
NEW INHERITANCE MODELS THAT FACILITATE

SOURCE CODE REUSE IN OBJECT-

ORIENTED PROGRAMMING

By

HISHAM M. AL-HADDAD

Bachelor of Science
Yarmouk University

lrbid, Jordan
1986

Master of Science
Northrop University

Los Angeles, California
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

DOCTOR OF PHILOSOPHY
July, 1992

Oklahoma Statt.' Ur1iv. Library

NEW INHERITANCE MODELS THAT FACILITATE

SOURCE CODE REUSE IN OBJECT-

ORIENTED PROGRAMMING

C/

w U::r-~ B I A~c;p

.... _.-~ Dean of the Graduate CoUege

ii

PREFACE

Code reusability is a primary objective in the development of software systems. The

object-oriented programming methodology is one of the areas that facilitate the

development of software systems by allowing and promoting code reuse and modular

designs. Object-oriented programming languages (OOPLs) provide different facilities to

attain efficient reuse and reliable extension of existing software components. Inheritance

is an important language feature that is conducive to reusability and extensibility. Various

OOPLs provide different inheritance models based on different interpretations of the

inheritance notion. Therefore, OOPLs have different characteristics derived from their

respective inheritance models.

This dissertation is concerned with solutions for three major problems that limit the

utilization of inheritance for code reusability. The range of object -oriented applications and

thus the usage of object-oriented programming in general is also discussed. The three

major problems are: 1) the relationship between inheritance and other related issues such

as encapsulation, access techniques, visibility of inheritance, and subtyping; 2) the

hierarchical structure imposed by inheritance among classes; and 3) the accessibility of

previous versions of the modified methods defmed in classes located at higher levels of

the inheritance structure than the parent classes.

1be proposed solutions for these problems are presented as new inheritance models

that facilitate code reuse and relax the restrictions imposed on inheritance models by

languages. A survey and taxonomy of the conventional inheritance models, and a

comparison and analysis of some of the common OOPLs are also presented in the

dissertation.

iii

ACKNOWLEDGMENT

First, I would like to express my sincere appreciation to my dissertation advisor,

Dr. K.M. George, for his continuous and consistent guidance, dedication, kindness, and

valuable instruction throughout my graduate work. His encouragement and motivation has

been the driving force in the completion of this work.

Special thanks are due to my advisory committee member, Dr. Mansur

Samadzadeh, for his consistent support, valuable suggestions, and critical review of my

research work. I would like also to thank other members of my advisory committee, Dr.

G.E. Hedrick, J.P. Chandler, and W.B. Powell, for serving on my graduate committee and

for their advice and support. I would like to extend my thanks to all of my friends,

colleagues, and staff members, specially Anna Ventris and Janice Bryan, for their help

and assistance.

I would like to take this opportunity to thank my family. My deepest love and

thanks go to my parents for their prays and spirit of encouragement throughout my

academic studies. I also take this opportunity to extend my appreciation and thanks to my

brothers and sisters for their moral support. Special appreciation and thanks to my

brothers, Ali and Khalid, for their moral and financial support during my undergraduate

and graduate studies. Finally, my love and thanks to my wife, MingChing, for her

patience and moral support that gave me the motivation and inspiration to complete my

graduate studies. Thank you all.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

1.1 Prologue . 1
1.2 aasses . 2
1.3 Objects . 3
1.4 Inheritance . 4
1.5 Overview of the Dissertation . 9

II. LITERATURE REVIEW . 10

2.1 Introduction . 10
2.2 Oasses . 11

2.2.1 Instance Variables and Methods 16
2.3 Instantiation . 19
2.4 Inheritance . 21

2.4.1 Subtyping . 31
2.4.2 Problems with Current Inheritance Models 33

2.5 Message Passing · 36
2.6 Encapsulation . 38
2.7 Polymorphism and Binding . 40
2.8 Definitions . 42

ill. INHERITANCE IN OBJECf-ORIENTED PROGRAMMING
LANGUAGES: A TAXONOMY AND SURVEY 45

3.1 Introduction . 45
3.2 A Survey of Inheritance Mechanisms and Access Techniques . . . 46

3.2.1 Trellis/()wl . 47
3.2.2 c ++ . 50
3.2.3 Eiffel . 54
3.2.4 CommonObjects . 57
3.2.5 ~s ~ . 60
3.2.6 Flavors . 63
3.2.7 Smalltalk:-80 . 66
3.2.8 Simula . 70

v

Chapter Page

3.3 Subtyping and Inheritance . 74
3.4 A Binary-Tree Taxonomy Model . 75
3 . .5 Discussion . 81
3.6 Summary . 83

IV. APPROACHES TO REUSABILITY IN C++ AND EIFFEL 88

4.1 Introduction ·. 88
4.2 Design Objectives and Highlights of the Two Languages 90

4.2.1 Eiffel . 90
4.2.2 C++ . 94

4.3 Inheritance and Reusability . 95
4.3.1 Eiffel . • 96
4.3.2 C++ . 99

4.4 Discussion . 105
4.5 Summary . 108

V. AN OBJECT-BASED INHERITANCE MODEL 110

5.1 Introduction . 110
5.2 The Proposed Object-Based Inheritance Model (TIM) 111

5.2.1 Semantics and Composition of an Object 113
.5.2.2 Internal Structure of an Object . 115
5.2.3 Object Interfaces . • • 117
5.2.4 Message Passing Techniques . 117
5.2.5 Multiple Inheritance . 118
5.2.6 Object Creation and Deletion . 119
5.2.7 Inheritance Hierarchy . 122

5.3 Examples Represented in the Proposed Model 124
S.4 Discussion . 127
5.5 Summary . 129

VI. A FEEDBACK INHERITANCE MODEL . 130

6.1 Introduction . 130
6.2 Definitions . 131
6.3 Two Examples and Their Hierarchical Representations 133
6.4 The Proposed Feedback Inheritance Model 138

6.4.1 Definitions . 138
6.4.2 Feedback Inheritance • . 140
6.4.3 Semantics of Feedback Inheritance • . . . 143

. 6.4.4 Message Passing ·. 145
6.5 Examples Represented in the Proposed Model 148

Vl

Chapter . · Page

6.6 Discussion . 152
6.7 Summary . 154

VII. AN IMPLEMENTATION INHERITANCE MODEL 156

7.1 lnttod.uction . IS6
7.2 Background . 157

7.2.1 Eiffel . 157
7 .2.2 C++ . 158

7.2.2.1 Overloading of Functions 158
7.2.2.2 Virtual Functions . 160
7.2.2.3 Abstract Classes . 162

7.2.3 CI..OS . 162
7.2.4 Smalltalk-80 . 164

7.3 Classes and Slots . 166
7.4 Behavior Slots . 168

7 .4.1 Syntax of Behavior Slots . 170
7.5 Aggregates and Behavior Slots . 171
7.6 General Messages . 174

7.6.1 Procedure Calls . 175
7.7 The Proposed Implementation Inheritance Model 176
7.8 Conceptual View of Implementation Inheritance 177
7.9 An Implementation Scheme for Implementation Inheritance 181

7.9.1 Organization of the 1-Index . 183
7.9.2 Size of the I-Index . 184
7.9.3 Construction of the I-Index . 186

7.9.3.1 Single Inheritance . 186
7.9.3.2 Multiple Inheritance . 188

7.9.4 Optimization of the I-lndex . 189
7.9.5 Selection Mechanism . 191

7.10 Discussion . 194
7 .10.1 Implementation Inheritance and Encapsulation 194
7.10.2 Multi-Methods and Generalized Messages 196

7.11 Summary . 197

Vlll. SUMMARY, CONCLUSIONS, AND FUTIJRE WORK 199

BmLIOGRAPHY . 203

vii

Table

3.1

3.2

3.3

3.4

3.5

LIST OF TABLES

Languages considered in the classification tree

Node expansions of the classification tree .••••••••••••••••••

Features of the selected languages (1)•.....•.•.

Features of the selected languages (2)

Features of the selected languages (3)

Page

77

78

85

86

87

4.1 Inheritance and related issues in C++ and Eiffel 91

4.2 Visibility and interfaces in C++ and Eiffel 92

6.1 Instances of the class RDF1 . 135

viii

Figure

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

2.2

2.3

2.4

2.5

2.6

2.7

LIST OF FIGURES

An example of classes and subclasses .

Definition of the class CAR . • . • • . . .

A conceptual view of an object . . • .

Dlustration of the object Ford_ Car of the class CAR

An example of single inheritance hierarchy •

An example of multiple inheritance hierarchy

The inheritance hierarchy of the class CAR

Representation of the data type queue•................

Pseudo code of the class QUEUE .

The super/subclass relationship between QUEUE and DEQUE

A classification of graphical classes .

Initialization of the instance variables of the class QUEUE

Representation of the interface of the class QUEUE

Examples of creating object Q1 in different OOPLs

Page

2

3

3

4

5

5

6

13

14

15

16

17

18

20

2.8 Representation of single and multiple inheritance relationships 22

2.9 Pseudo code of the class POLYGON . 24

2.10 Pseudo code of the class RECTANGLE . 25

2.11 Class CAR is an aggregation of its superclasses 26

2.12 Representation of the data type deque . 26

2.13 The class STACK is a generalization of the class DEQUE 27

ix,

Figure Page

2.14 CommonObjects' definition of the class DEQUE .•...••...•.. 0 27

2o15 CommonObjects' definition of the subclass STACK o 0 0 0 0 0 0 0 0 0 0 0 28

2ol6 Abstraction and implementations of stack and deque 0 0 0 0 0 • 0 0 0 0 • 0 36

3o1 Defmition of the type STACK o .. o o o . o o o o o o .. o o o 0 • 0 0 •• 0 0 • 48

3.2 DEQUE is a subtype of the type STACK o o . o o o o .. o o o . o o o o o o . 49

3o3 Defmition of the class DATE o o 0 o o o 0 o o o o 0 o o o 0 o o o 0 o o o o 0 o o 0 51

3o4 Qass BIRTH_DA Y is a public subclass of the class DATE o o o o 0 0 0 52

3o5 Defmition of the class STACK o o o .. o o o . o o o . o o o . o o o o o o o . o o 55

3o6 Class DEQUE inherits from the class STACK . o o o o o .. 0 0 0 0 0 • • • 55

3o7 Defmition of the class DATE o o o o o o . o o o .. o . 0 o . 0 0 0 • 0 0 • 0 • 0 • 58

3.8 Class BIRTII_DA Y partially inherits from the class DATE 0 0 0 0 0 0 0 58

3o9 Defmition of the class EMPLOYEE o o o o o o o o o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 61

3.10 Class MANAGER is a subclass of the class EMPLOYEE 0 • 0 0 0 0 • 0 61

3.11 Defmitions of classes o 0 0 o o o 0 0 o o • o o 0 0 o • 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62

3.12 Definition of the flavor 3D_MOVING _OBJECT o o o o o o o o . o o 0 • • 64

3.13 The flavors SPACE_SHIP and COMET inherit from the flavor
3D_MOVING_OBJECT o o o o o o o o o o o o o o •. o o o o o o o o . o o o o o 65

3.14 Defmition of class PERSONAL_FINANCES o o o o o o o o o o o o o o o o o 67

3o15 Oass DEDUCTIBLES inherits from the class PERSONAL_FINANCES 67

3.16 Definition of the class PLACE o o o o o .. o . o . o o o . o o 0 • 0 0 0 • 0 0 0 • 70

3.17 Qass TOWN is a subclass of the class PLACE

3o18 Class PLACE using the virtual procedure write

70

73

3o19 The classification Tree o o o o o o o o o o o o o o . o o o .. o o o o o o o o o o . o o 78

3.20 The subtree nO

3o21

3o22

The subtree n 1

The subtree n2 .
X

79

80

80

Figure

3.23

3.24

3.25

3.26

The subtree n3

The subtree n4

The subtree n5

The subtree n6

I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 I I I I I I I I I I

I

• t' • •

.

Page

80

80'

82

80

4.1 Hierarchy of software development information · 89

4.2 Defmition of the class EFFECflVE_LIST[T] 97

4.3 The class STACK[T] is a subclass of the class EFFECTIVE_LIST[T] 97

4.4 Defmition of the class FIXED _LIST[T] . 98

4.5 Defmition of the class LIST . 101

4.6 Class STACK is derived from the class LIST 101

4. 7 The main program . 102

4.8 Definition of the class ARRAY . 103

4.9 Class ARRAY _LIST inherits from both ARRAY and LIST classes . . 104

4.10 The definition of the abstract class LIST . 104

5.1 Object types and possible interfaces in TIM 113

5.2 Lists that an object can contain . 116

5.3 A methods list entry . 118

5.4 An example of inheritance hierarchy in TIM 122

5.5 Methods and inheritance lists of the objects in Figure 5.4 123

5.6 Definitions of the classes DATE and BIRTH_DA TE 125

6.1 Record structure of a relationship . 133

6.2 A hierarchical inheritance representation of the record structure in
Figure 6.1 . 134

6.3 An NCA with two machines M-1 and M-2 135

6.4 Class representations of the NCA in Figure 6.3 136

6.5 Two possible object-oriented representations of the NCA in Figure 6.3 137

xi

Figure Page

6.6 Examples of clans of a set of related classes • • • . 140

6.7 Rein'esentation of single feedback inheritance among classes • 141

6o8 Representation of multiple feedback inheritance among classes 142

6.9 Representation of feedback inheritance among classes C1, C2, and C3 143

6.10 A feedback and hietal'Chical inheritance interfaces among classes
ct. c2, and c3 . 144

6.11 The structure of a descriptor • • • 146

6.12 Descriptors of the classes A and B • • • . 148

6.13 Bi-directional inheritance between the classes Department and Faculty 149

6.14 Relating classes through hierarchical and bi-directional inheritance . . 150

6.15 Feedback inheritance representation of a three-node NCA 152

7.1 Defmition of the class STACK[T] o ... o o 0 • • • • • • • • 158

7.2

7.3

Example of an overloaded function

Inheritance of non-virtual functions

159

160

7.4 Inheritance of virtual functions . . . o 0 • • • • • • • • • • 0 • • • 0 • 161

7.5 Definitions of selected functions . 0 • • • • • • • • • • • • • 0 • 0 • • • • • 0 • • 163

7.6 Different implementations of the method area 0 • • • • • • • • • • • • • • • • 163

7. 7 Usage of the meth.oo area . 164-

7.8 Representation of a behavior slot • • . . . • • 169

7.9 A hierarchy of BeWAT &T modem types • • • . . • • • 170

·1.10 Declaration of the class STACK using behavior slots 0 ••••••• 0 • • 171

7.11 Representation of an aggregate (conceptual slot) ~ . 0 • • • • • • • • • • • • 172

7.12 Cartesian and polar representations of a point • • 173

7.13 Aggregate representation of the slot setpoint 0 • • • • • • • • • • • • • 173

7.14 A generalized message . c • • • • • • • • • • • • • • 0 • • • • • • • • • • • • • • • • • 17 5

7.15 Inheritance hierarchy among some classes 178

xii

Figure

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

Page

Aggregate representation of the slots f(), g(), and h() in Figure 7.15 . 179

The relationships among handlers of aggregates in Figure 7.15 180

Inter-relationship between aggregates and !-inheritance 180

Mapping the concept and implementation of !-inheritance 181

Class USE_ANY using implementations of the slot setpoint 182

An !-index example . 183

The C-list of a multiple inheritance hierarchy 184

Representation of !-indices of classes . . • . 185

lllustration of an I-index . 187

Multiple inheritance among classes • . . . • 188

!-indices of the classes in Figure 7.25 . 189

Application of algorithm select . 193

xiii

CHAPTER I

INTRODUCTION

1.1 Prologue

Programming languages may be classified into several groups based on the

programming methodologies (paradigms) they support. Some of these paradigms are

procedural, functional, logic, and object-oriented programming (OOP). These

methodologies present different approaches to program design and implementation. The

first approach is based on the idea that programmers instruct the computer how to process

each piece of data. As a result, programs in the procedural approach are rigidly bound to

the types of data they process. Introducing new types of data requires changing the

structure and logic of the programs. Therefore, the procedural approach limits the

programmers' ability to reuse code since code is intimately tied to the data upon which

it will operate. Some functional programming languages also have · this weakness to

certain extent. Functional and logic programming follow the declarative approach (i.e,

emphasis is on what is to be done rather how it is done.

OOP provides a new approach of thinking about data, procedures, and the

relationship among them. It combines the imperative and message passing paradigms.

OOP has been promoted as a methodology that will expedite the development of software

systems by allowing and promoting code reuse and modular design, and will support the

extension of existing software. OOP is based on three basic concepts: class, objects, and

inheritance. These concepts are illustrated in the following sections using examples.

1

2

1.2 Classes

A Class serves as a template from which objects can be created. It is a description

of the state and behavior of a set of objects. Objects fall into classes and subclasses based

on their similarities. For example, all numbers fall into a class named NUMBERS, and

all integers fall into a class named INTEGERS, which is a subclass of the class

NUMBERS. Furthermore, one may make positive and negative integers fall into two

different classes named P _INTEGERS and N_INTEGERS as subclasses of the class

INTEGERS. This classification is illustrated in Figure 1.1.

class: NUMBERS

class: INTEGERS

class: P INTEGERS I I class: N_INTEGERSI

Figure 1.1: An example of classes and subclasses

A class consists of two sets: A set of instance variables, and a set of operations.

Instance variables represent the state of objects belonging to that class. Operations are

represented by methods that determine the interface and behavior of objects of the class.

For example, consider the class CAR described in Figure 1.2. Class CAR describes the

characteristics and behavior of cars. Each car has attributes such as maker, serial number,

color, make year, transmission (either manual or automatic), and others. Additionally, all

cars perform a set of operations including start, drive, turn left or right, stop, and other

operations.

3

Claaa: CAR

Inatance variablea:
Make, Serial_Number, Color, Year, Transmission

Opezoatione:
Start,. Drive, Turn_left, Turn_right, Stop

Figure 1.2: Definition of the class CAR

1.3 Objects

An object is an instance of a class. An object is a concrete realization of a class

abstraction. The instance variables of an object represent values that constitute its state.

The state of an object is accessed by operations of the defining class. These operations

detennine the messages (calls) to which the object may respond to. The state of an object

is hidden from the outside world and is accessed only through the interface of that object

provided by the corresponding class. Each object belongs to one class. Figure 1.3

illustrates a conceptual view of an object. Figure 1.4 shows the state of an object named

Ford_ Car of the class CAR illustrated in Figure 1.2.

I
n
t OPl ===t==
e
r OP2 ===t==
f
a OP3 ===t==
c
e

Instance variables and
their associated values

(STATE)

Figure 1.3: A conceptual view of an object

Each instance of the class CAR has different values for its instance variables.

Some instances may have similar values but they differ at least in the Serial_Number

Inatanc• Variabl••

Make

Serial number

Color

Year

Transmission

Ford Car

Ford

NS223-1191

blue

1991

manual

Figure 1.4: Illustration of the object Ford_ Car of the class CAR

4

value. All car objects can perform the set of operations specified in the class CAR.

Objects perform operations in response to messages. A message is a request sent to an

object to perform certain behavior. Objects respond to messages according to the

operations that have been defmed in their classes. For example, the object Ford_Car

illustrated in Figure 1.4 can respond to the messages start, drive, tum_left, tum_right, and

stop. The responses to these messages represent the behavior of that object.

1.4 Inheritance

Inheritance is a relationship among classes that share common properties. It is a

concept that is conducive to reusability and extensibility. A subclass inherits the

operations and instance variables of its superclass(es) and adds new operations and

instance variables. Inheritance can be single or multiple. In single inheritance, the subclass

inherits from one superclass; while in multiple inheritance, the subclass inherits from two

or more superclasses. Related classes are organized in a hierarchy representing their

shared behaviors. At the top of the hierarchy are the most general classes and at the

bottom are the most specific classes. For example, biologists group organisms into classes

as illustrated in Figure 1.5 adopted and modified from [Wegner 90].

5

A
'PARROT' 'EGRET'

Figure 1.5: An example of single inheritance hierarchy

In Figure 1.5, a subclass specializes its superclass, and conversely, the superclass

generalizes its subclass(es). Inheritance increases specificity. A more specific class (e.g.

the class PERSON) inherits properties form a more general class (e.g. the class

MAMMAL), and it can also add specific properties. In other words, a subclass extends

and/or modifies an existing class by adding more properties that specialize its

behavior. The behavior of any given class in the hierarchy is an amalgamation of the

behaviors of all of its ancestor classes. Single inheritance among classes is represented

by a tree structure. To illustrate multiple inheritance, consider the Pie hierarchy illustrated

in Figure 1.6 adopted from [Moon 86].

Figure 1.6: An example of multiple inheritance hierarchy

6

In Figure 1.6, the class APPLE_PIE inherits from three superclasses that represent

the main components of an apple pie. It inherits the properties of its superclasses, and

adds more properties. Unlike the inheritance hierarchy illustrated in Figure 1.5, the

subclass is not a specialization of its superclass(es), and the superclass is not a

generalization of its subclass(es). 'f!lis example shows anothe_r view of inheritance among

classes. Multiple inheritance is represented by a 4irected acyclic graph (DAG).

To follow up the car example, the class CAR in Figure 1.2 defines what cars are.

There are more specialized cars such as Ford cars including Tempo, Escort, and Taurus.

Ford cars have different characteristics from cars of other makers. At the same time

different brands of Ford cars have different characteristics. Since inheritance supports

code reusability and extensibility in the sense that a subclass inherits (uses) the code

provided in its superclass(es), we define the class FORD to represent the common

characteristics of all Ford brands. Moreover, we define the classes TEMPO, ESCORT,

and TAURUS to represent the characteristics of cars of these brands. Figure 1.7 illustrates

the class hierarchy of Ford cars.

VEHICLE

Figure 1.7: The inheritance hierarchy of the class CAR

7

In Figure 1.7, the classes TEMP, ESCORT, and TAURUS define Ford cars in a

much more specialized manner than does the class FORD. Class FORD inherits the

general properties of the class CAR, and adds properties specific to Ford cars. Class

ESCORT inherits the properties of the classes CAR and FORD , and adds properties

specific to Escort cars. Therefore, the behavior of an ESCORT car is an amalgamation

of the behaviors of the classes FORD, CAR, and VEHICLE. Similarly, the classes

ESCORT and TAURUS represent specific behaviors.

A non object-oriented programming language (OOPL) may simulate the OOP style

by providing facilities such as encapsulation, genericity, and code reusability. Edelson

[Edelson 87] has described how non-OOPLs can simulate the OOP style. He examined

the ways in which the three languages C++, Modula-2, and Smalltalk implement object

oriented and abstraction mechanisms in order to help programmers to build large software

systems. Klint [Klint 86] and Cook [Cook 86] addressed the relationship between

conventional languages and OOP. They reviewed the language features that are required

to support the OOP style in a non-OOPL. Such features include encapsulation,

inheritance, dynamic binding, genericity, and automatic storage management.

The OOP literature includes many articles that compare and contrast OOPLs. Here

we highlight some of the comparisons [Blaschek 89] [Gabriel 89] [Klint 86] [Madsen 89]

[Micallef 88] [Siedewitz 87] [Strom 86] [Wolf 89].

Blaschek et al. [Blaschek 89] provided a comparison criteria and compared some

OOPLs including C++ [Stroustrup 86,91], Eiffel [Meyer 88], and Smalltalk [Goldberg

83,89]. They compared these languages from the perspectives of inheritance mechanisms,

reliability, uniformity of data structures, documentation values, memory management,

efficiency, and languages complexity. Gabriel [Gabriel 89] discussed the differences

between the object-oriented computational model and the imperative model from the

message-passing perspective. He also compared the message passing and generic functions

in CLOS [Keene 89] [Bobrow 88] as a Lisp-based language.

8

Klint [Klint 86] compared OOPLs and conventional programming languages from

the perspective of their support for reusability. He used the common example queue data

type to illustrate the differences between these languages. He compared Smalltalk

implementation of Queue data type against Pascal, Modula-2, and Ada implementations.

Madsen and Pederson [Madsen 89] compared the use of virtual classes in the languages

BETA [Kristensen 87], Simula [Kirkerud 89], C++ [Stroustrup 86,91], and Smalltalk

[Goldberg 83,89]. They presented the notion of a virtual class as a general language

mechanism as opposed to the characteristic of a specific language.

Micallef [Micallef 88] provided a comparative survey of OOPLs from the

encapsulation, reusability, and extensibility point of views. He outlined some basic

concepts and terminologies of OOP. He also addressed and compared the languages

Simula [Kirkerud 89], C++ [Stroustrup 86,91], Smalltalk [Goldberg 83,89], Flavors [Moon

86], and CommonObjects [Snyder 86b] in terms of their support for encapsulation,

reusability, and extensibility. Siedewitz [Siedewitz 87] compared the basic properties of

Ada[Ada 79,83] and Smalltalk using examples in both languages. These properties are

encapsulation, inheritance, and binding. He also highlighted the strengths and weaknesses

of both types of languages from: an object-oriented perspective.

Strom [Strom 86] compared the object-oriented and process paradigms with

emphasis on their usefulness for development of large systems. He indicated that both

paradigms have computational models based upon message passing; both provide a clear

separation between external interfaces and internal algorithms with local data. On the

other hand, they differ in many details including their type systems. He also presented and

contrasted the mechanisms of each paradigm needed to support dynamic code binding,

code reuse, and access control. Wolf [Wolf 89] compared C++ [Stroustrup 86,91] and

Flavors [Moon 85,86] from their design perspectives. He compared their data abstraction,

inheritance, and method determination (polymorphism). He also discussed the importance

of typing and memory management in OOPLs.

9

1.5 Overview of the Dissertation

The remainder of this dissertation is organized as follows: An extended literature

review of the basic concepts of OOP and a highlight of these concepts as realized by

OOPLs are provided in chapter 2. chapter 3 provides a survey and taxonomy of the

inheritance models adopted by the most common OOPLs including Trellis/Owl, C++,

Eiffel, CommonObjects, CLOS, Flavors, Smalltalk-80, and Simula. Chapter 4 addresses

the support for code reuse in the languages C++ and Eiffel in terms of inheritance,

polymorphism, and other related issues. Chapter 5 describes the object-based inheritance

model TIM that supports encapsulation with inheritance along with other related issues.

Chapter 6 describes the feedback inheritance model that relaxes the hierarchical model

by allowing superclasses to access the methods and instance variables provided in their

subclasses. chapter 7 describes the implementation inheritance model that facilitates code

reuse among classes by allowing access to implementations of methods provided in

ancestor classes. Finally, chapter 8 is the conclusion of the dissertation and suggested

future work.

CHAPTERTI

LITERATURE REVIEW

2.1 Introduction

OOP incorporates an important set of techniques that facilitate the development

of efficient and reliable software systems by allowing code reuse and modular design.

OOP has its roots in programming languages such as Simula [Kirkerud 89] and Smalltalk-

80 [Goldberg 83,89]. The object-oriented paradigm, which has evolved from OOP, is built

on the concepts of structured programming, data abstraction, and software reuse. The role

of block structure in OOPLs is discussed by Madsen [Madsen 86]. He examined the block

structure in the languages Simula and Small talk from the locality, scope rules, and syntax

perspectives. The history and the basic concepts of OOP also are discussed extensively

in the literature [Alws 85] [Bezivin 87] [Goguen 86b] [Kerr 86] [Love 86] [Nygaard 86].

OOP can be traced back to the concept of "object" defined in Simula. In Simula,

a program is a collection of objects (system objects). Objects of a common structure are

described by a class declaration. The term "object-oriented" refers to the use of objects

associated with behaviors rather than code and data structures. Therefore, object-oriented

programs are not seen as a collection of code but as a collection of objects that exchange

messages to activate their behaviors [Nierstrasz 86] [Stroustrup 87].

OOP is also centered around the concept of building programs from reusable

software components. Packaging (encapsulation), user-defined data types (classes),

inheritance, and polymorphism are the major tools for modular design [Meyer 88].

10

11

Encapsulation allows the decomposition of large systems into small encapsulated

subsystems that can be maintained easily and are portable. Classes are user-defined data

types that encapsulate data and operations. Classes are the building blocks in the

construction of object-oriented programs, in the sense that new classes can be built from

old classes [Parnas 76] [Zhong 88]. Inheritance as defined in the previous chapter is a

relationship among classes that have common properties. Related classes form the

inheritance hierarchy of a system [Snyder 86a]. Polymorphism is the method

detennination mechanism that adds the power to choose and invoke methods at run time

[Nierstrasz 89].

The object-oriented paradigm provides a practical programming methodology. It

aids programmers by using their time, skill, and creativity more efficiently in order to

develop large software systems. This view is discussed by Edelson [Edelson 87]. Gabriel

[Gabriel 89] also outlined the benefits of the object-oriented paradigm including code

reusability, abstraction, separation of specification from implementations, prototyping,

modularity, and distributed procedure definition. The advantages and disadvantages of the

OOP paradigm are also outlined by Klint [Klint 86].

The following sections provide a review of the major concepts of OOP as realized

by current OOPLs and presented in the literature. Even though the primary focus of this

dissertation is on inheritance, for the sake of completeness, this review includes mutually

related concepts of class, instantiation, inheritance, message passing, encapsulation, and

polymorphism and binding.

2.2 Classes

The notion of object was frrst used in Simula [Kirkerud 89], a language designed

for simulation. An object is a collection of private data and a set of methods (operations)

that manipulate the data. An object's methods operate on its data responding to incoming

12

messages that tell the object what to do [Stroustrup 87] [Nierstrasz 86]. In Simula, an

object is used in the simulation of real-life systems represented as software components.

This usage of objects was extended to include prototyping and application development

as described by Nierstrasz [Nierstrasz 89]. This direction was pursued also by Smalltalk

[Goldberg 83,89].

The concept of "object" is addressed by Nierstrasz [Nierstrasz 86] and Stroustrup

[Stroustrup 87]. They have outlined some guidelines that help to distinguish "truly"

object-oriented systems from others. A discussion of objects, their definitions, and their

roles in OOP appears in many research articles and books in the literature [Booch 91]

[Borning 86] [Budd 91] [Cox 86b] [Gabriel 89] [Geoffry 88] [Kaiser 90] [Nierstrasz 89]

[Nygaard 86] [Stein 87] [Snyder 86a] [Wegner 90].

Klint [Klint 86], Madsen [Madsen 86], and Snyder [Snyder 86a] viewed an object

as a collection of the instance variables of a class. Many objects have the same behavior

and they respond to the same message the same way. Objects of a class are independent

of each other [Cox 86] [Klint 86] [Stein 87]. Freeman [Freeman 83] viewed an object to

be any information that the developer and designer need in the process of creating

software systems.

The notion of class (object class) is used to describe the collection of data

structures and methods that implement objects. Snyder [Snyder 86a] described a class as

a set of methods that can be performed on objects of that class. Methods are implemented

as processes that can access and update the instance variables of the target object.

Pamas's [Parnas 76] view is that a class is the definition of an abstracted data type that

consists of data and methods. Zhong [Zhong 88] also addressed the integration of abstract

data types and OOP. He showed that the integration of the abstract data types and the

OOP paradigm can be used to achieve high productivity and reliability. He used Smalltalk

[Goldberg 83,89] to implement an algebraic specification that takes a hierarchy of

specifications and automatically generates Smalltalk classes.

13

As an example, consider the data type queue illustrated in Figure 2.1. A queue is

a frrst-in-frrst-out list of elements on which the following operations are defined.

empty
full
ins en
delete

True if the queue is empty; false otherwise.
True if the queue is full; false otherwise.
Insert an element at the rear of the queue.
Delete an element front the front of the queue.

The pseudo code of the class QUEUE is given in Figure 2.2.

Front ---{[]]]] ---{[]]]] ---{[]]]] -• ~ Rear

~ +
delete insert

Figure 2.1: Representation of the data type queue

In the literature, a class is viewed in a number of different ways. For instance, a

class is viewed as a template, factory of objects, or type [Cox 86] [Nierstrasz 89]. A class

is also viewed as an encapsulated user-defined data type that abstracts data and their

operations. Data structures and the implementations of operations are hidden from users

of the class. A class also is called a flavor in the programming language Flavors

[Schaffert 86]. A flavor defines some instance variables, methods, and specifies other

flavors that it inherits. These views are repeated in different places in the literature

[Borning 86] [Cannon 82] [Cox 86] [Geoffry 88] [Keene 89] [Madsen 86] [Moon 85,86]

[Schaffert 86] [Snyder 86b] [Wegner 90].

In some OOPLs, such as Smalltalk [Goldberg 83,89] and CLOS [Bobrow 88], a

class whose instances themselves are classes is called a metaclass. A metaclass controls

the representation of instances of its instances; while a class controls the structure of its

instances. Metaclasses provide methods (called classes methods in Smalltalk) used by

their instances (classes). Briot and Cointe [Briot 89] discussed the limitations of

Class: QUEUE
Inatance Vari&blea: first, last, size, maxsize, elems
Methods:

create(n)

empty()
full ()
insert(e)

begin
first = last = 0, maxsize = n
elems - Array [n]
end
if size - 0 return TRUE, else return FALSE
if size - n return TRUE, else return FALSE
begin
if full return "Overflown

elae beg.in
size = size + 1
last = (last+l) mod maxsize
elems[last] = e
end

end
insert(e) beg.in

.if empty return 11Underflow"
else beg.in

end

size == size - 1
first = (first+1) mod maxsize
return elems[first]
end

Figure 2.2: Pseudo code of the class QUEUE

14

metaclasses in Smalltalk from the private class/metaclass perspective and the non-uniform

protocol of instantiating objects. They have described how one can extend standard

Smalltalk programming to provide programming with explicit metaclasses. They also

showed how explicit metaclasses are supported in the languages CLOS [Keene 89] and

ObjVLisp [Cointe 87]. Metaclasses and their use are also addressed elsewhere in the

literature by Bobrow [Bobrow 88], Cox [Cox 86], Gabriel [Gabriel89], Geoffry [Geoffry

88], and Wegner [Wegner 90].

A class can be constructed from scratch or by using and/or modifying some other

existing classes. When using a class to construct a new class, the former is called a

superclass and the latter is called a subclass. For example, consider the data type double

ended queue (deque). Deque is a queue with two additional methods: deleting an element

from the rear of the queue, and inserting an element at the front of the queue. Here, the

class QUEUE is used in the construction of the class DEQUE. Class QUEUE is the

15

superclass; while class DEQUE is the subclass as graphically illustrated in Figure 2.3.

Class QUEUE

Figure 2.3: The super/subclass relationship between QUEUE and DEQUE

The superclass/subclass notion is used in Smalltalk [Goldberg 83,89]. Other similar

notions are base/derived used in C++ [Stroustrup 86,91], parent/child used in

CommonObjects [Snyder 86b], and type/subtype used in Trellis/Owl [Schaffert 86]. The

terms ancestor and descendant are used in the obvious way in most OOPLs.

A subclass may modify methods of its superclass and may add new methods and

variables of its own. Gabriel [Gabriel 89] uses the term classification to denote the

mechanism for attributing behaviors to classes of objects. That is, grouping of objects

denotes the process of building classes. For example, consider the classification of closed

figures adopted form [Meyer 88] and illustrated in Figure 2.4. A subclass uses and/or

modifies its superclass. A subclass may add new methods and variables of its own.

While classes are descriptions of format and instantiation, prototypes are examples

of objects. Prototypes are used to improve the users' understanding of objects. With

classes, users can produce many objects of the sam.e behavior; while with prototypes,

users can produce unique objects of unique behaviors. Prototypes are used in the object

based languages Self [Ungar 87] and Emerald [Black 86]. Self is a programming language

based on the ideas of prototypes and slots. Prototypes combine both inheritance and

instantiation, and slots represent the state and behavior of an object. Emerald is an object

based language for the construction of distributed applications. It provides a uniform

16

Figure 2.4: A classification of graphical classes

object model for programming both private local objects and shared remote objects.

Objects can move among nodes of a network. Black et al. discussed the structure,

programming, and implementation of Emerald. Prototypes are widely discussed in the

literature [Horning 86] [Liberman 86] [Madsen 86] [Vines 89].

2.2.1 Instance variables and Methods

A class mainly contains variables (called instance variables) and methods. The

instance variables of a class represent the private data of the objects that are instances of

that class. The instance variables of an object are initiated either at definition time (i.e.,

compile time) or at creation time (i.e., run time). The "state" of an object is given by the

values of its instance variables at any point in time. For example, the instance variables

of the class QUEUE in Figure 2.2 are initialized at creation time (i.e., when method

create is executed). One may initialize the instance variables first and last at defmition

time as shown in Figure 2.5.

Claaa: QUEUE
Instance Variables:
Methods:

create(n) beqin
max size
end;

as before

first=O, last=O, size, rnaxsize, elerns

n; elerns Array [nl;

Figure 2.5: Initialization of the instance variables of the class QUEUE

17

OOPLs allow users to declare variables of different scopes and visibilities. For

instance, the private, public, and protected variables in C++ [Stroustrup 86,91] have

different scopes in the object that contains them. For a defming class, the public variables

are visible to methods of inheriting classes, the private variables are visible to methods

of the defining class, and the protected variables are visible to methods of the defming

class and methods of any class immediately inherits from the defming class. Variables of

different scopes are provided also in other languages including CommonObjects [Snyder

86b], Eiffel [Meyer 88], Flavors [Moon 85,86], Trellis/Owl [Schaffert 86], Self [Ungar

87], and Smalltalk [Goldberg 83,89].

Snyder [Snyder 86a] indicated that a class defines the behavior (functionality) of

its objects. Methods of a class represent the behavior of the objects created from that

class. They are the procedures that perform different functions on the values of the

instance variables. Methods can have different scopes. A method has a specification and

an implementation. Specifications of methods are made visible to the users of a class, and

they represent the inteiface of the defming class. For example, the interface of the class

QUEUE in Figure 2.2 is illustrated in Figure 2.6.

The implementations (often called realizations) of methods are hidden in the class

[Cox 86] [Gabriel 89] [Wegner 90]. Methods of a class can be instance methods that

belong to specific objects of that class, and/or class (universal) methods applicable to all

objects of that class. Both types of methods are used in Smalltalk and Trellis/Owl.

create(n)
empty()
full()
insert(e)
delete()

I Instance Variables I
Implementation
of Methods

Figure 2.6: Representation of the interface of the class QUEUE

18

The object-based programming language Self [Ungar 87] uses slots instead of

instance variables. An object contains a set of named slots that may represent state or

behavior. Ungar has argued that using instance variables with classes limits the power of

inheritance. That is, the names and the order of the instance variables restrict the format

of objects. Moreover, accessing variables through methods, rather than through sending

messages, limits the power of the message passing system. Accessing via messages makes

inheritance more powerful and allows sharing of the state among objects [Ungar 87]. Slots

are also used in the class-based programming language CLOS [Bobrow 88].

Stein [Stein 87] pointed out that inheritance allows objects to share instance

variables and methods but not values since values are stored in the instance variables of

objects and not in the class itself. The values of instance variables of an object do not

affect other objects [Stein 87]. For example, the instance variables of the class QUEUE

illustrated in Figure 2.2 are all indirectly accessed through the interface methods shown

in Figure 2.6.

Accessing instance variables by methods does not violate encapsulation. This issue

is addressed by Snyder [Snyder 86b]. He indicated that restricting descendant classes to

access the instance variables using methods is a desirable approach. This approach is used

in the languages Trellis/Owl [Schaffert 86], C++ [Stroustrup 86,91], Simula [Kirkerud

89], and CommonObjects [Snyder 86b]. Cannon [Cannon 82] has also indicated that

methods must be defined in order to modify the instance variables in Flavors.

19

2.3 Instantiation

Freeman [Freeman 83] explained the objectives of reusable software engineering

and defines classes of information that can be reused. He also highlighted the processes

and conditions surrounding reusability that improve the ability of software reuse. He

indicated that the following characteristics are essential for reusable information. These

characteristics are:

1) Items being used are pieces of executable code.

2) The defmition of a piece of code is system- or organization-specific.

3) A reusable piece of code in a collection has little or no operational meaning with

out being part of that collection.

4) The focus of reusability is on reducing the number of lines of code that the

programmer needs to write to build new applications.

Various other issues on reuse, which is growing rapidly specially in the OOP area, are

discussed in the literature [Biggerstaff 89] [Goguen 86a] [Tracz 88 a,b] [Wegner 83].

Meyer [Meyer 87] also discussed approaches to reusability. He outlined some

simple approaches including reusability of source code, personnel, designs, and subroutine

libraries. He also addressed the issues of overloading and genericity, and showed that

these techniques do not solve all of the issues of reusability. He concluded that isolating

users of modules from the internal implementations is the required technique for capturing

commonalities within the implementations of related data structures. Klint [Klint 86] also

discussed the concepts of modularization and reusability in both algorithmic and OOPLs

using examples. His research showed that reusability is limited in conventional

programming languages and is more general in OOPLs.

Instantiation is one form of reusability in OOP, as described by Wegner [Wegner

90], Cox [Cox 86], and Nierstrasz [Nierstrasz 89]. It is the process of creating objects

(often called instances) from classes. The precondition of instantiation is existence of a

20

class containing instance variables and methods. For example, the pseudo code to create

the queue Q 1 of size 50 elements is "Q 1 is QUEUE(create(50))". OOPLs provide different

syntax for creating and initializing objects of classes. Examples of creating Q 1 of size 50

in some OOPLs are given in Figure 2.7. Note that, a language may provide different

syntax to create and initialize objects of a class.

C++:

CLOS:

Eiffel:

Small talk:

Trellis/Owl:

CommonObjects:

QUEUE Ql(SO);

(aetq *Ql*
(make_instance 'QUEUE :name "Ql"

:size 50));

Ql:QUEUE[<element type>];
Ql.create(50); -

Ql <-- QUEUE new

Ql := create(QUEUE [50])

(setf Ql (make_instance 'QUEUE :size 50));

Figure 2.7: Examples of creating object Q1 in different OOPLs

Conceptually, objects of a class are created at run time in response to creation

requests sent to that class [Boming 86] [Cox 86] [Goldberg 83,89]. Instantiation implies

memory allocation for variables of an object, and linkage between methods and the code

segments representing their implementations. This perspective is also addressed by

Nierstrasz [Nierstrasz 89], Schaffert [Schaffert 86], and Snyder [Snyder 86 a,b].

Objects can be instantiated by the user or the programming language itself. Objects

instantiated by users (often called user objects) are objects of user-defmed classes that

contain hidden instance variables and visible methods. These objects are responses to the

creation requests declared in a user's program such as the creation statements illustrated

in Figure 2.7. The disposal of these objects is also the response to user-defined

destruction requests [Nierstrasz 89] [Wegner 90] [Goldberg 83,89]. For example, method

21

dispose can be defined in class QUEUE in order to deallocate the queue structure of a

queue object when it is invoked. Such a method deallocates the memory assigned to an

object at creation time.

Similar to built-in data types, programming languages can instantiate objects either

statically (allocated at compile time and remain during program execution) or dynamically

(allocated and de-allocated during run time). These so-called system objects (instances of

system-defined classes) are instantiated and disposed in response to system-defined

requests. For example, the Smalltalk-80 system [Goldberg 83] provides system classes

such as "data structures", "control structures", and "input/output facilities". These classes

are used to create system objects that provide the functionality and environment of the

language. These objects are not visible (accessible) to users of the language [Nierstrasz

89] [Wegner 90].

Another alternative for object creation is cloning (copying) prototypical objects.

In Self [Ungar 87], objects are created by cloning prototype objects that behave like

classes. Unlike instantiation, cloning results in a new object whose initial state is the

current state of the prototype object at creation time. Prototypes and their applications are

addressed in detail by Liberman [Liberman 86] and Vines [Vines 89]. The differences

between classes and prototypes are outlined by Borning [Borning 86] and Liberman

[Liberman 86].

2.4 Inheritance

One of the important features of OOPLs is the inheritance mechanism they

support. In addition to instantiation, Cox [Cox 86] and Nierstrasz [Nierstrasz 89] have

described inheritance as another form of reusability in OOP. The concept of inheritance

provides a natural mechanism for code sharing among classes. A general view of

inheritance is that it is a mechanism for code sharing among classes. Another view of

22

inheritance is that it is an extension of data abstraction definition [Gabriel 89]. Snyder

[Snyder 86a] pointed out that inheritance involves objects and classes where a class

defines the behavior of its objects. The concept of inheritance and its models are

addressed in many research articles [Borning 86] [Cannon 82] [Cox 86] [Edelson 87]

[Gabriel 90] [Geoffry 88] [Hailpern 87] [Keene 89] [Moon 85,86] [Nierstrasz 89]

[Pedersen 89] [Schaffert 86] [Siedewitz 87] [Snyder 86 a,b] [Stein 86] [Ungar 87]

[Wegner 90] [Wolf 89].

Inheritance relates classes to each other. As described in the first chapter,

inheritance includes two relationships: One-to-one and many-to-one. The one-to-one

relationship is called single inheritance and it relates a subclass to only one superclass.

Smalltalk as proposed by Goldberg [Goldberg 83] and the first version of C++ [Stroustrup

86] support single inheritance. The many-to-one relationship is called multiple inheritance

and it relates a subclass to two or more superclasses. Multiple inheritance is obviously

an extension of single inheritance. A graphical illustration of single and multiple

inheritance is given in Figure 2.8. Some of the languages that support multiple inheritance

are Smalltalk-80 as proposed by Borning [Borning 80], the second version of C++

[Stroustrup 91] [AT&T 89 a,b], CommonObjects [Snyder 86b], CLOS [Bobrow 88], Eiffel

[Meyer 88], Flavors [Moon 85,86], and Trellis/Owl [Schaffert 86].

~···

Single Inheritance Multiple Inheritance

Figure 2.8: Representation of single and multiple inheritance relationships

23

In single inheritance, a class can only inherit form one superclass but it can have

any number of subclasses. It is reasonable to be able to construct an object that is a

composition of different types of behaviors (classes). Therefore, the behavior of an object

is not limited to things inherited from one superclass. This is accomplished by using

multiple inheritance [Gabriel89]. Multiple inheritance increases the reusability of software

components and it encourages users to combine simple software components to build new

complex ones [Cox 86] [Snyder 86a].

Inheritance has different forms and meanings depending on when and how it takes

place. The most common fonn of inheritance is called class inheritance and it

distinguishes OOPLs from other programming languages. It is often referred to as static

inheritance. This form of inheritance takes place when classes are defined. It is the

mechanism that allows the definition of new classes from existing classes. The simplest

form of static inheritance is called extension. Here, a subclass inherits all of the methods

and instance variables of its superclass(es). The subclass does not override inherited

methods; it may add new methods and/or instance variables [Hailpem 87] [Snyder 86a].

Another form of static inheritance is called variation. Variation is the same as

extension with the added capability to override inherited methods. A subclass can modify

inherited methods and/or add new methods and instance variables [Nierstrasz 89] [Wegner

90]. A combination of extension and variation is called specialization [Nierstrasz 89]. In

this form of static inheritance, a subclass inherits all of the methods and instance variables

of its superclass(es), and possibly modifies some of the inherited methods and adds new

methods and instance variable. An object of the subclass is an object of the superclass(es)

since features of the superclass(es) hold for objects of the subclass [Gabriel 90] [Snyder

86a] [Wegner 90].

As an example of variation inheritance, consider the POLYGON and

RECI'ANGLE classes adapted from [Meyer 88]. Class POLYGON is a description of

24

general polygons (a polygon has at least three vertices). It provides the methods move to

move a polygon horizontally and vertically, rotate to rotate a polygon with its centeroid

as the center of rotation, display to display a polygon on screen, and perimeter to

compute the perimeter of a polygon. Class POLYGON is illustrated in Figure 2.9.

Claaa: POLYGON
Inatance Variablea: vertices, perimeter_length, ...
Methods:

move(hrz, ver} begin
"Move horizontally using hrz and
vertically using ver"
end

rotate(center, angle}
begin
"Rotate around center using angle"
end

display() begin
"Display polygon on screen"
end

perimeter() begin
"loop through vertices and sum
the edge lengths"

end

Figure 2.9: Pseudo code of the class POLYGON

Now consider the class RECfANGLE, illustrated in Figure 2.10, as a special form

of the class POLYGON. A rectangle can be moved, rotated, or displayed on screen in the

same way as a polygon. Additionally, a rectangle has four vertices, diagonal, and

perimeter that can be easily calculated than a polygon. All features of polygon are

applicable to rectangle, and rectangle is a specialization of polygon. Class RECf ANGLE

modifies inherited methods and adds new methods and instance variables. This is a

variation inheritance.

The above example illustrates the variation form of inheritance between the classes

POLYGON and RECTANGLE. Class RECTANGLE overrides method perimeter inherited

from the class POLYGON. To illustrate extension inheritance using these classes, one can

exclude method perimeter from the class POLYGON and define it in subclasses of the

Cla88: RECTANGLE
Instance Variables: vertices, sidel, side2, ...
Methode:

create(center, sl, s2, angle)
begin
"Create a rectangle centered at center,
and with sides sl and s2 and
orientation angle"

end
perimeter {)

begin
"Compute perimeter using [2*(sidel+side2)].
This is a redefined version of the method"
end

diagonal() begin "Compute diagonal 11 end

Figure 2.10: Pseudo code of the class RECfANGLE

25

class POLYGON as a new method. This way represents extension inheritance since class

RECf ANGLE inherits all methods of class POLYGON without modifying any of them.

Class RECTANGLE adds new methods. If a given programming language allows users

to relate the classes POLYGON and RECTANGLE in either extension or variation

inheritance, this language is said to be supporting specialization inheritance.

The opposite view of specialization is called aggregation. This view is provided

by Nierstrasz [Nierstrasz 89]. As an example, consider class CAR adapted from

[Nierstrasz 89] and illustrated in Figure 2.11. A car is an aggregation of different

components represented by different classes. Class CAR inherits from the classes BODY,

FRAME, WHEELS, and ENGINE. It inherits all methods and instance variables of its

superclasses. The aggregation of all inherited features defines the characteristics of the

class CAR. Unlike specialization inheritance, we cannot view an object of the subclass

as an object of its superclass(es). A car is neither a body, frame, wheels, nor an engine.

Another notion promoted as the opposite of specification is provided by Pedersen

[Pedersen 89] and is called generalization. Generalization allows users to create

superclasses for already existing classes, and thus enabling exclusion of methods and

creation of classes that describe the commonalities among existing classes. For

26

Figure 2.11: Class CAR is an aggregation of its superclasses

illustration, we consider Pedersen's example of stack as a generalization of the data type

deque illustrated in Figure 2.12.

push2 -
pop2
top2

push

~~pop
~----------~- -top

-----empty

de que

Figure 2.12: Representation of the data type deque

The idea of this example is to reuse selected methods of an already existing class.

A deque is a stack in which elements are added and removed from both ends. Assuming

that the class DEQUE is already implemented, methods push2, pop2, and top2 need to

be excluded in order to convert deque to a stack. As pointed out by Pedersen, this cannot

be done using specialization inheritance. In normal cases, we think of deque as a

specialization of stack. Using generalization, the class STACK can be a superclass of the

class DEQUE. Therefore, class STACK is a generalization of the class DEQUE as

illustrated in Figure 2.13 that is adopted from [Pederson 89].

Pedersen indicated that generalization together with specification improves class

reusability. He also showed that generalization can coexist with specialization without

introducing the problem of naming conflicts [Hailpem 87] [Nierstrasz 89] [Wegner 80].

STACK

push
pop
top
empty

push
pop
top
empty

push2
pop2
top2

Figure 2.13: the class STACK is a generalization of the class DEQUE

27

Another form of static inheritance is called partial (selective) inheritance. In partial

inheritance, a subclass inherits parts of the instance variables and methods of its

superclass(es). This form of inheritance is supported by the languages Eiffel [Meyer

87,88], C++ [Stroustrup 86,91], and CommonObjects [Snyder 86b]. Selective inheritance

is addressed by Nierstrasz [Nierstrasz 89] and Snyder [Snyder 86b]. As an example,

consider CommonObjects' defmition of the class DEQUE adopted from [Snyder 86b] and

illustrated in Figure 2.14.

(define-type DEQUE
(:var size (:type integer) (:init 100)

:gettable :initable)
(:var contents (:type vector)

(:var front
(:var back
(:var count

(:init (make-array size)))
(:type integer) (:init 1))
(:type integer) (:init 0))
(:type integer) (:init 0)))

(define-method (DEQUE :empty?) () (...))
(define-method (DEQUE :full?) () (...))
(define-method (DEQUE :front-push) () (...))
(define-method (DEQUE :front-pop) () (...))
(define-method (DEQUE :front-top) () (...))
(define-method (DEQUE :back-push) () (...))
(define-method (DEQUE :back-pop) () (...))
(define-method (DEQUE :back-top) () (...))

Figure 2.14: CommonObjects' defmition of the class DEQUE

Figure 2.14 describes a deque of maximum size of 100 elements. The instance

STACK

push
pop
top
empty

push
pop
top
empty

push2
pop2
top2

Figure 2.13: the class STACK is a generalization of the class DEQUE

27

Another form of static inheritance is called partial (selective) inheritance. In partial

inheritance, a subclass inherits parts of the instance variables and methods of its

superclass(es). This form of inheritance is supported by the languages Eiffel [Meyer

87,88], C++ [Stroustrup 86,91], and CommonObjects [Snyder 86b]. Selective inheritance

is addressed by Nierstrasz [Nierstrasz 89] and Snyder [Snyder 86b]. As an example,

consider CommonObjects' defmition of the class DEQUE adopted from [Snyder 86b] and

illustrated in Figure 2.14.

(define-type DEQUE
(:var size (:type integer) (:init 100)

:gettable :initable)
(:var contents (:type vector)

(:var front
(:var back
(:var count

(:init (make-array size)))
(:type integer) (:init 1))
(:type integer) (:init 0))
(:type integer) (:init 0)))

(define-method (DEQUE :empty?) () (...))
(define-method (DEQUE :full?) () (...))
(define-method (DEQUE :front-push) () (...))
(define-method (DEQUE :front-pop) () (...))
(define-method (DEQUE :front-top) () (...))
(define-method (DEQUE :back-push) () (...))
(define-method (DEQUE :back-pop) () (...))
(define-method (DEQUE :back-top) () (...))

Figure 2.14: CommonObjects' defmition of the class DEQUE

Figure 2.14 describes a deque of maximum size of 100 elements. The instance

29

environment. Moving that paragraph to a footnote environment results in inheriting

different font type, font size, and other features [Nierstrasz 89].

Dynamic inheritance is supported by systems based on prototypical objects as

described by Liberman [Liberman 86]. The concept of prototypes is used in the "Object

Based Inheritance Model" outlined by Hailpem and Nguyen [Hailpem 87]. They proposed

an inheritance model for code sharing based on objects rather than classes, where objects

are processes that communicate through messages. In the "Object Model for Shared Data"

described by Kaiser and Hailpem [Kaiser 90], a new object model is proposed in order

to support shared data in distributed environment and a language called PROFIT based

on that model. Their model accommodates the idea that same data may logically belong

to multiple objects and may be distributed over multiple nodes of the network in certain

applications. Dynamic inheritance is also used in the languages Self [Ungar 87] and

Emerald [Black 86] described earlier.

In class-based programming languages the "is-a" relationship indicates that an

object of a subclass can be viewed as an object of its superclass(es): a human is a

mammal; and rectangle is a polygon. This relationship is a set inclusion. For example,

humans are a subset of mammals; similarly, rectangles are a subset of polygons. The

relationship "has-a" indicates that an object of a subclass possesses some properties of its

superclass(es). For example, a car has an engine but is not an engine; similarly, a radio

has a speaker but is not a speaker. In prototype systems, the relationship "inherit from"

describes how objects share behaviors: an object inherits from its prototype object. These

interpretations of the inheritance relationship among classes and prototypical objects have

been addressed by a number of researchers [Meyer 88] [Nierstrasz 89] [Ungar 87]

[Wegner 90] [Zdonik 88].

Another alterative method for incremental definition and sharing is called

delegation. Delegation allows incremental definition of objects. An object can be defined

in terms of other objects. This method is used with object-based programming languages

30

where objects are not instances of classes, but copies of prototypical objects. Liberman

[Liberman 86] indicated that delegation can capture the behavior of inheritance. Stein

[Stein 87] has also indicated that inheritance and delegation are alternative methods for

incremental definition and sharing. He supported Liberman's argument using examples.

Stein demonstrated that there is a natural model for inheritance, which captures all of the

properties of delegation. Also, he outlined a framework that captures both delegation and

inheritance.

In delegation, objects delegate messages and responsibility instead of inheriting

from each other. They can share variables and methods since classes are not present.

Objects created from different prototypes can delegate to the same prototype object, and

two or more objects of the same prototype can delegate to different prototype objects as

described by Stein [Stein 87]. He also provided formal proofs that inheritance and

delegation can be used to model each other.

Borning [Borning 86] also discussed prototypes as an alternative for classes and

metaclasses. He introduced two problems associated with the use of classes and

metaclasses. First, different interfaces for objects require different class definitions.

Second, the use of classes requires the user to move to the abstract level of class and

write a class definition, and then instantiate and test objects. He suggested the use of

prototypes as one alternative to the use of classes in graphic and visual systems. He also

discussed the difficulties of classes in Smalltalk [Goldberg 83,89] and the need for

metaclasses. He proposed a prototype-based language to illustrate the differences between

classes and prototypes.

Gabriel [Gabriel 86] argued that inheritance along with late binding allows users

to extend code without having the source code. Methods that did not exist when a code

segment is compiled may be called within that segment using dynamic binding. He also

indicated that inheritance involves both behavior and structure inheritance. Behavior

inheritance means that a class can inherit a method when it does not have it (it is not

31

associated with it). Inheritance of structure is similar to the definition of the specialization

form of inheritance. When objects have similar structures, their classes can be related

such that an object of the subclass is an object of its superclass(es). For example, a car

has the structure and behavior of an automobile (i.e., a car is an automobile).

In addition to the users of a class that create objects from that class, inheritance

adds a new category of users (often called clients, as used in Trellis/Owl [Schaffert 86]

and Eiffel [Meyer 88]) that inherit from the class. In Eiffel, the term client denotes

inheriting classes of a "has-a" relationship. Note that, Snyder [Snyder 86] uses the term

client to denote users of a class rather than inheriting classes. This produces another

external interface provided by the class to its subclasses. This situation affects

encapsulation and limits the ability to change the class contents safely [Snyder 86a].

The formal semantics of inheritance are also discussed in several articles. Cardelli

[Cardelli 84] addressed the semantics of multiple inheritance to justify it and solve the

problems associated with multiple inheritance. He distinguished between horizontal

polymorphism (that has to do with inheritance) and vertical (ordinary) polymorphism.

Cook and Palsberg [Cook 89] presented a denotational mode of inheritance. They

demonstrated the correctness of their model by proving that it is equivalent to the

operational semantics of inheritance.

2.4.1 SubtvPing

The term subtyping is used to denote the specialization form of inheritance

[Wegner 90]. When objects of a subclass are seen to be objects of a superclass, the

subclass is called a subtype of the superclass and the superclass is called a supertype. For

example, to capture the notion that every manager is an employee, we say that the class

MANAGER is a subtype of the class EMPLOYEE. This notion is used in the language

Trellis/Owl [Schaffert 86]. The concepts of subtyping, type theories, and type conversions

32

are addressed in details by Bruce [Bruce 86] and Cardelli [Cardelli 86], Danforth

[Danforth 88], and Gannon [Gannon 87]. For a discussion of subtyping in OOPLs, see

also [Cox 86], [Gabriel 89], [Nierstrasz 89], [Sethi 89], and [Snyder 86a].

Some OOPLs relate inheritance and subtyping [Halbert 87] [America 87]

[Oucournan 87]. Wolf [Wolf 89] discussed the importance of subtyping in OOPLs. He

gives two reasons to show that type checking is more important in OOP than in

conventional languages. First, a type checker can identify misuse of message names which

is hard for the programmer to detect. Second, it may not be obvious whether a method

is available to a particular class since inheritance distributes the method(s) defined for a

class.

The use of subtyping varies in OOPLs. For instance, in Trellis/Owl [Schaffert 86]

and Simula [Kirkerud 89], a subclass is a subtype of its superclass(es). Class STACK is

a subtype of class DEQUE if and only if STACK is a subclass of DEQUE. In

common Objects [Snyder 86b], a subclass is not necessarily a subtype of its superclass(es);

while in C++ [Stroustrup 86,91], a class is not allowed to be a subtype of its

superclass(es) unless public derivation is used. This issue is addressed by Nierstrasz

[Nierstrasz 89], Snyder [Snyder 86a], and Wegner [Wegner 90].

Understanding subtyping helps to understand the structure of classes and their

inheritance relationships. In Trellis/Owl, Schaffert [Schaffert 86] observed that subtyping

is based on behavior and not implementation. That is, methods of a subtype and its

supertype may be implemented differently. He characterized this as the definition of

specification inheritance. That is, for a given supertype and subtype, objects of the

supertype behave like those of the subtype.

Snyder [Snyder 86 a,b] indicated that when subtyping is associated with

inheritance, as done in Trellis/Owl, it allows more flexibility and improves efficiency.

Thus, declaring a variable 0 to denote an object of a class C means that 0 may denote

an object of the class C or descendants of C. On the other hand, he indicated that

33

subtyping in CommonObjects [Snyder 86b] is not related to inheritance and no attempt

is made for optimization based on subtyping.

Snyder has also addressed subtyping and its impact on encapsulation and

inheritance [Snyder 86a]. He claims that the subtyping rules and their relationship with

inheritance in the languages Trellis/Owl [Schaffert 86] and C++ [Stroustrup 86,91]

compromise the benefits of encapsulation and limits the language designers' freedom to

make changes without affecting the inheriting classes. His proposed solution, which was

used in the design of CommonObjects [Snyder 86b], is discussed in the following section.

2.4.2 Problems with Current Inheritance Models

In multiple inheritance, a major problem is that a method may be inherited more

than once from an ancestor class through different inheritance paths. Hence the inheriting

class can contain multiple instances of the inherited method. Some researchers call this

situation collision. When a collision occurs in multiple inheritance, there are different

decisions one can make [Gabriel 89] [Nierstrasz 89] [Snyder 86a].

1) Shadowing: Using the properties inherited from the most recent or highest
precedence class. This approach is used in Smalltalk [Goldberg 83] to shadow
both instance variables and methods, and in CLOS [Bobrow 88] to shadow
instance variables.

2) Combination: Combining all collided properties into one property. This approach
is used in CLOS [Keene 89] to combine methods, and in Flavors [Moon 85,86]
to merge instance variables.

3) Signalling an Error. This approach is used in CommonObjects [Snyder 86b] to
signal an error when an attempt is made to inherit the same method from different
classes.

4) Explicit Selection from among the Collided Properties. This approach is self
explanatory.

In addition to the above solutions, Snyder [Snyder 86a] outlined three more

solutions that deal with the inheritance graph. These solutions are called Graph-oriented

34

solution, Linear solution, and Tree solution. The first solution deals directly with the

inheritance graph. The other solutions flatten the inheritance graph into a linear chain and

then deal with the chain using single inheritance rules.

Naming conflicts between instance variables of different classes is a potential

problem. Cannon [Cannon 82] indicated that there are several ways to solve this

problems. One way is to limit the scope of instance variables at declaration time. Thus,

instance variables are accessible to certain classes and not to every class. This approach

is an explicit import of variables. Shadowing is another way. These approaches are

discussed in details by Cannon [Cannon 82]. In Flavors, another problem outlined by

Moon [Moon 85,86] is that when inheriting the same flavor along different inheritance

paths, the flavor system eliminates duplicated flavor names by imposing an order on the

inherited flavors.

Snyder [Snyder 86a] provided a description of inheriting instance variables, and

outlined the problem called direct access of instance variables. In most OOPLs the code

of a class may access directly all instance variables of its objects including those inherited

from its ancestor classes. This approach compromises the encapsulation characteristics

since the instance variables of a class should not be explicitly accessible to the inheriting

classes. As a result, he indicated that any changes to the instance variables of the

superclass(es) (such as renaming or removing) may affect the inheriting classes and hence

the language designers' freedom to make changes. The solution he proposed is that the

external interface should not include the instance variables. Also, to protect instance

variables from direct access, Snyder suggested providing methods to users to access

instance variables. These methods are meant to be used by both users and inheriting

classes. More details of these solutions are provided in [Snyder 86a].

Another problem outlined by Snyder is called visibility of inheritance. That is,

should a subclass know about the use of inheritance in its superclass(es)? In other words,

should inheritance be part of the external interface of a class? If so, changes to a

35

superclass's use of inheritance may require changes in the subclass(es) of that class. This

approach is used in CommonObjects [Snyder 86b]. CommonObjects is different from

other OOPLs because of allowing inheritance to be hidden from all users and inheriting

classes of a class. That is, a class does not know about the use of inheritance in its

superclass(es). This is applied to both methods and instance variables in order to prevent

the exposure of the use of inheritance outside the class definition. CommonObjects

achieves this characteristic by passing all inherited information through all intervening

classes. An error signal is issued when a class attempts to inherit the same method from

multiple superclasses.

Relating subtyping to inheritance is another problem outlined by Snyder [Snyder

86a]. He indicated that subtyping exposes the use of inheritance through subtyping rules.

His suggested solution is that subtyping should not be related to inheritance. Subtyping

should be based on the behavior of objects, and the subtyping hierarchy should be

independent of the inheritance hierarchy. For example, consider the stack/deque example

provided in [Snyder 86a]. This example demonstrates the separation of inheritance and

subtyping hierarchies as illustrated in Figure 2.16. Class STACK inherits from the class

DEQUE but is not a subtype of the class DEQUE because it excludes some inherited

methods. On the other hand, the class DEQUE is a subtype of the class STACK but does

not inherit from the class STACK. The subtype and inheritance relationships between the

abstraction and implementation of the stack and deque data types are illustrated in Figure

2.16 adopted from [Snyder 86a].

Marcke [Marcke 88] observed that inheritance implementations in OOPLs are

complicated. He claimed that the complexity of inheritance results from the desire to

express many different concepts by means of one inheritance lattice. He analyzed the

complexity problems and their causes associated with inheritance in some of the existing

OOPLs. He argued in favor of simple inheritance mechanisms that allow users to build

complicated information retrieval architectures explicitly, and contribute to the simplicity

Stack subtype of
abstraction 4~.r--------------~

De que
abstraction

inherit from inherit from

Stack
implementation

subtype of --
inherit from-

De que
implementation

Figure 2.16: Abstraction and implementations of stack and deque

36

of the language. He presented three alternative schemes for simple inheritance without

conflicts. These schemes are called SLl: Multiple Inheritance without Conflicts, SL2: The

use of Meta-Interpreters, and SL3: Explicit Method_objects.

Lucas [Lucas 89] investigated the problem of handling confusions arising in frame

systems with multiple inheritance. He addressed the inheritance of attribute values from

classes to objects of classes. He analyzed multiple inheritance form an algorithmic point

of view, and developed an algorithm for constructing a special kind of spanning tree for

the associated directed graph of a frame taxonomy. He focused on inheritance of attributes

by classes. His method amounts to recording the reasoning that takes place in a frame

taxonomy by means of so-called inheritance chains, then applying the notion of "in

between" to decide which attribute values, that are derivable by means of inheritance,

should be given preference over others. Kreczmar [Kreczmar 89] also addressed the

inheritance rules in OOP. He provided a review for inheritance rules in various OOPLs
'

using examples.

2.5 Message Passing

A message is a request sent to an object to perform some activities. It tells the

object what is to be done rather than how it is done. The issue of message passing is

37

addressed in almost every research that discusses inheritance and objects [Bobrow 88]

[Cannon 82] [Gabriel 89] [Hailpern 87] [Keene 89] [Klint 86] [Nierstrasz 86,89] [Snyder

86 a,b] [Wegner 90].

Users interact with objects through messages. The code executed to answer a

message is the implementation of a method defined in the class of the receiving object.

A class must define both the methods and their implementations. The terms method and

implementation are not identical because one method may cause the execution of two or

more implementations. This view is discussed by Wolf [Wolf 89]. Nierstrasz [Nierstrasz

89] stated that every method invocation is a message request to one or more objects to

perform some actions.

Objects cannot operate on each other, instead they interact by sending messages.

The receiving objects interpret messages differently. A receiving object may respond

directly, or it may decide not to answer the message and return an appropriate response.

This view is outlined by Nierstrasz [Nierstrasz 86]. He also indicated that message

passing is a model for object communication.

With specialization {refinement) form of inheritance, Klint [Klint 86] indicated that

an object of a subclass responds to messages sent to objects of the superclass{es). In

message passing, each object is capable of answering certain messages. Messages of

identical names can be defined for several objects. The behavior of a message depends

on the type of the object to which the message is sent.

Some OOPLs translate messages to procedure call when only one object is going

to answer the message (i.e., single-thread flow of control). Messages are converted into

procedure calls for reliability and implementation simplicity. Klint [Klint 86] indicated

that methods performed by means of messages are independent of the amount of work

required to use these messages. However, for small operations such as addition of two

numbers, the overhead of the message can be relatively high. Therefore, direct procedure

calls have their advantages in similar cases.

38

Self [Ungar 87] is an object-based language that depends on messages heavily. It

provides a different perspective on objects and messages. When an object receives a

message and it has no matching slot, the search continues through the superclass objects,

similar to the search method used in most OOPLs including CommonObjects [Snyder

86b], Smalltalk [Goldberg 83], and Trellis/Owl [Schaffert 86]. Objects may also send

messages to "self' to access the values of stored slots.

A protocol is a set of messages that specify the external behavior of an object. The

protocol does not defme how the behavior is to be implemented by an object. This is

outlined by Cannon [Cannon 82]. In a message passing system, Gabriel [Gabriel 89] ·

indicated that the method that handles a message is determined by the class of the objects

to which the message was sent.

OOPLs vary in their implementation of the message passing system. For instance,

in Lisp Machine system [Cannon 82], messages are converted to function calls, and

Trellis/Owl [Schaffert 86] employs the standard procedure call notation for invoking

methods. On the other hand, other languages such as Smalltalk [Goldberg 83,89], Self

[Ungar 87], and CommonObjects [Snyder 86b] use messages rather than

procedure/function calls. Messages are also used in other models including the "Object

Based Inheritance Model" proposed by Hailpem and Nguyen [Hailpern 87] and the

"Object Model For Shared Data" proposed by Kaiser and Hailpern [Kaiser 90].

2.6 Encapsulation

Abstract data is a set of data items (values) and a set of methods that manipulate

the data items [Cardelli 86] [Madsen 86] [Nierstrasz 86]. The behavior of an abstract data

item is defined by its set of methods. This approach facilitates the program development

and maintenance by allowing the program designer to safely change the implementation

details of an abstract data type without affecting its users. The less the exposure of

39

implementation details, the more encapsulation is achieved. Data abstraction goes along

with encapsulation. A programming language supports encapsulation if users of a module

are restricted to access that module only through its external interface (methods).

Meyer [Meyer 88] addressed modularity to assess what it means for a software

construction method to be modular. He discussed modular composability, continuity, and

protection. He also outlined and examined the principles that ensure proper modularity.

These principles are: linguistic modular units, few interfaces, small interfaces, explicit

interfaces, and information hiding.

In OOPLs, a class definition is a module with its own external interface. An object

with a defined external interface is an abstract entity such that its users do not need to

understand how the methods are implemented and how the data is represented. This

concept and the relationship between data abstraction and encapsulation have received a

lot of attention [Cardelli 86] [Cox 86] [Edelson 87] [Gabriel 89] [Klint 86] [Sethi 89]

[Siedewitz 87] [Snyder 86a] [Wegner 90].

Klint [Klint 86] observed that encapsulation is the foundation aspect of OOP. It

involves the separation of functionality from the underlying implementations of a

structure. The functionality of a structure is provided to users through the interface, while

the underlying implementations are hidden. Therefore, unnecessary access to data is

prevented and the life-time of the structure is increased. Long life-time implies that details

of the implementations can be changed any time without affecting users of the structure.

Most OOPLs support data abstraction by preventing objects from being

manipulated except through their defined external interfaces, as discussed by Snyder

[Snyder 86a]. He also pointed out that the support for data abstraction is one of the prime

features of OOP. That is, users have the ability to define new objects of a behavior

abstractly without any reference to implementation details. Implementations of methods

are called the internal view of an object as described by Schaffert [Schaffert 86]. He

outlined that encapsulation facilitates the modification of software and improves the

40

understandability of programs. Also, encapsulation minimizes the interdependency among

separated models by defining interfaces such that changing the implementations does not

affect the users of a module.

OOPLs vary in their suppon for encapsulation based on the kinds of changes that

can be made safely to the implementation of a module. For instance, CommonObjects

[Snyder 86b] provides suppon for encapsulation with respect to inheritance as outlined

by Snyder, and Smalltalk [Goldberg 83] is designed to provide total access to everything

and nothing is hidden, as outlined by Gabriel [Gabriel 89]. Nierstrasz [Nierstrasz 89]

indicated that the lack of encapsulation results in allowing an object to change the state

of another object. This phenomena occurs in the language Self [Ungar 87] because no

private slots are defined for objects.

2.7 Polymorphism and Binding

Polymorphism is a Latin word for "may shapes". In OOPLs, the term

polymorphism means different forms [Cardelli 86] [Cox 86] [Gabriel 89] [Klint 86]

[Meyer 88] [Nierstrasz 89] [Sethi 89] [Stroustrup 86,91] [Wegner 90] [Wolf 89].

Polymorphism is the multiplicity of form for a single method name. For example,

consider the shape classes illustrated in Figure 2.4. The method print can be defmed to

print different shapes, and thus the same method name has different forms

(implementations) in different classes. Polymorphism is a powerful tool for generalizing

a single process among many kinds of objects. A polymorphic function is the one that can

be applied to different objects. For example, the function Add can be applied to integer

and real objects. Here, the operator"+" is called an overloaded operator.

Binding is the point in a program's life when the address of a method is

determined. Early binding occurs at compile time. This requires that the address of a

method be known at compile time. Early binding is one strong characteristic of strongly-

41

typed languages. In late binding, the address of the called method is given to the caller

when the actual call takes place during run time.

Gabriel [Gabriel 89] addressed polymorphism in OOPLs. He stated that

Polymorphism depends on binding. He also viewed binding as the process of determining

which version of the invoked method is to be applied to an object. When polymorphic

methods are not supported by the language, the compiler determines (binds) the methods

at compile time. He called this approach static binding. In dynamic binding, methods to

be applied to objects are determined at run time. While static binding is efficient and

reliable, most OOPLs such as Smalltalk, Simula, Object Pascal, and C++ [Budd 91].

Dynamic binding makes polymorphism possible in OOPLs.

Nierstrasz [Nierstrasz 89] discussed the usage of polymorphism and its relation to

inheritance. He stated that, with inheritance, polymorphic methods applied to objects of

a subclass are also applicable to objects of the superclass(es). Moreover, polymorphism

enhances reusability. It allows users to define generic methods that can be used with

existing and newly-added objects.

Wolf [Wolf 89] also addressed the issue of polymorphism. He indicated that

Polymorphism is a mechanism that determines which methods are to be selected to

answer a message sent to an object. Methods are selected during execution based on the

type of the object to which the message is sent. Klint [Klint 86] also stated that dynamic

binding is one of the major reasons for the flexibility of OOPLs.

Polymorphism and binding also are discussed in detail by Meyer [Meyer 88]. He

indicated that polymorphism is controlled by inheritance in Eiffel. Some languages allow

users to have both late and early binding. For example, Eiffel allows both static and

dynamic binding~. and C++ [Stroustrup 86,91] also offers static methods bound at

compile time and virtual methods bound at run time.

A generic function is an ordinary function implemented as a set of methods that

are selected based on the types of the supplied arguments when a method is invoked. The

42

concept of generic functions is used in Lisp-based OOPLs such as Flavors [Moon 85,86],

CLOS [Bobrow 88], and CommonLoops [Bobrow 86] [Kempf 89]. These languages used

generic functions to achieve polymorphism.

2.8 Definitions

In the literature, different authors have provided the object-oriented terminology

different views from different perspectives, and hence terms are given different

definitions. To avoid multi-definition terms and to avoid ambiguity, this section is devoted

to provide definitions for terms used in this dissertation.

Instance Variable:

An instance variable is a variable declared in a class. It is associated with a value in an
object of the class. Instance variables of a class are initialized either at class definition
time or at creation time of an object.

Slot:

A slot is a variable whose value represents either a state or a behavior. The value of a slot
can be accessed by messages. Unlike instance variables, a slot can be viewed as an
instance variable name or a method name.

Method:

A method is an operation defmed in a class to represent a specific behavior. Methods
represent the behavior of objects of the class. A method has specification and
implementation. Specifications of methods of a class represent the interface of its objects.
Implementations are procedures (code segments) associated to specifications.
Specifications are visible to users of the class; while implementations are hidden.

Class:

A class is a description (template) of a set of objects that share similar properties. A class
consists of a set of instance variables and a set of methods. Instance variables have no
values associated to them in the class (i.e. a class has no state).

Metaclass:

A metaclass is a class whose instances are classes.

43

Prototype:

A prototype is an object that can be viewed and used as a class to produce new objects.
A prototype maintains state at any given time. The state of a prototype at any given time
can be assigned to a newly created object. The behavior of the new object is similar to
that of its prototype.

Object:

An object (instance) of a class is a collection of the values of the instance variables
defined in that class. These values represent the state (private data) of the object at any
given time of its life. They are accessed through the methods defined in that class.
Objects of the same class have different states, and have the same behavior (methods).

Instantiation:

Instantiation is the process of creating new objects (instances) from classes. It is
performed either by users or the programming language itself. Users instantiate objects
from user-defined classes; while a programming language instantiates objects from
system-defined classes that are not accessible to users of the language. All newly
instantiated objects have the same initial state. Instantiation is used in class-based
programming languages.

Cloning:

Cloning (copying) is the process of creating new objects from prototypes. A new object
is a copy of its prototype. The initial state of the new object is the state of its prototype
at cloning time. Cloning is used in prototype-based languages that use prototypes as
classes.

Inheritance:

Inheritance is a mechanism for code sharing (methods and instance variables) among
classes that have common behavior. When two classes have common behavior, they can
be related to each other such that one class inherits (uses) code representing the common
behavior from the other class. This relation is called inheritance. The inheriting class is
called subclass (child); while the other class is called superclass (parent). Single
inheritance relates a subclass to only one superclass; while multiple inheritance relates a
subclass to two or more superclasses. The subclass inherits methods and/or instance
variables from its superclass(es), and adds new methods and/or instance variables to
specify its behavior. Inheritance is a static relation defined at program development time.

Inheritance Hierarchy:

Inheritance hierarchy is a hierarchical relation representing the inheritance relationship
among related classes. Single inheritance forms a tree structure; while multiple inheritance
forms a directed acyclic graph.

44

Delegation:

Delegation is a mechanism that captures the behavior of inheritance. It is used in
prototype-based systems. An object delegates a message together with the responsibility
of answering the message to another object. In addition to objects of the same prototype,
objects of different prototypes can delegate messages among each other.

Message:

A message is a request sent to an object to invoke certain method. The receiving object
may not answer the message directly. The response (if the object chooses to answer) is
the result of executing the implementation associated with the invoked method. The set
of messages that an object can answer are determined by its interface, and is called a
protocol. All objects of a class or a prototype have the same protocol. Messages of
identical names can be used with objects of different classes or prototypes.

Subtyping:

Subtyping is a relationship between classes such that objects of one class (subtypes) can
be used in places where objects another class (supertype) are expected. Objects of the
subtype have the characteristics and behavior of objects of the supertype, but not vice
versa.

Polymorphism:

Polymorphism is a mechanism for applying a method on different objects of different
classes or prototypes. It generalizes a method among different types of objects. It also
determines which method to be used to answer a message sent to an object.
Polymorphism is tied to binding.

CHAPTER III

INHERITANCE IN OBJECT-ORIENTED PROGRAMMING

LANGUAGE: A TAXONOMY AND SURVEY

3.1 Introduction

Encapsulation, accessing the instance variables, and the visibility of inheritance

are important issues in OOP. Various OOPLs apply different restrictions on these issues.

Some languages, such as Smalltalk:-80 [Goldberg 83,89] and Flavors [Moon 86], include

their instance variables in the class external interface definition. Other languages,

including CommonObjects [Snyder 86a] and C++ [Stroustnip 86,91], hide their instance

variables and allow the inheriting classes to access them only via operations provided in

the external interface definition. More recent languages, such as Trellis/Owl [Schaffer 86],

apply more restrictions by providing the ability to define private operations dedicated for

inheriting classes and not by inclusion in the external interface.

The notion of subtyping may impact the inheritance issue based on the

subtyping{mheritance relationship. Some languages view subtyping between classes

through their inheritance relationship [Stroustrup 86] [Goldberg 83,89]. That is, subtyping

is based on the implementation hierarchy of the class. Other languages view subtyping

explicitly based on the class behavior rather than structure [Schaffer 86] [Snyder 86b].

The effect of these perspectives on the inheritance mechanisms in the selected languages

are discussed later in this chapter.

In this chapter we address three major issues in a number of widely-used OOPLs:

45

46

Inheritance mechanisms, access techniques, and the notion of subtyping and its relation

to inheritance. The OOPLs considered in this chapter are Trellis/Owl, C++, Eiffel,

CommonObjects, CLOS, Flavors, Smalltalk:-80, and Simula. These languages are

compared in terms of these issues. The strength and weakness of their support for

Snyder's criteria are also considered and discussed. Additionally, a binary tree taxonomy

for OOPLs [AI-Haddad 91 b] is presented in this chapter.

The rest of this chapter is organized as follows: Section 2 is a survey of the

inheritance mechanisms and the access techniques in the selected languages. Section 3

describes how OOPLs relate inheritance to subtyping. Section 4 provides a binary tree

taxonomy model of OOPLs based on the major characteristics of the inheritance

mechanisms. And in Section 5, the selected languages are analyzed based on Snyder's

criteria, and summary tables of their features are provided. Finally, Section 6 is the

summary.

3.2 A Survey of Inheritance Mechanisms and Access Techniques

In OOPL environments, systems are composed of objects and objects are instances

of classes. When several classes share common abstract properties, it is inconvenient to

duplicate the code of the shared properties in several classes. Therefore, inheritance is

used as a mechanism for code sharing between classes to construct new software

components from existing ones. The different forms of inheritance are discussed in the

previous chapter.

The access technique for instance variables determines how inheriting classes

access the instance variables of the super and ancestor classes [Snyder 86a] [Strom 86].

Various OOPLs have different semantics for this issue. This issue may impact the

encapsulation of inherited information when inheriting classes have full access to the

instance variables of the superclass. In this case, changing the superclass implementation

47

may become unsafe for its descendants. The class contents must be hidden and accessed

only through defmed methods to maintain information hiding and provide a flexible

program development.

The rest of this section is organized as follows. Each language subsection has two

parts (A) and (B) associated with it. The (A) part discusses the inheritance mechanism of

the corresponding language. Here, inherit:mce is interpreted to have different meanings

in different languages. For instance, inheritance in Smalltalk-80 is a technique to construct

complex classes from simple ones; whereas in CommonObjects, inheritance is utilized to

define objects by hiding the internal representations and exposing the defmed operations

via the external interfaces of a class. Moreover, in part (A), features provided by the

selected languages to support inheritance are also discussed using examples.

Part (B) discusses the access technique of the corresponding language. Here, we

examine how the language allows inheriting classes to access the instance variables of

ancestor classes. Accessing the instance variables has a major impact on information

hiding. Restricted access provides stronger encapsulation in which the inheritance

hierarchy is more flexible for changes. Allowing descendant classes to access the instance

variables of a superclass limits the designer's freedom to change the class implementation

without affecting its inheriting classes [Snyder 86a]. OOPLs provide varying degrees of

access. Some languages allow full access to the instance variables of a class, while other

languages impose strong restrictions on the external interface provided for inheriting

classes.

3.2.1 Trellis/Owl

(A) Inheritance Mechanism. Trellis/Owl is a statically typed OOPL. It combines a

multiple inheritance type hierarchy with static type checking [Schaffer 86]. Trellis/Owl

provides the conventional syntax of programming languages and uses the standard

48

procedure call notation for method invocation. In Figures 3.1 and 3.2, defmitions of

STACK and DEQUE (double ended queue) types (classes) are presented to show their

inheritance relationships. Figure 3.1 describes the type STACK with one private operation

(method) and two public operations. Figure 3.2 describes the type DEQUE as a subtype

of the type STACK. It inherits the public operations of STACK and defines new

operations.

type modu~e STACK;
operation is_empty(me)
! return True if stack is empty, False otherwise

operation push (me, elem : element_type)
public
! insert element elem into stack if not overflow

operation pop {me)
public ·
! return the top of stack if not underflow

end type_module

Figure 3.1: Definition of the type STACK

Trellis/Owl subclassing is based on behavior rather than specification hierarchy.

That is, a subtype must behave like its supertyp(es), but it may have different

implementation. For example, the type DEQUE behaves like the type STACK and

provides more operations. Since the subtype specializes the supertype, types cannot hide

the use of inheritance from the inheriting types.

Trellis/Owl provides two kinds of operations, instance and class operations.

Instance operations such as push and pop operations in Figure 3.2 are applied to

individual objects of the type. Class operations such as the creation operations are

applicable to the types themselves rather than their objects. Trellis/Owl operations can be

declared as public or private operations. Public operations of a type are available to its

clients (inheriting classes (users) rather than subtypes); while private operations are used

type module DEQUE;
! deque must define its own operations for boundary
! check since they are not inherited form type STACK.

operation push_top (me, el: element_type)
public
ia begin STACK'push (me,el); end;

operation pop_top (me)
public
ia begin STACK'pop (me,el); end;

operation push_end (me, el :element_type)
public
! Inject element el into the back end of Deque

operation pop_end (me)
public
! Eject element el from the back end of Deque

operation create (mytype)
return (mytype)
! Return the newly created Deque
! other methods ...

end type_module;

Figure 3.2: DEQUE is a subtype of the type STACK

49

within the defining type and its subtypes, and are not available to clients. A third

visibility is called subtype-visibility. Subtype-visible operations are neither restricted as

private nor general as public operations. They can be inherited and redefmed, but not

visible outside the defining type and its subtypes.

The external interface of a type is restricted to include only public and

subtype-visible operations provided for inheriting classes. The external interface of the

type STACK in Figure 3.1 includes the public operations push and pop. Instance variables

and operation implementations of a type are hidden in the type and accessed through

operations specified in its external interface. Different types may have different operations

with the same name. The keywords me and mytype are used to distinguish instance

operation from class operations. They are called controlling objects; me indicates instance

operations while mytype indicates class operations as illustrated in Figure 3.2.

50

It is the programmer's responsibility to specify the interface and the

implementation of operations as well as solving the inheritance ambiguities. Ambiguity

can arise when a type has two or more supertyp(es). When supertypes introduce different

definitions for an inherited operation, the programmer needs to specify explicitly the

desired definition, or override it by a new definition in the inheriting types.

(B) Access Technique. The instance variables of a class are accessed through the

class's public and subtype-visible operations provided in its external interface. When the

type's definition of a redefined inherited operation is required, the subtype can directly

access the superclass' version of an operation. For instance, if Pis the supertype and OP

is the modified operation in the subtype, the notation P'OP (me, ...) gives direct access

to OP in the supertype P. In Figure 3.2, type DEQUE overrides the operations push and

pop inherited from the type STACK and directly accesses the superclass's definition using

the above notation.

Type DEQUE in Figure 3.2 accesses the instance variable elem through the

definition of the public operations push and pop defined in the type STACK in Figure 3.1.

In case of direct access, when a public operation references other operations in the same

type, then the public operation still references them after being inherited by other types.

A type may refer directly to operations of an ancestor type without being inherited by all

intervening ancestors. However, a descendant type must know about its ancestor types.

Subtype-visible operations are inherited and can be redefined, but they are not

accessible outside the defming type and its subtypes. Thus, users may define operations

that are directly accessible to the subtype and are not exposed in the type's external

interface.

3.2.2 C++

(A) Inheritance Mechanism. C++ [Stroustrup 91] provides OOP style with multiple

51

hierarchical inheritance by means of class declarations. Class declarations divide classes

into sections in order to limit the visibility of the class contents to other classes. In C++,

changing the implementation of a class does not impact its descendant classes. A class

may include public, private, and protected sections. Each section contains variables and

methods of the same degree of visibility. An inheriting (derived) class inherits all of its

superclass(es) properties and may add new instance variables and methods.

Figures 3.3 and 3.4 provide sample definitions. The classes DATE and

BIRTH_DA Yare adopted and modified from [Stroustrup 86]. In Figure 3.3, class DATE

defines three public instance variables and two public methods. Instance variables and

methods are called class members. Class BIRTH_DA Y in Figure 3.4 is publicly derived

from the class DATE. It inherits methods and instance variables from the class DATE,

and defines new methods and instance variables. The main program in Figure 3.4 creates

two instances of the class DATE: Today and Christmas.

cla•s DATE {

} :

public:
int month, day, year;
DATE (int,int,int)
-DATE ();
void next();
void print();

void DATE::next() {
if (++day > 28)

II public section
II public variables
II Constructor
II Destructor
II next day
II print date

{ I* print next month schedule *I };
} ;

void DATE::print() {
cout << month << "I" << day << "I" << year <<;

} ;

Figure 3.3: Definition of the class DATE

Private instance variables, such as name and age of the class BIRTH_DAY, are

used within the scope of the class. Public instance variables have the opposite situation.

class BIRTH DAY public DATE {
char* name; // private variable
int age; // private variable

public: // public variables
void compute age (int,int,int); //newly defined method
BIRTH DAY (char,int,int,int); //constructor
-BIRTH_DAY(); //destructor

} ;

int BIRTH DAY::compute age(month, day, year);
{ - -

DATE::print(); //print today's date
I* subtract birthday form today's date and return age*/

} ;

main (int month, day, year)
{

} ;

DATE today (03, 30,
DATE Christmas (12,
today.print();
Christmas.next();

1990); // instance today
05, 1989); // instance Christmas

II print today's date
II schedule for January

Figure 3.4: Class BIRTH_DAY is a public subclass of the class DATE

52

They are made available to other classes. For instance, the variables month, day, and year

of the class DATE can be inherited by other classes. Different classes may have methods

with the same names. The scope resolution operator"::" helps users avoid the naming

conflicts of methods by explicitly specifying the invoked method. For example

DATE::printO in Figure 3.4 indicates the print method in class DATE not any other

class. In addition, the type and number of a method's arguments can specify the invoked

method [Pinson 88b].

C++ provides two approaches for inheritance (class derivation): public and private

derivation. In public derivation, the derived class inherits both public and protected

members of the base class(es), and retains these visibilities. Therefore, the public and

protected members of the base class are also public and protected in the derived class(es).

For example, class BIR1H_DA Y above inherits all public members of the class DATE

in Figure 3.3. Inherited members remain public in class BIRTH_DAY and are available

53

to its descendant classes.

In private derivation, the derived class inherits all public and protected members

of the base class(es), but inherited members are private in the derived class and are not

available to other classes. For example, If the class BIRTH_DA Y is privately derived

from the class DATE, then the public members of the class DATE become private

members in the class BIR1H_DAY, and are not available to descendants of the class

BIRTH_DAY.

The external interfaces provided for instances and inheriting classes include

methods defined in the class. An instance of an inheriting class includes only variables

used by methods inherited from the superclass, not all the superclass's instance variables

[Gorlen 87]. Every object of a derived class has its own copy of the superclass's private

variables. For example, each instance of the class BIRTH_DA Y has its own copy of the

instance variables name and age. These variables represent the state of an instance.

(B) Access Technique. Inheriting classes access the public and protected instance

variables of the base class through inherited methods. In public derivation, public

variables are accessible to all descendant classes; while protected variables are accessible

to only immediate inheriting classes. In private derivation, all public and protected

members of the superclass are accessible only to the immediate inheriting classes and are

not accessible to other descendant classes.

Using the notation Class_name::Method_name, a class can directly access a

method of an ancestor class if that method is being inherited (passed down) through all

intervening classes including the base class. Class BIRTH_DA Y accesses the public

instance variables defined in the class DATE through the inherited method DATE::print.

C++ provides self-reference by means of pointers to objects. The reserved word

this allows a class to refer to itself. Redefining a method by descendant classes does not

impact this invocation, because the dynamic binding mechanism insures invoking the

54

correct method A superclass may authorize a descendant class to access its private

variables. One way to allow such access is by declaring the descendant class as a friend

class of its superclass. The other way is defining protected variables in the superclass.

Protected variables are hidden from the other classes, but only accessible to immediate

derived classes.

3.2.3 Eiffel

(A) Inheritance Mechanism. Eiffel [Meyer 88b] is a statically-typed OOPL. It

provides multiple inheritance with strong static type checking and dynamic binding. Eiffel

classes provide private and public information to maintain information hiding. Classes

also contain instance variables and methods in which implementations of methods are

within the class definition. Pre-defined methods (class methods), such as Create, Forget,

Clone, and Result are not inherited, and are applicable to all classes. Different classes

may have same-named methods, and a class may inherit the same method from different

classes.

The client classes are classes that include ClassType declaration of the form

var_name:ClassType where var_name is a variable name and ClassType is a defined

class. Inheriting classes are classes that inherit explicitly from other classes through the

inherit declaration. Eiffel's inheritance mechanism is illustrated in Figures 3.5 and 3.6.

Figure 3.5 defines the class STACK of type integer. STACK exports three public

methods and one public instance variable. The instance variables stack_size and

stack_pointer are private to the class STACK. Figure 3.6 defines the class DEQUE that

inherits from the class STACK and adds new methods. Inheriting classes may rename and

redcfme inherited methods and instance variables using the keywords rename and

redefine. Class DEQUE renames the inherited methods push, pop, and the instance

variable stack_pointer. It also retains the method is_empty.

class Stack[INTEGER] export
is_empty, push, pop, stack_pointer

feature
implementation
stack size
stackyointer

ARRAY [INTEGER];
: INTEGER;
: INTEGER;

is empty : BOOLEAN ia is stack empty?
-do -- return TRUE if stack is empty

end; -- is_empty

push(X : INTEGER) ia -- insert element X
do -- add X if not full stack
end; -- push

pop ia -- pop the top element
do pop top if non-empty stack
end; -- pop

end; -- class STACK

Figure 3.5: Definition of the class STACK

claaa DEQUE[INTEGER] export
is empty, push top, pop top, push_end, pop_end

inherit -STACK[INTEGER] -
rename push as push top, pop as pop top

stack_pointer as front_pointer
redefine is empty

feature -
implementation : ARRAY[INTEGER];
rear_pointer : INTEGER;

is empty : BOOLEAN ia -- is stack empty?
-do -- different implementation

end; -- is_empty

push end(x : INTEGER) is inject element x
do -- inject x if not full stack
end; push_end

pop end ia
do
end;

-- eject element x
-- eject element x if non-empty stack
pop_end

end; -- class DEQUE

Figure 3.6: Class DEQUE inherits from the class STACK

55

56

Eiffel introduces the notion of repeated inheritance. This notion allows classes to

inherit more than once from ancestor class(es). The class DEQUE may be written as

follows:

class DEQUE[INTEGER] export ...
inherit STACK[INTEGER] rename
inherit STACK[INTEGER] rename

redefine .. .
redefine .. .

Repeated inheritance may lead to replicated methods if a method has been

renamed along the inheritance path in which its code needs to be duplicated in the

inheriting class [Meyer 88]. For example, suppose that the class SD inherits from the

classes STACK and DEQUE. Since methods push and pop are renamed in the class

DEQUE. Class SD may include methods push and pop form the class STACK, and

methods push_top and pop_top form the class DEQUE where push_top and pop_top are

duplication of push and pop respectively. This might lead to ambiguity.

(B) Access Technique. Eiffel's export clause separates the class's private information

from the public information offered outside the class definition. It applies information

hiding to clients (classes that use var_name:CiassType declaration) of a class, and

restricts the visibility of the class contents to other classes. For descendant classes,

information hiding is not applicable since descendants may depend directly on the

implementations of the superclass(es) [Meyer 88].

Clients are restricted to access only public (exported) methods and instance

variables. A class may export all of its private and public information to its descendants

granting them full access to its contents. A client may directly access (read) an exported

variable, but cannot modify its value. However, modification of such a variable can be

done through the definition of an exported method that uses the variable. The class

DEQUE has full access to the contents of the class STACK through their inheritance

relationship.

A class may export methods and instance variables inherited from other classes

57

in which these methods and variables were private. A class may export its methods and

instance variables to certain descendant classes by specifying the destination class(es) in

the export clause. For instance, one may declare the class STACK in Figure 3.5 as

follows:

class STACK[INTEGER] export
is_empty {DEQUE}, push {DEQUE}, pop {DEQUE}

Class DEQUE is the destination class for the exported methods.

3.2.4 CommonObjects

(A) Inheritance Mechanism. CommonObjects [Snyder 86a] is an extension of

CommonLisp. Its inheritance mechanism empha~izes on providing strong support for

encapsulation. Similar to other OOPLs, CommonObjects is intended to support a minimal

external interface definition and ease the development of software systems. The

inheritance mechanism used in CommonObjects can be explained using the definitions

given in Figures 3.7 and 3.8.

Figure 3.7 illustrates the definition of the class DATE, which contains four

instance variables and defines four methods. In Figure 3.8, the class BIRTII_DAY is

defmed as a subclass of the class DATE. It inherits method today and adds the instance

variable age.

CommonObjects' classes inherit methods and instance variables from each other

in hierarchical order. A class inherits all or part of the superclass's methods to be

included in its external interface. For instance, the option methods in Figure 3.8 allows

the class BIR1H_DA Y to inherit only necessary methods from the class DATE (method

today). Different classes may defme same-named methods. Classes encapsulate their

instance variables and may have same-name instance variables. Renaming instance

variables and changing method implementations of a class do not affect its descendants.

58

(define_type DATE
;; Date is represented by month,day, and year variables.
;; Variable last_day=l indicates the last day of the month.

(:var month (:type integer} (: init 0))
:gettable :initable

(:var day (:type integer) (: init 0))
:gettable :initable

(:var year (:type integer) (: init 0))
:gettable :initable

(:var last_day (:type integer) (:init 0)}}

(define-method(DATE :month end?) ()
;; return true if today is the end of the month

(= (last_day 1))

(define-method(DATE :year end?) ()
;; return true if current month is December

(• (month 12))

(define-method(DATE :next month) ()
,, return next month if today is the end of the month.

(un1esa (ca11-method (:month end?))
(incm month) -

month))

(define method (DATE :today) ()
;; return today's date

Figure 3.7: Definition of the class DATE

(define-type BIRTH_DAY
(:inherit-fo~ DATE

(:methods :month end :next month))}
;; Birth day is a subclass of class Date, it inherits
;; methods today and iefines a new method and instance
; ; variable.

(: var b _date (type integer} (: init 0)
:gettable :initable)

(define-method (BIRTH DAY :age) ()
;; print today's date and return age

(ca11-method (DATE :today (}}
;; Subtract b_date form today's date and return age

Figure 3.8: Class BIRTII_DAY partially inherits from the class DA1E

59

The use of inheritance in a class is allowed to be hidden from the inheriting

classes. In Figure 3.8, the methods option does not show the status of method today in

the class DATE whether defines or inherited. Common Objects provides external interfaces

for both objects and inheriting classes. Inheriting classes cannot directly inherit methods

from non-superclasses. Rather, methods must be passed down through intervening classes.

For instance, if a subclass of the class BIRTH_DAY wants to inherit method year_end

from the class DATE, class BIRTH_DA Y must inherit that method and pass it down to

its inheriting classes.

CommonObjects provides hierarchical multiple inheritance. When a class inherits

from multiple superclasses, it creates a set of instance variables for each superclass. It is

an error to inherit same-named methods from different superclasses. When a class inherits

same-named instance variables from different superclasses, its instances contain two sets

of inherited variables, one from each superclass. For example, if a class (say

Daily_Schedule) inherits from both classes DATE and BIRTH_DAY above, its instances

include two sets of the instance variables month, day, and year, one from each superclass.

(B) Access Technique. Accessing inherited variables by methods does not

compromise encapsulation. Instance variables are accessed and used by methods defined

in the class. Inherited methods from a superclass restrict the inheriting class to only

access the instance variables used by these methods. Class BIRTH_DA Y accesses the

instance variables month, day, and year in the class Date through the inherited method

today in which encapsulation is preserved.

CommonObjects provides the call_ method construct for direct invocation of

methods defined in ancestor classes but are not inherited by descendant classes. A class

can call its own methods by specifying the method's name. A class can access the

superclass's on-inherited methods using the superclass and method names as arguments.

For example, the statement

call_method (DATE :today())

in Figure 3.8 includes the arguments DATE and today.

60

In the case of multiple inheritance, when two superclasses of a class define the

same instance variable, an instance of the class contains two instances of that variable in

which they are accessed through inherited methods from each superclass. On the other

hand, when superclasses of a class share a common ancestor, an instance of the class

contains two sets of the instance variables defmed in the common ancestor, one from each

superclass. These variables can be accessed either through inherited methods or through

the direct Call_Method construct. An inheriting class needs not know about its

superclass's use of inheritance [Snyder 86a].

3.2.5 CLOS (CommonLisp Object System)

(A) Inheritance Mechanism. CLOS [Keene 89] [Bobrow 88] is an object-oriented

extension of CommonLisp. It provides a set of tools to help programmers construct highly

modular and extensible programs. As inheritance is concerned, CLOS supports multiple

inheritance of the class structure and behavior. Every object is an instance of a class and

has the same structure, behavior, and type as of its superclass. Each class is an instance

of another clas~ railed metaclass.

CLOS provides behavior inheritance by means of associating methods with classes.

Inheritance of methods is based on the method combination technique, which is a set of

calls to applicable methods. If a method is applicable to an instance of a class, it is also

applicable to instances of its subclasses. A class may add new methods or override

inherited methods. Implementation of methods are disjoint from the class body [Bobrow

88]. Examples are given in Figures 3.9 and 3.10.

Figure 3.9 defines the class EMPLOYEE with three local variables (slots), one

shared variable, and two methods. Class EMPLOYEE does not inherit from other classes.

Figure 3.10 defines the class MANAGER as a subclass of the class EMPLOYEE. It adds

(defclass EMPLOYEE()
((name :type string

(age :type integer
(hours :type integer
(salary :type integer
(rank :type string

:allocation :instance)
:allocation :instance)
:allocation :instance)
:allocation :instance)
:allocation :class))

(defmethod print name (1 Employee)
- . . . }

(defmethod work load (1 Employee)
- . . .)

Figure 3.9: Definition of the class EMPLOYEE

(defcla•s MANAGER (EMPLOYEE)
(rank type string :allocation :class)

(defmethod history (1 Manager)
...)

(defmethod work schedule (1 Manager)
- ...))

Figure 3.10: Class MANAGER is a subclass of the class EMPLOYEE

new instance variables and defines new methods.

61

CLOS provides two types of instance variables: local and shared. Local instance

variables save the state information of a particular instance of the defining class. They are

created when creating an instance of a class. For example, the instance variables name,

age, hours, and salary of class Employee are local. Shared instance variables save the

shared state that is used by all instances of the class. The instance variable rank in Figure

3.9 is shared by all instances of the class EMPLOYEE.

A class specializes its superclasses by inheriting their structure (variables) and

behavior (methods). Class MANAGER in Figure 3.10 inherits all methods and instance

variables of the class EMPLOYEE and adds a new instance variable and methods. It

provides the same structure and behavior of the class EMPLOYEE. The value of the

instance variable rank in the class MANAGER is different from that in EMPLOYEE.

62

CLOS uses the generic function approach to define and invoke methods. A generic

function contains a set of methods with relevant information. Its implementation is

distributed among its methods, and the appropriate methods are selected based on the

function's arguments. Several methods may be related to the same generic function.

When two or more methods are defined for an operation, the class precedence list

determines which method(s) to be invoked [Gabriel 89].

A class precedence list is a list of defined classes in the program. Classes are

ordered based on the given organization of the program. Each class has its own

precedence list containing the class itself and its superclasses. A class has precedence over

its superclass. In Figure 3.11, the classes X and Y precede the class A, and class B

precedes the classes X andY. Note that the class Y precedes the class X because it is

defmed after X has been defined. Precedence lists preserve the order of method

invocations, and avoid naming conflicts among the applicable methods of the generic

function [Keene 89].

(def'claaa A() ())
(defclaaa X(A) ())
(defclaaa Y(A) ())
(defclass B(X Y) ())

Figure 3.11: Definitions of classes

(B) Access Technique. CLOS provides structured inheritance in the sense that all

instance variables defined by a class and its superclasses are accessible in an instance of

that class. Instance variables are accessed through methods defmed in their classes and

included in the generic function definition. Specifiers determine the scope of instance

variables. For instance, the specifier :instance in Figure 3.9 indicates that each instance

of the class EMPLOYEE has its own copy of the instance variable; while the specifier

:class indicates that the instance variable rank is shared by all instances of the class.

63

Methods of a class are accessible to instances of its subclasses. Likewise, methods

of a metaclass are accessible to instances of its classes. Class MANAGER accesses all

of the instance variables used by methods print_name and work_load defined in the class

EMPLOYEE.

When modifying the value of an inherited shared instance variable in a subclass,

all instances of the subclass access the modified variable. For example, the class

MANAGER in Figure 3.10 modifies the instance variable rank inherited from the class

EMPLOYEE. All instances of the class MANAGER share the new value of the variable

rank.

The combination of applicable methods of a generic function is called the

Effective method (implementation) of the generic function. When calling a method of a

generic function, the generic function determines and invokes the appropriate method

based on the passed arguments. If the method is not applicable, the generic function

returns an error message [Steele 84].

In multiple inheritance, when superclasses provide same-named features (methods

and slots), the class precedence list is used to solve such conflicts. The precedence list

determines which class has precedence over others, and which method to be invoked (the

most specific one) when more than one method are applicable. A method is more specific

than another if its first argument is a subclass of the frrst argument in the second method

[Gabriel 89]. For example, method history of the class MANAGER is more specific than

method work_load of the class EMPLOYEE in Figure 3.1~ since the argument

"MANAGER" is a subclass of the argument "EMPLOYEE".

3.2.6 Flavors

(A) Inheritance Mechanism. Flavors [Moon 86] is a non-hierarchical lisp-based

OOPL that supports multiple inheritance. The notion of flavor is analogous to the notion .

64

of class. It is an abstraction representing one type of objects. A flavor defines a set of

instance variables and methods, and specified inherited flavors. Figure 3.12 illustrates the

flavor 3D_MOVING_OBJECf that defines three instance variables and one method.

These examples are adopted from [Moon 85].

(defflavor 3D MOVING OBJECT
(x=velocity, y_velocity, z_velocity
x motion, y motion, z motion) ()
:Tnitable_instance_variables)

(defmethod (speed 3D MOVING OBJECT) ()
(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2)
(expt z=velocity 2))))

(defmethod (location 3D MOVING OBJECT)()
;;; locate the object at timet.

Figure 3.12: Definition of the flavor 3D_MOVING_OBJECT

An inheriting flavor specializes its parent (super) flavors by maintaining the same

characteristics. It inherits all of its instance variables and methods. It may also redefine

inappropriate inherited methods, and define new methods and instance variables. A space

ship and comet are specialized 3D moving objects. Figure 3.13 illustrates the flavors

SPACE_SHIP and COMET that inherit from the flavor 3D_MOVING_OBJECf above.

Inheritance is defined by means of mixing flavors. When different flavors have

common characteristics, users can define them in one flavor called component flavor.

Other flavors inherit the component flavor instead of duplicating the common

characteristics in each of them. The flavor 3D_MOVING_OBJECf in Figure 3.12

represents a common characteristics of all 3D moving objects. Hence, it is a component

flavor in the flavors SPACE_SHIP and COMET in Figure 3.13. When different flavors

defme same-named instance variables, the inheriting flavor combines them into one

instance variable, and instances of the inheriting flavors contain one copy of the new

(defflavor SPACE SHIP
(crew_list name destination) (3D_Moving_Object)
:initable_instance_variables)

(defmethod (fuel SPACE SHIP)() ...)
(defmethod (altitude SPACE_SHIP) () ...)

(defflavor COMET
(percent iron estimated mass size))
(3D MOVING OBJECT) -
:initable_Instance_variables)

(defmethod (produced energy COMET)() ...)
(defmethod (friction=force COMET)() ...)

Figure 3.13: The flavors SPACE_SHIP and COMET inherit from the
flavor 3D_MOVING_OBJECT

combined instance variable.

65

Like other lisp-based OOPLs, Flavors uses the generic function approach to invoke

methods. A generic function is a set of methods defined on different flavors. A method

combination type combines a list of methods into one method called a combined method.

A flavor applies ordering on its component flavors to specify the structure and behavior

of its inheriting flavors. Ordering component flavors determines the order of the inherited

methods form these component flavors, and which methods to be chosen from the method

combination type. The combined method calls methods of the generic function in the

appropriate order based on the ordering applied to the component flavors [Cannon 82].

Flavors exposes the instance variables to the inheriting flavors in which instances

of the inheriting flavors include all instance variables of the parent flavor(s). Therefore,

Flavors does not hide the use of inheritance since the instance variables and methods of

the component flavors are visible to the inheriting flavors. Mixing flavors is defining a

flavor in terms of other flavors. It does not affect the order of the component flavors.

However, it is an error to violate the ordering constraints when mixing several flavors

[Moon 85].

For multiple inheritance, Flavors translates the inheritance graph into a linear chain

66

of flavors that preserve the order of component flavors. Ancestor flavors appear before

the inheriting flavors, and the non-ordered component flavors can appear anywhere on the

chain. [Snyder 86a].

(B) Access Technique. The Deffiavor construct defines a flavor with instance

variables, inherited component flavors, and relevant options for accessing the instance

variables. These options can be used to initialize the inherited variables, and to customize

a flavor's behavior. The instance variables of a flavor are accessed through methods of

that flavor as implicit lexical variables. When a flavor inherits other flavors, their instance

variables are accessed through the generic function methods defined on the inheriting

flavors. When adding or renaming a variable in a flavor, the changes are propagated to

all inheriting flavors from the updated one. Thus, users need not update the inheriting

flavors.

Flavors exposes the instance variables outside the flavor definition by using them

in the method definition (external interface), which grants inheriting flavors full access

to the instance variables of the parent flavors. For example, the flavors SPACE_SHIP and

COMET in Figure 3.13 have full access to the instance variables of the flavor

3D_MOVING_OBJECT. The visibility of the instance variables compromises

encapsulation and limits the ability to decompose the program into modules [Moon 85].

3.2.7 Smalltalk-80

(A) Inheritance Mechanism. Smalltalk-80 [Goldberg 83,89] is a dynamically-typed

OOPL that provides single hierarchical inheritance. Every class has a superclass, except

the system object class (root class) that describes the common properties of all objects in

the system. Examples provided in Figures 3.14 and 3.15 are adopted from [Goldberg

83,89].

Claaa name
Supez:claaa
%natance vaz:i&blea

Claaa methoda
initialize: amount

PERSONAL FINANCES
Object -
income, expenses

67

"super new initialBalance: amount "initialize balance"
new

"super new initialBalance: 0 "create new instance"

Instance methods
receive: amount

income <-- income + amount "update income"
spend: amount

expenses <-- expenses + amount "update expenses"
availableCash

"income - expenses "return available cash"
total Income

"income "return total income"
totalExpenses

"expenses "return tot'al expenses"
initialBalance: amount

income <-- amount "initialize the account"
expenses <-- 0

Figure 3.14: Definition of class PERSONAL_FINANCES

Class n..
Supez:claas
Inatance vaz:iables
Claas methods

DEDUCTIBLES
PERSONAL FINANCES
deductibleExpenses

initialize: amount
"(super new initialBalance: amount)

zeroDeduction
"initialize balance"

"no deductions"
new

"super new zeroDeduction

Instance methoda
amontDeductible: amount

"create new instance"

self spend: amount deducting: amount "deduct amount"
deductions: amount deductibleAmount

super spend: amount "update debt"
deductibleExpenese <-- deductibleExpenses + deductibleAmount

totalDeduction
"deductibleExpenses "return total deducted money"

zeroDeduction
"'deductibleExpenses <-- 0 "initialize deductibleExpenses"

Figure 3.15: Class DEDUCfiBLES inherits from the class PERSONAL_FINANCES

68

A class defines instance variables to represent private data, and class variables to

represent shared data. Class methods are the implementation details of messages send to

the class name; while instance methods are the implementation details of messages send

to an instance of the class. For example, method initialize: in Figure 3.14 is an

implementation of the initialization message sent to the class PERSONAL_FINANCES

·in order to initialize an account (an instance of class PersonalFinances) by certain amount

of money. Likewise, the method receive: is the implementation of a message sent to an

account to deposit certain amount of money.

A subclass inherits the instance variables and methods of its superclass, and may

add new ones. In Figure 3.15, the class DEDUCfffiLES inherits all methods of its

superclass PERSONAL_FINANCES. An instance of a subclass responds to all messages

of the superclass' instances in addition to those newly defined ones. For example, class

DEDUCfffiLES can answer all messages sent to the class PERSONAL_FINANCES.

Upon sending a message to a class, the search for the invoked method starts at the

receiving class and continues up the superclasses until reaching the invoked method or

the root class,· which returns an appropriate message to the sender.

Smalltalk-80 treats classes as objects. They are instances of other classes called

Metaclasses. The external interface (protocol) of a class, provided for instances of the

class, is a list of messages understood by its instances. This interface is limited to include

only the instance methods of the defining class. For example, the external interface of the

class PERSONAL_FINANCES in Figure 3.14 includes the methods receive:, spend:,

availableCash, totallncome, totalExpenses:, and initialBalance:.

The class external interface provided for inheriting classes includes all methods

defined in the class. Instance variables of a class are not encapsulated. They are fully

exposed outside the class definition. Therefore, an instance of an inheriting class contains

all of the instance variables defined in the superclass [Meylen 87]. For example, an

instance of the class DEDUCfffiLES contains the variables income and expenses from

69

the class PERSONAL_FINANCE in addition to the instance variable deductibleExpenses.

Also, classes expose the use of inheritance to other classes.

Boming and Ingalls [Boming 82] provided an extended version of Smalltalk. They

described and implemented multiple inheritance in Smalltalk-80. They added a new

feature called Compound selector for method invocation. It allows programmers to

specify the method's name and the corresponding superclass when invoking a method.

Multiple inheritance uses the dynamic binding approach for methods on the chain of

inheritance instead of copying the inherited methods into each subclass.

When two or more superclasses define the same instance variable, an instance of

the class contains only one instance of that variable even though it is inherited through

different paths. Besides, it is an error to have two or more different inherited instance

variables with the same name.

(B) Access Technique. The class description protocol in Smalltalk-80 includes

information about the instance and class variables, as well as about the instance and class

methods. Including all these information in the interface grants inheriting class full access

to the instance variables of the superclass. For example, the class DEDUCITBLES in

Figure 3.15 accesses all instance variables defined in the class PERSONAL_FINANCES.

An instance has its own list of the class instance variables. These variables are accessible

to the instance methods defined in the class.

Full access to the instance variables restricts the inheriting class to use variable's

names similar to the inherited ones. Additionally, removing or renaming an instance

variable may affect inheriting classes since dependency exists between them. Thus,

changing the implementation details of the superclass may require changing the inheriting

classes.

70

3.2.8 Simula

(A) Inheritance Mechanism. Simula [Kirkerud 89], the grandfather of all OOPLs, is

a statically-typed OOPL. A class is a construct used to declare a template for a set of

objects that contain the same set of attributes (data and operators). Simula provides single

hierarchical inheritance with strong type checking. The subclass inherits all attributes of

its superclass, and may add new attributes. Objects of the subclass are a subset of objects

of the superclass. For illustration consider the classes PLACE and TOWN adopted from

[Kirkerud 89] and shown in Figures 3.16 and 3.17 respectively.

cl.aaa PLACE;
begin

real longitude, latitude;
procedure read;

beqin
latitude :=prompt for real ("degrees north?");
longitude :=prompt for real ("degrees east?");

end of Place'read; - -

procedure write;
beqin

outfix(latitude,2,5); outtext("degrees north,");
outfix(longitude,2,5); outtext("degrees east.");

end of Place'write;
end of PLACE

Figure 3.16: Definition of the class PLACE

PLACE claaa TOWN;
begin

integer num_of_inhabitants;
<Declaration of other Town attributes>;

end of TOWN;

Figure 3.17: Class TOWN is a subclass of the class PLACE

71

In Simula, objects are created using an object generator expression of the form

"new Class_name". A declaration of the class Class_name introduces a new type called

a reference type, and is denoted by ref(Class_name). Users can declare variables of

reference types that are called reference variables. For example,

ref(PLACE) country side, tallest mountain;
ref(PLACE) array mountains (1 : number_of_mountains);

are declarations of reference variables. A reference variable either contains no reference

"none", or contains the address of an object of the class Class_name.

Assigning a new value to a reference variable is called a reference assignment.

A reference assignment is the creation process of new objects using the expression "new

Class_name". For example,

country side :- new PLACE;
tallest mountain :- mountains(3);

are expressions that create the objects country _side and tallest_mountains. Note that the

object tallest_mountains is the third element of the array mountains.

A subclass inherits all attributes of the superclass. The syntax of constructing a

class hierarchy is given as follows:

class AA; begin < Declaration of AA-attributes> end of AA;
AA class BB; begin < Declaration of BE-attributes> end of BB;

Here, class BB is a subclass of the class AA. The declarations

raf(AA) AA_var; ref(BB) BB_var;
AA_var :- new AA; BB_var :- new BB;

indicate that the reference variable AA_var points to an object containing the AA

attributes, and the reference variable BB_var points to an object containing both the AA

and BB-attributes. Consider the class TOWN illustrated in Figure 3.17 as a subclass of

the class PLACE.

Class TOWN inherits the attributes of the class PLACE and adds the new attribute

num_of_inhabitants. A reference variable of the type Town points to an object containing

three attributes: longitude, latitude, and num_of_inhabitants. When declaring attributes that

72

have the same name as attributes in the superclass, the declarations in the subclass

override the declarations inherited from the superclass. In the case of inheritance, a

reference assignment expression is legal if the right-hand-side of the operator ":-"refers

to an object that is in the class of the left-hand-side variable or in one of the subclasses

of this class. For example, consider the following reference assignments [Kirkerud 89].

ref(PLACE) P var;
ref(TOWN) T var;
P var ·- new TOWN; 1 This is legal assignment since TOWN

! is a subclass of the class PLACE.
T var :- new PLACE;! This is not legal since new PLACE

is not an object in Town or in one
of its subclasses.

P var :- new TOWN;
T var ·- P_var;

P var :- new PLACE;
T var :- P_var;

This is legal since P var refers to
an object in the class of TOWN.

This is not legal since P var does
not refer to an object in-the class
TOWN.

Simula provides virtual procedures that allow the subclasses of a superclass to

have procedures with common name, purpose, and use. For example, the procedure write

in the class PLACE may be declared as virtual, and subclasses can have their specialized

versions of write. The specification

virtual: procedures write;

implies that whenever procedure write is invoked in some object, the version declared in

the class to which the object belongs should be used. Figure 3.18 [Kirkerud 89] illustrates

the virtual declaration of the procedure write.

(B) Access Technique. The external interface of a class includes all of its attributes

that are made available to its subclasses. Such approach provides full access to the

attributes (instance variables) of the superclass. Class TOWN has full access to all

attributes of the class PLACE.

class PLACE;
virtual procedure write, sub-write;
begin

real longitude, latitude;
procedure read beqin < as before > end

procedure write;
begin

73

outfix(latitude,2,5); outtext("degrees north,");
outfix(logitude,2,5); outtext("degrees east.");
sub-write; ! write attributes specific to each subclass.
outimage; ·

end of PLACE'write;
end of PLACE;

PLACE claaa TOWN;
begin

integer num_of_inhabitants;
<Declaration of other Town attributes>;

procedure sub-write;
begin outtext(" number of inhabitants: ");

outint(num_of_inhabitants, 0);
end

<Other declarations>;
end of TOWN;

Figure 3.18: Class PLACE using the virtual procedure write

Simula uses the dot notation for remote access to attributes using the expression

reference_expression.Att_name. This notation allows direct access to the attribute

Att_name of the object pointed to by reference_expression. If the reference expression

refers to "none" or to an object that does not contain the attribute Att_name, the

evaluation of the expression returns an error. Examples of remote access [Kirkerud 89]

are:

ref(TOWN) my town;
my town.latifude := 37.44;
my-town.longitude := 58.29;
my-town.num of inhabitants := 300000;
my town.write;-

Simula supports the concept of protected attributes, so that attributes become

inaccessible (invisible) from the outside of the class. The declaration "protected

Att_name" makes the attribute Att_name inaccessible to neither subclasses nor users of

74

the class. This is similar to the private declaration in C++. To make protected attributes

visible only to an immediate subclass, the subclass must include the declaration "hidden

Att_name". Att_name is not visible to descendants of the superclass. This is similar to the

protected declaration in C++. The declaration "hidden protected Att_name" can be used

in the superclass to prevent an immediate subclass from accessing Att_name even though

the subclass includes the declaration "hidden Att_name". Simula provides self-reference

by means of pointers to objects. The declaration "this Class_name" refers to the current

object of the class Class_name. Such object is called a local object. This is similar to the

use of this in C++.

3.3 Subtyping and Inheritance

One important issue related to inheritance is subtyping. Various OOPLs relate

subtyping to inheritance differently. Some languages including Smalltalk-80 and C++

(public derivation), view subtyping through inheritance between classes based on the

structure hierarchy. In other languages, such as CommonObjects, subtyping is based on

the behavior of the class objects rather than the structure. Below we examine the notion

of subtyping and its relation to inheritance in some of the selected languages.

CommonObjects provides explicit behavioral subtyping that is not related to

inheritance. A class can be a subtype of any other class, and the subtyping hierarchy can

be separated form the inheritance hierarchy. This approach hides the use of inheritance

from descendant classes. Changing implementation of a subtype class does not affect its

subtyping relationship with its supertype class as long as it provides the same behavior.

In C++, inheritance is implicitly related to subtyping. When a subclass inherits all

the superclass's methods (public derivation), it is a subtype of its superclass. A class

cannot be a subtype of a non-ancestor class, and may not be a subtype of the superclass.

The subtyping relationship between classes may be affected by changing the

75

implementation of the subtype class. For example, consider the classes REGULAR_ CAR

and SPORT_CAR. When the class SPORT_CAR inherits all features of the class

REGULAR_CAR, class SPORT_CAR becomes a subtype of the class REGULAR_CAR.

If the design of the sport car is changed by eliminating some features of the regular car,

then the class SPORT_CAR is no longer a subtype of the class REGULAR_CAR.

Therefore, C++ subtyping hierarchy depends on the inheritance hierarchy when public

derivation is used.

In Trellis/Owl, behavioral subtyping is implicitly related to inheritance. Class X

is a subtype of classY if and only if X is a descendant of Y. A subtype must inherit all

methods of its superclass(es), and provide the same behavior. Thus, subtyping is a

specialization of classes. A superclass cannot hide the use of inheritance form its

descendant, and cannot separate the subtyping hierarchy form the inheritance hierarchy.

Similarly, Smalltalk:-80 provides implementation-based subtyping that is implicitly related

to inheritance. As a result of the hierarchical subclassing inheritance, the inheritance and

subtype hierarchies are the same. That is, a subclass is a subtype of its superclass.

3.4 A Binary-Tree Taxonomy Model

OOPLs provide different inheritance mechanisms. A classification approach is

presented in this section to provide a predictive framework to identify a new inheritance

model in the space of inheritance models [Al-Haddad 91b]. The classification is based on

major characteristics of inheritance in a number of well-known OOPLs (see Tables 3.3

through 3.5 provided at the end of this chapter). Those characteristics are listed below.

Cl) Type system provided (Static or Dynamic).
C2) Inheritance mechanism (Single or Multiple).
C3) Inheritance structure (Hierarchical or not).
C4) Providing restricted external interface.
C5) Providing semi-restricted external interface.
C6) Providing restricted access to the instance variables.
C7) Hiding the use of inheritance.

C8) Hiding the instance variables.
C9) Providing private methods.
ClO) Providing metaclasses.

76

Cl is the type-checking system of the language, C2 is the inheritance relationship

among classes, and C3 is the structure of inheritance. In the characteristics C4, C5, and

C6, languages provide different external interfaces. Some languages provide un-restricted

interfaces and hence exposing the contents of a class to other classes, thus providing full

access to the instance variables and methods of a class; while other languages provide

restricted interfaces in order to hide the variables of a class by allowing the access only

via the external interface specifications. A restricted external interface of a class provides

only the method specifications to inheriting classes.

On the other hand, some languages provide semi-restricted external interfaces (in

addition to the restricted ones) for certain inheriting classes. This rare situation exists in

C++ [Stroustrup 86] and Eiffel [Meyer 88]. In C++, protected variables and friend

declaration allow certain classes to directly access the private data of the defining class.

Eiffel grants descendant classes (that inherit through the Inherit clause) full access to the

class implementation; while other inheriting classes are granted restricted external

interfaces providing them only the specifications of the superclass's methods.

C7 is hiding the use of inheritance in the sense that inheriting classes do not know

about the use of inheritance in the superclass(es) if present. In C8, the instance variables

are hidden from the other classes and are accessible via methods of the external interface.

In C9, classes may have private methods which are local to the defining class and are not

available to other classes. Finally, ClO is that classes are instances of other classes

(metaclasses). The variety of languages captured in this taxonomy is sufficient for the

well-known languages considered in this chapter. These languages and their reference

codes are given in Table 3.1.

TABLE 3.1

LANGUAGES CONSIDERED IN THE
CLASSIFICATION TREE

Language Code Language

Trellis/Owl Ll CLOS

C++ L2 Flavors

Eiffel L3 Small talk

CommonObjects L4 Simula

77

Code

LS

L6

L7

L8

The proposed classification is given in the form of a binary tree in which all the

characteristics are grouped into 4 sets for the sake of manageability of representation. A

complete binary tree with ten characteristics would result in 1024 leaves. The grouping

of several characteristics into internal nodes certainly reduces the descriptive and

predictive power of the taxonomy. Each set of characteristics occupies one level on the

tree. The sets, their characteristics, and their levels are given in Table 3.2.

In the binary tree representation, a node represents one or more characteristics. In

the representation of the characteristics Cl, C2, and C3, the left edge of the node

indicates static type, single inheritance, and hierarchical inheritance structure; while the

right edge indicates dynamic type, multiple inheritance, and non-hierarchal inheritance

structure. For other characteristics, the left edge indicates the presence of the

characteristic(s), and the right edge indicates their absence in the language being

classified.

The classification tree illustrated in Figure 3.19 represents the proposed

classification of the selected languages in Table 3.1. It has four levels representing the

sets of characteristics in Table 3.2. In Figure 3.19, the languages on the left edge of a

node provide the characteristics represented in that node; while the languages on the right

edge do not provide the represented characteristics. The fourth level (leaves) of the

nO

TABLE 3.2

NODE EXPANSIONS OF THE
CLASSIFICATION TREE

Node Level

nO 0

nl, n2 1

n3 - n6 2

n7 - n14 3

LS
n2

L7
L6
LS

LS
L7
L6
LS

Ll
L2
L3
L4

L4
L3
L2

nl
Ll

Figure 3.19:

Characteristics

CS, C6, Cl, ClO

C4, CS, C7

C2, C3

C9

L8
n6 ·
-4:n14~

n13

~L7 m:n12 7
nS

L6
nll ---c

LS

___r L4 i(nlO 4
n4

---rL3 n9
L2

~nB ~Ll 1
n3

n7

The classification Tree

78

79

classification tree represents the resulting models in which all characteristics along the

path from a leaf node to the root node are supported by the model.

Each node of the classification tree is a subtree of the characteristics it represents.

The height of a subtree of a node equals the number of characteristics represented in that

node. The trees in Figure 3.20 through Figure 3.26 represent the subtrees corresponding

to the internal nodes of the classification tree in Figure 3.19. Here, the nodes are denoted

by the corresponding characteristics. The left edge of a node indicates the presence of the

characteristic, and the right edge indicates the absence of the characteristic in the

classified languages.

-c16 ClO
15 17

18 Cl
17 _______? 18
16 ClO
15

C6 -{ClO 18
17 Cl
16
15 ClO

ce
11 w{ClO 12
13 Cl
14 ____r 13

ClO
13

C6
11
12 ____r 14
14 ClO

Cl

____r 11 12
ClO

Figure 3.20: The subtree nO

80

C4 C4
Ll,L2,L3,L4 I

'i ;;v
I L5,L6,L7,L8

v
cs cs cs C5

L2,L3 I Ll,L4 ·~ -i "" ~ I L5,L6,L7,L8

"' C7 C7 C7 C7 C7 C7 C7 C7
~ ~

I
\1. ~

L2,L3 L4 Ll L5,L6,L7,L8

Figure 3.21: The subtree nl Figure 3.22: The subtree n2

C2 C2
I Ll I L2,L3,L4

"'
Q, ..v "' C3 C3 C3 C3

~ ~
11 12,13,14

Figure 3.23: The subtree n3 Figure 3.24: The subtree n4

C2 C2
L7 I L5,L6 18 I .v ~ "' ...

C3 C3 C3 C3

~ ~
I ;;v ..., I

L7 LS L6 L8

Figure 3.25: The subtree n5 Figure 3.26: The subtree n6

81

In each of the subtrees, the leaf nodes are grouped into two sets, each set goes

along one edge of the node. These sets are the languages annotating the edges of the

classification tree. For instance, in the subtree nO in Figure 3.20, L1, L2, L3, and L4 go

to nl in the classification tree; while L5, L6, L7 and L8 go to node n2. Likewise, the leaf

nodes of other subtrees (n 1 through n6) are grouped into two sets annotating the edges

of the represented node in Figure 3.19.

Note that The left edge of the node C1 in Figure 3.20 indicates statically types

languages and the right edge indicates dynamically typed languages. Moreover, the left

edge of node C2 in Figure 3.23 and Figure 3.24 indicates single inheritance and the right

edge indicates multiple inheritance. The left edge of node C3 indicates hierarchical

inheritance and the right edge indicates non-hierarchical inheritance.

The subtrees corresponding to the nodes n7 through n14 of the classification tree

are at most one-node trees since each node represents one characteristic. They are obvious

from the classification tree in Figure 3.19. For instance, the subtree n7 is empty, and the

subtree n9 is one-node tree in which L2 annotates the left edge and L3 annotates the right

edge. The annotations on the edge leading the leaf nodes are the same as the

corresponding leaf nodes.

3.5 Discussion

In [Snyder 86a], Snyder examined the relationship between inheritance and

encapsulation. He has proposed several requirements for full support of encapsulation with

inheritance. In the rest of this section, the selected languages are briefly analyzed with

respect to their support for these requirements. These requirements are listed below.

1) Providing different external interfaces for both instances and inheriting classes of
a class;

2) Hiding the instance variables and class implementation from the inheriting classes;

82

3) Accessing the instance variables through methods provided is the external
interface;

4) Hiding the use of inheritance from inheriting classes;

5) The ability of defming private methods for the benefit of inheriting classes; and

6) Granting inheriting classes the ability to exclude certain methods from their
external interface;

CommonObjects, C++, and Trellis/Owl provide different external interfaces for

instances and the inheriting classes of a class. Smalltalk:-80 provides the same external

interface for instances and inheriting classes. Classes of CommonObjects and C++ hide

the instance variables and the use of inheritance from the inheriting classes. Smalltalk-80

and CLOS expose both instance variables and the use of inheritance outside the class

definition, and grant inheriting classes full access to the instance variables of the

superclass. In Flavors, a flavor cannot hide the use of inheritance since variables and

methods of the component flavors are visible to the inheriting flavors.

Since subclassing in Trellis/Owl is based on behavior, classes cannot hide the use

of inheritance, and inheriting classes must inherit all methods defined in the superclass.

But the instance variables are hidden in the class, and are accessed through methods

provided in the external interface. Since C++ and Trellis/Owl provide private data, users

may defme private methods for the benefits of the inheriting classes, while other

languages do not support this feature.

In CommonObjects, C++, and Trellis/Owl, inheriting classes may exclude methods

defmed in the external interface of the superclass. Users of CLOS and Flavors may select

certain methods from different classes through the defmition of the generic function.

Because Smalltalk-80 grants inheriting classes full access to the superclass and like

Trellis/Owl, inheriting classes must inherit all methods defined in the superclass. Other

features of the selected languages are provided in the Tables 3.3 through 3.5.

Several comparison surveys are found in the literature. Here, we highlight a few

83

of them. E. Seidewitz [Seidewitz 87] compared the capabilities of Ada and Smalltalk-80

from an object-oriented prospective. He addressed the basic properties of encapsulation,

inheritance, and binding in object-oriented programming. He focused on comparing the

object-oriented capabilities in Smalltalk:-80 with the object-oriented features of Ada and

modula.

J. Micallef [Micallef 88] provides a comparison survey of OOPLs in terms of their

support for encapsulation, reusability, and extensibility as objectives of the object-oriented

paradigm. Several other papers including [Bezivin 87], [Meulen 87], and [Blaschek 89]

discuss simulation experiments in OOPLs, and the flexibility and reliability gained from

the inheritance property and other properties of the OOP methodology.

In [Klint 86], Klint addressed a comparison between the algorithmic and OOPLs

from a perspective of code reusability which is a form of the inheritance concept. He also

reviewed the features required, including inheritance, to obtain OOP in a non OOPL.

3.6 Summary

In this chapter, we have discussed three major aspects of OOP: inheritance

techniques, access mechanisms, and relating subtyping to inheritance. Current OOPLs

address these aspect differently, and have different deficiencies in their support for other

issues such as data encapsulation, information hiding, and the visibility of inheritance.

Inheritance has different interpretations and purposes in the OOP. In the selected

languages, inheritance impacts the other issues in varying degrees. In CommonObjects,

C++, and trellis/Owl, the inheritance mechanisms and access techniques do not

compromise data encapsulation, and provide for flexible software development. While in

Smalltalk-80 and Flavors, the inheritance mechanisms and access techniques compromise

data encapsulation and limit the flexibility of program development.

Various OOPLs relate subtyping to inheritance differently. In some languages, they

-
84

are related based on the class implementation; while in other languages are related based

on the behavior rather than the implementation. Behavioral subtyping separates the

inheritance hierarchy from the subtyping hierarchy, and does not compromise data

encapsulation and the visibility of inheritance. Implementation-based subtyping

compromises data encapsulation and the visibility of inheritance, and the inheritance and

subtyping hierarchies are dependent.

In Section 5, Snyder's requirements for supporting encapsulation with inheritance

are introduced. The selected languages are analyzed in terms of these requirements. The

inheritance mechanisms of CommonObjects, C++, and Trellis/Owl support most of these

requirements.

85

TABLE 3.3

FEATURES OF THE SELECfED LANGUAGES (1)

Feature/LanguageiTrellis/Owl C++ Eiffel ConunonObjects

Language Type Static Static Static Dynamic

Multiple
Inheritance Yes Yes Yes Yes

Hierarchal
Inheritance Yes Yes Yes Yes

External Restricted Restricted Restricted
Interface Restricted & semi Rest. & semi Rest. & semi Rest.

Accessing the
Inst. Variables Restricted Restricted Full Restricted

Use of
Inheritance Exposed Hidden Hidden Hidden

Visibility of
Inst. Variables Invisible Invisible Invisible Invisible

Same-named
Inst. Variables Yes Yes Yes Yes

Private Methods Yes Yes No No

MetaClasses No No No No

86

TABLE 3.4

FEATURES OF THE SELECfED LANGUAGES (2)

Feature/Language I CLOS Flavors Srnalltalk-80 Sirnula

Language Type Dynamic Dynamic Dynamic Static

Multiple
Inheritance Yes Yes No No

Hierarchal
Inheritance Yes No Yes Yes

External Un- Un- Un-
Interface Restricted Restricted Restricted Restricted

Accessing the
Inst. Variables Full Full Full Full

Use of
Inheritance Exposed Exposed Exposed Hidden

Visibility of
Inst. Variables Visible Visible Visible Visible

Same-named
Inst. Variables Yes Yes No Yes

Private Methods Yes No No No

MetaClasses Yes No Yes No

87

TABLE 3.5

FEATURES OF THE SELECfED LANGUAGES (3)

Language/Featurelcommunication Approach Direct Invocation Construct(s)

Trellis/Owl Procedure Call me I P' OP (me, ...)
C++ Function Call this I " .. "
Eiffel Procedure Call x:ClassType I x.method name

CommonObjects Message Passing call method

CLOS Generic Function call next method

Flavors Generic Function self

Smalltalk-80 Message Passing self I super

Simula Procedure Call this

CHAPTER IV

APPROACHES TO REUSABILITY IN

C++ AND EIFFEL

4.1 Introduction

Concepts in software technology such as commonality, portability, modularity,

maintainability, and evolution are closely related to the concept of reusability. In the

development of new software systems, Freeman [Freeman 83] suggested that the needed

information can be classified into five levels. Figure 4.1 is adopted from [Freeman 83].

It illustrates these levels along with the information types in each level where the arrows

imply a reuse relationship between these types. At the lowest level (Code Fragment),

reusability of source code is a primary objective of software development.

OOP is one of the methodologies in which reusability can be practiced effectively

by utilizing existing programs as well as producing new programs that can be reused in

future developments. Reusability helps reduce the cost of software development and

makes the software design and development tasks easier and more reliable. The two

important language concepts that support code reuse are polymorphism and inheritance.

This chapter is devoted to study the language support for code reuse. The languages C++

[Stroustrup 86,91] [AT&T 89a] and Eiffel [Meyer 88] are used as cases to explore how

inheritance and polymorphism are incorporated into languages. C++ is an extension of the

C language; while Eiffel is a new languages definition. We compare and contrast their

support for reuse in terms of inheritance, polymorphism, and other related issues.

88

'l'YPB LEVEL

Tech-transfer
knowledge

Utilizing ENVIRONMENTAL
knowledge

Development
knowledge

Application-area EXTERNAL

Generic
systems

knowledge

1---- Functional ---l
collections

Software
architecture

code

FUNCTIONAL
ARCHITECTURES

LOGICAL
STRUCTURES

CODE FRAGMENT

Figure 4.1: Hierarchy of software development information

89

The class concept is the key for reusability and extensibility [Tracz 88]

[Biggerstaff 89 a,b]. Classes can be combined and modified to create new classes (for

new applications) by utilizing the concepts of inheritance and polymorphism [Edelson 87].

Unlike object-based inheritance models [Hailpern 87] [Ungar 87], C++ and Eiffel provide

class-based inheritance models. Inheritance is used as a mechanism for code sharing

among classes to construct new software components from existing ones. The new class

differs from the superclass(es) in the way it is derived. A new class may extend its

superclass(es) by adding new methods and variables, or may specialize its superclass(es)

by redefining some of the inherited methods [Strom 86].

Another concept that supports software reuse is polymorphism. Polymorphism

provides the capability of using a function with objects of different types. Polymorphism

can be divided into ad hoc polymorphism and parameterized polymorphism. Most

programming languages provide some degree of ad hoc polymorphism by providing

90

overloaded operators and parameterized polymorphism is beginning to be incorporated

into programming languages. We follow the Eiffel terminology; the term "generic" is used

in place of parameterized polymorphism and polymorphic entities refer to objects of a

type whose values may change during the execution time [Meyer 88a]. Ad hoc

polymorphism will be referred to as overloading. The term polymorphism will be used

in the general sense to include generic, overloaded, and polymorphic entities.

Libraries of specialized routines are created to facilitate code reuse. OOPLs

provide libraries of classes (to be imported into specific applications) as an approach to

reusability. Libraries provide classes of fixed functionality that cannot be modified in a

target application. Libraries of highly parameterized functions would increase code

reusability and help programmers to develop new software systems more efficiently

[Wegner 83].

In this chapter we describe the major features that support reuse in the selected

languages Eiffel and C++ [Al-Haddad 9lc]. We describe the concept of inheritance and

its related issues (by means of examples) as an approach to reusability. The various

language features are compared and contrasted from reusability and extensibility point of

views.

4.2 Design Objectives and Highlights of the Two Languages

In this section we describe the major aspects of Eiffel and C++ in terms of their

support for inheritance, polymorphism, and other related issues. Tables 4.1 and 4.2

provide a summary of features that impact reusability and extensibility in both languages.

4.2.1 Eiffel

Eiffel is an OOPL designed in late 1985. The main objectives of its design are

efficiency, reliability, reusability, extensibility, modularity, and portability. Eiffel is

91

designed as a new language rather than an extension of an existing language. In addition

to its simplicity and design consistency, Eiffel provides a set of powerful tools such as

a library of classes for 1/0 operations and string manipulation, assertions, support for

using code written in other languages, generation of portable C packages, graphics

package GOOD (Graphics for Object-Oriented Design), and garbage collection.

TABLE 4.1

INHERITANCE AND RELATED ISSUES IN C++ AND EIFFEL

Inheritance
and related
issues

Inheritance
type

Inheritance
mode

Inheriting
groups

Information
hiding

Genericity

Polymorphic
assignment

Dynamic
binding

Abstract
classes

Overriding
and renaming
of methods

Creation
routines

Language

C++

Multiple Inheritance

Selective (inherit
what you need)

One group (derived
classes)

Applied strongly

Limited by use of
macro

Not applicable

Provided for virtual
routines of a class

Applicable in the
new release 2.0

Only overriding is
applicable

Creation routines
are inherited

Eiffel

Multiple Inheritance

Non-selective (inherit
all or none)

Two groups (clients and
descendant classes)

Applied to clients not
to descendant classes

Unconstrained and comp
atible with inheritance

Constrained by
inheritance

Provided for all
methods of a class

Applicable and called
deferred classes

Both are applicable

Creation routines never
inherited directly

TABLE 4.2

VISffill...ITY AND INTERFACES IN C++ AND EIFFEL

Interface
entities/
features

Class
methods

Data repre
sentation

Instance
variables

Exclusion
of methods

Availabi
lity of
methods

Same-named
methods

Naming
conflicts
of methods

Visibility
options

Visibility

C++

Public methods are
visible to clients and
protected methods are
visible to derived
classes

Public data is visible
to derived classes

Hidden and accessed
via inherited methods

Applicable

Class methods are
equally available to
other class (es)

Classes can have
same-named methods

Resolved by the
resolution operator

n • •" ..
Several options are
provided based on the
base class type and
the data declaration

Eiffel

Exported methods are
visible to clients and
all methods are visible
to descendant classes

Public and private data
are visible to
descendant classes

Visible and accessed
directly by descendants

Not applicable

A class can export some
features to certain
related classes only

Classes can have
same-named methods

Resolved by the
renaming mechanism

Few options based on
whether clients or
descendants

92

Eiffel is a statically-typed language. It provides multiple inheritance reconciled

with dynamic typing and strong type checking. A class provides private and public data

to maintain information hiding and encapsulation. In addition, a class contains the

implementation of its methods. Eiffel provides two groups of inheriting classes. The first

group consists of client classes that include declaration of the form var _ name:CiassType

where var_name is a variable name and ClassType is a defined class. Client's

inheritance is a has-a relationship. The second group consists of descendant classes that

inherit explicitly from one or more other classes through the inherit clause declaration.

93

This inheritance relationship is characterized as an is-a relationship. Features (methods

and variables), such as Create, Forget, Clone, and Result, are not inherited and are

applicable to all classes. Eiffel provides two clauses: Feature which describes all

variables and methods of the class, and Export which provides all features available for

client classes. Class features listed within the export clause are public while other features

are private. Different classes may have same-named methods and a class may inherit the

same method from different classes.

Information hiding provided by the export control allows a class to export certain

features (variables and methods) to its clients. Eiffel introduces the Open-Closed principle.

That is, classes are open for descendants for extension and reuse; while classes are closed

to be accessed through their interfaces by clients. The public/private mechanism is applied

to clients of a class, exported features are visible and accessible to clients; while features

not exported are neither visible nor accessible. For descendants, everything is visible and

directly accessible. Therefore, a descendant class may depend on the implementation of

its superclass(es). For instance, one may implement the class STACK as an Array, then

the class STACK depends on the implementation of the class ARRAY.

Polymorphism and dynamic binding mechanisms allow users to define

polymorphic entities that refer to different instances of different classes. Polymorphism

is limited by inheritance to achieve type compatibility. If the classY is a descendant of

the class X, entities of type X can be assigned to entities of type Y (x:=y), not the other

way [Meyer 88b].

A deferred routine is a routine that is defined in a superclass and implemented in

a descendant class. A class that contains one or more deferred routines is called a deferred

class. Deferred classes do not have instances. They provide common behavior among

classes to increase code reusability and class extensibility. The deferred classes also allow

users to provide different implementations of abstract data types. Non-deferred classes are

called effective classes.

94

4.2.2 C++

C++ version 2.0 [Stroustrup 91] [AT&T 89b] provides multiple inheritance along

with other features as a modification of and extension to the old version [Stroustrup 86].

The new release is intended to provide efficient and reliable use of the class concept and

to provide tools for creating libraries of user-defined types for different applications.

C++ provides OOP with multiple hierarchical inheritance by means of class

declarations. Class declarations divide classes into sections to limit the visibility of the

class contents to other classes. A class may include public, private, and protected sections.

Each section contains members (variables and methods) of the same degree of visibility.

C++ inheritance is an is-a relationship. A derived class is a specialization of the

base class(es). It combines features of its base class(es) to provide new composite features

(concepts). A derived class inherits what it needs from base class(es), it may override

undesired inherited methods, and may add new variables and methods. Inheritance

supports information hiding and provides restricted and reliable external interfaces for

clients and derived classes.

Overloading does not solve the problem of reusability. Overloading operations

allows an operation name to provide different meanings. Thus, an operation can have

different implementations. The 2.0 version overcomes the ambiguity of overloaded

function names in different libraries by providing an improved linkage scheme. This

scheme provides satisfactory solution for working with overloaded functions in the

construction, combination, and usage of libraries. Moreover, the new linkage scheme

allows users to access functions in libraries of other languages using the appropriate

linkage specifications.

The external interfaces provided for instances and derived classes include

specification of the methods defined in the superclass(es). An instance of a derived class

includes only the instance variables used by the inherited methods from the superclass(es)

95

and not all of the superclass's instance variables [Gorlen 87]. Every object of a derived

class has its own copy of the superclass's private variables, as well as its own private

variables.

C++ version 2.0 introduces the notions of pure virtual functions, abstract classes,

and virtual base classes. A pure virtual function is a function that does not have a

definition in the defining class. An abstract class is a class that contains at least one pure

virtual function. These features allow users to provide different definitions of a function

in different classes. A virtual base class is an extension of the base class concept. They

allow a class to share data from its multiple superclasses, which are represented as

pointers to the shared data structure for the virtual base class.

Public/protected/private mechanism provides different levels of visibility and data

hiding for the class contents. In multiple inheritance, the visibility rules are applied to

base classes individually. When a derived class includes private and public base classes,

the visibility rules are applied to each base class as in single inheritance. Restricted

visibility provides strong encapsulation in which the inheritance hierarchy is more

adaptable to change and grants the designer the freedom to change the class

implementation without affecting its clients.

The concept of friend classes is another option of visibility that allows a classes

to grant access to its private data by other classes. Thus a set of private defmitions in a

class can be available to specific classes.

4.3 Inheritance and Reusability

In this section we illustrates by means of examples how inheritance and its related

issues are used as approaches to reusability in Eiffel and C++. Eiffel examples are

adopted and simplified from [Meyer 88b] and C++ examples are the C++ code that

correspond to the Eiffel's examples.

96

4.3.1 Eiffel

Eiffel's single inheritance mechanism is illustrated in Figures 4.2 and 4.3 adopted

from [Meyer 88]. In Figure 4.2, the class EFFECI'NE_LIST[T] describes the general

features of lists using an array implementation; while in Figure 4.3 the class ST ACK[T]

is a descendant of the class EFFECTIVE_LIST[T]. Class STACK[T] modifies inherited

features and adds new features. For descendant classes, inheritance is described through

the inherit clause. Syntactically, the inherit clause explicitly provides the names of the

superclass(es). For instance, the statement

inherit EFFECTIVE_LIST[T]

in Figure 4.3 makes all contents of the class EFFECTIVE_LIST[T] available for class

STACK[T].

class EFFECTIVE LIST[T] export
nb elements, position, empty, full, offright,
offleft, value, change value, add_new;
--Other features ... -

feature
nb elements: INTEGER; --number of the list'selements
max size: INTEGER; -- list maximum size
position: INTEGER; -- cursor position
implementation: ARRAY[T]; --list implementation

create {n: INTEGER) is -- create a list of size n elements
do if n>O then max size :- n end;

implementation.create(l, max_size)
end;

empty: BOOLEAN is -- is list empty?
do Result := (nb_elements = 0) end;

full: BOOLEAN is -- is list full?
do Result :- (nb_elements - max_size) end;

offright: BOOLEAN is is cursor off right edge?
do Result := empty or (position = nb_elements+l) end;

offleft: INTEGER is is cursor off left edge?
do Result := empty or (position = 0) end;

value: T is -- value of element at cursor position
require not offleft; not offright; -- not empty
do Result := implementation.entry(position) end;

97

change_value(v:T) is --assign v to element at cursor position
require not offleft; not offright; -- not empty
do implementation.enter(position, v);
insure value - v; implementation.entry(position) - v;
end;

add new(v: T) i8 -- add new element to the right of list
require (nb_elements < max_size); --not full
do nb elements := nb elements + 1;

implementation.enter(nb elements, v);
insure implementation.entry(nb elements) - v;

nb elements :- o1d nb elements + 1
end;

-- ... Many other features
invariant

0 <= position; position <= nb_elements + 1;
not empty or e1se (position= 0);
empty= (offleft and offright);
offright- empty or (position= nb elements+ 1);
offleft- empty or (position= 0);-

end; -- class EFFECTIVE LIST

Figure 4.2: Definition of the class EFFECTIVE_LIST[T]

c1a88 STACK[T] export
push, pop, top, full, empty, nb_elements

inherit EFFECTIVE LIST[T];
rename value as top, add new as push, create as list create;
redefine top;

feature
implementation: ARRAY[T];
create (n: INTEGER) is --allocate a stack of n elements

do list_create (1, n) end;

pop: T i• -- pop top value
require not empty;
do nb elements := nb elements - 1;
ensure nb elements =-o1d nb elements - 1;
end;

top: T is -- return top element
require not empty;
do Result := implementation.entry(nb_elements)
end;

end; -- class STACK

Figure 4.3: The class STACK[T] is a subclass of the class EFFECTIVE_LIST[T]

98

Since descendant classes have full access to the public and private features of the

superclass(es), renaming and redefinition properties allow descendant classes to rename

and/or redefine undesired features. For example, the class STACK[T] in Figure 4.3

redefines and renames the inherited features value, add_new, and create from the class

EFFECTIVE_LIST[T] to provide an appropriate implementation for the class STACK[T].

Redefinition and renaming have different purposes. Redefinition of a feature associates

the name with new feature, while renaming associates the same feature with a new name.

Thus, redefinition provides different features under the same name and renaming provides

different names for the same feature.

claaa FIXED_LIST[T] export
... Same exported features as in class LIST[T]

inherit ARRAY[T] rename create aa array create;
LIST [T] redefine i_th, change_i_th, swap, go;

feature
create(n: INTEGER) is allocate stack of n elements

do array create(l,n);
check n = size end;

nb elements := n;
end; -

value: T is -- Value of element at cursor position
do Result :- entry(position) end

change value(v:T) is --Assign v to cursor position entry
do enter(position, v);
enaure value v; entry(position) = v
end;

i th(i: INTEGER): T ia --Return value of i the entry
- require 1 <- i; i <- nb elements;

do mark; go(i}; Result :- entry(i}; return;
enaure value - v
end;

change i th(i:INTEGER, v:T) is -- change the i th entry
require 1 <= i; i <= nb elements
do mark; go(i}; enter(i~v); return
enaure value - v; entry(i) - v
end;
--Definitions of other features ...

end; -- class FIXED LIST

Figure 4.4: Definition of the class FIXED _LIST[T]

99

A class with no deferred routines is called an effective class. Multiple inheritance

allows users to use features of an effective class to implement routines of a deferred class.

In Figure 4.4, the class FIXED_LIST[T] describes a fixed-length list using an array

implementation (complete listing of the classes LIST[T] and ARRA Y[T] can be found in

[Meyer 88b, pages 452 to 641]). Class ARRAY[T] is an effective class, and the class

LIST[T] is a deferred class. Class FIXED _LIST[T] inherits the properties of the class

ARRA Y[T] and provides implementations for deferred routines in the class LIST[T].

Class ARRA Y[T] sets the bounds of a fixed-length list and provides its methods to access

the ftxed-length list's entries.

The possibility of redefining inherited feature is provided for descendant classes

as a property of multiple inheritance. The class FIXED_LIST[T] in Figure 4.4, adopted

from [Meyer 88], renames the method create from the class ARRA Y[T] to be invoked in

its own create method; it also redefines some features of the class LIST[T] to fit its

implementation since these features are provided to serve unbounded lists.

Eiffel introduces the notion of repeated inheritance. This notion allows classes to

inherit more than once from ancestor class(es). For instance, one may rewrite class

FIXED_LIST[T] as follows:

class FIXED LIST[T] export ...
inherit ARRAY[T] rename
inherit LIST[T] rename
inherit ARRAY[T] rename
inherit LIST[T] rename

4.3.2 C++

redefine
redefine
redefine
redefine

C++ version 1.0 provides single inheritance where a base class defined the

common features of related classes. This is a simple form of inheritance which is

provided by all OOPLs. To provide the ability of redefining an inherited method, the

virtual feature needs to be used. Figure 4.5 and Figure 4.6 provide sample definition of

100

single inheritance. The classes LIST and STACK are functionally equivalent to those

defined in Figures 4.2 and 4.3.

#include <stream.h>
#include <string.h>
conat char* msg[] - II array of error messages.
{ "Overflow. \n", "Underflow. \n", "Cursor off the left edge. \n",

"Cursor off the right edge.\n", "List is not empty.\n"'
"Index out of range.\n" };

claaa LIST
{ public:

} ;

int* 1st; // pointer to a list
int max size; II maximum size of a list
int nb elements; // number of elements in a list
int position; // cursor position
virtual int empty(); // is list empty?
int offright(); // is cursor off right edge?
int offleft(); // is cursor off left edge?
virtual int value(); //read from current position
void change value(int); //write to current position
void add new(int); // add to the right of list
void forth(); //move cursor 1 position ahead
virtual void back(); //move cursor 1 position back
virtual void go(int); //Go to the i_the entry
virtual int i_th(int); //Return the i_th entry
virtual int change_i_th(int, int); //Change the i_th entry
virtual void swap(int); //Swap positioned and i th entries
void init() // initialize variableS~

{ nb elements = 0; position = 0; }
void error_msg(int e_num) // issue an error message

{ cout << msg[e num]; }
LIST(int size) - II constructor

{max size- size; 1st- new int[size]; }
~LIST{) { delete 1st; } // destructor.

int LIST::empty() //is list empty?
{return (nb_elements == 0); }

int LIST::offright() //is cursor off right edge?
{return ((empty()) I I (position== nb_elements)); }

int LIST::offleft() //is cursor off left edge?
{ return ((empty) II (position == 0)); }

int LIST::value() //return value at cursor position
{if (offleft()) error msg(2);

else if (offright())-error msg(3);
elae return lst[positTon]; }

int LIST::change value(int v)
//change value at cursor position

{ if (offleft()) error_msg(2);
elae if (offright()) error_msg(3);

else lst[position] = v; }

1nt LIST::add_new(int v) II add new entry to list
{if (nb elements> max size) error mag(O);

else {-if (nb elements == 0) position = 1;
lst[++nb_elements] = v; } }

int LIST::forth() II move cursor one position ahead
{if (affright()) error mag(3);

else ++position; } -

1nt LIST::back() II move cursor one position back
if (offleft()) error msg(2);
el•e --position; } -

II Definitions of other features such as go, i_th,
II change_i_th, swap, ...

Figure 4.5: Definition of the class LIST

101

In Figure 4.5, the class LIST defines a subset of the methods of a general list. The

class STACK is derived from the class LIST since stacks are lists with restricted accesses.

The class STACK redefmes inherited methods and adds a new method. In this example,

class STACK : public LIST
{ public:

} ;

int empty();
void back{) :
int value {) ;
void push(int);
STACK(int size) (size) {}

II is stack full?
II pop top value
II return top value
II push on top
II constructor

int STACK:: empty() II is stack full?
max_size); } { return (nb_elements

int STACK: :back() I I pop top value
{ 1f (nb elements'""""' 0) cout<<"Stack is empty ... \n";

else -=nb_elements; }

int STACK::value() II return top value
{if (list::empty()) error msg(l);

e1ee return lst[nb_elements]; }

int STACK::push(int v) II push onto top
{ list::add_new(v); }

Figure 4.6: Class STACK is derived from the class LIST

102

the main program in Figure 4.7 creates the list L and the stack S of at most three

elements. In the class STACK, the method push shows the direct invocation of the base

class method add_new. One may remove the function push from the class STACK and

directly use the method add_new (in Figure 4.5) on stackS in the main program (e.g.,

S.add_new(lOO)).

If the class LIST in Figure 4.6 is defined to be private base-class of the class

STACK using the declaration

class STACK: Private LIST{ ... }

then the public data of the class LIST are private to the class STACK and are not

available to users of the class STACK. Virtual functions imply using the body of

inherited method in the derived class. Thus, different versions of the inherited method

may be defined for different derived classes. For instance, the virtual function valueO is

being modified in the derived class STACK, and the new version of the function value

is executed when the invocation "STACK::value" is issued. Thus, "LIST::value" returns

the entry at the current position and "STACK::value" returns the top element of the stack.

main()
{ int s ~ 3: II size

} ;

LIST L(s); II create list L of three entries
STACK S(s); //create stackS of three entries
L.add new(lO);L.add new(20);L.add new(30); II initialize L
S.push(lOO); S.push(200); S.push(300); II initializeS
cout << L.value() <<"\n"; II print value 10 from L
L.forth(); L.forth(); II move cursor ahead twice
cout << L. value() <<"\n"; I I print value 30 from L
L.back(); //move cursor back once
cout << L.value() <<"\n"; II print value 20 from L
cout << S.value() <<"\n"; II return value 300 from S
S.back(); II pop top value (300)
cout << S. value() <<"\n11 ; I I return value 200 from S

Figure 4.7: The main program

C++ classes may have same-named methods. The scope resolution operator"::"

103

helps users avoid naming conflicts of methods by explicitly specifying the invoked

methods (e.g, "LIST::add_new(v)" in the class STACK). In addition, type and number of

a method's arguments can specify the invoked method [Pinson 88].

The new release of C++ [Stroustrup 91] [AT&T 89b] introduces multiple

inheritance in the sense that a class may have more than one base class. A derived class

combines independent features of the bases classes. The class ARRAY _LIST in Figure

4.9 inherits from the classes ARRAY in Figure 4.8 and LIST in Figure 4.5. It combines

properties of the classes ARRAY and LIST to provide a fixed-length list using an array

implementation. The declaration

class ARRAY LIST : public ARRAY, public LIST

implies that the public data of the base classes is public to class ARRAY _LIST.

c1aaa ARRAY
{ private:

int area;
pub1ic:

int lower;
int size;
int upper;
int entry(int);
void enter(int,

II ... Constructor,
} ;

II Array entries

II Array lower bound
II Maximum array size
II Array upper bound
II Return the i th entry

int); II Assign the i_th entry
destructor, and initialization

int ARRAY::entry(int i) II is list empty?
{ II if upper< i < lower then error index out of range

II else return the i-th element. }

void ARRAY::enter(int i, int v) II is cursor off right edge?
{ II if upper < i < lower then error index out of range

II else assign value v to the i-th entry. }

Figure 4.8: Definition of the class ARRAY

To illustrate the notion of abstract classes, one may define the class LIST in

Figure 4.5 as an abstract class. The definition of the abstract class LIST is given in Figure

4.10. The class ARRAY_LIST provides the definition of the pure virtual functions using

104

an array implementation. Functions entry and enter of the class ARRAY are used to

manipulate elements of ARRAY _LIST. The abstract class LIST provides alternatives for

list implementation.

claaa ARRAY_LIST : public ARRAY, public LIST
{ public:

} ;

void go(int); //Go to the i_the entry
int i_th(int); //Return the i_th entry
int change i th(int, int); //Change the i th entry
void swap(int); //Swap positioned and i_th-entries

int ARRAY_LIST::go(int i) //Go to the i th position
{ // move cursor to the i-th position }-

int ARRAY_LIST::i_th(int i) //Return the i_th entry
{ if (1 <= i) II (i <= nb elements) error msg(5);

alae {mark; go(i); - -
return entry(i); } }

int ARRAY LIST::change i th(int i, int v)
{if (1-<= i) I I (i <=-nb elements) error _msg(5);

else -
{mark; go(i); enter(i,v); } }

int ARRAY_LIST::swap(int i) //swap entries
{ // swap the i_th entry the current positioned entry }

II ... Other redefined inherited methods from class list

Figure 4.9: Class ARRAY _LIST inherits from both ARRAY and LIST classes

claaa LIST
{ public:

} :

II
virtual void go(int) - 0; II Go to the i the entry
virtual int i th(int) - 0; II Return the I th entry
virtual int change i th(int,int) - 0;

-- II Change the i th entry
virtual void swap(int) = 0: -

//Swap positioned and i th entries
II

II Definitions of non-pure virtual functions.

Figure 4.10: The definition of the abstract class LIST

105

4.4 Discussion

In this section we contrast C++ and Eiffel in terms of inheritance and related

issues as approaches to reusability and extensibility. The notion of abstract classes (along

with the notion of pure virtual functions) in the new release of C++, and the notion of

deferred classes in Eiffel have significant role in using the inheritance issues to support

reuse. They allow users to partially implement abstract data types in order to provide

different implementations of data types. Pure virtual function and deferred routines also

provide more options for the definitions of functions. Such notions are not provided by

most of other OOPLs.

The notion of inheritance in C++ can be viewed as an is-a relationship between

base classes and derived classes where subtype/supertype relationship may not be

appropriate [Danforth 88]. For instance, in Figure 4.6, the class STACK is a list but not

a subtype of the class LIST. On the other hand, the notion of inheritance in Eiffel implies

behavioral subtyping among classes. The class Y is a subtype of the class X if and only

if the class Y is a descendant of the class X. Here, the subtype inherits all of the

superclass' features and pr~vides the same behavior. For instance, in Figure 4.3, the class

STACK[T] is a subtype of the class EFFECTIVE_LIST[T] and provides the same

behavior.

In the case of multiple inheritance, there is a high possibility for the occurrence

of naming conflicts. The solution provided for such conflicts is different from one

language to another. In C++, classes may have same-named functions. Ambiguity arises

when same-named function have the same visibility level (private, protected, or public)

in their classes. Moreover, in the case of virtual base classes, a derived class may refer

to an ancestor class more than once through its base classes. Thus, more than one copy

of an ancestor class may exist in the derived class and ambiguous access to the ancestor

class may arise. C++ and Eiffel involve the programmer in the solution and leave to

106

him/her the responsibility of avoiding such clashes. However, their approaches are

different. While C++ provides the resolution operator, Eiffel provides a renaming

mechanism to solve name clashes. Eiffel' s approach allows users to provide the proper

names of inherited features in the descendant class(es) without having to define new

features. For example, the names push and top in Figure 4.3 are more appropriate stack

terminologies than the names add_new and value used in the class LIST (Figure 4.5).

C++ and Eiffel implement inheritance differently. C++ allows classes to simply

inherit the desired features from their base class(es) and reject the undesired ones. Unlike

C++, Eiffel's descendant classes cannot reject undesired features, a descendant class must

override undesired features by introducing new definitions. Eiffel follows thi~ approach

to maintain its Open-Closed principle as an approach toward reusability.

A significant advantage of the export mechanism in Eiffel is that users can relate

a group of classes together by exporting features to certain group of classes (by indicating

the destination in the export clause) and not to others. For instance,

class LIST[T] export
is empty {FIXED LIST, LINKED LIST, STACK},
push {STACK}, pop {STACK},

allows to group the classes FIXED_LIST[T], LINKED_LIST[T], and STACK[T] together

through sharing the function is_empty. Thus. certain features of a class are available to

related classes and not to other classes. A higher structuring level can be achieved by

using this mechanism. However, C++ does not provide such a feature and all members

are left equally available to all other classes. However, by using the friend declaration,

users can provide private functions to specific classes and then relate them to their

superclass through their friend relationship.

The presence of export control and granting descendant classes full access to

superclass(es) in Eiffel may result in side-effects. A descendant class may export features

inherited from other classes that were private and may hide inherited features that were

107

public in the superclass(es). Such side-effects compromise the visibility rule applied to

the class contents. C++ takes a different approach, derived classes cannot compromise the

visibility of the base class(es) members. This approach maintains support for information

hiding and visibility rules, and it comes as a result of providing restricted external

interfaces to derived classes.

To maintain the visibility rules, C++ provides its users several degrees of visibility

of the class contents. These options add simplicity for structuring a class and provide

reliable external interfaces for derived classes. From Eiffel's view, applying restrictions

on the external interfaces violates its Open-Closed principle. This principle facilitates the

construction of reusable software segments, but it violates the information hiding and

encapsulation rules since accessing the superclass contents has a major impact on these

issues.

Dynamic binding is one of the features that support polymorphism. While

polymorphic entities refer to different instances of different classes at run time, dynamic

binding provides the support for realizing polymorphism. C++ provides dynamic binding

for virtual functions to support overloading of functions. That is, a class decides which

of its functions need to be (and must be) redefined in the derived class(es). On the other

hand, Eiffel grants dynamic binding for the whole class to maintain the Open-Closed

principle in which a class should remain open for extension. C++ requires that virtual

functions to be defmed in the original defming class; while pure virtual functions (as well

as Eiffel's deferred routines) do not need to have effective definitions in the original class.

Genericity (parameterized polymorphism) and overloading are other approaches

to reusability. They imply symmetric functionality. Genericity provides a code fragment

of a data structure that applies to different types. Overloading provides different code

fragments (implementations) of the same data structure. In Eiffel, genericity is compatible

with inheritance to support reusability and provide flexibility. In C++ overloading (ad hoc

polymorphism) is achieved by virtual functions. Genericity is limited by the use of macros

108

and requires a great deal of experience with the language to be utilized.

The notion of repeated inheritance is unique to Eiffel. It may lead to replicated

methods if a method has been renamed along the inheritance path in which its code will

be duplicated in the inheriting class and might lead to ambiguity [Meyer 88a].

4.5 Summary

As more complex systems are being built, the significance of software reuse is

further emphasized by practitioners and researchers. OOP provides support for code reuse.

Inheritance and polymorphism are major contributors to reusability. In this chapter we

examined these concepts as approached in C++ and Eiffel. The two languages address

those issues differently and provide different perspectives of reusability.

As an approach to reusability, inheritance techniques have different interpretations

and purposes in C++ and Eiffel. In C++, inheritance technique and visibility rules do not

compromise data hiding and provide reliable external interfaces for derived classes and

clients. In Eiffel, the inheritance technique and access mechanism compromise the data

hiding in order to accommodate the Open-Closed principle. Inheritance and information

hiding are parallel in C++; while orthogonal in Eiffel (a descendant classes may hide

exported methods, and may export inherited private methods).

Polymorphism is viewed and implemented differently in the two languages. The

C++ ad hoc polymorphism provided by overloaded operations serves the syntactic issue.

It is implemented in terms of pointers to functions that can be applied to objects of

different classes. Eiffel incorporates parameterized polymorphism and provides

polymorphic entities that refer to different types of objects during execution.

Naming clashes due to multiple inheritance are also handled differently.

Redefinition of inherited methods is provided in both languages. Eiffel grants descendant

classes the ability of redefining any inherited method. C++ grants the base class the

109

control to decide which methods can be redefined in the derived classes using the

keyword Virtual. Redefinition supports polymorphism and adds more flexibility by

allowing classes to provide different definitions for the same method.

Structured libraries of subroutines participate partially in the solution of reusability.

Both languages provide libraries of subroutines to be used in different situations, and tools

for the construction of custom libraries for specific applications. Eiffel can directly use

code written in other languages such as C, and it generates portable C packages. The

macro facility in C++ supports reusability. Moreover, the type-safe linkage scheme

provided by the 2.0 release of C++ grants users the ability of accessing functions in

libraries of other languages, and it supports reusability through construction and

combination of libraries.

CHAPTER V

AN OBJECT-BASED INHERITANCE MODEL

5.1 Introduction

Despite the obvious advantages, using the notion of inheriting classes to construct

new components may introduce some problems; for instance, exposing the class

implementation to the inheriting classes, whether or not to include instance variables in

the external interface, and exposing the use of inheritance in the ancestor classes. Snyder

[Snyder 86] examined the relationship between inheritance and encapsulation, and

outlined a criteria for full support of encapsulation with inheritance. He outlined the

following requirements:

1) Providing separate external interfaces for the class objects and the inheriting
classes.

2) Restricting the inheriting classes' external interface by not exposing the instance
variables and implementation details of the class outside the class defmition.

3) Providing methods for the instance variables to be accessed by the inheriting
classes.

4) Hiding the use of inheritance by not making it a part of the external interface.

5) When using inheritance for code sharing, it is adequate to grant the inheriting
classes the ability to exclude inherited methods from the external interface (i.e.,
classes inherit what they need).

6) The ability to define private methods for the benefit of inheriting classes when
the methods are inappropriate for some instances of a class.

7) The ability of directly accessing non-inherited parent's methods and redefined
inherited methods.

110

111

CUITent inheritance models and OOPLs provide only partial solutions to these

problems and do not provide full support for encapsulation either. Accessing the instance

variables and the visibility of inheritance are important issues in this situation.

OOPLs handle inheritance differently based on their interpretation of the

inheritance concept, and therefore different approaches to inheritance are found in the

literature. These approaches are outlined in chapter 2. The inheritance model incorporated

in each language is influenced by the particular inheritance approach adopted by the

language. The restrictions placed on these models have prompted researchers to search

for better models (e.g., see [Hailpem 87] and [Ungar 87]). In this chapter, a new model

that unifies ideas from several existing models is proposed. The new model in addition

to and probably in spite of being relatively general is clear and easy to understand.

The proposed Two-faceted object-based Inheritance Model (hereafter referred to

as TIM [Al-Haddad 90b]) satisfies most of the requirements mentioned earlier, and

provides full support for encapsulation and hiding the use of inheritance. The proposed

model provides code sharing inheritance mechanism based on objects rather than classes.

TIM also provides a unified approach to inheritance with encapsulation. TIM can be

regarded as a generalization of Hailpern and Nguyen's model [Hailpem 87] and it is also

consistent with the requirements outlined by Snyder [Snyder 86].

The rest of the chapter is organized as follows: Section 2 provides a detailed

description of the proposed model. Simulation of a C++ [Stroustrup 86] example in TIM

is provided in Section 3. In Section 4 we compare our model against other models found

in the literature. Section 5 is the summary and concluding remarks.

5.2 The Proposed Object-Based Inheritance Model (TIM)

We take a two-faceted orthogonal approach to the design of a unified object

inheritance model [Al-Haddad 90 a,b]. We call this new model a Two-faceted object-

112

based Inheritance Model (TIM). Each object in TIM consists of instance variables,

procedures, and methods. As in the case of Hailpern and Nguyen's model [Hailpern 87]

and Self [Ungar 87], there are no classes in TIM. Classes and the class hierarchy can be

derived from the objects. TIM provides a unified approach to inheritance and subtyping.

In the rest of this section we address the following issues: semantics and

composition of an object, the internal structure of an object, object interfaces, message

passing technique, multiple inheritance, object creation and deletion, and the inheritance

hierarchy among objects.

TIM consists of two orthogonal sets of objects. The first set of objects consists of

sets of identical objects, hereafter referred to as M-objects (Member objects). Each set of

M-objects have a copy of the variables and methods (access methods) of their parent

object An M-object inherits all methods (except access methods) of its parent object and

maintains its own copy of the instance variables. The initial state of an M-object is the

current state of its parent object at creation time. The concept of an M-object eliminates

the distinction between classes and objects in the traditional sense.

The second set of o~jects, hereafter referred to as !-objects (Inheriting objects), are

objects with a new identity that are not members of other objects. !-objects define new

methods and variables. While the behavior of M-objects is similar, the !-objects can have

new behavior and can inherit the behaviors of one or more M-objects and/or !-objects.

M-objects are analogous to instances of a class in the traditional inheritance models; while

!-objects are analogous to inheriting classes of a class.

Despite the similarities of this model to the class-based models, there are

significant differences. Inheritance is object-based rather than class-based, which means

that an !-object can inherit from any M-object, and an M-object can be derived from an

!-object. In class-based models, classes are static templates for dynamic object creation.

In TIM, the distinction between static and dynamic entities is removed; a parent object

provides its current state (values of the variables), variables, and methods to other objects.

113

Thus, in TIM, a chain of objects may represent a real process where each object is

created from the previous one.

Traditional models provide different kinds of variables in which several scoping

rules are needed. In TIM, private variables are associated to procedures. Thus, having

only instance variables simplifies the scoping rules. Figure 5.1 illustrates the possible

inter-relationships between the two types of objects in TIM.

!-object

L-------, r---------'

I-object

-------- Membership Interface
Inheritance Interface

Figure 5.1: Object types and possible interfaces in TIM

To categorize the notion of visibility, we introduce the concept of "degrees of

visibility". In TIM, three levels of visibility are distinguished:

1) Level-l variables: Invisible variables, where neither the name nor the value
associated to the name is visible outside the object

2) Level-2 variables: Partially visible variables, where variable names are not visible
outside the object but their values can be accessed via defined methods.

3) Level-3 variables: Visible variables, where both variable names and values are
visible to the descendants of the defining object.

5.2.1 Semantics and Composition of an Object

Here, the semantics of object elements including variables, procedures, and

114

methods are introduced. The visibility levels of object variables are also discussed.

Private Variables: Private variables are related to the procedures of an object rather than

to the object itself. They are in effect the local memory of a procedure. They are Ievel-l

variables and are only accessed by the procedures in which they are used.

Instance Variables: Instance variables are level-2 variables. Their values reflect an

object's state during its life. An access method is associated with each instance variable.

Syntactically, "Access$" is prefixed to a name to indicate the access method associated

with that name. For example, Access$a is a method to access the instance variable a.

Access to instance variables is limited to methods defined in the object and the access

methods.

Objects can inherit values of instance variables through their access methods (see

methods bellow) and they may have same-named variables. Therefore, this scheme

supports the following features:

1) Instance variables are not visible outside an object and are accessed through
defined methods.

2) Inheriting objects will never complain about undefined methods for accessing
inherited instance variables. Since each variable is associated with an access
method, the values of instance variables (the states) are available to inheriting
objects.

Procedures: Procedures are the executable code bodies of the defmed methods. A

procedure accesses the instance variables of the object (either a defining or an inheriting

object) executing the procedure. When a method is to be executed in response to a

message, the associated procedure is obtained and executed by the requested object.

Procedure execution, as a consequence of objects responding to messages, may change

the requesting object's state. Procedure names are level-1 variables.

Methods: Since objects contain private and instance variables, two groups of methods are

defined to provide different external interfaces that support encapsulation and maintain

the invisibility of the instance variables outside an object. An object provides the

115

following methods:

Access Methods: Access methods are created during object creation. Each instance

variable is associated with an access method. Access methods are part of the external

interface provided for !-objects and intended to enforce level-2 visibility. They do not

perform computational tasks and do not use private variables. When creating an M-object,

the new object includes a copy of the access methods to be used later by its !-objects.

Computational Methods: This group of methods, which accomplishes a certain

computation, is defined on both instance variables of an object and the private variables

of the associated procedures. An !-object may define or inherit a method. Defined

(original) methods are associated with executable code bodies (procedures) which are

defined during object creation. Inherited methods have their executable codes in the

defining object(s). Computational methods are included in the external interface provided

for both M- and !-objects. Defining objects return the procedures associated with the

requested methods to the requesting objects (M- or !-objects) where the code is executed.

Method execution results in accessing the private variables of the associated procedure

and the instance variables of the executing object Since objects may have same-named

methods, full-name reference is used to avoid naming conflicts. For instance, X.Access$b

means the access method of variable b defmed in object X.

5.2.2 Internal Structure of an Obiect

Each object in TIM can contain several lists. These list are illustrated in Figure

5.2, and are defmed as follows:

1) Instance variables list: to store an object's instance variables.

2) Methods list: to store all methods specified in the creation message. Each entry

of the list includes: method name, method form (original or inherited), and for

inherited methods, the source object from which the method is inherited. When

Instance Variables List

N
A
M
E
s

Methods List

Access Methods List

Members List

Inheritance List

N
A
M
E
s

N
A
M
E
s

Figure 5.2: Lists that an object can contain

116

sending a message to another object, the methods list explicitly indicates the type of the

message (Request or. Inherit) and implicitly indicates the destination object.

3) Access methods list: to store the access methods defined for each variable in the

instance variables list.

4) Members list: to store the names of all related M-objects. This list is used to dis

tinguish M-objects from !-objects when receiving a request for a method.

5) Inheritance list: to store the inheritance information of descendant objects. Each

entry is associated with a list of inherited methods names. This list is used to

indicate whether or not a requesting object for a method is an 1-object, and what

methods it inherits.

117

5.2.3 Object Interfaces

In TIM different interfaces are provided forM- and !-objects. These interfaces are

illustrated in Figure 5.1. Each object can have two interfaces:

1) Membership interface which provides all computational methods defined and

inherited in the object to all of its M-objects. An M-object can have only one

parent.

2) Inheritance interface which provides all methods of the membership interface in

addition to the access methods. This interface allows !-objects to inherit both

methods and instance variables from ancestor objects. An 1-object may have

several parents.

5.2.4 Message Passing Techniques

Objects in TIM are communicating processes. Any object can send a message to

any other object. The receiving object either returns the associated procedure of the

requested method (if available) or passes the message to the object which the method is

inherited from; otherwise, it returns an error. Any object can request a method by sending

either of the following messages:

REQUEST (Source,Method}
INHERIT (Sender,Source,Method_name)

where Source is the requesting object, Sender is the sending object, and Method_name

is the requested method. The receiving object whose name is used as a qualifier responds

by executing the following algorithm:

Algorithm Method retrieval

IF the request does not include the receiving object's name
THEN RETURN "ERROR: Unknown object" & EXIT.

IF the requested method is original
THEN RETURN its procedure to the source object & EXIT.

IF the requested method is inherited
THEN send the following inheritance message to the

ancestor object:

INHERIT (Sender,Source,Method_name)

ELSE RETURN "ERROR: Unknown method" & EXIT.

5.2.5 Multiple Inheritance

118

Single inheritance is a special case of multiple inheritance. All of the inherited

methods and instance variables come from one parent object. The methods list provides

multiple code inheritance by allowing objects to inherit the desired methods from several

objects and disallowing unsuitable methods. An object is able to answer several requests

at a time and activate several procedures simultaneously since private variables are local

to the procedures and not to the object itself.

An object is not allowed to have same-named methods, but different objects may

have same-named methods. When two or more parent objects have same-named methods,

the !-object will have several methods with the same name. To avoid this conflict, as

mentioned previously, full-name method reference approach is used. The "Source"

attribute in each entry of the methods list illustrated in Figure 5.3 refers to inherited

methods using both the object name and the method name. An 1-object can rename its

inherited methods, but the methods list maintains the original names of the inherited

methods.

Method Form Source

m2 Inheritance X.ml

Figure 5.3: A methods list entry

119

When objects send a REQUEST or an INHERIT message, they use the original

name of the requested method used in the receiving object. For example, suppose that

object X provides method ml and object Y inherits ml using a different name, say m2.

The methods list entry of ml in object Y is depicted in Figure 5.3. Object Y may send

either of the following messages to object X:

REQUEST (Y,X.ml) or INHERIT (Y,Z,X.ml)

The receiving object, X, expects to find its identifier prefixed to the requested

method, otherwise it does not respond to the message. The above interpretation of

multiple inheritance supports the following features:

1) Methods (original and inherited) have distinct names in an object in order to avoid
naming conflicts.

2) The use of inheritance inside an object is hidden.

3) Each method is associated with only one parent object.

4) Changing the implementation of a method does not impact the inheriting objects
as long as the ancestor object provides the same inheritance external interface.

5.2.6 Object Creation and Deletion

Every object includes a specialized method for creating a new object upon

receiving a creation message. The creation message has the following general format:

CREATE (Destination,New,IV,Methods)

where Destination
New
IV
Methods

: The receiving object,
: The new object name,
: Set of instance variables, and
: Set of method names.

Since there are two types of objects in TIM, the scheme for object creation needs to be

specialized for each type.

1) Creating an M-object of a destination object: Upon receiving the message

CREATE (Destination,New)

120

the destination (parent) object creates a new M-object by copying all of its own variables

and access methods. The initial state of the new object is the same as the current state of

the creator at creation time. In other words, this object reproduces itself. All

computational methods are inherited (not copied) from the parent object. In class-based

models, new objects are not provided with initial states since classes are merely templates

for objects.

2) Creating an 1-object with a new identity: The destination object should receive the

message:

CREATE (Destination,New,IV,Methods)
(Definition of new methods)
(Sources of inherited methods)

The result of receiving the message is that a new 1-object with the specified

contents will be created. An access method is created for each defined instance variable

but the access methods are not specified in the argument "Methods". The private variables

of a procedure are defined during the definition of the corresponding new method. The

destination can be any object in the system.

The newly created object's state is based on the variables' initialization and the

state of its parent object(s) at the creation time. This is a major difference between

class-based inheritance and TIM. The reason behind this approach to creation is to take

advantage of having a creation method associated with each object. The advantage is that

users need not keep track of the objects to send creation messages. Any existing object

can perform the creation since the creator does not have to contribute to the contents of

the created object. In the case of multiple inheritance, a creation message can be sent to

any object in the system and not necessarily to the parent object(s).

In the first scheme, a clone of the destination object is created; while in the second

scheme a new object is created which may contain properties inherited from the creator

as well as methods inherited from other objects. The following example illustrates what

a complete creation message may look like in the second method (without emphasizing

the syntax).

121

CREATE (X,Y, {a,b},{ml,m2,m3})
DEF Y.ml : BEGIN {The code body} END;
Y.m2 = Z.m2
Y.m3 = Z.ml

The creation message is sent to object X, m1 is a new method and m2 is inherited

method from object Z. As a result of this message a new object Y will be created.

Definition of method ml would correspond to the above DEF statement. An

assignment-like operator"=" is used to indicate inheritance among objects and renaming

the inherited methods. Therefore, Y.m3 = Z.m1 indicates that object Y inherits and

renames method m1 from object Z).

Dependent objects are objects that depend fully or partially on the methods and/or

variables of an ancestor object (namely, an M- or 1-object). Semantics of object deletion

is given below.

1) Each object is associated with a destruction method that can be invoked by itself.

2) An object destroys itself when it has been processed and has no dependent objects

of either kind.

3) If there are dependent objects, the object remains active serving its dependent

objects.

4) A deleted object answers to messages sent only by its dependent objects and

ignores other messages. An object recognizes messages sent by its dependent

objects based on its own members and inheritance lists.

5) Any object may send the message DELETE (object_name) to any/all of its

dependent objects. This message is accepted if the receiving object is related to

the sending object as an M- or 1-object. This message deletes the receiving object

and all of its dependent objects. In the case of multiple inheritance, if a parent of

an object is deleted, this object decides to stay active or deletes itself.

6) The specification of the object behavior dictates when to issue the DELETE

122

message. Objects may use this message when an object (process) and all of its

dependent objects must be terminated for some reason. Upon deletion of an object,

the parent object(s) will remove the object's name from its (their) members list(s).

Likewise, the ancestor object(s) will remove the object's name from its (their)

inheritance list(s).

5.2.7 Inheritance Hierarchy

The class/subclass hierarchy can be derived directly from the object lists as

illustrated below by an example in Figures 5.4 and 5.5. Figure 5.4 depicts an example of

inheritance hierarchy in TIM.

C ml, m2

-------,

D E

m2

L------, r------

F G

ml, m2

Figure 5.4: An example of inheritance hierarchy in TIM

123

In Figure 5.5, the inheritance list indicates the inheritance information of the

objects in Figure 5.4 and the methods they inherit. Thus, !-objects may be viewed as

subclasses and their parent objects as superclasses. The methods list in Figure 5.5

provides all of the inherited methods and the ancestor objects from which they are

inherited.

Methods List Inheritance List

Object I Method I Form jsourcel jobject!Methodl

A I ml I original I NIL I I c I ml I
B I ml !original I NIL I I c I ml I

ml Inherited A.ml I E I m2 I c
m2 Inherited B.ml

I I I ml Inherited C.ml F m2
D

m2 Inherited C.m2

E I m2 I Inherited I C.m2 I
I

F

I
m2

I G m2

ml Inherited D.m2
F

m2 Inherited E.m2

G I m2 jrnheritedj E.m2 I

Figure 5.5: Methods and inheritance lists of the objects in Figure 5.4

Objects in Figure 5.4 inherit methods as follows. Object C inherits ml from A and

B. It renames method ml from B. That is, C.ml = A.ml and C.m2 = B.ml. Object D is

124

an M-object of object CIt implicitly inherits all of the computational methods in object

C. On the other hand, object E inherits m2 from object C. That is, E.m2 = C.m2. Object

F inherits and renames m2 from object D, and it inherits m2 form object E. That is, F.ml

= D.m2 and F.m2 = E.m2. Object G is an M-object of object E.

Figure 5.5 shows both methods and inheritance lists of the objects illustrated in

Figure 5.4. Objects in Figure 5.4 exchange messages as follows. Suppose that object G

requests m2 by sending the message

REQUEST (G, E .rn2)

to object E. Object E executes the method retrieval algorithm described early and sends

the message

INHERIT {E,G,C.rn2)

to object C (destination object). Object C executes the same algorithm and send the

message

INHERIT (C,G,B.rnl)

to object B. Since ml is originally in object B, object B returns the procedure associated

with ml to object G. The "Source" attribute of the Methods list remembers the original

method name in the parent object

5.3 Examples Represented in the Proposed Model

In this section, a demonstration, by means of an example, of how objects in the

sense of other models can be realized in TIM is given in this section. In this example, a

C++ program is simulated in TIM. The original code is followed by the appropriate

simulation including object creation, methods definitions, and object contents. Here, the

class BIRTH_DA Y is defined as a public derived class of the class DATE adopted and

modified from [Stroustrup 86]. It inherits method "print" from the class DATE and

125

defines new methods and variables. The main program creates the instances Today and

Christmas of the class DATE, and the instance My _birthday of the BIR1H_DA Y.

Definitions of these classes are illustrated in Figure 5.6.

cl&S8 DATE
{ public:

} ;

int month, day, year;
void next();
void print();

II public section
II public variables
II next day
II print date

void DATE::next()
{ if (++day > 28)

{ I* print next month's schedule *I }; }

void DATE::print()
{ cout <<month<< "I" <<day<< "I" <<year<<; }

class BIRTH_DAY::public DATE
{ char* name; II private variable

int age; II private variable
public: II public section

birth day(char, int, int, int); II constructor
int compute age(int,int,int); II newly definedmethod

} ;
int BIRTH DAY::compute age(month,day,year)

{ /*-subtract birthday form today's date
and return age. *I }

main {int m, d, y)
{ DATE Today(3,30,1992); II instance Today

DATE Christmas(12,25,1991); // instance Christmas
BIRTH DAY My birthday('Al' ,1,4,1964); /I instance My birthday
Today-:-print{); I I print today' s date-
Christmas.next(); II schedule for January
My_birthday.compute_age(3,30,1992); II return my age

} :

Figure 5.6: Definitions of the classes DATE and BIRTH_DA TE

In TIM, the object DATE is treated as an M-object and the object BIRTH_DAY

is treated as an !-object. To create the object DATE, one can send the following message

to any destination object in the system (say Dest):

CREATE (Dest,DATE, {month<-- O,day <-- O,year <-- 0},
{next, print})

with the following newly defined methods:

DBF DATE.next: BEGIN
II' (day +1) > 28
THEN BEGIN

126

/* print next month's schedule */
END;

END;
DEl' DATE.print: BEGIN

RETURN (month, "/", day, "/", year);
END;

The instances Today, Christmas, and My_birthday created in the main program can be

derived as M-objects of the object DATE using the following messages:

CREATE (DATE,Today)
CREATE (DATE,Christmas)
CREATE (DATE,My_birthday)

We can simulate class BIRTH_DAY by sending the following message to a destination

object

CREATE (Dest,BIRTH DAY, {name, age <-- O,month <-- 0,
day <-- O;year <-- 0}, {print,compute_age})

The instance My _birthday can be created using the following message

CREATE (BIRTH_DAY, My_birthday)

The C++ instances Today, Christmas, and My_birthday become M-objects in TIM.

They inherit all methods of their parent objects. Thus, there are no methods definitions

needed for these objects. However, object My_Birthday is an 1-object. Therefore, we need

to defme all of its methods. Those methods can be defmed as follows:

BIRTH DAY.print = DATE.print /* inherited from DATE */
DEF BlRTH DAY.compute age(month,day,year):

BEGIN- -
/* subtract the given date from today's date

and return the result */
END;

If necessary, the instance variables can be initialized in the creation message. For

illustration, the internal structures of some of these objects are viewed as shown below:

M-object DATE:
Object
Instance variables
Methods list
Members list
Inheritance list

: DATE
List <-- {month,day,year}

<-- {next,print}
<-- {Today,Christmas}
<-- {BIRTH_DAY [print]}

127

M-object Christmas:

!-object

M-object

Object
Instance variables
Methods list
Members list
Inheritance list

BIRTH DAY:

: Christmas
List <-- {month,day,year}

<-- {next,print}
<-- {}
<-- {}

Object : BIRTH DAY
Instance variables List<-- {name~age,month,day,year}
Methods list <-- {print, compute age}
Members list <-- {My birthday} -
Inheritance list <-- {} -

My birthday:
Ob]ect : My birthday
Instance variables List <-- {name, age. month, day, year}
Methods list <-- {print,compute age}
Members list <-- {} -
Inheritance list <-- {}

5.4 Discussion

The closest inheritance models to TIM are the ones defined by Hailpern and

Nguyen [Hailpern 87] and Ungar and Smith in the language Self [Ungar 87]. Hailpern

and Nguyen described a network of objects communicating by utilizing a message passing

mechanism. In their model, each object consists of private variables, a set of methods, and

a set of procedures. Self is an object-based programming language. It provides a set of

objects that communicate by utilizing a message passing mechanism. Objects in TIM

consist of private and instance to variables as well as methods and procedures.

TIM supports most of the Snyder's requirements and maintains consistency with

the other related issues such as encapsulation and visibility of inheritance. Snyder's

second and third requirements outlined in Section 1 are not applicable in Hailpern and

Nguyen's model since their objects do not include instance variables. Furthermore, in

their model they relate the private variables to the defining object in which they can

handle only one message at a time. TIM avoids such use of private variables.

In Hailpern and Nguyen's model, list-based multiple inheritance may lead to

128

naming conflicts among the inherited methods. When an object X inherits a method, ml,

from different objects, the inheritance list associated with ml in object X contains the

names of the objects where ml is inherited from. Suppose another object Y inherits ml

from object X, when object Y sends a message to object X requesting ml, object X does

not know which method is requested.

To avoid the naming conflict problem, we suggest two options. The first option

is restricting all objects to have distinct method names in the system. This option limits

the designer's freedom to use same-named methods in different objects. The second

option, which is used in TIM (also used in Eiffel [Meyer 88]), allows objects to rename

inherited method and has the ability to remember the given methods' name in the parent

objects. This option avoids the above restriction and maintains consistency with data

hiding, hiding the use of inheritance, accessing the instance variables, and excluding

inherited methods from the external interface. The second approach also avoids the

possibility of having same-named methods in different objects.

In order to facilitate multiple inheritance, Hailpern and Nguyen's model artificially

includes several copies of "SuperClass" variables with different values. TIM does not use

"SuperClass" variables since ancestor objects can be derived directly from the methods

list of the inheriting objects.

Some of the feature of TIM are similar to those found in Self. Both TIM and Self

eliminate the distinctions between classes and objects. The creation of M-objects and the

search mechanism for methods are also similar. However, there are significant differences

also. Self does not distinguish between state and behavior. Instead, they are unified into

the notion of slots. Therefore, it is not possible to hide the state of an object, hence

violating the principle of information hiding. TIM takes a different approach and

maintains information hiding.

As a model, TIM does not have the attributes "static" or "dynamic". In TIM,

behavior and state are considered conceptual attributes of an object. Also, renaming a

129

behavior is another feature of TIM that is not found in Self. In Self, any object can alter

the state of any other object. In TIM, only the object itself can change its state. Each

object has associated with it construction and destruction methods. The notions of creation

and deletion have different semantics from other models.

5.6. Summary

Inheritance models in well-known OOPLs have different deficiencies in their

support for issues such as information hiding, subtyping, and visibility of inheritance. To

achieve the goal of OOP style more faithfully, we need an inheritance model which

maintains consistency with those other issues [Snyder 86] [Wayne 89].

Upon analyzing the current models, we gleaned their advantages and proposed a

unified approach by defining a Two-faceted object Inheritance Model (TIM). TIM

combines the selected features to maintain consistency with the above-mentioned related

issues; while adding new features to obtain inheritance and support for the OOP style and

reuse.

TIM consists of two orthogonal sets of objects. M-objects contain the same

instance variables and computational. methods of their parent objects. !-objects, on the

other hand, inherit behavior, variables, and methods from other objects, they can define

new variables and methods as well.

TIM is an object-based inheritance model based on code sharing with the ability

to capture the other views of inheritance. It provides single and multiple inheritance based

on the message passing paradigm, and provides semantics for object creation and deletion.

The notion of visibility of instance variables was categorized and used in the definition

of TIM.

CHAPTER VI

A FEEDBACK INHERITANCE MODEL

6.1 Introduction

In practical applications there are many situations where dependency between two

objects requires sharing of properties belonging to each other. Such situations cannot be

easily represented using the hierarchical inheritance model. Therefore, to adhere to the

object-oriented paradigm, users may attempt to use complicated and inefficient approaches

to model mutual dependency among objects. In such cases, inefficient and highly

expensive software may result due to the lack of control over the dependency and flow

of information among objects [Parnas 76].

Parnas et al. [Parnas 76] described a similar situation (in the context of abstract

types defined as of classes of variables) as follows:

Our position is that representation of dependent programs will be written
whenever cost considerations demand it; it is better to provide a
mechanism that allows the control of such dependency than to force the
programmer to use dirty tricks.

A mechanism that allows control over mutual dependency among objects makes

the programming task simpler and provides more understandable and maintainable

software in addition to being a better reflection of the problem. The necessity to

generalize the inheritance model is recognized by Pedersen also who defmes an extension

to include generalization of the inheritance system [Pedersen 83].

Maintenance adds another dimension to the problem because of the possibility of

unexpected changes in relations [Freeman 83]. In this chapter, our goal is to define an

130

131

inheritance model that has the flexibility to represent real-life problems in a natural way

and at the same time facilitate software design and accommodate software maintenance.

In the hierarchical inheritance model, when a superclass needs to use properties

from a subclass, users can replicate these properties either in the superclass or in classes

that can be reached by the superclass by means of inheritance. Users may also restructure

the class system to achieve the objective, which would probably result in a complex and

inappropriate class hierarchy. Thus, efficiency may be the victim of such a re-organization

and/or data replication.

In this chapter the hierarchical model is relaxed by allowing superclasses to access

the properties of their subclass. This idea is derived from real-life situations and models

where mutual dependency among objects exists and needs to be controlled. The proposed

model is called a "feedback inheritance model" [Al-Haddad 92b].

The rest of this chapter is organized as follows. Section 2 provides definitions and

notations to be used in the description of the proposed model. Section 3 provides two

motivating examples and their representations using the hierarchical model. Section 4 is

a description of the proposed model. Section 5 provides representation of the selected

examples in Section 3 using the new model. Section 6 is a discussion of the issues related

to inheritance in the new model including information hiding, encapsulation, access

mechanism, and visibility. Section 7 outlines the summary of the chapter and some

concluding remarks.

6.2 Definitions

In this section we introduce defmitions and notations to describe the specification

of examples and the proposed feedback model. These defmitions and notations are given

below. For the sake of clarity, some earlier definitions are repeated.

1) A method is a name associated with a specification of behavior (routine).

132

2) An instance variable is a name associated with a data object (memory value).

3) An attribute is either a method or an instance variable.

4) Value of a method attribute is the implementation of that method. Values of
method attributes represent a set of behaviors denoted by B. Value of an instance
variable attribute is the value held by the instance variable at a certain time.
Values of instance variable attributes represent a set of states denoted by S. The
value of an attribute which is undefined is denoted by J_.

5) A domain D of identifiers is a set of distinct attribute names. We shall denote
attributes of classes by the lower case letters a, b, c, etc.

6) A class is a pair (C, {a1, ~ •••• ,an}) where Cis the class name and {a1, ~ •••• ,an}
is a set of attributes such that a1 e D for i=1, 2, ... , n. For notational convenience,
a class is denoted by C and the set of attributes by C.all. A subset of the attributes
of the class C is denoted as C.[a1, a2, ••• , at.] for a1 e C.all, 1~ i ~ and a1 is any
attribute in C.all. For the sake of convenience, a class is represented as C = { a1,

az, ... , an}. It should be noted that Cis the name of the class and C.all = {a1, a2,

... , lin}. When there is no confusion, we may use C in place of C.all.

7) An instance of a class is an association of values to the attributes of the class. For
example, an instance I of a class C (denoted by I :: C) with initial values { v1, v2,

... , vnl is represented as
I:: C => {a1 ~ y, a2 ~ y, ... ,an~}{}

where the value v1 is associated with the attribute a1 for i=l, 2, ... , n;
and v, e SuB.

8) Given the classes

c = {al, az, ... , aml and cl = {bl, bz, ... , bn},
C1 is a subtype of C (written C1 -< C) iff {a1, az, ... , tlm} ~ {b1, b2, ••• , bnl·

The class cl is said to inherit the attributes of c. This is called subtype
inheritance. On the other hand

A subclass is a class that fully or partially depends on other class(es). However,
a subtype is a subclass that fully depends on other class(es). The term subtype
denotes subtype inheritance; while the term subclass denotes the existence of
inheritance relationship between two classes.

9) A message M received by an instance of a class is a request for the receiving
instance to perform a specific action. A message M sent to an instance I of the
class

133

C = {a1, az, ... , an} is denoted by I:: C <== M[m, p1, ••• , pJ

where m is the method name and p1, ••• , p" are actual parameters of the method.

There are situations where modeling using hierarchical inheritance may not give

a natural representation of data flow among classes. In the next section we present

examples in areas where hierarchical inheritance increases the complexity of modeling in

terms of the number of inheritance relationships and the number of classes.

6.3 Two Examples and Their Hierarchical Representations

There are several areas, such as databases and networks, where the hierarchical

inheritance model does not provide a natural correspondence between the problem and

the model. In the database area [Alagic 89], the example shown in Figure 6.1 illustrates

a typical relationship defined by record structure occurring in a relational database (in this

case related to a university system).

TYPE Department

TYPE Faculty

RECORD
D name
Location
F members
END.

RECORD
F name
Rank
Department
END.

string40
string40
SetOfProfessors

string40
(assistant, associate, full)
SetOfDeptids

Figure 6.1: Record structure of a relationship

In such a relation, a faculty member may belong to more than one department

(joint appointments) and a department can have several faculty members. What this

suggests is mutual dependency between the types Department and Faculty. Moreover,

nested types may occur when an attribute of a record is defined as a type.

134

An object-oriented representation of the scenario in Figure 6.1 is shown in Figure

6.2. In this representation, a record structure in an object-oriented relational database is

depicted in terms of classes and hierarchical inheritance. A base class contains attributes

that represent relevant information of an object type. For instance, the type Department

would be represented by the base class DEPARTMENT which contains the attributes

D_name, Location, Degrees_offered, and College.

{D narne,Location,
Degrees offered,College}

Department

RDFl •
{D_narne,Location,F_name}

{F narne,Rank,
Age, Address}

Faculty

• RDF2
{F_narne,Rank,D_narne}

Figure 6.2: A hierarchical inheritance representation of the record structure in Figure 6.1

A relation defined on the base classes is represented by a class together with

inheritance relationships and the base classes involved. For instance, as illustrated in

Figure 6.2, a relation R1 on the base classes DEPARTMENT and FACULTY can be

represented by a new class RDF1 (Relation-Department-Faculty-1) that inherits the

attributes D_name and Location from the base class DEPARTMENT, and the attribute

F _name from the base class FACULTY. The classes RDFl and RDF2 in Figure 6.2 are

equivalent to the relational types Department and Faculty defined in Figure 6.1. Instances

of the class RDFl are equivalent to tuples of the relational type Department. Examples

of instances of class RDF1 are given in Table 6.1.

In the above hierarchical representation, every relation needs to be defined as a

class inheriting from other classes (this seems to be the case in any hierarchical

representation). Thus, the more relations we defme, the more classes we need to define;

Instance1

Instance2

Instance3

TABLE 6.1

INSTANCES OF THE CLASS RDF1

Department Location

COMPUTER SC MATH_SC_Bldg -

CIVIL ENG ENGINEERING_Bldg -
GENERAL ADM BUSINESS_Bldg -

135

Faculty

f1, f2, f3

f2, f4

f3, f5

and the complexity, in terms of the number of classes and inheritance relationships, is

increased. Moreover, it is obvious that this representation does not provide a true

reflection of the relationship provided by the record structure.

The second illustrative example is selected from the field of Network Computing

Architecture (NCA) [Dineen 87]. NCA is an object-oriented framework for developing

distributed systems. In NCA, Remote Procedure Call (RPC) is defined as a mechanism

that allows programs to call subroutines that run on different machines.

At the lowest level of abstraction, an NCA is a collection of machines located at

various remote locations. Each machine provides a set of functions available to other

machines through interfaces. Figure 6.3 abstractly represents an NCA with two machines

M-1 and M-2. They are connected through an interface. The remote procedure call

mechanism allows users of one machine to invoke functions defmed in the other machine

through their interfaces.

set-1 of
functions

M-1

Interface
~

set-2 of
functions

M-2

Figure 6.3: An NCA with two machines M-1 and M-2

136

In the object-oriented paradigm, a network of a set of such nodes can be

represented by a set of classes that are related to each other through the inheritance

relationships. In an NCA, a machine located at a site can be represented by a class and

its functions by a set of attributes. Attributes of a class are available to other classes

(machines) through their inheritance relationship. If we attempt a direct mapping of this

scenario into an equivalent representation in terms of classes and inheritance, we will get

the organizations shown in Figure 6.4.

{set-1 of attributes}
c1

c2 •
{set-1 of attributes} u
{set-2 of attributes}

{set-2 of attributes}
~

•<;,
{set-2 of attributes} u
{set-1 of attributes}

Figure 6.4: Class representations of the NCA in Figure 6.3

Figure 6.4 shows that two hierarchical inheritance relationships between the classes

C1 and C2 are required to provide a relationship equivalent to the one described in Figure

6.3. To address this seemingly paradoxical situation, an object-oriented approach can be

taken. Two different object-oriented representations of the NCA in Figure 6.3 are given

in Figure 6.5.

Figure 6.5(a) shows that a machine and its functions are represented by separate

classes. This representation provides multiple inheritance and maintains the bi-directional

relationship depicted in Figure 6.3. One may group all of the common attributes into one

class (e.g., C in Figure 6.5(b)) and let the classes M-1 and M-2 inherit from that class.

In both representations, the number of classes will become in general larger that the

number of actual machines in the network and besides the class structure provides a

{set-1 of attributes}

~J
M-1 •

{{set-1 of attributes} u
{other attributes of M-1}}

(a)

{set-2 of attributes}

J~
• M-2

{{set-2 of attributes} u
{other attributes of M-2}}

{set of all common attributes (set-1 and set-2)}

M-1
{{set-1 of attributes} u
{other attributes of M-1}}

•

(b)

M-2
{{set-2 of attributes} u
{other attributes of M-2}}

137

Figure 6.5: Two possible object-oriented representations of the NCA in Figure 6.3

distorted view of the actual configuration.

Hierarchical inheritance applies some form of a partial ordering to the classes in

the structure. That is, properties of a superclass are available to its descendants, but

properties of descendant classes are not available to the superclass. For instance, one of

the two hierarchical structures in Figure 6.4 is needed to represent the non-hierarchical

structure in Figure 6.3. Thus, classes are replicated and complexity is increased due to the

restricted ordering provided by the hierarchical inheritance among classes.

The representation in Figure 6.5(a) requires a number of inheritance relationships

among the sets of attributes and the machine classes. In the case of a network of a large

number of nodes, a tremendous number of inheritance relationships would be required to

connect a machine to every set of available attributes. Moreover, in Figure 6.5(a), the

required number of classes is twice the number of nodes in the network, and Figure 6.5(b)

provides an inappropriate representation, in that it does not reflect the nature of the

138

network because the actual functions of a network are residing at different locations,

while this representation gives a common pool of functions shared by all classes.

The above-mentioned scenarios suggest the need for a new model. In the following

section we introduce the proposed feedback model. Annotated directed graphs are used

to describe the model and the notion of a clan is also introduced.

6.4 The Proposed Feedback Inheritance Model

The examples discussed in the previous section strongly suggest that the one-way

information flow (inheritance) is inappropriate for situations where bi-directional

dependency exists among a superclass and its subclass(es). Therefore, a relaxation of

inheritance as a mechanism that represents dependency among classes is called for. A bi-

directional model would relieve the programmer from attempting inefficient ad-hoc

approaches to achieve such dependency among classes.

6.4.1 Definitions

In addition to the notations and definitions introduced in Section 6.2, we introduce

the following notations and definitions. In what follows we assume the existence of an

inheritance hierarchy. Suppose a is an attribute defined in the subclass C1 of the class C.

If a is not defined in C but is used in C, we say that class C derives the attribute a from

class C1•

1) Synthesized attributes of a class C are those derived from its subclass(es).

2) Synthesized attributes derived from a subclass are denoted by the lower case
letters x, y, etc.

3) To allow for synthesized attributes, an extended class defmition is given as
follows. A class C is defined as a triple

139

where Cis the class name, {a1, ~ , a1J is the set of both defined and inherited
attributes, and {xt.+l• ... , Xm} is the set of synthesized attributes. For notational
convenience, a class C is represented as

If there are no synthesized attributes in C, it will be represented as

C = {a1, a2, ... , at.} (see Section 6.2 (6)).
4) Given the classes

and that C1 is a subclass of C,

cis a synthesized type (syntype) of cl (written cl >- C)
iff x1= bi for some x1 e {xt.+l• ... , Xm} and bi e {b1, b2, ... , bnl - {a1, a2, ... , ~}.

Here, C1 is a subclass of C which means that C1 inherits from C and possibly
defines new attributes. When C uses the newly defined or derived attributes in C1,
it implies that Cis a syntype of C1. If class Cis a syntype of two or more classes,
we denote that by (C1, C2, ... , Cn) >- C, ~.

5) The Synthesized Interface (Sl) that is provided to a superclass C (denoted by
C.SI) is a set of synthesized attributes derived from its subclass(es).

6) A Feedback is a derivation relationship provided through the synthesized interface
from a subclass to its superclass(es) (i.e., syntype(s)). Given the classes

where c2 inherits from cl and cl derives from c2.

cl.SI = {xk+l• ... , Xm} where
X1= bj for Xi E C1.S/ and bj E {bl, b2, ... , bn} - {al, az, ... , at.}.

Intuitively, a feedback is a derivation of attributes from subclass(es), and the
synthesized interface of a superclass is a description of the set of derived
attributes.

7) A clan is a set of classes related through feedback inheritance. The clan of a class
C is constructed as follows:

i) C is in the clan of C.

ii) If there exists a feedback relationship between C and its subclass(es), then

140

the subclass(es) is (are) included in the clan of C.

iii) If X is in the clan of C and there exists a feedback relationship between
X and its subclass Y, then Y is also included in the clan of C.

iv) No other classes are included in the clan of C.

Each class belongs to at least one clan. Clans provide design modularity and

control complexity. The notion of clan is illustrated in Figure 6.6. Solid arrows indicate

hierarchical inheritance of attributes and dashed arrows indicate feedback inheritance

(derivation) of synthesized attributes.

A .,y· B
Clan(F)={F}

Clan(E)={E}

Clan(D)={D, F} --~,·~
Clan{C)={C, D, E, F} ;:/' D.('-._- E
Clan{B)={B}

F:.l
Clan{A)={A, C, D, E, F}

Figure 6.6: Examples of clans of a set of related classes

Hereafter, the term syntype is used to denote the superclasses that are provided

with feedback relationships. The next subsection provides a detailed description of the

feedback model using the above notations and definitions.

6.4.2 Feedback Inheritance

The feedback model [Al-haddad 92b] provides a feedback relationship between a

subclass and its syntype class(es), and allows for control over the information flow in that

141

direction also. The basis of the new model is inheritance relationship among classes.

Having hierarchical inheritance does not imply feedback inheritance, but two classes

cannot have a feedback relationship unless they have a hierarchical inheritance

relationship with each other.

As in the inheritance models, single and multiple feedback relationships may relate

classes to one another. In the case of single feedback, the syntype class depends on the

attributes of only one subclass. Given the classes

and that cl is a subclass of c,

C1 >- C iff Xi= bj for some Xi E C and bj E {bl, bz, ... , bn} - {al, az, ... , ak}.

A general representation of single feedback is depicted by the annotated directed

graph in Figure 6.7.

({ av au ... , ak} ,
{xk+l' •• ., X,.}}

cl •

({ bv bz, . . . , br} ,
{Yr+lt • • • 'Yn})

• cq

{ z s+l' • • • ' Zt})

Figure 6.7: Representation of single feedback inheritance among classes

In Figure 6.7, the class C inherits attributes ci, for i=1, 2, ... , p, from C1.[a1, az, ... ,
llt] and attributes dj, for j=l, 2, ... , s, from Cq.[b1, b2, ••• , br]. Class C1 derives the

synthesized attributes xi, for i=k+1, ... , m, from C, and class Cq derives the synthesized

attributes YJ• for j=r+l, ... , n, from C. The synthesized interfaces defined in Figure 6.7 are

Cl.Sl = cl.[xk+l• ... , Xm] ~ C.Others u {zs+l• ... , zt}

142

In the case of multiple feedback, a syntype class may depend on attributes of one

or more subclasses. For example, given the classes

and that both cl and c2 are subclasses of c,

In general, multiple feedback can be depicted by the annotated directed graph in

Figure 6.8.

({blf b2,
Others1 ,

({ al, au ... I ad , { :x:k+lf ••• , Xm})

c

,..A"'~,
......

'
..... ,. en

({ C 11 C 2 , ••• , C 8 } U

Ytl) Othersn, { Zs+lt ••• , Zr})

Figure 6.8: Representation of multiple feedback inheritance among classes

In Figure 6.8, the classes e1 through en inherits the attributes b1, for i=l, ... , p and

through cj, for j=l, ... , s, from C.[a1, a2, ... , lltl· The class C derives the synthesized

attributes x,, for i=k+ 1, ... , m, from the classes el through en. The set of derived attributes

in C is a subset of all attributes defined in the classes e1 through Cn. The synthesized

interface defined in Figure 6.8 is

C.SI = C.[xk+l• ... , Xm] !: (C1.0thers1 u {Yp+t• ... , YtD u ... u (CD.Othersn u {zl+lt ... , zr}).

As an example, consider the following classes.

el = ({ai' a2, ... , alt} , {XIt+I• ... , Xm}),

C2 = ({bl' b2, ••• ,b.} , {Y.+t• ... , Yn}), and
e3 = ({Ct, C2, ... , Cp} , {Zp+t• ..• , Zt}).

143

Suppose that C2 inherits from C1 and C3 inherits from C2, then C2 >- C1 and C3 >- C2• The

directed graph in Figure 6.9 illustrates two single feedback relationships among the

classes C1, C2, and C3• Class C2 inherits some of the attributes b1, for i=1, 2, ... , s, from

C1, and the class C3 inherits some of the attributes Cj, for j=1, 2, ... , p, from C2• The class

C1 derives the attributes x1, for i=k+ 1, ... , m, from C2, and the class C2 derives the

attributes yj, for j=s+ 1, ... , n, from c3.

{{blf bz, .•. , b 5 } U
Othersu {Ys+lt • •• , Yn})

Figure 6.9: Representation of feedback inheritance among classes C1, C2, and C3

6.4.3 Semantics of Feedback Inheritance

Hierarchical inheritance among classes means that attributes of the superclass are

implicitly (automatically) made available to its subclass(es). In feedback inheritance,

attributes of a subclass are not implicitly made available to syntype class(es). However,

a synthesized interface of a subclass explicitly provided to a syntype class implies the

availability of its contents (derived attributes) to the syntype class, and hence the

knowledge about the availability of the subclass's synthesized attributes to the syntype

class. A syntype class that is not explicitly provided with a synthesized interface does not

have any knowledge about the subclass's attributes and cannot access them. This point

is illustrated in Figure 6.10.

{ alf a2t ••• , ar}

~l
({bH bu • • • t bd U !•i: C2 OtherSz, { Yk+l' •• •' Ym}) T

cl ·I
({elf c 2 , ••• , Cp} u Others3, {zp+l' ••• , z 0 })

Figure 6.10: A feedback and hierarchical inheritance interfaces
among the classes C1, C2, and C3

144

In Figure 6.10, the class C2 derives the attributes Yi• for i=k+1, ... , m, from {zp+t•

... , Zn} u Others3 of c3. This derivation implies the availability of attributes of c3 to Cz,

and hence the knowledge about the attributes of C3 in C2• Since C1 does not derive

attributes from C2, there is no feedback relationship between C1 and C2• The availability

of the synthesized attributes of C3 is terminated at C2• On the other hand, the hierarchical

inheritance interface from C1 to C2 and then to C3 makes attributes of C1 and C2 implicitly

available to c3.
For simplicity of control, the feedback relationship is defined only between a

syntype class and its subclass(es). However, a syntype class may include a subclass's

synthesized attributes in its synthesized interface. For instance, the class C1 in Figure 6.10

cannot directly derive attributes from the set {zp+t• ... , zn} of C3, however it can derive

from the set {Yk+t• ... , Yml u Others2 of C2• Moreover, feedback inheritance implies that

the contents of the synthesized interface explicitly provided by a syntype class to its

ancestor class(es) is not necessarily disjoint from the contents of the synthesized interface

provided by a subclass to that syntype class.

145

6.4.4 Message Passing

Message passing and method determination in feedback inheritance can be

described as follows. A message is a request for an instance to execute one of its

methods. The receiving instance determines how to execute the requested method. When

a message M[m, p1, ••• , pJ is sent to an instance of the class C, methods of C are searched

for matching method m. If m is not found, the search continues along the inheritance and

feedback paths until a matching method is found or an error message is returned. If

method m is found, it is executed and the result is returned.

To defme the semantics of message passing, we introduce a run-time data structure

for method description called a descriptor. A descriptor is a data structure associated with

each class in the system. It contains information about variables, defined and derived

methods, and pointers to super and subclasses. Information about whether a method is

derived explicitly by a syntype class when feedback exists among classes, is also included

in the descriptors. The structure of a descriptor is depicted in Figure 6.11.

As illustrated in Figure 6.11, the descriptor of a class may include several

components. Five of the components are described below.

1) Class Name (CN): The name of the class that the descriptor represents.

2) SuperClasses (SC): A table of pointers to the descriptors of all superclasses.

3) Synthesized Interface (SI): A table of the names of all derived methods from
subclasses. Each name is associated with a pointer pointing to the subclass
providing that method (i.e., to another descriptor).

4) Instance Variables (IV): A tables of the names, types, and other attributes of all
instance variables defined in the class.

5) Defined Methods (DM): A table of the names of all methods that are defmed in
the class. Each name is associated with a pointer to the executable code of the
method.

146

.------- . .. superclass_1
1---

...
~ Derived Subclass 1---

methods name . ~ superclass_n
1....--

m1, . - subclass 1 . . . - -(CN)
... . ..

(SC) I--
m8, . - subclass m . . . -(SI)

(IV) - Name Type Other - of var of var Attributes
(DM) ~ Name Code

v 1 T 1 ...
Other meth 1 - code 1 - -

- ... -
Attr.

.
v 1 T 1 ... - -meth k - code k .

- - -

Figure 6.11: The structure of a descriptor

Pointers to super and subclasses are in fact pointers to the descriptors of these

classes. Synthesized interface tables provide information about derived methods. Reaching

the code of a derived/inherited methods in a class is achieved by following the pointers

to the descriptors of super/subclasses.

When a message is sent to an instance at run time, the descriptor associated with

the class of the receiving instance is searched for a matching method. If a matching

method is not found, the descriptor(s) of the superclass(es) is (are) searched, and so on.

If a matching method is found, it is invoked through the pointer to its compiled code.

Otherwise, an error message is returned.

If the class is a syntype class of subclass(es) (i.e., feedback inheritance exists

among the class and its subclass(es)), its descriptor will include the names of the

subclass(es) from which methods are derived. When an instance of a syntype receives a

messages, the descriptor(s) of the superclasses and the syntype interface are searched for

147

a matching method.

Example:

In this example, the class A is the superclass of the class B. Class B is the

superclass of the classes R and S. A derives the attributes m5 and m8 from B. B derives

the attributes m8 and m9 from classes RandS, respectively. The classes A and B can be

described as follows:

Class A

end;

Superclass
Derived methods
Instance Variables:
Defined methods

Class B

end;

Superclass
Derived methods
Instance Variables:
Defined methods

nil;
B [mS], B [m8];
int x, int y;
ml, m2;

A;
R [m8], S [m9];
int a, real b;
m4, mS;

Figure 6.12 illustrates the descriptors of the classes A and B.

Suppose that the instance A-1 of the class A receives the message M[m5]. A-1

will react by searching the defined methods table in the descriptor of A. Since m5 is not

defmed in A, m5 is either inherited or derived. A search of the synthesized interface table

(derived methods) indicates that m5 is derived from B. The search continues to the

descriptor of B. The method m5 is defmed in B and its executable code is obtained

through a pointer in the defined methods table of B. If m8 has been requested, the search

for m8 would have continued to the descriptor of the class R, and so on.

In a different scenario, if A-1 receives the message M[m20], the search for m20

starts at the descriptor of A. Since m20 is neither defined nor derived, the search

continues along the inheritance path to the descriptors of ancestor classes, unless m20 is

found or an error message is returned indicating that no such method is defined along the

inheritance path.

148

.... m8 Descriptor - -- of Class R
(CN) B m9 .

l. Descriptor
-

,....--(SC)--· - ~ a int . . . of Class S
(SI) ·-I--

~ b real . . .
(IV) .

f-

(DM) . __.... m4 . .. code 4 - - -
f-

mS . -code 5 . . . - -
"--,--

I - mS . -
(CN) A m8 .

-
(SC) nil

- ~ X int ...
(SI) ·--

,---- y int ...
(IV) .

:---
(DM) . - ml ... code 1 - - -

f-

m2 code 2 . . . - -
'--

Figure 6.12: Descriptors of the classes A and B

6.5 Examples Represented in the Proposed Model

Examples are used in this section to illustrate the novel notions of a clan and the

feedback relationship. To see the usage of the new model, we refer to the database and

network examples mentioned in Section 6.3 and provide a representation in the context

of the new model.

In the case of databases, as in hierarchical inheritance, a class contains a set of

attributes that represent the state and behavior of its instances. Attributes represent the

relevant information of an entity in the system. For instance, the class DEPARTMENT

contains the attributes D_name, Location, Degrees_offered, and College. The class

149

FACULTY contains the attributes F _name, Rank, Age, and Address. The feedback

relationship between the classes DEPARTMENT and FACULTY is illustrated in Figure

6.13. This representation can be compared with these in Figures 6.2 and 6.5.

({D name, Location, Degrees offered, College},
{F=name, Rank, Age, Address})

Department •4

l'acul.ty •

l
I
l
l
I

{D_name, Location, Degrees_offered, College} u Others

Figure 6.13: Bi-directional inheritance between the classes Department and Faculty

In Figure 6.13, the set Others of the class FACULTY is {F_name, Rank, Age,

Address}. The class FACULTY inherits all attributes of the class DEPARTMENT through

the inheritance interface. The class DEPARTMENT derives the attributes {F _name, Rank,

Age, Address} from the class FACULTY. The synthesized interface of the class

DEPARTMENT is

DEPARTMENT.SI = {F_name, Rank, Age, Address}

Unlike the hierarchical approach depicted in Figure 6.2, no class definition is required to

defme a relation (i.e., an object type (record structure) as in Figure 6.1) on two or more

classes. A relation on the classes DEPARTMENT and FACULTY can be represented by

sending message(s), rather than by a new class (RDF1 in Figure 6.2), to an instance of

either class. For instance, sending the messages

M[D_name], M[Location], and M[F_name]

to the instance Dept of the class DEPARTMENT returns the values (Table 6.1)

COMPUTER_SC, MATH_SC_Bldg, and {fl, f2, f3}.

Each of the above messages includes only one parameter, the attribute name. As state

150

attributes, their values are returned as a result. It can be observed that the instance Dept

returns results equivalent to tuples created by the type Department defined in Figure 6.2.

It is not necessary that all classes should have feedback relationship, only classes whose

attributes appear in relations defined on them (e.g., Department and Faculty in Figure

6.2). One may relate the classes DEPARTMENT, FACULTY, STUDENT, and COURSE

(in the university system) as shown in Figure 6.14. In this figure, the sets

Others0 = {D name,Location,Degree offered,College},
Otherss = {S-name,S age,S address},
Othersr = {F-name,Rank,F address}, and
Othersc = {C name,C_Level}

are the sets of the newly defined attributes in the classes DEPARTMENT, STUDENT,

FACULTY, and COURSE, respectively. The attributes defmed in the classes

DEPARTMENT, STUDENT, and FACULTY are all available to the class COURSE

through the hierarchical inheritance. The second set of attributes at the nodes Department,

Student, and Faculty is the set of synthesized attributes from their subclasses. The four

classes in Figure 6.14 constitute the clan of the class DEPARTMENT.

{Others5 u
Othersc>

(Others0 , Othersc u Othersr u Othersc>

Dep7;~
Student • / 1· Facul.ty

Others0 , ~ (Othersr U
·' / Othersc>

' I ' / 'v
Course •

Othersc u Others5 u Othersr U Others0

Others0 ,

Figure 6.14: Relating classes through hierarchical and bi-directional inheritance

Any relation (data collected from different classes) on the classes shown in Figure

6.14 can be represented by sending message(s) to an instance of the appropriate class. For

151

instance, sending the messages

M[C_name], M[F_name], and M[D_name]

to the instance OP _SYS of the class Course, returns, for example, the values

OPERATING_SYSTEMS, {fl, f2}, and COMPUTE~SC.

The feedback relationship reduces the number of classes in the university system

and provides a flexible technique for the definition of relations on classes. A message can

be sent to different instances of different classes and return similar results. For example,

the above messages, which were sent to the class COURSE, can be sent either to the class

DEPARTMENT or the class FACULTY and return similar (not necessary identical)

results.

Feedback is efficient and simple in terms of relations that can be defined on

classes. Shared attributes among related classes is provided and a better reflection of the

original system is produced. The addition of new attributes to a class makes the new

attribute automatically available to the inheriting classes and explicitly available to the

syntype class(es). Deletion of an attribute simply requires a de-synthesis (i.e., removing

it from the synthesized interface) of that attribute since it is provided explicitly.

Considering the NCA example, as in the hierarchical inheritance approach, each

node of the network is represented by a class. Classes are related through their feedback

and inheritance relationships in which they share attributes (functions). An abstract

representation (utilizing classes, hierarchical inheritance, and feedback relationship) of a

network consisting of three machines is given in Figure 6.15.

In Figure 6.15, the feedback interface makes attributes of a subclass available to

its syntype class. Class M-2 derives {e, f} from the class M-3, and class M-1 derives {c,

d, e, f} from the class M-2. However, the attributes defined in a node are available to all

other nodes. A network of n nodes can be represented by n classes such that every two

adjacent nodes share attributes through their inheritance and feedback relationship. All the

classes constitute one clan and any instance of any class can answer the same message.

152

({a,b}, {c,d,e,f})

({c,d, }, {e,f})

{ e, f}

Figure 6.15: Feedback inheritance representation of a three-node NCA

This representation reflects the NCA in a more natural fashion than the one in Figure 6.5.

6.6 Discussion

This section is devoted to a discussion of issues such as encapsulation, visibility,

and the access of attributes, that are related to inheritance in the context of the new

model. Encapsulation minimizes the dependency among classes by providing external

interfaces that contain the attributes of a class that are available to its subclass(es). In the

hierarchical inheritance model, a class is encapsulated if its clients are constrained to

access its attributes only via its external interface [Danforth 88]. In the feedback

inheritance model, the inheritance and synthesized interfaces are independent and can be

constrained to varying degrees.

Encapsulating classes facilitates maintenance and provides the capability of making

safe changes in a class without affecting its subclass(es). Inheritance allows a class to

include inherited attributes in its interfaces that are provided for its subclass(es). If

inheritance is part of the interface (i.e., visible to descendants), then changing the

implementation of a superclass, that affects this interface, may require changes in the

inheriting classes at several levels [Snyder 86a]. In the feedback model, the exclusion of

inherited attributes from being derived by syntype classes prevents the spread of the side

153

effects of changes made in the ancestor classes. Also, providing synthesized interfaces

explicitly implies that the values of the derived attributes themselves are not part of the

interface (not visible to the syntype class(es)), and changes made to these attributes will

not affect the syntype class(es). Therefore, we conclude that encapsulation is not

compromised by the new model.

In some OOPLs, the designer of a class is granted full access to the

implementation of ancestor class(es) [Strom 86]. Full access to class implementation

compromises encapsulation and limits the ability of safely changing the class

implementation without affecting its inheriting class(es). Instance variables of a class are

allowed to be inherited among classes. Providing methods to access the instance variables

of a class is a solution for safe access and is an implementation issue that differs from

one language to another [Stein 86]. In the feedback model, the same concept is applicable.

At the implementation level, the values of attributes (state and behavior) of a class can

be hidden from other classes and access is allowed only through attributes provided in the

external interface.

The issue of visibility of inheritance is implementation dependent [Snyder 86a].

It depends on several factors that the designer may consider. These factors are:

1) The capability of excluding inherited attributes;

2) The naming conflicts that may arise as a result of multiple inheritance;

3) The direct invocation of attributes from ancestor classes; and

4) The subtyping rules and their relation to inheritance.

The flfSt and second factors are not applicable in the feedback model. Excluding

attributes and providing same-named attributes are avoided since attributes are explicitly

provided to the syntype class(es). The third factor cannot occur in the new model since

the availability of the synthesized interface terminates at the syntype class and derivation

is provided explicitly. The fourth factor depends on the subtyping rules that are language

154

dependent.

Therefore, encapsulation, visibility, and safe access are maintained in the new

model due to the restricted and explicitly provided synthesized interface to the syntype

class(es). These issues facilitate the development and maintainability of software systems.

6.7 Summary

Generally, a preferred representation of a problem is that provided by a model that

faithfully reflects the structure of the problem. The OOP paradigm has been the paradigm

that provides a better correspondence between a problem and its representation. Even so,

many real-life situations still cannot be well reflected in the object-oriented paradigm. The

hierarchical inheritance model does not provide a satisfactory representation for situations

where the dependency among objects is bi-directional.

A relational database represents one area where variables are replicated among

object types (record structures). Networking is another area that illustrates the situation

where attributes need to be shared in both directions. Such situations are hard to represent

in the hierarchical inheritance model. A feedback inheritance model that allows both a

superclass and its subclass(es) to exchange attributes along with the notions of synthesized

attributes, synthesized interfaces, and clans are presented. It is also shown that annotated

directed graphs provide a simple and clear representation of the model. This model

facilitates the programming task in situations similar to the above examples, and relieves

the users from having to use tricky and inefficient approaches in the hierarchical

inheritance model. Moreover, the notion of clan relaxes the message passing technique

and potentially increases the probability of answering a message as well as the use of

attributes among classes.

Examples of a relational database and a network are used to illustrate the merits

of the new model. First, possible representations in the hierarchical model are presented,

155

then the feedback representations are provided and compared with the hierarchical

representations. The advantages and side effects in each representation are highlighted too.

Feedback inheritance provides an opportunity for better and simpler

implementation of systems that include bi-directional dependency among classes. Also,

fewer classes are used and simpler structure results. In general, feedback inheritance

avoids replicating functions among classes, increases reusability, eases software

maintenance, and facilitates the sharing of functions in a distributed environment.

CHAPTER VII

AN IMPLEMENTATION INHERITANCE MODEL

7.1 Introduction

The inheritance models supponed by the currently available OOPLs [Cardelli 84]

[Hailpem 87] [Pedersen 89] [Stein 87] are characterized as a "specification inheritance".

A class provides the specifications of its methods in the external interface for other

classes to use, and for the subclasses to inherit. Subclasses may provide new

implementations for the inherited methods. Therefore, a method may have more than one

implementation in different classes. In order to avoid ambiguity, the philosophy adopted

by current OOPLs is that an object shall use the most recent implementation of an

inherited method, and that the object is prohibited from using any previous

implementation provided by ancestor classes. Subclasses may not be able to select freely

any available implementation of a method since a class inherits the specifications of the

methods rather than their implementations. When a subclass redefmes an inherited method

m, it is desirable to allow instances of that class to access any previous implementation

of the method m provided in ancestor classes.

This approach is convenient when a method has different implementations in

different classes. Otherwise, if an implementation different from the most recent one is

needed, it has to be explicitly provided even if that implementation is available in an

ancestor class. Such restrictions prohibit code reuse. As it turns out, some OOPLs do

provide some limited programming features that allow a class to associate a method with

different implementations. In the following section, we examine those features in the

156

157

languages Eiffel, C++, CLOS, and Smalltalk.

The goal of this chapter is to generalize the current philosophy of inheritance in

order to provide classes with the ability to choose any available implementation of a

method in ancestor classes and to facilitate code reuse among classes. A language

implementation scheme to support the proposed approach is provided.

7.2 Background

In this section four OOPLs are examined based on a number of their respective

features that allow the association of a method with different implementations. The

languages examined in this section are Eiffel, C++, CLOS, and Smalltalk.

7 .2.1 Eiffel

Eiffel [Meyer 88] provides a feature called deferred class that allows users to

provide different implementations of a method in different classes. Figure 7.1 illustrates

a deferred class using an example adopted from [Meyer 88].

In Figure 7.1, the deferred class STACK[T] represents an abstract data type in

which methods are deferred for later implementations. The inheriting classes of the class

STACK[T] provide the appropriate implementations of the deferred methods to suit their

needs. For example, one subclass may implement stack as an array and then implement

the deferred methods to accommodate the array implementation. Another subclass may

implement stack as a linked list, in which case the implementations of the deferred

methods would be different from those of the array implementation.

The class ST ACK[T] is a partial implementation of the abstract data type stack.

It has no instances. The "deferred class no-instantiation rule" of Eiffel prevents creating

instances from deferred classes in order to avoid the use of incomplete methods. Thus,

the concept of deferred methods allows subclasses to have different implementations, but

deferred class STACK[T] export
nb_elements, empty, full, top, push, pop, ...

features
nb elements: INTEGER is

- deferred
end; -- nb elements

empty: BOOLEAN is
do result := (nb elements = 0)
ensure result :--(nb elements - 0)
end; -- empty -

full: BOOLEAN is
de~erred
end; -- full

top: T is
require not empty
deferred
end; -- top

push(x: T) is

pop

end;

require not full
deferred
insure not empty; top := x;

end;
nb elements := old nb elements + 1;

-- push
is
require not empty
deferred
insure not full; nb elements
end; -- pop -
-- Other features
class STACK

:= old nb elements - 1;

Figure 7.1: Definition of the class STACK[T]

subclasses still use the most recent implementation of an inherited method.

7.2.2 C++

158

C++ [Stroustrup 86,91] provides several features that allow a method to be

associated with different implementations: function overloading, virtual function, and

abstract class. These features are described in the following subsections.

7.2.2.1 Overloading of Functions. C++'s overloading is another language-specific

feature that can be used to provide different meanings and different implementations for

functions. In programming languages such as Pascal, functions with arguments of

159

different types must have different implementations and distinct names. With the

availability of overloading, different functions (implementations) in C++ can have the

same name. In this case, the C++ compiler and run-time support determines (at compile

time and based on the number and/or type of arguments) the specific function to invoke.

However, overloading is in fact a syntactic issue that allows several meanings to be given

to a symbol or a function name in order tore-implement its inherited description from

ancestor class(es) and to avoid name replication. Overloading in C++ is illustrated in

Figure 7.2 where the function ave_3_grades is overloaded. Figure 7.2 adopted and

modified from [Pohl 89].

#include <stream.h>
class AVERAGE

{ public:

} ;

float
{

float ave 3 grades {float, float, float);
int ave_3=grades (int, int, int);

average::ave 3 grades (float
float avg; - -
avg := (gl+g2+g3) I 3.0;
~•tu~n avg; }

gl, float g2, float g3);

int average::ave 3 grades
{ int avg; - -

{int gl, int g2, int g3);

~n
{

}

avg :- (gl+g2+g3) I 3;
~eturn avg; }

()
~loat a,b,c,ave_l; int x,y,z,ave_ 2;
AVERAGE ave;
cout << "\gl= " . cin >> a; ,
cout << "\g2- II • cin >> b; ,
cout << "\g3= II • cin >> c; ,
cout << "\gl= " . cin >> x; ,
cout << "\g2= " . cin >> y; ,
cout << "\g3= II • cin >> z; ,
ave 1 = ave.ave_3_grades (a,b,c);
ave-2 = ave.ave_3_grades (x,y,z);
cout << "ave 1 = II << ave 1 << "\n"; -cout << "ave 2 = " << ave 2 << "\n";

Figure 7.2: Example of an overloaded function

160

Figure 7.2 associates the name ave_3_grades with two implementations for

different types of arguments. In one case, the arguments are of type integer; while in the

other case, they are of type float. When an object of the class AVERAGE receives a

message invoking the method ave_3_grades, the type of the arguments determines the

appropriate implementation.

7.2.2.2 Virtual Function. Virtual function [AT&T 89 a,b] is another C++ feature that

allows classes to provide different implementations for inherited functions. The new

implementation of an inherited function in the subclass dominates old implementations

in ancestor class(es). Instances of the subclass use the new implementation. Non-virtual

functions can be illustrated using the inheritance hierarchy shown in Figure 7.3.

A display A ()

B

c

Figure 7.3: Inheritance of non-virtual functions

Let us assume that Figure 7.3 represents the following code declaration:

Class A { public: displayA() };
Class B : public A {public: display8 () };

Class c : public B {};

Let us further assume that display A() and display8() are different implementations of the

function display(). Class C inherits but does not redefine display8 (). Display8 () dominates

161

displayA() and instances of class C use display8 () defined in class B. _However, the

principle of domination prevents instances of classes B and C from using the version of

display A() defined in class A.
I

In the case of overloading, overloaded functions are selected statically based on

type matching arguments; while in the case of virtual functions, the appropriate invoked

function is determined dynamically from among class and its ancestor class(es) [Poh189].

Instances of subclasses use the virtual functions defined in the ancestor class(es) unless

subclasses provide new implementations for the inherited virtual functions. The principle

of virtual functions states that instances of a subclass choose implementations provided

in the closest ancestor class (it is the responsibility of the programmer to avoid conflicts).

We illustrate this principle using the inheritance hierarchy adopted from [AT&T 89b] and

given in Figure 7 .4.

A virtual f () , g () , h (), k ()

B

D h 0 {)

Figure 7.4: Inheritance of virtual functions

Figure 7.4 represents the following code declaration:

Class A

Class B
Class C
Class D

{public: virtual f(); virtual g();
virtual h(); virtual k() };

public virtual A { public: f 8 {) };

public virtual A { public: gc() };
public B, public C, public virtual A
{public: h0 () };

162

The functions B::fB()• C::&(), and D::h0 () are re-implemented versions of the

corresponding functions defined in class A. An instance of class D uses versions fB(), &0,

and h0 (), and does not have access to versions f(), g(), and h() defined in A.

The C++ implementation strategy for virtual functions is based on creating tables

for virtual functions. For a given class, C++ creates a virtual table that contains pointers

to the appropriate implementations of virtual functions. Every instance of a given class

includes a pointer to that table. For example, any instance of class D in Figure 7.4

includes a pointer to a virtual table that contains pointers to the functions A::kA(), B::fB(),

and C::&O· However, instances of class D cannot choose other implementations of any

of the inherited functions.

7.2.2.3 Abstract Classes. C++ abstract classes [Stroustrup 91] are similar to deferred

classes in Eiffel. Abstract classes allow subclasses to provide different implementations

of general functions. For example, the function display() can be used with a variety of

shapes. Hence, the function display() can be defined in an abstract class and allow the

subclasses that represent different shapes to inherit and redefme the function display() to

suit their needs.

7.2.3 CLOS

CLOS [Keene 89] uses the generic function approach to invoke methods. A

generic function is a function whose implementation is distributed across a set of different

methods that belong to different classes. Unlike the message passing approach in which

the invoked method is determined by the class type of the object to which the message

was sent, the generic function approach determines the invoked method using the class

type of the arguments to which the invoked method is applicable. Since the

implementation of a generic function does not, in general, exist in one place, CLOS uses

a generic dispatch mechanism for invocation. Generic dispatch is the process of

163

detennining the applicable methods and invoking them. A method is applicable if the

arguments of the generic function match the corresponding arguments of that method. For

illustration, consider the following example adapted from [Winston 89] and illustrated in

Figure 7.5.

(de~un triangle are (figure)
(* 1/2 (triangle_base figure)

(triangle_altitude figure)))

(defun rectangle are (figure)
(* (rectangle_width figure)

(rectangle_height figure)))

(defun circle area (figure)
(*pi (expt (circle_radius figure) 2))}

Figure 7.5: Definitions of selected functions

The functions given in Figure 7.5 belong to the classes TRIANGLE,

RECI'ANGLE, and CIRCLE, respectively, which calculate the area of the appropriate

shape. Let the function area be a generic function that retrieves the implementations of

these functions upon receiving the appropriate arguments. Consider the one-parameter

methods illustrated in Figure 7.6

(de!method area ((figure triangle))
(* 1/2 (triangle_base figure}

(triangle_altitude figure)))

(defmethod area ((figure rectangle))
(* (rectangle width figure)

(rectangle=height figure)))

(defmethod area ((figure circle))
(*pi (expt (circle_radius figure) 2)))

Figure 7.6: Different implementations of the method area

In Figure 7 .6, each method is automatically applied when passing arguments of

164

the appropriate shape type. Note that all of these methods have the same name, and

together they defme the generic function area. The expression "(figure triangle)" names

the parameters, and specifies the method used when the parameter figure is bound to an

instance of class TRIANGLE. The argument triangle is called parameter specializer. Each

method is applied when the argument matches the parameter specializer. Examples of

usage are given in Figure 7.7.

* (aetf triangle (make instance :base 2 :altitude 3))
* (aetf rectangle (make=instance :width 5 :height 7))
* (area triangle) ;Matching method triangle
3
* (area rectangle) ;Matching method rectangle
35

Figure 7.7: Usage of the method area

When the applicability of a method depends on the classes of two or more

arguments, it is called a multi-method. Therefore, a multi-method in CLOS is a method

that specializes more than one parameter [Keene 89]. For example, suppose that meth is

a multi-method with two parameters, then the following method definitions

(defmathod meth ((x Class 1) (y Class2)) ...) [1]
(dafmathod meth ((x Class3) (y Class4)) ••.) [2]

define the generic function meth. Method 1 is applicable when the first argument is of

type Classl and the second one is of type Class2. Method 2 is applicable if the two

arguments are of types Class3 and Class4 respectively. When two or more methods are

applicable, they are ranked in order of precedence based on the order of the arguments

from left to right. CLOS uses lexicographic ordering to determine the most specific

method. Therefore, the most recent implementation is always used. This is the case in

other languages also.

165

7 .2.4 Smalltalk-80

In Smalltalk [Goldberg 83,89], a subclass inherits all variables and methods of the

ancestor classes. It may add new variables and methods of its own. If the subclass adds

a method whose specification is similar to a method in the superclass, instances of the

subclass use the implementation in the subclass when receiving a message invoking that

method. This is called overriding a method. Like other languages, the most recent

implementation of a method is used. The search for an implementation starts in the class

corresponding to the receiving instance, and continues up along the inheritance path until

an implementation is found or an error message is returned.

In Smalltalk, the variable super allows an instance of a class to use a method's

implementation provided in a superclass. In this case, the search for the implementation

of the invoked method starts in the superclass of the class containing the implementation

that uses the variable super. Therefore, this technique allows the use of one particular

implementation of a method that uses the variable super, and not any implementation of

that method provided in the ancestor classes.

Analogous to· Eiffel and C++, Smalltalk provides abstract classes. They contain

the specifications of methods shared by classes that are unrelated to one another through

inheritance. These classes provide appropriate implementations for shared methods. These

methods are similar to deferred methods in Eiffel. A method specified in an abstract class

can be implemented once in a subclass. Instances of the inheriting classes use the most

recent implementation, or the inheriting classes can override the method to be used by

their instances. Abstract classes have no instances.

All features of different OOPLs discussed in the above subsections have a

common factor: a method may have several implementations in different classes and

objects cannot choose freely any previous implementation of that method. Another

approach to the definition of classes and methods is based on the concept of slots. A slot

166

is a repository associated with a set of values such that it holds one value at a time. For

example, an integer slot can be associated with a set of integer values holding one value

at a time. What happens when all variables and methods of a class are replaced by slots?

In the next section this issues is briefly examined and its effect on the design of

languages is discussed.

7.3 Classes and Slots

Classes contain variables and methods. Slots unify variables and methods into a

single construct. Therefore, when replacing variables and methods of a class by slots, the

class becomes a set of one type of entities. A slot may represent a state or a behavior.

Both class-based and object-based languages (such as CLOS [Keene 89] and Self [Ungar

87] [Chambers 90] respectively) use slots.

CLOS [Keene 89] uses slots to determine the structure of a class. A slot has a

name and a value. CLOS provides local and shared slots: a local slot has different values

in different instances of the class and a shared slot has a single value shared by all

instances of the class. CLOS implicitly generates accessors, :accessor accessor_name, that

read and write the values of a slots.

Self [Ungar 87] is a language based on prototypes, slots, and behaviors. Slots are

constructs that unify variables and methods. Therefore, Self does not distinguish between

the state and behavior of an object. It describes slots as containers of objects that return

themselves as results. The name of slot S reads the value of S as a state, and the accessor

S: updates the value of S. Slots representing methods have values as executable code.

Each such value executes when the corresponding slot receives a message.

Replacement of variables and methods of a class by slots eliminates the distinction

between the state and behavior of the instances of the class. This may affect the

specification of features that require this distinction. The required changes, as a result of

167

using slots, may vary from one language to another.

An instance of a class containing variables and methods has its own copy of the

variables and uses methods of its class. When using slots, an object has its own copy of

all slots that may have initial values representing the initial state of the object.

Objects communicate via messages [Chambers 90]. A receiving object determines

whether to answer a message or not and how. When using slots, accessing a slot of an

object may be accomplished by sending a message. The receiving slot determines whether

to answer the message or not. In this case, the slot is given the responsibility of

determining the match between the message and itself. A slot that accepts a message may

return its value (state), or it may execute its value (implementation) and return the

appropriate result.

Some languages, such as C++ [Stroustrup 91] and CommonObjects [Snyder 86b],

prohibit direct access to instance variables. When using slots, slots that represent the state

are associated with accessor slots to manipulate them. Accessor slots may be implicitly

generated by the language as in CLOS or explicitly defined by the user as in Self.

Some languages, such as C++ [Stroustrup 91] and Smalltalk [Goldberg 89],

provide different types of variables with different scopes. When using slots, either slots

have different scopes or scopes are eliminated and slots themselves determine their own

scopes by answering only the matching messages. For example, private, public, and

protected variables in C++, and local, instance, class, pool, and global variables in

Smalltalk can be unified into slots, and each slot can determine its scope. A slot answers

a message based on its parameters and the identity of the sender.

Inheritance allows sharing common behaviors among classes. Shared slots can be

made available through inheritance and sharing common behaviors among classes is not

affected by the use of slots. On the other hand, some languages provide variables shared

by all instances of a class. Such variables remain in the class and are made available to

all instances of the class. For example, the class variables in Smalltalk are shared by all

168

instances of the defining class. When using slots, class slots (that correspond to class

variables) remain in the class and are made accessible to all instances of a class. Another

example is the use of global slots in CLOS. Therefore, using slots does not affect sharing

instance variables among instances of a class.

To summarize, a slot is associated with a set of values, holding one value at a

time. Slots of a class represent its variables and methods, and are responsible for handling

messages. The values of a slot represent different implementations. Therefore, a slot can

be associated with a number of implementations in different classes and a subclass may

associate a new implementation with an inherited slot

In the following section, a class model that consists of variables and slots is

proposed. We use slots in place of methods and introduce the notion of behavior slots.

7.4 Behavior slots

The focus of this model is limited to methods and the reuse of their

implementations. Slots are used to replace methods of classes. The distinction between

the terms method and slot is in their association with implementations. Each method name

is associated with one implementation; while a slot name may be associated with several

implementations holding one implementation at a time. In this context, a class is a

collection of variables and slots are called behavior slots. The values of class variables

represent the state of an instance of the class, and the values of behavior slots represent

implementations of methods of the class. A behavior slot (different from the definition

of slots in other languages) is defmed as follows:

Definition:

A behavior slot SL is a pair (spec, imp) where spec is the specification(s), and imp is the
implementation(s) of the behavior slot (see Figure 7 .8).

169

SL: Specification(s) implementation(s)

Figure 7.8: Representation of a behavior slot

In the above definition, a behavior slot may have several specifications associated

with different implementations. In this model we consider a specification as a constant

and an implementation as a variable. Therefore, a behavior slot has one specification that

may be associated with a set of implementations. The set of implementations of a

specification consists of all possible implementations of that specification in different

classes. Hereafter, the term slot implies a behavior slot

As an example we can consider the behavior of modems. Modems with higher

baud rate can communicate with modems of lower baud rate at the lower rate. This

suggests that a modem with the higher baud rate has several behaviors to choose from.

We can represent this situation using classes and behavior slots. A specific modem can

be viewed as an object. A modem object is an instance of a class that contains the

behavior of modems of different baud rates. The behavior of an object can be represented

by a slot named Connect. The slot Connect of a modem object responds to messages

received from other modem objects to establish a communication line. The transmission

rate is determined by the baud rate of the slower modem. We can view the determination

of the baud rate as choosing an implementation of the slot Connect. For illustration,

consider the following BelVAT&T modem types [Black 87].

Type 103J of speed 300 bps
Type 202T of speed 1200 bps
Type 201C of speed 2400 bps
Type 208A of speed 4800 bps
Type 209 of speed 9600 bps

Classes that represent these modems are represented hierarchically in Figure 7.9.

These classes inherit the implementations of the slot Connect to communicate with

the slower modems. An object of type 209, for example, is able to communicate with all

170

Type 103J

Figure 7.9: A hierarchy of BelVAT&T modem types

other types. Therefore, it inherits all implementations of the slot Connect provided in the

other types. The slot Connect has the same specification (e.g., Connect(integer:speed))

in all classes, and is associated with different implementations. Therefore, Connect is a

behavior slot of one specification and several implementations. (This is an adaptation of

an example suggested by Professor Gail Kaiser). The next section outlines the syntax used

in this model.

7.4.1 Syntax of Behavior Slots

A class using behavior slots consists of three sections: variables, slots, and the

implementations of the slots. The "variables" section is devoted to variable declarations.

The "slots" section consists of the specifications of all newly defined slots and inherited

slots that require new implementations. Re-implemented slots are preceded by the

keyword re_imp. Inherited slots that do not require re-implementation are not included

171

in the slots section. The last section includes the actual implementations of all slots

specified in the slots section. Figure 7.10 illustrates the class STACK using behavior

slots (The code of examples used in this section is Pascal-like syntax).

Claaa STACK
Cbegin

variables: max len:
top-

constant : "" 1 0 ;
inteqer;

s array [max_len] of char;

slots: reset(): void;
pop() char;
empty(): boolean;

implementations:

push(char)
top-of()
full ()

alot reset() begin top:=O; end;

void;
char;
boolean;

slot push (c:char) begin top:=top+1; s[top] :=c; end;
slot pop() begin return (s[top]); top:=top-1; end;
slot top-of begin return (s[top]); end;
slot empty() begin return (top == 0); end;
alot full() begin return (top== max_len); end;

Cend.

Figure 7.10: Declaration of the class STACK using behavior slots

In this model we are dealing with multi-implementation slots. Therefore, it is

convenient to treat all implementations of a slot as one group. In the following section

we present the concept of an aggregate and apply it to the implementations of slots.

7.5 Aggregates and Behavior Slots

Generally speaking, an aggregate is a collection of objects referenced by a single

name. Aggregates have different usages in OOPLs. They allow building "un-serialized

hierarchies of abstractions" and incorporate several language features (including

concurrencey, delegation, and message passing) that may simplify the programming task

[Chien 90]. In the context of behavior slots, we view a slot conceptually as an aggregate.

An aggregate is defined as follows.

172

Definition:

An aggregate (conceptual slot) is a collection of implementations associated with a set of
handlers, and is referenced by a single name. Implementations are procedures (programs)
that are independent of each other and can execute simultaneously. Handlers are selection
functions that determine the acceptance of messages received by the slot and select the
appropriate implementations. The aggregate name is the slot name (see Figure 7.11).

handlers procedures

messages dispatch replies

Figure 7.11: Representation of an aggregate (conceptual slot)

A slot receives messages from different objects and handlers select the invoked

procedures. (An important characteristic of an aggregate of implementations is that it is

a multi-access entity that may accept more than one message at a time and may return

a number of simultaneous results as well). For illustration, consider the classes of the

Cartesian and polar representations of a point illustrated in Figure 7 .12.

In Figure 7.12, the class CART_POINT is the superclass of the class

POLAR_POINT. The slot setpoint initializes a point in either representation, and it

requires two arguments for either representation. It has the same specification in both

classes, but different implementations. Specific types are not provided in the specification,

rather a generic type is used. For an instance of the class POLAR_POINT, there are two

implementations for the slot setpoint to choose from; whereas instances of the class

CART_POINT have access to one implementation only. The aggregate representation of

the slot setpoint in the class POLAR_POINT is illustrated in Figure 7.13.

In Figure 7.13, the set of procedures consists of the two implementations of the

classes CART_POINT and POLAR_POINT. The slot setpoint may receive messages form

different objects. The handlers analyze these messages (in this case based on the qualifier

or class name and the type of arguments) and select the appropriate procedure

Claaa CART POINT
Cbeqin -

variables: Xval : inteqer;
Yval : inteqer;

slots: setpoint (type,type) : void;
offset(integer,integer) : void;

i.q>lementations:

Cend.

slot setpoint(x : integer, y : integer)
begin Xval:=Xval+x; Yval:=Yval+y; end;

slot offset(i : integer, j : integer)
begin Xval:-Xval+i; Yval:=Yval+j; end;

Claaa POLAR POINT child of CART POINT
Cbeqin

slota: re imp setpoint(type,type) : void;
implementations:

Cend.

alot setpoint(length: real, angle: real)
begin
Xval:=int(length*cos(angle));
Yval:=int(length*sin(angle));
end;

Figure 7.12: Cartesian and polar representations of a point

setpoint(x:type=integer,
==~ .. ~ y:type=integer)

setpoint(length:type=real,
angle:type=real)

173

messages dispatch replies

Figure 7.13: Aggregate representation of the slot setpoint

(implementation). Here, the handler is a function that takes the qualifier and arguments

as inputs and produces calls to the invoked procedures as outputs.

As mentioned earlier, we are concerned with the implementations of slots and their

reuse. The concept of message as used by current OOPLs discourage if not prohibit this

type of reuse. Therefore. it is necessary to modify the notion of a "message" in order to

accommodate the goal of this model, which is the capability to selection of any previous

implementation of a slot provided in ancestor class(es). In the following subsection we

present a generalization of the concept of a message.

174

7.6 Generalized Messages

Message passing is a communication model for objects to interact with one

another. The receiving object can determine whether to answer a message or not and how

[Nierstrasz 86]. An object invokes a method of another object by sending a message. We

present the notion of a generalized message in the context of behavior slots.

The notion of a generalized message is founded on the philosophy that it should

be possible to select any slot's implementation that is available along the inheritance

hierarchy. Therefore, it is necessary that all implementations (not the details of the

implementation) above a receiving object be visible (known) at any point in the

inheritance hierarchy. Selection of a particular implementation of a slot is application

dependent. Here we develop the idea of a generalized message. The syntax of a

generalized message may have the form:

message (O,S,D)

where 0 is the receiving object, S is the requested slot, and D is the discriminant

(additional information) that may be required by the receiving object for selecting an

implementation of the slotS.

The discriminant D is an information packet. Such information is necessary when

the receiving object 0 has knowledge about several implementations (for the invoked slot

S) distributed over different classes along the inheritance path. In this case, the given

information is used by the receiver to select the appropriate implementation. The

discriminant D may be missing when there are no alternative implementations for the

invoked slot S, which the receiving object 0 can select from. In this case, only one

implementation of the slot S is known to object 0. The approach adopted by current

OOPLs falls into this specific case.

As an example for illustrating the point, we have adopted the login procedure in

UNIX [Sobell 89], which is facilitated by the process getty, and have modified it to fit

175

the framework of objects. Two objects logobj and gettyobj are used to represent the login

procedure and the getty process respectively. It is assumed that they communicate through

messages.

Object gettyobj invokes the slot I/O-control. I/O-control is associated with several

procedures. Two of these procedures are: Output-Upper-Case that turns on the uppercase

output mode, and Output-Lower-Case that turns on the lower case output mode. Object

gettyobj activates the Output-Upper-Case procedure if the user's login name is non-empty

and it does not include any lowercase letter. Otherwise, the procedure Output-Lower-Case

is activated. The objects logobj and gettyobj along with their message communication are

illustrated in Figure 7.14.

logobj

I login: I
I

message -....
gettyobj

Output-Upper-Case
Output-Lower-Case

The message: message (gettyobj,I/0-control,login-name)

Figure 7.14: A generalized message

In Figure 7.14 the receiving object is gettyobj, the slot is I/O-control, and the

discriminant is the case of the user's login name sent by logobj. Gettyobj has two

implementations associated with the slot I/O-control: uppercase and lowercase outputs.

It uses the case of the user's login name as the factor to select the appropriate

implementation. (In the UNIX system, the procedure getty calls the login procedure).

7 .6.1 Procedure Calls

In most OOPLs, a message has the form "message (O,m)", and only one

implementation is available for method m. This approach has the advantage of efficient

176

implementation. For example, the message "message (O,m)" can be translated into a

procedure call of the form: o .rn (actual parameters) . This format eliminates the

discriminant parameter since the decision about the invoked method is made implicitly

in advance using the "." operator.

In the procedure call format, the receiving object and the appropriate

implementation of the invoked method are determined at compile-time. Pointers to objects

can be used to determine the receiving object and the invoked method at run time. The

appropriate implementation of the invoked method is determined based on the object

pointed at by the pointer. For example, C++ provides virtual functions that may be

associated with different implementations in subclasses. C++ dynamically determines the

appropriate implementation for each call of a virtuai function. The selection depends on

the object pointed at rather than the type of the pointer itself [Pohl 89]. Therefore, in

some existing languages, we can manipulate the available features in order to invoke an

implementation provided in ancestor class.

The concept of a generalized message provides a formal approach rather than an

indirect one. It also facilitates some compilation checks. A class may use a particular

method implementation in an ancestor class by using a full-name reference to that

implementation. In this case the ancestor class name is the discriminant. A full-name

reference is a form of a procedure call that includes the class name as a qualifier for the

selection among the possible implementations of the invoked method.

In the following section the concept of implementation inheritance is introduced

based on the concepts discussed in the previous sections.

7. 7 The Proposed Implementation Inheritance Model

In this section we bring together the concepts of behavior a slot, an aggregate, and

a generalized message to develop the idea of implementation inheritance. In the object-

177

oriented paradigm, inheritance is a mechanism for sharing common features among

classes. A subclass inherits the specifications of slots provided by its superclass(es). A

subclass either uses the implementations used in the superclass(es) or it may provide new

implementations for some of the inherited slots. Therefore, the subclass has to use the

most recent implementation of an inherited slot and has no knowledge of any previous

implementation provided by ancestor classes.

One of the objectives of this model is to relax the above restriction and develop

a new approach to inheritance. The new approach grants classes the knowledge of

previous implementations of the inherited slots. The idea behind this approach is that

whenever a slot is associated with different implementations at different levels of the

inheritance hierarchy, these implementations should be known to classes located at lower

levels of the hierarchy. Therefore, a class can inherit the specification of a slot along with

the desired implementation. We call this approach Implementation Inheritance (!

inheritance).

The semantics of !-inheritance simply states that an instance of a class may use

any slot implementation provided by the ancestor class(es) in addition to the

implementations in the class itself. This ability allows a programmer to achieve efficient

reuse of existing implementations provided for inherited slots because one of the

important concepts in facilitating code reuse - identification and access [Biggerstaff 89] -

is combined with the concept of message. In the following section we present the

conceptual view set forth by the idea of !-inheritance.

7.8 Conceptual View of Implementation Inheritance

Since a behavior slot can be associated with several implementations in different

classes, it seems appropriate to think of all implementations of a slot as a collection, and

treat them as one set of possible values for that slot. Therefore, we are conceptually

178

dealing with multi-implementation slots. To provide a conceptual view for multi

implementation slots, we adopt the concept of an aggregate [Chien 90] and apply it to the

set of implementations of a slot. Each multi-implementation slot is represented by one

aggregate. The concept of !-inheritance is described by the relationship among aggregates

representing multi-implementations slots of an inheritance hierarchy. For illustration,

consider the inheritance hierarchy given in Figure 7.15.

A

B

c

D f(), g(), h(), k()

Figure 7.15: Inheritance hierarchy among some classes

In Figure 7.15, the multi-implementation slots are f(), g(), and h(). Each slot is

associated with several implementations in different classes. Conceptually, we view each

slot as an aggregate consisting of a handler and a set of procedures. Handlers perform the

selection process of a procedure and procedures are the implementations in different

classes. In this representation we use the notation A:fO to indicate the implementation of

the slot f() in class A. The aggregate representation of the multi-implementation slots in

Figure 7.15 is given in Figure 7 .16.

Figure 7.16 represents individual aggregates for the slots f(), g(), and h(). To

represent the !-inheritance relationship among the classes of Figure 7.15, we relate

179

Aggregate f () : .. I Handler F I - A: f (), B:f(), Result --1 I - -C:f(), D: f ()

--1 Aggregate g () : Handler G 1 B:g()' C:g() • Result
D:g()

Aggregate h(): --1 Handler H --1 C:h(), D:h () ~ Result

Handlers Procedures

Figure 7.16: Aggregate representation of the slots f(), g(), and h() in Figure 7.15

handlers to classes as follows.

Class B uses Handler F
Class C uses Handlers F and G
Class D uses Handlers F, G, and H

A class uses one or more handlers when the class includes slots that have several

implementations in ancestor classes. For example, class A uses only the handler F because

only slot f() has an implementation in class A. On the other hand, class D uses three

handlers since the slots f(), g(), and h() in class D have several implementations in

ancestor classes. For notational convenience, let us assume that

HB is the set of handlers used by class B (i.e., {F}),
HC is the set of handlers used by class C (i.e., {F,G}), and
HD is the set of handlers used by class D (i.e.,{F,G,H}).

Note that handler sets HB, HC, and HD select specific implementations of each slot at

each level of the inheritance hierarchy. For example, the handler set HB and HC select

specific implementations of the slot f() at the level of classes B and C. For class B, the

handler set HB selects form A:f() and B:f(); while for class C, the handler set HC selects

from A:f(), B:f(), and C:f(). Figure 7.16 can be modify to reflect the relationship among

these handlers. The modification is illustrated in Figure 7.17.

In Figure 7.17, because of the inheritance relationship between classes, each set

of procedures includes the contents of the set of procedures associated with the previous

At level class B:

At level class C:

At level class D:

Handlers

A:f(), B:f()
C:f(), D:f()

C:h(), D:h()

Procedures

Figure 7.17: Relationships among handlers of aggregates in Figure 7.16

180

level. We denote this inclusion using feedback double arrows between sets of procedures.

Therefore, an implementation of a slot may belong to more than one aggregate and a

handler of an aggregate may be shared among several aggregates as well. The inter

relationship among the aggregates and !-inheritance is depicted in Figure 7.18.

f():

g():

h():

A

--...J HB I - B --I I - -... HC - D - - -- HD - c - - -
Sets of handlers Sets of procedures

Figure 7.18: Inter-relationship between aggregates and !-inheritance

Result

Result

Result

In Figure 7 .18, the inclusion relationship among handlers represents the inheritance

relationship illustrated in Figure 7.15. Handlers of HD include handlers of HB and HC

because class D inherits from the classes B and C that use these handlers. No handler is

181

contained in HB because class B inherits from class A that does not use handlers. In the

set of procedures of a slot we use the class names to indicate the locations of

implementations of that slot.

To exhibit the relationship between the current and the following sections, we need

to explain the correspondence between the concept and implementation of !-inheritance.

At the concept level, the selection of an implementation is achieved by the handlers of

an aggregate; while at the implementation level, the handlers are represented by a run-

time data structure and associated with a selection algorithm (see the following section).

Procedures are the slot's implementations distributed over different classes. The mapping

between the concept and implementation levels is shown in Figure 7.19 .

Concept level: •I Handlers , Procedures Result

~ !
!-index

Implementation Implementations
level: Selection of slots Result

algorithm

Figure 7.19: Mapping between the concept and implementation of !-inheritance

In the following section we present an implementation scheme which will

accomplish the objectives set forth by the concept of I-inheritance.

7.9 An Implementation Scheme for Implementation Inheritance

A slot may have several implementations in different classes. Our approach in this

scheme is to keep track of all possible implementations of a slot and provide access

path(s) to each implementation. The retrieval of a specific implementation depends on the

182

message. To retrieve an implementation, we need:

1) Infonnation in the message indicating the desired implementation. For example,

full-name qualification allows the system to choose the invoked implementation.

2) Information about different implementations of a slot in ancestor classes. In the

implementation scheme presented in this section, this information includes names

of ancestor classes that provide different implementations, and pointers to the

implementations themselves. This information is represented by a rum-time data

structure called Implementation-Index (!-index).

An 1-index is a two-dimensional array of entries containing addresses of the

different implementations of a slot. Rows are indexed by slot names and columns are

indexed by the class names where implementations are provided. An entry contains a

value (address of a procedure's code) if the slot is associated with an implementation in

the corresponding class. Otherwise, the entry is undefined. An undefined entry indicates

that the slot is inherited by the corresponding class, but is not re-implemented. For

example, consider the class USE_ANY illustrated in Figure 7 .20.

Class USE ANY child of POLAR POINT
Cbegin-

slota: create_point(type,type) : void;
-- other slots

implement: slot create_point(type,type)
begin

end;

Cend.

Create a point using the implementations
of the slot setpoint in ancestor classes.

-- other implementations

Figure 7.20: Class USE_ANY using implementations of the slot setpoint

In Figure 7 .20, class USE_ANY inherits from the class POLAR_POINT shown

in Figure 7 .12. The slot create_point creates a point using the implementations of the slot

183

setpoint provided in ancestor classes of the class USE_ANY. Therefore, instances of the

class USE_ANY can use any of these implementations. The 1-index associated with the

class USE_ANY is given in Figure 7.21. The 1-index is a 2x2 array. The entries

I-index[offset,CART_POINT] and
I-index[offset,POLAR_POINT]

indicate that the slot offset has only one implementation in the class CART_POINT. The

entry !-index [offset, POLAR_POINT] is undefined. That is, class POLAR_POINT

•
inherits (notre-implements) the slot offset.

cart _point polar _point

setpoint pointer to slot pointer to slot
set point (inteqer,integer) setpoint (real, real)

offset pointer to slot
offset (integer, integer) undefined

Figure 7.21: An !-index example

7.9.1 Organization of the 1-index

Slot names marking rows of the I-index of a class are the names of slots

associated with implementations in ancestor classes. The order of rows (slots) depends on

the appearance of their implementations in ancestor classes. The class names marking

columns of the !-index of a class are the names of ancestor classes of that class. Order

of columns (class names) depends on an ordering process applied to the inheritance graph.

This process produces an ordered list (called a C-list) of all classes of the graph. An

algorithm to construct a C-list is given below.

Algorithm Class-List

Input : Inheritance graph C.
Output: Ordered C-list.
Method: step 1: r_level=l; hgt=height(C); C-list=[];

184

step 2: Call list roots(r level,hgt,C-list);
step 3: Return c-Tist. -

The procedure list_roots is defined recursively as follows:

list_roots(r_level,hgt,C-list) =

[
C-list=C-list I I [root nodes] r level I I

[list_roots(r_level+r,hgt,C-list)] if r level~ hgt

C-list=[] if r_level > hgt

where the variable hgt is the height of the graph, r_level is the root level of the current

graph, and C-list is the ordered list of all classes of the graph C. The procedure list_roots

recursively lists child classes from left to right following the listing of their superclass(es).

Figure 7.22 illustrates the application of the algorithm Class_List on a given class

hierarchy. The Figure is self-explanatory.

A B

~~
C D E

~I
I
G

hgt=4; r_level=l; C-list 1=[];

C-list ""
C-list
C-list
C-list =

C-list

[JII[A,B]II[r nodes] 2
[A,B] II [C,D,E]II [r nodes] 3

[A, B, C, D, E] I I [F] I ITr nodes] 4

[A, B, C, D, E, F] I I [G] I ITr_nodes] 5

[A,B,C,D,E,F,G] II[]

C-list = [A, B, C, D, E, F, G]
Orders: 1 2 3 4 5 6 7

Figure 7.22: The C-list of a multiple inheritance hierarchy

7 .9.2 Size of the !-index

The size of an !-index of a subclass depends on the number of inherited slots

associated with new implementations, and the number of the ancestor classes that

introduce different implementations for the inherited slots. If there are n inherited slots

185

in a subclass, the maximum size of the 1-index is "n *the number of all ancestor classes".

This case implies that the every ancestor class introduces a new implementation for at

least one inherited slot re-implemented in the subclass. The minimum size of the !-index

is "1 * m" where ~1 is number of ancestor classes. This case implies that at most m

ancestor classes provide implementations for at most one inherited slot re-implemented

in the subclass. For example, consider the single inheritance hierarchy in Figure 7 .23.

C-list: [A, B, C, D]
Orders: 1 2 3 4

A

B

c

D f(),g(),
h(),k()

1 1 2

f0 B

I-index of B I-index of C

1 2 3

f A B c

g - B -

h - - c

I-index of D

Figure 7.23: Representation of !-indices of classes

In Figure 7 .23, each class re-implements at least one inherited slot. The 1-index

of class B is of the minimum size since class B inherits and re-implements only slot f().

Note that the 1-index of class B is of the maximum size as well. The I-index of class C

is of the minimum size. Class C inherits the slots f() and g(), but only f() is re

implemented by the class C. Therefore, instances of the class C can use two previous

implementations for the slot f().

The I-index of class C would be of the maximum size (2x2) if the inherited slot

g() has been re-implemented in class C. The I-index of class Dis of the maximum size.

186

Each re-implemented slot in the class D has an implementation in at least one ancestor

class. The size of an 1-index is not affected by the type of the inheritance hierarchy

(single or multiple).

7.9.3 Construction of the 1-index

A subclass may add new slots and re-implement inherited slots as well. A class

that re-implements inherited slots is associated with an 1-index that keeps track of

previous implementations. A class that does not re-implement inherited slots need not be

associated with an 1-index since no new implementations are introduced by the class. In

the following subsection, we illustrate the concept of 1-index construction using single and

multiple inheritance hierarchies. Hereafter, in stead of using the class names to label

columns of the 1-index, we will use their orders in the C-list. Moreover, we use the class

names in entries of the 1-index to show the classes that provide previous implementations

for the corresponding slots.

7.9.3.1 Single Inheritance. Consider the single inheritance hierarchy illustrated in

Figure 7 .24. Class B inherits the slots f() and g() from the class A, and introduces the

new slot h(). Class B does not re-implement any of the inherited slots. Therefore, the

classes A and B are not associated with !-indices since the class A originally defines all

of its slots, and the class B provides no new implementations for inherited slots. On the

other hand, the classes C and D are associated with !-indices since they provide new

implementation for inherited slots.

In Figure 7.24, class C re-implements g() and introduces k(). The 1-index of the

class C is simply one-entry array since only slot g() has previous implementation in the

ancestor class A. Therefore, instances of the class C have two implementations for the

slot g() to choose from; one is provided in class A as indicated in the entry [g,l], and the

second one is provided in the class C itself. Note that A (the value stored in the entry

C-List: [A, B, C, D]
Orders: 1 2 3 4

A

B

c

D

1

g0
I-index of class c

1 3

I-index of class D

Figure 7.24: Illustration of an 1-index

187

[g,l] of either I-index) is the address of the implementation provided in the class A. The

slot kO is not included in the 1-index since it has no previous implementations in ancestor

classes, it may be included in the !-indices of descendants of the class C.

Class D re-implements the slot f(). Instances of the class D have different

implementations for the slots f() and g() to choose from. The 1-index of class D is a 2x2

array. It provides information about the implementations of the inherited slots f() and g().

Slot g() has implementations in the classes A, and C; and slot f() has implementations in

the classes A and D. Note that the slot g() marks the first row of the 1-index of the class

D because slot g() has been re-implemented in class C before the slot f() re-implemented

in class D.

The 1-index of a subclass may be constructed by adding information to the !-index

of its superclass. The newly provided information is about inherited slots that are re

implemented in the subclass. If the superclass has no 1-index (i.e., each slot has a single

implementation in ancestor classes), a new 1-index is constructed for the subclass. In

Figure 7.24, the 1-index of class Dis an extension of that of the class C. The additional

infonnation is about the new implementations of the slots f() and g() that are re-

188

implemented in the classes C and D. Instances of the class D have the choice to use

implementations from the class A or C.

7 .9.3.2 Multiple Inheritance. Consider the multiple inheritance hierarchy illustrated

in Figure 7 .25. Class C inherits and re-implements the slot f() from the class A. Class D

inherits andre-implements the slot f() from the class A and the slot g() from the class B.

Class E inherits the slot f() from both classes C and D. Suppose that class E re

implements the slot f() inherited from the class C. Therefore, instances of the class E can

use either A:f(), C:f(), D:f(), or E:f(). Class E also inherits and re-implements the slots

g() and h() from the class D. Finally, class F inherits andre-implements the slot f() from

the class E. The only classes that do not require 1-indices in Figure 7.25 are the classes

A and B since they originally define their own slots. The I-indices of other classes in the

Figure are given in Figure 7 .26.

D

Figure 7.25: Multiple inheritance among classes

C-list: [A, B, C,
Orders: 1 2 3

1

f ~
I-index of class

f

g

h

k

1

A

-
-

-

2

-
B

-
-

3 4

c D

- D

- D

c -

D,
4

c

!-index of class E

E, F]
5 6

f

g

h

k

1 2

f tffij g B

I-index of class D

1 2 3 4 5

A - c D E

- B - D E

- - - D E

- - c - E

I-index of class F

Figure 7.26: 1-indices of the classes in Figure 7.25

189

When a class inherits from two or more superclasses, the order of the superclasses

in the C-list determines the order of slots in the 1-index of the inheriting class. Slots that

re inherited and re-implemented from a superclass of lower order appear before slots

inherited andre-implemented from superclasses of higher orders. For example, in the 1-

index of the class D in Figure 7 .26, slot f() inherited from the class A appears in the first

row; while slot g() inherited from the class B appears in the second row because order

of the class A is lower than the order of the class B in the C-list. The same argument

applies to other 1-indices in the figure. Like single inheritance, the contents of a new 1-

index includes the contents of previous I-indices. That is, the new I-index is a super set

of the previous ones.

7.9.4 Optimization of the 1-index

In sections 7.9.3 we noticed that the deeper we travel along the inheritance path,

the faster the !-index array grows. We also associated each class with an !-index, and the

190

last 1-index is a super set of the previous one(s).

The first thought of optimization is to allow classes that are associated with !

indices to use the last 1-index, and eliminate all previous indices. For example, the 1-index

of the class Fin Figure 7.26 includes all information provided in the !-indices of the class

C, D, and E. Therefore, the classes C, D, and E can use the 1-index of the class F.

When all classes use the same 1-index, each class is concerned about partial

information of that 1-index. A class should not be able to use or refer to information about

implementations provided in descendant classes. For example, when class D in Figure

7.26 uses the 1-index of class F, class D should refer only to the four entries ([f,l], [f,2],

[g,l], [g,2]) of that 1-index. These entries are equivalent to its own 1-index in the figure,

and they provide information about the implementations provided in the ancestor class A

and B of the class D in Figure 7 .25.

This approach of optimization requrres some modification in the selection

algorithm above. Here, we need to know the order of the receiving object's class, and

change the postcondition of the third step of the algorithm. The new algorithm is the same

as before except for the steps 2 and 3. Here, we use the function class (object_name) that

returns the class name of object_name. In the modified algorithm, the variable

receiver_name is the name of the object 0 that received the message, and the variables

receiver_order and class_order are the orders of the receiving object's and the

discriminant classes respectively. The modified steps 2 and 3 of the previous version of

the algorithm are given below.

step 2:

step 3:

object name=message[l]; rece1v1ng object's name
class name=message[3); discriminant field
obtain the order of the class of the object name and
class name from the corresponding C-list as-follows:

receiver name=class(object name);
precondition: -

class name and receiver name e C-list;
r=l; flagl=flag2=FALSE;
class order=receiver order=O;
while-NOT (flagl AND-flag2) do

begin
if C-list[r]=class_name

then beqin
class order=r; flagl=TRUE;
end; -

else if C-list[r]=receiver name
then begin -
receiver order=r; flag2=TROE;
end; -

r=r+l;
end; -- while

postcondition: class_order ~ receiver_order;

191

The modified algorithm guarantees that a class cannot refer to information about

implementations in descendant classes. For a given class A, any class of a lower order

than the order of A is either located at a higher level of the inheritance hierarchy or the

same level of the class A. Classes at the same level have no inheritance relationship.

Therefore, the postcondition

class order < receiver order

implies that the discriminant class is located at a higher level than the class of the

receiving object. In the case where

class order = receiver order

the receiving object is an instance of the discriminant class, and this is equivalent to a

message without discriminant (i.e., missing discriminant).

7 .9.5 Selection Mechanism

The concepts of behavior slot and generalized message require a selection

· mechanism that determines the appropriate implementation of the invoked slot. The

generalized message is developed to carry sufficient information that can be used in the

selection process applied to implementations of slots. The concept of aggregate includes

handlers that conceptually perform the selection process and activate the appropriate

implementation of a slot. From the perspective of implementation reuse, identification and

access mechanisms are incorporated into the message.

In the implementation scheme, the !-indices correspond to handlers. Entries of an

192

1-index include addresses of (pointers to) implementations of slots in different classes.

Here, we define the selection mechanism as an algorithm that takes a generalized message

as an input, applies a conversion process to the message components, and determines the

address of the appropriate implementation code (if exists). In section 7. 6, the generalized

message was described in terms of the receiving object 0, the slot S, and the discriminant

D. In general, the mapping of a message to a specific implementation depends on the

specification of the discriminant. In this section we examine a selection mechanism when

the discriminant D is a class name.

When an object receives a message, a search algorithm is used to look for the

recent implementation of the invoked method. The search starts at the class of the

receiving object and continues up along the inheritance path until an implementation is

found or an error message is returned. In the proposed model, we assume that such an

algorithm exists and we refer to it by the name Search. Algorithm Search is invoked by

the selection algorithm Select described below. In the following algorithm, we assume

that the message is a record structure with three fields: object name 0, slot name S, and

discriminant D.

Algorithm Select

Input : A generalized message(O,S,D).
Output: Execution of the appropriate implementation or an

error message.
Method:

step 1:
step 2:
step 3:

input a generalized message;
class name=message.D; -- the discriminant field
obtain the order of the class name from the
corresponding C-list as follows:

precondition: class_name e C-list;
r=l;
while C-list[r] <> class_name do r=r+l;
order=r;

step
step

postcondition: order~ length(C-list);
4: slot name=message.S; --the slot name field
5: address=I-index[slot name,r];

if address="undefined"
then call algorithm Search;
else activate the procedure pointed to by address;

The conversion process uses orders of the C-list elements and the slot names as

193

indices to entries of the 1-index. The response to a message is the execution of the

invoked implementation or the response provided by algorithm Search.

For illustration, consider the class hierarchy given in Figure 7 .25. Suppose that d

is an instance of the class D, and d receives the following messages

message1(d,f(),A) and message2(d,g(),A)

The C-list and class orders of the class hierarchy in Figure 7.25 are:

C-list: [A, B, C, D, E, F]
orders: 1 2 3 4, 5, 6

Figure 7.27 illustrates the selection process applied to these messages. The figure is self

explanatory.

step 1: message1(d,f(),A);
step 2: class name=A;
step 3: order[A]=l;
step 4: slot name=£();
step 5: address=I-index[f(),l]=A; -- I-index of the class D

Activate that implementation;
step 1: message2(d,g(),A);
step 2: class name=A;
step 3: order[A]-1;
step 4: slot name-g();
step 5: address=I-index[g(),l]=undefined;

call algorithm search;
step 5: STOP.

Figure 7.27: Application of algorithm Select

In Figure 7.27, the result of step 5 in processing messagel is the address of the

implementation of the slot f() provided in the class A. This implementation will be

activated as a response to message!. On the other hand, the result of step 5 in processing

message2 indicates that class A does not provide an implementation for the slot g().

Therefore, algorithm Search is invoked to look for the recent implementation of the slot

g() in an ancestor class, which is class B in this case. If no implementation exists, an

error message is issued by algorithm search in this regard as a response to message2.

Note that class D uses its 1-index to determine the addresses of the invoked methods.

194

7.10 Discussion

In this section we discuss the impact of !-inheritance on the issue of encapsulation,

and the relationship between the concept of multi-methods defmed in CLOS and the

concept of generalized message introduced in section 7 .6.

7.10.1 Implementation Inheritance and Encapsulation

Alan Snyder [Snyder 86a,87] has indicated that inheritance in most OOPLs

compromises encapsulation by exposing the implementation details to inheriting classes.

He has outlined a set of requirements for full support of encapsulation with inheritance.

These requirements and their benefits are given below.

1) Providing different external interfaces for objects of the class and inheriting classes.

Such interfaces allow the designer tore-implement the class methods with out affecting

inheriting classes. New implementations are compatible with the external interface

provided for inheriting classes. This requirement implies that classes are encapsulated, and

methods are accessed by inheriting classes only through the defined external interface.

2) Preventing direct access to the instance variables inherited from ancestor classes. Direct

access to the instance variables of ancestor classes limits the designer's freedom to

change, rename, or remove an instance variable without affecting its inheriting classes.

Therefore, direct access to the instance variables compromises encapsulation. Snyder has

indicated that using methods to access the inherited instance variables preserves the

benefits of encapsulation and prevents direct access by descendant classes.

3) Hiding the use of inheritance by not making it part of the external interface. When the

use of inheritance becomes part of the external interface and is visible to inheriting

classes, then changing the use of inheritance among classes (inheritance hierarchy) may

affect the inheriting classes and require changes in descendant classes. This issue affects

the designer's ability to safely change the inheritance hierarchy without changing the

195

implementation details of classes.

It should be noted that !-inheritance is an extension of specification inheritance.

!-inheritance is based on the identification and access concept of reuse. It allows users to

reuse as much as possible of implementations provided in ancestor classes. The objective

is to maximize the reuse of code segments by providing a minimum knowledge about the

previous implementation(s) in ancestor classes. The impact of !-inheritance on

encapsulation in the context of the above requirements is discussed below.

In the specification inheritance, users need not understand how methods are

implemented since each method is associated with only one implementation. !-inheritance

encounters the previous implementations of a method as alternatives for users to choose

from. In order to make such selection, users of !-inheritance should know the availability

of these implementations. Such knowledge is provided in the external interface of the

class.

In !-inheritance, users need not know the implementation details, such as the

specific implementation details of an algorithm, since the different specifications of

previous implementations imply the functionality of each implementation. When all

previous implementations of a method have the same specification, language constructs

such as the "." operator in C++ and call_ method construct in Common Objects can be

used to detennine the invoked implementation. Therefor, !-inheritance has little impact

on encapsulation and information hiding since the external interface provides enough

knowledge to select a previous implementation of a method.

The issue of accessing inherited instance variables in not affected by !-inheritance

since !-inheritance is an extension of the underlying specification inheritance. The use of

methods to access inherited instance variables can also be used in the context of !

inheritance. Using methods preserves encapsulation and prevents direct access to the

instance variables. Excluding the instance variables from the external interface preserves

encapsulation by allowing the class designer to change, rename, or remove an instance

196

variable inherited from an ancestor class without affecting inheriting classes.

Since !-inheritance implies direct access to methods defined in the ancestor classes,

this feature of !-inheritance violates the third requirement above by exposing the use of

inheritance, and hence partially violates encapsulation. !-inheritance compromises the

visibility of inheritance in favor of reusability of implementations. It allows users to avoid

re-writing implementations that are already provided in the ancestor classes, and therefore,

it contributes to the reduction of code and coding efforts.

7 .10.2 Multi-Methods and Generalized Messages

In this subsection we contrast the notion of generalized message introduced in

section 7.6 and the notion of multi-method used by CLOS. Both notions provide the

language with a mechanism for invoking the appropriate method from among a set of

available methods. The generalized message follows the message passing approach; while

the multi-method follows the generic function approach.

In the message passing approach, the invoked method is determined by the class

of the receiving object to which the message is sent. In some cases, the receiving object

may have the knowledge about several methods of the same name. Hence, more

information may be required by the receiving object in order to determine the invoked

method. Discriminant is an abstraction of such information.

A multi-method in CLOS is a method that specializes more than one parameter.

That is, its applicability depends on the types (classes) of two or more arguments.

However, a multi-method is a method name associated with two or more different

implementations in different classes (i.e., two or more methods of the same name). In the

generic function approach, the invoked method is determined by the type of the arguments

to which the method is applied.

Although the two approaches are intended to accomplish the same purpose, they

197

are conceptually different and the generalized message is more general in the abstract

sense. In the message passing approach, the receiving object has been given the

responsibility to determine and choose the invoked method. We view this approach as a

distributed approach in terms of responsibility. On the other hand, the generic approach

adopted by CLOS uses a generic dispatch process that chooses the appropriate invoked

method. We view this approach as a centralized approach of responsibility. Therefore,

both approaches are distinctly different.

In the generic function approach, the type of arguments is the fixed discriminant

information that the dispatch process uses in order to determine the invoked method. The

discriminant information of a generalized message can be any information (including the

type of arguments) that provides sufficient information to the receiving object to

determine the invoked method. Therefore, the generalized message approach can handle

more general conditions than the multi-method approach.

7.11 Summary

As more complex software systems are being built, the significance of software

reuse is further emphasized by users and researchers. Object-oriented programming

provides support for code reuse through inheritance. The inheritance models currently

used by OOPLs can be characterized as "Specification Inheritance". That is, classes inherit

the specification of methods from ancestor classes. Even if several implementations are

available to a method, the semantics of specification inheritance restrict the object to

using the most recent implementation of an inherited method. Other implementations are

in general inaccessible to that object.

In this work a scheme has been developed a scheme to provide objects with the

capability to reuse previous implementations of inherited methods, and to choose any

implementation provided by any ancestor class. We characterize this approach as

198

"Implementation Inheritance" (!-inheritance). Even though it is possible to manipulate

features of some languages in order to access previous implementations of inherited

methods, so far there is no such model available in the literature.

The concept of I-inheritance and the proposed implementation scheme are based

on the ideas of slot, aggregate, and generalized message. We use the notion of behavior

slot to represent a method that have several implementations in different classes. A

behavior slot has a specification and implementation. We considered its specification as

a constant, and implementation as a variable. The presented model allows multiple

implementations to be associated to a slot. To associate the set of implementations of a

slot with its specification, we use the concept of aggregate. Here, an aggregate is a

collection of implementations associated with a set of handlers that perlorm the selection

of an implementation requested by a message.

When invoking an implementation of a slot, the selection process requires

information to identify the invoked implementation. Such information is provided by the

requesting object, and is carried with the message. A message in current languages does

not provide such information since an object has no choice for an implementation but the

most recent one. Therefore, we introduce the notion of a generalized message to

accommodate the selection of any implementation of a slot. A generalized message

provides a discriminant (information) sent by the requesting object to the receiving object.

The discriminant allows the requesting object to specify the requested implementation,

and the receiving object to correctly select the appropriate implementation.

The suggested implementation scheme is based on a data structure called "!

index". The !-index of a class contains information about all slots' implementations

provided by ancestor classes. A retrieval algorithm is presented for a special case. Finally,

the impact of !-inheritance on encapsulation is discussed, and the notion of generalized

message and multi-method are contrasted.

CHAPTER VIII

SUMMARY. CONCLUSIONS. AND FUTURE WORK

A key distinguishing feature of OOP is the inheritance mechanism and the purpose

that it is designed to serve. Inheritance is an important program design concept that

promotes and facilitates code reusability and extensibility. This dissertation examines the

inheritance models adopted by current OOPLs, and proposes new models that facilitate

code reuse and reliable extension of existing software components in the development of

software systems. The proposed models are based on an extensive study and analysis of

the inheritance models provided in some of the most common OOPLs.

The first part of this dissertation (Chapters 2, 3, and 4) provides an extensive

literature review, and examines different features of inheritance in a number of well

known languages. A classification (taxonomy) based on the main characteristics of

inheritance is presented as a binary tree. Nodes in the tree represent sets of characteristics,

and edge are annotated by the selected languages. An inheritance model (or, equivalently,

the language designed around it) at the leaf level inherits the characteristics represented

by all nodes along the path from that leaf node to the root node. The classification

approach provides a framework for identifying new inheritance models in the space of

inheritance models allowable within the confines of the taxonomy. It also helps determine

the similarities and differences among inheritance models based on their location on the

tree.

The first part of the dissertation also explores the approaches to reusability and

extensibility (along with some other related issues such as visibility, information hiding,

199

200

external interfaces, and the visibility of inheritance) in C++ and Eiffel. The strengths and

weaknesses of each language from code reuse perspective are also highlighted.

The second part (Chapters 5, 6, and 7) describes newly proposed inheritance

models that are based on some of the discussion of the first part. Three inheritance

models are proposed. They are designed to overcome three major problems found in the

current models.

1) Upon analyzing the current models, their advantages were gleaned and a new

model was proposed by defining a Two-faceted object-based Inheritance Model (TIM).

This is the first inheritance model, which consists of two orthogonal sets of objects. It

provides single and multiple inheritance based on the message passing paradigm. It also

provides semantics for object creation and deletion. TIM provides full support for

encapsulation and other related issues including information hiding, access techniques,

subtyping, and the visibility of inheritance. TIM is compared with the existing models in

terms of the inheritance features provided by these models.

2) Generally, a preferred representation of a problem is one that provided by a model

that reflects the "natural" structure of the problem. The object-oriented paradigm is

generally touted as paradigm that provides a better correspondence between a problem

and its representation. Even so, many real-life situations still cannot be well reflected in

the object-oriented paradigm. The strict hierarchical inheritance model does not provide

a satisfactory representation for situations where the dependency among objects is bi

directional.

The second inheritance model, A feedback inheritance model, is proposed to relax

some of the constraints of the hierarchical inheritance model and provide control over

dependency among related classes. These relaxations furnish the tools to discourage users

from attempting tricky and costly approaches using the hierarchical model to control the·

dependency among classes. Such attempts may result in inefficient and expensive

software. Tile proposed model allows a superclass and its subclass(es) to exchange

201

attributes. In general; feedback inheritance avoids replicating functions among classes,

increases reusability, eases software maintenance, and facilitates the sharing of functions

in a distributed environment.

Additionally, the feedback inheritance model maintaining consistency with issues

such as information hiding, access and visibility, and encapsulation. The notions of

synthesized attributes, synthesized interfaces, and clans are introduced as part of the

definition of the model. The notion of clan relaxes the message passing technique and

potentially increases the probability of answering a message as well as the use of

attributes among classes.

3) As more complex systems are being built, the significance of software reuse is

further emphasized by researchers and users. OOP provides support for code reuse

through inheritance. The inheritance models currently used by OOPLs can be

characterized as "Specification Inheritance". That is, classes inherit the specification of

the methods from ancestor classes. Even if several implementations are available to a

method, the semantics of specification inheritance restricts an object to using the most

recent implementation of an inherited method, and other implementations are inaccessible

to that object.

The third inheritance model, Implementation inheritance (!-inheritance), has been

developed to provide objects with the capability to reuse previous implementations of the

inherited methods and to choose any implementation provided by any ancestor class. Even

though it is possible to manipulate some of the features of some OOPLs to access

previous implementations of inherited methods, to date there is no such model available

in the literatme.

The concept of !-inheritance and its proposed implementation scheme are based

on the notions of slots, aggregates, and generalized messages. The notion of a behavior

slot is used to represent a method that has several implementations in different classes.

A behavior slot has a specification and an implementation. The specification is considered

202

as a constant and the implementation as a variable. The model allows multiple

implementations to be associated with a slot. To associate a set of implementations of a

slot with its specification, the concept of an aggregate is used in the defmition of the

model.

Since an object in current OOPLs has no choice for an implementation except for

the most recent one, the notion of a generalized message is introduced to accommodate

the selection of any implementation of a slot. A generalized message provides a

discriminant (information) sent by a requesting object to a receiving object. The

discriminant allows the requesting object to specify the requested implementation and the

receiving object to select the appropriate implementation correctly.

A pervasive theme of this dissertation is that all proposed models promote source

code reuse and facilitate the development of software components in the context of OOP.

This theme is essential for both centralized and distributed programming environments.

Besides the refinements to each individual model suggested in [Al-Haddad 90 a,b] [Al

Haddad 91 b,c} [Al-Haddad 92b], this dissertation suggests some viable issues for future

work. Such issues include the development of formal/mathematical models, the

implementation and evaluation of the proposed models, and the incorporation of these

model to the concurrent OOP and distributed object-oriented environments.

BlliLIOGRAPHY

[Ada 83] Reference Manual for the Ada Programming Language. ANSI/Mll..-STD-1815A
1983. United States Department of Defense (American National Standards Institute, Inc.),
February 1983.

[Ada 79] Preliminary ADA Reference Manual and Rationale for the Design of the ADA
Programming Language. ACM SIGPLAN Notices, Vol. 14, No. 6, (parts A and B), June
1979.

[Agha 86a] G. Agha Actors: A Model for Concurrent Commutations in Distributed
Systems. The MIT Press, 1986.

[Agha 86b] G. Agha "An Overview of Actor Languages." OOP Workshop CACM
SIGPLAN Notices (October 1986), June 1986, pp. 58-67.

[Agha 87] G. Agha and C. Hewitt. "Concurrent Programming Using Actors." Research
Directions in Object-Oriented Programming. Edited by B. Shriver and P. Wegner, [MIT
Press Series in Computer Systems], The MIT Press, Cambridge, Massachusetts, 1987, pp.
37-53.

[Agrawala 91] R. Agrawala and A. Arvind. "Static Type Checking of Multi-Methods."
Proceedings Of the ACM Conference on Obiect-Oriented Programming Systems, Languages,
and Applications (OOPSLA '91), Phoenix, Arizona, November 1991, pp. 113-128.

[Algol 68] Proceedings of the 197 5 International Conference on ALGOL 68. Edited by G.B.
Hedrick, Oklahoma State University, June 10-12, 1975.

[Al-Haddad 92a] H.M. Al-Haddad, K.M. George, and M.H. Samadzadeh. "Multiple
Representation of Abstract Data Types and Reuse of Realizations." Proceedings of the ACM
Symoosium on Applied Computing, Kansas City, Missouri, March 1992, To appear.

[Al-Haddad 92b] H.M. Al-Haddad, K.M. George, and M.H. Samadzadeh. "A Feedback
Inheritance Model." The Journal of Systems and Software, To be published Spring 1992.

[Al-Haddad 91a] H. Al-Haddad. K.M. George, and M.H. Samadzadeh. "Multiple
Representations of Abstract Data Types (Extended Abstract)." Proceedings of the
ACM/IEEE Symposium on Applied Computing, Kansas City, Missouri, Apri11991, p. 403.

203

204

[At-Haddad 91b] H. At-Haddad, K.M. George, and M.H. Samadzadeh. "A Taxonomy of
Object-Oriented Programming Languages." Proceedings of the 1st Golden West International
Conference on Intelligent Systems, Reno, Nevada, June 1991, pp. 169-174.

[At-Haddad 91c] H. At-Haddad, K.M. George, and M.H. Samadzadeh. "Approaches to
Reusability in C++ and Eiffel." The Journal of Object-Oriented Programming, Vol. 4, No.
5, September 1991, pp. 34-45.

[At-Haddad 90a] H. At-Haddad, K.M. George, and M.H. Samadzadeh. "Description of a
New Approach to Object Inheritance." Proceedings of the ACMJIEEE Symposium on
Applied Computing, Fayetteville, Arkansas, April 1990, pp. 289-296.

[Al-Haddad 90b] H. Al-Haddad, K.M. George, and M.H. Samadzadeh. "TIM: A Unified
Approach to Object Inheritance." Proceedings of ·the 7th International Conference on
Systems Engineering, Las Vegas, Nevada, July 1990, pp. 780-787.

[Alagic 89] S. Alagic. Object-Oriented Database Programming. Springer-Verlag, 1989.

[Alws 85] K. H. Alws and I. Schapeler. "Experience with Object-Oriented Programming."
Proceedings of the International Joint Conference on Theory and Practice of Software
Development. Vol. 2, Berlin, Germany, March 1985, pp. 435-452.

[America 85] P. America. "Design Issues in Parallel Object-Oriented Programming."
Proceedings of the Second International Conference on Parallel Computing, Berlin,
Germany, December 1985, pp. 325-330.

[America 86] P. America. "Object-Oriented Programming: A Theoretician's Introduction."
Bull European Association Theoretical Computing Society (Austria), No. 29, June 1986, pp.
69-84.

[America 87] P. America. "Inheritance and Subtyping in Object-Oriented Programming."
Proceedings of the European Conference on Object-Oriented Programming CECOOP '87),
Paris, France, June 1987, pp. 234-242.

[Anderson 75] G. Anderson and E. Jensen. "Computer Interconnection Structure: Taxonomy,
Characteristics, and Examples." ACM Computing Surveys, Vol. 7, No.4, December 1975,
pp. 197-213.

[AT&T 85] UNIX System V, AT&T C++ Translator, Release Notes #307-175, AT&T,
1985.

[AT&T 86] AT&T C++ Translator Release 1.2, Addendum to Release Notes #307-005,
AT&T, 1986.

[AT&T 89a) UNIX System V, AT&T C++ Language System Release 2.0. Selected
Readings #307-144, AT&T, 1989.

205

[AT&T 89b] UNIX System V, AT&T C++ Language System Release 2.0. Product
Reference Manual #307-146, AT&T, 1989.

[Baldassari 88] M. Baldassari, V. Berti, and G. Bruno. "Object-Oriented Conceptual
Programming Based on PROT Nets." Proceedings of the International Conference on
Computer Languages, Miami, Florida, October 1988, pp. 226-233.

[Bancibon 86] F. Bancibon. "A Logic Programming/Object-Oriented Cocktail." ACM
SIGPLAN Notices, Vol. 15, No. 3, September 1986, pp. 11-21.

[Berlin 90] L. Berlin. "When Objects Collide: Experience with Reusing Multiple Class
Hierarchies." Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications OOPSLA '87), Ottawa, Canada, October 1990, pp.
181-190.

[Berson 87] S. Berson. E. Silva, and R. Muntz. "Object-Oriented Methodology for the
Specification of Markov Models." Technical Repon CSD-870030, Computer Science
Department, UCLA. July 1987, 27 pages.

[Bezivin 87] J. Bezivin. "Some Experience in Object-Oriented Simulation". Proceedings of
the ACM Conference on Object-Oriented Programming Systems. Languages. and
Applications (OQPSLA '87), Orlando, Florida, October 1987, pp. 394-405.

[Biggerstaff 89] T. Biggerstaff and A. Pedis. Software Reusability: Applications and
Experience. Volumes I & II, ACM Press and Addison-Wesley, Reading, Massachusetts,
1989.

[Black 86] A. Black, N. Huchinson, E. Jul, and H. Levy. "Object Structure in Emerald
System. ACM SIGPLAN Notices, Vol. 21, No. 11, November 1986, pp. 78-86.

[Blaschek 89] G. Blaschek, G. Pomberger, and A. Stritzinger. "A Comparison of Object
Oriented Programming Languages." The International Journal of Structured Programming,
Vol. 10, No.4, Apri11989, pp. 187-197.

[Bobrow 86] D. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and F. Zdybel.
"CommonLoops: Merging Lisp and Object-Oriented Programming." Proceedings of the
ACM Conference on Object-Oriented Programming Systems. Languages. and Applications
(OQPSLA '86), Portland, Oregon, September 1986, pp. 17-29.

[Bobrow 88] D. Bobrow, D. Moon, L. DeMichiel, R. Gabriel, S. Keene, and G. Kiczales.
"CommonLisp Object System Specification X3ill." ACM SIGPLAN Notices, Vol. 23,
Special issue on CommonLisp, September 1988.

[Booch 86] G. Booch. "Object-Oriented Development" IEEE Transaction on Software
Engineering, Vol. SE-12, No. 2, February 86, pp. 211-221.

[Booch 91] G. Booch. Object-Oriented Design with Applications. The Benjaming/Cumming
Publishing Company, Reading, Massachusetts, 1991.

206

[Borgida 86] A. Borgida. "Exceptions in Object-Oriented Languages." ACM SIGPLAN
Notices, Vol. 21, No. 10, October 1986, pp. 107-119.

[Borning 86a] A. Borning and D. Ingalls. "Multiple Inheritance in Smalltalk-80."
Proceedings of the Fall Joint Computer Conference (FJCC '86), Dallas, Texas, November
1986, pp. 234-240.

[Borning 86b] A. Borning. "Classes Versus Prototypes in Object-Oriented Languages."
Proceedings of the Fall Joint Computer Conference (FJCC '86), Dallas, Texas, November
1986, pp. 36-40.

[Bracha 90] G. Bracha and W. Cook. "Mixin-Based Inheritance." Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '90), Ottawa, Canada, October 1990, pp. 303-311.

[Briot 89] J. Briot and P. Cointe. "Programming with Explicit Metaclasses in Smalltalk-80."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '89), New Orleans, Louisiana, October 1989, pp. 419-431.

[Bruce 86] K. Bruce and P. Wegner. "An Object-Oriented Algebraic Model of the Subtypes
in Object-Oriented Languages." ACM SIGPLAN Notices, Vol. 21, No. 11, October 1986,
pp. 163-172.

[Budd 85] T. Budd. A Little Smalltalk User Manual. Department of Computer Science, The
University of Arizona. Tucson, Arizona, 1985.

[Budd 91] T. Budd. An Introduction to Object-Oriented Programming. Addison-Wesley,
Reading, Massachusetts, 1991.

[Cannon 82] H. Cannon. Flavors : A Non-Hierarchical Approach to Object-Oriented
Programming. Symbolics, Inc., 1982.

[Cardelli 84] L. Cardelli. "A Semantics of Multiple Inheritance." Proceedings of the
Semantics of Data Types Conference, Sophid Antipolis, France, June 1984, pp. 51-67.

[Cardell 86] L. Cardelli and P. Wegner. "On Understanding Types, Data Abstractions, and
Polymorphism." ACM Computing Surveys, August 1986, pp. 29-36.

[Carre 90] B. Carre and J. Geib. "The Point of View Notion for Multiple Inheritance."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '90), Ottawa, Canada, October 1990, pp. 312-321.

[Casais 88] E. Casais. "An Object-Oriented System Implementing KNO's." Proceedings of
the Conference on Office Information Systems, Palo Alto, California, March 1988, pp. 282-
290.

207

[Chambers 90] C. Chambers and D. Ungar. "Iterative Type Analysis and Extended Message
Splitting: Optimizing Dynamically-Typed Object-Oriented Programs." Proceedings of the
ACM SIGPLAN Conference on Programming Languages Design and Implementation, New
York. New York. October 1990, pp. 150-163.

[Chambers 91] C. Chambers and D. Ungar. "Making Pure Object-Oriented Languages
Practical." Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages. and Applications (QOPSLA '91), Phoenix, Ariwna, November 1991, pp. 1-15.

[Chien 90a] A. Chien and W. Dally. "Experience with Concurrent Aggregates:
Implementation and Programming." Proceedings of the Fifth Distributed Memory
Conference, Charleston, South Carolina, 1990, pp. 1040-1049.

[Chien 90b] A. Chien and W. Dally. "Concurrent Aggregates (CA)." ACM SIGPLAN
Notices, Vol. 25, No.3, March 1990, pp.177-186.

[Christian 86] K. Clnistian. A Guide to Modula-2. Springer-Verlag, 1986.

[Codani 87] J. Codani. "Microprogramming in Object-Oriented Style: An Experience with
Lisp Co-processor." Proceedings of the European Conference on Object-Oriented
Programming (ECOOP '87), Paris, France, June 1987, pp. 181-186.

[Cointe 87] P. Cointe. "Metaclasses are First Class: The ObjVlisp Model." Proceedings of
the ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA '87), Orlando, Florida, October 1987, pp. 156-167.

[Cook 86] P. Cook. "Languages and Object-Oriented Programming." Software Engineering
Journal, Vol. 1, No. 2, March 1986, pp. 73-80.

[Cook 89] P. Cook and J. Palsberg. "A Denotational Semantics of Inheritance and Its
Correctness." Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '89), New Orleans, Louisiana, October
1989, pp. 433-443.

[Cox 86a] B. Cox and B. Hunt. "Objects, Icons, and Software-ICs." BYTE, Vol. 11, No.
8, August 1986, pp. 161-176.

[Cox 86b] B. Cox. Object-Oriented Programming: An Evolutionary Approach. Addison
Wesley, Reading, Massachusetts, 1986.

[Cox 88] I. Cox. "C++ Language Support for Guaranteed Initialization, Safe Termination,
and Error Recovery in Robotics." ffiEE International Conference on Robotics and
Automation, 1988, pp. 641-643.

[Danforth 88] S. Danforth and C. Tomlison. "Type Theories and Object-Oriented
Programming." ACM Computing Surveys, Vol. 20, No. 1, March 1988, pp. 29-72.

208

[Detlefs 87] D. Detlefs, M. Herlthy, and J. Wing. "Inheritance of Synchronization and
Recovery Properties in Avalon/C++." Proceedings of the 20th Annual Hawaii International
Conference on System Sciences (HICSS '20), Vol. I, January 1987, pp. 416-423.

[Dewhurst 87] S. Dewhurst "Object Representation of Scope During Translation (C++)."
Proceedings of the European Conference on Object-Oriented Programming (ECOOP '87),
Paris, France, June 1987, pp. 79-86.

[Ditlefs 88] D. Ditlefs M. Herlihy, and J. Wing. "Inheritance of Synchronization and
Recovery Properties in Avalon/C++." IEEE Computer, December 1988, pp. 57-69.

[Dony 90) C. Dony "Exception Handling and Object-Oriented Programming: Towards a
Synthesis." Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA '90), Ottawa, Canada, October 1990, pp. 322-330.

(Duff 86] C. Duff. "Designing an Efficient Language." BYTE, Vol. 11, No.8, August 1986,
pp. 211-224.

[Edelson 87] D. Edelson. "How Objective Mechanisms Facilitate the Development of
Large Software Systems in Three Programming Languages." ACM SIGPLAN Notices, Vol.
22, No. 9, September 1987, pp. 54-63.

[Faust 90) J. Faust and H. Levy. "The Performance of an Object-Oriented Threads Package."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '90), Ottawa, Canada, October 1990, pp. 278-288.

[Franta 78] W. Franta. "SIMULA Language Summary." ACM SIGPLAN Notices, Vol. 13,
No.8, August 1978, pp. 243-244.

[Franz 87) M. Franz. "Succeeding C [C++ Language)." PC Tech Journal, Vol. 15, No. 9,
September 1987, pp. 109-183.

[Freeman 83) P. Freeman. "Reusable Software Engineering: Concepts and Research
Directions." Proceedings of the Workshop on Programming, New Pon, Rhode Island,
September 1983, pp. 2-16.

[Gabriel 89] R. Gabriel. "The CommonLisp Object System." AI Expert. March 1989, pp.
54-65.

[Gannon 771 J. Gannon. "An Experimental Evaluation of Data Type Conversions."
Communications of the ACM, Vol. 20, No. 8, August 1877, pp. 584-595.

[Gehani 88) N. Gehani and D. Roome. "Concurrent C++: Concurrent Programming with
Class(es)." Software Practice and Experience, Vol. 18, No. 12, December 1988, pp.
1157-1177.

[Geoffry 88) S. Geoffry. "Object-Oriented Programming Explained" Journal of Systems
Management, Vol. 39, No.7, March 1988, pp. 13-19.

209

[Geonardi 87] L. Geonardi and P. Mello. "Combining Logic and Object-Oriented
Programming Language Paradigms." Proceedings of the 20th Annual Hawaii International
Conference on System Sciences (HICSS '20), Vol. I, January 1987, pp. 379-385.

[Ghelli 91] G. Ghelli. "A Static Type System for Message Passing." Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications
(QOPSLA 91), Phoenix, Arizona, November 1991, pp. 129-143.

(Gittins 86] M. Gittins. "The Role of Object-Oriented Programming in Knowledge
Engineering." Proceedings of the International Conference on Knowledge Based Systems
(KBS 86), London, England, July 1986, pp. 249-260.

[Goguen 86a) J. Goguen. "Reusable Interconnecting Software Components." IEEE
Computer, Vol. 19, No. 2, February 1986, pp. 16-28.

[Goguen 86b] J. Goguen and J. Meseguer. "Extension and Foundation of Object-Oriented
Programming." ACM SIGPLAN Notices, Vol. 21, No. 10, October 1986, pp. 153-162.

[Gold 91] E. Gold and M. Rosson. "An Instance-Centered Environment for Smalltalk."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '91), Phoenix, Arizona. November 1991, pp.62-74.

[Goldberg 83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, Massachusetts, 1983.

[Goldberg 89] A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-Wesley,
Reading, Massachusetts, 1989.

[Grogon 89a] P. Grogon. Design Criteria for a Simple Object-Oriented Language. OOP89-5,
Department of Computer Science, Concordia University, Montreal, Quebec, Canada, 1989.

[Grogon 89b] P. Grogon and A. Bennett. A Theory for Object-Oriented Languages
(Extended Abstract). OOP-89-1, Department of Computer Science, Concordia University,
Montreal, Quebec, Canada, 1989.

[Guimaraes 91] N. Guimaraes. "Building Generic User Interface Tools: An Experience with
Multiple Inheritance." Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications COOPSLA '91), Phoenix, Arizona,
November 1991, pp. 89-96.

[Haarslev 90] V. Haarslev. "A Framework for Visualizing Object-Oriented Systems."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (QOPSLA '91), Ottawa, Canada, October 1990, pp. 237-244.

(Habert 90] S. Habert and L. Mosseri. "COOL: Kernel Support for Object-Oriented
Environment." Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '91), Ottawa, Canada, October 1990, pp.
169-177

210

[Hailpern 87] B. Hailpem and V. Nguyen. "A Model for Object Based Inheritance."
Research Directions in Object-Oriented Programming. Edited by B. Shriver and P. Wegner,
[MIT Press Series in Computer Systems], The MIT Press, Cambridge, Massachusetts, 1987,
pp.147-164.

[Halbert 87] D. Halbert, P. O'Brien. "Using Types and Inheritance in Object-Oriented
Languages." Proceedings of the European Conference on Object-Oriented Programming
(ECOOP '87), Paris, France, June 1987, pp. 20-31.

[Hendler 86] J. Hendler. "Enhancement for Multiple Inheritance." ACM SIGPLAN Notices,
Vol. 21, No. 10, October 1986, pp. 98-106.

[Hudson 87] S. Hudson and R. King. "Object-Oriented Database Support for Software
Environment." ACM SIGMOD Records., Vol. 16, No.3, December 1987, pp. 491-503.

[Hur 87] J. Hur and K. Chon. "Overview of a Parallel Object-Oriented Language CLIX."
Proceedings of the European Conference on Object-Oriented Programming (ECOOP '87),
Paris, France, June 1987, pp. 315-323.

[Ishikawa 90] Y. Ishikawa, H. Tokuda, and C. Mercer. "Object-Oriented Real-Time
Language Design: Constructs for Timing Constraints." Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (OQPSLA '90),
Ottawa, Canada, October 1990, pp. 289-302.

[Jacky 86] J. Jacky and I. Kalet. "Object-Oriented Approach to A Large Scientific
Applications." ACM SIGPLAN Notices, Vol. 21, No. 11, November 1986, pp. 368-376.

[Kaehler 86] T. Kaehler and D. Patterson. "A Small Test of Smalltalk." BYTE, Vol. 11, No.
8, August 1986, pp. 148-159.

[Kahn 87] K. Kahn, E. Tribble, M. Miller, and D. Bobrow. "Vulcan: Logical Concurrent
Objects." Research Directions in Object-Oriented Programming, Edited by B. Shriver and
P. Wegner, [MIT Press Series in Computer Systems], The MIT Press, Cambridge,
Massachusetts, 1987, pp. 75-112.

[Kaiser 87a] G. Kaiser and D. Gorlen. "MELDing Data Flow and Object-Oriented
Programming." Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '87), Orlando, Florida, October 1987, pp.
254-265.

[Kaiser 87b] G. Kaiser. "A Low-Based Approach to Object-Oriented Programming." ACM
SIGPLAN Notices, Vol. 22, No. 12, December 1987, pp. 482-493.

[Kaiser 90] G. Kaiser and B. Hailpem. "An Object Model for Shared Data" Proceedings
of the International Conference on Computer Languages, Ottawa, Canada, October 1990,
pp. 136-144.

211

[Keene 89] S. Keene. Object-Oriented Programming in CommonLisp. Addison-Wesley,
Reading, Massachusetts, 1989.

[Kempf 87] J. Kempf, W. Harris, and A. Snyder. "Experience with CommonLoops."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '87), Orlando, Florida, October 1987, pp. 214-226.

[Kempf 88] J. Kempf, A. Paepcke, B. Beach, J. Moham, B. Mahbob, and A. Snyder.
"Language Level Persistence for an Object-Oriented Application Programming Platform."
Proceedings of the Twentv First Annual Hawaii International Conference on System
Sciences (HICSS '21), Vol. IT, January 1988, pp. 424-433.

[Kernighan 78] B. Kernighan. The C Programming Language. Prentice-Hall, Inglewood
Cliffs, New Jersey, 1978.

[Kerr 86] R. Kerr. "Object-Based Programming: A Foundation for Reliable Software."
Proceedings of the Fourteenth Simula User's Conference, Stockholm, Sweden, August 1986,
pp. 159-165.

[Kerr 87] P. Kerr and D. Percival. "Use of Object-Oriented Programming in Time Series
Analysis Systems." ACM SIGPLAN Notices, Vol. 22, No. 12, December 1987, pp. 1-10.

[Kirkerud 89] B. Kirkerud. Object-Oriented Programming with Simula. Addison-Wesley,
Reading, Massachusetts, 1989.

[Klint 86] P. Klint "Modularization and Reusability in Current Object-Oriented
Languages." Proceedings of the CERN School of Computing, Geneva, Switzerland, 1986,
pp. 65-77.

[Knapp 87] V. Knapp. "The Smalltalk. Simulation Environment." Proceedings of the 1987
Winter Simulation Conference. Atlanta, Georgia, December 1987, pp. 146-151.

[Kreczmar 89] A. Kreczmar. "On Inheritance in Object-Oriented Programming." Advanced
Programming Methodologies, Academic Press, 1989.

[Kristensen 87] B. Kristensen, 0. Madsen, P. Pedersen, and K. Nugaard. "The BET A
Programming Language." Research Directions in Object-Oriented Programming, Edited by
B. Shriver and P. Wegner, [MIT Press Series in Computer Systems], The MIT Press,
Cambridge, Massachusetts, 1987, pp. 7-47.

[Kukula 87] J. Kukula and S. Gupta. "Object-Oriented Programming with Speculative
Parallelism for Parallel Processing." Proceedings of the 1987 IEEE International Conference
on Computer Design: VLSI in Computers and Processors, Rey Brook, New York, October
1987' pp. 596-600.

[Laff 85] M. Laff and B. Hailpern. "SW2- An Object-Based Programming Environment"
ACM SIGPLAN Notices, Vol. 20, No. 7, July 1985, pp. 1-11.

212

[Law 87] C. Law. "Smalltalk.: Effectively Exploiting a New Technology." Proceedings of
the International Technology: Emerging Opportunities and Programming. The Second Pan
Pacific Computer Conference, Singapore, Malaysia, August 1987, pp. 296-303.

[Lewis 91} J. Lewis, S. Henry, D. Kafura, and R. Schulman. "An Empirical Study of the
Object-Oriented Paradigm and Software Reuse." Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '91),
Phoenix, Arizona, November 1991, pp. 184-196.

[Liberman 86] H. Liberman. "Using Prototypical Objects to Implement Shared Behaviors
in Object-Oriented Systems." Proceedings of the ACM Conference on Object-Oriented
Programming Systems. Languages. and Applications, Portland, Oregon, September 1986.

[Love 86] T. Love. "The Concept of Object -Oriented Programming. "Feedback 86: DSSD
User's Conference. Overland Park, Kansas, October 1986, pp. 1-13.

[Loumis 87] M. Loumis, A. Shah, and J. Runbough. " An Object Modeling Technique for
Conceptual Design." Proceedings of the European Conference on Object-Oriented
Programming (ECOOP '87), Paris, France, June 1987, pp. 325-335.

[Lucas 89] P. Lucas. "Multiple Inheritance and Exceptions in Frame Systems." Technical
Report CS-R8931, Center for Mathematics and Computer Science, August 1989.

[MacLennan 85] B. J. MacLennan. "A Simple Software Environment Based on Objects and
Relations." ACM SIGPLAN Notices, Vol. 20, No.7, July 1985, pp. 199-207.

[Madsen 86] 0. Madsen. "Block Structure and Object-Oriented Languages." ACM
SIGPLAN Notices, Vol. 21, No. 10, October 1986, pp. 133-142.

[Madsen 87] 0. Madsen and C. Nygaard. "An Object-Oriented Metaprogramming System."
Proceedings of the 20th Annual Hawaii International Conference on System Sciences
<HICSS '20), Vol. IT, January 1987, pp. 406-415.

[Madsen 89] 0. Madsen. "Virtual Classes: A Powerful Mechanism in Object-Oriented
Programming." Proceedings of the ACM Conference on Object-Oriented Programming
Systems. Languages, and Applications (OOPSLA '89), New Orleans, Louisiana, October
1989, pp. 397-406.

[Madsen 90] 0. Madsen, B. Magmusson, and B. Pederson. "Strong Typing of Object
Oriented Languages Revisited." Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA '90), Ottawa, Canada,
October 1990, pp. 140-150.

[Marcke 88] K. van Marcke. "Towards Explicit Inheritance Schemes.11 Proceedings of the
Twenty First Annual Hawaii International Conference on System Sciences (HICSS '21),
Vol. ll, January 1988, pp. 386-395.

213

[McDonald 90] J. McDonald and W. Stuetzle. "Painting Multiple Views of Complex
Objects." Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications COOPSLA '90), Ottawa, Canada, October 1990, pp. 145-157

[Meng 86] B. Meng. "Programming Gets Object-Oriented." Digital Design., Vol. 16, No.
10, September 1986, pp. 28-31.

[Merrow 87] T. Merrow and J. Laursen. "A pragmatic System for Shared Persistent
Objects." Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA '87), Orlando, Florida, October 1987, pp. 103-110.

[Meulen 87] P. Meulen. "INSIST: Interactive Simulation in Smalltalk." Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '87), Orlando, Florida, October 1987, pp. 366-376.

[Meyer 87] B. Meyer. "Eiffel: Programming for Reusability and Extendibility." Proceedings
of the Fifteenth SIMULA Conference, St Helier, England, September 1987, pp. 109-118.

[Meyer 88] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, New Jersey, 1988.

[Meyer 89] B. Meyer. "From Structured Programming to Object-Oriented Programming: The
Road to Eiffel." The International Journal of Structured Programming, Vol. 10, No. 1,
Springer Verlag, 1989, pp. 19-39.

[Micallef 89] J. Micallef. "Encapsulation, Reusability, and Extensibility in Object-Oriented
Programming Languages." Journal of Obiect-Oriented Programming, April/May 1989, pp.
12-34.

[Miranda 87] E. Miranda. "BrouHaHa- a Portable Smalltalk Interpreter." ACM SIGPLAN
Notices, Vol. 22, No. 12, December 1987, pp. 345-365.

[Moon 85] D. Moon and S. Keene. "Flavors: Object-Oriented Programming on Symbolic
Computers." CommonLisp Conference, Boston, Massachusetts, December 1985, pp. 1-18.

[Moon 86] D. Moon. "Object-Oriented Programming with Flavors." Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '86), Portland, Oregon, September 1986, pp. 1-8.

[Nierstrasz 86] 0. Nierstrasz. "What Is the 'Object' in Object-Oriented Languages."
Proceedings of the CERN School on Computing, Geneva, Switzerland, 1986, pp. 43-53.

[Nierstrasz 89] 0. Nierstrasz. "A Survey of Object-Oriented Concepts." Object-Oriented
Concepts, Databases, and Applications, Edited by W. Kim and F. Lochovsky, Addison
Wesley, Reading, Massachusetts, 1989.

[Nygaard 78] K. Nygaard and 0. Dahl. "The Development of the SIMULA Language."
ACM SIGPLAN Notices, Voll3, No.8, August 1978, pp. 245-272.

214

[Nygaard 86] K. Nygaard. "Basic Concepts in Object-Oriented Programming." ACM
SIGPLAN Notices, Vol. 21, No. 10, October 1986, pp. 128-132.

[Oldford 86] R. Oldford and S. Peters. "Object-Oriented Data Representation of Statistical
Data Analysis." COMSTAT: Proceedings in Computational Statistics, Seventh Symposium,
Rome, Italy, 1986, pp. 301-306.

[OOP Workslrop 85] "Object-Oriented Workshop." ACM SIGPLAN Notices, Vol. 21, No.
10, October 1985.

[OOPSLA '86] "Object-Oriented Programming Systems, Languages, and Applications",
ACM SIGPLAN Notices, Vol. 21, No. 11, Portland, Oregon, September 1986.

[OOPSLA '87] "Object-Oriented Programming Systems, Languages, and Applications",
ACM SIGPLAN Notices, Vol. 22, No. 12, Orlando, Florida, October 1987.

[OOPSLA '88] "Object-Oriented Programming Systems, . Languages, and Applications",
ACM SIGPLAN Notices, Vol. 23, No. 11, San Diego, California, September 1988.

[OOPSLA '89] "Object-Oriented Programming Systems, Languages, and Applications",
ACM SIGPLAN Notices, Vol. 24, No. 12, New Orleans, Louisiana, October 1989.

[OOPSLA '90] "Object-Oriented Programming Systems, Languages, and Applications",
ACM SIGPLAN Notices, Vol. 25, No. 12, Ottawa, Canada, October 1990.

[OOPSLA '91] "Object-Oriented Programming Systems, Languages, and Applications",
ACM SIGPLAN Notices, Vol. 26, No. 13, Phoenix, Arizona, November 1991.

[Oucournan 87] R. Oucournan. "On Some Algorithms for Multiple Inheritance in Object
Oriented Programming." Proceedings of the European Conference on Object-Oriented
Programming <ECOOP '87), Paris, France, June 1987, pp. 291-300.

[Paepcke 90] A. Paepcke. "PCLOS: Stress Testing CLOS Experiencing the Metaobject
Protocol." Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (QOPSLA '90), Ottawa, Canada, October 1990, pp. 194-200.

[Palsberg 90] J. Palsberg and M. Schwartzbach. "Type Substitution for Object-Oriented
Programming." Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '90), Ottawa, Canada, October 1990, pp.
151-160.

[Palsberg 91] J. Palsberg and M. Schwartzbach. "Object-Oriented Type Inference."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (QOPSLA '91), Phoenix, Arizona, November 1991, pp. 146-161.

[Pamas 76] D. Parnas, J Shore, and D. Weiss. "Abstract Types Defined as Classes of
Variables." Proceedings of the ACM Conference on Data: Abstractions, Definitions, and
Structure, Salt Lake City, Utah, 1976, pp. 149-154.

215

[Pascoe 86] G. Pascoe. "Elements of Object-Oriented Programming: Smalltalk Environment
Concepts." BYTE. Vol. 11, No. 8, August 1986, pp. 139-144.

[Pedersen 89] C. Pedersen. "Extending Ordinary Inheritance Schemes to Include
Generalization." Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '89), New Orleans, Louisiana, October
1989, pp. 407-417.

[Phaal 86] P. Phaal. "A Smalltalk Environment for Computer-Aided Control System
Design." Proceedings of the Third Symposium IEEE Control System Society on Computer
Aided Control System Design, Arlington, Virginia, September 1986, pp. 19-24.

[Pinson 88] L. Pinson and R. Wiener. An Introduction to Object-Oriented Programming
and Smalltalk. Addison-Wesley, Reading, Massachusetts, 1988.

[Pohl89] I. Pohl. C++ for C Programmers. The benjamin/Cumming Publishing Company,
Reading, Massachusetts, 198.

(Pope 87] S. Pope, A Goldberg, and L. Deutsch. "Object-Oriented Approach to Software
Lifecycle Using Smalltalk-80 System as a CASE Toolkit." Proceedings of the Fall Joint
Computer Conference (FJCC '87), Dallas, Texas, October 1987, pp. 13-20.

[Pugh 87] J. Pugh, W. Lanlonde, and P. Thomas. "Introducing Object-Oriented
Programming into the Computer Science Curriculum." ACM SIGCSE, Vol. 19, No. 1,
February 1987, pp. 98-102.

(Pyle 86) I. Pyle. "Objects in Ada and Its Environment" Proceedings of the CERN School .
of Computing, Geneva, Switerland, 1986, pp. 44-64.

[Rosentien 86] L. Rosentien and S. Wallace. Object-Oriented Programming for Mackintosh
Applications." Proceedings of the Fall Joint Computer Conference (FJCC '86), Dallas,
Texas, November 1986, pp. 31-35.

(Row 87) L. Row and C. Williams. "An Object-Oriented Database Design for Integrated
Circuit Fabrication." Proceedings of the International Conference on Data and Knowledge
Systems for Manufacturing and Engineering, Hartford, Connecticut, October 1987, pp.42-56.

[Shorn 86] S. Shorn. "Shared Object Hierarchy." Proceedings of the Workshop on Object
Oriented Database Systems, Pacific Grove, California, September 1986, pp. 231.

[Schaffert 86] G. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. "An
Introduction to Trellis/Owl." Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA '86), Portland, Oregon,
September 1986, pp. 9-16.

[Schmucker 86] T. Schmucker. "Object-Oriented Languages for the Mackintosh." BYTE,
Vol. 11, No.8, August 1986, pp. 177-185.

216

[Seidewitz 87] E. Seidewitz. " Object-Oriented Programming in Small talk and Ada."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OQPSLA '87), Orlando, Florida, October 1987, pp. 202-213.

[Sethi 89] R. Sethi. Programming Languages: Concepts and Constructions. Addison-Wesley,
Reading, Massachusetts, 1989.

[Snyder 86a] A. Snyder. "Encapsulation and Inheritance in Object-Oriented
Languages." Proceedings of the ACM Conference on Object-Oriented · Programming
Systems, Languages, and Applications (OOPSLA '86), Portland, Oregon, September 1986,
pp. 38-45.

[Snyder 86b] A. Snyder. "CommonObjects: An Overview." ACM SIGPLAN Notices, Vol.
21, No. 10, October 1986, pp. 19-28.

[Snyder 87] A. Snyder. "Inheritance and the Development of Encapsulated Software
Components." Proceedings of the 20th Annual Hawaii International Conference on System
Sciences (HICSS '20), Vol. I, January 1987, pp. 227-237.

[Sobell 89] M. Sobell. A Practical Guide to the UNIX System. The Benjamin/Cummings
Publishing Company, 1989.

[Steele 84] G. Steele. CommonLisp -The Language. Digital Equipment Corp., 1984.

[Steele 90] G. Steele. CommonLisp - The Language. Digital Press, 1990.

[Stefik 86] M. Stefik and D. Bobrow. "Object-Oriented Programming: Themes and
Variations." The lA Magazine, March 1986, pp. 40-62.

[Stein 87] L. Stein. "Delegation is Inheritance. 11 Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications COOPSLA '88),
Orlando, Florida, October 1987, pp. 138-146.

[Stein 88] J. Stein. "Object-Oriented Programming and Databases." Dr. Dobb's Journal on
Software Tools, Vol. 13, No. 3, March 1988, pp. 18-34.

[Strom 86] R. Strom. "A Comparison of the Object-Oriented and Process Paradigms. 11 ACM
SIGPLAN Notices, Vol. 21, No. 10, October 1986, pp. 88-96.

[Stroustrup 83] B. Stroustrup. "Adding Classes to the C Language: An Exercise in Language
Evolution." Software-Practice and Experience, Vol. 13, 1983, pp. 139-161.

[Stroustrup 84] B. Stroustrup. "Data Abstraction in C." Technical Journal, AT&TBell Labs,
Vol. 63, No. 8, 1984, pp. 1701-1732.

[Stroustrup 86a] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, 1986 ..

217

[Stroustrup 86b] B. Stroustrup. "An Overview of C++." ACM SIGPLAN Notices, Vol. 21,
No. 10, 1986, pp. 7-18.

[Stroustrup 86c] B. Stroustrup. "What Is Object-Oriented Programming?" Proceedings of the
Founeenth SIMULA User's Conference, Stockholm, Sweden, August 1986, pp. 69-84.

[Stroustrup 87a] B. Stroustrup. "The Evolution of C++: 1985 to 1987." Proceedings of the
USENIX C++ Workshop. Santa Fe, New Mexico, November 1987, pp. 1-21.

[Stroustrup 87b] B. Stroustrup. "Possible Directions for C++." Proceedings of the USENIX
C++ Workshop, Santa Fe, New Mexico, November 1987, pp. 399-416.

[Stroustrup 88a] B. Stroustrup. "Design Issues in C++." ACM SIGPLAN Notices, Vol. 23,
No. 1, January 1988, pp. 57-64.

[Stroustrup 88b] B. Stroustrup. "Type-Safe Linkage for C++." The Journal of USENIX
Association (Computing Systems), Vol 1, No. 4, University of California Press, 1988, pp.
371-403.

[Stroustrup 89a] B. Stroustrup. "Multiple Inheritance for C++." UNIX System V, AT&T
C++ Language System (Release 2.0), Selected Readings, Select Code 307-144. 1989.

[Stroustrup 89b] B. Stroustrup. "Parameterized Types for C++." The Journal of USENIX
Association (Computing Systems), Vol 2, No. 1, University of California Press, 1989, pp.
55-85.
[Stroustrup 91] B. Stroustrup. The C++ Programming Language. Second Edition, Addison
Wesley, Reading, Massachusetts, 1991.

[Tarumi 85] H. Tarumi, K. Agusa, andY. Ohno. "Acquaintance/Instance Variable Model
for Object-Oriented Programming." Proceedings of the IEEE Computer Society's Nineteenth
International Computer Software and Application Conference (COMSAC '85), Chicago,
Illinois, October 1985, pp. 69-73.

[Tello 87a] E. Tello. "Object-Oriented SCOOPS." Dr. Dobb's Journal of Software Tools,
Vol. 12, No. 6. June 1987, pp. 112-115.

[Tello 87a] E. R. Tello. "Object-Oriented Programming (Artificial Intelligence)." Dr. Dobb's
Journal on Software Tools, Vol. 12, No. 11, November 1987, pp. 130-136.

[Tesler 86] L. Tesler. "Programming Experience." BYTE, Vol. 11, No.8, August 1986, pp.
73-80.

[Tosten 88] R. Tosten. "Data Security in an Object-Oriented Environment Such as
Smalltalk." Proceedings of the International Conference on Computer Languages, Miami,
Florida, October 1988, pp. 234-241.

[Touretzky 86] D. Touretzky. The Mathematics of Inheritance Systems. Morgan Kaufmann
Publishing Company, 1986.

218

[Tracz 88a] W. Tracz. "Software Reuse Myths." ACM SIGSOFr: Software Engineering
Notes, Vol. 13, No. 1, January 1988, pp. 17-21.

[Tracz 88b] W. Tracz. "Software Reuse Maxims." ACM SIGSOFr: Software Engineering
Notes, Vol. 13, No. 4, October 1988, pp. 28-31.

[Tsichritzis 87] E. Tsichritzis et al. "KNO's: Knowledge Aquistion, Dissemination, and
Manipulation Objects." ACM Transactions on Office Information Systems, Vol. 5, No. 1,
1987, pp. 96-112.

[Ungar 87] D. Ungar and R. Smith. "Self: The Power of Simplicity." Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '87), Orlando, Florida, October 1987, pp. 227-242.

[Van Wijngaarden 75] A. Van Wijngaarden, B.J. Mailloux, J.E. Peck, H.A. Koster, M.
Sintzoff, C.H. Lindsey, L.G. Meertens, and R.G. Fisker. Revised report on the algorithmic
language Algol 68, Acta lnformatic, Vol. 5, pts. 1-3, 1975 pp. 1-236 (Also reproduced in
SIGPLAN Notices, Vol. 12, No.5, May 1977, pp; 1-79.

[Verity 87] J. Verity. "The Object-Oriented Revolution [Object-Oriented Programming
Trends]." Datamation, Vol. 33, No. 9, May 1987, pp. 73-78.

[Vines 89] D. Vines and T. King. "Experience in Building a Prototype Object-Oriented
Framework in Ada." Proceedings of the Eleventh Annual International Computer Software
and Application Conference (COMSAC '89), Tokyo, Japan, October 1989, pp. 642-648.

[Wasserman 90] A. Wasserman, P. Pircher, and R. Muller. "The Object-Oriented Structured
Design Notation for Software Design Representation." IEEE Computer, Vol. 23, No. 3,
March 1990, pp. 50-63.

[Watanabe 88] T. Watanabe and A. Yanezawa. "Reflection in an Object-Oriented
Concurrent Languages." Proceedings of the ACM Conference on Object-Oriented
Programming Systems. Languages, and Applications (OOPSLA '88), San Diego, California,
September 1988, pp. 306-315.
[Wayne 89] W. Wayne. "A Practical Comparison for Two Object-Oriented Languages."
IEEE Software, September 1989, pp. 61-67.

[Wechsler 88] H. Wechsler and D. Rine. "Object-Oriented Programming and Its Relevance
to Designing Intelligent Software." Proceedings of the International Conference on Computer
Languages, Miami, Florida, October 1988, pp. 242-248.

[Wegmann 86] A. Wegmann. "Object-Oriented Programming Using Modula-2." Journal of
Pascal, Ada, and Modula-2, Vol. 1, No. 1, January 1986, pp. 42-43.

[Wegner 83] P. Wegner. "Varieties of Reusability." Proceedings of the Workshop on
Reusability Programming, Newport, Rhode Island, September 1983. pp. 57-63.

219

[Wegner 86a] P. Wegner. "Classification in Object-Oriented Systems." ACM SIGPLAN
Notices, Vol. 21, No. 10, October 86, pp. 173-183.

[Wegner 86b] P. Wegner. "Introduction to the Special Issue of the SIGPLAN Notices on
the Object-Oriented Programming Workshop." ACM SIGPLAN Notices, Vol. 21, No. 10,
October 1986, pp. 1-6.

[Wegner 87] P. Wegner. "Dimensions of Object-Based Language Design." ACM SIGPLAN
Notices, Vol. 22, No. 12, December 1987, pp. 168-182.

{Wegner 90] P. Wegner. "Concepts and Paradigms of Object-Oriented Programming." ACM
SIGPLAN OOPS Messenger, Vol. 1, No. 1, August 1990, pp. 7-87.

[Wiegand 87] J. Wiegand. "Object-Oriented Code Optimizer and Generator." Technical
Report, University of Illinois, Urban-Champaign, July 1987.

[Wirfs-Brock 87] A. Wirfs-Brock and B. Wilkerson. "An Overview of Modular Smalltalk."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OQPSLA '87), Orlando, Florida, October 1987, pp.123-134.

[Wolf 87] W. Wolf. "Better Controllers Through Object-Oriented Hardware Design."
Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors. Rey Brook, New York, October 1987, pp. 22-26. ·

[Wolf 89] W. Wolf. "A Practical Comparison of Two Object-Oriented Languages." IEEE
Software, September 1989, pp. 61-68.

[Zdonik 86] S. Zdonik. "Why Properties are Object-Oriented Refmement of 'is-a'."
Proceedings of the Fall Joint Computer Conference (FJCC '89), Dallas, Texas, November
1986, pp. 41-47.

[Yan 86] J. Yan and E. Schlumberger. "Identifying Depositional Environment Structure: An
Expert System Approach Using Object-Oriented Programming and Model-Driven
Verification." Proceedings of the Second International Expert Systems Conference, London,
England, September 1986, pp. 441-449.

[Yokote 86] Y. Yokote and M. Tokoro. "Design and Implementation of Small talk."
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (QOPSLA '86), Portland, Oregon, September 1986, pp. 331-340.

[Yokote 87a] Y. Yokote at al. "Experience and Evaluation of Concurrent Smalltalk."
Proceedings of the ACM Conference on Object -Oriented Programming Systems, Languages,
and Applications (OOPSLA '87), Orlando, Florida, October 1987, pp. 406-415.

[Yokote 87b] Y. Yokote and M. Tokoro. "Concurrent Programming in Concurrent
Smalltalk." Research Directions in Object-Oriented Programming, Edited by B. Shriver and
P. Wegner, [MIT Press Series in Computer Systems], The MIT Press, Cambridge,
Massachusetts, 1987, pp. 129-158.

220

[Zdonik 86a] S. Zdonik. "Why Properties are Object-Oriented Refinement of 'is-a'."
Proceedings of the Fall Joint Computer Conference, Dallas, Texas, November 1986, pp. 41-
47.

[Zdonik 86b] S. Zdonik. "Version Management in an Object-Oriented Database."
Proceedings of the International workshop on Databases, Trondheim, Norway, June 1986,
pp. 405-422.

[Zeigler 87] B. Zeigler. "Hierarchical, Modular Discrete-Event Modeling in an Object
Oriented Environment." Simulation, Vol. 49, No.5, November 1987, pp. 219-230.

[Zhong 88] Y. Zhong, S. Lshizuka, and R. Enavi. "Integrating Abstract Data Types with
Object-Oriented Programming by Specification-Based Approaches." Proceedings of the
International Conference on Computer Languages (OOPSLA 88), Miami, Florida, October
1988, pp. 202-209.

[Zygmont 87] A. Zygmont "Object-Oriented Programming and CACSD." Proceedings of
the IEEE Annual Conference: Engineering Focuses on Excellence, Reno, Nevada, June
1987' pp. 648-652.

VITA~

Hisham M. Al-Haddad

Candidate for the Degree of

Doctor of Philosophy

Thesis: NEW INHERITANCE MODELS THAT FACILITATE SOURCE CODE
REUSE IN OBJECT-ORIENTED PROGRAMMING

Major Field: Computer Science

Biographical:

Personal Data: Born in Irbid, Jordan, January 1964, the son of Turkieh
and Mustafa Al-Haddad.

Education: Graduated from Irbid Senior High School, Irbid, Jordan, July,
1982; received the Bachelor of Science degree in Computer Science
from Yarmouk University, Irbid, Jordan, June, 1986; received the
Master of Science degree from Northrop University, Los Angeles,
California, June, 1988; completed the requirements for the Doctor of
Philosophy degree at Oklahoma State University, July, 1992.

Professional Experience: Teaching Assistant, Computer Science Department,
Oklahoma State University, August, 1989, to May, 1992.

