+01 .18430E+02 -.37802E+02
C11  .82768E+00 -.47201E+01 -.12453E+01 -.24138E+01 .85789E+01 .29774E+01 .11905E+01 -.14718E+01
C12 .57879E+00  .11199E+02 -.87387E+01 -.16385E402 .22670E+02 .60171E+01 .24211E+00 .39781E+01
C13  .11806E+01 -.22732E+02 .47044E+01 .8B214E+01 -.39536E+02 -.95202E+01 -.61004E+01 .36803E+01
Cl4 .61995E+00 -.40831E+00 -.12756E+02 -.24268E+02 .26765E+01 .21279E+01 -.21610E+01 .54444E+01
C15 .B1399E-01  .35759E+01 -.95861E+01 -.18804E+02 -.23634E+02 -.57355E+01 -.87215E+01 .17902E+02
C16  .27546E+00 -.69247E-01 .39170E+00 .21664E+00 -.10578E+01 .25521E+00 .65256E+00 -.31043E+01
TABLE B.2 (Continued)
ROUGHNESS PARAMETER OF PIPES
c9 c10 cn c12 c13 cl4 c15 c16

C9 .33459E+02
C10 -.89431E+01 .19614E+02
C11  .45132E+00 .11223E+02 .77828E+01
C12 .76279E+00 -.19582E+02 -.12819E+02 .44431E+02
C13 .82481E+00 .46936E+02 .31209E+02 -.74527E+02 .17538E+03
Cl4  .93142E+00 .24402E+01 .18835E401 .13513E+02 .61212E+01 .35351E+02
C15 .32750E+01 -.77963E+01 -.42375E+01 .21346E+02 -.10289E+02 .30186E+02 .30996E+03
C16 -.70389E-01 .34420E+00 .53754E+00 -.66530E+00 -.11517E+01 -.19384E+01 .50052E+00 .16940E+02




TABLE B.3

CORRELATION AMONG PARAMETERS FOR CV OF Q
EQUAL 5% AND STD OF H EQUAL 0.25 FT

164

ROUGHNESS PARAMETER OF PIPES
c1 c2 c3 c4 c5 cé c7 c8
C1  .10000E+01
C2  .36957E+00  .10000E+01
C3  .24896E+00  .29455E+00 .10000E+01
C4  .15659E+00  .24295E+00 .93122E+00 .10000E+01
C5 .36838E-01 -.15376E+00 -.51113E+00 -.52015E+00 .10000E+01
C6  .28653E+00 -.79302E-01 -.47393E+00 -.51097E+00 .74902E+00 .10000E+01
C7 .87342E-01  .28635E-01 .45482E-01 .45464E-01 -.31899E-01 -.56924E-01 .10000E+01
C8 -.43604E-01 -.11155E-01 -.59517E-01 -.51594E-01 .34316E-01 .47911E-01 -.91807E+00 .10000E+01
€9  .40163E-01 -.83725E-02 -.43556E-01 -.33763E-01 .29011E-01 .42503E-01 -.B5978E+00 .92647E+00
C10 .26837E+00 -.70537E+00 -.93388E-01 -.10763E+00 .16133E+00 .24243E+00 .35726E+00 -.37670E+00
C11  .33426E+00 -.74692E+00 -.11833E+00 -.12914E+00 .17486E+00 .27649E+00 .36634E-01 -.23284E-01
C12 .97829E-01  .74168E+00 -.34751E+00 -.36690E+00 .19340E+00 .23386E+00 .31182E-02 .26339E-01
C13  .10044E+00 -.75778E+00 .94162E-01 .99422E-01 -.16976E+00 -.18624E+00 -.39547E-01 .12264E-01
Cl4  .11747E+00 -.30316E-01 -.56871E+00 -.60921E+00 .25598E-01 .92719E-01 -.31203E-01 .40411E-01
C15 .52090E-02  .89667E-01 -.14433E+00 -.15941E+00 -.76334E-01 -.84399E-01 -.42529E-01 .44876E-01
C16 .75404E-01 -.74274E-02 ,25227E-01 .78562E-02 -.14615E-01 .16064E-01 .13611E-01 -.33286E-01
TABLE B.3(Continued)
ROUGHNESS PARAMETER OF PIPES
9 c10 cn c12 c13 Cl4 c15 €16
C9  .10000E+01
C10 -.34910E+00  .10000E+01
C11 .27968E-01  .90835E+00  .10000E+01
C12 .19784E-01 -.66334E+00 -.68935E+00  .10000E+01
C13 .10767E-01  .80026E+00  .84473E+00 -.84427E+00 .10000E+01
Cl4 .27082E-01 .92670E-01  .11355E+00  .34095E+00 .77739E-01 .10000E+01
c15 .32159E-01 -.99990E-01 -.86276E-01  .18190E+00 -.44129E-01 .28837E+00 .10000E+01
C16 -.29566E-02  .18883E-01  .46815E-01 -.24250E-01 -.21129E-01 -.79209E-01 .69073E-02 .10000E+01




TRACE
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10
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12.7

NUMBER
7
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212.7 237.2 287.3 279.2 322.0 346.4 343.2 2301

197.6 222.4 271.4 262.9 305.1

41.5

NODE
5
41.8
10.3
13.0

16.4
211.7 209.1

TABLE B.4

42.0
10.1
13.0

16.5
197.6 212.6 207.9 233.1

196.1
184.5 200.3

(Complement of Table 6.7)
14.6
37.3
1
0
243.1
11.5

12.8
32.9
10.3

7.5
19.0
6.9

H
H

Mean H 492.6 315.8 257.7 201.6 216.1
H

Mean H 490.9 313.0 254.3

Mean H 485.9 303.1

Mean H 490.

Mean H 493.
Std.

Mean H 492.
Std. H

Mean H 492.
Std. H

Std. H

Std. H

Std.

Std.

CALIBRATION ASSESSMENT FOR NETWORK 2 BY MONTE CARLO METHOD

Std H
(ft)
0.25
0.25
0.25
0.25
0.10
0.50
1.00

Condition
1
5
10
5
5
5

Calibration
Cv Q

%

25
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Condition

N

Mean H 49
Std. H

Std H
(ft)
1 0.25

Cv Q
%

N M

Mean H 49
Std. H

0.25

5

12.2 12.3

12.9

0.25 Mean H 492.8 316.1 258.1 202.1 216.2 213.4 237.7 287.5 279.5 322.2 346.5 342.5 2451
Std. H 7.7 13.2 15.0 17.0 17.0 17.0 16.0 14.1 14.3

10

0.25 Mean H 492.5 315.9 258.4 202.8 216.7 212.3 236.7 286.9 278.6 321.5 346.0 341.9 15859
std. H 19.7 34.0 38.5 43.2 42.9 43.1 40.6 35.9 36.3 33.0 30.9 31.1

25

Mmm

Mean H 49.
Std. H

0.10

5

Mean
Std. H

0.25

982

10.2

196.4 211.7 209.3
10.2 10.3

253.2
9.1

1
0

2
8

90.0 31
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Mean H &
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0.50

5
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Mean H 483.9 303.2 243.2
6.9

1.00
Std. H

5
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GENERATION OF MULTIVARIATE NORMAL

RANDOM VARIABLES (Haan, 1977)

Multivariate normally distributed random variables can
be generated so that the means, variances and correlations
are preserved for all of the variables. The starting point
is the correlation matrix R of the random variables. The
equation

(R-N\I)a = 0
is solved to obtain the characteristic roots A and vectors a
of R. Another matrix Z is generated as

2=(2ys 231 -+ 1 Z,)

where 2z, is a vector composed of elements z,,. The elements
z,, are generates from a normal distribution with a mean of 0
and a variance of A.

z,, ~ N(O,\)
A matrix X is the computed from

X=2A'

The elements of X are x,, and are normally distributed with
a mean 0 and a variance of 1. Further

X'X = (n-1)R

Finally y,, is computed from

Yl,.l = UJ xlr) + ”'.l
The y,, are normally distributed with a mean of u, and a
variance of o’. The matrix ¥ is made of elements y, and has
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the property
Y'Y = (n-1)S
where S is the variance-covariance matrix that is to be
preserved in the generation process. Thus the matrix Y
contains the desired simulated random variables that have
the correct means, variances and correlations.

If multivariate lognormally distributed random
variables are desired, the matrices R and S must refer to
the logarithms of the variables. An additional step is
required to get the antilog of the generated data. this
step is to compute a matrix U composed of elements u,,

determined from

u|,_| = exp (Y1,_|)
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D1. List of programs and subroutines

Routine’ Objective

JVPIPES Main program for parameter estimation

JVASSMC Main program for calibration assessment by Monte
Carlo method

JVASSFO Main program for calibration assessment by first
order approximation

SPPC Compute Physical Parameters for pipes

SMAKEB Generate constant vector B(external nodal demands)

SNCON Identify pipes connected to a node

SMAKEX Generate coefficient matrix for regression

SSTAT Compute mean and variance

SPERTQ Introduce noise in Q's

SPERTH2 Introduce noise in H's

SPERTH3 Compute DC/DH

SMREGIAl1 Perform multiple-linear regression

SCORR Compute statistics of parameter estimates

SAVEC Save estimates of C after each regression

SFLOAD Compute component loadings

TRED2 Reduce a symmetric matrix to a tridiagonal form

TQLI Find eigenvalues and eigenvectors

EIGSRT Sort the eigenvalues

SPRTMAT Prints a matrix or vector

DECOMPOS Decompose a matrix into lower and upper form using
scaled partial pivoting

SAUGMAT Augment the coefficient matrix of regression to
include intercept coefficient

SINVMAT Inverts a matrix

SMULTMAT Perform matrix multiplication

SOLVE Solves a system of linear equation

STRANMAT Compute the transpose of a matrix

SCONDR Check criteria to accept estimates of C in the
conditional Monte Carlo method

SNOISEC Generates normally distributed noise and perturb C

GASDEV Generates a gaussian deviate

STATJV Compute correlation matrix

INDATA™ Reads geometry file (KYPIPE format)

GENMPNL™ Interface subroutine for KYPIPE

SIM™ Perform network hydraulic simulation

Some routines are modifications of routines found in

Press et al.
From Lansey and Basnet (1991).

-5

(1986) and Wolfe and Koelling (1983).
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0DOO0O0O0DO0O000O0000O0O0O000O00000O0OOOOO00000O0OOO0O0000O0O0OOO0O0OOOO0O0O000000O0O00OO0

Program to Perform Parameter Estimation

W e e e e e e e e e e e e e e e e e A ke e e e e e e e e e e e e e e e e e 9 I e e e e e e o o e 3 o e e e e e e e e % e e e ke e

PROGRAM :
AUTHOR :
DATE

REMARKS :

VARIABLES

NP
NUMPERT
ICONS

X(N,NP) :
Y(N) :
B(NP+ICONS) :
LIMIT :

TOLER

NINP :

NOUT :

NOUC :

NOUH :

ISAVEC :
ISAVEH :
TITLE :
QJV(NN*NL) :
QP(NN*NL) :
Cdv :
CSAVE(C , ) :

CSTAT(2,NP) :
cv :
1QH

XNODE(NL,NN, 2)
xmstd(1 j)
STDI

STD

nstda
ndrop(i)
nundrop :
xmev(i,j):
1ndlq(1) :
indnq(i) =
icv

nsave
fsave
igap
iseedjv :

dcdh(np)
icondr

Ok ¥ % X ok % % R o F % O F ok N ¥ % ¥ % ¥ ¥ ¥ ¥ N ¥ % ¥ N ¥ % % O % ¥ ¥ ok ¥ % % ¥ ¥ O % ¥ % ¥ N ¥ ¥ % X ¥ ¥ ¥ F ¥ ¥ ¥ ¥ ¥ ¥

: MATRIX OF COEFFICIENTS OF IND. VARIABLES
: VECTOR OF COEFF. OF DEPENDENT VARIABLE

: ARRAY DIMENSION (must be > N}
: DEFINE TOLERANCE TO APPROXIMATE ZERO

: # OF INPUT FILE
: # OF OUTPUT FILE

: CONSTANT VECTOR FOR REGRESSION(PERTURBED)

: Vector with nodes do drop equation

JVPIPES

JOSE VICENTE GRANATO DE ARAUJO
APRIL 8, 1990 (JVPIPE)
Oklahoma State University

Last Revision Dec 29, 1991

This program calls subroutine Smregia to
find the least squares estimates for coef. C
by solving:

gi= c1Xil + C2Xi2 + ... + CpXip

NUMBER OF OBSERVATIONS FOR REGRESSION (NN*NL)
NUMBER OF VARIABLES IN THE EQUATION

NUMBER OF PERTURBATIONS FOR Q

0 = REGRESSION THROUGH (0,0)

1 = COMPUTES Y INTERCEPT

COEFFICIENTS OF REGRESSION EQUATION

% % ok ok ok % % ¥ ¥ Ok ¥ ¥ ¥ N N X F ¥ ¥ N ¥ ¥ ¥ ¥ % ¥ *

# OF OUTPUT FILE TO SAVE C FOR STATISTICS
# OF OUTPUT FILE TO SAVE h perturbed "
=1 TO SAVE C PERTURBED IN THE FILE “SAVEC. DAT“*
=1 SAVE PERTURBED H’s FOR STATISTICS
TITLE OF RUN

CONSTANT VECTOR FOR REGRESSION(ORIGINAL)

regressed C’s

SAVE VALUES OF Cjv’s TO COMPUTE STATISTICS
DIMENSIONS (NUMPERT,NP)

CONTAINS STATISTICS(MEAN,VAR) OF C’s

COEFF. OF VARIATION = Sx/Xmean to perturb Qi
PERTURB Q

PERTURB H

PERTURB Q & H

Compute dC/dHm

Compute dC/dQ

Compute dC/dM = [dC/dHm,dC/dQ}

(, ,1=«nl,nn); ¢, ,2)= H(nl,nn)

Std to perturb node j from load i

Stand. Dev. used to pert H converted to psig
Stand. Dev. used to pert H in feet

Label for type of statistics 1=mean, 2=std

viHldnn -0

Number of nodes to be drop (must be >0)
Coef. of variation for node j, from load i
contains the load # corresponding to Q(i)
contains the node # corresponding to Q(i)
indicates the selected CV type to perturb Qs
output file # to save results for later use
output file name to save results

interval to compute mean & std to check conver*
seed to generate random deviates *
0 to initialize from clock

save column of dc/dh (or dC/dQ) matrix
1=condition regression, 0=not conditioned

F % ok ok % ¥ % % % ¥ ¥ ¥ % F ¥ ¥ ¥ ¥ ¥ ¥ F ¥ ¥ % ¥ F *

* * *
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icondq : 1=condition noise on Q, O=not conditioned
icondh : 1=condition noise on H, O=not conditioned
xnstdq : # of std to condition noise on Q
gmax5 : Q limit to compute std of Q@ in spertq
xnstdh : # of std to condition noise on H
clowb,cupb : lower and upper bounds to accept C
nviocl,nviocu: # of violations for lower and upper bounds
nvioql,nvioqu: # of violations of Q’s
nviog,nvioh : # of violations of H’s
INPUT FILE

TITLE (A60)

NL, NN, NP, INODE(NN,2), PIPE(NP,2),IPIPE(NP,2)
XNODE(NL NN, 2) *
e v e 9 9 3 9 e e 3 9 Ao e I e e e e A e e e e e e e e e e e e e v v e e e e e e e e 9 e e 9 e 3k 3k v v d e e e e ok ok ok vk e e ok ok ok
IMPLICIT REAL*8(A-H,0-2)

INTEGER NUMP, NUMN

INTEGER JX,IP,M,JA,JB, IX,MPL,KC,KCLO,KIP,KPI,J1J,dd1

* % ¥ ¥ ¥ % ¥ ¥ H F ¥ ¥ ¥ ¥
* % ¥ ¥ % ¥ ¥ % ¥ ¥ ¥ ¥ ¥

PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5,NPERT=1000)
DIMENSION XNODE(NUML,NUMN,2), INODE(NUMN,8), IPIPE(NUMP,2),
*X(LIMIT,LIMIT),PIPE(NUMP,2),PIPEK(NUMP),QJV(LIMIT),CJV(LIMIT),
*QP(LIMIT),CSAVE(NPERT,20),CSTAT(2,20),XNODEP(NUML ,NUMN,2),
*choice(6),nsta(3),ndrop(10),indlg(limit),indnq(limit),
*xmcv(numl ,numn) ,dcdh(nump) ,XL(LIMIT,LIMIT),LVEC(nump),
*xms td(numl , numn) '

COMMON / jvga/NOUT,nouh, iseedjv

COMMON/SINDAT/JE(100), JG(100)

COMMON /SHAR/ BM(1100), IX(2200), IP(100,13), AL(100), GFH(700),
. AM(3800), JP(100), JX(4500)

COMMON/SSIMIN/ JTAN(50),EMAX(50),EMIN(50),DIAM(50),NFUL(50),

1 LY(32),L2(32),EC100),KPI(100),JD(100),JF(100)
1,MPL(4500),NA(80),NB(80), JJUN(80), JPIP(80),

1 NPO(50),NJO(50),L10¢10),L11¢10),L12¢10),XGRD(10),XGRD1(10),

1 XGRD2(10),DDQ, I0UT, JSKIP,KJ,KTEP,MAXT ,NJOUT , NMOM, NXX

1 ,NPOUT,NPRP,NQ,NR,NTANK,NTEP, P, SW, TPER, TPPP
COMMON/SALL/QEXTK(50),AA(50),BB(50),CC(50),DD(50),EE(50),FF(50),
1 KIP(1000),J1J¢1000),KC(100),B(100),C(100),D(100),Q(100),JC(100)

1,R€100),5¢100),V(100) ,ENGY(100),JJ1(100),KCLOC100),JA(100),JB(100)

1 ,6G(50),A1,A2,A3,A4,CQ,I3,KN,NEPS, TIME, TNEXT, TPERI, TTT,UU,NJFIX
1 ,1EPS,KK, CHECK, ZQ(60) , NABEL ,NPUMP ,NCODE

COMMON/PENAL/YMIN(100), YMAX(100)

COMMON/SNAME2/M(100)

COMMON /SINREV/ BI(100),JFIX(50),TNCD,JNCG,NPCG,NNP, LABEL, FAC,

1 XPER,NQEX

COMMON /INITBK/ INIT,LASTCL

CHARACTER*1 NFILEIN*20,NFILEOU*20,NFILEOC*20,TITLE*70,choice*5
character*11 TIMEOUT,DATEOUT*8,nfileoh*20, fsave*20, FSAVEM*20,
*FSAVEST*20, findata*20, fdcdh*20, fdcdq*20

data choice/’Q’,’H’,'Q&H’,’dC/dH’,'dC/da’,’dC/dM’/,
*nsta/’mean’,’std’,’var’/

c----These lines are from nlcode setup(Wadsop)

do 1 j=1,1100
bm(j)=0.0
ix(j)=0
continue
init=1
igap=5
deltag=0.0
del tah=0.0
nviocu=0
nviocl=0
Cv=0.0
stdi=0.0
xnstdg=0.0
xnstdh=0.0
nviohl=0
nviohu=0
nvioql=0
nvioqu=0
WRITE(*,8001)

8001 FORMAT(1H1,/,5X,’ LEAST SQUARES ESTIMATION OF COEFFICIENTS FOR A’
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*,! PREDICTIVE EQUATION ’/,//,5X,’ Author: Jose Vicente Araujo’/,
*5Xx, 'PROGRAM JVPIPE4L'/)
WRITEC*,*) ’ INPUT FILE NAME FOR OPTIONS AND FLOWS(or device)? ’
READ (*,2)NFILEIN
2 FORMAT(A20)
write(*,*)’ OUTPUT FILE NAME (or device)? '/
READ (*,2)NFILEOU
L*URITE(*,*) ! Noise on @(0), H(1), Q&H(2), or compute gradients(3)
21
READ(*,*)IQH
IF ((IQH .GT. 3) .OR. (IQH .LT. 0))GOTO 4
IF (IQH .EQ. 3)THEN
290 continue
write(*,*) ’ Select gradient: dC/dH(3), dC/dQ(4) or dC/dM(5)?’
read(*,*)igh
if( (igh.1t.3) .or. (igh.gt.5))goto 290
if((igh .eq. 3) .or. (igh .eq.5))then
291 continue
write(*,*)’ Compute sensitivity matrix dC/dH ’
write(*,*)’ Give Delta H : /
read(*,*)del tah
if(deltah .eq. 0.0)goto 291
endif
if((igh .eq. 4) .or. (igh .eq.5))then
292 continue
write(*,*)’ Compute sensitivity matrix dC/da ’
write(*,*)/ Give Delta @ :
read(*,*)deltaq
if(deltag .eq. 0.0)goto 292
endif
nundrop=1
ndrop(1)=nn
ENDIF
NINP=5
NOUT=6
NouC=7
NOUH=8
nindata=9
nsave=66
NSAVEM=67
NSAVEST=68
ndcdh=61
ndcdg=62
fdcdh=’for061.dat’
fdcdqg='for062.dat’
findata=’for009.dat’
fsave='for066.dat’
FSAVEM='FOR067.DAT’
FSAVEST=’ FOR068.DAT’
c----- Read Geometry data from Kypipe format
WRITE(*,*)’ Reading Network Geometry from For009 ’/
open(unit=nindata, file=findata,status='old’)
open(45)
open(unit=10,file=’indata.out’)
call indata
close(nindata)
close(45)
close(10)
c----- check if units=cfs
if (nq .ne. 0)then

Nrite(*,*)l e v e vk e s e e e e e e e e e ok e ke e e e e e s e ke e o e e ke vk e e o e ok e o e ke o 7

write(*,*)’ Units must be in CFS (ngq=0) in file For009’
Nrite(*,*)’ e e e e e Je e o e e e e e e d e de e e e de e de v e e e o e e de e Jo e do K e de ke ek ke 1
stop
endif
OPEN(UNIT=NINP,FILE=NFILEIN,STATUS='/0LD’)
OPEN(UNIT=NOUT, FILE=NFILEOU)
C*******************************

c READ INPUT VARIABLES
Coreddkdeiedoddddoiiokkohioikdodkdobkkodddk ok
WRITE(*,*) ’ ENTER TITLE OF THE PROBLEM(MAX60):’
3 FORMAT(A70)
READ (NINP,3)TITLE
WRITE(*,*) ’ NUMBER OF LOADS (NL) : '’
READ (NINP,*)NL
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cce WRITE(*,*) ’ NUMBER OF NODES (NN) : '
cce READ (NINP,*)NN
ccc WRITE(*,*) / NUMBER OF PIPES (NP) : ’
cce READ (NINP,*)NP

c----Get values from indata
c----(This is valid when there is only one FGN present in the system)
NN=KN+1
NP=KK
if ((igh .eq. 0) .or. (igh .eq. 2))then
c--24/10/91 generate matrix xmcv to allow individual noise
300 continue
write(*,*)’ Give Q limit to compute std: QMAX5(cfs)’
read(*,*)gmax5
write(*,6300)
6300 format(’ Select:(0) Same CV to perturb all @s.’,
*/,8%,'(1) Individual CV for each load.’,
*/,8x,'(2) Individual CV for each noad.’,/)
read(*,*)icv
if (icv .eq. 0)then
write(*,*)’ Give CV to perturb all nodes :’
read(*,*)cv
do 310 i=1,nl
do 310 j=1,nn
xmev(i, j)=cv
310 continue
goto 390
endif
if (icv .eq. 1)then
do 320 i=1,nl
write(*,*)’ Give CV to perturb nodes from load ’,i,’:’
read(*,*)cv
do 320 j=1,nn
xmev(i, j)=cv
320 continue
goto 390
endif
if (icv .eq. 2)then
do 330 i=1,nl
do 330 j=1,nn
write(*,*)’ Give CV to perturb node ’,j,’ from load ’,i,’:’
read(*,*)cv
xmev(i, j)=cv
330 continue
goto 390
endif
write(*,*)’ Invalid Selection '/
goto 300
390 continue
write(*,*)’ Condition noise on @ ? No(0), Yes(1) '
read(*,*)icondq
if(icondg .ne.1)icondgq=0
if(icondg .eq. 1)then
write(*,*)’ Give # of std to accept noise on Q ’/
read(*,*)xnstdq
endif
endi f

if (Cigh .eq. 1) .or. (igh .eq. 2))then
write(*,*)’ Option valid only when FGN is the last node’
write(*,*)’ ***EGN will not be perturbed****/
7000 CONTINUE
write(*,7300)
7300 format(’ Select:(0) Same STD to perturb all Hs.’,
* /,8x,’(1) Individual STD for each load.’,
* /,8x,'(2) Individual STD for each noad.’,/)
read(*,*)istd
if (istd .eq. 0)then
write(*,*)’ Give STD to perturb Hs from all nodes :’
read(*,*)std
do 7310 i=1,nl
do 7311 j=1,nn-1
xmstd(i, j)=std
731 continue
xmstd(i,nn)=0.0
7310 continue
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goto 7390
endi f
if (istd .eq. 1)then
do 7320 i=1,nl
write(*,*)’ Give std to perturb Hs from load ’,i,’:’
read(*,*)std
do 7321 j=1,nn-1
xmstd(i, j)=std

7321 continue
xmstd(i,nn)=0.0
7320 continue
goto 7390
endif

if (istd .eq. 2)then
do 7330 i=1,nl
do 7331 j=1,nn-1
write(*,*)’ Give Std to perturb node’,j,’ from load ’,i,’:’
read(*,*)std
xmstd(i, j)=std
7331 continue
xmstd(i,nn)=0.0
7330 continue
goto 7390 -
endif
write(*,*)’ Invalid Selection ’
goto 7000
7390 continue

ccc write(*,*) ’ STD to perturb H (in feet)? ’
ccc read(*,*)std
c----- Convert STD of pressure from psig to feet
stdi=std/2.3076923
write(*,*)’ Condition noise on H ? No(0), Yes(1) '/
read(*,*)icondh
if(icondh .ne.1)icondh=0
if(icondh .eq. 1)then
write(*,*)’ Give # of std to accept noise on H /
read(*,*)xnstdh
endif
endif
c----Define default variables for option igh > 2
icondr=0
igap=5
c----Read simulation options for optios igh=0,1 or 2
if(igh .lt. 3)then
WRITE(*,*) ’ NUMBER OF MONTE CARLO RUNS ?7
READ (*,*)numpert
IF (NUMPERT .GT. NPERT)then
write(*,*)’ **JARNING: Maximum allowable is ’,npert
NUMPERT=NPERT
endif
write(*,*) ’Give initial seed for random generator :’/
write(*,*) ’ (Enter O for arbitrary seed ) ’
read(*,*)iseedjv
write(*,*) ’Condition Monte Carlo for regressed Cs ?No(0),Yes(1):’
read(*,*)icondr
if(icondr .ne. 1)icondr=0
if(icondr .eq.1)then
write(*,*)’ Give lower bound to accept C '
read(*,*)clowb
write(*,*)’ Give upper bound to accept C ’
read(*,*)cupb
endif :
WRITE(*,*) ’ interval to compute statistics to check convergence '’
READ (*,*)igap
if(igap .lt. 2)igap=2
if(igap .gt. numpert)igap=numpert
c----end of simulation options for igh < 1
endif

WRITE(*,*) ’ Save regressed Cs from each run ? NO(0), YES(1):’
READ (*,*)ISAVEC
if (isavec .gt. O)then

WRITE(*,*) ’ Name of file to save Cs ?’

READ (*,2)nfileoc
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endif
c----Modified 17/8/90 to save H's perturbed
WRITE(*,*) ’ Save Hs perturbed ? NO(0), YES(1):’
READ (*,*)ISAVEH
if (isaveh .gt. 0)then
WRITE(*,*) / Name of file to save Hs ?/
READ (*,2)nfileoh
endif
7777 write(*,*)! Print Regression Matrix ? NO(0), YES(1):’
read(*,*)iprint
if ((numpert .gt. 2) .and. (iprint .gt.0))then
write(*,*)’ You must not print matrix X at each run’
WRITE(*,*)’ since you selected ’/,numpert,’ runs’
goto 7777
endif

if {isaveh .gt. 0)open(unit=nouh,file=nfileoh)
IF(IQH.GT.2)GOTO 31
19 continue
i=0
20 continue
i=i+
c----%****This is limiting to drop at most 10 equations per load.¥*¥iikiik
if(i .gt. 10)goto 30
WRITE(*,*)’ DROP EQUAT. AT NODE # ?(0 to stop ) '
c----Read from console
READ (*,*)NDROP(i)
if(ndrop(i) .eq. 0)goto 30
IF(NDROP(i) .GT. NN)THEN
WRITE(*,*) ’ TRYING TO DROP INVALID NODE ’,NDROP,NN
i=i-1
GOTO 20
ENDIF
goto 20
30 continue
nundrop=i-1
31 CONTINUE
c----Test to see if is dropping at least one equation (redundant)
if (nundrop .eq. 0)then
write(*,*)’ At least one equation must be dropped /
goto 19
endif
1=0
WRITE(NOUT,*)’ LUMP PIPES :’
33  CONTINUE
I=1+1
IF(I .GT. NP)GOTO 35
WRITE(*,*)’ Lump C at pipe ? (0 to stop): ’
read(*,*)lvec(i)
if(lvec(i) .eq. 0)goto 35
if((lvec(i) .gt. np).or.(lvec(i) .lt. 0))then
write(*,*)’ Invalid pipe '/
i=i-1
goto 33
endi f
if(i.gt.1)then
if(lvec(i) .le. lvec(i-1))then
write(*,*)’ Invalid pipe, try again ’
i=i-1
goto 33
endif
endif
WRITE(NOUT,*)’ PIPE ’,LVEC(I1)
goto 33
35 continue
write(*,*)’ Number of iterations to show time : ’
read(*,*)nshow
C----- Check dimension of arrays and solvability of system
IF ( NP .GT. ((NN-nundrop)*NL)) THEN
WRITE(*,*)’ Undetermined System ’,NL,NN,nundrop, NP
GO TO 9999
ENDIF
IF ( (NL .GT. NUML) .OR. (NN .GT. NUMN) .OR. (NP .GT. NUMP))THEN
WRITE(*,*)' ARRAY OVERFLOW (Recompile) ', NL,NUML,NN,NUMN,6NP A NUMP
GO TO 9999



ENDIF
write(*,*)! Print statistics matrices from scorr ? NO(O), YES(1)’
read(*,*)iprt
C----- Get physical characteristics of pipes and nodes from indata
cce WRITE(*,*) ! GIVE GR. ELEV. FOR EACH NODE HY
cecc READ(NINP,*)(INODE(I,1),1=1,NN)
do 6 i=1,kn
) inode(i,1)=e(i)
cce WRITE(*,*) ’ GIVE PIPE DIAM,LENGTH,NODE FROM, NODE TO’
DO 5 I=1,NP
cce WRITE(*,*) ’ PIPE /,1
cce READ(NINP,*)PIPE(I,1),PIPE(I,Z),IPIPE(I,1),IPIPE(I,2)
C-==----= Valid to convert to feet/inches
PIPECI,1)=d(i)*12.
PIPE(I,2)=r(i)
IPIPE(I,1)=ja(i)
IPIPE(I,2)=jb(i)
C---=--- Get elevation of FGN
if(ja(i) .eq. 0)then
ipipe(i,1)=nn
inode(nn, 1)=engy(i)
endi f
5 CONTINUE
C----- Read node information for parameter estimation
WRITE(*,*) ’ GIVE NODE FLOW AND PIEZ. PRESSURE (f10.5,f14.7):
DO 10 K=1,NL
WRITE(*,*)’ LOAD ’,K,’:’
DO 10 I=1,NN
READ(NINP,8801)XNODE(K,I,1),XNODE(K,I,Z)
8801 format(f10.5,f14.7)
10  CONTINUE
write(*,*)’ Computing constant for the pipes...’
C----- Identify pipes connected to a node

C-==-

CALL SNCON(NP,NN, IPIPE, INODE)
Compute constant for pipes
CALL SPPC(NP,PIPE,PIPEK)

(C e e e ke e v vk e e e e e e e ok o ke v e e e e

c

PRINT VARIABLES

(C ¥ e e e e e e e e e e e e v e ok e ok vk e ok e e

Potadod d

ccc
ccc

WRITE(NOUT,*)’ WATER DISTRIBUTION NETWORK ’
WRITE(NOUT,*)/ **%  Program Jvpipe4  *¥%s
WRITE(NOUT,*)’ *Estimation of C using MLR*’
OK for F77L MS-Fortran

CALL DATE(DATEOUT)

CALL TIME(TIMEOUT)

c---0k for MS-Fortran

cce
8002
1M1
1009
1115

116

50

1216
5000

55
5005
5006

call getdat(iyr,imon, iday)
call gettim(ihr,imin,isec,i100th)

WRITE(NOUT,*)’ EXECUTED ON ’,DATEOUT,’ ’/,TIMEOUT
urite(nout,BOOZ)imon,iday,iyr,ihr,imin

format(5x, 'Executed on r,i2,1/',i2,'/',i4,2x,'at r,i2,7:7,i2)

WRITE(NOUT, 1111)
FORMAT(5X, / INPUT VARIABLES')
WRITE(NGUT, 1009)
FORMAT (4X,16(’="))
WRITE(NOUT, 1115)NL NN, NP, (NDROP( i), i=1, nundrop)
FORMAT(5X, NUMBER OF LOADS, NL = /,14/,

*5X, 'NUMBER OF NODES, NN = ’14,/,

*5X, 'NUMBER OF PIPES, NP = /,14,/,

*5X,'DROP EQUATION AT NODE(s) ’,1015)

WRITE(NOUT, 1116)
FORMAT(5X, NODE DATA’,/,5X,44('='))
WRITE(NOUT,*)’ NODE ELEV. #PIPES CONNECTED PIPES’
DO 50 I=1,NN
WRITE(NOUT,5000)1, (INODE(I,J),d=1,8)
CONTINUE
WRITE(NOUT,1216)

FORMAT(5X,44('="))

FORMAT(5X, 13,4X,8(13,2X))

WRITE(NOUT,*)’ LOAD NODE FLOW TOTAL HEAD(ft)’
DO 55 K=1,NL

WRITE(NOUT,5006)k, (I,XNODE(K, I,1),XNODECK, I,2),1=1,1)
WRITE (NOUT,5005)(1,XNODE(K, I,1),XNODE(K, I,2), 1=2,NN)
FORMAT (11X, 13,F12.3,2X, f14.7)
format(5x, 13,3x,13,F12.3,2X, f14.7)
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WRITE(NOUT,1117)
1117 FORMAT(5X,‘PIPE DATA’,/,5X,53('='))
WRITE(NOUT ,*)/ PIPE DIAMETER  LENGTH FROM TO K’
DO 60 I=1,NP
60  WRITE(NOUT,6001)I,PIPE(I,1),PIPE(I,2),IPIPE(I,1),IPIPE(],2),
*PIPEK(I)
WRITE(NOUT,1217)
1217 FORMAT(5X,53(’='))
6001 FORMAT(5X,13,2X,2(F9.2,3X),2(13,3X),E12.5)
WRITE(NOUT,*)/ 4
c************************************************************
c Decrease NN to account for at least 1 redundant equation
c Note: last node must be the FGN
c***************************'k********************************
ccecccce NN=NN-1
c--The above statements is not needed since the user selects the nodes to drop
C----Compute coefficients for regression
if (nundrop .eq. 0)then
N=NL*NN
else
n=nl*(nn-nundrop)
endif
write(nout,1120)n
1120 format(5x,’NUMBER OF EQUATIONS, N= ’,15,/)
write(nout,1121)nfilein,nfileou, igh,del tah,del taq,gmax5,icv
1121 format(5x,’Simulation options:’,/5x,’nfilein /,a12,’fnileou /,a12,
*! igh ’,i1,’ deltah ’,f8.5,/,5x,’ deltaq ’/,f8.5,’ gmax5 ’,£8.3,
8’ icv !,i3)
write(nout,1122)icondr, igap, isavec, isaveh,iprint,iprt, icondq,
*xnstdq, icondh, xnstdh
if(icondr.eq.1)write(nout,1123)clowb, cupb
1122 format(5x,’icondr ’/,i1,’ igap /,i3,’ isavec ’/,i1,’ isaveh /,I1,
*/ jprint ’/,i1,’ iprt /,i1,/,5x,’icondq /,i1,’ xnstdq ’/,f7.3,
*! jcondh ’,i1,’ xnstdh /,£7.3)
1123 format(25x,’clowb ’/,f10.5,’ cupb /,f10.5)
if(icv .eq. O)write(nout,1024)icv,xmev(1,1)
if(icv .eq. 1)write(nout,1024)icv,(xmecv(i,1),i=1,nl)
if(icv .eq. 2)write(nout,1024)icv, ((xmcv(i,j),j=1,nn),i=1,nl)
1024 format(5x,’icv /,i2,’ xmcv /,10¢1x,f7.4))
if(istd .eq. O)write(nout,1025)istd,xmstd(1,1)
if(istd .eq. 1)write(nout,1025)istd, (xmstd(i, 1),i=1,nl)
if(istd .eq. 2)write(nout,1025)istd, ((xmstd(i, ), j=1,nn),i=1,nl)
1025 format(5x,’istd /,i2,’ xmstd ’/,10(1x,f7.4))
CALL SMAKEB(NL,NN,ndrop,XNODE,QJV, indlq, indnq)
write(*,*)’ Processing Simulations...’

c----Compute Sensitivity Matrix dC/dH-----
if((1QH .eq. 3) .or. (igh .eq.5))then

numpert=nl*(nn-1)+1

i=0

do 800 il=1,nl

do 800 in=1,nn-1

i=i+1
write(*,*)’ Regression # ’/,i, ’For dC/dH’
call sperth3(nl,nn,xnode,xnodep, isaveh,il,in,deltah)
CALL SMAKEX(NL,NN,NP,ndrop,XNODEP, INODE, IPIPE,PIPEK,X)

C----- Run regression ON XNODEP for roughness coefficient "C"
CALL SMREGIA1(N,NP,X,QJV,CJV,0,iprint)
C----- Save values of C to compute statistics
call savec(np,i,csave,cjv)
800 CONTINUE
C-=-=====- Generate C’s for base run(no noise)
CALL SMAKEX(NL,NN,NP,ndrop,XNODE, INODE, IPIPE,PIPEK,X)
C----~ Run regression ON XNODE for roughness coefficient “C'"
CALL SMREGIA1(N,NP,X,QJV,CJV,0,iprint)
C----- Save values of C to compute statistics
i=i+1

call savec(np,i,csave,cjv)
if(numpert .ne. i)then
write(*,*)’ Error numpert ne i /,numpert,i
goto 9999
endif
c---=-- Compute and save matrix dc/dh transpose
open(unit=ndcdh, file=fdcdh)
write(ndcdh,*)nl*kn,np



802

6040
801

do 801 j=1,nl*kn
do 802 i=1,np
dcdh(i)=(csave(j,i)-csave(numpert,i))/deltah

continue
write(ndcdh,6040)(dcdh(i), i=1,np)
format(10¢e13.7,1x))
continue

close(ndcdh)

if(igh .ne.5)goto 900

endif

c----Compute Sensitivity Matrix dC/dQ

811

813
812

601

if(

(IQH .eq. 4) .or. (igh .eq.5))then
numpert=nl*(nn-1)+1
CALL SMAKEX(NL,NN,NP,ndrop,XNODE, INODE, IPIPE,PIPEK,X)
DO 810 I=1,NUMPERT-1
do 811 j=1,numpert-1
ap(j)=qjv(j)
qp(i)=qjv(i)+deltaq
write(*,*)’ Regression # ’/,i, 'For dC/dQ’
CALL SMREGIA1(N,NP,X,QP,CJV,0,iprint)
Save values of C to compute statistics
call savec(np,i,csave,cjv)
CONTINUE
Generate C’s for base run(no noise)
CALL SMREGIA1(N,NP,X,QJV,CJV,0,iprint)
call savec(np,i,csave,cjv)
Save matrix dc/dq transpose
open(uni t=ndcdq, file=fdcdq)
write(ndcdq,*)numpert-1,np
do 812 j=1,numpert-1
do 813 i=1,np
dcdh(i)=(csave(j,i)-csave(numpert,i))/deltaq
continue
write(ndcdq,6040)(dcdh(i),i=1,np)
continue
close(ndcdq)
goto 900

endif

IF (1

QH .EQ. 1)THEN

Introduce noise on H’s
DO 600 I=1,NUMPERT

Re-set np to its original value at each iteration
if((i-i/nshow*nshow) .eq. 0)then
call gettim(ihr,imin,isec,i100th)
WRITE(*,*)’ REGRESSION # ’,I,’ time : ’,ihr,imin
endif
CONTINUE
np=kk
CALL SPERTH2(NL,NN,xmstd, XNODE ,XNODEP, isaveh, icondh, xnstdh,

*nviohl,nviohu)

600

CALL SMAKEX(NL,NN,NP,ndrop, XNODEP, INODE, IPIPE,PIPEK,X)
if (lvec(1) .gt. O)then
call slumpc(x,n,np, lvec,xl,nplump)
Set np to the new value after lumping C’s
np=nplump
else

do 605 iig=1,n

do 605 jjg=1,np

_xl(iig,jig)=x(iig,jjg)

continue

endif

Run regression ON XNODEP for roughness coefficient "C"

CALL SMREGIA1(N,NP,XL,QJV,CdV,0,iprint)

IFCICONDR .EQ. 1)THEN
CALL SCONDR(NP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU, IREJECT)
IF(IREJECT .EQ. 1)GOTO 601

ENDIF

Save values of C to compute statistics

call savec(np,i,csave,cjv)

CONTINUE
GOTO 900

ENDIF
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if (igh .eq. O)then

ccc print *,’ Entering igh = 0’
CALL SMAKEX(NL,NN,NP,ndrop,XNODE, INODE, IPIPE,PIPEK,X)
ccc print *,’ Smakex processed OK ’
ccc print *,7 Lvec(1) = /,lvec(1)
if (lvec(1) .gt. 0)then
ccc print *,’ Calling slumpc ’ .
call slumpc(x,n,np, lvec,xl,nplump)
ccc print *,’ Slumpc processed OK. nplump = /,nplump
np=nplump
cce print *,’ np dropped to /,np
else
do 105 i=1,n

do 105 j=1,np
xL¢i, j)=x¢i,j)
105 continue
endif

[ Loop to generate noise on Q
DO 100 I=1,NUMPERT
if((i-i/nshow*nshow) .eq. 0)then
call gettim(ihr,imin,isec,1100th)
WRITE(*,*)’ REGRESSION # ’/,1,’ time : /,ihr,imin

endif
101 CONTINUE
ccc print *,’ Calling Spertq’
CALL SPERTQ(N,XMCV,QJV,QP,indlq, indng,gmax5, icondq, xnstdq,
*nviogl,nvioqu)
C----- Run regression ON QP for roughness coefficient "C"
cce print *,’ Calling Smregial’
CALL SMREGIA1(N,NP,XL,QP,CJV,0,iprint)
c--=--- print *,’ After Calling smregial

IFCICONDR .EQ. 1)THEN
CALL SCONDR(NP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU, IREJECT)
IF(IREJECT .EQ. 1)GOTO 101
ENDIF
C---- Save values of C to compute statistics
call savec(np,i,csave,cjv)
100 CONTINUE
goto 900
endif

C----- Introduce noise on H’s and Q’s
if (igh .eq. 2)then
DO 700 I=1,NUMPERT
if((i-i/nshow*nshow) .eq. 0)then
call gettim(ihr,imin,isec,1100th)
WRITE(*,*)’ REGRESSION # ’,I,’ time : /,ihr,imin
endif
701 CONTINUE
ccc CALL SPERTH2(NL,NN,std,XNODE,XNODEP, isaveh)
CALL SPERTH2(NL,NN,xmstd,XNODE ,XNODEP, isaveh, icondh,xnstdh,
*nviohl,nviohu)
np=kk
CALL SMAKEX(NL,NN,NP,ndrop,XNODEP, INODE, IPIPE,PIPEK,X)
if (lvec(1) .gt. 0)then
call slumpc(x,n,np, lvec,xl,nplump)
np=nplump
else
do 705 iig=1,n
do 705 jjg=1,np
xl(iig,jjg)=x(iig,jjg)

705 continue
endif
ccece CALL SPERTQ(N,XMCV,QJV,QP,indlq, indnq)
CALL SPERTQ(N,XMCV,QJV,QP, indlqg, indng,gmax5, icondq, xnstdq,
*nvioqgl,nvioqu)
C----- Run regression ON XNODEP and Qp for roughness coefficient "C"

CALL SMREGIA1(N,NP,XL,QP,CJdV,0,iprint)
IFCICONDR .EQ. 1)THEN
CALL SCONDR(NP,CJV,CLOWB,CUPB,NVIOCL,NVIOCU, IREJECT)
IF(IREJECT .EQ. 1)GOTO 701
ENDIF
C----- Save values of C to compute statistics



call savec(np,i,csave,cjv)

700 CONTINUE
endif
C =----ce-eeeeee- Write C’s for posterior statistics
900 CONTINUE
IF (isavec .gt. 0)then

open (unit=nouc,file=nfileoc)
write(nouc,*)np,’,’,numpert

c write(nouc,2021)(I,1=1,NP)

Cr--ommeomoea- format ready for 10 pipes

2021 FORMAT(20(’"PIP’,12,'%,1))
do 200 i=1,numpert

ccececece write(nouc,6000)1,(csave(i,j),j=1,np)

cccec 6000 format(5x,13,10(f7.2,1x))

write(nouc,6010)(csave(i, j), j=1,np)

6010 format(10(f9.5,1x))

200 continue
close(nouc)

ENDIF
WRITE(*,*)TITLE
WRITE(NOUT,1110)TITLE

1110 FORMAT(5X,A70,/)
----- Compute statistics on C’s

CALL SSTAT(NUMPERT,NP,CSAVE,CSTAT)
write(nout,*)’ # regressions noise on CV for @ STD for H’
write(nout,1090)numpert,choice(igh+1),CV,stdi,std

1090 format(2x,i5,13x,a5,2x,f7.3,2x,f9.5,2x,’ psig’,f7.3,’ ft’,/)

write(nout,*)’ STATISTICS OF C VALUES '/
write(nout,6002)(i,i=1,np)

6002 format(1x’Pipe # 7,11(2x,16,2x))
6004 format(1x,a6,1x,11(f9.3,1x))

i=1
write(nout,6004)nsta(i),(cstat(i,j),j=1,np)
1=
write(nout,6004)nsta(i), (sqrt(cstat(i,j)),j=1,np)
if(iprint .eq. 0)call scorr(csave,numpert,np,nsave,fsave,iprt)

c---Save statistics to check convergence

o000

OPEN(UNIT=NSAVEM, FILE=FSAVEM)

OPEN(UNIT=NSAVEST, FILE=FSAVEST)

DO 8000 I=I1GAP,NUMPERT, IGAP
CALL SSTAT(I,NP,CSAVE,CSTAT)
WRITE (NSAVEM,6700)1, (CStat(1,J),J=1,NP)
WRITE(NSAVEST,6800)1, (dsqrt(CStat(2,J)),J=1,NP)

8000 CONTINUE

IFC(I-1GAP) .NE. NUMPERT)THEN
CALL SSTAT(NUMPERT,NP,CSAVE,CSTAT)
WRITE(NSAVEM, 6700 )NUMPERT, (CStat(1,J),J=1,NP)
WRITE(NSAVEST, 6800)NUMPERT, (dsqrt(CStat(2,4)),J=1,NP)
ENDIF
CLOSE(NSAVEM)
CLOSE (NSAVEST)

6700 FORMAT(i5,16(1x,f13.6))
6800 FORMAT(i5,16(1x,f13.8))
----- Write statistics of violations if condition MC

write(nout,1124)nviocl,nviocu,nvioql,nvioqu,nviohl,nviohu

1124 format(5x,’Statistics on condition MC’,/,5x,’nviocl ’,i7,

*! npviocu ’,i7,’ nviogl ’,i7,’ nvioqu /,i7,’ nviohl ’,i7,
*/ npviohu /,i7)

9999 continue

WRITE(*,*)’ (NORMAL END OF PROGRAM "JVPIPE4")'
CLOSE(NINP)

CLOSE(NOUT)

sTOP

END

SUBROUTINE SPPC(NP,PIPE,PIPEK)

e e e e e e e e e e o v e e e v 3 e e e o e e e e o o v v e e v e 3k ke e e 3 vk ke e S ok ke e e o ke e ok ok e e ok

COMPUTES CONSTANT K1 - PHYSICAL PARAMETER FOR PIPES

e dedede ok e A A Aok e ok ok sk ek ek e e e ek
IMPLICIT REAL*8(A-H,0-2)

INTEGER NUMP,NUMN

PARAMETER (NUMP=51,NUMN=51)

182



DIMENSION PIPE(NUMP,2),PIPEK(NUMP)

C----Define constants for: Q=cfs, H=ft

0000

-C1=2.63, €2=0.54--------=--=----

C1=4.87/1.852

C2=1./1.852

--modified 20-08-90 €3=2.3136

c3=2.3123067

Pressure in feet of water, diameter in inches

DO 10 I=1,NP
PIPEK(I)=((PIPE(I,1)/12.)**C1)/(PIPE(1,2)**C2)/C3

CONTINUE

RETURN

END

SUBROUTINE SMAKEB(NL ,NN,ndrop, XNODE,B, indlb, indnb)

e e e Je e v e e v e e e v e e v e e Je e e e e e Je e v he vk e e i e ke e vk o e vk o e e e ok o P e ok e e

Generates constant vector B for regression
(external demands)

e v v e e e e e e v e e ke v e e e e e ke e e vk vk e e e e e v e e e e e ke e e e v I e e v e e e e e ok

IMPLICIT REAL*8(A-H,0-2)

INTEGER NUMP,NUMN

PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5)

DIMENSION XNODE(NUML,NUMN,2),B(LIMIT),ndrop(10),

*indlb(limit), indnb(limit)

c-~-

c-- 24/10/91

oooOooOoO0OO0OO0O0O0O0O0O0O0O00

9
10

Generate vectors b, indlb and indnb
do 5 i=1,limit
b(i)=0.0
indlb(i)=0
indnb(i)=0
continue
Generate constant vector B (External flow at nodes)
INC=1
DO 10 K=1,NL
icont=1
DO 10 J=1,NN
Drop equation at node NDROP
if(j .eq. ndrop(icont))then
icont=icont+1
goto 9
endi f
B(INC)=XNODE(K,d, 1)

indlb(inc)=k
indnb(inc)=j
INC=INC+1
continue
CONTINUE
RETURN
END

SUBROUTINE SNCON(NP,NN, IPIPE, INODE)
e e e vk e 7 2k e vk vk vk v vk e de e e v e e e v e v v v 3k v e e 3k v e 3k ok v vk sk e v v e e i e I ok ok ok e e de e ke e ok

* SUBROUTINE: SNCON (Node Connections)

* %

REMARKS : Identifies pipes connected to a node

* * *

VARIABLES

# OF PIPES
# OF NODES
MATRIX (from node, to node)
MATRIX (G.E.,# conn,pipl,pip2,...)
IND(i) : STORE next available position
NODEN Get node number
e e e o e e e Jo de v e v e e de e de e v e v v v e e vk e e e e v e vk e e e e e e e e e e Je e I e I e I e o de e e
IMPLICIT REAL*8(A-H,0-2)
INTEGER NUMP,NUMN,NUML
PARAMETER (NUMP=51,NUMN=51,NUML=5)
DIMENSION INODE(NUMN,8),IPIPE(NUMP,2), IND(NUMN)
Initialize index for next free position
DO 10 I=1,NN !
IND(I)=0
Generate node connections
DO 20 I=1,NP
Do 20 J=1,2

INODE

* % % ¥ % % ¥ ¥ ¥ F ¥ ¥

* % ¥ ¥ % ¥
—
>
—
.
m

save load and node corresponding to each element of B
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NODEN=IPIPE(I,J)
INODE (NODEN, IND(NODEN)+3)=1
IND(NODEN)=IND (NODEN)+1
INODE (NODEN, 2)=IND (NODEN)
20  CONTINUE .
RETURN
END

SUBROUTINE SMAKEX(NL,NN,NP,ndrop,XNODE, INODE, IPIPE,PIPEK,X)

Cc e de e e de v e vk e e s e 9 e v I vk v e ke v e e v e ke vk v ke v 3k e vk vk s e e v e e vie v e e vk vk v v e ke e v v 3 o e
c * SUBROUTINE: SMAKEX *
c * *
c * REMARKS : Generates coefficient matrix for regres *
c * sion. *
c * *
c * VARIABLES *
Cc * =z====z=== *
c * NP : # OF PIPES *
c * NN : # OF NODES *
c * NL : # OF LOADS *
c * ndrop(i) : drop equation at this node *
c * IPIPE : MATRIX (from node, to node) *
c * INODE : MATRIX (G.E.,# conn,pipl,pip2,...) *
c * XNODE : MATRIX (Load, Flow, Head) *
c * X : Matrix (Coeffic. for regression) *
c * INC : Row index *
c * HI : Pressure head at node i (from) *
C * HJ : Pressure head at node j (to) *
c * PIPEN : Get pipe number *
c * NC : # of pipes connected to the node *
c * SMULT : -1 flow is leaving node *
c * 1 flow is entering node *
Cc e v e e v v e vk v ok e vk e e vk o 3 ke v o vk vk e ke vk o e e o o vk o e e ok ok o vk v ok ok e o v e o e e v ok o ok e e e ok

IMPLICIT REAL*8(A-H,0-2)
INTEGER NUMP,NUMN,NUML,PIPEN
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5)
DIMENSION XNODE(NUML ,NUMN,2), INODE(NUMN,8), IPIPE(NUMP,2),
*X(LIMIT,LIMIT),PIPEK(NUMP),ndrop(10)
€2=1./1.852
C----- Initialize matrix X
DO 10 I=1,NL*NN
DO 10 J=1,NP
X(1,4)=0.0
10  CONTINUE
INC=0
DO 100 K=1,NL
icont=1
DO 100 I=1,NN
c---- Drop equation at node NDROP
if (i .eq. ndrop(icont))then
icont=icont+1
goto 90
endif
INC=INC+1
NC=INODE(I,2)
C---------- Loop for each pipe connecting to node I
DO 200 J=1,NC
PIPEN=INODE(I, J+2)

c--- Node in question is I
NODEN=IPIPE(PIPEN,1)
c---- Get the other extreme of the pipe

if (noden .eq. i)NODEN=IPIPE(PIPEN,2)
HI=XNODE (K, NODEN, 2)
HJ=XNODE(K,I,2)
AUX=DABS(HI-HJ)**C2*PIPEK(PIPEN)
X(INC,PIPEN)=DSIGN(AUX,HI-HJ)
200 CONTINUE
90 continue
100 CONTINUE
c---- display matrix X
c write(6,*)’ Matrix X’
call sprtmat(x,inc,np,limit)
ni=0
do 900 i=1,inc
ni=ni+1

0000
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if (ni .gt. nn)then

ni=1

tn=(i+nn-1)/nn

write(6,*)! Load /,ln
endif
write(6,1000)ni,(x¢i,J),j=1,np)
c 900 continue
1000 format(1x,11,10(1x,e14.6))

RETURN

END

o000 o0o0

(]

SUBROUTINE SSTAT(NUM,NP,XMAT,VECT)
Fedededede dede e e e e e e e e e ko ek e e i e e ko e o e o e S e ks ek o ek ek

* SUBROUTINE: SSTAT

REMARKS  : COMPUTES MEAN AND VARIANCE OF VALUES
FROM QP AND C

* * % * ¥

VARIABLES

*

: # OF PIPES
NUM : # PERTURBATIONS
: MATRIX (NUM,NP)
(CONTAINS VALUES OF COEF. FOR EACH
PERTURBATIONS)

VECT  : SAVES STATISTICS FOR XMAT
VECT(1,J)=MEAN OF XMAT(I,J)
VECT(2,J)=VARIANCE OF XMAT(I,J)

SUM(J): SAVE PARTIAL RESULTS

¥ O F ¥ % ¥ ¥ F F ¥ F ¥ ¥ F O ¥ ¥ ¥

* % F F ¥ % ¥ % * ¥ X

e v v e e e e v e e e v e e e e e v e e e o e vl e e e o e s ke e e e vl e e e e vl e e v e e e e e e e v e e e e ok

IMPLICIT REAL*8(A-H,0-2)
INTEGER NP,NUM
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5,NPERT=1000)
DIMENSION XMAT(NPERT,20),VECT(2,20),SUM(20)
IF (NUM .GT. NPERT) THEN
WRITE(*,*) ' # OF PERT. EXCEEDS DIMENSION OF XMAT ’/,NUM, NPERT
GOTO 999
ENDIF
DO 10 J=1,NP
SUM(J)=0.0
10  continue
Cer==~== computes mean
DO 100 I=1,NUM
DO 100 J=1,NP
SUM(J)=SUM(J)+XMAT(I, J)
100 CONTINUE
DO 110 J=1,NP
VECT(1,J)=SUM(J)/(NUM)
SUM(J)=0.0
110 CONTINUE
c------ computes variance
DO 200 1=1,NUM
DO 200 J=1,NP
SUM(J)=SUM(J)+(XMAT(I,J)-VECT(1,d))*(XMAT(I,J)-VECT(1,d))
200 CONTINUE
DO 210 J=1,NP
VECT(2,J)=SUM(J)/(NUM-1)
210 CONTINUE

OO0 0000O0000O00O000000

ccc WRITE(*,*)’ <NORMAL END SSTAT>’
999 RETURN

END

SUBROUTINE SPERTQ(N,XMCV,Q,QP, indlq, indng,amax5, icondq, xnstdq,

*nviogl,nvioqu)

c e e e Yo e v e e v v Je e v e v e 3 e v e 9 v v e v e e e e e vl v e e e v e e e e e e e v e e e v ke e e e e de e ok
c * SUBROUTINE: SPERQ *
c * *
c * REMARKS : GENERATES NORMALLY DISTRIBUTED NOISE *
c * AND PERTURB Q VECTOR *
Cc * *
c * VARIABLES *
c z======== *
c * N : # OF NODES *



O000OOO0OO0O00O0 OO0

IMPL
INTE
PARA
DIME

Q

QP
xmcv(l,n)

cv

VECTOR OF ORIGINAL VALUES

CONTAINS Q+NOISE

contains individual cv for each node
DESIRED COEFFICIENT OF VARIATION

load of the ith element of Q

noad of the ith element of Q

STANDARD DEVIATION OF NOISE

CV * Q(I)

LIMIT TO GENERATE MAXIMUM STD OF ERR.
icondq 1-Condition noise on Q;0-Not cond.

* xnstdq # of std to reject noise

* nviogl.nvioqu : # of violations upper and lower

e e v e v e 3 vk e vk e v e v e e e 3 v e v v 3 ke e v e vk e e vk e v e v e 3k e 3k e e 9 e e 3k e e e vk o v o o ok ek
ICIT REAL*8(A-H,0-2)

GER N

METER (LIMIT=70,NUMP=51,NUMN=51,NUML=5)

NSION QCLIMIT),QP(LIMIT),xmcv(numl,numn),indlq(limit),

indlq(i)
indnq(i)
STD

QMAX5

* % F ¥ % % ¥ ¥ ¥ ¥

* % % ¥ % ¥ F F ¥ ¥ % %

*indnq(limit)

c---

10
cce

GENE
DO 1
2

Test

CONT

RATE NOISE MEAN 0, STD=CvV*Q
0 1=1,N
4/10/91 retrieve individual CV for each node and load
iload=indlq(i)
inoad=indnq(i)
cv=xmcv(iload, inoad)
STD=CV*Q(I)
IF (QCI) .GT. QMAX5)STD=CV*QMAX5
XNOISE=GASDEV(I)
of condition MC
IFCICONDQ .EQ. 1)THEN
if(xnoise .lt. (-1.0*xnstdq))then
nviogl=nvioql+1
goto 5
endif
if(xnoise .gt. xnstdq)then
nvioqu=nvioqu+1
goto 5
endif
ENDIF
QP(I)=Q(1)+XNOISE*STD
INUE

write(*,*)’ Normal end spertq’

RETU
END

SUBROUTINE SPERTH2(NL,NN,XMSTD,XNODE ,XNODEP, isaveh, icondh,xnstdh,

*nviohl,nviohu)

O0O0OO0O0OO0O0OO00O0O0000

IMPL
INTE
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* SUBROUTINE: SPERTH2 (Aug 2,1990)

REMARKS : GENERATES NORMALLY DISTRIBUTED NOISE
AND PERTURB H VALUES by a desired STD

6/8/90 modified

VARIABLES

* % ¥ F

*

*
*
*
*
*
NL : # OF LOADS *
NN : # OF NODES *
XNODE(NL,NN,2): MATRIX CONTAINING Q’s & H’s *
XNODEP(NL ,NN,2):NEW MATRIX WITH NOISE IN H’s *
XMSTD(I,J) : STD OF Hj from load I in ft *
icondh : 1=condition noise on H; 0=not cond. *
xnstdh : # of std to condition reject noise *
* nviohl,nviohu : statistics on the violations of noise*
P e e e e e e % e e e e e e e e e e e ke e vl e vl sk ke v v v v v 3k v v o v v v e e e e e e I o e e e v e ke e e ke ok
ICIT REAL*8(A-H,0-2)
GER NL,NN

* % ¥ F ¥ ¥

*

PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5)

DIMENSION XNODE(NUML,NUMN,2),XNODEP(NUML ,NUMN,2), xmstd(numl , numn)

COMMON / jvga/NOUT, nouh

GENE
DO 1
D

RATE NOISE MEAN 0, Standard Deviation =STD AND PERTURB H’s

0 k=1,NL
0 20 I=1,nn-1
XNOISE=GASDEV(I)
IFCICONDH .EQ. 1)THEN
if(xnoise .lt. (-1.0*xnstdh))then
nviohl=nviohl+1
goto 21

186



OOO0O0O0O0O0O0O0O0
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187

endi f
if(xnoise .gt. xnstdh)then
nviohu=nviohu+1
goto 21
endif
ENDIF
std=xmstd(k, 1)
XNGDEP(K, I,2)=XNODE(K,I,2)+XNOISE*STD
-------- Check if Hpert. is greater than the FGN:H(nn)
-------- Modified 6/8/90, 11/26/91
if (XNODEP(K,I,2) .GT. XNODE(K,NN,2))then
write(*,*)’ invalid noise on node ’,i,’ load ’,k
goto 21
endif
XNODEP(K, I,1)=XNODE(K,I,1)
20 continue
-------- Node nn is a FGN and is not being perturbed
XNODEP (K, nn,2)=XNODE(K,nn,2)
XNODEP(K, nn, 1)=XNODE(K,nn, 1)
10  CONTINUE
-------- modified 17/08/90 to save H’s for statistics
if (isaveh .gt. O)then
do 100 k=1,nl
write(nouh,8000)k, (xnodep(k,i,2),i=1,nn)
100 continue
endi f
8000 format(1x,i2,1x,20(f9.5,1x))
RETURN
END

SUBROUTINE SPERTH3(NL,NN,XNODE,XNODEP, isaveh,IL,IN,DELTAH)
S e de ek o de ok ok e e e o ok sk ok e o e ok ok ok ok ok ok e ok
* SUBROUTINE: SPERTH3 (May 9, 1991)
* REMARKS : PERTURB H’S BY DELTAH TO COMPUTE dC/dH
VARIABLES

* *

NN : # OF NODES
XNODE(NL,NN,2): MATRIX CONTAINING Q’s & H’s
XNODEP(NL,NN,2):NEW MATRIX WITH NOISE IN H’s
DELTAH : PERTURBATION ON H’S (IN FEET)
e e v e e e e v v e e v v e e v e e v e e v I e v 3 e v v e e v e I vl vk I e e v e e e v e e e e e o v e e e de e
IMPLICIT REAL*8(A-H,0-2)
INTEGER NL,NN
PARAMETER (LIMIT=70,NUMP=51,NUMN=51,NUML=5)
DIMENSION XNODE(NUML,NUMN,2),XNODEP(NUML ,NUMN,2)
COMMON / jvga/NOUT, nouh
DO 10 K=1,NL
DO 10 I=1,nn
XNODEP(K, 1,2)=XNODE(K,I,2)
XNODEP(K, I, 1)=XNODE(K,I,1)
10 continue
XNODEP(IL,IN,2)=XNODE(IL,IN,2)+DELTAH
if (isaveh .gt. 0)then
do 100 k=1,nl
write(nouh,8000)k, (xnodep(k,i,2),i=1,nn)
100 continue
endif
8000 format(1x,i2,1x,20(f9.5,1x))
RETURN
END

*
*
*
NL : # OF LOADS *
*
*
*
*

* % % % *

SUBROUTINE SMREGIA1(N,NP,X,Y,B,ICONS,iprint)
e v e v 3 v v 3 v 3 v v 3 3 v e 3 3 3 3k 3 e e e e I I o I e e e e e e e e e e e e e e e

PERFORM MULTIPLE LINEAR REGRESSION

e de e e e e s e s e e o e e e e o e e e e ek e e e e e

IMPLICIT REAL*8(A-H,0-2)

REAL*8 MSE,MSR

INTEGER LIMIT

PARAMETER (LIMIT=70)

DIMENSION X(LIMIT,LIMIT),Y(LIMIT) XT(LIMIT,LIMIT),
*XTXCLIMIT,LIMIT), XTY(LIMIT,1),B(LIMIT) , XTXINV(LIMIT, LIMIT),

c------ *bt(limit,limit),yt(limit, limit),yty(limit), btxty(limit),

*covmat(limit,limit),cormat(limit,limit),ypred(limit),e(limit),
*xmean(limit)
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COMMON / jvga/NOUT, nouh
c--Write initial values to check regression
ccc print *,’ SMREGIA1: Entering Smregial’
if (iprint .gt. 0)then
write(nout,*)’ Subroutine Smregia-Run regression’
write(nout,*)’ N =’ ,n,’ NP = /,np
write(nout,*)’ Matrix X used for regression’
do 5 i=1,n
write(nout,6)(x(i,j),j=1,np)
6 format(11(e14.6,1x))
5 continue
write(nout,*)’ Constant vector Y’
write(nout,6)(y(j), j=1,n)
endi f
C----- Check range for ICONS (repeated below)
cce IF (ICONS .LT. 0)ICONS=0
cce IF (ICONS .GT. 1)ICONS=1
cce NP1=NP+ICONS
Co====- Compute mean of observations
YMEAN=0.0
DO 10 J=1,NP
10 XMEAN(J)=0.0
Do 20 I=1,N
YMEAN=YMEAN+Y(I)
DO 20 J=1,NP
20 XMEAN(J)=XMEAN(J)+X(I,J)
YMEAN=YMEAN/N
DO 30 J=1,NP
30 XMEAN(J)=XMEAN(J)/N

C--=---- Compute covariance matrix
DO 40 I=1,N
40 X(I,NP+1)=Y(I)
DO 45 1=1,Np+1
DO 45 J=1,Np+1
45 COVMAT(I,J)=0.0
XMEAN (NP+1)=YMEAN
DO 46 K=1,NP+1
DO 46 J=1,K
SUM=0.0
DO 47 1=1,N ’
47 SUM=SUM+(X(1,K)-XMEAN(K))*(X(I,J)-XMEAN(J))
COVMAT(K, J)=SUM/float(n-1)
46 CONTINUE

ccc write(nout,*) ’ /

ccc write(nout,*) '/ Covariance matrix’

ccc write(nout,*) / !

ccc call sprtmat(covmat,np+1,np+1,limit)

ccc PRINT *,’SMREGIA1: Compute correlation matrix’
DO 49 1=1,NP+1
DO 49 J=1,1

cce print *,’Generating Cormat: i/j ’,i,]

ccc print *,’ Covmat(i,i)=’,covmat(i,i),covmat(j,j)

49 CORMAT(I,J)=COVMAT(I,J)/SQRT(COVMAT(I,1))/SQRT(COVMAT(J,J))

if(iprint .gt. 0)then

write(nout,*) ’ /

write(nout,*) / Correlation matrix’

write(nout,*) / !

call sprtmat(cormat,np+1,np+1,limit)

write(nout,*) ' /

endif
C----Make augmented matrix X = (1,xi1,xi2,...xinp)

IF (ICONS .LT. 0)ICONS=0

IF (ICONS .GT. 1)ICONS=1

NP1=NP+ICONS

IF (ICONS .EQ. 1) CALL SAUGMAT(X,N,NP)
C----Compute transpose of matrix X
ccc print *,’SMREGIA1: Calling Stranmat’

CALL STRANMAT(X,N,NP1,XT)

C----Compute products

CALL SMULTMAT(XT,NP1,N,X,N,NP1,XTX)
if(iprint .gt. O)then
write(nout,*)’ MATRIX (XtX) ’



write(nout,*)’ s=====s====== /
call sprtmat(xtx,np1,npl,limit)
endif
CALL SINVMAT(NP1,XTX,XTXINV)
if(iprint .gt. O)then

WRITE(NOUT,*)’ MATRIX (XtX) Inverse '’
write(nout,*)’ !
call sprtmat(xtxinv,npl,npl,limit)

endif

CALL SMULTMAT(XT,NP1,N,Y,N,1,XTY)
c write(nout,*)’ VECTOR XtY’
C write(nout,*)’ s==z======/
C call sprtmat(xty,np1,1,limit)
------ Compute coefficients of regression b
call smultmat(xtxinv,np1,npl,xty,npl,1,b) !

(3]

c write(nout,*)’ VECTOR b’
c write(nout,*)’ ====z==z/
c call sprtmat(b,np1,1,limit)
C----Calculate Ypred, E(Residuals),SSR,SSE,SSTO

SSR=0.0

SSE=0.0

§ST0=0.0

po 50 I1=1,N

YPRED(1)=0.0
DO 60 J=1,NP1

60 YPRED(I)=YPRED(I1)+B(J)*X(I,J)
ECI)=Y(I1)-YPRED(I)
SSR=SSR+(YPRED (I)-YMEAN)*(YPRED(I)-YMEAN)
SSE=SSE+E(I)*E(I)
SSTO=SSTO+(Y(I)-YMEAN)* (Y (I )-YMEAN)

50  CONTINUE

c-mu-- Compute MSR, MSE, S, F, RR
c MSR=SSR/ (NP)

c MSE=SSE/(N-NP1)

c S=SQRT(MSE)

c F=MSR/MSE

c RR=SSR/SSTO

write(nout,1000)RR,S
1000 FORMAT(1H ,5X,’MULTIPLE COEFF. OF DETERMINATION, R"2 = /,F12.3,
*/,5X,’ STANDARD ERROR OF ESTIMATE, S = /,f12.3)
WRITE(NOUT, 1005)
1005 FORMAT(/,5X,’VARIABLE’,3X,’COEFFICIENT’,3X,'VARIANCE ’,3X,
*/STD. ERROR’,6X,’T’)
WRITE(NOUT,1006)
1006 FORMAT(5X,65(’_"))
DO 200 1=1,NP1
VAR=MSE*XTXINV(1,1)
SB=SQRT(VAR)
T=B(1)/SB
WRITE(NOUT, 1007)1-1CONS,B(I),VAR,SB,T
FORMAT(7X, 'b(’,12,’)',4X,f12.3,1X,f12.3,1X,12.3,3%,12.3)
200 CONTINUE
WRITE(NOUT, 1006)

0000000000000

(2]

-
o
o
~

(1]

WRITE(NOUT,1010)
1010 FORMAT(//,15X,’ANALYSIS OF VARIANCE - ANOVA ’,//,
*5X,  SOURCE D.F. SUM-OF - SQUARES MEAN-SQUARE’)
WRITE(NOUT, 1011)NP, SSR,MSR,N-NP1, SSE ,MSE ,N- 1CONS, SSTO
1011 FORMAT(5X, 'REGRESSION ', 12,6X,12.3,7x,¥12.3,/
*5X, 'ERROR ',12,6X,F12.3,7x,¥12.3,/
*5X, I TOTAL . 1,12,6%,§12.3,/)
WRITE(NOUT,*)’ SSTO-(SSR+SSE) ’,SSTO-SSR-SSE
WRITECNOUT,1015)F
1015 FORMAT(/,’ F-RATIO = /,f12.3)
write(nout,2000)
2000 format(/,5x,’ ESTIMATE RESIDUAL')
DO 300 I=1,N
WRITE(NOUT,2020)YPRED(I),E(I)
c 2020 FORMAT(6X,F9.3,6X,F9.3)
9999 continue

0O000D0DO00OO0OOOO00O0

(1]

W
(=]
o

ccc WRITE(*,*)’ (NORMAL END OF SUBROUTINE "“Smregial")’
RETURN
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END

SUBROUTINE Scorr(XX,N,NP,nsave,fsave, iprt)

e e e e e e e v e v e e e Fe e e e e e e e e v e vk v v e v e e e e e e ke e e e e o e e ke ke 3k e e e e e 3 3k 3 3 vk v ke o o ok o o o o ok

Compute statistics on regressed values and save special
file with np,meanC, stdC, covmat C, trace (covmat C), corrmatC,
*****222*25;******************************************************
IMPLICIT REAL*8(A-H,0-2)
INTEGER LIMIT
PARAMETER (npert=1000, limit=70,nump=51)
DIMENSION XX(npert,20),covmat(nump,nump),cormat(nump,nump),
xmean(nump) , factor(nump, nump)
COMMON / jvga/NOUT, nouh
character*20 fsave
variable iprt=0 suppress output of results from scorr in unit nout

c------ Compute mean of observations

DO 10 J=1,NP
XMEAN(J)=0.0

po 20 1=1,N
DO 20 J=1,NP

XMEAN(J)=XMEAN(J)+XX(I,J)

DO 30 J=1,NP

XMEAN(J)=XMEAN(J)/float(N)
if(iprt .ne. 0)then

write(nout,*)’ /
write(nout,*)’ Values computed and printed by scorr ’
write(nout,6004)(xmean(j), j=1,np)
format(1x,’mean ’,10(f13.6,1x))
write(nout,*)’ /

endif

C-=---- Compute covariance matrix

47
46

6005

DO 45 I=1,Np
DO 45 J=1,Np
COVMAT(1,J)=0.0
DO 46 K=1,NP
DO 46 J=1,K
SUM=0.0
DO 47 1=1,N
SUM=SUM+(XX( T, K)-XMEANCK) )*(XX(T, J)-XMEAN(J))
COVMAT(K, J)=SUM/float(n-1)
CONTINUE

if¢(iprt .ne. 0)then
write(nout,6005)(sqrt(covmat(j,j)), j=1,np)
format(1x,’std /,10(f13.8,1x))
write(nout,*) ’ !/
write(nout,¥*) / Covariance matrix’
write(nout,*) / !
call sprtmat(covmat,np,np,nump)

endif

c----Compute Trace of covmat

100

trace=0.0
do 100 i=1,np
trace=trace+covmat(i,i)
continue
write(nout,6008)trace
format(/,1x,’ Trace of COV C = /,e13.7)

c------ Compute correlation matrix

49

DO 49 1=1,NP
DO 49 J=1,1
CORMAT(I,J)=COVMAT(I,J)/SQRT(COVMAT(I,1))/SQRT(COVMAT(J,J))
if(iprt .ne. 0)then
write(nout,*) ’ /
write(nout,*) ’ Correlation matrix/’
write(nout,*) / '
call sprtmat(cormat,np,np,nump)
write(nout,*) ’ /
endif
write(*,*)’ Calling sfload’

c----Compute component loadings

call sfload(cormat, NP,NUMP,factor,iprt)
write(*,*)’ Saving results for later use ’/

c----Save statistics for later use: file=for066.dat
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open(unit=nsave, file=fsave)
write(nsave,6010)np
6010 format(i5) )
write(nsave,6020)(xmean(j), j=1,np)
6020 format(10(f13.6,1x))
write(nsave, 6030)(dsqrt(covmat(j,j)), j=1,np)
6030 format(10(f13.8,1x))
do 105 i=1,np
write(nsave,6040)(covmat(i,j), j=1,i)
105 continue
write(nsave,6040)trace
6040 format(10(e13.7,1x))
do 110 i=1,np
write(nsave,6040)(cormat(i,j),j=1,i)
110 continue
do 120 i=1,np
write(nsave,6040)(factor(i,j),j=1,np)
120 continue
write(nsave,6010)np
close(nsave)
ccc write(*,*)’ Normal end Scorr’
RETURN
END

SUBROUTINE SAVEC(NP,I,CSAVE,C)
c Sededededededededede e de e de sk e s sk e s e e sk ok sk o

SAVE ESTIMATES OF C FOR ANALYSIS
e e v e e de e Je e Je e e I e e e Jo v Je e e e e 9 e de e de v e de e ke
IMPLICIT REAL*8(A-H,0-2) N
PARAMETER (LIMIT=70,NPERT=1000)
DIMENSION C(LIMIT),CSAVE(NPERT,20)
COMMON / jvga/NOUT,nouh
DO 100 J=1,NP
CSAVE(I,J)=C(J)
if(e(j) .lt. 0.0)write(nout,*)’ c=/,c(j),’ at pipe /,]j,
* jn run /i
100 CONTINUE
return
end

oo

SUBROUTINE SFLOAD(CORR,NPIPES,NMAX,A,iprt)

Cc Y v e e e v v e e e e v v e e e v 2k e e e v 3k e v e e e o e e e e o e e o e v e e e ke e e 3 e e o e e e vk de e e e
c * SUBROUTINE: SFLOAD *
Cc * *
c * REMARKS : Computes the component loadings of the *
c * Correlation matrix of regressed *
c * parameters C *
c * *
C * VARIABLES *
c * ==z==z==== *
c * CORR : CORRELATION MATRIX OF C SHOWING ONLY *

c * LOWER TRIANGULAR ELEMENTS *
c * NPIPES : DIMENSION OF MATRIX CORR & A *
c * NMAX ¢ PHYSICAL DIMENSION OF MATRIX CORR & A¥*

c * A : COMPONENT LOADINGS OF CORR: *
c * SQRT(ALPHA(J)) * A(I,J) Where: *
o * alpha=eigenvalues; a=eigenvectors *
c * IPRT : = 0 : SUPPRESS OUTPUT TO UNIT NOUT *
Cc e e e e e e e e e Je Je e e e e e Je e e de e e de e de e de e e e e Je e de e de e de e e P de e e e e e e o de e % e e e e ke

implicit real*8(a-h,o0-2)
PARAMETER(LIMIT=70,NUMP=51)
DIMENSION A(NMAX,NMAX),D(Nump),E(Nump), CORR(NMAX,K NMAX)
common / jvga/nout
c CHECK COMPATIBILITY OF ARRAY DIMENSION
IF(NMAX .NE. NUMP)THEN
uRITE(NOUT'*)I e e e v v e v v e e v 3k e e o I e v o e e v v A e v o T A e 3k e e e s o o e e e e e o S
WRITE(NOUT,*)’ CHECK ARRAY DIMENSIONS IN SUBROUTINE SFLOAD:’
WRITE(NOUT,*)’ NMAX = ’ NMAX, ’ NUMP = ’ NUMP
URITE(NOUT,*)’ e e e e Je e e vk e e v e e v v e v e e e e vk e e v v e e e e Ik e e e ok o e e de de ke ok S
ENDIF
c----- Create working matrix A
do 10 i=1,npipes
do 10 j=1,i
a(i, j)=corr(i,j)



192

10 continue
c----- Rename variables for eigen subroutines
n=npipes
np=nump
C---- set limit to round eigenvalue to zero
zerolim=0.0000001
write(nout,*) ’ zerolim to set eigenvalues to zero is: /,
*zerolim

c--- fill the upper diagonal of A
do 20 i=1,n-1
do 20 j=i+1,n
ACi,j)=AC), 1)
20 continue
if(iprt .ne. 0)then
write(nout,*)’ Matrix WITH Corr C from sfload’
call sprtmat(A,n,n,np)
endif
call TRED2(A,n,NP,D,E)
if(iprt .ne. 0)then
write(nout,*)’ Results from tred2: tridiagonal matrix’
call sprtmat(A,n,n,np)
endif
call TQLI(D,E,N,NP,A)
c----Check for negative eigenvalues and if small set them to zero
do 50 i=1,n
if(D(i) .lt. 0.0)then
if( abs(D(i)) .le. zerolim)then
D(i)=0.0
else
write(nout,*)’ eigenvalue ’,i,’ = ’/,d(i)
write(nout,*)’ ***value was set to Q*¥*/
+d(i)=0.0
endif
endif
50 continue
C---Sort eigenvalues in ascending order
CALL EIGSRT(D,A,N,NP)
if(iprt .ne. 0)then
write(nout,*)’ Matrix of eigenvalues of C’
cccece print *,(d(i),i=1,n)
call sprtmat(D,N,1,np)
write(nout,*)’ Matrix of eigenvectors of C’
call sprtmat(A,n,n,np)
endif
c---compute component loadings
do 100 i=1,n
do 100 j=1,n
aux=d(j)
a(i,j)=a(i, j)*dsqrt(aux)
100 continue
if(iprt .ne. 0)then
write(nout,*)’ Matrix of Component loadings of C’
call sprtmat(A,n,n,np)
endif
return
END

SUBROUTINE TRED2(A,N,NP,D,E)

c e e e e e e e e e e e v e e e e 3 v e e e e v e e e e e v e ke e e v e e e o v v e e e vk e e v e e e vk e e ke e o
c * SUBROUTINE: TRED2 *
c * *
c * REMARKS : Reduction of a symmetric matrix to a *
c * Tridiagonal Form *
c * *
c *  VARIABLES *
c * szzsz=sz=s= *
c * A : INITIAL SYMMETRIC MATRIX TO BE REDUCED*
c * FOR OUTPUT A IS REPLACED BY TRIDIAG. *
c * N : DIMENSION OF MATRIX A *
c * NP : PHYSICAL DIMENSION OF MATRIX A *
c * D : DIAGONAL ELEMENTS OF A *
c * E : OFF DIAGONAL ELEMENTS WITH E(1)=0 *
c P e e e e e e e e e e e e e e e e vk v v e v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ok

IMPLICIT REAL*8(A-H,0-2)
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DIMENSION ACNP,NP),D(NP),E(NP)
IF(N .GT. 1)THEN
DO 18 I=N,2,-1
L=1-1
H=0.0
SCALE=0.
IFCL .GT. 1)THEN
00 11 K=1,L
SCALE=SCALE+ABS(A(I,K))
CONTINUE
IF (SCALE .EQ. O)THEN
EC1)=A(CI,L)

A(1,K)=A(1,K)/SCALE
H=H+A(I,K)**2
CONTINUE
F=A(I,L)
G=-SIGN(SQRT(H),F)
E(1)=SCALE*G
H=H-F*G
A(I,L)=F'G
F=0.
Do 15 J=1,L
ACJ,1)=AC,d)/H
G=0.
DO 13 K=1,4
G=G+A(J,K)*A(I,K)
CONTINUE
IF(L .GT. J)THEN
DO 14 K=J+1,L
G=G+A(K, J)*A(I,K)
CONTINUE
ENDIF
E(J)=G/H
F=F+E(J)*A(I,J)
CONTINUE
HH=F/(H+H)
DO 17 J=1,L
F=A(1,J)
G=E(J)-HH*F
E(J)=G
DO 16 K=1,J
A(J,K)=A(J,K)-F*E(K)-G*A(I,K)
CONTINUE
CONTINUE
ENDIF
ELSE
E(I)=A(I,L)
ENDIF
D(I)=H
CONTINUE
ENDIF
D(1)=0.
E(1)=0.
Do 23 1=1,N
L=I-1
IF(D(I) .NE. O)THEN
DO 21 J=1,L
G=0.
DO 19 K=1,L
G=G+A(I,K)*A(K,J)
CONTINUE
DO 20 K=1,L
ACK, J)=A(K, J)-G*A(K, I)
CONTINUE
CONTINUE
ENDIF
D(I)=A(I,I)
ACL,1)=1
IF(L .GE. 1)THEN
D0 22 J=1,L
A(l,J)=0.
ACJ.1)=0.
CONTINUE
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ENDIF
CONTINUE

RETURN
END

SUBROUTINE TaLI(D,E,N,NP,2)
Aededededede e de e e e ek e o e e o sk e ko o ko A ok ke ek e ok ok

*

* F ¥ ¥ ¥ ¥

* % % ¥ ¥ % ¥ ¥ ¥

SUBROUTINE: TaLlI

REMARKS  : FINDS THE EIGENVALUES AND EIGENVECTORS
OF A SYMMETRIC, TRIDIAGONAL MATRIX

VARIABLES

D(N) : DIAGONAL ELEMENTS OF TRIDIAGONAL MAT.
ON OQUTPUT RETURNS THE EIGENVALUES

E(N) : OFF DIAGONAL ELEMENTS WITH E(1)=0

N : DIMENSION OF MATRIX 2
PHYSICAL DIMENSION OF MATRIX 2
MATRIX OUTPUT BY TRED2
RETURNS THE NORMALIZED EIGENVECTOR
IN THE KTH COLUMN CORRESPONDING TO

N
~
=
-

=
~
e e

D(K)

*
T E R E R A

e v v e e e v vk e e v v ke e e e v v e e e e 3 vk ke e e v vk ke e e e 3 vk ke e o vk vl e o v v e o e e o v e e vk e o v e o

IMPLICIT REAL*8(A-H,0-2)
DIMENSION D(NP),E(NP),Z(NP,NP)
IF (N .GT. 1)THEN
DO 11 1=2,N
ECI-1)=E(I)
CONTINUE

E(N)=0.

Do 15 L=1,N
ITER=0.

CONTINUE
DO 12 M=L,N-1
DD=ABS (D (M))+ABS(D(M+1))

IF ((ABS(E(M))+DD) .EQ .DD) GOTO 2

CONTINUE

IF(M .NE. L)THEN

IFCITER .EQ. 30)PAUSE ' Too many iterations’

iter=iter+1
G=(D(L+1)-D(L))/(2.*E(L))

R
G

=SQRT(G**2+1.)
=D(M)-D(L)+E(L)/(G+SIGN(R,G))

s=1.

c
P
D

=1.

=0.

0 14 I=M-1,L,-1

F=S*E(I)

B=C*E(I)

IF( ABS(F) .GE. ABS(G))THEN
C=G/F
R=SQRT(C**2+1.)
ECI+1)=F*R
S$=1./R
C=C*S

ELSE
S=F/G
R=SQRT(S**2+1.)
E(I+1)=G*R
c=1./R
$=S*C

ENDIF

G=D(I+1)-P

R=(D(I1)-G)*S+2.*C*B

P=S*R

D(I+1)=G+P

G=C*R-B

DO 13 K=1,N
F=2(K,1+1)
2(K,I+1)=S*2(K, 1 )+C*F
2(K,1)=C*Z(K,1)-S*F

CONTINUE
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CONTINUE
D(L)=D(L)-P
E(L)=G
E(M)=0.
GOTO 1
ENDIF
CONTINUE
ENDIF
RETURN
END

SUBROUTINE EIGSRT(D,V,N,NP)
e e e e e e e e e e e e e e vk e ok v ok vk ok e e e e e v e o e ok v e v e e e e e e ok e ke e ke o e ok ok e o e e e ok ok

* SUBROUTINE: EIGSRT
*

* REMARKS : SORTS THE EIGENVALUES INTO DESCENDING
* ORDER AND REARRANGES THE COLUMNS OF V
* (Sorts results from Jacobi or Tqli)

* VARIABLES

: EIGENVALUES
V : EIGENVECTORS
: DIMENSION OF ARRAYS
: PHYSICAL DIMENSION OF ARRAYS
o e de e e Je e e de e e e v e e ke e e e e e e e e e 3k o o ok v ok o ok o e o v o e o e e e v e e A ok ok e e de ke e ok o
IMPLICIT REAL*8(A-H,0-2)
DIMENSION D(NP),V(NP,NP)
DO 13 I=1,N-1
K=I
P=D(I)
DO 11 J=I+1,N
IF(D(J) .GT. P)then
K=J
P=D(J)
ENDIF
CONTINUE
IF (K .NE. I)THEN
D(K)=D(I)
D(I1)=P
DO 12 J=1,N
P=v(J, 1)
v, 1D=V(,K)
V(J,K)=P
CONTINUE
ENDIF
CONTINUE
RETURN
END
SUBROUTINE SPRTMAT(A,M,N,mlimit)
e v e e e e o e e o e ke s e v v e 9 v e 9 vk o e v v e v v I e v e e vl v e e e v e 3 9 v e e e e e o ok e e e e ok

* SUBROUTINE: SPRTMAT
*

* % % % ¥ W E O 4 F o

* % % ¥ ¥
=

* REMARKS : PRINTS A MATRIX OR VECTOR(transposed)
* FOR VECTOR USE N = 1

*

* VARIABLES

*»

: ARRAY TO BE PRINTED
s # OF LINES
: # OF COLUMNS
MLIMIT : ARRAY DIMENSION
NOUT : OUTPUT FILE
e e e e e e e e e e e % e % e e e e e e vk e v vl e v e 3k e 3k e e v e e e e v e e o de e de do K e o o e e de ke e ke
IMPLICIT REAL*8(A-H,0-2)
INTEGER N,M,mtimit
DIMENSION A(MLIMIT,MLIMIT)
COMMON / jvga/NOUT
WRITE(NOUT,8000)

ZT>

* % % ¥ ¥ F ¥ ¥ F F ¥ ¥

* * ¥ * ¥

C 8000 FORMAT(/)

PRINTS A COLUMN VECTOR(TRANSPOSED)

IF (N .EQ. 1) THEN
WRITE(NOUT,9000)(ACI,1),1=1,M)
GO TO 9999

ENDIF

PRINTS A MATRIX (MxN)
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DO 10 1=1,M
WRITE(NOUT,9000) (ACI,d), J=1,N)
9000 FORMAT(11¢1X,E12.5,1x))
10 CONTINUE
9999 CONTINUE
RETURN
END

SUBROUTINE DECOMPOS(A,N,PIVOT)

e e s e e e e e e P e e e sk e e e v e e v e e v e v e e I sk e e 3 e v e e e o sk e 3 s v e e vk e I vk e 3 e g ek
*

SUBROUTINE: DECOMPOS

*
* .

* REMARKS : DECOMPOSE MATRIX A = LU USING
* SCALED PARTIAL PIVOTING

* VARIABLES

COEFFICIENT MATRIX

: CONSTANT VECTOR

: # OF COLUMNS

ARRAY DIMENSION

SAVE PIVOT OPERATIONS
LARGEST ELEMENT IN A ROW

STORE INITIAL PIVOT POINT
INITIAL SCALING

CHECK VALUES FOR SCALING

STORE VALUE FOR EXCHANGING
n

RATIO USED IN REDUCTION

® O % % % N % % % % & % & % ¥ % ¥ ¥ ¥ ¥

¥ % % O F ¥ N ¥ X ¥ % N ¥ ¥
F
Q
L=
®s 4s 86 s 84 es 56 08 s e sE ws

e v e e e vk v e e s e e e v e sk ke e e e e v ke e o e vk ke e e e e ke e e e vk e e e ke ke e e vk ke o v e e e e e e e e

IMPLICIT REAL*8(A-H,0-2)

INTEGER PIVOT,N,ROW,1,d,K, ITEMP

REAL*8 A,D,CI,PC,TEMP,XM

PARAMETER (LIMIT=70)

DIMENSION A(LIMIT,LIMIT),PIVOT(LIMIT),D(LIMIT)

common / jvga/nout
c*******************************************************

c DETERMINE LARGEST ELEMENT IN EACH ROW d(i)
Crededdedededdededeied dededodedededededened ok ded e dede o dededededodedoiede i eode ok

ooOooO0O0O00O00O00OnO00O00OOnOnOD0O0O0O0O00n

c call sprtmat(a,n,n)
Do 10 I=1,N
PIVOT(I)=I
D(1)=0.0
DO 10 J=1,N
c write(nout,*)’ dabs a(1,j)’,DABS(A(CI,J)),’ d¢i)/,D(1)

IF (DABS(A(I,Jd)) .GT. DABS(D(I))) D(I)=A(I,J)
10 CONTINUE
do 20 i=1,n
if (d(i) .eq. 0.0)then
write (*,*)’ **maximum equal zero in row= ’,i
endif
20 continue
c*******************************************************

c START OF REDUCTION LOOP IN MATRIX DECOMPOSITION
CRFdedddddddkd ki ek ddddd ek ket de kot ookl ek e

DO 1000 K=1,N-1

00000

C----- START OF ALGORITHM FOR PIVOTING
PC=DABS(A(K,K)/D(K))
ROW=K

C----- IDENTIFY MAX. VALUE FOR REMAINING ROWS

DO 200 I=K+1,N
CI=DABS(A(I,K)/D(1))
IF (CI .GT. PC) THEN
pPC=CI
ROW=1
ENDIF
200 CONTINUE
Comenn SWITCH ELEMENTS FOR NEW PIVOT ROW
IF (ROW .GT. K) THEN
ITEMP=PIVOT(K)
PIVOT(K)=PIVOT (ROW)
PIVOT(ROW)=1TEMP
TEMP=D(K)
D(K)=D(ROW)



300

DCROW)=TEMP
DO 300 J=1,N
TEMP=A(K, J)
ACK, J)=A(ROM, J)
ACROW, J)=TEMP
CONTINUE
ENDIF

c*******************************************************

c

SOLVE FOR UPPER & LOWER MATRIX DECOMPOSITION

(¥ de e de e s e e e e e e e ke e e e ke e e e e e e e e ke e e e ke e e o ok e ok e ok e ol e e e e e e e e e e e e ke

400

1000

ccc

OO0O0O0O0O0O0O0O0O0O0O0O0O0O00O0

20
10

ccc

OO0OO0O0O0O00O0O0O0O0O00O0

DO 400 I=K+1,N
XM=A(I,K)/A(K,K)
ACI,K)=XM
DO 400 J=K+1,N
ACI,Jd)=A(I,Jd)-XM*A(K,Jd)
CONTINUE
CONTINUE
write(*,*)’ Normal end Subroutine Decompos’
RETURN
END

SUBROUTINE SAUGMAT(A,NR,NC)
edededede e de e de s e e e e e e e e e e e e e e e e e e e e ke ke e e e e e e e ke ke e ke e e e ke

* SUBROUTINE: SAUGMAT *
* *
* REMARKS : THIS SUBROUTINE AUGMENTS A MATRIX OF  *
* OBSERVATIONS OF DEPENDENT VARIABLES TO *
* INCLUDE A INTERCEPT COEFFICIENT bo OF *
* THE REGRESSION EQUATION *
* *
* VARIABLES *
Sszss===z= *

* ACNR,NC) : MATRIX A *
*

*

NR : # OF ROWS OF A
: # OF COLUMNS OF A
e e e v e e e e e e e v v e e e v v v e e v v v e o 3 v 3 3 e 3 3 o 3 3 3 e 3k v v v e e e e e o 3 v v e e de e o
IMPLICIT REAL*8(A-H,0-2)
parameter (limit=70)
common /jvga/nout
DIMENSION A(limit,limit)
DO 10 I=1,NR
DO 20 J=NC+1,2,-1
ACI,J)=A(1,d-1)
CONTINUE
A(I,1)=1.0
CONTINUE
WRITE(*,*)’ <NORMAL END SUBROUTINE "Saugmat"> ’
RETURN
END

SUBROUTINE SINVMAT(N,A,AINV)
e de e de e s de e e e s e e o e ok e e e o e e s e ke o e e e e ek ke ek e ek de e e

* SUBROUTINE: SINVMAT
*
* REMARKS - THIS SUBROUTINE INVERTS A MATRIX
*  VARIABLES
AC N, N) : MATRIX A
ORDER OF A
PIVOT(N)
X(N)
B(N)
AINV(N) : INVERSE OF A
e v Je e vk e e v e e e v e e vk I P v o 3 vk v e ke e e e v e e v I e ke vk e e vk v e I e v 3k e I e e e e e e de e ok ok
IMPLICIT REAL*8(A-H,0-2)
integer pivot
parameter (limit=70)
common / jvga/nout

* % % ¥ ¥ ¥
* % % % ¥ ¥ F ¥ F F ¥

DIMENSION A(limit,limit), AINV(limit,limit),PIVOT(Limit),X(LIMIT),

*B(LIMIT)

Decompose matrix A into upper and lower components

CALL DECOMPOS(A,N,PIVOT)
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C----

100
ccc

OO0OO0O0OO0O00O0000O0000 0

C----

*

c--_-

10
99
ccc

AOOOO0OO0OO0OO00DO00000O0

Set initial elements in identity vector

DO 10 1

=1,N
B(1)=

0.0

Loop for each column of inverse matrix

DO 100 J=1,N
------------ Set only nonzero value

B(J)=1.0

CALL SOLVE(A,N,PIVOT,B,X)

B(4)=0.0

DO 100 1=1,N

AINV(I,Jd)=X(1)
CONTINUE
WRITE(*,*)’ <NORMAL END SUBROUTINE “sinvmat"> ’

RETURN
END

SUBROUTINE SMULTMAT(A,MA,NA,B,MB,NB,C)
et dede e e de e dede dede e e e e ek s o o e ok o e o e ok e e e e s ek e ok ok

* SUBROUTINE: SMULTMAT *
* *
* REMARKS : THIS SUBROUTINE PERFORMS MATRIX MULTIPLI*
* CATION: AxB=C *
* VARIABLES *
* ==zz===z== *
* A(MA,NA) : MATRIX A *
* MA : # OF ROWS OF A *
* NA : # OF COLUMNS OF A *
* B(MB,NB) : MATRIX B *
* NB : # OF ROWS OF B *
* NB : # OF COLUMNS OF B *
* *

C(MA,NB) : PRODUCT MATRIX C
Y v e e e v e v v Fe e v v e v v e e e 3 9 v e e e v e vk v e e s e e v e e v sk vk vk e e e ok o e e e ke K e e ke ke

IMPLICIT REAL*8(A-H,0-2)

parameter (limit=70)

common / jvga/nout

DIMENSION A(limit,limit),B(limit,limit),C(limit,limit)

Check compatibility of matrices
IF (NA .NE. MB) THEN
WRITE (NOUT,1)MA,NA,MB, NB
FORMAT (3X,’ *** MATRICES ARE NOT COMPATIBLE FOR MULTIPLICATION/,
’ A(l’13’lxl’13'l)lll 3(1’13'1x1’13'l) dkdke s )
GO TO 99
ENDIF

Performs multiplication

DO 10 I=1,MA
DO 10 J=1,NB
C(1,4)=0.0
DO 10 K=1,NA
CCI,4)=CCT, J)+ACT, KI*BCK, J)
CONT INUE
CONTINUE
WRITE(*,*)’ <NORMAL END SUBROUTINE “smultmat®> *
RETURN
END

SUBROUTINE SOLVE(A,N,PIVOT,B,X)
e de e sk e e e e ok e o e ok e o ke e s ek ke s e A ke o ek o ke e A o e e

SUBROUTINE: SOLVE

*

*

* REMARKS : SOLVES A SYSTEM OF THE FORM LU x= b
* I1st step: L z=b

* 2nd step: U x = z

*

*

VARIABLES

* A(I,J) : COEFFICIENT MATRIX
* B (J) : CONSTANT VECTOR

* N : # OF COLUMNS

* LIMIT : ARRAY DIMENSION

* % % &k % o ¥ % ¥ ¥ ¥ % ¥
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STORE INITIAL PIVOT POINT

* % % ¥ ¥

c * ROW :

c * SUM : LINE SUMMATION

o * z(J) : TEMPORARY SOLUTION = U x

o * x(J) : SOLUTION VECTOR

c

c e de e e s e e e o o e e e e oo o ok o o o ko o o ok e o ke o o

IMPLICIT REAL*8(A-H,0-2)
INTEGER PIVOT,ROW
PARAMETER (LIMIT=70)

DIMENSION A(LIMIT,LIMIT),B(LIMIT) , X(LIMIT),Z(LIMIT),PIVOT(LIMIT)
Cedededededededededededede s e de e e e e e e e e o ek o ok e e o e e o o o o e o o o o o

c LOOP TO DETERMINE TEMPORARY VECTOR Z BY FORWARD SUBSTITUTION

(3 e de e e e e e e e e e ok e ke ok e ke e e ke e e ok ke e ke e e e e ok e e s ok e ok e e ok e e ok e ke e e ok e ke e e ke e ok e e e e e ke e ke

ROW=PIVOT(1)
Z(1)=B(ROW)
DO 200 K=2,N
ROW=PIVOT(K)
SUM=B (ROW)
DO 100 J=1,K-1
SUM=SUM-A(K, J)*Z(J)
100 CONTINUE
Z(K)=SUM
200 CONTINUE
Cedeskk ke e e ok e e e e e ok o e e e e ok e e e e

c SOLVE FOR X USING BACK-SUBSTITUTION
c******************************************
X(N)=Z(N)/A(N,N)
DO 400 K=N-1,1,-1
SUM=Z(K)
DO 300 J=K+1,N
SUM=SUM-A(K, J)*X(J)
300 CONTINUE
X(K)=SUM/A(K,K)
400 CONTINUE
ccc write(*,*)’Normal end Solve’
RETURN
END

SUBROUTINE STRANMAT(A,NR,NC,C)

* SUBROUTINE: STRANMAT

* ¥ *

OF THE MATRIX A

*

VARIABLES

A(NR,NC) : MATRIX A
NR : # OF ROWS OF A
NC :

C(NC,NR) : MATRIX C = A’/

OO0OO0OO0O0O0O0O0O0O0O0O000
* % % ¥ ¥

IMPLICIT REAL*8(A-H,0-2)
parameter (limit=70)
common /jvga/nout

DIMENSION A(limit,limit),C(limit,limit)

DO 10 I=1,NC
DO 10 J=1,NR
C(1,d)=ACJ, 1)
10  CONTINUE
CONTINUE

ccc WRITE(*,*)’ <NORMAL END SUBROUTINE “stranmat'> ’

RETURN
END

FUNCTION GASDEV(IDUM)

e e e e e e J v Fe e e e e e e de v P v e e e e e I v de o e e o e

GENERATES A GAUSSIAN DEVIATE
e e v v e v v e e v 3 ke vl e e e v v e v e e v v % e v o e e e e
IMPLICIT REAL*8(A-H,0-2)
real*4 ranval
common /jvga/nout, nouh,iseedjv
DATA ISET/0/,INIT/0/

o000

C------ 1f first time randomize initial seed for rnd
cc------ This function generate a gaussian number using F77L

c IF (init .eq. 0)xdum=rrand()

REMARKS  : THIS SUBROUTINE COMPUTES THE TRANSPOSE

# OF COLUMNS OF A

e e v e e e v e e e v v e 9 e v v v % e e v v v e e e e v v e e o v e e e o vk ke e e v 2k e e e e o v ke e o e e ok

* ¥ % ¥ ¥ % ¥ ¥ ¥ *

e v v e e e e v e e e v vk v e e e e v ke e e e e v vk e e e e v e e e e e e e e e e e 3k e e e e e e e e e o e e o
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init=1
IF (ISET .EQ. 0) THEN
V1 = 2.*RND()-1.
V2 = 2.*RND()-1.
R = V1*V1+V2*Vy2
IF (R .GT. 1.) GOTO 1
FACT = SQRT(-2.*LOG(R)/R)
GSET=V1*FACT
GASDEV=V2*FACT
ISET=1
ELSE
GASDEV=GSET
ISET=0
ENDIF
---This works for MS-Fortran ver 5.1
IF (init .eq. 0)then
if(iseedjv .eq. 0)then
call gettim(ihr,imin, isec,i100th)
else
1100th=iseedjv
endif
call seed(i100th)
write(nout,*)’ INITIAL SEED FOR GASDEVZ2 IS :/,i100th
write(nout,*)’ '/
init=1
ENDIF

-

0DOO0OO0OO0OO0DO0OOOO0OOO0O0O0OO0O0

IF (ISET .EQ. 0) THEN
call random(ranval)
V1 = 2.*ranval-1.
call random(ranval)
V2 = 2.*ranval-1.
R = VI*V1+V2*V2
IF (R .GT. 1.) GOTO 1
FACT = SQRT(-2.*LOG(R)/R)
GSET=V1*FACT
GASDEV=V2*FACT
ISET=1
ELSE
GASDEV=GSET
ISET=0
ENDIF
c---This works for MS-Fortran ver 5
RETURN
END

SUBROUTINE SCONDR(NP,CJV,CLOWB, CUPB,NVIOCL ,NVIOCU, 1COD)
Y e I e v e e v v e e o 3 e v e e v e 3 vk e e v e A vk I e e o I e e I e e vk 3 e e v ok e e e o o o e e ok o o ek
* REMARKS : THIS SUBROUTINE TESTS THE ACCEPTANCE  *
* OF REGRESSED C’S BASED ON THE ACCEPTABLE*
* PHYSICAL BOUNDS
*  VARIABLES

CJV(NP) : VECTOR OF REGRESSED Cs
NP : # OF PIPES
CLOWB, CUPB : LOWER AND UPPER BOUNDS FOR C
NVIOCL,NVIOCU : # OF VIOLATIONS FOR LOWER AND UPPER *
1CoD : 0=NO VIOLATIONS; 1=REJECT REGRESSION *
e e e de e e e e e v e e I v e e v e 3k e o e e sk e e e I vl e ok e e e e ke e e e v e e e 3k e v I e e e o e ok e ok ok
IMPLICIT REAL*8(A-H,0-2)
parameter (limit=70)
DIMENSION CJV(limit)
1cop=0
DO 10 I=1,NP
IF(CJV(I) .LT. CLOWB)THEN
NVIOCL=NVIOCL+1
GOTO 20
ENDIF
IF(CJV(I) .GT. CUPB)THEN
NVIOCU=NVIOCU+1
GOTO 20
ENDIF
10  CONTINUE
RETURN
20  CONTINUE

*
* F ¥ ¥ ¥ ¥

* ¥ * ¥ ¥

O0O0O0O00O0O0O0O0O0O0O0O0O0
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cce

ccc

ccce

ccc

10

*

*

1cob=1
RETURN
END

SUBROUTINE Slumpc(X,N,NP,LVEC,XL,NPLUMP)
e e % e % e e e e e 9 9 e e e e e e e 2 e e 9 vl g s vle 9 v vk i 9 e 9 9 e vl e 9 9 e de e e e 3 o 9 o o g o e e e o

* SUBROUTINE: Slumpc *
* *
* REMARKS : THIS SUBROUTINE AUGMENTS A MATRIX OF *
* OBSERVATIONS OF DEPENDENT VARIABLES TO *
* INCLUDE A INTERCEPT COEFFICIENT bo OF *
* THE REGRESSION EQUATION *
* *
* VARIABLES *

sS======== *
* A(NR,NC) : MATRIX A *
* NR : # OF ROWS OF A *
* NC : # OF COLUMNS OF A *

Ve e e Y v e e e e vl e s e ke e v e v e e e e v 3 e ke e ke e v e e e e e e e e e v e e e e e v e ok e vk e o v e ok o

IMPLICIT REAL*8(A-H,0-2)
parameter (limit=70,nump=51)
common / jvga/nout
DIMENSION X(limit,limit) XL(limit,limit),LVEC(nump)
print *,/ Starting slumpc n= /,n,’ np= /,np
DO 5 I=1,N
DO 5 J=1,NP
XL(1,4)=0.0
CONTINUE
print *,¢ End of do 5
ind=LVEC(1) ,
print *,7 ind =/,ind
Do 10 I=1,N
JL=1
INC=0
DO 10 J=1,np
print *,’ Inside do 10 1i,j,inc : /,i,],inc
IF((LVEC(JL)) .EQ. J) THEN
XL(I, ind)=XL(I, ind)+X(I,J)
IFCJL .EQ. 1)INC=INC+1
JL=JdL+1
ELSE
INC=INC+1
XL(I,INC)=X(I,J)
ENDIF
CONTINUE
NPLUMP=INC
RETURN
END

SUBROUTINE INDATA

SUBROUTINE GENMPNL(MPL,M,JA,JB,KN,JI1J)

* Subroutines from Lansey and Basnet(1991)
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D3. Program to perform calibration assessment

0OO0O0DO0OO0O0DO0OD0DOO0DOO0O00O0D0000O0000000O0O0OOO0O0O0O0O0O0O0O0O00O0

Monte Carlo Method.

PROGRAM : JVASSMC.

AUTHOR : JOSE ARAUJO - OSU OCT/1991

REMARKS : COMPUTES ASSESSMENT OF CALIBRATION BY MONTE CARLO
SIMULATIONS

11/14/91: Included condition MonteCarlo (2 criteria)subr. Snoisec

Last revision Dec 17, 1991

VARIABLES

NRUNS  : Number of Monte Carlo runs
ISEEDJV : Seed for pseudo random generator
0 will start from clock i100th
RCORC : y - generate correlated noise for C
n - generate uncorrelated noise
rsavec : y - save perturbed C’s for posterior analysis
(file name: for075.dat)
nmax : define array dimension
iopt : define level of output from subroutine SIM
0 = restricted output, 1 = full output
(output of geometry data from INDATA can be disabled
by setting nsd = 1 in file for009.dat)
fsavec : name of file to save C’s
nsavec : number of unit to save C’s
icondmc: 0 no restriction for noise on C
1 Condition MonteCarlo-2 criteria
xnstd : Number of std to reject noise
cmin,cmax : Minimum and maximum bounds to rejectC

KN : # of nodes (Kypipe routine)

KK : # of pipes ( " L

NPJV : # of pipes (JVASSMC.for)

cmeanjv : mean C from estimation

cout : cmeanjv + noise

c : same as cout(used for simulation)
stdjv : std ¢ from estimation

fsaveh : name of file to save H’s

finp : input file for JVASSMC options

ninp P unit v n n
update 12/17/91 to compute additional statistics in statjv

parameter(nmax=100)
implicit real * 8 (a-h, 0-2)
dimension cout(nmax),cmeanjv{nmax),stdjv(nmax),

*covmat jv(nmax,nmax),cormat jv(nmax,nmax), factor jv(nmax, nmax)
character*1 rcorc,rsavec, fsavec*20, fsaveh*20, resp, finp*20
COMMON/SREVISE/JS(400)

COMMON/SINDAT/JE(100),JG(100)
COMMON /SHAR/ BM(1100), IX(2200), IP(100,13), AL(100), GFH(700),

. AM(3800), JP(100), JX(4500)

COMMON/SSIMIN/ JTAN(50),EMAX(50),EMIN(50),DIAM(50),NFUL(50),

1 LY(32),L2¢32),E(100),KP1(100),JD(100),JF(100)

1,MPL(4500),NA(80),NB(80),JJUN(80),JPIP(80),

1 NPO(50),NJ0(50),L10¢10),L11¢10),L12¢10),XGRD(10) ,XGRD1(10),

1 XGRD2(10),DDQ, IOUT, JSKIP,KJ ,KTEP,MAXT ,NJOUT , NMOM, NXX

1 ,NPOUT,NPRP,NQ,NR,NTANK,NTEP,P,SW, TPER, TPPP
COMMON/SALL/QEXTK(50),AA(50),B8B(50),CC(50),0D(50),EE(50),FF(50),

1 KIP(1000),J1J(1000),KC(100),8(¢100),C(100),D(100),Q(100),JC(100)

1,R(100),S(100),V(100),ENGY(100),JJ1(100),KCLO(100),JA(100),JB(100)

1 ,GG(50),A1,A2,A3,A4,CQ,13,KN,NEPS, TIME, TNEXT, TPERI, TTT,UU,NJFIX
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1, 1EPS,KK, CHECK,ZQ(60), NABEL , NPUMP , NCODE
COMMON/PENAL/YMIN(100), YMAX(100)

COMMON/SNAME2/M( 100)

COMMON /SINREV/ BI(100),JFIX(50),TNCD, JNCG,NPCG,NNP, LABEL ,FAC,
1 XPER,NQEX

COMMON /INITBK/ INIT,LASTCL
COMMON/SSIM/Y(100),YY(100),NEX(320),NIX(320),

1 KCHNG,NTRS, IOPT, IERR

common /JVGA/NOUT, I SEEDJV

INTEGER JX,IP,M,JA,JB, IX,MPL,KC,KCLO,KIP,KPI, J14,JJ1

c----this lines were from nlcode setup

5
6000

6001

6

6022

do 1 j=1,1100
bm(j)=0.0
ix(j)=0
continue
init=1

ninp=4
write(*,*)’ Input file for JVASSMC ?(CON for keyboard):’
read(*,6022)finp
open(ninp, file=finp,status='old’)
write(*,*)’ Number of Monte Carlo runs ? ’
read(ninp,*)nruns
write(*,*)’ Select initial seed for random generator:’
write(*,*)’ (enter 0 for arbitrary seed )’
read(ninp,*)iseedjv
write(*,6000)
format(’ Do you want to generate correlated noise for C 2(Y/N)')
read(ninp,6001)rcorc
format(al)
if((rcorc .ne. ’Y’) .and. (rcorc .ne. ’'y’) .and. (rcorc .ne. 'N’)
*_.and. (rcorc .ne. 'n’))goto 5
icondme=0
xnstd=0.0
write(*,*)’ Condition Monte Carlo (Y/N) ? /
read(ninp,6001)resp
if ((resp .eq. ’y’) .or. (resp .eq. ’Y’))then
icondmc=1
write(*,*)’ Number of STD to reject noise ?’
read(ninp,*)xnstd
endif
write(*,*)’ Give minimum acceptable C '
read(ninp,*)cmin
write(*,*)’ Give maximum acceptable C ’/
read(ninp,*)cmax

WRITE(*,*)’ Save C perturbed for posterior statistics ?2(Y/N) '/
read(ninp,6001)rsavec

if((rsavec .ne. ’Y’) .and. (rsavec .ne. ’y’) .and. (rsavec.ne.’N’)
*_and. (rsavec .ne. ’‘n’))goto 6

format(a20)

write(*,*)’ Select desired level of simulation results ’/
write(*,*)’ (0) restricted output; (1) full output : ’
read(ninp,*)iopt

c----define units for input/output files

0000000

unit 4 : input file for jvassmc simulation options
unit 6 : main output from jvassmc.for
unit 9 : network geometry input file (Kypipe format)
10 : " simulation results (Kypipe output)
66 : results from parameter simulation (input file)
75 : save perturbed C’s
76 : save simulated H’s
n66=66
nout=6
nsavec=75
nsaveh=76
fsavec='for075.dat’
fsaveh='for076.dat’
open(unit=nout, file=/for006.dat’)
open(unit=10,file='for010.dat’)

c---open temp files used by Kypipe modules

open(45)
open(49)

c----write simulation options

call getdat(iyr,imon,iday)



7000 format(5x, ’'PROGRAM JVASSMC, Perform Assessment of calibration’,
*/ by Monte Carlo method’,/,5x,’Execution: /,i2,’/',i2,'/',i4,

7001 format(5x,’SIMULATION OPTIONS:’,/,5x,'nruns ’,i4,3x,’iseedjv /,
*i4,3x,'rcorc ’,al1,3x,’rsavec /,al1,3x,’iopt /,i3,’ cmin /,f10.3,

7002

c---

c---R

6010
6020
6030

105
6040

110

120

c---c

call gettim(ihr,imin,isec,i100th)
write(nout,7000)imon, iday,iyr,ihr,imin

*3x,i2,':1,i2,/)
write(nout,7001)nruns, iseedjv, rcorc, rsavec, iopt,cmin, cmax

*3x,’ cmax /,f10.3)
if(icondmc .eq. 1)write(nout,7002)xnstd
format(5x, '*Condition Monte Carlo option * xnstd /,f10.3)
write(*,*)’ Reading network geometry - INDATA’
Read network geometry (Kypipe file)
open(unit=9,file='for009.dat’,status='old’)
call indata
close(9)
write(*,*)’ Reading results from parameter estimation’
ead results from parameter estimation
open(unit=né6,file=’'for066.dat’,status='old’)
read(n66,6010)npjv
format(i5)
read(né6,6020)(cmeanjv(j), j=1,npjv)
format(10(f13.6,1x))
read(né6,6030)(stdjv(j), j=1,npjv)
format(10¢(f13.8,1x))
do 105 i=1,npjv
read(n66,6040) (covmat jv(i, ), j=1,i)
continue
read(n66,6040)tracejv
format(10(e13.7,1x))
do 110 i=1,npjv
read(n66,6040)(cormatjv(i,]),j=1,i)
continue
do 120 i=1,npjv
read(n66,6040)(factorjv(i,j), j=1,npjv)
continue
read(né6,6010)npjv2
close(n66)
heck integrity of file 66
if(npjv .ne. npjv2)then
write(*,*)’ Error in file For066 from Estimation module’
pause
goto 9999
endif
if(npjv .ne. kk)then
write(*,*)’ Number of pipes different in for009 & for066’
pause
goto 9999
endif
if((rsavec .eq. 'y’) .or. (rsavec .eq. 'Y’))then
open(unit=nsavec, file=fsavec)
write(nsavec,6050)npjv,nruns

6050 format(i5,1x,i5)

endi f
open(unit=nsaveh, file=fsaveh)
write(nsaveh,6050)kn, nruns
-MONTE CARLO LOOP
write(*,*)’ Performing Monte Carlo Simulations’
DO 1000 ILOOP=1,NRUNS
Generate noise in coefficient C
call snoisec(npjv,nmax,stdjv, factorjv,rcorc,cmeanjv,cout,
* icondmc, xnstd, cmin, cmax)
Update C for simulation
do 200 i=1,npjv
c(i)=cout(i)
continue
Save C if desired
if((rsavec .eq. ’'y’) .or. (rsavec .eq. 'Y’))then
write(nsavec,6060)(cout(i),i=1,npjv)

6060 format(10(f13.6,1x))

endif
Perform network hydraulic simulation
-- Reseting nrts to allow more than 8 executions of SIM
ntrs=0
write(*,*)’ Calling Sim’
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call sim
ccc write(*,*)’ Saving Hs’
c---- Save H’s

write(nsaveh,6070)(y(i),i=1,kn)
6070 format(10(e13.8,1x))
1000 CONTINUE

close(nsavec)
close(nsaveh)
c------ Perform statistics on H's
ccc nnjv=kn

Write(*,*)’ Calling statjv ’
call statjv(kn,nruns,nsaveh, fsaveh)
C---=-=-- If condition MC print statistics of violations
if(icondmc .eq. 1)call snoisec(npjv,nmax,stdjv,factorjv,rcorc,
*cmeanjv, cout,9,xnstd, cmin, cmax)
write(*,*)/ **NORMAL END JVASSMC**/
9999 continue
stop
end

SUBROUTINE SNOISEC(NP,NMAX,STDC,FACTOR,RCORC,CINP,COUT, icondmc,
*xnstd,cmin, cmax)

c e e v e e vk o vk e vk e v ke e ke e v e o ke e v e v ke o ke e vk e vk vk o vk o vk e vk o o e vk e vk e vk o vk e o ok o ok e ok ok
c * SUBROUTINE: SNOISEC *
c * ‘ *
c * REMARKS : GENERATES NORMALLY DISTRIBUTED NOISE *
c * AND PERTURB COEFFICIENT C *
c * *
c * VARIABLES *
c * =z======= *
c * NP : # of pipes *
c * NMAX : array dimension *
c * CINP : mean value of c from par. estimation *
C * COUT : contains cout + noise *
c * STDC : contains std of c from par. estim. *
c * factor: Component loading of CorC " ® *
c * sqrt(lambda(j)*a(i,j) *
c * RCORC : Y = generate correlated noise onc *
c * N= @ uncorrelated noise *
c * W : gaussian noise *
c * x : multivariate noise *
c * iseedjv: seed for random generator *
c * ( 0 will start from clock ) *
c * icondmc: 0 no restriction for noise on C *
c * 1 Condition MonteCarlo-2 criteria *
c * 9 print statistics on violations *
c * xnstd : Number of std to reject noise *
c * cmin,cmax : Minimum and maximum bounds to rejectC*
c e v e v e v e e e v v e e e v Je v e v v e e e e v e v e I e e v e 3 e 3k v 3k e I 2 e e 3k e I e 3k e 3k o e o e e e

IMPLICIT REAL*8(A-H,0-2)

INTEGER NP

PARAMETER (NUMP=100)

DIMENSION STDC(nmax),factor(nmax,nmax),cinp(nmax),COUT(NMAX),
*w(nump) ,x(nump), iviostdl(nump), iviostdu(nump), ivioub(nump),
*iviolb(nump),vio(4)

character*1 rcorc,vio*20

COMMON /JVGA/NOUT, ISEEDJV

data iviostdl/nump*0/,iviostdu/nump*0/, ivioub/nump*0/,
*iviolb/nump*0/,vio(1)/’'#nstdv lower’/,vio(2)/’#nstdv upper’/,
*vio(3)/'cmin’/,vio(4)/' cmax’/

c----This option will be used at the end of the program just to print
c----Statistics of violations
if (icondmc .eq. 9)goto 98
c Check array dimensions
if(nmax .gt. nump)then
write(*,*)’ Array dimension exceeded in snoisec ’
pause
goto 99
endif
2 continue
c This procedure will generate gaussian noise
do 3 i=1,np
w(i)=gasdev(i)
3 continue
c This procedure will generate correlated noise
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do 1000 k=1,np
x(k)=0.
do 2000 j=1,np
x(k)=x(k)+w(j)*factor(k, j)
2000 continue
1000 continue
C----- GENERATE NOISE MEAN 0, STD=STDC(i)
DO 10 I=1,NP
C-----=c=n- check if ¢ is within feasible limits
IF ((CINP(i) .LT. cmin) .OR. (CINP(i) .GT. cmax))GOTO 90
STD=STDC(I)
if((rcorc .eq. ’y’) .or. (rcorc .eq. ’Y’))then
error=x(i)*std
else
error=W(i)*std
endif
Cout(i)=CINP(i)+error
10  CONTINUE
c----Test if condition MC was selected
if(icondmc .eq. 0)goto 99
c----Test rejection criteria for all pipes
do 30 i=1,np
31 continue
c----- Test criteria 1; noise within nstd
if (cout(i) .lt. (cinp(i)-xnstd*stdc(i))) then
iviostdl(i)=iviostdl(i)+1
goto 35
endif
c----- Test of criteria 2, upper and lower bounds
if (cout(i) .gt. (cinp(i)+xnstd*stdc(i))) then
iviostdu(i)=iviostdu(i)+1
goto 35
endif
if (cout(i) .lt. cmin)then
iviolb(i)=iviolb(i)+1
goto 35
endif
if (cout(i) .gt. cmax)then
iviolb(i)=iviolb(i)+1

goto 35

endif
c----- If no violation go to check next pipe

goto 29
c----- If violation and correlated ¢ needs to start all over again
35 continue

if((rcorc .eq. 'y’) .or. (rcorc .eq. 'Y’))goto 2
c-=---- if not correlated c’s generate new noise for that pipe

w(i)=gasdev(i)
error=w(i)*stdc(i)
cout(i)=cinp(i)+error
goto 31
29 continue
30 continue
GOTO 99
90 CONTINUE
WRITE(*,*) ’ CHECK RANGE FOR C=’,CINP(I),’ AT PIPE ’,I
pause
goto 99
98 continue
c----- print statistics on violations
do 9000 i=1,np
if(iviostdl(i) .gt. 0)write(nout,9001)vio(1),iviostdl(i),i
if(iviostdu(i) .gt. 0)write(nout,9001)vio(2),iviostdu(i), i
if(ivioub(i) .gt. 0)write(nout,9001)vio(3),ivioub(i),i
if(iviolb(i) .gt. O)write(nout,9001)vio(4),iviolb(i),i
9000 continue
9001 format(/,’ Criteria ’,a20,’ # of violations ',i4,’ pipe ’,
*i4)
99  RETURN
END

FUNCTION GASDEV(IDUM)
(Previously listed)

c e de ke e e e e e e e e e e e e e ok e e ke o ok ke e e ke e e vk e e e e v ok e o ok e ok ke ok ok e o ke e e e e e e e e ke o ok o ok o e e ok o
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Subroutine: STATJV

AUTHOR : JOSE VICENTE GRANATO DE ARAUJO

DATE : NOV 5, 1991

REMARKS : This subroutine computes the covariance and
correlation matrices of the values in a file
Updated from statisti.for from April 22, 1991
VARIABLES

: NUMBER OF realizations
: NUMBER OF VARIABLES
X(N,NP): MATRIX OF Values to compute statistics
nn : node number
q : node flow
press: node pressure

INPUT FILE

* % % % % % % % & % % ¥ F F * ¥ * *

nn, q, press

e e e e o e e e e e e e e e e e e v vk 3k e e e e e e e e e e e e e e vk e v e de e e e v e v e e o e de e e e e e e e dede e e e

SUBROUTINE STATJV(kn,nruns,nsaveh, fsaveh)

I
I

MPLICIT REAL*8(A-H,0-2)
NTEGER LIMIT

PARAMETER (numv=50)

DIMENSION covmat(numv,numv),cormat(numv,numv), Xxmean{numv),
*h jv(numv)

COMMON /JVGA/NOUT, issedjv

character*20 fsaveh

ccc

6050

10

6070

n
o

30

6004

45

200
100

0OO0OO0O0OO0ODODOODO0OOOO0OODNODO00DD0DO0DOO00O0O0DO0O0O00O0O0O00O0O0O00

write(*,*)’ Entering statjv’
open(unit=nsaveh, file=fsaveh,status='old’)
read(nsaveh,6050)np,n
format(i5,1x,15)
if(np .ne. kn) then
Write(*,*)’ Number of variables do not match in file’,fsaveh
pause
goto 999
endif
if(n .ne. nruns) then
write(*,*)’ Number of runs do not match in file’,fsaveh
pause
goto 999
endif
Compute mean of observations
DO 10 J=1,NP
XMEAN(J)=0.0
Do 20 1=1,N
read(nsaveh,6070)Chjv(j),j=1,np)
format(10¢e13.8,1x))
DO 20 J=1,NP
XMEAN( J )=XMEAN(J)+hjv(J)
continue

close(nsaveh)
write(*,*)’ Opening again ’, fsaveh
open(unit=nsaveh, file=fsaveh,status='old’)
read(nsaveh,6050)np1,n1
DO 30 J=1,NP
XMEAN(J )=XMEAN(J)/N
write(nout,*)’ Mean values ’
write(nout,6004)(xmean(j), j=1,np)
format(10¢1x,f7.3))
write(nout,*)’ /
Compute covariance matrix
DO 45 I=1,Np
DO 45 J=1,Np
cormat(i, j)=0.0
COVMAT(I,4J)=0.0
do 100 i=1,n
read(nsaveh,6070)Chjv(j), j=1,np)
DO 200 K=1,NP
DO 200 J=1,K
covmat(k, j)=covmat(k, j)+(hjv(K)-XMEAN(K))*(hjv(J)-XMEAN(J))
continue
continue
close(nsaveh)
do 300 k=1,np
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c do 300 j=1,k

c COVMAT(K, J)=covmat(k, j)/float(n-1)
c 300 CONTINUE

c

c-==--- Initialize arrays
DO 45 I=1,Np
XMEAN(1)=0.0
DO 45 J=1,Np
cormat(i,j)
COVMAT(I,J)
45 continue
Do 100 J=1,N
read(nsaveh,6070) Chjv(k),k=1,np)
6070 format(10(e13.8,1x))
DO 200 I1=1,NP
XMEAN(CI )=XMEAN(CI)+hjv(I)
do 200 k=1,i
covmat(i,k)=covmat(i,k)+hjv(i)*hjv(k)
200 continue
100 continue
close(nsaveh)
do 300 i=1,np
do 300 k=1,i
c write(*,*)covmat(I, k)
COVMAT(i,k)=(covmat(i, k) -xmean(i)*xmean(k)/float(n))/
&float(n-1)
300 CONTINUE
write(nout,*)’ Mean values ’
write(nout,6004)((xmean(j)/float(n)), j=1,np)
6004 format(10(1x,f7.3))
write(nout, *)’ /

0.0
0.0

write(nout,*) ’ Covariance matrix’
write(nout,*) / 4
call sprtmat(covmat,np,np,numv)

c---- Compute trace

c trace=0.0

c do 48 i=1,np

c trace=trace+covmat(i,i)

c 48 continue

c write(nout,2000)trace

c 2000 format(/,5x,’Trace = /,£13.4,/)
c---- Compute trace---Modified 12/17/91
valmin=+1e09
valmax=-1e-09
trace=0.0
do 48 i=1,np
trace=trace+covmat(i,i)
if(covmat(i,i) .gt. valmax)valmax=covmat(i,i)
if(covmat(i,i) .lt. valmin)valmin=covmat(i,i)
48 continue
traceav=trace/float(kn)
write(nout,2000)trace, traceav,valmin, valmax
2000 format(/,5x,’Trace = ’,f13.4,5x,'Average Cov Hp = /,f13.4,
*5x,’Min value = /,f13.4,5x, 'Max value = /,f13.4)
c--Updated 12/17 to compute additional measures
valmin=+1e09
valmax=-1e-09
trace=0.0
icont=0
do 400 i=2,np
do 400 j=1,i-1
icont=icont+1
trace=trace+covmat(i,j)
if(covmat(i,j) .gt. valmax)then
valmax=covmat(i, j)
imax=i
Jmax=]
endi f
if(covmat(i,j) .lt. valmin)then
valmin=covmat(i, j)
imin=i
jmin=j
endif
400 continue
traceav=trace/float(icont)



write(nout,2005)trace, traceav,valmin, imin, jmin, valmax, imax, jmax

2005 format(5x,’Sum lower triangular Covhp = ’/,f13.4,2x,

49

999
cce

*/Average Cov Hp = /,f13.4,2x,’Min value = /,f13.4,2x,
*’at row /,13,2x,’col ’/,13,/,5x,’Max value = /,f13.4,’ at row /,
*i3,2x,’, col 7,13)

--Compute correlation matrix
DO 49 I=1,NP
DO 49 J=1,1
CORMAT(I,J)=COVMAT(I,J)/DSQRT(COVMAT(I,I)*COVMAT(J,J))
write(nout,*) ’ /
write(nout,*) ’ Correlation matrix’
write(nout,*) ’ !
call sprtmat(cormat,np,np,numv)
write(nout,*) ’ /

continue

write(*,*)’ Exiting statjv’
RETURN
END

SUBROUTINE SPRTMAT(A,M,N,mlimit)
(See List in previous program)

The following subroutines are from Lansey and Basnet(1991)
SUBROUTINE INDATA

SUBROUTINE GENMPNL(MPL,M,JA, JB,KN,J1J)

SUBROUTINE SIM

SUBROUTINE REVISE(NSWIT, nepload)

SUBROUTINE NAME(KK,W9,J)

SUBROUTINE MA18A (A,IND,IW,N,NP,G,U,IA)

SUBROUTINE MA18B (A,IRN,IP,N,NP,AWS,AVECT,MTYPE)
SUBROUTINE MA18C(A,IRN,1P,N,NP,AGRO)

SUBROUTINE MA18D (A, IRN,IP,N,NP,AWS,NAME)
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D4. Program to perform calibration assessment by
First Order Approximation of the variance.

0OO0O0D0D000DO0O0DO00O0O0000O000O0OO0O0O000O000000

00

PROGRAM : JVASSFO.for

AUTHOR : JOSE ARAUJO - OSU NOV/1991

REMARKS : COMPUTES ASSESSMENT OF CALIBRATION BY FIRST ORDER
APPROXIMATION OF THE VARIANCE OF SIMULATED PRESSURES

Last revision Dec. 17, 1991

VARIABLES

NRUNS : Number of Monte Carlo runs
ISEEDJV : Seed for pseudo random generator
0 will start from clock i100th
RCORC : y - generate correlated noise for C
n - generate uncorrelated noise
rsavec : y - save perturbed C’s for posterior analysis
(file name: for070.dat)
nmax : define array dimension
iopt : define level of output from subroutine SIM
0 = full output, 1 = limited output

(output of geometry data from INDATA can be disabled

as an option in the for009 input data)
fsavec : name of file to save C’s
nsavec : number of unit to save C’s
hjv(i,j) : pressure at node J caused by using (C+deltaC) at

pipe 1
dhpdc(i,j) : dHPj/dCi
deltaC : finite difference used to perturb C

update 12/17/91 : Print mean H from base run (Cmean from for066)

parameter(nmax=100,nmax1=101,n50=50)
implicit real * 8 (a-h, 0-2)
dimension cmeanjv(nmax),stdjv(nmax),hjv(nmax,50),

*covmat jv(nmax,nmax),cormat jv(nmax,nmax), factor jv(nmax,nmax),
*dhpdc (50, nmax)
dimension cmeanjv(nmax),stdjv(nmax),hjv(nmax1,n50),

*covmat jv(nmax,nmax),cormat jv(nmax,nmax), factor jv(nmax, nmax),
*dhpdc(n50, nmax)

character*1 rsavec, fsavec*20, fsaveh*20

COMMON/SREVISE/JS(400)

COMMON/SINDAT/JE(100),JG(100)

COMMON /SHAR/ BM(1100), IX(2200), IP(100,13), AL(100), GFH(700),
. AM(3800), JP(100), JX(4500)

COMMON/SSIMIN/ JTAN(50),EMAX(50),EMIN(50),DIAM(50),NFUL(50),
1LY(32),L2¢32),E(100),KPI(100),4D(100),JF(100)
1,MPL(4500),NA(80),NB(80),JJUN(80),JPIP(80),

1 NPO(50),NJO(50),L10(¢10),L11¢10),L12(10),XGRD(10),XGRD1(10),
1 XGRD2(10),DDQ, IOUT, JSKIP,KJ,KTEP,MAXT,NJOUT , NMOM, NXX
1 ,NPOUT,NPRP,NQ,NR,NTANK,NTEP,P,SW, TPER, TPPP

COMMON/SALL/QEXTK(50),AA(50),BB(50),CC(50),DD(50),EE(50),FF(50),
1 KIP(1000),J14(1000),KC(100),B(100),C(100),D(100),Q(100),JC(100)
1,R(100),S(¢100),V(100) ,ENGY(100),JJ1(100),KCLO(100),JA(100),JB(100)
1 ,GG(50),A1,A2,A3,A4,CQ,13,KN,NEPS, TIME, TNEXT, TPERI, TTT,UU,NJFIX
1 ,1EPS, KK, CHECK,2Q(60), NABEL ,NPUMP , NCODE

COMMON/PENAL/YMIN(100), YMAX(100)

COMMON/SNAME2/M(100)

COMMON /SINREV/ BI(100),JFIX(50),TNCD,JNCG,NPCG,NNP,LABEL,FAC,

1 XPER,NQEX

COMMON /INITBK/ INIT,LASTCL

COMMON/SSIM/Y(100),YY(100),NEX(320),NIX(320),
1 KCHNG,NTRS, IOPT, IERR

common /JVGA/NOUT, ISeEDJV



INTEGER

JX,1P,M, JA, JB, IX,MPL,KC,KCLO,KIP,KP1,J1J, JJ1

c----this lines were from nlcode setup
do 1 j=1,1100
bm( j)=0.0
ix(j)=0
1 continue

init=1

write(*,

*)! Give deltaC to perturb C 2 /

read(*,*)deltac
6001 format(al)

6 WRITE(*,*)’ Save C perturbed for posterior statistics 2(Y/N) '’

read(*,6001)rsavec

if((rsavec .ne. 'Y’) .and. (rsavec .ne. 'y’) .and. (rsavec.ne.’N’)

* _and. (rsavec .ne. ‘n’))goto 6

write(*,*)’ Select desired level of simulation results ’/

write(*,*)’ (0) restricted output; (1) complete output

read(*,*)iopt
c----define units for input/output files

unit 80:
unit 9 :
1 :

66 :

85 :
86 :
n66=66
nout=6

0O00000

output from jvassfo.for
network geometry input file (Kypipe format)

" simulation results (Kypipe output)
results from parameter simulation (input file)
save C’s perturbed
save H’'s simulated

nsavec=85

nsaveh=86

fsaveh='for086.dat’
fsavec='for085.dat’
open(unit=nout, file='for080.dat’)
open(unit=10,file='for081.dat’)

c---open temp

files used by Kypipe modules

open(45)
open(49)
c----write input options:
call getdat(iyr,imon, iday)
call gettim(ihr,imin,isec,i100th)
write(nout,7010)imon, iday,iyr,ihr,imin

7010 format(5x, 'PROGRAM JVASSFO, Perform Assessment of calibration’,

*/ by First Order Aproximation of the Variance method’,/,5x,
*/Execution: ’,i2,’/',i2,'/',14,3x,12,":,12,/)
write(nout,7011)del tac, rsavec, iopt

7011 format(5x,’SIMULATION OPTIONS:’,/,5x,’deltac ’,f10.6,3x,

*!rsavec

’,a1,3x,’iopt /,i3)

c--- Read network geometry (Kypipe file)
open(unit=9,file=’'for009.dat’,status='old’)
call indata
close(9)

c---Read results from parameter estimation

open(unit=né6,file='for066.dat’,status="old’)
read(né6,6010)npjv
6010 format(i5)
read(n66,6020)(cmeanjv(j), j=1,npjv)
6020 format(10(f13.6,1x))
read(n66,6030)(stdjv(j), j=1,npjv)
6030 format(10(f13.8,1x))
do 105 i=1,npjv
read(n66,6040) (covmat jv(i,j), j=1,1)
105 continue
read(n66,6040)tracejv
6040 format(10(e13.7,1x))
do 110 i=1,npjv
read(n66,6040)(cormat jv(i,j),j=1,1)
110 continue
do 120 i=1,npjv
read(né6,6040) (factorjv(i,j), j=1,npjv)
120 continue
read(n66,6010)npjv2
close(néb)

c---check integrity of file 66

if(npjv

.ne. npjv2)then

write(*,*)’ Error in file For066 from Estimation module’

I
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pause
goto 9999
endif
if(npjv .ne. kk)then
write(*,*)’ Number of pipes different in for009 & for066’
pause
goto 9999
endif
if((rsavec .eq. 'y’) .or. (rsavec .eq. 'Y’))then
open(unit=nsavec, file=fsavec)
write(nsavec,6050)npjv,npjv+1
6050 format(i5, 1x,i5)
endif

open(unit=nsaveh, file=fsaveh)
write(nsaveh,6050)kn,npjv+1
c---PHASE 1 - Compute DHPDC by finite differences
[ Loop to perturb each C by deltaC
write(*,*)’ Performing Hydraulic simulations’
do 1000 iloop=1,npjv
c---- Update C for simulation
do 200 i=1,npjv
c(i)=cmeanjv(i)

200 continue

c-==- Perturb C(iloop) by deltaC
c(iloop)=c(iloop)+deltac

c--- Save C if desired

if((rsavec .eq. 'y’') .or. (rsavec .eq. 'Y’))then
write(nsavec,6060)(c(i),i=1,npjv)

6060 format(10(¢f13.6,1x))
endif

c---- Perform network hydraulic simulation
ntrs=0

cce write(*,*)’ Calling Sim’
call sim

ccee write(*,*)’ Saving Hs’

c---- Save H’s

do 250 i=1,kn
hjv(iloop,i)=y(i)

250 continue

write(nsaveh,6070)(y(i),i=1,kn)

6070 format(10(e13.8,1x))

1000 continue

c----- Perform the base run
do 300 i=1,npjv
c(i)=cmeanjv(i)

300 continue
if((rsavec .eq. 'y’) .or. (rsavec .eq. 'Y’))then

write(nsavec,6060)(c(i),i=1,npjv)
endif
write(*,*)’ Calling Sim for base run’
call sim
cce write(*,*)’ Saving Hs’
do 350 i=1,kn
hjv(npjv+1,i)=y(i)

350 continue
write(nsaveh,6070)(y(i), i=1,kn)
close(nsavec)
close(nsaveh)
write(nout,*)’ Mean values of H (FOSM) ’
write(nout,6004)(y(i),i=1,kn)

6004  format(10(1x,f7.3))

c------ Compute sensitivity matrix dip/dC
c **Note Line NPjv+1 is the base run**
do 500 i=1,npjv
do 500 j=1,kn
Dhpdc(Jd, 1)=(Hjv(NPjv+1,J)-Hjv(1,d))/DELTAC

500 CONTINUE
WRITE(NOUT,6011)NP jv,kN,DELTAC

6011 FORMAT(5x, '# OF PIPES = /,13,/,5x,'# OF NODES = ’,13,/,

*5x, /DELTAC = /,F12.6,/)

c---PHASE 11 - Compute CovHp = dHP/dC * CovC * [dHP/dC]’
call scovhp(kn,npjv,dhpdc,covmatjv)
9999 continue



write(*,*)’ **Normal end JVASSFO**/

stop
end
Cc she e e e e v e o e vk v 9 v v I e e v 9 vk e e sl de e o v I e ok o e v v e e v 3 e v v e vk e e o 3 0 e v e I e e e o 3 e 9 v v o o e e
c * Subroutine: SCOVHP *
c * AUTHOR : JOSE VICENTE GRANATO DE ARAUJO *
c * DATE : NOV 19, 1991 *
c * REMARKS : This subroutine computes the covariance matrix *
c * CovHp = dHP/dC * CovC * [dHP/dC)’ *
c * VARIABLES *
C * =====c==== *
c * KN : NUMBER OF NODES *
c * NPjv : NUMBER OF VARIABLES(pipes) *
c * DHPDC(KN,NPJV) : Partial dHP/dC *
o * COVC(NPJV,NPJV): Lower triangular of Cov.of C from P.Est. *
c * COVHP(KN,KN) : Cov. matrix of HP = ab * dhpdct *
c * DHPDCT(NPJV,KN): dhpdc’ *
c * AB(KN,NPJV) : dhpde * covc *
[ e e v v v e e v v e e vk e v e v o vk v v e vk ol i e e e e v e vk e e vk e e vk e e e ke e e e e e v e e e o e e e e e e e o e e e e e ok
SUBROUTINE Scovhp(kn,npjv,dhpdc,cove)
IMPLICIT REAL*8(A-H,0-2)
PARAMETER (nmax=100,n50=50)
DIMENSION dhpdc(n50,nmax), covc{nmax,nmax),covhp(n50,n50),
*dhpdct(nmax,n50), ab(n50, nmax),cormat(n50,n50)
COMMON /JVGA/NOUT, issedjv
cce character*20 fsaveh
cce write(*,*)’ Entering scovhp’
C----- Check dimension of arrays and solvability of system
IF ¢ (npjv .GT. nmax) .OR. (KN .GT. n50))THEN
WRITE(*,1)npjv,nmax, kn,n50
1 format(1x,/DIMENSION OF ARRAYS EXCEEDED IN SCOVHP ’,4(i5))
write(*,*)npjv,nmax, kn,n50
STOP
ENDIF
c----Form the upper part of matrix covc
do 30 i=1,mpjv
do 30 j=i+1,npjv
cove(i, j)=cove(j,i)
30 continue
C----- Compute CovHp = dHp/dC * Cov C * [dHp/dC]l’

call smultmat(dhpdc,kn,npjv,cove,npjv,npjv,AB,n50, nmax, nmax, nmax)
CALL STRANMAT(dhpdc,kn,npjv,dhpdcT,n50, nmax)
CALL SMULTMAT(AB,kn,npjv,dhpdcT,npjv,kn, COVHP,n50, nmax, nmax,n50)

C----print input/output values

write(nout,*) / Sensitivity matrix dHp/dC’
write(nout,*) ' '
call sprtmat(dhpdc,kn,npjv,n50,nmax)
write(nout,*) ’ /

write(nout,*) / Cov C matrix’
urite(nout,*) 4 =============/

call sprtmat(covc,npjv,npjv,nmax,nmax)
write(nout,*) / /

write(nout,*) ' Cov Hp matrix’
urite(nout'*) ’ ==============/

call sprtmat(COVHP, kn,kn,n50,n50)
write(nout,*) / /

c---- Compute trace---Modified 21/07/91

48

valmin=+1e09
valmax=-1e-09
trace=0.0
do 48 i=1,kn
trace=trace+covhp(i,i)
if(covhp(i,i) .gt. valmax)valmax=covhp(i,i)
if(covhp(i,i) .lt. valmin)valmin=covhp(i,i)
continue
traceav=trace/float(kn)
write(nout,2000)trace, traceav,valmin, valmax

2000 format(/,5x,'Trace = /,f13.4,5x,'Average Cov Hp = /,f13.4,

*5x,’Min value = /,f13.4,5x,’Max value = /,f13.4)

c--Updated 20/07 to compute additional measures

valmin=+1e09
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valmax=-1e-09
trace=0
icont=0
do 100 i=2,kn
do 100 j=1,i-1
icont=icont+1
trace=trace+covhp(i, j)
if(covhp(i,j) .gt. valmax)then
valmax=covhp(i, j)
imax=i
jmax=j
endif
if(covhp(i,j) .lt. valmin)then
valmin=covhp(i, j)
imin=i
jmin=j
endif
100 continue
traceav=trace/float(icont)
write(nout,2005)trace, traceav,valmin, imin, jmin, valmax, imax, jmax
2005 format(5x,’Sum lower triangular CovHp = ’,f13.4,2x,
*/Average Cov Hp = /,f13.4,2x,’Min value = 7,f13.4,2x,
*'at row /,13,2x,’col /,13,/,5x,'Max value = /,f13.4,’ at row ’/,
*i3,2x,’, col 7,13)
c------ Compute correlation matrix
DO 149 I=1,kn
DO 149 J=1,1
149 CORMAT(I,J)=COVHP(1,J)/DSQRT{COVHP(I,1)*COVHP(J,d))
write(nout,*) '/ !
write(nout,*) / Correlation matrix’
Write(nout,*) / !
call sprtmat(cormat,kn, kn,n50,n50)
write(nout,*) ' /
999 continue
cce write(*,*)’ Exiting scovhp’
RETURN
END

SUBROUTINE SMULTMAT(A,MA,NA,B,MB,NB,C,max, nax,mbx,nbx)
(Subroutine list is shown in previous program)

SUBROUTINE STRANMAT(A,NR,NC,C,max,nax)

SUBROUTINE SPRTMAT(A,M,N,mlimit,nlimit)
(See list in previous program)

*

The subroutines below are from Lansey and Basnet (1991)

SUBROUTINE INDATA

SUBROUTINE GENMPNL(MPL,M,JA,JB,KN,J1J)
SUBROUTINE SIM

SUBROUTINE REVISE(NSWIT, nepload)

SUBROUTINE NAME(KK,W9,J)

SUBROUTINE MA18A (A,IND,IW,N,NP,G,U,IA)
SUBROUTINE MA18B (A,IRN,IP,N,NP,AWS,AVECT,MTYPE)
SUBROUTINE MA18C(A,IRN,IP,N,NP,AGRC)

SUBROUTINE MA18D (A, IRN,IP,N,NP,AWS,NAME)



APPENDIX E

STOCHASTIC CONVERGENCE OF THE MEAN AND STANDARD

DEVIATION OF ROUGHNESS PARAMETERS
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APPENDIX F

PROBABILITY DISTRIBUTION OF ESTIMATED

ROUGHNESS PARAMETERS
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APPENDIX G

PROBABILITY DISTRIBUTION OF

COMPUTED NODAL PRESSURES
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