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CHAPTER I 

INTRODUCTION 

Edible legumes are excellent sources of dietary protein and lipids 

essential for human nutrition .. Many nutritionists expect legumes to 

play an increasing role in meeting needs for food with increasing popu­

lations during times of food shortages, and widespread malnutrition. 

Protein malnutrition is especially acute for young children in many 

developing countries located in the humid tropics (2). 

A large number of grain legumes are known to man, but only 20 

species are used in the human diet and just six of them - soybean, 

peanut, dry bean, chick pea, pigeon pea, and cow pea - account for the 

bulk of world production (24). Among the less utilized legumes, the 

winged bean [Psophocarpus tretagonolobus (L) DC] has recently received 

much scientific attention for increasing vegetable protein production. 

The entire winged bean plant can be utilized as a foodstaff. The 

young pods are a tender, crunchy vegetable that can be eaten raw or 

added to cooked vegetable dishes. The leaves, young shoots and flowers 

can be eaten either raw or cooked. Also the flowers are used to color 

dishes for the table. Mature seeds are not eaten raw and require 

cooking. Sometimes they are roasted and eaten like peanuts. The 

seeds have a similar composition to that of soybean. The tubers have 

a high protein content approximately 20% on a dry weight basis. The 
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tubers are·eaten like potatoes, sometimes raw, but more frequently as a 

cooked vegetable. Medicinally, the leaves of the winged bean have been 

used in the treatment of small pox in Ghana. The roots have been used 

in Malaya as a poultice to cure vertigo (24). 

2 

In addition to value as human food, the leaves and stems can be 

used as forage, green manure, or as cover restorative crop (3, 41). 

Because of its capacity, through the nodules on its root, to fix nitro­

gen from the air into available soil nitrogen, it can grow in relatively 

poor soils (3) so common in the tropical areas. 

Although the high protein content of winged bean has been known 

since 1929 (1), and its adaptability to the humid tropical environmental 

conditions considered excellent, this plant is presently farmed 

intensively in only a few countries in Asia (24). New areas that could 

benefit from the introduction and sound agronomic cultivation of this 

bean include large parts of Central and South America, the Caribbean, 

Africa, Oceania and West Asia (43). 

The winged bean, if introduced and properly farmed in the humid 

area of northern Brazil, or if irrigated where required, could contri­

bute toward alleviating the protein problems of a large area of the 

country. 

The main objective of these studies was to determine the effect of 

soil fertility treatments on the winged bean growth and development, as 

well as on some selected nodule enzyme and carbohydrate components 

involved on the mechanism of symbiotic nitrogen fixation. A secondary 

objective was to determine if the enzyme activity data obtained con­

formed to the presently known pathways of ammonia incorporation into 

plant amino acids. 



The soii used in these studies was a Dark Red Latosol (Typic 

Eutrustox) collected in Jaiba, in the northern part of Minas Gerais 

State, Brazil. 
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CHAPTER II 

LITERATURE REVIEW 

Because the winged bean is still a 11 backyard crop" in just a few 

countries of the humid tropics, scientific agronomic information about 

its cultivation is scarce and scattered in a number of publications 

sometimes hard to obtain. Information about nodulation and nodule 

enzyme parameters determinations are still more difficult to find. 

Origin and Distribution 

According to Masefield (42), the origin of the Psophocarpus 

tetragonolobus is still uncertain,for this species is not found 

anywhere in the world as a truly wild plant. Ramirez (55) claimed 

that today this plant is commonly cultivated in the Philippines, being 

introduced from India or Malaya. Agcaoili (1) citing Merril, acknow-, 

ledged that the wing bean was cultivated in the Philippines prior to 

1912. Merril speculated that the plant was introduced in that country 

from India and Malaya. Burkil (10) pointed out that winged beans have 

been farmed in Burma since 1897 and that the largest acreage planted 

to this crop occurred in 1902. According to Hymowitz et al. (25) this 

plant is mostly cultivated in Asia, especially India, Burma, Malaya, 

Thailand, the Philippines, Indo-China, China, Ceylon, Indonesia, Papua, 

New Guinea and several South Pacific Islands, and concluded that today 

the greatest diversity of P. tetragonolobus occurs in Papua New Guinea, 
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and this is probably the original geographical center of this genus. 

Other reports (50) cite the center as possibly Papua, New Guinea with 

the other species of the genus, Psophocarpus, being native to else­

where in Africa. 

Botany 

Pospisil et al. (51) described the Psophocarpus tetragonolobus 

5 

as a perennial herb usually grown as an annual. Masefield (42) also 

considered this plant to be a climbing herbaceous perennial. He further 

stated that Agcaoili (1) was mistaken when he described the winged bean 

as an annual. The plant when properly supported on poles or trellis, 

can grow up to three meters high or more, the leaves are trifoliate, 

8-14 em long, and the flowers of papilionaceous type, are blue or white 

(42, 51) or variations of purple (29). Pospisil et al. (51) observed 

that in Ghana, flowers opened between the hours of 8-10 a.m. and were 

pollinated by several types of bees, with a low setting of fruits 

when the population of insects was absent. On the other hand,Khan (29) 

in Papua, New Guinea, observed that flowering occurred between 48-90 

days after planting, and that flowers opened after noon. He forwarded 

the hypothesis that under Papua, New Guinea, conditions,the winged 

bean was predominantly self-fertilized. Pods may be up to 30 em long 

and bear from 10 to 16 seeds (42). The color of the seeds is influenced 

by genetics and environmental conditions. According to Masefield (42) 

they can be white, yellow, brown and black, but in Papua, New Guinea, 

Khan (29) found that variations of brown and tan were the most prevalent 

color. The winged bean root system has a tap root and several lateral 

roots which with time may thicken forming potato-like tubers. 



Nodulation is abundant, even when the plant is grown for the first time 

in virgin lands, and Masefield (42) reported that in Malaya the fresh 

weight of nodules can attain 700 lb/acre. 
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The cycle of the plant, from seed to seed varies considerably, 

greatly influenced by genetics and environmental conditions. In Western 

Samoa, the winged bean produced seeds in 3 months after sowing, while in 

higher latitudes it may not flower at all (3). 

Uses 

A striking point about the winged bean is that the whole plant can 

be used as human foodstuff. The young pods, prepared like french beans, 

are the most popular part of the plant (24) and for this use they must 

be harvested 2 weeks after fertilization (51). After the third week 

the seeds mature, and can be consumed roasted like peanuts (24). 

Unripe seeds are also prepared for soups and curries (51). Like many 

other legume seeds, the winged bean seeds contain a pepsin inhibitor 

that can be easily destroyed by cooking (11), and no urease enzyme has 

been found to be present in the seeds (51). 

The high protein content of ripe winged bean seeds has been known 

by Agcaoili (l) since 1929. He apparently was the first investigator 

to observe that the winged bean seeds are very similar in composition 

to those of soybean. He further indicated that winged bean seeds could 

have the same use as soybean. 

In 1971, Cerny et al. (11) determined that the nutritive value. 

of winged bean seeds were superior to peanuts and later (12) used it 

successfully to treat kwashiorkor, a disease caused by ingestion of 

extremely low amounts of protein in the human diet, commonly found in 

young growing children in Ghana. 



Pospisil et al. (51) also determined that besides the high protein 

content, winged bean seeds have a favorable content of unsaturated 

fatty acids, with high concentration of vitamin E and A. 

Several authors have performed protein and oil analysis of the 

winged bean seeds. Table I shows their results as cited by Masefield 

(42). 

Author 

Kong and Bramer 

Hooper 

Agcaoili 

Ti nda 11 

Pospisil, et al.' 

TABLE I 

WATER, PROTEIN AND OIL CONTENT OF 
WINGED BEAN SEEDS 

% Water % Protein 

12.3 29.8 

9.5 37.4 

9.7 32.8 

14.0 33.0 

n.a. 37.3 

% Oi 1 

15.0 

15.5 

17.0 

16.0 

18. 1 

The roots of the winged bean are also edible and are most popular 

in Burma and in the South Pacific Islands (24). Unlike many other root 

crops with high carbohy~rate-low protein content, the slightly sweet 

winged bean tuber contains around 20% protein on a dry weight basis. 

7 

This is a remarkable 10-20 fold increase over the figures for such popu­

lar tropical staple root crops as cassava (1%), potatoes (2%) and yams (2%). 



Pospisil et al. (51) recommended that in Ghana roots be dug out 

when they are little thicker than the human thumb. 

Although the leaves of the winged bean have also a high protein 

content and in Malaya are used as a leaf vegetable (42), it has better 

possibilities as a forage crop. Pospisil, et al. (51) also pointed 
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out that the winged bean makes a good green manure and a fallow 

restorative crop, the stem being very palatable to stock. However, 

according to Hyminowitz et al. (24) it is very difficult to incorporate 

into the soil the large mass of winged bean material. For this purpose 

the smaller Psophocarpus palustris is more suitable. 

Cultivation 

Extremely scarce data are available concerning the cultivation of 

the~- tetragonolobus. Pospisil, et al. in Ghana (51) seem to be the 

first investigators to set up winged bean cultivation experiments in 

the field. They found the 2 x 2 ft. spacing to be the best spacing 

seed production. Khan (29) in Papua, New Guinea planted several intro­

ductions of this plant spaced 1 x 1 m, and among various parameters 

determinations, recorded the root and seed yield per plant. He 

speculated that the 2 x 2ft spacing suggested by Pospisil et al., 

could be successfully used in his trials without reducing the yield per 

plant. He further suggested then, that a dual purpose plant would 

produce 1322 Kg/ha of edible dry matter. However, recorded data for 

seed and root yields in Kg/ha varies to a great extent. Seed yields vary 

from 450 Kg/ha (10) to 11,000 Kg/ha every 5 months in Australia (3) and 

Hymowitz et al. (24) observed that higher yields could be achieved with 

improved varieties. 



One of the major deterents for the cultivation of the winged 

bean on a large scale is the necessity for staking. Pospisil, et al. 

(51) recommended that plants be allowed to climb a hedge staking and 

not be permitted to grow very high, so that harvesting would not be 

difficult. The soil should be maintained free of weeds, so they will 

not become entwined with the winged bean, causing the harvesting to be 

difficult. 

The winged bean is found ~ommonly in the tropics and probably 

requires more than 250 mm of rainfall to thrive. In less rainy areas 

supplemental irrigation should be applied (50). The plant is found 

growing at sea level (50) and at 4000 meters altitude in the highlands 

of Papua, New Guinea (29). 

Although it has been observed to be tolerant to insects and 

diseases, Khan (29) found several plants infected with root knot 

nematode (Meloidogyne sp), and a heavy infestation of Moruca testalis 

depressed the seed yields of his experiments. Pospisil et al. (51) 

in Ghana reported that flowers and pods can be sometimes attacked by 

caterpillars and the leaves are eaten by grasshoppers and spider mites. 

A minor attack of the fungus Sunchytrium psophocarpi was also observed 

in the young pods. Also, in Ghana (3), it was reported that a severe 

virus attack was observed on plants younger than 70 days. 

In Brazil the plant was introduced in 1976 as a cover crop in 

rubber, cocoa and oil plantationsin southern Bahia (3), and seeds were 

given out to some farmers to be used as a food crop. It was also 

reported that the winged bean was successfully introduced at IRI, 

Matao, Sao Paulo. Although one sprinker irrigation of about 50 mm 

was used because of drought, an unirrigated plot showed that irrigation 

9 
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was of marginal value. No insect or disease problems were observed and 

the winged bean completely dominared the soil. Although the seed 

harvesting had not yet occurred at the time of this report, seed yields 

were expected to be heavy in both poled and unpoled crops (3). 

Nodulation 

A very high number of nodules in the winged bean roots was first 

observed by Thompstone and Sawyer (42) in 1914. Later Masefield (40) 

found that£. tetragonolobus was the most heavily nodulated legume 

plant in Nigeria and Malaya. He pointed out that in Malaya, individual 

plants of £. tetragonolobus may carry up to 440 nodules and their fresh 

weight can attain up to 784 Kg/ha. The winged bean nodules are unusually 

large, and individual nodules can weigh up to 0.6 g with a diameter up 

to 1.2 em (40). 

The plant-rhizobium association has been observed everywhere the 

crop has been planted, even in virgin soils of Malaya, when there was no 

artificial inoculation. 

Although Dobereiner (15) has pointed out that soil management and 

fertilization studies may possibly indicate field practices which enhance 

nitrogen fixation, enzyme nodule parameters as influenced by nutrient 

levels in the soil has not been quantified for the winged bean. 



· CHAPTER I I 

MATERIALS AND METHODS 

The soil used in these studies was the top layer of a Dark Red 

Latosol (Typic Eutrustox, isohyperthermic, fine, kaolinitic) previously 

described (18, 52). The chemical and particle size analysis of this 

soil is summarized in Table II. 

Each experimental pot contained 100 g of soil diluted in 400 g of 

0.1 N HCl washed white quartz sand, and planted with l winged bean 

[Psophocarpus tetragonolobus (L) DC] seedling. In the first experiment, 

the WB-21-8 Tinge was grown for 75 days during short day photoperiod 

(from 1-31-79 to 4-16-79). In the second experiment, the WB-12-11 

Siempre was grown for 52 days during the long day photoperiod (from 

5-4-79 to 6-25-79). Seeds for these experiments were obtained from 

Mayaguez Institute of Tropical Agriculture, Box 70, Mayaguez, Puerto 

Rico 00708. At planting, each pot culture was inoculated with 3 ml of 

Rhizobium leguminosarum, liquid medium, containing more than 108 viable 

cells ml-l cultured from nodules of Strophostyles sp. 

These experiments were carried out as a randomized complete block 

design, and fertility treatments consisted of a complete 25 factorial 

arrangement using P, S, Ca, Mg and K combinations. Each treatment 

was replicated three times. 

The sources and nutrient levels for the first experiment, when 

WB-21-8 Tinge seeds were planted are presented in Table III. 

11 



TABLE II 

SOIL ANALYSIS OF THE 0-20 CM DEPTH LAYER OF THE DARK RED 
LATOSOL USED IN THE GREENHOUSE EXPERIMENTS 

Properties 

pH (H20) 
Buffer index 
CEC (NH3EC)~ meq/100 g 
Percent organic matter 
Exchangeable cations meq/100 g 

Ca 
Mg 
K 

Al 
Available P (Bray P1) ppm 

Fe ppm 

% sand 
% silt 
% clay 

Texture 

Mn ppm 

Zn 

6. 1 

6.8 
25.4 
3.3 

13.8 
2.5 
0.4 

not detected 

7.5 
680.0 
208.0 

1.0 

24.5 

19.5 
56.0 
Clay 

Pot cultures not fertilized with NH 4H2Po4 received 11.2 mg NH3 

acetate to balance out the ammonium effect of the phosphate fertilizer. 

12 

After the harvesting of the WB-21-8 Tinge variety, the soils of the 

three replications were thoroughly mixed together, repotted, and then 

retreated with double nutrient levels and planted with 1 seed of WB-12-ll 

Siempre variety. The Base Cation Ratio was equal one for bothexperiments. 

K BCR = = 1 
J Ca ~ Mg 1 



Nutrient 

Phosphorus 

Sulphur 

Calcium 

Magnesium 

Potassium 

TABLE III 

SOURCE AND NUTRIENT LEVELS FOR THE FIRST 
EXPERIMENT (SHORT DAY LENGTH) WB-21-8 

TINGE VARIETY 

Source 

NH4H2Po4 50 ppm 

Na2so4 50 ppm 

13 

Level 

CaC03 6 meq/100 g of soil 

I~gC1 2 . 6H 0 
2 2 meq/100 g of soil 

KCl 2 meq/1 00 g of soil 

The 32 possible treatment combinations for the 25 complete P, S, 

Ca,Mg and K factorial are shown in Table IV. 

Harvesting of these experiments took place between the hours of 

8-10 a.m. Plant tops were clipped, oven dried at 105°C for 24 hours 

and weighed. The nodule-root system was carefully shaken free of soil, 

briefly washed (< 30 sec), blotted with paper toweling to remove excess 

water, and placed in serum cap bottles for nitrogenase (EC 1.7.99.2) 

activity (C2H2) reduction determinations (69). 

Nitrogenase activity was measured according to the method described 

by Hardy et al. (23). The nodule-root system was incubated for one 

hour with 0.1 atm c2H2 (lab. spec, purified grade, Linde Div. Union 

Carbide, Inc.) at 27°C, and c2H4 production was detected with a Perkin­

Elmer GC 3920 with 1.83 m x 3.2 mm Poropak N 80/100 column (Walters 

Assoc.). The ethylene standard utilized for calibration and monitoring 
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TABLE IV 

TREATMENT COMBINATIONS FOR WINGED BEAN EXPERIMENTS 

Treatment Symbol Treatment Symbol 

1 0 17 PKCa 

2 p 18 PKMg 

3 K 19 PKS 

4 Ca 20 PCaMg 

5 Mg 21 Peas 

6 s 22 PMgS 

7 PK 23 KCaMg 

8 PC a 24 KCaS 

9 PMg 25 KMgS 

10 PS 26 CaMgS 

11 KCa 27 PKCaMg 

12 KMg 28 PKCaS 

13 KS 29 PKMgS 

14 CaMg 30 PCaMgS 

15 CaS 31 KCaMgS 

16 MgS 32 PKCaMgS 



of gas chromatography analysis was the Scott Ev. Tech. 1090 ppm + 5% 

c2H4;N2 (Supe l co, Inc.). 

After the c2H2 reduction analysis, the nodules were picked from 

the roots, counted and weighed. Nodule free roots were oven dried at 

105°C for 24 hours and weighed. 

15 

Cell-free nodule extracts (cytosol) for enzyme activity determina­

tions were obtained with the methods described by Grimes and Fottrell 

(21), and by Brown and Dilworth (9}, with slight modifications. Samples 

of freshly picked nodules were crushed within glass tubes at -0.5°C with 

addition of 0.1 M of phosphate buffer, pH 7.41 at the ratio of 10 ml of 

the solution to each gram of nodule. The nodule homogenate was then 

subjected to ultransonification at 7.3 K pulse frequency in an ice bath 

for 30 sec. using a PT105T Hilliams Polytron (Brinkman Instruments, Inc.), 

followed by refrigerated centrifugation at 12 x 103 g for 10 minutes. 

The clear, cell-free nodule extract (cytosol) was asceptically trans­

ferred to sterile culture tubes and stored at 0-5°C. 

Enzyme activities determined in the nodule cytosol extract are 

expressed as International Units (U), and defined as the amount of 

enzyme which causes transformation of 1.0 ~mole of specific substrate 

per minute (38) determined in 3.0 ml of reaction volume, l em light 

path, at 27°C (57). 

Enzyme determinations included glutamate-oxaloacetate transaminase 

{GOT) (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6. 1.1) (21 ), 

glutamate-pyruvate transaminase (GPT) (L-alanine:2-oxoglutarate 

aminotransferase, EC 2.6. 1.2) (57), glutamate dehydrogenase (GDH) 

(L-glutamate: NAD {P)+ +oxidoreductase deaminating, EC 1.4. 1.2) (33), 

glutamine synthetase (GS) (L-glutamate:ammonia ligase) (63), glutamate 



synthase (GOGAT) (L-glutamine:2-oxoglutarate aminotransferase 

oxidoreductase NADH, EC 2.6.1.53) (57). 
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Nodule cytosol saccharide levels were determined for 0-glucose and 

sucrose as described by Kidby (30), and starch was first hydrolysed to 

amylose-amylopectin by breaking both a-D-(1~4) and a-0-(1~6) glucan 

linkages and then analyzed by the methods of Keppler and Decker (28). 

Levels of the tricarboxylic acid intermediate, alpha-ketoglutarate 

(aKG) (2-oxoglutarate), were determined with the method proposed by 

Bergmeyer and Bernt (7), and soluble protein was measured by the Falin 

phenol reagent as described by Lowry et al. (39). Nodule cytosol 

levels of Pyridoxal-Pyridoxamine Phosphates were determined using a 

fluorometric method adapted from Schreider (59). 

Th~ data obtained were analyzed according to the Statistical 

Analysis System (SAS) (58), using the PROCEDURE ANOVA for single degree 

of freedom comparisons for fertility treatments, PROCEDURE GLM for 

linear regression models, and PROCEDURE CORR to determine possible 

relationship between paired independent variables. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Experimental results for the first (winter) and for the second 

(spring) experiments are summarized in Tables V to XXXVII. 

Most of the parameters determined in these studies were influenced 

by the soil fertility treatments used in these experiments. Generally, 

a large number of high order interactions were also significant and are 

listed at the bottom of each Table. Thus, fertility effects will be 

discussed separately for each parameter with emphasis on the main 

effects of P, S, Ca, Mg, and K. 

To determine if the main effect of each nutrient had a significant 

effect on the parameters studied, the following hypothesis 

HO: ~ effect = 0 

HA: ~ effect :f 0 

were tested by the F statistical test obtained from the analysis of 

variance tables. The null hypothesis (no nutrient effect) was not 

accepted for P < 0.1 or less. The ~ effect was defined as the 

difference between the mean of the 48 pot cultures treated with a 

particular nutrient and the mean of the 48 pot cultures that did not 

receive that nutrient. Thus, the five possible~ effects for each 

parameter can be represented as: 
- - - - - - - - -

~ effect: (P,S,Ca,Mg or K) 1 - (P,S,CaMg or K) 0 
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Contrasting with earlier observations, the WB-21-8 Tinge variety 

flowered but did not produce tuber growth when cultivated for 75 days 

with short day length (winter) with the same experimental conditions 

utilized for the WB-12-11 Siempre variety (54). 

Shoot Dry Weight 

Both the WB-21-8 Tinge (Table V) and the WB-12-11 Siempre (Table 

VI) varieties showed a highly significant increase in shoot dry weight 

yields (P ~ 0.001) when the soil was fertilized with P. The WB-21-8 

Tinge variety also responded to K application (P < 0.1), whereas the 

WB-12-11 Siempre had increased shoot growth when Ca was added to the 

soil (P ~ 0.05). · 

Root Dry Weight 

The WB-21-8 Tinge variety root dry weight (Table VII) increased 
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(P ~ 0. 001) when the soi 1 was fertilized with P. However, the root dry 

weight obtained for WB-12-11 Siempre variety (Table VIII), was depressed 

(P ~ 0.05) when the soil was fertilized with this nutrient. All of the 

other nutrient failed to have any significant effect on root growth of 

both winged bean varieties used in these experiments. 

Fresh Nodule Weight 

Results from Table IX (WB-21-8 Tinge variety) and Table X (WB-12-11 

Siempre variety) show increased nodule weight when the soil was fertil­

ized with P(P ~ 0.001), S(P ~ 0.05, 0.001 respectively), and K(P ~ 0.05 

and 0.001 respectively). Neither Ca nor Mg affected nodule weight of 

the two P. tetragonolobus cultivars in these studies. 



TABLE V 

WB-21-8 TINGE WINGED BEAN, SHOOT DRY WEIGHT WITH SHORT 
DAY LENGTH AS AFFECTED BY SOIL FERTILITY 

COMBINATIONS TO A DARK RED LATOSOL, 
JAIBA, BRAZIL 

Trt g/pot Trt g/pot Trt g/pot Trt 

0 0.66 Mg 0.66 s 0. 71 t~gS 

K 0.86 KMg 0. 72 KS 0.75 KMgS 
Ca 0.64 CaMg 0.66 CaS 0.74 CaMgS 
KCa 0.60 KCaMg 0.83 KCaS 0. 77 . KCaMgS 

p 0.94 PMg 0.97 PS 1.10 PHgS 
PK 0.88 PKMg 0.65 PKS 1.25 PKMgS 
Pea l. 21 PCaMg 1. 03 Peas· 0.53 PCaMgS 
PKCa I. 06 PKCaMg 0.90 PKCaS 0.94 PKCaMgS 

Element Main Effect 

p s Ca Mg 

without 0.72 0.83 0.84 0.85 

with 0.96 0.85 0.84 0.83 

6. effect 0.24*** 0.02ns o.oons -0.02ns 

ns =not significant,#,*** significant at P ~ 0.1 and 0.001 
respectively for Ho: 6 effect = 0. 
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g/pot 

0.60 
0.90 
0.63 
0.79 

0.56 
1.26 
1.07 
1.05 

K 

0.79 
0.89 
0.1 0# 

The interactions K x S*, P x K x S*, P x Ca x Mg x S* and K x Ca x f·1g x S* 
were significant for P ~ 0.1. 



Trt 

0 
K 
Ca 
KCa 

p 

PK 
PC a 
PKCa 

TABLE VI 

WB-12-11 SIEMPRE WINGED BEAN, SHOOT DRY WEIGHT WITH LONG DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COMBINATIONS 

TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

g/pot Trt g/pot Trt g/pot Trt g/pot 

0.78 Mg 1. 21 s 1. 50 t~gS 0.95 
1.00 KMg 0.81 KS 0.93 KMgS 1. 50 
0.91 CaMg 0.91 CaS 1.16 CaMgS 1. 21 
1. 03 KCaMg 1.13 KCaS 2.03 . KCaMgS 0.85 

1. 33 PMg 1.47 PS 1.38 P~1gS 1.04 
1.29 PKMg 1.15 PKS 1.66 PKMgS 1.64 
2.01 PCaMg 1.84 Peas 0.88 PCaMgS 1. 75 
1. 92 PKCaMg 1.38 PKCaS 2.06 PKCaMgS 1.27 

Element Main Effect 

p s Ca Mg ·K 

without 1.12 1.26 l. 23 1. 37 1.27 
with 1. 51 1.36 1.40 1.26 1.35 
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6 effect 0.39*** 0. 1 ons 0. 17* -0.11 ns 0.08ns 

ns = not significant, * *** significant at P < 0.05 and 0.001 ' respectively for Ho: ~ effect = 0. 

The interactions P x K x S#, P x Ca x Mg, S# were significant at P < 0.1; 
K X Mg*, K ~ S* were significant at P ~ 0.05, P x S**, K X Ca X Mg*~ 
were significant at P ~ 0.01; and K x Ca x Mg x S*** was significant 
at P < 0.001. 



TABLE VII 

WB-21-8 TINGE WINGED BEAN, ROOT DRY WEIGHT WITH SHORT DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COMBINATIONS 

TO A DARK RED LATOSOL 
JAI BA, BRAZIL 

Trt g/pot Trt g/pot Trt g/pot Trt 

0 o. 18 Mg 0.19 s 0.17 t~gS 

K 0.22 KMg 0.26 KS 0.26 KMgS 

Ca 0.17 ·CaMg 0.25 CaS 0.24 CaMgS 
KCa 0.19 KCaMg 0.20 KCaS 0.21 KCaMgS 

p 0.32 PMg 0.28 PS 0.31 Pt1gS 
PK 0.17 PKMg 0.24 PKS 0.28 PKMgS 
PCa 0.34 PCaMg 0.27 Peas· 0.27 PCaf~gS 

PKCa 0.28 PKCaMg 0.23 PKCaS 0.21 PKCaMgS 

Element Main Effect 
I 

p s Ca Mg 

without 0.22 0.24 0.24 0.24 
with 0.27 0.25 0.25 0.25 
t:, effect 0.05*** 0.01ns O.Olns 0.01ns 
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g/pot 

0.20 
0.22 
0.23 

0.29 

0.25 
0.30 
0.29 
0.33 

K 

0.25 
0.24 

- 0.01ns 

. ns = not significant, *** significant at P ~ 0.001 for Ho: ~ effect = 0. 

The interaction P x K* was significant for P ~ 0.05 and K x Ca x Mg x S# 
forP<O.l. 



TABLE VII I 

WB-12-11 SIEt1PRE WINGED BEAN, ROOT DRY WEIGHT WITH LONG DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COt1BINATIONS 

TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

Trt g/pot Trt g/pot Trt g/pot Trt 

0 0.45 Mg o .. 46 s 0.46 t~gS 

K 0.44 KMg 0.49 KS 0.43 KMgS 

Ca 0.42 CaMg 0.42 CaS 0. 41 CaMgS 
KCa 0.44 KCaMg 0.47 KCaS 0.47 . KCaMgS 

p 0. 35 PNg 0.37 PS 0. 34 . PHgS 
PK 0.42 PKMg 0.37 PKS 0.45 PKMgS 
Pea 0.39 PCaMg 0.44 Peas· 0.54 PCa~1gS 

PKCa 0.57 PKCaMg 0.40 PKCaS 0.35 PKCaMgS 

Element Main Effect 

p s Ca Mg 

without 0.46 0.43 0.42 0.43 

with 0.42 0.44 0.45 0.44 

A effect - 0.04** O.Olns 0.03ns 0.01ns 
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g/pot 

0.49 
0.37 
0.57 
0.52 

0.44 
0.45 
0.38 
0. 41 

K 

0.43 
0.44 
0.01ns 

ns = not significant, ** significant at P ~ 0.01 for Ho: ~ effect = 0. 

The interactions P x Ca x Mg#, K x Ca x Mg x S#, P x K x Ca x Mg x S# 
were significant at P ~ 0.1; P x Ca x S*, P x K x Mg x S* were 
significant at P ~ 0.05. 



TABLE IX 

WB-21-8 TINGE WINGED BEAN, FRESH NODULE WEIGHT WITH SHORT DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COMBINATIONS 

Trt 

0 

K 

Ca 
KCa 

p 

PK 
PCa 
PKCa 

without 
with 
r:,. effect 

TO A DARK RED LATOSOL 

g/pot Trt 

0. 07 Mg 
0. 31 KMg 
0. 15 CaMg 
0. 26 KCaMg 

· 0. 56 PMg 
0. 50 PKMg 
0. 96 PCaMg 
0.84 PKCaMg 

p 

0.29 
0.75 
0.46*** 

JAIBA, BRAZIL 

g/pot Trt g/pot 

0.24 s 0.21 
0. 18 KS 0. ll 
0. 24 CaS 0. 13 
0. 29 KCaS 0. 47 

0.85 PS 0.96 · 
0.58 PKS 1.45 
o. 83 Peas · o. 28 
0.46 PKCaS 0.65 

Element Main Effect 

s 

0.46 

0.59 

0.13* 

Ca 

0.53 
0.51 

- 0.02ns 

Trt 

t~gS 

KMgS 
CaMgS 
KCaMgS 

Pt1gS 
PKMgS 
PCa~1gS 

PKCaMgS 

Mg 

0.49 
0.55 
0.06ns 

ns = not significant; *, *** significant at P < 0.05 and 0.001 
respectively for Ho: r:,. effect = 0. -

g/pot 

0.27 
0.92 
0.43 
0.35 

0.15 
1.14 
0.98 
0.90 

K 

0.46 
0.59 

0.13* 

The interactions K x Ca# and P x Mg# were significant for P < 0.1; 
Ca X S*, p X Ca X Mg*, K X Ca X Mg*, p X K X S*, Ca X Mg X s~, 
K~ Ca x Mg x S* were significant for P < 0.05; and P x Ca x Mg x S*** 
was significant for P ~ 0.001. -
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TABLE X 

WB-12-11 SIHlPRE WINGED BEAN, FRESH NODULE vJEIGHT WITH LONG DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COf~BINATIONS 

TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

Trt g/pot Trt g/pot Trt g/pot Trt g/pot 

0 0.45 Mg . 0.57 s 1.06 r~ 9 s 0.56 

K 0.42 KMg 0.42 KS 0.48 KMgS 2.27 

Ca 0.40 CaMg 0.47 CaS 0.45 CaMgS o. 73 

KCa 0. 72 KeaMg 0.72 KCaS l. 96 KeaMgS 0.71 

p 1. 36 PMg 1. 30 PS 1. 59 Pt~gS 0.55 

PK 1. 82 PKMg 1. 30 PKS 1.98 PKMgS 1. 91 

Pea 1.20 PCaMg 1. 34 Peas· 0.34 PCaMgS 2.03 

PKea 1. 64 PKCaMg 1. 68 PKCaS 1. 92 PKCaMgS 1. 70 

Element Main Effect 

p s Ca Mg K 

. without 0.78 0.99 1.15 1.15 0.90 

with 1.48 1.27 1.11 1.13 . 1. 37 
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A effect 0.70*** 0.28*** - 0.04ns 0.02ns 0.47*** 

ns = not significant, *** significant at P ~ 0.001 for Ho: b effect = 0. 

The interaction P x K x Mg# was significant at P < 0.1; P x S***, 
K x S***, P x Ca x Mg***, P x Ca x Mg x S***, K x Ca x Mg x S*** 
were sign1ficant at P < 0.001. 
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Number of Nodules 

While the fresh nodule weights of both varieties were significantly 

increased by P, S, and K fertilization, the data obtained for number of 

nodules (Tables XI and XII), indicated that only P and K had a 

significant effect on this parameter. Thus, these observations suggest 

that whereas S was important for increasing nodule growth, it had no 

effect on the number of nodules set during root growth. Similarly to 

fresh nodule weight, neither Ca nor Mg influenced the number of nodules 

per plant. 

Nitrogenase Activity 

The acetylene reduction (C2H2 red) technique was employed in these 

studies to assay nitrogenase activity. Data obtained for the WB-21-8 

Tinge and WB-12-11 Siempre are summarized in Tables XIII to XV. A 
-1 -1 sharp increase (P < 0.001) in c2H4g fresh nod hr was observed when 

the WB-21-8 Tinge variety was fertilized with Panda significant 

response (P ~ 0.05) was also observed when K was added to the soil. 

Contrarywise, K decreased (P ~ 0.05) acetylene reduction (C2H4g-l fresh 
-1 nod hr ) in the WB-12-11 Siempre variety, with no P effect being 

observed in this case. Apparently, S, Ca and Mg did not affect 

nitrogenase activity of the winged bean when activity was measured as 

production of c2H4g-l fresh nod hr- 1 However, a different pattern is 

shown in Table XV when nitrogenase activity was measured as production 
~, -1 

of c2H4 pot hr for the WB-12-11 Siempre variety. Measurement of 

nitrogenase activity in terms of production of c2H4g-l fresh nod 

hr-l indicates the efficiency of the R. leguminosarum to fix nitrogen in 



TABLE XI 

WB-21-8 TINGE WINGED BEAN, NUMBER OF NODULE WITH SHORT DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COMBINATIONS 

TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

Trt x/pot Trt x/pot Trt x/pot Trt 

0 6.33 Mg 9.00 s 6.33 MgS 

K 19.67 KMg 18.33 KS 9.67 KMgS 
Ca 23.33 CaMg 14.67 CaS 8.67 CaMgS 
KCa 15.33 KCa~1g 22.67 KCaS 14.00 KCa~1gS 

p 12.67 PHg 20.00 PS 15.67 PMgS 
PK 48.00 PKMg 12.33 PKS 26.00 p Kfllg s 
PC a 38.00 PCat·1g 22.00 Peas 21.67 PCaMgS 
PKCa 15.00 PKCaMg 19.00 PKCaS 25.33 PKCaMgS 

Element Main Effect 

p s Ca Mg 
without 14.90 19.77 17.08 19.11 

with 21.94 17.06 19.75 17.73 

b. effect 7.04** 2. 71 ns 2.67ns 1 . 38ns 

ns =not significant,#,** significant at P ~ 0.1 and 0.01 
respectively for Ho: n effect = 0. 
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x/pot 

17.33 
17.33 
15.67 
20.00 

7.00 
27.67 
25.67 
15.00 

K 
16.50 
20.33 
3.83# 

The interaction P x K x Ca x Mg x S# was significant for P < 0.1; 
P x Mg* and P x K x Ca* were significant for P ~ 0.05; and K x Ca** 
and K x Ca x Mg x S** were significant for P ~ 0.01. 
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TABLE XII 

WB-12-11 SIEMPRE WINGED BEAN, NUMBER OF NODULE WITH LONG DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY COMBINATIONS 

TO A DARK RED LATOSOL 
'JAIBA, -BRAZIL 

Trt x/pot Trt x/pot Trt x/pot Trt x/pot 

0 4.00 Mg 8.00 s 7.00 MgS 5.67 

K 6.00 KMg 4.66 KS 6.33 KMgS 13.33 

Ca 3.33 CaMg 6.33 CaS 5.33 CaMgS 2.67 

KCa 8.33 KCaMg 6.00 KCaS 12.00 KCaMgS 7.67 

p . 8. 33 Pl~g 8.00 PS 6.33 PMgS 6.67 

PK 9.33 PKMg 11.33 PKS 11.00 PKMgS 9.00 

Pea 7.33 PCaMg 7.67 Peas 6.33 PCaMgS 9.00 

PKCa 11.67 PKCaMg 16.00 PKCaS 13.67 PKCaMgS 11 . 33 

Element Main Effect 

p s Ca Mg K 
without 7.06 7.76 7.85 7.94 6.75 
with 9.43 8.71 8.69 8.55 9.80 
b. effect 2.37ns 0.95ns 0.79ns 0.61ns 3.05*** 

ns = not significant, ***, significant at P ~ 0.001 for Ho: ~ effect= 
0. 

The interactions K x Ca x Mg# was significant at P ~ 0.1; P x S*, 
p X K X Mg X S*' K x Ca x ~1g x S*were significant at P .:::_ 0.05. 



T/\BLE XII I 

WB-21-8 ·~INGE WINGED GEAN, NODULE NITROGENASE 
(C2H2 HEDUCTIOf"!) ACTIVITY I·!ITH SHORT DAY 

LENGTH AS AFFECTED CY SOIL FERTILITY 
COMBINATIONS TO A DARK RED LATOSOL 

JAIB/\, BRAZIL 

t• moles C2ll4 ( ~ -1 
p moles C2H4 g~ 1 ll mo 1 cs C2H4 g1 

Trt fresh nod. hr Trt fresh nod. hr- Trt fresh nod. hr- Trt 

0 4.7 N~ 21.7 s 11.7 HgS 
K 33.7 KJ.lg 8.0 KS 5.3 IO·lgS 
Ca 18.7 Cal·\g 16.0 CaS 6.3 Cal1gS 
KCa 10.3 KCaMg 13.0 KCaS .118.6 KCaHgS 

p 30.0 P~lg 31.0 PS 90.3 PHgS 
PI~ 79.0 PKJt.g 33.3 PKS 63.0 PKMgS 
PCn 119.7 PCal·lg 72.3 Peas 9.3 • _PCal·lgS 
PKCa 48.3 PKCal·lg 55.0 PKCaS 37.0 PKCal·lgS 

Element Hain Effect 

p s Ca Mg 

t/i th 24.5 37.2 40.9 42.9 
without 61.8 49.1 45.4 43.4 

'' effect 37.3*** H. 9ns 4.5ns 0.5ns 
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p moles· C21!4 g- 1 
fresh nod. hr-1 

10.7 
97.3 
7.0 
8.3 

3.3 

132.0 
61.0 

124.3 

K 

32.1 
54.2 
22.1* 

ns ~ not significant, *, ***, significant at P ~ 0.05 and 0.001 respectively for Ho: 6 effect = 
0. 

The interactions P x Ca x Mg*, K x S*, P x Ca x Mg·x S* were significant at P < 0.05 and 
K x Ca x Mg x S** at P < 0.01. --. 



Trt 

0 

K 
ca 
KCa 

p 

PK 
PC a 
PKCa 

tABLE XIV 

\~B-12-11 S IHlPRE WHJGED BEAN, NODULE NITROGENASE 

(C2H2 REDUCTION) ACTIVITY WITH LONG DAY 

lENGTH AS AFFECTED BY SOIL FERTILITY 

COMBINATIONS TO 1\ DARK RED LATOSOL 

JAIBA, BRAZIL 

-1 -1 . . 1 
11 moles C2H4g_ 1 11 moles C2H4 91 \l moles C2H4 9~ 
fresh nod. hr Trt fresh nod. hr- Trt fresh nod. hr-

76.67 Mg 110.67 s 78.00 

74.00 KMg 65.00 KS 59.00 

74.33 Cal~g 113.33 CaS 126.00 

56.67 KCa!1g 63.00 KCaS· 66.67 

79.33 PNg 316.33 PS 102.33 

116.00 ·PKI·lg 53.33 PKS 49.33 

92.33 PCa~lg 91.67 Peas 66.00 

44.67 PKCaf~g 55.50 PKCaS 60.33 

Element !·lain Effect 

p s Ca 

Trt 

H9S 
KHgS 
Caf.lgS 

KCa!·lgS 

Pf-lgS 
PKMgS 
PCaf·lgS 
Pf.(CaMgS 

Hg 

tri thout 79.53 93.89 93.42 76.40 
with 87.32 73.40 73.43 90.45 
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11 mo 1 es C2ll4 9 -l 
fresh nod. hr-1 

83.00 
98.67 
62.00 
63.67 

57.33 
69.33 
67.00 
65.67 

K 

99.77 
66.37 

A effect 7.79ns - 20.49ns - 19.99ns 14.05ns - 33.4* 

ns = not significant, * significant at P ~ 0.05 for Ho: a effect = 0. 

The interactJon K x Mg x S* was significant for P ~ 0.05. 



TABLE XV 
WB-12-11 .SIEMPRE WINGED BEAN, NODULE NITROGENASE 

(CzHz REDUCTION) ACTIVITY WITH LONG DAY 
LENGTH AS AFFECTED BY SOIL FERTILITY 
C0~1BINATIONS TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

30 

p moles C2H4 
pot-1 hr-1 

p moles c2H4 
pot-1 hr-1 

p moles C2H4 
pot-1 hr-1 

\I moles c,H4 
pot-1 hr~1 Trt Trt Trt Trt 

0 34.33 ~1g 64.00 s 63.33 HgS 45.67 

K 21.67 YJ1g 30.33 KS 28.00 KHgS 219.00 

Ca 28.67 Cal1g 50.33 CaS 37.33 Ca~lgS 45.33 

tea 40.33 KCaHg 45.33 KCaS 132.67 KCal1gS 41.00 

p 108.67 PHg 119.33 PS 188.33 PMgS 29.33 

rK 208.33 PKNg 64.00 PKS 97.33 PKHgS 137.33 

PC a 70.00 PCa~lg 119.33 Peas 30.67 PCal1gS 192.00 

I'KCa 73.66 f'KCaf.lg 66.33 PKCaS 115.33 PY.Caf1gS 109.00 

Element !·lain Effect 

p s Ca Mg K 

trithout 57.96 71.54 91.19 79.92 73.54 

uith 109.94 91.35 71.70 82.98 1}9.35 

4 effect 46. 98*** 19.811 • 19.49** 3.06°s 15.8lns 

ns =not significant,#,*** significant at P ~ 0.1 and 0.001 respectively for Ho: 6 effect= 0 . 
.. 

The interactions P x K!.1, P x Ca x l~g·x Sf! were significant at P ·< 0.1; K x S*, K x 11g x S* ~1ere 
significant at P ~ 0.05; P x Ca x l·lg***, K x Ca x 1-lg x S*** were-significant at P ~ 0.001 
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relation to the amount of nodule tissue. On the other hand, nitrogenase 

activity measurements as production of c2H4 pot-l hr-l represents an 

estimation of the total amount of N available for incorporation into 

plant amino acids. A good evidence of this is the data obtained for P 

for the WB-12-ll Siempre variety. In this cultivar P did not influence 

the measurements of nitrogenase activity when c2H2 reduction was 

determined as c2H4g-l fresh nodule hr-l indicating that P did not 

influence the Rhizobium efficiency to fix N. Nonetheless, a large 

increase in c2H2 reduction took place within the nodule root system of 

plants fertilized with P, since acetylene reduction as production of 
-1 -1 c2H4 pot hr sharply increased (P ~ 0.001) in this case. These 

trends can be explained by the fact that, whereas P did not increase 

the Rhizobium efficiency, it did increase nodule fresh weight (Table X) 

and number of nodules (Table XII) of the winged bean plants, so that the 

increased amount of N fixed within the nodules of P fertilized plants 

can be accounted for. Apparently, these data are very similar to those 

obtained for Cratylia floribunda, Benth, as reported by Purcino (53). 

Nodules of WB-12-11 Siempre plants fertilized with S, also 

increased the amount of N fixed/pot (P ~ 0. 1), while fertilization with 

Ca depressed availability of N (P ~ 0.05). 

Alpha Ketoglutarate Levels 

Results obtained for measurement of Alpha Ketoglutarate (a KG) levels 

in nodule cytosol of both WB-21-8 Tinge and WB-12-11 Siempre varieties 

are reported in Tables XVI and XVII. Levels of this tricarboxylic acid 

intermediate, which is an essential component for NH3 assimilation into 

plant amino acids, were depressed in nodule cytosol of WB-21-8 Tinge 



TA8LE XVI 

WB-21-8 TINGE HINGED BEAN, 1-!0DULE CYTOSOL ALPHA KETOGLUTARATE 

(~KG) LEVELS \HTH SHORT DAY lENGTH AS AFFECTED BY SOIL 

FERTILITY C01iBINATIONS TO A DAR!( RED LATOSOL 
' . 

JAIBA, 13RAZIL 
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lrt 11 mole/g nod. Trt 11 molc/g nod. Trt iJ mole/g nod. Trt lt mole/g nod. 

0 0.65 Mg 0.54 s 0.62 HgS 0.62 
K 0.56 KNg 0.62 KS 0.72 Kf.lgS 0. 51 
Ca 0.29 Cal1g 0.71 CaS 0.67 Cat·lgS 0.23 
KCa 0.35 KCal1g 0.27 KCaS 0.46 KCal1gS 0.24 

p 0.43 PHg 0.51 PS 0.61 PMgS 0.36 
PK 0.44 PKl1g 0.20 PKS 0.54 PKHgS 0.54 
PCa 0.46 PCaNg 0.43 Peas 0.55 PCAI1gS 0.21 
PKCa 0.51 PKCal1g 0.38 P~as 0.42 PKCa!1gS 0.39 

Element Main Effect 

p s Ca Mg K 

without 0.50 0.46 0.53 0.52 0.50 
with 0.44 0.48 0.41 0.42 0.45 
A effect - 0.066 0.02°s - 0.12** -0.10** - 0.05°s 

ns ~ not significant, #, **, significant at P ~ 0.1 and 0.01 respectively for Ho: b effect = 0. 

The int~ractions Ca x Mg x S#, K x Ca x Hg x S# were significant at P < 0.1; p x Ca*, 
K x mg*, P x K x Ca x 11g x S* were significant at P < 0.05; and 11g x S** was significant at 
p ~ 0.01. ' -



TABLE XVII 

HB-j 2-11 SIE~1PRE HINGED BEAn, NODULE CYTOSOL ALPHA KETOGLUTARATE 

(c< KG) LEVELS \~ITH LONG DAY LENGTH AS AFFECTED BY ·SOIL 

FERTILITY Cm1BINATIONS TO A DARK RED LATOSO~ 

JAIBA, BRAZIL 

33 

Trt ll molc/g nod. Trt ll mole/g nod. Trt ll mole/g nod. Trt ll molc/g nod. 

0 0.36 Hg 0.30 s 0.28 MgS o:23 

K 0.26 KJ1g 0.19 KS 0.21 KHgS 0.23 

Ca 0.20 CaMg 0.29 CaS 0.26 Ca!·lgS 0.24 

KCa 0.23 KCa!1g . 0.23 KCaS 0.18 KCaf.lgS 0.21 

p 0.11 Pl·lg 0.10 PS 0.15 PHgS 0.22 

PK 0.14 PK."lg 0.35 PKS 0.25 PYJ1gS 0.22 

Pea o. 11 PCa!·lg 0.10 Peas 0.27 PCAHgS 0.27 

PKCa 0.30 PKCal1g 0.41 P11.CaS 0.24· PKCal·lgS 0.22 

Element Main Effect 

p s Ca ~lg K 

without 0.24 0.23 0.23 0.22 0.22 

with 0.22 0.23 0.23 0.24 0.24 

A effect ~ o.oz05 o.oo05 0.00°5 0.02°5 0.02°5 

ns : not significant for Ho: A effect = 0. 

The interactions P x Ca#, K x Ca x S# were significant at P < 0.1; K x S* P x K x S*, 
P X K X Mg X S* were significant at P ~ 0.05 and P X K*** was significant at P ~ 0.001. 
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plants fertilized with P, Ca, and Mg (P ~ 0.1, 0.05 and 0.05 respectively, 

with no effect being observed for S and K fertilizations. No fertility 

effect was observed on levels of this keto acid on nodule cytosol of the 

WB-12-11 Siempre variety. 

The relevance of soil fertility effects on the levels of a KG as 

well as its relationship with the other nodule enzymes, which are 

involved in the pathways of N incorporation into amino acids, will be 

discussed later in this chapter. 

Glutamate Dehydrogenase Activity 

Nodule cytosol activity levels of glutamate dehydrogenase (GDH) 

are shown in Tables XVIII and XIX for varieties WB-21-8 Tinge and WB-12-11 

Siempre, respectively. GDH activity increased when the former was 

fertilized with P (P ~ 0.001) and in the latter when fertilized with Mg 

(P ~ 0.05). Changes in GDH activity caused by fertilization with the 

other nutrients were not statistically significant for these two 

varieties. 

Glutamine Synthetase Activity 

Phosphorus was a very important nutrient for increasing (P < 0.001) 

glutamine synthetase (GS) activity in the nodule cytosol of both 

varietiei used in these experiments (Tables XX and XXI). However, a 

depressive effect (P < 0. 1) was also observed when these plants were 

fertilized with Mg, an effect also detected for Ca fertilization 

(P < 0.05)for the WB-12-ll Siempre plants. Whereas K increased GS 

activity in the WB-12-11 Siempre variety, no such effect was observed 

for WB-21-8 Tinge variety, and S had an innocuous effect in both 

experiments. 
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TABLE XVI II 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL GLUTAMATE 
DEHYDROGENASE (GDH) ACTIVITY WITH SHORT DAY 

LENGTH AS AFFECTED BY SOIL FERTILITY 
COMBINATIONS TO A DARK RED LATOSOL 

U/g 
nod. 

14.0 

22.5 

24.0 

29.0 

25.0 

18.5 

33.5 

26.0 

p 

Trt 

Mg 
KMg 
CaMg 
KCaMg 

PMg 
PKMg 
PCat~g 

PKCaMg 

. 21. 13 
. 29. 16 

JAIBA, BRAZIL 

U/g 
nod. 

13.0 
23.5 

22.0 
18.0 

43.0 

17.0 

23.5 

23.0 

Trt 

s 
KS 
CaS 
KCaS 

PS 
PKS 
PC aS 
PKCaS 

Element Main Effect 

Ca 

24.41 

25.88 

U/g 
nod. Trt 

9.5 

26.5 

30.5 

23.5 

36.5 

28.5 

29.5 

20.0 

MgS 
KMgS 
CaMgS 
KCaMgS 

PMgS 
PKMgS 
PCaMgS 
PKCaMgS 

Mg 

24.81 

25.47 

K 

25.41 

24.88 

U/g 
nod. 

23.0 
22.5 

19.0 

17.5 

30.0 
37.5 

30.5 

44.5. 

b effect 8.03*** 

s 
23.47 

26.81 
3.34ns 1 • 47ns . 0.66ns - 0.53ns 

ns = not significant, *** significant for P < 0.001 for Ho: ~ 
effect = 0. 

The interactions P x Mg#, P x K x S#, P x K x Mg x S# and 
P x K x Ca x Mg x S# were significant for P < 0. 1; P x K*, 
P x Ca x t~g x S* were significant for P < 0.05; and P x K** was 
significant for P ~ 0.01. -
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TABLE XIX 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL GLUTAMATE 
DEHYDROGENASE (GDH) ACTIVITY WITH LONG DAY 

LENGTH AS AFFECTED BY SOIL FERTILITY 
COMBINATIONS TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

U/g . U/g U/g 
nod. Trt nod. Trt nod. Trt 

1.60 Mg 4.30 s 3.20 MgS 
3.15 KMg 3.00 KS 3.20 KMgS 
2.75 CaMg 3.05 CaS 3.65 Cat~gS 

3.35 KCaMg 2.35 KCaS 1.10 KCaMgS 

l. 20 PMg 3.35 PS l. 25 PMgS 
l. 05 PKMg 2.70 PKS 2.60 PKMgS 
2.70 PCaMg 1.60 PC aS 3.40 PCaMgS 
0.85 PKCaMg 6.95 PKCaS 2.70 PKCaMgS 

Element ~~a in Effect 

p s Ca Mg K 

without 2.74 2.76 2.44 2.33 2.60 

with 2.55 2.55 2.85 2.95 2.68 

U/g 
nod. 

3.05 
1.30 
1.85 
2.95 

l. 90 
2.25 
3.20 
3.45 

~ effect - 0. 19ns - 0.22ns 0.41ns 0.62** 0.08ns 

ns = not significant, ** significant at P ~ 0.05 for Ho: 8. effect = 
o. 
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The interactions P x K#, P x K x Ca x S# were significant at P < 0.1; 
P x K x Mg*, P x K x Ca x Mg x S* were significant at P ~ 0.05;-
P x Ca**, P x Mg**, Mg x S** were significant at P < 0.01; and 
P x K x Mg x S*** was significant at P ~ 0.001. -
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TABLE XX 

·wB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL GLUTAMINE 
SYNTHETASE (GS) ACTIVITY WITH SHORT DAY LENGTH 

AS AFFECTED BY SOIL FERTILITY COMBINATIONS 
TO A DARK REO LATOSOL 

JAIBA, BRAZIL 

U/g . U/g U/g 
nod. Trt nod. Trt nod. Trt 

1.80 Mg 1.15 s 1.55 MgS 

1. 70 KMg 2.40 KS 2.15 KMgS 
1.85 CaMg 0.85 CaS l. 25 Cat~gS 

1. 05 KCaMg 1.00 KCaS 4.10 KCaMgS 

3.95 PMg 5.05 PS 4.80 PMgS 
7.20 PKMg l. 70 PKS 3.90 PKMgS 
6.75 PCaf4g 4.40 Peas 1.35 PCaMgS 
4.80 PKCaMg 3.55 PKCaS 2.40 PKCaMgS 

Element r~a in Effect 

p s Ca Mg K 

without l. 82 3.08 3.02 3. 16 2.73 

with 3.93 2.68 2.73 2.59 3. 01 

U/g 
nod. 

1.40 
3.80 
1. 95 
l. 10 

1.40 
4.40 
4.30 
2.95 

11 effect 2. ll*** - 0.40ns - 0.29ns - 0.57# 0.28ns 

ns = not significant, #, ***, significant at P < 0.1 and 0.001 
respectively for Ho: ~ effect = 0. 

The interactions Mg x S#, P x K x Ca x t1g x S# were significant at 
P < 0.1; K x S*, P x Ca x Mg*, P x K x Mg x S* were significant at 
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P < 0.05; P x S** was significant at P ~ 0.01; and K x Ca x Mg x S*** 
was significant at P ~ 0.001. 
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TABLE XXI 

WB-12-11 SIE!~PRE WINGED BEAN, NODULE CYTOSOL GLUTAMINE 
SYNTHETASE (GS) ACTIVITY WITH LONG DAY LENGTH 

AS AFFECTED BY SOIL FERTILITY COMBINATIONS 
TO A DARK RED LATOSOL 

JAI BA, BRAZIL 

U/g U/g U/g 
nod. Trt nod. Trt nod. Trt 

3. l 0 Mg 3.50 s 3.05 MgS 

2.25 KMg 3.30 KS 2.90 KMgS 

3.50 CaMg 1. 50 CaS 3.30 car~gs 

2.75 KCaMg 7.65 KCaS 5.00 KCaMgS 

9.00 PMg 7.80 PS 8.00 PMgS 
8.40 PKMg 5.60 PKS 7.60 PKMgS 
5.20 PCat~g 4.20 Peas 5.20 PCaMgS 
6.20 PKCaMg 5.30 PKCaS 6.40 PKCaMgS 

E1 ement ~1a in Effect 

p s Ca Mg K 

without 3.62 4.95 5.14 5.11 4.33 

with 5.98 4.60 4.41 4.46 5.22 

U/g 
nod. 

2.45 
7.00 
2.70 
3.90 

3.60 
4.70 
3.60 
4.50 

6 effect 2.36*** - 0.35ns - 0.73* - 0.65# 0.89** 

ns = not significant, **, ***, significant at P < 0.01 and 0.001 
respectively for Ho: ~:, effect = 0. 

The interactions P x S#, P x tax S# were significant at P ~ 0.1; 
K x Mg*, K x Ca x S* were significant at P ~ 0.05; P x Ca**, K x 
Ca x Mg x S** were significant at P ~ 0.01; P x mg*** was signifi­
cant at P ~ O.CQ1 
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Glutamate Synthase Activity 

Glutamate synthase activities (GOGAT) obtained in these experiments 

are summarized in Tables XXII and XXIII. Similar to GS activities, 

GOGAT activity was higher (P ~ 0.001) in nodule cytosol of plants 

fertilized with P. No effect was observed for fertilization with either 

Mg or K, but Ca and S depressed GOGAT activities in nodules of WB-21-8 

Tinge and WB-12-1,1 Siempre varieties, respectively. 

Glutamate-Oxaloacetate Transaminase Activity 

Glutamate-oxaloacetate transaminase (GOT) activities for both 

varieties are summarized in Tables XXIV and XXV. Apparently, GOT 

activity in the nodule cytosol of these plants was greatly enhanced 

(P ~ 0.001) when the soil was fertilized with P. A beneficial effect 

on the activity of this enzyme was also observed when WB-21-8 Tinge 

variety was fertilized with Ca (P ~ 0.05) and K (P ~ 0.001), no effect 

being observed for fertilizing this variety with either S or Mg. 

However, an opposite effect was observed with WB-12-11 Siempre variety. 

A depressive effect on GOT activity was observed when these plants were 

fertilized with the bases Ca (P ~ 0.01) and Mg (P ~ 0.01) and the anion 

S (P ~ 0.001). 

Glutamate-Pyruvate Transminase Activity 

In these studies, nodules cytosol activities of the enzyme 

glutamate-pyruvate transaminase (GPT) (Tables XXVI and XXVII) were not 

as high as GOT activities. Thus, these observations suggest that larger 

amounts of aspartic acid are formed within the nodule cytosol of the 
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TABLE XXII 

. WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL GLUTAMATE 
SYNTHASE (GOGAT) ACTIVITY WITH SHORT DAY 

LENGTH AS AFFECTED BY SOIL FERTILITY 
COMBINATIONS TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

U/g U/g U/g 
nod. Trt nod. Trt nod. Trt 

l. 05 Mg l. 25 s l. 65 MgS 
0.85 KMg 1.45 KS 1.65 KMgS 
l. 65 CaMg l. 45 CaS 1.25 car~gs 

0.95 KCaMg l. 90 KCaS 0.90 KCaMgS 

l. 70 PMg 5.20 PS 3.95 PMgS 
2.85 PKMg 2.05 PKS 2.45 PKMgS 
4.00 PCaMg 2.50 Peas l. 90 PCaMgS . 
2.20 PKCaMg 2.45 PKCaS l. 30 PKCaMgS 

Element Nain Effect 

p s Ca Mg K 

without . 1. 28 2.09 l. 99 1.89 2.06 
with 2.62 l. 81 l. 92 2.01 1.84 

U/g 
nod. 

l. 35 
0.75 
1.40 
1.05 

1.40 
2.20 
l. 30 
4.45 

tJ. effect 1.34*** - 0. 28# - 0.07ns 0. 12ns 0.22ns 

ns =not significant,#,***, significant at P ~ 0.1 and 0.001 
r~~pective1y for Ho: ~ effect = 0. 

The inte~actions K x Mg#, K x S#, Mg x S#, P x K x Mg x S# were 
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significant at P ~ 0.1; K x Mg x S*, K x Ca x Mg x S*, P x K x Ca x Mg* 
were significant at P ~ 0.05; P x K x S**, P x Ca x Mg x S** were 
significant at P < 0.01; and K x Ca x Mg***, Ca x Mg x S***, 
P x K x Mg x S***-were significant at P < 0.001. 
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TABLE XXI II 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL GLUTAMATE 
SYNTHASE (GOGAT) ACTIVITY ~JITH LONG DAY LENGTH 

AS AFFECTED BY SOIL FERTILITY COMBINATIONS 
TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

U/g U/g U/g 
nod. Trt nod. Trt nod. Trt 

1.30 Mg 0.70 s 1.40 MgS 

1. 55 KMg 1. 55 KS 1. 50 KMgS 
1.45 CaMg 1. 75 CaS 1.10 Cat1gS 
0.85 KCal1g 1. 65 KCaS 1. 25 KCaMgS 

1. 50 PMg 1.40 PS 2.20 PMgS 
1.90 PKMg 1.10 PKS 1. 70 PKMgS 
2.20 PCaMg 1.55 Peas 1.80 PCaf1gS 
1. 30 PKCaMg 2.05 PKCaS 1.40 PKCa11gS 

Element t~ain Effect 

p s Ca Mg K 

without . 1. 32 1. 49 1.58 1.52 1.48 
with 1. 75 1. 57 1.47 l. 54 1. 58 

U/g 
nod. 

l.OQ 

1. 65 
1.20 
1. 20 

1. 75 
3.15 
l. 50 
1.45 

tJ. effect 0.43*** o.osns - 0.11# 0.02ns 0. 1 ons 

ns = not significant, #, ***, significant at P < 0. 1 and 0.001 
respectively for Ho: tJ. effect = 0. 

The intetactions P x K x Mg#, P x K x Ca x S# were significant at 
P ~ 0.1; P x Ca x Mg*, P x Ca x S*, P x Mg x S*, P x K x Mg x S* 
were significant at P ~ 0.05; P x S**, P x K x Ca x Mg x S** were 
significant at P ~ 0.01; and K x Ca***, K x Mg***, Ca x S***, 
Ca x Mg x S***, K x Ca x. Mg x S*** were significant at P ~ 0.001. 
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TABLE XXIV 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL GLUTAMATE­
OXALOACETATE TRANSAMINASE (GOT) ACTIVITY vJITH 

SHORT DAY LENGTH AS AFFECTED BY SOIL 
FERTILITY COMBINATIONS TO A DARK 

RED LATOSOL, JAIBA, BRAZIL 

U/g U/g U/g 
nod. Trt nod. Trt nod. Trt 

22.5 Mg 23.0 s 24.0 MgS 
29.0 KMg 30.5 KS 29.5 KMgS 
27.0 CaMg 28.5 CaS 38.0 Cat1gS 
46.5 KCaMg 50.0 KCaS 68.0 KCaMgS 

36.5 PMg 85.0 PS 104.0 PMgS 
82.0 PKMg 68.0 PKS 80.5 PKt-1gS 

140.0 PCat1g 71.5 Peas 41.5 PCaMgS 
50.0 PKCaMg 63.5 PKCaS 96.5 PKCaMgS 

Element r~a in Effect 

p s Ca Mg K 

. 37.38 53.34 52.09 57.22 50.34 

73.38 57.41 58.66 53.53 60.41 

U/g 
nod. 

25.0 

80.0 

37.5 

39.0 

35.5 

78.5 

66.0 

75.0 

h. effect 36.00*** 4.07ns 6.57* - 3.69ns 10.07*** 

ns = not significant, * *** significant at P ~ 0.05 and 0.001 ' respectively for Ho: f:,. effect = 0. 

The interaction P x K x Ca# was significant at P < 0. 1; Ca x S*, 
K X Ca*, Ca X Mg*, p X S*, p X K X S*, K X Ca X s*, Ca X Mg X S* 
and P x K x Ca x Mg* were significant at P < 0.05; P x K**, P x 1·1g** 
were significant at P ~ 0.01; and K x S*** was significant at 
p < 0.001. 
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TABLE XXV 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL GLUTAMATE­
OXALOACETATE TRANSA~UNASE (GOT) ACTIVITY WITH 

LONG DAY LENGTH AS AFFECTED BY SOIL 
FERTILITY COMBINATIONS TO A DARK 

RED LATOSOL, JAIBA, BRAZIL 

U/g U/g U/g 
nod. Trt nod. Trt noa. Trt 

4.40 Mg 7.40 s 8.20 MgS 
3.50 KMg 9.00 KS 6.00 KMgS 

13.60 CaMg 5.00 CaS 7.90 CaMgS 
11.10 KCaMg 7.25 KCaS 8.50 KCaMgS 

36.00 PMg 42.50 PS 23.00 PMgS 
49.00 PKMg 28.50 PKS 14.50 PKMgS 
40.00 PCaMg 10.50 Peas 9.20 PCaHgS 
16.00 PKCaMg 20.50 PKCaS 17.70 PKCaMgS 

£1 ement r1a in Effect 

p s Ca Mg K 

without 8.67 19.05 17.11 17.06 15.42 

with 21. 7l 10.99 13.00 13. 16 14.76 

U/9: 
nod. 

12.00 
16.50 
12.80 
5.50 

6.65 
6.05 
4.00 

16.50 

6. effect 13.04*** - 8.06*** - 4.11** - 3.90** - 0.66ns 

ns =not significant, **, ***, significant at P < 0.05 and 0.001 
respectively for Ho: ~ effect = 0. -

The interaction Ca x Mg x S# was significant at P < 0.1; Ca x S*, 
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K x Ca x ~·1g* were significant at P < 0.05; P x Ca**, P x K x Ca x S** 
were significant at P 2_0.01; and P-x r~g***, P x S***, P x Ca x S***, 
P x K x Ca x Mg***, K x Ca x Mg x S*** were significant at P ~ 0.001. 
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TABLE XXVI 

. WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL GLUTAMATE­
PYRUVATE TRANSAMINASE (GPT) ACTIVITY ~liTH 

U/g 
nod. 

2.20 

2.05 

1. 65 

2.25 

3. 10 

4.85 

3.30 

2.90 

SHORT DAY LENGTH AS AFFECTED BY SOIL 
FERTILITY COMBINATIONS TO A DARK 

RED LATOSOL, JAIBA, BRAZIL 

U/g U/g 
Trt nod. Trt nod. 

Mg 2.40 s 2.90 

KMg 1. 85 KS 2.00 

CaMg 1. 60 CaS l. 75 

KCaMg 1.80 KCaS 1.80 

PMg 2.85 PS 2.65 

PKMg 2.05 PKS 2.90 

PCat1g 2.90 PC aS 1.40 

PKCaMg 2.90 PKCaS 1.35 

Element t~a in Effect 

p s Ca Mg 

Trt 

MgS 

KMgS 

Cat~gS 

KCaMgS 

PMgS 

PKt~gS 

PCaMgS 

PKCaMgS 

K 

without 1.99 2.54 2.54 2.44 2.30 

witb · 2. 71 2.16 2. 17 2.27 2.40 

U/g 
nod. 

1.55 
2.00 

1. 95 
2.15 

2.40 

2.90 

2.25 

2.70 

D. effect 0.72*** - 0.38* - 0.37* - 0.17ns 0. 10°s 

ns = not significant, * *** significant at P ~ 0.05 and 0.001 ' respectively for Ho: D. effect = 0. 

The interaction P x K x Ca# was significant at P < 0.1; P x S*, 
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Hg x S*, P x i11g x S*, K x 1··19 x S*, P x K x Ca x Mg*, K x Ca x Mg x S* 
were significant at P < 0.05; and Ca x Mg** was significant at 
p < 0.01: -



TABLE XXVII 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL GLUTAMATE­
PYRUVATE TRANSAt1HlASE (GPT) ACTIVITY WITH LONG 

U/g 

DAY LENGTH AS AFFECTED BY SOIL FERTILITY 
cm1BINATIONS TO A DARK RED LATOSOL . 

JAIBA, BRAZIL 

U/g U/g U/g 
Trt nod. Trt nod. Trt nod. Trt nod. 

0 0.50 Mg i. 65 s 1.45 MgS 1. 60 

K 0.40 KMg 1.45 J<S 1. 70 KMgS l. 30 

Ca 1.45 CaMg 1. 70 CaS 1.65 Cat~gS l. 50 

KCa 1.50 KCaMg l. 85 KCaS 0.80 KCaf1gS 1.60 

p l. 30 PMg 1.40 PS 1.50 PMgS 1.20 

PK 1. 20 PKMg 1.50 PKS 1.30 PKMgS 0.80 

PC a 2.00 PCaMg 0.80 PC aS 1.80 PCaMgS 0.80 

. PKCa 0.80 PKCaMg 1. 50 PKCaS 1.20 PKCaMgS 0.80 

E1 ement r~a in Effect 

p s Ca Mg K 

without l. 38 1. 31 1. 27 1.27 1.38 

with . 1. 23 1. 30 1.35 1.39 1.23 

A effect - o. 15* - 0.01ns 0.08ns 0.07ns - 0. 15* 

ns = not significant, * significant at P ~ 0.05 for Ho: ~;.. effect = 

The interactions Ca x rlg#, P x Ca x t1g x S# were significant at 
P < 0.1; P x S*, P x K x Mg*, P x K x Ca x S*, P x K x Mg x S*, 
P ; K x Ca x Mg x S* were significant at P < 0.05; P x Ca**, 
K x 11g**, Ca x S**, P x Ca x S**, Ca x iV1g x-S** were significant at 
P ~ 0.01; P x Mg***, K x Ca x Mg*** were significant at P < 0.001. 
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winged bean cultivars used in these experiments, as compared to alanine. 

A very interesting contrast was observed for P fertilization in 

these studies. GPT activity was greatly enhanced (P 20.001) when 

WB-21-8 Tinge plants were fertilized with this nutrient, but a signifi­

cant inhibitory (P 2 0.005) effect was observed for the WB-12-ll Siempre 

variety. This inhibitory effect was also observed when the former 

variety was fertilized with S (P 2 0.05) and Ca (P 2 0.05) and the 

latter one when K (P 2 0.05) was added to the soil. Apparently, Mg 

fertilization had no effect on GPT activity in these experiments. 

Soluble Protein Levels 

Soluble protein as measured by the folin phenol method (39) for 

both varieties is shown in Tablex XXVIII and XXIX. More soluble 

protein was detected in the nodule cytosol of the WB-21-8 Tinge variety 

when either S (P 2 0.05) or Mg (P 2 0.01) were added to the soil. A 

different response was observed for the WB-12-ll Siempre variety since 

its nodule cytosol had higher (P 2 0.001) soluble protein content when 

fertilized with P. Nonetheless, a negative (P 2 0.05) effect was 

observed for Ca fertilization in this variety. 

In these experiments soluble protein levels in the nodule cytosol 

were not affected by K fertilization. 

Pyridoxyl Phosphates Levels 

In these experiments, the pyridoxal-pyridoxamine phosphates 

complex was assayed by a fluorometric method modified from the procedure 

described by Schreider (59). In this report, they are collectively 

referred to as pyridoxyl phosphates (PLP•s) (vitamin B6). 



Trt .~% 

0 0.80 
K 0.54 
Ca l. 20 

KCa l. 55 

p l. 14 

PK l. 22 

Pea l. 30 

PKCa 0.92 

without 
with 

TABLE XXVII I 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL SOLUBLE 
PROTEIN WITH SHORT DAY LENGTH AS AFFECTED BY 

SOIL FERTILITY COMBINATIONS 
TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

Trt % Trt % Trt 

Mg l. 58 s l. 46 MgS 
KMg l. 16 KS l. 20 KMgS 
CaMg l. 26 CaS l. 27 CaMgS 
KCaMg l. 50 KCaS 1.53 KCaMgS 

PMg 1.69 PS l. 65 PMgS 
PKMg 0.99 PKS 1.25 PKMgS 
PCaMg 0.97 PCaS 0.98 PCaf~gS 

PKCaMg l. 74 PKCaS 1 . 15 PKCaMgS 

Element Main Effect 

p s Ca Mg K 

l. 30 l. 22 1.29 l. 20 1.27 

1. 27 1.37 l. 28 l. 38 l. 30 

1:!. effect - 0.03ns 0.13* - 0.01ns 0.18** - 0.03ns 
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% 

l. 08 
2.07 
1.33 
l. 29 

l. 30 
l. 61 
1.38 
l. 13 

ns = not significant, *, **significant at P < 0.05 and 0.01 respectively 
for Ho: ~ effect = 0. -

The interaction K x Ca#, was significant for P < 0.1; P x Ca* and 
p X K X Ca X Mg*were significant for p .::_ 0.05, Ca X S**, p X Ca X r~g**, 
K x Ca x S were significant for P < 0.01; and K x Ca x Mg*** was 
significant for P .::_ 0.001.. -
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0 
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KCa 

p 
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Pea 
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b. effect 

TABLE XXIX 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL SOLUBLE 
PROTEIN WITH LONG DAY LENGTH AS AFFECTED BY SOIL 

FERTILITY COMBINATIONS TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

% Trt % Trt % Trt 

1. 30 Mg 1. 50 s 1. 24 MgS 
1. 40 KMg 1. 46 KS 1.15 KMgS 
l. 49 CaMg 1.67 CaS l. 21 CaMgS 
0.92 KCaMg 1.53 KCaS l. 56 KCaMgS 

3.05 PMg 2.44 PS 2. 15 PMgS 
2.41 PKMg 2.03 PKS 1.42 PKMgS 
2.20 PCaMg 2.00 Peas l. 60 PCaMgS 
1. 92 PKCaMg l. 63 PKCaS 2.42 PKCaMgS 

Element Main Effect 

p s Ca Mg K 

1.44 l. 81 1.85 1.71 l. 74 
2.00 1.62 l. 58 1.71 l. 68 

0.56*** - 0. 19ns - 0.27* o.oons 0.06ns 

ns = not significant, * *** significant at P ~ 0.05 and 0.001 ' ' respectively for Ho: ~ effect = 0. 

The interactions P x S#, K x S#, K x Ca x Mg# were significant at 
P ~ 0.1; P x Mg*, Ca x Mg x S*, P x Ca x S*, K x Ca x Mg x S* were 
significant at P ~ 0.05. 
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% 

1. 70 
2.88 
1.18 
0.85 

1. 53 
l. 92 
1.60 
1.53 
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PLP's function in a large number of enzymatic reactions, but the 

most common type involves the transfer of the a amino group of an amino 

acid to the a carbon atom of an a keto acid. Enzymes catalyzing such 

reactions are called transaminases (such as GOT and GPT). 

Transaminases are found in the mitochondria and in the cytosol of 

eukaryotic cells (38), and the figures reported on Tables XXX and XXXI 

refer to nodule cytosol levels of PLP's for the two winged bean varieties 

in these experiments. These data indicated that P fertilization enhanced 

PLP's levels on both varieties, but a depressive effect was observed for 

Ca {P ~ 0.001) with the WB-21-8 Tinge variety. 

Carbohydrate Levels 

Glucose, sucrose and starch were the carbohydrates determined on 

the nodule cytosol of the two winged bean varieties. Results for each 

of these saccharides are summarized on Tables XXXII to XXXVII. 

The importance of these sugars on the mechanism of nitrogen 

fixation is not well understood. Nonetheless, Tempest and co-workers 

(66) have suggested that glucose plays an important role on the pathways 

of gl~tamate synthesis (discussed in more detail later in this chapter). 

These writers, working with several genera of gram positive and gram 

negative bacteria were able to determine that the GS-GOGAT pathway for 

glutamate synthesis was only active when glucose was not a limiting 

factor in the assaying medium. Apparently, glucose-limited organisms 

possessed an active glutamate dehydrogenase substituting for the GS-GOGAT 

couple action. They pointed out to the fact that the GS-GOGAT couple can 

function in low ammonia environments, but this is only possible with the 

expenditure of energy for synthesis of glutamine by glutamine synthetase. 



TABLE XXX 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL PYRIDOXYL 
PHOSPHATES (PLP'S) WITH SHORT DAY LENGTH AS 

AFFECTED BY SOIL FERTILITY COMBINATIONS 
TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

f19/9 f-1919 ll919 
Trt nod. Trt nod. Trt nod. Trt 

0 19.50 Mg 11.00 s 13.50 MgS 
K 14.00 KNg 16.50 KS 17.50 KMgS 
Ca 15.00 CaMg 14.00 CaS 14.50 CaMgS 
KCa 14.00 KCaMg 13.00 KCaS 12.00 KCaMgS 

p 17.00 PMg 22.50 PS 25.00 PMgS 
PK 16.00 PKMg 13.00 PKS 14.50 PKMgS 
PCa 17.00 PCat1g 14. 50 Peas 13.00 PCaMgS 
PKCa 14.00 PKCaMg 15.00 PKCaS 13.00 PKCaMgS 

Element Main Effect 

p s Ca Mg K 

without 14.50 15.38 16. 31 15.59 15.63 

with 16. l 0 15. 19 14.25 14.97 14.94 

tJ. effect 1.60**- 0. l8ns - 2.06*** - 0.62ns - 0.69ns 

ns = not significant, **, *** significant at P < 0.01 and 0.001 
respectively for Ho: ~ effect = 0. 
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llg/g 
nod. 

14.00 
16.50 
13.50 
13.50 

12.50 
·18. 00 
13.50 
18.50 

The interactions P x K*, Ca x Mg*, K x S*, K x Mg x S* and Ca x Mg x S* 
were significant at P ~ 0.05; P x Ca x Mg x S** at P ~ 0.01; and 
K x Mg***, P x K x Ca***, P x K x Mg x S*** and P x K x Ca x Mg x S*** 
at P < 0. 001. 



Trt 

0 
K 
Ca 
KCa 
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PK 
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without 
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h. effect 

TABLE XXXI 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL PYRIDOXYL 
PHOSPHATES (PLP 1 S) WITH LONG DAY LENGTH 

11919 
nod. 

14. 0 
13.00 
15.00 
11.00 

14.50 
13.00 
13.00 
13.50 

p 

AS AFFECTED BY SOIL FERTILITY 
COMBINATIONS TO A DARK RED 

LATOSOL, JAIBA, BRAZIL 

119/9 11 g/g 
Trt nod. Trt nod. 

Mg 12.00 s 11.50 

KMg 13.50 KS 13.00 

CaMg 10.50 CaS 14.50 

KCaMg 17.50 KCaS 13.50 

PMg 14.50 PS 13.50 

PK~lg 15.00 PKS 13.00 

PCaMg 14.50 PC aS 21.00 

PKCaMg 14.00 PKCaS 15.00 

Element Main Effect 

s Ca Mg 

13.03 13.66 13.36 13.65 

13.94 13.29 13.58 13.31 

0.91# - 0.37ns 0.22ns - 0.34ns 

Trt 

MgS 
KMgS 
CaMgS 
KCaMgS 

PMgS 
PKMgS 
PCaMgS 
PKCaMgS 

K 

13.58 
13.37 

- 0.21ns 

11'9/9 
nod. 

11 . 00 
14.50 
14.00 
10.00 

15.00 
13.00 
12.50 
11 . 50 

ns = not significant, # significant at P < 0.1 for Ho: ~effect= 0. 

The interactions Mg x S#, K x Ca x S#, K x Mg x S# were significant at 
P ~ 0. 1, and P x K x Ca x Mg x S** was significant at P ~ 0.05. 
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Trt 

0 
K 
Ca 
KCa 

p 

PK 
Pea 
PKCa 

without 
with 
b. effect 

TABLE XXXII 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL GLUCOSE 
WITH SHORT DAY LENGTH AS AFFECTED BY SOIL 

FERTILITY COMBINATIONS TO A DARK. 
RED LATOSOL, JAIGA, BRAZIL 

mg/g mg/g mg/g 
nod. Trt nod. Trt nod. Trt 

1.88 Mg 1. 74 s 1.27 MgS 
2.23 KMg 2.23 KS 2.84 Kt1gS 
2.16 Ca~1g 2.08 CaS 2.11 CaMgS 
1. 27 KCaMg 2.16 KCaS 1. 75 KCaMgS 

1. 82 Pf1g 1.52 PS 1. 95 PMgS 

1. 65 PKMg 2.15 PKS 2.13 PJ<t.1gS 

1. 59 PCaMg 1. 75 PC aS 2.48 PCaMgS 
2.52 PKCaMg 2.10 PKCaS 2.00 PKCaMgS 

Element Main Effect 

p s Ca Mg K 

2.06 1. 93 2.02 l. 98 2.00 
1. 96 2.09 2.00 2.04 2.02 

- O.lOns 0. 16# - 0.02ns 0.06ns 0.02ns 

mg/g 
nod. 

2.73 
1. 90 
2.46 
2.12 

2.53 
1. 75 
1. 95 
1.50 

ns = not significant, # significant at P < 0.1 for Ho: tJ. effect = 0. 

The interactions K x Ca#, P x Mg#, P Ca x Mg# were significant at 
P < 0.1; K x S*, P x K x S* P x K x Ca* were significant at P < 0.05; - -K x Mg x S**, K x Ca x Mg x S**, P x K x Ca x Mg** were significant 
at P 2 0.01. 
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Trt 

0 
K 
Ca 
KCa 

p 

PK 
PC a 
PKCa 

without 
with 
6 effect 

TABLE XXXIII 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL GLUCOSE 
WITH LONG DAY LENGTH AS AFFECTED BY SOIL FERTILITY 

Cm1BINATIONS TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

mg/g mg/g mg/g 
nod. Trt nod. Trt nod. Trt 

3.00 Mg 2.43 s 2.58 MgS 

2.04 KMg l. 95 KS 2~06 KMgS 

2.37 Cat4g 1.69 CaS 2.40 CaMgS 

l. 79 KCa~1g 1.83 KCaS 3.53 KCaMgS 

2.02 PMg 2.51 PS 2.08 PMgS 
2.33 PKMg 2.23 PKS 3.35 PKNgS 
2.75 PCaMg 3.88 PCaS 1.43 PCaMgS 
2.89 PKCaMg 2.80 PKCa:S 2.88 PKCaMgS 

Element Main Effect 

p s Ca Mg K 

2.31 2.40 2.35 2.50 2.36 
2.62 2.52 2.58 2.43. 2.56 
0.31ns 0.12ns 0.23ns - 0.07ns 0.20ns 

ns = not significant for Ho: ~ effect = 0. 
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mg/g 
nod. 

1. 89 
3.18 
1.74 
2.49 

1.23 
2.74 
3.38 
2.92 

The interactions P x K x Ca#, P x K x Mg#, P x Ca x Mg# were significant 
at P< 0. l;.P x Ca* was significant at P ~ 0.05; and K x S*** was 
significant at P ~ 0.001. 
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TABLE XXXIV 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL SUCROSE 
WITH SHORT DAY LENGTH AS AFFECTED BY SOIL 

FERTILITY COt1BINATIONS TO A DARK RED 
LATOSOL, JAIBA, BRAZIL 

mg/g mg/g mg/g 
nod. Trt nod. Trt nod. Trt 

0. 11 Mg 0. 34 s 0.11 MgS 
0.30 KMg 0.06 KS 0.10 Kt1gS 
o. 11 eat1g 0.38 . CaS 0.21 eaMgS 
0.20 Kea~1g 0.40 KCaS 0.10 KCaMgS 

0.61 PMg 0.69 PS 1. 40 PMgS. 
0.44 PKMg 0.32 PKS 0.16 Pl(l\1gS 
0.88 PeaMg 0.19 Peas 0.29 PCaMgS 
0.23 PKCaMg 0.10 PKCaS 0.20 PKCaMgS 

Element Main Effect 

p s ea Mg K 

0.18 0.33 0.34 0.34 0.38 
0.46 0.32 0.31 0. 31. 0.27 

b. effect 0.28*** - O.Olns - 0.03ns - 0.03ns - 0.11* 

ns = not significant, *, ***, significant at P < 0.05 and 0.01 
respectively for Ho: ~ effect = 0. 

mg/g 
nod. 

0.22 
0.10 
0.11 
0.3 

0.20 
0.30 
0.25 

1.19 

The interactions P x S#, P x K x S#, P x Mg x S#, K x Ca x Mg x S# were 
significant for P < 0.1; P x K*, P x Mg*, Ca x Mg*, P x K x Ca*, 
p X K X Mg X S* were significant at p < 0.05; K X Ca**, K X Mg**, 
K x Ca x S**, K x Mg x S**, Ca x Mg x S**, P x K x Ca x S** 
were significant at P < 0.01; and P x K x Mg***, P x Ca x Mg x S*** 
were significant a·t.. P ~0.001. 
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TABLE XXXV 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL SUCROSE WITH 
LONG DAY LENGTH AS AFFECTED BY SOIL FERTILITY 

COMBINATIONS TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

mg/g mg/g mg/g 
nod. Trt nod. Trt nod. Trt 

3.65 Mg 1. 89 s 1.88 MgS 
2.32 KMg 1. 25 KS 1.82 Kt1gS 
2.46 Cat~g 1. 76 CaS 3.13 CaMgS 
1. 36 KCaMg 2.70 KCaS 0.80 KCaMgS 

0.22 PMg 0.28 PS 0.17 PMgS 

0.23 PKMg 0.26 PKS 0.40 PKJI1gS 
0.35 PCaMg 0.60 PCaS 2.57 PCaMgS 
0.64 PKCaMg 0. 61 PKCaS 0. 16 PKCaMgS 

Element Main Effect 

p s Ca Mg K 

1. 93 1. 29 1.13 1. 39 1.49 

0.52 1.19 1.35 1.14 . 0.99 
ll effect - 1.41***- 0. 10ns 0.22ns - 0.20ns - 0.50** 

ns = not significant, ** . *** , significant at P < 0.01 and 0.001 ' respectively for Ho: n effect = 0. 

mg/g 
nod. 

1. 71 
0.28 
1.77 
2. 16 

1. 43 

0.90 
0.57 
0.55 

The interaction P x S* was significant at P ~ 0.05; P x Ca x Mg**, 
K x Ca x Mg**, K x Ca x Mg x S** were significant at P ~ 0.01. 
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KCa 
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!J. effect 

TABLE XXXVI 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL STARCH WITH 
SHORT DAY LENGTH AS AFFECTED BY SOIL 

FERTILITY Cm.1BINATIONS TO A DARK 

mg/g 
nod. 

0.52 
0.61 
0.85 
0.48 

0.99 

l. 17 
l. 38 

0.58 

p 

0.57 
0.87 

RED LATOSOL, JAIBA, BRAZIL 

Trt 

Mg 

KMg 
Cat·1g 

KCaMg 

PMg 

PKMg 

PCaf1g 

PKCaMg 

s 

0.73 
0. 72 

mg/g 
nod. 

0.56 
0.68 

0.68 
0.52 

0.93 

0.63 

0.53 

0.60 

Trt 

s 
KS 
CaS 

KCaS 

PS 

PKS 
Peas 
PKCaS 

mg/g 
nod. 

0.51 
0.54 

0.46 
0.60 

1.72 

0.54 

0.65 
0.85 

Element Main Effect 

Ca 

0.74 

0.70 

Mg 

0.78 

0.67 
0.30** - 0.01ns - 0.04ns ..,. O.llns 

mg/g 
Trt nod. 

MgS 0.65 

Kt~gS 0. 50 
CaMgS 0.37 

KCaMgS 0. 69 

PMgS 0.65 

PK1'1gS 0.70 

PCaMgS 0. 55 

PKCaMgS 1. 49 

K 

0.75 
o. 70 

- 0 05ns 
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ns =not significant, ***:significant at P ~ 0.001 for Ho: !J. effect= 0. 

The interactions P x Mg#, P x K x Ca#, Ca x Mg x S#, P x K x Mg x S#, 
P x K x Ca x Mg x S# were significant for P < 0.1; P x K x Mg* was 
significant for P < 0.05; K x Mg** was significant for P < 0.01; and 
K X Ca X S*** was significant for p < 0.001. -
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TABLE XXXVII 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL STARCH WITH 
LONG DAY LENGTH AS AFFECTED BY SOIL FERTILITY 

COMBINATIONS TO A DARK RED LATOSOL 
JAIBA, BRAZIL 

mg/g mg/g mg/g 
nod. Trt nod. Trt nod. Trt 

3.70 Mg 2.15 s 2.00 MgS 
2.76 KMg 1. 55 KS 2.52 KMgS 
2.79 CaMg l. 51 CaS 1.53 CaMgS 
l. 16 KCaMg 0.10 KCaS 0.98 KCaMgS 

0.49 PMg 0.28 PS 0.45 PMgS 
0.45 PKMg 0.64 PKS 0.56 PKMgS 
0.63 PCaMg 0.85 Peas 2.47 PCaMgS 
0.92 PKCaMg l. 00 PKCaS 0.75 PKCaMgS 

Element Main Effect 

p s Ca r~g K 

1. 85 l. 31 1.29 1.48 1.46 
0.73 l. 28 l. 30 l. 12 l. 13 

mg/g 
nod. 

1.80 
0.56 
l. 97 
2.46 

0.19 
0.62 
1.23 
1.11 

t:, effect - 1. 12*** - 0.03ns O.Olns - 0.36*** - 0. 33*** 
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ns = not significant, *** significant at P 2 0.001 for Ho: ~ effect = 0. 

The interactions K x Ca#, P x S#, P x K x Ca x Mg#, P x K x Mg x S# 
were significant and P < 0.1; K x Ca x Mg*, P x Ca x S*, Ca x Mg x S*, 
p X K X Ca X t~g X S* were significant at p < 0.05; p X Mg**, Ca X Mg**, 
Mg x S**, P x Ca x Mg**, P x K x Ca x S**, f x Ca x Mg x S**, 
K x Ca x Mg x S** were significant at P < 0.01; and P x K***, P x Ca***, 
Ca X S***, p X K X S***, p X Mg X S*** were significant at p < 0.001. 



The same findings were later observed for glutamate synthesis in 

Rhizobium cultures and nodule bacteroids (9). 
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The importance of glucose in the GS-GOGAT pathway is that it can 

ultimately be oxidized to produce ATP, essential for GS activity. Thus, 

it is not improbable that other carbohydrates can perform this function. 

In these experiments, contrasting results were obtained for 

fertility effects on nodule carbohydrate of the two varieties used. 

Sulphur increased (P ~ 0. 1) glucose levels on the WB-21-8 Tinge plants, 

but no fertility effect was observed on the WB-12-11 Siempre variety. 

Both sucrose and starch increased in the WB-21-8 Tinge variety when the 

soil was fertilized with P (P ~ 0.001 and 0.001 respectively) but the 

opposite was observed in the WB-12-11 Siempre plants (P ~ 0.001 and 

0.001 respectively). Potassium depressed sucrose levels on both 

varieties (P ~ 0.05 and 0.01), but increased starch levels on the WB-12-11 

variety. Magnesium decreased (P ~ 0.001) starch levels on the latter 

variety, and Ca failed to influence carbohydrate levels on both 

experiments. 

Fixed N Incorporation Into Plant Amino Acids 

It is presently accepted that the abundant atmospheric N can be 

fixed as NH3 by the nitrogenase activity of rhizobium bacteroid cells 

when in symbiosis with a host leguminous plant (4, 6", 26, 27). Nonethe­

less, no enzymatic system is found within the bacteroid cells with 

activity sufficiently high to match that of nitrogenase, and thus, NH3 

incorporation into amino acids is believed to be accomplished by the 

plant enzymatic systems (9, 33). 



Glutamate dehydrogenase (GDH), prior to discovery of glutamate 

_synthase (GOGAT) was believed to be the most important mechanism for 

NH3 incorporation into glutamate in the animal cell (38) and in root 

nodules (21). GDH catalyses the reaction: 

. . + 
a KG+ NH3 + NAD(P)H + H +-:_ L-glutamate + NAD(P) + H20 

The reaction rate can be affected by addition of zn2+, CA2+, 

or MN 2+ (48). Plant GDH acts with both NAD and NADP (48), and the 

balance between its aminating and deaminating activity is believed to 

be controlled by the NAD/NADH ratio (14, 48). 

Alanine dehydrogenase (ADH) (EC 1.4.1. 1) and aspartate dehydro­

genase (Asp DH) are found in some plants (38), but are not considered 

to be important mechanisms of NH3 utilization in plant root nodules. 

Dunn and Klucas (17) speculated that ADH could be important during 

ammonium assimilation only under certain conditions. They found that 

soybean root nodules had a ten fold higher ADH activity than GDH. 

The reaction catalyzed by ADH is: 

pyruvate + NH3 + NAD (P) H + H+ ~ L - alanine + NAD(P)+ H20 

and AspDH catalysis: 

+ + oxaloacetate + NH3 + NAD(P)H + H -:_ aspartate + NAD(P) + H2o . 

For many years it was well known that the enzyme glutamine 

synthetase could catalyse the reaction indicated below: 

ATP + L-glutamate + NH3 -:_ L - glutamine + ADP + Pi 

which can be affected by the presence of divalent cations. 

Glutamine synthetase exists in two states: taut and relaxed. The 

relaxed state is achieved by removing the divalent cations and renders 
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the enzyme inactive more liable to degradation (31, 48, 62). 

In 1970, a group of British researchers (45, 66) reported that a 

novel enzyme'glutamine (amide): 2-oxoglutarate amino transferase oxido-

reductase (NADP)' (later reclassified as EC 1.4.1.13, L- glutamate: 

NADP+ oxido-reductase (transaminating), often referred to by its 

acronym GOGAT (48) could catalyse the following reaction: 

a KG+ NAD(P)(H) (or Fd red) + L - glutamine+ 2 L - glutamate + 

NAD(P)+ (or Fd ) ox 

Afterward, it became apparent that·the coupled action of GS-GOGAT 

could play an important role in NH3 assimilation in many organisms. 

These enzymes have been suggested to be present in the animal cell (38), 

several gram positive and gram negative bacteria (13, 45, 46, 49, 66), 

chloroplasts (37), shoot of halophytes (65), and root nodules of 

leguminous plants (9, 33, 48, 49, 57, 60, 61, 64). Good evidence has 

been presented in the literature indicating that the nodule cytosol 

(9} and not the bacteroid (9, 33), is the site of NH3 utilization. Thus, 

.nodule enzyme activity in this report refers to measurements obtained 

in the nodule cytosol fraction. 

Glutamate dehydrogenase has a higher Km value for NH3 than the 

GS-GOGAT couple, and usually shows activity levels that can not match 

those of nitrogenase. Therefore, more recently, it has been accepted 

that the GS-GOGAT route is the most important pathway for NH3 incorpora­

tion into plant amino acids, and that GDH is active only under certain 

conditions. Usually, the GDH pathway is operative under conditions of 

excess of ammonia or limited supply of carbohydrate. In the case of 

low nodule glucose levels, GS is inactivated since it requires ATP for 



functioning, favoring the GDH pathway: High levels of glutamine, 

alanine or Mg2+ are also known to repress GS, thus, rendering the GS-

GOGAT couple inoperative. However, when operative, both enzyme systems 

produce glutamate as their end product. 

Table XXXVIII shows the correlation coefficients for nitrogenase, 

plant growth parameters and nodulation of the two winged bean varieties 

used in these experiments. 

The correlation coefficients for the WB-21-8 Tinge variety clearly 

indicates that nitrogenase activity (v moles c2H4 g-l nod hr-1) was 

positively related to nodule weight and to nodule number, as well as to 
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plant growth and development. Therefore, a practical indication of this 

experiment is that maximization of plant growth and nitrogen fixation 

for the WB-21-8 Tinge variety requires P,K, and S fertilization of this 

dark red latosol. 

Although nitrogenase activity of the WB-21-8 Tinge nodules during 

plant flowering was lower than that of the WB-12-11 Siempre before 

plant flowering, it was still higher than the average activity observed 

for the latter variety in a flowering stage, as previously observed (54). 

The correlation coefficients obtained for the WB-12-11 Siempre 
-1 -1 indicate no relationship between nitrogenase (~ moles c2H4 g nod hr ) 

and either nodule weight, nodule number or even shoot growth. A 

negative, significant correlation (P ~ 0.05), was observed between 

nitrogenase (~moles c2H4 g-l nod hr- 1) and root growth. 

Perhaps a better understanding of N fixation within nodules of the 

WB-12-11 Siempre plants can be obtained when nitrogenase activity is 

expressed as a measure of total N fixed per pot culture (v moles c2H4 

pot-1 hr- 1). This data indicate that more N was fixed within pot 
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Shoot Wt. 

Root Wt. 

TABLE XXXVIII 

CORRELATION COEFFICIENTS FOR NITROGENASE, PLANT GROWTH PARAMETERS AND 
NODULATION OF TWO WINGED BEAN VARIETIES 

WB 21-8 Tinge 
Nase-f.l moles Nase-f.l moles 
pot-1 hr-1 g-1 nod hr-1 Nod. Wt. Nod. No. Shoot Wt. 

0.23757 0.58497 0.21718 0.51208 
* *** * *** 

0.74806 0.00436 0.39318 0.65904 
*** ns *** *** 

0.40625 - 0.00431 0.68083 0.33369 
*** ns *** *** 

0.47082 0.09532 0.66968 0.46407 
*** ns *** *** 

- 0.15356 - 0.20432 -0. 13517 0.05100 0.09314 
ns * ns ns ns 

Root Wt. 

0.36090 
*** 

0.42877 
*** 

0.20297 
* 

0.60190 
*** 

ns = not significant, *, *** , significant at p < 0.05 and 0.001 respectively for Ho: r = 0; 
96 observations/variable. 

Nase = nitrogenase 
0'1 
N 



cultures with larger plant shoots and increased nodule weight and 

number. Plants with these characteristics were produced when the soil 

was fertilized with P, S, Ca, and K, with total nitrogenase activity 

not being correlated with root growth. 

Tables XXXIX and XL show the nodule cytosol enzymic specific 

activity means for the 32 soil fertility treatments used in these 

experiments. Enzyme specific activity is a measure of enzyme units 

expressed per mg protein (specific activity = ~ moles specific sub-

. . -1 -1 . ) strate convers1on m1n mg prote1n . 

A summary of the statistical analysis for these data appears in 

Table XLI for both varieties. Treatment effect is expressed in terms 

of~ effect (as defined earlier) for P, S, Ca, Mg, and K. The null 

hypothesis HO: ~effect= 0 was rejected any time P < 0, 1. The null 

hypothesis indicates that the increase in enzymic specific activity 

caused by a particular nutrient cannot be considered different from 

zero, on the other hand, the alternative hypothesis HA: ~ effect * 0 

indicates that the nutrient effect was different from zero. 

For both varieties, all enzymic specific activities, but WB-12-11 

Siempre nitrogenase, were significantly increased when this dark red 

latosol was fertilized with P. Sulphur in these experiments was found 

to be required for nodule growth, but apparently in many situations 
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depressed enzyme activity. It had a negative effect (P ~ 0.001 in all 

cases) on GS, GOGAT, GOT, and GPT activities in the WB-21-8 Tinge plants, 

but did not affect both nitrogenase and GDH. A less pronounced effect 

was noted in the ~B-12-11 Siempre plants, but it strongly depressed 

(P ~ 0.001) GOT while favoring (P ~ 0.05) GOGAT activity. 

Except for the fact that if increased (P ~ 0.05) GDH activity on the 

WB-12-11 Siempre plants, Ca effect was mostly noted on the transaminases. 
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TABLE XXXIX 

WB-21-8 TINGE WINGED BEAN, NODULE CYTOSOL ENZYMIC 
SPECIFIC ACTIVITY MEANS WITH SHORT DAY 

LENGTH AS AFFECTED BY SOIL FERTILITY 
COMBINATIONS TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

Nase GDH GS GO GAT GOT. 

0.0094 1.7500 0.2250 0.1312 2.8125 
0.0395 4.2570 0.3179 0.1624 5.4556 
0.0138 0.8045 0.0752 0. 0778 l. 5313 
0.0134 2.0387 0.2108 0. 1256 2.6417 
0.0260 2.0018 0.1578 0.1387 2.2399 
0.0069 1 . 8761 0.0680 0.0621 3.0378 
0.0283 l. 7457 0. 0725 0.1155 2.3202 
0.0177 1.2078 0.0692 0.1250 3.3658 
0.0200 0.6507 0.1061 o. 1130 1.6438 
0.0039 2. 1521 0.1886 0.1337 2.4971 
0. 0191 2.1920 0. 1300 0.1208 2.3175 
0.0697 l. 0976 0.1821 0.0370 3.8265 
0.0154 2.7126 0.1053 0.1053 3.3011 
0.1530 1. 5262 0. 27 31 0.0591 4.5874 
0.0089 1.4174 0.1464 0.1044 2.8065 
0.0087 1.3592 0.0861 0.0827 3.0484 
0. 0511 2.2644 0.3147 0.1416 3.1945 
0.1280 l. 5175 0.5924 0.2333 6.7284 
0.0339 2.5458 0.2982 0.3081 5.0433 
0.0771 l. 7163 0.1716 0. 2072 6.8622 
0. 2088 2.6146 0.5333 0.3149 11.1292 
o. 1144 2. 8551 0.5534 0.2410 5.4356 
0.0916 2.5360 0. 4477 0.2705 7.5320 
0.0688 1 . 3306 0.2175 0.1442 3.7428 
0.0988 2.2102 0.2907 0.2395 6.3003 
0.0823 2.2868 0.3168 0.1991 6.4999 
0.0050 2.5259 0.1175 0.1088 2.8856 
0.1633 2.3583 0.2733 0.1355 5.0323 
0.0210 3.0849 0.1374 0.1876 4.2589 
0.0732 1. 7391 0.2086 0. 1130 8.3913 
0.502 2. 1801 0.3019 0.0993 4.9689 
0.2517 4.0715 0.2623 0.4027 6.7562 

0.0614 2.0820 0.2323 0.1575 4.4427 
0.0622 0.9705 0.1579 0.0912 2.3340 

-1 -1 
~ moles min mg protein 
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GPT 

0.2750 
0.3854 
0.1503 
0.1614 
0.1358 
0.1468 
o. 1282 
0.1213 
0.1986 
0.1685 
0.1436 
0.0952 
0.1573 
0. 1193 
0.1464 
o. 1676 
0.2627 
0.3982 
0.1696 
0.2067 
0.2630 
0. 3177 
0.3040 
0.1667 
0.1604 
0.2339 
0.1974 
0.1822 
0.1412 
0.1173 
0.1621 
0.2415 

0.1945 

0.0816 
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TABLE XL 

WB-12-11 SIEMPRE WINGED BEAN, NODULE CYTOSOL ENZYMIC 
SPECIFIC ACTIVITY MEANS WITH LONG DAY LENGTH 

AS AFFECTED BY SOIL FERTILITY 
COMBINATIONS TO A DARK RED 

LATOSOL, JAIBA, BRAZIL 

Nase G04 GS GOGAT GOT 

0.0911 0. 1229 0.2403 0. 1003 0. 3406 
0. 0879 0.2237 0. 4611 0.1115 0.2490 
0. 1391 0.3184 0.2621 0.0532 0.5322 
0. 0609 0.2087 0.2287 0. 1081 0.6234 
0.1056 0. 1901 0.2512 0. 1019 0. 9914 
0. 1049 0. 3672 0.3008 0.0928 1. 2150 
0. 1091 0. 2171 0.1074 0. 1262 0.3548 
0. 0723 0. 1594 0.5237 0. 1109 0. 4861 
0. 1034 0.2628 0.2520 0. 1165 0. 6770 
0.0902 0.2947 0.2642 0. 1374 0. 5567 
0. 0941 0. 1936 0. 1525 0. 0631 0.7656 
0.0542 0.0559 0.2955 0. 0697 0. 6628 
0.2504 0.3016 0.2821 0.0912 0.6557 
0.0826 0. 0693 0.3251 0. 0851 0. 5209 
0.0717 0. 1607 0.2397 0.1033 l, 1060 
0. 1047 0.3581 0.4751 0.1430 0.6845 
0.0504 0. 0401 0.3200 0.0510 1 . 2291 
0.0973 0.0453 0.3570 0. 0821 2.1665 
0.3341 0. 1432 0.3205 0. 0562 1. 7963 
0.0559 0.1299 0.3040 o. 0563 1. 4752 
0.0839 0. 1266 0. 2710 0. 1011 1.8729 
0.0334 0.0476 0.3390 0. 0696 0. 9279 
0.0930 0.0839 0.2135 0.0792 0. 5577 
0.0599 0.4179 0.3244 0.1268 1. 2491 
0. 1082 0.0587 0.3802 0. 1054 1.1024 
0.0563 0.1989 0.5541 0. 1241 1. 0468 
0.0576 0.1267 0.2408 0. 1159 0.4362 
0.0799 o. 1170 0.2424 0.1650 0. 3138 
0.0635 0.2125 0.3250 0.1125 0.5750 
0.0435 0. 1113 0.2696 0.0578 0.7324 
0.0824 o. 1988 0.2109 0.0930 0. 2634 
0.0823 0.2352 0.3039 0.0954 1. 0983 
0.0949 0. 1807 0. 2911 0.0968 0.8564 
0.0844 0.0752 0.1194 0.0278 0.3827 

p moles min- 1 mg-l protein. 
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GPT 

0. 0387 
0. 0290 
0.1216 
0. 1005 
0. 1058 
0. 1643 
0.1214 
0.1245 
0. 1181 
0. 1521 
0. 0981 
0.0559 
0.1379 
0. 0506 
o~ l350 
0. 1945 
0. 0483 
0. 0514 
0.0588 
0. 0773 
0.0947 
0.0453 
0. 0416 
0.0919 
0. 0726 
0.0923 
0. 0798 
0.0415 
0. 1125 
0. 0495 
0.0492 
0.0494 

0. 0872 

0. 0319 



Nase 

GDH 

GS 

GOGAT 

GOT 

GPT 

TABLE XLI 

WINGED BEAN NODULE CYTOSOL SPECIFIC ENZYMATIC 
ACTIVITY 6 EFFECTS FOR SOIL FERTILITY 
C0~1BINATIONS TO A DARK RED LATOSOL 

JAIBA, BRAZIL 

p s Ca ~1g 

/::,. Effect 

l..l moles/min/mg protein 

Tinge 0. 066*** 0.008ns 0.019ns -O.QO?ns 

Siempre -0.013ns -O.OIOns 0.005ns 0.006ns 

Tinge 0.566*** 0.332ns 0. l18ns -0.274ns 

Siempre 0.078*** 0.007ns 0.444+ 0.029ns 

Tinge 0. 163*** -0.074** -0.012ns -0.082** 
Siempre 0.037ns 0.017ns 0. 011 ns 0.027ns 

Tinge 0. 103*** -0.034** 0.005ns -0.007ns 

Siempre 0.008ns 0.016* 0.004ns 0.002ns 

Tinge 2.956*** -0.249ns 0.73** -0.804** 
Siempre 0.417*** -0.300*** 0.033ns -0. 165# 

Tinge 0.051*** -0.060*** -0.035** -0.046** 
Siempre 0.044*** O.Ollns 0.021** 0.006ns 

/::,. effect = as defined in Results and Discussion. 

Nase = nitrogenase 

ns = not significant,#,*,**,***, significant at P < 0.1, 
0.01 and 0.001 respectively for Ho: ~:; effect = 0. 
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K 

0. 036* 
-0.043* 

O.OlOns 

0.019* 

0.032ns 

0. 077** 

-O.OO?ns 
O.Ollns 

0.853** 
0.039ns 

0. 015ns 

0.003ns 

0.05, 



It had a positive effect (P < 0.01) on the WB-21-8 Tinge GOT activity, 

and a negative one (P < 0.01) on the GPT activity. A positive effect 

(P ~0.01) was also observed in the WB-12-11 Siempre GPT activity. 
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Unlike P, whenever detected to have a significant effect on enzymic 

specific activity, magnesium was found to have depressive effects. In 

the WB-21-8 Tinge variety, it depressed GS (P ~0.01), GOT(P ~0.01), 

and GPT (P ~0.01), whereas for the WB-12-ll Siempre variety it decreased 

{P ~ 0.1) GOT activity. 

Nitrogenase and GOT activity of WB-21-8 Tinge plants benefited 

{P ~0.05 and 0.01 respectively) from K fertilization. However, for 

the WB-12-11 Siempre plants, this nutrient depressed (P ~ 0.05) 

nitrogenase, while favoring GDH (P < 0.05) and GS (P ~ 0.05). 

Comparisons of the nutrient effects on plant growth and nodula­

tion (nodule weight and number) and on enzymic specific activities, 

suggest two facts are worth noting. 

The first one, indicates that the optimum fertility status of the 

soil that brings about improved plant growth and nodulation is not 

necessarily conducive to higher enzymic activity levels. In these 

experiments, a good indication was obtained that P fertilization was 

beneficial for both varieties. It consistently improved plant 

growth, nodule weight, number of nodules, and all enzymic specific 

activities, except nitrogenase and GS of the WB-12-ll Siempre 

plants. Opposite results were noted when the soil was fertilized with 

Mg. Despite the fact that this nutrient is an essential nutrient for 

all living cells and contributes toward increased activity levels and 

stability of several enzymes (GS for example), this soil, apparently 

has sufficient available Mg to support adequate plant growth, nodulation 
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and high enzymic specific activities. Indeed,additions of this nutrient 

to the pot cultures failed to improve plant growth and nodulation and 

usually depressed the enzymic activities determined in these experiments. 

The second important point obtained in_these experiments indicates 

that a given nutrient will have different degrees of effect on several 

of these enzymes,and consequently,can possibly affect the route of NH 3 

assimilation by differentially affecting the activity of GDH, GS and 

GOGAT. This can be illustrated by treatments PCaMgK and PS from 

Table XL. 

The figures obtained indicate that when the anion P is combined 

with the cations Ca, Mg and K, NH3 was possibly incorporated via the 

GDH pathway, but the combination of two anions P and S, switched the 

assimilation pathway to the GS-GOGAT couple. 

The enzymatic sequences for ammonia assimilation determined in 

these studies are shown in Figure 1. 

In these enzyme sequences, N is believed to be fixed by the nodule 

bacteroid nitrogenase as NH3 which is translocated into the cytosol 

where it can be assimilated by plant enzymes. Both GDH and GS-GOGAT 

pathways are shown, as well as the transaminases GOT and GPT. These are 

apparently the two most important transaminases in utilizing the a amino 

group of glutamic acid (22, 57, 60, 68) for the synthesis of other plant 

amino acids. 

Correlation coefficients obtained for enzymic specific activities, 

and nodule cytosol carbohydrates, PLP's, protein and a KG for the two 

winged bean varieties used in these experiments are shown in Table XLII. 

It is readily noticeable from this table that the relationship 

among the cytosol components was not identical for the two varieties. 
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I. Nitrogenase (Nase) (EC 1.7.99.2) + 
II. Glutamate dehydrogenase (GDH) - (L-glutamate:NAD(P) oxidoreductase deaminating E~ 1.4~1.3) 

III. Glutamine synthetase (GS) (L-glutamate: ammonia ligase (ADP), EC 6.3.1.2) 
IV. Glutamate Synthetase (GOGAT) (L-glutamate: NAD(P)+ oxidoreductase (transaminating) 

ASPARTATE 

AlANINE 

V. Glutamate-oxaloacetate transaminase (GOT)(L-apartate:2-oxoglutarate aminotransfrase, EC 2.6. 1. 1) 
VI. Glutamate-pyruvate transaminase (GPT) L-alanine: 2-oxoglutarate aminotransferase, EC 2.6.1.2) 

aKG. alpha ketoglutarate (2-oxoglutarate) 

Figure 1. A Schematic Composite of Enzymatic Pathways Proposed for N 
Assimilation Within Le~ume Nodules 
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TABLE XLI I 
OCORRELATION COEFFICIENTS FOR ~NZYME SPECIFIC ACTIVITY AND CARBOHYDRATE 

COMPONENTS OF WINGED BEAN NODULE CYTOSOL 

WB 21-8 Tinge 
Nase a KG GDH GS GO GAT GOT GPT PROT PLP's Glucose 

0 .. 33** 0.38** 0.53*** 0.51*** 0.21# o. 10 0.26* -0.28* 
0. 01 0.03 -0.22# 0.05 0.01 0.33** 0.05 

0.29* 0.56** 0.41*** 0.45*** -0.50*** 0.11 0.09 
0.08 0.03 0.64*** 0.71*** -0.21# 0.26* -0.20 

-0.02 0.07 0.41*** 0.51*** -0.25* 0.40*** -0.11 
0.29** -0.22# 0.00 0.40*** -0.23# 0.14 -0.18 
0.23# 0.10 0.67*** 0.36** 0.43*** 0.07 -0.09 

-0. 17 -0.23# -0.62*** -0.26* -0.60*** 0.11 -0.32** 
-0.20 -0.01 -0. 27* 0. 01 -0.20 -0.09 -0.24* 
0.00 -0.02 -0.17 0.02 -0.18 -0.09 -0.35** 0.14 

-0.04 0. 28* 0.30** -0.13 0.15 -0.43*** 0.30** -0.45*** 
-0.05 0.27* 0.34** -0.31** 0.16 -0.38*** 0.22# -0.45*** -0.08 

Sucrose 

0.46*** 
0.08 

0.30** 
0.25 
0.58*** 
0.37** 
0.14 
0.10 
0.57*** 

#, *, **,***significant for P ~ 0.1, 0.05, 0.01 and 0.001 respectively for Ho: r = 0. 64 observations/variable. 

Starch 

0.44*** 
0.08 

0.29** 
0.39*** 
0.54*** 
0.43*** 
0.23# 
0.04 
0.52*** 

-0.15 

-......! 
0 



Specific nitrogenase activity of the variety WB-21-8 Tinge was 

positively co-related with all other enzymes, PLP 1 s, sucrose and 

starch, but not to a KG levels. A negative. relationship was also 

observed for glucose and this enzyme. 

For this variety, a KG levels seemed only to be negatively related 

to GOT activity and positively to PLP•s levels. 
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It was interesting to observe that GDH activity was also positively 

correlated to activities of GS and GOGAT, as well as to GOT, GPT and 

the carbohydrates sucrose and starch. 

According to the evidences reviewed by Miflin and Lea (47), the 

GDH pathway is active when there is an excess of ammonia or a limitation 

of glucose in the growing medium, and on the other hand, the GS~GOGAT 

pathway is active in the mostly common occurrence of limited supply of 

NH3. Allosteric inhibition by end product or substrate concentration 

prevents that both pathways be active at the same time (56, 67). 

Therefore, the fact that the GDH and GS-GOGAT pathways were not 

negatively co-related can be taken as an indication that these path­

ways are compartmentalized within the nodule cytosol; the GDH system 

functioning in response to a high NH3 concentration pool and GS-GOGAT 

couple in response to a low concentration pool. 

Further support for this can be drawn from the specific activity 

levels observed for WB-21-8 Tinge plants as shown in Table XXXIX. 

These data show that activity levels for GS are within ranges reported 

by McParland et al. (44) for soybean root nodules, and although GOGAT 

activities are somewhat lower than those of GS,it is usually highe~ than 

nitrogenase, and hence,does not preclude the action of the GS-GOGAT 

couple. However, activity levels for GDH are approximately 33.9-fold 
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higher than nitrogenase and higher than GS and GOGAT by 9- and 13.2-fold, 

respectively. Thus, it is unlikely that these highly increased GDH 

activity levels were brought about by the level of the ammonia pool 

derived from nitrogenase activity. 

Lawrie and Wheeler (36) have demonstrated that in Pisum sativum 

a 60% reduction for nitrogenase activity and nodule 14c- photosynthates 

occurred after flowering, whereas photosynthesis of the plant doubled. 

They also observed that this reduced nitrogenase activity could be 

alleviated by removal of flowers as they were formed, thus reestablish­

ing a continuous supply of photosynthate to the nodules. 

Apparently, the nodules do not have priority over flowering and 

pod filling concerning the partitioning of available photosynthate 

during this stage of plant development. Thus, it can be suggested 

that nitrogenase activity can not meet the nitrogen requirements of the 

plant after the flowering stage due to the lack of available nodule 

carbohydrates (34) . 

. The data obtained in these experiments indicate that nitrogenase 

activity of the WB-21-8 Tinge plants during flowering was only 64.6% of 

the nitrogenase activity of WB-12-11 Siempre plants before flowering. 

Flowering WB-21-8 Tinge plants had also 18% less available glucose, 

76% less sucrose and 45% less starch when compared with the non-flowering 

WB-12-11 Siempre plants. Thus, it is possible to interpret the 35.4% 

reduction in nitrogenase activity of the flowering plants as due to 

lower carbohydrate availability on the nodule cytosol of these plants. 

The negative correlations obtained between glucose and nitrogenase 

and the enzymes of ammonia assimilation, and the positive correlation 

between these and sucrose and starch, are in agreement with the findings 
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of Lawrie and Wheeler (35) for Vicia faba. They concluded in their work 

that photosynthates are rapidly metabolized on arrival in the nodules. 

Therefore, higher nitrogenase activity in WB-21-8 Tinge nodules was 

associated with decreased glucose levels, and positively associated with 

rates of ingressing sucrose and starch. An inorganic phosphate acti­

vated invertase capable of breaking sucrose to glucose and fructose has 

been reported to occur in root nodules of Lupinus luteus L (30). 

As discussed above, during fl~wering, a shortage of carbohydrates 

appears to inhibit nitrogenase activity shortly before a period in which 

the nitrogen requirement of the plant is expected to be high, since pod 

filling is to take place, Apparently, in the case of the WB-21-8 Tinge 

plants, this requirement was being met by the soil NH3 pool, and this 

can at least partially explain the extremely high GDH activity levels 

obtained. The GDH pathway is known to be active under conditions of low 

carbohydrate levels and excess ammonia, and the fact that half of the 

pot cultures were fertilized with NH4H2Po4 and the other half balanced 

out with 11.4 mg of NH4 acetate seems to satisfy both of these require­

ments. A rapid increase in activity levels of NADH-GDH (aminating) has 

been detected in roots of rice seedlings when NH4 was added to the grow­

ing medium (25). The study of Ca effects in these experiments prevented 

the use of CaH4 (P04)2 · H20 as a P source. 

Thus, the observation that GS-GOGAT activities can account for the 

symbiotically fixed N with the simultaneous presence of a highly active 

glutamate dehydrooenase suggests that these pathways are compartmental­

ized within the root nodules of flowering WB-21-8 Tinge plants. 

Some support for this hypothesis can be derived from regression 

equations established based on the enzyme sequences of Figure 1. Several 
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linear models were tested to explain variations in GOT and GPT 

activities levels as: 

(GOT, GPT) =f(Nase, a KG, GDH, GS, GOGAT, PLP's, glucose, 

sucrose, starch, prot.). 

Best nodules were selected based on r2 improvement and the size 

of the standard variation associated with the mean value of the dependent 

variable (5, 32). Non-linearities were not detected in the plot of 

residuals (16) and if present are not likely to be strong. 

The best models obtained for GOT were: 

(GOT) = 38.96 + 0.22 Nase - 35.67 a KG+ 0.69 GDH 

r2 = 0.40, s = 18.48, and P = 0.0001*** 

( l ) 

(GOT)= 29.57 + 0.11 Nase- 32.15 a KG+ 5.69 GS + 8.16 GOGAT (2) 
2 r = 0.61, s = 15.00, and P = 0.0001*** 

(GOT) = 27.54 + 0.11 Nase- 32.77 a KD + 5.67 GS + 7.03 GOGAT + 

0.20 GDH 

r2 = 0.62, s = 15.00, and P = 0.0001*** 

None of the carbohydrates, and neither protein nor PLP's were able 

to cause any significant improvement of these models. 

Because the GOT levels obtained in this experiment are extremely 

high and cannot be accounted for by any of the possible pathways for 

ammonia assimilation known today, great care must be taken during the 

interpretation of these models. However, they tend to indicate that 

larger variations on GOT activity can be explained by GS-GOGAT pathway 

when nitrogenase and a KG are the other companion independent variable 

in the model. The fact that in model (3) the GDH slope was only 

significant at P = 0.39 with no improvement being obtained for r 2 and 

( 3) 

s, indicates that GDH was an overfitting variable (16), thus, not making 



significant contribution towards explanation of the variations on the 

depe~dent variable. 

The best models obtained for GPT were: 

(GPT) = 1.1169 + 0.0012 Nase + 0.0564 a KG+ 0.0364 GDH 

r 2 = 0.21, s = 0.74, and P = 0.0024** 
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( 1) 

(GPT) = 0.8230 - 0.0028 Nase + 0.2304 a KG + 0.3260 GS + 0.2281 GOGAT 
2 (2) r = 0.54, s = 0.57, and P = 0.0001*** 

The sharp increase in r2 obtained when the GS-GOGAT pathway was 

tested, along with the decrease ins, indicates this enzyme couple can 

explain more of the variation in GPT activity levels than the GDH 

pathway. 

Therefore, the fact that GDH was not a variable important in the 

account for variations in both GOT and GPT activity levels, when 

nitrogenase and a KG were fitted in these equations, gives support to 

the hypothesis that GDH and the couple GS-GOGAT were indeed separately 

comparmentalized w.ithin the nodule cytosol of the WB-21-8 Tinge plants 

and hence connected with different ammonia sources, namely the soil and 

the fixed N pools. 

Similar equations were derived for the WB-12-11 Siempre variety 

and the best models obtained are l~sted below. As observed for the 

WB-21-8 Tinge plants, the fitting of PLP 1 s, protein, and carbohydrates 

for the GOT models did not contribute toward their improvement. 

(GOT) = 10.35 + 0.03 Nase - 12.54 a KG - 0.50 GDH 

r 2 = s = 5.24 and P = 0.0294* 

(1) 

(GOT)= 8.22 + 0.02 Nase- 1.418 a KG+ 1.94 GS 3.57 GOGAT (2) 
2 r = 0.33, s = 4.68, and P = 0.0001*** 
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Comparison of these two equations suggest that most of the variation 

in GOT activity was explained by the GS-GOGAT pathway. 

However, the models for GPT: 

(GPT) = 0.36624 - 0.00007 Nase - 0.040933 a KG+ 0.34492 (GDH) 

r 2 = 0.54, s = 0.33, and P = 0.0001*** 

( 1 ) 

{GPT) = -0.169 + 0.002 Nase + 0.754 a KG+ 0.86 GS- 0.500 GOGAT (2) 

r2 = 0.31, s = 0.41, and P = 0.0002*** 

(GPT) = 0.17837 + 0.00003 Nase - 0.50051 a KG+ 0.09409 GS + 0.09005 (3) 

GOGAT + 0.28560 GDH - 0.00851 PLP's + 0.05181 sucrose 

r2 = 0.61, s = 0.32, and P = 0.0001*** 

indicate that larger variations in GPT activity are best explained when 

both GS-GOGAT and GDH pathways are fitted simultaneously in the linear 

model. This was also the only occasion in which PLP's and sucrose 

contributed toward improvement of the regression equation. 

Most of the work carried out to determine which enzymes are involved 

in the N assimilation mechanism in the roots were conducted using media 

in which only a single source of N was present (22, 25, 70). Apparently, 

little, if any, work has been conducted to determine the effect of soil N 

fertility treatments on nodule enzymatic activity levels using N levels 

which do not inhibit nodulation. 

Before the discovery of GOGAT (66), Fottrell and Mooney (19) had 

already demonstrated that high amounts of GOH, GOT and GPT were induced 

in Rhizobium japonicum when NH 4Cl + AKG were added to the growing medium 

and at that time GDH was considered to be the most important enzyme in 

the assimilation of NH3. However, after the discovery of GOGAT, Miflin 

and Lea (47) concluded that the GS-GOGAT is the mostly likely route to 

NH3 assimilation because its higher activity and lower Km for ammonia. 



They pointed out that GDH is not apparently in contact with high NH3 

levels in the roots because although nitrate reductase is probably 

found in the cytosol, nitrite reductase is associated with root 
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plastids, whereas GDH has been determined in the cytosol and mitochondria. 

Furthermore, GDH activity in the cytosol has been attributed to leaching 

from the mitochondria (8), and it is usually considered to be a marker 

for the mitochondria matrix. 

On the other hand, McParland and co-workers (44) have determined that 

after centrifugation, at 40,000 g for 30 minutes, 90% of GS activity 

was determined in the nodule cytosol of soybean nodules. What the 

authors called cytosol after centrifugation very likely did not contain 

the mitochondria since this organelle can be removed from rat liver 

cells (38) after centrifugation at 15,000 g for 5 minutes and these 

authors in their procedure centrifuge the nodule material at 40,000 g 

for 30 minutes. 

Thus, it is concluded from these experiments that during different 

phases of the winged bean plant development, a switch in N assimilation 

pathways can occur due to the presence of different ammonia pools, and 

priorities in the distribution of available photosynthate. It is 

suggested that during growth, prior to flowering, the plant N requirements 

were met by the rhizobial nitrogenase activity and that in this case NH3 

was assimilated by the GS-GOGAT pathway. However, when a large 

reduction in available nodule carbohydrates occurred during flowering, 

high GDH activities were induced, probably in response to the present soil 

ammonia pool, and independent of nitrate reductase regulations (25). 

It is further suggested that these pathways are compartmentalized, 

and probably the GS-GOGAT enzymes are found in the cytosol and GDH in the 
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mitochondria. In these experiments, GOT activity accounts for the 

utilization of.all glutamate formed by both NH 3 pathways studied in these 

experiments. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Two greenhouse experiments were conducted with a Dark Red Latosol 

(Typic Eutrustox) from Brazil to determine the effects of soil fertility 

treatments on the growth, development, nodulation, and some selected 

nodule cytosol enzymes and carbohydrates related to N fixation in two 

varieties of Psophocarpus tetragonolobus L (DC). The varieties WB-12-11 

Siempre and WB-21-8 Tinge were obtained from the Mayaguez Institute of 

Tropical Agriculture, Puerto Rico. 

In both experiments, the fertility treatments consisted of a P, S, 

Ca, Mg and K 25 complete factorial arrangement in a randomized complete 

block design. Each treatment was replicated three times. 

The fertility levels and nutrient sources for the \>JB-21-8 Tinge 

variety were: 50 ppm of NH 4H2Po4, 50 ppm of Na2so4, 6 meq/100 g of soil 

of Caco3, and 2 meq/100 g of soil of both MgS04.?H20 and KCl. The base 

cation ratio, thus, was equal to one. These nutrient levels were 

doubled for the WB-12-11 Siempre experiment. 

To balance for the presence of NH 4 in the P source, an equivalent 

of NH3 as ammonium acetate was applied to all pot cultures that did not 

receive the P nutrient. 

The pot cultures in these experiments consisted of 100 grams of the 

actual soil, diluted in 400 grams of acid (0.1 N HCl) washed white 

quartz sand. Fertility treatments were applied on a soil basis. 
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Seeds of both winged bean varieties were germinated in vermiculite 

for 5 days and then transplanted to the pot cultures. The germinated 

seedlings were inoculated with 3 ml of Rhizobium leguminosarum culture 

containing more than 108 viable cells per ml, obtained from a selection 

of Strophostyles sp. nodules. 

The WB-21-8 Tinge cultivar was grown during a short day period 

(from 1-31-79 to 4-16-79), and the plants were flowering when harvested 

at 75 day-age. The WB-12-11 Siempre cultivar was grown for 52 days 

during a long day period (from 5-4-79 to 6-25-79), and did not flower. 

The two varieties produced increased shoot growth when the soil 

was fertilized with P; whereas K and Ca improved the top growth of the 

WB-21-8 Tinge and WB-12-11 Siempre, respectively. In contrast, P 

effect on root growth was favorable for the WB-21-8 Tinge, but had 

negative effect on the WB-12-11 Siempre plants. 

For both cultivars, nodule fresh weight responded to P, S, and K 

fertilization, but only P and K increased the number of nodules in 

these plants. This data indicates that although S is required for 

nodule growth, it apparently had no effect on nodule setting. 

Nitrogenase activity was determined as reduction of ethylene to 
-1 1 acetylene and expressed as ~ moles c2H4 produced g fresh nodule hr-

for both varieties. P and K had a beneficial effect on this enzyme 

activity for the WB-21-8 Tinge cultivar, but K had a depressive effect 

on the WB-12-11 Siempre plants. However, when activity was expressed 

as reduction of ethylene per pot culture, in terms of~ moles c2H4 pot-l 

culture hr- 1, a beneficial effect was noted for P and S, as well as a 

negative one for Ca. 

Correlation between nitrogenase, plant growth and development and 
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nodulation, indicated that a practical way to increase nitrogen fixation 

with the WB-21-8 Tinge variety was to fertilize this Dark Red Latosol 

with P, K and S in order to nbtain plants with larger shoot and root, 

as well as increase nodule fresh weight and number. The same objective 

can be achieved by fertilizing the WB-12-11 Siempre plants with P, S, Ca 

and K. Results obtained in these experiments indicate the Mg fertiliza­

tion is not beneficial either for plant growth and development or for 

nitrogenase activity in this Brazilian Oxisol. 

After nitrogenase activity was determined, the nodules were picked 

from the root system, crushed in a buffer solution, sonicated for cell 

disruption and cell free cytosol attained with removal of the bacteroids 

by centrifugation at 12 x 103g for 10 minutes. The supernatant, 

referred to as nodule cytosol, contained the enzyme systems involved in 

the pathways of ammonia assimulation by the plants. 

In the cytosol fraction, the enzymatic activity of glutamate 

dehydrogenase (GDH) glutamine synthetase (GS), glutamate synthase 

(GOGAT) glutamate-oxaloacetate transaminase (GOT), and glutamate­

pyruvate transaminase (GPT) was determined and expressed as enzyme 

unites g-l fresh nodule. One enzyme unit is defined as the amount of 

enzyme that can convert one ~mole of specific substrate min-l at 27°C 

and 1 em light path. 

For the WB-21-8 Tinge plants, all enzymes assayed had their 

activity increased when the soil was fertilized with P. However, this 

nutrient only benefited the GS-GOGAT couple and the transaminase GOT in 

the WB-12-11 Siempre cultivar, with a negative effect on GPT activity. 

Sulphur depressed GOGAT and GPT activities in the former variety, and 

GOT in the latter. 



With a few exceptions, the bases Ca, Mg and K depressed enzymatic 

activities. Thus, these results indicate that fertility treatments for 

optimum plant growth and development are not necessarily 

higher activity of enzymes involved in NH3 assimilation within the 

nodule cytosol. 
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Concentrations of alfa ketoglutarate (aKG), soluble protein (prot), 

pyridoxyl phosphates (PLP 1 s), and the carbohydrates glucose, sucrose and 

starch were also determined in the nodule cytosol fraction. As for the 

enzymes, P seems to be the nutrient with larger effect on these nodule 

components. 

To determine possible routes for NH3 assimilation in the f. 

tetragonolobus varieties, the specific activity of each enzyme was 

obtained by dividing the activity expressed in terms of g-l fresh nodule 

per mg of protein g-l fresh nodule. Thus, specific enzymatic activity 

is expressed as ~ moles of substrate utilization mg-l protein min-1 

These data indicated that enzyme specific activity can be affected by 

soil fertility treatments, and apparently P is a beneficial factor. 

Specific nitrogenase activity for the WB-21-8 Tinge variety during 

flowering was 35.4% lower than for the non-flowering WB-12-11 Siempre. 

Apparently lower nitrogenase activities observed during flowering is due 

to lower availability of photosynthate for nodule protein. In these 

studies, flowering plants had a reduction of 18% in glucose, 76% in 

sucrose and 45% in starch when compared to the non-flowering plants. 

Very high specific GDH activity was observed for the WB-21-8 Tinge 

plants glutamate-oxaloacetate transaminase specific activity in both 

varieties were extremely high, and caul d not be accounted for by either 

the GS-GOGAT pathway or by the GDH activity. 



It is suggested that in the flowering plants, the high GDH 

specific activity obtained was induced by a present soil ammonia pool. 

However, apparently the fixed N was being assimilated by the GS-GOGAT 

pathway, thus indicating that both pathways were simultaneously active. 

Data were presented pointing to the fact that during carbohydrate 

shortage in the nodule, the WB-21-8 Tinge plants have the potential to 

uptake NH3 from the soil to satisfy its requirement, which in this case 

cannot be met by nitrogenase activity. Probably these mechanisms are 

compartimentalized within the nodule cytosol, with GDH being found in 

the mitochondria and the GS-GOGAT couple in the cytosol. 

Apparently, there is a range of available soil N that do not harm 

nodule setting and development and nitrogenase activity, that can be 
' 
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utilized for leguminous plants when symbiotically fixed N is in adequate 

supply. 
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