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CHAPTER I
INTRODUCTION
1.1 Purpose

The root Tocus is a plot of the roots of the characteristic equa-
tion as a function of system parameters. It clearly indicates the effect
of parameter adjustment on the roots of the characteristic equation. The
principle is based on the fact that the poles of the overall transfer
function R(s)/U(s) are related to the zeros and poles of the open-loop
transfer function and to the gain. The root-locus method not only indi-
cates whether a system is stable or unstable, but also indicates the de-
gree of stability for a stable system. In designing linear control
systems, the root-locus method proves quite useful since it indicates the
manner in which the open-loop poles and zeros should be modified so that
the response meets system performance specifications. Additional equip-
ment may be ihtroduced into a system to reshape the root locus in order

to improve system performance.
1.2 Background

The objective of this study is to develop a computer program for
obtaining the roots of the characteristic equation when the system equa-

tions are written in the form

[P] [R] = [Q] [U]



where
[P] = a 1x1 transformation matrix;
[R] = an output vector of dimension 1;
[Q] = an 1xm confro] gain matrix; and
[U] = a control input vector of dimension m.

A general purpose frequency response program has been developed by
the School of Mechanical and Aerospace Engineering, Oklahoma State Uni-
versity (9) by expressing the input-output relations in matrix form.
Several models have been developed using this representation to perform
frequency response analysis. Hence it was desired to use the same repre-
sentation to perform root locus analysis.

Evans (1) devised a graphical method for obtaining the root locus
plot as he found that the process of calculating the roots of the charac-
teristic equation for various values of the system parameter becomes
tedious for systems of higher than second order. As the graphical
approach was tedious for higher order systems, Bendrikov and Teodorchik
(2) developed an analytic theory of constructing root loci. A semi-
analytic approach has been developed by Krishnan (3). Bendrikov and
Teodorchik demonstrated that the geometric shape of the root locus of an
algebraic equation in the complex plane does not change under linear
coordinate transformations. Howeyer,‘their method was very complicated,
and a direct digital computer approach was lacking. The introduction
of matrix notations for Routh's array by Parks (4) and the formulation -
of Routh's algorithm for determining the oscillatory modes in feedback
systems by Shen-Chen (5) helped Chen and Hsu (6) to develop a digital-

computer-oriented root locus method by using Routh's algorithm.



Schulz and Melsa (7) have developed a computer program for plotting
the root locus when the characteristic equation is in polynomial form.
Robert J. Thomas (8) has indicated that the Jenkins-Traub algorithm is
an efficient root-finder when the charactéristic equation is in poly-
nomial form. He has also indicated that the Jenkins-Traub algorithm is
cheaper and more efficient than the Bairstow and Muller algorithms for
higher order polynomials.

The study éonsists of five main parts. Tﬁe first part describes
the various ways'in which a system can be represented. In the second
part a description of the solution approach is presented. An explanation
of the program in the third part is followed in the fourth part by three
examples which illustrate the purpose and use of this program. The last
part presents the conclusions, limitations of this program, and recommen-
dations for further study. A listing of the computer program, a descrip-
tion of the sparse matrix method for evaluating the determinant, and
Muller's algorithm for solving algebraic equations are presented in the

appendices.



CHAPTER II
SYSTEM REPRESENTATION
2.1 Introduction

.In this chapter we will cohsider the different ways in which a sys-
tem can be represented. We will illustrate the different representations
by considering_a third order system. We will select a particular repre-
sentation for the purposes of this work and show that root-locus analysis

can be performed when the system is represented in this manner.
2.2 System Representation

Any system can be represented in the following ways:

1. Input-output relation representation (block diagram approach).

2. State variable representation.

3. Input-output relation representation (matrix approach).

The third representation will be discussed in detail in the sections to
follow.

One of the principal tools of the input-output representation is the
transfer function. This method provides less detail and therefore is
less complete than the state variable method. However, the input-output
representation is easier to deal with. Since the transfer function
representation specifies only the input-output behavior, one can always

make an arbitrary selection of state variables for a system specified



only by a transfer function. In general, an infinite number of state
variable representations exist for a given transfer fqnction. If a state
variable representation bf a system is known, then the transfer function
of the system is completely and uniquely determined. The third type of
representation may be used to describe the system using a lesser number
of equations. It is helpful to analyze any particular part of the sys-
tem, especially when performing frequency response analysis.

Some authors of books on control systems (10) (11) define the char-
acteristic equation as the denominatbr of the transfer function equated
to zero, while others (12) define the characteristic equation as the
determinant (sI-A) equated to zero, where (sI-A) is obtained from the
state variable representation discussed in section 2.3. In this work we
will refer to the denominator of the transfer function when equated to
zero as the characteristic equation and the determinant (sI-A) equated
to zero as a particular form of the characteristic equation. The eigen-
vlaues of the [A] matrix in the state variable form are identical to the

poles of the transfer function.
2.3 Illustrations Using a Third-Order System

Let us consider a third-order system described by the block diagram
shown in Figure 1. Using the block diagram identities, the above block
diagram can be reduced as shown in Figure 2. The transfer function for

the above system is given by

y(s)/u(s) = G(s)/(1 + G(s)) (2.7)
where
y(s) = Laplace transform of the output; and
u(s) = Laplace transform of the input.
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Figure 1. Block Diagram of a Third-Order System
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Figure 2. Simplified Block Diagram of Figure 1



The denominator of the above transfer function, when equated to
zero, is the characteristic equation of the system. Hence the character-

istic equation of the above system is
1 + G1G2G5 + G1G2G3G6 + G1G2G3G4 = 0 (2.2)

or
1+ K(5)(3)/(s + 8)(20) + k(5)(2)(17)/(s + 8)(s + 2)(60)
+ K(8)(2)(1)/(s + 8)(s + 2)(s) = O

The characteristic equation for the same system can also be obtained
by the state-variable method. The block diagram of Figure 1 is redrawn

showing all the states in Figure 3.

u ¥ | b 5 X1l 2 | X2 | 1 X3 Yy o
'QP s+8 s+2 S
y
3 17
20 60
+ +
+ p

Figure 3. Figure 1 Redrawn Showing A1l the States

In Figure 3, X1, X2, and X3 are the state variables, u is the
scalar input, and y is the scalar output. In the state-variable repre-

sentation, the state equations can be written as

X(t) = AX(t) + bu(t) (2.3)



y(t) = cTX(t) + du(t) (2.4)

where

X(t)

n dimensional vector known as the state vector;
A = a constant matrix of dimension nxn;

u = a control input vector of dimension m;

b = a control gain matrix of dimension nxm;
¢ = an output gain vector of dimension n;

d

a vector of dimension m; and

y = a scalar output.
Transforming both sides of Equatibns (2.3) and (2.4) into the

Laplace domain,

sX(s)

AX(s) + bU(s) (2.5)

cTX(s) + du(s) (2.6)

L]

y(s)
Equation (2.5) can be written as
X(s) = (sI-A) Tbu(s) (2.7)

Substituting the expression for X(s) into the relation for y(s), we
get

cT{(sI-A)']bu(s)} + du(s)

y(s)

or

[ {(s1-A)""b} + dJu(s) (2.8)

"

y(s)

The characteristic equation is given by the determinant (sI-A) = 0.

For the system considered above,
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The characteristic equation of the above system is given by
(s+8+3K/4)(s+2)(s) + (17K/12)(2s) + (5K)(2) = 0 (2.9)

The above equation is just a simplified form of Equation (2.2).

We will now write the system equations using the input-output rela-
tions (matrix approach).‘ The block diagram shown in Figure 1 can be re-
drawn as in Figure 4 showing all of the inputs and outputs that we are

going to consider.

u +OR1k 5 | Re | 2 |[R3| 1 R
' s+8 Tl st2 1 s

A-
3 17
20 60
%+ %+
+ +

Figure 4. Block Diagram With Four Outputs and One Input
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In Figure 4, u is the scalar input, R1 is the error signal, and R4
js the output. In the matrix approach, the system equations can be writ-

ten in the form

[PI[R] = [Q][U] (2.10)

where
[P] = a 4x4 transformation matrix which is a function of s;
[R] = an output vector of dimension 4;
[Q] = a 4x1 control gain matrix which is a function of s; and
[U] = a control input vector of dimension 1.

For the above system,

1 G5 G6 1
-G1G2 1 0 0
P =
0 -G3 1 0
0 0 -64 1
FH
|10
Q =
0
0
L

Inspection of Figures 3 and 4 indicates that the following equations

can be written:

R1 = U - X1G5 - X2G6 - X3
R2 = X1
R3 = X2
R4 = X3
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The above equations can be written in matrix form as shown below. ,
— - - - - = -
R1 -G5 -G6 -1 X1 1
R2 1 0 0 X2 0
= . + ) u
R3 0 1 0 X3 0
R4 0 0 1 0
L. L. L —

If we consider 1 outputs, n states, and m inputs, the matrix equation

can be generalized and written in the form

[R] = [EI[X] + [FI[U] (2.11)
where
[E] = a 1xn transformation matrix on X; and
[F] = a 1xm transformation matrix on U.

Equation (2.10) can be rewritten as
[R] = [P1"'[Q]LU] | (2.12)

Substituting the expression for [X] in Equation (2.7) into the expression

for [R] in Equation (2.11), we get
[R] = {[EI[sI-AT"'b + [FI}[U] (2.13)

Comparing Equations (2.12) and (2.13), we know that determinant [P] = 0
is the characteristic equation.

We Wi11 now write the system equations using the above approach and
show that irrespective of the number of equations we consider, we obtain
the same form of characteristic equation for the system. We will now
demonstrate three alternate forms using Equation (2.7), where u is as
for the state variab1e model, [R] = [EJ[X] + [F][U], and y is as for the

state variable model. We will show that irrespective of the form in
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which Equation (2.7) is written, determinant [P] is the same for all of
the cases and when equated to zero, it represents the characteristic
equation.

For the block diagram shown in Figure 4, the system equations can

be written in matrix form as

— —_— r— —— — s

1 G5 G6 1 R1 1
-G1G2 1 0 0 R2 0

0 -G3 1 0 R3 ) 0 )

0 0 -G4 1 R4 _94

As shown earlier, determinant [P] = 0 is the characteristic equation.

Hence the characteristic equation is

1 + G1G2G5 + G1G2G3G6 + G1G2G3G4 = 0 (2.14)

For the block diagram shown in Figure 5, the system equations can

be written in matrix form as

r— B —
1+G16265 G6 1| |RI 1
616263 -1 0| |R2|={0|u
0 G4 -1 R3] |0
N — - — -—-——J

On evaluating the determinant of [P], we seé that we obtain the same
form of characteristic equation as in Equation (2.14).
For the block diagram shown in Figure 6, the two system equations

are written in matrix form as

1 + G1G265 + G1G2G3G6 1 R1 1
-G162G3G4 1 R2 0
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We cén see that determinant [P] = 0 has the same form of charaCteristic

equation as for the two cases shown above.

G2

G3

G4

R3

Figure 5.

u +(:) R1 a1

G2

G3

G4

Block Diagram With Three Outputs and One Input

R2

Figure 6.

Block Diagram With Two OQutputs and One Input



CHAPTER III
THE SOLUTION APPROACH
3.1 Introduction

In the previous chapter, we have shown that determinant [P] = 0 is
the characteristic equation. Hence, to solve our problem, a method for
evaiuating the determinant and a method for evaluating the roots of the
characteristic equation have to be found. For large complicated systems,
the [P] matrix will be large with a number of zero elements in it and
hence the computer storage and time for evaluating the determinant will
be Targe. In order to reduce computer storage and time, a sparse matrix
method has been uéed to éva]uate the determinant. The characteristic
equation as obtained by evaluating the determinant of the [P] matrix is
complex and is not in polynomial form. To determine the roots of the
characteristic equation, Muller's method has been used. In this chapter,
the sparse matrix method for evaluating theldeterminant of the [P]
matrix, a brief description of Muller's method, and a brief description

of the computer program will be presented.
3.2 Evaluation of the Determinant

A computer program has been developed by Key (13) for the solution
of large, sparse, unsymmetric systems of linear equations. The program

can solve large systems of sparse arrays in core with minimum computer

14
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storage and computer time. It stores only a limited number of zeros in
addition to non-zero coefficients.

Key tried several techniques for selecting the pivotal element which
would reduce storage and yield reasonable accuracy and computer time.

The minimum row-minimum column pivot selector was found to be consistent-
ly faster. From an accuracy point of view a]go, it ranked the best. A
slightly modified version of Key's program, ca11ed subroutine SPARSE, has
been used in the frequency response analysis program developed by the
School of Mechanical and Aerospace Engineefjng, Oklahoma State University
(9). A brief description of the‘program_albng with the modifications
made in it is given below. For a detai]ed description of this procedure,
refer to Appendix B.

Subroutine SPARSE is a Tinear équation solver which is designed to
use a sparse coefficient matrix A(s). It is a modification of the method
by Key (13) and it allows the solution of complex equations and the pre-
sence of zero terms in the [A] matrix passed to SPARSE.

The actual solution of the compressed equations consists of "NEQN"
passes through a loop in the routine. On each pass a pivotal element is
chosen as the term at the intersection of the row with the least number
of non-zero terms and the column in that row with the Teast number of
non-zero térms. In the case of a tie, the first minimum row (or column)
is used for the pivot selection. Before éntering the routine, an initial
value is assigned to the determinant. Every time a new pivot element is
selected, it is multiplied with the previous value of the determinant.

A final value for the determinant is obtained When all of the pivot ele-

ments are selected.
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3.3 Solution of the Characteristic Equation

Many methods have been developed for the solution of algebraic equa-
tions by an automatic computer. One of the most powerful methods has
been deve]opéd by Muller (14). It is capable of solving algebraic equa-
tions of high degree with complex coefficiénts in a relatively small num-
ber of iterations. A brief description of the method is given below
fo]iowed by a discussion of the advantages and disadvantages of this
method.

Muller's method finds the roots of an algebraic equation by an iter-
ative procedure. Successive iterations towards a particular root are
obtained by finding the nearer root of a quadratic whose curve passes
through the last three points. The quadratic will, in general, have com-
plex coefficients and complex roots. A’detailed description of this

method can be found in Appendix C.

3.4 Advantages and Disadvantages

of Muller's Method

The advantages of Muller's method are:

1. Although the method is rather complicated, no evaluation of the
derivatives of the function and only one evaluation of the function is
required per iteration. This makes it suitable for solving algebraic
equations by an automatic computer.

2. The time spent per iteration is less with this process than
with iterative schemes which require the calculation of derivatives,
whenever the degree of the equation is large.

3. Convergence occurs for most polynomial equations, in spite of
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the fact that convergence has only been proved for single and double
roots when the process has brought one to the neighborhood of a root.

4. Muller's method has a high speed of convergence. It can solve
equations of high degree in a relatively small number of iterations.

The disadvantages of Muller's method are:

1. No general proof of convergence has been obtained for this
method, although convergence can be shown to occur whenevér the process
leads one sufficiently close to a single or double root.

2. As shown in the previous chapter, the characteristic equation
to be solved is of the form 1 + N1/D1 + N2/D2 + ... Np/Dp = 0, where
N1/D1, N2/D2, .. .‘Np/Dp are ratios of polynomials. Muller's method
does not converge in this case unless the initial guesses are provided
very close to the actual foots. This is due to the fact that the value
of the function tends to infinity whenever the root tends towards one of
the open-loop poles. Since it is very difficult to provide initial
guesses close to the actual roots, especially for complicated systems,
the above form of the characteristic eduation is premultiplied by the
denominators of all the G's, the individual transfer functions. The
characteristic equation,.premu1t1p1ied as above, will have the same

roots as the original characteristic equation.
3.5 A Brief Description of the Program

The program RTLOC is a general purpose program which can be used to
perform root locus analysis. It consists of a main program RTLOC, a com-
plex function subprogram F(s), subroutine SPARSE and subroutine ZANLYT.
The main program RTLOC reads the input variables and calls subroutine

ZANLYT to solve for the roots of the characteristic equation. The
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complex function subprogram F(s) defines the characteristic equation
whose roots are to be found by ZANLYT. Subroutine SPARSE is a linear
equation solver which has been modified so that it can evaluate the
determinant of any matrix. Subroutine ZANLYT is an International Mathe-
mat%ca] and Statistical Library (15) subroutine which uses Muller's
method to evaluate the roots of the characteristic equation. In addition
to the above routines, the user has to write two subprograms, SMCON or
AAECON and SMCOEF or AAECOEF. In subroutine SMCOEF or AAECOEF, the user
has to define the [P] matrix and in subroutine SMCON or AAECON, the user
has to define a11 the trahsfer functions.

Users who wish to use the program need to“do the fo]]dﬁfng:

1. Develop a matrix system model of the form

P(s)R(s) = Q(s)u(s)

where R(s) is the vector of unknown signals, Q(s)U(s) describes the input
to the system, and P(s) déscribes the system.

2. Code a subroutine SMCOEF or AAECOEF which defines Q(s) and a
compressed P(s).

3. Code a subroutine SMCON or AAECON which defines all the transfer
functions.

4. The user has to input the following variables:

EPSv— first stopping criterion for ZANLYT (1.0e-7 is a sug-
gested value)

NSIG - second stoppihg criterion for ZANLYT. A root is
accepted if two successive approximations to a given
root agree in the first NSIG digits.

KN - the number of known roots which must be stored in X(1),

X(2) . .. X(KN), prior to entry to ZANLYT.
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NGUESS

.the number of initial guesses provided.

ITMAX - the maximum number of iterations allowed per root.
L - subscript of the parameters being varied.

M - the number of new roots to be found.

NEQN - the number of equations to be solved.
ZTEST - absolute minimum at which terms are set to zero in
SPARSE.
SOMVAL - - the final value of the parameter.

P(L) - the initial value of the parameter which is varied.

5. To premultiply the determinant the user has to provide the
poles of all the individual transfer functions.

6. All the arrays in the dimension, complex, and integer statements
need to be checked for each individual problem. The NROW and NCOL argu-
ments in the call statements for SMCOEF or AAECOEF and ZANLYT have to be
changed for each individual problem.

The denominators of the transfer functions can be of any of the
following forms.

2

1. As™ + Bs + C where A, B, and C may be expressed as constants or

in terms of parameter values.

2. 52 + erns + W where 1, w, may be expressed as constants or in
terms of parameter values.

3. s + 1 where T may be a constant or a parameter value.

4. s+CN where CN may be a complex number or a parameter.

On output, X refers to the roots of the characteristic equation, P
refers to the parameter value, INFER refers to the number of iterations

required per root, and IER prbvides the error code. A complete listing

of the program is provided in Appendix A.



CHAPTER IV

ILLUSTRATIVE EXAMPLES

To illustrate the use of the program RTLOC, three examples will be

worked in this chapter.

Each example will comprise of a block diagram,

the system equations, the equations in matrix form, user input, the re-

sults, and a brief discussion. Results for the first two are plotted.

Example 1

A block diagram of a third-order system (7) whose root locus is

desired is shown in Figure 7.

R4

Y

u o+ c R1 2 Rz I 1 {R3 1
¢ s+] | s+2 s
Gl G2 G4

Figure 7. Block Diagram for Example 1

20



The system equations are:

R1

"

R2
R3

R4

The system equations in matrix form are:

r—

(U - R2G5 - R3G6 - R4)G1

(R1 - R3)G2
R2G3
R3G4

i

ar 6 6 1|l
-G2 1 G2 0] |R2
| 0 -G3 1 0f|R3
0 0 -G4 1(|R4| |O
L. -4 ] -

The SMCON and SMCOEF Tistings for this example are given in Appen-
dix D.

The poles of the individual transfer functions are:

AL(1) = (-1.0, 0.0)
AL(2) = (2.0, 0.0)
AL(3) = (0.0, 0.0)

The input variables for this example are given below:

EPS = 1.0 E-7 M=3
NSIG = 9 NEQN = 4
KN=0 ZTEST = 0.0
NGUESS = 0 SOMVAL = 0.12
ITMAX = 100 P(L) = 2048.0
L =20

A Tlisting of the output is presented in Table I and a plot of the

root locus is presented in Figure 8.



TABLE 1

RESULTS FOR EXAMPLE 1

22

THE ROOTS OF THE EQUATION FOR P(

X( 1)= -1.5000
X( 2)= -1.5008
X( 3= -1824. 0008

THE ROOTS OF THE EQUATION FOR P(

X( 1)= -1.5008
X( 2)= -1.5000
X( 3)= -256 . 0900

THE ROOTS OF THE EQUATION FOR P(

X( 1)= -1.5020
X( 2)= -1.5008
X( 3)= -64. 0008

THE ROOTS OF THE EQUATION FOR P(

X( 1)= - =1.5000
X( 2)= -1.5200
X( 3J)= -16. 0008
THE ROOTS OF THE EQUARTION FOR P(
X( 1)= -1.5000
X( 2)= -1.5000
X( 3J)= -4 .0008

THE ROOTS OF THE EQUATION FOR P(

X( 1)= -1.8200
X( 2)e -1.5000
X( 3)= -1.5008
THE ROOTS OF THE EQUATION FOR P(
X( 1)e -.2500
X( 2)e -1.5000
X( 3)e -1.5000

THE ROOTS OF THE EQUATION FOR P(

X( 1)= -.8625
X( 2)= -1.5000
X( 3)= ~1.5000

2048.0000 ARE

512.0008 ARE

128.0080 ARE

8.0000 ARE

2.0000 ARE

.1258 ARE




23

| @rdwex3 404 0|4 SNJ07] 300y g d4nbL4
@Ill
T
Ix 1 ge Lf-6-L-
Lo \oJ
¢ =~ REN
0 2- v~ 9- 8- Ol z2l- pl- 9l- 8L-
. ¥ ” ¥ + i} 4 + >
O —
fon
¢ T Ixi ogelb+git-
= A
m —
SR
7]
s
<




24

In the above problem, the complex conjugate poles are insensitive
to the gain because of the pole-zero cancellation. It can be seen that
one of the roots of the characteristic equation moves along the negative
real axis as the gain is varied. The root locus moves through (0.0,0.0),
(-1.0,0.0), and (-2.0,0.0), which are the poles of G's, the individual

transfer functions.
4.2 Example 2

The block diagram for this problem (7) is shown in Figure 9.

u + R1 K 5 R2 | 2 R3I | 1 R4 _
Q v s+p(20 S+2 S o
Y w
3 17
20 60
+ +
+ +

Figure 9. Block Diagram for Example 2

The system equations are:

Rl = U - R3G6 - R4 - R2G5
R2 = RIG1G2

R3 = R2G3

R4 = R3G4



The system equations in matrix form are:

-G1G2
0

L

G5 Gb
1 0
-G3 1
0 -G4

R1
R2
R3
R4

p—

—
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The SMCON and SMCOEF Tistings for this example are given in Appen-

dix E.

The poles of

AL(1)
AL(2)

i

AL(3)

The input variables for this example

NGUESS
[ TMAX
L

1]

il

the individual transfer functions are:

(-8.0, 0.0)
-P(20)
(0.0, 0.0)

1.0 E-7
9

0

0

100

20

are given below:

M

NEQN
ZTEST
SOMVAL
P(L)

i

3

4

0.0
0.12
512.0

A Tisting of the output is presented in Table II and a plot of the

root locus is presented in Figure 10.

In the conventional root locus, the system parameter that is allowed

to vary is the gain K.

In the above example the effect of varying a

parameter other than the gain K on the roots of the characteristic equa-

tion has been illustrated.



TABLE TI

RESULTS FOR EXAMPLE 2
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THE ROOTS OF THE
X( 1)=
X( 2)=
X( 3)=

THE ROOTS OF THE
X( 1)=
X( 2)=
X( 3)=

THE ROOTS OF THE
X( 1)=
X( 2)=
X( 3=

THE ROOTS OF THE
X( 1)=
X( 2)=
X( 3=

THE ROOTS OF THE
X( 1)=
X 2)=
X( 3)=

THE ROOTS OF THE
X( 1)=
X( 2)=
X( 3)=

THE ROOTS OF THE
X 1)=
X( 2)=
X( 3)=

EQUATION FOR P(
-.8137
~-17.0545
-511.9318
EQUATION FOR P(
-.08545
-17.2442
-127.7814
EQUATION FOR P(
-.2114
-19. 1682
-29.6284
EQUARTION FOR P(
-.7961
-12.1019
-12.1019
EQUATION FOR P(
-2. 0000
-2. 0008
-15. 0000
EQUATION FOR P(
~1.1368
-1.1368
-15.2264
EQUATION FOR P(

512.0000 Rﬂé
128.0000 ARE
32.0000 ARE
8.0000 ARE

2.0800 ARE

.5000 ARE

.1258 ARE




Imaginary

P(20) =2
«—t———— Rttt
-18  -16 -14 -12 -10
Real
+-6
+-8
Figure 10.. Root Locus Plot for Example 2
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4.3 Example 3

The block diagram for this problem is shown in Figure 11. The
poles of the individual transfer functions are defined in subroutine
AAECON. The AAECON and AAECOEF listings for this example are given
in Appendix F.

The input variables for this example are:

EPS = 1.0 E-7 | M= 32
NSIG = 7 NEQN = 16
QN = 0 ZTEST = 0.0
NGUESS = 0 SOMVAL = 870.0
ITMAX = 10 P(L) = 3492.0
L =30

A listing of the output is presented‘in Table III.

This example 111ustrates the fact that our technique can be used
even for very high order systems. The system considered in this example
is of order 32, and the effect of varying the various parameters in the

system on the roots of the characteristic equation can be clearly seen.
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Figure 11. Biock Diagram for Example 3
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TABLE III

RESULTS OF EXAMPLE 3

30

THE ROOTS OF THE EQUATION FOR P( 3@)=
X( 1)= -12.6574 - . 0000
X( 2)= -12.5629 . 0200
X( 3= -1156.8517  -1874.9228
X( 4)=  -1341.5680 1182, 8207
X( S)=  -1156.@517 1874.9228
X( 6)=  -1341.5680  -1102.8287
X( 7)s  -1565.8951  -2724.8890
X( 8)=  -1566.4887  -2724.1582
X( 9)=  -6912.5345" )
X( 18)=  -5579.9118 - . 0999
X( 11)=  -7933.6359  —6662.1817
X( 12)s  -7559.9299 6495, 4344
X( 13)=  -31400.0841 -.0003
X( 14)=  -31399.99% . @009
X( 15)=  -1566.4687 2724.1562
X( 16)=  -1565.8951 2724.8899
X( 17)=  -7550.9299  -6495.4344
X( 18)  -7933.6359 6662. 1017
X( 19)=  -29258.7881  -13332.8473
X( 28)=  -29263.6009  -13196.5353
X( 21)=  -41888.1943  -6846.4394
Xi 22)=  -41780.1883  -6779.9839
X( 23«  -29258.7881 13332.8473
X( 24)=  -41888.1943 6846. 4394
X( 25)=  -29263.6089  13196.5353
X( 26)=  —-41780. 1803 6779.9839
X( 27)=  -5P998.5301  -86602.6806
X( 28)=  -50009.5301  B6682.6806
X( 29)=  -50000.5016  -866@2.6731
X( 30)=  -50000.5016  B866@82.6731
X( 31)=  -259008.0019 . 0000
X( 32)s  -250000.0020 . 0009

THE ROOTS OF THE EQUATION FOR P( 32)=
X( 1) -12.6574 - . 0009
X( 2)m ~12.5629 . 0000
X( 3= -1156.8517  -1874.9228
X( 4)=  -1341.5680 1162. 8207
X( 5)=  -1156.@517 1874.9228
X( €)=  -1341.5680  -1102.8207
X( 7)=  -1565.8951  -2724.8899
X( 8)=  -1566.4887  -2724.1582
X( 9=  —6912.5345 . 6300
X(18)=  -5579.9118 - . 0009
X(11)=  -7933.6359  -6662.1017
X( 12)=  -7559.9299 6495, 4344
X( 13)=  -31400.0841 -. 0003
X( 14)=  -31399.9992 . 0009

3492.0000 ARE

873.0000 ARE



X(
X(
X(
X(
X(
X(

X(
X(
X(
X(
X(
X(
X(
X(
X(
X(
X(

15)=
16)-
17)=
18)=
19)-
20)=
21)=
2)=
23)=
24)=
2S)=
26)=
27)=
28)=
29)=

)=

31)-
)=

TABLE IIT (CONTINUED)




CHAPTER V
RECOMMENDATIONS AND CONCLUSIONS

A new computer-oriented technique for root-locus analysis has been
developed. It is capable of determining the roots of the characteristic
equation for systems of high order. The system equations have been
represented in the form [PI[R] = [QI[U], where [R] is an output vector
of dimension 1, [U] is a control input vector of dimension m, [P] is a
1x1 transformation matrix, and [Q] is a Ixm control gain matrix. It has
been shown that when the system is represented in this manner, determin-
ant [P] = 0 is the characteristic equation. [P] is a function of the
Laplace variables, and its determinant is evaluated using a sparse matrix
method which reduces computer storage and computer time. The roots of
the characteristic equation have been evaluated using Muller's algorithm.
One of the main features of this technique is that the characteristic
equation need not be in polynomial form. Muller's algorithm is one of
the fastest converging algorithms (8) developed so far and it enables the
roots of the characteristic equatién to be obtained in a relatively small
number of iterations.

Although Muller's method is supposed to be capable of solving com-
plex algebraic equations, no general proof of convergence has been
obtained for this method so far. It has been found that this method does
not converge when there are discontinuities in the characteristic equa-

tion unless initial guesses are provided very close to the actual roots.

32
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The effectiveness of this technique will be considerably improved if a
method more efficient than Muller's method and which has a definite

proof of convergence is developed.
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PROGRAM RTLOC( INPUT, OUTPUT =88, TRPES=INPUT, TRPEG=0UTPUT)
EXTERNAL F

COMPLEX DETRET,X(3)

COMMON /FROALL GLOBAL, NR, N, ISTART , METHOD

COMMON /SAME/ TTMAX, L, NEGN, ZTEST, M

REAL GLOBAL,P

INTEGER NR, NW, ISTART, METHOD, INFER(3)

DIMENSION P(109), GLOBAL (1609)

EQUIVALENCE (GLOBAL(1),P(1))

RERD(S, %)EPS, NSIG, KN, NGUESS, ITMAX, L, M, NEQN,
1ZTEST, SOMVAL, P(L)

CALL ZANLYT(F, EPS, NSIG, KN, NGUESS, M, X, ITMRX, INFER, IER)
PRINT(6,20)L,P(L)

FORMAT(5X,33H THE ROOTS OF THE EQUATION FOR P(,I3,2H)=,
1F15.4,4H ARE)

DO 40 I-1,M

PRINT(6,3@)1,X(I) _

FORMAT (18X, 2HX(, I3, 2H)=, (F15.4,F15.4))
CONTINUE

P(L)=P(L)/74.0
IF(P(L).LT.SOMVAL)GO TO 50
G0 TO 10

STOP

END

COMPLEX FUNCTION F(S)

COMMON AL(3)

COMPLEX S,SS,DETRET,A(4,4),B(4),R(4),C, X, AL
DIMENSION ICOL(4,4),IRENT(4), ICENT(4)
COMMON /7SAME” ITMAX, L, NEGN, ZTEST,M

S-S

N=1

DO 10 I=1i,M
IF (REAL(S) .NE.REAL (AL (1)) .AND.AIMAG(S) . NE.AIMAG (AL (1))
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160 TO 10
IF (CABS(S) .£Q.0.8)S5-1.2E~-108
CONTINUE

CALL SMCON(SS,N)
CALL SMCOEF(R,B, ICOL,4,4,4,5,N,R,-1)
DETRET=(1.8,0.8)

MULTIPLY THE DETERMINANT BY THE DENOMINATORS OF ALL THE
TRANSFER FUNCTIONS

DO 28 I=-1,M
DETRET= IETFCT!(SS-{%_(I))
CONTINUE

CR.LM(RRBICG.4ZTESTIWICENT44
1IER, DETRET)

IF(IER.NE.2)G0 TO 30

STOP
30 F=DETRET
RETURN
END
SUBROUTINE SPARSE (R, R, B, ICOL, NEQN, ZTEST, IRENT, ICENT, NROW, NCOL, IER
1,DETRET)

A = MATRIX CONTARINING (NON-ZERO) COEFFICIENTS OF EQURTIONS
R = SOLUTION VECTOR
B = CONSTANT VECTOR FOR EQUATIONS TO BE SOLVED
ICOL = POSITION OF COEFFICIENTS IN EQUATIONS
NEGN = NUMBER OF EQUATIONS TO BE SOLVED
ZTEST= ABSOLUTE MINIMUM AT WHICH TERMS ARE SET TO ZERO
IRENT= WORKING VECTOR OF LENGTH NROW
ICENT= WORKING VECTOR OF LENGTH NROW
NROW = NUMBER OF ROWS IN A AND ICOL
NCOL = NUMBER OF COLUMNS IN A AND IOOL
IER = ERROR FLAG
@ - NO ERRORS

1 - A IS SINGULAR
2 -~ NCOL IS TOO SMALL TO ALLOW A SOLUTION
DETRET=VALLE OF THE DETERMINANT

DIMENSION A(NROW,NCOL),R(NROW), B(NROW) , ICOL (NROW, NCOL) ,
1 IRENT (NROW) , ICENT (NROW)

INTEGER PIVROW, PIVCOL



OO0 O OO0 O
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REAL XX(2)

COMPLEX A,R,B,C,X,DET,DETRET
EQUIVALENCE (XX(1),X)
ZERO COLUMN ENTRY COUNTER (IF NOT DONE BY CALLING PROGRAM)

DO 5 I=1,NEGN
S5 ICENT(1)=0

NK=NCOL-1

DO 78 I-1,NEQN

REMOVE ZEROS FROM R

DO 40 J=1,NCOL

10 IF (ICOL(I,J).EQ.8) GO TO S@
X=A(I,J)
IF (XX(1).NE.B.@) GO TO 4@

THE FOLLOWING TEST IS ONLY REQUIRED FOR COMPLEX EQUATIONS

IF (XX(2).NE.B.9) G0 TO 40

IF (J.EQ.NCOL) GO TO 38
DO 28 K=J,NK
ICOL(I,K)=ICOL(I,K+1)
IF (ICOL(I,K).EQ.8) GO TO 1@
20 A(I,K)=A(I,K+1)
38 ICOL(I,NCOL)=0
e 70 18
40 CONTINUE

COUNT ROW AND COLLMN ENTRIES

S8 DO 68 J=1,NCOL
IC=IC0L(I, )
IF (IC.EQ.9) G0 TO 78
ICENT(IC)=ICENT(IC)+1
68 CONTINUE
J=NCOL+1
70 IRENT(I)=J-1
DET=(1.0,0.0)
IF(LOCF (DETRET) . NE.@)DET=DETRET
DO 238 LKJ=1,NEQN

SELECT FIRST MIN ROW THEN FIRST MIN COL



OO0

OO0 OO0OOOO0O

OO0

SELECT ROW WITH MINIMUM ENTRIES
IK=1020800

DO 80 I=1,NEQGN

IR=IRENT(I) :
IF (IR.LE.O.0R.IR.GE.IK) GO TO 6@
PIVROW=1

IK=IR

CONTINUE

SELECT SMALLEST AVRILABLE COLLMN FROM PIVROW

IK=1000000

IR= IRENT (PTVROW)

DO 99 I-1,IR

11-ICOL (PIVROW, 1)

IC=ICENT(II) |

IF (IC.LE.8.0R.IC.GE.IK) GO TO 90
PIVOOL=11

IK=IC

Iv=1

CONTINUE

END FIRST MIN ROW THEN FIRST MIN COL

NORMALIZE PIVROW

DET=DET*A(PIVROW, IY)
X=1.8/R(PIVROW, IY)
IC=IRENT (PIVROW)

DO 100 J=1,IC

100 A(PIVROW, J) =R(PIVROMW, J ) %X

A(PIVROW, IY)=1.0
B(PIVROW) =B(PTVROW) %X

SELECT ROWS THAT CAN BE OPERATED ON

DO 218 I=1,NEGN
IF (ICENT(PIVOOL)-1) 250,220,110

110 IF (I.EQ.PIVROW) GO TO 218

IC=IABS(IRENT(I))
DO 128 J=1,IC
IF (ICOL(I,J).EQ.PIVCOL) GO TO 130

120 CONTINUE

GO TO 210
IF YOU CAN GET TO THIS POINT ROW I CONTAINS PIVOTAL COLUMN

130 C=-A(I,])

40
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B(I)=B(I)+OxB(PIVROW)

DO 198 JKPI=1,NCOL

II=ICOL (PIVROMW, JKPI)

IF (I1.EQ.@) GO TO 200

DO 140 NK=1,IC

IF (ICOL(I,NK).EQ.II) GO TO 158
148 CONTINE

ROW I DOES NOT CONTAIN THIS ELEMENT - ADD ELEMENT TO ROW I

IC=IC+1

IF (IC.GT.JOOL) JCOL=IC

IF (IC.GT.NCOL) GO TO 260

A(I, IC) =OMA(PIVRONW, JKPI)

ICOL(I, IC)=I1
ICENT(ID)=ICENT(ID)+ISIGN(1, ICENT(II))
G0 TO 198

ROW I CONTRINS THIS ELEMENT - ADD TO IT

158 IF (II.EQ.PIVCOL) GO TO 168
AMIN=AMINL (CABS(R(I,NK) ), CRBS(R(PIVROW, JKPI)))
AT, N =AT, NK)+OM(PIVROW, JKPT)

TEST THE ELEMENT TO SEE IF IT WAS ELIMINARTED

IF (CABS(AR(I,NK)) AMIN.GT.ZTEST) GO TO 190
160 ICENT(ID)=ICENT(II)-ISIGN(1, ICENT(II))
IF (ICENT(II).EQ.®) GO TO 250
IC=1C-1
IF (IC.EQ.Q) GO TO 250
IF (NK.GT.IC) GO TO 188
DO 178 J=NK, IC
A(IL,J)=A(I,J+1)
178 ICOL(I,J)=ICOL(I,J+1)
180 ICOL(I,IC+1)=@
199 CONTINUE
200 IRENT(I)=ISIGN(IC, IRENT(I))
210 CONTINE

ELIMINATE PIVROW AND PIVCOL FROM BEING CONSIDERED RGRIN

220 IRENT (PIVROW) =~ IRENT (PIVROW)
230 ICENT(PIVCOL)=-ICENT(PIVCOL)

UNSCRAMBLE AND STORE SOLUTION IN R
DO 240 I=1,NEGN

II=I00L(I,1)
240 R(ID)=B(I)



IF (LOCF (DETRET) .NE.@)DETRET=DET
IER-Q
G0 T0 270
258 IER=1
IF (LOCF (DETRET) .NE.©)DETRET=(0.8,0.0)
G0 TO 278
260 IER=2
c
270 RETURN
END
$O0R END-OF-FILE 1.
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APPENDIX B

SPARSE MATRIX METHOD FOR EVALUATING THE DETERMINANT
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A computer program has been developed by Key (13) for the solution
of large, sparse, unsymmetric systems of Tinear equations. The program
can solve large systems of sparse arrays in core with minimum computer
storage and computer time. It stores only a limited number of zeros in
addition to non-zero coefficients.

Key tried several techniques for selecting the pivotal element
which would reduce storage and yieid reasonable accuracy and computer
time. From this sélection, one technique was found to be the best for
the test caseé tried.

Basically the method is based oh three elementary row operations:

1. Interchange of any two rows.

2. Multiplication of a_rowvby a scalar.

3. Addition of a multiple of one row to another row.

To aid in the selection of the pivotal element, two additional
arrays are generated. One array contains the number of non-zero elements
in each row and the other contains the number of non-zero elements in
each column. These arrays are updated each time an element is eliminated
or generated, so that the current row and column count are available for
pivot selection. The pivot selector determines the pivotal row and
pivotal column relative to the full matrix and the actual position in
storage of the condensed array.

In subroutine SPARSE, the minimum row-minimum column pivot selection
technique is used. In this pivot selection technique, the IRENT array is
searched to find the row with the least number of non-zero coefficients
that has not been previously selected as the pivotal row. In the event
that two or more rows satisfy the above requirements, the row with the

smallest row index is selected. Once the pivot row has been established,
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the columns that correspond to non-zero elements in the pivotal row are
examined to select the column with the least number of entries. This is
accomplished by testing selected elements of the ICENT array. In the
event that two or more columns contain the same number of elements, the
column with the smallest index is selected as the pivotal column.

The program requires the inpdt of three arrays: an ar?ay A, con-
taining non-zero coefficients of\equations; an array B, a constant equa-
tion for equations to be solved; and an array ICOL containing the
position of the coéfficients in the equations. The number of columns
required for storage must be equal to or greater than the number of
entries in the longest row. v

Upon'éntry, the numbér of non-zero elements in each column and the
number of non-zero elements in each row are computed and stored in the
ICENT and IRENT arrays, réspective]y, and the initial value of the deter-
minant is set to one. At this point the initialization is complete and
the remainder of the program is contained within three nested loops. The
outer loop selects a new pivotal element on each pass. The determinant
is obtained by multiplying all the pivotal elements.

Once the pivotal element has been selected, the pivotal row is nor-
malized by dfviding the row by the pivotal element. Since the pivotal
element is known to be unity after normalization, it is set to one as a
precaution against round-off error.

The second loop is entered, which involves a row-by-row search for
rows containing elements in the pivotal column. If the number of entries
in the pivotal column has been reduced to one entry, there is no need to
continue the row-by-row search and the program is branched back to the

pivot selector to select a new element. Also, if the pivotal row is
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selected in the row-by-row search, all further tests are by-passed and
the next row is selected since operations are not permitted on the
pivotal row. Finally, the inner Toop is a column-by-column search of
each row to determine if the row contains the pivotal element. At this
point there are three alternatives available:

1. If the column index in the row being searched is less than the
pivotal column, it is necessary to continue searching the row.

2. If the column index is greater than the pivotal column, the row
does not contain the pivotal column and a new row must be selected.

3. If the column index is equal to the pivotal column, the row con-
tains the pivotal element and the row can be operated on by the'pivotal
row.

If the conditions of the third alternative are met, the pivotal row
is multiplied by the negative of the element in the pivotal column of the
row being operated on. Then the two rows are added in a manner that is
consistent with the storage scheme. The element being eliminated is sim-
ply dropped from considekation by moving all entries to its right one
space to the left. Al1l elements remaining in the row are compared to
ZTEST to see if any elements other than the element in the pivotal column
were eliminated. If so, the row is further compressed to eliminate the
zero entry from the row. Finally, the row is tested to see if the row
count is zero, which indicates a singularity.

The minimum row-minimum column pivot selector has been found to be
consistently faster and eliminates fewer terms than the other pivot
selectors tested. From an accuracy point of view also, this pivot selec-

tor always ranked among the best.



APPENDIX C

MULLER'S METHOD
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Many methods have been developed for solving algebraic equations
and seve%a] of these have been used with automatic computers. One of
the most powerful methods has been developed by Muller (14). A descrip-
tion of the method is provided in the following paragraphs.

Each root of any complex algebraic equation is found by an iterative
procedure. Successive iterations towards a particular root are obtained
by finding the nearer root of a quadratic whose curve passes through the
last three points. The quadratic will in general have complex coeffi-
cients and complex roots. This solution is accbmpanied by a variation
of the standard quadratic formula.

Let

f(x) = aoxn + a]xn'] +...+a =0

where the coefficients 3gs 75 - .., A are complex numbers. Suppose
that (x:_5» f. 5)s (X5 15 fi‘]) and (x., f.) are three points on a curve.
We can then find a parabola y = ax2 + bx + ¢ passing thﬁough these

points. The equation of the parabola can be written directly.

(x - xi_])(x - X,

'I)'

RN CIPERS

P (x = %5 o) (x=x;)

; f.
i-2 (xi_]--xi_z)(x].__1 -xi) i-1

—
x
|

. Xi_g) (X - %5.9)
CRERUCERR

7 T

This equation is of the second degree and, as is easily found, it

is satisfied by the coordinates of the three points. Putting h = X = Xss

hy = Xs=%X5_ 15 hi g = X,

j j 321" Xjop> We obtain
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(h + h.)h (h+ h, +h, )
i £ + i i-1
(-h - hi) i-2 hi_](-hi)

Fion

y = h.

i-1% i1

(h+ hy +hy ;)(h+h,)

+ f.
(hi + hi-l)hi i

Further introducing A = h/hi’ A =,hi/h1_] and § = 1 + s we get:

y‘= é%—[x(x+1)kff. - A(A+1+K;])X15{f1_
1

i-2 1

+ (A+])(A+1+A;])Aifi]
2. 2
= AT T A - Figrgdy ]

-1 2 2
P s TR Ay - F8y * FOgre )]+ F;

This equation is equated to zero and divided by fixz, and then solved

for 1/x. With g; = fi_zxi - f1_15§ +F 0+ 5,), we get
| -2f 5.
A TS T (C.1)
it] ) 2 _ I 3
9y £ 9% - 400 0f g0 - sy ]

Since A = h/h, = (x - x.)/(x;

; i - xi_])? a small value of x will give a

value of x close to X; - For this reason the denominator is made as large
as possible by choosing the sign accordingly. Hence the result of the

extrapolation is

= x; + A = x; +

Xi+] i i+1M4 it hin

This process is conveniently started by making Xo = -1, Xy = 1, and
Xp = 0, and further by using a -a _; +a., forf,a +a ;+a ,

for f], a for f,, that is, Ay = -1/2 and h2 = -1. This corresponds to

2,

the approximation f = ag +ta _qx+ a,_oX close to the origin.

n-1
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A final value of the root X; is taken when lxi - x1—1|/lxil becomes
less than some preassigned number. Such a convergence is consistent
with the use of floating point arithmetic in the calculation. As a re-
sult of this criterion we see that convergence occurs if X;_1 = %;- This
means that before convergence, no two iterative results will bé equal.

Furthermore, if x; = x,_,, we have &, = (x,

i i X2l By Xp) = 0

SO A =0 and x,,, = X; also giving convergence unless X5 = 0. Thus

i+l
in normal operation of the process, Xi» Xi_7» and x;_, are distinct.

As each root is found, the function f(x) may be‘divided by it,
thus reducing the degree of the equation by one. The algorithm for this
reduction is the commonly used one,

1
L= ra; 1+ a,
3 317 8

where a% is the new coefficient to replace a; and r is the root which
has just been found. Errors introduced by this process will be reduced
if the roots are eliminéted in order of increasing magnitude. By always
starting at the point x = 0, one will tend to find roots roughly in this
order.

Muller has proved that there is little to be gained in speed of con-
vergence by fitting a curve of degree higher than two. If the degree of
the equation is one, Equation (C.1) is greatly simplified. However, it
suffers from é‘disadvantage if all the coefficients of the original sys-
tem are real. If one starts from a real point x, then all successive
iterative results x will also be real and hence only real roots will be

found;
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SUBROUTINE SMCOEF (R, B, ICOL, NEQN, NROW, NCOL, S, N, R, DISRBR)
IMPLICIT COMPLEX (R-H,0-2)

DIMENSION. GLOBAL (1098) |

COMMON /FRQALL/ GLOBAL,NR, NW, ISTART, METHOD
REAL GLOBAL |

INTEGER NR,NW, ISTART, METHOD

DIMENSION P(20)

EQUIVALENCE  (GLOBAL(1),P(1))

REAL P

COMPLE. G1,G2,G3,6G4,6S,G6

COMMON /SMFALL” G1,G2,G3,64,GS,66

NO P EQUIVALENCES FOR SM SECONDARY MIRROR MODEL.
COMPLEX ACNROW, NCOL) , BCNROW) , R(NROW)

INTEGER ICOL (NROW,NCOL) , DISRBR
ONE=(1.0,8.0) |

A(1,1)=-G2
A(1,2)=0NE
A(1,3)=G2
A(1,4)=(0.9,0.0)
R(2,1)=(0.0,0.0)
R(2,2)=-G3
R(2,3)=0NE
R(2,4)=(0.0,8.0)
A(3,1)-(0.0,0.0)
A(3,2)=(0.90,0.0)
A(3,3)=-G4
R(3,4)=ONE
A(4,1)-1.0/G1
A(4,2)=GS
A(4,3)=G6
A(4,4)=0NE
B(1)s=P(1)
I00L(1,1)=1
I100L(1,2)=2
IC0L(1,3)=3
IC0L(1,4)=4
IC0L(2,1)=1
IC0L(2,2)=2
ICOL(2,3)=3
ICOL(2,4)=4



OO0 (@] (@] (@] (@] O

ICOL(3,1)=1
ICOL(3,2)=2
ICOL(3,3)=3
ICOL(3,4)=4
ICOL(4,1)=1
ICOL(4,2)=2
ICOL(4,3)=3
IC0L(4,4)=4

RETURN

END

SUBROUTINE SMOON (S, N)

IMPLICIT COMPLEX (R-H,0-2)
DIMENSION GLOBAL (1098)

COMMON AL(3)

COMMON /FRQALL” GLOBAL,NR, N, ISTART, METHOD
REAL GLOBAL

INTEGER NR, N, ISTART, METHOD
DIMENSION P(28)

EQUIVALENCE  (GLOBAL(1),P(1))
REAL P

COMPLEX G1,G2,G3,64,6G5,G6, AL
COMMON /SMFALL” G1,G2,G3,64,G5,66

NO P EQUIVALENCES FOR SM SECONDARY MIRROR MODEL.

DEFINE FUNCTIONS

FIRST(Z)=ONE+5/2
QUAD(Z, WN) = (S/WN) #ox2+2 , BkZS/WNHONE
AL(1)=(-1.0,0.0)
AL(2)=(-2.08,0.0)
AL(3)=(0.0,0.09)
P(1)=0.0
P(2)=8.0
P(3)=297.08
P(4)=5.0
P(5)=45.454
P(6)=228.26
P(7)=3891.0
P(8)=.4E-2
P(9)=100.08
P(10)=0.75
P(11)=12500.0
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P(12)=0.15125
P(13)=12520.0
P(14)=0.0
P(15)=89.443
P(16)=0.22
P(17)=2.68
P(18)+0.8982
P(19)=8164.9

ONE=(1.0,0.0)

G1=P(20)
G2=2.8/(5+1.8)
G3+1.8/(5+2.8)
G4=1.8/5
65-0.25
66+0.25

RETURN
END
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SUBROUTINE SMOOEF (R, B, IOOL, NEQN, NROW, NCOL., S, N, R, DISRBR)
IMPLICIT COMPLEX (R-H,0-2)

DIMENSION GLOBAL (1088)

COMMON /FRQALL/ GLOBAL, NR, NW, ISTART, METHOD
REAL GLOBAL

INTEGER NR,NW, ISTART, METHOD

DIMENSION P(20)

EQUIVALENCE (GLOBAL.(1),P(1))

REAL P

COMPLEX 61,62 63,64,65,66

COMMON /SMFALL” 61,62,63,64,65,66

NO P EQUIVALENCES FOR SM SECONDARY MIRROR MODEL
COMPLEX ACNROW, NCOL ) , BINROW) , RCINROW)

INTEGER ICOL (NROW,NOOL ), DISRBR
ONE=(1.0,0.0)

R(1,1)=0NE
A(1,2)=65
R(1,3)=6G6
A(1,4)=0NE
A(2,1)=-6G1»c2
A(2,2)=0NE
R(2,3)=(0.6,0.0)
R(2,4)=(0.0,0.9)
A(3,1)=(0.0,0.9)
R(3,2)=-63
A(3,3)=0NE
A(3,4)=(0.0,0.9)
A(4,1)=(0.0,0.0)
R(4,2)=(2.0,0.0)
R(4,3)=-G4
A(4,4)=0NE
B(1)=P(1)
ICOL(1,1)=1
ICOL(1,2)=2
I100L(1,3)=3
I00L(1,4)=4
I00L(2,1)=1
I00L(2,2)=2
I00L(2,3)=3
ICOL(2,4)=4
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ICOL(3,1)=1
I00L(3,2)=2
I00L(3,3)=3
ICOL(3,4)=4
ICOL(4,1)=1
ICOL(4,2)=2
ICOL(4,3)=3
ICOL(4,4)=4

RETURN
END
SUBROUTINE SMCON (S,N)

IMPLICIT COMPLEX (A-H,0-2)

DIMENSION GLOBAL (1008)

COMMON AL(3)

COMMON /FRQALL/ GLOBAL,NR, NW, ISTART, METHOD
REAL GLOBAL

INTEGER NR,NW, ISTART, METHOD

DIMENSION P(20)

EQUIVALENCE (GLOBAL(1),P(1))

REAL P

COMPLEX 61,62,G3,64,65,66,AL

COMMON /SMFALL” G1,62,63,64,G5,G6

NO P EQUIVALENCES FOR SM SECONDARY MIRROR MODEL.
DEFINE FUNCTIONS

FIRST(2)=ONE+5/2
QUARD(Z, WN) = (S/WN) 402 +2 , B2SWNHONE
AL(1)=(-8.0,0.09)
AL(2)=-P(2D)
AL(3)=(0.0,0.0)
P(1)=0.0
P(2)=0.0
P(3)=297.8
P(4)=5.0
P(5)=45.454
P(6)=228.26
P(7)=3891.8
P(8)=.4E-2
P(9)=100.8
P(10)=0.75
P(11)=125028.0



P(12)+0. 15125
P(13)=125028.0
P(14)-0.0
P(15)=89.443
P(16)-0.22
P(17)=2.68
P(18)-0.8982
P(19)=8164.9

ONE=(1.0,0.0)

61-12.0 |
G2+5.0/(5+8.8)
G3+2.0/(S+P(28))
G4+1.85
¢5-3.0/20.0
G6-17.0/60.0

RETURN
END
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SUBROUTINE RRECOEF (R, B, ICOL, NEQGN, NROW, NCOL, S, N,R)
THIS SUBROUTINE CODED FOR COUPLED

TWO CHANNEL ELECTRICAL AR

SYSTEM FOR CYCLE III.

INTEGER ICOL (NROW, NCOL)

COMPLEX A(NROW, NCOL ), B(NROW) ,R(INROW) , S
DIMENSION GLOBAL (1008)

COMMON /FRQALL /GLOBAL,NR,NW, ISTART, METHOD
REAL GLOBAL .

INTEGER NR, NW, ISTART, METHOD

DIMENSION P(4@)

EQUIVALENCE (GLOBAL(1),P(1))

REAL P

60

OO0

COMMON/RREFALL 7AK, EX, CA, CE, XKA, XKE,, AZMOT , ELMOT,AJ, EJ,
1 ROPTG,EOPTG, XG1 , XG2, LPF, RRACMP, ARECMP, APAP, EPAP, AFBLP, EFBLP,
2 XINTNT, EEQVBP, REQVBP

COMPLEX GI,LPF,RRACMP, RRECMP, APAP, EPRP, AFBLP,EFBLP,
1 AEQVEBP,EEQVBP, XINTNT

FORCING FUNCTION FOR CKOUT

ACL, 1)1, $ ICOL(1,1)=1
A1, 2)=REQVBPRXGI#AOPTG  $ ICOL(1.2)=8
A1, 3) ~REQVBPIXGHEOPTG & ICOL(1.3)=16
A(2,1)=-XINTNTAARACMPHLPF  § 1COL(2, 1)1
A2 2)e1. s ICOL(2.2)=2
(2, 3) =-XKAKAFBLP/S $ 1COL(2.3)=6
A(3, 1) =~AZMOTHAPAP $ 1COL(3,1)=2
A(3.2)=1. $ 1C0L(3,2)=3
A(3,3)=AK/S+CA $ 1COL(3.3)=6
A4, 1)=-(1. /AD) $ ICOL(4,1)=3
A4, 2)=1. $ ICOL(4.2)=4
ACS, 1)=-2. /ShK2 $ ICOL(5,1)=4
A(S. 2)e1. $ ICOL(5.2)=5
A6, 1)=-1.8/5 $ ICOL(6,1)=4
A6, 2)=1. $ 1COL(6.2)6
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A7, 1)=-2. $ I00L(7,1)%5
A(7,2)=1. $ ICOL(7,2)s7
A8, 1) =-XG61 $ I00L(8,1)=7
AB,2)=1. $ 100L(8,2)=8
A(B, 3)sXG2 $ I100L(8,3)=15
A(9,1)=-XG2HAOPTGHMEEQVBP  $ ICOL(9,1)8
A(9,2)s1. $ IC0L(9,2)=9
A(9, 3) =XG1*EOPTGHEQVBP $ I00L(9,3)=16
A(10,1) =-XINTNT*ARECMPM®LPF  $ ICOL(10,1)=9
A(10,2)=1. s I00L(10,2)=10
A(10, 3) =-XKEXEFBLP/S $ I00L(10@,3)=14
A(11, 1) =—ELMOTEPAP $ I00L(11,1)=10
A(11,2)=1. $ I00L(11,2)=11
A(11,3)sEK/S+CE $ I00L(11,3)=14
A(12,1)==(1./ED) $ I100L(12,1)=11
A(12,2)e1. $ I00L(12,2)=12
A(13,1)=-1.0/502 $ I00L(13,1)=12
A(13,2)=1. $ I00L(13,2)=13
A(14,1)s-1.2/S $ I00L(14,1)=12
A(14,2)=1. $ ICOL(14,2)=14
A(1S,1)=-2. $ 1COL(15,1)=13
A(15,2)=1. $ ICOL(15,2)=15
A(16,1)=-XG2 $ ICOL(16,1)s7
A(16,2)=-XG1 $ ICOL(16,2)15
A16,3)=1. $ IC0L(16,3)=16
RETURN

END

SUBROUTINE RRECON (S,N)
THIS ROUTINE CODED FOR COUPLED ELECTRICAL CYCLE III RA

COMPLEX S

DIMENSION GLOBAL (1009)

COMMON /FRGALL” GLOBAL,NR,NW, ISTART, METHOD
COMMON AL (32)

REAL GLOBAL

INTEGER NR,NW, ISTART, METHOD

DIMENSION P(4@)



62

EQUIVALENCE (GLOBAL(1),P(1))
REAL P

WMW,&,M,Q,M,M,WT,EMT,N,U,
1 ROPTG, EOPTG, XG1, XG2, LPF, RRACMP, RRECMP, APAP, EPAP, AFBLP, EFBLP,
2 XINTNT, EEQVBP, REQVBP

COMPLEX GI,LPF, RAACMP, RRECMP, APAP, EPAP, AFBLP, EFBLP,
1 AEQVBP,EEQVBP, XINTNT, AL, Q(3)

Q(1)=(-5408.0,8.9)
Q(2)=(-3142.0,0.0)
Q(3)=(-100000.0,8.8)
AL(1)=(Q(1)+(CSART (Q(1)xk2-4,.BxQ(1)%x2)) ) /2.0
AL(2)=CONJG(AL(1))
AL(3)=AL(1)
AL(4)=AL(2)
AL(5)=(Q(2)+(CSART(Q(2)%x2—4.BxQ(2)%x2)) ) /2.8
AL (6)=CONJG(AL(S))
AL(7)=AL(S)
AL(B)=AL(6)
AL(9)=(-31400.0,0.0)
AL(18)=AL(9)
AL(11)=(Q(3)+(CSART(Q(3)%k2-4.8%Q(3)%x2))) /2.8
AL(12)=CONJG(AL(11))
AL(13)=AL(11) '
AL(14)=AL(12)
AL(15)=(0.0,8.0)
AL(16)=AL(15)
AL(17)=AL(16)
AL(18)=AL(17)
AL(19)=AL(18)
AL(28)=AL(19)
AL(21)=(-31400.0,0.0)
AL(22)=AL(21)
AL(23)=AL(22)
AL(24)=AL(23)
AL(25)=AL(24)
AL(26)=AL(25)
AL(Z7)=AL(26)
AL(2B)=AL(27)
AL(29)=(-250000.0,0.08)
AL(38)=(-31400.0,0.0)
AL(31)=AL(29)
AL(32)=AL(38)
P(34)=(8.0,0.0)
EPS0=P(34)
P(36)=(0.0,0.0)



ETRO=P(36)
AK=P(32)
EX-873.
CA=1.87
CE=1.687
XKA=173.
XKE=123.
AZM0T+3.08
ELMOT=4.34
AJe.1

Ee.i
AOPTG=2300.
EOPTG=2320.

%G1=C0S(ETRO)*COS(EPS0)-SIN(ETAO)*SIN(EPSO)
X62=COS (ETRO)*SIN(EPS0) +SIN(ETRO)*COS(EPSO)

LPF=2./(Sx2/9408 . ¥x2+5/9480. +1. )
USE LPF AS POINT TO ADJUST LOOP GAIN

OO0 (@]

LPF=0. 77 PF _

RRACMP=2., x(S10K2/31400 . %x2+1 ., )% (S/754.+1.)

1 7(S%x2/31400. %x2+2.%5/31400. +1.)/(S/31400. +1. )k
ARECMP=1 . SXRAACP :

APAP=1. 5/ (Sxi2/ 100008 . *x2+S/100008. +1. )

EPAP=APAP

AFBLP=0.99/(5/31400. + 1.) /(S2/3142.%x2+5/3142.+1.)
EFBLP=RFBLP

REQVBP=0.9/(S/250008. +1.)/(5/31400.+1.)

EEQVBP=REQVBP

XINTNT=(S/12.57 + 1.)/(5/12.57)
RETURN
END

HOR END-OF-FILE 1.
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