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CHAPTER I 

INTRODUCTION 

The cell wall and mucopeptide (MP) of bacteria have aroused the 

interest of various researchers and have been intensively studied (3) 

(46). The MP is characteristic in that it is responsible for shape 

determination, rigidity, and the resistance of cells to osmotic lysi"s 

(46). The protective MP is found in-virtually all bacteria except the 

mycoplasms and certain halophilic species (39) (66). 

The essential features (Figure 1) of the MP are: a backbone of 

alternating N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) 

residues having a B (1-4) linkage, a pentapeptide of the general 

sequence 1-alanine-D-glutamic acid-a diamino acid (lysine or diamino

pimelic acid) D-alanyl-D-alanine joined to the glycan chain by amide 

linkages between the alpha-amino groups of L-alanine and the lactyl 

carboxyl groups of the muramic acid residues. Peptide subunits are at 

least partially cross-linked to each other, the C-terminal #4 D-alanine 

residues of one being generally linked to the free amino group of the 

diamino acid (lysine, diaminopimelic acid (DAP) or meso-diaminopimelic 

acid) in a second tetrapeptide (43) (46) (47) (53). 

Bacterial cell wall biosynthesis is one of the most complex 

sequences of enzymatic reactions now knorNU and is unique because DAP and 

NAM are not found anywhere else in nature (7). 
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Figure 1. General Sequence of Mucopeptide (:tvlP) 
Including Transpeptidation Step 
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The S (1-4) linkage between NAG-NAM in the backbone of MP is 

specifically hydrolyzed by the enzyme lysozyme. When done in a hyper

tonic medium, the resultant morphological form is called a protoplast or 

spheroplast. Spheroplasts and protoplasts can be produced by the action 

of various agents which inhibit cell wall MP synthesis. These agents 

produce their particular effect at least partially on the tetrapeptide 

amino acids through.substitution or interference in the cross-linkage 

between tetrapeptides making up the MP (28) (30) (46) (53) (57) (61). 

Although many inhibitors exist we will concentrate upon the action of 

D-amino acids, specifically D-serine and the analogous role of glycine. 

As early as 19Lf4 a:nd 1945, Fox et al. (13) and Fling et al. (12) 

demonstrated that a D-amino acid isomer of a natural amino acid, such as 

L-leucine or L-valine, which is required for growth by Lactobacillus 

arabinosus, inhibits growth of that strain. Likewise the growth of 

Escherichia coli is inhibited by added D-amino acids at levels at which 

the L-forms do not exhibit such an effect (34}. Other studies have 

showil that D-alanine inhibits growth of L. arabinosus, L. casei and 

Streptococcus faecalis (52). Studies with three strains of Brucella 

abortus using the D-forms of the amino acids valine, leucine, histidine, 

methionine, and phenylalanine showed that each strain is inhibited by 

the D-amino acids at levels at which the L-forms do not exhibit such an 

effect. D-A~ino acids that showed the greatest inhibition were 

D-phenylalanine and D-methionine (65). 

Lark and Lark (37) (38) demonstrated that growth of Alcaligenes 

fecalis LB in the presence of certain D~amino acids results in 

spheroplast formation. Further studies revealed that D.-methionine is 

incorporated into the Hcell wall'' of A. fecalis thereby blocking further 
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synthesis of this structure. Upon analysis it was shown that neither 

the amino nor the carboxyl group of methionine is free when this amino 

acid is incorporated into the cell wall. Electron microscopic studies 

revealed lesions in the wall of cells grown in the presence of 

D-methionine as well as liberation of fibrous material, which was 

lysozyme sensitive (36). Other work on D-amino acids reported by Tuttle 

and Gest (58) show that several D-amino acids increase the cell wall 

content of amino sugars in Rhodospirillum rubrum. 

The amino acid glycine has been shown to have a somewhat similar 

role to that of D-amino acids and penicillin, i.e., division inhibition, 

cell elongation, and spheroplast or protoplast formation (9) (28) (42) 

(60) (61). The inhibitory effect of glycine on bacterial growth has 

been known for a long time (8) (9) (12) (13) (15) (16) (43) (51). A 

detailed study was conducted by Hishinuma et al. (30) who reported 

growth inhibition, using glycine, on eight different species of gram

positive bacteria of various genera representing the four most common 

mucopeptide types (Figure 2). The inhibited cells showed morphological 

aberrations including cell elongation which could be prevented by addi

tion of L-alan:lne. The amount of incorporated glycine was equivalent 

to the decrease in the amount of alanine. With one exception glycine 

was also incorporated into the MP. Glycine can replace L-alanine in 

position 1 or D-alanine residues in positions 4 and 5 of the peptide 

subunit. Replacement of D-alanine residues was most common. Most of 

the D-alanine replaced by glycine was in the C-terminal or number 4 

position. 

Further studies have confirmed and added to our knowledge of 

D-amino acids and the effect of glycine on HP structure and synthesis. 



Figure 2. Fragments of the Primary Structure of Four 
Different Types of MP (Abbreviations of 
Amino Acids are: Ala = Alanine, Glu = 
Glutamic Acid, Lys = Lysine, Gly = 
Glysine, Dab = Diaminobutyric Acid, Orn 
Ornithine, Asp = Aspartic Acid, Ac = 
Acetyl, A= Staphylococcus aureus, B = 
Corynebacterium insidiosum, C = Lacto
bacillus plantarum, D = Lactobacillus 
cellobiosus) 
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Schleifer, Hames and Kandler (28) have shown that growth-inhibiting 

concentrations .of glycine or D-amino acids lead to a modification of the 

peptide subunits and to a decrease in the extent of their cross-linkage. 

Glycine can replace 1-alanine in position 1 and D-alanine residues in 

positions 4 and 5 of the peptide subunits. Incorporation of D-amino 

acids is restricted to positions 4 and 5. These studies were conducted 

upon eight different gram-positive bacteria of various genera represent

ing the four most common MP types. 

Schleifer et. al. (48) have proposed that in the presence of D-amino 

acids or glycine at growth inhibiting concentrations modified nucleo-tide

activated MP pn!cursors are formed in which D.,.. or L-alanine residues are 

replaced by glycine or D-amino acids. Since they are less efficiently 

incorporated into the MP, a high percentage of the modified MP remains 

uncross-linked, showing that they are poor substrates for the trans

peptidation reaction (53). This is consistent with data showing that 

residues 4 and 5 of the pentapeptide moiety play an important role in 

the donor phase of cross-linked synthesis. The transpeptidase has a 

higher degree of specificity in the donor phase for D-alanine in 

residue 4 than for D-alanine in residue 5 in the cross-linking stage of 

~~synthesis (4) (45). 

D-Serine is one of the most commonly used D-amino acids to 

demonstrate growth inhibition, elongation, and incorporation into the 

MP. D-Serine has been shown to inhibit the synthesis of pantothenate 

in~· coli (41), Erwinia ~· (22) and a Flavobacterium~· (11). The 

inhibition can be overcome by addition of beta~alanine or pantothenic 

acid (11) (22) (24). In a further study, it was demonstrated that 
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D-serine inhibits the alpha-decarboxylation of aspartic acid in Erwinia 

~· (22). Some reports have also shown that D-serine inhibits the 

racemization of alanine (32) (40). In addition to these findings, there 

are numerous reports of its incorporation into MP (26) (48) (57) (62) 

(63) (64). 

Dubos first reported that DL-serine is toxic for virulent and 

avirulent strains of Mycobacterium tuberculosis (18). It has been shown 

that D-serine inhibits cell wall synthesis in Bacillus subtilis and 

Pasteurella pestis. This inhibition can be reversed by addition of 

D-alanine (SO) (54). Similar findings by Yabu and Heumpfner (64) have 

shown D-serine can induce the accumuiation of uridine diphosphate-N

acetylmuramyltripeptide, a cell wall intermediate in Mycobacterium 

smegmatis, and this accumulation could be decreased by addition of 

D-alanine. D-Serine also inhibited the growth of M. smegmatis and in

duced morphological alterations in the organism. On the basis of 

their results, Yabu and Kuempfner concluded that D-serine acts at three 

sites of cell wall MP synthesis: (1) the racemization of alanine, 

(2) the incorporation of glycine, and (3) the formation of DAP from 

aspartic acid. 

Data concerning the role of D-serine on Erwinia carotovora (24) 

have shown that it causes filament formation and inhibition of cell 

divisio~ (18) (21) (23) (27). Five other D-amino acids (histidine, 

tryptophan, methionine, phenylalanine, and threonine) have shown similar 

results (18). Analysis of the MP in growing cells of E. carotovora re

veals that it consists of 2-alanine, !-glutamic acid and one DAP 

residues. Smaller amounts of aspartic acid and glycine were also ob

served and it was suggested that these amino acids are present in the 
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crossbridge of this organism (26). Further work has shown that D-serine 

incorporation into ~· carotovora produces a 30 to 40% inhibition in MP 

synthesis during formation of filaments (23). It was also found that 

when glycine and D-serine are present in the growth medium, both are 

incorporated but glycine to a lesser extent (26). 

These findings are similar to others (28) {30) (33) (48) (57) (64) 

which indicate that D-serine can partially replace glycine in MP; how

ever, from these studies the site of D-serine incorporation was not 

determined. 

Study of the effects of D-serine on Micrococcus_ lysodeikticus, an 

organism frequently use.d in our laboratory, has provided evidence for 

the site of incorporation of D-serine in the MP of this organism and, 

perhaps, by analogy, into .!· carotovora. The tetrapeptide found in 

M. lysodeikticus is like that found in E. carotovora with the exception 

of lysine replacing DAP (14) (26). Whitney and Grula (62) reported that 

D-serine inhibits the growth of M. lysodeikticus to one-third that of 

control and is incorporated into the ~W at an amount almost equal to 

that of lysine or glutamic acid. No morphological abnormalities such as 

protoplast or filament formation were observed. The greatest variation 

shown was the reduction of glycine to about one-half its normal value. 

The cell wall }W of M. lysodeikticus grown in the presence of 

D-serine has been isolated and analyzed for content of c~ and N-terminal 

amino acids. It was found that approximately 75 to 80% of the incor

porated D-serine can substitute for glycine (Figure 3) and is attached 

via a peptide bond to the alpha-carboxyl group of glutamic acid (63). 

Studies using both wild type M. lysodeikticus and the dis--lip+ mutant 

have shown the location of D-serine to be identical to both organisms 



Figure 3. Structure of the MP in Micrococcus 
lysodeikticus Showing D-Serine 
Replacing Glycine on the Alpha
Carboxyl Group of Glutamic Acid 
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(33). Similar findings have also been reported forM. tuberculosis 

where D-serine is also thought to replace glycine on the alpha-carboxyl 

group of glutamic acid (35) (64). 

The only theory proposed on the attachment site of D-amino acids 

causing uncross-linked mucopeptide comes from Strominger et al. (31). 

This theory describes the reversibility of the terminal transpeptidation 

step in cell wall synthesis and indicates that it can be reversed by 

D-amino acids. When D-amino acids are employed, the D-alanine on the 

. number 5 position of the pentapeptide, which remains mostly intact 'vhen 

the cells are subjected to penicillin (showing inhibition of the trans

peptidation reaction) now becomes cleaved at a much greater rate 

indicating a reversal rather than an inhibition of this reaction. In 

addition, the added D-amino acid replaces the D-alanine that would 

normally be removed (Figure 4). This theory L~plies that D-amino acids 

can reverse the transpeptidation step in contrast to penicillin \vhich 

always inhibits the forward reaction (53). Data already presented shows 

that D-amino acids can replace not only D-alanine in position number 5, 

as inferred by Strominger, but also in position number 4 (28) (48) (57). 

However, when D-serine is incorporated by being attached to the alpha

carboxyl group of glutamic acid, as in M. lysodeikticus (63), cross

linking is not involved as would be implied by Strominger 1s theory. 

There is also evidence showing that D-amino acids may not cause a 

reversal of the transpeptidation reaction, because a significant amount 

of cross-linking still remains. Grula and King (33) reported that 

penicillin caused a 52% inhibition of cross-linkage in MP of growing 

cells of M. lysodeikticus in contrast to only 14% when D~serine was 



Figure 4. The Strominger Theory of D-Amino Acid 
Incorporation in the MP of 
Escherichia coli 
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present during growth. This finding would be. expected if D-serine is 

incorporated by being attached to the alpha-carboxyl group of glutamic 

acid as shown by W11itney and Grula (62) (63). 

To check Strominger's theory we set out to determine the site of 

attachment of D-serine in the MP of the gram-negative organism ~· 

carotovora. Other than the work of Strominger et al. (31) no one has 

specified a possible site for incorporation of a D-amino acid into the 

MP of a gram-negative organism. The results of this investigation 

should help to determine if Strominger's theory, relating to D-amino 

acid incorporation and activity, is correct and applicable to other· 

bacteria. 
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CHAPTER II 

MATERIALS AND :!YIETHODS 

Test Organism 

The organism utilized in this study was a stock culture of EnJinia 

carotovora (24). Stock cultures of this organism were maintained on 

nutrient agar containing 0.5% sodium chloride with and without 1.0% 

dextrose. To ensure purity, the culture was periodically streaked on 

nutrient agar and observed for variation in colony morphology. 

Media 

The basal salts medium used in this study contained the following 

per 100 ml: glucose (150 mg), L-aspartic acid (280 mg), K2HPo4 (174 mg), 

KH2Po4 (136 mg), and Mgso4·7H2o (3 mg). The following components were 

added as trace mineral salts per 100 ml medium: H3Bo3 (0.5 ~g), Caco3 

(10.0 ~g), Cuso4 ·5H2o (1.0 ~g), Feso4 ·(NH4) 2so4 ·6H2o (50.0 ~g), Kl04 

(1.0 )lg), Mnso4 ·H2o (2.0 ~g), Hoo3 (1.0 ~g), and Znso4·7n2o (5.0 )lg). 

During specific experiments either DL-serine (to 0.034 M) or D-serine 

(to 0.017 M) was added. All solutions were adjusted to pH 6.8 to 7.0 

prior to addition to the medium. Glucose and serine were sterilized by 

filtration and added aseptically. All other components were sterilized 

together.by autoclaving for 15 to 20 minutes at 121°C. All solutions 

were prepared using deionized \vater. 

17 
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Growth of Cells 

Nutrient agar slants were inoculated from stock cultures and 

incubated 12 to 24 hours at 25°C. The resulting growth was suspended in 

sterile 0.85% saline and washed two times with centrifugation (clinical 

model). Cells from one nutrient agar slant were then resuspended in 

saline to an optical density equivalent to 0.1 at 540 nm (Bausch and 

Lomb spectronic 20 Spectrophotometer) in 20 mm (OD) by 150 mm Kimax test 

tubes. One drop of this suspension was used to inoculate 5.0 ml of 

medium, while 1.0 ml was used to inoculate 100 ml of medium. Inoculated 

media (5.0 ml) were incubated in 20 mm by 150 mm test tubes at 25°C on 

a rotary shaker having 180 revolutions per minute whereas volumes of 

100 ml were incubated in 250 ml Erlenmeyer flasks. Cells were harvested 

by centrifugation after 17 hours of incubation. 

Procedure for Isolation of 

Mucopeptide (MP) 

Whole cells were suspended in water and added dropwise with stirring 

into boiling 4% sodium dodecylsulfate. (SDS) at a ratio of 1 ml cells to 

6 ml SDS. The suspension was stirred for another 2 hours while it cooled 

and then kept overnight at room temperature (2). 

The following procedure was then used for the isolation of MP from 

the SDS treated cells: 

Wash SX in buffer A (K2HPo4 , 0.05 M, pli 7.8) at 30,000 rpm for 35 
minutes. 

Resuspend cells in 5 to 10 ml.of the buffer A and add trypsin (0.5 mg/ 
ml/final). Incubate 2 hours at 35°C and add same amount of buffered 
trypsin; continue incubation 2 additional hours then centrifuge at 
30,000 rpm for 35 minutes. 

{ 



Wash sediment 2X in buffer A. 

I 
Wash sediment 2X in distilled water. 

I 
Resuspend sediment and spin at low speed (approximately 4,000 rpm for 
10 minutes); discard sediment and centrifuge supernatant for final 
isolation of MP (20). 
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All centrifugations except for the slow spin were accomplished using 

a number 40 head in the Beckman Spinco Model L Ultracentrifuge at 78,410 

G-force (30,000 rpm) for 35 minutes. All washing procedures were done 

using cold (0 to 4°C) solutions. All manipulations except boiling of 

the cells were performed in centrifuge tubes used in the number 40 

Spinco head; all volumes were adjusted to the full level of these tubes. 

Acid Hydrolysis of Mucopeptide 

Mucopeptide hydrolysis was performed by placing 0.3 to 2.0 ml 

samples of isolated MP in 10 mm (OD) by 100 mm test tubes. An equal 

volume of 12N hydrochloric acid was added forming a 6N solution for 

total hydrolysis of MP components. The incubation period for total 

hydrolysis was 18 to 24 hours in vacuo at 100°C. A 4N solution of 

hydrochloric acid was used for partial hydrolysis to obtain peptides. 

The incubation period for partial hydrolysis was 1 to Lf hours in vacuo 

Amino Acid Labeling Experiments 

Cells were grown in 100 ml of basal medium for 17 hours in the 

presence of 1 ~ Ci of c14-labeled D-serine added at time = 0. Following 

optical density readings at 540 nm on a Bausch and Lomb Spectronic 20 

Spectrophotometer (for conversion of cell density to dry weight values 

using a previously constructed curve), the cells were washed twice in 
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0.85% saline solution and the MP isolated. The cell wall MP fractions 

were usually subjected to acid hydrolysis in 6N HCl for amino acids and 

analyzed for radioactive compounds by radioautogrnphy. 

Formation of Dansyl Derivativ0s for 

Determination of N-Terminal 

Amino Acids 

Determination of amino-terminal residues of proteins and peptides 

was carried out using 1-dimethylaminonaphyhalene-5-sulphonyl chloride 

(CNS-CL), which reacts with free amino and phenolic groups to form 

compounds having an intense yellow fluorescence. 'l'he procedure is as 

follows: 

The HP was added to 15 )ll of 0.1 M NaHC03 (pll = 9.8) and 15 ]..11 of 

a solution of CNS-Cl in acetone (mg/ml), forming none phase system. 

After 3 hours at room temperature the sample was rurther dried in vacuo, 

and 20 ]11 of 6N HCl were added; the tube was then sealed and heated at 

105 °C for 6 to 12 hours. Acid was removed in ~l_!£ and the hydrolysate 

subjected to thin-layer chromatography. All procedures were performed 

in hydrolysis tubes, 10 mm (OD) by 100 nrm (17). Standard Rf values. for 

each. of the three solvents used are given in Tablo I. 

Hydrazinolysis Procedure for Determination 

- of C-Terminal Amino Acids 

One ml of anhydrous hydrazine was added to 0.2 to 0.8 ml of the 

peptide and heated under reflux at 125°C (oil bath) for 8 hours. An 

autoclave adjusted to a constant temperature of 12:5°C can be substituted 

for the oil bath. Care should be taken not to al11•w moisture into the 
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TABLE I 

THIN-LAYER CHROMATOGRAPHY OF AMINO ACID DANSYL DERIVATIVES 
Rf VALUES IN VARIOUS SOLVENT SYSTEMS 

R- Values 
Solvent* 

Source of Derivative A B 

Glutamic Acid .10 .23 
Aspartic Acid .05 .14 
Diaminopimelic Acid .23, .61 .83, .94 
Alanine .26 .92 
Glycine .15 .84 
Serine .07 .41 
Lysine .21, .60 .79, .96 
Tyrosine .07 .86 
Phenylalanine .20 .96 
Proline .21 .94 
Valine .23 .97 
Isoleucine .25 .99 
Threonine .01 .50 
Tryptophan .07 .89 
Methionine .15 .97 
Leucine .22 .99 

*A= Benzene:pyridine:acetic acid (~0:20:2). 
B Chloroform:tert-amylalcohol:acetic acid (70:30:3) 
C Chloroform: tert-amylalcohol: formic acid (70: 30: 1) 

.75 

.71 

c 

• 7 2' • 94 
.96 
.91 
.70 
• 65' • 91 
.96 
.98 
.97 
.98 
.99 
.89 
.97 
.99 

1.00 
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tubes. This is somewhat remedied by using 20 mm (OD) by 150 mm test 

tubes with an overlapping lip sealed tight with a marble. After cooling 

the hydrazinolysate was poured into a watch glass and set inside a 

desiccator. Excess hydrazine was evaporated as much as possible in 

vacuo over concentrated sulfuric acid (10 ml in a petri dish). After 

approximately six days the hydrazinolysate slurry was dissolved in water 

and transferred to a 17 mm (OD) by 150 mm test tube. An excess of 

benzaldehyde was dropped into it under cooling (ice bath) and stirring 

under the hood, whereupon hydrazides condensed with benzaldehyde to form 

a pale yellow amorphous precipitate. The yello-vr color is due to the 

formation of benzalazine from the remaining hydrazine. After filtering 

off the precipitate (millipore filter) the colorless filtrate will con

tain the C-terminal amino acid(s) (1). All C-terminal amino acid(s) 

remaining using this procedure were quantitated using an amino acid 

analyzer. Qualitative tests were also done using thin-layer chromatog

raphy. 

Clrromatography and Detection of 

Amino Acids 

Chromatograms spotted with samples.of partially hydrolyzed}~ were 

developed in the two-dimensional system of Schleifer and Kandler (49). 

The first solvent consisted of isopropyl alcohol, acetic acid, water 

(75:10:15 v/v/v/); the second of alpha-picoline, 25% NH4oH, water 

(70:2:28 v/v/v). Chromatograms spotted with samples of totally 

hydrolyzed MP were developed in the two-dimensional system of Heathcote 

and Jones (29). The first solvent consisted of isopropanol, formic 

acid, water (80:4:20 v/v/v); the second of tert-butyl alcohol, methyl 
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ethyl k~tonet concentrated NH40H, H2o (50:30:10:10 v/v/v/v). Both paper 

and thin-layer chromatograms were used. \Vhatman number 1 filter paper 

was used for the papergrams and MN-300 cellulose (Brinkmann) was used· 

for the thin-layer plates. Samples of 10 to 80 ~1 were spotted under 

a stremn of warm air from a hair dryer. Amino acids, NAM and NAG, were 

detecte\l by spraying with a solution of 0. 5% ninhydrin in 100 ml of 

acetone. After spraying, the chromatograms were heated at 100°C for 3 

minutes ln an oven. Amino acids appeared as either purple, yellow, or 

reddish brown spots on a white background. Dansyl derivatives were 

spotted on silica gel G (Brinkmann) thin-layer plates and developed in 

three dHferent one-dimensional solvent systems (given in. Table I) and 

viewed for yellow fluorescence under a UV lamp (44). 

Radioautography 

RacHuautography was performed by placing paper chromatograms or 

thin-laye~: chromatograms next to Blue Brand Medical x-ray film and 

allowing them to remain in contact 1 to 4 weeks in the dark. Films 

were developed using Edwal Hispeed-Hi Contrast x-ray developer diluted 

to a 1: Lt tatio with tap H2o and fixed for 15 minutes in Kodafix rapid 

fixer· Pl·~C.~vious work in this laboratory has shown that this method 

14 allows detection of 100 counts per minute of a C -labeled compound 

after 16 days contact. 



CHAPTER III 

RESULTS 

Concentration of D-Serine 

At the beginning of this study it was necessary to detennine at 

what concentration added D-serine would produce the longest filaments 

while still permitting good grm.Jth of cells. A standard titration was 

conducted and is shown in Figure 5. 

It was observed (at 17 hours) that a concentration of D-serine of 

17.0 x 10-J M permitted acceptable growth yields (0.42) and satisfactory 

cell length .(average about 59.0 ~), as shown in Figure 6. Such condi-

tions were necessary for incorporation of D-serine and to obtain a 

sufficient cell mass for isolation of MP. 

Determination of Mucopeptide Composition 

The amino acid composition of normal and serine-containing JviP of 

E. carotovora is given in Table II. Molar ratios of each amino acid 

comprising the MP were determined by taking DAP as 1.0. Control 

(normal) MP of E. carotovora showed an amino acid composition comparable 

to that reported previously. An alanine to glutamic acid to DAP ratio 

of 1. 5:1:1 was present. Lysine was most probably present as the 

N-terminal amino acid of Braunts protein (3). Although it has not been 

specifically shmm that Braun's protein exists in !_. carotovora, 
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Figure 5. Growth of E. carotovora as a Function. 
of the D-Serine Concentration After 
17 Hours Incubation 
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Figure 6. Cell Lengtlt in~· carotovora as a Function 
of the D-Serine Concentration After 17 
Hours Incubation 
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a protein was present which must be removed by continued washings and 

trypsinization during isolation of MP. It was suspected, therefore, 

that E. carotovora is similar to~· coli and contains a Braun's protein 

or a similar type which links the cell wall to the lipopolysaccaride 

layer. Mucopeptide from cells grown in the presence of D-serine 

possesses an alanine to glutamic acid to DAP ratio of 1.2:1:1. An 

increased amount of serine was also present showing that the compound 

was incorporated into the ~~ when present in the growth medium. Small 

amounts of aspartic acid and lysine were also present as in control cell 

walls. The decreased glycine content along with the concomitant rise in 

D-serine indicated that serine was most likely replacing glycine as 

reported previously (26). 

TABLE II 

AMINO ACID COMPOSITION OF NORMAL AND SERINE-CONTAINING 
MUCOPEPTIDE OF E. CAROTOVORA 

Amino Acid 

Alanine 
Glutamic Acid 

*Diaminopimelic Acid 
Serine 
Glycine 
Aspartic Acid 
Lysine 

Amino Acid Molar Ratios** 
Control D-Serine 

1.5 
1.0 
1.0 
0.08 
0.24 
0.10 
0.10 

1.2 
1.0 
1.0 
0.40 
0.17 
0.10 
0.10 

*DAP taken as 1.0. 
**DL-Serine added to the medium to a concentration of 3.4 x 10-2 M. 
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Previous work using this organism showed the ratio of alanine to 

DAP to be 1.8:1 (26). Data reported in Table II indicates a lower 

alanine to DAP ratio. This type of result may be consistent with other 

findings (59) which show that during simple repeated centrifugations, 

portions of the terminal D-alanine can be removed from MP. 

Amino Acid Dansyl Derivatives 

P~ino terminal analyses were performed using MP from normal as well 

as D-serine grom1 cells. These data are presented in Table III. 

TABLE III 

N-TERMINAL AMINO ACIDS IN NORMAL AND D-SERINE
CONTAINING MUCOPEPTIDE 

Source of Mucopeptide A 

D-Serine Grown Cells .20, .61 

Control Cells .20, .61 

*See 
**A 

B 
c 

Table I for Rf values of amino acids. 
Benzene:pyridlne:acetic acid (80:20:2). 
Chloroform:tert-amylalcohol:acetic acid 
Chloroform:tert-amylalcohol:formic acid 

Rf Values* 
Solvent** 

B 

.80, .95 

.80, .95 

(70:30:3). 
(70:30:1). 

c 

.66, .93 

.66, .93 

In solvent A, MP from control cells showed two spots giving Rf 

values of .20 and .61. Mucopeptide from cells grown in the presence of 

D-serine also showed two spots having the same Rf values. These values 
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correspond to the beta-a~ino group of lysine and the epsilon-amino group 

of either lysine or DAP. In solvents B and C, normal and D-serine con

taining MP both showed two spots with the same Rf values again cor

responding to the beta-amino group of lysine and the epsilon-amino group 

of DAP or lysine. It was also observed that the slower running spot 

(beta-amino group of lysine) was always present in greater proportion to 

the faster running spots (epsilon-amino groups of lysine or DAP) in all 

cases. From the N-terminal data we were unable to distinguish between 

the epsilon-amino groups of DAP and lysine. No other N-terminal amino 

acids were detected, either from control or D-serine containing MP. 

C-Terminal Amino Acids in Normal and 

Serine-Containing Mucopeptide 

Results obtained in carboxyl-terminal analyses are presented in 

Table IV. The first two columns show the averages of four separate 

C-terminal experiments. Since methionine comes off the column in the 

amino acid analyzer together with DAP, it was necessary to correct the 

DAP figures by subtracting 10% from the to.tal DAP content. Corrected 

DAP is shown in the second two columns. 

Previously it was shown that a ratio of 1:10 exists between lysine 

and DAP in the MP of E. carotovora of normal and D-serine grown cells. 

We assume that DAP in E. carotovora is 90% free C-terminal while 10% is 

occupied by lysine as has been shown in E. coli where Braun's protein is 

attached via lysine to meso-DAP 12 to 14% of the time (3). 

Total DAP, as shown in Table IV, \vas determined by the following 

equation, where X represents the total DAP content: 



Amino Acid 

Alanine 
Glutamic Acid 
Diaminopimelic 
Serine 
Glycine 
Aspartic Acid 
Lysine 

TABLE IV 

HYDRAZINOLYSIS: C-TERMINAL AMINO ACIDS IN NOR}~L AND SERINE-CONTAINING 
MUCOPEPTIDE OF E. CAROTOVORA 

C-Terminal)~ Corrected DAP** Total DAP*** C-Terminal 
Control D-Serine Control D-Serine Control D-Serine Control 

MP MP MP MP MP MP }fP 

43.32 58.96 1.27 
4.72 4.21 .14 

Acid 34.02 48.14 30.62 43.33 34.02 48.14 1.00 
9.23 38.80 .27 

16.61 13.74 .50 
5.14 4.73 .15 
4.58 3.57 .13 

*Averages of four separate C-terminal determinations, expressed as ~1/0.1 ml. 
**DAP corrected for methionine (C-terminal DAE--10% as methionine), expressed as nM/0.1 ml. 

Ratios,.'*** 
D-Serine 

MP 

1.22 
.10 

1.00 
.81 
.28 
.09 
.07 

*'-leT l DAP b d Amount of C-terminal DAP go X l DAP d nM/O l l 
' 0 ota ase upon: X = • , tota content expresse as · • m • 

C-terminal amount of each amino acid 
****Ratios based upon: total amount of DAP nM/0.1 ml 

w 
N 



Amount of C-terminal DAP 
X 

90. 
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Since DAP is in a ratio of one to all other amino acids in the MP it. can 

be used to determine the C-terminal ratios of each amino acid. Carboxyl 

terminal ratios for both control and D-serine grown cells are based upon 

the corrected total DAP divided into the C-terminal of each amino acid 

as also shown in Table IV. The C-terminal ratios show that alanine is 

the major free carboxyl component in control cells. Alanine compared 

to DAP shows that possibly one alanine residue has its carboxyl group 

completely free. In addition, glycine contained a relatively high amount 

of free carboxyl groups. Moderate amounts of aspartic acid and some 

serine free carboxyl groups were also observed. Lesser amounts of lysine 

free carboxyl groups were also found. Interestingly, glutamic acid, 

which is normally in a molecular ratio of 1:1 to DAP, and which should 

contain a free alpha-carboxyl group (no N-terminal group; therefore, 

this group is not aminated as it would be in glutamine), contained a very 

low amount of free C-terminal carboxyl groups. D-Serine MP also has 

alanine as the major free carboxyl terminal component. Serine was seen 

to more than triple as compared to control value.s indicating it exists 

largely as a C-terminal component. Values in both lysine and aspartic 

acid were relatively the same as control values with a slight decrease 

in both. Carboxyl terminal glycine decreased to one-half that of 

control MP showing that it is largely replaced by D-serine. Amounts of 

carboxyl terminal glutamic acid were again very low. 

Structure of Mucopeptide in Normal Cells 

Concerning the structure of control cell wall MP of E. carotovora, 
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five possible models are shown in Figure 7. All five models are based 

on the assumption that the order of the tetrapeptide amino acids are: 

1-alanine-D-glutamic acid-DAP-D-alanine. Model I is based primarily on 

the C-terminal data. As observed, D-alanine is C-terminal in control 

cell MP. Very little of the ~lpha-carboxyl group of glutamic acid 

exists as a free C-terminal group; therefore, it appears that it is 

occupied either by a single amino acid or it is involved in cross

bridging. Amino-terminal data indicate that the beta-amino groups of 

lysine and the epsilon-amino group of DAP or lysine are at least 

partially free. However, as noted earlier, the ~~amino groups of 

lysine or DAP are present in small amounts compared to the beta·-amino 

group of lysine. It is possible that not all the tetrapeptides are 

cross-linked, therefore leaving some epsilon-amino DAP free. Since 

glycine and aspartic acid are found in moderate amounts in comparison to 

the tetrapeptide amino acids, we assume that they could be involved in a 

cross-bridge as shown in Model I. Also, we observed relatively large 

amounts of C-terminal glycine and aspartic acid indicating that they are 

bonded via their N-terminal groups. 

Model II shows a different type of cross-bridging and is observed 

to exist in most bacteria. Model II is in disagreement with_ our 

C-terminal data in two major instances. First, the ~lplu~-carboxyl group. 

of glutamic acid would have to be completely free, which it is not. 

Second, since the glycine aspartic acid cross-bridge is shown to be 

between the epsilon-amino group of DAP and the carboxyl group of alanine, 

we would expect little or no C-terminal alanine. This is not in agree

ment with any experimental data obtained which relates to alanine. 



Figure 7. Possible Structure of MP in Normal 
Cells of E. carotovora 
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Model III is in agreement with the data in regard to the alpha

carboxyl group of glutamic acid. In this model, glycine is attached to 

glutamic acid. This is a good assumption since moderate amounts of 

C-terminal glycine have been observed. A major disagreement with Model 

III is the glycine-aspartic acid cross-bridge extending from the 

epsilon-amino group of DAP to the carboxyl group of D-alanine. If this 

were the case, we would observe little or no C-terminal alanine. 

Model IV shows a novel type of cross-bridge which consists of a 

direct peptide bond between the alpha-carboxyl group of glutamic acid 

and the ~psilon-amino group of DAP. This model is in agreement with the 

C-terminal data in regard to the alpha-carboxyl group of glutamic acid 

being occupied and the carboxyl group of alanine being free. This model 

does not consider the possible locations of glycine and aspartic acid 

in the mucopeptide structure •. 

Model V is in agreement with the C-terminal data except in regard 

to free carboxyl terminal alanine. This model shows a direct peptide 

cross-bridge from the ~psilon-amino group of DAP to the carboxyl group 

of alanine. Model V most closely agrees with the C-terminal data con

cerning the additive effect of carboxyl terminal groups of normal cell 

MP. The additive effect of glutamic acid (.14), serine (.27), glycine 

(.50), and aspartic acid (.15) (equal to 1.06), seems to indicate that 

these amino acids are completely C-terminal, and their amino groups 

attached to the alpha-carboxyl of glutamic acid and, therefore, not· 

involved in a cross-bridge. Model V agrees with all the data we have 

obtained on the MP as regards N- and C-terminal data, with the exception 

of the carboxyl group of alanine. The carboxyl group of alanine is 

shown to be mostly free according to our C-terminal data. 
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After evaluating the experimental data in light of all models, it 

would appear that Model V most closely fits our findings, with the 

exception of data relating to C-terminal alanine. Therefore, this 

researcher proposes the structure shown in Figure 8 for the normal cell 

wall MP of E. carotovora. This model most clearly correlates to the 

C-terminal data obtained in regard to glycine, aspartic acid, and serine 

as described in Model V. This structure shows that most of these amino 

acids are C-terminal and, therefore, most probably attached via their 

amino groups to the alpha-carboxyl group of glutamic acid. This is in 

agreement with the findings which show the alpha-carboxyl group of . 

glutamic acid is nearli completely occupied. Although there is no proof 

of the exact cross-linkage, the N-terminal data indicate the epsilon

amino group of DAP is also .nearly completely occupied. This would 

indicate its possible involvement in a cross-bridging. 

Structure of Hucopeptide in 

D-Serine-Grown Cells 

In comparing the amino terminal data in control and D-serine-grown 

cells, no differences were observed. Upon comparing the carboxyl 

terminal data, approximately identical figures for each amino acid 

(except serine and glycine) were obtained. As shown in Table IV, there 

is about three times more C-terminal serine present in D-serine-grown 

cell wall MP. At the same time, it was observed that the number of 

glycine C-terminal residues decreased to about one-half that of control 

cell wall MP. This suggests that D-serine is replacing glycine. Again, 

it was shown that very little glutamic acid is C-terminal. These data 

suggest that the alpha-carboxyl group of glutamic acid is occupied (most 



Figure 8. Proposed Cell Wall MP Structure in 
E. carotovora, Showing a Possible 
Direct Peptide Bond Between the 
Epsilon-Amino Group of DAP and 
the Carboxyl Group of Alanine 
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likely by glycine, serine and aspartic acid), and the same possible 

cross-bridge exists as in control cells, i.e., between the carboxyl 

group of alanine and the epsilon-amino group of DAP. Keeping these 

observations in mind, we propose the cell wall MP structure shown in 

Figure 9 for D-serine-grown cells. 

Peptide Containing D-Serine 

Once the structures of control and D-serine-grown cell \<Jall had 
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been partially deduced, the next step was to establish the exact location 

of D-serine in the MP in order to obtain direct proof for the structure. 

To accomplish this, cells were grown with 14c.:..D-serine added at time 

zero. These cells were harvested and MP isolated, To find the peptide 

in which D-serine was present, the researcher performed .partial hydrol

ysis of D-serine MP samples (4N-RC1 for 1 hour and 4N-HC1 for 1.5 hours 

at 100°C). These samples were spotted on thin-layer cellulose plates 

and subjected to the appropriate solvent system (49) and thereafter 

placed next to x-ray film for 6 weeks. Several radioactive spots were 

observed in both the 1 hour and 1.5 hour hydrolyzed samples. These 

spots were scraped and totally hydrolyzed (6N-HC1 18 to 24 hours in 

vacuo at 100°C),' re-spotted on thin-layer cellulose plates, again de

veloped in the appropriate solvent (29), and then exposed to x-ray film. 

In no instance could this researcher positively identify any D-serine

containing peptide. Regardless of the hydrolytic procedure used, serine 

always appeared on the plates in the free form rather than in any di- or 

tri-peptide. 



Figure 9. Proposed Cell Wall MP Structure for 
D-Serine-Grown E. carotovora, 
Showing a Possible Direct Peptide 
Bond Between the Epsilon-Amino 
Group of DAP and the Carboxyl 
Group of Alanine 
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CHAPTER IV 

DISCUSSION AND SUMMARY 

The amino acid composition of normal cell MP in E. carotovora ha3 

been obtained by amino acid analysis. A ratio of 1.5 alanine residues 

to 1 each of glutamic acid and DAP have been reported. These amounts 

are consistent with previous observations (26) which shm.;r a ratio of 2 

alanine residues to 1 o"f glutamic acid and DAP in this organism. Low

ered amounts of alanine in the preparation could be accounted for 

because of losses through centrifugation during MP isolation (59). 

Glycine is present in the next highest concentration (ratio of .24 

residues per residue of both glutamic acid and DAP). Aspartic acid and 

lysine are present in less than half the concentration of glycine. 

Since lysine is present in both control and D-serine MP, the researcher 

assumes that it is connected by its epsilon-amino group to the free 

carboxyl terminal group of DAP and then to Braun's protein as shown in 

E. coli (3). No evidence was obtained to indicate that D-serine in

corporation interfers with attachment to or presence of Braunts protein 

i.n E. carotovora. 

With regard to D-serine-grown cell wall MP, it was observed that 

approximately the same proportion of amino acids are present with the 

exception of D-serine, which more than triples in amount compared to 

control values. In addition, levels of glycine are decreased. The data 
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suggests that some glycine normally present is replaced by D-serine as 

reported previously (26). 

45 

Identical results were obtained for both control MP and D-serine 

containing MP in regard to N-terminal amino acids. Experimental data 

reveal that some of the ~silon-amino groups of DAP are free. This type 

of finding can be expected in D-serine-grown cells if DAP is involved in 

cross-bridging and D-serine interfers in such linkage. However, the 

finding that the epsilon-amino group of DAP is partially free in control 

MP ~muld indicate that not all of the tetrapeptides are cross-linked. 

Unfortunately, the chromatographic procedures that were employed ~Jill 

not distinguish between· the epsilon-amino groups of DAP and lysine. 

Carboxyl terminal analysis using normal E. carotovora MP revealed 

that one alanine C-terminal residue remains completely free thereby 

eliminating it from involvement in a possible cross-bridge. This was 

also true in l1P containing D-serine. The observation that only very 

small amounts of free alpha-carboxyl groups of glutamic acid are present 

in both control and D-serine-grown cells indicates this group is probably 

involved in cross-bridging or occupied by serine, glycine, or both, as 

pointed out previously. 

The major difference observed in the C-terminal data obtained, 

using control versus D-serine-grown cell wall MP, is the increased levels 

of D-serine in MP and an accompanying decrease in glycine C-terminal 

groups. This obviously means that D-serine is replacing glycine as 

previously observed (26). These findings are similar to others and indi

cate that D-serine can partially replace glycine in MP (28) (30) (33) 

(48) (57) (64). This replacement is at least partially on the alpha

carboxyl of glutamic acid as inferred from the low C-terminal content 
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of the glutamic acid. Usually D-serine incorporates into positions 

number 4 or number 5 of the tetrapeptide or partially replaces glycine 

wherever it might be located in the mucopeptide (30) (48) (57) (64). As 

suggested by Schleifer et al. (48), D-serine added at growth inhibiting 

concentrations would possibly form modified nucleotide-activated MP 

precursors by which glycine would be replaced by D-serine. Since 

D-serine is less efficiently incorporated into MP, a certain percentage 

of the modified MP would remain uncross-linked, showing that D-serine 

is a poor substrate for the transpeptidation reaction. 

After reviewing the data in comparison to the theory proposed by 

Strominger et al. (3l).on the attachment site of D-amino acids in gram

negative bacteria, it can be concluded that their main thesis on the 

attachment site of the D-amino acid and the nature of its function 

(reversal of the transpeptidation step) does not seem to hold true for 

the organism under investigation. t<lhen D-serine is added to the growth. 

medium it is incorporated into the MP but not in position number 4 or 

number 5 of the tetrapeptide as indicated by our C-terminal data for 

alanine (no change inC-terminal alanine was measured). 

Also, as stated previously, there is little or no difference in 

the free C-terminal residues of alanine, glutamic acid or DAP existing 

in normal versus D-serine-grown cell wall MP. t<lhen glycine or D-serine 

are considered and molar proportions of these amino acids obtained (see 

final column in Table IV), some differences seem to exist (glycine is 

decreased by about 30% and D-serine increased about 30%). These dif

ferences could indicate increased cross-linking exists in D-serine

grown cell wall MP or, alternatively, that serine and glycine are bonded 

to the alpha-carboxyl group of glutamic acid as a mixed (seryl-glycine 
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or glycyl-serine) dipeptide. Until the amino. acids existing with or on 

either side of D-serine are identified, these possibilities cannot be 

distinguished. 
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