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PREFACE 

Code reusability is a primary objective in the development of software systems. The 

object-oriented programming methodology is one of the areas that facilitate the 

development of software systems by allowing and promoting code reuse and modular 

designs. Object-oriented programming languages (OOPLs) provide different facilities to 

attain efficient reuse and reliable extension of existing software components. Inheritance 

is an important language feature that is conducive to reusability and extensibility. Various 

OOPLs provide different inheritance models based on different interpretations of the 

inheritance notion. Therefore, OOPLs have different characteristics derived from their 

respective inheritance models. 

This dissertation is concerned with solutions for three major problems that limit the 

utilization of inheritance for code reusability. The range of object -oriented applications and 

thus the usage of object-oriented programming in general is also discussed. The three 

major problems are: 1) the relationship between inheritance and other related issues such 

as encapsulation, access techniques, visibility of inheritance, and subtyping; 2) the 

hierarchical structure imposed by inheritance among classes; and 3) the accessibility of 

previous versions of the modified methods defmed in classes located at higher levels of 

the inheritance structure than the parent classes. 

1be proposed solutions for these problems are presented as new inheritance models 

that facilitate code reuse and relax the restrictions imposed on inheritance models by 

languages. A survey and taxonomy of the conventional inheritance models, and a 

comparison and analysis of some of the common OOPLs are also presented in the 

dissertation. 
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CHAPTER I 

INTRODUCTION 

1.1 Prologue 

Programming languages may be classified into several groups based on the 

programming methodologies (paradigms) they support. Some of these paradigms are 

procedural, functional, logic, and object-oriented programming (OOP). These 

methodologies present different approaches to program design and implementation. The 

first approach is based on the idea that programmers instruct the computer how to process 

each piece of data. As a result, programs in the procedural approach are rigidly bound to 

the types of data they process. Introducing new types of data requires changing the 

structure and logic of the programs. Therefore, the procedural approach limits the 

programmers' ability to reuse code since code is intimately tied to the data upon which 

it will operate. Some functional programming languages also have · this weakness to 

certain extent. Functional and logic programming follow the declarative approach (i.e, 

emphasis is on what is to be done rather how it is done. 

OOP provides a new approach of thinking about data, procedures, and the 

relationship among them. It combines the imperative and message passing paradigms. 

OOP has been promoted as a methodology that will expedite the development of software 

systems by allowing and promoting code reuse and modular design, and will support the 

extension of existing software. OOP is based on three basic concepts: class, objects, and 

inheritance. These concepts are illustrated in the following sections using examples. 

1 
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1.2 Classes 

A Class serves as a template from which objects can be created. It is a description 

of the state and behavior of a set of objects. Objects fall into classes and subclasses based 

on their similarities. For example, all numbers fall into a class named NUMBERS, and 

all integers fall into a class named INTEGERS, which is a subclass of the class 

NUMBERS. Furthermore, one may make positive and negative integers fall into two 

different classes named P _INTEGERS and N_INTEGERS as subclasses of the class 

INTEGERS. This classification is illustrated in Figure 1.1. 

class: NUMBERS 

class: INTEGERS 

class: P INTEGERS I I class: N_INTEGERSI 

Figure 1.1: An example of classes and subclasses 

A class consists of two sets: A set of instance variables, and a set of operations. 

Instance variables represent the state of objects belonging to that class. Operations are 

represented by methods that determine the interface and behavior of objects of the class. 

For example, consider the class CAR described in Figure 1.2. Class CAR describes the 

characteristics and behavior of cars. Each car has attributes such as maker, serial number, 

color, make year, transmission (either manual or automatic), and others. Additionally, all 

cars perform a set of operations including start, drive, turn left or right, stop, and other 

operations. 
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Claaa: CAR 

Inatance variablea: 
Make, Serial_Number, Color, Year, Transmission 

Opezoatione: 
Start,. Drive, Turn_left, Turn_right, Stop 

Figure 1.2: Definition of the class CAR 

1.3 Objects 

An object is an instance of a class. An object is a concrete realization of a class 

abstraction. The instance variables of an object represent values that constitute its state. 

The state of an object is accessed by operations of the defining class. These operations 

detennine the messages (calls) to which the object may respond to. The state of an object 

is hidden from the outside world and is accessed only through the interface of that object 

provided by the corresponding class. Each object belongs to one class. Figure 1.3 

illustrates a conceptual view of an object. Figure 1.4 shows the state of an object named 

Ford_ Car of the class CAR illustrated in Figure 1.2. 

I 
n 
t OPl ===t== 
e 
r OP2 ===t== 
f 
a OP3 ===t== 
c 
e 

Instance variables and 
their associated values 

(STATE) 

Figure 1.3: A conceptual view of an object 

Each instance of the class CAR has different values for its instance variables. 

Some instances may have similar values but they differ at least in the Serial_Number 



Inatanc• Variabl•• 

Make 

Serial number 

Color 

Year 

Transmission 

Ford Car 

Ford 

NS223-1191 

blue 

1991 

manual 

Figure 1.4: Illustration of the object Ford_ Car of the class CAR 
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value. All car objects can perform the set of operations specified in the class CAR. 

Objects perform operations in response to messages. A message is a request sent to an 

object to perform certain behavior. Objects respond to messages according to the 

operations that have been defmed in their classes. For example, the object Ford_Car 

illustrated in Figure 1.4 can respond to the messages start, drive, tum_left, tum_right, and 

stop. The responses to these messages represent the behavior of that object. 

1.4 Inheritance 

Inheritance is a relationship among classes that share common properties. It is a 

concept that is conducive to reusability and extensibility. A subclass inherits the 

operations and instance variables of its superclass(es) and adds new operations and 

instance variables. Inheritance can be single or multiple. In single inheritance, the subclass 

inherits from one superclass; while in multiple inheritance, the subclass inherits from two 

or more superclasses. Related classes are organized in a hierarchy representing their 

shared behaviors. At the top of the hierarchy are the most general classes and at the 

bottom are the most specific classes. For example, biologists group organisms into classes 

as illustrated in Figure 1.5 adopted and modified from [Wegner 90]. 
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A 
'PARROT' 'EGRET' 

Figure 1.5: An example of single inheritance hierarchy 

In Figure 1.5, a subclass specializes its superclass, and conversely, the superclass 

generalizes its subclass(es). Inheritance increases specificity. A more specific class (e.g. 

the class PERSON) inherits properties form a more general class (e.g. the class 

MAMMAL), and it can also add specific properties. In other words, a subclass extends 

and/or modifies an existing class by adding more properties that specialize its 

behavior. The behavior of any given class in the hierarchy is an amalgamation of the 

behaviors of all of its ancestor classes. Single inheritance among classes is represented 

by a tree structure. To illustrate multiple inheritance, consider the Pie hierarchy illustrated 

in Figure 1.6 adopted from [Moon 86]. 

Figure 1.6: An example of multiple inheritance hierarchy 
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In Figure 1.6, the class APPLE_PIE inherits from three superclasses that represent 

the main components of an apple pie. It inherits the properties of its superclasses, and 

adds more properties. Unlike the inheritance hierarchy illustrated in Figure 1.5, the 

subclass is not a specialization of its superclass(es), and the superclass is not a 

generalization of its subclass(es). 'f!lis example shows anothe_r view of inheritance among 

classes. Multiple inheritance is represented by a 4irected acyclic graph (DAG). 

To follow up the car example, the class CAR in Figure 1.2 defines what cars are. 

There are more specialized cars such as Ford cars including Tempo, Escort, and Taurus. 

Ford cars have different characteristics from cars of other makers. At the same time 

different brands of Ford cars have different characteristics. Since inheritance supports 

code reusability and extensibility in the sense that a subclass inherits (uses) the code 

provided in its superclass(es), we define the class FORD to represent the common 

characteristics of all Ford brands. Moreover, we define the classes TEMPO, ESCORT, 

and TAURUS to represent the characteristics of cars of these brands. Figure 1.7 illustrates 

the class hierarchy of Ford cars. 

VEHICLE 

Figure 1.7: The inheritance hierarchy of the class CAR 
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In Figure 1.7, the classes TEMP, ESCORT, and TAURUS define Ford cars in a 

much more specialized manner than does the class FORD. Class FORD inherits the 

general properties of the class CAR, and adds properties specific to Ford cars. Class 

ESCORT inherits the properties of the classes CAR and FORD , and adds properties 

specific to Escort cars. Therefore, the behavior of an ESCORT car is an amalgamation 

of the behaviors of the classes FORD, CAR, and VEHICLE. Similarly, the classes 

ESCORT and TAURUS represent specific behaviors. 

A non object-oriented programming language (OOPL) may simulate the OOP style 

by providing facilities such as encapsulation, genericity, and code reusability. Edelson 

[Edelson 87] has described how non-OOPLs can simulate the OOP style. He examined 

the ways in which the three languages C++, Modula-2, and Smalltalk implement object

oriented and abstraction mechanisms in order to help programmers to build large software 

systems. Klint [Klint 86] and Cook [Cook 86] addressed the relationship between 

conventional languages and OOP. They reviewed the language features that are required 

to support the OOP style in a non-OOPL. Such features include encapsulation, 

inheritance, dynamic binding, genericity, and automatic storage management. 

The OOP literature includes many articles that compare and contrast OOPLs. Here 

we highlight some of the comparisons [Blaschek 89] [Gabriel 89] [Klint 86] [Madsen 89] 

[Micallef 88] [Siedewitz 87] [Strom 86] [Wolf 89]. 

Blaschek et al. [Blaschek 89] provided a comparison criteria and compared some 

OOPLs including C++ [Stroustrup 86,91], Eiffel [Meyer 88], and Smalltalk [Goldberg 

83,89]. They compared these languages from the perspectives of inheritance mechanisms, 

reliability, uniformity of data structures, documentation values, memory management, 

efficiency, and languages complexity. Gabriel [Gabriel 89] discussed the differences 

between the object-oriented computational model and the imperative model from the 

message-passing perspective. He also compared the message passing and generic functions 

in CLOS [Keene 89] [Bobrow 88] as a Lisp-based language. 
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Klint [Klint 86] compared OOPLs and conventional programming languages from 

the perspective of their support for reusability. He used the common example queue data 

type to illustrate the differences between these languages. He compared Smalltalk 

implementation of Queue data type against Pascal, Modula-2, and Ada implementations. 

Madsen and Pederson [Madsen 89] compared the use of virtual classes in the languages 

BETA [Kristensen 87], Simula [Kirkerud 89], C++ [Stroustrup 86,91], and Smalltalk 

[Goldberg 83,89]. They presented the notion of a virtual class as a general language 

mechanism as opposed to the characteristic of a specific language. 

Micallef [Micallef 88] provided a comparative survey of OOPLs from the 

encapsulation, reusability, and extensibility point of views. He outlined some basic 

concepts and terminologies of OOP. He also addressed and compared the languages 

Simula [Kirkerud 89], C++ [Stroustrup 86,91], Smalltalk [Goldberg 83,89], Flavors [Moon 

86], and CommonObjects [Snyder 86b] in terms of their support for encapsulation, 

reusability, and extensibility. Siedewitz [Siedewitz 87] compared the basic properties of 

Ada[Ada 79,83] and Smalltalk using examples in both languages. These properties are 

encapsulation, inheritance, and binding. He also highlighted the strengths and weaknesses 

of both types of languages from: an object-oriented perspective. 

Strom [Strom 86] compared the object-oriented and process paradigms with 

emphasis on their usefulness for development of large systems. He indicated that both 

paradigms have computational models based upon message passing; both provide a clear 

separation between external interfaces and internal algorithms with local data. On the 

other hand, they differ in many details including their type systems. He also presented and 

contrasted the mechanisms of each paradigm needed to support dynamic code binding, 

code reuse, and access control. Wolf [Wolf 89] compared C++ [Stroustrup 86,91] and 

Flavors [Moon 85,86] from their design perspectives. He compared their data abstraction, 

inheritance, and method determination (polymorphism). He also discussed the importance 

of typing and memory management in OOPLs. 
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1.5 Overview of the Dissertation 

The remainder of this dissertation is organized as follows: An extended literature 

review of the basic concepts of OOP and a highlight of these concepts as realized by 

OOPLs are provided in chapter 2. chapter 3 provides a survey and taxonomy of the 

inheritance models adopted by the most common OOPLs including Trellis/Owl, C++, 

Eiffel, CommonObjects, CLOS, Flavors, Smalltalk-80, and Simula. Chapter 4 addresses 

the support for code reuse in the languages C++ and Eiffel in terms of inheritance, 

polymorphism, and other related issues. Chapter 5 describes the object-based inheritance 

model TIM that supports encapsulation with inheritance along with other related issues. 

Chapter 6 describes the feedback inheritance model that relaxes the hierarchical model 

by allowing superclasses to access the methods and instance variables provided in their 

subclasses. chapter 7 describes the implementation inheritance model that facilitates code 

reuse among classes by allowing access to implementations of methods provided in 

ancestor classes. Finally, chapter 8 is the conclusion of the dissertation and suggested 

future work. 



CHAPTERTI 

LITERATURE REVIEW 

2.1 Introduction 

OOP incorporates an important set of techniques that facilitate the development 

of efficient and reliable software systems by allowing code reuse and modular design. 

OOP has its roots in programming languages such as Simula [Kirkerud 89] and Smalltalk-

80 [Goldberg 83,89]. The object-oriented paradigm, which has evolved from OOP, is built 

on the concepts of structured programming, data abstraction, and software reuse. The role 

of block structure in OOPLs is discussed by Madsen [Madsen 86]. He examined the block 

structure in the languages Simula and Small talk from the locality, scope rules, and syntax 

perspectives. The history and the basic concepts of OOP also are discussed extensively 

in the literature [Alws 85] [Bezivin 87] [Goguen 86b] [Kerr 86] [Love 86] [Nygaard 86]. 

OOP can be traced back to the concept of "object" defined in Simula. In Simula, 

a program is a collection of objects (system objects). Objects of a common structure are 

described by a class declaration. The term "object-oriented" refers to the use of objects 

associated with behaviors rather than code and data structures. Therefore, object-oriented 

programs are not seen as a collection of code but as a collection of objects that exchange 

messages to activate their behaviors [Nierstrasz 86] [Stroustrup 87]. 

OOP is also centered around the concept of building programs from reusable 

software components. Packaging (encapsulation), user-defined data types (classes), 

inheritance, and polymorphism are the major tools for modular design [Meyer 88]. 

10 
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Encapsulation allows the decomposition of large systems into small encapsulated 

subsystems that can be maintained easily and are portable. Classes are user-defined data 

types that encapsulate data and operations. Classes are the building blocks in the 

construction of object-oriented programs, in the sense that new classes can be built from 

old classes [Parnas 76] [Zhong 88]. Inheritance as defined in the previous chapter is a 

relationship among classes that have common properties. Related classes form the 

inheritance hierarchy of a system [Snyder 86a]. Polymorphism is the method 

detennination mechanism that adds the power to choose and invoke methods at run time 

[Nierstrasz 89]. 

The object-oriented paradigm provides a practical programming methodology. It 

aids programmers by using their time, skill, and creativity more efficiently in order to 

develop large software systems. This view is discussed by Edelson [Edelson 87]. Gabriel 

[Gabriel 89] also outlined the benefits of the object-oriented paradigm including code 

reusability, abstraction, separation of specification from implementations, prototyping, 

modularity, and distributed procedure definition. The advantages and disadvantages of the 

OOP paradigm are also outlined by Klint [Klint 86]. 

The following sections provide a review of the major concepts of OOP as realized 

by current OOPLs and presented in the literature. Even though the primary focus of this 

dissertation is on inheritance, for the sake of completeness, this review includes mutually 

related concepts of class, instantiation, inheritance, message passing, encapsulation, and 

polymorphism and binding. 

2.2 Classes 

The notion of object was frrst used in Simula [Kirkerud 89], a language designed 

for simulation. An object is a collection of private data and a set of methods (operations) 

that manipulate the data. An object's methods operate on its data responding to incoming 
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messages that tell the object what to do [Stroustrup 87] [Nierstrasz 86]. In Simula, an 

object is used in the simulation of real-life systems represented as software components. 

This usage of objects was extended to include prototyping and application development 

as described by Nierstrasz [Nierstrasz 89]. This direction was pursued also by Smalltalk 

[Goldberg 83,89]. 

The concept of "object" is addressed by Nierstrasz [Nierstrasz 86] and Stroustrup 

[Stroustrup 87]. They have outlined some guidelines that help to distinguish "truly" 

object-oriented systems from others. A discussion of objects, their definitions, and their 

roles in OOP appears in many research articles and books in the literature [Booch 91] 

[Borning 86] [Budd 91] [Cox 86b] [Gabriel 89] [Geoffry 88] [Kaiser 90] [Nierstrasz 89] 

[Nygaard 86] [Stein 87] [Snyder 86a] [Wegner 90]. 

Klint [Klint 86], Madsen [Madsen 86], and Snyder [Snyder 86a] viewed an object 

as a collection of the instance variables of a class. Many objects have the same behavior 

and they respond to the same message the same way. Objects of a class are independent 

of each other [Cox 86] [Klint 86] [Stein 87]. Freeman [Freeman 83] viewed an object to 

be any information that the developer and designer need in the process of creating 

software systems. 

The notion of class (object class) is used to describe the collection of data 

structures and methods that implement objects. Snyder [Snyder 86a] described a class as 

a set of methods that can be performed on objects of that class. Methods are implemented 

as processes that can access and update the instance variables of the target object. 

Pamas's [Parnas 76] view is that a class is the definition of an abstracted data type that 

consists of data and methods. Zhong [Zhong 88] also addressed the integration of abstract 

data types and OOP. He showed that the integration of the abstract data types and the 

OOP paradigm can be used to achieve high productivity and reliability. He used Smalltalk 

[Goldberg 83,89] to implement an algebraic specification that takes a hierarchy of 

specifications and automatically generates Smalltalk classes. 
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As an example, consider the data type queue illustrated in Figure 2.1. A queue is 

a frrst-in-frrst-out list of elements on which the following operations are defined. 

empty 
full 
ins en 
delete 

True if the queue is empty; false otherwise. 
True if the queue is full; false otherwise. 
Insert an element at the rear of the queue. 
Delete an element front the front of the queue. 

The pseudo code of the class QUEUE is given in Figure 2.2. 

Front ---{[]]]] ---{[]]]] ---{[]]]] -• ..... ~ Rear 

~ + 
delete insert 

Figure 2.1: Representation of the data type queue 

In the literature, a class is viewed in a number of different ways. For instance, a 

class is viewed as a template, factory of objects, or type [Cox 86] [Nierstrasz 89]. A class 

is also viewed as an encapsulated user-defined data type that abstracts data and their 

operations. Data structures and the implementations of operations are hidden from users 

of the class. A class also is called a flavor in the programming language Flavors 

[Schaffert 86]. A flavor defines some instance variables, methods, and specifies other 

flavors that it inherits. These views are repeated in different places in the literature 

[Borning 86] [Cannon 82] [Cox 86] [Geoffry 88] [Keene 89] [Madsen 86] [Moon 85,86] 

[Schaffert 86] [Snyder 86b] [Wegner 90]. 

In some OOPLs, such as Smalltalk [Goldberg 83,89] and CLOS [Bobrow 88], a 

class whose instances themselves are classes is called a metaclass. A metaclass controls 

the representation of instances of its instances; while a class controls the structure of its 

instances. Metaclasses provide methods (called classes methods in Smalltalk) used by 

their instances (classes). Briot and Cointe [Briot 89] discussed the limitations of 



Class: QUEUE 
Inatance Vari&blea: first, last, size, maxsize, elems 
Methods: 

create(n) 

empty() 
full () 
insert(e) 

begin 
first = last = 0, maxsize = n 
elems - Array [n] 
end 
if size - 0 return TRUE, else return FALSE 
if size - n return TRUE, else return FALSE 
begin 
if full return "Overflown 

elae beg.in 
size = size + 1 
last = (last+l) mod maxsize 
elems[last] = e 
end 

end 
insert(e) beg.in 

.if empty return 11Underflow" 
else beg.in 

end 

size == size - 1 
first = (first+1) mod maxsize 
return elems[first] 
end 

Figure 2.2: Pseudo code of the class QUEUE 
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metaclasses in Smalltalk from the private class/metaclass perspective and the non-uniform 

protocol of instantiating objects. They have described how one can extend standard 

Smalltalk programming to provide programming with explicit metaclasses. They also 

showed how explicit metaclasses are supported in the languages CLOS [Keene 89] and 

ObjVLisp [Cointe 87]. Metaclasses and their use are also addressed elsewhere in the 

literature by Bobrow [Bobrow 88], Cox [Cox 86], Gabriel [Gabriel89], Geoffry [Geoffry 

88], and Wegner [Wegner 90]. 

A class can be constructed from scratch or by using and/or modifying some other 

existing classes. When using a class to construct a new class, the former is called a 

superclass and the latter is called a subclass. For example, consider the data type double 

ended queue (deque). Deque is a queue with two additional methods: deleting an element 

from the rear of the queue, and inserting an element at the front of the queue. Here, the 

class QUEUE is used in the construction of the class DEQUE. Class QUEUE is the 
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superclass; while class DEQUE is the subclass as graphically illustrated in Figure 2.3. 

Class QUEUE 

Figure 2.3: The super/subclass relationship between QUEUE and DEQUE 

The superclass/subclass notion is used in Smalltalk [Goldberg 83,89]. Other similar 

notions are base/derived used in C++ [Stroustrup 86,91], parent/child used in 

CommonObjects [Snyder 86b], and type/subtype used in Trellis/Owl [Schaffert 86]. The 

terms ancestor and descendant are used in the obvious way in most OOPLs. 

A subclass may modify methods of its superclass and may add new methods and 

variables of its own. Gabriel [Gabriel 89] uses the term classification to denote the 

mechanism for attributing behaviors to classes of objects. That is, grouping of objects 

denotes the process of building classes. For example, consider the classification of closed 

figures adopted form [Meyer 88] and illustrated in Figure 2.4. A subclass uses and/or 

modifies its superclass. A subclass may add new methods and variables of its own. 

While classes are descriptions of format and instantiation, prototypes are examples 

of objects. Prototypes are used to improve the users' understanding of objects. With 

classes, users can produce many objects of the sam.e behavior; while with prototypes, 

users can produce unique objects of unique behaviors. Prototypes are used in the object

based languages Self [Ungar 87] and Emerald [Black 86]. Self is a programming language 

based on the ideas of prototypes and slots. Prototypes combine both inheritance and 

instantiation, and slots represent the state and behavior of an object. Emerald is an object

based language for the construction of distributed applications. It provides a uniform 
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Figure 2.4: A classification of graphical classes 

object model for programming both private local objects and shared remote objects. 

Objects can move among nodes of a network. Black et al. discussed the structure, 

programming, and implementation of Emerald. Prototypes are widely discussed in the 

literature [Horning 86] [Liberman 86] [Madsen 86] [Vines 89]. 

2.2.1 Instance variables and Methods 

A class mainly contains variables (called instance variables) and methods. The 

instance variables of a class represent the private data of the objects that are instances of 

that class. The instance variables of an object are initiated either at definition time (i.e., 

compile time) or at creation time (i.e., run time). The "state" of an object is given by the 

values of its instance variables at any point in time. For example, the instance variables 

of the class QUEUE in Figure 2.2 are initialized at creation time (i.e., when method 

create is executed). One may initialize the instance variables first and last at defmition 

time as shown in Figure 2.5. 



Claaa: QUEUE 
Instance Variables: 
Methods: 

create(n) beqin 
max size 
end; 

as before 

first=O, last=O, size, rnaxsize, elerns 

n; elerns Array [nl; 

Figure 2.5: Initialization of the instance variables of the class QUEUE 
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OOPLs allow users to declare variables of different scopes and visibilities. For 

instance, the private, public, and protected variables in C++ [Stroustrup 86,91] have 

different scopes in the object that contains them. For a defming class, the public variables 

are visible to methods of inheriting classes, the private variables are visible to methods 

of the defining class, and the protected variables are visible to methods of the defming 

class and methods of any class immediately inherits from the defming class. Variables of 

different scopes are provided also in other languages including CommonObjects [Snyder 

86b], Eiffel [Meyer 88], Flavors [Moon 85,86], Trellis/Owl [Schaffert 86], Self [Ungar 

87], and Smalltalk [Goldberg 83,89]. 

Snyder [Snyder 86a] indicated that a class defines the behavior (functionality) of 

its objects. Methods of a class represent the behavior of the objects created from that 

class. They are the procedures that perform different functions on the values of the 

instance variables. Methods can have different scopes. A method has a specification and 

an implementation. Specifications of methods are made visible to the users of a class, and 

they represent the inteiface of the defming class. For example, the interface of the class 

QUEUE in Figure 2.2 is illustrated in Figure 2.6. 

The implementations (often called realizations) of methods are hidden in the class 

[Cox 86] [Gabriel 89] [Wegner 90]. Methods of a class can be instance methods that 

belong to specific objects of that class, and/or class (universal) methods applicable to all 

objects of that class. Both types of methods are used in Smalltalk and Trellis/Owl. 



create(n) 
empty() 
full() 
insert(e) 
delete() 

I Instance Variables I 
Implementation 
of Methods 

Figure 2.6: Representation of the interface of the class QUEUE 
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The object-based programming language Self [Ungar 87] uses slots instead of 

instance variables. An object contains a set of named slots that may represent state or 

behavior. Ungar has argued that using instance variables with classes limits the power of 

inheritance. That is, the names and the order of the instance variables restrict the format 

of objects. Moreover, accessing variables through methods, rather than through sending 

messages, limits the power of the message passing system. Accessing via messages makes 

inheritance more powerful and allows sharing of the state among objects [Ungar 87]. Slots 

are also used in the class-based programming language CLOS [Bobrow 88]. 

Stein [Stein 87] pointed out that inheritance allows objects to share instance 

variables and methods but not values since values are stored in the instance variables of 

objects and not in the class itself. The values of instance variables of an object do not 

affect other objects [Stein 87]. For example, the instance variables of the class QUEUE 

illustrated in Figure 2.2 are all indirectly accessed through the interface methods shown 

in Figure 2.6. 

Accessing instance variables by methods does not violate encapsulation. This issue 

is addressed by Snyder [Snyder 86b]. He indicated that restricting descendant classes to 

access the instance variables using methods is a desirable approach. This approach is used 

in the languages Trellis/Owl [Schaffert 86], C++ [Stroustrup 86,91], Simula [Kirkerud 

89], and CommonObjects [Snyder 86b]. Cannon [Cannon 82] has also indicated that 

methods must be defined in order to modify the instance variables in Flavors. 
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2.3 Instantiation 

Freeman [Freeman 83] explained the objectives of reusable software engineering 

and defines classes of information that can be reused. He also highlighted the processes 

and conditions surrounding reusability that improve the ability of software reuse. He 

indicated that the following characteristics are essential for reusable information. These 

characteristics are: 

1) Items being used are pieces of executable code. 

2) The defmition of a piece of code is system- or organization-specific. 

3) A reusable piece of code in a collection has little or no operational meaning with 

out being part of that collection. 

4) The focus of reusability is on reducing the number of lines of code that the 

programmer needs to write to build new applications. 

Various other issues on reuse, which is growing rapidly specially in the OOP area, are 

discussed in the literature [Biggerstaff 89] [Goguen 86a] [Tracz 88 a,b] [Wegner 83]. 

Meyer [Meyer 87] also discussed approaches to reusability. He outlined some 

simple approaches including reusability of source code, personnel, designs, and subroutine 

libraries. He also addressed the issues of overloading and genericity, and showed that 

these techniques do not solve all of the issues of reusability. He concluded that isolating 

users of modules from the internal implementations is the required technique for capturing 

commonalities within the implementations of related data structures. Klint [Klint 86] also 

discussed the concepts of modularization and reusability in both algorithmic and OOPLs 

using examples. His research showed that reusability is limited in conventional 

programming languages and is more general in OOPLs. 

Instantiation is one form of reusability in OOP, as described by Wegner [Wegner 

90], Cox [Cox 86], and Nierstrasz [Nierstrasz 89]. It is the process of creating objects 

(often called instances) from classes. The precondition of instantiation is existence of a 
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class containing instance variables and methods. For example, the pseudo code to create 

the queue Q 1 of size 50 elements is "Q 1 is QUEUE( create( 50))". OOPLs provide different 

syntax for creating and initializing objects of classes. Examples of creating Q 1 of size 50 

in some OOPLs are given in Figure 2.7. Note that, a language may provide different 

syntax to create and initialize objects of a class. 

C++: 

CLOS: 

Eiffel: 

Small talk: 

Trellis/Owl: 

CommonObjects: 

QUEUE Ql(SO); 

(aetq *Ql* 
(make_instance 'QUEUE :name "Ql" 

:size 50)); 

Ql:QUEUE[<element type>]; 
Ql.create(50); -

Ql <-- QUEUE new 

Ql := create(QUEUE [50]) 

(setf Ql (make_instance 'QUEUE :size 50)); 

Figure 2.7: Examples of creating object Q1 in different OOPLs 

Conceptually, objects of a class are created at run time in response to creation 

requests sent to that class [Boming 86] [Cox 86] [Goldberg 83,89]. Instantiation implies 

memory allocation for variables of an object, and linkage between methods and the code 

segments representing their implementations. This perspective is also addressed by 

Nierstrasz [Nierstrasz 89], Schaffert [Schaffert 86], and Snyder [Snyder 86 a,b]. 

Objects can be instantiated by the user or the programming language itself. Objects 

instantiated by users (often called user objects) are objects of user-defmed classes that 

contain hidden instance variables and visible methods. These objects are responses to the 

creation requests declared in a user's program such as the creation statements illustrated 

in Figure 2.7. The disposal of these objects is also the response to user-defined 

destruction requests [Nierstrasz 89] [Wegner 90] [Goldberg 83,89]. For example, method 
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dispose can be defined in class QUEUE in order to deallocate the queue structure of a 

queue object when it is invoked. Such a method deallocates the memory assigned to an 

object at creation time. 

Similar to built-in data types, programming languages can instantiate objects either 

statically (allocated at compile time and remain during program execution) or dynamically 

(allocated and de-allocated during run time). These so-called system objects (instances of 

system-defined classes) are instantiated and disposed in response to system-defined 

requests. For example, the Smalltalk-80 system [Goldberg 83] provides system classes 

such as "data structures", "control structures", and "input/output facilities". These classes 

are used to create system objects that provide the functionality and environment of the 

language. These objects are not visible (accessible) to users of the language [Nierstrasz 

89] [Wegner 90]. 

Another alternative for object creation is cloning (copying) prototypical objects. 

In Self [Ungar 87], objects are created by cloning prototype objects that behave like 

classes. Unlike instantiation, cloning results in a new object whose initial state is the 

current state of the prototype object at creation time. Prototypes and their applications are 

addressed in detail by Liberman [Liberman 86] and Vines [Vines 89]. The differences 

between classes and prototypes are outlined by Borning [Borning 86] and Liberman 

[Liberman 86]. 

2.4 Inheritance 

One of the important features of OOPLs is the inheritance mechanism they 

support. In addition to instantiation, Cox [Cox 86] and Nierstrasz [Nierstrasz 89] have 

described inheritance as another form of reusability in OOP. The concept of inheritance 

provides a natural mechanism for code sharing among classes. A general view of 

inheritance is that it is a mechanism for code sharing among classes. Another view of 
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inheritance is that it is an extension of data abstraction definition [Gabriel 89]. Snyder 

[Snyder 86a] pointed out that inheritance involves objects and classes where a class 

defines the behavior of its objects. The concept of inheritance and its models are 

addressed in many research articles [Borning 86] [Cannon 82] [Cox 86] [Edelson 87] 

[Gabriel 90] [Geoffry 88] [Hailpern 87] [Keene 89] [Moon 85,86] [Nierstrasz 89] 

[Pedersen 89] [Schaffert 86] [Siedewitz 87] [Snyder 86 a,b] [Stein 86] [Ungar 87] 

[Wegner 90] [Wolf 89]. 

Inheritance relates classes to each other. As described in the first chapter, 

inheritance includes two relationships: One-to-one and many-to-one. The one-to-one 

relationship is called single inheritance and it relates a subclass to only one superclass. 

Smalltalk as proposed by Goldberg [Goldberg 83] and the first version of C++ [Stroustrup 

86] support single inheritance. The many-to-one relationship is called multiple inheritance 

and it relates a subclass to two or more superclasses. Multiple inheritance is obviously 

an extension of single inheritance. A graphical illustration of single and multiple 

inheritance is given in Figure 2.8. Some of the languages that support multiple inheritance 

are Smalltalk-80 as proposed by Borning [Borning 80], the second version of C++ 

[Stroustrup 91] [AT&T 89 a,b], CommonObjects [Snyder 86b], CLOS [Bobrow 88], Eiffel 

[Meyer 88], Flavors [Moon 85,86], and Trellis/Owl [Schaffert 86]. 

~··· 

Single Inheritance Multiple Inheritance 

Figure 2.8: Representation of single and multiple inheritance relationships 
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In single inheritance, a class can only inherit form one superclass but it can have 

any number of subclasses. It is reasonable to be able to construct an object that is a 

composition of different types of behaviors (classes). Therefore, the behavior of an object 

is not limited to things inherited from one superclass. This is accomplished by using 

multiple inheritance [Gabriel89]. Multiple inheritance increases the reusability of software 

components and it encourages users to combine simple software components to build new 

complex ones [Cox 86] [Snyder 86a]. 

Inheritance has different forms and meanings depending on when and how it takes 

place. The most common fonn of inheritance is called class inheritance and it 

distinguishes OOPLs from other programming languages. It is often referred to as static 

inheritance. This form of inheritance takes place when classes are defined. It is the 

mechanism that allows the definition of new classes from existing classes. The simplest 

form of static inheritance is called extension. Here, a subclass inherits all of the methods 

and instance variables of its superclass(es). The subclass does not override inherited 

methods; it may add new methods and/or instance variables [Hailpem 87] [Snyder 86a]. 

Another form of static inheritance is called variation. Variation is the same as 

extension with the added capability to override inherited methods. A subclass can modify 

inherited methods and/or add new methods and instance variables [Nierstrasz 89] [Wegner 

90]. A combination of extension and variation is called specialization [Nierstrasz 89]. In 

this form of static inheritance, a subclass inherits all of the methods and instance variables 

of its superclass(es), and possibly modifies some of the inherited methods and adds new 

methods and instance variable. An object of the subclass is an object of the superclass(es) 

since features of the superclass(es) hold for objects of the subclass [Gabriel 90] [Snyder 

86a] [Wegner 90]. 

As an example of variation inheritance, consider the POLYGON and 

RECI'ANGLE classes adapted from [Meyer 88]. Class POLYGON is a description of 
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general polygons (a polygon has at least three vertices). It provides the methods move to 

move a polygon horizontally and vertically, rotate to rotate a polygon with its centeroid 

as the center of rotation, display to display a polygon on screen, and perimeter to 

compute the perimeter of a polygon. Class POLYGON is illustrated in Figure 2.9. 

Claaa: POLYGON 
Inatance Variablea: vertices, perimeter_length, ... 
Methods: 

move(hrz, ver} begin 
"Move horizontally using hrz and 
vertically using ver" 
end 

rotate(center, angle} 
begin 
"Rotate around center using angle" 
end 

display() begin 
"Display polygon on screen" 
end 

perimeter() begin 
"loop through vertices and sum 
the edge lengths" 

end 

Figure 2.9: Pseudo code of the class POLYGON 

Now consider the class RECfANGLE, illustrated in Figure 2.10, as a special form 

of the class POLYGON. A rectangle can be moved, rotated, or displayed on screen in the 

same way as a polygon. Additionally, a rectangle has four vertices, diagonal, and 

perimeter that can be easily calculated than a polygon. All features of polygon are 

applicable to rectangle, and rectangle is a specialization of polygon. Class RECf ANGLE 

modifies inherited methods and adds new methods and instance variables. This is a 

variation inheritance. 

The above example illustrates the variation form of inheritance between the classes 

POLYGON and RECTANGLE. Class RECTANGLE overrides method perimeter inherited 

from the class POLYGON. To illustrate extension inheritance using these classes, one can 

exclude method perimeter from the class POLYGON and define it in subclasses of the 



Cla88: RECTANGLE 
Instance Variables: vertices, sidel, side2, ... 
Methode: 

create(center, sl, s2, angle) 
begin 
"Create a rectangle centered at center, 
and with sides sl and s2 and 
orientation angle" 

end 
perimeter {) 

begin 
"Compute perimeter using [2*(sidel+side2)]. 
This is a redefined version of the method" 
end 

diagonal() begin "Compute diagonal 11 end 

Figure 2.10: Pseudo code of the class RECfANGLE 
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class POLYGON as a new method. This way represents extension inheritance since class 

RECf ANGLE inherits all methods of class POLYGON without modifying any of them. 

Class RECTANGLE adds new methods. If a given programming language allows users 

to relate the classes POLYGON and RECTANGLE in either extension or variation 

inheritance, this language is said to be supporting specialization inheritance. 

The opposite view of specialization is called aggregation. This view is provided 

by Nierstrasz [Nierstrasz 89]. As an example, consider class CAR adapted from 

[Nierstrasz 89] and illustrated in Figure 2.11. A car is an aggregation of different 

components represented by different classes. Class CAR inherits from the classes BODY, 

FRAME, WHEELS, and ENGINE. It inherits all methods and instance variables of its 

superclasses. The aggregation of all inherited features defines the characteristics of the 

class CAR. Unlike specialization inheritance, we cannot view an object of the subclass 

as an object of its superclass(es). A car is neither a body, frame, wheels, nor an engine. 

Another notion promoted as the opposite of specification is provided by Pedersen 

[Pedersen 89] and is called generalization. Generalization allows users to create 

superclasses for already existing classes, and thus enabling exclusion of methods and 

creation of classes that describe the commonalities among existing classes. For 
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Figure 2.11: Class CAR is an aggregation of its superclasses 

illustration, we consider Pedersen's example of stack as a generalization of the data type 

deque illustrated in Figure 2.12. 

push2 -
pop2 
top2 

push 

~~pop 
~----------~- -top 

-----empty 

de que 

Figure 2.12: Representation of the data type deque 

The idea of this example is to reuse selected methods of an already existing class. 

A deque is a stack in which elements are added and removed from both ends. Assuming 

that the class DEQUE is already implemented, methods push2, pop2, and top2 need to 

be excluded in order to convert deque to a stack. As pointed out by Pedersen, this cannot 

be done using specialization inheritance. In normal cases, we think of deque as a 

specialization of stack. Using generalization, the class STACK can be a superclass of the 

class DEQUE. Therefore, class STACK is a generalization of the class DEQUE as 

illustrated in Figure 2.13 that is adopted from [Pederson 89]. 

Pedersen indicated that generalization together with specification improves class 

reusability. He also showed that generalization can coexist with specialization without 

introducing the problem of naming conflicts [Hailpem 87] [Nierstrasz 89] [Wegner 80]. 
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Figure 2.13: the class STACK is a generalization of the class DEQUE 
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Another form of static inheritance is called partial (selective) inheritance. In partial 

inheritance, a subclass inherits parts of the instance variables and methods of its 

superclass(es). This form of inheritance is supported by the languages Eiffel [Meyer 

87,88], C++ [Stroustrup 86,91], and CommonObjects [Snyder 86b]. Selective inheritance 

is addressed by Nierstrasz [Nierstrasz 89] and Snyder [Snyder 86b]. As an example, 

consider CommonObjects' defmition of the class DEQUE adopted from [Snyder 86b] and 

illustrated in Figure 2.14. 

(define-type DEQUE 
(:var size (:type integer) (:init 100) 

:gettable :initable) 
(:var contents (:type vector) 

( :var front 
( :var back 
( :var count 

(:init (make-array size))) 
(:type integer) (:init 1)) 
(:type integer) (:init 0)) 
(:type integer) (:init 0))) 

(define-method (DEQUE :empty?) () ( ... )) 
(define-method (DEQUE :full?) () ( ... )) 
(define-method (DEQUE :front-push) () ( ... )) 
(define-method (DEQUE :front-pop) () ( ... )) 
(define-method (DEQUE :front-top) () ( ... )) 
(define-method (DEQUE :back-push) () ( ... ) ) 
(define-method (DEQUE :back-pop) () ( ... ) ) 
(define-method (DEQUE :back-top) () ( ... ) ) 

Figure 2.14: CommonObjects' defmition of the class DEQUE 

Figure 2.14 describes a deque of maximum size of 100 elements. The instance 
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Figure 2.14 describes a deque of maximum size of 100 elements. The instance 
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environment. Moving that paragraph to a footnote environment results in inheriting 

different font type, font size, and other features [Nierstrasz 89]. 

Dynamic inheritance is supported by systems based on prototypical objects as 

described by Liberman [Liberman 86]. The concept of prototypes is used in the "Object

Based Inheritance Model" outlined by Hailpem and Nguyen [Hailpem 87]. They proposed 

an inheritance model for code sharing based on objects rather than classes, where objects 

are processes that communicate through messages. In the "Object Model for Shared Data" 

described by Kaiser and Hailpem [Kaiser 90], a new object model is proposed in order 

to support shared data in distributed environment and a language called PROFIT based 

on that model. Their model accommodates the idea that same data may logically belong 

to multiple objects and may be distributed over multiple nodes of the network in certain 

applications. Dynamic inheritance is also used in the languages Self [Ungar 87] and 

Emerald [Black 86] described earlier. 

In class-based programming languages the "is-a" relationship indicates that an 

object of a subclass can be viewed as an object of its superclass(es): a human is a 

mammal; and rectangle is a polygon. This relationship is a set inclusion. For example, 

humans are a subset of mammals; similarly, rectangles are a subset of polygons. The 

relationship "has-a" indicates that an object of a subclass possesses some properties of its 

superclass(es). For example, a car has an engine but is not an engine; similarly, a radio 

has a speaker but is not a speaker. In prototype systems, the relationship "inherit from" 

describes how objects share behaviors: an object inherits from its prototype object. These 

interpretations of the inheritance relationship among classes and prototypical objects have 

been addressed by a number of researchers [Meyer 88] [Nierstrasz 89] [Ungar 87] 

[Wegner 90] [Zdonik 88]. 

Another alterative method for incremental definition and sharing is called 

delegation. Delegation allows incremental definition of objects. An object can be defined 

in terms of other objects. This method is used with object-based programming languages 
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where objects are not instances of classes, but copies of prototypical objects. Liberman 

[Liberman 86] indicated that delegation can capture the behavior of inheritance. Stein 

[Stein 87] has also indicated that inheritance and delegation are alternative methods for 

incremental definition and sharing. He supported Liberman's argument using examples. 

Stein demonstrated that there is a natural model for inheritance, which captures all of the 

properties of delegation. Also, he outlined a framework that captures both delegation and 

inheritance. 

In delegation, objects delegate messages and responsibility instead of inheriting 

from each other. They can share variables and methods since classes are not present. 

Objects created from different prototypes can delegate to the same prototype object, and 

two or more objects of the same prototype can delegate to different prototype objects as 

described by Stein [Stein 87]. He also provided formal proofs that inheritance and 

delegation can be used to model each other. 

Borning [Borning 86] also discussed prototypes as an alternative for classes and 

metaclasses. He introduced two problems associated with the use of classes and 

metaclasses. First, different interfaces for objects require different class definitions. 

Second, the use of classes requires the user to move to the abstract level of class and 

write a class definition, and then instantiate and test objects. He suggested the use of 

prototypes as one alternative to the use of classes in graphic and visual systems. He also 

discussed the difficulties of classes in Smalltalk [Goldberg 83,89] and the need for 

metaclasses. He proposed a prototype-based language to illustrate the differences between 

classes and prototypes. 

Gabriel [Gabriel 86] argued that inheritance along with late binding allows users 

to extend code without having the source code. Methods that did not exist when a code 

segment is compiled may be called within that segment using dynamic binding. He also 

indicated that inheritance involves both behavior and structure inheritance. Behavior 

inheritance means that a class can inherit a method when it does not have it (it is not 
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associated with it). Inheritance of structure is similar to the definition of the specialization 

form of inheritance. When objects have similar structures, their classes can be related 

such that an object of the subclass is an object of its superclass(es). For example, a car 

has the structure and behavior of an automobile (i.e., a car is an automobile). 

In addition to the users of a class that create objects from that class, inheritance 

adds a new category of users (often called clients, as used in Trellis/Owl [Schaffert 86] 

and Eiffel [Meyer 88]) that inherit from the class. In Eiffel, the term client denotes 

inheriting classes of a "has-a" relationship. Note that, Snyder [Snyder 86] uses the term 

client to denote users of a class rather than inheriting classes. This produces another 

external interface provided by the class to its subclasses. This situation affects 

encapsulation and limits the ability to change the class contents safely [Snyder 86a]. 

The formal semantics of inheritance are also discussed in several articles. Cardelli 

[Cardelli 84] addressed the semantics of multiple inheritance to justify it and solve the 

problems associated with multiple inheritance. He distinguished between horizontal 

polymorphism (that has to do with inheritance) and vertical (ordinary) polymorphism. 

Cook and Palsberg [Cook 89] presented a denotational mode of inheritance. They 

demonstrated the correctness of their model by proving that it is equivalent to the 

operational semantics of inheritance. 

2.4.1 SubtvPing 

The term subtyping is used to denote the specialization form of inheritance 

[Wegner 90]. When objects of a subclass are seen to be objects of a superclass, the 

subclass is called a subtype of the superclass and the superclass is called a supertype. For 

example, to capture the notion that every manager is an employee, we say that the class 

MANAGER is a subtype of the class EMPLOYEE. This notion is used in the language 

Trellis/Owl [Schaffert 86]. The concepts of subtyping, type theories, and type conversions 
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are addressed in details by Bruce [Bruce 86] and Cardelli [Cardelli 86], Danforth 

[Danforth 88], and Gannon [Gannon 87]. For a discussion of subtyping in OOPLs, see 

also [Cox 86], [Gabriel 89], [Nierstrasz 89], [Sethi 89], and [Snyder 86a]. 

Some OOPLs relate inheritance and subtyping [Halbert 87] [America 87] 

[Oucournan 87]. Wolf [Wolf 89] discussed the importance of subtyping in OOPLs. He 

gives two reasons to show that type checking is more important in OOP than in 

conventional languages. First, a type checker can identify misuse of message names which 

is hard for the programmer to detect. Second, it may not be obvious whether a method 

is available to a particular class since inheritance distributes the method(s) defined for a 

class. 

The use of subtyping varies in OOPLs. For instance, in Trellis/Owl [Schaffert 86] 

and Simula [Kirkerud 89], a subclass is a subtype of its superclass(es). Class STACK is 

a subtype of class DEQUE if and only if STACK is a subclass of DEQUE. In 

common Objects [Snyder 86b], a subclass is not necessarily a subtype of its superclass( es ); 

while in C++ [Stroustrup 86,91], a class is not allowed to be a subtype of its 

superclass(es) unless public derivation is used. This issue is addressed by Nierstrasz 

[Nierstrasz 89], Snyder [Snyder 86a], and Wegner [Wegner 90]. 

Understanding subtyping helps to understand the structure of classes and their 

inheritance relationships. In Trellis/Owl, Schaffert [Schaffert 86] observed that subtyping 

is based on behavior and not implementation. That is, methods of a subtype and its 

supertype may be implemented differently. He characterized this as the definition of 

specification inheritance. That is, for a given supertype and subtype, objects of the 

supertype behave like those of the subtype. 

Snyder [Snyder 86 a,b] indicated that when subtyping is associated with 

inheritance, as done in Trellis/Owl, it allows more flexibility and improves efficiency. 

Thus, declaring a variable 0 to denote an object of a class C means that 0 may denote 

an object of the class C or descendants of C. On the other hand, he indicated that 
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subtyping in CommonObjects [Snyder 86b] is not related to inheritance and no attempt 

is made for optimization based on subtyping. 

Snyder has also addressed subtyping and its impact on encapsulation and 

inheritance [Snyder 86a]. He claims that the subtyping rules and their relationship with 

inheritance in the languages Trellis/Owl [Schaffert 86] and C++ [Stroustrup 86,91] 

compromise the benefits of encapsulation and limits the language designers' freedom to 

make changes without affecting the inheriting classes. His proposed solution, which was 

used in the design of CommonObjects [Snyder 86b], is discussed in the following section. 

2.4.2 Problems with Current Inheritance Models 

In multiple inheritance, a major problem is that a method may be inherited more 

than once from an ancestor class through different inheritance paths. Hence the inheriting 

class can contain multiple instances of the inherited method. Some researchers call this 

situation collision. When a collision occurs in multiple inheritance, there are different 

decisions one can make [Gabriel 89] [Nierstrasz 89] [Snyder 86a]. 

1) Shadowing: Using the properties inherited from the most recent or highest 
precedence class. This approach is used in Smalltalk [Goldberg 83] to shadow 
both instance variables and methods, and in CLOS [Bobrow 88] to shadow 
instance variables. 

2) Combination: Combining all collided properties into one property. This approach 
is used in CLOS [Keene 89] to combine methods, and in Flavors [Moon 85,86] 
to merge instance variables. 

3) Signalling an Error. This approach is used in CommonObjects [Snyder 86b] to 
signal an error when an attempt is made to inherit the same method from different 
classes. 

4) Explicit Selection from among the Collided Properties. This approach is self
explanatory. 

In addition to the above solutions, Snyder [Snyder 86a] outlined three more 

solutions that deal with the inheritance graph. These solutions are called Graph-oriented 
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solution, Linear solution, and Tree solution. The first solution deals directly with the 

inheritance graph. The other solutions flatten the inheritance graph into a linear chain and 

then deal with the chain using single inheritance rules. 

Naming conflicts between instance variables of different classes is a potential 

problem. Cannon [Cannon 82] indicated that there are several ways to solve this 

problems. One way is to limit the scope of instance variables at declaration time. Thus, 

instance variables are accessible to certain classes and not to every class. This approach 

is an explicit import of variables. Shadowing is another way. These approaches are 

discussed in details by Cannon [Cannon 82]. In Flavors, another problem outlined by 

Moon [Moon 85,86] is that when inheriting the same flavor along different inheritance 

paths, the flavor system eliminates duplicated flavor names by imposing an order on the 

inherited flavors. 

Snyder [Snyder 86a] provided a description of inheriting instance variables, and 

outlined the problem called direct access of instance variables. In most OOPLs the code 

of a class may access directly all instance variables of its objects including those inherited 

from its ancestor classes. This approach compromises the encapsulation characteristics 

since the instance variables of a class should not be explicitly accessible to the inheriting 

classes. As a result, he indicated that any changes to the instance variables of the 

superclass(es) (such as renaming or removing) may affect the inheriting classes and hence 

the language designers' freedom to make changes. The solution he proposed is that the 

external interface should not include the instance variables. Also, to protect instance 

variables from direct access, Snyder suggested providing methods to users to access 

instance variables. These methods are meant to be used by both users and inheriting 

classes. More details of these solutions are provided in [Snyder 86a]. 

Another problem outlined by Snyder is called visibility of inheritance. That is, 

should a subclass know about the use of inheritance in its superclass(es)? In other words, 

should inheritance be part of the external interface of a class? If so, changes to a 
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superclass's use of inheritance may require changes in the subclass(es) of that class. This 

approach is used in CommonObjects [Snyder 86b]. CommonObjects is different from 

other OOPLs because of allowing inheritance to be hidden from all users and inheriting 

classes of a class. That is, a class does not know about the use of inheritance in its 

superclass(es). This is applied to both methods and instance variables in order to prevent 

the exposure of the use of inheritance outside the class definition. CommonObjects 

achieves this characteristic by passing all inherited information through all intervening 

classes. An error signal is issued when a class attempts to inherit the same method from 

multiple superclasses. 

Relating subtyping to inheritance is another problem outlined by Snyder [Snyder 

86a]. He indicated that subtyping exposes the use of inheritance through subtyping rules. 

His suggested solution is that subtyping should not be related to inheritance. Subtyping 

should be based on the behavior of objects, and the subtyping hierarchy should be 

independent of the inheritance hierarchy. For example, consider the stack/deque example 

provided in [Snyder 86a]. This example demonstrates the separation of inheritance and 

subtyping hierarchies as illustrated in Figure 2.16. Class STACK inherits from the class 

DEQUE but is not a subtype of the class DEQUE because it excludes some inherited 

methods. On the other hand, the class DEQUE is a subtype of the class STACK but does 

not inherit from the class STACK. The subtype and inheritance relationships between the 

abstraction and implementation of the stack and deque data types are illustrated in Figure 

2.16 adopted from [Snyder 86a]. 

Marcke [Marcke 88] observed that inheritance implementations in OOPLs are 

complicated. He claimed that the complexity of inheritance results from the desire to 

express many different concepts by means of one inheritance lattice. He analyzed the 

complexity problems and their causes associated with inheritance in some of the existing 

OOPLs. He argued in favor of simple inheritance mechanisms that allow users to build 

complicated information retrieval architectures explicitly, and contribute to the simplicity 
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of the language. He presented three alternative schemes for simple inheritance without 

conflicts. These schemes are called SLl: Multiple Inheritance without Conflicts, SL2: The 

use of Meta-Interpreters, and SL3: Explicit Method_objects. 

Lucas [Lucas 89] investigated the problem of handling confusions arising in frame 

systems with multiple inheritance. He addressed the inheritance of attribute values from 

classes to objects of classes. He analyzed multiple inheritance form an algorithmic point 

of view, and developed an algorithm for constructing a special kind of spanning tree for 

the associated directed graph of a frame taxonomy. He focused on inheritance of attributes 

by classes. His method amounts to recording the reasoning that takes place in a frame 

taxonomy by means of so-called inheritance chains, then applying the notion of "in

between" to decide which attribute values, that are derivable by means of inheritance, 

should be given preference over others. Kreczmar [Kreczmar 89] also addressed the 

inheritance rules in OOP. He provided a review for inheritance rules in various OOPLs 
' 

using examples. 

2.5 Message Passing 

A message is a request sent to an object to perform some activities. It tells the 

object what is to be done rather than how it is done. The issue of message passing is 
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addressed in almost every research that discusses inheritance and objects [Bobrow 88] 

[Cannon 82] [Gabriel 89] [Hailpern 87] [Keene 89] [Klint 86] [Nierstrasz 86,89] [Snyder 

86 a,b] [Wegner 90]. 

Users interact with objects through messages. The code executed to answer a 

message is the implementation of a method defined in the class of the receiving object. 

A class must define both the methods and their implementations. The terms method and 

implementation are not identical because one method may cause the execution of two or 

more implementations. This view is discussed by Wolf [Wolf 89]. Nierstrasz [Nierstrasz 

89] stated that every method invocation is a message request to one or more objects to 

perform some actions. 

Objects cannot operate on each other, instead they interact by sending messages. 

The receiving objects interpret messages differently. A receiving object may respond 

directly, or it may decide not to answer the message and return an appropriate response. 

This view is outlined by Nierstrasz [Nierstrasz 86]. He also indicated that message 

passing is a model for object communication. 

With specialization {refinement) form of inheritance, Klint [Klint 86] indicated that 

an object of a subclass responds to messages sent to objects of the superclass{es). In 

message passing, each object is capable of answering certain messages. Messages of 

identical names can be defined for several objects. The behavior of a message depends 

on the type of the object to which the message is sent. 

Some OOPLs translate messages to procedure call when only one object is going 

to answer the message (i.e., single-thread flow of control). Messages are converted into 

procedure calls for reliability and implementation simplicity. Klint [Klint 86] indicated 

that methods performed by means of messages are independent of the amount of work 

required to use these messages. However, for small operations such as addition of two 

numbers, the overhead of the message can be relatively high. Therefore, direct procedure 

calls have their advantages in similar cases. 
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Self [Ungar 87] is an object-based language that depends on messages heavily. It 

provides a different perspective on objects and messages. When an object receives a 

message and it has no matching slot, the search continues through the superclass objects, 

similar to the search method used in most OOPLs including CommonObjects [Snyder 

86b], Smalltalk [Goldberg 83], and Trellis/Owl [Schaffert 86]. Objects may also send 

messages to "self' to access the values of stored slots. 

A protocol is a set of messages that specify the external behavior of an object. The 

protocol does not defme how the behavior is to be implemented by an object. This is 

outlined by Cannon [Cannon 82]. In a message passing system, Gabriel [Gabriel 89] · 

indicated that the method that handles a message is determined by the class of the objects 

to which the message was sent. 

OOPLs vary in their implementation of the message passing system. For instance, 

in Lisp Machine system [Cannon 82], messages are converted to function calls, and 

Trellis/Owl [Schaffert 86] employs the standard procedure call notation for invoking 

methods. On the other hand, other languages such as Smalltalk [Goldberg 83,89], Self 

[Ungar 87], and CommonObjects [Snyder 86b] use messages rather than 

procedure/function calls. Messages are also used in other models including the "Object

Based Inheritance Model" proposed by Hailpem and Nguyen [Hailpern 87] and the 

"Object Model For Shared Data" proposed by Kaiser and Hailpern [Kaiser 90]. 

2.6 Encapsulation 

Abstract data is a set of data items (values) and a set of methods that manipulate 

the data items [Cardelli 86] [Madsen 86] [Nierstrasz 86]. The behavior of an abstract data 

item is defined by its set of methods. This approach facilitates the program development 

and maintenance by allowing the program designer to safely change the implementation 

details of an abstract data type without affecting its users. The less the exposure of 
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implementation details, the more encapsulation is achieved. Data abstraction goes along 

with encapsulation. A programming language supports encapsulation if users of a module 

are restricted to access that module only through its external interface (methods). 

Meyer [Meyer 88] addressed modularity to assess what it means for a software 

construction method to be modular. He discussed modular composability, continuity, and 

protection. He also outlined and examined the principles that ensure proper modularity. 

These principles are: linguistic modular units, few interfaces, small interfaces, explicit 

interfaces, and information hiding. 

In OOPLs, a class definition is a module with its own external interface. An object 

with a defined external interface is an abstract entity such that its users do not need to 

understand how the methods are implemented and how the data is represented. This 

concept and the relationship between data abstraction and encapsulation have received a 

lot of attention [Cardelli 86] [Cox 86] [Edelson 87] [Gabriel 89] [Klint 86] [Sethi 89] 

[Siedewitz 87] [Snyder 86a] [Wegner 90]. 

Klint [Klint 86] observed that encapsulation is the foundation aspect of OOP. It 

involves the separation of functionality from the underlying implementations of a 

structure. The functionality of a structure is provided to users through the interface, while 

the underlying implementations are hidden. Therefore, unnecessary access to data is 

prevented and the life-time of the structure is increased. Long life-time implies that details 

of the implementations can be changed any time without affecting users of the structure. 

Most OOPLs support data abstraction by preventing objects from being 

manipulated except through their defined external interfaces, as discussed by Snyder 

[Snyder 86a]. He also pointed out that the support for data abstraction is one of the prime 

features of OOP. That is, users have the ability to define new objects of a behavior 

abstractly without any reference to implementation details. Implementations of methods 

are called the internal view of an object as described by Schaffert [Schaffert 86]. He 

outlined that encapsulation facilitates the modification of software and improves the 
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understandability of programs. Also, encapsulation minimizes the interdependency among 

separated models by defining interfaces such that changing the implementations does not 

affect the users of a module. 

OOPLs vary in their suppon for encapsulation based on the kinds of changes that 

can be made safely to the implementation of a module. For instance, CommonObjects 

[Snyder 86b] provides suppon for encapsulation with respect to inheritance as outlined 

by Snyder, and Smalltalk [Goldberg 83] is designed to provide total access to everything 

and nothing is hidden, as outlined by Gabriel [Gabriel 89]. Nierstrasz [Nierstrasz 89] 

indicated that the lack of encapsulation results in allowing an object to change the state 

of another object. This phenomena occurs in the language Self [Ungar 87] because no 

private slots are defined for objects. 

2.7 Polymorphism and Binding 

Polymorphism is a Latin word for "may shapes". In OOPLs, the term 

polymorphism means different forms [Cardelli 86] [Cox 86] [Gabriel 89] [Klint 86] 

[Meyer 88] [Nierstrasz 89] [Sethi 89] [Stroustrup 86,91] [Wegner 90] [Wolf 89]. 

Polymorphism is the multiplicity of form for a single method name. For example, 

consider the shape classes illustrated in Figure 2.4. The method print can be defmed to 

print different shapes, and thus the same method name has different forms 

(implementations) in different classes. Polymorphism is a powerful tool for generalizing 

a single process among many kinds of objects. A polymorphic function is the one that can 

be applied to different objects. For example, the function Add can be applied to integer 

and real objects. Here, the operator"+" is called an overloaded operator. 

Binding is the point in a program's life when the address of a method is 

determined. Early binding occurs at compile time. This requires that the address of a 

method be known at compile time. Early binding is one strong characteristic of strongly-
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typed languages. In late binding, the address of the called method is given to the caller 

when the actual call takes place during run time. 

Gabriel [Gabriel 89] addressed polymorphism in OOPLs. He stated that 

Polymorphism depends on binding. He also viewed binding as the process of determining 

which version of the invoked method is to be applied to an object. When polymorphic 

methods are not supported by the language, the compiler determines (binds) the methods 

at compile time. He called this approach static binding. In dynamic binding, methods to 

be applied to objects are determined at run time. While static binding is efficient and 

reliable, most OOPLs such as Smalltalk, Simula, Object Pascal, and C++ [Budd 91]. 

Dynamic binding makes polymorphism possible in OOPLs. 

Nierstrasz [Nierstrasz 89] discussed the usage of polymorphism and its relation to 

inheritance. He stated that, with inheritance, polymorphic methods applied to objects of 

a subclass are also applicable to objects of the superclass(es). Moreover, polymorphism 

enhances reusability. It allows users to define generic methods that can be used with 

existing and newly-added objects. 

Wolf [Wolf 89] also addressed the issue of polymorphism. He indicated that 

Polymorphism is a mechanism that determines which methods are to be selected to 

answer a message sent to an object. Methods are selected during execution based on the 

type of the object to which the message is sent. Klint [Klint 86] also stated that dynamic 

binding is one of the major reasons for the flexibility of OOPLs. 

Polymorphism and binding also are discussed in detail by Meyer [Meyer 88]. He 

indicated that polymorphism is controlled by inheritance in Eiffel. Some languages allow 

users to have both late and early binding. For example, Eiffel allows both static and 

dynamic binding~. and C++ [Stroustrup 86,91] also offers static methods bound at 

compile time and virtual methods bound at run time. 

A generic function is an ordinary function implemented as a set of methods that 

are selected based on the types of the supplied arguments when a method is invoked. The 
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concept of generic functions is used in Lisp-based OOPLs such as Flavors [Moon 85,86], 

CLOS [Bobrow 88], and CommonLoops [Bobrow 86] [Kempf 89]. These languages used 

generic functions to achieve polymorphism. 

2.8 Definitions 

In the literature, different authors have provided the object-oriented terminology 

different views from different perspectives, and hence terms are given different 

definitions. To avoid multi-definition terms and to avoid ambiguity, this section is devoted 

to provide definitions for terms used in this dissertation. 

Instance Variable: 

An instance variable is a variable declared in a class. It is associated with a value in an 
object of the class. Instance variables of a class are initialized either at class definition 
time or at creation time of an object. 

Slot: 

A slot is a variable whose value represents either a state or a behavior. The value of a slot 
can be accessed by messages. Unlike instance variables, a slot can be viewed as an 
instance variable name or a method name. 

Method: 

A method is an operation defmed in a class to represent a specific behavior. Methods 
represent the behavior of objects of the class. A method has specification and 
implementation. Specifications of methods of a class represent the interface of its objects. 
Implementations are procedures (code segments) associated to specifications. 
Specifications are visible to users of the class; while implementations are hidden. 

Class: 

A class is a description (template) of a set of objects that share similar properties. A class 
consists of a set of instance variables and a set of methods. Instance variables have no 
values associated to them in the class (i.e. a class has no state). 

Metaclass: 

A metaclass is a class whose instances are classes. 
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Prototype: 

A prototype is an object that can be viewed and used as a class to produce new objects. 
A prototype maintains state at any given time. The state of a prototype at any given time 
can be assigned to a newly created object. The behavior of the new object is similar to 
that of its prototype. 

Object: 

An object (instance) of a class is a collection of the values of the instance variables 
defined in that class. These values represent the state (private data) of the object at any 
given time of its life. They are accessed through the methods defined in that class. 
Objects of the same class have different states, and have the same behavior (methods). 

Instantiation: 

Instantiation is the process of creating new objects (instances) from classes. It is 
performed either by users or the programming language itself. Users instantiate objects 
from user-defined classes; while a programming language instantiates objects from 
system-defined classes that are not accessible to users of the language. All newly 
instantiated objects have the same initial state. Instantiation is used in class-based 
programming languages. 

Cloning: 

Cloning (copying) is the process of creating new objects from prototypes. A new object 
is a copy of its prototype. The initial state of the new object is the state of its prototype 
at cloning time. Cloning is used in prototype-based languages that use prototypes as 
classes. 

Inheritance: 

Inheritance is a mechanism for code sharing (methods and instance variables) among 
classes that have common behavior. When two classes have common behavior, they can 
be related to each other such that one class inherits (uses) code representing the common 
behavior from the other class. This relation is called inheritance. The inheriting class is 
called subclass (child); while the other class is called superclass (parent). Single 
inheritance relates a subclass to only one superclass; while multiple inheritance relates a 
subclass to two or more superclasses. The subclass inherits methods and/or instance 
variables from its superclass(es), and adds new methods and/or instance variables to 
specify its behavior. Inheritance is a static relation defined at program development time. 

Inheritance Hierarchy: 

Inheritance hierarchy is a hierarchical relation representing the inheritance relationship 
among related classes. Single inheritance forms a tree structure; while multiple inheritance 
forms a directed acyclic graph. 
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Delegation: 

Delegation is a mechanism that captures the behavior of inheritance. It is used in 
prototype-based systems. An object delegates a message together with the responsibility 
of answering the message to another object. In addition to objects of the same prototype, 
objects of different prototypes can delegate messages among each other. 

Message: 

A message is a request sent to an object to invoke certain method. The receiving object 
may not answer the message directly. The response (if the object chooses to answer) is 
the result of executing the implementation associated with the invoked method. The set 
of messages that an object can answer are determined by its interface, and is called a 
protocol. All objects of a class or a prototype have the same protocol. Messages of 
identical names can be used with objects of different classes or prototypes. 

Subtyping: 

Subtyping is a relationship between classes such that objects of one class (subtypes) can 
be used in places where objects another class (supertype) are expected. Objects of the 
subtype have the characteristics and behavior of objects of the supertype, but not vice 
versa. 

Polymorphism: 

Polymorphism is a mechanism for applying a method on different objects of different 
classes or prototypes. It generalizes a method among different types of objects. It also 
determines which method to be used to answer a message sent to an object. 
Polymorphism is tied to binding. 



CHAPTER III 

INHERITANCE IN OBJECT-ORIENTED PROGRAMMING 

LANGUAGE: A TAXONOMY AND SURVEY 

3.1 Introduction 

Encapsulation, accessing the instance variables, and the visibility of inheritance 

are important issues in OOP. Various OOPLs apply different restrictions on these issues. 

Some languages, such as Smalltalk:-80 [Goldberg 83,89] and Flavors [Moon 86], include 

their instance variables in the class external interface definition. Other languages, 

including CommonObjects [Snyder 86a] and C++ [Stroustnip 86,91], hide their instance 

variables and allow the inheriting classes to access them only via operations provided in 

the external interface definition. More recent languages, such as Trellis/Owl [Schaffer 86], 

apply more restrictions by providing the ability to define private operations dedicated for 

inheriting classes and not by inclusion in the external interface. 

The notion of subtyping may impact the inheritance issue based on the 

subtyping{mheritance relationship. Some languages view subtyping between classes 

through their inheritance relationship [Stroustrup 86] [Goldberg 83,89]. That is, subtyping 

is based on the implementation hierarchy of the class. Other languages view subtyping 

explicitly based on the class behavior rather than structure [Schaffer 86] [Snyder 86b]. 

The effect of these perspectives on the inheritance mechanisms in the selected languages 

are discussed later in this chapter. 

In this chapter we address three major issues in a number of widely-used OOPLs: 
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Inheritance mechanisms, access techniques, and the notion of subtyping and its relation 

to inheritance. The OOPLs considered in this chapter are Trellis/Owl, C++, Eiffel, 

CommonObjects, CLOS, Flavors, Smalltalk:-80, and Simula. These languages are 

compared in terms of these issues. The strength and weakness of their support for 

Snyder's criteria are also considered and discussed. Additionally, a binary tree taxonomy 

for OOPLs [AI-Haddad 91 b] is presented in this chapter. 

The rest of this chapter is organized as follows: Section 2 is a survey of the 

inheritance mechanisms and the access techniques in the selected languages. Section 3 

describes how OOPLs relate inheritance to subtyping. Section 4 provides a binary tree 

taxonomy model of OOPLs based on the major characteristics of the inheritance 

mechanisms. And in Section 5, the selected languages are analyzed based on Snyder's 

criteria, and summary tables of their features are provided. Finally, Section 6 is the 

summary. 

3.2 A Survey of Inheritance Mechanisms and Access Techniques 

In OOPL environments, systems are composed of objects and objects are instances 

of classes. When several classes share common abstract properties, it is inconvenient to 

duplicate the code of the shared properties in several classes. Therefore, inheritance is 

used as a mechanism for code sharing between classes to construct new software 

components from existing ones. The different forms of inheritance are discussed in the 

previous chapter. 

The access technique for instance variables determines how inheriting classes 

access the instance variables of the super and ancestor classes [Snyder 86a] [Strom 86]. 

Various OOPLs have different semantics for this issue. This issue may impact the 

encapsulation of inherited information when inheriting classes have full access to the 

instance variables of the superclass. In this case, changing the superclass implementation 
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may become unsafe for its descendants. The class contents must be hidden and accessed 

only through defmed methods to maintain information hiding and provide a flexible 

program development. 

The rest of this section is organized as follows. Each language subsection has two 

parts (A) and (B) associated with it. The (A) part discusses the inheritance mechanism of 

the corresponding language. Here, inherit:mce is interpreted to have different meanings 

in different languages. For instance, inheritance in Smalltalk-80 is a technique to construct 

complex classes from simple ones; whereas in CommonObjects, inheritance is utilized to 

define objects by hiding the internal representations and exposing the defmed operations 

via the external interfaces of a class. Moreover, in part (A), features provided by the 

selected languages to support inheritance are also discussed using examples. 

Part (B) discusses the access technique of the corresponding language. Here, we 

examine how the language allows inheriting classes to access the instance variables of 

ancestor classes. Accessing the instance variables has a major impact on information 

hiding. Restricted access provides stronger encapsulation in which the inheritance 

hierarchy is more flexible for changes. Allowing descendant classes to access the instance 

variables of a superclass limits the designer's freedom to change the class implementation 

without affecting its inheriting classes [Snyder 86a]. OOPLs provide varying degrees of 

access. Some languages allow full access to the instance variables of a class, while other 

languages impose strong restrictions on the external interface provided for inheriting 

classes. 

3.2.1 Trellis/Owl 

(A) Inheritance Mechanism. Trellis/Owl is a statically typed OOPL. It combines a 

multiple inheritance type hierarchy with static type checking [Schaffer 86]. Trellis/Owl 

provides the conventional syntax of programming languages and uses the standard 
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procedure call notation for method invocation. In Figures 3.1 and 3.2, defmitions of 

STACK and DEQUE (double ended queue) types (classes) are presented to show their 

inheritance relationships. Figure 3.1 describes the type STACK with one private operation 

(method) and two public operations. Figure 3.2 describes the type DEQUE as a subtype 

of the type STACK. It inherits the public operations of STACK and defines new 

operations. 

type modu~e STACK; 
operation is_empty(me) 
! return True if stack is empty, False otherwise 

operation push (me, elem : element_type) 
public 
! insert element elem into stack if not overflow 

operation pop {me) 
public · 
! return the top of stack if not underflow 

end type_module 

Figure 3.1: Definition of the type STACK 

Trellis/Owl subclassing is based on behavior rather than specification hierarchy. 

That is, a subtype must behave like its supertyp(es), but it may have different 

implementation. For example, the type DEQUE behaves like the type STACK and 

provides more operations. Since the subtype specializes the supertype, types cannot hide 

the use of inheritance from the inheriting types. 

Trellis/Owl provides two kinds of operations, instance and class operations. 

Instance operations such as push and pop operations in Figure 3.2 are applied to 

individual objects of the type. Class operations such as the creation operations are 

applicable to the types themselves rather than their objects. Trellis/Owl operations can be 

declared as public or private operations. Public operations of a type are available to its 

clients (inheriting classes (users) rather than subtypes); while private operations are used 



type module DEQUE; 
! deque must define its own operations for boundary 
! check since they are not inherited form type STACK. 

operation push_top (me, el: element_type) 
public 
ia begin STACK'push (me,el); end; 

operation pop_top (me) 
public 
ia begin STACK'pop (me,el); end; 

operation push_end (me, el :element_type) 
public 
! Inject element el into the back end of Deque 

operation pop_end (me) 
public 
! Eject element el from the back end of Deque 

operation create (mytype) 
return (mytype) 
! Return the newly created Deque 
! other methods ... 

end type_module; 

Figure 3.2: DEQUE is a subtype of the type STACK 
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within the defining type and its subtypes, and are not available to clients. A third 

visibility is called subtype-visibility. Subtype-visible operations are neither restricted as 

private nor general as public operations. They can be inherited and redefmed, but not 

visible outside the defining type and its subtypes. 

The external interface of a type is restricted to include only public and 

subtype-visible operations provided for inheriting classes. The external interface of the 

type STACK in Figure 3.1 includes the public operations push and pop. Instance variables 

and operation implementations of a type are hidden in the type and accessed through 

operations specified in its external interface. Different types may have different operations 

with the same name. The keywords me and mytype are used to distinguish instance 

operation from class operations. They are called controlling objects; me indicates instance 

operations while mytype indicates class operations as illustrated in Figure 3.2. 
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It is the programmer's responsibility to specify the interface and the 

implementation of operations as well as solving the inheritance ambiguities. Ambiguity 

can arise when a type has two or more supertyp(es). When supertypes introduce different 

definitions for an inherited operation, the programmer needs to specify explicitly the 

desired definition, or override it by a new definition in the inheriting types. 

(B) Access Technique. The instance variables of a class are accessed through the 

class's public and subtype-visible operations provided in its external interface. When the 

type's definition of a redefined inherited operation is required, the subtype can directly 

access the superclass' version of an operation. For instance, if Pis the supertype and OP 

is the modified operation in the subtype, the notation P'OP (me, ... ) gives direct access 

to OP in the supertype P. In Figure 3.2, type DEQUE overrides the operations push and 

pop inherited from the type STACK and directly accesses the superclass's definition using 

the above notation. 

Type DEQUE in Figure 3.2 accesses the instance variable elem through the 

definition of the public operations push and pop defined in the type STACK in Figure 3.1. 

In case of direct access, when a public operation references other operations in the same 

type, then the public operation still references them after being inherited by other types. 

A type may refer directly to operations of an ancestor type without being inherited by all 

intervening ancestors. However, a descendant type must know about its ancestor types. 

Subtype-visible operations are inherited and can be redefined, but they are not 

accessible outside the defming type and its subtypes. Thus, users may define operations 

that are directly accessible to the subtype and are not exposed in the type's external 

interface. 

3.2.2 C++ 

(A) Inheritance Mechanism. C++ [Stroustrup 91] provides OOP style with multiple 
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hierarchical inheritance by means of class declarations. Class declarations divide classes 

into sections in order to limit the visibility of the class contents to other classes. In C++, 

changing the implementation of a class does not impact its descendant classes. A class 

may include public, private, and protected sections. Each section contains variables and 

methods of the same degree of visibility. An inheriting (derived) class inherits all of its 

superclass(es) properties and may add new instance variables and methods. 

Figures 3.3 and 3.4 provide sample definitions. The classes DATE and 

BIRTH_DA Yare adopted and modified from [Stroustrup 86]. In Figure 3.3, class DATE 

defines three public instance variables and two public methods. Instance variables and 

methods are called class members. Class BIRTH_DA Y in Figure 3.4 is publicly derived 

from the class DATE. It inherits methods and instance variables from the class DATE, 

and defines new methods and instance variables. The main program in Figure 3.4 creates 

two instances of the class DATE: Today and Christmas. 

cla•s DATE { 

} : 

public: 
int month, day, year; 
DATE (int,int,int) 
-DATE (); 
void next(); 
void print(); 

void DATE::next() { 
if ( ++day > 28 ) 

II public section 
II public variables 
II Constructor 
II Destructor 
II next day 
II print date 

{ I* print next month schedule *I }; 
} ; 

void DATE::print() { 
cout << month << "I" << day << "I" << year <<; 

} ; 

Figure 3.3: Definition of the class DATE 

Private instance variables, such as name and age of the class BIRTH_DAY, are 

used within the scope of the class. Public instance variables have the opposite situation. 



class BIRTH DAY public DATE { 
char* name; // private variable 
int age; // private variable 

public: // public variables 
void compute age (int,int,int); //newly defined method 
BIRTH DAY (char,int,int,int); //constructor 
-BIRTH_DAY(); //destructor 

} ; 

int BIRTH DAY::compute age(month, day, year); 
{ - -

DATE::print(); //print today's date 
I* subtract birthday form today's date and return age*/ 

} ; 

main (int month, day, year) 
{ 

} ; 

DATE today (03, 30, 
DATE Christmas (12, 
today.print(); 
Christmas.next(); 

1990); // instance today 
05, 1989); // instance Christmas 

II print today's date 
II schedule for January 

Figure 3.4: Class BIRTH_DAY is a public subclass of the class DATE 
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They are made available to other classes. For instance, the variables month, day, and year 

of the class DATE can be inherited by other classes. Different classes may have methods 

with the same names. The scope resolution operator"::" helps users avoid the naming 

conflicts of methods by explicitly specifying the invoked method. For example 

DATE::printO in Figure 3.4 indicates the print method in class DATE not any other 

class. In addition, the type and number of a method's arguments can specify the invoked 

method [Pinson 88b]. 

C++ provides two approaches for inheritance (class derivation): public and private 

derivation. In public derivation, the derived class inherits both public and protected 

members of the base class(es), and retains these visibilities. Therefore, the public and 

protected members of the base class are also public and protected in the derived class(es). 

For example, class BIR1H_DA Y above inherits all public members of the class DATE 

in Figure 3.3. Inherited members remain public in class BIRTH_DAY and are available 
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to its descendant classes. 

In private derivation, the derived class inherits all public and protected members 

of the base class(es), but inherited members are private in the derived class and are not 

available to other classes. For example, If the class BIRTH_DA Y is privately derived 

from the class DATE, then the public members of the class DATE become private 

members in the class BIR1H_DAY, and are not available to descendants of the class 

BIRTH_DAY. 

The external interfaces provided for instances and inheriting classes include 

methods defined in the class. An instance of an inheriting class includes only variables 

used by methods inherited from the superclass, not all the superclass's instance variables 

[Gorlen 87]. Every object of a derived class has its own copy of the superclass's private 

variables. For example, each instance of the class BIRTH_DA Y has its own copy of the 

instance variables name and age. These variables represent the state of an instance. 

(B) Access Technique. Inheriting classes access the public and protected instance 

variables of the base class through inherited methods. In public derivation, public 

variables are accessible to all descendant classes; while protected variables are accessible 

to only immediate inheriting classes. In private derivation, all public and protected 

members of the superclass are accessible only to the immediate inheriting classes and are 

not accessible to other descendant classes. 

Using the notation Class_name::Method_name, a class can directly access a 

method of an ancestor class if that method is being inherited (passed down) through all 

intervening classes including the base class. Class BIRTH_DA Y accesses the public 

instance variables defined in the class DATE through the inherited method DATE::print. 

C++ provides self-reference by means of pointers to objects. The reserved word 

this allows a class to refer to itself. Redefining a method by descendant classes does not 

impact this invocation, because the dynamic binding mechanism insures invoking the 
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correct method A superclass may authorize a descendant class to access its private 

variables. One way to allow such access is by declaring the descendant class as a friend 

class of its superclass. The other way is defining protected variables in the superclass. 

Protected variables are hidden from the other classes, but only accessible to immediate 

derived classes. 

3.2.3 Eiffel 

(A) Inheritance Mechanism. Eiffel [Meyer 88b] is a statically-typed OOPL. It 

provides multiple inheritance with strong static type checking and dynamic binding. Eiffel 

classes provide private and public information to maintain information hiding. Classes 

also contain instance variables and methods in which implementations of methods are 

within the class definition. Pre-defined methods (class methods), such as Create, Forget, 

Clone, and Result are not inherited, and are applicable to all classes. Different classes 

may have same-named methods, and a class may inherit the same method from different 

classes. 

The client classes are classes that include ClassType declaration of the form 

var_name:ClassType where var_name is a variable name and ClassType is a defined 

class. Inheriting classes are classes that inherit explicitly from other classes through the 

inherit declaration. Eiffel's inheritance mechanism is illustrated in Figures 3.5 and 3.6. 

Figure 3.5 defines the class STACK of type integer. STACK exports three public 

methods and one public instance variable. The instance variables stack_size and 

stack_pointer are private to the class STACK. Figure 3.6 defines the class DEQUE that 

inherits from the class STACK and adds new methods. Inheriting classes may rename and 

redcfme inherited methods and instance variables using the keywords rename and 

redefine. Class DEQUE renames the inherited methods push, pop, and the instance 

variable stack_pointer. It also retains the method is_empty. 



class Stack[INTEGER] export 
is_empty, push, pop, stack_pointer 

feature 
implementation 
stack size 
stackyointer 

ARRAY [INTEGER]; 
: INTEGER; 
: INTEGER; 

is empty : BOOLEAN ia is stack empty? 
-do -- return TRUE if stack is empty 

end; -- is_empty 

push(X : INTEGER) ia -- insert element X 
do -- add X if not full stack 
end; -- push 

pop ia -- pop the top element 
do pop top if non-empty stack 
end; -- pop 

end; -- class STACK 

Figure 3.5: Definition of the class STACK 

claaa DEQUE[INTEGER] export 
is empty, push top, pop top, push_end, pop_end 

inherit -STACK[INTEGER] -
rename push as push top, pop as pop top 

stack_pointer as front_pointer 
redefine is empty 

feature -
implementation : ARRAY[INTEGER]; 
rear_pointer : INTEGER; 

is empty : BOOLEAN ia -- is stack empty? 
-do -- different implementation 

end; -- is_empty 

push end(x : INTEGER) is inject element x 
do -- inject x if not full stack 
end; push_end 

pop end ia 
do 
end; 

-- eject element x 
-- eject element x if non-empty stack 
pop_end 

end; -- class DEQUE 

Figure 3.6: Class DEQUE inherits from the class STACK 
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Eiffel introduces the notion of repeated inheritance. This notion allows classes to 

inherit more than once from ancestor class(es). The class DEQUE may be written as 

follows: 

class DEQUE[INTEGER] export ... 
inherit STACK[INTEGER] rename 
inherit STACK[INTEGER] rename 

redefine .. . 
redefine .. . 

Repeated inheritance may lead to replicated methods if a method has been 

renamed along the inheritance path in which its code needs to be duplicated in the 

inheriting class [Meyer 88]. For example, suppose that the class SD inherits from the 

classes STACK and DEQUE. Since methods push and pop are renamed in the class 

DEQUE. Class SD may include methods push and pop form the class STACK, and 

methods push_top and pop_top form the class DEQUE where push_top and pop_top are 

duplication of push and pop respectively. This might lead to ambiguity. 

(B) Access Technique. Eiffel's export clause separates the class's private information 

from the public information offered outside the class definition. It applies information 

hiding to clients (classes that use var_name:CiassType declaration) of a class, and 

restricts the visibility of the class contents to other classes. For descendant classes, 

information hiding is not applicable since descendants may depend directly on the 

implementations of the superclass(es) [Meyer 88]. 

Clients are restricted to access only public (exported) methods and instance 

variables. A class may export all of its private and public information to its descendants 

granting them full access to its contents. A client may directly access (read) an exported 

variable, but cannot modify its value. However, modification of such a variable can be 

done through the definition of an exported method that uses the variable. The class 

DEQUE has full access to the contents of the class STACK through their inheritance 

relationship. 

A class may export methods and instance variables inherited from other classes 
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in which these methods and variables were private. A class may export its methods and 

instance variables to certain descendant classes by specifying the destination class(es) in 

the export clause. For instance, one may declare the class STACK in Figure 3.5 as 

follows: 

class STACK[INTEGER] export 
is_empty {DEQUE}, push {DEQUE}, pop {DEQUE} 

Class DEQUE is the destination class for the exported methods. 

3.2.4 CommonObjects 

(A) Inheritance Mechanism. CommonObjects [Snyder 86a] is an extension of 

CommonLisp. Its inheritance mechanism empha~izes on providing strong support for 

encapsulation. Similar to other OOPLs, CommonObjects is intended to support a minimal 

external interface definition and ease the development of software systems. The 

inheritance mechanism used in CommonObjects can be explained using the definitions 

given in Figures 3.7 and 3.8. 

Figure 3.7 illustrates the definition of the class DATE, which contains four 

instance variables and defines four methods. In Figure 3.8, the class BIRTII_DAY is 

defmed as a subclass of the class DATE. It inherits method today and adds the instance 

variable age. 

CommonObjects' classes inherit methods and instance variables from each other 

in hierarchical order. A class inherits all or part of the superclass's methods to be 

included in its external interface. For instance, the option methods in Figure 3.8 allows 

the class BIR1H_DA Y to inherit only necessary methods from the class DATE (method 

today). Different classes may defme same-named methods. Classes encapsulate their 

instance variables and may have same-name instance variables. Renaming instance 

variables and changing method implementations of a class do not affect its descendants. 
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(define_type DATE 
;; Date is represented by month,day, and year variables. 
;; Variable last_day=l indicates the last day of the month. 

( :var month (:type integer} (: init 0) ) 
:gettable :initable 

( :var day (:type integer) (: init 0) ) 
:gettable :initable 

( :var year (:type integer) (: init 0) ) 
:gettable :initable 

( :var last_day (:type integer) ( :init 0)}} 

(define-method(DATE :month end?) () 
;; return true if today is the end of the month 

(= (last_day 1)) 

(define-method(DATE :year end?) () 
;; return true if current month is December 

(• (month 12) ) 

(define-method(DATE :next month) () 
,, return next month if today is the end of the month. 

(un1esa (ca11-method (:month end?)) 
(incm month) -

month)) 

(define method (DATE :today) () 
;; return today's date 

Figure 3.7: Definition of the class DATE 

(define-type BIRTH_DAY 
(:inherit-fo~ DATE 

(:methods :month end :next month))} 
;; Birth day is a subclass of class Date, it inherits 
;; methods today and iefines a new method and instance 
; ; variable. 

(: var b _date (type integer} ( : init 0) 
:gettable :initable) 

(define-method (BIRTH DAY :age) () 
;; print today's date and return age 

(ca11-method (DATE :today (}} 
;; Subtract b_date form today's date and return age 

Figure 3.8: Class BIRTII_DAY partially inherits from the class DA1E 
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The use of inheritance in a class is allowed to be hidden from the inheriting 

classes. In Figure 3.8, the methods option does not show the status of method today in 

the class DATE whether defines or inherited. Common Objects provides external interfaces 

for both objects and inheriting classes. Inheriting classes cannot directly inherit methods 

from non-superclasses. Rather, methods must be passed down through intervening classes. 

For instance, if a subclass of the class BIRTH_DAY wants to inherit method year_end 

from the class DATE, class BIRTH_DA Y must inherit that method and pass it down to 

its inheriting classes. 

CommonObjects provides hierarchical multiple inheritance. When a class inherits 

from multiple superclasses, it creates a set of instance variables for each superclass. It is 

an error to inherit same-named methods from different superclasses. When a class inherits 

same-named instance variables from different superclasses, its instances contain two sets 

of inherited variables, one from each superclass. For example, if a class (say 

Daily_Schedule) inherits from both classes DATE and BIRTH_DAY above, its instances 

include two sets of the instance variables month, day, and year, one from each superclass. 

(B) Access Technique. Accessing inherited variables by methods does not 

compromise encapsulation. Instance variables are accessed and used by methods defined 

in the class. Inherited methods from a superclass restrict the inheriting class to only 

access the instance variables used by these methods. Class BIRTH_DA Y accesses the 

instance variables month, day, and year in the class Date through the inherited method 

today in which encapsulation is preserved. 

CommonObjects provides the call_ method construct for direct invocation of 

methods defined in ancestor classes but are not inherited by descendant classes. A class 

can call its own methods by specifying the method's name. A class can access the 

superclass's on-inherited methods using the superclass and method names as arguments. 

For example, the statement 



call_method (DATE :today()) 

in Figure 3.8 includes the arguments DATE and today. 

60 

In the case of multiple inheritance, when two superclasses of a class define the 

same instance variable, an instance of the class contains two instances of that variable in 

which they are accessed through inherited methods from each superclass. On the other 

hand, when superclasses of a class share a common ancestor, an instance of the class 

contains two sets of the instance variables defmed in the common ancestor, one from each 

superclass. These variables can be accessed either through inherited methods or through 

the direct Call_Method construct. An inheriting class needs not know about its 

superclass's use of inheritance [Snyder 86a]. 

3.2.5 CLOS (CommonLisp Object System) 

(A) Inheritance Mechanism. CLOS [Keene 89] [Bobrow 88] is an object-oriented 

extension of CommonLisp. It provides a set of tools to help programmers construct highly 

modular and extensible programs. As inheritance is concerned, CLOS supports multiple 

inheritance of the class structure and behavior. Every object is an instance of a class and 

has the same structure, behavior, and type as of its superclass. Each class is an instance 

of another clas~ railed metaclass. 

CLOS provides behavior inheritance by means of associating methods with classes. 

Inheritance of methods is based on the method combination technique, which is a set of 

calls to applicable methods. If a method is applicable to an instance of a class, it is also 

applicable to instances of its subclasses. A class may add new methods or override 

inherited methods. Implementation of methods are disjoint from the class body [Bobrow 

88]. Examples are given in Figures 3.9 and 3.10. 

Figure 3.9 defines the class EMPLOYEE with three local variables (slots), one 

shared variable, and two methods. Class EMPLOYEE does not inherit from other classes. 

Figure 3.10 defines the class MANAGER as a subclass of the class EMPLOYEE. It adds 



(defclass EMPLOYEE() 
((name :type string 

(age :type integer 
(hours :type integer 
(salary :type integer 
(rank :type string 

:allocation :instance) 
:allocation :instance) 
:allocation :instance) 
:allocation :instance) 
:allocation :class)) 

(defmethod print name (1 Employee) 
- . . . } 

(defmethod work load (1 Employee) 
- . . . ) 

Figure 3.9: Definition of the class EMPLOYEE 

(defcla•s MANAGER (EMPLOYEE) 
(rank type string :allocation :class) 

(defmethod history (1 Manager) 
... ) 

(defmethod work schedule (1 Manager) 
- ... ) ) 

Figure 3.10: Class MANAGER is a subclass of the class EMPLOYEE 

new instance variables and defines new methods. 
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CLOS provides two types of instance variables: local and shared. Local instance 

variables save the state information of a particular instance of the defining class. They are 

created when creating an instance of a class. For example, the instance variables name, 

age, hours, and salary of class Employee are local. Shared instance variables save the 

shared state that is used by all instances of the class. The instance variable rank in Figure 

3.9 is shared by all instances of the class EMPLOYEE. 

A class specializes its superclasses by inheriting their structure (variables) and 

behavior (methods). Class MANAGER in Figure 3.10 inherits all methods and instance 

variables of the class EMPLOYEE and adds a new instance variable and methods. It 

provides the same structure and behavior of the class EMPLOYEE. The value of the 

instance variable rank in the class MANAGER is different from that in EMPLOYEE. 
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CLOS uses the generic function approach to define and invoke methods. A generic 

function contains a set of methods with relevant information. Its implementation is 

distributed among its methods, and the appropriate methods are selected based on the 

function's arguments. Several methods may be related to the same generic function. 

When two or more methods are defined for an operation, the class precedence list 

determines which method(s) to be invoked [Gabriel 89]. 

A class precedence list is a list of defined classes in the program. Classes are 

ordered based on the given organization of the program. Each class has its own 

precedence list containing the class itself and its superclasses. A class has precedence over 

its superclass. In Figure 3.11, the classes X and Y precede the class A, and class B 

precedes the classes X andY. Note that the class Y precedes the class X because it is 

defmed after X has been defined. Precedence lists preserve the order of method 

invocations, and avoid naming conflicts among the applicable methods of the generic 

function [Keene 89]. 

(def'claaa A() ()) 
(defclaaa X(A) ()) 
(defclaaa Y(A) ()) 
(defclass B(X Y) ()) 

Figure 3.11: Definitions of classes 

(B) Access Technique. CLOS provides structured inheritance in the sense that all 

instance variables defined by a class and its superclasses are accessible in an instance of 

that class. Instance variables are accessed through methods defmed in their classes and 

included in the generic function definition. Specifiers determine the scope of instance 

variables. For instance, the specifier :instance in Figure 3.9 indicates that each instance 

of the class EMPLOYEE has its own copy of the instance variable; while the specifier 

:class indicates that the instance variable rank is shared by all instances of the class. 
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Methods of a class are accessible to instances of its subclasses. Likewise, methods 

of a metaclass are accessible to instances of its classes. Class MANAGER accesses all 

of the instance variables used by methods print_name and work_load defined in the class 

EMPLOYEE. 

When modifying the value of an inherited shared instance variable in a subclass, 

all instances of the subclass access the modified variable. For example, the class 

MANAGER in Figure 3.10 modifies the instance variable rank inherited from the class 

EMPLOYEE. All instances of the class MANAGER share the new value of the variable 

rank. 

The combination of applicable methods of a generic function is called the 

Effective method (implementation) of the generic function. When calling a method of a 

generic function, the generic function determines and invokes the appropriate method 

based on the passed arguments. If the method is not applicable, the generic function 

returns an error message [Steele 84]. 

In multiple inheritance, when superclasses provide same-named features (methods 

and slots), the class precedence list is used to solve such conflicts. The precedence list 

determines which class has precedence over others, and which method to be invoked (the 

most specific one) when more than one method are applicable. A method is more specific 

than another if its first argument is a subclass of the frrst argument in the second method 

[Gabriel 89]. For example, method history of the class MANAGER is more specific than 

method work_load of the class EMPLOYEE in Figure 3.1~ since the argument 

"MANAGER" is a subclass of the argument "EMPLOYEE". 

3.2.6 Flavors 

(A) Inheritance Mechanism. Flavors [Moon 86] is a non-hierarchical lisp-based 

OOPL that supports multiple inheritance. The notion of flavor is analogous to the notion . 
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of class. It is an abstraction representing one type of objects. A flavor defines a set of 

instance variables and methods, and specified inherited flavors. Figure 3.12 illustrates the 

flavor 3D_MOVING_OBJECf that defines three instance variables and one method. 

These examples are adopted from [Moon 85]. 

(defflavor 3D MOVING OBJECT 
(x=velocity, y_velocity, z_velocity 
x motion, y motion, z motion) () 
:Tnitable_instance_variables) 

(defmethod (speed 3D MOVING OBJECT) () 
(sqrt (+ (expt x-velocity 2) 

(expt y-velocity 2) 
(expt z=velocity 2)))) 

(defmethod (location 3D MOVING OBJECT)() 
;;; locate the object at timet. 

Figure 3.12: Definition of the flavor 3D_MOVING_OBJECT 

An inheriting flavor specializes its parent (super) flavors by maintaining the same 

characteristics. It inherits all of its instance variables and methods. It may also redefine 

inappropriate inherited methods, and define new methods and instance variables. A space 

ship and comet are specialized 3D moving objects. Figure 3.13 illustrates the flavors 

SPACE_SHIP and COMET that inherit from the flavor 3D_MOVING_OBJECf above. 

Inheritance is defined by means of mixing flavors. When different flavors have 

common characteristics, users can define them in one flavor called component flavor. 

Other flavors inherit the component flavor instead of duplicating the common 

characteristics in each of them. The flavor 3D_MOVING_OBJECf in Figure 3.12 

represents a common characteristics of all 3D moving objects. Hence, it is a component 

flavor in the flavors SPACE_SHIP and COMET in Figure 3.13. When different flavors 

defme same-named instance variables, the inheriting flavor combines them into one 

instance variable, and instances of the inheriting flavors contain one copy of the new 



(defflavor SPACE SHIP 
(crew_list name destination) (3D_Moving_Object) 
:initable_instance_variables) 

(defmethod (fuel SPACE SHIP)() ... ) 
(defmethod (altitude SPACE_SHIP) () ... ) 

(defflavor COMET 
(percent iron estimated mass size)) 
(3D MOVING OBJECT) -
:initable_Instance_variables) 

(defmethod (produced energy COMET)() ... ) 
(defmethod (friction=force COMET)() ... ) 

Figure 3.13: The flavors SPACE_SHIP and COMET inherit from the 
flavor 3D_MOVING_OBJECT 

combined instance variable. 
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Like other lisp-based OOPLs, Flavors uses the generic function approach to invoke 

methods. A generic function is a set of methods defined on different flavors. A method 

combination type combines a list of methods into one method called a combined method. 

A flavor applies ordering on its component flavors to specify the structure and behavior 

of its inheriting flavors. Ordering component flavors determines the order of the inherited 

methods form these component flavors, and which methods to be chosen from the method 

combination type. The combined method calls methods of the generic function in the 

appropriate order based on the ordering applied to the component flavors [Cannon 82]. 

Flavors exposes the instance variables to the inheriting flavors in which instances 

of the inheriting flavors include all instance variables of the parent flavor(s). Therefore, 

Flavors does not hide the use of inheritance since the instance variables and methods of 

the component flavors are visible to the inheriting flavors. Mixing flavors is defining a 

flavor in terms of other flavors. It does not affect the order of the component flavors. 

However, it is an error to violate the ordering constraints when mixing several flavors 

[Moon 85]. 

For multiple inheritance, Flavors translates the inheritance graph into a linear chain 
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of flavors that preserve the order of component flavors. Ancestor flavors appear before 

the inheriting flavors, and the non-ordered component flavors can appear anywhere on the 

chain. [Snyder 86a]. 

(B) Access Technique. The Deffiavor construct defines a flavor with instance 

variables, inherited component flavors, and relevant options for accessing the instance 

variables. These options can be used to initialize the inherited variables, and to customize 

a flavor's behavior. The instance variables of a flavor are accessed through methods of 

that flavor as implicit lexical variables. When a flavor inherits other flavors, their instance 

variables are accessed through the generic function methods defined on the inheriting 

flavors. When adding or renaming a variable in a flavor, the changes are propagated to 

all inheriting flavors from the updated one. Thus, users need not update the inheriting 

flavors. 

Flavors exposes the instance variables outside the flavor definition by using them 

in the method definition (external interface), which grants inheriting flavors full access 

to the instance variables of the parent flavors. For example, the flavors SPACE_SHIP and 

COMET in Figure 3.13 have full access to the instance variables of the flavor 

3D_MOVING_OBJECT. The visibility of the instance variables compromises 

encapsulation and limits the ability to decompose the program into modules [Moon 85]. 

3.2.7 Smalltalk-80 

(A) Inheritance Mechanism. Smalltalk-80 [Goldberg 83,89] is a dynamically-typed 

OOPL that provides single hierarchical inheritance. Every class has a superclass, except 

the system object class (root class) that describes the common properties of all objects in 

the system. Examples provided in Figures 3.14 and 3.15 are adopted from [Goldberg 

83,89]. 



Claaa name 
Supez:claaa 
%natance vaz:i&blea 

Claaa methoda 
initialize: amount 

PERSONAL FINANCES 
Object -
income, expenses 
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"super new initialBalance: amount "initialize balance" 
new 

"super new initialBalance: 0 "create new instance" 

Instance methods 
receive: amount 

income <-- income + amount "update income" 
spend: amount 

expenses <-- expenses + amount "update expenses" 
availableCash 

"income - expenses "return available cash" 
total Income 

"income "return total income" 
totalExpenses 

"expenses "return tot'al expenses" 
initialBalance: amount 

income <-- amount "initialize the account" 
expenses <-- 0 

Figure 3.14: Definition of class PERSONAL_FINANCES 

Class n..
Supez:claas 
Inatance vaz:iables 
Claas methods 

DEDUCTIBLES 
PERSONAL FINANCES 
deductibleExpenses 

initialize: amount 
"(super new initialBalance: amount) 

zeroDeduction 
"initialize balance" 

"no deductions" 
new 

"super new zeroDeduction 

Instance methoda 
amontDeductible: amount 

"create new instance" 

self spend: amount deducting: amount "deduct amount" 
deductions: amount deductibleAmount 

super spend: amount "update debt" 
deductibleExpenese <-- deductibleExpenses + deductibleAmount 

totalDeduction 
"deductibleExpenses "return total deducted money" 

zeroDeduction 
"'deductibleExpenses <-- 0 "initialize deductibleExpenses" 

Figure 3.15: Class DEDUCfiBLES inherits from the class PERSONAL_FINANCES 
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A class defines instance variables to represent private data, and class variables to 

represent shared data. Class methods are the implementation details of messages send to 

the class name; while instance methods are the implementation details of messages send 

to an instance of the class. For example, method initialize: in Figure 3.14 is an 

implementation of the initialization message sent to the class PERSONAL_FINANCES 

·in order to initialize an account (an instance of class PersonalFinances) by certain amount 

of money. Likewise, the method receive: is the implementation of a message sent to an 

account to deposit certain amount of money. 

A subclass inherits the instance variables and methods of its superclass, and may 

add new ones. In Figure 3.15, the class DEDUCfffiLES inherits all methods of its 

superclass PERSONAL_FINANCES. An instance of a subclass responds to all messages 

of the superclass' instances in addition to those newly defined ones. For example, class 

DEDUCfffiLES can answer all messages sent to the class PERSONAL_FINANCES. 

Upon sending a message to a class, the search for the invoked method starts at the 

receiving class and continues up the superclasses until reaching the invoked method or 

the root class,· which returns an appropriate message to the sender. 

Smalltalk-80 treats classes as objects. They are instances of other classes called 

Metaclasses. The external interface (protocol) of a class, provided for instances of the 

class, is a list of messages understood by its instances. This interface is limited to include 

only the instance methods of the defining class. For example, the external interface of the 

class PERSONAL_FINANCES in Figure 3.14 includes the methods receive:, spend:, 

availableCash, totallncome, totalExpenses:, and initialBalance:. 

The class external interface provided for inheriting classes includes all methods 

defined in the class. Instance variables of a class are not encapsulated. They are fully 

exposed outside the class definition. Therefore, an instance of an inheriting class contains 

all of the instance variables defined in the superclass [Meylen 87]. For example, an 

instance of the class DEDUCfffiLES contains the variables income and expenses from 
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the class PERSONAL_FINANCE in addition to the instance variable deductibleExpenses. 

Also, classes expose the use of inheritance to other classes. 

Boming and Ingalls [Boming 82] provided an extended version of Smalltalk. They 

described and implemented multiple inheritance in Smalltalk-80. They added a new 

feature called Compound selector for method invocation. It allows programmers to 

specify the method's name and the corresponding superclass when invoking a method. 

Multiple inheritance uses the dynamic binding approach for methods on the chain of 

inheritance instead of copying the inherited methods into each subclass. 

When two or more superclasses define the same instance variable, an instance of 

the class contains only one instance of that variable even though it is inherited through 

different paths. Besides, it is an error to have two or more different inherited instance 

variables with the same name. 

(B) Access Technique. The class description protocol in Smalltalk-80 includes 

information about the instance and class variables, as well as about the instance and class 

methods. Including all these information in the interface grants inheriting class full access 

to the instance variables of the superclass. For example, the class DEDUCITBLES in 

Figure 3.15 accesses all instance variables defined in the class PERSONAL_FINANCES. 

An instance has its own list of the class instance variables. These variables are accessible 

to the instance methods defined in the class. 

Full access to the instance variables restricts the inheriting class to use variable's 

names similar to the inherited ones. Additionally, removing or renaming an instance 

variable may affect inheriting classes since dependency exists between them. Thus, 

changing the implementation details of the superclass may require changing the inheriting 

classes. 
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3.2.8 Simula 

(A) Inheritance Mechanism. Simula [Kirkerud 89], the grandfather of all OOPLs, is 

a statically-typed OOPL. A class is a construct used to declare a template for a set of 

objects that contain the same set of attributes (data and operators). Simula provides single 

hierarchical inheritance with strong type checking. The subclass inherits all attributes of 

its superclass, and may add new attributes. Objects of the subclass are a subset of objects 

of the superclass. For illustration consider the classes PLACE and TOWN adopted from 

[Kirkerud 89] and shown in Figures 3.16 and 3.17 respectively. 

cl.aaa PLACE; 
begin 

real longitude, latitude; 
procedure read; 

beqin 
latitude :=prompt for real ("degrees north?"); 
longitude :=prompt for real ("degrees east?"); 

end of Place'read; - -

procedure write; 
beqin 

outfix(latitude,2,5); outtext("degrees north,"); 
outfix(longitude,2,5); outtext("degrees east."); 

end of Place'write; 
end of PLACE 

Figure 3.16: Definition of the class PLACE 

PLACE claaa TOWN; 
begin 

integer num_of_inhabitants; 
<Declaration of other Town attributes>; 

end of TOWN; 

Figure 3.17: Class TOWN is a subclass of the class PLACE 
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In Simula, objects are created using an object generator expression of the form 

"new Class_name". A declaration of the class Class_name introduces a new type called 

a reference type, and is denoted by ref(Class_name). Users can declare variables of 

reference types that are called reference variables. For example, 

ref(PLACE) country side, tallest mountain; 
ref(PLACE) array mountains (1 : number_of_mountains); 

are declarations of reference variables. A reference variable either contains no reference 

"none", or contains the address of an object of the class Class_name. 

Assigning a new value to a reference variable is called a reference assignment. 

A reference assignment is the creation process of new objects using the expression "new 

Class_name". For example, 

country side :- new PLACE; 
tallest mountain :- mountains(3); 

are expressions that create the objects country _side and tallest_mountains. Note that the 

object tallest_mountains is the third element of the array mountains. 

A subclass inherits all attributes of the superclass. The syntax of constructing a 

class hierarchy is given as follows: 

class AA; begin < Declaration of AA-attributes> end of AA; 
AA class BB; begin < Declaration of BE-attributes> end of BB; 

Here, class BB is a subclass of the class AA. The declarations 

raf(AA) AA_var; ref(BB) BB_var; 
AA_var :- new AA; BB_var :- new BB; 

indicate that the reference variable AA_var points to an object containing the AA

attributes, and the reference variable BB_var points to an object containing both the AA

and BB-attributes. Consider the class TOWN illustrated in Figure 3.17 as a subclass of 

the class PLACE. 

Class TOWN inherits the attributes of the class PLACE and adds the new attribute 

num_of_inhabitants. A reference variable of the type Town points to an object containing 

three attributes: longitude, latitude, and num_of_inhabitants. When declaring attributes that 
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have the same name as attributes in the superclass, the declarations in the subclass 

override the declarations inherited from the superclass. In the case of inheritance, a 

reference assignment expression is legal if the right-hand-side of the operator ":-"refers 

to an object that is in the class of the left-hand-side variable or in one of the subclasses 

of this class. For example, consider the following reference assignments [Kirkerud 89]. 

ref(PLACE) P var; 
ref(TOWN) T var; 
P var ·- new TOWN; 1 This is legal assignment since TOWN 

! is a subclass of the class PLACE. 
T var :- new PLACE;! This is not legal since new PLACE 

is not an object in Town or in one 
of its subclasses. 

P var :- new TOWN; 
T var ·- P_var; 

P var :- new PLACE; 
T var :- P_var; 

This is legal since P var refers to 
an object in the class of TOWN. 

This is not legal since P var does 
not refer to an object in-the class 
TOWN. 

Simula provides virtual procedures that allow the subclasses of a superclass to 

have procedures with common name, purpose, and use. For example, the procedure write 

in the class PLACE may be declared as virtual, and subclasses can have their specialized 

versions of write. The specification 

virtual: procedures write; 

implies that whenever procedure write is invoked in some object, the version declared in 

the class to which the object belongs should be used. Figure 3.18 [Kirkerud 89] illustrates 

the virtual declaration of the procedure write. 

(B) Access Technique. The external interface of a class includes all of its attributes 

that are made available to its subclasses. Such approach provides full access to the 

attributes (instance variables) of the superclass. Class TOWN has full access to all 

attributes of the class PLACE. 



class PLACE; 
virtual procedure write, sub-write; 
begin 

real longitude, latitude; 
procedure read beqin < as before > end 

procedure write; 
begin 
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outfix(latitude,2,5); outtext("degrees north,"); 
outfix(logitude,2,5); outtext("degrees east."); 
sub-write; ! write attributes specific to each subclass. 
outimage; · 

end of PLACE'write; 
end of PLACE; 

PLACE claaa TOWN; 
begin 

integer num_of_inhabitants; 
<Declaration of other Town attributes>; 

procedure sub-write; 
begin outtext(" number of inhabitants: "); 

outint(num_of_inhabitants, 0); 
end 

<Other declarations>; 
end of TOWN; 

Figure 3.18: Class PLACE using the virtual procedure write 

Simula uses the dot notation for remote access to attributes using the expression 

reference_expression.Att_name. This notation allows direct access to the attribute 

Att_name of the object pointed to by reference_expression. If the reference expression 

refers to "none" or to an object that does not contain the attribute Att_name, the 

evaluation of the expression returns an error. Examples of remote access [Kirkerud 89] 

are: 

ref(TOWN) my town; 
my town.latifude := 37.44; 
my-town.longitude := 58.29; 
my-town.num of inhabitants := 300000; 
my town.write;-

Simula supports the concept of protected attributes, so that attributes become 

inaccessible (invisible) from the outside of the class. The declaration "protected 

Att_name" makes the attribute Att_name inaccessible to neither subclasses nor users of 
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the class. This is similar to the private declaration in C++. To make protected attributes 

visible only to an immediate subclass, the subclass must include the declaration "hidden 

Att_name". Att_name is not visible to descendants of the superclass. This is similar to the 

protected declaration in C++. The declaration "hidden protected Att_name" can be used 

in the superclass to prevent an immediate subclass from accessing Att_name even though 

the subclass includes the declaration "hidden Att_name". Simula provides self-reference 

by means of pointers to objects. The declaration "this Class_name" refers to the current 

object of the class Class_name. Such object is called a local object. This is similar to the 

use of this in C++. 

3.3 Subtyping and Inheritance 

One important issue related to inheritance is subtyping. Various OOPLs relate 

subtyping to inheritance differently. Some languages including Smalltalk-80 and C++ 

(public derivation), view subtyping through inheritance between classes based on the 

structure hierarchy. In other languages, such as CommonObjects, subtyping is based on 

the behavior of the class objects rather than the structure. Below we examine the notion 

of subtyping and its relation to inheritance in some of the selected languages. 

CommonObjects provides explicit behavioral subtyping that is not related to 

inheritance. A class can be a subtype of any other class, and the subtyping hierarchy can 

be separated form the inheritance hierarchy. This approach hides the use of inheritance 

from descendant classes. Changing implementation of a subtype class does not affect its 

subtyping relationship with its supertype class as long as it provides the same behavior. 

In C++, inheritance is implicitly related to subtyping. When a subclass inherits all 

the superclass's methods (public derivation), it is a subtype of its superclass. A class 

cannot be a subtype of a non-ancestor class, and may not be a subtype of the superclass. 

The subtyping relationship between classes may be affected by changing the 



75 

implementation of the subtype class. For example, consider the classes REGULAR_ CAR 

and SPORT_CAR. When the class SPORT_CAR inherits all features of the class 

REGULAR_CAR, class SPORT_CAR becomes a subtype of the class REGULAR_CAR. 

If the design of the sport car is changed by eliminating some features of the regular car, 

then the class SPORT_CAR is no longer a subtype of the class REGULAR_CAR. 

Therefore, C++ subtyping hierarchy depends on the inheritance hierarchy when public 

derivation is used. 

In Trellis/Owl, behavioral subtyping is implicitly related to inheritance. Class X 

is a subtype of classY if and only if X is a descendant of Y. A subtype must inherit all 

methods of its superclass(es), and provide the same behavior. Thus, subtyping is a 

specialization of classes. A superclass cannot hide the use of inheritance form its 

descendant, and cannot separate the subtyping hierarchy form the inheritance hierarchy. 

Similarly, Smalltalk:-80 provides implementation-based subtyping that is implicitly related 

to inheritance. As a result of the hierarchical subclassing inheritance, the inheritance and 

subtype hierarchies are the same. That is, a subclass is a subtype of its superclass. 

3.4 A Binary-Tree Taxonomy Model 

OOPLs provide different inheritance mechanisms. A classification approach is 

presented in this section to provide a predictive framework to identify a new inheritance 

model in the space of inheritance models [Al-Haddad 91b]. The classification is based on 

major characteristics of inheritance in a number of well-known OOPLs (see Tables 3.3 

through 3.5 provided at the end of this chapter). Those characteristics are listed below. 

Cl) Type system provided (Static or Dynamic). 
C2) Inheritance mechanism (Single or Multiple). 
C3) Inheritance structure (Hierarchical or not). 
C4) Providing restricted external interface. 
C5) Providing semi-restricted external interface. 
C6) Providing restricted access to the instance variables. 
C7) Hiding the use of inheritance. 



C8) Hiding the instance variables. 
C9) Providing private methods. 
ClO) Providing metaclasses. 
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Cl is the type-checking system of the language, C2 is the inheritance relationship 

among classes, and C3 is the structure of inheritance. In the characteristics C4, C5, and 

C6, languages provide different external interfaces. Some languages provide un-restricted 

interfaces and hence exposing the contents of a class to other classes, thus providing full 

access to the instance variables and methods of a class; while other languages provide 

restricted interfaces in order to hide the variables of a class by allowing the access only 

via the external interface specifications. A restricted external interface of a class provides 

only the method specifications to inheriting classes. 

On the other hand, some languages provide semi-restricted external interfaces (in 

addition to the restricted ones) for certain inheriting classes. This rare situation exists in 

C++ [Stroustrup 86] and Eiffel [Meyer 88]. In C++, protected variables and friend 

declaration allow certain classes to directly access the private data of the defining class. 

Eiffel grants descendant classes (that inherit through the Inherit clause) full access to the 

class implementation; while other inheriting classes are granted restricted external 

interfaces providing them only the specifications of the superclass's methods. 

C7 is hiding the use of inheritance in the sense that inheriting classes do not know 

about the use of inheritance in the superclass(es) if present. In C8, the instance variables 

are hidden from the other classes and are accessible via methods of the external interface. 

In C9, classes may have private methods which are local to the defining class and are not 

available to other classes. Finally, ClO is that classes are instances of other classes 

(metaclasses). The variety of languages captured in this taxonomy is sufficient for the 

well-known languages considered in this chapter. These languages and their reference 

codes are given in Table 3.1. 



TABLE 3.1 

LANGUAGES CONSIDERED IN THE 
CLASSIFICATION TREE 

Language Code Language 

Trellis/Owl Ll CLOS 

C++ L2 Flavors 

Eiffel L3 Small talk 

CommonObjects L4 Simula 
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Code 

LS 

L6 

L7 

L8 

The proposed classification is given in the form of a binary tree in which all the 

characteristics are grouped into 4 sets for the sake of manageability of representation. A 

complete binary tree with ten characteristics would result in 1024 leaves. The grouping 

of several characteristics into internal nodes certainly reduces the descriptive and 

predictive power of the taxonomy. Each set of characteristics occupies one level on the 

tree. The sets, their characteristics, and their levels are given in Table 3.2. 

In the binary tree representation, a node represents one or more characteristics. In 

the representation of the characteristics Cl, C2, and C3, the left edge of the node 

indicates static type, single inheritance, and hierarchical inheritance structure; while the 

right edge indicates dynamic type, multiple inheritance, and non-hierarchal inheritance 

structure. For other characteristics, the left edge indicates the presence of the 

characteristic(s), and the right edge indicates their absence in the language being 

classified. 

The classification tree illustrated in Figure 3.19 represents the proposed 

classification of the selected languages in Table 3.1. It has four levels representing the 

sets of characteristics in Table 3.2. In Figure 3.19, the languages on the left edge of a 

node provide the characteristics represented in that node; while the languages on the right 

edge do not provide the represented characteristics. The fourth level (leaves) of the 
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TABLE 3.2 

NODE EXPANSIONS OF THE 
CLASSIFICATION TREE 

Node Level 

nO 0 

nl, n2 1 

n3 - n6 2 

n7 - n14 3 

LS 
n2 

L7 
L6 
LS 

LS 
L7 
L6 
LS 

Ll 
L2 
L3 
L4 

L4 
L3 
L2 

nl 
Ll 

Figure 3.19: 
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classification tree represents the resulting models in which all characteristics along the 

path from a leaf node to the root node are supported by the model. 

Each node of the classification tree is a subtree of the characteristics it represents. 

The height of a subtree of a node equals the number of characteristics represented in that 

node. The trees in Figure 3.20 through Figure 3.26 represent the subtrees corresponding 

to the internal nodes of the classification tree in Figure 3.19. Here, the nodes are denoted 

by the corresponding characteristics. The left edge of a node indicates the presence of the 

characteristic, and the right edge indicates the absence of the characteristic in the 

classified languages. 

-c16 ClO 
15 17 

18 Cl 
17 _______? 18 
16 ClO 
15 

C6 -{ClO 18 
17 Cl 
16 
15 ClO 

ce 
11 w{ClO 12 
13 Cl 
14 ____r 13 

ClO 
13 

C6 
11 
12 ____r 14 
14 ClO 

Cl 

____r 11 12 
ClO 

Figure 3.20: The subtree nO 
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Figure 3.25: The subtree n5 Figure 3.26: The subtree n6 
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In each of the subtrees, the leaf nodes are grouped into two sets, each set goes 

along one edge of the node. These sets are the languages annotating the edges of the 

classification tree. For instance, in the subtree nO in Figure 3.20, L1, L2, L3, and L4 go 

to nl in the classification tree; while L5, L6, L7 and L8 go to node n2. Likewise, the leaf 

nodes of other subtrees (n 1 through n6) are grouped into two sets annotating the edges 

of the represented node in Figure 3.19. 

Note that The left edge of the node C1 in Figure 3.20 indicates statically types 

languages and the right edge indicates dynamically typed languages. Moreover, the left 

edge of node C2 in Figure 3.23 and Figure 3.24 indicates single inheritance and the right 

edge indicates multiple inheritance. The left edge of node C3 indicates hierarchical 

inheritance and the right edge indicates non-hierarchical inheritance. 

The subtrees corresponding to the nodes n7 through n14 of the classification tree 

are at most one-node trees since each node represents one characteristic. They are obvious 

from the classification tree in Figure 3.19. For instance, the subtree n7 is empty, and the 

subtree n9 is one-node tree in which L2 annotates the left edge and L3 annotates the right 

edge. The annotations on the edge leading the leaf nodes are the same as the 

corresponding leaf nodes. 

3.5 Discussion 

In [Snyder 86a], Snyder examined the relationship between inheritance and 

encapsulation. He has proposed several requirements for full support of encapsulation with 

inheritance. In the rest of this section, the selected languages are briefly analyzed with 

respect to their support for these requirements. These requirements are listed below. 

1) Providing different external interfaces for both instances and inheriting classes of 
a class; 

2) Hiding the instance variables and class implementation from the inheriting classes; 
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3) Accessing the instance variables through methods provided is the external 
interface; 

4) Hiding the use of inheritance from inheriting classes; 

5) The ability of defming private methods for the benefit of inheriting classes; and 

6) Granting inheriting classes the ability to exclude certain methods from their 
external interface; 

CommonObjects, C++, and Trellis/Owl provide different external interfaces for 

instances and the inheriting classes of a class. Smalltalk:-80 provides the same external 

interface for instances and inheriting classes. Classes of CommonObjects and C++ hide 

the instance variables and the use of inheritance from the inheriting classes. Smalltalk-80 

and CLOS expose both instance variables and the use of inheritance outside the class 

definition, and grant inheriting classes full access to the instance variables of the 

superclass. In Flavors, a flavor cannot hide the use of inheritance since variables and 

methods of the component flavors are visible to the inheriting flavors. 

Since subclassing in Trellis/Owl is based on behavior, classes cannot hide the use 

of inheritance, and inheriting classes must inherit all methods defined in the superclass. 

But the instance variables are hidden in the class, and are accessed through methods 

provided in the external interface. Since C++ and Trellis/Owl provide private data, users 

may defme private methods for the benefits of the inheriting classes, while other 

languages do not support this feature. 

In CommonObjects, C++, and Trellis/Owl, inheriting classes may exclude methods 

defmed in the external interface of the superclass. Users of CLOS and Flavors may select 

certain methods from different classes through the defmition of the generic function. 

Because Smalltalk-80 grants inheriting classes full access to the superclass and like 

Trellis/Owl, inheriting classes must inherit all methods defined in the superclass. Other 

features of the selected languages are provided in the Tables 3.3 through 3.5. 

Several comparison surveys are found in the literature. Here, we highlight a few 
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of them. E. Seidewitz [Seidewitz 87] compared the capabilities of Ada and Smalltalk-80 

from an object-oriented prospective. He addressed the basic properties of encapsulation, 

inheritance, and binding in object-oriented programming. He focused on comparing the 

object-oriented capabilities in Smalltalk:-80 with the object-oriented features of Ada and 

modula. 

J. Micallef [Micallef 88] provides a comparison survey of OOPLs in terms of their 

support for encapsulation, reusability, and extensibility as objectives of the object-oriented 

paradigm. Several other papers including [Bezivin 87], [Meulen 87], and [Blaschek 89] 

discuss simulation experiments in OOPLs, and the flexibility and reliability gained from 

the inheritance property and other properties of the OOP methodology. 

In [Klint 86], Klint addressed a comparison between the algorithmic and OOPLs 

from a perspective of code reusability which is a form of the inheritance concept. He also 

reviewed the features required, including inheritance, to obtain OOP in a non OOPL. 

3.6 Summary 

In this chapter, we have discussed three major aspects of OOP: inheritance 

techniques, access mechanisms, and relating subtyping to inheritance. Current OOPLs 

address these aspect differently, and have different deficiencies in their support for other 

issues such as data encapsulation, information hiding, and the visibility of inheritance. 

Inheritance has different interpretations and purposes in the OOP. In the selected 

languages, inheritance impacts the other issues in varying degrees. In CommonObjects, 

C++, and trellis/Owl, the inheritance mechanisms and access techniques do not 

compromise data encapsulation, and provide for flexible software development. While in 

Smalltalk-80 and Flavors, the inheritance mechanisms and access techniques compromise 

data encapsulation and limit the flexibility of program development. 

Various OOPLs relate subtyping to inheritance differently. In some languages, they 



-
84 

are related based on the class implementation; while in other languages are related based 

on the behavior rather than the implementation. Behavioral subtyping separates the 

inheritance hierarchy from the subtyping hierarchy, and does not compromise data 

encapsulation and the visibility of inheritance. Implementation-based subtyping 

compromises data encapsulation and the visibility of inheritance, and the inheritance and 

subtyping hierarchies are dependent. 

In Section 5, Snyder's requirements for supporting encapsulation with inheritance 

are introduced. The selected languages are analyzed in terms of these requirements. The 

inheritance mechanisms of CommonObjects, C++, and Trellis/Owl support most of these 

requirements. 
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TABLE 3.3 

FEATURES OF THE SELECfED LANGUAGES (1) 

Feature/LanguageiTrellis/Owl C++ Eiffel ConunonObjects 

Language Type Static Static Static Dynamic 

Multiple 
Inheritance Yes Yes Yes Yes 

Hierarchal 
Inheritance Yes Yes Yes Yes 

External Restricted Restricted Restricted 
Interface Restricted & semi Rest. & semi Rest. & semi Rest. 

Accessing the 
Inst. Variables Restricted Restricted Full Restricted 

Use of 
Inheritance Exposed Hidden Hidden Hidden 

Visibility of 
Inst. Variables Invisible Invisible Invisible Invisible 

Same-named 
Inst. Variables Yes Yes Yes Yes 

Private Methods Yes Yes No No 

MetaClasses No No No No 
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TABLE 3.4 

FEATURES OF THE SELECfED LANGUAGES (2) 

Feature/Language I CLOS Flavors Srnalltalk-80 Sirnula 

Language Type Dynamic Dynamic Dynamic Static 

Multiple 
Inheritance Yes Yes No No 

Hierarchal 
Inheritance Yes No Yes Yes 

External Un- Un- Un-
Interface Restricted Restricted Restricted Restricted 

Accessing the 
Inst. Variables Full Full Full Full 

Use of 
Inheritance Exposed Exposed Exposed Hidden 

Visibility of 
Inst. Variables Visible Visible Visible Visible 

Same-named 
Inst. Variables Yes Yes No Yes 

Private Methods Yes No No No 

MetaClasses Yes No Yes No 
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TABLE 3.5 

FEATURES OF THE SELECfED LANGUAGES (3) 

Language/Featurelcommunication Approach Direct Invocation Construct(s) 

Trellis/Owl Procedure Call me I P' OP (me, ... ) 
C++ Function Call this I " .. " 
Eiffel Procedure Call x:ClassType I x.method name 

CommonObjects Message Passing call method 

CLOS Generic Function call next method 

Flavors Generic Function self 

Smalltalk-80 Message Passing self I super 

Simula Procedure Call this 



CHAPTER IV 

APPROACHES TO REUSABILITY IN 

C++ AND EIFFEL 

4.1 Introduction 

Concepts in software technology such as commonality, portability, modularity, 

maintainability, and evolution are closely related to the concept of reusability. In the 

development of new software systems, Freeman [Freeman 83] suggested that the needed 

information can be classified into five levels. Figure 4.1 is adopted from [Freeman 83]. 

It illustrates these levels along with the information types in each level where the arrows 

imply a reuse relationship between these types. At the lowest level (Code Fragment), 

reusability of source code is a primary objective of software development. 

OOP is one of the methodologies in which reusability can be practiced effectively 

by utilizing existing programs as well as producing new programs that can be reused in 

future developments. Reusability helps reduce the cost of software development and 

makes the software design and development tasks easier and more reliable. The two 

important language concepts that support code reuse are polymorphism and inheritance. 

This chapter is devoted to study the language support for code reuse. The languages C++ 

[Stroustrup 86,91] [AT&T 89a] and Eiffel [Meyer 88] are used as cases to explore how 

inheritance and polymorphism are incorporated into languages. C++ is an extension of the 

C language; while Eiffel is a new languages definition. We compare and contrast their 

support for reuse in terms of inheritance, polymorphism, and other related issues. 
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Figure 4.1: Hierarchy of software development information 
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The class concept is the key for reusability and extensibility [Tracz 88] 

[Biggerstaff 89 a,b]. Classes can be combined and modified to create new classes (for 

new applications) by utilizing the concepts of inheritance and polymorphism [Edelson 87]. 

Unlike object-based inheritance models [Hailpern 87] [Ungar 87], C++ and Eiffel provide 

class-based inheritance models. Inheritance is used as a mechanism for code sharing 

among classes to construct new software components from existing ones. The new class 

differs from the superclass(es) in the way it is derived. A new class may extend its 

superclass(es) by adding new methods and variables, or may specialize its superclass(es) 

by redefining some of the inherited methods [Strom 86]. 

Another concept that supports software reuse is polymorphism. Polymorphism 

provides the capability of using a function with objects of different types. Polymorphism 

can be divided into ad hoc polymorphism and parameterized polymorphism. Most 

programming languages provide some degree of ad hoc polymorphism by providing 
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overloaded operators and parameterized polymorphism is beginning to be incorporated 

into programming languages. We follow the Eiffel terminology; the term "generic" is used 

in place of parameterized polymorphism and polymorphic entities refer to objects of a 

type whose values may change during the execution time [Meyer 88a]. Ad hoc 

polymorphism will be referred to as overloading. The term polymorphism will be used 

in the general sense to include generic, overloaded, and polymorphic entities. 

Libraries of specialized routines are created to facilitate code reuse. OOPLs 

provide libraries of classes (to be imported into specific applications) as an approach to 

reusability. Libraries provide classes of fixed functionality that cannot be modified in a 

target application. Libraries of highly parameterized functions would increase code 

reusability and help programmers to develop new software systems more efficiently 

[Wegner 83]. 

In this chapter we describe the major features that support reuse in the selected 

languages Eiffel and C++ [Al-Haddad 9lc]. We describe the concept of inheritance and 

its related issues (by means of examples) as an approach to reusability. The various 

language features are compared and contrasted from reusability and extensibility point of 

views. 

4.2 Design Objectives and Highlights of the Two Languages 

In this section we describe the major aspects of Eiffel and C++ in terms of their 

support for inheritance, polymorphism, and other related issues. Tables 4.1 and 4.2 

provide a summary of features that impact reusability and extensibility in both languages. 

4.2.1 Eiffel 

Eiffel is an OOPL designed in late 1985. The main objectives of its design are 

efficiency, reliability, reusability, extensibility, modularity, and portability. Eiffel is 
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designed as a new language rather than an extension of an existing language. In addition 

to its simplicity and design consistency, Eiffel provides a set of powerful tools such as 

a library of classes for 1/0 operations and string manipulation, assertions, support for 

using code written in other languages, generation of portable C packages, graphics 

package GOOD (Graphics for Object-Oriented Design), and garbage collection. 

TABLE 4.1 

INHERITANCE AND RELATED ISSUES IN C++ AND EIFFEL 

Inheritance 
and related 
issues 

Inheritance 
type 

Inheritance 
mode 

Inheriting 
groups 

Information 
hiding 

Genericity 

Polymorphic 
assignment 

Dynamic 
binding 

Abstract 
classes 

Overriding 
and renaming 
of methods 

Creation 
routines 

Language 

C++ 

Multiple Inheritance 

Selective (inherit 
what you need) 

One group (derived 
classes) 

Applied strongly 

Limited by use of 
macro 

Not applicable 

Provided for virtual 
routines of a class 

Applicable in the 
new release 2.0 

Only overriding is 
applicable 

Creation routines 
are inherited 

Eiffel 

Multiple Inheritance 

Non-selective (inherit 
all or none) 

Two groups (clients and 
descendant classes) 

Applied to clients not 
to descendant classes 

Unconstrained and comp
atible with inheritance 

Constrained by 
inheritance 

Provided for all 
methods of a class 

Applicable and called 
deferred classes 

Both are applicable 

Creation routines never 
inherited directly 



TABLE 4.2 

VISffill...ITY AND INTERFACES IN C++ AND EIFFEL 

Interface 
entities/ 
features 

Class 
methods 

Data repre
sentation 

Instance 
variables 

Exclusion 
of methods 

Availabi
lity of 
methods 

Same-named 
methods 

Naming 
conflicts 
of methods 

Visibility 
options 

Visibility 

C++ 

Public methods are 
visible to clients and 
protected methods are 
visible to derived 
classes 

Public data is visible 
to derived classes 

Hidden and accessed 
via inherited methods 

Applicable 

Class methods are 
equally available to 
other class (es) 

Classes can have 
same-named methods 

Resolved by the 
resolution operator 

n • •" .. 
Several options are 
provided based on the 
base class type and 
the data declaration 

Eiffel 

Exported methods are 
visible to clients and 
all methods are visible 
to descendant classes 

Public and private data 
are visible to 
descendant classes 

Visible and accessed 
directly by descendants 

Not applicable 

A class can export some 
features to certain 
related classes only 

Classes can have 
same-named methods 

Resolved by the 
renaming mechanism 

Few options based on 
whether clients or 
descendants 
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Eiffel is a statically-typed language. It provides multiple inheritance reconciled 

with dynamic typing and strong type checking. A class provides private and public data 

to maintain information hiding and encapsulation. In addition, a class contains the 

implementation of its methods. Eiffel provides two groups of inheriting classes. The first 

group consists of client classes that include declaration of the form var _ name:CiassType 

where var_name is a variable name and ClassType is a defined class. Client's 

inheritance is a has-a relationship. The second group consists of descendant classes that 

inherit explicitly from one or more other classes through the inherit clause declaration. 
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This inheritance relationship is characterized as an is-a relationship. Features (methods 

and variables), such as Create, Forget, Clone, and Result, are not inherited and are 

applicable to all classes. Eiffel provides two clauses: Feature which describes all 

variables and methods of the class, and Export which provides all features available for 

client classes. Class features listed within the export clause are public while other features 

are private. Different classes may have same-named methods and a class may inherit the 

same method from different classes. 

Information hiding provided by the export control allows a class to export certain 

features (variables and methods) to its clients. Eiffel introduces the Open-Closed principle. 

That is, classes are open for descendants for extension and reuse; while classes are closed 

to be accessed through their interfaces by clients. The public/private mechanism is applied 

to clients of a class, exported features are visible and accessible to clients; while features 

not exported are neither visible nor accessible. For descendants, everything is visible and 

directly accessible. Therefore, a descendant class may depend on the implementation of 

its superclass(es). For instance, one may implement the class STACK as an Array, then 

the class STACK depends on the implementation of the class ARRAY. 

Polymorphism and dynamic binding mechanisms allow users to define 

polymorphic entities that refer to different instances of different classes. Polymorphism 

is limited by inheritance to achieve type compatibility. If the classY is a descendant of 

the class X, entities of type X can be assigned to entities of type Y (x:=y), not the other 

way [Meyer 88b]. 

A deferred routine is a routine that is defined in a superclass and implemented in 

a descendant class. A class that contains one or more deferred routines is called a deferred 

class. Deferred classes do not have instances. They provide common behavior among 

classes to increase code reusability and class extensibility. The deferred classes also allow 

users to provide different implementations of abstract data types. Non-deferred classes are 

called effective classes. 
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4.2.2 C++ 

C++ version 2.0 [Stroustrup 91] [AT&T 89b] provides multiple inheritance along 

with other features as a modification of and extension to the old version [Stroustrup 86]. 

The new release is intended to provide efficient and reliable use of the class concept and 

to provide tools for creating libraries of user-defined types for different applications. 

C++ provides OOP with multiple hierarchical inheritance by means of class 

declarations. Class declarations divide classes into sections to limit the visibility of the 

class contents to other classes. A class may include public, private, and protected sections. 

Each section contains members (variables and methods) of the same degree of visibility. 

C++ inheritance is an is-a relationship. A derived class is a specialization of the 

base class(es). It combines features of its base class(es) to provide new composite features 

(concepts). A derived class inherits what it needs from base class(es), it may override 

undesired inherited methods, and may add new variables and methods. Inheritance 

supports information hiding and provides restricted and reliable external interfaces for 

clients and derived classes. 

Overloading does not solve the problem of reusability. Overloading operations 

allows an operation name to provide different meanings. Thus, an operation can have 

different implementations. The 2.0 version overcomes the ambiguity of overloaded 

function names in different libraries by providing an improved linkage scheme. This 

scheme provides satisfactory solution for working with overloaded functions in the 

construction, combination, and usage of libraries. Moreover, the new linkage scheme 

allows users to access functions in libraries of other languages using the appropriate 

linkage specifications. 

The external interfaces provided for instances and derived classes include 

specification of the methods defined in the superclass(es). An instance of a derived class 

includes only the instance variables used by the inherited methods from the superclass(es) 
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and not all of the superclass's instance variables [Gorlen 87]. Every object of a derived 

class has its own copy of the superclass's private variables, as well as its own private 

variables. 

C++ version 2.0 introduces the notions of pure virtual functions, abstract classes, 

and virtual base classes. A pure virtual function is a function that does not have a 

definition in the defining class. An abstract class is a class that contains at least one pure 

virtual function. These features allow users to provide different definitions of a function 

in different classes. A virtual base class is an extension of the base class concept. They 

allow a class to share data from its multiple superclasses, which are represented as 

pointers to the shared data structure for the virtual base class. 

Public/protected/private mechanism provides different levels of visibility and data 

hiding for the class contents. In multiple inheritance, the visibility rules are applied to 

base classes individually. When a derived class includes private and public base classes, 

the visibility rules are applied to each base class as in single inheritance. Restricted 

visibility provides strong encapsulation in which the inheritance hierarchy is more 

adaptable to change and grants the designer the freedom to change the class 

implementation without affecting its clients. 

The concept of friend classes is another option of visibility that allows a classes 

to grant access to its private data by other classes. Thus a set of private defmitions in a 

class can be available to specific classes. 

4.3 Inheritance and Reusability 

In this section we illustrates by means of examples how inheritance and its related 

issues are used as approaches to reusability in Eiffel and C++. Eiffel examples are 

adopted and simplified from [Meyer 88b] and C++ examples are the C++ code that 

correspond to the Eiffel's examples. 
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4.3.1 Eiffel 

Eiffel's single inheritance mechanism is illustrated in Figures 4.2 and 4.3 adopted 

from [Meyer 88]. In Figure 4.2, the class EFFECI'NE_LIST[T] describes the general 

features of lists using an array implementation; while in Figure 4.3 the class ST ACK[T] 

is a descendant of the class EFFECTIVE_LIST[T]. Class STACK[T] modifies inherited 

features and adds new features. For descendant classes, inheritance is described through 

the inherit clause. Syntactically, the inherit clause explicitly provides the names of the 

superclass(es). For instance, the statement 

inherit EFFECTIVE_LIST[T] 

in Figure 4.3 makes all contents of the class EFFECTIVE_LIST[T] available for class 

STACK[T]. 

class EFFECTIVE LIST[T] export 
nb elements, position, empty, full, offright, 
offleft, value, change value, add_new; 
--Other features ... -

feature 
nb elements: INTEGER; --number of the list'selements 
max size: INTEGER; -- list maximum size 
position: INTEGER; -- cursor position 
implementation: ARRAY[T]; --list implementation 

create {n: INTEGER) is -- create a list of size n elements 
do if n>O then max size :- n end; 

implementation.create(l, max_size) 
end; 

empty: BOOLEAN is -- is list empty? 
do Result := (nb_elements = 0) end; 

full: BOOLEAN is -- is list full? 
do Result :- (nb_elements - max_size) end; 

offright: BOOLEAN is is cursor off right edge? 
do Result := empty or (position = nb_elements+l) end; 

offleft: INTEGER is is cursor off left edge? 
do Result := empty or (position = 0) end; 

value: T is -- value of element at cursor position 
require not offleft; not offright; -- not empty 
do Result := implementation.entry(position) end; 
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change_value(v:T) is --assign v to element at cursor position 
require not offleft; not offright; -- not empty 
do implementation.enter(position, v); 
insure value - v; implementation.entry(position) - v; 
end; 

add new(v: T) i8 -- add new element to the right of list 
require (nb_elements < max_size); --not full 
do nb elements := nb elements + 1; 

implementation.enter(nb elements, v); 
insure implementation.entry(nb elements) - v; 

nb elements :- o1d nb elements + 1 
end; 

-- ... Many other features 
invariant 

0 <= position; position <= nb_elements + 1; 
not empty or e1se (position= 0); 
empty= (offleft and offright); 
offright- empty or (position= nb elements+ 1); 
offleft- empty or (position= 0);-

end; -- class EFFECTIVE LIST 

Figure 4.2: Definition of the class EFFECTIVE_LIST[T] 

c1a88 STACK[T] export 
push, pop, top, full, empty, nb_elements 

inherit EFFECTIVE LIST[T]; 
rename value as top, add new as push, create as list create; 
redefine top; 

feature 
implementation: ARRAY[T]; 
create (n: INTEGER) is --allocate a stack of n elements 

do list_create (1, n) end; 

pop: T i• -- pop top value 
require not empty; 
do nb elements := nb elements - 1; 
ensure nb elements =-o1d nb elements - 1; 
end; 

top: T is -- return top element 
require not empty; 
do Result := implementation.entry(nb_elements) 
end; 

end; -- class STACK 

Figure 4.3: The class STACK[T] is a subclass of the class EFFECTIVE_LIST[T] 
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Since descendant classes have full access to the public and private features of the 

superclass(es), renaming and redefinition properties allow descendant classes to rename 

and/or redefine undesired features. For example, the class STACK[T] in Figure 4.3 

redefines and renames the inherited features value, add_new, and create from the class 

EFFECTIVE_LIST[T] to provide an appropriate implementation for the class STACK[T]. 

Redefinition and renaming have different purposes. Redefinition of a feature associates 

the name with new feature, while renaming associates the same feature with a new name. 

Thus, redefinition provides different features under the same name and renaming provides 

different names for the same feature. 

claaa FIXED_LIST[T] export 
... Same exported features as in class LIST[T] 

inherit ARRAY[T] rename create aa array create; 
LIST [T] redefine i_th, change_i_th, swap, go; 

feature 
create(n: INTEGER) is allocate stack of n elements 

do array create(l,n); 
check n = size end; 

nb elements := n; 
end; -

value: T is -- Value of element at cursor position 
do Result :- entry(position) end 

change value(v:T) is --Assign v to cursor position entry 
do enter(position, v); 
enaure value v; entry(position) = v 
end; 

i th(i: INTEGER): T ia --Return value of i the entry 
- require 1 <- i; i <- nb elements; 

do mark; go(i}; Result :- entry(i}; return; 
enaure value - v 
end; 

change i th(i:INTEGER, v:T) is -- change the i th entry 
require 1 <= i; i <= nb elements 
do mark; go(i}; enter(i~v); return 
enaure value - v; entry(i) - v 
end; 
--Definitions of other features ... 

end; -- class FIXED LIST 

Figure 4.4: Definition of the class FIXED _LIST[T] 
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A class with no deferred routines is called an effective class. Multiple inheritance 

allows users to use features of an effective class to implement routines of a deferred class. 

In Figure 4.4, the class FIXED_LIST[T] describes a fixed-length list using an array 

implementation (complete listing of the classes LIST[T] and ARRA Y[T] can be found in 

[Meyer 88b, pages 452 to 641]). Class ARRAY[T] is an effective class, and the class 

LIST[T] is a deferred class. Class FIXED _LIST[T] inherits the properties of the class 

ARRA Y[T] and provides implementations for deferred routines in the class LIST[T]. 

Class ARRA Y[T] sets the bounds of a fixed-length list and provides its methods to access 

the ftxed-length list's entries. 

The possibility of redefining inherited feature is provided for descendant classes 

as a property of multiple inheritance. The class FIXED_LIST[T] in Figure 4.4, adopted 

from [Meyer 88], renames the method create from the class ARRA Y[T] to be invoked in 

its own create method; it also redefines some features of the class LIST[T] to fit its 

implementation since these features are provided to serve unbounded lists. 

Eiffel introduces the notion of repeated inheritance. This notion allows classes to 

inherit more than once from ancestor class(es). For instance, one may rewrite class 

FIXED_LIST[T] as follows: 

class FIXED LIST[T] export ... 
inherit ARRAY[T] rename 
inherit LIST[T] rename 
inherit ARRAY[T] rename 
inherit LIST[T] rename 

4.3.2 C++ 

redefine 
redefine 
redefine 
redefine 

C++ version 1.0 provides single inheritance where a base class defined the 

common features of related classes. This is a simple form of inheritance which is 

provided by all OOPLs. To provide the ability of redefining an inherited method, the 

virtual feature needs to be used. Figure 4.5 and Figure 4.6 provide sample definition of 
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single inheritance. The classes LIST and STACK are functionally equivalent to those 

defined in Figures 4.2 and 4.3. 

#include <stream.h> 
#include <string.h> 
conat char* msg[] - II array of error messages. 
{ "Overflow. \n", "Underflow. \n", "Cursor off the left edge. \n", 

"Cursor off the right edge.\n", "List is not empty.\n"' 
"Index out of range.\n" }; 

claaa LIST 
{ public: 

} ; 

int* 1st; // pointer to a list 
int max size; II maximum size of a list 
int nb elements; // number of elements in a list 
int position; // cursor position 
virtual int empty(); // is list empty? 
int offright(); // is cursor off right edge? 
int offleft(); // is cursor off left edge? 
virtual int value(); //read from current position 
void change value(int); //write to current position 
void add new(int); // add to the right of list 
void forth(); //move cursor 1 position ahead 
virtual void back(); //move cursor 1 position back 
virtual void go(int); //Go to the i_the entry 
virtual int i_th(int); //Return the i_th entry 
virtual int change_i_th(int, int); //Change the i_th entry 
virtual void swap(int); //Swap positioned and i th entries 
void init() // initialize variableS~ 

{ nb elements = 0; position = 0; } 
void error_msg(int e_num) // issue an error message 

{ cout << msg[e num]; } 
LIST(int size) - II constructor 

{max size- size; 1st- new int[size]; } 
~LIST{) { delete 1st; } // destructor. 

int LIST::empty() //is list empty? 
{return (nb_elements == 0); } 

int LIST::offright() //is cursor off right edge? 
{return ((empty()) I I (position== nb_elements)); } 

int LIST::offleft() //is cursor off left edge? 
{ return ((empty) II (position == 0)); } 

int LIST::value() //return value at cursor position 
{if (offleft()) error msg(2); 

else if (offright())-error msg(3); 
elae return lst[positTon]; } 

int LIST::change value(int v) 
//change value at cursor position 

{ if (offleft()) error_msg(2); 
elae if (offright()) error_msg(3); 



else lst[position] = v; } 

1nt LIST::add_new(int v) II add new entry to list 
{if (nb elements> max size) error mag(O); 

else {-if (nb elements == 0) position = 1; 
lst[++nb_elements] = v; } } 

int LIST::forth() II move cursor one position ahead 
{if (affright()) error mag(3); 

else ++position; } -

1nt LIST::back() II move cursor one position back 
if (offleft()) error msg(2); 
el•e --position; } -

II Definitions of other features such as go, i_th, 
II change_i_th, swap, ... 

Figure 4.5: Definition of the class LIST 
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In Figure 4.5, the class LIST defines a subset of the methods of a general list. The 

class STACK is derived from the class LIST since stacks are lists with restricted accesses. 

The class STACK redefmes inherited methods and adds a new method. In this example, 

class STACK : public LIST 
{ public: 

} ; 

int empty(); 
void back{) : 
int value {) ; 
void push(int); 
STACK(int size) (size) {} 

II is stack full? 
II pop top value 
II return top value 
II push on top 
II constructor 

int STACK:: empty() II is stack full? 
max_size); } { return (nb_elements 

int STACK: :back() I I pop top value 
{ 1f (nb elements'""""' 0) cout<<"Stack is empty ... \n"; 

else -=nb_elements; } 

int STACK::value() II return top value 
{if (list::empty()) error msg(l); 

e1ee return lst[nb_elements]; } 

int STACK::push(int v) II push onto top 
{ list::add_new(v); } 

Figure 4.6: Class STACK is derived from the class LIST 
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the main program in Figure 4.7 creates the list L and the stack S of at most three 

elements. In the class STACK, the method push shows the direct invocation of the base 

class method add_new. One may remove the function push from the class STACK and 

directly use the method add_new (in Figure 4.5) on stackS in the main program (e.g., 

S.add_new(lOO)). 

If the class LIST in Figure 4.6 is defined to be private base-class of the class 

STACK using the declaration 

class STACK: Private LIST{ ... } 

then the public data of the class LIST are private to the class STACK and are not 

available to users of the class STACK. Virtual functions imply using the body of 

inherited method in the derived class. Thus, different versions of the inherited method 

may be defined for different derived classes. For instance, the virtual function valueO is 

being modified in the derived class STACK, and the new version of the function value 

is executed when the invocation "STACK::value" is issued. Thus, "LIST::value" returns 

the entry at the current position and "STACK::value" returns the top element of the stack. 

main() 
{ int s ~ 3: II size 

} ; 

LIST L(s); II create list L of three entries 
STACK S(s); //create stackS of three entries 
L.add new(lO);L.add new(20);L.add new(30); II initialize L 
S.push(lOO); S.push(200); S.push(300); II initializeS 
cout << L.value() <<"\n"; II print value 10 from L 
L.forth(); L.forth(); II move cursor ahead twice 
cout << L. value() <<"\n"; I I print value 30 from L 
L.back(); //move cursor back once 
cout << L.value() <<"\n"; II print value 20 from L 
cout << S.value() <<"\n"; II return value 300 from S 
S.back(); II pop top value (300) 
cout << S. value() <<"\n11 ; I I return value 200 from S 

Figure 4.7: The main program 

C++ classes may have same-named methods. The scope resolution operator"::" 
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helps users avoid naming conflicts of methods by explicitly specifying the invoked 

methods (e.g, "LIST::add_new(v)" in the class STACK). In addition, type and number of 

a method's arguments can specify the invoked method [Pinson 88]. 

The new release of C++ [Stroustrup 91] [AT&T 89b] introduces multiple 

inheritance in the sense that a class may have more than one base class. A derived class 

combines independent features of the bases classes. The class ARRAY _LIST in Figure 

4.9 inherits from the classes ARRAY in Figure 4.8 and LIST in Figure 4.5. It combines 

properties of the classes ARRAY and LIST to provide a fixed-length list using an array 

implementation. The declaration 

class ARRAY LIST : public ARRAY, public LIST 

implies that the public data of the base classes is public to class ARRAY _LIST. 

c1aaa ARRAY 
{ private: 

int area; 
pub1ic: 

int lower; 
int size; 
int upper; 
int entry(int); 
void enter(int, 

II ... Constructor, 
} ; 

II Array entries 

II Array lower bound 
II Maximum array size 
II Array upper bound 
II Return the i th entry 

int); II Assign the i_th entry 
destructor, and initialization 

int ARRAY::entry(int i) II is list empty? 
{ II if upper< i < lower then error index out of range 

II else return the i-th element. } 

void ARRAY::enter(int i, int v) II is cursor off right edge? 
{ II if upper < i < lower then error index out of range 

II else assign value v to the i-th entry. } 

Figure 4.8: Definition of the class ARRAY 

To illustrate the notion of abstract classes, one may define the class LIST in 

Figure 4.5 as an abstract class. The definition of the abstract class LIST is given in Figure 

4.10. The class ARRAY_LIST provides the definition of the pure virtual functions using 
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an array implementation. Functions entry and enter of the class ARRAY are used to 

manipulate elements of ARRAY _LIST. The abstract class LIST provides alternatives for 

list implementation. 

claaa ARRAY_LIST : public ARRAY, public LIST 
{ public: 

} ; 

void go(int); //Go to the i_the entry 
int i_th(int); //Return the i_th entry 
int change i th(int, int); //Change the i th entry 
void swap(int); //Swap positioned and i_th-entries 

int ARRAY_LIST::go(int i) //Go to the i th position 
{ // move cursor to the i-th position }-

int ARRAY_LIST::i_th(int i) //Return the i_th entry 
{ if (1 <= i) II (i <= nb elements) error msg(5); 

alae {mark; go(i); - -
return entry(i); } } 

int ARRAY LIST::change i th(int i, int v) 
{if (1-<= i) I I (i <=-nb elements) error _msg(5); 

else -
{mark; go(i); enter(i,v); } } 

int ARRAY_LIST::swap(int i) //swap entries 
{ // swap the i_th entry the current positioned entry } 

II ... Other redefined inherited methods from class list 

Figure 4.9: Class ARRAY _LIST inherits from both ARRAY and LIST classes 

claaa LIST 
{ public: 

} : 

II 
virtual void go(int) - 0; II Go to the i the entry 
virtual int i th(int) - 0; II Return the I th entry 
virtual int change i th(int,int) - 0; 

-- II Change the i th entry 
virtual void swap(int) = 0: -

//Swap positioned and i th entries 
II 

II Definitions of non-pure virtual functions. 

Figure 4.10: The definition of the abstract class LIST 
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4.4 Discussion 

In this section we contrast C++ and Eiffel in terms of inheritance and related 

issues as approaches to reusability and extensibility. The notion of abstract classes (along 

with the notion of pure virtual functions) in the new release of C++, and the notion of 

deferred classes in Eiffel have significant role in using the inheritance issues to support 

reuse. They allow users to partially implement abstract data types in order to provide 

different implementations of data types. Pure virtual function and deferred routines also 

provide more options for the definitions of functions. Such notions are not provided by 

most of other OOPLs. 

The notion of inheritance in C++ can be viewed as an is-a relationship between 

base classes and derived classes where subtype/supertype relationship may not be 

appropriate [Danforth 88]. For instance, in Figure 4.6, the class STACK is a list but not 

a subtype of the class LIST. On the other hand, the notion of inheritance in Eiffel implies 

behavioral subtyping among classes. The class Y is a subtype of the class X if and only 

if the class Y is a descendant of the class X. Here, the subtype inherits all of the 

superclass' features and pr~vides the same behavior. For instance, in Figure 4.3, the class 

STACK[T] is a subtype of the class EFFECTIVE_LIST[T] and provides the same 

behavior. 

In the case of multiple inheritance, there is a high possibility for the occurrence 

of naming conflicts. The solution provided for such conflicts is different from one 

language to another. In C++, classes may have same-named functions. Ambiguity arises 

when same-named function have the same visibility level (private, protected, or public) 

in their classes. Moreover, in the case of virtual base classes, a derived class may refer 

to an ancestor class more than once through its base classes. Thus, more than one copy 

of an ancestor class may exist in the derived class and ambiguous access to the ancestor 

class may arise. C++ and Eiffel involve the programmer in the solution and leave to 
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him/her the responsibility of avoiding such clashes. However, their approaches are 

different. While C++ provides the resolution operator, Eiffel provides a renaming 

mechanism to solve name clashes. Eiffel' s approach allows users to provide the proper 

names of inherited features in the descendant class(es) without having to define new 

features. For example, the names push and top in Figure 4.3 are more appropriate stack 

terminologies than the names add_new and value used in the class LIST (Figure 4.5). 

C++ and Eiffel implement inheritance differently. C++ allows classes to simply 

inherit the desired features from their base class(es) and reject the undesired ones. Unlike 

C++, Eiffel's descendant classes cannot reject undesired features, a descendant class must 

override undesired features by introducing new definitions. Eiffel follows thi~ approach 

to maintain its Open-Closed principle as an approach toward reusability. 

A significant advantage of the export mechanism in Eiffel is that users can relate 

a group of classes together by exporting features to certain group of classes (by indicating 

the destination in the export clause) and not to others. For instance, 

class LIST[T] export 
is empty {FIXED LIST, LINKED LIST, STACK}, 
push {STACK}, pop {STACK}, 

allows to group the classes FIXED_LIST[T], LINKED_LIST[T], and STACK[T] together 

through sharing the function is_empty. Thus. certain features of a class are available to 

related classes and not to other classes. A higher structuring level can be achieved by 

using this mechanism. However, C++ does not provide such a feature and all members 

are left equally available to all other classes. However, by using the friend declaration, 

users can provide private functions to specific classes and then relate them to their 

superclass through their friend relationship. 

The presence of export control and granting descendant classes full access to 

superclass(es) in Eiffel may result in side-effects. A descendant class may export features 

inherited from other classes that were private and may hide inherited features that were 
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public in the superclass(es). Such side-effects compromise the visibility rule applied to 

the class contents. C++ takes a different approach, derived classes cannot compromise the 

visibility of the base class(es) members. This approach maintains support for information 

hiding and visibility rules, and it comes as a result of providing restricted external 

interfaces to derived classes. 

To maintain the visibility rules, C++ provides its users several degrees of visibility 

of the class contents. These options add simplicity for structuring a class and provide 

reliable external interfaces for derived classes. From Eiffel's view, applying restrictions 

on the external interfaces violates its Open-Closed principle. This principle facilitates the 

construction of reusable software segments, but it violates the information hiding and 

encapsulation rules since accessing the superclass contents has a major impact on these 

issues. 

Dynamic binding is one of the features that support polymorphism. While 

polymorphic entities refer to different instances of different classes at run time, dynamic 

binding provides the support for realizing polymorphism. C++ provides dynamic binding 

for virtual functions to support overloading of functions. That is, a class decides which 

of its functions need to be (and must be) redefined in the derived class(es). On the other 

hand, Eiffel grants dynamic binding for the whole class to maintain the Open-Closed 

principle in which a class should remain open for extension. C++ requires that virtual 

functions to be defmed in the original defming class; while pure virtual functions (as well 

as Eiffel's deferred routines) do not need to have effective definitions in the original class. 

Genericity (parameterized polymorphism) and overloading are other approaches 

to reusability. They imply symmetric functionality. Genericity provides a code fragment 

of a data structure that applies to different types. Overloading provides different code 

fragments (implementations) of the same data structure. In Eiffel, genericity is compatible 

with inheritance to support reusability and provide flexibility. In C++ overloading (ad hoc 

polymorphism) is achieved by virtual functions. Genericity is limited by the use of macros 
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and requires a great deal of experience with the language to be utilized. 

The notion of repeated inheritance is unique to Eiffel. It may lead to replicated 

methods if a method has been renamed along the inheritance path in which its code will 

be duplicated in the inheriting class and might lead to ambiguity [Meyer 88a]. 

4.5 Summary 

As more complex systems are being built, the significance of software reuse is 

further emphasized by practitioners and researchers. OOP provides support for code reuse. 

Inheritance and polymorphism are major contributors to reusability. In this chapter we 

examined these concepts as approached in C++ and Eiffel. The two languages address 

those issues differently and provide different perspectives of reusability. 

As an approach to reusability, inheritance techniques have different interpretations 

and purposes in C++ and Eiffel. In C++, inheritance technique and visibility rules do not 

compromise data hiding and provide reliable external interfaces for derived classes and 

clients. In Eiffel, the inheritance technique and access mechanism compromise the data 

hiding in order to accommodate the Open-Closed principle. Inheritance and information 

hiding are parallel in C++; while orthogonal in Eiffel (a descendant classes may hide 

exported methods, and may export inherited private methods). 

Polymorphism is viewed and implemented differently in the two languages. The 

C++ ad hoc polymorphism provided by overloaded operations serves the syntactic issue. 

It is implemented in terms of pointers to functions that can be applied to objects of 

different classes. Eiffel incorporates parameterized polymorphism and provides 

polymorphic entities that refer to different types of objects during execution. 

Naming clashes due to multiple inheritance are also handled differently. 

Redefinition of inherited methods is provided in both languages. Eiffel grants descendant 

classes the ability of redefining any inherited method. C++ grants the base class the 
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control to decide which methods can be redefined in the derived classes using the 

keyword Virtual. Redefinition supports polymorphism and adds more flexibility by 

allowing classes to provide different definitions for the same method. 

Structured libraries of subroutines participate partially in the solution of reusability. 

Both languages provide libraries of subroutines to be used in different situations, and tools 

for the construction of custom libraries for specific applications. Eiffel can directly use 

code written in other languages such as C, and it generates portable C packages. The 

macro facility in C++ supports reusability. Moreover, the type-safe linkage scheme 

provided by the 2.0 release of C++ grants users the ability of accessing functions in 

libraries of other languages, and it supports reusability through construction and 

combination of libraries. 



CHAPTER V 

AN OBJECT-BASED INHERITANCE MODEL 

5.1 Introduction 

Despite the obvious advantages, using the notion of inheriting classes to construct 

new components may introduce some problems; for instance, exposing the class 

implementation to the inheriting classes, whether or not to include instance variables in 

the external interface, and exposing the use of inheritance in the ancestor classes. Snyder 

[Snyder 86] examined the relationship between inheritance and encapsulation, and 

outlined a criteria for full support of encapsulation with inheritance. He outlined the 

following requirements: 

1) Providing separate external interfaces for the class objects and the inheriting 
classes. 

2) Restricting the inheriting classes' external interface by not exposing the instance 
variables and implementation details of the class outside the class defmition. 

3) Providing methods for the instance variables to be accessed by the inheriting 
classes. 

4) Hiding the use of inheritance by not making it a part of the external interface. 

5) When using inheritance for code sharing, it is adequate to grant the inheriting 
classes the ability to exclude inherited methods from the external interface (i.e., 
classes inherit what they need). 

6) The ability to define private methods for the benefit of inheriting classes when 
the methods are inappropriate for some instances of a class. 

7) The ability of directly accessing non-inherited parent's methods and redefined 
inherited methods. 

110 



111 

CUITent inheritance models and OOPLs provide only partial solutions to these 

problems and do not provide full support for encapsulation either. Accessing the instance 

variables and the visibility of inheritance are important issues in this situation. 

OOPLs handle inheritance differently based on their interpretation of the 

inheritance concept, and therefore different approaches to inheritance are found in the 

literature. These approaches are outlined in chapter 2. The inheritance model incorporated 

in each language is influenced by the particular inheritance approach adopted by the 

language. The restrictions placed on these models have prompted researchers to search 

for better models (e.g., see [Hailpem 87] and [Ungar 87]). In this chapter, a new model 

that unifies ideas from several existing models is proposed. The new model in addition 

to and probably in spite of being relatively general is clear and easy to understand. 

The proposed Two-faceted object-based Inheritance Model (hereafter referred to 

as TIM [Al-Haddad 90b]) satisfies most of the requirements mentioned earlier, and 

provides full support for encapsulation and hiding the use of inheritance. The proposed 

model provides code sharing inheritance mechanism based on objects rather than classes. 

TIM also provides a unified approach to inheritance with encapsulation. TIM can be 

regarded as a generalization of Hailpern and Nguyen's model [Hailpem 87] and it is also 

consistent with the requirements outlined by Snyder [Snyder 86]. 

The rest of the chapter is organized as follows: Section 2 provides a detailed 

description of the proposed model. Simulation of a C++ [Stroustrup 86] example in TIM 

is provided in Section 3. In Section 4 we compare our model against other models found 

in the literature. Section 5 is the summary and concluding remarks. 

5.2 The Proposed Object-Based Inheritance Model (TIM) 

We take a two-faceted orthogonal approach to the design of a unified object 

inheritance model [Al-Haddad 90 a,b]. We call this new model a Two-faceted object-
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based Inheritance Model (TIM). Each object in TIM consists of instance variables, 

procedures, and methods. As in the case of Hailpern and Nguyen's model [Hailpern 87] 

and Self [Ungar 87], there are no classes in TIM. Classes and the class hierarchy can be 

derived from the objects. TIM provides a unified approach to inheritance and subtyping. 

In the rest of this section we address the following issues: semantics and 

composition of an object, the internal structure of an object, object interfaces, message 

passing technique, multiple inheritance, object creation and deletion, and the inheritance 

hierarchy among objects. 

TIM consists of two orthogonal sets of objects. The first set of objects consists of 

sets of identical objects, hereafter referred to as M-objects (Member objects). Each set of 

M-objects have a copy of the variables and methods (access methods) of their parent 

object An M-object inherits all methods (except access methods) of its parent object and 

maintains its own copy of the instance variables. The initial state of an M-object is the 

current state of its parent object at creation time. The concept of an M-object eliminates 

the distinction between classes and objects in the traditional sense. 

The second set of o~jects, hereafter referred to as !-objects (Inheriting objects), are 

objects with a new identity that are not members of other objects. !-objects define new 

methods and variables. While the behavior of M-objects is similar, the !-objects can have 

new behavior and can inherit the behaviors of one or more M-objects and/or !-objects. 

M-objects are analogous to instances of a class in the traditional inheritance models; while 

!-objects are analogous to inheriting classes of a class. 

Despite the similarities of this model to the class-based models, there are 

significant differences. Inheritance is object-based rather than class-based, which means 

that an !-object can inherit from any M-object, and an M-object can be derived from an 

!-object. In class-based models, classes are static templates for dynamic object creation. 

In TIM, the distinction between static and dynamic entities is removed; a parent object 

provides its current state (values of the variables), variables, and methods to other objects. 
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Thus, in TIM, a chain of objects may represent a real process where each object is 

created from the previous one. 

Traditional models provide different kinds of variables in which several scoping 

rules are needed. In TIM, private variables are associated to procedures. Thus, having 

only instance variables simplifies the scoping rules. Figure 5.1 illustrates the possible 

inter-relationships between the two types of objects in TIM. 

!-object 

L-------, r---------' 

I-object 

-------- Membership Interface 
Inheritance Interface 

Figure 5.1: Object types and possible interfaces in TIM 

To categorize the notion of visibility, we introduce the concept of "degrees of 

visibility". In TIM, three levels of visibility are distinguished: 

1) Level-l variables: Invisible variables, where neither the name nor the value 
associated to the name is visible outside the object 

2) Level-2 variables: Partially visible variables, where variable names are not visible 
outside the object but their values can be accessed via defined methods. 

3) Level-3 variables: Visible variables, where both variable names and values are 
visible to the descendants of the defining object. 

5.2.1 Semantics and Composition of an Object 

Here, the semantics of object elements including variables, procedures, and 
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methods are introduced. The visibility levels of object variables are also discussed. 

Private Variables: Private variables are related to the procedures of an object rather than 

to the object itself. They are in effect the local memory of a procedure. They are Ievel-l 

variables and are only accessed by the procedures in which they are used. 

Instance Variables: Instance variables are level-2 variables. Their values reflect an 

object's state during its life. An access method is associated with each instance variable. 

Syntactically, "Access$" is prefixed to a name to indicate the access method associated 

with that name. For example, Access$a is a method to access the instance variable a. 

Access to instance variables is limited to methods defined in the object and the access 

methods. 

Objects can inherit values of instance variables through their access methods (see 

methods bellow) and they may have same-named variables. Therefore, this scheme 

supports the following features: 

1) Instance variables are not visible outside an object and are accessed through 
defined methods. 

2) Inheriting objects will never complain about undefined methods for accessing 
inherited instance variables. Since each variable is associated with an access 
method, the values of instance variables (the states) are available to inheriting 
objects. 

Procedures: Procedures are the executable code bodies of the defmed methods. A 

procedure accesses the instance variables of the object (either a defining or an inheriting 

object) executing the procedure. When a method is to be executed in response to a 

message, the associated procedure is obtained and executed by the requested object. 

Procedure execution, as a consequence of objects responding to messages, may change 

the requesting object's state. Procedure names are level-1 variables. 

Methods: Since objects contain private and instance variables, two groups of methods are 

defined to provide different external interfaces that support encapsulation and maintain 

the invisibility of the instance variables outside an object. An object provides the 
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following methods: 

Access Methods: Access methods are created during object creation. Each instance 

variable is associated with an access method. Access methods are part of the external 

interface provided for !-objects and intended to enforce level-2 visibility. They do not 

perform computational tasks and do not use private variables. When creating an M-object, 

the new object includes a copy of the access methods to be used later by its !-objects. 

Computational Methods: This group of methods, which accomplishes a certain 

computation, is defined on both instance variables of an object and the private variables 

of the associated procedures. An !-object may define or inherit a method. Defined 

(original) methods are associated with executable code bodies (procedures) which are 

defined during object creation. Inherited methods have their executable codes in the 

defining object(s). Computational methods are included in the external interface provided 

for both M- and !-objects. Defining objects return the procedures associated with the 

requested methods to the requesting objects (M- or !-objects) where the code is executed. 

Method execution results in accessing the private variables of the associated procedure 

and the instance variables of the executing object Since objects may have same-named 

methods, full-name reference is used to avoid naming conflicts. For instance, X.Access$b 

means the access method of variable b defmed in object X. 

5.2.2 Internal Structure of an Obiect 

Each object in TIM can contain several lists. These list are illustrated in Figure 

5.2, and are defmed as follows: 

1) Instance variables list: to store an object's instance variables. 

2) Methods list: to store all methods specified in the creation message. Each entry 

of the list includes: method name, method form (original or inherited), and for 

inherited methods, the source object from which the method is inherited. When 
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Figure 5.2: Lists that an object can contain 
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sending a message to another object, the methods list explicitly indicates the type of the 

message (Request or. Inherit) and implicitly indicates the destination object. 

3) Access methods list: to store the access methods defined for each variable in the 

instance variables list. 

4) Members list: to store the names of all related M-objects. This list is used to dis

tinguish M-objects from !-objects when receiving a request for a method. 

5) Inheritance list: to store the inheritance information of descendant objects. Each 

entry is associated with a list of inherited methods names. This list is used to 

indicate whether or not a requesting object for a method is an 1-object, and what 

methods it inherits. 
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5.2.3 Object Interfaces 

In TIM different interfaces are provided forM- and !-objects. These interfaces are 

illustrated in Figure 5.1. Each object can have two interfaces: 

1) Membership interface which provides all computational methods defined and 

inherited in the object to all of its M-objects. An M-object can have only one 

parent. 

2) Inheritance interface which provides all methods of the membership interface in 

addition to the access methods. This interface allows !-objects to inherit both 

methods and instance variables from ancestor objects. An 1-object may have 

several parents. 

5.2.4 Message Passing Techniques 

Objects in TIM are communicating processes. Any object can send a message to 

any other object. The receiving object either returns the associated procedure of the 

requested method (if available) or passes the message to the object which the method is 

inherited from; otherwise, it returns an error. Any object can request a method by sending 

either of the following messages: 

REQUEST (Source,Method} 
INHERIT (Sender,Source,Method_name) 

where Source is the requesting object, Sender is the sending object, and Method_name 

is the requested method. The receiving object whose name is used as a qualifier responds 

by executing the following algorithm: 

Algorithm Method retrieval 

IF the request does not include the receiving object's name 
THEN RETURN "ERROR: Unknown object" & EXIT. 

IF the requested method is original 
THEN RETURN its procedure to the source object & EXIT. 



IF the requested method is inherited 
THEN send the following inheritance message to the 

ancestor object: 

INHERIT (Sender,Source,Method_name) 

ELSE RETURN "ERROR: Unknown method" & EXIT. 

5.2.5 Multiple Inheritance 
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Single inheritance is a special case of multiple inheritance. All of the inherited 

methods and instance variables come from one parent object. The methods list provides 

multiple code inheritance by allowing objects to inherit the desired methods from several 

objects and disallowing unsuitable methods. An object is able to answer several requests 

at a time and activate several procedures simultaneously since private variables are local 

to the procedures and not to the object itself. 

An object is not allowed to have same-named methods, but different objects may 

have same-named methods. When two or more parent objects have same-named methods, 

the !-object will have several methods with the same name. To avoid this conflict, as 

mentioned previously, full-name method reference approach is used. The "Source" 

attribute in each entry of the methods list illustrated in Figure 5.3 refers to inherited 

methods using both the object name and the method name. An 1-object can rename its 

inherited methods, but the methods list maintains the original names of the inherited 

methods. 

Method Form Source 

m2 Inheritance X.ml 

Figure 5.3: A methods list entry 
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When objects send a REQUEST or an INHERIT message, they use the original 

name of the requested method used in the receiving object. For example, suppose that 

object X provides method ml and object Y inherits ml using a different name, say m2. 

The methods list entry of ml in object Y is depicted in Figure 5.3. Object Y may send 

either of the following messages to object X: 

REQUEST (Y,X.ml) or INHERIT (Y,Z,X.ml) 

The receiving object, X, expects to find its identifier prefixed to the requested 

method, otherwise it does not respond to the message. The above interpretation of 

multiple inheritance supports the following features: 

1) Methods (original and inherited) have distinct names in an object in order to avoid 
naming conflicts. 

2) The use of inheritance inside an object is hidden. 

3) Each method is associated with only one parent object. 

4) Changing the implementation of a method does not impact the inheriting objects 
as long as the ancestor object provides the same inheritance external interface. 

5.2.6 Object Creation and Deletion 

Every object includes a specialized method for creating a new object upon 

receiving a creation message. The creation message has the following general format: 

CREATE (Destination,New,IV,Methods) 

where Destination 
New 
IV 
Methods 

: The receiving object, 
: The new object name, 
: Set of instance variables, and 
: Set of method names. 

Since there are two types of objects in TIM, the scheme for object creation needs to be 

specialized for each type. 

1) Creating an M-object of a destination object: Upon receiving the message 

CREATE (Destination,New) 
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the destination (parent) object creates a new M-object by copying all of its own variables 

and access methods. The initial state of the new object is the same as the current state of 

the creator at creation time. In other words, this object reproduces itself. All 

computational methods are inherited (not copied) from the parent object. In class-based 

models, new objects are not provided with initial states since classes are merely templates 

for objects. 

2) Creating an 1-object with a new identity: The destination object should receive the 

message: 

CREATE (Destination,New,IV,Methods) 
(Definition of new methods) 
(Sources of inherited methods) 

The result of receiving the message is that a new 1-object with the specified 

contents will be created. An access method is created for each defined instance variable 

but the access methods are not specified in the argument "Methods". The private variables 

of a procedure are defined during the definition of the corresponding new method. The 

destination can be any object in the system. 

The newly created object's state is based on the variables' initialization and the 

state of its parent object(s) at the creation time. This is a major difference between 

class-based inheritance and TIM. The reason behind this approach to creation is to take 

advantage of having a creation method associated with each object. The advantage is that 

users need not keep track of the objects to send creation messages. Any existing object 

can perform the creation since the creator does not have to contribute to the contents of 

the created object. In the case of multiple inheritance, a creation message can be sent to 

any object in the system and not necessarily to the parent object(s). 

In the first scheme, a clone of the destination object is created; while in the second 

scheme a new object is created which may contain properties inherited from the creator 

as well as methods inherited from other objects. The following example illustrates what 

a complete creation message may look like in the second method (without emphasizing 
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CREATE (X,Y, {a,b},{ml,m2,m3}) 
DEF Y.ml : BEGIN {The code body} END; 
Y.m2 = Z.m2 
Y.m3 = Z.ml 

The creation message is sent to object X, m1 is a new method and m2 is inherited 

method from object Z. As a result of this message a new object Y will be created. 

Definition of method ml would correspond to the above DEF statement. An 

assignment-like operator"=" is used to indicate inheritance among objects and renaming 

the inherited methods. Therefore, Y.m3 = Z.m1 indicates that object Y inherits and 

renames method m1 from object Z). 

Dependent objects are objects that depend fully or partially on the methods and/or 

variables of an ancestor object (namely, an M- or 1-object). Semantics of object deletion 

is given below. 

1) Each object is associated with a destruction method that can be invoked by itself. 

2) An object destroys itself when it has been processed and has no dependent objects 

of either kind. 

3) If there are dependent objects, the object remains active serving its dependent 

objects. 

4) A deleted object answers to messages sent only by its dependent objects and 

ignores other messages. An object recognizes messages sent by its dependent 

objects based on its own members and inheritance lists. 

5) Any object may send the message DELETE (object_name) to any/all of its 

dependent objects. This message is accepted if the receiving object is related to 

the sending object as an M- or 1-object. This message deletes the receiving object 

and all of its dependent objects. In the case of multiple inheritance, if a parent of 

an object is deleted, this object decides to stay active or deletes itself. 

6) The specification of the object behavior dictates when to issue the DELETE 
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message. Objects may use this message when an object (process) and all of its 

dependent objects must be terminated for some reason. Upon deletion of an object, 

the parent object(s) will remove the object's name from its (their) members list(s). 

Likewise, the ancestor object(s) will remove the object's name from its (their) 

inheritance list(s). 

5.2.7 Inheritance Hierarchy 

The class/subclass hierarchy can be derived directly from the object lists as 

illustrated below by an example in Figures 5.4 and 5.5. Figure 5.4 depicts an example of 

inheritance hierarchy in TIM. 

C ml, m2 

-------, 

D E 

m2 

L------, r------

F G 

ml, m2 

Figure 5.4: An example of inheritance hierarchy in TIM 



123 

In Figure 5.5, the inheritance list indicates the inheritance information of the 

objects in Figure 5.4 and the methods they inherit. Thus, !-objects may be viewed as 

subclasses and their parent objects as superclasses. The methods list in Figure 5.5 

provides all of the inherited methods and the ancestor objects from which they are 

inherited. 

Methods List Inheritance List 

Object I Method I Form jsourcel jobject!Methodl 

A I ml I original I NIL I I c I ml I 
B I ml !original I NIL I I c I ml I 

ml Inherited A.ml I E I m2 I c 
m2 Inherited B.ml 

I I I ml Inherited C.ml F m2 
D 

m2 Inherited C.m2 

E I m2 I Inherited I C.m2 I 
I 

F 

I 
m2 

I G m2 

ml Inherited D.m2 
F 

m2 Inherited E.m2 

G I m2 jrnheritedj E.m2 I 

Figure 5.5: Methods and inheritance lists of the objects in Figure 5.4 

Objects in Figure 5.4 inherit methods as follows. Object C inherits ml from A and 

B. It renames method ml from B. That is, C.ml = A.ml and C.m2 = B.ml. Object D is 
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an M-object of object CIt implicitly inherits all of the computational methods in object 

C. On the other hand, object E inherits m2 from object C. That is, E.m2 = C.m2. Object 

F inherits and renames m2 from object D, and it inherits m2 form object E. That is, F.ml 

= D.m2 and F.m2 = E.m2. Object G is an M-object of object E. 

Figure 5.5 shows both methods and inheritance lists of the objects illustrated in 

Figure 5.4. Objects in Figure 5.4 exchange messages as follows. Suppose that object G 

requests m2 by sending the message 

REQUEST (G, E .rn2) 

to object E. Object E executes the method retrieval algorithm described early and sends 

the message 

INHERIT {E,G,C.rn2) 

to object C (destination object). Object C executes the same algorithm and send the 

message 

INHERIT (C,G,B.rnl) 

to object B. Since ml is originally in object B, object B returns the procedure associated 

with ml to object G. The "Source" attribute of the Methods list remembers the original 

method name in the parent object 

5.3 Examples Represented in the Proposed Model 

In this section, a demonstration, by means of an example, of how objects in the 

sense of other models can be realized in TIM is given in this section. In this example, a 

C++ program is simulated in TIM. The original code is followed by the appropriate 

simulation including object creation, methods definitions, and object contents. Here, the 

class BIRTH_DA Y is defined as a public derived class of the class DATE adopted and 

modified from [Stroustrup 86]. It inherits method "print" from the class DATE and 
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defines new methods and variables. The main program creates the instances Today and 

Christmas of the class DATE, and the instance My _birthday of the BIR1H_DA Y. 

Definitions of these classes are illustrated in Figure 5.6. 

cl&S8 DATE 
{ public: 

} ; 

int month, day, year; 
void next(); 
void print(); 

II public section 
II public variables 
II next day 
II print date 

void DATE::next() 
{ if (++day > 28) 

{ I* print next month's schedule *I }; } 

void DATE::print() 
{ cout <<month<< "I" <<day<< "I" <<year<<; } 

class BIRTH_DAY::public DATE 
{ char* name; II private variable 

int age; II private variable 
public: II public section 

birth day(char, int, int, int); II constructor 
int compute age(int,int,int); II newly definedmethod 

} ; 
int BIRTH DAY::compute age(month,day,year) 

{ /*-subtract birthday form today's date 
and return age. *I } 

main {int m, d, y) 
{ DATE Today(3,30,1992); II instance Today 

DATE Christmas(12,25,1991); // instance Christmas 
BIRTH DAY My birthday('Al' ,1,4,1964); /I instance My birthday 
Today-:-print{); I I print today' s date-
Christmas.next(); II schedule for January 
My_birthday.compute_age(3,30,1992); II return my age 

} : 

Figure 5.6: Definitions of the classes DATE and BIRTH_DA TE 

In TIM, the object DATE is treated as an M-object and the object BIRTH_DAY 

is treated as an !-object. To create the object DATE, one can send the following message 

to any destination object in the system (say Dest): 

CREATE (Dest,DATE, {month<-- O,day <-- O,year <-- 0}, 
{next, print}) 

with the following newly defined methods: 



DBF DATE.next: BEGIN 
II' (day +1) > 28 
THEN BEGIN 
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/* print next month's schedule */ 
END; 

END; 
DEl' DATE.print: BEGIN 

RETURN (month, "/", day, "/", year); 
END; 

The instances Today, Christmas, and My_birthday created in the main program can be 

derived as M-objects of the object DATE using the following messages: 

CREATE (DATE,Today) 
CREATE (DATE,Christmas) 
CREATE (DATE,My_birthday) 

We can simulate class BIRTH_DAY by sending the following message to a destination 

object 

CREATE (Dest,BIRTH DAY, {name, age <-- O,month <-- 0, 
day <-- O;year <-- 0}, {print,compute_age}) 

The instance My _birthday can be created using the following message 

CREATE (BIRTH_DAY, My_birthday) 

The C++ instances Today, Christmas, and My_birthday become M-objects in TIM. 

They inherit all methods of their parent objects. Thus, there are no methods definitions 

needed for these objects. However, object My_Birthday is an 1-object. Therefore, we need 

to defme all of its methods. Those methods can be defmed as follows: 

BIRTH DAY.print = DATE.print /* inherited from DATE */ 
DEF BlRTH DAY.compute age(month,day,year): 

BEGIN- -
/* subtract the given date from today's date 

and return the result */ 
END; 

If necessary, the instance variables can be initialized in the creation message. For 

illustration, the internal structures of some of these objects are viewed as shown below: 

M-object DATE: 
Object 
Instance variables 
Methods list 
Members list 
Inheritance list 

: DATE 
List <-- {month,day,year} 

<-- {next,print} 
<-- {Today,Christmas} 
<-- {BIRTH_DAY [print]} 
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M-object Christmas: 

!-object 

M-object 

Object 
Instance variables 
Methods list 
Members list 
Inheritance list 

BIRTH DAY: 

: Christmas 
List <-- {month,day,year} 

<-- {next,print} 
<-- {} 
<-- {} 

Object : BIRTH DAY 
Instance variables List<-- {name~age,month,day,year} 
Methods list <-- {print, compute age} 
Members list <-- {My birthday} -
Inheritance list <-- {} -

My birthday: 
Ob]ect : My birthday 
Instance variables List <-- {name, age. month, day, year} 
Methods list <-- {print,compute age} 
Members list <-- {} -
Inheritance list <-- {} 

5.4 Discussion 

The closest inheritance models to TIM are the ones defined by Hailpern and 

Nguyen [Hailpern 87] and Ungar and Smith in the language Self [Ungar 87]. Hailpern 

and Nguyen described a network of objects communicating by utilizing a message passing 

mechanism. In their model, each object consists of private variables, a set of methods, and 

a set of procedures. Self is an object-based programming language. It provides a set of 

objects that communicate by utilizing a message passing mechanism. Objects in TIM 

consist of private and instance to variables as well as methods and procedures. 

TIM supports most of the Snyder's requirements and maintains consistency with 

the other related issues such as encapsulation and visibility of inheritance. Snyder's 

second and third requirements outlined in Section 1 are not applicable in Hailpern and 

Nguyen's model since their objects do not include instance variables. Furthermore, in 

their model they relate the private variables to the defining object in which they can 

handle only one message at a time. TIM avoids such use of private variables. 

In Hailpern and Nguyen's model, list-based multiple inheritance may lead to 
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naming conflicts among the inherited methods. When an object X inherits a method, ml, 

from different objects, the inheritance list associated with ml in object X contains the 

names of the objects where ml is inherited from. Suppose another object Y inherits ml 

from object X, when object Y sends a message to object X requesting ml, object X does 

not know which method is requested. 

To avoid the naming conflict problem, we suggest two options. The first option 

is restricting all objects to have distinct method names in the system. This option limits 

the designer's freedom to use same-named methods in different objects. The second 

option, which is used in TIM (also used in Eiffel [Meyer 88]), allows objects to rename 

inherited method and has the ability to remember the given methods' name in the parent 

objects. This option avoids the above restriction and maintains consistency with data 

hiding, hiding the use of inheritance, accessing the instance variables, and excluding 

inherited methods from the external interface. The second approach also avoids the 

possibility of having same-named methods in different objects. 

In order to facilitate multiple inheritance, Hailpern and Nguyen's model artificially 

includes several copies of "SuperClass" variables with different values. TIM does not use 

"SuperClass" variables since ancestor objects can be derived directly from the methods 

list of the inheriting objects. 

Some of the feature of TIM are similar to those found in Self. Both TIM and Self 

eliminate the distinctions between classes and objects. The creation of M-objects and the 

search mechanism for methods are also similar. However, there are significant differences 

also. Self does not distinguish between state and behavior. Instead, they are unified into 

the notion of slots. Therefore, it is not possible to hide the state of an object, hence 

violating the principle of information hiding. TIM takes a different approach and 

maintains information hiding. 

As a model, TIM does not have the attributes "static" or "dynamic". In TIM, 

behavior and state are considered conceptual attributes of an object. Also, renaming a 
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behavior is another feature of TIM that is not found in Self. In Self, any object can alter 

the state of any other object. In TIM, only the object itself can change its state. Each 

object has associated with it construction and destruction methods. The notions of creation 

and deletion have different semantics from other models. 

5.6. Summary 

Inheritance models in well-known OOPLs have different deficiencies in their 

support for issues such as information hiding, subtyping, and visibility of inheritance. To 

achieve the goal of OOP style more faithfully, we need an inheritance model which 

maintains consistency with those other issues [Snyder 86] [Wayne 89]. 

Upon analyzing the current models, we gleaned their advantages and proposed a 

unified approach by defining a Two-faceted object Inheritance Model (TIM). TIM 

combines the selected features to maintain consistency with the above-mentioned related 

issues; while adding new features to obtain inheritance and support for the OOP style and 

reuse. 

TIM consists of two orthogonal sets of objects. M-objects contain the same 

instance variables and computational. methods of their parent objects. !-objects, on the 

other hand, inherit behavior, variables, and methods from other objects, they can define 

new variables and methods as well. 

TIM is an object-based inheritance model based on code sharing with the ability 

to capture the other views of inheritance. It provides single and multiple inheritance based 

on the message passing paradigm, and provides semantics for object creation and deletion. 

The notion of visibility of instance variables was categorized and used in the definition 

of TIM. 



CHAPTER VI 

A FEEDBACK INHERITANCE MODEL 

6.1 Introduction 

In practical applications there are many situations where dependency between two 

objects requires sharing of properties belonging to each other. Such situations cannot be 

easily represented using the hierarchical inheritance model. Therefore, to adhere to the 

object-oriented paradigm, users may attempt to use complicated and inefficient approaches 

to model mutual dependency among objects. In such cases, inefficient and highly 

expensive software may result due to the lack of control over the dependency and flow 

of information among objects [Parnas 76]. 

Parnas et al. [Parnas 76] described a similar situation (in the context of abstract 

types defined as of classes of variables) as follows: 

Our position is that representation of dependent programs will be written 
whenever cost considerations demand it; it is better to provide a 
mechanism that allows the control of such dependency than to force the 
programmer to use dirty tricks. 

A mechanism that allows control over mutual dependency among objects makes 

the programming task simpler and provides more understandable and maintainable 

software in addition to being a better reflection of the problem. The necessity to 

generalize the inheritance model is recognized by Pedersen also who defmes an extension 

to include generalization of the inheritance system [Pedersen 83]. 

Maintenance adds another dimension to the problem because of the possibility of 

unexpected changes in relations [Freeman 83]. In this chapter, our goal is to define an 
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inheritance model that has the flexibility to represent real-life problems in a natural way 

and at the same time facilitate software design and accommodate software maintenance. 

In the hierarchical inheritance model, when a superclass needs to use properties 

from a subclass, users can replicate these properties either in the superclass or in classes 

that can be reached by the superclass by means of inheritance. Users may also restructure 

the class system to achieve the objective, which would probably result in a complex and 

inappropriate class hierarchy. Thus, efficiency may be the victim of such a re-organization 

and/or data replication. 

In this chapter the hierarchical model is relaxed by allowing superclasses to access 

the properties of their subclass. This idea is derived from real-life situations and models 

where mutual dependency among objects exists and needs to be controlled. The proposed 

model is called a "feedback inheritance model" [Al-Haddad 92b]. 

The rest of this chapter is organized as follows. Section 2 provides definitions and 

notations to be used in the description of the proposed model. Section 3 provides two 

motivating examples and their representations using the hierarchical model. Section 4 is 

a description of the proposed model. Section 5 provides representation of the selected 

examples in Section 3 using the new model. Section 6 is a discussion of the issues related 

to inheritance in the new model including information hiding, encapsulation, access 

mechanism, and visibility. Section 7 outlines the summary of the chapter and some 

concluding remarks. 

6.2 Definitions 

In this section we introduce defmitions and notations to describe the specification 

of examples and the proposed feedback model. These defmitions and notations are given 

below. For the sake of clarity, some earlier definitions are repeated. 

1) A method is a name associated with a specification of behavior (routine). 
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2) An instance variable is a name associated with a data object (memory value). 

3) An attribute is either a method or an instance variable. 

4) Value of a method attribute is the implementation of that method. Values of 
method attributes represent a set of behaviors denoted by B. Value of an instance 
variable attribute is the value held by the instance variable at a certain time. 
Values of instance variable attributes represent a set of states denoted by S. The 
value of an attribute which is undefined is denoted by J_. 

5) A domain D of identifiers is a set of distinct attribute names. We shall denote 
attributes of classes by the lower case letters a, b, c, etc. 

6) A class is a pair (C, {a1, ~ •••• ,an}) where Cis the class name and {a1, ~ •••• ,an} 
is a set of attributes such that a1 e D for i=1, 2, ... , n. For notational convenience, 
a class is denoted by C and the set of attributes by C.all. A subset of the attributes 
of the class C is denoted as C.[a1, a2, ••• , at.] for a1 e C.all, 1~ i ~ and a1 is any 
attribute in C.all. For the sake of convenience, a class is represented as C = { a1, 

az, ... , an}. It should be noted that Cis the name of the class and C.all = {a1, a2, 

... , lin}. When there is no confusion, we may use C in place of C.all. 

7) An instance of a class is an association of values to the attributes of the class. For 
example, an instance I of a class C (denoted by I :: C) with initial values { v1, v2, 

... , vnl is represented as 
I:: C => {a1 ~ y, a2 ~ y, ... ,an~}{} 

where the value v1 is associated with the attribute a1 for i=l, 2, ... , n; 
and v, e SuB. 

8) Given the classes 

c = {al, az, ... , aml and cl = {bl, bz, ... , bn}, 
C1 is a subtype of C (written C1 -< C) iff {a1, az, ... , tlm} ~ {b1, b2, ••• , bnl· 

The class cl is said to inherit the attributes of c. This is called subtype 
inheritance. On the other hand 

A subclass is a class that fully or partially depends on other class(es). However, 
a subtype is a subclass that fully depends on other class(es). The term subtype 
denotes subtype inheritance; while the term subclass denotes the existence of 
inheritance relationship between two classes. 

9) A message M received by an instance of a class is a request for the receiving 
instance to perform a specific action. A message M sent to an instance I of the 
class 
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C = {a1, az, ... , an} is denoted by I:: C <== M[m, p1, ••• , pJ 

where m is the method name and p1, ••• , p" are actual parameters of the method. 

There are situations where modeling using hierarchical inheritance may not give 

a natural representation of data flow among classes. In the next section we present 

examples in areas where hierarchical inheritance increases the complexity of modeling in 

terms of the number of inheritance relationships and the number of classes. 

6.3 Two Examples and Their Hierarchical Representations 

There are several areas, such as databases and networks, where the hierarchical 

inheritance model does not provide a natural correspondence between the problem and 

the model. In the database area [Alagic 89], the example shown in Figure 6.1 illustrates 

a typical relationship defined by record structure occurring in a relational database (in this 

case related to a university system). 

TYPE Department 

TYPE Faculty 

RECORD 
D name 
Location 
F members 
END. 

RECORD 
F name 
Rank 
Department 
END. 

string40 
string40 
SetOfProfessors 

string40 
(assistant, associate, full) 
SetOfDeptids 

Figure 6.1: Record structure of a relationship 

In such a relation, a faculty member may belong to more than one department 

(joint appointments) and a department can have several faculty members. What this 

suggests is mutual dependency between the types Department and Faculty. Moreover, 

nested types may occur when an attribute of a record is defined as a type. 
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An object-oriented representation of the scenario in Figure 6.1 is shown in Figure 

6.2. In this representation, a record structure in an object-oriented relational database is 

depicted in terms of classes and hierarchical inheritance. A base class contains attributes 

that represent relevant information of an object type. For instance, the type Department 

would be represented by the base class DEPARTMENT which contains the attributes 

D_name, Location, Degrees_offered, and College. 

{D narne,Location, 
Degrees offered,College} 

Department 

RDFl • 
{D_narne,Location,F_name} 

{F narne,Rank, 
Age, Address} 

Faculty 

• RDF2 
{F_narne,Rank,D_narne} 

Figure 6.2: A hierarchical inheritance representation of the record structure in Figure 6.1 

A relation defined on the base classes is represented by a class together with 

inheritance relationships and the base classes involved. For instance, as illustrated in 

Figure 6.2, a relation R1 on the base classes DEPARTMENT and FACULTY can be 

represented by a new class RDF1 (Relation-Department-Faculty-1) that inherits the 

attributes D_name and Location from the base class DEPARTMENT, and the attribute 

F _name from the base class FACULTY. The classes RDFl and RDF2 in Figure 6.2 are 

equivalent to the relational types Department and Faculty defined in Figure 6.1. Instances 

of the class RDFl are equivalent to tuples of the relational type Department. Examples 

of instances of class RDF1 are given in Table 6.1. 

In the above hierarchical representation, every relation needs to be defined as a 

class inheriting from other classes (this seems to be the case in any hierarchical 

representation). Thus, the more relations we defme, the more classes we need to define; 



Instance1 

Instance2 

Instance3 

TABLE 6.1 

INSTANCES OF THE CLASS RDF1 

Department Location 

COMPUTER SC MATH_SC_Bldg -

CIVIL ENG ENGINEERING_Bldg -
GENERAL ADM BUSINESS_Bldg -
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Faculty 

f1, f2, f3 

f2, f4 

f3, f5 

and the complexity, in terms of the number of classes and inheritance relationships, is 

increased. Moreover, it is obvious that this representation does not provide a true 

reflection of the relationship provided by the record structure. 

The second illustrative example is selected from the field of Network Computing 

Architecture (NCA) [Dineen 87]. NCA is an object-oriented framework for developing 

distributed systems. In NCA, Remote Procedure Call (RPC) is defined as a mechanism 

that allows programs to call subroutines that run on different machines. 

At the lowest level of abstraction, an NCA is a collection of machines located at 

various remote locations. Each machine provides a set of functions available to other 

machines through interfaces. Figure 6.3 abstractly represents an NCA with two machines 

M-1 and M-2. They are connected through an interface. The remote procedure call 

mechanism allows users of one machine to invoke functions defmed in the other machine 

through their interfaces. 

set-1 of 
functions 

M-1 

Interface 
~ ..... 

set-2 of 
functions 

M-2 

Figure 6.3: An NCA with two machines M-1 and M-2 
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In the object-oriented paradigm, a network of a set of such nodes can be 

represented by a set of classes that are related to each other through the inheritance 

relationships. In an NCA, a machine located at a site can be represented by a class and 

its functions by a set of attributes. Attributes of a class are available to other classes 

(machines) through their inheritance relationship. If we attempt a direct mapping of this 

scenario into an equivalent representation in terms of classes and inheritance, we will get 

the organizations shown in Figure 6.4. 

{set-1 of attributes} 
c1 

c2 • 
{set-1 of attributes} u 
{set-2 of attributes} 

{set-2 of attributes} 
~ 

•<;, 
{set-2 of attributes} u 
{set-1 of attributes} 

Figure 6.4: Class representations of the NCA in Figure 6.3 

Figure 6.4 shows that two hierarchical inheritance relationships between the classes 

C1 and C2 are required to provide a relationship equivalent to the one described in Figure 

6.3. To address this seemingly paradoxical situation, an object-oriented approach can be 

taken. Two different object-oriented representations of the NCA in Figure 6.3 are given 

in Figure 6.5. 

Figure 6.5(a) shows that a machine and its functions are represented by separate 

classes. This representation provides multiple inheritance and maintains the bi-directional 

relationship depicted in Figure 6.3. One may group all of the common attributes into one 

class (e.g., C in Figure 6.5(b)) and let the classes M-1 and M-2 inherit from that class. 

In both representations, the number of classes will become in general larger that the 

number of actual machines in the network and besides the class structure provides a 



{set-1 of attributes} 

~J 
M-1 • 

{{set-1 of attributes} u 
{other attributes of M-1}} 

(a) 

{set-2 of attributes} 

J~ 
• M-2 

{{set-2 of attributes} u 
{other attributes of M-2}} 

{set of all common attributes (set-1 and set-2)} 

M-1 
{{set-1 of attributes} u 
{other attributes of M-1}} 

• 

(b) 

M-2 
{{set-2 of attributes} u 
{other attributes of M-2}} 
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Figure 6.5: Two possible object-oriented representations of the NCA in Figure 6.3 

distorted view of the actual configuration. 

Hierarchical inheritance applies some form of a partial ordering to the classes in 

the structure. That is, properties of a superclass are available to its descendants, but 

properties of descendant classes are not available to the superclass. For instance, one of 

the two hierarchical structures in Figure 6.4 is needed to represent the non-hierarchical 

structure in Figure 6.3. Thus, classes are replicated and complexity is increased due to the 

restricted ordering provided by the hierarchical inheritance among classes. 

The representation in Figure 6.5(a) requires a number of inheritance relationships 

among the sets of attributes and the machine classes. In the case of a network of a large 

number of nodes, a tremendous number of inheritance relationships would be required to 

connect a machine to every set of available attributes. Moreover, in Figure 6.5(a), the 

required number of classes is twice the number of nodes in the network, and Figure 6.5(b) 

provides an inappropriate representation, in that it does not reflect the nature of the 
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network because the actual functions of a network are residing at different locations, 

while this representation gives a common pool of functions shared by all classes. 

The above-mentioned scenarios suggest the need for a new model. In the following 

section we introduce the proposed feedback model. Annotated directed graphs are used 

to describe the model and the notion of a clan is also introduced. 

6.4 The Proposed Feedback Inheritance Model 

The examples discussed in the previous section strongly suggest that the one-way 

information flow (inheritance) is inappropriate for situations where bi-directional 

dependency exists among a superclass and its subclass(es). Therefore, a relaxation of 

inheritance as a mechanism that represents dependency among classes is called for. A bi-

directional model would relieve the programmer from attempting inefficient ad-hoc 

approaches to achieve such dependency among classes. 

6.4.1 Definitions 

In addition to the notations and definitions introduced in Section 6.2, we introduce 

the following notations and definitions. In what follows we assume the existence of an 

inheritance hierarchy. Suppose a is an attribute defined in the subclass C1 of the class C. 

If a is not defined in C but is used in C, we say that class C derives the attribute a from 

class C1• 

1) Synthesized attributes of a class C are those derived from its subclass(es). 

2) Synthesized attributes derived from a subclass are denoted by the lower case 
letters x, y, etc. 

3) To allow for synthesized attributes, an extended class defmition is given as 
follows. A class C is defined as a triple 



139 

where Cis the class name, {a1, ~ .... , a1J is the set of both defined and inherited 
attributes, and {xt.+l• ... , Xm} is the set of synthesized attributes. For notational 
convenience, a class C is represented as 

If there are no synthesized attributes in C, it will be represented as 

C = {a1, a2, ... , at.} (see Section 6.2 (6)). 
4) Given the classes 

and that C1 is a subclass of C, 

cis a synthesized type (syntype) of cl (written cl >- C) 
iff x1= bi for some x1 e {xt.+l• ... , Xm} and bi e {b1, b2, ... , bnl - {a1, a2, ... , ~}. 

Here, C1 is a subclass of C which means that C1 inherits from C and possibly 
defines new attributes. When C uses the newly defined or derived attributes in C1, 
it implies that Cis a syntype of C1. If class Cis a syntype of two or more classes, 
we denote that by (C1, C2, ... , Cn) >- C, ~. 

5) The Synthesized Interface (Sl) that is provided to a superclass C (denoted by 
C.SI ) is a set of synthesized attributes derived from its subclass(es). 

6) A Feedback is a derivation relationship provided through the synthesized interface 
from a subclass to its superclass(es) (i.e., syntype(s)). Given the classes 

where c2 inherits from cl and cl derives from c2. 

cl.SI = {xk+l• ... , Xm} where 
X1= bj for Xi E C1.S/ and bj E {bl, b2, ... , bn} - {al, az, ... , at.}. 

Intuitively, a feedback is a derivation of attributes from subclass(es), and the 
synthesized interface of a superclass is a description of the set of derived 
attributes. 

7) A clan is a set of classes related through feedback inheritance. The clan of a class 
C is constructed as follows: 

i) C is in the clan of C. 

ii) If there exists a feedback relationship between C and its subclass(es), then 
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the subclass(es) is (are) included in the clan of C. 

iii) If X is in the clan of C and there exists a feedback relationship between 
X and its subclass Y, then Y is also included in the clan of C. 

iv) No other classes are included in the clan of C. 

Each class belongs to at least one clan. Clans provide design modularity and 

control complexity. The notion of clan is illustrated in Figure 6.6. Solid arrows indicate 

hierarchical inheritance of attributes and dashed arrows indicate feedback inheritance 

(derivation) of synthesized attributes. 

A .,y· B 
Clan(F)={F} 

Clan(E)={E} 

Clan(D)={D, F} --~,·~ 
Clan{C)={C, D, E, F} ;:/' D.( '-._- E 
Clan{B)={B} 

F:.l 
Clan{A)={A, C, D, E, F} 

Figure 6.6: Examples of clans of a set of related classes 

Hereafter, the term syntype is used to denote the superclasses that are provided 

with feedback relationships. The next subsection provides a detailed description of the 

feedback model using the above notations and definitions. 

6.4.2 Feedback Inheritance 

The feedback model [Al-haddad 92b] provides a feedback relationship between a 

subclass and its syntype class(es), and allows for control over the information flow in that 
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direction also. The basis of the new model is inheritance relationship among classes. 

Having hierarchical inheritance does not imply feedback inheritance, but two classes 

cannot have a feedback relationship unless they have a hierarchical inheritance 

relationship with each other. 

As in the inheritance models, single and multiple feedback relationships may relate 

classes to one another. In the case of single feedback, the syntype class depends on the 

attributes of only one subclass. Given the classes 

and that cl is a subclass of c, 

C1 >- C iff Xi= bj for some Xi E C and bj E {bl, bz, ... , bn} - {al, az, ... , ak}. 

A general representation of single feedback is depicted by the annotated directed 

graph in Figure 6.7. 

( { av au ... , ak} , 
{xk+l' •• ., X,.}} 

cl • 

( { bv bz, . . . , br} , 
{Yr+lt • • • 'Yn}) 

• cq 

{ z s+l' • • • ' Zt} ) 

Figure 6.7: Representation of single feedback inheritance among classes 

In Figure 6.7, the class C inherits attributes ci, for i=1, 2, ... , p, from C1.[a1, az, ... , 
llt] and attributes dj, for j=l, 2, ... , s, from Cq.[b1, b2, ••• , br]. Class C1 derives the 

synthesized attributes xi, for i=k+1, ... , m, from C, and class Cq derives the synthesized 

attributes YJ• for j=r+l, ... , n, from C. The synthesized interfaces defined in Figure 6.7 are 

Cl.Sl = cl.[xk+l• ... , Xm] ~ C.Others u {zs+l• ... , zt} 



142 

In the case of multiple feedback, a syntype class may depend on attributes of one 

or more subclasses. For example, given the classes 

and that both cl and c2 are subclasses of c, 

In general, multiple feedback can be depicted by the annotated directed graph in 

Figure 6.8. 

( {blf b2, 
Others1 , 

( { al, au ... I ad , { :x:k+lf ••• , Xm} ) 

c 

,..A"'~, 
...... 

' ...... 
..... ,. en 

( { C 11 C 2 , ••• , C 8 } U 

Ytl) Othersn, { Zs+lt ••• , Zr}) 

Figure 6.8: Representation of multiple feedback inheritance among classes 

In Figure 6.8, the classes e1 through en inherits the attributes b1, for i=l, ... , p and 

through cj, for j=l, ... , s, from C.[a1, a2, ... , lltl· The class C derives the synthesized 

attributes x,, for i=k+ 1, ... , m, from the classes el through en. The set of derived attributes 

in C is a subset of all attributes defined in the classes e1 through Cn. The synthesized 

interface defined in Figure 6.8 is 

C.SI = C.[xk+l• ... , Xm] !: (C1.0thers1 u {Yp+t• ... , YtD u ... u (CD.Othersn u {zl+lt ... , zr}). 

As an example, consider the following classes. 

el = ({ai' a2, ... , alt} , {XIt+I• ... , Xm}), 

C2 = ({bl' b2, ••• ,b.} , {Y.+t• ... , Yn}), and 
e3 = ({Ct, C2, ... , Cp} , {Zp+t• ..• , Zt}). 



143 

Suppose that C2 inherits from C1 and C3 inherits from C2, then C2 >- C1 and C3 >- C2• The 

directed graph in Figure 6.9 illustrates two single feedback relationships among the 

classes C1, C2, and C3• Class C2 inherits some of the attributes b1, for i=1, 2, ... , s, from 

C1, and the class C3 inherits some of the attributes Cj, for j=1, 2, ... , p, from C2• The class 

C1 derives the attributes x1, for i=k+ 1, ... , m, from C2, and the class C2 derives the 

attributes yj, for j=s+ 1, ... , n, from c3. 

{{blf bz, .•. , b 5 } U 
Othersu {Ys+lt • •• , Yn}) 

Figure 6.9: Representation of feedback inheritance among classes C1, C2, and C3 

6.4.3 Semantics of Feedback Inheritance 

Hierarchical inheritance among classes means that attributes of the superclass are 

implicitly (automatically) made available to its subclass(es). In feedback inheritance, 

attributes of a subclass are not implicitly made available to syntype class(es). However, 

a synthesized interface of a subclass explicitly provided to a syntype class implies the 

availability of its contents (derived attributes) to the syntype class, and hence the 

knowledge about the availability of the subclass's synthesized attributes to the syntype 

class. A syntype class that is not explicitly provided with a synthesized interface does not 

have any knowledge about the subclass's attributes and cannot access them. This point 

is illustrated in Figure 6.10. 



{ alf a2t ••• , ar} 

~l 
( {bH bu • • • t bd U !•i: C2 OtherSz, { Yk+l' •• •' Ym}) T 

cl ·I 
({elf c 2 , ••• , Cp} u Others3, {zp+l' ••• , z 0 }) 

Figure 6.10: A feedback and hierarchical inheritance interfaces 
among the classes C1, C2, and C3 
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In Figure 6.10, the class C2 derives the attributes Yi• for i=k+1, ... , m, from {zp+t• 

... , Zn} u Others3 of c3. This derivation implies the availability of attributes of c3 to Cz, 

and hence the knowledge about the attributes of C3 in C2• Since C1 does not derive 

attributes from C2, there is no feedback relationship between C1 and C2• The availability 

of the synthesized attributes of C3 is terminated at C2• On the other hand, the hierarchical 

inheritance interface from C1 to C2 and then to C3 makes attributes of C1 and C2 implicitly 

available to c3. 
For simplicity of control, the feedback relationship is defined only between a 

syntype class and its subclass(es). However, a syntype class may include a subclass's 

synthesized attributes in its synthesized interface. For instance, the class C1 in Figure 6.10 

cannot directly derive attributes from the set {zp+t• ... , zn} of C3, however it can derive 

from the set {Yk+t• ... , Yml u Others2 of C2• Moreover, feedback inheritance implies that 

the contents of the synthesized interface explicitly provided by a syntype class to its 

ancestor class(es) is not necessarily disjoint from the contents of the synthesized interface 

provided by a subclass to that syntype class. 
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6.4.4 Message Passing 

Message passing and method determination in feedback inheritance can be 

described as follows. A message is a request for an instance to execute one of its 

methods. The receiving instance determines how to execute the requested method. When 

a message M[m, p1, ••• , pJ is sent to an instance of the class C, methods of C are searched 

for matching method m. If m is not found, the search continues along the inheritance and 

feedback paths until a matching method is found or an error message is returned. If 

method m is found, it is executed and the result is returned. 

To defme the semantics of message passing, we introduce a run-time data structure 

for method description called a descriptor. A descriptor is a data structure associated with 

each class in the system. It contains information about variables, defined and derived 

methods, and pointers to super and subclasses. Information about whether a method is 

derived explicitly by a syntype class when feedback exists among classes, is also included 

in the descriptors. The structure of a descriptor is depicted in Figure 6.11. 

As illustrated in Figure 6.11, the descriptor of a class may include several 

components. Five of the components are described below. 

1) Class Name (CN): The name of the class that the descriptor represents. 

2) SuperClasses (SC): A table of pointers to the descriptors of all superclasses. 

3) Synthesized Interface (SI): A table of the names of all derived methods from 
subclasses. Each name is associated with a pointer pointing to the subclass 
providing that method (i.e., to another descriptor). 

4) Instance Variables (IV): A tables of the names, types, and other attributes of all 
instance variables defined in the class. 

5) Defined Methods (DM): A table of the names of all methods that are defmed in 
the class. Each name is associated with a pointer to the executable code of the 
method. 
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.------- . .. superclass_1 .. .. 
1---

... 
~ Derived Subclass 1---

methods name . ~ superclass_n 
1....--

m1, . - subclass 1 . . . - -(CN) 
... . .. 

(SC) I--
m8, . - subclass m . . . -(SI) 

(IV) - Name Type Other - of var of var Attributes 
(DM) ~ Name Code 

v 1 T 1 ... 
Other meth 1 - code 1 - -

- ... -
Attr. . . . . . . . .. 

. . . . .. 
v 1 T 1 ... - -meth k - code k . 

- - -

Figure 6.11: The structure of a descriptor 

Pointers to super and subclasses are in fact pointers to the descriptors of these 

classes. Synthesized interface tables provide information about derived methods. Reaching 

the code of a derived/inherited methods in a class is achieved by following the pointers 

to the descriptors of super/subclasses. 

When a message is sent to an instance at run time, the descriptor associated with 

the class of the receiving instance is searched for a matching method. If a matching 

method is not found, the descriptor(s) of the superclass(es) is (are) searched, and so on. 

If a matching method is found, it is invoked through the pointer to its compiled code. 

Otherwise, an error message is returned. 

If the class is a syntype class of subclass(es) (i.e., feedback inheritance exists 

among the class and its subclass(es)), its descriptor will include the names of the 

subclass(es) from which methods are derived. When an instance of a syntype receives a 

messages, the descriptor(s) of the superclasses and the syntype interface are searched for 
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a matching method. 

Example: 

In this example, the class A is the superclass of the class B. Class B is the 

superclass of the classes R and S. A derives the attributes m5 and m8 from B. B derives 

the attributes m8 and m9 from classes RandS, respectively. The classes A and B can be 

described as follows: 

Class A 

end; 

Superclass 
Derived methods 
Instance Variables: 
Defined methods 

Class B 

end; 

Superclass 
Derived methods 
Instance Variables: 
Defined methods 

nil; 
B [mS], B [m8]; 
int x, int y; 
ml, m2; 

A; 
R [m8], S [m9]; 
int a, real b; 
m4, mS; 

Figure 6.12 illustrates the descriptors of the classes A and B. 

Suppose that the instance A-1 of the class A receives the message M[m5]. A-1 

will react by searching the defined methods table in the descriptor of A. Since m5 is not 

defmed in A, m5 is either inherited or derived. A search of the synthesized interface table 

(derived methods) indicates that m5 is derived from B. The search continues to the 

descriptor of B. The method m5 is defmed in B and its executable code is obtained 

through a pointer in the defined methods table of B. If m8 has been requested, the search 

for m8 would have continued to the descriptor of the class R, and so on. 

In a different scenario, if A-1 receives the message M[m20], the search for m20 

starts at the descriptor of A. Since m20 is neither defined nor derived, the search 

continues along the inheritance path to the descriptors of ancestor classes, unless m20 is 

found or an error message is returned indicating that no such method is defined along the 

inheritance path. 
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.... m8 . ..... Descriptor - -- of Class R 
(CN) B m9 . 

l. Descriptor 
-

,....--(SC)--· - ~ a int . . . of Class S 
(SI) ·-I--

~ b real . . . 
(IV) . 

f-

(DM) . __.... m4 . .. code 4 - - -
f-

mS . -code 5 . . . - -
"--,--

I - mS . -
(CN) A m8 . 

-
(SC) nil 

- ~ X int ... 
(SI) ·--

,---- y int ... 
(IV) . 

:---
(DM) . - ml ... code 1 - - -

f-

m2 . ..... code 2 . . . - -
'--

Figure 6.12: Descriptors of the classes A and B 

6.5 Examples Represented in the Proposed Model 

Examples are used in this section to illustrate the novel notions of a clan and the 

feedback relationship. To see the usage of the new model, we refer to the database and 

network examples mentioned in Section 6.3 and provide a representation in the context 

of the new model. 

In the case of databases, as in hierarchical inheritance, a class contains a set of 

attributes that represent the state and behavior of its instances. Attributes represent the 

relevant information of an entity in the system. For instance, the class DEPARTMENT 

contains the attributes D_name, Location, Degrees_offered, and College. The class 
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FACULTY contains the attributes F _name, Rank, Age, and Address. The feedback 

relationship between the classes DEPARTMENT and FACULTY is illustrated in Figure 

6.13. This representation can be compared with these in Figures 6.2 and 6.5. 

({D name, Location, Degrees offered, College}, 
{F=name, Rank, Age, Address}) 

Department •4 

l'acul.ty • 

l 
I 
l 
l 
I 

{D_name, Location, Degrees_offered, College} u Others 

Figure 6.13: Bi-directional inheritance between the classes Department and Faculty 

In Figure 6.13, the set Others of the class FACULTY is {F_name, Rank, Age, 

Address}. The class FACULTY inherits all attributes of the class DEPARTMENT through 

the inheritance interface. The class DEPARTMENT derives the attributes {F _name, Rank, 

Age, Address} from the class FACULTY. The synthesized interface of the class 

DEPARTMENT is 

DEPARTMENT.SI = {F_name, Rank, Age, Address} 

Unlike the hierarchical approach depicted in Figure 6.2, no class definition is required to 

defme a relation (i.e., an object type (record structure) as in Figure 6.1) on two or more 

classes. A relation on the classes DEPARTMENT and FACULTY can be represented by 

sending message(s), rather than by a new class (RDF1 in Figure 6.2), to an instance of 

either class. For instance, sending the messages 

M[D_name], M[Location], and M[F_name] 

to the instance Dept of the class DEPARTMENT returns the values (Table 6.1) 

COMPUTER_SC, MATH_SC_Bldg, and {fl, f2, f3}. 

Each of the above messages includes only one parameter, the attribute name. As state 
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attributes, their values are returned as a result. It can be observed that the instance Dept 

returns results equivalent to tuples created by the type Department defined in Figure 6.2. 

It is not necessary that all classes should have feedback relationship, only classes whose 

attributes appear in relations defined on them (e.g., Department and Faculty in Figure 

6.2). One may relate the classes DEPARTMENT, FACULTY, STUDENT, and COURSE 

(in the university system) as shown in Figure 6.14. In this figure, the sets 

Others0 = {D name,Location,Degree offered,College}, 
Otherss = {S-name,S age,S address}, 
Othersr = {F-name,Rank,F address}, and 
Othersc = {C name,C_Level} 

are the sets of the newly defined attributes in the classes DEPARTMENT, STUDENT, 

FACULTY, and COURSE, respectively. The attributes defmed in the classes 

DEPARTMENT, STUDENT, and FACULTY are all available to the class COURSE 

through the hierarchical inheritance. The second set of attributes at the nodes Department, 

Student, and Faculty is the set of synthesized attributes from their subclasses. The four 

classes in Figure 6.14 constitute the clan of the class DEPARTMENT. 

{Others5 u 
Othersc> 

(Others0 , Othersc u Othersr u Othersc> 

Dep7;~ 
Student • / 1· Facul.ty 

Others0 , ~ (Othersr U 
·' / Othersc> 

' I ' / 'v 
Course • 

Othersc u Others5 u Othersr U Others0 

Others0 , 

Figure 6.14: Relating classes through hierarchical and bi-directional inheritance 

Any relation (data collected from different classes) on the classes shown in Figure 

6.14 can be represented by sending message(s) to an instance of the appropriate class. For 
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instance, sending the messages 

M[C_name], M[F_name], and M[D_name] 

to the instance OP _SYS of the class Course, returns, for example, the values 

OPERATING_SYSTEMS, {fl, f2}, and COMPUTE~SC. 

The feedback relationship reduces the number of classes in the university system 

and provides a flexible technique for the definition of relations on classes. A message can 

be sent to different instances of different classes and return similar results. For example, 

the above messages, which were sent to the class COURSE, can be sent either to the class 

DEPARTMENT or the class FACULTY and return similar (not necessary identical) 

results. 

Feedback is efficient and simple in terms of relations that can be defined on 

classes. Shared attributes among related classes is provided and a better reflection of the 

original system is produced. The addition of new attributes to a class makes the new 

attribute automatically available to the inheriting classes and explicitly available to the 

syntype class(es). Deletion of an attribute simply requires a de-synthesis (i.e., removing 

it from the synthesized interface) of that attribute since it is provided explicitly. 

Considering the NCA example, as in the hierarchical inheritance approach, each 

node of the network is represented by a class. Classes are related through their feedback 

and inheritance relationships in which they share attributes (functions). An abstract 

representation (utilizing classes, hierarchical inheritance, and feedback relationship) of a 

network consisting of three machines is given in Figure 6.15. 

In Figure 6.15, the feedback interface makes attributes of a subclass available to 

its syntype class. Class M-2 derives {e, f} from the class M-3, and class M-1 derives {c, 

d, e, f} from the class M-2. However, the attributes defined in a node are available to all 

other nodes. A network of n nodes can be represented by n classes such that every two 

adjacent nodes share attributes through their inheritance and feedback relationship. All the 

classes constitute one clan and any instance of any class can answer the same message. 



152 

({a,b}, {c,d,e,f}) 

({c,d, }, {e,f}) 

{ e, f} 

Figure 6.15: Feedback inheritance representation of a three-node NCA 

This representation reflects the NCA in a more natural fashion than the one in Figure 6.5. 

6.6 Discussion 

This section is devoted to a discussion of issues such as encapsulation, visibility, 

and the access of attributes, that are related to inheritance in the context of the new 

model. Encapsulation minimizes the dependency among classes by providing external 

interfaces that contain the attributes of a class that are available to its subclass(es). In the 

hierarchical inheritance model, a class is encapsulated if its clients are constrained to 

access its attributes only via its external interface [Danforth 88]. In the feedback 

inheritance model, the inheritance and synthesized interfaces are independent and can be 

constrained to varying degrees. 

Encapsulating classes facilitates maintenance and provides the capability of making 

safe changes in a class without affecting its subclass(es). Inheritance allows a class to 

include inherited attributes in its interfaces that are provided for its subclass(es). If 

inheritance is part of the interface (i.e., visible to descendants), then changing the 

implementation of a superclass, that affects this interface, may require changes in the 

inheriting classes at several levels [Snyder 86a]. In the feedback model, the exclusion of 

inherited attributes from being derived by syntype classes prevents the spread of the side 
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effects of changes made in the ancestor classes. Also, providing synthesized interfaces 

explicitly implies that the values of the derived attributes themselves are not part of the 

interface (not visible to the syntype class(es)), and changes made to these attributes will 

not affect the syntype class(es). Therefore, we conclude that encapsulation is not 

compromised by the new model. 

In some OOPLs, the designer of a class is granted full access to the 

implementation of ancestor class(es) [Strom 86]. Full access to class implementation 

compromises encapsulation and limits the ability of safely changing the class 

implementation without affecting its inheriting class(es). Instance variables of a class are 

allowed to be inherited among classes. Providing methods to access the instance variables 

of a class is a solution for safe access and is an implementation issue that differs from 

one language to another [Stein 86]. In the feedback model, the same concept is applicable. 

At the implementation level, the values of attributes (state and behavior) of a class can 

be hidden from other classes and access is allowed only through attributes provided in the 

external interface. 

The issue of visibility of inheritance is implementation dependent [Snyder 86a]. 

It depends on several factors that the designer may consider. These factors are: 

1) The capability of excluding inherited attributes; 

2) The naming conflicts that may arise as a result of multiple inheritance; 

3) The direct invocation of attributes from ancestor classes; and 

4) The subtyping rules and their relation to inheritance. 

The flfSt and second factors are not applicable in the feedback model. Excluding 

attributes and providing same-named attributes are avoided since attributes are explicitly 

provided to the syntype class(es). The third factor cannot occur in the new model since 

the availability of the synthesized interface terminates at the syntype class and derivation 

is provided explicitly. The fourth factor depends on the subtyping rules that are language 
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dependent. 

Therefore, encapsulation, visibility, and safe access are maintained in the new 

model due to the restricted and explicitly provided synthesized interface to the syntype 

class(es). These issues facilitate the development and maintainability of software systems. 

6.7 Summary 

Generally, a preferred representation of a problem is that provided by a model that 

faithfully reflects the structure of the problem. The OOP paradigm has been the paradigm 

that provides a better correspondence between a problem and its representation. Even so, 

many real-life situations still cannot be well reflected in the object-oriented paradigm. The 

hierarchical inheritance model does not provide a satisfactory representation for situations 

where the dependency among objects is bi-directional. 

A relational database represents one area where variables are replicated among 

object types (record structures). Networking is another area that illustrates the situation 

where attributes need to be shared in both directions. Such situations are hard to represent 

in the hierarchical inheritance model. A feedback inheritance model that allows both a 

superclass and its subclass(es) to exchange attributes along with the notions of synthesized 

attributes, synthesized interfaces, and clans are presented. It is also shown that annotated 

directed graphs provide a simple and clear representation of the model. This model 

facilitates the programming task in situations similar to the above examples, and relieves 

the users from having to use tricky and inefficient approaches in the hierarchical 

inheritance model. Moreover, the notion of clan relaxes the message passing technique 

and potentially increases the probability of answering a message as well as the use of 

attributes among classes. 

Examples of a relational database and a network are used to illustrate the merits 

of the new model. First, possible representations in the hierarchical model are presented, 
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then the feedback representations are provided and compared with the hierarchical 

representations. The advantages and side effects in each representation are highlighted too. 

Feedback inheritance provides an opportunity for better and simpler 

implementation of systems that include bi-directional dependency among classes. Also, 

fewer classes are used and simpler structure results. In general, feedback inheritance 

avoids replicating functions among classes, increases reusability, eases software 

maintenance, and facilitates the sharing of functions in a distributed environment. 



CHAPTER VII 

AN IMPLEMENTATION INHERITANCE MODEL 

7.1 Introduction 

The inheritance models supponed by the currently available OOPLs [Cardelli 84] 

[Hailpem 87] [Pedersen 89] [Stein 87] are characterized as a "specification inheritance". 

A class provides the specifications of its methods in the external interface for other 

classes to use, and for the subclasses to inherit. Subclasses may provide new 

implementations for the inherited methods. Therefore, a method may have more than one 

implementation in different classes. In order to avoid ambiguity, the philosophy adopted 

by current OOPLs is that an object shall use the most recent implementation of an 

inherited method, and that the object is prohibited from using any previous 

implementation provided by ancestor classes. Subclasses may not be able to select freely 

any available implementation of a method since a class inherits the specifications of the 

methods rather than their implementations. When a subclass redefmes an inherited method 

m, it is desirable to allow instances of that class to access any previous implementation 

of the method m provided in ancestor classes. 

This approach is convenient when a method has different implementations in 

different classes. Otherwise, if an implementation different from the most recent one is 

needed, it has to be explicitly provided even if that implementation is available in an 

ancestor class. Such restrictions prohibit code reuse. As it turns out, some OOPLs do 

provide some limited programming features that allow a class to associate a method with 

different implementations. In the following section, we examine those features in the 
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languages Eiffel, C++, CLOS, and Smalltalk. 

The goal of this chapter is to generalize the current philosophy of inheritance in 

order to provide classes with the ability to choose any available implementation of a 

method in ancestor classes and to facilitate code reuse among classes. A language 

implementation scheme to support the proposed approach is provided. 

7.2 Background 

In this section four OOPLs are examined based on a number of their respective 

features that allow the association of a method with different implementations. The 

languages examined in this section are Eiffel, C++, CLOS, and Smalltalk. 

7 .2.1 Eiffel 

Eiffel [Meyer 88] provides a feature called deferred class that allows users to 

provide different implementations of a method in different classes. Figure 7.1 illustrates 

a deferred class using an example adopted from [Meyer 88]. 

In Figure 7.1, the deferred class STACK[T] represents an abstract data type in 

which methods are deferred for later implementations. The inheriting classes of the class 

STACK[T] provide the appropriate implementations of the deferred methods to suit their 

needs. For example, one subclass may implement stack as an array and then implement 

the deferred methods to accommodate the array implementation. Another subclass may 

implement stack as a linked list, in which case the implementations of the deferred 

methods would be different from those of the array implementation. 

The class ST ACK[T] is a partial implementation of the abstract data type stack. 

It has no instances. The "deferred class no-instantiation rule" of Eiffel prevents creating 

instances from deferred classes in order to avoid the use of incomplete methods. Thus, 

the concept of deferred methods allows subclasses to have different implementations, but 



deferred class STACK[T] export 
nb_elements, empty, full, top, push, pop, ... 

features 
nb elements: INTEGER is 

- deferred 
end; -- nb elements 

empty: BOOLEAN is 
do result := (nb elements = 0) 
ensure result :--(nb elements - 0) 
end; -- empty -

full: BOOLEAN is 
de~erred 
end; -- full 

top: T is 
require not empty 
deferred 
end; -- top 

push(x: T) is 

pop 

end; 

require not full 
deferred 
insure not empty; top := x; 

end; 
nb elements := old nb elements + 1; 

-- push 
is 
require not empty 
deferred 
insure not full; nb elements 
end; -- pop -
-- Other features 
class STACK 

:= old nb elements - 1; 

Figure 7.1: Definition of the class STACK[T] 

subclasses still use the most recent implementation of an inherited method. 

7.2.2 C++ 
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C++ [Stroustrup 86,91] provides several features that allow a method to be 

associated with different implementations: function overloading, virtual function, and 

abstract class. These features are described in the following subsections. 

7.2.2.1 Overloading of Functions. C++'s overloading is another language-specific 

feature that can be used to provide different meanings and different implementations for 

functions. In programming languages such as Pascal, functions with arguments of 
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different types must have different implementations and distinct names. With the 

availability of overloading, different functions (implementations) in C++ can have the 

same name. In this case, the C++ compiler and run-time support determines (at compile 

time and based on the number and/or type of arguments) the specific function to invoke. 

However, overloading is in fact a syntactic issue that allows several meanings to be given 

to a symbol or a function name in order tore-implement its inherited description from 

ancestor class(es) and to avoid name replication. Overloading in C++ is illustrated in 

Figure 7.2 where the function ave_3_grades is overloaded. Figure 7.2 adopted and 

modified from [Pohl 89]. 

#include <stream.h> 
class AVERAGE 

{ public: 

} ; 

float 
{ 

float ave 3 grades {float, float, float); 
int ave_3=grades (int, int, int); 

average::ave 3 grades (float 
float avg; - -
avg := (gl+g2+g3) I 3.0; 
~•tu~n avg; } 

gl, float g2, float g3); 

int average::ave 3 grades 
{ int avg; - -

{int gl, int g2, int g3); 

~n 
{ 

} 

avg :- (gl+g2+g3) I 3; 
~eturn avg; } 

() 
~loat a,b,c,ave_l; int x,y,z,ave_ 2; 
AVERAGE ave; 
cout << "\gl= " . cin >> a; , 
cout << "\g2- II • cin >> b; , 
cout << "\g3= II • cin >> c; , 
cout << "\gl= " . cin >> x; , 
cout << "\g2= " . cin >> y; , 
cout << "\g3= II • cin >> z; , 
ave 1 = ave.ave_3_grades (a,b,c); 
ave-2 = ave.ave_3_grades (x,y,z); 
cout << "ave 1 = II << ave 1 << "\n"; -cout << "ave 2 = " << ave 2 << "\n"; 

Figure 7.2: Example of an overloaded function 
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Figure 7.2 associates the name ave_3_grades with two implementations for 

different types of arguments. In one case, the arguments are of type integer; while in the 

other case, they are of type float. When an object of the class AVERAGE receives a 

message invoking the method ave_3_grades, the type of the arguments determines the 

appropriate implementation. 

7.2.2.2 Virtual Function. Virtual function [AT&T 89 a,b] is another C++ feature that 

allows classes to provide different implementations for inherited functions. The new 

implementation of an inherited function in the subclass dominates old implementations 

in ancestor class(es). Instances of the subclass use the new implementation. Non-virtual 

functions can be illustrated using the inheritance hierarchy shown in Figure 7.3. 

A display A () 

B 

c 

Figure 7.3: Inheritance of non-virtual functions 

Let us assume that Figure 7.3 represents the following code declaration: 

Class A { public: displayA() }; 
Class B : public A {public: display8 () }; 

Class c : public B {}; 

Let us further assume that display A() and display8() are different implementations of the 

function display(). Class C inherits but does not redefine display8 (). Display8 () dominates 
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displayA() and instances of class C use display8 () defined in class B. _However, the 

principle of domination prevents instances of classes B and C from using the version of 

display A() defined in class A. 
I 

In the case of overloading, overloaded functions are selected statically based on 

type matching arguments; while in the case of virtual functions, the appropriate invoked 

function is determined dynamically from among class and its ancestor class(es) [Poh189]. 

Instances of subclasses use the virtual functions defined in the ancestor class(es) unless 

subclasses provide new implementations for the inherited virtual functions. The principle 

of virtual functions states that instances of a subclass choose implementations provided 

in the closest ancestor class (it is the responsibility of the programmer to avoid conflicts). 

We illustrate this principle using the inheritance hierarchy adopted from [AT&T 89b] and 

given in Figure 7 .4. 

A virtual f () , g () , h (), k () 

B 

D h 0 {) 

Figure 7.4: Inheritance of virtual functions 

Figure 7.4 represents the following code declaration: 

Class A 

Class B 
Class C 
Class D 

{public: virtual f(); virtual g(); 
virtual h(); virtual k() }; 

public virtual A { public: f 8 {) }; 

public virtual A { public: gc() }; 
public B, public C, public virtual A 
{public: h0 () }; 
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The functions B::fB()• C::&(), and D::h0 () are re-implemented versions of the 

corresponding functions defined in class A. An instance of class D uses versions fB(), &0, 

and h0 (), and does not have access to versions f(), g(), and h() defined in A. 

The C++ implementation strategy for virtual functions is based on creating tables 

for virtual functions. For a given class, C++ creates a virtual table that contains pointers 

to the appropriate implementations of virtual functions. Every instance of a given class 

includes a pointer to that table. For example, any instance of class D in Figure 7.4 

includes a pointer to a virtual table that contains pointers to the functions A::kA(), B::fB(), 

and C::&O· However, instances of class D cannot choose other implementations of any 

of the inherited functions. 

7.2.2.3 Abstract Classes. C++ abstract classes [Stroustrup 91] are similar to deferred 

classes in Eiffel. Abstract classes allow subclasses to provide different implementations 

of general functions. For example, the function display() can be used with a variety of 

shapes. Hence, the function display() can be defined in an abstract class and allow the 

subclasses that represent different shapes to inherit and redefme the function display() to 

suit their needs. 

7.2.3 CLOS 

CLOS [Keene 89] uses the generic function approach to invoke methods. A 

generic function is a function whose implementation is distributed across a set of different 

methods that belong to different classes. Unlike the message passing approach in which 

the invoked method is determined by the class type of the object to which the message 

was sent, the generic function approach determines the invoked method using the class 

type of the arguments to which the invoked method is applicable. Since the 

implementation of a generic function does not, in general, exist in one place, CLOS uses 

a generic dispatch mechanism for invocation. Generic dispatch is the process of 
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detennining the applicable methods and invoking them. A method is applicable if the 

arguments of the generic function match the corresponding arguments of that method. For 

illustration, consider the following example adapted from [Winston 89] and illustrated in 

Figure 7.5. 

(de~un triangle are (figure) 
(* 1/2 (triangle_base figure) 

(triangle_altitude figure))) 

(defun rectangle are (figure) 
(* (rectangle_width figure) 

(rectangle_height figure))) 

(defun circle area (figure) 
(*pi (expt (circle_radius figure) 2))} 

Figure 7.5: Definitions of selected functions 

The functions given in Figure 7.5 belong to the classes TRIANGLE, 

RECI'ANGLE, and CIRCLE, respectively, which calculate the area of the appropriate 

shape. Let the function area be a generic function that retrieves the implementations of 

these functions upon receiving the appropriate arguments. Consider the one-parameter 

methods illustrated in Figure 7.6 

(de!method area ((figure triangle)) 
(* 1/2 (triangle_base figure} 

(triangle_altitude figure))) 

(defmethod area ((figure rectangle)) 
(* (rectangle width figure) 

(rectangle=height figure))) 

(defmethod area ((figure circle)) 
(*pi (expt (circle_radius figure) 2))) 

Figure 7.6: Different implementations of the method area 

In Figure 7 .6, each method is automatically applied when passing arguments of 
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the appropriate shape type. Note that all of these methods have the same name, and 

together they defme the generic function area. The expression "(figure triangle)" names 

the parameters, and specifies the method used when the parameter figure is bound to an 

instance of class TRIANGLE. The argument triangle is called parameter specializer. Each 

method is applied when the argument matches the parameter specializer. Examples of 

usage are given in Figure 7.7. 

* (aetf triangle (make instance :base 2 :altitude 3)) 
* (aetf rectangle (make=instance :width 5 :height 7)) 
* (area triangle) ;Matching method triangle 
3 
* (area rectangle) ;Matching method rectangle 
35 

Figure 7.7: Usage of the method area 

When the applicability of a method depends on the classes of two or more 

arguments, it is called a multi-method. Therefore, a multi-method in CLOS is a method 

that specializes more than one parameter [Keene 89]. For example, suppose that meth is 

a multi-method with two parameters, then the following method definitions 

(defmathod meth ( (x Class 1) (y Class2)) ... ) [1] 
(dafmathod meth ( (x Class3) (y Class4)) ••. ) [2] 

define the generic function meth. Method 1 is applicable when the first argument is of 

type Classl and the second one is of type Class2. Method 2 is applicable if the two 

arguments are of types Class3 and Class4 respectively. When two or more methods are 

applicable, they are ranked in order of precedence based on the order of the arguments 

from left to right. CLOS uses lexicographic ordering to determine the most specific 

method. Therefore, the most recent implementation is always used. This is the case in 

other languages also. 
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7 .2.4 Smalltalk-80 

In Smalltalk [Goldberg 83,89], a subclass inherits all variables and methods of the 

ancestor classes. It may add new variables and methods of its own. If the subclass adds 

a method whose specification is similar to a method in the superclass, instances of the 

subclass use the implementation in the subclass when receiving a message invoking that 

method. This is called overriding a method. Like other languages, the most recent 

implementation of a method is used. The search for an implementation starts in the class 

corresponding to the receiving instance, and continues up along the inheritance path until 

an implementation is found or an error message is returned. 

In Smalltalk, the variable super allows an instance of a class to use a method's 

implementation provided in a superclass. In this case, the search for the implementation 

of the invoked method starts in the superclass of the class containing the implementation 

that uses the variable super. Therefore, this technique allows the use of one particular 

implementation of a method that uses the variable super, and not any implementation of 

that method provided in the ancestor classes. 

Analogous to· Eiffel and C++, Smalltalk provides abstract classes. They contain 

the specifications of methods shared by classes that are unrelated to one another through 

inheritance. These classes provide appropriate implementations for shared methods. These 

methods are similar to deferred methods in Eiffel. A method specified in an abstract class 

can be implemented once in a subclass. Instances of the inheriting classes use the most 

recent implementation, or the inheriting classes can override the method to be used by 

their instances. Abstract classes have no instances. 

All features of different OOPLs discussed in the above subsections have a 

common factor: a method may have several implementations in different classes and 

objects cannot choose freely any previous implementation of that method. Another 

approach to the definition of classes and methods is based on the concept of slots. A slot 
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is a repository associated with a set of values such that it holds one value at a time. For 

example, an integer slot can be associated with a set of integer values holding one value 

at a time. What happens when all variables and methods of a class are replaced by slots? 

In the next section this issues is briefly examined and its effect on the design of 

languages is discussed. 

7.3 Classes and Slots 

Classes contain variables and methods. Slots unify variables and methods into a 

single construct. Therefore, when replacing variables and methods of a class by slots, the 

class becomes a set of one type of entities. A slot may represent a state or a behavior. 

Both class-based and object-based languages (such as CLOS [Keene 89] and Self [Ungar 

87] [Chambers 90] respectively) use slots. 

CLOS [Keene 89] uses slots to determine the structure of a class. A slot has a 

name and a value. CLOS provides local and shared slots: a local slot has different values 

in different instances of the class and a shared slot has a single value shared by all 

instances of the class. CLOS implicitly generates accessors, :accessor accessor_name, that 

read and write the values of a slots. 

Self [Ungar 87] is a language based on prototypes, slots, and behaviors. Slots are 

constructs that unify variables and methods. Therefore, Self does not distinguish between 

the state and behavior of an object. It describes slots as containers of objects that return 

themselves as results. The name of slot S reads the value of S as a state, and the accessor 

S: updates the value of S. Slots representing methods have values as executable code. 

Each such value executes when the corresponding slot receives a message. 

Replacement of variables and methods of a class by slots eliminates the distinction 

between the state and behavior of the instances of the class. This may affect the 

specification of features that require this distinction. The required changes, as a result of 
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using slots, may vary from one language to another. 

An instance of a class containing variables and methods has its own copy of the 

variables and uses methods of its class. When using slots, an object has its own copy of 

all slots that may have initial values representing the initial state of the object. 

Objects communicate via messages [Chambers 90]. A receiving object determines 

whether to answer a message or not and how. When using slots, accessing a slot of an 

object may be accomplished by sending a message. The receiving slot determines whether 

to answer the message or not. In this case, the slot is given the responsibility of 

determining the match between the message and itself. A slot that accepts a message may 

return its value (state), or it may execute its value (implementation) and return the 

appropriate result. 

Some languages, such as C++ [Stroustrup 91] and CommonObjects [Snyder 86b], 

prohibit direct access to instance variables. When using slots, slots that represent the state 

are associated with accessor slots to manipulate them. Accessor slots may be implicitly 

generated by the language as in CLOS or explicitly defined by the user as in Self. 

Some languages, such as C++ [Stroustrup 91] and Smalltalk [Goldberg 89], 

provide different types of variables with different scopes. When using slots, either slots 

have different scopes or scopes are eliminated and slots themselves determine their own 

scopes by answering only the matching messages. For example, private, public, and 

protected variables in C++, and local, instance, class, pool, and global variables in 

Smalltalk can be unified into slots, and each slot can determine its scope. A slot answers 

a message based on its parameters and the identity of the sender. 

Inheritance allows sharing common behaviors among classes. Shared slots can be 

made available through inheritance and sharing common behaviors among classes is not 

affected by the use of slots. On the other hand, some languages provide variables shared 

by all instances of a class. Such variables remain in the class and are made available to 

all instances of the class. For example, the class variables in Smalltalk are shared by all 
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instances of the defining class. When using slots, class slots (that correspond to class 

variables) remain in the class and are made accessible to all instances of a class. Another 

example is the use of global slots in CLOS. Therefore, using slots does not affect sharing 

instance variables among instances of a class. 

To summarize, a slot is associated with a set of values, holding one value at a 

time. Slots of a class represent its variables and methods, and are responsible for handling 

messages. The values of a slot represent different implementations. Therefore, a slot can 

be associated with a number of implementations in different classes and a subclass may 

associate a new implementation with an inherited slot 

In the following section, a class model that consists of variables and slots is 

proposed. We use slots in place of methods and introduce the notion of behavior slots. 

7.4 Behavior slots 

The focus of this model is limited to methods and the reuse of their 

implementations. Slots are used to replace methods of classes. The distinction between 

the terms method and slot is in their association with implementations. Each method name 

is associated with one implementation; while a slot name may be associated with several 

implementations holding one implementation at a time. In this context, a class is a 

collection of variables and slots are called behavior slots. The values of class variables 

represent the state of an instance of the class, and the values of behavior slots represent 

implementations of methods of the class. A behavior slot (different from the definition 

of slots in other languages) is defmed as follows: 

Definition: 

A behavior slot SL is a pair (spec, imp) where spec is the specification(s), and imp is the 
implementation(s) of the behavior slot (see Figure 7 .8). 
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SL: Specification(s) implementation(s) 

Figure 7.8: Representation of a behavior slot 

In the above definition, a behavior slot may have several specifications associated 

with different implementations. In this model we consider a specification as a constant 

and an implementation as a variable. Therefore, a behavior slot has one specification that 

may be associated with a set of implementations. The set of implementations of a 

specification consists of all possible implementations of that specification in different 

classes. Hereafter, the term slot implies a behavior slot 

As an example we can consider the behavior of modems. Modems with higher 

baud rate can communicate with modems of lower baud rate at the lower rate. This 

suggests that a modem with the higher baud rate has several behaviors to choose from. 

We can represent this situation using classes and behavior slots. A specific modem can 

be viewed as an object. A modem object is an instance of a class that contains the 

behavior of modems of different baud rates. The behavior of an object can be represented 

by a slot named Connect. The slot Connect of a modem object responds to messages 

received from other modem objects to establish a communication line. The transmission 

rate is determined by the baud rate of the slower modem. We can view the determination 

of the baud rate as choosing an implementation of the slot Connect. For illustration, 

consider the following BelVAT&T modem types [Black 87]. 

Type 103J of speed 300 bps 
Type 202T of speed 1200 bps 
Type 201C of speed 2400 bps 
Type 208A of speed 4800 bps 
Type 209 of speed 9600 bps 

Classes that represent these modems are represented hierarchically in Figure 7.9. 

These classes inherit the implementations of the slot Connect to communicate with 

the slower modems. An object of type 209, for example, is able to communicate with all 
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Type 103J 

Figure 7.9: A hierarchy of BelVAT&T modem types 

other types. Therefore, it inherits all implementations of the slot Connect provided in the 

other types. The slot Connect has the same specification (e.g., Connect(integer:speed)) 

in all classes, and is associated with different implementations. Therefore, Connect is a 

behavior slot of one specification and several implementations. (This is an adaptation of 

an example suggested by Professor Gail Kaiser). The next section outlines the syntax used 

in this model. 

7.4.1 Syntax of Behavior Slots 

A class using behavior slots consists of three sections: variables, slots, and the 

implementations of the slots. The "variables" section is devoted to variable declarations. 

The "slots" section consists of the specifications of all newly defined slots and inherited 

slots that require new implementations. Re-implemented slots are preceded by the 

keyword re_imp. Inherited slots that do not require re-implementation are not included 
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in the slots section. The last section includes the actual implementations of all slots 

specified in the slots section. Figure 7.10 illustrates the class STACK using behavior 

slots (The code of examples used in this section is Pascal-like syntax). 

Claaa STACK 
Cbegin 

variables: max len: 
top-

constant : "" 1 0 ; 
inteqer; 

s array [max_len] of char; 

slots: reset(): void; 
pop() char; 
empty(): boolean; 

implementations: 

push(char) 
top-of() 
full () 

alot reset() begin top:=O; end; 

void; 
char; 
boolean; 

slot push (c:char) begin top:=top+1; s[top] :=c; end; 
slot pop() begin return (s[top]); top:=top-1; end; 
slot top-of begin return (s[top]); end; 
slot empty() begin return (top == 0); end; 
alot full() begin return (top== max_len); end; 

Cend. 

Figure 7.10: Declaration of the class STACK using behavior slots 

In this model we are dealing with multi-implementation slots. Therefore, it is 

convenient to treat all implementations of a slot as one group. In the following section 

we present the concept of an aggregate and apply it to the implementations of slots. 

7.5 Aggregates and Behavior Slots 

Generally speaking, an aggregate is a collection of objects referenced by a single 

name. Aggregates have different usages in OOPLs. They allow building "un-serialized 

hierarchies of abstractions" and incorporate several language features (including 

concurrencey, delegation, and message passing) that may simplify the programming task 

[Chien 90]. In the context of behavior slots, we view a slot conceptually as an aggregate. 

An aggregate is defined as follows. 
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Definition: 

An aggregate (conceptual slot) is a collection of implementations associated with a set of 
handlers, and is referenced by a single name. Implementations are procedures (programs) 
that are independent of each other and can execute simultaneously. Handlers are selection 
functions that determine the acceptance of messages received by the slot and select the 
appropriate implementations. The aggregate name is the slot name (see Figure 7.11). 

handlers procedures 

messages dispatch replies 

Figure 7.11: Representation of an aggregate (conceptual slot) 

A slot receives messages from different objects and handlers select the invoked 

procedures. (An important characteristic of an aggregate of implementations is that it is 

a multi-access entity that may accept more than one message at a time and may return 

a number of simultaneous results as well). For illustration, consider the classes of the 

Cartesian and polar representations of a point illustrated in Figure 7 .12. 

In Figure 7.12, the class CART_POINT is the superclass of the class 

POLAR_POINT. The slot setpoint initializes a point in either representation, and it 

requires two arguments for either representation. It has the same specification in both 

classes, but different implementations. Specific types are not provided in the specification, 

rather a generic type is used. For an instance of the class POLAR_POINT, there are two 

implementations for the slot setpoint to choose from; whereas instances of the class 

CART_POINT have access to one implementation only. The aggregate representation of 

the slot setpoint in the class POLAR_POINT is illustrated in Figure 7.13. 

In Figure 7.13, the set of procedures consists of the two implementations of the 

classes CART_POINT and POLAR_POINT. The slot setpoint may receive messages form 

different objects. The handlers analyze these messages (in this case based on the qualifier 

or class name and the type of arguments) and select the appropriate procedure 



Claaa CART POINT 
Cbeqin -

variables: Xval : inteqer; 
Yval : inteqer; 

slots: setpoint (type,type) : void; 
offset(integer,integer) : void; 

i.q>lementations: 

Cend. 

slot setpoint(x : integer, y : integer) 
begin Xval:=Xval+x; Yval:=Yval+y; end; 

slot offset(i : integer, j : integer) 
begin Xval:-Xval+i; Yval:=Yval+j; end; 

Claaa POLAR POINT child of CART POINT 
Cbeqin 

slota: re imp setpoint(type,type) : void; 
implementations: 

Cend. 

alot setpoint(length: real, angle: real) 
begin 
Xval:=int(length*cos(angle)); 
Yval:=int(length*sin(angle)); 
end; 

Figure 7.12: Cartesian and polar representations of a point 

setpoint(x:type=integer, 
==~ .. ~ y:type=integer) 

setpoint(length:type=real, 
angle:type=real) 
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messages dispatch replies 

Figure 7.13: Aggregate representation of the slot setpoint 

(implementation). Here, the handler is a function that takes the qualifier and arguments 

as inputs and produces calls to the invoked procedures as outputs. 

As mentioned earlier, we are concerned with the implementations of slots and their 

reuse. The concept of message as used by current OOPLs discourage if not prohibit this 

type of reuse. Therefore. it is necessary to modify the notion of a "message" in order to 

accommodate the goal of this model, which is the capability to selection of any previous 

implementation of a slot provided in ancestor class(es). In the following subsection we 

present a generalization of the concept of a message. 
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7.6 Generalized Messages 

Message passing is a communication model for objects to interact with one 

another. The receiving object can determine whether to answer a message or not and how 

[Nierstrasz 86]. An object invokes a method of another object by sending a message. We 

present the notion of a generalized message in the context of behavior slots. 

The notion of a generalized message is founded on the philosophy that it should 

be possible to select any slot's implementation that is available along the inheritance 

hierarchy. Therefore, it is necessary that all implementations (not the details of the 

implementation) above a receiving object be visible (known) at any point in the 

inheritance hierarchy. Selection of a particular implementation of a slot is application

dependent. Here we develop the idea of a generalized message. The syntax of a 

generalized message may have the form: 

message (O,S,D) 

where 0 is the receiving object, S is the requested slot, and D is the discriminant 

(additional information) that may be required by the receiving object for selecting an 

implementation of the slotS. 

The discriminant D is an information packet. Such information is necessary when 

the receiving object 0 has knowledge about several implementations (for the invoked slot 

S) distributed over different classes along the inheritance path. In this case, the given 

information is used by the receiver to select the appropriate implementation. The 

discriminant D may be missing when there are no alternative implementations for the 

invoked slot S, which the receiving object 0 can select from. In this case, only one 

implementation of the slot S is known to object 0. The approach adopted by current 

OOPLs falls into this specific case. 

As an example for illustrating the point, we have adopted the login procedure in 

UNIX [Sobell 89], which is facilitated by the process getty, and have modified it to fit 
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the framework of objects. Two objects logobj and gettyobj are used to represent the login 

procedure and the getty process respectively. It is assumed that they communicate through 

messages. 

Object gettyobj invokes the slot I/O-control. I/O-control is associated with several 

procedures. Two of these procedures are: Output-Upper-Case that turns on the uppercase 

output mode, and Output-Lower-Case that turns on the lower case output mode. Object 

gettyobj activates the Output-Upper-Case procedure if the user's login name is non-empty 

and it does not include any lowercase letter. Otherwise, the procedure Output-Lower-Case 

is activated. The objects logobj and gettyobj along with their message communication are 

illustrated in Figure 7.14. 

logobj 

I login: I 
I 

message -.... 
gettyobj 

Output-Upper-Case 
Output-Lower-Case 

The message: message (gettyobj,I/0-control,login-name) 

Figure 7.14: A generalized message 

In Figure 7.14 the receiving object is gettyobj, the slot is I/O-control, and the 

discriminant is the case of the user's login name sent by logobj. Gettyobj has two 

implementations associated with the slot I/O-control: uppercase and lowercase outputs. 

It uses the case of the user's login name as the factor to select the appropriate 

implementation. (In the UNIX system, the procedure getty calls the login procedure). 

7 .6.1 Procedure Calls 

In most OOPLs, a message has the form "message (O,m)", and only one 

implementation is available for method m. This approach has the advantage of efficient 
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implementation. For example, the message "message (O,m)" can be translated into a 

procedure call of the form: o .rn (actual parameters) . This format eliminates the 

discriminant parameter since the decision about the invoked method is made implicitly 

in advance using the "." operator. 

In the procedure call format, the receiving object and the appropriate 

implementation of the invoked method are determined at compile-time. Pointers to objects 

can be used to determine the receiving object and the invoked method at run time. The 

appropriate implementation of the invoked method is determined based on the object 

pointed at by the pointer. For example, C++ provides virtual functions that may be 

associated with different implementations in subclasses. C++ dynamically determines the 

appropriate implementation for each call of a virtuai function. The selection depends on 

the object pointed at rather than the type of the pointer itself [Pohl 89]. Therefore, in 

some existing languages, we can manipulate the available features in order to invoke an 

implementation provided in ancestor class. 

The concept of a generalized message provides a formal approach rather than an 

indirect one. It also facilitates some compilation checks. A class may use a particular 

method implementation in an ancestor class by using a full-name reference to that 

implementation. In this case the ancestor class name is the discriminant. A full-name 

reference is a form of a procedure call that includes the class name as a qualifier for the 

selection among the possible implementations of the invoked method. 

In the following section the concept of implementation inheritance is introduced 

based on the concepts discussed in the previous sections. 

7. 7 The Proposed Implementation Inheritance Model 

In this section we bring together the concepts of behavior a slot, an aggregate, and 

a generalized message to develop the idea of implementation inheritance. In the object-
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oriented paradigm, inheritance is a mechanism for sharing common features among 

classes. A subclass inherits the specifications of slots provided by its superclass(es). A 

subclass either uses the implementations used in the superclass(es) or it may provide new 

implementations for some of the inherited slots. Therefore, the subclass has to use the 

most recent implementation of an inherited slot and has no knowledge of any previous 

implementation provided by ancestor classes. 

One of the objectives of this model is to relax the above restriction and develop 

a new approach to inheritance. The new approach grants classes the knowledge of 

previous implementations of the inherited slots. The idea behind this approach is that 

whenever a slot is associated with different implementations at different levels of the 

inheritance hierarchy, these implementations should be known to classes located at lower 

levels of the hierarchy. Therefore, a class can inherit the specification of a slot along with 

the desired implementation. We call this approach Implementation Inheritance (!

inheritance). 

The semantics of !-inheritance simply states that an instance of a class may use 

any slot implementation provided by the ancestor class(es) in addition to the 

implementations in the class itself. This ability allows a programmer to achieve efficient 

reuse of existing implementations provided for inherited slots because one of the 

important concepts in facilitating code reuse - identification and access [Biggerstaff 89] -

is combined with the concept of message. In the following section we present the 

conceptual view set forth by the idea of !-inheritance. 

7.8 Conceptual View of Implementation Inheritance 

Since a behavior slot can be associated with several implementations in different 

classes, it seems appropriate to think of all implementations of a slot as a collection, and 

treat them as one set of possible values for that slot. Therefore, we are conceptually 
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dealing with multi-implementation slots. To provide a conceptual view for multi

implementation slots, we adopt the concept of an aggregate [Chien 90] and apply it to the 

set of implementations of a slot. Each multi-implementation slot is represented by one 

aggregate. The concept of !-inheritance is described by the relationship among aggregates 

representing multi-implementations slots of an inheritance hierarchy. For illustration, 

consider the inheritance hierarchy given in Figure 7.15. 

A 

B 

c 

D f(), g(), h(), k() 

Figure 7.15: Inheritance hierarchy among some classes 

In Figure 7.15, the multi-implementation slots are f(), g(), and h(). Each slot is 

associated with several implementations in different classes. Conceptually, we view each 

slot as an aggregate consisting of a handler and a set of procedures. Handlers perform the 

selection process of a procedure and procedures are the implementations in different 

classes. In this representation we use the notation A:fO to indicate the implementation of 

the slot f() in class A. The aggregate representation of the multi-implementation slots in 

Figure 7.15 is given in Figure 7 .16. 

Figure 7.16 represents individual aggregates for the slots f(), g(), and h(). To 

represent the !-inheritance relationship among the classes of Figure 7.15, we relate 
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Aggregate f () : .. I Handler F I - A: f (), B:f(), .... Result --1 I - -C:f(), D: f () 

--1 Aggregate g () : Handler G 1 B:g()' C:g() • Result 
D:g() 

Aggregate h(): --1 Handler H --1 C:h(), D:h () ~ Result 

Handlers Procedures 

Figure 7.16: Aggregate representation of the slots f(), g(), and h() in Figure 7.15 

handlers to classes as follows. 

Class B uses Handler F 
Class C uses Handlers F and G 
Class D uses Handlers F, G, and H 

A class uses one or more handlers when the class includes slots that have several 

implementations in ancestor classes. For example, class A uses only the handler F because 

only slot f() has an implementation in class A. On the other hand, class D uses three 

handlers since the slots f(), g(), and h() in class D have several implementations in 

ancestor classes. For notational convenience, let us assume that 

HB is the set of handlers used by class B (i.e., {F} ), 
HC is the set of handlers used by class C (i.e., {F,G} ), and 
HD is the set of handlers used by class D (i.e.,{F,G,H}). 

Note that handler sets HB, HC, and HD select specific implementations of each slot at 

each level of the inheritance hierarchy. For example, the handler set HB and HC select 

specific implementations of the slot f() at the level of classes B and C. For class B, the 

handler set HB selects form A:f() and B:f(); while for class C, the handler set HC selects 

from A:f(), B:f(), and C:f(). Figure 7.16 can be modify to reflect the relationship among 

these handlers. The modification is illustrated in Figure 7.17. 

In Figure 7.17, because of the inheritance relationship between classes, each set 

of procedures includes the contents of the set of procedures associated with the previous 



At level class B: 

At level class C: 

At level class D: 

Handlers 

A:f(), B:f() 
C:f(), D:f() 

C:h(), D:h() 

Procedures 

Figure 7.17: Relationships among handlers of aggregates in Figure 7.16 
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level. We denote this inclusion using feedback double arrows between sets of procedures. 

Therefore, an implementation of a slot may belong to more than one aggregate and a 

handler of an aggregate may be shared among several aggregates as well. The inter

relationship among the aggregates and !-inheritance is depicted in Figure 7.18. 

f(): 

g(): 

h(): 

A 

--...J HB I - B --I I - -... HC - D .... - - -- HD - c .... - - -
Sets of handlers Sets of procedures 

Figure 7.18: Inter-relationship between aggregates and !-inheritance 

Result 

Result 

Result 

In Figure 7 .18, the inclusion relationship among handlers represents the inheritance 

relationship illustrated in Figure 7.15. Handlers of HD include handlers of HB and HC 

because class D inherits from the classes B and C that use these handlers. No handler is 
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contained in HB because class B inherits from class A that does not use handlers. In the 

set of procedures of a slot we use the class names to indicate the locations of 

implementations of that slot. 

To exhibit the relationship between the current and the following sections, we need 

to explain the correspondence between the concept and implementation of !-inheritance. 

At the concept level, the selection of an implementation is achieved by the handlers of 

an aggregate; while at the implementation level, the handlers are represented by a run-

time data structure and associated with a selection algorithm (see the following section). 

Procedures are the slot's implementations distributed over different classes. The mapping 

between the concept and implementation levels is shown in Figure 7.19 . 

Concept level: •I Handlers ..... , Procedures ...... Result 

~ ! 
!-index 

Implementation Implementations 
level: Selection of slots Result 

algorithm 

Figure 7.19: Mapping between the concept and implementation of !-inheritance 

In the following section we present an implementation scheme which will 

accomplish the objectives set forth by the concept of I-inheritance. 

7.9 An Implementation Scheme for Implementation Inheritance 

A slot may have several implementations in different classes. Our approach in this 

scheme is to keep track of all possible implementations of a slot and provide access 

path(s) to each implementation. The retrieval of a specific implementation depends on the 



182 

message. To retrieve an implementation, we need: 

1) Infonnation in the message indicating the desired implementation. For example, 

full-name qualification allows the system to choose the invoked implementation. 

2) Information about different implementations of a slot in ancestor classes. In the 

implementation scheme presented in this section, this information includes names 

of ancestor classes that provide different implementations, and pointers to the 

implementations themselves. This information is represented by a rum-time data 

structure called Implementation-Index (!-index). 

An 1-index is a two-dimensional array of entries containing addresses of the 

different implementations of a slot. Rows are indexed by slot names and columns are 

indexed by the class names where implementations are provided. An entry contains a 

value (address of a procedure's code) if the slot is associated with an implementation in 

the corresponding class. Otherwise, the entry is undefined. An undefined entry indicates 

that the slot is inherited by the corresponding class, but is not re-implemented. For 

example, consider the class USE_ANY illustrated in Figure 7 .20. 

Class USE ANY child of POLAR POINT 
Cbegin-

slota: create_point(type,type) : void; 
-- other slots 

implement: slot create_point(type,type) 
begin 

end; 

Cend. 

Create a point using the implementations 
of the slot setpoint in ancestor classes. 

-- other implementations 

Figure 7.20: Class USE_ANY using implementations of the slot setpoint 

In Figure 7 .20, class USE_ANY inherits from the class POLAR_POINT shown 

in Figure 7 .12. The slot create_point creates a point using the implementations of the slot 
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setpoint provided in ancestor classes of the class USE_ANY. Therefore, instances of the 

class USE_ANY can use any of these implementations. The 1-index associated with the 

class USE_ANY is given in Figure 7.21. The 1-index is a 2x2 array. The entries 

I-index[offset,CART_POINT] and 
I-index[offset,POLAR_POINT] 

indicate that the slot offset has only one implementation in the class CART_POINT. The 

entry !-index [offset, POLAR_POINT] is undefined. That is, class POLAR_POINT 

• 
inherits (notre-implements) the slot offset. 

cart _point polar _point 

setpoint pointer to slot pointer to slot 
set point (inteqer,integer) setpoint (real, real) 

offset pointer to slot 
offset (integer, integer) undefined 

Figure 7.21: An !-index example 

7.9.1 Organization of the 1-index 

Slot names marking rows of the I-index of a class are the names of slots 

associated with implementations in ancestor classes. The order of rows (slots) depends on 

the appearance of their implementations in ancestor classes. The class names marking 

columns of the !-index of a class are the names of ancestor classes of that class. Order 

of columns (class names) depends on an ordering process applied to the inheritance graph. 

This process produces an ordered list (called a C-list) of all classes of the graph. An 

algorithm to construct a C-list is given below. 

Algorithm Class-List 

Input : Inheritance graph C. 
Output: Ordered C-list. 
Method: step 1: r_level=l; hgt=height(C); C-list=[]; 
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step 2: Call list roots(r level,hgt,C-list); 
step 3: Return c-Tist. -

The procedure list_roots is defined recursively as follows: 

list_roots(r_level,hgt,C-list) = 

[
C-list=C-list I I [root nodes] r level I I 

[list_roots(r_level+r,hgt,C-list)] if r level~ hgt 

C-list=[] if r_level > hgt 

where the variable hgt is the height of the graph, r_level is the root level of the current 

graph, and C-list is the ordered list of all classes of the graph C. The procedure list_roots 

recursively lists child classes from left to right following the listing of their superclass(es). 

Figure 7.22 illustrates the application of the algorithm Class_List on a given class 

hierarchy. The Figure is self-explanatory. 

A B 

~~ 
C D E 

~I 
I 
G 

hgt=4; r_level=l; C-list 1=[]; 

C-list "" 
C-list 
C-list 
C-list = 

C-list 

[JII[A,B]II[r nodes] 2 
[A,B] II [C,D,E]II [r nodes] 3 

[A, B, C, D, E] I I [F] I ITr nodes] 4 

[A, B, C, D, E, F] I I [G] I ITr_nodes] 5 

[A,B,C,D,E,F,G] II[] 

C-list = [A, B, C, D, E, F, G] 
Orders: 1 2 3 4 5 6 7 

Figure 7.22: The C-list of a multiple inheritance hierarchy 

7 .9.2 Size of the !-index 

The size of an !-index of a subclass depends on the number of inherited slots 

associated with new implementations, and the number of the ancestor classes that 

introduce different implementations for the inherited slots. If there are n inherited slots 
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in a subclass, the maximum size of the 1-index is "n *the number of all ancestor classes". 

This case implies that the every ancestor class introduces a new implementation for at 

least one inherited slot re-implemented in the subclass. The minimum size of the !-index 

is "1 * m" where ~1 is number of ancestor classes. This case implies that at most m 

ancestor classes provide implementations for at most one inherited slot re-implemented 

in the subclass. For example, consider the single inheritance hierarchy in Figure 7 .23. 

C-list: [A, B, C, D] 
Orders: 1 2 3 4 

A 

B 

c 

D f(),g(), 
h(),k() 

1 1 2 

f0 B 

I-index of B I-index of C 

1 2 3 

f A B c 

g - B -

h - - c 

I-index of D 

Figure 7.23: Representation of !-indices of classes 

In Figure 7 .23, each class re-implements at least one inherited slot. The 1-index 

of class B is of the minimum size since class B inherits and re-implements only slot f(). 

Note that the 1-index of class B is of the maximum size as well. The I-index of class C 

is of the minimum size. Class C inherits the slots f() and g(), but only f() is re

implemented by the class C. Therefore, instances of the class C can use two previous 

implementations for the slot f(). 

The I-index of class C would be of the maximum size (2x2) if the inherited slot 

g() has been re-implemented in class C. The I-index of class Dis of the maximum size. 
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Each re-implemented slot in the class D has an implementation in at least one ancestor 

class. The size of an 1-index is not affected by the type of the inheritance hierarchy 

(single or multiple). 

7.9.3 Construction of the 1-index 

A subclass may add new slots and re-implement inherited slots as well. A class 

that re-implements inherited slots is associated with an 1-index that keeps track of 

previous implementations. A class that does not re-implement inherited slots need not be 

associated with an 1-index since no new implementations are introduced by the class. In 

the following subsection, we illustrate the concept of 1-index construction using single and 

multiple inheritance hierarchies. Hereafter, in stead of using the class names to label 

columns of the 1-index, we will use their orders in the C-list. Moreover, we use the class 

names in entries of the 1-index to show the classes that provide previous implementations 

for the corresponding slots. 

7.9.3.1 Single Inheritance. Consider the single inheritance hierarchy illustrated in 

Figure 7 .24. Class B inherits the slots f() and g() from the class A, and introduces the 

new slot h(). Class B does not re-implement any of the inherited slots. Therefore, the 

classes A and B are not associated with !-indices since the class A originally defines all 

of its slots, and the class B provides no new implementations for inherited slots. On the 

other hand, the classes C and D are associated with !-indices since they provide new 

implementation for inherited slots. 

In Figure 7.24, class C re-implements g() and introduces k(). The 1-index of the 

class C is simply one-entry array since only slot g() has previous implementation in the 

ancestor class A. Therefore, instances of the class C have two implementations for the 

slot g() to choose from; one is provided in class A as indicated in the entry [g,l], and the 

second one is provided in the class C itself. Note that A (the value stored in the entry 



C-List: [A, B, C, D] 
Orders: 1 2 3 4 

A 

B 

c 

D 
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I-index of class c 

1 3 

I-index of class D 

Figure 7.24: Illustration of an 1-index 
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[g,l] of either I-index) is the address of the implementation provided in the class A. The 

slot kO is not included in the 1-index since it has no previous implementations in ancestor 

classes, it may be included in the !-indices of descendants of the class C. 

Class D re-implements the slot f(). Instances of the class D have different 

implementations for the slots f() and g() to choose from. The 1-index of class D is a 2x2 

array. It provides information about the implementations of the inherited slots f() and g(). 

Slot g() has implementations in the classes A, and C; and slot f() has implementations in 

the classes A and D. Note that the slot g() marks the first row of the 1-index of the class 

D because slot g() has been re-implemented in class C before the slot f() re-implemented 

in class D. 

The 1-index of a subclass may be constructed by adding information to the !-index 

of its superclass. The newly provided information is about inherited slots that are re

implemented in the subclass. If the superclass has no 1-index (i.e., each slot has a single 

implementation in ancestor classes), a new 1-index is constructed for the subclass. In 

Figure 7.24, the 1-index of class Dis an extension of that of the class C. The additional 

infonnation is about the new implementations of the slots f() and g() that are re-
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implemented in the classes C and D. Instances of the class D have the choice to use 

implementations from the class A or C. 

7 .9.3.2 Multiple Inheritance. Consider the multiple inheritance hierarchy illustrated 

in Figure 7 .25. Class C inherits and re-implements the slot f() from the class A. Class D 

inherits andre-implements the slot f() from the class A and the slot g() from the class B. 

Class E inherits the slot f() from both classes C and D. Suppose that class E re

implements the slot f() inherited from the class C. Therefore, instances of the class E can 

use either A:f(), C:f(), D:f(), or E:f(). Class E also inherits and re-implements the slots 

g() and h() from the class D. Finally, class F inherits andre-implements the slot f() from 

the class E. The only classes that do not require 1-indices in Figure 7.25 are the classes 

A and B since they originally define their own slots. The I-indices of other classes in the 

Figure are given in Figure 7 .26. 

D 

Figure 7.25: Multiple inheritance among classes 
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Figure 7.26: 1-indices of the classes in Figure 7.25 
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When a class inherits from two or more superclasses, the order of the superclasses 

in the C-list determines the order of slots in the 1-index of the inheriting class. Slots that 

re inherited and re-implemented from a superclass of lower order appear before slots 

inherited andre-implemented from superclasses of higher orders. For example, in the 1-

index of the class D in Figure 7 .26, slot f() inherited from the class A appears in the first 

row; while slot g() inherited from the class B appears in the second row because order 

of the class A is lower than the order of the class B in the C-list. The same argument 

applies to other 1-indices in the figure. Like single inheritance, the contents of a new 1-

index includes the contents of previous I-indices. That is, the new I-index is a super set 

of the previous ones. 

7.9.4 Optimization of the 1-index 

In sections 7.9.3 we noticed that the deeper we travel along the inheritance path, 

the faster the !-index array grows. We also associated each class with an !-index, and the 
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last 1-index is a super set of the previous one(s). 

The first thought of optimization is to allow classes that are associated with !

indices to use the last 1-index, and eliminate all previous indices. For example, the 1-index 

of the class Fin Figure 7.26 includes all information provided in the !-indices of the class 

C, D, and E. Therefore, the classes C, D, and E can use the 1-index of the class F. 

When all classes use the same 1-index, each class is concerned about partial 

information of that 1-index. A class should not be able to use or refer to information about 

implementations provided in descendant classes. For example, when class D in Figure 

7.26 uses the 1-index of class F, class D should refer only to the four entries ([f,l], [f,2], 

[g,l], [g,2]) of that 1-index. These entries are equivalent to its own 1-index in the figure, 

and they provide information about the implementations provided in the ancestor class A 

and B of the class D in Figure 7 .25. 

This approach of optimization requrres some modification in the selection 

algorithm above. Here, we need to know the order of the receiving object's class, and 

change the postcondition of the third step of the algorithm. The new algorithm is the same 

as before except for the steps 2 and 3. Here, we use the function class (object_name) that 

returns the class name of object_name. In the modified algorithm, the variable 

receiver_name is the name of the object 0 that received the message, and the variables 

receiver_order and class_order are the orders of the receiving object's and the 

discriminant classes respectively. The modified steps 2 and 3 of the previous version of 

the algorithm are given below. 

step 2: 

step 3: 

object name=message[l]; rece1v1ng object's name 
class name=message[3); discriminant field 
obtain the order of the class of the object name and 
class name from the corresponding C-list as-follows: 

receiver name=class(object name); 
precondition: -

class name and receiver name e C-list; 
r=l; flagl=flag2=FALSE; 
class order=receiver order=O; 
while-NOT (flagl AND-flag2) do 

begin 
if C-list[r]=class_name 



then beqin 
class order=r; flagl=TRUE; 
end; -

else if C-list[r]=receiver name 
then begin -
receiver order=r; flag2=TROE; 
end; -

r=r+l; 
end; -- while 

postcondition: class_order ~ receiver_order; 
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The modified algorithm guarantees that a class cannot refer to information about 

implementations in descendant classes. For a given class A, any class of a lower order 

than the order of A is either located at a higher level of the inheritance hierarchy or the 

same level of the class A. Classes at the same level have no inheritance relationship. 

Therefore, the postcondition 

class order < receiver order 

implies that the discriminant class is located at a higher level than the class of the 

receiving object. In the case where 

class order = receiver order 

the receiving object is an instance of the discriminant class, and this is equivalent to a 

message without discriminant (i.e., missing discriminant). 

7 .9.5 Selection Mechanism 

The concepts of behavior slot and generalized message require a selection 

· mechanism that determines the appropriate implementation of the invoked slot. The 

generalized message is developed to carry sufficient information that can be used in the 

selection process applied to implementations of slots. The concept of aggregate includes 

handlers that conceptually perform the selection process and activate the appropriate 

implementation of a slot. From the perspective of implementation reuse, identification and 

access mechanisms are incorporated into the message. 

In the implementation scheme, the !-indices correspond to handlers. Entries of an 



192 

1-index include addresses of (pointers to) implementations of slots in different classes. 

Here, we define the selection mechanism as an algorithm that takes a generalized message 

as an input, applies a conversion process to the message components, and determines the 

address of the appropriate implementation code (if exists). In section 7. 6, the generalized 

message was described in terms of the receiving object 0, the slot S, and the discriminant 

D. In general, the mapping of a message to a specific implementation depends on the 

specification of the discriminant. In this section we examine a selection mechanism when 

the discriminant D is a class name. 

When an object receives a message, a search algorithm is used to look for the 

recent implementation of the invoked method. The search starts at the class of the 

receiving object and continues up along the inheritance path until an implementation is 

found or an error message is returned. In the proposed model, we assume that such an 

algorithm exists and we refer to it by the name Search. Algorithm Search is invoked by 

the selection algorithm Select described below. In the following algorithm, we assume 

that the message is a record structure with three fields: object name 0, slot name S, and 

discriminant D. 

Algorithm Select 

Input : A generalized message(O,S,D). 
Output: Execution of the appropriate implementation or an 

error message. 
Method: 

step 1: 
step 2: 
step 3: 

input a generalized message; 
class name=message.D; -- the discriminant field 
obtain the order of the class name from the 
corresponding C-list as follows: 

precondition: class_name e C-list; 
r=l; 
while C-list[r] <> class_name do r=r+l; 
order=r; 

step 
step 

postcondition: order~ length(C-list); 
4: slot name=message.S; --the slot name field 
5: address=I-index[slot name,r]; 

if address="undefined" 
then call algorithm Search; 
else activate the procedure pointed to by address; 

The conversion process uses orders of the C-list elements and the slot names as 
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indices to entries of the 1-index. The response to a message is the execution of the 

invoked implementation or the response provided by algorithm Search. 

For illustration, consider the class hierarchy given in Figure 7 .25. Suppose that d 

is an instance of the class D, and d receives the following messages 

message1(d,f(),A) and message2(d,g(),A) 

The C-list and class orders of the class hierarchy in Figure 7.25 are: 

C-list: [A, B, C, D, E, F] 
orders: 1 2 3 4, 5, 6 

Figure 7.27 illustrates the selection process applied to these messages. The figure is self 

explanatory. 

step 1: message1(d,f(),A); 
step 2: class name=A; 
step 3: order[A]=l; 
step 4: slot name=£(); 
step 5: address=I-index[f(),l]=A; -- I-index of the class D 

Activate that implementation; 
step 1: message2(d,g(),A); 
step 2: class name=A; 
step 3: order[A]-1; 
step 4: slot name-g(); 
step 5: address=I-index[g(),l]=undefined; 

call algorithm search; 
step 5: STOP. 

Figure 7.27: Application of algorithm Select 

In Figure 7.27, the result of step 5 in processing messagel is the address of the 

implementation of the slot f() provided in the class A. This implementation will be 

activated as a response to message!. On the other hand, the result of step 5 in processing 

message2 indicates that class A does not provide an implementation for the slot g(). 

Therefore, algorithm Search is invoked to look for the recent implementation of the slot 

g() in an ancestor class, which is class B in this case. If no implementation exists, an 

error message is issued by algorithm search in this regard as a response to message2. 

Note that class D uses its 1-index to determine the addresses of the invoked methods. 
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7.10 Discussion 

In this section we discuss the impact of !-inheritance on the issue of encapsulation, 

and the relationship between the concept of multi-methods defmed in CLOS and the 

concept of generalized message introduced in section 7 .6. 

7.10.1 Implementation Inheritance and Encapsulation 

Alan Snyder [Snyder 86a,87] has indicated that inheritance in most OOPLs 

compromises encapsulation by exposing the implementation details to inheriting classes. 

He has outlined a set of requirements for full support of encapsulation with inheritance. 

These requirements and their benefits are given below. 

1) Providing different external interfaces for objects of the class and inheriting classes. 

Such interfaces allow the designer tore-implement the class methods with out affecting 

inheriting classes. New implementations are compatible with the external interface 

provided for inheriting classes. This requirement implies that classes are encapsulated, and 

methods are accessed by inheriting classes only through the defined external interface. 

2) Preventing direct access to the instance variables inherited from ancestor classes. Direct 

access to the instance variables of ancestor classes limits the designer's freedom to 

change, rename, or remove an instance variable without affecting its inheriting classes. 

Therefore, direct access to the instance variables compromises encapsulation. Snyder has 

indicated that using methods to access the inherited instance variables preserves the 

benefits of encapsulation and prevents direct access by descendant classes. 

3) Hiding the use of inheritance by not making it part of the external interface. When the 

use of inheritance becomes part of the external interface and is visible to inheriting 

classes, then changing the use of inheritance among classes (inheritance hierarchy) may 

affect the inheriting classes and require changes in descendant classes. This issue affects 

the designer's ability to safely change the inheritance hierarchy without changing the 
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implementation details of classes. 

It should be noted that !-inheritance is an extension of specification inheritance. 

!-inheritance is based on the identification and access concept of reuse. It allows users to 

reuse as much as possible of implementations provided in ancestor classes. The objective 

is to maximize the reuse of code segments by providing a minimum knowledge about the 

previous implementation(s) in ancestor classes. The impact of !-inheritance on 

encapsulation in the context of the above requirements is discussed below. 

In the specification inheritance, users need not understand how methods are 

implemented since each method is associated with only one implementation. !-inheritance 

encounters the previous implementations of a method as alternatives for users to choose 

from. In order to make such selection, users of !-inheritance should know the availability 

of these implementations. Such knowledge is provided in the external interface of the 

class. 

In !-inheritance, users need not know the implementation details, such as the 

specific implementation details of an algorithm, since the different specifications of 

previous implementations imply the functionality of each implementation. When all 

previous implementations of a method have the same specification, language constructs 

such as the "." operator in C++ and call_ method construct in Common Objects can be 

used to detennine the invoked implementation. Therefor, !-inheritance has little impact 

on encapsulation and information hiding since the external interface provides enough 

knowledge to select a previous implementation of a method. 

The issue of accessing inherited instance variables in not affected by !-inheritance 

since !-inheritance is an extension of the underlying specification inheritance. The use of 

methods to access inherited instance variables can also be used in the context of !

inheritance. Using methods preserves encapsulation and prevents direct access to the 

instance variables. Excluding the instance variables from the external interface preserves 

encapsulation by allowing the class designer to change, rename, or remove an instance 
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variable inherited from an ancestor class without affecting inheriting classes. 

Since !-inheritance implies direct access to methods defined in the ancestor classes, 

this feature of !-inheritance violates the third requirement above by exposing the use of 

inheritance, and hence partially violates encapsulation. !-inheritance compromises the 

visibility of inheritance in favor of reusability of implementations. It allows users to avoid 

re-writing implementations that are already provided in the ancestor classes, and therefore, 

it contributes to the reduction of code and coding efforts. 

7 .10.2 Multi-Methods and Generalized Messages 

In this subsection we contrast the notion of generalized message introduced in 

section 7.6 and the notion of multi-method used by CLOS. Both notions provide the 

language with a mechanism for invoking the appropriate method from among a set of 

available methods. The generalized message follows the message passing approach; while 

the multi-method follows the generic function approach. 

In the message passing approach, the invoked method is determined by the class 

of the receiving object to which the message is sent. In some cases, the receiving object 

may have the knowledge about several methods of the same name. Hence, more 

information may be required by the receiving object in order to determine the invoked 

method. Discriminant is an abstraction of such information. 

A multi-method in CLOS is a method that specializes more than one parameter. 

That is, its applicability depends on the types (classes) of two or more arguments. 

However, a multi-method is a method name associated with two or more different 

implementations in different classes (i.e., two or more methods of the same name). In the 

generic function approach, the invoked method is determined by the type of the arguments 

to which the method is applied. 

Although the two approaches are intended to accomplish the same purpose, they 
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are conceptually different and the generalized message is more general in the abstract 

sense. In the message passing approach, the receiving object has been given the 

responsibility to determine and choose the invoked method. We view this approach as a 

distributed approach in terms of responsibility. On the other hand, the generic approach 

adopted by CLOS uses a generic dispatch process that chooses the appropriate invoked 

method. We view this approach as a centralized approach of responsibility. Therefore, 

both approaches are distinctly different. 

In the generic function approach, the type of arguments is the fixed discriminant 

information that the dispatch process uses in order to determine the invoked method. The 

discriminant information of a generalized message can be any information (including the 

type of arguments) that provides sufficient information to the receiving object to 

determine the invoked method. Therefore, the generalized message approach can handle 

more general conditions than the multi-method approach. 

7.11 Summary 

As more complex software systems are being built, the significance of software 

reuse is further emphasized by users and researchers. Object-oriented programming 

provides support for code reuse through inheritance. The inheritance models currently 

used by OOPLs can be characterized as "Specification Inheritance". That is, classes inherit 

the specification of methods from ancestor classes. Even if several implementations are 

available to a method, the semantics of specification inheritance restrict the object to 

using the most recent implementation of an inherited method. Other implementations are 

in general inaccessible to that object. 

In this work a scheme has been developed a scheme to provide objects with the 

capability to reuse previous implementations of inherited methods, and to choose any 

implementation provided by any ancestor class. We characterize this approach as 
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"Implementation Inheritance" (!-inheritance). Even though it is possible to manipulate 

features of some languages in order to access previous implementations of inherited 

methods, so far there is no such model available in the literature. 

The concept of I-inheritance and the proposed implementation scheme are based 

on the ideas of slot, aggregate, and generalized message. We use the notion of behavior 

slot to represent a method that have several implementations in different classes. A 

behavior slot has a specification and implementation. We considered its specification as 

a constant, and implementation as a variable. The presented model allows multiple 

implementations to be associated to a slot. To associate the set of implementations of a 

slot with its specification, we use the concept of aggregate. Here, an aggregate is a 

collection of implementations associated with a set of handlers that perlorm the selection 

of an implementation requested by a message. 

When invoking an implementation of a slot, the selection process requires 

information to identify the invoked implementation. Such information is provided by the 

requesting object, and is carried with the message. A message in current languages does 

not provide such information since an object has no choice for an implementation but the 

most recent one. Therefore, we introduce the notion of a generalized message to 

accommodate the selection of any implementation of a slot. A generalized message 

provides a discriminant (information) sent by the requesting object to the receiving object. 

The discriminant allows the requesting object to specify the requested implementation, 

and the receiving object to correctly select the appropriate implementation. 

The suggested implementation scheme is based on a data structure called "!

index". The !-index of a class contains information about all slots' implementations 

provided by ancestor classes. A retrieval algorithm is presented for a special case. Finally, 

the impact of !-inheritance on encapsulation is discussed, and the notion of generalized 

message and multi-method are contrasted. 
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SUMMARY. CONCLUSIONS. AND FUTURE WORK 

A key distinguishing feature of OOP is the inheritance mechanism and the purpose 

that it is designed to serve. Inheritance is an important program design concept that 

promotes and facilitates code reusability and extensibility. This dissertation examines the 

inheritance models adopted by current OOPLs, and proposes new models that facilitate 

code reuse and reliable extension of existing software components in the development of 

software systems. The proposed models are based on an extensive study and analysis of 

the inheritance models provided in some of the most common OOPLs. 

The first part of this dissertation (Chapters 2, 3, and 4) provides an extensive 

literature review, and examines different features of inheritance in a number of well

known languages. A classification (taxonomy) based on the main characteristics of 

inheritance is presented as a binary tree. Nodes in the tree represent sets of characteristics, 

and edge are annotated by the selected languages. An inheritance model (or, equivalently, 

the language designed around it) at the leaf level inherits the characteristics represented 

by all nodes along the path from that leaf node to the root node. The classification 

approach provides a framework for identifying new inheritance models in the space of 

inheritance models allowable within the confines of the taxonomy. It also helps determine 

the similarities and differences among inheritance models based on their location on the 

tree. 

The first part of the dissertation also explores the approaches to reusability and 

extensibility (along with some other related issues such as visibility, information hiding, 

199 
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external interfaces, and the visibility of inheritance) in C++ and Eiffel. The strengths and 

weaknesses of each language from code reuse perspective are also highlighted. 

The second part (Chapters 5, 6, and 7) describes newly proposed inheritance 

models that are based on some of the discussion of the first part. Three inheritance 

models are proposed. They are designed to overcome three major problems found in the 

current models. 

1) Upon analyzing the current models, their advantages were gleaned and a new 

model was proposed by defining a Two-faceted object-based Inheritance Model (TIM). 

This is the first inheritance model, which consists of two orthogonal sets of objects. It 

provides single and multiple inheritance based on the message passing paradigm. It also 

provides semantics for object creation and deletion. TIM provides full support for 

encapsulation and other related issues including information hiding, access techniques, 

subtyping, and the visibility of inheritance. TIM is compared with the existing models in 

terms of the inheritance features provided by these models. 

2) Generally, a preferred representation of a problem is one that provided by a model 

that reflects the "natural" structure of the problem. The object-oriented paradigm is 

generally touted as paradigm that provides a better correspondence between a problem 

and its representation. Even so, many real-life situations still cannot be well reflected in 

the object-oriented paradigm. The strict hierarchical inheritance model does not provide 

a satisfactory representation for situations where the dependency among objects is bi

directional. 

The second inheritance model, A feedback inheritance model, is proposed to relax 

some of the constraints of the hierarchical inheritance model and provide control over 

dependency among related classes. These relaxations furnish the tools to discourage users 

from attempting tricky and costly approaches using the hierarchical model to control the· 

dependency among classes. Such attempts may result in inefficient and expensive 

software. Tile proposed model allows a superclass and its subclass(es) to exchange 
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attributes. In general; feedback inheritance avoids replicating functions among classes, 

increases reusability, eases software maintenance, and facilitates the sharing of functions 

in a distributed environment. 

Additionally, the feedback inheritance model maintaining consistency with issues 

such as information hiding, access and visibility, and encapsulation. The notions of 

synthesized attributes, synthesized interfaces, and clans are introduced as part of the 

definition of the model. The notion of clan relaxes the message passing technique and 

potentially increases the probability of answering a message as well as the use of 

attributes among classes. 

3) As more complex systems are being built, the significance of software reuse is 

further emphasized by researchers and users. OOP provides support for code reuse 

through inheritance. The inheritance models currently used by OOPLs can be 

characterized as "Specification Inheritance". That is, classes inherit the specification of 

the methods from ancestor classes. Even if several implementations are available to a 

method, the semantics of specification inheritance restricts an object to using the most 

recent implementation of an inherited method, and other implementations are inaccessible 

to that object. 

The third inheritance model, Implementation inheritance (!-inheritance), has been 

developed to provide objects with the capability to reuse previous implementations of the 

inherited methods and to choose any implementation provided by any ancestor class. Even 

though it is possible to manipulate some of the features of some OOPLs to access 

previous implementations of inherited methods, to date there is no such model available 

in the literatme. 

The concept of !-inheritance and its proposed implementation scheme are based 

on the notions of slots, aggregates, and generalized messages. The notion of a behavior 

slot is used to represent a method that has several implementations in different classes. 

A behavior slot has a specification and an implementation. The specification is considered 



202 

as a constant and the implementation as a variable. The model allows multiple 

implementations to be associated with a slot. To associate a set of implementations of a 

slot with its specification, the concept of an aggregate is used in the defmition of the 

model. 

Since an object in current OOPLs has no choice for an implementation except for 

the most recent one, the notion of a generalized message is introduced to accommodate 

the selection of any implementation of a slot. A generalized message provides a 

discriminant (information) sent by a requesting object to a receiving object. The 

discriminant allows the requesting object to specify the requested implementation and the 

receiving object to select the appropriate implementation correctly. 

A pervasive theme of this dissertation is that all proposed models promote source 

code reuse and facilitate the development of software components in the context of OOP. 

This theme is essential for both centralized and distributed programming environments. 

Besides the refinements to each individual model suggested in [Al-Haddad 90 a,b] [Al

Haddad 91 b,c} [Al-Haddad 92b], this dissertation suggests some viable issues for future 

work. Such issues include the development of formal/mathematical models, the 

implementation and evaluation of the proposed models, and the incorporation of these 

model to the concurrent OOP and distributed object-oriented environments. 
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